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La plupart de mes travaux n’ont pas été réalisés seul mais en collaboration avec d’autres
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Résumé

Ce rapport d’habilitation à diriger des recherches traite de modèles statistiques et de théorie des jeux
ainsi que de leur usage en actuariat. Il se divise en 5 chapitres. Le chapitre 1 traite de l’estimation de
modèles linéaires généralisés. Des formules explicites de l’estimateur de maximum de vraisemblance
sont proposées dans le cas de variables explicatives catégorielles. Ces formules sont ensuite utilisées
pour les arbres de régression et pour proposer des formules explicites dans un cadre plus général. Le
chapitre 2 se concentre sur les modèles statistiques paramétriques sans variable explicative. Des lois
paramétriques telle que la famille Feller-Pareto sont étudiées, implémentées dans le paquet actuar
et mises en pratique via le paquet fidistrplus. Le chapitre traite aussi de méthodes alternatives
à la méthode de maximum de vraisemblance tel que la méthode de Le Cam et la méthode des
moments rognés linéairement (TL-moments). Le chapitre 3 étudie quelques modèles de théorie
de valeurs extrêmes dans le cas bivarié. Un nouvel estimateur du coefficient de dépendance de la
queue de distribution est proposé et possède des propriétés de robustesse et d’absence de biais.
Cet estimateur permet de construire un estimateur de probabilité d’excès bivarié. Le chapitre
4 présente un modèle de ruine avec dépendance entre les montants ou les temps d’attente de
sinistre pour lequel de nouvelles formules asymptotiques de probabilité de ruine sont proposées.
Un autre modèle de théorie de la ruine est aussi proposé à des fins de provisionnement et propose
une alternative aux méthodes traditionnelles. Le chapitre 5 propose des modèles statistiques de
comportement client ainsi des jeux non-coopératifs pour les marchés d’assurance non-vie. Plusieurs
modèles linéaires généralisés et modèles de survie de régression sont utilisés pour modéliser la
résiliation, la conversion et le rachat de police. Enfin, un jeu statique et un jeu répété sont proposés
pour modéliser la stratégie des assureurs et leurs propriétés théoriques sont étudiées.

Mots clés : modèles linéaires généralisés, loi de Feller-Pareto, TL-moments, modèle de ruine
avec dépendance, théorie des jeux.

Abstract

This habilitation thesis to supervise research deals with statistical and game-theoretic models
and their use for actuarial science. It is composed of five chapters. Chapter 1 focuses on the estima-
tion of generalized linear models. New closed-form solutions are proposed in the case of categorical
explanatory variables. Based on them, an explicit fitting procedure is proposed regression trees as
well as alternative estimators for generalized linear models. Chapter 2 is devoted to parametric
statistical models without explanatory variables. Parametric distributions of the Feller-Pareto are
studied and implemented in the R package actuar and fitted with R package fitdistrplus. Le
Cam’s one-step estimation and trimmed-linear moments are also studied in this chapter. Chapter
3 is devoted to extreme values models in bivariate setting. A new estimator of the tail dependence
coefficient that exhibits asymptotic unbiasedness and robustness is proposed. We then derive an
estimator for small tail probabilities with similar properties. Chapter 4 deals with a ruin model
integrating dependence among claim severity or claim waiting times for which asymptotics of ruin
probability are derived. Then another risk process is used to compute reserve for non-life insurance.
Chapter 5 is dedicated to statistical models of customer behaviors as well as non-cooperative game
for non-life insurance markets. Generalized linear models and survival regression models are used
for lapse, conversion and surrender of insurance policies. A static game and a repeated game are
proposed to model insurer strategies and their theoretical properties are derived.

Keywords: generalized linear models; Feller-Pareto distribution; TL-moments; ruin models with
dependence, game theory.





Introduction

This manuscript presents my research activity since my Ph.D. defense in May 2012. It is composed
of the research I have conducted at Université de Strasbourg between September 2012 and August
2013, at Le Mans Université between September 2013 and August 2017, and finally at Université
Paris-Dauphine since September 2017.

Most of my research has been dedicated to actuarial science and related fields which aims to
propose mathematical models in order to assess risk in insurance and finance. This document contains
statistical models which are generally used for insurance pricing and reserving, probabilistic models
devoted to the analysis long-term insolvency risk, known as ruin theory, as well as mathematical
games modeling the behavior of insurers and policyholders. For a general introduction to actuarial
science, we recommend, e.g., Fromenteau and Petauton (2017) for life insurance, Charpentier and
Denuit (2004a,b) for non-life insurance and also the valuable Encyclopedia of Actuarial Science by
Teugels and Sundt (2004). In my research, R (R Core Team, 2021) packages have been developed.
Therefore, I take special care in this document to emphasize my contributions in that respect and refer
to Charpentier (2014) for a detailed overview of actuarial science with R. This document is organized
in five chapters described as follows.

Chapter 1 – Parametric regression models

Chapter 1 deals with regression models used in statistics and in particular in actuarial science in many
situations. Static regression models such as generalized linear models (GLM) are used in pricing of
non-life insurance since the 1990s, where individual features of the policyholder and the insured good
(house, car, . . . ) can be taken into account very easily. Typically, two regressions are performed:
one for claim count and one for claim severity, e.g., Denuit et al. (2019a), Frees (2009), Jong and
Heller (2008), and Ohlsson and Johansson (2010). GLM are also used for binary models such as
assessing credit risk or nominal/ordinal choice models such as estimating deductible level (Lee, 2017).
Another relevant application of GLM in actuarial science is their use for claim reserving by predicting
incremental claim amounts, e.g., Wuethrich and Merz (2008).

Due to their efficiency property, generalized linear models are fitted by maximum likelihood es-
timation which generally does not have a closed-form expression and requires the use of numerical
methods. On a sub class of models, where there is a single categorical explanatory variable or there
are multiple crossed categorical variables, Brouste et al. (2020) provide a new closed-form solution
of maximum likelihood estimators of GLM. There are two advantages with such a situation. First,
closed-form estimators are far quicker to compute than using a numerical optimization method. Sec-
ond, the exact distribution of closed-form estimators can be derived explicitly for many distributions
allowing to quantify the bias of the MLE and to determine of exact confidence intervals.

11



12 INTRODUCTION

Thanks to Brouste et al. (2020)’s result, Brouste et al. (2021a) propose an alternative closed-form
estimator of GLM valid for any situation of categorical explanatory variables. In non-life insurance
pricing, it is very common to discretize continuous variables such as policyholder age in order to make
a rate table rather than a fully personalized premium. As the alternative closed-form estimator is not
necessarily a maximum likelihood estimator, its asymptotic properties are studied in Brouste et al.
(2021a).

Dutang and Guibert (2021) also benefit from Brouste et al. (2020) and put forward a new explicit
split point procedure in model-based trees. Using the general framework of Zeileis et al. (2008),
model-based partitioning trees can use non-Gaussian non-binary distribution for the response variable,
generalizing CART models of (Breiman et al., 1984). The new procedure of Dutang and Guibert (2021)
greatly accelerates the fitting procedure of generalized linear model-based trees and makes possible
the use of GLM forests.

Chapter 1 ends up with a presentation of other regression models used in Chapter 5. Generalized
Additive Models (GAM) (Hastie and Tibshirani, 1990) extends GLM by considering a smooth non-
linear predictor to estimate the expectation of the response variable. GAM are also particularly used
in non-life insurance since they avoid discretizing continuous variables (Denuit et al., 2019a; Denuit
and Lang, 2004; Frees, 2009). Another class of regression models presented in this manuscript is the
class of survival regression models which have obvious applications in life insurance but also for other
topics.

Chapter 2 – Parametric models without explanatory variables

Chapter 2 deals with estimation methods of parametric models without explanatory variables. Since
the development of mathematical statistics, many estimation methods have been proposed in the
literature to fit probability distributions to a sample, e.g., Casella and Lehmann (1998) and Shao
(2003). The maximum likelihood estimation is probably the most used method due to its appealing
property, but other concurrent methodologies exist such as moment matching estimation, quantile
matching estimation, generalized method of moments. . . Delignette-Muller and Dutang (2015) details
how the fitdistrplus package helps for fitting univariate distributions to different types of data (con-
tinuous censored or non-censored data and discrete data) via different estimation methods: maximum
likelihood, moment matching, quantile matching and maximum goodness-of-fit estimation.

As in many other fields, fitting distribution plays a central role in actuarial science: typically
the modeling of claim amount distributions for ratemaking, loss reserving in non-life insurance, e.g.,
(Charpentier and Denuit, 2004a; Frees, 2009) as well as modeling survival curves in life insurance, e.g.,
Dickson et al. (2013) and Macdonald et al. (2018). In R, thanks to Vincent Goulet, the actuar package
is among the first to provide probability distributions. Dutang et al. (2008) make a comprehensive
overview of actuar by presenting four usual topics of actuarial science: loss distributions modeling,
risk theory, simulation of compound hierarchical models and credibility theory.

The actuar package is particularly used in actuarial science, for instance in recent contributions
by Denuit (2020a,b), Papush et al. (2021), and Zariņa et al. (2021), but also it is used in other fields
of statistics for its wide class of probability distribution, for example recent works by Carter et al.
(2021), Mohamed Nor et al. (2021), and Wang et al. (2021a). Dutang (2014b) makes a review of loss
models and associated parametric inference. Using both fitdistrplus and actuar, some applications
on insurance datasets are provided in Dutang (2014b) and show the relevance of such approaches via
classical measures of adequacy.
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In many books, e.g., Hogg and Klugman (1984) and Klugman et al. (2012), distributions used for
claim amounts come from the beta-transformed, the gamma-transformed or the Pareto families. How-
ever, the Feller–Pareto distribution popularized by Arnold (2015) is a more general class of positive
distributions including beta-transformed and Pareto families which reveals relevant for loss model-
ing. Dutang et al. (2021) discuss the first implementation of support functions for the Feller–Pareto
distribution and present solutions to deal with numerical difficulties associated with this distribution.

When modeling destruction rate models, a mixed-type distribution proposed by Bernegger (1997)
called Maxwell Boltzmann Bose Einstein Fermi Dirac distribution (MBBEFD) is generally used for
exposure rating. Dutang and Spedicato (2021b) study the convergence properties of the maximum
likelihood estimator for one-inflated distributions and MBBEFD distribution. Applications are carried
out thanks to the mbbefd package.

As an alternative to maximum likelihood estimation, Le Cam (1956) propose to use only a single
step of Newton method on the log-likelihood estimation rather than the computation of a full sequence
of optimized steps. Brouste and Dutang (2021b) implement Le Cam’s one-step estimator, which is
asymptotically efficient and proves to be much faster than the maximum likelihood estimator.

Dutang (2017b) closes Chapter 2 by studying trimmed linear (TL) moments. New closed-form
formulas of L-moments and TL-moments are derived for continuous probability distributions and
apply it for the exponential and the uniform distributions. New formulas could be used in conjunction
with moment matching estimation to provide reliable methods for heavy-tailed distributions for which
ordinary moments do not exist.

Chapter 3 – Univariate and bivariate extreme models

Chapter 3 is devoted to extreme value models, that is the estimation of the tail of univariate prob-
ability distributions or the estimation of the tail of a multivariate distribution function based on a
random sample. Domains of applications of extreme value theory are numerous such as hydrology
(e.g. flood discharge), meteorology (e.g. rainfall) and insurance (e.g. large claim), see Beirlant et al.
(2004). Modeling the largest claim amounts both in frequency and in severity is needed for non-life
(re)insurance pricing, e.g., Albrecher et al. (2017), Cebrián et al. (2003), and Charpentier and Denuit
(2004b).

Univariate extreme value models have been well studied in the literature since the Fisher-Gnedencko-
Tippett theorem (Fisher and Tippett, 1928; Gnedenko, 1943). However, multivariate extreme value
theory is still growing with various approaches to deal with the tail estimation of multivariate distri-
butions. In this document, we consider only bivariate models. Dutang et al. (2014) introduce a robust
and asymptotically unbiased estimator for the coefficient of tail dependence in bivariate extreme value
statistics. In a bivariate framework, the estimator is obtained by fitting a second-order model to the
data by means of the minimum density power divergence criterion. In addition a simulation analysis
to assess the estimation uncertainty, this model is then applied to losses due to permanent/partial
disability claims for workers compensation insurance in North America.

Pursuing this work, Dutang et al. (2016) propose a bias-corrected and robust estimator for small
tail probabilities based again on a second-order model. After a unit-Pareto transformation, bivariate
observations are used to estimate the tail probability again by means of the minimum density power
divergence technique. A numerical illustration aims to assess the ruin probability of a non-life insurer
operating in Australia through the estimation of a high loss ratio and a high expense ratio.
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Chapter 3 ends up with a review of R packages dedicated to extreme value statistics referenced
by Dutang and Jaunatre (2020). Following reviews of Gilleland et al. (2013) and Stephenson and
Gilleland (2006), Raymond-Belzile et al. (2021) survey recent development in software implementation
of extreme methods with a view towards numerical challenges arising when performing extreme value
analyses.

Chapter 4 – Ruin theory and reserving methods

Chapter 4 focuses on ruin theory and reserving methods, which both study to the long-term com-
mitment of insurance carriers to fulfill their obligation, but with different approaches. Ruin theory
aims to assess the long-term ruin (or by complement solvency) probability of an insurer underwriting
non-life policies and indemnify the corresponding claims. A central question is how to determine the
initial capital at the origin to mitigate the ruin probability, e.g., Asmussen and Albrecher (2010).

Claim reserving methods are statistical and probabilistic models dedicated to the study of long-
term management of claims. As soon as insurance products are underwritten, some events raise
insured losses which subsequently become claims for the insurer. For multiple reasons, even with
modern computers and internet, delays may occur at the different times of a claim management.
Typically, there might be delays in noticing damages by the policyholder, delays in reporting loss to
insurers, delays in assessing the final claim amount. Obviously, claim reserving is mandatory in most
insurance markets and follows a guideline depending on the line of business, e.g., Wuethrich and Merz
(2008).

Firstly, Dutang et al. (2013b) investigate a wide class of dependent risk processes, in continuous or
discrete time in order to point out that an asymptotic rule A+B/u for the ultimate ruin probability
applies. That dependence is incorporated through a mixing model in the individual claim amount
distributions. Several special mixing distributions are examined in detail and some close-form formulas
and asymptotics of the ruin probability are derived. Claim tail distributions and the dependence
structure are also investigated. Avram et al. (2014) explore some particular aspects and recent results
in ruin theory.

Secondly, Dutang and Brouste (2016) present an efficient way to compute all the key indicators in
an unified approach of the ruin theory and claim reserving methods. The proposed framework allows
to derive closed-form formulas for both ruin theory and claim reserves indicators. Chapter 4 ends up
with a discussion on R packages specialized for claim reserving and ruin theory. As already mentioned,
actuar is a pioneer package in providing ruin-related functions, whereas ChainLadder (Gesmann
et al., 2021) provides many functions for reserving methods.

Chapter 5 – Customer models and non-cooperative games for insurance markets

Chapter 5 presents customer behavior models and theoretical games for insurer strategies. Both
topics are necessarily discussed in actuarial teaching programs or in actuarial textbooks, but they
are of importance for insurers. Customer modeling is an area of applied statistics and econometrics
aiming to model customer decisions, e.g., Gupta et al. (2006). In the insurance industry, this consists
mainly in analyzing policyholder’s decision to convert or not its policy offer, to renew or to lapse its
policy renewal in non-life insurance. For life insurance, the decision by a policyholder to terminate its
contract is known as surrender.
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Based on policyholder models, numerous game-theoretic models have been proposed in the litera-
ture dating back to Borch (1960a). For instance, cooperative game theory is used to model risk transfer
between a group of insured/insurers or between an insured and the insurer, e.g., Lemaire (1991); or
allocation of risk-based capital among lines of business, e.g., Panjer (2002). Non-cooperative game
theory help in pricing insurance market competition or in supervising an insurance market, e.g., Rees
et al. (1999).

Regarding customer modeling for non-life insurance, Dutang (2012b) tackles the issue of price
elasticity from various points of view: we focus on price elasticity of different markets, check the impact
of distribution channels, investigate the use of market proxies and test for evidence of adverse selection.
Dutang and Spedicato (2018) explore the applicability of recent machine learning techniques such as
boosted tree models and neural networks in order to optimize the proposed premium on prospective
policyholders. Given their predictive gain over generalized linear models, they carefully analyse both
the advantages and disadvantages induced by their use.

Focusing on surrender in life insurance, Dutang and Milhaud (2018) deals with the challenging
problem of modeling policyholders’ behaviors in life insurance by considering the Fine & Gray model,
a semi-parametric regression model presented in Chapter 1. This framework is quite efficient and re-
covers the empirical lapse rate trajectory by aggregating individual predicted lifetimes and particularly
useful to design future insurance product.

Chapter 5 continues with a brief literature review of game theory and its use for actuarial topics.
A review of R packages implementing game-theoretic concepts is also presented. Then, based on
Dutang (2012b) and Dutang and Spedicato (2018)’s contributions of customer models, Dutang et al.
(2013a) formulate a new non-cooperative game to model competition for policyholders among non-life
insurance companies, taking customer behavior into account, market premium, solvency level, market
share and underwriting results. Based on Nash equilibria and Stackelberg equilibria, the proposed
game shows that the ability of an insurer to sell contracts is essential for its survival. Dutang (2013b)
studies theorems guaranteeing existence of (generalized) Nash equilibria and analyze the assumptions
on practical parametric feasible sets.

Since the static nature of Dutang et al. (2013a)’s insurance game is not realistic, Dutang (2014a)
propose a repeated one-period game which analyze through Monte-Carlo simulations. Mouminoux
et al. (2021b) carefully study the repeated one-period game of Dutang (2014a) based on Dutang
et al. (2013a) and investigate convergence properties of the market using a Markov chain approach.
Deviations from a regulated market situation are analyzed to provide some insights on the effect of
competition in the repeated game.
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Chapter 1

Parametric regression models

In this chapter, we present our contributions to parametric regression models. Section 1.1 presents
Generalized Linear Models (GLM) for which closed-form estimators are proposed in Sections 1.2 and
1.3. Applications to non-life insurance are also proposed in Sections 1.2 and 1.3. Section 1.5 introduces
survival regression models and generalized additive models applied in Section 5.1. Finally, Section 1.6
makes a review of existing R packages available for GLM and position our contribution in that respect.

Notation
For the sake of clarity, bold notations are reserved for vector of Rp and Rn where n is the observa-

tion number and p is the number of explanatory variables or the number of dummies. We consider

deterministic exogenous variables x1, . . . ,xn, with xi = (x
(1)
i , . . . , x

(p)
i ) ∈ Rp for i = 1, . . . , n. The

index i ∈ I = {1, . . . , n} is reserved for the observations, while the indexes j, k, l are used for the
explanatory variables. Response variables are denoted by Yi and the sample by Y = (Y1, . . . , Yn).

1.1 Generalized linear models

The assumption of identical distributions for random variables in an observation sample is relaxed
for regression models by considering explanatory variables. GLM were introduced by Nelder and
Wedderburn (1972) and popularized in McCullagh and Nelder (1989). GLM rely on probability
distribution functions of exponential type for the response variable which include most of the light
and medium tailed distributions (such as normal, gamma or inverse Gaussian).

Precisely, the likelihood L associated to the statistical experiment generated by Yi, i ∈ I, verifies

logL(θ | yi) =
λi(θ)yi − b (λi(θ))

a(φ)
+ c(yi, φ), yi ∈ Y ⊂ R, (1.1)

and −∞ if yi /∈ Y, where a : R→ R, b : Λ→ R and c : Y× R→ R are known real-valued measurable
functions and φ is the dispersion parameter, e.g., McCullagh and Nelder (1989, Section 2.2). Table
1.1 gives classic examples of probability distribution in the exponential family characterized by a, b,
c and Y.

In Equation (1.1), the parameters λ1, . . . , λn depend on a finite-dimensional parameter θ ∈ Θ ⊂ Rp
through the expectation of the response variable. That is we assume

b′(λi(θ)) = E (Yi) and b′′(λi(θ))a(φ) = V ar (Yi) . (1.2)

17



18 CHAPTER 1. PARAMETRIC REGRESSION MODELS

Distribution λ φ a(x) b(x) c(x, φ) b′(x) b̃(x) b(b̃(x)) V (x)
Bernoulli

log( p
1−p ) 1 x log(1 + ex) 0 ex

1+ex
log( x

1−x ) − log(1 + x) x(1− x)B(p)
Binomial

log( p
1−p ) 1

m
x log(1 + ex) log

((1/φ
x/φ

))
ex

1+ex
log( x

1−x ) − log(1 + x) x(1− x)B(m, p)
Gaussian

µ σ2 x x2/2
x2/φ

x x x2/2 1N (µ, σ2) − 1
2

log(2πφ)

Gamma −1
µ 1/ν x − log(−x)

log(x/φ)
φ

− log(x) −1/x −1/x log(x) x2

G(ν, µ) − log(Γ( 1
φ

))

Poisson
log(µ) 1 x ex − log(x!) ex log(x) x xP(µ)

Inv. Gauss. −1/(2µ2) 1/σ2 x −
√
−2x

− 1
2

log(2πφx3)
1/
√
−2x −1/(2x2) −1/x x3

IG(µ, σ2) −1/(2φx)

Table 1.1 – Usual distributions in the exponential family

Using a twice continuously differentiable and bijective function g from b′(Λ) to R, the GLM are defined
by assuming the following relation between the expectation E (Yi) (1.2) and the predictor

g(b′(λi(θ))) = 〈xi,θ〉 = ηi, for all θ ∈ Θ, (1.3)

where ηi are the linear predictors and 〈., .〉 denotes the scalar product. g is called the link function
in the regression framework. In other words, the bijective function ` = (b′)−1 ◦ g−1 is setted; then we
have

λi(θ) = `(ηi). (1.4)

We summarize with the following relations

X ×Θ
〈.,.〉−→ D

`−1

�
`

Λ,

where D is the space of linear predictor and X the possible set of value of xi for i ∈ I. Here ` is
chosen and, consecutively Θ, Λ and D must be set∗.

The parameter θ ∈ Θ ⊂ Rp is to be estimated. Let us compute the log-likelihood of y =
(y1, . . . , yn):

logL(θ |y) =

n∑
i=1

yi`(ηi)− b (`(ηi))

a(φ)
+

n∑
i=1

c(yi, φ), (1.5)

with b, h and ` being respectively defined in (1.1) and (1.4). If the model is identifiable, it can be
shown that the sequence of MLE (θ̂n)n≥1 defined by θ̂n = arg maxθ∈Θ L(θ |y) asymptotically exists
and is consistent (e.g. Fahrmeir and Kaufmann, 1985, Theorems 2 and 4).

The MLE θ̂n, if it exists, is the solution of the non linear system

Sj(θ) = 0, j = 1, . . . , p, (1.6)

with Sj(θ) are the component of the score vector defined by

Sj(θ) =
1

a(φ)

n∑
i=1

x
(j)
i `′(ηi)

(
yi − b′ (`(ηi))

)
.

It is worth mentioning that for a small data set or large number of explanatory variables, the existence
of the MLE is not guaranteed. Note that the MLE θ̂n does not depend on the value of the dispersion

∗We talk of canonical link function, when ` is the identity function. By default, softwares such as R use canonical
links g = b′. Otherwise we use link functions preserving the parameter domain Θ such as log(x).
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parameter φ. Indeed, the dispersion parameter is estimated in a second step using the sum of square
residuals or the log-likelihood (McCullagh and Nelder, 1989, e.g. Chap. 9). Model selection can be
performed through various metrics such as the deviance, the Aikake’s Information criterion as well as
chi-square statistical tests (McCullagh and Nelder, 1989, e.g. Chap. 2). Variable selection is carried
out via statistical tests using the Wald statistics generally or via penalization procedures such as
elastic net regression (Denuit et al., 2019a, e.g. Chap. 4).

