Ainsi

Laura C Samuel

Marine, Stéphane, Aurélia Joanna Aurore

Julie Noémie

Nelly Sandra

Keywords: 8, 4, 4 Metric and arc-length parameterization, 8, 5 Conclusion and future work, Conclusion

L'analyse et la synthèse de formes 3D deviennent un enjeu majeur dans de plus en plus d'industries. Du divertissement à l'imagerie médicale, en passant par les véhicules autonomes, de nombreuses innovations exigent de traiter des formes en quantités de plus en plus importantes. Cependant, elles posent deux défis majeurs. Le premier est leur manque de représentation canonique. Voxels, nuages de points ou maillages, surfaces implicites ont chacun leurs avantages et inconvénients. Le second est la relation entre forme et sens. Les formes naturelles peuvent généralement être décomposées en parties, mais la fonction est difficile à démêler de la géométrie.

Cette thèse explore plusieurs représentations de formes séparant la sémantique de la géométrie, à des fins de génération.

Le premier mouvement s'appuie sur l'apprentissage automatique et les réseaux de neurones. Ces derniers ont démontré leur capacité à séparer le sens de l'apparence dans les images, et nous montrons comment ces idées s'appliquent aux formes 3D. Nous nous sommes concentrés sur le problème des recombinaisons de formes, i.e. la génération de formes dont les éléments constitutifs proviennent de modèles différents. Ce problème présente une ambiguïté inhérente, une tension entre la fidélité d'une pièce donnée à sa forme originale et la cohérence de l'objet nouvellement assemblé. Nous abordons cette ambiguïté au moyen de modèles génératifs, dont les espaces latents servent d'intermédiaire de plausibilité.

Nous concevons ici deux réseaux de neurones spécifiquement qui reproduisent la segmentation des formes au sein de leurs espaces latents. Le premier fonctionne avec des nuages de points, naturellement séparables en sous-nuages. Il dédie des coordonnées spécifiques du code latent à chaque partie sémantique, en utilisant des encodeurs dédiés. Nous démontrons comment ceci permet de réaliser des échanges de parties et des interpolations. Le second étend la technique aux voxels, en intégrant la recombinaison via transformations affines au réseau lui-même. On l'entraîne de bout en bout au démontage et au remontage de formes, sans supervision. Les recombinaisons s'opèrent en intervenant entre ces deux étapes.

Le second mouvement, plus poussé, s'appuie sur une nouvelle représentation de formes, baptisée Deformable Voxel Grid. Il s'agit d'un volume actif qui, fondé sur une minimisation d'énergie, adapte l'espace ambiant à la 7

Prologue

Le visage parle en ceci que c'est lui qui rend possible et commence tout discours.

Emmanuel Levinas et professeurs qui m'ont, chacun, apporté un nouvel éclairage sur le monde, je tiens tout particulièrement à remercier mes proches, ainsi que tous ceux qui ont cru en moi.

Tout d'abord, mes amis, qui ont su apporter non seulement du soutien émotionnel lorsque j'en avais besoin, mais aussi et surtout de la bienveillance face à mon éternel besoin de débattre de tout sujet.

The analysis and synthesis of 3D shapes becomes prevalent in more and more industries. From entertaining, to medical imaging and autonomous vehicles, many innovations are driven by the need to process shapes in large quantities. However, they pose two fundamental challenges. The first one is their lack of canonical representation. Voxels, pointclouds or meshes come with their own advantages and disadvantages. The second one is the relationship between form and meaning. Natural shapes can typically be separated into smaller parts, but function is hard to disentangle from geometry. This thesis explores several representations which separate semantics from geometry, for generation purposes.

The first movement is a data-driven approach, relying on large datasets and neural networks. Indeed, they showed astounding results in the disentanglement of meaning and appearance within 2D images, and we show how similar techniques can apply to 3D shapes. We focused on the problem of shape recombinations, i.e. the generation of shapes whose constitutive elements come from different models. This problem has an inherent ambiguity, a tension between the faithfulness of a given part to its original form, and the cohesiveness of the newly assembled object. We tackle this ambiguity by means of generative models, whose latent spaces serve as a proxy for plausibility.

Here, we build two neural network specifically designed at reproducing the semantical segmentation of shapes within their latent spaces. The first one works with pointclouds, as they are naturally separable into subpointclouds. It dedicates specific coordinates of the latent code to each semantical part, by utilizing part-specific encoders. We demonstrate how this allows to generate subpart swaps, and interpolations. The second one extends the technique to voxels, by embedding the recombination of subparts via affine transformations within the network itself. It also contains a cycle-consistency check in order to train, end-to-end, for unsupervised shape disassembly and reassembly. By intervening between these two steps, one can perform the mixing-and-matching of parts coming from different models.

The second, and more detailed movement, is a modeling approach, relying on a novel shape representation, which we named the Deformable Voxel Grid. It is an instance of an active volume which, based solely on an energy-5 CONTENTS minimization problem, adapts the embedding space to a shape in order to facilitate further shape processing and analysis, by separating the geometry of the shape into container and topological content. This separation relies on an invertible step, registration, which ultimately allows to interpret our model as a shape generator with an explicit, discrete latent space.

We first propose several approximations to apply DVGs to any shape dataset, automatically. Our optimization method only requires sparse surface information in the form of a pointcloud, and can leverage parallel processing on GPUs, by implementing it as a neural network. Then, having computed DVGs to many shapes coming from several categories, such as chairs or airplanes, we conduct an extensive analysis of naive solutions which, leveraging the container/content separation, yield surprisingly good results to an array of applications: dataset exploration, similarity search, shape synthesis by deformation, approximation with quadrilaterals, and shape correspondences. Finally, we develop a broader framework for DVG-based shape morphing, relying on a metric between shapes registered to their respective DVGs, and on their synthesis capabilities. Finding a minimal path between two points within the discrete DVG latent space gives keyframes for a morphing, and the intermediate steps are interpolated. Our experiments show that our morphings are qualitatively comparable to the state-of-the-art in deep learning, but require much lighter datasets and are not only explainable, but also editable in case of mishaps.

This work was funded in part by the French government under management of Agence Nationale de la Recherche as part of the "Investissements d'avenir" program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

CONTENTS

forme. Il facilite traitement et analyse ultérieurs, en séparant la géométrie en contenant et contenu topologique. Ceci repose sur une étape inversible, le recalage, qui permet d'interpréter notre modèle comme un générateur de forme à espace latent explicite et discret.

Nous proposons d'abord plusieurs approximations qui permettent d'appliquer des DVG à n'importe quel jeu de données, automatiquement. Notre méthode d'optimisation ne requiert que des informations de surface éparses, et s'exécute en parallèle sur GPU, en l'implémentant comme un réseau de neurones. Après avoir calculé des DVG sur des formes variées, telles que des chaises ou des avions, nous réalisons une analyse approfondie de solutions naïves qui, exploitant la séparation contenant/contenu, marchent étonnamment bien sur un éventail d'applications : exploration de données, recherche par similarité, synthèse de forme par déformation, approximation avec des quadrilatères et correspondances de formes. Enfin, nous élaborons un cadre plus large pour le morphing de formes, s'appuyant sur une métrique entre formes recalées dans leurs DVG respectifs. La recherche d'un chemin minimal entre deux points de l'espace latent discret des DVG fournit les images clés d'un morphing, et les étapes intermédiaires s'interpolent facilement. Nous menons des expériences qui montrent que nos morphings sont qualitativement comparables à l'état de l'art en deep learning, tout en nécessitant des ensembles de données beaucoup plus maigres et en étant non seulement explicables, mais aussi modifiables en cas d'erreur.

This work was funded in part by the French government under management of Agence Nationale de la Recherche as part of the "Investissements d'avenir" program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

The beginning of my PhD followed the discovery that convolutional neural networks, which were originally designed to work on images, could be applied to 3D shapes, using a representation different from voxels. At this time, neural networks had indeed been introduced for the processing of 3D pointclouds, and most research efforts were directed towards known machine learning problems, namely, classification and segmentation. I wanted to investigate the third part of the triad: not classification, nor segmentation, but generation. Indeed, I have always been fascinated by creativity. For instance, as a music enthusiast and player, one of the biggest mysteries for me is the process of music creation: how can one create a new, original melody? I applied the same question to 3D shapes: how can one create a new chair or a new table, with the help of maths?

Being a firm believer in artistic direction, I naturally opted for semiautomatic applications, where the automated analysis and processing is but an entry point for a human operator, i.e., a designer. Using machine learning, and neural networks, could serve as an extension to their design processes. This is why my major concerns, in the methods I opted for, were controllability and explorability1 of the generations.

Outline and Contributions

This manuscript is organized into three distinct movements.

Part I (1 -3) only discusses background material and motivates our later studies, aiming at stitching a coherent global framework.

CONTENTS

Part II (4 -5) tackles the problem of novel shape synthesis by recombination of subparts, via neural networks. It is based on the following publications:

[] R. Groscot, L. Cohen, and L. Guibas. Shape part transfer via semantic latent space factorization. Geometric Science of Information, August 2019 [] A. Dubrovina, F. Xia, P. Achlioptas, M. Shalah, R. Groscot, and L. J. Guibas. Composite shape modeling via latent space factorization. ICCV, October 2019

Part III (6 -8) presents a model I devised to disentangle geometric container and topological content of shapes, in an explicit and generic fashion, allowing to mimick the latent space of neural networks. Over the course of my work, many iterations led to the current state of this study. A first model was introduced, in the following published communication:

[] R. Groscot, J. Bruna and L. Cohen. Volumetric Meshes: a neural network-friendly representation for 3D shapes generative models. IPAM (Poster session), 2019

The initial motivation was to design a hybrid representation for 3D shapes, combining the advantages of voxels (arbitrary topology) and pointclouds (arbitrary positions). However, before it reached maturity, it already appeared unable to compete with latest methods (such as DeepSDF [START_REF] Park | Deepsdf: Learning continuous signed distance functions for shape representation[END_REF]). Then, some of our preliminary observations were further investigated, which led to the discovery of unexpected abilities, and to the following publications, which are still under review: [] R. Groscot and L. Cohen. Deformable Voxel Grids for Shape Comparisons. 2021 (under review) [] R. Groscot and L. Cohen. Shape Morphing as a Minimal-Energy Path in the Graph of Cubified Shapes. 2021 (under review) They respectively correspond to Chapters 6 and 8; Chapter 7 is novel, unpublished material. A thorough journal paper, covering the entirety of Part III, is being prepared for submission.

Breakdown of the Chapters

♠ Chapters 1 and 2 consist in background knowledge on, respectively, neural networks and 3D shapes. As a matter of fact, these two research communities do not share a large intersection, and it appeared important to provide readers coming from either side with enough intuition to appreciate the contributions of this thesis. Being placed in their respective contexts, the main take-aways are the different types of layers used in convolutional neural networks, and the different types of 3D shape representations. Notably, Chapter 2 presents shape processing problems which are tackled by our work.

♥ Chapter 3 bridges the previous two chapters. It presents the two major generative models which give rise to latent spaces, namely Variational Auto Encoders and Generative Adversarial Networks. It reviews existing works and applications involving the various representations of 3D shapes. It also specifically discusses the case of shape latent spaces, and what they allow in terms of shape editing.

♣ Chapter 4 introduces the technique of latent space factorization, for semanticallycontrolled 3D pointcloud generation. More precisely, it shows how one can dedicate certain parts of latent codes to the encoding of specific parts of shapes. This allows, for instance, for the generation of shape recombinations and part-specific shape morphings.

♦ Chapter 5 consists in an extension of the previous work, with the following evolutions:

1. the shapes are now represented via voxels, which poses new challenges, namely, combining several subparts into a cohesive shape;

2. the code combination is extended to a larger class of operations, generalizing the vector space intuition from the previous work;

3. a new architecture dedicated (and trained) for the shape-mixing problem.

It also provides extensive evaluations and comparisons with competing methods.

♠ Chapter 6 introduces Deformable Voxel Grids, our container/content separation based on active volumes, based on several approximations which allow to be applied to any available shape dataset, in a fully automated manner. It also discusses the impact of these approximations and of other hyper-parameters on the output quality.

♥ Chapter 7 extensively discusses various applications of DVGs: dataset exploration, similarity search, novel shape synthesis by deformation, approximation with quadrilaterals, and shape correspondences. They were tested after having optimized DVGs over 9000 shapes from various categories (airplanes, chairs, rifles, etc.). Only naive solutions were considered to all these problems, in order to highlight the strengths and weaknesses of DVGs exclusively, while highlighting the relationships between applications.

♣ Chapter 8 develops a broader framework for DVG-powered shape morphing, relying on a metric between shapes registered to their respective DVGs. Drawing an analogy to the latent space of neural networks, it shows how our results compare to the state-of-the-art in deep learning, while requiring only limited data. It also extensively discusses the impact of our ad-hoc details, along with the ability to tweak results in case of mishaps.

Technical contribution

Apart from the aforementioned scientific contributions, I developed at an early stage of my thesis a Python library, which renders massive 3D pointclouds, interactively (100k simultaneous points on screen) and with live rotation ability, as a Jupyter notebook widget. This revealed very useful over my whole work, and I later made it compatible with 3D meshes. This library will be made publicly available on Github.

vos enfants, mes neveux adorés, Dan, Ilan, Eva, Ethan, Naomie, et Avigaïl, pour l'amour inconditionnel qu'ils m'apportent. Merci à mes parents, José et Patricia, sans qui je ne serais rien. Merci de m'avoir toujours donné les moyens de faire ce que j'aime, et d'avoir toléré mes nombreuses sautes d'humeur. Merci à Armand Sibony et à sa femme Janet d'avoir, par leur soutien au travers de la FJF, rendu possible le commencement de ces recherches.

Finalement, je dédie ce travail à mes deux grands-pères. À papy Émile, qui m'a soutenu dès mon plus jeune âge, bien qu'étant d'un tempérament et d'une expérience de vie pratiquement opposés aux miens. À papy André, que je regrette de n'avoir pas pu mieux connaître avant que tu sois emporté par Alzheimer. Chaque témoignage sur ta vie me donne envie d'être à ton image. Tous deux avez transmis vos valeurs et traditions, qui sont parvenues jusqu'à moi. Elles font partie intégrante de mon identité d'aujourd'hui, et de celle que je souhaite bâtir pour demain.

Part I

Background on Shape Generation via Neural Networks

Chapter 1

Introduction to Neural Networks

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

John von Neumann

Abstract of this Chapter. The present chapter consists in a primer on deep learning. It does not aim at exhaustivity, but rather focuses on presenting key concepts which will be useful throughout the rest of the manuscript, namely, supervised learning, neural networks' foundational blocks, and their applications. The unfamiliar reader should be provided with enough material to appreciate the motivations behind this thesis.

As an algorithmic paradigm, Machine Learning (ML for short) is in an original way of having computers solve problems, by bridging between algorithms and human cognition. A prevalent tool in the ML toolbox is the Neural Network1 , whose extraordinary versatility has been uncovered throughout the 2010s. To fully appreciate how neural networks work, let us first present the broader field of supervised learning.

1.1 Supervised Learning 1.1.1 The Machine Learning paradigm: an intuition From automation to algorithms Computers work marvels for automating repetitive tasks. One can argue it is their raison d'être. The first devices used as computers in history were all mechanical [START_REF] Gleick | The Information[END_REF], relying on a complex arrangement of gears, levers and pullies to operate. It is only in the mid-20th century that the digital revolution -and the invention of transistors -laid the foundations for electronic automation. Its premise and promise are simple: if you can represent your problem numerically, a computer can solve it faster than you.

As a matter of fact, with processing units much faster than humans 2 , a computer can finish very long and complicated computations in a matter of seconds. The key factor becomes the ability to translate a problem for a computer, or in other words, to design algorithms. For a long time, an algorithm was defined as a clear procedure (a recipe) a computer follows; hence the importance of understanding the stream of operations required to solve a specific task.

Let us consider a toy example. When a customer orders a macchiato at a coffee shop, here is an algorithm the barista may follow:

1 Pour 1 espresso shot in a medium cup 2 Steam a small volume of milk in a pitcher 3 Mix the steamed milk with the coffee 4 (Optional) Draw, with the spout of the pitcher, a heart or a flower This example illustrates many properties of algorithms. The general order matters, but some sub-tasks can be performed in any order (here 1 and 2 are interchangeable). They require the knowledge of elementary actions, such as steaming milk. Most importantly, they need to operate on given inputs, and they produce an output. The input may vary, so one needs assumptions about its potential nature. This is in fact similar to mathematical functions f : x ∈ X → f (x) = y where X describes all potential inputs. Formally, an algorithm can be viewed as a function 3 , and this analogy will be used throughout the whole document.

Here, the output is clearly the macchiato cup, but what is the input? There is no good answer, as it is a design choice 4 . For instance, one can 2 Nowadays, and for a general public, the typical order of magnitude for computation speed is 1 Ghz, that is to say 10 9 operations every second.

3 Most programming languages indeed use the keyword function to specify algorithms.

4 Functional programming introduces partial functions which allow to integrate the different design choices into one general function. If an algorithm f (x, y) has two inputs x and y, one can freeze a certain value x and define the partial function f x := f (x, y). decide the input is the milk: this would allow to use the same algorithm to generate beverages suitable for vegans. But, one can decide the input is macchiato, that is to say, the desired beverage. In that case, the algorithm would have to adapt the methodology (volumes, steaming duration, etc.) to other inputs, like cappuccino. However, a new question arises: how can one communicate this to the computer? How can the computer understand what the customer wants?

To truly automate a barista, the computer should directly understand the spoken instruction. In other words, one needs speech recognition, which is also a class of algorithms. However this problem is more difficult to solve than the previous one, because we do not have a clear procedure to transform an audio wave into written text. Instead of directly specifying an algorithm, we can try to solve the problem indirectly.

An indirect way of solving problems

Some problems have an intriguing property: even though we do not have a methodical way to solve them, us human beings are really good at solving them. Our subconcious mind allows us to perform various tasks without thinking too much about how we do them. Spoken language is a good example: it suffices to think of a word -e.g. word -to verbalize it, with no need to be aware of the subtle movements of our palate, tongue, and lips. We just know how to do it; it became automatic once learnt.

Likewise for a class of problems we call recognition tasks. Given an observed signal (e.g. sound, text, image. . .), we are extraordinarily competent at identifying it, yet most of us find ourselves unable to explain how we do it. As a consequence, designing an algorithm which aims at automating signal recognition with a computer proves to be a difficult endeavor. We know that such an algorithm has to exist -our brains are the living proof. Hence a paradigm shift: instead of hardcoding the algorithm, let the computer figure it out. How? By providing many examples that have already been solved by humans. This approach defines supervised learning, a class of ML techniques which rely on external knowledge, typically coming from human supervision. It can be understood as an automatic way to extrapolate the answers given on a select number of examples to new cases.

Of course, as long as our computers are not conscious, they still need to be programmed. This is why we use parametric algorithms: the logic of the algorithms is predefined, while some numerical parameters are not. This concept is closely related to parametric functions f θ (where θ refers to the parameters and can be multivariate). These parameters form the fabric over which the learning phase happens: the goal is to find the best parameter values. Most of the models presented in this thesis can be understood under this mental framework. For instance, as explained in Section 1.2, a neural network can be seen as an instance of such parametric functions, and more specifically as a parametric black box5 -a module one does not need to know the internals when trying to grasp the full picture. One only needs to know that this black box has been trained with examples, and has reached a certain degree of confidence that the outputs on new examples will be somehow accurate.

Actual, mathematical machine learning consists in giving specific meaning, and thus precise definitions, to those aforementioned intuitions:

• what is the parameter space, i.e. the different values θ can take?

• how accurate are the answers?

• does the model generalize well?

Supervised learning tasks

The problems presented in Section 1.1.1 correspond to supervised learning, whose motivation lies in the desire to automate human decision. As a consequence, supervised algorithms rely on pre-existing information called supervision data, consisting in input/output pairs coming from experts. For instance, in an object recognition setup, the input is an image and the output is a string of characters identifying the depicted object (plane, car, chair, etc.).

To root the problem into mathematical grounds, let us adopt the following formalism:

• Training examples are values coming from space6 M , and are denoted by the variable x: X = (x 1 , . . . , x n) where ∀i, x i ∈ M . Please note that in all future discussions, all inputs are considered numerical, which is not restrictive since they are stored in this form on computer memory.

• Corresponding values are elements of space N , denoted by the variable y and are called labels: Y = (y 1 , . . . , y n). Contrary to M , N needs not be a numerical space.

• (X, Y) is often called the training set, or training dataset.

• Training the model consists in fitting the parameters θ of a function f θ : M → N which maps inputs into predictions. When there is no need for precision, the parameter space will be denoted as Θ. In most cases, parameters are numerical, such that Θ = R d where d is the number of parameters.

The output of a machine learning model is often named prediction. As a matter of fact, the model guesses what the output ought to be. In the ideal case, all predictions drawn from training data are correct, i.e.:

∀x i ∈ (x 1 , . . . , x n), f θ (x i) = y i (1.1)
However, the training set may be inaccurate (see Table 1.1 for examples), which would lead to a faulty learning if we were aiming for a perfect fit on this dataset. As a consequence, it is more desirable to accept some prediction errors in the learning phase, in order to preserve generalization abilities to unseen cases. Failure to account for this trade-off and fitting too tightly to the training data, to the expense of generalizability to new cases, is called overfitting.

Fault type Description Example

Noise Some inputs or outputs may be noisy due to signal acquisition

Low-quality photographs taken on smartphones In Equation (1.1), f θ (x i) = y i is equivalent to f θ (x i) -y i = 0, which in turn can be replaced by f θ (x i) -y i = 0 where . is a given norm. This means that the constraint described by Equation (1.1) can be replaced by an optimization problem:

min θ∈Θ n i=1 f θ (x i) -y i (1.2)
This provides a clear meaning to the phrase training the model: finding an optimal value for θ, in the sense of this minimization problem. Depending on the chosen norm . and function f θ , there exist several ways of solving the minimization problem. The function inside the min operator is often called the objective function, or simply loss: training a model requires minimizing its loss. In the most general form, it is written L(θ) as it depends on θ. The general learning equation is then:

min θ∈Θ L(θ) (1.3)
This simple equation hides complexity and ingenuity behind the term L. Formulating a problem in terms of a learning task requires translating it into the minimization of a loss function L, whose design was closely studied. The following sections will present the three cornerstones of supervised learning: regression, classification, and generation. As for the minimization procedure, there exist a wide variety of techniques; most of which are out of the scope of this work. The main one used with neural networks being Stochastic Gradient Descent, it is presented in its own section (1.2.1).

Regression

When there exists a hierarchy between the elements of N (the labels), it is a regression problem. It aims to associate comparable7 values to different inputs, and typically achieves so by performing, on the input, operations which lead to a numerical output. Some regression cases are:

• evaluating a market price from observed characteristics;

• grading the severity of a sickness;

• assessing the probability of a credit default;

• predicting a number of sales;

• etc.

In essence, regression is a way of projecting raw inputs into a meaningful, shared scale. A natural choice for N is then R, and having real-valued labels is often presented as a requirement for regression. However, we find that the meaningful difference between regression and its cousin classification (presented below) is the fact that N is ordered.

A canonical example is linear regression8 , where the function f θ has a linear dependency on its inputs. If input x i is a vector of m elements, x = (x 1 i , . . . , x m i), then f θ is of the form:

f θ (x i) = θ 1 x 1 i + θ 2 x 2 i + • • • + θ m x m i + θ m+1 (1.4)
The parameter vector θ is a list of m+1 real numbers. They parameterize a straight line in vector space M , so that training function f θ corresponds to fitting a line to the datapoints. Because the labels are numbers themselves, each term f θ (x i) -y i in Equation (1.2) is also a number, which means that we can choose the absolute value |.| as the norm . :

L(θ) = n i=1 |f θ (x i) -y i | = n i=1 θ 1 x 1 i + • • • + θ m x m i + θ m+1 -y i (1.5)
Each training pair (x i , y i) contributes to a positive term to the minimization problem; all terms are then expected to be as low as possible. This is why they interpret as error terms: the training phase attempts to minimize the cumulative prediction error. Taking the squared absolute value |.| 2 in Equation (1.5) and dividing by the number n of elements yields the Mean Squared Error (MSE), a very widespread choice:

L(θ) = n i=1 1 n |f θ (x i) -y i | 2 (1.6)
The MSE formulation admits a so-called closed-form solution, i.e. the optimum of (1.6) can be expressed directly in terms of the training examples {x i }, such that no optimization algorithm is actually required in practice.

Classification

Classification can be thought of as a categorical, unordered, version of regression: the labels take their values in a predetermined set, whose elements do not have a natural hierarchy. The simplest example is a binary classification, for instance, determining whether an image contains a human face. But the number of possible outputs need not be limited to two, and can in fact be above a hundred or a thousand. Each possible label is called a class, and the purpose of classification is to determine the class of any given input.

Contrary to regression, the outputs of f θ take values in a discrete set. Such a constraint would lead to a combinatorial problem, if one were to keep it while formulating the loss to be minimized. Then, most approaches decide to relax this constraint during the resolution of the optimization problem, and reinterpret the final result as discrete values. For simplicity, let us focus on the case N = 2 classes. Without loss of generality, they can be denoted as 0 and 1, so that the discrete set {0, 1} can be replaced by the continuous range [0, 1].

1 Converting any value between 0 and 1 for f θ (x i), as determined by the optimizer, is done via thresholding, for instance at 0.5: any p < 0.5 is associated to class 0, any p ≥ 0.5 is associated to class 1.

2 This allows to interpret f θ (x i) as the probability that x i belongs to class 1.

Resorting to probability theory provides a way to find a loss term for a given f θ . Let us denote, for each i, f θ (x i) = p i , and interpret the corresponding vector p as a distribution over M . Similarly, y can be seen as a distribution over M . This way, one can compute the discrepancy between distributions p (prediction) and y (ground truth): a standard way is via cross entropy:

CE(y, p) = - n i=1 y i log(p i) + (1 -y i) log(1 -p i) (1.7)
For values of y and p between 0 and 1, each term in the sum is negative, or equals to 0 when p i = y i = 0 or p i = y i = 1. Since p actually depends on θ, one can choose cross entropy as the loss L(θ).

Generation

More than just predicting values or classes, machine learning can be used to generate new data. This problem, which we call generation, is the central concern of this work. We specifically apply it to 3D shapes, but generation can be described from a more general point of view.

If regression and classification are forward operations, going from data to labels, then generation is going backwards: given a class (say male face), can we forge a corresponding input? Of course, we do not expect a model to generate data from any arbitrary class; on the contrary, with a machine learning framework in mind, generation relies on a given training dataset. The goal is then to generate new data which resemble the training examples. For example, if we want to generate human faces, we expect the model to figure out the characteristics present in portraits, and reproduce these characteristics while introducing novelty.

Depending on the use case, generative models can have several desirable properties. In descending order of importance:

♦ Realism (or plausibility) Ability to generate realistic outputs, indistinguishably fake.

♦ Diversity (or variability) Variations in the outputs which match the diversity found in nature or, at least, in the training set.

♦ Controllability Ability to constrain the outputs according to meaningful criteria.

♦ Discoverability (bonus) Generating novel meaningful examples, substantially different from everything in the training set.

Generation is a two-sided coin, whose sides depend on each other: outputs formatting and outputs statistics. The first concern, formatting, is a way to represent the datatype into computer memory. For instance, an image can be represented by a fixed-size array; while a dynamic-size string of characters represents text. This is an indispensable yet arbitrary last step for generation. As a matter of fact, the model can only generate a list of numbers; formatting is then the final touch to transform them for us into an image, a sentence, or a 3D shape. This question is a major concern for 3D shapes since they do not have any natural representation 9 well suited for neural networks -and a significant part of this work has been devoted to the design of a well suited formatting.

Once the formatting is decided, it can be seen as a mapping between R n and the space of natural images (respectively sentences or shapes). This 9 Since their introduction for computer graphics, the canonical representation of 3D shapes is the mesh, which is a combinatorial objects. More details in Chapter 2.

way, training examples can be seen as points in the vector space R n , and generation consists in mimicking the distribution of these points. This leads to the second concern, statistics: in this framework, generation consists in sampling a probability distribution which has been inferred from observations (the training data). The quality of the generator can then be translated into statistical measurements. The choice of a formatting has an impact on the distribution of the training examples. That is why generative models for complex natural data often resort to algorithmic blocks, built upon neural networks, whose task is to find a good internal representation, that is to say, a formatting such that the observed statistics can be described by simple distributions, such as gaussians or uniforms -which are easily sampled. This internal repre-sentation is referred to as latent, since it is hidden and has to be recovered from observations. All possible values form the so-called latent space, and they are also called codes, hence the name encoders for these algorithmic blocks.

Neural Networks

The previous section introduced regression, classification, and generation, problems which can be solved using parametric functions. To be able to capture all the complexity of certain types of signals, such as natural signals (image, video, text, speech), a lot of parameters may be needed. It implies that the size of parameter space Θ can become prohibitively large, and then:

• Convergence to a good solution can be slow or hard to reach.

• A large number of training examples can be required to achieve reasonable performances10 .

This phenomenon is related to the so-called curse of dimensionality, which describes the fact that several properties, such as distance, are less easily interpretable in high-dimensional spaces.

Neural networks offer a clever answer to this issue. Drawing their inspiration from the organization of the brain, they consist in a series of elementary nodes connected from the input to the output -each node is then called a neuron. It receives several inputs a 1 , . . . , a k , integrated according to a linear combination followed by a non-linear function:

y = h(w 1 a 1 + w 2 a 2 + • • • + w k a k + b) = h(w T a + b) (1.8)
Where a is the input vector, w and b are the parameters, respectively called weights and bias, and h is called the activation function (see Figure 1.2). Several choices are possible for h, the most widespread ones are presented in Table 1.3. The value of y, scalar or vector, is the output of the neuron, passed to a next neuron, following the direction of the flow.

