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Gloire et louange à toi, Satan, dans les hauteurs
Du ciel, où tu régnas, et dans les profondeurs

De l’Enfer, où, vaincu, tu rêves en silence !
Fait que mon âme un jour, sous l’Arbre de Science

Près de toi se repose, à l’heure où sur ton front
Comme un Temple nouveau ses rameaux s’épandront.

Baudelaire, Prière.

Glory and praise to thee, in heaven above
Where thou didst reign, and in the abysses of
Thy Hell, where thou art brooding, silently!
Grant that with thee my soul, beneath the Tree
Of Knowledge may find rest, when, o’er thy brows,
Like a new Temple it puts forth its boughs.

Transl. Lewis Piaget Shanks.
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Abstract

Condensed matter physics is the branch of quantum mechanics which studies large assemblies of interacting
particles. It sprouted from solid state physics: the study of the electron sea hosted by a metallic material
was the earliest representative of the theoretical hardships encountered when predicting the behavior of such
a myriad of quantum particles. The field was soon enriched by many other models describing other types of
quantum matter, from magnetism to superconductivity, Dirac materials or quantum fluids of light. All these
seemingly different applications are united by one ubiquitous aspect of many-body problems: the interplay of
many elementary particles, electrons, photons, magnetic moments, leads to emergent collective behaviors, such
as quasi-particles and phase transitions. As Anderson famously wrote, “more is different”.

In the recent years, important technological advances in the nanofabrication of superconducting circuits allowed
to recreate all the ingredients of a condensed matter system in a finely controlled experimental setup. The
quantum particles are emulated by excitations of the circuit, while quantum coherence is ensured by the absence
of dissipation of the superconducting state as well as the low temperatures in the milliKelvin range. Finally,
interactions are created via the Josephson effect, a by-product of superconducting phase rigidity across a tunnel
barrier, which introduces non-linearity in the circuit. Such a device is called a quantum simulator.

This thesis has been motivated by the urge to review well known impurity models, the spin-boson and boundary
sine-Gordon models, in the light of their recent implementation by superconducting circuits. Starting from an
exhaustive modelisation of a generic microscopic circuit, we formulated a novel model taking into account the
multi-level structure of charge qBits, that we called the “charge boson Hamiltonian”. Only in some regions of its
parameter space this model indeed reduces to the sought-after spin boson or boundary sine-Gordon Hamiltonian.
We then established its phase diagram by numerical renormalisation group, and explored the experimentally
relevant regions by newly devised theoretical tools.

A striking aspect of the charge boson model is that the number of Cooper pairs on the impurity superconducting
island is discrete, or equivalently that its superconducting phase is compact. We introduced a variational ansatz
— nicknamed the compact ansatz — to study the relevance of this charge granularity. It allowed us to reach
quantitative prediction on ground state observables in the experimentally pertinent region, and to describe
compactness fading in the overdamped, strong coupling regime.

One can shunt the impurity capacitive coupling to its environment to reach this highly interacting regime
shielded from charge noise by decompactification. The circuit then reduces to the celebrated boundary sine-
Gordon model. Recent experiments allowed to probe the dissipative response of such a system, which displays
spectacularly high inelastic cross-sections. Armed with a microscopic model of the system, we showed analyt-
ically and numerically how the plasma frequency introduces an ultraviolet cutoff which spoils the anomalous
power laws of dissipative response that are known from the study of the Tomonaga-Luttinger liquid. Finally,
a diagrammatic self-consistent technique performed at finite temperature allowed us to demonstrate how a
smooth dissipative response emerges from a system in the mesoscopic size range, formed by a few thousand
narrow Fabry-Perot modes, by overcrowding of thermally assisted multi-photons resonances.
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Résumé

La physique de la matière condensée est une branche de la mécanique quantique qui étudie les grandes assemblées
de particules quantiques en interaction. Elle a germée à partir de la physique de l’état solide : l’étude de la
mer d’électrons contenue dans un métal fut le premier exemple des difficultés rencontrées par le théoricien
voulant prédire le comportement d’une telle myriade de particules quantiques. Le domaine fut rapidement
enrichi par de nombreux autres modèles, décrivant d’autres types de matière quantique, depuis le magnétisme
jusqu’à la supraconductivité, les materiaux de Dirac et les fluides de lumière quantique. Toutes ces applications
apparement différentes se retrouvent unies par l’aspect essentiel du problème à N-corps quantique : l’interaction
d’un grand nombre de particules élémentaires, électrons, photons, moments magnétiques, conduit à l’émergence
de phénomènes collectifs, comme les quasi-particules ou les transitions de phase. Comme l’écrivait Anderson,
“more is different”.

Ces dernières années, d’importantes avancées technologiques dans la nanofabrication de circuits supraconduc-
teurs ont permis de recréer tous les ingrédients d’un système de matière condensée dans un dispositif expéri-
mental finement contrôlé. Les particules quantiques sont émulées par les excitations du circuit, tandis que la
cohérence quantique est maintenue par l’absence de dissipation de l’état supraconducteur autant que par les
basses températures employées, aux environs de la dizaine de milliKelvins. Enfin, les interactions sont suscitées
par effet Josephson, une conséquence de la rigidité de la phase supraconductrice à travers une barrière tunnel,
qui introduit des non-linéarités dans le circuit. Une telle plateforme expérimentale est appelée un simulateur
quantique.

Cette thèse a été motivée par la nécessité de revoir certains modèles d’impuretés bien connus, modèle spin
boson et modèle sine-Gordon à bord, à l’aune de leur implémentation récente sous forme de circuits supracon-
ducteurs. Commençant par une modélisation complète d’un circuit microscopique générique, nous formulons
un nouvel Hamiltonien prenant en compte la structure multi-niveaux des qBits de charge, et que nous baptisons
l’Hamiltonien charge boson. Celui-ci ne se réduit aux modèles standards de la littérature que dans certaines
limites que nous précisons. Nous traçons son diagramme de phase complet à l’aide du groupe de renormalisation
numérique, et explorons ses régions expérimentalement pertinentes par des outils théoriques nouvellement créés.

Un aspect frappant du modèle charge boson est que le nombre de paires de Cooper occupant l’îlot supracon-
ducteur de l’impureté est un entier, ou bien de façon équivalente que sa phase supraconductrice est compacte.
Nous présentons un ansatz variationnel, que nous appelons l’ansatz compact, pour étudier la pertinence de cet
aspect granulaire de la charge. Cela nous a permis d’obtenir des prédicitons quantitatives des observables de
l’état de vide, pour les régimes de paramètres utiles à l’expérience, et ainsi de décrire la disparition des effets
compacts dans le régime suramorti à fort couplage.

Il est possible de court-circuiter le couplage capacitif de l’impureté à son environnement, pour atteindre ce
régime d’interaction forte, que la décompactification protège du bruit de charge. Le circuit se réduit alors à
simuler le fameux modèle sine-Gordon à bord. Des expériences récentes on sondé la réponse dissipative d’un tel
circuit, qui présente une section efficace inélastique spectaculairement élevée. Armé d’un modèle microscopique
détailé du système, nous montrons que la fréquence plasma introduit une coupure ultraviolette qui supprime
les lois de puissance anormales de la réponse dissipative, bien connues par l’étude des liquides de Tomonaga-
Luttinger. Enfin, une technique diagrammatique auto-cohérente, entreprise à température finie, a permis de
démontrer comment une réponse dissipative lisse en fréquence peut émerger d’un système de taille mésoscopique,
par surpopulation de resonances multi-photons assistée par excitations thermiques.
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List of commonly used symbols

Symbol Meaning

Ȧ Differential with respect to time.

A(ω) Fourier transform of A(t), using A(t) =
ˆ
R

dω
2π e

−iωtA(ω) and A(ω) =
ˆ
R

dt eiωtA(t).

Â Operator on an Hilbert space.
A N ×N matrix, N a finite number of sites or modes.
A 2× 2 matrix of Keldysh components.
G Green’s function
R,A, F,K Retarded, Advanced, Feynman or Keldysh definition for a Green’s function.
Σ Self-energy.

ϕ̂, φ̂, θ̂ Superconducting phase.
n̂, N̂ Number of Cooper pairs.
â, b̂ Annihilation operators for bosonic mode.
EJ Josephson energy.
Ec Charging energy.
ωc A generic cutoff frequency.
T , β Temperature, and ~/(kBT ), inverse temperature scale.
gk coupling between impurity and environment mode k.
γk gk/ωk.

Rq ~/(2e)2 the resistance quantum, often set to one.
Φq ~/2e the flux quantum, often set to one.
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And so they began jostling
madly, towards the radiant
noon of the blackbody.

1 Schrödinger, for example,
recognized that: “it is fair
to state that we are not
experimenting with single
particles, any more than
we can raise Ichtyosauria in
the zoo. We are scrutinizing
records of events long after
they have happened.” cf.
E. Schrödinger. 1952. Br. J.
Philos. Sci. 3, 233.
2 For an introduction to
quantum optics, cf.
M. Fox. 2006. Quantum
Optics;
S. Haroche & J.-M. Rai-
mond. 2006. Exploring the
Quantum.
3 A quick summary of the
field history is given by
S. Haroche. 2013. Rev. Mod.
Phys. 85, 1083.

1|Quantum light and matter

Alors commença la bousculade échevelée,
vers le rayonnant midi du corps noir.

René Depestre, Minerai Noir.

The quantum theory has an history worth telling. Born laboriously more than a
hundred years ago under the pen of puzzled physicists, it grew into the spine of modern
physics. Created as the theory of an inaccessible, microscopic world, pondering on
the whereabouts of electrons and photons, it came to explain the inner clockwork of
stars and produced our worldwide society of consumer electronics.

Over the course of the century, the initial ideas of the 1920s ramified into many
directions. One important line of work has been to put the foundations of quantum
mechanics to the test, by designing clever experiments which probed the more drastic
parts of the theory. Another crucial research direction extended the original concepts
to complex systems of many interacting particles. It produced quantum field theory,
a common framework for physical systems with infinitely many degrees of freedom,
immensely deepening our understanding of the quantum world along the way.

In this introductory chapter, we aim at sketching the broad historical context of
this manuscript, especially showing how the search for experimental simulators for the
quantum many-body problem stands at the intersection of these two long standing
lines of research.

1.1 Quest for stronger couplings

One of the earliest testbed for quantum mechanics was atomic physics. The wavelike
behavior of an electron orbiting a nucleus was the key element to explain discrete
atomic spectra, made of well separated lines corresponding to transitions between
well defined energy levels of the electron, in the same fashion a cord produces well
defined notes. The special case of the hydrogen atom, the simplest atom composed
of a single electron orbiting a single proton, allowed fine predictions of its spectrum.
Exact solution of its Schrödinger equation, and latter its Dirac equation, could be
reached, and correctly predicted the Lymann, Balmer and other series of lines, as
well as their fine structure.

In total, the explanation of atomic spectra by quantum mechanics was a bright suc-
cess. Yet, it did not put to the test the strangest aspects of the theory. To see
quantum coherence in action, one would have to experiment with only one — or a
few — quantum particles. It could only be a gedankenexperiment in the early days
of quantum mechanics1. Great technological advances brought them to reality a few
decades latter only. The preferred experimental technique was still optics, creating
the field of quantum optics2,3.

http://dx.doi.org/10.1093/bjps/III.11.233
http://dx.doi.org/10.1093/bjps/III.11.233
http://dx.doi.org/10.1103/RevModPhys.85.1083
http://dx.doi.org/10.1103/RevModPhys.85.1083
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1 We set ~ = 1.

2 The same Hamiltonian
appears in many contexts, as
nuclear magnetic resonance.

t

Pg→e

1

Figure 1.1: Rabi oscillations,
( ) Γ/g = 0,
( ) Γ/g = 0.1.
3 Often abbreviated RWA.

4 H. M. Gibbs. 1972. Phys.
Rev. Lett. 29, 459;
H. M. Gibbs. 1973. Phys.
Rev. A 8, 446.

5 D. Braak. 2011. Phys. Rev.
Lett. 107, 100401.

6 E. Jaynes & F. Cummings.
1963. Proc. IEEE 51, 89.

Rabi oscillations

The most straightforward hallmark of quantum coherence are Rabi oscillations. Con-
sider the simplest model for an atom, where only two levels are considered, |g〉 and
|e〉 the ground and excited states. In the presence of an external excitation, able to
pump energy from |g〉 to |e〉, the system Hamiltonian writes1

Ĥ =
[
Eg 0
0 Ee

]
+ g cos(ωt)

[
0 1
1 0

]
, (1.1)

the interaction part representing the field of a coherent source of light oscillating at
pulsation ω, a laser electric field most of the time2. g, the interaction strength, is
typically proportional to the electric dipole of the transition and to the oscillating field
amplitude. The amplitude for both states is written as ag/e(t) = cg/e(t) exp(−iEg/et)
to factor out the free evolution of the system (we could say we placed ourselves in the
field frame of reference), and Schrödinger’s equation is thenċg(t) = −ig

(
ei(ω−ω0)t + e−i(ω+ω0)t) ce(t)

ċe(t) = −ig
(
ei(ω+ω0)t + e−i(ω−ω0)t) cg(t)

, where ω0 = Ee − Eg. (1.2)

To solve this coupled differential equation, we first use the rotating wave approx-
imation3 which neglects the fast rotating terms at ω + ω0. This approximation is
crucial to produce analytical results. Next, we also assume perfect resonance, i.e.
ω − ω0 = 0, for simplicity. We can now solve Eq. (1.2) to get the probability to hop
from ground to excited state Pg→e(t) = sin2(gt). The frequency of this Rabi oscilla-
tion is called the Rabi frequency, ΩR = g. Of course, any incoherent desexcitation
mechanism will break the Rabi oscillation. One can list spontaneous emission towards
|g〉, but also any transition to other, unconsidered atomic level. This adds up with
dephasing mechanisms, as elastic collisions with other atoms, which too will break
phase coherence of the wavefunction. Let’s pack the two mechanisms into an inverse
relaxation time, Γ. If Γ > g, decoherence happens faster than the oscillations, and
they cannot be observed, as represented on Fig. 1.1. To beat decoherence, one needs
high laser field intensity to raise g, which was done for the first time in 19724.

The next question was whether the light itself could display such a well controlled
quantum phenomenon. The simplest model would be to couple our two-levels atom
to a single mode of the electromagnetic field,

Ĥ = ∆
2 σ̂z + ω0â

†â+ g(σ̂+ + σ̂−)(â† + â), (1.3)

which is called the quantum Rabi model. ∆ is the energy splitting between the two
levels, while ω0 is the characteristic frequency of the light mode and g is their coupling.
Only recently an exact solution of the model was found5. We commonly simplify it in
the same spirit than the earlier RWA, by suppressing the terms that do not conserve
energy at resonance, â†σ̂+ and âσ̂−, to reach the Jaynes-Cummings Hamiltonian6:

Ĥ = ∆
2 σ̂z + ω0â

†â+ g(σ̂−â† + σ̂+â), (1.4)

which is exactly solvable. We are now on the lookout for the same Rabi oscillation
phenomenon, but between the atom and the light, which would prove the electromag-
netic field quantum nature. The difficulty is that we cannot raise g by dialing up a
laser pump: the emission is solely due to the vacuum fluctuations of the light mode.
The solution is to place the atom into a Fabry-Perot cavity. First, is allows to isolate

http://dx.doi.org/10.1103/PhysRevLett.29.459
http://dx.doi.org/10.1103/PhysRevLett.29.459
http://dx.doi.org/10.1103/PhysRevA.8.446
http://dx.doi.org/10.1103/PhysRevA.8.446
http://dx.doi.org/10.1103/PhysRevLett.107.100401
http://dx.doi.org/10.1103/PhysRevLett.107.100401
http://dx.doi.org/10.1109/PROC.1963.1664
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1 E. M. Purcell, H. C. Torrey,
& R. V. Pound. 1946. Phys.
Rev. 69, 37.

2 M. Brune, F. Schmidt-
Kaler, et al. 1996b. Phys.
Rev. Lett. 76, 1800;
A. Boca, R. Miller, et al.

2004. Phys. Rev. Lett. 93,
233603.

3 M. A. Schlosshauer. 2007.
Decoherence.

4 M. Brune, E. Hagley, et al.
1996a. Phys. Rev. Lett. 77,
4887.

|g, 0〉

|g, 1〉

|g, 2〉

|e, 0〉

|e, 1〉

|0〉

|−, 1〉

|−, 2〉

|+, 1〉

|+, 2〉

...

g = 0 g 6= 0

Figure 1.2: Jaynes-Cummings
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one resonant mode of the cavity, to obtain a faithful representation of the Rabi model.
Better, the Purcell effect allows to engineer the atoms rate of spontaneous emission
into the cavity mode: it especially grows with the cavity quality factor and diminishes
with its volume1. Again, the figure of merit of the experiment is the Γ/g ratio, with
Γ the losses of the cavity to the external environment. Γ/g > 1 defines the strong
coupling regime, where quantum coherence effects can be seen. The requirements
of such an experiment have been especially difficult to match, such that the effect has
been demonstrated only twenty five years ago for a single atom2.

The fine control of a few quantum degrees of freedom also allowed to put to the
test the models of decoherence theoreticians built to explain the crossover between
quantum and classical behaviors3. The cavity can play the role of the environment,
while being monitored. One can then follow its evolution while superposed states of
the atom starts evolving toward a statistical, classical mixture4.

Ultra-strong coupling

The strong coupling regime was described still within the Jaynes-Cummings approx-
imation. The RWA relied on the assumption that the cavity field is oscillating faster
than the atom/cavity exchange of energy, g/ω0 � 1. We can then define an ultra-
strong coupling regime, reached for g ∼ ω0. Would it differ drastically from the
strong coupling case, or, in other words, which qualitative physics the off-resonant
terms add to the picture ? To answer, one has to examine these models spectra5.
Let’s suppose for simplicity ∆ = ω0, such that excitations of the atom and of the cav-
ity bear the same energy. When the coupling is turned off, all the states of the form
|g,N〉 and |e,N − 1〉 are degenerate, as represented on Fig. 1.2. In time independent
perturbation theory, we know that the degeneracies are lifted if the perturbation oper-
ator, V̂ , has non-vanishing matrix element between the two states. The prototypical
example is given by the eigenstates of

Ĥ0 + V̂ =
[
−E0 0

0 E0

]
+
[

0 g

g 0

]
, (1.5)

which has eigenvalues E± = ±
√
E2

0 + g2; the splitting is important when the initial
levels are close of one another. When dialing E0, we see an avoided crossing at E0 = 0,
as represented on Fig. 1.3. In the Jaynes-Cummings model, only the degenerate levels
are connected by the interaction term: we only have splittings between pairs of states
having the same number of excitations. The ground state is unchanged.

When entering the ultra-strong coupling regime, the off-resonant terms participate in
the structure of the spectrum, and the simple picture of the Jaynes-Cummings ladder
is lost. The ground state undergoes an especially striking change, since it turns into
photonic Schödinger cats entangled with the atom6. To demonstrate having reached
the ultra-strong coupling regime, the simplest experimental evidence is an avoided
crossing between states that do not interact under the Jaynes-Cummings Hamiltonian.
As an example, states |e, 0〉 and |g, 3〉 do not have the same excitation number, and
so should not interact, but they are connected via non-RWA terms. Explicitly,

|g, 3〉 âσ̂+−−−→
RWA

|e, 2〉 âσ̂−−−−−−−→
non RWA

|g, 1〉 âσ̂+−−−→
RWA

|e, 0〉. (1.6)

When the interaction strength g is dialed up, they are expected to cross; observing
an anti-crossing is a demonstration of beyond RWA effects7.
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Reaching this regime demanded to change radically the experimental system. Indeed,
optical setups are intrinsically limited by the smallness of the light-matter coupling,
given by the fine-structure constant α ' 1/137. Strong competitors to quantum optics
appeared in the last decades, especially in the domain of solid-state devices. They
usually trade the excellent coherence times of isolated atoms for the higher couplings
of electronic systems. We focus here on superconducting circuits, which we introduce
in Sec. 1.3, and discuss further in Chaps. 2 & 3. Several recent reviews document
the various experimental platforms and recent advances on the topic of ultra-strong
coupling1.

We remark that when testing the quantum theory of light and matter, modern physics
changed several times its experimental platform, using high-power optics, cavity QED,
trapped ions or solid state devices when they suited best the inquired phenomenon.

1.2 The quantum many-body problem

The quantum vacuum, a radically non-classical concept2, was a key part of the vac-
uum Rabi oscillations between the atom and the cavity. Yet, 1996 experiments at
ENS3 and NIST4 where far from the first time the physicists heard about the fluc-
tuations of electromagnetic field vacuum. In 1947 was reported the measure of a
shift in frequency — the Lamb shift — between the 2S1/2

2P1/2 energy levels of the
hydrogen atom5. It could not be explained by Dirac’s equation, demonstrating once
more the richness of the hydrogen spectrum for quantum theory. The role of vacuum
fluctuations was soon anticipated, but the theorists computing the shift value battled
for years against divergent sums over the infinite continuum of modes of the electro-
magnetic field6. A solution to the problem came piece by piece. It first consisted
in tricks to hide the infinities away by introducing counter-terms in Hamiltonians
and Lagrangians. A mean to physically interpret these infinities was found in the
renormalization group concept7. Importantly, these efforts created one unified lan-
guage, quantum field theory, encompassing the seemingly different domains of particle
physics, condensed matter and nuclear physics. The common denominator was the
infinite number of degrees of freedom to take care of, and the correlated tendency of
integrals over these degrees of freedom to blow up.

Electrons in interaction

In condensed matter, the most important puzzle to solve in the early times of quantum
mechanics was the Fermi liquid8. The properties of solids, like electric and thermal
conduction, could be explained by assuming the electrons are quantum fermionic par-
ticles, but non-interacting with respect to each other — it is known as the Sommerfeld
theory — while the Coulomb interaction happens to be strong. Worst, any attempt
to correct the result by perturbation theory ended up with infinite corrections at all
orders, a meaningless result. The solution was formulated by Landau, who intro-
duced his famous concept of quasi-particles. Close to the Fermi surface, electrons do
not have a lot of opportunities to scatter. When the interactions are turned on, we
can then still describe electrons as “almost particles”, albeit with a finite lifetime:
quasi-particles. In the process, the mass of the quasi-particle is drastically changed.
We say the mass is renormalized by the interactions. After Landau, the same ideas
were reached by diagrammatic methods, which used Feynman’s diagrams to rearrange
the perturbative expansion and reach a finite result. This proved both the genius of
Landau and its insightful phenomenological theory, and the ability of diagrammatic
techniques to evade the shortcomings of bare perturbation theory.
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The key element of the quasi-particle concept is the possibility to reach the interact-
ing system from the non-interacting one by adiabatically turning on the interaction
strength. In other words, there must be no phase transition separating the free and
interacting system. In that sense, the concept of phase transition became an es-
sential part of field theory: a phase transition separates regions of the parameter
space where the ground state have different symmetries. This change of symmetry
completely drives the qualitative physics observed in the various phases. Inside one
phase, one can expect one special point in parameter space where the interaction
strength vanishes, making the model exactly solvable. The system behavior in the
rest of the phase can be explained by perturbation — and/or diagrammatic — method
around this point. Finding these points, called fixed points, and the phase transition
boundaries, is the purpose of the renormalization group.

A spectacular illustration of this mechanism can be found in the Bardeen, Cooper
& Schrieffer theory of superconductivity. At low temperature, a phase transition
separates the Fermi liquid from a superconducting phase, characterized by its ground
state of condensed Cooper pairs1.

Impurity models

In the 1960s emerged a new type of problems in condensed matter. The puzzle was the
influence of diluted magnetic impurities in metallic hosts, which had a drastic effect on
the sample resistivity at low temperature. The resistivity was expected to smoothly
vanish, but instead went through a minimum, before growing again, in strong contra-
diction with known mechanisms of electrical conductivity. The problem at hand was
soon recognized to be the interaction of the electronic sea with the free orbitals of
the impurity2, often a magnetic ion. A first explanation of the resistivity minimum
was given by Kondo, who showed that the electron/impurity scattering rate at 2nd

order in perturbation theory displayed a logarithmic divergence at low temperature,
1/τ ∼ 2(Jρ)2 ln(D/(kBT )), with J the coupling strength, ρ the electronic density of
states and D their bandwidth3,4. Still, the logarithmic law cannot hold all the way
down to T = 0, but perturbation, and latter diagrammatic resummation5, ran into
troubles, again in the form of diverging corrections. The next important step was
made by Anderson, who connected the problem with the ideas of the renormalization
group, and especially with scaling laws6. The idea is to eliminate perturbatively the
high energy modes lying above a certain cutoff Λ, to integrate them in an effective
model. We then monitor the evolution of the model parameters when Λ is lowered,
providing scaling laws of the system. However, at some Λ, the coupling strength
grows so much that renormalized perturbative theory still breaks down: this scale is
the Kondo temperature, TK. The next step was to extend the computation below
TK, where non-perturbative methods are needed. A solution was given by Wilson7:
using a numerical method, the numerical renormalization group, he followed the
renormalization flow of the coupling strength beyond perturbative analysis, and thus
below TK.

Other impurity systems appeared over the years. The most famous one is probably the
spin-boson system, which describes a two-level system coupled to a bath of harmonic
oscillators, which are well known to host bosonic excitations. It can be seen as the
minimal extension of the Rabi model to the many-body realm. The corresponding
Hamiltonian reads:

Ĥ = ∆
2 σ̂x + gσ̂z

∑
k

(
gkâ
†
k + ḡkâk

)
+
∑
k

ωkâ
†
kâk. (1.7)
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Figure 1.4: Single Cooper
pair circuit. The top super-
conductor (•) forms an island.

We recognize the Rabi Hamiltonian, simply extended to several oscillator modes.
This model is quite ubiquitous in quantum physics, since the spin degree of freedom
is the approximation of many systems: atoms, molecules hopping between two con-
formations, polarization of light or quantum numbers of exotic particles. In turn, the
bosonic field is the most common environment one can expect, describing phonons in
solid state systems, photons for atoms in a vacuum, etc. Several analytical tools could
be imported from the analysis of the Kondo model, as the renormalization group1, nu-
merical renormalization group2, and the search for phase transitions3. More specific
tools where also devised for the situation, based on variational ansätze4 or specific
approximation schemes, as the non-interacting blip approximation5. Among the var-
ious regimes and findings, the most striking is perhaps the localization transition6:
at strong coupling between the spin and the oscillators, a phase transition suddenly
localizes the spin in an eigenstate of σ̂z dressed by bosonic excitations. All tunneling
to the other dressed eigenstate is suppressed. This localization especially suppresses
any quantum superposition between the two states, and can be seen as a quantum to
classical transition. Indeed, the spin-boson system has been a playground to formulate
decoherence mechanisms.

These impurity models provided good explanation for several experimental evidence,
from the resistance minimum of the Kondo model to the quantum to classical transi-
tion. Nonetheless, it has proven hard to check the full extent of their predictions, a
situation quite similar to early quantum mechanics, as we exposed in Sec. 1.1. A typ-
ical example is perhaps the important spatial correlations that develop themselves at
strong coupling. For example, in the Kondo model, an exponentially large screening
cloud of length scale ξk = vF/TK (vF the Fermi velocity) appears around the impu-
rity7. Experimental evidences of this exponential length scale are scarse on electronic
systems8, and the spin correlation structure has never been observed. As a response,
alternative experimental setups have been proposed e.g. with quantum circuits9.

Similarly to few-body quantum theory a few decades ago, the theory of quantum
many-body systems exhibits intriguing phenomena that are hard to study on the
experimental setups that initially triggered the study of these many-body models. The
next step is then to search for new experimental platforms which could simulate the
same physics, while easing the experimental demonstration of these predicted phase
transitions, long distance correlations, and other hallmarks of collective behavior of
the quantum particles.

1.3 Simulating nature

Many experimental platforms are currently put forward as candidates for emulating
models with strong interactions amongst many particles. The focus of this thesis is on
superconducting circuits10. Solid state devices built with superconducting materials
for low dissipation have been noticed long ago as a promising platform to observe
quantum effects11. The first devices were aimed at isolating a single electron or
a single Cooper pair in a superconducting island. Even though the discreteness of
electrons is well established, it is not so easy to harness in a solid state device, where
the electron wavefunctions spreads, making the local electrical charge — the charge
of a capacitor, for example — a continuous variable.

The solution is to employ a device based on the tunnel effect: tunneling is an all
or nothing process, since the electron wavefunction is evanescent in the insulating
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region. The same is valid for Cooper pairs in a superconducting material. We then
design a superconducting island, biased by an external voltage through a capacitor,
and connected to the ground by a small insulating layer through which the charge
carriers can tunnel. The device is represented on Fig. 1.4 (Such a device is analyzed
further in Sec. 2.1). When the bias voltage varies, we expect sudden jumps in the
island charge that we can measure from monitoring the current1. The device can be
seen as a single charge sensitive electrometer2.

The next step was to observe quantum coherence effects on a single Cooper pair, and
it was done a few years later3 by reaching a superposition state of 0 and 1 Cooper pairs
on the island. Interestingly, the applications to manipulation of quantum information
in a digital machine was already emphasized in these early works. In this spirit, the
coherence time of this device was soon measured by a charge echo method4, imported
from the spin echo technique. It was found that the coherence time was mostly limited
by the charge noise, which displayed a 1/f power spectrum. Limiting the charge noise
is a constant concern in charge based systems.

An other line of work towards quantum effects in superconducting devices uses su-
perconducting rings containing a Josephson junction. More details on this system
are given in Sec. 4.4. Here, we only state that the quantum variable is now the su-
perconducting current running around the loop. By tuning the external flux through
the loop, it has been possible to realize quantum superposition of currents running
clockwise and anti-clockwise5, quite similarly to the superposition of 0 and 1 Cooper
pairs we saw earlier. In fact, these two experiments are the two faces of the same
coin, as the general framework of circuit quantum electrodynamics we employ in the
manuscript will show.

These two devices for manipulation of quantum information are now known as the
charge and flux qBit6 respectively. A technological race was then started7, fueled by
advances in microfabrication techniques, to find, fabricate and operate the best cir-
cuit design for a superconducting qBit. Important milestones are the transmon qBit8,
which exploits a trade-off between charge noise and non-linearity that we explore in
depth in Part. II. Next, the fluxonium qBit9 entered the realm of single qBit designed
with many Josephson junctions: the proposal shunts a charge qBit with a long chain
of ∼ 102 Josephson junctions, which behave together like a superinductance, an in-
ductor reaching L values orders of magnitude above what a geometric inductor could
accomplish. The goal is to quench the low frequency charge noise, while keeping un-
altered the AC response of the charge system. Finally, a recent nanofabrication tour
de force must be signaled: the production of a quasi-charge qBit10. This circuit con-
cludes the “periodic table of superconducting circuits”: while the transmon exploits
weakly non-linear phase oscillations of a charge qBit with low charging energy, the
quasi-charge qBit exploits weakly non-linear phase oscillations of a flux qBit with low
inductive energy.

Superconducting circuits and the many-body regime

A strong appeal of superconducting circuits is that once one has a good design for
simulating one quantum particle, is it relatively easy to repeat it many times on a chip
and hope to simulate a many-body model11. Of course, we only expect non-trivial
effects to develop when the interaction strength between the simulated particles is
high enough, but this is precisely the strong advantage of solid state experimental
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platforms.

Such proposals appeared several times during the two last decades, especially towards
simulating aspects of Kondo physics1. They exploit the bosonisation of the Kondo
model2 to match the bosonic systems we typically obtain by quantization of the
excitations of a junction chain. The impurity models are a natural target for the
first proposals of many-body simulators, since they simplify greatly the circuit design
and operation; they require one qBit — or atom-like degree of freedom — only.
Still, one can anticipate that superconducting circuits are fit for the simulation of
the (bulk) quantum sine-Gordon model, due to the cosine potential of the Josephson
energy3. The closely related Luttinger liquid has been recently explored by means of
superconducting circuits4. Disorder seems to be the key conceptual ingredient to link
the experimental output of such a device with its expected behavior.

Still, making the connection with experimental work asks to pinpoint a good observ-
able that could be accessed experimentally, while carrying hallmarks of non-trivial
many-body effects. For a simulator composed of a long chain of junctions hosting
bosonic excitations, i.e. photons5, coupled to a qBit emulating the impurity, one
could study the photon scattering off the impurity6. Experimental attempts on im-
purity model simulation focused on spectroscopic quantities, the easiest to measure.
The renormalization of the spin-boson tunneling amplitude has been obtained from a
superconducting simulator7, as well as the Josephson energy renormalization in the
boundary sine-Gordon model8, a related impurity model the analysis of which we
devote the Part. III of this manuscript. Scattering processes in this same boundary
sine-Gordon simulator has been recently investigated9. From these experiments, we
can hope to demonstrate the universal properties that link the low-energy properties
of many quantum impurity systems10.

The exploration of the quantum many-body problem has steadfastly entered the
stage of simulation: versatile experimental platforms have been designed to reproduce
the physics of broad interest theoretical models. On the theoretical side, this state
of affairs now requires to review these models in light of their new experimental
realizations, together with their practical limitations. The purpose of this thesis is to
perform such an analysis on Josephson based simulators.

Organisation of the manuscript

In Part. I, we set the stage by presenting the physical system of interest and the the-
oretical methods widely used in the field. We introduce the canonical quantization of
a generic superconducting circuit, and show, on general grounds, how to reach from
there the standard models, spin-boson and boundary sine-Gordon. As an intermedi-
ate step, we introduce a more general model, which we nicknamed the charge-boson
model. It interpolates between these two previous models, which appear as specific
limits of the charge-boson Hamiltonian. We also raise the question of the impact of
the superconducting phase compact nature, a long debated topic11 intricated with
the experimental hardships caused by charge noise. We present novel numerical renor-
malization group analysis of the charge-boson model. We map its phase diagram to
guide our following inquiry. For both the spin-boson and the boundary sine-Gordon
model, we then present well established analyses of their many-body properties, and
especially of the phase transition they display. The poor man’s scaling, simple imple-
mentation of the renormalization group ideas on the boundary sine-Gordon model,
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will especially drive our development in the next sections. It predicts an emergent
energy scale, the renormalized Josephson energy, that separates between perturbative
and non-perturbative regions.

Part. II focuses on the question of the compact superconducting phase variable. Here
we propose a new variational ansatz as a tool to diagnose the relevance of the phe-
nomenon and test decompactification mechanisms that neutralize phase compactness
together with charge noise. The ansatz is constructed and tested on the one-body case
of the isolated Josephson junction — or charge qBit — to get to know the method
and assess its accuracy on a simple situation. We then move to the charge-boson
case, where the compact ansatz method gives a simple, physical understanding of
the decompactification at strong coupling, and demonstrates its ability to quanti-
tatively describe the system in a vast region of parameter space, containing all the
experimentally relevant situations. The benchmark is conducted against numerical
renormalization group.

We then specialize in Part. III to the decompactified case, relevant for the experi-
ments at hand, where the general charge-boson description reduces to the boundary
sine-Gordon model. We especially focus on the circuit designed by N. Roch’s experi-
mental team1 to measure inelastic scattering processes. We re-employ the methods of
Part. I to derive a careful modelization of the experimental situation, and reduce the
observables to the model response functions. The situation is then analyzed using a
diagrammatic technique, versatile enough to produce important analytical results in
the limit of a continuous sea of bosonic modes, and carry numerical computations at
finite temperature using the Keldysh formalism, fully resolved in frequency, without
any drastic approximation on the microscopic model. The analytic section predicts
anomalous power laws in the perturbative region, a strong hallmark of many-body
physics, provided the ultraviolet cutoff is high enough. The numerical section intro-
duces a resummation technique, the skeleton expansion, which explains how a small
number of narrow multi-photon resonances can produce a smooth dissipative response
alike to a continuum of modes. The section ends up with quantitative comparison
between theoretical predictions and experimental results, which shows good agree-
ment together with intriguing discrepancy in the non-pertubative regime. This raises
questions on the validity of the diagrammatic method at very low pinning of the
superconducting phase variable.