In a general setting, the system (1.6) does not have a closed-form solution and GLM are generally
fitted using a Newton-type method, such as an Iteratively re-Weighted Least Square (IWLS or IRLS)
algorithm. McCullagh and Nelder (1989, Section 2.5) propose a quick overview of the IWLS algorithm
which consists in using the expected Hessian matrix instead of the true Hessian when searching for the
next iterate of the Newton method. There are two arguments in favor of using this trick: the fact that
the expected Hessian is negative definite under regularity conditions on b and g ; two out of three terms
cancel out in the expected Hessian. This variation was first proposed by Fisher in the context of probit
regression and thus also known as the Fisher Scoring algorithm. The IWLS algorithm is typically used
in statistical softwares such as R. Recently, Dutang (2017a) proposes further practical explanations of
IWLS such as the initial guess of θ, the working weights and responses, the globalization scheme.

1.1.1 Logistic regression

We focus only on binary regression, where the response variable is either 1 or 0, respectively for
success and failure. Writing the mass probability function as fYi(y) = πyi (1 − πi)1−y emphasizes the
exponential family feature. So the link function for a binary model is expressed as follows

πi = g−1(〈xi,θ〉).

As indicating in Fox (2010), the link function and the response variable can be reformulated as an
unobserved variable πi = P (Yi = 1) = P (xTi β − εi > 0). If εi follows one of the distribution of Table
1.2, then πi uses the corresponding distribution function g−1. In addition of being the canonical link
function, the logit link is generally preferred because of its simple interpretation as the logarithm of
the odds ratio and a faster fitting time.

Link g(x) g−1 associated distribution

logit ln
(

x
1−x

)
1

1+e−x standard logistic

probit Φ−1(x) Φ(x) standard normal
complementary log-log ln(− ln(1− x)) 1− e−ex standard Gumbel II

Table 1.2 – Common link functions for logistic regression

1.1.2 Count regression

Count regression consists in modeling a response variable belonging to N. The most common distri-
bution in the exponential family is the Poisson distribution with the density fY (y) = λye−λ/(y!), see
Table 1.1.

In practice, count regressions need to take exposures into account. For non-life insurance, exposure
is measured as the percentage of year where the property (vehicle, house,. . . ) is insured by the insurer.
For the ith policy, ei is the observed exposure such that ei = 1 indicates a fully observed risk over a
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year. The logarithm of ei is used in the linear predictor as an offset. Indeed assuming the claim count
Yi follows a Poisson distribution P(eie

ηi), the expectation is given by

ln(E(Yi)) = ln(ei) + ηi = 1× ln(ei) + 〈xi,θ〉.

More advanced models for count regression use the negative binomial distribution or zero-inflated
or zero-modified distributions, see, e.g., Denuit et al. (2007). There is a trick to use the IWLS algo-
rithm for the negative binomial distribution by considering a parametrization through its expectation
for a fixed dispersion parameter and by fitting its dispersion parameter in a second step. Zero-inflated
or zero-modified distributions do not enter in the GLM framework and require a full likelihood maxi-
mization.

1.1.3 Severity regression

Count regression consists in modeling a response variable belonging to (0,+∞). Common distribution
in the exponential family are the gamma and the inverse Gaussian distributions, see Table 1.1. The
IWLS algorithm works correctly for these distributions.

Another type of models is to model the log claim amount ln(Y ) which allow to use other distri-
butions of the exponential family. Typically, one can deal with a lognormal model if ln(Yi) follows a
Gaussian distribution N (µi, σ

2). The fitting procedure consists in applying a GLM on the log claim
amount ln(Y ). However care is needed for moments prediction as E(Y ) ≥ exp(E(ln(Y ))). Indeed, we
have

E[Yi] = exp(µi + σ2/2), V ar[Yi] = exp(2µi + σ2)(exp(σ2)− 1).

A similar procedure can be carried out for the Pareto 1 by assuming ln(Yi) follows an exponential
distribution E(βi). One can even can consider a gamma distribution for the log claim amount ln(Y ).
It is equivalent to assuming a log-gamma density

fY (x) =

(
ν

µi

)ν (ln(x))ν−1

Γ(ν)xν/µi+1
,

Expectation and variance are finit when

ν > µi ⇒ E[Yi] =

(
ν

ν − µi

)ν
, ν > 2µi ⇒ V ar[Yi] =

(
ν

ν − 2µi

)ν
−
(

ν

ν − µi

)2ν

.

see, e.g., Hogg and Klugman (1984).

1.2 Situations where a closed-form maximum likelihood estimator
exists

Brouste et al. (2020) identify practical situations where a closed-form MLE exists for any distribution
of the exponential family and any link function. These situations arise when explanatory variables
are only categorical, that is no continuous variables are present as regressors. The case of categorical
explanatory variables (only) in GLM is relevant in many practical situations. For instance, in the
insurance industry, policy pricing uses a finite number of risk group relying on categorical explanatory
variables. Typically, motor insurance ratings rely on vehicle classification with a large number of
modalities, e.g., the dataset used for the 2017 pricing game by Charpentier (2017) exhibits this feature
with 1023 vehicle models for 101 vehicle brands.
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1.2.1 A single explanatory variable

Consider the case where x
(1)
i = 1 is the intercept and x

(2)
i takes values in a set of d2 modalities

{v1, . . . , vd2} with d2 > 2. To perform the estimation, an incidence matrix is derived(
x

(2),j
i

)
i,j

=
(
1
x

(2)
i =vj

)
i,j
,

where x
(2),j
i is the binary dummy of the jth category for i ∈ I and j ∈ J = {1, . . . , d2}. By construction,

this incidence matrix has rows that sum to 1. If we use the combination of the incidence matrix with a
1-column for the intercept (x

(1)
i , x

(2),j
i )i,j : a redundancy appears. Hence, a linear constraint is imposed

on θ
〈R,θ〉 = 0. (1.7)

with R = (r0, r1, . . . , rd2) any real vector of size d2 + 1. We get the usual set-ups (no intercept, no

first modality or zero-sum condition) for some specific value of R. Let Y
(j)
n be the average empirical

response

Y
(j)
n =

1

mj

n∑
i=1

Yi × x(2),j
i ,

of individuals having vj and the frequency mj =
∑

i x
(2),j
i of level vj .

Theorem 1.2.1 (Brouste et al. (2020)) Suppose that for all i ∈ I, Yi takes values in b′(Λ). If the
vector R is such that

d2∑
j=1

rj − r0 6= 0,

then there exists a unique, consistent and explicit MLE θ̂n of θ for GLM g(E (Yi)) = θ(1)+
∑d2

j=1 x
(2),j
i θ(2),j ,

given by

θ̂n,(1) =

d2∑
k=1

rkg(Y
(k)
n )

d2∑
k=1

rk − r0

, θ̂n,(2),j = g(Y
(j)
n )−

d2∑
k=1

rkg(Y
(k)
n )

d2∑
k=1

rk − r0

, j ∈ J. (1.8)

Note that if Y
(j)
n does not belong to b′(Λ), g(Y

(j)
n ) and hence θ̂n,(l),j are not defined.

The proof of Theorem 1.2.1 relies on the explicit computation of the score equations (1.6) where
simplifications occur in this special setting. We get the following linear system

Md2 × θ =

(
g(Ȳ )

0

)
, with Md2 =

(
1d2 Id2

r0 r

)
.

The matrix Md2 can be inverted under the condition
∑d2

j=1 rj− r0 6= 0 stated in Theorem 1.2.1. Three
usual examples of contrasts are given in Table 1.3 where the matrix Md2 is given. Equation (1.8)
further simplifies in that case.

The case when there is no explanatory variable, i.e. Yi are identically distributed, cannot be
obtained with Equation (1.8). But in that case, we get with similar arguments θ̂n,(1) = g(Y n).

Despite the distribution of Y
(j)
n still belongs to the exponential family, the bias of θ̂n,(1) and θ̂n,(2),j
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name no-intercept no first-level zero-sum

r0 1 0 0

r 0Td2 (1,0Td2−1) 1Td2

M−1
d2

(
0Td2 1
Id2 −1d2

)  1 0Td2−1 −1
0 0Td2−1 1
−1d2 Id2−1 1d2−1

 − 1
d2

(
−1Td2 1

1d2×d2 − d2Id2 −1d2

)

Table 1.3 – Three well known examples of contrasts

cannot be determined for a general link function g. However, we can show the consistency of the
estimator and an asymptotic confidence interval, see Appendix A.1 of Brouste et al. (2020).

An important corollary giving an explicit fitted log-likelihood can be derived from Theorem 1.2.1
which will be used later. Let us note that the fitted log-likelihood does not depend on the link function
but on the a, b, c functions and related derivatives, see Table 1.1.

Corollary 1.2.1 (Brouste et al. (2020)) The value of the log-likelihood defined in (1.5) taken on
the exact MLE θ̂n (if it exists) given by (1.8), under constraint (1.7), does not depend on the link

function g. More precisely, we have ∀i ∈ I, `(η̂i) = (b′)−1(y
(j)
n ) for j ∈ J such that x

(2),j
i = 1 and

logL(θ̂n |y) =
1

a(φ)

d∑
j=1

∑
i,x

(2),j
i =1

(
yib̃
(
y(j)
n

)
− b

(
b̃
(
y(j)
n

)))
+

n∑
i=1

c(yi, φ),

with b̃ = (b′)−1. Therefore, the criteria AIC and BIC are also independent of the link function g. The
estimator of φ is obtained by maximizing logL(θ̂n |y) with respect to φ given a, b, c functions.

1.2.2 Two explanatory variables

Let us now consider the two variable case where x
(1)
i = 1 is the intercept and x

(2)
i , x

(3)
i are the two

explanatory variables taking values in {vj1, . . . , vjdj} with d2 and d3 modalities respectively.

Dummy Frequency Mean Index

x
(2),k
i = 1

x
(2)
i =v2k

m
(2)
k =

n∑
i=1

x
(2),k
i y

(2),k
n = 1

m
(2)
k

n∑
i=1

yix
(2),k
i k ∈ K = {1, . . . , d2}

x
(3),l
i = 1

x
(3)
i =v3l

m
(3)
l =

n∑
i=1

x
(3),l
i y

(3),l
n = 1

m
(3)
l

n∑
i=1

yix
(3),l
i l ∈ L = {1, . . . , d3}

x
(k,l)
i = x

(2),k
i x

(3),l
i mk,l =

n∑
i=1

x
(k,l)
i y

(k,l)
n = 1

mk,l

n∑
i=1

yix
(k,l)
i (k, l) ∈ K × L

Table 1.4 – Dummies, frequencies and averages w.r.t explanatory variables

We define the matrix Q by

Q = (Q1, Id2d3), Q1 = (1d2d3 ,1d3 ⊗ Id2 , Id3 ⊗ 1d2), (1.9)

where ⊗ is the Kronecker product. The user usually imposes linear constraints Rθ = 0 characterized
by the contrast matrix R = (R1, R2) with

R1 =


r0,1 r

(2)
1,1 . . . r

(2)
d2,1

r
(3)
1,1 . . . r

(3)
d3,1

...
... . . .

...
... . . .

...

r0,q r
(2)
1,q . . . r

(2)
d2,q

r
(3)
1,q . . . r

(3)
d3,q

 , R2 =

r11,1 . . . rd2d3,1
... . . .

...
r11,q . . . rd2d3,q

 .
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Theorem 1.2.2 (Brouste et al. (2020)) Suppose that for all i ∈ {1, . . . , n}, Yi takes values in
b′(Λ). Under constraint Rθ = 0q, and if R such that (Q′,R′) is of rank d2d3, there exists a unique,

consistent and explicit MLE θ̂n of θ for GLM

g (E (Yi)) = θ1 +

d2∑
k=1

x
(2),k
i θ(2),k +

d3∑
l=1

x
(3),l
i θ(3),l +

∑
(k,l)∈K×L

x
(k,l)
i θk,l,

given by
θ̂n = (Q′Q+R′R)−1Q′g(Y ), (1.10)

where the vector g(Y ) is ((g(Y
(k,l)
n ))l)k.

In the case where some interactions are not observed, i.e., mk,l = 0 the design matrix Q and
contrasts matrix R need to be appropriately reduced. The MLE of the model with only main effects

for two explanatory variables defined as g(E (Yi)) = θ1 +
∑d2

k=1 x
(2),k
i θ(2),k +

∑d3
l=1 x

(3),l
i θ(3),l does not

present such an explicit formula whatever the matrix R of rank 2. In that case, the MLE does not
solves a least square problem under a linear constraint, see Appendix A.2 of Brouste et al. (2020). A
similar corollary to Corollary 1.2.1 can also be obtained where an explicit log-likelihood is obtained.

1.2.3 Special cases of probability distribution

Brouste et al. (2020) analyze two very well known distributions: Pareto 1 and shifted log-normal
distributions. They consider a transformation T such that the transformed response Zi = T (Yi)
belongs to the exponential family (1.1), see Section 1.1.3. Table 1.5 gives the transform as well as the
a, b, c functions of the exponential family.

Brouste et al. (2020, Section 4) study in details the exact distribution of the MLE in the Pareto
1 case, while Brouste et al. (2020, Section 5) focuses on the exact distribution of the MLE in the
lognormal case. The latter case is interesting since a dispersion has to be estimated possibly by
maximizing the log-likelihood. In both, model diagnostic can be performed via the study of specific
residuals (respectively from a standard exponential or from a standard normal distributions).

Name T (x) a(x) b(x) c(x, φ)

Pareto 1 − log(x/µ) 1 − log(λ) 0
shifted lognormal log(x− µ) x x2/2 −1

2(x2/φ+ log(2πφ))

Table 1.5 – log-transformed distributions

1.3 Closed-form likelihood-based estimators

In the spirit of the closed-form MLE of previous section, Brouste et al. (2021a) propose a closed-form
estimator for GLM with multiple categorical explanatory variables. They define θ̃n as

θ̃n = (QTQ+RTR)−1QT g(Y ), g(Y ) =
(
g(Y

(j)
n )
)
j=1,...,d

, (1.11)

where Q is defined by modeler’s choice, g(Y ) ∈ Rp is the vector of g-transformed average response
variable for each cross-category of categorical explanatory variables, and R the contrast matrix.
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In general situations with multiple explanatory variables, typically taken as single effects in the
linear predictor, θ̃n is not the MLE but has the advantage to be explicit. Theorems 1 and 2 of Brouste
et al. (2021a) give also the asymptotic distribution of MLE.

A simulation analysis is performed in order to benchmark the proposed estimator against the
IWLS algorithm in terms of computation time and to compare the asymptotic variances on a Gamma
distributed GLM. Brouste et al. (2021a) observe that the IWLS algorithm has a computation time
increasing almost linearly with the modality number d. In comparison, the proposed estimator’s
computation time is almost constant and significantly lower. Asymptotic variances between the MLE
and the proposed estimator are very closed in almost every cases.

1.4 Generalized Linear Model Trees

Dutang and Guibert (2021) propose GLM-based trees with an explicit likelihood cut-off. GLM-based
trees are algorithms splitting dataset recursively where at each node the best split is searched among
GLM with each explanatory variable taken individually in a two-step procedure : (i) the selection of
the splitting variable j? and (ii) search for the best split point s?.

Model-based (MOB) partitioning tree

The MOB model introduced by Zeileis et al. (2008) carries the integration of a parametric model fitted
at each leaf of a tree, based on least squares, maximum likelihood or more broadly M-estimation. With
this approach, the parametric model MBb (Y , {xi} , {λ}), b = 1, . . . , B, i ∈ I, is fitted locally using
vectors of covariates {xi} on each subset of a partition {Bb} of B segments. The partition is determined
when growing a tree based on partitioning variables zi = (zi,1, . . . , xi,q) ∈ Rq, and an objective function
is maximized to obtain the generic collection of parameters {λb}.

Dutang and Guibert (2021) consider the GLM as local model similarly to Rusch and Zeileis (2013)
where parameters θb, b = 1, . . . B, are estimated by maximizing the log-likelihood. Their algorithm for
GLM tree is given in Algorithm 1. Contrary to the CART, the MOB doesn’t require a post-pruning
procedure of the tree. A pre-pruning step can be can applied for avoiding, e.g., that the size of a node
becomes too small.

Firstly, the GLM is fitted on all observations of the current node b (i ∈ b) with all explanatory
variables available. If no control is assumed, there are p variables but it might be less if a random
selection is performed. Unless explanatory variables come from a single categorical variable, for which
an explicit MLE exists (Brouste et al., 2020), θ̂b is computed by the IWLS algorithm, see Section 1.1.

Secondly, variable selection is performed using a M-fluctuation test in order to avoid variable
selection bias. Let Wj(t) be an empirical fluctuation process. Zeileis and Hornik (2007) show that
under regularity conditions, a normalized Wj(t) converges toward a standard Brownian bridge, which
allows to perform M-fluctuation tests for testing the null hypothesis of parameter stability and thus
to select partitioning variables. For GLM, the i-th score contribution is explicit and given by

si,j(θ) =
∂ logL(λi, yi)

∂βj
=
yi − µi
V (µi)

h′(ηi)zi,j , (1.12)

where µi = h(ηi), h = g−1 the inverse link function, ηi = 〈xi,θ〉, and Table 1.1 in Section 1.1. The
corresponding covariance matrix J(θ) is also explicit so that the empirical fluctuation process has the
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Data : Response vector y, explanatory covariates x1, . . . ,xn, partitioning variables z1, . . . ,zn
while Loop over node b until no significant instability is detected do

Compute the observation number nb = ]b for node b.
if nb is too small then

Stop the process for that node.
end
1. Fit the local model:

Fit GLM for observations i ∈ b to obtain fitted parameter θ̂b.
2. Assess param. instab. with M-fluctuation tests:

for j = 1, . . . , q do

Compute the i-th score contribution as ŝi,j = si,j(θ̂b) in (1.12) for all i ∈ b.
if j is a numerical variable then

Compute parameter instability using (1.13) as

λj = max
i=i,...,i

(nb)
2

i(nb − i)

∥∥∥Wj

(
i/nb, θ̂b

)∥∥∥2

2
,

where [i, i] is the interval of potential instability.
else

Compute parameter instability using (1.13) as

λj =
1

nb

lj∑
c=1

(]Ivj,c)
−1
∥∥∥∆vj,cWj

(
i/nb, θ̂b

)∥∥∥2

2
,

where Ivj,c = {i ∈ b, zi,j = vj,c} is the set of observation indices in category vj,c.

end

end
Compute the p-value of the fluctuation test and assess the significance.
if there is at least one significant instable variable then

Select the most unstable variable

j? = arg max
j∈{1,...,q}

λj .

3. Choose the best splitting point s:

if j? is a numerical variable then
Search for the optimal split point s? ∈ (mini zi,j? ,maxi zi,j?) based on (1.16).

else
Search for the optimal set s? ⊂ {vj?,1, . . . , vj?,lj} based on (1.16).

end

end

end
Algorithme 1 : Recursive partition algorithm for GLMs for a binary tree

following expression for GLM

Wj(t, θ̂) = Ĵ−1/2 1
√
nb

i∈b∑
i≤bt×]bc

ŝσ(i),j , 0 ≤ t ≤ 1, (1.13)

where ŝi,j = si,j(θ̂), σ(i) is the ordering permutation giving the anti-rank observation of zi,j and
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Ĵ = J(θ̂) the fitted covariance matrix. The function t 7→ Wj(t, θ̂) is a step function and we denote

by ∆vWj(t, θ̂) the increment for variable j in category v. The splitting variable with the highest
significant instability is selected, i.e., the lowest p-value satisfying the significant level adjusted with
Bonferroni correction.

Thirdly, given the splitting variable, the best split point is chosen based on the objective function
calculated on the B ≥ 2 daughter nodes of the splitting variable

O
(
y, φ, θ̂1, . . . , θ̂B

)
=

B∑
b=1

logL(θ̂b, φ, yi)1{i∈Lb(j?)}, (1.14)

where Lb(j
?) corresponds to the b-th segment with respect to values taken by the variable j?. For

binary tree (B = 2), only one split point for a continuous variable or one subset for a categorical
variable, hereafter noted s, should be exhibited. In general, objective function (1.14) is not explicit
because parameter vector θ̂b has to be estimated by IWLS. Dutang and Guibert (2021) focus on this

last step and propose closed-form formula for
(
θ̂1, . . . , θ̂B

)
leading to an explicit objective function.

Explicit likelihood cut-off for constant binary trees

Whatever the j? variable is categorical or numerical, we use a generic notation for the linear predictor

ηi = θL × 1{i∈L(j?,s)} + θR × 1{i∈R(j?,s)}, (1.15)

where L(j, s) and R(j, s) are the children subsets resulting from the split. When the variable is
numerical, the subsets are i ∈ L(j, s) ⇔ zi,j ∈] −∞, s] and i ∈ R(j, s) ⇔ zi,j ∈]s,+∞[. Otherwise
when the variable is categorical, the subsets are defined as i ∈ L(j, s)⇔ i ∈ s and i ∈ R(j, s)⇔ i /∈ s.

Left node Right node

Frequency mL
j (s) =

n∑
i=1

1{i∈L(j,s)} mR
j (s) =

n∑
i=1

1{i∈R(j,s)}

Average Y
L
j (s) = 1

mLj (s)

n∑
i=1

yi1{i∈L(j,s)} Y
R
j (s) = 1

mRj (s)

n∑
i=1

yi1{i∈R(j,s)}

Table 1.6 – Notations for conditional frequencies and averages

Let yj?(s) = (yLj?(s), y
R
j?(s)) be the vector of conditional average responses andmj?(s) = (mL

j?(s),m
R
j?(s))

be the vector of absolute frequencies. Using Theorem 1.2.1 and Corollary 1.2.1 of Brouste et al. (2020),
an explicit objective function s 7→ O(yj?(s),mj?(s)) is obtained for the splitting variable j? in order
to find the best split point or the best subset s? with

O(yj?(s),mj?(s)) = b̃
(
yLj?(s)

)
mL
j?(s)y

L
j?(s)− b

(
b̃(yLj?(s))

)
mL
j?(s)

+b̃
(
yRj?(s)

)
mR
j?(s)y

R
j?(s)− b

(
b̃(yRj?(s))

)
mR
j?(s),

(1.16)

where b̃ = (b′)−1 is the inverse of b′, see Table 1.1.

This framework includes many tree-based algorithms such as the Bernoulli distribution correspond-
ing to CART algorithm for classification, the normal distribution corresponding to CART algorithm
for regression. However, we can use other well-known distributions of the exponential family: gamma,
Poisson, inverse Gaussian, binomial (taken into account weights), log-transformed distributions, see
Table 1.1.
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Dutang and Guibert (2021) present a comprehensive numerical analysis in order to demonstrate
that this approach significantly reduces the computation time of the GLM-based tree model compared
to the features originally offered by the R package partykit. Furthermore, their numerical applica-
tions on continuous simulated datasets confirm the effective out-of-sample performance of GLM-trees
compared to other tree-based approaches such as rpart or ctree, both with categorical and continu-
ous splitting variables. Due to the explicit objective functions, GLM forests are also tested by Dutang
and Guibert (2021).

It remains an open question if the Tweedie distribution could be used directly in the MOB approach
or needs further study. Recent articles (Delong et al., 2021; Denuit et al., 2021; Denuit and Trufin,
2021) shows the relevancy of Tweedie models in actuarial models. Tree-based methods are used by
practitioners for pricing (Henckaerts et al., 2021) and reserving purposes (Wüthrich, 2018a).

1.5 Other regression models

We briefly present here two other types of regression model that will be used in Chapter 5. Indeed,
Section 5.1 focuses on customer modeling with Generalized Additive Models (GAM) and Survival
Regression Models (SRM).

1.5.1 Additive regression models

As for GLM, the response variable Yi belongs to the exponential family (1.1), however the predictor
is no-longer linear as in (1.3) but of the form

ηi = α0 +

p∑
j=1

fj(xi,j),

where fj are smooth non-parametric functions based on piecewise polynomials and α0 is the intercept.
In practice, categorical variables are included in the predictor as

ηi = α0 +

p1∑
j=1

αjxi,j +

p1+p2∑
j=p1+1

fj(xi,j),

where (xi,j)j≤p1 are categorical variables and (xi,j)j>p1 are continuous variables.

