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General Abstract

The multidimensional evaluation criteria with multiple moments and multiple

times explored in this thesis are of importance for finance to handle mixed risk-

aversion preferences of investors which aim at time persistence. This thesis first

establishes novel nonparametric frontier methods to rate funds that can simul-

taneously handle multiple moments and multiple times (Chapter 2). It further

proposes a new discrete time indicator to trace the performance of funds with

respect to the ever changing nonparametric frontiers (Chapter 3). Finally, it de-

velops the nonparametric matafrontier rating methods to assess the performance

of funds across classifications accounting for heterogeneity (Chapter 4). In the em-

pirical study, this thesis designs a buy-and-hold backtesting strategy to compare

the potential benefits of the existing and newly proposed rating methods to select

the best performing funds.

The performance measure for fund rating that can handle both multiple mo-

ments and multiple times has been unavailable in the existing literature. This mo-

tivates our work in Chapter 2 where a new performance measure in the multi-time

and multi-moment rating framework is first defined. This performance measure is

capable of not only assessing to which extent a fund performs well in the several

moments following mixed risk-aversion preferences, but it simultaneously measures

to which extent a fund performs well in all these moments in different times as

well. Then, a series of novel nonparametric frontier rating models are proposed,

and are further empirically applied to hedge funds. Finally, we define a simple

buy-and-hold backtesting strategy to test for the impact of multiple moments and
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multiple times separately and jointly.

Chapter 3 develops a Luenberger portfolio productivity indicator (LPPI) and

its decomposition to measure the evolution of fund performance in the multi-time

and multi-moment framework. This LPPI captures the overall features of changes

in fund performance over time, whose decomposition allows for identifying whether

these changes are due to the efficiency change or to the frontier shift. The efficiency

change component provides a pragmatic measurement to identify the contribution

of fund managers to the performance evolution, while the frontier change com-

ponent measures the local changes in the frontier movements induced by market

volatility. Using the backtesting analysis, we empirically test the usefulness of the

new LPPI (and its components) for rating and selecting funds.

Chapter 4 mainly responds to a practical need for rating funds across groups

and develops a general procedure to assess the performance of heterogeneous port-

folios based on the metatechnology. We define a metatechnology efficiency (MTE)

by combining the shortage function with the nonparametric metafrontier, which

allows to compare the performance of heterogeneous funds from distinct groups

directly. Then, we extend this metafrontier rating procedure to the multi-time and

multi-moment framework, which is compatible with the general mixed risk-aversion

preferences of investors. Finally, the empirical part employs a large database of

funds not only to offer extensive tests of the specification issues surrounding the

application of these metafrontier models, but also to illustrate the performance of

metafrontier models in fund selection.

Keywords: Shortage Function; Nonparametric Frontier; Fund Rating; Multiple

Times; Multiple Moments
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Résumé Général

Modèles de notation et de portefeuille

multi-temporels et multi-moments avec des

méthodes de frontière non paramétriques :

Aperçu, nouvelles propositions
et études empiriques

Les critères d’évaluation multidimensionnels avec des moments multiples et

des temps multiples explorés dans cette thèse sont importants pour la finance afin

de traiter les préférences mixtes d’aversion au risque des investisseurs qui visent

la persistance temporelle. Cette thèse établit d’abord de nouvelles méthodes de

frontière non paramétriques pour évaluer les fonds qui peuvent simultanément

gérer des moments multiples et des temps multiples (Chapitre 2). Elle propose

ensuite un nouvel indicateur en temps discret pour suivre la performance des fonds

par rapport aux frontières non paramétriques en constante évolution (Chapitre 3).

Enfin, elle développe les méthodes de notation matafrontières non paramétriques

pour évaluer la performance des fonds à travers les classifications en tenant compte

de l’hétérogénéité (Chapitre 4). Dans l’étude empirique, cette thèse conçoit une

stratégie de backtesting buy-and-hold pour comparer les avantages potentiels des

méthodes de notation existantes et nouvellement proposées pour sélectionner les

fonds les plus performants.

La mesure de performance pour la notation des fonds qui peut gérer à la fois des
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moments multiples et des temps multiples n’est pas disponible dans la littérature

existante. Cela motive notre travail dans le chapitre 2, où une nouvelle mesure

de performance dans le cadre de la notation multitemporelle et multi-moment est

d’abord définie. Cette mesure de performance est capable non seulement d’évaluer

dans quelle mesure un fonds est performant dans les différents moments suivant

des préférences mixtes d’aversion au risque, mais aussi de mesurer simultanément

dans quelle mesure un fonds est performant dans tous ces moments à différents

moments.Ensuite, une série de nouveaux modèles non paramétriques d’évaluation

de la frontière sont proposés, et sont ensuite appliqués empiriquement aux hedge

funds. Enfin, nous définissons une simple stratégie de backtesting buy-and-hold

pour tester l’impact des moments multiples et des périodes multiples séparément

et conjointement.

Le chapitre 3 développe un indicateur de productivité de portefeuille de Lu-

enberger (LPPI) et sa décomposition pour mesurer l’évolution de la performance

des fonds dans le cadre multitemporel et multi-moment. Ce LPPI capture les ca-

ractéristiques globales des changements de performance des fonds dans le temps,

dont la décomposition permet d’identifier si ces changements sont dus au change-

ment d’efficience ou au déplacement de la frontière. La composante de changement

d’efficacité fournit une mesure pragmatique pour identifier la contribution des ges-

tionnaires de fonds à l’évolution de la performance, tandis que la composante de

changement de frontière mesure les changements locaux dans les mouvements de

la frontière induits par la volatilité du marché. En utilisant l’analyse backtesting,

nous testons empiriquement l’utilité du nouveau LPPI (et de ses composantes)

pour la notation et la sélection des fonds.

Le chapitre 4 répond principalement à un besoin pratique de notation des fonds

entre groupes et développe une procédure générale d’évaluation de la performance
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de portefeuilles hétérogènes basée sur la métatechnologie. Nous définissons une

efficacité métatechnologique (MTE) en combinant la fonction de pénurie avec le

métafrontier non paramétrique, qui permet de comparer directement la perform-

ance de fonds hétérogènes issus de groupes distincts. Ensuite, nous étendons cette

procédure de notation métafrontière au cadre multitemporel et multi-moment, ce

qui est compatible avec les préférences mixtes générales d’aversion au risque des

investisseurs. Enfin, la partie empirique utilise une large base de données de fonds

non seulement pour offrir des tests approfondis des questions de spécification en-

tourant l’application de ces modèles métafrontières, mais aussi pour illustrer la

performance des modèles métafrontières dans la sélection des fonds.

Mots clés : Fonction de Pénurie ; Frontière Nonparamétrique ; Notation des

Fonds ; Temps multiples ; Moments Multiples
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CHAPTER

1
General Introduction

A fund is a professionally managed and pooled investment vehicle, which allows

individuals and institutions to combine smaller amounts of capital into a larger

sum for investment. With the development of global financial markets, the number

and diversity of funds (e.g., hedge funds, equity funds, bond funds, etc.) available

to investors are steadily increasing. Typical investors rely heavily on the risk-

adjusted return (i.e., “performance”) measures to identify the funds worthwhile

investing in among these numerous available funds, and in this regard, they are

increasingly concerned with the ratings and/or rankings of funds determined by

explicit performance measures. Clearly, an effective fund evaluation/rating can

provide not only strategic support for investors’ fund screening, but also investment

benchmarking for fund managers to improve the performance of their managed

portfolios.

Since the seminal work of Markowitz (1952), it has been recognized that port-

folio efficiency should be measured with a trade-off between portfolio return and

risk, mainly based on the mean-variance (MV) portfolio optimization problem of

maximizing returns and minimizing risk. In a static context, he defines an efficient

frontier of portfolios whose expected return cannot improve unless one is willing to

assume more risk, i.e., a Pareto-optimal subset of portfolios. However, maintaining

1



strong assumptions on probability distributions and Von Neumann-Morgenstern

utility functions make his work suffer many theoretical difficulties. As stated by

numerous authors, the MV evaluation framework is not consistent with the Von

Neumann–Morgenstern axioms of expected utility theory unless either (i) asset

returns follow normal probability distributions, or (ii) utility functions represent-

ing investor preferences are quadratic. Starting from at least Mandelbrot (1963),

empirical studies have repeatedly shown that the distributions of the asset return

are widely non-normal (see Campbell, Lo, and McKinlay (1997)). Meanwhile,

the broad class of mixed risk-aversion utility functions with a general preference

for odd moments and an aversion to even moments is nowadays rather widely

acknowledged (see Trautmann and van de Kuilen (2018) for an empirical review).

Probably in view of widespread criticisms of the MV bi-criteria approach, sev-

eral authors have introduced alternative evaluation criteria based on the multidi-

mensional performance of portfolios. One of the crucial concerns is that multiple

moments are included in the portfolio evaluation, for example, the classic mo-

ments such as return and variance, and higher-order moments such as skewness

and kurtosis. From a theoretical point of view, the evaluation criteria with mul-

tiple moments somewhat relaxes the strong assumptions of the traditional MV

portfolio optimization regarding the return distribution of assets or the investor

preferences. From a practical point of view, the use of multiple moments allows for

gauging the performance of portfolios compatible with general investor preferences

(see Briec and Kerstens (2010)). Therefore, enlarging the portfolio performance

analysis from the MV framework to the multi-moment framework is of interest to

financial analysts and individual investors.

Another important concern is to account for the time dimension when estab-

lishing a portfolio evaluation criteria. In practice, a typical investor attempting to

2



select a fund for investment, has available various funds’ performances over several

time periods: e.g., the past year to date; 1 year; 3 years; 5 years and 10 years.

The question now is how one can integrate all the performance information over

different time periods and develop an overall multi-time performance mesasure to

recognize funds with persistently positive performance.

Clearly, some traditional financial measures (e.g., Sharpe ratio, Sortino ratio,

etc.) partly or mostly derived from the Markowitz framework share the same

drawbacks as the MV bi-criteria for funds rating, and they are of little use of

beyond two-dimensional problems (see Caporin, Jannin, Lisi, and Maillet (2014),

for a review). In recent years, the frontier-based methods used for assessing the

performance of funds have gained some popularity, especially for addressing multi-

dimensional evaluation problems. With the help of efficiency measures from pro-

duction theory, these frontier methodologies measure the efficiency of a fund by

estimating the distance between this observed portfolio and its reference portfo-

lio on a portfolio frontier (or extremum estimators of this frontier). The use of

frontier or extremum estimators allows for rating funds along a multitude of di-

mensions instead of using just some combination of two dimensions as in most

traditional financial performance measures. To our knowledge, Sengupta (1989)

is the first to introduce an efficiency measure borrowed from production theory

in relation to the MV portfolio frontier. This efficiency measure relates to the

distance function that for a long time has been employed in consumer theory and

especially in production theory (e.g., Cornes (1992)). The current application of

frontier-based methods to handle multiple moments or multiple times in portfolio

evaluation could be summarized as follows.

First, for handling the multiple moments, Joro and Na (2006) propose a ra-

dial measure under input (i.e., variance) orientation in a mean–variance-skewness
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(MVS) framework, where the distance between the variance of the projection on

the efficient frontier and the portfolio variance is used as the performance measure

to gauge this portfolio. This oriented-radial efficiency measure ignores the possibil-

ity that the investor looks for simultaneously increasing the output while reducing

the input level. Following Briec, Kerstens, and Lesourd (2004) who establish the

duality between a distance function and MV utility functions, Briec, Kerstens,

and Jokung (2007) use a general distance function (named shortage function) to

look for improvements in efficiency in MVS space by looking for simultaneous ex-

pansions in mean return and positive skewness and reductions in risk. Even more

general, for the class of mixed risk-aversion utility functions, Briec and Kerstens

(2010) assess portfolio performance for the general moments case by simultaneously

looking for improvements in odd moments and reductions in even moments. Ex-

amples of related studies include, e.g., Bacmann and Benedetti (2009), Branda

(2013), Branda and Kopa (2014), Khemchandani and Chandra (2014), Massol

and Banal-Estañol (2014), Branda (2015), Jurczenko, Maillet, and Merlin (2006),

Jurczenko and Yanou (2010), Boudt, Cornilly, and Verdonck (2020), Adam and

Branda (2020), among others.

The above portfolio evaluation models are based on the diversified portfolio

frontier, and thus are also referred to as diversified portfolio models in the literat-

ure. These diversified models require nonlinear programming in most cases, and

their potential complexity and computational burden make these models suffer

from the dilemma of being unsuitable for large-scale evaluations. This dilemma

may be especially evident when higher-order moments are included. Probably

in view of solution complexity of diversified portfolio models, nonparametric pro-

duction frontiers are transposed into the financial literature in an effort to offer

alternative fund ratings, which are called nonparametric (production) frontier rat-

ing methods. In this context, the diversified portfolio frontier is approximately
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estimated by nonparametric production frontier specifications, and the perform-

ance of each fund is measured relative to these nonparametric estimators of the

portfolio frontier (see Basso and Funari (2016) for a review). Kerstens, Mounir,

and Van de Woestyne (2011) argue that funds can be interpreted as fee-based

financial products whose price distribution is characterized by some combination

of moments by analogy to the characteristics approach of consumer theory. This

argument is of great relevance in providing theoretical supports for the applica-

tion of nonparametric frontier methods in funds rating. Moreover, the authors

systematically discuss a variety of specification issues surrounding the application

of nonparametric frontier-based methods when assessing the financial perform-

ance of funds. Compared to the diversified portfolio models, these nonparametric

frontier rating methods are commonly solved by the linear (or binary mixed in-

teger) programming. A great development on the application of nonparametric

frontier-based methodology for handling multiple moments in fund ratings, e.g.,

Matallín-Sáez, Soler-Domínguez, and Tortosa-Ausina (2014), Brandouy, Kerstens,

and Van de Woestyne (2015), Nalpas, Simar, and Vanhems (2017), Mehlawat, Ku-

mar, Yadav, and Chen (2018), Krüger (2021), Lin and Li (2020), Gong, Yu, Min,

and Ge (2021).

Second, for handling multiple times, Morey and Morey (1999) is the first to

establish a multiple time period assessment within a standard MV framework.

Their method establishes respectively two efficiency measures under risk and re-

turn orientations from a multi-period perspective for MV portfolio performance

appraisals. The first efficiency measure aims at contracting all risk dimensions

without affecting any return dimensions, and the other efficiency measure aims at

augmenting all return dimensions with no increase in any risk dimensions. Briec

and Kerstens (2009) develop a multi-period MV portfolio analysis by means of

a temporal shortage function (see Briec and Kerstens (2009)). Instead of either
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proportionally contracting risk dimensions or proportionally expanding return di-

mensions, this temporal shortage function simultaneously attempts to reduce the

risk and to expand the return over all times. These multi-period evaluation meth-

ods allow for the difference in risk-return preferences of investors across time and

can reveal more useful information on fund selection compared to gauging the

fund’s performance over a single time (see Ren, Zhou, and Xiao (2021)). To the

best of our knowledge, these multi-time/period assessments are based on the di-

versified MV portfolio models, while none of the current research has conducted

a multi-time portfolio performance analysis using the nonparametric production

frontier methods.

Having the importance of multiple moments and multiple times for portfolio

evaluation in mind, the fundamental objective of our work in Chapter 2 is to

develop a series of nonparametric convex and nonconvex frontier rating methods

that can simultaneously handle both multiple moments and multiple times by

extending the shortage function. These newly proposed methods aim not only to

evaluate to which extent a fund performs well in the several moments following

mixed risk-aversion preferences, but they simultaneously are assessing to which

extent a fund performs well in all these moments over different times. This is

important given the concern in the financial literature that traditional performance

measures may exhibit limited stability over time (e.g., Bodson, Coen, and Hubner

(2008), Menardi and Lisi (2012) and Grau-Carles, Doncel, and Sainz (2019), among

others). In the empirical analysis of Chapter 2, these rating methods are applied

to actual hedge fund data (HF), since this category of funds is known to be subject

to non-normal return distributions. We define a simple buy-and-hold backtesting

strategy to test for the impact of multiple moments and multiple times separately

and jointly on the funds rating and selection.

6



The performance measures proposed in Chapter 2 fall into the category of static

performance evaluation, which focuses on measuring a fund’s efficiency by a cross-

sectional comparison among all observed funds using the return information over a

finite horizon. In recent years, differing from this static analysis, some studies are

devoted to measure the evolution of fund performance over time by a cross-period

comparison to investigate the attribution problem for the efficiency changes (see

Babalos, Caporale, and Philippas (2012) Brandouy, Briec, Kerstens, and Van de

Woestyne (2010), and Gregoriou and Moschella (2017), among others). This can

be regarded as a dynamic evaluation for a fund performance in discrete time.

Therefore, the primary interest of Chapter 3 is to introduce a novel method for

measuring the evolution of fund performance in the multi-time and multi-moment

framework using some extensions of the shortage function combined with a Luen-

berger productivity indicator (Chambers, Färe, and Grosskopf (1996)). This new

Luenberger portfolio productivity indicator and its components (i.e., the efficiency

change component and the frontier change component) are constructed to measure

fund’s dynamic performance with the consideration of multiple time periods and

multiple moments, and to distinguish whether performance changes over time are

due to the efficiency change or due to the shift in the frontier.

As introduced in Brandouy, Briec, Kerstens, and Van de Woestyne (2010),

the Luenberger portfolio productivity indicator captures essential features of the

whole return distribution for funds, and positive values in this indicator reflect

that the fund performance increases over time. With regard to its two compon-

ents, the efficiency change component in principle detects the eventual ability of

fund managers for stock picking and market timing, and the positive values in this

component capture the positive contribution of fund managers to the perform-

ance evolution. The frontier change component measures the local changes in the

frontier movements induced by market volatility, and the positive values in this
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component indicate the improvements of financial market performance. There-

fore, in the empirical part of Chapter 3, we conduct the buy-and-hold backtesting

analysis for each of the three alternative selection scenarios: (i) HFs are selected

depending on the ranking of Luenberger portfolio productivity indicator; (ii) HFs

are selected depending on the ranking of Luenberger efficiency change compon-

ent; (iii) HFs are selected depending on the ranking of Luenberger frontier change

component. To the best of our knowledge, this work of Chapter 3 is the first to

develop a proposal on the methodology and application of the Luenberger portfolio

productivity indicator with multi-times and multi-moments.

In the existing frontier-based rating literature, homogeneity of the observed

funds is a common assumption made in the application of nonparametric frontier

methods to assess the performance of funds. Strictly speaking, this homogeneity

assumption requires that the performance of a fund is evaluated relative to the peer

group, and therefore the efficiency measured against the group-specific frontier

is regarded as the group-specific efficiency. Clearly, this group-specific efficiency

serves a limited usefulness for typical investors who aim to select best performing

funds across groups. In addition, given a practical fact that the ratings provided

by the rating agencies available to investors are also based on the comparison of

funds within the same group, a cross-group fund rating methodology accounting

for heterogeneity is of interest to both academics and industry.

This motivates the work of Chapter 4. The basic objective of Chapter 4 is to

tackle the problem of assessing heterogeneous funds belonging to different groups

by borrowing recent developments in the nonparametric metafrontier (see Af-

sharian and Podinovski (2018), Kerstens, O’Donnell, and Van de Woestyne (2019)

and Jin, Kerstens, and Van de Woestyne (2020), among others). Without limiting

ourselves to a standard MV portfolio setting, we further develop the nonparamet-
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ric metafrontier rating methods with multiple times and multiple moments, which

allows for making the fund evaluation in line with general investor preferences.

The empirical part employs a large database of heterogeneous funds covering five

different groups (types) not only to offer extensive tests of the specification factors

considered in these models, but also to test the performance of different rating

methods in a simple backtesting setup.

In summary, the overarching objective of this thesis is to establish a series of

novel nonparametric frontier-based rating methods in the multi-time and multi-

moment framework for handling mixed risk-aversion preferences of investors which

aim at time persistence. From a theoretical point of view, the first aim is to define

a new shortage function or performance measure that can simultaneously handle

both multiple moments and multiple times. To the best of our knowledge, this

basic idea is new and unavailable in the current literature. All these existing non-

parametric frontier studies are single time, and this contribution is the first to de-

velop a multi-time framework with multiple moments following general preferences

of investors. The second idea is by incorporating this new performance measure

with the production indicator to construct a new portfolio productivity indicator

that can trace the evolution of fund performance in the multi-time and multi-

moment framework. This proposed Luenberger portfolio production indicator and

its decomposition provide a useful measurement tool to recognize the attribution of

fund performance changes. The last objective is to introduce metafrontier techno-

logy into funds rating to design a general metafrontier-based evaluation procedure

that allows for gauging the performances of funds across groups. From an em-

pirical point of view, the actual data of funds is employed to offer extensive tests

of these proposed methods, as well as other existing funds rating methods. Fur-

thermore, the proposed models are all simply computed by the linear (or binary

mixed integer) programming, which are much easier and time-saving compared to
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diversified portfolio models when applied in the large-scale and multi-dimensional

fund diversified ratings.

The structure of this thesis is as follows. Chapter 2 proposes a series of

new frontier models to rate funds that can simultaneously handle multiple mo-

ments and multiple times. Based on these new performance measures, Chapter

3 offers a novel method for measuring the evolution of fund performance in the

multi-time and multi-moment framework by combining the productivity index the-

ory. Chapter 4 is devoted to develop a general procedure to rate funds across

classifications accounting for heterogeneity by borrowing recent developments on

metatechnology. In the empirical analysis of the three chapters, a simple buy-and-

hold backtesting strategy is defined to test for the impact of multiple moments

and multiple times separately and jointly on the ratings and selection of funds.

Finally, conclusions and issues for future work are summarized in Chapter 5.
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CHAPTER

2

Multi-Time and Multi-Moment

Nonparametric Frontier-Based

Fund Rating: Proposal and

Buy-and-Hold Backtesting

Strategy

Abstract

This contribution introduces new frontier models to rate mutual funds that can

simultaneously handle multiple moments and multiple times. These new models

are empirically applied to hedge fund data, since this category of funds is known

to be subject to non-normal return distributions. We define a simple buy-and-hold

backtesting strategy to test for the impact of multiple moments and multiple times

separately and jointly. The empirical evidence points to a remarkable superior

performance of the proposed frontier methods compared to traditional financial

performance measures and single-time MV frontier methods.

Keywords: Shortage function; Frontier; Fund rating.
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2.1 Introduction

The foundational work of Markowitz (1952) in modern portfolio theory has learned

every investor that to gauge the performance of portfolio management one must

consider risk in addition to return. This mean-variance (MV) dual objective of

maximizing returns and minimizing risks turns performance evaluation into a

controversial task involving trade-offs related to the risk preferences of the in-

vestor. The two-dimensional nature of this nonlinear quadratic optimization prob-

lem allows to display the efficient frontier as a Pareto-optimal subset of portfolios

whereby the expected return can only increase when also the variance increases.

A large part of modern portfolio theory continues developing variations on these

bi-objective MV optimization problems. A wide offer of alternative risk measures

is available in the portfolio literature: entropy, expected shortfall, mean absolute

deviation, semi-variance and other partial moment measures, Value-at-Risk (VaR)

in all its variations, etc. (see, e.g., Bacon (2008) and Feibel (2003) for surveys).1

This focus on the first two moments of a random variable’s distribution is only

consistent with the von Neumann-Morgenstern axioms of choice underlying expec-

ted utility (EU) theory when: (i) asset processes follow normal distributions, or (ii)

investors have quadratic utility functions. A substantial empirical literature has

documented that normality of asset returns can be rejected for a variety of financial

asset classes in both developed and emerging financial markets (e.g., Jondeau and

Rockinger (2003)). At least since Scott and Horvath (1980), investors have been

attributed a positive preference for skewness as well as a negative preference for

kurtosis to explain financial behavior. Meanwhile, decision-theoretic arguments
1More rarely alternatives are proposed for the expected return: e.g., Benati (2015) focuses on

the median as a location parameter of the distribution of returns.
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exist for what has become known as the broad class of mixed risk-aversion utility

functions that are characterized by a preference for odd moments and an aver-

sion for even moments (see Eeckhoudt and Schlesinger (2006)). Furthermore, via

surveys and experiments traditional risk preferences like risk aversion, but also

higher order risk preferences like prudence and temperance are nowadays better

understood (see Trautmann and van de Kuilen (2018) for a review).

Over time, several alternative portfolio selection criteria based on preferences

for higher-order moments have been developed. But, so far not a single widely ac-

cepted criterion seems to have emerged. It is possible to distinguish between primal

and dual approaches to determine such higher-order moments portfolio frontiers.

One example of the primal approach is found in Lai (1991) who determines mean-

variance-skewness (MVS) optimal portfolios via a Polynomial Goal Programming

procedure. The dual approach necessitates a specification of some indirect higher-

moment utility function and yields optimal portfolios via its parameters reflecting

higher-moment preferences (e.g., Harvey, Liechty, Liechty, and Müller (2010)).

To our knowledge, Sengupta (1989) is the first to introduce an efficiency meas-

ure -borrowed from production theory- into a diversified MV portfolio model. This

efficiency measure relates to the distance function that for a long time has been

employed in consumer theory and especially in production theory (e.g., Cornes

(1992)). In consumer theory the distance function is dual to the expenditure func-

tion: it serves to characterize multiple commodity and single utility choice sets.2

In production theory the input distance function is dual to the cost function: it

basically serves to characterize multiple input multiple output production possib-

ility sets (e.g., Hackman (2008)). This has opened up a booming research field
2This distance function has sometimes been employed to make welfare comparisons (e.g.,

Slesnick (1998)). More recently, Briec, Dumas, and Mekki (2021) stress that the directional
distance function is dually linked to the weighted and indirect Rawlsian social welfare functions.
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where parametric but particularly nonparametric specifications of production and

dual (e.g., cost) frontiers are specified based on minimal maintained axioms (e.g.,

constant or variable returns to scale, convexity or not, etc.). Applied to a plethora

of private and public sectors, these frontier methodologies analyse technical, scale

or cost efficiency, economies of specialization, mergers, etc. (e.g., Färe, Grosskopf,

and Lovell (1994)).3

The introduction of an efficiency measure into portfolio theory allows to gauge

performance over multiple dimensions and it opens up new perspectives. On the

one hand, following Briec, Kerstens, and Lesourd (2004) who establish duality

between a distance function and MV utility functions, Briec, Kerstens, and Jok-

ung (2007) use a general distance function (named shortage function) to look for

improvements in efficiency in MVS space by looking for simultaneous expansions

in mean return and positive skewness and reductions in risk. Furthermore, these

authors provide a duality result with a MVS utility function.4 Even more general,

for the class of mixed risk-aversion utility functions, Briec and Kerstens (2010) as-

sess portfolio performance for the general moments case by simultaneously looking

for improvements in odd moments and reductions in even moments. In addition,

these authors establish duality with general moment utility functions.

Empirical applications of this diversified multi-moment approach are found

in Adam and Branda (2020), Branda (2013), Branda and Kopa (2014), Branda

(2015), Joro and Na (2006), Jurczenko, Maillet, and Merlin (2006), Khemchandani

and Chandra (2014), Krüger (2021), Massol and Banal-Estañol (2014), among oth-

ers. Furthermore, Bacmann and Benedetti (2009), Boudt, Cornilly, and Verdonck
3This nonparametric approach to production is sometimes labeled Data Envelopment Analysis

(DEA) because observations are enveloped subject to some minimal set of axioms.
4Briec, Kerstens, and Van de Woestyne (2013) establish a relation between MVS portfolio

optimisation using the shortage function and the far more popular Polynomial Goal Programming
method proposed by Lai (1991).
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(2020), and Jurczenko and Yanou (2010), among others, are empirical diversified

multi-moment contributions focusing on hedge funds (HF).

On the other hand, within a standard MV framework, Morey and Morey (1999)

develop a multiple time horizon assessment: in particular, these authors use either

a risk contraction or a return expansion efficiency measure to evaluate MV per-

formance over three time horizons simultaneously (in particular, a 3, 5 and a 10-

year time period). This contribution is slightly generalized in Briec and Kerstens

(2009).5 An empirical application is available in Ren, Zhou, and Xiao (2021).

To the best of our knowledge, Murthi, Choi, and Desai (1997) is the sem-

inal article that has been rating mutual funds (MF) by simultaneously trying to

maximize the return and minimizing standard deviation, expense ratio, load, and

turnover using a nonparametric production frontier specification that maintains

convexity and constant returns to scale. Following Farrell (1957) and Charnes,

Cooper, and Rhodes (1978), nonparametric production frontiers are transposed

into the financial literature in an effort to provide alternative fund ratings. In-

tuitively, nonparametric production frontiers can envelop the observations of any

multi-dimensional choice set and position each of the observations relative to the

boundary of the choice set using some efficiency measure. This has led to a growing

literature that has been applied to a large variety of financial assets (e.g., exchange

traded funds, hedge funds, pension funds, etc.). Furthermore, a wide variety of

model specifications are available in terms of some combination of ordinary mo-

ments, lower and/and upper partial moments, as well as in terms of production

frontier specifications (constant or variable returns to scale, etc.), and the choice
5Note that the use of multiple time horizons within a MV framework is not particularly

computationally challenging, but moving from a quadratic convex MV problem to a cubic non-
convex MVS portfolio optimization problem is computationally harder. Evidently, the same
remark applies when one moves from a cubic nonconvex MVS to a quartic nonconvex mean-
variance-skewness-kurtosis portfolio optimization problem, or beyond by including even higher
order moments.
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of efficiency measure (e.g., reducing variables for which less is better (like inputs),

or expanding variables for which more is better (like outputs), or some combina-

tion of both). This frontier-based MF rating literature has been rather recently

surveyed in Basso and Funari (2016).

Following Heffernan (1990) and Blake (1996), among others, Kerstens, Mounir,

and Van de Woestyne (2011) interpret this funds rating literature as a transpos-

ition of the characteristics approach in consumer theory into finance: MF are

seen as fee-based financial products characterized by distributional characteristics

of the asset price distribution as summarized by some combination of moments.

Compared to the diversified portfolio models that require nonlinear programming,

these nonparametric production frontier MF rating models can normally be solved

using simple linear programming.

An open question is how the diversified portfolio models relate to the non-

parametric production frontier specifications? Recently, Liu, Zhou, Liu, and Xiao

(2015) state that a convex variable returns to scale nonparametric production

frontier specification provides an inner approximation to the traditional MV di-

versified portfolio model. This is certainly correct. One basic idea implicit in

their contribution is that nonparametric production frontier specifications should

ideally underestimate the eventual performance of a diversified portfolio model. In

the more general case where we want to explore a nonconvex diversified MV (e.g.,

with some integer constraints) or a nonconvex higher moment portfolio model, then

one can argue that the nonconvex nonparametric production frontier specification

with variable returns to scale already advocated by Kerstens, Mounir, and Van de

Woestyne (2011) provides a conservative underestimation of the corresponding

nonconvex diversified portfolio model within some common subspace of moments

(see also Germain, Nalpas, and Vanhems (2011)). By contrast, the more widely
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used convex nonparametric production frontier specification may overestimate the

corresponding nonconvex diversified portfolio model within the common subspace

of moments. The latter argument seems to have escaped attention so far: this ex-

plains why most nonparametric production frontier MF rating models with higher

moments do impose convexity (for instance, Gregoriou, Sedzro, and Zhu (2005)).

The use of distance functions or efficiency measures in both the diversified

portfolio models and the nonparametric production frontier specifications leads to

the question how these gauges relate to traditional financial performance meas-

ures (see, e.g., the surveys in Bacon (2008), Feibel (2003) and Caporin, Jannin,

Lisi, and Maillet (2014)). While relative performance measures that are variations

on returns per unit of risk (e.g., Sharpe ratio) are useful to handle bi-objective

(e.g., MV) optimization problems, they are of little use beyond two dimensional

problems. E.g., adding a skewness constraint to a MV diversified model weakly

decreases return and weakly increases variance inevitably yielding a weakly worse

Sharpe ratio: hence, the Sharpe ratio cannot assess higher moment portfolios. If

finance wants to handle mixed risk-aversion preferences of investors, then it must

consider a multidimensional performance measure. Some performance measures

try to assess the tail risk, like VaR or the Conditional Value-at-Risk (CVaR), but

they most of the time focus on the risk component and do not include the first mo-

ment of the return distribution. One exception is the Omega ratio that we include

in our analysis. Caporin, Jannin, Lisi, and Maillet (2014) classify the distance

(shortage) function approach correctly among the absolute performance measures:

these performance measures are based on rewards when compared to those of a ref-

erence portfolio on a portfolio frontier. The choice for distance (shortage) function

brings finance and portfolio analysis in line with consumer and production ana-

lysis where these micro-economic tools have a proven track record in representing
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multidimensional choice sets.6

The major objective of this contribution is to define new distance functions or

efficiency measures that can simultaneously handle both multiple moments and

multiple times (instead of either multiple moments or multiple times separately).

This performance measure offers a simple and powerful tool for assessing MF

performance based on the moment characteristics over all time periods. To the

best of our knowledge, this basic idea is new and unavailable in the literature.

This performance measure thus aims not only to evaluate to which extent a MF

performs well in the several moments following mixed risk-aversion preferences,

but it simultaneously is assessing to which extent a MF performs well in all these

moments over different times. This is important given the concern in the financial

literature that traditional performance measures may exhibit limited stability over

time (e.g., Bodson, Coen, and Hubner (2008), Menardi and Lisi (2012) and Grau-

Carles, Doncel, and Sainz (2019), among others).

