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ABSTRACT 

The design based on periodic elements is a powerful strategy for the achievement of lightweight sound 

packages and represents a convenient solution for manufacturing aspects. 

Several theoretical models exist to study the physical behavior of porous and poro-elastic media, and 

the most complex ones are based on the definition of more than ten parameters. For example, the 

theory of poro-elasticity formulated by Maurice Biot allows to take into account the mechanical 

properties of the foam, simultaneously to its acoustical characteristics. In addition, some of these 

parameters are very complicated to measure; therefore, while the estimation of all the necessary 

parameters usually represents the starting point in the construction of a reliable model, in this case it 

constitutes by itself a specific difficulty. This is one of the reasons why, although poro-elastic media 

are extensively used for several industrial applications in order to fulfill strictly-regulated requirements 

of noise reduction, their modeling still represents a non-trivial issue. Numerical simulation techniques, 

like Finite Element Methods (FEM), may be problematic in case of real complex geometries, especially 

in terms of computational times and mesh convergence. On the other hand, analytical models, 

although being partially limited by approximating assumption, constitute a powerful tool to quickly 

understand physics and general trends of the problem. 

Even if porous and poro-elastic media are widely used for vibroacoustic applications, they suffer from 

a lack of performances at low frequencies compared to their efficiency at higher ones. This issue is 

generally overcome by multi-layering; anyway, the efficiency of such systems depends on the 

allowable thickness. A more efficient technique to improve the low frequency performances of sound 

packages consists in including a periodic pattern in a foam, in order to create wave interferences or 

resonance effects that may be advantageous for the system dynamics. In this context, numerical tools 

to properly design sound packages are more and more studied. An interesting research target is the 

inclusion of vibroacoustic treatments at early stage of product development through the use of porous 

media with periodic inclusions, which exhibit proper dynamic filtering effects; this addresses different 

applications in transportation (aerospace, automotive, railway), energy and civil engineering sectors, 

where both weight and space, as well as vibroacoustic comfort, still remain as critical issues. 

The main numerical tool that is developed in this work is the shift cell operator approach, which allows 

the description of the propagation of all existing waves from the definition of the unit cell, through the 

resolution of a quadratic eigenvalue problem that can handle any frequency-dependent parameters. 

It belongs to the class of the 𝑘(𝜔) (wave number as a function of the angular frequency) techniques, 

instead of using the classical 𝜔(𝑘) (angular frequency as a function of wave number) that leads to non-

linear eigenvalue problems. This method has been already successfully used for the description of the 

mechanical behavior of periodic visco-elastic or piezoelectric structures. Here it is proposed an 

extension to equivalent fluid and diphasic models of porous materials, which makes possible to 

overcome the limits of existing approaches in order to obtain a device whose frequency efficiency 

outperforms existing designs. 

The aim of this manuscript, therefore, is to introduce some enhancements to the state of the art of 

the shift cell approach applied to equivalent fluid and diphasic models embedding a periodic pattern. 
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1. INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

“If we knew what it was we were doing, it would not  be called research, would it?”  

(Albert Einstein) 

  



 
8 

A metamaterial is an arrangement of artificial structural elements designed to achieve unusual 

properties, whose main advantage, over their conventional counterparts, comes from their 

designability. With their customized and tunable responses, metamaterials offer excellent flexibility in 

material design and bring a new perspective in understanding materials. Once metamaterial 

researchers understood the basics, subsequent years saw a transition into potential and actual 

applications. Consequently, commercialized software introduced specific modules for metamaterial 

simulation. With the advancement of software and hardware in parallel computing and clusters, 

nowadays the simulation of metamaterial-inspired devices and equipment is viable and cost-effective 

[1]. Indeed, the metamaterial market is expected to have a high growth during the next years: the 

overall market is expected to be valued at USD 4635 Million by 2025 from USD 30 Million in 2016 [2]. 

Fast urbanization and transport development cause serious noise-induced health risks, such as 

annoyance, sleep disturbance, or even ischemic heart disease [3]. Therefore, nowadays, environment 

noise control is becoming a subject of great interest. Generally, common sound absorbing materials 

could be divided into two categories: resonant and porous materials [4]. Resonant materials for sound 

absorption mainly involve Helmholtz resonators [5] and/or perforated panels [6]. They are based on 

the principle of internal resonance effect; these materials shows good performances at low 

frequencies, but they often have the disadvantage of narrow frequency stop-bands [7]. Porous 

materials for acoustic applications are composed of channels, cracks or cavities that allow the sound 

waves entering the materials. Sound energy is dissipated by thermal and viscous losses; these energy 

consumption principles assure sound absorption over broader frequency ranges [8], [9].  

The design based on periodic elements is a powerful strategy for the achievement of lightweight sound 

packages and represents a convenient solution for manufacturing aspects [10]. An interesting research 

target is the inclusion of vibroacoustic treatments at early stage of product development through the 

use of porous media with periodic inclusions [11], which exhibit proper dynamic filtering effects [12]–

[16]; this addresses different applications in transportation (aerospace [17], [18], automotive [19]–

[23], railway), energy and civil engineering sectors, where both weight and space, as well as 

vibroacoustic comfort, still remain as critical issues [24]. 

As described by Horoshenkov [25], there is growing interest in innovative solutions concerning 

materials for acoustic applications. Moreover, inhomogeneous materials have been considered in the 

relevant literature [26], [27]. In order to enhance the acoustic properties of these materials, several 

studies have investigated the case of double porosity [28]–[31]. The double porosity configuration 

consists in a set of periodical perforations, in the thickness direction. Under certain conditions, the 

perforated material can be considered as an equivalent homogeneous porous material. Double 

porosity materials have proven to be very effective for the enhancement of acoustic properties [32]. 

To this aim, the Wave Finite Element Method (WFEM) is widely used in the relevant literature in order 

to study wave propagation in periodic structures [33], [34], combining the advantages of the Finite 

Element Method (FEM) and spectral techniques [35]. This method has been formulated mainly for 

acoustic [36] and piezoelectric [37] problems. However, almost all the current approaches are based 

on harmonic response computations, hence they depend on the excitation. 

The added value of the main numerical tool which is developed in this work, the shift cell technique, 

is that it provides information (dispersion diagrams) that are independent from the excitation, and 

therefore it constitutes a valuable tool for the design of original solutions that will be efficient 

regardless of the excitation. The shift cell operator approach allows the description of the propagation 

of all existing waves from the description of the unit cell through the resolution of a quadratic 

eigenvalue problem, which can handle any frequency-dependency of parameters [38]–[43]. 
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It belongs to the class of the 𝑘(𝜔) (wave number as a function of the angular frequency) methods, 

which allow computing dispersion curves for frequency-dependent problems, instead of using the 

classical 𝜔(𝑘) (angular frequency as a function of wave number) that leads to non-linear eigenvalue 

problems. This technique has been successfully applied for describing the mechanical behavior of 

periodic structures embedding visco-elastic materials [44]–[48] or piezoelectric materials [49]. 

Here we propose an extension to equivalent fluid and diphasic models of porous materials, which 

makes possible to overcome the limits of existing approaches in order to obtain a device whose 

frequency efficiency outperforms existing designs [50]–[53]. 

In particular, compared to the research performed by Wang et al. [54], [55], in the present work the 

𝑘(𝜔) problem (herein addressed as “shift cell”) is specifically derived for porous and poro-elastic 

materials, respectively modeled as equivalent fluids and Biot foams. In this manuscript, these models 

precisely describe the physical behavior for rigid-framed and elastic-framed foams; in addition, the 

formulation developed here is not restricted to 1D, and it is provided in details for FE implementation. 

In this context, the aim of this manuscript is to introduce some enhancements to the state of the art 

of the shift cell technique applied to equivalent fluid and diphasic models. 

 

1.1. Definition of porous medium 

A porous medium is a material containing pores (voids). The skeleton of the material is usually referred 

to as “matrix” or “frame”. The pores are generally filled with a fluid (liquid or gas). Several natural 

materials, such as rocks and soil (e.g., aquifers, petroleum reservoirs), zeolites, biological tissues (e.g. 

bones, wood, cork) and artificial substances, such as cements and ceramics, can be considered as 

porous materials [56]. Indeed, the most part of their fundamental properties can only be rationalized 

by considering them to be porous materials [57]. The concept of porous material is used in different 

fields of applied science and engineering [58]: 

 filtration; 

 mechanics (acoustics, geomechanics, soil mechanics, rock mechanics); 

 engineering (petroleum engineering, bio-remediation, construction engineering); 

 geosciences (hydrogeology, petroleum geology, geophysics); 

 biology and biophysics; 

 material science. 

A foam is a porous medium that is formed by trapping pockets of gas in a liquid or solid. A bath sponge 

and the head on a glass of beer are examples of foams. An important division of solid foams is into 

closed-cell foams and open-cell foams [59], [60]: 

 in a closed-cell foam, the gas forms discrete pockets, each completely surrounded by the solid 

material; 

 in an open-cell foam, the gas pockets connect with each other. 

A bath sponge is an example of an open-cell foam: water can easily flow through the entire structure, 

displacing the air. A camping mat is an example of a closed-cell foam: the gas pockets are sealed from 

each other so the mat cannot soak up water. The term foam may also refer to anything that is 

analogous to such a foam, such as quantum foam, polyurethane foam (foam rubber), XPS foam, 

polystyrene, phenolic, or many other manufactured foams [61]. 
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In particular, polyurethane (PUR and PU) is a polymer composed of organic units joined by carbamate 

(urethane) links. While most PUs are thermosetting polymers that do not melt when heated, 

thermoplastic polyurethanes are also available. Nowadays, PUs are used in the manufacture of: 

 high-resilience foam seating; 

 rigid foam insulation panels; 

 microcellular foam seals and gaskets; 

 durable elastomeric wheels and tires (such as roller coaster, escalator, shopping cart, elevator, 

and skateboard wheels); 

 automotive suspension bushings; 

 electrical potting compounds; 

 high performance adhesives; 

 surface coatings and surface sealants; 

 synthetic fibers; 

 carpet underlay; 

 hard-plastic parts (e.g., for electronic instruments). 

A porous medium is most often characterized by its porosity [62]. Both the solid matrix and the pore 

space may be continuous, so as to form two interpenetrating continua such as in a sponge [56]. 

Porosity or void fraction is a measure of the void (i.e. "empty") spaces in a material, and is a fraction 

of the volume of voids over the total volume, between 0 and 1, or as a percentage between 0 and 

100%. Porosity is defined by the ratio: 

 𝜙 =
𝑉𝑉

𝑉𝑇
  (1) 

where 𝑉𝑉is the volume of void-space (such as fluids) and 𝑉𝑇 is the total or bulk volume of material, 

including the solid and void components. Effective porosity is most commonly considered to represent 

the porosity of a structure available to contribute to fluid flow through it. The acoustic performance of 

poro-elastic materials used in sound packages is controlled by dissipative effects in the fluid filling the 

porous space and by the deformation of the porous skeleton [63]. On this basis, Biot proposed a system 

of coupled displacement equations, one for the porous frame and one for the interstitial fluid [64]. 

 

1.2. Propagation models 

Many theoretical models are available to predict the physical behavior of porous materials. The most 

complex models require the definition of more than ten parameters to model the physical system of a 

porous absorbing material. It is the case, for example, of the theory of poro-elasticity developed by 

Maurice Biot [65], which allows to take into account the mechanical properties of the material, 

simultaneously to its acoustical behavior [66]. Moreover, some of the parameters that are present in 

the different theoretical models are very difficult to measure. In general, the measurements of all the 

necessary parameters, that usually constitute the first step in the construction of a reliable model, 

represent by themselves a specific issue. Therefore, even if porous materials are widely used in many 

fields of industrial applications to achieve the requirements of noise reduction, that nowadays derive 

from strict regulations, the modeling of porous materials is still a problematic issue. Numerical 

simulations, like FEM, are often problematic in case of real complex geometries, especially in terms of 

computational times and convergence. At the same time, analytical models, even if partly limited by 

restrictive approximating hypotheses, represent a powerful instrument to capture quickly the physics 

of the problem and general trends [32]. 
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1.2.1. Motionless skeleton ("equivalent fluid") models  

The phase decoupling frequency is defined as the frequency for which the inertial effects of the solid 

phase are equal, in magnitude, to the viscous effects of the fluid part [67]. The expression of the phase 

decoupling frequency is given by Zwikker and Kosten as 𝑓𝑑 =
𝜎𝜙2

2𝜋𝜌
. 

If one considers a foam, excited by an acoustic load at a frequency much higher than the phase 

decoupling one, with a stiffness (or a weight) much greater than the one of the air, the material frame 

can be considered as rigid and motionless [68]. Therefore, the porous medium with motionless 

skeleton can be replaced by the homogeneous fluid layer without modifying the reflected field in the 

external medium [10]. Two classes of equivalent fluid models (i.e. expressions of complex 𝜌 and 𝐾 as 

functions of the frequency and of the pore shape) can be listed [68]: 

 Empirical models, which generally require the knowledge of a small number of parameters (or 

information); even if they are based on approximating assumptions, they are still very popular 

and very used. 

 Semi-phenomenological models, which have been formulated for more complex pore 

morphologies; for this class of models, only the asymptotic behaviors are known, while a 

behavior between these asymptotes is assumed without being mathematically proven. 

Some of the models reported above are further described: 

1. Delany-Bazley (1970) – 1 parameter empirical model; 

2. Delany-Bazley-Miki (1990) – 1 parameter empirical model; 

3. Johnson-Champoux-Allard (1987 – 1991) – 5 parameters semi-phenomenological model; 

4. Johnson-Champoux-Allard-Lafarge (1993) – 6 parameters semi-phenomenological model; 

5. Johnson-Champoux-Allard-Pride-Lafarge (1997) – 8 parameters semi-phenomenological model. 

 

1.2.1.1. Delany-Bazley model (1970) 

From a large number of measurements on fibrous materials with porosities close to 1, Delany and 

Bazley [69] have proposed empirical expressions for the values of the complex wave number 𝑘 and 

characteristic impedance 𝑍𝑐 for such materials: 

 𝑍𝑐 = 𝜌0𝑐0 [1 + 9.08 (10
3 𝑓

𝜎
)
−0.75
− 𝑗11.9 (103

𝑓

𝜎
)
−0.73
], (2) 

 𝑘 =
𝜔

𝑐0
[1 + 10.8 (103

𝑓

𝜎
)
−0.70
− 𝑗10.3 (103

𝑓

𝜎
)
−0.59
]. (3) 

Boundaries, proposed by the authors, for the validity of these power law expressions are: 

 0.01 <
𝑓

𝜎
< 1.00. (4) 

This empirical model, which can provide reasonable estimations of 𝑘 and 𝑍𝑐 in the approximative 

frequency range defined above, is still widely used for its simplicity: only one parameter, 𝜎, is needed 

to describe the acoustic behavior of a material. 
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1.2.1.2. Delany-Bazley-Miki model (1990)  

The model by Delany-Bazley-Miki [70] presents revised expressions for the complex wave number 𝑘 

and characteristic impedance 𝑍𝑐 of Delany-Bazley model [69]. In the case of multi-layers, Miki noticed 

that the real part of the surface impedance, when estimated with the classical Delany-Bazley model, 

may turn negative at low frequencies, thus leading to a non-physical result. In this context, Miki 

suggests the usage of the following expressions: 

 𝑍𝑐 = 𝜌0𝑐0 [1 + 5.50 (10
3 𝑓

𝜎
)
−0.632

− 𝑗8.43 (103
𝑓

𝜎
)
−0.632
], (5) 

 𝑘 =
𝜔

𝑐0
[1 + 7.81 (103

𝑓

𝜎
)
−0.618

− 𝑗11.41 (103
𝑓

𝜎
)
−0.618
]. (6) 

The elapsed time (20 years) between the formulation of the original Delany-Bazley model and Miki 

corrections may explain, partially, the wide usage of the first expressions although the second ones 

should be preferred. The validity of Miki model is the same of that related to the original formulation, 

even if his revised expressions behaves well in a larger frequency range, in particular for 
𝑓

𝜎
< 0.01. 

Figure 1 shows the normalized surface impedance computed from the original models (thin lines) and 

the new models (thick lines) with flow resistivity 𝜎 = 100,000 N*s*m−4 and thickness 𝑑 = 10 mm. It 

is seen that these results show a distinct difference at frequencies below 1 kHz and that the real part 

of the former becomes negative with decreasing frequency. Such an impedance cannot be realized. 

This frequency range is found to be coincident with the range 𝑓/𝜎 < 0.01 to which Delany and Bazley 

gave a warning not to extrapolate their models. At least the Delany-Bazley-Miki model is well behaved 

in this frequency range, although this does not necessary means that it provides a good prediction of 

the acoustic behavior in this range. 

 

Figure 1: Comparison between the surface impedance predicted from the new model and that from the original model with 
𝜎 = 100,000 N*s*m−4 and 𝑑 = 10 mm [70]. 
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Figure 2: Comparison between measured and predicted surface impedance. Dots are the measured data by Nakajima et al.. 
Thick curves and thin curves show the predictions from the new model and the original, respectively, with 𝜎 = 41,000 

N*S*M−4 and (a) 𝑑 = 50 mm, (b) 𝑑 = 100 mm [70]. 

Figure 2 shows the normalized surface impedance data obtained by T. Nakajima and T. Kawai for a 

rigidly backed rock wool of 50 (on the left) and 100 (on the right) mm thickness with 150 kg/m3 density. 

The thick curves in Figure 1 and Figure 2 show the impedance computed from the new models with 

𝜎 = 41,000 N*S*M−4. The thin curves show the impedance computed from the original models with 

the same 𝜎-value. In this example, it may be said that the prediction from the new models is superior 

to that from the original over the whole frequency range, especially in the range 𝑓 <  400 Hz, which 

is out of the validity range of the original model [70]. 

 

1.2.1.3. Johnson-Champoux-Allard model (1987 – 1991) 

The Johnson-Champoux-Allard model is based on the work by Johnson, Koplik & Dashen [71] to 

describe visco-inertial dissipative effects inside the porous media. The work by Champoux & Allard [72] 

is used to describe the thermal dissipative effects. In 1987, Johnson Koplik and Dashen proposed a 

semi-phenomenological model to describe the complex density of an acoustical porous material with 

a motionless skeleton having arbitrary pore shapes. This expression is: 

 𝜌(𝜔) =
𝛼∞𝜌0

𝜙
[1 +

𝜎𝜙

𝑗𝜔𝜌0𝛼∞
√1 + 𝑗

4𝛼∞
2 𝜂𝜌0𝜔

𝜎2𝛬2𝜙2
]. (7) 

In 1991, Champoux and Allard formulated an expression for the equivalent bulk modulus for the same 

kind of foams, based on the previous research by Johnson et al.: 

 𝐾(𝜔) =

𝛾𝑃0
𝜙

𝛾−(𝛾−1)[1−𝑗
8𝜅

𝛬′2𝑐𝑝𝜌0𝜔
√1+𝑗

𝛬′2𝑐𝑝𝜌0𝜔

16𝜅
]

−1 , (8) 

where: 

 𝑃0 [kg/(m*s2)] is the fluid equilibrium pressure; 
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 𝜅 is the thermal conductivity of the air (≈0.0257 kg*m/(s3*K) for air at 20°C). 

 

Figure 3: Dynamic tortuosity of air for a porous ceramic media: (a) reaI part, (b) imaginary part. Solid line and dots 
respectively represent theoretical prediction and experimental results [72]. 

 

Figure 4: Dynamic bulk modulus (in units of 𝑃0) of air for a porous ceramic: (a) real part, (b) imaginary part. Solid line and 
dots respectively represent theoretical prediction and experimental results [72]. 

The expression of 𝜌 found by Johnson, Koplik & Dashen does not represent the exact behavior of the 

equivalent mass density when 𝜔 approaches low values; in this case, its real part (or the imaginary 

part of the dynamic permeability) is not correct. The ame happens for the expression of the equivalent 

bulk modulus given by Champoux & Allard. 

The porous medium used in the experimental investigation is a Filtros porous ceramic QF-130. The 

values of the measured physical parameters are 𝜙 =  0.432, 𝛼 ∞ =  1.70, and 𝜎 =  44,500 N*S*M−4. 
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The dynamic bulk modulus, after having been normalized by the fluid equilibrium pressure 𝑃0, has 

been evaluated for the range of 50-5000 Hz. 

At low frequencies, the real part of the dynamic bulk modulus approaches asymptotically a numerical 

value equal to 1, clearly indicating an isothermal process, while at high frequencies it approaches a 

value of 1.4, indicating an adiabatic process. The imaginary part approaches zero at both low and high 

frequencies. It appears that the prediction of the real part of dynamic tortuosity becomes very good 

around 𝑓 > 450 Hz, while both real and imaginary part of dynamic bulk modulus lightly deviates from 

experimental data in the range between 300 and 1500 Hz [72]. 

 

1.2.1.4. Johnson-Champoux-Allard-Lafarge model (1993) 

The Johnson-Champoux-Allard-Lafarge model is based on the research by Johnson, Koplik & Dashen 

[71] to estimate visco-inertial dissipation inside porous materials, while the works by Champoux & 

Allard [9] and Lafarge, Lemarinier, Allard & Tarnow [73] are used to define the thermal dissipation. The 

description of 𝜌 remains the same of the JCA model, while that of 𝐾 is modified in 1993 by Lafarge et 

al., which highlight a lack of information at low frequencies due to thermal effects. Indeed, in the JCA 

model, four parameters are used to calculate 𝜌 and the visco-inertial effects, while only two 

parameters are required to estimate 𝐾 and the thermal effects. This observation leads Lafarge et al. 

to the introduction of a new parameter, the static thermal permeability 𝑘0
′ =
𝜙𝛬′2

8
 [m2], in order to 

describe the low frequency behavior taking into account also thermal effects. The new expression of 

𝐾, introduced by Lafarge et al., is: 

 𝐾(𝜔) =

𝛾𝑃0
𝜙

𝛾−(𝛾−1)[1−𝑗
𝜙𝜅

𝑘0
′ 𝑐𝑝𝜌0𝜔

√1+𝑗
4𝑘0
′ 𝑐𝑝𝜌0𝜔

𝜅𝛬′2𝜙2
]

−1 . (9) 

In any case, this expression is still not correct at low frequencies. 

 

1.2.1.5. Johnson-Champoux-Allard-Pride-Lafarge model (1997) 

The Johnson-Champoux-Allard-Pride-Lafarge model [73] is further refined by Pride, Morgan & Gangi 

(and corrected by D. Lafarge) in 1997, in order to account for pores with possible constrictions between 

them. The final expression obtained for 𝜌 is: 

 𝜌 =
𝜌0𝛼(𝜔)

𝜙
, (10) 

with: 

 𝛼(𝜔) = 𝛼∞ [1 +
1

𝑗𝜔
𝐹(𝜔)], (11) 

 𝜔 =
𝜔𝜌0𝑘0𝛼∞

𝜂𝜙
, (12) 

 𝐹(𝜔) = 1 − 𝑃 + 𝑃√1 +
𝑀

2𝑃2
 𝑗𝜔, (13) 

 𝑃 =
𝑀

4(
𝛼0
𝛼∞
−1)
, (14) 
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 𝑀 =
8𝑘0𝛼∞

𝜙𝛬2
, (15) 

and where 𝛼0 is the static viscous tortuosity. The final expression obtained for 𝐾 is: 

 𝐾 =
𝛾𝑃0

𝜙𝛽(𝜔)
, (16) 

with: 

 𝛽(𝜔) = 𝛾 − (𝛾 − 1) [1 +
1

𝑗𝜔
′ 𝐹
′(𝜔)]

−1

, (17) 

 𝜔
′
=
𝑘0
′𝑐𝑝𝜌0𝜔

𝜅𝜙
, (18) 

 𝐹′(𝜔) = 1 − 𝑃′ + 𝑃
′√1+

𝑀′

2𝑃′
2 𝑗𝜔

′

, (19) 

 𝑃′ =
𝑀′

4(𝛼0
′−1)
, (20) 

 𝑀′ =
8𝑘0
′

𝜙𝛬′
2. (21) 

 

1.2.2. Diphasic models (Biot theory) 

For many materials having an elastic frame and set on a rigid floor, the frame can be almost motionless 

for large ranges of acoustical frequencies, thus allowing the use of models worked out for rigid framed 

materials. Nevertheless, this is not generally true for the entire range of acoustical frequencies. 