Fitting smooth non-parametric functions is a challenging task because the user will control the
shape of the smooth functions only via a smoothing parameter but not the piecewise polynomials fitted
for functions fj ’s, called smoothers. We present here only the main idea of the fitting algorithms, see
Hastie and Tibshirani (1990) or Venables and Ripley (2002) for details.

All smoothers have a smoothing parameter λ (the polynom degree, the bandwidth or the span).
A first concern is how to choose a criterion on which to optimize λ in an adaptive way. Then, a
second concern is to find a reliable estimate of the parameters α and the smooths coefficients given a
smoothing value λ.

Firstly, assuming a value of λ, we present an algorithm to fit the model. Wood (2008) proposes a
reliable method: the Penalized Iteratively Reweighted Least Square method (PIRLS). Unsurprisingly,
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PIRLS is an iterative method aiming to minimize the following (theoretical) penalized deviance

D̃ = D(f1, . . . , fp) +

p∑
j=1

λj

∫
f ′′j (xj)

2dxj ,

where the first term corresponds to the deviance for the given distribution family and the second
term penalizes the wiggly behavior of the smooth functions by approximating the curvature of fj . In
practice, a set of basis functions (bj,k)j,k is chosen so that the smooth function fj as

fj(x) =

Kj∑
k=1

bj,k(x)βj,k ⇒
p1+p2∑
j=p1+1

fj(xi) =

p1+p2∑
j=p1+1

bTj (xi)βj ,

with bj is a vector of known coefficients and βj a vector of unknown coefficients

bj(x) =

 bj,1(x)
...

bj,Kj (x)

 , βj =

 βj,1
...

βj,Kj

 .

Typical basis functions are B-splines, P-splines, see, e.g., Yee (2015, Chapter 2). In other words, the
GAM is represented as a GLM with ηi =< x̃i,θ > with x̃i containing the basis functions evaluated at
the covariate values and θ containing linear parameter α and coefficients βj,k’s. Hence, the (empirical)
penalized deviance to be minimized is given by

D̃(θ) = D(θ) +

p1+p2∑
j=1

λjθ
TSjθ,

where Sj contains known coefficients formed with bj and D(θ) the GLM version of the deviance.

PIRLS algorithm solves the problem min D̃(θ), see Wood (2008) for details.

Secondly, PIRLS algorithm gives for any λ the corresponding fitted coefficient θ̂(λ). In the lit-
erature, there are many criteria to select the smoothing parameter∗: likelihood measures such as
Restricted Maximum Likelihood (REML), Maximum Likelihood (ML) and cross validation measures
such as Generalized Cross Validation (GCV), Generalized Approximate Cross Validation (GACV).
These methods differ whether the smoothing parameter is treated as a random effect or not. We max-
imize either a likelihood metric (ML/REML) or minimize a prediction error (GCV/GACV). In both
cases, a nested optimization method is needed where outer iterations optimizes λ and inner iterations
provide θ(λ), see Wood (2010) for details. GAM are used by actuaries and academics for insurance
pricing, e.g., (Denuit and Lang, 2004; Henckaerts et al., 2018)

1.5.2 Survival regression models

In survival analysis, the variable of interest is represented by the random variable T denoting a lifetime
of a specie, a human or a policy. There are three widely used distributions for T : the Weibull, the
loglogistic and the lognormal distribution. Each of them can be characterized equivalently on T
or ln(T ). Generally, survival distributions are characterized by survival function ST (t) = P (T >
t). Table 1.7 summarizes the relationship between the distributions† of T and ln(T ). We change
parametrizations from T to Y with σ = 1/α, µ = − ln(λ) and y = ln(t).

∗We cannot choose the smoothing parameter λ minimizing the deviance, because the model will overfit the data.
†Note that with a shape α = 1, the distribution of Weibull is the exponential distribution.
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T Weibull loglogistic lognormal

ST (t) e−(λt)α 1
1+(λt)α 1− Φ(α ln(λt))

hT (t) αλαtα−1 αλαtα−1

1+(λt)α
φ(t)

1−Φ(t)

Y = ln(T ) extreme (min.) value logistic normal

SY (y) e−e
y−µ
σ 1

1+e
y−µ
σ

1− Φ(y−µσ )

Φ denotes the distribution function of the standard normal distribution N (0, 1)

Table 1.7 – Survival distributions

Hidden in those expressions, we have the three link functions for binomial GLM, see Section 1.1,

logit link: g(π) = ln
(

π
1−π

)
, probit link: g(π) = Φ−1(π) , complementary log-log link: g(π) =

ln(− ln(1 − π)), whose inverse are the distribution function of standard distributions. Let us note Z
the variable characterized by the distribution function g−1, and then Y = ln(T ) = µ + σZ. To take
explanatory variables xi of individual i into account, we change the constant location parameter µ to
a linear predictor µ+ ηi

Yi = µ+ < xi,θ > +σZ,

with θ an unknown coefficient vector. This implies that ST (t) = ST0(e<xi,θ>t), where T0 is a baseline
distribution (i.e. one of the distributions in Table 1.7). From the last equation, we get the name of
that type of model : accelerated / decelerated failure time model, since the coefficient e<xi,θ> changes
the scale of time implying a decrease / increase of the survival function.

The estimation of the accelerated failure time model is done simply by maximizing the log-
likelihood. From the asymptotic normal behavior of maximum likelihood estimators, we can deduce
confidence interval, hypothesis test for the θ’s components. Therefore a p-value is available for each
coefficient of the regression, which help to keep only the most significant variable.

In practice, full parametric models may not lead to reliable results due to the strong assumption
on the baseline distribution. To circumvent this idea, one can use the Cox proportional hazard
(PH) model. The Cox PH model can be seen as an extension of the accelerated failure time model.
Let us recall that in the accelerated failure time model, the hazard function has the following form
hT (t|xi) = e<xi,θ>hT0(t), where T0 is a baseline distribution in Table 1.7. A natural extension is
therefore to consider models with hazard function

hT (t|xi) = β(xi,θ)× h0(t),

where β models the effect of covariates on the response (with an unknown parameter θ) and h0 is
a non-parametric function. The name comes from the fact that h(t|xi)/h(t|xj) = β(xi,θ)/β(xj ,θ)
is constant with respect to time t, so the hazard functions are “proportional”. Unlike the previous
framework, the baseline hazard rate is estimated non-parametrically by a step function, see, e.g.,
Therneau and Grambsch (2000).

Yet not stressed out here, these two frameworks of survival analysis can deal with censorship
and/or truncation. But they cannot model multiple type of exit, that is to say, when the survival time
T represent the (first) exit time due to multiple causes. When modeling human mortality, one may
consider the different causes of death (e.g. infectious disease, respiratory diseases, heart diseases,. . . )
and typically use the HCDatabase by INED and Mack Planck Institute (2021). In a multi-cause
framework, (Beyersmann et al., 2012; Martinussen and Scheike, 2006), the failure cause is assumed to
be known at the failure time. We define JT the type of failure among {1, . . . , J}. The process (Jt)t
starting with J0 = 0 is a continuous-time random process that jumps at T into a state in {1, . . . , J}, see
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Figure 1.1. This new framework is called competing risk models as any of the cause among {1, . . . , J}
stops the process (Jt)t.

Figure 1.1 – Competing risk model and multistate representation, for j = 1, 2, ..., J .

Let us define cause-specific hazard rates for j ∈ {1, . . . , J} as

λT,j(t) = lim
dt→0

P (t ≤ T < t+ dt, JT = j | T ≥ t)
dt

. (1.17)

By the formula of total probability, we can retrieve the overall hazard rate by summation in (1.17):
λT,1(t) + · · ·+ λT,J(t) = λT (t), and recover the overall survival distribution of T by

P (T > t) = 1− FT (t) = ST (t) = exp

(
−
∫ t

0
(λT,1(s) + · · ·+ λT,J(s)) ds

)
.

In practice, we are not interested in ST but in the following probability FT,j(t) = P (T ≤ t, JT = j),
the so-called cumulative incidence function (CIF) for cause j. Due to the event JT = j, this is not
a proper cumulative distribution function since FT,j(t) → P (JT = j) as t → +∞. For a continuous
distribution of T , we characterize it as the integral of a (improper) density. In other words, fT,j(t) is
the product of the cause-specific hazard rate and the probability to survive up to time t. Therefore,
the CIF is

FT,j(t) =

∫ t

0
λT,j(s) exp

(
−
∫ s

0
λT (u)du

)
ds. (1.18)

Hence, the CIF of cause j depends on all other causes via the global survival function, which makes
the interpretation of the effects of covariates quite tricky since some effects come from the overall
hazard rate λT (t)∗. This approach, called the cause-specific approach, thus requires to estimate the
hazard rates (1.17) of all causes so as to estimate the CIF (1.18) of cause j.

The concurrent methodology to estimate the CIF of a single cause is obtained by considering a
new competing risk process. Let us assume that cause 1 is our cause of interest. We define τ as

τ = T × 11JT=1 +∞× 11JT 6=1.

The distribution of τ is the same as T for JT = 1, P (τ ≤ t) = FT,1(t) and a mass point at infinity
1 − FT,1(∞), probability to observe other causes (JT 6= 1) or not to observe any failure. The hazard
rate of τ is such that the CIF for cause 1 is computed as

FT,1(t) = 1− exp

(
−
∫ t

0
λτ (s)ds

)
. (1.19)

∗The CIF has the good property to be interpretable and summable P (T ≤ t) = FT,1(s) + · · ·+FT,J(s), unlike to the

function 1− exp
(
−
∫ t

0
λT,j(u)du

)
.
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Therefore the estimation of the CIF (1.19) does not depend on the estimation of other causes’ hazard
rates. This second approach is called the subdistribution approach, and often leads to different effects
of covariates on the cause-specific hazard function on one side and on the corresponding CIF on the
other side. Fine and Gray (1999) propose the so-called Fine–Gray model based the subdistribution
approach. As we will later see in Section 5.1, competing risk models will prove useful to model the
surrender risk in life insurance.

1.6 R implementation

Previous works of this section use extensively the R statistical software R Core Team, 2021. General-
ized linear models are available in core package stats, generalized additive models in mgcv by Wood
(2010). Numerous packages implements extensions or additional tools for GLM. Just to name few of
them: aglm (Kondo, 2021) for regularized GLM, cglm (Sjolander, 2019) for conditional GLM, dglm
(Dunn and Smyth, 2020) for double GLM, glmnet (Friedman et al., 2010) for lasso and elastic-net
regularized GLM, glmx (Zeileis et al., 2015) for GLM with extra parameter distributions. The full
list can be obtained by RWsearch (Kiener, 2021) package.

Closed-form estimators for GLM are implemented in glmtools by Brouste et al. (2021b), GLM
trees and forests in GLMsplittingTree by Guibert and Dutang (2021). Classic survival regression
models are performed thanks to the recommended package survival by Therneau (2021), whereas
competing risk models are implemented in packages timereg (Martinussen and Scheike, 2006) and
cmprsk (Gray, 2014).
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Chapter 2

Parametric models without
explanatory variables

This chapter is concerned with usual parametric models where observations come from independent
and identically distributed (i.i.d.) models. Section 2.1 reviews quickly classic theorems for regular
i.i.d. models, Section 2.2 provides an overview of loss models, Section 2.3 presents destruction rate
models. Section 2.4 deals with the Le Cam’s one-step estimation. Finally, Section 2.5 presents new
explicit formulas for trimmed linear moments.

2.1 Independent and identically distributed models

Let x1, . . . , xn be the sample of observations: i.e. realizations of the random variables X1, . . . , Xn.
Assuming X1, . . . , Xn are i.i.d. from a generic random variable X. We are interested in estimating
the unknown parameter θ of a parametric distribution FX(;θ). Casella and Lehmann (1998) propose
general methods to derive estimators of θ based on some key features of FX . Namely, one can maximize
the log-likelihood of the sample x1, . . . , xn given a parametric distribution but other methods can be
used such as moment matching estimation (2.8) or quantile matching estimation.

Under regularity conditions, e.g., Casella and Lehmann (1998, Theorem 6.5.1), the maximum like-
lihood estimator of θ is consistent, asymptotically Gaussian and efficient. Among probability distribu-
tions verifying the regularity conditions, there is the multi-parameter exponential family (generalizing
the one-parameter presented in (1.1) in Section 1.1) defined as the following density

f(x; η) = exp

(
s∑
i=1

ηiTi(x)−A(η)

)
h(x), x ∈ X, η ∈ Ξ, (2.1)

where X is the support of the distribution, Ξ the parameter set for which f is a density w.r.t. a
measure, T : X 7→ T is a vector-valued function, A : Ξ 7→ R is a real-valued function, h : X 7→ R a base
measure and η denote the natural parameter vector. We refer to Tables A.1 for univariate random
variables and A.2 for random vectors in Appendix A.1. The multi-parameter exponential family is
further used in Section 2.3 for one-inflated distributions.

Delignette-Muller and Dutang (2015) propose an R package fitdistrplus dedicated to fitting para-
metric models for any distribution created by users both for non-censored and interval-censored data.
Fitting methods include maximum likelihood estimation, moment matching estimation or quantile

33
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Figure 2.1 – Interrelations between distributions of the transformed gamma and inverse transformed
gamma families. Diagrams derived from Figure 5.3 of Klugman et al. (2012).

matching estimation as well as maximum spacing estimation. Utility functions are implemented
through S3 generic methods allowing to define usual functions (e.g. plot, summary,. . . ) for fitting
outputs. Concurrent packages use a more sophisticated approach (S4 or R6 classes), e.g., Distri-
butionFitR (Geier et al., 2020). Both OneStep and mbbefd packages, respectively described in
Section 2.4 and Section 2.3, are built upon fitdistrplus which allows inheriting S3 generic methods
from the latter.

2.2 Loss and risk models in R

One important task of actuaries is the modeling of claim amount and claim count distributions for
ratemaking, loss reserving or other risk evaluation purposes. Package actuar by Goulet et al. (2021a)
features many support functions for loss distributions modeling. Firstly, actuar provides functions
for heavy tail continuous distributions, Klugman et al. (2012); for phase-type distributions; for zero-
truncated and zero-modified extensions of the discrete distributions commonly used in loss frequency
modeling, Denuit et al. (2007). Secondly, it allows to compute raw moments, limited moments and the
moment generating function (when it exists) of continuous distributions; and their empirical counter
part. Thirdly, credibility models and ruin theory are also implemented but are not discussed here.
Dutang (2014b) shows an application of loss models of actuar in conjunction with fitdistrplus.

Regarding probability distributions, actuar provides a numerically reliable and fast implementa-
tion of additional distributions not supported in base R distributions, see Dutang et al. (2008). That
is, actuar provides all the probability distributions found in Appendix A of Klugman et al. (2012)
excluding the log-t, but including the loggamma distribution (Hogg and Klugman, 1984), as well as
for the Feller–Pareto distribution. Positive loss distributions used for loss modeling can be grouped in
two families: the transformed (inverse) gamma family (Figure 2.1) and the Feller–Pareto family and
related Pareto distributions (Figure 2.2).

The implementation of the transformed gamma family does not pose any difficulty. However, the
Feller–Pareto distribution introduced by Feller (1968) and popularized by Arnold (2015) needs great
care. It is defined as the distribution of the random variable

X = µ+ θ

(
U

V

)1/γ

, γ, θ > 0, µ ∈ R, (2.2)

where U and V are two independent Gamma distributions with shape parameter τ > 0 and α > 0,
respectively, and common scale parameter 1. As displayed in Figure 2.2, this family contains for
instance the Pareto IV and the Burr distributions. Dutang et al. (2021) make a reliability study
of the implementation of the Feller–Pareto. Indeed, the computation of the distribution function or
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Figure 2.2 – Interrelations between distributions of the Feller–Pareto family. This diagram is an
extension of Figure 5.2 of Klugman et al. (2012).

the limited expected values of the Feller–Pareto distribution may lead to numerical issues for certain
parameter values of the shape parameters α, γ, τ .

In practice, there are also useful distributions not implemented in actuar but provided by other
R packages. Dutang and Kiener (2021) provides a comprehensive list of probability distributions
implemented in R packages. In particular, tsallisqexp by Cosma and Dutang (2021) proposes the
Tsallis distribution also known as the q-exponential family distribution (Naudts, 2009). Distribution
and density functions are based on the q-deformed exponential function. Another possibility for loss
modeling is to use kernel-based estimation, e.g., (Buch-Larsen et al., 2005; Charpentier and Oulidi,
2010).

2.3 Destruction rate models

In the actuarial field, destruction rate models consist in studying random variable valued in (0, 1]
representing the percentage of loss against an exposure measure, typically the total sum insured, the
maximum probable loss or the known limit of the policy. These random variables have intrinsically a
mixed-type distribution.

Due to the presence of a positive probability mass at 1, a common solution is to use one-inflated
distributions for modeling such observations. Unlike probability distributions valued in (0, 1) which
are particularly well-known (see, e.g., Casella and Lehmann (1998)), probability distributions valued
in (0, 1] are not particularly studied. Only, Ospina and Ferrari (2010) study parameter estimation for
the beta distribution inflated at zero and/or one.

One-inflated distributions can also be seen through the point-of-view of mixtures. In fact, it is
a 2-component nonstandard mixture of a continuous distributions F0 and a degenerate distribution
at 1. As pointed in McLachlan and Peel (2000), a particular popular nonstandard mixture is the
mixture with excess of zeros where the first component is the degenerate distribution at 0 and the
second component is a discrete distribution such as the Poisson distribution, see, e.g., Lachenbruch
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(2002). Another particular nonstandard mixture is the mixture of a degenerate distribution at 0 and a
continuous distribution, see, e.g., Panel on Nonstandard Mixtures of Distributions (1989) for a survey
and Mills (2013) for a recent article. Despite its popularity, nonstandard mixtures are generally not
studied in books of finite mixtures (Everitt and Hand, 1981; Titterington et al., 1985). Due to the
nonstandard nature of our mixture, the use of the expectation-maximization (EM) algorithm is not
relevant in our context, yet this algorithm is generally used when fitting mixtures, see Ridner and
Walker (1984) for a survey.

The first part of Dutang and Spedicato (2021b) studies in details one-inflated defined by the
following distribution function

F1(x) = (1− p1)F0(x) + p111[1,+∞[(x). (2.3)

where F0 is the distribution function valued in (0, 1). Assuming the original distribution F0 belongs to
the multi-parameter exponential family, they show that the resulting distribution F1 remains in this
family.

Proposition 2.3.1 (Dutang and Spedicato (2021b)) Assume that f0 belongs to the exponential
family distribution (2.1) w.r.t. the Lebesgue measure λ with X = (0, 1) and A, T , h given. The
resulting one-inflated distribution also belongs the exponential family with a density w.r.t. the measure
µ(x) = λ(x) + δ1(x) with a parameter transform η̃ : (p1, θ) ∈ (0, 1)×Θ 7→ (η0, η) ∈ R×H defined as

η̃ =

(
logit(p1) +A(η)

η

)
, Ã(η̃) = ln(1− logit−1(η0 −A(η)))−A(η),

where logit−1(x) = 1/(1 + e−x), a data transformation T̃ and a base measure h̃ are defined as

T̃ (x) =

T̃0(x)
...

T̃s(x)

 =

(
11x=1

11x 6=1T (x)

)
, h̃(x) = h(x)11x 6=1 .

Sufficient statistics, moments, covariances and moment generating function of transformed variables
T̃ (X) can be obtained by differentiating Ã, see, e.g., Theorems 1.5.8 and 1.5.10 of Casella and
Lehmann, 1998.

Using Proposition 2.3.1, Dutang and Spedicato (2021b) establish the convergence and the asymp-
totic distribution of the MLE, in particular the parameter p1 is estimated by the empirical proportion
of observations equalling one. Dutang and Spedicato (2021b) illustrate this theorem with the fol-
lowing distributions: one-inflated uniform, one-inflated shifted truncated Pareto, one-inflated beta
distributions. If the original distribution F0 does not belong to the exponential family but is suffi-
ciently regular, then the one-inflated distribution still preserves the regularity conditions. Dutang and
Spedicato (2021b) illustrates this for one-inflated generalized beta distribution.

The second part of Dutang and Spedicato (2021b) considers a distribution defined through the
exposure curve. The exposure curve function of X is defined as the ratio of the limited expected value
and the expectation

GX(d) =
E(min(X, d))

E(X)
=

∫ d
0 (1− FX(x))dx∫ 1
0 (1− FX(x))dx

, (2.4)

where d ∈ [0, 1]. GX have the desirable properties to be continuous, bounded, differentiable, concave
and increasing on [0, 1]. One can derive distribution function, density, quantile and moments from an
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exposure curve. Introduced by Bernegger (1997), the MBBEFD distribution is characterized by the
following exposure curve

GX(x) =
ln(a+bx

a+1 )

ln( a+b
a+1)

,

with (a, b) ∈ Da,b where the parameter domain Da,b is

Da,b = {(a, b) ∈ R2, a > −1, b > 0, a(1− b) ≥ 0}∪ {(a, b), a = +∞, 0 < b < 1}∪ {(a, b), a = −1, b > 1}.

From the exposure curve, one can derive the distribution function, the quantile function, the expec-
tation. Notably, the probability mass in 1 (i.e. total destruction) is given by

P (X = 1) =
(a+ 1)b

a+ b
= h(a, b). (2.5)

In particular, h(a, b) equals to 1 when a(1 − b) = 0. Using (2.5), a density is defined w.r.t. the
measure µ(x) = λ(x) + δ1(x). Dutang and Spedicato (2021b) study the parameter constraints so that
the maximum likelihood estimator is asymptotically Gaussian and efficient. Dutang and Spedicato
(2021a) provides an R package mbbefd of destruction rate models which allow users to fit by maximum
likelihood estimation or by total-loss-moment matching estimation as well as to assess parameter
uncertainty.

2.4 Le Cam’s one-step estimation

As soon as the Fisher information matrix is sufficiently regular with respect to the parameter to be
estimated, Le Cam’s one-step estimation procedures can be used (Le Cam, 1956). They are based
on an initial sequence of guess estimators θ∗n and a single Newton step or a Fisher scoring step on
the log-likelihood function. Let `(θ) be the log-likelihood function, ˙̀(θ) be the gradient with respect

to θ and I(θ) = −E
(

῭(θ)
)

be the Fisher information matrix. Given an initial sequence of guess

estimators (θ∗n, n ≥ 1), Le Cam’s one-step estimators write as

θn = θ∗n + I(θ∗n)−1 · 1

n

n∑
j=1

˙̀(θ∗n, Xj), n ≥ 1, (2.6)

for the Fisher scoring type procedure and

θn = θ∗n + În(θ∗n)−1 · 1

n

n∑
j=1

˙̀(θ∗n, Xj), n ≥ 1, (2.7)

for the Newton type procedure where În(θ) = − 1
n

∑n
j=1

῭(θ, Xj) is the opposite of the Hessian for the
log-likelihood function.

Brouste and Dutang (2021b) analyze in details one-step estimators with different type of initial
guess as well as different form of Hessian matrix. For classical distributions with tractable gradient
and Hessian, the Fisher information matrix I(θ) is used, whereas for other distributions the empirical
average În(θ) is preferred.

Let us note that the initial guess may come from moment matching estimation, see Section 2.5, (e.g.
for gamma or beta distributions), quantile matching estimation (e.g. for the Cauchy distribution),
from ordinary least square (e.g. for the Weibull distribution) or maximum likelihood estimation on
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a subsample of size
√
n (e.g. for the Pareto 2 distribution). Brouste and Dutang (2021b) show

the computation gain in using the Le Cam’s one-step estimation over the usual maximum likelihood
estimation, even when initialization is carried out on a sub-sample.