This new performance measure is applied to HFs, a fund accessible only to

institutional investors and high net worth individuals. Among MFs, HFs have

a unique compensation structure. The most widespread fee structure is the so-

called 2/20, i.e., 2% of assets under management for annual management fees and

20% of any profits made as a performance incentive fee. Consequently, HFs are

marked by their heterogeneity and unusual (i.e., non-normal) statistical properties,

as compared to more traditional MFs. Indeed, HFs tend to exhibit some more

strongly asymmetric and fat tailed return characteristics compared to other MFs

(see Gregoriou (2003), Darolles and Gourieroux (2010), Eling and Faust (2010),

among others, and especially El Kalak, Azevedo, and Hudson (2016) for a survey).
6Tammer and Zălinescu (2010) show that the shortage function is linked to the scalarization

function that is used in vector optimization problems, of which multi-objective optimization
problem is a special case.
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They are globally viewed as riskier but are also associated with higher rewards.

This is why our empirical study specifically focuses on HFs since these are most

likely to be affected by higher order moments.

The traditional financial performance measures (e.g., Sharpe ratio, Sortino ra-

tio, etc.) used for HF rating have been subject to some criticism, because they

basically follow the theoretical assumptions of the Capital Asset Pricing Model

(CAPM) that the capital market is efficient and financial asset returns are nor-

mally, independently and identically distributed, among others. When asset re-

turns do not obey the normal distribution, then the mean and variance no longer

suffice to effectively summarize its return distribution. Given the complexities to

assess the performance of HFs using traditional performance measures (e.g., see

Smith (2017)), we think that our new performance measure may provide a suitable

framework to evaluate both persistence across moments and across times.

In a HF context, the need for multiple moments is apparent in a multitude

of nonparametric production frontier studies: examples include, e.g., Gregoriou,

Sedzro, and Zhu (2005), Kumar, Roy, Saranga, and Singal (2010), Germain, Nal-

pas, and Vanhems (2011), among others. However, to the best of our knowledge

none of these studies appeal to the characteristics approach as proposed by Ker-

stens, Mounir, and Van de Woestyne (2011). Furthermore, all these existing non-

parametric production frontier studies are single time: this contribution is the first

to develop a multi-time evaluation framework.

The remainder of this contribution is organized as follows. The next Section

2.2 introduces the nonparametric production frontiers that serve to approximate

the diversified portfolio models: we first discuss single-time multi-moment models,

then we introduce the new multi-time multi-moment models. In Section 2.3, we

develop the buy-and-hold backtesting strategy in detail. Section 2.4 describes
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the hedge fund data in detail and comments upon the empirical results. Finally,

Section 2.5 concludes.

2.2 Nonparametric Frontier Rating Models: Meth-

odology

2.2.1 Single-Time and Multi-Moment Rating Framework

The nonparametric frontier rating methods gauge the financial performance of MF,

and these evaluations are done mostly using frontier-based models which originate

from production theory. In this section, we only introduce the basic definitions and

properties needed for applications within finance. Assume that there are n MFs

under evaluation over a given time horizon. At time t in this time horizon, the j-th

MF (j ∈ {1, . . . , n}) is characterized by m input-like values xt
ij (i ∈ {1, . . . , m})

and s output-like values yt
rj (r ∈ {1, . . . , s}). Input-like variables need to be

minimized and output-like variables need to be maximized.

We introduce one widely used production frontier-based model with variable

returns to scale (VRS). Following Briec, Kerstens, and Vanden Eeckaut (2004),

a unified algebraic representation of convex and nonconvex production possibility

sets (PPS) under the VRS assumption for a sample of n MFs at time t is:

P t
Λ =

{
(xt, yt) ∈ Rm × Rs | ∀i ∈ {1, . . . , m} : xt

i ≥
n∑

j=1
λjx

t
ij,

∀r ∈ {1, . . . , s} : yt
r ≤

n∑
j=1

λjy
t
rj, λ ∈ Λ

}
, (2.2.1)

where:
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Λ ≡ ΛC = {λ ∈ Rn | ∑n
j=1 λj = 1 and ∀j ∈ {1, . . . , n} : λj ≥ 0} if convexity is

assumed, and

Λ ≡ ΛNC = {λ ∈ Rn | ∑n
j=1 λj = 1 and ∀j ∈ {1, . . . , n} : λj ∈ {0, 1}} if noncon-

vexity is assumed.

At time t, if there exists an input-output combination (∑n
j=1 λjx

t
ij,

∑n
j=1 λjy

t
ij)

in the convex or nonconvex PPS using less inputs and producing more outputs than

the observed MF, then this MF is considered inefficient since it can improve its

inputs and/or outputs. MFs are efficient if no improved input-output combinations

can be found. The input-output combinations of these efficient MFs are all located

at the boundary of P t
Λ which is called the convex or nonconvex VRS nonparametric

frontier.

Using the nonparametric PPS defined in (2.2.1), the shortage function of any

observed MF at time t is now defined as follows:

Definition 2.2.1. At time t, let gt = (−gt
x, gt

y) ∈ Rm
− × Rs

+ and gt ̸= 0. For any

observation zt = (xt, yt) ∈ Rm × Rs, the shortage function St
Λ at time t in the

direction of vector gt is defined as:

St
Λ(zt; gt) = sup{β ∈ R | zt + βgt ∈ P t

Λ}.

This shortage function simultaneously permits the enhancement of output-like

variables and the reduction of input-like variables. If the shortage function value

St
Λ(zt

o; gt
o) > 0 for the input-output combination zt

o = (xt
o, yt

o) of a specific MF

at time t, then zt
o is not located on the frontier of P t

Λ. Hence, its inputs and/or

outputs can be improved to catch up with the VRS nonparametric frontier. By

contrast, if the shortage function value St
Λ(zt

o; gt
o) = 0, then zt

o is located on the

frontier.
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Consider a MF with index o ∈ {1, . . . , n} in need of assessment at time t by

means of the shortage function with direction vector gt
o = (−gt

xo, gt
yo) ∈ Rm

− × Rs
+.

Combining (2.2.1) and Definition 2.2.1, the efficiency status of this MF at time t

can be determined by solving the following program:

max β

s.t.
n∑

j=1
λjx

t
ij ≤ xt

io − βgt
io, i = 1, . . . , m,

n∑
j=1

λjy
t
rj ≥ yt

ro + βgt
ro, r = 1, . . . , s,

n∑
j=1

λj = 1, β ≥ 0,

∀j = 1, . . . , n :

 λj ≥ 0, under convexity,

λj ∈ {0, 1}, under nonconvexity.

(2.2.2)

Note that Model (2.2.2) results in a linear programming (LP) problem under con-

vexity and a mixed binary integer programming (MBIP) problem under noncon-

vexity.7

The setting defined in the previous section is general and flexible and can

thus handle a large choice of inputs and outputs. We now particularize the

above formulation to characterize the efficient frontier in the MVS and the mean-

variance-skewness-kurtosis (MVSK) spaces. Suppose that there are n MFs under

evaluation. At time t, let Rt
1, . . . , Rt

n denote the raw returns of the n funds,

which are characterized by their expected return E(Rt
j), variance V (Rt

j), skewness

S(Rt
j) and kurtosis K(Rt

j) for j ∈ {1, . . . , n}.8 Here, the calculations of vari-
7The direction vector of the shortage function used in the nonparametric frontier-based

methods is set as gt = (−|xt
1o|, . . . , −|xt

mo|, |yt
1o|, . . . , |yt

so|), whereby all input-like values xt
io,

(i = 1, . . . , m) and output-like values yt
ro, (r = 1, . . . , s) are simultaneously increased and de-

creased in proportion to their initial values respectively.
8In the application of single-time MVSK frontier models, we choose the historical returns of
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ance, skewness and kurtosis are expressed as follows: V (Rt
j) = E[(Rt

j − E(Rt
j))2],

S(Rt
j) = E[(Rt

j − E(Rt
j))3], and K(Rt

j) = E[(Rt
j − E(Rt

j))4].9 To obtain a detailed

specification of the PPS, as defined in (2.2.1), we need to classify the different goals

of the investor in terms of either inputs (i.e., objectives to minimize), or outputs

(i.e., objectives to maximize). As discussed in the previous section, the need for

multiple moments is apparent to assess MFs (and most particularly HFs) whose

return distributions may exhibit strong asymmetry and fat tails. Given mixed

risk-aversion utility functions, investors express a preference for odd moments and

a dislike for even moments of the distribution of asset returns. Therefore, when the

MVSK framework is considered, we can define the first and second inputs of MFs

as xt
1j = V (Rt

j) and xt
2j = K(Rt

j), and the first and second outputs as yt
1j = E(Rt

j)

and yt
2j = S(Rt

j) for j ∈ {1, . . . , n}. Obviously, for the MVS case only the first

input is considered.

For a MF o under evaluation at time t, denote Eo = E(Rt
o), Vo = V (Rt

o), So =

S(Rt
o) and Ko = K(Rt

o). Then both models, either with convexity or nonconvexity,

allow to project the input-output combination (Vo, Ko, Eo, So) of this MF in such

a way that inputs (i.e., variance and kurtosis) are decreased and outputs (i.e.,

expected return and skewness) are increased in the direction gt
o. The optimal

solution β∗ of model (2.2.2) measures how many times the direction vector gt
o fits

in the line segment from the input-output combination of the MF o to the efficient

frontier in the direction of gt
o.

In model (2.2.2) under convexity, the left-hand sides of the constraints are all

linear. All possible linear combinations of inputs and outputs of the observed

the last 5 years prior to time t to estimate the first four moments for the fund under evaluation.
9Note that the higher moments included in the proposed models are the 3rd and 4th moments

of the returns distribution, rather than the normalized versions in finance(obtained by dividing
by the standard deviation to the powers 3 and 4, respectively.). Krüger (2021) provide a thorough
discussion regarding the association between the 3rd and 4th moments of the returns distribution
with the expected utility for a risk-averse investor.
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MFs are used to construct a convex VRS frontier for evaluation. For the MF o,

if β∗ = 0, the corresponding input-output combination is on the convex frontier

and efficient at time t. If β∗ > 0, there exist input-output combinations yielding a

higher or equal return and skewness together with a lower or equal variance and

kurtosis. When nonconvexity is assumed in model (2.2.2), evaluation is done with

respect to a nonconvex VRS frontier determined by all efficient MFs (excluding

the convex input-output combinations of these).

2.2.2 Multi-Time and Multi-Moment Rating Framework

Differing from MF ratings in a single-time framework, MF ratings in a multi-

time framework consider performance over a time horizon consisting of multiple

discrete time periods. To develop the nonparametric frontier rating models in this

multi-time framework, some definitions and properties are presented.

Consider n MFs under evaluation. Let T denote the number of consecutive

times in a time horizon of interest. In addition, define a multi-time path of inputs

and outputs as Zj = (xt
j, yt

j)T
t=1 for MF j, (j = 1, . . . , n), where xt

j = (xt
1j, . . . , xt

mj)

and yt
j = (yt

1j, . . . , yt
sj) represent m inputs and s outputs at time t, respectively.

Assuming VRS for all times t ∈ {1, . . . , T} and strong free disposability of all

inputs and outputs, the multi-time PPS with convexity and nonconvexity can be

defined as:

PT
Λ = P 1

Λ × · · · × P T
Λ ⊂ (Rm × Rs)T ∼= Rm×T × Rs×T , (2.2.3)

where P t
Λ, (t = 1, . . . , T ), is the PPS at time t mentioned previously in (2.2.1).

The idea is now for each MF to simultaneously expand its multiple outputs
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and decrease its multiple inputs over all discrete times in a given time horizon by

means of the multi-time shortage function. To allow a general definition, we first

introduce some abbreviating notations.

The time dependent direction vector denoted by G = (g1, . . . , gT ) ∈ (Rm
− ×

Rs
+)T ∼= Rm×T

− × Rs×T
+ represents a given multi-time direction path, where gt =

(−gt
x, gt

y) ∈ Rm
− × Rs

+ represents the direction vector at time t ∈ {1, . . . , T}. In

addition, we denote Θ = (β1, . . . , βT ) ∈ RT and Θ · G = (β1g
1, . . . , βT gT ) ∈

(Rm × Rs)T ∼= Rm×T × Rs×T . Considering the time preference of an investor in a

portfolio context, we introduce a time discounting factor denoted ξ (0 < ξ < 1) to

weight the efficiency measures over the time horizon.10 Then, the time discounted

multi-time shortage function assuming convexity or nonconvexity is defined as

follows:

Definition 2.2.2. With the notations introduced above, for any observation Z ∈

(Rm ×Rs)T ∼= Rm×T ×Rs×T , the time discounted multi-time shortage function ST
Λ

in the direction of G is defined as:

ST
Λ (Z; G) = sup

{ 1
T

T∑
t=1

ξT −tβt | Z + Θ · G ∈ PT
Λ

}
.

For a given time horizon T , this amounts to looking for the largest arithmetic

mean of time discounted distances over all times in a given time horizon of the

input-output combinations of an observed MF to boundary of PT
Λ. This definition

adapts a weighted (discounted) temporal efficiency measure, whereby the weights

decline as one moves away from the present into the past.11 If the time discounted
10Given that efficiency gains in the far future should be weighted less than efficiency gains

in the near future when planning ahead for an economic agent, the time discounting factor ξ is
assumed to remain 0 < ξ < 1.

11For retrospective benchmarking based on observed past behavior when assessing perform-
ance, the distant past is less valuable than the nearby present (as indicated by Briec and Kerstens
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multi-time shortage function value ST
Λ (Z; G) > 0 for the input-output path Z of

the MF being evaluated, then it means that its inputs and outputs can be reduced

and improved simultaneously in one or more time periods.

Based on Definition 2.2.2, we are now in the position to determine the non-
parametric frontier rating models in a general formulation. Suppose there are n

MFs under evaluation. Let T denote the number of consecutive times in a time
horizon under consideration. In particular, the multi-time rating methods used
in Section 2.3 focus on 3 distinct time periods: 1, 3 and 5 years. For a given
multi-time direction path G = (gt)T

t=1 ∈ Rm×T
− × Rs×T

+ , the efficiency of the MF o

under evaluation can be determined by the time discounted multi-time shortage
function value resulting from the following program:

max 1
T

T∑
t=1

ξT −tβt

s.t.
n∑

j=1
λt

jxt
ij ≤ xt

io − βtg
t
io, i = 1, . . . , m, t = 1, . . . , T,

n∑
j=1

λt
jyt

rj ≥ yt
ro + βtg

t
ro, r = 1, . . . , s, t = 1, . . . , T,

n∑
j=1

λt
j = 1, βt ≥ 0, t = 1, . . . , T,

∀j = 1, . . . , n :

 λt
j ≥ 0, t = 1, . . . , T, under convexity,

λt
j ∈ {0, 1}, t = 1, . . . , T, under nonconvexity.

(2.2.4)

In the multi-time framework, we select variance and kurtosis of each time t,

(t = 1, . . . , T ), as inputs and expected return and skewness as outputs, whereas

for the MVS case only variance for each t is considered as inputs. With the help

of the time discounted multi-time shortage function, the observed MF with index

o can improve its multiple return and skewness dimensions and reduce its multiple

(2009)). In that sense, the distant past contributes less weight to efficiency gains than the nearby
past.
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variance and kurtosis dimensions along a given direction path G over all time

periods. The value of the objective function of model (2.2.4) indicates the amount

of (in)efficiency of the MF o representing the multi-time shortage function. A value

greater than zero indicates that the inputs and outputs of the evaluated MF can

be improved in one or more time periods, and thus is inefficient from a multi-time

perspective.

In the following Sections 2.4 and 2.5, we employ MF data to compare the pro-

posed multi-time and multi-moment measures with traditional financial measures,

as well as with single-time MV measures. These comparisons are aimed not only to

illustrate the impact of multiple moments and multiple times on MF performance

evaluation, but more importantly to further explore the potential benefits of the

newly proposed performance measures for MF selection by means of backtesting.

We now turn to explain the backtesting framework in Section 2.3.

2.3 Backtesting Framework

Our main objective in this contribution is to test that the multi-time and multi-

moment performance measures can be expected to perform well for MF ratings

and selection. To this end, a comparative approach based on a backtesting meth-

odology is adopted. Backtesting refers to executing fictitious investment strategies

using historical data to simulate how these strategies would have performed if they

had actually been adopted by MF managers in the past. It is powerful for evaluat-

ing and comparing the performance of different investment strategies without using

real capital. Some examples of a backtesting approach are found in DeMiguel, Gar-

lappi, and Uppal (2009), Tu and Zhou (2011), Brandouy, Kerstens, and Van de

Woestyne (2015), Zhou, Xiao, Jin, and Liu (2018) and Lin and Li (2020), among
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others.

For comparison, there are 15 fund rating methods in total being collected in

our work. On the one hand, we test some traditional financial indicators: Sharpe

ratio, Sortino ratio and Omega ratio. The exact definition for the Sharpe, Sortino

and Omega ratios can be found in Feibel (2003, p. 187 and p. 200) and Eling and

Schuhmacher (2007, p. 2635), respectively. Based on these definitions, these three

traditional financial ratios are presented as follows:

Sharpe = E(R) − rf

σ(R) , (2.3.1)

Sortino = E(R) − rf

σ−(R) , (2.3.2)

Omega = E(R) − L

E[max(L − R, 0)] + 1, (2.3.3)

where E(R) and rf represent the mean value of a raw return R and the risk-free

rate, respectively; σ(R) and σ−(R) denote the standard and lower semi-standard

deviations of a raw return R, respectively; L is the loss threshold, in particular,

above this threshold returns are considered gains, while below this treshold these

are regarded as losses. Using the above three ratios, we obtain the financial indexes

for the above n MFs (i.e., Sharpej, Sortinoj and Omegaj, where j = 1, . . . , n) which

can be used to measure their performance at the given time horizon T , and the

higher the value, the better the performance. The risk-free rate rf and the loss

threshold L are here specified as zero.12

Furthermore, in line with the properties of the shortage function used in the
nonparametric frontier-based methods, we define the following traditional finance-

12As our dataset consists in the raw returns (not excess returns over a risk-free rate), we con-
sider setting the risk-free benchmark as zero to calculate the financial ratios here, which ensures
consistency with the nonparametric frontier models that assume jointness and null jointness
between risk and return. In most finance literature, the risk-free rate could be set as the bank
term deposit rate or Treasury bill rate.
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based efficiency measures that bound the values between zero and unity and that
make sure that the zero indicates full efficiency:

Eff(Sharpej) =
max{Sharpej | j = 1, . . . , n} − Sharpej

max{Sharpej | j = 1, . . . , n} − min{Sharpej | j = 1, . . . , n}
, (2.3.4)

Eff(Sortinoj) = max{Sortinoj | j = 1, . . . , n} − Sortinoj

max{Sortinoj | j = 1, . . . , n} − min{Sortinoj | j = 1, . . . , n}
, (2.3.5)

Eff(Omegaj) =
max{Omegaj | j = 1, . . . , n} − Omegaj

max{Omegaj | j = 1, . . . , n} − min{Omegaj | j = 1, . . . , n}
. (2.3.6)

On the other hand, we include convex and nonconvex nonparametric frontier-

based ratings in different frameworks. All these 15 rating methods (3 traditional

financial rating methods plus 12 frontier-based rating methods) are listed in Table

2.1.

Table 2.1: List of various rating models compared: 3 financial rating methods and
12 frontier rating methods

Classification Methods

Traditional financial measures

Eff(Sharpe)

Eff(Sortino)

Eff(Omega)

Convex frontier rating methods

Single-time and MV framework

Single-time and MVS framework

Single-time and MVSK framework

Multi-time and MV framework

Multi-time and MVS framework

Multi-time and MVSK framework

Nonconvex frontier rating methods

Single-time and MV framework

Single-time and MVS framework

Single-time and MVSK framework

Multi-time and MV framework

Multi-time and MVS framework

Multi-time and MVSK framework
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To simplify names of the frontier-based methods, some notation indicates which

frontier rating method is used for ranking MFs. This can be done in both single-

time (ST) and multiple-time (MT) frameworks, using a convex (subscript ‘c’) or

a non-convex (subscript ‘nc’) frontier rating methods, and focusing on the first

two (MV), three (MVS), or four moments (MVSK), respectively. For instance,

MTMVSKc refers to the convex frontier model with the mean, variance, skewness

and kurtosis over multiple times. Note that all the empirical results concerning

these 15 rating methods are reported using these simplified notations.

We consider a simple buy-and-hold backtesting strategy consisting of buying

in each time the 10, 20 and 30 best performing MFs ranked by rating method,

respectively.13 Our work now is to empirically test the out-of-sample perform-

ance of these 15 buy-and-hold strategies. Since the Sharpe ratio and other rel-

ative performance measures are only suitable for the MV world, we opt for the

shortage function as an absolute performance measure that is capable to assess

the performance of these strategies in multiple dimensions simultaneously (i.e.,

mean, variance, skewness and kurtosis). Hence, the 15 buy-and-hold backtesting

strategies are compared based on the MVSK performance of their holding values

evaluated by the single-time and multi-moment rating models (with convexity and

nonconvexity).

Based on the fundamental logic of backtesting summarized so far, we design a

backtesting analysis in detail for the buy-and-hold strategies constructed by the 15

rating methods. Our backtesting analysis is performed multiple times by rolling

the time window. We first collect a sample of HFs with monthly return data

starting from October 2006 till October 2020.14 The detailed description of this
13Strictly speaking, the buy-and-hold backtesting framework designed in this contribution is

a process of selecting and holding best-performing funds based on their rankings.
14Compared to rebalancing strategies, the buy-and-hold strategies designed in this contribution

are likely to be less affected by periods of the extreme events because they has a relatively long
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sample funds is presented in the following section (Section 2.4). Then, we split

the period from the beginning of the sample period to the end of October 2015 in

time windows of a given length, where the 5 years before the end of the sample

period are kept apart to test the long-term holding performance of these strategies

in the last backtesting period. Since the longest time period considered in our

work is 5 years, it is appropriate to set the length of the rolling time window at

5 years. Therefore, the backtesting analysis is developed starting from November

2011, and is repeated 48 times (each time another month) with the rolling time

window of 5 years till October 2015.

Using the first 5 year time window of data (from November 2006 to October

2011) to obtain the rankings for different rating methods, we determine the first

buy-and-hold backtesting strategies in November 2011. These strategies are held

for four holding scenarios: the end of October 2012 (for 1 year); the end of October

2014 (for 3 years); the end of October 2016 (for 5 years); and until the end of

October 2020 (the end of the whole sample period). The process of the first

backtesting is represented in Figure 2.1.15

holding period and remains unchanged after the funds are selected.
15The four moments of the fund’s return distribution are estimated based on a 5-year estimation

window covering 60 historical monthly returns. By contrast, when executing the backtesting
exercise, one could also use the return data of 5 years ahead to estimate these statistics of funds
instead of looking 5 years back which has the potential to capture future information under a
perfect foresight assumption. It would be intriguing future work to repeat the current backtesting
with this alternative estimation method based on a predictive view and compare with the current
backtesting results based on a retrospective view.
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Figure 2.1: Process of the first backtesting window

Then, the time window is shifted with a step of a single month to develop the

next backtesting analysis. For each time window or each backtesting event, the

steps can be detailed as follows:

(1) Adopt the 5-year time window of data to compute the single-time frontier

rankings, as well as the traditional financial rankings. In combination with

the other two time periods (i.e., 1-year and 3-year) of data from this time

window, the multi-time frontier ratings are computed.

(2) Depending on the ranking computed by this time window of data for each

rating method, the 10, 20 or 30 best performing HFs are selected for the

backtesting exercise, and then one holds these selected HFs for 1 year, for 3

years, for 5 years, and till the end of the whole sample period, respectively.

(3) In each of the above four holding period scenarios, we compute and store

the complete historical track record of the holding value per buy-and-hold

backtesting strategy, and then we calculate the mean, variance, skewness

and kurtosis of these holding value series.

The above steps for backtesting are repeated over 48 time windows in total.

For each of the four holding period scenarios, the performance of these MVSK
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observations (15 times 48 observations) that are generated by the 15 strategies

over 48 backtesting exercises are all evaluated by the shortage functions in the

single-time and multi-moment frameworks (with convexity and nonconvexity). In

particular, we first establish the convex and nonconvex VRS nonparametric fronti-

ers in the single-time and multi-moment framework for these MVSK observations,

and then measure their efficiency scores using the shortage functions. Clearly, each

buy-and-hold strategy yields the efficiency scores of 48 MVSK observations. The

average efficiency score and the number of efficient units, as well as the distribution

of inefficiency scores across these 48 observations, are adopted to evaluate the 15

strategies. For the four holding scenarios, the same pattern is used to compare the

15 strategies based on the different rating methods.

2.4 Empirical Backtesting Results

As previously mentioned, the purpose of the empirical analysis is twofold. First, we

examine whether the consideration of multiple moments and multiple times has an

impact on both the efficiencies and the rankings of HFs. Second, we aim to further

illustrate the eventual superiority of the proposed multi-time and multi-moment

frontier rating methods by the backtesting analysis.

2.4.1 Sample Description

Considering the use of backtesting in the newly proposed multi-time and multi-

moment ratings, the sample data collected requires the availability of continuous

data for at least 14 years. Hence, we choose 187 HFs with monthly returns from

October 2006 to October 2020 to test the 15 rating methods. The data is all down-
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loaded from Lipper for Investment Management made available by Hedge Funds

database. It needs to be stated that we initially specify these nonparametric fron-

tier rating methods following the idea of Kerstens, Mounir, and Van de Woestyne

(2011) that higher order moments and cost components are included. But, since

HF cost data is unavailable in this database, our empirical analysis is limited to

focus on the characteristics of the return distributions for these HFs without con-

sidering cost factors. In the following, we make a basic analysis of the monthly

return characteristics of the 187 HF sample over the whole sample period. Table

2.2 reports descriptive statistics on the first four moments of the sample.

Table 2.2: Descriptive statistics for all 187 HFs over the whole sample period

Mean Variance Skewness Kurtosis

Min. −0.328 0.633 −621.506 3.866

Q1 0.306 8.764 −43.341 481.584

Median 0.447 14.971 −10.294 1293.516

Mean 0.480 26.810 210.182 34145.995

Q3 0.601 27.018 1.468 4267.635

Max. 1.733 521.156 22732.909 2655540.333

From the descriptive statistics of the monthly returns reported in Table 2.2, we

find that the series consisting of 187 HFs’skewness present positive mean and neg-

ative median, while the dispersion is quite large. Furthermore, all 187 HFs display

positive kurtosis and also have a high dispersion. It is evident that some HFs do

not perform well in terms of skewness and kurtosis. Therefore, for investors seek-

ing non-negative skewness with small positive kurtosis, the multi-moment rating

methods can be of great importance to select well-performing HFs from a large and

heterogeneous HF universe. To assess the stability and persistence of these return

characteristics over time, we further report the first four moments of the sample
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over three time periods: a 1-year, a 3-year and a 5-year time periods, respect-

ively, is presented in Table 2.6 in Appendix 2.A. Fundamentally, the same results

regarding the return characteristics are available for these three time periods.

2.4.2 Evaluation Results

For the first aim of the empirical analysis, we compare both the efficiency distri-

butions and the rankings of the 187 HFs calculated by the 15 rating methods.16 In

the single-time rating framework, we extract the monthly returns of these samples

for the past 5 years to date to calculate the efficiency and ranking.While in the

multi-time rating framework, the monthly returns for the past 1 year, 3 years and

5 years to date are integrated and applied to evaluate the performance of these

funds.17

First, the efficiency distributions computed for the 15 rating methods are com-

pared by means of nonparametric tests comparing two entire distributions initially

developed by Li (1996) and refined by Fan and Ullah (1999) and most recently by

Li, Maasoumi, and Racine (2009). It tests for the eventual statistical significance

of differences between two kernel-based estimates of density functions f and g of

a random variable x. The null hypothesis maintains the equality of both density

functions almost everywhere: H0 : f(x) = g(x) for all x; while the alternative

hypothesis negates this equality of both density functions: H1 : f(x) ̸= g(x) for

some x.18 Table 2.3 provides Li-test statistics for all rating methods considered in
16Note: a fund o under evaluation, the direction vector gt of each time t is

(−|V (Rt
o)|, |E(Rt

o)|) in the MV case, (−|V (Rt
o)|, |E(Rt

o)|, |S(Rt
o)|) in the MVS case and

(−|V (Rt
o)|, −|K(Rt

o)|, |E(Rt
o)|, |S(Rt

o)|) in the MVSK case.
17The estimation time windows range of the 1-year, 3-year and 5-year MVSK respectively

from November 2019 till October 2020, November 2017 till October 2020 and November 2017
till October 2020.

18Matlab code developed by P.J. Kerstens based on Li, Maasoumi, and Racine (2009) is found
at: https://github.com/kepiej/DEAUtils.
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this contribution: In total, we report 105 relevant rating methods comparisons.19

Several observations can be made regarding the results in Table 2.3. First, it is

clear that the efficiency distributions computed by traditional financial perform-

ance measures and those computed by frontier-based rating methods are signific-

antly different at the 1 % significance level.

Second, in both convex and nonconvex frontier ratings, the single-time and

multi-time rating methods yield significantly different efficiency distributions. This

implies that the consideration of multiple times has a significant impact on the

efficiency distributions.

Third, the effect of adding multiple moments on the efficiency distributions

are somewhat different in single-time and multi-time ratings. For instance, in the

case of convexity, adding skewness and kurtosis jointly has a significant effect on

the efficiency distributions at the 1 % significance level in multi-time ratings. In

single-time ratings, adding higher moments does not contribute in a significant

way. Furthermore, the nonconvex frontier rating methods are more discriminatory

in the impact of adding multiple moments. Compared to the above results in

the case of convexity, in the case of nonconvexity, both adding skewness in itself

and adding skewness and kurtosis jointly have significant effects on the efficiency

distributions at 1 % significance level in multi-time ratings, and adding these

jointly has a significant impact at 5 % significance level in single-time ratings.

Fourth, for multi-time ratings, imposing convexity always has a significant

impact on the efficiency distributions. The efficiency distributions obtained by

convex and nonconvex frontier ratings in MV, MVS and MVSK cases all yield

differences at 1 % significance level, respectively. For the single-time ratings, the
19Note that Li-test statistics is applied to test whether the three specification factors considered

in the proposed nonparametric frontier rating methods(i.e., multiple times, multiple moments
and the imposition of convexity) have an impact on the efficiency distribution.

42



Ta
bl

e
2.

3:
Li

-t
es

ts
ta

tis
tic

sc
om

pa
rin

g
th

e
effi

ci
en

cy
di

st
rib

ut
io

ns
co

m
pu

te
d

by
di

ffe
re

nt
ra

tin
g

m
et

ho
ds

(3
fin

an
ci

al
ra

tin
g

m
et

ho
ds

an
d

12
fro

nt
ie

r
ra

tin
g

m
et

ho
ds

)

E
ff

(S
or

ti
no

)
E

ff
(O

m
eg

a)
ST

M
V

c
ST

M
V

Sc
ST

M
V

SK
c

M
T

M
V

c
M

T
M

V
Sc

M
T

M
V

SK
c

ST
M

V
nc

ST
M

V
Sn

c
ST

M
V

SK
nc

M
T

M
V

nc
M

T
M

V
Sn

c
M

T
M

V
SK

nc

E
ff

(S
ha

rp
e)

13
.1

05
**

*
52

.5
72

**
*

32
.9

74
**

*
26

.2
62

**
*

28
.1

12
**

*
28

.8
56

**
*

19
.9

5*
**

10
.7

87
**

*
37

.2
67

**
*

29
.0

58
**

*
33

.5
88

**
*

22
.3

57
**

*
12

.4
28

**
*

14
.9

8*
**

E
ff

(S
or

ti
no

)
36

.7
15

**
*

34
.7

75
**

*
27

.8
04

**
*

26
.4

31
**

*
15

.4
64

**
*

9.
73

5*
**

4.
77

2*
**

34
.7

04
**

*
28

.5
37

**
*

32
.0

88
**

*
11

.6
44

**
*

8.
66

9*
**

11
.0

52
**

*
E

ff
(O

m
eg

a)
30

.8
26

**
*

23
.5

74
**

*
25

.3
3*

**
31

.3
87

**
*

28
.8

76
**

*
24

.2
33

**
*

31
.1

46
**

*
32

.7
92

**
*

36
.3

24
**

*
20

.1
63

**
*

25
.3

16
**

*
27

.6
9*

**
ST

M
V

c
-5

.8
18

-2
.1

86
43

.4
86

**
*

40
.5

19
**

*
39

.7
23

**
*

-0
.0

11
4.

09
2*

**
6.

91
7*

**
43

.5
46

**
*

37
.7

6*
**

38
.2

65
**

*
ST

M
V

Sc
-0

.9
69

41
.3

52
**

*
36

.0
6*

**
32

.8
62

**
*

0.
16

2
2.

76
3*

**
5.

76
4*

**
38

.7
87

**
*

31
.5

98
**

*
32

.3
8*

**
ST

M
V

SK
c

6.
84

5*
**

4.
64

5*
**

28
.2

51
**

*
0.

