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General Introduction 

For years, humankind has sought with interest to understand the world around it.  Phenomena 

that could not be explained in the past, due to limitations of scientific knowledge, were 

generally attributed to mystical or divine manifestations. This is notably the case of so-called 

"extreme" phenomena such as, for example, the appearance of volcanic eruptions, 

earthquakes, eclipses, tornadoes, hurricanes or giant waves on the surface of the oceans. 

In each civilization, we find a deity whose irascibility is generally associated with the formation 

of such phenomena. For example, in Mesoamerica, Tlaloc was the God responsible of tropical 

cyclones, common extreme phenomena in this part of the world [1]. Mariners had their own 

myths, even if not related to specific religions, around these terrible waves named rogue 

waves, appearing and disappearing suddenly, far from the coast [2]. 

Many of these events have attracted the attention of scientists for more than 2000 years in 

order to rationally explain the appearance of such events, and it is worth noting that 

historically, optics has been at the center of the concerns of intellectuals and researchers. 

Nowadays, the majority of these extreme phenomena can be studied with a scientific 

approach. The predictability of many extreme phenomena in nature are subject to the 

knowledge of the mechanisms, as well as of the initial conditions leading to their formation 

(tropical cyclones can be anticipated by meteorological analysis). Moreover, the nature that 

surrounds us is still intrinsically unstable and in perpetual mutation. Also, such manifestations 

mix periodic and chaotic dynamics: In particular, in chaos dynamics, small incertitude in the 

initial conditions may cause drastic differences. Any long-term prediction would require then 

the knowledge of all the initial conditions with a precision well above the reasonable values 

obtained from experimental measurements.  

In optics, many advances have been made over the last century, both from a theoretical and 

technological point of view. It is now the 61th anniversary of the invention of the laser by 

Theodore H. Maiman [3], which in the 1960s brought a new wind to fundamental optics 

research, but also gave rise to numerous inventions that are now used on a daily basis. Indeed, 

the use of the laser as a stable and coherent optical source permitted the study of the linear 

and nonlinear interaction between light and matter. 
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In the last few years, nonlinear Modulation Instability (MI) in optics has become an interesting 

field of study. Since the early studies on MI in optics, it was pointed out the intriguing links 

with many other physical systems such as deep-water hydrodynamics. More recently, MI has 

also been studied as a nonlinear mechanism at the origin of extreme events.  

In some nonlinear systems, continuous wave may be unstable upon certain modulation 

frequencies. It leads to the exponential growth of sidebands in frequency domain and can 

cause the wave to break into a train of pulses. Rogue waves, which are strong spatial 

phenomena with very short lifetime and a very high and destructive energy, are likely to 

appear on MI [2] [4].  

Studies on mathematical waveforms such as Akhmediev breathers, Kuznetsov-Ma breathers 

and Peregrine solitons have flourished in the last years, to understand the formation and 

propagation of the rogue waves [5] [6] [7].  Those mathematical waveforms are results of 

differential equations used to describe natural phenomena, and the most used of those 

equations is the NonLinear Schrödinger Equation (NLSE). However, exact solutions can be 

found out of this equation only for some specific conditions. The NLSE solutions are well 

known for a propagation in a nonlinear medium with one transverse spatial dimension or in 

temporal domain (1D), in presence of constant group velocity dispersion. When there are two 

transverse spatial dimensions (2D), the mathematical study of the 2D-NLSE is significantly 

more complicated. However, this fact does not necessarily mean that ephemeral waves of 

extreme amplitude do not exist in 2D. It is then probably necessary to find another way to 

solve the differential equations, by using for example realistic approximations. It is also 

interesting to underline that the term soliton is given to a solution of a nonlinear propagation 

equation. If we strictly follow this definition, no 2D soliton may exist because of the non-

integrability of the nonlinear equation from a mathematical point of view. In the present 

manuscript, the term soliton will be not restricted to a rigorous solution of an integrable 

system. 

The first soliton propagation was observed more than one hundred and fifty years ago by John 

Scott Russell in a water channel. In optics, solitons were first studied in centrosymmetric 

media with cubic nonlinearity [8]. It was not until 1974 to see the first theoretical prediction 

of solitons in media with quadratic nonlinearity [9]. The experimental observation of a 

quadratic soliton dates back to the end of the last century (more precisely in 1995 [10]). Also, 
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the existence of purely 2D MI has been experimentally proven in materials with quadratic 

nonlinearity in 2011 [11].  

My thesis deals with the study of self-trapped extreme events in quadratic media, which have 

the potentiality to appear and disappear with respect to the propagation conditions or by self-

destruction of their own environment.  

 

Chapter I will list the most salient types of solitons reported in optical systems. I will recall 

some basics of nonlinear optics and how one can reach solitonic solutions, starting from an 

analytic study, from Maxwell equations to the particular solution of solitons on MI: the 

Akhmediev breathers, the Kuznetsov-Ma breathers and the Peregrine solitons. By the end of 

the chapter, I will focus on a particular optical system: the silica fiber. Indeed, these 

waveguides have been historically the preferred choice of experiments with optical solitons.  

 

Chapter II will describe the nonlinear mechanisms in quadratic crystals, which are a different 

type of optical system. Supported by the analysis made on the first chapter, this chapter will 

focus on the history of bicolor solitons, analytic solitonic results developed for quadratic 

systems, as well as on MI observation in quadratic crystals. 

 

On chapter III, I will illustrate my results on spatial, temporal and spectral studies of a new 

type of spatial self-trapped beam, generated through the propagation of an infrared 

collimated pump beam in nonlinear crystals. In such materials, a part of the optical beam 

experienced a highly self-focusing effect. Moreover, such focused energy remained confined 

along the crystal length but surprisingly disappeared when the input power was increased 

further.  

 

In order to have a better knowledge of the causes of the spatial soliton disappearance, a 

complete analysis of the speckled pattern at the second harmonic, generated in parallel to the 

disappearance of the self-confined event, will be discussed on chapter IV. In the same chapter,  
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I will show a reorganization of this speckled beam at high light intensities, and the 

corresponding impressive spectrum broadening generated during such reorganization.  

 

Chapter V will report on particular cases of spatial multi-solitons generation in quadratic 

crystal. Such events were initiated in two ways: either spontaneously, or by means of a 

periodical input pump, generated by interferences. As for the case of single self-trapped event 

seen on chapter III, the extreme events observed on chapter V disappeared when increasing 

further the pump power. 

 

In chapter VI, I will conclude this thesis by showing an application of ultrafast temporal pulse 

reshaping, using such newly discovered soliton. The pulse reshaping was obtained by spatially 

filtering the quadratic soliton from the input pump, and was annihilated at high power, as the 

soliton disappeared.  

In order to demonstrate the applicability of the multicolor beams at the output of a quadratic 

crystal, in a biomedical imaging system, I collaborated with Sahar Wehbi to realize a first 

demonstration of Multiplex Coherent Anti-Stokes Raman Scattering (M-CARS) images. In 

particular, again in chapter VI, I will show our results of M-CARS images, obtained in the 

context of S. Wehbi thesis, using a supercontinuum generated in the quadratic crystal as a 

broadband Stokes wave. The synchronism between pump and such supercontinuum 

permitted to create a vibrational spectromicroscopy system in absence of delay lines.  
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Chapter I. Solitons in optics 

I.1. History of solitons 

Solitons are self-sustained waves, propagating without any deformation, through a nonlinear 

medium, whether in spatial, temporal, or spectral domains. For example, temporal solitons 

are created through the equilibrium of dispersion and nonlinearities of the medium. Since 

solitons are wave packets propagating like a particle, without losing its shape, they are popular 

in quantum physics for wave/particle studies [1]. The first soliton ever observed was in 

hydrodynamics. 

 

I.1.1. First observation in hydrodynamic systems 

The first solitary wave ever observed was created by the motion of a boat. This wave was 

propagating through 1 or 2 km along a channel without loss or deformation. Scott Russel 

discovered this singular wave in 1834 and reported the phenomenon as a wave of translation 

and then solitary wave [2]. 

 

“I was observing the motion of a boat which was rapidly drawn along a narrow channel 

by a pair of horses, when the boat suddenly stopped—not so the mass of water in the 

channel which it had put in motion; it accumulated round the prow of the vessel in a 

state of violent agitation, then suddenly leaving it behind, rolled forward with great 

velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-

defined heap of water, which continued its course along the channel apparently without 

change of form or diminution of speed. I followed it on horseback, and overtook it still 

rolling on at a rate of some eight or nine miles an hour [14 km/h], preserving its original 

figure some thirty feet [9 m] long and a foot to a foot and a half [30−45 cm] in height. Its 

height gradually diminished, and after a chase of one or two miles [2–3 km] I lost it in 

the windings of the channel. Such, in the month of August 1834, was my first chance 

interview with that singular and beautiful phenomenon which I have called the Wave of 

Translation.” 

J.S. Russel 
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Figure 1: The solitary wave re-created at the same place where JS Russell observed it in 1834. The picture 

was shot in 1995 and comes from: http ://www.ma.hw.ac.uk/solitons/press.html. 

 

A first theoretical explanation of such phenomenon was brought by Joseph Boussinesq [3] and 

Lord Rayleigh [4] in the 1870s. In 1895, Diederik Korteweg and Gustav de Vries provided the 

first equation giving solitary waves similar solutions [5]. 

Nowadays, scientists experimentally observe solitons in many fields of physics and in a lot of 

different propagation media. The most famous ones are wave tanks in hydrodynamics or 

fibers in optics. 

 

I.1.2. Solitons in optical systems 

I.1.2.1. The solitons, in all dimensions 

One has to wait the invention of laser emission in 1960 [6] in order to observe solitons in 

optical medium, since only lasers can provide an optical power large enough to induce a 

nonlinear response for the light propagation. Optical solitons have been observed in temporal, 

spatial or spectral domains. 
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Temporal solitons: 

The first optical temporal soliton was experimentally studied by McCall et al. in a nonlinear 

medium with self-transparency induced by the laser beam in 1967 [7]. In that publication, the 

phenomenon was interpreted as a "hole-burning" effect in which the absorption line is simply 

saturated by the leading edge of the pulse. 

Six years later, a theoretical work led by Akira Hasegawa and Fred Tappert of Bell labs [8] 

showed that some optical pulses were able to propagate with a constant envelope along an 

optical fiber in anomalous regime. Later, a first soliton observation in optical fiber was 

reported in 1980 by Mollenauer et al. [9].  

 

Figure 2: First temporal soliton recorded by Mollenauer et al. [9]. For various fiber input powers, the figure 

illustrates the spectrum and temporal traces of the output fiber beam (the temporal traces are from an 

autocorrelation and the curves are normalized). The box shows the input laser characteristics. 

 

On Figure 2, we can see how the soliton loses its shape for a fiber input average power above 

5 Watts. In those cases the dispersion was not enough to compensate nonlinear effects. After 

such observations, the potential of optical solitons for long distance propagations, especially 

for telecommunications, was clear. Many research activities were developed in this topic [10] 

[11]. 
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Spatial solitons: 

These solitons keep their transversal spatial shape unchanged while propagating in the 

nonlinear medium. They were firstly predicted in 1964 by launching a continuous wave laser 

beam into a massive Kerr nonlinearity optical medium [12]. Moreover, these self-trapped 

beams were not firstly related as spatial solitons, due to the unstable nature of these 

observations. One has to wait until 1985 to see the first observation of stable spatial Kerr 

soliton in Limoges [13]. In these experiments, the soliton was set stable by limiting the 

diffraction to only one spatial dimension, using interference fringes (1D transverse spatial 

soliton).  

 

Spectral solitons: 

Talking about solitons in spatial and temporal dimensions, I need to conclude with the less 

known (but yet very interesting) case of spectral solitons. These kind of solitons have been 

reported recently by A. Picozzi et al. in 2008 [14]. The particularity of these solitons is due to 

their spectral incoherence: these waves are not confined in space or time domain, but they 

shift their frequency while propagating in the nonlinear medium, without any spectral 

broadening. 

 

I.1.2.2. Variety of the solitons 

The solitons I described in the previous paragraphs are Kerr solitons. In the simplest case, the 

temporal soliton is a 1D wave propagating with a constant temporal envelope along a 

dispersive media [15] [16]. Thus, for each propagating laser pulse, the Kerr medium 

nonlinearity counterbalances the linear dispersion, allowing propagation without 

deformation. For the case of spatial soliton, the diffraction effect is compensated, in one or 

two transverse dimensions, by a self-focusing effect [17]. In these cases, the laser pulse is 

spatially self-guided by an ephemeral waveguide only existing during the pulse duration. 

Besides the positive envelope (also known as bright) Kerr solitons, other types of solitons can 

exist. By tuning the input conditions, or by changing the main nonlinear effect involved in the 

creation of such waveform, one can expect numerous other types of solitons, and I will list 

some of them in the following paragraphs. 
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Dark solitons: 

Dark solitons, contrary to bright solitons, are “holes” on a background composed of a 

continuous wave. 

 

Figure 3: Bright and dark solitons envelope, function of space (X) [18]. (a)-Bright soliton. (b)-Black dark 

soliton. (c)-Gray dark soliton.  

 

First anticipated in 1973 [19], the dark soliton was experimentally observed in the optical fiber 

in 1988 for the first time [20]. In this experimental study, the dark soliton was obtained with 

a pre-shaped initial beam, injected in the fiber. The dark solitons can be divided in two 

categories [21]: the black and the gray dark soliton (see Figure 3). The black soliton has a 

minimal value equal to zero, while the gray soliton has a minimal value greater than zero, but 

still lower than the continuous wave background level. 

 

Vectors solitons:  

Vectors solitons are composed of multiple coupled components, dependant on polarization. 

Under this denomination, one can find several types of hybrid solitons such as the dark-dark 

soliton, the dark-bright soliton and the bright-bright soliton [22]. Experimentally, such 

waveforms can be obtained by coupling multiple properties in a nonlinear material [23] [24] 

(an optical fiber cavity with weak birefringence for example). 
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Domain wall solitons:  

Domain walls are a type of topological defect, usually related to a brutal symmetry break of 

the wave phase transition. Because of their similarity with the mathematical kink solution of 

the Sine-Gordon equation, domain walls solitons are also called kink solitons, and a single kink 

soliton solution has been found in 1982 [25]. S. Wabnitz et al. predicted the optical domain 

wall soliton through the switch of polarization in fibers [26]. Five years later, this theory was 

experimentally validated by S. Pitois et al. [27].  

 

Figure 4: Experimental domain wall dark soliton [28]. 

 

Multimode solitons: 

The solitons discussed previously can be single mode solitons, meaning that the solitonic 

waveform appears through only one spatial frequency. Moreover, in 1980, light confinement 

has been predicted in multimode fibers (where more than one light mode propagates through 

it) by A. Hasegawa [29]. In such context, a potential multimode soliton solution has been 

studied few years later [30] [31]. Moreover, one must wait more than two decades for the 

first experimental observation of multimode solitons in a multimode fiber [32]. In these 

experiments, Renninger et al. used a medium with a relatively small intermodal dispersion to 

increase nonlinear effects among the different modes. Moreover, the higher order modes 

total energy was low compared to the fundamental one, and the soliton was very similar to a 

single mode one. An experimental study by L.G. Wright et al. [33] confirmed the theory by 

showing, through simulations and experiments, a multimode soliton appearance, followed by 

solitonic fission for higher power values. 
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Kerr-like solitons:  

Some materials, like photorefractive or liquid crystals, can have a nonlinear response 

competitive to that of Kerr media, and they can allow then the generation of spatial solitons 

thanks to their unique molecular structure.  

Photorefractive effect was firstly observed in Bell laboratory by Ashkin et al. in 1966 [34]. This 

effect causes a change of the material refractive index, induced by light illumination. The 

spatial variations of light intensity induce the index change. Several processes are mixed to 

create the photorefractive effect: the illumination induces a photo excitation of charges in the 

material, and their migration from the bright to the dark areas generates a space charge field 

producing then a modulation of the refractive index by the Pockels effect (linear modification 

of the refractive index according to the local electric field). Crystals can be used as 

photorefractive materials, under the double condition of being photoconductive and having 

an electro-optical effect. Firstly associated to laser-induced optical damages, photorefractive 

effect was understood few years later by F.S. Chen [35] [36], opening the way to holographic 

recordings using photorefractive materials [37]. Already used for data storage, and real-time 

processing because of its reversibility, M. Segev demonstrated in 1992 that this effect could 

also be used to focus an optical beam, making possible the generation of 2D spatial solitons 

[38]. The experimental demonstration was made the following year [39]. Figure 5 shows the 

slow (non-instantaneous response of the matter) 2D photorefractive soliton generation 

process. 

The same 2D spatial solitons can be obtained in liquid crystals, where the refractive index 

modification is due to thermal effect or molecular reorganization [40]. In regards of 

photorefractive material, liquid crystals exhibit a shorter refractive index reconfiguration time, 

allowing all-optical fast switching applications [41]. However, beam confinement is more 

efficient in photorefractive media. Photorefractive and liquid crystals solitons are not 

considered as “real” solitons since the medium remains altered by the electromagnetic field 

even after the extinction of this last one. 

Another type of Kerr-like soliton is generated in crystals with the quadratic nonlinearity, with, 

this time, an instantaneous nonlinear response. My thesis experiments are oriented to explore 

such quadratic spatial solitons. For this reason, a complete study of such type of interesting 

phenomenon is given in the next chapter. 
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Figure 5: Experimental photorefractive soliton formation in LiNbO3 material [42]. (a)-Input beam shape. (b-j)-

Output beam shape at different light exposure times. A and C vectors are relative to the optical polarization 

field, while E0  vector is relative to the electrical field around the material. The light illumination remains 

constant during all the process time. 

 

Raman solitons: 

Solitons, instead of being generated by Kerr nonlinearity, can be generated by Raman 

nonlinearity [15]. Raman solitons are formed into a fiber cavity. They were experimentally 

observed in 1984 [43] and a theory of such process was made one year later [44]. It has been 

shown later that Raman gain could be used to generate solitons in such fiber ring setup [45] 

[46]. An example of Raman soliton fiber cavity is shown in Figure 6 where a Raman pump is 

used to generate a soliton on its Stokes wavelength. 

 

Figure 6: Raman Stokes soliton generation in a fiber cavity [47].  
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Light bullets: 

Light bullets are spatial and temporal domains solitons. They are the ultimate research goal 

on optical solitons [48]. They can be obtained by trapping the beam both spatially (in the two 

transverse dimensions) and temporally ((3+1)D configuration), to prevent diffraction and 

dispersion from occurring simultaneously. In 1990, Silberberg [49] suggested that a space-

time compression in a Kerr medium would be unstable, since the propagation would be 

(2+1)D. However, by including terms such as multiphoton absorption or stimulated Raman 

scattering, the propagation can be stabilized. A spatiotemporal self-focusing has been 

demonstrated in a Kerr medium for planar configuration [50], however, stabilizing a (3+1)D 

propagation in a Kerr medium is not yet possible. Other media are considered, notably 

quadratic media which can also propagate temporal solitons [51]. The first demonstration of 

a space-time soliton in a quadratic medium was made by Liu et al. [52] [53], again in a planar 

configuration. In these experiments, the need to have tilted wavefronts at the crystal entrance 

for phase tuning makes the propagation less stable and prevents any (3+1)D propagation. New 

theoretical investigations are carried out [54] [55] [56] but the light bullets have not been 

obtained yet. 

 

Dissipative solitons: 

Dissipative solitons, introduced in 1991 by Picholle et al. [57], are localized formations that in 

the presence of nonlinearity, dispersion and/or diffraction, maintain their equilibrium through 

an exchange of energy with the external environment.  

The existence and stability of the dissipative soliton depend on a continuous supply of energy 

to the system (as in the case of laser cavity). When this energy supply ceases, or when the 

parameters of the system no longer coincide with those allowing the formation of the soliton, 

the dissipative solitons disappear [58]. The formation of a dissipative soliton in a cavity 

involves a variety of stabilization mechanisms, depending on the nature of the cavity. These 

mechanisms have a common characteristic: they involve a compensation process between the 

intra-cavity losses and a gain of energy provided by the environment. 