Moreover, for a material set between two elastic plates and for many other similar situations, frame 

vibration is induced by the vibrations of the plates. The transmission of sound through such a sandwich 

can be predicted only in the context of a model where both the fluid and solid parts move [10]. Such a 

model is provided by the Biot theory [64] of sound propagation in poro-elastic materials. Only the case 

of isotropic porous structures is herein considered. According to the Biot theory, the deformations of 

the structure related to wave propagation are supposed to be similar to those in an elastic solid [74]. 

 

Figure 5: A layer of porous material bonded on to a rigid wall, in a normal acoustic field [10]. 

In order to obtain simple boundary conditions at the interface, the material is glued to the wall. Under 

a normal acoustic load, the shear wave is not excited and only the compressional waves propagate in 

the medium. The description of the acoustic field is easier for this case than for oblique incidence. 
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Thus, the Biot theory is used to study the behavior, represented by the surface impedance, of the foam 

in a normal acoustic field. Two incident and two reflected compressional waves propagate in directions 

parallel to the 𝑥 axis. The velocity of the solid and fluid parts are respectively defined as [10]: 

 �̇�𝑠(𝑥) = 𝑉𝐼
1𝑒−𝑗𝛿1𝑥 + 𝑉𝑅

1𝑒𝑗𝛿1𝑥 + 𝑉𝐼
2𝑒−𝑗𝛿2𝑥 + 𝑉𝑅

2𝑒𝑗𝛿2𝑥 , (22) 

 �̇�𝑓(𝑥) = 𝜇1[𝑉𝐼
1𝑒−𝑗𝛿1𝑥 + 𝑉𝑅

1𝑒𝑗𝛿1𝑥] + 𝜇2[𝑉𝐼
2𝑒−𝑗𝛿2𝑥 + 𝑉𝑅

2𝑒𝑗𝛿2𝑥], (23) 

where: 

 the time dependence 𝑒𝑗𝜔𝑡 has been removed; 

 the quantities 𝑉𝐼
1, 𝑉𝑅
1, 𝑉𝐼
2, 𝑉𝑅
2 are the velocities of the frame at 𝑥 =  0 associated with the 

incident and the reflected first and second Biot compressional waves; 

 the eigenvalues 𝛿1 and 𝛿2 are the complex wave numbers of the two compressional waves 

𝛿1 = √
𝐴1

2
−√
𝐴1
2

4
− 𝐴2 and 𝛿2 = √

𝐴1

2
+√
𝐴1
2

4
− 𝐴2. 

The parameters that characterize the poro-elastic material are: 

 𝜙 is the open porosity; 

 𝜎 is the static flow resistivity; 

 𝛼∞ is the tortuosity; 

 𝛬 is the viscous characteristic length; 

 𝜂𝑣𝑖𝑠𝑐 is the viscosity; 

 𝑞0 =
𝜂𝑣𝑖𝑠𝑐

𝜎
 is the static viscous permeability; 

 𝜈𝑣𝑖𝑠𝑐 =
𝜂𝑣𝑖𝑠𝑐

𝜌0
; 

 𝜈𝑡ℎ𝑒𝑟𝑚 =
𝜈𝑣𝑖𝑠𝑐

𝑃𝑟
; 

 𝑃𝑟 is the Prandtl number. 

Furthermore, the following quantities are defined [75]: 

 𝐴1 = 𝜔
2 �̃�11𝑅−2�̃�12𝑄+�̃�22𝑃

𝑅𝑃−𝑄2
; 

 𝐴2 = 𝜔
4 �̃�11�̃�22−�̃�12

2

𝑅𝑃−𝑄2
; 

 �̃�11, �̃�12 and �̃�22 are parameters depending on the nature and the geometry of the porous 
medium and the density of the fluid; in particular: 

o �̃�11 = 𝜌1 + 𝜌𝑎 +
𝑏

𝑗𝜔
; 

o �̃�12 = −𝜌𝑎 −
𝑏

𝑗𝜔
; 

o �̃�22 = 𝜙𝜌0 + 𝜌𝑎 +
𝑏

𝑗𝜔
. 

 𝜌0 is the bulk density of the fluid phase; 

 𝜌1 is the bulk density of the solid phase; 

 𝜌𝑎 = 𝜙𝜌0(𝛼∞ − 1) is an inertial coupling term; 

 𝑏 = 𝜎𝜙2𝐺(𝜔) is the viscous drag; 

 𝐺(𝜔) = √1 +
4𝑗𝛼∞

2𝜂𝑣𝑖𝑠𝑐𝜌0𝜔

(𝜎𝛬𝜙)2
 is the relaxation function, as predicted by Johnson-Champoux-

Allard model [71], [72]; 

 �̃� = (�̃�11 −
�̃�12
2

�̃�22
) ; 

 𝑃, 𝑄, 𝑅 are elasticity coefficients to be determined by “gedanken experiments” [10]; in 
particular [62]: 
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o 𝑃 =
(1−𝜙)(1−𝜙−

𝐾𝐵

𝐾𝑆
)𝐾𝑆+𝜙

𝐾𝐵∗𝐾𝑆

𝐾𝐹

1−𝜙−
𝐾𝐵

𝐾𝑆
+𝜙
𝐾𝑆

𝐾𝐹

−
2

3
𝑁 ≅ (1 +

𝜈

1−2𝜈
)2𝑁 +

1−𝜙2

𝜙
𝐾𝐹; 

o 𝑄 =
(1−𝜙−

𝐾𝐵

𝐾𝑆
)𝜙𝐾𝑆

1−𝜙−
𝐾𝐵

𝐾𝑆
+𝜙
𝐾𝑆

𝐾𝐹

≅ (1 − 𝜙)𝐾𝐹; 

o 𝑅 =
𝜙2𝐾𝑆

1−𝜙−
𝐾𝐵

𝐾𝑆
+𝜙
𝐾𝑆

𝐾𝐹

≅ 𝜙𝐾𝐹. 

 𝑁 = |𝑁|(1 + 𝑗𝜂) =
𝑌

2(1+𝜈)
 is the complex shear modulus of the frame; 

 𝑌 = |𝑌|(1 + 𝑗𝜂) is the complex Young modulus of the frame; 

 𝜂 is the loss factor of the frame; 

 𝜈 is the Poisson’s ratio of the frame; 

 𝐾𝐵 =
2𝑁(𝜈+1)

3(1−2𝜈)
 is the bulk modulus of the frame in vacuum; 

 𝐾𝑆 =
𝐾𝐵

1−𝜙
 is the bulk modulus of the elastic solid from which the frame is made; 

 𝐾𝐹 is the bulk modulus of the fluid phase, computed starting from the equivalent one (e.g.: 

𝐾𝐹 = 𝜙𝐾𝐽𝐶𝐴); 

 �̃� = 𝜙 (
�̃�12

�̃�22
−
𝑄

𝑅
); 

 𝜇𝑖 =
𝑃𝛿𝑖
2−𝜔2�̃�11

𝜔2�̃�12−𝑄𝛿𝑖
2 , 𝑖 = 1,2 is the ratio of the velocity of the air over the velocity of the frame for 

the two compressional waves and indicates in what medium the waves propagate 
preferentially. 

The stresses in the material are given by: 

 𝜎𝑥𝑥
𝑠 (𝑥) = −𝑍1

𝑠[𝑉𝐼
1𝑒−𝑗𝛿1𝑥 − 𝑉𝑅

1𝑒𝑗𝛿1𝑥] − 𝑍2
𝑠[𝑉𝐼
2𝑒−𝑗𝛿2𝑥 − 𝑉𝑅

2𝑒𝑗𝛿2𝑥], (24) 

 𝜎𝑥𝑥
𝑓 (𝑥) = −𝜙𝑍1

𝑓
𝜇1[𝑉𝐼

1𝑒−𝑗𝛿1𝑥 − 𝑉𝑅
1𝑒𝑗𝛿1𝑥] − 𝜙𝑍2

𝑓
𝜇2[𝑉𝐼

2𝑒−𝑗𝛿2𝑥 − 𝑉𝑅
2𝑒𝑗𝛿2𝑥], (25) 

where: 

 the quantities 𝑍1,2
𝑠,𝑓

 are the characteristic impedances related to the propagation of the wave 

in the solid and in the air associated with first and second Biot compressional waves; 

 𝑍1,2
𝑠 = (𝑃 + 𝑄𝜇1,2)

𝛿1,2

𝜔
; 

 𝑍1,2
𝑓
= (𝑅 +

𝑄

𝜇1,2
)
𝛿1,2

𝜙𝜔
. 

 

Figure 6: A thin layer of air and porous material including the boundary [10]. 

At 𝑥 =  0, where the wall and the material are in contact, the velocities are equal to zero: 

 �̇�𝑠(0) = �̇�𝑓(0) = 0. (26) 
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At 𝑥 =  −𝑙, the porous material is in contact with the free air. Let us consider a thin layer of air and 

porous material, including this boundary. 

Let us denote by 𝑝(−𝑙 −  휀) the pressure in the air on the left-hand side of the thin layer, while 

𝜎𝑥𝑥
𝑠 (−𝑙 +  휀) and 𝜎𝑥𝑥

𝑓
(−𝑙 +  휀) are the stresses acting on the air and on the frame on the right-hand 

side. The resulting force ∆𝐹 acting on the thin layer is: 

 ∆𝐹 = 𝑝(−𝑙 − 휀) + 𝜎𝑥𝑥
𝑠 (−𝑙 +  휀) + 𝜎𝑥𝑥

𝑓 (−𝑙 +  휀). (27) 

This force tends to zero with 휀, and a boundary condition for the stress at 𝑥 =  −𝑙 is: 

 𝑝(−𝑙) + 𝜎𝑥𝑥
𝑠 (−𝑙) + 𝜎𝑥𝑥

𝑓 (−𝑙) = 0. (28) 

Another boundary condition is derived from the continuity of pressure and can be expressed as: 

 𝜎𝑥𝑥
𝑓 (−𝑙) =  −𝜙𝑝(−𝑙), (29) 

𝜙 being the porosity of the material. The use of Equation (28) and Equation (29) yields: 

 𝜎𝑥𝑥
𝑠 (−𝑙) =  −(1 − 𝜙)𝑝(−𝑙). (30) 

The conservation of the volume of air and frame through the plane 𝑥 =  −𝑙 yields: 

 𝜙�̇�𝑓(−𝑙) + (1 − 𝜙)�̇�𝑓(−𝑙) = �̇�𝑎(−𝑙), (31) 

�̇�𝑎(−𝑙) being the velocity of the free air at the boundary. The surface impedance 𝑍𝑠 (simply indicated 

as 𝑍 in the following equations) of the material is given by: 

 𝑍 =
𝑝(−𝑙)

�̇�𝑎(−𝑙)
. (32) 

This surface impedance can be evaluated in the following way. At first, it can easily be shown that the 

definitions of �̇�𝑠(𝑥) and �̇�𝑓(𝑥), together with the boundary condition at 𝑥 = 0, yield: 

 𝑉𝐼
1 = −𝑉𝑅

1, (33) 

 𝑉𝐼
2 = −𝑉𝑅

2. (34) 

Therefore, considering the boundary condition derived from the continuity of pressure and all 

subsequent equations: 

 {

−(1 − 𝜙)�̇�𝑎(−𝑙)𝑍 = −𝑍1
𝑠𝑉𝐼
1(𝑒𝑗𝛿1𝑥 + 𝑒−𝑗𝛿1𝑥) − 𝑍2

𝑠𝑉𝐼
2(𝑒𝑗𝛿2𝑥 + 𝑒−𝑗𝛿2𝑥)

−𝜙�̇�𝑎(−𝑙)𝑍 = −𝑍1
𝑓
𝜙𝜇1𝑉𝐼

1(𝑒𝑗𝛿1𝑥 + 𝑒−𝑗𝛿1𝑥) − 𝑍2
𝑓
𝜙𝜇2𝑉𝐼

2(𝑒𝑗𝛿2𝑥 + 𝑒−𝑗𝛿2𝑥)

[𝜙𝜇1 + (1 − 𝜙)𝑉𝐼
1(𝑒𝑗𝛿1𝑥 − 𝑒−𝑗𝛿1𝑥)] + [𝜙𝜇2 + (1 − 𝜙)𝑉𝐼

2(𝑒𝑗𝛿2𝑥 − 𝑒−𝑗𝛿2𝑥)] = �̇�𝑎(−𝑙)

. (35) 

This system of three equations has a solution (𝑉𝐼
1, 𝑉𝐼
2) if: 

 |

−(1 − 𝜙)𝑍 −2𝑍1
𝑠 cos(𝛿1𝑙) −2𝑍2

𝑠 cos(𝛿2𝑙)

−𝑍 −2𝑍1
𝑓
𝜇1 cos(𝛿1𝑙) −2𝑍2

𝑓
𝜇2 cos(𝛿2𝑙)

1 2𝑗 sin(𝛿1𝑙) (𝜙𝜇1 + 1 − 𝜙) 2𝑗 sin(𝛿2𝑙) (𝜙𝜇2 + 1 − 𝜙)

| = 0, (36) 

and 𝑍 is given by: 

 𝑍 = −𝑗
𝑍1
𝑠𝑍2
𝑓
𝜇2−𝑍2

𝑠𝑍1
𝑓
𝜇1

(𝜙𝜇2+1−𝜙)[𝑍1
𝑠−(1−𝜙)𝑍1

𝑓
𝜇1] tan(𝛿2𝑙)+(𝜙𝜇1+1−𝜙)[𝑍2

𝑓
−(1−𝜙)𝑍2

𝑠𝜇2] tan(𝛿1𝑙)
. (37) 
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A systematic method of calculating the surface impedance at oblique incidence, based on transfer 

matrices, is presented in Allard et al. [10]. 

 

1.3. Preliminary definitions about periodic conditions  

Although porous materials are commonly used for vibroacoustic applications, they suffer from a lack 

of absorption at low frequencies compared to their efficiency at higher ones. This difficulty is usually 

overcome by multi-layering [76], [77]. However, while reducing the impedance mismatch at the air-

material interface, the efficiency of such devices relies on the allowable thickness [78], [79]. 

A more efficient way to enhance the low frequency performances of sound packages consists in 

embedding periodic inclusions in a porous layer [80], [81] in order to create wave interferences or 

resonance effects that may play a positive role in the dynamics of the system. Therefore, numerical 

tools to properly design sound packages are more and more useful. In the work by Groby et al. [80], 

the influence of the periodic inclusions on the absorption coefficient was explained by excitation of 

additional acoustic modes which dissipate acoustic energy. Indeed, periodic patterns of surface 

irregularities or volume heterogeneities usually lead to energy entrapment either at the surface or 

inside the structure, this being strongly linked to mode excitation: in other words, the excitation of 

something similar to a structural mode of the initial macroscopically-homogeneous medium is enabled 

by the presence of a periodic set of inclusions. This phenomenon was first noticed by Wood [82]. The 

particular properties of such structures have been studied in mechanics, with application to composite 

materials [83], [84], in optics (initially motivated by the collection of solar energy) [85], [86], and in 

geophysics for the study of the “city-site” effect [87]. The properties of such structures are now studied 

to create band-gaps for elastic or acoustic waves [88], [89], and have been used for the design of 

porous materials for acoustic applications [80]. Although this procedure still relies on the dimension 

of the inclusions, it can provide an acoustical performance enhancement that is widely more efficient 

than just increasing the thickness. 

 

1.3.1. Brillouin zones 

Léon Brillouin (1889–1969), a French physicist, developed the concept of a Brillouin zone. In 

mathematics and solid-state physics, the first Brillouin zone is a uniquely defined primitive cell in 

reciprocal space. Planes related to points on the reciprocal lattice represent the boundaries of this cell. 

The importance of the Brillouin zone comes from the Bloch wave description of waves in a periodic 

system, in which it is derived that the solutions can be completely characterized by their behavior in a 

single Brillouin zone. 

The first Brillouin zone is defined as the locus of points in reciprocal space that are closer to the origin 

of the reciprocal lattice than they are to any other reciprocal lattice points. They exist also the second, 

third, etc., Brillouin zones, corresponding to a sequence of disjoint regions (all with the same volume) 

at increasing distances from the origin, but these are used less frequently; as a consequence, the first 

Brillouin zone is often simply referred to as the Brillouin zone. A related concept is that of the 

irreducible Brillouin zone, which is defined as the first Brillouin zone reduced by all of the symmetries 

in the point group of the lattice [90]. 
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Figure 7: The reciprocal lattices (dots) and corresponding first Brillouin zones of (a) square lattice and (b) hexagonal lattice. 

 

1.3.2. Bloch waves 

The concept of Bloch wave (also known as Bloch state or Bloch function or Bloch wave function), 

formulated by the Swiss physicist Felix Bloch, defines a type of wave function for a particle in a 

periodically repeating environment, most commonly an electron in a crystal. A wave function 𝜓 is a 

Bloch wave if it has the form: 

 𝜓(𝒓) = 𝑒𝑗𝒌𝒓𝑢(𝒓), (38) 

where 

 𝒓 is the position; 

 𝜓 is the Bloch wave; 

 𝑢 is a periodic function with the same periodicity as the lattice; 

 𝒌 is a vector of real numbers called the crystal wave vector; 

 𝑒 is Euler's number; 

 𝑗 is the imaginary unit. 

This means that one should multiply a plane wave by a periodic function in order to get a Bloch wave. 

These Bloch wave eigenstates are indicated with subscripts as 𝜓𝑛,𝒌, where 𝑛 is a discrete index, called 

the band index, which is present because there are many distinct Bloch waves with the same 𝒌 (each 

has a different periodic component 𝑢). Within a band (i.e., for fixed 𝑛), 𝜓𝑛,𝒌 varies continuously with 

𝒌, together with its energy. Also, for any reciprocal lattice vector 𝑲, one has that 𝜓𝑛,𝒌 = 𝜓𝑛,𝒌+𝑲. 

Therefore, all different Bloch waves occur for 𝒌-values within the first Brillouin zone of the lattice [91]. 

 

1.3.3. Floquet-Bloch theory 

The classical approach, known as Floquet-Bloch (F-B) theory, belongs to the class of solutions to 1D 

periodic linear differential equations of the form �̇� = 𝐴(𝑡)𝑥, with 𝐴(𝑡) a piecewise continuous periodic 

function with period 𝑇. Floquet's theorem, due to Gaston Floquet [92], gives a canonical form for each 

fundamental matrix solution of this common linear system, through a coordinate change that 

transforms the periodic system to a traditional linear system with constant real coefficients. 
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In solid-state physics, the extension of this result to 3D systems is known as Bloch's theorem. In the 

literature dealing with wave propagation problems in mechanical systems [55], [93], the theory is 

generally referred to as Floquet-Bloch theory [92]. 

In physics and engineering, dispersion diagrams represent the effect of dispersion on the properties of 

a wave traveling within a material, and thus they offer a good perspective to explain the wave field 

behavior inside bodies, relating the wave length or wave number to the wave frequency. Dispersion 

may be caused either by geometric boundary conditions or by interaction of the waves with the 

transmitting system and, in its presence, wave velocity is no longer uniquely defined, leading to the 

distinction between the concepts of phase velocity and group velocity. 

The Helmholtz equation is a known example of equation describing the spatial behavior, where the 

physical periodic structure of the studied object translates into spatial periodicity of its coefficients. In 

this context, the F-B theory can be applied to obtain the dispersion characteristics of different periodic 

systems. The F-B theory reduces the problem to the calculations performed in the so-called unit cell, 

under certain specific boundary conditions derived accordingly [94]. Thus, it provides a strategy to 

obtain a set of solutions of a linear ordinary equations system of the form: 

 𝒇′(𝑥) = 𝑴(𝑥)𝒇(𝑥), (39) 

where 𝒇(𝑥) is the solution vector and the matrix 𝑴 is periodic such that 𝑴(𝑥 + 𝐿) = 𝑴(𝑥) for a given 

period 𝐿. If 𝑭 is a fundamental matrix of solutions, then a matrix 𝑩 can be found such that: 

 𝑭(𝑥 + 𝐿) = 𝑩𝑭(𝑥). (40) 

𝑩 can be constructed by setting 𝑥 = 0 in Equation (40) such that 𝑩 = 𝑭−1(0)𝑭(𝐿). The simplest case 

is obtained using 𝑭(0) = 𝑰, so that 𝑩 = 𝑭(𝐿). There is not a unique choice for the fundamental matrix 

𝑭, therefore 𝑩 is also not unique. However, its eigenvalues are intrinsic to the problem and, under the 

right transformation, it can be used as a propagator or evolution factor, relating the value of the 

solution at a point inside the period with its value at a point outside of it. Only the solution inside a 

period is therefore needed, verifying that: 

 �̂�(𝑥 + 𝐿) = 𝛽𝐹�̂�(𝑥). (41) 

According to the classical nomenclature, 𝛽𝐹 = 𝑒
𝑘𝐹𝐿 is called Floquet multiplier, while 𝑘𝐹 is the complex 

Floquet exponent. Furthermore, Floquet found that the solution at any point can be factorized in two 

terms: 

 �̂�(𝑥) = 𝒇(𝑥)𝑒𝑘𝐹𝑥, (42) 

where 𝒇(𝑥) is a periodic function, that represents the eigenvectors if 𝑴 is a constant matrix and carries 

the periodicity 𝐿 of the coefficients of the problem [94]. 

 

1.3.4. Dispersion relations 

In physics and engineering, dispersion relations represent the effect of dispersion in a medium on the 

properties of a wave traveling within it [95]. A dispersion relation relates the wave length (or wave 

number) of a wave to its frequency. Dispersion may be caused either by geometric boundary 

conditions or by interaction of the waves with the transmitting material; it happens when pure plane 

waves, with distinct wave lengths, have distinct propagation velocities, so that a wave packet of 

different wave lengths tends to spread out in space. 
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The speed of a plane wave, 𝑣, is a function of the wave length λ. The wave speed, length, and frequency 

are related by the identity [96]: 

 𝑣(𝜆) = 𝜆𝑓(𝜆). (43) 

The function 𝑓(λ) constitutes the dispersion relation of the given medium. Dispersion relations are 

more commonly expressed as functions of the wavenumber 𝑘 =
2𝜋

λ
 [96]: 

 𝑓(𝑘) =
𝑘

2𝜋
𝑣(𝑘), (44) 
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2. EQUIVALENT FLUID MODEL ANALYSES 

 

 

 

 

 

 

 

 

 

 

 

 

“Science is the captain, and practice the soldiers.”  

(Leonardo da Vinci)  
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2.1. Shift cell operator technique 

2.1.1. Introduction 

The main advantage of designing sound packages with periodic patterns [76], [97] is that they can 

provide a combination of absorption, resonance and wave interferences effects [12]–[15]. This leads 

to several applications in transportation (aeronautics [17], [18], space, automotive [19]–[23], railway), 

energy and civil engineering fields, where both weight and space, as well as vibroacoustic comfort, still 

constitute critical issues [24]. 

Of course, one of the most important necessities is to develop efficient numerical techniques in order 

to handle the problem. In the classical approach, the displacement field is modeled exactly in the 

direction of wave propagation, by using a harmonic function, and in an approximated way in the 

perpendicular directions, by using finite elements. Then, an eigenvalue problem is formulated by 

introducing the displacement field into the governing equations. The solution of the eigenvalue 

problem at a specific frequency, gives the wave numbers of all the propagating modes [44]. The two 

most popular numerical approaches that can be distinguished for computing dispersion curves are the 

Semi-Analytical Finite Element method (SAFE) and the Wave Finite Element (WFE) method [44]. 

The main disadvantage of the SAFE method is that the finite elements used are not standard, and 

therefore they should be defined for each particular application. Nevertheless, many specific FE for 

different types of structures have been developed since 1975 [44]. Gavric used this technique to 

calculate the dispersion relationship in a free rail by using triangular and quadrilateral elements, with 

those elements obtained from Hamilton’s principle [98]. Hayashi et al. derived the SAFE formulation 

for the wave guides of complex cross-sectional shape through virtual work principles [99]. By using 

Lagrange’s equations, Damljanovic and Weaver developed the linear triangular elements for SAFE 

method to investigate the elastic waves in wave guides of arbitrary cross-section [100]. The wave mode 

characteristics in damped wave guides were examined by Bartoli et al., with the elements derived also 

from Hamilton’s principle [101]. The SAFE technique has also been adopted to investigate the wave 

propagation characteristics for thin-walled structures by Finnveden [102]. 

