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General Introduction

For years, humankind has sought with interest to understand the world around it. Phenomena
that could not be explained in the past, due to limitations of scientific knowledge, were
generally attributed to mystical or divine manifestations. This is notably the case of so-called
"extreme" phenomena such as, for example, the appearance of volcanic eruptions,

earthquakes, eclipses, tornadoes, hurricanes or giant waves on the surface of the oceans.

In each civilization, we find a deity whose irascibility is generally associated with the formation
of such phenomena. For example, in Mesoamerica, Tlaloc was the God responsible of tropical
cyclones, common extreme phenomena in this part of the world [1]. Mariners had their own
myths, even if not related to specific religions, around these terrible waves named rogue

waves, appearing and disappearing suddenly, far from the coast [2].

Many of these events have attracted the attention of scientists for more than 2000 years in
order to rationally explain the appearance of such events, and it is worth noting that

historically, optics has been at the center of the concerns of intellectuals and researchers.

Nowadays, the majority of these extreme phenomena can be studied with a scientific
approach. The predictability of many extreme phenomena in nature are subject to the
knowledge of the mechanisms, as well as of the initial conditions leading to their formation
(tropical cyclones can be anticipated by meteorological analysis). Moreover, the nature that
surrounds us is still intrinsically unstable and in perpetual mutation. Also, such manifestations
mix periodic and chaotic dynamics: In particular, in chaos dynamics, small incertitude in the
initial conditions may cause drastic differences. Any long-term prediction would require then
the knowledge of all the initial conditions with a precision well above the reasonable values

obtained from experimental measurements.

In optics, many advances have been made over the last century, both from a theoretical and
technological point of view. It is now the 61th anniversary of the invention of the laser by
Theodore H. Maiman [3], which in the 1960s brought a new wind to fundamental optics
research, but also gave rise to numerous inventions that are now used on a daily basis. Indeed,
the use of the laser as a stable and coherent optical source permitted the study of the linear

and nonlinear interaction between light and matter.
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In the last few years, nonlinear Modulation Instability (MI) in optics has become an interesting
field of study. Since the early studies on Ml in optics, it was pointed out the intriguing links
with many other physical systems such as deep-water hydrodynamics. More recently, Ml has

also been studied as a nonlinear mechanism at the origin of extreme events.

In some nonlinear systems, continuous wave may be unstable upon certain modulation
frequencies. It leads to the exponential growth of sidebands in frequency domain and can
cause the wave to break into a train of pulses. Rogue waves, which are strong spatial
phenomena with very short lifetime and a very high and destructive energy, are likely to

appear on Ml [2] [4].

Studies on mathematical waveforms such as Akhmediev breathers, Kuznetsov-Ma breathers
and Peregrine solitons have flourished in the last years, to understand the formation and
propagation of the rogue waves [5] [6] [7]. Those mathematical waveforms are results of
differential equations used to describe natural phenomena, and the most used of those
equations is the NonLinear Schrodinger Equation (NLSE). However, exact solutions can be
found out of this equation only for some specific conditions. The NLSE solutions are well
known for a propagation in a nonlinear medium with one transverse spatial dimension or in
temporal domain (1D), in presence of constant group velocity dispersion. When there are two
transverse spatial dimensions (2D), the mathematical study of the 2D-NLSE is significantly
more complicated. However, this fact does not necessarily mean that ephemeral waves of
extreme amplitude do not exist in 2D. It is then probably necessary to find another way to
solve the differential equations, by using for example realistic approximations. It is also
interesting to underline that the term soliton is given to a solution of a nonlinear propagation
equation. If we strictly follow this definition, no 2D soliton may exist because of the non-
integrability of the nonlinear equation from a mathematical point of view. In the present
manuscript, the term soliton will be not restricted to a rigorous solution of an integrable

system.

The first soliton propagation was observed more than one hundred and fifty years ago by John
Scott Russell in a water channel. In optics, solitons were first studied in centrosymmetric
media with cubic nonlinearity [8]. It was not until 1974 to see the first theoretical prediction
of solitons in media with quadratic nonlinearity [9]. The experimental observation of a

guadratic soliton dates back to the end of the last century (more precisely in 1995 [10]). Also,
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the existence of purely 2D MI has been experimentally proven in materials with quadratic

nonlinearity in 2011 [11].

My thesis deals with the study of self-trapped extreme events in quadratic media, which have
the potentiality to appear and disappear with respect to the propagation conditions or by self-

destruction of their own environment.

Chapter I will list the most salient types of solitons reported in optical systems. | will recall
some basics of nonlinear optics and how one can reach solitonic solutions, starting from an
analytic study, from Maxwell equations to the particular solution of solitons on MlI: the
Akhmediev breathers, the Kuznetsov-Ma breathers and the Peregrine solitons. By the end of
the chapter, | will focus on a particular optical system: the silica fiber. Indeed, these

waveguides have been historically the preferred choice of experiments with optical solitons.

Chapter Il will describe the nonlinear mechanisms in quadratic crystals, which are a different
type of optical system. Supported by the analysis made on the first chapter, this chapter will
focus on the history of bicolor solitons, analytic solitonic results developed for quadratic

systems, as well as on Ml observation in quadratic crystals.

On chapter llI, | will illustrate my results on spatial, temporal and spectral studies of a new
type of spatial self-trapped beam, generated through the propagation of an infrared
collimated pump beam in nonlinear crystals. In such materials, a part of the optical beam
experienced a highly self-focusing effect. Moreover, such focused energy remained confined
along the crystal length but surprisingly disappeared when the input power was increased

further.

In order to have a better knowledge of the causes of the spatial soliton disappearance, a
complete analysis of the speckled pattern at the second harmonic, generated in parallel to the

disappearance of the self-confined event, will be discussed on chapter IV. In the same chapter,

Raphaél JAUBERTEAU | Ph.D. Thesis | Université de Limoges | Universita di Brescia | December 14th 2021 16
License CC BY-NC-ND 4.0



I will show a reorganization of this speckled beam at high light intensities, and the

corresponding impressive spectrum broadening generated during such reorganization.

Chapter V will report on particular cases of spatial multi-solitons generation in quadratic
crystal. Such events were initiated in two ways: either spontaneously, or by means of a
periodical input pump, generated by interferences. As for the case of single self-trapped event
seen on chapter lll, the extreme events observed on chapter V disappeared when increasing

further the pump power.

In chapter VI, | will conclude this thesis by showing an application of ultrafast temporal pulse
reshaping, using such newly discovered soliton. The pulse reshaping was obtained by spatially
filtering the quadratic soliton from the input pump, and was annihilated at high power, as the

soliton disappeared.

In order to demonstrate the applicability of the multicolor beams at the output of a quadratic
crystal, in a biomedical imaging system, | collaborated with Sahar Wehbi to realize a first
demonstration of Multiplex Coherent Anti-Stokes Raman Scattering (M-CARS) images. In
particular, again in chapter VI, | will show our results of M-CARS images, obtained in the
context of S. Wehbi thesis, using a supercontinuum generated in the quadratic crystal as a
broadband Stokes wave. The synchronism between pump and such supercontinuum

permitted to create a vibrational spectromicroscopy system in absence of delay lines.
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Chapter I. Solitons in optics

I.1. History of solitons

Solitons are self-sustained waves, propagating without any deformation, through a nonlinear
medium, whether in spatial, temporal, or spectral domains. For example, temporal solitons
are created through the equilibrium of dispersion and nonlinearities of the medium. Since
solitons are wave packets propagating like a particle, without losing its shape, they are popular
in quantum physics for wave/particle studies [1]. The first soliton ever observed was in

hydrodynamics.

I.1.1. First observation in hydrodynamic systems

The first solitary wave ever observed was created by the motion of a boat. This wave was
propagating through 1 or 2 km along a channel without loss or deformation. Scott Russel
discovered this singular wave in 1834 and reported the phenomenon as a wave of translation

and then solitary wave [2].

“I was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped—not so the mass of water in the
channel which it had put in motion; it accumulated round the prow of the vessel in a
state of violent agitation, then suddenly leaving it behind, rolled forward with great
velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-
defined heap of water, which continued its course along the channel apparently without
change of form or diminution of speed. | followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour [14 km/h], preserving its original
figure some thirty feet [9 m] long and a foot to a foot and a half [30-45 cm] in height. Its
height gradually diminished, and after a chase of one or two miles [2-3 km] | lost it in
the windings of the channel. Such, in the month of August 1834, was my first chance
interview with that singular and beautiful phenomenon which | have called the Wave of
Translation.”

J.S. Russel
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Figure 1: The solitary wave re-created at the same place where JS Russell observed it in 1834. The picture

was shot in 1995 and comes from: http .//www.ma.hw.ac.uk/solitons/press.html.

A first theoretical explanation of such phenomenon was brought by Joseph Boussinesq [3] and
Lord Rayleigh [4] in the 1870s. In 1895, Diederik Korteweg and Gustav de Vries provided the

first equation giving solitary waves similar solutions [5].

Nowadays, scientists experimentally observe solitons in many fields of physics and in a lot of
different propagation media. The most famous ones are wave tanks in hydrodynamics or

fibers in optics.

1.1.2. Solitons in optical systems

I.1.2.1. The solitons, in all dimensions

One has to wait the invention of laser emission in 1960 [6] in order to observe solitons in
optical medium, since only lasers can provide an optical power large enough to induce a
nonlinear response for the light propagation. Optical solitons have been observed in temporal,

spatial or spectral domains.
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Temporal solitons:

The first optical temporal soliton was experimentally studied by McCall et al. in a nonlinear
medium with self-transparency induced by the laser beam in 1967 [7]. In that publication, the
phenomenon was interpreted as a "hole-burning" effect in which the absorption line is simply

saturated by the leading edge of the pulse.