43
4

0.
17

2
1.

62
*

36
.4

39
**

*
23

.8
93

**
*

23
.5

03
**

*
M

T
M

V
c

0.
62

9
4.

60
7*

**
47

.6
37

**
*

49
.2

82
**

*
52

.1
57

**
*

1.
69

9*
*

12
.0

15
**

*
13

.9
62

**
*

M
T

M
V

Sc
1.

31
1*

39
.8

91
**

*
38

.6
43

**
*

41
.4

7*
**

0.
68

8.
05

2*
**

10
.0

26
**

*
M

T
M

V
SK

c
36

.6
2*

**
28

.5
62

**
*

30
.2

88
**

*
-1

.7
89

1.
09

2.
77

4*
**

ST
M

V
nc

0.
20

6
2.

27
2*

*
44

.2
49

**
*

33
.7

23
**

*
33

.0
33

**
*

ST
M

V
Sn

c
-1

.4
76

39
.8

18
**

*
21

.4
88

**
*

19
.9

46
**

*
ST

M
V

SK
nc

41
.8

43
**

*
21

.7
09

**
*

19
.2

73
**

*
M

T
M

V
nc

4.
32

7*
**

6.
20

9*
**

M
T

M
V

Sn
c

-2
.1

58

L
i

te
st

:
cr

it
ic

al
va

lu
es

at
1%

le
ve

l=
2.

33
(*

**
);

5%
le

ve
l=

1.
64

(*
*)

;
10

%
le

ve
l=

1.
28

(*
).

Ta
bl

e
2.

4:
K

en
da

ll
ra

nk
co

rr
el

at
io

ns
co

m
pa

rin
g

th
e

ra
nk

in
gs

co
m

pu
te

d
by

di
ffe

re
nt

ra
tin

g
m

et
ho

ds
(3

fin
an

ci
al

ra
tin

g
m

et
ho

ds
an

d
12

fro
nt

ie
r

ra
tin

g
m

et
ho

ds
)

E
ff

(S
or

ti
no

)
E

ff
(O

m
eg

a)
ST

M
V

c
ST

M
V

Sc
ST

M
V

SK
c

M
T

M
V

c
M

T
M

V
Sc

M
T

M
V

SK
c

ST
M

V
nc

ST
M

V
Sn

c
ST

M
V

SK
nc

M
T

M
V

nc
M

T
M

V
Sn

c
M

T
M

V
SK

nc

E
ff

(S
ha

rp
e)

0.
95

6*
**

0.
96

1*
**

0.
83

3*
**

0.
77

8*
**

0.
62

7*
**

0.
71

8*
**

0.
63

9*
**

0.
39

8*
**

0.
82

4*
**

0.
60

5*
**

0.
59

2*
**

0.
72

8*
**

0.
40

6*
**

0.
40

1*
**

E
ff

(S
or

ti
no

)
0.

93
3*

**
0.

81
3*

**
0.

77
6*

**
0.

64
1*

**
0.

73
7*

**
0.

66
3*

**
0.

42
7*

**
0.

81
2*

**
0.

62
0*

**
0.

60
8*

**
0.

74
5*

**
0.

43
7*

**
0.

43
1*

**
E

ff
(O

m
eg

a)
0.

82
3*

**
0.

77
0*

**
0.

62
0*

**
0.

71
1*

**
0.

63
2*

**
0.

39
2*

**
0.

82
2*

**
0.

60
4*

**
0.

58
9*

**
0.

72
2*

**
0.

40
0*

**
0.

39
4*

**
ST

M
V

c
0.

90
8*

**
0.

74
9*

**
0.

78
2*

**
0.

66
8*

**
0.

42
3*

**
0.

94
8*

**
0.

70
3*

**
0.

69
0*

**
0.

77
5*

**
0.

43
5*

**
0.

42
7*

**
ST

M
V

Sc
0.

83
6*

**
0.

79
3*

**
0.

74
1*

**
0.

50
6*

**
0.

87
5*

**
0.

78
5*

**
0.

77
2*

**
0.

78
9*

**
0.

52
0*

**
0.

51
3*

**
ST

M
V

SK
c

0.
70

0*
**

0.
70

6*
**

0.
62

4*
**

0.
72

5*
**

0.
88

6*
**

0.
88

7*
**

0.
69

2*
**

0.
63

0*
**

0.
62

7*
**

M
T

M
V

c
0.

85
7*

**
0.

57
9*

**
0.

77
0*

**
0.

67
6*

**
0.

66
5*

**
0.

93
8*

**
0.

58
0*

**
0.

57
3*

**
M

T
M

V
Sc

0.
71

3*
**

0.
66

1*
**

0.
69

0*
**

0.
68

0*
**

0.
83

2*
**

0.
71

3*
**

0.
70

5*
**

M
T

M
V

SK
c

0.
41

8*
**

0.
60

2*
**

0.
60

6*
**

0.
56

2*
**

0.
90

5*
**

0.
90

1*
**

ST
M

V
nc

0.
73

2*
**

0.
71

2*
**

0.
77

5*
**

0.
43

8*
**

0.
42

9*
**

ST
M

V
Sn

c
0.

96
7*

**
0.

67
7*

**
0.

65
1*

**
0.

64
3*

**
ST

M
V

SK
nc

0.
66

8*
**

0.
65

1*
**

0.
65

7*
**

M
T

M
V

nc
0.

59
4*

**
0.

58
9*

**
M

T
M

V
Sn

c
0.

97
7*

**

43



efficiency distributions of the convex and the nonconvex models are different at

the 1 % and 10 % significance level in MVS and MVSK cases, respectively.

We further determine the Kendall rank correlations to test the degree of con-

cordance in rankings determined by these performance measures. Table 2.4 shows

the rank correlation between different HF ratings. In this table, *** indicates

that the correlation coefficient between the rankings is significantly different from

zero at 1 % significance level. The following key findings are revealed from Table

2.4. First, it is clear that the traditional financial ratings present a consistently

low correlation (around 0.39-0.43) with the multi-time and multi-moment (MVS

& MVSK) frontier ratings, but a high correlation (more than 0.8) with the single-

time MV ratings. Second, turning to the comparisons between frontier ratings in

single-time and multi-time frameworks, the single-time frontier rating and multi-

time frontier rating show a low correlation overall. Third, the MV frontier rating

exhibits a lower correlation with the multi-moment (MVS & MVSK) frontier rat-

ings in multi-time framework compared in single-time framework. Moreover, the

MV frontier rating has a lower correlation with the MVSK frontier rating com-

pared with the MVS frontier rating. Finally, regarding comparisons between the

rating models with convexity and nonconvexity, both the second and third findings

tend to be more pronounced in the nonconvex case compared to the convex case.

From these analyses, we can conclude that the multiple moments and multiple

times both separately and jointly have an impact on the HF efficiency and ranking

for our data, and this impact is more significant when the two factors are considered

jointly. Furthermore, nonconvexity may prove to be a more modest hypothesis in

the proposed multi-time and multi-moment ratings since it exhibits a stronger

discriminatory power with respect to the effect of adding multiple moments. This

confirms earlier comparative results between the convex and nonconvex models
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with higher order moments in the contribution of Kerstens, Mounir, and Van de

Woestyne (2011).

2.4.3 Backtesting Results

We analyze the backtesting scenarios with a selection of the 10, 20 or 30 best per-

forming HFs, respectively.20 As stated previously, the 15 buy-and-hold strategies

are compared in terms of the MVSK performances of their holding value series

that are evaluated by the shortage functions based on the convex and nonconvex

VRS frontiers in single-time and multi-moment frameworks (with convexity and

nonconvexity). Table 2.5 presents an overall analysis with respect to the perform-

ances of the MVSK observations generated per strategy held until the end of the

whole sample period. This table is structured as follows: The first series of four

columns list the results with regard to the 10 best HFs selected for the backtesting

exercise, and the second and third series of four columns present the results for

selecting 20 and 30 best HFs, respectively. Within each selecting (buying) scen-

ario, the first two columns report the average inefficiency scores and the number

of efficient units for each strategy when evaluated using the convex VRS frontier

in single-time and multi-moment framework (VRSc), while the last two columns

report these results in the nonconvex case (VRSnc).

We first analyze the main findings in the context of buying and holding until

the end of the whole sample period, as presented in Table 2.5. From these results,

there are four main conclusions.

The first key finding is that all the frontier-based strategies outperform the
20All funds with an efficiency of 0 are ranked as 1 in our calculations. As a consequence, when

we have to take a certain amount of funds among these ties then we take these randomly among
the tied units (as in Brandouy, Kerstens, and Van de Woestyne (2015).
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Table 2.5: Performance results for 15 buy-and-hold backtesting strategies (3 fin-
ancial rating methods and 12 frontier rating methods): Descriptive statistics of
the values of shortage function

Methods

HF(10) HF(20) HF(30)
VRSc VRSnc VRSc VRSnc VRSc VRSnc
Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs.

Eff(Sharpe) 0.064 0 0.040 9 0.081 2 0.047 10 0.078 0 0.034 9
Eff(Sortino) 0.063 1 0.034 10 0.084 2 0.055 7 0.077 1 0.037 9
Eff(Omega) 0.064 0 0.031 10 0.084 1 0.059 4 0.077 0 0.040 7
STMVc 0.077 0 0.045 17 0.101 1 0.064 5 0.096 0 0.047 11
STMVSc 0.059 7 0.027 28 0.090 2 0.055 14 0.076 4 0.033 16
STMVSKc 0.044 6 0.014 31 0.070 4 0.039 17 0.059 1 0.031 15
MTMVc 0.061 1 0.020 22 0.075 1 0.038 14 0.078 2 0.032 11
MTMVSc 0.063 4 0.025 22 0.078 2 0.044 14 0.065 2 0.028 16
MTMVSKc 0.041 9 0.008 30 0.065 1 0.033 17 0.053 1 0.020 17
STMVnc 0.068 2 0.031 20 0.100 0 0.062 8 0.090 0 0.038 11
STMVSnc 0.042 5 0.023 16 0.054 4 0.029 19 0.039 5 0.014 25
STMVSKnc 0.042 4 0.026 13 0.040 6 0.022 27 0.035 7 0.012 26
MTMVnc 0.047 3 0.013 26 0.075 0 0.035 18 0.074 0 0.030 15
MTMVSnc 0.034 9 0.010 27 0.049 9 0.024 19 0.039 6 0.013 28
MTMVSKnc 0.039 5 0.012 31 0.047 7 0.021 21 0.032 7 0.009 28

strategies based on traditional financial indicators, except the strategies construc-

ted by the single-time MV frontier rating methods. From the average inefficiency

scores reported in Table 2.5, it is easy to see that the average inefficiency scores of

all strategies based on the multi-moment and/or the multi-time frontier ratings are

lower than those of Sharpe-, Sortino- and Omega-driven strategies. This result is

valid when buying the 10, 20 and 30 best HFs. Combining the numbers of efficient

units given in Table 2.5, the frontier-based strategies clearly yield more efficient

units compared to those based on traditional indicators.

The second key result is that the buy-and-hold strategies according to the

multi-moment ratings present superior results compared to those based on the

MV ratings. Again, this result is confirmed when buying the 10, 20 and 30 best

HFs. Both in the single-time and multi-time rating frameworks, we find that

the strategies driven by the multi-moment ratings yield lower average inefficiency

scores and a higher number of efficient units over strategies driven by the MV

ratings.

Third, combining the two evaluation indicators of average inefficiency scores
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and the number of efficient units, it is found that in the majority of cases the buy-

and-hold strategies consisting of the HFs selected by the multi-time rating methods

perform better than strategies consisting of the HFs selected by the single-time

rating methods. This result remains valid when buying the 10, 20 and 30 best

HFs.

A last key finding is that strategies determined by the nonconvex frontier-based

ratings always outperform those determined by the convex frontier-based ratings.

Moreover, by comparing the average inefficiency scores and the number of efficient

units between the two in MVS and MVSK frameworks, it can be seen that when

multiple moments are considered, the strategies based on the nonconvex frontier-

based ratings usually display a more significant advantage. The reason for this

finding is that skewness and kurtosis imply nonconvexities in diversified portfolio

optimisation. As stated above, nonconvex production frontier models used for

fund rating underestimate the nonconvex diversified portfolio models, while the

convex production frontier models may tend to overestimate these same nonconvex

diversified portfolio models.

Thus, this backtesting analysis shows that the buy-and-hold strategies con-

structed by our proposed multi-moment and multi-time rating methods exhibit

superior performance in most scenarios. We therefore believe that the joint consid-

eration of multi-moments and multi-times provides additional useful information

for HF selection in practice.

As a sensitivity analysis, we test the performance of the 15 buy-and-hold

backtesting strategies held for 1 year, 3 years and 5 years, which can be regarded

as their short-, medium- and long-term holding performance. Table 2.7 in Ap-

pendix 2.B summarizes the performance results of the 15 strategies held for these

three alternative holding periods. The above four findings are also evidenced in
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most cases for these three holding period scenarios. Moreover, the buy-and-hold

backtesting strategies consisting of the best HFs rated by the multi-moment and

multi-time performance measure tend to show a consistent performance over the

different holding periods. We basically conclude that the buy-and-hold strategies

driven by the multi-moment and multi-time ratings exhibit favorable and consist-

ent short-, medium- and long-term holding performance, somewhat implying that

the performance of the best-performing HFs rated by the proposed multi-moment

and multi-time performance measure would be sustained over time. A more de-

tailed discussion on the sensitivity analysis is provide in Appendix 2.B.

Figure 2.2: Distributions of inefficiency scores for 15 buy-and-hold backtesting
strategies (3 financial rating methods and 12 frontier rating methods)

Besides evaluating strategies based on the two summarized indicators reported

in Table 2.5, we further provide the entire distribution of the inefficiency scores

per strategy to compare these intuitively. Figure 2.2 presents a graphical overview

of the performance of all strategies by integrating the box-plot per strategy held

to end in the buying scenarios with 10, 20 and 30 HFs selected. In this figure, the

sub-figures (a) to (c) correspond to the performance results of these three buying
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scenarios. The box-plots for the performance of strategies based on the convex VRS

frontier are in blue, and those based on the nonconvex VRS frontier are in red. In

these box-plots, the box indicates the interquartile range where the small vertical

lines reporting the location of the median. Their locations closer to the left suggests

that the entire distribution of inefficiency scores for the strategy is at a lower level,

which implies that the strategy has a better performance in backtesting analysis.

As we can observe from Figure 2.2, comparing the performance of these strategies

in each buying (backtesting) scenario, the buy-and-hold strategies constructed by

the multi-moment and multi-time frontier rating methods are superior to strategies

constructed by the existing rating methods in most cases.

Equally so, the entire distributions of the inefficiency scores for the 15 strategies

held for 1, 3 and 5 years are presented in Figures 2.3, 2.4 and 2.5 in Appendix 2.B,

respectively. From Figures 2.3, 2.4 and 2.5, one can observe that the dominance

of the strategies driven by the multi-moment and multi-time ratings over other

strategies remains valid and that this relation is strengthened as the holding period

increases. It is therefore clear that the good performance of the strategies driven

by the proposed frontier-based performance measures including multiple moments

and multiple times exhibits good stability (see Appendix 2.B for details).

2.5 Conclusion

Inspired by recent nonparametric frontier rating methods contributing to assessing

MF performance, this contribution has aimed to define a new shortage function or

performance measure for rating MFs that can simultaneously handle both multiple

moments and multiple times. Furthermore, we have explored the potential benefits

of this new performance measure for selecting the best performing MF. We are now
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in a position to summarize the main contributions.

First, we establish a series of nonparametric convex and nonconvex frontier

rating methods with multi-moments and multi-times. The proposed rating meth-

ods are capable of not only assessing to which extent a MF performs well in the

several moments following mixed risk-aversion preferences, but it simultaneously

measures to which extent a MF performs well in all these moments in different

times as well. These new multi-time and multi-moment performance measures

are suitable for handling mixed risk-aversion preferences of investors which aim at

time persistence.

Second, the proposed rating methods are empirically applied to HFs, given

that HFs tend to exhibit strong asymmetric and long-tail return characteristics

compared to other MFs. Using Li-test and Kendall rank correlation, the multi-time

and multi-moment ratings are compared with traditional financial indicators and

basic single-time MV rating methods to examine the impact of multiple moments

and multiple times. From the comparison among 15 various rating methods, we

find that in both convex and nonconvex cases, the multiple moments and multiple

times both separately and jointly have an impact on the HF efficiency and ranking,

and this impact is more significant when the two factors are considered jointly.

Furthermore, the nonconvex rating models have stronger discriminatory power

with respect to the effect of adding multiple moments over the convex rating

models. This confirms earlier comparative results between convex and nonconvex

models with higher order moments in Kerstens, Mounir, and Van de Woestyne

(2011).

Third, having the impact of the multi-moments and multi-times in mind, we

develop a simple buy-and-hold backtesting strategy to test whether the new ratings

perform any better than more traditional financial ratings and single-time MV
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ratings in HF selection. In most backtesting exercises, the buy-and-hold strategies

based on the multi-time and multi-moment ratings exhibit a superiority over those

based on traditional financial ratings and single-time MV ratings. This superiority

is clearly confirmed by comparing the MVSK performance of holding values with

respect to various buy-and-hold backtesting strategies. The multi-time and multi-

moment strategies tend to exhibit more stable and favorable short-, medium- and

long-term holding performance than the other strategies. Equally so, we focus on

the comparison of these multi-time and multi-moment strategies in the convex and

nonconvex cases. The strategies based on the nonconvex frontier ratings usually

display a more significant advantage over the convex frontier ratings probably for

reasons of a closer fit with the nonconvex skewness and kurtosis in diversified

portfolio optimisation.

Overall, the proposed multi-time and multi-moment performance measures

provide a novel idea into the important topic of rating and selecting MF. From

the basic backtesting setup in our empirical analysis, further extensive backtesting

studies can be developed to exploit the potential of the new performance measures

in constructing fund of funds. This is one of the main avenues for future research.

Another desirable extension is to transfer the current methodological framework

and perform a backtesting analysis in diversified models. It is worthwhile to com-

pare the performance in MF selection between the backtesting strategies driven

by diversified frontier rating methods and those driven by nondiversified frontier

rating methods (i.e., convex and nonconvex frontier rating methods).
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2.A Sample Description: Further Details

The descriptive statistics on the first four moments of the 187 HF sample over

1-year time period (sample period: Nov 2019 to Oct 2020), 3-year time period

(sample period: Nov 2017 to Oct 2020) and 5-year time period (sample period:

Nov 2015 to Oct 2020) are provided in Table 2.6.

Table 2.6: Descriptive statistics for all 187 HFs over 1-, 3- and 5-year time periods

1 year monthly return: From Nov 2019 to Oct 2020
Mean Variance Skewness Kurtosis

Min. −3.913 0.241 −4765.126 0.305
Q1 −0.467 8.580 −135.113 259.251
Median 0.356 18.270 −12.409 1277.641
Mean 0.423 45.237 414.608 71518.803
Q3 0.930 45.155 14.606 6685.385
Max. 10.857 937.351 60038.381 5381641.258

3 year monthly return: From Nov 2017 to Oct 2020
Mean Variance Skewness Kurtosis

Min. −2.836 0.258 −1820.695 0.217
Q1 −0.134 7.925 −65.187 344.122
Median 0.175 14.259 −17.723 945.365
Mean 0.248 27.364 240.996 36348.550
Q3 0.463 28.983 2.409 3974.036
Max. 4.623 533.743 30000.036 2865464.753

5 year monthly return: From Nov 2015 to Oct 2020
Mean Variance Skewness Kurtosis

Min. −1.618 0.228 −1142.152 0.196
Q1 −0.005 7.290 −45.376 275.106
Median 0.254 12.959 −12.149 715.167
Mean 0.345 26.036 243.423 39749.791
Q3 0.609 25.073 0.299 3002.459
Max. 3.943 705.232 27466.851 3289535.317

As observed from column 4 in Table 2.6, we find that for each time, the series
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composed by the skewness of 187 HFs shows positive mean and negative median,

as well as a large dispersion. From column 5, it can be seen that all 187 HFs have

positive kurtosis in each time, and also exhibit a high dispersion. These results are

in line with the ones reported in the main body of the text. This partly indicates

that the stability and persistence of these return characteristics for the HF sample

is maintained over different times. In addition, there are certain differences among

the 1-year, 3-year and 5-year MVSK of this HF sample. To some extent, the

addition of multiple moments and multiple times may provide a more accurate

picture to describe HF’s return characteristics compared to only considering the

mean and variance at a single time.

2.B Backtesting Results: Sensitivity Analysis

To develop a sensitivity analysis with respect of the holding period, this Appendix

focuses on testing the short-, medium- and long-term holding performance of the

buy-and-hold backtesting strategies based on the proposed multi-moment and

multi-time rating methods. The performance of strategies held for only 1 year

is regarded as a short-term holding performance, for 3 years as a medium-term

holding performance, and for 5 years as a long-term holding performance. For

each of the three holding scenarios, the 15 strategies are compared in terms of

the MVSK performances of their holding values that are always evaluated by the

shortage function based on the convex and nonconvex VRS frontiers in single-time

and multi-moment framework. Table 2.7 reports the summarized results with re-

spect to the performance per buy-and-hold backtesting strategy held for 1, 3 and

5 years.

Table 2.7 is organized as follows: the three series consisting of four columns
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list the performance results for holding the selected HFs over 1, 3 and 5 years,

respectively. Within each holding period scenario, the first two columns report

the average inefficiency scores and the number of efficient units for each method

when evaluated using the convex VRS frontier in single-time and multi-moment

framework (VRSc), while the last two columns report these results in the non-

convex case (VRSnc). Horizontally, each block of rows contains the results of the

selection of the 10, 20 or 30 best performing HFs, respectively.

We now analyze the results on the three holding scenarios presented in Table

2.7, following the same basic logic of analysing the 15 strategies in the main text.

Thus, the performance of strategies generated by two family of ratings (frontier vs.

finance) is compared first, and then the comparison between the frontier families

of ratings is developed separately (i.e., multi-moments vs. MV; multi-times vs.

single time; convexity vs. nonconvexity).

We first discuss the short-term holding performance of the 15 buy-and-hold

strategies, as shown in columns 2-6 of Table 2.7. First, it can be observed that

minor difference on the short-term holding performance is observed between the

strategies depending on the multi-time frontier ratings and those depending on

traditional financial ratings, and both their performances are superior over other

frontier-based strategies. Second, in most cases, the strategies based on the multi-

moment ratings do not show superiority compared to those based on the MV

ratings when these strategies are held for only 1 year. This result is somewhat

at odds with the one reported in the main text. Third, combining average in-

efficiency scores and the number of efficient units, the strategies constructed in

the multi-time rating framework perform better over those in the single-time rat-

ing framework under the 1-year holding scenario. Finally, in terms of short-term

holding performance, the strategies determined by the nonconvex frontier-based
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ratings outperform those determined by the convex frontier-based ratings in the

majority of cases. The latter finding is in line with the one shown in the main

text. It needs to be mentioned that some of the findings may be somewhat un-

stable with respect to the 1-year holding period due to the limited data for testing

the short-term holding performance of the 15 buy-and-hold strategies.

Looking at columns 7-10 of Table 2.7 for the medium-term holding perform-

ance of the 15 strategies, one can draw the following observations. The frontier-

based strategies with consideration of multi-moments and multi-times (separately

or jointly) largely outperform the finance-based strategies. It is easy to observe

that the strategies driven by the multi-moment and multi-time frontier ratings

generally yield lower average inefficiency scores and more efficient units compared

to Sharpe-, Sortino- and Omega-driven strategies. Turning to the comparisons

between various frontier-based rating methods, the buy-and-hold strategies based

on the multi-moment ratings (MVS & MVSK) perform better than those based on

the basic MV ratings. This is confirmed in both single-time and multi-time rating

frameworks. Moreover, consistent with the finding on considering multiple times

in the 1-year holding scenario (see the third finding), the multi-time frontier-based

strategies outperform the single-time frontier-based strategies in most cases in the

3-year holding scenario. Again, when comparing convex and nonconvex frontier-

based strategies in the medium-term holding scenario, the same coherent finding

emerges as in the short-term holding scenario (see the final finding analyzed in the

1-year holding context).

Following up the results regarding the 5-year holding scenario as reported in

columns 11-14 of Table 2.7, the above four findings emerging in the 3-year holding

period are also evidenced in this holding scenario. These results in the medium-

and long-term holding scenarios are rather in line with the ones reported in the
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main body. We basically conclude that the buy-and-hold backtesting strategies

based on the proposed multi-time and multi-moment models show a superior per-

formance in different holding period scenarios.

Apart from comparing the performance of the 15 buy-and-hold strategies ver-

tically for each of three holding scenarios, we have also run a horizontal analysis

on the consistency and stability of the performance per strategy over different

holding periods. Looking at the evolution of the average inefficiency scores and

the number of efficient units per strategy held for 1, 3 and 5 years allows to infer

two new and interesting observations. First, the strategies consisting of the best

HFs selected by financial indicators and basic MV frontier rating methods tend to

exhibit worse performance in medium- and long-term holding periods compared to

their performances in a short-term holding period. By contrast, the strategies with

the consideration of multiple moments and multiple times usually exhibit favor-

able and consistent short-, medium- and long-term holding performance. Second,

focusing on the MVS and MVSK settings in the multi-moment rating framework,

it can be noticed that compared to the strategies based on the multi-time ratings

adding skewness only, the ones based on the ratings adding both skewness and

kurtosis show better and more consistent short-, medium-, and long-term hold-

ing performance. This finding reveals the necessity for the addition of kurtosis in

HF rating and selection. Indeed, including the kurtosis reduces the disturbance

of certain extreme values to the fund ratings, and therefore the funds selected

tend to present both better and more stable returns. These results somewhat

suggest that the performance persistence of the best-performing HFs rated by the

multi-moment and multi-time performance measure is well maintained over time.

65



Figure 2.3: Distributions of inefficiency scores for 15 buy-and-hold backtesting
strategies (3 financial rating methods and 12 frontier rating methods): held for 1
year

Figure 2.4: Distributions of inefficiency scores for 15 buy-and-hold backtesting
strategies (3 financial rating methods and 12 frontier rating methods): held for 3
years
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Figure 2.5: Distributions of inefficiency scores for 15 buy-and-hold backtesting
strategies (3 financial rating methods and 12 frontier rating methods): held for 5
years

To compare the 15 buy-and-hold strategies intuitively, Figures 2.3, 2.4 and 2.5

offer box-plots to describe the entire distributions of the inefficiency scores per

strategy held for 1, 3 and 5 years, respectively. In each figure, the sub-figures

(a) to (c) correspond to the performance results of the buying scenarios with 10,

20 and 30 best HFs selected, whereby the performance of strategies based on the

convex VRS frontier are depicted in blue, and those based on the nonconvex VRS

frontier are displayed in red. As introduced in the main text, the box of these

box-plots indicates the interquartile range where the small vertical line reports the

location of the median. Straightforwardly, the location of the median closer to the

left indicates that the entire distribution of inefficiency scores for one strategy is

somewhat skewed to the left, which signals that the strategy performs better in

the backtesting analysis because the probability mass of the inefficiency is closer to

zero. Two major observations can be made with regard to these results in Figures

2.3, 2.4 and 2.5. First, although the buy-and-hold strategies constructed by the
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multi-moment and multi-time frontier rating methods do not exhibit a significant

superiority in the 1-year holding scenario, they establish a clear dominance over

the other strategies in both the 3- and 5-year holding scenarios (see sub-figures (a)

and (b) of Figures 2.3, 2.4 and 2.5). Second, concentrating on Figures 2.3, 2.4 and

2.5 individually, the good performance of the buy-and-hold strategies depending

on the multi-moment and multi-time ratings tends to be consistent and stable over

time.
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CHAPTER

3

Multi-Time and Multi-Moment

Nonparametric Frontier-Based

Fund Rating: Luenberger

Portfolio Productivity Indicator

Approach

Abstract

This contribution introduces a novel method for measuring the evolution of fund

performance in a multi-time and multi-moment framework using some extensions

of the shortage function combined with a Luenberger productivity indicator. This

new Luenberger discrete time portfolio productivity indicator and its decomposi-

tion are constructed to measure fund’s dynamic performance with the considera-

tion of multiple time periods and multiple moments, and to distinguish whether

performance changes over time are due to the multi-time efficiency change or

due to the shift in the frontier. The empirical part employs actual hedge fund

(HF) data to illustrate the validity and practicality of the proposed methodology.

The evaluation results show that multiple time periods and higher-order moments
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have an clear impact on the Luenberger portfolio productivity indicator, as well

as the indicator-based ratings. Moreover, the backtesting results point to a re-

markable superior performance of the multi-time and multi-moment Luenberger-

based ratings compared to traditional finance-based ratings and the single-time

MV Luenberger-based ratings for the actual HF selection.

Keywords: Shortage function; Nonparametric frontier; Fund rating; Luenberger

productivity indicator.

3.1 Introduction

Financial analysts and individual investors rely heavily on the risk-adjusted return

(i.e., “performance”) measures to select investment funds. Since the foundational

work of Markowitz (1952) and Tobin (1958) on modern portfolio mean-variance

(MV) theory, the MV efficiency is defined as the ability of a set of assets to yield the

maximum return for a given level of risk or, alternatively, to produce the minimum

level of risk for a given expected return. The modern portfolio MV theory pioneers

a perspective for measuring fund efficiency, but this dual objective of MV makes

performance evaluation a controversial task. Indeed, none of the current methods

in the literature seems to be universally approved.

Some traditional financial efficiency indicators (such as the Sharpe ratio) ba-

sically developing under the MV evaluation framework have received widespread

criticism. As stated by numerous authors (see Hanoch and Levy (1969) and Leland

(1999)), the MV evaluation is not consistent with the Von Neumann–Morgenstern

axioms of expected utility theory unless either (i) the asset returns obey a normal

probability distribution, which is one of theoretical assumptions of the Capital As-

set Pricing Model (CAPM); or (ii) the utility functions of investor preferences are
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quadratic, and depend on the first and second moments (i.e., mean and variance) of

the asset’s distribution. One the one hand, there is a lot of evidence showing that

asset returns are non-normally distributed (see Arditti (1975); Konno, Shirakawa,

and Yamazaki (1993); Harvey, Liechty, Liechty, and Müller (2010), and Aksaraylı

and Pala (2018)). On the other hand, the broad class of mixed risk-aversion util-

ity functions with a general preference for odd moments and an aversion to even

moments is nowadays widely accepted (see Trautmann and van de Kuilen (2018)

for a review). Furthermore, some investigations indicate that portfolio selection

based on the MV criterion in the presence of non-normally asset returns and mixed

risk-aversion investor preferences can lead to severe welfare losses (e.g., Hwang and

Satchell (1998); Dittmar (2002); Jondeau and Rockinger (2006)).

Scott and Horvath (1980) confirm that investors are willing to accept lower

expected return and higher volatility compared to the MV benchmark in exchange

for higher skewness and lower kurtosis. Thereafter, several alternative methods

have developed in the financial literature to incorporate the individual preferences

for higher-order moments into portfolio evaluation and selection. For instance,

Lai (1991) develops a polynomial goal programming (PGP) approach to estimate

the set of the mean-variance-skewness-kurtosis (MVSK) efficient funds. Guidolin

and Timmermann (2002) describe a particular specification of the indirect MVSK

utility by using Taylor series expansion to determine the optimal portfolios. Al-

though none of these procedures has managed to obtain widespread acceptance, it

is nowadays rather generally recognized that the skewness and kurtosis are critical

when considering alternative assets or funds (e.g., hedge funds, managed futures,

private equity, and leveraged buy-out) in constructing a portfolio. To this end, in

this contribution, we develop a general portfolio evaluation procedure with mul-

tiple moments in the methodology part, while in the empirical part we specifically

place ourselves in the MVSK framework.
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Taking the mixed risk-aversion preference structures for granted, a particular

distance function, the shortage function, has been proven to be an excellent tool

to derive efficiency measures in combination with investors’ preferences for higher-

order moments. Briec, Kerstens, and Lesourd (2004) are the first to develop the

shortage function (Luenberger (1995)) to measure portfolio efficiency, where in-

vestors can both contract variance and expand expected return simultaneously.

While their work is still developed within the MV evaluation framework, Briec,

Kerstens, and Lesourd (2004) establish a link between portfolio theory and devel-

opments in production theory. Following their contribution, one can summarize

the basic idea for assessing portfolio performance: By the shortage function, the

efficiency of a given portfolio is measured based on the distance between it and

the MV portfolio frontier (theoretical frontier). Immediately thereafter, this eval-

uation method based on the shortage function is extended to more generalized

portfolio frameworks to be compatible with general mixed risk-aversion investor

preferences. Briec, Kerstens, and Jokung (2007) demonstrate that the shortage

function can project any inefficient portfolio exactly on the three dimensional MVS

portfolio frontier and that the function is connected via duality to an indirect MVS

utility function if one is able to articulate preferences. Briec and Kerstens (2010)

discuss the shortage function in a general higher-order moment setting, in which

the MVSK case is covered.