The last chapter in devoted to sketch some perspectives on this work. We argue on
paths to follow to tackle the non-perturbative regime discrepancy between theoretical
and experimental data. The work done to carry the computations using the Keldysh
formalism allows to envision new applications of the method to out-of-equilibrium and
transient dynamics, a domain where the superconducting phase compactness could
retrieve some influence.
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Roadmap to many-body physics in cQED
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2|Macroscopic quantum variables

On appelait cela le principe d’incertitude, parce qu’il y avait une chose dont on était sûr,
c’est que c’était faux. Ou alors si c’était juste, c’était vraiment par hasard, ou bien qu’il y

avait une erreur quelque part.

Jacques Rouxel, L’ordinateur Shadok.

Superconductivity is one of the most striking phenomena of condensed matter
physics. Its study has uncovered a wealth of spectacular effects, such as zero resis-
tance, Meissner effect, quantum coherence in electric currents, etc. A microscopic
theory explaining these observations was built up by Bardeen, Cooper and Schrieffer
in 19571. We will not go into details of this theory here, and will only mention the
qualitative elements needed to explain the behavior of superconducting circuits.

Many metals are subject to an instability of their Fermi sea at low temperature, due
to an attractive interaction between electrons mediated by crystal phonons. This is
signaled by a divergence in the electron-electron scattering cross-section2. After the
instability occurs, the many-body ground state is composed of paired electrons, the
so-called Cooper pairs, which all condense into the same state. The finite energy
needed to break Cooper pairs is given by the superconducting gap, ∆. Its finite value
ensures that, at a low temperature, the condensate gathers a macroscopic number of
electrons. The whole electron fluid is then described by a macroscopic wave function,3
ψ(x) =

√
ρ(x) exp (iϕ(x)).

The fact that this macroscopic wavefunction could lead to tests of quantum mechan-
ics on a new scale, beyond what e.g. atomic physics permitted, was noticed as soon as
19644. In a bulk superconductor, the superconducting phase ϕ is a classical variable,
free from quantum fluctuations due to the high energy cost of phase gradients. This
phenomenon is called phase rigidity. We will see that a quantum uncertainty relation
relates this phase to the number of Cooper pairs. As a consequence, the Cooper pair
number is undefined5 in a bulk superconductor, and the dynamic of the phase is clas-
sical. This state of affairs can be ultimately be linked to a breaking of electromagnetic
gauge invariance6.

To observe macroscopic quantum effects, we need to find an intermediate regime,
where neither the charge nor the phase are classical. This is the case inside a small
superconductor grain: if the grain is small enough, Coulomb repulsion between Cooper
pairs will forbid their number to fluctuate too much. We now examine a phenomeno-
logical model of such a situation, that will serve as the cornerstone for our description
of superconducting circuits.

http://dx.doi.org/10.1143/PTPS.86.43
http://dx.doi.org/10.1143/PTPS.86.43
https://youtu.be/tusmvj7mTqY?t=49
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∑
n∈Z

n|n〉〈n|.
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Figure 2.1: Diagram of
a Cooper pair box. The
cross symbolizes the tunnel
probability.
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in Sec. 3.1.
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Figure 2.2: 2 lowest energy
levels at (•) EJ = 0 and (•)
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2.1 Cooper pair box

The Cooper pair box is a superconducting device composed of a tiny superconduct-
ing island separated from a ground plane by a insulator layer thin enough to allow
tunneling of Cooper pairs in and out of the island. An external generator imposes an
external charge ng on the island. Let’s assume that a finite number n of Cooper pairs
occupy the island in a state |n〉. The Coulomb energy is then zero if this number bal-
ances the external charge. Otherwise, it evolves quadratically in the charge number,
because of Coulomb repulsion. The Hamiltonian of the system is then1,2

Ĥ = Ec

2 (n̂− ng)2 − EJ

2
∑
n∈Z
|n〉〈n+ 1|+ |n〉〈n− 1|. (2.1)

The second term describes tunneling of Cooper pairs in and out of the island.
Ec and EJ are characteristic Coulomb3 and tunneling energy. The situation can be
summarized by an electric diagram using lumped elements, as in Fig. 2.1. The cross
represents the tunnel barrier, which is called a Josephson Junction.

Let’s derive the spectrum of the system in the EJ � Ec limit. At EJ = 0, the
Hamiltonian is already diagonal. At every charge n corresponds an energy parabola
with respect to ng, as shown on Fig. 2.2. The system displays level degeneracy at
ng = 1/2 +n ∀n ∈ Z. This degeneracy is lifted by the tunneling term. The splitting
is estimated by first order degenerate perturbation theory to be of width EJ.

Charge qBit

At the degeneracy point, the Cooper pair box displays a two-level structure that can
be used as a qBit to store and manipulate quantum information4. This is one of
the oldest design of a superconducting qBit. It is mainly flawed by its sensibility to
experimental noise on the ng variable. This charge noise is believed to originate
from fluctuating two level systems in the circuit substrate, which affects the super-
conducting island electrostatic environment. It results in a so-called 1/f noise power
spectrum5. Operating at ng = 1/2 suppress the sensibility to ng at first order, thus
improving the charge qBit coherence time. Yet, rare tunneling events of unpaired
electrons can suddenly shift ng of ±1/2, and scramble irremediably the computation
basis of the qBit6. The physics of ng is discussed further in part II.

Superconducting phase

It is now clear that, at finite EJ/Ec ratios, eigenstates of the superconducting island
are not charge eigenstates, such that the charge is fluctuating. This can be examined
further by introducing its quantum conjugated variable, the superconducting phase
ϕ̂, defined by7

[ϕ̂, n̂] = i1̂. (2.2)

Via Baker-Campbell-Hausdorff formula, one can show that n̂ is the generator of trans-
lations along ϕ (and vice versa),

ϕ̂eiφn̂|ϕ〉 = (ϕ+ φ)eiφn̂|ϕ〉 ⇒ eiφn̂|ϕ〉 = |ϕ+ φ〉. (2.3)

Then, if we choose φ = 2π, we obtain

ei2πn̂ =
∞∑
j=0

1
j!

(∑
n∈Z

i2πn|n〉〈n|
)

=
∑
n∈Z

ei2πn|n〉〈n| = 1̂

⇒ |ϕ〉 = |ϕ+ 2π〉. (2.4)

http://dx.doi.org/10.1238/Physica.Topical.076a00165
http://dx.doi.org/10.1103/PhysRevLett.88.047901
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These two states are indistinguishable, as a consequence of the Cooper pair number
being an integer. This relationship between number and phase is quite general1. We
must then see ϕ as an angular variable, in the sense that ϕ̂ =

´ 2π
0 dϕϕ|ϕ〉〈ϕ|. The

Eq. (2.3) can be differentiated to derive the scalar product

〈ϕ|n〉 = 1√
2π
einϕ. (2.5)

In turn, this result allows us to rewrite the tunneling term in Eq. (2.1) as

Ĥ = Ec

2 (n̂− ng)2 − EJ cos ϕ̂. (2.6)

This is the standard Hamiltonian for a single junction. Although non-trivial, it can
be exactly solved: the associated Schrödinger equation is a Mathieu equation, the
solution of which is exactly known. Even if this Hamiltonian as been obtained heuris-
tically, it could have been derived from microscopic BCS theory2.

2.2 Plasma oscillations

A simple mechanical analog of Eq. (2.6) is a pendulum, the kinetic energy and poten-
tial corresponding respectively to charging energy and Josephson energy. Accordingly,
a regime of small oscillations must exist at EJ/Ec � 13. The corresponding Hamil-
tonian is

Ĥ = Ec

2 n̂2 + EJ

2 ϕ̂2. (2.7)

In this regime, energy must oscillate between storage in charge and phase. The
charge energy storage mechanism is given by the capacitance of the junction. For a
capacitance C, we have 2en = CU , e the electron charge and U the voltage between
sides of the junction, so we can relate Ec = (2e)2/C to match the classical energy of
a condensator.

By analogy with an LC-oscillator, we would expect the other energy storage mode
to be inductive. Indeed, using the equation of motion for the charge in the small
oscillations regime, we can derive a relation between phase and current Î,

Î = 2edn̂
dt = 2e i

~

[
EJ

2 ϕ̂2, n̂

]
= −2e

~
EJϕ̂. (2.8)

The Josephson energy is then equivalent to the energy of an inductance L = (~/2e)2/EJ.
We call it a kinetic inductance, to differentiate it from the geometric inductance pro-
vided by a circuit loop. We then expect oscillations at ωp = 1/

√
LC =

√
EJEc/~. We

call it the plasma frequency of the junction, because it describes charges oscillating
back and forth the tunnel element. The equivalent circuit is represented on Fig. 2.3.

The equation of motion for n̂ and ϕ̂ with full Hamiltonian (2.6) produces the Joseph-
son relations:

~
dϕ
dt = 2eU (2.9)

I = 2eEJ

~
sinϕ = I0 sinϕ. (2.10)

These equations hold in the classical limit4. Although we will not use them further,
they reveal important phenomena, e.g. the DC Josephson effect5, which predicts
that a Josephson junction biased in voltage displays current oscillations. This predic-
tion and the subsequent experimental discovery gave the 1973 Nobel prize to Esaki,
Giaever and Josephson.

https://arxiv.org/abs/cond-mat/0402415
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Orders of magnitude and real devices

One could wonder what a Josephson device displaying a cross-over between charging
effects at EJ � Ec and superconductivity at EJ � Ec would actually look like. We
consider an Al/Al2O3/Al junction, of thickness d and surface S. The situation is
illustrated on Fig. 2.4, where the superconducting island is represented on the left.
The island is biased in voltage through a capacitor.

The charging energy is estimated by Ec = (2e)2/C, and C ' εS/d for a planar
capacitor filled with insulator with dielectric constant ε. For aluminium, ε ' 10 ε0

at low temperatures, ε0 the vacuum permittivity. Microfabrication techniques result
in typical surfaces of S ' 10 µm2 and oxide layer in the 1 nm range, resulting in
capacitances in the 1 fF range.

The Josephson energy can be determined by the famous Ambegaokar & Baratoff
relation1,

EJ = h∆
8e2Rn

, (2.11)

where ∆ is the superconducting gap (∆ = 0.175 meV for aluminum) and Rn is the
normal resistance of the junction, due to normal electron tunneling. It evolves roughly
as Rn ∼ 1/S, which implies that the characteristic energy ratio evolves as EJ/Ec ∼ S2

with the junction surface: charging effects take place for small junctions. For
the same surface, one can expect a kinetic inductance in the 10 nH range. The plasma
frequency of this typical junction is then fp ' 10 GHz, such that AC measurements
that probe the dynamical response of a circuit of junctions will lie in the microwave
range2.

If we want a system to display quantum mechanical behavior, we must check, among
many things, that thermal excitations of the system are not too probable. For a
harmonic oscillator, the first excited level start being thermally populated for a tem-
perature verifying ~ω/kBT ' 1. This limit is at T = 50 mK for a 1 GHz oscillator
typical of circuit QED. Dilution fridges can reach ∼ 20 mK routinely, which makes
them good tools to attain the quantum regime. Yet, the gap to thermal excitations is
narrow, and one must stay aware that bad thermalization or lowering of circuit char-
acteristic frequencies could bridge it. Thermal fluctuations are notoriously hard to
distinguish from quantum fluctuations, such that many quantum effects would then
be smeared.

Finally, the high frequencies3 question the lumped element approximation in use
throughout this manuscript. Retardation effects in electromagnetic signals appear
at lengths above ` = v/ω, v the wave velocity. In high impedance superconducting
chains, v ' c/10, such that ` ∼ 3 mm. While well above the µm size of a single
Josephson junction, arrays of 103 junctions or above will behave as waveguides rather
than electrical circuits.

Natural units

In the rest of the manuscript, a more convenient system of units is used, where
~ and 2e are set to one. This amounts to measuring all fluxes in unit of the
flux quantum Φq = ~/2e = 3.29× 10−16 T m2, and all impedances in units of the
resistance quantum, Rq = ~/(2e)2 = 1027Ω4. Using these units, the Hamiltonian

http://dx.doi.org/10.1103/PhysRevLett.10.486
http://dx.doi.org/10.1103/PhysRevLett.10.486
http://dx.doi.org/10.1002/cta.2359
http://dx.doi.org/10.1002/cta.2359
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(2.7) is recast in the usual harmonic oscillator form:

Ĥ = 1
2C n̂

2 + 1
2Lϕ̂

2 = ωp

(
â†â + 1

2

)
(2.12)

whereωp = 1/
√
LC

Z =
√
L/C

,

â† = 1/
√

2Z(ϕ̂− iZn̂)
â = 1/

√
2Z(ϕ̂+ iZn̂)

⇔

ϕ̂ =
√
Z/2(â† + â)

n̂ = i/
√

2Z(â† − â)
. (2.13)

From the last set of equations, we deduce that Z represents the zero point fluctuations
of the phase, since 〈0|ϕ̂2|0〉 = Z/2.
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3|Canonical quantization of large circuits

“Il se produit alors un système d’ondes statiques présentant des noeuds et des ventres,
ce qui ne contribue pas peu à créer l’atmosphère de la salle de danse.”

Boris Vian, L’Écume des Jours.

3.1 Many degrees of freedom

In the previous section, we quantized one degree of freedom of a superconducting
circuit. We could alternatively say we dealt with one quantum particle. To tackle the
quantum theory of a full circuit, we need a more systematic procedure. We construct a
classical Lagrangian for the circuit, keeping in mind the general idea that capacitance
energy is equivalent to a kinetic term, and that inductances are potential energies,
and may be non-linear. The main difficulty is that Kirchhoff’s law will introduce
redundancies that need to be accounted for. The method presented there1 is focused
on nodes of the circuit. A dual description focused on loops can be formulated2.

Method of nodes

Let us consider a generic circuit like the one on Fig. 3.1. Each branch carries a
flux defined via induction law, φ̇b = vb, vb the branch voltage. Kirchhoff’s loop rule
requires that the voltage drop along a loop in the circuit is zero. This is automatically
satisfied if branch fluxes derive from a discrete gradient, i.e. if we define nodes fluxes
such that for the branch b between nodes i and i+1, φb = φi+1−φi. The redundancy
in this description is eliminated by choosing a ground node, the flux of which is set
to 0.

The circuit dynamical variables can be packed into one vector of fluxes, ~φ. The
quadratic part of the Lagrangian is then built with a capacitance matrix C3, verifying Cij = Cji = −Cij , the capacitance between nodes i and j,

Cii = −
∑
j 6=i Cij .

(3.1)

Similar definitions hold for 1/L, the matrix of inverse inductances4. The quadratic
part of the circuit Lagrangian is then

L = 1
2
~̇φ
ᵀ
C ~̇φ− 1

2
~φ
ᵀ1/L~φ. (3.2)

Up until now, we ignored the possibility of an external magnetic flux threading a loop
of the circuit. This would modify Kirchhoff’s loop rule, which requires that the sum
of fluxes along a closed loop matches the external magnetic flux. This is taken into
account using a spanning tree for the network of capacitances: it is a set of branches
that connect every node to the ground through capacitance branches5, without mak-
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ing loops. Then, every inductance branch closes a loop in the spanning tree: the
external flux threading this loop is affected to this branch via a supplementary term∑

inductive branches b

1
Lb

(φi+1 − φi)Φext. (3.3)

This is equivalent to adding a generator to these branches. Finally, the non-quadratic
part of the Lagrangian, generated by the Josephson junctions, is simply added via
a cos (φi+1 − φi + Φext) term, with Φext still defined by the spanning tree. As an
example, the circuit from Fig. 3.1 is described by

L = C

2
~̇φ
ᵀ


2 −1 0 0 0
−1 3 −1 0 −1
0 −1 3 −1 0
0 0 −1 2 −1
0 −1 0 −1 2

 ~̇φ−
1

2L (φ4 − φ2 + Φext)2 + EJ cos (φ3 − φ1 + Φext) . (3.4)

where we assumed the same capacitance C for all capacitors. At last, it is clear that
φ5 has no potential energy: it is a cyclic variable in the sense of Lagrangian mechanics.
It can be replaced, as obvious from the circuit diagram itself, by a C/2 capacitance.

We can now return to the charge qBit circuit on Fig. 2.1, and derive from this
procedure Ec = 1/(Cg + CJ).

Hamiltonian form

We derive the classical Hamiltonian of the system by Legendre transform. The con-
jugate momenta to the phases are charges, defined by1

ni = ∂L
∂φ̇i

= Cij φ̇j (3.5)

which allows to compute the Hamiltonian

H = niφ̇i − L = 1
2~n

ᵀ
C−1~n+ 1

2
~φ
ᵀ1/L~φ+

∑
junctions

cos ∆φ. (3.6)

Canonical quantization is trivial, and simply promotes ni and φi to operators with a
commutator derived from the Poisson bracket, [φ̂, n̂] = i1̂. Although this expression
is quite general, the inverse capacitance matrix is often full, with no simple structure,
while C is often simpler to work with. It is then preferable to simplify the Lagrangian
first by finding the eigenmodes of its quadratic part2.

It is noteworthy that the charge offset can be incorporated in this quantization pro-
cedure, by adding ngiφ̇i term in the Lagrangian. This important feature is absent
from different quantization routes3.

Eigenmodes

The main difference between this electrokinetic Hamiltonian and some mechanical
system Hamiltonian is the presence of a matrix with off-diagonal terms in the kinetic
term. Thus, it is not enough to diagonalize one matrix to uncover the independent
eigenmodes of the system: we have to solve the generalized eigenvalue problem4,
which asks for P and a diagonal matrix ω such that

P
ᵀ
CP = 1 and 1/LP = CP ω2. (3.7)

http://dx.doi.org/10.1103/PhysRevLett.108.240502
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The problem is well defined only if both C and 1/L are symmetric and C is definite
positive. If one sets C = 1, we recover an eigenvalue problem, with P the matrix
of eigenvectors and ω2 the eigenvalues. Once provided with a solution P , it is clear
that the system can be rewritten in terms of eigenmodes, by the change of variables
P ~ϕ = ~φ in the Lagrangian1 leading to

L = 1
2
(
ϕ̇qϕ̇q − ω2

qϕqϕq
)
, (3.8)

which is now straightforward to convert into Hamiltonian form and diagonalize.

It is in fact guaranteed that such a P exists: since C is definite positive, it can be
written with a Gram matrix G, C = G ᵀG. Then, the generalized eigenvalue problem
can be recast into (

G−1 ᵀ1/LG−1) (GP ) = (GP ) ω2, (3.9)

a standard eigenvalue problem. Finally, since [P ᵀCP ,ω] = 0, P ᵀCP is diagonal.
It can furthermore be set to identity by a rescaling of the columns of P . Even if this
proof is constructive, it is in practice inefficient to solve an explicit problem.

Adding external fluxes or charge offsets do not pose any further difficulty, but it
is noteworthy that non-quadratic terms from Josephson potentials become quite in-
volved, at least for a general circuit.

3.2 Charge-boson model

EJ

Cg
Vg

CJ

0 Cc 1

Cg

L

C

2

Cg

L

C

3

Cg

qBit transmission line

Figure 3.2: The charge-boson
circuit. The site zero is the
atom-like degree of freedom,
capacitively coupled to a
high-impedance transmission
line, and subject to charge
noise via the generator Vg.

The most common setup to simulate light-matter coupling with superconducting
circuits is to couple a charge qBit, i.e. a superconducting island coupled to ground
with a Josephson junction in the non-linear regime, with a transmission line that
simulates the electromagnetic environment. The diagram for such a system is repre-
sented on Fig. 3.2. which has been successfully implemented experimentally2. Here,
the transmission line is represented in its lumped elements form. It could stand for a
regular line, a coaxial cable or a planar long resonator3,4. To achieve high coupling,
it is more efficient to actually design such a chain on chip, using large Josephson
junctions as inductors, thus drastically raising the chain impedance, and ultimately
its coupling to the impurity (cf. Sec. 3.3). Using arrays of Josephson junctions as a
meta-material is a very promissing approach5, thanks to the resulting high-impedance
as well as the tunability6 and bulk non-linearity7 they provide.

Before working out the details of this circuit, it is instructive to give a rough sketch of
the different physical scales we expect to appear. The discrete transmission line will
host propagative modes at low energy, with impedance Zc =

√
L/Cg. In the lowest

mode, all N sites oscillate in phase: the whole chain behaves as one island of effective
capacitance NCg, and inductance NL, thus oscillating at ωmin = 1/(N

√
LCg). At

http://dx.doi.org/10.1038/s41534-018-0104-0
http://dx.doi.org/10.1038/s41534-018-0104-0
http://dx.doi.org/10.1038/nphys3905
http://dx.doi.org/10.1038/nphys3905
http://dx.doi.org/10.1088/0953-2048/27/7/073001
http://dx.doi.org/10.1088/0953-2048/27/7/073001
http://dx.doi.org/10.1038/s41467-018-06142-z
http://dx.doi.org/10.1103/PhysRevB.98.094516
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πka

0

ωp

ω

Figure 3.3: The expected dis-
persion relation as a function
of adimensional wavenumber
(a is the size of a junction).
( ) ω = f(πka),
( ) Long wavelength ap-
proximation.

1 Or renormalized mass, in
particle physics language.

2 The comatrix of A is the
matrix of determinants of
submatrices formed by remov-
ing one line and one column
to A.

high frequency, the discrete chain has a natural cutoff at the Brillouin zone edge of
ωmax = 2/

√
LCg. With current technology, arrays of 103 − 104 sites can be nano-

fabricated, but the parasitic capacity of the junctions will impose a much lower band-
width to the system: at high frequency, neighboring sites oscillate in phase opposition,
at a frequency imposed by the plasma resonance of the junctions, ωp ' 1/

√
LC. As

we will see, the boundary condition on site 0 adds yet another high-frequency cutoff.
The corresponding dispersion relation is sketched on Fig. 3.3. The plasma pulsation
is usually around 20 GHz. The qBit characteristic frequency can be controlled using
a SQUID instead of a simple junction, which allows to swipe

√
EJEc across the range

1− 20 GHz.

Circuit Hamiltonian

We now apply the method of Sec. 3.1. Notations are taken from Fig. 3.2. Site 0 is
singled out, since we want to describe its coupling to the environment. Its coupling
energy (φ̇0 − φ̇1)2/2Cc is developed and splitted such that

L = (Cc + CJ) φ̇
2
0

2 + EJ cos(φ0)− Ccφ̇0φ̇1 + 1
2

(
~̇φ
ᵀ
C ~̇φ− ~φ ᵀ1/L~φ

)
, (3.10)

where ~φ = (φ1, φ2, . . .), and

C =


Cg + Cc + C −C
−C 2C + Cg −C

−C 2C + Cg −C
. . .

 , 1/L = 1
L


1 −1
−1 2 −1

−1 2 −1
. . .

 .
(3.11)

Let’s call P the solution to the generalized eigenvalue problem (3.7). The change of
variables ~φ = P ~ϕ brings the environment in diagonal form

L = (Cc + CJ) φ̇
2
0

2 + EJ cos(φ0)− Ccφ̇0P1`ϕ̇` + 1
2
(
ϕ̇kϕ̇k − ω2

kϕkϕk
)
. (3.12)

We will use P` as a shorthand for P1`. The conjugate momenta to φ0 and ϕk are n0 = (CJ + Cc)φ̇0 − CcP`ϕ̇`

nk = ϕ̇k − CcPkφ̇0
⇒ φ̇0 = n0 + CcP`n`

Cc + CJ − C2
cP`P`

. (3.13)

Reporting this in H provides, after some algebra:

H = φ̇0n0 + ϕ̇qnq − L

= (Cc + CJ) φ̇
2
0

2 − Ccφ̇0P`ϕ̇` + 1
2
(
ϕ̇kϕ̇k − ω2

kϕkϕk
)
− EJ cos(φ0)

= (n0 + CcP`n`)2

2(Cc + CJ − C2
cP`P`)

− EJ cos(φ0) + 1
2
(
nknk + ω2

kϕkϕk
)
. (3.14)

This Hamiltonian has a clear interpretation: the two first terms describe the atom-like
degree of freedom, (n̂0, ϕ̂0), with a renormalized capacitance1 Ceff = Cc+CJ−C2

cP`P`.
It has a minimal coupling to a scalar electromagnetic field, represented by the third
term.

The P`P` term can be expressed in terms of capacitances. Since P ᵀCP = 1, P`P` =
(C−1)00. To extract a specific element of a matrix inverse, we make use of Cramer’s
rule, C−1 = C ᵀ

o / det C, Co the comatrix of C2. We first assume that Cc = C, and
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will correct this using Sherman-Morrison formula at the end. Let Dn be the following
determinant:

Dn =

∣∣∣∣∣∣∣∣
2C + Cg −C
−C 2C + Cg −C

−C 2C + Cg
. . .

∣∣∣∣∣∣∣∣
n (3.15)

Then, Cramer’s rule asserts that C−1
00 = Dn−1/Dn (for n sites). Expanding the first

line of the determinant, we obtain the recursion Dn = (2C + Cg)Dn−1 − C2Dn−2.
To find the n → ∞ limit, we reduce the recursion to degree one by defining un =
Dn/Dn−1. Then, un = (2C + Cg)− C2/un−1. If this sequence has a limit, it verifies
u∞ = (2C +Cg)−C2/u∞, from which we deduce u∞ = C +Cg(1 +

√
1 + 4C/Cg)/2.

Finally, Sherman-Morrison formula corrects the inverse of a matrix A under a rank
one perturbation ~u by:

(
A + ~u~u

ᵀ)−1 = A−1 − A−1~u~u ᵀA−1

1 + u ᵀA−1~u
. (3.16)

Here, ~u = (Cc−C, 0, . . .), such that the correction simply is C−1
00 = Cc−C+C−1

00 (Cc =
C)1. Finally,

Ceff = Cc + CJ −
C2

c

Cc + Cg
2

(
1 +

√
1 + 4C

Cg

) . (3.17)

The diamagnetic term

When facing a minimal coupling Hamiltonian like (3.14), a standard treatment in
atomic physics is to expand the momenta squared as a kinetic energy, a linear atom-
field coupling, and

C2
c

Ceff
(P`n`)2, (3.18)

the diamagnetic term2. This last part is then removed, since it is irrelevant in pertur-
bation theory. Nonetheless, its importance has been widely debated3: it is especially
necessary to preserve the gauge invariance of the theory. The question of its relevance
was raised again in the context of the Dicke model: the ultra-strong coupling between
an assembly of electric dipoles and a cavity mode was believed to lead to a superra-
diant phase transition4, that could be prevented by taking the diamagnetic term into
account5.

In our context, the diamagnetic term has been suspected to modify the coupling
strength6 and to regularize the continuum limit of the theory7. To avoid any pitfall,
we will now take a detour to slightly reformulate the model to automatically take care
of the diamagnetic term. In practice, it only adds quadratic corrections to the free
field Hamiltonian: it must be possible to find new field eigenmodes that account for
it. In fact, it is even possible to massage it into the diagonalization we already did.
We will then be able to discuss the impact of the diamagnetic term on the system
behavior.

Extended circuit Hamiltonian

In contrast to Eq. (3.10), we now include the site 0 in the capacitance and inductance
matrices, in order to perform the complete diagonalisation in one shot. We will be
able to separate again the impurity site afterwards. The Lagrangian assumes the form

L = 1
2

(
~̇φ
ᵀ
C ~̇φ− ~φ ᵀ1/L~φ

)
+ EJ cos(φ0) (3.19)
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k
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ωk/2(â†

k
− â

k
)

.

where ~φ = (φ0, φ1, . . .), and

C =


CJ + Cc −Cc

−Cc Cg + Cc + C −C
−C 2C + Cg −C

−C 2C + Cg −C
. . .

 , 1/L = 1
L


0

1 −1
−1 2 −1

−1 2 −1
. . .

 . (3.20)

Still calling P the solution to the generalized eigenvalue problem (3.7), we can jump
directly to the Hamiltonian form

Ĥ = 1
2
(
n̂kn̂k + ω2

kϕ̂kϕ̂k
)
− EJ cos (P0`ϕ̂`) . (3.21)

While exact, this expression is quite obscure, since the impurity mode is no longer
apparent. We have to detail the structure of P to understand it. Eq. (3.7) can be
expanded, row by row, into1

row i = 0 : P1` = CJ + Cc
Cc

P0` or ω` = 0. (3.22)

row i = 1 : P2` = P1`

(
1− Cf

C

ω2
`

ω2
0 − ω2

`

)
, (3.23)

with Cf = CcCJ
Cc + CJ

+ Cg and ω0 = 1√
LC

.

rows i > 1 : Pi+1, ` + Pi−1, ` = Pi`

(
2− Cg

C

ω2
`

ω2
0 − ω2

`

)
. (3.24)

Let first inspect the ω` = 0 eigenvalue. The eigenproblem reduces to (1/L)ij Pj0 = 0.
Then, P10 = P20, and the bulk relation reduces to Pi+1, 0 + Pi−1, 0 = 2Pi0. By
recursion, Pi0 = P10 ∀i > 1. If we also consider that P ᵀCP = 1, the resulting row
vector is

P00 = 1√
CJ + Cc

, and Pi0 = 0 ∀i > 0. (3.25)

This means that the zero frequency mode is completely localized on site 0: we found
the qBit mode. This is a hint that we should change our variables, since P0`ϕ` is the
qBit degree of freedom. Let us use again the shorthand P0` = P`, and write2θ̂ = P`ϕ̂`

θ̂` = ϕ̂` ∀` > 0
,

N̂ = n̂0/P0

N̂` = n̂` − P`n̂0/P0 ∀` > 0
. (3.26)

Inverting these equations gives n̂2
0 = (P0N̂)2, n̂2

` = (N̂` + P`N̂)2 ∀` > 0, and most
importantly, ϕ̂2

0 = (θ̂−P`θ̂`)2/P 2
0 . This residue of the diamagnetic term is no trouble,

since ω0 = 0. It disappears of the Hamiltonian, which assumes the form

Ĥ = P`P`
2 N̂2 − EJ cos(θ̂) + N̂PkN̂k + 1

2

(
N̂qN̂q + ωq θ̂q θ̂q

)
. (3.27)

We recognize an atom-like part, with renormalized capacitance 1/P`P`, capacitively
coupled3 to a scalar electromagnetic field. The diamagnetic term has effectively been
absorbed into the P`. One could track down where exactly the P matrix has been
modified: the two differences are the expression of the qBit renormalized capacitance,
and the Cf capacitance, that would simply be Cf = Cc + Cg, were the diamagnetic
term neglected.

We can at last rewrite the field in terms of creation and annihilation operators4, and
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(
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2
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Cg

C

ω2
`

ω2
0 − ω

2
`

.

reintroduce the offset charge:

Ĥ = Ec

2

(
N̂ − ng

)2
− EJ cos(θ̂) + i(N̂ − ng)

∑
k

gk(â†k − âk) +
∑
k

ωkâ
†
kâk, (3.28)

where we called gk = Pk
√
ωk/2 the coupling to mode k and Ec the junction effective

charging energy. The task remains to find an expression for these parameters as func-
tion of the microscopic capacitances and inductances. The Hamiltonian Eq. (3.28)
generalizes the spin-boson model to a multi-state version. We nickname it the charge-
boson model. It has not been studied so far in the litterature.

Expression for the coupling strength

The system is almost invariant by discrete translations1, apart from the boundary
conditions. We then expect a static wave solution:

Pi` = N` cos ((i− 1)k` + δ`) ∀i > 0. (3.29)

The equation for site 0 is already given by (3.22). k` is a wavenumber, those exact
determination depends on the unspecified other boundary condition, at the other end
of the chain. We expect that in the N → ∞ limit, it varies continuously in the
Brillouin zone, i.e. k` ∈ [0, π). δ` is a phase shift at reflection, mixing ingoing and
outgoing waves, and N` is a norm.

Concerning the field modes, we obtain their dispersion relation by injecting the P

ansatz in the bulk relation, Eq. (3.24), to obtain2

ω2
` = 4

LCg

sin2(k`/2)
1 + 4C

Cg
sin2(k`/2)

. (3.30)

This results agrees with the sketch of the Fig. 3.3, and allows to compute precisely
the plasma pulsation to be ωp = ω0/

√
1 + Cg/4C. The phase shift is then obtained

by plugging the ansatz in the boundary condition (3.23). After some trigonometry,
we get

tan(δ`) = tan
(
k`
2

)(
2Cf

Cg
− 1
)
. (3.31)

Finally, the ansatz is completely determined by finding the norms N` via the normal-
ization P ᵀCP = 1. For q, ` 6= 0, it writes

PiqCijPj` =
P1q ((C + Cc + Cg)P1` − CcP0` − CP2`)

+
N∑
i=2

Piq

(
(2C + Cg)Pi` − CPi`

(
2− Cg

C

ω2
`

ω2
0 − ω2

`

))
(3.32)

=
(
Cg

N∑
i=1

PiqPi` + CcCJ

Cc + CJ
P1qP1`

)(
1 + 4C

Cg
sin2(k`/2)

)
= δk`. (3.33)

We retain only terms scaling as N , neglecting the others. In this large chain limit,
we expand

N∑
i=1

PiqPi` = NkN`
2

N∑
i=1

cos(i(kq + k`)) cos(δk + δ`)− sin(i(kq + k`)) sin(δk + δ`)

+ cos(i(kq − k`)) cos(δk − δ`)− sin(i(kq − k`)) sin(δk − δ`)
(3.34)



canonical quantization of large circuits 32

1 See Eq. (3.28) for gk defini-
tion.

2 Using the integral definition
N∑
`=1

F (k`) =
N

π

ˆ π

0
F (k)dk .

3 This linearity labels our
environment as Ohmic. Other
possibilities exists, cf.
U. Weiss. 2008. Quantum
Dissipative Systems.
4 Reading the last expression,

α =

√
L

Cg

(
Cc

Cc + CJ

)2
.

5 J. J. García-Ripoll, B. Per-
opadre, & S. De Liberato.
2015. Sci. Rep. 5, 16055.

6 We stress that the weight of
the diamagnetic term is not
an independent parameter
in this model, and cannot be
tuned.

7 Especially, both δ` and
1/ωχ vanish if 2Cf = Cg.

8 For pedagogical text on
the physical content of di-
vergences and and historical
approach, cf.
P. W. Milonni. 2013. The
Quantum Vacuum;
D. Kaiser. 2005. Drawing
Theories Apart.

Since
∑N
i=1 cos(jk)→ −1/2 +Nδ(k) when N →∞, we only retain

N2
` = 2

N

1
Cg + 4C sin2(k`/2)

. (3.35)

We now have all the components of P`:

P 2
0 = 1

Cc + CJ
, and P 2

` = 2
NCg

(
Cc

Cc + CJ

)2 1(
1 + 4C

Cg
sin2(k`/2)

)(
1 +

(
2Cf
Cg
− 1
)2

tan2(k`/2)
) . (3.36)

3.3 Spectral density

Quite often, one is only concerned with the N → ∞ limit, where the environment
is composed of a continuum of modes. Then, its characteristics can be packed
into one function, the spectral density, defined as J(ω) = π

∑
` g

2
` δ(ω − ω`)1. All

sums over modes can be recast as integrals over frequency2, which will include
J(ω) = Ng2(ω)dk/dω in the integrand. J will be used intensively in Chap. 4.
Turning our previous expressions into functions of ω requires some algebra. Using
Eqs. (3.30) & (3.35),

N2
` = 2

NCg

ω2
0 − ω2

`

ω2
0

. (3.37)

Aside, tan2(k`/2) = sin2(k`/2)/(1 − sin2(k`/2)). Using the plasma pulsation expres-
sion,

cos2(δ`) =
ω2

p − ω2
`

ω2
p − (1− χ)ω2

`

, χ =
(

2Cf

Cg
− 1
)2
/(1 + 4C/Cg). (3.38)

The inverse group velocity is also obtained through the dispersion relation:

2 d
dω

(
arcsin

√
Cg

4C
ω2
`

ω2
0
− ω2

`

)
= 1√

1 + 4C/Cg

2ω2
0

(ω2
0 − ω2

` )
√
ω2

p − ω2
`

. (3.39)

Combining these results, the spectral density is

J(ω) =
(

Cc

Cc + CJ

)2
√

L

Cg
ω

√
1− ω2/ω2

p

1 + ω2
(
1/ω2

χ − 1/ω2
p
) , 1/ω2

χ = LCg

(
Cf

Cg
− 1

2

)2
.

