
HAL Id: tel-03580501
https://theses.hal.science/tel-03580501v1

Submitted on 18 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Saturation of Streaming RDF Triples
Mohammad Amin Farvardin

To cite this version:
Mohammad Amin Farvardin. Scalable Saturation of Streaming RDF Triples. Document and Text
Processing. Université Paris sciences et lettres, 2021. English. �NNT : 2021UPSLD019�. �tel-03580501�

https://theses.hal.science/tel-03580501v1
https://hal.archives-ouvertes.fr

Préparée à Université Paris-Dauphine

Scalable Saturation of Streaming RDF Triples

Soutenue par

Mohammad Amin
FARVARDIN
Le 19 Janvier 2021

École doctorale no ED 543

Ecole doctorale SDOSE

Spécialité

Informatique

Composition du jury :

Mme. Mirian HALFELD FERRARI ALVES
Full Professeur,
Université d′Orléans Président

M. Bernd AMANN
Full Professeur,
Université Sorbonne - LIP6 Rapporteur

Mme. Fatiha SAÏS
Professeur,
Université Paris Saclay Rapporteur

Mme. Mirian HALFELD FERRARI ALVES
Full Professeur,
Université d′Orléans Examinateur

M. Denis CAROMEL
Full Professeur,
Université Nice-Sophia-Antipolis Examinateur

M. Khalid BELHAJJAME
Maître de Conférences,
Université Paris Dauphine - PSL Co-Directeur de thèse

M. Dario COLAZZO
Full Professeur,
Université Paris Dauphine - PSL Directeur de thèse

Acknowledgment
First of all, my gratitude goes to my director of the thesis, Prof. Dario COLAZZO,
who patiently guided and actively helped me in my research. Thank you for
everything you have contributed, scientifically throughout this work. For keeping
the doors wide open to answer my questions and help me overcome whatever
hardships came to my way. For your friendship and your undeniable support. For
all the things that you have taught me during these years. More, in particular, I
really admired Dario for his kindness and patience. I will always be grateful to
him for being the one who really believed in me and supported me from the first
moment. I could not have had a better supervisor.

Likewise, I would also like to thank my co-director of the thesis, Dr. Khalid

BELHAJJAME, for all of his contributions, supports, patience, and delighting in the
road of the research throughout this thesis. For setting me on the right path when
I lost sight of what laid ahead, for his friendship, again patience, motivation, and
guidance both on a professional and personal level. For all of our jointmeetings and
various discussions. I also admire several qualities of my co-supervisor Khalid,
but there is one that stands above all, and it is his passion for science. With his
enthusiasm and his hard-working attitude, he managed to transmit to me one of
the most important motivations that drive the work in academia: believing in what
you are doing. Thanks very much for it.

Thanks, both of you, for transforming the thesis duration into enjoyable and
unforgettable moments and engraved them in my memory.

Besides, I would like to thank Prof. Bernd AMANN from the Université Sor-
bonne (LIP6), for accepting to reviewmy thesis and act as a reporter. It is my honor
to have you as part of the scientific committee members. Thank you for attending
my pre-defense session and proposing guidance lines to improve my work.

It is also my pleasure to have Prof. Fatiha SAÏS from Université Paris
Sud, Prof. Miriab Halfelf Ferrari ALVES from Université d′Orléans, and
Prof. Denis Caromel from Université Nice Sophia Antipolis (UNSA) in the
scientific committee members of my thesis. My sincere thanks go to you for
accepting to thoroughly review my thesis, for your insightful comments and sug-
gestions.

I would also like to thank allmy colleagues, friends, and in general the LAMSADE
family whom I have shared unforgettable moments in recent years. Thank you for
the lively and heated discussions, for your friendship, for all the work carried out
together, and all the time we spent in laughter and joy.

1

Finally, my acknowledgment would not be complete if I do not thankmy family,
who have fundamentally supportedme in this way. I would like to, especially thank
my dear wife, DR. Fatemeh RAJABI. Dear without your support, this work would
not have seen the light and would not have been possible to accomplish. Thanks
for your endless support, a constant presence, for believing in me, and for the
courage that you always gifted to me. Finally, I want to tell my son, Aiden, the last
6 months of the thesis were combined with your indescribable hope, cheerfulness,
and sweetness.

2

Résumé

À l’ère des Big Data, les données RDF sont produites en grand nombre. Bien qu’il
existe des propositions de raisonnement sur de grands graphiques RDF utilisant
de grandes plateformes de données, il y a un manque de solutions qui le font dans
des environnements où les données RDF sont dynamiques, et où de nouvelles
instances et de nouveaux triplets de schéma peuvent arriver à tout moment.

Dans cette thèse, nous présentons la première solution pour raisonner sur de
grands flux de données RDF en utilisant de grandes plateformes de données. Ce
faisant, nous nous concentrons sur l’opération de saturation, qui cherche à déduire
des triples RDF implicites étant donné les contraintes du schéma RDF ou OWL-
Horst. En effet, contrairement aux solutions existantes qui saturent les données
RDF en masse, notre solution identifie soigneusement le fragment de l’ensemble
de données RDF existant (et déjà saturé) qui doit être pris en compte étant donné les
nouvelles déclarations RDF délivrées par le flux. Ainsi, elle effectue la saturation
de manière incrémentielle. L’analyse expérimentale montre que notre solution est
plus performante que les solutions de saturation en masse existantes.

3

Abstract
In the Big Data era, RDF data are produced in high volumes. While there exist
proposals for reasoning over large RDF graphs using big data platforms, there is a
dearth of solutions that do so in environments where RDF data are dynamic, and
where new instance and schema triples can arrive at any time.

In this thesis, we present the first solution for reasoning over large streams
of RDF data using big data platforms. In doing so, we focus on the saturation
operation, which seek to infer implicit RDF triples given RDF schema or OWL-
Horst constraints. Indeed, unlike existing solutions which saturate RDF data in
bulk, our solution carefully identifies the fragment of the existing (and already
saturated) RDF dataset that needs to be considered given the fresh RDF statements
delivered by the stream. Thereby, it performs the saturation in an incremental
manner. An experimental analysis shows that our solution outperforms existing
bulk-based saturation solutions.

5

Contents

1 Introduction 13
1.1 Context and Motivation . 13
1.2 Problem . 15
1.3 Solution (Contributions) . 17
1.4 Thesis Structure . 18

2 Preliminaries 19
2.1 RDF and Semantic Data Reasoning 19
2.2 Big Data Platforms . 24
2.3 Saturation of Large RDF Graphs 27
2.4 Conclusion . 31

3 Related Works 33
3.1 RDF Reasoning . 34

3.1.1 RDF Partitioning . 35
3.1.2 RDF Reasoning Using Big Data Platforms 39

3.2 Incremental Reasoning . 41
3.3 Indexing Structures for RDF Data 44
3.4 Conclusion . 46

4 RDFS Saturation in Streaming 49
4.1 Streaming Saturation Algorithm 56

4.1.1 Process, Store, and Index 57
4.2 Soundness and Completeness . 60

7

4.3 Evaluation . 65
4.3.1 Datasets . 65
4.3.2 Experiment Setup . 66
4.3.3 Results . 67

4.4 Conclusion . 76

5 OWL-Horst Saturation in Streaming 77
5.1 Challenges on OWL-Horst Reasoning in Stream 79
5.2 Evaluation . 90

5.2.1 Datasets . 90
5.2.2 Experiment Setup . 91
5.2.3 Results . 91

5.3 Conclusion . 99

6 Conclusions, Discussions, and Future Work 101
6.1 Discussion of Scope . 103
6.2 Discussion on Streaming Platform 103
6.3 Future challenges . 104

8

List of Figures

2.1 Instance and schema RDF triples. 21
2.2 RDF graph representation of a conference paper. 22
2.3 D-Stream processing model. In each time interval, the records that

arrive are stored reliably across the cluster to form an immutable,
partitioned dataset. This is then processed via deterministic paral-
lel operations to compute other distributed datasets that represent
program output or state to pass to the next interval. Each series of
datasets forms one D-Stream [87] 27

2.4 The optimized execution RDFS rules order. Dashed ellipses show
the schema-level entailment, while the solid ellipses are for the
Instance-level entailment. The white colour ellipse has no depen-
dency prerequisite with other RDFS. The lighter ellipses come
first. 29

3.1 A Research Agenda for Stream Reasoning [53] 34
3.2 Correlation between triple patterns [68] 36
3.3 Workflow for Workload-Driven Partitioning [51] 37
3.4 Relation between the various RDFS rules [75] 40
3.5 spo Indexing in Hexastore [83] 44

4.1 Newly Schema Triples . 50
4.2 New received and inferred Schema Triples (NST) 56
4.3 RDFS Ruleset Dependencies. 63

9

LIST OF FIGURES

4.4 Micro-Batches of DBpedia 100 Million Triples 67
4.5 Micro-Batches of DBpedia 200 Million Triples 69
4.6 DBpedia 300 Million Triples on 2 and 4 nodes - Our approach . . 70
4.7 Fetching triples per micro-batch. DBpedia 200 Million Triples . . 70
4.8 Micro-Batches of LUBM 35 Million Triples 71
4.9 Micro-Batches of LUBM 69 Million Triples 72
4.10 Micro-Batches of LUBM 165 Million Triples 73
4.11 Micro-Batches of DBLP 195 Million Triples 73
4.12 Average processing time and indexing management / micro-batch . 75

5.1 The Global Overview of Saturation Process on OWL-Horst Rules. 81
5.2 UniProt 320 Million Triples - Comparison with Cichlid (2 nodes) . 92
5.3 UniProt 320 Million Triples - Incremental Streaming (2 nodes) . . 93
5.4 UniProt 320 Million Triples - Comparison with Cichlid (4 nodes) . 95
5.5 UniProt 320 Million Triples - Incremental Streaming (4 nodes) . . 96
5.6 The First 17 mbes of UniProt 320 Million Triples - Cichlid 97
5.7 Fetches triples per mb. UniProt 320 Million Triples 99

10

List of Tables

1.1 Representations of an RDF Triple 14

2.1 RDF Statements [25] . 20
2.2 RDFS Statements . 21
2.3 RDFS Ruleset . 22
2.4 Transformations and actions available on RDDs in Spark. Seq[T]

denotes a sequence of elements of type T [86] 26

3.1 Spark-based RDF systems . 38

4.1 The 1 and 0 indicate the availability of that particular schema rules
in mbi. X → Y means: The output of rule X used as an input of
rule Y . 51

4.2 Instance triples . 54
4.3 Saturated Streaming Triples . 55
4.4 Average time per micro-batch (mb). TE: Total Execution

time of whole process PT: Average of Processing Time per
micro-batch Indexing: Average time to fetch the triples by
relying on the indexing information FT: Number of Fetched
Triples via indexing information 75

5.1 OWL-Horst rule set. Schemas are indicated by italic font. 78
5.2 Types and numbers of schema triple per micro-batch in Figure 5.4. 94

11

LIST OF TABLES

12

1
Introduction

Contents
1.1 Context and Motivation . 13

1.2 Problem . 15

1.3 Solution (Contributions) 17

1.4 Thesis Structure . 18

1.1 Context and Motivation
The semantic web [22] is a branch of the present WorldWideWeb, where comput-
ers are able to interpret and explain the semantics of information. The semantic
web creates a universal medium for the exchange of data. Simplicity of machine-
understandable data on the web are rapidly becoming a high priority for many
corporations, individuals, and societies [10].

The semantic web data model relies on Resource Description Framework
(RDF) [12], where each RDF statement is made of three different terms: a
subject, a predicate and an object. The following example states that Marie
Curie was awarded a Nobel prize in physics. In this statement,Marie_Curie is the
subject, award is the predicate and Nobel_Prize_in_Physics is the object of
a RDF statement.
<dbpedia:Marie_Curie> <dbo:award> <dbpedia:Nobel_Prize_in_Physics> .1

1In this thesis, we often shorten IRIs (Internationalized Resource Identifier) using prefixes for
the sake of horizontal space limitation and to enhance expressiveness.

13

CHAPTER 1. INTRODUCTION

Table 1.1: Representations of an RDF Triple

RDF Type An Example

Graphical subject
predicate

object

Triple subject predicate object

Relational predicate (subject, object)

RDF/XML

<rdf:Description rdf:about="subject">

<ex:predicate>

<rdf:Description rdf:about="object" />

<ex:predicate>

<rdf:description>

Turtle subject ex:predicate object .

N-Triple <http://example.org/#subject> <http://example.org/ontology/predicate> <http://example.org/#object> .

The Semantic web contains a massive amount of such statements, which de-
scribe information on extremely broad range of domains, from Foods and Agri-
culture Organization (FOA) [1] and environment [5] to chemical-gene/protein
intersections [4] and medical subjects headings (MESH) [11] to government in-
formation [6] and social media [7].

The subject of a statement is an IRI2 or a blank node. IRI stands for
Internationalized Resource Identifier, and is used in the semantic web to identify
resources. The predicatemust be an IRI, and object is an IRI, a blank node or
a literal. Blank nodes, denoted as _:bi, are used to represent unknown resources
(i.e., IRIs or literals). It is asserting that the relationship denoted by the predicate
p holds between the subject s and object o of the triple. Thus, we assume:

• U is the set of IRIs denoting both resources and relationships,

• L is the set of literals denoting constants represented by means of strings,

• B is the set of blank nodes (corresponding to resources for which neither a

2An IRI is just a URI exploiting Unicode in place of US Ascii (American Standard Code for
Information Interchange) as the character set.

14

CHAPTER 1. INTRODUCTION

IRI nor a literal is given/known).

We also assume that these sets are infinite and countable. Blank nodes, here
denoted as _:bi, are essential in RDF to encode incomplete knowledge. They are
used to representing unknown resources (IRIs or literals). An RDF triple s p o is
well-formed if the subject s belongs toU ∪ B, the predicate p (also called property)
belongs toU and its object o belongs toU ∪ L ∪ B. In this work, we assume triples
to be well-formed. An RDF dataset can be viewed as a directed graph, hence the
term RDF graph. Each triple s p o gives rise to an edge labeled by the property p,
which connects a node representing the subject s to a node representing the object
o.

Table 1.1 illustrates an RDF triple in different ways. They consist of: a Triple,
an RDF/XML, Relational form, Turtle form, and N-Triple. For example, the
following triple –shows in form of N-Triple– states that Neil Armstrong was on
the Apollo 11 mission:

<http://dbpedia.org/resource/Neil_Armstrong> <http://dbpedia.org/ontology/mission> <http://dbpedia.org/resource/Apollo_11> .

We consider the N-Triple serialization for the rest of this thesis (Table 1.1
last row). The N-Triple statement is a sequence of a subject, a predicate, and an
object terms while separated by whitespace (spaces U+0020 or tabs U+0009) and
terminated by a full stop ‘.’ after each triple [13], and every line contains only one
N-Triple. N-Triple may contain a 4th term. This term introduces the dataset that
the triple belongs to.

1.2 Problem

In the Big Data era, RDF data, just like many other kinds of data, are produced in
high volumes. This is partly due to sensor data produced in the context of health
monitoring and financial market applications, feeds of user-content provided by
social network platforms, as well as long-running scientific experiments that adopt
a stream-flow programming model [49]. To take full advantage of semantic data
and turn them into actionable knowledge, the semantic web community has devised
techniques for processing and reasoning over RDF data (e.g.[23, 70, 80]). This
trend generated the need for new solutions for processing and reasoning over
RDF datasets since the existing state-of-the-art techniques cannot cope with large
volumes of RDF data. Nowadays, aside from the volume of data that, so far
produced, processing the frequent generation of massive data in a reasonable time

15

CHAPTER 1. INTRODUCTION

carries a new challenge. For example, in the context of LOD3, data are produced
continuously, and, since the RDF embraces OWA (Open-World Assumption),
therefore there is no restriction to having new schemas with newly data.

A typical and fundamental operation for reasoning about RDF data is data
saturation. This operation involves a set D of RDF data triples and a set S of
semantics properties, expressed in terms of either RDF Schema [24] and/or OWL
[54], and aims at inferring the implicit triples that can be derived from D by using
properties in S . For example, given the triples below as D and S :

D: <dbpedia:Neil_Armstrong> <dbo:mission> <dbpedia:Apollo_11> .

S : <dbo:mission> <rdfs:range> <dbo:SpaceMission> .

we could infer the following statement as a new knowldge that was not stored in
the given dataset.

<dbpedia:Apollo_11> <rdf:type> <dbo:SpaceMission> .

Data saturation is crucial in order to ensure that RDF processing and querying
actually work on the complete informative content of an RDF database, without
ignoring implicit information. To deal with the problem of saturating massive
RDF datasets, a few approaches exploiting big data paradigms (namely Map-
Reduce [48]) and platforms, notably Hadoop and Spark (see e.g., [75, 35]), have
already been proposed. In [75] Urbani et al. described the WebPIE system and
showed how massive RDF data can be saturated by leveraging on the Map-Reduce
paradigm over Hadoop. In [35] Gu et al. presented the Cichlid system and showed
how to speed up saturation by using Spark and its underlying Resilient Distributed
Datasets (RDDs) abstraction. In [57, 59] authors proposed a parallel reasoning
method based on P2P self-organizing networks, while in [82] authors propose a
parallel approach for RDF reasoning based on MPI. These approaches, however,
assume that RDF datasets are fully available before the saturation, and as such, are
not instrumented to saturate RDF data produced continuously in streams.

Indeed, when RDF data are produced in streams, such systems must re-process
the whole data collection in order to obtain triples entailed by the newly received
ones. This is due to the fact that both initial and already obtained triples (by means
of past saturation) can entail new triples under the presence of newly received
instance/schema triples. The authors of [62] proposed a continuous ASP-based
(Answering Set Programming) reasoning over RDF streams on RDF data. In

3Open Linked Data https://lod-cloud.net/

16

https://lod-cloud.net/

CHAPTER 1. INTRODUCTION

the proposed method, the reasoning happens on the windowing-level while not
considering static semantics neither massive data. Also, a number of works
have addressed the problem of incremental saturation [18, 79, 56, 83], but these
approaches, being mostly centralised, do not ensure scalable, distributed, and
robust RDF streaming saturation.

To guarantee the fact that the complete knowledge is updated by given new data,
the received data has to join with data that already met in the past. Consider that
the data volume soon becomes notably high in the presence of massive streams.
Accordingly, the main challenges as a big picture of this thesis are:

• How quickly and when received data can be processed?

• How durable will be the proposed method? (if any)

The objective of this thesis is RDF data saturation under the RDF Schema
(RDFS) and OWL-Horst semantics, while data and schema are given partially
in different intervals. In this work we are interested in both execution time and
memory usage optimization time.

1.3 Solution (Contributions)

Based on the above description of the research context - motivations and problem -
in this work we present a distributed technique for saturating streams of large RDF
data, by relying on Spark Streaming API that is an extension of the core Spark
API (i.e., as a well-known cluster computing platform for processingmassive data),
hence ensuring scalability and robustness.

We present our approach in two steps. In the first one, we deal with streaming
RDF schema saturation in the presence of RDF Schema statements. Focusing
first on RDF Schema is motivated by the fact that, despite its simplicity, RDF
Schema is rich enough to make the efficient saturation of streaming large RDF
data far from being trivial. As we already said, the main challenge is to quickly
process fresh data, that must be joined with past met data, whose volume can soon
become particularly high in the presence of massive streams. To this end, unlike
existing state-of-the-art solutions [75, 35] for large-scale RDF saturation, upon
the arrival of new RDF statements (both schema and instance triples) our solution
finely identifies the subset of the existing (and already saturated) RDF dataset that
needs to be considered. This is obtained by relying on an indexing technique we

17

CHAPTER 1. INTRODUCTION

devise for our approach. Our indexing algorithm partitions triples into property
and object triples, and creates distinct subindexes for each micro-batch; hash maps
allow the system to quickly retrieve all triples having a given property or a given
object.

In the second part of the thesis, we deal with OWL-Horst rules. In this case
we show how our saturation technique, initially developed for RDFS only, can be
easily adapted to OWL-Horst: indeed, here we have to deal with weaker constraints
on rule application order as well as with the need of computing a fix point.

Finally, we validate our claims of efficiency and scalability through an extensive
experimental evaluation, wherewe analyze the behavior of our algorithmonRDFS-
based datasets as well as on OWL-based datasets.

1.4 Thesis Structure

Beside this introductory chapter, this thesis covers five more chapters.
Chapter 2 presents preliminaries information about RDF and RDF reasoning,

big data platforms, Apache Spark and Spark Streaming API, and both an RDF
reasoning in bulk.

Chapter 3 is dedicated to the related works, where we present several methods,
approaches, and techniques falling into the scope of our proposed approach. We
present our contribution in chapters 4, 5, and 6.

By considering that data received in a stream fashion, in chapter 4, we first are
described the state of RDF triples with/without RDF schema triples that convey for
reasoning. Then, to improve saturation performance, we propose a rule pruning.
In the second stage, we introduce the core of our contribution as a novel indexing
approach. In the following, we design an empirical evaluation to compare our
method with the state-of-the-art. The chapter is finished by summary of the
chapter.

In chapter 5, we describe our extension of our indexing technique for the
OWL-Horst rule set. OWL-Host rules have 23 rules and most of them are much
more complicated than RDFS rules [24]. In this chapter, we have considered all
the OWL-Horst rules [72]. In the end, by designing an empirical evaluation we
compare our improved method for OWL-Horst reasoning with the state-of-the-art.
The conclusion of the chapter is take place as the last part of it.

18

2
Preliminaries

Contents
2.1 RDF and Semantic Data Reasoning 19

2.2 Big Data Platforms . 24

2.3 Saturation of Large RDF Graphs 27

2.4 Conclusion . 31

In this chapter, we will describe the preliminary information and notations of
RDF and semantic data reasoning. In the following, we will present the RDF
schema rules and explain how the reasoning process infers implicit knowledge
from the explicit triples. In the next section, we, briefly, survey on the well-known
big data processing platforms, i.e., Apache Hadoop, Apache Spark, and Apache
Flink. We, then, explain the reason why we choose the Spark Streaming API as a
cluster processing platform in this thesis. The last section of this chapter dedicated
to the saturation of large RDF graph in bulk.

2.1 RDF and Semantic Data Reasoning

An RDF dataset is a set of triples of the form s p o. s is an IRI1 or a blank node
that represents the subject. IRI stands for Internationalized Resource Identifier,
and is used in the semantic web to identify resources. p is an IRI that represents

1An IRI (Internationalized Resource Identifier) is just a URI exploiting Unicode in place of US
Ascii as the character set.

19

CHAPTER 2. PRELIMINARIES

the predicate, and o is an IRI, blank node or a literal, and it stands for the object.
Blank nodes, denoted as _:bi, are used to represent unknown resources (IRIs or
literals). RDF Schema (or RDFS for short) provides the vocabulary for specifying
the following relationships between classes and properties, relying on a simplified
notation borrowed from [32]:

• subClassOf relationship ≺sc: the triple c1 ≺sc c2 specifies that c1 is a subclass
of c2;

• subPropertyOf relationship ≺sp: the triple p1 ≺sp p2 specifies that p1 is a
sub-property of p2;

• property domain←↩d: the triple p←↩d x specifies that the property p has as
a domain x; and

• property range ↪→r: the triple p ↪→r z specifies that the property p has as a
range z.

For the sake of readability, in what follows we use simple strings instead of
IRIs to denote predicates, subjects and objects in triples. Also, we abbreviate the
rdf:type predicate with the τ symbol.

Example 2.1. Figure 2.2 illustrates a set of RDF instance triples that we use
as a running example, together with the equivalent graph representation. The
graph describes the resource doi1 that belongs to an unknown class, whose title
is “Complexity of Answering Queries Using Materialized Views”, whose author
is “Serge Abiteboul” and having an unknown contact author. This paper is in
the proceedings of an unknown resource whose name is “PODS′98”. Lastly, the
IRI edbt2013 is a conference and hasName, the property associating names to
resources, is created by “John Doe”.

Table 2.1 shows how to use triples to describe resources, that is, to represent
class (unary relation) and property (binary relation) assertions. The RDF standard
in W3C [8] has a set of built-in classes and properties.

Table 2.1: RDF Statements [25]

Assertion Triple Relational Notation
Class (s, rdf:type, o) o(s)
Property (s, p, o) p(s, o)

20

CHAPTER 2. PRELIMINARIES

RDF Schema (or RDFS in short) provides a means to define classes that can
be used to type the resources of an RDF graph (Table 2.2)

Table 2.2: RDFS Statements

Constructor Triple Notation
Subclass constraint s ≺sc o s ⊆ o
Subproperty constraint s ≺sp o s ⊆ o
Domain typing constraint s←↩d o Π domain(s) ⊆ o
Range typing contraint s ↪→r o Π range(s) ⊆ o

Figure 2.1 lists schema triples. For example, it specifies that the class posterCP
is a subclass of ConfP, that the property hasContactA is a sub-property of
hasAuthor. It also specifies that the property hasAuthor has as domain paper
and as range a literal.