Six years later, a theoretical work led by Akira Hasegawa and Fred Tappert of Bell labs [8]
showed that some optical pulses were able to propagate with a constant envelope along an
optical fiber in anomalous regime. Later, a first soliton observation in optical fiber was

reported in 1980 by Mollenauer et al. [9].
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Figure 2: First temporal soliton recorded by Mollenauer et al. [9]. For various fiber input powers, the figure
illustrates the spectrum and temporal traces of the output fiber beam (the temporal traces are from an

autocorrelation and the curves are normalized). The box shows the input laser characteristics.

On Figure 2, we can see how the soliton loses its shape for a fiber input average power above
5 Watts. In those cases the dispersion was not enough to compensate nonlinear effects. After
such observations, the potential of optical solitons for long distance propagations, especially
for telecommunications, was clear. Many research activities were developed in this topic [10]

[11].
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Spatial solitons:

These solitons keep their transversal spatial shape unchanged while propagating in the
nonlinear medium. They were firstly predicted in 1964 by launching a continuous wave laser
beam into a massive Kerr nonlinearity optical medium [12]. Moreover, these self-trapped
beams were not firstly related as spatial solitons, due to the unstable nature of these
observations. One has to wait until 1985 to see the first observation of stable spatial Kerr
soliton in Limoges [13]. In these experiments, the soliton was set stable by limiting the
diffraction to only one spatial dimension, using interference fringes (1D transverse spatial

soliton).

Spectral solitons:

Talking about solitons in spatial and temporal dimensions, | need to conclude with the less
known (but yet very interesting) case of spectral solitons. These kind of solitons have been
reported recently by A. Picozzi et al. in 2008 [14]. The particularity of these solitons is due to
their spectral incoherence: these waves are not confined in space or time domain, but they
shift their frequency while propagating in the nonlinear medium, without any spectral

broadening.

1.1.2.2. Variety of the solitons

The solitons | described in the previous paragraphs are Kerr solitons. In the simplest case, the
temporal soliton is a 1D wave propagating with a constant temporal envelope along a
dispersive media [15] [16]. Thus, for each propagating laser pulse, the Kerr medium
nonlinearity counterbalances the linear dispersion, allowing propagation without
deformation. For the case of spatial soliton, the diffraction effect is compensated, in one or
two transverse dimensions, by a self-focusing effect [17]. In these cases, the laser pulse is

spatially self-guided by an ephemeral waveguide only existing during the pulse duration.

Besides the positive envelope (also known as bright) Kerr solitons, other types of solitons can
exist. By tuning the input conditions, or by changing the main nonlinear effect involved in the
creation of such waveform, one can expect numerous other types of solitons, and | will list
some of them in the following paragraphs.
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Dark solitons:

Dark solitons, contrary to bright solitons, are “holes” on a background composed of a

continuous wave.
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Figure 3: Bright and dark solitons envelope, function of space (X) [18]. (a)-Bright soliton. (b)-Black dark

soliton. (c)-Gray dark soliton.

First anticipated in 1973 [19], the dark soliton was experimentally observed in the optical fiber
in 1988 for the first time [20]. In this experimental study, the dark soliton was obtained with
a pre-shaped initial beam, injected in the fiber. The dark solitons can be divided in two
categories [21]: the black and the gray dark soliton (see Figure 3). The black soliton has a
minimal value equal to zero, while the gray soliton has a minimal value greater than zero, but

still lower than the continuous wave background level.

Vectors solitons:

Vectors solitons are composed of multiple coupled components, dependant on polarization.
Under this denomination, one can find several types of hybrid solitons such as the dark-dark
soliton, the dark-bright soliton and the bright-bright soliton [22]. Experimentally, such
waveforms can be obtained by coupling multiple properties in a nonlinear material [23] [24]

(an optical fiber cavity with weak birefringence for example).
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Domain wall solitons:

Domain walls are a type of topological defect, usually related to a brutal symmetry break of
the wave phase transition. Because of their similarity with the mathematical kink solution of
the Sine-Gordon equation, domain walls solitons are also called kink solitons, and a single kink
soliton solution has been found in 1982 [25]. S. Wabnitz et al. predicted the optical domain
wall soliton through the switch of polarization in fibers [26]. Five years later, this theory was

experimentally validated by S. Pitois et al. [27].
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Figure 4: Experimental domain wall dark soliton [28].

Multimode solitons:

The solitons discussed previously can be single mode solitons, meaning that the solitonic
waveform appears through only one spatial frequency. Moreover, in 1980, light confinement
has been predicted in multimode fibers (where more than one light mode propagates through
it) by A. Hasegawa [29]. In such context, a potential multimode soliton solution has been
studied few years later [30] [31]. Moreover, one must wait more than two decades for the
first experimental observation of multimode solitons in a multimode fiber [32]. In these
experiments, Renninger et al. used a medium with a relatively small intermodal dispersion to
increase nonlinear effects among the different modes. Moreover, the higher order modes
total energy was low compared to the fundamental one, and the soliton was very similar to a
single mode one. An experimental study by L.G. Wright et al. [33] confirmed the theory by
showing, through simulations and experiments, a multimode soliton appearance, followed by

solitonic fission for higher power values.
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Kerr-like solitons:

Some materials, like photorefractive or liquid crystals, can have a nonlinear response
competitive to that of Kerr media, and they can allow then the generation of spatial solitons

thanks to their unique molecular structure.

Photorefractive effect was firstly observed in Bell laboratory by Ashkin et al. in 1966 [34]. This
effect causes a change of the material refractive index, induced by light illumination. The
spatial variations of light intensity induce the index change. Several processes are mixed to
create the photorefractive effect: the illumination induces a photo excitation of charges in the
material, and their migration from the bright to the dark areas generates a space charge field
producing then a modulation of the refractive index by the Pockels effect (linear modification
of the refractive index according to the local electric field). Crystals can be used as
photorefractive materials, under the double condition of being photoconductive and having
an electro-optical effect. Firstly associated to laser-induced optical damages, photorefractive
effect was understood few years later by F.S. Chen [35] [36], opening the way to holographic
recordings using photorefractive materials [37]. Already used for data storage, and real-time
processing because of its reversibility, M. Segev demonstrated in 1992 that this effect could
also be used to focus an optical beam, making possible the generation of 2D spatial solitons
[38]. The experimental demonstration was made the following year [39]. Figure 5 shows the
slow (non-instantaneous response of the matter) 2D photorefractive soliton generation

process.

The same 2D spatial solitons can be obtained in liquid crystals, where the refractive index
modification is due to thermal effect or molecular reorganization [40]. In regards of
photorefractive material, liquid crystals exhibit a shorter refractive index reconfiguration time,
allowing all-optical fast switching applications [41]. However, beam confinement is more
efficient in photorefractive media. Photorefractive and liquid crystals solitons are not

I”

considered as “real” solitons since the medium remains altered by the electromagnetic field

even after the extinction of this last one.

Another type of Kerr-like soliton is generated in crystals with the quadratic nonlinearity, with,
this time, an instantaneous nonlinear response. My thesis experiments are oriented to explore
such quadratic spatial solitons. For this reason, a complete study of such type of interesting

phenomenon is given in the next chapter.
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Figure 5: Experimental photorefractive soliton formation in LiNbOs material [42]. (a)-Input beam shape. (b-j)-
Output beam shape at different light exposure times. A and C vectors are relative to the optical polarization
field, while Eo vector is relative to the electrical field around the material. The light illumination remains

constant during all the process time.

Raman solitons:

Solitons, instead of being generated by Kerr nonlinearity, can be generated by Raman
nonlinearity [15]. Raman solitons are formed into a fiber cavity. They were experimentally
observed in 1984 [43] and a theory of such process was made one year later [44]. It has been
shown later that Raman gain could be used to generate solitons in such fiber ring setup [45]
[46]. An example of Raman soliton fiber cavity is shown in Figure 6 where a Raman pump is

used to generate a soliton on its Stokes wavelength.

Dichroic

mirror
Raman
pume Stokes
soliton
fiber of

length £
pump pulse

Figure 6: Raman Stokes soliton generation in a fiber cavity [47].
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Light bullets:

Light bullets are spatial and temporal domains solitons. They are the ultimate research goal
on optical solitons [48]. They can be obtained by trapping the beam both spatially (in the two
transverse dimensions) and temporally ((3+1)D configuration), to prevent diffraction and
dispersion from occurring simultaneously. In 1990, Silberberg [49] suggested that a space-
time compression in a Kerr medium would be unstable, since the propagation would be
(2+1)D. However, by including terms such as multiphoton absorption or stimulated Raman
scattering, the propagation can be stabilized. A spatiotemporal self-focusing has been
demonstrated in a Kerr medium for planar configuration [50], however, stabilizing a (3+1)D
propagation in a Kerr medium is not yet possible. Other media are considered, notably
guadratic media which can also propagate temporal solitons [51]. The first demonstration of
a space-time soliton in a quadratic medium was made by Liu et al. [52] [53], again in a planar
configuration. In these experiments, the need to have tilted wavefronts at the crystal entrance
for phase tuning makes the propagation less stable and prevents any (3+1)D propagation. New
theoretical investigations are carried out [54] [55] [56] but the light bullets have not been

obtained yet.

Dissipative solitons:

Dissipative solitons, introduced in 1991 by Picholle et al. [57], are localized formations that in
the presence of nonlinearity, dispersion and/or diffraction, maintain their equilibrium through

an exchange of energy with the external environment.

The existence and stability of the dissipative soliton depend on a continuous supply of energy
to the system (as in the case of laser cavity). When this energy supply ceases, or when the
parameters of the system no longer coincide with those allowing the formation of the soliton,
the dissipative solitons disappear [58]. The formation of a dissipative soliton in a cavity
involves a variety of stabilization mechanisms, depending on the nature of the cavity. These
mechanisms have a common characteristic: they involve a compensation process between the

intra-cavity losses and a gain of energy provided by the environment.
Some properties of dissipative solitons make them very attractive for research. First, their

intensity profile, amplitude and velocity remain fixed, and are defined by the parameters of

Raphaél JAUBERTEAU | Ph.D. Thesis | Université de Limoges | Universita di Brescia | December 14th 2021 27
License CC BY-NC-ND 4.0



the system [59] rather than by the initial conditions. Secondly, they can exist indefinitely in
time as long as an energy is provided to the system (or as long as the required parameters are

present in the system, allowing dissipative soliton existence).