Some properties of dissipative solitons make them very attractive for research. First, their 

intensity profile, amplitude and velocity remain fixed, and are defined by the parameters of 
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the system [59] rather than by the initial conditions. Secondly, they can exist indefinitely in 

time as long as an energy is provided to the system (or as long as the required parameters are 

present in the system, allowing dissipative soliton existence). 

 

Solitons on continuous-wave background: 

Such waveforms are of particular interest for my thesis. Such interest is not related to the fact 

that these waves propagate on a continuous background, but on the fact that these waves 

may appear and disappear without leaving a trace when the nonlinearity increases. In short, 

my thesis deals with ephemeral appearance of 2D extreme waves, whose dynamics mimics, 

in a quadratic crystal, the behavior of soliton propagating on continuous background. In this 

way, the reader can find a detailed study of these solitons in the following parts of this chapter 

(see paragraph I.2.3), after a short presentation of the NLSE.  

 

I.1.2.3. Some special soliton dynamics 

I will complete this short review on solitons in optical systems by briefly mentioning some 

unconventional dynamics when solitons propagate under special conditions. Indeed, as 

described before, the soliton is typically propagating alone, in one propagation direction, and 

his envelope is not modified by its environment. However, there are circumstances allowing 

solitonic fission, fusion, repulsion, spiraling and walking solitons. 

 

Soliton fission and self-frequency shift: 

When a soliton of order N > 1 (which means that the nonlinearity is higher than the dispersion) 

propagates in a medium in the presence of weak perturbations (like third order dispersion), 

the pulse can break into multiple solitons of lower order, until reaching the first order. Such 

process is used in supercontinuum generation [60] [61] [62] (see Figure 7): the initial soliton 

fission leads to multiple solitons generation, each one propagating through the medium with 

a different wavelength, due to self-frequency shift.  

Soliton self-frequency shift was first experimentally discovered by Mitschke and Mollenauer 

in 1986 [63], then a theory was developed the same year by Gordon [64]. Self-frequency shift 
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of the soliton is due to the Raman effect occurring while light propagates through the 

nonlinear medium, forcing the shift of the soliton through lower-frequency parts. The mixing 

of the soliton self-frequency shift with other nonlinear effects (which cause spectral 

broadening) leads to the generation of large supercontinuum. 

Figure 7 shows, on right, a time shift of high-energy solitons during the propagation in the 

fiber. This time shift is due to soliton self-frequency shift, after fission of the initial soliton, 

leading to a delay between each solitons because of the material chromatic dispersion.  

 

Figure 7: Numerical simulation of a supercontinuum generation in an optical fiber, due to N = 3 soliton 

fission [62]. Left-The resulting supercontinuum of light. Right-Time shift of the high-energy solitons while 

propagating in the fiber, after fission of the injected (Distance = 0) soliton.  

 

 

Solitons collision: 

When two or more solitons propagate with different group velocities along a nonlinear 

dispersive medium, collisions may occur between two of them. In materials with quasi-

instantaneous nonlinear response (Kerr or quadratic materials), solitons can attract or repel 

each other, depending on their relative phases [65] [66]. Repulsive collision mechanisms can 

find applications in all-optical demultiplexing for example, where a phase-controlled soliton 

will change the direction of another soliton in a pulse train [67]. Moreover, the phase 

sensitivity of such process can be thwarted by changing the soliton polarization [68] or the 

soliton spectrum [69] for example. 
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Walking soliton: 

Solitons can see their temporal or spatial group velocity accelerated or slowed down by the 

material: such solutions are named walking solitons. It has been observed in birefringent 

materials, such as quadratic crystals [70] or special optical fibers [71], and experimental results 

were then quickly obtained [72]. In 1996, W. E. Torruellas and L. Torner [73] simulated a game 

of billiards, involving all the solitonic waveforms generated by the quadratic nonlinear process, 

using the walking properties of these soliton components. 

 

I.2. Nonlinear Schrödinger equation  

The NLSE allows the mathematical description of nonlinear phenomena in optics by adding, in 

a single equation, nonlinear and linear terms as diffraction and/or dispersion. One can then 

calculate the spatial and temporal evolution of electromagnetic wave envelope propagating 

in a nonlinear dispersive medium.  It is necessary to start from Maxwell equations to 

understand the origin of the NLSE. 

 

I.2.1. From the Maxwell equations to the nonlinear Schrödinger equation 

Maxwell equations are differential coupled equations, giving the evolution of an 

electromagnetic field in time and space: 

 

ρ

∂∇× = −
∂

∂∇× = +
∂

∇ ⋅ =

∇ ⋅ =

�

�

�

� �

�

�

0

f

B
E

t

D
H J

t

D

B

  (1.1) 

Where 
�

H  and 
�

E  are the magnetic and electric field, 
�

J  is the current density vector, 
�

B  and 
�

D  are the magnetic and electric flux density, and ρ f  is the free electric charge density. The 

studied optical medium here is dielectric so there are no free charges. In these conditions, 

=
�

0J  and ρ = 0f . The flux density is relative to the field while propagating in the medium 

and the following equation gives the relation between them: 
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ε= +

= +

� � �

� � �

0

0

D E P

B µ H M
  (1.2) 

�

M  and 
�

P  are respectively the magnetic and electric polarization vector induced by the 

oscillation of the electrons in the medium when an electromagnetic wave is transmitted 

through it, and µ0 ,ε0  are the vacuum permeability and the permittivity. In nonmagnetic 

mediums, such as optical silica fiber: =
�

0M . A single equation can be developed from the 

previous coupled equations:       

 
∂ ∇× ∂ ∇× ∂∇×∇× = − = − = −

∂ ∂ ∂

� � �

�

2

0 0 2

( ) ( )B H D
E µ µ

t t t
  (1.3)                  

Knowing the relation: ε =0 0 2

1
µ

c
, the last equation leads to a simpler time propagation 

equation, dependent on the electric and polarization fields: 

 
∂ ∂∇×∇× = − −
∂ ∂

� �

�

2 2

02 2 2

1 E P
E µ

c t t
  (1.4) 

In dielectric medium where ∇ ⋅ =
�

0D , it is now possible to simplify ∇ × ∇ ×
�

E  with the following 

equation: 

 ∇ ×∇× = ∇ ∇ ⋅ − ∆ = −∆
� � � �

( )E E E E   (1.5) 

�

P  is directly dependent of the electric field:  

 ε χ ε χ ε χ+ + == + +
�� ���

� � � �

(1) (2) 2 (3) 3

0 0 0 ...
L NL

P E E E P P   (1.6) 

 With χ (1)  the linear susceptibility of the medium and χ (2) , χ (3) ,… the quadratic and cubic 

susceptibilities respectively. 

A part of the electric polarization is linear (
��

L
P ): the molecular displacement, and then the 

electron oscillation in the material, is proportional to the electric field intensity. Another part 

of the electric polarization is nonlinear (
���

NL
P ): when the electric field is above a certain 

amplitude threshold, the molecule affected by this field is subject to saturation, distension, 

dissymmetry or to other effects changing the electron oscillation behavior under the external 

strong electromagnetic field. This oscillation modification will affect the total polarization of 
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the medium and then the external electric field propagation. The following relations can be 

considered: 

 
ε χ
ε χ ε χ +

=

= +

��
�

���
� �

(1)
0

(2) 2 (3) 3
0 0 ...

L

NL

P E

P E E
  (1.7) 

The electric field propagation equation can now be written as: 

 
∂ ∂∂∆ − = +

∂ ∂ ∂

�� ���
�

�

2 22

0 02 2 2 2

1 L NLP PE
E µ µ

c t t t
  (1.8) 

Since the optical fiber is the main observation medium for solitons, we will consider, in the 

following parts of this chapter, the nonlinear medium as amorphous silica. In order to simplify 

the following equations, we will consider the electromagnetic waves as a single mode beam 

propagating in a silica fiber with only χ (3)  susceptibility. The wave propagation direction is 
�

z  

and its linear polarization direction is on 
�

x . The electric field 
�

E  and the polarization field 
�

P  

can be decomposed as follows [15]: 

 

β ω

β ω
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−
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P r t x F x y P z t e c c

  (1.9) 

Where ( , )F x y  is the transverse envelope of the wave, Ψ( , )z t  and ( , )P z t  are respectively the 

electric and polarization propagating envelope, β0  is the propagating constant of the wave, 

with pulsation at ω0  , and . .c c  is the complex conjugate term. The envelope is slowly varying 

in comparison to the optical carried frequency, so we can consider Ψ 2( , || )z t  as the 

instantaneous power. From the equation (1.7) and (1.9), we can now calculate the linear and 

nonlinear polarizations: 

 

ε χ

ε χ ε ε

= Ψ

= Ψ Ψ = Ψ

(1)

0

(3) 2

0 0

( , ) ( , )

3
( , ) ( , )| ( , ) ( , )|

4
L

L

NL N

P z t z t

P z t z t z t z t
  (1.10) 

The total polarization is now the following, from (1.6): 

 ε χ ε+= Ψ(1)

0( , ) ( , )( )NLP z t z t   (1.11) 
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Where εNL
 is the nonlinear component of the frequency dependent relative permittivity ε ω( )r

which gives use, for a given frequency, the total refractive index n : 

 

ε ω ε ε

χ χ+

= = +

= + Ψ

2

2 (1) (3) 2( | )

( )

3
1 ( , )|

4

r L NL
n

tn z
 (1.12) 

ε L
 is the linear component of the frequency dependent relative permittivity. From the last 

equation, we can calculate the refractive index in function of the wave frequency, relative to

ω , and the light intensity, relative to Ψ 2( , || )z t : 

 ω ωΨ = + Ψ2 2

2( ,| | ) ( ) | |Ln n n   (1.13) 

It is then possible to get the linear 
Ln  and nonlinear 2n  parts of the refractive index, calculated 

from the real and imaginary parts of χ (1) [74]: 
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  (1.14) 

From equations (1.8), (1.9) and (1.10), one can obtain the following form of the NLSE [15] [74]: 

 
ββ γ ω∂Ψ ∂Ψ ∂ Ψ+ + − Ψ Ψ =

∂ ∂ ∂

2
22

1 02
( )| | 0

2
i i

z t t
 (1.15) 

With β1  the inverse of group velocity, β2  the group velocity dispersion (its physical origin is 

recalled in section I.3.1.2) and γ ω0( )  the nonlinear coefficient, relative to Kerr effect and 

developed in I.3.2.2 section. 

By changing the referential into group impulse coordinates, β= − 1t t z , it is now possible to 

obtain a simplified NLSE which takes the following form: 

 
β γ∂Ψ ∂ Ψ− + Ψ Ψ =

∂ ∂

2
22

2
| | 0

2
i

z t
  (1.16) 

Light propagation in optical fiber can be described with the integrable NLSE, allowing quick 

solutions with inverse scattering method [75]. Equation 1.15 can be solved by the split-step 

Fourier method [15]. This equation is now the most used one to predict solitons in optics, as 

we will see in the following parts of this chapter.  
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I.2.2. Introducing modulation instability in the nonlinear Schrödinger equation 

In this paragraph, I will introduce instabilities in the Schrödinger nonlinear wave propagation 

equation. MI is characterized by the growing of a weak modulation of a continuous wave, in a 

nonlinear medium with anomalous dispersion or with the focusing NLSE. MI leads to the 

generation of large-amplitude periodical wave trains. In spatial domain, MI changes weakly 

modulated waves into periodical patterns (see Figure 8-top). We observe on this figure the 

evolution of the envelope amplitude during propagation, leading to the degradation of a 

continuous wave for a given propagation length (superior to z1). In spectral domain, MI is 

characterized by the transfer of energy between a single component (ω) to multiple sidebands 

(see Figure 8-bottom). The spectral dynamics of MI is that of a degenerated Four-Wave Mixing 

effect [15].  

In the hydrodynamic field, MI has been observed in deep water (analogous to the anomalous 

dispersion regime in optics). MI is seeded by the natural envelope amplitude modulation of 

water (caused by the wind for example). With dispersive and nonlinear effects, some of the 

modulation frequencies are favored and grow exponentially, leading in the strong conversion 

to catastrophic behaviors, such as rogue waves. These instabilities, studied in hydrodynamics, 

are called Benjamin-Feir instabilities [76] [77]. In optics, Mi growths spontaneously when 

driven by noise, or can be induced by adding an intensity modulator [74]. The phenomenon 

of growing on modulation instability sidebands can be analytically described by using the 

NLSE, and this point is the subject of the next paragraph. 

 

Figure 8: MI evolution in a nonlinear medium [78].  
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I.2.3. Solitons generated by modulation instability  

Under MI, non-zero background solitons can exist and their existence have been predicted by 

Akhmediev [79], Peregrine [80], Kuznetsov [81] and Ma [82]. In order to observe such special 

solutions of the NLSE, it is preferable first to normalize the space and time propagation 

variables in equation (1.16): 

 ξ τ
τ

= =
0

;
NL

z t

L
  (1.17) 

γ= 1 / ( )NLL P  is the nonlinear length (with P  the input power) and  τ β= 1/2

0 2( )NLL  is the period 

of the MI. With the new normalized parameters ξ  andτ , the NLSE reads as: 

 
ξ τ

∂Ψ ∂ Ψ+ + Ψ Ψ =
∂ ∂

2
2

2

1
| | 0

2
i   (1.18) 

With this equation, it is now possible to calculate the soliton solution on a non-zero 

background, growing on MI. 

 

I.2.3.1. Akhmediev breathers 

This first analytic solution of the normalized NLSE is a low-frequency modulation envelope 

wave composed by high amplitude solitons. Akhmediev breathers are localized in propagation 

coordinates and periodic in time coordinates. To understand the behavior of such waveform, 

it is necessary to introduce a new parameter in the wave amplitude propagation: a. 

The analytic Akhmediev breather solution is the following, for 0 < a < 0.5: 

 ξ ξ ξξ τ
τ ξ

− +Ψ = +
Ω −

2(1 2 ) ( ) ( )
( , ) [1 ]

2 ( ) ( )

i a cosh b ibsinh b
e

acos cosh b
  (1.19) 

Where b determines the instability growth and Ω  the modulation frequency [74] [83]: 

 = −
1

2[8 (1 2 )]b a a   ;  Ω = −
1

22(1 2 )a  (1.20) 

When a = 0, the solution of the equation (1.19) is a continuous wave. It gains amplitude when 

a increases, but the number of solitons and the modulation envelope frequency decreases. 
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Figure 9 illustrate an example of Akhmediev breather for a = 0.25, the background is 3 times 

less important than the solitons amplitude, and minima appear around solitons, with a smaller 

amplitude value than the continuous background. 

 

Figure 9: Example of Akhmediev breather, for a = 0.25.  

 

The Akhmediev breathers periodicity disappears in time when the parameter a  approaches 

0.5, which is a limit value for the equation (1.19). In that case, the breathers periodicity tends 

to the infinite and the central soliton (ξ = 0  and τ = 0 ) is the only one remaining. Peregrine 

made a derivation of the analytical model seen in equation (1.19) [80].  

 

I.2.3.2. Peregrine solitons 

For a = 0.5, the equation (1.19) can be reduced as follow: 

 ξ ξξ τ
τ ξ
+Ψ = −

+ +2 2

4(1 2 )
( , ) [1 ]

1 4 4

i i
e   (1.21) 

In this solution, the periodicity parameters (1.19) disappear as the length between each peak 

event becomes infinite. This derivation allows to obtain a mathematical model for a localized 

(space (1D) or time (1D)) extreme event called the Peregrine soliton (see Figure 10). 
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Around a localized soliton in time or space, one can draw similar observation as for the case 

of Akhmediev breathers: a continuous background exists, and there are minima of energy 

close to the central high amplitude. 

 

Figure 10: Example of Peregrine soliton, for a = 0.5. 

 

I.2.3.3. Kuznetsov-Ma breathers 

The Kuznetsov-Ma breathers are mathematical solutions of NLSE with continuous background 

when a > 0.5. For such range of values, b  and Ω  parameters become imaginary (equation 

(1.22)) and switch axis periodicity of the Akhmediev equation (1.19) to the other axis. The 

complete description of these breathers has been realized in 1979 [82] and gave a 

mathematical solution similar to the Akhmediev breathers but with a periodicity developed 

along the longitudinal propagating axis, and no longer on the temporal axis as for the case 

Akhmediev breathers (1.23).  

 = −
1

2[8 (2 1]b i a a  ; Ω = −
1

22 (2 1)i a  (1.22) 
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Figure 11: Example of Kuznetsov-Ma breather, for a = 0.95.  

 

At some time and space values, we can observe minima of energy, below the continuous wave 

level, acting like a depletion around the solitons. Such behavior of the mathematical solution 

is very similar to what we can observe in hydrodynamics (water depletion before and after the 

high amplitude wave) and in optics [74].  

Optical field of physics is the one we will study in the following lines, because it allows us to 

observe extreme events, such as non-zero background solitons, in a relatively small setup. For 

example, Chabchoub et al. used a wave tank with a length of 15 meters, for a width of 1.5 

meter and a water depth of 1 meter as experimental setup for Akhmediev and Kuznetsov-Ma 

breathers experiments [84]. Similar results have been observed in optics by Kibler et al. [85] 

using few kilometers of optical fibers as a nonlinear medium.  

Optical fibers are a good nonlinear medium since it allows soliton propagation studies along 

kilometers without significant loss and with the possibility to observe the light dynamic at any 

particular fiber length. Peregrine solitons have been observed in fibers by Kibler et al. in 2010 

[86]. One year later, studies on MI spectral dynamic were carried out using the Akhmediev 

breather theory [87]. In 2012, the first results on Kuznetsov-Ma waveforms in optics were 

published [85]. 
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I.3. Silica fibers as a perfect physical environment to observe solitons  

The nonlinear silica fiber is a historical medium for optical soliton generation [56]. Fibers have 

been used since the 50s for endoscopic applications; flexible glass waveguides have been used 

for telecom applications ten years later, after the invention of the laser. Indeed, due to the 

important losses in the first samples of optical fibers, it was necessary to wait the invention of 

a high-intensity light source in order to observe the light guidance along kilometers of 

propagation. Progress were made in optical fiber fabrication, to reduce losses at specific laser 

wavelength (Near Infrared - NIR wavelengths are mostly used in telecom, due to the relative 

low attenuation and low dispersion of these frequencies while propagating in the fiber) and 

in parallel, lasers sources became more and more powerful, allowing the transmission of light 

to further and further distances. However, life always finds a way to bother the engineer, and 

nonlinearities appeared when the optical power was above a given energy threshold. These 

nonlinearities degraded, most of the time, the signal; however, under some circumstances, 

the fiber nonlinearity permitted to transmit undistorted ultrashort pulses over thousands of 

kilometers of fiber (thus, we can talk about solitons propagation). The first soliton in optical 

fiber was then observed in 1980 [9]. 

Silica fibers are dielectric waveguides for optical frequencies. They transmit light through the 

core by means of total internal reflection. In order to keep light in the center of the fiber, it is 

necessary to have a core refractive index higher than the refractive index of the cladding. In 

order to increase the refractive index of silica SiO2, the core can be doped with germanium 

dioxide GeO2, or aluminum oxide Al2O3. It is also possible to dope the cladding part of the fiber 

for decreasing, this time, the refractive index (with boron dioxide B2O3 for example). The silica 

fiber is also coated with a polymer to avoid external deterioration and to improve mechanical 

properties when bending and crushing are applied. 

Light propagates in optical fibers with specific spatial distributions called electromagnetic 

transverse modes (see Figure 12). In a standard step-index fiber, when the normalized spatial 

frequency V  is lower or equal to 2.405, the optical fiber is considered as single mode, meaning 

only one spatial frequency, which can be approximated by a Gaussian, can propagate in the 

waveguide. For higher values of V , the fiber allows the propagation of several modes. The V  

coefficient is defined as follow: 
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π
λ

= −2 22
c g

a
n nV  (1.24) 

Where a  is the fiber core radius, λ  is the propagating light wavelength, and 
cn , gn are the 

core and cladding refractive indexes.  

Silica fibers are now the most used waveguides for light, since they are cheap, usable and easy 

to produce. However, several linear and nonlinear effects can affect the electromagnetic field 

propagation. 

