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"Did you ever stop to notice

This crying Earth, these weeping shores? [...]

What about crying whales? [...] We’re ravaging the seas [...]

What about forest trails? [...] Burnt despite our pleas [...]

What about nature’s worth? [...] It’s our planet’s womb [...]"

Michael JACKSON (1958− 2009), Earth song
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Abstracts

Abstract: The optimal management of renewable common pool resources (ground-

water, forests, �sheries, etc.) is a major concern for political and economic debates,

and is a major issue for current and future decades. To take into account the perpetual

evolution of renewable common pool resources, economists are increasingly relying

on dynamic models. These models o�er not only the possibility to analyze the be-

haviors of resource users, but also to propose suitable methods to e�ciently manage

renewable common pool resources. These models make it possible to de�ne di�erent

trajectories according to the exploitation behavior of users. Thus, they o�er a realistic

and adequate framework for proposing suitable economic instruments, which aims at

the e�cient management of common pool renewable resources. Moreover, behavioral

and experimental economics have shown that compliance to social norms and ethical

considerations are an integral part of the individual’s decision-making process, cre-

ating a trade-o� between costs and bene�ts when their decisions are related to the

environment.

The purpose of this thesis is �rst to analyze and test in a dynamic laboratory setting

in continuous time, the exploitation decisions of common pool renewable resources

users. Secondly, it aims to propose policy instruments to encourage the adoption of

behavior more respectful of the resources used. Chapter 1 reviews the dynamic re-

source extraction models that have been tested in the laboratory. This review of the

literature shows that the use of discrete time is predominant. Chapter 2 presents a

continuous time experiment in which the resource is �rst exploited by a single agent,

then by two agents simultaneously. This allows us to �rst identify the individual pro-

�les of subjects when they are alone to exploit the resource, and then to see how these

pro�les evolve in the presence of strategic interaction. Chapter 3 compares the labo-

ratory results of the continuous time model and its discrete approximation. It appears

that continuous time induce more cooperation than discrete time when several users

v
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simultaneously exploit the same resource. Finally, Chapter 4 studies in continuous

time the impact of a non-monetary policy of the "nudge" type, which aims to help re-

source users adopt socially optimal behavior. To do this, we compared a descriptive

social norm to an injunctive social norm and found greater e�ciency in the injunctive

nudge. However, the results remain quite mixed between the two types of nudges.

Keywords: Common Pool Resources; Dynamic Games; Experimental Economics; Be-

havioral Economics; Nudges

Codes JEL : C01; C73; C92; Q20; Q58

Résumé : La gestion optimale des ressources communes renouvelables (eaux souter-

raines, forêts, stocks de poissons, etc.) est au cœur des préoccupations politiques et

économiques et constitue un enjeux majeur pour les décennies en cours et à venir.

Pour tenir compte du caractère évolutif de ces ressources, les économistes s’appuient

de plus en plus sur des modèles dynamiques. Ces modèles permettent de dé�nir di�é-

rentes trajectoires selon les comportements d’exploitation des utilisateurs. Ils o�rent

ainsi un cadre réaliste et adéquat pour proposer des instruments économiques adap-

tés, ayant pour �nalité une gestion e�cace des ressources communes renouvelables.

Par ailleurs, l’économie comportementale et expérimentale ont montré que le confor-

misme aux normes sociales et les considérations éthiques font partie intégrante du

processus de décision de l’individu, créant de ce fait un compromis entre coûts et bé-

né�ces lorsque leurs décisions sont liées á l’environnement.

L’objectif de cette thèse est dans un premier temps d’analyser et de tester en la-

boratoire dans un cadre dynamique en temps continu, les décisions d’exploitation des

utilisateurs de ressources communes renouvelables. Dans un second temps, elle vise à

proposer des instruments de politiques, pour favoriser l’adoption de comportements

plus respectueux des ressources utilisées. Le Chapitre 1 passe en revue les modèles

dynamiques d’extraction de ressource qui ont été testés en laboratoire. Cette revue de

la littérature fait ressortir que l’utilisation du temps discret est prédominante. Le Cha-

pitre 2 présente une expérience en temps continu dans laquelle la ressource est d’abord

exploitée par un seul agent, puis par deux agents simultanément. Cela permet d’iden-

ti�er tout d’abord les pro�ls individuels des sujets lorsqu’ils sont seuls à exploiter la

ressource, puis de voir comment ces pro�ls évoluent en présence d’interaction straté-

gique. Le Chapitre 3 compare les résultats testés en laboratoire, du modèle en temps



vii

continu et son approximation discrète. Il ressort que le temps continu suscite davantage

de coopération que le temps discret lorsque plusieurs utilisateurs exploitent simulta-

nément la même ressource. En�n le Chapitre 4 étudie en temps continu, l’impact d’une

politique non-monétaire de type "nudge" dont l’objectif est d’aider les utilisateurs de

ressources à adopter un comportement socialement optimal. Pour cela, nous avons

comparé une norme sociale descriptive à une norme sociale injonctive et avons trouvé

une e�cacité plus grande dans le nudge injonctif. Toutefois, les résultats restent assez

mitigés entre les deux types de nudges.

Mots-clés :Ressources Communes ; Jeux Dynamiques ; Économie Expérimentale ; Éco-

nomie Comportementale ; Nudges

Codes JEL : C01 ; C73 ; C92 ; Q20 ; Q58
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General Introduction

Faced with the multiple environmental disturbances observed over the last few decades

(extreme weather events, famine), we are witnessing an awareness for environmental

preservation. Indeed, in their study of 2002, Rose stated that given the impact of human

activity in all environmental dimensions, to re�ect primarily on the question of human

social organization as a whole, would allow to protect the environment. Environmental

preservation is one of the three components of sustainable development and one of the

eight goals set out in the United Nations Millennium Summit Declaration. In this sense

and in order to encourage more environmentally friendly behaviors, the international

community has formulated restrictive environmental policies through a number of

conferences. An example is the Conference of the Parties (COP) on climate change,

with the Cop 21 which allowed the signing of the Paris Agreement in 2015, the goal

of which is to limit global warming to less than two degrees Celsius.

Renewable common pool resources (CPRs), such as forests, groundwater, �sh stocks,

etc., are among the environmental goods to be protected. Their speci�city is that they

are rivalrous and non-excludable, and thus subject to over-exploitation. In order to

avoid what Hardin (1968) has called the "Tragedy of the Commons", it is therefore

essential that these resources be managed e�ciently. This thesis is part of that frame-

work. More speci�cally, it aims to understand the decision-making processes of re-

source users, with the goal of learning lessons that will help preserve resources. Com-

mon pool resource management is a discipline of particular interest to economics. A

number of scienti�c studies in this �eld were initially conducted within a static frame-

work, which does not always take into account all the changes in the environment

1
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in which people make their decisions. It is only in the 1970s that a transition towards

more realistic dynamic models took place, with the use of dynamic programming, game

theory and equilibrium analysis, to solve the problems of individual decision-making.

Moreover, experimental and behavioral economics allowed economics to progres-

sively question a certain number of assumptions, notably on homo œconomicus, who

are considered to be perfectly rational, sel�sh individuals, placing their happiness

above that of others and wanting to impose themselves on others. It has also en-

abled economics to revise the foundations of what motivates individuals to make de-

cisions. This has led to the integration of new dimensions into economic models, such

as aversion to inequality, emotions, ethics, social norms, etc., thus mobilizing multidis-

ciplinary knowledge from psychology, sociology and even neuroscience. It is in this

sense that this thesis will rely on modeling, experimentation and analysis of behaviors

observed in the laboratory.

The purose of this thesis is to start from a dynamic framework, more realistic than

the static one, to analyze the decision-making of common pool resources users and to

ultimately induce in them, more pro-environmental behaviors. The idea is therefore to

test in the laboratory whether, in this dynamic framework in continuous time, individ-

uals are able to identify the optimal theoretical trajectory, i.e. the one that preserves

the resource over the long term. However, testing in the laboratory a dynamic model

in continuous time over an in�nite horizon, raises a number of methodological and

practical questions, such as the choice between continuous and discrete time (for the

laboratory representation of the continuous time model), between �nite and in�nite

horizon, but also whether or not to take into account the strategic interactions between

resource users.

In Chapter 1, we collect and structure scienti�c work that has focused on the man-

agement of dynamic renewable common pool resources in the laboratory. It appears

from this review of the literature that very few studies are carried out in continuous

time. Moreover, some studies use a theoretical model in continuous time, while the ex-

periments are performed in discrete time. Finally, among the continuous time papers,

many of them implement continuous time in the laboratory by means of extensive

form models and are therefore quali�ed as "quasi-continuous" articles.

One of the conclusions of Chapter 1 is that very few studies have tested in the lab-
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oratory a dynamic model in continuous time, allowing the collection of data to under-

stand the decisions of individuals in this context, even though it is close to the reality

of the evolution of a renewable resource. Chapter 2 has thus a threefold objective:

(i) develop a dynamic model in continuous time over an in�nite horizon, which gives

clear predictions and remains fairly simple to implement in the laboratory, (ii) design

an experimental protocol which is as faithful as possible to the theoretical model, and

(iii) develop an approach for the analysis of the collected data. The theoretical bench-

marks used to rank the subjects in the experiment are social optimum, feedback and

myopic. Indeed, myopic individuals maximize their individual payo�s over the short

term, while those adopting a feedback behavior maximize their individual payo�s over

the long term. Finally, the social optimum refers to a situation in which individuals

jointly maximize their payo�s over the long term. Besides these rather methodolog-

ical aspects, the research question addressed is: (i) how do individuals behave in a

dynamic environment compared to theoretical benchmarks? (ii) what is the impact of

strategic interaction in this context? The experiment was carried out using a "within-

subject design". This means that the same players took part in the di�erent treatments

constituting the experiment. This allows us to �rst identify the individual pro�les of

the subjects when they are alone to exploit the resource, then to see how these pro-

�les evolve in the presence of strategic interaction. In this chapter and all those that

follow, we have chosen to carry out our investigations over a in�nite horizon, because

we believe that it could be a signal that guarantees the sustainability of the resource,

while reminding its renewable nature. From a theoretical point of view, the in�nite

horizon was chosen to simplify the calculations. In addition to the standard behaviors

predicted by the theory, such as the social optimum, feedback and myopic behavior,

we have determined intermediate behaviors, quali�ed as convergent. These are indi-

viduals who start with myopic behavior, and who slowly converge towards the social

optimum. We also found individuals who underexploit or overexploit the resource, but

in general, the introduction of strategic interaction favors the overexploitation of the

resource.

During the designing of the experimental protocol for Chapter 2, a methodolog-

ical question arose: given the impossibility of implementing continuous time in the

laboratory, what would be the di�erence between continuous time and its discrete ap-
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proximation, and is it possible based on the model, to test the impact of the nature of

time (continuous vs. discrete approximation) on the decisions and trajectories adopted

by individuals? This inspired the realization of Chapter 3. Following an experimental

protocol in between-subject design, i.e. with di�erent individuals for each treatment,

we performed four treatments that combine the nature of time (continuous vs. discrete)

and the presence or the absence of strategic interaction (one player vs. two players).

Our results show that without strategic interaction, the nature of time does not impact

individuals’ decision trajectories. With strategic interaction, however, continuous time

leads to more cooperation between individuals within a group than discrete time.

Having answered the various methodological questions, proposed a classi�cation

of the behaviors observed in the laboratory and found relatively few optimal subjects

in a strategic interaction situation, we were now able to vary the nature of the in-

formation provided to resource users for their decision-making (e.g., the evolution of

costs). We could also look for the type of public policy that would guide more resource

users towards a behavior that is more respectful of the resource used and that pro-

vides them with a greater payo�. This is the purpose of Chapter 4, in which we start

with the continuous time model with several players developed in Chapter 3, while

introducing non-monetary instruments of "nudges" type, which are known for their

e�ciency, but also for their very low implementation cost. According to Thaler &

Sunstein (2009), "nudges" can be de�ned as "... any aspect of the choice architecture that
alters people’s behavior in a predictable way without forbidding any options or signi�-
cantly changing their economic incentives." Among the di�erent categories of "nudges"

that exist, we focused on social norms and compared the e�ects of two types of social

norms: descriptive (what is done) and injunctive (what should be done). We found

mixed results between the two types of nudges. Indeed, the descriptive nudge seems

to give better results in terms of classi�cation of treatments according to the average

level of resources. However, in terms of group classi�cation according to the pro�les

observed in each treatment, the injunctive nudge allows for optimality and ensures

the greatest e�ciency. Moreover, this classi�cation in the nudge treatments seems

consistent with the nature of the information displayed to the experimental subjects.

Thus, this thesis has established a theoretical and methodological framework to study

individual and collective behaviors in a dynamic environment, on a common renew-
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able resource management issue. This framework allows for multiple extensions and

deepenings, notably on the question of public intervention to avoid overexploitation

of the resource.



Introduction Générale

Face aux multiples bouleversements environnementaux observés au cours des dernières

décennies (phénomènes météorologiques extrêmes, famine), nous assistons à une prise

de conscience pour la préservation de l’environnement. En e�et, dans ses travaux de

2002, Rose soutenait qu’étant donné l’impact de l’activité humaine dans toutes les di-

mensions environnementales, ré�échir prioritairement à la question de l’organisation

sociale humaine dans sa globalité, permettrait de protéger l’environnement. La préser-

vation de l’environnement est un des trois piliers du développement durable et un des

huit objectifs énoncés dans la Déclaration du Sommet du Millénaire établie par l’ONU.

Dans ce sens et a�n de susciter chez les agents économiques des comportements plus

respectueux de l’environnement, la communauté internationale a formulé à travers

un certain nombre de conférences, des politiques environnementales restrictives. Un

exemple est donné à travers la Conférence des Parties (COP) sur les changements cli-

matiques, avec la Cop 21 qui a permis la signature de l’Accord de Paris en 2015, dont

l’objectif est de limiter le réchau�ement climatique à moins de deux degrés Celsius.

Les ressources communes renouvelables (CPRs), comme les forêts, les nappes phréa-

tiques, les stocks de poisson, etc. font partie des biens environnementaux à protéger.

Leur particularité est d’être rivales et non-excluables; ce qui les rend sujettes à la sur-

exploitation. A�n d’éviter ce que Hardin (1968) a appelé la "Tragédie des Communs",

il est indispensable que ces ressources soient gérées de manière e�cace. Cette thèse

s’inscrit dans ce cadre. Elle a pour objectif plus spéci�que de comprendre les processus

de décisions des utilisateurs de ressources, dans le but de tirer des leçons qui aideront

à la préservation des ressources. La gestion des ressources communes est une dis-

6
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cipline qui intéresse particulièrement la science économique. La majorité des études

scienti�ques dans ce domaine se sont inscrites dans un premier temps dans un cadre

statique, qui ne prend pas toujours en compte toutes les évolutions de l’environnement

dans lequel les individus prennent leurs décisions. Ce n’est que dans les années 1970

qu’une transition vers l’utilisation de modèles dynamiques plus réalistes s’est opérée,

avec l’utilisation de la programmation dynamique, la théorie des jeux et l’analyse de

l’équilibre, pour résoudre les problèmes de prises de décisions des individus.

Parallèlement, l’économie expérimentale et comportementale a permis à la science

économique de progressivement remettre en cause un certain nombre de postulats,

notamment celui de l’homo œconomicus, un individu parfaitement rationnel, égoïste,

plaçant son bonheur au dessus de celui des autres et voulant s’imposer face à eux. Elle

a aussi permis à la science économique de réviser les fondements de ce qui motive

les individus à prendre leurs décisions. Cela a conduit à l’intégration de nouvelles di-

mensions dans les modèles économiques, telles que l’aversion aux inégalités, les émo-

tions, l’éthique, les normes sociales, etc., mobilisant ainsi des connaissances pluridis-

ciplinaires venant de la psychologie, de la sociologie et même des neurosciences. C’est

dans ce sens que cette thèse va s’appuyer sur la modélisation, l’expérimentation et

l’analyse des comportements observés en laboratoire.

L’objectif de cette thèse est de partir d’un cadre dynamique, plus réaliste que le

cadre statique, a�n d’analyser les prises de décisions des utilisateurs de ressources com-

munes et susciter in �ne chez eux, des comportements plus respectueux des ressources

utilisées. L’idée est donc de tester en laboratoire, si dans ce cadre dynamique en temps

continu, les individus sont en mesure d’identi�er la trajectoire théorique optimale,

c’est-à-dire qui préserve la ressource sur le long terme. Cependant, tester en labora-

toire un modèle dynamique en temps continu sur un horizon in�ni pose un certain

nombre de questions méthodologiques et pratiques telles que le choix entre temps

continu et temps discret (pour la représentation en laboratoire du modèle en temps

continu), entre horizon �ni et horizon in�ni, mais aussi la prise en compte ou pas des

interactions stratégiques entre utilisateurs de ressources.

Dans le Chapitre 1, nous rassemblons et structurons les travaux scienti�ques qui

se sont intéressés à la gestion dynamique des ressources communes renouvelables en

laboratoire. Il ressort de cette revue de la littérature que très peu d’études sont réalisées

en temps continu. De plus, certaines études utilisent un modèle théorique en temps
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continu, alors que les expériences sont réalisées en temps discret. En�n, parmi les ar-

ticles en temps continu, grand nombre d’entre eux implémentent le temps continu en

laboratoire par le biais des modèles sous forme extensive et sont de ce fait quali�és

d’articles "quasi-continus".

L’une des conclusions du Chapitre 1 est que très peu d’études ont testé en lab-

oratoire un modèle dynamique en temps continu, permettant de collecter des don-

nées pour comprendre les décisions des individus dans ce contexte pourtant proche

de la réalité de l’évolution d’une ressource renouvelable. Le Chapitre 2 a donc un

triple objectif : (i) développer un modèle dynamique en temps continu sur un horizon

in�ni, qui donne des prédictions claires et reste su�samment simple à implémenter

en laboratoire, (ii) élaborer un protocole expérimental qui soit le plus �dèle possible

au modèle théorique et (iii) développer une démarche d’analyse des données collec-

tées. Les benchmarks théoriques retenus pour classer les sujets dans l’expérience sont

l’optimum social, le feedback et le myope. En e�et, les individus myopes maximisent

leurs gains individuels sur le court terme, tandis que ceux qui adoptent un comporte-

ment feedback maximisent leurs gains individuels sur le long terme. En�n, l’optimum

social fait référence à une situation dans laquelle les individus maximisent conjointe-

ment leurs gains sur le long terme. En parallèle à ces aspects plutôt méthodologiques,

la question de recherche posée est celle de savoir : (i) comment se comportent les in-

dividus dans un environnement dynamique par rapport aux benchmarks théoriques

? (ii) quel est l’impact de l’interaction stratégique dans ce contexte ? L’expérience a

été réalisée en "within-subject design". C’est-à-dire que les mêmes joueurs ont pris

part aux di�érents traitements constituant l’expérience. Cela permet d’identi�er tout

d’abord les pro�ls individuels des sujets lorsqu’ils sont seuls à exploiter la ressource,

puis de voir comment ces pro�ls évoluent en présence d’interaction stratégique. Dans

ce chapitre et tous ceux qui suivront, le choix a été fait de réaliser nos investigations

sur un horizon in�ni, car nous estimons qu’il pourrait être un signal qui garantit la

soutenabilité de la ressource, tout en rappelant son caractère renouvelable. Du point

de vue de la modélisation, l’horizon in�ni a été retenu à des �ns de simpli�cation de

calculs. En plus des comportements standards prédits par la théorie, tels que l’optimum

social, le comportement feedback et myope, nous avons déterminé des comportements

intermédiaires, quali�és de convergent. Il s’agit d’individus qui commencent avec un
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comportement myope, et qui lentement convergent vers l’optimum social. Nous avons

aussi trouvé des individus qui sous-exploitent ou sur-exploitent la ressource, mais de

façon générale, l’ajout de l’interaction stratégique favorise la sur-exploitation de la

ressource.

Lors de l’élaboration du protocole expérimental du Chapitre 2, une question métho-

dologique s’est posée : étant donné l’impossibilité d’implémenter le temps continu en

laboratoire, quelle serait alors expérimentalement la di�érence entre le temps continu

et son approximation discrète, et est-il possible à partir du modèle construit, de tester

l’impact de la nature du temps (continu vs. approximation discrète) sur les décisions

et les trajectoires adoptées par les individus ? C’est ce qui a inspiré la réalisation du

Chapitre 3. Suivant un protocole expérimental en "between-subject design", c’est-à

dire avec di�érents individus pour chaque traitement, nous avons réalisé quatre traite-

ments qui combinent la nature du temps (continu vs. discret) et la présence ou l’absence

d’interaction stratégique (un joueur vs. deux joueurs). Nos résultats indiquent qu’en

l’absence d’interaction stratégique, la nature du temps n’impacte pas les trajectoires de

décision des individus. Avec l’interaction stratégique par contre, le temps continu con-

duit à davantage de coopération entre les individus au sein d’un groupe que le temps

discret.

Après avoir répondu aux di�érentes questions méthodologiques, proposé une clas-

si�cation des comportements observés en laboratoires et trouvé assez peu d’optimaux

en situation d’interaction stratégique, nous étions maintenant en mesure de faire varier

la nature des informations fournies aux utilisateurs de ressources pour leurs prises de

décisions (par exemple l’évolution des coûts). Nous pouvions aussi rechercher le type

de politique publique qui permettrait de guider davantage d’utilisateurs de ressources

vers un comportement plus respectueux de la ressource utilisée et qui leur procure un

gain plus important. C’est l’objet du Chapitre 4, dans lequel nous partons du modèle

en temps continu avec plusieurs joueurs développé dans le Chapitre 3, tout en intro-

duisant des instruments non monétaires de type "nudges", réputés pour leur e�cacité,

mais aussi leur faible coût d’implémentation. Les "nudges" se dé�nissent selon Thaler

& Sunstein (2009) comme "...tout aspect de l’architecture de choix quimodi�e le comporte-
ment des gens de manière prévisible sans interdire aucune option ou changer de manière
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signi�cative leurs incitations économiques." Parmi les di�érentes catégories de "nudges"

existantes, nous avons choisi de nous concentrer sur les normes sociales et de comparer

les e�ets de deux types de normes sociales : descriptives (ce qui est fait) et injonctives

(ce qui devrait être fait). Nous avons trouvé des résultats assez mitigés entre les deux

types de nudges. En e�et, le nudge descriptif semble donner de meilleurs résultats en

terme classi�cation des traitements selon le niveau moyen de ressource. Cependant en

terme de classi�cation des groupes selon les pro�ls observés dans chaque traitement,

le nudge injonctif permet d’avoir des optimaux et assure l’e�cacité la plus grande. De

plus, cette classi�cation dans les traitements nudges semble consistante avec la na-

ture de l’information présentée aux sujets expérimentaux. Ainsi, cette thèse a posé

un cadre théorique et méthodologique pour étudier les comportements individuels et

collectifs dans un environnement dynamique, sur une problématique de gestion de

ressource commune renouvelable. Ce cadre permet de multiples extensions et appro-

fondissements, notamment sur la question de l’intervention publique pour éviter la

sur-exploitation de la ressource.



Chapter 1

A Survey on Dynamic Common Pool
Resources: Theory and Experiment

Abstract:
Keywords: Common Pool Resources; Dynamic games; Experimental Economics

Codes JEL :
This paper provides a survey on the literature using dynamic games to analyse

the decision-making processes of common pool resource (CPR) users. The purpose

of this paper is to emphasize the implementation of dynamic games in laboratory ex-

periments. In this way, we focus on articles presenting both a theoretical model with

experiments, by making a distinction between continuous time and discrete time. We

also examined the econometric tools used to analyse experimental data.

Résumé :
Mots-clés : Ressources Communes ; Jeux Dynamiques ; Économie Expérimentale

Codes JEL :
Cet article présente un aperçu de la littérature utilisant les jeux dynamiques pour

analyser les processus de prises de décisions des utilisateurs de ressources communes

(CPR). L’objectif est de mettre en évidence l’implémentation des jeux dynamiques dans

les expériences de laboratoire. Ainsi, nous mettons l’accent sur les articles présentant à

la fois un modèle théorique avec des expériences, en faisant la distinction entre temps

continu et temps discret. Nous avons également examiné les outils économétriques

utilisés pour analyser les données expérimentales.
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1.1 Introduction

The issue of common pool resource (water, �sheries, forestry, pastures, etc) manage-

ment remains a practical concern, since without regulation, they are the locus of the

"Tragedy of the Commons" (Hardin, 1968). In other words, common pool resource users

are faced with dilemmas which can lead to a severe overexploitation when they are not

solved, and even to the destruction of the resource. Without rules, resource users will

engage in a race for its use (Janssen & Ostrom, 2006). Thus, in 1970′s, a transition from

a static framework to a more realistic dynamic framework took place in studies dealing

with the management of common pool resources (CPRs), with authors like Dasgupta

& Heal (1979); Gisser & Sanchez (1980); Clark (1990); Basar & Olsder (1999); Dockner

et al. (2000); Haurie & Zaccour (2005); Engwerda (2005); Van Long (2010). Moreover,

experimental economics is a powerful tool used to test theoretical models, and have

with cognitive and social psychology challenged the rationality of individuals, leading

to consider the in�uence of social interactions and the role of emotions in people’s ra-

tional decision-making (Carlsson & Johansson-Stenman, 2012; Croson & Treich, 2014).

While there is an extensive theoretical literature on dynamic common pool resource

management, the literature combining theory and experiments on dynamic CPRs is

very scarce, with some of the studies using continuous time, others using discrete time

and others again making a mix of both continuous and discrete time. Notice however

that a continuous time model has di�erent predictions from a discrete time model,

except if the latter is a discretization of the continuous time model.

This review aims to shed some light on how dynamic games are implemented in

laboratory, especially continuous time, since implementing continuous time is very

recent and challenging. Hence, we are particularly interested in how experimental ins-

tructions were presented to subjects, the di�erent time horizons (�nite vs. in�nite), as

well as the methods used to analyze experimental data. The behavioral benchmarks to

which subjects are frequently compared in this survey are the social optimum equili-

brium, the Nash feedback equilibrium and the myopic equilibrium. The social optimum

equilibrium is equivalent to a joint maximization problem. In the Nash feedback equi-

librium, each subject takes into account the dynamics of the resource in his decision

process, but maximises his/her individual payo�. When behaving myopically, a sub-

ject ignores the dynamics of the resource in his decision process. The di�erence with
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Tasneem & Benchekroun (2020) is that we propose a synthesis of the selected articles,

taking care to present models, experiments and results. Moreover, we classify the dif-

ferent articles according to whether they are in continuous time, discrete time or a

mixture of both. Among the continuous time papers, we distinguish those classi�ed as

"quasi-continuous" time papers from those that are "pure" continuous time. The idea is

to allow the reader to have a digest of information that one seeks to identify very qui-

ckly, namely : the research question, the type of model used (continuous or discrete),

the time horizon (�nite or in�nite), the number of participants in the experiment, the

presence or the absence of a framing, the types of analysis, the main results. We have

also taken care to harmonize the notations to facilitate reading between the di�erent

articles and thus simplify comparison between them.
1

Of course, this review is not

exhaustive, as we are particularly interested in articles that combine theory and expe-

rimentation, but it is complementary to that of Tasneem & Benchekroun (2020), and

therefore constitutes a base that can be completed as we go along.

The rest of the paper is organized as follows : Section 2 reviews discrete time ar-

ticles, Section 3 is devoted to continuous time articles, Section 4 presents articles ha-

ving combined continuous and discrete time. Section 5 is devoted to a discussion of

the analysis methods used in the reviewed articles, and the last Section provides some

concluding remarks.

1.2 Discrete Time Models of CPRs

The vast literature combining theory with experimentation in the management of com-

mon pool resources (CPRs) is in discrete time and over a �nite horizon, since laboratory

experiments have been successful in this framework. Discrete time o�ers the oppor-

tunity to experimental agents to make their decisions at the same time. It can also be

assimilate to a repeated game in which a variable evolves over periods, which makes it

easy to implement in the lab. However, repeated games are widely implemented in lab

experimentation. They can be de�ned as static games which are repeated over a given

number of periods without changing the conditions of the game. Repeated games dif-

fer from dynamic discrete time games, in which a state variable evolves over time and

1
See Appendices A.1 of Chapter 1 for a summary of notations.
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a�ects subjects’ decision processes. Hence, the change in the conditions of the game

is speci�c to discrete time, which is also called "supergame" (Pénard, 1998).

1.2.1 Externalities from the Use of CPRs

In the last �ve decades, a growing number of scholars have started to use the theory

of dynamic games to model the dynamic interactions involving in the use of common

pool resources. These interactions create exernalities having mostly a time dependence

structure. Herr et al. (1997) and Mason & Phillips (1997) discuss dynamic and static ex-

ternalities related to costs in the use of CPRs, while Gardner et al. (1997) distinguish

three kinds of dynamic externalities occuring in the use of groundwater : a strategic

externality, that appears because the use of groundwater via ownership creates de-

pletion ; a congestion externality, that is due to the short distance between the wells

allowing to pump groundwater, and creates a loss in e�ciency. The last externality

is a stock externality, occuring because the use of water by an individual reduces the

available amount for others, thus increasing their pumping costs.

Herr et al. (1997) investigate the e�ects on agents behaviors, of two types of ex-

ternalities (static and dynamic) resulting from the use of a common non-renewable

resource assimilated to a groundwater bassin. Time independent or static externalities

are situations in which the current extraction of an agent leads only to an increase

of the current extraction costs of other agents, whereas time dependent or dynamic

externalities involve both an increase in current and future extraction costs of others.

Supposing no discount rate, they used a linear quadratic �nite horizon model where

n agents share an access to a groundwater bassin. Each agent i has to maximize his

net bene�t function, which is the di�erence between the bene�t function (Bit) and

the cost function (Cit), under the dynamics of the marginal cost (ct). The net bene�t

depends on the agent’s extraction, xit, at period t and the total group extraction Xt.

The authors have de�ned three benchmark solutions that are the social optimum, the

Nash feedback equilibrium and the myopic solution.

For time independent externalities, the marginal cost as well as the depth to water

are reset to their initial values at each period, so that ct = c. It is a static game repea-

ted over T periods where in each period, the Nash equilibrium for multiple players is
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obtained by maximizing equation (1.1). For time dependent externalities however, the

marginal cost is linearly increasing by k as the depth to water becomes high, so that

the Nash feedback equilibrium for multiple players is given by maximizing equation

(1.1) in each period, subject to equation (1.2) :

max
T∑
t=0

Benefit︷ ︸︸ ︷
axit − bx2it−xit(ct + kXt/2)︸ ︷︷ ︸

Cost

, (1.1)

s.t ct+1 = ct + kXt. (1.2)

The authors ran eight experimental sessions of a non contextualized experiment.

These sessions involved �ve treatments : three time independent and two time de-

pendent, and lasted about an hour and a half each. In each experimental session, the

authors ran two training phases followed by two experiment phases called "series".

When the treatment involved a time independent setting, an experiment phase consis-

ted of 10 repetitions of a one-shot game where the marginal cost is reset to its original

value each period. However, when the treatment involved a time dependent setting,

an experiment phase consisted of a single 10 periods game where the marginal cost

is linearly increasing over periods. In this case, it was possible that the phase stopped

before the 10th period, when the cost of the base token became so higher that positive

pro�ts disappeared. In each experimental session, groups of two and �ve subjects had

to individually and simultaneously with the other members of the group order entire

values of tokens between a lower bound of zero and an upper bound according to the

parameterization chosen by the authors. The cost incurred by an individual for a given

period depends on both the number of tokens he has ordered and the total number of

tokens ordered by the group. Subjects were given a bene�ts table showing them the

total bene�ts they can individually earn. At each experiment phase, they were also

informed of the total number of tokens ordered by the group, the average cost of a

token and their individual pro�ts. They had the ability to see at any time the results of

previous periods.

The di�erent size of the groups allowed the authors to mesure the level of deple-

tion of the resource. They found high depletion rates in the initial periods, with a large

number of subjects. This initial depletion was higher in dynamic designs. They also
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found by applying a Mean Squared Deviation (MSD) to token orders, that individual

token orders are more closed to the Nash equilibrium than to the social optimum when

considering time independent externalities. However, they found in time dependent

externalities a higher number of myopic subjects, which exacerbates the tragedy of the

commons. The authors �nally found signi�cantly higher payo�s in time independent

externalities compared to those in time dependent externalities.

In line with Herr et al. (1997), Mason & Phillips (1997) were also interested in the

study of static and dynamic externalities from the use of common pool resources. In

their in�nite horizon model, n agents assimilated to �rms share an access to a rene-

wable �shery, so that the authors tried to investigate the e�ect of industry size in the

emergence of cooperation. Static and dynamic externalities are introduced through

costs that are assumed to be additively separable. Each �rm has to maximize his pro�t

πit, which is the di�erence between the bene�t function and the cost function, under

the dynamics of the stock, which evolves according to a logistic growth function. The

pro�t depends on the �rm i’s harvest level, xit, and the industry total harvest level,Xt.

In both the static and the dynamic externalities, the authors computed the Nash and

the social optimum predictions.

For their static cost externalities, the maximization problem is determined by equa-

tion (1.3), where c1 is the static cost externality and c2 is equal to zero. For their dy-

namic cost externalities, using the assumption of symmetry in which each �rm i uses

the same harvest strategy xe(S), the maximization problem described by equation (1.3)

takes into account the dynamics of the stock (1.4), which evolves according to a logistic

growth function, where c2 re�ects the dynamic cost externality and c1 is equal to zero :

max
xit

∞∑
t=0

ρt

 Benefit︷ ︸︸ ︷
P (Xt)xit− [cf + c1(Xt) + c2(St)]xit︸ ︷︷ ︸

Costs

 , (1.3)

s.t St+1 = St +RSt

[
1− St

K

]
−

n∑
i=1

xit, with xt = xe(S). (1.4)

The discount factor is denoted by ρ, cf is �xed costs, R is the intrinsic growth rate
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andK denotes the carrying capacity. The authors assumed that �sh stock is perishable,

so that all the stock (St) of a given period is sold in that period. They also assumed that

�rms’ harvests are strategic substitutes and that the market price P (Xt) in each period

t is an inverse demand function of the harvests. In both the static and the dynamic

externalities, the authors wanted to test the hypothesis that subjects will cooperate

more than in the one-shot Nash prediction.

The authors ran eight experimental sessions involving four treatments of static ex-

ternalities and four treatments of dynamic externalities. The treatments consisted with

industry sizes of two, three, four and �ve �rms, and each treatment lasted from about

an hour and a half to two hours. In each experimental session, the authors ran a trai-

ning phase to make sure that subjects well understood the experimental conditions.

However, in sessions involving dynamic externlities, subjects also had to complete a

question, allowing them to understand how their current harvest decisions a�ect futur

costs. In each period, subjects had to make a harvest decision individually and simul-

taneously with the other members of their �rm. The authors described a payo� table

depending on the number of �rms in the industry, so that it allowed subjects to know

the calculated pro�t for each possible combination of harvest they might collectively

make with their rivals. Each subject was informed of the choices and payo�s of the

other members of his group.

The in�nite horizon was simulated by applying a random termination rule. In this

case, the discount factor can be interpreted as a continuation probability, allowing the

authors to deduce the termination probability which is equal to 0.2. In other words,

after 35 periods of play, the experiment stopped at the end of each period with a proba-

bility of 0.2. While static stock externalites were included in the payo� table given to

subjects, dynamic cost externalities were implemented by giving to subjects a penalty

table. This table provides them information about the adjustment of their payo�s, re-

sulting from each of their choices. They were also given a detailed description of the

link between costs and stock, as well as the current harvest and future stocks. Finally, to

analyze potential extinction in the dynamic cost externality design with large industry

size, the authors ran four supplementary sessions with industry of size �ve.

Using a learning or a partial adjustment model to analyze current harvest deci-

sions, the authors found that subjects learn to adjust their actions over time in both
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the static and dynamic cost externalities.
2

Despite a faster convergence to the steady

state in the dynamic framework than in the static framework, their results suggest hi-

ghest cooperation in static cost externalities than in dynamic cost externalities, where

they found more aggressive behavior. Moreover, they found an optimal industry size

of four in the static treatment (which is larger than the optimal number of �rms in the

Nash prediction), while this number is three in the dynamic treatment (which is equal

to the Nash prediction). They also found little evidence of extinction in the dynamic

cost externalities.

Considering externalities resulting from the use of a non-renewable groundwater,

Gardner et al. (1997) investigate the relationship between groundwater property rights

doctrines and extraction behaviors of the users from 17 states in the American West.
3

They distinguished four property rights doctrines. The absolute ownership doctrine,

in which the owner of the land overlying an aquifer can extract the aquifer without

limitation. The reasonable use doctrine, based on the same principle as the previous

doctrine, except that it takes into account the fact that water can originate from the

property of the neighbors. The correlative rights doctrine, in which landowners over-

lying the aquifer must use it reasonably, as the doctrine imposes an individual quota on

the resource stock. Strategic externalities are suppressed under this doctrine but stock

externalities persist. The last doctrine is the prior appropriation doctrine, which res-

tricts the entrance to new pumpers by protecting reasonable pumping levels of senior

appropriators.

Supposing no discount rate and using a linear quadratic �nite horizon model in

which n users share an access to a groundwater aquifer, each agent i has to maxi-

mize his net bene�t function under the dynamics of the depth to water (dt). Water is

used as an input in agricultural production. The net bene�t function is the di�erence

between the bene�t function (Bit) and the cost function (Cit) and depends on the

agent’s extraction xit, as well as the total group extraction Xt. The authors consider

for their study three property rights that are the absolute ownership doctrine, the prior

2
See section 1.5 for a detailed explaination of the partial adjustment model.

3
The 17 states are Arizona, California, Colorado, Idaho, Kansas, Montana, Nebraska, Nevada, New

Mexico, North Dakota, Oklahoma, Oregon, South Dakota, Texas, Utah, Washington, Wyoming.
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appropriation doctrine and the correlative rights doctrine. Under each doctrine, they

compute the social optimum and the Nash equilibrium. For example in the absolute

ownership doctrine, the social optimum maximization problem is given by equation

(1.5) :

max
n∑
i=1

T∑
t=0

Benefit︷ ︸︸ ︷
axit − bx2it− [(dt + AXt +B)xit]︸ ︷︷ ︸

Cost

, (1.5)

s.t dt+1 = dt −R + s
∑n

i=1 xit,

where a, b, A and B are positives parameters, s is a parameter depending on the size

and the con�guration of the aquifer and R denotes the constant recharge rate, which

is equal to zero. The �nite horizon, the no discount and the no resource recharge are

the restrictive assumptions that the authors have made to simplify the model and the

experiment, and focus sujects’ attention on strategic and stock externalities.