S = { posterCP ≺sc confP, _:b0 ≺sc confP,
confP ≺sc paper, hasTitle←↩d confP,
hasTitle ↪→r rdfs:Literal, hasAuthor←↩d paper,
hasAuthor ↪→r rdfs:Literal, hasContractA ≺sp hasAuthor,
inProceesingOf←↩d confP, inProceesingOf ↪→r conference,
hasName←↩d conference, hasName ↪→r rdfs:Literal,
createdBy ↪→r rdfs:Literal }

Figure 2.1: Instance and schema RDF triples.

As in other works (e.g., [32, 35, 75]) we focus on the core rules of RDFS, the
extension to other rules being trivial. In particular, we consider here Rules 2, 3, 5,
7, 9, and 11 among the 13 RDFS rules illustrated in Table 2.3. The main reason for
ignoring rules 1,4,6,8,10,12, and 13 is that those rules, in general, do not affect the
results of RDFS reasoning and their outcome cannot be used for later derivation.
On the other hand, since, all of them have only one antecedent, then by a single
pass over the data their outcome can be produced.

The realm of the semantic web embraces the Open World Assumption: facts
(triples) that are not explicitly stated may hold given a set of RDFS triples ex-
pressing constraints. These are usually called implicit triples, and, in our work, we

21

CHAPTER 2. PRELIMINARIES

G = { doi1 τ _:b0, doi1 hasTitle “CAQU MV”,
doi1 hasAuthor “SA”, doi1 hasContactA _:b1,
doi1 inProceedingsOf _:b2, _:b2 hasName “PODS′98”,
hasName createdBy “John Doe”, “edbt2013” τ Conference }

G = doi1

_:b0

“CAQU MV”

“SA”

_:b1

_:b2 “PODS′98”

hasName “John Doe”

“edbt2013” Conference

τ

hasTit
le

hasAuthor
hasContactA

inProceedingsOf hasName

createdBy

τ

Figure 2.2: RDF graph representation of a conference paper.

Table 2.3: RDFS Ruleset

Rule Condition Consequence Level

rdfs1 s p o _:b τ rdfs:Literal -
rdfs2 p←↩d x, s p o s τ x instance-level
rdfs3 p ↪→r x, s p o o τ x instance-level
rdfs4 s p o s/o τ rdfs:Resource -
rdfs5 p ≺sp q, q ≺sp r p ≺sp r schema-level
rdfs6 p τ rdf:Property p ≺sp p -
rdfs7 s p o, p ≺sp q s q o instance-level
rdfs8 s τ rdfs:Class s ≺sc rdfs:Resource -
rdfs9 s τ x, x ≺sc y s τ y instance-level
rdfs10 s τ rdfs:Class s ≺sc s -
rdfs11 x ≺sc y, y ≺sc z x ≺sc z schema-level
rdfs12 p τ rdfs:ContainerMembershipProperty p ≺sp rdfs:member -
rdfs13 o τ rdfs:Datatype o ≺sc rdfs:Literal -

22

CHAPTER 2. PRELIMINARIES

consider the problem of RDF saturation, i.e., given a set of RDFS rules, inferring
all possible implicit triples by means of these rules applied on explicit triples, or,
recursively, on implicit triples. For example, rule rdfs2 in Table 2.3 states that, if
a property p has a domain x, given a triple s p o, we can infer that s is of type x.
Since rdfs9 specifies that, if s is of type x and x is a subclass of y, then we can infer
that s is of type y.

In the remaining part of the thesis, wewill use the following notation to indicate
derivations/inference of triples. A derivation tree is defined as follows.

T := t | {T | T } − rdfsX → t

where the rule number X ranges over {2, 3, 5, 7, 9, 11}. A derivation tree can be
empty, hence consisting of a given triple t, or can be of the form {T1 | T2}−rdfsX →
t, meaning that the tree derives t, by means of rule rdfsX whose premises are
(matched to) the two triples given by T1 and T2, respectively. So, for instance we
can have the following derivation tree T1 for the forG and S previously introduced:

{hasT itle←↩ d con f P | doi1 hasTitle “CAQU MV”} − rdfs2→ doi1 τ con f P

Moreover, we can have the following derivation T2 relying on T1:

{T1 | con f P ≺ sc paper} − rdfs9→ doi1 τ paper

In the following, given a set of instance RDF triples D and a set of schema triples
S , we say that T is over D and S if the derivation tree uses triples in D and S as
leaves. Moreover, we define the saturation of D over S as D extended with all the
possible instance triples obtained by means of derivation (below, derivation trees
are assumed to be over D and S):

D∗S = D ∪ {t | ∃{T1 | T2} − rdfsX → t with X ∈ {2, 3, 7, 9}}

Notice above that, say, T2 can be a derivation tree totally over S , recursively
applying rule 5 (or rule 11) thus deriving a triple in S ∗, below defined.

S ∗ = S ∪ {t | ∃{T1 | T2} − rdfsX → t with X ∈ {5, 11}}

Above, in the S ∗ definition, please note that since X ∈ {5, 11} the whole derivation
tree consists of subsequent applications of rule rule 5 (or rule 11).

23

CHAPTER 2. PRELIMINARIES

2.2 Big Data Platforms

In this section, we, briefly, survey the main-stream big data cluster computing
platforms, i.e., Apache Hadoop, Spark and Flink.

Apache Hadoop In the last decade, extracting knowledge from the massive data
widely was possible for both industrial and academic purpose with the advent of
Apache Hadoop [3]. It is an open-source implementation based on MapReduce
[30] model with a simple but powerful programming model, i.e., consists of Map
and Reduce phases. The Map phase is responsible for distributing and partitioning
data, and the Reduce phase utilizes as an execution stage on the partitioned data.
The complexity of parallel jobs execution and fault-tolerance is hide from users.
The Hadoop API simply forces applications to be implemented in terms of map
and reduce functions. Despite the power of this model, it does not suite iterative
algorithms that perform numerous cycles of computation on the same data, while
some algorithms require iteration to finish their process, e.g., RDF saturation
needs iteration until it reaches a fixpoint. To overtake these constraints, the
second generation of cluster computing platforms, mainly Spark and Flink, were
introduced to process massive data.

ApacheFlink Apache Flink [2] is a framework and distributed processing engine
for stateful computations over unbounded and bounded data streams. Flink has
been designed to run in all common cluster environments, perform computations
at in-memory speed and at any scale. It processes data using directed acyclic
graphs (DAG) pattern in multi-step data pipelines. At high-level, the control
flow of an application is managed by a driver program, which relies on two main
parallel programming abstraction: 1) structures to describe the data and 2) parallel
operations on these data. Apache Flink is built on top of DataSet, Job Graph and
Parallelization Contracts (PACTs) [81]. DataSet is collections of elements of a
specific type on operations with an implicit type parameter are defined. Job Graphs
performs parallel data flowwith arbitrary tasks. PACTs are second-order functions
that define properties on the input/output data of their associated UDFs (User
Defined Functions) as a first-order function [52]. Flink proposed native closed-
loop iteration operation [31] that supports better streaming. Another Flink feature
is an automatic cost-based optimizer, that automatically optimizes execution by
avoiding costly operations, e.g. shuffle and sort, and cached intermediate data

24

CHAPTER 2. PRELIMINARIES

[52]. The most common dataflow operations in Flink consist of, e.g., map, reduce,
distinct, collect, count, save, groupBy, etc.

Apache Spark Apache Spark [86] is awidely used in-memory distributed cluster
computing framework. It provides the means for specifying DAG-based data
flows using operators like map, f ilter, reduceByKey, join, f ilter, etc. over data
collections represented by means of Resilient Distributed Datasets (RDDs). In
Spark, the data to be processed are mapped into RDDs, where an RDD is an
immutable collection of objects (e.g, <key, value> pairs); RDDs are partitioned
and distributed over the Spark cluster [52]. RDDs are fragmented as partitions
and distributed over the nodes of the spark cluster. In other words, RDDs are a
read-only resilient set of objects partitioned across multiple nodes; it effectively
supports iterative algorithms as it follows an in-memory data structure with the
ability to cache intermediate data across nodes of a cluster. Spark essentially
works by applying operations to RDDs. These operations can be divided into
transformations and actions (Table 2.4).

Transformations are lazy operations that return a new RDD, and are evaluated
only when an action (e.g., count, collect, etc.) is invoked. Typical transfor-
mation is map(), that applies a given function to all the objects in a RDD, and
f ilter(), which applies a predicate to the input data (e.g., rdd.map(x => x + x),
rdd.filter(x => x != 3).

The authors of [52] found that there is not a single framework for all data
types. The same survey shows that Spark is around 1.7x faster than Flink in
large graph processing, while Flink up to 1.5x faster than Spark in batch and
small graph workloads. For our purposes, we use the streaming capabilities of
Spark whereby data comes into micro-batches that need to be processed within
a time-interval (also referred to as a window). It is worth mentioning that Spark
offers two high-level data collection DataFrame and DataSet both of which are
high-level extensions of RDD. Also, Spark offers Structured Streaming and
Spark Streaming engines to process data that convey via stream. In this thesis,
we control every single triple from arrival time until writing time on the disk.
Since DataFrame and DataSet as data collections and Structured Streaming

as a processing engine, despite their powerful functionalities, do not allow us to
control every single triple, therefore, we choose RDD as data collection and Spark
Streaming as the processing engine to deal with streaming data.

25

CHAPTER 2. PRELIMINARIES

Table 2.4: Transformations and actions available on RDDs in Spark. Seq[T]
denotes a sequence of elements of type T [86]

Tr
an

sf
or
m
at
io
ns

map(f : T⇒ U) : RDD[T]⇒ RDD[U]
filter(f : T⇒ Bool) : RDD[T]⇒ RDD[T]

flatMap(f : T⇒ Seq[U]) : RDD[T]⇒ RDD[U]
mapValues(f : V⇒W) : RDD[(K, V)]

⇒RDD[(K, W)] (preserve partitioning)

union() : (RDD[T], RDD[T])⇒ RDD[T]
join() : (RDD[(K, V), RDD(K, W)])

⇒ RDD[(K, (V, W))]
sortBy(f : T⇒ K) : RDD[T]⇒ RDD[T]

reduceByKey(f : (V, V)⇒ V) : RDD[(K, V)]⇒ RDD[(K, V)]
partitionBy(p : Partitioner[K]) : RDD[(K, V)]⇒ RDD[(K, V)]

mapPartitions
(f : Iterator[T]⇒ Iterator[U]) : RDD[T]⇒ RDD[T]

mapPartitionsWithIndex
(f : (Int, Iterator[T])⇒ Iterator[U]) : RDD[T]⇒ RDD[T]

Ac
tio

ns

count() : RDD[T]⇒ Long
collect() : RDD[T]⇒ Seq[T]

reduce(f : (T, T)⇒ T) : RDD[T]⇒ T
lookup(k : K) : RDD[[K, V]]⇒ Seq[V]

(On hash/range partitioned RDDs)
save(path : String) : Outputs RDD to a storage system. e.g., HDFS

Spark Streaming Spark Streaming is an extension of Spark allowing to process
massive data sets made available through data streams. The main idea behind
Spark Streaming is to divide the stream in a sequence of subsequent splits called
micro-batches each one represented by means of an RDD so that parallel Spark
operations can be invoked over them. So a stream is represented as a stream
of micro-batches, each one determined in terms of an interval time in which all
the received data items take part in the same micro-batch, and transformations
applied over micro-batches produce a new stream of micro-batches that can be in
turn processed (Figure 2.3). The runtime support of Spark Streaming provides
mechanisms for distributing streamprocessing over the cluster in a resilient fashion,
in order to ensure both scalability and robustness.

26

CHAPTER 2. PRELIMINARIES

Figure 2.3: D-Stream processing model. In each time interval, the records that
arrive are stored reliably across the cluster to form an immutable, partitioned
dataset. This is then processed via deterministic parallel operations to compute
other distributed datasets that represent program output or state to pass to the next
interval. Each series of datasets forms one D-Stream [87]

2.3 Saturation of Large RDF Graphs

The saturation of large RDF graphs can be time and resource consuming, especially
when dealingwith large RDF graphs. In the state of the art, authors ofWebPIE [75]
proposed saturation RDF datasets with RDFS and OWL rules on the MapReduce
technique on Apache Hadoop. Later, authors of Cichlid [35] represents saturation
RDF datasets with RDFS andOWL rules by leveraging theWePIEwork onApache
Spark with significant improvement on saturating process.

As in our case, these systems focus on rules 2, 3, 5, 7, 9, and 11, illustrated
in Table 2.3. The main reason for ignoring rules 1, 4, 6, 8, 10, 12, and 13 is
that those rules, in general, do not affect the inference of RDFS reasoning. Also,
their outcome won’t be useful for later derivation. On the other hand, all of the
mentioned rules have only one antecedent, and by a single pass over the data, their
outcome can be produced.

27

CHAPTER 2. PRELIMINARIES

Heuristics and Optimization Techniques

To improve the performance and the scalability of RDF streaming saturation,
our indexing scheme alone is not sufficient. Therefore, we also adopt the rule
application strategy of Cichlid, and devised new optimization techniques. We will
briefly recall the Cichlid strategy, and then focus on our novel techniques.

Rule application order While the outcome of the saturation operation is orthog-
onal to the order in which the rules are applied, the time and resources consumed
by such an operation are not. Because of this, the authors of Cichlid (and WebPIE
before them) identified a number of optimisations that influence the rule applica-
tion order with the view to increasing the efficiency of the saturation. In what
follows, we discuss the main ones.

1. RDF Schema is to be saturated first. The size of the RDF schema2 in an
RDF graph is usually small, even when saturated. It is usually orders of
magnitudes smaller than the size of the remaining instance triples. This
suggests that the schema of the RDF graph is to be saturated first. By
saturating the schema of an RDF graph we mean applying rules that produce
triple that describes the vocabulary used in an RDF graph. Furthermore,
because the size of the schema is small, schema saturation can be done in
centralized fashion. In this respect, theRDFS rules presented inTable 2.3 can
be categorised into two disjoint categories: schema-level and instance-level
RDFS rules. Schema-level RDFS rules (rdfs5 and rdfs11) designate the rules
that produce triples describing the vocabulary (classes, properties, and their
relationships). Instance-level triples, on the other hand, specifies resource
instances of the classes in the RDF vocabularies and their relationships.
Each rule is made up of two premises and one conclusion, each of which
is an RDF triple. While premises of schema-level rules are schema triples,
premises of instance-level rules are a schema triple and an instance triple.
Also, instance-level rules entail an RDF instance triple, while schema-level
rules entail an RDF schema triple.

2. Dependencies between rules. When determining the rule execution order,
the dependencies among rules must be taken into account too. In particular,
a rule Ri precedes a rule R j if the conclusion of Ri is used as a premise for

2By Schema, we mean the RDF triples that describe the vocabulary of an RDF graph, i.e.,
classes, properties and their constraints.

28

CHAPTER 2. PRELIMINARIES

rule R j. For example rdfs7 has a conclusion that is used as a premise for
rules rdfs2 and rdfs3. Therefore, rdfs7 should be applied before rdfs2 and
rdfs3.

By taking (1) and (2) into consideration, the authors of Cichlid established the
orders of applications of rules illustrated in Figure 2.4. To illustrate how rules are
implemented in Spark, we will use a concrete example considering rdfs9, which
can be expressed as follows. If a resource s is of type x, i.e. s τ x, and x is a
sub-class of y, i.e. x ≺ sc y, then s is also an instance of y, i.e. s τ y. Note that,
as the output of rdfs2 and rdfs3 are instance triples with predicate τ, these rules
are executed in Cichlid before executing rdfs9 (see [35] for more details). In our
approach we will rely on the same ordering for streaming saturation.

rdfs5
subPropertyOf.
transitivity

rdfs7
subPropertyOf.
instance-level

rdfs2
domain.

instance-level

rdfs3
range.

instance-level

rdfs11
subClassOf.
transitivity

rdfs9
subClassOf.
instance-level

Figure 2.4: The optimized execution RDFS rules order. Dashed ellipses show
the schema-level entailment, while the solid ellipses are for the Instance-level
entailment. The white colour ellipse has no dependency prerequisite with other
RDFS. The lighter ellipses come first.

To implement rdfs9 in Spark, Cichlid uses the f ilter, map, broadcast, and
collect operators in Algorithm 1. The algorithm first retrieves over all the partitions
the RDFS schema, the classes and their corresponding sub-classes in the schema,
by means of the filter transformation and the collect action (this last one is needed
in order to collect on the master/driver machine the total filtered information).
This information is then broad-casted3 (i.e., locally cached in each machine in

3Broadcast operation can be used in Spark to cache a copy of data on every node of a cluster.

29

CHAPTER 2. PRELIMINARIES

Algorithm 1: Optimized Parallel reasoning of RDFS rdfs9
1: Input: input triple set named triples
2: Output: reasoning results named results
3: Begin
4: schema← sc.textFile(“hdfs://schema-path”)
5: subClassOf ← schema
6: .filter (t ⇒ t._2.contains(“rdfs:subClassOf”))
7: .map(t ⇒ (t._1, t._3)).collect
8: bc← sc.broadcast(subClassOf.toMap)
9: triples← sc.textFile(“hdfs://instance-path”)
10: results← triples.filter(t ⇒ bc.value.contains(t._3))
11: .map(t ⇒ (t._1, τ, bc.value(t._3))
12: return results
13: End

the cluster) as pairs (e.g., x → y), thereby avoiding the cost of shipping this
information every time it is needed. It first retrieves the RDFS schema (line
4), the classes and their corresponding sub-classes (lines 5-7), and the obtained
information is then broad-casted (line 8). Therefore, for each broad-casted pair of
subclass and superclass, the instances of the subclass are retrieved (line 9), and new
triples are derived stating that such instances are also instances of the broad-casted
super-class, by means of the map transform (lines 10-11). Spark provides other
operators, which are used for implementing other rules, such as distinct, persist,
union, partitionBy, reduceByKey, mapPartitions, mapPartitionsWithIndex, etc.
In the following, we breifly describe the most used Spark operations in this thesis:

• mapPartitionsWithIndex: In Spark, RDDs are parallelized via partition-
ing across the nodes, where every partition has a unique Index. At the
writing time, partitions write into separate files on the disk when each
file contains the same file number as the partition index. Therefore, the
mapPartitionsWithIndex operation lets access to the data (in our case
triples) partition-wise when each partition has an index number. In our algo-
rithm, we used this functionality to know each triple is located in memory.

• partitionBy: It can be applied on a pair dataset (<key, value>) to put all

This helps in avoiding the cost of shipping this information every-time it is used by the nodes.

30

CHAPTER 2. PRELIMINARIES

triples with a same key in one partition. Sometimes more than one type of
triples (based on their keys) locating in a partition.

• reduceByKey: This operation aggrigates pairs (<key, value>) based on
their key. For instance, by having a sequence of pairs, e.g. Seq((a,1) ,
(a,3), (b,5)) as an rdd, the following operation rdd.reduceByKey(_+_)
keeps one copy of key and applies the sum operation on the values. In this
example, the generated RDD contains the following pairs of data: ((a,4),
(b,5)).

• distinct: It used to remove duplicates fromanRDD.For instance, rdd.distinct()
removes duplicates from the rdd.

• union: It concatinates two RDDs, and generates a new RDD containing data
from the first and second rdd. The number of partitions of the new RDD is
equal to total number of both rdds. val rdd3 = rdd1.union(rdd2).

Notice that as the saturation process may derive triples that are already as-
serted or have been derived in previous steps of the saturation operation, Cichlid
[35] eliminates the duplicated triples from the derived ones, in order to improve
efficiency.

2.4 Conclusion
I this chapter, we have explained preliminaries about RDF and semantic data
reasoning by given some examples and introduce related notations for that purpose.
In the following, we explain the well-known big data platforms and describe their
functionalities. We also detailed the saturation of large RDF data from state of the
art. In the next chapter we discuss the related work of the thesis domain.

31

3
Related Works

Contents
3.1 RDF Reasoning . 34

3.1.1 RDF Partitioning . 35

3.1.2 RDF Reasoning Using Big Data Platforms 39

3.2 Incremental Reasoning . 41

3.3 Indexing Structures for RDF Data 44

3.4 Conclusion . 46

The domain of RDF exists for more than 20 years, and a lot of research has
been done around it. One of the prominent investigated research problems concern
RDF Reasoning. It commits to infer implicit triples from the explicit ones. Over
the years, with the growing of the volume of generated RDF data, RDF Reasoning
became a Big Data problem which requires cluster processing to derive the results
in an acceptable, efficient time.

RDF is partly generated due to sensor data produced in the context of health
monitoring andfinancialmarket applications, given user-content provided by social
network platforms, long-running scientific experiments that adopt a stream-flow
programming model [49]. In some cases, stream data even can be used to improve
the streaming experience with experimentation and data science1 [33]. To prepare
and provide a full set of semantic data, the semantic web community has devised
techniques for processing and reasoning over RDF data (e.g.[23, 70, 80]). This

1https://netflixtechblog.com/a-b-testing-and-beyond-improving-the-netflix-streaming-
experience-with-experimentation-and-data-5b0ae9295bdf

33

CHAPTER 3. RELATED WORKS

trend generated the need for new solutions for processing and reasoning over RDF
datasets since existing state-of-the-art techniques cannot cope with large volumes
of RDF data. The speed of RDF production has also grown to the point where it
became a prominent feature for it. That makes data processing a bold issue at the
time of RDF generation.

Figure 3.1: A Research Agenda for Stream Reasoning [53]

Figure 3.1 shows a global research agenda for stream reasoning [53], mention-
ing incremental reasoning as an important problem, which we deal with in this
thesis.

In this chapter, we review proposals that are relevant to ours work and, more
precisely, related to one of the following fields: i) RDF Reasoning contains two
subsections called RDF Partitioning and RDF Reasoning Using Big Data Plat-
forms, ii) Incremental Reasoning, and iii) Indexing structure for RDF data.

3.1 RDF Reasoning

In this section, we firstly study the RDF partitioning varieties that have been
proposed in recent years. Then in the following, we review those literatures that
dedicated to RDF reasoning using big data platforms mainly, Hadoop, Apache
Spark, and Apache Flink.

34

CHAPTER 3. RELATED WORKS

3.1.1 RDF Partitioning

Data partitioning is trivial in distributed data management systems. The RDF
data is typically split into several partitions and then distributed across the cluster
machines. Partitioning aims to reduce the execution time by leveraging parallelism.
Data partitioning demands a preprocessing overhead as it needs to be performed
over the whole data. In a couple of decades, we have observed the RDF data
sources are growing in all dimensions of big data (i.e., variety, velocity, volume,
and veracity) remarkably. The volume and velocity of data generation make the
storage systems vulnerable in case of keeping them. To get rid of the vulnerability
of storage systems, RDF partitioning is also a solution to improve the scalability
of the RDF storehouses. Despite the variety of graph partitioning techniques in
the state-of-the-art [14, 15, 34, 68, 51, 42], that is hard to find the most proper
partitioning system, in the general cases, for a given RDF data.

Recently in [15], Kondylakis et al. proposed a learning approach by utilizing
two well-known machine learning algorithms, from the schema of a partitioned
database to classify new streaming data. In their proposed method, [15], authors
use the classical hash partitioning on predicate- and subject-based, e.g., on the
triple’s subject [66], together with the query workload knowledge, e.g., [39].
Despite other approaches that attempted to reduce the communication between
nodes by relying on the predicate of triples [58], they proposed a partitioning
method based on the predicate and subject of triples together. The proposed
method is slightly closed to our approach on the part that using more than one
premise. Moreover, the weak point of this approach is using a union of subject and
predicate at the same time. Also, this method did not use any indexing technique
to have control over the triple’s object that is crucial for reasoning in some rules,
e.g., in domain, range, etc.

Graux et al. in SPARQLGX [34] partitioned RDF datasets vertically by
utilizing vertical partitioning approach [14], that a triple s p o is stored in a file
named p whose content keeps only subject s and object o entries. The authors of
SPARQLGX used vertical partitioning in order to reduce the memory footprint
andminimize the query response time. This improvement works for those searches
that query RDF dataset based on their properties.