The R package OneStep by Brouste et al. (2021c) is dedicated to one-step fitting procedure. In
future research, Brouste and Dutang (2021a) will study the situation where the initial guess is based
on the quantile matching estimation and the distribution belongs to the location-scale family.

2.5 Moment matching estimation and linear/trimmed-linear mo-
ments

Moment matching estimation consists in equalling empirical raw moments against theoretical moments
of the parametric distribution FX(;θ) by solving

E
(
X1;θ

)
= 1

n

n∑
i=1

xi,

...

E (Xp;θ) = 1
n

n∑
i=1

xpi ,

(2.8)

where E
(
Xj ; θ

)
is the jth raw moment depending on the parameter θ ∈ Θ ∈ Rp. This approach

may be unstable for the following reasons: (i) E
(
Xj ; θ

)
may not be tractable leading to a numerical

evaluation of it which is time consuming when solving (2.8); (ii) E
(
Xj ; θ

)
may not exist for some

values of θ leading to a high uncertainty of corresponding empirical averages. Typically, the Cauchy
distribution has an infinite expectation irrespectively of the value of its parameters, whereas the shifted
Gompertz distribution does not have tractable moments.

Hosking (1990) proposes to use linear moments, so called L-moments in the following, as new
measures of the location, scale and shape of probability distributions. To circumvent this drawback
of non finite moments, Elamir and Seheult (2003) propose to use trimmed linear-moments (so-called
TL-moment), which are a natural extension of L-moments. The TL-moments are of two types: either

symmetric λ
(t)
m or asymmetric λ

(s,t)
m . They are defined as

λ(t)
m =

1

m

m−1∑
j=0

(−1)j
(
m− 1

j

)
E (Xm+t−j,m+2t) , (2.9)

λ(s,t)
m =

1

m

m−1∑
j=0

(−1)j
(
m− 1

j

)
E (Xm+s−j,m+s+t) . (2.10)

L-moments are obtained for s = t = 0. Table 2.1 lists the L/TL-moments for some common two-

parameter distributions. As for centered moments, λ3/λ2 and λ
(1)
3 /λ

(1)
2 are measures of skewness

respectively L-skewness and TL-skewness, while λ4/λ2 and λ
(1)
4 /λ

(1)
2 are measures of kurtosis respec-

tively L-kurtosis and TL-kurtosis. TL-moments exist even if the corresponding L-moments do not,
e.g., for the Cauchy distribution.

Dutang (2017b) is able to derive new closed-form formulas of L-moments and TL-moments for
continuous probability distributions based on combinatorial identities and finite operators. Assuming
a continuous distribution, the jth order statistic Xj,n has the following density

fXj,n(x) =
n!

(j − 1)!(n− j)!
F (x)j−1 (1− F (x))n−j f(x). (2.11)
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L-moments TL-moments

Distribution Quantile Q(p) λ1 λ2
λ3

λ2

λ4

λ2
λ

(1)
1 λ

(1)
2

λ
(1)
3

λ
(1)
2

λ
(1)
4

λ
(1)
2

Uniform U(a, b) a+ (b− a)p a+b
2

b−a
6 0 0 a+b

2
b−a
10 0 0

Exponential E(λ) −λ log(1− p) λ λ
2

1
3

1
6

5λ
6

λ
4

2
9

1
12

Normal N (µ, σ2) µ+ σΦ(p) µ σ
π 0 0.1226 µ 0.297σ 0 0.062

Cauchy C(µ, σ2) µ+ σ tan(πp− π
2 ) +∞ +∞ µ 0.698σ 0 0.343

Table 2.1 – L/TL-moments of common distributions.

By simple manipulations, the expectation can be written as

E (Xj,n) = j

(
n

j

) n−j∑
k=0

(
n− j
k

)
(−1)n−j−kIF (n− k − 1), (2.12)

where IF is defined as

IF (k) =

∫ b

a
xF (x)kf(x)dx =

∫ 1

0
Q(p)pkdp, (2.13)

with Q = F−1 the quantile function. The following proposition simplifies the computation of TL-
moments (2.9) and (2.10).

Proposition 2.5.1 (Dutang (2017b)) Let m, s, t ∈ N. The TL-moment of X can be expressed as

λ(s,t)
m =

m+ t+ s

m

m+t−1∑
l=0

(−1)m+l+1IF (s+ l)

(
m+ s+ t− 1

s+ l

)(
m+ s+ l − 1

l

)
. (2.14)

The proof of Proposition 2.5.1 is based on the absorption and the symmetry rules, the trinomial
revision and the Vandermonde identity of combinatorial identities, see, e.g., Graham et al. (1994). This
is an alternative proof compared to the original proof of Hosking (2007) based on shifted Legendre
polynomials. The symmetric TL-moments are obtained by setting s = t in (2.14) and L-moments by
setting s = t = 0 in (2.14).

Dutang (2017b) applies this result to derive any TL-moment of two classical distributions : uniform
distribution U(a, b) in Propositions 11 and 12; and exponential distribution E(λ) in Propositions 13 and
14. The latter case uses results proved by finite operators based on Harmonic numbers. Replacing
ordinary moments in (2.8) by TL-moments (2.14) leads to TL-moment matching estimation. This
allows to fit heavy-tailed distributions, e.g., Section 2.2, for which ordinary moments do not exist.
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Chapter 3

Univariate and bivariate extreme
models

This chapter is dedicated to extreme models in univariate and multivariate setting. Univariate extreme
models focuses on the estimation of the tail of the probability distribution. Generally, this is studied
by looking at the distribution of the observed maximum of a finite sample or the distribution excesses
over a high threshold. Multivariate extreme value statistics deals with the estimation of the tail of a
multivariate distribution function based on a random sample. Of particular interest is the estimation
of the extremal dependence between two or more variables. Modeling tail dependence is a crucial
problem in actuarial science (see, e.g., Joe (2010)), firstly, because of the forthcoming Solvency II
regulation framework that requires insurers and mutuals to compute 99.5% quantiles. Secondly, tail
dependence can be used in the daily work of actuaries.

For instance, modeling tail dependence is of particular interest for pricing an excess-of-loss rein-
surance treaty (see Goegebeur et al. (2021) for a recent article on reinsurance premium and Albrecher
et al. (2017) for a review of statistical extremes in reinsurance), and for approximating very large
quantiles of the distribution of the sums of possibly dependent risks (Arendarczyk et al., 2018; Barbe
et al., 2006). In finance, obvious applications also arise, particularly since the financial crisis where
academics and regulators were requested to further investigate the systemic risk, e.g., (Cai et al., 2015;
Charpentier and Juri, 2006; Poon et al., 2004). Therefore, an accurate modeling of extremal events is
needed to better understand the relationship of possibly dependent risks at the tail. Section 3.1 makes
a short literature review of univariate and multivariate extreme value theory. Section 3.2 provides a
robust and asymptotically unbiased estimation procedure of the tail dependence coefficient. Section
3.3 pursues the methodology of Section 3.2 with the estimation of extreme failure sets. Finally, Section
3.4 reviews R packages for extreme value analysis.

3.1 Known results for univariate and multivariate models

As in Chapter 2, we consider again a sample of size n of independent and identically distributed
(i.i.d.) X1, . . . , Xn from a generic random variable X having a distribution F . Extreme value analysis
studies situations where the central limit theorem cannot apply since the variance or sometimes the
expectation do not exist, and/or the targeted probability P (X > x) is smaller than 1/n: the empirical
survival function cancels out after the observed maximum.

41
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In the univariate setting, there are multiple approaches to derive the extreme value index. We
choose the maximum approach and refer to Beirlant et al. (2004) for a comprehensive overview.

Theorem 3.1.1 (Fisher and Tippett (1928)) Let (Xi,n)1≤i≤n be the order statistics of a i.i.d. sam-
ple X1, . . . , Xn. If F is continuous, there exists two normalizing series an et bn > 0 such that

P

(
Xn,n − an

bn
≤ x

)
−→

n→+∞
Hγ(x)

4
= exp

(
− (1 + γx)

− 1
γ

+

)
,

where y+ = max(y, 0) and the limiting case H0(x) = exp(− exp(−x)). Hγ is known as the generalized
extreme value distribution.

Therefore, there are three types of distribution, generally called domain of attractions, depending on
the sign of the extreme value index γ. Table 3.1 gives the three domains of attractions, the distribution
support as well as some examples of distributions in the three domains. For a more comprehensive
list, we refer to Beirlant et al. (2004) with Table 2.1 for the Fréchet case, Table 2.2 for the Weibull
case, Table 2.3 for the Gumbel case.

Attraction domain Values of γ Distr. support Examples P (X > x) = 1− F (x) γ

Weibull γ < 0 (0,−1/γ)
U(0, 1) 1− x -1

RBurr(β, τ, λ, xF ) (
β

β+(xF−x)−τ

)λ
− 1
λτβ, τ, λ > 0

Gumbel γ = 0 R

LN (µ, σ) ∫∞
x

1
u

exp(− 1
2σ2

(log u−µ)2)√
2π σ

du 0
µ ∈ R, σ > 0
G(m,λ) λm

Γ(m)

∫∞
x
um−1e−λudu 0

m > 0, λ > 0

Fréchet γ > 0 (0,+∞)

Pa1(1, α)
x−α 1

αα > 0
Burr(β, τ, λ) (

β
β+xτ

)λ
1
λτβ > 0, τ > 0, λ > 0

Fre
(

1
α

)
1− exp (−x−α) 1

αα > 0

Table 3.1 – Examples of extreme value index for usual distributions

The estimation of the extreme value index is obviously a well studied topic. Two usual estimators
are based on the mean excess value of the log-transformed data. In the Fréchet case, Hill (1975)
proposes to estimate γ by

γ̂H,k =
1

k − 1

k−1∑
i=1

log

(
Xn−i+1,n

Xn−k+1,n

)
. (3.1)

Dekkers and de Haan (1989) propose a moment estimator defined as

γ̂M,k = γ̂H,k + 1− 1

2

(
1−

γ̂2
H,k

SX,k,n

)−1

, with SX,k,n =
1

k

k∑
j=1

log2

(
Xn−j+1,n

Xn−k,n

)
. (3.2)

The performance of the Hill estimator strongly depends on the number of observations kept to estimate
the tail index: γ̂H,k has a large variance if k is too small, whereas the Pareto-type tail behavior might
not be verified for the selected k largest values if k is too large. A trade-off must be done: either by
an empirical rule to find the area where the estimator is “stable” or by minimizing the asymptotic
mean squared error, e.g., (Bader et al., 2018; Caeiro and Gomes, 2016).
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A full characterization of the extremal dependence between variables can be obtained from func-
tions like the spectral distribution function or the Pickands dependence function. The theorem below
gives the limiting distribution of the component wise maximum of a bivariate sample.

Theorem 3.1.2 (Beirlant et al. (2004)) Let (Xi, Yi)
i.i.d.∼ (X,Y ) such that FX(x) = FY (x) =

exp(−1/x). Let (Mx,n,My,n) be component-wise maximum Mx,n = maxi=1,...,n{Xi} and My,n =
maxi=1,...,n{Yi}. If

P (Mx,n ≤ x,My,n ≤ y) −→
n→+∞

G(x, y),

where G is a non-degenerated distribution, then G has the following form

G(x, y) = exp (−V (x, y)) , x > 0, y > 0,

where V (x, y) = 2
∫ 1

0 max
(
ω
x ,

1−ω
y

)
dH(ω) and H is a distribution on [0, 1] verifying

∫ 1
0 ωdH(ω) = 1/2.

An usual example is obtained by considering H as a discrete measure s.t. H(0) = 1
2 and H(1) = 1,

leading to V (x, y) = x−1 + y−1. Hence

G(x, y) = exp
(
−x−1

)
exp

(
−y−1

)
, x > 0, y > 0.

In other words, we get the independence copula with Fréchet marginals. Another usual example is

the Dirac measure at 0.5, i.e. H(0.5) = 1, leading to V (x, y) = max
(

1
x ,

1
y

)
. Hence

G(x, y) = exp

(
−max

(
1

x
,

1

y

))
= min

(
exp

(
−1

x

)
, exp

(
−1

y

))
, x > 0, y > 0.

This is the comonotone copula with Fréchet marginals.

Alternatively, similar to classical statistics one can try and summarize the extremal dependency in a
number of well chosen coefficients that give a representative picture of the full dependency structure.
We consider the estimation of the coefficient of tail dependence. Indeed, the extremal dependence
between the components of a continuous random vector (X,Y ) with unit Fréchet margins (note that
this can be assumed without loss of generality) can be analyzed with the model of Ledford and Tawn
(1997)

P(X > x, Y > y) = x−c1y−c2`(x, y), x, y > 0,

where c1, c2 > 0 and ` is a bivariate slowly varying function, i.e.

`(tx, ty)

`(t, t)
→ ζ(x, y) as t→∞, for all x, y > 0,

and the function ζ is homogenous of order zero. The parameter η
4
= (c1 +c2)−1 is called the coefficient

of tail dependence. It satisfies η ∈ (0, 1], and larger values of η indicate a stronger extremal dependence.
Ledford and Tawn (1997) identify three types of asymptotic dependence in Table 3.2, where (X⊥, Y ⊥)
is a couple of independent variables but with the same marginal distribution as (X,Y ).



44 CHAPTER 3. UNIVARIATE AND BIVARIATE EXTREME MODELS

Extremal dependence η values tail behavior

weak η ∈ (0, 1/2) P (X > x, Y > x) < P (X⊥ > x, Y ⊥ > x)
independent η = 1/2 P (X > x, Y > x) = P (X⊥ > x, Y ⊥ > x)

strong η ∈ (1/2, 1] P (X > x, Y > x) > P (X⊥ > x, Y ⊥ > x)

Table 3.2 – Extremal dependence

As we can imagine, several attempts have been made to estimate η from data. Since

P(min(X,Y ) > z) = P(X > z, Y > z) = z−1/η`(z, z),

the transformed variable min(X,Y ) follows a Pareto-type distribution with index 1/η. Therefore, one
can estimate η with classical estimators for the extreme value index like the Hill (3.1) or moment
estimator (3.2) of the univariate setting.

Beirlant et al. (2011) consider a couple (X,Y ) with Fréchet marginals s.t.

P (X > x, Y > y) ∼
x,y→+∞

x−c1y−c2g1(x, y)(1 + g2(x, y)xρ1yρ2), (3.3)

where g1, g2 are homogeneous function of order 0. Hence, the tail dependence coefficient η = 1/(c1+c2)
is such that the following function q

q(t) = P (1− FX(X) < t, 1− FY (Y ) < t) = P (F−1
X (1− t) < X,F−1

Y (1− t) < Y ),

is a regularly varying function q ∈ RV1/η. In that context, τ
4
= ρ1 + ρ2 is called the second-order

parameter. Beirlant et al. (2011) adopt the following procedure to estimate η. They simplify the
bivariate problem to an univariate setting

P (X > x, Y > y) = P (min(X,
ω

1− ω
Y ) > x) = P (Z > x),

where ω = x/(x+ y) is the radial parameter assumed to be fixed. The excess probability is approxi-
mated by

P (Z > ux)

P (Z > u)
≈ FEPD(x/u; η, δω, τ),

where FEPD is the cumulative distribution function of Extended Pareto Distribution defined as

FEPD(z; η, δ, τ) =

(
1− 1

[z(1 + δ − δz−τ )]1/η

)
11z>1. (3.4)

Parameters η, δ are estimated by maximum likelihood estimators whereas the second-order parameter
is fixed at -1, linked to the Feller-Pareto family, see Section 2.2. Beirlant et al. (2011) illustrates their
procedure on simulated framework by considering the FGM distribution with Fréchet marginals

P (X > x, Y > y) ∼
x,y→+∞

1

xy
1 + β)

[
1− 1 + 3β

2(1 + β)

(√
x

y
+

√
y

x

)
1
√
xy

]
, (3.5)

Model (3.5) satisfies Equation (3.3) with

g1(x, y) = (1 + β), g2(x, y) = − 1 + 3β

2(1 + β)

(√
x

y
+

√
y

x

)
and c1 = c2 = 1, ρ1 = ρ2 = −1/2 leading to η = 1/2, ρ = −1.
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3.2 Estimation of the tail dependence coefficient

Classical estimators for the extreme value index like the Hill (3.1) or moment estimator (3.2) typically
suffer from bias and also they are not robust with respect to outliers. The estimators proposed by
Beirlant et al. (2011) are bias-reduced but are not robust with respect to outliers. These issues are
addressed by Dutang et al. (2014). In order to obtain a bias-corrected estimator we, as usual in
extreme value statistics, invoke a second order condition. In particular, we work under the following
condition from Draisma et al. (2004), which can be seen as an extension of the above discussed Ledford
and Tawn condition. The framework uses a random vector (X,Y ) with joint distribution function F
and continuous marginal distribution functions FX and FY such that

lim
t↓0

q1(t)−1

(
P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
− c(x, y)

)
, (3.6)

exists for all x ≥ 0, y ≥ 0 with x + y > 0, a function q1 tending to zero as t ↓ 0, and c1 a function
neither constant nor a multiple of c. Moreover, we assume that the convergence is uniform on {(x, y) ∈
[0,∞)2|x2 + y2 = 1}.

Essentially, this condition is a second-order multivariate regular variation condition on the function

R(x, y)
4
= P (1− FX(X) < x, 1− FY (Y ) < y). It can be shown that R(t, t) is regularly varying at

zero with index 1/η, |q1| is regularly varying at zero with index τ ≥ 0, and that the function c
is homogeneous of order 1/η, that is c(tx, ty) = t1/ηc(x, y). Dutang et al. (2014) assume that the
marginal distributions are unit Pareto and

P (X > x, Y > y) = x−c1y−c2g∗(x, y)

(
1 +

1

η
δ∗(x, y)

)
, (3.7)

where c1, c2 are positive constants, η = (c1 + c2)−1 ∈ (0, 1) is the tail dependence coefficient, g is
a continuous function that is homogeneous of order 0 and δ is a function of constant sign in the

neighborhood of zero, g∗(x, y)
4
= g(1/x, 1/y) and δ∗(x, y)

4
= δ(1/x, 1/y). Furthermore, we assume

that |δ| being a bivariate regularly varying function∗ We assume additionally that ξ is continuous,
homogeneous of order τ > 0, and that the convergence is uniform on {(x, y) ∈ [0,∞)2|x2 + y2 = 1}.

Model (3.7) satisfies the second-order condition (3.6) and is a slight generalization of the second-
order model considered in Beirlant et al. (2011). As in Beirlant et al. (2011), Dutang et al. (2014)
reduce the problem dimension using a

P (X > x, Y > y) = P

(
X > x,

ω

1− ω
Y > x

)
,

where ω = x/(x+y) ∈ (0, 1) being the radial parameter. The transformed variable Zω
4
= min(X, ω

1−ωY )
has the following survival function

P (Zω > z) = Cω z
−1/η

(
1 +

1

η
δω(z)

)
, z > 0, (3.8)

where Cω
4
= (ω/(1− ω))d2g∗(1, (1− ω)/ω), and |δω| is a function of regular variation with index −τ .

This second-order condition (3.8) is identical to the one used in the univariate framework in Beirlant

∗δ is a bivariate regularly varying function when there exists a function ξ such that for all x, y ≥ 0

lim
t↓0

|δ(tx, ty)|
|δ(t, t)| = ξ(x, y).
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et al. (2009). Again, the distribution of Zω/u conditionally on Zω > u is approximated, for large u,
by the extended Pareto distribution (3.4).

In order to obtain robust estimates, Dutang et al. (2014) use the minimum density power divergence
(MDPD) criterion. The density power divergence criterion was originally introduced by Basu et al.
(1998) for the purpose of developing a robust estimation method. The density power divergence
between density functions f and h is given by

∆α(f, h) =

{ ∫
R
[
h1+α(z)−

(
1 + 1

α

)
hα(z)f(z) + 1

αf
1+α(z)

]
dz, α > 0,∫

R log f(z)
h(z)f(z)dz, α = 0.

(3.9)

Note that for α = 0 one recovers the Kullback-Leibler divergence, whereas setting α = 1 leads to the
L2 divergence. Assume that the density function h depends on a parameter vector θ, and let f be the
true density function of the random variable under consideration. The idea is then to estimate θ by
minimizing an empirical version of (3.9) based on a random sample Z1, . . . , Zn from f

∆̂α(θ) =

∫
R
h1+α(z)dz −

(
1 +

1

α

)
1

n

n∑
i=1

hα(Zi), α > 0, ∆̂0(θ) = − 1

n

n∑
i=1

log h(Zi). (3.10)

For α = 0 in (3.10), one fits the model h to the data using the maximum likelihood method. The
parameter α controls the trade-off between efficiency and robustness of the MDPD estimator: the
estimator becomes more efficient but less robust against outliers as α gets closer to zero, whereas for
increasing α the robustness increases and the efficiency decreases.

In summary, for a sample (X1, Y1), . . . , (Xn, Yn) of independent random vectors, one transforms
into unit Pareto margins by using the empirical distribution functions. This gives

Z̃ω,i
4
= min

(
n+ 1

n+ 1−RXi
,

ω

1− ω
n+ 1

n+ 1−RYi

)
, (3.11)

with RXi and RYi denoting the rank of Xi and Yi, i = 1, . . . , n, in the respective samples. The
parameters η and δω of the extended Pareto distribution are estimated using (3.10) on the relative
excesses Zj = Z̃ω,n−m+j,n/Z̃ω,n−m,n, j = 1, . . . ,m, where 1 ≤ m ≤ n − 1, and Z̃ω,1,n ≤ . . . ≤ Z̃ω,n,n
are the order statistics of Z̃ω,1, . . . , Z̃ω,n.

Let us denote the true value of η and ρ by η0 and ρ0, respectively. We denote by η̂n and δ̂ω,n
obtained by minimizing (3.10) for a given α value.

Theorem 3.2.1 (Dutang et al. (2014)) Let δω,n
4
= δω(Z̃ω,n−m,n). Under regularity conditions, we

have

√
m

[
η̂n − η0

δ̂ω,n − δω,n

]
D−→

n→+∞
N2

(
0, C−1(ρ0)B(ρ0)D(ρ0)B′(ρ0)C−1(ρ0)

)
,

where

B(ρ0) = η−α−2
0

[
η0 0 −1
η0 −η0(1− ρ0) 0

]
,

the symmetric matrix C(ρ0) has elements

c11(ρ0) = η−α−2
0

1 + α2(1 + η0)2

[1 + α(1 + η0)]3
,

c12(ρ0) = η−α−2
0

ρ0(1− ρ0)[1 + α(1 + η0) + α2(1 + η0)2] + α3ρ0(1 + η0)3

[1 + α(1 + η0)]2[1− ρ0 + α(1 + η0)]2
,

c22(ρ0) = η−α−2
0

(1− ρ0)ρ2
0 + αρ2

0(1 + η0)[α(1 + η0)− ρ0]

[1 + α(1 + η0)][1− ρ0 + α(1 + η0)][1− 2ρ0 + α(1 + η0)]
,
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and the symmetric matrix D(ρ0) has elements

d11(ρ0) =
α2(1 + η0)2

[1 + α(1 + η0)]2[1 + 2α(1 + η0)]
,

d21(ρ0) =
α(1 + η0)[α(1 + η0)− ρ0]

[1 + α(1 + η0)][1− ρ0 + α(1 + η0)][1− ρ0 + 2α(1 + η0)]
,

d22(ρ0) =
[α(1 + η0)− ρ0]2

[1− ρ0 + α(1 + η0)]2[1− 2ρ0 + 2α(1 + η0)]
,

d31(ρ0) = η0

(
1

[1 + 2α(1 + η0)]2
− 1

[1 + α(1 + η0)]3

)
,

d32(ρ0) = η0

(
1

[1− ρ0 + 2α(1 + η0)]2
− 1

[1 + α(1 + η0)]2[1− ρ0 + α(1 + η0)]

)
,

d33(ρ0) = η2
0

(
2

[1 + 2α(1 + η0)]3
− 1

[1 + α(1 + η0)]4

)
.