Solitons on continuous-wave background:

Such waveforms are of particular interest for my thesis. Such interest is not related to the fact
that these waves propagate on a continuous background, but on the fact that these waves
may appear and disappear without leaving a trace when the nonlinearity increases. In short,
my thesis deals with ephemeral appearance of 2D extreme waves, whose dynamics mimics,
in a quadratic crystal, the behavior of soliton propagating on continuous background. In this
way, the reader can find a detailed study of these solitons in the following parts of this chapter

(see paragraph 1.2.3), after a short presentation of the NLSE.

1.1.2.3. Some special soliton dynamics

| will complete this short review on solitons in optical systems by briefly mentioning some
unconventional dynamics when solitons propagate under special conditions. Indeed, as
described before, the soliton is typically propagating alone, in one propagation direction, and
his envelope is not modified by its environment. However, there are circumstances allowing

solitonic fission, fusion, repulsion, spiraling and walking solitons.

Soliton fission and self-frequency shift:

When a soliton of order N > 1 (which means that the nonlinearity is higher than the dispersion)
propagates in a medium in the presence of weak perturbations (like third order dispersion),
the pulse can break into multiple solitons of lower order, until reaching the first order. Such
process is used in supercontinuum generation [60] [61] [62] (see Figure 7): the initial soliton
fission leads to multiple solitons generation, each one propagating through the medium with

a different wavelength, due to self-frequency shift.

Soliton self-frequency shift was first experimentally discovered by Mitschke and Mollenauer

in 1986 [63], then a theory was developed the same year by Gordon [64]. Self-frequency shift
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of the soliton is due to the Raman effect occurring while light propagates through the
nonlinear medium, forcing the shift of the soliton through lower-frequency parts. The mixing
of the soliton self-frequency shift with other nonlinear effects (which cause spectral

broadening) leads to the generation of large supercontinuum.

Figure 7 shows, on right, a time shift of high-energy solitons during the propagation in the
fiber. This time shift is due to soliton self-frequency shift, after fission of the initial soliton,

leading to a delay between each solitons because of the material chromatic dispersion.
0.5
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Figure 7: Numerical simulation of a supercontinuum generation in an optical fiber, due to N = 3 soliton
fission [62]. Left-The resulting supercontinuum of light. Right-Time shift of the high-energy solitons while

propagating in the fiber, after fission of the injected (Distance = 0) soliton.

Solitons collision:

When two or more solitons propagate with different group velocities along a nonlinear
dispersive medium, collisions may occur between two of them. In materials with quasi-
instantaneous nonlinear response (Kerr or quadratic materials), solitons can attract or repel
each other, depending on their relative phases [65] [66]. Repulsive collision mechanisms can
find applications in all-optical demultiplexing for example, where a phase-controlled soliton
will change the direction of another soliton in a pulse train [67]. Moreover, the phase
sensitivity of such process can be thwarted by changing the soliton polarization [68] or the

soliton spectrum [69] for example.
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Walking soliton:

Solitons can see their temporal or spatial group velocity accelerated or slowed down by the
material: such solutions are named walking solitons. It has been observed in birefringent
materials, such as quadratic crystals [70] or special optical fibers [71], and experimental results
were then quickly obtained [72]. In 1996, W. E. Torruellas and L. Torner [73] simulated a game
of billiards, involving all the solitonic waveforms generated by the quadratic nonlinear process,

using the walking properties of these soliton components.

I.2. Nonlinear Schréodinger equation

The NLSE allows the mathematical description of nonlinear phenomena in optics by adding, in
a single equation, nonlinear and linear terms as diffraction and/or dispersion. One can then
calculate the spatial and temporal evolution of electromagnetic wave envelope propagating
in a nonlinear dispersive medium. It is necessary to start from Maxwell equations to

understand the origin of the NLSE.

1.2.1. From the Maxwell equations to the nonlinear Schrédinger equation
Maxwell equations are differential coupled equations, giving the evolution of an

electromagnetic field in time and space:

OxH=J+— (1.1)

Where H and E are the magnetic and electric field, J is the current density vector, B and

D are the magnetic and electric flux density, and Py is the free electric charge density. The

studied optical medium here is dielectric so there are no free charges. In these conditions,

J=0 and P; =0. The flux density is relative to the field while propagating in the medium

and the following equation gives the relation between them:
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M and P are respectively the magnetic and electric polarization vector induced by the
oscillation of the electrons in the medium when an electromagnetic wave is transmitted

through it, and (4, &, are the vacuum permeability and the permittivity. In nonmagnetic

mediums, such as optical silica fiber: M=0. A single equation can be developed from the

previous coupled equations:

Ox[XE =

_mmxﬂz_%aﬂbdﬂ:_ o°D (1.3)

ot ot o

. . 1 . . . .
Knowing the relation: u,& =—, the last equation leads to a simpler time propagation
c

equation, dependent on the electric and polarization fields:

- 10 0P
DXDXE:_?F_HOF (1.4)

In dielectric medium where O D =0, it is now possible to simplify 0 x O xE with the following
equation:
OxOxE=0(0F)-AE =-AE (1.5)
P is directly dependent of the electric field:
P=g XVE+e YVE* +5, YPE* +..=P +P, (1.6)

With ¥ the linear susceptibility of the medium and y**, ¥ ,... the quadratic and cubic

susceptibilities respectively.

A part of the electric polarization is linear (EL): the molecular displacement, and then the
electron oscillation in the material, is proportional to the electric field intensity. Another part
of the electric polarization is nonlinear (PT,L): when the electric field is above a certain

amplitude threshold, the molecule affected by this field is subject to saturation, distension,
dissymmetry or to other effects changing the electron oscillation behavior under the external

strong electromagnetic field. This oscillation modification will affect the total polarization of
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the medium and then the external electric field propagation. The following relations can be

considered:

P =g, x"E
et (17)
Py =EXPE? +e XV E +...

The electric field propagation equation can now be written as:

_ 10 _ 9F ., 0P,
AFE ——— = py—+ phy—" (1.8)
c” ot ot ot

Since the optical fiber is the main observation medium for solitons, we will consider, in the
following parts of this chapter, the nonlinear medium as amorphous silica. In order to simplify
the following equations, we will consider the electromagnetic waves as a single mode beam

(3)

propagating in a silica fiber with only ™’ susceptibility. The wave propagation direction is z

and its linear polarization direction is on X . The electric field E and the polarization field P

can be decomposed as follows [15]:

Cls 1 = i(Byz—
E(F,t) ==X{F(x,y)¥(z,t)e P +c.c}
2
1 (1.9)
P(F,t) =E)?{F(x,y)P(z,t)e"‘ﬂ“”‘"” +c.c)
Where F(x,y) is the transverse envelope of the wave, W(z,t) and P(z,t) are respectively the
electric and polarization propagating envelope, [, is the propagating constant of the wave,
with pulsation at @, , and c.c. is the complex conjugate term. The envelope is slowly varying
in comparison to the optical carried frequency, so we can consider |W(z,t)]> as the

instantaneous power. From the equation (1.7) and (1.9), we can now calculate the linear and

nonlinear polarizations:

P(z,t)=€,x"W(z,t)

3 o , (1.10)
P, (z,t) :ZEO)( |W(z,t)]" W(z,t) = &,&, WP (z,t)
The total polarization is now the following, from (1.6):
P(z,t)=&,(x" +&,,)W(z,1) (1.12)
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Where ¢,, isthe nonlinear component of the frequency dependent relative permittivity € (@)

which gives use, for a given frequency, the total refractive index n:

n’ :‘gr(a)):gL tEu

L 0.3 o i (1.12)
n”=1+y +(4)( |W(z,t)])

&, is the linear component of the frequency dependent relative permittivity. From the last
equation, we can calculate the refractive index in function of the wave frequency, relative to

w, and the light intensity, relative to | W(z,t)[*:
n(w| W) =n,()+n, | W[ (1.13)

It is then possible to get the linear n, and nonlinear n, parts of the refractive index, calculated

from the real and imaginary parts of " [74]:

ny (@) =1+ Re(")
2 (1.14)

3
- R (3)
n, 8n, (¢ e(x"”)

From equations (1.8), (1.9) and (1.10), one can obtain the following form of the NLSE [15] [74]:

W AW B oY
— + [ 42
0z A ot : 2 0t

—-iYla) | WP WY=0 (1.15)
With B, the inverse of group velocity, 8, the group velocity dispersion (its physical origin is
recalled in section 1.3.1.2) and J(w,) the nonlinear coefficient, relative to Kerr effect and

developed in 1.3.2.2 section.

By changing the referential into group impulse coordinates,t =t — 3,z, it is now possible to

obtain a simplified NLSE which takes the following form:

o0 _B IV

5 2 o +y|WPW=0 (1.16)

Light propagation in optical fiber can be described with the integrable NLSE, allowing quick
solutions with inverse scattering method [75]. Equation 1.15 can be solved by the split-step
Fourier method [15]. This equation is now the most used one to predict solitons in optics, as

we will see in the following parts of this chapter.
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1.2.2. Introducing modulation instability in the nonlinear Schrodinger equation

In this paragraph, | will introduce instabilities in the Schrodinger nonlinear wave propagation
equation. Ml is characterized by the growing of a weak modulation of a continuous wave, in a
nonlinear medium with anomalous dispersion or with the focusing NLSE. Ml leads to the
generation of large-amplitude periodical wave trains. In spatial domain, Ml changes weakly
modulated waves into periodical patterns (see Figure 8-top). We observe on this figure the
evolution of the envelope amplitude during propagation, leading to the degradation of a
continuous wave for a given propagation length (superior to z1). In spectral domain, Ml is
characterized by the transfer of energy between a single component (w) to multiple sidebands
(see Figure 8-bottom). The spectral dynamics of Ml is that of a degenerated Four-Wave Mixing

effect [15].