The connectivity is typically organized in multiple layers, each layer consisting in a collection of neurons which share the same inputs. As a consequence, designing an architecture revolves around two central choices:

• the type of layers;

• the number of layers, also called depth. Formally, neural networks merely play the role of a carefully crafted parametric function f θ ; this is the point of view we will adopt. The final output y of the network is then its prediction. As for the parameter space Θ, it aggregates the parameters of all the neurons in the network.

Parameter tuning via Back-propagation

A neural network is a compositional object: chaining neurons h 1 and h 2 corresponds to computing the composition h 2 • h 1 . Likewise, a full pipeline made of n neurons h 1 , . . . , h n corresponds to the general parametric function

H θ = h n • • • • • h 1 ,
where θ aggregates the parameters of all the neurons. These parameters can be fine tuned in order to minimize an objective function over a given training set, according to the general learning equation (1.2), thanks to a Stochastic Gradient Descent (SGD).

We assume that a training loss L(θ) is defined, whose value depends on the parameters of the network. If H is derivable, it can be minimized via Gradient Descent (Algorithm 1, page 30).

The step size τ has to be decided; since it is not a parameter of the machine learning model but of the optimization procedure, it is called a hyper parameter. Its value should be carefully chosen according to the following tradeoff. For too high values, the updates can overshoot and lead to even worse values of L(θ). For too small values, the convergence can be very slow. Though there exist variations of the gradient descent which try to guess good step values, a common practice is to find one by trial and error.

Gradient descent is generally not used in this form with neural networks, as the gradient of the loss function ∇L(θ) can be very long to compute. First, since the loss function is a sum of elementary losses, where each term corresponds to one of the n elements in the training set, the gradient can

Graph

Name and equation

Leaky ReLu: max(x, αx) (0 ≤ α ≤ 1) -3 -2 -1 0 1 2 3 0.0 0.5 1.0
Sigmoid:

1 1+e -αx (α ≥ 0)
Table 1.3: Some neuron activation functions. All equations are centered around x = 0. ReLU stands for Rectified Linear Unit. also be decomposed into a sum:

L(θ) = n i=1 L i (θ) and ∇L(θ) = n i=1 ∇L i (θ) (1.9)
Instead of computing this sum for all 1 ≤ i ≤ n in the θ-update in step 3 , we randomly split the range [1, n] into b parts called mini-batches11 and only use one such mini-batch B j (where 1 ≤ j ≤ b). This way, each update step is faster, to the price of a more erratic behavior due to the introduced stochasticity.

In order to obtain all the partial derivatives that form the gradient 1 Initialize θ to θ 0 . This is typically done randomly, according to several existing schemes.

2 At step t, compute the gradient of L with respect to the parameters:

∇L = ∂L ∂θ 1 , . . . , ∂L ∂θ n
3 Update θ t along the opposite direction of the computed gradient, with step size τ :

θ t+1 ← θ t -τ ∇L(θ t)
4 Loop to step 2 . There can be several choices for a stopping criteria, for instance checking whether ∇L(θ) is smaller than a given threshold. In general for neural networks, a total number of steps is decided in advance, according to earlier experiments where the evolution of L(θ) is plotted.

Algorithm 1: Stochastic Gradient Descent.

∇L(θ), one can use the chain rule. For a given neuron k defined by y = f k (a), the chain rule links ∂f k ∂θ j (what we aim to determine) to the uphill derivative ∂f k ∂y where y is the output of the neuron.

y = f k (a) ∂f k ∂w j = ∂f k ∂y • ∂y ∂w j (1.10)
Where ∂y ∂w j is easy to compute as it depends on the definition of the neuron equation.

Descent with Momentum

While at step 2 , regular gradient descent evaluates the gradient ∇L(θ) at moment t, several alternatives mix in past values into the update δθ = τ ∇L(θ). This technique is called momentum from the analogy with a ball descending a curved energy landscape, with inertia. Various strategies exist.

Feedforward networks

In this section, we will only discuss feedforward networks, whose connections do not form loops, since they are the only type of networks used in our work. Apart from a trivial network formed of a single neuron, the simplest network is the Multi Layer Perceptron (MLP).

Multi Layer Perceptron

A Multi Layer Perceptron is formed of a succession of layers, such that every neuron of a given layer is connected to all the neurons of the consecutive layer, as depicted in Figure 1.3. Along the network, the flow of information is assimilated to a series of vectors of R d , where d is the number of neurons in the layer. This genericity makes the MLP amenable to any input format. However, it is restricted to shallow architectures, as the number of parameters rapidly grows. Each layer of an MLP is called a Fully Connected layer, and this type of connection is reused in more complex architectures.

Convolutional Neural Networks

Exploiting the spatial correlations found in images can help mitigate the growing number of parameters as networks get deeper: this is the motivation behind Convolution Neural Networks (CNNs) which, as the name suggests, they rely on image convolutions.

The main layer types introduced by CNNs are indeed Convolution and Pooling layers. Within a given layer, each neuron is aware of a small region of interest (a patch) from the previous layer, called its perceptive fieldneurons in the first layer correspond to the pixel values of the input image12 . In a Convolution Layer (Figure 1 convolution kernel sliding over the input image. Because the kernel size is typically much smaller than the image, it results in a significant economy13 in the parameter count of the network. In a Pooling Layer (Figure 1.4b), there are no weights, but rather, a predetermined aggregation functionwhich can be non-linear (such as min or max).

The parameter space Θ roughly corresponds to a bank of filters. Each recognizes a pattern, in a multi-scale fashion thanks to the succession of convolution and pooling layers. As a matter of fact, convolution layers located deeper in the architecture have a bigger and bigger perceptive field of the input image, thanks to the effect of the pooling layers.

Apart from the aforementioned layer types, a typical CNN architecture also resorts to other types of layers, whose purpose is to stabilize the convergence:

♣ Drop out: randomly ignore neurons during the training phase, in order to prevent over-specialization;

♣ Batch normalization: normalize (within a batch) the numerical spread of activation values; in order to prevent exploding or vanishing values in deeper layers.

These types of layers are the foundational blocks of neural networks for images. But they can also be used for 3D shapes, as we show in Section 3.1.3.

Applications of Neural Networks for Images

The simplest application of neural networks to images is image classification, which have established the foundational techniques thanks to the develop-ment of datasets such as MNIST [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]] (handwritten digits) or ImageNet [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF] (millions of photographs showing a single reallife object, with hundreds of classes). The method of [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] was the first commercial application of neural networks, but it relied on handwritten digits, a type of data with a relatively low diversity, be it in terms of categories to recognize (only 10 digits), or in terms of visual appearance. Both academia and the industry would need to wait for another decade, until the available hardware allowed to tackle more diverse datasets without prohibitively high computation times. Then, neural networks made their public reappearance with Krizhevsky et al. [2012] who, for the first time, beat the ImageNet classification competition, by carefully crafting their neural network architecture. Since then, the body of work on the subject flourished, progressively conquering new problems.

Because applications and models related to generation are further discussed in Chapter 3 (with an emphasis on 3D shapes), we will here only mention image recognition and segmentation.

♣ Image-level recognition: the image, taken in its entirety, has to be labeled, whether to recognize the main subject, or for detection purposes (presence versus absence). For real-life situations, it is adapted to controlled image-capturing environments, where most conditions are known (point of view, lighting). This is why it has applications in medical imaging (e.g. cancer detection), where the acquisition modality is controlled; in anomaly detection, within industrial or surveillance contexts.

♣ Instance-level recognition: the image is supposed to be composite, and we wish to extract its different components. It is typically useful for robotics applications, where the robot has to make sense of the image coming from its sensors, recognizing the various obstacles and objects around. For instance, [START_REF] Girshick | Fast R-CNN[END_REF] proposed an efficient way to have a neural network predict a list of candidate subjects in the image, and then classify (or reject) them.

♣ Image segmentation: this is a special type of pixel-level classification, where the expected classes correspond to semantical parts. In medical imaging, it can for example serve to delineate an organ.

Chapter 2

3D shapes

I'm in love with the shape of you.

Ed Sheeran

Abstract of this Chapter.

Being a central concern of this thesis, 3D shapes deserve a proper introduction. This chapter has been placed after the introduction to neural networks in order to emphasize the conceptual shift from 2D images to 3D shapes. It presents the typical representations of 3D shapes used in computer graphics along with their applications. Then, it proposes a taxonomy of the shape processing techniques which are relevant to our work, namely, refinement and simplification, classification, correspondences and morphing. By presenting these applications in paradigmatic pairs, it aims at helping build an intuition of how they relate to one another.

Computational representations of 3D shapes

An intuition of 3D shapes

The adjective three-dimensional, 3D in short, is a very strong word, heavily connoted with technology and futurism. Unfortunately, it can refer to very different concepts, which probably contributes to the conveyed mystery. Upon first reading, it suggests a mere extension of images (2D) along a third axis, which can lead to the misleading impression that 3D exactly refers to this new dimension. In reality, there are as many acceptions of the word 3D as there are industries. So, before defining what this word means for us, we will present what it does not mean:

Depth 3D can refer to the feeling of depth in images or movies, via the use of stereography1 . Because it relies on pairs of images, this is not 3D data.

3D printing This technology, also called additive manufacturing2 , consists in the fabrication of objects in successive layers (typically made with plastic filaments, resin, or metal powders). Such machines are called printers by analogy with traditional inkjet printers. These printers take as input a 3D model: this 3D model is the object of our concern; the fabrication stage is outside of our scope.

Rendering Displaying a 3D object on a 2D display, such as a screen, requires several operations; the full pipeline is called rendering. In order to create an image, rendering can take into consideration many parameters (camera position, lights, shadows, textures, camera lens, ...) and constraints (real-time rendering for interactive video games, or photorealism for movies), but ultimately requires 3D models.

3D model or object?

These two terms may seem to have a very similar meaning. Model is traditionally used to refer to the computer file describing an object, the file used in rendering or printing. By metonymy, model can refer to the object itself. For instance, chair model can refer to the file representing a chair, or to the chair itselfas opposed to other chairs from the same dataset, for example.

The meaning can generally be easily inferred from the context. Note that this meaning of model should not be mistaken with a machine learning model.

Displaying or fabricating a 3D object requires a 3D model, that is to say a description of its shape. The word shape loosely defines as the geometrical content of an object: the shape of the Earth is a sphere, the shape of a die is a cube, the shape of a pyramid (in Egypt) is a pyramid (the abstraction), etc. Note that these only describe the outer surface of the considered objects: the fact that the Earth is spherical can be "read" on its surface, but describes nothing about its core. In most cases, we indeed only interact with the surface of a shape. This is for instance what we see from most objects, their outer surface only -with the notable exception of transparent objects. Some cases may require the inside of a shape, as for 3D printing a solid object From now on, when talking about 3D shapes, one must think of the outer shape of an object. The two-dimensional equivalent is not, as one could expect, an image, but a 2D contour. Some objects are more complex than a sphere and a pyramid. For them, shape cannot be described by a simple geometric primitive. Then, a natural choice to formally represent a shape, in general, is a 3D surface. Or, more precisely, a 2-manifold embedded in R 3 . The central topic of this thesis is the manipulation of the shape of complex real-life objects, such as chairs or planes, via learning based techniques. Note that shapes can carry additional information, such as color. In this thesis, we chose to restrict to raw shapes.

Implicit and explicit surfaces

Surfaces are subsets of R 3 . Up to a rescaling factor, we can only consider shapes within the unit cube U C = [0, 1] × [0, 1] × [0, 1], which we call the ambient space (or embedding space). How can such a surface be stored on a computer -and used in shape processing and machine learning contexts? This is the topic of the following paragraphs.

For a given set A ⊂ U C , we can already notice that considering A is equivalent to considering its indicator function 1 A , defined such that for any x ∈ U C , 1 A (x) = 1 if and only if x ∈ A. This innocent-looking remark provides a first equivalence between geometric sets (subsets of R 3) and functions, which then inspires the paradigmatic distinction between implicit and explicit surfaces. In this part, all illustrations use the same 3D model, representing a fox.

Implicit representations

We say that S is represented by an implicit function F if for any point (x, y, z) ∈ U C , F satisfies the following property:

(x, y, z) ∈ S ⇔ F (x, y, z) = 0 (2.1)
This is a generalization of the indicator function, after two adjustments: (i) expecting 0 instead of 1 on the surface S; and (ii) being indifferent to the value outside S, as long as it is different from 0.

An implicit function is a volumetric object used as a proxy to represent a surface, so it can actually contain more information than the surface only. A good example is the Signed Distance Field (SDF), which stores for every point in the ambient space its distance to the surface, with negative values for the inside. For d(x, S) the Euclidian distance between point x and surface S, we have:

SDF(x) =        d(x, S) if x outside S 0 if x on S -d(x, S) if x inside S (2.2)
See Figure 2.1 for an illustration of Signed Distance Fields.

Explicit representations

♠ Voxels Voxels consist in a regular sampling of the unit cube U C into smaller cubes, each one storing a given value. In other words, it is the 3D generalization of images, hence the name voxelvolume element3 . The voxel grid is another volumetric representation. In order to represent the inside of a shape, one exclusively uses 0s and 1s as voxel values: a voxel shape is nothing but the indicator function of the inside of the shape, sampled in a regular grid. Just like implicit functions, it is worth noting that they store more information than needed, as they indicate the inside of the shape. Moreover, they have an apparent drawback: curves and diagonals present a very noticeable staircase-like effect4 , which seriously hinders the visual quality of the models (see Figure 2.2a for an illustration). In fact, voxels are more adapted to storing general volumetric data which can take values in the range [0, 1], such as, for instance, MRI images. As a matter of fact, this medical imaging modality captures a fully-3D image of a region in the human body -for instance, the brains. To visualize it, one typically uses a slider to select a slice from one axis, effectively observing one image.

Nonetheless, they are widely used in conjunction with machine learning, because their similarity with images allows to directly use all the tools developed for images (such as convolutional neural networks).

♠ Pointclouds Pointclouds are the simplest explicit representation of surfaces. They only contain points scattered on the surface, in an unordered fashion, this is why they are sometimes referred to as point sets. Formally, a pointcloud is just a set of k points: P = {(x 1 , y 1 , z 1), . . . , (x k , y k , z k)}, within the unit cube U C . Because all points are supposed to belong to the surface S of the shape, they can be seen as samples coming from S and, subsequently, realizations of a random variable in U C whose support is S. This statistical framework allows to account for measurement error during the acquisition of a pointcloud from real life objects (as explained in Section 2.1.3).

Pointclouds lack explicit surface information. In order to efficiently encode the shape, the main concern then consists in the tradeoff between points number and localization:

Number: more points leads to finer details, thus a higher quality;

Localization: low density regions require less points than high density ones.

♠ Meshes Meshes bring the surface information that pointclouds lack, in the form of connections between the points. More specifically, these connections form polygons, generally triangles or quadrilaterals. On the one hand, triangles are the smallest possible surface patches, since at least 3 points are required to have a surface. They also guarantee that each patch is flat.

On the other hand, quadrilaterals are more suited for industrial shapes with straight lines and provide more intuitive subdivisions, to the price of non flat patches -4 points in space or not generally co-planar. Table 2.1 sums up the advantages and drawbacks of each, along with their typical use cases. Among all the explicit representations covered in this section, meshes are the most accomplished form of surfaces. They are defined by V , a set of points named vertices, and F , a set of faces indexed on these vertices:

V = {(x 1 , y 1 , z 1), . . . , (x k , y k , z k)} F ⊂ V × V × V, F = (v 1 a , v 1 b , v 1 c), . . . , (v f a , v f b , v f c) M = (V, F) (2.3)
The notations (v i a , v i b , v i c) correspond to the three corners a, b, c of triangular faces; it easily generalizes to quads. Meshes thus appear as essentially combinatorial objects, and guaranteeing that they form a well behaved surface (a 2-manifold) requires further processing5 .

Model acquisition

Photography offers a way to capture a fragment of the world onto a lasting support, and helps keep the memory for the future. Smartphones and the subsequent diffusion of cameras to the general public contributed to the omnipresence of pictures in society, which led to a strong desire to automate their processing. But it also fueled image datasets required to train the very machine learning models used for this processing. This synergy between production and consumption played an important role in the development of image processing via neural networks. The situation with 3D data is much more imbalanced.

As a matter of fact, as of today, creating 3D data is not as fast, as easy, and as accessible as taking a photograph. It can be tackled with two approaches:

1. Modeling from scratch on a dedicated software6 . This is a lengthy and tedious process, typically restricted to trained professionals. For instance, for video games, the creation of 3D assets is deemed to represent the bottleneck of the development budget for AAA games7 , because of their intensive need for qualified artists [START_REF] Koster | The cost of games[END_REF].

2. Scanning real-life objects. Most common and high fidelity techniques involve the use of a laser range scanner. Greg Turk, who co-led the Stanford 3D Scanning Repository project [START_REF] Turk | Zippered polygon meshes from range images[END_REF], explains their scanning procedure:

The technique that [a] scanner uses to make a range image is to move an object through a sheet of bright red laser light. The sheet of laser light is created by sending a laser beam through a cylindrical lens. Below is a schematic diagram of a scanner. A video camera (not shown in diagram) observes the object as it passes through the sheet of light, and this camera is tuned to the particular wavelength of light from the laser. The camera sees a ribbon of light that wiggles as the object (such as a vase or a bunny) moves through the sheet of laser light. One such image from the camera is drawn at the right in the figure below. The range scanner examines one row of pixels in such an image, and the position of the brightest part of the ribbon gives a measure of distance (or depth) of the object from the source of laser light. One such depth value is placed at grid position in a range image.

A single image from the camera yields a column of range image distance values, and putting together all such columns (as the object moves through the light) gives a complete range image.

Scanning devices have become more and more accessible to the general public with the initial introduction of the Kinect [START_REF] Smisek | 3D with kinect[END_REF] by Microsoft in 2010, which was the first RGB-D camera integrated to a gaming system -offering a hands-free gaming experience. Later, starting in 2014, Intel started the RealSense product line, manufacturing various range sensors, including standalone RGB-D cameras with a small footprint, which made them adapter to small robots, or to be integrated in other consumer electronics (smartphones, tablets, computers) [START_REF] Keselman | Intel RealSense stereoscopic depth cameras[END_REF].

Shapes usage

3D models are heavily used in the following domains: ♣ Computer Graphics Techniques which produce images are regrouped under the Computer graphics category 8 . As a matter of fact, a 3D model can be transformed into a 2D image, displayed on a screen or printed on paper. This process, rendering, simulates the formation of an image onto a camera sensor, and can simulate phenomenon like reflections or shadows. The most demanding domains are special effects in movies and video games. Both are centered around the trade-off between realism and efficiency. As a matter of fact, more realistic details in matters of geometry or appearance generally imply higher memory loads and longer rendering times. Another key aspect of graphics resides in animation, that is to say evolving a shape through time, for video games or animated movies. As a matter of fact, animating a shape poses many challenges to reach a physically plausible result. For instance, the animation of animals or humanoids typically relies on rigging, a technique which attaches the shape to a skeleton, used as an animation proxy. If this thesis focuses on static shapes, the morphings made possible by our generative models (Part II) and our Deformable Voxel Grids (Part III) can be interpreted as animation techniques (more details on morphing in Section 2.2.3).

♣ Computer Vision

Imaging sensors, such as cameras or laser scanners, generate data which can be analyzed; such concerns fall under the Computer vision (CV) category. 3D shapes are naturally present in the images, given that our world is three dimensional. In this area, shape reconstruction/estimation is a central concern, since it allows for further understanding and analysis of the image. In robotics, scene understanding is a crucial step to enable autonomous navigation (trajectory planning and obstacle avoidance) and object manipulation (grabbing and placing). Likewise in augmented reality, where for immersiveness, virtual objects need to be naturally integrated to the real scene. As for self-driving vehicles, the need for robust scene understanding is of paramount importance given the potentially tragic consequences of mislabeling.

Graphics or vision?

Note that the frontier between graphics and vision is sometimes thin, if not blurry. Many methods and theoretical frameworks fall under both categories, and the only meaningful distinction then lies in the application: is the signal a an input or an output? The recent prevalence in both fields of machine learning and, especially, neural networks, can make this distinction more and more arbitrary.

a This subtlety is implied by the fact that shape generation can belong to 8 This is also referred to as CGI, for Computer Generated Imagery either (i) graphics or (ii) vision, respectively when (i) the shape is generated from a statistical model and (ii) the shape is estimated from a picture.

♣ Medical imaging In the context of medical imaging, techniques such as Magnetic Resonance Imaging (MRI) or Optical Coherence Tomography (OCT) create a volumetric image from a patient's body, where each voxel has an intensity depending on the nature of the tissue. However, medical doctors want a 3D model of the imaged organ, in order to measure properties such as volume and elongation, or to simplify the visualization for diagnosis or intervention planning. To reconstruct the external 3D surface of the organ, most existing techniques perform a regularized 3D image segmentation, where the regularization comes from geometrical features and/or statistical priors.

♣ Industrial design Today, computers play a central role in the design and analysis of manufactured objects. Being able to model an object serves for both aesthetics and functionality reasons. Let us take the example of a piece of furniture, for instance a cupboard. On the aesthetics side, testing various styles and materials helps figuring out the best choices to, say, pair this cupboard to the rest of a bedroom. Having it modeled in 3D and rendered in different configurations then helps product designers. On the functionality side, ensuring that a drawer fits inside the cupboard can be done by taking measurements on the 3D model itself. In both cases, the 3D modeling and rendering environment serves as a proxy for reality, and spares design faults even before manufacturing.

In this context, one typically resorts to parametric modeling. This consists in the modeling of 3D shapes via the assembly of parametric shapes. These are shapes whose aspect is controlled by a set of numeric parameters; for instance, up to a translation of the whole shape, a sphere is entirely determined by its radius, a rectangular cuboid by its three side lengths, gears (see Figure 2.4), etc9 . Such parametric shapes can be automatically edited, by a simple change in the value of one parameter. For real life examples, one can think of the number of passenger rows in an airplane, the height of a table, or the width of a sofa.

It is worth noting that more advanced physical analysis can be done, by the means of fluid dynamics or material mechanics simulations; but this goes beyond the scope of this thesis.

Shape processing: a taxonomy

More than acquisition, modeling or manual edition, it is the possibility of processing shapes in an automatic fashion which enables the aforementioned applications of 3D shapes, in a systematic manner. While neural networks are promising candidates given their automation capabilities, they are not a requirement: many geometrical approaches were developed before neural networks became ubiquitous. We present a short panorama of existing techniques, all addressed by the methods developed in this thesis. We propose a taxonomic study, according to the following paradigms:

♦ Analysis versus Synthesis Is the role of the operation to analyse the shape, or to edit/create a shape? In other words, are we producing meaning or data?

♦ Intra-versus Cross-shape Does the operation rely on comparisons with other shapes, or solely operates on the given shape, considered in isolation?

We do not consider machine learning as a typological criteria because it can be considered as mere implementation details, and can in fact be used in any application. The taxonomy is summarized in Table 2.2, which helps compare the techniques at a glance. They have been grouped in pairs of "cousin" techniques, and this table also exhibits the similarities which explain the pairings.

Editing or processing?

The words editing and processing may appear to be synonymous, but they convey different ideas, which are most easily understood via an analogy with painting. Edition is the act of changing the painting itself, by adding new touches for instance, or erasing a part. Processing comes as a second step, and could be adding a protective layer of veneer or restoring an old painting. So, we can say that edition happens on the object itself, while processing serves a later purpose.

Analysis Synthesis Intra-shape Cross-shape Refinement Simplification Classification Segmentation Correspondences Morphing Table 2.2: Taxonomy of processing techniques, according to two axes: analysis versus synthesis, and intra-versus cross-shape.

Refinement and simplification

Refinement and simplification consist in adapting the complexity of the shape while preserving its distinctive features. Compared to image processing, they are the counterparts of, respectively, super-resolution and downsampling (see Figure 2.5 for an illustration).

Meshes

Modeling and animating can be simplified thanks to refinement, by only working on a low-level representation of the model, and letting an automatic procedure create the finer geometry. In order to do so, most methods assume that the input geometry is an approximation of a more general, smooth surface, and increase the polygonal count of the input mesh in order to get closer to this surface; this is for instance the case for subdivision surfaces. Different upsampling schemes exist, among which the Loop, Butterfly, or Catmull-Clarke schemes, all relying on different assumptions about the target surface, or the connectivity of the mesh (triangles or quads).

Coarser Denser

Figure 2.5: Refinement and simplification correspond to increasing or decreasing the density of the mesh grid while preserving the geometry of the model.

On the other side, mesh simplification helps improve the performances of rendering, both in terms of computing time and memory load. It is particularly useful for objects in the distance, since the approximated details would be too small to be seen anyway. It also proves useful as a post-processing step following real-life scans, which can produce very dense samplings.

The existing methods work according to two different approaches:

• determining an alternative parameterization of the surface represented by the shape (e.g. vertex clustering or geodesic sampling);

• iteratively eliminating superfluous vertices (vertex decimation) or edges (edge collapse), readapting at each step the points connectivity and positions.

Refinement and simplification both share the same characteristics in the taxonomy, because they achieve essentially the same idea, but in opposite directions.

Pointclouds and voxels

Because they do not encode a surface, pointclouds and voxels do not present the same problems. Moreover, they are rarely used for rendering or animation, which leaves simplification and refinement for a lack of practical application. It is worth mentioning that voxel grids can be compressed by using adaptive subdivisions, which is known as an octree. This helps encode large constant regions efficiently.

Classification and segmentation

The geometry of a shape is, in general, sufficient to allow us to recognize the object it represents: this corresponds to object recognition, a problem belonging to the general classification category. Our brains are very efficient at recognizing objects from our daily lives and, just like images, the machine learning community proved that computers can replicate our recognition abilities. All methods rely on shape descriptors, a way to describe a shape via a vector of R d . This descriptor can either be hand-crafted, in which case a subsequent classifier is used; or, be computed by a neural network, which allows to append a neural network-based classifier and train the whole architecture end-to-end. But there is much more information we can perceive in a shape, that goes beyond its class instance. We can indeed segment it into several parts, each having a specific semantic role. For example, a chair is typically composed of legs, a seat, a back, and sometimes armrests. Planes have a body, wings, an engine, and a tail. And so on. Some objects may even indicate their function by their shape, like the handle of a mug, calling to be grabbed here. The signaling of function by design is called affordances. Their analysis plays an important role in robotics, as autonomous agents need to understand how to interact with their environment.

Classification and segmentation can be seen as two methods of analysis Figure 2.7: Examples of shape correspondences computed with Functional Maps [START_REF] Ovsjanikov | Functional maps: A flexible representation of maps between shapes[END_REF].

operating at a different scale: classification is global, comparing a full shape to other known shapes; segmentation is local, comparing regions of the shape between themselves. See Figure 2.7 for an illustration.

Correspondences and morphing

These two operations rely on matching points between two shapes. They have several applications such as shape comparisons, animation, or shape completion.

In general, correspondences between arbitrary shapes is an ill-posed problem. Indeed, the considered shapes may not share meaningful parts, as for instance a chair and a plane. This is why it is generally restricted to shapes which do, such as shapes from the same category, or for animals or bodies in different poses. Note that varying topologies or parts diversity can make finding correspondences challenging, even within the same class. This is also why additional constraints are imposed. A correspondence is given by any application f defined from shape A to shape B. In practice, we impose certain conditions on f , to guarantee the quality of the correspondence map. For instance, we may want f to be a one-to-one mapping, or to preserve geodesic distances -typically for non-rigid shape matching. Methods that tackle this are either spatial or spectral, respectively computing and matching descriptors for points or for functions defined over the surfaces.

A morphing, also known as shape interpolation, is a deformation over time from shape A and B. It corresponds to the image of a time-continuous function h:

h : [0, 1] → M, such that h(0) = A and h(1) = B (2.4)
Where M is a shape space and t is time. This function can for instance be implemented by a generative neural network (in which case, M is the latent space, refer to Section 3.2 for more details). In other words, a morphing is a curve in a (generally non-Euclidian) shape space M. The curve can be constrained, according to the desired application of the morphing:

♠ Body movement When the morphing corresponds to the movement of a body, for instance raising one's arm, M is the space of possible body poses, and the trajectories must correspond to a physically plausible evolution.

♠ Anatomy evolution This has applications in diagnosis and/or prognosis based on the evolution of the shape of an organ or a tumor. In those cases, the possible trajectories must follow statistical models acquired from medical observations, typically under longitudinal studies.

♠ Natural shapes M contains natural shapes, that is to say real examples of shapes. This way, the intermediate steps of the morphing are guaranteed to be plausible shapes.

♠ Arbitrary shapes Ultimately, this case is the less constrained, as it does not impose shape priors. Here, the trajectory is supposed to minimize an ad-hoc energy, typically corresponding to a cost associated to deformations. This is the underlying framework of Optimal Transport, which aims at minimizing the total amount of displaced weight between two distributions.

There is a strong link between correspondences and morphing. As a matter of fact, both can be simultaneously solved for shapes admitting a consistent parameterization. For shapes A and B, if A = h(0) and B = h(1) share the same parameterizations, points can be identified, by their mutual parameters, over the trajectory of t ∈ [0, 1]. This way, correspondences emerge in the endpoints of a morphing.

Conversely, from a given set of one-to-one correspondences between A and B, one can derive a morphing by linear interpolation:

if ∀a ∈ A, ∃!b ∈ B, f (a) = b then h(t) {(1 -t) • a + t • f (a)} a∈A (2.5)
This is for instance the type of matching obtained using the Earth Mover's Distance in an optimal transport setup, when the surface areas are normalized.

Chapter 3

Shape latent spaces

The purpose of analytical displays of evidence is to assist thinking.

Edward Tufte

Abstract of this Chapter. Having introduced neural networks and 3D shapes, this chapter dives deeper into the theoretical foundation of shape latent spaces, first from a general perspective, and then as offered by generative models: Variational Auto Encoders and Generative Adversarial Networks. Then, we review existing works and applications involving the various representations of 3D shapes. Finally, we propose an analysis of a latent space, coming from recent works, exhibiting its usefulness for exploration and novel shape generation.