In practice, the true value of ρ is unknown. However, Dutang et al. (2014) study the asymptotic
behavior of the MDPD estimator when the parameter ρ is possibly mis-specified. A similar convergence
result can also be obtained in that case. Dutang et al. (2014) show the relevancy of this approach on
simulated datasets from the FGM copula (3.5) and the Frank copula as well as an actuarial dataset
of workers’ compensation claims.

3.3 Failure set estimation

Dutang et al. (2016) pursue the work of Dutang et al. (2014) by considering the estimation of failure
sets. That is, we want to estimate the tail probability

pn = P (X > zn, Y > yn),

with X and Y being unit Pareto random variables, and where zn →∞ as n→∞, and yn = ω̃zn for
some ω̃ > 0. That is, we estimate a tail probability along a ray pn = FZω(zn), where ω = (1 + ω̃)−1.
Using the standard Landau notation O(), o() and ∼ (Jones, 1997), let m be an intermediate sequence,
i.e. m→∞ as n→∞ with m = o(n). Assume that pn satisfies

n

m
× pn −→

n→+∞
β ∈ [0, 1). (3.12)

We denote again by η̂n and δ̂ω,n obtained by minimizing (3.10) for a given α value. We can construct
an estimator of pn based on the approximation by the extended Pareto distribution (3.4) of Zω/u,
conditionally on Zω > u, for large u. Setting u = Z̃ω,n−m,n as the mth order statistics of the

transformed sample Z̃ω,1, . . . , Z̃ω,n defined in (3.11) and replacing FZω(u) by the empirical proportion
m/n, we define the probability estimator p̂n as

p̂n =
m

n
FEPD

(
zn

Z̃ω,n−m,n
; η̂n, δ̂ω,n, ρ̃

)
, (3.13)

where ρ̃ is either the true value of ρ or a mis-specified one.
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Theorem 3.3.1 (Dutang et al. (2016)) Under regularity conditions with β ∈ (0, 1), we have

√
m

(
p̂n
pn
− 1

)
D−→

n→+∞
W

(
1

cω

)
− ln

β

η0
Γ− 1− β−ρ̃

η0
∆ + λ

η0ξωc
ρ0
ω

ρ0
(β−ρ0 − β−ρ̃),

where the vector W,Z,Γ follows a multivariate Gaussian distribution∗.

The previous theorem indicates that the tail probability estimator is asymptotically unbiased if
one uses the correct value for ρ. We now consider the case where npn/m → 0, corresponding to a
more extreme failure set. Let dn = m/(npn).

Theorem 3.3.2 (Dutang et al. (2016)) Under regularity conditions and assuming additionally npn =
o(m), ln(n)pn = o(

√
m) we have that

η0
√
m

ln dn

(
p̂n
pn
− 1

)
D−→

n→+∞
Γ,

where the variable Γ follows a Gaussian distribution which is centered when the correct value ρ̃ = ρ0.

Dutang et al. (2016) propose a simulation analysis from the FGM copula (3.5) and the Frank copula
as well as a bivariate actuarial dataset of (gross) loss ratios X and expense ratios Y of 173 private
insurance companies operating in Australia. Both numerical illustrations show that the estimator
p̂n,0.5 remains stable both in the situation with and without outliers.

3.4 R implementation

The CRAN task view by Dutang and Jaunatre (2020) lists most of R packages related to extreme value
analysis. Among the R packages listed in the task view or the review paper, the core packages are evd
(Stephenson, 2002) and evir (Pfaff and McNeil, 2018) providing functions for univariate and bivariate
models. There is also the POT package (Ribatet and Dutang, 2019) providing functions useful to
perform a Peak Over Threshold analysis in univariate and bivariate cases. Finally, the RTDE package
(Dutang, 2020b) provide robust tail dependence estimation corresponding to Sections 3.2 and 3.3.

The software review by Raymond-Belzile et al. (2021) surveys the recent development in the
software implementation of extreme methods with a view towards the numerical challenges arising
when performing extreme value analyses. They provide a comparative review by topic and highlight
the differences between the routines provided by different softwares and packages, as well as, list areas
where software development has been lacking. In particular, the ReIns (Reynkens and Verbelen, 2020)
package covers statistical aspects of reinsurance thanks to splicing methods developed in Reynkens
et al. (2017).

We do not mention it in Section 3.1 but for bivariate and multivariate modeling of extremes, one can
use the class of copula satisfying the maximum-stable property. In that respect, the copula package
(Hofert et al., 2020) provides the following max-stable copulas: Gumbel, Galambos and Husler-Reiss,
whereas the gumbel package (Dutang, 2018) is a stand-alone for the Gumbel copula.

∗For sake brevity, parameters of this multivariate Gaussian distribution is omitted here.



Chapter 4

Ruin theory and reserving methods

This chapter focuses on the risk theory which includes ruin theory and reserving methods. Section 4.1
sets up the ruin theory problem of an insurance company and provides an overview of classical results.
Section 4.2 proposes a risk model with dependence for the surplus process of an insurance company.
Section 4.3 makes interconnections between ruin theory and reserving risk. Section 4.4 closes this
chapter with a review of R packages dealing with risk theory.

4.1 A brief review of ruin theory

In this section, we study the solvency of an insurance company for a given portfolio size in the long
run. As we do not identify the insurance policy of the claim provoking the insurer bankruptcy, claims
are aggregated as they occur without distinguishing their policy origin. Therefore, the surplus (Ut)t≥0

of an insurance company at time t is represented by

Ut = u+ ct−
Nt∑
i=1

Xi, (4.1)

where u is the initial surplus, c is the premium rate, (Xi)i≥1 are the successive claim amounts† and
(Nt)t≥0 is the claim arrival process (the claim associated waiting times are denoted by (Ti)i≥1).

In the Cramér-Lundberg model (Cramér, 1930; Lundberg, 1903), (Nt)t≥0 is modeled by an homo-
geneous Poisson process‡, (Xi)i≥1 are independent and identically distributed (i.i.d.) random variables
and claim severities (Xi)i≥1 are independent of the claim waiting times (Ti)i≥1. Andersen (1957) gen-
eralized this model by proposing a renewal process for the claim arrival process (Nt)t≥0 leading to the
so-called Sparre Andersen model. The ultimate ruin probability

ψ(u) = P (∃t > 0, Ut < 0 | U0 = u), (4.2)

is a major risk measure and has received considerable attention in the literature.

Since pioneer works of Cramér (1930) and Lundberg (1903), extensions have been proposed in
many directions. Asmussen and Rolski (1991) studied ruin models with phase-type distributions for

†Once occured, claim amounts are assumed to be fully determined. Few papers consider incurred but not reported
claims directly the risk process, e.g., Trufin et al., 2011.

‡In other words, Ti
i.i.d.∼ E(λ).
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both claim severities Xi and claim waiting times Ti: a wide framework which includes mixture of
exponentials and mixture of Erlang distributions. Gerber and Shiu (1998) unified the analysis of ruin
measures in the Cramér-Lundberg model, including the deficit at ruin, the claim causing the ruin or
the ruin probability, by introducing a so-called discounted penalty function. Gerber and Shiu (2005)
and many others extended the Gerber-Shiu approach to a wider class of risk models.

Many variants of the Sparre Andersen model have also been proposed such as for non-homogeneous
claim arrivals, e.g., (Albrecher and Asmussen, 2006; Lu and Garrido, 2005), reinsurance treaties, e.g.,
(Centeno, 2002a; Dimitrova and Kaishev, 2010), multivariate risks, e.g., (Cai and Li, 2005; Collamore,
1996; Picard et al., 2003) and capital injection, e.g., (Yao et al., 2011; Zhao et al., 2015). Many
dependent risk models are also proposed to get rid of the independence assumption, e.g., (Albrecher
and Boxma, 2004; Albrecher and Teugels, 2006; Boudreault et al., 2006; Constantinescu et al., 2019;
Eryilmaz and Gebizlioglu, 2017; Ignatov and Kaishev, 2012; Lefèvre and Loisel, 2009; Lefèvre and
Picard, 2011; Yang and Konstantinides, 2015)).

For a comprehensive review of ruin theory, we refer to Asmussen and Albrecher (2010) for a
reference book and to Avram et al. (2014) for a survey of recent results in risk theory. We give
below only two useful results. In the Sparre Andersen model with light-tailed claim amounts, with the
aggregate claim increment Y = X − cT and x0 defined as the supremum of the set {x, FY (x) < 1},
we have

b−e
−γu ≤ ψ(u) ≤ b+e−γu, u ≥ 0,

where γ is the positive root of MX(r)MT (−rc) = 1, and constants b−, b+ are defined by

b− = inf
x∈[0,x0[

eγxF̄Y (x)∫ +∞
x eγydF Y (y)

and b+ = sup
x∈[0,x0[

eγxF̄Y (x)∫ +∞
x eγydF Y (y)

.

γ is called the adjustment coefficient. In the Sparre Andersen model with heavy-tailed claim amounts,
where the expectation of claim amounts and claim waiting times are finite such that E(X) < cE(T ).
Let FX,0(x) =

∫ x
0 FX(y)dy/E(X). If FX,0 belongs to the sub-exponential class, we have

ψ(u) ∼
u→+∞

1

cE(T )− E(X)

∫ +∞

u
FX(y)dy.

In particular for a Pareto-type tailed distribution P (X > x) = (k/x)α with α > 1, it yields to

ψ(u) ∼
u→+∞

k

cE(T )(α− 1)− αk

(
k

u

)α−1

.

Hence, the asymptotic behavior of ψ(u) depends merely on the tail behavior of the claim amount. A
certain number of explicit results for (4.2) are available when the claim severity distribution belongs
to the phase-type family, see Asmussen and Albrecher (2010, Chapter 9).

For models with dependence, Albrecher and Teugels (2006) investigated the case where the claim
amounts and claim waiting times, (Xi, Ti)i≥1, are correlated. They obtained an exponential decrease
for ψ(u) in the case of light-tailed claim sizes. Albrecher et al. (2011) discussed the ruin probability
when there is dependence by mixing in the claim amounts (Xi)i≥1 or the claim waiting times (Ti)i≥1;
see also Constantinescu et al. (2011).
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4.2 A risk model with dependence

Dutang et al. (2013b) consider the same insurance context as Albrecher et al. (2011) where the claim
amounts (Xi)i≥1 are dependent through a mixing model. Such a form of dependence can translate
some uncertainty on the model parameters due to incomplete available information. For instance,
due to reporting or claim settlement delays, it might take a long time for the insurer to realize that
claims are more adverse than expected. While an instantaneously informed insurer could manage the
parameter uncertainty with credibility techniques, e.g., (Trufin and Loisel, 2013), an insurer suffering
from information delays would in practice undergo high losses due to unfavorable parameter values
before being able to react. In some markets, the only solution could be to stop the business. Thus, ψ(u)
must then be interpreted as the probability of being ruined or of stopping the business if no premium
adjustment is possible. Now, another possible situation of mixing is when the model parameters are
not univocally fixed but depend on exogenous socio-economic factors. Another problem of interest
would consist in accounting for the influence of an exterior environment that modifies the parameters
in the course of time.

Precisely, the free surplus of an insurance company at time t is modeled by (4.1) where (Nt)t≥0 is
the Poisson claim arrival process with intensity λ and claim amounts Xi’s are independent of the claim
arrival process. However this time, we assume that the Xi’s are i.i.d. random variables conditionally
on a latent random variable Θ: given Θ = θ, they are conditionally distributed as X | Θ = θ).
The variable Θ can be used to translate, for example, the uncertainty in the claim amounts or their
heterogeneity, see Denuit et al. (2007) bonus-malus models based on a latent variable approach. Its
distribution is assumed to be continuous here.

Ruin occurs as soon as the surplus process becomes negative. Given Θ = θ, the ruin probability
is thus defined as

ψ(u, θ) = P (∃t > 0 : Ut < 0|U0 = u,Θ = θ). (4.3)

When X|Θ = θ ∼ E(θ), one gets from (4.3) the well-known formula

ψ(u, θ) = min

(
λ

θc
e−u(θ−λ/c), 1

)
,

where min (. . .) < 1 under the net profit condition θ > λ/c ≡ θ0. Integrating over the parameter θ
yields for the (global) ruin probability

ψ(u) = FΘ(θ0) + I(u, θ0), (4.4)

where FΘ is the distribution function of Θ and

I(u, θ0) =

∫ ∞
θ0

θ0

θ
e−u(θ−θ0)dFΘ(θ). (4.5)

This expression for ψ(u) can also be interpreted from a regulatory point of view. Suppose that a
regulator supervises a set of insurers who face exponentially distributed claims, each insurer having
its proper parameter. Then, the term independent of u, FΘ(θ0), may be viewed as the proportion of
insurers that will bankrupt irrespectively of their initial reserves, while the u-dependent term I(u, θ0)
corresponds to the proportion of insurers that will bankrupt with u as initial reserves, the distribution
of Θ translating the heterogeneity among insurers.

Using the standard Landau notation O(), o() and ∼ (Jones, 1997), Dutang et al. (2013b) obtain
an upper bound and an asymptotic for the ruin probability.
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Theorem 4.2.1 (Dutang et al. (2013b)) Consider the continuous time model with conditional ex-
ponentially distributed claims (X|Θ = θ ∼ E(θ)) with θ0 = λ/c.
(i) If the maximum of the function g(θ) ≡ FΘ(θ)(1/θ2 + u/θ), θ ≥ θ0, is attained at θ = θ0, then an
upper bound for ψ(u) with u > 0 is

ψ(u) ≤ FΘ(θ0) +
1

u

FΘ(θ0)

θ0
. (4.6)

(ii) If Θ has a continuous distribution of density fΘ such that for some integer k ≥ 1, fΘ is Ck-1

a.e. on [θ0,∞) and f
(k)
Θ is Lebesgue integrable on [θ0,∞), then

ψ(u) = FΘ(θ0) +
k−1∑
i=0

h(i)(0)

ui+1
+ o

(
1

uk

)
, (4.7)

where h(x) ≡ θ0fΘ(x+ θ0)/(x+ θ0) so that

h(i)(0) =
i∑

j=0

(−1)j
i!

(i− j)!θj0
f

(i−j)
Θ (θ0).

For a first-order asymptotic (k = 1), formula (4.7) gives the asymptotic rule A+B/u

ψ(u) = FΘ(θ0) +
fΘ(θ0)

u
+ o

(
1

u

)
,

when fΘ is C0 a.e. on [θ0,+∞) with f ′Θ Lebesgue integrable. For k =∞,

ψ(u) ∼ FΘ(θ0) +
+∞∑
i=0

h(i)(0)

ui+1
as u→ +∞,

when fΘ is C∞ a.e. on [θ0,+∞). Note that this is related to an asymptotic result (2.3.2) of Olver
et al., 2010 since I(u, θ0) is a Laplace transform.

A similar approach is possible when mixing the waiting times (T1, T2, . . . ) instead of the claim
amounts. Following Section 3 of Albrecher et al. (2011), we get here

ψ(u) = F̄Λ(λ0) +

∫ λ0

0
ψu(λ)dFΛ(λ), with ψu(λ) =

λ

λ0
e−u/θ(1−λ/λ0),

where λ0 = θc. A result similar can be derived too: in particular, a first order asymptotic expansion
gives

ψ(u) = F̄Λ(λ0) +
fΛ(λ0)

cu
+ o

(
1

u

)
.

Closed-form expression of the ruin probabilities are available for some specific distributions of Θ.
Table 4.1 from Dutang et al. (2013b) provides two examples of continuous distributions for Θ for which
explicit computations are possible using the incomplete lower gamma function γ(, ), the incomplete
upper gamma function Γ(, ) and the complementarity error function erfc, respectively for the gamma
distribution Ga(α, λ) and the Lévy distribution Le(α). Dutang et al. (2013b) also study the tail of
the resulting claim distribution under mixing by Θ (their Proposition 4.1).

Dutang et al. (2013b) also propose a similar reasoning for the discrete-time analog of the continuous
time ruin problem introduced by Gerber (1988) where the insurance portfolio is now examined at times
t ∈ N0 = {0, 1, . . .}. A similar A+B/u for the ruin probability (Theorem 3.9 of Dutang et al. (2013b))
is possible in this setting as well as closed-form expressions for some particular cases of Θ. Finally, a
discussion of the dependence structure involved by the mixing approach is done, which for discrete-time
yields to the use of the interpolated copula proposed by Genest and Nešlehová (2007).
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Θ exact ψ(u) asymptotic ψ(u)

Ga(α, λ) γ(α,λθ0)
Γ(α) + λαθ0

Γ(α)
Γ(α−1,θ0(λ+u))

(λ+u)α−1 eθ0u γ(α,λθ0)
Γ(α)

+
λαθα−1

0 e−λθ0

uΓ(α)
+ o
(

1
u

)
Le(α) erfc

(
α

2
√
θ0

)
+ θ0

√
u

α
euθ0

[(
1− 1

α
√
u

)
ũ+ +

(
1 + 1

α
√
u

)
ũ− − ū√

πuθ0

]
erfc

(
α

2
√
θ0

)
+ αe−α

2/4θ0

2u
√
πθ30

+ o
(

1
u

)
where α > 1, ũ+ = eα

√
u erfc(

√
uθ0 + α/(2

√
θ0)), ũ− = e−α

√
u erfc(

√
uθ0 − α/(2

√
θ0)), ū = 2e−uθ0−α

2/(4θ0).

Table 4.1 – Special cases of mixing distribution Θ

4.3 Interconnections between reserving models and ruin theory

Insurance reserving is another well-known topic for both actuaries and academics, while the ruin
theory remains mainly the field of academics. The computation of insurance reserves being mandatory
whereas ruin-related indicators are not is one of the main reasons to explain why practitioners neglect
the use of ruin theory in their daily business. Nevertheless, with the upcoming risk-based regulatory
requirements, the computation of solvency probabilities at different levels and different time horizons
is increasingly popular in the past ten years.

Another important factor explaining the disaffection of practitioners for ruin theory when assessing
reserves is the type of data to be used: the data granularity for classic reserving methods is line-of-
business aggregated datasets whereas in ruin theory, individual loss level is needed, (Asmussen and
Albrecher, 2010) and the references therein. Reserving methods are in fact mainly for aggregated
data triangles, (Wuethrich and Merz, 2008). As pointed out by Wuethrich and Merz (2008), “most of
the classical claims reserving methods do not distinguish reported claims from not-reported claims.”
However, there is a growing literature for micro-level or individual claim-level reserving methods,
and also advanced aggregated models are still studied, e.g., Denuit and Trufin (2017) propose to use
compound Poisson distribution with 2-distribution mixture for summands.

Loss payments ClosureNotificationOccurrence

IBNR

RBNP

RBNS

Figure 4.1 – Claim development process (IBNR: incurred but not reported, RBNP: reported but not
paid, RBNS: reported but not settled)

Reserving in a continuous time perspective dates back to pioneer works of Karlsson (1976), Jew-
ell (1989) and Arjas (1989). Few years after these papers, Norberg (1993) first formulates the
reserving problem in a continuous time probabilistic setting by considering marked Poisson pro-
cesses, see e.g. subsequent extensions Haastrup and Arjas (1996). In these works, the full claim
process described in Figure 4.1 is considered. That is, the ith claim is characterized by a quintuple
(Ti, Ui, Vi, Yi, Y

′
i (v)v∈[0,Vi]) where Ti denotes the occurrence time, Ui the reporting delay, Vi the settle-

ment time, Yi the total claim amount and Y ′i (.) the payment process. The time between occurrence
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and notification (i.e. t ∈ [Ti, Ti +Ui)) corresponds to the reporting delay (IBNR in Figure 4.1) by the
policyholder. And the time between notification and closure (i.e. t ∈ [Ti + Ui, Ti + Ui + Vi)) corre-
sponds to the settlement time, which can be further subdivided into the waiting time of first payment
(RBNP in Figure 4.1) and the payment process (RBNS in Figure 4.1). The claim process (T1, T2, . . . )
is governed by a non-homogeneous Poisson process (Nt, t ≥ 0).

A certain number of recent papers deal with individual claim reserving models with different ap-
proaches. A first approach is the statistical approach in discrete-time. Pigeon et al. (2013) model
paid claim random vectors with a multivariate skew symmetric distribution, claim’s development
time/delays with a multi-modified discrete distribution (among the (a, b, 3) class). Parametric distri-
bution allows to derive tractable conditional moments of ultimate claim amounts. Pigeon et al. (2014)
extends Pigeon et al. (2013) by modeling paid and incurred claim random vectors by further assuming
that at ultime year both paid and incurred amounts are equal. Again parametric distribution allows
to derive tractable conditional moments. For both articles, the predicted distribution of claim re-
serves from the micro-level method is narrower than the corresponding distribution of the macro-level
method. Charpentier and Pigeon (2016) provide some clues why micro-level methods might be more
robust. Some authors also use non-parametric machine learning methods, e.g., (Wüthrich, 2018a,b).

A second approach is the probabilistic approach in continuous time. Larsen (2007) revisits the
marked Poisson process of Norberg (1993) by including claim type when fitting this model under a
GLM framework. Antonio and Plat (2014) consider a marked Poisson process based on the framework
of Norberg (1993, 1999) using a set of parametric distributions for reporting delay and claim amount
and a piecewise constant intensity for claim arrivals. Boumezoued and Devineau (2017) work with
similar assumptions and derive MSEP and other uncertainty measures of the reserve. Currently, there
exists almost one alternative to marked Poisson processes in the actuarial literature: the Poisson
shot noise processes of Klueppelberg and Mikosch (1995), further developed in Matsui (2014, 2015)
and Matsui and Mikosch (2010). They consider that the ith claim is a pair (Ti, Li(.)) where Li may
represent the loss process, typically independent Lévy processes.

Dutang and Brouste (2016) consider a process closed to the marked Poisson process of Norberg
(1993). The surplus of an insurance company at time t is represented by the risk process Rt =
u + ct − St, where St denotes the aggregate claim amount, u is the initial surplus, c is the premium
rate. Traditionally, the aggregate claim amount St is the sum of claim amounts X1, X2, . . . arrived
before time t, i.e. St =

∑Nt
i=1Xi. By considering settlement times, we assume that

St =

Nt∑
i=1

Zi(t), with Zi(t) =
Xi

Vi
(t− Ti)11[Ti,Ti+Vi)(t) +Xi11[Ti+Vi,∞)(t),

where Vi, Ti denote respectively the settlement time and the occurence of the ith claim. We denote by
Rt the corresponding risk process. In other words, Zi(t) corresponds to the claim amount paid at time
t and Xi − Zi(t) is the outstanding claim amount. As the ith claim is represented by (Ti, Vi, Xi) and
the implicit assumption that the payment process is an affine function of time t, we have a simplified
version of Norberg’s model.

Let the risk process with no-delay and no-settlement be

R̃t = u+ ct−
Nt∑
i=1

Xi.

Comparing both risk processes Rt and R̃t, we remark that Rt ≥ R̃t a.s.. Therefore, the corresponding
ruin probability of the considered model is always lower than in the classical setting, which provides
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an upper bound. For the following study, we introduce a deterministic settlement function

g(t, w, v) =
t− w
v

11[w,w+v)(t) + 11[w+v,∞)(t). (4.8)

representing the percentage of the claim paid at time t such that Zi(t) = Xig(t, Ti, Vi). Keeping in
mind that we want to derive explicit formulas, we make the following assumptions

A1. the claim arrival process (Nt, t ≥ 0) is a homogeneous Poisson process with intensity λ,

A2. the settlement times are independent and identically distributed ((Vi)i
i.i.d.∼ V ),

A3. the claim amounts are independent and identically distributed ((Xi)i
i.i.d.∼ X with finite variance),

A4. there is independence between waiting times, settlement times and claim amounts (Ti − Ti−1 ⊥
Vi ⊥ Xi).

Dutang and Brouste (2016) assume that no reporting delay occurs: only the time of settlement is
assumed random.