In the hydrodynamic field, M| has been observed in deep water (analogous to the anomalous
dispersion regime in optics). Ml is seeded by the natural envelope amplitude modulation of
water (caused by the wind for example). With dispersive and nonlinear effects, some of the
modulation frequencies are favored and grow exponentially, leading in the strong conversion
to catastrophic behaviors, such as rogue waves. These instabilities, studied in hydrodynamics,
are called Benjamin-Feir instabilities [76] [77]. In optics, Mi growths spontaneously when
driven by noise, or can be induced by adding an intensity modulator [74]. The phenomenon
of growing on modulation instability sidebands can be analytically described by using the

NLSE, and this point is the subject of the next paragraph.

L M

(0] (O] [0}

Figure 8: Ml evolution in a nonlinear medium [78].
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1.2.3. Solitons generated by modulation instability

Under MI, non-zero background solitons can exist and their existence have been predicted by
Akhmediev [79], Peregrine [80], Kuznetsov [81] and Ma [82]. In order to observe such special
solutions of the NLSE, it is preferable first to normalize the space and time propagation

variables in equation (1.16):

t
f=2t.r="1 (1.17)

LNL Z-0
L, =1/(yP) is the nonlinear length (with P the input power) and 7, :(,BZLNL)”2 is the period

of the MI. With the new normalized parameters & and 7, the NLSE reads as:
Y 10°¥W
ia_+_a —+|WFW=0 (1.18)
o0& 20r

With this equation, it is now possible to calculate the soliton solution on a non-zero

background, growing on M.

1.2.3.1. Akhmediev breathers

This first analytic solution of the normalized NLSE is a low-frequency modulation envelope
wave composed by high amplitude solitons. Akhmediev breathers are localized in propagation
coordinates and periodic in time coordinates. To understand the behavior of such waveform,

it is necessary to introduce a new parameter in the wave amplitude propagation: a.
The analytic Akhmediev breather solution is the following, for 0 < a < 0.5:

2(1—2a)cosh(b&) + ibsinh(b&)

W&, 1) =€"[1+ (1.19)
\/ZCOS(Q T)—cosh(b¢)
Where b determines the instability growth and Q the modulation frequency [74] [83]:
1 1
b=[8a(l-2a)]* ; Q=2(1-2a)? (1.20)

When a =0, the solution of the equation (1.19) is a continuous wave. It gains amplitude when

a increases, but the number of solitons and the modulation envelope frequency decreases.
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Figure 9 illustrate an example of Akhmediev breather for a = 0.25, the background is 3 times
less important than the solitons amplitude, and minima appear around solitons, with a smaller

amplitude value than the continuous background.
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Figure 9: Example of Akhmediev breather, for a = 0.25.

The Akhmediev breathers periodicity disappears in time when the parameter g approaches
0.5, which is a limit value for the equation (1.19). In that case, the breathers periodicity tends

to the infinite and the central soliton ({ =0 and 7 =0) is the only one remaining. Peregrine

made a derivation of the analytical model seen in equation (1.19) [80].

1.2.3.2. Peregrine solitons
For a = 0.5, the equation (1.19) can be reduced as follow:

4(1+2ié)

W& )=l -—— o
€n=en-r s

] (1.21)

In this solution, the periodicity parameters (1.19) disappear as the length between each peak
event becomes infinite. This derivation allows to obtain a mathematical model for a localized

(space (1D) or time (1D)) extreme event called the Peregrine soliton (see Figure 10).
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Around a localized soliton in time or space, one can draw similar observation as for the case
of Akhmediev breathers: a continuous background exists, and there are minima of energy

close to the central high amplitude.
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Figure 10: Example of Peregrine soliton, for a = 0.5.

1.2.3.3. Kuznetsov-Ma breathers

The Kuznetsov-Ma breathers are mathematical solutions of NLSE with continuous background
when a > 0.5. For such range of values, b and Q parameters become imaginary (equation
(1.22)) and switch axis periodicity of the Akhmediev equation (1.19) to the other axis. The
complete description of these breathers has been realized in 1979 [82] and gave a
mathematical solution similar to the Akhmediev breathers but with a periodicity developed
along the longitudinal propagating axis, and no longer on the temporal axis as for the case

Akhmediev breathers (1.23).

1 1

b=i[8a2a-1]? ; Q =2i(2a —1)? (1.22)

2(1-2a)cos(|b| &) +i|b]|sinh(|b]|E)

W(&, 1) =e"[1+ (1.23)
N2acos(| Q| 1) —cosh(|b]| &)
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Figure 11: Example of Kuznetsov-Ma breather, for a = 0.95.

At some time and space values, we can observe minima of energy, below the continuous wave
level, acting like a depletion around the solitons. Such behavior of the mathematical solution
is very similar to what we can observe in hydrodynamics (water depletion before and after the

high amplitude wave) and in optics [74].

Optical field of physics is the one we will study in the following lines, because it allows us to
observe extreme events, such as non-zero background solitons, in a relatively small setup. For
example, Chabchoub et al. used a wave tank with a length of 15 meters, for a width of 1.5
meter and a water depth of 1 meter as experimental setup for Akhmediev and Kuznetsov-Ma
breathers experiments [84]. Similar results have been observed in optics by Kibler et al. [85]

using few kilometers of optical fibers as a nonlinear medium.

Optical fibers are a good nonlinear medium since it allows soliton propagation studies along
kilometers without significant loss and with the possibility to observe the light dynamic at any
particular fiber length. Peregrine solitons have been observed in fibers by Kibler et al. in 2010
[86]. One year later, studies on Ml spectral dynamic were carried out using the Akhmediev
breather theory [87]. In 2012, the first results on Kuznetsov-Ma waveforms in optics were

published [85].
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1.3. Silica fibers as a perfect physical environment to observe solitons

The nonlinear silica fiber is a historical medium for optical soliton generation [56]. Fibers have
been used since the 50s for endoscopic applications; flexible glass waveguides have been used
for telecom applications ten years later, after the invention of the laser. Indeed, due to the
important losses in the first samples of optical fibers, it was necessary to wait the invention of
a high-intensity light source in order to observe the light guidance along kilometers of
propagation. Progress were made in optical fiber fabrication, to reduce losses at specific laser
wavelength (Near Infrared - NIR wavelengths are mostly used in telecom, due to the relative
low attenuation and low dispersion of these frequencies while propagating in the fiber) and
in parallel, lasers sources became more and more powerful, allowing the transmission of light
to further and further distances. However, life always finds a way to bother the engineer, and
nonlinearities appeared when the optical power was above a given energy threshold. These
nonlinearities degraded, most of the time, the signal; however, under some circumstances,
the fiber nonlinearity permitted to transmit undistorted ultrashort pulses over thousands of
kilometers of fiber (thus, we can talk about solitons propagation). The first soliton in optical

fiber was then observed in 1980 [9].

Silica fibers are dielectric waveguides for optical frequencies. They transmit light through the
core by means of total internal reflection. In order to keep light in the center of the fiber, it is
necessary to have a core refractive index higher than the refractive index of the cladding. In
order to increase the refractive index of silica SiO, the core can be doped with germanium
dioxide GeOy, or aluminum oxide Al;Os. It is also possible to dope the cladding part of the fiber
for decreasing, this time, the refractive index (with boron dioxide B,Os for example). The silica
fiber is also coated with a polymer to avoid external deterioration and to improve mechanical

properties when bending and crushing are applied.

Light propagates in optical fibers with specific spatial distributions called electromagnetic
transverse modes (see Figure 12). In a standard step-index fiber, when the normalized spatial
frequency V is lower or equal to 2.405, the optical fiber is considered as single mode, meaning
only one spatial frequency, which can be approximated by a Gaussian, can propagate in the
waveguide. For higher values of V, the fiber allows the propagation of several modes. The V

coefficient is defined as follow:
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-n (1.24)

Where a is the fiber core radius, A is the propagating light wavelength, and n.,n,are the

core and cladding refractive indexes.

Silica fibers are now the most used waveguides for light, since they are cheap, usable and easy

to produce. However, several linear and nonlinear effects can affect the electromagnetic field

propagation.

LPos LP11a LP 11y LP31q LP21p
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Figure 12: Simulated isolated spatial frequencies at the output face of a multimode fiber [88].

1.3.1. Linear effects in silica fiber
Several linear effects affect the spatial and temporal wave envelope independently to the

electromagnetic field intensity. The most famous are the attenuation and dispersion effects.

1.3.1.1. Attenuation

Optical attenuation in fibers, also called transmission losses, is the first effect ever observed
in this type of medium. Transmission losses can have many origins, such as mechanical
torsions, imperfect junctions between the fiber core and cladding or molecular origins as
linear scattering or material absorption mainly due to the hydroxyl OH ions occurring in

particular at 1380 nm. Impurities inside silica can also be at the origin of significant losses [89].

The main scattering process in optical fibers is due to Rayleigh effect, dependent on the wave
frequency. Rayleigh scattering is a limit case of Mie scattering where all of the optical
wavelengths are affected due to big particles presence on the optical path [90].
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Figure 13: Light attenuation in silica optical fiber, in function of the wavelength. This figure comes from

Fibercore website.

The attenuation a is usually expressed in dB/km and given by the following equation:

PO
P

I

10
Qs = -Tlog( ) (1.25)

With L the propagation length,P, and P, respectively the input and output power of light in

silica fiber.

1.3.1.2. Dispersion

The dispersion (D) of the optical fiber is the combination of two contributions, one of the
material and one of the waveguide. When an electromagnetic wave propagates in a dielectric
medium (a fiber in our case), this wave will interact with the electrons of the dielectric

material.

