
HAL Id: tel-03580843
https://theses.hal.science/tel-03580843

Submitted on 18 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multimode navigation for degraded fixed wing
unmanned aerial vehicle operation under sensor and

actuator faults
Enzo Iglésis

To cite this version:
Enzo Iglésis. Multimode navigation for degraded fixed wing unmanned aerial vehicle operation under
sensor and actuator faults. Automatic. Université Paris-Saclay; Coventry University, 2021. English.
�NNT : 2021UPAST142�. �tel-03580843�

https://theses.hal.science/tel-03580843
https://hal.archives-ouvertes.fr


T
H
E
S
E
D
E
D
O
C
T
O
R
A
T

N
N
T
:
2
0
2
1
U
P
A
S
T
1
4
2

Multimode navigation for degraded fixed
wing unmanned aerial vehicle operation

under sensor and actuator faults

Navigation multimode d’un drone avec fonctionnalités dégradées
dues à des défaillances de capteurs ou actionneurs

Thèse de doctorat de l’université Paris-Saclay et de
Coventry University

École doctorale n◦ 580, sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Automatique
Graduate School : Sciences de l’ingénierie et des systèmes, Référent : Faculté des sciences d’Orsay

Thèse préparée dans les unités de recherche Traitement de l’information et
systèmes (Université Paris-Saclay, ONERA) et Centre for computational science

and mathematical modelling (Coventry University), sous la direction
d’Hélène PIET-LAHANIER, Directrice de recherche, et de James BRUSEY, Professeur
des universités, le co-encadrement de Karim DAHIA, Ingénieur de recherche, et de

Nadjim HORRI, Maître de conférences hors classe

Thèse soutenue à Paris-Saclay, le 21 décembre 2021, par

Enzo IGLÉSIS

Composition du Jury

Jean-Yves TOURNERET
Président

Professeur des universités, INP – ENSEEIHT Toulouse
Kamal MEDJAHER

Rapporteur & Examinateur
Professeur des universités, ENIT Tarbes
Lyudmila MIHAYLOVA

Rapporteur & Examinatrice
Professeur des universités, The University of Sheffield
Dalil ICHALAL

Examinateur
Professeur des universités, Université d’Evry Val d’Essonne
Tarek RAISSI

Examinateur
Professeur des universités, CNAM Paris III
Hélène PIET-LAHANIER

Directrice de thèse
Directrice de recherche, ONERA, Université Paris-Saclay
James BRUSEY

Directeur de thèse
Professeur des universités, Coventry University



Title: Multimode navigation for degraded fixed wing unmanned aerial vehicle operation under sensor
and actuator faults

Keywords: Navigation, Estimation, Faults, Particle Filters, UAVs.

Abstract: Actuator or sensor faults occurring in
an unmanned aerial vehicle can compromise the
system integrity. Fault diagnosis methods are
therefore becoming a required feature for those
systems. In this thesis, the focus is on fault esti-
mation for fixed-wing unmanned aerial vehicles
in the presence of simultaneous actuator and sen-
sor faults. To deal with the challenging nature
of some fault scenarios, such as simultaneous
and ambiguous faults that induce multimodality,
a jump-Markov regularized particle filter and en-
hanced versions of it are presented in this thesis.

This method is based on a regularized particle
filter that improves the robustness thanks to the
approximation of the posterior density by a ker-
nel mixture, and on a jump-Markov system. The
jump strategy uses a small number of particles
— called sentinel particles — to continue testing
the alternate hypothesis under both fault free and
faulty modes.

The numerical results are obtained using lin-
ear then non-linear longitudinal dynamics of fixed
wing unmanned aerial vehicle. It is compared to

interacting multiple model Kalman filters and reg-
ularized particle filters and shown to outperform
them in terms of accuracy, robustness and conver-
gence time in the scenarios considered. The state
estimation is also more accurate and robust to
faults using the proposed approach. Performance
enhancement compared to other filters is more
pronounced when fault amplitudes increase.

An enhanced version of this method named
the robustified jump-Markov regularized particle
filter is also presented and allows one to accu-
rately and rapidly estimate faults with no prior
knowledge of the fault dynamics. Finally, a new
approach to compute an adaptive transition prob-
ability matrix is introduced by computing the false
alarm and missed detection probabilities using a
saddlepoint approximation.

The proposed approaches significantly im-
prove the safety and accuracy for increasingly au-
tonomous unmanned aerial vehicles and gener-
alize to other control environments where faults
occur.



Titre : Navigation multimode d’un drone avec fonctionnalités dégradées dues à des défaillances de
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Résumé : Les défaillances d’actionneurs ou de
capteurs survenant dans un drone peuvent com-
promettre l’intégrité de la mission. La mise en
œuvre de méthodes de diagnostic de fautes est
alors nécessaire. Dans cette thèse, l’accent est mis
sur l’estimation de fautes dues à des défaillances
simultanées de capteurs et d’actionneurs pour un
drone à voilure fixe. Pour faire face à certains scé-
narios complexes de fautes, tels que les fautes
simultanées qui induisent une ambiguïté sur les
mesures qui se manifeste par la multimodalité
de la densité conditionnelle, un filtre particulaire
régularisé de type jump-Markov (JMRPF) et des
versions améliorées de celui-ci sont présentées
dans cette thèse.
Cette méthode est basée sur un filtre particulaire
régularisé (RPF) qui approche la densité condition-
nelle par unemixture de noyaux et sur un système
de Markov à sauts (JMS). La stratégie de saut uti-
lise un petit nombre de particules — appelées
particules sentinelles — qui permet de tester en
continue l’hypothèse alternative en mode sans
faute et en mode avec faute.
Les résultats numériques sont obtenus en utili-
sant un modèle dynamique linéaire puis non li-
néaire de la dynamique longitudinale d’un drone

à voilure fixe. Les performances du JMRPF sont
comparées aux performances des filtres de Kal-
man à modèles multiples interactifs (IMM-KF) et
duRPF. Les performances du JMRPFmontrent une
nette amélioration de terme de précision de l’esti-
mation des fautes capteurs et actionneurs et des
paramètres cinématiques et en termes de robus-
tesse et de vitesse de convergence par rapport aux
autres filtres. L’amélioration des performances
par rapport aux autres filtres est plus marquée
lorsque l’amplitude des fautes augmente au cours
du temps.
Une version améliorée du JMRPF, appelée filtre
particulaire régularisé robuste à sauts est égale-
ment présentée et permet d’estimer rapidement
et précisément les fautes sans connaissance a
priori de la dynamique des fautes. Enfin, une nou-
velle approche pour calculer une matrice de pro-
babilité de transition adaptative est présentée en
calculant les probabilités de fausse alarme et de
non-détection à l’aide de l’approximation du point-
selle.
Les algorithmes de navigation proposés per-
mettent à un drone d’atteindre son objectif de
suivi de trajectoire de manière autonome, avec
une sécurité et une précision accrues.
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A B S T R AC T

Actuator or sensor faults occurring in an unmanned aerial vehicle can compromise the system
integrity. Fault diagnosis methods are therefore becoming a required feature for those systems.
In this thesis, the focus is on fault estimation for fixed-wing unmanned aerial vehicles in the
presence of simultaneous actuator and sensor faults. To deal with the challenging nature of
some fault scenarios, such as simultaneous and ambiguous faults that induce multimodality,
a jump-Markov regularized particle filter and enhanced versions of it are presented in this
thesis.

This method is based on a regularized particle filter that improves the robustness thanks
to the approximation of the posterior density by a kernel mixture, and on a jump-Markov
system. The jump strategy uses a small number of particles — called sentinel particles — to
continue testing the alternate hypothesis under both fault free and faulty modes.

The numerical results are obtained using linear then non-linear longitudinal dynamics of
fixed wing unmanned aerial vehicle. It is compared to interacting multiple model Kalman
filters and regularized particle filters and shown to outperform them in terms of accuracy,
robustness and convergence time in the scenarios considered. The state estimation is also
more accurate and robust to faults using the proposed approach. Performance enhancement
compared to other filters is more pronounced when fault amplitudes increase.

An enhanced version of this method named the robustified jump-Markov regularized
particle filter is also presented and allows one to accurately and rapidly estimate faults
with no prior knowledge of the fault dynamics. Finally, a new approach to compute an
adaptive transition probability matrix is introduced by computing the false alarm and missed
detection probabilities using a saddlepoint approximation.

The proposed approaches significantly improve the safety and accuracy for increasingly
autonomous unmanned aerial vehicles and generalise to other control environments where
faults occur.
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to side-slip

R

Cnr Aerodynamic coefficient of yawing moment due
to yaw rate

R

cnx Volume of the unit hypersphere in Rnx R
Cnδa

Aerodynamic coefficient of yawing moment
aileron deflection

R

Cnδr
Aerodynamic coefficient of yawing moment due
to rudder deflection

R
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Cprop Aerodynamic coefficient of the propeller R
CXq (·) Aerodynamic force coefficient along the ib axis R
CXδe

(·) Aerodynamic force coefficient along the ib axis R
CY0 Aerodynamic force coefficient along the jb axis R
CYβ Aerodynamic force coefficient along the jb axis R
CYp Aerodynamic force coefficient along the jb axis R
CYr Aerodynamic force coefficient along the jb axis R
CYδa Aerodynamic force coefficient along the jb axis R
CYδr Aerodynamic force coefficient along the jb axis R
CZq (·) Aerodynamic force coefficient along the kb axis R
CZδe

(·) Aerodynamic force coefficient along the kb axis R
CZ (·) Aerodynamic force coefficient along the kb axis R
e Oswald efficiency factor [0.8, 1.0]

F b Body frame
F i Inertial frame
F s Stability frame
F v Vehicle frame
Fw Wind frame
F v1 Vehicle 1
F v2 Vehicle 2
fb State of the barometer fault in altitude m R
Fd Drag force kg m s2 R
Fg Gravity force kg m s2 R
fg State of the GNSS receiver fault in altitude m R
fk (·) Discrete dynamics of the extended state vector

x
Rnx × Rnu → Rnx

Fl Lift force kg m s2 R
Fp Propulsion force kg m s2 R
fx Externally applied forces on the UAV along the

ib axis
kg m s−2 R

fy Externally applied forces on the UAV along the
jb axis

kg m s−2 R

fz Externally applied forces on the UAV along the
kb axis

kg m s−2 R

Fxb Components about ib axis of the lift and drag
forces

kg m s2 R
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Fzv Components about kv axis of the lift and drag
forces

kg m s2 R

g Gravitational acceleration m s−2 R+

gn Standard acceleration of gravity m s−2 R
h Bandwidth factor of the kernel K(·) R+∗

hk (·) Discrete measurement function of the extended
state vector x

Rnx → Rny

J Youden’s index
J (·) Cost function of the LQR R
kω Motor constants of the UAV R

kGNSS Frequency response of the Gauss-Markov pro-
cess of the GNSS error model

Hz R+

kmotor Constant that specify the efficiency of the mo-
tor

R+

kTp Motor constants of the UAV R
l Externally applied moments on the UAV along

the ib axis
kg m s−1 R

L0 Lapse rate of the temperature decrease in the
lower atmosphere

K m−1 R

Lw Gain of the anti-wind-up system of the longi-
tudinal guidance

R

Lpdi LQR gain of the longitudinal control associated
with the state pdi

R

M Standard molar mass of the atmospheric air kg mol−1 R+

M Sum of all externally applied moments kg m2 s−2 R
m Externally applied moments on the UAV along

the jb axis
kg m s−1 R

m Mode of the system M
M b Sum of all externally applied moments in F b kg m2 s−2 R
m

(i)
k mk = m(i) M

Mq Coefficient of the longitudinal state space
model of the UAV

R

Mu Coefficient of the longitudinal state space
model of the UAV

R

Mw Coefficient of the longitudinal state space
model of the UAV

R
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Mδe Coefficient of the longitudinal state space
model of the UAV

R

N Number of particles N+

n Externally applied moments on the UAV along
the kb axis

kg m s−1 R

n Number of measurements of the saddlepoint
approximation

Nk Total number of time step N+

Nmc Total number of Mote Carlo performed N+∗

P Pressure measured by the barometer kg s−2 m−1 R
p Roll rate measured along ib in F b rad s−1 R
P0 Standard pressure at sea level kg s−2 m−1 R+

pd Inertial Down position (negative of altitude)
of the UAV measured along ki in F i

m R

pe Inertial East position of the UAV along ji in
F i

m R

pn Inertial North position of the UAV along ii in
F i

m R

pd0 Initial value of the state pd m R
Pd Detection probability
pe0 Initial value of the state pe m R
pn0 Initial value of the state pn m R
q Pitch rate measured along jb in F b rad s−1 R
R Molar gas constant kg m2 s−2 mol−1 K−1 R
r Yaw rate measured along kb in F b rad s−1 R

Sprop Area of the propeller m2 R+

T Local temperature of the air K R+

t Time s R
T0 Standard temperature at sea level K R+

toff Deactivation time of the fault
Ts Sample time of the Gauss-Markov process of

the GNSS error model
s R

ton Activation time of the fault
u Body frame velocity measured along ib in F b m s−1 R
v Body frame velocity measured along jb in F b m s−1 R
Vd Velocity of the UAV in F i along the Down axis m s−1 R
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Ve Velocity of the UAV in F i along the East axis m s−1 R
Vn Velocity of the UAV in F i along the North axis m s−1 R
Vu Gain associated used to compute linear ap-

proximation of the velocity vector
R

Vw Gain associated used to compute linear ap-
proximation of the velocity vector

R

w Body frame velocity measured along kb in F b m s−1 R
w

(i)
k Weight of the ith model [0, 1]

wk Particle importance weights R+

Xq Coefficient of the longitudinal state space
model of the UAV

R

Xu Coefficient of the longitudinal state space
model of the UAV

R

Xw Coefficient of the longitudinal state space
model of the UAV

R

Xδe Coefficient of the longitudinal state space
model of the UAV

R

Xδt Coefficient of the longitudinal state space
model of the UAV

R

yaccel,u Integral of the raw measurement of the ac-
celerometer along ib axis

m s−1 R

yaccel,v Integral of the raw measurement of the ac-
celerometer along jb axis

m s−1 R

yaccel,w Integral of the raw measurement of the ac-
celerometer along kb axis

m s−1 R

yaccel,x Raw measurement of the accelerometer along
ib axis

m s−2 R

yaccel,y Raw measurement of the accelerometer along
jb axis

m s−2 R

yaccel,z Raw measurement of the accelerometer along
kb axis

m s−2 R

ybaro,−pd Linear approximation of the altitude using the
barometer

m R

ybaronl,−pd Non-linear measurement of the altitude using
the barometer

m R

ybaro Raw measurement of the barometer kg s−2 m−1 R
yGNSS,pe Raw measurement of the East position of the

GNSS
m R
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yGNSS,pn Raw measurement of the North position of the
GNSS

m R

yGNSS,u Raw measurement of the velocity position of
the GNSS along the ib axis

m s−1 R

yGNSS,v Raw measurement of the velocity position of
the GNSS along the jb axis

m s−1 R

yGNSS,w Raw measurement of the velocity position of
the GNSS along the kb axis

m s−1 R

yGNSS,−pd Raw measurement of the Altitude position of
the GNSS

m R

ygyro,φ Integral of the raw measurement of the rate
gyro along ib axis

rad s−1 R

ygyro,ψ Integral of the raw measurement of the rate
gyro along kb axis

rad s−1 R

ygyro,θ Integral of the raw measurement of the rate
gyro along jb axis

rad s−1 R

ygyro,p Raw measurement of the rate gyro along ib

axis
rad s−1 R

ygyro,q Raw measurement of the rate gyro along jb

axis
rad s−1 R

ygyro,r Raw measurement of the rate gyro along kb

axis
rad s−1 R

ymag Raw measurement of the magnetometer rad R
Zq Coefficient of the longitudinal state space

model of the UAV
R

Zu Coefficient of the longitudinal state space
model of the UAV

R

Zw Coefficient of the longitudinal state space
model of the UAV

R

Zδe Coefficient of the longitudinal state space
model of the UAV

R

Gak (·) Discrete dynamics of the actuators faults Rna → Rna

Gsk (·) Discrete dynamics of the sensors faults Rns → Rns

ηkmk
Process noise associated with the mode vector
mk

fkmk
(·) Discrete dynamics of the extended state vector

x associated with the mode vector mk
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hkmk
(·) Discrete measurement function of the extended

state vector x associated with the mode vector
mk

Fkmk
(·) Discrete dynamics of the state vector z associ-

ated with the discrete mode mk

Rnz×nu×na → Rnz

Gakmak
(·) Discrete dynamics of the actuator faults asso-

ciated with the mode vector mak

Gskmsk
(·) Discrete dynamics of the sensor faults associ-

ated with the mode vector msk

Hkmk
(·) Discrete measurement function of the state

vector z associated with the discrete mode mk

Rnz×ns → Rny

Greek Letters

α Angle of attack rad [−π, π]
α Bound of the false alarm of the Neyman-

Pearson criterion
α0 Stalling angle of attack rad [0, π2 ]

ᾱ Trimmed angle of attack rad [−π, π]− α∗

γ̄a Trimmed air-mass-referenced flight path angle rad [−π, π]− γ∗a
θ̄i Integrated error of the trimmed state θ̄ rad R
θ̄c Desired trimmed pitch rad [−π, π]− θ∗

δ̄e Trimmed control input δe rad
[
−π

7 ,
π
7

]
− δ∗e

δ̄t Trimmed control input δt [0, 1]− δ∗t
γ̄a
c Desired trimmed air-mass-referenced flight

path angle
rad [−π, π]− γ∗a

θ̄ Trimmed state θ rad [−π, π]− θ∗

β Side-slip angle rad [−π, π]
χ Course angle rad [−π, π]
χc Crab angle rad [−π, π]
δa UAV aileron deflection rad

[
−π

7 ,
π
7

]
δe UAV elevator deflection rad

[
−π

7 ,
π
7

]
δm Local declination between the geographical

and magnetic North
rad R

δr UAV rudder deflection rad
[
−π

5 ,
π
5

]
δt UAV throttle input [0, 1]
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δ (·) Dirac delta functions
η Threshold of the likelihood ratio

ηGNSS Zero-mean white Gaussian noise of the Gauss-
Markov process of the GNSS error model

m R

Γ Threshold of the false alarm and missed detec-
tion probabilities

γ Flight path angle rad [−π, π]
Γ (·) Euler’s gamma function R → R
γa Air-mass-referenced flight path angle rad [−π, π]

Γ1−8 Products of the inertia matrix R
Γrspl Threshold of the effective number of particle

for performing the resampling step
[0, 1]

Λ (·) Likelihood ratio
µ0 Mean of the distribution under H0

µ1 Mean of the distribution under H1

µaccel,x Mean of Gaussian noise of the accelerometer
along ib axis

m s−2 R

µaccel,y Mean of Gaussian noise of the accelerometer
along jb axis

m s−2 R

µaccel,z Mean of Gaussian noise of the accelerometer
along kb axis

m s−2 R

µbaro Mean of Gaussian noise of the barometer kg s−2 m−1 R
µgyro,p Mean of Gaussian noise of the rate gyro along

ib axis
rad s−1 R

µgyro,q Mean of Gaussian noise of the rate gyro along
jb axis

rad s−1 R

µgyro,r Mean of Gaussian noise of the rate gyro along
kb axis

rad s−1 R

νaccel,u Integral of the Gaussian noise of the accelerom-
eter along ib axis

m s−1 R

νaccel,v Integral of the Gaussian noise of the accelerom-
eter along jb axis

m s−1 R

νaccel,w Integral of the Gaussian noise of the accelerom-
eter along kb axis

m s−1 R

νaccel,x Gaussian noise of the accelerometer along ib
axis

m s−2 R
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νaccel,y Gaussian noise of the accelerometer along jb
axis

m s−2 R

νaccel,z Gaussian noise of the accelerometer along kb
axis

m s−2 R

νbaro,−pd Gaussian noise of the barometer in the altitude
state space

m R

νbaro Gaussian noise of the barometer kg s−2 m−1 R
νGNSS,pe Error model of the East position of the GNSS m R
νGNSS,pn Error model of the North position of the GNSS m R
νGNSS,u Zero mean white Gaussian noise of the velocity

using GNSS along the ib axis
m s−1 R

νGNSS,v Zero mean white Gaussian noise of the velocity
using GNSS along the jb axis

m s−1 R

νGNSS,w Zero mean white Gaussian noise of the velocity
using GNSS along the kb axis

m s−1 R

νGNSS,−pd Error model of the Altitude position of the
GNSS

m R

νgyro,φ Integral of the Gaussian noise of the rate gyro
along ib axis

rad R

νgyro,ψ Integral of the Gaussian noise of the rate gyro
along kb axis

rad R

νgyro,θ Integral of the Gaussian noise of the rate gyro
along jb axis

rad R

νgyro,p Gaussian noise of the rate gyro along ib axis rad s−1 R
νgyro,q Gaussian noise of the rate gyro along jb axis rad s−1 R
νgyro,r Gaussian noise of the rate gyro along kb axis rad s−1 R
νmag Gaussian noise of the magnetometer rad R
ωb/i Angular velocity of frame F b with respect to

F i
rad s−1 R

φ Roll angle defined with respect to F v2 rad [−π, π]
Φ (·) Cumulative distribution function
φ (·) Standard Gaussian distribution
πij Transition probability of switching from a

mode j to i
ψ Heading (yaw) angle defined with respect to

F v
rad [−π, π]

ψm Heading relative to the magnetic North rad R
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ρ Density of air kg m−3 R+

σ (·) Sigmoid function R
σ0 Standard deviation of the distribution under

H0

σ1 Standard deviation of the distribution under
H1

σaccel,x Standard deviation of Gaussian noise of the
accelerometer along ib axis

m s−2 R

σaccel,y Standard deviation of Gaussian noise of the
accelerometer along jb axis

m s−2 R

σaccel,z Standard deviation of Gaussian noise of the
accelerometer along kb axis

m s−2 R

σbaro Standard deviation of Gaussian noise of the
barometer

kg s−2 m−1 R

σGNSS,−pd Standard deviation of the Gaussian noise of
the GNSS error in Down position

m R

σGNSS,pe Standard deviation of the Gaussian noise of
the GNSS error in East position

m R

σGNSS,pn Standard deviation of the Gaussian noise of
the GNSS error in North position

m R

σGNSS,u Standard deviation of the Gaussian noise of
the velocity using GNSS along the ib axis

m s−1 R

σGNSS,v Standard deviation of the Gaussian noise of
the velocity using GNSS along the jb axis

m s−1 R

σGNSS,w Standard deviation of the Gaussian noise of
the velocity using GNSS along the kb axis

m s−1 R

σGNSS Standard deviation of the Gaussian noise of
the Gauss-Markov process of the GNSS error
model

m R

σgyro,p Standard deviation of Gaussian noise of the
rate gyro along ib axis

rad s−1 R

σgyro,q Standard deviation of Gaussian noise of the
rate gyro along jb axis

rad s−1 R

σgyro,r Standard deviation of Gaussian noise of the
rate gyro along kb axis

rad s−1 R

θ Pitch angle defined with respect to F v1 rad [−π, π]
εk Regularization noise Rnx



xl nomenclature

η Model uncertainties, also known as process
noise

Rnx

ν Measurement noise Rny

Π Transition probability matrix RM×M

σf Standard deviation of the process noise associ-
ated with the state vector σf

Rnf

σz Standard deviation of the process noise associ-
ated with the state vector z

Rnz

φfa (·) Activation functions of the false alarm prob-
ability of the adaptive transition probability
matrix

φmd (·) Activation functions of the missed detection
probability of the adaptive transition probabil-
ity matrix

Superscripts

∗ Equilibrium point
1 : N Sample from 1 to N
mc The mcth Mote Carlo performed N+∗

> Transposition of the matrix to which it is ap-
plied

(i) Mode number N0:M−1

Subscripts

1 : k Time step 1 to k
k Current time step



1
G E N E R A L I N T RO D U C T I O N

Unmanned aerial vehicle (UAV) systems have been one of the aviation’s most rapidly evolving
fields in recent years, but their wider use will depend on safely increasing their autonomy.
The ability to recover from actuator and sensor faults is crucial in this context.

Fault detection, isolation and recovery systems are increasingly employed in aircraft to
provide alternate flight modes with adequate flight envelope protections using hardware
or analytical redundancies in large aircraft. The level of redundancy is however limited in
small aircraft. Fault detection malfunctions in aircraft sensing continue to be linked to loss
of control in flight, often leading to serious or even catastrophic incidents such as the two
recent Boeing 737 MAX crashes where a stall was erroneously detected by a faulty angle of
attack sensor, which triggered the automatic anti stall system, forcing the nose of the aircraft
down multiple times until it eventually crashed [1]. Inertial navigation sensor failures have
also led to the crashes of the Qantas F72 and Croatia Boeing 737–200 [2]. UAV systems also
face these issues. Approximately 40 % of Predator drones have indeed crashed in Class A
(the highest severity) accidents and the United States Air Force (USAF) acknowledged that
Predator UAVs crash more frequently than regular military aircraft, which highlights an even
higher need for fault tolerance in autonomous aircraft [3]. This is also true in small UAV due
to limited redundancy and lower cost sensing. UAVs legislation bodies increasingly require any
applications for certification of autonomous systems to cover data integrity, including sensor
data and fault flags [4]. Small autonomous UAVs will therefore increasingly be required to
employ fault detection, isolation and recovery systems for multiple sensor fault modes. The
architecture of UAVs with fault diagnosis and recovery modules is illustrated in Figure 1.1.

In Figure 1.1, the process faults — faults that directly occur in the UAV module — are
illustrated, but this thesis focuses on actuator and sensor faults.

Fault detection and isolation (see Section 2.2) are well mastered nowadays, but fault
estimation must be considered to make a fault recovery possible. Fault estimation methods
are developed in this thesis for a low to medium endurance fixed wing UAV, without
actuator redundancy. Estimation filters were investigated for this purpose, including Kalman
Filters that have been adapted to a variety of joint state and fault estimation problems
for linear Gaussian systems (see Section 2.5.4). An efficient extension of the approach to
multimode systems is the use of banks of Kalman filters in a interacting multiple model (IMM)
architecture (see Section 2.5.7). Kalman filters were extended to nonlinear systems using local
linearization in the extended Kalman filter (EKF) (see Section 2.5.5) Another extension of

1
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Figure 1.1: Architecture of the UAV with fault diagnosis and recovery

Kalman filtering to nonlinear systems is the propagation of a deterministic cloud of particles
using the unscented Kalman filter (UKF), but both the EKF and UKF are suboptimal in the
nonlinear non-Gaussian case. Particle filters are known to provide a discrete approximation to
the optimal state estimation problem in nonlinear and multimodal systems [5]. Particle filters
(see Section 2.5.6) have been successfully implemented for aircraft navigation [6], including
terrain aided navigation in the presence of nonlinear and multimodal measurements [7], and
fault detection and isolation in small UAV [8]. They were also developed for multiple model
architectures but with the computational cost of testing both hypotheses using large numbers
of particles at all times [9]. A jump Markov particle filter was introduced to represent the
mode transitions using a Markovian jump process, where faulty and fault-free situations
are modelled as discrete states of the system by Doucet, Gordon, and Krishnamurthy [10]
and Tafazoli and Sun [11]. However, all these methods are either not suitable for some types
of faults, embedded applications such as the UAVs considered in this thesis, or suffer from
some limitations like making assumptions about the potential faults, or having knowledge of
the fault magnitude or dynamics. All these identified limitations lead to the following list of
questions to which this thesis aims to provide complete or at least partial answers.

1.1 research questions

1. Does a jump-Markov system (JMS) with a regularized particle filter (RPF) increase
accuracy and speed up convergence when abrupt additive faults occur, compared to a
stand-alone RPF?
The JMS is used to represent the change in dynamics of a system and more details on
this are given in Section 2.5.7. A RPF is an estimation filter that can be used for state
and fault estimation and a detailed description of this filter is given in Section 2.5.
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2. Is it possible to distinguish and estimate ambiguous sensor faults using only a JMS as
process model of a particle filter?
In this thesis, ambiguous sensor faults are defined as faults occurring on measurements
provided by sensors that measure the same state. The measurement equations are
then differentiated only by their noises, which are assumed to be independent and
have different characteristics. When two sensors are used to measure the same state
and faults occur, sensor fault isolation and estimation is not trivial. More details on
ambiguous sensor faults are given in Section 4.1.

3. Can an abrupt additive fault, with a large amplitude with respect to the process noise,
be accurately estimated in a short time period?
Process noise is used to model the uncertainties of the system, especially in the Bayesian
approach used in this thesis. Large process noise then usually means that the dynamics
of the system is not well known, and in the case of abrupt faults, high process noise
can be useful to account for abrupt changes in the dynamics, which may correspond to
a fault. However, increasing the process noise leads to a less accurate estimate. Thus,
the issue is to be able to estimate a fault with a large amplitude without degrading the
fault estimate. The effect of process noise when an abrupt change occurs is explored in
Section 4.2.

4. Can faults with different dynamics than the ones used in the process model be estimated
accurately?
The model-based fault estimation approach used in this thesis uses the dynamics of
the fault and the dynamics of the UAV to be able to estimate the fault. Since the
dynamics is the mathematical description of the behaviour of the system, it provides
an analytical redundancy. A more accurate approximation of the fault dynamics tends
to provide a better estimate of the faults. However, detailed knowledge of the fault
dynamics is not always possible, and an approximation is often used. Therefore, in this
thesis, a thorough study is performed to be able to estimate a fault despite the use
of an approximation of the fault dynamics, which would not usually provide accurate
estimates. The effects of having a different dynamics as a process model than the one
occurring is described in Section 5.2.

5. In the case of ambiguous actuator and sensor faults, is it possible to distinguish and
estimate them?
An ambiguous actuator and sensor fault is defined in this thesis as an actuator fault
that has a similar impact on the measurements as a sensor fault. This type of fault is
simulated in this thesis by a fault on the elevator deflection. This fault has a direct
impact on the pitch rate measurement. It is therefore difficult to distinguish between a
faulty pitch rate measurement and a faulty elevator deflection. Ambiguous actuator
and sensor faults are detailed in Section 5.2.
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6. Can the false alarm and missed detection probability be computed in real time so that
the transition probability matrix of the JMS process model can be adjusted?
The JMS as is it described in Section 2.5.7 uses a probability transition matrix to
switch between modes. These modes represent faulty and fault-free situations. The
transition probabilities between modes are linked to the false alarm and missed detection
probability. The idea is then to study the applicability of an adaptive transition
probability matrix, computed with the current false alarm and missed detections
probabilities.

7. Can the proposed solution for the previous questions be used for real-time embedded
applications?
The concern here is to be sure that the proposed solutions are suitable for an embedded
application such as UAV, navigation and control, and proceed in real-time with the
current data to provide a fault diagnosis that could limit the impact of faults on a
mission.

1.2 contributions to knowledge

The work described in this thesis that contributes to current knowledge is the following:

• A state estimation filter based on a RPF and on JMS, called the jump-Markov regularized
particle filter (JMRPF);

• An improved particle placement for particle filter regarding the likelihood using a
Kalman update to solve ambiguity between actuator and sensor fault and to improve
the robustness of the filters;

• An enhanced probability transition matrix of the JMS for fault estimation to explore
the alternate mode to the current hypothesis to reduce computational demand, using
an analytical expression based on a generalization of the saddlepoint approximation
to independent but non identically distributed measurements, with application to the
online computation of false alarm and missed detection probabilities.

1.3 publications

[1] Enzo Iglésis, Karim Dahia, Hélène Piet-Lahanier, Nicolas Merlinge, Nadjim Horri,
and James Brusey. “A Jump-Markov Regularized Particle Filter for the estimation of
ambiguous sensor faults”. In: vol. 53. 2. 21th IFAC World Congress. 2020, pp. 756–763.

[2] Enzo Iglésis, Nadjim Horri, Karim Dahia, James Brusey, and Hélène Piet-Lahanier.
“Nonlinear Estimation of Sensor Faults With Unknown Dynamics for a Fixed Wing
Unmanned Aerial Vehicle”. In: 2021 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE. 2021, pp. 404–412.
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[3] Enzo Iglésis, Nadjim Horri, James Brusey, Karim Dahia, and Hélène Piet-Lahanier.
“Simultaneous Actuator and Sensor Faults Estimation for Aircraft Using a Jump-
Markov Regularized Particle Filter”. In: 2021 IEEE International Conference on
Prognostics and Health Management (ICPHM). IEEE. 2021, pp. 1–10.

1.4 thesis structure

The thesis is organized as follows:
Chapter 2 presents a literature review on state fault diagnosis, with an in depth review of

fault estimation, and in particular, including Bayesian estimation theory, particle filtering
and hybrid state estimation using IMM architectures.

Chapter 3 details the application under consideration in this thesis: a fixed-wing UAV. The
non-linear model, guidance, control systems are presented, as well as the UAV sensors.

Chapter 4 introduces a new approach named the JMRPF for the estimation of actuator and
sensor faults as well as ambiguous sensor faults, by combining a new jump Markov strategy
with regularized particle filtering. The principle, mathematical formulation and algorithms
used to implement this method are presented, followed by a numerical simulation analysis
that includes a comparison with the IMM for a linear jump Markov model with ambiguous
sensors faults.

Chapter 5 presents an enhanced version of the JMRPF named the robustified jump-Markov
regularized particle filter (RJMRPF) for the estimation of faults with unknown dynamics and
amplitudes and to further improve the estimation of ambiguous actuator and sensor faults.
The mathematical formulation of this filter where a Kalman correction is incorporated, are
detailed in this chapter and followed by a numerical simulation analysis. The RJMRPF is
compared to the RPF, JMRPF and a robustified RPF in terms of fault and state estimation
accuracy.

Chapter 6 tackles the issue of the sub-optimality of the transition probability matrix of
the JMS used in the JMRPF and RJMRPF, by updating this matrix in real time using the false
alarm and missed detection probabilities, which are both computed using a Lugannani and
Rice formula. A formulation of the transition probability matrix as well as the method and
the new algorithm named the adaptive jump-Markov regularized particle filter (AJMRPF)

— or adaptive robustified jump-Markov regularized particle filter (ARJMRPF) depending on
which algorithm is used with the transition probability matrix update — is detailed, with
a numerical simulation analysis. The AJMRPF is compared to the JMRPF in terms of fault
and state estimation accuracy. The false alarm and missed detection probabilities are also
simulated in the case of the AJMRPF.

Chapter 7 concludes the thesis and discusses possible directions for future work.





2
FAU LT D I AG N O S I S A N D E S T I M AT I O N M E T H O D S

This chapter provides the background for the work presented in the subsequent chapters
of this thesis and is organized as follows: Section 2.1 detail the different type of faults and
how to describe them in a system. The Section 2.2 define fault diagnosis. In Section 2.3, the
model-based fault diagnosis is detail. Section 2.4 detail the common issues of model based
fault diagnosis as well as the performance metrics. The Section 2.5 takes a look at the model
based fault estimation. Section 2.6 summarize this chapter.

Without loss of generality, all dynamical models used in this thesis are time-invariant,
which is not unusual in the mathematical modelling of fixed wing UAV dynamics. It is also
assumed that the measurement function does not explicitly depend on control inputs, which
is also a common assumption.

In this chapter, the following considerations are used: The evolution of a dynamic system
can be represented using state variables, such as position, velocity, and their temporal
dependencies. The state vector contains all the state variables and its dimension is the
dimension of the system. Some aspects of the state of the system can be measured. The set
of possible measurements can be represented as a vector space, and it is referred to a vector
in this space as a measurement vector. The measurement vector contains all measurements
available, these measurements are functions of the state variables.

To represent the dynamic system studied in this thesis, let us consider a state vector
z ∈ Rnz and a measurement vector y ∈ Rny described by the following discrete time system,{

zk = Fk (zk−1, uk)
yk = Hk (zk)

(2.1a)
(2.1b)

where u ∈ Rnu is the input vector, the subscript k and k − 1 denote the time step, Fk (·) ∈
Rnz×nu → Rnz is the discrete time dynamics of the state vector and H (·) ∈ Rnz → Rny is
the measurement function.

2.1 fault types and models

According to a definition provided by Isermann [12] a ‘fault’ is an “Unpermitted deviation of
at least one characteristic property of the system” This ‘unpermitted deviation’ can occur at

7
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various levels of an architecture and with multiple behaviours. This section aims to provide
an overview of fault types and their potential mathematical representation.

2.1.1 Fault types

A classification provided by Varga [13] allows various types of faults to be distinguished.
The physical classification defines where the fault occurs on the system. The occurrence
classification defines how the fault occurs. The time-related classification defines the duration
of the fault. Finally, the model classification defines how the fault occurs on the system.

A fault diagnosis method is characterized by the type of fault that it can diagnose.

2.1.1.1 Physical classification

The physical classification of faults can be associated with one of the three types proposed
by Varga [13], each type being exclusive. The first type is the actuator fault. It defines a
variation of one or more characteristics of an actuator that leads to a loss of efficiency or
a complete breakdown. The second type is the sensor fault, which defines an acquisition
of incorrect data from a sensor. The last type is the parametric fault, which consists of a
modification of the plant dynamical equations. It is defined as an internal malfunction such
as an unexpected shift in the centre of gravity in a UAV.

The three types of physical fault classification are illustrated in Figure 1.1.

2.1.1.2 Occurrence classification

The occurrence classification of faults can be associated with one of the two types proposed
by Varga [13] and Isermann [14], each type being exclusive. The first type is the abrupt
fault. It represents a fault that occurs suddenly. The second type is the incipient fault which
represents a fault that occurs gradually.

Figure 2.1 illustrates the evolution of faults according to these two types of occurrence.
Note that the dynamics of the fault can differ from the one illustrated.

In Figure 2.1, the time ton denotes the activation time of the fault.

2.1.1.3 Time-related classification

The time-related classification of faults can be associated with one of the two mutually
exclusive types proposed by Varga [13] and Isermann [14]. The first type is the persistent
fault, which describes a fault that has an effect which persists. The second type is the
intermittent fault. This type of fault has an effect that lasts during a time period, then
vanishes to possibly reappear later.