Differing from gauging funds based on the portfolio frontier that considers di-

versification effect, Kerstens, Mounir, and Van de Woestyne (2011b) launch a new

proposal in favor of the use of shortage function in terms of convex/nonconvex non-

parametric frontiers, and systematically test for the need of higher-order moments

in defining the efficiency measures based on these non-diversified methods. There

has been a great development on the convex or nonconvex frontier-based meth-

odology for assessing funds, e.g., Matallín-Sáez, Soler-Domínguez, and Tortosa-
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Ausina (2014), Brandouy, Kerstens, and Van de Woestyne (2015), Nalpas, Simar,

and Vanhems (2017), Mehlawat, Kumar, Yadav, and Chen (2018), Krüger (2021),

Lin and Li (2020), Gong, Yu, Min, and Ge (2021). In particular, one can find that

the shortage function based on the non-diversified frontier techniques has become

very popular in performance evaluation combining simultaneously several charac-

teristics of fund return distributions into a single performance measure (i.e., mean,

variance, skewness and kurtosis).

In the mean time, several studies have focused on the role of time dimensions

in performance evaluation of funds. Morey and Morey (1999) are the first to pro-

pose two efficiency measures under risk and return orientations respectively from

a multi-period perspective for MV portfolio performance appraisals. The first effi-

ciency measure aims at contracting all risk dimensions without altering any return

dimensions, and the other efficiency measure aims at augmenting all return dimen-

sions with no increase in any risk dimensions. Briec and Kerstens (2009b) develop

a multi-period MV portfolio analysis by means of the shortage function. Instead of

either proportionally contracting risk dimensions or proportionally expanding re-

turn dimensions, a temporal shortage function simultaneously attempts to reduce

the risk and to expand the return over all times. These multi-period evaluation

methods allow to arise the difference in preferences across time and can release

more useful information on fund selection to investors compared to gauging the

fund’s performance from a single time (see Ren, Zhou, and Xiao (2021)).

The foregoing discussion on time dimensions and higher-order moments in-

spire our fundamental idea to offer a multi-time and multi-moment performance

measure by the extension of the existing shortage function. Considering the com-

putational superiority of non-diversified models, the contents of this contribution

are developed based on the convex and nonconvex nonparametric non-diversified
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frontier technology. Indeed, it seems more appropriate that the proposed per-

formance measure offers a general framework for portfolio evaluation, allowing for

multiple factors associated with the investment decision process to be considered.

However, although this temporal performance measure takes into account multiple

times in a time horizon, admittedly, it still falls into the category of static perform-

ance evaluation that focuses on measuring a fund’s efficiency by a cross-sectional

comparison among all observed funds using the return information over a finite

horizon.1

In recent years, differing from this static analysis, some studies are devoted

to measure the evolution of fund performance over time by a cross-period com-

parison to investigate the attribution problem for the efficiency changes. This

can be regarded as a dynamic evaluation for a fund performance in discrete time.

In a dynamic context, both the window analysis and the productivity indicator

analysis are commonly applied to measure the performance evolution of a decision-

making unit (see, e.g., Gardijan and Škrinjarić (2015), Zeitun, Abdulqader, and

Alshare (2013), Asmild, Paradi, Aggarwall, and Schaffnit (2004), Babalos, Capor-

ale, and Philippas (2012), Gregoriou and Moschella (2017)). The window analysis

suffers from some limitations, e.g., the absence of interpretation for the perform-

ance change and low test frequency at the beginning and ending windows (Lin,

Chen, Hu, and Li (2017)). Compared to the window analysis, the productivity

indicator analysis based on frontier-based evaluation models can identify the pro-

gress or regress in efficiency along with the progress or regress of the frontier over

time (Cooper, Seiford, and Tone (2007)). Borrowing from the theory of productiv-

ity indicators, Brandouy, Briec, Kerstens, and Van de Woestyne (2010) integrate

the shortage function based on the MV portfolio frontier into the Luenberger
1Note Briec, Comes, and Kerstens (2006) introduce the notions of an temporal technical and

profit efficiency measurement which do not allow for linkages between optimal decisions between
time periods and are thus only dynamic in a limited sense.
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productivity indicator (Chambers, Färe, and Grosskopf (1996)) to measure the

portfolio performance change over time. This portfolio productivity indicator is

decomposed into an efficiency change component and a frontier change component.

The former estimates the efficiency changes over time attributable to the ability

of the portfolio manager, and the latter component captures the efficient frontier

shift induced by market volatility. Their contribution is the first to establish a link

between the indicator theory and the portfolio performance evaluation framework,

to some extent revealing the potential of the Luenberger portfolio productivity

indicator and its decomposition as a measurement tool for fund performance ap-

praisal in discrete time. However, their work is limited to discuss the portfolio

performance in a single-time framework. In addition, since all diversified mod-

els for computing this Luenberger portfolio productivity indicator are nonlinear,

the computation process is time-consuming, which is not suitable for the large-

scale and multidimensional portfolio evaluation problems. Therefore, we opt for

non-diversified production frontier models.

Following Brandouy, Briec, Kerstens, and Van de Woestyne (2010), the aim of

this contribution is threefold. First, we propose a series of performance measures

in the shortage function framework, which are compatible with general investor

preferences regarding multiple time periods and multiple moments. Using the

new performance measures, we further develop a multi-time and multi-moment

Luenberger portfolio productivity indicator and its decomposition for measuring

dynamic fund performance. Second, applying these models to actual HF data,

we test the impact of multiple time periods and multiple moments separately and

jointly on the Luenberger portfolio productivity indicators and their decomposi-

tion, as well as the indicator-based ratings for the HF sample. Third, we explore

the potential benefit of the proposed Luenberger portfolio productivity indicators

on fund selection by a backtesting analysis approach. To the best of our know-
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ledge, this contribution is the first to develop a proposal on the methodology and

application for the Luenberger portfolio productivity indicators in a multi-time

and multi-moment framework.

The structure of this contribution is as follows. Section 3.2 presents the dis-

cussion on the nonparametric frontier methodology dealing with estimation of the

single-time and multi-time Luenberger portfolio productivity indicators. Section

3.3 describes the details of the backtesting setup in dynamic analysis. The empir-

ical results are presented in Section 3.4. Conclusions and issues for future work

are summarized in the final section.

3.2 Nonparametric Frontier Rating in Dynamic

Analysis Framework: Methodology

3.2.1 Single-Time and Multi-Moment Luenberger Portfo-

lio Productivity Indicator

To introduce some basic notations and definitions, assume a sample of n funds is

observed over a given time horizon, for each time t within this time horizon, each

fund is characterized by m input-like values xt
ij and s output-like values yt

sj, where

i = 1, . . . , m, r = 1, . . . , s. We introduce one widely used production frontier-

based model with variable returns to scale (VRS). Following Briec, Kerstens, and

Vanden Eeckaut (2004), a unified algebraic representation of convex and nonconvex

production possibility sets (PPS) under the VRS assumption for a sample of n

76



funds at time t is:

P t
Λ =

{
(xt, yt) ∈ Rm × Rs | ∀i ∈ {1, . . . , m} : xt

i ≥
n∑

j=1
λjx

t
ij,

∀r ∈ {1, . . . , s} : yt
r ≤

n∑
j=1

λjy
t
rj, λ ∈ Λ

}
, (3.2.1)

where

Λ ≡ ΛC = {∑n
j=1 λj = 1 and λj ≥ 0} if convexity is assumed, and Λ ≡ ΛNC =

{∑n
j=1 λj = 1 and λj ∈ {0, 1}} if nonconvexity is assumed.

For any fund being evaluated when there exists a combination (∑n
j=1 λjx

t
ij,∑n

j=1 λjy
t
ij) in the convex PPS or the nonconvex PPS using less inputs and produ-

cing more outputs than it, this fund can always improve its inputs or outputs.

Using the above nonparametric PPS (see (3.2.1)), the shortage function of any

fund for a single time t is now defined as follows:

Definition 3.2.1. For time t in a given time horizon, let gt = (−gt
x, gt

y) ∈ Rm
− ×Rs

+

and gt ̸= 0. For any fund vt = (xt, yt) ∈ P t
Λ in the direction of vector gt, the

shortage functions with and without convexity can be uniformly defined as:

St
Λ(vt; gt) = sup{β ∈ R|vt + βgt ∈ P t

Λ}. (3.2.2)

This shortage function is termed as the single-time shortage function in this

contribution, and simultaneously permits the enhancement of output-like variables

and the reduction of input-like variables for time period t. If the shortage function

value St
Λ(vt

o; gt
o) > 0 for a specific fund vt

o = (xt
o, yt

o) with index o ∈ {1, . . . , n}, it

means that vt
o must not be located on the frontier derived from P t

Λ, and its inputs

and outputs can be improved to catch up with the nonparametric VRS frontier.
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Following Brandouy, Briec, Kerstens, and Van de Woestyne (2010), the com-

bination of some shortage function extensions with the Luenberger productivity

indicators provides an effective way to evaluate the dynamic performance of funds.

To define the Luenberger portfolio productivity indicator in a general context, we

assume τ (τ ≥ 0) denotes the time interval between the two different times of

interest.2 To assess a fund’s performance evolution across times t and t + τ , the

Luenberger portfolio productivity indicator for measuring the change of the short-

age function is defined between times t and t + τ :

LΛ(vt, vt+τ ; gt, gt+τ ) =1
2[(St

Λ(vt; gt) − St
Λ(vt+τ ; gt+τ ))

+ (St+τ
Λ (vt; gt) − St+τ

Λ (vt+τ ; gt+τ ))]
(3.2.3)

The Luenberger portfolio productivity indicator based on the single-time short-

age function is referred to as single-time Luenberger indicator in our work. Ac-

cordingly, an equivalent decomposition of this Luenberger indicator is provided.

LΛ(vt, vt+τ ; gt, gt+τ ) =EΛ(vt, vt+τ ; gt, gt+τ )

+ FΛ(vt, vt+τ ; gt, gt+τ )
(3.2.4)

with

EΛ(vt, vt+τ ; gt, gt+τ ) = St
Λ(vt; gt) − St+τ

Λ (vt+τ ; gt+τ ) (3.2.5)

and
FΛ(vt, vt+τ ; gt, gt+τ ) =1

2[(St+τ
Λ (vt+τ ; gt+τ ) − St

Λ(vt+τ ; gt+τ ))

+ (St+τ
Λ (vt; gt) − St

Λ(vt; gt))]
(3.2.6)

In the above decomposition, EΛ(·) measures the efficiency change of fund between
2The time interval between different times in this contribution is general and flexible. In

the following empirical computations, this value is fixed as τ = 3 representing the three-month
interval between two different times, which mainly accounts for the adjustment cycle of the fund
manager’s strategy in practice.
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times t and t + τ , while FΛ(·) captures the average change in fund performance

between the two times evaluated in t and t + τ . Hence, (3.2.4) decomposes the

change of fund’s performance into two components: one representing efficiency

change relative to a moving VRS frontier (i.e., EΛ(·)), another indicating the

average change in the frontier itself (i.e., FΛ(·)). This decomposition offers a

measurement framework for fund market performance gauging: On the one hand,

EΛ(·) captures the performance of the fund managers over time relative to a

shifting frontier, and on the other hand, FΛ(·) indicates how the fund market itself

has locally changed over time. When the Luenberger indicator of fund performance

change LΛ(·) or any of its components (EΛ(·) or FΛ(·)) is positive (negative),

then fund’s performance increases (decreases) between the two times considered.

Now, we discuss the computational matters of the single-time Luenberger indic-

ator for any fund under evaluation. Based on the above definitions and notations,

the PPS (see (3.2.1)) are used to directly compute the various shortage functions

and thus the Luenberger productivity indicator by recourse to mathematical pro-

gramming models. Consider any fund vt
o = (xt

o, yt
o) with index o ∈ {1, . . . , n} to

assess, for a given direction vector denoted by gt
o = (−gt

io, gt
ro), where i = 1, . . . , m

and r = 1, . . . , s, let us first solve for the shortage functions based on Definition
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(3.2.1) resulting from the following model:

max β

s.t.
n∑

j=1
λjy

t
rj ≥ yt

ro + βgt
ro, r = 1, . . . , s,

n∑
j=1

λjx
t
ij ≤ xt

io − βgt
io, i = 1, . . . , m,

n∑
j=1

λj = 1,

∀j = 1, . . . , n :

 λj ≥ 0, under convextiy

λj ∈ {0, 1}, under nonconvextiy

(3.2.7)

where β and λj(j = 1, . . . , n) are decision variables, and the direction vector

is opted here to employ the observation under evaluation itself, that is, gt =

(−|xt
1o|, . . . , −|xt

mo|, |yt
1o|, . . . , |yt

so|). To calculate the Luenberger indicator LΛ(·)

of the evaluated fund o, the four different shortage functions composing it must be

computed: St
Λ(vt

o; gt
o), St

Λ(vt+τ
o ; gt+τ

o ), St+τ
Λ (vt+τ

o ; gt+τ
o ), and St+τ

Λ (vt
o; gt

o). To solve

for St
Λ(vt

o; gt
o) and St+τ

Λ (vt+τ
o ; gt+τ

o ), one can compute (3.2.7) directly for times t

and t + τ , respectively. For the second (last) computation, it is found by using the

VRS-based PPS at time t (or time t + τ), occurring on the right-hand side of the

s and m constraints of model (3.2.7) are set as those observations at time t + τ

(or time t).3

It is noted that model (3.2.7) results in a linear programming (LP) problem

under convexity and a mixed integer linear programming (MILP) problem under

nonconvexity.

In addition, when nonconvexity is taken into account, we can obtain a noncon-
3The non-negativity constraint on the output projections in production (see Briec and Ker-

stens (2009a)) are not needed in finance, because the negative output projection for a fund is
typically possible.
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vex VRS frontier composed by all efficient funds excluding the convex combina-

tions of these. In application, convexity is not always useful to guide investors in

terms of choosing among funds, especially when higher moments are considered as

input-like variables and output-like variables to describe the return characteristics

of funds. The convex production frontier models may tend to overestimate the

corresponding nonconvex diversified portfolio models when including higher-order

moments, while the nonconvex production frontier models provide a conservative

underestimation of these same nonconvex diversified portfolio models (see Ker-

stens, Mounir, and Van de Woestyne (2011b) and Nalpas, Simar, and Vanhems

(2017)).4

The above setting for single-time shortage function and Luenberger indicator

is very general and flexible and can thus handle a large choice of inputs and

outputs. We now particularize the formulation and the characterization of the

efficient frontier in the multi-moment (MVS and MVSK) spaces. Suppose that

there are n funds under evaluation. For time period t, let Rt
1, . . . , Rt

n denote the

random returns of the n funds, which are characterized by their mean E(Rt
j),

variance V (Rt
j), skewness S(Rt

j) and kurtosis K(Rt
j) for j ∈ {1, . . . , n}. Here, the

calculations of variance, skewness and kurtosis are expressed as follows: V (Rt
j) =

E[(Rt
j − E(Rt

j))2], S(Rt
j) = E[(Rt

j − E(Rt
j))3], and K(Rt

j) = E[(Rt
j − E(Rt

j))4].

To obtain the inputs/outputs representation of the PPS, we need to classify the

different goals of the investor in terms of inputs, (i.e. objectives to minimize) and

outputs (i.e. objectives to be maximized). As discussed in the previous section, the

need for multiple moments is apparent to assess funds whose return distributions

exhibit strong asymmetry and fat tail. In general, investors express preference
4Note that the nonconvex diversified portfolio models introduced here could be used to geo-

metrically construct and visualize in a systematic way portfolios frontiers. Kerstens, Mounir,
and Van de Woestyne (2011a) systematically develop geometric representations of the MVS di-
versified portfolio frontier, and the non-convex nature of the efficient MVS frontier is illustrated
visually.
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for odd moments and reluctance for even moments of the distribution of asset

returns. Therefore, when the MVSK framework is considered, the inputs of funds

are defined as xt
1j = V (Rt

j) and xt
2j = K(Rt

j), as well as the outputs are defined as

yt
1j = E(Rt

j) and yt
2j = S(Rt

j) for j ∈ {1, . . . , n}, whereas for the MVS case, only

the first input is considered.

3.2.2 Multi-Time and Multi-Moment Luenberger Portfolio

Productivity Indicator

Similar to the procedure for defining the single-time Luenberger portfolio produc-

tion indicator, this subsection is concerned with a multi-time Luenberger portfolio

productivity indicator to track the evolution of fund multi-time performance over

time. Equally so, to develop the nonparametric frontier rating models in multi-

time framework, some definitions and properties are presented. Consider that

there are n funds under evaluation. Let T denote the number of consecutive

times in a given time horizon of interest. In addition, define a multi-time path

of inputs and outputs as Vt,T
j = (xk

j , yk
j )T +t−1

k=t for MF j, (j = 1, . . . , n), where

xk
j = (xk

1j, . . . , xk
mj) and yk

j = (yk
1j, . . . , yk

sj) represent m inputs and s outputs at

time k, respectively. Assuming VRS for all times k and strong free disposability of

all inputs and outputs, the multi-time PPS with convexity and nonconvexity can

be defined as:

Pt,T
Λ = (P k

Λ)T +t−1
k=t ⊂ (Rm × Rs)T ∼= Rm×T × Rs×T , (3.2.8)

From the definition of the PPS in the multi-time framework, it is possible for

each fund to reduce inputs and expand outputs over multiple time periods in this

overall time horizon simultaneously.
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Before defining the multi-time shortage function in a general case, we further

simplify some symbolic expressions. Since the direction vector is assumed to be

time-dependent, we define that Gt,T = (gk)T +t−1
k=t ∈ Rm×T

− × Rs×T
+ represents a

given multi-time direction path, where gk = (−gk
x, gk

y) ∈ Rm
− × Rs

+ represents the

direction vector for time k. In addition, we denote β = (βk)T +t−1
k=t . Considering

the time preference of an investor in a portfolio context, we introduce a time

discounting factor denoted ξ (0 < ξ < 1) to weight the efficiencies over the time

horizon. Then, for any multi-time path of a fund denoted as Vt,T = (xk, yk)T +t−1
k=t

, the discounted multi-time shortage functions with convexity and nonconvexity

can be defined as follows:

St,T
Λ (Vt,T ; Gt,T ) = sup

{ 1
T

T +t−1∑
k=t

ξT +t−1−kβk : Vt,T + βGt,T ∈ P t,T
Λ

}
, (3.2.9)

The definition of a multi-time shortage function does the same as a single-

time shortage function, but over multiple time periods in a given time horizon:

for a given overall time horizon, this amounts to looking for an arithmetic mean

of simultaneous reductions in inputs and expansions in outputs into a path of

direction Gt,T over all possible times. If the multi-time shortage function value

St,T
Λ (Vt,T ; Gt,T ) > 0 for the input-output path Vt,T of the fund being evaluated,

then it means that its inputs and outputs can be simultaneously improved in single

or multiple times in this given overall time horizon.

Using the above multi-time shortage function, the multi-time Luenberger port-

folio production indicators are further defined. Similarly, an adaptation of Defin-

ition (3.2.9) of the multi-time shortage function is required. This corresponding

definition can be extended as follows:

Definition 3.2.2. Given two initial times a and b, for any fund Va,T in the direc-

tion of vector Ga,T , the cross-period shortage functions with and without convexity
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are uniformly defined as:

Sb,T
Λ (Va,T ; Ga,T ) = sup

{ 1
T

T∑
k=1

βk : Va,T + βGa,T ∈ Pb,T
Λ

}
, (3.2.10)

Similarly, these two times with a fixed time interval τ (τ ≥ 0) are denoted as:

(a, b) ∈ {t, t + τ} × {t, t + τ}.

To measure the evolution of a fund’s multi-time performance, we also assume

τ (τ ≥ 0) denotes the time interval between the different times of interest. There-

fore, the multi-time Luenberger portfolio productivity indicator for measuring the

change of the multi-time shortage function over time can be defined as:

LΛ(Vt,T , Vt+τ,T ; Gt,T , Gt+τ,T ) =1
2[(St,T

Λ (Vt,T ; Gt,T )

− St,T
Λ (Vt+τ,T ; Gt+τ,T ))

+ (St+τ,T
Λ (Vt,T ; Gt,T )

− St+τ,T
Λ (Vt+τ,T ; Gt+τ,T ))]

(3.2.11)

Equally so, the multi-time Luenberger portfolio productivity indicator can de-

composed as follows:

LΛ(Vt,T , Vt+τ,T ; Gt,T , Gt+τ,T ) =EΛ(Vt,T , Vt+τ,T ; Gt,T , Gt+τ,T )

+ FΛ(Vt,T , Vt+τ,T ; Gt,T , Gt+τ,T )
(3.2.12)

with

EΛ(Vt,T , Vt+τ,T ; Gt,T , Gt+τ,T ) =St,T
Λ (Vt,T ; Gt,T )

− St+τ,T
Λ (Vt+τ,T ; Gt+τ,T )

(3.2.13)
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and
FΛ(Vt,T , Vt+τ,T ; Gt,T , Gt+τ,T ) =1

2[(St+τ,T
Λ (Vt+τ,T ; Gt+τ,T )

− St,T
Λ (Vt+τ,T ; Gt+τ,T ))

+ (St+τ,T
Λ (Vt,T ; Gt,T )

− St,T
Λ (Vt,T ; Gt,T ))]

(3.2.14)

In the above decomposition, EΛ(·) measures the change on the multi-time

efficiency that integrates several considered times over time, while FΛ(·) captures

the shift with respect to the frontiers of these sub times. More precisely, the ef-

ficiency change component measures the evolution of the weighted (discounted)

multi-time efficiency of the fund relative to a changing multi-time frontiers from

one time to the next. The frontier change component provides a local measure of

the shift in the weighted value of multiple frontier movements induced by market

volatility. The Luenberger indicator and its decomposition provide a unique tool

for evaluating the relative success of different portfolio strategies implemented by

fund managers over time. In fact, the efficiency change component EΛ(·) of this

multi-time Luenberger has an obvious use to track the performance evolution of a

fund manager who, on average, adheres to a specified time-dependent risk profile

and management style. It has the potential to serve for detecting the eventual

ability of fund managers to generate superior performance, as this measure is not

affected by the change in the financial market. Overall, the multi-time Luenber-

ger portfolio productivity indicator represents the evolution of funds’ multi-time

performance. If the value of the multi-time Luenberger indicator (or its two com-

ponents) is less than zero, then it indicates that multi-time performance of funds

is decreasing. A value greater than zero implies a progression in the multi-time

performance.

Next, we develop the computations of the multi-time Luenberger portfolio
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productivity indicator for an observed fund o(o ∈ 1, . . . , n). As in the com-

putation for the single-time Luenberger productivity indicator, the four differ-

ent multi-time shortage functions need to be computed, that is, St,T
Λ (Vt,T

o ; Gt,T
o ),

St,T
Λ (Vt+τ,T

o ; Gt+τ,T
o ), St+τ,T

Λ (Vt+τ,T
o ; Gt+τ,T

o ), and St+τ,T
Λ (Vt,T

o ; Gt,T
o ). For a given

multi-time direction path Gt,T
o = (gk

o )T +t−1
k=t ∈ Rm×T

− × Rs×T
+ , one must solve the

following programs to obtain the own-period shortage function in the multi-time

framework from a initial time t:

max 1
T

T +t−1∑
k=t

ξT +t−1−kβk

s.t.
n∑

j=1
λk

j xk
ij ≤ xk

io − βkgk
io,

i = 1, . . . , m, k = t, . . . , T + t − 1,
n∑

j=1
λk

j yk
rj ≥ yk

ro + βkgk
ro,

r = 1, . . . , s, k = t, . . . , T + t − 1,
n∑

j=1
λk

j = 1,

∀j = 1, . . . , n :


λk

j ≥ 0, under convextiy

λk
j ∈ {0, 1}, under nonconvextiy

k = t, . . . , T + t − 1,

(3.2.15)

Based on model (3.2.15), for the computation of the cross-period shortage func-

tion St,T
Λ (Vt+τ,T

o ; Gt+τ,T
o ), one simply replaces the right-hand side of the first two

constraints by the multi-time path of inputs and outputs Vt+τ,T
o = (xk

o , yk
o )T +t+τ−1

k=t+τ

of the evaluated fund o and also the corresponding multi-path of direction vector

Vt+τ,T
o = (gk

o )T +t+τ−1
k=t+τ .

Over a fixed time interval τ , for a given multi-time direction path Gt+τ,T
o =
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(gk
o )T +t+τ−1

k=t+τ ∈ Rm×T
− ×Rs×T

+ , the corresponding own-period shortage function from

a initial time t + τ can be computed by the following program:

max 1
T

T +t+τ−1∑
k=t+τ

ξT +t+τ−1−kβk

s.t.
n∑

j=1
λk

j xk
ij ≤ xk

io − βkgk
io,

i = 1, . . . , m, k = t + τ, . . . , T + t + τ − 1,
n∑

j=1
λk

j yk
rj ≥ yk

ro + βkgk
ro,

r = 1, . . . , s, k = t + τ, . . . , T + t + τ − 1,
n∑

j=1
λk

j = 1,

∀j = 1, . . . , n :


λk

j ≥ 0, under convextiy

λk
j ∈ {0, 1}, under nonconvextiy

k = t + τ, . . . , T + t + τ − 1,

(3.2.16)

Based on model (3.2.16), the cross-period shortage function St+τ,T
Λ (Vt,T

o ; Gt,T
o ) can

be computed by replacing the right-hand side of the first two constraints by the

multi-time path of inputs and outputs Vt,T
o = (xk

o , yk
o )T +t−1

k=t of the evaluated fund

o and also the corresponding multi-path of direction vectors Gt,T
o = (gk)T +t−1

k=t .

When the multi-time Luenberger indicator is placed in the multi-moment (MVS

or MVSK) framework, then the variance and the kurtosis of each sub time k are

selected as inputs, and the expected return and the skewness are set as outputs,

whereas for the MVS case only variance of each k is considered as an input. The

specific shortage functions with these given inputs and outputs over multiple time

periods in a given time horizon cross-period are applied to compute the multi-time

and multi-moment Luenberger portfolio productivity indicators.
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Next, we employ the actual fund data to compare the proposed multi-time and

multi-moment Luenberger indicators with the basic single-time MV Luenberger

indicators to illustrate the impact of multiple moments and multiple time periods

on the values of indicators, as well as the rating determined by them. More

importantly, we further explore the potential benefits of the proposed Luenberger

indicators for fund selection by using a backtesting approach. Before these key

issues are tested in the empirical analysis, we specify the backtesting framework

in discrete time designed in this contribution.

3.3 Backtesting Framework in Dynamic Analysis

Our main objective is to explore the potential benefits of the multi-time and multi-

moment Luenberger portfolio productivity indicators for fund ratings and selection

in discrete time. Towards this end, we adopt a backtesting approach to compare the

buy-and-hold strategies constructed by various fund rating methods. Backtesting

refers to executing fictitious investment strategies using historical data to simulate

how these strategies would have performed if they had actually been adopted

by MF managers in the past. It is powerful for evaluating and comparing the

performance of different investment strategies without using real capital. Some

examples of a backtesting approach are found in DeMiguel, Garlappi, and Uppal

(2009), Tu and Zhou (2011), Brandouy, Kerstens, and Van de Woestyne (2015),

Zhou, Xiao, Jin, and Liu (2018) and Lin and Li (2020), among others.

In our backtesting analysis, we not only compare 12 different Luenberger port-

folio productivity indicators computed in different rating frameworks, but also

contrast those to 3 traditional performance appraisal tools: Sharpe ratio, Sortino

ratio and Omega ratio. The exact definition for the Sharpe, Sortino and Omega
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ratios can be found in Feibel (2003, p. 187 and p. 200) and Eling and Schuhmacher

(2007, p. 2635), respectively. Table 3.1 lists the rating methods considered in our

work and their abbreviations.

Table 3.1: List of various rating models considered for computing Luenberger
portfolio productivity indicators

Models Abbreviation

Traditional financial measures

Sharpe ratio Sharpe

Sortino ratio Sortino

Omega ratio Omega

Convex Frontier Rating

Single-time and MV framework STMVc

Single-time and MVS framework STMVSc

Single-time and MVSK framework STMVSKc

Multi-time and MV framework MTMVc

Multi-time and MVS framework MTMVSc

Multi-time and MVSK framework MTMVSKc

Nonconvex Frontier Rating

Single-time and MV framework STMVnc

Single-time and MVS framework STMVSnc

Single-time and MVSK framework STMVSKnc

Multi-time and MV framework MTMVnc

Multi-time and MVS framework MTMVSnc

Multi-time and MVSK framework MTMVSKnc

The first column of this table gives the 3 traditional financial measures and the

12 Luenberger portfolio productivity indicators under different frameworks, and

the last column gives the abbreviation used to represent these rating methods.
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For example, MTMVSKnc refers to the nonconvex (nc) frontier model with the

means, variances, skewness and kurtosis (MVSK) of multiple time (MT) periods.

It is noted that all the empirical results on the Luenberger portfolio productivity

indicators and their corresponding decompositions are reported using the above

abbreviations.

Here, we consider a simple buy-and-hold backtesting strategy consisting of buy-

ing and holding 10, 20 and 30 best performing HFs ranked by the rating methods.

In particular, we design three selecting (buying) scenarios: (i) HFs are selected

depending on the ranking of Luenberger portfolio productivity indicator; (ii) HFs

are selected depending on the ranking of Luenberger efficiency change compon-

ent; (iii) HFs are selected depending on the ranking of Luenberger frontier change

component. Following Brandouy, Briec, Kerstens, and Van de Woestyne (2010),

the Luenberger portfolio productivity indicator captures essential features of the

whole return distribution for funds, and positive values in this indicator reflect

that the fund performance increases over time. With regard to its components,

the efficiency change component in principle detects the eventual ability of fund

managers for stock picking and market timing, and the positive values in this

component capture the positive contribution of fund managers to the perform-

ance evolution. The frontier change component measures the local changes in the

frontier movements induced by market volatility, and the positive values in this

component indicate the improvements of financial market performance.

For each of the above selecting scenarios, we set up four holding scenarios:

hold the selected funds till the end of the whole sample period, for 1 year, for 3

years and for 5 years. The performance of a strategy held for 1, 3 and 5 years can

be considered as its short, medium and long term holding performance, which are

tested for the purpose to develop a sensitivity analysis regarding the out-of-sample
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performance of this strategy.

Now, our work is to empirically test the out-of-sample performance of these

indicator-driven buy-and-hold strategies. Since the Sharpe ratio and other rel-

ative performance measures are only suitable for the MV world, we opt for the

shortage function as an absolute performance measures that is capable to assess

the performance of these strategies in multiple dimensions simultaneously (i.e.,

mean, variance, skewness and kurtosis). Hence, the 15 buy-and-hold backtesting

strategies are compared based on the MVSK performance of their holding values

evaluated by combining shortage functions with the single-time and multi-moment

frontiers (with convexity and nonconvexity), denoted as VRSc and VRSnc, respect-

ively.

Based on the fundamental logic of backtesting, we design a backtesting ana-

lysis in detail for the various buy-and-hold strategies depending on the ranking of

Luenberger portfolio productivity indicators. To empirically examine the out-of-

sample performance of the backtesting strategies, we first collect 187 active HFs

with monthly returns from August 2006 to October 2020. The detailed descrip-

tion for these sample HFs is presented in the following empirical section. Then,

our backtesting analysis is performed multiple times replying on rolling the time

windows. Specially, we split the period from the beginning of the sample period

to the end of October 2015 in time windows of a given length, where the 5 years

before the end of the sample period are maintained to test the long-term holding

performance of these strategies in the last backtesting.

The length of this rolling time window is set to 63 months in our work. In each

63-month time window, we assume that there exist two different times with a fixed

time interval τ = 3 such that they are separated by 3 months and that decision-

makers are able to observe monthly data for the last 60 months at the first and
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second times, respectively. The observed historical returns at the first and second

times are used to estimate the parameters of the two different times, respect-

ively, so as to obtain the Luenberger portfolio productivity indicators and their

decompositions of the observed HFs over 3 months. Such a rolling time window

is designed mainly due to two concerns. First, the longest time period considered

in the proposed multi-time performance measures is 5 years (60 months), so the

basic time periods should at least equal the longest evaluation horizon. Second,

considering the fact that fund managers usually adjust their portfolio strategies

every three or six months, it is appropriate to set the interval between two different

times as 3 months.

Our backtesting analysis is developed starting from November 2011, and is

repeated 48 times (each time a month) with the 63-month rolling time windows

till October 2015. Using the first time window of data (from August 2006 to

October 2011, 63 months in total) to obtain the Luenberger portfolio productivity

indicators and the corresponding decompositions for different frontier-based rating

models, we determine the first buy-and-hold backtesting strategies in November

2011. These strategies are held until the end of October 2020 (the whole sample

period), the end of October 2012 (for 1 year), the end of October 2014 (for 3 years),

or the end of October 2016 (for 5 years). The process of the first backtesting is

represented by Figure 3.1.
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Figure 3.1: The process of the first backtesting in discrete framework

Then, the time window is shifted with a step of a single month to develop the

next backtesting analysis. For each time window or each backtesting, the detailed

steps are as follows:

(1) For a given 63-month time window, using the data of 60 months observed

prior to two different times respectively, HF samples are evaluated with 4

different shortage functions generated by each frontier rating models. Based

on these, the Luenberger portfolio productivity indicators and the corres-

ponding decompositions are computed.