Schätzle et al. in [68] uses vertical partitioning (VP) [14] in their method as
a based partitioning. The VP is designed based on predicate patterns of triples.
The main advantage of VP is that it leads to a large reduction of the input size in
general. The most drawback of VP is that the size of VP tables is highly skewed

35

CHAPTER 3. RELATED WORKS

Figure 3.2: Correlation between triple patterns [68]

in a typical RDF dataset with other tables that hold only a few entries, while
others include a substantial portion of the whole dataset. To leverage the vertical
partitioning, S2RDF [68] presents an extension to the VP schema called Extended
Vertical Partitioning (ExtVP). The proposed technique reduces the input data size
of a query by using a preprocessing on semi-join –similar to the concept of Join
Indices in the relational databases– to minimize the query input size despite any
specific query patterns. ExtVP generates a set of sub-tables corresponding to a
vertical partition table. The sub-tables are generated by using the right outer joins
between VP tables. Figure 3.2 shows the possible correlations between the triple
patterns. The position of a premise that occurs in both triple patterns –called join
variable– determines the corresponding column of VP tables that must join. In
this case, if the join variable is on a subject position in both triples, then it calls
a subject-subject correlation (SS), as both VP tables must join on subjects (s)
(Figure 3.2 top-left example). The other possible correlations are subject-object
(SO), object-subject (OS), and object-object (OO).

Schätzle et al. in S2X [67] combine the graph parallel abstraction of GraphX
[84] with the data-parallel computation of Spark to evaluate SPARQL queries in
a distributed manner [16]. GraphX uses a vertex-cut partitioning strategy. In this
strategy, the edges assign equally to machines and allow vertices to span nodes so
that each vertex dedicate to a minimum number of nodes. For that purpose, S2X
uses property graph [71] as a RDF data model. The RDF property graph has an
ID for every vertex, and every edge has a property and two IDs of the connected

36

CHAPTER 3. RELATED WORKS

vertices. The edges store the predicate URIs, and the vertices store the subject and
object URIs. Vertices also keep data structure for candidate query variables that
could match this vertex. Therefore, every vertex in the graph keeps variables of a
query where there is a match candidate for that. For that purpose, the first step is
to match all triples patterns. Hence, S2X introduced two types of matches: local
match and remote match. A local match is a set of the matches for any vertex,
and a remote match is a set of adjacent vertices matches. The matched candidates
validate with some validation rules by considering the local and remote matched
sets. The invalid ones get dropped. In the graph, the locally changed match sets
send to their adjacent for the validity of the next step. These processes repeating
until no new changes happen. The individual subgraphs from the prior steps create
the final output.

Figure 3.3: Workflow for Workload-Driven Partitioning [51]

The authors ofWORQ[51] presented aWorkload-drivenRDFQueryProcessing.
The approach strives to minimize the network shuffling overhead based on the
query workload. Therefore, WORQ, instead of focusing on a specific part of an
RDF premise (e.g., subject only), does partitioning on the RDF data based on the
join patterns of the so far received query. To minimize the shuffling overhead, they

37

CHAPTER 3. RELATED WORKS

Table 3.1: Spark-based RDF systems

System Query Processing Partitioning SPARQL

SPARQLGX [34] RDD API Vertical BGP+
S2RDF [68] Spark SQL Extended Vertical BGP+
S2X [67] Graph Iteration Default BGP+
WORQ [51] Dataset API Workload Join Keys Not given Info

replace the partitions of the reduced sets of intermediate (reductions, in short) re-
sults that share the same join attribute on the same node of the cluster. WORQ also
partitions the reduction data over the nodes, rather than using vertical partitioning.
The reductions that have to partition is determined based on the join attributes,
and this partitioning is done once and reused by any other query that has the same
join attribute corresponding to the reduction.

Figure 3.3 presents a collection of join patterns from a given query and their
similar reduced set of intermediate results. The R1 represents a join pattern on
the :tweet property that uses the reduced set of intermediate results on the subject.
Also, the R3 denotes that a join pattern on the like property that uses the reduced
set of intermediate results on the subject as well. WORQ partitions the RDF triples
of every reduction based on the subject or object join attribute. As represented in
Figure 3.3, since the reduced set of intermediate results is on subject attributes, then
R1, R2, and R3 do partitioning on their subjects. Since, the reduced intermediate
RDF triples are hash-distributed over nodes, then the partitioning pattern ensures
that all data related to the join attributes of a query are located in the same node
and let them executed locally.

The general goal of all approaches that are presented above and summarized
in Table 3.1 is to improve query performance by exploiting data parallelization
by utilizing in-memory distributed processing platforms (e.g., Apache Spark).
Therefore, data partitioning is a critical key factor in query processing; and it has
a significant impact on query answering and RDF reasoning, particularly when
they face big data. In the state-of-the-art in general, most of the works in this
field use Vertical Partitioning [14], Horizontal Partitioning [26], a combination,
or an extension of them. Notice that, there is not a unique partitioning pattern that
suits all situations (e.g., a default partitioning splitting data based on the number
of existence executors on every node), even it may cause skew data in one node. It
easily could cause long execution time, until the skewed node finished its process,

38

CHAPTER 3. RELATED WORKS

and maybe the reason for a lot of network communication amongst the nodes of a
cluster.

In this thesis, we propose an indexing technique that keeps a very light footprint
of received/inferred RDF triples that are given through streamflow of data or
derived implicit triples during the reasoning process. The indexing information
enables us to pick those potential triples later from the disk, which is related
to a new schema that will receive/infer later during streaming RDF data. The
indexing technique provides the already received and processed RDF triples for
the saturation process, to not lose any implicit triples by given a new schema. A
similar partitioning idea has been recognized byWORQ [51]. They do partitioning
the RDF data according to the join patterns of the received queries. This proposed
technique is based on workload-driven partitioning, which is not suitable for RDF
materialization when data and schema receive in-stream that we are exploring in
this thesis. Our work does not require the knowledge of the query workloads,
nor computes the join reductions for all possible joins. Although, many papers go
beyond simple vertical partitioning by the computing all one-step-joints [68], which
could be the cause of massive storage overhead and also multiple intermediate
results that eventually lead to not fully optimized the execution time.

3.1.2 RDF Reasoning Using Big Data Platforms

To the best of our knowledge, the first proposal to use big data platforms, and
MapReduce in particular, to scale the saturation operation is [55], but the authors
did not present any experimental result. Other works then addressed the problem
of large-scale RDF saturation by exploiting big data systems such as Hadoop and
Spark, (see e.g., [76, 75, 35]). For example, Urbani et al. [76, 75] proposed a
MapReduce-based distributed reasoning system called WebPIE. In doing so, they
identified the order in which RDFS rules can be applied to efficiently saturate RDF
data (Figure 3.4). Moreover, they specified for each of the RDFS and OWL-Horst
rule how it can be implemented using the map and/or reduce functions, run some
of the join operation in memory to improve the saturation speed, and executed
over the Hadoop system. The implemented techniques run on a huge cluster (by
default, cluster with 32 nodes) to show the scalability of their approaches.

Building on the work by Urbani et al., the authors of Cichlid [35] implemented
RDF saturation over Spark using, in addition to map and reduce, other data trans-
formation operations that are provided by Spark, such as map, filter, join, union,
etc. Cichlid has shown that the use of Spark can speed up saturation w.r.t the case

39

CHAPTER 3. RELATED WORKS

Figure 3.4: Relation between the various RDFS rules [75]

when Hadoop is used. Our solution builds, adapts, and leverages the solutions
proposed by WebPIE (such as execution rules order of RDFS, execution rules
grouping of OWL-Horst, using the output of some OWL-Horst rules group as
an input of other groups, etc.), and Cichlid to cater for the saturation of streams
of massive RDF data. It is worth mentioning that the Cichlid authors [35] do
not provide any innovation except implementing the WebPIE methods in Apache
SparkTM.

The authors of [65] explore the ability of modern Big Data platform, mainly
Apache Spark and Apache Flink, to examine highly expressive temporal Data-
Log/Answer Set Programming over RDF data streams. In this paper, Ren et al.
(same as Ticker [21] and Laser [19]) borrow LARS [20] theoretical foundation for
the concept behind their algorithms. They consider Parallelism Level and Stream-
ing Model as two factors to leverage the scalability and distributed RDF stream
reasoning. The Parallelism Level consists of three levels to parallelize the evalu-
ation of a classified Datalog/Answer Set Programming programs, which consists
of Component level, Rules level, and Single Rule level, as defined in [61]. In this
paper, Ren et al. designed a series of queries to cover all the three parallelism
levels and to evaluate the performance impacts of their implementation (based on

40

CHAPTER 3. RELATED WORKS

LARAS) on the Big Data platform. For Streaming Model, they investigated two
classes of streamingmodels adopted bymodern distributed streaming engines, i.e.,
Bulk Synchronous Processing (handled by Apache Spark) and Record-at-A-Time
(handled by Apache Flink). The authors of [65] proposing a method for query
answering instead of materialization reasoning on stream. Also, they did not con-
sider the previously received data for the reasoning. On the other hand, they did
not use or propose any indexing technique to have fast access into the existed data.

Hu et al. in [40] proposed amethod to compresses the RDF triples for reducing
memory usage over Datalog reasoning. Therefore, the rules are sometimes able to
apply to more than one fact at once. They inspire by the columnar database idea
from [41], which keeps the common parts of facts only once. Those derived facts
can represent by utilizing structure sharing. The proposed method skips some rule
applications, and the approach efficiency observed in the case of working with
relatively simple rules. [40] implemented in CompMat so that compressing the
explicitly given data as part of the materialization process. The given method does
not deal with in-stream RDF reasoning/materialization when face with massive
RDF data, especially when schemas also convey in-stream fashion along with
data.

3.2 Incremental Reasoning

The problem of incremental saturation of RDF data has been investigated by a
number of proposals (see e.g., [79, 18, 27, 32, 75]). For example, Volz et al. in
[79] investigated the problem of maintenance of entailments given changes at the
level of the RDF instances as well as at the level of the RDF schema by elaborating
their own previous works [77, 78]. In doing so, they adapted a previous state-
of-the-art algorithm for incremental view maintenance proposed in the context of
deductive database [69].

Barbieri et al. [18] builds on the solution proposed by Volz et al. [79] by
considering the case where the triples are associated with an expiration date in
the context of streams (e.g., for data that is location-based). They showed that the
deletion, in this case, can be done more efficiently by tagging the inferred RDF
triples with an expiration date that is derived based on the expiration dates of the
triples used in the derivation. While Volz et al. [79] and Barbieri et al. [18] seek
to reduce the effort required for RDF saturation, they do not leverage any indexing
structure to efficiently perform the incremental saturation. As reported by the Volz

41

CHAPTER 3. RELATED WORKS

et al. [79] in the results of their evaluation study, even if the maintenance was
incremental, the inference engine ran out in certain cases of memory. Volz et
al. in [79] also mentioned that they cannot maintain function symbols other than
constants. Regarding, Barbieri et al. [18], they considered in their evaluation
a single transitive rule (Section 5 in [18]), and did not report on the size of the
dataset used, nor the micro-batch size.

Chevalier et al. proposed Slider [27], a system for RDF saturation using a
distributed architecture. Although the objective of the Slider is similar to our
work, it differs in the following aspects. First, in Slider, each rule is implemented
in a separate module. We adopt a different approach, where rules are broken
into finer operations (map, reduce, union, etc.). This creates opportunities for
sharing the results of processing at a finer level. For example, the result of a map
can be used by multiple rules, thereby reducing the overall processing required.
Second, Slider utilizes vertical partitioning [14] for indexing RDF triples. This
indexing structure is heavy since it creates a table for each property (i.e., subject,
predicate, and object) in the RDF triples. While such an indexing structure proved
its efficiency in the context of RDF querying, it is heavy when it comes to RDF
saturation. Indeed, we know in the context of RDF saturation the inference rules
that can be triggered and therefore can tune the indexing structure needed for this
purpose, which we did in our solution. In this approach, we use a lightweight
indexing structure that is cheaper to maintain compared with vertical partitioning
approach [14].

Guasdoué et al. proposed an incremental solution for saturating RDF data
[32]. The incrementality comes from the fact that only rules that have a premise
triple that is newly asserted or derived are triggered. We adopt a similar approach
to Guasdoué et al.. However, we utilize an indexing structure to fetch existing
triples that have been asserted/derived when processing previous micro-batches.
Moreover, Guasdoué et al. apply the rules in an arbitrary order, whereas in our
approach, we use rule ordering [75] and leverage it for streaming data in a way
that minimizes the number of required iterations for saturating the RDF data.

The authors of WebPIE [75] briefly touched on the problem of incrementally
saturating RDF data. In doing so, they tamp-stamped the RDF tuples to distinguish
new and old tuples. An inference rule R is then activated only if the timestamp
associated with one of its premises is new, i.e., greater than the last time the
saturation was performed. We proceed similarly in our work. However, unlike
our work, WebPIE does not leverage any indexing structures when querying the
existing triples to identify those that may be used to activate a given rule R.

42

CHAPTER 3. RELATED WORKS

Ren et al. proposed Strider [63] as an RDF stream processing engine for
continuous SPARQL query evaluation, by relying on Spark and Kafka. Ren et
al. in [64] extended their previous work [63] by combining their SPARQL stream
processing engine through encoding the given TBox2 and ABox3 triples. Ren et al.
in [64] works on a trade-off of query rewriting and reasoning. In their approach,
they utilize LiteMat [29] technique for query rewriting and reasoning, while in
reasoning they focus on i) static TBox encoding and ii) dynamic Abox stream
encoding. Ren et al. in both works do not deal with RDF reasoning, especially
when schema given in stream.

Lie et al. proposed [50] in the continuous work of Heino et al. [37], i.e.,
as the first RDFS reasoning engine that utilizes GPU architecture. Lie et al. in
[50] proposed the first work in stream reasoning field that using GPU instead
of CPU. They formalize stream reasoning into temporal reasoning problems and
introducing a compact design of RDF data in the format of the proposed formal-
ization. They introduce a hash-based GPU encoding algorithm for translating
string into integer IDs in a fixed-length. They ran their algorithms using CUDA4

programming language on a PC with an NVIDIA GPU. In the case of dynamic
TBox (i.e., the triples that contain subPropertyOf, subClassOf, etc.), to reduce the
transitive closure iteration time, the join result applies over inferred triples within
two last iterations in their algorithms. Lie et al. in [50] claim that their strategy
reduces computation and allows a substantial increase in performance. To prove
their claim, they did not present any experimental result that deals with a massive
enough RDF data in-stream when they are larger than the size of the memory.

The authors of [62] proposed a continuous ASP-based (Answering Set Pro-
gramming) reasoning over RDF streams on RDF data. The C-ASP process-
ing model merges two developed models: i) Data Stream Management System
(DSMS) based on windowing, and ii) Complex Event Processing (CEP) systems
where rules applied to timestamped data. The process breaks down in three steps:
a) Windowing: select subsets of the most recent elements of the input streams; b)
Evaluation: perform reasoning on the finite and intermediate data portions; and c)
Streaming: convert the final solutions back into the stream. In all three steps, the
reasoning is based on windowing while not considering static semantics in-stream
neither using massive data or any big data platform for their process.

To sum up, in comparison with the-state-of-the-art of incremental saturation

2An ontology, aka Terminological Box
3A fact base, aka Assertional Box
4http://www.nvidia.com/object/cuda_home_new.html

43

http://www.nvidia.com/object/cuda_home_new.html

CHAPTER 3. RELATED WORKS

Figure 3.5: spo Indexing in Hexastore [83]

of RDF, we leverage a lightweight indexing structure, a fine-tuned ordering of the
execution of the rules, as well as the use of a Big Data platform, namely Spark, to
efficiently saturate large in-stream micro-batches of RDF data.

3.3 Indexing Structures for RDF Data

The indexing mechanism we proposed in this thesis is comparable to those pro-
posed by Weiss et al. [83], by Schätzle et al. [68] and by Kaoudi et al. [43]
for efficiently evaluating SPARQL queries. For example, Weiss et al. developed
Hexastore, a centralized system that maintains six indexes for all triple permuta-
tions, namely spo, sop, pso, pos, osp, and ops. For example, using spo indexing
a subject si is associated with a sorted list of properties {pi1, . . . , pin} Moreover,
each property, e.g., {pi1}, is associated with an associated sorted list representing
the objects ki, j, i.e., {oi,11 , . . . , o

i,1
ki,1
} (Figure 3.5). While this approach allows for

efficiently evaluating SPARQL queries, it is expensive in terms of memory usage
and index maintenance. According to the authors, Hexastore may require 5 times
the size of the storage space required for storing an RDF dataset due to the indexes.
The solution developed by Schätzle et al. [68], on the other hand, is meant for

44

CHAPTER 3. RELATED WORKS

distributed evaluation of SPARQL queries using Hadoop. To do so, they use an
indexing scheme named ExtVP, which precompute semi-join reductions for be-
tween all properties. As shown by the authors, the computation of such indexes is
heavy, e.g., it requires 290 seconds to index 100 million triples. To alleviate this,
we proposed here an index that is aims to speed up RDF saturation, as opposed to
any SPARQL query, and that is amenable to incremental maintenance.

In recent years, considering the nature of the RDF graph, many indices
have been proposed for the RDF graph. Udrea et al. in GRIN [74] proposed
a graph-based lightweight indexing technique by assuming that all inferences on
rdfs:subClassOf and rdfs:subPropertyOf are prepared apriori in the RDF graph
where there is a need to traverse edges in the graph determined by an RDF
database. Udrea et al. identified the radius of a circle, where they draw circles
around the selected “center” vertices in the graph where it would include vertices
that are at a defined distance of the “center” vertex. To this end, GRIN gathers
information within a given distance of vertices by a given radius and utilizes a
balanced binary tree to index information. They used Jena API to parse the input
RDF files while GRIN was implemented in Java. They reported GRAIN builds
the index of 300 MB RDF data in under 50 seconds, while the indexation size is
75 MB, and space to store the data as a hash-table needs 320 MB. So, despite that,
they mentioned the indexation is lightweight and just pointed to the data. It is too
heavy compared to our indexing technique. Our technique builds a 129 KB index
file for a 2.9 GB dataset in 86 seconds an average, i.e., amongst 100 successive
micro-batches each 500 MB. Indeed, the proposed indexation by GRIN is heavy
for massive streaming RDF data. Consider that, in streaming RDF, indexing needs
to update as frequently as a new micro-batch arrives.

Ladwig et al. in [46] proposed a keyword search on structured graph data. So,
they integrate query translation with query answering to alleviate the overlaps of
the query translation process and the necessary process for the query answering.
Therefore, they proposed an incremental process for intermediate results computed
during query translation aim to reuse them for query answering. The authors of
[46] do not show how the proposed algorithm can incrementally update the index
structure for RDF data and their schema when they receive them in-stream.

Zou et al. in [88] proposed storing and querying RDF data from the graph
database. To speed up query processing, they create two indexes, namely VS-
tree or VS∗-tree index, on each vertex for exact and wildcard SPARQL queries.
Zou et al. do not investigate their indexation method for streaming RDF. Since
our indexing method incrementally update information based on the edges and

45

CHAPTER 3. RELATED WORKS

vertexes. Our indexing technique keeps information from those edges when they
are not rdf:type, and also for all vertices as object if the connecting edge into it
be rdf:type.

Kim et al. [44] extend the triple filtering method to exploit graph-structured
information. To improve the filtering effects, they proposed RG-index for indexing
the graph patterns in the RDF graph. To index the graph patterns, Kim et al.
proposed an adaptation method of the gSpan [85] algorithm for RDF graphs. Also,
they introduced a mechanism for caching the intermediate results to efficiently
processing graph pattern mining. In this thesis, the proposed index technique is
based on the predicate or object of RDF data to empower the system in case of
re-materializing only a partial part of RDF data, instead of the whole, so far, given
RDF data.

The following studies address decreasing the redundant intermediate results.
Kim et al. in [45] proposed R3F, a filtering method, to exploit the graph-structure
information. Therefore, they proposed a path-based index method for filtering
RDF triple for the original query processing. Chen et al. [47] for RDF data
of robotic systems proposed a star-based partitioning and index algorithm. They
create an index S-tree based on star structure, while every leaf node represents
a star structure. To reduce the storage cost, the encoding of the star structure
is compressing data by the Run-Length Encoding method. Then, a compressed-
AND operation (designed to avoid the encoding transformation back and forth)
is applied directly to the compressed encoding. None of the last two proposed
methods did propose any solution in their suggested indexing methods to update
their information incrementally.

3.4 Conclusion

In this chapter, we studied literature by considering various compatible aspects of
our work. To this end, we investigate the related-works in three categories: i) RDF
reasoning, ii)Incremental reasoning, and iii) Indexing structures for RDF triples.
We studied RDF reasoning by dividing it into two subsections: RDF partitioning
and RDF reasoning by using big data platforms, mainly Apache Spark.

RDFPartitioning It is a fundamental aspect of distributed processing and query
answering. Many research [14, 15, 34, 68, 51, 42] benefited from the well-known
partitioning technique, e.g., such as Vertical Partitioning [14], directly or as a base
for the proposed partitioning system [68]. Since data partitioning is a critical key

46

CHAPTER 3. RELATED WORKS

factor in query processing, but there is not a unique partitioning pattern that suits
all situations. Therefore, in this thesis, for the sake of stream RDF reasoning, we
propose an indexing technique that keeps a very light footprint of received/inferred
RDF triples that are given through streamflow of data or derived implicit triples
during the reasoning process. The indexing information empowers us to pick those
potential triples later from the disk, which is related to a new schema that will
receive/infer later during streaming RDF data.

RDF Reasoning by Using Big Data Platforms This thesis is built on top
WebPie[75] and Cichlid [35]. WebPie proposed a MapReduce-based distributed
RDF reasoning, and Cichlid implemented the WebPIE methods in Apache Spark.
None of the approaches has proposed a stream RDF reasoning in practice.

Incremental Reasoning The problem of incremental saturation of RDF data
has been investigated by several proposals [79, 18, 27, 32, 75]. [79] investigated
the problem of maintenance of entailments given changes at the level of the RDF
instances and schema by elaborating previous works [77, 78]. [18] builds on [79]
by respecting the case where the triples are associated with an expiration date in the
context of streams, and they showed that the deletion can be done more efficiently.
[79] and [18] do not leverage any indexing structure to efficiently perform incre-
mental saturation. [27] proposed a system for RDF saturation using a distributed
architecture. [27] implements each rule in a separate module and utilizes vertical
partitioning [14] for indexing RDF triples. The proposed indexing structure by
[27] is heavy when it comes to RDF saturation since it creates a table for each
property in the RDF triples. [32] proposed an incremental solution for saturating
RDF data by relying on the fact that only rules that have a premise triple that is
newly asserted or derived are triggered. We adopt a similar approach but utilize
an indexing structure to fetch existing triples that have been asserted/derived when
processing previous micro-batches. Unlike [32], we use the rule ordering [75]
and leverage it for streaming data in a way that minimizes the number of required
iterations for saturating the RDF data. [75] quickly discussed the problem of in-
crementally saturating RDF data by tamp-stamping the RDF tuples to distinguish
new and old tuples. We proceed similarly in our work and leverage instead when
querying the existing triples to identify those that may be used to activate a given
rule.

Indexing Structures for RDF Data The indexing mechanism we proposed in
this thesis is comparable to those proposed by [83, 68, 43] for efficiently evaluating
SPARQL queries. [83] developed Hexastore, a centralized system that maintains
six indexes for all triple permutations. While this approach allows for efficiently

47

CHAPTER 3. RELATED WORKS

evaluating SPARQL queries, it is expensive in terms of memory usage and index
maintenance. On the other hand, [68] is a distributed evaluation of SPARQL
queries using Hadoop. To do so, they use an indexing scheme based on [14],
which precompute semi-join reductions for between all properties. This approach
is heavy for streamRDF reasoning, and to alleviate that, we proposed here an index
that aims to speed up RDF saturation that is amenable to incremental maintenance.

Indeed, we know in the context of RDF saturation the inference rules that can
be triggered and, therefore, can tune the indexing structure needed for this purpose,
as done in our contribution.

48

4
RDFS Saturation in Streaming

Contents
4.1 Streaming Saturation Algorithm 56

4.1.1 Process, Store, and Index 57

4.2 Soundness and Completeness 60

4.3 Evaluation . 65

4.3.1 Datasets . 65

4.3.2 Experiment Setup . 66

4.3.3 Results . 67

4.4 Conclusion . 76

In this chapter, we describe our contribution in detail on the saturation of RDF
streams by leveraging on Spark Streaming processing capabilities. Using Spark,
an RDF stream is discretized into a series of timestamped micro-batches that come
(and are, therefore, processed) at different time intervals. In our work, we assume
that a micro-batch contains a set of instance RDF triples, but may also contain
schema (i.e., RDFS) triples.

Consider, for example, an RDF stream composed of the following series of
micro-batches [mb1, . . . , mbn], where n > 2. A first approach for saturating such a
stream using a batch-oriented solution would proceed as follows: when a micro-
batch mbi arrives, it unions mbi with the previous instance dataset (including
triples obtained by previous saturation) and then the resulting dataset is totally
re-saturated.