The dispersion of the material results in a dependence of the refractive index with the
wavelengths so that each wavelength will travel with different speeds in the waveguide. The
dispersion of the waveguide will depend on the fiber design: the core radius and the index
difference between the core and the cladding. Light speed will depend on the light transverse

location in the fiber, hence the appearance of optical delays after propagation in the fiber [74].

D, expressed in ps.nm™*.km, is directly linked to 3, and depends on the wavelength A:
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D= FE

B, (1.26)

In standard single-mode fibers, the Zero Dispersion Wavelength (ZDW) is the wavelength at
which waveguide dispersion and material dispersion cancel each other, and the total
dispersion (D) is equal to 0. For telecom applications, the fiber is doped to shift the ZDW
toward 1550 nm (ZDW is at 1310 nm in all-silica fiber), in order to minimize the propagation

losses (see Figure 13).

In the same standard single-mode fibers, when the light wavelength is shorter than the fiber
ZDW, the dispersion is called normal (D < 0) thus, shorter wavelengths will propagate faster
than longer ones (positive frequency chirp). On the contrary, for longer wavelengths, the
dispersion is called anomalous (D > 0) and shorter wavelengths will propagate slower than
larger wavelengths (negative frequency chirp). Solitons appear mainly in anomalous
dispersion regime, where Kerr nonlinearity counterbalances dispersion. However, some
examples of soliton propagation can be found in normal dispersive regime in particular
conditions [91]. Dispersion versus wavelengths evolves with the fibers geometry or
composition. For example, the hollow-core fiber [92] exhibits anomalous dispersion regime

for any chosen guided wavelength (see Figure 14 for an example of hollow-core fiber).

Figure 14: Example of a microstructured hollow-core fiber, drawn by F. Delahaye at XLIM laboratory [93].

Left-Side cut of the fiber, Right-Zoom on the fiber core.
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1.3.2. Nonlinear effects in silica fiber

Nonlinear effects taking place in optical fibers can seriously affect spatial and temporal wave
envelopes and distort the initial structure of the light pulses, because of the anharmonic
molecular and atomic responses of the medium under strong beam intensity. Thus, significant
pump depletion, frequency conversion, pulse breaking, anomalous absorption due to

multiphoton process, etc., can exist.

1.3.2.1. Raman effect

When an electromagnetic wave propagates in a dielectric medium, inelastic scattering may
occur. This non-instantaneous process comes with kinetic energy losses due to collision
between corpuscles (photons and atoms), leading to a frequency shift between the incident
and the scattered lights. The lost energy is transferred toward phonons, which propagate in
the matter. Thus, we spontaneously obtain a Stokes line at higher wavelength (we can talk
about spontaneous Raman effect). Stimulated Raman process is also possible when the light
propagates through an excited molecule. In that case, the energy stored by the molecule can
be released to the initial beam by creating an anti-Stokes line at a shorter wavelength. Thus,
stimulated Raman is understood as a resonant four-wave mixing process. The Raman shift
depends on the molecular structure i. e. the medium nature. In silica fiber, Raman shift is close
to 13.2 THz and can be modified by doping the glass.

Stokes anti-Stokes

Virtual energy levels

hY, h(Yo+ Yyip) |

: hY, h(Yo - Yyin) |

Excited vibrational states ' ro

A 4

phonon

Ground state i :

Figure 15: Raman Stokes and anti-Stokes energetic level. hyo is the incident photon energy, and hyvis the

energy transmitted to the molecule.
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1.3.2.2. Kerr effect

Kerr effect is an instantaneous nonlinear process, well known in optical fibers, which induces
a modification of the refractive index of the medium, proportional to the intensity of an optical
beam (see equation (1.13) for more information). This effect is mathematically implemented
in the NLSE (1.16) in the term: y| W[ W . The Kerr effect depends on the field envelope W but

also on the nonlinear coefficient )/, which contains the nonlinear response of the medium and

the surface covered by the incident beam:

y =4 (1.27)

Where ) is the center frequency of the wave packet and A, the effective area of the injected

eff
light beam. Kerr effect leads to several processes, such as self and cross-phase modulations,

four-wave mixing,...

Self-phase modulation effect, in particular, is responsible of the soliton formation. As the
refractive index becomes dependent of the field intensity /=|W|* for a single center
frequency, n(l/)=n, +n,l will produce an instantaneous phase shift @ of the wave packet,
centered on the wavelength A, while propagating in the nonlinear medium of length L [15]:

dt) =t -a—mn(l) (1.28)

0

This instantaneous phase shift compensates the linear phase shift, introduced in anomalous
dispersion, with an opposite chirp, allowing the generation of solitons in such configurations

[94].
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Conclusion - Chapter I

In this first chapter, | briefly recalled some historical perspectives on solitons and their
observations mainly in optical materials. | pointed out how solitons can exist in several
dimensions and | gave examples of basic interactions between them. | introduced the NLSE
and described some of its solutions of solitary waves propagating on Ml non-zero background.
These solitons seem to be more appropriate to explain extreme rogue events observed in
nature, which appear and disappear without leaving trace. At the end of this chapter, | focused
more my attention to linear and nonlinear effects in fibers, responsible of the generation of

solitons in those materials.

Even if my work is not directly centered in third-order susceptibility silica materials, the
phenomena that | observed exhibit several similarities with solitary waves obtained in 1D in
optical fibers and | was inspired by these results to explain my observations that will be

discussed in the next chapters.
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Chapter II. Solitons in quadratic media

II.1. Light propagation and three-wave mixing in quadratic medium
In this chapter, | will focus my attention to quadratic media such as type Il nonlinear bulk
Potassium Titanyl Phosphate (KTP) crystals or periodically poled lithium niobate (PPLN) [1].

(2)

One can see the quadratic nonlinear material, with x*“' susceptibility, as a frequency mixer,

where an idler wave at a pulsation @, can be generated by a signal and pump at w, and @, .

w1
) “3
¥® —)
—
w3

Figure 16: Three-wave mixing process in a quadratic nonlinear medium with )((2) susceptibility.

The nonlinearity of that medium (which provides a relatively high susceptibility) comes mainly
from its molecular crystal lattice arrangement and from the nature of the involved atoms. In

this way, only the second order nonlinear susceptibility is usually considered, thus, the

nonlinear polarization PT,L from equation (1.8) can be simplified as:
Py = EXE (2.1)

Nevertheless, quadratic media can also support a high third order nonlinearity, which can
counterbalance or increase the effects of the second order one. In some particular cases, as
in high phase-mismatch and high input peak power, the Kerr nonlinearity can play a significant

(2)

role and drastically disturb the x'“ process [2] [3].

From the equation seen in the previous chapter, we can calculate the nonlinear polarization

for a pure quadratic nonlinear media, considering the monochromatic field: E(t) = E,cos(ax).

E,and ware respectively the amplitude of the electric field and its pulsation:

1 1
P,.(t) =% X?E, cos(2at) & X7E, (2.2)
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For simplicity, | consider the real values of E(t) and P, (t) in the equations (2.2) - (2.4). The

others equations will be instead referred to complex envelopes as in Chapter I.

In the non-degenerated case, two different injected optical frequencies, with pulsations w,

and @ (w # ), are considered:
E(t)=E,cos(awt) + E,cos(wit) (2.3)
Leading to the following nonlinear polarization:
P, (t) = &, X (E,cos(at) + E,cos(awt))’ (2.4)

By developing the equation (2.4), it is possible to extract nonlinear processes from the

solutions terms. They are listed in the following table:

Nonlinear polarization terms Nonlinear processes

1
550/\’(2)(512 +E,%) Optical Rectification

1 Second Harmonic Generation
Z e, X (E,2 cos2ayt) + E  cos(2ayt))
? 20, or 2w,

Sum Frequency Generation
&, XPE,E, cos[(a) + @ )t]
W+,

Difference Frequency Generation

EXPEE, cos(|w, -, | t)
lw —aw, |

Table 1: Quadratic nonlinear processes.

Equation (2.2) is composed by two parts. The first one oscillates at the pulsation 2w that is
twice the frequency of the fundamental wave. This part is physically at the base of Second
Harmonic Generation (SHG). A first observation of optical SHG was made in quartz material by
P.A. Franken et al. in 1961 [4]. The next year, additional experimental demonstrations in other

materials like potassium dihydrogen phosphate [5] [6] or triglycine sulfate [7] were reported.
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These observations quickly led to the publication of theoretical papers on the SHG in 1962,
written by N. Bloembergen et al. [8] and J.A. Armstrong et al. [9]. Seven years later, in 1969,

G. S. Agrawal made a quantum approach of the SHG phenomenon [10].

Surprisingly, the SHG can also be observed in glass. The most used method for SHG in glass is

@) susceptibility in a glass, by local

called poling process. It consists in creating or inducing a Y’
modification of its molecular structure (using the light itself or a static electric field). Thus,
frequency doubling was performed, in 1986, in glass fibers [11], and then in oxide glasses
almost a decade later [12] [13] [14] and in non-oxide glasses, in 2001 [15]. Poling was also

used by C. Fiorini et al. to observe SHG in polymer, in 1997 [16].

A nonlinear process, visible on Table 1, is independent from the pulsation w. It is well known
as optical rectification, firstly discovered by M. Bass et al. in 1962 [17]. The optical
electromagnetic wave is then converted into a DC electric current similar to the electro-optical
effect. Based on that process, one can create terahertz radiation by using femtosecond laser

pulses [18] [19].

In a quadratic nonlinear medium, three waves can interact. These three waves are nonlinearly
coupled one each other. From the equations (1.10) and (2.1), it is now possible to write the

coupled evolution equations for the three waves involved in the mixing [1]:

%:iﬂdeﬁw3w;e’m
z n.c
v, .« * ik

=ji—=2d Y.V " 2.5
0z n,c A (25)
v, . w —ihkz
623 —/Edeﬁwlwze

n,, n, and n, are respectively the effective refractive index of the three mixed waves in the

guadratic nonlinear process.

k., k, and k, are the wave vectors. Ak =k, —k, —k, is the phase mismatch among these

waves. d_.is the effective nonlinearity tensor, calculated from the second-order

eff

susceptibility.