Following the distinction made in Section 2.1.3 about model acquisition, shapes typically come from the real world, or were designed on a computer. In both cases, their geometry is governed by a set of rules which is not always directly accessible from us. These implicit rules arguably embody the DNA material of shapes, as they both a allow to group shapes within distinct families; and b discriminate members of the same family, by exhibiting their singularities. For instance, a table is different from a plane, in that which tables generally have three or four legs, while planes require, at least, a fuselage and wings. This illustrates point a . But, among tables, some are higher, wider or larger than others; all these characteristics uniquely determine one table among the family of tables -an illustration of point b . Having access to these rules opens the possibility to not only analyze and compare shapes, along the uncovered parameters, but also to semantically edit a shape by tweaking the desired values of said parameters.

51

The intuition developed above motivates the recourse to machine learning to uncover the hidden, latent, rules. More specifically, the intrication of Analysis and Synthesis, which already oriented our presentation of Shape Processing in Section 2.2, points towards the direction of generative models, where these two can go in pair.

Shape generation goes beyond shape processing as presented in Section 2.2. Here, the goal is to automate the creation of shapes by providing a description of the desired shape, where the word "description" is to be taken figuratively. Indeed, in this thesis -unlike in many works -we do not rely on verbal instructions, but rather in a data-driven, description by example. It can take several forms:

1 An image: the goal is typically to uncover the 3D model which led to this picture;

2 A label (or combination of labels): for instance, generating shapes which correspond to fighter jet, sofa bed, or lounge chair;

3 Another shape, in which case we aim at generating a similar model.

All these translate into statistical priors, which describe how shapes are supposed to "look like". That is why machine learning is a good candidate to tackle these problems. In this study, we focus on applications 2 and 3 . They are based on statistical models which need to be learned, and aim at inferring the aforementioned latent rules. Therefore, the resulting shapes are parametric by construction. Let us quickly discuss case 1 .

Extracting a 3D model from a picture has applications in scene understanding for robotics and augmented/virtual reality. The basic idea is to inverse the rendering pipeline, as presented in Section 2.1.1, and retrieve the geometry (and camera pose) which produced the image. Methods differ by the presence or absence of supervision: ♦ Supervised: Using either type of representation (see Section 2.1.2) for the ground truth geometry of the shapes, these techniques use deep neural networks whose inner layers compute an abstract representation of the input image, and which output a parameterization of the shape.

The objective function consists in a geometric distance -along with a classical regularization -between the prediction and ground truth: it is done in object space.

♦ Unsupervised: These leverage differential renderers 1 in order to compute an objective in image space. The predicted shape should then have the appearance of the input image, allowing to drop the dependency on a ground-truth model: it is done in screen space.

For the rest of this Section, we first present a useful abstraction for generative models, which serves as a conceptual framework for the applications presented in this thesis, in Parts II and III. We then dive into the foundational theoretical models (Variational Auto Encoders in Section 3.1.1, and Generative Adversarial Networks in Section 3.1.2). Finally, we cover the applications of these models to 3D shapes, in Section 3.1.3.

Generative networks

Section 1.1.2 presented the problem of generation within a general machine learning framework, in comparison with regression and classification. Let us dive in more details into this problem.

Let us consider a dataset of k shapes, x 1 , . . . , x k , whose format (such as a pointcloud or a voxel grid) can be arbitrary for the moment. The dataset is supposed to contain similar shapes, such as for instance members of the same category (chairs, or tables, or airplanes, etc.2). This way, we can assume that they all belong to the same shape manifold M , and generating novel shapes then corresponds to finding new points S. Lastly, we assume that M admits one coordinate map3 N ⊂ R n .

Resorting to the coordinate map is the key to generation. Indeed, it means that there exists an homeomorphism ϕ : M → N which maps shapes to points in N , a Euclidean vector space. In other words, ϕ being continuously invertible:

• ϕ transforms shapes into elements of N , which are vectors of n coordinates. They are descriptor vectors, as they uniquely describe shapes, and are usually called codes; ϕ is then called an encoder.

• ϕ -1 transforms codes into shapes; ϕ -1 can be referred to as a generator or a decoder.

• Both ϕ and ϕ -1 are continuous, such that a small perturbation in a code leads to a small deformation of the corresponding shape.

Knowing ϕ -1 allows to generate new shapes belonging to manifold M , by simply picking points in N , that is to say descriptor vectors -which

M N R n ϕ ϕ -1 Figure 3
.1: A generator can be seen as a homeomorphism ϕ between M , the shape manifold and N , an n-Euclidean vector space. The vicinity of a point (shaded areas) should contain similar shapes.

is easy -and feeding them to ϕ -1 (see Figure 3.1 for an illustration). The space of all possible descriptor vectors is called the latent space. Estimating ϕ -1 can be done in conjunction with estimating ϕ, as is done with auto encoders (see Section 3.1.1). But there is no need to be able to compute ϕ, as demonstrated by Generative Adversarial Networks [Goodfellow et al., 2014, see Section 3.1.2]. The only requirement is being able to implement functions which use shapes as inputs or outputs. These functions can be implemented via neural networks, which is our main focus.

Variational Auto Encoders

From general Auto Encoders. . .

Following the problem statement from Section 3.1, auto encoders propose to jointly determine ϕ and ϕ -1 . In accordance with the standard terminology, ϕ is called the encoder and ϕ -1 the decoder, so they will be renamed respectively E and D. In its general form, the auto encoding equation is the following:

min Θ L(x, D(E(x))) (3.1)
Both D and E are neural networks, thus parametric functions, so the minimization domain Θ corresponds to these combined parameters. The input x is a shape from a dataset, which is first encoded by E, and D is tasked to reconstruct x from the code E(x) (see functional diagram in Figure 3.2); L measures the discrepancy between x and D(E(x)). Equation (3.1) is then a reconstruction loss, which measures how well the full pipeline, as depicted in Figure 3.2, reconstructs a given input: for a small loss, we

Input x E z = E(x) D y = D(E(x)) Figure 3.2: Functional Auto Encoder pipeline. have x ≈ D(E(x)
). The idea behind auto encoders is to simultaneously optimize D and E in order to minimize the reconstruction loss. Note that L depends on the chosen shape format (refer to Section 4.2.4 for details about shape distances). This general formulation does not yet allow to use an Auto Encoder as a generator. More assumptions are required to be able to sample from N , which is exactly the purpose of Variational Auto Encoders (VAEs).

. . . to Variational Auto Encoders

The observed data distribution x is considered to be generated by some random process, involving 1 a latent (unobserved) random variable z drawn according to distribution p θ (z) (drawn in N), followed by 2 a probabilistic decoder following the conditional distribution p θ (x|z). This formalism serves multiple purposes:

• Expressing the general auto encoding problem (3.1) in terms of variational inference;

• Regularizing the latent space, by imposing a probabilistic prior. [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF] introduce the example of VAEs using a Gaussian prior, which we follow in this paragraph. Given that all examples are considered independent, the global likelihood is written log p θ (x) = i log p θ (x i). Then, the marginal likelihood of each example x i can be bounded by the following term:

log p θ (x i) ≥ -D KL (q φ (z|x i)||p θ (z)) + E q φ (z|x i) [log p θ (x i |z)] (3.2)
where q φ (z|x i) serves as an approximation proxy for the true posterior p θ (z|x i). We aim at optimizing this lower bound (3.2) with respect to parameters φ and θ. The latent distribution p θ (z) is taken to follow N (0, I). Using the so-called reparameterization trick, we make the parameters of the latent Gaussian distribution (µ i , σ 2 i) explicit, and write

z i ∼ q φ (z|x i), z i = µ i +σ i • where ∼ N (0, I) (pipeline summarized as a functional diagram in Fig- ure 3.3).
The role of the encoder E is precisely to predict µ i and σ i from the observation of a given x i .

Then, the Kullback-Leibler divergence term in (3.2) can be analytically computed. With n the dimensionality of the latent space N :

Observation x i q φ (z|x i) µ i σ i ∼ N (0, I) z = µ i + σ i • p θ (x|z) Prediction x
Figure 3.3: Functional Variational Auto Encoder pipeline. Because the true latent space is supposed to follow a certain prior, for instance z ∼ N (0, I), that we can sample from, the learned p θ (x|z) can be then used as a generator of new data.

-D KL (q φ (z|x i)||p θ (z)) = q φ (z)(log p θ (z) -log q φ (z))dz = N (z; µ, σ 2) log N (z; 0, I)dz -N (z; µ, σ 2) log N (z; µ, σ 2)dz = - n 2 log(2π) - 1 2 n j=1 (µ 2 (j) + σ 2 (j)) + n 2 log(2π) + 1 2 n j=1 (1 + log σ 2 (j)) = 1 2 n j=1 (1 + log σ 2 (j) -µ(j) 2 -σ 2 (j))
(3.3) Hence, from (3.2) and (3.3), the lower bound estimator for log p θ (x i), which we remind serves as a negative regularized reconstruction loss4 in the auto encoding framework, where k is the number of available training observations:

L(θ, φ, x i) ≈ 1 2 n j=1 (1 + log σ 2 (j) -µ(j) 2 -σ 2 (j)) + 1 k k i=1 log p θ (x i |z i) (3.4)
Variational Auto Encoders can be implemented with various neural network architecture: there, E and the reparameterization trick play the role of q φ (z|x i); D the role of p θ (x|z). Both serve as an intervertible generator as presented in Figure 3.1. For an illustration of latent space samplings with the MNIST [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]] dataset, see Figure 3.4. This figure also illustrates the typical downfall of VAEs in the quality of the generations: because they rely on a lower bound maximization, the true likelihood p θ (x) may not be achieved. This can lead to a lesser quality, which manifests itself by somewhat blurry results (data points are close to the average). Moreover, by their ability to infer a latent code via maximum likelihood, which belongs to the learned manifold, VAEs can also be used to regularize new observations, for instance in a denoising or reconstruction application.

VAEs in a nutshell

In summary, Variational Auto Encoders (VAEs) impose a probabilistic prior to the latent space -typically Gaussian -such that points from N are here supposed to be drawn from a gaussian distribution defined over R n .

Since the seminal paper of [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF], many variations have been developed. The interested reader can refer to [START_REF] Makhzani | Adversarial autoencoders[END_REF][START_REF] Doersch | Tutorial on Variational Autoencoders[END_REF][START_REF] Tschannen | Recent advances in autoencoderbased representation learning[END_REF] for more details.

z ∼ p θ G(z) Real example x i x = G(z) or x = x i D(x)
Real or Fake?

Figure 3.5: Functional GAN pipeline.

Generative Adversarial Networks

Similarly to auto encoders, Generative Adversarial Networks (GANs) also use a pair of networks. But in this case, the decoder is named generator, while the encoder is not used and is replaced with a discriminator -whose structure can be similar to an encoder, but whose role is different. The generator G and discriminator D correspond to agents in a two-player game:

• G tries to generate objects which the discriminator is not able to distinguish from real examples;

• D has to recognize the objects forged by the generator, labeling them fake as accurately as possible.

Their antagonism motivates the adjective adversarial in the name GAN. They intuitively correspond to a data forger and a detective trying to defeat each other. In this metaphor, every time the detective gets better at identifying forged data, the forger has to improve the quality of its generations. This is why the discriminator is merely used as an intermediary to lead to a good generator, making sure that by the end of the training, generations and real examples are indistinguishable. In other words, generations and real examples must be samples from the same distribution.

Let us denote by p data the true data distribution. The generator creates fake data by sampling a latent code z from a distribution p θ , and passing this code z to a decoder network. The pipeline seen from each agent is the following (and is depicted, for visual reference, in Figure 3.5):

Generator: Sample z ∼ p θ → output y = G(z). Discriminator: Observe x → is it real (corresponding to x ∼ p data) or forged (corresponding to G(z ∼ p θ))?
The GAN is trained according to the following minimax equation:

min G max D E x∼p data log D(x) + E z∼p θ log 1 -D(G(z i)) (3.5)
The typical training scheme alternates between the optimization of D for l steps, and G for 1 step. It is described in Algorithm 2.

1 Initialize the parameters θ d , θ g of D and G.

2 For l steps, repeat:

(a) sample m latent codes (z 1 , • • • , z m) according to p θ ; (b) sample m observations (x 1 , • • • , x m);
(c) update D by Stochastic Descent of the gradients of its objective function:

∇θ d 1 m m i=1 log D(x i) + log 1 -D(G(z i))
3 Update G by Stochastic Ascent of the gradients of its objective function:

∇θ g 1 m m i=1 log 1 -D(G(z i))
4 Loop to step 2 , until optimality of G, or for a fixed number of epochs.

Algorithm 2: GAN training.

During the training of D at step 2 , it converges to the optimal discriminator (for a fixed G) D * (x) = p data (x) p data (x)+p θ (x) . When convergence is reached at step 4 , if G is optimal, p θ = p data , such that D * (x) = 1 2 . Intuitively, the training scheme corresponds to optimizing G at a much slower rate than D which, being maintained close to its convergence state, provides useful gradients for the rarer updates of G. Convergence in Equation (3.5) can be hard to attain, especially in the early training when G produces easy-to-reject propositions (in which case log 1 -D(G(z i)) saturates and provides weak gradients). Replacing the minimization of log 1 -D(G(z i)) at step 3 by the maximization of log D(G(z i)) helps alleviate this problem.

From a usage perspective, GANs appear complementary to VAEs. As a matter of fact, when taken in their vanilla form, as we have done:

They generally produce more visually pleasing results, as they are trained to mimick the true data distribution (compare the latent space.

Later works devised evolutions to expand the usability of GANs. For instance Conditional GAN [START_REF] Mirza | Conditional Generative Adversarial Nets[END_REF] allows to condition G on a class label, giving more control on the generated samples, while InfoGAN [START_REF] Chen | Infogan: Interpretable representation learning by information maximizing generative adversarial nets[END_REF] favorizes latent spaces where coordinates encode meaningful properties of the data (see Figure 3.6 for an illustration).

As far as image generation is more specifically concerned, [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] brought with DC-GAN the first highly controllable realistic image generator, working on datasets such as LSUN5 [START_REF] Yu | Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop[END_REF] -representing bedrooms -Imagenet-1k [START_REF] Deng | ImageNet: A Large-Scale Hierarchical Image Database[END_REF], and their own Faces dataset. By analyzing neural architecture modalities best suited at this task, they establish the usefulness of strided convolutions and batch normalization layers, achieve good classification performance with their discriminator, and show convincing latent arithmetics, that is to say, analogical image transformations expressed as simple operations in latent space (for more details, refer to Section 3.2.2). For a more thorough discussion on GANs, refer to a tutorial given by [START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF].

Neural networks for shapes

Let us now discuss how neural networks can be used in conjunction with shapes. The various possible architectures for an Encoder (within a VAE) or a Discriminator (within a GAN) can be equally used for purposes of analysis or synthesis. This is why we can focus on applications which involve data-driven shape generation. Their use cases typically include one of the following tasks: shape processing and data augmentation [START_REF] Park | Transformationgrounded image generation network for novel 3d view synthesis[END_REF][START_REF] Fish | Meta-representation of shape families[END_REF][START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF][START_REF] Haibin | Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces[END_REF][START_REF] Li | GRASS: Generative recursive autoencoders for shape structures[END_REF], shape prediction from 2D data [START_REF] Shin | Pixels, voxels, and views: A study of shape representations for single view 3d object shape prediction[END_REF][START_REF] Haibin | Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces[END_REF][START_REF] Wu | Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[END_REF], Wang et al., 2018b[START_REF] Fan | A point set generation network for 3D object reconstruction from a single image[END_REF], shape completion [START_REF] Allen | The space of human body shapes: Reconstruction and parameterization from range scans[END_REF][START_REF] Groueix | AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF][START_REF] Park | Deepsdf: Learning continuous signed distance functions for shape representation[END_REF], and latent space exploration [START_REF] Tulsiani | Learning shape abstractions by assembling volumetric primitives[END_REF][START_REF] Wu | Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[END_REF][START_REF] Li | GRASS: Generative recursive autoencoders for shape structures[END_REF], Achlioptas et al., 2017].

Voxels

Voxel grids being the 3D equivalent of images, and given the initial success of neural networks with images, as presented in Sections 1.2.2 and 1.2.3, they are the first shape format used with neural networks. [START_REF] Wu | 3D shapenets: A deep representation for volumetric shapes[END_REF] were the first to use a volumetric neural representation for 3D shapes. Based on Deep Belief Networks [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF], they use a voxel grid to represent a presence probability density, leveraging deep priors to help classify 2.5D data6 , obtained by range sensors such as RGB-D cameras. To this end, they built ModelNet, the first large scale dataset that includes CAD models of various categories (up to 40), to help train future machine learning models. Since then, this dataset has indeed been widely used by the whole research community.

While they could use Gibbs sampling to generate new shapes, this process was slow and only performed as an investigation tool -to understand the features learned by the model. Later, in VoxNet, [START_REF] Maturana | Voxnet: A 3d convolutional neural network for real-time object recognition[END_REF] showed how voxel grids can help process and recognize large pointclouds (by ways of binning) in real time, in robotics applications. This application highlights a major benefit of feedforward neural networks (see Section 1.2.2), namely, their very short inference time.

The first voxel-based GAN was introduced by [START_REF] Wu | Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[END_REF], who demonstrated how the adversarial loss helped generate realistic-looking shapes. However, a major limitation of voxels as a representation of 3D shapes is the space discretization, and subsequent poor surface quality. Several works try to mitigate this problem. Let us mention Octree-Net [START_REF] Tatarchenko | Octree generating networks: Efficient convolutional architectures for high-resolution 3D outputs[END_REF], which represents shapes via octrees, an adaptative, recursive, subdivision of voxels (into 8 identical smaller cubes, hence the name) which allows to have "voxels" of various sizes.

It is also worth mentioning here Mesh R-CNN proposed by [START_REF] Gkioxari | [END_REF], a method which uses a voxel grid as an intermediate representation. But because the final output is a mesh, we discuss it below (page 64).

Pointclouds

Since PointNet, a seminal work on pointcloud networks by [START_REF] Qi | Pointnet: Deep learning on point sets for 3D classification and segmentation[END_REF], we know how to build convolutional neural networks that operate directly on point sets. The key features of its architecture, depicted in Figure 3.7 for reference, are the following:

• Point-based features: the pointcloud is considered as an n × 3 image, and convolutional layers of vertical size 1 (see Section 1.2.2) learn transformations which are applied to every point -meaning the learned local features only depend on points positions;

• Order invariance: using max-pooling, the features are independent of the order of the points;

• Transformation invariance: inspired by STN [Jaderberg et al., 2015], the network comprises two matrix multiplications corresponding to, respectively, geometric transformation (d = 3), and feature-space transformation (d = 64). These transformation matrices are themselves predicted by subnetworks (named T-Net in Figure 3.7), which aim at normalizing the data;

• Local and global feature aggregation: to improve semantical part awareness during segmentation, the corresponding part of the network communicates information about the whole shape to every point.

The first T-Net has a natural geometric interpretation: if the transformation matrix is orthogonal, it aims at correcting for shape misalignment (rotational invariance). PointNet can solve tasks such as classification, object segmentation and scene semantical clustering7 . Its successor, Point-Net++ [START_REF] Qi | Pointnet++: Deep hierarchical feature learning on point sets in a metric space[END_REF], improved performances by doing poolings in a hierarchical way, learning multi-scale features.

When it comes to the generation of pointclouds, [START_REF] Fan | A point set generation network for 3D object reconstruction from a single image[END_REF] showed how to build a robust RGB-image to shape converter, by outputting the pointcloud in the form of a matrix. This decoder architecture was at the foundation of the work of [START_REF] Achlioptas | Figure 3.13: Image (a)[END_REF], who successfully built auto-encoders and GANs for pointclouds which allow to perform latent space exploration and, for instance, generate convincing interpolated shapes. Note that all these approaches generate only coarse details (in this case, n = 1024 points). Moreover, they do not capture the connectivity information we expect in shapes.

Despite their clear limitations, pointclouds represent a good intermediate from voxels to real meshes, in the advancements of shape neural networks, thanks to the following key characteristic (summarized in Table 3.1): the position of the points are not restricted to a grid (discrete values), but are continuous.

Finally, pointclouds allow to investigate the generation of diverse geometry, which is why we chose it as the basis for our first work, presented in Chapter 4.

Positions Connectivity

Discrete Continuous Absent Present Voxel Pointcloud Mesh Table 3.1: Challenges that shape generating neural networks have to face, depending on the shape representation.

Meshes and manifolds

Since shapes are generally supposed to be 2-manifolds embedded in 3D space, some recent approaches propose models that explicitly capture their manifold nature. [START_REF] Groueix | AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF] took the direction of predicting an atlas of the manifold, by generating surface patches that are glued together in a papier-mâché fashion. However, preserving a general agreement of all patches is hard, which leads to outputs that do not consist in smooth surfaces, but rather, of very visible sheets. More recently, using a Graph Convolutional Network [START_REF] Kipf | Semi-supervised classification with graph convolutional networks[END_REF] architecture, Wang et al. [2018b] decided to directly generate a mesh by predicting the deformation of an ellipsoid, which allows to hard-code connectivity. Designing graph unpooling layers allowed them to progressively refine the resolution of the output mesh, which yields convincing results.

However, this method is inherently restricted to genus 0 shapes, and generalizing it to arbitrary topologies does not seem trivial. In order to solve this problem, namely to generate arbitrary genus meshes, two directions can be considered.

The first one was taken by [START_REF] Gkioxari | [END_REF] in Mesh R-CNN: first, output a voxel grid (allowing general connectivity), which is then converted into a mesh whose points can later be deformed. Following Table 3.1, this corresponds to achieving the desired properties in terms of Connectivity (presence) and Positions (continuity) in two consecutive steps. Thanks to their Recurrent8 -CNN module, they can find several shapes in a picture and predict corresponding 3D meshes. However, this method does not naturally yield a latent space which can be explored.

Another approach is to use Signed Distance Fields (see Section 2.1.2) in order to achieve both desirable categories of Table 3.1 simultaneously. This poses a new challenge, namely, the absence of an explicit surface which could be used in the training objective, playing the role of L in Equation (3.1). Two contemporary works offered different workarounds:

1 [START_REF] Michalkiewicz | Deep level sets: Implicit surface representations for 3d shape inference[END_REF] suggested to use level-set reconstruction techniques which are amenable to neural networks, providing the appropriate loss. Although it indeed allows to generate smoother surfaces than voxels, the fact that the SDF is only evaluated at discrete positions still limits the precision of the generated geometries;

2 [START_REF] Park | Deepsdf: Learning continuous signed distance functions for shape representation[END_REF], with DeepSDF, proposed to only represent the shape via its SDF. The decoder part of the network now behaves as a function which, given a latent code z S representing shape S and an input position (x, y, z), gives the SDF of S at this query location. They show that we can use a simple L 1 error on the predicted SDF values and the ground truth (up to a per-point saturation when the distance to the surface becomes too high, allowing a finer control on the precision near the surface).

We can also finally mention that some works represent shapes as an assembly of various geometric primitives [START_REF] Haibin | Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces[END_REF][START_REF] Tulsiani | Learning shape abstractions by assembling volumetric primitives[END_REF][START_REF] Li | GRASS: Generative recursive autoencoders for shape structures[END_REF][START_REF] Sharma | ParSeNet: A parametric surface fitting network for 3D point clouds[END_REF][START_REF] Gadelha | Learning generative models of shape handles[END_REF]. The interested reader can refer to [START_REF] Xu | Data-driven shape analysis and processing[END_REF] for a broader survey on data-driven shape analysis and processing methods.

Latent space exploitation

Once a generative model is ready, it can be used to generate new shapes. But what also motivates our work is that its latent space can be studied. As a matter of fact, the scrutiny of latent spaces can reveal insights about the data itself, allowing for instance to understand the relationships, similarities and dissimilarities between elements of the dataset. The manifold formalism introduced in Section 3.1 allows to interpret the latent space as a map of the data. But it is a particular type of map, as it only contains positional information (a position in latent space corresponds to an object), unlike traditional maps, which add layers of information (elevation, city names, landmarks, etc.). In fact, to keep the metaphor, it is a map which only contains landmarks, formed by the elements of the dataset.

The first thing we can do is visualize this map. Leveraging the pattern recognition abilities of humans generally proves to be a powerful first approach, which justifies the relevance of visual inspection. However, the latent space is an n-dimensional vector space, which is an object hard to visualize on a computer screen, let alone on paper. One can resort to several techniques designed to map this space to lower dimensions while preserving its key properties. For display, this number is typically d = 2 if the display is static, or d = 3 if it is dynamic (as a computer screen allows to rotate 3D pointclouds). The two most popular unsupervised choices are PCA and t-SNE [van der [START_REF] Van Der Maaten | Visualizing high-dimensional data using t-SNE[END_REF].

PCA: Extracts the d first eigenvalues of the covariance matrix XX T of the data9 , it corresponds to selecting the vector subspace (when data is centered) which maximizes variance, or equivalently, spatial spread. Being a linear transformation, it keeps straight lines, which is particularly useful to visualize linear interpolations in latent space (as described in Section 2.2.3).

t-SNE:

Expresses the local neighborhood of each point in terms of conditional sampling probability:

p j|i = exp(-x i -x j 2 /2σ 2 i) k =i exp(-x i -x k 2 /2σ 2 i)
where p j|i translates the probability that point x j is sampled in the vicinity of x i (following a Gaussian prior). Then, t-SNE reproduces, in a distribution of lower dimensionality, these conditional probabilities. As opposed to PCA, it does not allow to reproject points back to the original dataset. But, by keeping neighborhoods from the original data representation, it allows to quickly uncover clusters of similar examples. For instance, t-SNE regroups MNIST [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] images in clusters which closely correspond to the digits, while only using as an input descriptor the raw 28 × 28 images.

We show in Figure 3.9 the example of a t-SNE visualization of the latent space of [START_REF] Kleineberg | Adversarial generation of continuous implicit shape representations[END_REF]. We will use it as an illustration in the two following sections.

Exploration

Displaying the latent space serves the initial purpose of checking that the learned codes encapsulate meaningful information about the shapes. For instance, one can inspect that similar shapes are located in similar areas: see, in Figure 3.9, how shapes of the same category are overall regrouped in clusters (while the model did not make use of the category). One can also inspect sub-clusters, such as the two highlighted oval regions. They correspond to L-shaped sofas, respectively on the right-hand side and the left-hand side of the sofa, as depicted in Figure 3.10, (a) and (b). All shapes in these sub-clusters follow these types. Discovering such statistical modes can help gain more insights about one's dataset. The visualization can also help uncover mislabeled data, if a shape belongs in a suspicious group.

Another interesting case are ambiguous shapes, of which we give examples in Figure 3.10, (c) and (d). The first corresponds to a lamp which looks like a table: the appearance of its shade is indeed very similar to the top of the table, with the wall mount being reminiscent of a table leg. The second is a chair which belongs to the sofa cluster, one of the many red dots within the central blue region in Figure 3.9. This raises legitimate questions regarding the arbitrariness of data labeling: does this shape deserve more to belong to the chair or to the sofa category? This is a question we will leave to the appreciation of the reader, since it pertains to more epistemological debates10 .

Note that in all these cases, the shapes we mention and display do not exactly correspond to the actual dataset, but rather, to their reconstructions by the decoder. As a matter of fact, the latent space is "blind" to the real shapes, and in a sense, only aware of the output geometries. As a consequence, the ambiguity we noted above may not be present in the actual dataset11 (for instance, the real lamp in (c) may show distinct features which unequivocally pertain to the lamp category). 3.9: Training data projected in the latent space of a generative model taken from [START_REF] Kleineberg | Adversarial generation of continuous implicit shape representations[END_REF], where color represents shape type (unused during training). Several locations (circled dots) are sampled in this space, see Figure 3.11. Note that, with t-SNE visualization, clusters scale is not meaningful.

Sofa Chair

Sampling

The previous section covered the usage of the latent space to explore the training dataset. But because we consider generative models, this latent space can be sampled in new locations, in order to generate new shapes. Following the formalism introduced in Figure 3.1, this is simply done by drawing a code from the latent distribution and then feeding this code to the generator. From a usage perspective, we can outline three modalities, whose characteristics are summarized in Table 3.2.

♣ Shape interpolations

In Figure 3.11, we show the example of such shape morphings, which are generated from the two paths drawn in Figure 3.9. Each shape corresponds to a white dot, whose positions were manually chosen. The black segments depict the fact that, the latent space being continuous, it can be sampled in any location, which would lead to shape morphings of any desired time resolution. This type of morphing can be described following Equation (2.4) on page 50, where h can be written as h = ϕ -1 • p, with ϕ -1 the generator and p a parametric path in N , parameterized by its arc length.

♣ Shape analogies

Intuitively, analogies allow to semantically edit a shape by saying, more like this, while providing a clear, quantitative meaning to this intuition. An analogy is the translation of a relationship from a couple of objects/concepts to another one: it is saying "A is to B as C is to D", while already knowing three out of the four terms. This concept was brought to latent spaces by [START_REF] Mikolov | Distributed representations of words and phrases and their compositionality[END_REF] who built word2vec, a word embedding, where they discovered that code(Queen) was the nearest neighbor of the result of the operation code(Woman) + code(King) -code(Man). This suggests that ------------------→ code(King) -code(Man) encodes the concept of kingship, within the latent space, and can then be transported to the data manifold M (see Figure 3.12).

This idea was first applied to image generators by [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF], who averaged pictures representing their desired concepts (e.g smiling woman, neutral woman, neutral man) to get latent codes z a , z b , z c , and sampled various examples in the vicinity of the resulting z d , representing a smiling man (see Figure 3.13a for examples). It was applied in a similar way to 3D shapes by [START_REF] Achlioptas | Figure 3.13: Image (a)[END_REF] in order to semantically edit shapes: convert a car into a convertible, add armrests to a chair (see Figure 3.13b), etc.