Subjects participated in a non contextualized experiment involving three treat-

ments. Each treatment include a set of three experiment phases. In the �rst two expe-

riment phases, subjects were inexperienced in the decision environment, while the last

experiment phase involved experienced subjects, randomly selected from the group of

inexperienced. The baseline treatment, in which groups of 10 subjects played over

10 periods, illustrates the absolute ownership doctrine where no restriction is made

on pumping levels. The second treatment illustrates the prior appropriation doctrine

in which there is an entry restriction, limiting the number of subjects to groups of

�ve. However, subjects played over 20 periods instead of 10 periods, in order to keep

constant the maximal resource value. The last treatment, in which groups of 10 subjects

played over 10 periods, illustrates the correlative rights doctrine where an individual

stock quota of 25 is imposed. In each period, subjects had to individually and simulta-

neously with the other members of their groups, order entire values of tokens between

a lower bound of zero and an upper bound according to the parameterization chosen

by the authors in each treatment.

They were given the cost of a base token at the �rst period and were informed that

this cost will increase by a given amount for each token ordered by the group, with the

possibility that the experiment stops before the last period, when the token cost is so

high that it no longer allows positive pro�ts. In the baseline treatment, the experiment

stopped after three, two and four periods respectively in the two inexperienced groups
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and the experienced subjects. The experiment stopped after six, �ve and eight periods

in the entry restriction treatment ; and after seven, four and three periods in the stock

quota treatment. After each period, subjects were informed of the total number of

tokens ordered by the group, the token cost for this period, the new cost of base token

for the next period and pro�ts for the current period.
4

In their analyzes, the authors compared the tokens ordered by subjects in the expe-

riment to the theoretical social optimum and Nash feedback token orders. Considering

the �rst decision periods in each treatment, they found under the absolute owner-

ship doctrine (no restriction treatment), higher average token orders than the Nash

feedback prediction. The average token orders under the prior appropriation doctrine

(entry restriction treatment) was also higher than the Nash feedback prediction. Ho-

wever, this number was close to the Nash feedback prediction under the correlative

rights doctrine (stock quota treatment). Analysing e�ciency, the authors also found

that restricting entry and applying a stock quota improve performance.

1.2.2 The Role of Information

From what we saw above, the use of common pool resources generates some externa-

lites among the users, leading to a race for the resource which is intensi�ed by myopic

behavior. However, Gardner et al. (1997) have shown that imposing a quota could miti-

gate this situation. This time, Hey et al. (2009) tried to know how would resource users

behave in the absence of strategic interaction, when they are given di�erent types of

information.

In a single agent �nite horizon model, they investigate the role that information

about the stock and the growth function of a renewable resource can have on agents’

harvesting decisions. Assimilating the resource to a �shery, the authors assume zero

costs with prices normalized to one. Each �sherman has to maximize his extraction xt,

which is the di�erence between the stock before and the stock after extraction, under

the dynamics of the stock, which evolves according to a logistic growth function :

4

• The token cost for an individual is equal to the average cost of the token for this period × the

total number of tokens ordered for this period.

• The new cost of base token is equal to : (1+ the total number of tokens ordered in previous

periods )× the amount of the increase.
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max
T∑
t=0

ρtxt = max
T∑
t=0

xt, (1.6)

s.t St+1 = St − xit +RSt

[
1− St

K

]
, with S0 = K .

The discount factor is denoted by ρ, which is equal to unity. R is the intrinsic growth

factor and K is the carrying capacity. Thus, the optimal solution is the most rapid ap-

proach to the Maximum Sustainable Yield (MSY), with an extinction at the last period.
5

A total number of 121 subjects participated in two experimental sessions of a non

contextualized experiment.
6

These sessions involved four treatments and lasted about

an hour. A �rst treatment with a stock information and an accurate signal about the

number of existing resource units. A second treatment with information on the growth

function and a noisy signal on the number of existing resource units. In other words,

the noisy signal means that the stock was multiplied by a random number pulled from

a uniform distribution. The third treatment is a full information treatment in which

information on both the stock and the growth function were given to subjects. They

received in addition an accurate signal on the existing number of resource units. The

last treatment was a zero information treatment, with a noisy signal on the existing

number of resource units. Unlike other subjects, subjects in the second and the third

treatments were given an on-screen facility, allowing them to anticipate the conse-

quences of their extraction choices before con�rming their decisions.

In each treatment, the authors tried to determine the optimal theoretical strategy.

In all the treatments but the full information treatment, they were not able to derive

optimal strategies. That’s why they numerically de�ned for these treatments, reaso-

nable theoretical strategies which are "prudent" ; i.e. extraction strategies leading to a

pre-mature extinction of the resource are excluded.
7

In each treatment, subjects had

5
the Maximum Sustainable Yield (MSY), is the largest extraction an agent can achieve from a given

stock.

6
The non contextualization was to avoid an emotional bias related to the pity subjects will feel when

confronted with the slaughter of �shs.

7
To provide these prudent benchmarks, the authors used for the �rst treatment, a "hill-climbing

algorithm" to identify the stock level inducing the maximum growth. For the second treatment, they

applied a "Monte-Carlo simulation" on extraction excluding a pre-mature extinction of the resource. In

the zero information treatment, they applied a combination of the two previous methods.
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to decide one hundred times the number of units they wanted to transfer from a �cti-

tuous resource to their savings account, so that a logistic growth function was applied

to the remaining units. The dynamics of the resource was then determined by the re-

maining stock and the initial stock was equal to the carrying capacity K . Subjects had

to exhaust the resource at the last period, but in case of pre-mature exhaustion the

experiment ends instantaneously. However in each treatment, subjects were warned

when they choose an extraction of zero units or when the number of units extracted

exceeds the stock signal.

From the experiment the authors found by applying a binomial test on the distri-

bution of over-harvesters and under-harvesters, that a higher percentage of subjects

under-harvest the resource when they do not receive any information.
8

In terms of be-

havioral patterns, the authors found that subjects tried to control the dynamic system

by holding constant the stock or their extraction level when they received accurate

information on stocks. Furthermore, subjects who received a noisy stock information

had a misperception of feedback, leading them to adopt a pulse extraction by alterning

periods of extraction and periods of non-extraction. This allowed the resource to build

up. Finally with no information, subjects tend to under-exploit the resource because

they misperceive the non-linearity of the growth function. In other words, as subjects

have in mind a linear relationship between the stock and the growth, they believe it

would make sense to let the stock grow and harvest at the end the pro�t maximizing

the stock size (as they think that growth increases with the stock size). For a deeper

understanding of this misperception, see Sterman (1994) and Moxnes (1998).

1.2.3 Taking Into Account Spatial Characteristics

Problems of groundwater allocation have mostly been studied by using relatively simple

models, sometimes to make it easy to understand and sometimes because of the di�-

culties to obtain actual data on puming decisions. These models may mischaracterize

the nature of the predicted resource use by ignoring the possibility for users behaviors

to diverge from social optimum and myopic predictions. However, there is another part

of the literature that in order to overcome the shortcomings of the traditional model,

8
In case of only two categories (here, over-harvesters and under-harvesters), the binomial test allows

the comparison between the observed distribution and the theoretical distribution.
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takes into account the spatial e�ects of groundwater pumping (Gisser & Sanchez, 1980;

Feinerman & Knapp, 1983; Rubio & Casino, 2003). Moreover, even if these studies take

into account the spatial characteristics of groundwater, they �nd a rather paradoxi-

cal result known as the Gisser-Sanchez’s e�ect (GSE). The GSE, discovered by Gisser

& Sanchez (1980), suggests that the social bene�ts of optimal groundwater manage-

ment are insigni�cant, because as the storage capacity of the groundwater increases,

the di�erence between optimal management and private exploitation becomes negli-

gible. This is even more when we consider that the optimal management is not costless.

Suter et al. (2012) analyze the impact of hydrogeologic characteristics of the aquifer

on user’s behavior and pumping rates by using an in�nite time horizon model. They

de�ned and compared two theoretical models that are a traditional bathtub model and a

spatially explicit model, in which the spatial characteristics of the aquifer are taken into

account. n users share a common groundwater and must choose individually at each

period, a pumping rate that maximizes their pro�t, which is the di�erence between

bene�t and costs, taking into account the dynamics of the depth to water dt.

In the bathtub model, the authors assumed that pumping made by a user increases

equally in the next period the depth to water for all the users, while in the spatially

explicit model it is the speci�c hydrogeologic characteristics of the aquifer (transmis-

sivity, storativity, the distance between wells, and time) that determine how the depth

to water is in�uenced by pumping in future periods.
9

In each model they de�ned three

benchmarks that are the social optimum, the Nash feedback and the myopic solution.

The correspondig social optimum problem for the bathtub model is given by equation

(1.7) and by equation (1.8) for the spatially explicit model :

max
n∑
i=1

 ∞∑
t=0

ρt

axit − b

2
x2it︸ ︷︷ ︸

Benefit

−
Costs︷ ︸︸ ︷
c0dtxit


 , (1.7)

9
The main di�erence between the spatially explicit model and the bathtub model is that in the spa-

tially explicit model, the depth to water variable is speci�c to the location and depends on both the

distance of the sequence of pumping occured in all previous periods. Another di�erence between the

two models lies in the memory of the system, meaning that the impact on well j of pumping in well i
in period t is very small in period t+ 1, but larger in later periods.
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s.t dt+1 = dt +

∑n
i=1 xit −R
AS

.

max
n∑
i=1

 ∞∑
t=0

ρt

axit − b

2
x2it︸ ︷︷ ︸

Benefit

−
Costs︷ ︸︸ ︷
c0dtxit


 , (1.8)

s.t dit+1 =
∑t

k=1

∑n
j=1

xik − xjk−1
4πTr

× w(t− k + 1, v(i, j))− (t+ 1)R

AS
.

R is the recharge rate and AS denotes the area time the storativity of the aquifer, ρ

is the discount factor, b is the slope of the demande curve, a is the intercept of the

demande curve, x is the quantity of groundwater pumped, c0 is a cost parameter and

r is the discount rate. v(i, j) is the radial distance between well i and well j, Tr is the

transmissivity and w(t, v) is the well function. Solving the problem by means of the

Hamiltonian and using the approximation of Feinerman & Knapp (1983) the authors

are able to determine the optimal and the Nash feedback quantity of pumping in both

the bathtub and the spatially explicit model.
10

They found similar myopic pumping

levels for the spatially explicit model and the bathtub model. The authors also found

that both in the bathtub and the spatially explicit model, a higher storativity value

leads to the reduction of the overall e�ect of pumping on the future depth to water.
11

In addition, the ratio of private to external costs increases with higher strorativity

values when transmissivity is low, and vice-versa.

A total number of 96 subjects participated in eight experimental sessions involving

four treatments. The �rst treatment denoted Bathtub, illustrates a common bathub

model. The second treatment denoted Spatial 1, illustrates a spatially explicit model

with a low storativity. The third treatment denoted Spatial 2, illustrates a spatially

explicit model with a high storativity. The last treatment denoted Individual Bathtub,

illustrates an optimal control treatment in which a single user exploits the groundwater

and where future costs of pumping are entirely private. There is no interaction between

10
This approximation assumes that the costate variable λ is stationary, implying that future pumping

is equal to current pumping. Thus, with λt = λt+1 = λ, the �rst order condition gives λ = nc0xt/(ρ−
1). Substituting it and solving for xt gives the optimal quantity of pumping.

11
The storativity estimates the relation between pumping and its e�ect on the future depth to water,

while transmissivity estimates the distance between wells. A low transmissivity value indicates that

wells are more evenly spaced. When the transmissivity tends to in�nity, the spatially explicit model

converges to the bathtub model.
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subjects in this theatment. The experiment was contextualized to an aquifer commonly

shared by goups of six subjects. The aquifer was divided into six plots in which each

subject has to operate one of the well located in the middle of a plot, in order to make

an individual and anonymous pumping decisions in each period. The authors have

intentionnaly made instructions vague to re�ect the real-life groundwater dynamics

which is not exactly known. Thus, they chose a discount factor and a transmissivity

value that represent real-world cases.

Before the beginning of each session, subjects had to answer several comprehen-

sion questions. An experimental session was divided into a training phase followed by

four experiment phases. After each phase, the groups of six subjects were randomly

matched. The in�nite horizon was simulated by applying a stochastic termination rule.

The discount factor is then interpreted as a continuation probability (85%), allowing

the authors to deduce the termination probability which is equal to 15%. This allo-

wed the authors to �nd an expectation of 6.67 periods per experiment phase. Thus,

the four experiment phases were respectively of six, ten, �ve and seven periods. The

authors derived three predictions including subpredictions for each. The �rst predic-

tion suggests that "di�erences in the hydrogeologic model across treatments lead to

di�erences in pumping" levels. In other words, depending on the treatment, pumping

levels are higher or lower.
12

The second prediction suggests that "di�erences in the hy-

drogeologic model across treatments lead to di�erences in the pumping strategy types

used by participants". This prediction explains that the frequency with which subjects

adopt a behavior (myopic, Nash feedback or optimal) depends on the treatment. The �-

nal prediction suggests that "di�erences in the hydrogeologic model across treatments

lead to di�erences in the observed social e�ciency". In other words, depending on the

treatment, observed social e�ciency is higher or lower.

The authors found support for all their predictions. Regressing pumping levels on

myopic pumping in each treatment to analyse myopic behavior, they found on average

more myopic in the Bathtub than in the Individual Bathtub treatment (single agent).

Even if subjects pump less in the Individual Bathtub treatment on average, they pump

more than the level that maximizes the discounted net bene�ts. The authors also found

12
Here, authors made numerical predictions by regressing in each period the predicted pumping rates

on treatment-speci�c indicator variables and also on the treatment indicators interacted with the period

number.
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on average that subjects’ behavior in the two Spatial treatments are between optimal

and Nash feedback predictions. Furthermore, analysing individual myopic behavior

in each treatment, they found the fewest number of myopic subjects in the Individual

Bathtub treatment. They also found few myopic subjects in the two Spatial treatments,

with a high number of myopic subjects in the Bathtub treatment.
13

With a social e�ciency of 80%, and the resulting e�ciency if all the subjects were

myopic lying in the range of [50% − 80%], results suggest that e�ciency gains from

the management of pumping levels are less su�cient to o�set the cost of implementing

such a policy. This seems to be in line with the Gisser-Sanchez’s e�ect (GSE). While

the authors did not �nd robust results on learning e�ects (resulting from the stochastic

termination rule), they observed a reduction of pumping levels in the third experiment

phase compared to the previous two phases.
14

1.3 Continuous Time Challenges

Another possible way to analyze subjects decisions in the use of common pool re-

sources is to use continuous time, which emphasizes the non stop evolution of CPRs.

Although there is a growing literature on the implementation of continuous time mo-

dels in experiments, it is still quite recent. Few examples of continuous time situations

in real life, with quick interactions can be electricity markets with high-frequency bid-

ding, �nancial markets with high-frequency computerized trading (Bigoni et al., 2015).

We can �nd in the literature two ways of implementing continuous time in lab

experiments : by using extensive form games and by using di�erential games. The �rst

way is in line with Simon & Stinchcombe (1989) who suggested a general model of

games played in continuous time. They considered discrete grids in the time interval

[0, 1) for games with �nite numbers of players and actions. Thus, they obtained under

some technical conditions (for example, keeping uniformly bounded for each player,

the number of strategy switches) in the limit as the grid interval approaches zero, well-

13
While a higher number of myopic subjects was found in the Bathtub treatment, the authors found

on average that subjects in that treatment adopt a Nash feedback behavior. This di�erence in results

can be explained by the fact that the fewest subjects exploiting less than the myopic prediction, allow

the groundwater to grow, leading on average to a Nash feedback behavior.

14
All along their analyses, the authors have clustured standard errors either at participant level or at

group level.
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de�ned games in continuous time. Therefore, articles using this method are quali�ed

as quasi-continuous time articles (Friedman & Oprea, 2012; Oprea et al., 2014; Bigoni

et al., 2015; Leng et al., 2018). The second way is in line with Tasneem et al. (2017, 2019)

who used dynamic models.

1.3.1 "Quasi-continuous" Time Experiments

In this subsection, we provide a short review of quasi-continuous time articles. For

instance, Friedman & Oprea (2012) study a prisoner’s dilemma in a �nite horizon to

mesure the tension between e�cient cooperation and ine�cient defection. In addition

to their continuous time treatment, they implemented a one-shot treatment and a dis-

crete time treatment. They found, using a pairwise Mann-Whitney test on subject’s

median cooperation rates, that continuous time gives the highest level of cooperation.

Cooperation was never apears in the one-shot treatment and was heterogeneous in

the discrete time treatment. Bigoni et al. (2015) also study cooperation in a repeated

prisoner’s dilemma, with di�erent termination rules (deterministic and stochastic time

horizons) and di�erent durations (long and short). They ran two deterministic treat-

ments (long and short durations), two stochastic treatments (long and short durations)

and one deterministic treatment with variable durations across supergames. By ana-

lysing median and mean cooperation rates, they found signi�cantly high cooperation

rates with short duration deterministic time horizon.
15

However, they found similar

cooperation rates with long duration, both for deterministic and stochastic time hori-

zons.

Oprea et al. (2014), in a �nite horizon framework, crossed time protocol (continuous

vs. discrete time) and communication protocol (no communication vs. unrestricted

communication) to get four treatments through which they study subject’s contribu-

tions in a public good game. By analysing median and mean cooperation, they found

higher contributions in continuous than in discrete time. However, the results sugges-

ted that without communication continuous time does not perform better than discrete

time. Similar results have been found by Leng et al. (2018) who studied a minimum ef-

fort game by crossing time protocol (continuous vs. discrete time) and information

15
In long duration treatments, subjects played supergames lasting 60 seconds each ; whereas in short

duration treatments, the supergame lasted 20 seconds.
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feedback (group minimum e�ort level vs. each member of the group e�ort level) to

measure cooperation in a minimum e�ort game, also called a weak-link game.
16

Ana-

lysing the minimum and the average e�ort levels to mesure cooperation, the authors

used a two-sided Mann Whitney rank sum test and found contrary to their expecta-

tions that when the number of subjects become larger, continuous time without com-

munication or an additional feedback information have no signi�cant impact, because

subjects hardly coordinate to increase the group minimum e�ort within a period. They

also found no signi�cant di�erence in the minimum e�ort level between continuous

time and discrete time.

1.3.2 Real Time : A Feature of Continuous Time

In continuous time, interactions among agents are made in real time and imply an

uninterrupted update of information in the lab. Thus, some recent experimental stu-

dies have tryed to introduce more realism (mimic �eld settings) by taking into account

spatial and temporal dimensions in the study of renewable social ecological systems.

For example, Janssen et al. (2010) study the impact of communication and costly pu-

nishment in the governance of a renewable resource assimlate to a 29-by-29 grid of

cells from which subjects have to harvest tokens. The resource dynamics is represented

by the renewal rate, which depends on the density. They mainly found that communi-

cation allows the regeneration of the resource by reducing it’s exploitation. However,

without communication, costly punishment does not allow the increase of the group

payo�.
17

Moreover, Cerutti (2017) revisited the experiment proposed by Janssen et al.

(2010) to study the e�ects on subjects’ behavior, of introducing a spatial representation

of the resource. The author compared the baseline version of the experiment to a blind

version. In the baseline version, the resource is assimilated to a grid of 18 × 18 cells

from which subjects have to harvest tokens. Contrary to Janssen et al. (2010) there

was neither communication nor costly punishment, but a bar representing the current

amount of tokens. In the blind version, only the bar representing the current amount

16
The minimum e�ort game is a coordination game having multiple Pareto-ranked Nash equilibria

and where players coordinate on the less e�cient equilibrium by choosing low e�ort, because of the

high strategic uncertaincy associated with the choice of a high e�ort which leads to the more e�cient

equilibrium. For more detailed information about the minimum e�ort game, see Cartwright (2018).

17
The social optimum equilibrium is consistent with maintaining for most of the decision process a

50% density of token and harvesting at the end of the decision process the remaining tokens.
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of tokens could be seen by subjects. The resource dynamics, represented by the re-

newal rate, depends only on the total amount of tokens in the grid. The main result

was that, contrary to the baseline version, the blind version gives results close to the

social optimum. The authors derive the social optimum equilibrium by simulating the

behavior of ten thousand groups behaving cooperatively. Their �nding was that in the

social optimum, subjects allowed the resource to cover up to 50% before harvesting

above this threshold.

1.3.3 Taking Into Account Strategies in CPRs

This subsection reviews continuous time article using di�erential games. To our know-

ledge, Tasneem et al. (2017) was the �rst article that has tried to implement di�erential

games in the lab. The peculiarity of the articles reviewed here and in the following sub-

section is that the authors analyse agents’ behavior according to Markovian strategies

(state dependent strategies). Tasneem et al. (2017) investigates the choice of extraction

strategies between linear and non linear, resulting from the use of a common renewable

resource assimilated to a �shery. Using a linear quadratic in�nite horizon model, they

consider groups of two identical agents, who individually and simultaneously exploit

the �shery. Assuming zero costs, each agent i has to maximize the present value of his

discounted payo�, which depends only on his extraction rate xi(t), under the dyna-

mics of the stock, which evolves according to a logistic growth function F (S(t)). The

maximization problem is given by equation (1.9) :

max

∫ ∞
0

exp−rt
(
xi(t)−

xi(t)
2

2

)
dt, (1.9)

s.t



˙S(t) = F (S(t))− xi(t)− xj(t),

S(0) = S0,

xi(t) ≥ 0,

with F (S) =


RS for S ≤ Sth,

RSth

(
K − S
K − Sth

)
for S > Sth.
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where r is the discount rate,R is the replenishing rate,RSth denotes the maximum

sustainable yield andK is the carrying capacity. This problem admits a piecewise linear

Markov-perfect equilibrium and also a continuum of nonlinear local Markov-perfect

equilibria which di�ers in terms of the aggressiveness of the resource exploitation.

A total number of 134 subjects participated in nineteen experimental sessions of a

contextualized experiment. Each session lasted about two hours, with groups of two

subjects randomly formed at the beginning of each session and remaining the same

during the session. To make sure that subjects well understand the Markovian envi-

ronment, they had to successed to a test before the beginning of a session, in which

they learned how to manage their extraction rate. The test consisted in choosing an

extraction rate to increase and keep the stock constant at this new level, then in decrea-

sing and holding the stock constant to another level. This was called "constant rate".
18

Subjects were given �fteen tries. They were dissmissed in case of failure and received

ten dollars show up fees. A total of 25 subjects failed this test.

In each experimental session, each subject, assimilated to a �sherman, had to de-

cide in real time and simultaneously with the other member of his group, the speed

at which he wants to harvest a �shery. The authors chose the replenishing rate R,

the discount rate r and the initial stock, so that the time required to reach the steady

state does not exceed four minutes. An experimental session consisted in four training

phases followed by six phases for pay. A phase stops after four minutes, or with a stock

level of zero or after 30 seconds of inactivity because a steady state is supposed to be

reached. Continuous time has been implemented by updating all information every

second and allowing subjects to take their decision at any time by using a graduated

slider from zero to an upper bound, according to the parameterization chosen. Moreo-

ver, the in�nite horizon has been simulated by discounting payo�s over a �xed period

and computing a continuation payo� as if the phase went forever, assuming that the

last extraction rate of the group remains constant. This computation also takes into

account the probability the stock level could drop to zero. After making a decision,

subjects could see the dynamics of the stock in real time, as well as other information

(their extraction rate, the group extraction rate, the time elapsed). At each phase, the

18
Knowing the replenishment rate and using the constant rate, subjects learned how to keep the stock

at a constant level.
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authors set both the starting stock level and the initial extraction rate. They varied

the design according to two dimensions. First, by varying the initial extraction, with

constant initial stock. This allowed them to analyse whether initial conditions a�ect

subjects’ extraction behavior. Second, by keeping constant the strategies resulting from

initial extractions, they ran two treatments with a low initial stock and a high initial

stock.

Analysing their experimental data, the authors found that when focusing on linear

strategies, subjects’s extraction rates reach the best possible steady state. However, ta-

king into account non linear strategies allow them to �nd other possible steady states

including those leading to the exhaustion of the stock. To analyse if a pair reached

a steady state, they used a steady state detection algorithm called MSER-5.
19

By in-

vestigating the e�ects of initial conditions, they found that di�erent initial extraction

rates did not a�ect subjects’ behavior. Furthermore, grouping in each treatment all

the phases for pay and applying a two-sample Kolmogorov-Smirnov test, the authors

found that the steady state total extraction distribution in the second treatment (high

initial stock) contains larger values then that of the �rst treatment (low initial stock).

Finally, to investigate whether subjects’ decision-making are susceptible to be af-

fected by other variables, the authors ran for each phase for pay a subject-by-subject

individual Tobit regression on the general model shown by equation (1.10) :

xt = β0 + β1St + β2(St)
2 + β3xt−1 + β4xother, t−1 + β5t+ et. (1.10)

where xt denotes the current extraction rate of a subject, xt−1 is his lagged extraction

rate, the time in seconds for a decision is denoted by t, xother, t−1 is the lagged extraction

rate of the other subject of the group, et denotes the error term, and St is the current

stock level.
20

They found that half of the strategies condition on time and that about

half of the extraction strategies condition on the extraction rate of the other player

of the group. Their results also shown that a high percentage of the models selected

were non-linear strategies, and that a less but not negligible percentage were "rule-of-

thumb" strategies, which do not depend on the stock level. The rule-of-thumb strategy

19
For more details about the the MSER-5 (Mean Squared Error Reduction ou Marginal Standard Error

Rule) algorithm, see their "Appendix C : Steady state analysis".

20
Authors used the "general-to-speci�c" modeling appoach, consisting in detecting the best model.

See their "Appendix D : General-to-speci�c algorithm" for more details.
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is close to the social optimum equilibrium in the sense that it consists of choosing a

zero or a very low extraction rate, in order to quickly increase the stock to the level

allowing the highest extraction rate.

1.3.4 Sustainability in CPRs

Following Tasneem et al. (2017), Tasneem et al. (2019) investigate a private manage-

ment of a renewable resource. More precisely, they want to know to what extent a

single agent can manage a private �shery in a sustainable and e�cient way. Assu-

ming zero costs, each agent has to maximize the discounted sum of his instantaneous

payo�s, which depends on his extraction rate x(t), taking into account the dynamics

of the stock S(t). Using a linear quadratic in�nite horizon model, the maximization

problem is given by (1.11) :

max
x(t)

∫ ∞
0

exp−rt
(
x(t)− x(t)2

2

)
dt, (1.11)

s.t



˙S(t) = RS(t)− x(t),

S(0) = S0,

x(t) ≥ 0.

where r is the discount rate and R is the replenishing rate. The optimal solution is a

piecewise extraction rate function composed of three regimes. The �rst regime consists

in a null extraction regime allowing the stock to grow. In the second regime, the ex-

traction rate is a linear function of the stock and the last regime is a steady state regime

with the maximum extraction rate.

A total number of 31 subjects participated in three experimental sessions of a

contextualized experiment. Each session lasted about two hours, where each subject

had to decide in real time the speed at which he wants to harvest exclusively a �shery.

The authors chose the discount rate r, the replenishing rate R and the initial stock, so

that the time required to reach the steady state does not exceed two minutes. An expe-

rimental session consisted in ten training phases with the same initial stock, followed
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by twenty phases for pay with di�erent randomly increasing initial stocks whithin the

range of the optimal solution. During a phase, the computer checked whether the stock

would drop to zero or not and computed the discounted sum of future payo�s till in�-

nity. In case of 30 seconds of inactivity, the computer assumes a steady state is reached

and the phase stops. The phase also stops after two minutes, or with a lower stock level

of zero or when the stock reaches its maximum level. The in�nite horizon and conti-

nuous time were also implemented as in Tasneem et al. (2017), with the di�erence that

all the information were updated every half second, which is faster enough to simu-

late continuous time. After making a decision, subjects could see the dynamics of the

stock in real time, as well as other information (their extraction rate, the constant rate,

their instantaneous and cumulative payo�s).
21

The payo� in the experiment depends

on both the quantity of �sh extracted by a subject and the time of the extraction.

Adopting the same procedure as Tasneem et al. (2017) to analyse their experimental

data, the authors, by using the steady state detection algorithm called MSER-5, checked

wether an extraction behavior results in a steady state.
22

To analyse the relationship

between stock and extraction, the authors compared subjects’ extraction behaviors to

the optimal extraction policy. They did it because their design admits a cross-sectional

analysis of initial extraction rates, as they chose their parameters in the range of the

optimal extraction policy. Thus, in their phases for pay, and for nine di�erent half

seconds in time, the authors regressed subjects’ extraction rates on the stock level

according to equation (1.12).

xij = α0 + α1Sij + eij. (1.12)

where i denotes the order of a phase for pay and j denotes the order of a subject (one

up to thirty one). Comparing the regression to the optimal policy, they found that even

below a certain stock level, subjects still tend to extract the resource when they should

not. Investigating whether there was an improvement in subjects extraction behavior,

21
The constant rate is the extraction rate allowing the stock level to be constant. The instantaneous

payo� is a quadratic function of the extraction rate, where the maximum is reached for an extraction

rate of one. The cumulative payo� is the sum of the discounted instantaneous payo�s, obtained by

multiplying instantaneous payo�s by exp−rt
.

22
To compute the MSER-5, the authors do not take into consideration situations involving a minimum

stock of zero or a maximum stock of twenty �ve. For more details about this algorithm, refer to their

Appendix 5 : Identifying Steady States in the Choice Data.
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the authors found that the tradeo� between instantaneous payo� and the future sum

of payo�s created by the discount factor, leads to initial overextraction of the resource

which persists over sessions.
23

They also checked for the model that best describes

the behavior of subjects in the di�erent phases for pay, by estimating a more general

model (1.13) with three subspeci�cations.
24

xt = β0 + β1St + β2(S
2
t ) + β3xt−1 + β4t+ et. (1.13)

The �rst subspeci�cation includes the current stock (St) and the lagged extraction

rate (xt−1). The second subspeci�cation includes the time (t) in half seconds in the �rst

subspeci�cation, while the last subspeci�cation includes the square root of the current

stock (S2
t ) in the �rst subspeci�cation. The results suggested that linear model better

explains extraction rate than non linear model, and that the second subspeci�cation

was the most selected by subjects.

1.4 Mixed Time CPRs Models

As it is obvious from sections 2 and 3, the literature emphasizes the management of

common pool resources either in discrete time or in continuous time. However, a small

but signi�cant part of the literature has studied CPRs by combining continuous and

discrete time for various reasons (Noussair et al., 2015).
25

Most of the time in these

articles, continuous time is used for the theoretical model, while discrete time is used

for the experiment. One of these reasons could be the fact that the implementation of

continuous time in the lab is relatively recent and a bit di�cult, while discrete time is

23
To �nd this result, the authors regressed the di�erence between the initial extraction rate and the

optimal extraction rate, on the order of the phases for pay, by controlling for the stock level and clus-

tering standard errors by subjects. Given the panel structure of the data, there is a correlation between

some observations, hence the necessity to adjust standard errors before any analysis in order to get a

good speci�cation.

24
In each phase for pay, the authors applied a multi-path search general to speci�c model selection

approach to estimate the best-�tting extraction policy. See Their Appendix C : General-to-Speci�c Al-

gorithm, for more details about this approach. Then, they estimated a two limit Tobit panel model with

an upper bound of two and a lower bound of zero, where each subject is a panel unit, to �nd the three

subspeci�cations.

25
For those interested, you can also refer to the paper of Muller & Whillans (2008), dealing with static

vs. dynamic stock externality. We did not mentioned this study, as the methods used seem ambiguous

to us.
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quite simple and more rational. This property of discrete time makes it easy to imple-

ment in the lab. Another reason could be that using a very small discretization in time,

continuous time can be approximated by discrete time, which avoids the di�culty of

implementing continuous time in the lab.

1.4.1 An Example of Field Experiment

Laboratory experiments (in vitro), despite their relative simplicity and the reliability of

the data obtained thanks to the control exercised by the experimenter, have been wi-

dely criticized for their lack of external validity (Loewenstein, 1999). Field experiments

(in vivo) could be an alternative in providing external validity and can be divided into

three main groups. Artefactual �eld experiments, which are identical to laboratory ex-

periments, but are carried out with subjects representative of the active population.

Framed �eld experiments, which are artefactual �eld experiments with realistic en-

vironment and information. Natural �eld experiments, also identical to framed �eld

experiments except that the studied environment is the one in which subjects perform

their tasks and they ignore that they are participating in an experiment. For precise

details about experimental economics, see Serra (2012).

Framed �eld experiments have the advantage of testing the in�uence of context

elements on agents’ behavior. Based on this framework, Noussair et al. (2015) try to

investigate cooperation among the users of a common renewable resource. Departing

from the canonical model of Schaefer (1957), the authors de�ned a continuous time

�nite horizon model in which n agents share a �shery. Assuming zero costs, each

agent i has to maximize his catch xi(t) under the dynamics of the stock S(t), which

is renewed according to a logistic growth function F (S(t)). Then, the authors derived

two benchmarks that are the Nash and the social optimum outcomes. The correspondig

social optimum problem is given by equation (1.14) :

max
xi(t)

∫ T

t=0

n∑
i=1

exp−rt p̄ α Ei(t)S(t)︸ ︷︷ ︸
xi(t)

dt, (1.14)

s.t Ṡ(t) =

F (S(t))︷ ︸︸ ︷
RS(t)

(
1− S(t)

K

)
−

n∑
i=1

α Ei(t)S(t)︸ ︷︷ ︸
xi(t)

, with S0 = K .
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where Ei(t) denotes the harvesting e�ort and Ē is the maximum amount of e�ort an

agent can provide. R is the intrinsic growth, K is the carrying capacity and p̄ is the

marginal value of an extracted resource unit.

Eight �xed groups of four subjects participated in two experimental sessions of a

recreational �shing. To make sure that all the subjects well understand the game, they

had to answer test questions before the start of a session. Each session consisted in four

periods of one hour each and each member of a same group wore a colored ribbon to

indicate to which group he belongs. The authors implemented their experiment by

making a discrete approximation of the dynamics of the stock as shown by equation

(1.15) :

St+1 = St −Xt + F (St −Xt). (1.15)

where Xt =
n∑
i=1

xit denotes the total catch. In the experiment, the stock size is also

called the "allowable catch remaining" (ACR) at the beginning of period t. At the begin-

ning of the �rst period, experimenters released into a pond 38 rainbow trout including

a supplementary six trout, so that each subject can catch 2 trout. Then, as long as the

total catch did not exceed the available amount for the group, each participant could

harvest as many �sh as he liked. Regeneration was simulated by adding at the end

of each period and for groups that have not exhausted their stock, an amount of �sh

equals to the amount harvested in the previous period. This aimed to have the same

amount of �sh at the beginning of each period. At the end of each period, subjects were

given all information to begin a new period, but in case of resource exhaustion before

the last period, they had to leave the pond. To avoid the problem of negative margi-

nal utility, subjects were allowed to take home all the �sh they caught and received

in addition �ve euros for each �sh caught. The authors derived two main predictions

to distinguish cooperation from non-cooperation. The �rst prediction is that the social

optimum equilibrium is reached when the logistic growth function equals the discount

rate. Given their parameterization, subjects should quickly harvest the stock until it re-

main four �sh, stop catching for the stock to regenerate up to eight �sh, and quickly

catch again four �sh. Thus, the �shing e�ort will depend on the remaining group stock

under cooperation. The second prediction is that, contrary to the �rst prediction, sub-

jects’ will not modify their harvest over the four periods under the Nash equilibrium,

which involves the depletion of the stock within the �rst period.
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Although they found a lack of cooperation, consistent with the standard econo-

mic theory, the authors emphasize the importance of contextualization when testing

the canonical renewable resource model. A Wilcoxon test on the distribution of the

average group e�ort between the �rst and the fourth period, allowed them to �nd sup-

port to their second prediction. And applying a �xed e�ects regression con�rmed that

harvesting e�ort does not di�er statistically regardless of the stock size.
26

1.5 Empirical Methods in the Reviewed Studies

A crucial step in the study of the behavior of CPR users is data analysis, as it is based on

these results that policy implications can emerge to ensure the e�ective management

of these resources. Experimental data collected in the studies we reviewed are gene-

rally panel data. That is, they contain several observations for the same individual

over a period of time, and therefore have two dimensions : an individual dimension

(cross-sectional) and a temporal dimension (time series). However, one of the key ele-

ments for the analysis of experimental data lies in the choice between parametric and

non-parametric methods. Parametric methods are based on distributional assumptions

(most commonly, the normality of the outcome variable) which holds if the analyzed

variables are cardinal. Nevertheless, experimental data do not always satisfy norma-

lity condition, so that non-parametric methods seem to provide a compelling alter-

native to parametric methods.
27

Most of the articles studied in this survey adopted

non-parametric methods, some used parametric methods and others made a combina-

tion of both. In this section, we will review the main methods frequently used by the

authors to analyze their data.

Given their simplicity, statistical indicators are frequently used to get an initial

overview of the data, before moving to complex analyses. Positional measures like the

mean or the median are sometimes compared. For instance, Oprea et al. (2014) compa-

red mean contribution levels to median contribution levels in their public good game

experiment. This was also the case for Bigoni et al. (2015), for the determination of

cooperation levels in their repeated prisoner’s dilemma game. The research question

26
While theoretical predictions and the experimental earnigs are mainly based on the number of �sh

caught, the harvesting e�ort is measured through the amount of times a �sherman casts his rod.

27
See Mo�att (2015) for a clear overview of econometric methods in experimental economics.
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most frequently addressed in this review was the determination of the theoretical be-

havior to which experimental subjects are closest. To do this, the simplest parametric

method was to compute the Mean Squared Deviation (MSD). It is a dispersion sta-

tistical indicator, used to accurately estimate the di�erence between the optimal and

the observed behavior (Herr et al., 1997).
28

However, using only this statistical indica-

tor could give misleading results, as it allows for a global classi�cation of behaviors,

without taking into account the fact that subjects may deviate from the theoretical so-

lution. It is therefore necessary to combine it with regression methods for an accurate

classi�cation. Another statistical indicator frequently used, was to compute the ratio

of the total observed payo�s to the optimal payo� (Herr et al., 1997; Suter et al., 2012;

Tasneem et al., 2017, 2019). This indicator is called e�ciency. Other de�nitions of ef-

�ciency are provided by Gardner et al. (1997) and Hey et al. (2009). While Gardner et

al. (1997) de�ned it as the coe�cient of resource utilization, for Hey et al. (2009), it is

the ratio of observed extraction to optimal extraction. Unlike the other authors, Hey

et al. (2009) used e�ciency for the computation of payo�s, which they de�ned as the

product between e�ciency and a premium speci�c to each of their four treatments.

The most commonly non-parametric test used by authors is the Mann Whitney

test.
29

It is the non-parametric alternative to the Student t-test, used to compare two

paired groups, by computing and analyzing the di�erence between each set of pairs

(Herr et al., 1997; Oprea et al., 2014; Noussair et al., 2015; Leng et al., 2018). The two-

sample Kolmogorov-Smirnov test is similar to this test, as it allows to investigate whe-

ther two samples come from the same distribution (Tasneem et al., 2017). However,

in case of more than two independent samples, the Kruskal-Wallis test is used as an

extension of the Wilcoxon Rank-Sum test, but is replaced by the Jonckheere-Terpstra

test of ordered alternatives when there is an expected order to the group medians (Hey

et al., 2009).