The " susceptibility is a third rank tensor with 27 terms (3x3x3) because three waves are

involved in the quadratic nonlinear process, and each wave interacts with the others [1]:
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X XXX X xyy X xzz X xyz X XXz X XXy X xzy X xzx X XyX
X @ = A yxXx A yyy A yzz A yyz A yxz A yxy A yzy A yax A yyx (2 ' 6)
X zxx X zyy X 22z X zyz X zxz X zxy X 2zy X 2zx X zyx

The optical frequencies used in this thesis are far from the material resonance, so no energy
is stored in the molecular structure, and the response between the optical field and the
molecular polarization is quasi-instantaneous. It is then possible to permute frequencies if the

associated polarizations are also permuted [1]. The tensor is then reduced to 18 terms:

XXXX Xny XXZZ XXyZ XXXZ XXXy
X(Z) = nyx nyy Xyzz nyz nyz nyy (2.7)
XZXX ley XZZZ XZyZ XZXZ XZXy

From the following tensor, it is now possible to calculate deff :
d, =e, G;— X 2e, (2.8)

Where e,, e, and e, are the unit polarization vectors of the three coupled waves respectively.

With the Kleinman approximation [1], it is possible to reduce further the number of terms in
the effective nonlinearity tensor if the quadratic material is, for example, isotropic, uniaxial,

biaxial.

I1.2. Importance of the phase matching on the three-wave mixing process

In order the get energy exchange between the three waves, one must respect the phase
relation among each wave. A proper way to mathematically represent it is to consider the
phase mismatch factor (Ak ) reported in the equation (2.5). When the phase mismatch is equal
to zero (phase matching), the nonlinear mixing process i. e. the frequency conversion reaches

the maximum efficiency.

3

. .0 . . .
By integrating on the total length L of our nonlinear material, we obtain:

_ sin(x)

1,(L) O Il(O)IZ(O)sincz(%) ; sinc(x) (2.9)
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This equation is relevant for the weak conversion regime, meaning that the generated
intensity /, is relatively low in regards to the injected intensities /, and /,, thus, the generated

wave does not significantly deplete the incident wave.

In a degenerated case, the equation (2.9) is simplified: /,(0) =1/,(0) and can be plotted as in the

following Figure 17, giving us a Second Harmonic (SH) conversion function of the phase

matching in nonlinear quadratic medium. The width of the central peak and the position of
. AkL . . .
the zeros are determined by — and in order to characterize the phase detuning regardless

of the value of L, it is usual to express this quantity as multiple of .

(a) (b)

1 . —
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- —
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N
©
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10 -8 6 4 -2 0 2 4 6 8 10

AKL (multiple of «)

Figure 17: (a)-Second harmonic generation versus the nonlinear medium length and the phase mismatch
between the waves involved in the process. (b)-Phase mismatch representation. Where kiand k2 are the

propagating vectors of the depleted waves, and ks is the propagating vector of the generated wave.

The Figure 17-(b) shows that in order to get a perfect phase matching, it is necessary to respect

the momentum conservation principle: k, =k, +k, which goes in pair with the energy

conservation principle: @ =, + @, .

There are many ways to obtain the phase matching conditions, depending on the crystal type
and chemical structure. In isotropic media, chromatic and polarization dispersion make the
phase matching process impossible. Therefore, anisotropic media can be used, and crystal

orientation or temperature can be managed to control the phase matching conditions.
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I1.2.1. Birefringence phase matching

Birefringence phase matching is the oldest method to tune SHG efficiency in crystals, and it is
well described in many nonlinear optics books [20] [21]. birefringent crystals possess two
principal axes, one ordinary (0) and one extraordinary (e). These principal axes depend on the

crystal molecular mesh orientation.

In the case of birefringent crystals, there are two different types of phase matching, type | and

type Il.

In type | phase matching, the linear polarization directions of @, and w, are parallel to each

other, and the linear polarization of a, is orthogonal to the two others.

In type Il phase matching, the linear polarization directions of «, and w, are orthogonal to

each other, and the linear polarization of a is parallel to one of the two incident waves.

w,

W, W; or W,
w3 (.01 or 0.)2
Type | phase matching Type Il phase matching

Figure 18: Waves polarization orientations for the two types of phase matching in birefringent crystals.

When waves with a given linear polarization direction are propagating along a birefringent
crystal, the polarization state can be separated into two linear polarization components, each
one along the principal axes (extraordinary) e and (ordinary) o of the crystal. This fact may
lead to spatial and temporal walk-offs: the beam at the output of the crystal will drift away
from the wave vector direction in the spatial case, and delays between waves will occur in

temporal domain.

In type Il phase matching, the incident wave has polarization components along the two
principal axes e and o. Thus, the waves travel along two different optical paths i. e. with two
different directions. This spatial walk-off can drastically limit the nonlinear conversion and

introduce spatial distortion on the converted wave.
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In type | phase matching, the incident waves are polarized along an unique principal axis (it
can either be e or 0). The waves travel then along one optical path. No spatial walk-off occurs
between the incident waves; the generated third wave will propagate through a different
optical path since its polarization orientation will be orthogonal to those of the incident waves.
Waves propagation, in both types of crystals, is illustrated in the following Figure 19. In all
cases, temporal walk-off occurs and the waves can lose the temporal overlap while

propagating in the crystal.

An example of type | crystal is the Beta Barium Borate (or BBO) [22], an example of type Il
crystal is the KTP [23]. Despite of the spatial walk-off between both incident waves, the

nonlinear coefficient of KTP crystals is generally higher than the coefficient of type | BBO [24].

k, +k, '

+ (a) -(-c-) ______________________________

01 2 3 4 5 6 7 8 9 10

Polarization Medium propagation length (Lc)

i i
1 1
1 1
1 1
Polarization v : 10 H
\ 1 1
N 1 1
kit k, b ) !
i 8 :
Type | phase matching crystal ! ;"’ ot :
19 1
2 :
©
i E 4 i
i S i
k, + k, i 2t i
1 1
1 1
’ i i
1 1
1 1
1 1
i 4

Type Il phase matching crystal

Figure 19: (a)-Example of type | phase matching propagating waves. kiand k2 are the propagating vectors of
the incident waves, and ks is the propagating vector of the converted wave. (b)-Example of type Il phase
matching propagating waves. (c)-Normalized generated wave intensity along the birefringent crystal (type |

and type I1). Black curve is in the case of phase mismatch, and orange curve in the case of phase matching.

In Figure 19-(c), we introduce L., the coherence length, equal to the propagation length for
one of the degenerated incident waves to get a phase displacement of it with respect to the

generated third wave.
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Without birefringence, each time the propagation length reaches L., there is an inversion of
the energy exchange between the incident waves and the converted wave. As shown in Figure
19-(c) (black curve), if the phase matching condition were not respected in birefringent crystal,
the light conversion process would regularly be inverted, and the conversion rate would be

very weak after propagation in the crystal.

I1.2.2. Quasi-phase-matching
In birefringent crystals, the nonlinear coefficient is orientation dependent. Thus, to exploit the

higher nonlinear coefficient, the input pump waves (@, and w,) have to follow given

directions of propagation. In some cases, no solution can be found, forbidding then the
exploitation of that nonlinearity. In order to overcome this difficulty, the quasi-phase-

matching technique has been introduced.

Quasi-phase-matching consists in periodically changing the sign of the d tensor every L,

when the phase difference between the incident and the generated frequencies is equal to r,
in order to optimize the energy transfer in the three-wave mixing process. d parameter is a

nonlinear coefficient relative to d_,, calculated in equation (2.8) [9].

eff

This periodical evolution of the nonlinearity introduces an additional term in the phase

matching equation and the new phase matching equation becomes:

k +k, —k, =§ (2.11)

N is the poling period of the PPLN, tunable in temperature (see Figure 20-(a)).
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Figure 20: (a)-Poled crystal with A = 2L period. (b)-Normalized intensity of the generated third wave along
the crystal. Black curve is in the case of phase mismatch, and orange curve in the case of

quasi-phase-matching.

Comparing the Figure 19-(c) and Figure 20-(b), the third wave intensity generation is higher in
the case of pure birefringent phase matching than in quasi-phase-matching process.
Nevertheless, quasi-phase-matching allows the use of materials with a higher nonlinear

coefficient, leading to a larger nonlinear wave conversion efficiency.

It is also important to note that the incident fundamental radiation is polarized along the
extraordinary axis like the generated wave. This case is generally referred as type O phase
matching process. In that configuration no spatial walk-off between waves exists which

contributes to increase the conversion efficiency.

The quasi-phase-matching technique was developed by Armstrong et al. in 1962 [9] but the
realization was delayed by two decades, due to difficulties in the technological

implementation [25].

In my thesis, | used a PPLN crystal designed for quasi-phase-matching at 1064 nm. Thus, the
N\ periodicity length was close to 7 um with a nonlinear coefficient des of 15 pm/V which is

four or five times higher than the one of the type Il KTP crystal (3.5 pm/V).
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I1.3. Solitons generation in quadratic media

Mathematically, the soliton is a specific solution of an integrable model equation [20] [26],
however, the term soliton is abusively extended to every case where a self-sustained wave is
propagating without deformation, the diffraction or the dispersion being perfectly

compensated by the nonlinearity, as in quadratic media.