49

CHAPTER 4. RDFS SATURATION IN STREAMING

On the contrary, our approach allows for RDF saturation in a streaming fashion,
by sensibly limiting the amount of data re-processing upon the arrival of a new
micro-batch. To this end we have devised the following optimization techniques:

1. Rule pruning for schema saturation Given a new micro-batch mbi, we filter
all the RDF schema triples contained in it. Note that in the general case it
is not likely that these new schema triples trigger all the saturation rules,
i.e. it is not the case that the new micro-batch includes all kinds of RDFS
triples at once - i.e. subPropertyOf, domain, range, and subClassOf. So for
saturating the schema at the level of the new micro-batch we first filter new
schema triples, and then obtain the set of new schema triples named NST
(Figure 4.2).

NST = Transitive Closure(new received sch ∪ present sch) - present sch

Figure 4.1: Newly Schema Triples

NST is obtained by considering the effect of existing schema triples on new
arrival schema triples. For example, suppose that the schema triple p ≺sp q
already exists. By receiving a newly schema triple (e.g., q ≺sp r), the NST
infer, also, an implicit schema triple (p ≺sp q & q ≺sp r⇒ p ≺sp r), that the
passed triples (already received and saturated) never met them before. Since
the volume size of schema triples, in general, are small enough to fit in one
node, therefore the Transitive closure operator (in Figure 4.2) applies
locally on the data in purpose of inferring implicit schema triples. Table
4.1 illustrates the rules to be activated given some matching schema triple.
For example, if a schema triple specifying the domain of a property exists,
then this triggers rule 2. All possible cases are indicated in Table 4.1, and
saturation selects one line of this table, depending on the kind of schema
predicates met in the new schema triples. This avoids triggering useless
rules. Once saturation for mbi schema triples is done in this optimized
fashion, obtained triples (i.e., NST) are merged with the existing RDFS
schema for a second-pass of global schema saturation, taking into account
triples deriving from both mbi and the pre-existing schema.

2. Efficiently saturate existing instance triples by leveraging our incremental

50

CHAPTER 4. RDFS SATURATION IN STREAMING

Table 4.1: The 1 and 0 indicate the availability of that particular schema rules in
mbi. X → Y means: The output of rule X used as an input of rule Y .

subPropertyOf domain range subClassOf Saturation Order
1 1 1 1 1 R7→ (R2, R3)→ R9
2 1 1 1 0 R7→ (R2, R3)
3 1 1 0 1 R7→ R2→ R9
4 1 1 0 0 R7→ R2
5 1 0 1 1 R7→ R3→ R9
6 1 0 1 0 R7→ R3
7 1 0 0 1 R7, R9
8 1 0 0 0 R7
9 0 1 1 1 (R2,R3)→ R9
10 0 1 1 0 R2, R3
11 0 1 0 1 R2→ R9
12 0 1 0 0 R2
13 0 0 1 1 R3→ R9
14 0 0 1 0 R3
15 0 0 0 1 R9
16 0 0 0 0 -

indexing scheme Given the new schema triples that are provided by the
micro-batch mbi or inferred in (1), we need to scan existing instances triples
to identify those that if combined with the new schema triples will trigger
RDFS rules in Table 2.3. This operation can be costly as it involves exam-
ining all the instance triples that have been provided and inferred given the
micro-batches received before mbi. To alleviate this problem, we have de-
vised an incremental indexing technique that allows for the optimal retrieval
of the instance triples that are likely will trigger the RDFS rules given some
schema triples. The technique we developed indexes instance triples based
on their predicate and object, and, as we will show later, allows to greatly
reduce the data processing effort for the saturation under the new schema.
Once retrieved, such instances triples are used together with the new schema
triples to generate new instance triples. Notice here that we cannot infer new
schema triple. This is because the rules for inferring new schema triples
require two schema triples as a premise (see Table 2.3 - rdfs2, rdfs3, rdfs7,

51

CHAPTER 4. RDFS SATURATION IN STREAMING

and rdfs9).

3. Saturate new instance triples The instance triples inferred in (2) need to
be examined - with existing and NST schema triples - as they may be used
to infer new instance triples. Specifically, each of those triples is examined
to identify the RDFS rule(s) to be triggered. Once identified, such rules are
activated to infer instance triples. The instance triples in mbi as well as those
inferred in (2) and (3) are stored and indexed using the method that we will
detail next.

4. Duplicate elimination In thiswork, we eliminate the duplicates in two-steps.
As a first step that we call partial elimination, we remove the duplicates from
every saturated micro-batch before writing them on the disk. So far, same as
Cichlid [35] (batch saturation processing), every micro-batch is duplicated
free. So, despite that, the micro-batches are duplicate free individually,
but still, there may exist duplicates between micro-batches. To avoid those
potential duplicates, and to not consider them in the next saturation process,
we eliminate duplicates after fetching the relevant triples from DS ′ based
on the NST. By this strategy, we only add O(N log N) extra execution time
(the time that requires for applying distinct operation) on those number
of triples, N, that they picked relatively. This technique prevents utilizing
distinct operation among the current and the whole triples DS ′ at the written
time by given every micro-batch.

We will now turn our attention to our indexing scheme, mentioned above. For
a micro-batch mbi received at time-stamp t we create an HDFS directory named
as t, in which we store other indexing information related to mbi, as follows. The
instance triples that are asserted in mbi, as well as those that are inferred (see (2)
and (3) above), are stored into two separate sub-directories, which we name o and
p.

The instance triples in mbi that provide information about the type of resource,
i.e., having as predicate rdf:type, are stored in the o directory. Such triples are
grouped based on their object, and they are stored in files within the o directory of
the micro-batch mbi. Specifically, instance triples with the same object are stored
in the same file. Additionally, our indexing scheme utilizes an associative hash-
table stored in the driver memory as a cached RDD, associating each encountered
object with the list of HDFS addresses corresponding to files in the o directories,
which include at least one triple with that object. Notice that triples with the

52

CHAPTER 4. RDFS SATURATION IN STREAMING

rdf:type predicate are used in the premises of rdfs9. Given a schema triple of
the form y ≺ sc z, our indexing approach allows for the fast retrieval of the files in
the o directories of the micro-batches that have as an object the resource y, and
therefore can be used to trigger rdfs9.

The remaining instance triples in mbi, i.e., those that do not have rdf:type
as a predicate, are grouped based on their predicate, and stored within files under
the p directory. Additionally, an associative hash-table stored in an RDD persisted
in main memory, associating each encountered property with the list of HDFS
addresses corresponding to files in the p directories including at least one triple
with that property is created and maintained. By means of this kind of indexing,
we can optimize application of rules rdfs2, rdfs3 and rdfs7 to infer new instance
triples as we can inspect the previously described hash-table in order to retrieve
only files containing triples with properties needed by these 3 rules.

To illustrate, consider for example that a newmicro-batch mbi arrives at a given
time t, and that it contains the schema triple tsc: s1 ≺sc s2. Such schema triple
can contribute to the inference of new schema triples (i.e., by means of rdfs11) as
well as new instance triples by means of rdfs9. Since the indexation mechanism
we elaborated is sought for the inference of instance triple, let us focus on rdfs9.
To identify the instance triples that can be utilized together with the schema triple
tsc, we need to examine existing instance triples. Our indexing mechanism allows
us to sensibly restrict the set of triples that need to be examined, as the hash-
table indexing the files under the o directories enables the fast recovering of files
containing triples with s1 as an object resource, and that can be combined with
the schema triple tsc to trigger rdfs9. The indexing of the files in p directories
are operated in a similar manner in order to efficiently recover files containing
instance triples with a given property so as to use included triples to trigger
rdfs2/3/7, under the arrival of a correspondent schema triple in the stream. To
illustrate our approach in more detail let’s consider the following example.

Example 4.1. We assume that we have the initial schema S of Figure 2.1 and that
we saturate it by given two more schema triple to obtaining S′ as indicated below.

S′ = TransitiveClosure(S ∪ {hasContactA ↪→ r rdfs:Literal, _:b0 ≺ sc paper})

This operation is fast and centralized, as the initial schema is always relatively
small in size to fit in memory. Our approach then proceeds according to the

53

CHAPTER 4. RDFS SATURATION IN STREAMING

following steps.

1. The saturated schema S′ is broadcasted once to each cluster nodes′ executors
so that it can access S′ with no further network communication.

2. Then available micro-batches are processed. For the sake of simplicity we
make here the, unnatural, assumption that each micro-batch consists of only
one triple. An assumption of the stream of micro-batches shown in Table
4.2, while first micro-batch mb1 convey an instance triples doi1 τ _:b0 and
so on.

Table 4.2: Instance triples

mb Subject Predicate Object
1 doi1 τ _:b0
2 doi1 hasTitle “CAQU MV”
3 doi1 hasAuthor “SA”
4 doi1 hasContactA _:b1
5 doi1 inProceedingsOf _:b2
6 _:b2 hasName “PODS′98”
7

3. The first received micro-batch triggers rdfs9 so that we have the derivation
of two new triples:

{doi1 τ _:b0 | _:b0 ≺sc confP} - rd f s9→ doi1 τ confP
{doi1 τ _:b0 | _:b0 ≺sc paper} - rd f s9→ doi1 τ paper

The received triple plus the two derived ones are then stored according to our
indexing strategy. As already said, triples are grouped by their objects when
having rdf:type property, so as to obtain the following file assignment,
knowing that t1 is the time stamp for the current micro-batch:

54

CHAPTER 4. RDFS SATURATION IN STREAMING

doi1 τ confP→ o/t1/ f ile1,
doi1 τ paper→ o/t1/ f ile2,
doi1 τ _:b0 → o/t1/ f ile3

We, also, keep the objects of the above triples along with their physical file
location in a hash table for the later fast accessing. In the above case the
indexing hash table is:

key values
confP o/t1/ f ile1

paper o/t1/ f ile2

_:b0 o/t1/ f ile3

4. The processing goes on by deriving new instance triples for the micro-
batches from 2 to 6, as indicated in the Table 4.3, which also indicates how
instance triples are stored/indexed.

Table 4.3: Saturated Streaming Triples

mbi Received Triple Schema Triple Entails(E.) & Received(R.) Indx. Key
Stored
Paths &
Index Value

1 doi1 τ _:b0 _:b0 ≺ sc confP,
_:b0 ≺ sc paper

E. doi1 τ confP,
E. doi1 τ paper,
R. doi1 τ _:b0

confP,
paper,
_:b0

o/t1/file1,
o/t1/file2,
o/t1/file3

2 doi1 hasTitle “CAQUMV” hasTitle←↩ d confP E. doi1 τ paper,
R. doi1 hasTitle “CAQUMV”

paper,
hasTitle

o/t2/file1,
p/t2/file1

3 doi1 hasAuthor “SA” hasAuthor←↩ d paper E. doi1 τ paper,
R. doi1 hasAuthor “SA”

paper,
hasAuthor

o/t3/file1,
p/t3/file1

4 doi1 hasContactA _:b1 no inference R. doi1 hasContactA _:b1 hasContactA p/t4/file1

5 doi1 inProceedingOf _:b2 inProceesingOf←↩ d confP,
inProceesingOf ↪→ r conference

E. doi1 τ confP,
E. _:b2 τ conference,
R. doi1 inProceedingOf _:b2

confP,
conference,
inProceedingOf

o/t5/file1,
o/t5/file2,
p/t5/file1

6 _:b2 hasName “PODS′98” hasName←↩ d conference E. _:b2 τ conference,
R. _:b2 hasName “PODS′98”

conference,
hasName

o/t6/file1,
p/t6/file1

55

CHAPTER 4. RDFS SATURATION IN STREAMING

Now assume that in micro-batch 7 we have the following RDF schema triples:

paper ≺sp publication,
hasContractA ≺sp hasAuthor

So we have now three steps: i) to obtain global newly schema triples, we
examine the received plus filtering out already present schema triples in purpose
to get NST (figure 4.2), then ii) broadcast these schema triples minus the already
exist/broadcast schema triples, to enable tasks to locally access them. Next, iii) re-
processing previouslymet and inferred instance triples by taking into consideration
the new schema (the NST). Consider, for instance, {hasContactA ≺sp hasAuthor}
as new schema triple. This schema triple triggers rdfs7. Therefore, the schema
triple affects those instance triples when they have hasContactA as the predicate.
Thus, by referring to the key of our indexing information, it tells us that only file
p/t4/file1 (Table 4.3, line 4) needs to be loaded to, potentially may infer new triple,
that, of course, will be in turn stored according to our indexing strategy.

NST = { paper ≺sc publication, hasContactA ≺sp hasAuthor
posterCP ≺sc publication, confP ≺sc publication,
_:b0 ≺ sc publication, hasContactA←↩d paper }

Figure 4.2: New received and inferred Schema Triples (NST)

As we will see in our experimental analysis, the pruning of loaded files en-
sured by our indexing will entail fast incremental saturation. Also, note that our
approach tends to create a non-negligible number of files, but fortunately without
compromising efficiency thanks to distribution.

4.1 Streaming Saturation Algorithm

The overall streaming saturation algorithm is shown in Algorithm 2, and com-
mented hereafter. Consider that a given micro-batch can convey three different
combinations of data. They carry i) just instance triples, ii) just schema triples, or

56

CHAPTER 4. RDFS SATURATION IN STREAMING

iii) instance and schema triples. Here is a global overview of those steps before
explaining them in details:

i) Just given instance triples: This case is the most straightforward and easiest
situation. We apply the batch saturation process by considering the execution
of RDFS rules ordering. At the end of the process, we collect the indexing
information from the given and generated implicit RDF triples and store
them on the HDFS.

ii) Just RDF schema triples: Phase I) Preparing NST1 from the given and
existing schema triples. In the next step, by considering the indexing data,
we confirm the presence of the corresponding instance triples, by relying
on their footprint from indexing information, without involving the disk.
The detected triples fetch and saturate with the NST. In the next step, the
broadcasted schema triples update by considering the NST. Phase II), we
collect index information from the inferred implicit instance triples and
store them on HDFS.

iii) Combination of instance and schema triples: We firstly extract schema
triples from the given micro-batch and apply Phase I of the previous step
(ii). The inferred implicit triples, if any, are new, so they need to examined
with whole schema triples (means, existed schema plus NST). Therefore, the
inferred implicit triples concatenate into the given instance triples and then
following the step (i).

4.1.1 Process, Store, and Index

Given a micro-batch mbi, we first perform schema saturation if mbi contains
schema triples (lines 12, 13). The related instance triples are retrived based on
mbNST (line 14). Given newly inferred schema triples, instance triples are reterived
and examined to identify cases where new instance triples may be inferred (line
15). The obtained schema triples (i.e., mbNST) are added and broad-casted within
the intial schema RDD (line 17, 18). The inferred triples, if any, are merged with
instance triples of mbi (i.e., mbins) and the saturation is applied to them. In the
next step, the received and inferred instance triples are combined and obtained

1A small reminder: (NST = Transitive Closure(new received sch ∪ present sch) - present
sch)

57

CHAPTER 4. RDFS SATURATION IN STREAMING

duplicates, if any, are partially removed (line 22). In the last step, the instance
triples from the previous step are saved and indexed using our method (line 24-25).

Algorithm 2: Overall Algorithm for Saturating RDF Stream
1: Input: MB← [mb1, · · · , mbn] // a stream of micro-batches.
2: Output: Schemas← [Sch1, · · · , Schn] // Schi represents the schema triples obtained as a result of saturating the

micro-batches MB = [mb1, · · · mbi].
3: Output: Datasets← [DS1, · · · , DSn] // DSi represents the instance triples obtained as a result of saturating the

micro-batches MB = [mb1, · · · mbi].
4: Output: IndexInformations← [oIndex, pIndex] // oIndex and pIndex keeps object- and predicate-based

information respectively.
5: Dins ← ∅ // Initialize a dataset for instance triples
6: Dsc ← ∅ // Initialize a dataset for schema triples
7: br← if Dsc exist then TransitiveClosure and broadcast them
8: do {
9: (mbsch, mbins)← SeparatingTriples(mbi) // Separate schema from instance triples of received mb
10: if (mbsch exist then) {
11: // Build and broadcast a NST correspond to the current mb
12: mb′

sch
← (TransitiveClosure (mbsch ∪ Dsc)) - Dsc

13: mbNST ← broadcast(mb′sch)
14: // Fetch triples from DS ′ and re-saturate them with the NST
15: D′

ins
← Fetch triples using Indexing variable based on mbNST

16: mb′
i
← Saturate(D′

ins
, mbNST)

17: // Combine and re-broadcast the received and existing RDFS
18: Dsc ← mbNST ∪ Dsc

19: br← broadcast(Dsc)
20: }
21: // Saturate the received instance triples with total RDFS triples
22: mbimp ← Saturate(mbins ∪ mb′i, br)
23: mb′′

i
← (mbins ∪ mbi′ ∪ mbimp).distinct

24: // The following two lines are handled by Indexing Algorithm 3
25: Save mb′′

i
in the HDFS

26: [oIndex, pIndex]∪ ← indexing(mb′′
i

)

27: } while(is there an incoming micro-batch mb?)
28: End

The indexing algorithm (Algorithm 3) is responsible for:

i) partitioning the instance triples by their object/predicate,

ii) store the partitioned triples on HDFS on object- or predicate-based paths,

iii) and finally, keep a hash table inmemory that contains the objects’/predicates’
of the intended triples as a unique key and their physical stored paths as value.

58

CHAPTER 4. RDFS SATURATION IN STREAMING

We rather focus here on the algorithm for indexing, which is central to our
contribution. Central to the efficiency of the solution presented in the previous
section is the technique that we elaborated for incrementally indexing the new
instance triples that are asserted or inferred given a new micro-batch.

Algorithm 3: Incremental RDFS Indexing Algorithm
1: // mb′

i
is indicated as instance and implicit triples from received mb′

i

2: Input: Saturated mb′
i

3: // The information of mb′
i
keeps as two Sets in memory.

4: Output: oIndexingSet, pIndexingSet
5: Begin
6: // Get a f ixed timestamp to save the mb′

i
triples.

7: fts← TimeMillis

8: // The mb′
i
triples partitions by their object where their predicate is rdf:type.

9: oPartition← mb′
i
.filter(_._2.contains(“rdf-syntax-ns#type”)).

10: map(t⇒ (t._3, t._1)).partitionBy(number of different object in mb′
i
).

11: mapPartitions(_.map(t⇒ (t._2, t._1))).persist

12: // The mbi′ triples partitions by their predicate where their predicate is NOT rdf:type.
13: pPartition← mb′

i
.filter(!_._2.contains(“rdf-syntax-ns#type”)).

14: map(t⇒ (t._2, (t._1, t._3))).partitionBy(number of different predicate in mb′
i
).

15: mapPartitions(_.map(t⇒ (t._2._1, t._1, t._2._2))).persist

16: // The oPartitions and pPartitions store on HDFS at fixed timestamp under o and p sub-directory paths respectively.
17: oPartition.saveAsTextFile(outputPath + “o/” + fts + “/data/”)
18: pPartition.saveAsTextFile(outputPath + “p/” + fts + “/data/”)

19: // oIndexingSet is a HashTable which keeps the object of instance triple as key and their physical paths as value.
20: oIndexingSet ∪= oPartition.mapPartitionsWithIndex((index,iterator)⇒{
21: iterator.map(t⇒ (t._2, fts + “-” + index)) }).distinct
22: .collect.groupBy(_._1).toSeq.map(t⇒ (t._1, t._2.map(w⇒ w._2).toSet)))

23: // pIndexingSet is a HashTable which keeps the predicate of instance triple as key and their physical paths as value.
24: pIndexingSet ∪= pPartition.mapPartitionsWithIndex((index,iterator)⇒{
25: iterator.map(t⇒ (t._2, fts + “-” + index)) }).distinct
26: .collect.groupBy(_._1).toSeq.map(t⇒ (t._1, t._2.map(w⇒ w._2).toSet)))
27: // Return the indexing information
28: return oIndexingSet & pIndexingSet
29: End

As mentioned in the previous section, indexed instance triples are classified
into two disjoint categories: object- or predicate-based triples. Specifically, a
triple is considered an object-based if its predicate is rdf:type. Triples of this
kind are used as a premise to rdfs9 (see Table 2.3). On the other hand, a triple

59

CHAPTER 4. RDFS SATURATION IN STREAMING

is considered to be predicate-based if its predicate is different from rdf:type.
Triples of this kind are used as premise for rules rdfs2, rdfs3 and rdfs7 (see Table
2.3).

Labeling a new instance triple as object-based or predicate-based is not suf-
ficient. To speed up the retrieval of the triples that are relevant for activating a
given RDFS rule, object- and predicate-based triples are grouped in files based on
their object and predicate. This allows for triples having a given predicate/object
to be located in only one file inside the directory associated with a micro-batch.
More specifically, Algorithm 3 details how the indexation operation is performed.
It takes as input new instance triples that are asserted or inferred given the last
micro-batch mb′. It filters the instances triples to create two RDDs. The first
RDD is used for storing object-based triples (line 9-11). Since the predicate of
object-based triples is rdf:type, we only store subject and object of object-based
triples. The second RDD is used for predicate-based triples (line 13-15). Notice
that the triples of the two RDDs are grouped based on their object and predicate,
respectively, by utilizing RDD partitioning. The Spark method partitionBy() takes
as an argument the number of partitions to be created. In the case of the RDD used
for storing object-based triples, we use the number of different objects that appear
in the triples as an argument. In the case of the RDD used for storing predicate-
based triples, we use the number of different predicates that appear in the triples. It
is worth mentioning here that we could have used the method sortBy() provided by
Spark for RDDs instead of partitionBy(). However, sortBy() is computationally
more expensive as it requires a local sort.

Besides grouping the RDDs containing the triples, the algorithm creates two
auxiliary lightweight hash structures to keep track of the partitions that store
triples with a given object (line 20-22) and predicate (line 24-26), respectively.
Such memory-based hash structures act as indexes. They are lightweight memory-
based structures that are utilized during the saturation to quickly identify partitions
that contain a given object and predicate, respectively. Note that all the steps of
the algorithm, with the exception of the first one (line 7), oIndexingSet, and
pIndexingSet are processed in a parallel manner.

4.2 Soundness and Completeness

We deal now with the proof of soundness and completeness of our approach.
We need the following lemma, which is at the basis of soundness and com-

60

CHAPTER 4. RDFS SATURATION IN STREAMING

pleteness of our system as well as of WebPIE [75] and Cichlid [35], and reflects
rule ordering expressed in Figure 2.4. To illustrate the lemma, assume we have
D = {s τ c1} while the schema includes four triples of the form ci ≺ sc ci+1, for
i = 1 . . . 4. Over D and S we can have the tree T1 corresponding to:

{c1 ≺ sc c2 | c2 ≺ sc c3} − rdfs11→ c1 ≺ sc c3

A more complex tree is T2 defined in terms of T1:

{s τ c1 | T1} − rdfs9→ s τ c3

Imagine now we have T3 defined as:

{c3 ≺ sc c4 | c4 ≺ sc c5} − rdfs11→ c3 ≺ sc c5

We can go on by composing our derivation trees, obtaining T4:

{T2 | T3} − rdfs9→ s τ c5

Note that the above tree T4 includes two applications of rdfs9. At the same time
we can have the tree T5:

{T1 | T3} − rdfs11→ c1 ≺ sc c5

enabling us to have the tree T4′ which is equivalent to T4, having only one
application of rule 9, and consisting of:

{s τ c1 | T5} − rdfs9→ s τ c3

As shown by this example, and as proved by the following lemma, repeated
applications of instance rules {2, 3, 7, 9} can be collapsed into only one, provided
that this rule is then applied to an instance triple and to a schema triple in S ∗,
obtained by repeated applications of schema rules 5 and 11. This also proves that
it is sound to first saturate the schema S and then applying instance rules {2, 3, 7, 9}
(each one at most once) over schema rules in S ∗.

Lemma 4.2. Given an RDF data set D of instance triples and a set S of RDFS
triples, for any derivation tree T over D and S , deriving t ∈ D∗S , there exists an
equivalent T′ deriving t, such that each of the instance rules {2, 3, 7, 9} are used at
most once, with rule 7 applied before either rule 2 or 3, which in turn is eventually
applied before 9 in T′. Moreover, each of these four rules is applied to a S ∗ triple.

61

CHAPTER 4. RDFS SATURATION IN STREAMING

Proof. Given the above lemma, we can now present the theorem stating the
soundness of our approach.

Theorem 4.3. Given a set of instance triples D and schema triples S , assume the
two sets are partitioned in n micro-batches mbi = Di ∪ S i with i = 1 . . . n, we have
that there exists a derivation tree {T1 | T2}− rdfsX → t over D and S , with t ∈ D∗S ,
if and only if there exists j ∈ {1, . . . , n} such t is derived by our system when mb j is
processed, after having processed micro-batches mbh with h = 1 . . . j − 1.