The time-related classification of fault is illustrated in Figure 2.2.
In Figure 2.2, the time toff denotes the deactivation time of the fault. The State off

indicates that the fault is not active while the state on indicates that the fault is active.
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Figure 2.2: Time-related classification of faults

A fault diagnosis method that can also diagnose intermittent faults can diagnose persistent
faults but must also detect the deactivation of the fault.

2.1.1.4 Model classification of faults

The model classification of faults can be associated with one of the two types proposed
by Varga [13], each type being exclusive. The additive fault can be modelled by a superposition
of a signal with the original input, state or measurement signals. The multiplicative fault
results in changes in the parametric representations of the process in state or measurement
equations.

The model classification of fault is illustrated in Figure 2.3.
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Figure 2.3: Model classification of faults

2.1.2 State representation of faults

This section aims to represent the system with actuator and sensor faults. Then, a model
with mode switch between faulty and fault-free dynamics is presented. Since “a fault is a
state within the system” [14], the actuator and sensor faults are then denoted respectively as
state vector fa ∈ Rna and fs ∈ Rns . For the sake of brevity in this section, actuator and sensor
faults vectors have the same dimension as the input vector and the measurement vector
respectively. However, faults can also be considered on a subset of actuators or measurements.

2.1.2.1 Actuator faults

Actuator faults can be modelled by an extra signal on the control input vector. For sake of
brevity, in this thesis it is assumed that the actuator faults directly modify the control input
values [15]. This means that the actuator fault and the control input vector are in the same
space. Then, for an additive fault this signal is added to the control input vector u, and the
new system is then given by:{

zk = Fk (zk−1, uk + fak−1)

yk = Hk (zk)
(2.2a)
(2.2b)

2.1.2.2 Sensor faults

Sensor faults can be modelled by an extra signal in the measurement equation. For sake
of brevity, in this thesis it is assumed that the sensor faults directly act on the process
measurement [15, 16]. This means that the sensor faults and the measurements are in the
same space. For an additive fault this signal is added to the measurement function Hk (·),
and the new system is then given by:{

zk = Fk (zk−1, uk)
yk = Hk (zk) + fsk

(2.3a)
(2.3b)
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2.2 fault diagnosis

In the literature, ‘fault diagnosis’ is used to encompass multiple tasks [13, 15]. The definition
given by Isermann [12] is no exception since it defines fault diagnosis as a “Determination of
kind, size, location and time of detection of a fault by evaluating symptoms. Follows fault
detection. Includes fault detection, isolation and identification”

Fault detection is the most basic task of fault diagnosis. For Isermann [12], fault detection
means “Determination of faults present in a system and time of detection” Then, as suggested
by Isermann [12], fault detection only focuses on the detection of the occurrence of a fault.
Its purpose is only to provide information that a fault is active or not — in other words
on or off — and consequently, provide information on the time of activation of the fault —
that is ton. The deactivation time — that is toff — can be provided, but it is not a required
feature. If the deactivation time can be provided by the fault diagnosis method, the only
fault type information — according to the ones given in Section 2.1 — that is provided is
the time-related classification of the fault.

In fault diagnosis the fault detection is followed by the fault isolation. In [12], fault
isolation is the “Determination of kind, location and time of detection of a fault by evaluating
symptoms”. The main additional feature of fault isolation is the localization of the fault. This
localization goes beyond the simple physical classification of the fault. Indeed, it does not
simply determine if the fault originates from the actuator or the sensor, but also indicates
which actuator or sensor is faulty.

A more challenging task than fault isolation is fault identification. According to the
definition provided by Isermann [12] fault identification consists in the “Determination of the
size and time-variant behaviour of a fault”. However, the definitions of ‘fault identification’
vary in the literature. The definition of Isermann [12] is close to the definition of fault
estimation by Varga [13], where ‘fault estimation’ means “the reconstruction of the fault
signal”. However, Varga [13] uses the term ‘fault estimation’ because ‘fault identification’ is
defined as “a precise classification of the detected faults and their characteristics”. Nevertheless,
this thesis only addresses the problem of fault diagnosis up to the fault estimation. The fault
identification as defined by Varga [13] is not discussed here. In other words, the term fault
diagnosis in this thesis includes fault detection, isolation and estimation.

When there is no hardware redundancy, fault estimation allows one to keep using the
faulty hardware since by reconstructing the fault signal it can be removed from the raw
signal. In the application considered — a small UAV — it is assumed that no hardware
redundancy is available.

2.2.1 Fault diagnosis methods

The two main approaches currently being adopted in research into fault diagnosis are the
data-driven and model-based fault diagnosis approaches [17]. The data-driven approach uses
a large amount of process data and statistical decision methods to perform fault diagnosis [18].
Recent trends in data-driven approaches have led to a proliferation of studies that use neural
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networks to perform fault diagnosis [19–23]. The quality of the data used is a key element of
this approach. The model-based approach on the other side takes advantage of the knowledge
of the dynamics of the system [15, 24]. Also called analytical redundancy, this approach aims
to predict the output of the process by using a mathematical representation that reconstructs
the process behaviour on-line. The difference between the process output and the predicted
output is called the residual [25]. In a fault-free situation regardless of the noise, the residual
should be equal to zero, while in a faulty situation, it should be different from zero. The
quality of the mathematical representation of the process is a key element of this approach.

This thesis focuses on the model-based approach since it is applied to fixed-wing UAVs
and it is assumed that the dynamics of the fixed-wing UAV considered are known. This
assumption is rationalized in Chapter 3 by a full description of this model.

2.3 model-based fault diagnosis

The general architecture of model-based fault diagnosis is illustrated in Figure 2.4.

Process

Process
model

Residual
processing

residuals Decision
logic

outputinput

Fault
diagnosis
output

Σ

residual generation residual evaluation
model-based fault diagnosis system

+−

Figure 2.4: General architecture of model-based fault diagnosis

As shown in Figure 2.4, a model-based fault diagnosis system consists of two sequential
steps: (i) the residual generation, and (ii) the residual evaluation. These steps are described
in the Section 2.3.1 and Section 2.3.2.

2.3.1 Residual generator

As previously explained and as illustrated in Figure 2.4, the residual is the difference between
the process model output and the corresponding measured output. Herein, the process is
the system considered, the inputs are the actuator command u, and the outputs are the
sensors measurements y. Then, the residual is the difference between the measurements y
and the process model outputs. This process model output is obtained by evaluating the
function Hk (·) for the state predicted state vector zk|k−1, given the input value and the
model equation. Then, the residual is given by:

ỹk = yk −Hk
(
zk|k−1

)
(2.4)
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The prediction of the state vector z is performed using the discrete state dynamics function
fk (·). Estimation filters provide a predicted state vector that can be used for the residual
generation. This technique is detailed in Section 2.5.

2.3.2 Residual evaluation

As previously explained, in the absence of noise and uncertainty, a residual is equal to zero
in a fault-free system. However, in practice due to the measurement and process noises —
in other words, the system uncertainties — the residual is almost always different from
zero, even in a fault-free system. Then, the residual evaluation module aims to analyse the
residuals to be able to know if it is significantly different from zero or not. To do so, this
analysis is usually performed by a statistical test. In Figure 2.4, the residual evaluation
is divided into two sequential steps: (i) the residual processing and (ii) the decision logic.
The residual processing aims to provide statistical characteristics of the residuals, while the
decision logic use these statistical characteristics to decide if there is a fault or not. The
statistical test can be used to compare the residual signal observed to the residual signal
expected in a fault free case. Usually the monitored change between the fault free residuals
and the observed residuals is the mean, but the variance can sometimes also be monitored.
Some residual generators are able to perform residual evaluation. To be able to achieve fault
isolation without any additional feature, it is necessary that each fault affects a distinct set
of residuals.

The most common residual evaluator methods are described by Basseville and Nikiforov
[26]. Most of these tests are based on hypothesis testing. To do so, two hypotheses are
considered and confronted, the most likely according to the test outcome is then chosen.
These hypotheses are H0 and H1 which are the nominal and faulty hypotheses respectively.
They are given by:{

H0 : ỹk ∼ p (ỹk|H0)

H1 : ỹk ∼ p (ỹk|H1)

(2.5a)
(2.5b)

where ỹk is the residual signal with a mean E [ỹk]. The two hypotheses mean are then given
by: {

H0 : E [ỹk] = µ0

H1 : E [ỹk] = µ1

(2.6a)
(2.6b)

where µ0 is the mean of the nominal signal which is assumed to be 0, and µ1 is the mean of
the faulty signal which should be different from 0. The value µ1 is often unknown. To deal
with this, most of the hypothesis testing methods consider the hypothesis H1 more likely if
the hypothesis H0 likelihood is under a specified threshold. Then, the hypotheses on the
mean of the residual can be rewritten as:{

H0 : E [ỹk] = 0

H1 : E [ỹk] 6= 0

(2.7a)
(2.7b)
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Note that these hypotheses are based on the means of the residuals. The standard deviation
of the hypotheses H0 and H1 are respectively denoted σ0 and σ1. The variance — or any
higher moment of the distribution — of the residual is considered unchanged between the
two hypotheses in this thesis. However, the hypotheses can be performed on other statistical
properties with the suitable tests. Moreover, the residual distribution is often considered as
Gaussian or at least known, but other distributions can be considered too with the suitable
tests.

2.3.2.1 Thresholding

The thresholding is the simplest residual evaluation. No residual processing is performed,
other than a decision logic. The purpose of this method is to compare the residuals to a
pre-defined threshold. Then, if the residual is above this threshold, the system is evaluated
as faulty. Otherwise, it is determined as fault-free. This technique is efficient for abrupt fault
with a significant amplitude when the threshold is well-designed. However, incipient or small
amplitude faults can remain undetected.

2.3.2.2 Student’s t-test

The Student’s t-test is detailed in [27]. It is based on the assumption that the noise of the
residual follows a normal distribution with mean µ0 and variance σ20. The aim of this test is
to detect an unexpected change of the mean of the residuals. To do so, this test analyses a
sliding window of residual values. The threshold value for the decision logic is determined by
the level of significance desired in the t-distribution and the size of the window used.

2.3.2.3 The two-sided cumulative sum

The two-sided cumulative sum (CUSUM) test detailed in [28] makes the assumption that the
residuals follow a normal distribution with a mean µ0 and variance σ20. The aim of this test
is to detect an unexpected change of the mean of the residuals. This test is cumulative, as
each iteration is based on the previous outcome. It is two-sided because it is based on two
CUSUM, one for the positive side — that is the residual with a positive value — and one
for the negative side — that is the residual with a negative value. The minimum size of a
residual mean different from 0 to be cumulated must be specified. Its specification can be
performed by using the cumulative distribution function (CDF) of the normal distribution,
for example to only consider residuals with 1 % chance to be fault-free, the value to be taken
is 2.58σ0. However, there is no rule for the specification of the threshold.

2.3.2.4 Generalized likelihood ratio test

The generalized likelihood ratio test (GLRT) detailed in [26] aims to detect an unexpected
change in the mean of the residuals. The GLRT is based on a likelihood ratio Λ (ỹ) = p(ỹ|H1)

p(ỹ|H0)
of

a sliding window of size n. This likelihood ratio is then compared to a user defined threshold
to decide if the system is faulty or not.
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2.3.2.5 Sequential probability ratio test

A commonly used residual evaluator is the sequential probability ratio test (SPRT) [26, 29,
30], also known as Wald’s test. This test aims to detect an unexpected change of mean of the
residuals. Like the GLRT, this test is based on a likelihood ratio, but unlike the GLRT this
test does not use a sliding window, but it is performed sequentially by using the previous
result of the test and the last value of the residuals. This means that only the last SPRT
outcome must be saved and only the current residual value is used, while the GLRT must save
the previous residual values up to a user defined windows to be used for the computation
of the outcome of the GLRT. This sequentiality of the test makes it more efficient than the
GLRT for real-time application. However, this test has three decision outputs: H0, H1 and
undefined — or in other words, no decision made. This third option usually results from the
lack of informative residual data. For fault detection, it can be overruled by selecting H0.

2.4 performance and issues of fault diagnosis

Given all the types and classification of fault and the decision process of fault diagnosis, some
methods are more efficient than others according to certain metrics. This section aims to
define what these metrics are, to then be able to compare fault diagnosis methods introduced
in this thesis.

A first metric to qualify the performance of a fault diagnosis method is the minimal fault
amplitude required to be detected. Indeed, the larger the fault, the easier it is to detect.

The delay to detect a fault is also an important criterion [13]. Indeed, to limit the impact
of a fault as much as possible the fault must be detected as soon as possible. This delay is
given by the difference between the time of activation of a fault ton and the time when the
decision H1 is taken by the fault diagnosis method.

The false alarm and missed detection probabilities should also be considered. Indeed, the
decisions taken by a fault diagnosis method are not necessarily correct. A wrong decision
can either be a false alarm or a missed detection. If a correct decision is made then it is a
hit or a correct rejection. All possible states of the fault diagnosis [31] are illustrated in 2.1.

Fault diagnosis decision
H0 H1

System
state

H0 Correct rejection False alarm

H1 Missed detection Hit

Table 2.1: Possible states of a fault diagnosis module
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The false alarm probability is given by:

Pfak = P (ỹk > Γ) =

+∞∫
Γ

p (ỹk|H0)dỹk (2.8)

where Γ denote the threshold used to decide if the residual value corresponds to H0 or H1.
Similarly, the missed detection probability is given by:

Pmdk = P (ỹk < Γ) =

Γ∫
−∞

p (ỹk|H1)dỹk (2.9)

The probability of detection is sometime used, and it is given by:

Pdk = 1− Pmdk (2.10)

These probabilities are illustrated in Figure 2.5 using a residual with a Gaussian distribution.
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Figure 2.5: False alarm and missed detection for Gaussian distribution given a threshold Γ

An optimal trade-off between the false alarm rate and the hit rate is a key element of a
fault diagnosis [15]. The trade-off can be used to define optimality criterion. Multiple criteria
exist in the literature, the most frequently used are described hereafter.

2.4.1 The Neyman-Pearson criterion

The Neyman-Pearson criterion [32] aims to reach the false alarm and missed detection
trade-off by bounding the false-alarm probability and then to maximizing the detection
probability within this constraint [33]. This criterion is given by:

max {Pd} such that Pfa ≤ α (2.11)
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where α is the upper bound of the false alarm rate, also known as the significance level of
the test. The above optimization problem has an explicit solution given by:

Λ (ỹk) =
p (ỹk|H1)

p (ỹk|H0)

H1

≷
H0

η (2.12)

where η is the threshold that satisfies the constraint:

Pfak =

+∞∫
η

p (Λ (ỹk) |H0)dΛ (ỹk) = α (2.13)

2.4.2 The receiver operating characteristic curve criterion

The receiver operating characteristic (ROC) curve [34] represents the detection probability
given the false alarm probability. This curve applies to Gaussian distributions with a fixed
mean µ0 = 0 and for multiple faulty means µ1 is illustrated in Figure 2.6.
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Figure 2.6: ROC curves with Gaussian error d = µ1−µ0

σ , with σ = σ0 = σ1

When both means are equal — in other words µ1 = µ0 —, then all the points of the curve
are defined on the random guess line (the diagonal line). The aim of this ROC curve criterion
is to provide a point of the curve to either:

• maximize the vertical distance from the guess line, this is performed by maximizing
the value of Youden’s index [35] denoted J , and it is given by:

max{J} = max{Pd − Pfa}; (2.14)
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• minimize the distance from the optimal Pd = 1, Pfa = 0, this is performed by solving
the following optimization function:

min
{√

(1− Pd)2 + Pfa
2

}
= min

{√
Pmd

2 + Pfa
2

}
. (2.15)

2.5 model-based fault estimation

Model-based fault estimation is performed in this thesis using estimation theory [36] to
estimate the state vector and the faults. The estimation methods used in this thesis require
the introduction of fault dynamic models which are given by:

fak = Gak (fak−1) (2.16a)
fsk = Gsk (fsk−1) (2.16b)

where Gak (·) ∈ Rna → Rna denotes the discrete dynamics of the actuators faults and
Gsk (·) ∈ Rns → Rns the discrete dynamics of the sensor faults.

Then, the dynamics of the system completed with additive faults and their dynamics is
given by:

zk
fak
fsk

 =

Fk (zk−1, uk + fak−1)

Gak (fak−1)

Gsk (fsk−1)


yk = Hk (zk) + fsk

(2.17a)

(2.17b)

For sake of brevity, an extended state vector x ∈ Rnx is defined as:

xk =

zk
fak
fsk

 (2.18)

and then the dynamics of the system are given by:{
xk = fk (xk−1, uk)
yk = hk (xk)

(2.19a)
(2.19b)

where the dynamics function fk (·) ∈ Rnx × Rnu → Rnx and the measurement function
hk (·) ∈ Rnx → Rny are given by:

fk (xk, uk) =

Fk (zk, uk + fak)
Gak (fak)
Gsk (fsk)


hk (xk) = Hk (zk) + fsk

(2.20a)

(2.20b)
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Note that the state vector fa and fs does not have always the same number of state than
there is actuator or sensor respectively. Indeed, the fault can be estimated on one or more
actuator, but not necesarilly on all of them. Likewise for the sensor fault, not all sensor
must be systematically considered for fault estimation. However, for sake of brevity, unless
it is specified otherwise, it is considered that fa and fs has the same dimension as u and y
respectively.

2.5.1 Estimation of the extended state vector

As pointed out previously, the fault detection and identification processes can be efficiently
tackled by estimating the extended state vectors of the system as described by equations (2.19).
However, it is assumed that there is no full knowledge of the state vector. Indeed, it is
straightforward that the faults are unknown, but it is common that some other state cannot
also be perfectly predicted or directly measured. The prediction of a state is possible by using
its evolution function. However, some uncertainties such as unmodelled dynamics or unknown
disturbances may provide a prediction away from the true state. Moreover, the sensors used
usually suffer from unwanted measurements changes that are generally unknown, and which
may have originated during the capture, storage, transmission, processing, or conversion of
the data. These modifications induce uncertainties into the measured data. Then, to tackle
these uncertainties, the system to be surveyed can be considered as a stochastic process
model. The process evolution and the measurement noises are here considered to be additive,
and the stochastic process model is given by:{

xk = fk (xk−1, uk) + ηk

yk = hk (xk) + νk

(2.21a)
(2.21b)

where ηk ∈ Rnx represents the uncertainties of the model and is called the process noise
and νk ∈ Rny represents the measurement noise of the sensors. They are assumed to be of
zero mean and independent, E

[
ηkνk

>] = 0. As this thesis aims at dealing with on-line fault
monitoring, the focus is on recursive state estimation method for stochastic process, which
leads us to the concept of the optimal filter.

2.5.2 Optimal estimation filter

The optimal estimation filter aims to estimate the density of xk given all the previous
measurements Y1:k−1 ∈ Rny×k−1. This corresponds to the posterior density p (xk|Y1:k).

Estimation filters usually have two steps: the prediction and the update. The prediction
seeks to compute the prior state density p (xk|Y1:k−1) while the update aims to update the
prior state density using the up-to-date measurements by computing the posterior density
p (xk|Y1:k).
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2.5.2.1 Prediction step

The prior state density is obtained by a convolution between the state transition density
p (xk|xk−1) from (2.21a) and the posterior density of the previous time step p (xk−1|Y1:k−1).
This convolution is known as the Chapman-Kolmogorov equation and is obtained by the
recursive process given by:

p (xk|Y1:k−1) =

∫
Rnx

p (xk|xk−1) p (xk−1|Y1:k−1) dxk−1 (2.22)

At the first time-step when there is no knowledge of the previous posterior density, an
initial state density denoted p (x0) is used instead. This initial state density then represents
the initial state uncertainties. The prediction step is illustrated in Figure 2.7.
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Figure 2.7: Previous posterior density (a) and transition density (b) convoluted to obtain the prior
state density (c).
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2.5.2.2 Update step

The posterior density is computed when a new measurement becomes available. Then, the
posterior density p (xk|Y1:k) is given by the Bayes’ formula [37]:

p (xk|Y1:k) =
1

p (Y1:k)
p (yk|xk) p (xk|Y1:k−1) (2.23)

where p (yk|xk) is the likelihood, p (xk|Y1:k−1) is the prior state density and the normalizing
constant p (Y1:k) is given by:

p (Y1:k) =

∫
Rnx

p (yk|xk) p (xk|Y1:k−1) dxk (2.24)

The likelihood p (yk|xk) depends on the law of measurement noise given by (2.21b).
Equations (2.22) and (2.23) represent the theoretical filter named optimal filter. A filter is

considered to be optimal if it is theoretically equivalent to the optimal filter. The update
step is illustrated in Figure 2.8.
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Figure 2.8: Update step.

2.5.3 State estimators

The state density is the most exhaustive way to represent a state estimate. However, some
applications like the one considered in this thesis need to pick a single value from the
estimated posterior density. This single value is a point that is to serve as the best guess or
the best estimate. The estimated state vector is then denoted x̂. Then, the following are the
most common criteria that are used to select this best estimate.
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2.5.3.1 Maximum a posteriori

The maximum a posteriori (MAP) estimation [38] aims to estimate the parameters of a
probability distribution by selecting a point in the state space that maximizes the posterior
density p (xk|Y1:k). This point is then called the MAP estimate, and it is given by:

x̂k = arg max
xk

p (xk|Y1:k) (2.25)

The MAP estimate is illustrated in Figure 2.9.
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Figure 2.9: MAP estimate.

2.5.3.2 Maximum likelihood

The maximum likelihood (ML) estimation [39] aims to estimate the parameters of a probability
distribution by selecting a point in the measurements space that maximizes the likelihood
p (yk|xk). This point is then called the ML estimate, and it is given by:

x̂k = arg max
xk

p (yk|xk) (2.26)

The ML estimate is illustrated in Figure 2.10.
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Figure 2.10: ML estimate.
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2.5.3.3 Minimum mean-square error

The minimum mean-square error (MMSE) estimation [40] aims to provide an estimate that
minimizes the error variance. The resulting MMSE estimator of xk in terms of Y1:k corresponds
to:

x̂k = E [xk|Y1:k] (2.27a)

=

∫
Rnx

xkp (xk|Y1:k)dxk (2.27b)

The MMSE estimate is illustrated in Figure 2.11.
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Figure 2.11: MMSE estimate.

Note that in the case where the posterior density is given by a symmetric probability
distribution — for example a Normal distribution — the MMSE estimate is equivalent to the
MAP estimate.

The implementation of the optimal filter with state estimator yields various types of
filters. The choice of these filters depends on the assumption made on the system. These
assumptions are often related to the linearity of the system and the nature of the noises. The
following sections aims to present filters that cover the most common assumption pertaining
to linearity and nature of the noise.

2.5.4 Linear Gaussian estimation filter

The optimal estimation problem for a linear system with Gaussian noise has long been solved.
Indeed, the Kalman filter, first introduced by Kalman [41], is theoretically equivalent to the
optimal filter under these assumptions [42]. In the linear case, (2.21) can be rewritten as:

{ xk = Fxk−1 + Buk + ηk

yk = Hxk + νk

(2.28a)
(2.28b)
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where F ∈ Rnx×nx is the state matrix, B ∈ Rnx×nu is the input matrix, and H ∈ Rny×nx is
the output matrix. In the Gaussian case, the noises are given by:{

ηk ∼ N (0nx,1, Qk)

νk ∼ N
(
0ny ,1, Rk

) (2.29a)
(2.29b)

where Qk ∈ Rnx×nx is the covariance of the process noise, and Rk ∈ Rny×ny is the covariance
of the measurements noise.

The Kalman filter estimate is given by:

x̂k = (1−KkH) x̂k|k−1 + Kkyk (2.30)

where x̂k|k−1 is given by:

x̂k|k−1 = Fx̂k−1 + Buk (2.31)

and Kk ∈ Rnx×ny is the Kalman gain, and it is given by:

Kk = P̂k|k−1H>
(

Rk + HP̂k|k−1H>
)−1

(2.32)

where the superscript > denotes the matrix transposition, P̂k|k−1 ∈ Rnx×nx is the prior
estimated covariance, and it is given by:

P̂k|k−1 = FP̂k−1F> + Qk (2.33)

where P̂k is the posterior estimated covariance, which is given by:

P̂k = (Inx −KkH) P̂k|k−1 (2.34)

Based on (2.30) to (2.34) and on the assumption of Gaussian process and measurement
noises, the estimated posterior density p̂ (xk|Y1:k) is given by N

(
x̂k, P̂k

)
, and the theoreti-

cally posterior density p (xk|Y1:k) is given by N (xk, P)k. Hence, the Kalman filter gives an
optimal solution to the estimation problem — with a linear system and Gaussian noises.
Moreover, since the point estimate given by the Kalman filter is the expected value of the
posterior density, which corresponds to the MMSE estimate [41], and given that the density
is symmetrical, the point estimate also corresponds to the MAP.

The Kalman filter structure is illustrated in Figure 2.12
The Kalman filter algorithm is presented in Algorithm 2.1

2.5.5 Non-linear Gaussian filter

In the non-linear case when the densities are Gaussian, the simplest approach is to lin-
earize (2.21) and then use the Kalman filter. This approach is named the EKF [43], but
unlike the Kalman filter in the linear case, it is not an optimal filter. The linearization is
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Kk Σ
+

+yk

1− KkH

Delay F Σ

B

x̂k|k−1

ûk

x̂k|k x̂k−1|k−1 + +

Figure 2.12: Kalman filter structure

Algorithm 2.1 Kalman filter
k ← 0
... //Initialization
Loop

k ← k + 1
//Prediction
x̂k|k−1 = Fx̂k−1|k−1 + Buk //See (2.31)
P̂k|k−1 = FP̂k−1|k−1F> + Qk //See (2.33)
//Kalman gain update

Kk = P̂k|k−1H>
(

Rk + HP̂k|k−1H>
)−1

//See (2.32)
//Measurement update
x̂k|k = (1−KkH) x̂k|k−1 + Kkyk //See (2.30)
P̂k|k = (Inx −KkH) P̂k|k−1 //See (2.34)

obtained by computing the Jacobian matrix of the dynamics function and the measurement
function, which is respectively given by:

Fk =
∂fk (xk, uk)

∂xk

∣∣∣∣
xk=x̂k

Hk =
∂hk (xk)
∂xk

∣∣∣∣
xk=x̂k

(2.35a)

(2.35b)

The linearization must be performed before each prediction step.
This approach is commonly used in many applications, such as the global navigation

satellite system (GNSS) receivers. In [44], the EKF was applied to fault diagnosis for a
speed sensor, with the estimation of false alarm and detection probabilities. However, it has
some limitations, that prevent the use of this approach for some applications. One of these
limitations is that, in some applications, the covariance estimates performed by the EKF
tend to underestimate the true covariance of the state [45]. This is mainly due to the fact
that it is propagated through linearization. Moreover, the initial estimation error has to be
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small with the EKF, otherwise the filter may diverge. In addition to that, when the system is
subject to severe non-linearity the EKF may diverge too. Finally, for fault estimation, the
linearization techniques used by the EKF, tend to suffer from poor fault detection or high
false alarm rates [46].

Various enhancements to the EKF filters have been proposed to enhance its robustness.
However, one of the most advanced Kalman filters, that is able to deal with significant
non-linearity, is the UKF [47, 48]. The UKF takes its name from the deterministic sampling
technique used to approximate the Gaussian densities. This technique, known as the unscented
transformation, approximates the distribution by a minimal set of carefully chosen sample
points, called sigma-points. These sigma points are generally four to ten points, selected
around the mean, and propagated using the non-linear dynamic. Each sigma-point is
associated with multiple weights. Finally, the posterior density is approximated by computing
the weighted sum of the propagated sigma-points. The UKF is known to accurately estimate
the posterior density up to the 3rd order of the Taylor series expansion of the non-linear
system. A comparison between the EKF and the UKF approaches is illustrated using a
two-dimensional state vector in Figure 2.13.

Covariance
Mean

xk = fk (xk−1)xk = fk (xk−1)

(a) True transformation.

EKF Covariance
EKF Mean

xk = Fkxk−1xk = Fkxk−1

(b) Linear transformation.

UKF Covariance
UKF Mean

Sigma-point

xk = UT (xk−1)xk = UT (xk−1)

(c) Unscented transformation.

Figure 2.13: Comparison of the true transformation (a), the linearization approach taken by a EKF (b),
and the unscented transformation approach taken by the UKF (c) on a two-dimensional
state vector.
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Other approaches exist to tackle estimation of non-linear Gaussian systems, like the
ensemble Kalman filter or the change of space to bring back the system in a linear geometry,
but are relatively less common and not used in this thesis.

2.5.6 Non-Linear non-Gaussian filter

To tackle the estimation of non-linear systems, with non-Gaussian distributions, and including
kernel mixtures, the most commonly used approach is the particle filter. The idea behind this
filter is to use the sequential Monte Carlo method to provide an estimate. A Monte Carlo
method aims to generate input as randomly distributed values, that are then processed by
the system dynamics to provide a range of solutions. The use of this method for estimation
application has been initiated by the development of the sequential importance resampling
(SIR) particle filters [49, 50], and this approach is increasingly used because of the increase
in computational performance of modern microprocessors.

2.5.6.1 Principle of the Monte Carlo approximation

Let X be a random variable on Rd distributed according to the probability density function
denoted p (·) and with X1:N a set of independent random variables on Rd with the same
distribution as X. Then, for any bounded function Φ(·) : Rd → R, the mean of Φ(X) is
given by:

E [Φ (X)] =

∫
Rd

Φ(X) p (X)dX (2.36)

The Monte Carlo methods approximate the expectancy by the empirical mean:

Φ̄ (X) =
1

N

N∑
i=1

Φ
(
Xi
)
, Xi ∼ p () (2.37)

The law of large numbers ensures that the empirical mean converges almost surely to the
expected value:

Φ̄ (X) =
1

N

N∑
i=1

Φ
(
Xi
)
−−−−→
N→∞

E [Φ (X)] (2.38)

The variance of the Monte Carlo estimator Φ̄ (X) is equal to:

Var
(
Φ̄ (X)

)
=
σ2

N
, (2.39)

where

σ2 =

∫
Rd

(Φ (X)− E [Φ (X)])2p (X)dX (2.40)
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The law of the error Φ(X)− E [Φ (X)] when the number of samples N tends to infinity is
given by the central limit theorem:

√
N

σ
(Φ (X)− E [Φ (X)]) −−−−→

N→∞
N (0, 1) (2.41)

The average error is of order σ√
N

. The Monte Carlo error does not depend on the dimension
of the state.

2.5.6.2 The sequential importance resampling particle filter

The SIR particle filter aims to approximate the posterior density p (xk|Y1:k) using a weighted
set of N � 1 samples, called particles. To do so, the particles are represented by weighted
Dirac delta functions, where the position of the particle determines the value of the state
associated with the particle. The posterior density is then approximated by:

p (xk|Y1:k) ≈
N∑
i=1

wikδ
(
xk − xik

)
(2.42)

where δ (·) denotes the Dirac delta functions, wik ∈ R+ are the importance weight of a
particle, and the superscript i denotes the index of the particle. The weights are normalized
to ensure and satisfy the equation:

N∑
i=1

wik = 1 (2.43)

Assuming that the previous posterior density can be approximated in the same way as (2.42),
and based on (2.22), the prediction can be approximated by:

p (xk|Y1:k−1) ≈
∫

Rnx

p (xk|xk−1)
N∑
i=1

wik−1δ
(
xk−1 − xik−1

)
dxk−1 (2.44a)

=

N∑
i=1

wik−1

∫
Rnx

p (xk|xk−1) δ
(
xk−1 − xik−1

)
dxk−1 (2.44b)

=
N∑
i=1

wik−1p
(
xk|xik−1

)
(2.44c)

=

N∑
i=1

wik−1δ
(

xk − xik|k−1

)
(2.44d)

Equation (2.44d) highlights the fact that the weights are not updated during the prediction
step, however the positions of the particles given by the Dirac delta function are updated.
The error of the approximation given by (2.44d) only depends on the number of particles
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used. Indeed, the benefit of using Monte Carlo methods is to approximate the state transition
density p (xk|xk−1) by numerically integrating multiple particles with multiple draws of the
process noise ηk. Then, the prediction of a particle is obtained using the true non-linear
equation. Using the discrete dynamics function, the prediction of a particle is given by:

xik|k−1 = fk
(
xik−1,uk

)
+ ηik (2.45)

If the particles are independent and given that ηk is a zero mean process noise, then the
unbiased estimate of the prior state density according to the law of large numbers is almost
certainly given by the weighted sum of the predicted particles given by (2.44d).

The algorithm of the prediction step of the particle filter is performed by the function
predict detailed in Algorithm 2.2, in the case where the process noise is Gaussian.

Algorithm 2.2 Prediction step of the particle filter
Function predict(x1:N

k|k−1, x1:N
k−1, uk)

for each i ∈ [1, N ] do
ηik ∼ N (0, Qk)
xik|k−1 ← fk

(
xik−1,uk

)
+ ηik //See (2.45)

The update step, based on (2.23), and the approximation of the prediction given by (2.44d),
gives:

p (xk|Y1:k) ≈
N∑
i=1

wik−1p
(
yk|xik

)
δ
(

xk − xik|k−1

)
N∑
j=1

wjk−1p
(

yk|xjk
) . (2.46)

The weights can then be updated and given by:

wik =
wik−1p

(
yk|xik

)
N∑
j=1

wjk−1p
(

yk|xjk
) . (2.47)

Then, by substituting (2.47) into (2.46), the posterior density can then be approximated by:

p (xk|Y1:k) ≈
N∑
i=1

wikδ
(

xk − xik|k−1

)
. (2.48)

This shows that the update step does not change the position of the particles, then (2.48)
is equivalent to (2.42). However, unlike the prediction step, the update step updates the
particle weights. In practice, the update of the weights is performed by computing the
weights without the normalization constant and using the equation:

wik ∝ wik−1p
(
yk|xik

)
, (2.49)
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and then ensuring (2.43).
The algorithm of the update step of the particle filter is performed by the function

update detailed in Algorithm 2.3, where g
(

xik|k−1

)
= p

(
yk|xik

)
, is the likelihood density

with argument. Since an extended state vector is considered now, the innovation used to
update the weights is not equal to the one described by (2.4) and is now given by:

ỹik = yk − hk
(

xik|k−1

)
. (2.50)

Algorithm 2.3 Update step of the particle filter
Function update(w1:N

k , w1:N
k−1, x1:N

k|k−1, yk)
for each i ∈ [1, N ] do

w̃ik ← wik−1g
(

xik|k−1

)
//See (2.49)

for each i ∈ [1, N ] do
wik ←

w̃i
k

N∑
j=1

w̃j
k

//Normalization of the weights

The particle filter prediction and update steps are illustrated in Figure 2.14, where it is
shown that the particle positions are updated at the prediction step only, while the weights
are updated at the update step only.

Having the approximation of the posterior density by weighted Dirac delta functions
makes the computation of the MAP estimate straightforward. This estimate corresponds
to the particle with the highest weight. However, in practice, looking for the particle with
the highest weight can be more computationally expensive than the MMSE estimate. Then,
from (2.27b), the point estimate of the particle filter is usually given by:

x̂k =
N∑
i=1

wikxik|k−1. (2.51)

Its associated estimated covariance matrix is then given by:

P̂k =
N∑
i=1

wik

(
xik|k−1 − x̂k

)(
xik|k−1 − x̂k

)>
. (2.52)

The algorithm that produces the estimate of the particle filter is performed by the function
estimate detailed in Algorithm 2.4.

However, the recursive update of the weights and the normalization might lead to the
degeneracy of the algorithm. This degeneracy is characterized by the fact that after multiple
iterations, all the weights but one tend to zero. Then, only one particle contributes to the
estimation of the state vector which drastically decreases the efficiency and the benefit of
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(a) Previous update step.
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(b) Prediction step.
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(c) Update step.

Figure 2.14: Prediction step (b) and update step (c) of a particle filter based on the Previous update
step (a).

Algorithm 2.4 Estimate step of the particle filter
Function estimate(x̂k, P̂k, x1:N

k|k−1, w
1:N
k )

x̂k ←
N∑
i=1

wikxik|k−1 //See (2.51)

P̂k ←
N∑
i=1

wik

(
xik|k−1 − x̂k

)(
xik|k−1 − x̂k

)>
//See (2.52)

the algorithm, and can lead to a divergence of the filter. A commonly used metric of the
degeneracy phenomenon is the estimate of the effective number of particles, given by:

N̂eff =
1

N∑
i=1

(
wik
)2 , (2.53)
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where the effective number of particles is equal to 1 when all the weights but one are
equal to 0, and is equal to N when the weights are all equal. These two cases represent
complete degeneration and no degeneration respectively. More generally the effective number
of particles is bounded, with 1 ≤ N̂eff ≤ N .

To avoid the degeneracy phenomenon an additional step called the resampling step is
added to the particle filter. This step aims to remove the particles with the lowest weights
and to duplicate the ones with the highest weights. There are multiple methods to perform
this step, and the performance of the particle filter can be also affected by the method used.
It is usually done in such a way that the number of particles remains the same. The most
commonly used is the multinomial resampling method that aims to select N particles with a
probability for the particle to be selected given by its weight. Then, the particles with the
highest weights are the one that are more likely to be preserved and duplicated while the
particles with a weight equal to zero are removed. Then, the probability to select a particle
is given by:

P
(

x́jk = xik
)
= wik, (2.54)

where x́k denote the state vector after the multinomial resampling.
Multinomial resampling is performed by the function multinomial detailed in Algo-

rithm 2.5. There exist algorithms that are more computationally efficient. The description
provided here is given to illustrate the main steps of the method.