In order to avoid development of specific finite elements, the Wave Finite Element Method considers 

the structures as periodic in order to model, with standard FE, a period of the structure. Through the 

use of the Periodic Structure Theory (PST), an eigenvalue problem can be formulated from the stiffness 

and mass matrices of the finite element model, in order to find the wave numbers of all propagating 

waves [44]. By using WFE technique, one can introduce structural or viscous damping, as indicated by 

Duhamel [103]. This approach involves the resolution of a complex polynomial or transcendental 

eigenvalue problem, as underlined by Mace and Manconi [104]. Contrary to SAFE method, the 

displacement field is approximated in the direction of propagation. Thus, some numerical issues can 

arise when the size of the finite element mesh is too coarse. As recommended by Mace and Manconi, 

a minimum of six elements per wave length is a good rule of thumb to ensure a reliable analysis [104]. 

One of the main problems of these two approaches is the difficulty to deal with complex mechanical 

wave propagation specifically of multi-modal nature. Indeed, the existence at each frequency step of 

a number of wavemodes that potentially exchange energy make the computation and characterization 

of wave attenuation a delicate task. 
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To this aim, Collet at al. introduced a new numerical formulation, the so-called shift cell, in order to 

compute the multi-modal damped wave numbers in the whole first Brillouin zone of periodic visco-

elastic media, with non-homogeneous and generic frequency-dependent damping characteristics [44]. 

Herein, the shift cell operator technique is re-formulated for porous materials, providing details on its 

implementation [105]. Essentially, the shift cell technique consists in a reformulation of Floquet-Bloch 

periodic conditions, whose added value is that it provides information (dispersion curves) that are 

independent from the excitation, and thus it represents a valuable tool for the design of original 

solutions that will be efficient regardless of the excitation. In particular, its major advantage stands in 

allowing the introduction of a generic frequency dependence of visco-elastic material behavior [44]; 

this is essential, if one needs to compute the dispersion curves of a porous material modeled as an 

equivalent fluid. Indeed, even if the usage of F-B periodic conditions actually allows it, a very powerful 

non-linear solver is required in that case. The shift cell operator, instead, leads to a quadratic 

eigenvalue problem even in the presence of frequency-dependences and/or damping. The main 

reason why the shift cell method differs from the classical F-B approach is that it consists in a 

reformulation of classical F-B conditions, in which the phase shift of the boundary conditions and the 

exponential amplitude decrease, related to wave propagation, are integrated into the partial 

derivative operator. Consequently, the periodicity is included in the overall behavior of the structure 

while the continuity conditions are imposed at the edges of the unit cell [38]–[43]. 

 

2.1.2. Weak formulation 

Considering a porous layer modeled as an equivalent fluid, using either Delany-Bazley or Johnson-

Champoux-Allard model, the starting point is the classical Helmholtz equation: 

 𝜌
𝜔2

𝐾
𝑝 + ∆𝑝 = 0, (45) 

where 𝑝 = 𝑝(𝒙,𝜔) is the acoustic pressure, 𝒙 = (𝑥, 𝑦, 𝑧) is the coordinate vector, 𝜔 is the angular 

frequency, 𝜌 = 𝜌(𝜔) is the equivalent fluid density and 𝐾 = 𝐾(𝜔) is the bulk modulus [97]. The 

periodicity is described by 𝜌(𝒙 − 𝒓𝒏) − 𝜌(𝒙) = 0 and 𝐾(𝒙 − 𝒓𝒏) − 𝐾(𝒙) = 0, ∀𝒙 ∈ Ω, where 𝒏 is a 

vector of integers normal to the face considered, 𝒓 =  (𝒓1;  𝒓2;  𝒓3) is a matrix containing the three 

vectors defining the cell periodicity directions and lengths, and Ω is the domain of interest. 

 

Figure 8: 2D and 3D unit cells used in COMSOL implementation of shift cell technique. The 2D geometry (on the left) is a 2 cm 
square with a 5 mm radius circular hole, while the 3D one (on the right) is a 2 cm cube with a 5 mm radius cylindrical hole. 
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This applies everywhere except on the discontinuity surfaces, where appropriate boundary conditions 

apply. When inclusions with finite densities and bulk moduli are used, these are the continuity 

conditions stated on pressure and normal velocity; instead, when perfectly rigid inclusions are 

considered, the normal velocity on the inclusion surfaces vanishes. 

By further developing Equation (45) and applying the Bloch theorem, which generalizes Floquet’s 

results to 3D systems, such as 𝑝(𝒙, 𝜔) = 𝑝(𝒙)𝑒𝑗𝒌𝒙, where 𝒌, for a 3D application with real angles, is: 

 𝒌 = 𝑘𝜽 = 𝑘 [
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜃

], (46) 

 

Figure 9: Reciprocal lattice vector in a 3D unitary cell [105]. 

one can obtain: 

 𝜌
𝜔2

𝐾
𝑝 + (𝛁 + 𝑗𝒌)𝑇 ∙ (𝛁 + 𝑗𝒌)𝑝 = 0. (47) 

𝑝(𝑥) being periodic, the Dirichlet boundary conditions imply continuity along the periodic directions. 

A weak formulation consists in finding 𝑝 such that ∀�̃�, which obeys to the periodic boundary 

conditions, one has: 

 𝜔2 ∫
1

𝐾
�̃�𝑝

Ω
𝑑Ω + ∫

1

𝜌
�̃�𝛁𝑇 ∙ 𝛁𝑝

Ω
𝑑Ω + 

 +𝑗𝒌 ∙ ∫
1

𝜌
�̃�𝛁𝑇𝑝

Ω
𝑑Ω + 𝑗𝒌𝑇 ∙ ∫

1

𝜌
�̃�𝛁𝑝

Ω
𝑑Ω − (𝒌𝑇 ∙ 𝒌) ∫

1

𝜌
�̃�𝑝

Ω
𝑑Ω = 0. (48) 

The solution approach follows a common weak formulation of a differential problem in a discrete 

coordinate scheme. After rewriting the second term through the use of an integration by parts, for 

which the considerations on classical weighted residual methods [106] are valid, and considering that 

𝛤 is the boundary domain, one obtains: 

 𝜔2 ∫
1

𝐾
�̃�𝑝

Ω
𝑑Ω + ∫

1

𝜌
�̃�𝛁𝑇𝑝

𝛤
𝑑𝛤 − ∫

1

𝜌
𝛁�̃� ∙ 𝛁𝑇𝑝

Ω
𝑑Ω + 

 +2𝑗𝒌 ∙ ∫
1

𝜌
�̃�𝛁𝑇𝑝

Ω
𝑑Ω − (𝒌𝑇 ∙ 𝒌) ∫

1

𝜌
�̃�𝑝

Ω
𝑑Ω = 0. (49) 

The boundary condition causes the integral on the boundary to vanish: 
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 𝜔2 ∫
1

𝐾
�̃�𝑝

Ω
𝑑Ω − ∫

1

𝜌
𝛁�̃� ∙ 𝛁𝑇𝑝

Ω
𝑑Ω + 2𝑗𝒌 ∙ ∫

1

𝜌
�̃�𝛁𝑇𝑝

Ω
𝑑Ω − (𝒌𝑇 ∙ 𝒌) ∫

1

𝜌
�̃�𝑝

Ω
𝑑Ω = 0. (50) 

 𝜔2 ∫
1

𝐾
�̃�𝑝

Ω
𝑑Ω − ∫

1

𝜌
𝛁�̃� ∙ 𝛁𝑇𝑝

Ω
𝑑Ω + 

 +𝑗𝒌 ∙ ∫
1

𝜌
(�̃�𝛁𝑇𝑝 − 𝛁𝑇�̃�𝑝)

Ω
𝑑Ω − (𝒌𝑇 ∙ 𝒌) ∫

1

𝜌
�̃�𝑝

Ω
𝑑Ω = 0. (51) 

Finally, one can discretize the weak formulation through the Finite Element Method: considering that 

𝝋 is the eigenvector, Equation (51) can be written in its matrix form: 

 (𝐾 + 𝑗𝑘𝐿 + 𝑘2𝐻 − 𝜔2𝑀)𝝋 = 0, (52) 

with the following matrices: 

 𝐾 ∝ ∫
1

𝜌
𝛁�̃� ∙ 𝛁𝑝

𝛺
𝑑𝛺; 

 𝐿 ∝ ∫
1

𝜌
(𝛁�̃�𝑝 − �̃�𝛁𝑝) ∙ 𝜽

𝛺
𝑑𝛺; 

 𝐻 ∝ ∫
1

𝜌
�̃�𝑝

𝛺
𝑑𝛺; 

 𝑀 ∝ ∫
1

𝐾
�̃�𝑝

𝛺
𝑑𝛺. 

Here, 𝑀 and 𝐾 are respectively the symmetric mass and symmetric stiffness matrices, 𝐿 is a skew-

symmetric matrix and 𝐻 is a symmetric matrix; all of them are complex and frequency-dependent. 

 

2.1.3. Right and left eigenvalue problems 

In this section, the link between left and right eigenvectors is derived. A left eigenvector of a matrix is 

the same as the right eigenvector of the same real transposed matrix. Equation (52) leads to the 

following right eigenvalue problem: 

 [(𝐾 − 𝜔2𝑀) + 𝜆𝑖𝐿 − 𝜆𝑖
2𝐻]𝝋𝑖

𝑟 = 0, (53) 

where 𝜆𝑖 = 𝑗𝑘𝑖  is the i-th eigenvalue and 𝝋𝑖
𝑟 denotes the right eigenvector associated to 𝜆𝑖. Equation 

(53) can be rewritten as 

 𝐴1(𝜔)𝝍𝑖
𝑟 = 𝜆𝑖𝐴2(𝜔)𝝍𝑖

𝑟, (54) 

with 

 𝐴1(𝜔) = (
0 𝐼𝑑

𝐾 − 𝜔2𝑀 𝐿
); 

 𝐴2(𝜔) = (
𝐼𝑑 0

0 𝐻
); 

 𝝍𝑖
𝑟 = (

𝝋𝑖
𝑟

𝜆𝑖𝝋𝑖
𝑟). 

where 𝐼𝑑 is the identity matrix. Conversely, a left-eigenvector for the same eigenvalue satisfies: 
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 𝝍𝑖
𝑙𝑇𝐴1(𝜔) = 𝜆𝑖𝝍𝑖

𝑙𝑇𝐴2(𝜔), with 𝝍𝑖
𝑙 = (
𝐴

𝐵
). (55) 

 (𝐴
𝑇 𝐵𝑇) (

0 𝐼𝑑

𝐾 −𝜔2𝑀 𝐿
) = 𝜆𝑖(𝐴

𝑇 𝐵𝑇) (
𝐼𝑑 0

0 𝐻
), (56) 

 (𝐵
𝑇(𝐾 − 𝜔2𝑀) 𝐴𝑇𝐼𝑑 + 𝐵

𝑇𝐿) = 𝜆𝑖 (𝐴
𝑇𝐼𝑑 𝐵

𝑇𝐻), (57) 

 {
𝐵𝑇 (𝐾 − 𝜔2𝑀) = 𝜆𝑖 (𝐴

𝑇𝐼𝑑)

𝐴𝑇𝐼𝑑 + 𝐵
𝑇𝐿 = 𝜆𝑖(𝐵

𝑇𝐻)
, (58) 

 {
𝐵𝑇 (𝐾 − 𝜔2𝑀) − 𝜆𝑖 (𝐴

𝑇𝐼𝑑) = 0

𝐴𝑇𝐼𝑑 + 𝐵
𝑇𝐿 − 𝜆𝑖(𝐵

𝑇𝐻) = 0
, (59) 

 𝐵𝑇 (𝐾 − 𝜔2𝑀)+ 𝜆𝑖 (𝐴
𝑇𝐼𝑑 +𝐵

𝑇𝐿) − 𝜆𝑖 (𝐴
𝑇𝐼𝑑) − 𝜆𝑖

2(𝐵
𝑇𝐻) = 0, (60) 

 𝐵𝑇 [(𝐾 − 𝜔2𝑀) + 𝜆𝑖𝐿 − 𝜆𝑖
2𝐻] = 0, (61) 

 [(𝐾 − 𝜔2𝑀) + 𝜆𝑖𝐿 − 𝜆𝑖
2𝐻]
𝑇
𝐵 = 0, (62) 

 [(𝐾 − 𝜔2𝑀) − 𝜆𝑖𝐿 − 𝜆𝑖
2𝐻]𝐵 = 0, (63) 

 [(𝐾 − 𝜔2𝑀) + 𝜆−𝑖𝐿 − 𝜆−𝑖
2 𝐻]𝝋−𝑖

𝑟 = 0, (64) 

 {
𝐵 = 𝝋−𝑖

𝑟 = 𝝋𝑖
𝑙

𝐴𝑇 = 𝜆𝑖𝝋−𝑖
𝑟 𝑇𝐻 −𝝋−𝑖

𝑟 𝑇𝐿 = 𝜆𝑖𝝋𝑖
𝑙𝑇𝐻 −𝝋𝑖

𝑙𝑇𝐿
. (65) 

In the resolution of the right eigenvalue problem, the 𝑖-th mode (𝑖 𝜖 𝑁+) is defined by its 𝜆𝑖 and its 

eigenvector 𝝋𝑖
𝑟. For each mode 𝑖, a mode −𝑖 is associated with 𝜆−𝑖 such that 𝜆−𝑖 = −𝜆𝑖 and 𝝋−𝑖

𝑟 =

𝝋𝑖
𝑙. Therefore, by solving the right eigenvalue problem, the left solution is found too [105]. 

 

2.1.4. Group velocity 

For frequency-dependent systems, the estimation of the group velocity is not trivial [107]. In order to 

find its expression, Equation (54) is now differentiated with respect to 𝜔: 

 
𝜕𝐴1(𝜔)

𝜕𝜔
𝝍𝑖
𝑟 + 𝐴1(𝜔)

𝜕𝝍𝑖
𝑟

𝜕𝜔
=
𝜕𝜆𝑖

𝜕𝜔
𝐴2(𝜔)𝝍𝑖

𝑟 + 𝜆𝑖
𝜕𝐴2(𝜔)

𝜕𝜔
𝝍𝑖
𝑟 + 𝜆𝑖𝐴2(𝜔)

𝜕𝝍𝑖
𝑟

𝜕𝜔
, (66) 

and multiplied by the left eigenvector such that: 

 𝝍𝑖
𝑙𝑇
𝜕𝐴1(𝜔)

𝜕𝜔
𝝍𝑖
𝑟 +𝝍𝑖

𝑙𝑇𝐴1(𝜔)
𝜕𝝍𝑖
𝑟

𝜕𝜔
= 

 = 𝝍𝑖
𝑙𝑇 𝜕𝜆𝑖

𝜕𝜔
𝐴2(𝜔)𝝍𝑖

𝑟 +𝝍𝑖
𝑙𝑇𝜆𝑖

𝜕𝐴2(𝜔)

𝜕𝜔
𝝍𝑖
𝑟 +𝝍𝑖

𝑙𝑇𝜆𝑖𝐴2(𝜔)
𝜕𝝍𝑖
𝑟

𝜕𝜔
.  (67) 
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Considering that: 

 𝝍𝑖
𝑙𝑇𝐴1(𝜔) = 𝜆𝑖𝝍𝑖

𝑙𝑇𝐴2(𝜔), (68) 

one obtains: 

 𝝍𝑖
𝑙𝑇
𝜕𝐴1(𝜔)

𝜕𝜔
𝝍𝑖
𝑟 = 𝝍𝑖

𝑙𝑇 𝜕𝜆𝑖

𝜕𝜔
𝐴2(𝜔)𝝍𝑖

𝑟 +𝝍𝑖
𝑙𝑇𝜆𝑖

𝜕𝐴2(𝜔)

𝜕𝜔
𝝍𝑖
𝑟, (69) 

 𝝍𝑖
𝑙𝑇 𝜕𝜆𝑖

𝜕𝜔
𝐴2(𝜔)𝝍𝑖

𝑟 = 𝝍𝑖
𝑙𝑇
𝜕𝐴1(𝜔)

𝜕𝜔
𝝍𝑖
𝑟 −𝝍𝑖

𝑙𝑇𝜆𝑖
𝜕𝐴2(𝜔)

𝜕𝜔
𝝍𝑖
𝑟, (70) 

 
𝜕𝜆𝑖

𝜕𝜔
𝝍𝑖
𝑙𝑇𝐴2(𝜔)𝝍𝑖

𝑟 = 𝝍𝑖
𝑙𝑇 [
𝜕𝐴1(𝜔)

𝜕𝜔
− 𝜆𝑖

𝜕𝐴2(𝜔)

𝜕𝜔
]𝝍𝑖
𝑟, (71) 

 
𝜕𝜆𝑖

𝜕𝜔
=
𝝍𝑖
𝑙𝑇[
𝜕𝐴1(𝜔)

𝜕𝜔
−𝜆𝑖

𝜕𝐴2(𝜔)

𝜕𝜔
]𝝍𝑖
𝑟

𝝍𝑖
𝑙𝑇𝐴2(𝜔)𝝍𝑖

𝑟
, (72) 

which gives the expression of the group slowness using 𝜆𝑖 = 𝑗𝑘𝑖: 

 
𝜕𝑘𝑖

𝜕𝜔
= −𝑗

𝝍𝑖
𝑙𝑇[
𝜕𝐴1(𝜔)

𝜕𝜔
−𝜆𝑖

𝜕𝐴2(𝜔)

𝜕𝜔
]𝝍𝑖
𝑟

𝝍𝑖
𝑙𝑇𝐴2(𝜔)𝝍𝑖

𝑟
, (73) 

 
𝜕𝑘𝑖

𝜕𝜔
= −𝑗

𝝍𝑖
𝑙𝑇(

0 0
𝜕(𝐾−𝜔2𝑀)

𝜕𝜔

𝜕𝐿

𝜕𝜔
−𝜆𝑖
𝜕𝐻

𝜕𝜔

)𝝍𝑖
𝑟

𝝍𝑖
𝑙𝑇(
𝐼𝑑 0

0 𝐻
)𝝍𝑖
𝑟

, (74) 

 
𝜕𝑘𝑖

𝜕𝜔
= −𝑗

(𝜆𝑖𝝋𝑖
𝑙𝑇𝐻−𝝋𝑖

𝑙𝑇𝐿 𝝋𝑖
𝑙𝑇)(

0 0
𝜕(𝐾−𝜔2𝑀)

𝜕𝜔

𝜕𝐿

𝜕𝜔
−𝜆𝑖
𝜕𝐻

𝜕𝜔

)(
𝝋𝑖
𝑟

𝜆𝑖𝝋𝑖
𝑟)

(𝜆𝑖𝝋𝑖
𝑙𝑇𝐻−𝝋𝑖

𝑙𝑇𝐿 𝝋𝑖
𝑙𝑇)(
𝐼𝑑 0

0 𝐻
)(
𝝋𝑖
𝑟

𝜆𝑖𝝋𝑖
𝑟)

, (75) 

 
𝜕𝑘𝑖

𝜕𝜔
= −𝑗

(𝜆𝑖𝝋𝑖
𝑙𝑇𝐻−𝝋𝑖

𝑙𝑇𝐿 𝝋𝑖
𝑙𝑇)(

0
𝜕(𝐾−𝜔2𝑀)

𝜕𝜔
𝝋𝑖
𝑟+𝜆𝑖(

𝜕𝐿

𝜕𝜔
−𝜆𝑖
𝜕𝐻

𝜕𝜔
)𝝋𝑖
𝑟)

(𝜆𝑖𝝋𝑖
𝑙𝑇𝐻−𝝋𝑖

𝑙𝑇𝐿 𝝋𝑖
𝑙𝑇)(

𝐼𝑑𝝋𝑖
𝑟

𝜆𝑖𝐻𝝋𝑖
𝑟)

, (76) 

 
𝜕𝑘𝑖

𝜕𝜔
= −𝑗

𝝋𝑖
𝑙𝑇[
𝜕(𝐾−𝜔2𝑀)

𝜕𝜔
+𝜆𝑖(

𝜕𝐿

𝜕𝜔
−𝜆𝑖
𝜕𝐻

𝜕𝜔
)]𝝋𝑖
𝑟

[𝜆𝑖𝝋𝑖
𝑙𝑇𝐻−𝝋𝑖

𝑙𝑇𝐿]𝐼𝑑𝝋𝑖
𝑟+𝝋𝑖

𝑙𝑇𝜆𝑖𝐻𝝋𝑖
𝑟
, (77) 

 
𝜕𝑘𝑖

𝜕𝜔
= −𝑗

𝝋𝑖
𝑙𝑇[−2𝜔𝑀+

𝜕𝐾

𝜕𝜔
+𝜆𝑖
𝜕𝐿

𝜕𝜔
−𝜆𝑖
2𝜕𝐻

𝜕𝜔
]𝝋𝑖
𝑟

𝝋𝑖
𝑙𝑇[−𝐿+2𝜆𝑖𝐻]𝝋𝑖

𝑟
. (78) 

Finally, the complex group velocity is the inverse of the complex group slowness: 

 𝐶𝑔 =
𝜕𝜔

𝜕𝑘𝑖
=

𝑗𝝋𝑖
𝑙𝑇[−𝐿+2𝜆𝑖𝐻]𝝋𝑖

𝑟

𝝋𝑖
𝑙𝑇[−2𝜔𝑀+

𝜕𝐾

𝜕𝜔
+𝜆𝑖
𝜕𝐿

𝜕𝜔
−𝜆𝑖
2
𝜕𝐻

𝜕𝜔
]𝝋𝑖
𝑟
. (79) 
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It should be pointed out that the frequency dependence of equivalent fluid models is generally known 

analytically; therefore, the computation of 𝐶𝑔 is fast due to the fact that the derivatives of the matrices 

with respect to 𝜔 can be expressed analytically: 

 
𝜕𝐾

𝜕𝜔
= −

1

𝜌2
𝜕𝜌

𝜕𝜔
𝐾,
𝜕𝐿

𝜕𝜔
= −

1

𝜌2
𝜕𝜌

𝜕𝜔
𝐿,
𝜕𝐻

𝜕𝜔
= −

1

𝜌2
𝜕𝜌

𝜕𝜔
𝐻, (80) 

with 
𝜕𝜌

𝜕𝜔
 to be derived from the specific equivalent fluid model chosen. This is without doubts the most 

efficient way to perform the 𝐶𝑔 computation, but one could also opt to numerically estimate the matrix 

derivatives, or even directly the 
∆𝜔

∆𝑘𝑖
 values. 

 

2.1.5. Classifying criteria to distinguish propagative and 

evanescent waves 

For undamped systems, waves are sorted according to their propagative (𝑘 purely real) or evanescent 

(𝑘 purely imaginary) behavior. When dissipation occurs, such as it happens for a porous material 

modeled as an equivalent fluid, all wave numbers are complex; as a consequence, there is no purely 

propagative solution and all waves are damped, with a decay rate that may be used to distinguish the 

branches in two categories: those that are rapidly damped and those that are slowly damped in space. 

Hence, the latter could be classified as propagative ones. 

In general, the distinction between them is difficult and thus some classifying criteria are proposed: 

I. The ratio between the real and the imaginary parts of every wavenumber [105]: 𝐶𝐼 =

𝑟𝑒𝑎𝑙(𝑘)/𝑖𝑚𝑎𝑔(𝑘). The physical meaning of 𝐶𝐼 is related to the fact that the real part of a wave 

number represents the propagative behavior, while its imaginary part is linked to the 

dissipation and therefore should be smaller than the real part in order to be able to consider 

a wave as propagative. It should be noted that, since the real part of 𝑘 is periodic while the 

imaginary one is not, in order to correctly apply this criterion, the real part of 𝑘 must be turned 

into non-periodic, by mirroring it in correspondence to each period; in particular, starting with 

𝑎 =  2 and for each frequency 𝑓𝑖 with 𝑖 >  0 of a specific dispersion branch, the procedure is 

as it follows: 

 if 
d𝑓𝑖−1

d𝑟𝑒𝑎𝑙(𝑘𝑖−1)
> 0 and if 

d𝑓𝑖

d𝑟𝑒𝑎𝑙(𝑘𝑖)
< 0 → 𝑟𝑒𝑎𝑙(𝑘1:𝑒𝑛𝑑) = 𝑎

𝜋

𝑟
− 𝑟𝑒𝑎𝑙(𝑘1:𝑒𝑛𝑑), 𝑎 = 𝑎 + 1. (81) 

II. The ratio between the real parts of the energy transport speed, defined as 𝑣𝐸 =
𝐼

𝐸
 for 

undamped waves, and the group velocity 𝐶𝑔: 𝐶𝐼𝐼 =
𝑟𝑒𝑎𝑙(𝑣𝐸)

𝑟𝑒𝑎𝑙(𝐶𝑔)
, where 𝐼 is the flow of energy and 

𝐸 = 𝐸𝑘 + 𝐸𝑝 = ∫
1

2
(𝜌𝑣2 +

𝑝2

𝜌𝑐2
)𝑑𝛺

𝛺
 is the total energy. Waves may be qualified as 

propagative if the energy is transported at a velocity which is at least close to the order of 𝐶𝑔. 