Semantical generation of Pointclouds

[T]he raging Chimaera (...) was of divine stock, not of men, in the fore part a lion, in the hinder a serpent, and in the midst a goat, breathing forth in terrible wise the might of blazing fire.

Homer

Abstract of this Chapter.

We present a latent space factorization technique which controls a generative neural network for shapes, where the semantic structure of the shape collection translates into a data-dependent subspace factorization. In this semantically-structured latent space, we can mix parts from several objects to create hybrids, and quickly explore design ideas through varying shape combinations. This initial work proved the usefulness of neural networks to achieve shape recombinations, but also highlighted the unescapable ambiguity between fidelity and novelty in the task of mixing parts between pairs of shapes.

Exploring several design ideas is a necessary step for creative modeling. Building tools that help to quickly prototype ideas can significantly improve designers' workflow. Design is seldom started from scratch; on the contrary, thinking in terms of already-existing objects is generally the first step towards the birth of a new object. Object compositing is the simplest form of creation: taking parts from several objects and mixing them together, in a patchwork-like assembly -like selecting different facial features from different celebrities to compose an imaginary face. We propose a neural network architecture, called a hybrid encoder, which tries to mimic this patchwork composition in order to control the generation of shapes.

By thinking in terms of exemplar, our method does not require external semantical knowledge about shapes. For instance, if one wants to make the wings of a given plane "larger", she needs to find another model which has such large wings. This way, the semantical analysis remains on the side of the agent. The user is not limited to a predefined set of labels, which would need to be aggregated from experts. Our model only works with geometric information, i.e., points positions. It takes as input the geometries of various parts (wings, tail, body, ...) and can recombine them into one cohesive shape. Inter-compatibility can be a concern: in the assembly, some parts may need to be adapted, either in position (e.g. placing the engines under the wings), or in geometry (e.g. elongating a chair armrest to match the length of the seat). We acknowledge this is inherently ambiguous, because all the parts have to adapt to each other without changing too much.

We wanted to investigate how a generative model could serve as a foundation for this task. We found it can be achieved by factorizing its latent space, according to the different shape parts. This preliminary work does not explicitly tackle the aforementioned ambiguity; but the method developed in Chapter 5 does.

Our method relies on the Variational Auto Encoder (VAE) framework (Section 4.2.1), but where the encoder is subdivided in several partial encoders, one for each semantical part, that are mixed into a global code which is then given to the decoder (Section 4.2.3). The decoder is structureagnostic: it only knows to transform a general code into a plausible shape, so that when codes are manipulated and changed, the reconstruction should still look like a plausible shape.

Related work

This work is related to different research efforts in 3D shapes analysis and generation. We separate our review in three categories: generative modeling, shapes neural networks, and data-driven shapes editing.

Generative neural networks

Generative models suchs as Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial networks[END_REF] and Variational Auto Encoders (VAEs) [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF] both offer ways to sample from a distribution that matches a given dataset. VAEs rely on an autoencoder scheme, where a network is asked to project data samples to a subspace of much lower dimensionality (encode), while being able to reconstruct the original data (decode). Adding a variational constraint that imposes a prior (e.g. gaussian) on the latent distribution makes sure that the model generalizes well. Their compressionlike behavior can then be used for several tasks among which unsupervised learning, sampling, interpolation and denoising [START_REF] Doersch | Tutorial on Variational Autoencoders[END_REF]. One drawback is that the output is typically blurred, because their loss does not account for a perceptual term. On the contrary, GANs aim at mimicking a given distribution by generating samples that are indistinguishable from the original dataset; they can hence generate much sharper results, to the cost of harder training and difficulty to control for mode collapse [START_REF] Locatello | Clustering meets implicit generative models[END_REF]. Conditioning on the likelihood [Chen et al., 2016, Mirza and[START_REF] Mirza | Conditional Generative Adversarial Nets[END_REF] allows to have a finer control on their outputs. Our work aims at the same property by means of imposing a specific factorization on an autoencoder latent space.

Shape neural networks

As opposed to images, 3D shapes do not naturally fit in a neural network framework. The main issue is to represent them in a fixed-size Euclidean domain. The most direct way to do so is to use voxel grids and directly transpose Convolutional Neural Networks in 3D [START_REF] Van Kaick | A survey on shape correspondence[END_REF]. However, even if this approach can yield good results, generated shapes quality is limited by the grid discretization and the O(n 3) complexity. To overcome these limits, [START_REF] Qi | Pointnet: Deep learning on point sets for 3D classification and segmentation[END_REF] introduced Pointnet, a neural network architecture based on pointclouds and permutation-invariant operators, which characterizes well an unordered set such as a pointcloud. It has successfully shown its usefulness for tasks such as classification and segmentation, and even has an extension that exploits hierarchical analysis [START_REF] Qi | Pointnet++: Deep hierarchical feature learning on point sets in a metric space[END_REF]. This architecture can also be used to generate pointclouds from photographs [START_REF] Fan | A point set generation network for 3D object reconstruction from a single image[END_REF]. Lastly, [START_REF] Achlioptas | Figure 3.13: Image (a)[END_REF] has replaced the permutation invariance constraint by imposing a lexicographic order on the pointset, leading to pointcloud GANs with high reconstruction accuracy. Using shapes segmented into semantical parts, [START_REF] Nash | The shape variational autoencoder: A deep generative model of part-segmented 3d objects[END_REF] learns the joint probability for structure and geometry -for instance, the presence or absence of engines on a plane will constraint the profile of the wings. While producing good quality results, their method does not allow to exchange parts between shapes. Our method relies on a variation of such a shape neural network, tailored at being used for shape combinations.

Data-driven shape editing

Many existing methods give automated tools for shapes editing and design exploration. Existing works range from shape correspondences [START_REF] Van Kaick | A survey on shape correspondence[END_REF] to style similarity and transfer [START_REF] Lun | Elements of style: Learning perceptual shape style similarity[END_REF][START_REF] Lun | Functionality preserving shape style transfer[END_REF]. Others focus on generating diversity, by extracting and snapping parts together [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF], or by hierchical shape analysis and synthesis [START_REF] Li | GRASS: Generative recursive autoencoders for shape structures[END_REF]. While [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF] creates a combinatorial diversity, our method focuses on the geometric prior for the whole shape, as contained in the computed latent space. We also share a common usage as [START_REF] Lun | Functionality preserving shape style transfer[END_REF], but while they use an example to guide the overall style of the reconstruction, we use multiple examples, each one guiding a specific part of the shape.

Method

Autoencoder foundation

The first step is to be able to recreate objects from the dataset, and we chose auto encoders as a starting point. Formally, the goal is to learn the two functions E (encoder) and D (decoder) such that, for all X in the dataset:

X = D(E(X)) (4.1)
These two functions are implemented as neural networks that operate on pointclouds, either taken as a source (for E) or as a target (for D). The key specificity of our method is our factorization of E based on the available segmentation data. The architecture of our foundational auto encoder is indeed the following:

Input : a minibatch of 32 pointclouds, each represented as a N ×3 matrix (N = 1024 points), accompanied by their segmentation data (see part 4.2.2);

Encoder : based on PointNet [START_REF] Qi | Pointnet: Deep learning on point sets for 3D classification and segmentation[END_REF] but in a much simpler version, with successive layers of per-point filters followed by ReLU layers;

Code mixer : the latent space factorization step, as explained in part 4.2.3;

Decoder : three fully connected layers with biases, except on the last layer;

Output : the last layer is ultimately reshaped to a N × 3 matrix.

Consistent segmentation data

To demonstrate our method, we use the airplane category from Shapenet-Core and its segmentation obtained from [START_REF] Yi | A scalable active framework for region annotation in 3D shape collections[END_REF], comprising the four following parts: body, wings, engine, tail. We restricted our analysis only to models containing the four parts, because parts mismatch may result in incompatibilities; but these parts need not have the same number of points. Since all models are aligned in a consistent manner (the plane body is aligned with the Z axis), our neural networks does not need any rotational invariance, and can leverage from the strong spatial relations of the models' parts for both the encoder and decoder. Note that the value of K depends on the given dataset: for the airplane category, K = 4.

Semantic latent space factorization

Our shapes are represented by pointclouds, a choice that leads to the following remark: any subset of a pointcloud is a pointcloud. Although this may seem trivial, note that this is not a property that usually holds in a machine learning setting: for instance, a segmented region in an image is not typically rectangular. This allows us to replace the encoder by K encoders, each for a part, which yields the following factorization:

E = E 1 * E 2 * ... * E K (4.2) E(X) = C = [c 1 , c 2 , ..., c n], c i = E i (X) (4.3)
where each E i represents a partial encoder for part i, and evaluates what we call a subcode. The above product corresponds to vector concatenation. In this form, the factorization of the latent space simply corresponds to assigning parts to dedicated coordinates. Figure 4.1 shows a diagram of the corresponding pipeline. Note that for a given part i, the corresponding partial encoder E i will take as input pointclouds of different sizes, since one should not assume equal parts sizes across the dataset. This limitation can be lifted thanks to the Pointnet [START_REF] Qi | Pointnet: Deep learning on point sets for 3D classification and segmentation[END_REF] max-pooling operation. Since part i is included in the whole shape of size N = 1024, we know its size has to be smaller than 1024, so we can add zeros until we fill a 1024 × 3 matrix. Then, one just has to make sure these padded zeros remain through all the layers of the network, until the final max-pooling discards them.

Loss and training

When it comes to pointclouds, two reconstruction losses can be considered: Earth Mover's Distance (EMD) and Chamfer Distance (CD). The former solves the optimal transport problem of transporting S 1 (where each point is seen as a Dirac delta function) onto S 2 , and computing the optimal bijection φ:

d EM D (S 1 , S 2) = min φ:S 1 →S 2 x∈S 1 x -φ(x) 2 (4.4)
Relaxing the global optimality of the assignment, Chamfer Distance computes the squared distance between each point of one pointcloud to its nearest neighbor in the other pointcloud:

d CD (S 1 , S 2) = x∈S 1 min y∈S 2 x -y 2 2 + y∈S 2 min x∈S 1 x -y 2 2 (4.5)
Chamfer distance is easier to implement, has a shorter computation time, and produces acceptable results for our usecase, so we chose to use it over EMD. For a comparison of generation results for both losses, refer to [START_REF] Fan | A point set generation network for 3D object reconstruction from a single image[END_REF].

This reconstruction loss becomes the objective function that is to be minimized. The reconstruction itself depends on the partial encoders and decoder networks, which are simply non-linear parametric functions. So, the learning task ultimately consists of finding the values for these parameters that minimize the objective function. As typically in machine learning, this is done by a Stochastic Gradient Descent (see Section 1.2.1).

Experiments

We implemented our architecture using Tensorflow [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF] and ran it on an Nvidia Gti1080 GPU. We trained over 40 epochs using Adam optimizer [Kingma and Ba, 2014] with learning rate of 0.9 and a batchsize of 32.

Basic autoencoder mode

Since our network is based on an autoencoder, we first demonstrate its ability to reconstruct objects from the training set. Figure 4.2 shows examples of reconstructions, chosen to be representative of the type of objects present in our dataset. We can notice that the reconstruction quality highly depends on the sub category (not available) of the object: the typical plane present in the dataset is similar to the second column, so this is where the autoencoder concentrated most of its capacity.

Clustering

The latent codes computed by E can be explored using standard dimensionality reduction techniques, such as PCA and t-SNE [van der [START_REF] Van Der Maaten | Visualizing high-dimensional data using t-SNE[END_REF]. Figure 4.3 shows the t-SNE projection of our latent space over 2 dimensions, and snapshots of certain blobs with their corresponding shapes. Note how similar shapes live in the same blob. As with any t-SNE projection, we remind the reader that distances between blobs are not significant.

Continuous part transfer

Thanks to the factorization of E, by simply interpolating on a given E i , we can easily transfer a part of an object to another one while keeping the rest of the object unchanged. Let S be a source object, T the target and i the index of the part we wish to transfer from S to T . The transfer procedure is presented in Algorithm 3 (page 83), and easily generalizes to involve other parts or other shapes. This is done by replacing E i (T) by E i (S). A linear interpolation between E i (T) and E i (S) effectively realizes the continuous morphing of the part. 1 Encode S and T :

E(S) = E 1 (S) * ... * E K (S) E(T) = E 1 (T) * ... * E K (T)
2 Define an interpolation from E i (T) to E i (S), taking all other elements from T :

swap i (t) = E 1 (T) * ... * [t • E i (T) + (1 -t) • E i (S)] * ... * E K (T)
3 Decode for every t ∈ [0, 1]:

Y t = D(swap i (t))
Algorithm 3: Part transfer via Latent code composition.

Limitations and discussion

An inherent limitation of our model is that of the autoencoder it is based on. Indeed, it suffers from a problem slightly similar to mode collapse, as shown in Figure 4.2: it focuses all its reconstruction capacity towards the most frequent shapes from the dataset. In these reconstructions -running in simple autoencoder mode -see how the secondary engines (blue arrows) are just partially recovered: points that should be dedicated to them stayed on the wings. This is because such planes belong to a rare class. During training, the decoder converged to a state that favors the majority of wings, to the detriment of a minority of engines. It also means that our model cannot be suited for part transfer when one part belongs to an atypical object. Another consequence of lost small details is when they belong to a discriminative part. Let us consider once again the example of the plane with four engines: overall, the engines only have a mild contribution to the reconstruction loss. Adopting a part-specific loss could be a way of circumventing this problem.

As for part transfer, the ambiguity of our holistic design choice yields results which are sometimes hard to predict. Since we want the whole model to adapt for the new shape, we do not want to limit the geometry changes to the region of the transferred part. We are still able to swap parts but this process does not work for all parts. For several shapes, only one partsay the body of the plane -determines the geometry of the other parts, at least in the learnt latent space. So, swapping the body of such a plane with another one might lead to undesired changes in the other parts of the plane.

Moreover, our autoencoder foundation suffers the same unbalanced la-tent activation as reported in [START_REF] Nash | The shape variational autoencoder: A deep generative model of part-segmented 3d objects[END_REF]: only a fraction of the latent dimensions have a significant contribution to the reconstruction. All these aforementioned effects, combined together, limit the current predictability of our part transfers. Further investigations are required to improve this point. Chapter 5

Semantical generation of Voxels

Assembly is the perfect place to find Unity.

Jeswant Gembali

Abstract of this Chapter.

Building upon the previous chapter, we present here a novel neural network architecture, termed Decomposer-Composer, for semantic structure-aware 3D shape modeling with voxels. This method utilizes an auto-encoder-based pipeline, and offers a generalization of the latent space factorization proposed before. Both shape composition and decomposition become simple linear operations on the embedding coordinates. We further propose to model shape assembly using an explicit learned part deformation module, which utilizes a 3D spatial transformer network to perform an innetwork volumetric grid deformation, and which allows us to train the whole system end-to-end. The resulting network allows us to perform part-level shape manipulation, unattainable by other existing approaches with voxels. An extensive ablation study, comparison to baseline methods and qualitative analysis demonstrate the improved performance of the proposed method.

Introduction

Understanding, modeling and manipulating 3D objects are areas of great interest to the vision and graphics communities, and have been gaining increasing popularity in recent years. Examples of related applications include semantic segmentation [START_REF] Yi | A scalable active framework for region annotation in 3D shape collections[END_REF], shape synthesis [START_REF] Wu | Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[END_REF], Achlioptas et al., 2017], 3D reconstruction [START_REF] Choy | 3D-R2N2: A unified approach for single and multi-view 3D object reconstruction[END_REF][START_REF] Fan | A point set generation network for 3D object reconstruction from a single image[END_REF], view synthesis [START_REF] Xia | Gibson env: Real-world perception for embodied agents[END_REF], and fine-grained shape categorization [START_REF] Dubrovina | Composite shape modeling via latent space factorization[END_REF], to name a few. The advancement of deep learning techniques, and the creation of large-scale 3D shape datasets [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] enabled researchers to learn taskspecific representations directly from the existing data, and led to significant progress in all the aforementioned areas.

There is a growing interest in learning shape modeling and synthesis in a structure-aware manner, for instance, at the level of semantic shape parts. This poses several challenges compared to approaches considering the shapes as a whole. Semantic shape structure and shape part geometry are usually interdependent, and relations between the two must be implicitly or explicitly modeled and learned by the system. Examples of such structureaware shape representation-learning are [Nash and Williams, 2017a[START_REF] Li | GRASS: Generative recursive autoencoders for shape structures[END_REF], Wang et al., 2018a[START_REF] Wu | SAGnet: Structure-aware generative network for 3D-shape modeling[END_REF].

However, the existing approaches for shape modeling, while being part aware at the intermediate stages of the system, still ultimately operate on the low-dimensional representations of the whole shape. For example, [Nash andWilliams, 2017a, Wang et al., 2018a] use a Variational Autoencoder (VAE) [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF] to learn generative part-aware models of man-made shapes, but the latent spaces of the VAEs correspond to complete shapes, with entangled latent factors corresponding to different semantic parts. Therefore, these and other existing approaches cannot perform part-level shape manipulation, such as single part replacement, part interpolation, or part-level shape synthesis.

Inspired by the recent efforts in image modeling to separate different image formation factors, to gain better control over image generation process and simplify editing tasks [START_REF] Pumarola | Ganimation: Anatomically-aware facial animation from a single image[END_REF][START_REF] Shu | Deforming autoencoders: Unsupervised disentangling of shape and appearance[END_REF][START_REF] Achlioptas | Figure 3.13: Image (a)[END_REF] we propose a new semantic structure-aware shape modeling system. This system utilizes an auto-encoder-based pipeline, and produces a factorized latent space which both reflects the semantic part structure of the shapes in the dataset, and compactly encodes different semantic parts' geometry. In this latent space, different semantic part embedding coordinates lie in separate linear subspaces, and shape composition can naturally be performed by summing up part embedding coordinates. The latent space factorization is data-dependent, and is performed using learned linear projection operators. Furthermore, the proposed system operates on unlabeled input shapes, and at test time it simultaneously infers the shape's semantic structure and compactly encodes its geometry. Towards that end, we propose a Decomposer-Composer pipeline, schematically illustrated in Figure 5.1. The Decomposer maps an input shape, represented by an occupancy grid, into the factorized latent space described above. The Composer reconstructs a shape with semantic part-labels from a set of part-embedding coordinates. It explicitly learns the set of transformations to be applied to the parts, so that together they form a semantically and geometrically plausible shape. In order to learn and apply those part transformations, we employ a 3D variant of the Spatial Transformer Network (STN) [Jaderberg et al., 2015]. 3D STN was previously utilized to scale and translate objects represented as 3D occupancy grids by [START_REF] Hu | Predictive and generative neural networks for object functionality[END_REF], but to the best of our knowledge, ours is the first approach suggesting an in-network affine deformation of occupancy grids.

Finally, to promote part-based shape manipulation, such as part replacement, part interpolation, or shape synthesis from arbitrary parts, we employ the cycle consistency constraint [START_REF] Zhu | Unpaired image-to-image translation using cycleconsistent adversarial networks[END_REF][START_REF] Pumarola | Ganimation: Anatomically-aware facial animation from a single image[END_REF][START_REF] Nguyen | An optimization approach to improving collections of shape maps[END_REF][START_REF] Wang | Image cosegmentation via consistent functional maps[END_REF]. We utilize the fact that the Decomposer maps input shapes into a factorized embedding space, making it possible to control which parts are passed to the Composer for reconstruction. Given a batch of input shapes, we apply our Decomposer-Composer network twice, while randomly mixing part embedding coordinates before the first Composer application, and then de-mixing them into their original positions before the second Composer application. The resulting shapes are required to be as similar as possible to the original shapes, using a cycle consistency loss.

Our main contributions are, apart from the latent space factorization approach already present in previous Chapter:

1 The application of a 3D STN to perform in-network affine shape deformation, for end-to-end training and improved reconstruction accuracy.

2 The incorporation of a cycle consistency loss for improved reconstruction quality.

Related work

Learning-based shape synthesis Learning-based methods have been used for automatic synthesis of shapes from complex real-world domains; In a seminal work, [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF] used a probabilistic model, which learned both continuous geometric features and discrete component structure, for component-based shape synthesis and novel shape generation. The development of deep neural networks enabled learning high-dimensional features more easily; 3DGAN [START_REF] Wu | Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[END_REF] uses 3D decoders and a GAN to generate voxelized shapes. A similar approach has been applied to 3D point clouds and achieved high fidelity and diversity in shape synthesis [START_REF] Achlioptas | Figure 3.13: Image (a)[END_REF]. Apart from generating shapes using a latent representation, some methods generate shapes from a latent representation with structure. SSGAN [START_REF] Wang | Generative image modeling using style and structure adversarial networks[END_REF] generate the shape and texture for a 3D scene in a 2-stage manner. GRASS [START_REF] Li | GRASS: Generative recursive autoencoders for shape structures[END_REF] generate shapes in two stages: first, by generating orientated bounding boxes, and then a detailed geometry within those bounding boxes. Nash and Williams [2017a] use use point cloud shape representation and a VAE to learn a probabilistic latent space of shapes; however, they require all training data to be in point-to-point correspondence. In a related work, Wang et al. [2018a] introduced a 3D GAN-based generative model for 3D shapes, which produced segmented and labeled into parts shapes. Unlike the latter approach, our network does not use predefined subspaces for part embedding, but learns to project the latent code of the entire shape to the subspaces corresponding to codes of different parts.

In concurrent efforts, several deep architectures for part based shape synthesis were proposed [Wang et al., 2018a[START_REF] Li | Learning part generation and assembly for structure-aware shape synthesis[END_REF][START_REF] Wu | SAGnet: Structure-aware generative network for 3D-shape modeling[END_REF][START_REF] Mo | Structurenet: Hierarchical graph networks for 3d shape generation[END_REF]. [START_REF] Schor | Learning to generate the "unseen" via part synthesis and composition[END_REF] utilized point-base shape representation, while operating on input models with known per-point parts labels. [START_REF] Li | Learning part generation and assembly for structure-aware shape synthesis[END_REF] and [START_REF] Wu | SAGnet: Structure-aware generative network for 3D-shape modeling[END_REF] proposed two generative networks for part-based shape synthesis, operating on labeled voxelized shapes. [START_REF] Mo | Structurenet: Hierarchical graph networks for 3d shape generation[END_REF] introduced a hierarchical graph network for learning structure-aware shape generation.

Spatial transformer networks Spatial transformer networks (STN) [Jaderberg et al., 2015] allow to easily incorporate deformations into a learning pipeline. [START_REF] Kurenkov | Deformnet: Free-form deformation network for 3d shape reconstruction from a single image[END_REF] retrieve a 3D model from one RGB image and generate a deformation field to modify it. [START_REF] Kanazawa | Learning 3d deformation of animals from 2d images[END_REF] model articulated or soft objects with a template shape and deformations. [START_REF] Lin | ST-GAN: Spatial transformer generative adversarial networks for image compositing[END_REF] use STNs iteratively, to warp a foreground onto a background, and use a GAN to constrain the composition results to the natural image manifold. [START_REF] Hu | Predictive and generative neural networks for object functionality[END_REF] use a 3D STN to scale and translate objects given as volumetric grids, as a part of scene generation network. Inspired by this line of work, we incorporate an affine transformation module into our network. This way, the generation module only needs to generate normalized parts, and the deformation module transforms and assembles the parts together.

Deep latent space factorization Several approaches suggested to learn disentangled latent spaces for image representation and manipulation. β-VAE [START_REF] Higgins | β-VAE: Learning basic visual concepts with a constrained variational framework[END_REF] introduce an adjustable hyper-parameter β that balances latent channel capacity and independence constraints with reconstruction accuracy. InfoGAN [START_REF] Chen | Infogan: Interpretable representation learning by information maximizing generative adversarial nets[END_REF] achieves the disentangling of factors by maximizing the mutual information between certain channels of latent code and image labels. Some approaches disentangle the image generation process using intrinsic decomposition, such as albedo and shading [START_REF] Shu | Neural face editing with intrinsic image disentangling[END_REF], or normalized shape and deformation grid [START_REF] Pumarola | Ganimation: Anatomically-aware facial animation from a single image[END_REF][START_REF] Shu | Deforming autoencoders: Unsupervised disentangling of shape and appearance[END_REF]. The proposed approach differs from [START_REF] Pumarola | Ganimation: Anatomically-aware facial animation from a single image[END_REF][START_REF] Shu | Deforming autoencoders: Unsupervised disentangling of shape and appearance[END_REF][START_REF] Achlioptas | Figure 3.13: Image (a)[END_REF] in that it maps both full and partial shapes into the same low dimensional embedding space, while in [START_REF] Pumarola | Ganimation: Anatomically-aware facial animation from a single image[END_REF][START_REF] Shu | Deforming autoencoders: Unsupervised disentangling of shape and appearance[END_REF][START_REF] Achlioptas | Figure 3.13: Image (a)[END_REF], different components have their own separated embedding spaces.

Projection in neural networks Projection is widely used in representation learning. It can be used for transformation from one domain to another domain [START_REF] Barnes | Projecting embeddings for domain adaption: Joint modeling of sentiment analysis in diverse domains[END_REF][START_REF] Poelitz | Projection based transfer learning[END_REF][START_REF] Poerio | Dual-domain calibration transfer using orthogonal projection[END_REF], which is useful for tasks like translation in natural language processing. For example, [START_REF] Senel | Semantic structure and interpretability of word embeddings[END_REF] use projections to map word vectors into semantic categories. In this work, we use a projection layer to transform a whole shape embedding into semantic part embeddings.

Our model

Decomposer network

The Decomposer network is trained to embed unlabeled shapes into a factorized embedding space, reflecting the shared semantic structure of the shape collection. To allow for composite shape synthesis, the embedding space has to satisfy the following two properties: factorization consistency across input shapes, and existence of a simple shape composition operator to combine latent representations of different semantic factors. We propose to model this embedding space V as a direct sum of subspaces {V i } K i=1 , where K is the number of semantic parts, and each subspace {V i } corresponds to a semantic part i, thus satisfying the factorization consistency property. The second property is ensured by the fact that every vector v ∈ V is given by a sum of unique

v i ∈ V i such that V = V 1 ⊕ • • • ⊕ V k ,
and part composition may be performed by part embedding summation. This also implies that the decomposition and composition operations in the embedding space are fully reversible.

A simple approach for such factorization is to split the dimensions of the n-dimensional embedding space into K coordinate groups, each group representing a certain semantic part-embedding. In this case, the full shape embedding is a concatenation of part embeddings, an approach explored by Wang et al. [2018a]. This, however, puts a hard constraint on the dimensionality of part embeddings, and thus also on the representation capacity of each part embedding subspace. Given that different semantic parts may have different geometric complexities, this factorization may be sub-optimal.

Instead, we perform a data-driven learned factorization of the embedding space into semantic subspaces. We use learned part-specific projection matrices, denoted by {P i } K i=1 ∈ R n×n . To ensure that the aforementioned two factorization properties hold, the projection matrices must form a partition of the identity and satisfy the following three properties (1) P 2 i = P i, ∀i, (2) P i P j = 0 whenever i = j,

(3) P 1 + • • • + P K = I, (5.1)
where 0 and I are the all-zero and the identity matrices of size n × n, respectively. In practice, we efficiently implement the projection operators using fully connected layers without added biases, with a total of K * n 2 variables, constrained as in Equation 1. The projection layers receive as input a whole shape encoding, which is produced by a 3D convolutional shape encoder. The parameters of the shape encoder and the projection layers are learned simultaneously. The resulting architecture of the Decomposer network is schematically described in Figure 5.2, and a detailed description of the shape encoder and the projection layer architecture is given in Section 5.6.

Composer network

The composer network is trained to reconstruct shapes with semantic part labels from sets of semantic part embedding coordinates. The simplest composer implementation would consist of a single decoder mirroring the whole binary shape encoder (see Figure 5.2), producing a semantically labelled reconstructed output shape. Such approach was used in [Wang et al., 2018a], for instance. However, this straightforward method is known to fail in reconstructing thin volumetric shape parts and other fine shape details. To address this issue, we use a different approach, where we first separately reconstruct scaled and centered shape parts, using a shared part decoder. We then produce per-part transformation parameters and use them to deform the parts in a coherent manner, to obtain a complete reconstructed shape.

In our model, we make the simplifying assumption that it is possible to combine a given set of parts into a plausible shape by transforming them with per-part affine transformations and translations. While the true set of transformations which produce plausible shapes is significantly larger and more complex, our experiments demonstrate that the proposed simplified model is successful at producing geometrically and visually plausible results. This in-network part transformation is implemented using a 3D spatial transformer network (STN) [Jaderberg et al., 2015]. It consists of a localization net, which produces a set of 12-dimensional affine transformations (including translations) for all parts, and a re-sampling unit, which transforms and places the reconstructed part volumes at their correct locations in the full shape. The STN receives as input both the reconstructed parts from the part decoder, and the sum of part encodings, for best reconstruction results. The resulting Composer architecture is schematically described in Figure 5.2; its detailed description is given in Section 5.6.

We note that the proposed approach is related to the two-stage shape synthesis approach of [START_REF] Li | GRASS: Generative recursive autoencoders for shape structures[END_REF], in which a GAN is first used to synthesize oriented bounding boxes for different parts, and then the part geometry is created per bounding box using a separate part decoder. Our approach is similar, yet it works in a reversed order. Namely, we first reconstruct part geometry, and then compute per-part affine transformation parameters, which are a 12-dimensional equivalent of the oriented part bounding boxes in [START_REF] Li | GRASS: Generative recursive autoencoders for shape structures[END_REF]. Similarly to them, this two stage approach improves the reconstruction of fine geometric details. However, unlike them, where the GAN and the part decoder where trained separately, in our approach the two stages belong to the same reconstruction pipeline, trained simultaneously and end-to-end.