Algorithm 2.5 Multinomial resampling step
Function multinomial(x́1:N

k , x1:N
k|k−1, w

1:N
k )

for each i ∈ [1, N ] do
X ∼ U (0, 1)
j ← 1
while

∑j
l=1w

i
k −X < 0 do

j ← j + 1

x́ik ← xjk|k−1

After performing the multinomial resampling, the weights are usually reset to be all equal,
and the new weight is given by:

wik =
1

N
. (2.55)

The resampling step is, however, not usually performed at every time step. Indeed, the
degeneracy phenomenon metric is usually compared to a user-defined threshold. In the case of
the effective number of particles given by (2.53), this threshold herein denoted Γrspl ∈ [0, 1]
is multiplied by the number of particles N , and if it is below this value then the resampling
step is performed.
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The above-mentioned prediction, update and resampling algorithms are the fundamental
steps of the SIR particle filter. The Figure 2.15 illustrates the prediction and update when
the resampling step is performed.
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(c) Prediction step.

Figure 2.15: SIR particle filter after the update step (a), the resampling step (b) and the prediction
step when the resampling has been performed (c).

In Figure 2.15, the removal and duplication of particles at the resampling step are
illustrated, as well as the reset of the weights. The impact of the prediction and particles
positions is also shown.

The SIR particle filter is presented in Algorithm 2.6 using the previously defined functions
predict, update, estimate and multinomial.

The SIR particle filter presented here is the basic particle filter that is commonly used.
However, many variations of this filter have been proposed.
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Algorithm 2.6 Sequential importance resampling particle filter
k ← 0
... //Initialization
Loop

k ← k + 1
predict(x1:N

k|k−1, x1:N
k−1, uk) //SeeAlgorithm 2.2

update(w1:N
k , w1:N

k−1, x1:N
k|k−1, yk) //See Algorithm 2.3

estimate(x̂k, P̂k, x1:N
k|k−1, w

1:N
k ) //See Algorithm 2.4

N̂eff ← 1
N∑
i=1

(
wi

k

)2 //See (2.53)

if N̂eff ≤ NΓrspl then //if true then resample
multinomial(x́1:N

k , x1:N
k|k−1, w

1:N
k ) //See Algorithm 2.5

for each i ∈ [1, N ] do
xik ← x́ik //Particles replaced by the multinomial resampling
wik ←

1
N //Reset the weights, See (2.55)

2.5.6.3 The regularized particle filter

The RPF [51], was designed to improve particle filter diversity compared to the previously
presented SIR particle filter. Indeed, the resampling step that aims to solve the degeneracy
phenomenon introduces a new issue, namely the loss of diversity of the particles. This is due
to the fact that the multinomial draw is performed according to a discrete distribution that
leads to the duplication of the particles at certain positions as shown in Figure 2.15b. This
duplication process can affect the same particles at multiple times. Other methods than the
RPF exist to solve this issue [52, 53], but the RPF is one of the most widely used techniques.

The only difference between the SIR particle filter and the RPF is at the resampling step.
Compared to the SIR particle filter, the RPF has an additional step called the regularization
that aims to add diversity to the duplicated particles. This improvement in diversity of
the particles is obtained by randomly moving the duplicated particles x́ik according to a
regularization kernel denoted K(·). This then yields the following regularization equation:

xik = x́ik + hDkε
i
k (2.56)

where h ∈ R+∗ is the kernel bandwidth factor, Dk is the real lower triangular matrix of the
covariance matrix Pk with positive diagonal elements defined such that Pk = DkD>

k , and
εik ∼ K(x) is a regularization noise. The kernel density is a symmetric probability density
function such that:∫

xK (x) dx = 0,

∫
‖x‖2K (x) dx <∞ (2.57)
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The optimal kernel K (·) and bandwidth factor h are chosen to minimize the mean integrated
square error (MISE) between the theoretical posterior density and the estimated one. The
MISE criterion is given by:

MISE (p̂) = E
[∫

(p̂ (xk|Y1:k)− p (xk|Y1:k))
2 dxk

]
, (2.58)

where p̂ (xk|Y1:k) is here the estimated posterior density of the RPF and is given by:

p̂ (xk|Y1:k) =

N∑
i=1

wikKh
(

xk − xik|k−1

)
, (2.59)

where the kernel Kh (·) is assumed to be symmetric such that Kh (−x) = Kh (x), and it is
given by:

Kh (x) =
1

hnx
K
(x
h

)
. (2.60)

The approximation of the posterior density by kernels’ mixture in (2.59) based on the
example of the Dirac’s mixture illustrated in Figure 2.15 is shown in Figure 2.16

Then, the optimal kernel that minimizes (2.58) in the case that all weights are equivalent
— which is the case after the resampling — is the Epanechnikov kernel [51, 54] defined by:

K (x) =
{

nx+2
2cnx

(
1− ‖x‖2

)
if ‖x‖ < 1

0 else
, (2.61)

where cnx is the volume of the unit hypersphere in Rnx , given by

cnx =
π

nx
2

Γ
(
nx
2 + 1

) ; (2.62)

where Γ (·) ∈ R → R is Euler’s gamma function. Then, the optimal bandwidth factor [51,
54] associated with this optimal kernel is then given by:

h = κAN− 1
nx+4 (2.63)

where κ ∈ (0, 1) is a user-defined setting parameter, and A is given by:

A =
[
8c−1
nx

(nx + 4)
(
2
√
π
)nx
] 1
nx+4 (2.64)

The algorithm of the regularization step is performed by the function regularize detailed
in Algorithm 2.7.

The RPF is presented in Algorithm 2.8, using the previously defined function regularize,
and the function used by the SIR particle filter.

In theory, the kernel approximation performed by the RPF is less and less relevant as the
dimension of state vector increases.
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(c) Prediction step.

Figure 2.16: RPF after the update step (a), the resampling step (b) and the prediction step when the
resampling has been performed (c).

Algorithm 2.7 Regularization step of the regularized particle filter
Function regularize(x1:N

k , x́1:N
k , P̂k)

Dk ← {Dk : P̂k = DkD>
k } //Compute Dk such that P̂k = DkD>

k

for each i ∈ [1, N ] do
εik ∼ K

(
x́ik
)

//Regularization noise
xik ← x́ik + hDkε

i
k //See (2.56)

2.5.7 Multiple model architecture for estimation filter

A multiple model architecture can be used to implement estimation filters. Multiple model
architecture is used for the hybrid state estimate problem. A hybrid state is a state that has
multiple components, but unlike a state vector, these components are not of the same kind.
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Algorithm 2.8 Regularized particle filter
k ← 0
... //Initialization
Loop

k ← k + 1
predict(x1:N

k|k−1, x1:N
k−1, uk) //See Algorithm 2.2

update(w1:N
k , w1:N

k−1, x1:N
k|k−1, yk) //See Algorithm 2.3

estimate(x̂k, P̂k, x1:N
k|k−1, w

1:N
k ) //See Algorithm 2.4

N̂eff ← 1
N∑
i=1

(
wi

k

)2 //See (2.53)

if N̂eff ≤ NΓrspl then //if true then resample
multinomial(x́1:N

k , x1:N
k|k−1, w

1:N
k ) //See Algorithm 2.5

for each i ∈ [1, N ] do
wik ←

1
N //Reset the weights, See (2.55)

regularize(x1:N
k , x́1:N

k , P̂k) //See Algorithm 2.7

Indeed, one of the components is a continuous-value state, while the other is a discrete-value
variable often referred to as a mode. This approach is commonly used in tracking estimation
with manoeuvring targets [49, 55], where the continuous state is associated with the target
state while the other is associated with its modes, which are defined by different dynamics.
Thus, a multiple model architecture switches between multiple dynamical models.

The hybrid state that is estimated is then given by the following couple (xk, mk).
If the MMSE is used to provide the estimate of the continuous state vector xk, then the

overall estimate is the probabilistically weighted sum of all filter estimates [56], which for xk
yields:

x̂k =
M−1∑
i=0

x̂(i)
k P (M1:k|Y1:k), (2.65)

where x̂(i)
k denotes the estimate of the state vector xk associated with the mode m(i)

k , and
M1:k ∈ Rk represents all the previous modes. The covariance associated with the continuous
state vector xk is given by:

P̂k =
M−1∑
i=0

[
P̂(i)
k +

(
x̂k − x̂(i)

k

)(
x̂k − x̂(i)

k

)>]
P (M1:k|Y1:k). (2.66)

The probability P (M1:k|Y1:k) in (2.65) and (2.66) represents the probability of being in a
specific mode sequence M1:k, given all the previous measurements Y1:k.

To estimate the state vectors and the mode of the multiple model architecture, one often
relies on Kalman filters or its derivatives. Particle filter can also be used for that purpose but
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as a filter must be defined for each mode, the computational cost of each particle filter makes
its use in a bank of filters prohibitive. It is an interesting and commonly used approach in
fault diagnosis [57–60].

Multiple model architectures are then hybrid state estimation methods, since they aim to
estimate both the state of the system and the mode. To do so, they use a JMS.

2.5.7.1 Jump-Markov system

An efficient way of representing the switch between these subsystems is to use a Markov
transition probability matrix. This representation is known as JMS. Using a JMS allows one
to introduce a large variety of subsystems that represent the potential dynamics of the
process studied with or without faults, no matter which types of faults are considered. The
different subsystems are represented by discrete different dynamics. They correspond to the
modes of the system denoted m(i), where i is the index of the mode within a finite set of M
modes denoted M =

{
m(0), m(1), . . . , m(M−1)

}
. The mode m(0) is usually associated with

the nominal mode — that is the nominal dynamics of the system — while the others are
associated with a faulty mode. Each mode is then characterized by specific dynamics, mk

denotes the mode of the system at time step k. For sake of brevity herein, when the mode
of the system mk is equal to a specific mode, — for example m(i) —, then it is denoted
mk with the mode number as superscript between parentheses — for example m(i)

k —, then
m

(i)
k , {mk = m(i)}.
Since the system is Markovian, the switching between modes can be modelled by a time

homogeneous M -state first order Markov chain and the transition probability of switching
from a mode m(j) to m(i) is given by:

πij , P
(
m

(j)
k |m

(i)
k−1

)
, ∀i, j ∈ N[0:M−1] (2.67)

All other transition probabilities then jointly form a M ×M transition probability matrix
given by:

Π ,


π00 π10 · · · π(M−1)0

π01 π11 · · · π(M−1)1
...

... . . . ...
π0(M−1) π1(M−1) · · · π(M−1)(M−1)

 (2.68)

Each element of the transition probability matrix must satisfy:

πij ≥ 0, ∀i, j ∈ N[0:M−1] and
M−1∑
i=0

πij = 1 ∀j ∈ N[0:M−1] (2.69)

The associated Markov chain is illustrated in Figure 2.17.
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Figure 2.17: Time homogeneous M -state first order Markov chain with transition probability.

Then a discrete-time stochastic JMS is used to represent the dynamics of the system, includ-
ing the transitions between modes. This generic system model, based on the representation
of Tafazoli and Sun [11] is given by:

mk ∼ p (mk|mk−1)

zk = Fkmk
(zk−1, uk, fak−1) + ηk

yk = Hkmk
(zk, fsk) + νk

(2.70a)
(2.70b)
(2.70c)

where Fkmk
(·) represents the discrete dynamics of the state vector z associated with the

mode mk, and Hkmk
(·) represents the discrete measurement function of the state vector z

associated with the mode mk. Note that it is possible to consider that noises also depend on
the current mode mk.

The JMS representation allows considering several dynamics, even multiplicative and
additive faults in the same system in both actuator and sensor, and it is the one used by
multiple model architecture presented in Section 2.5.7.

The JMS approach requires then to store all the possible modes sequences from initial
to current time step, for which the number grows exponentially with time. It is the major
drawback of this method, which makes it not suitable for real-time implementation. Therefore,
it cannot be used for fault estimation for the application considered in this thesis. To overcome
this issue, a suboptimal algorithm that provides an approximation of these equations is used.

2.5.7.2 The interacting multiple model framework

The IMM is the most used architecture for hybrid state estimation [61–64], and is considered
as a state-of-the-art approach for fault estimation applications. The IMM only considers
the model at the current time-step, which makes it possible to implement it for real-time
applications. This algorithm runs a bank of estimation filters, with different models. Each
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estimation filter provides an estimate. These estimates are then mixed together to provide
an overall estimate.

To provide an overall estimate, weights are associated with the estimate of each model.
The weight w(j)

k that corresponds to the probability of the jth model at time step k is given
by:

w
(j)
k = P

(
m

(j)
k |Y1:k

)
(2.71a)

∝ p
(

yk|m
(j)
k

)
P
(
m

(j)
k |Y1:k−1

)
, (2.71b)

where P
(
m

(j)
k |Y1:k−1

)
is given by:

P
(
m

(j)
k |Y1:k−1

)
=

M−1∑
i=0

P
(
m

(j)
k |m

(i)
k−1

)
P
(
m

(i)
k−1|Y1:k−1

)
(2.72a)

=

M−1∑
i=0

πijw
(i)
k−1. (2.72b)

By substituting (2.72b) into (2.71b) it gives:

w
(j)
k ∝ p

(
yk|m

(j)
k

)M−1∑
i=0

πijw
(i)
k−1. (2.73)

The weights are normalized to ensure:

M−1∑
j=0

w
(j)
k = 1. (2.74)

The algorithm of the weight update of the multiple model architecture is given by the
function weightUpdate in Algorithm 2.9, where ỹ(i)

k denotes the innovation vector of the
ith model at time step k.

Algorithm 2.9 Weight update in multiple model architecture
Function weightUpdate(w(0:M−1)

k , ỹ(0:M−1)
k , S(0:M−1)

k )
for each i ∈ [0, M − 1] do

w̃
(i)
k ← N

(
ỹ(i)
k ; 0, S(i)

k

)M−1∑
i=0

πijw
(i)
k−1 //See (2.73)

for each i ∈ [0, M − 1] do

w
(i)
k ←

w̃
(i)
k

N∑
j=1

w̃
(j)
k

//Normalization of the weights, see (2.74)
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Then, the overall estimate is given by:

x̂k =
M−1∑
i=0

w
(j)
k x̂(j)

k . (2.75)

And its associated covariance is then:

P̂k =
M−1∑
i=0

w
(j)
k

[
P̂(j)
k +

(
x̂k − x̂(j)

k

)(
x̂k − x̂(j)

k

)>]
. (2.76)

The algorithm of the multiple model estimate is given by the function mmEstimate in
Algorithm 2.10.

Algorithm 2.10 Multiple model estimate
Function mmEstimate(x̂k, P̂k, x̂(0:M−1)

k , w(0:M−1)
k )

x̂k =
M−1∑
i=0

w
(i)
k x̂(i)

k //See (2.75)

P̂k ←
M−1∑
i=0

w
(i)
k

[
P̂(i)
k +

(
x̂k − x̂(i)

k

)(
x̂k − x̂(i)

k

)>]
//See (2.76)

At the next iteration the filters are fed with the previous estimates given all the previous
weights. These estimates are obtained through the mixing step and are used to compute
the prior density p

(
xk−1|m

(j)
k , Y1:k−1

)
. To do so, all the possible modes at time step k − 1

are considered and since the previous mode m
(i)
k−1 is known, the current mode m

(j)
k is

conditionally independent of the previous continuous state vector xk−1 and the all the
previous measurement vectors Y1:k−1. Thus, using the law of total probability,

p
(

xk−1|m
(j)
k , Y1:k−1

)
=

M−1∑
i=0

p
(

xk−1|m
(i)
k−1, Y1:k−1

)
P
(
m

(i)
k−1|m

(j)
k , Y1:k−1

)
(2.77a)

=

M−1∑
i=0

w
(i|j)
k−1p

(
xk−1|m

(i)
k−1, Y1:k−1

)
, (2.77b)

where w(i|j)
k−1 represents the mixed weights, and is given by:

w
(i|j)
k−1 =

πijw
(i)
k−1

M−1∑
i=0

πijw
(i)
k−1

, (2.78)

Then, the mixed state vector is given by:

x̂(i|j)
k−1 =

M−1∑
i=0

w
(i|j)
k−1 x̂(i)

k−1, (2.79)



42 fault diagnosis and estimation methods

and its associated covariance is given by:

P̂(i|j)
k−1 =

M−1∑
i=0

w
(i|j)
k−1

[
P̂(i)
k−1 +

(
x̂(i)
k−1 − x̂(i|j)

k−1

)(
x̂(i)
k−1 − x̂(i|j)

k−1

)>]
. (2.80)

The algorithm of the mixing step of the IMM is given by the function mixing in Algorithm 2.11.

Algorithm 2.11 Mixing step of the interacting multiple model
Function mixing(x̂(i|j)

k−1, P̂(i|j)
k−1, w(0:M−1)

k−1 )
for each j ∈ [0, M − 1] do

for each i ∈ [0, M − 1] do

w
(i|j)
k−1 ←

πijw
(i)
k−1

M−1∑
i=0

πijw
(i)
k−1

//See (2.78)

x̂(i|j)
k−1 ←

M−1∑
i=0

w
(i|j)
k−1 x̂(i)

k−1 //See (2.79)

P̂(i|j)
k−1 ←

M−1∑
i=0

w
(i|j)
k−1

[
P̂(i)
k−1 +

(
x̂(i)
k−1 − x̂(i|j)

k−1

)(
x̂(i)
k−1 − x̂(i|j)

k−1

)>]
//See (2.80)

The second step is then the prediction of the continuous state vector xk−1, by computing
the prior density denoted p

(
xk|m

(j)
k , Y1:k−1

)
, and is obtained by applying the prediction

step from (2.22), which gives:

p
(

xk|m
(j)
k , Y1:k−1

)
=

∫
Rnx

p
(

xk|xk−1, m
(j)
k

)
p
(

xk−1|m
(j)
k , Y1:k−1

)
dxk−1. (2.81)

The next step which is the update step of the continuous state vector xk, aims to compute
the posterior density denoted p

(
xk|m

(j)
k , Y1:k

)
, using (2.23) which then gives:

p
(

xk|m
(j)
k , Y1:k

)
=

p
(

yk|xk, m
(j)
k

)
p
(

xk|m
(j)
k , Y1:k−1

)
∫

Rnx

p
(

yk|xk, m
(j)
k

)
p
(

xk|m
(j)
k , Y1:k−1

) . (2.82)

The IMM is given by the Algorithm 2.12. In this algorithm, the function estimationFilter
refers to any compatible estimation filter, such as the ones previously introduced, that take
as an input the previous state estimate x̂k−1, its associated estimated covariance P̂k−1, the
control vector uk and the measurement vector yk and provide as output an estimated state
x̂k, its associated estimated covariance P̂k, the innovation ỹk to compute the likelihood, and
its associated covariance Ŝk.

The architecture of the IMM is illustrated in Figure 2.18.
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Algorithm 2.12 Interacting multiple model
k ← 0
... //Initialization
Loop

k ← k + 1
mixing(x̂(i|j)

k−1, P̂(i|j)
k−1, w(0:M−1)

k−1 ) //See Algorithm 2.11
for each i ∈ [0, M − 1] do

estimationFilter(x̂(i)
k , P̂(i)

k , ỹ(i)
k , S(i)

k , x̂(i|j)
k−1, P̂(i|j)

k−1, uk, yk) //ith model estimation

weightUpdate(w(0:M−1)
k , ỹ(i)

k , S(i)
k ) //See Algorithm 2.9

mmEstimate(x̂k, P̂k, x̂(0:M−1)
k , w(0:M−1)

k ) //See Algorithm 2.10

The IMM estimator with a bank of EKF yields significantly better fault detection perfor-
mance than a stand-alone EKF, indeed IMM and multiple model architecture in general allows
for better estimation of abrupt changes in the system dynamics [46], which is essential for
this application, especially for the estimation of abrupt fault.

2.5.8 Jump-Markov particle filters

Particle filters for Markovian jump linear systems were introduced by Doucet, Gordon, and
Krishnamurthy [10] and Tafazoli and Sun [11]. These filters aim to perform fault estimation
and detection alongside state estimation using hybrid state vector where fault detections
are modelled as transitions from nominal mode to faulty modes. The jump step of Doucet,
Gordon, and Krishnamurthy [10] is designed to select particles from a proposal density,
which must satisfy the following conditions:

• The support of the proposal density must contain the support of the posterior density;

• The proposal density must take into account recent observations.

In the jump step of Tafazoli and Sun [11], the particles are generated from a prior density.
A mode selection probability is calculated as a function of the weights of all particles for all
modes. The likeliest mode with the higher probability is selected.

The fixed-lag Rao-blackwelization particle filter was proposed by Giremus, Tourneret, and
Calmettes [65]. This particle filter tackles the detection and estimation of multipath errors
while inferring the vehicle dynamics. Multipath events were considered as abrupt changes
affecting the navigation state space model.

Jump Markov particle filters were also developed for nonlinear systems by Driessen
and Boers [66], where the user has control on the number of particles in order to avoid
degeneracy, with application to radar target tracking. Due to their computational demand,
those approaches are not well suited for real-time embedded applications.
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Figure 2.18: Architecture of the IMM.

2.6 chapter summary

In this chapter, a literature review on fault diagnosis, including fault detection, isolation and
estimation was presented. The focus was on model-based approaches because the model of the
aircraft is known, and more data would often be required for a data driven approach. However,
given the uncertainty on the fixed wing UAV model, a Bayesian approach is considered for
fault and state estimation. This is performed by estimation filters. The most commonly
used filters were described in this chapter for various situations. State-of-the-art multiple
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model, such as the IMM were presented in more detail, to highlight the benefit of hybrid
state estimation. The IMM is however not designed to deal with ambiguous faults. The RPF
and other particle filters for JMS were also reviewed, but those approaches are either not
suitable for real time applications or lack robustness. The limitations of the IMM and of the
RPF will be further detailed in Chapter 4 and 5, respectively.





3
F I X E D W I N G U N M A N N E D A E R I A L V E H I C L E DY N A M I C S ,
G U I DA N C E , N AV I G AT I O N A N D C O N T RO L

This chapter aims to present the model under consideration in this thesis. Without loss of
generality, the focus of the thesis is on the guidance navigation & control (GNC) of UAV
longitudinal dynamics.

The chapter is organized as follows: Section 3.1 details the coordinate frame of the UAV
used in the rest of the thesis. The Section 3.2 gives the aircraft kinematics and dynamics
equations used. In Section 3.3, the forces and moments that are involved in the kinematics
and dynamics equations are detailed. Section 3.4 provides the measurement equation of
the UAV. The Section 3.5 provides a linearized model used in particular for the control of
the UAV. In Section 3.6, the navigation of the UAV is explained. Section 3.7 describes the
control of the UAV used. The Section 3.8 details the guidance of the UAV used. Section 3.9
summarize this chapter.

3.1 coordinate frames

The coordinate frames [67] are defined in Figure 3.1. The Z Y X Euler rotational sequence
is used with unit vectors notations along the current axes of the current frame i ≡ X, j ≡ Y
and k ≡ Z.

In Figure 3.1, the black arrows are frame axes, the green arrows are vectors and the red
arc are angles. The inertial frame axes (not represented here) are collinear with the North,
East, Down (NED) axis and represent the origin of the position states. The superscripts v,
v1 and v2 denote respectively the vehicle, vehicle 1 and vehicle 2 frames. The vehicle 1 and
vehicle 2 frames are respectively obtained after the first and second rotations of the Euler
sequence. The superscripts b denotes the body frame obtained after the full sequence of
three rotations, the superscript s the stability frame and the superscript w the wind frame.
The vector Va denotes the airspeed vector, Vw represents the wind vector and Vg is the
velocity vector. The angle ψ, θ, φ respectively denote the yaw, pitch and roll, β represents
the side-slip angle, χ is the course angle, χc is the crab angle, α is the angle of attack, γ the
flight path angle and γa the air-mass-referenced flight path angle. Finally, the yellow and
black coloured disk represent the centre of mass.

In this thesis, the inertial frame is denoted F i, the vehicle frame F v, the vehicle 1 and 2
frames F v1 and F v2, the body frame F b, the stability frame F s and the wind frame Fw.

47



48 fixed wing unmanned aerial vehicle dynamics, guidance, navigation and control

North
EastDown

iv

jv

jv1 jv2 jb js

iv1 iv2 ib is

jw

iw

Va

Vw
Vg

ψ

χ β

χc

(a) Coordinate frames, top view

North
East

Down

iv iv1

kv kv1

iv2 ib

kv2 kb

is iw

ks kw

VaVw

Vg
θ

α

γaγ

(b) Coordinate frames, side view

NorthEast

Down

jv jv1 jv2

kv kv1 kv2

jb

kb

js jw

ks kw

Va
Vw

Vg

φ

(c) Coordinate frames, front view

Figure 3.1: Coordinate frames of the UAV.

3.2 aircraft kinematics and dynamics

The kinematic and dynamic equations of the UAV are taken from reference [67]. These
equations define the non-linear model of a UAV.

3.2.1 State variables definitions

The state variables used for the UAV kinematics and dynamics are described in table 3.1,
with a differentiation between longitudinal and lateral variables. All these state variables
concatenated constitute the state vector z.
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Name Description Lateral Longitudinal

pn Inertial North position of the UAV along ii in F i

pe Inertial East position of the UAV along ji in F i

pd Inertial Down position (negative of altitude) of the
UAV measured along ki in F i X

u Body frame velocity measured along ib in F b X

v Body frame velocity measured along jb in F b X

w Body frame velocity measured along kb in F b X

φ Roll angle defined with respect to F v2 X

θ Pitch angle defined with respect to F v1 X

ψ Heading (yaw) angle defined with respect to F v X

p Roll rate measured along ib in F b X

q Pitch rate measured along jb in F b X

r Yaw rate measured along kb in F b X

Table 3.1: State variables of the UAV

3.2.2 Kinematics and dynamic equations

3.2.2.1 Rotational motion

For rotational motion, Newton’s second law states that:
dh
dti

=
dh
dtb

+ ωb/ih =M, (3.1)

where d
dti

is the time derivative in the F i, d
dtb

is the time derivative in F b, h is the angular
momentum vector, M is the sum of all externally applied moments and ωb/i denote the
angular velocity of frame F b with respect to F i. As with translational motion, it is most
convenient to express this equation in the body frame, giving:

dhb

dtb
+ ωbb/ih

b =M b. (3.2)

where hb is the angular momentum vector expressed in F b.
For a rigid body, angular momentum is defined as the product of the inertia matrix J

and the angular velocity vector hb , Jωbb/i, and rotational dynamics are described by the
equation:

J
dωbb/i

dtb
+ ωbb/i

(
Jωbb/i

)
=M b, (3.3)
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where:

J =

 Jx −Jxy −Jxz
−Jxy Jy −Jyz
−Jxz −Jyz Jz

 . (3.4)

3.2.2.2 Equations of motion in component form

The equations of motion of the UAV are given by1:

ṗnṗe
ṗd

 =

c(θ)c(ψ) s(φ)s(θ)c(ψ) − c(φ)s(ψ) c(φ)s(θ)c(ψ) + s(φ)s(ψ)

c(θ)s(ψ) s(φ)s(θ)s(ψ) + c(φ)c(ψ) c(φ)s(θ)s(ψ) − s(φ)c(ψ)
−s(θ) s(φ)c(θ) c(φ)c(θ)


uv
w

 (3.5a)

u̇v̇
ẇ

 =

rv − qwpw − ru
qu− pv

+
1

m

fxfy
fz

 (3.5b)

φ̇θ̇
ψ̇

 =

1 sin (φ) tan (θ) cos (φ) tan (θ)

0 cos (φ) − sin (φ)

0 sin (φ)
cos (θ)

cos (φ)
cos (θ)


pq
r

 (3.5c)

ṗq̇
ṙ

 =

 Γ1pq − Γ2qr

Γ5pr − Γ6

(
q2 − r2

)
Γ7pq − Γ1qr

+

Γ3l + Γ4n
1
Jy
m

Γ4l + Γ8n

 (3.5d)

1 For the position equation the function cos (·) is denoted c(·) and sin (·) is denoted s(·)
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where m denotes the mass of the aircraft,
[
fx fy fz

]>
and

[
l m n

]>
, M b are the

externally applied forces and moments on the UAV about the ib, jb, and kb axes, and Γ1 to
Γ8 are product of the inertia terms, given by:

Γ1 =
Jxz (Jx − Jy + Jz)

JxJz − J2
xz

(3.6a)

Γ2 =
Jz (Jz − Jy) + J2

xz

JxJz − J2
xz

(3.6b)

Γ3 =
Jz

JxJz − J2
xz

(3.6c)

Γ4 =
Jxz

JxJz − J2
xz

(3.6d)

Γ5 =
Jz − Jx
Jy

(3.6e)

Γ6 =
Jxz
Jy

(3.6f)

Γ7 =
(Jx − Jy) Jx + J2

xz

JxJz − J2
xz

(3.6g)

Γ8 =
Jx

JxJz − J2
xz

, (3.6h)

The equations of motion (3.5) are the components of F (·) the non-linear dynamics of the
state vector z.

3.2.2.3 Equations of decoupled

The lateral equations of motion of the UAV are given by:[
v̇
]
=

1

m

[
fy

]
(3.7a)[

φ̇

ψ̇

]
=

[
p

cos (φ)r

]
(3.7b)[

ṗ

ṙ

]
=

[
Γ3l + Γ4n

Γ4l + Γ8n

]
(3.7c)



52 fixed wing unmanned aerial vehicle dynamics, guidance, navigation and control

The longitudinal equations of motion of the UAV are given by:[
ṗd

]
=
[
− sin (θ)u+ cos (θ)w

]
(3.8a)[

u̇

ẇ

]
=

[
qw

qu

]
+

1

m

[
fx

fz

]
(3.8b)[

θ̇
]
=
[
q
]

(3.8c)[
q̇
]
=
[
Γ6

(
q2
)]

+
[

1
Jy
m
]

(3.8d)

3.3 forces and moments

The forces and moments equations of the UAV are taken from reference [67]. This section

describes the forces
[
fx fy fz

]>
and moments

[
l m n

]>
that act on the UAV dynamics.

The control inputs of the UAV are described in table 3.2 with a differentiation between
lateral and longitudinal control inputs. All the control inputs concatenated constitute the
control input vector u.

Name Description Lateral Longitudinal

δe Elevator deflection X

δa Aileron deflection X

δr Rudder deflection X

δt Throttle input X

Table 3.2: Control inputs of the UAV

The total forces along the body axes of the UAV can be written as follows:fxfy
fz

 =

 −mg sin (θ)

mg cos (θ) sin (φ)

mg cos (θ) cos (φ)

+

ρVa
2S

2


CX (α) + CXq (α)

c
2Va

q + CXδe
(α) δe

CY0 + CYββ + CYp
b

2Va
p+ CYr

b
2Va

r + CYδa δa + CYδr δr

CZ (α) + CZq (α)
c

2Va
q + CZδe

(α) δe

+

ρSpropCprop
2

(kmotorδt)
2 −Va

2

0

0



, (3.9)
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where g is the gravitational acceleration, ρ the density of air, S the surface area of the
wing, c the mean aerodynamic chord of the wing, b the wing span, Sprop the area of the
propeller, Cprop the aerodynamic coefficient of the propeller, kmotor the constant that specify
the efficiency of the motor, and CY0 , CYβ , CYp , CYr , CYδa and CYδr are aerodynamic force
coefficients along the jb axis. All these parameters except g and ρ that are independent of
the aircraft are given in Appendix A.1. Finally, CX (·), CXq (·) and CXδe

(·) are aerodynamic
force coefficients along the ib axis, and CZ (·), CZq (·) and CZδe

(·) are aerodynamic force
coefficients along the kb axis. There are given by:

CX (α) ,− CD (α) cos (α) + CL (α) sin (α) (3.10a)
CXq (α) ,− CDq cos (α) + CLq sin (α) (3.10b)
CXδe

(α) ,− CDδe
cos (α) + CLδe

sin (α) (3.10c)
CZ (α) ,− CD (α) sin (α)− CL (α) cos (α) (3.10d)
CZq (α) ,− CDq sin (α)− CLq cos (α) (3.10e)
CZδe

(α) ,− CDδe
sin (α)− CLδe

cos (α), (3.10f)

where CD (·), CDq and CDδe
are aerodynamic drag coefficients, and CL (·), CLq and CDδe

are lift coefficients. There are given in Appendix A.1 except for CD (·) and CL (·) which are
given by:

CL (α) = (1− σ (α)) [CL0 + CLαα] + σ (α)
[
2 sign (α) sin (α)2 cos (α)

]
(3.11a)

CD (α) =CDp +
CL(α)

2

πeAR
(3.11b)

where CL0 and CLα are aerodynamic lift coefficients, CDp is an aerodynamic drag coefficient,
e is the Oswald efficient factor, and AR is the wing aspect ratio. There are given in
Appendix A.1. Finally, σ (·) is a sigmoid function given by:

σ (α) =
1 + e−M(α−α0) + e−M(α+α0)(
1 + e−M(α−α0)

) (
1 + eM(α+α0)

) , (3.12)

where M is a positive constant, and α0 is the stalling angle of attack. There are given in
Appendix A.1.

A nominal flight is conducted with an angle of attack bounded between ±α0. Above this
limit, the aircraft is in stall. This phenomenon is illustrated on the Figure 3.2. Figure 3.2
also illustrates that the lift and drag equation can be approximated by a linear and second
order function if the angle of attack is bounded by α0.
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Figure 3.2: Lift coefficient (CL) and drag coefficient (CD) versus the angle of attack α, with parameters
from Appendix A.1

The total torque vector of the UAV can be written as follows: lm
n

 =
ρVa

2S

2


b
(
Cl0 + Clββ + Clp

b
2Va

p+ Clr
b

2Va
r + Clδa δa + Clδr δr

)
c
(
Cm0 + Cmαα+ Cmq

c
2Va

q + Cmδe
δe

)
b
(
Cn0 + Cnβ

β + Cnp
b

2Va
p+ Cnr

b
2Va

r + Cnδa
δa + Cnδr

δr

)
+

−kTp(kωδt)
2

0

0


(3.13)

where Cl0 , Clβ , Clp , Clr , Clδa and Clδr are aerodynamic moments coefficients along the ib

axis, Cm0 , Cmα , Cmq , and Cmδe
are aerodynamic moments coefficients along the jb axis, Cn0 ,

Cnβ
, Cnp , Cnr , Cnδa

and Cnδr
are aerodynamic moments coefficients along the kb axis, and

kTp and kω are motor constants. All these parameters are given in Appendix A.1.

3.4 sensors

The typical sensors used for the GNC of a UAV [67] are:

• Rate gyros;

• Accelerometers;

• Pressure sensors;

• Digital compass;

• GNSS receiver.

Note that most of the sensors in embedded systems are usually digital sensors. This
means that their accuracies depend on the resolution of the analog-to-digital converter. The
resolution herein is assumed to be negligible, and therefore it is not considered.
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3.4.1 Rate gyros

In small aircraft, vibratory and micro-electromechanical system (MEMS) rate gyros are
commonly used, and they typically operate based on the principle of the Coriolis acceleration.
Then, equations of gyros rates are given by:ygyro,pygyro,q

ygyro,r

 =

pq
r

+

νgyro,pνgyro,q

νgyro,r

 , (3.14)

where νgyro,p, νgyro,q and νgyro,r are Gaussian processes with variance σ2gyro,p, σ2gyro,q and
σ2gyro,r, respectively, and means µgyro,p, µgyro,q and µgyro,r, respectively. The gyros rate ygyro,p,
ygyro,q and ygyro,r are expressed in rad s−1. The attitude state vector, can be expressed by
integration of the angle rates, that yields:ygyro,φygyro,θ

ygyro,ψ

 =

φθ
ψ

+

νgyro,φνgyro,θ

νgyro,ψ

 , (3.15)

where the measurement noise νgyro,φ, νgyro,θ and νgyro,ψ depend respectively on the noise in
the measurements of p, q and r.

For low-cost MEMS gyros, drift in the bias term can be significant and care must be taken
to zero the gyro bias periodically during flight. This is done by flying a straight and level
path and resetting the gyro bias so that ygyro,p, ygyro,q and ygyro,r averages zero over a
period of 100 or so samples. Moreover, the biases will never be perfectly estimated, and
non-zero biases must be expected especially for the attitude computation where the biases
are integrated. Then, a drift should be expected.

3.4.2 Accelerometers

The measured acceleration is the total acceleration minus gravity. The equations of ac-
celerometers are:yaccel,xyaccel,y

yaccel,z

 =

u̇v̇
ẇ

+

qw − rvru− pw
pv − qu

− g
 − sin (θ)

sin (φ) cos (θ)
cos (φ) cos (θ)

+

νaccel,xνaccel,y

νaccel,z

 , (3.16)

where νaccel,x, νaccel,y and νaccel,z are Gaussian processes with variance σ2accel,x, σ2accel,y and
σ2accel,z respectively and means µaccel,x, µaccel,y and µaccel,z respectively. The accelerations
yaccel,x, yaccel,y and yaccel,z are expressed in m s−2. Each accelerometer measures elements of
linear acceleration, Coriolis acceleration, and gravitational acceleration.
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The measurement equation to observe the velocity state vector can be expressed by
integrating acceleration terms from (3.16) which yields:yaccel,uyaccel,v

yaccel,w

 =

uv
w

+

νaccel,uνaccel,v

νaccel,w

 , (3.17)

where the measurement noise νaccel,u, νaccel,v and νaccel,w depend respectively on the noise
on the measurements of u̇, v̇ and ẇ.

The accelerometers can then be used to derive pseudo-measures of the velocity if the angle
rate and θ and φ are known. However, even with a good calibration, the biases are never
fully removed, resulting in a drift of the velocity measurement.

3.4.3 Pressure sensors

Pressure sensors can provide pseudo measurements of altitude, with an absolute pressure
sensor, and airspeed with a differential pressure sensor. Herein only an absolute pressure
sensor is considered.

An absolute pressure sensor — that is a barometer — measures the atmospheric pressure.
The equation of the sensor is given by:

ybaro = P + νbaro, (3.18)

where P is the pressure measured by the barometer, and νbaro is the Gaussian noise with
variance σ2baro and mean µbaro which is a temperature-related bias drift.