 

Figure 12: Simulated isolated spatial frequencies at the output face of a multimode fiber [88]. 

 

I.3.1. Linear effects in silica fiber 

Several linear effects affect the spatial and temporal wave envelope independently to the 

electromagnetic field intensity. The most famous are the attenuation and dispersion effects. 

 

I.3.1.1. Attenuation 

Optical attenuation in fibers, also called transmission losses, is the first effect ever observed 

in this type of medium. Transmission losses can have many origins, such as mechanical 

torsions, imperfect junctions between the fiber core and cladding or molecular origins as 

linear scattering or material absorption mainly due to the hydroxyl OH- ions occurring in 

particular at 1380 nm. Impurities inside silica can also be at the origin of significant losses [89]. 

The main scattering process in optical fibers is due to Rayleigh effect, dependent on the wave 

frequency. Rayleigh scattering is a limit case of Mie scattering where all of the optical 

wavelengths are affected due to big particles presence on the optical path [90].  
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Figure 13: Light attenuation in silica optical fiber, in function of the wavelength. This figure comes from 

Fibercore website. 

 

The attenuation α  is usually expressed in dB/km and given by the following equation: 

 α = −10
( )o

dB

i

l
P

og
L P

 (1.25) 

With L  the propagation length,
iP  and 

oP  respectively the input and output power of light in 

silica fiber. 

 

I.3.1.2. Dispersion 

The dispersion (D) of the optical fiber is the combination of two contributions, one of the 

material and one of the waveguide. When an electromagnetic wave propagates in a dielectric 

medium (a fiber in our case), this wave will interact with the electrons of the dielectric 

material. 

The dispersion of the material results in a dependence of the refractive index with the 

wavelengths so that each wavelength will travel with different speeds in the waveguide. The 

dispersion of the waveguide will depend on the fiber design: the core radius and the index 

difference between the core and the cladding. Light speed will depend on the light transverse 

location in the fiber, hence the appearance of optical delays after propagation in the fiber [74]. 

D , expressed in ps.nm-1.km-1, is directly linked to β2  and depends on the wavelength λ :  
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π β
λ

= − 22

2 c
D  (1.26) 

In standard single-mode fibers, the Zero Dispersion Wavelength (ZDW) is the wavelength at 

which waveguide dispersion and material dispersion cancel each other, and the total 

dispersion (D) is equal to 0. For telecom applications, the fiber is doped to shift the ZDW 

toward 1550 nm (ZDW is at 1310 nm in all-silica fiber), in order to minimize the propagation 

losses (see Figure 13).  

In the same standard single-mode fibers, when the light wavelength is shorter than the fiber 

ZDW, the dispersion is called normal (D < 0) thus, shorter wavelengths will propagate faster 

than longer ones (positive frequency chirp). On the contrary, for longer wavelengths, the 

dispersion is called anomalous (D > 0) and shorter wavelengths will propagate slower than 

larger wavelengths (negative frequency chirp). Solitons appear mainly in anomalous 

dispersion regime, where Kerr nonlinearity counterbalances dispersion. However, some 

examples of soliton propagation can be found in normal dispersive regime in particular 

conditions [91]. Dispersion versus wavelengths evolves with the fibers geometry or 

composition. For example, the hollow-core fiber [92] exhibits anomalous dispersion regime 

for any chosen guided wavelength (see Figure 14 for an example of hollow-core fiber).  

 

 

Figure 14: Example of a microstructured hollow-core fiber, drawn by F. Delahaye at XLIM laboratory [93]. 

Left-Side cut of the fiber, Right-Zoom on the fiber core. 

 



Raphaël JAUBERTEAU | Ph.D. Thesis | Université de Limoges | Università di Brescia | December 14th 2021 43 

License CC BY-NC-ND 4.0 

I.3.2. Nonlinear effects in silica fiber 

Nonlinear effects taking place in optical fibers can seriously affect spatial and temporal wave 

envelopes and distort the initial structure of the light pulses, because of the anharmonic 

molecular and atomic responses of the medium under strong beam intensity. Thus, significant 

pump depletion, frequency conversion, pulse breaking, anomalous absorption due to 

multiphoton process, etc., can exist. 

 

I.3.2.1. Raman effect  

When an electromagnetic wave propagates in a dielectric medium, inelastic scattering may 

occur. This non-instantaneous process comes with kinetic energy losses due to collision 

between corpuscles (photons and atoms), leading to a frequency shift between the incident 

and the scattered lights. The lost energy is transferred toward phonons, which propagate in 

the matter. Thus, we spontaneously obtain a Stokes line at higher wavelength (we can talk 

about spontaneous Raman effect). Stimulated Raman process is also possible when the light 

propagates through an excited molecule. In that case, the energy stored by the molecule can 

be released to the initial beam by creating an anti-Stokes line at a shorter wavelength. Thus, 

stimulated Raman is understood as a resonant four-wave mixing process. The Raman shift 

depends on the molecular structure i. e. the medium nature. In silica fiber, Raman shift is close 

to 13.2 THz and can be modified by doping the glass. 

 

Figure 15: Raman Stokes and anti-Stokes energetic level. hγ0 is the incident photon energy, and hγvib the 

energy transmitted to the molecule. 
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I.3.2.2. Kerr effect 

Kerr effect is an instantaneous nonlinear process, well known in optical fibers, which induces 

a modification of the refractive index of the medium, proportional to the intensity of an optical 

beam (see equation (1.13) for more information). This effect is mathematically implemented 

in the NLSE (1.16) in the term: γ Ψ Ψ2| | . The Kerr effect depends on the field envelope Ψ but 

also on the nonlinear coefficient γ , which contains the nonlinear response of the medium and 

the surface covered by the incident beam: 

 γ ω= 0 2

eff

n

cA
 (1.27) 

Where ω0  is the center frequency of the wave packet and effA the effective area of the injected 

light beam. Kerr effect leads to several processes, such as self and cross-phase modulations, 

four-wave mixing,… 

Self-phase modulation effect, in particular, is responsible of the soliton formation. As the 

refractive index becomes dependent of the field intensity = Ψ 2| |I  for a single center 

frequency, = + 2( ) L In nI n  will produce an instantaneous phase shift φ  of the wave packet, 

centered on the wavelength λ0  while propagating in the nonlinear medium of length L  [15]: 

 
πφ ω
λ

= −0

0

2
( ) ( )

L
t t n I   (1.28) 

This instantaneous phase shift compensates the linear phase shift, introduced in anomalous 

dispersion, with an opposite chirp, allowing the generation of solitons in such configurations 

[94]. 
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Conclusion – Chapter I 

In this first chapter, I briefly recalled some historical perspectives on solitons and their 

observations mainly in optical materials. I pointed out how solitons can exist in several 

dimensions and I gave examples of basic interactions between them. I introduced the NLSE 

and described some of its solutions of solitary waves propagating on MI non-zero background. 

These solitons seem to be more appropriate to explain extreme rogue events observed in 

nature, which appear and disappear without leaving trace. At the end of this chapter, I focused 

more my attention to linear and nonlinear effects in fibers, responsible of the generation of 

solitons in those materials. 

Even if my work is not directly centered in third-order susceptibility silica materials, the 

phenomena that I observed exhibit several similarities with solitary waves obtained in 1D in 

optical fibers and I was inspired by these results to explain my observations that will be 

discussed in the next chapters. 
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Chapter II. Solitons in quadratic media  

II.1. Light propagation and three-wave mixing in quadratic medium 

In this chapter, I will focus my attention to quadratic media such as type II nonlinear bulk 

Potassium Titanyl Phosphate (KTP) crystals or periodically poled lithium niobate (PPLN) [1]. 

One can see the quadratic nonlinear material, with χ (2)  susceptibility, as a frequency mixer, 

where an idler wave at a pulsation ω3  can be generated by a signal and pump at ω1  and ω2 .  

 

Figure 16: Three-wave mixing process in a quadratic nonlinear medium with χ (2)
susceptibility.  

 

The nonlinearity of that medium (which provides a relatively high susceptibility) comes mainly 

from its molecular crystal lattice arrangement and from the nature of the involved atoms. In 

this way, only the second order nonlinear susceptibility is usually considered, thus, the 

nonlinear polarization 
���

NL
P  from equation (1.8) can be simplified as: 

 ε χ=
���

�

(2) 2

0NL
P E   (2.1) 

Nevertheless, quadratic media can also support a high third order nonlinearity, which can 

counterbalance or increase the effects of the second order one. In some particular cases, as 

in high phase-mismatch and high input peak power, the Kerr nonlinearity can play a significant 

role and drastically disturb the χ (2)  process [2] [3].  

From the equation seen in the previous chapter, we can calculate the nonlinear polarization 

for a pure quadratic nonlinear media, considering the monochromatic field: ω= 0( ) ( )E t E cos t . 

0E and ω are respectively the amplitude of the electric field and its pulsation: 

 ε χ ω ε χ= +(2) (2)

0 0 0 0( ) co
1

s(2 )
1

2 2
NL

P t tE E   (2.2) 
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For simplicity, I consider the real values of ( )E t  and ( )NLP t  in the equations (2.2) - (2.4). The 

others equations will be instead referred to complex envelopes as in Chapter I. 

In the non-degenerated case, two different injected optical frequencies, with pulsations ω1  

and ω2  (ω ω≠1 2 ), are considered: 

 ω ω= +11 22( ) ( ) ( )E t E cos t E cos t   (2.3) 

Leading to the following nonlinear polarization: 

  ε χ ω ω= +(2) 2

20 1 21( ) ( ( ) ( ))NLP E cos t cos tt E  (2.4) 

By developing the equation (2.4), it is possible to extract nonlinear processes from the 

solutions terms. They are listed in the following table:    

Nonlinear polarization terms Nonlinear processes 

ε χ +(2) 2 2

0 21( )
1

2
EE  Optical Rectification 

ε χ ω ω+(2) 2 2

0 1 1 1 2( cos(2 ) cos(2 ))
1

2
E t E t  

Second Harmonic Generation 

ω12  or ω22  

ε χ ω ω+(2)

0 1 2 1 2cos[( ) ]E E t  

Sum Frequency Generation 

ω ω+1 2  

ε χ ω ω−(2)

0 1 2 1 2cos(| | )E E t  

Difference Frequency Generation 

ω ω−1 2| | 

Table 1: Quadratic nonlinear processes. 

 

Equation (2.2) is composed by two parts. The first one oscillates at the pulsation ω2  that is 

twice the frequency of the fundamental wave. This part is physically at the base of Second 

Harmonic Generation (SHG). A first observation of optical SHG was made in quartz material by 

P.A. Franken et al. in 1961 [4]. The next year, additional experimental demonstrations in other 

materials like potassium dihydrogen phosphate [5] [6] or triglycine sulfate [7] were reported. 
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These observations quickly led to the publication of theoretical papers on the SHG in 1962, 

written by N. Bloembergen et al. [8] and J.A. Armstrong et al. [9]. Seven years later, in 1969, 

G. S. Agrawal made a quantum approach of the SHG phenomenon [10].  

Surprisingly, the SHG can also be observed in glass. The most used method for SHG in glass is 

called poling process. It consists in creating or inducing a χ (2)  susceptibility in a glass, by local 

modification of its molecular structure (using the light itself or a static electric field). Thus, 

frequency doubling was performed, in 1986, in glass fibers [11], and then in oxide glasses 

almost a decade later [12] [13] [14] and in non-oxide glasses, in 2001 [15]. Poling was also 

used by C. Fiorini et al. to observe SHG in polymer, in 1997 [16].  

A nonlinear process, visible on Table 1, is independent from the pulsation ω . It is well known 

as optical rectification, firstly discovered by M. Bass et al. in 1962 [17]. The optical 

electromagnetic wave is then converted into a DC electric current similar to the electro-optical 

effect. Based on that process, one can create terahertz radiation by using femtosecond laser 

pulses [18] [19].  

In a quadratic nonlinear medium, three waves can interact. These three waves are nonlinearly 

coupled one each other. From the equations (1.10) and (2.1), it is now possible to write the 

coupled evolution equations for the three waves involved in the mixing [1]:  

 

ω

ω

ω

∆

∆

− ∆

∂Ψ = Ψ Ψ
∂

∂Ψ = Ψ Ψ
∂

∂Ψ = Ψ Ψ
∂

*1

2

1
3 2

2
3 1

2

3 3
1 2

3

1

*

kz

kz

kz

i

eff

i

eff

i

eff

i d
z n c

i d
z n

c

e

n
e

c

i d
z

e   (2.5) 

1n , 2n  and 3n  are respectively the effective refractive index of the three mixed waves in the 

quadratic nonlinear process.  

1k , 2k  and 3k  are the wave vectors. −∆ = −3 1 2k k k k  is the phase mismatch among these 

waves. effd is the effective nonlinearity tensor, calculated from the second-order 

susceptibility. 

The χ (2)  susceptibility is a third rank tensor with 27 terms (3x3x3) because three waves are 

involved in the quadratic nonlinear process, and each wave interacts with the others [1]: 



Raphaël JAUBERTEAU | Ph.D. Thesis | Université de Limoges | Università di Brescia | December 14th 2021 55 

License CC BY-NC-ND 4.0 

 

χ χ χ χ χ χ χ χ χ
χ χ χ χ χ χ χ χ χ χ

χ χ χ χ χ χ χ χ χ

 
 =  
  

(2)

xxx xyy xzz xxz xxy xzy xzx xyx

yxx yyy yzz yxz yxy yzy yzx yyx

zxx zyy zzz zxz zxy zzy zzx

xyz

yyz

zyz zyx

  (2.6) 

The optical frequencies used in this thesis are far from the material resonance, so no energy 

is stored in the molecular structure, and the response between the optical field and the 

molecular polarization is quasi-instantaneous. It is then possible to permute frequencies if the 

associated polarizations are also permuted [1]. The tensor is then reduced to 18 terms: 

 

χ χ χ χ χ χ
χ χ χ χ χ χ χ

χ χ χ χ χ χ

 
 =  
  

(2)
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z
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z

y

xy

z

zy

  (2.7) 

From the following tensor, it is now possible to calculate effd : 

 χ= ⋅ ⋅(2)

3 1 2

1

2
eff

e e ed   (2.8) 

Where 1e , 2e  and 3e  are the unit polarization vectors of the three coupled waves respectively. 

With the Kleinman approximation [1], it is possible to reduce further the number of terms in 

the effective nonlinearity tensor if the quadratic material is, for example, isotropic, uniaxial, 

biaxial. 

 

II.2. Importance of the phase matching on the three-wave mixing process 

In order the get energy exchange between the three waves, one must respect the phase 

relation among each wave. A proper way to mathematically represent it is to consider the 

phase mismatch factor ( ∆k ) reported in the equation (2.5). When the phase mismatch is equal 

to zero (phase matching), the nonlinear mixing process i. e. the frequency conversion reaches 

the maximum efficiency. 

By integrating 
∂Ψ
∂

3

z
 on the total length L  of our nonlinear material, we obtain: 

 
∆∝3 1 2( ) (0) ²( )(0)

2

kL
I L I sincI ; = sin( )

( )
x

sinc x
x

 (2.9) 
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This equation is relevant for the weak conversion regime, meaning that the generated 

intensity 3I  is relatively low in regards to the injected intensities 1I  and 2I , thus, the generated 

wave does not significantly deplete the incident wave. 

In a degenerated case, the equation (2.9) is simplified: =1 2(0) (0)II  and can be plotted as in the 

following Figure 17, giving us a Second Harmonic (SH) conversion function of the phase 

matching in nonlinear quadratic medium. The width of the central peak and the position of 

the zeros are determined by 
∆

2

kL
, and in order to characterize the phase detuning regardless 

of the value of L, it is usual to express this quantity as multiple of π. 

 

Figure 17: (a)-Second harmonic generation versus the nonlinear medium length and the phase mismatch 

between the waves involved in the process. (b)-Phase mismatch representation. Where k1 and k2 are the 

propagating vectors of the depleted waves, and k3 is the propagating vector of the generated wave. 

 

The Figure 17-(b) shows that in order to get a perfect phase matching, it is necessary to respect 

the momentum conservation principle: = +3 1 2k k k  which goes in pair with the energy 

conservation principle: ω ω ω= +3 1 2 . 

There are many ways to obtain the phase matching conditions, depending on the crystal type 

and chemical structure. In isotropic media, chromatic and polarization dispersion make the 

phase matching process impossible. Therefore, anisotropic media can be used, and crystal 

orientation or temperature can be managed to control the phase matching conditions.  
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 Birefringence phase matching 

Birefringence phase matching is the oldest method to tune SHG efficiency in crystals, and it is 

well described in many nonlinear optics books [20] [21]. birefringent crystals possess two 

principal axes, one ordinary (o) and one extraordinary (e). These principal axes depend on the 

crystal molecular mesh orientation.  

In the case of birefringent crystals, there are two different types of phase matching, type I and 

type II.  

In type I phase matching, the linear polarization directions of ω1  and ω2  are parallel to each 

other, and the linear polarization of ω3  is orthogonal to the two others.  

In type II phase matching, the linear polarization directions of ω1  and ω2  are orthogonal to 

each other, and the linear polarization of ω3   is parallel to one of the two incident waves. 

 

Figure 18: Waves polarization orientations for the two types of phase matching in birefringent crystals. 

 

When waves with a given linear polarization direction are propagating along a birefringent 

crystal, the polarization state can be separated into two linear polarization components, each 

one along the principal axes (extraordinary) e and (ordinary) o of the crystal. This fact may 

lead to spatial and temporal walk-offs: the beam at the output of the crystal will drift away 

from the wave vector direction in the spatial case, and delays between waves will occur in 

temporal domain. 

In type II phase matching, the incident wave has polarization components along the two 

principal axes e and o. Thus, the waves travel along two different optical paths i. e. with two 

different directions. This spatial walk-off can drastically limit the nonlinear conversion and 

introduce spatial distortion on the converted wave. 
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In type I phase matching, the incident waves are polarized along an unique principal axis (it 

can either be e or o). The waves travel then along one optical path. No spatial walk-off occurs 

between the incident waves; the generated third wave will propagate through a different 

optical path since its polarization orientation will be orthogonal to those of the incident waves. 

Waves propagation, in both types of crystals, is illustrated in the following Figure 19. In all 

cases, temporal walk-off occurs and the waves can lose the temporal overlap while 

propagating in the crystal. 

An example of type I crystal is the Beta Barium Borate (or BBO) [22], an example of type II 

crystal is the KTP [23]. Despite of the spatial walk-off between both incident waves, the 

nonlinear coefficient of KTP crystals is generally higher than the coefficient of type I BBO [24]. 

 

Figure 19: (a)-Example of type I phase matching propagating waves. k1 and k2 are the propagating vectors of 

the incident waves, and k3 is the propagating vector of the converted wave.  (b)-Example of type II phase 

matching propagating waves. (c)-Normalized generated wave intensity along the birefringent crystal (type I 

and type II). Black curve is in the case of phase mismatch, and orange curve in the case of phase matching.  

 

In Figure 19-(c), we introduce Lc, the coherence length, equal to the propagation length for 

one of the degenerated incident waves to get a phase displacement of π with respect to the 

generated third wave. 

 
π
∆

=
c

L
k

 (2.10) 
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Without birefringence, each time the propagation length reaches Lc, there is an inversion of 

the energy exchange between the incident waves and the converted wave. As shown in Figure 

19-(c) (black curve), if the phase matching condition were not respected in birefringent crystal, 

the light conversion process would regularly be inverted, and the conversion rate would be 

very weak after propagation in the crystal.  

 

II.2.2. Quasi-phase-matching 

In birefringent crystals, the nonlinear coefficient is orientation dependent. Thus, to exploit the 

higher nonlinear coefficient, the input pump waves (ω1  and ω2 ) have to follow given 

directions of propagation. In some cases, no solution can be found, forbidding then the 

exploitation of that nonlinearity. In order to overcome this difficulty, the quasi-phase-

matching technique has been introduced. 

Quasi-phase-matching consists in periodically changing the sign of the d  tensor every 
cL , 

when the phase difference between the incident and the generated frequencies is equal to π, 

in order to optimize the energy transfer in the three-wave mixing process. d  parameter is a 

nonlinear coefficient relative to effd calculated in equation (2.8) [9].  