28
Let n be the size of the sample, xobsit the observed behavior and xpredit the predicted or the theoretical

behavior. The Mean Squared Deviation (MSD) is obtained through this formula :

MSD =

∑
i

∑
t(x

obs
it − x

pred
it )2

n
.

29
The Mann Whitney test is also known under various names such as : the Mann Whitney U test, the

two-sided Mann Whitney rank sum test, the pairwise Mann Whitney test, the Mann-Whitney-Wilcoxon

test, the Wilcoxon-Mann-Whitney test, the Wilcoxon rank-sum test and the Wilcoxon signed rank test.
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The authors also used di�erent estimation methods, among which we can cite the

Maximum Likelihood (ML) method. It allows to �nd the parameter that maximizes the

probability of observing the sample actually observed, by assuming a conditional dis-

tribution of the explained variable with respect to the explanatory variables (Mason &

Phillips, 1997). The Tobit model is intermediate between linear and dichotomous mo-

dels. It is a censored regression model, describing the relationship between a limited

dependent variable (which is continuous but can only be observed over a certain inter-

val) and one or more independent variables.
30

When the dependent variable is limited

by two bounds, the model used is a two-limit Tobit (Tasneem et al., 2017, 2019). Mo-

reover, we noticed the use of dynamic regression models such as partial adjustment

models, by authors like Mason & Phillips (1997) to study the decision-making of expe-

rimental subjects. They are used to justify taking into account one or more lags of the

dependent variable in a regression function, and its use dates back to Nerlove (1958) for

the investigation of the lags in farmers’ response to price changes. The drawback of the

partial adjustment model is that the Ordinary Least Squares (OLS) estimator, although

convergent, is biased. Hence the use of alternative methods such as the Feasible Ge-

neralized Least Squares (FGLS), which is an implementable version of the Generalized

Least Squares (GLS), used when the covariance of the errors is unknown. Feasible Ge-

neralized Least Squares were also used by Suter et al. (2012), but with the Prais-Winsten

procedure, to analyse individual myopic behavior in each of their four treatments.

Ultimately, it is not always easy to deduce in advance in a study, the di�erent tests

that will be performed, simply based on the research question. In reality, it is the data

that dictates which tests must be implemented. However, a common point in the ar-

ticles that have been reviewed is that they give an important place to the analysis of

e�ciency. One might therefore think that this indicator serves as a measure to check

the internal validity of the results.

30
In censored models, the entire sample contains observations of the explanatory variables.
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1.6 Conclusion

In this survey, we attempted to bring an overview of the recent literature using dyna-

mic games to examine the issues of common pool resources throughout experiments.

The research questions, although di�erent from one article to another, all refer to al-

most the same goal, namely the optimal management of CPRs, when considering a

dynamic setting. We found that most of the articles were in discrete time and over a

�nite horizon, due to their relative simplicity of implementation in the lab compared

to continuous time. For Hey et al. (2009) for instance, «in�nite horizon cannot be im-

plemented in laboratory». Moreover, implementing �nite horizon instead of in�nite

horizon seems logical for them, since «... the earth does not exist inde�nitely... ».

Therefore, we paid a particular attention to continuous time and in�nite horizon,

because their implementation in the lab is in its infancy, as they are very challen-

ging. Indeed, continuous time makes it possible to mimic the non stop evolution of

common pool resources, and we distinguished two ways of implementing it in lab ex-

periments : continuous time using dynamic games (Tasneem et al., 2017, 2019) and

quasi-continuous time using extensive form games (Friedman & Oprea, 2012; Oprea et

al., 2014; Bigoni et al., 2015; Leng et al., 2018).
32

From a theoretical point of view, the in�nite horizon is simple to implement and

allows for predictions over a very large time interval. From an experimental point of

view, the in�nite horizon ensures the sustainability of the resource, by giving to expe-

rimental subjects the ability to see how their decisions a�ect the resource up to in�-

nity. This could motivate them to adopt less suboptimal behaviors. Moreover, although

people don’t live forever, they may care about their children by taking care of the re-

source. We thus found two ways of implementing in�nite horizon in the lab : either

by imposing a random termination rule (Mason & Phillips, 1997; Suter et al., 2012), or

by discounting payo�s over a �xed period while adding a continuation payo�, which

computes the payo� that subjects would have obtained if the experimentation pursue

inde�nitely with the last conditions remaining constant (Tasneem et al., 2017, 2019).

We suggest the use of the second alternative, because unlike the random termination

31
NF : Nash Feedback equilibrium. SO : social optimum equilibrium.

32
An innovative aspect in the implementation of (quasi) continuous time in the lab by Bigoni et al.

(2015), was the use of touch screens instead of a computer mouse in subjects’ decision-making processes.

This allowed the switch of decisions, not to be heard by the other members of the group.
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rule, it allows to get rid of the use of a continuation probability. It also ensures the

same end of the experiment for all the players. However, we found that the ability

of continuous time to foster cooperation seems mixed, so that some authors suggest

supplementary mechanisms like punishment, communication, regulation, voting pro-

cesses to improve cooperation (Gardner et al., 1997; Noussair et al., 2015; Leng et al.,

2018). We also found that in addition to commonly used statistical indicators like the

mean or the median, e�ciency was computed by almost all the reviewed papers. Mo-

reover, the Mann Whitney test was the most frequent non-parametric test used.

What we can learn from this survey is that dynamic environments are very com-

plex to set up in the laboratory, especially continuous time. They are also di�cult to

understand by the experimental subjects and lead most of the time to more myopic

behaviors than static environments (Herr et al., 1997; Mason & Phillips, 1997; Tasneem

et al., 2019) (especially when the number of players increases). However, these mo-

dels thanks to their state variable, allow fairly well to simulate the evolving nature of

common pool resources. Several improvements are therefore necessary and are in pro-

gress to set up robust experimental protocols, because it should not be forgotten that

the application of dynamic games (and more precisely of continuous time models) to

the study of CPRs remains very recent, but is also promising.
33

In the following chapter, we present the results of a continuous time experiment

over an in�nite horizon, aiming to analyze the extraction behaviors of groundwater

users. We distinguish the situation without strategic interaction from the one involving

strategic interaction.

33
For a supplementary review on groundwater management, see Koundouri (2004) and Foley et al.

(2012) for habitat-�sheries.
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Individual and Strategic Behaviors in
a Dynamic Extraction Problem :
Results from a Within-Subject
Experiment in Continuous Time

Abstract:
We conduct a laboratory experiment to test a continuous time model that repre-

sents a dynamic groundwater extraction problem in an in�nite horizon. We compare

the observations to the equilibrium path of the usual behaviors, for the case where the

player is alone in extracting the resource (optimal control) and when two players ex-

tract the same resource simultaneously (di�erential game). We use a within-subjects

design. This allows us to identify individual pro�les of players playing alone and then

characterize groups based on their composition with respect to these individual be-

haviors. We �nd that approximately a quarter of the players and groups succeed in

playing (signi�cantly) optimally, and none behave myopically. We also identify other

categories of players and groups that account for nearly 50% of the observations and

that require attention.

Keywords: Di�erential Games; Dynamic Optimization; Experimental Economics; Re-

newable Resources; Applied Econometrics

Codes JEL : C01; C73; C91; C92; Q20
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Résumé :
Nous avons mené une expérience en laboratoire pour tester un modèle en temps

continu, représentant un problème dynamique d’extraction d’eau souterraine sur un

horizon in�ni. Nous avons ensuite comparé les observations à celles du sentier d’équi-

libre pour les comportements habituels, dans le cas où le joueur est seul à extraire la

ressource (contrôle optimal) et lorsque deux joueurs extraient la même ressource si-

multanément (jeu di�érentiel), par le biais d’un within-sujet design. Cela nous a permis

d’identi�er les pro�ls individuels des joueurs lorsqu’ils exploitent la ressource seuls,

puis de caractériser les groupes en fonction de leur composition par rapport à ces com-

portements individuels. Nos résultats montrent qu’environ un quart des joueurs et des

groupes réussissent à jouer (signi�cativement) de manière optimale, et qu’aucun ne se

comporte de façon myope. Nous avons aussi identi�é d’autres catégories de joueurs

et de groupes qui représentent près de 50% des observations et qui nécessitent une

attention particulière.

Mots-clés : Jeux Di�érentiels ; Optimisation Dynamique ; Économie Expérimentale ;

Ressources Renouvelables ; Économétrie Appliquée

Codes JEL : C01 ; C73 ; C91 ; C92 ; Q20

2.1 Introduction

Although Ostrom (1990) shows that in numerous cases, institutional arrangements

emerge without government intervention, the "tragedy of the commons", �rst mentio-

ned by Hardin in 1968, is still relevant today for many common resources, like forests

or groundwater, that continue to be overexploited (Boyd et al., 2018; Frischmann et

al., 2019). Consequently, this market failure has attracted the attention of many natu-

ral resource economists over the past several decades. Until the 1970s, common-pool

resources (CPRs) were conceptualized using static models. However, to keep up with

the reality, it is necessary to account for the evolution of these resources over time

and to study the behavior of agents in a dynamic context. Dynamic models are ge-

nerally distinguished according to whether they are based on discrete or continuous

time. Models based on the latter, called di�erential games, are widely used to model

economic problems (Dockner et al., 2000), but very few are tested in the laboratory,

especially on the issue of CPR. One of the reasons for this is that these games are quite
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complicated to implement with experimental economics methods. To our knowledge,

only Tasneem et al. (2017) test a di�erential game in the lab. They focus on the feed-

back pattern to determine whether subjects adopt a linear or nonlinear strategy. We

contribute to the literature by proposing a di�erential CPR game model and testing

various types of behaviors in a continuous-time experiment.

Our CPR model is based on that of Rubio & Casino (2003). We consider a problem

of groundwater extraction in continuous time with an in�nite horizon and determine

the equilibrium paths for three well-identi�ed types of behavior : myopic, feedback,

and optimal. In addition, we develop the experimental protocol that creates laboratory

conditions close to those of the model. This allows us to collect data and compare

them to the theoretical predictions. Our main contributions to the existing literature

are the following. First, we propose a rare study that brings CPR di�erential games

into the laboratory and is the �rst to consider socially optimal and myopic behaviors

in addition to feedback behavior. Second, we go beyond these theoretical patterns of

behavior by proposing new categories based on observations. Finally, we are, to our

knowledge, the �rst to analyze the extraction decisions of individuals both with and

without strategic interactions in a within-subject design. This allows us to (i) identify

individual player pro�les and (ii) study how players behave in strategic interaction

situations. That is, we identity the pro�les of the players pairs that succeed in adopting

optimal behavior and study how individual pro�les observed when subjects play alone

evolve when those subjects are placed in a strategic interaction context. We also make

two secondary contributions. First, we present the experimental protocol allowing the

implementation in the laboratory of a continuous-time model with an in�nite horizon.

Second, to compare the behavior of subjects in the laboratory to theoretical projections,

we propose combining mean squared deviation statistics and linear regressions.

In the optimal control scenario, we �nd that slightly more than one-quarter of the

players behave as predicted by the optimal theoretical pattern. A further 50% percent

fall into two distinct categories based on similarities in the observed trajectories of

their behavior – we named these player pro�les of players respectively the Convergent
and the Under-Exploiter. In the two-players game, we �nd 20% of groups that exhibit

a trajectory signi�cantly close to the socially optimal one (the cooperative solution).

Most of these groups include at least one player who had already behaved optimally

when extracting the resource alone. We also identify groups of Convergent and Under-
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Exploiter groups in the game and a new category that brings together groups that

overexploited the resource (the Over-Exploiter). Overall, we show that the behaviors

predicted by the theoretical models represent only one-fourth of the experimental ob-

servations in the optimal control scenario and in the game. This indicates further in-

vestigation is needed, as well as models that better �t actual behaviors. We hope that

this article o�ers a basis for future research on this fruitful topic.

The remainder of the article is organized as follows. In Section 2.2, we review the

literature on dynamic CPR, focusing on studies that test their model in the labora-

tory. In Section 2.3, we describe our theoretical setup. In Section 2.4, we explain the

experimental design and how we implement the continuous-time and in�nite-horizon

models. In Section 2.5, we present the results. We conclude this article in Section 2.6.

2.2 Related Literature

The management of common resources has been an important area of research for

many decades. Studies were initially conducted using static models without taking into

account the evolution of the resources over time. The adoption of a dynamic frame-

work allows this evolution to be captured through one or more state variables. Closer

to reality, dynamic models can determine the evolution of the resource according to

its own natural growth and the extractions by individuals or groups of individuals

(Basar & Olsder, 1999; Dockner et al., 2000; Haurie & Zaccour, 2005; Engwerda, 2005;

Van Long, 2010). However, even if they are very useful from a theoretical point of view,

dynamic models are complex to test in the laboratory. As a result, very few scholars

focusing on dynamic models perform laboratory experiments, and most experiments

are in discrete time.
1

In this article we test a CPR game in continuous time with an in�nite horizon. The

aim of this section is to present a selection of studies that constitute important steps

in the implementation in the laboratory of dynamic games in continuous time with an

in�nite horizon. We start by presenting two papers studying dynamic CPR models in

discrete time with a �nite horizon (Herr et al., 1997; Hey et al., 2009). Then we present

two papers studying dynamic CPR models in discrete time with an in�nite horizon

1
It should be kept in mind that dynamic common-pool games constitute a small part of dynamic

games, which are a very rich environment (Vespa, 2020).
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(Suter et al., 2012; Vespa, 2020). Finally, we present pioneering papers on the imple-

mentation of continuous time in the laboratory (Oprea et al., 2014; Bigoni et al., 2015),

before describing the paper closest to ours (Tasneem et al., 2017). For a more detailed

review of this literature see Tasneem & Benchekroun (2020) and Djiguemde (2020).

One of the �rst studies to experiment with a dynamic CPR model in the laboratory

is Herr et al. (1997). In their groundwater model with n players, the authors compare

static and discrete-time dynamic frameworks with a �nite horizon. In the former, ex-

traction by a player in a given period produces a negative externality (through the cost

of extraction) for the other players in that period only. In the latter, the externality is

present in both the current and following periods. More precisely, the marginal cost

from one period to the next is equal to the cost of the last extraction unit ordered, plus a

constant. As a result, costs increase monotonically with each repetition. Observations

from the experiment show that as compared to the case for the static framework, the

tragedy of the commons is exacerbated in the dynamic framework due to the higher

number of myopic behaviors.
2

Considering a discrete-time dynamic model with a �nite horizon, Hey et al. (2009)

study the management of a �shery by a single agent who makes harvesting decisions.

The authors focus on the role in decisions of information such as the number of �sh

units and the species growth function. They observe that without information, subjects

have a biased perception of the evolution of the resource and, as a result, perhaps out

of caution, they under-harvest compared to the optimal trajectory. With a noisy infor-

mation environment, they exhibit a pulse behavior, consisting of alternating periods

of extractions and non-extraction. Finally, when subjects have accurate information,

they keep constant the resource stock and their extraction in an attempt to control the

dynamic of the system.

In a discrete-time dynamic model, but this time over an in�nite horizon, Suter et al.

(2012) investigate how the introduction of the spatial characteristics of an aquifer in-

�uence the pumping decisions of individuals. In their experiment, the authors ran four

treatments in a between-subject design. In the �rst three treatments, players played in

2
Gardner et al. (1997) and Mason & Phillips (1997) also experiment with a discrete-time dynamic

model in the laboratory, Gardner et al. (1997) to address the issue of property rights, and Mason &

Phillips (1997) to address the issue of the impact of group size on cooperation.
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groups of six, while in the last treatment, they played without interaction. In one of

the treatments, the cost function was the same for all players, while in the other two

treatments, the cost function was asymmetric, depending on the location on the 2x3

lattice. The main result of the study is that in the 6-player game with symmetric costs,

the proportion of observed behavior that is myopic is higher than in the other cases

(optimal control and games with asymmetric costs).

Another paper that uses a discrete-time framework with an in�nite horizon is that

of Vespa (2020). The author conduct an experimental study of the trade-o� between

opportunistic behavior and e�ciency within a dynamic common-pool game. Using a

simpli�ed version of Levhari & Mirman (1980), they study the extent to which sub-

jects in the laboratory can reach e�cient outcomes in a dynamic common-pool game.

In their experiment, two agents share access to a savings account and must simulta-

neously and independently decide how much to withdraw in each period. The total

amount available in the next period is determined in-between periods by the unused

funds, which grow at an exogenous rate of interest. The in�nite horizon was imple-

mented as an uncertain horizon. The main �nding was that, unlike an in�nitely re-

peated prisoner’s dilemma, a dynamic common-pool game involves greater strategic

uncertainty. Thus, as the stock of funds increases, achieving cooperation in a dynamic

common-pool game becomes more di�cult even when the incentives to cooperate are

relatively large.

Some authors have shown interest in the implementation of continuous-time mo-

dels in the laboratory. Oprea et al. (2014) are among the �rst to perform continuous

experiments in the laboratory.
3

They compare continuous and discrete-time decisions

in a public goods game. In the continuous-time treatment, players could change their

decision at any time during the game’s 10 minutes duration, with an immediate infor-

mation available about the updated payo�s and the choices made by the others in the

group. In the discrete-time treatment, players played ten one-minute periods during

which they could change their decision without information about the choices of the

other members of their group. At the end of the one-minute period, the last decision

3
Ryan Oprea and Daniel Friedman conducted continuous time experiments slightly before Oprea

et al. (2014), but we choose to present their 2014 paper because it is the closest to our own. Indeed, as

CPR games, public goods games present relatively complex social dilemmas compared to Hawk-Dove

games (Oprea et al., 2011) or prisoner’s dilemma games (Friedman & Oprea, 2012).
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made applied for the period. The authors �nd that in continuous-time, players contri-

bute slightly more to the public good than they do in discrete-time and that this obser-

vation is stronger when communication between players is allowed. For the authors

this is because the players’ decision adjustments are faster and thus make it possible

for cooperation to emerge in the group.

Bigoni et al. (2015) investigate the impact on the extent of cooperation of the time

horizon in a prisoner’s dilemma game played in continuous time. The authors’ expe-

riment is composed of four treatments that di�er along two dimensions, the period

duration – short (20 seconds) vs. long (60 seconds) – and whether this duration is

deterministic or stochastic (with an average realized duration close to that of the de-

terministic duration). In treatments where the duration is deterministic, players knew

they had 20 seconds (or 60) to make decisions. They could change their decision and

observe the consequence of that (individual payo�) as often as they wanted during the

time of play. The highest level of cooperation is observed when the period duration

is long and deterministic. The main explanation is that this combination of conditions

favors the prevalence of the cut-o� strategy, which involves cooperating until a certain

point in time and then, toward the end of the period, defecting forever. Conversely, the

short stochastic duration favors the use of the "tit-for-tat" strategy, which, on average,

leads to weaker cooperation than the "cut-o�" strategy.

Although Oprea et al. (2014) and Bigoni et al. (2015) conduct continuous laboratory-

based experiments, these experiments are not dynamic, as they do not account for

the evolution of a state variable.
4

Instead, they use models belonging to the family of

extensive games, as de�ned by Simon & Stinchcombe (1989).
5

To our knowledge, only two papers have laboratory-tested dynamic models in

4
See also Leng et al. (2018) for a laboratory experiment that compares, in a minimum e�ort game,

decisions in continuous time to decisions in discrete time.

5
Simon & Stinchcombe (1989) de�ned, in a [0, 1] time interval, a �nite set of agents and imposed

some limitations on the decisions players could change. This allowed agents to play games in continuous

time in the limit as the interval approaches zero. In this paragraph dedicated to quasi-continuous time,

all expressions that refer to «continuous time» in fact refer to «quasi-continuous time». See Calford &

Oprea (2017) for a laboratory implementation of the timing game developed in Simon & Stinchcombe

(1989). Janssen et al. (2010) and Cerutti (2017) also run experiments in continuous time in the laboratory,

but without an underlying theoretical model. Their objective is to implement renewable resources along

both spatial and temporal dimensions. Their experiments are conducted in real time to simulate the real-

life conditions of ecological systems.
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continuous time over an in�nite horizon ; these are Tasneem et al. (2017) for di�eren-

tial games and Tasneem et al. (2019) for optimal control. These papers are the closest

to what we propose in this study. However, while they focus on Markovian strategies,

we are also interested in other types of behaviors such as feedback, myopic, and so-

cially optimal behaviors. Furthermore, we study the manifestation of these behaviors

both with and without strategic interactions. Tasneem et al. (2017) consider simulta-

neous exploitation of a common renewable �shery by two identical players, in a linear-

quadratic game, to determine whether subjects in the laboratory will choose between

linear or nonlinear strategies. To that end, they build an experiment designed to ensure

subjects have a good understanding of the idea of feedback strategies. The results sug-

gest that most players employ nonlinear reasoning. Based on a similar experimental

design, Tasneem et al. (2019) explore whether a single player can manage a renewable

�shery in a sustainable and e�cient manner. Their results suggest suboptimal beha-

vior due to the initial over-extraction of the resource because of the trade-o� between

instantaneous payo� and the future sum of payo�s.

In this article, we start from the theoretical model of Rubio & Casino (2003), which

we modify for implementation in the laboratory. Speci�cally, we modify the cost func-

tion so that it remains consistent outside the equilibrium paths. Next, we de�ne the

theoretical trajectories of three standard behaviors, the optimal behavior, the feedback

behavior, and the myopic behavior. For the implementation in the laboratory of conti-

nuous time and an in�nite horizon, we draw inspiration from Tasneem et al. (2017,

2019). However, our research question is di�erent from theirs ; we want to test the

adequacy of the �t between theoretical and observed behaviors. Moreover, like Suter

et al. (2012), we test our model under two conditions : when the individual is alone in

extracting the resource (optimal control) and when two players simultaneously extract

the same resource (two-player game in a strategic interaction). However, unlike Suter

et al. (2012), we test these two conditions using a within-subject design. We proceed

in this way so we can identify the pro�les of players when they play alone and then

study how they behave when placed in strategic interaction situations, including de-

termining which pro�les make up the pairs that succeed in adopting optimal behavior.
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2.3 The Model

We consider a continuous-time linear-quadratic model in which farmers harvest a re-

newable resource that can be assimilated to groundwater. Water is the only input in

the production process, and for purposes of simpli�cation, the aquifer is assumed to

have parallel sides and a �at bottom.
6

At a given time t, extraction done by farmers

gives them a revenue B(w) depending only on the extraction rate w. They also incur

a cost C(H,w), which is positively dependent on the extraction rate w and negatively

dependent on the level of the groundwater H . a, b, c0 and c1 are positive parameters.

The farmers’ instantaneous payo� is given by the di�erence between revenue and cost,

as shown by Equation (2.1) :
7

B(w)︷ ︸︸ ︷
aw − b

2
w2−

marginal cost (c(H))︷ ︸︸ ︷
max(0, c0 − c1H)w.︸ ︷︷ ︸

C(H,w)

(2.1)

One must keep in mind that H refers to the elevation of the water table above the

bottom of the aquifer so that c0 is the maximum average cost. Our model is based on

that of Rubio & Casino (2003) adapted to a special case of a laboratory experiment

in which we account for the positivity of the marginal or unitary cost c(H). More

precisely, most theoretical models make assumptions on the positivity of the marginal

cost, considering for their solutions only situations where this constraint is veri�ed.

However, even in the case where our parameters verify that all theoretical solutions

are in the admissible set (that is that extractions, resources, and costs are positive),

subjects will generally not follow exactly the recommended theoretical behavior. This

produces a piecewise marginal cost function, allowing us to study the di�erent regime

types, including the steady-state regime.

In the model, each farmer’s problem is to choose, at time t, an extraction rate w,

for all t ∈ [0,∞]. We consider two speci�c situations. The �rst involves an optimal

control problem, where a single farmer exploits the groundwater and can adopt ei-

ther a myopic or an optimal behavior. The second situation refers to a game in which

two identical and symmetrical farmers exploit the groundwater. Here we derive the

6
We use a simple "bathtub" model to describe the groundwater extraction.

7
We omit the subindex t when it is unnecessary.
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feedback behavior, in addition to the behaviors mentioned above.

In an optimal control problem, the social optimum can be de�ned as a behavior

in which a farmer’s extraction decision allows them to maximize their discounted net

payo�s to maintain the resource at an e�cient level. The di�erence in the game, as

compared to the optimal control problem, is that in the game, the resource is maintai-

ned at an e�cient level by maximizing the joint discounted net payo� to all farmers. In

this case, the social optimum is also called the cooperative solution. In both the optimal

control problem and the game, the myopic solution is given by a situation in which the

farmer is only interested in the maximization of their current payo�. Finally, the feed-

back equilibrium can be seen as a scenario in which farmers adopt non-cooperative

behavior, maximizing their own discounted net payo�s and taking into account the

evolution of the groundwater. Additional details for the di�erent behaviors are provi-

ded in Appendices B.1 and B.2.

2.4 Experimental Design

The experiment took place at the Experimental Economics Laboratory of Montpellier

(LEEM), during the second half of 2018. A total of 70 students from the University of

Montpellier participated.
8

Before describing the di�erent steps of the experiment and

the parameters used in the experimental game, we present the way we implemented

the continuous time and in�nite time horizon in the laboratory.

2.4.1 Continuous Time and In�nite Horizon

The implementation of continuous time in the laboratory is challenging because, by

de�nition, continuous time means that time does not stop. This is incompatible with

the time that necessarily elapses between an individual’s decision and its visible conse-

quences on the resource and payo�. This time includes the sending of the information

to the server, the calculations made by the server, the return of the information after

these calculations, and their display on the screen of the player. In practice, the time

that elapses between two instants must be short enough that the subject in the ex-

periment feels like it is continuous. We chose to set one second as the time interval

8
The subject pool is managed by the ORSEE platform (Greiner, 2015), and has about 3 000 volunteers.
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between two instants. To our mind, the second, even if not the shortest possible inter-

val we could have implemented in the laboratory (Oprea et al., 2014; Tasneem et al.,

2017, 2019), is nevertheless pertinent for our experiment ; it is understood by everyone,

and enough time elapses between two seconds for computers to perform calculations

and exchange information across the network. Moreover, the fact that one instant in

the model corresponds to one second in the real time of the experiment facilitates the

explanations in the instructions, and without doubt the understanding by the subjects.

From a practical point of view, the subject’s computer sent the decision to the ser-

ver every second, triggering its calculations and returning updated information (on

the resource level and payo�s). Upon receiving this updated information, the subject’s

computer updated the graphs and information displayed on the screen.
9

Between two

instants, we consider the player’s decision unchanged, whereas the resource evolved

continuously. In other words, the calculations were performed in continuous time,

whereas the decisions made by the individuals and the information displayed were

updated every second. To our knowledge, only Tasneem et al. (2017, 2019) use a pro-

cedure close to this one.
10

Concretely, the subjects had a horizontal cursor on their

screen, that they could move during play whenever desired. The computer they were

each at sent the value of the cursor to the server every second, and the server then

used this value to perform calculations and return the updated information. Hence, if

a subject did not move the cursor, the existing value was sent to the server and the

same extraction level was applied.

The standard way to implement the in�nite horizon in experimental economics

9
Technically, in the optimal control, a timer on the player’s computer sent the extraction value on

the cursor to the server every second, triggering its computations (new resource stock and payo�s). The

server then returned the updated data to the player’s computer. Upon receiving this data, the player’s

computer updated the graphs and displayed the numeric values. In the two-player game Player 1’s

computer had a timer that sent the current extraction on the cursor to the server every second. Player’s

2 computer sent the value as soon as the player changed it, which set the current extraction for this

player on the server side. When the server received the extraction from the computer of Player 1 (every

second), it took the current extraction of Player 2 and performed the computations (total extraction

of the group, new resource stock, and payo�s), and returned the updated data to both players. Upon

receiving this data, the players’ computers displayed the updated graphs and numerical values. In this

way the time was perfectly synchronized for the two interacting players. A screenshot of the decision

screen is provided in the Appendix of Chapter 2.

10
The experimental protocol is not su�ciently detailed in the stydy to con�rm that this procedure

was applied, in particular for computations between two instants.
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is to set a probability that the current period is the �nal one (e.g., Suter et al., 2012;

Vespa, 2020). On this approach, the subject does not know exactly when the repetitions

will end. However, this method has two drawbacks. First, if the probability is de�ned

individually or even per experimental session, it implies di�erent endings to the game,

which means a di�erent number of decisions and a di�erent history. This complicates

analysis and comparison. Second, it may be interpreted by the subject as an unknown

end rather than an in�nite horizon.

Another method is to use a continuation payo�. This involves adding the payo� if

the game were to continue inde�nitely to the current payo� with the player’s current

extraction unchanged. More precisely, for a given instant t, the computer calculates

the payo� from instant t to in�nity, on the assumption that the player keeps the same

extraction level while the resource continues to evolve, and this continuation payo�

is added to the current payo�. This procedure has two advantages. First, the player is

informed at all times of their payo� at the in�nite horizon with their current extraction

decision, regardless of the actual end of the game. They can, therefore, observe the

consequences of their choice over the long term. Second, it implies that all the players

in the experiment play for the same e�ective duration, set by the experimenter, making

data more easily comparable and facilitating analysis.

This “scrap value” mechanism is also the one adopted by Tasneem et al. (2017, 2019).

However, in their protocol, the game stops if the player holds their decision unchanged

for thirty seconds or if the resource is exhausted. We proceeded di�erently. First, even

if the subject left their decision unchanged, the game continued until the end. In this

way, all subjects played for the same amount of time and could modify their decision

even after 30 seconds without any change. In addition, rather than stopping the play,

we de�ned a rule for when the available resource became scarce : if the extraction

was greater than the available resource, the server automatically set the extraction to

zero. This rule also applied in the game ; if the total extraction exceeded the resource

stock, the extraction of both players was set to zero. The rule was explained in the ins-

tructions and was commonly understood. If implemented, the players could see when

their extraction was set to zero by the computer. This information was obvious, on the

graph that displayed their extraction and on the slider since the cursor moved auto-

matically to the corresponding zero mark. The player had to move the cursor if they

wanted to then extract a positive quantity. Other rules would have been possible, such
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as providing the remaining available resource or, in the two-players game, dividing the

remainder equally or proportionally to the quantity requested. We thought it easier for

subjects’ comprehension to keep the same rule whether they played alone or shared

the resource. Moreover, setting an allocation rule for the extraction in proportion to

the available resource would have led to a multiplicity of equilibria. This would have

greatly complicated the empirical strategy needed to compare laboratory results to

equilibrium paths without revealing any (particularly) interesting information on the

behavior of agents.

2.4.2 Experiment

The experiment was divided into two parts : in the �rst part, subjects played alone,

and in the second part, they played in groups of two. On arriving in the laboratory,

subjects read the instructions for Part 1. These instructions speci�ed that there were

two independent paid parts and that subjects would receive the instructions for Part 2

after completing Part 1. The instructions explained the evolution of the resource, the

decision to be made (expressed as a rate of extraction), the cost of extraction, and the

payo� calculation. After the time allowed for silent individual reading, an experimen-

ter read the instructions aloud. Subjects then answered a computerized comprehension

questionnaire to ensure they understood the resource dynamics and the payo� calcu-

lations. Subjects were allowed to ask clarifying questions. To ensure that subjects had

a good understanding of the dynamic environment and became familiar with the gra-

phical interface, they played two �ve-minute training phases for each part before an

e�ective �ve-minute phase, which counted in calculating the payo� of the experiment.

A session lasted around 90 minutes.

As a �rst step, subjects had to choose an initial level of extraction (corresponding

to instant t = 0) between 0 and 2.8, by moving a cursor on a graduated slider, which

allowed values with two decimals. We chose these values to ensure a positive bene�t,

given the quadratic nature of our bene�t function. Figure B.4 in the Appendix of Chap-

ter 2 shows the concave revenue curve, where the maximum bene�t is reached for an

extraction rate of 1.4. Figure B.5 shows the unitary cost function, which decreases as

the level of groundwater increases and becomes equal to zero as soon as the level of the

groundwater reaches the steady-state level of 20. Once the initial extraction rate was
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selected, a new screen appeared, and the countdown began. Subjects could change

their extraction rate at any moment by simply moving the cursor. Every second the

graphic and textual information on the screen was updated. More precisely, the screen

was composed of three graphs and a textual area : the graph at the top left showed the

subject’s extraction rate ; the graph at the bottom left displayed the evolution of the

resource and the graph at the top right showed the subject’s payo� for the part, which

corresponded to the sum of the cumulative and continuation payo�. At the bottom

right of the screen, the same information was displayed in text form. All the subjects

in the room started and �nished at the same time. A screenshot of the user interface is

given in Figure B.6 in the Appendix of Chapter 2.

Once Part 1 was completed, the subjects were given new instructions, specifying

that the environment remained the same except that instead of extracting the resource

individually, players would now be doing so in pairs. Part 2 also included two identical

and successive training phases, followed by the third phase for pay. It was also unders-

tood that the pairs were randomly re-formed after each phase. The screen, given by

Figure B.7 in the Appendix of Chapter 2 was identical to that in Part 1, except that in

the top-left graph, two additional curves showed the extraction of the other player and

the total extraction of the pair.

2.4.3 Parameters

Table 2.1 reports the parameters used in both the theoretical model and the expe-

riment, which were determined by taking into account theoretical and experimental

constraints. First, the speed of convergence to the steady state had to be reasonable,

neither too short – a few seconds – nor too long – several minutes. In fact, the steady

state can be interpreted as a static framework, which simpli�es the experiment and

allows subjects to stabilize their extraction rate and pay attention to the sustainability

of the resource. Given the in�nite horizon, this required setting a small discount rate

r.

Second, as the steady-state extraction rate is the same for all types of behavior, we

wanted a clear di�erence in the paths leading to the steady-state groundwater level

for the socially optimal, feedback, and constrained myopic behaviors. More precisely,

we chose these parameters to obtain a steady state for the social optimum, leading
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Variable Description Value

a Linear parameter in the revenue function 2.5
b Quadratic parameter in the revenue function 1.8
c0 Maximum average cost 2
c1 Variable cost 0.1

c0 − c1H Marginal or unitary cost 2− 0.1H
r Discount rate 0.005
R Natural recharge (rain) 0.56
α Return �ow coe�cient 1
H0 Initial resource level 15

Table 2.1 – Parameters for the experiment

to a high level of groundwater while lowering the level of groundwater for the Nash

feedback and constrained myopic paths. Third, for simpli�cation, we set α, the return

�ow coe�cient, equal to 1, and the natural recharge R somewhat smaller to avoid

�oods and highlight the renewable nature of the resource.
11

Figures 2.1 and 2.2 report

the theoretical trajectories for the di�erent types of behavior, for both the optimal

control problem and for the game, according to the chosen parameters.

Figure 2.1 – Extraction rates and groundwater levels for the optimal and myopic be-

haviors in the optimal control problem

11
The return �ow coe�cient is the quantity of water returning to the groundwater after each extrac-

tion.
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Figure 2.2 – Extraction rates and groundwater levels for the optimal, feedback and

myopic behaviors in the game

2.5 Results

2.5.1 Descriptive Statistics

Figure 2.3 reports the evolution over time of the average extraction and the average re-

source in the optimal control problem and in the game. Visual inspection of the graphs

led us to notice three main points. First, whatever the context (with or without inter-

action), on average, players started with a high extraction level, as myopic or feedback

players would do. However, after a few instants (10 seconds in the optimal control and

15 in the game), the players adjusted their extraction level to a rate lower than 0.56

(the natural recharge) and therefore let the resource increase. Consequently, the curves

that depict the evolution of the resource seem to be more consistent with the optimal

than the myopic path (and feedback in the game). Second, there is more dispersion

in the game than in the optimal control problem (the colored areas represent the 95%

con�dence interval around the mean). As will be shown with a more detailed analysis

in the next subsections, this dispersion explains why, on average, the resource is close

to 20 in the second half of play. Third, in the optimal control, the average stock exceeds

20 after 1’40" (100 seconds) and stays above that level until the end, meaning that some

players under-exploit the resource, as also observed by Hey et al. (2009) and Tasneem

et al. (2019).

Table 2.2 reports the averages and standard deviations based on individual and
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group observations depending on the interaction context.
12

The di�erence in initial

extraction (0.655 vs. 0.741) is not statistically signi�cant, and neither is the di�erence

at the last instant (0.579 vs. 0.551). However, the di�erence in extraction levels between

the control and the game is signi�cantly di�erent from zero when considering the

total duration of play. Conversely, the average stock of the resource is not signi�cantly

di�erent between the two contexts on average (18.320 vs. 21.000), but it is if we focus

on the last instant (24.183 vs. 20.242).

Figure 2.3 – Evolution of extraction and resource in the optimal control problem and

the game. For the game the extraction curve represents the average group extraction.

The area around the curves represents the 95% con�dence interval.

Observations

Extraction Extraction Extraction Resource Resource

t=0 Average t=300 Average t=300

Optimal Control 70

0.655 0.529 0.551 21.000 24.183

(0.560) (0.190) (0.183) (4.363) (10.657)

Game (Group level) 35

0.741 0.543 0.579 18.320 20.242

(0.543) (0.236) (0.225) (3.840) (14.173)
Mann-Whitney two-sided p-value 0.217 0.012 0.220 0.112 0.012

Table 2.2 – Summary statistics of the optimal control problem and the game.

Since the model and the experiment consider an in�nite horizon, the last instant of

play is of particular importance since it determines whether the resource will vanish

12
We are aware that the Mann-Whitney test usually involves independent samples and that a Wil-

coxon test would be more appropriate. However the former imposes the same number of observations,

which is not the case here since we have, by construction, half as many observations in the game as the

optimal control.



CHAPITRE 2. INDIVIDUAL AND STRATEGIC BEHAVIORS 60

in the long run. Speci�cally, if the extraction at t = 300 exceeds the natural recharge

(0.56), the resource will be depleted in the future. Figure 2.4 shows the distribution of

extraction rates and resource stocks at the end of the 5 minutes of play in the optimal

control problem and in the game. In the game 14 groups out of 35 (40%) set the last

extraction to a level strictly greater than 0.56, and 17 players out of 70 (24.29%) in the

optimal control did the same ; this di�erence is, however, not statistically signi�cant

based on a Fisher Exact Test (p-value=0.115). More than 50% of the players in the

optimal control problem ended with a resource stock between 20 and 30, compared

to less than 40% in the game. A similar proportion of groups ended with a resource

stock between 10 and 20, which explains why, in Figure 2.3, the curve representing the

game is close to 20 at the end of play. As a result, the two distributions are signi�cantly

di�erent according to a Kolmogorov-Smirnov test (p-value=0.005).