I1.3.1. The history of quadratic solitons

(2)

Quadratic solitons are solitonic waveforms generated in xY'*“ materials and composed by two

different wavelengths, thus, these solitons are also named bicolor solitons. Karamzin and
Sukhorukov theoretically predicted the quadratic soliton existence in 1974 [27], but it took
more than two decades to obtain a first experimental demonstration [28] [29]. As we can see
in Figure 21, Torruellas et al. [28] observed a quadratic spatial soliton at the Fundamental
Frequency (FF). He launched a 20 um-waist infrared beam (see Figure 21-(a)) in a 1 cm-long
KTP. At low input light intensity, the diffraction was dominant, leading to the broadening of
the beam at the output of the crystal (see Figure 21-(b)). When the nonlinear length
compensated the diffraction length (for an input intensity value higher than 10 GW/cm?), the
12.5 um-waist soliton was generated and visible at the output of the KTP crystal (see Figure
21-(c)). This 2D spatial soliton was observed on phase matching and small phase mismatch
(positive or negative) conditions. Thus, solitons are able to keep their spatial shape unchanged

while propagating along multiple diffraction lengths (see Figure 22).

1D quadratic solitons were also observed in a planar LiNbOs crystal waveguide by R. Schiek et
al. [29]. Soliton collisions in quadratic nonlinear materials were studied later in 1D spatial
domain [30] [31] and 2D spatial domain [32]. 2D quadratic spatiotemporal soliton collision
was also investigated in 2000 by Liu et al. [33]. Liu’s works come in parallel to their researches

on light bullets generation.
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The first SHG soliton, generated by using quasi-phase-matching technic, was reported in 1999
by B. Bourliaguet et al. in a PPLN [34]. This spatial 2D soliton was generated with an input
pump intensity of 1 GW/cm?, ten times lower than the soliton generation intensity threshold

in Torruellas experiments, using birefringent media [28] (see Figure 21).

(a) (b) (©)
| ‘
} o )

FH input FH output (low power) FH output (high power)

Figure 21: Quadratic soliton observation made by Torruellas [28]. (a)-The input beam. (b)-The output beam
at low input light intensity. (c)-The output beam at high input intensity (more than 10 GW/cm?). All of these

images are at the fundamental frequency.

5 Diffraction Lengths

Figure 22: Quadratic soliton propagation in a KNbOs crystal. The dashed lines are the simulation of the beam

diffraction at low intensity [35] [36] [37].

Beyond the simple observation of a quadratic spatial soliton propagation, interactions
between these two colors solitons allowed the demonstration of multiple solitons-like
waveforms generation [38], spatial collision between those waveforms [39], walking soliton
[40], spatial steering [41], and spiraling [42], which are interesting behaviors for biomedical

imaging and all-optical computing for example.
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I1.3.2. The cascading effect

In order to get a mathematical model of the soliton propagation, while propagating in x*
susceptibility material, one can consider phase mismatch condition, where regular energy
exchange between the FF and the SH waves occurs and creates a nonlinear phase shift, which

in turn compensates the linear one generated through the propagation. This process is called

cascading effect.

Thus, an analytical explanation of the cascading effect can be given, from the following
dimensionless equations, for bright spatial solitons generation in slab (1D) type | waveguide

(see A. V. Buryak and Y. S. Kivshar article [43] for more details):

oW o’y
I?FF-I_?ZFF_LPFF-I-LPSHLPFF*ZO (2.12)
2
I-O.aLPSH _I-JanSH + 0 LIJZSH -a¥, +1qJFF2 =0 (2.13)
0z 0x 0x 2
With: aEU(2+AI’;L").

In these equations, W, is the envelope of the waves at the FF (degenerate case), and W, is
the envelope of the wave at the SH. g is the modal diffraction ratio, L, is the diffraction length
of the material, 8 is proportional to the phase velocity shift, induced by nonlinearity, and 0

is proportional to the walk-off in the material. z is the propagation coordinate, normalized by

Lg.

For a large positive Ak, @ >>1 and the wave equation from (2.13) is reduced to:

Y= (2.14)

In this way, equation (2.12) becomes the following spatial NLSE [44]:

oy, v 1
i azFF + aszF -y, +£| W, W, =0 (2.15)

When the diffraction is limited to one transverse dimension only, this equation is integrable

and admits then precise soliton solutions as in Kerr medium.
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In these newly stable generated two-color solitons, the SH will have a lower amplitude than
the FF, in this cascading limit. Moreover, even for a weak Ak and &, quadratic solitons may
exist, but this time the FF will have an amplitude comparable to that of the SH (see Figure 23
for comparison), and the soliton may be unstable [45] [46].

1.5 8
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Figure 23: Two colors quadratic solitons, for weak Ak (left) and large Ak (right), from [43].

These analytic solutions assume that the FF and the SH are both present from the beginning
of the propagation. Moreover, numerical analysis led by S. Carrasco et al. [47] showed that it

was possible to observe stable solitons by injecting only the FF in the crystal.

And what happens close to phase matching?

It is important to note that a periodical energy exchange between the FF and the SH is only

theoretically possible for Ak # 0.

Moreover, the notion of perfect phase matching can be defined rigorously only for a non-
diffractive monochromatic plane wave. The use of short pulses (broad spectrum) with finite
spatial dimensions (i. e. with a diffraction length of the beam lower than the crystal length)
does not allow to rigorously obtain perfect phase matching. Some wavelengths, present in the

pulse spectrum, are then slightly out of phase, when the initial beam starts to diffract.

Thus, we could consider that the case of strict phase matching condition is never respected in

the experiments and that quadratic soliton is always obtained, for a weak or large Ak.

Additionally to these informations, in exact phase matching conditions, an analytical solution

of a 1+1D soliton in quadratic media was given in [27], for a single value of a global parameter.
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I1.3.3. Modulation instability and non-zero background solitons in quadratic
media

As we saw before, Ml is a periodical deformation of wave trains initialized by a weak
modulation on a continuous wave propagating in a nonlinear medium. In 1967, Benjamin and

Feir wrote a full theory on Ml in deep water [48]. Optical Ml was mostly studied in x*

susceptibility materials as the silica optical fibers [49], and used to generate spatiotemporal

light bullet [50] or optical vortex [51].

Quadratic Ml was theoretically predicted and studied by P. Ferro & S. Trillo in 1995 [52] [53]
as a phase modulation effect. The proper calculation of Ml on top of FF and SH exchanging
energy has been solved in 1997 by S. Trillo and S. Wabnitz [54]. The same year [55], Fuerst et
al. launched an elliptic pump beam through a crystal; while the ellipticity ratio was of 1:8 (1D
configuration), they observed a perfectly round soliton at the output of the nonlinear material.
The same year, they observed that, while increasing further the pump power, the single
soliton split into a regular range of solitons, and their number increased with the pump power
[38]. This multiple solitons generation was analyzed further and Fuerst et al. [38] made the
following conclusion: the spatial solitons array analyzed in the previous paper were the result
of a spatial MI, generated by noise in a quadratic nonlinearity material. In this way, Fuerst et

(2)

al. [38] experimentally observed for the first time 1D Ml in ' susceptibility materials. All of

these 1D experiments were realized in bulk crystals, and one must wait 2001 to see the Ml

experiments in quasi-phase-matching conditions, led by J.F. Corney and O. Bang [56].

The first Ml in both transverse dimensions (2D MI) was experimentally observed by M. Delqué
et al. in 2011 [57]. In order to obtain such results, they launched a 500 um-wide large
collimated beam into a KTP crystal, and observed at high power the beam breakup into an
important number of self-focused light spots after propagation in the crystal (Figure 24-(a,c)).
They analyzed the spatial spectrum of this light pattern, and observed in Fourier domain a sum
of symmetrical rings at low frequencies, with a symmetry disappearance at higher frequencies
(Figure 24-(b,d)). This particular spectral behavior confirmed that the beam breakup into a

solitons pattern observed in both transversal dimensions was initiated by 2D MI.

It is also important to note that F. Baronio predicted the existence of the Peregrine soliton and

the Akhmediev breathers in quadratic materials on Ml background [58]. Two years later, R.
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(2)

Schiek and F. Baronio showed experimental spatial 1D Akhmediev breathers in Y media

[59].
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Figure 24: 2D Ml observed by M. Delqué et al. [57]. (a)-Experimental results (10 MW peak power) and (b)-
Corresponding spatial spectrum. (c)-Simulation (10 MW peak power) and (d)-Corresponding spatial

spectrum.

I1.3.4. Walk-off compensation
Since the very early experiments on quadratic soliton, led by Torner et al. in 1995 [60], it is
well known that spatial walk-off occurring in birefringent crystals has an important impact on

these types of solitons.

The walk-off effect was compensated in 1995 by Torruellas et al. [28], using soliton generation.
Later, the same author observed a soliton switching at the output face of a KTP type Il crystal,
by controlling the imbalance of the pump components, between the e and o axes (see Figure
25) [63]. In 1998, Schiek et al. [31] showed how the spatial walk-off varies upon the input
angles and material temperature, in a 1D spatial soliton experiment. This soliton displacement
came in parallel to the SH displacement when the FF pump energy balance between the crystal

neutral axes was inversed.

L. Torner et al. proved the existence of walking solitons [61], by demonstrating that special
solutions of stationary solitons could exist with walk-off or group velocity difference between
all the waves involved in cascading effect. By controlling these parameters, they managed to
cancel the mutual trapping effect between SH and FF waves in cascading effect process, for
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some specific propagation length values, allowing the transversal displacement, or the time

delay of the stationary solitons after propagating in the quadratic nonlinearity material. Figure

26 shows the spatial walking soliton results by L. Torner et al. [40]. In these experiments, light

was injected in the crystal with specific tilt values to control the trapping between the FF (w)

and the SH (2w) waves. Torner’s research on quadratic walking solitons followed previous

works led by J.M. Soto-Crespo et al. [62] on walking solitons in highly birefringent optical

fibers.
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Figure 26: A quadratic spatial walking soliton by Torner et al. [40]. (a)-Without injection tilt. (b)-With
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Figure 25: Soliton spatial switching obtained by Torruellas et al. [63]. They launched a 20 GW/cm? pump
into a 1 cm KTP crystal. The solid curve shows the output light transmission at the fundamental frequency

through a 30 um aperture (numerical analysis), function of the imbalance between e and o crystal neutral
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Conclusion - Chapter II

In this chapter, | illustrated the process of three-wave mixing in quadratic crystals, and the

different methods to optimize SHG by using type |, type Il, or type 0 phase matching processes.

| also summarized some of the most salient experiments on quadratic solitons and explained
the mechanism of self-trapped beam in the case of cascading regime, which occurs at phase
mismatch conditions. | summarized the results published on quadratic Ml and underlined the

spatial walk-off compensation in bicolor soliton experiments.