Proof. To prove the above lemma, we examine the dependencies between the
rules {2, 3, 5, 7, 9, 11}. A rule r depends on a rule r′ where possibly r and r′ are
the same rule, if the activation of r′ produces a triple that can be used as a premise
for the activation of r. This examination of rule dependencies reveals that:

• Rule 5 depends on itself only.

• Rule 11 depends on itself only..

• Rule 7 depends on rule 5: rule 7 uses as a premise triples of the form p ≺ spq,
which are produced by the activation of rule 5.

• Rules 2 and 3 depend on rule 7: both rules 2 and 3 uses as a premise triples
of the form spo, which are given in prior and produced by rule 7.

• Rule 9 depends on rules 2, 3 and all given triples in prior with τ as a predicate:
both rules produce triples of the form p τ x, a premise for activating rule 9.
It also depends on rule 11.

Figure 4.3 depicts the obtained rule dependency graph. With the exception of
rule 5 and 11, the graph is acyclic, meaning that the saturation can be performed
in a single pass. Furthermore, the dependency graph shows that in order for the
saturation to be made in a single pass schema rules 5 and 11 needs to be first
(transitively) applied to saturate the schema, followed by the instance rules. Rule
7 is the first instance rule to be executed, followed by the instance rules 2 and 3
(which can be applied simultaneously or in any order), before applying at the end
rule 9. That said, we need to prove now that for an arbitrary T there is exist an
equivalent T′ as described in the lemma. This follows from the fact that if (*) T
contains more than one rule rdfsX with X ∈ {2, 3, 7, 9}, then it must be because of
subsequent applications of rule 9 (resp. rule 7) each one applied to a schema triple

62

CHAPTER 4. RDFS SATURATION IN STREAMING

Rule	5	
<<transitivity	of	property>>	

Rule	11	
<<transitivity	of	subclass>>	

Rule	7	
<<inheritance	of	subproperty>>	

Rule	2	
<<Typing	based	on	the	domain>>	

Rule	3	
<<Typing	based	on	the	range>>	

Rule	9	
<<inheritance	of	type>>	

Rule dependency

Figure 4.3: RDFS Ruleset Dependencies.

eventually derived by rule 11 (resp. rule 5), exactly as depicted by the example
just before the lemma. As shown by the example, this chain of rule 9 (resp. rule 7)
applications can be contracted so as to obtain a unique application of rule 9 (resp.
rule 7) applied to as schema triple in S ∗, obtained by subsequent applications of
rule 11 (resp. rule 9). So in case (*) holds, the just described rewriting for chains
of rule 9 (resp. rule 7) can be applied to T in order to obtain T′.

�

Given the above lemma, we can now present the theorem stating the soundness
of our approach.

Theorem 4.4. Given a set of instance triples D and schema triples S , assume the
two sets are partitioned in n micro-batches mbi = Di ∪ S i with i = 1 . . . n, we have
that there exists a derivation tree {T1 | T2}− rdfsX → t over D and S , with t ∈ D∗S ,
if and only if there exists j ∈ {1, . . . , n} such t is derived by our system when mb j is

63

CHAPTER 4. RDFS SATURATION IN STREAMING

processed, after having processed micro-batches mbh with h = 1 . . . j − 1.

Proof. The ‘if’ direction (soundness) is the easiest direction. We prove this case
by induction on j. In case one triple t is derived by our system when processing
the micro-batch mb1, then we can see that in Algorithm 2, this triple is obtained
by a derivation tree calculated by Saturate(), and including at the leaves instance
triple in D1 and schema triple in S 1

∗. As D1 ⊆ D and S 1
∗ ⊆ S ∗, we have that his

derivation tree can derive t also from D and for S . Assume now t is derived by
our system when processing the micro-batch mb j with j > 1. Triple t is derived
by a derivation tree T possibly using triples t′ derived in mbh with h < j, as well
as triples in D j and (

⋃ j
1 S i)

∗
. By induction we have that for each t′ derived at step

h < j there exists a derivation tree T′ over D and S deriving t′. So to conclude it is
sufficient to observe that if in T we replace leaves corresponding to triples t′ with
the corespondent T ′ then we obtain the desired derivation tree for t.

Let’s now consider the ’only-if’ direction (completeness). We proceed by a
double induction, first on n, the number of micro-batches, and then on the size of
the derivation tree T deriving t. Assume n = 1, this means that we only process
one micro-batch. By Lemma 4.2 we have that there exists an equivalent T’ for
t, satisfying the properties stated in the lemma, and hence that can be produced
by our algorithm, as we first saturate the schema and then apply instance rules in
sequence 7-2-9 or 7-3-9, as in T’.

Assume now n > 1. We proceed by induction on the tree derivation T =

{T1 | T2} − rdfsX → t. The base case is that both T1 and T2 are simple triples in
D and S respectively. In this case let j be the minimal index ensuring that both
triples have been met in processed micro-batches mbh, with h ≤ j. This j exists by
hypothesis, and we have that either t1 or t2 is in mb j. Assume it is t1, a schema
triple and that t2 has been met in mbs with s < j. Then by means of our index we
recover t2 (line 14) and saturation for the step j in line 21, builds T to derive the
triple t.

Assume now that both T1 and T2 do not consist of a simple triple (the case only
one is a triple is similar). By Lemma 4.2, we have that there exists an equivalent
T ′ = {T1′ | T2′} − rdfsY → t such that instance rules are use a most once (in the
order of Figure 2.4), where each rule uses a schema triple in S ∗. This means that,
w.l.o.g, T2′ is a schema triple t2′ in S ∗. By hypothesis (S =

⋃n
1 S i) we have that

there exists mbh such that t2 is obtained by schema saturation (which is globally
kept in memory) and that there exists mbs in which t1 is derived and indexed by our
algorithm. Now consider j = max(s, h). At step j our algorithm disposes of both
t1 (indexed) and t2 (in the RAM) and can hence produce {t1 | t2} − rdfsY → t.

64

CHAPTER 4. RDFS SATURATION IN STREAMING

The remaining cases are similar. �

4.3 Evaluation

The saturation method we have just presented lends itself, at least in principle, to
outperform state of the art techniques, notably Cichlid, when dealing with streams
of RDF data. This is particularly the case when the information about the RDF
schema is also obtained in a stream-based fashion. An empirical evaluation is,
however, still needed to be able to answer the following question: Does our method
actually outperform in practice the Cichlid solution for saturating streams of RDF?
And if so, to what extent? To answer this question, we conducted an experimental
analysis that we reported on in this section.

4.3.1 Datasets

Pre-processing data in stream

We make in our experiments the assumption that the RDF data is received along
with schema triples. So, dataset arrives in micro-batches in a streaming fashion,
while their schema heavenly divided between the micro-batches. Specifically, we
used for our experiments three RDF datasets that are widely used in the semantic
web community: DBpedia [17], LUBM [36], and dblp2. These datasets are not
stream-based datasets, and therefore we had to partition them into micro-batches
to simulate a setting where the data is received in a streamed manner.

To this end, we created the following stream-based datasets:

1. DBpedia: byusingDBpedia, we created three stream-based datasetsDBpedia-
100M,DBpedia-200M, andDBpedia-300M. They contain 100, 200, and 300
million instance triples respectively. The datasets are broken into series of
58, 112, and 162 micro-batches respectively and each micro-batch is 500
MB in size. The existing DBpedia schema has been distributed equally
between the micro-batches. Therfore, each micro-batch, also, has a range of
[104-128], [58-63], and [40-42] schema triples respectively.

2Computer science bibliography (https://dblp.uni-trier.de/faq/What+is+dblp.html)

65

CHAPTER 4. RDFS SATURATION IN STREAMING

2. LUBM: LUBM3 [36] is a generator of synthetic RDF datasets. We used
it to create three stream-based datasets, LUBM-35M, LUBM-69M, and
LUBM-165M, which contained 35, 69, and 165 million triples, respectively.
The datasets are partitioned into a series of 11, 23, and 49 micro-batches,
respectively, and each micro-batch is 500 MB in size. The existing LUBM
schema has been distributed equally between micro-batches. The LUBM in
quantity has a tiny schema dataset (i.e., contains 84 schema triples), then
each micro-batch also has a range of [7-8], [3-4], and [1-2] schema triples,
respectively.

3. DBLP: DBLP is a computer science dataset. We created a stream-based
DBLP, composed a series of 60micro-batches containing in total 195million
triples. Each micro-batch is 500 MB in size and contains 6% of schema
triple that means only one schema triple per micro-batch.

For each of the above datasets, we ran our saturation algorithm incrementally
for each of the succeeding micro-batches. For comparison purposes, for each of
the above datasets, we run the Cichlid algorithm on the previous micro-batches
if the new schema arrives. To reduce the extra process in successive saturation
on Cichlid, we consider NST (The Newest Schema Triples) for re-saturating the
previous micro-batches. We then consider the implicitly inferred triples from the
previous processes plus instance triples of the given micro-batch and then saturate
them with so far given schema triples. Given that Cichlid is not incremental, for
each micro-batch, we had to consider the previous micro-batches.

4.3.2 Experiment Setup

We conducted our experiment on a local cluster4 with two configurations: 2 nodes
and 4 nodes. One node was, also, reserved to act as the driver node and the
remaining nodes (2 and 4 respectively) as worker nodes. Each node has a Xeon
Octet 2.4 GHz processor, 48 GBmemory and 6 TBHadoop file system. The nodes
are connected with 1 Gb/s Ethernet. All the nodes run on Debian 9.3 operating
system. The version of the Spark we used is 2.1.0 and Hadoop v2.7.0 with Java
v1.8.

3http://swat.cse.lehigh.edu/projects/lubm - A synthetic benchmark describing the
university domain

4It’s located at Université Paris-Dauphine https://dauphine.psl.eu/

66

http://swat.cse.lehigh.edu/projects/lubm
https://dauphine.psl.eu/

CHAPTER 4. RDFS SATURATION IN STREAMING

For each dataset we ran our experiments 5 times, and reported the average
running time. We ran our saturation algorithm incrementally for each of the
succeeding micro-batches. For comparison purposes, for the similar datasets,
we run the Cichlid algorithm on each of the micro-batches as well. Given that
Cichlid is not incremental, for each micro-batch, we had to consider the previous
micro-batches as well as the micro-batch in question.

4.3.3 Results
The x-axis of histograms represents the micro-batches that composed the dataset.
The y-axis reports the execution time required for its saturation in minutes. For
each of the succeeding micro-batches, in both scenarios, the y-axis reports the
time required for saturating the dataset composed of the current micro-batch, plus
previous micro-batches.

DBpedia Datasets

(a) 2 nodes (b) 4 nodes

Figure 4.4: Micro-Batches of DBpedia 100 Million Triples

Figures 4.4 shows the results obtained when saturating the DBpedia-100M
dataset in successive micro-batches on 2 and 4 nodes. Figures 4.4a and 4.4b
shows that the time required by Cichlid for saturating the streaming data increases
substantially by receiving continuous micro-batches.

Figure 4.4a illustrates that saturation on 2 nodes took 349 minutes to process
with Cichlid for the entire given dataset, which is 66 minutes by our incremental

67

CHAPTER 4. RDFS SATURATION IN STREAMING

algorithm. That is 5.3x the time required to saturate the same dataset with our
method. On average, our method takes 2.3 minutes, whereas Cichlid needs 12
minutes to apply a complete saturation process, by giving a new micro-batch,
while that contains a new schema.

Specifically, Figure 4.4b shown the saturation process on 4 nodes that takes
more than 219 minutes by Cichlid to saturate the entire process. That is 4.47 times
of the time required to saturate the same dataset with our proposed incremental
saturation, which is 49minutes. On average, ourmethod takes 1.7minutes whereas
Cichlid needs 7.5 minutes to apply a complete saturation process by giving new
schema per micro-batch. Concerning the exponential trend lines, we observed that
growing rate of Cichlid is exponential while that is growing linearly for streaming
processes. The experiments show that our method is scalable by increasing the
nodes. In 2 nodes (Fig. 4.4a), in some micro-batch, we hit 4.5 minutes while the
same micro-batches saturated in 3 minutes with 4 nodes. Cichlid outperforms our
method in first micro-batch on Figure 4.4a.

The main reason is that Spark Streaming processes only new data available at
the starting point of every interval time. On the other hand, the data that existed
before starting the first interval is not considered. Therefore, the data inserted in
the middle of the first interval will process in the second interval along with the
second micro-batch. Another reason is that the initialization of Spark Streaming
takes, a bit longer time than Spark has batch processing.

Cichlid takes almost the same processing time for the early micro-batches. But
since they need to apply batch saturation processing on previous micro-batches,
as time goes on, the volume of data gets bigger. Therefore, the saturation time
increases rapidly. On the other hand, our incremental algorithm fetches related
instance triples, regarding the given new schema, among the past data to complete
the informative content of the dataset.

Figure 4.5 shows the results obtained when saturating 200 million triples of
DBpedia on 4 nodes. The left Figure 4.5a, alike we observed for 100M triples,
shows that the execution time required by Cichlid for saturating a successively
received data increases substantially as the time goes on. This exponential ratio in
saturating causes Cichlid crashed in 51th micro-batch out of 56. The crash is due
to the volume of previous data that reloaded to re-saturate with a newly received
schema. This figure shows that it takes 3165 minutes to process the first fifty
micro-batches from the dataset, whereas it takes 84 minutes with our incremental
method for the entire dataset. The Cichlid partial saturation is still 37.6 times the
time required to saturate the same dataset compared to our method. On average,

68

CHAPTER 4. RDFS SATURATION IN STREAMING

(a) 4 nodes - Both (b) 4 nodes - Streaming

Figure 4.5: Micro-Batches of DBpedia 200 Million Triples

our method takes 1.5 minutes, whereas, Cichlid requires 63 minutes to apply a
complete saturation process by giving a new micro-batch when that contains new
schema triples.

Consider that the growing ratio of Cichlid is exponential, whereby our pro-
cessing time is not visible at the same chart. We then represent it once again
separately in Figure 4.5b. We observed that our algorithm processing time starts
from 1 minute and in the worst-case reaches 3 minutes to saturate the current, past,
and already saturated ones.

Since Cichlid is very time-consuming and also does not tolerate the DBpedia
datasets bigger than 200million triples, we did not run Cichlid for DBpedia-300M.

Figures 4.6 shows the results obtainedwhen saturating 300MofDBpedia in our
algorithm in 2 and 4 nodes. The figure shows that the time required for saturating
on 2 nodes (blue line) takes a longer time for the same micro-batch with 4 nodes.
The yellow and green lines showed required times to fetch related triples based on
given schema triples through current micro-batch. The exponential rate of growth
on 2 and 4 nodes shows the scalability of our proposed system. In general, the
saturation process on 2 nodes takes 167 minutes, while this time is 114 minutes
with 4 nodes for the entire dataset. On average, every micro-batch takes 2 minutes
to saturate on 2 nodes cluster, while this time for the same micro-batch on 4 nodes
on the same cluster is 1.4 minutes.

The good performance of our algorithm is due to its incremental nature, but also
to its underlying indexing mechanism. To demonstrate this, Figure 4.7 illustrates
for DBpedia, and for each micro-batch, the number of triples that are fetched using

69

CHAPTER 4. RDFS SATURATION IN STREAMING

Figure 4.6: DBpedia 300 Million Triples on 2 and 4 nodes - Our approach

Figure 4.7: Fetching triples per micro-batch. DBpedia 200 Million Triples

the index as well as the total number of triples that the saturation algorithm would
have to examine in the absence of the indexing structure (that requires whole
amount of triples to load). It shows that the number of triples fetched by the index
(blue line) is small compared to the total number of triples that compose the dataset
and fetch by Cichlid (red line).

70

CHAPTER 4. RDFS SATURATION IN STREAMING

LUBM Dataset

Figure 4.8 shows the results obtained by saturating the LUBM-35M dataset in
streaming and successive micro-batches on a 2 and 4 nodes cluster. Both figures
showed that the time required by Cichlid increases substantially by receiving
continuous micro-batches.

Figure 4.8a shows that saturation on 2 nodes takes 92 minutes for Cichlid to
process the entire dataset, while it takes 5.3 minutes by our algorithm. That is
17.7x the time required to saturate compare to us. On average, our method takes
less than 30 seconds, whereas Cichlid needs 8.4 minutes to apply a complete
saturation process given new schema triples. Expressly, Figure 4.8b showed that

(a) 2 nodes (b) 4 nodes

Figure 4.8: Micro-Batches of LUBM 35 Million Triples

on 4 nodes takes 56 minutes with Cichlid versus 10.2x of the time required to
saturate the same dataset with our proposed incremental saturation, which is again
5.2 minutes. Surprisingly, we see that our method does not scale on LUBM-35M.
Since the saturation process on the LUBM dataset is not high enough to require
more processors, thus adding more nodes does not increase the performance.

Concerning the trend lines, we observed that the growth rate of Cichlid is
exponentialwith a steeper slope compare to the first 11thmicro-batches ofDBpedia-
100M and DBpedia-200M. Due to the LUBM dataset synthetically designed to
provide a high computation to testing the system, then the ratio of the slope is
understandable.

Figures 4.9 shows the saturation line results of the LUBM dataset of 69
million triples on streaming and successive micro-batches data on 2 and 4 nodes,

71

CHAPTER 4. RDFS SATURATION IN STREAMING

(a) 2 nodes (b) 4 nodes

Figure 4.9: Micro-Batches of LUBM 69 Million Triples

that performed with our method and Cichlid respectively. It shows the same rate
as the LUBM-35M of exponential growth. Figure 4.9a details the saturation on
2 nodes that take 538 minutes with Cichlid while it is 49 times the time required
to saturate the same dataset in our proposed incremental saturation, which is 11
minutes. On average, our method takes 28 seconds, whereas Cichlid needs 23.4
minutes to apply a complete saturation process on given new schema triples. Figure
4.9b expressed the saturation on 4 nodes. It needed 289 minutes to saturate the
entire dataset by Cichlid, whereas 9 minutes with our algorithm. That is 32 times
the time required to saturate in comparison with our algorithm. On average, our
method takes 24 seconds, whereas Cichlid needs 12.6 minutes to do a complete
saturation by a given new schema.

Since processing the LUBM-35M and LUBM-69Mwere very time-consuming
on Cichlid, so we decided to abandon the LUBM-165M.

Figure 4.10 declared the saturation process on 2 and 4 nodes for the LUBM
dataset with 165 million triples by applying our incremental method. Figure 4.10a
details the saturation on 2 nodes that takes 52 minutes while it is 38 minutes for
the same dataset with 4 nodes. It shows we have 27% improvement by doubling
the nodes size (Figure 4.10b).

DBLP dataset

Figures 4.11 shows the results of the saturation process on a DBLP dataset contain-
ing 195 million triples on 2 and 4 nodes. Figure 4.11b details the saturation results

72

CHAPTER 4. RDFS SATURATION IN STREAMING

(a) 2 nodes (b) 4 nodes

Figure 4.10: Micro-Batches of LUBM 165 Million Triples

(a) 2 nodes (b) 4 nodes

Figure 4.11: Micro-Batches of DBLP 195 Million Triples

on 4 nodes, which that takes 1107 minutes with Cichlid, while it is 9.6 times the
time required to saturate the same dataset in our proposed incremental saturation,
which is 115 minutes. On average, our method takes 1.9 minutes, whereas Cichlid
needs 18.4 minutes to apply a complete saturation process on given new schema
triples. Execution time on 4 nodes with Cichlid grows exponential. Since satura-
tion certainly needs more time with 2 nodes, therefore we didn’t run Cichlid with 2
nodes. Figure 4.11a shows our incremental saturation on 2 nodes on DBLP-195M
dataset. It obtained 146 minutes to saturate the entire dataset. On average, our
method takes 2.4 minutes to do a complete saturation by a given new schema on 2

73

CHAPTER 4. RDFS SATURATION IN STREAMING

nodes. Our method scales 27% with 4 nodes for the same data.
The saturation time increases for mb22 and mb23 in Figure 4.11a. This happens

since the indexing fetched 2.6 and 2.8million triples for mb22 and mb23, respectively.
This number for mb20 and mb21 is 17k and 18k. Another jump happens for
mb38, mb39, and mb40. The indexing fetches 10.4, 10.6, and 10.97 million triples,
respectively.

Microbatch size So far, we have considered that the size of the micro-batch is
specified apriori. Ultimately, the size of the micro-batch depends, at least partly,
on the time interval, the resource we have (cluster configuration), and the amount
of processing required that varies from dataset to dataset. To investigate this point,
we considered a DBpedia instance of 25.4GB and run 7 different incremental
saturations. In saturation i, for i = 1 . . . 7, the size of the micro-batch is i∗100MB,
resulting in ni micro-batches, in which the whole set of schema triples have been
evenly distributed over the ni micro-batches. We used for this experiment a cluster
with 4 nodes, 11 executors, 4 cores per executor, and 5 GB memory per executor.

Figure 4.12 illustrates the average time required for performing the saturation
given a micro-batch in seconds (blue line), the average time required for the index
management in seconds (yellow line), and the total execution time to saturate
the entire dataset in minutes (red line). Regarding the saturation, the figure
shows that micro-batches with different sizes require different times for processing.
For example, the time required for processing a 100MB micro-batch is smaller
compared to the time required for processing micro-batches with larger sizes, but
the total execution time in this size is too high compared to others. The increase is
not steady. In particular, we observe that micro-batches with 400MB and 500MB
require the same processing time per micro-batch and almost in total execution
time. This means the cluster could process a bigger chunk of data within the given
time-interval. We can also conclude that the cluster was idle for some time when
processing 400MB micro-batches.

Regarding the indexmanagement (yellow line), it shows that it is comparatively
small with respect to the saturation time, and it costs in the worse case less than
6 seconds. Moreover, as with the saturation time, micro-batch size is not the only
factor. For example, the micro-batch with a size of 600MB required more time for
maintaining the index because the number of inferred tuples was higher compared
with other micro-batches, including the one with a size of 700MB. Concerning
global execution time (for all micro-batches), experiments showed that when the
number of micro-batches decreases (or in other word, size of them increases), this

74

CHAPTER 4. RDFS SATURATION IN STREAMING

Figure 4.12: Average processing time and indexing management / micro-batch

time can decrease in some cases (this happens in particular for i ∈ {4, 5}, Table
4.4).

Table 4.4: Average time per micro-batch (mb).
TE: Total Execution time of whole process
PT: Average of Processing Time per micro-batch
Indexing: Average time to fetch the triples by relying on the indexing informa-

tion
FT: Number of Fetched Triples via indexing information

Size # of mb TE(mins) Indexing(sec) PT(secs) # FT (million)

100MB 260 71 2 16 174 m
200MB 130 61 3 19 155 m
300MB 86 42 3 25 174 m
400MB 65 30 5 27 167 m
500MB 52 25 5 29 130 m
600MB 43 48 3 67 22 m
700MB 37 52 4 84 23 m

75

CHAPTER 4. RDFS SATURATION IN STREAMING

So far, we proposed, implemented, and observed the performance of our
algorithm. But still, an important question remains and that is:

“How sustainable is the proposed incremental algorithm?”

To answer this question, we need to discuss the file system thatwe used in this thesis;
that is HDFS5. HDFS has two main components in its architecture: DataNode and
NameNode. DataNode is responsible to keep data in blocks. While NameNode
contains the metadata of those files which are present in HDFS and maintains
states of all DataNodes. This metadata is present in a serialized form inside a
single file, and this file is kept both on-disk and in-memory.

As we already discussed, the outputs of our method are written in multiple
files on HDFS by considering the numbers of predicates or objects. This technique
createsmany files inDataNodewhile their file names aremaintained inNameNode.
As saturation goes on the number of files increases too. So, NameNode goes down
by reaching its threshold. When NameNode goes down, the file system goes
offline, and the saturation platform will disconnect into HDFS.

In default, the size of NameNode is 1 MB and located in java heap. To tackle
this limitation, we increased the size of NameNode into 4 MB. From that moment,
we did not face any failure in the purpose of the thesis experiments.

4.4 Conclusion

In this chapter, we have presented a stream-based scalable technique for parallel
RDFS forward inference. We showed that our proposed approach outperforms
state-of-the-art solutions for saturating RDF, namely Cichlid on well-known RDF
datasets. In order to innovate and improve the performance, we introduced some
key optimizations to handle the given and past received RDF/RDFS triples. These
optimizations are: i)Rule pruning on given schema triples, ii)Reduce the execution
time, and iii) Reduce the duplicate elimination costs in a stream.

Both in terms of re-saturation and durability, our technique outperforms pub-
lished approaches (Specifically [35]) by a significant margin, when saturating
streams RDF data incrementally using the big data platform, like Apache Spark.