In the sequel, we will need claim index sets defined as follows

Cnst = {i ∈ {1, . . . , Nt}, Ti ≤ t < Ti + Vi}, Cst = {i ∈ {1, . . . , Nt}, Ti + Vi ≤ t},

representing respectively not-settled claims and settled claims. These sets are a disjoint partition of
the set of claims occurred before time t, i.e. Cnst , Cst ⊂ {1, . . . , Nt}. We introduce filtrations depending
for the claim arrival process and the knowledge up to time t

FNt = σ (Ns, 0 ≤ s ≤ t) , FN,Vt = σ ((Ns, 0 ≤ s ≤ t), V1, . . . , VNt) ,

FN,Ct = σ
(
(Ns, 0 ≤ s ≤ t), (Vi)i∈Cst

)
,FN,C,Xt = σ

(
(Ns, 0 ≤ s ≤ t), (Vi)i∈Cst , X1, . . . , XNt

)
.

Dutang and Brouste (2016) present an efficient procedure to compute the conditional first two moments
of the aggregate claim process (St, t ≥ 0) based on two operators Ak and A∗k. Ak(·)(s, t) is defined as

Ak(G)(s, t) =

k∑
j=1

∫ tk+1

s
. . .

∫ tj+1

s
G(t, tj)

(tj − s)j−1

(j − 1)!
dtj . . . dtk, tk+1 = t, s < t, (4.9)

and A∗k(·)(s, t) is defined by

A∗k(G)(s, t) =
k−1∑
i=1

∫ tk+1

s
. . .

∫ ti+1

s

(ti − s)i−1

(i− 1)!
Gi,k(t, ti, . . . , tk)dti . . . dtk tk+1 = t, s < t, (4.10)

with G = (G1,k, . . . , Gk,k) and Gi,k(t, wi, .., wk) =
k∑

m=i+1
G(t, wi)G(t, wm).

The two following propositions give the conditional moments, unconditional moments are obtained
by setting s = 0.

Proposition 4.3.1 (Dutang and Brouste (2016)) The conditional expectation at time t of the
aggregate claim amount knowing the information up to time s < t is

E
(
St | FN,C,Xs

)
=

Ns∑
i=1,i∈Css

Xi +

Ns∑
i=1,i∈Cnss

XiG(t, Ti) + E (X) e−λ(t−s)
∞∑
k=1

λkAk(G)(s, t), (4.11)

where Ak is defined in (4.9) and G is the bivariate function defined as

G(t, w) = E (g(t, w, V )) . (4.12)

Here g is the settlement function defined in (4.8).
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Proposition 4.3.2 (Dutang and Brouste (2016)) The conditional second-order moment at time
t of the aggregate claim amount knowing the information up to time s < t is

E
(
S2
t | FN,C,Xs

)
=

Ns∑
i=1

Ns∑
j=1

XiXj11i,j∈Css + 2

Ns∑
i=1

Ns∑
j=1

XiXjG(t, Ti)11i∈Cnss ,j∈Css

+

Ns∑
i=1

Ns∑
j=1

XiXjG(t, Ti)G(t, Tj)11i,j∈Cnss

+2E (X) e−λ(t−s)
∞∑
k=1

λkAk(G)(s, t)

Ns∑
i=1

(
Xi11i∈Css +Xi11i∈Cnss G(t, Ti)

)
+e−λ(t−s)

∞∑
k=1

λk
(
E
(
X2
)
Ak(G2)(s, t) + 2E (X)2A∗k(G)(s, t)

)
,

where A∗k is defined in (4.10), G(t, w) = E (g(t, w, V )), G2(t, w) = E
(
g(t, w, V )2

)
, and g the settlement

function in (4.8).

It is worth emphasizing that Ak(G)(s, t) defined in (4.9) is only a particular case of the op-

erator A∗k(G)(s, t) with a family of bivariate functions, namely G = Gbi = (G1,k
bi , . . . , G

k,k
bi ) =

(G(t, t1), . . . , G(t, tk)). From the first two moments, the computation of the conditional variance
is immediate

V ar
(
St | FN,C,Xs

)
= E

(
(St)

2 | FN,C,Xs

)
− E

(
St | FN,C,Xs

)2
.

Direct computation of (4.12) leads to

G(t, w) = (t− w)

∫ ∞
t−w

dFV (x)

x
+ FV (t− w),

for t ≥ w ≥ 0. In order to compute the second-order moment, similar computations lead to

G2(t, w) = (t− w)2

∫ ∞
t−w

dFV (x)

x2
+ FV (t− w).

The ith component of G = (G1,k, . . . , Gk,k) consists in summing G functions, namely

Gi,k(t, wi, .., wk) =
k∑

m=i+1

G(t, wi)G(t, wm).

Below, we present two settlement functions studied in Dutang and Brouste (2016).

4.3.1 Immediate settlement

Let us start with the usual case of immediate settlement. If V = 0 a.s., then G(t, w) = 11{w≤t},

leading to Ak(G)(t) = tk/(k − 1)!. Therefore, we get back to a well known result E (St) = λtE (X).
Consequently, we also have G2(t, w) = 11{w≤t}. Then, Ak(G2)(t) = tk/(k − 1)!. Furthermore,

Gi,k,Σ(t, wi, .., wk) = 11{wi≤t}

k∑
m=i+1

11{wm≤t} ⇒ A∗k (G) (0, t) =

k−1∑
i=1

(k − i) t
k

k!
=

tk

2(k − 2)!
.
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Thus we retrieve another well-known result of a compound Poisson process

E
(
S2
t

)
= e−λt

∞∑
k=1

λk
(
E
(
X2
) tk

(k − 1)!
+ E (X)2 tk

(k − 2)!

)

= E
(
X2
)
λte−λt

∞∑
k=1

(λt)k−1

(k − 1)!
+ e−λtE (X)2 (λt)2

∞∑
k=1

λk−2 tk−2

(k − 2)!

= E
(
X2
)
λt+ E (X)2 (λt)2.

4.3.2 Zero-inflated settlement

Short-tailed business (such as material damages for motor and household insurance with settlement
generally within four or five years) corresponds to line of business where the settlement time is either
quick or immediate. As the opposite, long-tailed business such as third-party liability (especially
medical malpractice or liability for lawyers) experiences very long development of claims (generally
more than to 20 years, see, e.g., Partrat et al. (2008)). Hence, modeling the settlement process depends
heavily on the studied guarantee.

Dutang and Brouste (2016) first attempt to model such a process using the zero-inflated expo-
nential distribution. In the numerical section, we will split the dataset between long and short tailed
guarantees leading to distinct values of parameters of the two situations. The use of more com-
plex distributions (such as Gamma or Weibull and their zero-inflated version) is postponed to future
research.

Considering a zero-inflated exponential distribution for V (i.e. a mixture of a geometric distribution
and a Dirac distribution at 0) yields to

FZIE(x) = (p+ (1− p)(1− e−µx))11[0,+∞)(x).

In other words with probability p, the claim is settled immediately, otherwise (with probability 1− p)
the settlement time is strictly positive. Hence, for t > w,

GZIE(t, w) = p+ (1− p)(t− w)

∫ ∞
t−w

µe−µx

x
dx+ (1− p)(1− exp(−µ(t− w)))

= 1− (1− p) exp(−µ(t− w)) + (1− p)µ(t− w)E1(µ(t− w)),

where E1 denotes the exponential integral, see, e.g., Olver et al. (2010, Chap. 6).

GZIE,2(t, w) = p+ (1− p)(t− w)2

∫ ∞
t−w

µe−µxdx

x2
+ (1− p)(1− exp(−µ(t− w)))

= 1− (1− p) exp(−µ(t− w)) + (1− p)µ(t− w)E2(µ(t− w)),

where E2 denotes the generalized exponential integral, see, e.g., Olver et al. (2010, Chap. 8). Finally,

Gi,k,ΣZIE (t, wi, .., wk) =
k∑

m=i+1

GZIE(t, wi)GZIE(t, wm).

Of course, the case of the exponential distribution is obtained by setting p = 0 in the previous
expressions of GZIE and GZIE,2.
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4.3.3 Reserving topics

From a reserving perspective, we now ignore the initial capital u and the premium rate c and focus
on the aggregate claim amount St at time t. Classical methods for claim reserving are designed for
aggregated data for which claim amounts are aggregated per accident year and per development year,
e.g., (Wuethrich and Merz, 2008). Therefore, claims are sorted per accident year and cumulated per
development year to get a so-called claims development triangle.

At individual claim level, the accident year k of a claim occurred at time T is the year of occurrence,
i.e. k = bT c (where b.c denotes the integer part). The jth development year of a claim occurred at
time T corresponds to payments done in interval (bT c + j − 1, bT c + j). Let k = 0, . . . ,K be an
accident year and j = 0, . . . , J a development year. As before, we want to deal with reserving topics,
and we introduce the claim set of accident year k reported at time t

Ct,k = {i ∈ {1, . . . , Nt}, k = bTic}.

Note that the current time is k + j + 1 since both k and j starts from 0. Let us define the aggregate
(paid) claim amount for accident year k and development year j

Sk,j =
∑

i∈Ck+j+1,k

Zi(j + k + 1) =

Nj+k+1∑
i=1

Zi(j + k + 1)11i∈Ck+j+1,k
.

The sum can be simplified using Zi(t) = Xig(t, Ti, Vi)

Sk,j =

Nj+k+1∑
i=1

Xig(j + k + 1, Ti, Vi)11{k≤Ti<k+1}.

Denoting g̃k(y, t, v) = g(y, t, v)11{k≤t<k+1}, we get back to a sum similar the aggregate claim St at time
t = j + k + 1 with a new settlement function g̃k(y, t, v).

In order to deal with conditional expectation, we split the claim set into two subsets

Cnst,k = {i ∈ {1, . . . , Nj+k+1}, k = bTic, Ti ≤ t < Ti + Vi},

Cst,k = {i ∈ {1, . . . , Nj+k+1}, k = bTic, Ti + Vi ≤ t}.
They represent claims of accident year k not-settled and settled at time t. Let us define the aggregate
(paid) claim amount for accident year k and development year j + m given that the current time is
k + j + 1

Sk,j+m =

Nj+k+1∑
i=1

Xig(j +m+ k + 1, Ti, Vi)11{k≤Ti<k+1}.

Within this notation, a reserving triangle looks like (for s = 3)

AY k \ DY j 0 1 2

0 S0,0 S0,1 S0,2

1 S1,0 S1,1 E
(
S1,2 | FN,C,X3

)
2 S2,0 E

(
S2,1 | FN,C,X3

)
E
(
S2,2 | FN,C,X3

)
Using Proposition 4.3.1, the conditional expectation of the aggregate claim after j + m development
years amount knowing the information up to time s = k + j + 1 is

E
(
Sk,j+m | FN,C,Xs

)
=

Nk+j+1∑
i=1,i∈Css,k

Xi +

Nk+j+1∑
i=1,i∈Cnss,k

XiG̃k(s+m,Ti), (4.13)
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where G̃k(t, u) = E
(
g(y, t, V )11{k≤t<k+1}

)
. Using Proposition 4.3.2, the conditional second-order mo-

ment of the aggregate claim after j + m development years amount knowing the information up to
time s = k + j + 1 is

E
(
S2
k,j+m | FN,C,Xs

)
=

Ns∑
i=1

Ns∑
j=1

(XiXj11i,j∈Css,k + 2XiXjG̃k(s+m,Ti)11i∈Cnss,k,j∈C
s
s,k

)

+

Ns∑
i=1

Ns∑
j=1

XiXjG̃k(s+m,Ti)G̃k(s+m,Tj)11i,j∈Cnss,k , (4.14)

where G̃k(t, u) = E
(
g(y, t, V )11{k≤t<k+1}

)
.

Dutang and Brouste (2016) illustrate these methods on a real insurance dataset from an unknown
private insurer on a portfolio of general third-party liability policies for private individuals. These
numerical applications reveal that the proposed framework underestimates the ultimate claim charges
(assuming the Chain-Ladder method is the most appropriate method). On a one-year time horizon,
the backtesting procedure shows that the new method to estimate claim charges performs reasonably
well.

Future research of Dutang and Brouste (2016) should to take reporting delays into account as well
as random claim charge in order to better assess the reserving risk. By considering random reporting
delays, the observed claim process is no longer a Poisson process. This could be better tackled with
a general renewal process for the claim process, see Asmussen and Albrecher (2010, Chapter 6), an
inhomogeneous Poisson process, see Wuethrich and Merz (2008, Chapter 10), or a marked Poisson
process as in Norberg (1993).

4.4 R implementation

As presented in Dutang et al. (2008), actuar contains functions related to the risk theory problems:
two for the calculation of the aggregate claim amount distribution and two for infinite-time ruin
probability calculations, see Section 2.2 for loss modeling. Currently, five methods are supported for
the computation of the aggregate claim distribution function: recursive calculation using the algorithm
of Panjer, exact calculation by numerical convolutions, Normal and Normal Power II approximations,
simulation, see, e.g., Klugman et al. (2012).

Regarding ruin considerations, actuar propose a function to compute closed-form expressions of
the ruin probability (4.2) based on phase-type distributions (Neuts, 1981), which includes the Sparre
Andersen model and requires the computation of matrix exponentials. In that respect, the expm
(Goulet et al., 2021b) package implements matrix operations (exponential or logarithm). actuar has
also a function to determine the adjustment coefficient, see Section 4.1, in the Sparre Andersen model
as well as with proportional or excess-of-loss reinsurance (Centeno, 2002a,b). Competitors packages on
ruin topics are few. bootruin (Baumgartner and Gatto, 2010) provides a single function to compute
ruin probabilities or estimate ruin probabilities from data in the Cramér-Lundberg model. finiteruin-
prob (Gatto and Baumgartner, 2016) provides a function to compute finite-time ruin probabilities in
the Cramér-Lundberg pertubated by a Brownian motion. Finally, ruin (Rudnytskyi, 2018) provides
functions to simulate random paths of Sparre Andersen model in order to estimate ruin probabilities.

Regarding reserving methods in non-life insurance, only the R package ChainLadder (Gesmann
et al., 2021) provides functions for reserving methods. Currently, only aggregated methods are imple-
mented in this package.
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Chapter 5

Customer models and non-cooperative
games for insurance markets

This chapter investigates models of policyholders behavior and insurers strategy. Section 5.1 deals
with customer behavior models for both life and non-life insurance. Section 5.2 makes a review of game
theory useful for the subsequent sections. Section 5.3 proposes a one-period game for non-life insurers
for which policyholders behavior is based on Section 5.1. Finally, Section 5.4 presents a multi-period
game based on a repeated version of the one-period game of Section 5.3.

5.1 Customer behavior models

Every year, insurers face the recurring question of adjusting premiums for renewal or of setting new
rates for new business. In price elasticity studies, one analyzes how customers react to price changes.
Where is the trade-off between increasing premium to favor higher projected profit margins and
decreasing premiums to obtain a greater market share? We must strike a compromise between these
contradictory objectives. The price elasticity and customer modeling are therefore a factor to contend
with in actuarial and marketing departments of every insurance company.

In order to target new market shares (new business) or to retain customers in the portfolio (in-
force policyholders), it is essential to assess the impact of pricing on the whole portfolio. To avoid
a portfolio-based approach, we must take into account the individual policy features. Moreover, the
methodology to estimate the price elasticity of an insurance portfolio must be sufficiently refined to
identify customer segments.

Customer modeling is not a new topic in actuarial literature. In non-life insurance, two ASTIN
workshops (Bland et al., 1997; Kelsey et al., 1998) were held in the 90’s to analyze customer retention
and price/demand elasticity topics. Shapiro and Jain (2003) also devote two chapters of their book to
price elasticity: Guillen et al. (2003) use logistic regressions, whereas Yeo and Smith (2003) consider
neural networks. Brockett et al. (2008) should also be mentioned for their use of survival regression
models to study non-life insurance lapse. Jeong et al. (2018) find empirical evidences of possible
association between policyholder switching after a claim and the associated premium change using
association rules. Le Faou (2019) is devoted to survival models with censorship in order to determine
lapse in health insurance. We refer also to Leiria et al. (2020) for a review.
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In the context of life insurance, the topic is even more complex as the lapse can occur at any
time, whereas for non-life policies, most lapses occur at renewal dates∗. There are some trigger effects
due to contractual constraints: penalties are enforced when lapses occur at the beginning of the
policy duration, while after that period, penalties no longer apply. Another influential feature is the
profit benefit option of some life insurance policies allowing insurers to distribute part of benefits to
customers in a given year. This benefit option stimulates customers to shop around for policies with
higher profit benefits.

In terms of models, Atkins and Gallop (2007) and Kagraoka (2005) use counting process to model
surrenders of life insurance, while Cox and Lin (2006) and Kim (2005) use a logistic regression to predict
the lapse. Others (Bacinello, 2005; Kuen, 2005) developed financial methods to price the surrender
option embedded in life insurance policies. Milhaud et al. (2011) point out relevant customer segments
when using Classification And Regression Trees models (CART) and logistic regression. Loisel and
Milhaud (2011) study the copycat behavior of insureds during correlation crises. We refer to Eling
and Kochanski (2013) for a review.

5.1.1 Lapse models for non-life insurance products

Dutang (2012b) deals with lapse risk for non-life insurance products, i.e., binary model where the
response variable indicates if a current policyholder lapses or cancels its policy. We refer to Section
1.1.1 for logistic regression. Dutang (2012b) applies GLM on two datasets from continental Europe:
a dataset with few explanatory variables and a large dataset.

Predictions are analyzed through the estimation of additional lapse rates. Indeed, the price elas-
ticity defined as the customer’s sensitivity to price changes relative to their current price, is computed
as the normed derivative er(p) = dr(p)

dp ×
p
r(p) , where r(p) denotes lapse rate as a function of the price

p. However, in practice, we focus on the additional lapse rate ∆dp = r(p+dp)−r(p) rather er(p) since
the results are more robust and easier to interpret†.

Getting outputs is easy but having reliable estimates is harder. After a naive application, the
first dataset reveals to have too few variables‡ to get realistic estimate of additional lapse rates ∆5%.
The second dataset with additional variables (distribution channel, coverage type, . . . §) also leads to
unrealistic estimate, even when splitting data by distribution channel and coverage types.

GLM estimates of central lapse rates¶ begin to make sense when new price-related variables are
introduced. That is the rebate level, a proxy of the market premium defined as the tenth lowest
price. Incorporating new key variables in the GLM regression substantially improves the lapse rate
predictions in the different premium scenarios. The rebate level partially reveals the agent or the
broker actions on the customer decisions, while the use of market proxies illustrates how decisive the
competition level is when studying customer price-sensitivity.

Secondly, Dutang (2012b) propose to use generalized additive models (GAM) which consists in
assuming non-smooth function for predictor ηi rather than a linear function, see Section 1.5.1 for

∗In France, most non-life policies are subjected to tacit renewal, yet the new law Hamon allows policyholders to
cancel their contract when they want.

†The base premium considered is the premium by the policyholder in the previous so that dp = 0 means that no
premium increase nor decrease at renewal.

‡Only policy age, lapse age in addition to past and proposed premium are available.
§Three channels are available Direct, Broker and Tied agent; three covers are sold Full comprehensive, partial

comprehensive and third-part liability.
¶Lapse rates when the proposed premium is the same as last year.
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details. Dutang (2012b) uses the REML criterion to determine the appropriate λ and thin plate basis
regression. The thin plate regression uses a basis of thin plate (also known as polyharmonic functions)
functions φmd(r) = αmdr

2m−d log(r) if d is even and αmdr
2m−d if d is odd. The smooth function is

defined as s(x) =
∑n

i=1 δiφmd(||x − xi||2) is approximated during the fitting procedure to decrease
the computational burden. This method avoids the knot placement problems of traditional regression
spline models.

Using GAM on the large dataset reveals useful for the tied-agent channel where highly nonlinear
functions are estimated for the following variables: premium ratio, driver age, vehicle age, the difference
to technical premium and the car class. The additional complexity coming with additive modeling
compared to GLM permit to really fit the data as long as the dataset has a sufficiently large size.

Thirdly, Dutang (2011) consider the use of survival regression models, presented in Section 1.5.2,
on a third dataset over four years. Unlike the latter static regression models such as GLM and GAM,
we no longer consider the lapse rate as the target random variable but derive it from the life span of
the policy. That is, the lapse rate of policies of age t is

rt = P (T < t+ 1|T ≥ t),

where T denotes the life span of the policy. Dutang (2011) considers full parametric survival regression
models (SRM) such as accelerated failure time models as well as semi-parametric Cox-PH regression
models. Cox models have the advantage to take into account the dynamic aspects of a policy life
along with dynamic explanatory variables, unlike GLM and GAM. On the third dataset, a long data
pre-processing is needed to transform to a survival dataset. We observe that lapse rate estimates of
Cox-PH are relatively similar to others models. Part of this study was published in Dutang (2012b)
and pursue the work initiated by Brockett et al. (2008) to use survival models for customers behavior
models.

5.1.2 Conversion models for non-life insurance products

In a similar spirit as for renewal topics, conversion models a binary response variable indicating if
the quote is converted or not. Dutang and Spedicato (2018) aim to investigate how machine learning
methodologies can improve policyholder retention and conversion estimation over that of classical
GLM. They use a dataset of 1.2 million quotes for private motor insurance with several explanatory
variables. A certain number of models (in addition to GLM) are used Gradient Boosting Models
(GBM), Extreme Gradient Boosting Models (XGBoost), Random Forests and neural networks, see,
e.g., Denuit et al. (2019b,c).

Ranking the models according to log-loss metrics, it is clear that boosted models (GBM and
XGBoost) show the highest performance in terms of predictive accuracy∗. Dutang and Spedicato
(2018) also conduct an individual pricing optimization which consists in maximizing the expected
profit. In their application, the company’s knowledge of consumer behavior is represented by a risk
premium model that estimates the expected cost of the insurance cover that will be provided, as
well as by a conversion model, which estimates the probability of a prospect entering the portfolio.
Also, information on the competitive environment such as the distance between market price and the
company’s premium should be taken into account. Interestingly, Dutang and Spedicato (2018) found
that both GLM and XGBoost approaches produced very similar results in terms of optimized premium
volume.

∗This is also true for Area Under the Curve metric.
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Surprisingly, neural networks do not perform well on this dataset. This might be due the software
implementation. Dutang and Spedicato (2018) use the h2o package (LeDell et al., 2021) which is
not the best implementation of neural networks. Mahdi et al. (2021)’s benchmark of neural networks
in R packages shows that h2o obtains only the 11th RMSE score and the 51st time score out of 60
package-algorithms tested.

5.1.3 Surrender models for life insurance products

Dutang and Milhaud (2018) deals with the crucial problem of modeling policyholders’ behaviors in
life insurance. They focus on the surrender behaviors and model the contract lifetime through the use
of survival regression models. Standard models may fail at giving acceptable forecasts for the timing
of surrenders because of too much heterogeneity. The competing risk framework (see Section 1.5.2)
provides interesting insights and more accurate predictions by considering the single cause of interest
when estimating the hazard rate (and not all causes).

Numerical results are carried out on an insurance portfolio embedding Whole Life contracts in
US. This dataset contains three type of exit causes: the (voluntary) surrender by the policyholder,
the death of the policyholder, other causes mixed together including payment default. Regarding the
cause of interest, the estimation via the subdistribution approach (see Section 1.5.2) is slightly better
than with the cause-specific approach. This is probably due to uncertain estimations of hazard rates
for other causes (death and other), which are fewly observed on this dataset.

Through backtests, this framework reveals to be quite efficient and recovers the empirical lapse rate
trajectory by aggregating individual predicted lifetimes. The overall quality of the Fine & Gray model
is rather satisfying when considering the timing of individual surrender decisions. In an Assets &
Liabilities Management perspective, this allows to give precise information about the future insurer’s
cash-flows, still keeping in mind that portfolio composition evolves as time flies and thus the surrender
risk has to be updated on a regular basis. At individual levels, the Fine & Gray model generally looks
much more robust than other modeling strategies belonging to competing risk models.