Only the waves corresponding to 𝐶𝐼  >  𝜏𝐼 and 𝐶𝐼𝐼  >  𝜏𝐼𝐼 are classified as propagative. In practice, in 

the context of the following analysis, the thresholds 𝜏 are chosen such as 𝜏𝐼 = 1 and 𝜏𝐼𝐼 = 0.7; these 

values may be chosen differently according to the problem of interest. The choice of 𝑘, 𝐶𝑔 and 𝑣𝐸 as 

indicators of the “propagativeness” nature of a wave at a specific frequency has been originally 

proposed by Billon [105], who defined criteria similar to the ones above; in the present work, they 

have been re-formulated, in order to specifically adapt them for the application on porous materials 

modeled as equivalent fluids. 
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Since there is no strict distinction between “propagative” and “evanescent” waves, an alternative 

approach would be to define an indicator of the propagativeness nature for each 𝜔 value of the 

dispersion relation, as it is shown in Section 2.3.2.. 

 

2.1.6. Validation of the method 

In order to validate the shift cell technique implementation for a porous material modeled as an 

equivalent fluid, in the studied configuration and for propagation along the 𝑥-axis, a first calculation is 

made to compare shift cell results with those obtained using classical F-B periodic conditions, using 

(non-dissipative) air as material and a perfectly rigid cylindrical inclusion located at the center of the 

unit cell [108]. 

The validation analysis is performed in the frequency range 0 – 17000 Hz: this is an interesting range 

for acoustic applications and it assures that the wave length is much larger than the pore size (≈100 

μm), which is a necessary condition in order to use equivalent fluid models. The size of the perfectly 

rigid cylindrical inclusion is also large, compared to the typical characteristic lengths that may be 

observed on a representative unit cell describing the macroscopic behavior of the foam [109]. 

The 2D and 3D unit cells are respectively constituted by a 2 cm square with a 0.5 cm radius circular 

rigid inclusion and by a 2 cm cube with a 0.5 cm radius cylindrical rigid inclusion. For analogous cases, 

some results are available in literature in terms of absorption coefficient [110]. In particular, one can 

observe that this arrangement exhibits a band gap between 6000 Hz and 10000 Hz for waves 

propagating along 𝑥 direction. 

It should be noted that, in this work, the 3D cases are in fact 2D ones solved with 3D meshing, not 

exploiting the possibility, from the geometrical point of view, of doing a 2D meshing. This choice is 

motivated by the fact that a 3D mesh actually captures the behavior along an additional direction 

respect to the 2D one, thus allowing to carry out analyses for any combination of angles 𝜙 and 𝜃 [111]. 

Dashed red lines in Figure 10 correspond to the results obtained with the Floquet-Bloch method, while 

blue points represent the results obtained through the shift cell approach. The comparison shows a 

perfect agreement between the results of the two techniques. 

 

Figure 10: Comparison between dispersion curves obtained with classical Floquet-Bloch and shift cell techniques on a 2D (on 
the left) and 3D (on the right) unit cell made of air. 
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2.1.7. Meaning and behavior of band gaps for inclusions of 

increasing size 

In this section, it is shown what happens to the band gap, in the previously defined 2D unit cell, when 

the size of the inclusion (that has perfectly rigid walls) changes. Now both real and imaginary parts are 

shown, the latter being actually positive but shown as negative in the plots due to axis consistence. If 

no damping is included in the model, 𝑘 is either purely real, the wave is then propagative, or purely 

imaginary, the wave being then evanescent. The radius of the inclusion for the three cases represented 

in Figure 11 are respectively equal to 
𝑠

32
, 
𝑠

4
 and 

𝑠

2.1
, where 𝑠 is the side length: the opening frequency of 

the Bragg band gap decreases when the radius is increased, and at the same time the width of the gap 

increases. On the contrary, instead of using the adiabatic value (142 kPa) for the bulk modulus of air, 

one can artificially add a frequency-constant imaginary part to it (142+𝑗12 kPa is used here for 

illustration), so that one can simulate a band gap behavior in presence of dissipation, similar to that 

obtained when using equivalent fluids, as shown later. 

 

  

  

Figure 11: Dispersion curves for a 2D cell made of air, with increasing inclusion radius (from top to bottom: 𝑠/32, 𝑠/4 and 
𝑠/2.1, with adiabatic (left column) and complex (right column) bulk modulus. 
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Indeed, a complex bulk modulus prevents the presence of ideal band gaps in dispersion curves; one 

can clearly see that the gap is opening but, because of the damping, 𝑘𝑥 is no longer purely imaginary 

around the band gap, the slow branch with undamped material becomes a fast wave when damping 

is added and allows rapid and damped energy transportation inside the band gap.  So, the real part of 

𝑘𝑥 (being mirrored and turned into non-periodic as explained in the 1st classifying criterion introduced 

in Section 2.1.5) is not equal to 
𝜋

𝑟
 anymore, but remains low (compared to the imaginary one), which 

means that the wave will be strongly spatially attenuated, and this is exactly the expected behavior for 

band gaps in dissipative media. Also, a very fast branch, for which the imaginary part goes out of the 

plot bound, can be observed in the right column of Figure 11. 

 

2.1.8. Comparison of computational cost  

Figure 12 and Figure 13 show a comparison of the computational cost, in terms of time and as a 

function of the number of elements in the finite element model, between the shift cell and the F-B 

techniques. In particular, both eigenproblems are solved using 100 frequency steps. The 2D unit cell is 

meshed using triangular elements while, for the 3D geometry, tetrahedral elements are used. Both 2D 

and 3D geometries correspond to those shown in Figure 8 and these results, in terms of computational 

times, are related to an undamped case. Raw data are also approximated through a piecewise cubic 

Hermite interpolating polynomial technique. 

 

Figure 12: Computational times [s] in the 2D (left) and 3D (right) cases, for increasing number of elements. 

 

Figure 13: Computational time percentage in the 2D (left) and 3D (right) cases, for increasing number of elements. 
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As a conclusion, for the case of interest, the calculation cost is always lower with the proposed 

approach than the one required by the classical technique. The gain becomes more advantageous 

when the number of elements of the finite element mesh increases, which makes the technique even 

more attractive. The lower cost is attributed to the handling of the boundary conditions, which is much 

simpler in the proposed approach, where continuity instead of classical F-B periodic conditions are 

imposed. 

 

2.2. Numerical results 

Dispersion curves (calculated with the shift cell technique) and acoustical characteristics (computed 

using classical Floquet-Bloch periodic conditions) for different numerical test cases are shown in 

Appendix A. In particular, they are obtained for each possible combination between two geometries 

(with and without inclusion), two models (2D and 3D), two equivalent fluids (Delany-Bazley and 

Johnson-Champoux-Allard models) and two materials (melamine and “black” polyurethane foams). 

While dispersion curves are computed for an infinite repetition of unit cells, absorption coefficient and 

transmission loss are calculated for a finite repetition of five unit cells, using the same domain and 

boundary conditions of the infinite periodic system. This, in a first approximation, allows the 

comparison between dispersion and acoustical characteristics of the equivalent finite system. Indeed, 

it has been noted that a further increase in the number of repeated unit cells would lead to a change 

in the mean value of absorption coefficient and transmission loss respectively below 2% and 20%, 

respect to the usage of a repetition of five unit cells. It should be also highlighted that a homogeneous 

3D unit cell with a 2D periodicity essentially represents an infinite layer with a given thickness; 

however, in the context of this manuscript, in order to keep a consistent nomenclature, this 

configuration is still addressed as “homogeneous case” or “homogeneous unit cell”. In particular, 

continuity conditions are applied along 𝑥-axis and 𝑧-axis, while sound hard wall boundary conditions 

are used on the surfaces orthogonal to the 𝑦-axis. It is well known that the parameters of the 

equivalent fluid models can have a strong impact on the performances of the acoustic device [112], 

hence they should be obtained in a precise way. In the current case, they have been experimentally 

determined in GAUS laboratory at University of Sherbrooke (Canada) and are reported in Table 1. 

Table 1: Acoustical parameters for two porous materials modeled as equivalent fluids: black PU and melamine. 

  Black PU Melamine 

Porosity 0.96 0.99 

Tortuosity 1.075 1.02 

Resistivity [Pa*s/m^2] 5815 8430 

Viscous characteristic length [mm] 0.102 0.138 

Thermal characteristic length [mm] 0.269 0.154 

Density [kg/m^3] 29.5 5.73 

 

2.2.1. Dispersion curves 

For each dispersion curve plot, three eigenvectors are reported. They are all extracted at the frequency 

of 8500 Hz (half of the range) and along the direction that conventionally corresponds to 𝜙 = 𝜃 =  0° 

in the first Brillouin zone. Their branches are ordered as: at increasing frequencies, “1st“ is represented 

by the first real part that reaches the unitary value, “2nd“ is the second one and so on. 
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Figure 14: Dispersion curves for a JCA-modeled melamine 2D unit cell with a perfectly rigid inclusion; from top to bottom, the 
1st, 2nd and 3rd branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 15: Dispersion curves for a JCA-modeled melamine 3D unit cell with a perfectly rigid inclusion; from top to bottom, the 
1st, 2nd and 3rd branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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One may notice that there could be some discontinuous curves where the wave propagates, then 

becomes evanescent, then propagates again (or vice-versa): this is not an expected configuration, and 

it is probably due to the fact that all waves are evanescent with different rates and so a non-perfect 

tuning of the sorting criteria could lead to lines that disappears and reappears on the plots. 

In conclusion, from the comparison between the models in Figure 14 and Figure 15, it can be derived 

that the 2D model captures in an efficient way the general physics of the system, except for an 

additional fast compressional wave, which is taken into account only through the use of the 

correspondent 3D model. Therefore, as explained in Section 2.1.6, a 3D meshing is necessary in order 

to carry out dispersion analyses for each combination of angles 𝜙 and 𝜃. 

 

2.2.2. Absorption coefficient 

The absorption coefficient is usually computed starting from the surface impedance [113]. This 

technique is only valid for plane waves impinging upon homogeneous materials, and just at low 

frequencies for non-homogeneous ones. In a more general way, that is always correct, the absorption 

coefficient can be determined as [114]: 

 𝛼 =
𝛱𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑

𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
, where 𝛱𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 = 𝛱𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝛱𝑣𝑖𝑠𝑐𝑜𝑢𝑠. (82) 

The terms can be expressed as [114]: 

 𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 =
𝑆|𝑝0|

2

2𝜌0𝑐0
, (83) 

 𝛱𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
1

2
ℑ(−𝜔∫

𝜙2

𝐾
𝑝𝑝∗𝑑𝛺

𝛺𝑝
) , 𝛱𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =

1

2
ℑ(∫

𝜙2

𝜔�̃�22
𝜵𝑝. 𝜵𝑝∗𝑑𝛺

𝛺𝑝
), (84) 

where 

 𝑆 = surface interested by incident pressure; 

 𝑝0 = amplitude of the excitation mode (incident pressure); 

 𝜌0 = density of the interstitial fluid (air); 

 𝑐0 = sound speed in the interstitial fluid (air); 

 𝛺 = poro-elastic volume; 

 𝑝∗ = 𝑐𝑜𝑛𝑗(𝑝); 

 𝜵 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 = gradient. 

In order to check the correct implementation of power calculations, one can perform these two checks: 

 𝑝𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = (1 + 𝑅)𝑝0; 

 𝛱𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 = 𝛱𝑖𝑛𝑝𝑢𝑡 =
1

2
ℜ∫ 𝑝𝑣∗𝑑𝑆𝑆

, where 𝑣 is the velocity. 

Note that the second equation is valid only if there are no other dissipating sources in addition to the 

material itself [115]. For the cases with inclusion, some differences between curves can be observed 

at high frequencies. As expected, the curve computed through the averaged impedance is different 

from (and less correct than) the two computed using power ratios; the small gap between these two, 

instead, can be explicated as a FE error due to the numerical integrations that are required in order to 

estimate the specific power contributions. 
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Figure 16: Reflection coefficient, power densities, dissipated power ratios and absorption coefficient computed for a 2D JCA-
modeled melamine foam with a perfectly rigid inclusion. 

 

Figure 17: Reflection coefficient, powers, dissipated power ratios and absorption coefficient computed for a 3D JCA-modeled 
melamine foam with a perfectly rigid inclusion. 
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2.2.3. Transmission loss 

In order to obtain the following plots, transmission losses are numerically calculated as: 

 𝑇𝐿 = 10 log10
𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡

𝛱𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
, (85) 

where 𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 and 𝛱𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 represent the incident and transmitted power, respectively [116].  

For a plane wave configuration, the value computed for homogeneous flat configurations is equivalent 

to the one obtained with the Transfer Matrix Method [10], [117]: 

 𝑇𝐿 = 10 log (
1

4
|𝑇11 +

𝑇12

𝜌0𝑐0
+ 𝜌0𝑐0𝑇21 + 𝑇22|

2
), (86) 

 with [
𝑇11 𝑇12
𝑇21 𝑇22

] = [
cos(𝑘𝑚𝑑) 𝑗 sin(𝑘𝑚𝑑) 𝑍𝑐
𝑗 sin(𝑘𝑚𝑑)

𝑍𝑐
cos(𝑘𝑚𝑑)

], (87) 

and the formula provided by Doutres et al. [118]. Both of these two formulas are valid only for a finite 

depth layer and homogeneous isotropic material; therefore, while in the homogeneous cases the 

comparison between these methods represents a validation of the numerical results, for the cases 

with inclusion it has the purpose to show the differences respect to the homogeneous curves. 

 

Figure 18: Transmission loss computed for a 2D JCA-modeled melamine foam; homogeneous (on the left) and with a 
perfectly rigid inclusion (on the right). 

 

Figure 19: Transmission loss computed for a 3D JCA-modeled melamine foam; homogeneous (on the left) and with a 
perfectly rigid inclusion (on the right). 
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Concerning the cases with the inclusion, one can notice that an improvement of transmission loss 

properties is shown at all frequencies [119], in particular in correspondence of a peak at a frequency 

around 7 kHz, in which it is equal to about 15 dB, and at high frequencies. 

 

2.3. Branch tracking and computation of equivalent 

absorption coefficient and TL 

In the shift cell approach, the pulsation 𝜔 and the direction of the wave propagation (𝜙, 𝜃) are 

imposed. The solutions of the quadratic eigenvalue problem are the waveguides 𝜆𝑖 = 𝑗𝑘𝑖. There is a 

set of points, forming branches, which one may wish to connect and follow, according to the nature of 

each specific branch. Some solutions are proposed in literature, such as a MAC sorting criterion [44], 

but these methods generally require to store many data at each iteration. Instead, the group velocity 

constitutes a relevant indicator in order to follow the branches, from a point of calculation to the next 

one [105]. Thus, this quantity allows to be sure of the correctness of the dispersion relation, in 

particular in the case of branch crossing. 

The proposed approach consists in comparing a single group velocity value at a specific frequency 

𝐶𝑔𝑖
(𝑓) and 𝑪𝒈(𝑓 + ∆𝑓): from the value associated to a starting point, the routine compares the initial 

𝐶𝑔𝑖
 with all the group velocities at the next frequency step 𝑓 + ∆𝑓, and a minimization is performed in 

order to identify the point at 𝑓 + ∆𝑓 to which is associated the closest value of 𝐶𝑔. Then, this point is 

defined as the new starting one and so on, step by step, the branch is tracked. 

Dispersion curves help designers to understand the nature of the waves that can propagate in a sound 

package, and the way they are attenuated on the basis of an infinite periodic arrangement of the unit 

cell. It should be pointed out that the great advantage of this technique is that it allows the designing 

and the performance estimation of acoustic systems regardless of the number of repeated unit cells 

along the thickness and of the eventual the mismatch between numerical and real boundary 

conditions. In particular, in this section, it is shown how these results can be used to compute the 

transmission loss at normal incidence for an acoustic package composed by a finite arrangement of 5 

cells. This, in a first approximation, allows comparing dispersion and acoustical characteristics of the 

equivalent finite system. For more complex cases, advanced homogenization techniques may be used 

[120]–[122]. For a plane wave configuration, the transmission loss is computed in three different ways. 

I. Transfer matrix method [109], [112] (homogeneous case): 

 𝑇𝐿 = 10 log (
1

4
|𝑇11 +

𝑇12

𝜌0𝑐0
+ 𝜌0𝑐0𝑇21 + 𝑇22|

2
), (88) 

 with [
𝑇11 𝑇12
𝑇21 𝑇22

] = [
cos(𝑘𝑚𝑑) 𝑗 sin(𝑘𝑚𝑑) 𝑍𝑐
𝑗 sin(𝑘𝑚𝑑)

𝑍𝑐
cos(𝑘𝑚𝑑)

] ; (89) 

II. Full FEM with 5 cells (case with inclusion):  

 𝑇𝐿 = 10 log10
𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡

𝛱𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
; (90) 

III. Transfer matrix method with 5 cells, where 𝑘 and 𝑍𝑐 are provided by the dispersion curves 

(proposed approach); in order to perform this estimation, only the 1st branch of the diagram 

is taken into account, since it is the only one to which corresponds an eigenvector along the 

direction of the plane wave excitation, the others being orthogonal to it. This assumption is 
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valid as long as, in the frequency range of interest, there are no other propagative dispersion 

branches to which is associated a mode that acts along the plane wave direction in the TL 

analysis. For a plane wave that acts along an arbitrary direction, a more complex formulation 

is required. While 𝑘 is a direct output of the dispersion relation, the equivalent characteristic 

impedance is computed as 𝑍𝑐  = √𝐾𝜌, where the density 𝜌 is obtained from the JCA model 

and the bulk modulus is calculated as 𝐾 = 𝜌 (
𝜔

𝑘
)
2
. 

The 3rd way of computation actually consists in a homogenization and many works that deal with the 

relation between this kind of approaches and Bloch waves can be found in literature. 

It should be noted that, for the sake of comparison with the corresponding dispersion diagram, only 

the 1st branch (tracked through the previously defined algorithm) is meaningful, due to the fact that 

the related mode is the only one, between those considered here (which are the lowest order and 

therefore the least attenuated modes), that is actually excited during these transmission loss analysis. 

It should be also pointed out that the dispersion branch taken into account is actually propagative, 

according to the previously defined classifying criteria, in the whole frequency range considered. 

For the inhomogeneous configuration, the validation is obtained using an implementation of the plane 

wave forced response of the periodic cell accounting for fluid loading [123]. 

 

2.3.1. Transfer Matrix Method formulation 

In the following plots, the Transfer Matrix Method is used to estimate both the equivalent absorption 

coefficient and the equivalent transmission loss, also for a wave with non-zero incidence. 

In order to do this, the formulations are modified as follows: for example, supposing that the thickness 

𝑑 of the sample develops along the 𝑥 direction, starting from the classical transfer matrix expression: 

 [
𝑇11 𝑇12
𝑇21 𝑇22

] = [
cos(𝑘𝑚𝑑) 𝑗 sin(𝑘𝑚𝑑) 𝑍𝑐
𝑗 sin(𝑘𝑚𝑑)

𝑍𝑐
cos(𝑘𝑚𝑑)

], (91) 

one needs to substitute 𝑘𝑚 with 𝑘𝑡𝑚𝑚 = √𝑘𝑚
2 − (𝑘0

2(𝑘𝑦
2 + 𝑘𝑧

2)), where: 

 (

𝑘𝑥
𝑘𝑦
𝑘𝑧

) = (
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜃

), [
𝑇11 𝑇12
𝑇21 𝑇22

] = [
cos(𝑘𝑡𝑚𝑚𝑑) 𝑗 sin(𝑘𝑡𝑚𝑚𝑑) 𝑍𝑐
𝑗 sin(𝑘𝑡𝑚𝑚𝑑)

𝑍𝑐
cos(𝑘𝑡𝑚𝑚𝑑)

]. (92) 

The absorption coefficient can then be computed as: 

 𝑍𝑡𝑚𝑚 =
𝑇11

𝑇21
→ 𝑅𝑡𝑚𝑚 =

𝑍𝑡𝑚𝑚𝑘𝑥−𝑍0

𝑍𝑡𝑚𝑚𝑘𝑥+𝑍0
→ 𝛼𝑡𝑚𝑚 = 1 − |𝑅𝑡𝑚𝑚|

2, (93) 

while the transmission loss formula remains unchanged: 

 𝑇𝐿𝑡𝑚𝑚 = 10 log (
1

4
|𝑇11 +

𝑇12

𝜌0𝑐0
+ 𝜌0𝑐0𝑇21 + 𝑇22|

2
). (94) 

In synthesis, the techniques used to estimate the acoustic properties of the unit cell, according to each 

case, are reported in the following Table 2 and Table 3. 
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Table 2: Techniques used to estimate the transmission loss, according to the angles of incidence. 

 Homogeneous Inclusion 

0°, 0° 
FEM 
TMM 

Equivalent TMM 

FEM 
Equivalent TMM 

45°, 45° 
TMM 

Equivalent TMM 
Equivalent TMM 

 

Table 3: Techniques used to estimate the absorption coefficient, according to the angles of incidence. 

 Homogeneous Inclusion 

0°, 0° 

Averaged 𝑍𝑠 
Dissipated power ratio 

Input power ratio 
TMM 

Equivalent TMM 

Averaged 𝑍𝑠 
Dissipated power ratio 

Input power ratio 

45°, 
45° 

TMM 
Equivalent TMM 

No estimation 

 

2.3.2. Results 

In order to better appreciate the behavior of each branch in the studied frequency range, dispersion 

and group velocity diagrams are also colorized with a scale of colors that indicates the level of 

“propagativeness”: the value 0 means that the wave at that specific frequency is totally spatially 

attenuated, while the value 1 represents a properly propagative behavior. In particular, considering 

the classifying criteria previously defined, if all of them are satisfied then the propagativeness value is 

equal to 1, otherwise it is computed as the product between the results of the two classifying ratios 

divided by the correspondent thresholds. It should be noted that, if a specific criterion is satisfied, its 

contribution to the estimation of the level of propagativeness is always equal to 1, even if its related 

ratio is larger. 

 if 𝐶𝐼 > 𝜏𝐼 → 𝑝𝑟𝑜𝑝𝐼 = 1, else 𝑝𝑟𝑜𝑝𝐼 =
𝐶𝐼

𝜏𝐼
 (95) 

 if 𝐶𝐼𝐼 > 𝜏𝐼𝐼 → 𝑝𝑟𝑜𝑝𝐼𝐼 = 1, else 𝑝𝑟𝑜𝑝𝐼𝐼 =
𝐶𝐼𝐼

𝜏𝐼𝐼
 (96) 

 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝑝𝑟𝑜𝑝𝐼𝑝𝑟𝑜𝑝𝐼𝐼 (97) 

For a 3D melamine unit cell, with the previously mentioned properties, the following results are 

produced: the evanescent – propagative dispersion (Figure 20 and Figure 25) and group velocity (Figure 

21 and Figure 26) curves, the branch-tracked dispersion and group velocity curves (Figure 22 and Figure 

27) and the comparison of the absorption coefficient (Figure 23) and transmission loss (Figure 24 and 

Figure 28) curves with the equivalent ones, that are those computed starting from the wave numbers 

obtained from the dispersion relations. These curves are obtained for both a homogeneous and a 

heterogeneous (with perfectly rigid inclusion) 3D unit cell, whose foam is modeled as a JCA equivalent 

fluid. For all studied configurations, the branch-tracking algorithm is able to correctly classify the 

solutions, even in the presence of band gaps, branch-crossing or branch-veering phenomena. While 

the equivalent TL computations are almost perfect, those related to the absorption coefficient in the 

case of the presence of an inclusion are not able to properly reproduce the behavior of the unit cell. 
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This is due to the fact that the adopted procedure, based on the calculation of 𝑍𝑐, 𝑍𝑠, 𝑅 and 𝛼, is valid 

only for the case of a homogeneous medium interested by incident plane waves. 