This periodical evolution of the nonlinearity introduces an additional term in the phase 

matching equation and the new phase matching equation becomes: 

 
π+ − =
Λ1 2 3

2
k k k  (2.11) 

Λ is the poling period of the PPLN, tunable in temperature (see Figure 20-(a)). 
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Figure 20: (a)-Poled crystal with Λ = 2Lc period. (b)-Normalized intensity of the generated third wave along 

the crystal. Black curve is in the case of phase mismatch, and orange curve in the case of  

quasi-phase-matching. 

 

Comparing the Figure 19-(c) and Figure 20-(b), the third wave intensity generation is higher in 

the case of pure birefringent phase matching than in quasi-phase-matching process. 

Nevertheless, quasi-phase-matching allows the use of materials with a higher nonlinear 

coefficient, leading to a larger nonlinear wave conversion efficiency.  

It is also important to note that the incident fundamental radiation is polarized along the 

extraordinary axis like the generated wave. This case is generally referred as type 0 phase 

matching process. In that configuration no spatial walk-off between waves exists which 

contributes to increase the conversion efficiency. 

The quasi-phase-matching technique was developed by Armstrong et al. in 1962 [9] but the 

realization was delayed by two decades, due to difficulties in the technological 

implementation [25]. 

 In my thesis, I used a PPLN crystal designed for quasi-phase-matching at 1064 nm. Thus, the 

Λ  periodicity length was close to 7 µm with a nonlinear coefficient deff of 15 pm/V which is 

four or five times higher than the one of the type II KTP crystal (3.5 pm/V). 
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II.3. Solitons generation in quadratic media 

Mathematically, the soliton is a specific solution of an integrable model equation [20] [26], 

however, the term soliton is abusively extended to every case where a self-sustained wave is 

propagating without deformation, the diffraction or the dispersion being perfectly 

compensated by the nonlinearity, as in quadratic media. 

 

 The history of quadratic solitons 

Quadratic solitons are solitonic waveforms generated in χ (2)  materials and composed by two 

different wavelengths, thus, these solitons are also named bicolor solitons. Karamzin and 

Sukhorukov theoretically predicted the quadratic soliton existence in 1974 [27], but it took 

more than two decades to obtain a first experimental demonstration [28] [29]. As we can see 

in Figure 21, Torruellas et al. [28] observed a quadratic spatial soliton at the Fundamental 

Frequency (FF). He launched a 20 µm-waist infrared beam (see Figure 21-(a)) in a 1 cm-long 

KTP. At low input light intensity, the diffraction was dominant, leading to the broadening of 

the beam at the output of the crystal (see Figure 21-(b)). When the nonlinear length 

compensated the diffraction length (for an input intensity value higher than 10 GW/cm²), the 

12.5 µm-waist soliton was generated and visible at the output of the KTP crystal (see Figure 

21-(c)). This 2D spatial soliton was observed on phase matching and small phase mismatch 

(positive or negative) conditions. Thus, solitons are able to keep their spatial shape unchanged 

while propagating along multiple diffraction lengths (see Figure 22).  

1D quadratic solitons were also observed in a planar LiNbO3 crystal waveguide by R. Schiek et 

al. [29]. Soliton collisions in quadratic nonlinear materials were studied later in 1D spatial 

domain [30] [31] and 2D spatial domain [32]. 2D quadratic spatiotemporal soliton collision 

was also investigated in 2000 by Liu et al. [33]. Liu’s works come in parallel to their researches 

on light bullets generation. 

  



Raphaël JAUBERTEAU | Ph.D. Thesis | Université de Limoges | Università di Brescia | December 14th 2021 62 

License CC BY-NC-ND 4.0 

The first SHG soliton, generated by using quasi-phase-matching technic, was reported in 1999 

by B. Bourliaguet et al. in a PPLN [34]. This spatial 2D soliton was generated with an input 

pump intensity of 1 GW/cm², ten times lower than the soliton generation intensity threshold 

in Torruellas experiments, using birefringent media [28] (see Figure 21).  

 

 

Figure 21: Quadratic soliton observation made by Torruellas [28]. (a)-The input beam. (b)-The output beam 

at low input light intensity. (c)-The output beam at high input intensity (more than 10 GW/cm²). All of these 

images are at the fundamental frequency. 

 

 

Figure 22: Quadratic soliton propagation in a KNbO3 crystal. The dashed lines are the simulation of the beam 

diffraction at low intensity [35] [36] [37]. 

 

Beyond the simple observation of a quadratic spatial soliton propagation, interactions 

between these two colors solitons allowed the demonstration of multiple solitons-like 

waveforms generation [38], spatial collision between those waveforms [39], walking soliton 

[40], spatial steering [41], and spiraling [42], which are interesting behaviors for biomedical 

imaging and all-optical computing for example. 
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 The cascading effect 

In order to get a mathematical model of the soliton propagation, while propagating in χ (2)  

susceptibility material, one can consider phase mismatch condition, where regular energy 

exchange between the FF and the SH waves occurs and creates a nonlinear phase shift, which 

in turn compensates the linear one generated through the propagation. This process is called 

cascading effect.  

Thus, an analytical explanation of the cascading effect can be given, from the following 

dimensionless equations, for bright spatial solitons generation in slab (1D) type I waveguide 

(see A. V. Buryak and Y. S. Kivshar article [43] for more details): 

 
∂Ψ ∂ Ψ+ − Ψ + Ψ Ψ =

∂ ∂

2

2
0*FF FF

FF SH FFi
z x  (2.12) 

 σ δ α∂Ψ ∂Ψ ∂ Ψ− + − Ψ Ψ
∂ ∂ ∂

+ =
2

2
² 0

1

2
SH SH SH

SH FFi i
z x x

 (2.13) 

With: α σ
β

∆≡ +(2 )dkL
. 

In these equations, ΨFF
is the envelope of the waves at the FF (degenerate case), and Ψ SH

is 

the envelope of the wave at the SH.σ  is the modal diffraction ratio, 
dL is the diffraction length 

of the material, β  is proportional to the phase velocity shift, induced by nonlinearity, and δ  

is proportional to the walk-off in the material. z is the propagation coordinate, normalized by 

Ld. 

For a large positive Δk, α >> 1  and the wave equation from (2.13) is reduced to: 

 
α

ΨΨ ≈ ²

2
FF

SH
 (2.14) 

In this way, equation (2.12) becomes the following spatial NLSE [44]: 

 
α

∂Ψ ∂ Ψ+ − Ψ + Ψ Ψ =
∂ ∂

2
2

2
| | 0

1

2
FF FF

FF FF FFi
z x

 (2.15) 

When the diffraction is limited to one transverse dimension only, this equation is integrable 

and admits then precise soliton solutions as in Kerr medium.  
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In these newly stable generated two-color solitons, the SH will have a lower amplitude than 

the FF, in this cascading limit. Moreover, even for a weak Δk and α , quadratic solitons may 

exist, but this time the FF will have an amplitude comparable to that of the SH (see Figure 23 

for comparison), and the soliton may be unstable [45] [46].  

 

Figure 23: Two colors quadratic solitons, for weak Δk (left) and large Δk (right), from [43]. 

 

These analytic solutions assume that the FF and the SH are both present from the beginning 

of the propagation. Moreover, numerical analysis led by S. Carrasco et al. [47] showed that it 

was possible to observe stable solitons by injecting only the FF in the crystal.  

 

And what happens close to phase matching? 

It is important to note that a periodical energy exchange between the FF and the SH is only 

theoretically possible for Δk ≠ 0.  

Moreover, the notion of perfect phase matching can be defined rigorously only for a non-

diffractive monochromatic plane wave. The use of short pulses (broad spectrum) with finite 

spatial dimensions (i. e. with a diffraction length of the beam lower than the crystal length) 

does not allow to rigorously obtain perfect phase matching. Some wavelengths, present in the 

pulse spectrum, are then slightly out of phase, when the initial beam starts to diffract.  

Thus, we could consider that the case of strict phase matching condition is never respected in 

the experiments and that quadratic soliton is always obtained, for a weak or large Δk.  

Additionally to these informations, in exact phase matching conditions, an analytical solution 

of a 1+1D soliton in quadratic media was given in [27], for a single value of a global parameter. 
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II.3.3. Modulation instability and non-zero background solitons in quadratic 

media 

As we saw before, MI is a periodical deformation of wave trains initialized by a weak 

modulation on a continuous wave propagating in a nonlinear medium. In 1967, Benjamin and 

Feir wrote a full theory on MI in deep water [48]. Optical MI was mostly studied in χ (3)  

susceptibility materials as the silica optical fibers [49], and used to generate spatiotemporal 

light bullet [50] or optical vortex [51].  

Quadratic MI was theoretically predicted and studied by P. Ferro & S. Trillo in 1995 [52] [53] 

as a phase modulation effect. The proper calculation of MI on top of FF and SH exchanging 

energy has been solved in 1997 by S. Trillo and S. Wabnitz [54].  The same year [55], Fuerst et 

al. launched an elliptic pump beam through a crystal; while the ellipticity ratio was of 1:8 (1D 

configuration), they observed a perfectly round soliton at the output of the nonlinear material. 

The same year, they observed that, while increasing further the pump power, the single 

soliton split into a regular range of solitons, and their number increased with the pump power 

[38]. This multiple solitons generation was analyzed further and Fuerst et al. [38] made the 

following conclusion: the spatial solitons array analyzed in the previous paper were the result 

of a spatial MI, generated by noise in a quadratic nonlinearity material. In this way, Fuerst et 

al. [38] experimentally observed for the first time 1D MI in χ (2)  susceptibility materials. All of 

these 1D experiments were realized in bulk crystals, and one must wait 2001 to see the MI 

experiments in quasi-phase-matching conditions, led by J.F. Corney and O. Bang [56].  

The first MI in both transverse dimensions (2D MI) was experimentally observed by M. Delqué 

et al. in 2011 [57]. In order to obtain such results, they launched a 500 µm-wide large 

collimated beam into a KTP crystal, and observed at high power the beam breakup into an 

important number of self-focused light spots after propagation in the crystal (Figure 24-(a,c)). 

They analyzed the spatial spectrum of this light pattern, and observed in Fourier domain a sum 

of symmetrical rings at low frequencies, with a symmetry disappearance at higher frequencies 

(Figure 24-(b,d)). This particular spectral behavior confirmed that the beam breakup into a 

solitons pattern observed in both transversal dimensions was initiated by 2D MI.  

It is also important to note that F. Baronio predicted the existence of the Peregrine soliton and 

the Akhmediev breathers in quadratic materials on MI background [58]. Two years later, R. 
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Schiek and F. Baronio showed experimental spatial 1D Akhmediev breathers in χ (2)  media 

[59].  

 

Figure 24: 2D MI observed by M. Delqué et al. [57]. (a)-Experimental results (10 MW peak power) and (b)-

Corresponding spatial spectrum. (c)-Simulation (10 MW peak power) and (d)-Corresponding spatial 

spectrum.  

 

II.3.4. Walk-off compensation 

Since the very early experiments on quadratic soliton, led by Torner et al. in 1995 [60], it is 

well known that spatial walk-off occurring in birefringent crystals has an important impact on 

these types of solitons.  

The walk-off effect was compensated in 1995 by Torruellas et al. [28], using soliton generation. 

Later, the same author observed a soliton switching at the output face of a KTP type II crystal, 

by controlling the imbalance of the pump components, between the e and o axes (see Figure 

25) [63]. In 1998, Schiek et al. [31] showed how the spatial walk-off varies upon the input 

angles and material temperature, in a 1D spatial soliton experiment. This soliton displacement 

came in parallel to the SH displacement when the FF pump energy balance between the crystal 

neutral axes was inversed.  

L. Torner et al. proved the existence of walking solitons [61], by demonstrating that special 

solutions of stationary solitons could exist with walk-off or group velocity difference between 

all the waves involved in cascading effect. By controlling these parameters, they managed to 

cancel the mutual trapping effect between SH and FF waves in cascading effect process, for 
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some specific propagation length values, allowing the transversal displacement, or the time 

delay of the stationary solitons after propagating in the quadratic nonlinearity material.  Figure 

26 shows the spatial walking soliton results by L. Torner et al. [40]. In these experiments, light 

was injected in the crystal with specific tilt values to control the trapping between the FF (ω) 

and the SH (2ω) waves. Torner’s research on quadratic walking solitons followed previous 

works led by J.M. Soto-Crespo et al. [62] on walking solitons in highly birefringent optical 

fibers. 

 

Figure 25:  Soliton spatial switching obtained by Torruellas et al. [63]. They launched a 20 GW/cm² pump 

into a 1 cm KTP crystal. The solid curve shows the output light transmission at the fundamental frequency 

through a 30 µm aperture (numerical analysis), function of the imbalance between e and o crystal neutral 

axes. The dashed curve shows the output SH position. 

 

 

Figure 26: A quadratic spatial walking soliton by Torner et al. [40]. (a)-Without injection tilt. (b)-With 

injection tilt. 
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Conclusion – Chapter II 

In this chapter, I illustrated the process of three-wave mixing in quadratic crystals, and the 

different methods to optimize SHG by using type I, type II, or type 0 phase matching processes.  

I also summarized some of the most salient experiments on quadratic solitons and explained 

the mechanism of self-trapped beam in the case of cascading regime, which occurs at phase 

mismatch conditions. I summarized the results published on quadratic MI and underlined the 

spatial walk-off compensation in bicolor soliton experiments.  

In the following part of the manuscript, I present some examples of ephemeral 2D self-

trapping in KTP crystal, which leads to the appearance and disappearance of a 2D quadratic 

soliton. 
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Chapter III. Quadratic spatial extreme event  

In this chapter, I will discuss the experimental observation of a transient spatiotemporal self-

trapping in quadratic crystal that is able to generate several interesting effects such as the 

quadratic solitons, the beam breaking up to the formation of a nonlinearity induced speckle, 

and the spectral broadening to a supercontinuum generation.  

To introduce some novelty with respect to the large literature already published in this field, 

I decided to excite the quadratic crystal with a large collimated beam, changing the input 

pump intensity and polarization, and the crystal phase mismatch. I also considered few 

different types of crystals in order to experiment with two different schemes to obtain SHG, 

known as type II and type 0.  

 

III.1. Experimental setup and crystal phase matching conditions 

III.1.1. Measurements setup 

 

 

Figure 27: Schematic of the experimental setup for beam spatial studies. 
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In the following experiments, a Q-switched mode-locked Nd:YAG laser (EKSPLA PL2250 series), 

delivering 30 ps pulse at a central wavelength of 1064 nm and a 10 Hz repetition rate, has 

been used to excite some samples of quadratic crystals. The output of the laser was back-

reflection protected by means of an isolator (A) and sent in a half-wave plate and a 

polarization beam splitter to control the light intensity (B). I reduced the diameter of the initial 

Gaussian beam by using an afocal system composed by two lenses with 500 mm and 150 mm 

focal length respectively (C). The orientation of the linear input State Of Polarization (SOP) of 

the infrared beam is controlled by a half-wave plate (D). The beam is then injected in the 

nonlinear crystal. The beam shape at the output of the crystal is spatially characterized by 

using an infrared + visible camera. The near-field image of the beam at the KTP crystal output 

face is obtained by using a 35 mm converging lens (F), and analyzed on a BC106N-VIS CCD 

Thorlabs camera, with a magnification of 4.6. I used the same setup to analyze the near-field 

image of the beam at the PPLN output face: in that case, the corresponding magnification was 

8.4. To measure the far field, I introduced another converging lens (G) of 100 mm of focal 

length. 

An autocorrelator and an optical spectrum analyzer can replace the infrared camera to allow 

the output beam characterization in the temporal and spectral domains. 

I used two types of quadratic crystals. The first one is a type II phase matching KTP crystal, 

manufactured by CASTECH. The crystal was 30 mm long, 8 mm thick, and 8 mm wide. I 

controlled the phase matching conditions by rotating the crystal within two axes (one vertical 

and one horizontal) by using a Newport gimbal optic mount (maximum resolution of 0.05°). 

Thanks to the initial cut of the crystal (θ = 90°, Φ = 23.5°), the phase matching position (ΔkL = 

0) is obtained by coupling the beam perpendicularly to the input crystal face. The maximum 

of SHG is obtained for a SOP of 45° between ordinary and extraordinary neutral axes 

directions.  

The nonlinear coefficient deff of the KTP is equal to 3.5 pm/V. The relative spatial walk-off 

between the waves, involved in the three-wave mixing process, is equal to 3.48 mrad between 

the e-polarized FF and the o-polarized FF, and equal to 4.88 mrad between the e-polarized SH 

and the o-polarized FF. These walk-off values are along one transverse axis (the vertical axis), 

the walk-off along the other axis is negligible. 
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The second crystal type was a PPLN ((deff = 15 pm/V), manufactured by HCP Photonics 

Corporation. The crystal dimensions are 15 mm long, 1 mm thick, and 2 mm wide. The periodic 

inversion of the ferroelectric domains has a period ΛPPLN=6.97 µm (at 60 °C). The phase 

matching conditions are controlled by heating the crystal in an oven. The exact phase 

matching is obtained at 60°C, with a beam polarization orientation parallel to the 

extraordinary axis of the PPLN.  

Because of its short length (15 mm) and thickness (1 mm), the PPLN crystal is excited with a 

collimated beam of 200 µm of diameter (1/e² in intensity) and by means of a 200 mm 

converging lens (E’). In these conditions, the Fresnel length associated to the incident beam is 

6.5 cm, considering the linear refractive index of the crystal. For the KTP crystal, the input 

beam diameter is set at 400 µm by using a converging lens with 100 mm of focal length (E). 

The Fresnel length was in that case close to 20 cm. 

For the KTP and the PPLN crystals, the diffraction length at 1064 nm was much longer than 

the physical length of the crystal itself. Thus, no diffraction effect was obtained for a linear 

propagation along the crystal. These initial conditions are far from the ones commonly used 

to generate solitons, where the Fresnel length of the input beam is 2 to 6 times shorter than 

the crystal length [3].   

After propagation in the crystal, the SH beam at 532 nm can be selected by means of band-

pass filters with +/- 3 nm or +/- 10 nm of bandwidth.  

 

III.1.2. Crystal phase matching  

In order to properly analyze my results, it is important to know the efficiency of SHG upon the 

phase mismatch Δk, i. e. as a function of the crystal orientation for type II KTP and as a function 

of the temperature for PPLN. I obtained two curves for the KTP crystal, one for a crystal 

orientation in the horizontal plan and one within the vertical one (Figure 28-(a)). In the 

experiments, I always tuned the phase matching conditions by modifying the fastest axis 

(along the angle Φ). The maximum precision achievable to control the angle orientation (to 

manage the phase matching conditions) is 0.05 ° for the KTP and 0.4 °C for the PPLN (according 

to the oven datasheet – a CHAUVIN ARNOUX STATOP-4849). 
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For the KTP crystal, a phase mismatch (ΔkL) of π is obtained for a ΔΦ = 0.2° (calculated 

between two zeros of the sinc shaped SHG curve). For the PPLN, the number of samples of 

SHG versus temperature is not enough to give a precise value of ΔkL. This fact is due to the 

poor precision of the oven temperature controller I used to heat the PPLN. 

 

Figure 28: Phase matching curve for: (a)-KTP crystal within horizontal (θ) and vertical (Φ) axis orientation, 

(b)-PPLN, by modifying the crystal temperature. 

 

III.2. 2D spatial extreme event observation in KTP crystal 

In nonlinear optics, the demonstration of a particular propagation is strongly dependent of 

the initial excitation conditions. I remind you that the excitation of the KTP crystal is 

implemented with a linear polarized Gaussian beam with 400 µm of diameter (measured at 

1/e² in intensity). Thus, the incident beam remains collimated all along the propagation in the 

crystal for a linear regime of excitation i. e. with low input intensity.    

For an excitation at ~ 45° with respect to the principal axes of the crystal, the initially FF beam 

is separated in two components (because of the birefringence) and one SH beam is generated 

because of the SHG.  