Premium and reserve computation associated to life insurance products can be carried out in
R thanks to packages lifecontingencies (Spedicato et al., 2021), DetLifeInsurance (Auza and
Alvarez, 2020), and LifeInsuranceContracts (Kainhofer, 2021) see Spedicato (2013) for an overview.
valuer (Zoccolan, 2018) implements the pricing frameworks taking into account surrenders described
in Bacinello et al. (2011) and is currently only the one package implementing surrender risk.

5.2 Games literature review

Game theory focuses on the study of complex interactions between agents (men, companies, ani-
mals,. . . ) modeled by tailored mathematical models which are enabled to catch decision making of
agents for a given topic. The fundamental principles underlining game theory is that agents, also
known as players, take into account other players’ behaviors, as opposed to individualist point of view
of optimal control.

Game theory dates back to the study of economic oligopolies studied by Bertrand (1883), Cournot
(1838), and Edgeworth (1881). It has been popularized and becomes a scientific discipline unto
itself thanks to von Neumann and Morgenstern (1944), who studied zero-sum multiplayer games both
cooperative and non-cooperative. Few years later, John F. Nash made a breakthrough in a series of
papers (Nash, 1950a,b, 1951, 1953) to propose new game concepts and to study their existences. Since
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then, game theory grows in multiple direction and is no longer only applied to economy. We refer
to Basar and Olsder (1999), Fudenberg and Tirole (1991), and Osborne and Rubinstein (2006) for a
general introduction.

A game is a formal description of interactions between players and is composed of a set of players
E = {1, . . . , I}, an objective or cost function for each player Oi : X 7→ R, and a set of possible actions
per player Xi ⊂ Rni for i ∈ E, where X = X1 × · · · × XI

∗. A set of actions per player is denoted
x = (x1, . . . , xI). Game concepts consists in specifying a set of actions x which is preferable to y for
a given player. There exists multiple class of games allowing different type of player interactions: are
action played sequentially or simultaneously; can players form alliances or do they play against each
other; does information perfectly known ; does objective function depend on a random factor? We
present with non-cooperative deterministic games in Section 5.2.1, cooperative games in Section 5.2.2.
This section ends with a review of actuarial games in Section 5.2.3.

5.2.1 One-shot non-cooperative games

We assume that Xi is a compact convex nonempty set representing all possible actions of Player
i, say, e.g., a price interval or a quantity interval†. Given i ∈ E a player, xi denotes his action,
while x−i = (x1, . . . , xi−1, xi+1, . . . , xI) stands for other players’ actions. Both Stackelberg and Nash
equilibria are used in Section 5.3. A Nash equilibrium is defined as follows.

Definition 5.2.1 (Nash equilibrium) For I-player game with Oi, i ∈ E the objective function of
Player i to maximize, a vector of strategies (x?1, . . . , x

?
I) ∈ X is a Nash equilibrium if for all i ∈ E, we

have
Oi(x

?
i , x

?
−i) ≥ Oi(xi, x?−i), for all xi ∈ Xi. (5.1)

In other words, a Nash equilibrium can hence be interpreted as a point at which no player has an
incentive to deviate, given the actions of the other players. To better understand existence theorem,
the Nash equilibrium problem (NEP) (5.1) is reformulated as x? verifying for all i ∈ E

x?i ∈ arg max
xi∈Xi

Oi(xi, x
?
−i).

Now, we state formally the existence theorem for NEP (5.1).

Theorem 5.2.1 (Nikaido and Isoda (1955)) For a I-player game, where Xi are non-empty con-
vex and compact, if for all objective functions Oi : X 7→ R are continuous and xi 7→ Oi(xi, x−i) are
quasiconvex, see Table 5.1, there exists a Nash equilibrium.

Concept Definition

f quasiconvex f(λx+ (1− λ)y) ≤ max(f(x), f(y))
f convex f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)
f strictly convex f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

∀x, y ∈ R,∀λ ∈]0, 1[

Table 5.1 – Different types of convexity, e.g., Diewert et al. (1981)

To guarantee unicity of the Nash equilibrium, we need much stricter conditions than quasiconvexity
of objective functions. The following theorem of Rosen (1965) gives us some sufficient conditions.

∗Note that Xi is not necessarily finite nor discrete.
†For a discrete set of actions, it is common to consider mixed strategies by playing randomly among pure strategies.
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Theorem 5.2.2 (Rosen (1965)) For a I-player game, where Xi are non-empty convex and compact,
assume that for all objective functions Oi : X 7→ R are continuous and xi 7→ Oi(xi, x−i) are convex.
Let gO : Rn × RI 7→ Rn defined by

gO(x, r) =

r1∇x1O1(x)
...

rI∇xIOI(x)

 .

If gO verifies for some r with positive components

(x− y)T gO(y, r) + (y − x)T gO(x, r) > 0, (5.2)

then there exists a unique Nash equilibrium.

In practice, the action set Xi may be derived from a univariate constraint function gi, that is

Xi = {xi ∈ R, gi(xi) ≥ 0}.

The closedness and the convexity of Xi is verified when gi is continuous and quasiconcave. The
nonemptyness is harder to verify in general.

Now, we turn to the definition of another type of game solution: a Stackelberg equilibrium. Stack-
elberg equilibrium focuses on the situation where players do not play at the same time: some (the
leaders) play before others (the followers). For simplicity, we assume there is one unique leader and
other players j ∈ {2, . . . , I} are followers.

Definition 5.2.2 (Stackelberg equilibrium) For a game with one leader and I−1 followers, with
payoff functions Oj and action set Xj, a Stackelberg equilibrium is a vector x? = (x?1, . . . , x

?
I) such

that x?1 solves the problem
sup
x1∈X1

O1(x1, x
?
−1(x1)),

and x?−1(x1) is a Nash equilibrium for the subgame with the I − 1 followers and given action x1 for
Player 1.

We refer to Lucchetti et al. (1987) for existence theorems of a Stackelberg equilibrium. Finally, we
close our brief presentation of non-cooperative games with generalized Nash equilibrium. A generalized
Nash equilibrium (GNE) is defined as follows.

Definition 5.2.3 (generalized Nash equilibrium) For I-player game with Oi, i ∈ E the objective
function of Player i to maximize, a vector of strategies (x?1, . . . , x

?
I) ∈ X is a Nash equilibrium if for

all i ∈ E, we have
Oi(x

?
i , x

?
−i) ≥ Oi(xi, x?−i), such that gi(xi, x

?
−i) ≥ 0. (5.3)

In the following, the set of possible actions of Player i given other players’ action x−i is derived
using a correspondence

Ci(x−i) = {xi ∈ Xi, gi(xi, x−i) ≥ 0}, (5.4)

where gi is the constraint function. We give below the existence theorem for GNE, sometimes called
Kakutani’s theorem, since the proof is based on the fixed-point theorem for correspondences by Kaku-
tani (1941).
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Theorem 5.2.3 (Arrow and Debreu (1954)) Let N players be characterized by an action space
Xi, a constraint correspondence Ci and an objective function Oi : X → R. Assume for all players, we
have

(i) Xi is nonempty, convex and compact subset of a Euclidean space,
(ii) Ci is both upper and lower semi-continuous in X−i,

(iii) ∀x−i ∈ X−i, Ci(x−i) is nonempty, closed, convex,
(iv) Oi is continuous on the graph Gr(Ci),
(v) ∀x ∈ X, xi → Oi(xi, x−i) is quasiconcave on Ci(x−i),

Then there exists a generalized Nash equilibrium.

Dutang (2013b) provide an in-depth study of theorems guaranteeing existence of generalized Nash
equilibria and analyze the assumptions on parametric feasible sets (5.4), which is common for most
games. For parametric feasible sets, the upper and lower-semicontinuity of Ci is satisfied when gi has
continuous components and is concave with respect to xi.

In practice, many softwares propose packages to compute game solution concepts. In R, various
packages implement game theoretic tools. The CoopGame (Staudacher and Anwander, 2019) pro-
vides a large collection of cooperative games, like e.g. bankruptcy games, cost sharing games and
weighted voting games. The GameTheory (Cano-Berlanga et al., March 2015) proposes functions to
compute of two solutions concepts, namely the Shapley value and the nucleolus, whereas GameThe-
oryAllocation (Saavedra-Nieves, 2016) proposes more game concepts. The GNE package (Dutang,
2020a) provides functions to compute standard and generalized Nash Equilibria. Dutang (2013a) deals
with optimization methods for solving GNE problems and use the GNE package for benchmarking
purposes.

5.2.2 Cooperative games

Cooperatives games (with n players) are characterized by a pair of (N, v) with a set of players N =
{1, . . . , n} and a function v : 2N 7→ R where 2N denotes the set of all subsets of N and v(S) the power
or the value of coalition S∗. Best coalitions have simply the supremum value of v. In general, we
assume that v is superadditive since cooperation creates savings.

Assuming a best coalition is found, cooperative games focuses on how savings are redistributed
among players of the best coalition. To that purpose, the concept of (individual) payoffs is introduced
with a n-dimensional vector α = (α1, . . . , αn) where αi is the redistributed value to Player i after
the coalition. A list of the minimal desirable properties of payoffs α is: efficiency

∑
i∈S αi = v(S);

individual rationality ∀i, αi ≥ v({i}); collective rationality ∀S ∈ N,
∑

i∈S αi ≥ v(S). The individual
rationality and the collective rationality form the so-called stability condition. Defining an imputation
as an individually efficient rational payoff, the core of a game is the set of all collective rationally
payoffs.

There are some other desirable properties (or axioms) of payoff: symmetry for all permutations
Π, v(Π(S)) = v(S) ⇒ ∀i, αΠ(i) = αi; inefficient player v(S) = v(S\{i}) + v({i}) ⇒ αi = v(i);
additivity on game for two games (N, v) and (N,w), ∀i, αi(v + w) = αi(v) + αi(w); monotonicity
∀S ⊂ T, v(S) ≤ v(T ). Table 5.2 lists common solution concepts. The properties verified by solution

∗The dual representation of the game (N, v) uses a cost function c instead of a value function v, they are related one
another by v(S) =

∑
s∈S c(s)− c(S).
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concepts of Table 5.2 are given in Table 5.3: the Shapley’s value is the only one solution satisfying
the last three properties.

Solution concept Optimal payoff α?i
Moriati method v({i})

n∑
i=1

v({i})
v(N)

Shapley’s value
∑

S⊂N
(Card(S)−1)!(n−Card(S))!

n! (v(S)− v(S\{i}))
method of residual profits v({i}) + v({i})+MV ({i})

n∑
j=1

(v({j})+MV ({j}))

(
v(N)−

∑n
j=1 v({j})

)
MV is the marginal value MV ({i}) = v(N)− v(N\{i}).

Table 5.2 – Solution concepts

Property Moriati method Shapley’s value residual profit

efficiency yes yes yes
individual rationality yes yes yes
collective rationality no yes yes
monotonicity yes yes yes
symmetry yes yes yes
inefficient player no yes yes
additivity on game no yes no

Table 5.3 – Properties of solution concepts

Another type of games of interest are repeated games which consists in repeating a one-shot game
over and over either in a finite or infinite horizon. Three versions of repeated games could be considered:
(i) infinitely repeated games with no discounting, (ii) infinitely repeated games with discounting, and
(iii) finitely repeated games. Different solution concepts are studied in the literature, typically pun-
ishing strategies, subgame perfect equilibrium, perfect equilibrium, which are characterized through
their payoff vectors, see Osborne and Rubinstein (2006, Chapter 8) or Gossner and Tomala (2020).
We consider repeated games as not valuable for modeling insurer strategies since the set of player’s
actions is usually finite, it is very questionnable which horizon to choose and which discount factor is
appropriate. For these reasons, Sections 5.3 and 5.4 do not consider concepts from repeated games
theory.

5.2.3 Review of actuarial game models

We make a review of actuarial game models in the past sixty years in order to position our models
of Sections 5.3 and 5.4 in relation to the literature. We summarize main ideas below starting with
contributions of Karl Borch, Jean Lemaire, Hans Gerber.

Borch – Lemaire – Gerber’s contributions

A series of paper by Borch (1960a,b,c) works risk transfer between two insurers (or 1 insurer - 1
reinsurer) and identify optimal situations with Pareto optimality conditions on expected utility. This
is generalized later to n insurers by Borch (1962b, 1975) In parallel, a use of cooperative game to model
risk transfer between n insurers based on the core and the Shapley value is studied by Borch (1962a),
Gerber (1978), and Lemaire (1975, 1977, 1991). Baton and Lemaire (1981a,b) and Lemaire (1979)
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introduce a less restrictive model of non transferable utility game (linear invariance, recursiveness,
independence of irrelevant alternatives and partial symmetry).

Chains of (re)insurance was also considered by Lemaire and Quairière (1986) using non-cooperative
bargaining theory. As a consequence of optimal risk transfer, Briegleb and Lemaire (1982) and
Bühlmann (1980, 1984) study the application of game theory to premium principles by noticing that
the model of risk transfer between insurers can also be applied to the situation of insurers selling
a product to an insured. Briegleb and Lemaire (1982) uses Nash and Kalai-Smorodinsky solutions,
whereas Bühlmann (1980, 1984) use Pareto optimality.

Finally, Lemaire (1983) works on cost allocation of insurance expenses among line of businesses
by starting to review arbitrary accounting methods. Using cooperative game theory, he derives new
allocation methods based on the Shapley value and nucleolus’ derivative methods.

Recent advances on risk transfer between (re)insurers

A series of papers studied risk transfer between insurers and/or reinsurers using cooperative game
theory. Boonen et al. (2017a) focus on the redistribution of longevity risk in a 2-insurer cooperative
game. Anthropelos and Boonen (2020) investigate a insurer-reinsurer game with risk-measure utility
functions. Jiang et al. (2019) study a insurer-reinsurer game of risk transfer thanks to Nash and
Kalai-Smorodinsky solutions. Jiang et al. (2021) extends this work by considering distortion risk
measure and rank dependent expected utility. Zeng and Luo (2013) consider a differential stochastic
cooperative game (i.e. a dynamic game in continuous time) between an insurer and a reinsurer where
the surplus process is approximated by a diffusion model and the insurer may purchase quota-share
or excess-of-loss covers.

However, many papers studied risk transfer between insurers and/or reinsurers using non-cooperative
game theory. They consider differential games to model the insurer-reinsurer risk transfer where the
aggregate loss model is approximated by a diffusion model and game solutions are computing using the
associated Hamilton-Jacobi-Bellman equations. Chen et al. (2019), Meng et al. (2015), and Pun et al.
(2016) determine Nash equilibrium of 2-insurer expected-utility games. Asmussen et al. (2019a,b)
consider a 2-insurer game where insurers try to minimize a reserve process either via a Stackelberg
equilibrium or via Nash equilibrium, respectively. Kwok et al. (2016) study a 2-insurer game where in-
surers choose an investment strategy between a risk-free asset and a longevity security. Chen and Shen
(2019) determine Stackelberg equilibrium of a insurer-reinsurer game mean-variance criteria. Wang
et al. (2021b) extends an extension of the latter where players choose also an investment strategy in
a risky asset.

Unlike Chen and Shen (2019) and Wang et al. (2021b), some papers do not consider the reinsurer
as a player in the differential game, that is by considering a 2-insurer game where the two insurers are
allowed to purchase reinsurance covers from a non-playing reinsurance company, see (Jin et al., 2013;
Luo et al., 2021; Pun and Wong, 2016; Taksar and Zeng, 2011; Wang et al., 2019, 2021c; Zeng, 2010;
Zhang et al., 2019).

Finally, some papers consider a non-cooperative game with more than 2 insurers, such as differential
games of Emms (2012), Li et al. (2021), and Ramasubramanian (2006) or static games of Warren et al.
(2012) and Wu and Pantelous (2017).
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Recent advances on the risk transfer from policyholder(s) to (re)insurers

Generally, insured-insurer games consider static strategies. Indeed, Huang et al. (2013), Suijs et al.
(1998), and Viaene et al. (2002) use cooperative insured-insurer games for non-life insurance, de Janvry
et al. (2014) and Liu (2010) for agricultural insurance, Driessen et al. (2011) for catastrophic risk.

Non-cooperative games are also considered by Bensalem et al. (2020) with an emphasis of pre-
vention and self-insurance, Li and Young (2021) with a mean-variance criterion. As between insur-
ance carriers, the demand for insurance is studied via insured-insurer differential games: Boonen et
al. (2018) and Mourdoukoutas et al. (2021) compute Nash equilibrium strategies of non-cooperative
games over a finite horizon.

Some papers also study the optimal number of insurance carriers: using the law of large numbers,
as in Borch (1962a), Powers and Shubik (1998) found that optimal quantity and price are concave
functions of the number of insurers. With similar arguments, Powers and Shubik (2006) show that
the optimal number of reinsurers is almost a square root function of the number of insurers.

Recent advances on capital allocation

Following Lemaire (1983), Alegre and Claramunt (1995) compare actuarial principles and cooperative
game theory. Denault (2001) sets up a concept of coherent allocation as the direct application of
cooperative game theory concepts. Panjer (2002) studies the problem of capital allocation among line
of businesses in an insurance group using on coherent measure (Artzner et al., 1999) and coherent
allocation (Denault, 2001) and applies the Shapley value for the banking industry.

Furthermore, he also studies fractional player game, from which he derives a less complex solution,
the Aumann-Shapley value, not requiring the additivity axiom. This study was further extended
to distortion risk measure in a static framework by Tsanakas and Barnett (2003) and a dynamic
framework by Tsanakas (2004) using Brownian motions to model risk process. Boonen et al. (2017b)
generalize the latter model by considering Lévy processes for the risk process.

Finally, the problem of insurance loss redistribution can be seen an allocation problem and Denuit
and Dhaene (2012) analyze the benefit of conditional mean risk sharing through convex order. Denuit
and Robert (2021a,b) consider a peer-to-peer insurance scheme where the higher layer of the aggregate
claim amount is transferred to an insurance carrier and retained losses are distributed among insured
according to the conditional mean risk sharing rule.

5.3 A static game for non-life insurance competition

Dutang et al. (2013a) consider J insurers competing in a market of N policyholders with one-year
contracts∗. The policyholders are assumed to react to price changes (either stay with the present
insurer or switch to one of the competitors), but do not have any other influence on the premium
level. This is a realistic assumption, in particular for personal lines of business such as compulsory
third-party motor liability, see Section 5.1. In view of the one-year time horizon and the randomness
of claim sizes, this model focuses on non-life insurance products.

The “game” for insurers is to set the premium for which policies are sold to the policyholders.

∗N is assumed constant.
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Let (x1, . . . , xJ) ∈ RJ be a price vector, with xj representing the premium of Insurer j. Once the
premium is set by all insurers, the policyholders choose to renew or to lapse from their current insurer.
Then, insurers pay occurring claims during the coverage year. At the end of the period, underwriting
results are determined, and the insurer capital is updated: some insurers may be bankrupt. As we
deal with a one-period model, investment results is not considered for simplicity. This game differs
from other static games proposed in the literature in the fact that policyholders are not players of the
game, insurers do not cooperate, bankruptcy can occur either because of large losses or because of
losing customers.

In the next subsections, the four components of the game are: (i) a lapse model, (ii) a loss model,
(iii) an objective function and (iv) a solvency constraint function. These four components are critical
factors for the analysis of the non-life insurance market, see, e.g., IASB (2008). In the sequel, a
subscript j ∈ {1, . . . , J} will always denote an insurer index, whereas a subscript i ∈ {1, . . . , N}
denotes policyholder index. In the sequel, “insurer” is used when referring to players of the insurance
game.

5.3.1 Lapse model

We start with our lapse model which is designed as a compromise between reflecting the policyholders’
behavior in a reasonable way, yet keeping mathematical tractability. Let nj be the initial portfolio

size of Insurer j (such that
∑J

j=1 nj = N). It seems natural that the choice of policyholders for an
insurer is highly influenced by the choice of the previous period. We assume that the dispatch (among
the J insurers) of the nj policyholders of Insurer j follows an J-dimensional multinomial distribution
MJ(nj , pj→(x)) with probability vector pj→(x) = (pj→1(x), . . . , pj→J(x)). The probability pj→k(x)
to move from Insurer j to Insurer k naturally depends on the price vector x, (concretely, the difference
of premiums). Empirically, the probability to lapse pj→k(x) (with k 6= j) is generally much lower than
the probability to renew pj→j(x).

In the economics literature, pj→k is considered in the framework of discrete choice utility models,
e.g., McFadden (1981). In that respect, policyholders could be seen as followers of a leader-follower
game where leaders are insurers. In the sake of simplicity, we choose a multinomial logit model∗.
Working with unordered choices, we arbitrarily set the insurer reference category for pj→k to j, the
current insurer. We define the probability for a customer to go from Insurer j to Insurer k given the
price vector x by the multinomial logit model

pj→k(x) =


1

1+
∑
l 6=j

efj(xj,xl)
if j = k,

efj(xj,xk)

1+
∑
l 6=j

efj(xj,xl)
if j 6= k,

(5.5)

where the sum is taken over the set of insurers {1, . . . , J} and fj is a price-sensitivity function. Two
types of price functions are studied by Dutang et al. (2013a)

f j(xj , xl) = µ̄j + ᾱj
xj
xl

and f̃j(xj , xl) = µ̃j + α̃j(xj − xl). (5.6)

The first function f j assumes a price-sensitivity according to the ratio of proposed premium xj and

competitor premium xl, whereas f̃j works with the premium difference xj − xl. Parameters µj , αj

∗the probit link function, based on the multivariate normal distribution, would not significantly change the shape of
the lapse function.
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represent a base lapse level and price-sensitivity, respectively. We assume that insurance products
display positive price elasiticity of demand αj > 0.

The vector of (random) portfolio sizes N(x) is obtained by summing the (independent) choices of
each Insurers’ customers

N(x) =
J∑
j=1

Cj(x) =

C1,1(x)
...

C1,J(x)

+ · · ·+

CJ,1(x)
...

CJ,J(x)

 =

N1(x)
...

NJ(x)

 ,

where Cj(x) follows MJ(nj , pj→(x)). For Insurer j, his portfolio size Nj is a sum of independent
binomial variables with parameters nk, pk→j(x). It is important to note that the insurers’ portfolio
sizes are not independent, since the total market size remains constant. This assumption is in contrast
to the standard models in classical ruin theory, where the portfolio size is assumed constant over time
(Asmussen and Albrecher, 2010). With this insurer choice model, the expected portfolio size of insurer
j reduces to

E (Nj(x)) = nj × pj→j(x) +
∑
l 6=j

nl × pj→k(x). (5.7)

5.3.2 Loss model

Let Yi be the aggregate loss of policy i during the coverage period. We assume no adverse selection
among policyholders of any insurers, i.e. Yi are independent and identically distributed (i.i.d.) random
variables, for all i = 1, . . . , n. Let us assume a simple frequency – average severity loss model, e.g.,
(Klugman et al., 2012)

Yi =

Mi∑
l=1

Zi,l,

where the claim number Mi is Policyholder i. The claim severities (Zi,l)l are i.i.d. as some generic
random variable Z. The aggregate claim amount for Insurer j is then

Sj(x) =

Nj(x)∑
i=1

Yi =

Nj(x)∑
i=1

Mi∑
l=1

Zi,l,

where Nj(x) is the portfolio size. Two claim number distributions are studied: (i) Mi follows a Poisson
distribution P(λ) and (ii) Mi follows a negative binomial distribution NB(r, p). These instances of

the frequency – average severity model are such that the aggregate claim amount Sj(x) =
∑Nj(x)

i=1 Yi
given Nj(x) = n is still a compound distribution of the same kind. Hence, the aggregate claim amount
Sj(x) of Insurer j is a compound distribution

Sj(x) =

M̃j(x)∑
l=1

Zl,

where all claim severities Zl
i.i.d.∼ Z and the claim number M̃j(x) follows either a Poisson distribution

P(nλ) or a negative-binomial distribution NB(nr, p) given Nj(x) = n, e.g., (Klugman et al., 2012).
For the distribution of Z, we choose the lognormal distribution, which is due to its heavy-tailedness
and at the same time pleasant statistical properties is a popular modeling assumption in many lines
of non-life insurance. This choice is by no means crucial, as any other can be handled in an analogous
way.
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5.3.3 Objective function

Two components of the insurance markets have been presented the lapse model (how policyholders
react to premium changes) and the loss model (how policyholders face claims). We now turn our
attention to the underwriting strategy of insurers, i.e., on how they set premiums. In Section 5.3.1,
we assume that price elasticity of demand for the insurance product is positive. Thus, if the whole
market underwrites at a loss, any actions of a particular insurer to get back to profitability will result
in a reduction of his business volume. This has two consequences for the choice of the objective
function: (i) it should involve a decreasing demand function of price xj given the competitors price
vector x−j = (x1, . . . , xj−1, xj+1, . . . , xJ) and (ii) it should depend on an assessment of the insurer
break-even premium πj per unit of exposure.