Cycle consistency

Our training set is comprised of 3D shapes with ground-truth semantic part-decomposition; It does not include any training examples of synthesized composite shapes. Existing methods for such shape assembly task operate on 3D meshes with very precise segmentations, and often with additional knowledge about part connectivity [START_REF] Xu | Photoinspired model-driven 3d object modeling[END_REF][START_REF] Shen | Structure recovery by part assembly[END_REF][START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF]. These methods cannot be applied to a dataset like ours, to produce a sufficiently large set of plausible new shapes (constructed from existing parts) to use for training a deep network for composite shape modelling. In order to circumvent this difficulty, and train the net to produce nontrivial part transformations for geometrically and semantically plausible part arrangements, we use a cycle consistency constraint. It has been previously utilized in geometry processing [START_REF] Nguyen | An optimization approach to improving collections of shape maps[END_REF], image segmentation [START_REF] Wang | Image cosegmentation via consistent functional maps[END_REF], and more recently in neural image transformation [START_REF] Pumarola | Ganimation: Anatomically-aware facial animation from a single image[END_REF][START_REF] Zhu | Unpaired image-to-image translation using cycleconsistent adversarial networks[END_REF].

Specifically, given a batch of M training shapes {X} M i=1 , we map them to the factored latent space using the Decomposer, producing K semantic part encodings per input shape. We then randomly mix the part encodings of the shapes in the batch, while ensuring that after the mixing each of the new M encoding sets includes exactly one embedding coordinate per semantic part. We then reconstruct the shapes with correspondingly mixed parts using the Composer. After that, these new shapes are passed to the Decomposer-Composer pipeline once again, while demixing part encodings produced by the second Decomposer application, to re-store the original encoding-to-shape association. The cycle consistency requirement means that the final shapes are as similar as possible to the original M training shapes. We enforce it using the cycle consistency loss described in the next section. The double application of the proposed network with part encoding mixing and demixing is schematically described in Figure 5.3.

Loss function

Our loss function is defined as the following weighted sum of several loss terms L = w PI L PI + w part L part + w trans L trans + w cycle L cycle .

(5.2)

The weights compensate for the different scales of the loss terms, and reflect their relative importance.

Partition of the identity loss L PI measures the deviation of the predicted projection matrices from the optimal projections, as given by Equation 1.

L proj (P 1 , . . . , P k) = K i=1 P 2 i -P i 2 F + i =j P i P j 2 F + P 1 +• • •+P K -I 2 F (5.3)
Part reconstruction loss L part is the binary cross-entropy loss between the reconstructed centered and scaled part volumes and their respective ground truth part indicator volumes, summed over K parts.

Transformation parameter loss L trans is an L 2 regression loss between the predicted and the ground truth 12dimensional transformation parameter Cycle consistency loss L cycle is a binary cross-entropy loss between ground truth input volumes and their reconstructions, obtained using two applications of the proposed network, as described in Section 3.3.

Training details

The network was implemented in TensorFlow [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF], and trained for 500 epochs with batch size 32. We used Adam optimizer [Kingma and Ba, 2014] with learning rate 0.0001, decay rate of 0.8, and decay step size of 40 epochs. We found it was essential to first pre-train the binary shape encoder, projection layer and part decoder parameters separately for 150 epochs, by minimizing the part reconstruction and the partition of the identity losses and using w trans = w cycle ≈ 0, for improved part reconstruction results. We then train the parameters of the spatial transformer network for another 100 epochs, while keeping the rest of the parameters fixed. After that we resume the training with all parameters and the cycle consistency loss to fine-tune the network parameters. The optimal loss combination weights were empirically detected using the validation set, and set to be w PI = 0.1, w part = 0.1, w trans = 0.1, w cycle = 0.1. The network was trained on each shape category separately.

Experiments

In our experiments, we used the models from the ShapeNet 3D data collection [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF], with part annotations produced by [START_REF] Yi | A scalable active framework for region annotation in 3D shape collections[END_REF]. The shapes were converted to 32 × 32 × 32 occupancy grids using binvox [START_REF] Nooruddin | Simplification and repair of polygonal models using volumetric techniques[END_REF]. Semantic part labels were first assigned to the occupied voxels according to the proximity to the labeled 3D points, and the final voxel labels were obtained using graph-cuts in the voxel domain [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF]. We used the official ShapeNet train, validation and test data splits in all our experiments. Additional results for 64×64×64 occupancy grids can be found in Section 5.6.

Shape reconstruction

Figure 5.4 presents the results of reconstructing semantically labeled shapes from unlabelled input shapes, using the proposed network. Note that since our method performs separate part reconstruction with part decoders and part placement with an STN, it may produce less accurate part reconstruction, as compared to segmentation approaches for example, the handles of the reconstructed rightmost chair in Figure 5.4. But, as illustrated by our quantitative study in Section 4.4, this allows us to perform better part-based shape manipulation.

Composite shape synthesis

Shape composition by part exchange In this experiment, we used our structured latent space to randomly swap corresponding embedding coordinates of pairs of input shapes (e.g., embedding coordinates of legs or seats of two chairs), and reconstruct the new shapes using the Composer. The results are shown in Figure 5.5, and demonstrate the ability of our system to perform accurate part exchange, while deforming the geometry of both the new and the existing parts to obtain a plausible result. See the Section 5.6 for additional results using four shape classes.

Shape composition by random part assembly

In this experiment we tested the ability of the proposed network to assemble shapes from random parts using our factorized latent space. Specifically, we mapped batches of input shapes into the latent space using the Decomposer, and created new shapes by randomly mixing the part embedding coordinates of the shapes in the batch, and reconstructing new shapes using the Composer. The results are shown in Figure 5.6, for chairs and tables, and illustrate the ability of the proposed method to combine parts from different shapes, scale and translate them so that the resulting shape looks realistic. See Section 5.6 for additional shape composition results. Full and partial interpolation in the embedding space In this experiment, we tested reconstruction from linearly interpolated embedding coordinates of complete shapes, as well as of a single semantic part. For the latter, we performed the part exchange experiment, described above, and interpolated the coordinates of that part, while keeping the rest of part embedding coordinates fixed. The results are shown in Figure 5.7. See Section 5.6 for additional interpolation results.

Latent space and projection matrix analysis

The latent space obtained using the proposed method exhibits clear separation into subspaces corresponding to different semantic parts. The projection matrices, while not being strictly orthogonal, as required for the partition of the identity (5.1), have low effective ranks, which is in line with the clear separation into non-overlapping subspaces produced by them. See Section 5.6 for the latent space and the projection matrices visualization.

Ablation study and comparison with existing approaches Ablation study

To highlight the importance of the different elements of our approach, we conducted an ablation study, where we used several variants of the proposed method, listed below.

GT

Composed

Figure 5.6: Shape composition by random part assembly. The top row shows the ground truth (GT) shapes, and the bottom row -shapes assembled using the proposed approach (see Section compo-shape-synth). Unlabeled shapes were used as an input.

Fixed projection matrices Instead of using learned projection matrices in the Decomposer, the n-dimensional shape encoding is split into K consecutive equal-sized segments, which correspond to different part embedding subspaces. This is equivalent to using constant projection matrices, where the elements of the rows corresponding to a particular embedding space dimensions are 1, and the rest of the elements are 0.

Composer without STN We substituted the proposed composer, consisting of the part decoder and the STN, with a single decoder producing a labeled shape. The decoder receives the sum of part encodings as an input, processes it with two FC layers to combine information from different parts, and then reconstructs a shape with parts labels using a series of deconvolution steps, similar to the part decoder in the proposed architecture.

Without cycle loss

We removed the cycle loss component during the network training.

Comparison with existing methods

Most existing methods for composite shape modeling operate on triangulated meshes with precise part segmentation. Hence, they are not directly applicable to the largescale ShapeNet dataset with less precise segmentation, preventing a fair comparison. We therefore added the following comparisons with modern neural-net-based techniques: we combined the state-of-the-art ComplementMe method [START_REF] Sung | Complementme: Weakly-supervised component suggestions for 3D modeling[END_REF] with a 3D-CNN segmentation network [START_REF] Qi | Pointnet: Deep learning on point sets for 3D classification and segmentation[END_REF]. From the former we used the component placement network, which, given a partial shape and a complementary component, produces a 3D translation to place the component correctly with respect to the partial shape. To produce the "to-be-added" component we used a 3D-CNN segmentation network, described in [START_REF] Qi | Pointnet: Deep learning on point sets for 3D classification and segmentation[END_REF], which achieved a state-of-the-art mean Intersection over Union (mIoU) of 0.91 on the test set.

Together, these two networks replace our proposed Decomposer-Composer. Both networks were trained using the same training data as the proposed method. This method is denoted by ComplementMe in Table 1.

For an additional comparison, instead of the placement network of Com-plementMe we utilized the spatial transformer network. Here, the STN was trained using the ground truth shape parts, and at test time it was applied to the results of the segmentation network, described above. This method is denoted by Segmentation+STN in Table 1.

Finally, we compared the proposed method to a baseline shape composition network. Given ground-truth shape parts, it composes new shapes from these parts by placing them at their original locations in the source shapes they were extracted from. All the shapes in our dataset are centered and uniformly scaled to fill the unit volume, and there exist clusters of geometrically and semantically similar shapes. Thus, we can expect that even this naive approach without part transformations will produce plausible results in some cases. This method is denoted by Naive placement in Table 1. See Section 5.6 for an additional qualitative comparison with 3D-GAN [START_REF] Wu | Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[END_REF] and G2LGAN [Wang et al., 2018a], using 64 × 64 × 64 voxelized shapes.

Evaluation metrics

Mean Intersection over Union (mIoU) is commonly used to evaluate the performance of segmentation algorithms [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF]. Here, we use it as a metric for the reconstruction quality. We computed the mIoU for both actual-sized reconstructed parts, and scaled and centered parts (when applicable). We denote the two measures by mIoU and mIoU (parts) in Table 1.

Connectivity In part based shape synthesis, one pathological issue is that parts are often disconnected, or penetrate each other. Here, we would like to benchmark the quality of part placement, in terms of part connectivity. For each 32 × 32 × 32 volume, we compute the frequency of the shape forming a single connected component, and report it as Connectivity in Table 1.

Classification accuracy To measure the shape composition quality of different methods, we trained a binary neural classifier to distinguish between ground-truth whole chairs (acting as positive examples) and chairs produced by naively placing random chair parts together (acting as negative examples). To construct the negative examples, we randomly combined groundtruth shape parts, by adding a certain semantic part only once, and placing the parts at their original locations in the source shapes they were extracted from. In addition, we removed negative examples assembled from parts from geometrically and semantically similar chairs, since such part arrangement could produce plausible shapes incorrectly placed in the negative example set. The attained classification accuracy on the test set was ~88%. For a given set of chairs, we report the average classification score. Details of the network can be found in Section 5.6. The results are reported as Classifier accuracy in Table 1.

Symmetry The chair shapes in the ShapeNet are predominantly bilaterally symmetric, with vertical symmetry plane. Thus, similar to Wang et al. [2018a], we evaluated the symmetry of the reconstructed shapes, and defined the Symmetry score as the percentage of the matched voxels (filled or empty) in the reconstructed volume and its reflection with respect to the vertical symmetry plane. We performed this evaluation using binarized reconstruction results, effectively measuring the global symmetry of the shapes. For the evaluation, we used the shapes in the test set (690 shapes), and conducted three types of experiments: shape reconstruction, single random part exchange between a pair of random shapes, shape composition by random part assembly.

Evaluation result discussion

According to all metrics, our method outperforms or performs on par with all the baselines, and significantly outperforms other existing methods. This shows that our design choices -the cycle loss, learned projection matrices and usage of the STN, help to achieve plausible results both when reconstructing shapes, and when performing composite shape synthesis. This is especially pronounced in the connectivity test results, illustrating that these design choices are necessary for achieving good assembly quality.

In the classifier accuracy test and the symmetry test, the proposed method performs slightly better or on par with all baselines considered in the ablation study. It seems that both these tests are less sensitive to disconnected shape components, and most advantage that the proposed method achieves over the baselines is in its composition robustness. As expected, the naive placement also achieves high symmetry score, since it preserves the symmetry of the groundtruth parts during shape assembly.

According to the mIoU and per-part mIoU metrics, the proposed method performs on par with all baselines, except when using the simple version of the Composer, without STN. This follows from the fact that the proposed system, while reconstructing better fine geometry features, decomposes the problem into two inference problems, for the geometry and the transformation, and thus does not produce as faithful reconstruction of the original model as the simple decoder. Notably, this version of the architecture achieves worst connectivity scores for all compared methods, which follows from the fact that such a Decomposer is unable to faithfully reconstruct fine shape details. Please see Section 5.6 for a qualitative comparison of the results of all the compared methods.

Conclusion and future work

We presented a Decomposer-Composer network for structure-aware 3D shape modelling. It is able to generate a factorized latent shape representation, where different semantic part embedding coordinates lie in separate linear subspaces. The subspace factorization allows us to perform shape manipulation via part embedding coordinates, exchange parts between shapes, or synthesize novel shapes by assembling a shape from random parts. Qualitative results show that the proposed system can generate high fidelity 3D shapes and meaningful part manipulations. Quantitative results shows we are competitive in the mIOU, connectivity, symmetry and classification benchmarks.

While the proposed approach makes a step toward automatic shapefrom-part assembly, it has several limitations. First, while we can generate high-fidelity shapes at a relatively low resolution, memory limitations do not allow us to work with voxelized shapes of higher resolution. Memoryefficient architectures, such as OctNet [START_REF] Riegler | Octnet: Learning deep 3d representations at high resolutions[END_REF] and PointGrid [START_REF] Le | Pointgrid: A deep network for 3d shape understanding[END_REF], may help alleviate this constraint. Alternatively, using point-based shape representations and compatible deep network architectures, such as [START_REF] Qi | Pointnet: Deep learning on point sets for 3D classification and segmentation[END_REF], may also reduce the memory requirements and increase the output resolution.

Secondly, we made a simplifying assumption that a plausible shape can be assembled from parts using per-part affine transformations, which represent only a subset of possible transformations. While this assumption simplifies the training, it is quite restrictive in terms of the deformations we can perform. In future work, we will consider general transformations which have higher degree of freedom, such as a 3D thin plate spline or a general deformation fields. To promote better part connectivity, we will explore additional shape connectivity preservation losses, similar to Wang et al. [2018a]. Finally, we have been using a cross-entropy loss to measure the shape reconstruction quality; it would be interesting to investigate the use of a GAN-type loss in this structure-aware shape generation context.

Type

Kernel Stride Outputs Output size conv. 5

× 5 × 5 1 × 1 × 1 16 32 3 conv. 5 × 5 × 5 2 × 2 × 2 32 16 3 conv. 5 × 5 × 5 2 × 2 × 2 64 8 3 conv. 3 × 3 × 3 2 × 2 × 2 128 4 3 conv. 3 × 3 × 3 2 × 2 × 2 256 2 3 FC - - 100 1
Table 5.1: Whole-shape encoder (Decomposer) architecture. Each convolution layer (conv.) is followed by a Rectified Linear Unit (ReLU) layer, and a batch normalization layer. The last is a fully-connected layer (FC).

Additional Results

Decomposer-Composer architecture

The Decomposer consists of a whole-shape encoder and K projection layers, where K is the number of semantic part labels. The architecture of the whole-shape encoder is given in Table 5.1. The projection layers are implemented as fully connected layers, with 100 outputs, where 100 is the dimension of the embedding space. The Composer consists of a shared part decoder, and a Spatial Transformer Network (STN). The architecture of the part decoder is given in Table 5.2. STN, similar to the original design in [Jaderberg et al., 2015], consists of a localization sub-network, and a resampling module. The re-sampling module uses trilinear interpolation, and does not have learned parameters. The localization network receives both K stacked decoded parts, and the sum of part embeddings, of dimension 100. First, the two inputs are separately processed: the stacked decoded parts using two FC layers with 256 outputs; the sum of part encodings using one FC layer with 128 outputs. The two results are then concatenated into a single 384-dimensional vector, and processed with two additional FC layers with 128 and 12 K outputs (K times 12 affine transformation parameters), respectively. All FC layers, except for the last one, are followed by ReLU layers, and dropout layers with keep probability of 0.7.

Binary shape classifier architecture

In the evaluation of the proposed method, we used a binary classifier to estimate the quality of assembly and how realistic the resulting shapes were (see Section 4.4.3 in the paper for details). The architecture of the classifier is shown in

deconv. 3 × 3 × 3 2 × 2 × 2 128 4 3 deconv. 3 × 3 × 3 2 × 2 × 2 64 8 3 deconv. 5 × 5 × 5 2 × 2 × 2 32 16 3 deconv. 5 × 5 × 5 2 × 2 × 2 16 16 3 conv. 5 × 5 × 5 1 × 1 × 1 1 32 3
conv. 4 × 4 × 4 2 × 2 × 2 64 4 3 conv. 2 × 2 × 2 2 × 2 × 2 64 2 3 conv. 2 × 2 × 2 2 × 2 × 2 128 1 DO - - 128 1 FC 1 - - 128 1 FC 2 - - 64 1 FC 3 - - 2 1
Table 5.3: Architecture of the binary classifier. Each convolution layer (conv.) is followed by a Rectified Linear Unit (ReLU) and a batch normalization layers. Dropout layer (DO) has a keep probability of 0.5. The fully-connected layers FC 1 and FC 2 are followed by batch normalization and ReLU layers. The classifier produces binary output.

Latent space and projection matrix analysis

Latent space Figure 5.9 visualizes the structure of our learned part latent space, for chair shapes from the ShapeNet, using the t-SNE algorithm [van der [START_REF] Van Der Maaten | Visualizing high-dimensional data using t-SNE[END_REF], and illustrates the clear separation into different semantic part subspaces. Projection matrix analysis Figure 5.10 shows the projection matrices, learned for the chair class, sum of projection matrices, and the plot of their singular values. The proposed method succeeds to obtain a set of projection matrices which approximately sum to an identity, and have a partition of the identity loss (Eq. (3) in the paper) of the order of one, for a hundred-dimensional latent space and four semantic subspaces. While {P i } 4 i=1 are full-rank and not strictly orthogonal projection matrices, the plot of their singular values shows that their effective ranks are significantly lower than the latent space dimension. This is also in line with the excellent separation into non-overlapping subspaces produced by these projection matrices.

Shape-from-random-parts synthesis

Figure 5.11 presents the result of assembling shapes from random parts, for chair, table, guitar and airplane shape classes. For this experiment, we worked with shapes from the test set, using batches of the size of the number of semantic parts in the shapes: four shapes in a batch for chairs and airplanes, three for guitars, and two for tables. We synthesized corresponding new shapes by, first, creating new part encoding sets, by randomly mixing part encodings of the input shapes, ensuring that no two encodings in the new set come from the same input shape; We then reconstructed the shapes using the Composer. The results in Figure 5.11 illustrate the ability of the proposed method to combine parts from different shapes, and scale and place them so that the resulting shape looks realistic. The method was ap-plied on unlabeled input shapes. The results also demonstrate limitations of the proposed approach: occasionally, parts are not faithfully reconstructed (e.g., legs of the rightmost chair in the second row do not resemble the legs of the source chair second from the right in the first row), or the produced shape is disconnected (legs of the rightmost chair in the second row are not connected the seat).

5.6.5 Full and partial shape interpolation in the embedding space Note that the proposed network operates on unlabeled input shapes, and produces gradual and plausible interpolations of pairs of shapes. Figure 5.13 presents examples of chair shapes obtained by linear interpolation of a single part, a functionality unique to the proposed approach. Specifically, given two shapes, we exchanged a single part, e.g., a seat, between them, by changing the corresponding part embedding coordinates produced by the Decomposer. We then interpolated just these two embedding coordinates, and reconstructed new shapes from the interpolation result, together with the rest of the original part embedding coordinates, using the Composer. As illustrated by the results in Figure 5.13, the specified part changes gradually, from the source to the target part. The rest of the decoded parts remain visibly similar to the original ones, while still adapting to the change in the interpolated part for example, the seat and the legs of the left chair in Figure 5.13, second row, become smaller as the back interpolation proceeds. Here again, the proposed network operates on unlabeled input shapes.

Ablation study visualization

Figures 6 and7 present visual comparison between the results of the proposed method and the methods it was compare to in the ablation study. Figure 5.14 present the results of shape reconstruction, and Figure 5.15 the result of shape assembly from random parts. We observe that the proposed method achieves most complete and realistically looking reconstruction results. Using fixed projection produces inferior part reconstruction results (by "fixed projection" we mean dividing the embedding vector of the whole shape into pre-defined non-overlapping segments corresponding to different parts). So does the version without the STN in the Composer; There, the network fails to reconstruct small and fine shape parts, resulting in disconnected output shapes. Removing the cycle loss produces results with inferior part placement and part reconstruction quality.

Figure 5.11: Synthesis-from-parts example. For every batch of 4 chairs, the top row shows the ground truth (GT) shapes, and the bottom row shapes assembled by randomly picking parts from the GT shapes, such that no two parts come from the same GT shape, and assembled using the proposed approach. Unlabeled shapes were used as an input, and labeled GT shapes are shown for illustration purpose only.

GT 1 REC 1 1 /9 2 /9 3 /9 4 /9 5 /9 6 /9 7 /9 8 /9 REC 2 GT 2 Figure 5
.12: Example of a whole shape interpolation. Left and right are test models with ground truth segmentation. The rest of the results were obtained by linearly interpolating their embedding vectors (with the weight α), and reconstructing the shapes using the Composer network. Note that unlabeled shapes were used as an input.

GT 1 REC 1 1 /9 2 /9 3 /9 4 /9 5 /9 6 /9 7 /9 8 /9 REC 2 GT 2 Figure 5.15 also presents the results obtained with two competing methods, where the shape decomposition into parts and shape composition is performed using separate segmentation and placement networks (see Section 4.4.2 in the paper). We observe that neither placement with Com-plementMe [START_REF] Sung | Complementme: Weakly-supervised component suggestions for 3D modeling[END_REF], nor with a Spatial Transformer Network, are able to produce plausible results when assembling shapes from random parts. We thus conclude that end-to-end training for shape decomposition and composition, performed by the proposed Decomposer and Composer, respectively, is essential for high quality reconstruction results. Note that, due to different experimental settings, not all method variations and competing methods use the same parts for shape assembly, which does not affect the conclusions above.

64 3 reconstruction results

We re-trained the proposed Decomposer-Composer network with chair shapes from the ShapeNet, voxelized at 64 × 64 × 64 resolution. The results in Figure 5.16 show that the network produces higher quality shape assembly results, at the expense of longer training time (4 days).

Additional comparisons

Figure 5.16 presents a comparison of the proposed method with Global-to-Local [Wang et al., 2018a] and 3D-GAN [START_REF] Wu | Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[END_REF] methods, on the shape reconstruction task. The proposed method significantly outperforms the 3D-GAN, and perform on-par with Global-to-Local method, while also offering the ability to perform per-part shape modelling, illustrated in Section 4 and 5, which 3D-GAN and Global-to-Local lack. SAGnet [START_REF] Wu | SAGnet: Structure-aware generative network for 3D-shape modeling[END_REF] doesn't have a public implementation we could compare to, but we expect it to perform on-par or somewhat better than the proposed method for shape synthesis, since it was trained using pre-segmented models. However, it too lacks the flexibility of part-based shape modeling.

Affine transformation analysis

Figure 5.17 present the comparison between the ground truth transformation parameters, and the parameters produced by our spatial transformer network for chair shapes, in the shape reconstruction and shape-from-partassembly experiments. The notations used in Figure 5.17 assume that the transformation is given in homogeneous coordinates as:

T =          a 1,1 a 1,2 a 1,3 t 1 a 2,1 a 2,2 a 2,3 t 2 a 3,1 a 3,2 a 3,3 t 3 0 0 0 1         
(5.4) where {a ij } 3 i,j=1 , are the affine transformation parameters, and {t i } 3 i=1 are the translation parameters. The ground truth transformations in our dataset only down-scale and translate the centered and scaled parts of the shape. Therefore, in these transformations, a 11 = a 22 = a 33 , and a ij = 0 otherwise. We observe that the transformations produced by the spatial transformer network resemble the ground truth ones, and the cycle consistency requirement does not help the proposed method to learn more complex affine transformations. Thus, while the proposed method is able to generate plausible shapes by exchanging parts or collecting parts at random, it

does not yet fully exploit the capacity of full affine transformations, and may be expected to fail for shapes with more complex part arrangements than in the four classes of shapes used in our experiments. This also implies that, instead of affine transformations (12 parameters), our network could be trained to produce only non-uniform scaling and translation transformations (6 parameters). Furthermore, the transformations produced by the network have smaller variance that the original ones, but this still results in plausible shape reconstructions. We plan to investigate this further, and devise a method for fully utilizing affine and other types of transformations in future research.

3D-GAN Ours G2L Ours

Figure 5.16: Shapes generated using 3D-GAN [START_REF] Wu | Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[END_REF], G2L [Wang et al., 2018a], and by random part assembly using our approach (using unsegmented shapes as input).

Figure 5.17: A comparison between the ground truth transformation parameters, and the parameters produced by our spatial transformer network, in the shape-from-part-assembly experiment.

Part III

Deformable Voxel Grids have a canonical embedding space. However, a big part of voxel space is non discriminative: the center (resp. the border) of the cube is mostly always occupied (resp. empty). To capture rich geometric details, they also require a sufficient grid resolution, leading to high dimensional spaces where distances are not meaningful. As for SDFs, they generally serve as a proxy to either render the shape via ray marching [START_REF] Hart | Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces[END_REF] or generate a mesh via marching cubes [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF]. This is why, in the context of shape editing, both these representations are mainly useful for boolean operations -intersection and union.

Instead of relying solely on their geometry, shapes can be compared using parameters which translate to meaningful properties, such as length, height, etc. In the modeling phase, this can be achieved by parametric surface or volume elements, such as splines and nurbs. But in the analysis phase, these parameters are generally not accessible. This is where shape priors come to play, either in the form of statistical distribution estimation [START_REF] Fish | Meta-representation of shape families[END_REF], or with methods relying on deformations from a template [START_REF] Kurenkov | Deformnet: Free-form deformation network for 3d shape reconstruction from a single image[END_REF] or between pairs of shapes [START_REF] Hanocka | Alignet: Partial-shape agnostic alignment via unsupervised learning[END_REF]. These are controlled by the Free Form Deformation (FFD, [START_REF] Sederberg | Free-form deformation of solid geometric models[END_REF]) which, although having volume-preserving properties, offers unintuitive controls.

Another approach comes with neural networks, and more especially generative models such as GANs [START_REF] Goodfellow | Generative adversarial networks[END_REF] and VAEs [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF] They offer a so-called latent space which serves as a canonical, Euclidean parameter space, with a typical dimensionality lower than that of the geometric shape space, amenable to meaningful distances between points. Several works demonstrated how latent arithmetics allows for similarity clustering [START_REF] Qi | Pointnet: Deep learning on point sets for 3D classification and segmentation[END_REF][START_REF] Qi | Pointnet++: Deep hierarchical feature learning on point sets in a metric space[END_REF], shape analogies [START_REF] Achlioptas | Figure 3.13: Image (a)[END_REF], and recombinations [START_REF] Groscot | Shape part transfer via semantic latent space factorization[END_REF][START_REF] Dubrovina | Composite shape modeling via latent space factorization[END_REF]. However, they rely on heavy computations on large datasets, which not only requires powerful hardware and a long training, but also depends on the reconstruction capacity of the chosen generator architecture.

In this thesis, we developed a model we called Deformable Voxel Grids (DVG), which aims at mitigating the shortcomings of the aforementioned representations. A DVG is an energy-driven deformation of the unit cube surrounding the shape. Intuitively, if we only consider its outer surface, it consists in an elastic hull which, like a shrinking balloon, embraces the shape (see Figure 6.2), thus providing a low-level approximation of a given shape. As next chapters will show, it offers a shape representation which simply and intuitively translates into many shape editing applications, without resorting to neural networks, or even, to any learning.

The Deformable Voxel Grid model

In this section, we present approximation schemes aimed at applying a Deformable Voxel Grid to many shapes at a time. It can then be used for an invertible shape cubifiction, serving as a "container" and "content" separation step.

The purpose of cubifiction is to offer a consistent representation basis for several shapes belonging to the same class (e.g. chair or car): the same semantical parts of different objects tend to occupy the same region of the cube, allowing for easier comparison-based applications (see Chapter 7). In order to do so, we determine a smooth deformation of the unit cube of R 3 adapted to a given shape S, and apply the inverse deformation to S. This deformation field is obtained by minimizing the energy of a DVG.

Background on Deformable Models

Given the importance of deformable models in the computation of our shape descriptor, we provide a quick reminder on this topic, centered around intuition.

Our Deformable Voxel Grid is indeed inspired by the Topological Active Volume (TAV) from [START_REF] Barreira | Topological active volumes[END_REF][START_REF] Barreira | Topological active volumes: A topology-adaptive deformable model for volume segmentation[END_REF], which is a volumetric extension of active contours [START_REF] Kass | Snakes: Active contour models[END_REF][START_REF] Cohen | On active contour models and balloons[END_REF]. The unfamiliar reader can think of active contours as parametric curves which minimize a given energy, typically used for segmenting objects in images [START_REF] Hemalatha | Active contour based segmentation techniques for medical image analysis[END_REF]. This energy is split into an intrinsic term -regularization -and an extrinsic term -data fidelity:

E(θ) = E regularization (θ) + E data (θ) (6.1)
This energy depends on a set of parameters θ (the vertices positions for a polygonal curve), thus the minimization problem consists in finding the optimal parameters θ * . In order to do so, an initial set of parameters θ 0 is determined manually or automatically, and they are iteratively updated via gradient descent. Intuitively, it helps to visualize this dynamics as a curve that evolves through time (each gradient descent step is a time step), hence the name active contour. For instance, if the initialization forms a closed loop around the object that needs to be segmented, the intrinsic term corresponds to a contraction force -along with regularization, and the extrinsic term to an attraction force to the contour of the object. At equilibrium, when the curve matches the contour, these two forces balance each other out. Figure 6.1a illustrates the evolution of an active contour. The initialization also prevents the active contour from being stuck at a bad local minimum of the energy.