Figure 2.4 – Distribution of the extraction rate and the resource stock in the last instant

of play (t=300)

In sum, we observe an average extraction rate in the optimal control problem that

is lower than the extraction rate of groups in the game and, as a result, an average

resource stock that is higher, particularly toward the end of the play. This is in line

with the competition for the exploitation of the resource induced by its nature as a

CPR. Nevertheless, it is worth noting that groups in the game, on average, understood

that it is socially optimal to let the resource increase to the steady state level of 20. A

candidate explanation is that we used a within-subject design that allowed players to

learn when playing alone.
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2.5.2 Pro�les

Empirical Strategy

Each of the 70 subjects who participated in the experiment made 301 (from t = 0 to

t = 300) extraction decisions in the optimal control problem and in the game. With this

dataset we intend to determine whether players exhibited myopic or optimal behavior

(or feedback behavior in the game). We start by examining the behavior of players in

the optimal control problem. The common practice in the related literature is to com-

pute the mean squared deviation (MSD) to identify the theoretical pattern of extraction

to which a player’s extraction comme closest ; for example, Herr et al. (1997). The mi-

nimum MSD gives the player’s type. The MSDs are calculated for each player such

as :

MSDth
my =

∑T
t=1

(
w(t)− w(t)thmy

)2
T

,

MSDth
op =

∑T
t=1

(
w(t)− w(t)thop

)2
T

,

(2.2)

where w(t) is the extraction rate of the player at time t, w(t)thmy is the constrained

myopic theoretical extraction at time t, andw(t)thop is the optimal theoretical extraction

at time t. A player is classi�ed as myopic or optimal depending on which of their MSD,

MSDth
my or MSDth

op is the smallest.

However, comparing the extractions of the player to the theoretical constrained

myopic and optimal extraction in this way is imperfect since a player can make mis-

takes and begin to play perfectly optimally after, say, for example, 30 seconds. This

would not be captured correctly by this method. For instance, if a player under-extracts

for the �rst 30 seconds, the optimal extraction at time t = 31, given the observed

groundwater level H (called conditional, w(31)cop) is greater than the optimal extrac-

tion if the player would behave perfectly optimally on the same 30 seconds (w(31)thop).

Thus, in order to correctly identify a player’s behavior type - myopic or optimal -,

for the rest of the article, we compare observed extraction to conditional extractions.

Conditional extractions are computed with respect to the t−1 groundwater level. The

conditional groundwater levelHc
is also computed, using an approximation involving
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the observed t−1 groundwater level, the natural recharge, and the conditional extrac-

tion. Thus, the MSDs we will consider are given by the following formula :

MSDc
my =

∑T
t=1

(
w(t)− w(t)cmy

)2
T

,

MSDc
op =

∑T
t=1

(
w(t)− w(t)cop

)2
T

,

(2.3)

where w(t)cmy is the conditional constrained myopic extraction of the player at each

second, and w(t)cop is the conditional optimal extraction of the player at each second.

Players are classi�ed as myopic or optimal depending on which MSD, MSDc
my, or

MSDc
op is the smallest.

The discommoding feature of the classi�cation of players based on the MSD alone,

is that a player is always classi�ed, even if they do not follow the theoretical pattern

studied in any way.
13

To overcome this �aw, we add a second criterion, based on a

regression analysis. More precisely, if we suppose that for a given player, we have :

w(t)cmy < w(t)cop, or

w(t)cmy > w(t)cop,
(2.4)

then we will perform the following regression :

w(t) = β0 + β1w(t)cmy + εt, or

w(t) = β0 + β1w(t)cop + εt.
(2.5)

Therefore, we will consider a player to be signi�cantly myopic (or optimal) if β1 is po-

sitive and signi�cantly di�erent from 0. Consequently, players will be classi�ed either

as Myopic, Optimal, or Undetermined.
14

Regarding the econometric time series treat-

ments, we implement an augmented Dickey-Fuller test to detect the presence of unit

13
To take a concrete example, instead of comparing the player’s extraction w(t) to the conditional

constrained myopic and conditional optimal extraction, w(t)cmy and w(t)cop, we could compare it to the

temperature in Moscow and Istanbul, and we would �nd that our player’s extraction is closer to the

temperature in Moscow or in Istanbul, because one MSD will always be smaller than the other, even if

completely irrelevant.

14
An alternative is proposed by Suter et al. (2012), who run a similar regression (without the constant

term) and consider that a player follows a given behavior if the coe�cient is not signi�cantly di�erent

from 1. A natural way to do this is to implement a Wald test with :



CHAPITRE 2. INDIVIDUAL AND STRATEGIC BEHAVIORS 63

roots in the series. In the case of the non-stationarity of the variables, we run our re-

gressions on di�erentiated series. Serial correlation of the error terms is dealt with

using Newey-West standard errors and sensitivity tests using 1, 5, and 10 lags are im-

plemented.
15

A player is classi�ed as Undetermined if the trajectory of their decisions

is neither signi�cantly Optimal nor Myopic. We follow the same method to analyze the

game data, but these are analyzed at the group level and for the three rather than the

two theoretical behaviors, namely myopic, optimal, and feedback. An example of the

application of the methodology is given in Appendix B.3 of Chapter 2.

Optimal Control

With the MSD classi�cation method, we �nd 65 optimal players (92.86%) and 5 myopic

players (7.14%), as shown in Figure 2.5. This �gure presents the location of players with

respect to the conditional optimal MSD (MSDc
op) on the y-axis and the conditional

constrained myopic MSD (MSDc
my) on the x-axis. Players located above the bisector

are considered as myopic (MSDc
op > MSDc

my) and those located below the bisector

as optimal (MSDc
my > MSDc

op).

However, as explained in the previous subsection, the sole criterion of the MSD

is not fully satisfactory and may lead to misinterpretations. Therefore, we applied our

proposed regression �lter, which drastically changed the picture. Speci�cally, we now

�nd only 19 players (27.14%) that can be classi�ed as signi�cantly Optimal (olive

markers in Figure 2.5), instead of 65, while the remainder (51, 72.86%, brown markers

in Figure 2.5) is classi�ed as Undetermined, since they cannot be classi�ed either as

signi�cantly Optimal or Myopic.
Since actual observations do not always match theoretical behaviors, it is usual to

visually inspect individual curves to complete the analysis and gain more insight into

behaviors (see Hey et al., 2009, for example). We followed this method and looked at

the evolution of the extraction and resource stock for the 51 players that we classi�ed

{
H0 : β1 = 1,
HA : β1 6= 1,

and W =
(β̂1 − 1)2

var(β̂1)
→ F(1,300).

In this case, a very imprecisely estimated coe�cient β1 (very large var(β̂1)) will lead us to reject HA

and classify the player as myopic or optimal, while they follow neither an optimal nor myopic path.

This is the reason we propose the alternative classi�cation rule.

15
We present regression results using 5 lags. Results using 1 and 10 lags are available upon request.
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Figure 2.5 – MSD position of players in the optimal control. Colors represent the iden-

ti�ed pro�les after the regression �lter.

as Undetermined.
16

This led us to identify two distinct patterns. In the �rst, players

who started by decreasing the stock of the resource, with a pattern close to the myopic

behavior, and after a short time let it increase slowly and regularly toward the optimal

steady state. Since the evolution of the resource stock for these players converges to-

ward the optimal solution, we name this category Convergent. We identi�ed 15 players

who could be placed in this category. Second, we found 17 players who mostly extrac-

ted less than the rate of natural recharge, and thus let the resource increase beyond

the threshold where extraction is cost-free and called them Under-exploiters. Hey et al.

(2009) and Tasneem et al. (2019) identify similar behaviors, which they interpret as a

manifestation of prudence.

Figure 2.6 reports the evolution of the average resource stock of the di�erent ca-

tegories identi�ed. The solid blue line represents the players classi�ed as signi�cantly

Optimal and the dotted black line nearby represents the theoretical trajectory of the

socially optimal solution. As can be seen, even though these players behaved optimally,

they did not let the resource increase fast enough. More speci�cally, on average, they

reached the threshold of 20 after 101 seconds when, in theory, it should be reached

16
The individual curves of each of the 51 players are available at https://tinyurl.com/

h45z7hrz

https://tinyurl.com/h45z7hrz
https://tinyurl.com/h45z7hrz
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after 20 seconds. Also, their steady-state level was slightly higher than the theoretical

level.

Players classi�ed as Convergent are represented by the dotted green line. In the

beginning, the curve is very close to the theoretical curve for myopic behavior (dash-

dotted black line), but it starts to move away after 25 seconds and goes slowly in the

direction of the social optimum. On average, they reached the threshold of 20 after

259 seconds, which is signi�cantly later than the players classi�ed as Optimal (Mann-

Whitney p-value=0.002). We suspect those players to be “nearsighted” during the �rst

periods ; that is they did not maximize their decision over the long term (in�nite hori-

zon) but over a �nite horizon. Another possibility is that they were not su�ciently pa-

tient to let the resource increase rapidly to 20. Finally, Under-exploiters are represented

by the dashed orange curve. On average, they reached the threshold of 20 after 42 se-

conds, which is less than the group classi�ed as Optimal. However, the di�erence was

not statistically signi�cant (Mann-Whitney p-value=0.117) due to a large variance ;

some did not establish a strong positive slope before two minutes had elapsed.

We were not able to identify a speci�c pattern for the other 19 players who there-

fore remain in the Undetermined category. Note, however, that some of the behavior

in this category resembles what is referred to as "Pulse" in the literature, that is, alter-

nating low and high extraction rates, depending on the level of the resource (Schnier

& Anderson, 2006; Muller & Whillans, 2008; Hey et al., 2009; Tasneem et al., 2017).
17

Other trajectories resemble the one we identi�ed, but with noise and changes over

time.

After this second round of classi�cation, subjects split into four behavior categories

in a fairly balanced way : 19 were Optimal, 15 Convergent, 17 Under-Exploiter and 19

Undetermined.

To complete the analysis we look at the e�ciency of players’ decisions by calcula-

ting the ratio of their payo� to the maximum possible payo�, as is common practice in

the literature. With our set of parameters, a perfectly optimal player would have achie-

ved a payo� of 215 ECUs.
18

The average ratio, with all categories included, is 0.78 (Std

Dev. 0.23, Median 0.86), which is lower than in Tasneem et al. (2019) (0.85) and Suter

17
See for example players 50 or 51 in the �le mentioned in the footnote 16.

18
Remember that the total payo� is the sum of the discounted payo� at each instant plus the conti-

nuation payo�.
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Figure 2.6 – Average resource stock of players classi�ed as Optimal, Convergent and

Under-Exploiter. Area represent the 95% con�dence interval around the mean.

et al. (2012) (0.95). A possible explanation is that in Tasneem et al. (2019) the game

lasted only 2 minutes and stopped after 30 seconds without any movement from the

player, whereas Suter et al. (2012) implemented a discrete-time experiment. On ave-

rage, the e�ciency rate in the Optimal player category is 0.97 (Std Dev. 0.02), which

is signi�cantly higher than the other categories (Mann-Whitney p-value< 0.001 for

each test performed), of 0.79 (Std Dev. 0.17) for Convergent, 0.79 (Std Dev. 0.19) for

Under-Exploiter and 0.58 (Std Dev. 0.27) for Undetermined).

Figure 2.7 reports the ratios of each player in the experiment, taking care to se-

parate the categories we just de�ned. The Figure shows that the Optimal category is

very close to the ratio of 1, with low variance, which suggests the empirical strategy we

proposed is very relevant for this exercise. We can also observe that some players who

belong to the other categories also succeeded in achieving a high ratio of e�ciency,

even if these categories clearly exhibit much more heterogeneity than the Optimal one.

To summarize, we had a theoretical benchmark with two pro�les of behavior, Op-
timal and Myopic, but only one (Optimal) was observed in our data and it represents

only 27.14% of the sample. However, we have clearly identi�ed two other behavioral

patterns namely Convergent and Under-exploiter. Together, these behaviors account for
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Figure 2.7 – Ratio of e�ciency by category

three-quarters (72.46%) of the sample.

Game

As the game protocol is based on a within-subject design, the players were the same as

in the optimal control problem but were grouped in pairs in which both extracted the

same resource. Figure 2.8 reports the location of groups with respect to the conditional

MSDop andMSDmy. Based on this criterion, 32 groups are closer to the optimal than

the myopic pattern, and 3 groups are, by contrast, closer to the myopic than the optimal

pattern. However, after the application of the regression �lter, we �nd that 7 groups

out of 35 are signi�cantly Optimal (olive markers in Figure 2.8) and the remaining (28)

are Undetermined, that is, neither signi�cantly Feedback nor Myopic (brown markers in

Figure 2.8). In other words, 20% of groups were able to adopt the cooperative socially

optimal solution.

A visual inspection of the extraction and resource curves of the 28 Undetermined
groups

19
, lead us to identify 9 groups that converged toward the optimum (Convergent),

5 groups that let the resource increase to a very high level (Under-Exploiter) and 6

groups that, by contrast, overexploited the resource (Over-Exploiter). There are still 9

groups we could not classify, and these therefore remained in the Undetermined cate-

19
Curves for each group separately are available at https://tinyurl.com/2ztchw6x

https://tinyurl.com/2ztchw6x
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Figure 2.8 – MSD position of groups in the game. Colors represent the identi�ed pro-

�les after the regression �lter.

gory. Figure 2.9 reports the evolution of the average resource stock for each category,

as well as the three theoretical trajectories. Groups that behaved as signi�cantly opti-
mal are represented by the dotted blue line. On average, they started with a trajectory

very close to the theoretical path, but after a few seconds, they maintained the resource

stock at a slightly higher than optimal level.

As in the optimal control problem, the Convergent category (solid red line) dif-

fers from the Optimal category in that at the beginning of the game, the extraction

level is too high, and thereafter the trajectory toward the equilibrium value of 20 is

slow ; it is reached after 177 seconds compared to fewer than 12 seconds by the Opti-
mal groups (a signi�cant di�erence, Mann-Whitney p-value=0.001). Like the Optimal
groups, the Under-Exploiter groups (solid blue line) let the resource stock grow quickly,

on average after 29 seconds (not signi�cantly di�erent from Optimal, Mann-Whitney

p-value=0.503). However, those in this category maintain the growth path almost to

the end, which is not optimal. We do not know why they do not stop under-extracting

the resource once the steady-state level is reached. We did not include control tasks in

the experiment, for example, to capture the attitude toward risk or impatience. As a

result, we are unable to provide any explanatory insights. What is new in this multiple-

agent setting is the Over-Exploiter category. On average, with some variation, groups
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Figure 2.9 – Average resource stock of groups classi�ed as Optimal, Convergent and

Over-Exploiter (graph at the top of the �gure), and Under-Exploiter and Undetermined
(graph at the bottom of the �gure). Area represent the 95% con�dence interval around

the mean.

in this category started with a trajectory close to the feedback solution. However, in

the second part of the play, they fall between feedback and myopic behavior, which is

why the regression �lter failed to conclude signi�cant feedback behavior. If we look

at these groups individually (�le referenced in footnote 19), they seem to be charac-

terized by a high frequency of alternation between high and low levels of extraction,
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revealing a di�culty within the group in agreeing on a path or strategy.

Overall, if we combine the Optimal and Convergent categories as group that un-

derstood the cooperative solution, this represents 45.71% of the observations, which

is not signi�cantly di�erent from the proportion observed in the optimal control pro-

blem (48.47%, Fisher-Exact test p-value > 0.05). A candidate explanation is the use of

a within-subjects design and the learning process enabled by the �rst part of the expe-

riment where subjects played alone. As in the control problem, the categories identi�ed

represent almost 75% of the observations, with only 25% that do not seem to exhibit

a particular pattern of play.

The maximum combined payo� the group could achieve is 240 ECUs. We �rst cal-

culated the e�ciency ratio at the group level by summing the payo� at the last instant

of the two members of the pair. The average ratio of e�ciency, for all categories com-

bined, is 0.68 (Std Dev. 0.28, Median 0.77). Those in the Optimal category reach an

average e�ciency ratio of 0.98, followed by the Convergent (0.80), the Under-Exploiter
(0.79), and the Undetermined (0.58) categories, and, in a distant last place the Over-
Exploiter (0.22) category. Figure 2.10 reports on the left side the ratio of e�ciency at

the group level and on the right side at the individual level. For the calculation of the

individual e�ciency ratio, we compared the �nal individual payo� to 120 ECUs, half

of the maximum the group could achieve. It was nevertheless possible for a player to

obtain more than 120 ECUs, when the other member of their pair extracted a smaller

quantity. As a result, it was possible to achieve an e�ciency ratio greater than 1. This

happened to one player in the Undetermined groups and to three in Convergent, four

in Under-Exploiter and �ve in the Optimal groups. The latter number means that in

groups that behaved according to the theoretical social optimum, individual behaviors

were not symmetric. That is, one player has bene�ted from the low extraction of the

other.

Group Behavior According to the Pro�les in the Control

The within-subjects design allows us to analyze how groups are composed in terms

of pro�les identi�ed in the control problem. Table 2.3 reports the contingency table of
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Figure 2.10 – Ratio of e�ciency by category

individual pro�les in the control (rows) and group pro�les in the game (columns). If

we read the table by rows, we see that most players classi�ed as Optimal in the control

problem ended up in groups that we classi�ed as either Optimal or Convergent (15 out

of 19 or 78.95%) ; that is, groups that were somewhat successful in understanding and

reaching the cooperative solution. In addition, one-third of those in the Convergent ca-

tegory, when playing alone, were in groups categorized as Undetermined, suggesting

that the trajectory followed by this category is fragile under strategic interaction. Fi-

nally, 8 players out of 19 (42.11%), classi�ed as Undetermined in the control problem,

were in groups Over-Exploiter groups in the game. These observations show that even

for experienced players, strategic interaction complicates the management of the re-

source. If we read the table by columns, we see that groups classi�ed as Optimal were

predominantly (50%) composed of players identi�ed as Optimal in the control pro-

blem. The Convergent groups were also overwhelmingly composed of those earlier

classi�ed as either Convergent or Optimal. It seems that in the case of the latter, they

were not able to impose on the resource the rate of growth that they held when they

were playing alone.

In Table 2.4, we detail, for each identi�ed category of groups, the group composition

in terms of pro�les identi�ed in the control problem. Remember that we did not control

for the group composition ; this was done randomly by the server at the beginning of
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Game
Convergent Optimal Over-exploiter Under-exploiter Undetermined All

Control

Convergent 7 1 1 1 5 15

Optimal 8 7 0 1 3 19

Under-exploiter 1 4 3 6 3 17

Undetermined 2 2 8 0 7 19

All 18 14 12 8 18 70

Table 2.3 – Contingency table of players’ pro�le in the control and groups in the game

the game. If we read the table by rows we see that 13 of the 17 groups (76.47%) with

at least one Optimal player had a trajectory identi�ed either as signi�cantly Optimal
or Convergent ; having an Optimal player in the pair increases the likelihood that the

group cooperates. This is con�rmed by reading the table by columns : of the Optimal
groups, 6 out of 7 include at least one player that behaved as Optimal in the control

problem.

Game
Convergent Optimal Over-exploiter Under-exploiter Undetermined All

Control

Optimal - Optimal 1 1 - - - 2

Optimal - Convergent 5 1 - - - 6

Optimal - Undetermined 1 2 - - 2 5

Optimal - Under-exploiter - 2 - 1 1 4

Convergent - Convergent - - - - 1 1

Convergent - Under-exploiter 1 - - 1 - 2

Convergent - Undetermined 1 - 1 - 3 5

Under-exploiter - Under-exploiter - 1 - 2 - 3

Under-exploiter - Undetermined - - 3 - 2 5

Undetermined - Undetermined - - 2 - - 2

All 9 7 6 4 9 35

Table 2.4 – Contingency table of groups’ pro�les and groups’ composition in terms of

pro�les in the control

2.6 Conclusion

Using a simple groundwater extraction game, we provided theoretical solutions and

compared them to observations from a laboratory experiment. Implementing a single-

player (optimal control) and multi-player (game) setup in a within-subjects design al-

lowed us to study subjects’ behaviors in both contexts. To our knowledge, we o�er the

�rst study taking on the challenge of implementing continuous time and an in�nite
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horizon in the laboratory, and comparing individual and collective decisions to the full

set of standard theoretical solutions (Optimal, Feedback, and Myopic).

We were able to classify 75% of the observations in the optimal control problem,

into three distinct categories, namely Optimal, Convergent, and Under-Exploiter, using

a two-step methodology. First, we used a regression �lter on the conditional MSD mea-

sure, which allowed us to identify players whose behavior was signi�cantly optimal,

that is, consistent with the theoretical solution of the social optimum. Next, we visually

inspected the individual resource trajectories of the remaining players and grouped

them into two patterns : those who started out myopically and then slowly converged

to the optimal steady state (Convergent), and those who started out optimally but al-

lowed the resource to grow well beyond the steady-state threshold (Under-Exploiter).
Further research is needed to better understand these behaviors, perhaps including

additional observations and control tasks in the experimental design to capture indi-

vidual characteristics that might explain behaviors in this dynamic context, such as

attitude toward risk or impatience.

In the second part of the experiment, the "experienced" players were randomly

paired to participate in the same extraction problem, but with strategic interaction.

Following the same two-step process as that in the optimal control problem, we were

able to identify di�erent group pro�les, accounting for 75% of the observations. Of the

groups, 20% were found to be signi�cantly Optimal. We believe that this rate would

be much lower in the absence of the �rst part where subjects learned by playing alone.

We also identi�ed Convergent and Under-Exploiter groups. A new category, which we

named Over-Exploiter, was identi�ed for those who exhibited a high level of extraction

that led to the depletion of the resource. These players started with a behavior close

to Nash (feedback) behavior, that is, optimal but ignoring the other player in the pair

and, in the end, they alternated between a myopic and a feedback pattern. Most players

who made up the groups classi�ed in this category had a behavior that we de�ned as

Undetermined in the control phase, meaning that they were already not following a

clearly identi�ed pattern when they extracted the resource alone.

Most players who seemed to understand that their long-term payo� maximizing

trajectory, when playing alone, required letting the resource increase until the level

at which the extraction was cost-free pursued their reasoning in the game ; this was

the case even if not always successful, depending on the behavior of their counter-
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part. Therefore, if our goal were to foster cooperation in the multiple-agent setting, we

would recommend starting with an intervention that helps players understand how to

maximize their long-term payo� in the context of a single-agent scenario.

We hope our theoretical model, the solutions to experimental challenges and the

empirical strategy implemented can serve as a benchmark for more complex frame-

works to study dynamic CPR. We can think of several interesting additional investiga-

tions that would complement our study. First, from a theoretical perspective, it would

be helpful to model the behavior of the players and groups we identi�ed as Convergent.
These seem to have understood the path to the cooperative solution but were unable to

reach it quickly. Our intuition is that they are "nearsighted", that is, they are not able to

optimize their extraction over the long term but only on a �nite horizon. Another pos-

sible explanation is that these players and groups are not su�ciently patient. A control

task like Andreoni & Sprenger (2012)’s Convex Time Budget procedure might be use-

ful in determining the extent to which impatience matters in this dynamic context.

Second, as stated earlier, the fairly high frequency at which socially optimal behavior

was observed in the game could, in part, be a consequence of the experimental de-

sign. Our original intention was for participants in the game to have experience, but

it would be interesting to see if, without the �rst solo learning phase, the frequency

of socially optimal behavior would be similar. Finally, many extensions of the game

setting are possible, such as : increasing the group size (Herr et al., 1997), changing the

hydrogeologic properties of the groundwater model (Suter et al., 2012), allowing for

various types of communication (Oprea et al., 2014), or introducing exogenous and/or

endogenous shocks to the resource stock to simulate, for example, the possibility of

catastrophic events (De Frutos Cachorro et al., 2014).

In the next chapter, we present the results of an experiment comparing continuous

time to discrete time over an in�nite horizon, in the study of the extraction behaviors

of groundwater users. We also distinguish the situation without strategic interaction

from the one involving strategic interaction.
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Continuous vs. Discrete Time in
Dynamic Common Pool Resource
Game Experiments

Abstract:
We study the impact of discrete versus continuous time on the behavior of agents

in the context of a dynamic common pool resource game. To this purpose, we consider

a linear quadratic model in which agents exploit a renewable resource with an in�nite

horizon and conduct a lab experiment. We use a di�erential game for continuous time

and derive its discrete time approximation. When the agent is the sole owner of the

resource, we fail to detect on a battery of indicators any di�erence between discrete

and continuous time. Conversely, in the two-player setting, signi�cantly more agents

can be classi�ed as myopic and end up with a low resource level in discrete time.

Continuous time seems to allow for better cooperation and thus greater sustainability

of the resource than does discrete time. Also, payo�s are more equally distributed in

the continuous time setting.

Keywords: Common Pool Resource; Di�erential Games; Experimental Economics;

Continuous Time; Discrete Time

Codes JEL : C01; C73; C91; C92; Q20

Résumé :
Nous étudions l’impact du temps discret versus temps continu sur le comportement

75
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des agents dans un jeu dynamique de ressources communes. À cette �n, nous consi-

dérons un modèle linéaire quadratique dans lequel les agents exploitent une ressource

renouvelable sur un horizon in�ni et menons une expérience de laboratoire. Nous uti-

lisons un jeu di�érentiel en temps continu et déduisons son approximation en temps

discret. Lorsque l’agent est le seul propriétaire de la ressource, nous ne parvenons pas

à détecter sur une batterie d’indicateurs une quelconque di�érence entre temps discret

et temps continu. Inversement, dans le cadre de deux joueurs, un nombre signi�cati-

vement plus élevé d’agents peuvent être classés comme myopes et se retrouvent avec

un faible niveau de ressources en temps discret. Le temps continu semble permettre

une meilleure coopération et donc une plus grande durabilité de la ressource contrai-

rement au temps discret. De plus, les gains sont distribués de manière plus égale en

temps continu.

Mots-clés :Ressources Communes ; Jeux Di�érentiels ; Économie Expérimentale ; Temps

Continu ; Temps Discret

Codes JEL : C01 ; C73 ; C91 ; C92 ; Q20

3.1 Introduction

On many issues, we have the possibility of taking decisions at any moment in time,

and asynchronously with other agents : sending a message, extracting water from a

groundwater table, reducing prices, etc. Many of the interactions we engage in have

a real-time aspect. How does this ability to rapidly and asynchronously adjust actions

shape our behavior? This question has been of deep interest for behavioral and ex-

perimental economists over the past decade. Indeed, many questions that were ini-

tially analyzed in discrete time in laboratory experiments can today be analyzed using

continuous time protocols that allow researchers to compare the behavior of agents in

discrete versus continuous time.

Previous articles �nd that continuous time can foster cooperation, but only under

certain conditions. When presenting prisoner’s dilemma games to two-person groups

in three treatments, one in continuous time, one in static time (one-shot) and one in

discrete time, Friedman & Oprea (2012) �nd a higher median cooperation rate in conti-

nuous time. Bigoni et al. (2015) combine elements of the design of Bó (2005) and of

Friedman & Oprea (2012) to study cooperation in repeated prisoner’s dilemma. They
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�nd that contrary to previous results in discrete time, cooperation is easier to achieve

in continuous time with a deterministic time horizon than with a stochastic time hori-

zon. Oprea et al. (2014) study subjects’ contributions in a public good game played in

groups of �ve people. They �nd players contribute higher amounts in continuous time

than in discrete time but only when a rich communication protocol among participants

is included. Introducing new laboratory methods in order to eliminate inertia in a sub-

ject’s decision in continuous time experiments, Calford & Oprea (2017) �nd strikingly

di�erent behaviors in continuous vs. discrete time in a simple timing game where two

participants compete to enter a market. Finally, Leng et al. (2018) study the evolution of

cooperation by crossing time protocols (continuous vs. discrete time) and information

feedback (group minimum e�ort level vs. e�ort level of each member of the group) in

a minimum e�ort coordination game played in groups of six people. Among the four

treatments, the authors �nd that the average payo� increases only when continuous

time is associated with the provision of information on the e�ort level of each member

of the group.

Although studying interactions in the prisoner’s dilemma, public good, timing, or

minimum e�ort coordination games is extremely useful, these games abstract from a

feature relevant to many economic applications, the presence of a state variable that

makes the impact of any decision to persist through time, which is the case in common

pool resource (CPR) games (Vespa, 2020). The vast majority of the CPR literature that

combines theory and experimentation is in discrete time. A possible explanation is that

discrete time is easier to implement in the lab and can be compared to a static repeated

game in which the state variable evolves from one period to the other (Herr et al., 1997;

Gardner et al., 1997; Mason & Phillips, 1997; Hey et al., 2009; Suter et al., 2012, for

instance). Nevertheless, Tasneem et al. (2017) recently tested a CPR di�erential game

in the lab using a continuous time protocol. Focusing on Markov’s perfect equilibrium

strategy, they tried to determine the relevance of the nonlinear equilibria in a two-

player common property resource game. Janssen et al. (2010) have also studied the role

of communication and punishment in a CPR game in continuous time. They �nd that

punishment can foster cooperation only when combined with communication. The

authors do not present the formal theoretical model underlying their experiment.
1

1
Note also that some authors such as Noussair et al. (2015) conduct their experiments in discrete

time, while their theoretical model is in continuous time, which poses the question of to what theoretical
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In this paper we build on the previous literature to study the impact of the nature

of time in a two-person common pool resource (CPR) problem. Several important dif-

ferences with previously tested games (prisoner’s dilemma, public good, timing, and

minimum e�ort coordination games) can lead to a di�erent impact of the nature of

time. First, the presence of the state variable makes the impact of any decision persist

through time (Vespa, 2020), which can, for instance, generate dynamic free riding (Bat-

taglini et al., 2016).
2

Moreover, as opposed to the prisoner’s dilemma, where payo�s can

be directly read from a matrix, dynamic games are more di�cult to handle. These two

elements can make the optimal solution harder to reach in the case of CPR games. Re-

versely, in�nite horizon can provide strategic opportunities to endogenously support

cooperative outcomes (Battaglini et al., 2016). In addition, using dynamic CPR games

allows us to explicitly derive equilibrium paths for three well identi�ed types of be-

havior – myopic, feedback and optimal. How does the nature of time a�ect strategic

interactions in this context ? Can continuous time still foster cooperation? Does the

nature of time a�ect the equilibrium path to which participants are the closest ?

To analyze these questions, we consider a simple linear quadratic model, based on

Gisser & Sanchez (1980); Negri (1989), and Rubio & Casino (2003), in which agents ex-

ploit a renewable resource with an in�nite horizon. The resource can be assimilated

to a groundwater basin but other interpretations of CPR are possible. We use a di�e-

rential game for continuous time and propose a discretization of the CPR game so that

the equilibrium paths for myopic, feedback and optimal behaviors are almost identi-

cal in the discrete and continuous time models. For the implementation in the lab we

choose to lead a non-contextualized experiment in a between-subject design with four

treatments. We cross the nature of time (discrete versus continuous) and the number of

subjects exploiting the resource (one versus two). In the continuous time treatments,

we follow the literature and mimic continuous time by allowing the agent to change

predictions should we compare lab results : those from discrete or those from continuous time models ?

Moreover, Tasneem et al. (2019) study the ability of a single economic agent to exploit a renewable

resource e�ciently. To do that they test in the laboratory an optimal control problem with an in�nite

horizon in continuous time and show that extraction behavior results in a steady state of the resource

only 56% of the time.

2
Battaglini et al. (2016) de�ne dynamic free-riding this way : "an increase in current investment by

one agent [which] typically triggers a reduction in future investment by all agents". In the context of a

CPR, a decrease in extraction level can be seen as an investment to obtain a higher resource level, and

thus greater bene�ts in the future.
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his extraction rate every second. In the discrete time treatments, the agent can change

his extraction level every 10 seconds. About one hundred subjects participated in each

treatment.
3

Presenting subjects with the simplest setting, i.e., a single agent exploiting the re-

source, allows us to test whether the ability to manage a resource di�ers in continuous

and discrete time. Indeed, the greater number of decisions potentially taken in conti-

nuous time could facilitate a trial and error process to reach optimal management of

the resource. It is important to establish this baseline because, as explained earlier, dy-

namic situations are complex problems to handle, and it is important to understand the

impact of the nature of time without interactions. Our estimates indicating that only

37% of the agents play optimally, con�rms this statement. Our results also show that

in all aspects tested, a subject’s ability is not a�ected by the nature of time in a single

agent setting. This allows us to deduce that the di�erences observed in the multiplayer

setting are due to the impact of the nature of time on the interactions.

When running the experiment in a multiplayer setting, we �nd signi�cant di�e-

rences between continuous and discrete time. For example, the average resource level

is signi�cantly lower in discrete time. There is a larger proportion of agents that can be

classi�ed as myopic and a larger proportion of agents that end up with a low resource

level in discrete time, while the proportion of optimal and feedback agents are not si-

gni�cantly di�erent between the discrete and continuous time. Continuous time seems

to favor a more sustainable exploitation of the resource. Our underlying intuition for

this result is similar to Friedman & Oprea (2012), Oprea et al. (2014) and Leng et al.

(2018). Continuous time allows subjects to brie�y switch to cooperative behavior, such

as a socially optimal extraction rate, in order to incite the other player to do the same,

or conversely to quickly increase extraction if the other player increases their extrac-

tion too much. The fact that we observe more stable extraction levels in continuous

time and that extraction levels are more homogeneous within the group is consistent

with this potential explanatory mechanism. It also results in less unequally distributed

payo�s in continuous than in discrete time.

3
One exception to this way of implementing continuous time in the laboratory is Calford & Oprea

(2017). The authors propose a protocol where time freezes when one decision is taken in order to let

the other player react to this decision without a delay in the game. This protocol is useful and easy to

implement for timing games, such as the one studied by Calford & Oprea (2017), but is less appropriate

for CPR games, as we explain in Section 3.3.
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Through this work, we provide several contributions to the literature. We o�er the

�rst in-lab analysis of the impact of discrete versus continuous time in the lab in the

case of CPR games. We contribute to the analysis of common pool resources using dif-

ferential games, by being the �rst experimental paper to consider socially optimal and

myopic strategies in a continuous time setting. We also make two secondary contri-

butions. We present an experimental protocol allowing to compare continuous and

discrete time models in the laboratory. Finally, to compare the behavior of subjects in

the lab to theoretical projections, we combine mean-squared deviation statistics and

linear regressions.

The next section of this paper presents the theoretical setting. Section 3.3 describes

the experimental design used to test the theoretical model. Section 3.4 is devoted to the

empirical strategy, and results are analyzed in Section 3.5. The �nal section provides a

discussion and conclusion.

3.2 The Model

We consider a simple linear quadratic model in continuous time, in which two agents,

i, j exploit a renewable resource over an in�nite horizon. The resource can be assimi-

lated to a groundwater table. Water pumped provides agents revenueB(w) depending

only on the extraction w. Agents also incur a cost C(H,w), which depends negatively

on the level of the groundwater H . The parameters a, b, c0 and c1 are positive. An

agent’s instantaneous payo� is given by the di�erence between revenue and cost, as

shown by equation (3.1) :

B(w)︷ ︸︸ ︷
aw − b

2
w2−

marginal cost (c(H))︷ ︸︸ ︷
max(0, c0 − c1H)w.︸ ︷︷ ︸

C(H,w)

(3.1)

We need to have a positive the marginal or unitary cost c(H) to prevent the cost

to become a subsidy. Thus it is important to adopt a piecewise marginal cost function :

c(H) =

(c0 − c1H) if 0 ≤ H <
c0
c1
.

0 if H ≥ c0
c1
.
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In the model, agents have to choose an extraction that maximizes their instanta-

neous payo�. The problem di�ers between continuous time and discrete time, in conti-

nuous time, decisions are made at each instant t in real time and the resource evolves

continuously, while in discrete time, decisions are made at each period n and the re-

source evolves from one period to the next. Whether in continuous or discrete time,

the behavior of agents is analyzed in two settings. First, in an optimal control problem,

where a sole agent exploits the groundwater, we characterize both the myopic and the

optimal behaviors. Second, the behavior of agents can be analyzed in a game, where

strategic interaction is introduced by considering two identical and symmetrical agents

in the exploitation of the groundwater. A feedback equilibrium path can be de�ned, in

addition to the myopic and optimal equilibrium paths in the game.

Social optimum can be de�ned as a behavior in which an agent’s extraction decision

allows him to maximize his discounted payo�s in order to maintain the resource at

an e�cient level. The social optimum is also called the "cooperative solution" in the

game. In that case the resource is maintained at an e�cient level by maximizing the

joint discounted payo� of all agents. The myopic solution is where the agent is only

interested in the maximization of his current payo� (equation (3.1)), regardless of the

evolution of the groundwater. The feedback equilibrium can be seen as a scenario in

which agents adopt non-cooperative behavior, maximizing their own discounted net

payo�s while also taking into account the evolution of the groundwater.

In continuous time, the discounted payo� (with r the discount rate) for player i is :∫ ∞
0

e−rt
[
awi(t)−

b

2
wi(t)

2 −max(0, c0 − c1H(t))wi(t)

]
dt, (3.2)

and the dynamics is given as :
Ḣ(t) = R− α(wi(t) + wj(t)),

H(0) = H0 and H0 ≥ 0, H0 given,

H(t) ≥ 0,

wi(t) ≥ 0.

In discrete time, the discounted payo� (with 1 − rτ the discount factor) and the

dynamics for player i are given as :

∞∑
n=0

(1− rτ)n
[
awi(n)− b

2
wi(n)2 −max (0, c0 − c1H(n))wi(n)

]
τ. (3.3)
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s.t 
H(n+ 1) = H(n) + τ (R− α(wi(n) + wj(n))) ,

H(0) = H0 and H0 ≥ 0, H0 given,

H(n) ≥ 0,

wi(n) ≥ 0.

In Appendix C.1 of Chapter 3, we explain how we discretized the continuous time

model in order to obtain its discrete time equivalent. The discrete time model converges

towards the continuous time model when the discretization step τ tends toward zero.

The discretization rate τ chosen in discrete time provides a good approximation of

the continuous time problem, and optimal solutions can be found by means of the Ha-

miltonian operator. The Nash feedback equilibrium in continuous time can be found by

means of the Hamilton Jacobi Bellman (HJB) equation, by applying the guessing me-

thod to guess a quadratic value function and in discrete time by means of the Bellman

equation. Finally, myopic solutions are obtained by means of a simple �rst-order deri-

vative. They can also provide a feedback representation of the solutions when consi-

dering the constraints.
4

When wj is dropped from the dynamics, one is able to solve

the optimal control maximization problem (the sole-agent setting). See Appendix C.1

of Chapter 3. The complete theoretical proofs are available in Appendix C.2 of Chapter

3.

3.3 The Experimental Design

We used a between-subject design in which participants in the sole-agent treatments

were di�erent from the ones in the multiple-agent treatments. The experiment took

place at the Experimental Economics Laboratory of Montpellier (LEEM). From Decem-

ber 2019 to February 2020, a total of 200 students from the University of Montpellier

participated in the �rst part of the experiment. This part was devoted to data collection

for the single agent condition. It included a total of 17 sessions, 11 where subjects took

decisions in a continuous-time treatment and 6 in a discrete-time one.
5

From Novem-

4
The feedback representation is obtained when the solution is written according to the state variable,

instead of according to time.