(3.40)
At low frequencies, the spectral density is linear with ω3, with a slope 2πα, α being
the coupling strength4. It is proportional to the line impedance, and is maximized
when Cc � CJ. One can verify that taking the diamagnetic term into account reduced
α5,6.

The rest of the expression provides a high-frequency cutoff. Of course, the discrete
chain model imposes a first cutoff, pinpointed in the next paragraph. The plasma
frequency imposes a second one, usually much lower. Finally, a third characteristic
frequency appears, related to the phase shift, ωχ7.

Continuum limit

The value and form of the cutoff is most important to prevent diverging integrals,
especially in perturbation theory. It is well known that these divergences plagued the
early days of quantum electrodynamics8. It is then instructive to investigate the limit
of no discretization of the scalar electromagnetic field. This would correspond to the
environment being an infinite, continuous waveguide.

http://dx.doi.org/10.1038/srep16055
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Figure 3.4: The coupling
strength as a function of Cc,
saturating at αmax when
Cc →∞.

Let’s simplify our previous computation of J in this case. We take C = 0 to neglect
plasma oscillations (ωp →∞), which reduces the dispersion relation to the standard
optical branch, ω = ωm sin(k/2), with ωm = 2/

√
LCg the maximum frequency. The

spectral density follows:

J(ω) =
(

Cc

Cc + CJ

)2
√

L

Cg
ω

√
1− ω2/ω2

m
1 + (χ− 1)ω2/ω2

m
. (3.41)

We must have ωm → ∞ in the continuum limit, while the chain impedance Zc =√
L/Cg must remain finite. We then scale both L and Cg by an adimensional scale

ε1, and take the ε→ 0 limit. Then,

ωm/
√
χ− 1 −→

ε→0
ωM = 1

Zc

Cc + CJ

CcCJ
, (3.42)

and the spectral density acquires a finite, natural Lorentzian cutoff:

J(ω) = 2παω
1 + ω2/ω2

M

, α = Zc

2π

(
Cc

Cc + CJ

)2
. (3.43)

This cutoff has been provided by the boundary condition of the eigenvalue problem,
and can be seen as being partly related to the diamagnetic term2.

Effective charging energy

We now turn to the other emergent parameter in the charge-boson Hamiltonian of
Eq. (3.28), the effective charging Ec. In terms of our microscopic model parameters,
it writes

Ec = 1
Cc + CJ

+ 2
π

ˆ ∞
0

J(ω)
ω

dω . (3.44)

It is a sum of on-site charging energy and a circuit charging energy, that grows at
high-coupling. As we will see, this prevents us to set α, Ec and ωM as independent
parameters.

Working in the continuum limit provided by Eq. (3.43), the integral is evaluated to

4α
ˆ ∞

0

dω
1 + ω2/ω2

M
= 2παωM = Cc

CJ

1
Cc + CJ

. (3.45)

The final result is quite simple, we have Ec = 1/CJ. The renormalized charging
energy especially does not depend on the coupling capacitor, Cc. Furthermore, the
charge-boson parameters are related by

2πα = Cc

Cc + CJ

Ec

ωM
. (3.46)

The coupling strength saturates at a value αmax = Ec/(2πωM ), as illustrated on
Fig. 3.4. The bound is reached for Cc � CJ. In this limit, the coupling strength
further simplifies to 2πα = Zc. The exact form of the bound is of course linked to
the cutoff form, and would be modified by numerical prefactor when considering e.g.
a plasma pulsation cutoff. Yet, the existence of a maximum coupling at given Ec

and ωM is a general result. To reach higher couplings, only two routes are possible.
Lowering the cutoff drives the system out of the universal regime defined by ωM

greater any energy scale, to a trivial regime where the atom-like element decouples
from the environment, when

√
EJEc � ωM. Crancking up Ec would lead to the same

difficulty, and would strengthen charge noise on top of it.

http://dx.doi.org/10.1103/PhysRevLett.119.073601
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In this chapter, we have reduced the microscopic model presented by Fig. 3.2, with
many various microscopic parameters, to a generic charge-boson Hamiltonian char-
acterized by a simple spectral density (Ohmic with ultraviolet cutoff), and only two
independent parameters. The next chapter will clarify the connection with other well-
known many-body models from the litterature, summarize the main results from these
models, and inquire about the importance of the bound coupling strength concerning
the apparition of phase transitions in experimental setups simulating the spin-boson
system.



“I won’t quote Aristotle, but
... – Who ? – You don’t know
him, don’t worry – Isn’t he
the guy who wrote Poetics ?
– Well ... yes. Yes he is. – I
knew that. – Did you read it
? – No, I don’t know how to
read.”

1 The environment is here
bosonic, but examples of
fermionic environments are
numerous, e.g. the Kondo
model.

2 M. A. Schlosshauer. 2007.
Decoherence.

3 Equivalent to a charge qBit.

4 A. J. Leggett,
S. Chakravarty, et al. 1987.
Rev. Mod. Phys. 59, 1.

5 R. P. Feynman & F. L.
Vernon. 1963. Ann. Phys. 24,
118.

6 ‘traced out’ when working
in density matrix framework,
or ‘integrated over’ when
dealing with path integrals.

7 We again use Einstein’s sum
convention in intermediate
computations.

4|Review of impurity models

“Je vais pas vous citer Aristote ... – Qui ça ? – Aristote. Non non, vous connaissez pas,
c’est pas grave. – C’est pas celui qui a écrit La Poétique ? – Euh ... Si. Si, carrément. –

Non, mais je savais, ça. – Mais vous l’avez lue ? – Non, je sais pas lire.”

Astier, Kaamelott.

The charge-boson Hamiltonian established from a microscopic model (cf. Eq. (3.28))
is an example of an impurity model, where a local degree of freedom is coupled to a
field made of many-degrees of freedom1. It is thus closely related to a whole family
of impurity models well known from the litterature, especially the spin-boson and the
boundary sine-Gordon models. In this chapter, we review these connections, and the
main results known on these theoretical neighbors.

Dissipative models were historically introduced to explore the notion of quantum
dissipation2, which studies how quantum effects such as wavefunction coherence can
be lost when a macroscopic number of degrees of freedom interact together. In the
thermodynamic limit, the bosonic field — often called the environment in this context
— act as a reservoir, which absorbs energy and quantum coherence from the charge
qBit without ever giving it back. If the qBit/field interaction is strong enough, a
phase transition is encountered, which discriminates between quantum and classical
behaviors.

Evidences for these critical phenomena are still hard to find in the laboratory, since
in situ control of the system parameters is difficult to achieve. Thus an experimental
platform that is easily tunable and can display these quantum phase transitions, i.e.
a simulator, is a critical tool to explore this physics.

4.1 Dissipative environments

The dissipative properties of a macroscopic number of harmonic oscillators linearly
coupled to a local degree of freedom, harmonic oscillator, spin or quantum rotor3, has
been explored first by Caldeira & Leggett4. They were following a pioneering work
of Feynman & Vernon5. The first take home message of these early studies is that,
due to linear coupling, the dynamic of the environment can be exactly eliminated6,
and replaced by an effective self-interaction of the local degree of freedom. We will
show this at equation of motion level. Let’s consider the charge-boson Hamiltonian,
denoting the superconducting phase and charge as ϕ̂ and n̂:

Ĥ = Ec

2 n̂2 − EJ cos(ϕ̂) + in̂
∑
k

gk(â†k − âk) +
∑
k

ωkâ
†
kâk, (4.1)

The equation of motion for ϕ̂ is provided by Heisenberg’s equation7:

˙̂ϕ = i[Ĥ, ϕ̂] = Ecn̂+ igk(â†k − âk). (4.2)

http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1016/0003-4916(63)90068-X
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1 The convention is

f(t) =
ˆ
R

dω
2π
e−iωtf(ω).

2 This choice of regularization
will be made clearer in the
context of Green’s functions,
cf. Sec. 8.2.

3 W. Appel. 2007. Math-
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Physicists.

4 This is not to say that
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the system: Eq. 4.11 still
represents a hard problem.

EJ

Cc Zc

Figure 4.1: An Ohmic bath of
oscillators as the environment
is equivalent to a Ohmic
resistor.

The bosonic field equation of motion, in turn, is:

˙̂ak = gkn̂− iωkâk, ˙̂a†k = gkn̂+ iωkâ
†
k. (4.3)

By Fourier transform1, in the frequency domain,

âk(ω) = igkn̂

ω − ωk
, â†k(ω) = igkn̂

ω + ωk
(4.4)

which is plugged back into Eq. (4.2), resulting in

−iωϕ̂(ω) =
(
Ec −

∑
k

2g2
kωk

ω2
k − ω2

)
n̂(ω). (4.5)

This sum is evaluated in the continuum limit, corresponding here to a thermodynamic
limit for the bosonic bath, with J(ω) = 2παω.∑

k

2g2
kωk

ω2
k − ω2 = 4α

ˆ ∞
0

dν ν2

ν2 − ω2 = 4αωc + 4α
ˆ ∞

0
dν ω2

ν2 − ω2 . (4.6)

The real part was ultraviolet-divergent, we parametrized it using a cutoff ωc. It
renormalizes the charging energy, Ec → Ec−4αωc. The imaginary part is finite when
ωc →∞, but has poles in ω = ±ν. We evaluate it by adding a small imaginary part
to the frequency ω → ω + iε, ε > 02. We then evaluate

ˆ ∞
0

dν
ν2 − (ω + iε)2 = 1

2ω

ˆ ∞
0

(
1

ν − ω − iε
− 1
ν + ω + iε

)
dν . (4.7)

We make use of the Sokhotski-Plemelj formula3

lim
ε→0+

1
x+ iε

= p.v.
(

1
x

)
− iπδ(x), (4.8)

which holds in the sense of distributions. The first fraction provides
ˆ ∞

0

dν
ν − ω − iε

=
 ∞

0

dν
ν − ω

+ iπ

ˆ ∞
0

δ(ν − ω)dν. (4.9)

The real part of the two fractions cancels, and the imaginary parts combine to give∑
k

2g2
kωk

ω2
k − ω2 = −(−iω)2πα. (4.10)

Back to ϕ equation of motion, since ˙̂n = −EJ sin ϕ̂, using an inverse Fourier transform,
the full equation of motion is

¨̂ϕ+
(
EJEc + 2παEJ

d
dt

)
sin ϕ̂ = 0 (4.11)

This equation of motion is the same as the classical electrokinetic equation of the
circuit on Fig. 4.1, where the chain has been replaced by a purely Ohmic resistor of
resistance Zc = 2πα (and CJ � Cc suppressed)4. The damped harmonic oscillator
is finally retrieved by sinϕ ' ϕ, with frequency ω0 =

√
EJEc, and quality factor

Q = Z0/Zc, Z0 =
√
Ec/EJ. Strong dissipation occurs if Q� 1, i.e. Zc � Z0.

4.2 Spin-boson model

When the superconducting island of Fig. 3.2 circuit is biased in charge, with a result-
ing charge ng = VgCg, the Lagrangian is supplemented with a −ngφ̇0 term. In turn,
the Hamiltonian form is modified by the substitution n̂` → n̂` +P`ng. The change of
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1 Since [σ̂i, σ̂j ] = 2iεijkσ̂k,
changing the sign of two
Pauli matrices preserves the
commutation relations.

2 R. A. Marcus. 1956. J.
Chem. Phys. 24, 966.
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x

V

σ̂x

|↓〉 |↑〉

Figure 4.2: Tunneling process
of a particle (•) in a double-
well potential V (x). σ̂x hops
between left and right states,
denoted |↑〉 and |↓〉.

variables performed to isolate the charge degree of freedom is not affected by this new
term; the final result is modified by the substitution N̂ → N̂ + ng. The Hamiltonian
is then

Ĥ = Ec

2 (n̂− ng)2 − EJ cos(ϕ̂) + i(n̂− ng)gk(â†k − âk) + ωkâ
†
kâk. (4.12)

Depending on the EJ/Ec ratio, the terminal junction physics is quite different. As
already discussed in Sec. 2.1, when EJ/Ec � 1, the junction is very sensitive to
external charge ng. At ng = 1/2, the charge states |n = 0〉 and |n = 1〉 are almost
degenerate, while the other charge states are well separated in energy. It is acceptable
to truncate the Hilbert space to these states only. If Π̂ is the projector for the
truncation,

Π̂(n̂− 1/2)Π̂ = −σ̂z/2 and Π̂(cos ϕ̂)Π̂ = σ̂x/2. (4.13)

The charging energy reduces to a meaningless constant. We absorb the minuses into
a redefinition of Pauli matrices1, and obtain

Ĥ = EJ

2 σ̂x + i

2 σ̂z gk(â†k − âk) + ωkâ
†
kâk. (4.14)

This is the famous spin-boson Hamiltonian. The two-level approximation is so
ubiquitous in quantum physics that it appears in many occasions. One can list many
quantum chemistry processes2, like the inversion of NH3 molecule tetrahedron, flavor
oscillations of mesons or neutrinos, or small particle tunneling in metals, as applica-
tions of the spin-boson model.

The model phenomenology is the following. The two eigenstates of σ̂z, often denoted
|↓〉 and |↑〉, can be pictured as spatial states located at the left and right bottom of a
double well. σ̂x is responsible for tunnel effect, a drastic quantum effect which turns
the ground state into a superposition of left and right states. When decoupled from
the environment, eigenstates are binding and anti-binding orbitals, (|↑〉+ |↓〉)/

√
2 and

(|↑〉 − |↓〉)/
√

2, separated by an energy EJ.
The environment interacts via σ̂z, which means it works against the tunnel effect,

and tries to locate the system into one of the two wells. Since the whole system
is symmetric under |↓〉 ↔ |↑〉, such a localizationn would break a symmetry of the
Hamiltonian (4.14). Should it happen, a phase transition must separate the localized
and delocalized behavior. We can expect the binding/anti-binding energy separation
E?J

3 to vanish in the localized phase, since left and right orbitals become uncoupled.
The situation is summarized on Fig. 4.2.

Silbey-Harris ansatz

When EJ = 0, the Hamiltonian (4.14) is exactly solvable. The ground state is
degenerate, |↑〉 or |↓〉, together with a displaced bosonic vacuum. Let us rewrite the
Hamiltonian at EJ = 0 in this displaced basis, using the unitary transformation

Û = exp
(
− i2 σ̂z fk(â†k + âk)

)
. (4.15)

The fk will be determined in order to diagonalize the problem. One can check that
Û†Û = 1̂. If one solves the spectrum of Ĥ ′ = Û†ĤÛ , by finding its eigenstates |E′〉,
Ĥ has |E〉 = Û |E′〉 as eigenstates, with same spectrum as Ĥ ′. In the displaced basis,

Ĥ ′(EJ = 0) = ωkâ
†
kâk + i

2 σ̂z(gk − ωkfk)(â†k − âk) + 1
4fk(ωkfk − 2gk). (4.16)

The problem is solved by fk = gk/ωk. The vacuum is then a coherent state.

http://dx.doi.org/10.1063/1.1742723
http://dx.doi.org/10.1063/1.1742723
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operators.

5 M. Le Bellac. 2006. Quan-
tum Physics.

6 More advanced versions of
the variational principle have
been developed, especially at
finite temperature, cf.
R. Feynman. 1972. Statisti-
cal Mechanics;
J. da Providencia & C. Fiol-
hais. 1987. Eur. J. Phys. 8,
12.
7 The expectation value is
simple to evaluate with

eαâ
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The case with non-zero tunneling is much richer. Perturbation theory is a natural
first attempt to describe the effect of the environment on the system. Let us compute
the correction to E?J , the energy separation between binding and anti-binding orbitals.
The coupling term is treated as a perturbation. At first order, the correction is zero.
The second order is given by

∆E± = 1
4
∑
k

g2
k

EJ ∓ ωk
, (4.17)

where ∆E± is the correction to binding and anti-binding energy respectively. We
take the continuum limit of bosonic modes and Ohmic dispersion1, resulting in

E?J = EJ + ∆E+ −∆E− = EJ

(
1− α

ˆ ∞
0

x2

x2 − 1dx +O
(
α2)) . (4.18)

As expected, the energy gap is reduced by the environment, and the result organizes
itself as a perturbation series in α. The integral is divergent in the ultraviolet region.
Realistic models come with built-in ultraviolet cutoffs, as we saw in Sec. 3.3, and we
expect its value to be relevant to our computation. We do not expect bare perturba-
tion theory to reveal a phase transition anyway, so we will not deal with the integral
now: we turn to another method.

Another idea, first implemented by Silbey & Harris2, is to build on the interpretation
given by the exact diagonalisation we previously performed. We saw that the two left
and right states dress with coherent states of the bosonic field, an image often found
when dealing with quasi-particles called polarons3. We want to understand how this
cloud of displaced bosons change when tunneling is turned on. Let us first express
the tunneling term in the displaced basis:

Û†σ̂xÛ = e
i
2 σ̂zB̂σ̂xe

− i
2 σ̂zB̂ , (4.19)

where B̂ = fk(â†k + âk), the bosonic part of the displacement, commutes with any σ̂i.
The displacement formula gives4

e
i
2 σ̂zB̂σ̂xe

− i
2 σ̂zB̂

= σ̂x − iB̂[σ̂x,
σ̂z
2 ] + 1

2! (−iB̂)2
[
[σ̂x,

σ̂z
2 ], σ̂z2

]
+ . . .

= σ̂x

(
1− 1

2! B̂
2 + . . .

)
− σ̂y

(
B̂ − 1

3! B̂
3 + . . .

)
= σ̂+e

iB̂ + σ̂−e
−iB̂ . (4.20)

Then,

Ĥ ′ = EJ

2

(
σ̂+e

iB̂ + σ̂−e
−iB̂

)
+ i

2 σ̂z(gk−ωkfk)(â†k− âk) +ωkâ
†
kâk + 1

4fk(ωkfk− 2gk).
(4.21)

There no longer is an exact solution for the fk; we can choose them via the variational
method5, that consists in minimizing the ground state expectation energy with respect
to the parameters of a family of trial states6. The trial state is Û |0,−〉, where |0,±〉 =
(|↑〉 ± |↓〉)/

√
2⊗ |0bosons〉. We first compute the ground state expected energy7

〈0,−|Û†ĤÛ |0,−〉 = 〈0,−|Ĥ ′|0,−〉 = −EJ

2 e−f`f`/2 + 1
4fk(ωkfk − gk), (4.22)

And the variational principle translates as

∂

∂fk
〈0,−|Ĥ ′|0,−〉 = 0 ⇒ fk = gk

ωk + EJe−f`f`/2
. (4.23)

http://dx.doi.org/10.1063/1.447055
http://dx.doi.org/10.1063/PT.3.2735
http://dx.doi.org/10.1063/PT.3.2735
http://dx.doi.org/10.1088/0143-0807/8/1/004
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This is a self-consistency equation for the fk. As a matter of fact, several methods
lead to this same equation; self-consistent Hartree-Fock approximation would provide
a similar result, as well as enforcing that the one excitation spectrum is orthogonal to
the ground state, which constitute an avenue to improve this ansatz systematically1.

The self-consistent equation can be rewritten on the effective energy gap:

E?J = 〈0,+|Ĥ ′|0,+〉 − 〈0,−|Ĥ ′|0,−〉 = EJe
−f`f`/2, (4.24)

Plugging in Eq. (4.23),

E?J = EJ exp
(
−1

2
∑
k

g2
k

(ωk + E?J)2

)
. (4.25)

The sum is evaluated in the continuum limit. The cutoff, noted ωc, is a relevant
scale, as we mentionned earlier. We replace the Lorentzian cutoff of Sec. 3.3 by a
hard cutoff. One can check this simplification does not change the ωc � EJ limit.
Then,

−1
2
∑
k

g2
k

(ωk + E?J)2 = −α
ˆ ωc/E

?
J

0

x

(1 + x)2 dx = α

(
ωc

ωc + E?J
− ln

(
1 + ωc

E?J

))
.

(4.26)
Note that Eq. (4.23) recovers the EJ = 0 case we previously examined. With this
simpler solution for the fk, the integral of Eq. (4.26) would have been infrared diver-
gent: the self-consistency provides a low energy cutoff that would have been absent
of a perturbative approach in EJ. In the limit ωc � EJ > E?J (and e ' 1), the
self-consistent equation can be solved, to

E?J = EJ

(
ωc
EJ

) α
α−1

. (4.27)

This renormalized tunneling amplitude E?J is plotted in Fig. 4.2. At α = 12, provided
that ωc > EJ, it vanishes, faster than any power law. A transition occurs, between a
delocalized quantum particle that tunnels (even slightly) between |↑〉 and |↓〉 states,
such that the ground state is (anti)-symmetric, and a localized particle prevented to
tunnel due to the strong coupling to the environment. In this phase, the left-right
symmetry breaks. This ansatz method to diagnose a transition will be put to work
many times in this manuscript, albeit in different contexts. After the transition, our
ansatz breaks down, and cannot describe the system anymore: symmetry breaking
must be enforced on the ansatz to go on.

The spin-boson model has been studied in much more detail in the litterature. The
time-resolved spin dynamics is interesting to analyse, as it changes from under-
damped to over-damped at α = 1/23, a phenomenon reminiscent of classical physics.
Other dissipative environment, especially sub-Ohmic ones, also provide different crit-
ical phenomena4 and spin dynamics, but no superconducting circuit design is known
to produce such dispersion relations. We will now return to the full charge-boson
problem, to inquire the fate of the localization transition when the two-levels approx-
imation fails.

4.3 Numerical renormalization group

In the derivation of the spin-boson Hamiltonian from the microscopic circuit model,
we projected out all charge states other than |n = 0〉 and |n = 1〉. We argued that
in the EJ/Ec � 1 limit, these eliminated states are higher in energy, and cannot be
accessed.

http://dx.doi.org/10.1103/PhysRevB.97.115157
http://dx.doi.org/10.1103/PhysRevB.30.464
http://dx.doi.org/10.1103/PhysRevB.30.464
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/PhysRevB.84.155110
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One could object that in quantum mechanics, classically inaccessible states can signif-
icantly contribute to the physics at hands. Heisenberg’s undetermination on energy,
∆E∆t > ~/2, authorizes the system to hop to a forbidden state for a small time, an
event called a virtual process. As an example, in QED, virtual photons are respon-
sible for electron-electron scattering. In condensed matter, a famous example is the
reduction of the Anderson model to the Kondo model, where virtual transitions of
the d-orbital to doubly occupied or empty state provides a mechanism for spin flips1.
The Schieffer-Wolff transformation2 allows a perturbative treatment of these virtual
processes at the Hamiltonian level.

In the charge-boson Hamiltonian, only cos ϕ̂ allows transitions to higher charge states.
At first order, its projection on the spin Hilbert space only produces a (EJ/2Ec)1̂
term, that does not change the physics. We then have confidence that the spin-
boson analysis stays relevant at small but finite EJ/Ec. We then expect the critical
point of the spin-boson localization transition to extend into a vertical critical line in
the charge-boson phase diagram, see Fig. 4.3. In the opposite limit, EJ/Ec � 1, the
charge qBit reduces to a harmonic oscillator, as we discussed in Sec. 2.2. In this limit,
all charge states are accessible, and are close enough in energy for their discreteness
not to be observed anymore. The model is purely harmonic, and no phase transition
occurs. In between these two limits, the spin-boson paradigm must lose its relevance:
to understand how, we would like to follow the transition line to arbitrary values of
EJ/Ec.

To do so, it is possible to extend the Silbey-Harris ansatz to charge states3. We will
rather use a numerical method devised to investigate phase transitions of impurity
models, the Numerical renormalization Group. The method builds on Wilson’s
understanding of the renormalization group4 to avoid a perturbative treatment of the
renormalization, and instead follows numerically the renormalization flow. It was first
used to study the Kondo problem5. It was the first method to describe correctly the
strong coupling limit of the model.

The method employs a discretization of bosonic modes on a logarithmic grid, such
that ωn = ωc/Λn, Λ the Wilson parameter usually set to 2. Each mode stands for a
whole energy scale. This choice of grid is represented on Fig. 4.5. Starting by high
energy modes, the renormalization flow is followed by successively diagonalizing the
Hamiltonian of the mode considered coupled to the charge qBit, and then truncating
the resulting spectrum and eigenstates to its lowest part. Then, the next to highest
mode can be added, diagonalized and truncated. Each step retains the effect of high
energy modes on the low-energy physics. The process allows to compute low-energy
spectrum as well as vacuum expectation values. To diagnose the phase transition, we
need to guess an order parameter to be evaluated from these observables.

At ng = 1/2, by analogy with the spin-boson case, we expect the symmetry (n̂→ 1−
n̂, â†k → −â

†
k) to break at the localization transition. If the vacuum state preserves the

symmetry, 〈n̂− ng〉 = 06, whereas 〈n̂− ng〉 6= 0 in the broken phase: this observable
plays the role of order parameter.

Since we now consider any EJ/Ec, one must recall the results of Sec. 3.3: Ec, ωc and
α are not independent parameters, but rather obey7

α < αmax = Ec/ωc. (4.28)

http://dx.doi.org/10.1063/1.1509142
http://dx.doi.org/10.1063/1.1509142
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1016/0370-1573(74)90023-4
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/RevModPhys.47.773
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Figure 4.6:
a) Order parameter as
a function of dissipation
strength for various EJ/Ec, at
EJ = ωc/10, and degeneracy
point ng = 1/2. A critical
point is only observed for
EJ/Ec < 1.
b) Renormalized qBit fre-
quency for the same param-
eters, which vanishes at the
critical point.
c) Charge-boson phase dia-
gram at EJ = ωc/10 showing
the localization transition
boundary together with the
parameter region forbidden
by the underlying microscopic
circuit. The maximum EJ/Ec
still displaying a transition is
indicated by a red cross.
d) Evolution of the maximum
EJ/Ec displaying a quantum
phase transition with EJ,
ruling out the possibility of
observing a phase transition
when EJ/Ec & 1.

1 K. Kaur, T. Sépulcre, et al.
2021. Phys. Rev. Lett. 127,
237702.

2 This quantity is defined
by analogy with E?J in the
spin-boson model.

The results of the NRG simulations1 are displayed on Fig. 4.6. Panels a) and b)
confirms the presence of a localization transition, signaled by a sudden jump of the
order parameter from 0 to finite value, while the effective frequency of the qBit, ω?qb

2

collapses to 0. The various curves are plotted at EJ = ωc/10 fixed, while Ec, and
thus αmax, varies. The phase diagram is represented on panel c). The boundary with
the region forbidden by the electrostatic constraints of the underlying circuit is also
represented. A transition separates the symmetric and broken phase at finite EJ/Ec,
confirming the simple Schieffer-Wolff argument, but disappears into the forbidden
region when EJ/Ec rises too much. Finally, one could hope to extend the broken
domain by varying EJ: on panel d), we see how evolves the lowest EJ/Ec ratio that
displays a transition when EJ/ωc changes: no transition can be seen above EJ/Ec ' 1.

Finally, the NRG analysis reveals no sharp transition between spin-boson and har-
monic oscillator behavior. There is instead a large cross-over region, that cannot be
understood simply with either picture. Furthermore, this is the only region accessible
to experimental setups, since charge noise become prominent in the low EJ/Ec region.
Part II will address the question of building a physically appropriate image of this
cross over regime.

http://dx.doi.org/10.1103/PhysRevLett.127.237702
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Figure 4.7: Extended phase
picture.
a) The Josephson term trans-
lates as a periodic potential.
Quantum tunneling allows
hopping between minima.
b) The Bloch theorem ensures
that energies arrange in
Bloch bands. In a band,
eigenstates are labeled by a
quasi-momenta n.
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103, 217004.

3 At EJ = 0, its eigenstates,
called charge states in this
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4 The situation is clearer in
path integral formulation. In
the compact case, the sum
other trajectories must take
into account windings around
[0, 2π). cf Appendix E of
G. Schön & A. Zaikin. 1990.
Phys. Rep. 198, 237.
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4.4 Extended phase

The charge noise has been invoked many times as the main experimental issue to
observe non-trivial many-body effects. As we underlined, it is tightly connected with
the compact phase space and the quantification of charge. We can rightfully ask how
to get rid of it.

Let us first insist on the different physics at play with compact and extended super-
conducting phase1. The difference is also relevant for few degrees of freedom qBits2.
In the extended case, as represented on Fig. 4.7, the system is a quantum particle
moving in a periodic, cosine potential. States localized at ϕ and ϕ + 2π are distin-
guishable. The Bloch theorem applies, which means that the eigenstates are labeled
by a quasi-momentum, n, and the energy levels are arranged in bands. In our con-
ventions, the Brillouin zone extends from n = −1/2 to n = 1/2. Adding an external
ng parameter only shifts the quasi-momenta, and can be absorbed into a redefinition
of n.

In the compact picture, sketched on Fig. 4.8, states |ϕ〉 and |ϕ+ 2π〉 cannot be dis-
tinguished: we deal with a quantum rotor3 (or pendulum). The spectrum is discrete,
since the boundary conditions on the wavefunction ψ(ϕ) = ψ(ϕ+ 2π)ei2πng imposes
quantification on its own. The Bloch bands are only retrieved when the external
parameter ng is varied between ng = −1/2 and ng = 1/2. For a fixed ng, the rest
of the Bloch band is inaccessible. Phase compactness is equivalent to quantification
of the charge, since the Fourier transform relation between the two reduces to the
charge being the Fourier series of the phase. Finally, one should notice that it is not

a)

•
EJϕ

b)

ng

E

1/20−1/2 ng

•

•

•

Figure 4.8: Extended phase
picture.
a) The Josephson term
adds a gravity like term to a
quantum pendulum.
b) At fixed ng, the spectrum
is discrete.

possible to discriminate between extended and compact phase when only a Hamilto-
nian is provided. It is rather a property of the underlying Hilbert space4. A compact
description is chosen if the energy separation between charge states is pertinent at
the energy scale experimentally probed5. We now review a few scenarios for phase
decompactification, i.e., situations where charge discreteness becomes irrelevant.

http://dx.doi.org/10.1016/0370-1573(90)90156-V
http://dx.doi.org/10.1103/PhysRevLett.103.217004
http://dx.doi.org/10.1103/PhysRevLett.103.217004
http://dx.doi.org/10.1016/0370-1573(90)90156-V
http://dx.doi.org/10.21468/SciPostPhys.10.4.093
http://dx.doi.org/10.21468/SciPostPhys.10.4.093
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Flux qBit

A simple solution to get rid of charge noise is to explicitly break the 2π-periodicity
of the Hamiltonian, by shunting the superconducting island with an inductor. The
resulting circuit is represented on Fig. 4.9. The corresponding Hamiltonian reads

Ĥ = Ec

2 (n̂− ng)2 − EJ cos ϕ̂+ 1
2L (ϕ̂− Φ/Φ0)2, (4.29)

with Φ/Φ0 the adimensional external magnetic flux piercing the inducting loop. The
charge can continuously flow through the inductor. The phase is extended, so that
ng can be eliminated by a gauge transform Û = exp(ingϕ̂). The quantum particle
evolves in a potential represented on Fig. 4.10. At Φ/Φ0 = π, we find once again a
symmetrical double well. The left and right eigenstates corresponds here to permanent
currents circulating clockwise and anti-clockwise in the inductor loop. The general
spectrum of such a device is quite rich beyond this two-level approximation1. The
shielding from offset charge noise came at a price. Φ/Φ0 is a new parameter to fine
tune instead of ng, that can be noisy: the device is sensitive to flux noise.

A spin-boson simulator based on a superconducting device using a flux qBit has been
tested already2. The renormalization of Eq. (4.27) has been tested in the delocalized
phase.

Orthogonality catastrophe

It is perhaps a trivial observation that at EJ � Ec, the phase decompactifies. Indeed,
in this regime, one can use a harmonic approximation for the Josephson potential,
in which case

〈
ϕ̂2〉 =

√
Ec/EJ � 2π (cf. Sec. 2.2). The phase fluctuations are

small compared to the potential period, which means that the boundary conditions
are lifted. Conversely, the charge looses its quantification. At the spectrum level, the
energy bands flatten, so that the energy does not depend over ng anymore3.

In this limit, the vanishing of compact effects is linked to the disappearance of over-
lap (and such, of interference) between neighboring minima. A similar orthogonality
catastrophe can be triggered by the environment, as it has been shown in a path inte-
gral formalism4. Part II will discuss a method to study this orthogonality catastrophe
between winding numbers.

Phase freezing

Concerning the complete charge-boson model, the EJ � Ec limit is more involved. It
is easier to examine it on a transformed Hamiltonian. Using

Û = exp
(
−in̂ gk

ωk
(â†k − âk)

)
= exp

(
−in̂B̂

)
, (4.30)

the Josephson term transforms as

Û† cos ϕ̂Û = cos ϕ̂
(

1− B̂2

2! + . . .

)
− sin ϕ̂

(
B̂ − B̂3

3! + . . .

)
= cos

(
ϕ̂+ B̂

)
. (4.31)

The rest of the Hamiltonian has simpler transforms. Overall, the rotated Hamiltonian
is

Ĥ ′ = 1
2

(
Ec − 2g`

g`
ω`

)
(n̂− ng)2 − EJ cos

(
ϕ̂+ gk

ωk
(â†k − âk)

)
+ ωqâ

†
qâq. (4.32)

http://dx.doi.org/10.1103/PhysRevLett.103.217004
http://dx.doi.org/10.1103/PhysRevLett.103.217004
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http://dx.doi.org/10.1038/nphys3905
http://dx.doi.org/10.1103/PhysRevB.34.6518
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The new, effective charging energy is nothing more than the bare charging energy, as
we can see from Eq. (3.44): Ec − 2g`g`/ω` = 1/(Cc + CJ).

In the Cc → ∞ limit, the (bare) charging energy vanishes. The (ϕ̂, n̂) degree of
freedom has no dynamic anymore, it freezes out and can be removed to reach the
boundary sine-Gordon Hamiltonian1,

Ĥ = −EJ cos
(∑

k

gk
ωk

(â†k + âk)
)

+
∑
k

ωkâ
†
kâk. (4.33)

Since the charge degree of freedom has disappeared, it seems that the phase com-
pactness (and charge quantization) vanished too. The mechanism is the following:
at Cc → ∞, the coupling capacitance in circuit of Fig. 3.2 is replaced by a wire.
The same model will indeed be re-derived from a microscopic circuit using such a
galvanic coupling in Part III. The nodes 0 and 1 are then merged, and we indeed
loose one degree of freedom. The small superconducting island is wire-connected to
the infinite chain, so its charge is not quantized anymore. Upon closer inspection, the
full circuit with a finite chain is now a superconducting island. The total charge must
then be quantized, but the associated charging energy is much lower. Charge states
are not well separated, and we can expect a continuous charge (and extended phase)
description to hold.

4.5 Schmid transition

The Hamiltonian (4.33) has been intensively studied in the litterature, where it is
usually used to describe a dissipative quantum particle in a periodic potential. It is
also believed to describe a single Josephson junction, with dissipation provided by
normal electron tunneling2. The kinetic energy of the particle only appears in the
model cutoff, ωc which is thus supposed finite. It has been shown that this model too
displays a quantum phase transition, also leading to the localization, or self-trapping,
of the quantum particle at strong dissipation. The phase diagram has been studied
at length using renormalization groups analysis3. We will give the most naive version
of the argument, but more detailed analysis only confirms the main result4. Path
integral versions of the argument are common textbook material5, but we will rather
employ the Schrieffer-Wolff method6 to perform a simple Poor man’s scaling on
the model and extract the scaling law.

As already discussed in Sec. 4.3, the Schrieffer-Wolff transformation allows to per-
turbatively project a Hamiltonian on a low-energy subspace. It fits nicely in the
renormalization group analysis, which amounts to determine how the coupling con-
stants of a given Hamiltonian evolves when the energy scale Λ varies. Let’s suppose
that the procedure has been applied already from ωc to Λ+δΛ, and we want to pursue
it down to Λ. We separate the boson modes between low-energy modes, ωk < Λ, and
high-energy modes Λ < ωk < Λ + δΛ. The projection of these modes provide a non-
vanishing result already at first order, which simplifies greatly the Schrieffer-Wolff
approach. We first expand the Josephson term by7:

cos
(
γk(â†k + âk)

)
= 1

2
∑
±

(Λ+δΛ∏
k=0

e±iγkâ
†
k

)(Λ+δΛ∏
k=0

e±iγkâk

)(Λ+δΛ∏
k=0

e−
1
2γ

2
k

)
.