In the troposphere, typically below altitude of 11 000 m above sea level (ASL), the pressure
of the atmosphere can be calculated using the barometric formula:

P = P0

[
T0

T0 − pdL0

] gnM
RL0

, (3.19)

where P0 is the standard pressure at sea level, T0 is the standard temperature at sea level,
L0 is the lapse rate of the temperature decrease in the lower atmosphere, gn is the standard
acceleration of gravity, R the molar gas constant, and M is the standard molar mass of the
atmospheric air. All these values are given in Table B.1 Then, the measurement equation
depending on the position down state can be written as:

ybaro = P0

[
T0

T0 − pdL0

] gnM
RL0

+ νbaro. (3.20)

Then, the measurement of the position state pd can be expressed as:

ybaronl,−pd =

 T0(
ybaro−νbaro

P0

) RL0
gnM

− T0

 1

L0
(3.21)
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The measurement equation is nonlinear2. It can be approximated for sake of simplicity by a
linearized measurement equation as:

ybaro,−pd = −ybaro − νbaro − P0

ρgn
(3.22)

The air density at a specific altitude can be computed by the formula:

ρ =
MP

RT
(3.23)

where T is the local temperature parameters. If the model is linearized at 0 m of altitude
then the error with the nonlinear model at 100 m is about 0.5 m and 12 m at 500 m. The
linearized model at 0 m and the nonlinear model are shown in Figure 3.3.
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Figure 3.3: Altitude versus pressure with nonlinear and linear model

Then, the measurement equation depending on the position down state can be written as:

ybaro,−pd = −pd +
νbaro
ρgn

(3.24a)

= −pd + νbaro,−pd (3.24b)

3.4.4 Digital compass

A digital compass (magnetometer) measures the direction field locally and provides an
indication of heading relative to the magnetic North ψm. However, ψ is the heading relative
to the geographical North. There is a declination δm between the geographical and magnetic
North, which depends on the location on Earth. The heading is then the sum of the magnetic
heading measurement and the declination angle. The measurement equation of the digital
compass is given by:

ymag = ψm + δm + νmag (3.25)

2 The subscript nl is used here to distinguish the nonlinear and the linear equation
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where νmag is the Gaussian noise with variance σ2mag and mean µmag.
Given that the heading is given by ψ = ψm + δm, it also gives:

ymag = ψ + νmag (3.26)

3.4.5 Global navigation satellite system receiver

A GNSS receiver uses one or multiple satellite constellations to provide a 3-D position
information on or near the Earth’s surface.

3.4.5.1 Position

By measuring the time of flight of a minimum of four satellites (at least three for the
trilateration and one for the receiver clocks synchronization and the need to resolve the
ambiguity linked to the fact that there are often two possible points of intersection between
3 spheres). Then, the measurement equation of the GNSS receiver for the position in Earth
coordinates and altitude ASL are: yGNSS,pnyGNSS,pe

yGNSS,−pd

 =

 pn

pe

−pd

+

 νGNSS,pnνGNSS,pe

νGNSS,−pd

 , (3.27)

where νGNSS,pn , νGNSS,pe and νGNSS,−pd are the error model of the North East and Altitude
position respectively. An error model is necessary for the GNSS because there are multiple
measurements errors sources. Kaplan and Hegarty [68] characterize the GNSS error solution
by:

(error in GNSS solution) = (pseudo-range error factor) (geometry factor) (3.28)

The GNSS pseudo-range error factor for a dual-frequency receiver is described by Kaplan
and Hegarty [68] and Spilker Jr et al. [69]. It is due to the accuracy of the satellite clock
and the ephemeris data, various atmospheric effect, multipath at the reception, and the
receiver noise and its resolution. The cumulative effect of each of these errors sources on the
pseudo-range measurement is called the user-equivalent range error (UERE).

The GNSS geometry factor is the satellite/user geometry effect on the GNSS solution error.
It is generically called the dilution of precision (DOP). The DOP is composed of the vertical
dilution of precision (VDOP) and the horizontal dilution of precision (HDOP). The terms
describe the receiver location error due to the satellite location on the constellation.

To model the transient behaviour of the GNSS error [70], a Gauss-Markov process is used:

νk+1 = e−kGNSSTsνk + ηGNSS , (3.29)

where kGNSS is the frequency response of the Gauss-Markov process, Ts is the sample time
and ηGNSS is a zero-mean white Gaussian noise with a standard deviation σGNSS . The
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Figure 3.4: Example of GNSS position error simulated over 12 h with the model described in (3.29)
and parameters given by Table B.2

Figure 3.4 shows an example of the GNSS error with the model described in (3.29) and
parameters given by Table B.2.

However, some estimation methods described in Section 2.5 can only process a Gaussian
noise. Then, to be able to use these methods, a Gaussian approximation of this noise can be
performed.

3.4.5.2 Velocity

Using carrier phase Doppler measurements from the GNSS signal, a GNSS receiver computes
its velocity with a standard deviation. Then, the measurement equation of the GNSS receiver
for the velocity in the inertial frame is given by: yGNSS,u

yGNSS,v

yGNSS,−w

 = Rb
i

 Vn

Ve

−Vd

+

 νGNSS,u

νGNSS,v

νGNSS,−w

 , (3.30)
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where Vn, Ve and Vd are velocity components of the North, East and downward directions
given by the GNSS with respect to the inertial frame, Rb

i denotes the rotation matrix of a
rotation from inertial coordinate frame to body coordinate frame and νGNSS,u, νGNSS,v and
νGNSS,w are a zero mean white Gaussian noise with a standard deviation σGNSS,u, σGNSS,v
and σGNSS,w respectively. Equation 3.30 can then be rewritten as: yGNSS,u

yGNSS,v

yGNSS,−w

 =

 u

v

−w

+

 νGNSS,u

νGNSS,v

νGNSS,−w

 (3.31)

3.4.6 Measurement model

The main navigation sensors used by UAV were described above. All the measurement
equations are linear or can be approximated by a linear function. Then, the measurement
model can be written as follows:

y = Hz + ν. (3.32)

In this thesis only the linear measurement model is considered. Therefore:

Hz + ν ≡ H (z) + ν ≡ Hk (zk) + νk, (3.33)

with H (·) the continuous measurement function of the state vector z.
Then, from (3.17) to (3.31), the measurement model is given by:

yGNSS,pn

yGNSS,pe

yGNSS,−pd
ybaro,−pd
yGNSS,u

yGNSS,v

yGNSS,−w

yaccel,u

yaccel,v

yaccel,w

ymag,ψ

ygyro,ψ

ygyro,θ

ygyro,φ

ygyro,p

ygyro,q

ygyro,r



=



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1



z +



νGNSS,pn

νGNSS,pe

νGNSS,−pd
νbaro,−pd
νGNSS,u

νGNSS,v

νGNSS,−w

νaccel,u

νaccel,v

νaccel,w

νmag,ψ

νgyro,ψ

νgyro,θ

νgyro,φ

νgyro,p

νgyro,q

νgyro,r



(3.34)
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The lateral and longitudinal measurement model can easily be obtained from (3.34) by
separately considering longitudinal and lateral measurement equation.

3.4.6.1 Longitudinal state-space model

For the longitudinal state-space model, the state vector is zlon =
[
pd u w θ q

]>
and

the longitudinal state-space model is given by:

ylon = YlonHY>
lonzlon + Ylonν, (3.35)

where

Ylon =



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


. (3.36)

3.5 linearized model

The non-linear equations of motion with Euler angle representation are described in (3.5),
(3.9) and (3.13).

However, these equations can be linearized at trim points, enabling the use of linear control
laws. To further simplify the problem, the longitudinal and lateral states are decoupled.

To linearize the flight dynamics, a trim point must be chosen inside the flight envelope to
ensure that the UAV can maintain flight at the chosen trim point.

3.5.1 Trim conditions

A non-linear system described by the differential equations ż = F (z, u), the system is said
to be in equilibrium (or trimmed for aerospace vehicles) at the state z∗ and input u∗ if
F (z∗, u∗) = 0. Letting z̄ ≡ z− z∗ it gives:

˙̄z = ż− ż∗ = F (z, u)−F (z∗, u∗) = F (z∗ + z̄, u∗ + ū)−F (z∗, u∗) (3.37)

Taking the Taylor series expansion of the first term about the trim state, gives:

˙̄z ≈ ∂F (z∗, u∗)

∂z z̄ + ∂F (z∗, u∗)

∂u ū (3.38)
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In the computation of trimmed state, it is assumed that the wind speed is zero, in other
words Va = Vg, ψ = χ, and γ = γa. The trim states and inputs are computed when the
aircraft simultaneously satisfies the following three conditions:

• It is travelling at a constant speed Va
∗;

• It is climbing at a constant flight path angle of γ∗;

• It is in a constant orbit with radius of turn R∗, where R∗ ∈ [Rmin, +∞) and Rmin is
the minimum turning radius of the aircraft. A turning radius equal to +∞ represents
a straight flight.

Note that the right-hand side of equations (3.5), (3.9) and (3.13) are independent of the
position components pn, pe and pd. If the trimmed flight condition is a constant climb, it gives:
ψ̇∗ = Va∗

R∗ cos (γ∗) and ṗ∗d = −Va
∗ sin (γ∗) and the new equation to satisfy F (z∗,u∗) = 0 is:

ż∗ =



ṗ∗n

ṗ∗e

ṗ∗d
u̇∗

v̇∗

ẇ∗

φ̇∗

θ̇∗

ψ̇∗

ṗ∗

q̇∗

ṙ∗



=



−
−

−Va
∗ sin (γ∗)

0

0

0

0

0
Va∗

R∗ cos (γ∗)
0

0

0



, u̇∗ =


δ̇e

∗

δ̇a
∗

δ̇r
∗

δ̇t
∗

 =


0

0

0

0

 (3.39)

where ‘−’ denotes any values.
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To determine z∗ and u∗ such that ż∗ = F (z∗,u∗), the following non-linear equations has
to be solved to obtain z∗:p∗np∗e

p∗d

 =

∫ t

0

Rv
b

uv
w


 dt+

pn0pe0

pd0

 (3.40a)

u∗v∗
w∗

 = Va
∗

cos (α∗) cos (β∗)
sin (β∗)

sin (α∗) cos (β∗)

 (3.40b)

φ∗θ∗
ψ∗

 =

∫ t

0


p∗q∗
r∗


 dt =

 φ∗

α∗ + γ∗

ψ∗

 (3.40c)

p∗q∗
r∗

 =
Va

∗ cos (γ∗)
R∗

 − sin (α∗ + γ∗)

sin (φ∗) cos (α∗ + γ∗)

cos (φ∗) cos (α∗ + γ∗)

 (3.40d)

where Rv
b is the rotation matrix from coordinate body frame to vehicle frame, and

[
pn0 pe0 pd0

]>
is the position at t = 0.

Given result of (3.40), it is possible to solve equation (3.5) for δ∗e , δ∗a, δ∗r , and δ∗t , giving
u∗:

δ∗e =

[
Jxz(p∗2−r∗2)+(Jx−Jz)p∗r∗

0.5ρ(Va∗)
2cS

]
− Cm0 − Cmαα

∗ − Cmq

cq∗

2Va∗

Cmδe

(3.41a)[
δ∗a

δ∗r

]
=

[
Cpδa Cpδr
Crδa Crδr

]−1

−Γ1p∗q∗+Γ2q∗r∗
1
2
ρ(Va∗)

2Sb
− Cp0 − Cpββ∗ − Cpp

bp∗

2Va∗
− Cpr br∗

2Va∗

−Γ7p∗q∗+Γ1q∗r∗
1
2
ρ(Va∗)

2Sb
− Cr0 − Crββ∗ − Crp

bp∗

2Va∗
− Crr br∗

2Va∗

 (3.41b)

δ∗t =

√√√√2m (−r∗v∗ + q∗w∗ + g sin (θ∗))−Va
∗2ρS

(
C∗
X + C∗

Xq

cq∗

2Va∗
+ C∗

Xδe
δ∗e

)
ρSpropCpropk2motor

+

Va
∗2

k2motor
(3.41c)

where C∗
X = CX (α∗), C∗

Xq
= CXq (α

∗) and C∗
Xδe

= CXδe
(α∗).

The system is expressed in terms of Va
∗, γ∗, R∗, α∗, β∗ and φ∗. Since Va

∗, γ∗ and R∗

are user-specified inputs, computing the trim state will then consist of an optimization
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algorithm over α, β and φ to find α∗, β∗ and φ∗. To find those three parameter, the following
optimization problem must be solved:

(α∗, φ∗, β∗) = arg min ‖ż∗ −F (z∗,u∗) ‖2, (3.42)

where ż∗ is (3.39), and F (z∗,u∗) is (3.5).

3.5.2 Linearized aircraft state-space model

A linear state-space model can be expressed as:

ż = Fz + Bu (3.43a)
y = Cz (3.43b)

This state-space model approximates F (z, u) with:

F =


∂F1(z∗,u∗)

∂p∗n

∂F1(z∗,u∗)
∂p∗e

· · · ∂F1(z∗,u∗)
∂r∗

∂F2(z∗,u∗)
∂p∗n

∂F2(z∗,u∗)
∂p∗e

· · · ∂F2(z∗,u∗)
∂r∗

...
... . . . ...

∂F12(z∗,u∗)
∂p∗n

∂F12(z∗,u∗)
∂p∗e

· · · ∂F12(z∗,u∗)
∂r∗

 , (3.44a)

B =


∂F1(z∗,u∗)

∂δ∗e

∂F1(z∗,u∗)
∂δ∗a

· · · ∂F1(z∗,u∗)
∂δ∗t

∂F2(z∗,u∗)
∂δ∗e

∂F2(z∗,u∗)
∂δ∗a

· · · ∂F2(z∗,u∗)
∂δ∗t...

... . . . ...
∂F12(z∗,u∗)

∂δ∗e

∂F12(z∗,u∗)
∂δ∗a

· · · ∂F12(z∗,u∗)
∂δ∗t

 , (3.44b)

where F1 (·) and F12 (·) are respectively the first and the twelfth output of F (·). The
lateral and longitudinal state-space model can be easily obtained from (3.44a) by separately
considering longitudinal and lateral state variables and control inputs.

The decoupling between longitudinal and lateral dynamics is generically valid when the
side-slip angle is sufficiently small and the trajectory is a straight line. Since it is assumed
that the wind speed is zero, then β = 0 which means that the decoupling can be performed
under a straight flight.

3.5.2.1 Longitudinal state-space model

For the longitudinal state-space the state vector and control input are:

z̄lon =


p̄d

ū

w̄

θ̄

q̄

 , ūlon =

[
δ̄e

δ̄t

]
(3.45)
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The longitudinal state-space model is given by:

˙̄zlon = ZlonFZ>
lonz̄lon + ZlonBU>

latūlon (3.46)

where:

Zlon =


0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

 , Ulon =

[
1 0 0 0

0 0 0 1

]
(3.47)

The corresponding longitudinal state-space obtained from (3.44a) is given by:
˙̄pd
˙̄u

˙̄w
˙̄θ

˙̄q

 =


0 sin (θ∗) − cos (θ∗) u∗ cos (θ∗) + w∗ sin (θ∗) 0

0 Xu Xw −g cos (θ∗) Xq

0 Zu Zw −g sin (θ∗) Zq

0 0 0 0 1

0 Mu Mw 0 Mq




p̄d

ū

w̄

θ̄

q̄

+


0 0

Xδe Xδt

Zδe 0

0 0

Mδe 0


[
δ̄e

δ̄t

]
,

(3.48)

where the coefficients X∗, Z∗ and M∗ are given in Table A.2.

3.5.3 Flight envelope

The trim condition value can be chosen based on a flight envelope (airspeed and flight
altitude variation). The flight envelope is computed with: the lift force (Fl), the drag force
(Fd), the propulsion force (Fp) and the gravity force (Fg) which are given by:

Fl =
1

2
ρVa

2S

(
CL (α) + CLq

c

2Va
q + CLδe

δe

)
(3.49a)

Fd =
1

2
ρVa

2S

(
CD (α) + CDq

c

2Va
q + CDδe

δe

)
(3.49b)

Fp =
1

2
ρSpropCprop

(
(kmotorδt)

2 −Va
2
)

(3.49c)

Fg = mg (3.49d)
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The drag and lift forces must be compared with the propulsion and gravity forces, to
determine if the aircraft is capable of flight and what its maximum velocity can be. However,
the force Fl and Fd are expressed in the stability frame while Fp is expressed in the body
frame and Fg in the vehicle frame. The Fl and Fd must change their coordinate frame to be
compared with Fp and Fg. Hence:

Fxb = − cos (α)Fd + sin (α)Fl, (3.50a)
Fzv = − sin (γa)Fd − cos (γa)Fl, (3.50b)

where Fxb is the force on apply on the aircraft along the ib axis due to the drag and lift,
while Fzv is the force on along the kv axis also due to the drag and lift. However, ‖Vw‖ = 0
implies γa ≡ γ. Then, to determine the flight envelope with a chosen flight path angle γ∗,
the aircraft can fly if:

∃α∗ :
Fzv + Fg

m =
∂Va sin (γ∗)

∂t
(3.51)

If multiple solutions exist for α∗, it is better to retain only the one which gives the lowest
Fxb . Then, the aircraft can reach a velocity if with the previously computed α∗:

∃Va
∗ : Fxb + Fp = 0. (3.52)

The flight envelope of the Aerosonde UAV (aircraft parameters available in Appendix A.1)
for a straight levelled flight is shown in Figure 3.5.
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Figure 3.5: Flight envelope of the Aerosonde UAV between 0 and 2000 m. The values that are not
plotted are the airspeed and altitude configuration that cannot be reached by the aircraft
for a straight (R∗ =∞) level flight (γ∗ = 0).

Based on Figure 3.5, an airspeed velocity of 40 m s−1 at 500 m is a valid choice for the
linearization.

The radius of turn R∗ must be verified with airspeed and load variation flight envelope.
However, if R∗ = ∞, then the altitude and airspeed flight envelope is sufficient. A lower
radius of trun implies a larger load factor and a narrower flight envelope. In this thesis, the
radius of turn is taken to be infinite (straight flight) because of teh focus on longitudinal
dynamics.
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3.6 navigation

This section aims to present UAV navigation. The reference navigation filters considered in
this thesis are the same as the estimation filters presented in Chapter 2.

The navigation is fed by the sensors and feeds the guidance and control module, with the
estimated longitudinal states, as shown in Figure 3.6

y ˆ̄zSensors Guidance
ControlNavigation

Figure 3.6: Input-output representation of the navigation module

3.7 control

This section aims to define the control law of the UAV. The navigation module is assumed to
estimate all the components of the state vector z. Using the decoupled linearized model, the
control law that has been developed here is a full-state feedback with an integrator effect.
The method used for this design is presented in Appendix C.

3.7.1 Linear longitudinal control

This section then describes the longitudinal control module of the UAV. In this section for
sake of brevity and since only the longitudinal state and input are considered, the state
vector z is used as zlon and the control input vector u is used as ulon. The system considered
here is given by (3.43) where H = I ∈ R5×5. The state vector trimmed, and control inputs
trimmed used to represent the longitudinal dynamics are:

z̄ =


p̄d

ū

w̄

θ̄

q̄

 , ū =

[
δ̄e

δ̄t

]
(3.53)

The inputs of the control law are the desired and current state values provided by the
guidance and navigation modules. They are, respectively, the desired airspeed velocity and
flight path angle and the longitudinal state. The outputs are the throttle setting δt and
the elevator deflection δe. Since it is assumed that there is no wind, then Vg ≡ Va and
γ ≡ γa. The external view of the module is shown in Figure 3.7, where γ̄ac is the desired
trimmed air-mass-referenced flight path angle and

∣∣V̄g
c∣∣ is the desired trimmed modulus of

the velocity vector.
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ˆ̄z
δ̄e

Navigation
UAVLongitudinal

control δ̄t
γ̄a

c

Guidance ∣∣V̄g
c∣∣

Figure 3.7: Input-output representation of the longitudinal guidance module

Since γ̄a = θ̄ − ᾱ, then a possible solution for the control law of the elevator deflection is
first to the control the pitch with θ̄c, the desired pitch, and then compute ᾱ to feed the desired
pitch with θ̄c = γ̄a

c + ᾱ. However, to command the pitch with γ̄ac, the angle of attack must
be computed. Moreover, the angle of attack formula is nonlinear since α (u, w) = arctan

(
w
u

)
.

Then, to get a linear model for the control law, this formula must be linearized, hence:

ᾱ (ū, w̄) =
∂α (u∗, w∗)

∂u
ū+

∂α (u∗, w∗)

∂w
w̄ (3.54a)

=
−w∗

u∗2 + w∗2 ū+
u∗

w∗2 + u∗2
w̄ (3.54b)

The gain −w∗

u∗2+w∗2 is denoted Au and the gain u∗

w∗2+u∗2
is denoted Aw.

To command the throttle input with
∣∣V̄g

c∣∣, the modulus of the velocity vector must be
computed. However, the modulus of the velocity vector is nonlinear since without wind,
|Vg (u, w)| =

√
u2 + w2. Then, to get a linear model for the control law, this formula must

be linearized, as follows:

∣∣V̄g (ū, w̄)
∣∣ = ∂

∣∣V̄g (u
∗, w∗)

∣∣
∂u

ū+
∂
∣∣V̄g (u

∗, w∗)
∣∣

∂w
w̄ (3.55a)

=
u∗√

u∗2 + w∗2
ū+

w∗
√
w∗2 + u∗2

w̄ (3.55b)

The gain u∗√
u∗2+w∗2 is denoted Vu and the gain w∗√

w∗2+u∗2
is denoted Vw.

Since
∣∣V̄g (ū, w̄)

∣∣ = Vuū+Vww̄, a possible solution for the control law of the throttle input
is first to the control the velocity with ūc and feed it with ūc =

∣∣V̄g
c∣∣−Vww̄
Vu

.
To minimize the error between θ̄ and its desired output θ̄c a new state θ̄i is added and

˙̄θi = θ̄c −Hθ z̄, where Hθ is the row of H that give the observability of the state θ̄. Likewise,
to minimize the error between ū and its desired output ūc a new state ūi = ūc − Huz̄ is
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created, where Hu is the row of H that make the state ū observable. The new state-space
model with θ̄c and ūc as input in open loop is defined as:



˙̄pd
˙̄u

˙̄w
˙̄θ

˙̄q
˙̄θi
˙̄ui


=



0 sin θ∗ − cos θ∗ u∗ cos θ∗ + w∗ sin θ∗ 0 0

0 Xu Xw −g cos θ∗ Xq 0

0 Zu Zw −g sin θ∗ Zq 0

0 0 0 0 1 0

0 Mu Mw 0 Mq 0

0 0 0 −1 0 0

0 −1 0 0 0 0





p̄d

ū

w̄

θ̄

q̄

θ̄i

ūi


+



0 0

Xδe Xδt

Zδe 0

0 0

Mδe 0

0 0

0 0



[
δ̄e

δ̄t

]
+



0 0

0 0

0 0

0 0

0 0

1 0

0 1



[
θ̄c

ūc

]

y =


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0





p̄d

ū

w̄

θ̄

q̄

θ̄i

ūi



(3.56a)

(3.56b)

The full state feedback gain of the system described by (3.56) is obtained using the linear
quadratic regulator (LQR) method detailed in Appendix C.1, with zero weight on the cross
product matrix N. A good compromise between actuator effort and performance for the UAV
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Aerosonde — with the airframe parameter in Appendix A.1 — is obtained by choosing the
following Q and R matrix:

Q =



0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0.1 0

0 0 0 0 0 0 1


, R =

[
1 0

0 1

]
(3.57)

The output gain of the LQR denoted L is of the following form:

L =

[
L11 L12 L13 L14 L15 L16 L17

L21 L22 L23 L24 L25 L26 L27

]
(3.58)

The block
[
L11 · · · L15

]
is denoted Lθ and

[
L21 · · · L25

]
is denoted Lu,

[
L16 L17

]
is

denoted Lθi and
[
L26 L27

]
is denoted Lui .

Then, the closed loop state space model with θ̄c and ūc as input is the following:

 ˙̄z
˙̄θi
˙̄ui

 =


F− B

[
Lθ
Lu

]
−B

[
Lθi

Lui

]
−Hθ 0

−Hu 0


 z̄
θ̄i

ūi

+

[
05,2
I2,2

][
θ̄c

ūc

]

y =
[
H 05,2

] z̄
θ̄i

ūi



(3.59a)

(3.59b)

The block diagram of the longitudinal control with θ̄c = γ̄a
c + ᾱ and ūc =

∣∣V̄g
c∣∣−Vww̄
Vu

is
shown in Figure 3.8.

The control outputs δ̄e and δ̄t with the guidance inputs
∣∣V̄g

c∣∣ and γ̄a
c and the navigation

input ˆ̄z are given by:

δ̄e = −Lθˆ̄z−
Lθi

s

[
γ̄a
c +

(
AuHuˆ̄z +AwHwˆ̄z

)
−Hθˆ̄z

]
(3.60a)

δ̄t = −Luˆ̄z−
Lui

s

(∣∣V̄g
c∣∣− VwHwˆ̄z
Vu

−Huˆ̄z
)

(3.60b)
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Figure 3.8: Longitudinal control systems of the UAV with
∣∣V̄g

c∣∣ and γ̄a
c.

The state space model of the longitudinal control with the linearized longitudinal UAV
dynamics is then:

 ˙̄z
˙̄θi
˙̄ui

 =


F− B

[
Lθ
Lu

]
−B

[
Lθi

Lui

]
[
Au Aw 0 0

]
−Hθ 0 0[

0 −Vw
Vu

0 0
]
−Hu 0 0


 z̄
θ̄i

ūi

+

[
05,2
I2,2

][
γ̄a
c∣∣V̄g
c∣∣
]

(3.61a)

y =
[
H 05,2

] z̄
θ̄i

ūi

 (3.61b)

This system of equation is applied to the longitudinal model (3.48) with the airframe
parameters of the Appendix A.1. By linearizing around 40 m s−1 and 500 m, the step responses
of figures 3.9 are obtained:
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3.8 guidance

This section aims to define the guidance of the UAV. The flight phases can be divided into
multiple phases. Only the level flight phases — that can include small altitude adjustment

— is considered in this section. It is assumed that the UAV is initially in a steady flight at
500 m ASL.

3.8.1 Longitudinal guidance law

The longitudinal guidance law is fed by the navigation module with the longitudinal states
and feeds the control module with the desired air-mass-referenced flight path angle γ̄ac and
desired velocity

∣∣V̄g
∣∣. The external view of the module is shown in Figure 3.10

The longitudinal guidance considered in this thesis contains a pre-registered waypoint to
reach. In order to decouple the longitudinal and lateral guidance, the waypoint considered
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ˆ̄z
γ̄a

c

Navigation ControlLongitudinal
control

∣∣V̄g
c∣∣

Figure 3.10: Input-output representation of the longitudinal guidance module

in this longitudinal module is composed of a desired altitude and velocity to reach after a
specific time.

The control module already has a desired velocity. However, it takes as input a desired
flight path angle. The first step to guide the aircraft is then to get a desired flight path angle
from a desired altitude. This is done by using control techniques explained in Appendix C.

To minimize the error between p̄d and its desired output p̄dc, a new state p̄di is added and
˙̄pdi = p̄d

c −Hpd z̄, where Hpd is the row of H that give the observability of the state p̄d. Since
the altitude of the aircraft is controlled by the air-mass-referenced flight path angle input
γ̄a
c, then the state space model considered for the control with p̄d

c only uses state z̄ and θ̄i
and input γ̄ac of state space model (3.61). For sake of brevity in this section the evolution
matrix, input matrix and output matrix of (3.61) are denoted Fc, Bc and Hc, respectively.
Then, new state-space model with p̄d

c as input in open loop is defined as:

 ˙̄z
˙̄θi
˙̄pdi

 =

[
Fc1:6,1:6 0

−Hpd 0

] z̄
θ̄i

p̄di

+

[
Bc1:6,1

0

] [
γ̄a
c
]
+

[
06,1

I

] [
p̄d
c
]

y =
[
Hcnz ,1:6 0nz ,1

] z̄
θ̄i

p̄di



(3.62a)

(3.62b)

The full state feedback gain is obtained using the LQR method on (3.62), with zero weight
on the cross product matrix N. A good compromise between actuator effort and performance
for the UAV Aerosonde (airframe parameter in Appendix A.1) is obtained by choosing the
following Q and R matrix:

Q =



1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1


, R =

[
1000

]
. (3.63)

The output gain of the LQR computation denoted L is of the following form:

L =
[
L11 L12 L13 L14 L15 L16 L17

]
(3.64)
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The block
[
L11 · · · L16

]
is denoted Lpd and L17 is denoted Lpdi . Then, the closed loop

state space model with p̄d
c as input is the following:

 ˙̄z
˙̄θi
˙̄pdi

 =

[
Fc1:6,1:6 − Bc1:6,1Lpd −Bc1:6,1Lpdi

−Hpd 0

] z̄
θ̄i

p̄di

+

[
06,1

I

] [
p̄d
c
]

y =
[
Hcnz ,1:6 0nz ,1

] z̄
θ̄i

p̄di

 .

(3.65a)

(3.65b)

However, the weakness of this control method for the altitude is that it will take the same
time to reach an increment of 1 m or 100 m. This is due to the fact that the same linear
approximation is used in both cases and the model does not account for saturation in terms
of angles or angular rates. A large step in the desired altitude will result in a large input
in the desired air-mass-referenced flight path angle γ̄ac. This input can be above the small
angle assumption used for the linear approximation and even above physical limitation — for
example a desired γ̄ac above 90° to get a higher climb-rate. To avoid this situation a solution
is to use a saturator to limit the command applied on γ̄a

c. However, using a saturator with
an integrator on the output error will wind-up the integrator that will probably provide an
overshoot in the desired output and take time to unwind or even destabilized the system. To
avoid this problem, a solution is to implement an integral anti wind-up system. The block
diagram of the longitudinal guidance with the control and UAV with a saturator and an
integrator anti-wind-up system is shown in Figure 3.11.

Σp̄d
c 1

s Σ
+ +

UAV

Lw
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p̄d

ū

w̄

θ̄

q̄


δ̄t

δ̄e

Lpdi

Σ
+

Control
γ̄a

c∣∣V̄g
c∣∣

−

−−
˙̄pdi p̄di

θ̄i

+

Figure 3.11: Longitudinal guidance of the longitudinal control for UAV

The gain Lw controls the integrator anti-wind-up system. The anti-wind up uses a gain
that was determined here empirically by simulation.

The dynamics with a saturator are non-linear. The controller is applied to the longitudinal
model 3.61 with the airframe parameter of the Appendix A.1 linearized around 40 m s−1
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and 500 m with saturation on γ̄a
c above and below 28° and with a gain Lw = 2. The step

responses and input on γ̄a
c of Figure 3.12 are obtained.
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((c) and (d)) of the longitudinal control with longitudinal guidance. All results are
obtained with
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Figure 3.12 shows that the saturator with the integrator anti-wind-up system performs
well. The γ̄ac is constrained inside its physical limitation and small enough to satisfy the
linearization assumption. As expected it takes more time to complete a large altitude step
(when the γ̄ac reaches saturation) than it takes to do a small step (when the γ̄ac is not the
saturated).

This guidance module is thus well-suited to be used for following the set of pre-defined
way points.

Figure 3.13 shows a list of waypoints and the trajectory performed by the UAV with the
same parameters used for Figure 3.12. The second altitude waypoint is set to 5 m while the
fourth is set to 50 m. Then, the second waypoint is reached without saturation of the γ̄ac
input while fourth saturates it.

Figure 3.13 shows that the altitude waypoints are not reached at the desired time, the
same would have been observed on the velocity if waypoints were not the same during all
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the simulation. This behaviour is due to the guidance that sets a new desired output of the
waypoint at its associated time. To reach the waypoints at the specified time, the guidance
module must be more sophisticated. A possible solution is to anticipate the command to send
to the controller. However, for the purposes of this thesis, the simple longitudinal guidance
module presented in this section is suitable.
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Figure 3.13: Altitude (a) and velocity (b) of the UAV with waypoints

3.9 chapter summary

In this chapter, a detailed dynamic model is introduced for the fixed wing UAV under
consideration in this thesis, including sensor models. This model is essential for fault
estimation using model-based approaches, which require a process model. Under realistic
assumptions, including a low side-slip angle, the longitudinal and lateral dynamics can be
decoupled and both models can be linearized about their desired trim conditions. Moreover,
the longitudinal control and guidance of the UAV was presented to allow for tracking of
simple trajectories with a close loop system. This is necessary to visualize the impact of a
fault on the trajectory of the UAV. The numerical results presented in this thesis are then
obtained using the model, control module and guidance module presented in this chapter.



4
J U M P - M A R KOV R E G U L A R I Z E D PA RT I C L E F I LT E R

Model-based approaches were introduced in Chapter 2 for both fault isolation and fault
estimation. It has been highlighted that fault estimation is of higher interest for autonomous
vehicles without hardware redundancies. The mathematical model of a small autonomous
fixed wing UAV without hardware redundancy was introduced in Section 3.2 for the case of
non-linear dynamics and in Section 3.5 when the dynamics were linearized. In the presence
of sensor and actuator faults, the model presented in this chapter is an extension of the
small UAV model, which is hybrid and multimodal, to account for the possible faulty and
fault free modes of operations. A JMRPF will be shown to be well-adapted to detect and
estimate the fault for this class of system models.

This chapter is organized as follows: Section 4.1 details some of the issues that fault
estimation on UAV is facing. In Section 4.2, the limitations of state-of-the-art methods facing
these issues are highlighted, and Section 4.3 introduces the idea behind the mechanism of
the JMRPF to overcome them. In Section 4.4, a formulation of the JMRPF is introduced with
the associated algorithm. Section 4.5 presents a detailed numerical simulation analysis of
the new algorithm applied to a fixed-wing UAV under sensor and actuator faults. Section 4.6
summarizes the lessons learnt from this chapter.

4.1 unmanned aerial vehicle fault estimation requirements

Due to the application considered, it is clear that any fault must be estimated quickly and
accurately to avoid compromising the mission, run down the UAV integrity, or even the
integrity of elements in the UAV’s surrounding environment. Thus, the method proposed
must be able to estimate faults quickly and accurately, with a good false alarm and missed
detection rate.

Moreover, as presented in Section 3.4, the UAV has multiple sensors that provide the
same information with different measurement noise. This can be seen as an advantage
for state estimation, but it also makes the sensor fault estimation more complex. Indeed,
the use of multiple sensors to measure the same variable is what makes the measurement
function ambiguous in a faulty situation. This is due to the fact that only the sensor noise
parametrization makes it possible to differentiate between the observations. Figure 4.1 shows

77
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the situation where two sensors with different noise standard deviations are used to measure
a state x with measurement equations given by:[

ya
yb

]
=

[
xk
xk

]
+

[
νa

νb

]
(4.1)

The only difference between these two equations are the measurement noises νa and νb. The
measurements ya produced by a sensor a are faulty whereas the measurements yb from a
second sensor b are fault-free. The state estimation of xk is based on the posterior density of
p (xk|Y1:k) after updating the predicted state density p (xk|Y1:k−1).

In this situation, basing the decision on the posterior density p (xk|Y1:k) highlights the fact
that there is an ambiguous choice to decide which mode of the posterior density corresponds
to the state estimate.
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Figure 4.1: State estimate of x with a fault free and a faulty measurement estimate density

Therefore, the methods proposed must be able to estimate ambiguous sensor faults — in
other words, there is a multimodal probability distribution with one possible states.

4.2 limitations of existing methods

Since an approach that can estimate multimodal states must be considered to estimate the
fault in the application treated, the RPF, which is a state-of-the-art method for multimodal
state estimation, is used as a benchmark. Indeed, it has been highlighted in Section 2.5 that
this algorithm is suited for non-linear state estimation, even in the presence of multimodality
and non-Gaussian noise. Then, to provide an understanding of the underlying principles of
the methods proposed in this section, the main steps of the RPF are briefly recalled: The
RPF uses a model to propagate the particles during the prediction step. If the model has
high uncertainty, it will spread the particles over a wider region of the state space than the
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low uncertainty case. At the update step, the likelihood of the particles is evaluated, and
their weights are updated accordingly. Then, at the estimation step, a global state estimate
is made based on the likelihood and the state of each particle. Finally, the resampling
step, where the efficiency — or another criterion — is computed and if the criterion is
triggered by comparison against a threshold, then the resampling step is preformed. During
the resampling, the most likely particles are kept and duplicated while others are removed.
The RPF adds noise when particles are duplicated. This allows the particles to cover a wider
area and reduces the chances of superposed solutions compared to the SIR particle filter.
The regularization noise has an impact on the area covered by the kernel at the resampling
step. However, this regularization noise has a more limited impact than the process noise in
terms of area covered.

When faults are considered, the particle placement performed by the RPF is not flawless.
Indeed, when a fault occurs, the fault state moves from a value close to zero to the value of
the fault. However, this value of the fault can take several time steps to be reached or may
not be reached at all. Indeed, even when the particles are propagated, if the value of the fault
is not covered by the current particles, then the RPF may never reach this value. To reduce
this risk, the solution may be to increase the process noise and the regularization noise,
even if the latter has a less significant impact. Doing this, however, degrades the accuracy
of the estimate, and choosing an ad-hoc process noise that complies with the amplitude
of the additive abrupt faults that the system may encounter, given assumptions on the
amplitude of faults. This is possible since, for example, an actuator is physically bounded to
its reachable range, and it is safe to assume that a fault cannot have an amplitude outside
this range. However, having a process noise that is able to cover all this range will lead to
a poor estimate in terms of accuracy. The estimation of a state with process noises suited
and not suited to the amplitude of an abrupt change is illustrated in Figure 4.2, where xk
denotes the fault state at time step k.

In Figure 4.2, the poor accuracy of the estimate due to a large process noise is visible
in Figure 4.2a and Figure 4.2b, even when the system is fault-free. This is illustrated in
Figure 4.2a where the particles are spread on a wider area than in Figure 4.2c where the
process noise is smaller, and then the accuracy is better. However, when the fault occurs,
the system with the large process noise is able to place particles around the fault. This
is illustrated in Figure 4.2b, while in Figure 4.2d the particles cannot be placed around
the fault since the process noise is not large enough to reach the fault. In Figure 4.2b the
estimate of the fault is not yet close to the real fault since the resampling step does not
occur yet, but the likelihood show to be high on around the fault.