5The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on
commodity hardware. (http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html)

76

http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

5
OWL-Horst Saturation in Streaming

Contents
5.1 Challenges on OWL-Horst Reasoning in Stream 79

5.2 Evaluation . 90

5.2.1 Datasets . 90

5.2.2 Experiment Setup . 91

5.2.3 Results . 91

5.3 Conclusion . 99

In recent years, ter OWL-Horst [72] has gained consistent attention from
both research and industrial communities, as it represents a good balance between
expressivity and computational tractability. This section is devoted to RDF stream-
ing saturation in the presence of OWL-Horst ontology [73]. The rules are reported
in Table 5.1, and, as it can be seen, it is much more expressive than RDFS.

In the previous chapter, 4, we have described how to perform efficient
reasoning under the RDFS semantics while data and schema triples receive in
successive intervals of time. In this chapter, we will explain an extension of the
indexing technique on the ruleset of Ter OWL-Horst fragment [73], which is
a part of the OWL vocabulary that weakens D-entailment [60] and OWL Full

[9]. However, the techniques we have developed for the RDFS saturation process
remain effectual in the context of OWL-Horst rules; but the transposition is not
direct. Hence, we had to take particular care regarding the integration of the RDFS
and OWL-Horst ruleset in the presence of streaming triples. However, for every

77

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

Table 5.1: OWL-Horst rule set. Schemas are indicated by italic font.

No Condition Consequence
1 p τ owl:FunctionalProperty

u p v , u p w
v owl:sameAs w

2 p τ owl:InverseFunctionalProperty
v p u , w p u

v owl:sameAs w

3 p τ owl:SymmetricProperty
v p u

u p v

4 p τ owl:TransitiveProperty
u p w , w p v

u p v

5a u p v u owl:sameAs u
5b u p v v owl:sameAs v
6 v owl:sameAs w w owl:sameAs v
7 v owl:sameAs w, w owl:sameAs u v owl:sameAs u
8a p owl:inverseOf q , v p w w q v
8b p owl:inverseOf q , v q w w p v
9 v τ owl:Class , v owl:sameAs w v ≺ sc w
10 p τ owl:Property , p owl:sameAs q p ≺ sp q
11 u p v,

u owl:sameAs x , v owl:sameAs y
x p y

12a v owl:equivalentClass w v ≺ sc w
12b v owl:equivalentClass w w ≺ sc v
12c v ≺ sc w, w ≺ sc v v owl:equivalentClass w
13a v owl:equivalentProperty w v ≺ sp w
13b v owl:equivalentProperty w w ≺ sp v
13c v ≺ sp w, w ≺ sp v v owl:equivalentProperty w
14a v owl:hasValue w,

v owl:onProperty p,
u p v

u τ v

14b v owl:hasValue w,
v owl:onProperty p
u τ v

u p v

15 v owl:someValuesFromw,
v owl:onProperty p
u p x , x τ w

u τ v

16 v owl:allValuesFrom u,
v owl:onProperty p
w τ v, w p x

x τ u

78

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

single OWL-Horst rule, the extension of the indexing technique for the RDFS
approach is almost direct, validating the effectiveness of our previously introduced
indexing technique. The reasons that we were choosing the OWL-Horst ruleset are
i) it is an existing standard for scalable OWL reasoning when its implemented by
industrial-strength triples stores such as GraphDB1; ii) also, compared to the RDFS
rule set, it has a more complex set of rules to express; iii) it keeps, computationally,
a balance between the OWL full and the limited articulation of RDFS; iv), and
finally, in the streaming data, it brings a new challenge to maintain the complete
set of saturated data up-to-date.

Despite the normalization of OWL-Horst rules rather than OWL full, they still
have very complicated rules to provide an extensive reasoning process in a stream.
For instance, dissimilar from RDFS rules, rules 12c, 13c, 14a, 14b, 15, and 16
fromOWL-Horst require more than one schema triple, while some of them require
more than one instance triple to infer an implicit triple (i.e., 1, 2, 4, 15, 16, etc.).
Those characteristics of OWL-Horst rules need several join operation between the
given and saturated data.

Same as RDFS, to dismiss some straightforward rules from our process, we
omit rules with one antecedent, i.e., rules 5a,b, while those rules can be parallelized
efficiently [75] at a query time.

5.1 Challenges on OWL-Horst Reasoning in Stream
In the OWL-Horst rule stream reasoning, we face two main challenges:

i) Unlike RDFS, most of the OWL-Horst rules require more than one schema
and instance triple to star the saturation process. So, they need data com-
munication between nodes to the corresponding instance matches.

ii) The previous challenge (i) will be more serious when we assume that a part
of the instance triple has already arrived and stored on the disk.

On the other hand, some rules (i.e., Rule 15, 16, 4) require iteration until
reaching a fixpoint. Fortunately, we still have some rule dependencies. It implies
that the correctness of our algorithm follows naturally, as the fixpoint semantics is
natural for RDF saturation. Figure 5.1 illustrates the overall steps of our complete
RDF streaming saturation to deal with OWL-Horst schema rules in a streaming
fashion. It is worth observing that the particular rule ordering we adopt is that of

1https://www.w3.org/2001/sw/wiki/Owlim

79

https://www.w3.org/2001/sw/wiki/Owlim

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

Cichlid [35]. Notice that there is no join operation required between schema and
instance triples in the RDFS rule set, whereas in some OWL-Horst ruleset needs
multiple join operations in schema- and instance-level (i.e., Rule 15 and 16) to
infer an implicit triple.

As already observed in [35], an important difference wrt RDFS saturation is
that for OWL-Horst it is not possible to identify an ordering in rule application
which is as fine-grained as that for RDFS (Figure 4.3). That said, a careful analysis
that distinguishes the setting where new schema triples are considered from the
setting where new instance triples are considered, allows us to establish some
partial ordering among the rules.

Specifically, given some new schema triples, which come with a new micro-
batch, the examination of rules dependencies allows us to identify three groups of
rules that may be triggered: Gsch1 , Gsch2 and Gsch3 , each of which is composed of the
following rules:

• Gsch1 = {OWL − Horst(9, 10, 12(a,b), 13(a,b)) + RDFS(5, 11)}

• Gsch2 = {RDFS(7, 2, 3, 9)}

• Gsch3 = {OWL − Horst(14(a,b), 3, 8(a,b), 15, 16, 4, 1, 2)}

The first group contains OWL-Horst rules together with the two RDFS rules that
produce schema triples, viz RDFS 5 and 11. The OWL-Horst in the group can be
applied in any order once however, RDFS rules 5 and 11 need to be appliedmultiple
times until reaching a fix-point (note that RDFS 5 and 11 operate centralized). The
second group Gsch2 contains RDFS rules that use as premise triples that are produced
by the rules in Gsch1 , but also, the related instance triples for this group fetch from
DS′ by utilizing the indexing information regarding the Gsch1 . The third group Gsch3 ,
on the other hand, is independent of the other two group. The above analysis
suggests the following order of application of rules given newly acquired schema
triples: the rules in group Gsch1 need to be applied before applying those in group
Gsch2 , whereas the rules in the third group Gsch3 can applied in parallel to those in
Gsch1 and Gsch2 .

The analysis of rule dependencies considering newly acquired or inferred
instance triples is less conclusive since we cannot escape the iterative application
of rules. That said, we identified the following groups of rules, which are exploited
in the saturation algorithm shown in Figure 5.1:

• Gins1 = {RDFS(7, 2, 3, 9)}

80

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

Using total schema(So far received and entailed)

Fetech schema triples to complete and/or enrichment

Fetech relative instance triples based on the newly schema

D ⇒ Driver
W⇒Workers

DS′

Schema (So far)

Received Data

SchemaInstance

ifyes

(A1) RDF Schema

(Step A) Saturation based on

up
da
tin
g
th
e s

ch
em

as

(A1.1 - D) Preparing NS T
OWL-Horst(9, 10, 12(a,b), 13(a,b))→
Transitive Closure(RDFS(5, 11))

(A1.2 - W) Saturation fetched Instances
RDFS(7, 2, 3, 9)

(A2 - W) OWL-Horst
Rules (14(a,b), 3, 8(a,b), 15, 16, 4, 1, 2)∪∪

ifyes

(Step B) Saturation on received and inferred instance triples

B1 (W)
RDFS (7, 2, 3, 9)

B2 (W)
OWL-Horst (14(a,b), 3, 8(a,b))

B3 (W)
OWL-Horst(15, 16, 4)

B4 (D, W)
OWL-Horst (15, 16, 4)

B5 (D, W)
OWL-Horst (1, 2, 7, 11)

new?

N
ew

Ro
un
d

Yes

No

Index
ing a

nd Sa
ving

Figure 5.1: The Global Overview of Saturation Process on OWL-Horst Rules.

81

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

• Gins2 = {OWL − Horst(14(a,b), 3, 8(a,b))}

• Gins3 = {OWL − Horst(15, 16, 4)}

• Gins4 = {OWL − Horst(15, 16, 4)}

• Gins5 = {OWL − Horst(1, 2, 7, 11)}

The first group Gins1 contains RDFS rules that need to be applied in the order
specified. The remaining groups contain OWL-Horst rules that can be applied
once in any order (except Step B5 in Figure 5.1). The rules in the second group
Gins2 are independent of those in the first group Gins1 and they can produce in parallel
with the first group Gins1 . The rules in Gins3 depends on those in the first Gins1 and
the second Gins2 groups in the sense that the triples produced by these can be used
as a premise by the rules in Gins3 . Also, the rules in Gins1 depends on those in Gins3 .
Notice that this introduces a loop between the three first groups. The rules in the
fourth group Gins4 depend on those triples produced by the last two schema groups
(Gsch2 and Gsch3) and the first three instance groups (Gins1 , Gins2 , and Gins3), plus those
triples that were received by the current micro-batch. The fourth group needs two
instance triples to trigger the rules. Thus, the objective of the fourth group Gins4
is to find the complementary part of the current given instance triple from DS′ by
assuming that the schema triples exist.

The analysis of the rules in the fifth group, Gins5 , reveals that these depend
on the rules in the first four groups, whereas none of the rules in the first four
groups depend on the rules in Gins5 , as already assumed by Cichlid [35]. It is worth
recalling that sameAs saturation, performed by Gins5 , needs to be dealt with in a
careful way in order to avoid a blow up in triple creation. We use the approach
introduced by WebPIE [75] and the re-used by Cichlid [35], which we do not
describe here again and which, in a nutshell, creates and manages in an efficient
way a sameAsTable in which, for instance, if a, b, c, and d are the same according
to the sameAs relation, then those resources will be stored in a unique line of
the table, essentially containing one equivalence class induced by sameAs. Also
observe that we could imagine that OWL-Horst rule 11 could trigger again other
rules, say rule 14a. Actually, as shown in [35, 75], these triggered rules would
produce triples already inferred by our step B5. For instance if rule 11 produces
x τ y where (*) x and y are, respectively, sameAs u and v (already used by rule 14a
in the premise u τ v), then if we assume rule 14a produces again (once re-triggered)
a triple by using x τ y, that triple would be x p y. Since step B5 takes as input u p v

82

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

(produced in step B2 by rule 14a), we have that x p y is produced by step B5 due
to (*), so there is no need to trigger rule 14a again.

The above analysis allowed us to elaborate on an algorithm, which is depicted
in Figure 5.1 for an efficiently saturating RDF streams considering both RDFS
and OWL-Horst. It is worth observing that the rule ordering in our solution is
similar to that proposed by Cichlid [35], with the notable difference that we strive
to perform the saturation incrementally.

As shown in Figure 5.1, when a new micro-batch arrives, first a simple filter-
ing separates new instance triples from new schema triples. Our algorithm first
performs step A, in which saturation for new schema rules is performed, by also
taking into account the previously inferred schema triples. Note that this step is
needed in order to avoid inferring many times the same triples starting from newly
arrived schema triples. The idea is to infer the new schema and perform a first
wave of instance triple derivation in terms of the new schema, only once (as we
will see in Step B, newly derived instance triples will be considered for fix point
computation).

In step A, first the driver saturates the new schema rules in sub-step A1.1
dedicated to the derivation of new RDFS triples, and in which, first, OWL-Horst
rules that can produce premises for RDFS rules 5 and 11 are applied, and then
these last ones (RDFS 5 and 11) are applied. In A1.1, once the new schema triples
are derived by considering the combinations of the newly received and old schema
(those that could infer a new schema, that not met yet), plus the new schema triples
in the current micro-batch are used for RDFS instance triple saturation (A1.2), as
happened for our algorithm for RDFS saturation (Section 4.1). The novelty in step
A is used in step A2, by applying OWL-Horst rules to using the newly obtained
schema triples (from the new schema triples plus the old ones) on instance triples.
The instance triples will fetch from DS′ (instance triples that derived in the past
and stored on HDFS) by utilizing our indexing approach. For instance, for rule
2, once the indicated schema triple identifies a property p. We use our indexing
information to retrieve only the triples having p as property and then, we perform
the join required by the second and third premise (note such kind of join does not
occur for RDFS saturation). In this way, the number of triples involved in the join
operation reduces sensibly. Finally, the existed schema triples are updated with
new schemas received and obtained due to this micro-batch. To summarize, step
A is totally along the lines of our algorithm for RDFS saturation: we obtain new
schema triples and use them to infer new instance triples, that is then used in step
B, which we comment below.

83

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

Step B follows step A and takes as input: the newly received instance triples
in the current micro-batch, plus the instance triples derived in step A, plus the
new global RDFS-OWL schema still computed and broadcast in step A. The
main part of step B consists of a loop for iterating saturation until a fixpoint is
reached. The body of the iteration consists of three subsequent steps: a first one
concerning RDFS rules for instance triple derivation (Step B1), followed by OWL-
Horst derivation (Step B2), while unlike Step A1 there are any relation between
the Steps B1, B2; in case these two steps produce new triples, then (Step B3)
uses those triples for applying OWL-Horst rules 15, 16 and 4. In Step B3, the
rules 15 and 16 trigger, in the case that new object-based triples (rdf:type as the
predicate) are derived in this round of loop except for the already generated ones.
Rule 4, in this step, eligibles to trigger by the existence of new triples excluding
the existed triples from the previous rounds.

Once the fixpoint is reached, we jump to Step B4. Explanations are needed to
determine the difference between Step B4 and Step B3. As already presented in
the RDFS section, few schema rules, i.e., RDFS 5 and 11, required two premises
as input and infer a schema triple as output. In the streaming context, any of the
premises may be given later. Therefore, by receiving any premises, the second
part should search among the existed schemas. The same scenario applies for rules
15, 16, and 4, the difference is that they require two instance triples. Therefore,
in Step B4, we assume that one of the instance triples is received by the current
micro-batch and the second one needs to fetch from HDFS. By using our indexing
technique, we prevent retrieving the whole dataset DS ′, once in the existence of
schema triples to trigger the rules, i.e., 15, 16, 4 is detected.

It is noteworthy that Rules 5 and 11 of RDFS are not complex and resource-
consuming to find the missing part since the size of schema triples is small enough
to fit in memory. On the contrary, the same procedure is very resource-consuming
to find the matching instances in the rules since the rules require two instance
triples while one of them may have arrived earlier and located on disk.

For Rule 4 in Step 4, firstly, we fetch all predicate-based triples when their
predicate corresponds to the subject of a given schema triple e.g., the subject p
from p τ owl:TransitiveProperty, when one out of two instance triple is given by
the current micro-batch (either received and or derived one). Rules 15 and 16
follow the same strategy as Rule 4, except that, first, they need to find matched
schema triples. This part proceeds in a centralized computing fashion, and by
considering the size of the schemas in constant time. We then filter the triples
for every candidate schema. Then, we do another filter among the filtered triples

84

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

and the schemas to find the object/predicate of the second triple to be able to
fetch the most potential and relevant triples from the disk by utilizing the indexing
information.

In case B4 produces new instance triples, then (step B5) uses those triples as
well for applying OWL-Horst rules 1, 2, 7 and 11. Their application requires the
system to fetch instance triples through our indexes, plus the indexing of newly
inferred triples.

Regarding the implementation of individual rules, we distinguish the following
kinds of rules:

1. Rules that take one or two schema triples and produce a schema triple, e.g.,
OWL Horst rules 12(a,b,c).

2. Rules that take one schema triple and one or two instance triples and produce
an instance triple, e.g., OWL Horst rules 4 and 8(a,b).

3. Rules that take one instance triple and produce one instance triple that we
omit them, e.g., rule 5(a,b).

4. Rules that take two schema triples and two instance triples and produce an
instance triple, namely OWL Horst rules 15 and 16.

Rules in (1) and (2) can be implemented similarly to the RDFS rules presented
earlier. Rules in (3) can be implemented straightforwardly at the query time since
they involve a single instance triple. Rules in (4), however, need to be processed
differently. For this reason, we focus on detailing the processing of Rule 15. Other
rules in (4) can be implemented similarly.

For the sake of clarity, we recall rule 15 definition.
Schemas: v owl:someValuesFrom w, v owl:onProperty p
Instances: u p x, x rdf:type w
Result: ⇒ u rdf:type v

This rule is processed differently depending on whether it is triggered given
a newly acquired schema triple (see Box A2 in Figure 5.1), given an instance
triple (see Box B3 in Figure 5.1), or based on received a new instance triple (see
Box B4 in Figure 5.1). Algorithm 4 details the processing of Rule 15 (Figure 5.1
Step A2), when given corresponding new schema triples. It starts by retrieving
the two kinds of schema triples that are necessary for triggering the rule, namely
onProperty triples and someValuesFrom triples (lines 6-7). If such triples exist,
then the algorithm attempts to find their match. For example, if a newly acquired

85

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

Algorithm 4: OWL-Horst Rule 15 (Step A2)
1: Input: mbsch – Received schema triples
2: Input: op′ and sv′ – Two datasets that represent schema triples with owl:onProperty

and owl:someValuesFrom as predicate respectively except those they received by the
current mb

3: Output: A2r15 – reasoning results
4: Begin
5: // Extract owl:onProperty and owl:someValuesFrom schema from mbsch
6: new_op← mbsch.

filter(t⇒ t._2.equals(“owl:onProperty”)).
map(t⇒ (t._1, t._3)).collect.toSet

7: new_sv← mbsch.
filter(t⇒ t._2.equals(“owl:someValuesFrom”)).
map(t⇒ (t._1, t._3)).collect.toSet

// Rule 15 won’t trigger if there is no new schema triple arrives

8: if(new_op.isEmpty && new_sv.isEmpty) then
9: return empty

// Keep those schema triples if the second match of schema is arrived too.

10: op1 ← findMatches(new_op, new_sv)
11: sv1 ← findMatches(new_sv, new_op)

// Also find other matches among the previous schema based on the current schemas

12: op2 ← findMatches(op′, new_sv)
13: sv2 ← findMatches(sv′, new_op)
14: op← (op1.toSeq ++ op2.toSeq)
15: sv← (sv1.toSeq ++ sv2.toSeq)

// Every new op must have, at least, a new and/or old sv/sv′ and so on for every new sv too.

16: if((op1.toSeq ++ op2.toSeq).isEmpty || (sv1.toSeq ++ sv2.toSeq).isEmpty) then
17: return empty

// Retrieve related instance triples from DS ′ by relying on indexing information

18: pTriples← Fetch triples from predicate_based paths of DS ′ based on the op
19: oTriples← Fetch triples from object_based paths of DS ′ based on the sv

// Saturation process among the fetched triples

20: in15 ← pTriples.map(t⇒ ((op.value(t._2), t._3), t._1))
21: t15 ← oTriples.map(t⇒ ((sv.value(t._2), t._1), Nil))
22: A2r15 ← in15.join(t15).map(t⇒ (t._2._1, t._1._1))
23: return A2r15

24: End

triple is an onProperty triple, e.g., (v1 owl:onProperty p1), then the algorithm tries
to find a matching triples, e.g., (v1 owl:someValuesFrom w), from received and

86

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

already existed schema, and vice versa (lines 10-13). For every matching pair
of someValuesFrom and onProperty triples (lines 14-15), the algorithm retrieves
instance triples that can be used for triggering the rule using our index (lines
18-19), and inferring implicit triples (lines 20-22) accordingly as specified by the
rule.

Algorithm 5: OWL-Horst Rule 15 (Step B3)
1: Input: mbinst – Instance Triples of micro-batch
2: Input: op′S wap and sv′S wap: Datasets that represent schema triples

with owl:onProperty and owl:someValuesFrom as predicate respectively.
i.e., Swap means (Object, Subject)

3: Output: B3r15 – Reasoning results
4: Begin

// Extract the given triples and types based on the entire (so far) received schema.

5: potential_Triples← mbinst.
filter(t⇒ op′S wap.value.contains(t._2))

6: potential_Types← mbinst.
filter(t⇒ t._2.equals(“rdf:type”) && sv′S wap.value.contains(t._3))

7: tr15 ← potential_Triples.
map(t⇒ ((op′S wap.value(t._2), t._3), t._1))

8: ty15 ← potential_Types.
map(t⇒ ((sv′S wap.value(t._2), t._1), Nil))

9: B3r15 ← tr15.join(ty15).map(t⇒ (t._2._1, t._1._1))

10: return B3r15

11: End

Algorithm 5 details the processing of rule 15 given the received and inferred
instance triples.

This algorithm 5 relies on received instance triples and total schema. The
algorithm starts by retrieving the required instance triples from the received and
inferred instance triples (lines 5-6) and trigger the rule by considering the schema
triples that were present before and along the given micro-batch (lines 7-9). The
inferred results (line 10) will use into another round of saturation process in case
that the previous round of saturation process infers new instance triple (i.e., with
predicate “rdf:type”). Otherwise, they will go to the next saturation step (Step
B4).

Algorithm 6 aims to find one of the bipartite instance triples of rule 15 from

87

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

Algorithm 6: OWL-Horst Rule 15 (Step B4)
1: Input: mbinst/inf – Instance and inferred triples based on the current mbi.
2: Input: Tsch – The total schema that received so far
3: Output: B4r15 – Reasoning results
4: Begin

// Extract the respective schema triples from the total schema

5: svset ← Tsch.
filter(t⇒ t._2.equals(“owl:someValuesFrom”)).map(t⇒ (t._1, t._3))

6: opset ← Tsch.
filter(t⇒ t._2.equals(“owl:onProperty”)).map(t⇒ (t._1, t._3))

// Choose that someValuesFrom triples if exists any related onProperty for that and vice versa.

7: svs← findMatches(svset, opset)
8: ops← findMatches(opset, svset)

// Assure that both schemas exist

9: if(svs.isEmpty || ops.isEmpty) then return empty
// Broadcast the svs and ops and the swap version of them, i.e.,(Object, Subject)

10: svbr ← broadcast(svs)
11: opbr ← broadcast(ops)
12: svS wapbr ← broadcast(svs.map(t⇒ (t._2, t._1)))
13: opS wapbr ← broadcast(ops.map(t⇒ (t._2, t._1)))

// Filter nominated types, find triples with a matching signature, fetch triples from disk, saturation process

14: nominatedTypes← mbinst/inf.
filter(t⇒ svS wapbr.value.contains(t._3) && t._2.equals(“rdf:type”))

15: vs1 ← nominatedTypes.map(t⇒ svS wapbr.value(t._2)).distinct
16: ps1 ← vs1.map(t⇒ opbr.value(t))
17: relatedPs← Fetch triples from predicate-based paths based on ps1
18: tr15_1← relatedPs.map(t⇒ ((opS wapbr.value(t._2), t._3), t._1))
19: ty15_1← nominatedTypes.map(t⇒ ((svS wapbr.value(t._2), t._1), Nil))
20: r15_1← tr15_1.join(ty15_1).map(t⇒ (t._2._1, t._1._1))

// Filter nominated types, find triples with a matching signature, fetch types from disk, saturation process

21: nominatedTriples← mbinst/inf.filter(t⇒ opS wapbr.value.contains(t._2))
22: ps2 ← nominatedTriples.map(t⇒ opS wapbr.value(t._2).distinct
23: vs2 ← ps2.map(t⇒ svbr.value(t)).distinct.collect.toList)
24: relatedT s← Fetch types from object-based paths based on vs2
25: tr15_2← newP.map(t⇒ ((opS wapbr.value(t._2), t._3), t._1))
26: ty15_2← relatedT s.map(t⇒ ((svS wapbr.value(t._2), t._1), Nil))
27: r15_2← tr15_2.join(ty15_2).map(t⇒ (t._2._1, t._1._1))

28: B4r15 ← r15_1.union(r15_2)
29: return B4r15

30: End

88

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

the already existing triples (DS ′) received through previous micro-batches. In this
step, the necessary condition is the existence of both schema triples and at least
one of the instance triple. In this regard, we suppose that both necessary schema
triples exist, and one of the related instances triple given and/or inferred via current
micro-batch. Therefore as a first step, we extract the schema triples with predicate
owl:onProperty and owl:someValuesFrom, that required for rule 15, among the
so far schema triples that we received up to this moment of the process (lines
5-6). As we said, just a complete set of the schema triples is eligible to trigger.
For this purpose, the algorithm makes use of the findMatches() subroutine to
find those matches for every intended schema triple which given owl:onProperty
triples returns corresponding owl:someValuesFrom triples and vice-versa (lines 7-
8). In the next step, by considering that both schema exist (line 9), we examine the
provided instance triples with the selected schema triples to pick those instances
that both schema triples exist for them. For this purpose, we broadcast the collected
schema triples via broadcast operation (lines 10-13). Then, we pick those triples
from the mbinst/inf when they have rdf:type as a predicate with the same object
as the collected someValuesFrom objects (line 14). We extract all corresponding
owl:onProperty schema triples based on the owl:someValuesFrom schema and
the candidate triples –those with rdf:types as predicate– (lines 15-16). In the
following, by utilizing the indexing information, we fetch the related triples among
the predicate-based triples from the disk DS ′ (line 17). It is worth mentioning
that the number of distinct objects and predicates in datasets is small enough to fit
in memory. For example, the examined dataset in this section contains only 116
different distinct numbers of objects and 83 different numbers of predicates for
object- and predicate-based triples, respectively. Finally, we apply the saturation
process between the chosen schema triples, the candidate rdf:type triples, and their
corresponding predicate-based triples fetched from the disk DS ′ lines 18-20. So
far, we have done a complete informative saturation for every triple with rdf:type
as a predicate that we got and inferred via the current mbinst/inf. The algorithm 6,
lines 21-24, dedicated to the same process as lines 14-20 except to find the right
rdf:type triples with correspondence objects. For this purpose, we fetch those
triples from the object-based triples located on the disk DS ′. Finally, we apply the
saturate process between the selected and fetch triples, and both matched schema
triples by considering both matched schema triples. Finally, the results of the
saturation processes (i.e., r15_1 and r15_2) are concatenating and return (line 28).