(2) Depending on the values and the decompositions of Luenberger indicator

computed by this time window of data for each rating method, the 10, 20 or

30 best performing HFs are selected for the backtesting exercise.

(3) For each buy-and-hold scenario, we compute and store the complete historical

track record of the holding value for per buy-and-hold backtesting strategy,

and calculate the mean, variance, skewness and kurtosis of their holding

value series.
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The above steps for backtesting are repeated over 48 time windows in total.

For the 3 traditional financial methods, we use monthly returns of the sample HFs

over each 63-month rolling time window to compute the Sharpe ratio, Sortino ratio

and Omega ratio respectively, whereby the corresponding buy-and-hold strategies

based on these traditional financial ratings are constructed.

For each of the buy-and-hold period scenarios, the performance of these MVSK

observations (15 times 48 observations) that are generated by the 15 strategies

over 48 backtesting exercises are all evaluated by the shortage functions in the

single-time and multi-moment frameworks (with convexity and nonconvexity). In

particular, we first establish the convex and nonconvex VRS nonparametric fronti-

ers in the single-time and multi-moment framework for these MVSK observations,

and then measure their efficiency scores using the shortage functions. Clearly, each

buy-and-hold strategy yields the efficiency scores of 48 MVSK observations. The

average efficiency score and the number of efficient units, as well as the distribution

of inefficiency scores across these 48 observations, are adopted to evaluate the 15

strategies.

3.4 Empirical Testing

In this section, our empirical analysis aims to examine two issues. First, we invest-

igate the impact of three crucial factors on the Luenberger portfolio productivity

indicators and their corresponding decompositions, as well as on the rankings

determined by these indicators: (i) consideration of multiple time periods; (ii)

inclusion of multiple moments;5 (iii)imposition of convexity. Second, we further
5In our empirical testing, the 5-year MVSK of the return distribution for evaluated funds are

estimated based on a 5-year estimation window covering 60 historical monthly returns. For the
multi-time case, the historical monthly returns for the past 1 year and 3 years to date within this
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examine the performance of the proposed rating methods based on the multi-time

and multi-moment Luenberger indicators and their decompositions with respect

to fund selection.

We apply 187 active HF samples with monthly returns from August 2006 to

October 2020 as the test dataset to develop a backtesting exercise. The sample

data is downloaded from the Hedge Funds database provided by Lipper for Invest-

ment Management. Since HF cost data is unavailable in this database, our frontier

rating models used to establish Luenberger indicators are limited to focusing on

the characteristics of the return distribution for these HFs, while ignoring the cost

factors. As the backtesting framework designed in Section 3, the period from the

beginning of the sample period to the end of October 2015 is split with a 63-month

time window. As we introduced previously, the rolling tick for such time window

is one month. Therefore, since we dispose of 111 months in the data set, we end

up with 48 time windows. In each of 48 time windows, all 187 HF samples are

evaluated with 4 different shortage functions computed by the 12 nonparametric

frontier models (see Table 3.1). It needs to be mentioned that none of the com-

putations for the cross-period evaluations suffers from the infeasibility problem

mentioned here above.

Figure 3.2 plots the mean values of the Luenberger indicator (denoted L) and its

components (denoted E and F) per frontier models for the 187 samples over the 48

time windows by means of the box-plots. The box indicates the interquartile range

where a small horizontal line reports the location of the median. From these results,

two things stand out. First, the sample mean values of Luenberger indicators and

their corresponding components calculated per frontier models generally differ.

Overall, these values obtained by the multi-time frontier models are relatively

estimation window are applied to estimate their 1-year MVSK and 3-year MVSK, respectively.
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larger than those obtained from the single-time frontier models over the 48 time

windows. Additionally, the inclusion of multiple moments seems to contribute

to these larger value. Second, the overall distributions on sample mean values of

these indicators are somewhat different, especially when the higher order moments

are considered. These basic observations are further tested and discussed in the

following subsection by means of the Li-test and Kendall rank correlations.

Figure 3.2: Luenberger decomposition distributions for 12 methods: sample mean
values

In addition, note that in our backtesting exercises, the selection of the 30 best

rated funds is the case in which we select the largest number of best performing

funds. To simply show that most of these selected funds have a positive indicator,

we report now the third quartile (Q3) of the Luenberger indicator and its compon-

ent computed by each frontier model for the 187 samples over 48 time windows.

Looking at the results regarding these sample Q3 values in Figure 3.3, one can

find that the sample Q3 values of these computed Luenberger indicators (or their

components) over the 48 time windows are mostly positive and only exceptionally

negative. Since the total number of values greater than or equal to Q3 is roughly
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25% of the 187 samples (around 47, clearly more than 30), this indicates that funds

selected in our backtesting exercises by the ranking of Luenberger indicators (or

their components) have a positive Luenberger indicator (or efficiency change and

frontier change components).

Figure 3.3: Luenberger indicators distributions for 12 methods: sample Q3 values

3.4.1 Evaluation Results Comparison

According to the results of the Luenberger portfolio productivity indicators and

their components computed by the 12 nonparametric frontier models, we compare

the distributions of these various Luenberger indicators and their components in

each time window using a Li-test approach. The Li-test is a nonparametric test

approach comparing two entire distributions initially developed by Li (1996) and

refined by Fan and Ullah (1999) and most recently by Li, Maasoumi, and Racine

(2009). It tests for the eventual statistical significance of differences between two

kernel-based estimates of density functions f and g of a random variable x. The

null hypothesis maintains the equality of both density functions almost everywhere:
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H0 : f(x) = g(x) for all x; while the alternative hypothesis negates this equality

of both density functions: H1 : f(x) ̸= g(x) for some x.6

In each of 48 time windows, the Li-test are computed between different Lu-

enberger indicators, as well as between their corresponding components, which

contains in total 66 relevant model comparisons. For reasons of readability, we

aggregate the results of the Li-test over 48 time windows, and simply report the

times that the distributions between the Luenberger portfolio productivity indic-

ators or between their components are significantly different at a 5 % significance

level in Table 3.2 to 3.4
6Matlab code developed by P.J. Kerstens based on Li, Maasoumi, and Racine (2009) is found

at: https://github.com/kepiej/DEAUtils.
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Table 3.2: Li-test comparing LΛ(·) distributions computed by different rating
models

STMVSc STMVSKc MTMVc MTMVSc MTMVSKc STMVnc STMVSnc STMVSKnc MTMVnc MTMVSnc MTMVSKnc

STMVc 0 9 40 47 48 0 13 13 42 48 48

STMVSc 0 39 45 48 15 2 3 38 48 48

STMVSKc 34 41 40 18 1 2 39 43 45

MTMVc 2 33 41 39 39 1 45 42

MTMVSc 12 46 41 43 5 29 34

MTMVSKc 48 39 39 25 1 2

STMVnc 4 9 41 48 48

STMVSnc 0 38 46 42

STMVSKnc 37 45 43

MTMVnc 27 31

MTMVSnc 0

Table 3.3: Li-test comparing EΛ(·) distributions computed by different rating
models

STMVSc STMVSKc MTMVc MTMVSc MTMVSKc STMVnc STMVSnc STMVSKnc MTMVnc MTMVSnc MTMVSKnc

STMVc 0 4 42 44 46 7 31 37 41 47 46

STMVSc 0 39 40 43 22 37 45 35 39 39

STMVSKc 41 46 45 13 17 38 41 38 35

MTMVc 3 22 44 45 47 4 31 33

MTMVSc 15 46 47 48 14 24 26

MTMVSKc 47 48 48 22 2 3

STMVnc 6 14 45 45 46

STMVSnc 0 46 48 48

STMVSKnc 48 48 48

MTMVnc 9 12

MTMVSnc 0

Table 3.4: Li-test comparing FΛ(·) distributions computed by different rating
models

STMVSc STMVSKc MTMVc MTMVSc MTMVSKc STMVnc STMVSnc STMVSKnc MTMVnc MTMVSnc MTMVSKnc

STMVc 0 10 47 48 48 26 47 44 48 48 48

STMVSc 9 47 46 48 35 41 37 46 48 48

STMVSKc 45 45 45 33 32 33 42 47 47

MTMVc 17 34 46 48 46 22 48 48

MTMVSc 30 48 46 48 34 47 46

MTMVSKc 48 47 47 21 36 44

STMVnc 12 13 46 48 48

STMVSnc 0 44 45 46

STMVSKnc 44 47 45

MTMVnc 36 38

MTMVSnc 0
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Several observations can be made from results in Table 3.2 regarding the Lu-

enberger portfolio production indicators. First, it is clear that the distributions

between the single-time and multi-time Luenberger portfolio productivity indicat-

ors yield significantly different overall. The basic statistics for these Li-test compu-

tations over 48 time windows show that the single-time and multi-time Luenberger

indicators exhibit significantly different distributions at a 5 % significance level in

almost all cases. This reveals that the consideration of multiple time periods has

a significant impact on the Luenberger indicators for all cases in the MV, MVS

and MVSK rating framework with both convexity and nonconvexity.

Second, the effects of adding higher order moments on the single-time and

multi-time Luenberger indicators are rather different. For instance, the Luenber-

ger indicators in the STMVnc vs. STMVSnc framework show significantly differ-

ent distributions only 4 times within Li-test computations over 48 time windows,

whereas the Luenberger indicators in the MTMVnc vs. MTMVSnc framework sig-

nificantly different distributions 27 times. In addition, higher order moments tend

to have a stronger influence on calculating these indicators by nonconvex frontier

rating models than by convex frontier rating models. As we can observe in Table

3.2, the significant difference between the Luenberger indicators in the MTMVc

vs. MTMVSc framework emerges 2 times over the 48 time windows, while the

significant difference these indicators calculated in the MTMVnc vs. MTMVSnc

framework arises 27 times.

Third, the Luenberger productivity indicators in the convex and nonconvex

cases always exhibit a significant difference in multi-time MVS rating framework

over the 48 time windows. This coincides with the above finding that the bias

of applying the convexification Luenberger indicators is evident when considering

multiple horizons and multiple moments for our data. To some extent, noncon-
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vexity may prove to be a more modest and realistic hypothesis to be maintained

in the proposed multi-time and multi-moment Luenberger portfolio productivity

indicator.

Equally so, the distributions of the two components EΛ(·) and FΛ(·) of these

12 Luenberger indicators are compared using Li-test at a 5 % significance level,

respectively. The clustering results computed in the 48 time windows are shown in

Tables 3.3 and 3.4. Regarding the impacts of these three factors (ST vs. MT, MV

vs. MVS and MVSK, and convexity vs. nonconvexity) on these two components,

one can clearly first find that the impact of multiple times is significant on both

the efficiency change component EΛ(·) and the frontier change component FΛ(·).

Second, the effect of adding multiple moments on the two components is clearly

different. This effect is somewhat more modest on the distribution of EΛ(·) than

on that of FΛ(·). For instance, in the multi-time and nonconvex framework,

adding skewness and kurtosis contributes a significant effect on the distribution of

FΛ(·) occurring 38 times in total, while this emerges only 7 times in the case of

EΛ(·). Third, imposing convexity leads to a stronger influence on the distributions

of FΛ(·) compared to the distributions of EΛ(·). The reason for this finding is

that the frontier change component FΛ(·) captures the changes in frontiers. It

is possible that the extent and direction of such changes are significantly different

under both convex and nonconvex nonparametric frontiers.
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Table 3.5: Kendall rank correlations comparing LΛ(·) computed by different rat-
ing methods

STMVSc STMVSKc MTMVc MTMVSc MTMVSKc STMVnc STMVSnc STMVSKnc MTMVnc MTMVSnc MTMVSKnc

STMVc 0.886 0.670 0.434 0.380 0.261 0.801 0.520 0.510 0.407 0.236 0.225

STMVSc 0.774 0.412 0.390 0.288 0.726 0.582 0.568 0.387 0.261 0.251

STMVSKc 0.329 0.333 0.316 0.568 0.649 0.652 0.308 0.283 0.280

MTMVc 0.807 0.503 0.404 0.287 0.279 0.848 0.446 0.427

MTMVSc 0.671 0.354 0.289 0.283 0.725 0.588 0.567

MTMVSKc 0.245 0.270 0.275 0.469 0.763 0.771

STMVnc 0.596 0.571 0.411 0.236 0.225

STMVSnc 0.870 0.289 0.300 0.288

STMVSKnc 0.280 0.296 0.303

MTMVnc 0.462 0.440

MTMVSnc 0.896

Table 3.6: Kendall rank correlations comparing EΛ(·) computed by different rat-
ing methods

STMVSc STMVSKc MTMVc MTMVSc MTMVSKc STMVnc STMVSnc STMVSKnc MTMVnc MTMVSnc MTMVSKnc

STMVc 0.879 0.643 0.420 0.362 0.252 0.713 0.456 0.442 0.384 0.229 0.220

STMVSc 0.729 0.385 0.367 0.272 0.640 0.502 0.487 0.350 0.247 0.239

STMVSKc 0.291 0.291 0.306 0.510 0.594 0.596 0.267 0.272 0.270

MTMVc 0.768 0.478 0.350 0.228 0.220 0.785 0.412 0.396

MTMVSc 0.629 0.301 0.226 0.221 0.650 0.533 0.519

MTMVSKc 0.211 0.232 0.236 0.433 0.718 0.722

STMVnc 0.594 0.563 0.374 0.221 0.211

STMVSnc 0.873 0.239 0.285 0.272

STMVSKnc 0.230 0.276 0.287

MTMVnc 0.446 0.427

MTMVSnc 0.899

Table 3.7: Kendall rank correlations comparing FΛ(·) computed by different rat-
ing methods

STMVSc STMVSKc MTMVc MTMVSc MTMVSKc STMVnc STMVSnc STMVSKnc MTMVnc MTMVSnc MTMVSKnc

STMVc 0.850 0.610 0.296 0.217 0.194 0.575 0.331 0.315 0.231 0.124 0.118

STMVSc 0.648 0.271 0.249 0.214 0.502 0.348 0.334 0.207 0.143 0.138

STMVSKc 0.220 0.186 0.285 0.429 0.437 0.427 0.188 0.173 0.166

MTMVc 0.727 0.531 0.212 0.130 0.126 0.601 0.304 0.294

MTMVSc 0.532 0.153 0.111 0.104 0.487 0.300 0.288

MTMVSKc 0.163 0.179 0.182 0.438 0.456 0.443

STMVnc 0.510 0.471 0.293 0.171 0.159

STMVSnc 0.800 0.180 0.270 0.237

STMVSKnc 0.175 0.252 0.274

MTMVnc 0.410 0.393

MTMVSnc 0.762
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We now move to the comparison for these various computed Luenberger rat-

ings, as well as the ratings calculated by their components. For each of the 48 time

windows, we compute a Kendall rank correlation among these 12 ratings, which

delivers a matrix of 12 times 12 dimensions. Then, we have aggregated the Kend-

all rank correlations using a simple arithmetic mean of the computations in 48

time windows to report their overall degree of concordance in ranking. The latter

results regarding the Luenberger productivity indicators and their components are

reported in Tables 3.5 to 3.7. It is noted that the correlation coefficients between

the different rankings are significantly different from zero at 1 % significance level

for each time window calculation.

Looking at Table 3.5, one can draw three main conclusions. First, the single-

time Luenberger rating and multi-time Luenberger rating show a low correlation

on average (around 0.239-0.440 across all observations). Second, the Luenberger-

driven ratings with MV moments exhibit a lower average correlation with the

Luenberger-driven ratings with multi-moments (MVS & MVSK) in a multi-time

framework compared to in a single-time framework. Furthermore, the MV vs.

MVS & MVSK ratings exhibit a lower average correlation in the nonconvex fron-

tier case compared to the convex frontier case. Lastly, the Luenberger ratings de-

pending on the convex frontier models show a lower average correlation with those

depending on the nonconvex frontier models in a multi-time and multi-moment

framework compared to other frameworks. As can be observed from Table 3.6

and 3.7, the above conclusions are also revealed with respect to the ratings driven

by the efficiency change component EΛ(·) and the ratings driven by the frontier

change component FΛ(·).

To a large extent, these findings obtained from the Kendall ranking correlations

are compatible with those obtained from the Li-test. Summarizing the above dis-
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cussion so far, we can conclude that the Luenberger indicators and their compon-

ents constructed by the multi-time and multi-moment performance measures show

quite a difference from those constructed by the original single-time MV perform-

ance measures. This difference between these indicators is more pertinent under

nonconvexity than under convexity. Finally, with regard to the components of the

Luenberger indicators, adding multiple moments and imposing convexity seems to

show a stronger effect on the frontier change than on the efficiency change.

3.4.2 Backtesting results

Following the backtesting framework in discrete time described in Section 3, we

perform the backtesting analysis with the selection of 10, 20 or 30 best perform-

ing HFs ranked by three traditional financial measures and various frontier-based

Luenberger indicators.7 The same pattern of backtesting analysis is also applied

to compare the strategies depending on the ranking of the two Luenberger com-

ponents, respectively. Tables 3.8 to 3.10 present an overall analysis with respect

to the performances of the MVSK observations generated by the buy-and-hold

strategy held until the end of the entire sample period (October 2020). Specific-

ally, Table 3.8 list the performance results per buy-and-hold strategy determined

by the ranking of the Luenberger indicator (LΛ(·)), and Tables 3.9 and 3.10 re-

port the results per strategy depending on the rankings of its efficiency change

component (EΛ(·)) and frontier change component (FΛ(·)), respectively. Each

table is structured as follows: The first series of four columns list the results with

regard to the 10 best HFs selected for the backtesting exercise, and the second

and third series of four columns present the results for selecting 20 and 30 best
7All funds with the same value of Luenberger indicator are ranked the same in our calculations.

As a consequence, when we have to take a certain amount of funds among these ties then we
take these randomly among the tied units.
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HFs, respectively. Within each selecting (buying) scenario, the first two columns

report the average inefficiency scores and the number of efficient units for each

strategy when evaluated using the convex VRS frontier in single-time and multi-

moment framework (VRSc), while the last two columns report these results in the

nonconvex case (VRSnc).

Table 3.8: Performance results for 15 buy-and-hold backtesting strategies depend-
ing on LΛ(·) (3 financial rating methods and 12 Luenberger rating methods):
Descriptive statistics of the shortage function values

Methods

HF(10) HF(20) HF(30)

VRSc VRSnc VRSc VRSnc VRSc VRSnc

Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs.

Sharpe 0.074 0 0.042 8 0.065 0 0.037 22 0.076 1 0.041 12

Sortino 0.068 1 0.043 14 0.069 1 0.041 20 0.073 0 0.033 14

Omega 0.072 0 0.044 14 0.075 0 0.044 21 0.081 0 0.043 13

STMVc 0.072 6 0.049 23 0.062 7 0.039 24 0.068 5 0.042 23

STMVSc 0.080 8 0.055 19 0.065 7 0.041 20 0.067 4 0.040 25

STMVSKc 0.076 4 0.040 22 0.064 4 0.033 21 0.062 2 0.035 21

MTMVc 0.070 6 0.036 17 0.064 6 0.033 20 0.069 7 0.032 13

MTMVSc 0.068 2 0.033 24 0.059 6 0.027 20 0.059 7 0.027 19

MTMVSKc 0.058 3 0.031 19 0.051 4 0.027 24 0.057 6 0.034 19

STMVnc 0.068 5 0.045 25 0.065 2 0.037 17 0.071 5 0.048 16

STMVSnc 0.085 5 0.057 15 0.069 3 0.035 16 0.074 3 0.044 18

STMVSKnc 0.078 4 0.043 19 0.066 3 0.033 19 0.072 4 0.042 14

MTMVnc 0.075 4 0.034 18 0.061 3 0.030 19 0.067 2 0.035 22

MTMVSnc 0.052 6 0.028 22 0.044 7 0.026 27 0.054 3 0.031 21

MTMVSKnc 0.050 8 0.025 25 0.045 8 0.027 21 0.053 4 0.031 20
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Table 3.9: Performance results for 15 buy-and-hold backtesting strategies depend-
ing on EΛ(·) (3 financial rating methods and 12 Luenberger rating methods):
Descriptive statistics of the shortage function values

Methods

HF(10) HF(20) HF(30)

VRSc VRSnc VRSc VRSnc VRSc VRSnc

Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs.

Sharpe 0.069 1 0.044 8 0.066 0 0.039 18 0.065 1 0.038 7

Sortino 0.065 0 0.044 12 0.070 1 0.041 15 0.062 0 0.037 9

Omega 0.067 0 0.046 13 0.072 0 0.042 18 0.066 1 0.041 9

STMVc 0.062 7 0.040 23 0.057 9 0.038 27 0.051 8 0.029 29

STMVSc 0.061 6 0.042 21 0.058 6 0.037 23 0.052 6 0.032 23

STMVSKc 0.073 3 0.053 17 0.058 6 0.040 21 0.052 3 0.037 21

MTMVc 0.065 8 0.034 23 0.055 5 0.029 18 0.050 6 0.023 24

MTMVSc 0.059 10 0.037 20 0.052 6 0.026 22 0.047 5 0.024 21

MTMVSKc 0.060 5 0.034 22 0.051 4 0.028 20 0.047 5 0.027 24

STMVnc 0.060 9 0.036 20 0.057 6 0.036 20 0.056 4 0.034 20

STMVSnc 0.061 5 0.044 21 0.056 3 0.033 20 0.056 4 0.036 16

STMVSKnc 0.062 6 0.040 22 0.060 3 0.035 17 0.057 1 0.039 14

MTMVnc 0.071 4 0.041 16 0.051 5 0.025 24 0.048 5 0.025 24

MTMVSnc 0.061 3 0.039 19 0.048 5 0.032 20 0.047 6 0.028 24

MTMVSKnc 0.055 7 0.033 19 0.047 7 0.032 21 0.048 5 0.030 21

Table 3.10: Performance results for 15 buy-and-hold backtesting strategies de-
pending on FΛ(·) (3 financial rating methods and 12 Luenberger rating methods):
Descriptive statistics of the shortage function values

Methods

HF(10) HF(20) HF(30)

VRSc VRSnc VRSc VRSnc VRSc VRSnc

Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs.

Sharpe 0.070 1 0.032 12 0.086 0 0.043 18 0.086 1 0.031 10

Sortino 0.069 1 0.035 15 0.089 1 0.042 18 0.082 0 0.032 14

Omega 0.071 0 0.033 14 0.096 0 0.052 19 0.087 0 0.039 13

STMVc 0.056 4 0.032 21 0.069 3 0.033 20 0.059 3 0.029 21

STMVSc 0.054 6 0.017 29 0.072 2 0.033 19 0.062 3 0.032 14

STMVSKc 0.071 5 0.036 18 0.072 1 0.029 18 0.051 5 0.022 20

MTMVc 0.064 4 0.033 21 0.069 5 0.044 19 0.057 4 0.037 21

MTMVSc 0.073 2 0.033 17 0.073 5 0.038 17 0.067 5 0.042 19

MTMVSKc 0.066 1 0.030 23 0.071 5 0.033 18 0.064 1 0.031 21

STMVnc 0.057 5 0.029 17 0.063 1 0.032 20 0.057 5 0.030 20

STMVSnc 0.060 3 0.028 27 0.062 6 0.033 17 0.052 3 0.024 21

STMVSKnc 0.050 7 0.027 25 0.060 3 0.032 14 0.053 3 0.027 18

MTMVnc 0.058 5 0.031 22 0.070 2 0.043 19 0.066 1 0.032 16

MTMVSnc 0.060 4 0.029 18 0.072 4 0.040 15 0.058 2 0.030 17

MTMVSKnc 0.067 2 0.034 17 0.066 1 0.033 17 0.058 2 0.029 16
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Looking at Table 3.8, one can draw three main conclusions. First, the per-

formance of the buy-and-hold strategies based on the ranking of the multi-time

Luenberger indicators are superior to those based on the ranking of the traditional

financial measures. From Table 3.8, it can be observed that the average ineffi-

ciency scores of these strategies driven by the multi-time Luenberger indicators

are lower than those of Sharpe-, Sortino- and Omega-driven strategies, and the

former yield more efficient units compared to the strategies driven by traditional

financial ratings. This result is valid when buying the 10, 20 and 30 best HFs.

From Tables 3.9 and 3.10, one can find that a similar conclusion emerges when

comparing the strategies depending on the rankings of their efficiency change com-

ponents or frontier change components with those depending on traditional meas-

ures. This somewhat reveals that the Luenberger portfolio productivity indicator

is of potential in fund rating and selection in a discrete time framework.

Second, we turn to the comparison among the 12 various Luenberger indicator

buy-and-hold strategies. Combining the average inefficiency scores and the number

of efficient units, one can note that the strategies developed by the multi-time Lu-

enberger ratings outperform those developed by the single-time Luenberger ratings.

In most of the backtesting exercises, the multi-time Luenberger-based strategies

yield lower average inefficiency scores and a higher number of efficient units com-

pared to the single-time Luenberger-based strategies. When HF ratings are driven

by the efficiency change component related to the individual skill of fund managers,

the buy-and-hold strategies in the multi-time framework also exhibit superior per-

formance compared to those in the single-time framework. When applying the

frontier change component that reflects the market performance change to select

best performing HFs, the advantage of the constructed buy-and-hold strategies in

the multi-time framework is not significant.
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Third, it is found that in the majority of cases the buy-and-hold strategies

consisting of the HFs selected by the multi-moment (MVS & MVSK) Luenberger

indicators show superior results compared to those consisting of the HFs selected

by the MV Luenberger indicators. Moreover, this superiority tends to be more

evident in the multi-time framework than in the single-time framework.

Equally so, this comparison is separately developed in the context of the ef-

ficiency change ratings and the frontier change ratings. In the later context, the

buy-and-hold strategies in the multi-moment framework perform better than those

in the original MV framework. However, this result is not validated for HF rating

solely based on the efficiency change component.

Figures 3.4, 3.5, and 3.6 respectively provide the entire distribution of the inef-

ficiency scores per strategy driven by Luenberger indicators and their components

to compare these intuitively. In each figure, the sub-figures (a) to (c) correspond

to the performance results of the backtesting scenarios with 10, 20 and 30 funds

selected. Those based on the nonconvex VRS frontier are in red, while those

based on the convex VRS frontier are in blue. In these box-plots, the box indic-

ates the interquartile range where the small vertical lines reporting the location of

the median. Their locations closer to the left suggests that the entire distribution

of inefficiency scores for the strategy is at a lower level, which implies that the

strategy has a better performance in backtesting analysis.
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Figure 3.4: Inefficiency distributions for 15 buy-and-hold backtesting strategies
driven by Luenberger indicators

Figure 3.5: Inefficiency distributions for 15 buy-and-hold backtesting strategies
driven by efficiency change components
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Figure 3.6: Inefficiency distributions for 15 buy-and-hold backtesting strategies
driven by frontier change components

It is clear from Figure 3.4 that the buy-and-hold strategies constructed by the

ranking of the multi-time and multi-moment Luenberger indicators are superior

to strategies constructed by the ranking of financial measures and other existing

Luenberger indicators in most cases. In terms of the contexts of efficiency change

components and frontier change components, one can observe that the strategies

constructed by the ranking of the two components also outperform those based

on the financial ratings, respectively. When comparing the results in these two

contexts, the finding that the multi-time Luenberger-based strategies are superior

to the single-time Luenberger-based strategies is somewhat more robust in the

efficiency change ratings, whereas the results that the multi-moment Luenberger-

based strategies establish a dominance over the MV Luenberger-based strategies

seems to be stronger in the frontier change ratings.

We therefore believe that the multi-time and multi-moment Luenberger port-

folio productivity indicator gathers additional information regarding fund per-
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formance changes to support the decision-making process of fund selection. Fur-

thermore, the efficiency component of this proposed Luenberger indicator seems

to better show the strengths of considering multiple times in fund selection, while

the frontier change component tends to better capture the information from higher

order moments.

For a more detailed analysis, we calculate the performance of these 15 buy-

and-hold strategies held for 1 year, 3 years and 5 years, respectively. This can be

regarded as testing the short-term holding performance, the medium-term holding

performance and the long-term holding performance of an investment strategy.

Tables 3.11 and 3.12 report the summarized results with respect to the performance

per buy-and-hold backtesting strategy held for 1, 3 and 5 years , respectively.

Having the potential of the proposed multi-time and multi-moment Luenberger

indicators in mind, we further analyse the short-, medium- and long-term perform-

ance of the buy-and-hold strategies determined by ranking this Luenberger indic-

ators, as well as its two components. Looking at Tables 3.11 and 3.12, the above

three findings drawn from Tables 3.8 to 3.10 are also evidence in most cases for the

three holding period scenarios. Moreover, the buy-and-hold backtesting strategies

consisting of the best HFs rated by the multi-moment and multi-time performance

measure tend to show consistent performance over different holding periods. We

basically conclude that the buy-and-hold strategies driven by the multi-moment

and multi-time Luenberger ratings establish a dominance over other strategies and

that this relation is strengthened as the holding period increases. It is somewhat

revealed that the good performance of the strategies driven by the proposed Lu-

enberger indicators with the inclusion of multiple moments and multiple times

exhibit good stability.8

8In detail, the buy-and-hold backtesting strategies driven by the proposed multi-time and
multi-moment Luenberger indicators have a stable superior performance over the other strategies.
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3.5 Conclusion

The main objective of this contribution has been to introduce a general method

for measuring the evolution of fund performance in the multi-time and multi-

moment framework using some extensions of the shortage function combined with

the recent developments in productivity indicator theory. Before developing this

dynamic portfolio evaluation problem, we first define a new performance measure

with the help of the shortage function to evaluate fund performance by simul-

taneously looking for contraction in variance and kurtosis over multiple times,

and augmentation in mean return and skewness over multiple times. Using the

proposed performance measures based on the nonparametric VRS convex and non-

convex frontiers, we propose a new Luenberger portfolio productivity indicator and

its decomposition to trace the performance change of funds.

The virtues of the proposed methodology can be summarized as follows: First,

instead of the static analysis on fund performance, these indicators provide a

feasible way to trace the evolution of fund performance with the consideration of

multi-times and multi-moments. Even though the Luenberger portfolio productiv-

ity indicator is not strictly based on the utility theory of investment, it is important

to note that the performance changes over time somewhat indicate gains and losses

in utility (see Briec, Kerstens, and Lesourd (2004), Brandouy, Briec, Kerstens, and

Van de Woestyne (2010)). Second, this Luenberger portfolio productivity indicator

is developed based on the convex and nonconvex efficient VRS frontier methods

instead of the diversified efficient frontier methods. The proposed non-diversified

frontier-based efficiency measures and productivity indicators are all simply com-

puted by the linear (or binary mixed integer) programming, which are much easier

and time-saving when applied in the large-scale and multi-dimensional fund rat-
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ing. Third, the decomposition of the Luenberger portfolio productivity indicator

distinguishes whether changes in fund performance over time are due to the effi-

ciency change or the frontier shift. While the latter component measures the local

changes in the frontier movements induced by market volatility, the former can in

principle capture efficiency changes attributable to the fund manager. This allows

testing in an alternative, but conceptually promising way the eventual ability of

fund managers to generate superior performances, since this measurement is not

contaminated by any changes in the financial market itself.

In the empirical testing, we illustrate how the multi-time and multi-moment

Luenberger productivity indicator works in the evaluation and selection of hedge

funds, whose distribution characteristics are not characterized by mean and vari-

ance solely (see, e.g., Gregoriou, Sedzro, and Zhu (2005), Kumar, Roy, Saranga,

and Singal (2010), Germain, Nalpas, and Vanhems (2011)). In particular, our

empirical investigation is devoted to making the following two issues clear. First,

multiple time periods and moments considered separately or jointly have an im-

pact on the Luenberger portfolio productivity indicator and its decomposition, as

well as the Luenberger-based ratings for our data. The second is to test the po-

tential of the proposed indicator and its decomposition on fund selection based on

our sample data. For the former issue, empirical results indicate that regardless of

the Luenberger portfolio indicator and its decomposition, or the indicator-based

rankings, they are significantly impacted by multiple time periods and multiple

moments. Moreover, the joint inclusion of them tends to exhibit a more pro-

nounced impact compared to the separate inclusion of them. For the second is-

sue, we develop a simple buy-and-hold backtesting strategy to test performance

of traditional finance-based ratings and various Luenberger-driven ratings in HF

selection. In our backtesting analysis, the buy-and-hold strategies consisting of

the best funds as rated by the proposed Luenberger indicator perform any better
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than more finance-based ratings and single-time MV Luenberger-based ratings.

Accordingly, the efficiency component of the proposed indicators tends to convey

more the strength of the consideration of multiple time periods in fund selection,

while the frontier component better captures the information from higher order

moments.