This result is confirmed in Figure 4.3 where the 10 steps before and after the fault occurring
are shown. Indeed, in Figure 4.3a the system with the large process noise is able to converge
to the fault in few time steps but with a poor accuracy, while in Figure 4.3b the system with
the small process noise is not able to converge to the fault within the 10 time steps shown
after the fault occurred, but it has a better accuracy.

Then the main limitation of the RPF for fault estimation is that a trade-off must be chosen
between the accuracy and the maximum amplitude of fault able to be estimated.
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Figure 4.2: RPF performing estimation of an additive abrupt change, with a fault occurring close
enough from the previous approximated posterior density — (a), (b) — and far from the
previous approximated posterior density — (c), (d) — in comparison to the process noise.

However, this limitation can be partially overcome by other existing methods like the IMM.
Indeed, the advantage of the IMM is to run several models, including one for the nominal
mode. Then, a model with a small process noise can be used to estimate the faulty free
situation, and a model with a large process noise can be used to estimate the fault. This lead
to an accurate estimate of the state in the fault free situation, since no fault estimate is used
in the estimate of the state vector. However, the accuracy of the fault and thus, the accuracy
of the estimate of the state components impacted by the occurrence of the fault are lowered.
Moreover, the use of a IMM with a RPF is not possible for real time application, as explained
in Section 2.5.7.2. Then the advantages of the RPF, including estimating multimodal states,
are lost.

To overcome all these limitations listed above, a new method is proposed in the following
section, allowing estimation of a multimodal state and abrupt additive fault without changing
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(a) RPF with a large process noise compared to the fault amplitude
estimating a fault.

Fa
ul

t

Time

xk x̂k xi
k

(b) RPF with a small process noise compared to the fault amplitude
estimating a fault.

Figure 4.3: RPF performing estimation of additive abrupt faults over 21 time step, with a system
with a large process noise regarding the fault amplitude — (a) — and one with a small
process noise regarding the fault amplitude — (b). The size of the dots corresponding to
the weight of the particles at the update step. The system used is the one of Figure 4.2

the process noise regarding the amplitude of the fault, and without degrading the state
estimate in a fault free situation.
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4.3 principle of the jump-markov regularized particle filter

A way to overcome the limitations listed above is to provide a process model that takes into
account abrupt changes. To do so, a JMS is used. Indeed, JMS can handle abrupt changes
by switching from one mode to another. This mode switching is performed on the basis of
transition probabilities that model the potentiality of changing the current system mode
to another mode, for example non-faulty to faulty or faulty to non-faulty. These transition
probabilities are used in the allocation of the particles by moving only some particles
proportionally to the probabilities of the other mode. Then, a JMS can be associated with
each particle and each particle can switch between modes and then be moved when they
switch. For fault estimation, this JMS represents two modes:

• The mode m(0), which represents the fault-free (or the nominal) mode;

• The mode m(1), which represents the faulty mode.

The transition between those two modes are defined by a transition probability matrix here
denoted Π, it is given by:

Π =

[
π00 π10

π01 π11

]
(4.2)

where π10 is the probability to switch from fault-free mode m(0) to faulty mode m(1) while
the probability π01 is the probability to switch from faulty mode m(1) to fault-free mode m(0).
The πii entries are the probabilities that the system remain in the same mode. Therefore,
π00 = 1− π10 and π11 = 1− π01.

The associated Markov chain of the JMS used is illustrated in Figure 4.4.

m(0) m(1) π11π00

π10

π01

Figure 4.4: Markov chain of the JMS for fault estimation

Unlike the multiple model architecture where multiple modes are propagated in parallel
and interact to determine the estimated state as shown in Figure 2.18, here a Markovian
jump model is used to switch between model corresponding to the fault modes. In the
approach described here, only two discrete fault modes are considered. The mode vector
associated with the actuator faults vector fa is denoted ma. The mode vector associated with
the actuator faults vector fs is denoted ms. The concatenation of the actuator fault vector fa
and sensor fault vector fs is denoted f, and the concatenation of the mode vector ma and ms
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is denoted m. The value of each fault estimate vector fa and fs depends on the mode. Indeed,
if a mode is associated with a fault estimate which is set to m(0), then the state estimate
cannot be different from 0 since the state is in a fault-free mode. In the same way, if a mode
is associated with a fault estimate which is set to m(1), then its value cannot be equal to 0
since the state is estimating a fault.

When a state of a particle of f is in a fault-free mode, the process noise and the regularization
have no effect on the state of this particle, since it is set to zero. The propagation of the
particle with the process noise and the regularization noise only affects the state in faulty
modes. When a state of a particle switches from a fault-free to a faulty mode, a value different
from zero must be assigned to it. This value, denoted ∆f, must be as close as possible to
the potential fault for the method to be effective. The particles that switch from fault-free
to faulty modes are sometimes called sentinel particles in this thesis to indicate that they
are placed around a potential alternate fault mode to test its likelihood. This process is
illustrated in Figure 4.5 at time step k.
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(c) The more likely particles are the sentinel particles
around a fault f

Figure 4.5: Fault estimation using a JMS with a RPF, with ∆f
i
k = fik + ηik
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In Figure 4.5a, all the particles are in a fault-free mode m(0), while a fault occurs. By
keeping all the particle in this mode, the fault cannot be estimated. A few particles are
therefore selected according to the transition probability π10 to be in mode m(1) and then
moved around the fault value fk. This is performed at the prediction step, as illustrated in
Figure 4.5b. Since the fault is not yet estimated, the value ∆f at which the particles are
moved is a prediction. In the illustration of the method, the prediction is assumed to be
correct. The detail of how this predicted value is chosen is presented later in this chapter.
After moving the particles around the fault, the likelihoods of the particles are computed.
Then, since the sentinel particles are the particles nearest to the maximum likelihood value
— which is at the fault value — the likelihood of these particles should be the highest of
all the particles of the state. This is illustrated in Figure 4.5c. Since the likelihood of the
sentinel particles is higher than the fault-free particles, the majority of the particles should
be placed around the sentinel particles due to the resampling and regularization step, and
the fault is then estimated by this cloud of particles.

In the previously described case, illustrated by Figure 4.5, the sentinel particles — particles
with discrete state m(1) — are placed around a potential fault. For this method to work, a
potential fault value will have to be obtained, as described in Section 4.4. Moreover, since this
method is performed with a subset of particles selected at each time step whose cardinality
depends on a constant transition probability, it is clear that particles can be moved away
from zero while the system is in the fault-free state. This situation is illustrated in Figure 4.6.

In Figure 4.6a, all the particles are in a fault-free mode m(0), and no fault occurs. However,
since the transition from the fault-free to the faulty mode depends on probabilities, particles
can switch to faulty mode when there is no fault. This is illustrated in Figure 4.6b. However,
if the particles are moved away from zero while there is no fault, then their likelihoods at
the update step should be smaller than the likelihood of the particles in the fault-free mode.
This is illustrated in Figure 4.6c. Then, they are not contributing — or more precisely, their
contributions are negligible — at the estimation step. At the resampling and regularization
step, the majority of the particles should be placed in m(0), around 0 and the sentinel
particles are likely not to be duplicated, and even removed.

Note that in both Figure 4.5 and Figure 4.6, the weight is computed without considering
potential state. However, in a real situation or simulation, a single weight is computed for
the whole state vector x.

Then, this method should allow the use of a small process noise and track a fault with
a large amplitude compared to the process noise. Figure 4.7 illustrates an example of the
solution proposed over 21 time steps with the same process noise as Figure 4.3b and the
same amplitude. Using the JMS, it becomes possible to estimate the fault.

In Figure 4.7, the RPF associated with a JMS corresponds to the same precision obtained
with the small process from 4.3b when the system is in a faulty situation, and even enhances
accuracy in a faulty-free situation. Moreover, the fast convergence to the fault is comparable
to the RPF with the large process from 4.3a.
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Figure 4.6: Fault estimation using a JMS with a RPF, in a fault free situation (fk = 0) with ∆f
i
k 6= fk+ηik
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Figure 4.7: RPF associated with a JMS performing estimation of additive abrupt sensor faults over 21
time step. The size of the dots correspond to the weight of the particles at the update
step. The system used is the one of Figure 4.2 for figure (c) and (d).

Since the proposed solution is based on a RPF and uses a JMS to achieve all the above
requirements, the proposed filter is called the JMRPF [71]. This JMRPF belongs to the class
of jump-Markov particle filters presented in Section 2.5.8.
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4.4 formulation of the jump-markov regularized particle filter

The stochastic process model of the JMRPF, for additive actuator and sensor fault, is given
by: 

mak ∼ p (mak|mak−1)

msk ∼ p (msk|msk−1)zk
fak
fsk

 =

Fk (zk−1, uk + fak−1)

Gakmak
(fak−1)

Gskmsk
(fsk−1)

+ ηkmk

yk = Hk (zk) + fsk + νk

(4.3a)
(4.3b)

(4.3c)

(4.3d)

where Gakmak
(·) and Gskmsk

(·) respectively represent the dynamics of the actuator and sensor
faults associated with their mode vector, and ηkmk

is the process noise associated with the
mode vector mk. The process noise ηkmk

depends on the mode and when a state of f is
associated with the mode m(0), the process noise associated with this state is set to 0. The
measurement noises are assumed to be zero-means Gaussian noises with a constant variance.
The occurrence of faults on sensors translates only in a variation of mean which expresses as
a variation of fs. In other words, the fault type under consideration in the filter design is on
the mean, not on the variance of the measurements. A generalization would be possible by
adding the variance as another piecewise constant state of the extended state vector, but
this fault type is beyond the scope of this thesis.

Since only the state vectors fa and fs are respectively associated with the mode vector ma
and ms, then the extended hybrid state vector of the JMRPF for fault estimation is given by
the two-ple:

(xk, mk) =


zk

fak
fsk

 , [mak

msk

] (4.4)

The system model (4.3) can then be written as an extended state space model:
mk ∼ p (mk|mk−1)

xk = fkmk
(xk−1, uk) + ηkmk

yk = hkmk
(xk) + νk

(4.5a)
(4.5b)
(4.5c)
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where fkmk
(·) and hkmk

(·) respectively represent the dynamics and the measurement function
of the extended state vector x associated with the mode vector mk. They are respectively
given by:

fkmk
(xk−1, uk) =

Fk (zk−1, uk + fak−1)

Gakmak
(fak−1)

Gskmsk
(fsk−1)

 (4.6a)

hkmk
(xk) = Hk (zk) + fsk (4.6b)

Since only two different modes are considered, and given that the state of f associated
with the mode must be equal to zero when the mode is in the fault free state m(0), then in a
fault free situation the system and measurements functions fk (·) and hk (·) are respectively
given in the fault free mode by:

fkm(0)
k

(xk−1, uk) =

Fk (zk−1, uk)
0

0

 (4.7a)

hkm(0)
k

(xk) = Hk (zk) (4.7b)

where m(0)
k represents the case when all the states of the mode vector mk are in m(0).

Moreover, the process noise is set to 0 for a state associated with a mode in m(0) — but the
process noise on the state vector zk cannot be deactivated since it is not associated with
a mode vector. Then, when a particle xik has all its modes set to m(0), it is equivalent to
performing the estimation of zk.

4.4.1 Prediction step

The prediction step of the JMRPF aims to predict the hybrid state vector (xk, mk). The prior
state density p (xk|mk,Yk−1) is obtained by the Chapman-Kolmogorov equation (2.22), and
is given by:

p (xk|mk,Yk−1) =

∫
Rnx

p (xk|xk−1,mk) p (xk−1|mk,Yk−1) dxk−1. (4.8)

This prior state density is then approximated by the distribution of Dirac:

p (xk|mk,Yk−1) ≈
N∑
i=1

wik−1δ
(

xk − xik|k−1

)
(4.9)

where xik|k−1 are propagated using the following probability transition density:

xik|k−1 ∼ p
(
xk|xik−1,mi

k

)
(4.10)
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where mi
k is the mode vector of the ith particle that has been predicted. The prediction of

the modes is performed using (4.5a), where the density p (·) is chosen to be uniform, since it
is assumed that there is no prior information on the fault mode. The prediction of a discrete
mode is illustrated in Figure 4.8.
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Figure 4.8: Prediction of a mode of the JMRPF.

Then, the jth mode of the ith particle of the mode vector mk denoted mi,j
k is predicted as

follows:

mi,j
k =



m(0) if υk ≤ πj00 and mi,j
k−1 = m(0)

m(1) if υk ≤ πj10 and mi,j
k−1 = m(0)

m(0) if υk ≤ πj01 and mi,j
k−1 = m(1)

m(1) if υk ≤ πj11 and mi,j
k−1 = m(1)

(4.11)

where πj is the transition probability associated with the jth mode of the mode vector mk,
and υk ∼ U (0, 1)

Then, the jth state of the ith particle of state vector fk denoted fi,jk and which is associated
with the mode mi,j

k is given by:

fi,jk|k−1 =



0 if mi,j
k = m(0) and mi,j

k−1 = m(0)

∆f
i,j
k if mi,j

k = m(1) and mi,j
k−1 = m(0)

0 if mi,j
k = m(0) and mi,j

k−1 = m(1)

fi,jk|k−1 if mi,j
k = m(1) and mi,j

k−1 = m(1)

(4.12)

The prediction of the mode vector mk and the computation of the state vector fk regarding
the value of the mode vector is the jump step. The jump step is described in Algorithm 4.1,
where the transition from m(1) to m(1) is not covered since no change to the value of fk
is needed. However, the transition from m(0) to m(0) is covered to avoid potential noise
introduced on this state before calling the function jump.

One difficulty with this method is the need to provide a value for the predicted fault
amplitude ∆f. This value is computed differently in the case of sensor or actuator faults.
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Algorithm 4.1 Jump step of the jump-Markov regularized particle filter
Function jump(fk, mk, ∆fk)

υk ∼ U (0, 1)
if mk = m(0) then

if υk ≤ π10 then //Transition m(0) → m(1)

fk ← ∆fk //See (4.12)
mk ← m(1) //See (4.11)

else //Transition m(0) → m(0)

fk ← 0 //See (4.12)

else if mk = m(1) then
if υk ≤ π01 then //Transition m(1) → m(0)

fk ← 0 //See (4.12)
mk ← m(0) //See (4.11)

4.4.1.1 Predicted value of the fault amplitude for actuator faults

The predicted value of the fault amplitude for actuator fault is denoted ∆fa . Based on the
work by Saif and Guan [72], on a linear system it is deduced that the actuator fault can be
given by:

fak−1 = B∗
k (−Fkzk−1 + zk − Bkuk−1) , (4.13)

where B∗
k =

(
B>
k Bk

)−1B>
k . However, zk is not known before the estimation step, therefore

the predicted state zk|k−1 is used. The predicted values of the fault amplitudes for actuator
fault vector fa denoted ∆fa are then given by:

∆fak = B∗
k

(
−Fkẑk−1 + zik|k−1 − Bkuk−1

)
(4.14)

4.4.1.2 Predicted value of the fault amplitude for sensor faults

The predicted value of the fault amplitude for sensor faults is denoted ∆fs . The measurements’
equation with an additive fault and without considering the noise is given by (2.3b). The
additive sensor fault is then given by:

fsk = yk −Hk (zk) (4.15)

The true value of the state vector zk is unknown, hence the value of fk cannot be obtained.
However, the idea here is to obtain a predicted value of the fault when the state vector is
in m(0) and switches to m(1). This means that the predicted value of the particle zik does
not depend on the mode and can be obtained using (4.7). Then, zik|k−1 is known, and the
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predicted values of the fault amplitudes for the sensor faults vector fs denoted ∆fs is given
by:

∆fsk = fsik|k−1 (4.16a)

= yk −Hk
(

zik|k−1

)
(4.16b)

The prediction step of the JMRPF is described in Algorithm 4.2, using the previously
defined function jump.

Algorithm 4.2 Prediction step of the jump-Markov regularized particle filter
Function predict(x1:N

k|k−1, x1:N
k−1, m1:N

k , uk, yk)
for each i ∈ [1, N ] do

ηik ∼ N (0, Qk)
xik|k−1 ← fk

(
xik−1,uk

)
+ ηik //See (4.10)

//Jump step of state vector fak
∆fa

i
k ← uk − CTL

(
zik|k−1, r

c
k

)
//See (4.14)

for each j ∈ [1, nfa ] do
jump(fai,jk|k−1, ma

i,j
k , ∆fa

i,j
k ) //See Algorithm 4.1

//Jump step of state vector fsk
∆fs

i
k ← yk − hk

(
xik|k−1

)
//See (4.16)

for each j ∈ [1, nfs ] do
jump(fsi,jk|k−1, ms

i,j
k , ∆fs

i,j
k ) //See Algorithm 4.1

4.4.2 Update step

The update step of the JMRPF aims to update the hybrid state vector (xk, mk).
The posterior density p (xk|mk,Yk) is obtained by the Bayes formula given in (2.23) which

gives:

p (xk|mk,Yk) =
p (yk|xk,mk) p (xk|mk,Yk−1)∫

Rnx

p (yk|xk,mk) p (xk|mk,Yk−1) dxk
(4.17)

This posterior density is then approximated by a weighted sum of Dirac distributions:

p (xk|mk,Yk) ≈
N∑
i=1

wikδxik
(xk) (4.18)
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where the weights wik are proportional to the likelihood and are calculated by the following
formula:

wik ∝ wik−1p
(

yk|xik|k−1, mi
k

)
. (4.19)

The weights are then normalized to ensure (2.74). The algorithm of the update step of the
JMRPF is the same as the one from the SIR particle filter detailed in Algorithm 2.3.

4.4.3 Estimation step

The estimation step aims to obtain a global estimate of the state vector x̂k, with its associated
covariance matrix P̂k. This step is the same as the one from the SIR particle filter, detailed
in Section 2.5.6.2. The algorithm of the estimation step of the JMRPF is the same as the one
from the SIR particle filter detailed in Algorithm 2.4.

4.4.4 Regularization-Resampling Step

The regularization-resampling step aims to remove the particles with a low likelihood
and replace them by duplicating the particles with a high likelihood and regularizing the
duplicated particles. This step is the same as the one from the RPF detailed in Section 2.5.6.3.
However, the joint posterior density is now approached by:

p (xk,mk|Yk) ≈
N∑
i=1

wikKh
(
xk − xik

)
δmi

k
(mk) (4.20)

The algorithm for the regularization performed by the JMRPF is given by function regu-
larize in Algorithm 2.7.

The JMRPF is presented in Algorithm 4.3, using the previously defined function predict,
and the function used by the RPF.
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Algorithm 4.3 Jump-Markov regularized particle filter
k ← 0
... //Initialization
Loop

k ← k + 1
predict(x1:N

k|k−1, x1:N
k−1, m1:N

k , uk, yk) //See Algorithm 4.2
update(w1:N

k , w1:N
k−1, x1:N

k|k−1, yk) //See Algorithm 2.3
estimate(x̂k, P̂k, x1:N

k|k−1, w
1:N
k ) //See Algorithm 2.4

N̂eff ← 1
N∑
i=1

(
wi

k

)2 //See (2.53)

if N̂eff ≤ NΓrspl then //if true then resample
multinomial(x́1:N

k , x1:N
k|k−1, w

1:N
k ) //See Algorithm 2.5

for each i ∈ [1, N ] do
wik ←

1
N //Reset the weights, See (2.55)

regularize(x1:N
k , x́1:N

k , P̂k) //See Algorithm 2.7

4.5 comparative numerical simulation analysis

In this section the ability of the JMRPF to perform fault estimation when an ambiguous
sensor fault scenario occurs is evaluated. For the sake of brevity, only the longitudinal system
is considered.

Since it is one of the main limitations of the interacting multiple model Kalman filters
(IMM-KF), a comparative simulation of both methods is performed to see how the JMRPF
overcomes this limitation compared to the IMM-KF. To separately evaluate the effect of sensor
ambiguities with the IMM-KF and JMRPF without the added effect of non-linearities, linear
process and observation models are used. The model used in this section is then the one
described by the longitudinal equation from (3.48) with trim point set to 40 m s−1 for the
airspeed velocity, 500 m for the altitude, 0 rad for the flight path angle in a straight flight.
The control and guidance are designed as described in Section 3.7 and Section 3.8 for the
longitudinal system. The desired altitude is set to 500 m and the desired velocity to 40 m s−1.
Since ambiguous sensor faults must be simulated, the measurements vector contains two
measurements of the altitude from two different sensors: a GNSS receiver and a barometer.
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The linear system used for the true state computation is then given by:


˙̄pd
˙̄u

˙̄w
˙̄θ

˙̄q

 =


0 −0.05 1 −40 0

0 −0.42 0.27 −9.80 −1.91
0 −0.40 −1.81 −0.47 39.95

0 0 0 0 1

0 0.04 −0.82 0 −0.74




p̄d

ū

w̄

θ̄

q̄

+


0 0

−0.35 32.23

7.39 0

0 0

−43 0


[
δ̄e

δ̄t

]

y =



−1 0 0 0 0

−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




p̄d

ū

w̄

θ̄

q̄

+



fg

fb

0

0

0

0


+



νGNSS,−pd
νbaro,−pd
νaccel,u

νaccel,w

νgyro,θ

νgyro,q



(4.21a)

(4.21b)

where fg is the fault state estimate of associated with the GNSS receiver fault, and fb is the
fault state estimate of associated with the barometer fault, and where the measurement noise
is a zero mean Gaussian noise with standard deviations for each sensors respectively given by
σGNSS,−pd = 5 m, σbaro,−pd = 1 m, σaccel,u = 1 m s−1, σaccel,w = 1 m s−1, σgyro,θ = 0.01 rad
and σgyro,q = 0.002 rad s−1. The standard deviation of the measurement noise used by the
estimation filters is 1.5 times these standard deviation used for the true measurements.

The faults considered for the simulation are abrupt additive faults. Since only one dynamic
fault model is considered, the IMM-KF is designed with a bank of two Kalman filters. One for
the nominal mode, and one for the faulty mode. The output matrix for the process model of
the nominal mode denoted Hm(0) is given by:

Hm(0) =



−1 0 0 0 0 0 0

−1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0


, (4.22)
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and the output matrix for the process model of the faulty mode denoted Hm(1) of the IMM-KF
which is also the output matrix of the JMRPF is given by:

Hm(1) =



−1 0 0 0 0 1 0

−1 0 0 0 0 0 1

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0


. (4.23)

Since the faults are on the measurements only, the evolution and control input matrices
for the process without the discrete mode are the same for both modes of the IMM-KF, and
they are also used by the JMRPF. The linear process model used by filters is of the following
form:{ xk = Fkxk−1 + Bkuk + ηk

yk = Hkxk + νk

(4.24a)
(4.24b)

where the evolution matrix Fk and the control input matrix Bk are given by:

Fk =



1 0 0.05 −2 0 0 0

0 0.98 0.01 −0.49 −0.09 0 0

0 −0.02 0.88 −0.02 1.85 0 0

0 0 0 1 0.05 0 0

0 0 −0.04 0 0.93 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


(4.25)

and

Bk =



0.01 0

0.08 1.59

−1.70 −0.01
−0.05 0

−2.09 0

0 0

0 0


. (4.26)

Since both the JMRPF and the IMM-KF use a JMS, they both use a transition probability
matrix given by:

Π =

[
0.99 0.01

0.01 0.99

]
(4.27)
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The fault scenario under consideration lasts 50 s. For the first 10 s, no fault is active in the
system. At 10 s the first abrupt fault occurs on the GNSS receiver with an amplitude of 50 m.
After 10 more seconds, another abrupt fault occurs on the barometer with an amplitude of
30 m. The GNSS receiver abrupt fault is then deactivated at 30 s, followed by the barometer
fault at 40 s. The scenario is illustrated in Figure 4.9.
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Figure 4.9: Fault scenario for simulation of ambiguous sensor faults with a GNSS receiver fault in
altitude and a barometer fault in altitude.

The process noise of the JMRPF and the IMM-KF is the same for the state vector z for all
modes. It is a Gaussian process noise with a standard deviation σz given by:

σz =


1 m

0.1 m s−1

0.1 m s−1

0.02 rad
0.002 rad s−1

 (4.28)

However, for the process noise of the state vector f, the JMRPF can estimate the fault with
a process noise that does not depend on the faults amplitudes, it has been empirically set
with a standard deviation σf for both fault states given by:

σf =

[
0.08 m
0.08 m

]
. (4.29)

On the other hand, to estimate faults with amplitudes of 50 m and 30 m the process noise
of the Kalman filters used for the process model of the mode m(1) of the IMM-KF must be
dimensioned accordingly. Since the mode m(0) of the IMM-KF is the fault-free mode, then
there is no fault estimation on the process model of this mode, and the process noise of the
associated state vector f is set with a standard deviation for both fault states of the mode
m(0) given by:

σf =

[
0 m
0 m

]
. (4.30)
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To select the process noise of the mode m(1) of the IMM-KF several simulations with
different process noises magnitude have been performed with a Kalman filter, to estimate a
state with an abrupt change of an amplitude of 50 and 30, using the same measurements noise
and fault dynamics of the UAV simulated. 100 simulations per process noise magnitude have
been performed and mean estimate of the process noises selected are shown in Figure 4.10.
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Figure 4.10: Mean estimate over 100 simulations performed by Kalman filter of a state x with ẋ = 0,
an abrupt change of x at 1 s of 50 (a) and 30 (b), a white Gaussian measurement noise
of 5 (a) and 1 (b) and different standard deviation σx for the Gaussian process noise.

In Figure 4.10, the estimation of a state component with an abrupt change of 50 gives
a relatively fast and fairly accurate estimate of the state with a standard deviation of the
process noise of 5, and 1 for an amplitude variation of 30. The process noise of the JMRPF
on the other hand shows that it is too small to estimate any gap of the amplitude of the
faults considered within a relative short time, if the fault is estimated using a Kalman filter.
Then for the mode m(1) of the IMM-KF, the process noise of the state vector f is set with a
standard deviation for both fault states given by:

σf =

[
5 m
1 m

]
(4.31)
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The standard deviation used to compute the initial covariance matrix P0 for both filters,
denoted σx0 is given by:

σx0 =



1 m
1 m s−1

1 m s−1

0.04 rad
0.01 rad s−1

0 m
0 m


(4.32)

Finally, for the JMRPF, the number of particles is set to 1000, the resampling threshold
Γrspl is set to 0.15 and the bandwidth factor h of the Epanechnikov kernel of equation (2.61)
is set 0.3115. The number of simulations performed is 100 with a time step of 0.05 s.

The first results illustrated in Figure 4.11 are the estimates by the JMRPF and the IMM-KF
of the median results of the 100 simulations performed. The selection of the median result is
detailed in Appendix D.
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(a) Fault on the altitude of the GNSS receiver.
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(b) Fault on the altitude of the barometer.

Figure 4.11: Median result of the fault states of the UAV under additive abrupt ambiguous sensor
faults estimated by a JMRPF and a IMM. Median results based on 100 simulations.
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In both Figure 4.11a and Figure 4.11b, the fault free situation of the first 10 s is properly
estimated by both IMM-KF and JMRPF. The small process noise of the JMRPF and the mode
m(0) of the IMM-KF provide a clear zero estimate. However, when the first GNSS receiver
fault is activated at 10 s, differences are beginning to be noticeable between the two filters.
On the JMRPF side, the estimate of the GNSS receiver fault is performed in only a time step
while it took a little more time steps for the IMM-KF to converge to the fault amplitude. This
is an expected result given the choice of a standard deviation of 5 m for the process noise
of the GNSS receiver fault, as it is illustrated in Figure 4.10. Nonetheless, a larger process
noise for the estimation of the GNSS receiver would decrease its convergence time, but also
degrade its estimate by increasing its variance, which is already much larger than the one
of the estimate performed by the JMRPF. The use of the mode m(1) by the IMM-KF also
degrade the estimate of the barometer fault while it is in fault-free situation since it use a
larger process noise for the fault estimate of it too. While the estimate of the barometer
fault by the JMRPF in fault free situation has produced no significant change in its estimate.
The use of a separate mode for the GNSS receiver fault and the barometer fault could solve
this issue for the IMM-KF however the scenario used aims to highlight the capacity of the
methods used in when both faults are active at the same time. This happens, at 20 s when
the barometer fault is activated too. From this point, the estimate of the IMM-KF is having
a significant error on both faults estimate. Indeed, only half the fault of the barometer is
getting estimated and the estimate of the GNSS fault is also getting impacted by a sudden
increase of the error of the fault estimate by 15 m. The JMRPF on the other side, estimates
the barometer fault quickly and accurately. This deactivation of the GNSS fault slightly
improve the estimate of the barometer fault by the IMM-KF but a 15 m error on both GNSS
receiver and barometer fault estimate is visible. The estimate provided by the JMRPF on the
other and return to zero when the GNSS fault is deactivated, no impact on the barometer
fault estimated is visible and when the barometer fault is deactivated too, the situation looks
similar to the first 10 s of the simulation for both IMM-KF and JMRPF estimates.

The mode selection of the IMM-KF is illustrated for the median result in Figure 4.12.
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Figure 4.12: Weights of modes of the IMM-KF. Median results based on 100 simulations.

In Figure 4.12 the IMM-KF has worked as expected since the mode m(0) is selected with a
high weight when the system is in fault free mode, and the mode m(1) is selected with a high
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weight too when the system is in faulty mode. Hence, the noisy estimate of the IMM-KF when
fault are activated due to the use of a larger process noise associated with the mode m(1).

The behaviour of the median results of the JMRPF is illustrated in detail in Figure 4.13,
by showing the particles positions with their associated weights.
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(a) Fault on the altitude of the GNSS receiver.
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(b) Fault on the altitude of the barometer.

Figure 4.13: The 20 most weighted particles at every second of the median result of the UAV fault
states under additive abrupt ambiguous sensor faults, estimated by a JMRPF. Median
results based on 100 simulations.

In Figure 4.13, the particle placement has shown to be efficient since particles have been
place close to the fault amplitude. The size of the dots that representing the weights shows
that the likelihood of the particles is almost the same during all the simulation, expected
at 10 s and 20 s, which are the moments of activation of the fault. This is due to the fact
that the small amount of sentinel particles are correctly positioned after the fault occurred.
For example at 10 s a small amount of particles is place around 50 m for the GNSS receiver
fault and around 0 m — or even at 0 m if the particles are in m(0) — for the barometer fault.
Since this configuration is the one that match the most the true situation of the system, it is
the one that has the best likelihood. Since it only concerns a small amount of particles their
likelihood is significantly higher than the rest of the particles. Then, the resampling step
duplicate most of the particles in this situation — particles at 50 m for the GNSS receiver
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fault and at 0 m for the barometer fault — and then the weights are closer in value to each
others. Same explanation can be done for the situation at 20 s for the barometer fault.

The median results of the state vector z estimated by the JMRPF and the IMM-KF are
shown in Figure 4.11.
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Figure 4.14: Median result of the longitudinal states of the UAV under additive abrupt ambiguous
sensor faults, estimated by a JMRPF and a IMM. Median results based on 100 simulations.
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In Figure 4.14, all the longitudinal states of the UAV and their estimates are represented.
As expected, a bad estimation of the altitude sensor led to a bad estimation of the altitude
state. In Figure 4.14a the error between the true state and the estimated state is significance
for the IMM-KF estimate. The error is about 15 m as the error of the estimated fault, and
it produces a dangerous deviation of trajectory for the UAV. Indeed, the UAV changes its
altitude from 500 m to 485 m, without considering the overshoot due to control. The bad
estimation of the error could then lead to a deterioration of the integrity of the UAV. On
the others states shown in Figure 4.14, no estimation error is visible. For the estimate
performed by the JMRPF, the altitude is also affected by an error, but the error is about
1.77 m at compared to the 15 m of the IMM-KF. The error then led to a slight change in the
altitude trajectory but on a shorter duration. All the others states shown in Figure 4.14,
and estimated by the JMRPF does not show any significant error in the estimation.

The control inputs in the case of the JMRPF and the IMM-KF estimation are shown in
Figure 4.15.
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Figure 4.15: Control inputs of the UAV under additive abrupt ambiguous sensor faults, estimated by
a JMRPF and a IMM-KF. Median results based on 100 simulations.

In Figure 4.15 the controls are not saturated. The change in the trajectory of the UAV
due to the fault is also visible here for both filter at 20 s and 40 s. Indeed, for the elevator
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deflection, a change in the input is visible even if it is more significant for the input associated
with the state estimated by a IMM-KF than the one for the JMRPF.

The results shown so far aims to show a typical result in order to illustrate the inconvenient
and advantages of the methods used. However, no generalization can be made from a single
simulation. To be able to conclude on the superiority of the JMRPF over the IMM-KF for the
specific situation illustrated here, the root-mean-square error (RMSE) has been computed.

For the fault state vector f, the RMSE of the JMRPF and IMM-KF are shown in Figure 4.16.
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(a) RMSE of the fault estimate of the altitude of the GNSS receiver.
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Figure 4.16: RMSE of the fault states of the UAV under additive abrupt ambiguous sensor faults,
estimated by a JMRPF and a IMM-KF. Results are based on 100 simulations.

In Figure 4.16, the bad estimation of the IMM-KF from the moment when both faults are
activated is confirmed by these results. However, the noisy estimate of the IMM-KF when it
is in mode m(1) is not bad compared to the estimate of the JMRPF when it is also in mode
m(1). This is mainly due to the fact that the particles of the JMRPF are placed accordingly
to the innovation. That is, having the same standard deviation on the GNSS receiver and
the barometer as the process noise of the IMM-KF of the fault state vector. Nothing else is
different from what has been already observed in previous median results.

The RMSE of the states are shown in Figure 4.17.
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(c) RMSE of the velocity along kb estimate.
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Figure 4.17: RMSE of the longitudinal states of the UAV under additive abrupt ambiguous sensor
faults, estimated by a JMRPF and a IMM. Results are based on 100 simulations.

In Figure 4.17a, the significant error of more than 15 m for the altitude estimate performed
by the IMM-KF is confirmed by the RMSE. On the other hand a mean error of 2 m is obtained
for the JMRPF. For all others states shown in Figure 4.17a, both IMM-KF and JMRPF are
comparable in terms of accuracy for the state estimation.
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Table 4.1 gives the RMSE values at key time steps and the RMSE which is defined in
Appendix D.

State Time (s) RMSE
10.05 s 20.05 s 30.05 s 40.05 s

JMRPF

RMSE pd (m) 1.087 1.434 1.667 0.875 0.998

RMSE u (m s−1) 0.307 0.337 0.146 0.159 0.187

RMSE w (m s−1) 0.094 0.137 0.035 0.035 0.035

RMSE θ (°) 1.028 1.117 0.414 0.493 0.438

RMSE q (° s−1) 0.232 0.306 0.093 0.111 0.103

RMSE fg (m) 6.730 7.540 0.000 0.165 1.261

RMSE fb (m) 0.316 5.970 1.713 0.227 0.723

IMM

RMSE pd (m) 1.221 9.780 20.710 5.661 6.526

RMSE u (m s−1) 0.119 0.129 0.125 0.133 0.131

RMSE w (m s−1) 0.029 0.028 0.028 0.031 0.029

RMSE θ (°) 0.375 0.461 0.439 0.439 0.429

RMSE q (° s−1) 0.102 0.086 0.098 0.092 0.097

RMSE fg (m) 26.359 6.679 7.099 9.263 6.886

RMSE fb (m) 1.121 21.814 20.965 6.746 6.379

Table 4.1: RMSE values of the JMRPF and the IMM estimates at key time steps, and RMSE.

4.6 chapter summary

This chapter introduced a new approach for estimating actuator and sensor faults as well as
ambiguous sensor faults, called the JMRPF. This algorithm has been tested and validated
with numerical results and compared to a IMM-KF. The idea behind the JMRPF was to move
particles according to a transition probability matrix to a potential value of a fault. The
associated algorithm of this method was fully described in Section 4.4. 100 simulations were
performed in Section 4.5 and their analysis has shown sound estimation performance with
this filter.

High accuracy and low convergence time are usually competing objectives, but using a
JMS, the proposed JMRPF has shown the ability to estimate faults in a very short time and
with a fair accuracy (research question 1), with good robustness to the amplitude of the
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fault. Its accuracy was comparable to the IMM-KF in a fault free situation, but does not
suffer from its limitations, such as its limited ability to estimate ambiguous sensor faults.

However, this filter still suffers from some limitations because some knowledge of the fault
type and dynamics had to be assumed in order to estimate it. To deal with this limitation,
some methods such as the IMM-KF can use multiple candidate models of fault dynamics.
The problem with the JMRPF as presented in this chapter is that it can only deal with two
models, one fault-free model and one faulty model. Even though the ability of the JMRPF to
estimate ambiguous sensor faults was demonstrated (research question 2), the estimation of
ambiguous actuator and sensor faults (which is covered in the following chapter) is actually
not possible with the JMRPF as formulated in this chapter.

The following chapter will therefore aim to solve those two main limitations of the JMRPF.





5
RO B U S T I F I E D J U M P - M A R KOV R E G U L A R I Z E D PA RT I C L E
F I LT E R

In Chapter 4, the JMRPF was introduced and evaluated for ambiguous sensor faults. However,
the method in its current form presents some limitations and needs to be extended to enable
estimating faults with unknown dynamics and estimating ambiguous actuator and sensor
faults. This chapter aims to overcome this limitation by introducing additional features on
the JMRPF introduced in Chapter 4.

This chapter is organized as follows: Section 5.1 highlights some of the issues that affect
fault estimation in UAV. In Section 5.2, some limitations faced by the JMRPF from Chapter 4
are presented. Section 5.3 introduces the idea behind the mechanism of an enhanced JMRPF
to overcome the issue of Section 5.1. In Section 5.4, a formulation of the RJMRPF is introduced
with the associated algorithm. Section 5.5 presents a detailed numerical simulation analysis of
estimation performance, with a comparison between the new RJMRPF algorithm, the JMRPF
and a robustified RPF, with application to a fixed-wing UAV under sensor and actuator faults.
Section 5.6 summarizes the lessons learnt from this chapter.