The parameter πj corresponds to the estimated mean but depends on the assessment of loss
expectation by insurer j. We thus define πj as

πj = ωjaj,0 + (1− ωj)m0,

where aj,0 is the actuarial premium based on the past loss experience of Insurer j, m0 is the market
premium, available for instance, via rating bureaus or through insurer associations and ωj ∈ [0, 1] is
the credibility factor of Insurer j. ωj reflects the confidence of Insurer j in its own loss experience:
the closer to 1, the more confident Insurer j is. Note that πj takes into account expenses implicitly
via the actuarial and the market premiums.

Dutang et al. (2013a) choose the demand function as

Dj(x) =
nj
N

(
1− βj

(
xj

mj(x)
− 1

))
, (5.8)

where βj > 0 is the elasticity parameter and mj(x) is a market premium proxy. The demand Dj(x)
is not restricted to [0, nj/n], and thus Dj targets both renewal and new business. In this form,
Dj(x) approximates the expected market share E (Nj(x)) /N (5.7) presented in Section 5.3.1. As
the elasticity parameter βj is positive, a premium increase (of insurer j) will result in a decrease of
the demand for insurance. The market proxy used in Equation (5.8) is the mean price of the other
competitors

mj(x) =
1

J − 1

∑
k 6=j

xk.

The market proxy aims to assess other insurer premiums without specifically targeting one competitor.
It can be interpreted as the premium of an ideal medium competitor.

Now we can state our objective function. We suppose that Insurer j maximizes the expected profit
of next year policies which we here define in the multiplicative form

Oj(x) =
nj
N

(
1− βj

(
xj

mj(x)
− 1

))
(xj − πj) , (5.9)

i.e. the product of the demand Dj and the expected profit per policy, representing a company-wide
expected profit. Thus, maximizing the objective function Oj leads to a trade-off between increasing
premium to favor higher projected profit margins and decreasing premium to defend the current
market share.
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5.3.4 Solvency constraint function

Another key feature of the model is a solvency constraint the goal of which is to require insurers to
hold a certain amount of capital in order to protect policyholders against adverse collective claim
experience. Therefore, in addition to maximizing a certain objective function, insurers must satisfy
a solvency constraint imposed by the regulator. A reasonable criterion to find the minimum capital
requirement is linked to deviations of the aggregate losses from its expected value, concretely the
difference of a high-level quantile and the mean of the loss distribution. For simplicity, this quantity
is supposed to be a linear function of the standard deviation of the loss distribution as in Borch
(1962a) (see Section 5.2.3). In practice, the solvency capital is also required on a prospective basis; we
take here the simplifying assumption to use only the in-force policy number. The solvency constraint
function is defined as

g1
j (xj) =

Kj + nj(xj − πj)(1− ej)
kσ(Y )

√
nj

− 1, (5.10)

where k is the solvency coefficient chosen to approximate a 99.5% quantile and ej denotes the expense
rate. The numerator corresponds to the sum of the current capital Kj and the expected profit on
the in-force portfolio, whereas the denominator approximates the required capital. The constraint
g1
j (xj) ≥ 0 is equivalent to Kj + nj(xj − πj)(1− ej) ≥ kσ(Y )

√
nj .

In addition to the solvency constraint, we need to impose bounds on the possible premium. A
first choice could be simple linear constraints as xj − x ≥ 0 and x− xj ≥ 0, where x and x represent
the minimum and the maximum premium, respectively. The following equivalent reformulation is
numerically more stable g2

j (xj) = 1− e−(xj−x) ≥ 0 and g3
j (xj) = 1− e−(x−xj) ≥ 0.

The bounds x and x could for instance be justified by a prudent point of view of. Precisely, we
set x = E (Y ) /(1− emin) < x = 3E (Y ), where emin is the minimum expense rate. Summarizing, the
constraint function gj(xj) = (glj(xj))1≤l≤3 for Insurer j is

{xj , gj(xj) ≥ 0} =
{
xj ∈ [x, x], Kj + nj(xj − πj)(1− ej) ≥ k995σ(Y )

√
nj
}
. (5.11)

5.3.5 Game sequence

For our game with objective function Oj in (5.9) and constraint function gj in (5.11), the game
sequence is given as follows.

Game 1 Initiate positive capital levels Kj and positive portfolio sizes n.

(i) Insurers set their premium according to a Nash or a Stackelberg equilibrium x?.
(ii) Policyholders randomly choose their new insurer according to probabilities pk→j(x

?) in order to
set Nj(x

?).
(iii) For the one-year coverage, claims are random according to the frequency – average severity model

relative to the portfolio size Nj(x
?).

(iv) Finally the underwriting result is determined by UWj(x
?) = Nj(x

?)x?j (1− ej)−Sj(x?) and new
capital is Kj + UWj(x

?), where ej denotes the expense rate and Kj the initial capital value.

A certain number of theoretical properties of Game 1 has been established by Dutang et al. (2013a).
Existence and uniqueness of the Nash equilibrium is given in their Proposition 2.1, while existence of
the Stackelberg equilibrium is proved in their Proposition 2.4. Sensitivities of the premium equilibrium
with respect to parameters is studied in the following proposition
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Proposition 5.3.1 (Dutang et al. (2013a)) Let x? be the Nash premium equilibrium of the insur-
ance game with J insurers. For each Insurer j, the insurer equilibrium x?j with x?j ∈]x, x[ depends
on the parameters in the following way: it increases with break-even premium πj, solvency coefficient
k995, loss standard deviation σ(Y ), expense rate ej and decreases with sensitivity parameter βj and
capital Kj. When x?j = x or x, the premium equilibrium is independent of those parameters.

The proposed Game 1 models a rational behavior of insurers in setting premiums taking into
account other insurers. The ability of an insurer to sell contracts is essential for its survival. In terms
of equilibrium concepts, the Nash equilibrium is a natural concept when there is no strong leadership,
e.g. in private lines, whereas the Stackelberg equilibrium is relevant for lines manifesting oligopolistic
tendencies, typically corporate lines. Numerical illustrations show that the Stackelberg premiums are
higher than the Nash premiums and that these premium levels become lower when the number of
insurers in the market increases.

If we consider a more complex constraint function in Game 1, where the denominator in (5.10) uses
the expected portfolio size of Insurer j, the constraint function becomes a function of x (not only xj).
This leads to a new type of equilibrium: the generalized Nash equilibrium (5.3). Tested in Dutang
(2012a, Chapter 2), existence is still guaranteed but we loose uniqueness. To deal with non-uniqueness,
Rosen (1965) studies a subset of generalized Nash equilibrium, where Lagrange multipliers resulting
from the Karush-Kuhn-Tucker (KKT) conditions are normalized. Such a normalized equilibrium
is unique given a scale of the Lagrange multiplier when the constraint function verifies additional
assumptions. Other authors such as von Heusinger and Kanzow (2009) or Facchinei et al. (2007)
define normalized equilibrium when Lagrange multipliers are set equal. Hence, complexifying the
constraint function (5.10) is not further studied.

5.4 A one-period repeated game for non-life insurer strategies

A certain number of extensions of Dutang et al. (2013a) have been proposed by Albrecher and Daily-
Amir (2017), who consider a Bayesian framework in order to investigate the effects of asymmetric
information as well as Daily-Amir (2019, Chapter 4), which considers different objective functions
to model market shares in health insurance studied in Daily-Amir et al. (2019). Moreover, Battulga
et al. (2018) consider a m-period version of the objective function but still investigates the premium
equilibrium in a static framework.

Mouminoux et al. (2021b) consider the repeated version of the one-shot Game 1 considered by
Dutang et al. (2013a) in Section 5.3. The “game” for each insurer j ∈ {1, ..., J} consists in defining a
premium xj,t at the beginning of each year t, in order to maximize the profit by selling identical policies
to the insured market of size N . Let xt = (x1,t, . . . , xJ,t) ∈ RJ be the insurers’ price vector, with xj,t
representing premium of Insurer j for year t. We denote by x−j,t = (x1,t, . . . , xj−1,t, xj+1,t, . . . , xJ,t)
the vector xt without the jth component. This repeated game differs from other dynamic games
proposed in the literature in the fact that policyholders are random agents, insurers set price in a
repeated non-cooperative way, bankruptcy can occur either because of large losses or because of losing
customers.
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5.4.1 Extensions and modifications of the one-period game

Slight extensions have been considered by Mouminoux et al. (2021b). Firstly, most parameters are
time-dependent. We define the estimated mean of overall costs including handling costs and claims of
Insurer j as

πj,t = ωj āj,t−1 + (1− ωj)mt−1, (5.12)

where ωj ∈ [0, 1] is the credibility factor of Insurer j and the average market premium is determined
as the mean of last d market premiums.

mt−1 =
1

d

d∑
u=1

mt−u, with mt−u =

∑
j∈Jt

GWPj,t−u × x?j,t−u∑
j∈Jt

GWPj,t−u
.

Insurer j computes its actuarially based premium as the empirical mean of individual loss averages

āj,t−1 =
1

1− ej,t
1

d

d∑
u=1

Sj,t−u
nj,t−u

,

where Sj,t denotes the observed aggregate loss of Insurer j during year t and ej,t denotes the expense
rate as a percentage of gross written premium.

Secondly, an alternative market proxy value is considered, where firms do not attribute the same
weight to each competitor, and we assume here that firms put more importance on the biggest com-
petitors’ price. We analyze the following market proxy (a weighted mean of other competitors’ prices)

mj,t(x,n) =
1

N − nj

∑
k∈Jt\{j}

nkxk. (5.13)

Thirdly, objective and constraint functions are also time-dependent. The market proxy used in
Equation (5.8) is the mean of other competitors’ premium

mj,t(x) =
1

Jt − 1

∑
k∈Jt\{j}

xk. (5.14)

The market proxy aims to assess other insurers’ premiums. Assuming a positive price elasticity, the
objective function, defined as the product of a demand function and an expected profit per policy
representing a company-wide expected profit, is generalized to

Oj,t(xt) =
nj,t
N

(
1− βj

(
xj,t

mj,t(xt,nt)
− 1

))
(xj,t − πj,t) , (5.15)

where πj,t is the break-even premium j in (5.12) and mj,t(xt,nt) is the market proxy. The (tractable)
solvency constraint function is generalized to

g1
j,t(xj,t) =

Kj,t−1 + nj,t−1(xj,t − πj,t)
k995σ(Y )

√
nj,t−1

− 1, (5.16)

Note that (5.16) and (5.11) are not strictly identical since the expense term disappears in (5.11).

Mouminoux et al. (2021b), we define the repeated game as the iteration of one-period games over
T years, where Kj,t stands for the capital of Insurer j at time t, Jt for the set of active insurers and
Sj,t for the aggregate claim amount of Insurer j.
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Game 2 At time t = 0, initiate J0 = {1, . . . , J}, positive capital levels Kj,0 and positive portfolio
sizes n0. For period t = 1, . . . , T , repeat

1. The insurers among Jt maximize their objective function subject to the solvency constraint:

sup
xj,t∈[x,x]

Oj,t(xj,t,x−j,t) s.t. gj,t(xj,t) ≥ 0.

2. Once the premium equilibrium vector x?t is determined, customers randomly lapse or renew, so
we get a Nj,t(x

?
t ).

3. Aggregate claim amounts Sj,t are randomly drawn according to the chosen loss model and the
portfolio size Nj,t(x

?
t ).

4. The underwriting result for Insurer j is computed by UWj,t = Nj,t(x
?
t )× x?j,t × (1− ej,t)− Sj,t,

where ej,t corresponds to the rate of handling costs of Insurer j at time t.
5. The capital is updated via Kj,t+1 = Kj,t + UWj,t.
6. The set of competitors Jt+1 is updated by removing bankrupted insurers, tiny insurers and insol-

vent insurers.

Since the regulator asks insurers to be solvent, insurers are removed from the market when they
have a negative capital level Kj,t < 0 (bankrupted insurers). We also remove small insurers with a
market share below 0.1%, n?j,t < 0.1%N , assuming that in such a case an insurer will not be able to face
future losses and handling costs. Indeed, such an insurer will not benefit from mutualisation concepts,
essential for the insurance market and thus will decide to run-off the business. Finally, we remove
players from the game when the capital is below the minimum capital requirement (MCR), whereas
we keep them if capital is between MCR and solvency capital requirement (SCR). As a reminder,
MCR can be defined as a percentage of the SCR computed in the solvency constraint. In general, in
the non-life insurance retail market MCR is between 25% and 45% of the SCR set via the constant k
in the constraint function (5.10).

5.4.2 Theoretical properties

The following assumptions on customers are made

• A1: Customer behavior is identical across the market and over time, i.e. (Ci,t)t are identically
distributed for period t per insurer but depends on x.

• A2: Customers are independent, i.e. (Ci,t)i are independent.
• A3: The customer choice of insurer at time t depends only on the previous choice at time t− 1

and Ci,t ∼MJ(1,pj→(xt)).
• A4: No customer can enter or exit the market, the total market size N is constant.

The following assumptions on Yi,t the aggregate loss of policy i during the period t are made

• A5: There is no adverse selection, i.e. Yi,t are independent and identically distributed (i.i.d.)
random variables, ∀i = 1, . . . , N .

• A6: Catastrophic events are excluded and Yi follows a frequency – average severity loss model

Yi,t =

Mi,t∑
l=1

Zi,l,t, (5.17)

where the claim number Mi,t is independent of the claim severity Zi,l,t.
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• A7: The insurance business is short-tailed, i.e. the loss Yi is paid in total on December 31 of
each year.

Mouminoux et al. (2021b) give general properties of the lapse and loss models used in Game 2
given a price vector value.

Proposition 5.4.1 (Mouminoux et al. (2021b)) The choice (Ci,t)t of Customer i at time t is a

time-inhomo-geneous Markov chain with transition matrix P
(t)
→ = P→(x1)×· · ·×P→(xt). The Markov

chain (Ci,t)t has an invariant measure.

The choice vector (C1,t, . . . , CN,t)t of all customers at time t is a time-inhomogeneous Markov
chain with transition matrix P→(xt)⊗n (the n-times Kronecker product of the matrix P→(xt)).

Proposition 5.4.2 (Mouminoux et al. (2021b)) The insurer portfolio size vector (Nt)t is a time-
inhomo-geneous Markov chain with state space Sms. The probability generating function of Nt |Nt−1 =
n is given by

GPNt|Nt−1=n(z) =
(
zTp1→(xt)

)n1 × · · · ×
(
zTpJ→(xt)

)nJ
,

where z ∈ RJ and T denotes the matrix transpose.

Let µ be the invariant measure of (Ci,t)t. Nt | N0 = n tends to a multinomial distribution
MJ(N,µ) and the invariant measure of (Nt)t is the vector with all probabilities of that multinomial
distribution MJ(N,µ).

Proposition 5.4.3 (Mouminoux et al. (2021b)) Under Assumptions A5-A7, the moment gener-
ating function of the aggregate claim amount per insurer Sj,t at period t is given by

GMSj,t(z) = GPNj,t

(
GP
M̃j,t

(
GMZ (z)

))
,

where GP stands for the probability generating function and GM for the moment generating function.
In particular, the insurer’s aggregate claim amount Sj,t(xt) given that Nj,t = nj,t is a compound
distribution of the same kind as the individual loss amount Yi,t.

Mouminoux et al. (2021b) focus then on properties of the repeated Game 2 in the case of a strongly
regulated market. In this particular setting, a tractable expression of the invariant measure is available.

Theorem 5.4.1 (Mouminoux et al. (2021b)) The choice (Ci,t)t of Customer i at time t is a time-

homogeneous Markov chain when xt = x. In particular, P
(t)
→ = (P→(x))t. There exists a unique

invariant measure µ for (Ci,t)t given by

µ =
(

cΠ1
cΠ1 +···+cΠJ

, . . . ,
cΠJ

cΠ1 +···+cΠJ

)
with cΠ

i =
J∏

j=1,j 6=i
pj 6=. (5.18)

If in addition the choice probabilities pj→k are identical for all insurers, then µ = (1/J, . . . , 1/J).

The portfolio size vector (Nt)t at time t is a time-homogeneous Markov chain with state space Sms
for which the invariant measure is the vector with all probabilities of that multinomial distribution
MJ(N,µ).
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Also, a tractable expression of the survival function of insurer loss Sj,t is given in the following
proposition.

Proposition 5.4.4 (Mouminoux et al. (2021b)) Consider the invariant measure µ given in (5.18).
The survival function of the aggregate claim amount is given by

P (Sj,t > s) =
∑

0≤m≤N

(
N

m

)
(µj)

m(1− µj)N−m

·
∑
0≤k

P
(
M̃j,t = k|Nj,t = m

)
P

(
k∑
l=1

Zl > s

)
,

where the distribution of the total claim number M̃j,t.

Mouminoux et al. (2021b) consider the case of a deviation from a regulated price or a market-
accepted level by one insurer, yet the other competitors remain at the same level. That is, we study
xt = (x, ρx, . . . , ρx) with ρ > 0 a fixed parameter.

Theorem 5.4.2 (Mouminoux et al. (2021b)) The choice (Ci,t)t of Customer i at time t is a time-
homogeneous Markov chain. There exists a unique invariant measure µ for (Ci,t)t given by

µ1 =

dΠ
−1 −

J∑
j=2

dΠ
−1,−jpj 6=

dΠ
−1 +

J∑
j=2

dΠ
−1,−j(p16= − pj 6=)

, µj =
dΠ
−1,−jp1 6=

dΠ
−1 +

J∑
j=2

dΠ
−1,−j(p16= − pj 6=)

, j = 2, . . . , J. (5.19)

with dl = (J − 1)pl 6= + pl→1 and

dΠ
−1,−j =

J∏
l=2,l 6=j

dl, d
Π
−1 =

J∏
l=2

dl.

The portfolio sizes (Nt)t at time t is a time-homogeneous Markov chain with state space Sms for which
the invariant measure is the vector with all probabilities of that multinomial distribution MJ(N,µ).

Let us analyze the case ρ > 1, i.e. Insurer 1 is the cheapest insurer. We study the stochastic
ordering of the empirical average loss of insurers, e.g., (Shaked and Shanthikumar, 2007).

Proposition 5.4.5 (Mouminoux et al. (2021b)) If Insurer 1 is the cheapest insurer with ρ > 1,
then the loss average by policy of Insurer 1, at any time t, is stochastically smaller than the one of the
others in the following sense:

1

N1,t(x̃)

N1,t(x̃)∑
i=1

Yi ≤cx
1

Nk,t(x̃)

Nk,t(x̃)∑
i=1

Yi, ∀k 6= 1,

where x̃ = (x, ρx, . . . , ρx).
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Proposition 5.4.6 (Mouminoux et al. (2021b)) If in addition to Insurer 1 being the cheapest, for
all k 6= 1, x1(1− e1) ≤ xk(1− ek), then the underwriting result by policy is ordered UW1,t ≤icx UWk,t,
where UWj,t is the random variable

UWj,t = xj(1− ej)−
1

Nj,t(x)

Nj,t(x)∑
i=1

Yi,

where x̃ = (x, ρx, . . . , ρx).

Mouminoux et al. (2021b) investigate some long-run properties of the repeated Game 2 after
ensuring the existence and uniqueness of the premium equilibrium. The fact that the Nash equilibrium
problem reduces to a linear system in some situations was already observed in Dutang et al. (2013a,
Proposition 2.3).

Proposition 5.4.7 (Mouminoux et al. (2021b)) If there are at least two non-bankrupted insurers
at time t, the repeated game with objective function (5.9) and solvency constraint (5.11) admits an
unique (Nash) premium equilibrium. If in addition no constraint function is active, the premium
equilibrium solves a linear system of equations.

Due to the long-term behavior of portfolio size and loss amounts, Mouminoux et al. (2021b) derives
the leadership probability as well as the end of the game.

Proposition 5.4.8 (Mouminoux et al. (2021b)) For the repeated insurance game, the probability
that there are at least two non-bankrupt insurers at time t decreases geometrically as t increases.

5.4.3 Numerical outputs

In a Monte-Carlo analysis, Dutang (2014a) analyze some random paths of the repeated Game 2 using
the following packages: actuar for simulating loss models, GNE for computing Nash equilibrium
repeatively and NLIG for the repeated game. This game-theoretic approach allows to account for the
effect of competition on insurer solvency. The proposed rational game shows that the most significant
part of solvency relies on the ability of insurers to sell contracts (i.e. premium risk). This is opposite
to classic risk theory where the collection of premiums is fixed per unit of time and the main risk is
the randomness of losses.

Secondly, Game 2 also sheds new light on the presence of cycles in non-life insurance markets.
Since for a range of parameters the market premium appears to be cyclical, we add a new argument
in favor of a rational explanation (i.e. competition and loss uncertainty) for the presence of insurance
cycles. This was also observed in Boonen et al. (2018) with open-loop Nash equilibrium strategies as
well as in Lazar and Denuit (2012) with an econometric approach.

Mouminoux et al. (2021a) further study economics aspects of insurer solvency in Game 2 facing
both the insurance loss uncertainty and the effect of competition. They apply the repeated Game 2 on
the French motor market by considering the TOP-5 insurers in order to compute ruin and leadership
probabilities.
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Bensalem, S., Santibáñez, N. H., and Kazi-Tani, N. (2020). Prevention efforts, insurance demand
and price incentives under coherent risk measures. In: Insurance: Mathematics and Economics 93,
pp. 369–386 (cit. on p. 70).

Bernegger, S. (1997). The Swiss Re Exposure Curves and the MBBEFD Distribution Class. In: ASTIN
Bulletin 27.1, pp. 99–111 (cit. on pp. 13, 37).
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Le Faou, Y. (2019). Contributions à la modélisation des données de durée en présence de censure:
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Appendix A

Additional examples of distributions in
the exponential family

A.1 Chapter 2

Name X θ Θ η T (x) B(θ) h

Normal R (µ, σ2) R× R?+ ( µσ2 ,
−1
σ2 ) (x, x2) µ2

2σ2 + log(2πσ2)
2 11R(x)

Gamma R?+ (α, λ) (R?+)2 (−1
λ , α) (x, log(x)) α log λ+ log Γ(α)

11R?
+

(x)

x

Beta (0, 1) (a, b) (R?+)2 (a, b) (log(x), log(1− x)) log β(a, b)
11(0,1)(x)

x(1−x)

Table A.1 – Some examples for d = 1

Nom X θ Θ η T (x) B(θ) h

Normal Rd (µ,Σ) Rd,Rd×d Σ−1µ,− 1
2
Σ−1 x, xxT µTΣ−1µ

2
+ log det(Σ)

2

µ,Σ

Multinomial x ∈ Nd

 p1

...
pd−1

 p ∈ [0, 1]d−1


log( p1

pd
)

...
log(

pd−1

pd
)


x1

...
xd

 n log(pd)
n!11X (x)∏d
j=1 xj !

n; p
∑
i

xi = n pd = 1−
∑
i

pi

Table A.2 – Some examples for d ≥ 2
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