 

Figure 20: Evanescent and propagative parts of dispersion curves computed for a 3D JCA-modeled melamine unit cell; 
homogeneous case. The color scale (on the right) indicates the level of propagativeness. 

 

Figure 21: Evanescent and propagative parts of group velocities computed for a 3D JCA-modeled melamine unit cell; 
homogeneous case. The color scale (on the right) indicates the level of propagativeness. 

 

Figure 22: Branch-tracked dispersion curves (on the left) and group velocities (on the right) computed for a 3D JCA-modeled 
melamine unit cell; homogeneous case. 
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Figure 23: Comparison of absorption coefficient between the equivalent curve and those previously obtained for wave 
incidence angles 𝜙 = 0°, 𝜃 = 0° (on the left) and 𝜙 = 45°, 𝜃 = 45° (on the right), computed for a 3D JCA-modeled 

melamine foam; homogeneous case. 

 

Figure 24: Comparison of transmission loss between the equivalent curve and those previously obtained for wave incidence 
angles 𝜙 = 0°, 𝜃 = 0° (on the left) and 𝜙 = 45°, 𝜃 = 45° (on the right), computed for a 3D JCA-modeled melamine foam; 

homogeneous case. 

 

Figure 25: Evanescent and propagative parts of dispersion curves computed for a 3D JCA-modeled melamine unit cell; case 
with inclusion. The color scale (on the right) indicates the level of propagativeness. 
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Figure 26: Evanescent and propagative parts of group velocities computed for a 3D JCA-modeled melamine unit cell; case 
with inclusion. The color scale (on the right) indicates the level of propagativeness. 

 

Figure 27: Branch-tracked dispersion curves (on the left) and group velocities (on the right) computed for a 3D JCA-modeled 
melamine unit cell; case with inclusion. 

 

Figure 28: Comparison of transmission loss between the equivalent curve and those previously obtained for wave incidence 
angles 𝜙 = 0°, 𝜃 = 0° (on the left) and 𝜙 = 45°, 𝜃 = 45° (on the right), computed for a 3D JCA-modeled melamine foam; 

case with inclusion. 

For what concerns the propagative – evanescent plots, one can notice that the first mode is 

propagative at almost all frequencies, the second one appears to propagate starting from middle 

frequencies, while the third and fourth ones are relevant only at high frequencies. 
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2.4. Non-rigid inclusion test campaign 

Table 4: Combinations of foams and inclusions used for the non-rigid inclusion test campaign, performed on a 3D JCA-
modeled unit cell. 

Configuration Foam Inclusion Configuration Foam Inclusion 

1 

Melamine 

none 25 

M10 

none 

2 rigid 26 rigid 

3 air 27 air 

4 PU 1 28 PU 1 

5 PU black 29 Melamine 

6 M10 30 PU black 

7 Mel. 173 31 Mel. 173 

8 PU 60 32 PU 60 

9 

P1 

none 33 

Melamine 
173 

none 

10 rigid 34 rigid 

11 air 35 air 

12 Melamine 36 PU 1 

13 PU black 37 Melamine 

14 M10 38 PU black 

15 Mel. 173 39 M10 

16 PU 60 40 PU 60 

17 

PU black 

none 41 

PU 60 

none 

18 rigid 42 rigid 

19 air 43 air 

20 PU 1 44 PU 1 

21 Melamine 45 Melamine 

22 M10 46 PU black 

23 Mel. 173 47 M10 

24 PU 60 48 Mel. 173 

 

The same JCA-modeled 3D unit cell can also be tested with some non-rigid inclusions [124]. In 

particular, 48 setups are discussed here, whose fundamental parameters are reported in Table 4 and 

Table 5 (air properties are shown in Table 6). In the current case, the characteristics of the materials 

called “Melamine” and “Black PU” are experimentally determined, while those of the materials called 

“P1” and “M10” are taken from the work performed by Doutres et al. [125] and those related to 

“Melamine 173” and “PU 60” from a paper by Deckers et al. [62]. Except for the “Melamine” and 

“Melamine 173” materials, all the others are polyurethane foams. 

From Figure 109 to Figure 156 in Appendix A.1.1, dispersion curves are computed for each of the 48 

cases of study. 

Also, some comparative absorption coefficient and transmission loss plots are shown from Figure 29 

to Figure 40: in particular, each of the foams is tested using eight different inclusions, according to the 

combinations reported in Table 4. 
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Table 5: Non-acoustic parameters of the foams used for the non-rigid inclusion test campaign, performed on a 3D JCA-
modeled unit cell. 

  Porosity Tortuosity Resistivity [Pa*s/m^2] 

Viscous 
characteristic 
length [mm] 

Thermal 
characteristic 
length [mm] 

Melamine 0.99 1.02 8430 0.138 0.154 

P1 0.956 1.06 3490 0.187 0.250 

Black PU 0.96 1.075 5815 0.102 0.269 

M10 0.982 1.25 3670 0.240 0.310 

Mel. 173 0.98 1.01 9500 0.166 0.249 

PU 60 0.98 1.17 3750 0.110 0.742 

 

Table 6: Air properties. 

Density [kg/m3] 1.205 

Prandtl number 0.713 

Dynamic viscosity [kg/(m*s)] 1.983*10-5 

Adiabatic bulk modulus [kg/(m*s2)] 1.42*105 

Specific heat ratio 1.401 
 

 

Figure 29: Comparison between the absorption coefficient curves for cases 1-8 of Table 4. 

 

Figure 30: Comparison between the transmission loss curves for cases 1-8 of Table 4. 
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Figure 31: Comparison between the absorption coefficient curves for cases 9-16 of Table 4. 

 

Figure 32: Comparison between the transmission loss curves for cases 9-16 of Table 4. 

 

Figure 33: Comparison between the absorption coefficient curves for cases 17-24 of Table 4. 
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Figure 34: Comparison between the transmission loss curves for cases 17-24 of Table 4. 

 

Figure 35: Comparison between the absorption coefficient curves for cases 25-32 of Table 4. 

 

Figure 36: Comparison between the transmission loss curves for cases 25-32 of Table 4. 
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Figure 37: Comparison between the absorption coefficient curves for cases 33-40 of Table 4. 

 

Figure 38: Comparison between the transmission loss curves for cases 33-40 of Table 4. 

 

Figure 39: Comparison between the absorption coefficient curves for cases 41-48 of Table 4. 
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Figure 40: Comparison between the transmission loss curves for cases 41-48 of Table 4. 

It can be noticed that, with reference to the dispersion diagrams, those that are obtained in the case 

of a foam inclusion show very few differences respect to their homogeneous case. In addition, for what 

concerns the transmission loss, the effect of the inclusion is not particularly advantageous in these 

situations: in the case of the air, indeed, there is a drop of performances at all frequencies while, in 

the case of a foam inclusion, only a slight change of the values can be seen, as well as a very small 

effect of the periodicity when this is equal to half of the wave length (around 7000 Hz). 

Anyway, some different cases, that may be more interesting from the practical point of view, can be 

studied by modelling the foam unit cell through the use of the Biot model, instead that as an equivalent 

fluid; doing so, indeed, allows to take into account the elasticity of the skeleton and the entire problem 

formulation depends not anymore only on the pressure, but on the skeleton displacements too: this 

means that it is possible to properly write the coupling conditions between the foam and an eventual 

(non-perfectly rigid) solid inclusion. 

 

2.5. Design guidelines 

In this section, some guidelines are provided in order to predict at which frequency the 1st performance 

peak (related to periodicity effects: half of the wave length = periodicity dimension) appears, together 

with its amplitude, as functions of the unit cell dimensions. Conversely, also the link between the unit 

cell dimensions and the 1st performance peak amplitude as functions of the design frequency is shown. 

The test campaign is carried out in the 0 – 15000 Hz frequency range, by comparing a repetition of five 

unit cells described by Configurations 1 and 2 of Table 4, where the dimension of the inclusion changes 

accordingly to those of the unit cell (the ratio between the unit cell and the inclusion dimensions is 

kept constant). Raw data are reported in Table 7, and results are shown in Figure 41 and Figure 42. 

Surface impedance and reflection coefficient plots can be found in Appendix A.2.1. 

According to the results obtained, and considering that a typical acoustic excitation in aeronautics lays 

in the range of 20 – 2000 Hz [126], one should choose a unit cell dimension between 0.065 m and 0.1 

m in order to obtain a transmission loss improvement of averagely 25% respect to the use of a simple 

foam layer of the same thickness. Considering an automotive application, instead, the typical acoustic 

excitation lays in the range of 20 – 4000 Hz [127], and therefore one should choose a unit cell 

dimension between 0.035 m and 0.1 m in order to obtain a transmission loss improvement of averagely 

35%, always respect to the use of a simple foam layer of the same thickness. These quantitative 

considerations are valid for the material and the geometry described above. 
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Table 7: Raw data for unit cell dimension design guidelines, in the case of a 3D JCA-modeled melamine unit cell. 

Unit cell dimension [m] 1st alpha peak [Hz] 𝜶 variation 1st TL peak [Hz] TL variation 

0.0200 6870 -34% 7248 94% 

0.0350 3795 -25% 4150 48% 

0.0425 3085 -22% 3322 44% 

0.0500 2523 -19% 2825 41% 

0.0650 1903 -17% 2257 30% 

0.0800 1417 -14% 1920 23% 

0.0950 1075 -13% 1429 21% 

 

 

Figure 41: Absorption coefficient design curves as functions of the unit cell dimension (on the left) and the frequency of the 
1st peak (on the right), in the case of a 3D JCA-modeled melamine foam. 

 

Figure 42: Transmission loss design curves as functions of the unit cell dimension (on the left) and the frequency of the 1st 
peak (on the right), in the case of a 3D JCA-modeled melamine foam. 

Furthermore, some additional guidelines are also provided in order to predict at which frequency the 

1st performance peak appears, together with its amplitude, as functions of the airflow resistivity value 

of the foam. The test campaign is carried out in the 0 – 15000 Hz frequency range, by comparing a 

repetition of five unit cells described by Configurations 1 and 2 of Table 4, where the airflow resistivity 

value is artificially changed. 
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Raw data are reported in Table 8, and results are shown from Figure 43 to Figure 45. Surface 

impedance and reflection coefficient plots can be found in Appendix A.2.2. 

 

Figure 43: Absorption coefficient (on the left) and transmission loss (on the right) design curves as functions of the foam 
airflow resistivity, in the case of a 3D JCA-modeled melamine foam. 

 

Figure 44: Absorption coefficient value as a function of frequency and foam airflow resistivity; homogeneous case (on the 
left) and case with a cylindrical perfectly rigid inclusion (on the right), computed for a 3D JCA-modeled melamine foam. 

 

 

Figure 45: Transmission loss value as a function of frequency and foam airflow resistivity; homogeneous case (on the left) 
and case with a cylindrical perfectly rigid inclusion (on the right), computed for a 3D JCA-modeled melamine foam. 
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Table 8: Raw data for airflow resistivity design guidelines, in the case of a 3D JCA-modeled melamine unit cell. 

Airflow resistivity [Pa*s/m^2] 1st alpha peak [Hz] 𝜶 variation 1st TL peak [Hz] TL variation 

1000 6846 -38% 7148 115% 

2500 6846 -37% 7148 113% 

5000 6846 -37% 7148 109% 

7500 6846 -33% 7248 101% 

10000 6947 -31% 7248 92% 

25000 7047 -21% 7349 21% 

 

Looking at Figure 43, it is clear that the static airflow resistivity has no meaningful impact on the 

position of the periodicity peak in the frequency range, since the related curves remain almost 

constant both for absorption coefficient and transmission loss plots. Instead, one may notice that 𝜎 

has a non-negligible effect on the variation of the non-homogeneous values, compared to the 

homogeneous ones, in correspondence of the periodicity peak: in particular, this variation reduces its 

amplitude at increasing airflow resistivity values, both for absorption coefficient and transmission loss 

performances. This is probably due to the fact that, as shown in Figure 44 and, in an even more evident 

manner, in Figure 45, for a homogeneous layer of foam, when 𝜎 increases absorption coefficient 

performances decrease, while transmission loss ones gets better. This is an expected phenomenon, 

since the airflow resistivity parameter may be considered as an “acoustical hardness” indicator of a 

foam, in the sense that, the higher it is, the less air permeability there is. Therefore, sound waves 

cannot enter materials, and so absorption coefficient is reduced and transmission loss increases. It is 

evident, then, that the general effect of the presence of any external inclusion in the foam reduces at 

increasing 𝜎, and the non-homogeneous curves tend to assume the same behavior of the 

homogeneous ones, still maintaining a bias difference in the average value (as it can be clearly seen 

from Figure 45). Indeed, already starting from 𝜎 = 50000 
Pa∗s

m2
, periodicity peaks are no more precisely 

identifiable, neither in absorption coefficient nor in transmission loss curves. 

 

2.6. Comparison of acoustic performances between a 

homogeneous unit cell and an unit cell with inclusion 

with fixed mass 

In the previous sections, all the comparisons between homogeneous cases and cases with inclusions 

are made considering unit cells with the same dimensions; in other words, it means that the 

performances of a layer with periodic inclusions are estimated assuming that is has the same thickness 

of the related homogeneous one. 

One may want also to compare absorption coefficient and transmission loss plots for the case in which 

the unit cell with inclusion has the same mass (and therefore different dimensions) respect to the 

homogeneous one [128]. For example, considering an unit cell made of Melamine and with a perfectly 

rigid inclusion (case 2 of Table 4), when comparing it to the homogeneous case with fixed dimensions, 

it obviously has a slower mass (75.56% of the homogeneous unit cell value); therefore, in order to 

perform a comparison with fixed mass respect to the homogeneous case, one should increase each 

dimension of the unit cell with inclusion of a certain quantity that, for the specific case, is equal to the 

7.56%. 
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At this point, making some considerations based on the results shown in Figure 46 and Figure 47, one 

may notice that the curve with fixed mass, respect to the one with fixed dimensions, has a performance 

peak caused by periodicity effect that is shifted at lower frequencies (this is due to the different 

dimensions between the two cases with inclusion) and also of different amplitude (due to the different 

mass of the compared unit cells). 

 

Figure 46: Comparison of absorption coefficient curves between the homogeneous case, the case with inclusion with fixed 
dimensions and the case with inclusion with fixed mass, computed for a 3D JCA-modeled melamine foam. 

 

Figure 47: Comparison of transmission loss curves between the homogeneous case, the case with inclusion with fixed 
dimensions, the case with inclusion with fixed mass and the homogeneous case with fixed performance in the 6000-8000 Hz 

frequency range, computed for a 3D JCA-modeled melamine foam. 

Furthermore, in order to obtain the same transmission loss performances in the periodicity peak range 

(between 6000 and 8000 Hz, for the specific cases considered) by the use of a simple homogeneous 

layer made of the same foam, one should use a thickness that is around twice the one required for the 

cases with inclusion, therefore leading to an increment of the mass of about 100%. This clearly points 

out the advantage of designing foam layer with periodic inclusion patterns in order to improve the 

performances in a specific range of frequencies, allowing a save both in terms of thickness and, most 

of all, mass, respect to a classical homogeneous foam layer. 
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2.7. Computation of TL and dispersion curves for a unit 

cell with Helmholtz resonators 

In this section, the paper from Lagarrigue et al. [129] is used as reference; in this work, absorption 

coefficient curves for different configurations of porous unit cells with embedded Helmholtz 

resonators are computed. A Helmholtz resonator consists of a known volume (of any shape) with rigid 

walls and a small hole in one side. An outside variation in air pressure causes the plug of air in the hole 

to oscillate in and out, producing adiabatic compressions and rarefactions of the enclosed air. The 

system is similar to a spring-mass system, with the enclosed volume of air acting as the spring, and the 

plug of air acting as the mass [130]–[132]. 

Basically, the advantage of using a Helmholtz resonator rather than a classical rigid inclusion is that it 

can provide a performance improvement in terms of both absorption coefficient and transmission loss. 

Indeed, there are mainly two ways of reducing the transmitted power: by reflecting it, or by absorbing 

it; a simple rigid inclusion essentially reflects the power back, causing a transmission loss increase and 

an absorption coefficient decrease, while a Helmholtz resonator traps and dissipate the energy inside 

it, leading to an improvement of both characteristics [133], [134]. 

 

Figure 48: Unit cell with Helmholtz resonators [129]. 

Table 9: Acoustical parameters of the reference porous material used in the study of an Helmholtz resonating system. 

Open porosity 0.95 

Tortuosity 1.42 

Static airflow resistivity [kg/(s*m3)] 8900 

Viscous characteristic length [m] 180e-6 

Thermal characteristic length [m] 360e-6 

 

In particular, the configuration presented in Figure 3 of [129] is here considered. Respect to the 

reference work performed by Lagarrigue et al., here the analysis on this unit cell with embedded 

Helmholtz resonators also includes a transmission loss and a dispersion relation computation. 
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These curves are also presented with zooms up to 2 kHz, since this is clearly the most challenging 

frequency range in which the periodicity and resonance effects could bring new solutions: above 4 kHz, 

indeed, single layers of foam are already very efficient without the need for a periodic arrangement 

[135]. The data of the foam used in this analysis are reported in Table 9. 

 

Figure 49: Acoustic characteristics of the unit cell with Helmholtz resonators. 

In order to reproduce the absorption coefficient curve in the frequency range of 0 - 4000 Hz, different 

techniques are used for its computation. 

 

Figure 50: Comparison of absorption coefficient curves with the reference one for the unit cell with Helmholtz resonators. 
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Figure 51: Transmission loss curve for the unit cell with Helmholtz resonators. 

 

Figure 52: Dispersion curves for the unit cell with Helmholtz resonators. 

 

2.8. Conclusions 

In this section, the shift cell operator technique has been re-formulated for porous materials, providing 

details on its implementation [61]. This approach provides information (dispersion diagrams) that are 

independent from the excitation, and thus it represents a valuable tool for the design of original 

solutions that will be efficient regardless of the excitation. Its major advantage stands in allowing the 

introduction of a generic frequency dependence of visco-elastic material behavior [44]; this is 

fundamental, if one needs to compute the dispersion diagram of a porous material modeled as an 

equivalent fluid. Indeed, even if the usage of F-B periodic conditions actually allows it, a very powerful 

non-linear solver is required in that case. The shift cell operator, instead, leads to a quadratic 

eigenvalue problem even in the presence of frequency-dependences and/or damping. 

The link between left and right eigenvectors has been derived in order to determine an analytical 

expression for the group velocity. Some classifying criteria have been proposed, in order to distinguish 

between evanescent and propagative waves. In order to validate the shift cell technique 

implementation for foams modeled as equivalent fluids, a first calculation has been made to compare 

shift cell results with those obtained using classical F-B periodic conditions, using (non-dissipative) air 

as material and a perfectly rigid cylindrical inclusion located at the center of the unit cell [65]. 
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Figure 11 shows what happens to the band gap, when the size of the inclusion (that has perfectly rigid 

walls) changes. Figure 12 and Figure 13 show a comparison of the computational cost, in terms of time 

and as a function of the number of elements in the finite element model, between the shift cell and 

the F-B techniques. 

Dispersion curves (calculated with the shift cell technique) and acoustical characteristics (computed 

using Floquet-Bloch periodic conditions) for different numerical test cases have been obtained for each 

possible combination between two geometries (with and without inclusion), two models (2D and 3D), 

two equivalent fluids (Delany-Bazley and Johnson-Champoux-Allard models) and two materials 

(melamine and “black” polyurethane foams). 

A branch-tracking technique has been proposed, and it has been shown how its results can be used to 

estimate the transmission loss at normal incidence for an acoustic package composed by a finite 

arrangement of 5 cells. This, in a first approximation, allows the comparison between dispersion and 

acoustical characteristics of the equivalent finite system. The same JCA-modeled 3D unit cell has also 

been tested with some non-rigid inclusions [124]. 

Some guidelines have been provided in order to predict at which frequency the 1st performance peak 

(related to periodicity effects: half of the wave length = periodicity dimension) appears, together with 

its amplitude, as functions of the unit cell dimensions. Conversely, also the link between the unit cell 

dimensions and the 1st performance peak amplitude as functions of the design frequency has been 

shown. According to the results obtained, and considering that a typical acoustic excitation in 

aeronautics lays in the range of 20 – 2000 Hz [126], one should choose a unit cell dimension between 

0.065 m and 0.1 m in order to obtain a transmission loss improvement of averagely 25% respect to the 

use of a simple foam layer of the same thickness. Considering an automotive application, instead, the 

typical acoustic excitation lays in the range of 20 – 4000 Hz [127], and therefore one should choose a 

unit cell dimension between 0.035 m and 0.1 m in order to obtain a transmission loss improvement of 

averagely 35%, always respect to the use of a simple foam layer of the same thickness. Furthermore, 

some additional guidelines are also provided in order to predict at which frequency the 1st performance 

peak appears, together with its amplitude, as functions of the airflow resistivity value of the foam. As 

shown in Figure 44 and, in an even more evident manner, in Figure 45, for a homogeneous layer of 

foam, when 𝜎 increases absorption coefficient performances decrease, while transmission loss ones 

gets better. This is an expected phenomenon, since the airflow resistivity parameter may be 

considered as an “acoustical hardness” indicator of a foam, in the sense that, the higher it is, the less 

air permeability there is. Therefore, sound waves cannot enter materials, and so absorption coefficient 

is reduced and transmission loss increases. It is evident, then, that the general effect of the presence 

of any external inclusion in the foam reduces at increasing 𝜎, and the non-homogeneous curves tends 

to assume the same behavior of the homogeneous one, still maintaining a bias difference in the 

average value (as it can be clearly seen from Figure 45). 

A comparison between absorption coefficient and transmission loss plots has also been made for the 

case in which the unit cell with inclusion has the same mass (and therefore different dimensions) 

respect to the homogeneous one [128]. In order to obtain the same transmission loss performances in 

the periodicity peak range (between 6000 and 8000 Hz, for the specific cases considered) by the use 

of a simple homogeneous layer made of the same foam, one should use a thickness that is around 

twice the one required for the cases with inclusion, therefore leading to an increment of the mass of 

about 100%. This clearly highlights the advantage of designing a porous sound package embedding 

periodic inclusions in order to improve the performances in a specific range of frequencies, allowing a 

save both in terms of thickness and, most of all, mass, respect to a classical homogeneous foam layer. 
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The paper from Lagarrigue et al. [129] is used as reference in order to study a porous unit cell with 

embedded Helmholtz resonators. Respect to the reference work, here the analysis on this unit cell 

with embedded Helmholtz resonators also included a transmission loss and a dispersion relation 

computation. 
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3. BIOT MODEL ANALYSES 

 

 

 

 

 

 

 

 

 

 

 

 

“Nothing in life is to be feared, it is only to be understood.  

Now is the time to understand more, so that we may fear less. ”  

(Marie Curie)  
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3.1. Shift cell operator technique 

3.1.1. Introduction 

Under specific boundary and/or load conditions, and at specific frequencies, the solid phase (also 

called frame or skeleton) of a porous material can be considered as motionless [69]–[73]. For example, 

above the phase decoupling frequency (defined in Section 1.2.1), a displacement of the fluid phase 

does not induce a displacement of the solid phase; in such cases, no wave propagates in the solid 

phase, and thus a motionless skeleton model can be used in order to describe the acoustic behavior of 

the medium [68]. This is the main hypothesis at the base of Section 2, and the complete vibroacoustic 

behavior of the medium can be simplified, compared to poro-elastic models. 

Indeed, these models take into account the wave propagations (and interactions) in both fluid and 

solid phases of a foam. Biot model [64] is the most comprehensive one to describe the vibroacoustics 

of a poro-elastic material, but it requires several parameters (and high computational costs) to be used: 

a set of parameters for each of the two phases. 

In case of low-frequencies acoustic loads, or in case of mechanical excitations, waves can propagate in 

both phases; therefore, motionless skeleton models cannot be used and a diphasic model is required 

[68]. 

In this section, the shift cell operator technique is re-formulated for poro-elastic materials, providing 

details on its FEM implementation too. 