Thus, spatial and temporal walk-offs occur in the crystal and each component (two FF, one 

SH) is progressively separated from each other in time and in space. I estimated that the 
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spatial separation along the y-axis is close to 100 µm between the FF beams and 145 µm 

between the SH beam and the FF ordinary component (see Figure 29). In the temporal 

domain, the maximum time delay is obtained for the SH with 4 ps, which is negligible in my 

case for an input pulse duration of 30 ps. 

 

Figure 29: Beams representation at the output face of the type II KTP crystal for a nonlinear propagation 

regime. 

 

In the nonlinear regime i. e. by increasing the input intensity up to 0.1 GW/cm² at exact phase 

matching, a first self-focusing effect is observed out of the crystal, at the FF, due to the 

nonlinear interactions between the three waves.  

The beam diameter in intensity (1/e²) of the self-trapped beam gets close to 50 µm, which is 

8 times smaller than the injected FF beam. In the most favorable conditions, the energy 

located in this self-trapped beam is close to 3% of the total output energy. Its peak intensity 

is about 2.4 higher than the peak intensity of the unfocused output beam (see Figure 30-(a)). 

Its output position is located on the SH beam position, off center with respect to the FF 

because of the spatial walk-off. It is also important to note that the trapped beam is composed 

by the three involved waves, i. e. of two FF beams and the SH, with walk-offs compensation 

because of the nonlinear trapping (see Figure 30-(b)). 

Moreover, the SH beam exhibits several modulations beyond the self-trapped event (see 

Figure 32). 
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Figure 30: Output spatial beam self-trapping in KTP, for an injected pump intensity of 0.5 GW/cm². (a)-3D 

view of FF beam, and transverse beam profile of the FF (red inset). (b)-2D representation of the FF and SH 

beams (SOP set close to 45°, ∆k = 0). The round inset image has the same scale than the square image. 

 

At this stage, this self-trapped beam seems to behave like a soliton even if the initial conditions 

were different from the ones used by Torruellas et al. in their experiment [3]. In my case, I 

first obtained a quadratic self-focusing process followed by a solitonic propagation, which 

maintains unchanged the shape along the nonlinear propagation (diffraction is affecting the 

newly focused beam due to its very small size, compared to the large unfocused pump).  

We can also underline that, in 1997, R. A. Fuerst et al. [4] observed that spontaneous self-

focusing could appear on a large beam in 1D only, giving birth to quadratic solitons. They 

explained this spontaneous appearance by an instability of modulation in quadratic media 

(see also quadratic MI observations by P. Pliszka in 1993 [5], S. Trillo in 1995 [6], J.F. Corney 

and O. Bang in 2001 [7] and R. Schiek in 2001 [8]).  It is also important to note that in 2011 M. 

Delqué et al. [9] published the observation of spontaneous spatial 2D MI in SHG scheme, 

allowing the soliton excitation (for their results, see Figure 24 on paragraph II.3.3).  
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III.2.1. Evolution of the self-trapped beam versus the input peak power: transient 

rogue dynamics 

In a second step, I varied the input peak power from 0.01 to 12 GW/cm² and I studied the 

spatial evolution of the output beam at the FF and at the SH. My results are shown on the 

Figure 31 for the FF beam and on Figure 32 for the SH beam. 

 

Figure 31: Appearance and disappearance of the FF self-trapped beam versus the injected pump intensity. 

(a)-2D output beam evolution. (b)-Output profiles of the FF beam. (c)-Ratio of the local peak energy 

between the FF trapped beam and the remaining energy. Phase matching conditions, linear input SOP set 

close to 45°. 
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Figure 32: 2D representation of the SH beam evolution versus the input intensity. Phase matching 

conditions, linear input SOP set close to 45°. Images from (a) to (j) are for different input pump intensities. 

The confined event I observed for an input pump intensity of 0.64 GW/cm² does not grow 

indefinitely when I increase the crystal input pump intensity. Indeed, as shown in Figure 31-

(a) and (b), the event starts to disappear in KTP crystal when I increase the input pump 

intensity beyond 0.8 GW/cm². The traces of the confined event existence are then almost 

invisible. Only a low residual spatial modulation remains visible on the FF beam. Thus, the 

output beam shape retrieves, at high intensity, its initial Gaussian profile. 

The evolution of the SH beam follows the one of the FF. At 0.007 GW/cm² (see Figure 32-(a)), 

the SH beam has a Gaussian shape and is depleted at its center when the intensity increases 

to 0.013 GW/cm² (Figure 32-(b)). The spatial focusing starts then in the depleted part at 

0.02 GW/cm² (Figure 32-(c)) and the Gaussian background disappears between 0.05 GW/cm² 

and 0.1 GW/cm² (Figure 32-(e-f)). Only a highly confined beam is visible for a pump intensity 

of 0.1 GW/cm² (Figure 32-(f)). By driving the intensity beyond 0.8 GW/cm² (Figure 32-(g-j)), 

the beam starts to split irregularly in the transverse plane, and the intensity distribution 

becomes chaotic after 1.3 GW/cm² (Figure 32-(h)), leading to a speckled pattern of highly 

focused beams at 1.8 GW/cm² (Figure 32-(i)). At 4 GW/cm² (Figure 32-(j)), the SH intensity is 

very high and the background energy increases, decreasing the contrast between the focused 

spots and their background. 
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Numerical Simulations:  

Along my thesis, I have not developed a code to simulate the 2D transverse evolution of a 

trapped beam with quadratic nonlinearity. That work has been realized by Prof. Fabio Baronio 

from Brescia University.  I report in this manuscript only one example of his simulations, using 

three-wave equations, with the purpose of demonstrating the potentiality to numerically 

retrieve the transient evolution of the self-trapped beam seen in my experiments.   

The simulation included the two equations for the two polarization components of the FF 

beam and a third equation for the SH. The walk-off was included as well as the diffraction, the 

quadratic susceptibility and the phase mismatch. The time domain was ignored. Like in the 

experimental approach, the walk-off was set relative to the ordinary component, i.e. the 

reference wave. The numerical input condition was a Gaussian shaped beam with a diameter 

of 400 µm (at 1/e² of intensity), seeded by a small bump which as a spatial offset from the 

beam center. 

 

Figure 33: FF wave section evolution in function of the input intensity I0.  Simulation along a nonlinear 

material propagation of 30 mm. Works realized by Fabio Baronio from the University of Brescia (phase 

matching conditions). 

 

Figure 33 shows a collection of output beam shapes at the FF upon different input energies. 

We observe strong similarities between the present figure and the experimental results 

described in paragraph III.2.1 (Figure 31-(b)); in particular, the weak bump gives rise to a 
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trapped beam, clearly visible in the simulation for pump intensity of 0.1 GW/cm² and whose 

peak is around 2.5 times the maximum level of the residual pump.  

Although there is a qualitative agreement between numerical and experimental results, we 

can notice some discrepancies: the self-trapped beam tends to vanish for a pump intensity of 

0.2 GW/cm² in the simulation, while 0.8 GW/cm² are required in my experiments. In addition, 

in the simulation, the self-trapped beam does not disappear completely, whereas, in the 

experiments, it completely vanishes.  

It is important to underline here that the temporal domain is not taken into account in the 

simulation, and this fact seems to play a strong role in the nonlinear dynamic. This part will be 

discussed in paragraph III.2.4 with a series of experimental results in time domain. 

 

III.2.2. Evolution of the self-trapped beam versus the input polarization 

orientation  

It is well known that spatial solitons obtained in type II KTP crystal are strongly dependent of 

the input polarization state (see Torner et al. in 1995 [10], Torruellas et al. in 1996 [11], 

Clausen and Torner in 1999 [12] and Carrasco et al. in 2003 [13]). Additionally, the spatial walk-

off between waves plays a critical role, allowing the spatial soliton displacement with respect 

to the initial polarization orientation of the FF beam.  

I then investigated the impact of the input linear SOP on the self-trapped beam. I first studied 

the polarization orientation in vicinity of the optimal angle to generate SH wave i. e. at 45° 

with respect to the principal axes (see Figure 34-(a)). In the Figure 30, I showed the self-

trapped beam, but the SOP was not exactly at 45°.   

When the angle is exactly set at 45°, two spatial self-trapped beams are observed, which 

correspond to a particular solution of the propagation [11]. Both self-trapped beams have the 

same diameter as the one obtained with another polarization orientation, on Figure 30 (~ 50 

µm at 1/e² in intensity), and they are separated of nearly 40 µm (see Figure 34-(b)). This 

position is very critical and unstable so that, for a weak energy unbalance between the two 

polarization components, only one self-trapped beam is obtained. The minimum unbalance 

leading to the extinction of the second self-trapped beam is estimated to 0.5° from the central 

position (45°).  It is also interesting to note that, after the spatial switching, the self-trapped 
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beam slightly oscillates before reaching a stable position when moving the angle further than 

the central position at 45°. 

 

Figure 34: Position of the self-trapped beam versus the linear input SOP (input pump intensity: 0.66 GW/cm² 

and phase matching conditions). (a)-2D images of the output beam, for three different values of SOP.  

(b)-Evolution of the FF self-trapped beam position versus the linear input SOP; the blue curve is a guide for 

the eyes. 

 

Beyond the position of the self-trapped beam, I also investigated its energy fraction. I plotted 

on Figure 35 the amount of trapped FF energy, after propagation in the crystal, in function of 

the linear input SOP and for a constant input energy.  

To do that, I simulated a spatial filter of 50 µm of diameter, located around the trapped beam, 

and analyzed the ratio of power transmitted through this filter, compared to the total power 

(remaining pump + self-trapped beam). 

For a polarization angle close to 45°, the FF energy has an equal repartition on each principal 

axis. In this case, the FF energy trapped in the confined beam seems to reach its minimum.   

For other angles values, with respect to the middle position (45°), the energy contained in the 

trapped beam increases symmetrically for high and low angles. It reaches two maxima, close 

to 30° and 60°, before decreasing again.  

At the angles required for a maximum trapped energy, the self-trapping is particularly stable 

and robust with respect to extern perturbations; in those cases the energy content is close to 

twice the one obtained when the polarization angle is at 45° (see Figure 35). 
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Figure 35: Power ratio between the energy in the confined beam area and the total beam energy, versus the 

linear input SOP. The input pump intensity is 0.66 GW/cm². All these results have been obtained at phase 

matching conditions. 

 

In addition to the energy fraction of the FF trapped beam, I also measured the energy on each 

polarization component by placing a Wollaston prism between the crystal and the camera. In 

this way, the Wollaston prism separates the two polarization components of the output beam 

due to an anisotropic refraction along the prism principal axes e or o. A summary of that study 

is schematically given on the Figure 36.  

Each beam component is refracted by a specific angle and collected by the camera. Thus, at 

the FF (Figure 36, top insets), the image of the self-trapped beam is replicated twice along the 

horizontal axis. These images represent the e-polarization and the o-polarization respectively. 

A similar decomposition is obtained for the SH (Figure 36, bottom insets). 

When the input polarization is unbalanced in favor of e or o axis (respectively linear input 

SOP = 37° or 53°), the polarization state of the self-trapped beam at the FF will follow the 

polarization state of the dominant input component. At the output of the Wollaston prism, I 

can visualize two horizontal FF spots with an unbalanced energetic content, which also 

confirms the nonlinear nature of the process. In the case of the SH beam, I always observed a 

single horizontal spot: this fact confirms that the SHG is of type II, with the SH polarized along 

the extraordinary crystal axis only. 
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In the particular case of a linear input SOP of 45° (Figure 36-(c)), the FF energy is equally 

divided along the e and o axis (same amount of energy along both e and o polarization states).  

Thus, for the same SOP, the SH is constituted of two vertical spots with e-polarization.  

The spatial walk-off is driving the output location of the self-trapped beam at the FF and at 

the SH; the horizontal spatial walk-off is negligible, and only the vertical spatial walk-off is to 

be considered. The input beam intensity is 0.66 GW/cm² and the crystal is oriented to reach 

the exact phase matching. 

 

Figure 36: Polarization content of the self-trapped beam versus the linear input SOP. (a)-Schematic 

representation of the system used to realize the experiment; (b-d)-2D spatial output images for three 

different polarization states and for both FF (top) and SH (bottom) beams (Intensity: 0.66 GW/cm², phase 

matching conditions). 

 

III.2.3. Evolution of the self-trapped beam versus the phase mismatch 

The phase matching parameter, driving the SHG efficiency, necessarily has an impact on the 

nonlinear dynamics. To investigate the influence of that parameter, I varied the vertical crystal 

angle ∆Φ (relative to the fastest axis) of the nonlinear crystal and recorded at each step the 

output images. Then, by overlapping all these images, I obtained a continuous evolution of 

the self-trapping effect as a function of the crystal angle (see Figure 37).  
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The main interest of this observation is that the self-trapping process, at 0.3 GW/cm², is mainly 

obtained from a vertical crystal angle ΔΦ of -1° to a vertical angle of 2° (max SHG is at ΔΦ = 

0), i. e for a -5π < ΔkL < 10π.  

The range on which I obtained the spatial self-trapping is also directly dependent of the input 

intensity and can be reduced to the exact phase mismatch point when reaching the threshold 

process.  

However, by changing both the input intensity and the crystal phase mismatch, I can obtain a 

more complex behavior, which favors the appearance of multiple spots, not randomly 

distributed in the output beam pattern. These results are presented in chapter V. 

 

Figure 37: Output images of the FF beam versus the vertical angle ΔΦ of the KTP crystal. (top)-SHG curve 

versus vertical crystal angle of the KTP, (bottom)-2D output spatial image of the beam at the end face of the 

crystal (input pump intensity = 0.3 GW/cm², linear input SOP set close to 45°). 

 

III.2.4. Evolution of the output temporal profile of the self-trapped beam 

Because of the nonlinear nature of the process and the initial Gaussian pulse used for 

excitation, one can expect that the temporal domain should also be subject to distortions. 
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By using an intensity autocorrelator (EKSPLA AC1064) based on SHG, I investigated the 

temporal profile evolution of the trapped beam. 

In order to select the energy confined in the self-trapped beam, I introduced a spatial filter 

between the crystal and the autocorrelator. So that, I only recorded the part of the beam 

modified by nonlinearity, independently to the remaining pump.  

A half-wave plate and a band-pass filter (1064 nm +/- 10 nm) allowed to modify the input 

polarization introduced in the autocorrelator and to select the FF beam only.  

The beam at the output of the crystal was collimated by a convergent lens for minimizing the 

spatial divergence and improving the signal to noise ratio when collecting the autocorrelation 

signal.  

In the linear regime, and assuming a Gaussian profile of the autocorrelation, I deduced that 

the input pulse had a duration of 29 ps, equal to an autocorrelation trace of 41 ps, measured 

at Full Width Half Maximum in Intensity (FWHMI), as we can see on Figure 38 – input pulse 

profile.  

A temporal compression is measured when the spatial self-trapped beam is present. The 

autocorrelation trace is then reduced from 41 ps to 24 ps (see Figure 38). This temporal 

compression is also observed for ΔkL = 5π and ΔkL = -9π. (Figure 39 and Figure 40 respectively). 

We can also observe that the output profile of the trapped beam tends to suffer from 

temporal distortions, transforming the initial Gaussian autocorrelation profile into a quasi-

triangular one.  

At each phase mismatch value, the increase of the input intensity leads to a major pulse 

duration increase or a pulse breaking process. That temporal structuration appears when the 

intensity is sufficiently high to make the self-trapped beam vanish in the spatial domain. In 

that situation the temporal walk-off between the FF and the SH is no longer compensated, 

and this in turn may give birth to a temporal pulse broadening. The autocorrelation trace 

indicates the presence of at least two pulses separated by several tens of picoseconds (see 

Figure 38 - ΔkL = 0 and Figure 39 - ΔkL = 5π). The temporal pulse for ΔkL = -9π (Figure 40) 

broadens without clear pulse breaking effect, even if the autocorrelation trace exhibits large 

pedestals. 
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These observations tend to prove that, in spite of the retrieval of the output Gaussian profile 

in the spatial domain, the output beam remains significantly degraded in the temporal 

dimension, after the nonlinear propagation; at least in the area where the trapping occurred. 

It is also important to note that the pulse breaking process seems more pronounced for a 

positive phase mismatch (ΔkL = 5π) assuming the same initial intensity. We can for example 

see a more modulated autocorrelation trace at 8 GW/cm² for ΔkL = 5π, than the one at the 

same intensity and for ΔkL = -9π. 

 

Figure 38: Experimental results of the spatial trapping influence on the temporal domain. Autocorrelation 

traces of the trapped beam versus the input intensity for ΔkL = 0 (phase matching)  

and a linear input SOP = 63°. 
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Figure 39: Experimental results of the spatial trapping impact on the temporal domain. Autocorrelation 

traces of the trapped beam versus the input intensity for ΔkL = 5π and a linear input SOP = 63°. 
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Figure 40: Experimental results of the spatial trapping impact on the temporal domain. Autocorrelation 

traces of the trapped beam versus the input intensity for ΔkL = -9π and a linear input SOP = 63°. 

 

III.2.5. Spectral broadening and distortion of the self-trapped beam spectrum 

The spectral shape of the trapped beam reflects the dynamics of the nonlinear process (see 

Figure 41).  

At exact phase matching, the FF spectrum progressively broadens when the input intensity 

grows larger. Such tendency is asymmetric with respect to the central wavelength and it favors 

the longer (infrared) wavelengths. For very high pump intensity, when the spatial trapping 
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decay is observed, the FF broadening stops and eventually goes backward. Such reversed 

tendency in the spectral broadening, upon intensity, is mainly observed for ΔkL = 0 or ΔkL = 9π.  

The SH spectrum exhibits the same asymmetric evolution, with lower broadening amplitude 

and toward the bluest wavelengths.  

Therefore, the spectral reshaping amplitude remains higher for ΔkL = 9π where the spatial 

trapping efficiency is stronger. That spectral evolution is driven both by the nonlinear 

conversion and the temporal / spatial walk-offs between the FF and the SH beams. 

 

Figure 41: Output spectrum of the trapped beam versus the pump intensity, for a linear input SOP of 69°.  

(a)-ΔkL = 0. (b)-ΔkL = 9π. (c)-ΔkL = -9π. 
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III.3. Discussion and analysis about the nonlinear dynamics 

After the theoretical prediction of quadratic soliton by Karamzin and Sokurokov in 1974 [14], 

Torruellas and coworkers (see ref [3]) realized the experimental demonstration in type II KTP 

crystal (as told in paragraph II.3.1). They used an infrared radiation at 1064 nm, which was 

focused on the input face of the nonlinear crystal with a diameter sufficiently small in order 

to obtain a progressive spatial broadening under the effect of the diffraction by propagation 

in the crystal. The initial beam used in their experiments had a Fresnel length five times smaller 

than the crystal length. By increasing the pump intensity, the diffraction was progressively 

compensated by the quadratic nonlinear process. In other words, the linear spatial phase 

evolution leading to spatial broadening was compensated by the nonlinear phase introduced 

by the cascading effect. 

In my case, the input conditions are significantly different from the ones used in the Torruellas 

experiment [3]. I use a large collimated FF beam without any diffraction effect in nonlinear 

regime. By increasing the input intensity, a first self-focusing is obtained in the area where the 

three waves, i. e. two at the FF and one at the SH, are superimposed. The FF and the SH beams 

are then concentrated on a small spot, whose diameter is determined by the balance between 

the linear and nonlinear effects. It is difficult to establish a direct comparison with the case of 

a spatial soliton solution. The equilibrium between the diffraction and the nonlinearity is only 

observed at the end of the crystal whereas the first stage acts as a spatial focusing effect.  We 

can also underline that this spatial stabilization is obtained for a large range of input intensity 

(from 0.1 GW/cm² to 0.8 GW/cm²) because of the saturation of the quadratic nonlinearity.  

In 2011, Michaël Delqué and coworkers published results on quadratic spatial MI in type II KTP 

[9], as said on paragraph II.3.3. Their experiment was realized at the same wavelength than in 

my setup and by using similar crystal and input conditions i. e. with large collimated beam. 

They obtained several self-focused beams, randomly distributed on the total output beam 

surface. Each focused beam had a particular shape, showing concentric oscillations in its 

spatial spectrum. This fact was interpreted as the signature of a 2D MI (already studied by P. 