89

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

5.2 Evaluation

Like RDFS section, our extended method, that we presented in this chapter, out-
perform the state-of-the-art approaches in reasoning of the OWL-Horst ruleset,
mainly Cichlid, when dealing with streams of RDF data. This is particularly the
case when the OWL-Horst schema is also given in a stream-based fashion along
with RDF data. An empirical evaluation alike RDFS section needs to answer the
following questions:

– Once again, does our method actually outperform in practice the Cichlid
method in OWL-Horst ruleset for saturating streams of RDF?

– And if yes, for how long and what circumstances?

To answer this questions, we design and implement2 an experimental analysis
that we reported on in this section.

5.2.1 Datasets

Pre-processing Data in Stream

Wemake in our experiments the assumption that the RDF data received along with
OWL-Horst schema triples. So, the dataset arrives in micro-batches in a streaming
fashion, while their schema is heavenly divided between the micro-batches. We
consider this situation to simulate RDF data in reality production. Specifically,
we used for our experiments an RDF dataset that widely uses in the semantic web
community: UniProt [28]3. The UniProt dataset is not stream-based in default.
Therefore, we partitioned them into micro-batches to be able to push them out into
the streaming saturation process to simulate a data flow where the data will receive
in a streamed manner.

For this purpose, we picked a sub-dataset of the UniProt dataset that contains
320 million. In doing so, the dataset partitions into a series of 100 micro-batches
each 512 MB in size. The schema triples of UniProt contains 549 triples, divides,
almost, equally between the micro-batches. Thus, each micro-batch has a range of
[5-6] schema triples.

2https://git.lamsade.fr/afarvardin/RDFInStream
3The universal protein knowledge base (https://www.uniprot.org/)

90

https://git.lamsade.fr/afarvardin/RDFInStream
https://www.uniprot.org/

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

5.2.2 Experiment Setup

We conducted our experiment on a local cluster4 with two configurations: 2 nodes
and 4 nodes. One node was, also, reserved to act as the driver node and the
remaining nodes (2 and 4 respectively) as worker nodes. Each node has a Xeon
Octet 2.4 GHz processor, 48 GB memory, and the cluster provides 33 TB Hadoop
file system. The nodes are connected with 1 Gb/s Ethernet. All the nodes run
on Debian 9.3 operating system. The version of the Spark we used is 2.1.0 and
Hadoop v2.7.0 with Java v1.8 is installed on the cluster.

For each dataset, we ran our experiment 5 times and reported the average
running time. We ran our saturation algorithm incrementally for each of the
succeeding micro-batches. For comparison purposes, for the similar datasets, we
run the Cichlid algorithm on the micro-batches from the same dataset as well.
Given that Cichlid is not incremental, for each micro-batch, we had to consider the
previous micro-batches as well as the micro-batch in question.

5.2.3 Results

In general, the x-axis of histograms represents themicro-batches that composed the
dataset. The y-axis reports the execution time required for its saturation in seconds.
For each of the succeeding micro-batches, in both scenarios, the y-axis reports the
time required for saturating the dataset composed of the current micro-batch, the
previous micro-batches put together.

Figures 5.2 shows the execution time required by our incremental streaming
method and the execution time required by the state of the art, i.e., Cichlid, to
saturate the UniProt dataset on 2 nodes. The figure also shows for both approaches
the exponential trend line. The x-axis represents the received micro-batches, each
one composed of instance triples, 512 MB, and a few schema triples, i.e., 5 to 6
schema triple (Table 5.2) per micro-batch. The y-axis reports the execution time
required for saturation of each micro-batch in seconds.

Since the processing time of our incremental method is indistinguishable in
Figure 5.2, therefore, Figure 5.3 shown only our method results. Figures 5.2 and
5.3 illustrated that the saturation on 2 nodes took 1023 minutes to process with
Cichlid method (depicted using a red line) for the first 17 micro-batches from the
given dataset, which is 18 minutes for the same number of micro-batches with
our incremental algorithm. That is 56.8 times the time required to saturate the

4It’s located at Université Paris-Dauphine https://dauphine.psl.eu/

91

https://dauphine.psl.eu/

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

Figure 5.2: UniProt 320 Million Triples - Comparison with Cichlid (2 nodes)

same number of micro-batches (the first 17 ones) compare to our method. Our
incremental algorithm (depicted using a blue line) takes 346minutes to saturate the
entire dataset that consists of 100 micro-batches. On average, our method takes 3.5
minutes, whereas (only by considering the first 17 micro-batches) Cichlid needs
64 minutes to apply a complete saturation process, by giving a new micro-batch,
while that contains a new schema.

The following reasons are the main cause of failure by Cichlid:

• The volume of RDF is increasing over time;

• The higher rate of computation required for OWL-Horst compare to RDFS
ruleset;

• Itreative saturating process required by some rules until a fixpoint;

• Limited resources for the given data.

In Cichlid algorithm, by considering that the size of RDF is growing over time
in one hand, and the higher saturation processing rate of the OWL-Horst ruleset
in compare to RDFS in the other hand. Also the nature of OWL-Horst rules that
needs an uncertain number of loops until a fixpoint, and finally the number of
resources that we choose (just 2 nodes) at the designing time of this experiment
are the main reasons of failure for the Cichlid in this part.

92

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

Figure 5.3: UniProt 320 Million Triples - Incremental Streaming (2 nodes)

Specifically, Figure 5.3 shown our incremental streaming saturation on 2 nodes.
The streaming depicted using a blue line illustrates the time required for each step
of our incremental algorithm solution to do a complete saturation by given a new
micro-batch with or without carrying schema triples. This time creates from four
different operations: i) processing time for Schema Part (Step A in Figure 5.1)
(in green line), ii) processing time for the triple part (Step B in Figure 5.1), and
iii) the indexing management time that required for partitioning, compressing,
storing, and collect the data information for our indexing technique from the
saturated micro-batch. In our case, all micro-batches contain new schema triples,
and the incremental saturation processing for new schema presents by Step A
(depicted using a green line). The fetches time (gray line) represents the time
that our algorithm needs to detect and retrieve data among the already existed
triples (located in DS ′). This time embedded in Step A and Step B as well. The
total fetches time for the entire processes is 66 minutes, which is 19% of the total
processing time that is 346 minutes. On average, our indexing technique takes 40
seconds in average to detect and fetches the necessary triples from DS ′ based on
new schema triples.

In Figure 5.3, we have a big jump on the micro-batch 84 (mb84). To interpret
that, we get help from micro-batch 83 (mb83) for the comparison point, since the
total execution time for mb84 is 880 seconds while it is 436 for mb83. In this purpose,
fetching times, processing time of Step A and B, indexing management and, the

93

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

number of iteration that requires to get into fixed point.

Table 5.2: Types and numbers of schema triple per micro-batch in Figure 5.4.

µb Schemas
µb0 owl(onProperty→ 1), rdfs(domain→ 2, range→ 1, subClassOf→ 2)
µb1 owl(allValuesFrom→ 1), rdfs(domain→ 1, range→ 2, subClassOf→ 2)
µb2 owl(onProperty→ 1), rdfs(range→ 2, subPropertyOf→ 1, subClassOf→ 2)
µb3 owl(allValuesFrom→ 1), rdfs(domain→ 3, subClassOf→ 2)
µb4 rdfs(domain→ 1, range→ 2, subClassOf→ 3)
µb5 owl(onProperty→ 1), rdfs(range→ 1, domain→ 1, subPropertyOf→ 1, subClassOf→ 2)
µb6 owl(inverseOf→ 1, allValuesFrom→ 1), rdfs(range→ 2, subClassOf→ 2)
µb7 owl(onProperty→ 1, equivalentClass→ 1), rdfs(range→ 1, domain→ 2, subClassOf→ 1)
µb8 owl(onProperty→ 1, equivalentClass→ 1), rdfs(range→ 1, domain→ 1, subClassOf→ 2)
µb9 owl(onProperty→ 1), rdfs(domain→ 1, subClassOf→ 3)
µb10 owl(onProperty→ 1), rdfs(range→ 2, subClassOf→ 3)
µb11 rdfs(range→ 2, domain→ 1, subClassOf→ 3)
µb12 owl(equivalentClass→ 1), rdfs(domain→ 3, subClassOf→ 2)
µb13 owl(onProperty→ 2), rdfs(range→ 1, domain→ 2, subClassOf→ 1)
.
µb82 owl(hasValue→ 1), rdfs(range→ 1, domain→ 1, subPropertyOf→ 1, subClassOf→ 1)
µb83 rdfs(range→ 1, domain→ 2, subPropertyOf→ 1, subClassOf→ 2)
µb84 rdfs(range→ 3, subClassOf→ 2)
.
µb100 owl(allValuesFrom→ 1), rdfs(domain→ 2, range→ 1, subClassOf→ 2)

– Fetching time: The fetching time for mb84 is 95 seconds, while it is 79
seconds for the mb83. That time corresponds to the retrieval of almost 111
and 69 million potential RDF triples (object- and predicate-based triples)
from DS ′ for mb84 and mb83, respectively. Those triples are retrieved from
1075 files for mb84, and 1142 files for mb83, respectively. We, therefore,
conclude that the fetching time is not the main reason for the difference in
processing the two micro-batches. Furthermore, given the growing volume
of data to be fetched, we can observe that our fetching algorithm retrieves
them in a reasonable time.

– Step A: This step for mb84 takes 64 seconds (including the required fetching
times), while it takes 48 seconds for mb83.

– Step B: The time required in Step B (including the fetchint time) is 527
seconds for mb84, while it is 277 seconds for mb83.

– Indexing Management: The indexing management time for mb84 is 289
seconds. This time is divided into 251 and 38 seconds for partitioning,

94

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

indexing, and saving the data into object- and predicate-based triples, re-
spectively. The indexing management time for mb83 is 111 seconds that
consist of 78 and 33 seconds for the object- and predicate-based triples re-
spectively. Concerning this step, We observed that the dominant execution
time belongs to object-based triples.

– Fixpoint: On the other hand, both mbes used four iterations to reach a
fixpoint. In the mb84, we observed 240K predicate-based triples and 1.45
million object-based triples per partition (i.e., there are 20 partitions in
2 nodes) that are required to saturate in every iteration. These numbers
for mb83 are 240K predicate-based triples and 460K object-based triples in
every iteration. TO a considerable extent, this explains the difference in
the processing time required for saturating data in mb84 compared to time
needed for mb83.

Figure 5.4: UniProt 320 Million Triples - Comparison with Cichlid (4 nodes)

Figures 5.4 shows the obtained results by the saturation process of the UniProt-
320M dataset in successive micro-batches on four nodes. It shows that the time
required by Cichlid for saturating the streaming data is still increasing significantly
by receiving successive micro-batches so that the processing time of our incre-
mental method becomes indistinguishable. Therefore, we draw our method results
in Figure 5.5.

95

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

Figure 5.5: UniProt 320 Million Triples - Incremental Streaming (4 nodes)

Figures 5.4 and 5.5 illustrated the saturation process on four nodes. It took
1086 minutes with Cichlid for the first 17 micro-batches, while it takes 15 minutes
for the same number of micro-batches with our incremental algorithm. That is
72.4 times the time required to saturate the same number of micro-batches (the
first 17 ones). Our incremental algorithm takes 257 minutes to process the entire
dataset consists of 100 micro-batches. On average, our method takes 2.7 minutes,
whereas (by considering the first 17 micro-batches), the Cichlid needs 36 minutes
to apply a complete saturation process by giving a newmicro-batch contains a new
schema.

Figure 5.6 shown a comparison of the same process between 2 and 4 nodes
for the Cichlid algorithm. Despite the size of the nodes that became double, the
sum of saturation processing time in 2 nodes for the last three micro-batches takes
two times of 4 nodes execution time, which are 946 and 551 minutes on 2 and 4
nodes, respectively. However, the first 14 micro-batches take 78 and 58 minutes
for 2 and 4 nodes, respectively. The algorithm on four nodes provides a better
computing rate for the same volume of data moreover scaled almost 2x in every
micro-batches. The processing trend line for mb15 on two nodes grows faster. This
growth only on the last micro-batch (mb17) takes more processing time than the
recent three micro-batches (mb15,16,17) with four nodes.

Figure 5.5 shown our incremental streaming saturation on 4 nodes. The stream-
ing line (blue) shows a complete saturation processing time by given a new micro-

96

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

Figure 5.6: The First 17 mbes of UniProt 320 Million Triples - Cichlid

batch with or without carrying schema triples. In our case, all micro-batches
contain new schema triples, and the Step A illustrates processing time based on the
new schema. The Streaming line (in blue) shown the total execution time required
for a micro-batch. This time creates from four different operations: i) processing
time for Schema Part (Step A in Figure 5.1) (in green), ii) processing time for
the triple part (Step B in Figure 5.1), and iii) the indexing management time that
required for partitioning, compressing, storing, and collect the data information for
our indexing technique from the saturated micro-batch. The fetches time (in gray)
represents the time that our algorithm needs to detect and retrieve data among the
existed triples (i.e., from DS ′). This time is embedded in Step A and Step B.

The total fetches time for the entire process is 61 minutes, which is 23.7% of
the total processing time, which is 257 minutes. In the 4 node cluster, the fetch
time seems to take more time related to the same saturation process on the 2 node
cluster. The fetching time is related to the number of files that are going to fetch
from the same HDFS. Therefore it takes the same time for both cases to retrieve the
triples. We obtained that the fetch time is 1.7% faster on the 4 node cluster.

On average, our indexing technique takes 37 seconds to detect and fetches the
necessary triples from DS ′ by given new schema triples. In Figure 5.5 (alike figure
5.3), we have a big jump on the micro-batch 84 (mb84). We use micro-batch 82
(mb82) for the comparison point, because the total execution time for mb84 is 593
seconds while it is 224 for mb82. In this purpose, fetching times, processing time

97

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

of Step A and B, indexing management and, the number of iteration that requires
to get into fixed point.

– Fetching time: We know that the total fetching time for the entire process of
mb84 is 87 seconds, while it is 51 seconds for the mb82. That time correspond
to the retrieval of almost 111 and 69 million potential RDF triples (object-
and predicate-based triples) from DS ′ for mb84 and mb82 Those triples are
retrieved from 1075 and 964 files for mb84 and mb82, respectively. We,
therefore, conclude that the fetching time is not the main reason for the
difference in processing the two micro-batches. Furthermore, given the
growing volume of data to be fetched, we can observe that our fetching
algorithm retrieves them in a reasonable time.

– Step A: This step for mb84 takes 60 seconds including the required fetching
times, while it takes 25 seconds for mb82.

– Step B: The time required in Step B, including the fetch time for this step, is
314 seconds for mb84 while it is 142 seconds for mb82.

– Indexing Management: Moreover, the indexing management time for mb84
is 219 seconds. This time divided into 187 and 32 seconds for partition-
ing, indexing, and saving the data into object- and predicate-based triples,
respectively. The indexing management time for mb82 is 58 seconds that
consist of 27 and 31 seconds for the object- and predicate-based triples re-
spectively. Concerning this step, We observed that the dominant execution
time belongs to object-based triples.

– Fixpoint: On the other hand, both mbes used four iterations to reach a
fixpoint. In the mb84, we observed 110K predicate-based triples and 660K
object-based triples per partition (i.e., there are 44 partitions in 4 nodes)
that are required to saturate in every iteration. These numbers for mb82 are
111K predicate-based triples and 36K object-based triples in every iteration.
To a considerable extent, this explains the difference in the processing time
required for saturating data in mb84 compared to time needed for mb82

Cichlid takes 40 to 60 extra seconds, which is negligible compare to the later
ones, for the early micro-batches processing time. But since they need to apply
batch saturation processing on the previous micro-batches, therefore by time goes
on as the volume of data gets larger, the saturation processing time increasing

98

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

Figure 5.7: Fetches triples per mb. UniProt 320 Million Triples

rapidly. On the other hand, our incremental algorithm fetches just related instance
triples, based on the given new schema, among the past data to do a complete
informative content of the dataset. As we saw earlier in the RDFS chapter, the
good performance of our algorithm is due to its incremental nature, but also its
underlying indexing mechanism.

We also recorded the number of triples that are retrieved by a given newmicro-
batch using our incremental method and compared it with the number of triples that
are retrieved by Cichlid. Figure 5.7 depicts the results. It shows that our method
(depicted with the blue line) retrieves far smaller numbers of triples compared
with the Cichlid (depicted with the red). This can be explained by the fact that
our method utilizes indexing structures designed to retrieve only the triples that
are likely to yield the activation of a saturation rule. It is worth noting that for
mb84, we fetch 94 million triples (around one-third of the whole dataset) from the
already existing dataset DS ′. Thanks to the incremental loading of our indexing
data structures, our approach can fetch a massive number of triples successfully in
a reasonable time by utilizing a relatively small cluster.

5.3 Conclusion

In this chapter, we described an extension of our stream-based reasoning technique
for the OWL-Horst forward inference and demonstrated it on well-known RDF
datasets. We obtained that the devised indexing technique is adaptable to the new
scenario of the OWL-Horst. To this end, we checked with the OWL-Horst rules

99

CHAPTER 5. OWL-HORST SATURATION IN STREAMING

using the indexing technique to fetch the relative triples and apply the saturation
process on the eligible OWL-Horst rules. In other words, we do not trigger a rule
if any of their premises are missing. Also, we compare our method with state of
the art, namely Cichlid, and show that our strategy successfully adopts into the
streaming RDF data when they convey OWL-Horst rules along with them. This
is obtained by reducing the number of loading triples by fetching them wisely
from DS ′ based on the received new OWL-Horst rules and RDF triples. Finally,
we trigger only the eligible rules when all of their premises exist at the time of
saturation. We observed that this strategy reduces IO throughput and execution
time significantly.

To innovate and improve the performance, we have introduced several opti-
mizations to handle the given and already received triples. These optimizations
consist of: i) Rule pruning on the given schema triples, iii) Reduce the execution
time, and iii) Reduce the duplicate elimination costs in a stream.

Both in terms of re-saturation and durability, our technique outperforms the
published approaches ([35]) by a significant margin. To summarize , we show that
our approach outperforms the state-of-the-art in both durability and processing
time when saturating RDF streams data incrementally using the Apache Spark
platform.

100

6
Conclusions, Discussions, and Future Work

Contents
6.1 Discussion of Scope . 103
6.2 Discussion on Streaming Platform 103
6.3 Future challenges . 104

Nowadays, RDF data, just like many other kinds of data, are produced in high
volumes. A wide range of systems is generating data in RDF format including data
produced in the context of health monitoring and financial market applications,
feed of user-content provided by social network platforms, as well as long-running
scientific experiments that adopt a stream-flow programming model, LOD, etc.
To take full advantage of semantic data and turn them into actionable knowledge,
the semantic web community has devised techniques for processing and reasoning
over RDF data. This trend generated the need for new solutions for processing and
reasoning over RDF datasets since existing state-of-the-art techniques cannot cope
with large volumes of data. Nowadays, aside from the volume of data that is so
far produced and processed, the frequent generation of massive data and process
them in a reasonable time carries a new challenge.

Data saturation is crucial to ensure that RDF processing and querying work on
the complete informative content of an RDF database, without ignoring implicit
information. Taking this into consideration, we work in this thesis on the reasoning
over streams of RDF triples (including schema triples). Indeed, when RDF data
is produced in streams, the state-of-the-art approaches must re-process the whole
data collection to obtain triples entailed by the newly received ones. It is since
both received (via currentmicro-batch) and inferred triples (those already saturated

101

CHAPTER 6. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORK

and stored triples on the disk) can entail new triples under the presence of newly
received instance/schema triples.

Throughout the chapters of this thesis, we described the main approaches that
constitute the techniques presented in this work. We utilize the devised incremental
indexing for each entailment rule, which is in charge of a specific part of the overall
target. Each of the described steps outputs some results that can be susceptible to
the next steps to querying and analysis. The outcomes collected from all the steps
allow achieving the final goal, i.e., scalable saturation of streaming RDF triples.

Based on our literature study applied to the existing approaches and their
drawbacks, we have built an incremental indexing technique that composes of
different steps and responsibilities. We can summarize the contributions of these
approaches as follows: i) partitioning the saturated instance triples by their ob-
ject/predicate, ii) storing the partitioned triples onHDFS on an object- or predicate-
based paths, iii) and finally, maintaining a hash table in memory that contains the
objects’/predicates’ of the intended triples as a unique key and their physical stored
paths as value to access stored triples later.

In this thesis, we have shown how RDF data streams can be saturated in an
optimized way. We also showed that our approach outperforms state-of-the-art
solutions for incrementally saturating RDF, namely Cichlid [35].

To this end, we have presented a stream-based scalable indexing technique for
parallel RDFS and OWL-Horst forward inference and applied it on well-known
RDF datasets. To innovate and improve the performance, we introduced some key
optimizations:

• Rule pruning on given schema: By analyzing a given newly schema triple,
we ignore some unnecessary rules from the execution rules’ order to reduce
the fetching time from DS ′;

• Reduce the execution time: Thanks to indexing technique for reducing the
number of fetching triples among DS ′ (already received and saturated) and
subsequently, reduce the saturation process by leveraging our incremental
indexing scheme;

• Duplicate elimination; In this work, we, slightly, compromise with dupli-
cates. Since the storage cost is far cheaper than the processing cost, therefore,
we decided to minimize the number of duplicates on the disk to the goal
of reducing the processing costs. For this purpose, duplicate elimination

102

CHAPTER 6. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORK

applies to every micro-batch before saving on the disk, and never consider
the duplicates among micro-batches at the re-saturation process time.

6.1 Discussion of Scope
Despite all efforts to optimize our implementation, there are a number of assump-
tions behind our algorithms: (a) Although the size of the cluster’s memory is
usually large enough, the schema must be small enough to fit in the memory; (b)
Same as the state of the art [75], we assume that there is no ontology hijacking [38];
(c) The used datasets are available locally. We divide them into small files and
push them into the saturation process to simulate a stream-based data convey; (d)
Our algorithm, somehow, depends on the HDFS configurations. The NameNode
in HDFS responsible for storing the available file names on the HDFS. Thus, our
method is highly dependent on this feature since each micro-batch is stored in
several new files. In general, the java heap size plays a vital role in our devised
technique.

Despite the scalable method that we have devised the cluster needs to be
carefully tuned to utilize its total power. In other words, configuring multi-node
and dedicating a large amount of memory per executor does not guarantee to
perform saturation efficiently.

6.2 Discussion on Streaming Platform
In this work, we have devised a stream reasoning method using Apache Spark
Streaming. The indexing technique that we have developed is not dedicated just
for RDFS reasoning and can be applied for other problems, i.e., query answering.
This technique focuses on the related instance triples for re-saturating based on the
given newly schema triples. The system can work continuously; until HDFS has
space, and the java heap could tolerate storing new file names.