5
Since the continuous time condition involves higher network tra�c, we limited the number of

participants per session to a maximum of 14, which explains the greater number of sessions for this

treatment.
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ber to December 2020, a total of 190 subjects participated in the second part of the

experiment, which was devoted to data collection for the two-players game. The ex-

periment involved 20 sessions of continuous and discrete time treatments for groups

of two players, so that we had 49 groups in continuous time and 46 groups in dis-

crete time.
6

It was a non-contextualized experiment, using the oTree platform (Chen

et al., 2016), in which subjects participated in a ten-minute training phase of the game,

followed by a ten-minute e�ective phase of the game which counted for their remune-

ration. The experimental currencies (ECU) accumulated by subjects in the experiment

were converted into cash payments with the conversion rate of 10 ECUs to 0.5 euro.
7

Each experimental session lasted around an hour.

We begin by giving a global overview of the experiment, then we describe the

parametrization. Finally, we explain how we implemented continuous time and in�nite

horizon.

3.3.1 Global Description

In the sole-agent treatments, instructions explained the dynamics of the resource, the

decision-making process and its consequences on the available resource, the cost of

extraction and the payo�. After an initial individual reading, an experimenter pro-

ceeded to an out loud reading of the instructions. Next, subjects answered a digital

questionnaire to make sure they understood the evolution of the resource as well as

the computation of payo�s. They were also invited to ask questions by raising their

hands.

To familiarize subjects with the graphical interface, they participated in a 10-minute

training phase before a 10-minute paid phase. At the beginning of each phase, subjects

had to choose an initial extraction between 0 and 2.8 by moving their cursor on a gra-

duated slider, which displayed values up to two decimal points. Due to the quadratic

nature of our revenue function, any extraction level led to a positive revenue. Figure

B.1 in the Appendix C.3 of Chapter 3 shows a concave revenue curve with a maximum

revenue reached for an extraction of 1.4. Figure B.2 in the Appendix C.3 of Chapter

3 also shows the unitary cost function, which decreases as the available resource in-

6
ORSEE (Greiner, 2015) is the platform used by the LEEM to manage the subject pool.

7
ECU means Experimental Currency Unit.
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creases and vanishes when the level of the available resource is above 20.

In the continuous time instructions, the extraction refers to an extraction rate,

while in the discrete time instructions it refers to an extraction level. In addition, a

distinction is made between the di�erential equation representing the dynamics of the

resource in continuous time and the di�erence equation representing the dynamics

of the resource in discrete time. However, for the sake of simpli�cation, we explain

the dynamics in continuous time rather than writing the di�erential equation. Once

the subjects chose an initial extraction level, a new screen appeared and subjects were

able to see the dynamics of the resource along with their payo�, which included the

cumulative and continuation payo�s, updated every second in the continuous time

treatment and every period in the discrete time treatment.

Adapted instructions were provided to subjects in the multiple-agent treatments.

Environments remained the same as in the sole agent treatments, except that subjects

extracted the resource in groups of two. The layout of the user interface was slightly

di�erent from that of the sole agent treatments, with an additional curve showing the

pair’s total extraction. Complete instructions for the four treatments can be found in

the supplementary materials.

3.3.2 Parameters

Table 3.1 reports the parameters used. To get comparable results, parameters were

the same in continuous time and discrete time for both the sole- and multiple-agent

treatments.
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Table 3.1 – Parameters for the experiment

Variable Description Value

a Linear parameter in the revenue function 2.5
b Quadratic parameter in the revenue function 1.8
c0 Maximum average cost 2
c1 Variable cost 0.1

c0 − c1H Marginal or unitary cost 2− 0.1H
r Discount rate in continuous time 0.005

β = (1− rτ) Discount factor in discrete time 0.995
R Natural recharge (rain) 0.56
α Return �ow coe�cient 1
H0 Initial resource level 15
τ Discretization step 0.1 & 1

Figure 3.1 and 3.2 below show the theoretical time paths for the extraction and re-

source levels in continuous time for 100 seconds. The theoretical time paths in discrete

time are almost identical to those in continuous time. See for instance Appendix C.1 of

Chapter 3 for the feedback equilibrium (continuous version with τ = 0.1 and discrete

version with τ = 1).

Figure 3.1 – Extraction behaviors and resource levels in sole-agent continuous time
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Figure 3.2 – Extraction behaviors and resource levels in multiple-agent continuous

time

The in�nite horizon requires us to set a small discount rate r to capture subjects’

attention on the sustainability of the resource. The corresponding discount factor in

discrete time is β. We also chose these parameters so that the steady state level of

the resource in the socially optimal case is strongly separated from other cases. The

socially optimal behavior leads to a high level of the groundwater, while the myopic

behavior results in low groundwater levels (see the right sides of �gures 3.1 and 3.2).

Both the natural recharge R and the return �ow coe�cient α were designated at

a small enough size to capture the renewable nature of the resource, simulate real life

conditions and avoid �oods in the model.
8

In situations where a subject’s extraction is higher than the available resource,

the rule was to set the extraction to zero until she changed her decision or until the

amount of the resource increased enough to allow for a new extraction. This rule was

chosen because it is easy to implement in the lab and because setting an allocation

rule for the extraction in proportion to the available resource would have led to a

multiplicity of equilibria, which would have greatly complicated the empirical strategy

8
The return �ow coe�cient is the quantity of water returning to the groundwater after each extrac-

tion.
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needed to compare lab results to equilibrium paths without revealing any (particularly)

interesting information on the behavior of agents.

3.3.3 Decision Timing in Continuous and Discrete Time

One of the main challenges of our experimental protocol is the implementation of

continuous time in the lab. The computer is naturally unable to implement "pure"

continuous time in the sense that time doesn’t stop and that decisions can be taken

at literally any moment. Most previous experiments implement continuous time by

letting people change their decisions very frequently, every second or less, in order to

mimic continuous time (Friedman & Oprea, 2012; Oprea et al., 2014; Bigoni et al., 2015;

Leng et al., 2018).

One exception to this way of implementing continuous time is presented by Calford

& Oprea (2017) with a timing game where two �rms compete to enter a market. The

authors distinguish two types of continuous time in their experiment : (realistic) iner-

tial continuous time and perfectly continuous time. In (realistic) inertial continuous

time, subjects are allowed to enter the market at any time, but both �rms cannot do

so at the exact same time. Indeed, subjects take a brief moment to consider whether

to enter or not, which generates natural inertia in decision making. To eliminate this

inertia, Calford & Oprea (2017) freeze time following the the �rst �rm’s decision to

enter the market. If the other �rm enters during the frozen time window, the decisions

of the two players are considered as simultaneous. Otherwise, the game continues as

in inertial continuous time. The authors call this perfectly continuous time.

Calford & Oprea (2017)’s protocol is interesting and easy to implement with timing

games that involve one decision (e.g., entering a market). In CPR games like ours, where

up to 600 decisions can be taken, this approach would become cumbersome. In our

experiment we follow the literature �rst mentioned in (Friedman & Oprea, 2012; Oprea

et al., 2014; Bigoni et al., 2015; Leng et al., 2018) and let subjects change their extraction

level very frequently. In practice, the time that elapses between two instants must be

short enough that the subject in the experiment experiences it as continuous. We chose

to set a one-second time interval between two instants. It is not the shortest possible

interval we could implement in the laboratory, but it is intuitive and easy to understand

for subjects. Moreover, enough time elapses between two seconds for computers to
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perform calculations and exchange information across the network.
9,10

To be implemented in the lab, the continuous time model thus has to be discretized.

We explain how to discretize the continuous time model in order to obtain its discrete

time equivalent in Appendix C.1 of Chapter 3. To provide an experiment that is as close

as possible to continuous time, one has to choose a discretization step that is as small as

possible. We choose τ = 0.1 to capture the speci�c characteristic of continuous time,

i.e., its uninterrupted evolution. This means that in our continuous time treatment,

one second of real time corresponds to 0.1 instant in the model. Thus, 10 minutes of

experiment are equal to 600 seconds and equivalent to 60 instants. In the discrete time

treatment, we have chosen a larger but reasonable discretization rate, τ = 1. With this

rate, 1 period equals 1 instant in the model. Therefore, subjects participated in a 60-

period dynamic environment. In addition, in order to ensure a similar duration in both

treatments, we gave the subject exactly 10 seconds in each period to take her decision,

which means that the play time was also 10 minutes in discrete time.

The graphical user interface was divided into four areas. On the top left, a graph

showed the evolution of the player’s extraction. At the top right, a graph displayed

the evolution of the resource, and at the bottom left there was a graph showing the

evolution of the payo�. Finally, at the bottom right, a text box presented the same

information as the graphs but in text form. Figure B.3 in Appendix C.3 of Chapter 3

shows a screenshot of the user interface for the sole agent treatment in continuous

time. In the multiple agent treatments, the user interface was identical except that

an additional curve in the upper left graph showed the evolution of the group’s total

extraction.

9
In the sole agent continuous time treatment, subjects were able to change their extraction rate at

any moment by simply moving the graduated slider displayed on their computer. Every second, the

computer transmitted the slider value to the server, which then performed the computations (resource

and payo�) and updated the values displayed on the computer’s graph and text interfaces.

10
In the two-player continuous-time treatment, player 2’s computer sent the cursor value to the server

as soon as it changed, while player 1’s computer transmitted the cursor value to the server every second,

which triggered the server to continuously broadcast the updated values to both players. Thus, every

second, the server took player 1’s current extraction and player 2’s most recent extraction (i.e. the last

one transmitted by his computer). In this way, the time was synchronized between the two members of

the group, since only one player was triggering the continuous updating of the information. This also

reduced network tra�c because as long as the second player did not change his extraction, his computer

did not transmit a new value.
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3.3.4 In�nite Horizon

Several ways of modelling the in�nite horizon have been proposed in the literature.

In repeated games, a heavily used solution is random termination. Fréchette & Yuksel

(2017) compare variations of this solution. With dynamic CPR games, an alternative

to random termination is to use a continuation payo�. For our experiment we opted

for continuation payo�s, as implemented by Tasneem et al. (2017) and Tasneem et al.

(2019), because it allows subjects to see directly what they would earn if the game went

on forever. Moreover, in a two-player game with random termination, the players may

have di�erent beliefs about the last period or instant. Continuation payo� avoids this

problem.
11

In both continuous and discrete time, the payo� is composed of two elements : (i)

a cumulative payo� from the �rst instant of play (t = 0) to the present instant (t = p),

and (ii) a continuation payo�, which is computed as an integral of payo�s from the

present instant (t = p) to in�nity (t = ∞), assuming that the player’s extraction

remains unchanged. In the two-player game, the continuation payo� was calculated

assuming that both players’ extraction remained unchanged.

The cumulative payo� in continuous time corresponds to the discounted integral

of the instantaneous payo�s from the beginning of the experiment up to the present

instant. Thus, the discount rate is r = 0.5% and means that the payo� of instant t is

multiplied by e−0.005×t. The discounting principle allows subjects to understand that

the same instantaneous payo� has a di�erent discounted value according to the instant.

In other words, as time goes on, the payo�s of the last instants have a lesser impact on

the subject’s total payo� for the experiment. Similarly, the cumulative payo� in discrete

time corresponds to the discounted sum of each period’s payo� from the beginning of

the experiment up to the present period. Thus, the discount factor is β = 0.995 and

means that the payo� of period n is multiplied by 0.995n. The discounting principle

allows subjects to understand that the same payo� has a di�erent discounted value

according to the period. In other words, in the experiment, the same instantaneous

payo� contributes less to the total �nal payo� when it occurs in the later periods rather

than in the earlier periods.
12

11
Noussair & Matheny (2000) and Brown et al. (2011) show that in single-agent cases, behavior is not

signi�cantly di�erent under random termination or continuation payo�.

12
Note that while discounting allows us to implement the continuation payo� here, it has limited
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3.4 Empirical Strategy

Two hundred subjects participated in the sole-agent (optimal control) experiment and

190 in the multiple-player (game) experiments. They took (paid) extraction decisions

for 600 seconds during each session. We use these extraction decisions data to unders-

tand whether agents take di�erent decisions in continuous vs. discrete time, and in the

control vs. in the game. Through the empirical analysis, we use standard tests such

as the Mann-Whitney and the Fisher exact proportion tests to compare our indicators

among the di�erent treatments. Furthermore, to determine whether agents demons-

trated myopic or optimal behavior (or feedback behavior in the game), we use the

empirical strategy presented in this section. For ease of understanding, the empirical

strategy is �rst explained in detail for the sole-agent setting.

To identify which theoretical extraction pattern an agent’s extraction comes closest

to, a widely used statistics is the mean squared deviations (MSD, e.g., Herr et al., 1997).

The minimum MSD gives the agent type. The MSDs are calculated for each agent such

that :

MSDth
my =

∑T
t=1

(
w(t)− w(t)thmy

)2
T

,

MSDth
op =

∑T
t=1

(
w(t)− w(t)thop

)2
T

,

(3.4)

wherew(t) is the extraction of the agent at time t,w(t)thmy is the constrained myopic

theoretical extraction at time t, and w(t)thop is the optimal theoretical extraction at time

t. Agents can be classi�ed as myopic or optimal, depending on which MSD,MSDth
my or

MSDth
op is the smallest. Comparing extractions of the agent to the theoretical constrai-

ned myopic and optimal extraction in this way is imperfect since an agent can make

mistakes and begin adopting an optimal path after, say, 30 seconds, which will not be

captured correctly by the method.

For instance, if an agent under-extracts for the �rst 30 seconds, the optimal extrac-

impact on the payo�s that are accumulated within the 10 minutes of the game. Given our parametriza-

tion, the optimal extraction rate when R=20 is equal to 0.56. At t=18 (�rst instant/period that R=20 with

the optimal extraction path) it generates a payo� of 1.02 ECU, while at t=60 (the last instant/period), it

generates a payo� of 0.82 ECU, a gap of only 20%.
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tion at time 31, given the observed groundwater level H (called conditional, w(31)cop)

will be greater than the optimal extraction at time 31 if the agent behaved perfectly op-

timally from time 0 (w(31)thop). Thus, in order to correctly identify an agent’s behavior

type - myopic or optimal - we compare observed extraction to conditional extractions

throughout the remainder of the paper. Conditional extractions are computed with

respect to the t− 1 actual groundwater level. Thus, we compute the following MSDs :

MSDc
my =

∑T
t=1

(
w(t)− w(t)cmy

)2
T

,

MSDc
op =

∑T
t=1

(
w(t)− w(t)cop

)2
T

,

(3.5)

wherew(t)cmy is the conditional constrained myopic extraction of the agent at each

second (every ten seconds for discrete time), and w(t)cop is the conditional optimal

extraction of the agent. Agents are classi�ed as myopic or optimal depending on which

MSD, MSDc
my or MSDc

op is the smallest.

The inconvenient of a classi�cation of agents based on the MSD alone is that an

agent will always be classi�ed, even if he doesn’t follow the theoretical patterns studied

at all.
13

To overcome this �aw, we add a second criteria based on a regression analysis.

Supposing that for a given agent, we have :

w(t)cmy < w(t)cop, or

w(t)cmy > w(t)cop,
(3.6)

then we run the following regression :

w(t) = β0 + β1w(t)cmy + εt, or

w(t) = β0 + β1w(t)cop + εt.
(3.7)

We consider an agent to be signi�cantly myopic (or optimal) if β1 is positive and si-

gni�cantly di�erent from 0. This allows us to categorize the agents as : myopic, optimal,

13
To take a concrete example, instead of comparing the agent’s extraction w(t) to the conditional

constrained myopic and conditional optimal extraction, w(t)cmy and w(t)cop, we could compare it to

the temperature in Moscow and Istanbul from day 1 to day 600, and we would �nd that our agent’s

extraction is closer to the temperature either in Moscow or in Istanbul, because one MSD will always

be smaller than the other, even if completely irrelevant.
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or undetermined.
14

Regarding the econometric time series treatments, we implement

an augmented Dickey-Fuller test to detect the presence of unit roots in the series. In

case of non-stationarity of the variables, we run our regressions on a di�erentiated

series. Serial correlation of the error terms is dealt with using Newey-West standard

errors, and sensitivity tests using 1, 5, and 10 lags are implemented.
15

We follow exactly the same strategy to analyze experimental data for the game, but

this time for three instead of two predicted behaviors, namely : myopic, optimal and

feedback. Note that the continuous time framework provides us with 600 decisions per

agent, while the discrete time framework provides us with only 60. This greatly impacts

our empirical strategy as β-coe�cients would have more chances to be signi�cant in

continuous time - a greater number of observations leading to a lower minimum e�ect

size. To avoid this issue, we keep only one observation every ten seconds when running

the regressions in continuous time.

3.5 Results

Figure 3.3 presents an overview of our results. We plotted the mean resource by treat-

ment along with the 95% con�dence interval around the estimated mean. It seems we

have close average resource levels in the two time treatments in the control, but dif-

ferent ones in the game. Also, the average resource level increases in the control and

decreases in the game.

14
An alternative is proposed by Suter et al. (2012), who run a similar regression (without the constant

term) and consider that an agent follows a given behavior if the coe�cient is not signi�cantly di�erent

from 1. A natural way to do this is to implement a Wald test with :{
H0 : β1 = 1,
HA : β1 6= 1,

and W =
(β̂1 − 1)2

var(β̂1)
→ F(1,300).

In this case, a very imprecisely estimated coe�cient β1 (very large var(β̂1)) will lead us to reject HA

and classify the agent as myopic or optimal, although he follows neither an optimal or myopic path.

This is the reason why we propose the aforementioned alternative rule for classi�cation.

15
We present regression results using 1 lags. Results using 5 and 10 lags are available upon request.
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Figure 3.3 – Evolution of mean resource level by treatment

In the rest of the section we take a closer look at what happens within each treat-

ment. We �rst compare the agents in the control setting. Second, we compare the ave-

rage behaviors in the control and in the game. Third, we thoroughly study behaviors

in the game. Finally, we build speci�c indicators to examine the potential mechanism

at play. Note that through the rest of the paper, the term ‘agents’ is used to refer to sub-

jects in the control, the term ‘players’ to subjects in the game, and the term ‘groups’

to groups of two subjects that were paired in the game.

3.5.1 Analysis of the Optimal Control

Table 3.2 compares continuous and discrete time over various indicators. The average

resource level is not signi�cantly di�erent between the two treatments. About 40%

of the players reach a resource level greater than 20 in each treatment (the optimal

steady state resource level) and at approximately the same time. Only three agents in



each treatment end up with a resource level below ten. Finally, the average extraction

level is around 0.50 in both treatments and, perhaps more surprisingly, the number of

times the players change their extraction level is not signi�cantly di�erent between

the continuous and discrete time treatments, while in theory they had the possibility

to change it 61 times in discrete time and 601 times in continuous time.

Table 3.2 – Continuous versus discrete time in the control

Average agent’s resource level Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 17.572 2.639 98 -0.98 0.328

Continuous time 17.144 3.297 102 - -

Agents reaching R=20 Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 39 59 98 0.983 0.535

Continuous time 41 61 102 - -

Time agents reach R=20 Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 23.795 13.546 39 -0.563 0.577

Continuous time 23.115 15.460 41 - -

Agents ending up with R<10 Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 3 95 98 1.042 0.640

Continuous time 3 99 102 - -

Average agents extraction Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 0.497 0.064 98 0.992 0.322

Continuous time 0.501 0.075 102 - -

Number of agents extraction change Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 34.122 17.603 98 -0.304 0.762

Continuous time 44.902 47.515 102 - -

Agents with smaller MSDc
my than MSDc

op Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 6 92 98 0.446 0.087

Continuous time 13 89 102 - -

The fact that we observe a substantial share of agents reaching a resource level

above 20 and very few ending up with a resource level below ten is consistent with

the fact that the average resource level in the control observed in Figure 3.3 is closer

to the optimal than to the myopic path. This is con�rmed by the MSDs map Figure 3.4,
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which presents the location of agents with respect to theMSDc
op on the y axis and the

MSDc
my on the x axis. Agents located above the bisector can be considered as more

myopic (MSDc
op > MSDc

my) and vice versa. Very few agents have a greater MSDc
op

than the MSDc
my, i.e., 19 over 200. This proportion is slightly lower in discrete than

in continuous time (see the last test in Table 3.2).

Figure 3.4 – Map of conditional MSDs in the control

As we explained in Section 3.4, using the MSD alone is unsatisfactory, because we

want to know if agents are signi�cantly optimal or myopic. Applying the regression

�lter presented in the previous section leads us to �nd that in discrete time 33 agents

can be classi�ed as signi�cantly optimal and one as myopic, and 41 can be considered

optimal and four as myopic in continuous time. Proportions of optimal and myopic

agents are not signi�cantly di�erent between the two treatments. As expected, average

payo�s are not signi�cantly di�erent either (see Table 3.3). The proportion of optimal

agents seems comparable to the experiment of Tasneem et al. (2019) who found that



extraction behavior results in a steady state of the resource 56% of the time, with the

mode of the distribution being optimal.
16

Also, the average e�ciency ratio (individual

payo� over the optimal payo�, here 220 ECUs) is 83% in Tasneem et al. (2019)’s study

while it is 88% in ours. Suter et al. (2012) found a slightly higher e�ciency ratio in the

optimal control in a discrete time experiment, about 95%.

Table 3.3 – Classi�cation and payo�s in the control

Proportion of optimal agents Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 33 65 98 0.755 0.209

Continuous time 41 61 102 - -

Proportion of myopic agents Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 1 97 98 0.253 0.198

Continuous time 4 98 102 - -

Average agents payo�s Mann-Whitney test

Mean S.D. N z-stat Exact prob

Discrete time 191.370 38.497 98 -0.755 0.452

Continuous time 196.605 16.878 102 - -

To summarize, in a control setting, both continuous and discrete times lead to si-

milar choices by participants. Having made this �rst observation we now study how

the nature of time a�ects strategic interactions between players.

3.5.2 The Control Versus the Game

The �rst observation that can be made by looking at Figure 3.3 is that the average level

of the resource is lower in the game than in the control and decreases over time, whe-

reas the resource level was increasing over time in the control. Mann-Whitney tests

reported in Table 3.4 con�rm that, compared to the control, the average resource level

in the game is signi�cantly lower and the average extraction level signi�cantly higher.

This is consistent with what one would expect if agents had unlimited rationality, since

they would play optimal in the control and feedback in the game. In addition, we ob-

serve that agents change their extraction levels more often in the game than in the

16
A more precise comparison of the results is not possible since the authors use a di�erent empirical

strategy.
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control.

Table 3.4 – Control versus game

Agent and group average resource levels Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Control 17.354 2.993 200 9.720 0.000

Game 1.653 5.406 95 - -

Agent and group average extraction levels Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Control 0.499 0.069 200 -10.025 0.000

Game 0.652 0.012 95 - -

Number of agents and groups extraction changes Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Control 39.62 36.415 200 -5.541 0.000

Game 60.658 56.041 190 - -

Agents and groups with smaller MSDc
my than MSDc

op Fisher exact test

Yes No N Odds ratio Exact prob

Control 19 181 200 0.207 0.000

Game 32 63 95 - -

Finally, the MSDs map reported in Figure 3.5 shows that, compared to Figure 3.4,

signi�cantly more agents have a smaller MSDc
my than MSDc

op in the game than in

the control (32 groups over 95, see Fisher test in Table 3.4).
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Figure 3.5 – Map of conditional group MSDs in the game

3.5.3 Analysis of Behaviors in the Game

Table 3.5 compares the decisions in discrete and continuous time in the game over

various indicators. The average resource level is signi�cantly lower in discrete time

and the average extraction signi�cantly higher. Very few groups reach a resource le-

vel greater than 20 – only �ve in each treatment, and at approximately the same time.

The big di�erence with the control is that now a large number of groups end up with a

resource level below ten and in a signi�cantly larger proportion in discrete time. Intro-

ducing strategic interaction thus leads to an over-exploitation of the resource, as the

theory predicted, but to a greater extent in discrete time, suggesting that continuous

time allows for better cooperation between players. Finally, the number of times the

agents change their extraction level is now signi�cantly greater in continuous time.

Continuous time o�ers more opportunities to change one’s extraction level. This

possibility can be used to test the reaction of the other players and perhaps to try to



induce a change in their behavior. For example, one player can temporarily lower his

extraction level to see if the other player will do the same. This type of test is less

expensive in continuous time than in discrete time. Indeed, in discrete time, the player

can only make one decision per period and this corresponds to one instant, whereas

in continuous time, the player can make one decision per second and this corresponds

to only 0.1 of an instant. In other words, the opportunity cost of testing a strategy,

in terms of payo�, is much lower in continuous time, because only a fraction of the

payo� is given up during the temporary test strategy. This mechanism through which

continuous time can foster cooperation was also advanced by Friedman & Oprea (2012),

Oprea et al. (2014) and Leng et al. (2018). Oprea et al. (2014) calls this "pulse behavior"

and sees it as a non-verbal form of communication. It can be used as a way to incite the

other player to decrease extraction up to the optimal level or to retaliate if the other

players increase their extraction level too much.



Table 3.5 – Continuous versus discrete time in the game

Average group resource Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 9.06 5.884 46 2.867 0.004

Continuous time 12.149 4.477 49 - -

Groups reaching R=20 Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 5 41 46 1.073 0.589

Continuous time 5 44 49 - -

Time required for groups to reach 20 Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 27.8 12.911 5 0.314 0.314

Continuous time 32.46 14.622 5 - -

Groups ending up with R<10 Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 31 15 46 3.89 0.001

Continuous time 17 32 49 - -

Average players extraction Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 0.345 0.129 92 -2.352 0.019

Continuous time 0.308 0.114 98 - -

Number of extraction changes by players Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 40.674 16.202 92 4.203 0.000

Continuous time 79.418 71.68 98 - -

Applying the regression �lter presented in Section 3.4 leads us to �nd that 14

groups (28 players) can be classi�ed as signi�cantly myopic in discrete time versus

three groups in continuous time, making the proportion of myopic behavior signi�-

cantly larger in discrete time. Six groups are classi�ed as feedback in the two treat-

ments, and we �nd only two optimal in discrete time and one in continuous time. Pro-

portion of optimal and feedback agents are not signi�cantly di�erent between discrete

and continuous time. Note that the presence of optimal groups is consistent with Bat-

taglini et al. (2016)’s argument that in�nite horizon can provide strategic opportunities

to endogenously support cooperative outcomes.

As a result, we observe signi�cantly higher average individual payo�s in conti-

nuous time than in discrete time. E�ciency ratios in the game are lower than in the
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control, and lower in discrete time (48%) than in continuous time (64%).
17

Table 3.6 – Analysis of types in the game

Proportion of optimal groups Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 2 44 46 2.182 0.476

Continuous time 1 48 49 - -

Proportion of feedback groups Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 6 40 46 1.075 0.575

Continuous time 6 43 49 - -

Proportion of myopic groups Fisher exact test

Yes No N Odds ratio Exact prob

Discrete time 14 32 46 6.708 0.002

Continuous time 3 46 49 - -

Average individual payo�s Mann-Whitney test

Mean S.D. N Z-stat Exact prob

Discrete time 57.987 46.233 92 3.184 0.002

Continuous time 76.806 41.897 98 - -

Finally, Figure 3.6 provides an overview of the results of the classi�cation by type

by plotting the cumulative density functions (c.d.f.) of the resource levels. The distri-

bution of the observed resource levels rank as expected, with the myopic groups expe-

riencing the lowest resource levels, followed by the feedback and optimal groups. The

undetermined group displays a high level of heterogeneity, which could be of interest

in further research.

17
The maximum group payo� is 240 ECUs, so we computed the individual e�ciency ratio by halving

this value. Nevertheless, it is possible to get "more than your own share". Obviously, if one of the two

members of the pair extracts a very small amount of groundwater, the other member can obtain more

than 50% of the total maximum payo�.
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Figure 3.6 – Cumulative density functions of the resource levels by type

3.5.4 Potential Mechanism at Play

Our results show that continuous time fosters cooperation and allows for more sustai-

nable management of the resource than does discrete time. Our intuition is that conti-

nuous time o�ers the possibility to induce cooperation at a lower opportunity cost,

by lessening one’s own extraction to incite the other player to do the same or to reta-

liate against them for over-extracting. If this mechanism actually applies, the threat of

immediate sanction should make extraction patterns more stable and extraction levels

should be more homogeneous, resulting in a more even distribution of payo�s within

groups. To test this reasoning, we compute several statistics.

First, for each player we compute the absolute value of the di�erence of extraction

between two consecutive instants (|Et − Et−1|) and calculate the average value over
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time by treatment, as did Oprea et al. (2014).
18

As shown by Figures 3.7.a and 3.7.b,

continuous time leads to greater stability than does discrete time, and, not surprisingly,

playing alone leads to greater stability than playing with someone else.
19

(a) Evolution through time in the game (b) Cumulative density functions

Figure 3.7 – Variations in players’ extraction levels (w)

Second, we compute the absolute value of the di�erence in extraction levels bet-

ween two players (A and B) of the same group at each point in time (|EtA−EtB|). We

then take the average value over each period of time, by treatment.
20

Figure 3.8.a shows that the average di�erence in extraction inside groups is almost

always greater in discrete time, which is con�rmed by the c.d.f. displayed in Figure

3.8.b.
21

Also, although extraction level di�erences decrease over the course of the game,

it remains an issue until the end. Indeed, at the last instant the average di�erence in

extraction levels still represents two-thirds of the average player’s extraction.
22

18
To make continuous and discrete time comparable, we take the di�erence between two decisions

separated by ten seconds in continuous time.

19
In Figure 3.7.a we also see an increase in stability over time for both treatments. Note, however, that

the greater instability in the beginning of the play time can be explained by the game setting. Indeed,

players need �rst to either let the resource grow or deplete it before reaching a steady state, depending

on their preferred equilibrium.

20
To make continuous and discrete time comparable, we use only one decision every ten seconds in

continuous time.

21
The c.d.f. are statistically di�erent according to the Kolmogorov-Smirnov test (p-value < 0.05).

22
The average di�erence in extraction between players of the same group at the end of the game

equals 0.18, while the average player’s extraction level equals 0.27.
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(a) Evolution through time (b) Cumulative density functions

Figure 3.8 – Di�erence of extraction levels (w) within groups

To see whether or not within-group di�erences in extraction levels results in more

unequal distribution of payo�s, we compute the Lorenz curves of individual �nal payo�s

in the game. We can see in Figure 3.9.a that �nal payo�s are more unequally distribu-

ted in discrete time. More precisely, 50% of the poorest players share 28% of the payo�s

in continuous time while they share 17% in discrete time. The Lorenz curves in Figure

3.9.a are easily readable but here unequal distribution can come from between-group

inequalities and within-group inequalities. To take a closer look at within-group in-

equalities we compute the di�erence between individual �nal payo�s within a group

and plot the corresponding Lorenz curves (Figure 3.9.b). Payo� distribution is more

unequal in the discrete time setting. If within-group payo� di�erences were the same

for all groups, the Lorenz curves would be confounded with the diagonal. Here we see

that large payo�-di�erences represent a greater proportion of total payo� di�erences

in discrete time than in continuous time, as the Lorenz curve for discrete time is further

from the diagonal than the Lorenz curve for continuous time.
23

23
Concentration (Gini) indexes are signi�cantly di�erent whether we use the standard, Erreygers or

Wagsta� indexes (O’Donnell et al., 2016).
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(a) Individual �nal payo�s (b) Within-group di�erence in �nal payo�s

Figure 3.9 – Lorenz curves

To summarize, even if we cannot prove the mechanism at play, the fact that extrac-

tions are more stable and that within-group di�erences in �nal payo�s are lower in

continuous time is consistent with the fact that continuous time o�ers a less costly op-

portunity to in�uence the other player’s decisions. As a result, continuous time seems

to reduce inequality in payo� distribution, in addition to favoring more sustainable

resource exploitation.

3.5.5 Behavior at the End of the Game

Given the way we model the in�nite horizon, one might expect the last period/instant

decisions would be greatly informative about players’ behavior and equilibrium selec-

tion in the multi-player treatments. Graphs previously displayed, and those presented

in Appendix C.4 of Chapter 3, do not support this conjecture. Indeed, the average re-

source level remains stable (see Figure 3.3). Final payo�s and resource levels are aligned

with expectations regarding player pro�les over the course of the game, with optimal

players earning the highest payo�s, followed by feedback and myopic players (see Fi-

gures B.4 and B.5 in Appendix C.4 of Chapter 3). Regarding extraction levels, we do not

observe any speci�c changes during the �nal instants/periods. The percentage of sub-

jects who change their extraction level during the last instants/periods is not greater

than during the rest of the play time (see Figure B.6 in Appendix C.4 of Chapter 3), nor

is the variation in extraction levels (see Figures 3.7 and 3.8). Finally the analysis of the
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last instant/period extraction level by group of subjects is not particularly informative

(see Figures B.7 in Appendix C.4 of Chapter 3). We observe that ten groups end up

with an extraction level greater than the natural recharge R (implying a depletion of

the resource in the long run) in discrete time and ten in continuous time. Among these

groups, �ve are classi�ed as myopic, one as feedback and fourteen as undetermined

(see Table C.1 in Appendix C.4 of Chapter 3). It appears that equilibrium selection is

determined over the whole course of the game, as many decisions in�uence the re-

source level, and that the last instants/periods are not speci�cally informative about

subjects’ behavior. This suggests that the use of continuation payo�s to simulate the

in�nite horizon works well in our context and do not lead to strategic behaviors during

the last instants/periods.

3.6 Discussion and Conclusion

In this paper, we attempted to determine the impact of the nature of time, discrete

or continuous, on the behavior of agents in the context of a dynamic CPR game. To

this end, we considered a simple linear quadratic model in which agents exploit a re-

newable resource over an in�nite time horizon. Starting from a di�erential game, we

proposed a discretization such that the equilibrium paths for the myopic, feedback and

optimal behaviors are almost identical in discrete and continuous time. We then took

on the challenge of implementing continuous time and in�nite horizon in the lab, allo-

wing participants to make extraction decisions every second, and adding continuation

payo�s to cumulative payo�s to simulate an in�nite horizon.

To determine whether the nature of time has an impact on the ability of agents to

manage a resource, we �rst looked at the situation where the resource is owned by

a single agent. Observations showed no di�erence between discrete and continuous

time, based on a battery of indicators, including the average level of the resource, the

average level of extraction, the proportion of myopic agents, and the proportion of

optimal agents. Furthermore, about 35% of the subjects could be classi�ed as signi�-

cantly optimal and the average resource level increased over time, as is the case with

the optimal solution.

In the context of a two-player game, the results were dramatically di�erent. First,

unlike what we observed with a single agent, the average resource level decreased over
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time, as is the case with the myopic and feedback equilibrium paths. Furthermore, only

2% of the groups behaved according to the optimal (cooperative) path. The competitive

nature of the game when multiple players simultaneously extract the same resource

explains the di�culty in adopting a sustainable path. Second, we observed signi�cant

di�erences between discrete and continuous time settings. In particular, the discrete

time setting led to the observation of a larger number of agents exhibiting myopic

behavior, thus leading to a much lower average resource level than that observed in

the continuous time setting. The continuous time environment seems to allow for bet-

ter cooperation within groups and thus greater resource sustainability. Although our

experimental design does not allow us to prove the exact mechanism at play, our in-

tuition is consistent with Friedman & Oprea (2012), Oprea et al. (2014) or Leng et al.

(2018) : compared to discrete time, continuous time allows for rapid and adaptive stra-

tegic choices that promote the emergence of cooperation, either by attempting to in-

�uence the other or by retaliating against their tendency to over-exploit the resource.

The observed greater stability of continuous-time extraction, as well as the greater

homogeneity within groups in this environment, is consistent with this explanatory

mechanism.

We voluntarily used a very simple design, as to our knowledge we are the �rst

paper to test the impact of the nature of time in dynamic CPR games. Consequently,

many extensions are possible. We hope our work can o�er a basis for future works

examining, for instance, whether continuous time can still foster cooperation when

increasing the group size, as the continuous time frame by itself was able to induce

cooperation compared to the discrete time frame in a two-person prisoner’s dilemma

in Friedman & Oprea (2012), but not in a �ve-person public good game as in Oprea et

al. (2014) or a six-person minimum e�ort game as in Leng et al. (2018). Also, many re-

�nements of the underlying theoretical model and of the game setting are possible. In

particular, the role of major mechanisms such as rewards, punishments and communi-

cation settings in the continuous versus the discrete time frame remain to be examined.

In the next chapter, we present the results of a continuous time experiment over

an in�nite horizon, in which we propose non-monetary instruments belonging to the

class of nudges, to induce groundwater users to adopt pro-environmental behavior.



Chapitre 4

Nudging Behaviors in a Dynamic
Common Pool Renewable Resource
Experiment

Abstract:
The seminal papers of Gordon (1954) and Hardin (1968) show the need for reg-

ulation to insure a better management of common pool resources. Thus, in recent

decades, in addition to traditional monetary policies, new non-monetary instruments

called nudges have emerged to guide individuals to e�cient decisions. This paper aims

to test the in�uence of nudges based on a descriptive social norm, as well as on an

injunctive social norm, in the management of dyamic common pool resources, with a

particular interest on di�erential games. Our results suggest that the highest e�ciency

is provided by the injunctive nudge, but should be interpreted sparingly.

Keywords: Dynamic Optimization; Experimental Economics; Renewable Resources;

Nudges

Codes JEL : C91; C92; Q20; Q58

Résumé :
Les articles fondateurs de Gordon (1954) et Hardin (1968) montrent la nécessité

d’une réglementation pour assurer une meilleure gestion des ressources communes.

Ainsi, au cours des dernières décennies, en plus des politiques monétaires tradition-

nelles, de nouveaux instruments non-monétaires appelés nudges sont apparus, a�n de
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guider les individus dans les prises de décisions e�caces. Cet article vise à tester l’in-

�uence de nudges basés sur une norme sociale descriptive, ainsi que sur une norme

sociale injonctive, dans la gestion de ressources communes dynamiques, avec un inté-

rêt particulier pour les jeux di�érentiels. Nos résultats suggèrent que le nudge injonctif

procure une e�cacité plus élevée, mais ils devraient être interprétés avec précaution.

Mots-clés : Optimisation Dynamique ; Économie Expérimentale ; Ressources Renou-

velables ; Nudges

Codes JEL : C91 ; C92 ; Q20 ; Q58

4.1 Introduction

The management of environmental resources is an issue that has a major impact in

recent decades, especially since Hardin (1968) considered that in the absence of regu-

lation, common pool resources (CPRs) are doomed to overexploitation. This is mainly

due to their rival and non-excludable nature. The key question that economists ask

themselves in order to solve this problem is how to encourage resource users to be-

have in a way that respects the exploited resource. The most common methods to

incentivize people to behave this way has long been the use of monetary instruments,

such as taxes. Ambient tax/subsidy is commonly applied in the control of nonpoint

source pollution (NPSP). It consists of a taxation mechanism combining a system of

reward for water quality above a given target (for instance, the social optimum level)

and a system of penalty under this target (Segerson, 1988; Xepapadeas, 1991; Cochard

et al., 2005). However, tax-based incentives are not without crowding out individuals

in their willingness to make e�orts in favor of the environment. In order to limit this

crowding out e�ect, policy makers are increasingly turning to either non-monetary

incentives or a mix of monetary and non-monetary incentives.