(4.34)
Then, projected on states of the form |i〉⊗|0〉, i any state of the low energy oscillators,
and |0〉 the high energy oscillators vacuum,
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http://dx.doi.org/10.1103/PhysRevLett.54.263
http://dx.doi.org/10.1063/1.1509142
http://dx.doi.org/10.1063/1.1509142


review of impurity models 45

1 Consistency asks to keep
the same definition for
2πα = Zc/Rq = Zc, but
the litterature often uses 1/α
as the coupling strength.

α

eJ

1
0

Localized Delocalized
superc. insulating

Figure 4.11: renormalization
flow indicated by arrows
obtained by perturbation in
the eJ → 0 region.

2 The Kondo model and
QCD are in the same situ-
ation, while QED is rather
perturbative at small energy.

3 With a more realistic cutoff
scheme, like the Lorentzian
cutoff of Sec. 3.3, the flow
equation is modified, and the
flow starts at Λ =∞.

α

eJ

1
0

∞

Localized Delocalized
superc. insulating

Figure 4.12: The full phase
diagram of the Schmid transi-
tion.

〈i| ⊗ 〈0| cos
(
γk(â†k + âk)

)
|j〉 ⊗ |0〉 = 〈i| cos

( Λ∑
k=0

γk(â†k + âk)
)
|j〉 exp

−1
2

Λ+δΛ∑
q=Λ

γ2
q

 . (4.35)

The last sum is computed in the continuum limit, and evaluates to1

−1
2

Λ+δΛ∑
q=Λ

γ2
q = −α

ˆ Λ+∆Λ

Λ

dω
ω

= −α ln
(

1 + δΛ
Λ

)
(4.36)

We see that the low energy Hamiltonian will take the same form has the original one,
with EJ renormalized to

EJ(Λ) = EJ(Λ + δΛ)e−αδΛ/Λ ⇒ EJ(Λ + δΛ) = EJ(Λ)
(

1 + α
δΛ
Λ + . . .

)
(4.37)

We form the adimensional ratio eJ = EJ/Λ, and compute the differential equation
governing its evolution when the cutoff is changed.

deJ

dln Λ = ΛdeJ

dΛ = Λ
δΛ

(
EJ(Λ + δΛ)

Λ + δΛ − EJ(Λ)
Λ

)
⇒ deJ

dln Λ = (α− 1)eJ = β(eJ). (4.38)

The right-hand side of this last equation is the β-function of the renormalization flow,
computed perturbatively at first order in the regime of small eJ. The corresponding
flow is represented on Fig. 4.11.

At α < 1, β < 0, so eJ increases when the cutoff is lowered, i.e. along the renor-
malization flow. The potential becomes more and more important, and the quantum
particle comes to rest in one of the minima of the potential. The superconducting
phase is localized, charge is delocalized, so this phase could be labeled as supercon-
ducting. This sign of β-function is associated with asymptotic freedom, since eJ

is small at high energy, validating perturbation expansions for high-energy processes
only2.

If α > 1, the situation is reversed: at low energies, the effect of the potential vanishes,
leaving the quantum particle extended other many minima: superconducting phase
is delocalized, charge is localized, so this phase is insulating. Between the two, a
quantum transition occurs at α = 1.

The flow equation can be integrated:

EJ(Λ) = EJ

(
Λ
ωc

)α
. (4.39)

The cutoff has been reintroduced by asking that the running constant EJ(Λ) equates
the bare value EJ at the beginning of the flow, Λ = ωc

3. A characteristic energy scale
emerges as the one below which perturbation theory fails. Let us call it E?J . It verifies

eJ(E?J) = 1 ⇒ E?J = EJ

(
ωc

EJ

) α
α−1

. (4.40)

This equation is reminiscent of the spin-boson scaling law, Eq. 4.27, even if the
context is quite different.
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Half of the work only has yet been done. To complete the phase diagram, it is
possible to perform a perturbative renormalization group analysis at eJ → ∞, the
strong coupling limit. A duality indeed connects the weak and strong coupling cases.
This can be done in a path integral formalism1 and instanton techniques, or with a
tight-binding approximation2. The resulting phase diagram is presented on Fig. 4.12.
The flow and the boundary has been demonstrated to stay straight between the two
known limit of strong and weak coupling.

The quantum particle dynamic has also been studied in both phases3, and at zero
and finite temperature. Even if the Schmid model is theoretically well known, experi-
mental evidences for the phase transition are still elusive. In Part III, we will detail an
experimental superconducting circuit which displays many-body physics at interme-
diate coupling in the superconducting phase. Especially, the scaling law (4.40) will
be re-derived using a diagrammatic expansion method, taking into account higher
order corrections, finite temperature and detailed microscopic model.

We now have a good grasp on the several regimes the charge-boson model can display.
This model was introduced to better model Josephson-based impurity simulators,
using a general derivation that could be applied to a large class of circuits beyond the
one we focus on. Clearly, we only provided an hand-waving picture of the compact
superconducting phase role. The next part will elaborate on the topic, with two
questions in mind: how to quantitatively capture its effect in the crossover region
EJ ' Ec in a simple formalism, and how to describe its fading when the boundary
phase freezes out and the model reduces to boundary sine-Gordon. The last part
of the manuscript focuses on this regime, shielded from charge noise effects, which
has been effectively simulated in the laboratory. We will inquire about many-body
physics hallmarks that can be witnessed in these experiments.
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5|A compact ansatz

“I’m tired of running in circles.”

Bob-Wacksberg, Bojack Horseman.

In the previous section, the isolated Josephson junction modeled by

Ĥ = Ec

2 (n̂− ng)2 − EJ cos(ϕ̂), (5.1)

has proven its deceptive simplicity hides many interesting physical regimes. We es-
pecially separated two regions, an harmonic oscillator behavior at EJ/Ec � 1, and a
charge qBit region at EJ/Ec � 1, where phase compactness drives the physics and
where the spectrum is strongly dependent on ng. The crossover in between is diffi-
cult to capture with simple approximations, while these two approximate descriptions
quickly lose relevance when EJ/Ec ∼ 1. Still, this intermediate region contains the
transmon regime, one of the most common superconducting qBit designs1. Its fine
understanding is thus important, to guide many-body regime experiments as well as
to provide understanding of the dissipative properties of qBit designs.

When dealing with an isolated junction, this intermediate regime is of course well
described by the analytic solution to the Schrödinger equation obtained using Math-
ieu functions. Still, this method cannot hold when more complicated systems are
considered, involving several junctions or many degrees of freedom, as we did when
building the charge-boson model in Part I of this manuscript.

The main difficulty when devising an approximation scheme in the intermediate
regime is the contradiction between the quadratic approximation, that is the starting
point of perturbation theory around the cosine potential minimum, and the period-
icity of the wavefunction. We propose to circumvent this difficulty by introducing
a wavefunction ansatz2, that preserves this property by construction. It serves at a
starting point for an optimization procedure, very similar to the Silbey-Harris ansatz
optimization of Sec. 4.2 and to the self-consistent harmonic approximation we will
employ in Sec. 9.2. This chapter constructs the ansatz on the isolated junction case,
where exact results provide simple benchmarks. Chap. 6 then applies it to the many-
body situation of the charge-boson Hamiltonian detailed in Sec. 3.2. Finally, Chap. 7
will propose some extensions of this theoretical tool.

5.1 Periodic wave-function

Let us call Ĥ0 the quadratic approximation of the isolated junction Hamiltonian. It
corresponds to an LC-oscillator 3,

Ĥ0 = Ec

2 n̂2 + EJ

2 ϕ̂2 = ω0
(
â†â + 1/2

)
. (5.2)
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Figure 5.1:
(•) : Gaussian wave-packet,
plotted for EJ/Ec = 0.5.
(•) : Josephson potential.
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Figure 5.2:
(•) : Displaced Gaussian
wave-packets, plotted for
EJ/Ec = 0.5.
(•) : The compact ansatz, ob-
tained by sum over displaced
wave-packets.
(•) : Josephson potential.
2 As a reminder,
ˆ
R

dx e−ax
2+bx =

√
π

a
e
b2
4a .

3 In the sense of distributions,∑
w∈Z

ei2πwn =
∑
w∈Z

δ(w − n).

4 K. Kowalski, J. Rembielin-
ski, & L. C. Papaloucas.
1996. J. Phys. A: Math. Gen.
29, 4149;
J. A. González & M. A. del
Olmo. 1998. J. Phys. A:
Math. Gen. 31, 8841.

5 L. S. Schulman. 2012.
Techniques and Applications
of Path Integration.

ϕ
0 π−π

Figure 5.3: To normalize
properly the wavefunction,
it is restricted to the interval
(−π, π].

Its eigenstates are the Fock states |i〉1. |0〉, the ground state, is Gaussian. Indeed,
when computing its wavefunction ψ0, we obtain

〈ϕ|n̂|0〉 = iy〈φ|φ̂|0〉 = iyϕψ0(ϕ) = −i d
dϕψ0(ϕ). (5.3)

Solving this differential equation provides

ψ0(ϕ) = (y/π)1/4e−
y
2ϕ

2
, (5.4)

with normalization to unity. Note that we use mainly the admittance y = 1/Z in this
part, since it is an increasing function of the EJ/Ec ratio. This wavefunction is plotted
on Fig. 5.1. 2π-periodicity can be enforced by summing the same wavefunction,
displaced by 2πw, with w ∈ Z. Such a displacement is provided by the operator
	̂ =

∑
w∈Z exp (i2πn̂w). The ground state periodized wavefunction is then

ψ	0 (ϕ) = 〈ϕ|	̂|0〉 =
∑
w∈Z

ˆ
R

dθ 〈ϕ|ei2πn̂w|θ〉〈θ|0〉 =
∑
w∈Z

ψ0(ϕ− 2πw). (5.5)

The resulting compact ansatz for the ground state wavefunction is plotted on Fig. 5.2.
It is indeed periodic. Interestingly, it seems to converge to a plane wave with periodic
boundary conditions, which is indeed the eigenstate of the system in the charge qBit
limit. Another expression for this wavefunction can be reached via Fourier series
relation. Setting aside the normalization factor for now, we evaluate the Fourier
transform

ψ	0 (ϕ) = 1
2π

ˆ
R

dk a(k)e−ikϕ where a(k) =
ˆ
R

dϕeinϕψ	0 (ϕ). (5.6)

Plugging in the result of Eq. (5.5), we use Gaussian integration2 and Poisson’s sum-
mation formula3, we obtain

ψ	0 (ϕ) ∝
∑
n∈Z

e−n
2/(2y)e−inϕ = ϑ

(
2πϕ; i

2πy

)
. (5.7)

The last equation made connection with Jacobi’s ϑ function. This special function is
known to be defined over the whole complex plane, which confirms that the infinite
sum is convergent for any y and ϕ. Moreover, we will sometime derive duality relations
linking y ↔ 1/y formulae that could be seen as a special case of Jacobi’s identity.
Jacobi’s ϑ functions already appeared in the closely related context of coherent states
on a circle4.

The explicit expression is quite rich in itself, since the sum can be interpreted as a sum
over charge states, which are plane waves in phase representation. When y → 0, only
the n = 0 state contributes to the ground state, thus retrieving that the ground state
of the charge qBit is a pure charge state. Since the ansatz is constructed to capture
the harmonic limit, it interpolates between high and low EJ/Ec regimes. Following
this interpretation, we called the dummy variable n, since it represent the discrete
charge levels, whereas sums in phase domain are performed over a winding number,
w, a notation that comes from path integrals over the circle5.

Normalization

The last expression emphasizes a norm problem in the ansatz. Since it is expressed as
a sum over plane waves, its norm is infinite, even if it is supposed to describe a bound
state. In fact, there is no point in defining the wavefunction over R, since it should

http://dx.doi.org/10.1088/0305-4470/29/14/034
http://dx.doi.org/10.1088/0305-4470/29/14/034
http://dx.doi.org/10.1088/0305-4470/31/44/012
http://dx.doi.org/10.1088/0305-4470/31/44/012
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−π π

Figure 5.4: First eigenstates
at ng = 0 and y = 0.
(•) : Ground state,
(•) : 1st and 2nd excited
states,
(•) : 3rd and 4th excited
states.

−π π

Figure 5.5: First eigenstates
at ng = 1/2 and y = 0.
(•) : two degenerate ground
states,
(•) : 1st and 2nd excited
states.

only take values over (−π, π]. In that spirit, we simply restrict the wavefunction over
this interval, as represented on Fig. 5.3. Its norm is then evaluated using Parseval’s
identity,

ˆ 2π

0
dϕ |ψ	0 |2 =

∑
n∈Z

e−n
2/y. (5.8)

In an algebraic language, the state norm would be

〈0|	̂†	̂|0〉 =
∑
v,w∈Z

〈0|ei2π(v−w)|0〉 =
∑
n∈Z
〈0|ei2πn|0〉

(∑
m∈Z

1
)
. (5.9)

Dropping the infinite, constant factor is equivalent to restrict the phase to (−π, π].
As a rule, every time an expectation value of the form 〈i|	̂†Â	̂|j〉 presents itself, we
distinguish two cases. Either [	̂, Â] = 0; Â is said to be 2π-periodic. We commute
Â and 	̂, rearrange the sum over winding numbers and drop the infinite factor, so
only 〈i|Â	̂|j〉 is left to evaluate. If Â is not periodic, its restriction to the circle is not
well defined. If the quantity must be computed nonetheless, the commutator must be
added, and the restriction to (−π, π] done explicitly.

Aharonov-Casher phases

Up until now, we have set the charge offset ng aside. In the harmonic oscillator limit,
It has indeed no effect on the physics. To see this, let’s consider the Hamiltonian

Ĥ0(ng) = Ec

2 (n̂− ng)2 + EJ

2 ϕ̂2. (5.10)

We move to the rotated basis given by the gauge transform Û = eingϕ̂:

Ĥ ′0(ng) = Û†Ĥ0(ng)Û = Ĥ0(0). (5.11)

We know right away that ng does not change the spectrum of Ĥ0, it is simply gauged
away. Now, if the system is restricted to the circle, the situation is different, since the
gauge transform also changes the boundary conditions. If ψ(ϕ) is an eigenwavefunc-
tion, the corresponding eigenvalue problem derived from the Schrödinger equation
writes

Ec

2

(
−i d

dϕ − ng

)2
ψ(ϕ) + V (ϕ)ψ(ϕ) = Eψ(ϕ), (5.12)

valid for any potential V (ϕ). The gauge transformed wave function is Ψ(ϕ) =
exp(−ingϕ)ψ(ϕ), which obeys

−Ec

2
d2Ψ
dϕ2 + V (ϕ)Ψ(ϕ) = Eψ(ϕ), (5.13)

and the boundary condition is now

ψ(ϕ) = ψ(ϕ+ 2π) ⇒ Ψ(ϕ) = Ψ(ϕ+ 2π)ei2πng . (5.14)

The effect of these new boundary conditions for ng = 0 are represented on Fig. 5.4,
and Fig. 5.5 for ng = 1/2, both in the V = 0 case. From here, we can recover the
spectrum of the charge qBit as discussed in Sec. 2.1, and represented on Fig. 2.2.

We can now apply compactification on a gauge transformed state:

	̂Û |ψ〉 =
∑
w∈Z

ei2πwn̂eingϕ̂|ψ〉 = eingϕ̂
∑
w∈Z

ei2πw(n̂−ng)|ψ〉, (5.15)



a compact ansatz 51

1 Exactly,

e−yπ
2w2

=
1
√
yπ

ˆ
R
e
− x

2
y

+i2πwxdx.

2 M. T. Bell, W. Zhang, et al.
2016. Phys. Rev. Lett. 116,
107002.

3 J. Koch, T. M. Yu, et al.
2007. Phys. Rev. A 76,
042319.

such that any expectation value over gauge transformed states assumes the form

〈i|Û†	̂Â	̂Û |j〉 = 〈i|
(∑
w∈Z

ei2πw(n̂−ng)

)
Â′

(∑
w∈Z

ei2πw(n̂−ng)

)
|j〉. (5.16)

with Â′ the gauge transformed of Â. We re-define the compactification operator to
include the ng phase factor, such that the expectation value of Â is simply 〈i|Â′	̂|j〉,
provided that Â is 2π-periodic.

We illustrate the effect of ng by computing the ground state ansatz norm:

〈0|	̂|0〉 =
∑
w∈Z

e−i2πwng〈0|e−2πw(â†−â)
√
y/2|0〉 =

∑
w∈Z

e−yπ
2w2−i2πwng . (5.17)

We, again, recognize Jacobi’s ϑ function, which indicates one can reach a dual y ↔ 1/y
expression. We express the Gaussian weight as the result of a Gaussian integral1. The
sum over winding numbers is transformed using Poisson’s summation formula to reach

〈0|	̂|0〉 = 1
√
πy

∑
n∈Z

e−
1
y (n−ng)2

. (5.18)

The interpretation in terms of charge states is again clear: the charge n is displaced
by the charge offset ng.

The charge offset being a gauge parameter, we can see its influence on a non sim-
ply connected set as the circle as a close relative to the Aharonov-Bohm effect, the
Aharonov-Casher effect. It has been experimentally demonstrated2 with a charge
qBit, by measuring the periodicity of the spectrum with respect to ng.

5.2 Transmon regime

A first application of the ansatz is to recover the first excited levels of the isolated
junction. Since we aim at describing the crossover region y ' 1, we should especially
be able to recover the characteristics of the transmon qBit. This device is a Josephson
junction shunted by a large capacitor, which allows to tune the EJ/Ec ratio around 10
to 100. Here, the anharmonicity is quite weak, but vanishes slowly, following a weak
power law3, while the charge dispersion vanishes exponentially. Therefore, there is a
sweet spot at intermediate EJ/Ec, where anharmonicity is strong enough to operate
the system as a qBit, at least at short times, and where the charge noise is suppressed.

To estimate anharmonicity, we must assess the energy of the three first levels. We
estimate the energy by computing the Hamiltonian expectation value. We first need
to express the wavefunction of the Nth level of the harmonic oscillator. It is written
out with Hermite polynomials denoted HN ,

ψN (ϕ) =
( y
π

)1/4

HN (√yϕ)e−
y
2ϕ

2
and ψN (n) = HN

(
n
√
y

)
e−

1
2yn

2
. (5.19)

The second result is reached by Fourier transform of the first. The Hamiltonian
expectation value expand as

〈N |Ĥ ′0	̂|N〉
〈N |	̂|N〉

= Ec

2
〈N |n̂2	̂|N〉
〈N |	̂|N〉

− EJ
〈N | cos ϕ̂|N〉
〈N |	̂|N〉

. (5.20)

Note that we indeed compute the average of the gauge transformed Hamiltonian, with
no explicit ng dependence, and that both terms are 2π-periodic.

http://dx.doi.org/10.1103/PhysRevLett.116.107002
http://dx.doi.org/10.1103/PhysRevA.76.042319
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1 	̂ operator already enforces
compactness: all other oper-
ators are defined on R, such
that

1̂ =
ˆ
R

dn |n〉〈n|.
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Figure 5.6: (•) Ground
state, (•) first and (•) second
excited levels energy for
ng = 0.5 as a function of y.
( ) ansatz,
( ) exact result.

-0.5 0 0.5

ng

0.5

1

1.5

E
/
ω

0

Figure 5.7: (•) Ground state
and (•) first excited level
energy for admittance y = 0.5
as a function of ng.
( ) ansatz,
( ) exact result.

2 M. Le Bellac. 2006. Quan-
tum Physics.

The expectation values are reached by inserting the identity1

〈N |	̂|N〉 =
∑
w∈Z

ˆ
R

dn ei2πw(n−ng)|〈n|N〉|2 =
∑
n∈Z
|ψN (n− ng)|2, (5.21)

where |N〉 denotes a Fock state. Similarly,

〈N |n̂2	̂|N〉 =
∑
n∈Z

(n− ng)2|ψN (n− ng)|2. (5.22)

Finally, the expectation value of cos ϕ̂ is computed using the displacement relation,
exp(±iϕ̂)|n〉 = |n± 1〉:

〈N | cos ϕ̂|N〉 =
∑
n∈Z

Re
(
ψN (n− ng)ψ̄N (n− ng + 1)

)
=
∑
n∈Z

ψN (n− ng)ψN (n− ng + 1). (5.23)

The resulting energy estimates are represented as functions of admittance and
charge offset on Fig. 5.6 and Fig. 5.7 respectively. By comparison to the exact
result, we see that the harmonic oscillator levels are well described in the y → ∞
region. In the intermediate, y ∼ 1 region, only qualitative agreement is obtained,
with some numerical discrepancy between the exact result and the ansatz. The result
can be refined by variational principle. While the two limits y →∞ and y → 0 seem
correct for levels 0 and 1, starting at level 2, the ansatz fails in the y → 0 limit.

Compact self-consistent harmonic approximation

As we advertised in the chapter introduction, the ansatz can be improved by varia-
tional principle, very much like the Silbey-Harris ansatz exposed in Sec. 4.2. Once
again, the most natural parameter to optimize is the EJ parameter of the quadratic
approximation, since we expect that when the phase starts to explore the cosine
potential, the effective stiffness of the potential will diminish.

We devise a family of ansatz wavefunctions for the ground state as the compactified
vacuum wavefunctions of the quadratic approximation

Ĥ0(E?J) = Ec

2 (n̂− ng)2 + E?J
2 ϕ̂2 (5.24)

This corresponds to the wavefunction computed at Eq. (5.5) where EJ → E?J is a
variational parameter. By theorem, the true ground state has the smallest energy
expectation value of the Hilbert space, so we assume that finding the smallest energy
expectation value of the ansatz family is a correct approximation for the true ground
state. We minimize the function

E(E?J)
ω0

= 1
2y

∑
n∈Z

(n− ng)2e−
1
y?

(n−ng)2

∑
n∈Z

e−
1
y?

(n−ng)2 − ye−
1

4y?

∑
n∈Z

e−
1
y?

(n−ng+1/2)2

∑
n∈Z

e−
1
y?

(n−ng)2 . (5.25)

with respect to y? =
√
E?J/Ec. This process would be tedious to perform by hand,

so we resort to a numerical minimization routine. Since we only have one parameter
to optimize, this numerical technique is simple, stable and computationally efficient.

Excited levels

The variational principle is most often applied to ground state computations. Yet, if
the system displays discrete, well separated levels, they can be accessed too2. The
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Figure 5.8: (•) Ground
state, (•) first and (•) second
excited levels energy for
ng = 0.5 as a function of y.
( ) optimized ansatz,
( ) exact result.
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Figure 5.9: (•) Ground state
and (•) first excited level
energy for admittance y = 0.4
as a function of ng.
( ) optimized ansatz,
( ) exact result.

method consists in finding first the variational ground state. We then project it out
of the search space. Indeed, the true spectrum verifies 〈g|e1〉 = 0, for |g〉 = |e0〉
the ground state and |e1〉 the first excited level. Furthermore, this prevents the
minimization algorithm to retrieve the ground state while looking for |e1〉. The same
constrained minimization process can be iterated to find higher and higher excited
states, imposing, when looking for state |ei〉, that 〈ei|ej〉 = 0 ∀j < i.

In our context, this procedure will provide different E?J for each excited level. Indeed,
since excited states explore larger regions of the cosine potential, we expect a stronger
renormalization of the potential. This is reminiscent of the renormalization group
approach, where coupling parameter renormalization depends on the energy scale.

Energy levels computed with this optimization method are presented on Fig. 5.8 and
Fig. 5.9 for admittance and charge offset dependence respectively. There is excellent
agreement between the exact result and the optimized ansatz, in the whole y and ng

range. The discrepancy rises to a few percents in intermediate regions, y ∼ 1 and
ng ∼ 1/4. The ground state is best described, with rising discrepancy for higher
levels. The issue concerning the 2nd excited level at y → 0 has been fixed by the
orthonormalization procedure.

On this result, we recognize the different regimes and behaviors of the isolated junc-
tion, especially the evenly spaced levels of the harmonic oscillator when y →∞, and
the strong anharmonicity that appears in the y → 0 region. Fig. 5.9 is similar to
the charge qBit spectrum on Fig. 2.2, with band dispersion and a level splitting at
ng = 1/2. No other approximation scheme, neither perturbation theory, nor non-
compact self-consistent approximation, or Brillouin-Kramers-Wentzel approximation,
produce such accurate results for all regions of parameter space.
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Figure 6.1: The various
parameter regions of the
charge-boson model at fixed
EJ, sketched from Sec. 4.3.
The spin-boson line separates
the localized phase. In the de-
localized/superconducting re-
gion, a smooth crossover con-
nects the damped harmonic
oscillator to the damped
charge qBit.
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stein’s summation convention
at intermediary steps.

6|Application to charge-boson

And, so I dreamed that if I were clever, I would find a formula for the amplitude of a path
that was beautiful and simple [...]. I have never succeeded in that either. But, I did want
to mention some of the unsuccessful things on which I spent almost as much effort, as on

the things that did work.

Feynman, Nobel Lecture.

We apply the compact ansatz method developed in the last chapter to the many-
body charge-boson Hamiltonian we discussed in Sec. 3.2. Some results were already
obtained by mapping its low EJ/Ec region on the spin-boson model in Sec. 4.2, and
by means of the numerical renormalization group (NRG) in Sec. 4.3. We used it to
put in evidence the presence of the spin-boson phase transition (at ng = 1/2), driven
by the renormalization of tunneling amplitude E?J that reaches 0 on the transition
line.

For higher values of EJ/Ec, we highlighted a line of maximum coupling strength,
on which the system is believed to decompactify, i.e., where the relevance of the
discreteness of charge states is lost. Only two significant parameters are left, α and EJ,
and we are led to the boundary sine-Gordon Hamiltonian. This model also displays
a phase transition, namely the Schmid transition, which was detailed in Sec. 4.5.
Decompactification leading to vanishing charge noise, the Part. III will be devoted to
the simulation of a realistic simulator for the boundary sine-Gordon problem using
superconducting circuits. These various regions are represented on Fig. 6.1.

The compact ansatz is a good candidate to provide insights on the crossover region
EJ/Ec ∼ 1 of the charge-boson model. We can anticipate it will capture the vanishing
compactness effects on the many-body ground state when EJ/Ec is raised, smoothly
transiting from spin-boson to the damped harmonic oscillator through a damped
transmon region. We also await for the decompactification mechanism in the α →
αmax limit to show itself.

Adapting the ansatz to a many-body problem will require some more computations,
to express the vacuum expectation energy. We then explore the decompactification
mechanism, in the continuous limit, and make connection with the non-compact self-
consistent harmonic approximation. Finally, we provide numerical results to compare
the algorithm accuracy with the numerical renormalization group as a benchmark.

6.1 Vacuum energy

We remind the charge-boson Hamiltonian,1

Ĥ = Ec

2 (n̂− ng)2 − EJ cos ϕ̂+ (n̂− ng)
∑
k

igk(â†k − âk) +
∑
`

ω`â
†
` â`. (6.1)
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1 One could imagine sim-
ply adding an L? = 1/E?J
inductor to the matrices of
Eq. (3.20), but the new fi-
nite Josephson frequency ωJ
reintroduces the diamagnetic
term: the extra arrowhead
matrix diagonalization cannot
be avoided.

2 We use the shorthand
ω2

J = EcE?J .

3 J. W. Gadzuk. 1981. Phys.
Rev. B 24, 1651.

4 A. Blandin & J. Friedel.
1959. J. Phys. Radium 20,
160.

5 P. W. Anderson. 1961.
Phys. Rev. 124, 41.

6 N. Jakovčević Stor, I. Slap-
ničar, & J. L. Barlow. 2015.
Linear Algebra Appl. 464, 62.

7 Since MµσVνσ = VνµΩ2
ν ,

Vνµ is interpreted as the
µth component of the νth

eigenvector of M .

8 Which makes a canonical
change of variable: [φ̂σ , N̂ρ] =
iVσµVρµ = iδµν since V is
orthogonal, M being real and
symmetric.

The corresponding quadratic approximation, after gauge transformation which re-
moves ng, reads

Ĥ ′0 = Ec

2 n̂2 + E?J
2 ϕ̂2 + n̂igk(â†k − âk) + ω`â

†
` â`. (6.2)

We need to diagonalize it to produce its vacuum explicitly1. We use a modified
harmonic oscillator definition, to boil the computation down to one matrix diagonal-
ization only.n̂ = i/

√
2ω(â† − â)

ϕ̂ =
√
ω/2(â† + â)

⇒ ω
(
â†â+ 1/2

)
= 1

2
(
ω2n̂2 + ϕ̂2) , (6.3)

which exploit the n̂↔ ϕ̂ symmetry of the harmonic oscillator. In this basis,

Ĥ ′0 = E?JEc

2

(
n̂√
E?J

)2

+ 1
2

(√
E?J ϕ̂

)2
+ n̂√

EJ
gk
√

2ωkE?J n̂k + 1
2
(
ω2
kn̂kn̂k + ϕ̂kϕ̂k

)
.

(6.4)
We package all degrees of freedom into two charge and phase vectors, (n̂/

√
E?J , n̂1, n̂2, . . .)

and (
√
E?J ϕ̂, ϕ̂1, ϕ̂2, . . .), and set aside Greek indices to specify sums over these ex-

tended vectors. Then2,

Ĥ ′0 = 1
2 (n̂σMσρn̂ρ + ϕ̂µϕ̂µ) , M =


ω2

J . . . gk
√

2E?Jωk . . .
... . . . (0)

gk
√

2E?Jωk ω2
k

... (0) . . .

 .
(6.5)

This M matrix has the arrowhead form, which indicates we are dealing with the
bosonic version of the resonant model, a solvable model ubiquitous in condensed
matter3, which was first introduced in the context of dilute magnetic impurities4,5.
The simple matrix form allows for fast, reliable diagonalization algorithms to be
employed for numerical diagonalization6. We will assume such a diagonalization has
been performed, and postpone an analytical derivation in the continuum limit to the
next section.

We write M = V ᵀΩ2V with Ω a diagonal matrix of eigenfrequencies, and V a
matrix of eigenvectors7. We perform the basis change N̂µ = Vµν n̂ν , together with
φ̂µ = Vµνϕ̂ν

8 , which leads to the standard form

Ĥ ′0 = 1
2

(
ΩνN̂νN̂ν + φ̂µφ̂µ

)
= Ων b̂†ν b̂ν , (6.6)

where the operators b̂†µ, b̂ν describe a new set of bosonic particles, which are eigen-
modes of the quadratic approximation to the whole impurity + chain system. The
last form has been obtained using again the modified relations Eq. (6.3). We build
the many-body ansatz by compactification of the b̂ν vacuum state, denoted |0〉. Still,
only one degree of freedom, the impurity Josephson junction, has to be compactified.
The compactification operator retains its expression,

	̂ =
∑
w∈Z

ei2πw(n̂−ng), (6.7)

where n̂ is the charge of the junction. It will be convenient to express it in the
eigenmodes basis: the various changes of basis we performed result inn̂ = ivµ

(
b̂†µ − b̂µ

)
ϕ̂ = uµ

(
b̂†µ + b̂µ

) , where vµ = Vµ0

√
E?J
2Ωµ

, uµ = Vµ0

√
Ωµ
2E?J

. (6.8)

http://dx.doi.org/10.1103/PhysRevB.24.1651
http://dx.doi.org/10.1103/PhysRevB.24.1651
http://dx.doi.org/10.1051/jphysrad:01959002002-3016000
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1016/j.laa.2013.10.007
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1 We can show by expanding
the exponentials that

eβb̂ |0〉 = |0〉,

〈0|eβb̂
†

= 〈0| ∀β ∈ C.

2 Note that the two first
terms are no longer 2π-
periodic; only their sum is.
This is no trouble, since we
restricted the wavefunctions
to [−π, π) already.

3 As a reminder,

〈0|b̂†µ = 0 ∀µ.

4 Remind that if [Â, B̂] ∈ C,

[Â, B̂n] = nB̂n−1[Â, B̂].

5∑
± implies a sum over the

two values, ± = −,+.

6 Remind that if [Â, B̂] ∈ C,

eÂeB̂ = eB̂eÂe[Â,B̂].

The orthogonality of V translates into the relation uνvν = 1/2. In the following, we
extensively use the norms uνuν = u2, vνvν = v2. We can evaluate right away the
compact vacuum state ansatz norm1 :

〈0|	̂|0〉 =
∑
w∈Z

e−2π2u2w2
〈0|e−2πwvν b̂†νe2πwvµb̂µ |0〉e−i2πwng

=
∑
w∈Z

e−2π2u2w2+i2πwng . (6.9)

It should be noted that the many-body nature of the problem did not make the
expectation values form more involved: we still perform one sum only. The only
difference with the isolated junction is the expression of the Boltzmann-like factor
weighting the contribution of the winding numbers: 1/y has been replaced by 2u2,
which encodes the contribution of all modes.

Expectation values

We recast the Hamiltonian in the form

Ĥ ′ = Ĥ ′0 −
E?J
2 ϕ̂2 − EJ cos ϕ̂, (6.10)

and compute separately the expectation values of the three pieces2. First,

〈0|Ĥ ′0	̂|0〉 = Ων〈0|b̂†ν b̂ν	̂|0〉 = 0. (6.11)

Second, the ϕ̂2 expectation is evaluated as3

〈0|ϕ̂2	̂|0〉 = uµuν
∑
w∈Z

ei2πwng〈0|
(
b̂µb̂
†
ν + b̂µb̂ν

)
e−2πwvσ(b̂†σ−b̂σ)|0〉. (6.12)

The first term in parenthesis is computed by commuting the two operators, and
reduces to u2〈0|	̂|0〉. The second term is managed by commuting the two annihilation
operators through the displacement operator. The commutation is4[

b̂ν , e
2πwvσ b̂†σ

]
=
∑
m

1
m! (2πw)m[b̂ν , (vσ b̂†σ)m] = 2πwvνe2πwvσ b̂†σ . (6.13)

Together with uρvρ = 1/2, we end up with

〈0|ϕ̂2	̂|0〉 = u2〈0|	̂|0〉+
∑
w∈Z

(πw)2e−2π2w2v2+i2πwng . (6.14)

We are left with the cosine expectation value, for which we split the cosine into
exponentials, and commute them through the displacement operator5,6.

〈0| cos ϕ̂	̂|0〉 = 1
2e
−u2/2

∑
±, w∈Z

ei2πwng〈0|e±iuρb̂ρe−2πwvσ(b̂†σ−b̂σ)|0〉

= e−u
2/2
∑
w∈Z

(−1)we−2π2w2v2+i2πwng . (6.15)

The sought-after expression for the variational energy is

〈0|Ĥ ′	̂|0〉
〈0| ˆ̂	|0〉

= −E
?
J

2

u2 +

∑
w∈Z

(πw)2e−2π2w2v2+i2πwng

∑
w∈Z

e−2π2w2v2+i2πwng

− EJe
−u

2

2

∑
w∈Z

(−1)we−2π2w2v2+i2πwng

∑
w∈Z

e−2π2w2v2+i2πwng
. (6.16)
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1 Equation of motion rather
need an inversion of the ar-
rowhead matrix, which is eas-
ier to perform. This difference
is illustrated again between
Sec. 8.2 and Sec. 10.1. The
two operations yield different
information, but they are
equivalent in the continuum
limit, cf.
J. W. Gadzuk. 1981. Phys.
Rev. B 24, 1651.
2 It sorts the operators such
that earlier times are placed
on the right.

3 Equations of motion are
valid for any prescription, so
we omit the R symbol.

4 We use Heisenberg’s equa-
tion of motion for operators,

i
dÂ
dt

= [Â, Ĥ].

The interpretation of this expression is quite clear: only the two parameters u2 and
v2 enter the formula, they respectively renormalize EJ and weight the importance of
the winding numbers contribution. It is still possible to reach a duality form, which
is quickly converging in the regime where the winding number weight become larger
than 1. It would be closely related to Eq. (5.25), albeit with admittance y replaced
by the many-body weights u2 and v2. We will now analyze these two parameters in
the continuous limit to provide some insight on the physics this last equation contains.
The Sec. 6.4 will then resort to numerical techniques to carry the variational principle,
and provide observables to compare with the Numerical Renormalization Group.