Pliszka in 1993 [5], S. Trillo in 1995 [6], J.F. Corney and O. Bang in 2001 [7] and R. Schiek in 

2001 [8]). For higher input intensities, M. Delqué et al. [9] concluded that the nonlinear 

propagation process gave birth to multiple so-called quadratic solitons. 
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In my case, and in spite of different initial conditions, we do not observe a simple effect but a 

cascade of effects showing, in a first step, a 2D self-focusing process. It leads, in a second step, 

to one or more spatial self-trapped beams (two generated for a SOP = 45° and we will see 

later, on chapter V, the generation of more than three self-trapped beams). Moreover, no 

clear signature of MI has been observed in my experiments, similar to the one observed by M. 

Delqué et al. [9] (see Figure 24 on paragraph II.3.3). Nevertheless, we cannot exclude the 

effect of the spatial 2D MI in the first stage of our nonlinear dynamics. However, the area 

where the trapped beam appears is mainly determined by the spatial walk-off, which restricts 

the overlap between all the waves involved in the nonlinear process. In these conditions, the 

localization of the self-trapped beam seems to be mainly determined by the walk-off under 

the influence of the spatial MI. 

For an input intensity higher than 0.8 GW/cm², the trapped beam I observed, that we can 

qualify of 2D soliton, starts progressively to decay while I increase the input intensity.  Thus, 

for an intensity higher than 3 GW/cm², the initial FF Gaussian beam retrieves its initial shape 

without any evident traces left by the spatial self-focusing and the solitonic propagation. We 

can also observe in the self-trapped zone (FF beam) some slight modulations localized in 

vicinity of the focusing point (Figure 31 on paragraph III.2.1). It will be very difficult to 

characterize these remaining oscillations on the initial pump beam. This way, the analysis will 

be realized on the SH beam, which is much more affected by the nonlinear dynamics. 

In this sense, it is also important to note that, after the appearance and disappearance in 

power of the soliton, the SH spatial shape shows large modulations that turn into spatial 

speckles, which will be more characterized in chapter IV. I will also demonstrate that this 

modulated SH beam could be spatially self-cleaned, changing a speckled beam into a uniform 

large beam. 

In order to find the reason of the soliton disappearance, I plotted on Figure 42 the diameter 

of the elementary spot constituting the SH beam, upon the pump intensity. For the low 

conversion regime, the SH beam remains homogeneous and large. For pump intensity below 

0.8 GW/cm², a soliton is observed. The diameter of the smallest spot constituting the SH is 

equal to the FF soliton diameter (30 µm-FWHM). For higher intensities, we can observe the 

SH speckle because of the nonlinear self-trapping jointed effect in presence of walk-off and 

MI. This spatial structuration, weakly encrusted on the FF and more deeply on the SH beam, 
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seems to change its size while introducing a modulation on the spatial soliton beam, which 

could cause its disappearance.  

In other words, the spatial modulation obtained at very high intensity could compromise the 

mechanism of cascading and in turn the fate of the spatial soliton itself, dictating its 

disappearance. 

The average size of the beams composing the SH speckle will be subject of investigations on 

the chapter IV, where I will study the speckled aspect of the SH beam. 

 

 

 

Figure 42: Spatial evolution of the SH beam versus the input intensity. The vertical axis reports the 

elementary spot diameter constituting it (ΔkL = 2π and linear input SOP ~ 45°). 
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III.4. Similarity and differences with respect of the Peregrine soliton  

The Peregrine soliton is a self-trapped beam, obtained on a non-zero background and which 

have been observed both in Kerr media (Kibler et al. in 2010 [15]) and quadratic crystal 

(Baronio in 2017 [16]). It possesses a mathematical solution in 1D only (see I.2.3 and II.3.3 for 

a more complete review on this soliton).  

In my experiment, the process is in 2D, and I have no analytic solution as a reference. 

Additionally I never coupled a second beam to force the presence of a background, which 

would drastically change the initial conditions. However, in our quadratic process, the 

conversion toward the SH and the inverse process toward the FF has no full efficiency and this 

may in turn create a non-zero background composed of the untrapped FF energy. The 2D 

rogue event observed here (soliton appearance then disappearance) could be associated to 

this non-zero background presence. The present hypothesis needs further investigations and 

anyway does not simplify the problem of lack of a mathematical model for extreme waves in 

2D.   

I compared on the Figure 43 the shape of the Peregrine soliton, observed in an optical fiber 

by Kibler et al. in 2010 [15], with the shape of my self-trapped beam. The local minima clearly 

visible in Kibler’s experiments (Figure 43-(a)) were equal to zero. In my case instead, the 

minimum values around my self-trapped beam (Figure 43-(b)) were equal to the background 

intensity (composed of the remaining pump). The eventual small intensity modulations, which 

could appear around my self-trapped beam, are hidden by the remaining pump. In order to 

remove this uncertainty, I also plotted the profile of the SH beam (Figure 43-(c)). Oscillations 

in vicinity of the trapped event are then clearly visible. From this simple observation we could 

also argue that, because of the intrinsic coupling between the SH and the FF beams, this 

modulation could exists on the FF beam but be shadowed by the non-zero background. In 

comparison, the profile of the Peregrine soliton in fiber (Figure 43-(a)) exhibits a clear 

modulation for absolute time values up to 0.5 ps. 

B. Kibler et al. [15] observed a phase inversion at 0.5 ps, close to the soliton center. It breaks 

the intensity shape and leads to the soliton disappearance (Figure 43-(a)). In my experiments, 

the disappearance of the soliton could be explained by analyzing the SH beam, which decays 

in a speckle under the complex nonlinear conversion effect. The spleckled shape of the SH is 

progressively transferred toward the FF wave. This induces strong variations in intensity and 
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changes the propagation conditions. Those conditions are then no more favorable to the 

soliton existence. The spatial transformation of the SH beam shape is also to consider in 

relation with the pulse breaking observed in time domain. 

 

Figure 43: (a)-Temporal Peregrine soliton observation by Kibler et al. [15] in optical fibers. (b)-My 

observation of the spatial FF soliton. (c)-My observation of the SH trapped beam. In both (b) and (c), the 

round insets are the images of the corresponding beams, out of the KTP, and the dashed line in those insets 

shows the sense of cut for the profile plotting. Phase matching conditions, linear input SOP = 53° and input 

pump intensity = 0.3 GW/cm². 
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III.5. 2D extreme event in PPLN crystal 

In order to know the exact impact of the spatial walk-off and the role of the nonlinear 

coefficient of the crystal, I repeated the same experiment in a PPLN crystal, whose spatial 

walk-off effect is negligible.  

The experimental setup is similar to the one used previously. However, in order to fit with the 

size of the crystal, the input beam was reduced to 200 µm in diameter at 1/e² in intensity.  

The 15 mm long PPLN crystal is 4.5 times shorter than the corresponding Fresnel length of the 

incident beam. It guarantees a linear propagation without divergence along the crystal.  

The nonlinear coefficient is four or five times higher than that of KTP crystal (deff  = 15 pm/V 

for PPLN typically). Because of the quasi-phase-matching conditions, the SHG can be of type 

0, with all the waves polarized along the extraordinary axis. Thus, no spatial walk-off is 

observed between the interacting waves. 

Similarly to the experiments in KTP crystal, I progressively increased the incident pump 

intensity and I observed the same dynamics: a first self-focusing followed by a soliton 

propagation. The main difference with respect to the KTP is the position of the soliton, which 

appears, in the PPLN, at the exact center of the incident Gaussian beam, owing to the lack of 

spatial walk-off (see Figure 44). 

 

Figure 44: Left-Schematic of a PPLN crystal. Right-Spatial output soliton after propagation in the PPLN, 

excited by a collimated beam (positive phase mismatch i. e. crystal temperature = 21.5 °C), and input pump 

intensity = 0.85 GW/cm²). The linear input SOP is set parallel to the crystal extraordinary axis. The round 

inset image has the same scale than the square image. 
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I choose to show the output beam evolution in a PPLN crystal at room temperature (21.5 °C) 

i. e. for positive phase mismatch conditions, rather than at phase matching conditions (60 °C) 

because the results were better visible in the first condition. Nevertheless the soliton was also 

observed at phase matching.   

The experimental data of ΔkL versus temperature are not sufficiently sampled to precisely 

calculate the value of the phase mismatch in multiple of π (see Figure 28-(b)), due to a low 

precision of the oven I used to heat the PPLN. I will then report the values of temperature and 

not the values of ΔkL. 

At phase matching conditions, the intensity threshold for the quasi soliton is 0.1 GW/cm² in 

PPLN, which seems the same than in KTP, despite of a higher nonlinear coefficient. The pulse 

energy sensor I used (OPHIR PE10BB) was not enough precise for low energy levels. Thus, it is 

hard to compare precisely the soliton appearance threshold between the KTP and the PPLN.   

The diameter of the soliton is very close to the one obtained in the KTP (~50 µm at 1/e² of 

intensity). For a positive phase matching (21.5 °C), the soliton local intensity is 2 times higher 

than the top of the remaining pump (see Figure 45-(b)). 

The same figure shows that the soliton starts disappearing for a pump intensity threshold of 

1 GW/cm² (versus 0.8 GW/cm² in the KTP). As in the KTP, no traces on the FF soliton remain 

visible in the PPLN at high power (see Figure 45). Only the SH beam keeps track of the 

nonlinear evolution. The soliton in PPLN starts disappearing at a pump intensity higher than 

in KTP, despite of the PPLN higher nonlinearity. This suggests that the PPLN soliton would be 

more stable because of the absence of spatial walk-off in such medium. 
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Figure 45: (a)-2D output beam images of the FF and SH beams at the end face of the PPLN versus the input 

pump intensity (the round inset images have the same scale than the square images). (b)-1D output profiles 

evolution of the FF beams versus the input pump intensity. The linear input SOP is set parallel to the crystal 

extraordinary axis. Positive phase mismatch configuration (21.5 °C). 

 

  



Raphaël JAUBERTEAU | Ph.D. Thesis | Université de Limoges | Università di Brescia | December 14th 2021 100 

License CC BY-NC-ND 4.0 

Conclusion – Chapter III 

In this chapter, I have discussed the appearance and disappearance of a 2D spatial soliton. 

This ephemeral extreme event has been obtained thanks to a large non-diffractive infrared 

beam, launched into KTP and PPLN crystals, cut for type II and type 0 SHG, respectively. 

The soliton is sensitive to the initial conditions i. e. polarization state, input pump intensity, 

phase mismatch conditions. In both crystals, I was able to generate a focused and localized FF 

beam out of the crystal with a size 8 times smaller than the initial pump beam and with a local 

peak intensity reaching 2.4 times the one on top of the pump.  

This spatial soliton remains unchanged upon propagation in the crystal for a moderate power 

while it vanishes for a higher intensity.  

I also investigated the temporal and spectral profile evolution of the trapped beam. In the 

temporal domain I first identified a pulse compression followed by a pulse breaking process, 

appearing for similar pump intensity of the spatial event disappearance. In the spectral 

domain, a broadening around the FF and SH frequencies was obtained because of the 

nonlinear process. 

I then discussed on the transient nature of that spatial self-trapping and compared its 

evolution with the one described with χ (3) and χ (2) susceptibilities respectively. 

In all cases, our nonlinear wave seems significantly different from the Peregrine soliton even 

if we can underline similarities in its ephemeral behavior. The 2D nature of our process, 

observed at the exact phase matching, forbids any analytical description or simplification in 

the mathematical approach by using cascading approximation. The appearance of that event 

without any injected input background is also a huge difference with Peregrine soliton.  The 

disappearance of my soliton is not completely understood even if I observed strong 

instabilities in the temporal domain at the disappearance power level. A theoretical paper 

written by A.V. Buryak et al. mention the finite range of existence of quadratic solitons in 

terms of power (hence intensity), but this time only for a high imbalance between the FF 

components [17], while my experiments also show disappearance for balanced FF’s. 

In the next chapter, I will discuss more precisely the spatial instabilities observed on the SH 

beam and determine a possible competition with temporal instabilities. 
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Chapter IV. Analysis of the spatial instabilities at the second harmonic  

IV.1. Context 

New mechanism of nonlinear extreme waves generation, with peculiar statistical properties, 

is of fundamental scientific interest, and could be used for technological applications as 

structured-illumination imaging, i. e. dynamic speckle illumination microscopy [1], super-

resolution imaging [2], or pseudo-thermal light sources for high-order ghost imaging [3]. 

Similar structured light sources, and their applications, were discussed by Bender et al. in 2018 

[4]. In the paper, they informed the reader of the interest for generating speckled beams, with 

statistics differing from a classical Rayleigh distribution (see Goodman et al. [5] for more 

information on such distributions). Nonlinear waves, including rogue waves, have also been 

recently proposed for computing reservoirs by Marcucci et al. in 2020 [6].  

In my case, I demonstrated that a 2D soliton could spontaneously appear and disappear when 

using a strong collimated beam in a quadratic media. If the FF beam seems to be not so much 

affected by the disappearance of the soliton, the situation is completely different for the SH, 

which exhibits a speckled shape.  

This SH speckle could be related with a wave breaking process, identified in the temporal 

domain. It could also be related to the disappearance of the soliton. I am presenting, in the 

present chapter, a complete study of the SH beam evolution upon the input intensity [7]. 

 

IV.2. Setup 

In these works, I used the same optical bench as the one previously presented, in chapter III, 

for spatial observation of solitons (Figure 27). The experimental conditions are slightly 

different for the case of Figure 48, where the injected pump beam had an input diameter of 

460 µm (1/e²) rather than 400 µm, and where the magnification of the output optical system 

was 7.5.  

 

IV.3. Analyze of the speckle in KTP crystal 

Because of the shallow nonlinear modulation on the FF beam, I preferred to analyze only the 

SH beam, which was much more affected by the nonlinear processes.  



Raphaël JAUBERTEAU | Ph.D. Thesis | Université de Limoges | Università di Brescia | December 14th 2021 104 

License CC BY-NC-ND 4.0 

I recorded the shape of the output SH beam for different pump intensities. The results are 

shown in Figure 46. I set the crystal angle close to the phase matching condition (θ = 90°, 

Φ = 23.5° + 0.33°), where the nonlinear regime is focusing.  

At low input pump intensity (0.04 GW/cm2) i. e. in the case of low depletion of the initial FF 

pump, the beam at the SH has a Gaussian profile with a diameter close to 0.7 time the one of 

the FF.  

I observed, at 0.11 GW/cm², a spatial self-focusing at the SH frequency (Figure 46-(a-c)): the 

beam diameter at 1/e² in intensity decreases down to 50 µm, which is the diameter of the FF 

soliton observed in chapter III.  

By increasing the pump intensity beyond 0.8 GW/cm², I observed the splitting of the SH beam 

into a pattern of randomly localized spots (Figure 46-(d-f)). Such intensity distribution is similar 

to the speckle beams commonly obtained with a diffusing plate; in my case, the speckle is 

obtained by means of a quadratic nonlinear dynamics. I can observe the speckle formation in 

a large range of phase mismatch values, i. e. from ΔkL = -9π to ΔkL = +9π. 

 

Figure 46: Image of the SH beam, after propagation in the KTP, versus the FF pump intensity. ΔkL = 2π and 

linear input SOP of 47°.  
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I managed to characterize the speckle statistical distribution in each image obtained with the 

camera. I calculated the scintillation index given by the following expression:   
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Where <> designates the average over each pixel samples of one image.  

In the case of Rayleigh classical speckle patterns, obeying to Gaussian statistics, = 1SHGS . In 

the case of the intensity speckles pattern in Figure 46, = 1.11SHGS  for a pump intensity of 1.1 

GW/cm2 (Figure 46-(d)). The beam scintillation index dropped to = 0.74SHGS  for an input 

pump intensity set higher than 1.9 GW/cm2 (Figure 46-(e)). 

On Figure 47, I illustrated the pixel intensity statistics at four different pump intensities (out 

of the six selected ones of Figure 46). At each level of pump intensity, the histogram of the SH 

beam intensity was reported in log and linear scales (square inset). In order of simplifying the 

comparison, the corresponding SH beams images are shown on round insets.  

In Figure 47-(b-c), the dashed curves represent the negative-exponential Probability Density 

Function (PDF) ( )p I  [5]: 
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The four images displayed in the Figure 47 show consequences of the quadratic nonlinear 

conversion leading to SH speckle. In the particular case of a pump intensity of 1.1 GW/cm2, 

the PDF (Figure 47-(b)) is very close to the one obtained for Rayleigh speckles pattern. The 

corresponding scintillation index also agrees accordingly, with a value close to 1. Figure 47-(d) 

instead, displays speckle PDFs very far from Rayleigh distribution, for a high pump intensity of 

4 GW/cm2.  

These cases show how in principle the speckle statistics can change by simply changing the 

pump intensity. The PDF tails also give very important information on extreme spatial waves 

[8]. In my case, such waveforms are related to the high energy focused SH beam. 



Raphaël JAUBERTEAU | Ph.D. Thesis | Université de Limoges | Università di Brescia | December 14th 2021 106 

License CC BY-NC-ND 4.0 

 

Figure 47: SH beams intensity levels, PDFs, obtained in KTP crystal at different input pump intensities. On 

those histograms, I normalized the intensity axis of the beams at the SH, according to the maximum allowed 

level of the 8-bit camera device (ISHG / IN). I avoided camera saturation by reducing the crystal output light 

intensity with a variable attenuator. For each value of pump intensity (a-d), the attenuation was modified in 

front of the camera. ΔkL = 2π, input linear SOP = 47°. 

 

Those statistics were made on multiple pixels but only on one image each time. In order to 

obtain more precise values, I recorded a set of 10000 images for the same initial conditions. 

Thus, the position of the spots light evolves slightly versus time, however, the beam pattern 

remains stable shot-to-shot. The main bright spots keep the same spatial localization. This 

demonstrates that the spatial speckle distribution remains unchanged for similar input 

excitation conditions, like in a linear scattering process. 
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Figure 48: SH beam intensity level (average data of a set of 10000 laser shot), PDF, obtained in KTP crystal 

for a pump intensity of 3.6 GW/cm². On the histogram, I normalized the intensity axis of the average data 

beam at the SH frequency, according to the maximum allowed level of the 8-bit camera device. I avoided 

camera saturation by reducing crystal output light intensity with variable attenuator. Due to the important 

light density between the spots, a background compensation was used for PDF calculation. The linear input 

SOP remains unchanged, ΔkL = 3π. 

 

The Figure 48 shows that on a multiple data set, it is possible to observe a histogram very close 

to the analytical calculus from equation (4.2), meaning that the average of all of the output 

SH beams impacted instabilities is a quasi-perfect Rayleigh speckle, which is confirmed by the 

intensity distribution histogram of the 10000 beams average results. 

In a purpose of measuring speckle spots size mean value, I calculated the intensity correlations 

of the images shown in Figure 46, for three different values of pump intensity (see Figure 49). 

Starting from the SH image distribution ������, 	
, with x and y the pixel images coordinates, 

I first used the intensity mean values to calculate its deviation: ����� � ����
� ���� �. In a 

second step, the corresponding deterministic intensity correlation ∆ ∆( , )IC x y  was calculated.  

 δ δ
+∞

−∞

∆ ∆ = + ∆ + ∆( , ) ( , ) ( , )SHGI SHGC x y I x y I x x y y dxdy   (4.3) 



Raphaël JAUBERTEAU | Ph.D. Thesis | Université de Limoges | Università di Brescia | December 14th 2021 108 

License CC BY-NC-ND 4.0 

 

Figure 49: (a)-Intensity correlations CI of the near-field SH images. (b)-Comparison of each intensity 

correlation spatial profiles, cut on x or on y transverse axes. ΔkL = 2π and linear input SOP of 47°. 

 

Figure 49 curves reveal that the correlation, which is related to the elementary intensity spots 

which compose the speckle, remains nearly unchanged for a pump intensity variation from 

1.1 GW/cm2 to 1.9 GW/cm2, despite few differences in the PDFs. When I set the pump 

intensity to higher values, like 4 GW/cm2, the deterministic spatial intensity correlation shows 

that the size of the spots is continuously increasing with the input pump intensity.  