5.1 fault estimation on unmanned aerial vehicle

The method introduced in this thesis must handle a system subject to faults, for which the am-
plitudes and dynamics are seldom known in advance. In the application under consideration,
the estimation method used must handle unknown fault dynamics and amplitude.

Moreover, the method must allow to estimate both actuator and sensor faults. A fault from
an actuator or sensor with an impact on the same measurement is hereby referred to as an
ambiguous fault. It is common in feedback control systems when a sensor is used to measure
a state variable and an actuator is used to control the same variable to a setpoint. If an
actuator is faulty, the associated state variable and measurement will be affected. Likewise,
a sensor fault will have a direct impact on the same output measurement. Therefore, if
measurements are detected as being faulty, it is not trivial to determine if the fault originated
from the sensor or the actuator.

This ambiguous fault case may lead to a multimodality in the likelihood and posterior
density. Indeed, consider the extended state vector x given by (2.18), with one actuator

107
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and one sensor. When a faulty measurement occurs, the likelihood p (yk|xk) has two peaks
corresponding to two possible modes or solutions that are:

xak =
[
zk> fak> 0

]>
(5.1)

and

xbk =
[
zk> 0 fsk>

]>
. (5.2)

In other words, several states of xk may be associated with the same measurement. This
results in the multimodality of posterior density p (xk|Y1:k) as illustrated in Figure 5.1.

C
on

di
tio

na
l

de
ns

ity

States space

p (xk | Y1:k) p (xk | Y1:k−1) p (yk | xk)

xa
k xb

k

Figure 5.1: A representation of the posterior density p (xk|Y1:k) in the case of sensor and actuator
faults

In this case, an estimation method that can handle multimodality is needed.

5.2 limitations of existing methods

Since the JMRPF introduced in Chapter 4 already overcomes most of the issues that must be
considered in the UAV’s application, it is used as the basis of the approach and additional
features are developed to handle the issues that have been underlined in the previous section.
It has been shown in Chapter 4 that the JMRPF allows the estimation of abrupt faults with
an unknown amplitude, since the process noise can be adapted according to the amplitude of
the fault considered. However, one of the limitations of the JMRPF it is that it can only have
one process model, and the use of sentinel particles does not help, since a particle must be
in discrete state m(0) — in other words set to 0 — to be able to move to ∆f. An estimation
of an incipient fault with a zero order fault model with a JMRPF is illustrated in Figure 5.2.

Figure 5.2, illustrates that the JMRPF must revert to a nominal mode m(0) to estimate
the fault by moving the sentinel particles next to the fault. This is why the estimated fault
follows a sawtooth pattern.

A IMM on the other hand is designed to handle multiple process models. This allows one
to consider faults with different dynamics. However, having multiple process models means
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Figure 5.2: Incipient fault estimated by the JMRPF with a process model given by [ ż ḟ ]> = 02,1

and y = z + f. The process noise of the fault state is small regarding the fault dynamics,
the number of particle is set to 20 and the jump probabilities π10 and π01 are both set to
10 %.

that one can only consider faults that have dynamics that correspond to — or close enough
to — the one listed in the process model of the bank of filters used. Then, multiple fault
dynamics must be considered to cover all possible fault dynamics, which leads to numerous
and complex combinations of models to cover the whole spectrum of faults. This method
does not solve the estimation of unknown dynamics.

In Figure 5.2, the process noise is small regarding the fault dynamics and then the particles
stay at a plateau after being placed next to the fault. Another solution is to increase the
process noise of the fault to spread the particles and allow them to match dynamics that
differ more significantly from the ones of the process model. However, this solution leads to
a degradation of the accuracy of the fault estimate and assumes some prior knowledge of the
possible fault dynamics since the setting of the process noise will be done according to the
deviation from the dynamics of the fault of the process model.

5.3 proposed solution

A way to overcome the limitations listed above is to update, in addition to the particle weight,
the particle placement. This solution aims to place the predicted particles to a potential better
location. Indeed, the choice of the state transition density to move the particles is not optimal
with the JMRPF. The particles are indeed moved based on the dynamic stochastic model,
which may lead to their misplacement, outside regions of interest. A Kalman correction is
therefore added to the weights update in order to bring the particles to the likeliest state
space regions. The RJMRPF filter can be seen as a JMRPF with a proposal density calculated
by a Kalman filter. As a consequence, the filter uses resampling less frequently for the same
threshold and the Monte Carlo approximation error of the filter decrease.



110 robustified jump-markov regularized particle filter

5.4 formulation of the robustified jump-markov regularized particle
filter

The stochastic process model of the RJMRPF [73, 74] for additive actuator and sensor fault
is given by 4.5.

5.4.1 Prediction step

The prediction step is the same as the one described by the JMRPF from Chapter 4.

5.4.2 Update step

The update step of the RJMRPF is different from the JMRPF from Chapter 4, since in addition
to the weight update the predicted particles are also updated. Then, the weight update is
still performed and given by (4.19), but since the update of the predicted particles states is
performed using a Kalman gain and the innovation, it is then given by:

xik = xik|k−1 + Kkỹik, (5.3)

where the Kalman gain is computed at each time step with the formula given by (2.32) in the
case of a linear measurement function. However, in the case of a non-linear measurements’
equation, the Kalman gain is given by:

Kk = PxykS
−1
k , (5.4)

where Pxy is the cross covariance matrix, and S is the covariance matrix of the innovation.
The cross covariance matrix is then given by:

Pxy =

N∑
i=1

wik−1

(
xik|k−1 − x̂k|k−1

)(
yik|k−1 − ŷk|k−1

)>
, (5.5)

where x̂k|k−1 is the estimated predicted state vector, ŷk|k−1 the estimated predicted mea-
surement vector and yik|k−1 the predicted measurement vector, given by:

yik|k−1 = hk

(
xik|k−1

)
. (5.6)

The estimated predicted state vector is given by:

x̂k|k−1 =

N∑
i=1

wik−1xik|k−1, (5.7)

and the estimated predicted measurement vector is given by:

ŷk|k−1 =

N∑
i=1

wik−1yik|k−1, (5.8)
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Finally, the covariance matrix of the innovation is given by:

Sk =
N∑
i=1

wik−1

(
yik|k−1 − ŷk|k−1

)(
yik|k−1 − ŷk|k−1

)>
+ Rk. (5.9)

The computation of the Kalman gain is given by the function kalmanGain detailed in
Algorithm 5.1

Algorithm 5.1 Computation of the Kalman update of the robustified jump-Markov regu-
larized particle filter
Function kalmanGain(Kk, x1:N

k|k−1, w
1:N
k )

yik|k−1 ← hk

(
xik|k−1

)
//See (5.6)

ŷk|k−1 ←
N∑
i=1

wik−1yik|k−1 //See (5.8)

x̂k|k−1 ←
N∑
i=1

wik−1xik|k−1 //See (5.7)

Pxy ←
N∑
i=1

wik−1

(
xik|k−1 − x̂k|k−1

)(
yik|k−1 − ŷk|k−1

)>
//See (5.5)

Sk =
N∑
i=1

wik−1

(
yik|k−1 − ŷk|k−1

)(
yik|k−1 − ŷk|k−1

)>
+ Rk //See (5.9)

Kk = PxykS
−1
k //See (5.4)

The algorithm of the update step of the JMRPF is performed by the function update
detailed in Algorithm 2.3.

Algorithm 5.2 Update step of the robustified jump-Markov regularized particle filter
Function update(w1:N

k , x1:N
k , w1:N

k−1, x1:N
k|k−1, yk)

kalmanGain(Kk, x1:N
k|k−1, w

1:N
k ) //See Algorithm 5.1

for each i ∈ [1, N ] do
w̃ik ← wik−1N

(
ỹik; 0, Sik

)
//See (4.19)

xik ← xik|k−1 + Kkỹik //See (5.3)

for each i ∈ [1, N ] do
wik ←

w̃i
k

N∑
j=1

w̃j
k

//Normalization of the weights

5.4.3 Estimation step

The estimation step aims to perform a global estimate of the state vector x̂k, with its
associated covariance matrix P̂k. This step is different from the SIR particle filter, since now
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the global estimate is computed using the updated state vector xik. Then from (2.27b) the
global estimate is obtained using the updated state vectors is given by:

x̂k =
N∑
i=1

wikxik, (5.10)

and its associated estimated covariance matrix is then given by:

P̂k =
N∑
i=1

wik
(
xik − x̂k

) (
xik − x̂k

)>
. (5.11)

The algorithm that produces the estimate of the RJMRPF is detailed in the function estimate
of Algorithm 5.3.

Algorithm 5.3 Estimate step of the robustified jump-Markov regularized particle filter
Function estimate(x̂k, P̂k, x1:N

k , w1:N
k )

x̂k ←
N∑
i=1

wikxik //See (5.10)

P̂k ←
N∑
i=1

wik
(
xik − x̂k

) (
xik − x̂k

)>
//See (5.11)

5.4.4 Regularization-Resampling Step

The regularization-resampling step is the same as the one described by the JMRPF.
The RJMRPF is presented in Algorithm 5.4, using the previously defined functions update

and estimate, and the function used by the JMRPF from Chapter 4.
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Algorithm 5.4 Robustified jump-Markov regularized particle filter
k ← 0
... //Initialization
Loop

k ← k + 1
predict(x1:N

k|k−1, x1:N
k−1, m1:N

k , uk, yk) //See Algorithm 4.2
update(w1:N

k , x1:N
k , w1:N

k−1, x1:N
k|k−1, yk) //See Algorithm 5.2

estimate(x̂k, P̂k, x1:N
k , w1:N

k ) //See Algorithm 5.3
N̂eff ← 1

N∑
i=1

(
wi

k

)2 //See (2.53)

if N̂eff ≤ NΓrspl then //if true then resample
multinomial(x́1:N

k , x1:N
k|k−1, w

1:N
k ) //See Algorithm 2.5

for each i ∈ [1, N ] do
wik ←

1
N //Reset the weights, See (2.55)

regularize(x1:N
k , x́1:N

k , P̂k) //See Algorithm 2.7

5.5 comparative numerical simulation analysis

This section aims to demonstrate the state and fault estimation efficiency of the RJMRPF
compared to previously presented particle filtering methods, in the presence of sensor faults
with unknown dynamics and a combination of actuator and sensor faults on a fixed-wing
UAV. For sake of brevity, only the longitudinal system is considered.

5.5.1 Fault with unknown dynamics

This section aims to demonstrate the ability of the RJMRPF to perform fault estimation in
the presence of faults with unknown dynamics and unknown amplitudes. Since the unknown
dynamics are one of the limitations of the JMRPF and the unknown amplitude of abrupt
faults is one of the limitations of the RPF, a comparative simulation of both methods is
performed to evaluate how the RJMRPF overcomes these limitations compared to the RPF
and the JMRPF. Given that all algorithms under comparison are particle filters, a non-linear
system is used. The UAV has an initial longitudinal velocity of 40 m s−1, an initial altitude of
500 m, an initial flight path angle 0 rad and is initiated in a straight cruise flight condition.
The control and guidance are then performed as described in Section 3.7 and Section 3.8 for
the longitudinal system around the trim point of the initial flight condition. The desired
altitude is set to 500 m and the desired velocity to 40 m s−1.

To illustrate an abrupt sensor fault on the pitch measurement with an unknown amplitude
and unknown dynamics, an arbitrary fault signal is added to the measurement equation.
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This true fault model is unknown to the filter. The nonlinear longitudinal model used to
compute the true state is given by:

ż = F (z,u)

y = H (z) +


0

0

0

fθ

0

+ ν

(5.12a)

(5.12b)

where fθ denotes the pitch measurement fault and the measurement noise ν is a zero mean
Gaussian noise given by:

ν =


νbaro,−pd
νaccel,u

νaccel,w

νgyro,θ

νgyro,q

 (5.13)

with standard deviations respectively given by σbaro,−pd = 1 m, σaccel,u = 1 m s−1, σaccel,w =
1 m s−1, σgyro,θ = 0.01 rad and σgyro,q = 0.002 rad s−1. The state vector z is given by:

z =


pd

u

w

θ

q

 . (5.14)

The input vector u is given by:

u =

[
δe

δt

]
. (5.15)

The non-linear function F (·) is obtained from (3.8) and the observation function H (·) is
given by:

H (z) =


−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 z (5.16)
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Since the fault is only on the measurements, the evolution and control input matrices for the
process models are the same as the ones given in (5.12) for the state vector z. An extended
vector x is defined as:

x =

[
z
fθ

]
. (5.17)

The sensor fault is assumed to follow a zero order model. The process noise is a white
Gaussian noise with a standard deviation σx given by:

σx =



1 m
0.1 m s−1

0.1 m s−1

0.02 rad
0.002 rad s−1

0.002 rad


(5.18)

The measurement noise of the process model is 1.5 times the measurements noise of (5.12);
The transition probability matrix of the RJMRPF and the JMRPF is given by:

Π =

[
0.99 0.01

0.01 0.99

]
(5.19)

The standard deviation used to compute the initial covariance matrix P0 for all filters,
denoted σx0 is given by:

σx0 =



1 m
1 m s−1

1 m s−1

0.005 rad
0.002 rad s−1

0.005 rad


(5.20)

The fault scenario considered lasts 50 s. For the first 10 s, no fault is active in the system.
At 10 s, a first fault occurs on the pitch measurement. It is an abrupt fault with an amplitude
of 5°. The amplitude of the abrupt fault is too large to be estimated accurately and rapidly
by the filters introduced in Chapter 2, given the process noise. This fault is deactivated at
20 s. At 30 s a second fault occurs on the pitch measurement. This time, it is an incipient
fault with exponential dynamics that last 10 s and reach an amplitude of 10°. The dynamics
of the incipient fault from 30 s to 40 s are given by:

fθ (t) = 10et−40 (5.21)
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This incipient fault is clearly described by dynamics that are different from the assumed
zero order process model of the fault. Hence, the fault dynamics are unknown. The scenario
is illustrated in Figure 5.3.
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Figure 5.3: Fault scenario for the simulation of unknown dynamic of sensor fault with a fault on the
pitch measurements.

Finally, the number of particles is set to 1000 and the resampling threshold Γrspl is set to
0.5 and the bandwidth factor h of the Epanechnikov kernel is set 0.2817. The number of
simulations performed is 100 with a time step of 0.05 s.

The first results illustrated in Figure 5.4 are the estimates of the RJMRPF, the JMRPF and
the RPF by taking the median results from 100 simulations. The selection of the median
result is detailed in Appendix D.
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Figure 5.4: Median result of the fault states of the UAV under unknown dynamic additive sensor fault
estimated by a RJMRPF, a JMRPF and a RPF. Median results based on 100 simulations.

In Figure 5.4, during the first 10 s while there is no fault, the RPF is less effective to reduce
noise than the JMRPF and the RJMRPF. This is due to the fact that unlike the JMRPF and
the RJMRPF, it does not force the particle to zero when it is in a fault-free mode. When the
first abrupt fault occurs at 10 s, the RPF takes longer time to converge to the fault than
the other filters. This is mainly due to the fact that its process noise and regularization
noise are not adapted to such a fault amplitude, while the JMRPF and the RJMRPF do not
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need to adapt their process noise to the fault amplitude to converge to it, as long as they
have a particle placement close to the true fault state. This shows that they can estimate
abrupt faults with unknown amplitudes. The estimate of the abrupt fault obtained with the
JMRPF is less noisy than the one obtained with the RJMRPF. However, both provide a fairly
accurate estimate of the fault. The deactivation of the fault at 20 s is slower with the RPF
due to its process noise. The JMRPF and the RJMRPF on the other hand return to zero in a
one time step, with a better precision than the RPF.

Until 37 s, the incipient exponential fault is not very significant. Then after that time,
differences start to appear. Indeed, the RPF starts to converge to the fault while other filters
reject the change for a brief moment. This is due to the fact that the particles of the JMRPF
and the RJMRPF are forced to be at zero until sentinel particle start to be more likely than
particles in m(0), which happens when the fault begin to be more significant. A short time
after that, the JMRPF and the RJMRPF start converging to the fault, both reaching the same
level of the RPF very quickly. However, after approximately 38.5 s the fault becomes too
steep — or in other words, too different from the fault dynamics of the process model —,
then the JMRPF and the RPF present an increasing error between the fault estimate and the
true fault, and they evolve with similar dynamics. The RJMRPF estimates the true fault with
a better accuracy, and is even able to estimate the fault when it reaches 10° at 40 s while
the other filters have converged to 6°. This shows that the Kalman correction of the particle
state, improves the ability of the JMRPF to estimate faults with different dynamics. At the
deactivation of the incipient fault at 40 s, the RPF remains at a constant value for 3.25 s,
before slowly converging to zero. This can be due to the fact that the RPF is diverging, since
the process noise is too small compared to the abrupt change due to the fault. The JMRPF
and the RJMRPF do not present similar behaviours. However, due to the poor estimation of
the fault by the JMRPF at 40 s, the fault estimate does not return to zero, but around −1°,
for a short time and then retuning to a fault free mode. The RJMRPF is more accurate than
the JMRPF and the return to zero and the fault free mode takes one time step.

The behaviour of the median results of the RJMRPF, the JMRPF and the RPF is illustrated
in detail in Figure 5.5, by showing the particles positions with their associated weights.

In Figure 5.5, no significant differences are visible between the RJMRPF and the JMRPF
for the abrupt fault. Both estimate the abrupt fault similarly and with a strategy already
detailed in Chapter 4. For the abrupt fault, no unexpected behaviour is observed on the RPF.
For the incipient exponential fault, all the particles shown in Figure 5.5a seem correctly
placed with the RJMRPF, except around 38 s, which is consistent with the result of Figure 5.4.
The particles of the JMRPF are however more poorly positioned than the RJMRPF at 40 s.
Indeed, some particles are around 6° and others around 8.5°. Finally, the particles of the
RPF are better positioned at 38 s than the other filters. However, as observed in Figure 5.4,
the end of the fault is poorly estimated, and at the fault deactivation time, the filter diverges
for around 3 s.
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(a) Estimation of the fault state with a RJMRPF.
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(b) Estimation of the fault state with a JMRPF.
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(c) Estimation of the fault state with a RPF.

Figure 5.5: The 20 most weighted particles of every second of the median result of the fault states of
the UAV under unknown dynamic additive sensor fault estimated by a RJMRPF, a JMRPF
and a RPF. Median results based on 100 simulations.

The median results of the state vector z estimated by the RJMRPF, the JMRPF and the
RPF are shown in Figure 5.6.



5.5 comparative numerical simulation analysis 119

496

498

500

502

504

0 10 20 30 40 50

A
lti

tu
de

(m
)

Time (s)

−p̂d rjmrpf
−p̂d jmrpf

−p̂d rpf

−pd rjmrpf
−pd jmrpf

−pd rpf

(a) Altitude.

37
38
39
40
41
42
43

0 10 20 30 40 50

Ve
lo

ci
ty

(m
s−

1 )

Time (s)
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Figure 5.6: Median result of the longitudinal states of the UAV under unknown dynamic additive
sensor fault estimated by a RJMRPF, a JMRPF and a RPF. Median results based on 100
simulations.
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In Figure 5.6, no significant error in the RJMRPF error is visible. The UAV with the states
estimated by the RJMRPF remains in a straight level flight as desired. This is consistent
with the fact that the sensor fault is well estimated by this filter. For the JMRPF, only the
estimate of the pitch state is slightly affected by the poor estimate of the fault at around
40 s, but no significant altitude deviation is observed. For the RPF, the poor estimate of the
abrupt fault has significantly affected the estimate of the pitch and the altitude, with an
altitude variation of almost 4 m. The poor estimate of the incipient fault and its late and
slow convergence to zero at the deactivation of the fault induce a significant error in pitch
and altitude estimation with a significant altitude variation of almost 5 m.

The control inputs of the RJMRPF, the JMRPF and the RPF are shown in Figure 5.7.
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Figure 5.7: Control inputs of the median result of the UAV under unknown dynamic additive sensor
fault estimated by a RJMRPF, a JMRPF and a RPF. Median results based on 100 simula-
tions.

In Figure 5.7, the control input is consistent with the trajectory observed for each filter.
Moreover, the divergence of the RPF from 40 s for more than 3 s is again visible in both
inputs of the system estimated by the RPF.

The RMSE of the fault state fθ for the RJMRPF, the JMRPF and the RPF estimates are
shown in Figure 5.8.
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Figure 5.8: RMSE of the fault states of the UAV under unknown dynamic additive sensor fault estimated
by a RJMRPF, a JMRPF and a RPF. Results are based on 100 simulations.

In Figure 5.8, the RJMRPF performs better in terms of RMSE than the RPF and JMRPF
during the first 10 s. The JMRPF and RJMRPF perform similarly as expected at 30 s. These,
RMSE results confirm that the RJMRPF has a better ability to estimate fault with unknown
dynamics thanks to the addition of the Kalman correction. Neither the JMRPF nor the RPF
are able to estimate the incipient exponential fault with a comparable accuracy to that of
the RJMRPF. The estimation of abrupt fault with unknown amplitude is however possible
thanks to the use of a JMS, and the JMRPF had a qualitatively similar result and the RPF is
further behind the curve.

The RMSE of the state vector z is shown in Figure 5.9.
In Figure 5.9, the RMSE of the states show that, thanks to the good estimation of the

RJMRPF, no significant deviation of the trajectory is observed over the 100 simulations
performed. The JMRPF is however unable to accurately estimate the incipient exponential
fault and then a significant error in the altitude RMSE is visible at 40 s. The RPF shows that
the late return to zero at the deactivation of the abrupt and incipient faults induce a high
RMSE on the pitch but also on the altitude and the pitch rate states.
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(b) RMSE of the velocity along ib estimate.
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(c) RMSE of the velocity along kb estimate.
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(d) RMSE of the pitch estimate.
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(e) RMSE of the pitch rate estimate.

Figure 5.9: RMSE of the longitudinal states of the UAV under unknown dynamic additive sensor fault
estimated by a RJMRPF, a JMRPF and a RPF. Results are based on 100 simulations.

Table 5.1 gives the RMSE values at key time steps and the RMSE which is defined in
Appendix D.
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State Time (s) RMSE
10.05 s 20.05 s 30.05 s 40.05 s

RJMRPF

RMSE pd (m) 0.236 0.239 0.213 0.316 0.215

RMSE u (m s−1) 0.219 0.178 0.188 0.203 0.192

RMSE w (m s−1) 0.056 0.042 0.043 0.046 0.041

RMSE θ (°) 0.096 0.272 0.062 0.459 0.115

RMSE q (° s−1) 0.104 0.112 0.108 0.116 0.108

RMSE fθ (°) 0.549 4.734 0.051 9.542 0.177

JMRPF

RMSE pd (m) 0.363 0.303 0.203 0.905 0.308

RMSE u (m s−1) 0.267 0.150 0.141 0.428 0.163

RMSE w (m s−1) 0.107 0.030 0.028 0.068 0.036

RMSE θ (°) 0.236 0.349 0.066 0.982 0.260

RMSE q (° s−1) 0.188 0.095 0.087 0.213 0.132

RMSE fθ (°) 0.305 5.049 0.027 6.299 0.295

RPF

RMSE pd (m) 0.239 0.682 0.419 0.685 0.930

RMSE u (m s−1) 0.150 0.210 0.161 0.315 0.233

RMSE w (m s−1) 0.023 0.033 0.031 0.060 0.045

RMSE θ (°) 0.210 1.009 0.513 0.620 0.969

RMSE q (° s−1) 0.153 0.103 0.102 0.164 0.191

RMSE fθ (°) 5.001 4.193 0.522 6.992 1.526

Table 5.1: RMSE values of the RJMRPF, the JMRPF and the RPF estimates at key time steps, and
RMSE.

To further highlight the strengths of the RJMRPF, the effect of a tenfold increase in the
fault amplitude is evaluated. The median fault estimate of this simulation is then illustrated
in Figure 5.10.
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Figure 5.10: Median result of the fault states of the UAV under unknown dynamic additive sensor
fault with a fault amplitude increased by a factor of 10 and estimated by a RJMRPF, a
JMRPF and a RPF. Median results based on 100 simulations.

In Figure 5.10, the RJMRPF estimates the fault rapidly and accurately. The JMRPF estimates
the abrupt fault as expected but provides a noisy estimate of the incipient fault. This is an
expected behaviour. The noisy estimate is due to the fact that the JMRPF estimates the
incipient fault by returning to zero and then replacing a sentinel particle near the true fault.
A closer look at the estimate between 37 s to 40 s shows a sawtooth pattern as explained in
Figure 5.2. This behaviour is significant in Figure 5.10 since the process noise is not large
enough to helping the filter to converge. This is also confirmed by the fact that the RPF
cannot estimate the abrupt fault, and does not converge when the difference is too large
between the current estimate and the true state with respect to the process noise. This
happens during the time of the abrupt fault, but also for last 2 s of the incipient fault when
the JMRPF also stats to converge to the fault thanks to the JMS and not to the process noise.

The RMSE of the fault state fθ of the RJMRPF, the JMRPF and the RPF are shown in
Figure 5.11.
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Figure 5.11: RMSE of the fault states of the UAV under unknown dynamic additive sensor fault with
a fault amplitude increased by a factor of 10 and estimated by a RJMRPF, a JMRPF and
a RPF. Results are based on 100 simulations.
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Figure 5.11, is consistent with all previous results and highlights the improvement obtained
by the Kalman correction of the particles with a better ability to estimate faults with
unknown dynamics.

The RMSE of the states are shown in Figure 5.12.
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(a) RMSE of the altitude estimate.
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(b) RMSE of the velocity along ib estimate.
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(c) RMSE of the velocity along kb estimate.
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(d) RMSE of the pitch estimate.
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(e) RMSE of the pitch rate estimate.

Figure 5.12: RMSE of the longitudinal states of the UAV under unknown dynamic additive sensor
fault with a fault amplitude increased by a factor of 10 and estimated by a RJMRPF, a
JMRPF and a RPF. Results are based on 100 simulations.
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In Figure 5.12, the results show that the RJMRPF has significantly lower RMSE compared
to the JMRPF and the RPF. The RPF has a comparatively high RMSE for all estimated states.

Table 5.2 gives the RMSE values at key time steps and the RMSE which is defined in
Appendix D.

State Time (s) RMSE
10.05 s 20.05 s 30.05 s 40.05 s

RJMRPF

RMSE pd (m) 0.262 0.213 0.196 0.263 0.214

RMSE u (m s−1) 0.279 0.173 0.189 0.179 0.194

RMSE w (m s−1) 0.071 0.041 0.033 0.038 0.040

RMSE θ (°) 0.090 0.140 0.057 0.342 0.114

RMSE q (° s−1) 0.103 0.104 0.108 0.108 0.107

RMSE fθ (°) 0.303 49.936 0.067 99.684 0.451

JMRPF

RMSE pd (m) 0.343 0.306 0.197 2.352 0.642

RMSE u (m s−1) 0.269 0.155 0.125 0.526 0.206

RMSE w (m s−1) 0.087 0.034 0.030 0.136 0.037

RMSE θ (°) 0.102 0.313 0.061 1.660 0.436

RMSE q (° s−1) 0.191 0.101 0.094 0.776 0.122

RMSE fθ (°) 0.335 50.017 0.023 76.011 1.250

RPF

RMSE pd (m) 0.200 1.084 0.329 1.103 0.847

RMSE u (m s−1) 0.089 0.026 0.153 0.224 0.213

RMSE w (m s−1) 0.037 0.012 0.026 0.022 0.038

RMSE θ (°) 0.196 0.042 0.470 0.485 0.710

RMSE q (° s−1) 0.152 0.079 0.053 0.095 0.167

RMSE fθ (°) 49.871 0.125 0.432 7.039 12.249

Table 5.2: RMSE values of the RJMRPF, the JMRPF and the RPF estimates at key time steps, and
RMSE.
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5.5.2 Ambiguous actuator and sensor faults

This section aims to demonstrate the ability of the RJMRPF to perform fault estimation of
ambiguous actuator and sensor faults. To evaluate the capacity of the RJMRPF to estimate
these fault, this filter is compared to a robustified regularized particle filter (RRPF). The
RRPF is a RPF with a Kalman correction — in other word it is the Algorithm 2.8, with the
update step given by Algorithm 5.2. The two other filters, RPF and JMRPF have diverged
on most of the trials corresponding to this scenario, which is why their results are not
presented here. Moreover, unlike the JMRPF previously introduced, to be able to estimate
such fault, the particles in mode zero are not forced to zero, but only set to zero when there
is a transition from m(1) to m(0).

Since the actuator fault estimation using JMRPF needs a linearized system (see (4.14)), the
true system is a non-linear system, however, the process model is the linearized system. The
UAV has an initial longitudinal velocity of 40 m s−1, an initial altitude of 500 m, an initial
flight path angle 0 rad and is initiated in a straight cruise flight condition. The control and
guidance are then performed as described in Section 3.7 and Section 3.8 for the longitudinal
system around the trim point of the initial flight condition. The desired altitude is set to
500 m and the desired velocity to 40 m s−1.

To illustrate an abrupt actuator and sensor fault on the elevator deflection and the pitch
rate measurement, fault signals are added to the state and measurement equation. This true
fault model is unknown to the filter. The nonlinear longitudinal model used to compute the
true state is given by:

ż = F (z,u + fa)

y = H (z) +


0

0

0

0

fq

+ ν

(5.22a)

(5.22b)

where fq denotes the pitch rate measurement fault, fa is the fault actuator state given by[
fδe 0

]>
with fδe the actuator fault, and the measurement noise ν is a zero mean Gaussian

noise given by:

ν =


νbaro,−pd
νaccel,u

νaccel,w

νgyro,θ

νgyro,q

 (5.23)
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with standard deviations respectively given by σbaro,−pd = 1 m, σaccel,u = 1 m s−1, σaccel,w =
1 m s−1, σgyro,θ = 0.01 rad and σgyro,q = 0.002 rad s−1. The state vector z is given by:

z =


pd

u

w

θ

q

 . (5.24)

The input vector u is given by:

u =

[
δe

δt

]
. (5.25)

The non-linear function F (·) is obtained from (3.8) and the observation function H (·) is
given by:

H (z) =


−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 z (5.26)

The extended vector x is given by:

x =

 z
fδe

fq

 . (5.27)

The actuator and sensor faults follow a zero order model. The process model is then the
form of:{

x̄k = Fkx̄k−1 + Bkuk + ηk

yk = Hkxk + νk

(5.28a)
(5.28b)

The process noise η is a white Gaussian noise with a standard deviation σx given by:

σx =



0.01 m
0.02 m s−1

0.02 m s−1

0.005 rad
0.002 rad s−1

0.005 rad
0.005 rad s−1


(5.29)
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The measurement noise of the process model is 1.5 times the measurements noise of (5.12);
At a sampling rate of 20 Hz, the matrix Fk, Bk and Hk are respectively given by:

Fk =



1 0 0.05 −2 0 0.01 0

0 0.98 0.01 −0.48 −0.09 0.08 0

0 −0.02 0.88 −0.02 1.85 −1.70 0

0 0 0 1 0.05 −0.05 0

0 0 −0.04 0 0.93 −2.09 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


(5.30)

,

Bk =



0.01 0

0.08 1.59

−1.70 −0.01
−0.05 0

−2.09 0

0 0

0 0


(5.31)

and

Hk =


−1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 1

 (5.32)

The transition probability matrix of the RJMRPF is given by:

Π =

[
0.99 0.01

0.01 0.99

]
(5.33)
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The standard deviation used to compute the initial covariance matrix P0 for all filters,
denoted σx0 is given by:

σx0 =



1 m
1 m s−1

1 m s−1

0.002 rad
0.002 rad s−1

0.002 rad
0.002 rad s−1


(5.34)

The fault scenario considered lasts 50 s. For the first 10 s, no fault is active in the system.
At 10 s, an actuator fault occurs on the elevator deflection. It is an abrupt fault with an
amplitude of 10°. This fault is deactivated at 30 s. However, before that, at 20 s, a sensor
fault occurs on the pitch rate measurement. It is also an abrupt fault, with an amplitude of
10 ° s−1.

The scenario is illustrated in Figure 5.13.
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Figure 5.13: Fault scenario for the simulation of ambiguous actuator and sensor fault with a fault on
the elevator deflection and the pitch rate measurements.

Finally, the number of particles is set to 1000 and the resampling threshold Γrspl is set to
0.75 and the bandwidth factor h of the Epanechnikov kernel is set 0.2817. The number of
simulations performed is 100 with a time step of 0.05 s.

The first results illustrated in Figure 5.14 are the estimates of the RJMRPF and the RRPF
by taking the median results from 100 simulations. The selection of the median result is
detailed in Appendix D.

In Figure 5.14a, the RJMRPF estimates the actuator fault faster than the RRPF when it
occurs at 10 s, although the estimate of the sensor fault in Figure 5.14b is briefly disrupted
for the RJMRPF estimate. This deviation due to the ambiguity between the actuator and
the sensor is however so brief that the estimate of the state vector z should not be affected,
as hypothesis testing quickly resolves the ambiguity between sensor and actuator faults.
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(a) Actuator fault.
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(b) Sensor fault.

Figure 5.14: Median result of the fault states of the UAV under ambiguous actuator and sensor fault
estimated by a RJMRPF and a RRPF. Median results based on 100 simulations.

Between 20 s and 30 s, both faults are simultaneously active and the RJMRPF converges faster
to the fault compared to the RRPF. Both estimators then accurately track the sensor fault.
When the sensor fault is no longer active, the RJMRPF quickly converges to zero but the
RRPF response to this change is approximately 2 s slower because the response of the RPF is
more heavily restricted by the model dynamics, while the jump strategy of the RJMRPF has
a more instantaneous effect. This is also visible in a less significant way in the actuator fault
estimate at the activation, which shows that the jump strategy introduced in Chapter 4 on
the actuator fault is working.

The median results of the state vector z estimated by the RJMRPF and the RRPF are
shown in Figure 5.15.
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Figure 5.15: Median result of the longitudinal states of the UAV under ambiguous actuator and sensor
fault estimated by a RJMRPF and a RRPF. Median results based on 100 simulations.
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In Figure 5.15 the effect of the abrupt actuator fault is visible on the altitude even if
the fault is quickly and accurately estimated, because the actuator dynamics take a while
to compensate the error. However, the variations are only visible at the activation and
deactivation of the actuator fault.

The control inputs of the RJMRPF and the RRPF are shown in Figure 5.16.
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Figure 5.16: Control inputs of the median result of the UAV under ambiguous actuator and sensor
fault estimated by a RJMRPF and a RRPF. Median results based on 100 simulations.

In Figure 5.16, the actuator fault compensation is visible on the elevator deflection.
The RMSE of the fault state fδe and fq for the RJMRPF and the RRPF estimates are shown

in Figure 5.17.
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Figure 5.17: RMSE of the fault states of the UAV under ambiguous actuator and sensor fault estimated
by a RJMRPF and a RRPF. Results are based on 100 simulations.

In Figure 5.17, the RMSE results are better overall for the RJMRPF, except at 10 s where a
short peak is visible on the RMSE of the sensor fault, this is due to the ambiguity created by
the actuator fault and is being attempted to be resolved by the sensor fault estimate. The
RRPF having this bump too on its RMSE but lower since without jump strategy it cannot
reach these level as fast as the RJMRPF.

The RMSE of the states is shown in Figure 5.18.
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(c) RMSE of the velocity along kb estimate.
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(d) RMSE of the pitch estimate.
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(e) RMSE of the pitch rate estimate.

Figure 5.18: RMSE of the longitudinal states of the UAV under ambiguous actuator and sensor fault
estimated by a RJMRPF and a RRPF. Results are based on 100 simulations.

In Figure 5.18, the RMSE of all the states are better for the RJMRPF, except at 10 s for
the pitch rate state where the short peak is visible on the RMSE of the RJMRPF. However,
as mentioned before, this peak does not affect the trajectory of the UAV or any other state
since it is too short. The convergence of the RRPF is slower for all estimated states, both
when the fault is present and when the system is fault free.
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Table 5.3 gives the RMSE values at key time steps and the RMSE which is defined in
Appendix D.

State Time (s) RMSE
10.05 s 20.05 s 30.05 s 40.05 s

RJMRPF

RMSE pd (m) 0.196 0.204 0.208 0.203 0.208

RMSE u (m s−1) 0.080 0.087 0.102 0.077 0.110

RMSE w (m s−1) 0.235 0.200 0.399 0.222 0.198

RMSE θ (°) 0.373 0.326 0.467 0.338 0.326

RMSE q (° s−1) 17.429 3.875 2.867 2.998 0.797

RMSE fδe (°) 8.053 1.659 1.600 1.211 0.290

RMSE fq (° s−1) 17.428 3.882 2.876 3.015 0.807

RRPF

RMSE pd (m) 0.275 0.196 0.211 0.204 0.222

RMSE u (m s−1) 0.247 0.128 0.239 0.130 0.213

RMSE w (m s−1) 0.520 0.253 0.516 0.231 0.228

RMSE θ (°) 0.719 0.453 0.630 0.371 0.302

RMSE q (° s−1) 2.634 8.944 2.540 8.870 0.931

RMSE fδe (°) 4.618 2.833 4.809 2.973 0.339

RMSE fq (° s−1) 1.912 9.249 1.876 9.186 0.940

Table 5.3: RMSE values of the RJMRPF and the RRPF estimates at key time steps, and RMSE.

5.6 chapter summary

This chapter introduces new features that have been added to extend the abilities of the
previously introduced filter, the JMRPF. The new enhanced JMRPF named the RJMRPF was
tested and validated with numerical results and compared to a JMRPF and RPF in the case
of faults with unknown dynamics. In the case of ambiguous actuator and sensor faults
(research question 5), neither the JMRPF nor the RPF could converge in a sufficient number
of simulations to provide interesting comparative results. The particles placement using a
Kalman update was proven to be necessary to estimate this type of faults with this type of
filters. A comparison was therefore also done against the RRPF — which is a RPF with a
Kalman update.
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The idea behind the RJMRPF was to move particles after there prediction to more likely
regions of the state space using a Kalman correction. The associated algorithm of this method
was fully described in Section 5.4. 100 simulations were performed in Section 5.5 and the
filter was shown to provide very good fault and state estimation performance in the case
of faults with unknown dynamics (research question 4) or amplitude (research question 3),
as well as in the case of ambiguous actuator and sensor faults. The filter was shown to
estimate faults with unknown dynamics by only using a simplified piecewise constant (zero
order) process model. This circumvents the need for more than one faulty mode, as in the
case of a IMM architecture. The use of only one model also allows for better computational
performances in embedded applications, such as fixed-wing UAV (research question 7).