 

3.1.2. Weak formulation 

Considering a porous layer modeled through Biot’s theory [64], the coupled starting system is 

constituted by the equation of motion of the solid part and the classical Helmholtz equation, 

respectively: 

 {
𝛁 ∙ �̂�(𝒖) + 𝜔2�̃�𝒖 + �̃�𝛁𝑝 = 0

∆𝑝 + 𝜔2
�̃�22

𝑅
𝑝 − 𝜔2

�̃�22

𝜙2
�̃�𝛁 ∙ 𝒖 = 0

, (98) 

where 𝒖 = (𝑢, 𝑣, 𝑤) is the solid phase displacement vector and 𝑝 = 𝑝(𝒙,𝜔) is the acoustic pressure 

[97]. The following quantities are introduced [75], together with those defined in Section 1.2.2: 

 𝜔 is the angular frequency; 

 𝜎𝑇(𝒖, 𝑝) is the total stress tensor; 

 �̂�(𝒖) = 𝐶휀(𝒖) is the stress tensor of the frame in vacuum, whose generic element can be 

written as �̂�𝑖𝑗 = (𝜇1 −
𝑄2

𝑅
) 𝛿𝑖𝑗휀𝑘𝑘 + 2𝜇2휀𝑖𝑗, where 𝛿𝑖𝑗  is the Kronecker delta and 휀𝑘𝑘 =

𝑡𝑟(𝜺) = 휀𝑢𝑥 + 휀𝑣𝑦 + 휀𝑤𝑧; 

 𝐶 is the Hooke elasticity tensor, with 𝐶11 = 𝜇1 −
𝑄2

𝑅
+ 2𝜇2 and 𝐶12 = 𝜇1 −

𝑄2

𝑅
; 

 휀(𝒖) =
1

2
(𝛁𝒖 + 𝛁𝒖𝑇) is the symmetric strain tensor; 

 𝜇1 =
2𝜈

1−2𝜈
𝑁 and 𝜇2 = 𝑁 are respectively the first and second Lamé parameters. 
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For each physical property of the system, the periodicity is described by 𝛼 (𝒙 − 𝑟𝒏) − 𝛼(𝒙) = 0, 

where 𝛼 is a generic physical property, 𝒏 is a vector of integers normal to the face considered, 𝑟  =

 (𝒓1;  𝒓2;  𝒓3) is a matrix containing the three vectors defining the cell periodicity directions and 

lengths, and Ω is the domain of interest. This applies everywhere except on the discontinuity surfaces, 

where appropriate boundary conditions apply. 

By further developing Equation (98) and applying the Bloch theorem, which generalizes Floquet’s 

results to 3D systems, one can obtain: 

 {
(𝛁 + 𝑗𝒌) ∙ 𝐶

1

2
((𝛁 + 𝑗𝒌)𝒖 + (𝛁 + 𝑗𝒌)𝒖𝑇) + 𝜔2�̃�𝒖 + �̃�(𝛁 + 𝑗𝒌)𝑝 = 𝟎

(𝛁 + 𝑗𝒌)𝑇 ∙ (𝛁 + 𝑗𝒌)𝑝 + 𝜔2
�̃�22

𝑅
𝑝 − 𝜔2

�̃�22

𝜙2
�̃�(𝛁 + 𝑗𝒌) ∙ 𝒖 = 0

. (99) 

The solution approach follows a common weak formulation of a differential problem in a discrete 

coordinate scheme. A (𝒖, 𝑝) formulation, in its classical form, can be found in literature [136]: 

 

{
 
 
 

 
 
 ∫ �̂�(𝒖): 휀(𝛿𝒖) 𝑑𝛺𝜴

−𝜔2 ∫ �̃�𝒖 ∙ 𝛿𝒖 𝑑𝛺𝛺
− ∫ (�̃� + 𝜙 (1 +

𝑄

𝑅
))𝛁𝑝 ∙ 𝛿𝒖 𝑑𝛺

𝛺
+

−∫ 𝜙 (1 +
𝑄

𝑅
)𝑝𝛁 ∙ 𝛿𝒖 𝑑𝛺

𝛺
− ∫ (𝝈𝑻(𝒖, 𝑝) ∙ 𝒏) ∙ 𝛿𝒖 𝑑𝛤𝛤

= 0

∫
𝜙2

𝜔2�̃�22
𝛁𝑝 ∙ 𝛁𝛿𝑝 𝑑𝛺

𝜴
− ∫

𝜙2

𝑅
𝑝𝛿𝑝 𝑑𝛺

𝜴
− ∫ (�̃� + 𝜙 (1 +

𝑄

𝑅
))𝛁𝛿𝑝 ∙ 𝒖 𝑑𝛺

𝛺
+

−∫ 𝜙 (1 +
𝑄

𝑅
)𝛿𝑝𝛁 ∙ 𝒖 𝑑𝛺

𝛺
− ∫ 𝜙(𝑈𝑛 − 𝑢𝑛)𝛿𝑝 𝑑𝛤𝛤

= 0

, (100) 

where 𝛿𝒖 and 𝛿𝑝 are admissible variations of the solid phase displacement vector and the interstitial 

fluid pressure of the poro-elastic medium, respectively. Considering that �̂�(𝒖) = 𝐶휀(𝒖) =

𝐶
1

2
(𝛁𝒖 + 𝛁𝒖𝑇), and introducing the shift cell operator as explained above, one obtains: 

 

{
 
 
 
 

 
 
 
 ∫ (𝐶

1

2
((𝛁 + 𝑗𝒌)𝒖 + (𝛁 + 𝑗𝒌)𝒖𝑇)) : ((𝛁 − 𝑗𝒌)𝛿𝒖 + (𝛁 − 𝑗𝒌)𝛿𝒖𝑇)𝑑𝛺

𝜴
+

−𝜔2 ∫ �̃�𝒖 ∙ 𝛿𝒖 𝑑𝛺𝛺
− ∫ (�̃� + 𝜙 (1 +

𝑄

𝑅
)) (𝛁 + 𝑗𝒌)𝑝 ∙ 𝛿𝒖 𝑑𝛺

𝛺
+

−∫ 𝜙 (1 +
𝑄

𝑅
) 𝑝(𝛁 − 𝑗𝒌) ∙ 𝛿𝒖 𝑑𝛺

𝛺
= 0

∫
𝜙2

𝜔2�̃�22
(𝛁 + 𝑗𝒌)𝑝 ∙ (𝛁 − 𝑗𝒌)𝛿𝑝 𝑑𝛺

𝜴
− ∫

𝜙2

𝑅
𝑝𝛿𝑝 𝑑𝛺

𝜴
+

−∫ (�̃� + 𝜙 (1 +
𝑄

𝑅
)) (𝛁 − 𝑗𝒌)𝛿𝑝 ∙ 𝒖 𝑑𝛺

𝛺
− ∫ 𝜙 (1 +

𝑄

𝑅
)𝛿𝑝(𝛁 + 𝑗𝒌) ∙ 𝒖 𝑑𝛺

𝛺
= 0

, (101) 

where the boundary condition caused the integral on the boundary to vanish. Recalling that: 

 𝒌 = 𝑘𝜽 = 𝑘 [

𝜃𝑥
𝜃𝑦
𝜃𝑧

] = 𝑘 [
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜃

], (102) 

one can define the following quantities: 

 �̂�𝜃(𝒖) = 𝐶휀𝜃(𝒖), whose generic term is �̂�𝜃𝑖𝑗 = (𝜇1 −
𝑄2

𝑅
)𝛿𝑖𝑗휀𝜃𝑘𝑘 + 2𝜇2휀𝜃𝑖𝑗; 

 휀𝜃(𝒖) =
1

2
(𝜽𝒖 + 𝜽𝒖𝑇). 

Therefore: 
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{
 
 
 
 
 
 

 
 
 
 
 
 ∫ �̂�(𝒖): 휀(𝛿𝒖) 𝑑𝛺𝜴

+ 𝑗𝑘 ∫ �̂�𝜃(𝒖): 휀(𝛿𝒖) 𝑑𝛺𝜴
− 𝑗𝑘 ∫ �̂�(𝒖): 휀𝜃(𝛿𝒖) 𝑑𝛺𝜴

+

+𝑘2 ∫ �̂�𝜃(𝒖): 휀𝜃(𝛿𝒖) 𝑑𝛺𝜴
− 𝜔2 ∫ �̃�𝒖 ∙ 𝛿𝒖 𝑑𝛺𝛺

+

−∫ (�̃� + 𝜙 (1 +
𝑄

𝑅
)) (𝛁 + 𝑗𝒌)𝑝 ∙ 𝛿𝒖 𝑑𝛺

𝛺
− ∫ 𝜙 (1 +

𝑄

𝑅
)𝑝(𝛁 − 𝑗𝒌) ∙ 𝛿𝒖 𝑑𝛺

𝛺
= 0

∫
𝜙2

𝜔2�̃�22
𝛁𝑝 ∙ 𝛁𝛿𝑝 𝑑𝛺

𝜴
+ 𝑗𝑘 ∫

𝜙2

𝜔2�̃�22
𝜽 ∙ 𝑝𝛁𝛿𝑝 𝑑𝛺

𝜴
− 𝑗𝑘 ∫

𝜙2

𝜔2�̃�22
𝜽 ∙ 𝛁𝑝𝛿𝑝 𝑑𝛺

𝜴
+

+𝑘2 ∫
𝜙2

𝜔2�̃�22
𝑝𝛿𝑝 𝑑𝛺

𝜴
− ∫

𝜙2

𝑅
𝑝𝛿𝑝 𝑑𝛺

𝜴
− ∫ (�̃� + 𝜙 (1 +

𝑄

𝑅
))𝛁𝛿𝑝 ∙ 𝒖 𝑑𝛺

𝛺
+

+𝑗𝑘 ∫ (�̃� + 𝜙 (1 +
𝑄

𝑅
))𝜽 ∙ 𝛿𝑝𝒖 𝑑𝛺

𝛺
− ∫ 𝜙 (1 +

𝑄

𝑅
) 𝛿𝑝𝛁 ∙ 𝒖 𝑑𝛺

𝛺
+

−𝑗𝑘 ∫ 𝜙 (1 +
𝑄

𝑅
)𝜽 ∙ 𝛿𝑝𝒖 𝑑𝛺

𝛺
= 0

, (103) 

 

{
 
 
 
 
 

 
 
 
 
 ∫ �̂�(𝒖): 휀(𝛿𝒖) 𝑑𝛺𝜴

+ 𝑗𝑘 ∫ (�̂�𝜃(𝒖): 휀(𝛿𝒖) − �̂�(𝒖): 휀𝜃(𝛿𝒖))  𝑑𝛺𝜴
+

+𝑘2 ∫ �̂�𝜃(𝒖): 휀𝜃(𝛿𝒖) 𝑑𝛺𝜴
−𝜔2 ∫ �̃�𝒖 ∙ 𝛿𝒖 𝑑𝛺𝛺

− ∫ �̃�𝛁𝑝 ∙ 𝛿𝒖 𝑑𝛺𝛺
+

−𝑗𝑘 ∫ �̃�𝜽 ∙ 𝑝𝛿𝒖 𝑑𝛺𝛺
− ∫ 𝜙 (1 +

𝑄

𝑅
) (𝛁𝑝 ∙ 𝛿𝒖 + 𝑝𝛁 ∙ 𝛿𝒖) 𝑑𝛺

𝛺
= 0

∫
𝜙2

𝜔2�̃�22
𝛁𝑝 ∙ 𝛁𝛿𝑝 𝑑𝛺

𝜴
+ 𝑗𝑘 ∫

𝜙2

𝜔2�̃�22
(𝜽 ∙ 𝑝𝛁𝛿𝑝 − 𝜽 ∙ 𝛁𝑝𝛿𝑝) 𝑑𝛺

𝜴
+

+𝑘2 ∫
𝜙2

𝜔2�̃�22
𝑝𝛿𝑝 𝑑𝛺

𝜴
− ∫

𝜙2

𝑅
𝑝𝛿𝑝 𝑑𝛺

𝜴
− ∫ �̃�𝛁𝛿𝑝 ∙ 𝒖 𝑑𝛺𝛺

+

+𝑗𝑘 ∫ �̃�𝜽 ∙ 𝛿𝑝𝒖 𝑑𝛺𝛺
− ∫ 𝜙 (1 +

𝑄

𝑅
) (𝛁𝛿𝑝 ∙ 𝒖 + 𝛿𝑝𝛁 ∙ 𝒖) 𝑑𝛺

𝛺
= 0

. (104) 

Finally, one can discretize the weak formulation through the Finite Element Method: considering that 

𝝋𝒔 and 𝝋𝒇 are the eigenvectors of the solid and fluid parts respectively, the system of equations can 

be written in its matrix form: 

 

{
 

 (𝐾𝑠 + 𝑗𝑘𝐿𝑠 + 𝑘
2𝐻𝑠 −𝜔

2𝑀𝑠)𝝋𝒔 − (𝑁𝑠 + 𝑗𝑘𝑂𝑠 + 𝑇𝑠)𝝋𝒇 = 0

(𝐾𝑓 + 𝑗𝑘𝐿𝑓 + 𝑘
2𝐻𝑓 −𝜔

2𝑀𝑓)𝝋𝒇 −𝜔
2(𝑁𝑓 − 𝑗𝑘𝑂𝑓 + 𝑇𝑓)𝝋𝒔 = 0

, (105) 

with the following matrices: 

 𝐾𝑠 ∝ ∫ �̂�(𝒖): 휀(𝛿𝒖) 𝑑𝛺
𝜴

; 

 𝐿𝑠 ∝ ∫ (�̂�𝜃(𝒖): 휀(𝛿𝒖) − �̂�(𝒖): 휀𝜃(𝛿𝒖))  𝑑𝛺

𝜴

; 

 𝐻𝑠 ∝ ∫ �̂�𝜃(𝒖): 휀𝜃(𝛿𝒖) 𝑑𝛺
𝜴

; 

 𝑀𝑠 ∝ ∫ �̃�𝒖 ∙ 𝛿𝒖 𝑑𝛺𝛺
; 

 𝑁𝑠 ∝ ∫ �̃�𝛁𝑝 ∙ 𝛿𝒖 𝑑𝛺𝛺
; 

 𝑂𝑠 ∝ ∫ �̃�𝜽 ∙ 𝑝𝛿𝒖 𝑑𝛺𝛺
; 

 𝑇𝑠 ∝ ∫ 𝜙 (1 +
𝑄

𝑅
) (𝛁𝑝 ∙ 𝛿𝒖 + 𝑝𝛁 ∙ 𝛿𝒖) 𝑑𝛺

𝛺

; 
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 𝐾𝑓 ∝ ∫
𝜙2

�̃�22
𝛁𝑝 ∙ 𝛁𝛿𝑝 𝑑𝛺

𝜴

; 

 𝐿𝑓 ∝ ∫
𝜙2

�̃�22
(𝜽 ∙ 𝑝𝛁𝛿𝑝 − 𝜽 ∙ 𝛁𝑝𝛿𝑝) 𝑑𝛺

𝜴

; 

 𝐻𝑓 ∝ ∫
𝜙2

�̃�22
𝑝𝛿𝑝 𝑑𝛺

𝜴

; 

 𝑀𝑓 ∝ ∫
𝜙2

𝑅
𝑝𝛿𝑝 𝑑𝛺

𝜴

; 

 𝑁𝑓 ∝ ∫ �̃�𝛁𝛿𝑝 ∙ 𝒖 𝑑𝛺𝛺
; 

 𝑂𝑓 ∝ ∫ �̃�𝜽 ∙ 𝛿𝑝𝒖 𝑑𝛺𝛺
; 

 𝑇𝑓 ∝ ∫ 𝜙(1 +
𝑄

𝑅
) (𝛁𝛿𝑝 ∙ 𝒖 + 𝛿𝑝𝛁 ∙ 𝒖) 𝑑𝛺

𝛺

. 

Here, 𝑀𝑠,𝑓 and 𝐾𝑠,𝑓 are respectively the symmetric mass and symmetric stiffness matrices, 𝐿𝑠,𝑓 are 

skew-symmetric matrices, 𝐻𝑠,𝑓 are symmetric matrices and 𝑁𝑠 = 𝑁𝑓
𝑇, 𝑂𝑠 = 𝑂𝑓

𝑇 and 𝑇𝑠 = 𝑇𝑓
𝑇 are the 

matrices that couple the solid and fluid behaviors; all of them are complex and frequency-dependent. 

Therefore, the coupled system can be written as it follows: 

 [
(𝐾𝑠 + 𝑗𝑘𝐿𝑠 + 𝑘

2𝐻𝑠 −𝜔
2𝑀𝑠)

−(𝑁𝑓 − 𝑗𝑘𝑂𝑓 + 𝑇𝑓)
|

−(𝑁𝑠 + 𝑗𝑘𝑂𝑠 + 𝑇𝑠)

1

𝜔2
(𝐾𝑓 + 𝑗𝑘𝐿𝑓 + 𝑘

2𝐻𝑓 −𝜔
2𝑀𝑓)
] {
𝝋𝒔
𝝋𝒇
} = {
0
0
}. (106) 

 

3.1.3. Finite element implementation 

In order to numerically implement the shift cell technique for Biot-modeled foams, the vector equation 

related to the motion of the solid part is split into three scalar equations. The following matrices are 

defined accordingly: 

 𝒖 = [
𝑢
𝑣
𝑤
] , 𝛁𝒖 =  

[
 
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥

𝜕𝑤

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦

𝜕𝑤

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑧

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

, 𝜽𝒖 = [

𝜃𝑥𝑢 𝜃𝑥𝑣 𝜃𝑥𝑤
𝜃𝑦𝑢 𝜃𝑦𝑣 𝜃𝑦𝑤

𝜃𝑧𝑢 𝜃𝑧𝑣 𝜃𝑧𝑤
], (107) 

 휀(𝒖) =

[
 
 
 
 

𝜕𝑢

𝜕𝑥

1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)
1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)

1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
)

𝜕𝑣

𝜕𝑦

1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)

1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)
1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)

𝜕𝑤

𝜕𝑧 ]
 
 
 
 

, (108) 

 휀𝜃(𝒖) =

[
 
 
 
 𝜃𝑥𝑢

1

2
(𝜃𝑦𝑢 + 𝜃𝑥𝑣)

1

2
(𝜃𝑧𝑢 + 𝜃𝑥𝑤)

1

2
(𝜃𝑦𝑢 + 𝜃𝑥𝑣) 𝜃𝑦𝑣

1

2
(𝜃𝑧𝑣 + 𝜃𝑦𝑤)

1

2
(𝜃𝑧𝑢 + 𝜃𝑥𝑤)

1

2
(𝜃𝑧𝑣 + 𝜃𝑦𝑤) 𝜃𝑧𝑤 ]

 
 
 
 

, (109) 
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 �̂�(𝒖) =

[
 
 
 
 𝐶11

𝜕𝑢

𝜕𝑥
+ 𝐶12 (

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
) (𝐶11 − 𝐶12)

1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) (𝐶11 − 𝐶12)

1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)

(𝐶11 − 𝐶12)
1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) 𝐶11

𝜕𝑣

𝜕𝑦
+ 𝐶12 (

𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
) (𝐶11 − 𝐶12)

1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
)

(𝐶11 − 𝐶12)
1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) (𝐶11 − 𝐶12)

1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) 𝐶11

𝜕𝑤

𝜕𝑧
+ 𝐶12 (

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
) ]
 
 
 
 

, (110) 

 �̂�𝜃(𝒖) =

[
 
 
 
 𝐶11𝜃𝑥𝑢 + 𝐶12(𝜃𝑦𝑣 + 𝜃𝑧𝑤) (𝐶11 − 𝐶12)

1

2
(𝜃𝑦𝑢 + 𝜃𝑥𝑣) (𝐶11 − 𝐶12)

1

2
(𝜃𝑧𝑢 + 𝜃𝑥𝑤)

(𝐶11 − 𝐶12)
1

2
(𝜃𝑦𝑢 + 𝜃𝑥𝑣) 𝐶11𝜃𝑦𝑣 + 𝐶12(𝜃𝑥𝑢 + 𝜃𝑧𝑤) (𝐶11 − 𝐶12)

1

2
(𝜃𝑧𝑣 + 𝜃𝑦𝑤)

(𝐶11 − 𝐶12)
1

2
(𝜃𝑧𝑢 + 𝜃𝑥𝑤) (𝐶11 − 𝐶12)

1

2
(𝜃𝑧𝑣 + 𝜃𝑦𝑤) 𝐶11𝜃𝑧𝑤 + 𝐶12(𝜃𝑥𝑢 + 𝜃𝑦𝑣)]

 
 
 
 

. (111) 

The numerical model is therefore based on the following matrix weak formulation: 

 𝐾𝑠,𝑢 ∝

∫

 
 
 
 

(

 
 

(𝐶11
𝜕𝑢

𝜕𝑥
+ 𝐶12 (

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
))
𝜕𝛿𝑢

𝜕𝑥
+

+(𝐶11 − 𝐶12)
1

4
((
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) (
𝜕𝛿𝑢

𝜕𝑦
+
𝜕𝛿𝑣

𝜕𝑥
) + (

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) (
𝜕𝛿𝑢

𝜕𝑧
+
𝜕𝛿𝑤

𝜕𝑥
))
)

 
 
 𝑑𝛺

𝜴

; 

 𝐿𝑠,𝑢 ∝

∫

 
 
 
 
 
 
 
 

(

 
 
 
 
 
 

(𝐶11𝜃𝑥𝑢 + 𝐶12(𝜃𝑦𝑣 + 𝜃𝑧𝑤))
𝜕𝛿𝑢

𝜕𝑥
+

+(𝐶11 − 𝐶12)
1

4
((𝜃𝑦𝑢 + 𝜃𝑥𝑣) (

𝜕𝛿𝑢

𝜕𝑦
+
𝜕𝛿𝑣

𝜕𝑥
) + (𝜃𝑧𝑢 + 𝜃𝑥𝑤) (

𝜕𝛿𝑢

𝜕𝑧
+
𝜕𝛿𝑤

𝜕𝑥
)) +

−(𝐶11
𝜕𝑢

𝜕𝑥
+ 𝐶12 (

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
))𝜃𝑥𝛿𝑢 +

−(𝐶11 − 𝐶12)
1

4
((
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) (𝜃𝑦𝛿𝑢 + 𝜃𝑥𝛿𝑣) + (

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) (𝜃𝑧𝛿𝑢 + 𝜃𝑥𝛿𝑤))

)

 
 
 
 
 
 

 𝑑𝛺

𝜴

; 

 𝐻𝑠,𝑢 ∝

∫ (
(𝐶11𝜃𝑥𝑢 + 𝐶12(𝜃𝑦𝑣 + 𝜃𝑧𝑤))𝜃𝑥𝛿𝑢 +

+(𝐶11 − 𝐶12)
1

4
((𝜃𝑦𝑢 + 𝜃𝑥𝑣)(𝜃𝑦𝛿𝑢 + 𝜃𝑥𝛿𝑣) + (𝜃𝑧𝑢 + 𝜃𝑥𝑤)(𝜃𝑧𝛿𝑢 + 𝜃𝑥𝛿𝑤))

)  𝑑𝛺

𝜴

; 

 𝑀𝑠,𝑢 ∝ ∫ �̃�𝑢𝛿𝑢 𝑑𝛺𝛺
; 

 𝑁𝑠,𝑢 ∝ ∫ �̃�
𝜕𝑝

𝜕𝑥
𝛿𝑢 𝑑𝛺

𝛺

; 

 𝑂𝑠,𝑢 ∝ ∫ �̃�𝜃1𝑝𝛿𝑢 𝑑𝛺𝛺
; 

 𝑇𝑠,𝑢 ∝ ∫ 𝜙 (1 +
𝑄

𝑅
) (
𝜕𝑝

𝜕𝑥
𝛿𝑢 + 𝑝

𝜕𝛿𝑢

𝜕𝑥
)  𝑑𝛺

𝛺

; 

 𝐾𝑠,𝑣 ∝

∫

 
 
 
 

(

 
 

(𝐶11
𝜕𝑣

𝜕𝑦
+ 𝐶12 (

𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
))
𝜕𝛿𝑣

𝜕𝑦
+

+(𝐶11 − 𝐶12)
1

4
((
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) (
𝜕𝛿𝑢

𝜕𝑦
+
𝜕𝛿𝑣

𝜕𝑥
) + (

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) (
𝜕𝛿𝑣

𝜕𝑧
+
𝜕𝛿𝑤

𝜕𝑦
))
)

 
 
 𝑑𝛺

𝜴

; 
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 𝐿𝑠,𝑣 ∝

∫

 
 