An active volume behaves similarly, but in three dimensions. Before drawing the analogy too far, a caveat regarding dimensions has to be noted: The active contour (a) starts from a rough initialization surrounding the segmented object, and progressively contracts until it approximates the contour of the object. The Active Volume (b), here depicted in 2D for clarity, is initialized as a regular voxel grid that contains the shape (here, a torus). As time goes by, the outside vertices get closer to the surface of the shape, while the inner ones ensure a global consistency in the discretization of space.

whereas in images (2D), an active contour is 1-dimensional, for 3D shapes, an active volume is 3-dimensional. A 3D analogy of active contours that preserves this dimensionality relationship would be an active surface. But Deformable Voxel Grids discretize the embedding space itself, by elastically deforming a regular voxel grid until its outer surface tightly embraces a given shape (see Figure 6.1b).

Active Models hyperparameters

Active Models are generally used on one shape at a time. Two serious obstacles against their automation are: 1 the lack of general rule for hyper-parameters tuning; and 2 their computational intensivity. Our DVG design proposes several approximations addressing these limitations.

Grid parameterization and energies

Continuous formulation

The parameterization of the DVG is taken from the TAV [START_REF] Barreira | Topological active volumes: A topology-adaptive deformable model for volume segmentation[END_REF]. A continuous DVG is defined as

V (u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w))
where u, v, w ∈ [0, 1], and its corresponding energy is then:

E(V) = 1 0 1 0 1 0 E(V (u, v, w)) du dv dw (6.2)
where E(V (u, v, w)) decomposes according to (6.1). The DVG is initialized as a regular voxel grid around the shape, and evolves through time, to find a minimal energy state. The energy of a given DVG state, following the generic Equation (6.1), comprises three different terms with their respective relative weights:

E(V) = E regularization (V) + E data (V) = λ e E elastic (V) + λ b E bending (V) + λ s E S⊂V (V) (6.3)
The regularization terms, common to a TAV, are explained in the following paragraphs. As for the data fidelity, ensuring that the outer surface of the DVG is stopped by the shape, it requires more details and is explained in Section 6.1.3.

Elastic and bending energies

Similarly to active contours and topological active volumes, we penalize the squared norm of the first and second derivatives, respectively corresponding to elastic and bending energies:

E elastic (V) = |V u (u, v, w)| 2 + |V v (u, v, w)| 2 + |V w (u, v, w)| 2 E bending (V) = (|V uu (u, v, w)| 2 + |V vv (u, v, w)| 2 + |V ww (u, v, w)| 2) + (|V uv (u, v, w)| 2 + |V vw (u, v, w)| 2 + |V uw (u, v, w)| 2) (6.4)
The elastic energy induces a contracting force, shrinking the grid inwards, while the bending energy keeps the grid as straight as possible, minimizing its curvature.

Discrete parameterization

We discretize V (u, v, w) into a regular voxel grid defined by (r + 1) × (r + 1) × (r + 1) points, such that r corresponds to the resolution, i.e. the number of subdivisions along each axis. The vertices of this grid are called control points. Every control point is connected to its neighbors following the 6-connectivity scheme, and every volume bounded by 8 neighbors is called a cell. Within each cell, the value of V is computed using a trilinear interpolation on the eight vertices of the cell. Even if the faces of a cell are in general non-planar, since 4 points in 3D are not generally coplanar, they are well defined as 3D quadrilaterals. In the end, a DVG forms a hexahedral grid.

To compute the first and second derivatives involved in E regularization on this discrete parameterization, we use 3D finite differences.

Approximating the inclusion check S ⊂ V

Contrary to a TAV where the ground truth volume is given in the form of a dense voxel image, for our problem, shapes are typically given as meshes.

We use it as a barrier stopping the contraction of the DVG induced by the minimization of E regularization . In our design and experiments, we only use sparse surface information in the form of a pointcloud uniformly sampled from a triangular mesh (with sampling weights proportional to the triangles' surface area). This allows to use the same DVG model on point clouds and meshes alike, and simplifies the computation of this energy term.

Indeed, to compute E S⊂V we want to determine whether each point sample is located inside V . But this on-or-off signal does not provide gradients for the gradient descent of E, and we would like a stronger penalty for the farthest points. Hence a quantization scheme we devised to efficiently and differentiably estimate this inclusion for all points of S, in parallel using GPU acceleration.

To test whether s ∈ V for any s ∈ S, we can resort to a family of balls {B i (p i , r)} l i=1 of a given radius r, located at positions {p i } i , whose union provides an approximation of V , so that:

s ∈ B ⇔ ∃i, s ∈ B i ⇔ ∃i, s -p i 2 ≤ r ⇔ d(s, {p i } i) ≤ r ⇔ s -p ≤ r (6.5)
where d is the distance between a point (s) and a set ({p i } i , 1 ≤ i ≤ l), and p is the p i closest to s. A ball covering of V can easily be obtained by subdividing its cells and taking points at the centers of the newly created subcells (see Figure 6.3).

To have a differentiable loss term, the hard inequality in 6.5 can be replaced by a soft thresholding thanks to the sigmoid f θ,α (x) = 1 2 tanh(α(xθ)) + 1 2 , where θ is the threshold and α the stiffness (the higher α, the more it behaves like a hard thresholding). It follows:

L α (s ∈ D) f r,α (d(s, {p i } i)) = f r,α (s -p) (6.6)
Figure 6.3: During the computation of the energy E S⊂V , each DVG cell is replaced by a set of regularly spaced balls of constant radius. For big enough radii, the union of the balls achieves an approximate covering of the cell.

This point-based loss can be averaged over the full pointcloud:

L α (S ⊂ D) 1 k k i=1 f r,α (d(s i , {p i } i)) (6.7)
Equation (6.7) defines L α (A ⊂ B), a loss corresponding to S ⊂ V , with the stiffness parameter α. It can also be formalized as the Chamfer distance (defined in [START_REF] Fan | A point set generation network for 3D object reconstruction from a single image[END_REF]) between S and the family p i , where we apply to each term of the sum the soft thresholding f r,α . This loss is used for E S⊂V .

Recursive subdivisions for hierarchical optimization

For a DVG of resolution r 3 cells, if r is a power of 2, say r = 2 p , we can view the grid as p successive subdivisions of a cube, corresponding to finer and finer resolution levels. This suggests a recursive optimization scheme, starting from a regular cube.

For a given resolution level k, the position of the control points v k is optimized via gradient descent on energy E. Then, the grid is subdivided by a factor of 2, which means that each cell is sliced into 8 smaller cells. The created vertices are located at the centers of previous faces and edges, to which a small perturbation (the residual) is added with a fading factor α k (see Figure 6.4a for an illustration). The recursive relationship between a resolution level v k and the previous one is then given by:

v k = Sub (v k-1) + α k r k (6.8)
where v k corresponds to the vertices of level k, Sub is the subdivision operator, r k is the residual, and {α k } 1≤k≤p the fading factors. This hierarchical optimization stabilizes the convergence to a solution close to the shape, as our experiments showed (see Figure 6.4b). To select precision level K for the output, one can set {α k } k≤K to 1 and {α k } k>K to 0. Note that this construction, yielding a collection of v k by successive supersampling and perturbations, is similar to a wavelet series decomposition, where each layer encodes details from increasing frequencies (in space) and decreasing amplitudes.

Shape-DVG registration

Once an optimal DVG V is determined for a shape S, two natural ideas are:

1. expressing S in coordinates (u, v, w) ∈ [0, 1] 3 taken from the same parameterization than V (u, v, w);

2. attributing scalar values to the cells of V , corresponding to the volume occupancy of S within each cell.

These two are complementary and both correspond to representing S via V . We call this "shape-DVG registration", or simply shape registration, as it consists in finding a mutual basis for S and V . As the applications will show, this process is the cornerstone of the relationship between a shape and its DVG. We present two different methods:

• explicit registration by grid conforming;

• implicit registration by SDF sampling.

Each has its own merits and shortcomings, as summarized in Table 6.1. So, they are indicated depending on the format of the shape (do we only have a pointcloud, or a mesh?) and on the target application. We say that the result of registration is a cubified shape, which comes from the fact that the DVG grid comes from a regular cubic grid, and we will name it C. We will keep this notation for the rest of this Part.

Method

Surface Works on Computation OOB*?

Explicit Smooth Point Global

Implicit Straight Volume Local

Table 6.1: The two shape registration methods and their characteristics (*OOB = Out Of Bounds points)

Forward DVG projection

For a given DVG cell c, a point q inside can be expressed by its local coordinates. The trilinear interpolation f c already used in the hierarchical subdivisions (see Section 6.1.4) yields a regular mapping from [0, 1] 3 to the cell, such that:

∃ũ, ṽ, w ∈ [0, 1] 3 s.t. f c (ũ, ṽ, w) = q (6.9)

where p 1 , p 2 , . . . , p 8 are the positions of the eight vertices of c. Then, q = (ũ, ṽ, w) are the local coordinates of point q, relative to cell c. Then, an affine transformation maps the cell to its correct location within the whole DVG grid system (see Figure 6.5b). In the end, we can define the trilinear DVG projector p V tri : [0, 1] 3 → R 3 . We noticed that a Thin Plate Spline (TPS) can be used to obtain smoother surfaces (see last two rows of Figure 6.7 for an example). A TPS finds a smooth space deformation based on a set of control points, by minimizing a total distortion energy (refer to [START_REF] Bookstein | Principal warps: thin-plate splines and the decomposition of deformations[END_REF] for more details). A TPS interpolator can be defined by matching the control points V 0 of a regular cube to V , those of a given DVG. This yields the spline DVG projector p V tps : [0, 1] 3 → R 3 .

Forward and Backward DVG projection

Going from q to q is called a forward projection, while the opposite is the backwards direction. Both p V tri and p V tps defined above are forward projectors, as they assume the local coordinates q are known. Registration consists exactly in inverting such a given p V .

Explicit smooth registration

We propose to reuse a Thin Plate Spline, like in the previous paragraph, but in the opposite direction. Instead of sending V onto V 0 , we use a TPS to send V onto V 0 . We experimentally check the soundness of this method by testing how it behaves as an inverse of p V tri and p V tps on real shapes (see Section 6.3).

For applications involving shape deformations, a TPS can be used, effectively bypassing the necessity of a registration.

Implicit registration

When input shapes are closed manifolds, we can suppose their signed distance fields are given. We propose to exploit it with an indirect registration, which simultaneously yields a lower-dimensionality content descriptor, which we later use to build a Shape Space (more details in Chapter 8).

Each cell of V is subdivided into smaller subcells, and the value of the SDF is queried at the locations of each subcell centroid. Because they are obtained via a trilinear interpolation of V , they naturally have (u, v, w) coordinates, coming from the indexing of

V : vertex index (i, j, k) has local coordinates (u, v, w) = (i r-1 , j r-1 , k r-1
). Using marching cubes [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF], we obtain C, the cubified mesh, i.e. the result of the registration. The precision of the geometry is limited by the grid resolution of the DVG and the number of cell subdivisions.

Experimental optimization of DVGs

Results

We present here experiments we led on 250 models from the chair category of ShapeNet [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF]. These experiments aimed at validating, qualitatively and quantitatively, 1 our approximation scheme, 2 the optimization procedure, and 3 the grid projectors p tps and p tri . For each shape, we sampled l = 4096 points to be used as the DVG input pointclouds. Then, a DVG grid was determined under the following sets of parameters:

Grid properties: resolution r = 2 3 = 8 (3 successive subdivisions), cells subdivision resolution = 4 (see Figure 6.3), hence a total number of k = 8 3 • 4 3 = 32 768 query points in (6.7);

Energies: λ e = 1, λ b = 0.4, λ s = 4, α = β = 1;
Training epochs: for levels 0 through 3: 150, 150, 200, 300.

While this process can be run in the background, we found it extremely useful, in order to check the evolution of the DVG and experimentally determine parameters, to visualize in real-time the evolution of a DVG, while being able to interactively rotate the 3D view. As a matter of fact, regular 3D lattices can be hardly legible as their 2D projection displays moiré fringes. To this end, we built a Python library which provides high-performance pointcloud rendering capabilities within the Jupyter notebook framework. 1We show a collection of estimated V, C on various shapes in Figure 6.7. Since the cube contents are defined in [0, 1] 3 , an RGB color can be assigned to each position. This color-coding allows to visually confirm the compatibility of the cubifiction with the semantics of the shapes: for instance, observe how the chairs on columns 1 and 6 have similar content in the seat and back parts, despite having different configurations on the legs and armrest. 132 CHAPTER 6. MOTIVATION, DEFINITION AND OPTIMIZATION

r = 0 r = 1 r = 2 r = 3
Input DVG V Cube C p V tri (C) p V tps (C)
Figure 6.7: (Zoom in to see details) Qualitative results for shape reconstruction via DVGs: estimating V for each shape allows to cubify it (C), and this can be reprojected into V by a trilinear p V tri or a spline p V tps projector (see 6.2.1), the latter yielding smoother surfaces. The cubified shapes are color-coded by assigning a value in [0, 1] 3 to an RGB color.

Evaluation

To assess our method's robustness to perturbations and the quality of the cubifiction, the following evaluations were performed on a total of 250 chair shapes taken from ShapeNet [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF].

Sampling density

We evaluated the quality of the predicted DVGs for varying numbers of points sampled on the shape's surface. The metrics, which aim at measuring the shape representation efficiency, are the following:

Compacity: Mean presence density of the shape within the DVG, a value close to 1 means that the shape almost entirely covers the interior of the grid;

Compacity gain: Relative gain in compacity of the DVG, as compared to the compacity of a rectangular bounding box;

Surface score: Proportion of the surface of the shape located within the bounds of the DVG;

Symmetry MSE: Our models are symmetric with respect to a vertical plane. We evaluated the mean distance between a grid and its symmetric grid (a perfectly symmetric grid would yield 0).

We did not resort to mIoU (mean Intersection over Union) because it is a volumic metric, while many of our shapes contain thin details at the edgetypically, the chair legs. These fine elements have a small contribution to the volume of the shape but an important role in the meaning of the shape. In place of mIoU, we have both compacity and surface score. The results are compiled in Table 6.2. Note the overall trend of performances increasing along with the sampling density: this was expected. However, even the lowest density (1024 points) has comparable results, which confirms that the cropping of the surface is not induced by the sampling, but by the competing data fidelity and regularization energies. This is a limitation inherent to our method. Our shape reconstructions qualitatively show that in practice, this does not pose a problem to represent various shapes (see Figure 6.7).

Shape misalignment

We assume all our shapes are consistently aligned, as standard among generative models. However, being a deformable model, we tested the ability of the DVG to converge to the correct configuration when the input shape has been rotated. Given the hierarchical subdivisions and the centrality of the first levels (see discussion in 8.4), we compared the determined first level for two conditions: ground truth alignment, and noisy alignment (rotation with random Euler angles, according to N (0, σ = 0.2rad ≈ 12 •)). For fairness, we kept a constant number of gradient descent steps. The error is then measured as the Euclidean distance between the control points of the two grids, GTpred 2 . Figure 6.8b shows an example of a misaligned grid

We also estimated, for any given τ θ , E θmax≤τ θ (GTpred 2), the empirical expectancy on datasets where the maximum angular error is smaller than a threshold τ θ (see plot in Figure 6.8a). We observe that it increases at a reasonably low pace, confirming the advantages of a deformable model. As for high angular errors (more than 30 •), the predicted grid can be flipped: a control point which should be at the top is now located on the side. For a single shape, this is not a problem. However, on a whole dataset, this would break the consistent cubifiction we require to build our similarity measure.

Energies

We can observe, in the DVG reconstructions of chairs (Figure 6.7), that the legs -and to a lesser extent, the backs -tend to be pointier than in the ground truth models. This behavior is caused by the balance between the data fidelity and the contraction induced by the elastic and bending energies: the border edges of the shapes may be cropped by the optimal DVG. In fact, our implicit volumetric registration is only able to reconstruct the interior of the grid, discarding any mass lying outside.

The ratio λ b /λ e , analyzed in Table 6.3, controls the tightness of the grids. Note that less tight grids decrease the effectiveness of the cubifiction.

Discussion

Importance of the first hierarchical levels While Figure 6.4b shows the importance of the progressive training of DVG levels, the examples in Figure 6.6 further emphasize the greater importance of the very first levels. If the second level is unfrozen (setting α 1 = 1) before the first level has correctly converged, the misalignment of the cube edge with the dominant features of the shape will remain (see for instance last row). This problem can arise when optimizing a batch of DVGs on many shapes, with a constant number of epochs per level. To prevent this from happening, one has to make sure the first level has enough time to converge on all the training shapes, or resort to an adaptive gradient descent scheme.

Manual edition of a DVG

In a real use case scenario, a determined DVG can be manually corrected. For instance, it can easily be symmetrized -by averaging with its symmetric. This could be useful for shape reconstructions and morphings, to ensure that the generated geometries are indeed symmetric. All the results we show did not resort to any manual correction, in order to exhibit the bare abilities of our model. Yet it would be interesting, for future work, to investigate the usefulness of ad-hoc post-processing.

Chapter 7

Applications for Shape Analysis and Editing

Art is deformation.

Fernando Botero

Abstract of this Chapter.

This chapter presents various applications made possible by DVGs: dataset exploration, similarity search, deformations, approximation with quadrilaterals, and correspondences. It also shows how these inspire the use of DVGs for shape morphings.

Most of what we present here serves as a proof of concept, taking the most naive solutions for each application. The fact that it works surprisingly well, given the simplicity of the methods, is a strong clue that DVGs encode relevant information about shapes. It also experimentally highlights the strengths, and weaknesses, of the automatic DVG procedure presented in the previous chapter.

The optimization of a DVG to a shape, and its subsequent registration, allows to write S = p V (C) where S is a given shape, V the positions of its control points, C the cubified version of S, and p V a cube-to-grid projector (see Section 6.2.1 for more details). This corresponds to a factorization in a canonical space of S into a low-level description of its appearance (V), and a high-level description of its surface details (C). In this section, we show how this factorization gives birth to an array of applications, by means of very simple operations.

What is remarkable is that the DVG model was designed in a very generic way, without focus on any of these applications. This is why we do not resort to more complex methods, except for the very last one, morphing. In the other cases, improving the performances of each application to reach stateof-the-art was out of the scope of this present thesis. This chapter does not contain quantitative analysis and comparisons with other methods on those applications. As a matter of fact, collecting and preparing benchmark data, along with the code of existing methods, is time-intensive work, and we believed that morphing was the most interesting application to investigate thoroughly.

Nonetheless, we performed various experiments which we discuss in the following sections, and their qualitative results help understand the usefulness of DVGs, along with the validity of their automation. In fact, coming from Active Models, their set of hyper-parameters and relatively slow optimization typically call for an operator to manually inspect the quality of convergence -in our case, if the DVG grid has correctly converged to a tight fit on the shape's surface. This is impractical in a large-scale setup. This is why the experiments presented in this chapter were performed on a large collection of shapes (as shown in Table 7.2 and explained below) with a unique set of hyper-parameters; which were the following:

Point sampling: on each model, l = 2048 points were sampled;

Grid properties: resolution r = 2 3 = 8 (3 successive subdivisions), cells subdivision resolution = 4 (see Figure 6.3), hence a total number of k = 8 3 • 4 3 = 32 768 query points in (6.7);

Energies: λ e = 1, λ b = 0.4, λ s = 4, α = β = 1;
Training epochs: for levels 0 through 3: 150, 150, 150, 150.

Overview of applications

We introduce six different applications for shape processing, allowed by DVGs. They are summarized in Table 7.1, according to three taxonomic axes (major columns of the Table), selected for a usability concern -they show the requirements, in terms of dataset and computation, of each application: I. Reliance on either V or C. II. Compatibility with surfaces or volumes. III. Minimum requirement for the number of shapes.

Let us briefly provide intuitions for why, and how, V and/or C can be used for each application.

Analysis

♠ Correspondences: Cubified shapes tend to have similar parts in similar locations, which suggests a potential for estimating shape correspondences, using a naive closest-point matching.

♠ Similarity search: Relying solely on V , which approximates the outer surface of S, gives a topological-invariant shape descriptor which can be used to retrieve similar models.

Synthesis

♦ Approximation with quads: Surfaces given as triangle meshes can be approximated by quadrilateral meshes, thanks to the grid system of V .

♦ Style transfer: Projecting C 1 into V 2 , which conforms a shape S 1 into the same outer shape as another shape S 2 . This is reminiscent of style transfer.

♦ Semantical editing: A generalization of the previous application, learning a parameterization of V across a full dataset, in order to deform a given shape.

♦

Synthesis

Morphing

Table 7.1: Taxonomic summary of DVG applications, along three characteristics. I. Do they rely exclusively on the computation of V , the control points positions, and/or on C, the cubified shape? II. Are they compatible with surface encoding (e.g. given as a pointcloud) or do they require volumetric data (watertight mesh)? III. How many shapes are, at least, required to run the application? Morphing, the most demanding one, is the subject of Chapter 8.

In this chapter, all applications were tested on shapes from various categories of ShapeNet [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF]; the models distribution is summarized in Table 7.2. The next sections present results for all applications -except morphing, detailed in next chapter -organized along axis I of Table 7 7.2 Applications relying solely on V 7.2.1 V as a shape descriptor: mode exploration and similarity search

We test the intuition that the low-level representation encoded by V contains enough information about a shape. In order to do so, a shape descriptor can be computed by flattening V , a 9 × 9 × 9 × 3 array, into a vector of R 2187 . First, because this high dimensional space is not displayable, we visualize its t-SNE [van der [START_REF] Van Der Maaten | Visualizing high-dimensional data using t-SNE[END_REF] embedding (refer to Section 3.2, page 66, for more details about t-SNE). An embedding according to just three dimensions already reveals that categories are regrouped into distinct clusters (Figure 7.1). We also did the same operation, but only considering the points of V located at the surface of the grid (total of 386 points, hence dimensionality d = 1158). This yielded a virtually indistinguishable t-SNE embedding. These two observations confirm two points:

1 V is an acceptable low-resolution shape descriptor;

2 most of the signature information of the shape is located at the surface of V .

Point 2 is compatible with the intuition that led to the development of the DVG model, as explained in the beginning of Chapter 6. In fact, the volumetric grid system is useful for C (the high-level, topological information), via a grid projector p V .

Just like with the latent space of generative models (see Section 3.2.1), clusters are not entirely impervious to models from other categories. For instance, some airplanes look like cars, etc.

Then, we also propose to use DVGs in order to search a dataset for models similar to a given query shape. To do so, we use as a shape descriptor the full 9 × 9 × 9 × 3 array. By construction, its parameterization is shared across all models, such that a simple Euclidean distance translates to a point-to-point distance (no point matching required, they are already matched). In Figure 7.2 we show the first three nearest-neighbors of several models, randomly selected from our dataset. We have seen that the different categories belong to different clusters, and here again, when taken from the whole dataset (without any supervision), the nearest-neighbors are in most cases consistent with the category of the query model. Moreover, the found models appear to be structurally similar objects, that is to say, to belong to the same semantical sub-cluster. In Figure 7.2 we can indeed find examples of armchairs, fighter jets, airline planes, etc. In order to quantify the reliability of our similarity search, we can leverage the categories, which we know for each model. We could have trained a simple classifier to predict a class from V . But, we believe that such a classifier would not be really informative -we do not try to have an efficient classifier anyway. The performance results would be obfuscated by the choice of the classifier model1 .

However, this intuition inspires us to build a confusion matrix, by taking our task (similarity search) as a classification problem: for a given model of category c, its k nearest-neighbors are supposed to also belong to category Car 99.3% 0.3% 0.2% 0.0% 0.1% 0.1% 0.0% 0.0% Chair 1.0% 91.1% 0.1% 3.8% 0.0% 0.7% 2.0% 1.3% Airplane 0.8% 0.1% 97.3% 0.0% 1.2% 0.3% 0.2% 0.0% Sofa 0.6% 7.5% 0.6% 72.3% 0.0% 0.2% 14.6% 4.2% Rifle 0.3% 0.0% 3.0% 0.0% 95.7% 0.9% 0.0% 0.0% Lamp 0.9% 4.4% 0.8% 0.3% 4.5% 81.9% 0.5% 6.7% Bench 0.1% 3.6% 0.9% 8.4% 0.0% 0.2% 84.5% 2.2% Speaker 0.2% objects indeed have a pretty distinctive general appearance; for instance, rifles are particularly elongated. Here are some other insights derived from this table, in no particular order of importance:

• The largest off-diagonal coefficient, 14.6% (Sofa, Bench), testifies that benches tend to look like sofas.

• Its reciprocal value, 8.4% (Bench, Sofa), can be explained by the fact that there are (approximately) twice as many benches as there are sofas. An example of such confusion is present in the last, bottomright-most, example of Figure 7.2.

• Value 7.5% (Sofa, Chair) is explained by the existence of armchairs, among which many arguably look like sofas, yet are categorized as 144CHAPTER 7. APPLICATIONS FOR SHAPE ANALYSIS AND EDITING chairs.

• Speakers has the least sparse row and column. This can be explained by the relative poverty of low-level geometry: many speakers are rectangular boxes, and their optimized DVGs only consist in a rectangular parallelepiped.

One caveat of our method is its sensitivity to scale. A possible improvement would be to normalize V (isotropic rescaling) such that they all have unit volume.

Deformation-based applications: style transfer and semantical editing

These two applications consist in the manipulation of V in order to deform its underlying shape S. Given two shapes S 1 = p V 1 (C 1) and S 2 = p V2 (C 2) , we can transfer the style of S 1 into the grid system of S 2 by switching V 1 for V 2 :

S 1 in 2 = p V 2 (C 1) and S 2 in 1 = p V 1 (C 2) (7.1)
This formulation emphasizes the separability of V and C, which we argue can be interpreted as a notion of "container" (V) and "content" (C), in a paradigm similar to style and content in style transfer 2 . In our experiments, we only considered cases of our style transfer within a single category (for instance, between chairs); for reasons which will clearly appear in the discussion below. Two points are worth noting: 1 V 2 does not need to come from an existing shape. Rather, we can learn the distribution of V across a dataset and sample new values, to conform a given shape to any arbitrary "style".

2 One does not require to explicitly determine C. As already noted in Section 6.2.2 (page 129), a Thin Plate Spline [START_REF] Bookstein | Principal warps: thin-plate splines and the decomposition of deformations[END_REF] can be used to determine a space deformation mapping V 1 to V 2 . In this case, that deformation can be directly applied to S without resorting to a registration step.

While point 1 gives rise to the second application presented here, namely semantical editing, point 2 yields two possible ways of generating new shapes: by deforming the initial mesh, or by reprojecting the cubified mesh.

We show examples of both cases in Figures 7.9 through 7.16. In order to demonstrate the diversity of shapes which can be modeled this way, for both cases, we selected various values for V and C, and built all the corresponding pairs. Exemplars for C were selected at random from within the chosen category, as C-space is highly dimensional. As for V , the exploration performed in the previous application (Section 7.2.1) confirmed that V -space is much more redundant. Therefore, we selected representative examplars by fitting a Gaussian Mixture Model via the Expectation Maximization algorithm, picking the centroids of the inferred mixture components. From these experiments on all 8 classes of shapes, we learned the following lessons:

• This way of doing style transfer works particularly well for furniture, such as chairs, sofas and benches. It generates a wide variety of plausible shapes. It can be explained by the fact that such shapes present a consistent alignment of dominant DVG edges along similar semantical parts -e.g., the top edge of the DVG is consistently aligned with the edge of the chair back. This has been achieved with no supervision in the DVG optimization, and made possible by the pre-alignment of shapes already available within ShapeNet.

• The cube template, which serves as the DVG initialization, is not suited to all types of shapes for this application. In our experiments, this was visibly the case for:

1. Rifles: being very elongated, the isotropic subdivision of the DVG grid along each axis (into an 8×8×8 grid system) wastes capacity in the orthogonal direction, while it should be provided in the longitudinal one.

2. Lamps: objects from this category present a wide variety of shapes, orientations, and configurations. We show for reference, in Figure 7.11 (page 158), the kind of generated shapes.

• Similarly to rifles, planes have a silhouette which is dominantly 2dimensional. Because of the absence of self-intersection check in the optimization of V , its shrinking along the vertical direction leads for some models to dramatic distortions. Moreover, many values of C only make sensible models when projected into specific values of V .

• As for cars, we observed a similar phenomenon (incomplete separation of V and C). Something particularly interesting here was the case of wheels: because of the scarcity of points sampled on the surface, the fitting of V did not consistently align with wheels. As a consequence, if projecting C 1 into a V 2 which disagrees with V 1 , the wheels tend to be noticeably misplaced, making for unrealistic shapes (see Figure 7.15 for examples).

In summary, this kind of style transfer works well for shape types satisfying our underlying assumptions, which we summarize here: 1 volumic 146CHAPTER 7. APPLICATIONS FOR SHAPE ANALYSIS AND EDITING shapes, with no near-degenerate dimension; 2 shapes which remain realistic under mild volume distortion; 3 (V i , C i) pairs with matching semantics3 . Note that the surface quality of the generated shapes, when using shapes cubified via our implicit registration (see Section 6.2.3) depends on the accuracy of the SDF estimation. We used the Mesh to SDF tool from [START_REF] Park | Deepsdf: Learning continuous signed distance functions for shape representation[END_REF], which tends to generate a lot of artifacts when used in conjunction with Marching Cubes [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF] to reconstruct the 0 level-set. To keep satisfying shapes, we reconstruct an level-set (≈ 0.01), which explains the apparent "thickness" of the generated shapes. To improve the applicability of our style transfer to broader types of shapes, we suggest two directions for future works. First, relying on semantical parts segmentations to control the consistency of DVG-edges alignment. Second, performing an adaptative grid subdivision during the optimization of V , in order to bring finer details where they are needed.