However, a shared limitation of the RJMRPF and JMRPF is that these results were also
due to a favourable configuration of the transition probability matrix. For the one or two
faults under consideration, allowing 1 % of the particles to move from m(0) to m(1), or from
m(1) to m(0) proved to be a good setting. With a different application or with more faults,
different settings of the transition probability matrix should be tested to check if this matrix
still provides optimal or nearly optimal results, depending on the user specified requirements.
Moreover, multiple trials are not always possible to check if a parameter provides acceptable
results. This problem is also encountered in IMM approaches, where the transition probability
matrix is also a very sensitive tuning parameter.

The following chapter will therefore aim to solve this limitation of the RJMRPF and the
JMRPF.





6
A DA P T I V E J U M P - M A R KOV R E G U L A R I Z E D PA RT I C L E
F I LT E R

The need to achieve a trade-off between false alarm rate and hit rate is a well known
problem in fault detection using a variety of methods, including particle filters, as in work
by Kadirkamanathan et al. [75] where the effect of detection threshold selection on the
trade-off between those two competing objectives was illustrated. In [76], a particle filter
was also applied to state and fault estimation for an unmanned underwater vehicle in the
presence of multiple sensor and actuator faults, with a threshold selection to achieve a
trade-off between desired detection and false alarm probabilities.

One of the limitations of the jump-Markov filters in particular is that assumptions of
constant false alarm and missed detection probabilities are often made in their mode switching.
This is what has been done with the JMRPF and the RJMRPF, and this chapter aims to solve
this issue by introducing the AJMRPF. The AJMRPF allows to adapt the Markov transition
matrix to the experiment by estimating the detection and false alarm probabilities. Several
approaches have been developed to estimate these probabilities but most of them rely on
the use of computationally intensive Monte Carlo approaches. In this chapter, an analytical
approach is described to evaluate these probabilities using the saddlepoint approximation [77],
first introduced by Daniels [78]. The saddlepoint approximation allows the use of multiple
measurements instead of a single one, which increase the accuracy of the approximation.

The false alarm probability can be expressed as a function of a likelihood ratio product
of measurements up to time n, given a decision threshold. The approach is detailed in
Section 6.2 and has been used to provide an analytical expression of the false alarm and
missed detection probability for a number of applications, such as the optimization of sensor
networks [79], and sensor fusion for detection in clutter in a stationary case [80]. It is used
here together with the JMRPF to develop a multimode state and sensor fault estimation
system for unmanned fixed wing aircraft. The saddlepoint approximation is extended here to
the case of independent but non identically distributed measurements, as it has been used
in [80]. The threshold used for the calculation of false alarm and missed detection probabilities
is optimized at each time step using a ROC. The analysis of the numerical simulation on the
same test case presented in Section 6.4 illustrates that the AJMRPF performs faster detection
and more accurate estimation of the pitch sensor fault, with a robust and accurate state
estimation compared to the JMRPF. Mode transitions are adapted to the actual false alarm

139
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and missed detection probabilities, which are both shown to be below 0.5 at all times and
close to zero when the fault is active.

The AJMRPF is formulated and applied in this chapter for the estimation of intermittent
sensor faults, with a clear dependency between actual false alarm and detection probabilities
on one hand and mode switching on the other. An enhanced jump strategy allows a small
number of particles to explore the alternate mode to the current hypothesis to reduce
computational demand, using an analytical expression based on a generalization of the
saddlepoint approximation to independent but non identically distributed measurements,
with application to the online computation of false alarm and missed detection probabilities.
An optimized threshold selection using a ROC criterion is used to achieve a desired trade-off
between false alarm probability and missed detection probability using a ROC approach for
the Markovian jump system.

This chapter is organized as follows: the adaptive transition probability matrix formulation
is introduced in Section 6.1. The saddlepoint approximation method is presented in Section 6.2,
with a construction of the analytical expressions of the false alarm and detection probabilities.
The AJMRPF algorithm is then presented in Section 6.3 with a new threshold selection
strategy for probabilistic mode transitioning. The numerical simulation analysis in Section 6.4
illustrates the efficiency of the AJMRPF approach and the dependence of the mode switching
on the hit-and-miss probabilities. Finally, the Section 6.5 provides an overall conclusion of
this chapter.

6.1 adaptive transition probability matrix

As previously defined for the JMRPF, a fault state of particle is associated with mode m(0) if
the fault estimate of the particle is in the fault free hypothesis H0. Likewise, it is associated
with mode m(1) if the fault estimate of the particle is in the faulty hypothesis H1. The JMRPF
previously introduced in Chapter 4 and Chapter 5 had the simplest jump strategy, where
the mode transition probabilities were kept constant. This strategy was not computationally
efficient since particles jump at each time step, whether there is a fault or not. In this chapter,
these transition probabilities are adapted to the false alarm rate and hit rate, with an
optimization of the trade-off between them. This means that the number of particles allowed
to explore mode m(1) or m(0) will not be constant and will depend on current false alarm
and missed detection probabilities, which will themselves be dependent on fault estimation.

The elements πji = P
(
m

(j)
k+1|m

(i)
k

)
of the matrix Π, which was defined in (4.2), determine

the number of particles that jump. Estimation performance and even stability are sensitive
to this transition matrix. Indeed, in Figure 6.1 for example, the same simulation as the one
performed in Section 5.5.1 is done with a transition probability matrix set to 0.01 for π00 and
π11, and 0.99 for π10 and π01. This figure shows that with a poor setting of the probability
transition matrix RJMRPF and the JMRPF have difficulties to estimate the fault.

In the proposed jump strategy, when a particle jumps to a new fault state, a potential
value of this state is calculated. Knowing this value before jumping allows one to compute
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Figure 6.1: First 30 s of the RMSE of the fault states of the simulation performed in Section 5.5.1
with a RJMRPF and a JMRPF with the transition probabilities set to 0.01 for π00 and π11,
and 0.99 for π10 and π01. And with a RJMRPF reference (rjmrpf ref) which is the RMSE
obtained in Section 5.5.1. Results based on 100 simulations.

the false alarm probability associated with this potential new value. The missed detection
probability is computed with the current estimate of the fault.

Figure 6.2 illustrates the density used to compute the false alarm and missed detection
probabilities.

Figure 6.2 illustrates that the computation of the false alarm and missed detection
probability are not using the same density H1 (see Section 6.3.1). Indeed, the false alarm
probability is used to know if it is relevant to move the particle from 0 to ∆f, then the mean
of the H1 density used to compute the false alarm probability is ∆f. On the other hand,
the missed detection probability is used to know if it is relevant to revert to 0 from the
current estimate of the fault f̂k, then the mean of the H1 density used to compute the missed
detection probability is f̂k.

Once the false alarm and missed detection probabilities are computed, the transition
probability matrix can be updated. There are several ways of computing the transition
probability matrix [81], but the general idea is that the mode switching probabilities are a
function of the false alarm and missed detection probabilities.

The proposed adaptation law for the transition probability matrix is given by:

Π =

[
φfa

(
Pfa
)

1− φfa
(
Pfa
)

1− φmd (Pmd) φmd (Pmd)

]
(6.1)

where φfa (·) and φmd (·) are called activation functions. They are continuous functions in
the interval [0, 1] and bounded within this interval in [0, 1]. The activation functions can be
identity, binary step, sigmoid, or any other functions that satisfy the above criterion.

In the case of only considering a single measurement, the false alarm and missed detection
probabilities can be calculated using a CDF as shown in Figure 2.5. To improve the accuracy
of the computation of the Pfa and the Pmd, the number of measurements considered must be
greater than 1. In this case, this approach is however difficult to generalize and the Pfa and
Pmd probabilities can be calculated using Monte Carlo approximations. These approximations



142 adaptive jump-markov regularized particle filter

µ0 ∆fk

Γopt
fa

Pr
ob

ab
ili

ty
de

ns
ity

State space

H0 H1 Pfa

(a) False alarm probability with H0 and H1 density.

µ0 f̂k

Γopt
md

Pr
ob

ab
ili

ty
de

ns
ity

State space

H0 H1 Pmd

(b) Missed detection probability with H0 and H1 density.

Figure 6.2: False alarm and missed detection probabilities with the H0 density and the H1 density
used for the computation of each probability, with Γopt

fa and Γopt
md the optimal threshold

for the false alarm and missed detection probabilities respectively.

are however computationally expensive, and then not suitable for real-time applications
because of the large number of samples needed to accurately approximate the Pfa and Pmd.
A solution is proposed in this chapter, using the saddlepoint approximation detailed in
Section 6.2 to calculate an analytical expression to both false alarm and missed detection
probabilities from the last n measurements.

6.2 approximation of the false alarm and missed detection

This section aims to present a way to approximate the false alarm and missed detection
probabilities and use them to compute the adaptive transition probability matrix given
by (6.1). To do so, the saddlepoint approximation method is used.

The saddlepoint approximation was introduced by Daniels [78] and has since been developed
and enhanced for a wealth of applications. Given a number n of measurements, the saddlepoint
approximation of the false alarm probability can be computed using the Lugannani and Rice
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formula [82] and is accurate to order 1/n which outperforms the accuracy of a Monte Carlo
approximation, known to be accurate to order 1/

√
n.

The saddlepoint approximation then consists of approximating the probability density
function of the mean of n independent and identically distributed (i. i. d.) random variables.
Let us consider Xi as a random variable. The mean of n i. i. d. random variables is given by:

X̄ =
1

n

n∑
i=1

Xi (6.2)

The saddlepoint approximation remains accurate even at tail distribution areas, which is
crucial for a number of applications, including detection problems and particularly when
detection algorithms are designed to meet false alarm probability requirements. Compared
to the saddlepoint approximation, the law of large numbers approximation only works for
absolute error with very large values of n and provides poor accuracy in the tail distribution
areas.

Many statistical problems (maximum likelihood estimator or hypothesis testing for exam-
ple) can be formulated as a sum of n i. i. d. variables using the logarithm of the likelihood
function.

In the following section, the saddlepoint approximation formulas in the i. i. d. and indepen-
dent but not identically distributed cases, are re-demonstrated as the Lugannani and Rice
formula, using new proofs.

In this section, different and simplified proofs of the formulae of the saddlepoint approxi-
mation of the mean and of Lugannani-Rice formula are provided. This is performed using
carefully chosen changes of variables from the saddlepoint formula for the case n = 1 and
integration by parts. This approach to proving the saddlepoint approximation provides a
new insight into the problem and clearly differs from the proofs made in [78, 82] and based
on the Edgeworth expansion. Furthermore, a generalization of the saddlepoint formula to
the case of independent and non-identically distributed variables, is proposed with a new
mathematical proof.

6.2.1 Saddlepoint approximation of a sum or a mean

In the case where the random variable Xi are i. i. d. variables, the density of pX̄ (x) is given
by the Proposition 1.

Proposition 1
A random variable X̄ is introduced such that X̄ = 1

n

n∑
i=1

Xi. If the random variables Xi are

i. i. d., then the probability density function of X̄ is given by:

p̂X̄ (x) =

√
n

2πK′′
X (TX)

en(KX(TX)−TXx) (6.3)
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Proof . The cumulant generating function KX̄ of the variable X̄ is given by:

KX̄ (t) = log
(
E
[
etX̄
])

(6.4a)

= log

E

et
(

1
n

n∑
i=1

Xi

) (6.4b)

= log

(
E

[
n∏
i=1

et
(
1
n
Xi

)])
(6.4c)

Since the variables Xi are independent, the cumulant generating function can also be
written as:

KX̄ (t) = log

(
E

[
n∏
i=1

et
(
1
n
Xi

)])
(6.5a)

= log

(
n∏
i=1

E
[
et

(
1
n
Xi

)])
(6.5b)

=
n∑
i=1

log
(
E
[
et

(
1
n
Xi

)])
(6.5c)

=

n∑
i=1

KXi

(
t

n

)
(6.5d)

Given that the variables Xi have the same probability density function, their cumulant
generating function is identical KXi = KX . Then, it can be written as:

KX̄ (t) = nKX
(
t

n

)
(6.6)

and its derivative is then given by:

K′
X̄ (t) = K′

X

(
t

n

)
(6.7)

As K′
X̄
(t) = K′

X

(
t
n

)
, the cumulant generating K′

X̄
can be written:

K′
X̄ (t)− x = 0⇔ K′

X

(
t

n

)
− x = 0 (6.8)

Let TX̄ be the root of K′
X̄
(t) − x = 0, and TX the root of K′

X

(
t
n

)
− x. Then, it gives

TX =
TX̄
n ⇔ TX̄ = nTX .

By derivate (6.7) it gives:

K′′
X̄ (t) = K′′

X

(
t

n

)
(6.9)
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The probability density function of X̄ is given using the Laplace approximation — detailed
in Appendix E — by:

p̂X̄ (x) =

√
1

2πK′′
X̄
(TX̄)

e(KX̄(TX̄)−TX̄x) (6.10)

Then, it gives TX̄ = nTX , KX̄ (TX̄) = nKX (TX) and K′′
X̄
(TX̄) =

1
nK

′′
X (TX). By substitut-

ing this in (6.10), it gives:

p̂X̄ (x) =

√
1

2π
(
1
nK

′′
X (TX)

)e(nKX(TX)−nTXx) (6.11a)

=

√
n

2πK′′
X (TX)

en(KX(TX)−TXx) (6.11b)

This formula is the saddlepoint approximation developed by Daniels under the assumption
that the variables Xi are i. i. d..

In the case where the variables Xi are independent but not identically distributed, a
generalized formulation of the saddlepoint approximation has been given in [80]. This
formulation is given by the following proposition.

Proposition 2
Let the random variable X̄ be defined such that X̄ = 1

n

n∑
i=1

Xi. If the random variables Xi

are independent but not identically distributed, the probability density function of X̄ is
given by:

p̂X̄ (x) =

√
n

2πK̄′′
X (T0)

en
(
K̄X(T0)−T0x

)
(6.12)

where:

K̄X (T0) =
1

n

n∑
i=1

KXi (T0) (6.13)

and

K̄′′
X (T0) =

1

n

n∑
i=1

K′′
Xi

(T0) (6.14)
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Proof . The cumulant generating function KX̄ of the variable X̄ is given by:

KX̄ (t) = log
(
E
[
etX̄
])

(6.15a)

= log

E

et
(

1
n

n∑
i=1

Xi

) (6.15b)

= log

(
E

[
n∏
i=1

et
(
1
n
Xi

)])
(6.15c)

Given that the variables Xi are independent, the cumulant generating function can also be
written as follows:

KX̄ (t) = log

(
E

[
n∏
i=1

et
(
1
n
Xi

)])
(6.16a)

= log

(
n∏
i=1

E
[
et

(
1
n
Xi

)])
(6.16b)

=

n∑
i=1

log
(
E
[
et

(
1
n
Xi

)])
(6.16c)

=

n∑
i=1

KXi

(
t

n

)
. (6.16d)

And its derivative is given by:

K′
X̄ (t) =

1

n

n∑
i=1

K′
Xi

(
t

n

)
. (6.17)

Since TX̄ is the root of:

K′
X̄ (t)− x = 0⇔ 1

n

n∑
i=1

K′
Xi

(
t

n

)
− x = 0, (6.18)

It gives TX̄
n is the solution of 1

n

n∑
i=1
K′
Xi

(t)− x = 0.

By deriving (6.17), it gives:

K′′
X̄ (t) =

1

n2

n∑
i=1

K′′
Xi

(
t

n

)
(6.19)

The probability density function of X̄ as detailed in Appendix E is given by:

p̂X̄ (x) =

√
1

2πK′′
X̄
(TX̄)

eKX̄(TX̄)−TX̄x (6.20)
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Let T0 =
TX̄
n , then it gives TX̄ = nT0, KX̄ (TX̄) = KXi (T0) and K′′

X̄
(TX̄) =

1
n2K′′

Xi
(T0).

By substituting this in (6.20), it gives:

p̂X̄ (x) =

√√√√√ 1

2π

(
1
n2

n∑
i=1
K′′
Xi

(T0)

)e
(

n∑
i=1

KXi
(T0)−nT0x

)
(6.21a)

=

√√√√√ n

2π

(
1
n

n∑
i=1
K′′
Xi

(T0)

)en
(

1
n

n∑
i=1

KXi
(T0)−T0x

)
. (6.21b)

Let’s define K̄X , K̄′′
X functions as:

K̄X (T0) =
1

n

n∑
i=1

KXi (T0) (6.22)

K̄′′
X (T0) =

1

n

n∑
i=1

K′′
Xi

(T0) . (6.23)

Then, it gives:

p̂X̄ (x) =

√
n

2πK̄′′
X (T0)

en
(
K̄X(T0)−T0x

)
. (6.24)

This equation is consistent with Daniels’s formula (6.11b).

6.2.2 Lugannani and Rice Formula

The Lugannani and Rice formula [82] is known to provide a very accurate approximation
at the tail probability area. The false alarm and missed detection probabilities can be
computed using the Lugannani and Rice formula. This formula is based on the saddlepoint
approximation of the cumulative probability function.

Proposition 3
Let the probability density function of X̄ be defined such that:

p̂X̄ (x) =

√
n

2πK′′
X (T0)

en(KX(T0)−T0x) (6.25)
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The saddlepoint approximation of the cumulative probability function P
(
X̄ > α

)
is given

by:

P
(
X̄ > α

)
≈ 1− Φ(yα) + φ (yα)

(
1

tα
− 1

yα

)
(6.26)

where φ (·) is the standard Gaussian distribution, Φ(·) is the CDF of the standard normal
distribution, tα = T0

√
nK′′

X (T0) and yα = sign (tα)
√
2n (T0α−KX (T0)) with T0 is the

solution of the equation K′
X (t)− α = 0, and α is a detection threshold.

Proof . The saddlepoint approximation of the cumulative probability function P
(
X̄ > α

)
is given by:

P
(
X̄ > α

)
=

+∞∫
α

p̂X̄ (x) dx (6.27a)

=

+∞∫
α

√
n

2πK′′
X (T0)

en(KX(T0)−T0x) dx (6.27b)

A change of variables is performed by using:

n (KX (T0)− T0x) = −
y2

2
. (6.28)

By replacing K′
X (T0) = x in (6.28), can be written:

n
(
KX (T0)− T0K′

X (T0)
)
= −y

2

2
(6.29)

and then, y dy is given by:

y dy = nT0K′′
X (T0) dT0 (6.30)

Since K′
X (T0) = x, can be obtained by differentiation K′′

X (T0) dT0 = dx. Then, y dy can
be written:

y dy = nT0 dx. (6.31)

This implies that:

dx =
y dy
nT0

. (6.32)

Then:

P
(
X̄ > α

)
=

+∞∫
yα

√
1

nK′′
X (T0)

y

T0

(
1√
2π
e−

y2

2

)
dy (6.33)
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The term 1√
2π
e−

y2

2 is the standard Gaussian distribution. Let’s define φ (y) = 1√
2π
e−

y2

2

and t = T0
√
nK′′

X (T0). Then, the probability P
(
X̄ > α

)
is given by:

P
(
X̄ > α

)
=

+∞∫
yα

y

t
φ (y) dy (6.34a)

=

+∞∫
yα

(
1− 1 +

y

t

)
φ (y) dy (6.34b)

=

+∞∫
yα

φ (y) dy +
+∞∫
yα

(
1

y
− 1

t

)
(−yφ (y)) dy (6.34c)

A first integration of the first term in (6.34c) yields:

+∞∫
yα

φ (y)dy = 1− Φ(yα) (6.35)

where Φ(·) is the CDF of the standard normal distribution. The second term in (6.34c) can
be integrated by parts by letting dV = −yφ (y) and U =

(
1
y −

1
t

)
. Since V = φ (y) and

dU = d
(
1
y −

1
t

)
. Then, it gives:

P
(
X̄ > α

)
= 1− Φ(yα) + φ (yα)

(
1

tα
− 1

yα

)
+

+∞∫
yα

φ (y) d
(
1

y
− 1

t

)
(6.36)

where the term
+∞∫
yα

φ (y) d
(
1
y −

1
t

)
is a small error that is assumed to be negligible.

Equation (6.36) can then be written:

P
(
X̄ > α

)
≈ 1− Φ(yα) + φ (yα)

(
1

tα
− 1

yα

)
(6.37)

Equation (6.37) is known as the Lugannani and Rice formula [82]. Where tα =
T0
√
nK′′

X (T0) and yα = sign (tα)
√
2n (T0α−KX (T0)), with sign (·) is the sign function,

T0 the solution of the equation K′
X (t)− α = 0 and α is a detection threshold.
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6.2.3 Hypothesis testing with the saddlepoint approximation

The two possible fault diagnosis hypotheses of H0 and H1 were introduced in (2.5). This
diagnosis is based on the Neyman-Pearson decision criterion and is given by:

Λ =
n∏
k=1

p (ỹk|H1)

p (ỹk|H0)

H0

≷
H1

η (6.38)

The likelihood ratio (6.38) can now be written in the form of (6.2):

X̄ =
1

n
log (Λ) (6.39a)

=
1

n

n∑
k=1

log
(
p (ỹk|H1)

p (ỹk|H0)

)
(6.39b)

By substituting the variable ỹk by X̄, the false alarm and missed detection probabilities
defined in (2.8) and (2.9) can be written as:

Pfa = P
(
X̄ > α|H0

)
(6.40)

Pmd = P
(
X̄ < α|H1

)
(6.41)

where the threshold α is equal to

α =
1

n
log (η) (6.42)

Note that the threshold parameter α will not be kept constant at all times to enforce a
constant maximum false alarm probability, as is often the case when the Neyman-Pearson
criterion is used. As later shown in Section 6.3, the threshold will be selected and optimized
at each time from a range of candidate thresholds. This will allow for the calculation of the
false alarm and missed detection probabilities using an analytical formula, by exploiting the
properties of the log likelihood ratio formulation.

In (6.39), the process X̄ is written in the form:

X̄ =
1

n

n∑
k=1

Xk (6.43)

X̄ is a complex mixture of densities. Its law cannot be analytically expressed. The samples
Xk are independent but not identically distributed because they are computed at each time
step k and the mean will vary in the presence of sensor faults. This process used to compute
the cumulant generating function is presented in Section 6.2.4.

In the Gaussian case, with p (ỹk|H0) = N
(
µ0k, σ0

2
k

)
and p (ỹk|H1) = N

(
µ1k, σ1

2
k

)
, Xk is

given by:

Xk = log
(
σ0k
σ1k

)
+

1

2σ02k
(ỹk − µ0k)

2 − 1

2σ12k
(ỹk − µ1k)

2 (6.44)
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This expression can be rewritten as:

Xk = ak(ỹk)
2 + bkỹk + ck (6.45)

where ak, bk and ck are the polynomial coefficients given by:

ak =
1

2σ12k
− 1

2σ02k

bk =
µ0k
σ02k
− µ1k
σ12k

ck = log
(
σ1k
σ0k

)
+

µ1
2
k

2σ12k
−

µ0
2
k

2σ02k

(6.46a)

(6.46b)

(6.46c)

6.2.4 Analytical expression of the false alarm probability

The false alarm occurs under hypothesis H0. It is assumed that ỹk follows the Gaussian law
p (ỹk|H0). The corresponding cumulant generating function is:

KXk
(t|H0) = log

(
E
[
etXk |H0

])
(6.47a)

= log
(∫

et
(
akỹ

2
k+bkỹk+ck

)
p (ỹk|H0)dỹk

)
(6.47b)

The last expression can be expanded using straightforward calculations to:

KXk
(t|H0) = −

1

2σ02k
µ0

2
k + ckt+

(
µ0k + bkσ0

2
kt
)2

σ02k (2− 4akt)
− 1

2
log
(
1− 2akσ0

2
kt
)

(6.48)

From Proposition 2, the mean’s cumulant generating function K̄0 (t) is given by:

K̄0 (t) =
1

n

n∑
k=1

KXk
(t|H0) (6.49)

where K̄0 (t) is defined if and only if,

max
ak<0

1

2akσ0
2
k

< t < min
ak>0

1

2akσ0
2
k

(6.50)

In this interval, the equation K̄′
0 (t)− α = 0 admits a solution T0.

The false alarm probability is given by:

Pfa = P
(
X̄ > α|H0

)
(6.51)

where P
(
X̄ > α|H0

)
is approximated by (6.37).

Pfa ≈ 1− Φ(y0) + φ (y0)

(
1

t0
− 1

y0

)
(6.52)

where t0 = T0
√
nK̄′′

0 (T0) and y0 = sign (t0)
√
2n
(
T0α− K̄0 (T0)

)
.
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6.2.5 Analytical expression of the missed detection probability

A missed detection occurs under hypothesis H1. It is assumed that ỹk follows the Gaussian
law p (ỹk|H1). The corresponding cumulant generating function is:

KXk
(t|H1) = log

(
E
[
etXk |H1

])
(6.53a)

= log
(∫

et
(
akỹ

2
k+bkỹk+ck

)
p (ỹk|H1)dỹk

)
(6.53b)

The last expression can be expanded using straightforward calculations to:

KXk
(t|H1) = −

1

2σ12k
µ1

2
k + ckt+

(
µ1k + bkσ1

2
kt
)2

σ12k (2− 4akt)
− 1

2
log
(
1− 2akσ1

2
kt
)

(6.54)

From Proposition 2, the mean’s cumulant generating function K̄1 (t) is then given by:

K̄1 (t) =
1

n

n∑
k=1

KXk
(t|H1) (6.55)

where K̄1 (t) is defined if and only if,

max
ak<0

1

2akσ1
2
k

< t < min
ak>0

1

2akσ1
2
k

(6.56)

In this interval, the equation K̄′
1 (t)− α = 0 admits a solution T1.

The missed detection probability is given by:

Pmd = 1− Pd = 1− P
(
X̄ > α|H1

)
(6.57)

where Pd denotes the detection probability. Finally, the missed detection probability us-
ing (6.37) is given by:

Pmd ≈ Φ(y1)− φ (y1)
(
1

t1
− 1

y1

)
(6.58)

where t1 = T1
√
nK̄′′

1 (T1) and y1 = sign (t1)
√

2n
(
T1α− K̄1 (T1)

)
.

6.3 formulation of the adaptive jump-markov regularized particle
filter

The stochastic process model of the AJMRPF for additive actuator and sensor fault is given
by 4.5. The AJMRPF introduced in this chapter is only formulated for sensor faults.

Unlike the case of JMRPF, the prediction step of the AJMRPF also updates the transition
probability matrix. The formula of the new transition probability matrix is given by (6.1). In
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this equation, the transition probabilities depend on the false alarm and the missed detection
probabilities. In Section 6.2, it has been shown that these probabilities can be accurately
computed with a number of samples n ≥ 3. Then the formula given by (6.52) is used here to
evaluate the false alarm probability of switching a particle from a nominal mode m(0) to a
faulty mode m(1). In the same way, the formula given by (6.58) is used here to evaluate the
missed detection probability of switching a particle from a faulty mode m(1) to a nominal
mode m(0). However, these two formula are computed for given means µ0 and µ1. The JMRPF
and application studied so far focused on change in mean, the variance of the H1 hypothesis
is then assumed to be the same as the variance of the H0 hypothesis. Then, in this section
σ = σ0 = σ1.

6.3.1 Means of the faults hypotheses

It is straightforward that µ0 represents the mean of the nominal mode distribution, which
is equal to 0. The mean of the fault mode distribution µ1, is more complex to compute.
Indeed, the fault distribution is not the same depending on which mode a particle is. For
example, if a particle is in mode m(0) then the alternate mode m(1) has a mean µ1 given
by (4.14) for an actuator fault or by (4.16) for a sensor fault, which corresponds to the point
where the particle will be placed if it jumps to m(1). By doing this, what is evaluated is the
false alarm between the current nominal mode distribution and the potential fault mode
distribution where the sentinel particle will be sent if it switches to mode m(1). However, if
a particle is in mode m(1), then the mean µ1 is given by the current estimate of the fault by
the particle in the faulty mode. Then, what is evaluated in this case, is the missed detection
probability between the current distribution of the particles in mode m(1), and the nominal
distribution where the particle will be sent if it switches to mode m(0). In this situation,
three means must be considered. First, the mean µ0 that correspond to the mean associated
with the hypothesis H0 that is the same for the computation of the false alarm and missed
detection probabilities. And then, the means µ1|0 and µ1|1 that correspond respectively to the
hypothesis H1 of the false alarm probability and the hypothesis H1 of the missed detection
probability. These different means are given by:

µ0k = 0 (6.59)

and

µ1k =

{
µ1|0kfor the transition tom(1)

µ1|1kfor the transition tom(0)
(6.60)

where µ1|0k and µ1|1k are given by:

µ1|0k =
∑

i∈I
m(0)

w0
i
k−1∆f

i
k (6.61a)

µ1|1k =
∑

i∈I
m(1)

w1
i
k−1fik|k−1 (6.61b)
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where Im(0) and Im(1) are the ensembles of index of particles of state fk|k−1 that are respectively
in mode m(0) or in mode m(1). The weights w0

i
k−1 and w1

i
k−1 are given by:

w0
i
k−1 =

wik−1∑
j∈I

m(0)

wjk−1

, ∀i ∈ Im(0) (6.62a)

w1
i
k−1 =

wik−1∑
j∈I

m(1)

wjk−1

, ∀i ∈ Im(1) (6.62b)

The computation of the means µ1|0k and µ1|1k are described in Algorithm 6.1.

Algorithm 6.1 Computation of the mean µ1|0k and µ1|1k for the prediction step of the
adaptive jump-Markov regularized particle filter
Function meansH1(µ1|0k, µ1|1k, f1:Nk|k−1, ∆f

1:N
k , w1:N

k−1, m1:N
k )

for each i ∈ [1, N ] do
if mi

k = m(0) then
w0

i
k−1 ←

wi
k−1∑

j∈I
m(0)

wj
k−1

//See (6.62a)

w1
i
k−1 ← 0

if mi
k = m(1) then
w1

i
k−1 ←

wi
k−1∑

j∈I
m(1)

wj
k−1

//See (6.62b)

w0
i
k−1 ← 0

µ1|0k ←
∑

i∈I
m(0)

w0
i
k−1∆f

i
k //See (6.61a)

µ1|1k ←
∑

i∈I
m(1)

w1
i
k−1fik|k−1 //See (6.61b)

6.3.2 Transition probability matrix update

To compute the transition probability matrix, the false alarm and missed detection probabil-
ities using the means of the H1 hypotheses given by (6.61a) and (6.61b) must be computed
first. This is performed by using the analytical expression of the false alarm and missed
detection probability described in Section 6.2.4 and 6.2.5. The function probabilities aims
to compute the false alarm and missed detection probability used to update the transition
probability matrix, it is detail in Algorithm 6.2, where µ01:n, µ11:n, and σ1:n are static
variables.

In Algorithm 6.2, the function:



6.3 formulation of the adaptive jump-markov regularized particle filter 155

Algorithm 6.2 Detail of the function probabilities for the update of the transition
probability matrix
Function probabilities(Pfa

opt, Pmdopt, µ1, σ, n)
if n ≥ k then

n← k

µ0n ← 0 //See (6.59)
µ1n ← µ1
σn ← σ
polynomial(a1:n, b1:n, c1:n, µ01:n, σ1:n, µ11:n, n)
sampling(α1:nα, µ01:n, µ11:n, a1:n, b1:n, c1:n) //See Algorithm 6.4
for each j ∈ {0, 1} do

for each i ∈ [1, nα] do
if a1:n = 0 then

tinit ← 0
else

tinit ← min
{

1
2a1:nσ2

1:n

}
+ ε //ε is a small number to ensure (6.50) and (6.56)

newtonRaphson(Tj, K̄′
j (t)−αi, K̄′′

j (t), tinit) //With K̄′
j (t) and K̄′′

j (t) updated
tj ← Tj

√
nK̄′′

j (Tj)

yj ← sign (tj)
√

2n
(
Tjαi − K̄j (Tj)

)
P ij ← Φ(yj)− φ (yj)

(
1
tj
− 1

yj

)
roc(Pfa

opt, Pmdopt, P 1:nα
0 , 1− P 1:nα

1 )
µ0n−1 ← µ0n //Saving the value of µ0
µ1n−1 ← µ1n //Saving the value of µ1
σn−1 ← σn //Saving the value of σ

• polynomial aims to compute the last n coefficients a, b and c using (6.46);

• newtonRaphson is the function that perform the Newton-Raphson method [83] to
approximate the root of a function f (t), where the first parameter is the output, the
second is the function, the third is the function derivative and finally the fourth is the
initial guess;

• sampling is used to provide nα different thresholds α, it is described in Algorithm 6.4;

• roc aims to obtain the optimal false alarm and missed detection probabilities based
on an optimization criterion, it is described in Algorithm 6.5.

Using the false alarm probability and the missed detection probability provided by
Algorithm 6.2 the transition probability matrix can be updated. The update of the transition
probability matrix is performed by the updateΠ function. This function is described in
Algorithm 6.3.
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Algorithm 6.3 Detail of the function updateΠ of the adaptive jump-Markov regularized
particle filter
Function updateΠ(Πk, µ1|0k, µ1|1k, σk)

probabilities(Pfa
opt, ∅, µ1|0k, σk) //See Algorithm 6.2

probabilities(∅, Pmdopt, µ1|1k, σk)
π00k ← φfa

(
Pfa

opt
)

//See (6.1)
π10k ← 1− φfa

(
Pfa

opt
)

π11k ← φmd
(
Pmd

opt
)

π01k ← 1− φmd
(
Pmd

opt
)

6.3.2.1 Threshold sampling

To obtain the best trade-off between the false alarm and missed detection probabilities,
multiple values must be tested and therefore multiple values of threshold α must be defined.
To do so, a sample of nα threshold values is computed over an interval. From (6.43) and (6.45),
X̄ can be rewritten as:

X̄ (ỹ1:n) =
1

n

n∑
k=1

(
akỹ

2
k + bkỹk + ck

)
(6.63)

It is clear that a trade-off between the false alarm and the missed detection probability is
obtained for n = 1 with Γ ∈ [µ0, µ1], and this implies Pfa ∈ [0, 0.5] and Pmd ∈ [0, 0.5].

Then the interval [µ0, µ1] is a conservative interval of the solution of an optimal trade-off.
Transposed to the state space of the threshold α, since (6.63) is a monotonically increasing
function ∀ỹ1:n ≥ 0, and since µ0 = 0 and µ0 ≤ µ1, it gives:[

X̄ (µ01:n) , X̄ (µ11:n)
]
= [αmin, αmax] (6.64)

Equation (6.64) is then used to determine an interval where the threshold α will be allowed
to vary. Then for a given number of samples nα the sample step is given by:

∆α =
(αmax − αmin)

nα
(6.65)

And then the samples are given by:

α1:nα = [αmin : ∆α : αmax] (6.66)

The sampling of the threshold α is described in Algorithm 6.4.
However, having multiple α will provide multiple Pfa and Pmd, an optimal one must be

selected according to a criterion to be able to compute the transition probability matrix.
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Algorithm 6.4 Detail of the function sampling used in Algorithm 6.2
Function sampling(α1:nα, µ01:n, µ11:n, a1:n, b1:n, c1:n)

αmin ← 1
n

n∑
k=1

(
akµ0k

2 + bkµ0k + ck
)

//See (6.63)

αmax ← 1
n

n∑
k=1

(
akµ1k

2 + bkµ1k + ck
)

∆α← (αmax−αmin)
nα

//See (6.64)
α1 ← αmin
for each j ∈ [2, nα] do

αj ← αj−1 +∆α

6.3.2.2 Optimization Criterion

The false alarm and missed detection probabilities given by (2.8) and (2.9) depend on a
threshold α. This threshold is used to achieve a trade-off between the Pfa and the Pmd. The
trade-off is optimal given a criterion. Multiple criterion exist in the literature, the one used
here is the ROC curve described in Section 2.4.2. The criterion selected for the formulation
of the method is the optimal point given by (2.15). The false alarm and missed detection
probabilities that solve (2.15) are denoted Pfa

opt and Pmdopt. Then the threshold associated
with this couple is denoted αopt. Note that a weighted cost function could also have been
used, but in this formulation, false alarm and missed detection probability are given equal
weights.

The computation ROC curve criterion is described in Algorithm 6.5.

Algorithm 6.5 Detail of the function roc used in Algorithm 6.2
Function roc(Pfa

opt, Pmdopt, Pfa
1:nα, Pmd1:nα)

minidx ← 1 //Initialization
minroc ←∞
for each i ∈ [1, nα] do //Find the min of (2.15)

if
√(

Pmd
i
)2

+
(
Pfa

i
)2
< minroc then

minroc ←
√(

Pmd
i
)2

+
(
Pfa

i
)2

minidx ← i

Pfa
opt ← Pfa

minidx

Pmd
opt ← Pmd

minidx

The prediction step is described in Algorithm 6.6.
The other step of the AJMRPF can be the same of the JMRPF from Chapter 4 or the

RJMRPF from Chapter 5 depending on the needs.
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Algorithm 6.6 Prediction step of the adaptive jump-Markov regularized particle filter
Function adaptivePredict(x1:N

k|k−1, k, w1:N
k−1, x1:N

k−1, m1:N
k , uk, yk, Rk)

for each i ∈ [1, N ] do
ηik ∼ N (0, Qk)
xik|k−1 ← fk

(
xik−1,uk

)
+ ηik //See (4.10)

∆fs
i
k ← yk − hk

(
xik|k−1

)
//See (4.16)

for each j ∈ [1, nfs ] do
σs
j
k ←

√
Rj,j
k

meansH1(µjs10k, µ
j
s11k, fs1:N,jk|k−1, ∆fs

1:N,j
k , w1:N

k−1, ms
1:N,j
k ) //See Algorithm 6.1

updateΠ(Πj
k, µ

j
s10k, µ

j
s11k, σs

j
k)

for each i ∈ [1, N ] do
adaptiveJump(fsi,jk|k−1, ms

i,j
k , ∆fs

i,j
k , Πnfa+j

k )

6.4 comparative numerical simulation analysis

This section aims to provide a demonstration of the AJMRPF in the presence of sensor faults
with abrupt and incipient faults on a fixed-wing UAV. For the sake of brevity, only the
longitudinal system is considered.