In the following part of the manuscript, | present some examples of ephemeral 2D self-
trapping in KTP crystal, which leads to the appearance and disappearance of a 2D quadratic

soliton.
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Chapter III. Quadratic spatial extreme event

In this chapter, | will discuss the experimental observation of a transient spatiotemporal self-
trapping in quadratic crystal that is able to generate several interesting effects such as the
guadratic solitons, the beam breaking up to the formation of a nonlinearity induced speckle,

and the spectral broadening to a supercontinuum generation.

To introduce some novelty with respect to the large literature already published in this field,
| decided to excite the quadratic crystal with a large collimated beam, changing the input
pump intensity and polarization, and the crystal phase mismatch. | also considered few
different types of crystals in order to experiment with two different schemes to obtain SHG,

known as type Il and type O.

II1.1. Experimental setup and crystal phase matching conditions

II1.1.1. Measurements setup
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Figure 27: Schematic of the experimental setup for beam spatial studies.
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In the following experiments, a Q-switched mode-locked Nd:YAG laser (EKSPLA PL2250 series),
delivering 30 ps pulse at a central wavelength of 1064 nm and a 10 Hz repetition rate, has
been used to excite some samples of quadratic crystals. The output of the laser was back-
reflection protected by means of an isolator (A) and sent in a half-wave plate and a
polarization beam splitter to control the light intensity (B). | reduced the diameter of the initial
Gaussian beam by using an afocal system composed by two lenses with 500 mm and 150 mm
focal length respectively (C). The orientation of the linear input State Of Polarization (SOP) of
the infrared beam is controlled by a half-wave plate (D). The beam is then injected in the
nonlinear crystal. The beam shape at the output of the crystal is spatially characterized by
using an infrared + visible camera. The near-field image of the beam at the KTP crystal output
face is obtained by using a 35 mm converging lens (F), and analyzed on a BC106N-VIS CCD
Thorlabs camera, with a magnification of 4.6. | used the same setup to analyze the near-field
image of the beam at the PPLN output face: in that case, the corresponding magnification was
8.4. To measure the far field, | introduced another converging lens (G) of 100 mm of focal

length.

An autocorrelator and an optical spectrum analyzer can replace the infrared camera to allow

the output beam characterization in the temporal and spectral domains.

| used two types of quadratic crystals. The first one is a type |l phase matching KTP crystal,
manufactured by CASTECH. The crystal was 30 mm long, 8 mm thick, and 8 mm wide. |
controlled the phase matching conditions by rotating the crystal within two axes (one vertical
and one horizontal) by using a Newport gimbal optic mount (maximum resolution of 0.05°).
Thanks to the initial cut of the crystal (8 = 90°, ® = 23.5°), the phase matching position (AkL =
0) is obtained by coupling the beam perpendicularly to the input crystal face. The maximum
of SHG is obtained for a SOP of 45° between ordinary and extraordinary neutral axes

directions.

The nonlinear coefficient des of the KTP is equal to 3.5 pm/V. The relative spatial walk-off
between the waves, involved in the three-wave mixing process, is equal to 3.48 mrad between
the e-polarized FF and the o-polarized FF, and equal to 4.88 mrad between the e-polarized SH
and the o-polarized FF. These walk-off values are along one transverse axis (the vertical axis),

the walk-off along the other axis is negligible.
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The second crystal type was a PPLN ((def = 15 pm/V), manufactured by HCP Photonics
Corporation. The crystal dimensions are 15 mm long, 1 mm thick, and 2 mm wide. The periodic
inversion of the ferroelectric domains has a period Appin=6.97 um (at 60 °C). The phase
matching conditions are controlled by heating the crystal in an oven. The exact phase
matching is obtained at 60°C, with a beam polarization orientation parallel to the

extraordinary axis of the PPLN.

Because of its short length (15 mm) and thickness (1 mm), the PPLN crystal is excited with a
collimated beam of 200 um of diameter (1/e? in intensity) and by means of a 200 mm
converging lens (E’). In these conditions, the Fresnel length associated to the incident beam is
6.5 cm, considering the linear refractive index of the crystal. For the KTP crystal, the input
beam diameter is set at 400 um by using a converging lens with 100 mm of focal length (E).

The Fresnel length was in that case close to 20 cm.

For the KTP and the PPLN crystals, the diffraction length at 1064 nm was much longer than
the physical length of the crystal itself. Thus, no diffraction effect was obtained for a linear
propagation along the crystal. These initial conditions are far from the ones commonly used
to generate solitons, where the Fresnel length of the input beam is 2 to 6 times shorter than

the crystal length [3].

After propagation in the crystal, the SH beam at 532 nm can be selected by means of band-

pass filters with +/- 3 nm or +/- 10 nm of bandwidth.

II1.1.2. Crystal phase matching

In order to properly analyze my results, it is important to know the efficiency of SHG upon the
phase mismatch Ak, i. e. as a function of the crystal orientation for type Il KTP and as a function
of the temperature for PPLN. | obtained two curves for the KTP crystal, one for a crystal
orientation in the horizontal plan and one within the vertical one (Figure 28-(a)). In the
experiments, | always tuned the phase matching conditions by modifying the fastest axis
(along the angle ®). The maximum precision achievable to control the angle orientation (to
manage the phase matching conditions) is 0.05 ° for the KTP and 0.4 °C for the PPLN (according
to the oven datasheet —a CHAUVIN ARNOUX STATOP-4849).
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For the KTP crystal, a phase mismatch (AkL) of m is obtained for a A® = 0.2° (calculated
between two zeros of the sinc shaped SHG curve). For the PPLN, the number of samples of
SHG versus temperature is not enough to give a precise value of AkL. This fact is due to the

poor precision of the oven temperature controller | used to heat the PPLN.
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Figure 28: Phase matching curve for: (a)-KTP crystal within horizontal (8) and vertical (D) axis orientation,

(b)-PPLN, by modifying the crystal temperature.

II1.2. 2D spatial extreme event observation in KTP crystal

In nonlinear optics, the demonstration of a particular propagation is strongly dependent of
the initial excitation conditions. | remind you that the excitation of the KTP crystal is
implemented with a linear polarized Gaussian beam with 400 um of diameter (measured at
1/e?in intensity). Thus, the incident beam remains collimated all along the propagation in the

crystal for a linear regime of excitation i. e. with low input intensity.

For an excitation at ~ 45° with respect to the principal axes of the crystal, the initially FF beam
is separated in two components (because of the birefringence) and one SH beam is generated

because of the SHG.

Thus, spatial and temporal walk-offs occur in the crystal and each component (two FF, one

SH) is progressively separated from each other in time and in space. | estimated that the
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spatial separation along the y-axis is close to 100 um between the FF beams and 145 pm
between the SH beam and the FF ordinary component (see Figure 29). In the temporal
domain, the maximum time delay is obtained for the SH with 4 ps, which is negligible in my

case for an input pulse duration of 30 ps.

Figure 29: Beams representation at the output face of the type Il KTP crystal for a nonlinear propagation

regime.

In the nonlinear regime i. e. by increasing the input intensity up to 0.1 GW/cm? at exact phase
matching, a first self-focusing effect is observed out of the crystal, at the FF, due to the

nonlinear interactions between the three waves.

The beam diameter in intensity (1/e?) of the self-trapped beam gets close to 50 um, which is
8 times smaller than the injected FF beam. In the most favorable conditions, the energy
located in this self-trapped beam is close to 3% of the total output energy. Its peak intensity

is about 2.4 higher than the peak intensity of the unfocused output beam (see Figure 30-(a)).

Its output position is located on the SH beam position, off center with respect to the FF
because of the spatial walk-off. It is also important to note that the trapped beam is composed
by the three involved waves, i. e. of two FF beams and the SH, with walk-offs compensation

because of the nonlinear trapping (see Figure 30-(b)).

Moreover, the SH beam exhibits several modulations beyond the self-trapped event (see

Figure 32).
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Figure 30: Output spatial beam self-trapping in KTP, for an injected pump intensity of 0.5 GW/cm?. (a)-3D
view of FF beam, and transverse beam profile of the FF (red inset). (b)-2D representation of the FF and SH

beams (SOP set close to 45°, Ak = 0). The round inset image has the same scale than the square image.

At this stage, this self-trapped beam seems to behave like a soliton even if the initial conditions
were different from the ones used by Torruellas et al. in their experiment [3]. In my case, |
first obtained a quadratic self-focusing process followed by a solitonic propagation, which
maintains unchanged the shape along the nonlinear propagation (diffraction is affecting the

newly focused beam due to its very small size, compared to the large unfocused pump).

We can also underline that, in 1997, R. A. Fuerst et al. [4] observed that spontaneous self-
focusing could appear on a large beam in 1D only, giving birth to quadratic solitons. They
explained this spontaneous appearance by an instability of modulation in quadratic media
(see also quadratic Ml observations by P. Pliszka in 1993 [5], S. Trillo in 1995 [6], J.F. Corney
and O. Bangin 2001 [7] and R. Schiek in 2001 [8]). It is also important to note that in 2011 M.
Delqué et al. [9] published the observation of spontaneous spatial 2D Ml in SHG scheme,

allowing the soliton excitation (for their results, see Figure 24 on paragraph 11.3.3).
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II1.2.1. Evolution of the self-trapped beam versus the input peak power: transient
rogue dynamics

In a second step, | varied the input peak power from 0.01 to 12 GW/cm? and | studied the
spatial evolution of the output beam at the FF and at the SH. My results are shown on the

Figure 31 for the FF beam and on Figure 32 for the SH beam.
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