 
 
 
 
 
 

(

 
 
 
 
 
 

(𝐶11𝜃𝑦𝑣 + 𝐶12(𝜃𝑥𝑢 + 𝜃𝑧𝑤))
𝜕𝛿𝑣

𝜕𝑦
+

+(𝐶11 − 𝐶12)
1

4
((𝜃𝑦𝑢 + 𝜃𝑥𝑣) (

𝜕𝛿𝑢

𝜕𝑦
+
𝜕𝛿𝑣

𝜕𝑥
) + (𝜃𝑧𝑣 + 𝜃𝑦𝑤)(

𝜕𝛿𝑣

𝜕𝑧
+
𝜕𝛿𝑤

𝜕𝑦
)) +

−(𝐶11
𝜕𝑣

𝜕𝑦
+ 𝐶12 (

𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
))𝜃𝑦𝛿𝑣 +

−(𝐶11 − 𝐶12)
1

4
((
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) (𝜃𝑦𝛿𝑢 + 𝜃𝑥𝛿𝑣) + (

𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) (𝜃𝑧𝛿𝑣 + 𝜃𝑦𝛿𝑤))

)

 
 
 
 
 
 

 𝑑𝛺

𝜴

; 

 𝐻𝑠,𝑣 ∝

∫ (
(𝐶11𝜃𝑦𝑣 + 𝐶12(𝜃𝑥𝑢 + 𝜃𝑧𝑤))𝜃𝑦𝛿𝑣 +

+(𝐶11 − 𝐶12)
1

4
((𝜃𝑦𝑢 + 𝜃𝑥𝑣)(𝜃𝑦𝛿𝑢 + 𝜃𝑥𝛿𝑣) + (𝜃𝑧𝑣 + 𝜃𝑦𝑤)(𝜃𝑧𝛿𝑣 + 𝜃𝑦𝛿𝑤))

)  𝑑𝛺

𝜴

; 

 𝑀𝑠,𝑣 ∝ ∫ �̃�𝑣𝛿𝑣 𝑑𝛺𝛺
; 

 𝑁𝑠,𝑣 ∝ ∫ �̃�
𝜕𝑝

𝜕𝑦
𝛿𝑣 𝑑𝛺

𝛺

; 

 𝑂𝑠,𝑣 ∝ ∫ �̃�𝜃2𝑝𝛿𝑣 𝑑𝛺𝛺
; 

 𝑇𝑠,𝑣 ∝ ∫ 𝜙 (1 +
𝑄

𝑅
) (
𝜕𝑝

𝜕𝑦
𝛿𝑣 + 𝑝

𝜕𝛿𝑣

𝜕𝑦
)  𝑑𝛺

𝛺

; 

 𝐾𝑠,𝑤 ∝

∫

 
 
 
 

(

 
 

(𝐶11
𝜕𝑤

𝜕𝑧
+ 𝐶12 (

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
))
𝜕𝛿𝑤

𝜕𝑧
+

+(𝐶11 − 𝐶12)
1

4
((
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) (
𝜕𝛿𝑣

𝜕𝑧
+
𝜕𝛿𝑤

𝜕𝑦
) + (

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) (
𝜕𝛿𝑢

𝜕𝑧
+
𝜕𝛿𝑤

𝜕𝑥
))
)

 
 
 𝑑𝛺

𝜴

; 

 𝐿𝑠,𝑤 ∝

∫

 
 
 
 
 
 
 
 

(

 
 
 
 
 
 

(𝐶11𝜃𝑧𝑤 + 𝐶12(𝜃𝑥𝑢 + 𝜃𝑦𝑣))
𝜕𝛿𝑤

𝜕𝑧
+

+(𝐶11 − 𝐶12)
1

4
((𝜃𝑦𝑤 + 𝜃𝑧𝑣) (

𝜕𝛿𝑤

𝜕𝑦
+
𝜕𝛿𝑣

𝜕𝑧
) + (𝜃𝑧𝑢 + 𝜃𝑥𝑤) (

𝜕𝛿𝑢

𝜕𝑧
+
𝜕𝛿𝑤

𝜕𝑥
)) +

−(𝐶11
𝜕𝑤

𝜕𝑧
+ 𝐶12 (

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
))𝜃𝑧𝛿𝑤 +

−(𝐶11 − 𝐶12)
1

4
((
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
) (𝜃𝑦𝛿𝑤 + 𝜃𝑧𝛿𝑣) + (

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) (𝜃𝑧𝛿𝑢 + 𝜃𝑥𝛿𝑤))

)

 
 
 
 
 
 

 𝑑𝛺

𝜴

; 

 𝐻𝑠,𝑤 ∝

∫ (
(𝐶11𝜃𝑧𝑤 + 𝐶12(𝜃𝑥𝑢 + 𝜃𝑦𝑣))𝜃𝑧𝛿𝑤 +

+(𝐶11 − 𝐶12)
1

4
((𝜃𝑦𝑤 + 𝜃𝑧𝑣)(𝜃𝑦𝛿𝑤 + 𝜃𝑧𝛿𝑣) + (𝜃𝑧𝑢 + 𝜃𝑥𝑤)(𝜃𝑧𝛿𝑢 + 𝜃𝑥𝛿𝑤))

)  𝑑𝛺

𝜴

; 

 𝑀𝑠,𝑤 ∝ ∫ �̃�𝑤𝛿𝑤 𝑑𝛺𝛺
; 

 𝑁𝑠,𝑤 ∝ ∫ �̃�
𝜕𝑝

𝜕𝑧
𝛿𝑤 𝑑𝛺

𝛺

; 
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 𝑂𝑠,𝑤 ∝ ∫ �̃�𝜃3𝑝𝛿𝑤 𝑑𝛺𝛺
; 

 𝑇𝑠,𝑤 ∝ ∫ 𝜙 (1 +
𝑄

𝑅
) (
𝜕𝑝

𝜕𝑧
𝛿𝑤 + 𝑝

𝜕𝛿𝑤

𝜕𝑧
)  𝑑𝛺

𝛺

; 

 𝐾𝑓 ∝ ∫
𝜙2

�̃�22
(
𝜕𝑝

𝜕𝑥

𝜕𝛿𝑝

𝜕𝑥
+
𝜕𝑝

𝜕𝑦

𝜕𝛿𝑝

𝜕𝑦
+
𝜕𝑝

𝜕𝑧

𝜕𝛿𝑝

𝜕𝑧
)  𝑑𝛺

𝜴

; 

 𝐿𝑓 ∝ ∫
𝜙2

�̃�22
(𝑝 (
𝜕𝛿𝑝

𝜕𝑥
𝜃1 +

𝜕𝛿𝑝

𝜕𝑦
𝜃2 +

𝜕𝛿𝑝

𝜕𝑧
𝜃3) − (

𝜕𝑝

𝜕𝑥
𝜃1 +

𝜕𝑝

𝜕𝑦
𝜃2 +

𝜕𝑝

𝜕𝑧
𝜃3) 𝛿𝑝)  𝑑𝛺

𝜴

; 

 𝐻𝑓 ∝ ∫
𝜙2

�̃�22
𝑝𝛿𝑝 𝑑𝛺

𝜴

; 

 𝑀𝑓 ∝ ∫
𝜙2

𝑅
𝑝𝛿𝑝 𝑑𝛺

𝜴

; 

 𝑁𝑓 ∝ ∫ �̃� (𝑢
𝜕𝛿𝑝

𝜕𝑥
+ 𝑣
𝜕𝛿𝑝

𝜕𝑦
+𝑤

𝜕𝛿𝑝

𝜕𝑧
)  𝑑𝛺

𝛺

; 

 𝑂𝑓 ∝ ∫ �̃�(𝜃1𝑢 + 𝜃2𝑣 + 𝜃3𝑤)𝛿𝑝 𝑑𝛺𝛺
; 

 𝑇𝑓 ∝ ∫ 𝜙(1 +
𝑄

𝑅
)((
𝜕𝛿𝑝

𝜕𝑥
𝑢 +
𝜕𝛿𝑝

𝜕𝑦
𝑣 +
𝜕𝛿𝑝

𝜕𝑧
𝑤) + 𝛿𝑝 (

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
))  𝑑𝛺

𝛺

. 

 

3.1.4. Validation of the method 

In order to validate the shift cell technique implementation for Biot-modeled foams, in the studied 

configuration and for propagation along the 𝑥-axis, a first calculation (Figure 53) is made to compare 

shift cell results with those obtained by Serra et al. [36] using the Wave Finite Element Method [137] 

and with those computed through an analytical model, which is valid for infinite homogeneous 

isotropic porous media, where three waves propagate (two compressional waves and one shear wave): 

 𝑘𝑠ℎ𝑒𝑎𝑟 = 𝜔√
�̃�11�̃�22−�̃�12

2

𝑁�̃�22
, (112) 

 𝑘𝑓𝑎𝑠𝑡,𝑠𝑙𝑜𝑤 = √
𝐴1

2
±√
𝐴1
2

4
− 𝐴2, with (113) 

 𝐴1 = 𝜔
2 �̃�11𝑅−2�̃�12𝑄+�̃�22𝑃

𝑅𝑃−𝑄2
 and 𝐴2 = 𝜔

4 �̃�11�̃�22−�̃�12
2

𝑅𝑃−𝑄2
. (114) 

Parameters of foam and air used in the validation shown in Figure 53 and Figure 54 can be found in 

Appendix B of Serra et al. [36]. The two phases present in a poro-elastic material behave differently: 

the main difference with the pure elastic case lies in the existence of a second compressional wave, 

which is highly attenuated in the low frequency range. Each of the three waves propagates in the solid 

as well as in the fluid phase of the poro-elastic material. The ratios of the fluid over the solid velocities 

of the different wave types are given by [62]: 

 𝜇𝑠ℎ𝑒𝑎𝑟 = −
�̃�12

�̃�22
, (115) 

 𝜇𝑓𝑎𝑠𝑡,𝑠𝑙𝑜𝑤 =
𝑃𝑘𝑓𝑎𝑠𝑡,𝑠𝑙𝑜𝑤
2 −𝜔2�̃�11

𝜔2�̃�12−𝑄𝑘𝑓𝑎𝑠𝑡,𝑠𝑙𝑜𝑤
2 . (116) 
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Figure 53: Dispersion curves for a 3D Biot-modeled unit cell, validation with Serra plots [36]; real (left) and imaginary (right) 
parts. 

The shift cell approach has several advantages compared to the WFEM one. Indeed, as described by 

Serra et al. [36], the WFEM approach applied to Biot-modeled foams leads to a transcendental 

eigenvalue problem that can be solved by using a nonlinear solver, such as MatLab fsolve function. 

However, a lot of numerical difficulties exist and robust solutions have yet to be developed. Under the 

hypotheses of plane wave, this can be turned into a quadratic eigenvalue problem, whose accuracy is 

very sensitive to the choice of the length and of the meshing of the periodic substructure. Instead, the 

use of the shift cell approach leads directly to a quadratic eigenvalue problem, with no assumption on 

the nature of the waves, whose accuracy only depends on the meshing of the periodic structure. In 

particular, poro-elastic elements have slow convergence rates and the criterion of 6 elements per wave 

length may not be sufficient in the general case [138], thus the use of 10 elements per wave length in 

the three directions is recommended as a rule of the thumb [36]. 

 

Figure 54: Ratios of the fluid over the solid velocities of the different wave types for a 3D Biot-modeled unit cell. 

An additional validation (Figure 55 and Figure 56) is then carried out through a comparison with the 

results obtained on a JCA-modeled 3D unit cell (Figure 8), both in a homogeneous configuration (Table 

10) and with a perfectly rigid cylindrical inclusion; in this case, a 3D periodicity is considered. 

For the sake of comparison with the equivalent fluid case, here the properties of the foam are modified 

in order to simulate a rigid frame behavior; in particular, the Young modulus is set to 𝐸 = 1015 Pa and 

the loss factor is nullified. 
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Figure 55: Dispersion curves validation with JCA plots; here, the Biot curves are computed for a 3D homogeneous PU 60 unit 

cell, with 𝐸 = 1015 𝑃𝑎 and structural loss factor = 0. 

 

Figure 56: Dispersion curves validation with JCA plots; here, the Biot curves are computed for a 3D PU 60 unit cell with a 

perfectly rigid cylindrical inclusion, with 𝐸 = 1015 𝑃𝑎 and structural loss factor = 0. 

Again, one may notice that there could be some discontinuous curves where the wave propagates, 

then becomes evanescent, then propagates again (or vice-versa): this is not an expected configuration, 

and it is probably due to the fact that, as said in Section 2.2.1, all waves are evanescent with different 

rates and so a non-perfect tuning of the classifying criteria could lead to lines that disappears and 

reappears on the plots. 

 

3.1.5. Branch tracking 

In this section, a branch tracking algorithm is introduced for Biot-modeled foams. In this case, due to 

the higher number of parameters and matrices compared to those associated to an equivalent fluid 

problem, it would be much more complex to formulate and solve a coupled eigenvalue problem in 

order to obtain an analytical expression for the group velocity. Therefore, here the proposed approach 

is more simple, with respect to the one explained in Section 2.3, and consists in comparing a single 

wave number value at a specific frequency 𝑘𝑖(𝑓) and 𝒌(𝑓 + ∆𝑓). 
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From the wave number associated to a starting point, the routine compares the initial 𝑘𝑖 with all the 

group velocities at the next frequency step 𝑓 + ∆𝑓 and a minimization is made in order to identify the 

point at 𝑓 + ∆𝑓 to which is associated the closest value of 𝑘. Then, this point is defined as the new 

starting one and so on, step by step, the branch is identified. 

 

Figure 57: Real (left) and imaginary (right) parts of analytically estimated dispersion curves for a 3D Biot-modeled 
homogeneous PU 60 foam. 

 

Figure 58: Ratios of the fluid over the solid velocities of the different wave types in a 3D Biot-modeled homogeneous PU 60 
foam. 

 

Figure 59: Evanescent and propagative parts of dispersion curves for a 3D Biot-modeled PU 60 unit cell, with a perfectly rigid 
cylindrical inclusion. The color scale (on the right) indicates the level of propagativeness. 
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Figure 60: Branch-tracked dispersion curves for a 3D Biot-modeled PU 60 unit cell, with a perfectly rigid cylindrical inclusion. 

For all tested configurations, which involve the computation of 20 eigenvalues, the branch-tracking 

algorithm, through the use of a proper frequency step in the eigenproblem definition, is able to 

correctly classify the solutions, even in the presence of band gaps, branch-crossing or branch-veering. 

 

3.2. Absorption coefficient and transmission loss 

comparisons between JCA and Biot models 

The following results are related to the same finite element model configuration described in Section 

2.3; the unit cell configuration is the 3D one described in Figure 8, and the poro-elastic properties of 

the foams are reported in Table 10. With reference to the following plots, one can notice that, In the 

case of PU 60 foam (Figure 61 and Figure 62), no meaningful differences are shown between JCA and 

Biot results. The same happens for Test foam 1 absorption coefficient curve (Figure 63), while a non-

negligible transmission loss performance increase can be seen at high frequencies, when the Biot 

model is used (Figure 64): this is due to the structural response of the foam skeleton, whose elasticity 

is neglected when using an equivalent fluid model instead. This phenomenon is even more evident in 

the case of Test foam 2, probably due to its high airflow resistivity value, where some clear differences 

between JCA and Biot results are shown at low-middle frequencies, both for absorption coefficient 

(Figure 65) and transmission loss curves (Figure 66). 

Table 10: Poro-elastic properties of the tested foams. 

  PU 60 Test foam 1 Test foam 2 

Porosity 0.98 0.96 0.97 

Tortuosity 1.17 1.7 2.52 

Airflow resistivity [Pa*s/m^2] 3750 32000 87000 

Viscous characteristic length [mm] 0.11 0.09 0.037 

Thermal characteristic length [mm] 0.742 0.165 0.119 

Density [kg/m3] 22.1 30 31 

Young modulus [kPa] 70 + j19 733+j73 143+j8 

Shear modulus [kPa] 25 + j7 264+j*26 55+j3 

Loss factor 0.265 0.1 0.055 

Poisson ratio 0.39 0.387 0.3 
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Figure 61: Absorption coefficient comparisons between JCA and Biot models for PU 60 foam. 

  

Figure 62: Transmission loss comparisons between JCA and Biot models for PU 60 foam. 

 

Figure 63: Absorption coefficient comparisons between JCA and Biot models for Test foam 1. 
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Figure 64: Transmission loss comparisons between JCA and Biot models for Test foam 1. 

  

Figure 65: Absorption coefficient comparisons between JCA and Biot models for Test foam 2. 

 

Figure 66: Transmission loss comparisons between JCA and Biot models for Test foam 2. 
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3.2.1. Computational cost comparison between JCA and Biot 

models 

Figure 67 and Figure 68 show a comparison of the computational cost, in terms of time and as a 

function of the number of elements in the finite element model, between JCA and Biot models for the 

computation of the values of absorption coefficient and transmission loss at a single frequency.The 3D 

geometry is meshed using tetrahedral elements are used, and the configuration considered is the one 

described by case 42 of Table 4. Raw data are also approximated through a piecewise cubic Hermite 

interpolating polynomial technique. As expected, the calculation cost is always higher with the Biot 

model than the one required by the JCA one. However, this difference decreases with an almost 

logarithmic behavior when the number of elements of the finite element model is increasing. 

 

Figure 67: Computational times [s] for a single value of absorption coefficient (left) and transmission loss (right), for 
increasing number of elements. 

 

Figure 68: Computational time percentage for a single value of absorption coefficient (left) and transmission loss (right), for 
increasing number of elements. 

Considering the very few differences between JCA and Biot models highlighted in Figure 61, the usage 

of the latter is recommended only in presence of a foam whose frame elasticity clearly plays a relevant 

role in its acoustic performance. Furthermore, this choice becomes more justified for finite element 

models that require a very fine mesh, since the difference between the two approaches, in terms of 

computational time, reduces with increasing mesh size. 
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3.3. Non-rigid inclusion test campaign 

Through the use of the acoustic-structure coupling that comes from the implementation of Biot model, 

the previous non-rigid inclusion test campaign (Section 2.4) can be extended by considering some solid 

(but still non-perfectly-rigid) inclusions in the 3D-modeled unit cell described in Figure 8. In particular, 

6 setups are discussed here, whose fundamental parameters are reported in Table 11. However, only 

results related to Configurations 1, 2 and 6 of Table 12 are shown, since those related to Configurations 

3, 4, and 5 have negligible differences respect to Configuration 2. 

Table 11: Elastic properties of the materials used in the non-rigid inclusions test campaign, with a Biot-modeled PU 60 foam. 

Material Density [kg/m^3] Young modulus [kPa] Poisson ratio 

PU 60 22.1 70 + j19 0.39 

Aluminum 3003-H18 2730 69e6 0.33 

Steel AISI 4340 7850 205e6 0.28 

Titanium beta-21S 4940 105e6 0.33 

Silicon rubber 1100 1e6*(1 + j0.4) 0.47 

 

Figure 69: Absorption coefficient computations for Configurations 1, 2 and 6. 

 

Figure 70: Transmission loss computations for Configurations 1, 2 and 6. 



 
79 

Table 12: Combinations of inclusions used in the non-rigid inclusions test campaign, with a Biot-modeled PU 60 foam, and 
mass variations respect to the homogeneous case. 

Configuration Inclusion Mass variation [%] 

1 Homogeneous 0 

2 Perfectly rigid -19.63495408 

3 Aluminum 3003-H18 2405.859374 

4 Steel AISI 4340 6954.771814 

5 Titanium beta-21S 4369.354783 

6 Silicon rubber 957.6704529 

 

Additional results are provided from Figure 71 to Figure 74, obtained by carrying out the non-rigid 

inclusion test campaign also using Test foam 1 and Test foam 2, described in Table 10. 

 

Figure 71: Non-rigid inclusion test campaign for Test foam 1 absorption coefficient. 

 

Figure 72: Non-rigid inclusion test campaign for Test foam 1 transmission loss. 



 
80 

 

Figure 73: Non-rigid inclusion test campaign for Test foam 2 absorption coefficient. 

 

Figure 74: Non-rigid inclusion test campaign for Test foam 2 transmission loss. 

Some interesting considerations may be formulated, based on the results provided herein. In the 

context of the studied systems, after appropriate checks, the cause of all the macroscopic resonances 

has been addressed to the effect of periodicity (half of the wavelength = periodicity dimension), except 

from the case related to Test foam 2, where the main visible peak is caused by a spring-mass effect (as 

already highlighted in Section 3.2, Figure 65 and Figure 66). In this case, this is also confirmed by the 

fact that, looking at the “Air inclusion” curves from Figure 69 to Figure 72, they do not seem to “sense” 

the effect of the inclusion, probably due to the low impedance mismatch between the contact 

surfaces; instead, in Figure 73 and Figure 74, the peaks are visible also in case of an inclusion filled by 

air, this being a further clue leading to a spring-mass resonance. 

As expected, it should be noted how the sharpness of the performance peaks rises when the structural 

loss factor of the foam decreases. Moreover, the fact that the periodicity peak shifts backward in 

frequency from PU 60 case to Test foam 1 case, could be explained through the higher tortuosity value 

of the latter. This behavior is better explained in Section 3.4, which provides a more detailed discussion 

and additional results about design guidelines. 

 



 
81 

3.3.1. Design of absorption coefficient low frequency 

improvement 

The aim of this section is to show that, even if apparently the insertion of a periodic inclusion pattern 

in a layer of foam always leads to an absorption coefficient performance decay for the cases of study 

(Figure 69), instead there is an actual way to improve it without necessarily exploiting the use of 

Helmholtz resonators (Section 2.7). In particular, if one uses a repetition of sufficiently small unit cells, 

some oscillations of the periodic absorption coefficient values can be observed at low frequencies, 

respect to the homogeneous case. Results in Figure 75 are related to Configurations 1, 2 and 6 of Table 

12, where the setup is constituted by a repetition of five 3D unit cells described in Figure 8; the length 

of the side of each unit cell is 0.01 m. In this situation, the differences between the perfectly rigid 

inclusion and the rubber inclusion cases are negligible at low frequencies. It can be noticed that the 

effect described above lays in the range of 550 – 1450 Hz, very interesting for acoustic applications, 

where the average improvement is of about 16 %. 

 

Figure 75: Absorption coefficient low frequency improvement for a repetition of five 3D PU 60 unit cells. 

 

3.4. Design guidelines 

In this section, with reference to a Biot-modeled PU 60 foam, as already done in Section 2.5 for a JCA-

modeled melamine foam, some design guidelines are investigated. Firstly, they are provided in order 

to predict at which frequency the 1st performance peak (related to periodicity effects: half of the 

wavelength = periodicity dimension) appears, together with its amplitude, as functions of the unit cell 

dimensions. Conversely, also the link between the unit cell dimensions and the 1st performance peak 

amplitude as functions of the design frequency is shown. The test campaign is carried out in the 0 – 

10000 Hz frequency range, through the use of a repetition of five 3D unitary cells constituted by a 2 

cm cube with a 0.5 cm radius perfectly rigid cylindrical inclusion, where the dimension of the inclusion 

changes accordingly to those of the unit cell (the ratio between the unit cell and the inclusion 

dimensions is kept constant). According to the results obtained in Figure 76 and Figure 77, and 

considering that a typical acoustic excitation in aeronautics lays in the range of 20 – 2000 Hz [126], one 

should choose a unit cell dimension between 0.065 m and 0.1 m in order to obtain a transmission loss 

improvement of averagely 25% respect to the use of a simple foam layer of the same thickness. 

Considering an automotive application, instead, the typical acoustic excitation lays in the range of 20 

– 4000 Hz [127], and therefore one should choose a unit cell dimension between 0.035 m and 0.1 m in 

order to obtain a transmission loss improvement of averagely 35% respect to the use of a simple foam 

layer of the same thickness. 
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Figure 76: Absorption coefficient design curves as a function of the unit cell dimension (on the left) and the frequency of the 
1st peak (on the right). 

 

Figure 77: Transmission loss design curves as a function of the unit cell dimension (on the left) and the frequency of the 1st 
peak (on the right). 