Since only the addition of the adaptive probability matrix is assessed in this section, the
AJMRPF is compared to a JMRPF. Note that a ARJMRPF could have been compared to a
RJMRPF, the results are less significant, and the improvements brought by the adaptive
transition probability matrix are more blurred. The use of the ARJMRPF is however relevant
since the AJMRPF and the RJMRPF do not solve the same issues and using the ARJMRPF
solve the same issues of the AJMRPF and the RJMRPF without introducing new ones.

Given that all algorithms under comparison are particle filters, a non-linear system is
used. The UAV has an initial longitudinal velocity of 40 m s−1, an initial altitude of 500 m,
an initial null flight path angle and is initiated in a straight cruise flight condition. The
control and guidance are then performed as described in Section 3.7 and Section 3.8 for the
longitudinal system around the trim point of the initial flight condition. The desired altitude
is set to 500 m and the desired velocity to 40 m s−1.
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To illustrate an abrupt sensor fault on the pitch measurement, a fault signal is added to
the measurement equation. This true fault model is unknown to the filter. The nonlinear
longitudinal model used to compute the true state is given by:

ż = F (z,u)

y = H (z) +


0

0

0

fθ

0

+ ν

(6.67a)

(6.67b)

where fθ denotes the pitch measurement fault and where the measurement noise ν is a zero
mean Gaussian noise given by:

νbaro,−pd
νaccel,u

νaccel,w

νgyro,θ

νgyro,q

 (6.68)

with standard deviations respectively given by σbaro,−pd = 1 m, σaccel,u = 1 m s−1, σaccel,w =
1 m s−1, σgyro,θ = 0.01 rad and σgyro,q = 0.002 rad s−1. The state vector z is given by:

z =


pd

u

w

θ

q

 , (6.69)

the input vector u by:

u =

[
δe

δt

]
(6.70)

the non-linear function F (·) by (3.8) and the observation function H (·) is given by:

H (z) =


−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 z (6.71)
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Since the fault is only on the measurements, the evolution and control input matrices for the
process models are the same as the ones given by (6.67) for the state vector z. The extended
vector x is given by:

x =

[
z
fθ

]
. (6.72)

The fault is assumed to have zero order dynamics. The process noise is a white Gaussian
noise with a standard deviation σx given by:

σx =



1 m
0.1 m s−1

0.1 m s−1

0.02 rad
0.002 rad s−1

0.002 rad


(6.73)

The measurement noise of the process model is 1.5 times the measurements noise of (6.67);
The transition probability matrix of the JMRPF is given by:

Π =

[
0.99 0.01

0.01 0.99

]
(6.74)

The standard deviation used to compute the initial covariance matrix P0 for all filters,
denoted σx0 is given by:

σx0 =



1 m
1 m s−1

1 m s−1

0.005 rad
0.002 rad s−1

0.005 rad


(6.75)

The function φfa (·) and φmd (·) for the transition probability matrix of the AJMRPF are
respectively given by:

φfa (x) =
0.5

e20(0.1−x) + 1
+ 0.5, (6.76a)

φmd (x) = 1− 0.5

e20(0.1−x) + 1
. (6.76b)

And the value of n for the saddlepoint approximation is set to 3.
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Figure 6.3: Transition probabilities functions used by the AJMRPF

The transition probability matrix and the false alarm and missed detection are shown in
Figure 6.3.

The fault scenario considered lasts 50 s. At 10 s, a first fault occurs on the pitch measure-
ment. It is an abrupt fault with an amplitude of 10°. This fault is deactivated at 20 s. At 30 s,
a second fault occurs on the pitch measurement. It is an incipient fault with linear dynamics
that lasts 10 s and reaches an amplitude of 10°. The scenario is illustrated in Figure 6.4.

0

5

10

0 10 20 30 40 50

Fa
ul

t
(°

)

Time (s)

fθ

Figure 6.4: Fault scenario on the pitch measurement used to compare the AJMRPF to the JMRPF.
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Finally, the number of particles is set to 1000 and the resampling threshold Γrspl is set to
0.5 and the bandwidth factor h of the Epanechnikov kernel is set 0.2817. The number of
simulations performed is 100 with a time step of 0.05 s.

The first results illustrated in Figure 6.5 are the estimates of the AJMRPF and the JMRPF
by taking the median results from 100 simulations. The selection of the median result is
detailed in Appendix D.
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Figure 6.5: Median result of the fault states of the UAV under additive sensor fault estimated by a
AJMRPF and a JMRPF. Median results based on 100 simulations.

In Figure 6.5, during the first 10 s while there is no fault both JMRPF and the RJMRPF
estimate the fault free mode accurately as already expected and observed from previous
simulation of the JMRPF. When the first abrupt fault occurs at 10 s, both the JMRPF and
the RJMRPF estimate the fault comparably in terms of convergence time and accuracy. The
AJMRPF further improves the already good result of the JMRPF for this kind of faults. The
deactivation of the fault at 20 s is also efficiently handled by both filters, and the situation
of the next 10 s is the same as the first 10. Similar results for both filters is also observed
on the incipient fault on this simulation. The deactivation of the fault at 40 second is again
efficiently handled by both filters, and the situation of the next 10 s is the same as the first
10 s.

The false alarm and missed detection probabilities used by the AJMRPF, are illustrated in
Figure 6.6.

In Figure 6.6, the false alarm and missed detection probabilities are consistent with the
actual fault mode. Indeed, when no fault is active, the Pfa and Pmd are close to 0.5 with a
Pfa around 0.3 and a Pmd around 0.4. When a fault is active, both Pfa and Pmd converge to
0. For the abrupt fault, this takes in one time step, and for the incipient fault it reaches zero
in about 1.9 s.

The Figure 6.7, presents the components of the transition probability matrix, which depend
on the Pfa and Pmd.
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Figure 6.6: Median result of the false alarm and missed detection probabilities of the AJMRPF
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Figure 6.7: Median result of the transition probabilities of the AJMRPF

As expected from Figure 6.6, the Figure 6.7 shows that the evolution of the transition
probability matrix is consistent with the missed detection and false alarm rates.

The behaviour of the median results of the AJMRPF and the JMRPF is illustrated in detail
in Figure 6.8, by showing the particles positions with their associated weights.
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(a) Estimation of the fault state with a AJMRPF.
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(b) Estimation of the fault state with a JMRPF.

Figure 6.8: The 20 most weighted particles of every second of the median result of the fault states
of the UAV under additive sensor fault estimated by a AJMRPF and a JMRPF. Median
results based on 100 simulations.

In Figure 6.8, the major difference between the AJMRPF and the JMRPF is the weight of the
sentinel particles at the activation of the abrupt fault. Indeed, the JMRPF has high weights
on its sentinel particles while the weights of the sentinel particles of the AJMRPF are not
significantly different from other particles. This, is due to the fact that a lot more particles
are used by the AJMRPF when the abrupt fault occurs since the transition probability matrix
is almost at 0.5 for π10 at this time.

The median results of the state vector z estimated by the AJMRPF and the JMRPF are
shown in Figure 6.9.
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Figure 6.9: Median result of the longitudinal states of the UAV under additive sensor fault estimated
by a AJMRPF and a JMRPF. Median results based on 100 simulations.



166 adaptive jump-markov regularized particle filter

In Figure 6.9 low state estimation errors are obtained with the AJMRPF or the JMRPF are
visible, the UAV remains in a straight level flight condition as required.

The median results for the control inputs of the AJMRPF and JMRPF are shown in
Figure 6.10.
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Figure 6.10: Inputs of the median result of the UAV under additive sensor fault estimated by a
AJMRPF, and a JMRPF. Median results based on 100 simulations.

In Figure 6.10, the control inputs are consistent with the trajectories obtained using both
filters.

The RMSE of the fault state fθ for the AJMRPF and the JMRPF estimates are shown in
Figure 6.11.
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Figure 6.11: RMSE of the fault states of the UAV under additive sensor fault estimated by a AJMRPF,
and a JMRPF. Results are based on 100 simulations.

In Figure 6.11 the RMSE of the AJMRPF for the incipient fault is lower than RMSE of the
JMRPF. This is confirmed by the mean RMSE RMSE of fθ equal to 0.27° for the AJMRPF
and 0.38° for the JMRPF. This shows that the AJMRPF does not only adequately reset the
transition probability matrix, but also improves the results compared to the JMRPF.

The RMSE of the states are shown in Figure 6.12 and the AJMRPF outperforms the JMRPF
in terms of state estimation accuracy
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Figure 6.12: RMSE of the longitudinal states of the UAV under additive sensor fault estimated by a
AJMRPF, and a JMRPF. Results are based on 100 simulations.

Table 6.1 gives the RMSE values at key time steps and the RMSE which is defined in
Appendix D.
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State Time (s) RMSE
10.05 s 20.05 s 30.05 s 40.05 s

AJMRPF

RMSE pd (m) 0.216 0.225 0.208 0.425 0.254

RMSE u (m s−1) 0.155 0.156 0.128 0.163 0.152

RMSE w (m s−1) 0.029 0.036 0.028 0.030 0.033

RMSE θ (°) 0.053 0.190 0.061 0.687 0.205

RMSE q (° s−1) 0.096 0.100 0.086 0.094 0.098

RMSE fθ (°) 0.277 10.017 0.067 9.235 0.268

JMRPF

RMSE pd (m) 0.333 0.258 0.180 0.708 0.328

RMSE u (m s−1) 0.271 0.166 0.132 0.217 0.167

RMSE w (m s−1) 0.090 0.033 0.036 0.032 0.033

RMSE θ (°) 0.102 0.284 0.061 1.055 0.325

RMSE q (° s−1) 0.192 0.092 0.102 0.106 0.099

RMSE fθ (°) 1.049 10.037 0.058 8.848 0.381

Table 6.1: RMSE values of the AJMRPF and the JMRPF estimates at key time steps, and RMSE.

6.5 chapter summary

This chapter introduced a new way to update the transition probability matrix in real
time, using estimated values of the false alarm and missed detection probabilities. This
matrix was used in the previously introduced JMRPF and RJMRPF filters in Chapters 4 and 5,
respectively. Using this new transition probability matrix configuration, a new filter named
the AJMRPF or the ARJMRPF depending on the benchmark filter to be adapted, was shown
to achieve sound estimation performance results in Section 6.4.

The idea behind the adaptive transition probability matrix was to update it using the
false alarm and missed detection probabilities, which were computed using the saddlepoint
approximation. This approximation allows one to consider multiple previous measurements
instead of only relying on the current measurement, which leads to improved estimation
accuracy. The detail of this computation and the formulation of the AJMRPF / ARJMRPF
were given in Section 6.2 and Section 6.3 respectively. 100 simulations were performed
in Section 6.4 have shown sound state and fault estimation results with the AJMRPF by
exploiting the ability to adapt the transition probability matrix to the faulty or fault free
modes. Similar and even higher performances were shown for the AJMRPF compared to the
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JMRPF depending on the type of faults considered. The proposed approach also allows for real
time knowledge of the false alarm and missed detection probabilities (research question 6).
Morever, this method is easy to implement and requires a little of computation demand
(research question 7).



7
C O N C L U S I O N S A N D F U T U R E WO R K

The estimation of faults is an essential feature for fixed-wing UAV with no hardware redun-
dancies, and required to be fault-tolerant. This thesis entitled “Multimode navigation for
degraded fixed wing unmanned aerial vehicle operation under sensor and actuator faults”
has investigated new methods for the estimation of actuator and sensor faults. Using a
realistic representation of the fixed-wing UAV and its sensors, challenging fault scenarios
including ambiguities and lack of knowledge of the fault models have been studied. It has been
proven that estimation methods for such problems are required to handle multimodalities
and the mismatch between true and assumes fault dynamics. A new method based on a
RPF and a JMS called a JMRPF was introduced in Chapter 4. This method was designed
and shown to successfully detect and estimate ambiguous sensor faults as well as faults
with unknown amplitude. An enhanced version of it was then introduced and developed to
deal with unknown fault dynamics and ambiguous actuator and sensor faults in Chapter 5
and named RJMRPF. Finally, the JMRPF — and the RJMRPF — was further enhanced by
updating the transition probably matrix of the JMS in real-time. This last modification of the
JMRPF named AJMRPF was introduced in Chapter 6. All these methods were evaluated on
longitudinal linear and non-linear models of a fixed-wing UAV, with different fault scenarios
and compared to different estimation algorithms. Significant improvement have been shown
with the new methods introduced for the estimation of both sensor and actuator faults and
the staes of the UAV. The accurate and fast estimation performed by the JMRPF and its
enhanced versions have improved flight mission safety in the scenario considered, compared
to other methods by maintaining the UAV on a trajectory closer to the one desired. In terms
of impact, the proposed estimation algorithms have been shown to improve fault tolerance
to a wise rang eof conditions from single faults to an ambiguous faults and unknown fault
dynamics, with the ability to monitor false alarm and missed detection rates. This is in line
with increasing requirements in mission integrity for increasingly autonomous UAV.

7.1 research questions

The research questions answered in this thesis are the following:

1. Does a JMS with a RPF increase accuracy and speed up convergence when abrupt
additive faults occur, compared to a stand-alone RPF?

171
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The use of a JMS with a RPF as presented in Chapter 4 was shown to be more efficient
— or a least as efficient depending on the fault and filter parameters — as a stand-alone
RPF in terms of accuracy, robustness and convergence time. This has been shown in
Section 5.5. The new way to implement a JMS in a particle filter introduced in this
thesis, provides better fault and state estimation results than a IMM-KF in the linear
Gaussian case when abrupt additive faults are under consideration. This was shown in
Section 4.5.

2. Is it possible to distinguish and estimate ambiguous sensor faults using only a JMS as
process model of a particle filter?
In Chapter 4, the ambiguous sensor fault case was investigated, and it has been shown
that the JMRPF is able to accurately and rapidly estimate and distinguish between
ambiguous sensor faults.

3. Can an abrupt additive fault, with a large amplitude with respect to the process noise,
be accurately estimated in a short time period?
The JMRPF has shown an outstanding ability to estimate abrupt fault without the need
to artificially inflate the process noise. This was particularly highlighted in Section 5.5,
where the JMRPF was successfully used to estimate abrupt faults of multiple magnitudes
even with a small process noise for such abrupt changes. Indeed, a RPF with the same
parameters — but naturally without JMS — was unable to converge rapidly to the
fault.

4. Can faults with different dynamics than the ones used in the process model be estimated
accurately?
In Chapter 5, it has been emphasized that the JMRPF introduced in Chapter 4 cannot
estimate faults accurately when the true fault dynamics do not match the ones assumes
by the filter. This issue has been overcome by improving its particles placement using
a Kalman update. This enhanced version of the JMRPF called the RJMRPF was shown
to accurately estimate faults with a very different dynamics to the ones used by its
process model, as shown in Section 5.5.1.

5. In the case of ambiguous actuator and sensor faults, is it possible to distinguish and
estimate them?
This case was investigated in Chapter 5, and was also overcome using the RJMRPF. The
results shown in Section 5.5.2, show better state and fault estimation results compared
to the RRPF.

6. Can the false alarm and missed detection probability be computed in real time so that
the transition probability matrix of the JMS process model can be adjusted?
A new way to compute and update the transition probability matrix has been imple-
mented in the JMRPF to take into consideration the false alarm and missed detection
probabilities. This new filter was introduced in Chapter 6 and named the AJMRPF.
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It was shown to be more efficient than the JMRPF by computing and updating its
probability transition matrix in real-time rather than using a user defined constant
transition probability matrix. Using an adaptive transition probability matrix, more
optimal mode transitions were obtained by relating them to the false alarm and missed
detection probabilities, which were computed using an analytical saddlepoint approxi-
mation method. The improved state and fault results of the AJMRPF compared to the
JMRPF are shown in Section 6.4.

7. Can the proposed solution for the previous questions be used for real-time embedded
applications?
The JMRPF and all its enhanced version are computationally efficient compared to other
filter with similar ability. Indeed, using only one model to perform fault estimation,
and using only a small number of particles — also known as sentinel particles — to
test different hypothesis instead of using a whole different particle filter as a IMM
with particle filters would do, participate in this computational effectiveness. The
computational cost of a particle filter is mainly due to the use of hundreds or thousands
of particles. The filters introduced in this thesis do not require to increase the number of
particles and the added computational cost of the improvements for the fault estimation
is negligible compared to overall computational cost of the RPF.

7.2 future work

Several future research directions and challenges can be drawn from this work.
On the application side, a test on a 6 degree of freedom fixed-wing UAV considering more

than one or two potential faulty actuators or sensors might raise new issues. More complex
trajectories should also be tested. If it is validated by numerical results, then an experimental
test could be considered to validate the real-time capability of the algorithms and also to
validate the use of a process model that does not fully match the true model of the systems.

On the theoretical side, even though challenging faults have been considered in this thesis,
some scenarios have not been considered such as the cases of an actuator or sensor failure
or efficiency loss. This would then lead to further investigations of the reconfiguration that
was not done in this thesis where estimating the fault was sufficient to preserve the UAV
flight safety. A more in depth analysis of the impact of faults on mission integrity could also
be performed by accounting for the fact that actuator faults reduce the flight envelope. A
more optimal fault recovery from a control system viewpoint can be developed by adapting
controller gains depending on the fault mode, to prioritise robustness when the fault is
present and to prioritise trajectory tracking performance in the fault free case. Moreover,
in this thesis, only change in the mean and additive faults have been considered in the
numerical simulation, when the presented saddlepoint approximation theory clearly extends
to changes in the variance. A modified JMRPF can therefore be designed to account for
changes in variance and for multiplicative faults.
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Future research directions can also be defined for the GNC module to provide more
awareness about the faulty situation to all the GNC modules in order to adapt the behaviour
of the UAV to the fault and state estimation in real time.
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a.1 aerosonde unmanned aerial vehicle

Parameter Value Unit Long. Coeff. Value Lat. Coeff. Value

m 13.5 kg CL0 0.28 CY0 0.0
Jx 0.8244 kg m2 CD0 0.03 CYβ −0.98
Jy 1.135 kg m2 Cm0 −0.02338 CYp 0.0
Jz 1.759 kg m2 CLα 3.45 CYr 0.0
Jxz 0.1204 kg m2 CDα 0.30 CYδa 0.0
S 0.55 m2 Cmα −0.38 CYδr −0.17
b 2.8956 m CLq 0.0 Cl0 0.0
c 0.189 94 m CDq 0.0 Clβ −0.12

Sprop 0.2027 m2 Cmq −3.6 Clp −0.26
kmotor 80 CLδe

−0.36 Clr 0.14
kTP 0 CDδe

0.0 Clδa 0.08
kΩ 0 Cmδe

−0.5 Clδr 0.105
e 0.9 Cprop 1.0 Cn0 0.0

ρ500m 1.1680 kg m−3 M 50 Cnβ
0.25

α0 0.4712 Cnp 0.022
ε 0.1592 Cnr −0.35

CDp 0.0437 Cnδa
0.06

Cnδr
−0.032

Table A.1: Aerodynamics coefficients for the Aerosonde UAV from [67]
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a.2 state space model coefficients

Coefficients Formula

Xu
u∗ρS

m
(
CX0 + CXαα

∗ + CXδe
δ∗e
)
− ρSw∗CXα

2m +
ρScCXqu

∗q∗

4mVa∗
− ρSpropCpropu∗

m
Xw −q∗ + w∗ρS

m
(
CX0 + CXαα

∗ + CXδe
δ∗e
)
+

ρScCXqw
∗q∗

4mVa∗
+

ρSCXαu
∗

2m − ρSpropCpropw∗

m
Xq −w∗ +

ρVa∗SCXq c

4m

Xδe

ρVa∗2SCXδe
2m

Xδt
ρSpropCpropk2δ∗t

m
Zu q∗ + u∗ρS

m
(
CZ0 + CZαα

∗ + CZδe
δ∗e
)
− ρSCZαw

∗

2m +
u∗ρSCZq cq

∗

4mVa∗

Zw
w∗ρS

m
(
CZ0 + CZαα

∗ + CZδe
δ∗e
)
+

ρSCZαw
∗

2m +
ρw∗ScCZq q

∗

4mVa∗

Zq −u∗ + ρVa∗SCZq c

4m

Zδe
ρVa∗2SCZδe

2m
Mu

u∗ρSc
Jy

(
Cm0 + Cmαα

∗ + Cmδe
δ∗e
)
− ρScCmαw

∗

2Jy
+

ρSc2Cmq q
∗u∗

4JyVa∗

Mw
w∗ρSc
Jy

(
Cm0 + Cmαα

∗ + Cmδe
δ∗e
)
+ ρScCmαu

∗

2Jy
+

ρSc2Cmq q
∗w∗

4JyVa∗

Mq
ρVa∗Sc2Cmq

4Jy

Mδe

ρVa∗2ScCmδe
2Jy

Table A.2: Longitudinal state-space model coefficients from [67]
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Constant denotation Value Unit

P0 10 135 kg s−2 m−1

T0 288.15 K
L0 −0.0065 K m−1

gn 9.806 65 m s−2

R 8.314 459 8 kg m2 s−2 mol−1 K−1

M 0.028 964 4 kg mol−1

Table B.1: Constant value of the barometric formula [84]

Axis σGNSS (m) kGNSS
−1 (s) Ts (s)

North 0.21 1100 1.0

East 0.21 1100 1.0

Down 0.40 1100 1.0

Table B.2: GNSS receiver Gauss-Markov model noise parameters [67]
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F U L L S TAT E F E E D B AC K

Full state feedback can only be implementable if all states are controllable and observable
(if all state are not observable one can consider recreating a state or output feedback
stabilization). Let’s consider the controllable and observable system given by (3.43) and the
following full state feedback control law:

u = −Lz + lcyc, (C.1)

where yc is the desired output, and lc the gain associated with it and L =
[
l0 l1 . . . ln−1

]
the gain of the full state feedback. The new system with the full state feedback implemented
is then given by:

{ ż = (F− BL) z + Blcyc

y = Hz
(C.2a)
(C.2b)

Then, the full state feedback gain L changes the dynamics of the system by moving the poles
of the F matrix. To place the new poles of the system, a commonly used method is to use
the LQR method. The full state feedback representation in a block diagram is illustrated in
Figure C.1. In a real implementation of this regulator, the state that feeds the gain L is
obtained from sensors or observers or in a GNC loop from the navigation module.

Σ
+

L

lc − B Σ
+

+
1
s H

F

yż zyc

Figure C.1: Full state feedback block diagram
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c.1 linear quadratic regulator

The LQR method uses a cost function to compute the full state feedback gain L. For a
continuous time system, the cost function minimizes the following quadratic cost function:

J (u) =
∫ ∞

0

(
z>Qz + u>Ru + 2z>Nu

)
dt, (C.3)

where Q is a diagonal positive definite matrix of the weight attached to tracking performance,
and R is a diagonal positive definite matrix of the weight attached to the control effort.
A high coefficient in the matrix Q optimizes the performance of the state (response time)
associated with the line of Q whereas a high coefficient in R will minimize the control input.
The matrix N is positive definite, and it acts on the cross product of z and u. It is taken to
be 0 if the cross product optimization is not needed.

The full state feedback gain L is then:

L = R−1
(

B>S + N>
)
, (C.4)

where S is the solution to the associated Riccati equation:

F>S + SF− (SB + N)R−1
(

B>S + N>
)
+ Q = 0nz ,nz (C.5)

c.2 full state feedback with integrator effect

The full state feedback with integrator effect has the same structure as the full state feedback,
but an integral term is added to the error to track constant non-zero steady state error. Let
us consider the controllable and observable system given by (3.43). To minimize the error
between the desired output yc and the output of the state zj — which is the jth state of the
state vector z—, a new integrated error state zi is created:

żi = yc −Hzjz (C.6)

where Hzj is the row of the H matrix corresponding to the observability of the state zj . Then,

the new state vector is

[
z
zi

]
and the new state space representation is:



[
ż
żi

]
=

[
F 0nz ,ni

−Hzj 0ni,ni

][
z
zi

]
+

[
B

0ni,nu

]
u +

[
0nz ,nu

Ini,nu

]
yc

y =
[
H 0ny ,ni

] [z
zi

] (C.7a)

(C.7b)
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, and with a full state feedback gain it gives:

u = −L
[

z
zi

]
= −

[
Lz Lzi

] [z
zi

]
(C.8)

where:

Lz =
[
l0 l1 . . . ln−2

]
(C.9a)

Lzi =
[
ln−1

]
(C.9b)

The closed-loop state space representation with the full states’ feedback is:

˙[
z
zi

]
=

[
F− BLz −BLzi

−Hzj 0ni,ni

][
z
zi

]
+

[
0nz ,nu

Ini,nu

]
yc

y =
[
H 0ny ,ni

] [z
zi

] (C.10a)

(C.10b)

The full state feedback with integrator effect representation in the block diagram is illustrated
in Figure C.2. In a real implementation of this regulator the state that feed the gain Lz and
Hzj is obtained through sensors or observers or in a GNC loop from the navigation module.

Σ
−

Lz

Lzi − B Σ
+

+
1
s H

F

yż zyc 1
s

żi zi+

−Σ

Hzj

Figure C.2: Full state feedback with integrator effect block diagram
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d.1 median results

A median results in the simulations presented in this thesis is the bNmc/2 + 1/2c simulation
sorted according to a score, where Nmc is the total number of Mote Carlo performed. This
score aims to reflect the capacity of the simulation to estimate the faults. When there is only
one fault estimated in a simulation this score is given by the temporal mean of the fault
estimate error, which is given by:

εf =
1

Nk

Nk∑
k=1

√(
fk − f̂k

)2
(D.1)

where Nk denotes the total number of time step. Then each Monte Carlo performed is sorted
according to its εf value.

However, having multiple faults estimated per simulation, leads to the computation of
multiple εf value. To sort the simulation only one value must remain, and a mean or a sum
of these value cannot be performed since there are not necessarily in the same state space
and have been estimated with an identical noise. Then a standardization of this value is
performed, by subtract to εf its mean and dividing by its standard deviation respectively
given by:

µεf =
1

Nmc

Nmc∑
mc=1

εf
mc (D.2)

and

σεf =

√√√√ 1

Nmc

Nmc∑
mc=1

(εf
mc − µεf)

2 (D.3)

where the upperscript mc of a variable denote the variable associated with the mcth Mote
Carlo.

Then, after being normalized, a mean between the normalized score of each fault estimate
is performed and a global score of each simulation is obtained. This score is then used to
sort the simulation and then a median value can be obtained.
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d.2 root-mean-square error

The RMSE of the state variable x at time step k is given by:

RMSEx
k =

√√√√√ Nmc∑
mc=1

(
xmc
k − x̂mc

k

)2
Nmc

(D.4)

A mean RMSE denoted RMSE can be computed, and it is then given by:

RMSEx
=

1

Nk

Nk−1∑
k=0

RMSEx
k (D.5)



E
P RO B A B I L I T Y D E N S I T Y F U N C T I O N A P P ROX I M AT E D B Y
T H E L A P L AC E A P P ROX I M AT I O N

The following appendix can be applied for the saddlepoint approximation with n = 1.
The density pX(x) can be expressed in terms of the moment-generating function (MGF)

MX(t) using the inverse Fourier transform by:

pX(x) =
1

2π

+∞∫
−∞

e−itxMX (it) dt, (E.1)

with i2 = −1.
Since MX (t) = eKX(t), where KX (t) is the cumulant-generating function. Then it gives:

pX(x) =
1

2π

+∞∫
−∞

e−itxeKX(it) dt (E.2a)

=
1

2π

+∞∫
−∞

eKX(it)−itx dt (E.2b)

Let t′ = it, then it gives:

pX(x) =
1

2πi

+i∞∫
−i∞

eKX(t)−tx dt. (E.3)

From Cauchy’s theorem, the integral is the same over all paths that are parallel to the
imaginary axis and is also given by:

pX(x) =
1

2πi

τ+i∞∫
τ−i∞

eKX(t)−tx dt. (E.4)

Thus, there are no constraints to choose a value for τ over which the integration is
performed. This parameter is set to τ = TX , which is the saddlepoint since KX (t) − tx
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reaches a minimum at TX on the real axis and the modulus of the integrand of (E.4) reaches
a maximum at TX . The density is then given by:

pX(x) =
1

2πi

TX+i∞∫
TX−i∞

eKX(t)−tx dt. (E.5)

Since TX is the real root of K ′
X (t)−x = 0, when t is outside an immediate neighbourhood

of TX , the integrand (E.5) becomes negligible.
The 2nd order Taylor expansion of the function f (t) = KX (t)− tx around TX that verify

f ′ (TX) = K ′
X (TX)− x = 0 is given by:

f (t) ≈ f (TX) + f ′ (TX) (t− TX) +
f ′′ (TX)

2
(t− TX)2 (E.6a)

= KX (TX)− TXx+
(
K ′
X (TX)− x

)
(t− TX) +

K ′′
X (TX)

2
(t− TX)2. (E.6b)

Since K ′
X (TX)− x = 0, the function f (t) can be simplified to:

f (t) ≈ KX (TX)− TXx+
K ′′
X (TX)

2
(t− TX)2. (E.7)

Then (E.5) can be rewritten as:

pX(x) ≈
1

2πi

TX+i∞∫
TX−i∞

e(KX(TX)−TXx)+
K′′

X

(
TX

)
2

(t−TX)2 dt (E.8a)

=
1

2πi
lim

y→+∞

TX+iy∫
TX−iy

e(KX(TX)−TXx)+
K′′

X

(
TX

)
2

(t−TX)2 dt (E.8b)

=
1

2πi
e(KX(TX)−TXx) lim

y→+∞

TX+iy∫
TX−iy

e
K′′

X

(
TX

)
2 (t− TX)2 dt. (E.8c)

Let t = TX + iy, then it gives y = −i (t− TX). Then dy = −idt and (t−TX)2 = −y2
Then (E.8c) can be rewritten as:

pX(x) ≈
1

2π
eKX(TX)−TXx

+∞∫
−∞

e−
K′′

X

(
TX

)
2

y2 dy (E.9a)

= eKX(TX)−TXx

(
1√
2π

√
1

K ′′
X (TX)

) 1
√
2π
(√

1
K′′

X(TX)

) +∞∫
−∞

e

− 1
2

y2√
1

K′′
X

(
TX

)
2

dy

 .

(E.9b)
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Since 1
√
2π
(√

1
K′′

X(TX)

) +∞∫
−∞

e

− 1
2

y2√
1

K′′
X

(
TX

)
2

dy

 =

+∞∫
−∞

N
(
y; 0,

1

K ′′
X (TX)

)
dy = 1. (E.10)

Then (E.9b) can be rewritten as:

pX(x) ≈

√
1

2πK ′′
X (TX)

eKX(TX)−TXx. (E.11)
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R É S U M É E N F R A N Ç A I S

Les défaillances d’actionneurs ou de capteurs survenant dans un drone peuvent compromettre
l’intégrité de la mission. La mise en œuvre de méthodes de diagnostic de fautes est alors
nécessaire. Dans cette thèse, l’accent est mis sur l’estimation de fautes dues à des défaillances
simultanées de capteurs et d’actionneurs pour un drone à voilure fixe. Pour faire face à
certains scénarios complexes de fautes, tels que les fautes simultanées qui induisent une
ambiguïté sur les mesures qui se manifeste par la multimodalité de la densité conditionnelle,
un filtre particulaire régularisé de type jump-Markov (JMRPF) et des versions améliorées de
celui-ci sont présentées dans cette thèse.

Cette méthode est basée sur un filtre particulaire régularisé (RPF) qui approche la densité
conditionnelle par une mixture de noyaux et sur un système de Markov à sauts (JMS). La
stratégie de saut utilise un petit nombre de particules — appelées particules sentinelles —
qui permet de tester en continue l’hypothèse alternative en mode sans faute et en mode avec
faute.

Les résultats numériques sont obtenus en utilisant un modèle dynamique linéaire puis non
linéaire de la dynamique longitudinale d’un drone à voilure fixe. Les performances du JMRPF
sont comparées aux performances des filtres de Kalman à modèles multiples interactifs
(IMM-KF) et du RPF. Les performances du JMRPF montrent une nette amélioration de
terme de précision de l’estimation des fautes capteurs et actionneurs et des paramètres
cinématiques et en termes de robustesse et de vitesse de convergence par rapport aux autres
filtres. L’amélioration des performances par rapport aux autres filtres est plus marquée
lorsque l’amplitude des fautes augmente au cours du temps.

Une version améliorée du JMRPF, appelée filtre particulaire régularisé robuste à sauts
est également présentée et permet d’estimer rapidement et précisément les fautes sans
connaissance a priori de la dynamique des fautes. Enfin, une nouvelle approche pour calculer
une matrice de probabilité de transition adaptative est présentée en calculant les probabilités
de fausse alarme et de non-détection à l’aide de l’approximation du point-selle.

Les algorithmes de navigation proposés permettent à un drone d’atteindre son objectif de
suivi de trajectoire de manière autonome, avec une sécurité et une précision accrues.

Cette thèse tente de répondre aux questions de recherche suivantes :

1. Est-ce qu’un JMS combiné avec un RPF augmente la précision et accélère la vitesse de
convergence par rapport à un RPF en présence de fautes additives abruptes ?
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L’utilisation d’un JMS avec un RPF tel que présenté au Chapitre 4 s’est avérée plus
efficace — ou au moins aussi efficace selon les types de fautes et les paramètres de
réglage utilisés — que le RPF seul en termes de précision, de robustesse et de vitesse
de convergence. Cela a été illustré dans la Section 5.5. La nouvelle façon d’intégrer
un JMS dans un filtre particulaire fournit de meilleurs résultats d’estimation de fautes
et paramètres d’état qu’un IMM-KF dans le cas gaussien avec des fautes additives
abruptes.

2. Est-il possible de distinguer et d’estimer des fautes de capteurs en utilisant uniquement
un JMS comme modèle de prédiction d’un filtre particulaire ?
Dans le Chapitre 4, le cas de faute de capteurs a été étudié, et il a été montré que le
JMRPF est en mesure d’estimer avec précision et rapidité les différents types de fautes
capteurs.

3. Est-ce qu’une faute additive abrupte, de grande amplitude par rapport au bruit de
dynamique, peut être estimée avec précision dans un court laps de temps ?
Le JMRPF a démontré une capacité à estimer une faute abrupte sans avoir à augmenter
artificiellement le bruit de dynamique. Cela a été particulièrement souligné dans la
Section 5.5, où le JMRPF est utilisé avec succès pour estimer des fautes abruptes de
différentes amplitudes même avec un faible bruit de dynamique. En effet, un RPF avec
les mêmes paramètres de réglages n’a pas pu converger vers la faute.

4. Peut-on estimer des fautes avec des dynamiques différentes de celles utilisées dans le
modèle de prédiction et avec quelle précision ?
Dans le Chapitre 5, il a été mentionné que le JMRPF introduit dans le Chapitre 4 ne
peut pas estimer correctement les fautes avec précision, lorsque la véritable dynamique
des fautes ne correspond pas à celle du modèle prédictif du filtre. Ce problème est résolu
en améliorant la propagation des particules en utilisant une correction de Kalman.
Cette version améliorée du JMRPF appelée le RJMRPF permet d’estimer avec précision
les fautes qui ont des dynamiques très différente de celles utilisées par le modèle du
filtre, comme indiqué dans la Section 5.5.1.

5. En cas de mesures ambiguës dues à des fautes d’actionneurs et de capteurs, est-il
possible de les distinguer et de les estimer ?
Ce cas a fait l’objet d’une analyse approfondie dans le Chapitre 5 et a également été
résolu à l’aide du RJMRPF. Les résultats présentés dans la Section 5.5.2, montrent de
meilleurs résultats d’estimation des paramètres d’état et des fautes par rapport au
RRPF.

6. Les probabilités de fausse alarme et de non-détection peuvent-elles être calculées en
temps réel afin que la matrice de probabilité de transition du modèle du JMS soit
ajustée ?
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Une nouvelle façon de calculer et de mettre à jour la matrice de probabilité de transition
a été mise en œuvre dans la JMRPF pour prendre en considération les probabilités de
fausse alarme et de non-détection. Ce nouveau filtre a été introduit dans le Chapitre 6
et a été nommé AJMRPF.
Ce filtre s’est avéré plus efficace que le JMRPF en calculant et en mettant à jour la
matrice de probabilité de transition en temps réel plutôt que d’utiliser une matrice de
probabilité de transition constante fixée par l’utilisateur. La matrice de probabilité
de transition adaptative est calculée en fonction des probabilités de fausse alarme et
de non-détection, qui ont été calculées à l’aide d’une approximation analytique de la
méthode du point-selle. Les résultats montrent une amélioration de l’estimation des
paramètres d’état et des fautes par l’AJMRPF par rapport au JMRPF. Ces résultats
sont présentés dans la Section 6.4.

7. Les algorithmes proposés dans cette thèse peuvent-ils être implémentés pour des
applications temps réel embarquées ?
Le JMRPF et toutes ses variantes ont un coût de calcul similaire aux autres filtres. En
effet, en utilisant un seul modèle prédictif pour effectuer l’estimation des fautes, et en
n’utilisant qu’un petit nombre de particules — appelées particules sentinelles — pour
tester différentes hypothèses au lieu d’utiliser un banc de filtres particulaires comme
les approches de type IMM évite de d’augmenter le coût de calcul. Le coût de calcul
d’un filtre particulaire est principalement dû à l’utilisation de milliers de particules.
Les filtres particulaires introduits dans cette thèse ne nécessitent pas d’augmenter le
nombre de particules.
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