Obviously, the proposed methodology and the resulting empirical results have

some limitations one should be aware of. First, it would be good if the rating based

on the proposed Luenberger indicators can be tested in a more realistic backtest-

ing analysis setting. For instance, the diversified portfolio strategies consisting of

funds selected by Luenberger-based rating could be developed for testing the per-

formance of different rating methods. This calls for a generalization of the current

diversified models in multi-time and multi-moment framework. Another restriction

is that it does not account for other commonly used risk measure instead of the

variance, such as Value-at-Risk (VaR) or the Conditional Value-at-Risk (CVaR)

(see Alexander and Baptista (2002), Lwin, Qu, and MacCarthy (2017), Guo, Chan,

Wong, and Zhu (2019)). Future research could focus on extending our fundamental

methodology to the mean-VaR (or CVaR)-skewness-kurtosis framework.
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CHAPTER

4

Multi-Time and Multi-Moment

Nonparametric Frontier-Based

Fund Rating: A Nonconvex

Metafrontier Approach

Abstract

This contribution combines the nonparametric metatechnology with the shortage

function to define a comparable metafrontier-based fund rating across classifica-

tions accounting for heterogeneity. Without limiting ourselves to the traditional

mean-variance portfolio setting, we develop the nonparametric metafrontier rating

methods with multiple times and multiple moments, aiming to allow for the fund

evaluation compatible with general investor preferences. The empirical part em-

ploys a large database of nonhomogeneous funds covering five different types not

only to offer extensive tests of the specification factors considered in these models,

but also to test the performance of different rating methods in a simple backtesting

setup. First, the evaluation results show that multiple moments, multiple times,

and convexity assumption for each GTPPS have an impact on the estimates of
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MTE and its components, respectively. Second, the backtesting results indicate

that the strategies based on the multi-time and multi-moment metafrontier rat-

ings exhibit a comparable performance to those based on the financial ratings,

whereas the strategies based on the other metafrontier ratings maintain a poor

performance.

Keywords: Shortage function; Fund rating; Metafrontier.

4.1 Introduction

With the development of global financial markets, the number and diversity of

funds (e.g., hedge funds, equity funds, bond funds, etc.) available to investors

are steadily increasing. Therefore, it has been a closely watched concern in both

academia and industry to gauge the fund efficiency based on available information

and to identify the funds worthwhile investing in. Obviously, an effective fund

evaluation and rating can provide not only strategic support for investors’ fund

screening, but also investment benchmarking for fund managers to improve the

performance of their managed funds. To this end, numerous business magazines

and private firms now specialize in giving regular, exhaustive rankings and ratings

of funds (such as Lipper, Morningstar, Standard & Poor’s, Fitch, etc.).

A fundamental principle followed by these rating agencies in assigning ratings

is that funds are evaluated within a homogeneous (peer) group with comparable

investment objectives. These homogeneous groups are divided depending on the

fund classification/category defined by each rating agency. For example, the Lipper

Leaders uses the Lipper Global Classification (LGC) as the primary peer group for

a number of calculations on the fund efficiency and assigns ratings to each fund

within a specific classification accordingly. The LGC creates homogeneous groups
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of funds whose members are similar enough in their risk factor exposures for the

return comparisons between them. One of the key classification attributes is the

underlying asset markets in which a fund strategically invests. According to the

LGC, funds classified in the same group are required to maintain at least 75% of

their exposure to one or more identical underlying markets. For instance, funds

with the primary objective of investing in the stock markets are placed into the

equity group. In general, the LGC maps into eight broad fund groups that include

equity, bond, commodity, money markets, real estate, mixed asset, alternative (for

instance, hedge funds are classified in this group), and others. This contribution

in particular focuses on the assessment with respect to these typical groups of fund

performance defined by the LGC.

Ratings depending on the fund types reveal a wide consensus in finance: funds

in different groups adopt distinct styles and exhibit heterogeneous performances,

making their efficiency not directly comparable. In essence, this heterogeneity

in fund performance across groups is attributed to regulatory constraints and

strategic investment reasons. Specifically, funds with a certain regulatory and

strategic framework are subject to limitations on the choice of underlying asset

types (e.g., equities, bonds, money markets, etc.), investment regions (e.g., UK,

Europe, emerging markets, etc.), rules on portfolio composition and management

mandates. Fund managers often have limited direct control over these factors.

For instance, the money market fund (also called the money market mutual fund)

are limited to investing in money market instruments, such as cash, cash equi-

valent securities, and high-credit-rating, debt-based securities with a short-term

maturity. In the finance literature, some research has been devoted to explore the

relationship between the fund with regulatory and strategic limitations and its

performance (e.g., Alexander and Stover (1980), Brown and Goetzmann (1997),

Del Guercio and Tkac (2002), Gerlach and Maurer (2015), Ewen (2018), among
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others). These research contributions, in general, provide empirical evidence for

the argument that heterogeneity in fund performance can be due to differences in

both the regulatory and strategic frameworks.

In recent years, the successful nonparametric frontier estimation methodolo-

gies from production theory have been gradually and partially transposed to fund

performance assessment. Intuitively, based on a sample of observed units, one

estimates nonparametric frontiers of any multi-dimensional choice set and uses an

efficiency measure to position the benchmark of each observation on the boundary

of such choice set (see Ray (2004)). In the context of production, to the best of

our knowledge, homogeneity of the observed units is a common assumption made

in standard applications of nonparametric frontier methods. It implies that the

operating technologies or environments of all units are sufficiently similar for the

purposes of efficiency evaluation (see Dyson, Allen, Camanho, Podinovski, Sarrico,

and Shale (2001)). Besides, this assumption further indicates that the units under

evaluation should be regarded as members with the same production technology,

and allows these units to be benchmarked only against the common production

frontier generated by all observed units in the peer group (see Cooper, Seiford,

and Tone (2007)).

The assumption of homogeneity is naturally inherited when the nonparametric

frontier methods is applied to fund evaluation. In this context, the efficiency is

evaluated according to the distance between the fund being evaluated and its pro-

jection on the frontier generated by all homogeneous funds, that is the distance

relative to the peer group between its current position and the frontier projec-

tion it can achieve with minimum effort. For example, the seminal contribution

of Murthi, Choi, and Desai (1997) apply the traditional convex nonparametric

frontier methods to estimate the mutual funds (MF) efficiency within the same
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classification, where the variance and transaction cost indicators are treated as

the inputs, and the expected return is regarded as the output. Kerstens, Mounir,

and Van de Woestyne (2011) adapt the convex/nonconvex nonparametric frontier

methods combining with the shortage function to gauge funds from European and

United States market, and systematically discuss the specifications of the nonpara-

metric frontier estimates. For more studies with respect to performance evaluation

of homogeneous traditional MFs (e.g., equity funds, bond funds and mixed asset

funds/ balanced funds, etc.), the reader can may refer to Basso and Funari (2001),

Choi and Murthi (2001), Anderson, Brockman, Christos, and McLeod (2004),

Chen and Lin (2006), Daraio and Simar (2006), Galagedera, Roshdi, Fukuyama,

and Zhu (2018) among others.

Meanwhile, some burgeoning literature focusing on the evaluation of other spe-

cial MF types can be found. For instance, similar models have also been proposed

for the evaluation of hedge funds (Gregoriou (2003), Gregoriou, Sedzro, and Zhu

(2005), Darolles and Gourieroux (2010), Eling and Faust (2010)), pension funds

(Miszczyńska and Miszczyński (2007), Andreu, Sarto, and Vicente (2014)), eth-

ical mutual funds (Basso and Funari (2003), Basso and Funari (2014)). Strictly

speaking, the fund efficiency defined by the existing rating methodologies can be

regarded as the group-specific efficiency of a fund, which evaluates how well this

fund performs well relative to the peer group.

For the investor adhering to a certain specific fund type (e.g., hedge funds,

pension funds, etc.), the funds’ performance that is rated by the group-specific

efficiency provides fairly useful information for selecting best-performing funds

from the specific group. However, for most typical investors without a fixed target

investment fund type, as they may change their preference for fund type according

to fund market movements (see, e.g., when investors expect the equity market
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to enter a bear market, they may sell their equity funds and choose to hold bond

funds or money funds, in which case their preference changes from equity to bond or

money funds), the group-specific efficiency may hardly offer sufficient information

for the cross-group selection of funds. The aim of our contribution is to develop

an evaluation procedure for making the efficiency comparisons across groups of

funds. Generally speaking, the additional information is revealed in this cross-

group comparison of funds compared to the within-group comparison: (i) this

result allows investors, who have no preference for certain specific fund types,

to select well performing funds among a broad fund universe in line with their

own risk-aversion utility functions; (ii) as for investors, who adhere to a specific

fund type, this result can indicate the potential gains they may experience if the

investment preferences on fund types would be changed. To validly conduct a

cross-group comparison for funds, this evaluation procedure is designed in a way

that accounts for the heterogeneity of the different groups of funds, on the one

hand, and that the performance of funds is assessed on the same benchmark for

different classes, on the other hand. The concept of a metafrontier representing an

unrestricted technology from production theory opens a new sight to handle this

problem and allows for the evaluation and comparison across groups of funds with

heterogeneity.

The metafrontier, originated back to the concept of meta-production function

proposed by Hayami and Ruttan (1970), accounts for heterogeneity when estim-

ating production relations. Those authors call “the envelope of all known and po-

tentially discoverable activities a secular or meta-production function." (p. 898).

Their meta-production function gives the maximum output obtainable from given

inputs and a given set of production technologies. Different units may choose a

different specific technology from the set of available technologies depending on

a variety of circumstances. This basic logic has initially been transposed into a
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production frontier framework using both stochastic parametric and deterministic

nonparametric estimation approaches by Battese and Rao (2002), Battese, Rao,

and O’Donnell (2004), and O’Donnell, Rao, and Battese (2008).

O’Donnell, Rao, and Battese (2008) defines a production possibilities, metaset

as the union of underlying group-specific production possibilities sets. The bound-

ary of this metaset is referred to as a production metafrontier, and the boundaries

of the group-specific sets are called group-specific production frontiers (or group

frontiers). Thereafter, this metafrontier approach has been amply applied across

sectors and disciplines. Examples are production studies from agriculture (e.g.,

Latruffe, Fogarasi, and Desjeux (2012)), banking (e.g., Casu, Ferrari, and Zhao

(2013)), hotels (e.g., Huang, Ting, Lin, and Lin (2013)), schools (e.g., Thieme,

Prior, and Tortosa-Ausina (2013)), metal industry (e.g., Feng, Huang, and Wang

(2018)), and wastewater treatment plants (e.g., Sala-Garrido, Molinos-Senante,

and Hernández-Sancho (2011)) to name but a few. This basic metafrontier concept

has found its way in a variety of other literatures: One example is its transposi-

tion to a cost frontier framework (e.g., Huang and Fu (2013)); another example is

the computation of productivity indices relative to metafrontiers (see, e.g., Casu,

Ferrari, and Zhao (2013) and Huang, Juo, and Fu (2015)); a final example is the

development of more elaborate efficiency decompositions in the metafrontier eval-

uation framework (see Kounetas, Mourtos, and Tsekouras (2009) and Tsekouras,

Chatzistamoulou, and Kounetas (2017)). However, to the best of our knowledge,

none of these existing articles systematically investigates the application of the

metafrontier approach in the assessment of funds accounting for heterogeneity.1

In this paper, we tackle the problem of assessing heterogeneous funds belonging
1Even though Makni, Benouda, and Delhoumi (2015) use the meta-frontier approach with

data envelopment analysis (DEA) to compare the relative efficiency of Islamic equity funds.
However, the main specification issues surrounding the application of metafrontier methods for
assessing the financial performance of funds are not discussed in their research.
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to different groups by borrowing from recent developments in the nonparametric

metafrontier approaches. Employing the distance (shortage) function measure

(Luenberger (1995)), a series of nonparametric metafrontier-based rating meth-

ods are established that allow for evaluating the fund performance across groups

along a multitude of dimensions, and that offer a comparable measure against

the corresponding nonparametric metafrontier. The nonparametric metafrontier

can envelop all observed funds of multi-dimensional metasets that include each of

the group-specific sets as a subset, and position each of the funds relative to the

boundary of this metaset using the shortage function. Clearly, this metafrontier is

viewed as representing the benchmark that can be achieved in principle for each

of the observed funds with respect to the available fund universes.

In the existing production literature, the metafrontier should be estimated cor-

rectly as the boundary of a nonconvex metaset, which is defined as the union of

either convex or nonconvex group-specific sets. However, there are still a lot of

articles that ignore the nonconvex nature of the metafrontier and adopt a con-

vexification strategy, i.e. estimating the metafrontier as the boundary of a convex

metaset(e.g., O’Donnell, Rao, and Battese (2008), Kontolaimou and Tsekouras

(2010), Portela, Thanassoulis, Horncastle, and Maugg (2011)). It is clear that the

assumption on convexity between groups needs normally not to be valid, “convexi-

fying” estimator of the metafrontier risk being biased. Kerstens, O’Donnell, and

Van de Woestyne (2019) develop some new results on the union operation on sets

under a variety of assumptions and deliver convincing empirical evidence that a

convexification strategy yields statistically significant biases. Therefore, the meta-

frontier for fund rating in our contribution is estimated using the nonparametric

nonconvex metafrontier, which is the only correct estimator in the production lit-

erature (see also Afsharian and Podinovski (2018), Huang, Ting, Lin, and Lin

(2013), and Jin, Kerstens, and Van de Woestyne (2020), among others.).

131



Distinct from the production area, the performance evaluation of funds/porfo-

lios mainly focuses on the tradeoff between their returns and risks, among which

the most classical measures of return and risk are respectively the mean and vari-

ance (see Markowitz (1952)). In this paper, apart from developing the metafron-

tier methodology in a basic mean-variance (MV) evaluation framework solely for a

single period in a time horizon, we further explore the application of this metafron-

tier method in the general frameworks consistent with mixed risk-aversion investor

preferences. Instead of extensively discussing each of these modelling approaches,

we offer some arguments to narrow down the number of potential models worth-

while considering. In particular, we focus on two factors for extending nonpara-

metric metafrontier rating models to gauge heterogeneous funds: (i) consideration

of multiple times, and (ii) inclusion of multiple moments (i,e., mean, variance,

skewness and kurtosis).

The first factor to be considered aims at addressing a fund’s total risk and total

return performance over different times. Morey and Morey (1999) are the first to

propose two types of efficiency measures from a multi-time perspective for assessing

MV portfolio performance: The first one contracts all risk dimensions proportion-

ally and the second one focuses on augmenting all return dimensions as much as

possible in a proportional way. Briec and Kerstens (2009) extend the analysis of

multi-time MV portfolio analysis by Morey and Morey (1999) and obtain bench-

mark portfolios by simultaneously considering risk contraction and mean return

expansions using the discounted temporal shortage function within a multi-time

framework. These various time performances available to investors can provide

considerable additional information over that given by a fund’s performance over

just a single time (see Ren, Zhou, and Xiao (2021)).

The second factor accounted for in the rating models to handle mixed risk-
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aversion preferences of investors, where investors exhibit preference (aversion) for

odd (even) moments of the probability distribution of asset returns (see Traut-

mann and van de Kuilen (2018) for a review). In fact, while the MV rating meth-

ods remain a popular reference among practitioners and academics, this evaluation

criterion is only consistent with the quadratic utility function of the investor. For

the widely accepted mixed risk-aversion utility functions, one needs to use higher-

order moments as input-output specification allowing for gauging the performance

of funds compatible with these general investor preferences (see Briec and Ker-

stens (2010)). Therefore, enlarging the classical framework with multi-moment

models, i,e., mean-variance-skewness (MVS) and mean-variance-skewness-kurtosis

(MVSK) models, is a potentially interesting improvement for finance. An extens-

ive discussion can be also found on the inclusion of higher moments in fund eval-

uation. Examples of these studies include, e.g., Matallín-Sáez, Soler-Domínguez,

and Tortosa-Ausina (2014), Brandouy, Kerstens, and Van de Woestyne (2015),

Nalpas, Simar, and Vanhems (2017), Mehlawat, Kumar, Yadav, and Chen (2018),

Krüger (2021), Lin and Li (2020), Gong, Yu, Min, and Ge (2021). Naturally, the

nonparametric metafrontier methods developed in this contribution can be directly

extended to consider even higher moments without increasing the computational

cost excessively, as these nonparametric models can normally be solved using linear

or mixed linear integer programming.

In summary, the main objectives of this contribution are fourfold. First, we

apply the most recent metafrontier approach to the fund evaluation accounting

for heterogeneity, and define the metatechnology efficiency of funds by combining

the shortage function with the nonparametric metafrontier models. This metat-

echnology efficiency can be decomposed into two components: the group-specific

efficiency and the technology difference gap. The group-specific efficiency of funds

allows for evaluating the performance of a fund relative to the peer group that has
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opted to invest in similar underlying asset markets due to an identical regulatory

and strategic framework. The technology difference gap measures the gap between

the metafrontier and the group-specific frontier, which evaluates how well this fund

has initially opted to invest in the underlying asset markets among the potentially

available options. Second, we extend the metafrontier evaluation procedure from

the basic single-time MV framework to the multi-time and multi-moment frame-

work, which is compatible with general investor preferences regarding multiple

times and multiple moments. Third, applying the actual data from different types

of funds, we employ a Li-test approach to test for the impact of multiple times and

multiple moments separately and jointly on the metatechnology efficiency and the

corresponding component. Finally, a backtesting analysis is presented to test the

potential benefits of the proposed metafrontier evaluation methods.

The remainder structure of this contribution is as follows. Section 4.2 presents

the geometric intuition on the portfolio metafrontier and the corresponding non-

parametric estimators. Section 4.3 develops a series of nonparametric metafron-

tier methodologies with a special focus on measuring the efficiency of funds across

groups. Section 4.4 presents an empirical illustration using actual fund data. Fi-

nally, Section 4.5 summarizes our key results and issues for future work.

4.2 Portfolio Metafrontier and Nonparametric Es-

timators: Graphical Illustration

We start by reminding the reader about the intuition underlying the metafron-

tier approach. O’Donnell, Rao, and Battese (2008) develop the metafrontier ap-

proach that enables analysis of efficiency of heterogeneous decision making units

(DMUs). According to this contribution, the metafrontier approach can be ad-
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opted whenever DMUs should be classified into groups according to the techno-

logies they use, and when DMUs in different groups choose input-output com-

binations from potentially different production possibility sets (PPS). DMUs in

the same group are considered sufficiently homogeneous and represent the same

group-specific technology. The group-specific technology is generally character-

ized by the group-specific technology PPS (GTPPS), and the boundary of the

GTPPS is referred to as the group-specific frontier. The metatechnology includes

all production possibilities achievable using different group-specific technologies.

In particular, the metatechnology-specific PPS (MTPPS) is the set containing each

of the above GTPPSs as a subset. The boundary of the MTPPS is referred to as

the metafrontier. The metafrontier can be considered as representing the best

production possibility set that can be achieved in principle, and allows for assess-

ing whether DMUs have used the best operating technology among the available

options to transforming inputs into outputs.

We now explore how to adapt the matafrontier approach from the original pro-

duction context to handle the evaluation of heterogeneous funds/portfolios. In a

production context, DMUs are commonly classified into groups according to the

production technology in which they operate. Following the definition on tech-

nology (i.e., a technique, method or system for transforming inputs into outputs)

in O’Donnell (2016, p. 328), this concept in the portfolio evaluation context can

be considered as a selection for the underlying asset markets, which is generally

described by the generated input-output combinations (risk-return and similar for

higher moments). In essence, funds are classified into several groups based on

the regulatory and strategic framework in which they operate, and these objective

factors are largely linked to the underlying asset markets of investment that they

have chosen at the outset. For instance, Euro bond funds are required to primarily

invest in Euro-denominated fixed-income markets due to certain regulatory and
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strategic limitations (normally at least two thirds of shares), in which case their

selection on fixed-income markets is treated as the technology they use. This

classification criterion is well understood in analogy to the classification criterion

of a technology in a production context. Consequently, we generally refer to the

selection of similar underlying markets as the group-specific technology for funds

that has a specific regulatory and strategic framework, and the set of all these

available selections across different regulatory and strategic frameworks as the

metatechnology. Correspondingly, the boundaries of both are called the portfolio

group-specific frontier and the portfolio metafrontier.

To illustrate the concept of a portfolio metatfrontier, we consider a simple case

regarding a MV portfolio depicted in Figure 4.1, where only two portfolio group-

specific frontiers are available. In other words, this case only contains two types of

funds that invest in different underlying markets (e.g., equity markets and bond

markets). Let G1 denote the set of MV combinations for funds that use group-

specific frontier 1, i.e., invest in the equity markets. The MV portfolio frontier

obtained from the funds in G1 is marked in blue. Similarly, let G2 denote the

set of MV combinations for funds that use group-specific frontier 2, e.g., invest in

the bond markets, and the corresponding MV portfolio frontier is marked in red.

Let Γ denote the set of MV combinations for all funds that use the two available

technologies, where the MV combinations generated by funds investing in the two

underlying asset markets are included. This metatechnology set is given by the

union of G1 and G2. The boundary of this set is the defined portfolio metafrontier

in our work, as depicted by the solid line in Figure 4.1.
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Figure 4.1: Portfolio group-specific frontiers and metafrontier in MV space

Clearly, this MTPSS of portfolios is nonconvex.2 Note that assuming convexity

for observations between different groups is a rather strong premise, since there

are two distinct technologies which may have different characteristics. One should

realize that this convexity assumption applied to the MTPPS is to some extent

self-contradictory: it runs counter the very idea of distinguishing between different

group-specific technologies. Even if the GTPPS could be assumed to satisfy con-

vexity, there is no reason why the union of these sets should be convex. Otherwise

stated, the union operator on GTPPSs does not normally preserve the convexity
2We restrict our portfolio metafrontier analysis to the assumption that the diversification

effect exists only among the funds within the same group (or classification). The basic idea for
this assumption is that a general diversified portfolio is likely to be difficult to implement among
the financial products across groups given the specific regulatory and strategic limitations (i.c.,
the investment mandates). Therefore, the portfolio metafrontier in this contribution is defined as
the union of the group-specific portfolio frontiers. This allows to retrospectively assess whether
a given fund could have benefited if it would have been allowed to invest in different asset classes
compared to its own current asset class. However, it is worth noticing that if diversification is
allowed among all funds across groups, then the corresponding portfolio metafrontier should be
generated by all observed funds from different groups: it would remain convex as in the case of
the group-specific portfolio frontiers.
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assumption on the resulting MTPPS. More importantly, the convex combinations

between observations using different techniques create some virtual units, while in

most cases, these virtual units need not be feasible in reality. As stated earlier, the

group-specific portfolio frontiers are also distinguished because of the regulatory

and strategic reasons, which lead to clear limitations on the selection of underly-

ing asset markets, composition rules and investment mandates, etc. These virtual

units imply that funds counterfactually could have been invested in other under-

lying financial markets, which in most cases would not be permitted as it violates

relevant regulatory and strategic constraints (or the initial mandate). However,

the efficiency determined using the metatechnology frontier may be influenced by

these virtual units such that the results become unreliable. As a consequence,

we use the nonconvex union of either convex or nonconvex GTPPS to form the

MTPPS for gauging funds across different groups. This nonconvex MTPPS is

also recommended in the production literature: examples include Afsharian and

Ahn (2015), Afsharian and Podinovski (2018), Kerstens, O’Donnell, and Van de

Woestyne (2019), Jin, Kerstens, and Van de Woestyne (2020).

Let us consider the measurement of efficiency regarding these frontiers in Fig-

ure 4.1. Consider the fund operating at point A with a given MV level, and recall

that the fund can only use the technology 1, i.e., can only invest in the equity

markets. Recall that in this case the portfolio metafrontier is given by the solid

line in Figure (4.1). Assume that this fund with the current MV level uses tech-

nology 1 can increase the return and decrease the risk by moving to point A1

on the portfolio group-specific frontier with technology 1 along the given direc-

tion g. If instead it had been able to use technology 2, i.e., invest in the bond

markets, then it could have improved the return and risk by moving to point A2

on the portfolio metafrontier. The overall efficiency determined by the portfolio

metafrontier requires that retrospectively it should have opted to use technology
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2: This fund should have opted to invest in the bond markets rather than in the

equity markets. As presented in Figure 4.1, the metatechnology efficiency (MTE)

of a fund is a direction-oriented measure of the distance from an observed point

to a projection point on the portfolio metafrontier (i.e., the distance between A

and A2). The MTE of a fund consists of two components: (i) the group-specific

technology efficiency (GTE) is a direction-oriented measure of the distance from

an observed point to a projection point on the portfolio group-specific frontier (i.e.,

the distance between A and A1), and (ii) the technology difference gap (TDG) is a

direction-oriented measure of the distance between the portfolio metafrontier and

the portfolio group-specific frontier (i.e., the distance between A1 and A2). The

GTE component is the common measure of fund efficiency within a homogeneous

group that invests in the same underlying markets, while the TDG component

reveals the eventual restrictive nature of the underlying asset markets in which

the fund has initially made its choice.3

Considering that the diversified portfolio frontier is difficult to obtain, espe-

cially when the time dimension and the higher-order moments are both included, in

this contribution, we employ the nonparametric production frontier specifications

to estimate the GTPPSs and the group-specific frontiers in the various frame-

works (i.e., the single/multi-time and multi-moment frameworks with convexity

and nonconvexity). Figure 4.2 illustrates the nonparametric estimators using the

above simple MV case when only two technologies exist. In this figure, the left

Figure 4.2(a) plots the estimated GTPPSs using the convex nonparametric frontier

method (DEA estimator), and the right Figure 4.2(b) plots the inner estimate us-

ing the nonconvex nonparametric frontier method (FDH estimator). Whether the

estimated GTPPSs is convex or nonconvex, the estimated MTPPS that is defined
3In this contribution, we only analyze the relative performance of the fund under evaluation

by the comparison between funds, but not with respect to the efficiency measure of the financial
markets in which this fund operate.
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as the union of all the estimated GTPPSs is clearly nonconvex. In the following

section, we introduce a series of nonparametric matafrontier approaches for the

fund evaluation in different frameworks.

Figure 4.2: Nonparametric frontier estimates in MV space

4.3 Nonparametric Metafrontier Rating: Meth-

odology

As introduced earlier, O’Donnell (2016, p. 328) defines a technology as ‘ ‘a tech-

nique, method or system for transforming inputs into outputs. For most practical

intents and purposes, it is convenient to think of a technology as a book of instruc-

tions, or recipe”. Following this work, we view each group of funds as operating

in a different technology condition. This definition is adopted here: we perceive

a technology (group-specific technology) as a selection for (one or more) avail-

able underlying markets for funds that have a specific regulatory and strategic

framework.

Assume that there are N observed funds over a given time horizon T . At

140



time t in this time horizon (t ∈ {1, . . . , T}), the j-th fund (j ∈ {1, . . . , N}) is

characterized by m input-like values and s output-like values. Input-like variables

need to be minimized and output-like variables need to be maximized. Suppose

that these funds operate with different technologies, i.e., they invest in different

underlying markets or specific segments of those markets. In this contribution,

depending on the underlying asset universe, these may include alternative assets,

short or long-term fixed income markets, equities, mixed assets, etc. To represent

such differences, we assume that all funds under evaluation can be partitioned into

Γ > 1 distinct groups, so that the funds in the same group k ∈ {1, . . . , Γ} operate

in the same underlying markets.

Before proposing the following methodology, we first introduce some notations.

At time t in a given time horizon T , all the observed input-output combinations

of funds, i.e., (xt
1, yt

1), . . . , (xt
N , yt

N) ∈ Rm × Rs, are used to estimate MTPPS. The

nonparametric estimator of the k-th (k ∈ {1, . . . , Γ}) GTPPS only uses nk ≤ N

(where ∑Γ
k=1 nk = N) for these observations of funds that invest one or more

specific asset markets. To identify these particular observations, consider the one-

to-one index function ϕk : {1, . . . , nk} → {1, . . . , N}. Then (xϕk(j), yϕk(j)) denotes

the j-th observation in the set of funds used to estimate the k-th GTPPS. For

example, consider the case where the nonparametric estimator of the k-th GTPPS

only uses the four observations (x2, y2), (x4, y4), (x5, y5) and (x7, y7). It means that

nk = 4 and ϕk(1) = 2, ϕk(2) = 4, ϕk(3) = 5 and ϕk(4) = 7.

4.3.1 Group-specific Technology and Group-specific Short-

age Function

The group-specific technology is represented by the GTPPS, which is a set con-
taining all input-output combinations that are possible using a given technology.
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Transposing this concept into the context of fund evaluation, this GTPPS can be
represented as the set consisting of input-output combinations of observed funds
with a specific regulatory and strategic framework. As explained earlier, this spe-
cific framework largely determines certain underlying asset markets in which funds
can select to invest (this selection on available underlying markets is regarded as
the technology that funds use). The nonparametric frontier-based rating meth-
ods have been widely used to gauge the financial performance of funds and these
evaluations are done mostly using frontier-based models which originate from pro-
duction theory. We begin by considering the nonparametric frontier estimations of
these GTPPSs under the assumption of variable returns to scale (VRS). Following
Briec, Kerstens, and Vanden Eeckaut (2004), a unified algebraic representation of
the k-th (k ∈ {1, . . . , Γ}) GTPPS under the VRS assumption for the set of nk

funds using technology k at time t is:

P k,t
Λ =

{
(xt, yt) ∈ Rm × Rs | ∀i ∈ {1, . . . , m} : xt ≥

nk∑
j=1

λϕk(j)x
t
iϕk(j),

∀r ∈ {1, . . . , s} : yt ≤
nk∑

j=1
λϕk(j)y

t
rϕk(j), λϕk

∈ Λ
}
, (4.3.1)

where, Λ ≡ ΛC = {λϕk
∈ Rnk | ∑nk

j=1 λϕk(j) = 1 and ∀j ∈ {1, . . . , n} : λϕk(j) ≥ 0}

if convexity is assumed, and

Λ ≡ ΛNC = {λϕk
∈ Rnk | ∑nk

j=1 λϕk(j) = 1 and ∀j ∈ {1, . . . , n} : λϕk(j) ∈ {0, 1}} if

nonconvexity is assumed.

At time t, if there exists an input-output combination (∑n
j=1 λϕk(j)x

t
iϕk(j),∑n

j=1 λϕk(j)y
t
iϕk(j)) in the convex or nonconvex GTPPS using less inputs and pro-

ducing more outputs than the observed fund, then this fund is considered group-

specific technology inefficient since it can improve its inputs and/or outputs against

the k-th group-specific frontier. Based on the above GTPPS, the k-th group-

specific shortage function of any observed fund at time t is now defined as follows:

142



Definition 4.3.1. At time t, let gt = (−gt
x, gt

y) ∈ Rm
− × Rs

+ and gt ̸= 0. For any

observation zt = (xt, yt) ∈ Rm ×Rs, the group-specific shortage function Sk,t
Λ when

using technology k in the direction of vector gt is defined as:

Sk,t
Λ (zt; gt) = sup{β ∈ R | zt + βgt ∈ P k,t

Λ }.

For a fund with index o ∈ {1, . . . , N}, the k-th group-specific shortage function

with direction vector gt
o = (−gt

xo, gt
yo) ∈ Rm

− × Rs
+ can be determined from the

following program:

max β

s.t.
nk∑

j=1
λϕk(j)x

t
iϕk(j) ≤ xt

io − βgt
io, i = 1, . . . , m,

nk∑
j=1

λϕk(j)y
t
iϕk(j) ≥ yt

ro + βgt
ro, r = 1, . . . , s,

nk∑
j=1

λϕk(j) = 1, β ≥ 0,

∀j = 1, . . . , nk :

 λϕk(j) ≥ 0, under convexity,

λϕk(j) ∈ {0, 1}, under nonconvexity.

(4.3.2)

Note that model (4.3.2) results in a linear programming (LP) problem under con-

vexity and a binary integer linear programming (MBILP) problem under noncon-

vexity. Then both models allow to project the input-output combination of the

fund o in such a way that inputs are decreased and outputs are increased in the

direction gt
o against the k-th group-specific frontier. The optimal solution β∗ of

model (4.3.2) measures how many times the direction vector gt
o fits in the line

segment from the input-output combination of the fund o to this frontier in the

direction of gt
o. Remarkably, if (xt

o, yt
o) ∈ P k,t

Λ , then model (4.3.2) has a finite op-
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timal solution and we have β ≥ 0. If (xt
o, yt

o) /∈ P k,t
Λ , then either model (4.3.2) is

infeasible or its optimal value is strictly less than 0.

Differing from fund ratings in a single-time framework, fund ratings in a multi-

time framework consider performance over a time horizon consisting of multiple

discrete time periods. The logic is now for observed funds to simultaneously ex-

pand its multiple outputs and decrease its multiple inputs over all discrete times.

To develop the nonparametric frontier rating models in this multi-time frame-

work, some definitions and properties are presented. Let T denote the number of

consecutive times in a time horizon of interest. In addition, define a multi-time

path of inputs and outputs as Zj = (xt
j, yt

j)T
t=1 for fund j, (j = 1, . . . , N), where

xt
j = (xt

1j, . . . , xt
mj) and yt

j = (yt
1j, . . . , yt

sj) represent m inputs and s outputs at

time t, respectively. Assuming VRS for all times t ∈ {1, . . . , T} and strong free dis-

posability of all inputs and outputs, the k-th (k ∈ {1, . . . , Γ}) multi-time GTPPS

for the set of nk funds using technology k can be defined as:

Pk,T
Λ = P k,1

Λ × · · · × P k,T
Λ ⊂ (Rm × Rs)T ∼= Rm×T × Rs×T , (4.3.3)

where P k,t
Λ (t = 1, . . . , T, k = 1, . . . , Γ), is the k-th GTPPS at time t mentioned

previously in (4.3.1).