Both the u2 and v2 weights have a simple interpretation: they are the vacuum phase
and charge fluctuations. Indeed,

〈0|n̂2|0〉 = −vµvν〈0|(b̂†µ − b̂µ)(b̂†ν − b̂ν)|0〉 = v2, and 〈0|ϕ̂2|0〉 = u2. (6.17)

In turn, we will express these fluctuations in the language of Green’s function. That
will allow us to use their equation of motion, which will bypass the arrowhead matrix
diagonalization1 and will allow us to reach analytical expressions for these quantities.

Let GRnn(t− t′) = −iθ(t− t′)〈0|[n̂(t), n̂(t′)]|0〉
GFnn(t− t′) = −i〈0|T n̂(t)n̂(t′)|0〉

(6.18)

be the retarded and Feynman Green’s functions for charge operators. T is the time
ordering symbol2. Similar definitions hold for any couple of operators, especially for
GFϕϕ. We derive the equation of motion for the retarded functions. In frequency
domain, they differ simply by a symmetry prescription, so we will obtain easily the
Feynman functions we need. Finally, the vacuum fluctuations are obtained as the
t→ 0 limit of GF . Precisely,

〈0|n̂2|0〉 = iGFnn(t = 0), 〈0|ϕ̂2|0〉 = iGFϕϕ(t = 0). (6.19)

6.2 Charge fluctuations

The equations of motion on the Green’s function are obtained by successive derivation
with respect to time. This will produce relations between various Green’s functions.
If the Hamiltonian is quadratic, it must be possible to close and solve them. It is
here the case, the Hamiltonian being given at Eq. (6.5) (note that n̂0 = n̂/

√
E?J and

ϕ̂0 =
√
E?J ϕ̂). This procedure is close to explicitly find an inverse for the arrowhead

matrix. We successively find3,4

i∂tGn0n0(t− t′) = δ(t− t′)[n̂0(t), n̂0(t)]〈0|0〉 − iθ(t− t′)〈0|[i∂tn̂0(t), n̂0(t′)]|0〉
= −iGϕ0n0(t− t′), (6.20)

In the same fashion,

∂tGϕ0n0(t− t′) = δ(t− t′) + ω2
JGn0n0(t− t′) +

∑
k

gk
√

2ωkE?JGnkn0 ,

∂tGnkn0(t− t′) = −Gϕkn0(t− t′),
∂tGϕkn0(t− t′) = ω2

kGnkn0(t− t′) + gk
√

2ωkE?JGn0n0(t− t′). (6.21)

Taking the Fourier transform and collecting and extracting Gn0n0 , we reach

Gn0n0(ω) = 1

ω2 − ω2
J − E?J

∑
k

2ωkg2
k

ω2 − ω2
k

. (6.22)

http://dx.doi.org/10.1103/PhysRevB.24.1651
http://dx.doi.org/10.1103/PhysRevB.24.1651
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This form is also standard in the description of resonant levels, bosonic or fermionic.
The sum in the denominator is often called the hybridization function. In Part. III,
we will see that it is also the (exact) self-energy of the free bosonic field. Such sums
have been dealt with, in Sec. 3.3, using the spectral function to reach an integral
representation, ∑

k

2ωkg2
k

ω2 − ω2
k

= 4α
ˆ ∞

0
dν ν2

ω2 − ν2
1

1 + (ν/ωM)2 . (6.23)

We retained the Lorentzian cutoff derived in the continuum limit. We separate the
part linear in ωM,∑

k

2ωkg2
k

ω2 − ω2
k

= −4α
ˆ ∞

0

dν
1 + (ν/ωM)2 + 4αω2

ˆ ∞
0

dν
(ω2 − ν2)

(
1 + (ν/ωM)2

)
= −2παωM + 4αω2

ˆ ∞
0

dν
(ω2 − ν2)

(
1 + (ν/ωM)2

) . (6.24)

The second integral has poles, which need an explicit prescription. We use Feynman’s
prescription, in order to obtain Feynman Green’s function, as represented on Fig. 6.2.
The ωM →∞ limit of this integral is well defined: it is evaluated by partial fraction
decomposition, and Sokhotski-Plemelj formula, to give
ˆ ∞

0

ω2dν
ω2 − ν2 − iε

= ω

2

(ˆ ∞
0

dν
ν + ω − iε

−
ˆ ∞

0

dν
ν − ω − iε

)
= ω

2

( ∞
0

dν
ν + ω

−
 ∞

0

dν
ν − ω

+ iπ

ˆ ∞
0

(
δ(ν + ω)− δ(ν − ω)

)
dν
)
.

(6.25)

The principal parts cancel each other, and the sign of ω selects one of the δ functions.
All in all, in the continuum limit,

GFn0n0
(ω) = 1

ω2 − E?J (Ec − 2παωM) + i2παE?J |ω|
. (6.26)

Several comments are in order. First, we reached the Feynman’s function, as it
can be checked from its imaginary part parity. Second, we see that the charging
energy is displaced by the bath. In fact, this displacement exactly counterbalances the
environmental part in Ec we highlighted in Sec. 3.2, and computed in the continuum
limit in Sec. 3.3. We conclude that, independently of the details of the model, Ec −
2παωM = E0

c = 1/(Cc + CJ) is an exact relation. Finally, we simply reached the
response function of a damped oscillator. Its pulsation is ω2

0 = E?JE
0
c , its admittance

y0 =
√
E?J/E

0
c , and quality factor 1/Q0 = 2παy0.

The end of the charge fluctuations computation is reached by

〈0|n̂2|0〉 = iE?J

ˆ
R

dωGFn0n0
(ω) = i2E?J

ˆ ∞
0

dω
2π

1
ω2 − ω2

0 + iωω0/Q0
. (6.27)

We factorize the denominator into the product of two complex poles. They are
found as the zeros of the denominator. The associated discriminant is ∆ = 4ω2

0(1 −
1/(2Q0)2). We focus on the two regimes, over-damped and under-damped, which
correspond to Q� 1/2 and Q� 1/2 respectively. The poles are located atω± = ω0 (±1− i/2Q0) (Q0 � 1/2)

ω+ = −iω0/Q0, and ω− = −iω0Q0 (Q0 � 1/2)
, (6.28)
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Figure 6.6: Various regions in
the (2πα, y0) plane. Note that
y0 itself is a function of α.
(•) : extended, over-damped,
( ) : extended, under-
damped, (•) : compact,
under-damped.

as represented on Fig. 6.3. independently of the values of the poles, we can compute
the integral:

〈0|n̂2|0〉 = i2E?J lim
Λ→∞

ˆ Λ

0

dω
2π

1
(ω − ω+)(ω − ω−)

= iE?J
π(ω+ − ω−)

(
lim

Λ→∞
ln
(

Λ− ω+

Λ− ω−

)
+ ln

(
ω−
ω+

))
= iE?J
π(ω+ − ω−) ln

(
ω−
ω+

)
.

(6.29)

Underdamped case

In the under-damped case, the angle between the two complex poles tends to−π, while
their moduli are equal. The complex logarithm thus evaluates to ln(ω−/ω+) ' −iπ,
as represented on Fig. 6.4. We obtain

〈0|n̂2|0〉 = y0

2 . (6.30)

This is the isolated junction result. As we could have expected, in this limit, the
Josephson junction decouples from the array, and we lose the many-body contribution
to compactification.

Overdamped case

If Q0 < 1/2, the angle between poles is strictly zero, while the poles are purely
imaginary, so the charge fluctuation is purely real, as it should to be. Its value is

〈0|n̂2|0〉 = E?J
π

Q0

ω0

1
1−Q2

0
ln
(

1
Q

)
' 1
π2α

ln (2παy0) . (6.31)

This result is logarithmically divergent in the y0 → 0 and y0 →∞ limits. We rather
study the Boltzmann-like weight for winding number w. For w = 1 the maximum
weight, we obtain

e−2π2v2
= (2παy0)−

2
α . (6.32)

The weight is a strictly decreasing function of the admittance y0, as plotted for sev-
eral α on Fig. 6.5. We then have a hint on the decompactification mechanism: when
α → αmax, Cc →∞, as stated in Sec. 3.3. This means that E0

c = 1/(Cc + CJ) → 0.
As long as E?J stays finite, y0 → ∞, such that the winding number weight vanishes,
following a power law given by α. Still, we expect E?J to also be renormalized down-
wards, such that the limit of y0 at strong coupling is still undecided, and the fate of
compactification is still in the balance.

When the winding number weight exceeds 1, high winding numbers are contributing
more than small ones. Yet, the analysis does not fail: it only signals that we should
use a duality formula, to move to a charge picture. The sum over charge numbers will
be involving a small number of charge states only. This charge regime is reached for
2πα < 1/y0, i.e. in the under-damped regime, such that this power law do not hold.
Only the winding number picture is relevant at strong coupling. The environment
suppresses interference effects between different windings, and tends to decompactify
the system. A similar result has been reached using Feynman’s influence theory1.
The three possible regimes are represented on Fig. 6.6.

6.3 Phase fluctuations

The same method is applicable for the phase fluctuations, which will provide the
u2 parameter. It will allow us to interpret completely Eq. (6.16), and discuss the
self-consistent procedure given by the variational principle.

http://dx.doi.org/10.1103/PhysRevB.34.6518
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1 There is no reason the
Lorentzian shape we derived
for sums over modes would
be valid here. We content
ourselves with a sharp cutoff
at a same energy scale.

2 We obtain
ω

(ω − ω+)(ω − ω+)

=
1

ω+−ω−

(
ω+

ω−ω+
−

ω−

ω−ω−

)
,

which avoids linearly diver-
gent terms.

We aim at the phase Green’s function, GFϕϕ(ω). We can relate it to the charge Green’s
function by equation of motion technique. We already established that

∂tGn0n0(t− t′) = −Gϕ0n0(t− t′). (6.33)

Deriving with respect to the other time variable, we reach

∂′tGϕ0n0(t− t′) = δ(t− t′)−Gϕ0ϕ0(t− t′). (6.34)

We change to only one time variable, τ = t− t′, which implies ∂t = ∂τ and ∂′t = −∂τ ,
and so,

Gϕ0ϕ0 = ω2Gn0n0(ω)− 1. (6.35)

Remembering ϕ̂0 =
√
E?J ϕ̂, the phase fluctuation is then

u2 = i

ˆ ∞
0

dω
π

E0
c − i2παω

ω2 − ω2
0 + iωω0/Q0

. (6.36)

Underdamped case

When the coupling is weak, 2πα� 1, only the first part of the numerator contributes.
We retrieve the harmonic oscillator result,

〈0|ϕ̂2|0〉 = E0
c

E?J
〈0|n̂2|0〉 = 1

2y0
. (6.37)

We so have that Eq. (6.16) completely reduces to Eq. (5.25). The environment
decouples from the Josephson junction, which can be compactified as an isolated
junction.

Overdamped case

The first part of u2 can still be recast into a charge fluctuation, so we write

u2 = v2

y2
0

+ 2α
ˆ ωM

0
dω ω

ω2 − ω2
0 + iωω0Q0

. (6.38)

The remaining integral is logarithmically divergent, so we reintroduced a cutoff1. We
employ the same trick: we separate the poles by partial fraction decomposition2, to
obtain

u2 = v2

y2
0

+ 2α 1
ω+ − ω−

(
ω+ ln

(
1− ωM

ω+

)
− ω− ln

(
1− ωM

ω−

))
= 2α

2π2α2y2
0

ln(2παy0) + 2α ln
(

ωM

2παE?J

)
, (6.39)

obtained with the poles expression given at Eq. (6.28). In the over-damped regime,
the 1/(παy0)2 is very weak, such that we can safely neglect the first term in front of
the second. We end up with

〈0|ϕ̂2|0〉 = 2α ln
(

ωM

2παE?J

)
. (6.40)

We are now equipped to return to the vacuum energy, Eq. (6.16), considered in
the framework of variational principle. In this over-damped case, we know that the
contribution of winding numbers are small, so we reduce the energy to the w = 0
contribution. The self-consistent equation for E?J reduces to

d〈Ĥ〉
dE?J

= 0 ⇒ E?J = EJe
−u2/2 − u2

(
du2

dE?J

)−1

. (6.41)
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Using the previous result for u2,

E?J

(
1 + ln

(
2παE?J
ωM

))
= EJ

(
2παE?J
ωM

)α
. (6.42)

Neglecting the logarithmic correction on the left hand side, we recognize the result
derived for the Schmid transition,

E?J = EJ

(
ωM

2παEJ

) α
α−1

. (6.43)

At α = 1, this predicts that the scale E?J is renormalized to zero, faster than any
power law.

We can then finish the description of the decompactification mechanism. Suppose
that we crank up the coupling capacitance, Cc, to infinity. If Ec/ωM is chosen such
that αmax < 1, E?J stays finite in the Cc →∞ limit. On the contrary, E0

c = 1/(Cc +
CJ) → 0, such that y0 =

√
E?J/E

0
c → ∞. Compactification becomes irrelevant. At

α = αmax, the charging energy is effectively suppressed, the system is completely
decompactified, and the model reduces to boundary sine-Gordon, as discussed in
Sec. 4.4.

This scenario can be modified in two ways:
• At EJ/Ec < 1, compact effects becomes relevant in the under-damped regime (and

even at α = 0). The system reduces to spin-boson model for all α, and follows a
different trajectory when Cc is dialed up.

• If αmax > 1, near the Schmid transition, E?J vanishes while E0
c is non-zero, such that

y0 → 0. Compactification becomes relevant, the system reduces to a few charge
states. If, furthermore, ng = 1/2, it will encounter the spin-boson transition, at
α > 1.

6.4 Numerical optimization

The previous discussion can be enriched by resorting to numerical computation to find
the optimum E?J , by minimizing Eq. (6.16). By doing so, we can test the effect of
compactification on the self-consistent harmonic approximation in the regimes where
it is relevant.

Furthermore, since the whole method rests on the variational principle, its validity
strongly depends on the quality of the initial wavefunction guess. It is then crucial to
benchmark the method against well established non-perturbative numerical methods,
as the numerical renormalization group.

Phase fluctuations at small α

Up until now, we focused on the over-damped region. The question of the interplay
of small α and compactness is still open. Two scenarii are in competition:
(i) If phase fluctuations are enhanced by α, the SCHA will lower E?J ∝ exp(−u2/2),

thus lowering y0. If the effect is strong enough, it could prevent the system to ever
enter the strong coupling regime.

(ii) If the superconducting phase is localized by the interactions, E?J will rise. Eventu-
ally, the collapse of E0

c will lead to entering the over-damped regime, and later to
decompactification, as we previously described.
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Since ϕ̂2 is not a 2π-periodic operator, its average value over a compact state is not
well defined, as we discussed in Sec. 5.11. We rather study 〈0| cos ϕ̂|0〉, which is well
defined and encapsulate the same information. It is represented on Fig. 6.7 as a
function of EJ/Ec, for several α and ng.

For simple comparison to NRG, this computation is realised on the same logarithmic
grid for environmental modes, ωk = ωM/2k, cf. Sec. 4.3. Typically 20 modes are
enough to reach the continuum limit in this scheme. At every step of the minimization
algorithm, the arrowhead matrix Eq. (6.5) is diagonalized, u2 and v2 computed, and
plugged into Eq. (6.16). Since only one parameter, E?J , is optimized, the minimum is
reached within a few tens of steps. Overall, the computational cost is very low. We
see that excellent agreement between NRG and compact ansatz is reached from high
EJ/Ec down to EJ/Ec ∼ 0.5 for ng = 1/2. At this value, the minimization becomes
unstable, as illustrates the sudden jumps in 〈cos ϕ̂〉. This signals that the ansatz is
not matching the system wavefunction correctly anymore, and should not be trusted
below the jumps. At ng = 0, the system is described correctly in all regimes.

From this figure, we can separate between two regimes. At EJ/Ec > 1, phase fluc-
tuations are damped2 by the interaction with the environment. This corresponds
to scenario (ii). Below EJ/Ec = 1, phase fluctuations are enhanced by the interac-
tions. This is typical of spin-boson physics, as discussed in Sec. 4.2: tunnel amplitude
between neighboring charge states will renormalize downwards, and finally vanish at
the spin-boson phase transition. This corresponds to scenario (i), where over-damped
regime is never reached and decompactification never happens when α is raised.

The E?J scale can be extracted from the numerical computation, as represented on
Fig. 6.8 in the EJ > Ec regime. The result is compared to the optimization conducted
with the w = 0 term only, i.e. without compactification. Several regimes already dis-
cussed can be highlighted: when α→ αmax, decompactification occurs, and compact
and extended self-consistent harmonic approximation agree. In the harmonic limit
EJ � Ec, compactness never contributes. E?J slowly rises, which is linked with phase
fluctuation being damped by the interactions. In the crossover regime EJ ∼ Ec, the
low α region is strongly affected by compactness, while decompactification happens
latter, when entering the over-damped regime.

This concludes our demonstration of the compact ansatz capabilities to unveil, ana-
lytically or at low computational cost, the physics of Josephson systems. Applied to
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the charge-boson model together with a realistic microscopic modelization, it shows
that the most prominent many-body effects are hidden by an interplay of coupling
strength limitation, decompactification mechanism, and charge noise, which would
obscure experimental measures in the spin-boson regime. In the next section, we
sketch some possible applications of the compact ansatz method to related systems,
and anticipate new developments of its toolbox.
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7|Perspectives on the compact ansatz

“Est-ce qu’on peut s’en servir pour donner de l’élan à un pigeon ?”

Astier, Kaamelott.

The main asset of the compact ansatz method is its ability to describe many regimes
of the isolated junction in a simple framework, which can be extended to more involved
circuits. We demonstrated earlier such an application to the charge-boson model. In
this chapter, we give rough sketches of foreseen applications for the compact ansatz.

7.1 Many-body excited states

In the previous chapter, we set aside the ability of the variational principle to tackle
excited states and focused on vacuum state properties. Still, we demonstrated this
ability on the isolated junction in Sec. 5.2, and it is generally a very well known
method in atomic physics1 and quantum chemistry, where it is the cornerstone of
many numerical methods for determination of discrete spectra, as the Hückel molec-
ular orbital theory.

The race for efficient superconducting qBit designs produced a whole series of atom-
like circuits, with spectra ranging from fairly simple, as the charge qBit, to complex, as
the fluxonium2 or the 0−π qBit3. These spectra structures are relevant for quantum
computing protocols: the proliferation of atomic states with no strong selection rules
to suppress transitions leads to sizable effects e.g. for dispersive measurements4. High
lying levels are also relevant for QND measurements through a readout cavity, which
can be improved by raising the photon number in the readout cavity5. High lying
levels are usually outside of Josephson potential cosine well, as represented on Fig. 7.1.
Consequently, they are more sensitive to charge noise and compactness in general. A
quantitative estimate of this charge noise could be obtained in a systematical way via
the compact ansatz.

It has recently been demonstrated that a drived transmon is subject to instabilities,
during which it escapes the potential well6. This physics is also related to restora-
tion of compactness at high energy; one could then wonder if the decompactification
mechanism would provide a simple picture of this dynamical instability.

Excited states expectation values

The main ingredient to perform such computations is to evaluate the expectation
value of a Hamiltonian over excited states. We here only test the feasibility of such
a procedure, without final result to exhibit. Assume for now that one state of Ĥ0

is populated only. Its index is ν. The corresponding Fock states are denoted |nν〉,
for n photons. We focus on the norm, 〈nν |	̂|mν〉 = 〈0|b̂nν 	̂b̂†mν |0〉. The powers of
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1 using that if [Â, B̂] ∈ C,

eÂeB̂ = eB̂eÂe[Â,B̂].

2 In the path integral version
of the theorem, related to
Gaussian integration.

3 The (n,m) rook polynomial,
often appearing in combina-
torics problems, is defined as∑

k
rk,n,mx

k, rmnk the num-
ber of positions where k rooks
do not attack each-other on
a n by m checkerboard. An
example position counted in
r5,8,8 is:

0ZrZ0Z0Z
Z0Z0ZrZ0
0Z0Z0Z0Z
ZrZ0Z0Z0
0Z0ZrZ0Z
Z0Z0Z0Z0
0Z0Z0ZrZ
Z0Z0Z0Z0

4 As an example, a famous
condensed matter technique,
dynamical mean field theory,
reduces a bulk model to an
impurity model, which is sim-
pler to deal with and cheaper
for numerical computations.

creation/annihilation operators can be represented with an exponential generating
function,

b̂n = (−i)n dm
dxm e

ixb̂

∣∣∣∣
x=0

. (7.1)

This allows the usage of displacement operators algebra to compute the bracket. The
derivative is evaluated at the end of the computation. It produces

〈nν |	̂|mν〉 = (−i)m+n
∑
w∈Z

e−2π2w2v2 dm
dxm

dn
dyn 〈0|e

ixb̂νe−2πwvσ b̂†σe2πwvρb̂ρeiyb̂
†
ν |mν〉

∣∣∣∣
x,y=0

.

(7.2)
We commute the exponential operators1, and obtain

〈nν |	̂|mν〉 = (−i)m+n
∑
w∈Z

e−2π2w2v2
e(2πwvν)2 dm

dxm
dn
dyn e

−(x−i2πwvν)(y+i2πwvν)
∣∣∣∣
x,y=0

.

(7.3)
The derivative is similar to Wick’s theorem2. Using fν = −i2πwvν as a placeholder,
it takes the form

(−1)nef
2
ν

dm
dxm (x+ fν)e−(x+fν)(y+f?ν )

∣∣∣∣
x,y=0

= Pmn (f)

= n!fn−m
∑
k

(−1)k
k!

(
m

n− k

)
f2k. (7.4)

This result is essentially combinatoric, and amounts at counting, for a given power of
f , the number of derivatives leading to it. The final polynomial has the combinatoric
structure of a rook polynomial3, with provide simple evaluation algorithms and useful
recursion relations, e.g. Pmn (fν) = (−1)n−mPnm(f), which proves that our result is
symmetric under nν ↔ mν exchange. The resulting expectation value is

〈nν |	̂|mν〉 =
∑
w∈Z

e−2π2w2v2
Pmνnν (2πwvν). (7.5)

With some more effort, it is extended to any two Fock states given by two lists of
occupation numbers, ~n = (n1, . . . , nν , . . .) and ~n = (m1, . . . ,mν , . . .):

〈~n|	̂|~m〉 =
∑
w∈Z

e−2π2w2v2 ∏
ν

Pmνnν (2πwvν). (7.6)

Similar expressions can be reached for the others expectation values needed to com-
pute the full Hamiltonian. One can notice that the bracket we evaluated shows non-
zero overlaps between different ansatz states. Similarly to the procedure we applied
in Sec. 5.2, a Gram-Schmidt orthonormalization process must be performed together
with the variational method.

7.2 Josephson junction chains

The charge boson model is related to a larger family of impurity models: a unique
degree of freedom, either a fermion, a spin, a boson, a rotor, is coupled to a contin-
uum of modes. These models are often encountered in condensed matter, the Kondo
problem and the spin-boson model being the most prominent examples. Nonetheless,
many interacting models are instead homogeneous in space, with a non-linearity dis-
tributed over whole space, sometimes in the form of an interaction between several
fields. All models of particle physics are organized in such a way; one can call them
bulk models. They tend to be harder to solve4 than their impurity counterpart.
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Superconductor/insulator transition

Superconducting circuits are well adapted to experimentally emulate bulk Hamilto-
nians. The simplest case is the one of a 1-dimensional Josephson junctions array,
where the junctions geometry is chosen such that EJ/Ec ∼ 1 for the individual
junction. Such a chain is represented on Fig. 7.2. Historically, this area of study
emerged as a part of low dimensional superconductivity. We discussed in Chap. 2

EJ
i− 2

C Cg

ng,i−2

EJ
i− 1

C Cg

ng,i−1

EJ
i

C Cg

ng,i

EJ
i + 1

C Cg
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i + 2

C Cg

ng,i+2

...

... ...

Figure 7.2: A one dimen-
sional array of Josephson
junctions. Each supercon-
ducting island is biased by a
different charge offset ng,i.

that Coulomb interaction can suppress superconductivity for small structures, the su-
perconducting island with Josephson junction being the 0-dimensional representative
of the phenomenon. Nanowires have long been studied as a continuous 1-dimensional
superconducting systems1, together with Josephson junction chains as its discrete
counterpart. They display a phase transition, between a superconducting state and a
insulating, Coulomb blockade phase.2,3. This model can be mapped onto the quan-
tum sine-Gordon model4, which shows that the transition is of Kosterlitz-Thouless
type5. Only recently, this transition was studied numerically by quantum Monte
Carlo technique in the whole parameter space6.

The influence of disorder on the transition has been an active topic of research7,8.
An important source of disorder is the charge offsets, represented on Fig. 7.2, which
can vary from site to site.

Quantum phase slips

The mechanism driving the quantum phase transition is the proliferation of tunneling
events called phase slips. Consider the Hamiltonian of Fig. 7.2 circuit without charge
offset:

Ĥ = 1
2
∑
ij

n̂iC
−1
ij n̂j − EJ

∑
i

cos (ϕ̂i+1 − ϕ̂i) . (7.7)

We can first consider classical, static solutions to this problem. the Josephson poten-
tial prevents phase variations over short distances. The minimal energy configuration
is given by ϕi = 0 ∀i. An other possible configuration is represented on Fig. 7.3.
The phase winds one time over [−π, π). For ϕ0 = ϕN = 0 fixed boundary conditions,
it is not possible to unwind the configuration without ‘breaking the thread’, i.e. hav-
ing one junction tunneling suddenly from 0 to 2π. A high energy barrier forbids such
transitions at the classical level, but they can be activated by thermal or quantum
fluctuations. We can build an effective Hamiltonian to describe the situation: let
|w〉 be the state of w windings around the cylinder. To evaluate the energy of a w
windings configuration, we assume that each junction supports the same phase dif-
ference, (2πw + ϕext)/N � 2π for N junctions and a phase difference ϕext between
boundaries. The lineic inductance, for N junctions over a distance d, is ` = NL/d.
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For small phase differences, we obtain an energy d/(2`)(ϕext + 2πw)2, such that the
effective Hamiltonian writes

Ĥeff =
∑
w∈Z

d

2`N (ϕext + 2πw)2|w〉〈w| −Nt
∑
w∈Z
|w〉〈w + 1|+ |w〉〈w − 1|. (7.8)

the last term represent the tunnel effect, with t the tunneling amplitude for one junc-
tion. It is quite noteworthy that this effective Hamiltonian is completely analogous
to the one of the charge qBit. The offset charge has been replaced by the total phase
difference ϕext. Its spectrum is represented on Fig. 7.4.
Using such a phase slip element in the design of superconducting qBits, to generate
non-linearity without charge noise, is a promising route1. The spectrum periodicity
with respect to ϕext of a chain of 6 junctions has been demonstrated2, and encountered
again in the fluxonium3.

Proliferating winding numbers

The compact ansatz can be adapted to such a situation, to study the quantum phase
transition in the presence of charge noise disorder, as well as to provide simple and
accurate estimates for spectrum and charge noise of few junctions designs4 for qBit
oriented circuits.

The main difficulty is that a new winding numbers must be introduced for every
junction. The sum over winding numbers then grows exponentially in the number
of junctions. This is an important limitation to scale the system towards continuum
limit. With a list of winding numbers ~w = (w0, . . . , wν , . . .), we expect expressions of
the form

〈0|	̂|0〉 =
∑
~w∈ZN

exp(−2π2wνvνσvµσwµ), (7.9)

with vνσ an extension of the vµ encountered in the impurity problem. The exponential
factor has the form of a Boltzmann weight. To compute numerically this sum, we can
import the Monte Carlo techniques developed for statistical mechanics, and bypass
the exponential growth problem. If ground state observables can be computed this
way, it could provide a mean to diagnose the insulator/superconductor transition,
especially in the presence of ngi random charge noise.
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Boundary Sine-Gordon simulator
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Parameter Value
N 4250
C 144 fF
CJ 14.5 fF
Cg 0.146 fF
L 0.53 nH

f0 ' fp 18 GHz
Zc 1.9 kΩ
Ztl 50Ω

Table 8.1: Microscopic pa-
rameters of the circuit, and
other important scales.

3 U. Vool & M. Devoret.
2017. Int. J. Circuit Theory
Appl. 45, 897.

8|Experimental simulator modeling

... came Nyarlathotep, swarthy, slender and sinister, always buying strange instruments
of glass and metal and combining them into instruments yet stranger. He spoke much

of the sciences, and gave exhibitions of power which sent his spectators away speechless.

Lovecraft, Nyarlathotep.

Part I discussed several routes to observe many-body effects in superconducting
circuits, through the simulation of well known models as spin-boson or boundary
sine-Gordon. We characterized the different energy scales and focused on quantum
phase transitions as hallmarks of many-body physics. These are properties of the
system ground state. Other characterizations of many-body effects are possible, and
often easier to access experimentally. In this first chapter on the experimental sine-
Gordon simulator, we discuss the expected phenomenology of such a device. We link
experimental observables obtained in spectroscopy experiments with the many-body
properties of this interacting system, encapsulated in its self-energy function.

Cross-sections of scattering events are often a good tool to probe the non-linear
response of a system, since one can easily discriminate between elastic and inelastic
scattering events, the latter involving particle creation or annihilation1. We will
see how spectroscopic data can be predicted from calculations beyond perturbative
expansion, and how the full microscopic model can be included in the formalism with
few approximations.

8.1 Circuit diagram and phenomenology

. . .

12 µm

Figure 8.1: The experimental
circuit, imaged by Scanning
Electron Microscopy.
left panel. Connection to
the readout line. On the right
starts the array of Josephson
junctions.
right panel. End of the
chain and terminal SQUID
ring.

From the charge-boson model, we learned that the coupling capacitance should be
replaced by a wire — effectively taking the Cc → ∞ limit — in order to maximize
coupling strength and avoid offset charge noise via decompactification. Such a circuit
design is represented on Fig. 8.2. This circuit has been realized in the laboratory2,
so we can provide some orders of magnitude to better sketch its expected behavior.
Its parameters are collected in Tab. 8.1. The circuit itself is shown on Fig. 8.1.

The circuit is composed of a long chain of N = 4250 superconducting Josephson
junctions, in their linear regime (EJ � Ec), such that they behave effectively as
inductors. The plasma frequency is estimated at ωp/(2π) = 1/

√
LC = 18 GHz. The

chain is terminated by a SQUID3, galvanically coupled to the chain, that allows in
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Figure 8.2: The boundary
sine-Gordon circuit simu-
lator. A long chain of N
junctions forms a bosonic
field, strongly coupled via a
boundary Josephson term by
the SQUID on site 0, with
tunable Josephson energy EJ.
The chain is side-coupled to
the probing 50Ω pads.

1 As expected from a su-
perconducting chain, the
impedance is much higher
than vacuum, 376Ω, reaching
ultra-strong coupling.

2 S. Leger, J. Puertas-
Martinez, et al. 2019. Nat.
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∆ω

δω

0
Figure 8.3: The expected
transmission between In and
Out ports based on Fabry-
Perot effect. δω denotes
peak width, and ∆ω the free
spectral range.

25Ω Zl

Zc

L

Figure 8.4: Effective circuit
for Fabry-Perot effect.

situ control of EJ using an external magnetic flux threading the SQUID loop. The
maximum Josephson energy accessible is E0

J/h ' 30 GHz. Due to asymmetry effects
in the SQUID, the lowest accessible EJ value is not easily determined, and is used as
a free parameter.

Phenomenology

The finite chain of junctions is long enough to be considered, in first estimate, as a
transmission line of impedance Z =

√
L/Cg = 1.9 kΩ1. The corresponding coupling

strength is α = Z/(2πRq) = 0.3: according to Sec. 4.5, we should observe a localized
phase, with a non-vanishing but strongly renormalized E?J scale.

This superconducting transmission line has a finite length, so it behaves like a cavity,
with discrete resonances in frequency. When probed by a signal propagating in the
50Ω pads, we expect a Fabry-Perot effect: transmission across the chain is only
possible close to resonances. Away from a resonance, the chain behaves like an open
breaker, so that the transmission between In and Out ports (cf Fig. 8.2) is unity.
The corresponding Fabry-Perot transmission is sketched on Fig. 8.3. This observable
is obtained by spectroscopy, a standard technique in microwave engineering2. The
two main characteristics of such a curve is the position and width of the resonances.
We will see how these quantities are modified by the interactions due to the terminal
Josephson junction.

Resonance shifts

In a simple Fabry-Perot experiment, the resonance peaks positions are given by con-
structive interference conditions: the wave must accumulate a phase of 2π during a
round trip in the transmission line, including the phase at reflection. The equiva-
lent circuit is represented on Fig. 8.4. On the left, at contact with the pads, since
25Ω� Zc, we expect near-perfect reflection. The corresponding phase shift is π. On
the right boundary, the reflection coefficient is given by

rl = Zl + Zc

Zl − Zc
. (8.1)

http://dx.doi.org/10.1038/s41467-019-13199-x
http://dx.doi.org/10.1038/s41467-019-13199-x
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Within quadratic approximation, the right end impedance is modeled by a parallel
inductor and capacitor, 1/Zl = iωCJ + 1/(iωLJ). With ZJ =

√
LJ/CJ and ωJ =

1/
√
LJCJ, the phase shift on the right is

θ(ω) = Arg(rl) = 2 arctan
(
Zc

ZJ

(
ω

ωJ
− ωJ

ω

))
. (8.2)

The resonance condition is then spelled out as1

k` = π

N
(`+ 1/2) + 1

N
θ(ω`). (8.3)

Since the boundary condition can be controlled in situ, there is a simple way to
measure the phase shift at mode `, θ`, from resonances frequencies. When EJ → 0,
LJ → ∞, so θ → π. Let us assume that the modes frequencies are smooth, slowly
varying functions of the wavenumber: ω` = ω(k`). Then,

ω` = ω

(
π`

N
+ θ(EJ = 0)

N
+ θ(EJ)

N

)
' ω`(EJ = 0) + θ

N

dω
dk

∣∣∣∣
EJ=0

. (8.4)

A similar expression is reached if the mode number varies while EJ is kept at zero:

ω`+1 = ω

(
π`

N
+ π

N

)
' ω` + π

N

dω
dk

∣∣∣∣
EJ=0

. (8.5)

Combining these results, we reach

θ`(EJ) = π
ω`(EJ)− ω`(0)
ω`+1(0)− ω`(0) . (8.6)

Since Eq. (8.2) provides a link between the phase shift and the boundary inductance
LJ = 1/EJ, we have an experimental access to the renormalization of EJ when inter-
actions are turned on. This connection between phase shifts of scattering states and
properties of the impurity bound state is quite general2.

Resonance widths

Still considering a simple, Fabry-Perot like computation, the widths of the resonances
are known to be linked to energy losses during a round trip. The first source of losses
is simply the energy emitted in the external pads packed together as a Z0 = 25Ω
resistor. Let’s roughly estimate the associated width. At first order in Z0/Zc, the
reflection coefficient on the right is Rr = |rr|2 ' 1− 4Z0/Zc. The Fabry-Perot finesse
is then3 F = πZc/(2Z0), which translates into a peak width of δω ' Z0/Zc ∆ω '
10−3∆ω, with ∆ω the free spectral range. This width is especially thin.

Other dissipation sources are present in superconducting devices, like dissipation in
the insulating dielectric layers, called dielectric losses. It as been characterized for
superconducting circuits4, and its reduction is an important technological factor for
improvement of superconducting qBits coherence times5. The simplest model for
dielectric loss consists in adding a real part to the impedance of a capacitance, C →
C(1+i tan δ), tan δ often called the tangent loss factor, a constant for many dielectrics.
On our superconducting chain, it adds an imaginary part to the wavenumber. We
adapt Sec. 3.2 results for continuous chains: Let a the chain unit cell size, κ` = k`/a

the dimensional wavenumber, v = a/
√
LCg the low-frequency wave velocity. Then,

taking the tangent loss into account,

κ2
` ' κ′2` + 2iκ′`κ′′` = ω2

`

v2
1

1− ω2
`

ω2
p
(1 + i tan δ)

. (8.7)
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We then separate real and imaginary parts of κ`, that are respectively responsible for
propagation and attenuation. The quality factor of mode ` is formed as the number
of oscillations of the mode during attenuation characteristic time:

Q` = κ′`
κ′′`

= 2
tan δ

ω2
p

ω2
`

(
1− ω2

`

ω2
p

)
. (8.8)

We then expect the quality factor to decrease at high frequency1. For Al oxide, we
estimate tan δ ∼ 10−3. Aside, in the measurement range, the maximum frequency is
ω` ∼ ωp/2. The peak width is then δω = (ω/Q∆ω)∆ω, with ∆ω the free spectral
range, estimated at ∆ω ' ω`/100 in the measurement range. Altogether, δω '
10−2∆ω. Dielectric losses are still a weak broadening mechanism.