Among the non-monetary instruments, we distinguish "nudges", which are de�-

ned by Thaler & Sunstein (2009) as a choice architecture, a special case of libertarian

paternalism where a planner guides individuals to make the choices they consider to

be the best, while preserving their freedom of choice. Praised for their low cost, non-

binding nature and ease of implementation, nudges have attracted growing interest

in recent years. In the United States, President Obama signed in 2009 a memorandum

to clarify the role of behavioral sciences in regulatory policy formulation. In the Uni-
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ted Kingdom, David Cameron also created the Behavioral Insights Team (the "nudge

unit") within Prime Minister Services, to analyze the e�ciency of behavioral instru-

ments like nudges (Croson & Treich, 2014). In his book entitled "Green Nudges", Singler

(2015) mentioned his willingness to spread the word about the nudges approach, which

according to him is a formidable lever for action to promote sustainable development,

but which is still very little used in France. Finally, international institutions such as

the World Bank, also share the idea that nudges are a new way to promote sustainable

behavioural changes, as described in the World Bank’s "Mind, Society, and Behavior"

report (Bank, 2014).

The question is therefore to know how we can use non-monetary intruments to im-

prove cooperation in order to induce a pro-environmental behavior when the dynamic

nature of the exploited resource is considered. To answer this question, we start from

a dynamic framework in continuous time, in which the resource evolves continuously

over an in�nite horizon. We assimilate the renewable resource to a groundwater bas-

sin, but other types of resources can be considered. The implementation of continuous

time in the laboratory is very recent and very challenging, as it allows subjects to make

their decisions at any time during the experiment, which requires continuous updating

of the data. We must therefore distinguish "quasi-continuous" experiments, which are

based on extensive form games, from "continuous time" experiments, which are based

on dynamic games. In quasi-continuous experiments, studies sometimes refer to the

prisoner’s dilemma (Friedman & Oprea, 2012; Bigoni et al., 2015), public goods games

(Oprea et al., 2014) or minimum e�ort games (Leng et al., 2018).
1

To our knowledge, the

only continuous time experiments applied to renewable common pool resources are

those proposed by Tasneem et al. (2017, 2019); Djiguemde et al. (2021). In this study,

the continuous time model is based on the one proposed by Djiguemde et al. (2021), to

compare continuous to discrete time in a dynamic common pool resource experiment.

They found that the trajectories adopted by experimental subjects in the game were

di�erent between continuous and discrete time. Continuous time plays an important

role in fostering cooperation, as it allows a fast adjustment of players decisions. Mo-

reover, it allows to simulate the real world evolution of common pool resources.

1
The implementation of continuous time in the laboratory, has also required the consideration of

spatial and temporal aspects in order to simulate the real life evolution of social ecological systems

(Janssen et al., 2010; Cerutti, 2017).
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The main objective of this study is to guide the greatest number of players towards

the cooperative solution, i.e., the social optimum, by means of paternalistic mecha-

nisms such as nudges. Among the di�erent categories of nudges, we consider those

exploiting social norms, as it is the most widespread category whether in the �eld of

food, energy, transportation or more recently, common pool resources. In addition to

be intuitive for the subjects, who very often tend to follow the crowd, their implemen-

tation seems to be simple. Social norms constitute the moral rules of a group and we

can distinguish descriptive norms from injunctive norms. According to Cialdini et al.

(1991), descriptive or popular norms characterize the perception of what most people

do. They inform behavior, i.e., they specify "what is done". Injunctive or prescriptive

norms characterize the perception of what most people approve or disapprove. They

enjoin behavior, i.e., they specify "what ought to be done". The second objective is to

investigate which kind of norm among the descriptive norm and the injunctive norm

will lead to more cooperation and more pro-environmental behavior.

The remainder of the paper is as follows : the second Section discusses the literature

related to nudges. The third Section sets out the theory behind the common pool re-

source game used in the experiment. The fourth Section describes the experiment. The

�fth Section gives the results and the last Section provides some concluding remarks.

4.2 The Literature

Our paper is related to the growing literature on experiments dealing with non-monetary

instruments such as nudges, to foster pro-environmental behavior. Nudges have many

applications in the three areas of sustainable consumption, namely food, energy and

transportation, where they are most implemented. However, in recent years we have

witnessed the emergence of nudges in the �eld of public goods and renewable common

pool resources. Faced with this profusion of nudges, their classi�cation sometimes dif-

fers according to the authors, but Lehner et al. (2016) as well as Schubert (2017) have

nevertheless managed to propose a synthetic classi�cation ranging from three to four

categories. We can thus distinguish :

• Nudges that exploit defaults. This category of nudges is based on laziness or the

tendency of individuals to procrastinate. The best known example is the default
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double-sided printing

• Nudges that change the physical environment. Kallbekken & Sælen (2013)

found that by reducing the plate size from 24 cm to 21 cm food waste was reduced

by 19.5%

• Nudges that capitalize on consumers’ desire to maintain an attractive self-
image through "green" behavior. This category includes the simpli�cation of in-

formation, to reduce the cognitive costs necessary for the exercise of self-control

(e.g : eco-labels). It also includes the framing of information through contextua-

lization and the exploitation of people’s private sense of social identity through

emulation, which stimulates competition for social status
2

• Nudges that exploit social norms. It is the most widespread category of nudges

and it plays on the tendency of individuals to imitate peers, i.e., to follow the most

socially widespread behavior. For instance, De Castro (2000) show an increase in

total food consumption with the number of people around the table. While a

meal shared with one person increases total consumption by 33%, a meal shared

with seven or more people results in a doubling of consumption

The following papers analyze the decision-making processes of individuals under

both a tax-based incentive (or a deterrence-based incentive) and a nudge-based incen-

tive. In a repeated public good game, Festré et al. (2019) compare the impact of an

advice to that of a collective sanction.
3

The experiment was repeated over 10 periods

with groups of four players, where an additional player called the third-party was in-

troduced. Their results show that the advice signi�cantly increase cooperation, but

this positive e�ect vanishes over time, while sanction as well as the threat of sanction

has a signi�cant impact on contributions to the public good, with no crowding out

e�ects.
4

Moreover, My & Ouvrard (2019) analyzed subjects’ voluntary contribution to

2
For instance, the website of stickK o�ers challenges based on personal commitment to help

participants achieve their goals (weight loss, green initiatives, etc.). The website is available at :

https ://www.stickk.com/

3
See Festré et al. (2017) for the english working paper version of their article.

4
The Advice treatment can be considered as a combination of descriptive, injuctive social norms and

engaging communication, in which subjects were allowed to receive an advice from the third-party, on

any desirable level of individual contribution.
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a stochastic public good i.e., the reduction of pollution. The authors �rst measured

subjects’ environmental sensitivity by means of the General Ecological Behavior Scale

(Kaiser, 1998), to classify them into two categories of players. For each category, they

formed groups of four players to participate in a 15 periods public goods game. The

main results were that the reaction to the nudge directly depends on subjects’ environ-

mental sensitivity, and that contrary to the tax treatment, the e�ect of the nudge va-

nishes over time.
5

Using a static common pool resource experiment, Buckley & Llerena

(2018) tried to incentivize consumers to reduce their energy consumption during peak

periods. Groups of four players participated in a repeated CPR game over 10 periods.

They found that although the nudge is more e�ective than the tax, it is not enough in

itself. They also found in line with My & Ouvrard (2019) that the reaction to the nudge

depends on subjects’ environmental sensitivity, but also depends on their altruism.
6

In the management of recreational �sheries, deterrence-based approaches (�nes, loss

of licenses or in extreme cases, imprisonment) are not su�cient to solve the problem

of non-compliance, which consists in �shing more than the allowed quantities. In this

context, Mackay et al. (2020) used in addition to these approaches, a nudge based on a

descriptive social norm to tackle non-compliance. Groups of six players participated in

a static one-shot framed CPR game. Their results show a 10% increase in compliance,

when using the descriptive social norm with a low deterrence. Although a high level

of deterrence increases compliance by 30%, adding a descriptive social norm increases

compliance by only 33%.
7

Our paper is related to the literature on nudge based on social norms. Although we

are getting closer to the papers on public goods games and renewable resources, we

di�er from them in that we use a dynamic CPR in continuous time and in�nite horizon.

Another di�erence is that we compare two types of social norms, i.e., a descriptive

social norm and an injunctive social norm.

5
The nudge belongs to the class of injunctive social norms, and consisted of an announcement of the

optimal contribution at the beginning of each period, in the form : "The best solution for the environment

and your group is to invest X tokens in the environmental account".

6
The nudge combine both information on suggested play and social approval from the regulator,

who uses a smiley face or a sad face to inform subjects if they consume less or more than the optimal

amount. This social approval can be considered as a kind of injunctive norm. In the suggested play,

subjects were told that "one way to avoid power cuts is to ask consumers to lower their consumption

during peak periods".

7
A 20% probability of being randomly inspected for low deterrence and of 50% for high deterrence.
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4.3 The Model

We consider a simple continuous time linear quadratic model in which two farmers use

simultaneously a renewable groundwater bassin. Each farmer i make his/her extrac-

tion decision at each instant of the real time and the resource evolves continuously over

an in�nite horizon. Water extraction provides each of them a revenueB(w) depending

only on the extraction ratew, but also involves costsC(H,w) depending negatively on

the level of the groundwaterH . Figures B.1 and B.2 in Appendix C.3 of Chapter 3 show

a farmer’s revenue function and the marginal cost function. Equation (4.1) denotes an

agent’s instantaneous payo�, which is given by the di�erence between revenue and

costs :

B(w)︷ ︸︸ ︷
aw − b

2
w2−

marginal cost (c(H))︷ ︸︸ ︷
max(0, c0 − c1H)w.︸ ︷︷ ︸

C(H,w)

(4.1)

where the marginal cost c(H)) is given by Equation (4.2) :

c(H) =

(c0 − c1H) if 0 ≤ H <
c0
c1
,

0 if H ≥ c0
c1
.

(4.2)

The resource evolves continuously, and at each instant, each agent has to choose an

extraction rate that maximizes their payo�. Behavior is explored under three bench-

marks : social optimum, Nash feedback and myopic decision-making. In the social

optimum equilibrium, the resource is maintained at an e�cient level by maximizing

the joint discounted net payo� of both farmers. Farmers behaving in a Nash feedback

way maximise their individual discounted payo�. Myopic farmers ignore the dynamics

of the groundwater in their maximization problem, maximizing their instantaneous

payo� at each instant.

The social optimum equilibrium is found by solving the following maximization

problem :

V (H0) = max
w1(t),w2(t)

∫ ∞
0

e−rt
2∑
i=1

[
awi(t)−

b

2
wi(t)

2 −max(0, c0 − c1H(t))wi(t)

]
dt,

(4.3)
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s.t 
Ḣ(t) = R− α(w1(t) + w2(t)),

H(0) = H0 and H0 ≥ 0, H0 given,

H(t) ≥ 0,

wi(t) ≥ 0.

The Nash feedback equilibrium is found by solving the previous maximization pro-

blem without the sum, while the myopic maximization equilibrium is found by solving

only the equation in brackets. By considering the constraints, the myopic solutions

provides a feedback representation.
8

4.4 Experimental Design and Procedures

We conducted three treatments at the Experimental Economics Laboratory of Montpel-

lier (LEEM) : the baseline and two nudge treatments. The baseline was conducted from

November to December 2020 during 10 sessions, with 98 subjects. The two nudge treat-

ments were conducted in July and September 2021 and involved 114 subjects. Table

4.1 shows information about each treatment. Groups of two subjects participated in

a non-contextualized experiment, using the oTree software (Chen et al., 2016). Each

session lasted between an hour and an hour and a half. At the end of each session, the

experimental currencies (ECUs) accumulated during the experiment were converted

into cash payments at the rate : 10 ECUs = 0.5 Euros.

Treatments Number of sessions Number of subjects Number of groups

Baseline 10 98 49

Injunctive Norm 5 62 31

Descriptive Norm 7 68 34

Total 22 228 114

Table 4.1 – Information per treatment

8
The feedback representation is obtained when the solution is written according to the state variable,

instead of according to time.
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It was a between-subject design, in which subjects participated in several tasks.

After an individual reading, an experimenter proceeded to a loud relecture of the ins-

tructions. Then, subjects answered a computerized comprehension questionnaire to

ensure they understood the evolution of the resource as well as the computation of

payo�s. They were allowed to ask questions at any time by rising their hands. To get

familiar with the graphical interface and the dynamics of the game, subjects played a

ten-minute training phase, before playing the ten-minute paid phase.

In each treatment and at the beginning of each phase, groups of two subjects had

to individually choose an initial extraction rate between 0 and 2.8 units by moving a

graduated slider, which allows values with two decimals. Groups were randomly for-

med for each phase. Following the choice of the initial extraction rate, a new screen

allowed subjects to see the evolution of their extraction rate, as well as that of the total

extraction rate of the group. They can see in addition the dynamics of the resource

and their payo�, as shown by the user’s interface on Figure B.16 in Appendix C.6.1

of Chapter 3. An additional box presented the same information as the curves in text

form and at any time during the experiment, subjects could read the experimental ins-

tructions by clicking on the "Review Instructions" button on the upper right corner of

their screens. They also had the possibility to change their extraction rate whenever

they wanted by moving the slider. In all the treatments except the baseline, subjects

completed a General Ecological Behaviour (GEB) Scale questionnaire (Kaiser, 1998), in

order to measure their environmental sensitivity and distinguish groups who are more

sensitive to those who are less sensitive to the environment.
9

A demographic question-

naire concluded the experiment in all treatments.

All the information were updated every second to simulate continuous time. More

speci�cally, one second of real time in our treatments, corresponds to 0.1 instant in the

model, so that 10 minutes of experiment are equal to 600 seconds and are equivalent to

60 instants. The in�nite horizon is simulated through the payo�s, which are composed

of : (i) a cumulative payo� since the beginning of the experiment to the present instant,

to which is added (ii) a continuation payo� from the present instant until in�nity, by

assuming that the player’s extraction rate and that of his partner’s remain constant.

9
There was no GEB questionnaire in the baseline because the baseline was conducted before the

nudge treatments and the research question was di�erent (continuous vs. discrete time).
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The discounting principle behind the cumulative payo� implies that as time goes, the

less important the instantaneous payo�. Table 4.2 reports the parameters used in the

experiment.
10

Variable Description Value

a Linear parameter in the revenue function 2.5
b Quadratic parameter in the revenue function 1.8
c0 Maximum average cost 2
c1 Variable cost 0.1

c0 − c1H Marginal or unitary cost 2− 0.1H
r Discount rate 0.005
R Natural recharge (rain) 0.56
α Return �ow coe�cient 1
H0 Initial resource level 15

Table 4.2 – Parameters for the experiment

4.4.1 The Nudge Treatments

The proposed nudges consist in graphic information. The �rst nudge is an injunctive

social norm, in which subjects were given the theoretical time paths for the resource,

resulting from our three benchmarks, with the corresponding payo�s in experimental

currencies. The details of this treatment are available in Appendix D.1.2 of Chapter 4.

The second nudge is a descriptive social norm, in which subjects were given the time

paths for the resource, resulting from the behaviors observed in the baseline treat-

ment, along with the frequency of the oberved groups and the corresponding average

individual payo�s in experimental currencies. More details on this treatment are pro-

vided in Appendix D.1.3 of Chapter 4. These graphical information was displayed after

the training phase. Subjects had the possibility to review them, by clicking on the "In-

formation" button, located next to the button allowing to review the instructions, as

shown by Figure B.3 in Appendix D.1 of Chapter 4. Subjects were also informed that

they are free to follow this information or not.

10
For more details on the model, the implementation of continuous time and the in�nite horizon, as

well as the choice of the parameters, one can refer to (Djiguemde et al., 2021).
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The two treatments with social norms di�er in several elements. First, the curves

presented in the injuctive norm are obtained theoretically in an in�nite horizon model

while in the descriptive norm the in�nite horizon is approximated by a scrap value

as explained in the description of the payo�. Morover, we specify in the injunctive

norm that these are theoretical results obtained with symmetrical players, while in

the descriptive norm, these are the results of the baseline for which the players are

not necessarily symmetrical. Finally, in the descriptive norm there is an additional

curve which does not exist in the injunctive norm, because this type of behavior is not

explained by the theory. The descriptive norm also presents in detail the share of the

population associated with each resource level. Given these di�erences in presentation,

we made some conjectures about the potential behaviors in our di�erent treatments.

Conjecture 1 Behaviors in nudge treatments will result in more resource preservation
than in the baseline.

We believe that having more information about the best behavior to adopt or even

the most adopted behavior, could lead to better management of the resource, as players

have a benchmark to decide what to do.

Conjecture 2 The injunctive social norm will lead to more cooperation than the descrip-
tive social norm

We expect that, because the injunctive norm is based on theoretical results, which

are very well optimized by considering perfectly symmetrical players, excluding free-

riding problems in the group. Furthermore, in their �eld experiment to examine litte-

ring in public places, Cialdini et al. (1991) found that human behavior can be powerfully

a�ected by social norms. They also found that three of these norms (descriptive, injunc-

tive and personal norms) can be e�ective, but once the injunctive norm is activated, it

can bene�t the greatest number of populations.
11

Conjecture 3 High environmentally sensitive groups will consume less, allowing the re-
source to grow

11
Personal norms "...guide one’s behavior via the perception of how one would approve/disapprove

of one’s own conduct."
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We believe that the most sensitive groups are naturally focused on the preser-

vation of the resource, and will manage to do so, regardless of the fact that preser-

ving the resource brings them signi�cant payo�s. Moreover, Buckley & Llerena (2018)

found in their nudge treatment, that high environmental sensitive subjects signi�-

cantly consume less electricity. This Conjecture is also in line with My & Ouvrard

(2019), who found in their nudge treatment, that high environmentaly sensitive indi-

viduals signi�cantly increase their contributions to the public good.

4.5 Results

In this section, we present results from the experiment. We begin by providing des-

criptive statistics, then we describe the procedure used to rank subjects regarding the

theoretical time paths. We conclude with the results of the GEB questionnaire.

4.5.1 Descriptive Statistics

Results are presented at the group level. Figure 4.1 shows the evolution of the average

resource over time in the three treatments and the colored area is the 95% con�dence

interval. The �rst part of Table 4.3 shows the overall and average initial extraction rates,

as well as the overall and �nal resource levels. The second part of the table displays the

corresponding Student test p-values. The average resource levels are decreasing, with

more dispersion in the nudge treatments. They are very close between the baseline

and the injonctive nudge treatment, and we found no signi�cant di�erence betweeen

these treatments as shown by Table 4.3. The average resource in the descriptive nudge

treatment deviates from the other trajectories around 200 seconds and is rather increa-

sing.
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Figure 4.1 – Average resources by treatment

Since the nudge is an information about theoretical or observed trajectories, we

expect it to have an impact on the �rst instants of the game, compared to the baseline

where no information was given. That is why we are interested in the initial extraction

rates and the �nal resource levels. We found no signi�cant di�erence on average initial

extraction rates between the descriptive and the injunctive nudge (p-value = 0.690),

between the baseline and the descriptive nudge (p-value = 0.279), and between the

baseline and the injunctive nudge (p-value = 0.488), nor on �nal resource levels for

these treatments. However, considering the overall duration of the game, the average

resource levels are signi�cantly di�erent between the descriptive and the injunctive

nudge ; and between the baseline and the descriptive nudge (all p-value < 0.001).
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Groups Initial Average Final Average

Extraction Extraction Resource Resource

Baseline 49 1.154 0.621 11.665 12.166

(0.919) (0.441) (5.959) (4.983)

Descriptive nudge 34 0.947 0.591 13.241 13.423

(0.735) (0.354) (6.074) (5.041)

Injunctive nudge 31 1.019 0.614 12.043 12.240

(0.703) (0.388) (6.320) (5.347)

Student test (Between treatment p-values)

Baseline = Descriptive 0.279 0.012 0.243 < 0.001

Baseline = Injunctive 0.488 0.568 0.788 0.625

Descriptive = Injunctive 0.690 0.059 0.439 < 0.001

*Standard deviations in brackets.

Table 4.3 – Summary statistics per treatment

Therefore, our results are partially in line with Conjecture 1, as the descriptive

nudge leads to a signi�cant higher �nal resource level than the baseline, which is not

the case with the injunctive nudge. Thus, contrary to our expectations for Conjecture

2, it seems to be the descriptive social norm that leads to more cooperation. However,

there is also another way to better understand the behaviors in the di�erent treatments,

by looking at the distribution of group pro�les.

4.5.2 Group Pro�les According to Treatments

In order to determine which theoretical predictions the groups are closest to, we

computed in each treatment and for each theoretical prediction, the conditional mean

squared deviation (MSDc) between the observed extractions, wi(t), and the condi-

tional theoretical extractions, w(t)ci . The conditionnal theoretical extraction takes into

account the fact that groups can constantly readjust their choices throughout the ex-

periment.

MSDc =

∑T
t=1 (wi(t)− wi(t)c)2

T
. (4.4)

The behavior associated to each group (myopic, optimal, feedback) is thus given
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by the lowest MSDc
. In order to provide robust and signi�cant results, we combine

this with regressions :

wi(t) = β0 + β1wi(t)
c + εt. (4.5)

wherew(t)ci is the conditionnal extraction associated to each behavior. A group will

be signi�cantly myopic or feedback or optimal, when β1 is positive and signi�cantly

di�erent from zero. We also checked for the presence of unit roots through an augmen-

ted Dickey-Fuller test. Serial correlation of the errors is dealt by means of Newey-West

standard errors and sensitivity tests were implemented using one lag. More details

about the conditional MSD is provided in Chapter 3.

Results are summarized by Figures 4.2 and 4.3. As in the baseline, we also see the

appearance of a new pro�le in the nudge treatments, that we called "undetermined",

because they do not �t into any of the three types of behavior predicted by the theory.

These are groups that have not succeeded in increasing the resource as suggested by

the optimal behavior. However, their extraction rates are su�ciently low, allowing the

resource to remain above its observed level in the case of feedback or myopic behavior.

They also seem to keep a stable resource throughout the game. Whether without infor-

mation (baseline) or with (descriptive nudge), we found almost the same proportion of

undetermined groups between the two treatments (almost 80%). Perhaps that is why

Cialdini et al. (1991) stated that descriptive norms "will be e�ective prosocially only

when most individuals already do behave in a socially desirable way". They must have

thought that since very few groups succeed in reaching the social optimum, staying in

an intermediate behavior would be advantageous to them in terms of payo�s, but also

in terms of conservation of the resource.

Moreover, although the information given in the injunctive nudge did not exhibit

any undetermined behavior, our results still suggest that 64.52% of the groups be-

long to this category. The undetermined pro�le seems to correspond to a focal point

towards which, the majority of groups converge. We believe that the information pro-

vided in the nudges had an e�ect on the behaviors adopted in the groups. Therefore, a

more thorough analysis on this type of behavior would be necessary, by trying for ins-

tance to take into account some visual aspects or some behavioral insights (cognitive
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biases, misperception of the feedback due to the dynamic environment). An example

of these type of analysis is already provided in Chapter 2. There are fewer undetermi-

ned groups in the injunctive nudge than in the other treatments and 3.23% of optimal

groups. Nevertheless, we notice the existence of more myopic and feedback groups,

as suggested by the theory. Unfortunately, this tends to reduce the average resource

in the injunctive nudge treatment, as suggested in Table 4.3. A Chi2 test on the distri-

bution of pro�les according to treatments suggests no signi�cant di�erence. Between

the descriptive and the injunctive nudge, we found a p-value of 0.435. The p-value was

equal to 0.825 between the baseline and the descriptive nudge, and �nally, we found

a p-value of 0.520 between the baseline and the injunctive nudge. As a conclusion,

nudges did not change behavior signi�cantly.

Figure 4.2 – Pro�les in the baseline
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(a) Descriptive nudge (b) Injunctive nudge

Figure 4.3 – Pro�les in the descriptive and in the injunctive nudge

We complete the analysis by looking e�ciency at the group level for each treat-

ment. The maximum payo� a group could achieve is 240 ECUs. We compute the ef-

�ciency ratio by applying the total payo� of the two members of the group, over the

maximum group payo�. The highest e�ciency was achieved in the injunctive nudge

(72.07%), followed by the average e�ciency observed in the descriptive nudge, which

is 69.02%. The average e�ciency ratio in the baseline is 64.34%. However, we found

no signi�cant di�erence between the average e�ciency by treatments, as shown by

Students p-values in Table 4.4. We found greater e�ciency in injunctive nudge than

in descriptive nudge. Greater e�ciency indicates the presence of optimal groups that

have been able to cooperate. This could mean that our results support Conjecture 2.

However, our results are not signi�cant to allow us to draw this conclusion.

To investigate the within-group inequalities, we compute the di�erence between

individual �nal payo�s within each group. The corresponding Lorenz curves are dis-

played on Figures 4.4 and 4.5. The Lorenz curves would be confounded with the equa-

lity curve, if the di�erences in within-group payo�s were identical for all groups. The

di�erences in payo�s is larger in the baseline than in the nudge treatments, as the

Lorenz curve for the baseline is more distant from the diagonal than those of the

nudge treatments. Even with no signi�cant di�erence between the average e�ciencies,

within-group di�erences in �nal payo�s are lower in the injunctive nudge, meaning

that this nudge seems to reduce inequality in payo�s distribution.
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Groups Average

E�ciency

Baseline 49 64.34

(30.57)

Descriptive nudge 34 69.02

(27.73)

Injunctive nudge 31 72.07

(24.40)

Student test (Between treatment p-values)

Baseline = Descriptive 0.479

Baseline = Injunctive 0.238

Descriptive = Injunctive 0.640

*Standard deviations in brackets.

Table 4.4 – Summary statistics for e�ciency

Figure 4.4 – Lorenz curves - Within-group di�erence in �nal payo�s for nudge treat-

ments
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(a) Baseline - Descriptive nudge (b) Baseline - Injunctive nudge

Figure 4.5 – Lorenz curves - Within-group di�erence in �nal payo�s

4.5.3 The General Ecological Behavior Scale

The General Ecological Behavior (GEB) scale aims to measure subjects’ environ-

mental sensitivity. Indeed, Schultz & Zelezny (2003) and Costa & Kahn (2010) show

that certain personality traits such as altruism, political sensitivity, environmental sen-

sitivity are relevant indicators of good reactivity to nudges. Appendix D.3 of Chapter

4 presents the GEB questionnaire used in the experiment. We implemented the short

version with 28 items proposed by Davis et al. (2009, 2011).
12

These items only in-

clude ecological garbage removal, water and power conservation, ecologically aware

consumer behavior, garbage inhibition and ecological automobile use. 17 items are for-

mulated positively and the remaining 11 items are formulated negatively. In line with

My & Ouvrard (2019) and Buckley & Llerena (2018), we allow for a likert scale response

format with �ve possible answers : "never", "seldom", "sometimes", "often", or "always",

either a yes/no response format is also possible (Kaiser, 1998). The advantage of this

response format is that it allows for more freedom of choice, in addition to being a less

rigid rating scale.

12
One of the initial versions of the GEB questionnaire was proposed by Kaiser (1998), and consisted of

40 items grouped in 7 subscales respectively as follows : prosocial behavior, ecological garbage removal,

water and power conservation, ecologically aware consumer behavior, garbage inhibition, volunteering

in nature protection activities and ecological automobile use.
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Positively formulated items were recoded from 1 for "never" to 5 for "always" and

negatively formulated items were recoded from 5 for "never" to 1 for "always". With

a Cronbach’s Alpha α = 0.74, the GEB scale is acceptable, in line with that found in

the literature.
13

To determine the environmental sensitivity of players, we computed

the mean total score in both nudge treatments (M = 102.28 with SD = 11.50).
14

Players whose score was below the mean, was considered as low environmental sen-

sitive, while players whose score was greater than the mean was considered as high

environmental sensitive. This allowed us to have three categories of environmental

sensitivity at the group level, based on the environmental sensitivity of each of the

members in the group. We thus note High-High", groups where both members have

high environmental sensitivity. "Low-Low" are groups in which both members have

low environmental sensitivity and "High-Low" are groups in which one member has

high environmental sensitivity, while the other has low environmental sensitivity. Re-

sults are presented at the group level and Tables 4.5 provide a summary of environ-

mental sensitivity in the nudge treatments.

Sensitivity

Treatment High-High High-Low Low-Low Total

Descriptive nudge 10 18 6 34

Injunctive nudge 5 15 11 31

Total 15 33 17 65

Table 4.5 – Environmental sensitivity by treatment

Table 4.5 shows that in both treatments, there is a great number of mixed groups.
15

Figure 4.6 shows the average resource according to environmental sensitivity. We note

that the resource level of the high environmentally sensitive groups is higher than

those of the low environmentally sensitive, as well as the mixed groups. A kruskal-

Wallis test on the average resource by environmental sensitivity in the groups show

13
The Cronbach’s Alpha measures the internal consistency of the questionnaire. Davis et al. (2009)

found α = 0.76 and α = 0.75 in Davis et al. (2011). My & Ouvrard (2019) found α = 0.74 and Buckley

& Llerena (2018) found α = 0.73.

14
My & Ouvrard (2019) found a mean total score M = 104.

15
At an individual level, we found that 51.54% of the players were classi�ed as low environmental

sensitive, while 48.46% were highly sensitive to the environment.
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a signi�cant di�erence (p-value < 0.001) in the three categories of environmental

sensitivy. This is con�rmed by a Student test on couples of environmental sensitivity

in the group (all p-values < 0.001) on Table 4.6, thus, our results are in line with

Conjecture 3.

Figure 4.6 – Average resource by environmental sensitivity in nudge treatments

Average Average Average

Resource Resource Resource

High-High High-Low Low-Low

Nudge Treatments 14.731 12.525 11.855

Kruskal Wallis test (p-values)

High-High = High-Low = Low-Low < 0.001

Student test (p-values)

HH = HL < 0.001

HL = LL < 0.001

HH = LL < 0.001

Table 4.6 – Environmental sensitivity in nudge treatments

Figure 4.7 provides an overview of groups environmental sensitivity inside each

treatment. We found a signi�cant di�erence between groups classi�ed as High-High

with Low-Low groups, as well as between High-High with High-Low groups. This

con�rms that our results are always in line with Conjecture 3, regardless of the treat-
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ment. However, there was no signi�cant di�erence between High-Low and Low-Low

groups.

(a) Descriptive nudge (b) Injunctive nudge

Figure 4.7 – Average resources by environmental sensitivity per treatment

By looking environmental sensitivity at an individual level, we found that more

players were classi�ed as high environmental sensitive in the descriptive nudge than

in the injunctive nudge, as shown by Table 4.7. At the individual level, we found 3

optimal players in the baseline, 2 in the descriptive nudge and 4 in the injunctive nudge.

However, by being paired at random with players from other pro�les, most of the

groups failed to maintain optimal behavior, especially in the descriptive nudge.

Sensitivity

Pro�les High Low Total

Feedback 3 2 5

Myopic 1 2 3

Optimal 1 1 2

Undetermined 33 25 58

Total 38 30 68

(a) Descriptive nudge

Sensitivity

Pro�les High Low Total

Feedback 3 7 10

Myopic 3 2 5

Optimal 3 1 4

Undetermined 16 27 43

Total 25 37 62

(b) Injunctive nudge

Table 4.7 – Individual environmental sensitivity

Finally, we found a great number of mixed groups in terms of environmental sen-

sitivity and a great number of players classi�ed as high environmental sensitive in the

descriptive nudge than in the injunctive nudge. However, appying a chi-squared test

(χ2
), show that the distribution of environmental sensitivity at the group level is in-

dependent of the treatments (p-value= 0.194). The same results was also observed at
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the individual level (p-value= 0.076). This could be the consequence of the random

matching in the game and could explain the low number of optimal groups in the in-

junctive nudge. A solution would be to perform more experiments, to have at least the

same number of observations in both treatments, to be able to formulate consistent

conclusions.

4.6 Discussion and Conclusion

The purpose of this study was to use nudge based intruments to induce more resource

friendly behavior. To this end, we considered a dynamic model in continuous time and

over an in�nite horizon, to study the extraction decisions of groups of two players. We

carried out three treatments using a between-subject design, where the �rst treatment

was the baseline. In the two other treatments, we implemented a nudge based on a

descriptive social norm and an injunctive social norm, because we expect them to be

e�ective in changing behaviors. We used the results of the baseline as a benchmarck,

given as information to subjects in the descriptive social norm treatment. More preci-

sely, they were given a �gure representing the time paths for the resource, as well as

the corresponding average individual payo�s. In the injunctive social norm treatment,

subjects were given the theoretical time paths for the resource, as well as the corres-

ponding payo�s.

A �rst general comparison of the three treatments through the average resource

levels indicates that the descriptive nudge achieves a signi�cantly higher resource le-

vel than the other two treatments. This allows us to partially support our Conjecture

1, which suggests that nudges preserve the resource better than the baseline. Howe-

ver, contrary to our expectations our results do not converge towards Conjecture 2, as

a higher level of resource in the descriptive nudge suggests more cooperation in this

treatment than in the injunctive nudge. In addition, by classifying the pro�les observed

in the groups within each treatment, we found only 3.23% of optimal groups in the

injunctive nudge and a more equal distribution of payo�s within the groups, as well

as promoting greater e�ciency. The lowest e�ciency was recorded in the baseline.

However, the distribution of pro�les in the treatments was not signi�cantly di�erent

to allow us to conclude that the nudge treatments have a real impact on the beha-
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viors observed in the groups. We �nally measured players environmental sensitivity

in the nudge treatments and found that regardless of the treatment, high environmen-

tal sensitive groups succeeded in maintaining a high resource level than low and mixed

environmental sensitive groups, in line with Conjecture 3. However, we found at the

group and at the individual level, more environmental sensitive players in the descrip-

tive nudge than in the injunctive nudge. We expect it could be the consequence of the

random matching in the game, explaining the low number of optimal groups in the

injunctive nudge.

We are aware that our work has limitations and can be improved. For example, it

would be necessary to look further to understand the undetermined behavior, which

seems to be a focal point in the di�erent treatments, regardless of whether an infor-

mation is provided or not. Moreover, checking whether there are behavioral biases

that could provide more information about this pro�le could be considered. In addi-

tion, more data could also be collected to solve the random matching, perhaps clearer

results would be found. In terms of public policy recommendations, we cannot really

conclude that nudge treatments provide more e�ective results than the baseline or that

the injunctive nudge is more e�cient thant the descriptive nudge, even if the highest

e�ciency ratio was found in this treatment. We believe that additional observations

will help us to conclude. Some extentions are also possible and it could be interes-

ting to test communication mechanisms such as cheap talk, to see how this will a�ect

the nudge treatments. Other category of nudges such as default options could also be

investigated.



General Conclusion

The �rst goal of this thesis was to study and test in the laboratory, considering a dy-

namic framework in continuous time and over an in�nite horizon, the behaviors of

common pool renewable resources users. It then aimed at proposing non-monetary

instruments such as "nudges" to guide resource users towards optimal decisions. In

this perspective, we have adopted an approach that combines modeling, experimen-

tation and analysis of the behaviors observed in the laboratory. In Chapter 1, which

presents studies on the management of common pool resources in a dynamic frame-

work, it was found that the implementation of dynamic models in continuous time in

the laboratory is very weak. This is the reason why Chapter 2 focused on the imple-

mentation of an experimental protocol in continuous time and over an in�nite horizon,

which is faithful to the theoretical model. It allowed us to identify the theoretical be-

haviors for which the experimental subjects are closest when they exploit the resource

alone, and then when they are two to exploit the resource.

In Chapter 3, we tried to see how to present the dynamic model in continuous

time in the laboratory, in the simplest possible way and easily understandable. Since

real continuous time is impossible to implement in laboratory, a discrete approxima-

tion almost similar to the theoretical continuous time has been proposed. Then, depen-

ding on the discretization parameter chosen, we could implement experiments close

to continuous time and experiments close to discrete time. Our results suggest that

without strategic interaction, the behaviors of experimental subjects are quite similar,

regardless of the nature of time (continuous vs. discrete). Strategic interaction, leads

to more cooperation in continuous time. However, we found in Chapters 2 and 3 that

132
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the introduction of strategic interaction strongly leads to an over-exploitation of the

resource, in line with the literature. Chapter 4, studies the e�ect of a nudge based

on social norms, by comparing descriptive social norms and injunctive social norms.

These nudges consisted in providing experimental subjects with graphical informa-

tion on the equilibrium paths of the exploited resource. These equilibria were related

to theoretical benchmarks in the case of injunctive norms and to the benchmarks ob-

served in the baseline for descriptive norms. Our results suggest that the classi�cation

of groups in the nudge treatments appears to be consistent with the nature of the infor-

mation displayed to the experimental subjects. Moreover, our results are quite mixed

between the two types of nudges, with however a greater e�ciency in the injunctive

nudge.

We are aware that our work also has limitations and could be improved. First, the

use of students as experimental subjects could be a limitation, as they are not neces-

sarily representative of the target population of our study and are sometimes more

motivated by their payo�s than by resource conservation. The interpretation of our

results should therefore be done with caution. Moreover, the experiment in Chapter 2

was the �rst experiment we conducted. A discretization of the dynamics with a dis-

cretization parameter τ = 1 seemed to us to be su�cient to approach the continuous

dynamics. On the other hand, when we wanted to know in Chapter 3 if a discrete

presentation of the continuous time model would be easier to understand in the labo-

ratory, we realized that a �ner approximation of continuous time should be proposed,

in order to keep the two approaches comparable, i.e. su�ciently close to the theoretical

model in continuous time. This is why we have considered in this chapter τ = 0.1 for

continuous time and τ = 1 for discrete time.

Moreover, we literally explained the evolution of the resource in the instructions

of Chapter 3 by excluding formulas, unlike Chapter 2 where a discrete formula was

given (the discretization with τ = 1, allowing a fairly simple interpretation of the

evolution). This di�erence in the presentation of the instructions did not allow us to

compare the experiments of Chapter 2 with those of Chapter 3 in continuous time.

It would have been very interesting, because it would have allowed us to compare

the e�ect of information, since in Chapter 2 subjects �rst play the problem without

strategic interaction.
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Finally, considering the analysis of experimental data, our subject methodology of

classi�cation results in a very large number of "undetermined" individuals, whose be-

havior is intermediate between two theoretical benchmarks. This type of individuals

has been discussed in Chapter 2, where they were again classi�ed according to visual

criteria. It would therefore be necessary to recourse to �ner analysis methods or to

think about theoretical models able to explain such behavior.