As for statistical deformations, we show, as a minimal working example, that they can be performed by a simple PCA in V -space. More specifically, for a given shape's V , we explore in its vicinity a random rank 2 subspace generated by the first 5 principal components. The shape is reprojected into the corresponding V values (see Figure 7.4). The resulting image matrix looks very similar to the latent space samplings done with GANs, as already shown in Chapter 3, Figure 3.4. As a matter of fact, p V can be seen as a conditional generator, conditioning on the global appearance of the shape (but where the code, C, is not latent, but directly visible).

The previous observations led us to restrain to cases of furniture, such that the deformed shapes still appear realistic. Without surprise, the first principal components of V translate into high-level furniture properties, such as length, height, slant, etc. Built into an editor with sliders, this provides an interactive tool to quickly deform a shape and explore its possible variations. Notice, here again, that the plausibility of the shape decreases as the magnitude of the displacement increases -that is to say, as we get further away from the center of the image.

Applications requiring C

Approximation with quads

Instead of relying on Marching Cubes to implicitly register the shape, it can actually be directly voxelized within the DVG grid system: instead of reconstructing a mesh, we simply "light on" the DVG cells which intersect the object, and extract the outer surface of the resulting object. This can be done at any arbitrary subdivision level of the DVG4 . While this does not serve a reconstruction accuracy purpose, it offers a quad-mesh surface approximation with the following properties:

1. Consistency across a dataset, which can be useful for building coherent scenes out of multiple objects;

2. Control of the approximation resolution.

Some examples are shown in Figure 7.5, and more can be found in the Additional Figures. While producing far from ideal meshes, it works well for a surprising variety of shapes, across all categories of our dataset. Notably, rendering the resulting meshes produces much more satisfying surfaces than regular voxel grids of similar resolutions. We can propose two ways of improving the results. First, one could re-fit the obtained quad mesh to the surface (similarly to Mesh-RCNN [START_REF] Gkioxari | [END_REF]). Or, after the convergence of V , the elastic energy could be dropped on useless internal nodes, similarly to the original Topological Active Volumes [START_REF] Barreira | Topological active volumes[END_REF]. Second, the staircase effect, typical of voxel grids and still present here, to a lesser extent, could be mitigated with the development of a "diagonal tracing" strategy, which would adaptively add a "ramp" (a diagonal quad between cells) where needed. This could be done with an adaptation of the Marching Cube algorithm, but requires a careful study of its ambiguity lookup table.

Correspondences

One last way of investigating the usefulness of cubifiction is shape correspondences. This intuition emerged from the style transfer application (Section 7.2.2): if a pair of shapes is compatible with style transfer, their cubified versions should display similar parts in similar locations of the cube. Thus, we tried to make correspondences between cubified shapes by identifying points by their position -more precisely, to their nearest neighbor in the other shape. Reprojecting the cubes C 1 and C 2 to their respective grids V 1 and V 2 transfers these correspondences back to the original shapes.

This very naive approach, while obviously limited, produces satisfying results for varied shapes. We show such examples in Figure 7.6, where identified points have the same color (we also draw colored lines to help visualize the correctness of correspondences). One particularly interesting benefit is the explainability of the correspondences, provided by the grid, demonstrated in Figure 7.7. For instance, subfigures (b) and (c) show how a grid misalignment, resulting from a bad convergence of the first DVG resolution levels, leads to wrong correspondences. More failure cases are depicted in Figure 7.8. They can be explained either by a lack of consensus in the DVG grids, in subfigures (a) and (b), or by the fact that the requested shapes do not have any meaningful correspondences in the first place, in subfigure (c).

Despite its limitations, this experiment helps better precise the relationship between a DVG and shape semantics. It confirms its usefulness for a wide variety of furniture models when running in a fully-automatic fashion, and shows promising results for other types of shapes, which require further fine-tuning of the DVG grid optimization, be it in terms of hyper-parameters or training scheme by successive subdivisions. A straightforward suggestion to improve the correspondences is to keep the idea of correspondences between cubified shapes, while using more robust methods (e.g. Functional Maps [START_REF] Ovsjanikov | Functional maps: A flexible representation of maps between shapes[END_REF]). It would indeed be interesting to see for which types of shapes it has a negative, neutral or positive impact on the quality of the correspondences.

Towards morphing

Throughout this chapter, the analogy with latent spaces was apparent in several places. This led us to question whether DVGs, and their ability to separate shapes into S = p V (C), could be used as a replacement for generative models in the application they seem particularly powerful, namely, morphing. With style transfer, we have already seen how we can transform (

V 1 , C 1 , V 2 , C 2) into (V 2 , C 1), by replacing V 1 by V 2 in S 1 = p V 1 (C 2).
This can be done continuously, with a linear interpolation on V from V 1 to V 2 . Moreover, the correspondences experiment confirmed that similar shapes have similar C content, which suggests that there is a possibility to easily interpolate between C 1 and C 2 . In such a case, we can then build a morphing from S 1 to S 2 , by a simultaneous linear interpolation from V 1 to V 2 and from C 1 to C 2 .

What about shapes that are too dissimilar? We precisely developed a method around this idea, leveraging a whole dataset to find a good sequence of intermediate states. This is the subject of the following chapter. to shape interpolations. By design, this learned representation provides a shape prior, constraining generated shapes to be similar to the training set. However, they are generally not built nor trained towards the end of producing meaningful morphings. Rather, their morphing capabilities appear as a mere byproduct of latent space interpolation. Most works relying on them focus their efforts on the quality and expressivity of the outputs, as they are generally mainly evaluated on the reconstruction of known shapes.

These generative models benefit from their ability to learn, without supervision, an invertible encoding which brings similar shapes close together. We explore the possibility of achieving similar results with traditional, explicit methods. Doing so, we simultaneously address the typical limitations of deep learning; namely, the lack of interpretability, and the need for expensive and powerful hardware capable of parallel computing.

As a matter of fact, the present work stems from the intuition that medium-sized1 datasets contain enough shapes to express novel shapes as simple combinations and deformations of the existing ones. As a result, we seek to generate "good" morphings whose intermediate states are existing shapes, up to a small deformation. Moreover, we do not want to rely on any class-specific parameterization.

To this end, we propose three interconnected components:

1. a class-independent shape descriptor, relying on a particular case of style and content separation, which we named "cubifiction";

2. a deformation metric compatible with this content descriptor;

3. a graph-based framework for finding minimal-energy shape morphings.

The first and second steps respectively provide nodes and links to ultimately build a shape graph. It can be seen as a discretized version of a latent space, where the intermediate representation is not learned but handcrafted in accordance with the strong symmetries found in certain shapes, such as chairs or tables. As a matter of fact, our content descriptor derives from a cubifiction of the shapes, which appears to consistently locate the semantical parts of different shapes. This is performed via the optimization of a Deformable Voxel Grid, presented in Section 6.1. Then, Section 8.2 explains the construction of a graph shape-space which encapsulates the similarities in terms of shape content. We then present experimental results and evaluations in Section 8.3. Finally, Section 8.4 provides an extensive analysis of many design elements of our method, discussing the influence and interactions of its different components.

Figure 8.1: Overview of the proposed method: by cubifying many shapes to separate the content from the style, we build a shape space as a graph where the length of the edges corresponds to a deformation cost between cubified shapes. Discrete morphings can be obtained as minimal-length paths (S 1 , • • • , S n) in this graph, and continuous morphings can be generated thanks to the invertibility of the cubifiction.

Related Work Deep learning and shape latent spaces

In this area, use cases typically include one of the following tasks: shape processing and data augmentation [START_REF] Park | Transformationgrounded image generation network for novel 3d view synthesis[END_REF][START_REF] Fish | Meta-representation of shape families[END_REF][START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF][START_REF] Haibin | Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces[END_REF][START_REF] Li | GRASS: Generative recursive autoencoders for shape structures[END_REF], shape prediction from 2D data [START_REF] Shin | Pixels, voxels, and views: A study of shape representations for single view 3d object shape prediction[END_REF][START_REF] Haibin | Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces[END_REF][START_REF] Wu | Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[END_REF], Wang et al., 2018b[START_REF] Fan | A point set generation network for 3D object reconstruction from a single image[END_REF], shape completion [START_REF] Allen | The space of human body shapes: Reconstruction and parameterization from range scans[END_REF][START_REF] Groueix | AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF][START_REF] Park | Deepsdf: Learning continuous signed distance functions for shape representation[END_REF], and latent space exploration [START_REF] Tulsiani | Learning shape abstractions by assembling volumetric primitives[END_REF][START_REF] Wu | Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[END_REF][START_REF] Li | GRASS: Generative recursive autoencoders for shape structures[END_REF], Achlioptas et al., 2017, Groscot et al., 2019[START_REF] Dubrovina | Composite shape modeling via latent space factorization[END_REF].

Over the past years, generative models, using architectures inspired by Variational Auto Encoders [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF] and GANs [START_REF] Goodfellow | Generative adversarial networks[END_REF], have been used for shape morphing, via linear interpolations in the latent space. Works can represent shapes in various formats, such as pointclouds [START_REF] Qi | Pointnet: Deep learning on point sets for 3D classification and segmentation[END_REF][START_REF] Achlioptas | Figure 3.13: Image (a)[END_REF][START_REF] Fan | A point set generation network for 3D object reconstruction from a single image[END_REF], Achlioptas et al., 2017, Groscot et al., 2019], voxels [START_REF] Wu | Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[END_REF][START_REF] Li | GRASS: Generative recursive autoencoders for shape structures[END_REF][START_REF] Dubrovina | Composite shape modeling via latent space factorization[END_REF], octrees [START_REF] Tatarchenko | Octree generating networks: Efficient convolutional architectures for high-resolution 3D outputs[END_REF], or 4D particle dynamics [START_REF] Niemeyer | Occupancy flow: 4d reconstruction by learning particle dynamics[END_REF].

Other works, focusing on the prediction of a 3D shape from a given image, used more specific representations such as surface patches [START_REF] Groueix | AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF] or deformed ellipsoids [Wang et al., 2018b], but they do not appear to offer a direct way of producing shape morphings. More recently, networks predicting implicit functions [START_REF] Park | Deepsdf: Learning continuous signed distance functions for shape representation[END_REF][START_REF] Hao | Dualsdf: Semantic shape manipulation using a two-level representation[END_REF] appeared to allow smooth, arbitrary-topology meshes, while being compatible with latent space interpolations.

Deep learning approaches are based on the assumption that learned descriptors, as opposed to handcrafted ones, are better suited to capture the variability of natural signals. Moreover, generative models offer a latent space amenable to the generation of new shapes. However, neural networks come with known limitations: their lack of interpretability and their constraints to achieving a good convergence. As a matter of fact, they typically require rich databases, powerful GPUs, and suffer from long training times and difficult parameters tuning. All this makes reproducing the results of deep learning based methods hard, even when a portion of the code is public.

Our work takes quite an opposite view, exploring the possibility of achieving similar results without any neural network. We show in fact that we can obtain the same capabilities offered by generative networks' latent spaces, by carefully handcrafting and designing every component. As a result, we already generate satisfying results even with modest datasets (around 500 shapes), and because every component has a clear meaning, one can easily improve the desired outcome by manual intervention.

In a way, this work ultimately consists in investigating what remains once those applications are stripped from neural networks, in order to better understand the specificities they bring.

Morphing based on deformations

The problem of realistic shape morphing was tackled by [START_REF] Gao | A data-driven approach to realistic shape morphing[END_REF] for human and animal bodies, interpreting a collection of shapes as a deformation space. By establishing shape correspondences, they obtain a shape distance allowing them to express morphings as a minimal path among clusters of similar body poses. We adopt a framework similar to theirs, while focusing on shapes which have varied topologies and no natural parameterization, such as chairs and sofas, such that a morphing cannot be interpreted as a mere deformation. Our work can be seen as a derivation of the same ideas, but adapted to different modalities, typically addressed by deep learning methods.

As far as they are concerned, instead of relying on geometric generative models, shape deformation is another popular choice to generate realistic shapes at a small cost, leveraging the similarity between objects belonging to the same class. To parameterize these deformations, most approaches [START_REF] Hanocka | Alignet: Partial-shape agnostic alignment via unsupervised learning[END_REF][START_REF] Kurenkov | Deformnet: Free-form deformation network for 3d shape reconstruction from a single image[END_REF] use the Free Form Deformation [START_REF] Sederberg | Free-form deformation of solid geometric models[END_REF], which arranges control points on a regular volumetric grid, and then uses cubic interpolation to distort the object as the points move. The key differences with our model are the following. First, they tackle different problems, such as partial shape alignment [START_REF] Hanocka | Alignet: Partial-shape agnostic alignment via unsupervised learning[END_REF] or shape reconstruction by deforming a template [START_REF] Kurenkov | Deformnet: Free-form deformation network for 3d shape reconstruction from a single image[END_REF]. Second, and most importantly, their shape deformations are pair-specific, trained to predict deformations between pairs ((A, B) where A is deformed into B). On the contrary, our model provides a consistent shape cubifiction, without any learning, allowing to compare all shapes (in terms of similarity measure); and we use this representation to estimate minimal-energy morphings.

Recently, [START_REF] Zheng | Deep implicit templates for 3d shape representation[END_REF] showed how to reconstruct shapes by deforming an implicit template, predicted by a neural network, giving shape correspondences and deformations. In our method, we can see the cubifiction step as a template deformation, where the template is the unit cube, and where the deformation is not learned but computed. We try to achieve similar results, in surface quality and interpolation smoothness, but without the constraints and limitations of deep learning as explained above.

Parametric and statistical shapes descriptors

Describing a shape class by a given set of parameters (also referred to as a dictionary) is a fundamental operation for applications such as classification, model retrieval, or similarity search. Some approaches [START_REF] Kalogerakis | A probabilistic model for component-based shape synthesis[END_REF][START_REF] Haibin | Analysis and synthesis of 3D shape families via deep-learned generative models of surfaces[END_REF] learn probabilistic distributions of shapes from the properties of their semantical parts, or even from the relations between parts simplified into simpler geometric primitives [START_REF] Tulsiani | Learning shape abstractions by assembling volumetric primitives[END_REF]. Others learn explicit parameterizations, typically possible on shapes representing body poses [START_REF] Allen | The space of human body shapes: Reconstruction and parameterization from range scans[END_REF].

Our method relies on shape cubifiction, serving as a shape descriptor which, while being class-independent, is more adapted to shapes having strong reflection symmetries. The key difference with these other methods is twofold. First, we show how traversing the space of plausible shapes does not require statistical inference but can be expressed as a minimalpath problem in a graph, whose structure captures the geometric relations between existing shapes. Second, our descriptor is invertible, which allows us to generate new shapes (for the intermediate states of morphings), without any neural network.

Graph-based shape space

After all shapes of a dataset are consistently cubified, we propose to discretize the global shape space in the form of a weighted graph, whose edges derive from a similarity measure between cubified shapes. This graph formalizes the notion of shape morphing, as a morphing from shape A to B will correspond to a minimal path from node N A to N B . This choice is motivated by the fact that for a large enough shape dataset, most intermediate steps of a morphing are close to existing shapes. This is why we explore the possibility of discrete morphings, restricted to known shapes, effectively bypassing the necessity to learn how to sample new shapes; while imposing them a minimal energy criteria.

We first present a general framework for shape morphings as minimal paths in a shape graph, for any arbitrary shape embedding. Then, we show how it can be used with cubified shapes and how our invertible cubifiction actually allows to easily extrapolate the discrete morphings to continuous ones.

Morphings as minimal paths

In this part, we consider the problem of morphings with shape priors, that is to say, morphings such that intermediate states are plausible. We operate under the minimal assumption that the shape prior is given by a finite set of exemplars, S = {S 1 , • • • , S N }, where the shapes are given in an arbitrary embedding. A morphing corresponds to a sequence of shapes from S, but we want a metric to evaluate the quality of a morphing. In order to do so, we impose a cost (or an energy) to a morphing:

E(M = (S 1 , • • • , S k)) k-1 i=1 E(S i , S i+1) (8.1)
Where E(S i , S j) is the energy of the transition S i → S j . Such energies can be evaluated as paths length in a weighted graph G defined by:

• nodes {N 1 , • • • , N N }, corresponding to the shapes in S;
• positive weighted edges {w i,j } where w ij can be interpreted as a similarity between shapes S i and S j . By convention, an absent edge (i, j) is equivalent to w ij = ∞.

We call a morphing A → B minimal if it is achieved by a shortest path in G from N A to N B . In order to consider symmetric morphings (i.e. equal to the time-reversed morphing), we assume G is an undirected graph, i.e, ∀i, j, w i,j = w j,i .

DVG-based volumetric shape descriptor

Shape registration and reconstruction: Using marching cubes [START_REF] Lorensen | Marching cubes: A high resolution 3d surface construction algorithm[END_REF], we obtain C, the mesh of the cubified shape, where the precision of the geometry is limited by the grid resolution of the DVG and the number of cell subdivisions. The original shape can be recovered by projecting C into V using the spline projector p V tps . This operation is important because it gives the baseline shape representation capacity for the morphings we generate: as a matter of fact, our morphings are done in V -space and C-space separately, and use the p V tps projector to effectively create the intermediate shapes. The intuition is that the DVG separates style and configuration, respectively into C and V . This way, "good" morphings can be found that minimize the amount of displaced mass to transfer style (C), while the deformation abilities of the grid allow to interpolate the configurations V . Figure 6.7 shows examples of such cubifictions and reconstructions using both p V tri and p V tps .

Content descriptor: We can extract the volume indicator function 1 S by thresholding the SDF. Its average value is binned within each DVG cell, in order to obtain an r 3 voxel image which serves as a shape content descriptor. Each cell value, between 0 and 1, represents the proportion of the cell which intersects the shape (see Figure 8.2). This descriptor allows to regroup models by similarity in order to build a shape graph, as explained in the following Section.

Graph of cubified shapes

We can apply the previous formalism to the space of cubified shapes. We propose a metric between shapes cubified via a DVG (according to the method described in Section 6.1), which interprets as an approximate transport cost.

The volumetric DVG descriptor is a blurry voxel image of the cubified shape. With a DVG resolution r = 8, this leads to a representation space with 8 3 = 512 dimensions, enough for the curse of dimensionality to prevent Euclidean distances from being meaningful. This naive approach does not leverage the proximity of the cells, which is why we propose a method based on the morphological dilation operator.

Atypical models detection and removal

A preliminary step is to exclude models for which the aforementioned volumetric descriptor is inadequate, that is to say, when the density of presence inside the cells is not homogeneous. To detect such models, we simply compute and sum all the inner-cell standard deviations of the discrete 1 S obtained following explanations in Section 6.2. Figure 8.3 shows the most adequate and inadequate models for the chair dataset: unsurprisingly, sofas and armchairs, which admit blocky cubifictions, are the most adequate models; while chairs with many intricate details are the least. Because our descriptor, and the subsequent similarity metric, are blind to these errors, removing these inadequate shapes from the graph shape space prevents them from appearing in shape morphings.

Similarity metric

Using the cross structuring element, real-valued dilation allows to add a one-voxel margin to a shape. Thus, the added voxels all correspond to cells whose L 1 distance to the shape is 1 /r (see Figure 8.4 for an illustration). We Note that for all locations outside of dilation(A), the penalty imposed by D AB 1 is the same as the L 1 voxel distance. Thus, for dissimilar models (e.g., if B is mostly located outside of dilation(A)), this metric d becomes less interpretable, because of the curse of dimensionality. We use this metric to build a shape graph G, after all pairwise distances are evaluated. In general, each shape is connected to its k-nearest neighbors. However, the linking rules can vary for several reasons:

• Certain shapes may be particularly different from the rest of the dataset. In order to prevent them from being considered in morphings, we trim off links whose weights are above a threshold τ w .

• To ensure that the final graph G is made of only one connected component, we can also decide to keep at least k min connections for every node, even if their weights are above τ w .

The impact of such trade-offs is discussed in Section 8.4.1.

Continuous morphings

To find a minimal path in G, we use Dijkstra's algorithm. The returned length corresponds to the energy of the minimal morphing, while the sequence of nodes provides a discrete morphing. Thanks to our invertible cubifiction, this shape sequence can be prolonged to a continuous morphing, by interpolating separately the style and content (V, C) of each shape. For the control points positions V , the interpolation is trivial and can just be linear; as for the interpolation of content values, we also propose linear interpolation. More precisely, we interpolate the cubified SDFs, and generate the geometry with marching cubes.

Because each edge in the path has a known length, the continuous path can be parameterized by arc length (see Discussion 8.4.4). For an arbitrary number of frames, whose positions are equally spaced along the path, this grants more interpolation frames in between less similar shapes, which are the most likely to have topology changes.

For a given sequence of style-content separated shapes ((V 1 , C 1), ..., (V k , C k)), and their corresponding edge lengths L = (l 2 1 , ..., l k k-1) in G, we can formalize the continuous morphing using a time parameter t ∈ [0, 1]:

i, i + 1, t = s L (t) Ṽ = (1 -t) • V 1 + t • V k y(t) = p Ṽ tps (1 -t) • C i + t • C i+1 (8.3)
Where s L (t) is the discrete arc lenth parameterization function, returning the indices (i, i + 1) of the edge nodes and the local time parameter t. Note that the interpolation on V is straight from V 1 to V k : the graph G is only used for interpolating the content C.

The same framework can be used to morph between new, unknown shapes, by embedding them into graph G, following all the steps: DVG optimization, shape cubifiction, links creation to connect these new shapes to the already-existing graph.

Morphing results

Data preparation and computing pipeline

We conducted our experiments using shapes from the ShapeNet [START_REF] Chang | ShapeNet: An Information-Rich 3D Model Repository[END_REF] dataset; more specifically using 500 from the chair category and 200 from the car category. Because the continuous morphings require all shapes to be closed manifolds, and for fair comparisons against [START_REF] Kleineberg | Adversarial generation of continuous implicit shape representations[END_REF] which preprocesses shapes the same way, we first converted them into manifolds using the same method as [START_REF] Park | Deepsdf: Learning continuous signed distance functions for shape representation[END_REF]. We then sampled l = 4096 points to be used as the DVG input pointclouds.

Then, for each shape, a DVG grid was determined under the following sets of parameters:

Grid properties: resolution r = 2 3 = 8 (3 successive subdivisions), cells subdivision resolution = 4 (see Figure 6.3), hence a total number of k = 8 3 • 4 3 = 32 768 query points in (6.7);

Energies: λ e = 1, λ b = 0.4, λ s = 4, α = β = 1;

Training epochs: for levels 0 through 3: 150, 150, 200, 300.

From the optimized DVG grids, we computed the content descriptors described in Section 6.2 and then built shape graphs.

Shape morphings

To produce shape morphings, we randomly picked pairs of nodes in G, and applied the method explained in Section 8.2.4. Following Equation (8.3), each morphing consists in a sequence of triplets (Ṽ , C, y). While we are typically only interested in the final geometry y, observing Ṽ and C provides, along with the found minimal path in G, an explanation for the generated geometries. We show such triplets in Figure 8.5, and put special cases in Figure 8.6. In these cases, the minimal path takes a detour via unexpected nodes (see shapes at locations (1b,4) and (2b,6)).

Qualitative analysis: comparison with deep learning

In our work, one of the main objectives was to produce results comparable in quality to those obtained via deep learning. We chose to compare our results to the adversarial neural network developed by [START_REF] Kleineberg | Adversarial generation of continuous implicit shape representations[END_REF], as it also relies on an SDF representation, and has published the weights of a pre-trained network, allowing us to produce new morphings.

For fair comparisons, we adopted the following methodology:

• We kept our graph G untouched, built from the same 500 chair examples as in the previous experiments;

• We first generated baseline morphings as latent space interpolations between random codes corresponding to chairs (about 4k examples);

• For each of these morphings, we extracted the first and last states: these provided query shapes that we embedded in G (as explained in Section 8.2.4) in order to generate our morphings;

• To match the surface quality of [START_REF] Kleineberg | Adversarial generation of continuous implicit shape representations[END_REF], we decreased the resolution of our SDFs before the mesh reconstruction via marching cubes.

Figure 8.7 presents some comparative results, selected for their representativity. Here are our observations for each of the 5 shown examples:

1. These shapes happened to have a direct link when embedded in G: the morphing entirely comes from the DVG.

2. While the morphing of the seat is good, the SDF interpolation is responsible for a hole in the leg (frames 4-10).

3. The armrests removal looks less pleasing, but on the flip side, the progressive rounding of the back is more natural.

4. Most of the artifacts (frames 7-12) come from the short-circuit effect, discussed in 8.4.3.

5. Apart from similar surface artifacts, it exemplifies the impact of our minimal paths for chair-to-armchair morphings. Indeed, they appear to favor transitions which add thin armrests halfway through.

When watched in videos, our morphings also appear generally less smooth. This is due to our SDF interpolations: when new mass appears within the 1voxel margin, it can look sudden, and then less pleasant to the eye. Despite these imperfections, we found it pretty remarkable to achieve such results while only relying on a much smaller dataset. It would indeed seem hard, if not impossible, to train a neural network with such limited data.

Methodology discussion

Our overall methodology comprises many components, each requiring design choices which influence the quality of the results. Because the systematic analysis of general shape morphing (for non-parametric shapes) is still uncharted territory, we presented quantitative and qualitative results where each component is designed in the minimally-viable way. However, our system admits many local improvements.

Hence the following observations and suggestions, noted from our experiments.

Graph connectivity

The quality of the morphings generated by our method depends on the graph building procedure, and more specifically, the node linking rule. Ordinarily, these graphs can be built obeying either a k-nearest neighbor condition, or a distance threshold condition. By design, our metric becomes less interpretable as the estimated distance increases. This is why we need to impose a distance threshold criteria. Doing so, the graph can however have several connected components, limiting the ability to interpolate between shapes of distinct modes (say, between an office chair and a sofa).

In practice, finding good threshold values can be hard, given the nonuniform distribution of pairwise distances (for instance, we observed that the distances between many sofas are disproportionately small). To mitigate the potential mistakes, we build the k-nearest neighbor graph with three constraints, in decreasing priority: for node i,

1. k i ≥ k min 2. k i ≤ k max 3. ∀j ↔ i, d(S i , S j) ≤ τ w

Volumetric descriptor sensitivity and specificity

In order to preserve fine information in the volumetric descriptor, we decided to average the indicator function 1 S within each DVG cell, instead of keeping all cells where it is non null (which would correspond to a classical voxelization). However, the values can be small, and have a negligible influence on the similarity measure, even where there is non-negligible mass. Take the example of a half cube within a DVG cell, its average presence density is 1 /2 3 = 1 /8 = 0.125. This is why we propose to apply the cubic root as a contrast function to increase sensitivity to low values -before feeding the descriptors to the similarity metric d(A, B).

We also performed experiments where the resolution of the volumetric descriptor is r = 16, effectively halving the 1-voxel margin tolerance. With this increased specificity, neighbors are more similar than before; but dissimilar models are further away than before. This led to discrete morphings which all contain many intermediate steps. Overall, the generated morphings were unpleasantly convoluted. We then settled for r = 8 as it appeared to be the best compromise, on our chair dataset.

Misleadingly low similarity and short circuits

Models whose topology is not adequately represented by our metric are, as explained in Section 8.2.3, not included in the graph. More precisely, we exclude the 20% most inadequate models.

But some models, not excluded from previous considerations, can badly influence the quality of morphings: those which display sharp surface features, not captured by our descriptor. They are typically not amongst the most adequate models, but still passed the aforementioned 20% threshold. Such a situation is depicted in Figure 8.10, rows (a).

Another interesting phenomenon manifests itself when a pair of unwanted models hijacks many morphings. If they are each connected to distinct regions of G, they provide a short circuit to many minimal paths (see Figure 8.9). This is the case for models at locations (1a,11) and (1a,12). They indeed appeared in many of our randomly generated morphings, creating unwanted surface artifacts. We show, in rows (b), that manually discarding these undesired models and short circuits can enhance the quality of the outputs. However, we kept all the other morphings we show here untouched, in order to exhibit the results without any manual intervention.

Metric and arc-length parameterization

Because our similarity measure d(A, B) only penalizes difference in shapes beyond a 1-voxel margin, many pairs of shapes have a very low distance, sometimes even null. This is due to the fact that the dataset contains many redundant shapes, with very similar content C (for instance, many chairs resembling the model on Figure 8.7 at (1a,0). Contrary to the previous discussion 8.4.3 (on misleadingly low similarity), this is the case where sim-ilarities ought to be low. Conversely, for dissimilar shapes, the edge length can be disproportionately large, accounting for most of the total path length. Since the discrete paths make continuous morphings by arc-length parameterization, this issue can lead to unpleasing morphings. It could have ben addressed in two ways:

1. Regrouping, like [START_REF] Gao | A data-driven approach to realistic shape morphing[END_REF], cliques of interconnected shapes;

and allowing at most one representative of a clique within a morphing;

2. Applying a non-linear transformation on the path length, before the generation of the continuous morphing.

We opted for the second option as it is the simplest and provides the baseline we are aiming for. We apply the function x → 1 + √ x, where the square root rebalances low and high values, and the constant 1 corrects for the almost-null edge lengths.

Conclusion and future work

The idea of the method we have presented is, essentially, to connect shapes similar in content, so that morphing between them is "simple": the DVG cubifiction trick makes such a simple formulation of morphings possible. As we have shown, performing a simple linear interpolation on cubified SDFs already generates qualitatively good morphings, therefore establishing a strong baseline. More complex approaches, based for instance on optimal-transport, would certainly yield better results. Yet, we produced results qualitatively similar to the state-of-the-art deep learning methods, while relying on very limited data.

Even if our DVG shape parameterization is not specific to any class, we restricted our analysis to chairs, because of the challenges posed by their varied topologies, and also showed initial results on cars. Moreover, their strong reflection symmetries are compatible with cubifiction.