A much more interesting broadening mechanism is provided by photon inelastic scat-
tering off the boundary impurity. Expanding the interaction term into2

−EJ cos(φ̂0) = −1 + 1
2 φ̂

2
0 −

1
4! φ̂

4
0 + . . . , (8.9)

we deduce it authorizes photon frequency conversion in any event involving an even
number of photons3: 1γ → 3γ, 2γ → 2γ, 1γ → 5γ, etc., provided that the events
conserve total energy. the photons scattered to other frequencies can be considered
dissipated during a spectroscopy experiment, and contribute to the line width. We
will not attempt to weight the order of magnitude of this contribution, since most of
this part is devoted to its evaluation. Instead, directly have a look at the experimental
data for peak widths.

Experimental resonances

3 6 9 12

f (GHz)

0

0.5

1

|t|
2

Figure 8.5: The experimental
transmission measured be-
tween In and Out pads for 2
magnetic fluxes in the SQUID
loop:
(•) : EJ ' 27 GHz,
(•) : EJ ' 7.7 GHz.

The transmission measured experimentally between the In and Out pads of the
sample is represented on Fig. 8.5, for two values of EJ. The calibration of EJ with
the external magnetic flux controlling the SQUID is done in Sec. 10.5, where we
perform the complete data analysis. For now, we simply notice that we observe the
expected serie of well separated resonances, the width of which are strongly depending
on EJ. The (•) curve only displays sharp resonances, dominated by dielectric and
external losses4, while the (•) curve shows widths dramatically enhanced by a factor
102. A close-up on this transmission curve is shown on Fig. 8.9, when we propose a
simple model to extract the internal losses from the peak shape.
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lumped into an admittance Y .

1 Only the measurement
line coupling to the system
is treated as linear. This
bears no assumption on the
terminal Josephson junction
non-linearity.

2 H. Bruus & K. Flensberg.
2004. Many-Body Quantum
Theory in Condensed Matter
Physics.

3 One can check that the
corresponding equation of
motion is equivalent to adding
a current generator in parallel
between the site and ground.

8.2 Transmission and Green’s functions

Kubo formula

The strong variation of the line widths with EJ together with the high value of
α advocates that first order perturbation theory cannot provide accurate results:
we immediately prepare the formalism for more powerful methods. We will first
reformulate the problem in the language of Green’s function, since it is a very natural
way to discuss the many-body problem.

Let’s first package the whole chain into an admittance Y , as represented on Fig. 8.6.
The transmission lines impedance is noted Ztl. The transmission between In and Out
ports is then

t = 1
1 + Y Ztl/2

. (8.10)

We want to include the dissipative effects of the measurement lines onto our compu-
tation of the chain admittance, so we add and substract them: Y = 1/Ztot − 2/Ztl.
Reporting this in the transmission, we simply end up with

t = 2Ztot

Ztl
. (8.11)

Representing the chain as an impedance is equivalent to working within the linear
response framework1. In quantum theory, the linear response is evaluated using
the Kubo formula2, which states that if a Hamiltonian is perturbed by a term like
Ĥprobe = B̂f(t), the average of an observable Â is perturbed as〈

Â(t)
〉
−
〈
Â
〉

0
=
ˆ ∞
−∞

dτ GRAB(t− τ)f(τ) (8.12)

where 〈·〉0 is thermal equilibrium average or non-interacting vacuum state average at
T = 0, and

GRAB(t− τ) = GRAB(t, τ) = −iθ(t− τ)
〈[
Â(t), B̂(τ)

]〉
(8.13)

is the retarded Green’s function between operators Â and B̂. Moving to frequency
space using a Fourier transform,〈

Â(ω)
〉

= GRAB(ω)f(ω), (8.14)

which is the sought-after proportionality between probe and response. A current bias
on a superconducting island n is represented by a driving term −I(t)φ̂n3. The voltage
between site n and ground is given by U = ˙̂

φ, such that

U(ω) = −iω
〈
φ̂n

〉
= iωGRφnφnI(ω). (8.15)

From this equation, we read the impedance of the full chain in terms of the phase-
phase Green’s function of terminal site N, so that the transmission is

t = 2iω
Ztl

GRφNφN . (8.16)

Equations of motion

The Green’s function obeys equations of motion very similar to the ones obeyed by
operators in Heisenberg’s picture. Let’s derive them for the model of Fig. 8.2. Let’s
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1 The R symbol is dropped,
since this computation is
valid for all Green’s function
prescriptions.

2 Which allows to find in-
verses of P and C, useful in
the following computation.

3 We see that the regulariza-
tion prescription for poles is
indeed lacking.

first unplug the non-linear element by taking EJ = 0, and removing the external
transmission lines. The complete capacitance and inductance matrices are C and
1/L, and the corresponding Hamiltonian writes

Ĥ(EJ = 0) = 1
2 ~̂n

ᵀ
C−1~̂n+ 1

2
~̂φ
ᵀ1/L~̂φ. (8.17)

The equation of motion is obtained by computing time derivatives1:

i∂tGφiφj (t, t′) = δ(t)
〈[
φ̂i(t), φ̂j(t)

]〉
− iθ(t− t′)

〈[
i∂tφ̂i(t), φ̂j(t′)

]〉
= i
∑
m

(C−1)imGnnφj . (8.18)

A second derivative yields the equation of motion. Since this last equation hints
towards a matrix structure, we define a matrix of Green’s functions as Gij = Gφiφj ,
and the equation of motion in frequency space is(

ω2C − 1/L
)

G = 1. (8.19)

There is a connection to the diagonalization procedure we followed in Sec. 3.1. As-
sume we find a change of basis P such that P ᵀCP = 12 and P ᵀ1/LP = ω2, ω a
diagonal, positive matrix. Eq. 8.19 is rewritten in this base as

P
ᵀ (
ω2C − 1/L

)
P P−1GCP = P

ᵀ
CP = 1

⇒ (ω21− ω2)Ḡ = 1, (8.20)

where we defined Ḡ = P ᵀCGCP the matrix of modes Green’s functions. Inverting
the relation, we obtain P ḠP ᵀ = G. This is coherent with a change of basis in the
Green’s function definition:

Gij(t, t′) = −iθ(t− t′)
〈[
φ̂i(t), φ̂j(t′)

]〉
=
∑
k`

PikPj`
(
−iθ(t− t′) 〈[ϕ̂k(t), ϕ̂`(t′)]〉︸ ︷︷ ︸

Ḡk`(t,t′)

)
.

(8.21)
Since Ḡ inverse is clearly diagonal, we see that this change of basis solved the Green’s
function equation of motion. We deduce

Ḡk`(ω) = δk`
ω2 − ω2

k

and Gij(ω) =
∑
k

PikPjk
ω2 − ω2

k

. (8.22)

We recognize a harmonic oscillator/bosonic Green’s function3.

Resistors and dissipation

Sec. 4.1 made the connection between infinite transmission lines of impedance Z and
dissipation: energy emitted as waves in the line is effectively lost to the system. The
transmission line then behaves as resistor of resistance R = Z. The elimination of
the transmission line degrees of freedom we performed in the equation of motion can
be repeated in the Green’s function equation of motion. For 1/R a matrix of inverse
resistances, (

ω2C − 1/L + iω1/R
)

GR = 1. (8.23)

Adding the dissipation provides a prescription for the Green’s function. In this case,
the retarded Green’s function is computed. To see this, let us first inquire the simple
case of dielectric losses, where the resistance matrix is assumed to take the same struc-
ture as the capacitance matrix: 1/R = C/(R0C0), with R0C0 = τ a time constant.
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1 The model could be ex-
tended easily to 1/R co-
diagonal with C, resulting in
τ depending on k.

2 It corresponds to
1

ν2 − ω2 →
1

ν2 − ω2 + iε

in the integrand.

Imω

Reω
ωk

−i
2Qk

−ωk
−i

2Qk

−iωk/Qk

t < 0

Figure 8.7: Green’s function
poles in complex ω plane.
(•) Q > 1/2, (•) Q < 1/2.
(•) Residue theorem contour.
3 R. D. Mattuck. 1976. A
Guide to Feynman Diagrams
in the Many-body Problem.

The equation of motion is then solved by the same change of basis P , which results
in

Ḡk`(ω) = δk`
ω2 − ω2

k + iωωkQk

and Ḡ``(t) =
ˆ ∞
−∞

dω
2π

e−iωt

ω2 − ω2
` + iωω`Q`

, (8.24)

We defined a quality factor for mode k by τ = Qk/ωk
1. The poles are represented on

Fig. 8.7, their imaginary parts are always negative. Integration using residue theorem
shows that Ḡ``(t < 0) = 0, as expected by causality for the retarded Green’s function.
It is noteworthy that choosing the Feynman prescription in Sec. 4.12 would have led
to a dissipation term of the form

(GF )−1 = ω2C − 1/L + i|ω|1/R, (8.25)
thus resulting in computing the Feynman Green’s function, as we would expect. Fi-
nally, we can check that the retarded and Feynman Green’s functions are related by3

GF (ω) = ReGR(ω) + i sign(ω)ImGR(ω). (8.26)

The 50Ω pad have a resistance matrix with null entries everywhere except at (N,N).
Noting Eij the elementary matrices defined by Eij

mn = δimδjn, the corresponding
inverse Green’s function is(

ω2C − 1/L + i
2ω
Ztl

ENN

)
GR = 1. (8.27)

Self-energy

The last equation of motion is still written for EJ = 0, and is thus linear. All the
non-linearity can be factored in the self-energy, a complex function of frequency, using
Dyson’s equation: if G◦ is the Green’s function associated to the linear part of some
Hamiltonian, turning the interactions on corrects it by

G(ω) = G◦(ω)
1−G◦(ω)Σ(ω) , (8.28)

where Σ is the self-energy. We will demonstrate this equation and explain how to
compute Σ in Chap. 9, using diagrammatic techniques. For now, we will simply give
a simple interpretation of the self-energy: when added into G−1 in Eq. (8.27), we
obtain (

ω2C − 1/L + i
2ω
Ztl

ENN − Σ(ω)E00
)

GR = 1. (8.29)

A constant, real part in Σ simply renormalizes the inductance on site 0, while the
linear dependence of its imaginary part acts as a resistor on the same site:

Σ(ω) = 1
L?J
− i ω

R?J
+ o(ω) . (8.30)

This equation will be made rigorous in Chap. 9, where Re Σ(ω) will be shown to be
even, and Im Σ(ω) odd, with negative slope.

8.3 Transmission spectroscopy

We have narrowed down the prediction of spectroscopy experiments to the determi-
nation of a single function of frequency, Σ. Before diving into its determination, we
can first elaborate on how exactly the self-energy affects the transmission spectrum,
and especially the position and width of transmission peaks. We will first parameter-
ize the problem with an equivalent classical model, the hanging resonator, and then
search for an analogous transmission expression as function of the self-energy.
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1 D. M. Pozar. 2011. Mi-
crowave Engineering.

In
Ztl Ztl

Out

L

C

R

Figure 8.8: Hanging resonator
model.
2 One can especially check the
Qi →∞ limit: in that case,

1−|t|2 =
1

1 + (2Qe)2
(
ω−ω0
ω0

)2 ,

a Lorentzian with unit reflec-
tion at ω = ω0, as expected.

4.52 4.55
0

1

|t|
2

4.15 4.55

f (GHz)

0.95

1

|t|
2

Figure 8.9: Detail of mea-
sured transmission,
(•) EJ ' 27 GHz, Qi = 6100,
(•) EJ ' 7.7 GHz, Qi = 100,
( ) Adjustment to hanging
resonator model.
3 We dropped again the R
exponent, since the regulariza-
tion choice is clear.

Hanging resonator

Around a peak, we mainly probe one mode of the system. The classical equivalent
circuit1 is represented on Fig. 8.8. With the usual definitions Z0 =

√
L/C, ω0 =

1/
√
LC, the transmission assumes the form

t =
1 + 2iZ0

R
ω−ω0
ω0(

1 + Ztl
2R
)

+ 2iZ0
R
ω−ω0
ω0

. (8.31)

We define internal and external quality factors as Qi = Z0/R and Qe = Ztl/(2R).
1− |t|2 is a Lorentzian line shape, centered on ω0, of half-width δω

∆ω
ω0

= 1
Qe

+ 1
Qi
. (8.32)

The two quality factors respectively weight the losses due to the external pads, and
internal losses.2.

We can test this model on the experimental transmission. A close-up on a single
transmission peak is shown on Fig. 8.9, together with the best fit to the hanging
resonator transmission, with Qi and Qe as free parameters, while ω0 is determined
independently by locating the maximum. A small asymmetry is present in the data,
especially for the weak losses case. This could be accounted for by adding parasitic
inductances in the T-shaped connection to the external pad. More importantly, even
if turning on the interaction spectacularly lowered the internal quality factor, the
Lorentzian line shape is preserved.

Full chain resonator

We now want to compute GR
NN by inverting Eq. (8.29), and plugging it in the trans-

mission, Eq. (8.16). We already saw that there exist a basis where chain eigenmodes
decouple, which is signaled by the inverse Green’s function being diagonal. We will
postpone finding this change of basis P until Chap. 9, since we only need to know
its existence for now. We call G◦◦ the retarded green function3 computed without
external dissipation of self-energy. The equation of motion is then(

G◦◦−1 + i
2ω
Ztl

ENN − Σ(ω)E00
)

G = 1. (8.33)

We are left with rank one corrections to the inverse of G. Let’s start by including
external dissipation: we call G◦ the solution of(

G◦◦−1 + i
2ω
Ztl

ENN

)
G◦ = 1. (8.34)

Multiplying by G◦◦ and writing elements (0, 0), (0, N), (N,N) of this equation, we
can always isolate G◦ elements, to get

G◦NN = G◦◦NN
1 + 2iω

Ztl
G◦◦NN

, G◦N0 = G◦◦N0
1 + 2iω

Ztl
G◦◦NN

,

G◦00 =
G◦◦00 + 2iω

Ztl

(
G◦◦NNG◦◦00 −G◦◦2N0

)
1 + 2iω

Ztl
G◦◦NN

. (8.35)

We made use of G◦◦N0 = G◦◦0N which implies G◦N0 = G◦0N . Using the inverse of G◦,
the complete equation of motion is then(

G◦−1 − ΣE00)G = 1. (8.36)
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1 This can be understood,
since connection to Ztl dras-
tically changes the boundary
conditions of the chain, from
free to almost pinned at the
left end.

The same technique allows to isolate the sought-after Green’s function:

GNN =
G◦◦NN + Σ

(
G◦◦2N0 −G◦◦NNG◦◦00

)
1 + 2iω

Ztl
G◦◦NN − Σ

(
G◦◦00 − 2iω

Ztl
(G◦◦2N0 −G◦◦NNG◦◦00)

) . (8.37)

This last equation relates the self-energy with the transmission, all other quantities
in the expression being known. For now, the interpretation is obscured by the size of
the equation: we will make some approximations to highlight better the connection
between transmission and self-energy.

Let’s write the Σ→ 0 limit of the transmission:

t(Σ = 0) = 2iω
Ztl

G◦◦NN
1 + 2iω

Ztl
G◦◦NN .

(8.38)

Transmission vanishes at zeroes of G◦◦NN
1. We will then develop Eq. (8.37) around

such a zero, all other quantities being considered constant in the vicinity of the trans-
mission peak. G◦◦NN is expressed as a sum over poles using Eq. (8.22). Zeros are
located between poles, so we limit the expression of G◦◦NN at these two neighbouring
poles:

G◦◦NN = P 2
N1

ω2
1 − ω2 + P 2

N2
ω2

2 − ω2 . (8.39)

ωk and P0k,PNk are slowly varying functions of k. We defineω̄ = (ω1 + ω2)/2
∆ω = (ω2 − ω1)/2

,

p̄0 = (P01 + P02)/2
∆p0 = (P02 − P01)/2

,

p̄N = (PN1 + PN2)/2
∆pN = (PN2 − PN1)/2

,

(8.40)
and the slow variation translate as ∆ω/ω̄, ∆p0/p̄0, ∆pN/p̄N � 1. In this approxima-
tion, the zero of G◦◦NN bracketed by the two poles is located at ω0 given by

ω2
0 = ω̄2

(
1 +

(
∆ω
ω̄

)2
−
(

∆ω
ω̄

)(
∆pN
p̄N

)2
+ . . .

)
' ω̄2. (8.41)

Close to this zero, we expand G◦◦NN at first order,

G◦◦NN ' (ω − ω0) dG◦◦NN
dω

∣∣∣∣
ω0

, (8.42)

and with the same approximation, transmission takes the form

t = G◦◦NN + ΣG◦◦2N0
Ztl
2iω (1− ΣG◦◦00) + G◦◦NN + ΣG◦◦2N0

. (8.43)

The real part of Σ can be absorbed in a displacement of ω0. At this point, we recognize
the transmission shape of the hanging resonator: Re Σ displace the transmission peak,
while Im Σ is responsible for the internal losses, Qi. Quantitatively, the two effects
are:

ω0 = ω̄ −G◦◦2N0

(
dG◦◦NN

dω

∣∣∣∣
ω0

)−1

Re Σ and Qi = − ω̄

2G◦◦2N0 Im Σ
dG◦◦NN

dω

∣∣∣∣
ω0

. (8.44)

To conclude, we need to compute, still at lowest order in all our approximations, the
(N, 0) Green’s function square and (N,N) Green’s function derivative. For the first
one, we have

G◦◦N0 =
∑
k

(−1)k P0kPNk
ω2 − ω2

k

' P01PN1

ω2 − ω2
1
− P02PN2

ω2 − ω2
2
' p̄0p̄N
ω̄∆ω . (8.45)



experimental simulator modeling 78

P0k

PNk

Figure 8.10: The sign of
P0kPNk indicates if ends of
the chain oscillate in phase,
or in phase opposition, in the
mode k.
1 We recognized the arctan
power series.

2 The corresponding series
can be related to ζ(2), ζ the
zêta Riemann function.

ω

|t|2

1

0
Dωk

δωk

Figure 8.11:
(•) Line shape at Σ = 0. The
width is finite, and minimum
transmission is 0.
(•) Line shape displaced of
Dωk and broadened of δωk
for Σ 6= 0.

The (−1)k signs can be understood in the following way: the P matrix is formed of
eigenvectors, which are determined up to a sign. Only products like P0kPNk have a
well defined sign. Since P0k and PNk represents the weight of mode k on the first and
last site respectively, the sign of the product indicates if chain ends oscillate in phase
or in phase opposition. The Fig. 8.10 represents the situation. When k is increased
by 1, one vibration node is added to the standing wave, and the sign alternates.

The previous result can be refined by including all poles beyond the two neighbors,
assuming they are all equally separated by 2∆ω. Then1,

G◦◦N0 '
p̄0p̄N
ω̄∆ω

(
1− 1

3 + 1
5 −

1
7 + . . .

)
= πp̄0p̄N

4ω̄∆ω . (8.46)

Similarly, the derivative of interest can be computed by2

d
dω

(∑
k

P 2
Nk

ω2 − ω2
k

)∣∣∣∣∣
ω0

' − p̄2
N

ω0∆ω2

(
1 + 1

32 + 1
52 + . . .

)
= −π

2

8
p̄2
N

ω0∆ω2 . (8.47)

These results are combined to provide the kth mode peak displacement due to the
self-energy:

ω0 − ω̄ = p̄2
0

2ω̄Re Σ ⇒ Dωk = γk Re Σ(ωk). (8.48)

In the last expression, we brought back the k dependence of relevant quantities, and
defined, by analogy with Part. I, γk = gk/ωk = P0k/

√
2ωk. Note that adding the

contribution of all poles corrected the result by a factor of 2, crucial for quantitative
comparison to experiment. Similarly, the internal dissipation contribution to kth peak
half-width is

δωk = ωk
Qi

= 2γk Im Σ(ωk). (8.49)

We retrieved the intuitive result that real part of the self-energy shifts the resonance
peaks and its imaginary part contributes to their widths. The initial and resulting
line shapes are represented on Fig. 8.11. Provided that Σ is constant over the line
shape, the predicted profile stays Lorentzian.
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9|Analytical insights from the continuum limit

[En mathématiques,] la foi du charbonnier a donc ses périls; d’ailleurs, on ne peut être
en contact avec des expérimentateurs sérieux sans être frappé du soin extrême qu’ils ap-
portent à s’assurer de la correction de leurs mesures et à se garder d’interprétations fal-

lacieuses; manier proprement les mathématiques demande un soin égal.

Dieudonné, Calcul infinitésimal.

In this chapter, we will inquire about the self-energy, focusing on analytical results.
The Chap. 10 will lift most of the approximations used here to describe the circuit, at
the cost of resorting to numerical computation. While more approximate, analytical
approaches usually provide stronger understanding of the physics at play, by reducing
the situation to a handful of important scales and adimensional numbers that set
the qualitative behavior of the physics. Here, this role is played by two scales, the
renormalized Josephson energy E?J and the ultraviolet cutoff ωc, which drives the
physics together with the interaction strength α. Temperature will be added to the
picture in Sec. 10.2.

We will first establish the expression for the spectral function from the microscopic
model, and then take the continuum limit. We detail next the diagrammatic expan-
sion which properly defines the self-energy. We will finally discuss the first order
approximation, which provides another route to the SCHA equation. In turn, the
second order will provide the dissipative part of the self-energy.

9.1 BSG Spectral density

The goal of this section is to find an expression for the P0k in the BSG microscopic
model proposed at Fig. 8.2, which will be used to build the continuous spectral
density. To do so, we can rely on the similar work we did in Sec. 3.3. We will include
in our modeling the inductance LJ = 1/EJ approximating at quadratic order the
terminal junction. This prepares the self-consistent approximation we will perform in
the next section, Sec. 9.2.

The capacitance and inductance matrices corresponding to Fig. 8.2 are:

C =


CJ + C −C
−C 2C + Cg −C

−C 2C + Cg −C
. . .

 , 1/L = 1
L


1 + L/LJ −1
−1 2 −1

−1 2 −1
. . .

 . (9.1)

P is the matrix of eigenvectors solution to the generalized eigenvalue problem 1/LP =
CP ω2, with ω the diagonal matrix containing the eigenfrequencies of the system. In
the new basis ~φ = P ~ϕ, the system’s Hamiltonian is diagonal plus boundary Josephson
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1 Again,{
ϕ̂k =

√
1/2ωk(â†

k
+ â

k
)

n̂k = i
√
ωk/2(â†

k
− â

k
)

.

2 This spectral function in-
cludes the terminal junction,
at least at quadratic order, so
we employ a different symbol
to differentiate it from J , the
bath spectral density.

3 The litterature uses the
same symbol for the density
of gk and the one of γk.

4 One can check that in the
continuum limit, this equation
agrees with Eq. 8.2.

10−3 100 103

ω/ωJ
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Figure 9.1: Band-pass filter
effect in the spectral density.
(•) Zc/ZJ � 1,
(•) Zc/ZJ � 1.

energy:
Ĥ = 1

2
(
n̂iC

−1
ij n̂j + ϕ̂i1/Lijϕ̂j

)
− EJ

2 ϕ̂2
0 − EJ cos(φ̂0). (9.2)

Rewriting this expression with creation and annihilation operators1, we get

Ĥ = ωkâ
†
kâk −

EJ

2
(
γq(â†q + âq)

)2 − EJ cos
(
γ`(â†` + â`)

)
. (9.3)

The mode-by-mode couplings, γk = P0k/
√

2ωk, have a consistent definition with
Sec. 4.5, where they were defined from the BSG limit of the charge-boson Hamil-
tonian, and provided that γk = gk/ωk. We now set aside the second and third
term in the right hand side, which will be considered as interactions in the next sec-
tions. We want to compute the spectral density A(ω) = Nγ2(ω)dk/dω2, and expect
A(ω) ' 2πα/ω in the Ohmic limit3.

This eigenproblem is very similar to the one of Sec. 3.3. The bulk relation and the
normalization of the plane wave ansatz are still valid, and only the boundary condition
is modified,

P1` = P0`

(
1 + CJ

C

ω2
J − ω2

`

ω2
0 − ω2

`

)
. (9.4)

The characteristic frequencies are the half band-width ω0 = 1/
√
LC, the plasma

frequency ω2
p = ω2

0/
√

1 + Cg/4C, and the small junction frequency ωJ = 1/
√
LJCJ.

We plug the ansatz Pj` = N` cos(jk` + δ`) into this boundary equation to determine
the phase shift4

tan(δ`) = tan
(
k`
2

)(
2CJ

Cg
− 1 + 2CJ

Cg

ω2
J
ω2
`

)
. (9.5)

We use this result to compute cos2 δ`, using cos2(θ) = 1/(1 + tan2(θ)).

cos2(δ`) =
1− ω2

`/ω
2
p

1− ω2
`/ω

2
p + Z2

c ((CJ − Cg/2)ω` − 1/(LJω`))2 . (9.6)

In the continuum limit, Cg → 0, while Zc =
√
L/Cg stays constant. Together with

the other results of Sec. 3.3, the spectral density writes

A(ω) = Zc

ω

√
1− ω2/ω2

p

1− ω2

ω2
p

+ Z2
c

Z2
J

(
ω

ωJ
− ωJ

ω

)2 θ(ωp − ω). (9.7)

The plasma pulsation provides a hard ultraviolet cutoff. Well below ωp, we approxi-
mate the spectral density to

A(ω) = Zc

ω

1

1 + Z2
c

Z2
J

(
ω

ωJ
− ωJ

ω

)2 . (9.8)

We recognize the expected Ohmic 2πα/ω behavior, with 2πα = Zc, multiplied by a
band-pass filter factor centered on the small junction characteristic frequency. Two
regimes must be considered:
• Zc/ZJ � 1 : In this case, if ω > ωJ, ω > ωJZJ/Zc is also verified. There are

only two frequency regions, of power laws ωA(ω) ∼ ω2 and ∼ ω−2 respectively,
separated by a sharp resonance peak. In this case, the response of site 0 is similar
to an isolated small junction.

• Zc/ZJ � 1 : Here, a third region appears. If Zc/LJ < ω < 1/(ZcCJ), the band-
pass filter factor is flat. There is no resonance due to the small junction, which
completely hybridizes with the continuum of modes from the array.
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We focus on the Zc/ZJ � 1 case, with corresponds to low EJ and strong hybridization.
The band-pass filter function then provides two cutoffs, one ultraviolet, linked to CJ ,
one infrared, linked to LJ. Since the plasma frequency already provides an ultraviolet
cutoff, we only retain the infrared part of the filter, to reach a simplified expression
for spectral density,

A(ω) = 2παω
ω2 + (2παEJ)2 . (9.9)

9.2 Diagrammatic expansion

Chap. 8 has shown that all experimental observables can be linked to the Green’s
functions Gij , even in the presence of interactions. Crucially, these functions are
the main object of one of the most standard tool of theoretical physics, Feynman
diagrams. They were originally designed to keep track of the many terms that arise
during perturbative expansions in quantum field theory1. The pictorial representation
helped make sense of each term as a specific process, bringing physical intuition into
a maze of various contributions. Feynman’s understanding of quantum mechanics,
through its celebrated path integral, gave the final interpretation for the diagrammatic
series: the quantum evolution “follows all the paths at once”, and therefore they all
must be summed up to provide the total probability amplitude.

Soon enough, theoreticians figured that Feynman’s diagrams use could be extended
beyond the strictly perturbative realm. In this section, we will first remind the main
results leading to Feynman’s diagrams, and use them to derive exact relations be-
tween Gij and G00, the impurity Green’s function. After that, we are in position
to define the self-energy. Finally, a resummation technique, the self consistent har-
monic approximation, will lead us to introduce an emergent energy scale, E?J , as the
Silbey-Harris ansatz and the perturbative renormalization group did in Part. I.

Dyson power series

Let us remind, without demonstrations, the main steps leading to Feynman’s dia-
grams2. The Feynman’s Green function is defined as

GF
ij(t− t′) = −i〈0|T φ̂i(t)φ̂j(t′)|0〉, (9.10)

where the time ordering symbol T implies that operators at early times are put on
the right. Operators are written in Heisenberg’s representation. The whole bracket
can be expressed in interaction representation thanks to Gell-Mann & Low’s theorem

〈0|T φ̂i(t)φ̂j(t′)|0〉 =
〈0|T φ̂i(t)φ̂j(t′) exp

(
−i

ˆ
R

dτ Ĥint(τ)
)
|0〉

〈0|T exp
(
−i

ˆ
R

dτ Ĥint(τ)
)
|0〉

. (9.11)

All operators, here and in the following, are written in interaction picture. In the
case at hand, Ĥint(τ) = −EJ cos(φ̂0(τ)). The denominator is removed by suppressing
disconnected diagrams, and expanding the numerator’s exponential provides Dyson’s
power series,

iGF
ij(t− t′) = iG◦Fij (t− t′) + iEJ

ˆ
R

dτ 〈0|T φ̂i(t)φ̂j(t′) cos
(
φ̂0(τ)

)
|0〉+ . . . (9.12)

G◦ij is the Green’s function at EJ = 0. The next step is usually to use Wick’s theorem
to relate the interacting correlation function to non-interacting Green’s functions.
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Wick’s theorem applies only with monomials of the field. A solution is to expand the
cosine, and retain all orders, such that the first order in EJ writes1

iEJ
∑
n=1

(−1)n
(2n)!

ˆ
R

dτ 〈0|T φ̂i(t)φ̂j(t′)φ̂2n
0 (τ)|0〉. (9.13)

Wick’s theorem then translate this expression into the Feynman rules for constructing
the diagrams2. The power to which the field appears gives the number of legs of
the corresponding vertex in Feynman diagrams. We have to take into account all
vertices with even number of legs, with their corresponding weights, as represented
on Fig. 9.23.

Them-legged vertex comes with a 1/m! factor. Therefore, the usual rules of symmetry
factor counting apply. As usual, a first order approximation will take into account
all diagrams with one vertex of any type. Second order draws all the two vertices
diagrams, an so on. The infinite vertex number adds up with the fast increasing
combinatorics of higher orders: it put us at risk of quickly drowning in diagrams.
Fortunately, their number can be drastically cut by appropriate resummations.

Scattering ‘matrix’ and self-energy

In Feynman’s diagrams, non-interacting Green’s functions are represented by lines.
Here, we define

iG◦Fij (t− t′) = i j and iGF
ij(t− t′) = i j

. (9.14)

Since the interaction Hamiltonian Ĥint only contains the boundary field φ̂0, only a
line ending with index 0 can connect to a vertex. The Green’s functions are then
limited to4:

iGij(t− t′) = i j = i j + i 0
T

0 j (9.15)

The T -blob represent the sum of all possible diagrams. It contains 0 0 lines
only, such that T does not carry site indices. The corresponding equation is

Gij(t− t′) = G◦ij(t− t′) + i

¨
R2

dτ dτ ′G◦i0(t− τ)T (τ, τ ′)G◦0j(τ ′ − t′). (9.16)

Since all Green’s functions are invariant by time translation, this property translates
to T , such that T (τ, τ ′) = T (τ − τ ′). This equation has a convolution product
structure. We can simplify it by taking the Fourier transform:

Gij(ω) = G◦ij(ω) + G◦i0(ω)iT (ω)G◦0j(ω). (9.17)

T is often called the scattering ‘matrix’ —even though the matrix structure is here
lost— and used for its simple connection to the S-matrix and scattering properties
in general5. We will rather connect it to the self-energy. Eq. (9.17) can be rewritten
for G0j , and the result re-plugged into Eq. (9.17), to give

Gij = G◦ij + G◦i0iTG0j −G◦i0iTG◦00iTG◦0j

= G◦ij + G◦i0 (iT −G◦00iT + G◦00iTG◦00iT + . . .) G0j

= G◦ij + G◦i0 Σ G0j . (9.18)

We defined Σ as the series in parentheses, and dropped ω dependencies for the sake
of conciseness. The last equation can be recast, using matrix form, into(

G◦−1 −E00Σ
)

G = 1, (9.19)

http://dx.doi.org/10.1088/0305-4470/13/2/024
http://dx.doi.org/10.1088/0305-4470/13/2/024
http://dx.doi.org/10.1103/PhysRevB.30.464
http://dx.doi.org/10.1103/PhysRevB.30.464
http://dx.doi.org/10.1103/PhysRevLett.93.107204
http://dx.doi.org/10.1103/PhysRevB.75.235112
http://dx.doi.org/10.1103/PhysRevLett.110.017002
http://dx.doi.org/10.1103/PhysRevLett.110.017002
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which is precisely the Eq. (8.33), that we left unproven in Chap. 8. The series defining
the self-energy is a simple geometric sum:

Σ = iT

1 + G◦00iT
⇔ iT = Σ

1−G◦00Σ = Σ + ΣG◦00Σ + . . . (9.20)

Moving back to the time domain, the last expression is spelled clearly in terms of
diagrams:

• T = •−iΣ + •−iΣ −iΣ + •−iΣ −iΣ −iΣ + . . . (9.21)

The set of all diagrams on the left hand side is constructed as following. If a given
diagram cannot be broken into disconnected pieces by cutting only one line, it belongs
to the first term in the above series, i.e. to the self-energy. If it has one and only one
line that could be broken to cut it into disconnected pieces, it belongs to the second
term, and so on. The self-energy is the sum of all one particle irreducible
diagrams. Note that all these results could have been obtained using equations of
motion only, but only after tedious and model dependent computations.

Aside from this result, we also got rid of the matrix structure, the self-energy involving
G00 only. The effect of interactions are distributed on the other sites via the linear
part of the equation of motion. This structure is characteristic of an impurity problem.
From now on, we simply note G00 = G.

Self-Consistent Harmonic Approximation

Let’s compute the self-energy at first order. The corresponding set of diagrams is the
following1.

−iΣ = + + + . . . (9.22)

= −iEJ

(
1− iG◦(t = 0)

s1
+ (iG◦(t = 0))2

s2
− . . .

)
(9.23)

sn is the symmetry factor of n tadpole loops. Each loop comes with a symmetry of
2, due to exchange of its two legs, and exchange of the loops themselves add a factor
of n!, such that sn = 2nn!. The infinite series of the first order can therefore be
re-summed, as

Σ = EJe
−iG◦(t=0)/2. (9.24)

The non-interacting Green’s function at t = 0 can be directly computed from its
definition:

G◦(t) = −i〈0|T φ̂0(t)φ̂0(0)|0〉

= −iγkγ`〈0|
(
â†ke

iωkt + âke
−iωkt

)(
â†` + â`

)
|0〉 (t > 0)

= −iγ`γ`e−iω`|t|, (∀t ∈ R). (9.25)

At t = 0, we simply have G◦(0) = −iγ`γ` = −i
´∞

0 dωA(ω). The expression of A(ω)
has been derived in Sec. 9.1, but its infrared divergence was cured by replacing the
Josephson junction by an inductor, or equivalently, by approximating −EJ cos φ̂0 '
EJφ̂

2
0/2. We can replicate this trick by adding the regularizing inductor as a counter-

term in the Hamiltonian2:

Ĥ = ωkâ
†
kâk + E?J

2 φ̂2
0 − EJ cos(φ̂0)− E?J

2 φ̂2
0. (9.26)
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Figure 9.4: The new set of
vertices, dressed by tadpoles.