Long-range correlation is also increasing, as the pump intensity grow larger. Indeed, at 4 

GW/cm2, I noticed that the large pump intensity boosted the SH beam breakup. One could 

argue that, for high pump intensity, each filament filled the gap between each other, leading 

to the speckle contrast reduction.  

This atypical evolution seems to anticipate that the initial SH speckle can progressively 

disappear under the nonlinear quadratic action, leading to a second nonlinear spatial 

reshaping able to counterbalance the speckle formation. In order to prove it, it would be 

necessary to increase further the pump power. However it was no longer possible since I 

reached the damage threshold of my KTP crystal. I decided then to carry out the same study 

in a PPLN, because of its higher nonlinear coefficient. 
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IV.4. Spatial speckle reshaping in PPLN crystal 

In order to increase the nonlinearity response, I analyzed the SH speckle evolution, versus the 

pump intensity, by replacing the KTP crystal with a PPLN crystal.  The damage threshold of the 

PPLN is estimated to be 5 times lower than the one of KTP [9]. 

The experimental observations are summarized in Figure 50, showing the evolution of the 

spatial SH shape while increasing the input FF pump intensity. In Figure 50-(a), the SH beam is 

totally dispersed into multiple spots for a pump intensity of 2.7 GW/cm2. The speckle 

distribution evolves while I increase the input pump intensity. For a pump intensity threshold 

of 16 GW/cm2, the SH speckle disappears: the SH beam spatial breakup is significantly 

reduced, increasing the SH beam brightness. 

A confirmation of its evolution is obtained by measuring the SH spatial beam profile both in 

near and far fields for two different intensities (see Figure 50-(b-c), at 2.6 GW/cm² and 51 

GW/cm2 respectively). 

 

Figure 50: (a)-Near-field images of the PPLN output SH beam, for different values of pump intensity. Near 

and far fields of the SH for (b)-Pump intensity = 2.6 GW/cm², (c)-Pump intensity = 51 GW/cm². Such 

experimental results are at the phase matching conditions. The linear input SOP is set parallel to the crystal 

extraordinary axis. 

 

It is also important to note that this SH beam reshaping, observed only in the PPLN crystal, is 

accompanied by a spectral broadening around the SH frequency, extending on more than 

150 nm from the blue to the red wavelengths (see Figure 51). The newly generated colors 
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inherit the Gaussian shape of the FF pump, as we can see on Figure 51-(e). At the same time, 

the FF undergoes similar evolution with a spectral broadening between 900 nm and 1300 nm, 

in the best case, i. e. around 51 GW/cm² (see Figure 52). 

 

Figure 51: (a-d)-SH beams spectral evolution, for different pump intensity values. (e)-SH beam spectrum for 

an input pump intensity of 51 GW/cm2 and corresponding beam images. Both insets are the far-field beam 

images at 500 nm (left) and 550 nm (right), respectively. Such experimental results are at the phase 

matching conditions. The linear input SOP is set parallel to the crystal extraordinary axis. 

 

 

Figure 52: Spectral broadening evolution versus pump intensity, around the FF. Such experimental results 

are at the phase matching conditions. The linear input SOP is set parallel to the crystal extraordinary axis. 
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These results remind those obtained by Katarzyna Krupa et al. in the paper entitled 

Polychromatic filament in quadratic media: spatial and spectral shaping of light in crystals 

[10]. K. Krupa et al. explained the spectral broadening dynamic in the PPLN crystal by multiple 

conversions between the FF and the SH (see Figure 53). Indeed, while propagating in the 

crystal, the waves involved in the nonlinear three-wave mixing process exchange energy to 

each other. When the spectrum grows larger around the SH wavelength, a part of the energy 

of the newly generated colors will flow-back to the FF, but with a spectral shift. This leads to 

the particular spectral shape I obtained, around the FF, in Figure 52.  

 

Figure 53: Numerical simulation of the spectral evolution along the propagation length of a PPLN crystal.  L 

and R are respectively the anti-Stokes and the Stokes waves. Phase mismatch conditions (ΔkL = -3π), and 

pump intensity = 1 GW/cm². This figure is extracted from Ref [10]. 

 

 

Figure 54: Beam spectral evolution, function of crystal temperature i. e. ΔkL. The pump intensity is of 

24.4 GW/cm². The linear input SOP is set parallel to the crystal extraordinary axis. 
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As reported by Krupa et al. [10], the spectral broadening around the FF and the SH significantly 

evolves with the phase matching conditions, meaning that I can shape the output light 

spectrum, around the FF and the SH, by controlling the crystal temperature. In my 

experiments, I observed that the sidebands moved away from the FF while I increased the 

temperature of the PPLN (see Figure 54). 

 

IV.5. Discussion 

In my experiment, I observed that a SH Gaussian beam, generated from FF Gaussian pump, 

can be drastically reshaped into a speckle beam having characteristics similar to those 

generally observed at the output of a diffusing plate. However, such evolution is obtained 

under the influence of noise and because of spatial instabilities [11]. Such tendency of multi 

filamentation leading to a speckled output can be completely reversed by increasing the FF 

pump intensity and the material nonlinearity, leading to a spectacular quadratic spatial 

reshaping. The disappearance of the spatial instabilities seems to be due to a competition with 

temporal instabilities able to broaden both the FF and the SH beams [10].  

If the cascading process between the FF and the SH is well known to induce a spatial phase in 

the transverse domain, this process is also possible in the time domain. It creates then a 

spectral broadening in the vicinity of the two bands. If these two effects appear separately in 

my experiment and seem to compete one with each other, they can also be obtained 

simultaneously as demonstrated by Krupa et al. [10]. In this case, the initial conditions were 

significantly different with an excitation of the crystal by a focused initial beam.  

An explanation of the spectral broadening, which appears in parallel to the spatial beam 

cleanup, was made by Barviau et al. [12], considering the process of thermalization; since the 

entropy cannot decrease in a conservative system (for example a nonlinear crystal), the beam 

cleanup only happens if there is instabilities energy transfer from the spatial to the temporal 

domain, leading to: 

-The diminishment of the energy in higher order light modes (the spatial instabilities decrease 

because their energy is transfered to temporal instabilities).  

-The broadening of the spectrum (the temporal instabilities increase because they are 

receiving energy from spatial instabilities). 
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Conclusion – Chapter IV 

To conclude, I showed in my experiments that a Gaussian SH beam, obtained from a non-

diverging FF beam in a quadratic crystal, could be broken into many spots, creating then a 

speckled beam. By carrying out the statistical analysis of such waveforms, I showed that the 

statistical properties of the spatial spots were partly driven by the crystal input FF beam 

intensity level, as I kept the linear polarization and the crystal direction fixed with respect of 

the medium crystallographic neutral axes.  

In addition to those interesting spatial light dynamics, it was also possible to observe a 

reorganization of the SH speckle as the pump intensity was increasing above a certain power 

threshold. This spatial quadratic beam cleaning was accompanied in parallel by a strong 

spectral broadening in the visible and infrared domains.  

That complex spatiotemporal process could also be at the origin of the disappearance of the 

soliton previously obtained after self-focusing process. Indeed, a pulse breaking process has 

been clearly identified when the soliton starts to disappear. In these conditions, we think that 

the appearance and disappearance of extreme events, such as quadratic solitons, can be 

affected by spatiotemporal dynamics integrating competition between temporal and spatial 

instabilities.  

We can also underline that the intensity coupled in the PPLN is higher than the one launched 

in the type II KTP crystal, in spite of the larger damage threshold for the KTP [9]. This could be 

due to the spectral broadening, obtained on the whole transparency windows, which acts as 

limiting peak power because of the pulse breaking phenomenon.  

Such spectral dynamics finds interesting applications in all fields where new colors generation 

are required, as for example in developing new, very usable and all-purpose light sources for 

operations, ranging from multispectral LIDAR measurements to nonlinear fluorescence 

imaging. The spectral broadening obtained in the PPLN crystal has been used in my laboratory 

in collaboration with Sahar Wehbi for M-CARS experiments [13]. Additionally, nonlinear 

speckled beams can find important applications in fields requiring the control of light speckle, 

as in microscopy [14] or in all-optical computing (as a reservoir of light bits) [15].  
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Chapter V. Generation of multiple spatial quadratic solitons  

V.1. Spontaneous emission of multiple quadratic solitons 

Beyond the spatial self-focusing, quadratic soliton propagation and spatiotemporal 

instabilities, all obtained at phase matching condition, I also observed another interesting 

effect at phase matching: a spatial switching for an exact energy splitting between the two 

principal axes of the KTP crystal (i. e. for a polarization angle of the input beam at exact 45°). 

This particular process has been reported in 1996 by Torruellas et al. [1]. However, by 

modifying the crystal angle, in order to be at phase mismatch conditions, I also observed the 

generation of multiple spatial solitons in KTP crystal.  

The experimental setup used here is similar to the one used in the first experiment presented 

in chapter III. A KTP crystal is excited with a large collimated beam at 1064 nm and with pulses 

of 30 ps. The input peak power, polarization orientation and phase-mismatch are varied in the 

experiment.  

The phase mismatch regime is highly favorable to the formation of multiple self-trapped 

beams, as quadratic solitons or extreme events. As shown in Figure 55, I obtained, in this 

regime, exactly the same behavior than the one obtained at the phase matching but this time 

in presence of a lower intensity threshold. In these conditions, the spatial self-trapping is 

observed at 0.05 GW/cm² rather than at 0.1 GW/cm², as illustrated in the previous 

configuration (see chapter III, Figure 31). It is also important to note that, in those conditions 

(large positive phase mismatch), I am in the cascading regime, where the governing equations 

can be approximated by the NLSE (studied in chapter I) and a soliton can be described similarly 

to a Kerr soliton [2]. 
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Figure 55: Profile of the output FF and SH beams versus the phase mismatch and for an input linear SOP of 

47° and an input pump intensity of 0.05 GW/cm².  (a)-ΔΦ = -1.67° (ΔkL = -9π); (b)-ΔΦ = -0.33°, (ΔkL = -2π); 

(c)-ΔΦ = 0° (ΔkL = 0); (d)-ΔΦ = 0.33°, (ΔkL = 2π); (e)-ΔΦ = 1.67° (ΔkL = 9π); (f)-Normalized SHG curve versus 

Δθ; (g)-Normalized SHG curve versus ΔΦ. 

 

In a second series of experiments, and keeping the previous input conditions (ΔkL = 9π), I 

increased the input intensity and observed the appearance of multiple quadratic solitons. 

Those events share the same properties of the single soliton discussed in chapter III, that is 

they disappear for a very high input intensity. The diameter of these additional solitons is 

comparable to the single soliton case (50 µm diameter at 1/e²). They appear simultaneously 

in opposite direction, around the central soliton (see Figure 56-(a)). The spatial separation 

between adjacent solitons is close to 33 µm.  
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Figure 56: Multiple quadratic solitons observation. Images of the output FF and SH beams for three different 

input intensities, ΔkL = 9π, input linear SOP at 47°.  (a)-Evolution of the pump intensity from 0.1 to 

0.66 GW/cm². (b)-Pump intensity = 1.1 GW/cm². 

 

Because of the self-trapping effect, the three interacting waves are strongly modulated, 

creating in the SH a central bright spot surrounded by low energetic rings. Because of the 

spatial walk-off, and the spatial instability created by the trapped wave, an asymmetry is 

observed on the SH beam pattern. Thus, by increasing more the input intensity, for each 

soliton created, two additional satellite solitons appears, located at opposite positions (see 

Figure 56-(b)). It is important to note that, in my experiment, such chain of generation 

phenomena are not observed neither for phase matching, nor for negative phase mismatch. 

  

Such intriguing process has been already observed by S. Carrasco et al. in 2003 [3]  by using a 

periodically poled KTP crystal, close to the phase matching regime (see Figure 57-(a)). S. 

Carrasco et al. concluded that multiple solitons generation were mediated by the amplification 

of diffraction asymmetries and by anisotropy, potentially mixed with a possible presence of 

asymmetries in the input beam. The numerical simulations realized by Carrasco et al. [3] 

reproduce perfectly the nonlinear dynamics and the multiple solitons generation (see Figure 

57-(b)). By increasing the pump intensity, a depletion around the center of the beam was 
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observed, followed by a high focusing/confinement and the appearance of rings created by 

the depletion. 

 

Figure 57: (a)-S. Carrasco experimental observations [3] at the output face of a bulk crystal (spatial 2D 

transverse material - 1064 nm). The input peak intensity is 23 GW/cm² (b)-S. Carrasco SH profiles simulations 

[3].  

 

Beyond that natural multiple spatial self-trapping observation, I tried to control the 

phenomenon by using a periodically modulated input beam. I show this experiment in the 

next paragraph.  

 

V.2. Appearance of multiple quadratic solitons by means of a spatially modulated 

input beam 

I tried to create an artificial periodic input pattern of high intensity in order to produce 

multiple solitons. I used a Wollaston cube to transform a single Gaussian beam with linear 

polarization in two Gaussian beams perpendicularly polarized (see Figure 58-(a)). Thus, I 

superimposed them into the KTP crystal by means of a converging lens (10 cm) and a half-

wave plate to manage the input polarization orientation. The beam x-diameter was of 400 µm 

(at 1/e²) and the modulation period visible on the output face of the crystal, which is set by 

the Wollaston angle (here 0.13°), was of 170 µm. 
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In the first case of Figure 58-(c) (output image number 1), the orientations of the input beams 

correspond to the principal axes of the crystal, thus no spatial interferences are observed in 

linear regime (see Figure 58-(b)). Moreover, the angle between the beams (due to the 

Wollaston prism) opposes the angle of the KTP spatial walk-off. The output beam exhibits then 

a circular Gaussian shape of 400 µm of diameter (1/e²).  

On Figure 58-(c), image 3, I observe the output beam for a case in which the angle between 

the input beams is added with that of walk-off. Thus, the diameter measured on the vertical 

axis of the output beam is twice the diameter of the beam on Figure 58-(c), image 1.  

Regarding the Figure 58-(c), images 2 and 4, the orientation of the input polarization is close 

to 45°. Thus, in each case, interferences are observed with either a maximum or a minimum 

in the central pattern. 

In the experiments at high intensities, I used in turn the input conditions fixed on the second 

and fourth cases (image number 2 and 4 Figure 58-(c)), i. e. with interferences and a 

maximum/minimum in the center.  

 

Figure 58: (a)-Experimental setup used to convert one beam in two with perpendicular polarization 

directions. (b)-Two different excitations of the crystal leading to spatial interferences and no interferences. 

(c)-Images of the output pattern for different linear input SOP orientation. Phase matching conditions and 

input pump intensity = 0.01 GW/cm². 
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The first set of experiment is obtained at exact phase matching and for a linear input SOP = 

45° (see Figure 59). I observed the generation of several solitons, appearing in the upper right 

corner of the image because of the spatial walk-off. For some high intensity lobes, a pair of 

solitons seems to be generated. This is similar to the double soliton generation I obtained in 

chapter III, for the same input conditions (SOP = 45°).  

 

  

Figure 59: Soliton on a modulated pump. The FF and SH beams images are for an input pump intensity of 

0.66 GW/cm². Phase matching conditions and linear input SOP = 45°.  

 

We saw in chapter III that the soliton generation was improved when the linear input SOP was 

different from 45°, i. e. when there was an unbalance between the two orthogonally polarized 

FF components injected in the crystal. Thus, in order to facilitate the self-trapping and to keep 

high fringes contrast, I fixed the SOP to 59°. This way, I obtained a single soliton for each bright 

fringe (see Figure 60).  

At 0.79 GW/cm², the soliton diameter is approximatively of 50 µm (at 1/e²), again very similar 

to the single soliton observed in chapter III.  

The soliton starts disappearing at a pump intensity higher than 1 GW/cm² (Figure 60-(a)). 

Solitons generation seems to not obey to random instabilities but more precisely generated 

on a local high intensity where all the waves are superimposed. Their appearance and 

disappearance seem also driven by the same kind of mechanism discussed before. 
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Figure 60: Solitons evolution, on a modulated pump, function of the pump intensity. (a)-FF beams images. 

(b)- Output profiles of the FF beam (I cut the lobe with the highest contrast between the pump and the 

soliton, see round inset). Phase matching conditions and linear input SOP = 59°.   

 

In Figure 61, I compare some sample cases of input conditions leading to different numbers 

of soliton. Figure 61-(a) is for a SOP of 45° and at phase matching conditions, the waveform is 

then periodical along one transverse axis and composed of four spots. The balance between 

the input pump components (one orientated on e axis, the other on o axis) leads to two 

solitons on each local maxima of intensity.  

For a SOP of 59° and also for exact phase matching conditions (Figure 61-(b)), only two spots 

appear. This observation follows then the same logic of the previous one and only one soliton 

is generated on each local maxima of intensity.  

The process evolves with notable differences when the SOP is of 59° and for a high phase 

mismatch (Figure 61-(c)). In this case, solitons are generated along the two transverse axes 

and composed of three spots. One for the less energetic fringe and three for the higher one.  
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Figure 61: Solitons at the SH for a pump intensity of 0.53 GW/cm². (a)-Phase matching and linear input SOP = 

45°. (b)-Phase matching and linear input SOP = 59°. (c)-High positive phase mismatch and linear input 

SOP = 59°. 

 

V.3. Discussion 

By using properly chosen conditions, I tried to demonstrate that the appearance of solitons is 

not exclusively guided by random instabilities, but could be induced by shaping the initial 

beam intensity and by considering the spatial walk-off, which may shift the soliton location. 

Additionally, the appearance of a soliton can create spatial modulations mainly on the SH 

wave, forcing additional trapped beams to appear at the exact position where the maxima of 

modulation are obtained. In other words, we could talk about 2D deterministic MI driven by 

the soliton creation. First results on that behavior were published in 1997 by A. Fuerst et al.[4].  

It is also evident that the best conditions for solitons generation are in cascading regime and 

with unbalanced intensities between e and o axes. 
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Conclusion – Chapter V 

In this chapter, I demonstrate that 2D multiple solitons may appear with a determinist 

arrangement. In each case, the initial conditions, i. e. the phase mismatch and the polarization 

orientation, play a significant role.  

The solitons location seems directly related to the modulation introduced on the SH by the 

first event appearing in the transverse beam profile. That first event is no more induced by 

random MI but appears on a maximum of intensity, in the area where the three waves can 

have a non-zero overlap.  

It is also evident that the use of a modulated initial beam imposes the area where the solitons 

have to appear. The use of large beam, with a step intensity repartition, in a nonlinear crystal 

without spatial walk-off, would give different solutions and new nonlinear dynamics. 

However, whatever the number of solitonic events generated in my experiments, they all 

disappear systematically for a strong enough pump power. Competition with temporal 

instabilities seems to be the main cause of that collapsing process. 
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Chapter VI. Applications  

VI.1. Ultrafast pulse reshaping by using the 2D transient soliton 

It is well known that any nonlinear dynamics appearing in the spatial or in the temporal 

domain can be used for nonlinear reshaping of high intensity waves. In my case, and even if 

the concept is not completely new, I realized a temporal reshaping on a modulated pulse 

showing a large pedestal. Because of its nonlinear nature, the spatial soliton can be exploited 

to make an ultrafast saturable absorber (see references [1] and [2]), which open the way to 

realize an ultrafast temporal pulse reshaping [3] [4] [5] [6].  

With a standard soliton, the nonlinear transmission, obtained through a spatial filter around 

the soliton, exhibits a sigmoid profile. By using the ephemeral soliton instead, the transmission 

diminishes above a pump intensity threshold (super-Gaussian transmission curve), bringing 

novelties for temporal filtering in a given range of intensity, and the possibility to affect, not 

only the low energetic part of the temporal pulse, but also the highest energy pulse 

components.  

 

VI.1.1. Emulation of the temporal filtering  

In order to predict the beam reshaping efficiency by using my KTP crystal, I simulated the 

transmission of a Gaussian temporal pulse, followed by another smaller pulse (5 times smaller 

than the first Gaussian pulse). This second pulse, in my application idea, was playing the role 

of a parasite beam I wanted to remove.  