We also described an extension of our stream-based technique for parallel
OWL-Horst forward inference and applied it on well-known RDF datasets (i.e.,
UniProt). We observed that the devised indexing technique is adaptable to a new
scenario. In this case, we reason over the OWL-Horst rules using the indexing
technique to fetch the relevant triples and apply the saturation process on the
eligible OWL-Horst rules. In other words, we do not trigger a rule if any of
their premises are missing. We compare our method with the state-of-the-art,

103

CHAPTER 6. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORK

namely Cichlid, and it shows that our strategy successfully operate over RDF data
when they convey OWL-Horst rules along with them. This important obtained by
reducing the numbers of loaded triples, thanks to the indexing technique, based on
the received new OWL-Horst rules and RDF triples. Finally, we trigger the rules
when all of their premises exist at the time of saturation. We observed that this
strategy reduces IO throughput and execution time significantly.

6.3 Future challenges
In fact, our achieved work opens up doors for multiple further research. There
exist several potential perspectives based on the obtained results.

In the empirical evaluations, we were limited to not use some potential Apache
Spark feature that is “Dynamic Resource Allocation”. We intend to examine this
capability in our futurework. Then, sinceApache Flink is awell-known distributed
platform for process streaming, one of the perspectives is to re-implement the
proposed approach with Apache Flink and conduct a comparison with the current
system. This comparison gives us a broader perspective on the capabilities of the
RDF saturation in the context of data stream.

Another important potential work is to apply our technique for query answering
problems. For this purpose, we require to analyze the required triple model based
on the premises of the given query. By obtaining this information, we can fetch
the relevant triples from the existed dataset. We believe that our technique can be
seamlessly adapted for this purpose.

104

Bibliography

[1] AGROVOC is a controlled vocabulary covering all areas of interest of the
Food and Agriculture Organization (FAO) of the United Nations, including
food, nutrition, agriculture, forestry, fisheries, scientific and common names
of animals and plants, environment, biological notions, techniques of plant
cultivation and more. https://lod-cloud.net/dataset/agrovoc.

[2] Apache Flink. https://flink.apache.org/.

[3] Apache Hadoop. https://hadoop.apache.org/.

[4] CTD includes manually curated data describing cross-species chemical-
gene/protein interactions and chemical- and gene-disease relationships to
illuminate molecular mechanisms underlying variable susceptibility and en-
vironmentally influenced diseases. https://lod-cloud.net/dataset/bio2rdf-ctd.

[5] Farming statistics (farm sizes, land use, livestock) on local authority level.
https://lod-cloud.net/dataset/environment-data-gov-uk.

[6] Reference data for linked UK government data: * People * Departments *
Namespace for various time intervals. https://lod-cloud.net/dataset/reference-
data-gov-uk.

[7] SocialLink, a publicly available LinkedOpenData dataset that matches social
media accounts on Twitter to the corresponding entities in multiple language
chapters of DBpedia. https://lod-cloud.net/dataset/SocialLink.

105

CHAPTER 6. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORK

[8] W3C Recommandation: Resource description framework(RDF).
http://www.w3.org/RDF/.

[9] W3C: OWL Web Ontology Language. https://www.w3.org/TR/owl-
ref/#OWLFull, 10 February 2004.

[10] Semantic Web Activity Statement. https://www.w3.org/2001/sw/Activity/,
2001.

[11] Medical Subjects Headings Thesaurus 2012, OWL version. https://lod-
cloud.net/dataset/bioportal-mesh-owl, 2012.

[12] W3C Recommandation: RDF Primer. http://www.w3.org/TR/rdf-primer/,
2012.

[13] RDF 1.1 N-Triples. https://www.w3.org/TR/n-triples/, 2014.

[14] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable semantic
web data management using vertical partitioning. In Proceedings of the 33rd
International Conference on Very Large Data Bases, University of Vienna,
Austria, September 23-27, 2007, pages 411–422. ACM, 2007.

[15] G. Agathangelos, G. Troullinou, H. Kondylakis, K. Stefanidis, and D. Plex-
ousakis. Incremental data partitioning of RDF data in SPARK. In
A. Gangemi, A. L. Gentile, A. G. Nuzzolese, S. Rudolph, M. Maleshkova,
H. Paulheim, J. Z. Pan, and M. Alam, editors, The Semantic Web: ESWC
2018 Satellite Events - ESWC2018 Satellite Events, Heraklion, Crete, Greece,
June 3-7, 2018, Revised Selected Papers, volume 11155 of Lecture Notes in
Computer Science, pages 50–54. Springer, 2018.

[16] G. Agathangelos, G. Troullinou, H. Kondylakis, K. Stefanidis, and D. Plex-
ousakis. RDF query answering using apache spark: Review and assessment.
In 34th IEEE International Conference on Data Engineering Workshops,
ICDE Workshops 2018, Paris, France, April 16-20, 2018, pages 54–59.
IEEE Computer Society, 2018.

[17] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives.
Dbpedia: A nucleus for a web of open data. In ISWC/ASWC, volume 4825
of Lecture Notes in Computer Science, pages 722–735. Springer, 2007.

106

CHAPTER 6. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORK

[18] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, andM.Grossniklaus. Incremen-
tal reasoning on streams and rich background knowledge. In The Semantic
Web: Research and Applications, 7th Extended Semantic Web Conference,
ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings,
Part I, pages 1–15, 2010.

[19] H. R. Bazoobandi, H. Beck, and J. Urbani. Expressive stream reasoning with
laser. In C. d’Amato, M. Fernández, V. A. M. Tamma, F. Lécué, P. Cudré-
Mauroux, J. F. Sequeda, C. Lange, and J. Heflin, editors, The Semantic Web -
ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria,
October 21-25, 2017, Proceedings, Part I, volume 10587 of Lecture Notes
in Computer Science, pages 87–103. Springer, 2017.

[20] H. Beck, M. Dao-Tran, T. Eiter, and M. Fink. LARS: A logic-based frame-
work for analyzing reasoning over streams. InB.Bonet andS.Koenig, editors,
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA, pages 1431–1438. AAAI Press,
2015.

[21] H. Beck, T. Eiter, and C. Folie. Ticker: A system for incremental asp-based
stream reasoning. Theory Pract. Log. Program., 17(5-6):744–763, 2017.

[22] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, 284(5):34–43, May 2001.

[23] C. Bizer, T. Heath, and T. Berners-Lee. Linked data-the story so far. In-
ternational journal on semantic web and information systems, 5(3):1–22,
2009.

[24] D. Brickley, R. V. Guha, and A. Layman. Resource description framework
(rdf) schema specification. 1999.

[25] S. Cebiric, F. Goasdoué, H. Kondylakis, D. Kotzinos, I. Manolescu,
G. Troullinou, and M. Zneika. Summarizing semantic graphs: a survey.
VLDB J., 28(3):295–327, 2019.

[26] S. Ceri, M. Negri, and G. Pelagatti. Horizontal data partitioning in database
design. In M. Schkolnick, editor, Proceedings of the 1982 ACM SIGMOD
International Conference on Management of Data, Orlando, Florida, USA,
June 2-4, 1982, pages 128–136. ACM Press, 1982.

107

CHAPTER 6. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORK

[27] J. Chevalier, J. Subercaze, C. Gravier, and F. Laforest. Slider: An efficient
incremental reasoner. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, Melbourne, Victoria, Australia,
May 31 - June 4, 2015, pages 1081–1086, 2015.

[28] T. U. Consortium. Uniprot: the universal protein knowledgebase. Nucleic
Acids Research, 45(Database-Issue):D158–D169, 2017.

[29] O. Curé, H. Naacke, T. Randriamalala, and B. Amann. Litemat: A scalable,
cost-efficient inference encoding scheme for large RDF graphs. In 2015
IEEE International Conference on Big Data, Big Data 2015, Santa Clara,
CA, USA, October 29 - November 1, 2015, pages 1823–1830. IEEEComputer
Society, 2015.

[30] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, 2008.

[31] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spinning fast iterative
data flows. PVLDB, 5(11):1268–1279, 2012.

[32] F. Goasdoué, I. Manolescu, and A. Roatiş. Efficient query answering against
dynamic rdf databases. In Proceedings of the 16th International Conference
on Extending Database Technology, pages 299–310. ACM, 2013.

[33] N. Govind. A/B Testing and Beyond: Improving the Netflix Streaming
Experience with Experimentation and Data Science. https://bit.ly/3npxbx1/.

[34] D. Graux, L. Jachiet, P. Genevès, and N. Layaïda. SPARQLGX: efficient dis-
tributed evaluation of SPARQLwith apache spark. In P. T. Groth, E. Simperl,
A. J. G. Gray, M. Sabou, M. Krötzsch, F. Lécué, F. Flöck, and Y. Gil, editors,
The Semantic Web - ISWC 2016 - 15th International Semantic Web Confer-
ence, Kobe, Japan, October 17-21, 2016, Proceedings, Part II, volume 9982
of Lecture Notes in Computer Science, pages 80–87, 2016.

[35] R. Gu, S. Wang, F. Wang, C. Yuan, and Y. Huang. Cichlid: efficient large
scale rdfs/owl reasoning with spark. In Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International, pages 700–709. IEEE, 2015.

[36] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge
base systems. J. Web Sem., 3(2-3):158–182, 2005.

108

CHAPTER 6. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORK

[37] N. Heino and J. Z. Pan. RDFS reasoning on massively parallel hard-
ware. In P. Cudré-Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Euzenat,
M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber, A. Bernstein, and
E. Blomqvist, editors, The Semantic Web - ISWC 2012 - 11th International
Semantic Web Conference, Boston, MA, USA, November 11-15, 2012, Pro-
ceedings, Part I, volume 7649 of Lecture Notes in Computer Science, pages
133–148. Springer, 2012.

[38] A. Hogan, A. Harth, and A. Polleres. Scalable authoritative OWL reasoning
for the web. Int. J. Semantic Web Inf. Syst., 5(2):49–90, 2009.

[39] K. Hose and R. Schenkel. WARP: workload-aware replication and parti-
tioning for RDF. In C. Y. Chan, J. Lu, K. Nørvåg, and E. Tanin, editors,
Workshops Proceedings of the 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages 1–6.
IEEE Computer Society, 2013.

[40] P. Hu, J. Urbani, B. Motik, and I. Horrocks. Datalog reasoning over com-
pressed RDF knowledge bases. In W. Zhu, D. Tao, X. Cheng, P. Cui, E. A.
Rundensteiner, D. Carmel, Q. He, and J. X. Yu, editors, Proceedings of the
28th ACM International Conference on Information and KnowledgeManage-
ment, CIKM 2019, Beijing, China, November 3-7, 2019, pages 2065–2068.
ACM, 2019.

[41] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L.
Kersten. Monetdb: Two decades of research in column-oriented database
architectures. IEEE Data Eng. Bull., 35(1):40–45, 2012.

[42] Z. Kaoudi and I. Manolescu. RDF in the clouds: a survey. VLDB J.,
24(1):67–91, 2015.

[43] Z. Kaoudi, I. Miliaraki, and M. Koubarakis. RDFS reasoning and query
answering on top of DHTs. In International Semantic Web Conference,
volume 5318 ofLectureNotes inComputer Science, pages 499–516. Springer,
2008.

[44] K. Kim, B. Moon, and H. Kim. RG-index: an RDF graph index for efficient
SPARQL query processing. Expert Syst. Appl., 41(10):4596–4607, 2014.

[45] K. Kim, B. Moon, and H. Kim. R3F: RDF triple filtering method for efficient
SPARQL query processing. World Wide Web, 18(2):317–357, 2015.

109

CHAPTER 6. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORK

[46] G. Ladwig and T. Tran. Combining query translation with query answering
for efficient keyword search. In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten
Teije, H. Stuckenschmidt, L. Cabral, and T. Tudorache, editors, The Semantic
Web: Research and Applications, 7th Extended Semantic Web Conference,
ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings,
Part II, volume 6089 of Lecture Notes in Computer Science, pages 288–303.
Springer, 2010.

[47] Y. Leng, Z. Chen, H.Wang, and F. Zhong. A partitioning and index algorithm
for RDF data of cloud-based robotic systems. IEEE Access, 6:29836–29845,
2018.

[48] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of massive datasets.
Cambridge university press, 2014.

[49] C. S. Liew, M. P. Atkinson, M. Galea, T. F. Ang, P. Martin, and J. I. V.
Hemert. Scientific workflows: moving across paradigms. ACM Computing
Surveys (CSUR), 49(4):66, 2017.

[50] C. Liu, J. Urbani, and G. Qi. Efficient RDF stream reasoning with graphics
processingunits (gpus). In C. Chung, A. Z. Broder, K. Shim, and T. Suel,
editors, 23rd International World Wide Web Conference, WWW ’14, Seoul,
Republic of Korea, April 7-11, 2014, Companion Volume, pages 343–344.
ACM, 2014.

[51] A. Madkour, A. M. Aly, and W. G. Aref. WORQ: workload-driven RDF
query processing. In D. Vrandecic, K. Bontcheva, M. C. Suárez-Figueroa,
V. Presutti, I. Celino, M. Sabou, L. Kaffee, and E. Simperl, editors, The
Semantic Web - ISWC 2018 - 17th International Semantic Web Conference,
Monterey, CA, USA, October 8-12, 2018, Proceedings, Part I, volume 11136
of Lecture Notes in Computer Science, pages 583–599. Springer, 2018.

[52] O. Marcu, A. Costan, G. Antoniu, and M. S. Pérez-Hernández. Spark versus
Flink: Understanding performance in big data analytics frameworks. In
2016 IEEE InternationalConference onClusterComputing, CLUSTER2016,
Taipei, Taiwan, September 12-16, 2016, pages 433–442. IEEE Computer
Society, 2016.

[53] A. Margara, J. Urbani, F. van Harmelen, and H. E. Bal. Streaming the web:
Reasoning over dynamic data. J. Web Semant., 25:24–44, 2014.

110

CHAPTER 6. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORK

[54] D. L. McGuinness, F. Van Harmelen, et al. Owl web ontology language
overview. W3C recommendation, 10(10):2004, 2004.

[55] P. Mika and G. Tummarello. Web semantics in the clouds. IEEE Intelligent
Systems, 23(5):82–87, 2008.

[56] B. Motik, Y. Nenov, R. E. F. Piro, and I. Horrocks. Incremental update of
datalog materialisation: the backward/forward algorithm. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA., pages 1560–1568, 2015.

[57] H. Mühleisen and K. Dentler. Large-scale storage and reasoning for semantic
data using swarms. IEEE Comp. Int. Mag., 7(2):32–44, 2012.

[58] T. Neumann and G. Weikum. The RDF-3X engine for scalable management
of RDF data. VLDB J., 19(1):91–113, 2010.

[59] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten Teije, and F. van
Harmelen. Marvin: Distributed reasoning over large-scale semantic web
data. J. Web Sem., 7(4):305–316, 2009.

[60] P. Hayes (Ed.). RDF Semantics, W3C Recommendation.
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/, 10 February 2004.

[61] S. Perri, F. Ricca, and M. Sirianni. Parallel instantiation of ASP programs:
techniques and experiments. Theory Pract. Log. Program., 13(2):253–278,
2013.

[62] T. Pham, M. I. Ali, and A.Mileo. C-ASP: Continuous ASP-Based Reasoning
overRDFStreams. InM.Balduccini, Y. Lierler, andS.Woltran, editors, Logic
Programming andNonmonotonic Reasoning - 15th InternationalConference,
LPNMR 2019, Philadelphia, PA, USA, June 3-7, 2019, Proceedings, volume
11481 of Lecture Notes in Computer Science, pages 45–50. Springer, 2019.

[63] X. Ren and O. Curé. Strider: A hybrid adaptive distributed RDF stream
processing engine. In The Semantic Web - ISWC 2017 - 16th International
Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceed-
ings, Part I, pages 559–576, 2017.

[64] X. Ren, O. Curé, H. Naacke, and L. Ke. Strider-lsa: Massive RDF stream
reasoning in the cloud. CoRR, abs/1708.06521, 2017.

111

CHAPTER 6. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORK

[65] X. Ren, O. Curé, H. Naacke, and G. Xiao. RDF stream reasoning via
answer set programming on modern big data platform. In M. van Erp,
M. Atre, V. López, K. Srinivas, and C. Fortuna, editors, Proceedings of
the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas
Tracks co-located with 17th International Semantic Web Conference (ISWC
2018), Monterey, USA, October 8th - to - 12th, 2018, volume 2180 of CEUR
Workshop Proceedings. CEUR-WS.org, 2018.

[66] K. Rohloff and R. E. Schantz. High-performance, massively scalable dis-
tributed systems using the mapreduce software framework: the SHARD
triple-store. In E. Tilevich and P. Eugster, editors, SPLASH Workshop on
Programming Support Innovations for Emerging Distributed Applications
SPLASH/OOPSLA 2010), October 17, 2010, Reno/Tahoe, Nevada, USA,
page 4. ACM, 2010.

[67] A. Schätzle, M. Przyjaciel-Zablocki, T. Berberich, and G. Lausen. S2X:
graph-parallel querying of RDF with graphx. In F. Wang, G. Luo, C. Weng,
A. Khan, P. Mitra, and C. Yu, editors, Biomedical Data Management and
Graph Online Querying - VLDB 2015 Workshops, Big-O(Q) and DMAH,
Waikoloa, HI, USA, August 31 - September 4, 2015, Revised Selected Papers,
volume 9579 ofLectureNotes inComputer Science, pages 155–168. Springer,
2015.

[68] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and G. Lausen. S2RDF:
RDF querying with SPARQL on spark. PVLDB, 9(10):804–815, 2016.

[69] M. Staudt and M. Jarke. Incremental maintenance of externally materialized
views. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda,
editors, VLDB’96, Proceedings of 22th International Conference on Very
Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages
75–86. Morgan Kaufmann, 1996.

[70] M. Stocker and E. Sirin. Pelletspatial: A hybrid rcc-8 and rdf/owl reasoning
and query engine. In OWLED, volume 529, 2009.

[71] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. T. Xie.
Sqlgraph: An efficient relational-based property graph store. In T. K. Sellis,
S. B. Davidson, and Z. G. Ives, editors, Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 1887–1901. ACM, 2015.

112

CHAPTER 6. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORK

[72] H. J. ter Horst. Completeness, decidability and complexity of entailment for
RDF schema and a semantic extension involving the OWL vocabulary. J.
Web Semant., 3(2-3):79–115, 2005.

[73] H. J. ter Horst. Completeness, decidability and complexity of entailment
for rdf schema and a semantic extension involving the owl vocabulary. Web
Semantics: Science, Services and Agents on the World Wide Web, 3(2-3):79–
115, 2005.

[74] O. Udrea, A. Pugliese, and V. S. Subrahmanian. GRIN: A graph based RDF
index. In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages
1465–1470. AAAI Press, 2007.

[75] J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen, and H. Bal. WebPIE:
A web-scale parallel inference engine using mapreduce. Web Semantics:
Science, Services and Agents on the World Wide Web, 10:59–75, 2012.

[76] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen. Scalable distributed
reasoning using mapreduce. In International Semantic Web Conference,
volume 5823 ofLectureNotes inComputer Science, pages 634–649. Springer,
2009.

[77] R. Volz, S. Staab, andB.Motik. Incremental maintenance of dynamic datalog
programs. In R. Volz, S. Decker, and I. F. Cruz, editors, PSSS1 - Practical and
Scalable Semantic Systems, Proceedings of the First International Workshop
on Practical and Scalable Semantic Systems, Sanibel Island, Florida, USA,
October 20, 2003, volume 89 of CEUR Workshop Proceedings. CEUR-
WS.org, 2003.

[78] R. Volz, S. Staab, and B. Motik. Incremental maintenance of materialized
ontologies. In R. Meersman, Z. Tari, and D. C. Schmidt, editors, On The
Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE -
OTM Confederated International Conferences, CoopIS, DOA, and ODBASE
2003, Catania, Sicily, Italy, November 3-7, 2003, volume 2888 of Lecture
Notes in Computer Science, pages 707–724. Springer, 2003.

[79] R. Volz, S. Staab, and B. Motik. Incrementally maintaining materializations
of ontologies stored in logic databases. J. Data Semantics, 2:1–34, 2005.

113

[80] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung. Ontology based context
modeling and reasoning using owl. InPervasive Computing andCommunica-
tions Workshops, 2004. Proceedings of the Second IEEE Annual Conference
on, pages 18–22. Ieee, 2004.

[81] D. Warneke and O. Kao. Nephele: efficient parallel data processing in the
cloud. In I. Raicu, I. T. Foster, and Y. Zhao, editors, Proceedings of the 2nd
Workshop on Many-Task Computing on Grids and Supercomputers, MTAGS
2009, November 16, 2009, Portland, Oregon, USA. ACM, 2009.

[82] J. Weaver and J. A. Hendler. Parallel materialization of the finite RDFS
closure for hundreds of millions of triples. In International Semantic Web
Conference, volume 5823 of Lecture Notes in Computer Science, pages 682–
697. Springer, 2009.

[83] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for
semantic web data management. PVLDB, 1(1):1008–1019, 2008.

[84] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. Graphx: a resilient
distributed graph system on spark. In P. A. Boncz and T. Neumann, editors,
First International Workshop on Graph Data Management Experiences and
Systems, GRADES 2013, co-located with SIGMOD/PODS 2013, New York,
NY, USA, June 24, 2013, page 2. CWI/ACM, 2013.

[85] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In
Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM 2002), 9-12 December 2002, Maebashi City, Japan, pages 721–724.
IEEE Computer Society, 2002.

[86] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. InNSDI, pages 15–28.
USENIX Association, 2012.

[87] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized
streams: fault-tolerant streaming computation at scale. In SOSP, pages 423–
438. ACM, 2013.

[88] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao. gStore: Answering
SPARQL queries via subgraph matching. Proc. VLDB Endow., 4(8):482–
493, 2011.

RÉSUMÉ

À l’ère des Big Data, les données RDF sont produites en grand nombre. Bien qu’il existe des propositions de raison-
nement sur de grands graphiques RDF utilisant de grandes plateformes de données, il y a un manque de solutions qui
le font dans des environnements où les données RDF sont dynamiques, et où de nouvelles instances et de nouveaux
triplets de schéma peuvent arriver à tout moment.

Dans cette thèse, nous présentons la première solution pour raisonner sur de grands flux de données RDF en utilisant de
grandes plateformes de données. Ce faisant, nous nous concentrons sur l’opération de saturation, qui cherche à déduire
des triples RDF implicites étant donné les contraintes du schéma RDF. En effet, contrairement aux solutions existantes
qui saturent les données RDF en masse, notre solution identifie soigneusement le fragment de l’ensemble de données
RDF existant (et déjà saturé) qui doit être pris en compte étant donné les nouvelles déclarations RDF délivrées par le
flux. Ainsi, elle effectue la saturation de manière incrémentielle. L’analyse expérimentale montre que notre solution est
plus performante que les solutions de saturation en masse existantes.

MOTS CLÉS

RDF Saturation, RDF Streams, Big Data, Apache Spark

ABSTRACT

In the Big Data era, RDF data are producing in high volumes. While there exist proposals for reasoning over large RDF
graphs using big data platforms, there is a deficiency of solutions that do so in environments where RDF data are dynamic,
and where new instance and schema triples can arrive at any time.

In this thesis, we present the first solution for reasoning over large streams of RDF data using big data platforms. In doing
so, we focus on the saturation operation, which seeks to infer implicit RDF triples given RDF schema constraints. Indeed,
unlike existing solutions which saturate RDF data in bulk, our solution carefully identifies the fragment of the existing (and
already saturated) RDF dataset that needs to be considered given the fresh RDF statements delivered by the stream.
Thereby, it performs the saturation in an incremental manner. Experimental analysis shows that our solution outperforms
existing bulk-based saturation solutions.

KEYWORDS

RDF Saturation, RDF Streams, Big Data, Apache Spark

	Introduction
	Context and Motivation
	Problem
	Solution (Contributions)
	Thesis Structure

	Preliminaries
	RDF and Semantic Data Reasoning
	Big Data Platforms
	Saturation of Large RDF Graphs
	Conclusion

	Related Works
	RDF Reasoning
	RDF Partitioning
	RDF Reasoning Using Big Data Platforms

	Incremental Reasoning
	Indexing Structures for RDF Data
	Conclusion

	RDFS Saturation in Streaming
	Streaming Saturation Algorithm
	Process, Store, and Index

	Soundness and Completeness
	Evaluation
	Datasets
	Experiment Setup
	Results

	Conclusion

	OWL-Horst Saturation in Streaming
	Challenges on OWL-Horst Reasoning in Stream
	Evaluation
	Datasets
	Experiment Setup
	Results

	Conclusion

	Conclusions, Discussions, and Future Work
	Discussion of Scope
	Discussion on Streaming Platform
	Future challenges