For future work, we would like to investigate this application on the other shape categories from Chapter 7. It would also be interesting to reproduce these results at a larger scale, to better test the robustness of our minimal paths.

But the most interesting further development would be bridging the gap between our method and neural networks. Indeed, the SDFs interpolations are inherently limited and may not be able to fully capture shape priors, even in a large scale application.

As a first iteration, a generative model, trained only on cubified shapes for instance, could provide an interesting solution. This network would be used to interpolate between SDFs, instead of our simple linear interpolations between keyframes. This would allow to better understand the role -and potential advantages and disadvantages -of the discrete shape space we build. To this end, a first experiment would be to compare the structure of the network's latent space to our discrete "latent" space.

The second iteration would be a generative network trained to disentangle V and C in its inner representations, without any preprocessing of the shape dataset. Thanks to our formulation of the DVG optimization problem (in Chapter 6), We already have proof-of-concept results showing that the DVG energies can be used as a training objective for a neural network whose input is a pointcloud, and output is a satisfying V for the given shape. But more implementation efforts are required in order to obtain the full computation pipeline.

Conclusion

And there is an evening, and there is a morning -day one.

Genesis 1:5 (YLT)

In this thesis, we tried to build and use 3D shape representations which offer more control to human operators, without the intervention of elements of language, and by recombining already-existing building blocks.

Our approch is, thus, analogical, asking the operator to provide examplars for:

1 Which subparts they want to be present in the final shape. This was the concern of Part II.

2 What should be the general or detailed appearance of the final shape. This was the concern of Part III.

We explored both neural-network and modeling based approaches, as they shine at, respectively, resolving ambiguity2 and interpretability. The former led to a decomposer-recomposer network, able to continuously swap parts between shapes and to generate new combinations. The latter, to an array of possible applications, giving surprisingly good results even with the most naive numerical solutions; and to a parallel with the latent space of generative models, enabling data-driven shape morphings. We showed quantitative and qualitative results and analyses, which validate our methods on given datasets. Yet, this work seems far from finished, and in addition to the future investigations already mentioned in the corresponding chapters, we would like to discuss future research directions seen from a broader, higher level. We present them as a list of questions.

) Which representation is suited to multiple-part assembly?

We have devised ways which use pointclouds and voxels, but these two representations suffer from their poor surface quality. Their strength is their compatibility with recombination, that is to say, compositing several pointclouds into one total pointcloud. The same was possible with voxels, when using an ad-hoc mixer relying on affine transformations. The next step, in order to generate qualitative geometries, for a real use case scenario, is to find a good representation and a good way to mix inputs and/or outputs using such a representation. We think that SDFs could be a satisfying candidate, but a particular care should be dedicated to the stitching of subparts. We also think that DVGs could be particularly useful, for the reason that within a given category, the topology (i.e. the values of C) of subparts should be less diverse than that of whole shapes.

) How can we make DVGs more robust and general?

The robustness of our current model could be improved on several accounts. First, adaptive training and/or subdivision schemes for V would help the quality of the convergence -as we have seen, it is important that the edges of the initial cube align with salient features of the shapes. Ultimately, having a fully automatic and robust optimization technique, not relying on objectdependent hyper-parameters, would allow to apply DVGs to more diverse situations.

Second, the cube template at the basis of our DVGs restricts their generalizability. An interesting research direction would be the parameterization of DVG templates, based for instance on simple geometric primitives, arranged in a graph. A preliminary step would determine a correct template arrangement for a given shape, which would then be fitted. This could not only improve the alignment with sharp and semantically-rich features of the shapes, but also provide a signal useful to determine shape compatibility for further applications such as correspondences, style transfer and morphing.

) Bridging DVGs and neural networks?

This question was already discussed in the last chapter on DVGs (namely, in Section 8.5), but it deserves a place in this list. As a matter of fact, we believe that the separation of S into (V, C) could be leveraged by generative neural networks, in order to offer better control of the generations. We can reasonably expect it to, initially, match the generation quality of stateof-the-art methods but using maybe simpler architectures. This could be achieved in several ways, following several modalities -for instance, the presence at the input and/or output of the network; the DVG objective could be supervised (via preprocessing) or not (embedded into the network's objective function); etc.

Figure 1

 1 Figure 1.1: When linear regression is used for predictions, the true values y i are replaced by projecting the input examples x i on the determined line.

Figure 1 . 2 :

 12 Figure 1.2: Formal neuron with input vector a = (a 1 , • • • , a k), learned weights w and bias b, and activation function h.

 Figure 1.3: Illustration of an MLP with two Hidden layers. The connectivity between layers is Fully Connected, meaning that every neuron has incoming connections from the previous layer.

 Figure1.4: Illustration of layers found in CNN architectures. Refer to page 31 for details. Note that in both cases, patches may or may not overlap, depending on the choice for their sizes and spacing (called stride).

 Figure 2.1: A Signed Distance Field encodes the signed distance of any point in R 3 to the shape's surface: the inside is colored in red, the outside in blue.

 Figure 2.2: Explicit representations of the same model, estimated from the mesh in (c). The voxels were estimated in a 32 × 32 × 32 grid; the pointcloud comprises n = 4096 points.

 Figure 2.3: Effects of changing the point sampling strategy or count.

Figure 2

 2 Figure 2.4: Gears are a typical application of parametric modeling, offering control on properties such as teeth count or hole diameter.)

Figure 2

 2 Figure 2.6: Examples of segmented shapes, taken from Yi et al. [2016].

Figure 3 . 4 :

 34 Figure 3.4: Example of a learned 2-dimensional VAE latent space on the MNIST dataset, taken from Kingma and Welling [2013]. Notice the typical blurriness of the hallucinated intermediates and, to a lesser extent, of the real digit reconstructions.

 Figure 3.6: See how InfoGAN attributes meaningful properties to different latent coordinates c 1 , c 2 , c 3 , as opposed to a regular GAN (b), which does not achieve disentanglement. Rows: different sampling locations. Columns: varying values for c i . Figure reproduced from Chen et al. [2016].

Figure 3

 3 Figure 3.7: Architecture of PointNet, reproduced from Qi et al. [2016].

 Figure 3.8: Illustrations of results from works mentioned in this Section, reproduced from the corresponding papers.

 Figure 3.10: Selected shapes belonging to latent space (from Figure 3.9). Refer to discussion in Section 3.2.1, on page 67.

Figure 3

 3 Figure 3.11: Traversals in latent space (from Figure 3.9): they correspond to shape morphings. Refer to discussion in Section 3.2.2, on page 69.

Figure 4 . 1 :

 41 Figure 4.1: Structure of a hybrid encoder model, illustrated for simplicity with K = 2 parts.

Figure 4

 4 Figure 4.2: Example of some reconstructions. Top row: original. Bottom row: reconstructed. The pairs of colored arrows point at errors in the predictions.

 Figure 4.4 shows the results of selectively transfering parts of a plane onto another one.

Figure 4

 4 Figure 4.3: t-SNE projection of the encoder latent space, with close-ups of two blobs (zoom in to see models).

 Figure 4.4: Selective part transfer, compared to the global interpolation from a source to a target plane.

Figure 5 . 1 :

 51 Figure 5.1: Given unlabeled shapes, the Decomposer maps them into a factorized latent space. The Composer can either reconstruct the shapes with semantic part labels, or create new shapes, for instance, by exchanging chair legs.

Figure 5

 5 Figure 5.2: The proposed Decomposer-Composer architecture.

Figure 5

 5 Figure 5.3: Schematic description of the cycle consistency constraint. See Section cycle-consist for details.

Figure 5 . 4 :

 54 Figure 5.4: Reconstruction results of the proposed pipeline, for chair and table shapes. Gray shapes are the input test shapes; the results are colored according to the part label.

 Figure 5.5: Single part exchange experiment. GT denote ground truth shapes, REC -reconstruction results, SWAP -part exchange results. Unlabeled shapes were used as an input.

Figure 5

 5 Figure 5.7: Example of a whole (top) and partial (bottom) shape interpolation. GT1/2 denote original models, REC1/2 -their reconstructions, and linear interpolation results are in the middle, with varying values for α. Unlabeled shapes were used as an input.

Figure 5

 5 Figure 5.9: t-SNE [van der Maaten and Hinton, 2008] visualization of the produced embedding space, using both train and test shape embedding coordinates. The empty part coordinates correspond to the embedding coordinates of non-existing semantic parts.

 Figure 5.10: Projection matrix analysis. Two upper rows present the obtained projection matrices, and their sum. The bottom row shows the singular values of the matrices.

Figure 5 .

 5 Figure5.12 presents additional examples of shapes obtained by linear interpolation of the input shapes' embedding coordinates, and reconstructed from these interpolated embeddings using the Composer. The figure presents the ground truth shapes, their decoded versions, and eight interpolated shapes. Note that the proposed network operates on unlabeled input shapes, and produces gradual and plausible interpolations of pairs of shapes.Figure5.13 presents examples of chair shapes obtained by linear interpolation of a single part, a functionality unique to the proposed approach. Specifically, given two shapes, we exchanged a single part, e.g., a seat, between them, by changing the corresponding part embedding coordinates produced by the Decomposer. We then interpolated just these two embedding coordinates, and reconstructed new shapes from the interpolation result, together with the rest of the original part embedding coordinates, using the Composer. As illustrated by the results in Figure5.13, the specified part changes gradually, from the source to the target part. The rest of the decoded parts remain visibly similar to the original ones, while still adapting to the change in the interpolated part for example, the seat and the legs of the left chair in Figure5.13, second row, become smaller as the back interpolation proceeds. Here again, the proposed network operates on unlabeled input shapes.

Figure 5 .

 5 Figure 5.13: Example of a per-part shape interpolation. Left and right are test models with ground truth segmentation. The rest of the results were obtained by linearly interpolating a single part (stated on the left) in the left shape. Note that unlabeled shapes were used as an input. See the accompanying text in Section 5 for a detailed explanation.

 Figure 5.14: Ablation study: reconstruction result visualization. The top row shows input shapes with ground truth part labels. The following rows present the reconstruction result of the proposed method (Ours), obtained with fixed projections (Fixed proj.), decoder without STN (W/o STN), and without cycle loss (W/o cycle loss).

 Figure6.1: Comparison of the evolution of an active contour and an active volume. The active contour (a) starts from a rough initialization surrounding the segmented object, and progressively contracts until it approximates the contour of the object. The Active Volume(b), here depicted in 2D for clarity, is initialized as a regular voxel grid that contains the shape (here, a torus). As time goes by, the outside vertices get closer to the surface of the shape, while the inner ones ensure a global consistency in the discretization of space.

 Figure 6.2: Anatomy of a Deformable Voxel Grid: (a) Initial state, (b) Optimized to fit the surface, (c) Sliced view of the inner cells, (d) Resulting cubifiction on the input pointcloud.

 Figure 6.4: (a) Each level v k is built as the subdivision of the previous level, added to the next residual, according to Equation (6.8). The subdivision preserves the key points of a previous level (circled in red) and interpolates the value for the new points. The visualization is simplified by figuring color instead of position (color can be interpreted as the magnitude of a displacement). (b) If the DVG is not optimized hierarchically, but directly on the finest resolution level, the convergence gets trapped to a local minimum where the edges of the original cube (thicker liners) do not align with the dominant features of the shape.

Figure 6 . 6 :

 66 Figure 6.6: Optimized successive resolutions r of a DVG, for several shapes and a constant number of steps (150) per level r. Notice how a non-tight fit at an early resolution (left-most columns) leaves a visible shift even in finer resolutions (odd rows).

Figure 6

 6 Figure 6.8: (a) Mean error against maximum rotation angle θ max , grey area is the standard deviation; (b) Ground truth in black, misaligned prediction in red, where θ max ≈ 20 • , error = 0.078.

 3: Optimal DVG for varying values of λ b /λ e (indicated in the header), with their corresponding compacity, and compacity gain (with respect to the bounding box, shown for comparison in the last column).

 Figure7.1: Three-dimensional t-SNE embedding of values of V across several shape categories (viewed from different angles for better appreciation of the 3D). Notice how each category is largely localized in its own cluster.

 Confusion matrix of similarity search based on V (based on top-25 neighbors). Rows correspond to the category of the queries, and columns to the categories of found models. See page 141 for explanations on the methodology.

Figure 7

 7 Figure 7.3: Container (V , rows) and content (C, columns) separation. This generates interesting and controllable shape variations, mostly useful for furniture.

Figure 7

 7 Figure 7.4: Deforming V according to a PCA (determined across the chair dataset) induces a deformation field on a given shape. Center: original shape. Moving horizontally: shorter and longer seat (first principal component). Moving vertically: thinner and larger chair (second principal component)

152CHAPTER 7 .

 7 Figure 7.6: Correspondences computed by matching closest points in cubified shapes, and transferred back to the original shapes.

Figure 7

 7 Figure 7.7: Visualizing DVG grids wrapped around the shapes helps understand how points got matched by our simple shape correspondences.

Figure 7 . 8 :

 78 Figure 7.8: Spurrious correspondences. The first two rows are caused by DVG misalignment, the rest to shapes which do not really have meaningful correspondences in the first place.

Figure 7 .

 7 Figure 7.12: Style transfer across sofas.

Figure 7 .

 7 Figure 7.14: Style transfer across chairs.

Figure 7 .

 7 Figure 7.16: Style transfer across airplanes.

Figure 7 . 18 :

 718 Figure 7.18: PCA deformation on an office chair.

Figure 7 .

 7 Figure 7.20: PCA deformation on an armchair.

Figure 7 .

 7 Figure 7.22: Approximation by quadrilaterals, with increasing resolution, on airplanes.

Figure 7 .

 7 Figure 7.23: Approximation by quadrilaterals, with increasing resolution, on benches.

Figure 7 .

 7 Figure 7.24: Approximation by quadrilaterals, with increasing resolution, on chairs.

Figure 7 .

 7 Figure 7.25: Approximation by quadrilaterals, with increasing resolution, on various models.

Figure 7 .

 7 Figure 7.26: Approximation by quadrilaterals, with increasing resolution, on various models.

Figure 8 . 2 :

 82 Figure 8.2: To attribute values in [0, 1] to cells, we subdivide them and compute the proportion of centroids which fall within the shape S (shaded area).

 Figure 8.3: Examples of adequate and inadequate models, with respect to our volumetric descriptor which averages density of presence within 8 × 8 × 8 DVG cells.

 Figure 8.5: (Zoom in to see details) Examples of morphings generated with our method. Rows (a), (b), and (c) respectively correspond to the interpolation of cubes C, final shapes, and DVG grids V .

 Figure 8.7: (Zoom in to see details) Qualitative comparison of morphings obtained with our method ((a) rows) and with the Adversarial neural network of Kleineberg et al. [2020], based on implicit functions ((b) rows), time t ∈ [0, 16]. No manual correction was involved, and the grid resolution of the SDF was adapted to match surface precision.

Figure 8 .

 8 Figure 8.8a shows the influence that k min can have on the generated morphings.

 Figure 8.8: (Zoom in to see details) Shape morphings under varying graph properties. (a) Illustrates that keeping a small connectivity in the construction of the graph can lead to unpleasing morphings, with many intermediate landmarks (paths with more nodes). (b) Shows an acceptable result (handpicked) for a graph built with only 200 car examples.

Figure 8

 8 Figure 8.9: Nodes N i and N j , when they are connected to different regions of the graph G, can provide an influential edge for many minimal paths.

Table 1 .

 1 1: Inaccuracies may be present in a training dataset, which should not be incorporated to the learned model. The first two types, noise and bias, can lead to poor generalization to new data; while corruption and incompleteness hinder the interpretability of the results. All four lead to generalization errors.

	Bias	Misrepresentation of cer-	All pictures containing a
		tain correlations	tank have a clear blue sky
	Corruption	Some input/output pairs	Bike image labeled car
		associations may be wrong	
	Incompleteness The dataset may lack im-	No non-white people in a
		portant examples	faces dataset

Table 1 .

 1 Table 1.2 provides illustrations, in the form of examples or counter-examples, to each one of the aforementioned properties (realism, diversity, controllability, discoverability), in terms of statistical distributions.

	Target distribution of the generator	
	Realism	Diversity
	Controllability	Discoverability

2: Illustration of properties (and lack thereof) of generators, as listed on page 25). The target datapoints are abstracted to three parameters (position and color). Counter-examples are marked with , while denotes a positive example.

Table 2 .

 2

	Polygon Typical use	Characteristics	Illustration
	Triangle Used in real-time rendering.	Guaranteed flatness
		Adapted for organic shapes,	Easy surface normals
		with curved regions.	Non intuitive mesh sim-
			plification
			Obtuse or elongated
			triangles are ill-suited
			to shape processing
	Quad	Used in manual model-	Easy subdivisions
		ing. Adapted for industrial	Easy mesh simplifica-
		shapes, with straight lines.	tion
			Generally non flat
			Rendering issues linked
			to misbehaved surface
			normals

1: Meshes are generally formed of triangles or quadrilaterals (quads), each one having their own specificities.

Table Car

 Car

	Pistol
	Lamp
	Plane
	Figure

Table 5

 5

	.3.

Table 5

 5

	.2: Part decoder (Composer) architecture. The fullyconnected layer
	(FC), and every de-convolution layer (deconv.), are followed by a Rectified
	Linear Unit (ReLU) layer, a batch normalization layer, and a dropout with
	keep probability 0.8.		
	Type	Kernel	Stride	Outputs Output size
	conv. 6 × 6 × 6 2 × 2 × 2	32	16 3
	conv. 6 × 6 × 6 2 × 2 × 2	32	8 3

Table 6 .

 6 2: Robustness to varying sampling densities. Refer to 6.3.2 for a description of the metrics.

	Sampling density 1024	2048	4096	8192
	Compacity	0.427 0.434 0.439 0.443
	Compacity gain	+81% +85% +87% +90%
	Surface score	0.782 0.792 0.796 0.797
	Symmetry MSE	0.199 0.175 0.158 0.152

Table 6 .

 6

	4e-3	4e-2	4e-1	4	Bounding box
	0.341	0.339	0.326	0.272	0.130
	+161%	+160%	+150%	+109%	-
	0.810	0.792	0.804	0.793	0.537
	+51%	+47%	+49%	+47%	-

 Morphing: Not only interpolating continuously between values of V , but also of C. This application has been dedicated a much more thorough study, presented in Chapter 8.

		I		II	III
		Relies on	Compatibility	Required number of shapes
		V	C	Surface Volume One Two	Many
	Analysis	Correspondences		
		Similarity search		
		Approximation with quads		
		Style transfer		
		Semantical editing		

 .1, namely, whether they rely solely on V , or on C. 140CHAPTER 7. APPLICATIONS FOR SHAPE ANALYSIS AND EDITING Category Car Chair Airplane Sofa Rifle Lamp Bench Speaker Total

	Size 1500 1500	1100	800 1000	850	1500	750	9000
	Table 7.2: Number of shapes used in the applications demonstrated in this
	chapter, taken from the ShapeNet [Chang et al., 2015] dataset.		

This personal neologism, coined for the occasion, has a self-explanatory meaning.

Note that the Artificial in Artificial Neural Network is always implicit, in agreement with the prevailing usage in the literature.

A black box behavior emerges from the intricate architecture of neural networks, and is quite infamous in the more recent scientific literature. As a matter of fact, it raises concerns in interpretability and accountability. As an illustration, how can we trust the output of a neural network, say one which drives an autonomous car, when we do not know how its inner state translates to the final action? But in this study, we use the term black box in a neutral way.

The word space loosely refers to a mathematical set with a determined structure. For instance, it can correspond to a vector space, a bounded part of a vector space, or a manifold.

Comparable in the sense that can be compared, saying that a < b or a = b or a > b.

Is linear regression a machine learning technique? Linear regression is a classical tool in mathematics, which leverages very few concepts from machine learning. So is it relevant to present it as an ML technique? Let us propose a use case-driven rule of thumb: if the line is regressed for geometric purposes, it is probably not ML. If on the contrary, the line is used to draw new predictions, it is probably ML.

[TODO] There exist several performance metrics, detailed in[TODO]

This is achieved by taking contiguous slices of a random permutation of[1, n]. These mini-batches generally have the same number of elements, and are cycled through before re-shuffling.

RGB images are typically treated as three different scalar signals, one for each channel.

This is also referred to as weight sharing, meaning that many connections in the network share a mutual weight.

Stereography, meaning double display, is the process of showing different images to the left and right eyes of a viewer. The slight differences create the illusion of depth.

As opposed to traditional methods which subtract from the raw material -such as sculpture.

The x in voxel comes from the analogy with pixel -picture element.

This is referred to as aliasing.

The notable sanity checks are: is there any flap (an edge shared by at least three triangles)? are normals consistently oriented? are there overlapping triangles? is the object watertight (no holes on the surface)?

The leading free and open source software suite is Blender, used by hobbyists and professionals alike.

AAA ("triple A") refers to the biggest productions in the game industry, with budgets in the $100 millions, and several millions of copies sold around the world.

More complex surfaces can also be created parametrically. This is the role of Splines and Nurbs.

The traditional rendering pipeline is non-differentiable, due for instance to the computation of triangles occlusion. Replacing the real occlusion with a softened version, via a sigmoid, allows to express rendering as a differentiable function, which can be part of a neural network architecture.

Note that, similarly to the problem of classification, categories are arbitrary. Shapes belonging to different classes (chairs, beds, tables) can be regrouped into one category (which we may choose to call "furniture"). In this case, the generative model may serve to generate any of these types, to the expense of more difficulties in training convergence or in generation controllability.

In the terminology of manifolds, coordinate map can refer to N or ϕ. Conflating these two is not problematic since N is only useful as the image of ϕ.

Since this lower bound is to be maximized.

Large-scale Scene UNderstanding

A pointcloud representing a depth map, in other words, where points have coordinates of the form (x, y, f (x, y)).

Scene semantical clustering means segmentation at the scale of the scene, by extracting and recognizing its various objects.

We did not discuss Recurrent networks in Chapter 2 as they are not feedforward networks -indeed, they contain loops -and because we do not use them in our work. Their main usefulness is the ability to predict a sequence of arbitrary length. This is why they are, for instance, a major component of Natural Language Processing.

The data is arranged in a k × n matrix X, comprising k examples of dimension n.

Namely, it relates to the definition of knowledge in a broader, philosophical sense, and to the reliability of experts chosen to establish a ground truth. Note that the discrepancy between experts is a well known problem within, for instance, the field of Medical Imaging; but approaches generally consider that a real -objective -ground truth does exist.

Unfortunately, we only had access to the pretrained model, without corresponding indices in the training set.

This library will be released on Github upon publication of this manuscript.

This intuition follows the Wittgenstein's ruler maxim: "Unless you have confidence in the ruler's reliability, if you use a ruler to measure a table, you may also be using the table to measure the ruler."[Taleb,

2001]

Note however that our application is different from the typical style transfer found in the literature.

As for the consistent alignment of shapes, this could be performed as a pre-processing step.

Say we optimized V up to its fourth resolution level, r = 3, into an 8 × 8 × 8 grid. All subsequent subdivisions will not be optimized, but can still be used to refine the resolution of the voxelization.

Figure 7.10: Style transfer across chairs.

By medium-sized, we mean of the order of 100-1000 models: enough to have diversity, not typically enough for deep learning.

As a reminder, we refer here to the ambiguity inherent to shape generation by parts recombinations: faithfulness of a given part to its original form, on the one hand, and cohesiveness of the newly assembled object, on the other hand. These two goals are contradictory, yet desirable.

Acknowledgments

Bien qu'étant un exercice personnel, une thèse ne peut être menée à bien qu'avec le soutien de nombreuses personnes. Outre les nombreux enseignants

Part II

Structure-aware generation for 3D Shapes

Chapter 6

Motivation, Definition and Optimization of DVGs

Like a stubborn fisherman, with a net made of holes.

Jane Bordeaux

Abstract of this Chapter. This chapter introduces Deformable Voxel Grids, our adaptation of Active Volumes for semi-automatic shape processing. Based solely on an energy-minimization problem, it adapts the embedding space itself to a shape in order to facilitate further shape processing and analysis, by means of shape-DVG registration. This chapter focuses on the design of an automatic optimization scheme, à la neural networks, in order to apply DVGs to entire datasets at once.

The neural-network based methods for 3D shape analysis and synthesis presented in the previous chapters address the inherent difficulty of comparing three dimensional shapes to one another on a purely geometrical level. Indeed, they lack a "good", canonical basis of representation.

On the one hand are surfacic representations: pointclouds and meshes. Pointclouds are unordered sets, so comparing two requires a registration step which essentially determines point-to-point correspondences. This matching can operate under different assumptions: for instance, ICP [START_REF] Besl | A method for registration of 3-d shapes[END_REF] for rigid affine transformations, or Earth Mover's Distance [START_REF] Fan | A point set generation network for 3D object reconstruction from a single image[END_REF] for minimal transport-cost one-to-one matching. The same holds for meshes, but the explicit connectivity also allows for spectral methods, whose local descriptors derive from eigenvalues of operators such as the Laplacian [START_REF] Sun | A concise and provably informative multi-scale signature based on heat diffusion[END_REF][START_REF] Ovsjanikov | Functional maps: A flexible representation of maps between shapes[END_REF].

On the other hand are volumetric representations: voxel grids and signed distance fields (SDF). Being scalar signals in the unit cube of R 3 , they indeed : for each Query model, we find the three nearest-neighbors in the whole dataset. Models are colored according to their respective categories (same colors as in Figure 7.1). In the majority of cases, they not only belong to the same category, but are also functionally similar. The last example, on the bottom-right corner, shows a case of confusion, where an uncommon bench is similar to sofas.

c, and we take the real class of the found models as the predicted class.

We performed this experiment on the whole 9000 shapes of our dataset, with k = 25, and computed the frequency of appearance of each class in the returned models. The corresponding confusion matrix can be found in Table 7.3.

To read this table, consider for instance the value 0.3% at location (Car, Chair): it means that in the aggregated 25 predictions for all cars present in the dataset, 0.3% are chairs; etc. This table provides information not only on the reliability of our approach, but also on the dataset itself, namely, about which categories of shape have similar appearances. The highest accuracy is obtained with categories, respectively, Car, Airplane, and Rifle. These

Additional Figures

The [START_REF] Bookstein | Principal warps: thin-plate splines and the decomposition of deformations[END_REF] acting directly on the original mesh (no cubifiction).

Pages 164-168 / Semantical editing Figures 7.17 Chapter 8

DVG-induced Shape Space for Morphing

The film is the first art form capable of demonstrating how matter plays tricks on man.

Walter Benjamin

Abstract of this Chapter.

Building on the intuitions developed in the two previous chapters, we here expose our solution to achieve shape morphings via DVG-enabled cubifiction. We show how the container/content separation presented before, combined with a specific content metric, translates into the analogy of generative networks' latent spaces. Then, we produce results mimicking stateof-the-art in deep learning, on the chair category. However, our method necessitates very limited data and is not only explainable, but also controllable.

In the literature, the study of shape morphings typically follows one of two assumptions: (a) both shapes have a shared connectivity, generally because they embody the same type of shape (e.g. human or animal bodies), and the goal is to find a plausible movement between two configurations; or (b) the two shapes are considered in a vacuum, without external shape priors, and the goal is to find a deformation from one to the other, which minimizes a certain distortion criteria (e.g. for pairs of arbitrary shapes).

Given the creative opportunities of morphing for computer graphics, it is desirable to develop methods with a wider applicability. In the recent years, generative neural networks such as auto encoders and GANs have not only proven powerful to generate realistic 3D shapes, in various formats (voxels, pointclouds, or meshes), but also offer a latent space amenable) Can our methods be applied to more varied shapes?

In both cases, our best results were accomplished on furniture models: chairs, sofas, tables, etc. More investigations are required to understand whether it is a property of the design -that our formulation of the problems only make sense for this type of objects -or a property of the execution. We think that some types of shapes are probably not compatible either with the segmentation into subparts, or with the entanglement of container and content; for instance, organs. It does not seem clear, yet, whether these questions could be more easily answered with an experimental or theoretical framework. In the latter case, a possible direction for the research efforts would be in finding good shape invariants, which act as a signature for compatibility.

MOTS CLÉS

Formes 3D, Séparabilité, Sémantique, Réseaux de neurones, Encodeurs, Espace latent.

RÉSUMÉ

Cette thèse explore la relation entre géométrie et sens dans les représentations de formes 3D, pour une génération contrôlable. Dans une première partie, nous concevons des réseaux de neurones, entraînés à démonter une forme en ses parties constitutives, et à réassembler des parties aléatoires en un seul objet. Ceci répond à l'ambiguïté inhérente à la recombinaison de formes par assemblage, entre fidélité des détails et cohésion d'ensemble. La deuxième partie présente un modèle déformable baptisé DVG. En épousant la surface d'un objet, il s'aligne avec ses lignes saillantes, et offre des points de contrôle pour des déformations faciles. Nous montrons, sur une variété de formes, comment ils résolvent des problèmes tels que l'exploration de données, la recherche par similarité, la synthèse par déformation, l'approximation de surface et les correspondances de formes. Enfin, nous exploitons une analogie entre DVG et espace latent des réseaux génératifs pour générer des morphings de formes.

ABSTRACT

This thesis explores, for 3D shape representations, the relationship between geometry and meaning, for controllable shape generation. In a first part, we design and train neural networks to disassemble a shape into its constitutive parts, and to reassemble random parts into a single object. This adresses the inherent ambiguity of shape recombination by assembly, namely the tension between faithfulness of details and cohesiveness of the whole. The second part introduces a deformable template model, which we named DVG. When it smoothly embraces the surface of an object, it aligns with its salient lines, and gives control points for easy deformations. We show, on a large variety of shapes, how DVGs can be used to solve problems such as dataset exploration, similarity search, novel shape synthesis by deformation, surface approximation, and shape correspondences. Finally, we draw an analogy between DVGs and the latent space of generative networks, which we use to generate shape morphings. KEYWORDS 3D shapes, Separability, Semantics, Neural networks, Encoders, Latent space.