However, several extensions can be drawn from the di�erent results. For the mo-

ment we have limited to two players in strategic interaction situations. However, in the

literature, it is shown that the Tragedy of the Commons is more exacerbated with the

number of players, both in continuous and discrete time. It could be useful to increase

the number of players to check this result and try to understand the learning process

of subjects when they are in a dynamic environment, by comparing the results of the

game (several players), with and without the optimal control phase (only one player).

The ability of continuous time to induce cooperation is very mixed, as it sometimes

requires additional mechanisms such as communication, punishment, feedback to be

e�ective (Oprea et al., 2014; Leng et al., 2018). One way would be to introduce these

mechanisms in Chapter 3 to check how the results evolve in continuous time compared

to discrete time ; or in Chapter 4, to see if they induce the emergence of cooperation.

Another approach would be to give information on the dynamics of costs instead

of the dynamics of the resource. Even if theoretically the same results are obtained in

both situations, results could di�er in the laboratory. We believe that individuals would

be more sensitive to variations in costs and would focus more on their payo�s than on

the preservation of the resource.

Finally, in Chapter 4, it might be useful to test other categories of nudges such as

default options. This could be a real challenge with our dynamic framework. It would

also be possible to test monetary instruments or a combination of monetary and non-

monetary instruments in order to determine the most e�cient instrument for optimal

resource management.



Conclusion Générale

Cette thèse avait pour but dans un premier temps, d’étudier et tester en laboratoire,

dans un cadre dynamique en temps continu et sur un horizon in�ni, les comportements

des utilisateurs de ressources communes renouvelables. Elle visait ensuite à proposer

des instruments non-monétaires de type "nudges" pour guider les utilisateurs de res-

sources vers des décisions optimales. Dans cette perspective, nous avons adopté une

démarche qui combine modélisation, expérimentation et analyse des comportements

observés en laboratoire. Dans le Chapitre 1 qui présente des études portant sur la

gestion des ressources communes dans un cadre dynamique, il est ressorti que l’im-

plémentation en laboratoire des modèles dynamiques en temps continu est très peu

répandue. C’est la raison pour laquelle le Chapitre 2 s’est penché sur la mise en place

d’un protocole expérimental en temps continu et sur un horizon in�ni, qui soit �dèle au

modèle théorique. Cela nous a permis d’identi�er les comportements théoriques pour

lesquels les sujets expérimentaux se rapprochent le plus lorsqu’ils exploitent seuls la

ressource, puis lorsqu’ils sont deux à exploiter la ressource.

Dans le Chapitre 3, nous avons essayé de voir comment présenter en laboratoire

le modèle dynamique en temps continu, de la manière la plus simple possible et facile-

ment compréhensible. Le vrai temps continu étant impossible à implémenter en labo-

ratoire, une approximation discrète quasiment similaire au temps continu théorique a

été proposée. Ensuite, selon le paramètre de discrétisation choisi, nous pouvions implé-

menter des expériences proches du temps continu et des expériences proches du temps

discret. Nos résultats suggèrent qu’en l’absence d’interaction stratégique, les compor-

tements des sujets expérimentaux sont assez similaires, indépendamment de la nature
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du temps (continu vs. discret). La présence de l’interaction stratégique entraine cepen-

dant plus de coopération en temps continu. Toutefois, on constate dans les Chapitres

2 et 3 que l’introduction des interactions stratégiques conduit fortement à une sur-

exploitation de la ressource, en accord avec la littérature. Le Chapitre 4, étudie l’e�et

d’un nudge basé sur les normes sociales, en comparant norme sociale descriptive et

norme sociale injonctive. Ces nudges consistaient à fournir aux sujets expérimentaux,

des informations graphiques sur les sentiers d’équilibres de la ressource exploitée. Ces

équilibres portaient sur les benchmarks théoriques dans le cas des normes injonctives

et sur les benchmarks observés dans la baseline pour les normes descriptives. Nos ré-

sultats suggèrent que la classi�cation des groupes dans les traitements nudges semble

consistante avec la nature de l’information présentée aux sujets expérimentaux. Par

ailleurs, nos résultats assez mitigés entre les deux types de nudges, avec cependant

une e�cacité plus importante dans le nudge injonctif.

Nous sommes conscient que notre travail comporte aussi des limites et pourraient

être amélioré. D’abord, le fait d’avoir eu recours à des étudiants comme sujets expé-

rimentaux pourrait constituer une limite, car ils ne sont pas forcément représentatifs

du public visé par notre étude et sont parfois plus motivés par leurs gains que par

la préservation de la ressource. L’interprétation de nos résultats devrait donc se faire

avec précaution. Par ailleurs, l’expérience du Chapitre 2 fut la première expérience que

nous avons réalisée. Une discrétisation de la dynamique avec un paramètre de discré-

tisation τ = 1 nous a alors paru largement su�sante pour approcher la dynamique

continue. Par contre, en voulant savoir dans le Chapitre 3 si une présentation discrète

du modèle en temps continu serait plus facile à comprendre en laboratoire, nous avons

réalisé qu’une approximation plus �ne du temps continu devrait être proposée, a�n de

garder les deux approches comparables, c’est-à-dire su�samment proches du modèle

théorique en temps continu. C’est ainsi que le choix de considérer dans ce chapitre

τ = 0.1 pour le temps continu et τ = 1 pour le temps discret a été fait.

De plus, nous avons opté pour une explication littéraire de l’évolution de la res-

source dans les instructions du Chapitre 3 en excluant les formules, contrairement au

Chapitre 2 où une formule discrète était donnée (la discrétisation avec τ = 1, permet-

tant une interprétation assez simple de l’évolution). Cette di�érence de présentation

des instructions ne nous a pas permis de comparer les expériences du Chapitre 2 à
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celles du Chapitre 3 en temps continu. Chose qui aurait été très intéressante, car au-

rait permis de comparer l’e�et de l’information, puisque dans le Chapitre 2 les sujets

jouent d’abord le problème sans interaction stratégique.

En�n, du point de vu de l’analyse des données expérimentales, notre méthodologie

de classi�cation des sujets résulte en un très grand nombre d’individus "indéterminés",

dont le comportement est intermédiaire entre deux benchmarks théoriques. Ce type

d’individus a d’ailleurs retenu notre attention dans le Chapitre 2, où ils ont à nou-

veau été classés suivant des critères visuels. Il serait donc nécessaire d’avoir recours

à d’autres méthodes d’analyses plus �nes ou encore de ré�échir à des modèles théo-

riques capables d’expliquer de tels comportements.

Toutefois, plusieurs extensions peuvent se dégager des di�érents résultats. Pour

l’instant nous nous sommes limités à deux joueurs dans la prise en compte de l’inter-

action stratégique. Or dans la littérature, il est démontré que la Tragédie des Communs

est davantage exacerbée avec le nombre de joueurs, que ce soit en temps continu, qu’en

temps discret. Il pourrait être utile d’augmenter le nombre de nos joueurs pour véri�er

ce résultat et essayer de comprendre le processus d’apprentissage des sujets lorsqu’ils

sont dans un environnement dynamique, en comparant les résultats du jeu (plusieurs

joueurs), avec et sans la phase en contrôle optimal (un seul joueur).

La capacité du temps continu à induire la coopération est très mitigée, car néces-

site parfois des mécanismes supplémentaires comme la communication, la punition,

des retours d’information pour être e�cace (Oprea et al., 2014; Leng et al., 2018). Une

piste serait également d’introduire ces mécanismes dans le Chapitre 3 pour véri�er

comment évoluent les résultats en temps continu comparativement au temps discret ;

ou encore dans le Chapitre 4, pour voir s’ils constituent un plus dans l’émergence de la

coopération. Une autre piste serait de donner des informations sur la dynamique des

coûts à la place de la dynamique de la ressource. Même si théoriquement on obtient

les mêmes résultats dans les deux situations, les résultats pourraient diverger en labo-

ratoire. Nous pensons en e�et que les individus seraient plus sensibles aux variations

des coûts et se concentreraient davantage sur leurs gains au détriment de la ressource.

En�n, dans le Chapitre 4, il pourrait être utile de tester d’autres catégories de

nudges comme par exemple les options par défauts. Ce qui pourrait constituer un véri-

table challenge avec notre cadre dynamique. Il serait également envisageable de tester
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des instruments monétaires ou encore une combinaison d’instruments monétaires et

non-monétaires a�n de déterminer l’instrument le plus e�cace pour une gestion opti-

male de la ressource.
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Appendices for Chapter 1

A.1 Description of variables

In this survey, extraction, harvesting, pumping, catch or �shing refer to the same

concept.

Table A.1 – Variables for single agents articles

Variables Description

xt Agent’s extraction (or extraction rate in continuous time)

St Stock of the resource

F (St) Logistic growth function

n Number of users

i Index of users

T Finite time horizon

r Discount rate

ρ Discount factor (in discrete time)

exp−r
Discount factor (in continuous time)

R Recharge rate or replenishment rate or intrinsic growth

K Carrying capacity

MSY Maximum Sustainable Yield
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Table A.2 – Variables for multiple agents articles

Variables Description

xit Agent i’s extraction (or extraction rate in continuous time)

xjt Agent j’s extraction rate (or extraction rate in continuous time)

Xt Total group extraction

Bit Bene�t function

π Pro�t

Cit Total extraction cost function

ct Marginal cost

c0 Cost parameter

cf Fixed costs

cop Opportunity cost

c1 Static crowding externality

c2 Dynamic externality

P Price

k Incremental cost parameter

V Value function

dt Depth to water

s Parameter on the size and con�guration of the aquifer

St Stock of the resource

Sth Threshold stock

F (S) Logistic growth function

n Number of users

i Index of users

T Finite time horizon

r Discount rate

ρ Discount factor (in discrete time)

exp−r
Discount factor (in continuous time)

R Recharge rate or replenishment rate or intrinsic growth rate

K Carrying capacity

MSY Maximum Sustainable Yield

E Extraction e�ort

E0 Per period e�ort endowment

Ē Maximum amount of extraction e�ort

α Extraction technology

p̄ Marginal value of an extracted resource unit

AS Area times storativity of the aquifer

Tr Transmissivity

v(g, h) Radial distance between well g and well h
w(t, v) The well function
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Appendices for Chapter 2

B.1 The Optimal Control Problem

B.1.1 Social Optimum Solution

The social optimum problem, where r is the discount rate is:

max
w(t)

∫ ∞
0

e−rt
[
aw(t)− b

2
w(t)2 −max(0, c0 − c1H(t))w(t)

]
dt, (B.1)

s.t 
Ḣ(t) = R− αw(t),

H(0) = H0 and H0 ≥ 0, H0 given,

H(t) ≥ 0,

w(t) ≥ 0.

Condition 1 : We suppose that:

R

α
<
a

b
,

Rαc1 +Rbr − aαr + αc0r

αc1r
>
c0
c1
.

This condition is given to ensure that the steady-state of the optimal solution is: H∞ =
c0
c1

, allowing us to better di�erentiate the two types of behavior. In fact, when the

resource is less than

c0
c1

and not so small, the optimal level of the water table increases

to

c0
c1

, while the myopic solution decreases the water table to its steady-state, which is

150



APPENDIX B. APPENDICES FOR CHAPTER 2 151

smaller than

c0
c1

.

Theorem 1 : Under condition 1, the steady-state of the optimal solution is:

H∞op =
c0
c1
, w∞op =

R

α
.

The optimal groundwater path has two regimes: it increases to this steady-state when
H0 <

c0
c1

(decreases whenH0 >
c0
c1
) till a certain time T whereH(t) =

c0
c1

for all t ≥ T .

The optimal extraction rate follows the same trajectory towards its steady-state. It can be
preceded by a null extraction regime depending on the parameterization.

To prove theorem 1, we �rst prove that under condition 1 it is not possible to have

a steady-state other than

c0
c1

. To do this, we separately consider the case where the

optimal solution lies in the regime with the level of the groundwater, H , smaller than

c0
c1

and the case withH greater than

c0
c1

. The two regimes are di�erentiated by the cost

function.

Proposition 1 : When H(t) <
c0
c1

for all t, the steady-state of the following problem

max
w

∫ ∞
0

e−rt
[
aw − b

2
w2 − (c0 − c1H)w

]
dt, (B.2)

s.t {
Ḣ = R− αw,
H(0) = H0.

is
H∞ =

Rαc1 +Rbr − aαr + αc0r

αc1r
, w∞ =

R

α
.

Proof 1 : The associated Hamiltonian is:

Hamiltonian = aw − b

2
w2 − (c0 − c1H)w + λ(R− αw),

where λ is the adjoint variable and the result is given by �rst order conditions at the
steady-state.
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Furthermore, this steady-state cannot be a steady-state of our problem because by

condition 1 it is greater than

c0
c1

.

Proposition 2 : There is no steady-state in the regime H(t) >
c0
c1
.

Proof 2 : Suppose a solution with H(t) >
c0
c1

for all t. The maximization problem is:

max
w

∫ ∞
0

e−rt
[
aw − b

2
w2

]
dt, (B.3)

s.t {
Ḣ = R− αw,
H(0) = H0.

The associated Hamiltonian:

Hamiltonian = aw − b

2
w2 + λ(R− αw),

where λ is the adjoint variable, gives by �rst order conditions:

w(t) =
a− αλ0ert

b
.

It is not possible to maintain the groundwater greater than
c0
c1

if λ0 ≤ 0. Note that if

λ0 = 0, condition 1 gives Ḣ < 0. It is not possible to have w ≥ 0 if λ0 > 0.

These two propositions show that the steady-state of the optimal problem is:

H∞op =
c0
c1
, w∞op =

R

α

Now to obtain the complete path we must solve �rst order conditions considering

the Hamiltonian of the problem and taking into account the constraints.

For H0 <
c0
c1

, the Lagrangian of the problem is:

L = aw − b

2
w2 − (c0 − c1H)w + λ(R− αw) + µ

(
c0
c1
−H

)
+ νw, (B.4)
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where λ is the adjoint variable and µ and ν the Lagrange multipliers associated to

the constraints H ≤ c0
c1

and w ≥ 0, respectively.

For H0 >
c0
c1

, the Lagrangian of the problem is:

L = aw − b

2
w2 + λ(R− αw) + µ

(
H − c0

c1

)
. (B.5)

The time of change of regime is obtained using the continuity of the adjoint vari-

able, the state variable and the control variable.

B.1.2 The Constrained Myopic Solution

The constrained myopic problem faced by the farmer is:

max
w(t)

[
aw(t)− b

2
w(t)2 −max(0, c0 − c1H)w(t)

]
. (B.6)

This problem provides a feedback representation of the solution w(H), under the fol-

lowing constraints:
1


Ḣ(t) = R− αw(H(t)),

H(0) = H0 and H0 ≥ 0, H0 given,

H(t) ≥ 0,

w(t) ≥ 0.

Condition 2 : We suppose that

a > c0,
R

α
− a− c0

b
> 0.

This condition is to ensure the positivity of the steady-state and the extraction of the

constrained myopic solution.

Theorem 2 : Under condition 2, the steady-state of the constrained myopic problem is:

H∞my =
b

c1

(
R

α
− a− c0

b

)
, w∞my =

R

α
.

1
The feedback representation is obtained when the solution is written according to the state variable,

instead of according to time.
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When H0 > H∞my, the constrained myopic path decreases to the steady-state.

From condition 1, we conclude that in the optimal control problem:

H∞my < H∞op . (B.7)

Considering the di�erent possibilities for H (H <>=
c0
c1

), we obtain the con-

strained myopic extraction. We can see that ifH <
c0
c1

, the resolution of the di�erential

equation gives:

H(t) = H∞my + (H0 −H∞my)e
−
αc1
b

t
, (B.8)

with the steady-state that is:

0 < H∞my =
b

c1

(
R

α
− a− c0

b

)
<
c0
c1
,

by conditions 1 and 2. However, if H >
c0
c1

, as extraction is

a

b
, condition 1 implies that

Ḣ < 0 and then, in a �nite time, the trajectory enters the regime where H <
c0
c1

and

the reasoning for that regime applies.

B.2 The Case of Multiple Agents: Game

B.2.1 The Social Optimum Solution

The social optimum or the cooperative maximization problem is given by:

V (H0) = max
w1(t),w2(t)

∫ ∞
0

e−rt
2∑
i=1

[
awi(t)−

b

2
wi(t)

2 −max(0, c0 − c1H(t))wi(t)

]
dt,

(B.9)

s.t 
Ḣ(t) = R− α(w1(t) + w2(t)),

H(0) = H0 and H0 ≥ 0, H0 given,

H(t) ≥ 0,

wi(t) ≥ 0.
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Condition 3 : We suppose that

R

α
<
a

b
,

2Rαc1 +Rbr − 2aαr + 2αc0r

2αc1r
>
c0
c1
.

As in the single agent case, this condition is designed to ensure that the steady-state

of the optimal solution is H∞ =
c0
c1
.

Theorem 3 : Under condition 3, the steady-state of the optimal solution is:

H∞op =
c0
c1
, w∞i, op =

R

2α
.

The optimal resource path has two regimes: it increases to this steady-state whenH0 <
c0
c1

(decreases when H0 >
c0
c1
) till a certain time T where H(t) =

c0
c1

for all t ≥ T . The

optimal extraction rate follows the same trajectory towards its steady-state. It can be
preceded by a null extraction regime depending on the parameterization.

B.2.2 The Nash Feedback solution

The Nash Feedback maximization problem for each farmer is:
2

max
wi(t)

∫ ∞
0

e−rt
[
awi(t)−

b

2
wi(t)

2 −max(0, c0 − c1H(t))wi(t)

]
dt, (B.10)

s.t 
Ḣ(t) = R− α(w1(t) + w2(t)),

H(0) = H0 and H0 ≥ 0, H0 given,

H(t) ≥ 0,

wi(t) ≥ 0.

Condition 4 : We suppose that

Rb+2α2A2−2α(a−c0) > 0,
Rb+ 2α2A2 − 2α(a− c0)

2α(c1 − αA3)
<
c0
c1
, a−c0−αA2 > 0,

2
In the Nash Feedback equilibrium, we consider only the case of linear strategies.
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Where, A2 =
(a− c0)(−c1 + 2αA3)−RbA3

−rb− 2c1α + 3A3α2
, and A3 is the solution of: −3α2

2b
A2

3 +

rb+ 4c1α

2b
A3 −

c21
2b

= 0, with −c1 + αA3 < 0.

Conditions Rb+ 2α2A2 − 2α(a− c0) > 0 and

Rb+ 2α2A2 − 2α(a− c0)
2α(c1 − αA3)

<
c0
c1

ensure that the steady-state of the feedback path is positive and in the regime where

cost is positive. Condition a−c0−αA2 > 0 ensures that extraction is always positive.

Theorem 4 : Under condition 4, the steady-state of the feedback equilibrium is:

H∞f =
Rb+ 2α2A2 − 2α(a− c0)

2α(c1 − αA3)
, w∞i, f =

R

2α
.

Groundwater increases to this steady-state whenH0 < H∞f (decreases whenH0 > H∞f ).
The extraction rate follows the same trajectory towards its steady-state.

To prove theorem 4, we consider H0 ≤
c0
c1

and H0 >
c0
c1

:

WhenH0 ≤
c0
c1

, condition 3 guarantees the positivity of the extraction path for all

t and that the Nash feedback trajectory remains in the region whereH <
c0
c1

. The Nash

equilibrium can be found by solving the Hamilton-Jacobi-Bellman (HJB) equation :

rV i
R1

(H) = maxwi

[
(awi −

b

2
w2
i − (c0 − c1H)wi − (V i

R1
)′(H)(R− α(wi + wj(H))

]
.

By using the guessing method to guess a quadratic value function and a linear strategy,

one can easily �nd the Nash feedback equilibrium. Thus, proposing: V i
R1

(H) = A1 + A2H +
A3

2
H2,

wj(H) = aiH + bi.

One can �ndA1, A2, A3, ai, bi, whereA3 is obtained by solving the following equa-

tion:
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− 3α2

2b
A2

3 +
rb+ 4c1α

2b
A3 −

c21
2b

= 0, (B.11)

with the condition −c1 + αA3 < 0, and we have :

a1 =
c1 − αA3

b
,

b1 =
a− c0 − αA2

b
,

A2 =
(a− c0)(−c1 + 2αA3)−RbA3

−rb− 2c1α + 3A3α2
,

A1 =
3α2A2

2 + 2Rb− 4α(a− c0)A2 + (a− c0)2

2br
.

The evolution of the water table for H0 is also given by:

H(t) = e

2α(−c1 + αA3) t

b
(
H0 −H∞f

)
+H∞f , H∞f =

Rb+ 2α2A2 − 2α(a− c0)
2α(c1 − αA3)

.

When H0 >
c0
c1

the problem is a bit di�erent, because the following facts must

be taken into account : �rst, there is no stationary steady state in the regime where

H >
c0
c1

. As a consequence, the Nash feedback solution will decrease from this regime

to the steady state H∞f . Second, our problem is an autonomous problem, thus the

solution in this case is also the solution of an HJB equation of the form:

rV i
R2

(H) = maxwi

[
(awi −

b

2
w2
i − (V i

R2
)′(H)(R− α(wi + wj(H))

]
. (B.12)

For the �rst point, the solution of this last HJB equation is constrained to the con-

dition:

V i
R2

(
c0
c1

) = V i
R1

(
c0
c1

). (B.13)
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The �rst order condition for equation (B.12) gives:

wi(H) =
a− α(V i

R2
)′(H)

b
. (B.14)

Replacing (B.14) in equation (B.12) and taking into account that wj(H) = wi(H),

we obtain the following di�erential equation for V i
R2

(H):

V i
R2

(H) =
C

2
[(V i

R2
)′(H)]2 +B (V i

R2
)′(H) + A, (B.15)

where, 

A =
a2

2br
,

B =
Rb− 2a

br
,

C =
−α2 + 4α

br
.

Di�erentiating (B.15) with respect to H , one must �nally solve:

U(H) = B U ′(H) + C U(H)U ′(H), with U(H) = (V i
R2

)′(H). (B.16)

The solution of equation (B.16) is given by:

U(H) = e
−
−H +BLambertW (x)− cte

B , x =
Ce

H

B +
cte

B
B

, (B.17)

where LambertW is the Lambert W function and the constant cte is found us-

ing (B.13).

B.2.3 The Constrained Myopic solution

The constrained myopic problem faced by a farmer for each level of the water table is:



APPENDIX B. APPENDICES FOR CHAPTER 2 159

max
wi(t)

[
awi(t)−

b

2
wi(t)

2 −max(0, c0 − c1H)wi(t)

]
. (B.18)

This maximization problem also provides a feedback representation of the solution

wi(H), constrained to the evolution of the water table exploited by the two symmet-

rical farmers: 
Ḣ(t) = R− 2αw(H(t)),

H(0) = H0 and H0 ≥ 0, H0 given,

H(t) ≥ 0,

wi(t) ≥ 0.

Condition 5 : We suppose that

a > c0,
R

2α
− a− c0

b
> 0.

This condition is to ensure the positivity of the steady-state and the extraction of the

constrained myopic solution.

Theorem 5 : The steady-state of the constrained myopic problem is:

H∞my =
b

c1

(
R

2α
− a− c0

b

)
, w∞i, my =

R

2α
.

When H0 > H∞my the constrained myopic path decreases to the steady-state.

To �nally prove the link between the steady states of the 3 types of behavior studied

in the game, condition 4 gives:
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H∞f =
Rb+ 2α2A2 − 2α(a− c0)

2α(c1 − αA3)

=
Rb− 2α(a− c0)

2αc1 − α2A3

+
2α2A2

2αc1 − α2A3

=

Rb− 2α(a− c0)
2αc1

× 1

1− αA3

c1

+
2α2A2

2α(c1 − αA3)

H∞f =

H∞my × 1

1− αA3

c1

+
2α2A2

2α(c1 − αA3)
.

Thanks to the condition −c1 + αA3 < 0, we can deduce that c1 − αA3 > 0.

Moreover, we have A2 > A3, so that:

2α2A2

2α(c1 − αA3)
> 0, and

2α2A2

2α(c1 − αA3)
>

H∞my × 1

1− αA3

c1

 .
Thus, one can say that H∞f > H∞my, and we can conclude from conditions 3 and 4

that in the game:

H∞my < H∞f < H∞op . (B.19)

Notice that conditions 1, 2, 3, 4 and 5 were decisive in the choice of the values of the

parameters used for the experiment. A discussion of these conditions will be made in

section 2.4.3.
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B.3 An example of how the empirical strategy works

The purpose of this appendix is to provide a precise example of an application of our

empirical strategy. We follow player 58 and show all intermediate results.

Step 1: We compute the conditional MSDs in the optimal control. This gives us :

MSDc
my = 0.718,

MSDc
op = 0.011.

(B.20)

MSDc
op is the smallest. Extraction and conditional extraction paths of player 58

are then shown by Figure B.1.
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Figure B.1 – Player 58’s extraction path versus the conditional extraction path for the

optimal control

Visual inspection con�rms that player 58 is closer to the conditional optimal ex-

traction path than to the conditional myopic extraction path.

Step 2 : Next, we regress player 58’s extractions from time t = 0 to t = 300 over

its conditional optimal extraction path in the optimal control. Results are shown in

Table B.1.



APPENDIX B. APPENDICES FOR CHAPTER 2 162

Table B.1 – Player 58’s extraction in the optimal control

(1)

w(t)
w(t)cop 1.016

∗∗∗

(8.91)

Constant -0.102

(-1.35)

Observations 301

Newey-West standard errors with 5-period lags.

t statistics in parentheses.

∗ p < 0.05,
∗∗ p < 0.01,

∗∗∗ p < 0.001

The coe�cient is positive (1.016) and signi�cant at 0.1%. Therefore, we consider

player 58 as being signi�cantly optimal in the optimal control.

Step 3 : Player 58 belong to group 29 in the game. We compute the conditional

MSDs of the group. This gives us :

MSDc
my = 5.004,

MSDc
fb = 1.160,

MSDc
op = 0.070.

(B.21)

MSDc
op is the smallest. Extraction and conditional extraction paths of group 29

are shown by Figure B.2.
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Figure B.2 – Group 29’s extraction path versus conditional extraction path for the game

Visual inspection con�rms that group 29 is closer to the conditional optimal ex-

traction path than to any other path.

Step 4 : Next, we regress group 29’s extractions from time t = 0 to t = 300 over

their conditional optimal extraction path in the game. Results are shown in Table B.2.

Table B.2 – Group 29’s extraction in the game

(1)

w(t)

w(t)cop 0.770
∗∗∗

(9.11)

Constant -0.070

(-1.00)

Observations 301

Newey-west standard errors with 5-period lags.

t statistics in parentheses.

∗ p < 0.05,
∗∗ p < 0.01,

∗∗∗ p < 0.001

The coe�cient is positive (0.770) and signi�cant at 0.1%. Therefore, we consider



APPENDIX B. APPENDICES FOR CHAPTER 2 164

group 29 as being signi�cantly optimal in the game.

B.4 Instructions

Translated from French

B.4.1 Optimal control

You are about to participate in a decision-making experiment. We ask you to carefully

read the instructions in order to better understand the experiment. An experimenter

will proceed to read these instructions aloud when all participants have �nished their

own reading. All of your decisions will be treated anonymously. You will specify your

choices using the computer in front of which you are seated. For the remainder of the

experiment, we ask you to remain quiet. If you have any questions, raise your hand

and an experimenter will come and speak with you privately.

This experiment includes two independent parts. Only the Part 1 instructions are

included here; you will have those for Part 2 when Part 1 is over. Your payo� for the

experiment will be the sum of your earnings over the two parts. Earnings in each

parts are in experimental currency units (ECU). The exchange rate of ECUs into euros

is speci�ed in the instructions for each part.

Part 1
This part includes two �ve-minutes training phases and a �ve-minute experimentation

phase. The payo� for the experimentation is the one considered for your remuneration

for this part.

General framework

You initially have 15 resource units. At any time, you can extract between 0 and 2.8

resource units with up to two decimal points of precision. This means that you are

free to choose your extraction rate as 0, 0.01, 0.02 . . .2.79, 2.8. You will move a slider

similar to that depicted in Figure B.3 to make your choice. The value dislayed above
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the slider is automatically taken into account when you release the slider and sent to

the central computer which updates information.

Figure B.3 – Slider for decision-making

Resource dynamics

The available resource continuously evolves. Its evolution depends on two elements:

(i) your extraction rate at instant t denotedEt and (ii) a �xed rate of 0.56 automatically

added at each instant t.

By noting Rt the amount of resource available at instant t, the dynamics of the

resource is then:

Rt+1 = Rt − Et + 0.56.

In the experiment, the instant is the second, which means that 1 second elapses

between the instant t and the instant t + 1, thus, the resource evolves each second as

described above.

A graph on your screen will show you the resource’s evolution in real time.

If your action is such that it brings the resource to zero, your extraction rate will be set to
zero by the computer.

Example

Suppose that at the instant t the amount of resource available is 15 units and that

your extraction rate is 0.30 units. At the instant t+ 1 the amount of resource available

will then be: Rt+1 = 15− 0.30 + 0.56 = 15.26 units.
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Payo�

When you extract the resource, you earn revenue but also incur a cost. The cost de-

pends on the amount of the available resource: the less of the resource available, the

higher the cost.

Total revenue from extraction
At the instant t, for an extraction rate Et, the total revenue denoted RECt is equal to:

RECt = 2.5Et − 0.9E2
t .

Figure B.4 below shows the total revenue according to the extraction rate.
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Figure B.4 – Total revenue from extraction
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Cost of extraction
At the instant t for an available amount of resource Rt, the unitary cost ct is equal to:

ct =

{
(2− 0.1Rt) if 0 ≤ Rt < 20,

0 if Rt ≥ 20.

Thus,

- the cost increases when the available resource decreases

- the cost is positive when the available resource is strictly lower than 20 units, and

the cost is null when the available resource is greater than or equal to 20 units

Figure B.5 shows the unitary cost according to the available resource.
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Figure B.5 – Unitary cost of extraction

The total cost of extraction Ct, is equal to the extraction rate times the unitary cost,

that is:

Ct = Et × ct.
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Instant t payo�
At the instant t, payo�Gt equals the di�erence between bene�t and cost, so thatGt =

RECt − Ct.
Example
With Et = 1.4 and Rt = 20, RECt = 1.736 and Ct = 0, thus payo� is 1.736 ecus

With Et = 1.4 and Rt = 15, RECt = 1.736 and Ct = 0.7, thus payo� is 1.036 ecus

With Et = 1.4 and Rt = 10, RECt = 1.736 and Ct = 1.4, thus payo� is 0.336 ecus

With Et = 1.4 and Rt = 5, RECt = 1.736 and Ct = 2.1, thus payo� is −0.364 ecus

Discounted instantaneous payo�
Each instant, the instantaneous payo� (Gt) is multiplied by a discount factor, allow-

ing us to determine the present value of the payo� perceived in the future. The dis-

count rate equals 0.5% and concretely means that the instant t payo� is multiplied

by e−0.005×t. Thus, the same instantaneous payo� has a di�erent discounted value

according to the instant.

Example
Let us take the same payo� Gt = 0.5 at 4 di�erent instants.

At instant t = 0 the discounted payo� equals 0.5× e−0.005×0 = 0.5

At instant t = 1 the discounted payo� equals 0.5× e−0.005×1 = 0.4975

At instant t = 100 the discounted payo� equals 0.5× e−0.005×100 = 0.3033

At instant t = 300 the discounted payo� equals 0.5× e−0.005×60 = 0.1116

What one should remember from this discounting principle is that the payo�s of the

�rst instants have a greater impact on the payo� of the experiment than those of the

last instants.

Payo� for the part

Your payo� for the part includes two elements: (i) your cumulated payo� from dis-

counted instantaneous payo�s since the beginning of the part (instant t = 0) until the

present instant (t = p), and (ii) your "continuation payo�", which is your payo� if the

experiment were to go on forever (from the present instant t = p to instant t = ∞)
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with your extraction rate being �xed to the present instant p.

Your remuneration for the experiment is your payo� for the last instant of the

experiment (t = 300). This payo� corresponds to your cumulated payo� over all

the instants of the experiment, to which is added the payo� computed as if the part

continued inde�nitely with your extraction rate �xed at that of the last instant.

How the part works

Before the part starts you should decide on an initial extraction rate that will apply at

the beginning of the experiment. Then, as soon as the part begins, you can, when you

wish, change this rate by moving the slider on the window displayed on your screen.

Once you release the slider, the value taken into account is the one displayed above the

slider. When you do not move the slider, the value that is considered at each instant

is the last one you set. Be careful not to click on the slider bar but to move the slider

with the mouse, then release it so that the value is taken into account.

The computer performs the calculations every second, and the data displayed on

your screens is also updated every second.

The decision screen includes four areas, in addition to the decision area with the

slider. Three of these areas are graphic areas, and the fourth is a text area. Figure B.6

on page 170 gives you a depiction of the decision screen. Description of the areas is as

follows:

• graphic at the top left is your extraction rate

• graphic at the bottom left is the available resource

• graphic at the top right is your payo� for the part, which, as explained previously,

comprises your cumulative payo� up to the present instant, to which is added

your payo� if your extraction is applied inde�nitely

• text area at the bottom right contains the same information as the curves but

in the form of text, namely, for each instant, your extraction rate, the available

resource, your discounted instantaneous payo�, and your payo� for the part
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Final details

The exchange rate of ECUs to euros is as follows: 10 ECUs = 0.5e.

Figure B.6 – Decision-making screenshot. We follow a hypothetical subject who

chooses his extraction rate at random
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B.4.2 Game

Part 2
This part is identical to the previous one except that from now on, you are two
subjects who extract the same resource. More precisely, at the beginning of the

part, the central computer will randomly form pairs of 2 players. Each pair will initially

have 15 units of resource, and each of the two players in the pair can at any moment

extract an amount between 0 and 2.8 units.

Resource dynamics

The resource evolves continuously and this evolution depends on two elements: (i) the
total amount of resource extracted by your pair at each instant t, and (ii) a �xed

amount of 0.56 automatically added at each instant t.

Thus the available resource at the instant t+ 1 is equal to :

Rt+1 = Rt − (E1,t + E2,t) + 0.56,

where E1,t is the amount extracted by player 1 of the pair and E2,t the amount ex-

tracted by player 2 of the pair.

If at the instant t the extraction rate of the pair exceeds the available resource, the extrac-
tion rate of each member of the pair for this instant is �xed to 0 by the computer.

Example

Suppose that at the instant t the amount of resource available is 15 units, that your

extraction rate is 0.30 units and that the extraction rate of the other player of your

pair is 0.22 units. At the instant t + 1 the amount of resource available will then be:

Rt+1 = 15− (0.30 + 0.22) + 0.56 = 15.04 units.
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Payo�

The calculation of the revenue for the extraction is identical to that in Part 1, namely

RECt = 2.5Et− 0.9E2
t , where Et is your extraction rate. Thus, it does not depend on

the extraction rate of the other player in the pair.

The calculation of the unitary cost is also identical, namely

ct =

{
(2− 0.1Rt) if 0 ≤ Rt < 20,

0 if Rt ≥ 20.

Thus

- the cost increases when the amount of available resource decreases

- the cost is positive when the amount of available resource is strictly lower than 20

units and cost is null when the available resource is greater than or equal to 20 units

- the cost depends indirectly on the total extraction rate of the pair from the
available resource

The total cost of extraction Ct, is equal to the extracted amount times the unitary cost,

that is Et × ct.

The instant t payo� is computed as previously by the di�erence between revenue

and cost: Gt = RECt − Ct. In the same way, the discounted instant t payo� is equal

to the instant t payo� multiplied by the discount factor, that is Gt × e−0.005×t.

The payo� of this part is also computed as previously: the cumulated payo� from in-

stantaneous discounted payo�s since the beginning of the part (t = 0) until the present

instant (t = p) to which is added the "continuation payo�", which is the payo� if the

game went on forever (from t = p to t = ∞) with your extraction rate and the
extraction rate of the other player in the pair being �xed to the present instant.

The payo� used for your remuneration for this part is your total discounted payo� at

the last instant (t = 300).
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How the part works

The progress of the part is identical to that of Part 1, that is, �rst the choice of an ini-

tial extraction rate, then as soon as the part is started, the possibility of changing this

extraction rate at any moment by moving the slider on the decision window.

The decision screen includes the same four areas as previously. Two supplementary
curves appears in the top left graphic: the other player extraction rate in your
pair and the total extraction rate of your pair.

Last details

This part includes two �ve-minutes training phases each and also a �ve-minute exper-

imentation phase. It is your payo� for the experimentation that will be considered for

your remuneration in this part.

The exchange rate of ECUs to euros is as follows : 10 ECUs = 0.5e

Figure B.7 – Decision-making screenshot. We follow two hypothetical subjects who

choose their extraction rate at random
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B.5 Comprehension questionnaire

�estion 1 – The amount of available resource is updated every second :

� true

� false

Comment: Every second, the resource decreases by your extraction and increases by

0.56 units.

�estion 2 – The payo� at time t depends on the amount of available resource :

� true

� false

Comment: The payo� at time t is the di�erence between benefit and cost at time t.

Benefit only depends on the extraction rate (see figure 2 of the instructions), but the

cost depends on the amount of available resource. The unitary cost (also equivalent to

the marginal cost) or the total cost (unitary cost× extraction rate) increases when the

amount of resource decreases but becomes equal to 0 when the amount of available

resource is greater than or equal to 20.

�estion 3 – The discounted instantaneous payo� is the one taken into account in

the calculation of the cumulated payo� :

� true

� false

Comment: The payo� at time t (di�erence between benefit and cost at time t) is given

as information, but it is the discounted instantaneous payo� that is taken into account

in the calculation of the cumulated payo� (and therefore is one of the two elements

used to compute the payo� of the experiment).

�estion 4 – The payo� of the experiment at time t = x is composed of two elements:

(i) the cumulated discounted payo� between t = 0 and t = x, and (ii) the calculated

payo� from time t = x to infinity, assuming that the extraction rate is the one of the

instant t = x :
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� true

� false

Comment: Each time the computer gives you the payo� of the experiment as if the

experiment was to immediately end with the two elements mentionned above. First

the discounted cumulated payo� from the initial instant t = 0 to the present instant.

Second the payo� from the present instant to infinity assuming that the dynamics of

the resource evolves according to the defined rule, but also that you no longer change

your extraction rate. Your payo� for the experiment is the payo� you would earn at

time t = 300 (5 minutes of play).
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Appendices for Chapter 3

C.1 TheDiscretization of theContinuousTimeModel

This section presents the procedure adopted to discretize the continuous time model.

Let’s consider the following continuous time model:

max
w(t)

∫ ∞
0

e−rtf(w(t), H(t))dt, (C.1)

s.t


Ḣ(t) = R− αw(t),

H(0) = H0 ≥ 0, H0 given,

H(t) ≥ 0,

w(t) ≥ 0.

For the discretization of the model above, let’s consider τ as the discretization

step and n as a period. Time is discretized into intervals of length τ , such that the

di�erential equation and the payo� are approximated in each interval nτ , (n + 1)τ .