The quadratic part is diagonalized in the same way as in Sec. 9.1, simply replacing
EJ → E?J (and correspondingly, LJ → L?J). The counter-term added in the interaction
part Ĥint adds a diagram to the theory, represented on Fig. 9.3. The self-energy
equation is now

−iΣ = F + + + + . . . (9.27)

= −i
(
EJe

−iG◦(0)/2 − E?J
)
. (9.28)

In this counter-term method, E?J is a free parameter. We determine it by asking that
the self-energy cancels, which is equivalent to say that we absorbed all the effect of the
interactions into a new energy scale introduced in the non-interacting Hamiltonian.
The self-consistent equation for the self-energy is then

E?J = EJe
−iG◦(0)/2 = EJe

−
ˆ ∞

0

dω
2π A(ω)

. (9.29)

The integral is evaluated using partial fraction decomposition,

−α
ˆ ∞

0
dω ω

ω2 + (2παE?J)2 = −α2 ln
(

1 +
(

ωc

2παE?J

)2
)
, (9.30)

where we cut the integral by an unspecified hard ultraviolet cutoff ωc. In a real system,
it is most probable that ωc = ωp. If ωc � 2παE?J , the self-consistent equation becomes
E?J = EJ (2παE?J/ωc)α, which can be solved to find

E?J = EJ

(
ωc

2παEJ

) α
α−1

. (9.31)

This equation is closely related to Eq. 4.40, which was obtained by perturbative renor-
malization group analysis on a boundary sine-Gordon model with generic parameters.
Self-consistent diagrammatic methods, perturbative renormalization group, and vari-
ational principle applied to a Gaussian state ansatz (cf. Eq. (4.27)), all capture the
same physics and lead to the same scaling law.

9.3 Self-energy power law

In contrast with the variational method we mentioned, the diagrammatic expansion
has a natural extension to the next orders. The imaginary part of the self-energy,
and thus the inelastic scattering properties of the interacting model, are obtained by
adding all diagrams with two vertices:

−iΣ = 1st order + + + . . .

+ + + . . .

+ +

F

+ + + . . . (9.32)

The number of diagrams is once again getting out of hands. We have to organize this
list. First, we single out a vertex. It can be dressed with any number of tadpoles, i.e.
loops with a single propagator. We draw the rest of the diagram as a box, with any
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even number of lines between it and the singled out vertex. The sum over tadpoles
writes

... + ... + ... + . . .

= ...

(
1− iG◦(0)

s1
+ (iG◦(0))2

s2
− . . .

)
= ... , (9.33)

where the whole sum as been absorbed into a new vertex, represented colored. The
new set of vertices is given on Fig. 9.4. The factorization above mainly worked because
symmetry factors are multiplicative. If s is the symmetry factor of a diagram, the
same diagram with n more tadpoles on some vertex will have symmetry s× 2nn!.

If we furthermore impose the self-consistent harmonic approximation, and adjust E?J
to cancel Σ at first order, using dressed vertices only replaces EJ → E?J in the vertices
values: we moved from an EJ expansion to an E?J expansion. The two first vertices
in the Fig. 9.4 cancel each other, such that the vertex list begins at four legs.

Using vertex dressing, we reduced the list of second order diagrams to only two infinite
lists,

−iΣ = + + . . .

+ + + . . . (9.34)

The second line gives a local in time contribution, proportional to δ(t − t′), which
is flat in frequency and purely real. It contributes to a small displacement of E?J ,
which we discard for now. The first line will contribute to the imaginary part of the
self-energy. This series too can be exactly summed, as

−iΣ(t) = + + . . .

= (−iE?J)2
(

(iG◦)3

3! + (iG◦)5

5! + . . .

)
= −iE?2J (sin(G◦(t))−G◦(t)) . (9.35)

Free Green’s function expression

To push the computation further, we need an expression for G◦(t). Let us start by
its expression in the frequency domain. It was expressed in terms of the individual
bosonic modes by Eq. (8.22). In the continuum limit, the dissipation induced by the
pads can be neglected, since we do not separate discrete peaks anymore. In this limit,

G◦F (ω) =
∑
k

2ωkγ2
k

ω2
k − ω2 = 2α

ˆ
R

dν ν2

(ν2 − ω2 + iε) (ν2 + (2παE?J)2) . (9.36)

We do a partial fraction decomposition1. One of the two parts is convergent, without
poles. The result is simply

ˆ
R

dν 1
1 + (ν/2παE?J)2 = 2παE?J arctan(x)|∞−∞ = 2π2αE?J . (9.37)

The second part is evaluated using Feynman’s prescription to displace the poles, as
indicated on Fig. 9.5. The sign of ε is the same as the one of ω. Finally, the integrand
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again undergo partial fraction decomposition, and is evaluated with Sokhotski-Plemelj
formula1

ˆ
R

dν ω2

ν2 − ω2 + iε
= ω

2

( 
R

dν
ν − ω

−
 
R

dν
ν + ω

− 2iπsign(ω)
)
. (9.38)

The principal value integrals vanish. The end result is

G◦F (ω) = 1
i|ω|
2πα + E?J

. (9.39)

The result is equivalent to a Dyson equation with i|ω|/(2πα) as the inverse free Green’s
function, which is indeed the Green’s function of a dissipative bath, and E?J as the
self-energy. The next step is to get this expression to time domain, so we can use
Eq. 9.35. We start by separating real and imaginary parts:

G◦F (ω) = 2πα
(

2παE?J
(2παE?J)2 + ω2 − i

|ω|
(2παE?J)2 + ω2

)
, (9.40)

and since both the real and imaginary parts are even functions of ω, their Fourier
transforms are real. The real (imaginary) part of the Fourier transform is therefore
the Fourier transform of the real (imaginary) part. For the real part,

ReG◦F (t) = 2πα2E?J

ˆ
R

dω e−iωt

(ω + i2παE?J)(ω − i2παE?J) . (9.41)

The poles are located on the imaginary axis, as shown on Fig. 9.6. The residue
theorem allows to conclude,

ReG◦F (t) = παe−2παE?J |t|. (9.42)

Note that there seems to be a conflict at t = 0 with Eq. (9.30). This originates
from a commutation of the two limits ωc → ∞ and t → 0, as can be checked by
computing this t = 0 value from Kramers-Krönig relations and GF imaginary part.
When ωc →∞, lim

t→0+
GF (t) = lim

t→0−
GF (t) 6= GF (t = 0).

The imaginary part has no simple expression, mainly because of the absolute value
that prevents us from drawing a useful contour for residue theorem. One could notice
that the retarded Green’s function has no absolute value, and therefore can be Fourier
transformed analytically. Yet, diagrammatic rules only hold for Feynman’s Green’s
function, which highlights the stark difference between the two prescriptions. We will
separate the imaginary part into high and low frequency parts, equivalent to long or
short times. We first rewrite it as

ImG◦F (t) = −α
(ˆ ∞

0

ωe−iωt

ω2 + (2παE?J)2 dω −
ˆ 0

−∞

ωe−iωt

ω2 + (2παE?J)2 dω
)

= −2α
ˆ ∞

0

ω cos(ωt)
ω2 + (2παE?J)2 dω = −2α

ˆ ∞
0

x cos(x)
x2 + (2παE?J t)2 dx. (9.43)

In the last form, one can separate the integral into two regions,

ImG◦F (t) ' −2α
(2παE?J t)2

ˆ 2παE?J |t|

0
x cos(x)dx− 2α

ˆ ∞
2παE?J |t|

cos(x)
x

dx. (9.44)

The first part contributes mainly for 2παE?J t� 1, or for low frequencies ω � 2παE?J ,
and the second part contributes at high frequencies. According to the renormalization
group analysis, we expect perturbative analysis to hold above the energy scale E?J :
the high frequencies are in the perturbative region and can be trusted, while the
low-frequency part is doubtful. We analyze it first.
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Low frequencies

We gather the asymptotic behavior of Eq. (9.44). The first part is integrated as1

1
(Ω?t)2

ˆ Ω?|t|

0
x cos(x)dx = sin(Ω?t)

Ω?t + cos(Ω?t)
(Ω?t)2 −

1
(Ω?t)2 . (9.45)

The second part contains the integral cosine, Ci(y) =
´∞
x

dx cos(x)/x. There is no
analytical expression for it, but we can extract its asymptotic behavior by successive
integration by parts:

Ci(Ω?|t|) =
ˆ ∞

1

cos(xΩ?t)
x

dx = − sin(Ω?t)
Ω?t + cos(Ω?t)

(Ω?t)2 −O
(
(Ω?|t|)−3) . (9.46)

The leading behavior is

G◦F (t) = παe−Ω?|t| + i
2α

(Ω?t)2 . (9.47)

Since it goes to zero when t→∞, we can safely limit ourselves to the first diagram in
the expansion Eq. (9.35). Likewise, we only keep the leading order of G◦3 ∼ 1/t6, and
we Fourier transform again the expression to obtain the self-energy in the frequency
domain2

Im Σ(ω) ' E?J
2πα

(
ω

2παE?J

)5 ˆ ∞
−∞

dx e
ix

x6 . (9.48)

The inelastic scattering goes rapidly to 0 at low frequencies, following an ω5 power
law, and would make negligible corrections to experimental measurements.

The real part at low frequencies is also interesting, since it displays a constant that
would add to peak displacements. When computing the nth power of Eq. (9.47), we
gather the only terms with no power dependence, since all others have power laws
Fourier transforms, vanishing at ω = 0. Then3,

Re Σ(t) ' −E?2J

(
(πα)3

3! e−3Ω?|t| − (πα)5

5! e−5Ω?|t| + . . .

)
⇒ Re Σ(ω = 0) ' −2E?2J

Ω?

(
(πα)3

3× 3! −
(πα)5

5× 5! + . . .

)
. (9.49)

We need to re-sum the function F (x) = x3/(3!3)− x5/(5!5) + . . .. We notice that

x
dF
dx = x− sin(x) ⇒ F (y) =

ˆ y

0
(sinc(x)− 1) dx = Si(y)− y. (9.50)

The last step used the definition of the integral sine Si. The result for the constant
contribution to the self-energy real part is

Re Σ(ω = 0) ' −E?J
(

1− Si(πα)
πα

)
. (9.51)

The prefactor is plotted as a function of α on Fig. 9.7. As α grows, this lowering of
E?J can reach significant values. Since the perturbative expansion is not controlled
below E?J , this effect is spurious, and is probably counter-balanced by higher orders
corrections. In Sec. 10, this E?J lowering will be a serious limitation to the numerical
prediction of resonance peaks displacements.

High frequencies

At high frequencies, we expect the perturbative approach to hold. Moreover, we will
see that the self-energy develops an anomalous power law. In this regime, the main
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contribution in Eq. (9.44) comes from the integral cosine, which has the short times
asymptotic behavior1,2

ˆ ∞
Ω?|t|

cos(x)
x

dx = γ + ln(Ω?t) +O
(
(Ω?t)2) . (9.52)

The leading part is inserted into Eq. (9.35), together with the real part of G, and
the complex sine is decomposed into real and imaginary part. It provides

Σ(t) ' iE
?2
J
2

((
1

Ω?|t|

)2α
e−iπα

(
1+O(t)

)
− (Ω?|t|)2α

eiπα
(

1+O(t)
))
− E?2J G◦F (t) (9.53)

At short times, the 1/t2α contribution prevails. We then estimate the Fourier trans-
form of the self-energy. After a rearrangement of the time integral into a dimensionless
factor, we reach3

Σ(ω) = ie−iπα
E?J
2πα

(
|ω|

2παE?J

)2α−1 ˆ ∞
0

dx cos(x)
x2α + iE?J

2παE?J
|ω|

. (9.54)

This expression of the self-energy is the main result of the section. It predicts that the
high frequency self-energy is a power law, the exponent of which explicitly depends on
the coupling strength. This is in sharp contrast with any result a bare perturbation
theory could provide. In such a procedure, the self-energy is expressed as an integer
power of the Green’s function in time domain, resulting in integer power laws for
Σ(ω). The low-frequency computation provided an example of such a normal power
law. On the contrary, at high frequency, the resummation over processes involving any
photon number changed drastically the computation, and provided this anomalous
power law. This result has been obtained by different methods by Kane & Fisher4,
who exploited a mapping between the boundary sine-Gordon model and a model of
tunnel barrier in Luttinger liquids to evaluate the conductance through the barrier,
with displays the same kind of anomalous power law. Their result has later been
refined to fit in the framework of the SCHA5.

At α = 1/2, the self-energy anomalous part is constant with respect to frequency, at
least for high frequencies. Since6

ˆ ∞
0

cosx
x2α = sin(πα)Γ(1− 2α), (9.55)

its imaginary part is regular and finite at α = 1/2, while its real part is diverging.
A qualitative change is to be expected at this value of interaction strength, since, in
the spin-boson model, it separates the under-damped from the over-damped regime7.
This specific value is known as the Toulouse point, first known to be a solvable value
for the Kondo Hamiltonian8.

Finally, at the transition point α = 1, an Ohmic behavior is recovered, with Σ ∼ i|ω|.
Our model cannot go higher in coupling strength, since perturbation around E?J loses
its validity.

Ultraviolet cutoff and breakdown of power law

The anomalous power law we demonstrated is a striking consequence of the cosine
diagrammatics, where the coupling strength directly controls the qualitative behavior
of the system. At first glance, it seems that such an experimental observation would
be a clear signal that we successfully emulated many-body physics, since most regular
dissipation mechanism will provide a self-energy∝ ω, or at least with a normal, integer
power law.

http://dx.doi.org/10.1103/PhysRevLett.68.1220
http://dx.doi.org/10.1103/PhysRevLett.68.1220
http://dx.doi.org/10.1209/0295-5075/30/9/010
http://dx.doi.org/10.1103/PhysRevB.32.4410
http://dx.doi.org/10.1103/PhysRevB.32.4410
https://gallica.bnf.fr/ark:/12148/bpt6k480289h/f1214.item
https://gallica.bnf.fr/ark:/12148/bpt6k480289h/f1214.item


analytical insights from the continuum limit 89

1 This expression is a guess
that bridge the constant at
t → 0 and the logarithmic
decay at t & 1/ωc.

2 Unlike the ωc → ∞ case, it
is not possible to extract the
ω dependence by a change of
variable.

Im y

Re yωτ0

ωτ0

Figure 9.8: Cauchy contour
for rotation to the imaginary
axis. The cross indicates the
pole.

3 When x→∞,

Γ(s, x) ∼ xs−1e−x.

The experimental relevance of this computation must nonetheless be questioned. We
especially conducted the computation in the ωc → ∞ limit. When introducing a
ultraviolet cutoff in Eq. (9.52),

ˆ ωc|t|

Ω?|t|

cosx
x

dx = Ci(ωc|t|)− Ci(Ω?|t|) ' ln
( ωc

Ω?
)

+O
(
t2
)
. (9.56)

The cutoff spoils the small times logarithmic dependence, at least for t� 1/ωc, such
that the anomalous power law is lost above ωc. Since a power law typically needs
several decades to develop, and the experimental cutoff being approximately a decade
above the other characteristic energies, it probably cannot be observed.

In this regime of finite ultraviolet cutoff, a small times interpolation is given by1

G◦F (t) ' −2α
(
γ + ln

(
Ω?
ωc
e−γ + Ω?|t|

))
. (9.57)

Following the same line of demonstration, it results in the self-energy expression

Σ(ω) = ie−iπα
1
2

E? 2
J

(2παE?J)2α

ˆ
R

dt eiωt

(|t|+ τ0)2α , (9.58)

where τ0 = e−γ/ωc. We focus on the last integral2, denoted I. We extract the ω
power law, cut the integral in half, and absorb τ0 in the integral lower bound by a
variable shift: we obtain

I(ω) = ω2α−1
(
e−iωτ0

ˆ ∞
ωτ0

dy e
iy

y2α + eiωτ0

ˆ ∞
ωτ0

dy e
−iy

y2α

)
. (9.59)

The second term is the complex conjugate of the first. We will link the first integral to
the Γ function by rotating to imaginary y. We apply Cauchy theorem to the contour
shown on Fig. 9.8. The integral on the outer circle vanishes when sent to infinity,
such thatˆ ∞

ωτ0

dy e
iy

y2α = i1−2αΓ(1− 2α, ωτ0) + i(ωτ0)1−2α
ˆ π/2

0
dθ eiθ(1−2α)eiωτ0(cos θ+i sin θ).

(9.60)
We used the definition of the incomplete Γ function. Bringing everything together,
we obtain

Σ(ω) =ie−iπα E
?
J

2πα×((
|ω|

2παE?J

)2α−1
sin (πα+ ωτ0) Γ(1− 2α, ωτ0)

−
(

ωc

2παE?Je−γ

)2α−1 ˆ π/2

0
dθ e−ωτ0 sin θ sin (ωτ0(cos θ − 1) + θ(1− 2α))

)
.

(9.61)
The last line, which comes from quarter circle integration, is negligible when ωc �
2παE?J , independently of frequency, due to its prefactor. The limit when ω � ωc is
then coherent with our previous result; we retrieve the anomalous power law, while
the incomplete Γ function converges, for α < 1/2, to Γ(1− 2α), which is a numerical
prefactor only. Finally, we can examine the limit ω > ωc, using the asymptotic form
of Γ(1− 2α, ωτ0)3:

Σ(ω) ' ie−iπαE?J
(

ωc

2παE?Je−γ

)2α(
E?J
ω

)
e
− ω

ωc
e−γ

. (9.62)

The self-energy is exponentially suppressed above the cutoff. When the scales ωc and
2παE?J are not well separated, the integral other θ in the last line of Eq. (9.61) starts
contributing. In this regime, we resort to numerical evaluation.
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Numerical computation in the scaling limit
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α = 0.3 Figure 9.9: Self-energy in
the scaling limit ωc � E?J ,
numerically computed on a
logarithmic grid at two values
of α below the Toulouse
point. The high and low
frequency power laws matches
with analytical predictions.
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The previous analytical results were obtained using a fair amount of approxima-
tions. Alternatively, numerical computation of Σ using Eq. (9.35) and Eq. (9.39)
could give the size of the crossover between high and low frequency behaviors, and
elucidate the fate of the anomalous power law in the finite ultraviolet cutoff case,
relevant for experiments. The main difficulty here comes from the limitations of the
standard Fast Fourier Transform algorithm1. It requires a function sampling on an
evenly spaced grid. Power laws typically develops other many decades, and thus need
huge amount of samples, while the function itself is rather smooth. An alternative
FFT algorithm, based on the Hankel transform, exists2. It allows to use logarithmic
grids. With this tool, we numerically computed the self-energy in the scaling limit,
as displayed on Fig. 9.9. The described power laws are correctly captured. The
crossover region is quite broad, between one and two decades wide, which renders
experimental measurements of the derived exponents difficult. The computation with
finite ultraviolet cutoff is presented on Fig. 9.10. As expected, the anomalous power
law needs a wide window to develop, at least 3 decades, between E?J and ωc. When the
ultraviolet cutoff comes close to 2παE?J , we only observe a crossover regime between
increase at small ω to exponential decay, with no clear law in between3.
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ωc/E?J > 103.
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( ) indicates ωc scale.
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When half way through the
journey of our life, I found
that I was in a gloomy forest,
because the path which led
aright was lost.

transl. Courtney Langdon.

1 Its exact form is

Gij =
∑
k

PikPjk

ω2
k
− ω2 .

10|Microscopic analysis

Nel mezzo del cammin di nostra vita,
mi ritrovai per una selva oscura,
ché la diritta via era smarrita.

Dante, Inferno.

The analytical approach gave us useful insights on the physics of the problem.
We concluded that the re-summation over all the multi-photons processes allowed
by the Josephson term is crucial to capture the system behavior, at least above E?J ,
and that perturbation series in EJ naturally rearranges into a perturbation series
in E?J . Nevertheless, the various scaling laws we derived are probably out of reach
of spectroscopic experiments, that only access a frequency window between 2 and
12 GHz, one decade large. Furthermore, the cutoff, temperature, and E?J scales are
close to each other, smearing even more the simple laws derived analytically.

It is then crucial to refine our analysis, to better match experimental predictions.
The two main elements we put aside are the discrete mode structure of the Green’s
function, which should be mirrored in the self-energy, and the effect of temperature.
Indeed, as we discussed in Sec. 2.2, the typical temperature of a dilution fridge is
around 20 mK, but can be sensibly higher due to imperfect filtering of the measurment
setup. It means that any mode below 400 MHz will be thermally populated. We
estimate our lowest lying frequency around fmin = 1/(2πN

√
LCg) ' 130 MHz. The

question of temperature relevance is then open, since there exist thermally populated
modes in the system, but the temperature scale is still lower than EJ. We will detail
how temperature influences this intermediate regime.

We start in Sec. 10.1 by deriving an exact expression for the Green’s function that
is also computationally cheap to evaluate. Adding temperature in self-energy compu-
tations is done in Sec. 10.2, where we resort to Keldysh formalism. Finally, we make
connection to experimental data in Sec. 10.5.

10.1 Equations of motion inversion

The Green’s function is computed by inverting the equation of motion (with a Dyson
part for the self-energy)(

Cω2 − 1/L + 2iω
Ztl

ENN − Σ(ω)E00
)

G = 1. (10.1)

Up until now, we diagonalized the Green’s function inverse on the left hand side. It
provided a list of poles and weights. The resulting Green’s function Gij was expressed
as a sum over poles1. For N = 4250 sites and poles, even if the diagonalization is
performed analytically, the sum other the poles can be expensive, depending on the
size of the sampling grid for Fourier transforms. This number of points ultimately
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4C
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2 .
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Cgω2

4 sin2(k/2)
e±ik.

5 A = 1, and B = 1/ tan(k).

depends on the descriptive precision we ask for. We at least want to resolve the
peak width due to pads broadening over the whole experimental window. It has been
evaluated (cf. Sec. 8.1) at 10−3 free spectral ranges. Due to the bent dispersion
relation, this last quantity itself depends on the frequency, peaks being closer when
we approach the band edge. Let us estimate it roughly as

ωk+1 − ωk '
dω
dk ' ω0

d
dk

k

1 + C
Cg
k
' ω0

1 + C
Cg
k
. (10.2)

We aim at resolving the 100 firsts resonances, so k ' 100π/4250, such that the
minimum free spectral range is around 100 MHz and the desired Fourier resolution
around 100 kHz. This conservative evaluation already gives 105 sample points1. In
practice, we work with 222 = 2× 106 points. Given this number, the sum on poles
takes ∼ 109 operations. It has an important computational time, which we can avoid.

Direct inversion

It is possible to directly compute the matrix inverse, using Cramer’s rule2. The
method is similar to the computation of the inverse capacitance of Sec. 3.2. We
include both boundary conditions, such that the capacitance and inverse inductance
matrices are

C =


CJ + Cg + C −C

−C 2C + Cg −C
. . . . . .

−C C + Cg

 and 1/L = 1
L


1 + L/L?J −1
−1 2 −1

. . . . . .
−1 1

 . (10.3)

Let us first remove the boundary conditions. The full matrix to inverse is then

G◦−1 =


a b

b a b
. . . . . .

b a

 ,
a = (2C + Cg)ω2 + 2/L
b = −(Cω2 + 1/L)

. (10.4)

Let DN be the determinant of G◦−1 for N sites. Then, Cramer’s rule gives

G◦00 = DN−1

DN
, G◦NN = DN−1

DN
, G◦0N = bN−1

DN
. (10.5)

Developing twice the determinant along its first column produces a recursion relation
for DN , and initial conditions are found by inspection of N = 1 and N = 2 cases:

DN = aDN−1 − b2DN−2, D0 = 1, D1 = a. (10.6)

The general term of the DN sequence is λrN+ +µrN− , r± the roots of the characteristic
polynomial, and λ, µ constants determined by initial conditions. Using the dispersion
relation3, the discriminant of the characteristic polynomial is

∆ = −
(

Cgω
2

tan(k/2)

)2

< 0. (10.7)

The sign implies that r± = ρe±iθ, so DN = ρ(A cos(Nθ) +B sin(Nθ)), A, B another
set of constants. Determining the characteristic polynomial solutions4, one can derive
A and B from the initial conditions5, and finally reach an exact expression for the
determinant

DN =
(
−C(ω2

0 − ω2)
)N sin((N + 1)k)

sin(k) . (10.8)
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We can now add the boundary conditions, which also contain the pads broadening
and the self-energy. We make use of the Sherman-Morrison formula1, with u = v, u0

the top boundary element, uN the bottom boundary element, and ui = 0 elsewhere.
Then,

G00 =
G◦00 + uN

(
G◦ 2

00 −G◦ 2
0N
)

1 + (u0 + uN )G◦00 + u0uN (G◦ 2
00 −G◦ 2

0N ) . (10.9)

With some trigonometry, we simplify the factor(
G◦ 2

00 −G◦ 2
0N
)

= 1
(C(ω2

0 − ω2))2
sin((N − 1)k)
(sin(N + 1)k) . (10.10)

After some rearrangements, especially in the denominator2 , we finally reach

G00 =
2iω
Ztl

+ C(ω2
0 − ω2)S(N, k)

2iω
Ztl

(CJω2 − E?J − Σ)− C(ω2
0 − ω2)Cgω2 + C(ω2

0 − ω2)
(

2iω
Ztl

+ (CJ + Cg)ω2 − E?J − Σ
)

S(N, k)
(10.11)

where S(N, k) = 1 − cos(k) − sin(k)/ tan((N − 1)k). A similar expression can be
reached for GNN , needed to compute the transmission via Eq. (8.16). It reads

GNN = CJω
2 − E?J − Σ + C(ω2

0 − ω2)S(N, k)
2iω
Ztl

+ C(ω2
0 − ω2)S(N, k)

G00. (10.12)

These forms are difficult to read and interpret, but can be numerically evaluated with
ease given a sampling of ω. The only missing element is k(ω). The dispersion relation
provides this function; some care must nonetheless be taken, since complex values of
k are reached above ωp.

Complex wavenumber

The dispersion relation reads

sin2(k/2) = ω2

ω2
p

ω2
0 − ω2

p

ω2
0 − ω2 . (10.13)

ω0 is the half band-width, while ωp is the plasma pulsation. As a rule, ω0 > ωp. We
then distinguish between three cases.
• If ω < ωp, the wavenumber is purely real, and

k = 2 arcsin

 ω

ωp

√
ω2

0 − ω2
p

ω2
0 − ω2

 . (10.14)

• If ωp < ω < ω0, k develops an imaginary part, since waves become evanescent
above the plasma frequency. This is signaled by sin(k/2) > 1. If k = k′ + iΓ, we
decompose into sin(k/2) = sin(k′/2) cosh(Γ/2) + i cos(k′/2) sinh(Γ/2). k′ = π at
the edge of the Brillouin zone, and

Γ = 2arcosh

 ω

ωp

√
ω2

0 − ω2
p

ω2
0 − ω2

 . (10.15)

• If ω0 < ω, sin2(k/2) < 0, which signals an other boundary above which k′ = 0 and

Γ = 2arcsinh

− ω

ωp

√
ω2

0 − ω2
p

ω2
0 − ω2

 . (10.16)

The complete function k(ω) is represented on Fig. 10.1. In the real system, the
[ωp, ω0] interval is narrower, ' 1 MHz. It must be noted that the function S(N, k)
can assume many expressions, but since k can take a large imaginary part, some of
them can cause numerical overflow. The one proposed is regular at all frequencies.
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Finally, an example of the transmission computed with this method is shown on
Fig. 10.2. The peaks have been enlarged by Ztl = 100Ω for better visibility. As
expected from the dispersion relation curvature, the peaks positions tighten at high
frequencies. Above 16 GHz, they are not fully resolved.
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|t|
2

Figure 10.2: Transmission at
Σ = 0 and Ztl = 100Ω, for
better peak visibility.

10.2 Finite temperature

Keldysh formalism

The main tool for quantum field theory at finite temperature is Matsubara’s formal-
ism1. It introduces a new Green’s function, the Matsubara Green’s function, that
is the retarded Green’s function’s analytic continuation to imaginary times. It has
diagrammatic rules that holds at finite temperature, but response functions are all
expressed in term of the retarded Green’s function. Computing this retarded func-
tion from Feynman’s function was easy, analytically and numerically, at least in the
frequency domain (cf. Eq. (8.26)). If one rather obtained the Matsubara function,
the retarded one is obtained by analytical continuation. The process is well defined
analytically, but is difficult to perform numerically2.

Keldysh’s formalism provides another path towards the retarded Green’s function.
It was initially designed to tackle out-of-equilibrium situations at finite temperature.
Yet, the method is easily restricted to the equilibrium case needed for linear response.
It then provides a versatile tool to perform numerical computations at finite temper-
ature.

We will not show proofs or derivations to establish Keldysh’s formalism, and will
simply state some important results3, showing the connection to zero temperature
case when possible.

The main object of the Keldysh formalism is a 2×2 matrix formed out of the retarded,
advanced, and Keldysh Green’s functions,

G =
[
GK GR

GA 0

]
. (10.17)

The Keldysh Green’s function is given at equilibrium by the fluctuation-dissipation
theorem,

GK(ω) = cotanh
(
βω

2

)
(GR(ω)−GA(ω)) . (10.18)

β = ~/kBT is the inverse temperature. β = 0.3 GHz−1 at 20 mK. The temperature
dependent term is linked to the Bose occupation factor, nB(ω) = 1/(exp(βω)− 1), by
cotanh(βω/2) = 1 + 2nB(ω). It is sketched on Fig. 10.3.

http://dx.doi.org/10.1103/PhysRevB.61.5147
http://dx.doi.org/10.1103/PhysRevB.87.245135
https://arxiv.org/abs/cond-mat/0412296
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The Dyson equation holds at the matrix level, as we will show shortly:

(
G◦−1(ω)− �(ω)

)
G(ω) = 1, � =

[
0 ΣA

ΣR ΣK

]
. (10.19)

The structure of the self-energy 2 × 2 matrix, like the one of G, is a consequence of
causality1. The consequence of the last equation is that the scalar Dyson equation
holds for the retarded (and advanced) components,

GR(ω) = 1
G◦−1
R (ω)− ΣR(ω)

. (10.20)

This is not the case for the Keldysh component.

Again, no diagrammatic rules exist for the retarded function GR alone. Instead, one
must rotate the Green matrix to the ‘forward/backward’ basis2, using a change of
basis B verifying3 [

G++ G+−

G−+ G−−

]
= BGB, B = 1√

2

[
1 1
1 −1

]
. (10.21)

The G±± have diagrammatic rules. We represent their propagators by[
G++ G+−

G−+ G−−

]
=
[ ]

. (10.22)

The set of vertices is doubled. Every vertex we previously used now exist in two
versions, with only solid lines attached, or only dashed lines attached. The second
kind comes with an overall minus sign. The vertex list is represented on Fig. 10.4.
Diagrammatic rules are often formulated directly in the advanced/retarded basis,
but this approach is not well adapted to the resummation we want to perform. We
will instead derive the expressions for the self-energy from the diagrammatics in the
forward/backward basis, and then rotate back the the advanced/retarded basis.

The Dyson equation is rarely written in the forward/backward basis, so we check its
validity. We construct the matrix self-energy as[

Σ++ Σ+−

Σ−+ Σ−−

]
, (10.23)

where Σσσ′ is the set of all one particle irreducible, amputated diagrams starting at
a vertex σ ∈ {+,−} and ending at a vertex σ′ ∈ {+,−}. Dyson equation writes

= + Σ++• + Σ−+• + Σ−+ + Σ−+ ,

(10.24)
where the thick colored line indicates a full interacting propagator. Similar equation
holds for the other propagators. The matrix structure is obvious: the four equations
are summed up as

Gσσ′ = G◦σσ′ +G◦σρΣρρ′Gρ′σ ⇔
(
G◦−1 − �

)
G = 1. (10.25)

The last form has been obtained by rotating in the retarded/advanced basis, which
confirms that

B

[
Σ++ Σ+−

Σ−+ Σ−−

]
B = �. (10.26)
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SCHA at finite temperature

At first order in the self energy, we see that no diagram connects solid and dashed
external legs1. The non-zero entries of the self-energy matrix are

−iΣ++ = + F + + + . . .

−iΣ−− = + F + + + . . . (10.27)

The Keldysh rotation provides ΣR = (Σ++ − Σ−−)/2. Furthermore, G++(t = 0) =
G−−(t = 0) = GK(t = 0)/22, such that

ΣR = EJe
− i

4GK(0) − E?J . (10.28)

The exponential argument is

− i4GK(0) = 1
2

ˆ ωc

0

dω
2π cotanh

(
βω

2

)
sign(ω)ImGF (ω). (10.29)

When β → ∞, i.e. T → 0, cotanh(βω/2)sign(ω) = cotanh(β|ω|/2) → 1. We recover
the self-consistent equation we derived at zero temperature using Feynman’s Green’s
functions, Eq. (9.29). It is noteworthy that the finite temperature self-consistent
harmonic approximation could be reached in a different formalism, using the Gibbs-
Helmholtz variational principle on the free energy.

At finite temperature, the hyperbolic cotangent function appearing in the integral
prevents us from deriving an exact result. We rather cut the integral in half at the
energy scale of the inverse temperature, to form a low and high frequency part3.

− i4GK(0) ' −α
(ˆ 1

β

0
+
ˆ ωc

1
β

)
ω

ω2 + Ω? 2 cotanh
(
βω

2

)
dω

' −α

(
2
β

ˆ 1
β

0

dω
ω2 + Ω? 2 + α

2

ˆ ωc

1
β

2ωdω
ω2 + Ω? 2

)

' − 2α
βΩ? arctan

(
1

Ω?β

)
− α

2 ln
(

(βΩ?)2 + (ωcβ)2

1 + (βΩ?)2

)
. (10.30)

At low temperature, we suppose 1/β � 2παE?J � ωc. The first term on the left hand
side is −1/(2βE?J)� 1 and is neglected. We recover the zero temperature limit,

− i4GK(0) ' −α2 ln
(( ωc

Ω?
)2

+ 1−O
(

1
(βΩ?)2

))
. (10.31)

As a result, we conclude that while 1/β � 2παE?J , even if the low frequency modes
are thermally populated, the SCHA result is not affected. Yet, this condition must
be checked carefully, since E?J is going rapidly to zero because of renormalization.
Furthermore, the real device has few modes at low frequencies, challenging the con-
tinuous approximation altogether. We postpone precise numerical computations to
the end of the chapter.

The opposite limit of high temperature is also enlightening, even if it is not the regime
we aim for experimentally. Assume 2παE?J � 1/β � ωc. We use this limit in the
result of Eq. (10.30), to obtain

− i4GK(0) ' − 2α
(βΩ?)2 − α ln(βωc). (10.32)

https://arxiv.org/abs/cond-mat/0412296
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1 From its definition,

z = wew ⇔ w =W(z),

one can recover the expression
of (10.34).

1
√
απβEJ

E?J
EJ

1

1/
√
e

Figure 10.5: The renormal-
ization at high temperature
obtained via Lambert func-
tion. The solution is lost
above 1/

√
e.

The self-consistency equation turns into

E?J = EJe
− 1

2α(πβE?J )2 (βωc)−α ' e
− 1

2α(πβE?J )2
. (10.33)

The power law does not control E?J , and only contributes by an irrelevant constant.
The remaining equation can see its solution expressed using the LambertW function,
with little rearrangement:(

E?J
EJ

)2
= exp

(
− 1
α(πβEJ)2

(
EJ

E?J

)2
)

⇒ E?J
EJ

= 1√
απβEJ

(√
−W

(
− 1
α(πβEJ)2

))−1

. (10.34)

whereW is the first branch of the Lambert function1. This function is represented on
Fig. 10.5. Above the threshold temperature of 1/β = EJπ

√
α/e, the solution is lost:

the self-consistent procedure breaks. This does not signal a transition. Note that the
temperature scale is here compared to EJ, the bare value of the Josephson energy.

Second order at finite temperature

The extension of second order computations to finite temperature poses no conceptual
problems. When examining the corresponding diagrams, we conclude that the vertex
renormalization is not changed: since G++(t = 0) = G−−(t = 0), tadpole loops
containing lines do not differs from the ones containing lines. Especially,
vertex dressing does not interfere with the respective signs of + and − vertices. Then,
the matrix structure of the self-energy is preserved, since the nature of the left and
right vertices completely determines which type of propagator connects them. It
writes [

Σ++ Σ+−

Σ−+ Σ−−

]
=

 + . . . , (10.35)

where we only represented 3 intermediate legs terms. The resummation can be per-
formed element-wise, and the vertex signs are packaged into matrices, such that[

Σ++ Σ+−

Σ−+ Σ−−

]
= E? 2

J

[
1 0
0 −1

][
sin(G++)−G++ sin(G+−)−G+−

sin(G−+)−G−+ sin(G−−)−G−−

][
1 0
0 −1

]
.

(10.36)
This expression is enough for numerical computations, but the Keldysh rotation to
the retarded/advanced basis can be done by hand:

� = E? 2
J

(
2
[

0 cos GK2 sin GA
2 cos GR2

cos GK2 sin GR
2 cos GA2 sin GK

2 cos GA2 cos GR2

]
−

[
0 GA

GR GK

])
.