In particular, this multi-time GTPPS is mathematically represented as follows
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Pk,T
Λ =

{
(xt, yt)T

t=1 ∈ Rm×T × Rs×T | ∀i ∈ {1, . . . , m}, ∀t ∈ {1, . . . , T} :

xt ≥
nk∑

j=1
λt

ϕk(j)x
t
iϕk(j),

∀r ∈ {1, . . . , s}, ∀t ∈ {1, . . . , T} :

yt ≤
nk∑

j=1
λt

ϕk(j)y
t
rϕk(j),

∀t ∈ {1, . . . , T} : λt
ϕk

∈ Λ
}
, (4.3.4)

where Λ ≡ ΛC = {λt
ϕk

∈ Rnk | ∑nk
j=1 λt

ϕk(j) = 1 and ∀j ∈ {1, . . . , n} : λt
ϕk(j) ≥ 0} if

convexity is assumed, and

Λ ≡ ΛNC = {λt
ϕk

∈ Rnk | ∑nk
j=1 λt

ϕk(j) = 1 and ∀j ∈ {1, . . . , n} : λt
ϕk(j) ∈ {0, 1}} if

nonconvexity is assumed.

To allow for a general definition for the multi-time shortage function, we first

introduce some abbreviating notations. The time dependent direction vector de-

noted by G = (g1, . . . , gT ) ∈ (Rm
− × Rs

+)T ∼= Rm×T
− × Rs×T

+ represents a given

multi-time direction path, where gt = (−gt
x, gt

y) ∈ Rm
− × Rs

+ represents the direc-

tion vector at time t ∈ {1, . . . , T}. In addition, we denote Θ = (β1, . . . , βT ) ∈ RT

and Θ · G = (β1g
1, . . . , βT gT ) ∈ (Rm × Rs)T ∼= Rm×T × Rs×T . Considering the

time preference of an investor in a portfolio context, we introduce a time discount-

ing factor denoted ξ (0 < ξ < 1) to weight the efficiency measures over the time

horizon.

Then, based on the logic of the multi-time rating, the k-th multi-time group-

specific shortage function assuming convexity or nonconvexity is defined as follows:

Definition 4.3.2. With the notations introduced above, for any observation Z ∈

(Rm × Rs)T ∼= Rm×T × Rs×T , the multi-time group-specific shortage function ST
Λ
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when using technology k in the multi-time direction path of G is defined as:

Sk,T
Λ (Z; G) = sup

{ 1
T

T∑
t=1

ξT −tβt | Z + Θ · G ∈ Pk,T
Λ

}
.

For a given time horizon T , this amounts to looking for the largest arithmetic

mean of time discounted distances over all times in a given time horizon of the

input-output combinations of an observed fund to boundary of Pk,T
Λ , which is called

the multi-time group-specific frontier. If the value of the multi-time group-specific

shortage function Sk,T
Λ (Z; G) > 0 for the input-output path Z of the observed

fund, then it means that its inputs and outputs can be reduced and improved

simultaneously in one or more time periods against the k-th multi-time group-

specific frontier.

For a given multi-time direction path G = (gt)T
t=1 ∈ Rm×T

− × Rs×T
+ , the k-th

multi-time group-specific shortage function of a fund with index o ∈ {1, . . . , N}
can be determined as the optimal value of the following programming:

max 1
T

T∑
t=1

ξT −tβt

s.t.
nk∑

j=1
λt

ϕk(j)x
t
iϕk(j) ≤ xt

io − βtg
t
io, i = 1, . . . , m, t = 1, . . . , T,

nk∑
j=1

λt
ϕk(j)y

t
iϕk(j) ≥ yt

ro + βtg
t
ro, r = 1, . . . , s, t = 1, . . . , T,

nk∑
j=1

λt
ϕk(j) = 1, βt ≥ 0, t = 1, . . . , T,

∀j = 1, . . . , nk :

 λt
ϕk(j) ≥ 0, t = 1, . . . , T, under convexity,

λt
ϕk(j) ∈ {0, 1}, t = 1, . . . , T, under nonconvexity.

(4.3.5)

We add two remarks on computational issues. First, while in principle several

options are available for the choice of direction vector, we opt here to employ the

observation under evaluation itself, that is, gt = (−|xt
1o|, . . . , −|xt

mo|, |yt
1o|, . . . , |yt

so|).
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In this case, the shortage function measures the maximum percentage of simultan-

eous risk reduction and expected return augmentation. Second, the block-diagonal

structure of the above mathematical programming is a consequence of the time

separability assumption, since there are no temporal linkages between the estim-

ated fund problems for each time period. This structure basically allows us to

solve the single-time mathematical programming for each time separately and to

compute the objective function of the above problem based on the optimal solu-

tions of these T sub-problems at the end (see also Briec, Comes, and Kerstens

(2006) for a similar case in a production context).

4.3.2 Metatechnology and Metatechnology Shortage Func-

tion

The metatechnology is characterised by the set of all technologies that exist in a

given time (e.g. O’Donnell (2016, p. 87)). In the metafrontier literature, tech-

nology sets are more often referred to as metatechnology. The set of all input

and output vectors that are feasible using a given technology set (i.e., using some

technology that is contained in a metatechnology) is labelled a MTPPS. As stated

previously, a group-specific technology of funds is considered as a kind of selection

possibility for the underlying markets. The metatechnology for funds contains all

these selection possibilities for the available underlying markets being invested.

Let Γ represent the number of group-specific technologies contained in the
metatechnology. Following the above notations, this associated MTPPS is math-
ematically defined as the union of all possible GTPPSs for a given time t, i.e.,
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MΓ,t
Λ = ∪k∈ΓP k,t

Λ . Equivalently,

MΓ,t
Λ =

{
(xt, yt) ∈ Rm × Rs | ∀i ∈ {1, . . . , m} : xt ≥

∑
k∈Γ

nk∑
j=1

λϕk(j)x
t
iϕk(j),

∀r ∈ {1, . . . , s} : yt ≤
∑
k∈Γ

nk∑
j=1

λϕk(j)y
t
rϕk(j),

∑
k∈Γ

nk∑
j=1

λϕk(j) = 1, λϕk
∈ Λ

}
, (4.3.6)

where:

Λ ≡ ΛC = {λϕk
∈ Rnk | ∑nk

j=1 λϕk(j) = 1 and ∀j ∈ {1, . . . , nk} : λϕk(j) ≥ 0} if

convexity is assumed for all GTPPSs, and

Λ ≡ ΛNC = {λϕk
∈ Rnk | ∑nk

j=1 λϕk(j) = 1 and ∀j ∈ {1, . . . , nk} : λϕk(j) ∈ {0, 1}} if

nonconvexity is assumed for all GTPPSs.

Even though each GTPPS is either convex or nonconvex, the MTPPS is gener-

ally not a convex set. Hence, this MTPPS does not inherit the convexity property

of the GTPPSs. The boundary of the above MTPPS is called a metafrontier at a

fixed time t.

We further define the shortage function based on the MTPPS for any observed

fund, which is considered as an important extension of the shortage function for

measuring the performance of nonhomogeneous funds. Using the MTPPS MΓ,t
Λ ,

the metatechnology shortage function for any observed fund with the set of tech-

nology at time t is mathematically defined as follows.

Definition 4.3.3. At time t, let gt = (−gt
x, gt

y) ∈ Rm
− × Rs

+ and gt ̸= 0. For any

observation zt = (xt, yt) ∈ Rm × Rs, the metatechnology shortage function SΓ,t
Λ in

the direction of vector gt is defined as:

SΓ,t
Λ (zt; gt) = sup{δ ∈ R | zt + δgt ∈ MΓ,t

Λ }.
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From the definitions of the group-specific and metatechnology shortage func-

tions in the single-time rating framework, one can easily conclude the following

two properties. Firstly, the value of every group-specific shortage function is less

than or equal to the value of the metatechnology shortage function. This is because

every GTPPS is contained in the MTPPS. Secondly, it suffices to get the minimum

value of all available group-specific shortage functions to determine the metatech-

nology shortage function. Referring to Kerstens, O’Donnell, and Van de Woestyne

(2019, p. 783), this latter result is simply a transposition of the well-known results

in the metafrontier context. Thus, we have:

SΓ,t
Λ (zt; gt) = max

k∈Γ
{Sk,t

Λ (zt; gt)}. (4.3.7)

For the input-output combination zt
o = (xt

o, yt
o) of an observed fund at time t,

equation (4.3.7) suggests an enumeration algorithm for calculating the value of the

metatechnology shortage function. For each k(k ∈ 1, . . . , Γ), we solve model (4.3.2)

to identify the corresponding group-specific shortage function Sk,t
Λ (zt

o; gt
o), and sub-

sequently take the maximum of all the obtained group-specific shortage functions

across all groups k, that is, the metatechnology shortage function SΓ,t
Λ (zt; gt) for

this fund.

In the following, we develop the metatechnology shortage function in a multi-

time framework. First, analogous to the idea of defining the multi-time GTPPS,

the multi-time MTPPS is mathematically defined in the following formulation:

MΓ,T
Λ = MΓ,1

Λ × · · · × MΓ,T
Λ ⊂ (Rm × Rs)T ∼= Rm×T × Rs×T , (4.3.8)

where MΓ,t
Λ , (t = 1, . . . , T ), is the MTPPS at time t mentioned previously in

(4.3.6).
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Equally, the specific formulation of this multi-time MTPPS is expressed as

MΓ,T
Λ =

{
(xt, yt)T

t=1 ∈ Rm×T × Rs×T | ∀i ∈ {1, . . . , m}, ∀t ∈ {1, . . . , T} :

xt ≥
∑
k∈Γ

nk∑
j=1

λt
ϕk(j)x

t
iϕk(j),

∀r ∈ {1, . . . , s}, ∀t ∈ {1, . . . , T} :

yt ≤
∑
k∈Γ

nk∑
j=1

λt
ϕk(j)y

t
rϕk(j),

∀t ∈ {1, . . . , T} :
∑
k∈Γ

nk∑
j=1

λt
ϕk(j) = 1, λt

ϕk
∈ Λ

}
, (4.3.9)

where:

Λ ≡ ΛC = {λt
ϕk

∈ Rnk | ∑nk
j=1 λt

ϕk(j) = 1 and ∀j ∈ {1, . . . , nk} : λt
ϕk(j) ≥ 0} if

convexity is assumed for all GTPPSs, and

Λ ≡ ΛNC = {λt
ϕk

∈ Rnk | ∑nk
j=1 λt

ϕk(j) = 1 and ∀j ∈ {1, . . . , nk} : λt
ϕk(j) ∈ {0, 1}} if

nonconvexity is assumed for all GTPPSs.

The definition of a multi-time metatechnology shortage function does the same

as a single-time shortage function, but it spans over multiple times: it simul-

taneously seeks to expand multiple return dimensions and contract multiple risk

dimensions over all times for all funds with the technology set. Based on the multi-

time MTPPS, the multi-time metatechnology shortage function for any observed

fund in the given time horizon T is defined as follows:

Definition 4.3.4. With the notations introduced above, for any observation Z ∈

(Rm × Rs)T ∼= Rm×T × Rs×T , the multi-time metatechnology shortage function ST
Λ

in the direction path of G is defined as:

SΓ,T
Λ (Z; G) = sup

{ 1
T

T∑
t=1

ξT −tδt | Z + Θ · G ∈ Mk,T
Λ

}
.

This multi-time metatechnology shortage function is easily calculated, because
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it simply corresponds to the largest arithmetic mean of time discounted single-

time metatechnology shortage functions (see (4.3.7)) over the whole time horizon.

It is clear that the value of every multi-time group-specific shortage function (see

Definition 4.3.2) is less than or equal to the value of the multi-time metatechnology

shortage function. This result is consistent with the single-time context.

Referring to Briec and Kerstens (2009), we also allow the virtual weights

λt
ϕk(j)(t = 1, . . . , T ) (see Definition 4.3.4 and formulae (4.3.9)) to vary over time to

look for a periodical benchmark over the given time T horizon, taking the short-

run investment perspective. If one prefers to seek a stable benchmark in this time

horizon following a long-term investment perspective, then one can simply impose

the constraint on constant virtual weights (i.e., λ1
ϕk(j) = · · · = λT

ϕk(j)) across time

periods.

4.3.3 Technology Efficiency and Technology Difference Gap

Recall from Section (4.3.2) that in the single-time framework, the fund under

assessment is efficient with respect to the metatechnology that contains Γ available

underlying markets, if and only if the metatechnology shortage function SΓ,t
Λ = 0

for its input-output combination zt = (xt, yt) at a fixed time t. While in the multi-

time framework, this fund is efficient with the metatechnology if and only if the

multi-time metatechnology shortage function SΓ,T
Λ = 0 for its multi-time path of

input-output combinations Z = (xt, yt)T
t=1 in the give time horizon T .

More specially, the single-time metatechnology efficiency (MTE) of the fund

under evaluation at time t is defined as the metatechnology shortage function (see

Definition 4.3.3):

MTEΓ,t(zt; gt) = SΓ,t
Λ (zt; gt). (4.3.10)
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This single-time MTE measure lies in the closed unit interval (i.e., MTEΓ,t(zt; gt) ∈

[0, 1]) and indicates the maximum proportion for a fund with respect to reduction

in xt and extension in yt along the direction of gt using a set of group-specific

technologies Γ (i.e., all available investment asset markets across different regulat-

ory and strategic frameworks). We can also measure the single-time group-specific

technology efficiency (GTE) for this fund with respect to the k group-specific fron-

tier based on the group-specific technology shortage function (see Definition 4.3.1).

The associated measure of the single-time GTE is:

GTEk,t(zt; gt) = Sk,t
Λ (zt; gt). (4.3.11)

This measure also lies in the closed unit interval and indicates the maximum

proportion of input reductions and output increases when using a group-specific

technology k at time t. Following O’Donnell, Rao, and Battese (2008), the trans-

lated metatechnology frontier envelops translated group-specific frontiers for all

k = 1, . . . , Γ. Hence, the value of single-time GTE has to always be less than or

equal to that of single-time MTE along the prespecified direction gt. Based on

this property, we define the difference between both of them as the single-time

technology difference gap (TDG):

TDGk,t(zt; gt) = MTEΓ,t(zt; gt) − GTEk,t(zt; gt), k = 1, . . . , Γ. (4.3.12)

The single-time TDG also lies in the closed unit interval. The TDG in the produc-

tion context is considered as a direction-oriented measure of whether a unit has

chosen the best group-specific technology that is available at time t. Naturally,

this indicator shifted to the context of portfolio evaluation can be regarded as a

direction-oriented measure of how well the fund has initially chosen its underlying

investment markets among the available options across groups that have distinct
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regulatory and strategic limitations. TDG = 0 indicates that the fund’s perform-

ance would not be restricted by its regulatory and strategic framework, as it has

opted for the best possible investment compared to the other groups of funds.

TDG > 0 means that the current regulatory and strategic framework somewhat

limits the fund to realize counterfactual or potential gains.4

By analogy with the single-time case, the multi-time MTE of the observed

fund with the multi-time path of input-output combinations Zj = (xt
j, yt

j)T
t=1 for

the given time horizon T is defined as the multi-time metatechnology shortage

function (see Definition 4.3.4):

MTEΓ,T (Z; G) = SΓ,T
Λ (Z; G). (4.3.13)

This multi-time MTE measure indicates the largest arithmetic mean of simultan-

eous reductions in inputs and expansions in outputs into a path of direction G such

that an observed input-output path of the fund is projected on the corresponding

metatechnology frontier at each time t (t = 1, . . . , T ). In theory, the multi-time

MTE is lager than the single-time MTE due to the single-time MTPPS is a subset

of the multi-time MTPPS. The multi-time MTE allows for testing whether the

fund has opted for the best possible investment among available options across

groups that have certain regulatory and strategic limitations at multiple times in

this horizon T . Correspondingly, the multi-time group-specific GTE for a fund

under evaluation is defined as the multi-time group-specific technology shortage
4The TDG only measures the counterfactual benefit assuming that the fund had been able

to invest in different underlying financial markets. However, this indicator is not sufficient for
analyzing the efficiency of the underlying financial markets in which different groups of funds
invest, since we analyze the relative performance of the fund with respect to other funds rather
than with respect to the underlying financial markets.
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function with respect to group k (see Definition 4.3.2):

GTEk,T (Z; G) = Sk,T
Λ (Z; G). (4.3.14)

This measure indicates the largest arithmetic mean of time discounted distances

over all times in the given time horizon T of the input-output combinations of this

observed fund to the k-th group-specific frontier at each time t (t = 1, . . . , T ). It

is easily proven that the multi-time GTE is lager than the single-time GTE due to

the single-time GTPPS is a subset of the multi-time GTPPS. Like in the single-

time framework, the multi-time TDG as the gap between the multi-time MTE and

multi-time GTE can be represented as follows:

TDGk,T (Z; G) = MTEΓ,T (Z; G) − GTEk,T (Z; G), k = 1, . . . , Γ. (4.3.15)

Since the metafrontier envelops the k-th (k ∈ 1, . . . , Γ) group-specific frontier for

each time t within the time horizon T , one can easily obtain that the multi-

time TDG is non-negative. The TDG determined in the multi-time framework

is in theory either higher or lower than the one determined in the single-time

framework. The multi-time TDG measures how well the fund has initially chosen

its investment asset universe among the available options over multiple times in

this time horizon T .

The setting in the previous discussion is general and flexible and can thus

handle a large choice of inputs and outputs. We now particularize the above

formulation to characterize the metafrontier in the MV, MVS and MVSK spaces.

Suppose that there are N funds under evaluation. At time t, let Rt
1, . . . , Rt

N denote

the random returns of the N funds, which are characterized by the mean E(Rt
j),

variance V (Rt
j), skewness S(Rt

j) and kurtosis K(Rt
j) for j ∈ {1, . . . , N}. Here, the

154



calculations of variance, skewness and kurtosis are expressed as follows: V (Rt
j) =

E[(Rt
j − E(Rt

j))2], S(Rt
j) = E[(Rt

j − E(Rt
j))3], and K(Rt

j) = E[(Rt
j − E(Rt

j))4].

To obtain detailed specifications of the MTPSS defined in (4.3.6) and GTPPSs

defined in (4.3.1), we need to classify the different goals of the investor in terms

of either inputs (i.e., objectives to minimize), or outputs (i.e., objectives to max-

imize). As introduced earlier, the need for multiple moments is apparent to as-

sess funds whose return distributions may exhibit strong asymmetry and fat tails.

Given mixed risk-aversion utility functions, investors express a preference for odd

moments and a dislike for even moments of the distribution of asset returns. There-

fore, when the MVSK framework is considered, we can define the first and second

inputs of funds as xt
1j = V (Rt

j) and xt
2j = K(Rt

j), and the first and second outputs

as yt
1j = E(Rt

j) and yt
2j = S(Rt

j) for j ∈ {1, . . . , n}. Obviously, for the MVS case

only the first input is considered. In the multi-time framework, we select variance

and kurtosis of each time t (t = 1, . . . , T ), as inputs and mean and skewness as

outputs, whereas for the MVS case only variance for each t is considered as inputs.

Finally, the above three indicators MTE, GTE and TDG can be determined

based on these specifications of MTPPS and GTPPS. It is crucial to note that since

the MTE of funds is measured with respect to the metafrontier, common to all

funds in different groups (i.e., operating with distinct investment asset universes),

their performance can be compared directly depending on this measurement. By

means of MTE in the shortage function framework, the fund under evaluation can

improve its mean and skewness dimensions and reduce its variance and kurtosis

dimensions along a given direction g at a single time or along a direction path G

over multiple times.
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4.4 Empirical Illustration

In this section, we use actual data for different types (groups) of funds, which invest

in distinct underlying markets, to investigate the impact of multiple moments and

multiple times on the MTE estimate and its decompositions. Then, with the help

of backtesting analysis, we aim to further illustrate the use of the proposed multi-

time and multi-moment metafrontier rating methods for selecting funds across

groups.

4.4.1 Sample Description

For the empirical analysis, we use the Lipper for Investment Management data-

base. In particular, we extract a nonhomogeneous set of 717 funds composed of

five types. These five distinct groups consist of hedge funds (HF, 141 observa-

tions), bond mutual funds (BMF, 175 observations), equity mutual funds (EMF,

180 observations), mix-asset mutual funds (MixMF, 86 observations), and money

mutual funds (MonMF, 135 observations). To maximize the credibility of the em-

pirical results, we choose these samples with a consistent geographic attribute, all

belonging to the European universe. According to the classification criteria regard-

ing asset types designed by the Lipper database, each group of funds is assigned

an asset type based on the definitions below in Table (4.1).
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Table 4.1: Description for the classification of funds

Asset Type Description

HF Funds using derivative instruments as the source of return.

BMF Funds investing in fixed income markets.

EMF Funds investing in stock markets.

MixMF Funds investing in fixed income markets, with an average maturity >

one year.

MonMF Funds investing in fixed income markets, with an average residual life

to maturity < 12 months.

For these funds, we collect 179 monthly returns from May 2006 to March

2021 with the availability of continuous data for at least 15 years, which is re-

quired for the use of our backtesting analysis in the newly proposed multi-time

and multi-moment metafrontier ratings. It needs to be stated that we initially

specify these nonparametric group-specific frontier estimates following the idea of

Kerstens, Mounir, and Van de Woestyne (2011) that higher-order moments and

cost components are included. However, since HF cost data is unavailable in this

database, our empirical analysis is limited to focus on the characteristics of the

return distributions for all these funds without considering cost factors. In the fol-

lowing, we make a basic comparative analysis of the monthly return characteristics

of funds across the five groups for the entire sample period.
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Figure 4.3: Box-plots of moments distribution for different types of funds

Figure 4.3 propose box-plots to intuitively summarize the entire distribution

of different types of funds for each of the four moments. The sub-figures (a) to

(d) correspond to the mean, variance, skewness and kurtosis of these funds. In

these box-plots, the box indicates the interquartile range where the small vertical

lines reporting the location of the median. Striking features are twofold. First,

generally speaking, most funds are characterized by high volatility, very negative

skewness and positive kurtosis, except for the BMF and MonMF. This indicates

that the multi-moment metafrontier rating methods can be of great importance to

select well-performing funds from a large fund universe. Second, relatively speak-

ing, different types of funds show a marked difference regarding the four moments

distribution. The return distribution of the HF generally exhibits fairly obvious

moment characteristics. Specifically, the interquartile ranges of the four moments

for 141 HF samples are quite large, and the distributions of mean and variance

but especially skewness and kurtosis are quite asymmetric and have long tails.

In contrast, the MonMF present the most insignificant moment characteristics.
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Compared to funds investing in the other four asset markets, funds investing in

the money markets exhibit consistently a low return-risk level, especially in terms

of the two moments of skewness and kurtosis. As to the BMF, EMF and MixMF

clearly experience a slightly asymmetric, a very asymmetric, and a mildly asym-

metric distribution.

4.4.2 Evaluation Results

In this subsection, we shed light on whether the multiple moments and multiple

times have an impact on the MTE and it decomposition (GTE and TDG) for

these different types of funds. First, the three indices are estimated in the single-

and multi-time frameworks to illustrate the effect of considering multiple times.

Second, the distribution of differences of the three indices are examined separately

when adding multiple moments. In the single-time framework, we extract the

monthly returns of these samples for the past 5 years to date to calculate the es-

timates of MTE, GTE and TDG. While in the multi-time framework, the monthly

returns for the past 1 year, 3 years and 5 years to date are integrated and applied

to estimate the three indices.

Table 4.2 contains basic descriptive statistics of the MTE estimates and its com-

ponents (i.e., GTE and TDG estimates) with the unbalanced panel data of funds

across the five groups in 12 various rating frameworks. Here, let us introduce the

abbreviations used in Table 4.2. The acronym nc-c indicates that the estimated

GTPPSs are convex and the estimated MTPPS is not, while the acronym nc-nc in-

dicates that both the estimated TPPSs and the estimated MTPPS are nonconvex.

The acronyms ST and MT indicate that the estimates are calculated in the single-

and multi-time frameworks, respectively. Similarly, the acronyms MV, MVS and

MVSK indicate that the estimates are calculated in the MV, MVS and MVSK
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frameworks, respectively.

Remarkably, even though we collect these nonparametric metafrontier rating

methods corresponding to the estimated GTPPSs using both nonparametric con-

vex and nonconvex estimators, it should be realized that imposing the convexity

on the GTPPS is not always useful. Liu, Zhou, Liu, and Xiao (2015) state that

a convex VRS nonparametric frontier estimator provides an inner approximation

to the portfolio frontier derived from the traditional MV diversified model. In the

more general case where we want to explore a nonconvex higher moment portfolio

model, then one can argue that the nonconvex nonparametric frontier estimators

with VRS (already advocated by Kerstens, Mounir, and Van de Woestyne (2011))

provides a conservative underestimation of the corresponding nonconvex diversi-

fied portfolio model within some common subspace of moments (see also Germain,

Nalpas, and Vanhems (2011)). By contrast, the more widely used convex non-

parametric frontier specification may in this case overestimate the corresponding

nonconvex diversified portfolio model within the common subspace of moments.

The latter argument seems to have escaped attention so far: This explains why

most nonparametric frontier rating models with higher moments do impose con-

vexity (for instance, Gregoriou, Sedzro, and Zhu (2005)). In this contribution, we

are also particularly interested in the effects of the convexity assumption of the

GTPPS on the MTE and it corresponding components.

Table 4.2 is structured as follows: First, we discuss the columns in Table 4.2.

Both nc-c and nc-nc results are reported in two parallel blocks of six columns.

Within each of both results, the first, second and last two columns report the

results in the MV, MVS and MVSK frameworks, respectively. A further distinction

is related to whether multiple time periods are considered: ST indicates a single

time is considered to calculate these estimates, while MT refers to multiple times
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being considered. Second, turning to the explanation of the rows in Table 4.2, the

first horizontal block of results contains summary statistics regarding the MTE

estimates for all 717 observations in the sample. The following two horizontal

blocks of rows report the GTE and TDG estimates. The first row in each horizontal

block reports the number of efficient observations (i.e., the number of times the

relevant measure is estimated to be 0). The next three rows in each horizontal block

report the arithmetic means, standard deviations, and medians of the relevant

estimates.

Table 4.2: Descriptive statistics and Li-test comparing the estimates of MTE and
decompositions in single- and multi-time frameworks

nc-c nc-nc

MV MVS MVSK MV MVS MVSK

ST MT ST MT ST MT ST MT ST MT ST MT

MTE

#Ef. Obs. 12 0 18 2 30 6 24 3 78 12 134 20

Arith.Mean 0.6308 0.5703 0.4924 0.4535 0.4182 0.3726 0.5985 0.5125 0.3101 0.2574 0.3049 0.2489

Stand.Dev. 0.3223 0.2094 0.2706 0.1748 0.2961 0.1813 0.3387 0.2251 0.3203 0.2083 0.3242 0.2105

Med. 0.7055 0.6414 0.4658 0.4691 0.3175 0.3040 0.6448 0.5951 0.1924 0.1863 0.1887 0.1774

Li-test 111.43 13.86 49.86 109.70 59.90 71.20

p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

GTE

#Ef. Obs. 22 3 34 9 55 19 63 14 181 59 211 84

Arith.Mean 0.3799 0.3535 0.3301 0.2793 0.3172 0.2561 0.3191 0.2913 0.2257 0.1754 0.2244 0.1723

Stand.Dev. 0.3101 0.2358 0.2867 0.2028 0.2902 0.1977 0.3117 0.2258 0.2889 0.1958 0.2894 0.1956

Med. 0.3047 0.3079 0.2876 0.2565 0.2715 0.2343 0.2321 0.2410 0.1351 0.1138 0.1294 0.1117

Li-test 32.44 28.88 32.14 54.84 21.03 17.31

p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

TDG

#Ef. Obs. 299 55 280 58 327 53 299 121 339 123 416 130

Arith.Mean 0.2509 0.2168 0.1623 0.1742 0.1010 0.1165 0.2795 0.2212 0.0844 0.0819 0.0805 0.0767

Stand.Dev. 0.3332 0.2482 0.1793 0.1612 0.1260 0.1068 0.3464 0.2423 0.1399 0.0870 0.1414 0.0853

Med. 0.0856 0.1160 0.0915 0.1428 0.0205 0.0828 0.1271 0.1427 0.0085 0.0652 0.0000 0.0589

Li-test 110.34 79.56 121.66 41.01 63.18 91.04

p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Several conclusions can be drawn from the descriptive statistics results repor-

ted in Table 4.2. First, the basic descriptive statistics for MTF, GTF and TDG

estimates in the single-time framework versus those in the multi-time framework

161



all show some differences. For the MTF estimates, the multi-time MTF estimates

are on average lower than the single-time MTF estimates in all settings (nc-c and

nc-nc for MV & MVS & MVSK). Combining the numbers of efficient observations,

the multi-time MTF estimates clearly yield fewer efficient observations compared

to those based on the single-time MTF estimates. For the GTF estimations, this

coincides with the above finding that the multi-time GTFs all show lower mean

values and fewer efficient observations than the single-time ones. Theoretically, es-

timates of these two indices derived in the multi-time framework can be no higher

than the ones derived in the single-time framework. This is consistent with the

observations for the MTF and GTF estimates. As for the TDG estimate that is

the gap between the corresponding MTE and GTE, this indicator obtained in the

multi-time framework can in theory be either higher or lower than those obtained

in the single-time framework. However, it is clear that the TDGs obtained in

the multi-time framework all yield fewer efficient observations compared to those

obtained in the single-time framework. Since the TDG captures the difference

between the metafrontier and the group-specific frontier, this result implies that

major funds in the multi-time rating framework would have the possibility to im-

prove their performance if they could invest in other available underlying asset

markets across different regulatory and strategic limitations.

Second, looking at the descriptive statistics for the estimates of three indices in

the traditional MV framework versus those in the multi-moment (MVS & MVSK)

framework, it is clear to observe that all of them show some differences when

adding the higher-order moments. For the MTF estimates, the MTF obtained

in the multi-moment case yield lower mean values and more efficient observations

than those obtained in the MV case for all settings (nc-c and nc-nc for both single-

and multi-times). For the GTF estimations, the multi-moment GTF estimations

display lower mean value and more efficient observations compared to the MV
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ones. By construction, the estimates of MTE and GTE obtained in the multi-

moment case can be no higher than the estimates obtained using the MV case.

This is validated by our observations for the MTF and GTF estimates. For the

TDG estimates, while the TDG estimated in the multi-moment case show lower

mean values and lager efficient observations compared to that estimated in the

MV case for our data, in theory the former can be either higher or lower than the

latter.

Third, in theory, the estimates of MTE and GTE obtained using the nc-nc

model cannot be higher than those obtained using the nc-c model. From the

comparison of the two parallel blocks (nc-c verse nc-nc) in Table 4.2, it reveals

that in our application estimates of MTE obtained using the nc-nc model yield

lower mean values and more efficient observations than those obtained using the

nc-n model for all settings (MV & MVS &MVSK for both single- and multi-

times). In addition, the difference between the MTE estimates obtained using the

two models tend to be more pronounced when multi-moments and multi-times are

considered than when only single-time mean and variance are considered. Similar

results can be observed for the comparison between estimates of GTF using the

nc-nc and nc-c models. The TDG estimated using the nc-nc model can in theory

be either higher or lower than those obtained estimated using the nc-c model. In

the single-time and MV framework, little difference can be found on the estimated

TDG using the nc-nc and nc-c models in terms of the mean value and the number

of efficient observations. On the contrary, when multiple moments and multiple

times are included separately or jointly, a clear difference between the two TDG

estimates is revealed for our data.

To formally assess the reported differences in the estimates, we employ a non-

parametric test initially developed by Li (1996) and refined by Fan and Ullah
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(1999) and most recently by Li, Maasoumi, and Racine (2009). This nonpara-

metric test assesses the eventual statistical significance of differences between two

kernel-based estimates of density functions f and g of a random variable x. The

null hypothesis maintains the equality of both density functions almost every-

where: H0 : f(x) = g(x) for all x. The alternative hypothesis negates this equality

of both density functions: H1 : f(x) ̸= g(x) for some x. This test is valid for both

dependent and independent variables: observe that dependency is a characteristic

of frontier estimators (i.e., efficiency levels depend on sample size, among others).5

The results are reported in the last rows of each horizontal block in Table 4.2.

We start by conducting the Li-tests to test the null hypothesis that the dis-

tributions of the single-time MTE vs. the multi-time MTE, as well as its two

components GTF and TDG are equal. The Li-test result for the MTF estimates

reveals that the multiple times lead to a significant impact in the distribution of

the MTE estimates. The MTE estimates obtained in the multi-time framework

and those obtained in the single-time framework are significantly different at the

1% significance level for all settings. A similar result can also be observed for both

the GTE and TDG estimates. This suggests that the multiple times have a clear

effect on the three estimates of MTE, GTE and TDG.