Furthermore, some guidelines are also provided in order to predict at which frequency the 1st 

performance peak appears, together with its amplitude, as functions of the foam airflow resistivity 

(Figure 78 – Figure 80), tortuosity (Figure 81 – Figure 83), viscous and thermal characteristic lengths 

(Figure 84 – Figure 86, Figure 87 – Figure 89). The test campaign is carried out in the 0 – 10000 Hz 

frequency range, by comparing a repetition of five PU 60 unit cells, whose geometry is described in 

Figure 8 and where the value of the studied parameter is artificially changed. This kind of analysis has 

not been extended also to porosity, since it typically assumes values that oscillate around 0.96 – 0.98. 

Looking at Figure 78, it is clear that the static airflow resistivity has no meaningful impact on the 

position of the periodicity peak in the frequency range. Instead, one may notice that 𝜎 has a non-

negligible effect on the variation of the non-homogeneous values, compared to the homogeneous 

ones, in correspondence of the periodicity peak. In particular, this variation reduces its amplitude at 

increasing airflow resistivity values, both for absorption coefficient and transmission loss 

performances. This is probably due to the fact that, as shown in Figure 79 and, in an even more evident 

manner, in Figure 80, for a homogeneous layer of foam, when 𝜎 increases absorption coefficient 

performances decrease, while transmission loss ones gets better. This is an expected phenomenon, 

since the airflow resistivity parameter may be considered as an “acoustical hardness” indicator of a 

foam, in the sense that, the higher it is, the less air permeability there is. 



 
83 

It is evident, then, that the general effect of any external inclusion in the foam reduces at increasing 

𝜎, and the non-homogeneous curves tend to assume the same behavior of the homogeneous ones. 

Indeed, starting from 𝜎 = 60000 
Pa∗s

m2
, periodicity peaks are no more precisely identifiable. 

 

Figure 78: Absorption coefficient (on the left) and transmission loss (on the right) design curves as functions of the foam 
airflow resistivity. 

 

 

Figure 79: Absorption coefficient value as a function of frequency and foam airflow resistivity; homogeneous case (on the 
left) and case with a cylindrical perfectly rigid inclusion (on the right). 

 

Figure 80: Transmission loss value as a function of frequency and foam airflow resistivity; homogeneous case (on the left) 
and case with a cylindrical perfectly rigid inclusion (on the right). 
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For what concerns the tortuosity of the foam, from Figure 81 to Figure 83 it is evident that it has a 

strong impact on the acoustic performances of the system. In particular, at increasing tortuosity, the 

periodicity peak shifts backward in frequency, while also weakly reducing its amplitude. 

 

Figure 81: Absorption coefficient (on the left) and transmission loss (on the right) design curves as functions of the foam 
tortuosity. 

 

Figure 82: Absorption coefficient value as a function of frequency and foam tortuosity; homogeneous case (on the left) and 
case with a cylindrical perfectly rigid inclusion (on the right). 

 

Figure 83: Transmission loss value as a function of frequency and foam tortuosity; homogeneous case (on the left) and case 
with a cylindrical perfectly rigid inclusion (on the right). 

Figure 84 show that also the viscous characteristic length has a meaningful impact, in this context. 
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The behavior is the inverse of the one related to tortuosity: at increasing viscous characteristic length, 

the periodicity peak shifts forward in frequency, while also weakly increasing its amplitude. In addition, 

a higher value of viscous characteristic length means a less reflecting foam: absorption increases 

(Figure 85), while transmission loss decreases (Figure 86). 

 

Figure 84: Absorption coefficient (on the left) and transmission loss (on the right) design curves as functions of the foam 
viscous characteristic length. 

 

Figure 85: Absorption coefficient value as a function of frequency and foam viscous characteristic length; homogeneous case 
(on the left) and case with a cylindrical perfectly rigid inclusion (on the right). 

 

Figure 86: Transmission loss value as a function of frequency and foam viscous characteristic length; homogeneous case (on 
the left) and case with a cylindrical perfectly rigid inclusion (on the right). 
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Differently from the viscous one, from Figure 87 it can be stated that the thermal characteristic length 

has no evident impact on the frequency position of the periodicity peaks, but it has a more intense 

effect on their amplitude: at increasing thermal characteristic length, the periodicity peak do not shift 

in frequency, but increases its amplitude. 

 

Figure 87: Absorption coefficient (on the left) and transmission loss (on the right) design curves as functions of the foam 
thermal characteristic length. 

 

Figure 88: Absorption coefficient value as a function of frequency and foam thermal characteristic length; homogeneous 
case (on the left) and case with a cylindrical perfectly rigid inclusion (on the right). 

 

Figure 89: Transmission loss value as a function of frequency and foam thermal characteristic length; homogeneous case (on 
the left) and case with a cylindrical perfectly rigid inclusion (on the right). 
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Moreover, as it can be stated from Figure 90, Figure 91 and Figure 92, frame density, Young modulus 

and loss factor parametric analyses do not provide any evident shifts in terms of absorption coefficient 

and transmission loss. 

 

Figure 90: Absorption coefficient (on the left) and transmission loss (on the right) design curves as functions of the foam 
skeleton density. 

 

Figure 91: Absorption coefficient (on the left) and transmission loss (on the right) design curves as functions of the foam 
Young modulus. 

 

Figure 92: Absorption coefficient (on the left) and transmission loss (on the right) design curves as functions of the foam loss 
factor. 
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Therefore it can be concluded that, in general, the elastic characteristics of a foam represent 

parameters that are less meaningful, compared to the ones related to its porous nature, in order to 

tune the acoustic performances of a periodic arrangement of unit cells. 

Summarizing, in order to tune the frequency position of an acoustic performance peak caused by 

periodicity effects, one should act on the unit cell dimension (discordant trend), the tortuosity 

(discordant trend) and the viscous characteristic length (concordant trend); instead, to the aim of 

properly designing its amplitude, one could change the unit cell dimension (discordant trend), the 

airflow resistivity (discordant trend), the tortuosity (discordant trend) the viscous characteristic length 

(concordant trend) and/or the thermal characteristic length (concordant trend). 

 

3.5. Conclusions 

In this section, the shift cell operator technique has been re-formulated for poro-elastic materials, 

providing details on its FEM implementation too. 

In order to validate the shift cell technique implementation for Biot-modeled foams, a first calculation 

has been made to compare shift cell results with those obtained by Serra [36] using the Wave Finite 

Element Method [137] and with those computed through an analytical model, which is valid for infinite 

homogeneous isotropic porous media, where three waves propagate (two compressional waves and 

one shear wave). An additional validation (Figure 55 and Figure 56) has then been carried out through 

a comparison with the results obtained on a JCA-modeled 3D unit cell (Figure 8), both in a 

homogeneous configuration (Table 10) and with a perfectly rigid cylindrical inclusion. 

For all tested configurations, which involve the computation of 20 eigenvalues with 200 Hz frequency 

steps, a branch-tracking algorithm has been identified. Through the use of a proper frequency step in 

the eigenproblem definition, it is able to correctly classify the solutions, even in the presence of band 

gaps, branch-crossing or branch-veering phenomena. 

Figure 67 and Figure 68 show a comparison of the computational cost, in terms of time and as a 

function of the number of elements in the finite element model, between JCA and Biot models for the 

computation of the values of absorption coefficient and transmission loss at a single frequency. 

Considering the very few differences between JCA and Biot models highlighted in Figure 61, the usage 

of the latter is recommended only in presence of a foam whose frame elasticity clearly plays a relevant 

role in its acoustic performance. Furthermore, this choice becomes more justified for finite element 

models that require a very fine mesh, since the difference between the two approaches, in terms of 

computational time, reduces with increasing mesh size. 

Through the use of the acoustic-structure coupling that comes from the implementation of Biot model, 

the previous non-rigid inclusion test campaign (Section 2.4) has been extended by considering some 

solid (but still non-perfectly-rigid) inclusions in the 3D-modeled unit cell described in Figure 8. In 

particular, 6 setups have been discussed, whose fundamental parameters are reported in Table 11. 

In conclusion, some guidelines are provided in order to predict at which frequency the 1st performance 

peak appears, together with its amplitude, as functions of unit cell dimensions, airflow resistivity, 

tortuosity, characteristic lengths, frame density, Young modulus and loss factor; conversely, it is shown 

also the link between the unit cell dimensions and the 1st performance peak amplitude as functions of 

the design frequency. 
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4. GLOBAL CONCLUSIONS AND PERSPECTIVES 

 

 

 

 

 

 

 

 

 

 

 

 

“We’re stil l pioneers, we’ve barely begun.  

Our greatest accomplishments cannot be behind us, ‘cause our destiny lies above us.”  

(Matthew McConaughey / Cooper - Interstellar) 
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The inclusion of vibroacoustic treatments at early stage of product development through the use of 

porous media with periodic inclusions [11], which exhibit proper dynamic filtering effects [12]–[16], is 

a powerful strategy for the achievement of lightweight sound packages and represents a convenient 

solution for manufacturing aspects [10], [76]. 

This can have different applications in transportation (aerospace [17], [18], automotive [19]–[23], 

railway), energy and civil engineering fields, where weight, space and vibroacoustic comfort are still 

critical challenges [24]. 

The present research aims at the study of a specific numerical method for the vibroacoustic modelling 

of porous and poro-elastic media embedding periodic inclusions. 

Section 1 presents the state of art of the subject, and gives some preliminary definitions about porous 

media. Some preliminary definitions about periodic conditions, which are necessary in order to face 

the rest of the manuscript, are given too. 

Section 2 considers the shift cell operator technique, providing details on its implementation [105]. 

Essentially, the shift cell technique provides a reformulation of Floquet-Bloch periodic conditions and 

its major advantage stands in allowing the introduction of a generic frequency dependence of visco-

elastic material behavior [44]; this is essential, if one needs to compute the dispersion curves of a 

porous material modeled as an equivalent fluid. Indeed, even if the usage of F-B periodic conditions 

actually allows it, a very powerful non-linear solver is required in that case. The shift cell operator, 

instead, leads to a quadratic eigenvalue problem even in the presence of frequency-dependences 

and/or damping. The main reason why the shift cell method differs from the classical F-B approach is 

that it consists in a reformulation of classical F-B conditions, in which the phase shift of the boundary 

conditions and the exponential amplitude decrease, related to wave propagation, are integrated into 

the partial derivative operator. Consequently, the periodicity is included in the overall behavior of the 

structure while the continuity conditions are imposed at the edges of the unit cell [38]–[43]. 

Section 3 reproduces the analyses carried out in Section 2, but through the use of Biot model. Many 

results, in terms of dispersion curves, absorption coefficient and transmission loss are presented, 

together with some interesting comparisons with those obtained using equivalent fluid models. 

The outcome of this research is very promising, since the methodological basis and its validations are 

given in order to trace future characterizations and applications of periodic porous media in acoustics. 

In this context, an interesting study that has been partially planned will involve processes of 

optimization concerning the geometry of the unit cell, the foam material and the inclusion material 

and shape, in order to design and obtain outstanding configurations for low frequency noise control 

and, in general, for each specific application of interest. Future works can also focus on embedding 

resonant inclusions in a porous layer, which offer an alternative to multi-layering and double porosity 

materials in the design of sound absorption and insulation packages for low frequency applications. In 

conclusion, another interesting possibility could be the integration of the metamaterial obtained by 

embedding periodic inclusions in a foam as a sandwich core: this would allow to stiffen the system, 

while taking advantage of the structural properties of the sandwich plates. These perspectives could 

be realized through numerical and/or experimental research studies.  
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“Not all those who wander are lost .”  

(John Ronald Reuel Tolkien - The Lord of the Rings) 
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A. EQUIVALENT FLUID NUMERICAL TEST 

CAMPAIGN 

A.1. Dispersion curves 

 

 

 

 

Figure 93: Dispersion curves for a homogeneous DB-modeled melamine 2D unit cell; from top to bottom, the 1st, 2nd and 3rd 
branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 94: Dispersion curves for a homogeneous DB-modeled black PU 2D unit cell; from top to bottom, the 1st, 2nd and 3rd 
branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 95: Dispersion curves for a homogeneous JCA-modeled melamine 2D unit cell; from top to bottom, the 1st, 2nd and 3rd 
branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 96: Dispersion curves for a homogeneous JCA-modeled black PU 2D unit cell; from top to bottom, the 1st, 2nd and 3rd 
branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 97: Dispersion curves for a homogeneous DB-modeled melamine 3D unit cell; from top to bottom, the 1st, 2nd and 3rd 
branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 98: Dispersion curves for a homogeneous DB-modeled black PU 3D unit cell; from top to bottom, the 1st, 2nd and 3rd 
branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 99: Dispersion curves for a homogeneous JCA-modeled melamine 3D unit cell; from top to bottom, the 1st, 2nd and 3rd 
branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 100: Dispersion curves for a homogeneous JCA-modeled black PU 3D unit cell; from top to bottom, the 1st, 2nd and 3rd 
branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 101: Dispersion curves for a DB-modeled melamine 2D unit cell with a perfectly rigid inclusion; from top to bottom, 
the 1st, 2nd and 3rd branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 102: Dispersion curves for a DB-modeled black PU 2D unit cell with a perfectly rigid inclusion; from top to bottom, the 
1st, 2nd and 3rd branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 103: Dispersion curves for a JCA-modeled melamine 2D unit cell with a perfectly rigid inclusion; from top to bottom, 
the 1st, 2nd and 3rd branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 104: Dispersion curves for a JCA-modeled black PU 2D unit cell with a perfectly rigid inclusion; from top to bottom, the 
1st, 2nd and 3rd branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 105: Dispersion curves for a DB-modeled melamine 3D unit cell with a perfectly rigid inclusion; from top to bottom, 
the 1st, 2nd and 3rd branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 106: Dispersion curves for a DB-modeled black PU 3D unit cell with a perfectly rigid inclusion; from top to bottom, the 
1st, 2nd and 3rd branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 107: Dispersion curves for a JCA-modeled melamine 3D unit cell with a perfectly rigid inclusion; from top to bottom, 
the 1st, 2nd and 3rd branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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Figure 108: Dispersion curves for a JCA-modeled black PU 3D unit cell with a perfectly rigid inclusion; from top to bottom, the 
1st, 2nd and 3rd branch eigenvectors are shown in terms of real (on the left) and imaginary (on the right) parts. 
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A.1.1. Non-rigid inclusions 

 

Figure 109: Dispersion curves computed for configuration 1 of Table 4. 

 

Figure 110: Dispersion curves computed for configuration 2 of Table 4. 

 

Figure 111: Dispersion curves computed for configuration 3 of Table 4. 
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Figure 112: Dispersion curves computed for configuration 4 of Table 4. 

 

Figure 113: Dispersion curves computed for configuration 5 of Table 4. 

 

Figure 114: Dispersion curves computed for configuration 6 of Table 4. 
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Figure 115: Dispersion curves computed for configuration 7 of Table 4. 

 

Figure 116: Dispersion curves computed for configuration 8 of Table 4. 

 

Figure 117: Dispersion curves computed for configuration 9 of Table 4. 
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Figure 118: Dispersion curves computed for configuration 10 of Table 4. 

 

Figure 119: Dispersion curves computed for configuration 11 of Table 4. 

 

Figure 120: Dispersion curves computed for configuration 12 of Table 4. 
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Figure 121: Dispersion curves computed for configuration 13 of Table 4. 

 

Figure 122: Dispersion curves computed for configuration 14 of Table 4. 

 

Figure 123: Dispersion curves computed for configuration 15 of Table 4. 
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Figure 124: Dispersion curves computed for configuration 16 of Table 4. 

 

Figure 125: Dispersion curves computed for configuration 17 of Table 4. 

 

 

Figure 126: Dispersion curves computed for configuration 18 of Table 4. 
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Figure 127: Dispersion curves computed for configuration 19 of Table 4. 

 

Figure 128: Dispersion curves computed for configuration 20 of Table 4. 

 

Figure 129: Dispersion curves computed for configuration 21 of Table 4. 
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Figure 130: Dispersion curves computed for configuration 22 of Table 4. 

 

Figure 131: Dispersion curves computed for configuration 23 of Table 4. 

 

Figure 132: Dispersion curves computed for configuration 24 of Table 4. 
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Figure 133: Dispersion curves computed for configuration 25 of Table 4. 

 

Figure 134: Dispersion curves computed for configuration 26 of Table 4. 

 

Figure 135: Dispersion curves computed for configuration 27 of Table 4. 
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Figure 136: Dispersion curves computed for configuration 28 of Table 4. 

 

Figure 137: Dispersion curves computed for configuration 29 of Table 4. 

 

Figure 138: Dispersion curves computed for configuration 30 of Table 4. 
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Figure 139: Dispersion curves computed for configuration 31 of Table 4. 

 

Figure 140: Dispersion curves computed for configuration 32 of Table 4. 

 

Figure 141: Dispersion curves computed for configuration 33 of Table 4. 
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Figure 142: Dispersion curves computed for configuration 34 of Table 4. 

 

Figure 143: Dispersion curves computed for configuration 35 of Table 4. 

 

Figure 144: Dispersion curves computed for configuration 36 of Table 4. 
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Figure 145: Dispersion curves computed for configuration 37 of Table 4. 

 

Figure 146: Dispersion curves computed for configuration 38 of Table 4. 

 

Figure 147: Dispersion curves computed for configuration 39 of Table 4. 
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Figure 148: Dispersion curves computed for configuration 40 of Table 4. 

 

Figure 149: Dispersion curves computed for configuration 41 of Table 4. 

 

Figure 150: Dispersion curves computed for configuration 42 of Table 4. 
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Figure 151: Dispersion curves computed for configuration 43 of Table 4. 

 

Figure 152: Dispersion curves computed for configuration 44 of Table 4. 

 

Figure 153: Dispersion curves computed for configuration 45 of Table 4. 
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Figure 154: Dispersion curves computed for configuration 46 of Table 4. 

 

Figure 155: Dispersion curves computed for configuration 47 of Table 4. 

 

Figure 156: Dispersion curves computed for configuration 48 of Table 4. 
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A.2. Absorption coefficient 

 

Figure 157: Reflection coefficient, power densities, dissipated power ratios and absorption coefficient computed for a 
homogeneous DB-modeled melamine 2D unit cell. 

 

Figure 158: Reflection coefficient, power densities, dissipated power ratios and absorption coefficient computed for a 
homogeneous DB-modeled black PU 2D unit cell. 
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Figure 159: Reflection coefficient, power densities, dissipated power ratios and absorption coefficient computed for a 
homogeneous JCA-modeled melamine 2D unit cell. 

 

 

Figure 160: Reflection coefficient, power densities, dissipated power ratios and absorption coefficient computed for a 
homogeneous JCA-modeled black PU 2D unit cell. 
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Figure 161: Reflection coefficient, powers, dissipated power ratios and absorption coefficient computed for a homogeneous 
DB-modeled melamine 3D unit cell. 

 

Figure 162: Reflection coefficient, powers, dissipated power ratios and absorption coefficient computed for a homogeneous 
DB-modeled black PU 3D unit cell. 
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Figure 163: Reflection coefficient, powers, dissipated power ratios and absorption coefficient computed for a homogeneous 
JCA-modeled melamine 3D unit cell. 

 

 

Figure 164: Reflection coefficient, powers, dissipated power ratios and absorption coefficient computed for a homogeneous 
JCA-modeled black PU 3D unit cell. 
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Figure 165: Reflection coefficient, power densities, dissipated power ratios and absorption coefficient computed for a DB-
modeled melamine 2D unit cell with a perfectly rigid inclusion. 

 

Figure 166: Reflection coefficient, power densities, dissipated power ratios and absorption coefficient computed for a DB-
modeled black PU 2D unit cell with a perfectly rigid inclusion. 
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Figure 167: Reflection coefficient, power densities, dissipated power ratios and absorption coefficient computed for a JCA-
modeled melamine 2D unit cell with a perfectly rigid inclusion. 

 

Figure 168: Reflection coefficient, power densities, dissipated power ratios and absorption coefficient computed for a JCA-
modeled black PU 2D unit cell with a perfectly rigid inclusion. 
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Figure 169: Reflection coefficient, powers, dissipated power ratios and absorption coefficient computed for a DB-modeled 
melamine 3D unit cell with a perfectly rigid inclusion. 

 

Figure 170: Reflection coefficient, powers, dissipated power ratios and absorption coefficient computed for a DB-modeled 
black PU 3D unit cell with a perfectly rigid inclusion. 
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Figure 171: Reflection coefficient, powers, dissipated power ratios and absorption coefficient computed for a JCA-modeled 
melamine 3D unit cell with a perfectly rigid inclusion. 

 

Figure 172: Reflection coefficient, powers, dissipated power ratios and absorption coefficient computed for a JCA-modeled 
black PU 3D unit cell with a perfectly rigid inclusion. 
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A.2.1. Unit cell dimensions design guidelines 

 

Figure 173: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 
3D unit cell with a perfectly rigid inclusion; dimension = 0.008 𝑚. 

 

Figure 174: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 
3D unit cell with a perfectly rigid inclusion; dimension = 0.0095 𝑚. 

 

Figure 175: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 
3D unit cell with a perfectly rigid inclusion; dimension = 0.02 𝑚. 
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Figure 176: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 
3D unit cell with a perfectly rigid inclusion; dimension = 0.035 𝑚. 

 

Figure 177: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 
3D unit cell with a perfectly rigid inclusion; dimension = 0.0425 𝑚. 

 

Figure 178: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 
3D unit cell with a perfectly rigid inclusion; dimension = 0.05 𝑚. 
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Figure 179: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 
3D unit cell with a perfectly rigid inclusion; dimension = 0.065 𝑚. 

 

Figure 180: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 
3D unit cell with a perfectly rigid inclusion; dimension = 0.08 𝑚. 

 

Figure 181: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 
3D unit cell with a perfectly rigid inclusion; dimension = 0.095 𝑚. 
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A.2.2. Foam airflow resistivity design guidelines 

 

Figure 182: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 

3D unit cell with a perfectly rigid inclusion; 𝜎 = 1000 
𝑃𝑎∗𝑠

𝑚2
. 

 

Figure 183: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 

3D unit cell with a perfectly rigid inclusion; 𝜎 = 2500 
𝑃𝑎∗𝑠

𝑚2
. 

 

Figure 184: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 

3D unit cell with a perfectly rigid inclusion; 𝜎 = 5000 
𝑃𝑎∗𝑠

𝑚2
. 
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Figure 185: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 

3D unit cell with a perfectly rigid inclusion; 𝜎 = 7500 
𝑃𝑎∗𝑠

𝑚2
. 

 

Figure 186: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 

3D unit cell with a perfectly rigid inclusion; 𝜎 = 10000 
𝑃𝑎∗𝑠

𝑚2
. 

 

Figure 187: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 

3D unit cell with a perfectly rigid inclusion; 𝜎 = 25000 
𝑃𝑎∗𝑠

𝑚2
. 
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Figure 188: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 

3D unit cell with a perfectly rigid inclusion; 𝜎 = 50000 
𝑃𝑎∗𝑠

𝑚2
. 

 

Figure 189: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 

3D unit cell with a perfectly rigid inclusion; 𝜎 = 75000 
𝑃𝑎∗𝑠

𝑚2
. 

 

Figure 190: Surface impedance (on the left) and reflection coefficient (on the right) computed for a JCA-modeled melamine 

3D unit cell with a perfectly rigid inclusion; 𝜎 = 100000 
𝑃𝑎∗𝑠

𝑚2
. 
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A.3. Transmission loss 

 

Figure 191: Transmission loss computed for a homogeneous DB-modeled melamine (on the left) and black PU (on the right) 
2D unit cell. 

 

Figure 192: Transmission loss computed for a homogeneous JCA-modeled melamine (on the left) and black PU (on the right) 
2D unit cell. 

 

Figure 193: Transmission loss computed for a homogeneous DB-modeled melamine (on the left) and black PU (on the right) 
3D unit cell. 
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Figure 194: Transmission loss computed for a homogeneous JCA-modeled melamine (on the left) and black PU (on the right) 
3D unit cell. 

 

Figure 195: Transmission loss computed for a DB-modeled melamine (on the left) and black PU (on the right) 2D unit cell 
with a perfectly rigid inclusion. 

 

Figure 196: Transmission loss computed for a JCA-modeled melamine (on the left) and black PU (on the right) 2D unit cell 
with a perfectly rigid inclusion. 
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Figure 197: Transmission loss computed for a DB-modeled melamine (on the left) and black PU (on the right) 3D unit cell 
with a perfectly rigid inclusion. 

 

Figure 198: Transmission loss computed for a JCA-modeled melamine (on the left) and black PU (on the right) 3D unit cell 
with a perfectly rigid inclusion. 
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