(10.37)
From this expression, we can read the retarded component of the self-energy, and
use it in Dyson’s equation and results from Sec. 10.1 to give the interacting Green’s
function at 2nd order.

We have benchmarked these results to a simple Matsubara calculation followed by
analytical continuation using Padé approximants. However, the Matsubara approach
cannot resolve the fine structure of the multi-photon peaks, contrary to the Keldysh
version, as we will show. In the next section, we employ these techniques to analyse
the fine structure of the self-energy at finite temperature.
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Parameter Value
N 4250
C 144 fF
CJ 14.5 fF
Cg 0.146 fF
L 0.53 nH

f0 ' fp 18 GHz
Zc 1.9 kΩ
Ztl 50Ω

Table 10.1: Microscopic
parameters of the circuit, and
other important scales.
1 C. R. Harris, K. J. Millman,
et al. 2020. Nature 585, 357.

10.3 High frequency and skeleton expansion

We first focus on results at ω > E?J , since perturbation theory is most trusted in this
region. The microscopic parameters are repeated on Tab. 10.1. The non-interacting
Green’s function is computed using Eq. (10.11), and the complex wavenumbers for-
mulae of Sec. 10.1. Applying the right parity rules, we deduce the advanced, retarded,
and Keldysh Green’s function, build the corresponding Keldysh matrix, and rotate it
to the forward/backward basis.
Here, Eq. (10.37) provides the retarded self-energy, and Dyson equation finally gives
the interacting retarded Green’s function. The transmission, the closest quantity to
the experiment, is computed through GNN (Eq. (10.12)), plugged into Eq. (8.16).
The numerical computation is performed using NumPy1, in the Python language.

For now, we set the E?J scale by hand, at a fraction of EJ fixed at 1 GHz. Since we
do not perform any self-consistency, we compute the vertex dressing separately from
E?J , as

Ev
J = EJ exp

(
− i4

ˆ
R

dω
2π GK(ω)

)
. (10.38)

We only consider the limit E?J � EJ, and check that the self-energy tends to a stable
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Figure 10.6: Order 2 com-
putation at T = 30 mK and
E?J = EJ/20.result in this limit. The result is shown on Fig. 10.6 for E?J = EJ/20 and on Fig. 10.7

for E?J = EJ/200, both at T = 30 mK, a reasonable estimate of a dilution fridge
temperature. We first observe a strong broadening of the transmission peaks, which
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Figure 10.7: Order 2 com-
putation at T = 30 mK and
E?J = EJ/200.corresponds to the experimental observations. The curve at E?J = EJ/20 presents

a forest of peaks in the self energy, with corresponds to the various 2n + 1 photon

http://dx.doi.org/10.1038/s41586-020-2649-2
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1 In the context of quantum
chemistry, the method is
known as self-consistent
GW. It is a crucial tool
to finely describe complex
spectroscopic structures, cf.
D. Golze, M. Dvorak, &
P. Rinke. 2019. Front. Chem.
7, 377.

2 It must not be confused
with the interacting Green’s
function, G, that can be
found by summing all the
diagrams. Here, we still
selected a sub-class of relevant
diagrams.

3 J. M. Luttinger. 1960.
Phys. Rev. 119, 1153.

resonances. We will detail the forest content in the low frequency case, where they
are better separated. For now, we notice that they produce secondary peaks in the
transmission, an effect that is not observed experimentally. When E?J → 0, the self-
energy is broadened, but not enough in order to suppress the secondary transmission
peaks. The parameters influencing this peak forest effect are the temperature and the
external losses, but none of them can smooth the self-energy within realistic values to
reach agreement with the Lorentzian shape evidenced on Fig. 8.9. We turn instead
to a new refining of the perturbative expansion.

Skeleton expansion

The failure to reproduce the correct spectroscopic structure is perhaps not surprising:
the numerous resonant lines present in the self-energy are closely packed together,
yet we did not include in any way the level repulsion between these lines. It can be
added into the diagrammatic expansion thanks to a method known as the skeleton
expansion, which can be seen as yet another resummation trick1. In the self-energy
list of diagrams, one can notice that the Green’s function bare lines are dressed by
more and more self-energy parts inserted into it:

−iΣ = + + + . . .

+ + + . . . (10.39)

The first diagram is the one we already considered. The two others of the first line
contain insertions of the self-energy into diagrams we already took into consideration.
The two diagrams of the second line cannot be expressed as insertions of the 2nd order
self-energy; they are neglected in the skeleton expansion. We omitted the Keldysh
vertices here, as well as vertex dressing, both of which are discussed later.

The list of insertion diagrams is easily generated. Starting with the usual proce-
dure G◦ → Σ → G(1), we can re-compute Σ with G(1) instead of G◦. It generates
all diagrams with at most one self-energy inserted on each line. Iterating more and
more will generate nested insertions, until the process converges to the bold Green’s
function, noted G[2. Diagrammatically, we can summarize the situation by rep-
resenting the dressed Green’s function resulting from the process by a double line
iG[(t− t′) = t t′ . It obeys the relationships:

G[(ω) = 1
G◦−1(ω)− Σ(ω) (10.40)

and
−iΣ(t− t′) = + + . . . (10.41)

The diagrams appearing in Σ are called the skeleton diagrams, since all the diagrams
taken into account are only dressed versions of these bare skeletons. Akin to the
Dyson equation resummation, the exact self-energy still contains an infinity of skeleton
diagrams, and we limit ourselves to second order. Solving this set of equation is
equivalent to the iterative process we described above, provided it converges. It can
be considered as a self-consistent procedure.

Historically, the skeleton expansion has been useful in several instances. For the
Fermi liquid problem, it provided a diagrammatic proof of the existence of the Fermi
surface at zero temperature for the interacting system3, as it was anticipated long

http://dx.doi.org/10.3389/fchem.2019.00377
http://dx.doi.org/10.3389/fchem.2019.00377
http://dx.doi.org/10.1103/PhysRev.119.1153
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1 B. Roulet, J. Gavoret, &
P. Nozières. 1969. Phys. Rev.
178, 1072.

2 R. D. Mattuck, L. Hansen,
& C. Y. Cheung. 1971. J.
Phys. Colloques 32, 1.

3 One could argue that the
SCHA provides an fixed point
equation, E?J = f(E?J ), while
the skeleton expansion pro-
vides a recursion algorithm,
E?J n+1 = f(E?J n). The two
coincide only if the fixed
point is attractive. It could
be interesting to find physical
examples where f does not
verify this property, or have
a more involved fixed point
structure.

ago by phenomenological theories of the Fermi liquid. It reappeared for the X-ray
problem1, and latter for the more involved Kondo problem2, where it was used to
extend the domain of validity of perturbation theory below the Kondo temperature.

We introduce it in the BSG problem because the Green’s function is clearly widely
perturbed by the introduction of interactions, with strong broadening of its initially
narrow resonance peaks. We hope that iterating the skeleton expansion will pile up
this broadening on itself, densifying the forest of resonance peaks, and thus smoothing
the self-energy.

Skeleton expansion and SCHA

Before computing the second order, we can make a quick detour to the first order.
The self-energy skeleton diagrams are

−iΣ(τ) = + + + . . . = −iδ(τ)EJe
−

1
2

ˆ
R

dω
2π G

[
F (ω)

. (10.42)

The skeleton expansion at 1st order reduces to the self-consistent harmonic approxi-
mation3. E?J role is here played by Σ(ω), a real constant at this approximation level.
Note that we did not need to introduce a counter-term, since G[ already contains Σ,
and is thus free of infrared divergences. When Σ develops a frequency dependence
and imaginary part, E?J can be defined as Re Σ(ω0), the regulator for G infrared
divergence.

Skeleton expansion at 2nd order
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Figure 10.8: 2ndorder skele-
ton expansion, at T = 30 mK
and E?J = EJ/20.

We now apply the skeleton expansion to the experimental situation at hand, im-
plementing directly the recursive algorithm in the numerical routine, and waiting for
point-wise convergence of G[. At each step, we impose the value of E?J by shifting the
real part of the self-energy, which does not violate Kramers-Krönig relations. The re-
sults are shown on Fig. 10.8. As expected, the self-energy is smoothed by the skeleton
self-consistency. Since the self-energy is slowly varying, we recover Lorentzian peaks,
as observed experimentally. We can expect that the self-energy is now closer to the
predictions of Sec. 9.3 continuous limit. Our algorithm is now too resolved in fre-
quency to perform computations over many decades, so we refrain ourself to produce
log/log plots. Fig. 10.9 shows two exponential decay laws, with slightly different
slopes. The one above the plasma frequency ωp/2π = 18.08 GHz is expected. The

http://dx.doi.org/10.1103/PhysRev.178.1072
http://dx.doi.org/10.1103/PhysRev.178.1072
http://dx.doi.org/10.1051/jphyscol:19711151
http://dx.doi.org/10.1051/jphyscol:19711151
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Figure 10.9: Same result in
log/lin scale.
(•) : self-energy,
(•) : exponential fit below fp.

1 This physically motivated
statement can be proven
by noticing Σ(ω) is G(ω)
self-convoluted three times.

one below corresponds to the situation we highlighted on Fig. 9.10; the ultraviolet
cutoff prevents the high frequency power law to develop, and we instead observe a
crossover regime. It results in this approximate exponential decay.

10.4 Peak forests at low frequency

We now turn our attention to the low frequency part, in the ω . E?J sense. We
compute the self-energy in the same manner than before, but we suppress renormal-
ization, setting E?J = EJ by hand. This is enough to bring E?J in the measure range,
2− 12 GHz, and transit from high to low frequency regime. The resulting self-energy
is represented on Fig. 10.10.
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Figure 10.10: 2nd order self-
energy for EJ = E?J = 3 GHz,
at different temperatures.
(•) : T = 0 mK,
(•) : T = 50 mK.

We observe a forest of resonance peaks, that seems organized into well separated
groves of densely packed peaks, forming large resonance bands. A peak at frequency ω
mainly corresponds to a 3-photons resonance, i.e. there exist 3 modes the frequencies
of which check energy conservation, ω = ω1+ω2+ω3

1. This detailed spectroscopy can
be realized on the self-energy curve at lower Ztl, which lowers the external dissipation,
and hence the peak width. A close-up on a specific grove is plotted on Fig. 10.11.
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Figure 10.11: Close-up on
(•) 2nd order self-energy,
computed at
( ) Ztl = 10Ω,
( ) Ztl = 50Ω.
Top panel. T = 0 mK. Grey
lines ( ) predict resonances,
numbers indicate the index of
the resonant modes.
Bottom panel. T = 30 mK.
Pink lines ( ) indicate temper-
ature assisted resonances.

The resonances are labeled by the number of the modes involved, e.g. (1,2,7) peak
corresponds to a splitting in 3 photons occupying modes number 1, 2 and 7. We see
that this peak grove is composed of ω ∼ 10ωmin resonances, ωmin the fundamental
frequency of the array. For a linear dispersion relation, all these resonances would be
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1 The five photon resonances
do not appear in this regime.
We deduce that they are less
relevant, contrary to the high
frequency regime.

2 R. D. Mattuck, L. Hansen,
& C. Y. Cheung. 1971. J.
Phys. Colloques 32, 1.

3 We only represent the min-
imal number of line between
each vertex: one could add a
pair of lines between any pair
of vertex, and sum over these
possibilities to generate sines
or cosines. Aside, note that
the second and third diagram
on line (iii) are equal but have
different symmetry factors,
as well as the fourth and the
fifth. Finally, all vertices are
dressed by 1st order diagrams,
and at finite temperature, the
list is extended by using the
two vertex types.

4 H. Bruus & K. Flensberg.
2004. Many-Body Quantum
Theory in Condensed Matter
Physics.

degenerate. The dispersion relation is here slightly curved, resulting in a degeneracy
lift, and the formation of a large grove of peaks1.

At finite temperatures, modes are thermally populated, which allows new processes
involving absorption of thermal photon instead of emission only. The conservation
law turns into ω = ±ω1 ± ω2 ± ω3. This raise drastically the combinatoric number
of allowed resonances, broadening further the peak grove at finite temperature. This
effect is demonstrated on the bottom panel of Fig. 10.11, by plotting the temperature
assisted resonances.

Third order

The renormalization group argument we laid down in Sec. 4.5 warned us on the
validity of perturbation theory below the E?J scale. This is a manifestation of the
boundary sine-Gordon model asymptotic freedom in the superconducting phase. A
similar situation has been widely studied in the case of the Kondo problem, where the
emergent scale is given by the Kondo temperature. In this context, the set of relevant
diagrams change at the TK scale2. To test the quality of our diagram set choice, we
can augment it to third order, and monitor the weight of the next order in Σ. The
list of 3rd order diagrams is3

−iΣ =(2nd order) (10.43)

+ + + (i)

+ (ii)

+ + + + + . (iii)

Lines (i) and (ii) are the new diagrams with frequency dependence and imaginary
parts. Line (ii) is a diagram we already computed, with further dressing of the vertex.
Line (iii) contains all the new contributions to vertex dressing. They are constant in
frequency (or local in time), and purely real.

These diagrams fall into the non-crossing category, which means that they can be
computed quite systematically. Lines in parallel correspond to Green’s functions,
or any correlation function, multiplied together in the time domain. Lines in series
correspond to functions convoluted together in the time domain, so they are also
multiplied in frequency domain. Fourier transforming back and forth is thus enough
to conclude any computation.

As an example, we define the even and odd bubbles as

iχe(t− t′) = + + . . . = cos
(
G[(t− t′)

)
− 1,

iχo(t− t′) = + + . . . = i
(

sin
(
G[(t− t′)

)
−G[(t− t′)

)
. (10.44)

These correlation functions play a prominent role in the random phase approxima-
tion, a standard diagrammatic technique for the electron gas4. The first diagram

http://dx.doi.org/10.1051/jphyscol:19711151
http://dx.doi.org/10.1051/jphyscol:19711151
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1 One crossing diagrams
representative is:

2 i.e. with Hadamard’s
matrix product.

in Eq. (10.43) is then decomposed on a top part, written as −iEv
J (iχe(ω))2, to be

Fourier transformed, and a bottom part, (−iEv
J )2iG[. Both are multiplied to provide

the diagram value, up to vertices and symmetry factors. The first crossing diagram,
that cannot be reduced by such a procedure, only appears at 4th order1. At finite
temperature, the two species of vertices inserts smoothly into this picture: we define
a 2× 2 matrix of vertices,

V = −iEv
J

[
1 0
0 −1

]
(10.45)

as well as matrices of correlation functions Xe and Xo by analogy with Green’s function
Keldysh matrix, G. Correlation functions in parallel are multiplied element-wise2,
while correlation functions in series are multiplied as matrices:

= Xe(ω)VXe(ω). (10.46)

A last, we perform the skeleton recursion, together with first and second order di-
agrams. The resulting self-energy is represented on Fig. 10.12 at T = 30 mK, and
compared to 2nd order. Neither the skeleton expansion, nor the 3rd order managed
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Figure 10.12:
Top panel. Self-energy for
T = 30 mK, computed at (•)
2nd and (•) 3rd orders. Lines
( ) show linear approxima-
tion of peak value at small
frequency.
Bottom panel. Transmission
computed with 3rd order
self-energy.

to smooth the self-energy. We still observe relatively broad peak groves. The self-
energy varies slowly enough, so the transmission dips are approximately Lorentzian.
The computation shows only minor deviations, that are not relevant to experimental
measures.

More concerning is the amplitude of 3rd order, comparable to 2nd order. Perturbation
theory is not satisfactorily converged, and the result must be interpreted with care.
The overall shape seems more stable, so we could hope that we are only lacking some
global amplitude factor. Overall, the many-body dissipation is weaker here than in
the high-frequency regime.

Finally, we notice that the weak ω5 low frequency power law disappears at finite
temperature, to be replaced by a stronger but more conventional ω power law. In
this regime, many-body losses thus behave like an effective resistor.

We now have a strong analytical and numerical understanding of the many-body
behavior of the system. We already signaled the qualitative agreements between our
theory and the experiments. It is now time to systematically compare the two.
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1 Orders of magnitude are
obtained by assuming simple,
approximate geometries.
The result can be greatly
refined by finite element
simulation of the exact circuit
electromagnetic response.

ϕ1ϕ2 ⊗
Φext

Figure 10.13: The SQUID
circuit, formed by two junc-
tions, and threaded by the
external magnetic flux Φext.
2 U. Vool & M. Devoret.
2017. Int. J. Circuit Theory
Appl. 45, 897.

3 The factorization can be
tedious. We want to find B
and C such that

cosϕ+d tan Φ sinϕ = C cos(ϕ+B),

which provides C cosB = 1
and C sinB = −d tan Φ. We
add the squares to conclude:
C =

√
1 + (d tan Φ)2.
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Figure 10.14: The Josephson
energy controlled by Φext at
finite asymmetry.

10.5 Adjusting to experimental data

Free parameters and SQUID asymmetry

An important advantage of a careful microscopic modelization of the circuit is that
the number of free parameters is low, and well controlled. The various capacitances
and inductances, C,Cg, CJ and L are measured independently of the many-body
spectroscopy experiments. The large size of the chain junctions allows to estimate C
by measuring the junctions size1, and L and Cg are measured by fitting the dispersion
relation. CJ can either be estimated by junction size, or left as a free parameter for
the adjustment of the phase shifts we detailed in Sec. 8.1. These experimental values
are given in Tab. 10.1.

The value of EJ is controlled in situ, by an external magnetic flux threading the loop
of a SQUID2. The SQUID circuit is represented on Fig. 10.13. The phases across
each junctions are denoted ϕ1 and ϕ2. Their respective Josephson energies are E1 and
E2. The total SQUID Hamiltonian is then Ĥ = −E1 cos ϕ̂1 − E2 cos ϕ̂2. Kirchhoff’s
loop rule then asserts ϕ1 +ϕ2 = Φext. We define the variable ϕ = ϕ2 −ϕ1, such that
ϕ1 = (Φext − ϕ)/2 and ϕ2 = (Φext + ϕ)/2. The Hamiltonian is factorized into3

Ĥ = −(E1 + E2) cos(Φext/2)
(

cos(ϕ/2)− E2 − E1

E1 + E2
sin(ϕ/2) tan(Φext/2)

)
= −E0

J

√
cos2(Φext/2) + d2 sin2(Φext/2) cos(ϕ̂′), (10.47)

where E0
J = E1 +E2, d = (E2−E1)/(E2 +E1), and ϕ′ = ϕ− arctan(d tan(Φext)). ϕ̂′

is the degree of freedom of the SQUID. We see that the Hamiltonian reduces to the
one of a single junction, with a tunable Josephson energy depending on the external
flux. d is its asymmetry: it vanishes when the two junctions are exactly identical.
Else, it is essentially relevant for external flux near π, where it prevents the effective
Josephson energy to vanish. The effect is represented on Fig. 10.14.

The calibration of EJ with respect to Φext thus requires two parameters, E0
J and d.

The first one can be estimated by Ambegaokar & Baratoff’s relation, Eq. (2.11). The
normal resistance is measured independantly on an array of similar SQUIDs, nano-
lithographied on the same sample, and measured at room temperature. It provides
the estimate E0

J = 25.8 GHz. We consider this measure an estimate only, given the
fabrication uncertainty, an will keep E0

J as a free parameter. The SQUID asymmetry
is small by design, and hard to estimate by the junction sizes only.

Finally, the sample temperature is also considered a free parameter, given the impor-
tant experimental uncertainty on thermalization between the dilution fridge and the
sample itself. The free parameters are then E0

J , d and T .

Adjustment procedure

The most reliable comparison between theory and experiment is provided by the
transmission peak widths at high-frequency, or equivalently at low E?J . This result is
especially independent of temperature, and allows to adjust the values of E0

J and d.
The experimental and computed peak widths for Φext close to π are represented on
Fig. 10.15. We assume perfect experimental knowledge of Φext: then, at Φext = π,
EJ = E0

Jd. We adjust the corresponding numerical curve to extract E0
Jd = 0.6 GHz.

The determination of these two values separately is less precise: with adjustment to
the experimental curves at Φext = 0.98π and Φext = 0.96π, we estimate d = 2.4(4)%

http://dx.doi.org/10.1002/cta.2359
http://dx.doi.org/10.1002/cta.2359
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Figure 10.15: Peak widths
due to internal dissipation,
(•) Experiment,
( ) Numerical estimate,
( ) ±0.4% error margin on
d, with fixed E0

Jd = 0.6 GHz,
for small EJ values:
(•) Φext = π,
(•) Φext = 0.98π,
(•) Φext = 0.96π.

and E0
J = 25(3) GHz, with good agreement with Ambegaokar & Baratoff estimate

E0
J = 25.8 GHz. Similarly, the 2% asymmetry is compatible with the tolerances of

microfabrication.

Besides the numerical values, the qualitative agreement is quite remarkable, the
experiment confirming the approximate exponential decay of the many-body losses
across the spectrum we observed in the crossover regime (cf. Sec. 10.3). This behav-
ior is in stark contrast with standard loss mechanisms, which usually provide integer
power-laws dependence for losses, and also with the scaling limit anomalous power
law. Note that the slope is controlled by ωp, and is thus indeed constant with respect
to EJ, as seen on Fig. 10.15. Finally, the low end of the spectrum reveals a devia-
tion from the theoretical prediction, which is interpreted as the influence of finite E?J .
For higher EJ — and lower Φext — the scale E?J enters the measurement window.
Computation based on the E?J � EJ limit thus fails.

3 6 9 12

EJ (GHz)

0.6

0.75

0.9

E
? J
/
E

J

Figure 10.16: E?J scale renor-
malization as a function of its
bare value EJ, computed at
(•) 2nd order,
(�) 3rd order in perturbation
theory, and for a temperature
(•) 10 mK,
(•) 30 mK,
(•) 50 mK.
Compared to ( ) experimen-
tal result, with EJ calibrated
with parameters
(•) d = 2.4%,
(•) d = 2.15%,
(•) d = 2.05%,
and E0

Jd = 0.6 GHz fixed.

In this intermediate E?J regime, we can test our E?J prediction, obtained by letting
E?J defined as E?J = Re Σ(ω = 0) follow the renormalization flow of the skeleton
self-consistency equation. the comparison to experimental values, extracted by phase
shift measurement as detailed in Sec. 8.1, is presented on Fig. 10.16. We first ensure
that the result is satisfactorily converged, by comparing 2nd and 3rd order results.
They broadly agree, with discrepancy appearing at high temperature and strong
renormalization. Accordingly, at EJ too low compared to 1/β, we expect the self-
consistency to break, cf. Sec. 10.2. Quantitatively, we match experimental and
numerical results for T = 30 mK and d = 2.15%, the former of which is in agreement
with the dilution fridge temperature, and the latter with our previous estimation of
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Figure 10.17: Close-up of
( ) a transmission peak,
and ( ) its Lorentzian fit.
( ) signals the numerically
detected peak position.

the asymmetry. Again, the qualitative agreement is noteworthy, since the many-body
computation correctly captures an important renormalization factor, of order 1/2 of
the bare value.

Our last observable is the peak widths, and thus the inelastic losses, in this same
regime of ω ∼ E?J . As represented on Fig. 10.12, the self-energy is rougher, which
translates into small deviations from the Lorentzian shape for the transmission peaks.
To extract the width, we first numerically locate the peak in transmission, and then
fit the transmission dip using the hanging resonator model (cf Eq. (8.31)), limiting
ourselves to a frequency range of ∆ω/5, ∆ω the local free spectral range, using a non-
linear fit procedure. The result for one peak is presented on Fig. 10.17, where we check
that the deviation to the Lorentzian shape is small, and irrelevant for experimental
measurements because well below the noise level.

With the Lorentzian model validated, we compare the experimental and theoretical
inelastic losses in the ω ∼ E?J region on Fig. 10.18. As expected from Sec. 10.4, the
predicted losses are below the experimental ones (note that theoretical prediction is
plotted with a ×4 factor on Fig. 10.18). This is to be correlated with the important
weight of 3rd order terms in the self-energy imaginary part, which indicates that more
contributions are to be found in higher orders. Interestingly, the overall amplitude of
losses is very sensitive to temperature. It is especially clear that T = 0 estimations
cannot capture the many-body losses in this regime. We could adjust the temperature
parameter to fit these internal losses, which would lead to T ' 80 mK. Even if this
value is experimentally credible, it would contradict the adjustment of Fig. 10.16 on
E?J , which is more sound given its good convergence with respect to the perturbation
series.
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Figure 10.18: (•) Experi-
mental peak widths due to
internal dissipation,
(•) 4× theoretical result at
T = 50 mK,
(•) 4× theoretical result at
T = 30 mK,
all represented for several
Φext, and calibrating EJ
with d = 2.2% and E0

Jd =
0.6 GHz. ( ) indicates EJ on
the frequency axis.

Besides the global numerical factor, we see that the qualitative shape is reproduced,
especially with a broad maximum at the EJ scale. Furthermore, the effect of the self-
energy peak forest is patent on the computed curve: it results in strong variability in
the peak widths values. This is in strong contrast with the high frequency, E?J → 0
case of Fig. 10.18. It must be noted that the experimental curves display a similarly
strong variability, that cannot be explained by experimental noise alone, based on
the comparison with Fig. 10.15. On the latter, we observe noise around 0.1 MHz of
amplitude, while it can be as strong as 10 MHz on Fig. 10.18. This could indicate a
peak forest effect, image of discrete nature of the chain modes, in the experimental
results.
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Overall, we found good qualitative and quantitative agreement between experiment
and theory everywhere the perturbation series shows good convergence, and extracted
free parameters d = 2.2%, E0

J = 27 GHz and T = 30 mK that are coherent with their
expectations and independent measurements. It revealed the many-body nature of
the important inelastic losses observed, since only self-consistent skeleton expansion
could reproduce it, by mixing together the resonances of a large number of modes.
Furthermore, outside of its bounds, the theoretical prediction still hints towards an
explanation of the strong variability in peak widths by a peak forest effect in the
self-energy. It also underlines the crucial role of finite temperature in this regime.



Conclusion



Withered Antinoi, shaven
fools with stinking breath,
pale varnished corpses, grey
decrepit beaux, the world-
wide rhythm of the Dance
of Death is sweeping you to
shores no mortal knows!

transl. L. P. Shanks.

1 Defined at Eq. (3.28).

2 sketched on Fig. 6.1 and
traced thanks to the NRG on
Fig. 4.6.

3 cf. Eq. (3.46).

4 cf. Eq. (6.16).

5 cf. Eq. (9.62) for analyt-
ical evidence, Fig. 9.10 for
numerical confirmation, and
Fig. 10.15 for confrontation
to the experiment.

11|Perspectives on many-body simulation

Antinoüs flétris, dandys à face glabre,
Cadavres vernissés, lovelaces chenus,

Le branle universel de la danse macabre
Vous entraîne en des lieux qui ne sont pas connus !

Baudelaire, Danse Macabre.

The outstanding properties of superconducting circuits make them an ideal tool to
explore the most intriguing aspects of quantum mechanics. They present reasonable
coherence times, high — and tunable — values of interaction strengths, and circuit
designs scalable towards the many-body regime, for impurity and bulk models. This
thesis attempted to demonstrate how this richness can be practically harnessed in the
laboratory to uncover many-body phenomena. To do so, we clarified the various acces-
sible regimes for a very generic superconducting impurity model simulator, designed
new theoretical tools to predict its qualitative and quantitative behavior in the per-
tinent aforementioned regimes, and compared our results to experimental evidences
of many-body physics taken from one of the first few experimental superconducting
simulator.

During this work, we obtained several novel results. Some concerned the exploration
of the newly formulated charge boson model1 phase diagram2. We found a paramet-
ric bound on the coupling strength due the underlying microscopic circuit3, showed
the limited resilience of the spin-boson transition with NRG, and discussed the role
of decompactification with the compact wavefunction ansatz. The latter in on itself
an important contribution of this thesis; we provided its complete framework, and
derived its key quantity, the vacuum energy expectation value4, for the charge-boson
model. It made clear the role of charge fluctuations to weight the winding numbers
importance. In this regard, Eq. (6.32) showed that, contrary to the superconduct-
ing phase fluctuations that underpins the well known Schmid transition, the charge
fluctuations are not driven by the model ultraviolet cutoff. The analysis of this last
equation allowed to provide a simple physical picture for decompactification at strong
coupling.

Concerning the boundary sine-Gordon simulator analysis, we brought light on the
ultraviolet cutoff influence on the anomalous power laws known from Tomonaga-
Luttinger liquids, both analytically and numerically5. We described its departure
from scaling regime, which is crucial to understand experimental results. We obtained
good agreement between the prediction and observation of a surprising exponential
decay in the self-energy frequency dependence. Our last original contribution is the
demonstration that only an interplay of finite temperature and the self-consistent dia-
grammatic method of the skeleton expansion — imported, inter alia, from Abrikosov’s
theory on the Kondo problem— could produce a smooth dissipative response from the
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1 cf. Fig. 10.8.

2 An emphasis on the com-
pact ansatz, with some future
development avenues, have
been given in Chap.7.

3 D. J. Amit, Y. Y. Gold-
schmidt, & S. Grinstein.
1980. J. Phys. A: Math. Gen.
13, 585.

discrete Fabry-Perot resonances of the superconducting chain1. This study highlights
the microscopic origin of internal dissipation for quantum systems in the mesoscopic
size range, comprising ∼ 103 well separated degrees of freedom.

As engaging as it is, the road to textbook many-body physics is still narrow. As
examples, the scaling regime proved itself hard to reach experimentally, the influ-
ence of finite temperature appeared far from negligible, and the microscopic structure
of resonances is believed to play an important, yet not fully understood role in the
ω ∼ E?J regime. Experiments are currently scratching the surface of the unconven-
tional effects, phase transitions and new phenomenologies promised by the models we
attempt to probe, and important efforts will be required to fully uncover them. On
the theoretical side, the careful work of modelization must obviously be continued, on
a case-by-case basis, to provide precise predictions to guide experiments and confront
them. Beyond that, some open questions remains to be explored, on theoretical as
well as experimental grounds. We now sketch two of these research lines opened by
the present thesis2.

Patching the breakdown of the self-consistent method

The self-consistent harmonic approximation has proven to be a powerful tool, not
only to sketch the qualitative physics and predict the Schmid transition, but also to
provide numerically accurate results. Its re-derivation from diagrammatic methods
allowed its extension to capture its dissipative properties, and suggested a good deal of
old and new resummation techniques. Yet, it had the shortcoming of an instability at
finite temperature, more precisely when T ' EJ, as we highlighted in the continuum
limit on Fig. 10.5. This can be linked to the building up of 3rd order corrections
seen on Fig. 10.16. The structure of cosine diagrammatics tends to an overflow of
contributions at higher orders, as it has been noticed already in renormalization group
analysis of the 2 dimensional sine-Gordon model3. One could be tempted to look for
the right resummation. Our numerous attempts in this direction, e.g. by formulating
a version of the random phase approximation for multi-legs vertices, did not provide
significant results, and a firmer understanding of the breakdown might be needed to
progress further in that direction.

ϕ

ψ(ϕ) Figure 11.1: (•) : Josephson
potential,
(•) Gaussian state assumed
by self-consistent harmonic
approximation,
(•) expected wavefunction
spill out to neighboring sites.

A change of strategy might as well be necessary. Upon closer examination, the har-
monic description fails when fluctuations of ϕ̂0 are comparable to 1. While staying in
the superconducting phase, which implies that the phase in localized — even loosely
— this could indicate that the structure of the ground state changes drastically from
a Gaussian picture. It is likely that the superconducting phase starts exploring the
neighboring minima of the cosine potential, as represented on Fig. 11.1. The per-
turbation around a Gaussian state cannot capture this qualitative change, which
could explain the breakdown, and the excessive renormalization of EJ predicted for
high 〈ϕ̂2

0〉. This guesswork calls for a different method; in path integral formalism,

http://dx.doi.org/10.1088/0305-4470/13/2/024
http://dx.doi.org/10.1088/0305-4470/13/2/024


perspectives on many-body simulation 111

1 A. Burshtein, R. Kuzmin,
et al. 2021. Phys. Rev. Lett.
126, 137701;
R. Kuzmin, N. Grabon, et al.

2021. Phys. Rev. Lett. 126,
197701.

2 The influence of the com-
pactness of ϕ has a clear
formulation in path integral
formalism, cf.
L. S. Schulman. 2012.
Techniques and Applications
of Path Integration.

3 N. Gheeraert, S. Bera, &
S. Florens. 2017. New J.
Phys. 19, 023036;
N. Gheeraert, X. H. H.
Zhang, et al. 2018. Phys.
Rev. A 98, 043816.

4 cf. Eq. (8.12).

5 One could wonder how a
linear response experiment
allowed us to capture inelastic
processes in the first place.
This is thanks to unitarity of
the evolution, expressed in the
form of the optical theorem,
cf.
M. E. Peskin & D. V.
Schroeder. 1995. An In-
troduction To Quantum Field
Theory.
6 M. Goldstein, M. H. De-
voret, et al. 2013. Phys. Rev.
Lett. 110, 017002.

7 For an example of dynami-
cal phase transition exhibited
with Keldysh’s formalism, cf.
G. Biroli & O. Parcollet.

2002. Phys. Rev. B 65,
094414.
8 L. Magazzù, P. Forn-Díaz,
et al. 2018. Nat. Commun. 9,
1403;
B. Peropadre, D. Zueco,
et al. 2013. Phys. Rev. Lett.
111, 243602.

9 R. Lescanne, L. Verney,
et al. 2019. Phys. Rev.
Applied 11, 014030.

10 cf. Fig. 7.1.

this tunneling effect is typically dealt with instantons, well known for providing non-
perturbative results. They have been employed recently on the same model to describe
inelastic scattering in the insulating phase of the boundary sine-Gordon model1. A
lighter approach could be to postulate a variational state as a sum of the main Gaus-
sian state together with multi minima satellites contributions, the various satellites’
weights in the total ansatz state being used as a variational parameters. The close
resemblance with the compact ansatz could allow us to import some computations
and methods from our previous work.

On the same note, making a rigorous connection between the compact ansatz and
the path integral formulation of the compactness problem2 could shed light on the
compact ansatz inner workings, and suggest new developments of the technique.

Extension to out-of-equilibium protocols

We presented in Sec. 10.2 how the finite temperature cosine diagrammatics was man-
aged by Keldysh’s formalism. We used it as a trick to avoid the problem of Eq. (9.35)
analytical continuation in Matsubara’s formalism. Yet, its scope is much broader: it
was originally designed to tackle out-of-equilibrium problems. The study of transient
dynamics fall into this category, which have been studied at length for waveguide
QED implementation of the spin-boson model3. Another prototypical example is the
case of driven systems, where Kubo’s formula4 is no longer valid to derive the drive
influence on the system.

A corresponding experimental situation is a two-tone measurement, where a probe
pumps the system at a frequency ω1 while a different frequency ω2 is monitored. This
allows to isolate the inelastic contribution, and resolve it in frequency5. Such an
experiment would bring a definitive proof that the internal broadening mechanism is
indeed linked to the inelastic response of the boundary non-linear Josephson junction.
Frequency resolved cross-sections have been computed at T = 06, but our analysis
clearly demonstrated that temperature is a crucial ingredient of these scattering pro-
tocols. Keldysh formalism could allow to extend the analysis to provide quantitative
cross-section predictions.

Generally speaking, formulating a theory of strongly driven, interacting many-body
systems is still mostly an open problem. Dynamical phase transitions are expected
with strong enough pumps7. This already incited experiments on driven supercon-
ducting simulators8. The question is especially acute for superconducting devices,
since it is known that a driven pendulum, the classical limit for the non-linear Joseph-
son junction, presents instabilities during which the pendulum escapes its potential
well. Such an effect has been recently studied experimentally in the quantum case
of a single Josephson junction9. It is noteworthy that for the quantum system, es-
caping the wells of the Josephson potential is equivalent to accessing highly excited
states of the Josephson spectrum. These states are known to be more sensitive to the
compactness of the superconducting phase10. The question is then open to know if
strong drives could counterbalance decompactification mechanism of the many-body
system, and lead to a revival of compact effects, such as offset charge sensitivity.
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