Keeping the impact of multiple times in mind, we now turn to test for the

effect of adding multiple moments on the three indices. The Li-test result of

adding higher-order moments in some basic models is reported in Table 4.3. To

eliminate the possible disruptions from other variables (times and convexity), this

table summarises the results in terms of four blocks: nc-c and nc-nc, with both

single time and multiple times. From Table 4.3, it can be concluded that moments

greater than two (mean and variance) all contribute significantly to the differences
5Matlab code developed by P.J. Kerstens based on Li, Maasoumi, and Racine (2009) is found

at: https://github.com/kepiej/DEAUtils.
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in the distribution of MTE, GTE and TDG estimates at a 1% significance level,

except for adding skewness and kurtosis jointly in the case of nc-c with single

time. Turning to a comparison between these indices in the MVS versus MVSK

framework, the MTE estimates computed in the MVS and MVSK frameworks yield

significantly different efficiency distributions. This somewhat indicates that adding

kurtosis has a significant impact on the estimates of MTE. A similar conclusion is

found for the TDG estimates. In contrast, for the GTE estimates, adding kurtosis

does not contribute in a significant way to the distribution of GTE estimates.

Table 4.3: Li-test comparing the estimates of MTE and decompositions with dif-
ferent moments

nc-c nc-nc

ST ST

Order MV → MVS MV → MVSK MVS → MVSK Order MV → MVS MV → MVSK MVS → MVSK

MTE 62.24 -2.17 37.83 MTE 69.17 83.94 20.18

(0.000) (0.993) (0.000) (0.000) (0.000) (0.000)

GTE 32.97 35.28 0.25 GTE 24.89 28.94 -1.49

(0.000) (0.000) (0.358) (0.000) (0.000) (1.000)

TDG 11.73 7.05 10.10 TDG 10.91 16.50 7.35

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

MT MT

Order MV → MVS MV → MVSK MVS → MVSK Order MV → MVS MV → MVSK MVS → MVSK

MTE 56.49 59.26 50.32 MTE 92.29 92.13 6.37

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

GTE 48.69 46.73 -5.75 GTE 65.05 73.56 -1.19

(0.000) (0.000) (1.000) (0.000) (0.000) (0.984)

TDG 41.70 36.67 24.91 TDG 19.30 18.96 2.26

(0.000) (0.000) (0.000) (0.000) (0.000) (0.020)

Having explored the impact of multiple times and multiple moments on the

distribution of MTE, GTE and TDG estimates, we now focus specifically on test-

ing for the effects of the traditional convexity assumption for each GTPPS on the

distribution of these three indices, respectively. Table 4.4 reports the Li-test stat-

istics representing the distributional differences between nc-c and nc-nc models
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in six different maintained settings (both single- and multi-time framework with

MV & MVS &MVSK moments). One can clearly observe from Table 4.4 that the

convexity axiom for each GTPPS does have a significant impact on the distribu-

tion of the MTE, GTE and TDG estimates, except for the MTE estimated in the

single-time MV framework.

Table 4.4: Li-test comparing the estimates of MTE and decompositions computed
by nc-c and nc-nc models

Indices

ST MT

MV MVS MVSK MV MVS MVSK

nc-c vs. nc-nc nc-c vs. nc-nc

MTE -0.07 70.30 60.72 42.08 68.34 42.38

(0.451) (0.000) (0.000) (0.000) (0.000) (0.000)

GTE 41.82 106.41 85.87 32.41 83.40 75.58

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

TDG 5.08 14.87 8.72 45.30 38.42 34.26

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

From these analyses, we can basically conclude that the multiple moments and

multiple times both separately and jointly have an impact on the estimates of MTE

and its decomposition for our data. Furthermore, this impact is more significant

when the two factors are considered jointly. Finally, the convexity assumption for

each GTPPS is proven to have a clear impact on the estimated values of these

three indices.
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4.4.3 Backtesting Analysis

In this subsection, we use the 717 nonhomogeneous funds with 15-year continu-

ous return data to test the application of the proposed metafrontier methods for

rating and selecting funds across different groups. To this end, a comparative

approach based on a backtesting methodology is adopted. Backtesting refers to

executing fictitious investment strategies using historical data to simulate how

these strategies would have performed if they had actually been adopted by fund

managers in the past. It is powerful for evaluating and comparing the performance

of different investment strategies without using real capital. Some examples of a

backtesting approach are found in DeMiguel, Garlappi, and Uppal (2009), Tu and

Zhou (2011), Brandouy, Kerstens, and Van de Woestyne (2015), Zhou, Xiao, Jin,

and Liu (2018) and Lin and Li (2020), among others.

Apart from the 12 nonparametric matafrontier-based ratings discussed in the

previous section, we also test some traditional financial indicators: Sharpe ratio,

Sortino ratio and Omega ratio for comparison. The exact definition for the Sharpe,

Sortino and Omega ratios are found in Feibel (2003, p. 187 and p. 200) and Eling

and Schuhmacher (2007, p. 2635), respectively. In total, there are 15 fund rating

methods (3 traditional financial rating methods plus 12 metafrontier-based rating

methods) collected in our work to operate the backtesting exercises. Table 4.5 lists

the rating methods considered in our work and their abbreviations.
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Table 4.5: List of various rating models compared: 3 financial rating methods and
12 matafrontier rating methods

Models Abbreviation

Traditional financial measures

Sharpe ratio Sharpe

Sortino ratio Sortino

Omega ratio Omega

Nonconvex MTPPSs and Convex GTPPSs

Single-time and MV framework STMVnc-c

Single-time and MVS framework STMVSnc-c

Single-time and MVSK framework STMVSKnc-c

Multi-time and MV framework MTMVnc-c

Multi-time and MVS framework MTMVSnc-c

Multi-time and MVSK framework MTMVSKnc-c

Nonconvex MTPPSs and Nonconvex GTPPSs

Single-time and MV framework STMVnc-nc

Single-time and MVS framework STMVSnc-nc

Single-time and MVSK framework STMVSKnc-nc

Multi-time and MV framework MTMVnc-nc

Multi-time and MVS framework MTMVSnc-nc

Multi-time and MVSK framework MTMVSKnc-nc

We consider a simple buy-and-hold backtesting strategy consisting of buying

in each time the 10, 20 and 30 best performing funds ranked by any given rating

method, respectively. Our work now is to empirically test the out-of-sample per-

formance of these 15 buy-and-hold strategies. Since the Sharpe ratio and other

relative performance measures are only suitable for the MV world, we opt for the

shortage function as an absolute performance measure that is capable to assess
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the performance of these strategies in multiple dimensions simultaneously (i.e.,

mean, variance, skewness and kurtosis). Hence, the 15 buy-and-hold backtesting

strategies are compared based on the MVSK performance of their holding values

evaluated by combining shortage functions with the single-time and multi-moment

frontiers (with convexity and nonconvexity).

Backtesting setup: The details

Using 5 years of data to obtain our first metafrontier-based rankings and finance-

based rankings, we start backtesting from May 2006 onwards. The first buy-

and-hold strategy being made on that date, this strategy is repeated each month

thereafter with an updated set of ratings to select the best funds. Thus, we use

a rolling window of 5 years with a step of a single month to compute the ratings.

This rating and the ensuing buy-and-hold process based on these selected funds is

repeated 60 times (months) till the end of March 2016, where the 5 years before the

end of the sample period are kept apart to test the long-term holding performance

of the strategy in the last backtesting period. For each time window or each

backtesting event, the steps can be detailed as follows:

(1) Adopt the 5-year time window of data to compute the single-time metafron-

tier ratings, as well as the traditional financial ratings. In combination with

the other two time periods (i.e., 1-year and 3-year) of data from this time

window, the multi-time metafrontier ratings are computed.

(2) Depending on the rating computed by this time window of data for each

method, the 10, 20 or 30 best performing funds which may consist different

type of funds are selected for the backtesting exercise, and then one holds

these selected funds for 1 year, for 3 years, for 5 years, and till the end of
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the whole sample period, respectively.

(3) In each of the above three selecting scenarios, we compute and store the com-

plete historical track record of the holding values per buy-and-hold backtest-

ing strategy, and then we calculate the mean, variance, skewness and kurtosis

of these holding value series.

The above steps for backtesting are repeated over 60 time windows in total.

For each of the four holding period scenarios, the performance of these MVSK

observations (15 times 60 observations) that are generated by the 15 strategies over

60 backtesting exercises are all evaluated by the shortage function based on the

single-time and MVSK frontier (with convexity and nonconvexity). In particular,

we first establish the convex and nonconvex VRS nonparametric frontiers in the

single-time and MVSK framework for these MVSK observations, and then measure

their (in)efficiency scores using the shortage functions. Clearly, each buy-and-

hold strategy yields the efficiency scores of 60 MVSK observations. The average

efficiency score and the number of efficient units, as well as the distribution of

inefficiency scores across these 60 observations, are adopted to evaluate the 15

strategies.

Backtesting Results

We begin by reporting the Kendall rank correlations to test the degree of con-

cordance in rankings depending on the MTE estimated by 15 rating methods for

each backtesting exercise, which delivers a 15 times 15 dimensions. Then, we have

aggregated the Kendall rank correlations using a simple arithmetic mean of the

computations in 60 time windows to report their overall degree of concordance in

ranking. Table 4.6 shows the aggregated rank correlation between different rat-
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ings. It is noted that the correlation coefficients between the different rankings are

significantly different from zero at the 1 % significance level for each time window

calculation.

Table 4.6: Kendall rank correlations comparing the rankings computed by different
rating methods (3 financial rating methods and 12 metafrontier rating methods)

Sortino Omega STMVnc-c STMVSnc-c STMVSKnc-c MTMVnc-c MTMVSnc-c MTMVSKnc-c STMVnc-nc STMVSnc-nc STMVSKnc-nc MTMVnc-nc MTMVSnc-nc MTMVSKnc-nc

Sharpe 0.983 0.962 0.489 0.482 0.476 0.449 0.432 0.392 0.485 0.475 0.473 0.447 0.400 0.396

Sortino 0.952 0.490 0.487 0.480 0.449 0.435 0.394 0.487 0.481 0.479 0.447 0.403 0.399

Omega 0.478 0.472 0.467 0.440 0.422 0.383 0.476 0.465 0.463 0.439 0.390 0.386

STMVnc-c 0.943 0.924 0.481 0.311 0.264 0.971 0.897 0.895 0.470 0.275 0.265

STMVSnc-c 0.979 0.465 0.350 0.305 0.920 0.951 0.949 0.455 0.316 0.307

STMVSKnc-c 0.451 0.341 0.313 0.902 0.959 0.959 0.441 0.318 0.311

MTMVnc-c 0.743 0.647 0.482 0.448 0.446 0.925 0.619 0.608

MTMVSnc-c 0.882 0.314 0.342 0.340 0.705 0.829 0.824

MTMVSKnc-c 0.267 0.308 0.308 0.614 0.882 0.890

STMVnc-nc 0.918 0.915 0.477 0.279 0.270

STMVSnc-nc 0.995 0.442 0.325 0.318

STMVSKnc-nc 0.440 0.325 0.318

MTMVnc-nc 0.646 0.634

MTMVSnc-nc 0.972

The main observations resulting from Table 4.6 can be summarised as follows.

First, the ratings for these nonhomogeneous funds based on the traditional fin-

ancial indicators present a consistently low correlation on average with all the

metafrontier-based ratings (around 0.38-0.49). Second, when one moves to the

comparison between metafrontier ratings, it is clear that the single-time metafron-

tier rating and multi-time metafrontier rating show a low correlation on average

(around 0.32-0.48). Third, the MV metafrontier rating exhibits a low correlation

on average with the multi-moment rating in the multi-time framework (around

0.64-0.75). In the single-time framework, the metafrontier ratings with different

moments show a strong internal consistency: all the correlation coefficients within

this framework are highly positive and significant. Finally, the metafrontier ratings

based on the nc-c model show a high average correlation with those depending on

the nc-nc model. This correlation is lower in the multi-time and multi-moment

framework compared to the traditional single-time and MV framework.
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Clearly, the fund selection process differentiates the 15 buy-and-hold backtest-

ing strategies, since the best-performing funds are identified according to the above

ratings. Table 4.7 presents an overall analysis with respect to the performances of

the MVSK observations generated by per buy-and-hold strategy held until the end

of the whole sample period (March 2021). This table is structured as follows: The

first series of four columns list the results with regard to the 10 best funds selected

for the backtesting exercise, and the second and third series of four columns present

the results for selecting the 20 and the 30 best funds, respectively. Within each

selecting (buying) scenario, the first two columns report the average inefficiency

scores and the number of efficient units for each strategy when evaluated using

the convex VRS frontier in the single-time and multi-moment framework (VRSc),

while the last two columns report these results in the nonconvex case (VRSnc).

Table 4.7: Performance results for 15 buy-and-hold backtesting strategies (3 fin-
ancial rating methods and 12 metafrontier rating methods): Descriptive statistics
of the shortage function values

Methods

Fund(10) Fund(20) Fund(30)
VRSc VRSnc VRSc VRSnc VRSc VRSnc
Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs.

Sharpe 0.0309 1 0.0184 12 0.0340 2 0.0258 10 0.0299 0 0.0212 8
Sortino 0.0246 5 0.0159 17 0.0353 0 0.0264 10 0.0302 3 0.0212 7
Omega 0.0314 1 0.0193 11 0.0341 1 0.0256 8 0.0286 2 0.0199 12
STMVnc-c 0.0715 4 0.0512 18 0.0719 0 0.0547 3 0.0543 0 0.0347 9
STMVSnc-c 0.0730 2 0.0528 11 0.0737 0 0.0533 2 0.0646 0 0.0482 1
STMVSKnc-c 0.0568 2 0.0406 6 0.0531 8 0.0384 14 0.0496 4 0.0352 9
MTMVnc-c 0.0691 1 0.0522 12 0.0503 4 0.0380 16 0.0432 7 0.0287 14
MTMVSnc-c 0.0831 1 0.0676 5 0.0614 2 0.0481 11 0.0461 5 0.0305 16
MTMVSKnc-c 0.0637 3 0.0497 9 0.0408 7 0.0303 15 0.0328 3 0.0203 15
STMVnc-nc 0.0659 2 0.0510 12 0.0643 2 0.0471 7 0.0549 0 0.0358 8
STMVSnc-nc 0.0901 4 0.0738 7 0.0542 1 0.0403 7 0.0448 2 0.0303 9
STMVSKnc-nc 0.0751 2 0.0570 11 0.0584 4 0.0463 9 0.0374 5 0.0271 14
MTMVnc-nc 0.0703 2 0.0529 12 0.0521 4 0.0359 15 0.0445 3 0.0286 14
MTMVSnc-nc 0.0589 6 0.0466 9 0.0478 2 0.0344 11 0.0360 1 0.0229 14
MTMVSKnc-nc 0.0524 5 0.0418 11 0.0376 4 0.0260 12 0.0346 1 0.0232 14

Analyzing Table 4.7 yields the following key conclusions. First, when only se-

lecting the 10 best funds, the buy-and-hold strategies based on traditional financial

indicators all outperform those based on the metafrontier ratings. From the first

parallel block in Table 4.7, the average inefficiency scores of all strategies based

on the financial ratings are lower than those of the metafrontier ratings. From
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the second and third parallel block in Table 4.7, which report the performance

results for these strategies when selecting 20 and 30 best funds. One can find

that as the number of selected funds increases, the strategies based on the multi-

time and multi-moment metafrontier ratings exhibit a comparable performance to

those based on the financial ratings, whereas the strategies based on the other

metafrontier ratings maintain a poor performance.

Second, the strategies driven by the multi-time metafrontier ratings present

superior results compared to those driven by the single-time metafrontier ratings.

It is clearly observed that the strategies in the multi-time framework in most

cases exhibit lower average inefficiency scores and have a larger number of efficient

units than those in the single-time framework. This result is valid when selecting

the 10, 20 and 30 funds from the set of nonhomogeneous funds. Third, in the

majority of cases, the metafrontier-based strategies with higher-order moments

perform better than those with MV solely: This is valid for both single-time and

multi-time frameworks. Again, this result is confirmed when buying the 10, 20

and 30 best funds.

The final observation relates to the comparison between the strategies based on

the nc-c and nc-nc metafrontier ratings. Combining the two evaluation indicators

of average inefficiency scores and the number of efficient units, it is found that

with the consideration of multiple times and multiple moments, the buy-and-hold

strategies consisting of the funds selected by the nc-nc rating models always out-

perform strategies consisting of the funds selected by the nc-c rating models. This

result remains valid when buying the 10, 20 and 30 best funds.

To compare the 15 buy-and-hold strategies intuitively, Figure 4.4 provides box-

plots to describe the entire distributions of the inefficiency scores per strategy held

to the whole of the sample period. In each figure, the sub-figures (a) to (c) corres-
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pond to the performance results of the buying scenarios with 10, 20 and 30 best

funds selected, whereby the performance of strategies based on the convex VRS

frontier are depicted in blue, and those based on the nonconvex VRS frontier are

displayed in red. As introduced in subsection 4.4.1, the box of these box-plots in-

dicates the interquartile range where the small vertical line reports the location of

the median. Straightforwardly, the location of the median closer to the left indic-

ates that the entire distribution of inefficiency scores for one strategy is somewhat

skewed to the left, which signals that the strategy performs better in the backtest-

ing analysis because the probability mass of the inefficiency is closer to zero. As

we can observe from Figure 4.4, while the buy-and-hold strategies constructed by

the multi-moment and multi-time metafrontier ratings do not outperform those

constructed by the financial ratings, these strategies exhibit superiority compared

to the strategies constructed by the single-time and multi-time MV metafrontier

ratings.

Figure 4.4: Inefficiency distributions for 15 buy-and-hold backtesting strategies (3
financial rating methods and 12 metafrontier rating methods)

As a sensitivity analysis, we calculate the performance of the above 15 buy-and-
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holding strategies held for 1 year, 3 years and 5 years, respectively. This can be

regarded as testing the short-term holding performance, the medium-term holding

performance and the long-term holding performance of an investment strategy.

Table 4.8 reports the summarized results with respect to the performance per buy-

and-hold backtesting strategy held for 1, 3 and 5 years evaluated by the convex and

nonconvex VRS frontiers, respectively. Equally so, Figures 4.5, 4.6 and 4.7 report

the entire distributions of the inefficiency scores for the 15 strategies held for 1,

3 and 5 years, respectively. These results are presented in the Appendix. From

the results of this sensitivity analysis, the above four findings are also evident

in most cases for the three holding period scenarios. Moreover, the buy-and-

hold backtesting strategies consisting of the best HFs rated by the multi-moment

and multi-time performance measure tend to show consistent performance over

different holding periods.

4.5 Conclusion

This contribution introduces the metafrontier approach from the production the-

ory to the portfolio evaluation for assessing the efficiency of funds across groups

with heterogeneity. Following recent developments on the metatechnology (see

Afsharian and Podinovski (2018); Kerstens, O’Donnell, and Van de Woestyne

(2019)), we estimate the nonparametric metafrontier in a nonconvex way for the

fund rating, where the metafrontier are defined as the boundary of the union of

all group-specific sets. To the best of our knowledge, this contribution is the first

to systematically discuss the application of this metafrontier in the portfolio ana-

lysis and it proposes a series of nonparametric metafrontier-based methods for

handling the appraisal of nonhomogeneous funds. We now summarize the main

contributions in terms of both methodologies and empirical investigations.
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In the methodology section, with the help of the shortage function, we establish

the nonparametric metafrontier rating method that allows for evaluating the per-

formance of funds across groups along a multitude of dimensions, and provide an

MTE measure against the metafrontier for comparing the efficiency of these het-

erogeneous funds directly. This MTE measure is decomposed into GTE and TDG.

The first component allows for gauging funds within a specific group, and the lat-

ter component measures the gap between the metafrontier and this group-specific

frontier. Then, we extend this metafrontier rating procedure from the classic

MV framework to the multi-time and multi-moment framework, which aims to be

compatible with the general mixed risk-aversion preferences of investors regarding

multiple times and multiple moments.

In the empirical section, the proposed rating methods are applied to a non-

homogeneous set of actual funds covering the five distinct types of HF, BMF,

EMF, MixMF and MonMF. In particular, our empirical investigation focuses on

two key issues surrounding the application of the proposed methods for fund as-

sessment and selection. First, we identify and discuss whether the specification

factors (i.e., multiple times, multiple moments and the convexity of GTPPS) con-

sidered in the nonparametric metafrontier models have an impact on the MTE

and its decomposition (GTE and TDG). By using the Li-test to compare the

MTE (GTE and TDG) estimated by different metafrontier models, we find that

the multiple moments and multiple times both separately and jointly have an im-

pact on the estimates of MTE and its component for our data, and this impact

is more significant when the two factors are considered jointly. In addition, the

convexity assumption for each GTPPS is proven to have a clear impact on these

three indices. Second, we design a simple buy-and-hold backtesting strategy to

compare the performances of these proposed metafrontier ratings and traditional

financial ratings for selecting best performing funds across groups. According to
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the backtesting results, even though the buy-and-hold strategies constructed by

the multi-moment and multi-time metafrontier ratings do not outperform those

constructed by the financial ratings, these strategies exhibit superiority compared

to the strategies determined by the single-time and multi-time MV metafrontier

ratings.

To conclude, the proposed metafrontier methods provide an alternative proced-

ure to evaluate funds across groups accounting for heterogeneity. This procedure

is generalized and extended in the multi-time and multi-moment framework al-

lowing for gauging heterogeneous fund performances in line with general investor

preferences. An interesting perspective for future research is to extend the pro-

posed nonparametric metafrontier rating methods with the Luenberger productiv-

ity indicator for estimating the performance changes of heterogeneous funds across

groups over time. Since these indicators of different groups are evaluated relat-

ive to the same metafrontier, they are comparable and able to provide insightful

information, or more specifically, whether performance change is driven by the ef-

ficiency change or the frontier change has different implications to fund managers

and individual investors.
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4.A Additional Table and Figures

Table 4.8: Performance results for 15 buy-and-hold backtesting strategies (3 finan-
cial rating methods and 12 metafrontier rating methods) held for 1, 3 and 5 years:
Descriptive statistics of the shortage function values

Methods

Hold 1 year Hold 3 years Hold 5 years

VRSc VRSnc VRSc VRSnc VRSc VRSnc

Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs.

Fund(10)

Sharpe 0.0327 1 0.0198 12 0.0430 0 0.0198 10 0.0383 0 0.0253 4

Sortino 0.0333 1 0.0203 10 0.0415 1 0.0204 11 0.0363 2 0.0225 13

Omega 0.0333 5 0.0201 12 0.0441 0 0.0189 6 0.0393 0 0.0251 4

STMVnc-c 0.0667 2 0.0535 6 0.0519 2 0.0257 17 0.0669 1 0.0444 14

STMVSnc-c 0.0655 1 0.0526 3 0.0510 4 0.0252 13 0.0579 4 0.0401 14

STMVSKnc-c 0.0551 2 0.0379 7 0.0514 4 0.0293 16 0.0599 1 0.0420 5

MTMVnc-c 0.0622 2 0.0467 8 0.0502 1 0.0228 20 0.0606 4 0.0386 17

MTMVSnc-c 0.0606 3 0.0409 11 0.0488 2 0.0238 19 0.0656 5 0.0458 17

MTMVSKnc-c 0.0558 2 0.0365 11 0.0507 0 0.0233 18 0.0604 4 0.0391 15

STMVnc-nc 0.0561 0 0.0415 11 0.0479 5 0.0253 20 0.0596 2 0.0409 12

STMVSnc-nc 0.0631 2 0.0495 7 0.0616 0 0.0398 11 0.0656 1 0.0498 8

STMVSKnc-nc 0.0630 0 0.0461 11 0.0585 1 0.0366 14 0.0616 2 0.0428 11

MTMVnc-nc 0.0600 3 0.0446 8 0.0525 1 0.0244 16 0.0633 3 0.0416 16

MTMVSnc-nc 0.0512 2 0.0355 13 0.0518 0 0.0310 16 0.0559 3 0.0373 14

MTMVSKnc-nc 0.0447 2 0.0326 8 0.0452 4 0.0262 21 0.0497 2 0.0311 12

Fund(20)

Sharpe 0.0295 3 0.0177 15 0.0336 0 0.0153 13 0.0363 0 0.0263 6

Sortino 0.0295 4 0.0202 16 0.0354 5 0.0153 17 0.0373 1 0.0278 9

Omega 0.0310 0 0.0200 11 0.0342 1 0.0158 16 0.0376 0 0.0282 3

STMVnc-c 0.0484 1 0.0343 10 0.0377 4 0.0199 19 0.0559 2 0.0450 8

STMVSnc-c 0.0469 2 0.0298 11 0.0356 5 0.0211 21 0.0575 2 0.0418 10

STMVSKnc-c 0.0459 3 0.0322 11 0.0373 2 0.0223 21 0.0526 3 0.0400 9

MTMVnc-c 0.0502 0 0.0359 6 0.0395 4 0.0231 11 0.0490 1 0.0360 12

MTMVSnc-c 0.0508 3 0.0367 8 0.0415 1 0.0254 14 0.0564 1 0.0408 10

MTMVSKnc-c 0.0414 3 0.0260 14 0.0368 3 0.0193 24 0.0432 6 0.0314 11

STMVnc-nc 0.0477 2 0.0358 8 0.0372 4 0.0190 22 0.0550 1 0.0415 13

STMVSnc-nc 0.0431 2 0.0318 5 0.0377 2 0.0200 19 0.0464 0 0.0333 8

STMVSKnc-nc 0.0425 2 0.0308 5 0.0356 6 0.0223 20 0.0441 4 0.0309 12

MTMVnc-nc 0.0503 1 0.0374 8 0.0414 1 0.0246 9 0.0519 3 0.0359 14

MTMVSnc-nc 0.0473 0 0.0359 4 0.0397 1 0.0202 18 0.0493 3 0.0386 6

MTMVSKnc-nc 0.0417 3 0.0314 7 0.0361 0 0.0174 22 0.0413 3 0.0310 11

Fund(30)

Sharpe 0.0319 1 0.0225 6 0.0383 2 0.0176 13 0.0325 0 0.0237 11

Sortino 0.0295 3 0.0201 11 0.0374 4 0.0194 14 0.0289 5 0.0205 9

Omega 0.0321 1 0.0231 8 0.0366 2 0.0189 13 0.0337 2 0.0245 9

STMVnc-c 0.0399 5 0.0309 10 0.0385 3 0.0191 19 0.0432 2 0.0327 7

STMVSnc-c 0.0414 5 0.0276 10 0.0373 5 0.0213 20 0.0496 1 0.0380 8

STMVSKnc-c 0.0384 4 0.0273 11 0.0355 6 0.0216 23 0.0430 3 0.0329 11

MTMVnc-c 0.0449 2 0.0351 7 0.0414 3 0.0242 16 0.0417 4 0.0311 13

MTMVSnc-c 0.0405 4 0.0310 8 0.0363 4 0.0205 18 0.0429 4 0.0303 19

MTMVSKnc-c 0.0362 7 0.0283 17 0.0385 3 0.0201 20 0.0375 3 0.0278 10

STMVnc-nc 0.0419 2 0.0312 13 0.0392 4 0.0218 11 0.0467 2 0.0351 11

STMVSnc-nc 0.0366 1 0.0258 9 0.0372 1 0.0204 13 0.0365 1 0.0259 7

STMVSKnc-nc 0.0326 3 0.0204 9 0.0312 7 0.0164 22 0.0335 4 0.0225 13

MTMVnc-nc 0.0437 2 0.0331 8 0.0452 0 0.0275 11 0.0434 3 0.0302 17

MTMVSnc-nc 0.0400 1 0.0306 10 0.0399 0 0.0201 16 0.0401 0 0.0299 8

MTMVSKnc-nc 0.0384 1 0.0295 11 0.0385 1 0.0210 20 0.0383 1 0.0278 11
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Figure 4.5: Inefficiency distributions for 15 buy-and-hold backtesting strategies (3
financial rating methods and 12 metafrontier rating methods): held for 1 year

Figure 4.6: Inefficiency distributions for 15 buy-and-hold backtesting strategies (3
financial rating methods and 12 metafrontier rating methods): held for 3 years
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Figure 4.7: Inefficiency distributions for 15 buy-and-hold backtesting strategies (3
financial rating methods and 12 metafrontier rating methods): held for 5 years
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CHAPTER

5
General Conclusion

This thesis has aimed to propose novel nonparametric frontier-based/metafrontier-

based rating methods in the multi-time and multi-moment framework by integrat-

ing recent developments of nonparametric production frontier/metafrontier into

the portfolio performance evaluation. Using the existing shortage functions, these

proposed methods position each of the observed fund relative to the nonparametric

frontier/metafrontier that can envelop the observations of any multi-dimensional

choice set, and define a new performance measure that can simultaneously handle

both multiple moments and multiple times. Furthermore, we have proposed a new

Luenberger portfolio productivity indicator and its decomposition in the multi-

time and multi-moment frontier to trace the performance change of funds over

time. In the empirical analysis, we have explored the potential benefits of these

newly proposed rating methods for selecting the best performing funds compared

to the traditional finance measures and some existing frontier rating methods. We

are now in a position to summarize the main contributions and discuss some future

avenues for research.

Chapter 2 has proposed a series of nonparametric convex and nonconvex
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frontier rating methods with multiple moments and multiple times, which are

suitable to handle mixed risk-aversion preferences of investors which aim at time

persistence. The proposed rating methodologies have been empirically applied to

the HFs ratings, and the key findings can be summarized in three major elements.

First, the multiple moments and multiple times both separately and jointly have an

impact on the HF efficiency and ranking, and this impact is more significant when

the two factors are considered jointly. Second, the buy-and-hold strategies based

on the multi-time and multi-moment ratings exhibit a superiority over those based

on traditional financial ratings and single-time MV ratings. Lastly, the nonconvex

rating models have stronger discriminatory power with respect to the effect of

multiple moments over the convex rating models. Importantly, the former display

a more significant advantage in HF selection over the latter.

A general method for measuring the evolution of fund performance in the multi-

time and multi-moment framework has been explored in Chapter 3 by using some

extensions of the shortage functions combined with the Luenberger productivity

indicator. The proposed methodology has innovated in three main ways. First, the

new Luenberger portfolio productivity indicators allow to trace the evolution of

fund performance with multiple times and multiple moments. Second, these port-

folio productivity indicators based on the nonparametric frontier methods are all

simply computed by the linear (or binary mixed integer) programming, which are

much easier and time-saving when applied in the large-scale and multi-dimensional

evaluation. Third, the decomposition of these indicators distinguishes whether

changes in fund performance over time are due to the efficiency change or the

frontier shift. The efficiency change component allows testing in an alternative,

but conceptually promising way the eventual ability of fund managers, since this

measurement is not contaminated by any changes in the financial market itself (as

measured by the frontier change component). With the same HF data, we have
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tested the potential of the proposed indicators and their components in HF selec-

tion. The backtesting results point to a remarkable superior performance of the

multi-time and multi-moment Luenberger-based ratings compared to traditional

finance-based ratings and the single-time MV Luenberger-based ratings for the

actual HF selection.

The nonparametric metafrontier-based rating methods have been proposed in

Chapter 4 where the homogeneity assumption of funds required in the standard

frontier methods is relaxed. This metafrontier method allows for evaluating the

performance of funds across groups along a multitude of dimensions, and define

a metatechnology efficiency (MTE) measure against the metafrontier for gauging

these heterogeneous funds directly. Without limiting ourselves to the traditional

mean-variance portfolio setting, we have developed the nonparametric metafron-

tier rating methods in the multi-time and multi-moment framework, aiming to

allow for the fund evaluation compatible with the general investor preferences.

The empirical part employs a large database of heterogeneous funds covering five

different groups (types) not only to offer extensive tests of the specification factors

considered in these metafrontier-based models, but also to test the performance

of different rating methods in a simple backtesting setup. Specifically, the mul-

tiple moments and multiple times both separately and jointly have an impact on

the estimate of MTE, and imposing the convexity assumption for each GTPPS is

proven to have a clear impact on the MTE in any rating framework. The backtest-

ing analysis indicates that even though the buy-and-hold strategies constructed by

the multi-moment and multi-time metafrontier ratings do not outperform the tra-

ditional financial ratings, these strategies exhibit superiority compared to the other

strategies from nonparametric metafrontier rating family.

Overall, the proposed methodologies and the empirical findings in this thesis
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provide several novel ideas into the important finance topic of rating and select-

ing funds. Future work can expand on this work in multiple directions. First,

one could further account for other commonly used risk measures that allow for

assessing the tail risk as an alternative to variance (or the second moment of the

return distribution), such as Value-at-Risk (VaR) or the Conditional Value-at-Risk

(CVaR) (see Alexander and Baptista (2002), Lwin, Qu, and MacCarthy (2017),

Guo, Chan, Wong, and Zhu (2019)). The fundamental methodologies regarding

the portfolio efficiency and the portfolio productivity indicator in our work could

be extended to the mean-VaR (or CVaR)-skewness-kurtosis framework. Second,

the portfolio evaluation by using the shortage functions or distance functions relies

on the selection of the direction vectors along which the distance from the efficient

frontier is measured. It could be interesting to test for the impact of different

directions determined by different direction-selecting techniques (see Wang, Xian,

Lee, Wei, and Huang (2019) for a review) on the portfolio efficiency and the port-

folio productivity indicator. Third, our backtesting analysis is limited to a simple

buy-and-hold backtesting setting. Future work could consider several alternative

backtesting strategies to test the potential benefits of the newly proposed ratings

in funds selection. Lastly, it is worthwhile looking for further developments in

investigating the impact of unforeseen events (e.g., the 2008 financial crisis and

the Covid 19 pandemic) on fund ratings and selection, as well as in testing the

performance of the multi-time and multi-moment frontier rating models in periods

of high market volatility.
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