176
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Thus, the discretization of the objective function gives:

∫ (n+1)τ

nτ

e−rtf(w(t), H(t))dt =

[
−e
−rt

r
f(w(n), H(n))

](n+1)τ

nτ

= −e
−r(n+1)τ

r
f(w(n), H(n))−

(
−e
−rnτ

r

)
f(w(n), H(n))

=
e−rnτ

r

(
−e−rτf(w(n), H(n))

)
+
e−rnτ

r
f(w(n), H(n))

= f(w(n), H(n))
e−rnτ

r

(
−e−rτ + 1

)
∫ (n+1)τ

nτ

e−rtf(w(t), H(t))dt = f(w(n), H(n))e−rnτ
(

1− e−rτ

r

)
.

Using Taylor’s first order limited development of e−rτ gives :

e−rτ ' 1− rτ.

Thus, the objective function becomes:∫ (n+1)τ

nτ

e−rtf(w(t), H(t))dt ' f(w(n), H(n))(1− rτ)n
(

1− (1− rτ)

r

)
= f(w(n), H(n))(1− rτ)n

(
1− 1 + rτ

r

)
∫ (n+1)τ

nτ

e−rtf(w(t), H(t))dt = f(w(n), H(n))(1− rτ)nτ.

The discretization of the dynamics gives:

H(n+ 1) = H(n) + (R− αw(n)) τ.

The discrete time problem can be defined as:

max
w(n)

∞∑
n=0

(1− rτ)n
[
aw(n)− b

2
w(n)2 −max (0, c0 − c1H(n))w(n)

]
τ, (C.2)
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s.t


H(n+ 1) = H(n) + τ (R− αw(n)) ,

H(0) = H0 ≥ 0, H0 given,

H(n) ≥ 0,

w(n) ≥ 0.

The discrete time model therefore converges towards the continuous time model

when the discretization step τ tends toward zero.

In order to see the degree of the approximations used in the experiment, with the

parameters chosen in the model, Figure C.1 shows the feedback trajectory in contin-

uous time and for the discretizations (τ = 0.1 and τ = 1).

Figure C.1 – Feedback equilibrum in continuous and discret time
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C.2 Theoretical Solutions

Only continuous time solutions are presented because solutions for the discrete time

model are similar. In the single agent (optimal control) problem, we describe the two

types of behaviors farmers can exhibit: social optimum and myopic.

In the game, we consider two farmers exploiting the resource. Despite the evolu-

tion of the water table, payo�s and costs are the same than in the single farmer prob-

lem. They are also similar for both players. We consider two non-cooperative types of

behaviors: a look-forward farmers, allowing to compute the feedback equilibrium, and

myopic farmers. For sake of comparison we also consider the joint maximization prob-

lem i.e., the cooperative solution or the social optimum solution. We do that because

we want to know if some kind of "tacit" cooperation can emerge without negotiation.

Solutions for the single agent and the game converges to those presented in Ap-

pendix B.1 and Appendix B.2 of Chapter 2 for the continuous time problem when the

parameter of discretization goes to zero.
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C.3 Figures from Experimental Instructions

Figure B.1 – Total revenue from extraction

Figure B.2 – Unitary cost of extraction
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Figure B.3 – Decision-making screen shot. We follow a hypothetical subject who

chooses his extraction rate at random
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C.4 Additional Figures

Figure B.4 – Resource level at the end of the game by categories (continuous and dis-

crete time)
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Figure B.5 – Total payo�s at the end of the game by categories (continuous and discrete

time)
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Figure B.6 – Proportion of subjects changing extraction levels at each period/instant
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Figure B.7 – Extraction level at the end of the game by categories (continuous and

discrete time)
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Table C.1 – Groups with extraction levels at the end of the game greater or lower than

the natural recharge (R = 0.56) by categories (continuous and discrete time)

E<R E>R

Continuous Discrete Continuous Discrete

Optimal 1 2 0 0

Feedback 5 6 1 0

Myopic 1 11 2 3

Undetermined 32 17 7 7

Total 39 36 10 10

C.5 Instructions for theOptimalControl (SoleAgent)

Translated from French

C.5.1 Continuous Time Instructions

You are about to participate in a decision-making experiment. We ask you to carefully

read the instructions in order to be�er understand the experiment. An experimenter

will proceed to read these instructions out loud when all participants have finished.

All of your decisions will be anonymously treated. You will specify your choices using

the computer in front of which you are seated. For the remainder of the experiment,

we ask you to remain quiet. If you have any questions, raise your hand and an exper-

imenter will come and speak with you privately.

Earnings are in experimental currency units (ECU). The exchange rate of ECU to

euros is specified in the instructions. The experiment includes a 10-minute training

phase and a 10-minute experimentation phase. The final payo� of the experimenta-

tion phase is the one taken into account for your remuneration.
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General framework

You initially have 15 resource units. At any time, you can extract between 0 and 2.8

resource units with up to two-decimal points of precision. This means that you are

free to choose the extraction rate you want, namely 0, 0.01, 0.02 . . .2.79, 2.8. You will

move a slider similar to that depicted in Figure B.8 to make your choice. The value

displayed below the slider when you release it is automatically taken into account and

sent to the central computer which updates the information.

Figure B.8 – Slider for decision-making

Resource dynamics

The available resource continuously evolves. Its evolution depends on two elements:

(i) your extraction rate at instant t denotedEt and (ii) a fixed rate of 0.56 automatically

added at each instant t.

Thus the resource evolves as follows:

• when your extraction rate is higher than the fixed rate, the resource decreases

• when your extraction rate is lower than the fixed rate, the resource grows

• when your extraction rate is equal to the fixed rate, the resource is stable

A graph on your screen will show you the resource’s evolution in real time.

If your action is such that it brings the resource to zero, your extraction rate will be

set to zero by the computer.
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Payo�

When you extract the resource, you get a total revenue but also incur a cost. The

cost depends on the amount of the available resource: the less resource available, the

higher the cost.

Total revenue from extraction

At the instant t, for an extraction rate Et, the total revenue denotedRECt is equal to:

RECt = 2.5Et − 0.9E2
t .

Figure B.9 below shows the total revenue according to the extraction rate.

Figure B.9 – Total revenue from extraction

Example
Let’s assume that at a given instant t your extraction rate is 1.4, the total revenue will

then be 1.736 units.
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Cost of extraction

At the instant t for an available amount of resource Rt, the unitary cost ct is equal to:

ct =

{
(2− 0.1Rt) if 0 ≤ Rt < 20,

0 if Rt ≥ 20.

Thus,

X cost increases when the available resource decreases

X cost is positive when the available resource is strictly lower than 20 units and

cost is null when the available resource is bigger than or equal to 20 units

Figure B.10 shows the unitary cost according to the available resource.

Figure B.10 – Unitary cost of extraction

Total cost of extraction Ct, is equal to the extraction rate times the unitary cost,

that is:

Ct = Et × ct.
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Discounted instantaneous payo�

Each instant, the instantaneous payo� (Gt), which is equal to the di�erence between

total revenue and total cost (Gt = RECt − Ct), is multiplied by a discount factor,

allowing us to determine the present value of the payo� perceived in the future. The

discount rate equals 0.5% and concretely means that the instant t payo� is multi-

plied by e−0.005×t. Thus, a same instantaneous payo� has a di�erent discounted value

according to the instant.

Example
Let’s take a same payo� Gt = 0.5 at 4 di�erent instants.

At instant t = 0 the discounted payo� equals 0.5× e−0.005×0 = 0.5

At instant t = 1 the discounted payo� equals 0.5× e−0.005×1 = 0.4975

At instant t = 10 the discounted payo� equals 0.5× e−0.005×10 = 0.4756

At instant t = 60 the discounted payo� equals 0.5× e−0.005×60 = 0.3704

What one should remember from this discounting principle is that the payo�s of

the first instants have greater impact on the payo� of the experiment than those of

the last instants.

Payo� for the experiment

Your payo� for the experiment includes two elements: (i) your cumulated payo�

from discounted instantaneous payo�s since the beginning of the experiment (instant

t = 0) until the present instant (t = p), and (ii) your "continuation payo�", which is

your payo� if the experiment were to go on forever (from the present instant t = p to

instant t =∞) with your extraction rate being fixed to the present instant p.

Your remuneration for the experiment is your payo� for the last instant of the

experiment. This payo� corresponds to your cumulated payo� over all the instants

of the experiment, to which is added the payo� computed as if the part continued

indefinitely with your extraction rate fixed at that of the last instant.
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How the experiment works

Before the experiment starts you should decide on an initial extraction rate which will

apply at the beginning of the experiment. Then, as soon as the experiment begins you

can, when you wish, change this rate by moving the slider on the window displayed

on your screen. Once you release the slider, the value taken into account is the one

displayed below the slider. When you do not move the slider, the value that is con-

sidered at each instant is the last one you set. Be careful not to click on the slider bar

but to move the slider with the mouse, then release it so that the value is taken into

account.

The computer performs the calculations every second, and the data displayed on

your screens is updated every second as well. A second corresponds to 0.1 instant in

what has been described previously. Thus, 10 minutes corresponds to 600 seconds and

to 60 instants.

The decision screen includes four areas, in addition to the decision area with the

slider. Three of these areas are graphic areas and the fourth is a text area. Figure B.11

on page 192 gives you a shot of the decision screen. Description of the areas is as

follows:

X graphic at the top le�: your extraction rate

X graphic at the top right: the available resource

X graphic at the bo�om le�: your payo� of the experiment, which is composed

as explained previously of your cumulative payo� up to the present instant, to

which is added your payo� if your extraction is applied indefinitely

X text area at the bo�om right: the same information as the curves but in the form

of text, namely for each instant, your extraction rate, the available resource, your

discounted instantaneous payo� and your payo� for the experiment

Final details

The exchange rate of ECUs to euros is as follows: 10 ECUs = 0.5e.
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Figure B.11 – Decision-making screen shot. We follow a hypothetical subject who

chooses his extraction rate at random
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C.5.2 Discrete Time Instructions

You are about to participate in a decision-making experiment. We ask you to carefully

read the instructions in order to be�er understand the experiment. An experimenter

will proceed to read these instructions out loud when all participants have finished.

All of your decisions will be anonymously treated. You will specify your choice using

the computer in front of which you are seated. For the remainder of the experiment,

we ask you to remain quiet. If you have any questions, raise your hand and an exper-

imenter will come and speak with you privately.

Earnings are in experimental currency units (ECU). The exchange rate of ECU to

euros is specified in the instructions. The experiment includes a 10-minute training

phase and a 10-minute experimentation phase. The final payo� of the experimenta-

tion phase is the one taken into account for your remuneration.

General framework

You initially have 15 resource units. Each period, you can extract an amount between

0 and 2.8 resource units with up to two decimal points of precision. This means that

you are free to choose the amount you want to extract, namely 0, 0.01, 0.02 . . .2.79,

2.8. You will move a slider similar to that depicted in Figure B.12 to make your choice.

You have 10 seconds to make your choice. At the end of these 10 seconds, the value

below the slider is automatically taken into account, and is sent to the central com-

puter which updates the information. Then the next period begins and you have again

10 seconds to change your extraction level.

Figure B.12 – Slider for decision-making
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Resource dynamics

The available amount of the resource evolves during each period. Its evolution depends

on two elements: (i) the amount of resource you extract at each period n, denoted En,

and (ii) a fixed amount of 0.56 automatically added at each period. By denotingRn the

amount of resource available at period n, the dynamics of the resource is as follows:

Rn+1 = Rn − En + 0.56.

A graph on your screen will show you the resource’s evolution at each period.

If at period n your action is such that it brings the resource to zero, your extraction

level for this period will be set to zero by the computer.

Example
Suppose that at period n the amount of resource available is 15 units and that your

extraction level is 0.30 units. At period n + 1 the amount of resource available will

then be: Rn+1 = 15− 0.30 + 0.56 = 15.26 units.

Payo�

When you extract the resource, you get a total revenue but also incur a cost. The

cost depends on the amount of the resource available: the less the amount of resource

available, the higher the cost.

Total revenue from extraction

At period n, for an extracted amount En, the total revenue denotedRECn is equal to:

RECn = 2.5En − 0.9E2
n.

Figure B.13 below shows the total revenue according to the extraction level.

Example
Let’s assume that at a given period n your extraction level is 1.4, the total revenue will

then be 1.736 units.
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Figure B.13 – Total revenue from extraction

Cost of extraction

At period n for an available amount of resource Rn, the unitary cost cn is equal to :

cn =

{
(2− 0.1Rn) if 0 ≤ Rn < 20,

0 if Rn ≥ 20.

Thus,

X cost increases when the available amount of the resource decreases

X cost is positive when the available amount of the resource is strictly lower than

20 units and the cost is null when the available amount of the resource is greater

than or equal to 20 units

Figure B.14 shows the unitary cost according to the available resource.

Total cost of extractionCn, is equal to the amount extracted times the unitary cost,

that is:

Cn = En × cn.
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Figure B.14 – Unitary cost of extraction

Discounted period payo�

Each period, the payo� of the period (Gn), which is equal to the di�erence between

total revenue and total cost (Gn = RECn − Cn), is multiplied by a discount factor,

allowing us to determine the present value of the payo� perceived in the future. The

discount factor equals 0.995 and in concrete terms means that the payo� of period

n is multiplied by 0.995n. Thus, a same payo� at n has a di�erent discounted value

according to the period.

Example
Let’s take a same payo� Gn = 0.5 at 4 di�erent periods.

At period n = 0 the discounted payo� equals 0.5× 0.9950 = 0.5

At period n = 1 the discounted payo� equals 0.5× 0.9951 = 0.4975

At period n = 10 the discounted payo� equals 0.5× 0.99510 = 0.4755

At period n = 60 the discounted payo� equals 0.5× 0.99560 = 0.3701
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What one should remember from this discounting principle is that the payo�s for

the first period has a greater impact on the payo� of the experiment than those of the

later periods.

Payo� for the experiment

Your payo� for the experiment includes two elements: (i) your cumulated payo� (the

discounted sum of each period payo�) from the beginning of the experiment (n = 0)

until the present period (n = p), and (ii) your "continuation payo�", which is your

payo� if the experiment went on forever (from n = p to n =∞) with your extraction

level being fixed to the present period.

Your remuneration for the experiment is your payo� for the last period of the

experiment. This payo� corresponds to your cumulated payo� over all the periods of

the experiment, plus the payo� computed as if the experiment continued indefinitely

with your extraction level fixed at the level of the last period.

How the experiment works

Before the experiment starts you should decide upon an initial extraction level which

will apply at the beginning of the experiment (n = 0). Then during each period you

have 10 seconds to change this extracted amount by moving the slider on the window

displayed on your screen. When you do not move the slider, the value considered in

each period is the last one you set.

The decision screen includes four areas, in addition to the decision area with the

slider. Three of these areas are graphic areas and the fourth is a text area. Figure B.15

on page 199 gives you a shot of the decision screen. Description of the areas is as

follows :

X graphic at the top le�: your extraction level at each period

X graphic at the top right: the available resource at each period
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X graphic at the bo�om le�: your payo� of the experiment, which, as explained

previously, is composed of your cumulative payo� up to the present period, plus

your payo� if your extraction is applied indefinitely

X text area at the bo�om right: the same information as the curves but in text

form, namely, for each period your extraction level, the available resource, your

discounted period n payo� and your payo� for the experiment

Final details

The exchange rate of ECUs to euros is as follows: 10 ECUs = 0.5e.
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Figure B.15 – Decision-making screen shot. We follow a hypothetical subject who

chooses his extraction rate at random
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C.6 Instructions for the game (multiple agents)

C.6.1 Continuous Time Instructions

You are about to participate in a decision-making experiment. We ask you to carefully

read the instructions in order to be�er understand the experiment. An experimenter

will proceed to read these theses instructions out loud when all participants have fin-

ished. All your decisions will be anonymously treated. You will indicate your choice

using the computer in front of which you are seated. From now on, we ask you to

remain quiet. If you have any questions, just raise your hand and an experimenter

will come and answer you privately.

Earnings are in experimental currency units (ECU). The exchange rate of ECU into

euros is specified in the instructions. The experiment includes a 10-minute training

phase and a 10-minute experimentation phase. The final payo� of the experimenta-

tion phase is the one taken into account for your remuneration.

General framework

At the beginning of the experiment, the central computer will randomly form pairs of

2 players. Each pair initially has 15 resource units, and at any time both players can

extract between 0 and 2.8 resource units with up to two-decimal points of precision.

You and the other player are free to choose the extraction rate you want, namely 0,

0.01, 0.02 . . .2.79, 2.8. To make your choice, each player must move a slider similar to

the one below.

Resource dynamics

The available resource continuously evolves. Its evolution depends on two elements:
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(i) the total extraction rate of the two players at each instant t, that is: (E1,t+E2,t),

where E1,t is the Player 1’s extraction rate and E2,t is the Player 2’s extraction rate,

and

(ii) a fixed rate of 0.56 automatically added at each instant t.

Thus the resource evolves as follows:

• when the extraction rate of the two players is higher than the fixed rate, the

resource decreases

• when the extraction rate of the two players is lower than the fixed rate, the

resource grows

• when the extraction rate of the two players is equal to the fixed rate, the resource

is stable

A graph on your screen will show you the resource’s evolution in real time.

If the extraction rate of both players is higher than the available resource, both players’

extraction rates are set to zero. You must choose another extraction rate compatible with

the available resource.

Payo�

When you extract the resource, you get a total revenue but you also incur a cost. Your

revenue only depends on your extraction rate, while the cost depends both on the

available resource and indirectly on the extraction rate of both players.

Total revenue from extraction

At the instant t, the total revenue denoted RECt is equal to:

RECt = 2.5Et − 0.9E2
t ,

where Et is your extraction rate. Thus, it does not depend on the extraction rate

of the other player.
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The figure below shows the total revenue according to the extraction rate.

Example
Let’s assume that at a given instant t your extraction rate is 1.4, the total revenue will

then be 1.736 units.

Cost of extraction

At the instant t for an available amount of resource Rt, the unitary cost ct is equal to:

ct =

{
(2− 0.1Rt) if 0 ≤ Rt < 20,

0 if Rt ≥ 20.

Thus,

X cost increases when the available resource decreases

X cost is positive when the available resource is strictly lower than 20 units and

the cost is null when the available resource is greater than or equal to 20 units

X cost depends indirectly on the total extraction rate of the two players
through the available resource
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Figure below shows the unitary cost according to the available resource.

Total cost Ct is equal to the extraction rate times the unitary cost: Ct = Et × ct.

Discounted instantaneous payo�

Each instant, for each of the two players, the instantaneous payo� (Gt), which is equal

to the di�erence between total revenue and total cost (Gt = RECt−Ct), is multiplied

by a discount factor, allowing us to determine the present value of the payo� perceived

in the future. The discount rate equals 0.5% and in concrete terms means that the

instant t payo� is multiplied by e−0.005×t. Thus, the same instantaneous payo� has a

di�erent discounted value according to the instant.

Example
Let’s take a same payo� Gt = 0.5 at 4 di�erent instants.

At instant t = 0 the discounted payo� equals 0.5× e−0.005×0 = 0.5

At instant t = 1 the discounted payo� equals 0.5× e−0.005×1 = 0.4975

At instant t = 10 the discounted payo� equals 0.5× e−0.005×10 = 0.4756
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At instant t = 60 the discounted payo� equals 0.5× e−0.005×60 = 0.3704

What one should remember from this discounting principle is that the payo�s of

the initial instants have a greater impact on the payo� of the experiment than those

of the later instants.

Payo� for the experiment

Your payo� for the experiment, as well as that of the other player, includes two el-

ements: (i) your cumulated payo� from the discounted instantaneous payo�s from

the beginning of the experiment (instant t = 0) until the present instant (t = p), and

(ii) your "continuation payo�", which is your payo� if the experiment were to go on

forever (from the present instant t = p to instant t =∞) with your extraction rate
and that of the other player being fixed to the present instant (t = p).

Your remuneration for this experiment is your payo� for the last instant of the

game. This payo� corresponds to your cumulated payo� over all the instants of the

game, plus the payo� computed as if the game continued indefinitely using your ex-

traction rate and that of the other player’s fixed at the rate of the last instant.

How the experiment works

Before the experiment starts, you and the other player should each decide upon an

initial extraction rate. This rate will apply at the beginning of the experiment. As soon

as the experiment has started, each of you can change this rate whenever you want

by moving the slider in the window displayed on your screen. When you do not move

the slider, the value that is considered at each instant is the last one that each of you

set.

The computer performs the calculations every second, and the data displayed on

your screens is updated every second as well. A second corresponds to 0.1 instant, as

has been described previously. Thus, 10 minutes corresponds to 600 seconds and to

60 instants.
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The decision screen includes four areas, in addition to the decision area with the

slider. Three of these areas are graphic areas and the fourth is a text area. The Figure

below gives you a shot of the decision screen. Description of areas is as follows:

X graphic at the top le�: your extraction rate and the total extraction rate of both

players

X graphic at the top right: the available resource

X graphic at the bo�om le�: your payo� of the experiment, which, as explained

previously, is composed of your cumulative payo� up to the present instant,

plus your payo� if your extraction and that of the other player were applied

indefinitely

X text area at the bo�om right: the same information as the curves but in text

form, namely for each instant, your extraction rate, the total extraction rate of

both players, the available resource, your discounted instantaneous payo� and

your payo� of the experiment

Final details

This experiment includes a 10-minute training phase and a 10-minute experimenta-

tion phase. It’s your payo� for the experiment that will be taken into account for your

remuneration in euros. The exchange rate of ECUs to euros is as follows: 10 ECUs

= 0.5e.
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Figure B.16 – The game screen shot

C.6.2 Discrete Time Instructions

You are about to participate in a decision-making experiment. We ask you to carefully

read the instructions in order to be�er understand the experiment. An experimenter
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will proceed to read these theses instructions out loud when all participants have fin-

ished. All your decisions will be anonymously treated. You will indicate your choice

using the computer in front of which you are seated. From now on, we ask you to

remain quiet. If you have any questions, just raise your hand and an experimenter

will come and answer you privately.

Earnings are in experimental currency units (ECU). The exchange rate of ECU into

euros is specified in the instructions. The experiment includes a 60-period training

phase and a 60-period experimentation phase, each corresponding to 10 minutes. The

final payo� of the experimentation phase is the one taken into account for your re-

muneration.

General framework

At the beginning of the experiment the central computer will randomly form pairs of

2 players. Each pair initially has 15 resource units, and each of the two players of the

pair can extract an amount between 0 and 2.8 resource units with up to two decimal

points of precision. You and the other player are free to choose how much you want

to extract, namely 0, 0.01, 0.02 . . .2.79, 2.8. To make your choice, each player must

move a slider similar to the one below.

You each have 10 seconds to make your choice. At the end of these 10 seconds

the value below the slider is automatically taken into account, it is sent to the central

computer which updates information. Then the next period begins and you, as well

as the other player, have again 10 seconds to change your extraction level.
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Resource dynamics

The available amount of resource evolves each period, and its evolution depends on

two elements:

(i) the total amount of resource extracted by you and your partner at each period

n, and

(ii) a fixed amount of 0.56 units automatically added at each period n. By denoting

Rn the amount of resource available at period n, the dynamics of the resource is as

follows:

Rn+1 = Rn − (E1,n + E2,n) + 0.56,

where E1,n is the amount extracted by Player 1 and E2,n the amount extracted by

Player 2.

Example
Suppose that at period n the amount of resource available is 15 units, that your

extraction level is 0.30 units and that the extraction level of your partner is 0.22

units. The amount of resource available at period n + 1 will then be : Rn+1 =

15− (0.30 + 0.22) + 0.56 = 15.04 units.

A graph on your screen will show you the resource’s evolution in real time.

If the total amount extracted by you and your partner is higher than the available

resource, each layer’s extraction is set to zero. You must choose another extraction com-

patible with the available resource.

Payo�

When you extract the resource, you get a total revenue but also incur a cost. Your

revenue only depends on your extraction level, while the cost depends on the available

resource and indirectly on the extraction level of both players.
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Total revenue from extraction

At period n, the total revenue denoted RECn is equal to:

RECn = 2.5En − 0.9E2
n,

where En is your extraction level. Thus, it does not depend on the extraction level

of the other player.

The figure below shows the total revenue according to the extraction level.

Example
Let’s assume that at a given period n your extraction level is 1.4. The total revenue

will then be 1.736 units.

Cost of extraction

At period n, for an available amount of the resource Rn, the unitary cost cn is equal

to:
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cn =

{
(2− 0.1Rn) if 0 ≤ Rn < 20,

0 if Rn ≥ 20.

Thus,

X cost increases when the available resource decreases

X cost is positive when the available resource is strictly lower than 20 units and

cost is null when the available resource is greater than or equal to 20 units

X cost depends indirectly on the total extraction level of both players through
the available resource

The figure below shows the unitary cost according to the available resource.

Total cost of extractionCn, is equal to the amount extracted times the unitary cost,

that is:

Cn = En × cn.
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Discounted instantaneous payo�

Each period, for each of the two players, the payo� of the period (Gn), which is equal to

the di�erence between total revenue and total cost (Gn = RECn−Cn), is multiplied

by a discount factor, allowing us to determine the present value of the payo� perceived

in the future. The discount factor equals 0.995 and concretely means that the payo�

of period n is multiplied by 0.995n. Thus, a same payo� at n has a di�erent discounted

value according to the period.

Example
Let’s take a same payo� Gn = 0.5 at 4 di�erent periods.

At period n = 0 the discounted payo� equals 0.5× 0.9950 = 0.5

At period n = 1 the discounted payo� equals 0.5× 0.9951 = 0.4975

At period n = 10 the discounted payo� equals 0.5× 0.99510 = 0.4755

At period n = 60 the discounted payo� equals 0.5× 0.99560 = 0.3701

What one should remember from this discounting principle is that the payo�s of

the initial periods have greater impact on the payo� of the experiment than those of

the last periods.

Payo� for the experiment

Your payo� for the experiment, as well as that of the other player include two ele-

ments: (i) your cumulated payo� (the discounted sum of each period payo�) since

the beginning of the experiment (n = 0) until the present period (n = p), and (ii) your

"continuation payo�", which is your payo� if the experiment were to go on forever

(from n = p to period n = ∞) with your extraction level and that of the other
player being fixed to the present period.

Your remuneration for this experiment is your payo� for the last period of the

game. This payo� corresponds to your cumulated payo� over all the periods of the

game, to which is added the payo� computed as if the game continued indefinitely

with your extraction level and that of the other player of your pair fixed at that of the

last period.
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How the experiment works

Before the experiment starts you and the other player should each decide upon an

initial extraction level, which will apply at the beginning of the experiment (n = 0).

Then, at each period, each of you have 10 seconds to change this extracted amount by

moving the slider on the window displayed on your screen. When you do not move

the slider, the value that is considered at each period is the last one each of you set.

The decision screen includes four areas, in addition to the decision area with the

slider. Three of these areas are graphic areas and the fourth is a text area. Figure below

gives you a shot of the decision screen. Description of areas is as follows:

X graphic at the top le�: your extraction level and the extraction level of your pair

at each period

X graphic at the top right: the available resource at each period

X graphic at the bo�om le�: your payo� of the experiment, which is composed

as explained previously of your cumulative payo� up to the present period, to

which is added your payo� if your extraction and that of the other player of

your pair is applied indefinitely

X text area at the bo�om right: the same information as the curves but in the form

of text, namely for each period, your extraction level, the total extraction level

of your pair, the available resource, your discounted period n payo� and your

payo� of the experiment.

Final details

This experiment includes a 60period training phase and a 60-period experimentation

phase. It’s your payo� for the experimentation that will be considered for your remu-

neration in euros. The exchange rate of ECUs to euros is as follows: 10 ECUs = 0.5e.
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Figure B.17 – The game screen shot
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C.7 Comprehensionquestionnaire for the optimal con-

trol (sole agent)

C.7.1 Continuous Time Comprehension Questionnaire

�estion 5 – The amount of available resource is updated in real time :

� true

� false

Comment: The resource grows when the di�erence between the additional fixed rate

and the extraction rate is positive, and decreases when the di�erence is negative.

�estion 6 – The instantaneous payo� depends on the amount of available resource :

� true

� false

Comment: The instantaneous payo� is the di�erence between the total revenue and

the cost at this instant. The total revenue only depends on the extracted rate (see

figure B.9 in the instructions), but the cost depends on the amount of available re-

source. Whether the unitary cost (also equivalent to the marginal cost) or the total

cost (unitary cost × extraction rate), the cost increases when the amount of the re-

source decreases but becomes equal to 0 when the amount of the available resource

is greater than or equal to 20.

�estion 7 – The discounted instantaneous payo� is the one taken into account in

the calculation of the cumulated payo� :

� true

� false

Comment: The instantaneous payo� (di�erence between the total revenue and the

cost at this instant) is given as information, but it is the discounted instantaneous pay-

o� that is taken into account in the calculation of the cumulated payo� (and therefore

is one of the two elements used to compute the payo� of the experiment).
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�estion 8 – The payo� of the experiment at time t = x is composed of two elements:

(i) the cumulated discounted payo� of each instant between t = 0 and t = x, and (ii)

the calculated payo� from instant t = x to infinity, assuming that the extraction rate

is that of instant t = x :

� true

� false

Comment: Each instant the computer gives you the payo� of the experiment as if the

experiment was to immediately end with the two elements mentioned above. First

the discounted cumulated payo� from the initial instant t = 0 to the present instant.

Second the payo� from the present instant to infinity assuming that the dynamics of

the resource evolves according to the defined rule, but also that you no longer change

your extraction rate. Your payo� for the experiment is the payo� you would earn at

time t = 600 (10 minutes of play).
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C.7.2 Discrete Time Comprehension Questionnaire

�estion 9 – The amount of available resource is updated every period :

� true

� false

Comment: Every period, the resource decreases by the amount you extracted and

increases by 0.56 units.

�estion 10 – The payo� of period n depends on the amount of available resource :

� true

� false

Comment: The payo� of period n is the di�erence between the total revenue and the

cost at this period. The total revenue only depends on the extraction level (see figure

B.13 in the instructions), but the cost depends on the amount of available resource.

Whether the unitary cost (also equivalent to the marginal cost) or the total cost (uni-

tary cost× extraction level), the cost increases when the amount of resource decreases

but becomes equal to 0 when the amount of available resource is greater than or equal

to 20.

�estion 11 – The discounted payo� of period n is the one taken into account in the

calculation of the cumulated payo� :

� true

� false

Comment: The payo� of period n (di�erence between the total revenue and the cost

at this period) is given as information, but it is the discounted payo� of period n that

is taken into account in the calculation of the cumulated payo� (and therefore is one

of the two elements used to compute the payo� of the experiment).
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�estion 12 – The payo� of the experiment at period x is composed of two elements:

(i) the cumulated discounted payo� of each period between 0 and x, and (ii) the cal-

culated payo� from period x to infinity, assuming that the extraction level is that of

period x :

� true

� false

Comment: Each period the computer gives you the payo� of the experiment as if the

experiment was to immediately end with the two elements mentioned above. First the

discounted cumulated payo� from the initial period 0 to the present period. Second

the payo� from the present period to infinity assuming that the dynamics of the re-

source evolves according to the defined rule, but also that you no longer change your

extraction level. Your payo� for the experiment is the payo� you would earn at period

60 (10 minutes of play).
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C.8 Comprehensionquestionnaire for the game (mul-

tiple agents)

C.8.1 Continuous Time Comprehension Questionnaire

�estion 13 – The amount of available resource evolves continuously and depends

on two elements: the extraction rate of the two players and the fixed rate of 0.56 :

� true

� false

Comment: The amount of the available resource evolves continuously, depending

on the extraction rate of both players and the fixed rate of 0.56. Specifically, if the

extraction rate of both players is greater than 0.56 the amount of the available resource

decreases. If it is less than the fixed rate it increases, and if it is equal to the fixed rate,

the amount of the available resource remains stable.

�estion 14 – The instantaneous payo� depends on the amount of available re-

source :

� true

� false

Comment: The instantaneous payo� is the di�erence between the total revenue

and the cost at this instant. The total revenue only depends on the extracted rate, but

the cost depends on the amount of the available resource. Whether the unitary cost

or the total cost (unitary cost × extraction rate), the cost increases when the amount

of the resource decreases but becomes null as soon as the amount of the available

resource is greater than or equal to 20.

�estion 15 – The discounted instantaneous payo� is the one taken into account in

the calculation of the cumulated payo� :

� true
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� false

Comment: The instantaneous payo� (di�erence between the total revenue and the

cost at this instant) is given as information, but it is the discounted instantaneous

payo� that is taken into account in the calculation of the cumulated payo� (and that

is therefore one of the two elements used to compute the payo� for the experiment).

�estion 16 – The payo� for the experiment at time t = x is composed of two

elements: (i) the cumulated discounted payo� of each instant between t = 0 and

t = x, and (ii) the calculated payo� from instant t = x to infinity, assuming that your

extraction rate and your partnerŠs rate are those of instant t = x :

� true

� false

Comment: Each instant the computer gives you the payo� of the experiment as if the

experiment was to immediately end with the two elements mentioned above: (i) the

discounted cumulated payo� from the initial instant (t = 0) to the present instant,

and (ii) the payo� from the present instant to infinity assuming that the dynamics

of the resource evolves according to the defined rule, but also that you and the other

player of the pair no longer change your extraction rate. Your payo� in euros for the

experiment is your payo� at the last instant of the game, namely at time t = 600 (10

minutes of play).
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C.8.2 Discrete Time Comprehension Questionnaire

�estion 17 – The amount of available resource evolves at each period and depends

on two elements: the amount extracted by you and your partner and a fixed amount

of 0.56 :

� true

� false

Comment: The amount of available resource evolves at each period, depending on the

amount extraction by you and your parter and a fixed amount of 0.56. Specifically, if

the both players’ extraction is greater than 0.56, the amount of the resource available

decreases. If it is less than the fixed amount it increases, and if it is equal to the fixed

amount, the amount of the resource available remains stable.

�estion 18 – The payo� of period n depends on the amount of the available re-

source :

� true

� false

Comment: The payo� for period n is the di�erence between the total revenue and the

cost during this period. The total revenue only depends on the extraction level, but

the cost depends on the amount of the available resource. Whether the unitary cost

or the total cost (unitary cost× extraction level), the cost increases when the amount

of the resource decreases but becomes null as soon as the amount of the available

resource is greater than or equal to 20.

�estion 19 – The discounted payo� of period n is the amount taken into account

in the calculation of the cumulated payo� :

� true

� false
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Comment: The payo� of period n (di�erence between the total revenue and the cost

at this period) is given as information, but it is the discounted payo� of period n that

is taken into account in the calculation of the cumulated payo� (and that therefore is

one of the two elements used to compute the payo� of the experiment).

�estion 20 – The payo� of the experiment at period x is composed of two elements:

(i) the cumulated discounted payo� of each period between 0 and x, and (ii) the cal-

culated payo� from period x to infinity, assuming that your extraction level and that

of the other player are those of period x :

� true

� false

Comment: During each period the computer gives you the payo� for the experiment

as if the experiment was to immediately end with the two elements mentioned above:

(i) the discounted cumulated payo� from the initial period 0 to the present period,

(ii) the payo� from the present period to infinity, assuming that the dynamics of the

resource evolve according to the defined rule, but also assuming that you and the other

player no longer change your extraction level. Your payo� in euros for the experiment

is your payo� at the last period of the game, namely at period 60 (10 minutes of play).
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Appendices for Chapter 4

D.1 Instructions

Translated from French

D.1.1 The Baseline

For the baseline instructions, please refer to the continuous time instructions for the

game, in Appendix C.6.1 of Chapter 3.

D.1.2 The Nudge: Injunctive Norm

Information:

In the theoretical analysis of this game without communication, three typical be-

haviors were identified. The resource evolution curves for these behaviors are shown

in the figure below. For each curve, you also have information on the individual payo�,

which is half of the group payo�.

• The dark pink curve results from the extraction choices of two perfectly sym-

metrical players who jointly maximize the group’s payo� over the long term

• The blue curve results from the extraction choices of two perfectly symmetrical

players who maximize their individual payo� over the long term

222
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• The golden curve results from the extraction choices of two perfectly symmet-

rical players who maximize their individual payo� over the short term

Figure B.1 – The injunctive norm

D.1.3 The Nudge: Descriptive Norm

Information:

In previous sessions of this game without communication, four typical behaviors

were identified. The average resource evolution curves for these behaviors are shown

in the figure below. For each curve, you also have information on the observed fre-

quency and the average individual payo�.

• The dark pink curve results from the extraction choices of two players who,

according to the interpretation suggested by the theory, corresponds to a joint

maximization of the group’s payo� over the long term

• The blue curve results from the extraction choices of two players who, according

to the interpretation suggested by the theory, corresponds to a maximization of
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their individual payo� over the long term

• The golden curve results from the extraction choices of two players who, accord-

ing to the interpretation suggested by the theory, corresponds to a maximization

of their individual payo� over the short term

• The pink curve results from the extraction choices of two players with atypical

behaviors whose interpretation escapes the theory

Figure B.2 – The descriptive norm

The Figure below shows the user’s interface in the two nudge treatments. The

information displayed on the upper right corner di�ers depending on whether the

experiment relates to the injunctive social norm or the descriptive social norm.
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Figure B.3 – The game screen shot for nudge treatments
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D.2 Comprehension Questionnaire

For the comprehension questionnaire used in the three treatments, please refer to

the continuous time comprehension questionnaire for the game, in Appendix C.8.1 of

Chapter 3.
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D.3 General Ecological Behavior - GEB - Scale Ques-

tionnaire

1. I use energy-e�icient bulbs.

2. If I am o�ered a plastic bag in a store, I take it.*

3. I kill insects with a chemical insecticide.*

4. I collect and recycle used paper.

5. When I do outdoor sports/activities, I stay within the allowed areas.

6. I wait until I have a full load before doing my laundry.

7. I use a cleaner made especially for bathrooms, rather than an all-purpose cleaner.*

8. I wash dirty clothes without prewashing.

9. I reuse my shopping bags.

10. I use rechargeable ba�eries.

11. In the winter, I keep the heat on so that I do not have to wear a sweater.*

12. I buy beverages in cans.*

13. I bring empty bo�les to a recycling bin.

14. In the winter, I leave the windows open for long periods of time to let in fresh

air.*

15. For longer journeys (more than 6h), I take an airplane.*

16. The heater in my house is shut o� late at night.

17. I buy products in refillable packages.

18. In winter, I turn down the heat when I leave my house

19. In nearby areas, I use public transportation, ride a bike, or walk.
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20. I buy clothing made from all-natural fabrics (e.g. silk, co�on, wool, or linen).

21. I prefer to shower rather than to take a bath.

22. I ride a bicycle, take public transportation, or walk to work or other.

23. I let water run until it is at the right temperature.*

24. I put dead ba�eries in the garbage.*

25. I turn the light o� when I leave a room.

26. I leave the water on while brushing my teeth.*

27. I turn o� my computer when I’m not using it.

28. I shower/bath more than once a day.*

* Negatively formulated items.
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