In order to plot the nonlinear transmission, I used all the experimental setup that I developed 

all along my work (see Figure 27 on paragraph III.1.1). I used different camera images of the 

FF beam in function of the pump intensity, and by calculating the energy transmitted in a small 

part of the image, where the soliton appears, I deduced a simplified transmission curve, fitting 

the transmissions data. The spatial filtering that I introduced had 40 µm of diameter at 1/e². 

In Figure 62-(a), the transmission curve is ascending between 0 and 0.2 GW/cm² i. e. the 

intensity span for which the soliton appears and grows. The transmission curve is constant 

between 0.2 GW/cm² and 0.8 GW/cm², i. e. those intensities for which the soliton is stable.  

For intensities higher than 0.8 GW/cm², the transmission in the filtered area reduces until the 
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pump reaches 1.3 GW/cm², where the soliton disappears and the transmission is then 

constant. For this reason, the intensity of the temporal pulse must be lower than 0.8 GW/cm² 

to obtain a pulse reshaping.  

 

 

Figure 62: (a)-Nonlinear transmission curve obtained by filtering the self-trapped beam with a hole of 40 µm 

of diameter. (b)-(Left curve) temporal pulse profiles before and after the temporal filtering; (Right curve) 

corresponding autocorrelation traces of the two pulses. The figures are obtained at phase matching 

conditions, with a linear input SOP of 47°. 
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VI.1.2. Pulse reshaping setup 

I reproduced this temporal waveform (one main pulse and one smaller parasite pulse) in my 

experimental bench by using a module developed by Tigran Mansuryan (see Figure 63 for the 

schematic). The purpose of this module is to separate the initial pulse in two, by using a 

Michelson interferometer realized with a polarizer cube. Each pulse propagates through 

different optical paths before recombination. The control of the power ratio between the two 

pulses is made possible by a first half-wave plate (A) and two quarter plates placed on one 

arm of the interferometer (B). A delay line controls the time separating the two pulses (B).  A 

single polarization for the two pulses is then selected by means of a last polarizer and a half 

wave plate (C) before coupling in the nonlinear crystal. 

 

 

Figure 63: Experimental module used to shape the incident pulse. 
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VI.1.3. Pulse reshaping observations 

I injected the distorted pulse into the nonlinear crystal with an intensity of 0.7 GW/cm² (i. e. a 

safe intensity zone to get a stable event, before the soliton energy starts to diminish). After a 

spatial filtering of the soliton image with an iris, I observed the reduction of the parasitic 

second pulse on the autocorrelation trace. The size of the second pulse is reduced by 4 during 

the reshaping process (Figure 64). The main pulse width is also reduced, from 43 ps to 27 ps 

(FWHM) on the autocorrelation trace.   

 

Figure 64: Pulse reshaping observation, by spatially filtering the soliton with a hole 

(diameter at 1/e² = 80 µm). Calculated pulse profiles from the recorded autocorrelation traces. The pump 

intensity is equal to 0.7 GW/cm², the linear input SOP is 53° and the crystal is at phase matching conditions. 

 

I report the evolution of the pulse reshaping versus the input pump intensity in Figure 65-(a). 

For an input intensity of 0.7 GW/cm², at the phase matching position, the amplitude ratio 

between the main and the parasitic pulse passes from 0.2 to 0.05. The reshaping affects also 

the pulse duration: the central pulse is also reduced by a factor of 1.6 in width (autocorrelation 

trace width-FWHM). At 1.5 GW/cm² the parasitic pulse reduction is quasi similar to what I 

obtained at 0.7 GW/cm². The main difference is visible on the central pulse duration, which is 

reduced by factor 3, and some distortion occurs on the pulse pedestal. For a higher input 

intensity, a strong pulse breaking effect is observed and the temporal reshaping is no more 

observable. 
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It is important to note that even if we can design a quasi super-Gaussian nonlinear transparent 

curve by using the total spatial evolution of the trapped beam, the spatio-temporal nature of 

the phenomenon do not allow to exploit the transmission curve beyond 0.8 GW/cm². Indeed, 

for high intensity values, the temporal pulse breaking starts being the dominant process that 

modulates the pulse and suppresses the trapped beam existence. 

Similar behavior is obtained versus ΔkL (see Figure 65-(b)). The optimum temporal filtering is 

obtained at exact phase matching with a pump intensity of 0.7 GW/cm² while for negative and 

positive ΔkL, the reshaping is less efficient. 

 

Figure 65: Analyze of the pulse reshaping effect for different input pump intensities and phase mismatch 

conditions. The input linear SOP is 53°. Black curves: input pulses, Red curves: output pulses. (a)-Pulse 

reshaping evolution, versus the pump intensity and at phase matching conditions. (b)-Pulse reshaping 

evolution, versus the phase mismatch (ΔkL = +9π and ΔkL = -9π) or phase matching conditions (ΔkL = 0) for 

an input pump intensity of 0.7 GW/cm². 

 

Ultrafast pulse reshaping was not the only useful application of the works I realized in various 

quadratic crystals. We will see on the following lines another application for improvement of 

vibrational microscopy setup. 
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VI.2. PPLN generated supercontinuum for a delay line free M-CARS 

VI.2.1. Context  

Coherent Anti-Stokes Raman Scattering or CARS microscopy has advanced our ability to 

identify the structure of matter, especially biological samples at the molecular level. It allows 

the analyses of a sample without labeling, using laser source to excite molecules through its 

vibrational modes, and then collecting the anti-Stokes Raman scattering response of the 

analyzed sample (see paragraph I.3.2.1 for more information on Raman effect).  

In a 1974 study, R.F. Begley et al. [9] demonstrated the advantages of the CARS process, 

compared to the incoherent Raman spectroscopy, illustrated by a 105 improvement of 

conversion efficiency as well as a spatial and spectral discrimination and a low light average 

power without the use of markers. Hence, a first implementation of the CARS process in 

microscopy was made by Duncan et al. 8 years later [10].  

This development made CARS a widespread technique for vibrational imaging of biological 

samples without labels, as the emitted signal is shifted, compared to the Pump and Stokes 

waves, towards wavelengths between 750 nm - 997 nm, thus avoiding superposition with an 

auto-fluorescent signal [11] [12]. In addition, CARS has been used for the analysis of lipids in 

cells by looking at the signature of the CH2 vibration in particular to identify cancer cells [11] 

[13] [14].  

The Multiplex Coherent anti-Stokes Raman Scattering (M-CARS) is a recent spectroscopy 

technique based on the use of a very wide spectral band [15] to excite simultaneously all the 

vibrational modes of a sample. The many advantages of the M-CARS make it a reference 

technique in vibrational spectroscopy for the study of chemical and biological samples. Tiffany 

Guerenne-Del Ben used M-CARS microscopy to analyze the content of lipid in cells, using the 

vibrational signature of methylene (CH2) [16].  

M-CARS microspectroscopy shows significant efficiency in the biomedical field as it is 

selective, non-destructive and allows to probe simultaneously all the vibrational modes. 

Developing a simple imaging method combining all the modalities and allowing the collection 

of a maximum of molecular information is a technological and instrumental challenge at 

present days. 
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The technique is based on the use of two excitation waves: a first one, monochromatic and of 

high power, which will play the role of the pump wave, and a second one, covering a wide 

spectral range, which is the Stokes wave. Unlike the classical CARS spectra, which are usually 

defined on a narrower spectral range, the M-CARS exhibits a spectrum that can cover a 

spectral range of 4000 cm-1. This allows the simultaneous analysis of several different anti-

Stokes signals, where the use of tunable sources would be necessary for a classical CARS 

system. 

The generation of supercontinuum was usually done through a Photonic-Crystal Fiber (PCF) 

by the joint effects of chromatic dispersion and nonlinearities including the Kerr and Raman 

effects (see ref. [17] [18] for more information). Moreover, in this configuration, the M-CARS 

requires placing a delay line in the path of the pump to synchronize it with the Stokes wave 

on the sample. 

We present in this part of the thesis a new supercontinuum source that can be implemented 

in the M-CARS system without delay line, by using the supercontinuum generation at the 

output of a PPLN as a Stokes wave. This way, the pump and the Stokes waves are directly 

synchronized on the sample, after propagation in the quadratic nonlinear crystal. This method 

will be validated through the imaging of polystyrene beads and cellulose fibers. 

The use of the M-CARS technique was the main biomedical application linked to my works on 

extreme spatial events and spectral broadening generation in quadratic crystals. The following 

works (based on the supercontinuum generation I studied in the PPLN crystal during my thesis) 

are part of those realized by Sahar Wehbi in the context of her thesis. These fructuous works, 

in which I am co-author, have been published in reference [19].  
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VI.2.2. Setup 

 

Figure 66: M-CARS experimental setup, with a PPLN and without delay line, realized by S. Wehbi et al. at 

XLIM laboratory [19]. λ/2: half-wave plate, BS: polarizing beam splitter, L: lens, M: mirror, SP1000: short-

pass filter (<1000 nm), LP1000: long-pass filter (>1000 nm). 

 

Figure 66 represents the experimental setup realized by Sahar Wehbi and Tigran Mansuryan, 

for the generation of the supercontinuum in order to perform the M-CARS measurements.  

A 20 mm long PPLN crystal is pumped by a laser with a wavelength of 1030 nm, 3 ps of pulse 

duration, and repetition rate of 30 kHz.  

Then, two half-wave plates and a polarized beam splitter cube are placed before the crystal 

to control the energy and polarization of the optical beam.  

The optical beam is then focused in the PPLN crystal, with a linear input SOP optimized for a 

broadband spectrum generation in the PPLN. The Pump and Stokes waves are coupled into 

the crystal, which is in a phase mismatch configuration (its temperature is of 100 °C), in the 

cascading regime. The short length of the crystal (20 mm) allows to limit the dispersion and to 

keep these two waves temporally synchronized at the output of the crystal.  

The generated PPLN supercontinuum is separated along two optical paths. The first path is 

used to analyze the PPLN supercontinuum spectrum by an Ando spectrum analyzer. The 

second path is used to send the collimated beam through different filters to the sample.  
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To perform M-CARS measurements in the picosecond regime, the generated supercontinuum 

is collimated and then delivered to a 1000 nm long-pass filter that eliminates the visible part 

of the supercontinuum to avoid its superposition with the emitted Anti-Stokes wave (between 

750 nm and 997 nm).  

The slightly tilted Notch 1064 nm is used to reduce the spectral width of the pump and then 

to improve the spectral resolution of M-CARS measurements.   

Then, the beam is focused on the sample with a 60x microscope objective. The emitted M-

CARS signal is collected by another 60x microscope objective.  

As the emitted Anti-Stokes waves of interest (between -3200 cm-1 and -500 cm-1) corresponds 

to wavelengths between 729 nm and 997 nm, a 1000 nm short-pass is placed to filter the 

signal before its transmission to the spectrometer LabRam.  

With a broadband NIR Stokes wave generated by the supercontinuum out of the PPLN, filtered 

by the high-pass filter (see Figure 67), images of polystyrene beads (20 µm-diameter) and 

cellulose fibers were realized around the identified respective vibrational modes.  

 

 

Figure 67: Spectrum of the Stokes beam (PPLN supercontinuum + long-pass filter at 1000 nm) before 

injection in the sample. 
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VI.2.3. Delay line free M-CARS microscopy: experimental imaging 

VI.2.3.1. M-CARS image of polystyrene beads  

First, the polystyrene Raman spectrum was measured with the M-CARS setup, launching an 

injected optical power of 1.5 mW to avoid burning the bead. For that power, the beam at the 

output of the PPLN is Gaussian. Clear images of the polystyrene beads were observed, by using 

a CCD camera coupled to the spectrometer; a vibrational signal was collected at the output of 

the sample, from which the M-CARS spectral image was constructed. Figure 68-(a) and Figure 

68-(b) show respectively the white light image of polystyrene beads and the corresponding 

M-CARS image. 

 

Figure 68: M-CARS images of polystyrene beads by S. Wehbi et al. [19]. (a)-Bright field image. (b)-M-CARS 

image for a Raman shift of 3055 cm-1, extracted of M-CARS data. 

 

VI.2.3.2. M-CARS image of cellulose fibers 

M-CARS microscopy was performed on cellulose fibers, present in paper sheet. Figure 69-(a) 

and Figure 69-(b) exhibit respectively the white light and M-CARS images of the cellulose fiber 

present in the paper sheet. To identify the vibrational mode in the cellulose fibers, 

measurements established by Raman spectroscopy were found in a paper written by Alves et 

al. in 2016 [20]. 

 

Figure 69: M-CARS images of cellulose fibers by S. Wehbi et al. [19]. (a)-Bright field image. (b)-M-CARS image 

for a Raman shift of 2896 cm-1, extracted of M-CARS data. 
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Conclusion – Chapter VI 

All-optical ultrafast temporal reshaping: I have realized a practical implementation with an 

ultrafast temporal reshaping by using the ephemeral soliton in type II KTP crystal. The 

nonlinear behavior obtained in the spatial domain is different than the one obtained for a 

simple soliton beam since the event disappearance does not affect so much the spatial shape 

of the FF beam. The transmission curve that I obtained with the spatial evolution of the 

trapped beam exhibits a super Gaussian profile instead of the sigmoidal evolution seen in the 

case of a standard soliton [6]. I succeeded to demonstrate a temporal reshaping of a noisy 

pulse composed of a main one and a parasitic second pulse. Reduction of more than 75% has 

been obtained on the second pulse. However, by changing the initial conditions, I clearly 

identified the limitation of the system, which are due to the temporal pulse breaking effects 

for higher intensities. In these conditions, my temporal reshaping possesses no more new 

characteristics than the temporal filtering already published in several papers by using 

quadratic solitons generation [4] [6]. However, such ingenious temporal remodeling could find 

applications in telecommunication engineering field, where the debit or rate of optical pulses 

on a short time span is very critical for high data transfers [7] [8]. 

 

PPLN supercontinuum for a delay line free M-CARS: We showed here that a delay line free 

M-CARS system could be implemented by replacing the PCF by a PPLN crystal for a broadband 

Stokes wave generation. Due to their short length, crystals allow the pump wave and the 

Stokes wave to be directly synchronized at its output and then on the sample to analyze. The 

spectral profile obtained is related to the optical non-linearity in the medium. Indeed, the 

spectrum out of the PPLN crystal is highly tunable by the phase matching conditions 

depending on its temperature (see chapter IV for more information). A broadband 

supercontinuum was obtained for a PPLN in large phase mismatch conditions (cascading 

regime). The efficiency of this M-CARS microscope was validated through the imaging of 

polystyrene beads and cellulose fibers around the identified vibration modes.  

The results I show in this applicative chapter prove the efficiency of quadratic crystals to 

realize M-CARS microscopy for biomedical applications, as well as ultrafast pulse reshaper, 

without the need of electronical devices, for telecom applications.  
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General conclusion 

In chapter I, I introduced the concept of optical soliton from their first observation to their last 

evolution in many domains of physics. I described several soliton families and their possible 

interactions. In a second step, I introduced the NLSE and I presented the MI process on which 

phenomenon growing on these instabilities can be analytically described: this way, I described 

the Peregrine soliton, the Akhmediev and the Kuznetsov-Ma breathers, which are known to 

exist only in one transverse dimension. Such solutions are used to understand the rogue 

waves, appearing and collapsing without leaving a trace. I finish this chapter by describing the 

special case of silica fibers and its dominant Kerr and Raman nonlinearities, leading to optical 

solitons formation. 

 

In chapter II, I introduced the quadratic nonlinearity with the three-wave mixing process and 

presented several nonlinear crystals based on different phase matching processes as type I, 

type II and type 0. Thereafter, I made a review on quadratic solitons, also called bicolor 

solitons, on specific solitonic interactions, and on quadratic MI, widely observed and reported 

along the last 30 years.  

 

In chapter III, I introduced my works on the quadratic soliton propagation, generated in 

particular conditions, i. e. by using a non-diffractive Gaussian beam launched in bulk KTP and 

PPLN. The initial conditions that I used were far from the ones used in already published works 

where the Fresnel length of the input beam is 2 to 6 times shorter than the crystal length. In 

my conditions, I observed a 2D ephemeral spatial soliton, which appeared and disappeared 

while increasing monotonically the input intensity. Its behavior mimicked a transient 2D rogue 

event, as the ones observed in water waves. I studied this nonlinear process with respect to 

all the parameters involved in the propagation i. e. the input pump intensity, the phase 

matching condition and the polarization orientation. I underlined that this soliton collapsed 

because of complex spatiotemporal instabilities, taking place at a high input intensity.  
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In chapter IV, I also investigated on a nonlinear speckle shape printed on the SH beam by the 

quadratic nonlinearity and the periodic energy exchange between the FF and SH beams. Thus, 

I concluded this chapter by demonstrating that the SH complex speckle formation, generated 

by the temporal pulse breaking, could be self-cleaned in a Gaussian transverse beam and at 

the same time it could extend the spectral width of the two waves involved in the process. 

 

In chapter V, I presented a special case: the multiple generation of quadratic solitons. I 

demonstrated that, under my experimental conditions, the localization of the solitons was 

due to the highest intensities in the transverse beam with a strong impact of the spatial walk-

off. I also underlined how multiple solitons could be obtained because of the SH modulation 

in the cascading process. 

 

Finally, in chapter VI, I used the quadratic soliton generation to realize an all-optical ultrafast 

temporal reshaping of picosecond pulses. This principle of temporal reshaping is based on the 

propagation of a self-trapped beam associated with its spatial filtering at the end of the 

propagation. A reshaping and compression of a noisy pulse has been shown in conditions 

allowing the propagation of the soliton. Reshaping was optimal for an illumination value 

slightly lower than the value for which the soliton starts to disappear.   

Today, the main limitation to the use of quadratic spatial solitons for ultrafast beam shaping 

operations, as well as for supercontinuum generation, remains the power densities required 

for their excitation, despite the existing configurations (PPLN plane guide for example). The 

use of more efficient nonlinear materials would allow a new interest for spatial solitons. 

However, the results of spectral broadening I obtained during my thesis were used by Sahar 

Wehbi to create a nonlinear delay line free M-CARS microscope. 

 

Thank you Alexander Franzen for the Inkscape library, that I used in order to draw the optical 

setups in this thesis report. 
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Événements extrêmes dans les milieux quadratiques : application à l'imagerie non linéaire 

Résumé : L’objectif de mes travaux était la réalisation d’un banc d’étude expérimental sur 

les propagations quadratiques pouvant mener à un piégeage mutuel (spatial et temporel) 

des faisceaux aux fréquences fondamentale et seconde harmonique. L’originalité de ces 

recherches a été de démontrer, pour la première fois, l’apparition et la disparition d’un ou 

de plusieurs évènements extrêmes de type solitons spatiaux quadratiques 2D en fonction de 

l’élévation monotone de la puissance initiale. Ces phénomènes non linéaires spatiaux sont 

accompagnés d’un élargissement spectral ainsi que d’une compression temporelle suivie 

d’une détérioration de l’impulsion initiale. Deux applications ont été réalisées, l’une sur le 

remodelage temporel ultrarapide d’impulsions brèves, l’autre sur l’utilisation du spectre 

large pour démontrer une imagerie CARS Multiplex.    

Mots-clés : non linéarité optique, mélange à trois ondes, solitons  

Eventi estremi in mezzi quadratici: applicazione all'imaging non lineare 

Riassunto : L'obiettivo del mio lavoro è stato quello di realizzare un banco di studio 

sperimentale sulle propagazioni quadratiche che possono portare all'intrappolamento 

reciproco (spaziale e temporale) di fasci a frequenze fondamentali e di seconda armonica. 

L'originalità di questa ricerca è stata quella di dimostrare, per la prima volta, la comparsa e la 

scomparsa di uno o più eventi estremi: a solitoni spaziali quadratici 2D, in funzione di un 

incremento della potenza iniziale. I fenomeni spaziali non lineari sono accompagnati da 

allargamento spettrale e compressione temporale e sono seguiti da un deterioramento 

dell'impulso. Sono state eseguite due applicazioni, una sul rimodellamento temporale a 

impulsi brevi ultraveloci, l'altra sull'uso dell'ampio spettro per dimostrare l'imaging CARS 

Multiplex. 

Keywords: non linearità ottica, miscelazione a tre onde, solitoni 
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