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Résumé

L'étude des plongements topologiques de graphes, c'est-à-dire des manières de dessiner
sans croisement un graphe dans un espace topologique, constitue un domaine classique
à l'interface des mathématiques et de l'informatique dans les communautés de topologie,
théorie topologique des graphes, topologie algorithmique et dessin de graphes.

Il est naturel de s'intéresser à la plongeabilité des graphes sur des espaces topologiques
généraux tels que le plan, les surfaces ou des espaces de plus grande dimension. Or,
comme tous les graphes sont plongeables dans un espace tridimensionnel, les espaces
topologiques pour lesquels la question est non triviale sont de dimension au plus deux. Il
est ainsi logique de considérer comme classe d'espaces la classe des complexes simpliciaux
de dimension au plus deux, les espaces obtenus en recollant des sommets, des arêtes et des
triangles. En particulier, ces espaces topologiques contiennent les surfaces, et le problème
est déjà NP-di�cile même en se restreignant aux surfaces.

Cette thèse présente deux algorithmes décidant le problème de la plongeabilité d'un
graphe sur un 2-complexe. Les deux algorithmes fonctionnent en temps polynomial en
la taille du graphe lorsque le complexe est �xé, mais seul le second est "�xed parameter
tractable" quand paramétré par la taille du 2-complexe donné en entrée.

Le premier algorithme est basé sur des arguments d'ordre topologique. Sa stratégie
consiste à réduire le problème de la plongeabilité d'un graphe sur un 2-complexe à un
problème d'extension de plongement d'un graphe sur une surface pour lequel il existait
déjà un algorithme dû à B.Mohar. De plus, dans le même temps, cette approche montre
aussi que le problème est dans NP.

Le second algorithme est basé sur des arguments d'algorithmique des graphes. Il com-
mence par retirer itérativement du graphe des sommets inutiles jusqu'à ce que le graphe
ait une largeur de branche bornée. Ensuite, il utilise une stratégie de programmation
dynamique qui décide si un graphe de largeur de branche bornée est plongeable sur un
2-complexe.
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Abstract

The study of topological embeddings of graphs, that is to say the ways of drawing without
crossing a graph in a topological space, constitutes a classic �eld at the interface of
mathematics and computer science in communities of topology, topological graph theory,
computational topology and graph drawing.

It is natural to be interested in the embeddability of graphs on general topologi-
cal spaces such as the plane, surfaces or larger spaces. However, as all graphs can be
embedded into a three-dimensional space, the topological spaces for which the question
is non-trivial are of dimension at most two. It is thus logical to consider the class of
simplicial complexes of dimension at most two, the spaces obtained by gluing together
vertices, edges and triangles. In particular, these topological spaces include the class of
all surfaces and the problem is already NP-hard even if we restrict ourselves to surfaces.

This thesis presents two algorithms deciding the problem of the embeddability of a
graph on a 2-complex. Both algorithms operate in polynomial time in the size of the
graph when the complex is �xed, but only the second is �xed parameter tractable when
parameterized by the size of the 2-complex given as input.

The �rst algorithm is based on topological arguments. Its strategy consists in reducing
the problem of the embeddability of a graph on a 2-complex to an embedding extension
problem of a graph on a surface for which there already existed an algorithm due to
B.Mohar. Moreover, at the same time, this approach also shows that the problem is in
NP.

The second algorithm is based on graph algorithmic arguments. It begins by iter-
atively removing unnecessary vertices from the graph until the graph has a bounded
branch width. Then, it uses a dynamic programming strategy which decides whether a
graph of bounded branch width is embeddable on a 2-complex.

v
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Chapter1
Introduction en français

Il existe une énigme mathématique connue publiée pour la première fois par Henry Du-
deney [Dud13], l'énigme des 3 maisons ou énigme de l'eau, l'électricité et le gaz: on a
3 maisons que l'on veut relier à une centrale électrique, un gazoduc et une source d'eau
sans que les tuyaux ne se croisent (Figure 1.1). Ce problème est connu pour n'avoir
aucune solution. Chercher à résoudre cette énigme revient à chercher à relier 3 points du
plan (les maisons) à chacun des 3 autres points du plan (les centres de productions) par
un chemin sans que ces chemins ne se croisent. En mathématiques, cet ensemble de 6
points dont 3 sont reliés aux 3 autres est connu sous le nom de K3,3. De ce fait, l'énigme
revient à chercher un dessin sans croisement de K3,3 sur le plan.

Figure 1.1: Un exemple de l'énigme des 3 maisons. Source:Cmglee

En mathématiques, un ensemble de points, appelés sommets, dont certaines paires,
appelées arêtes, sont reliées est appelé un graphe et un dessin sans croisement d'un
graphe est appelé un plongement. Ainsi, sous des apparences anodines, l'énigme des 3
maisons est en fait un cas iconique d'un problème mathématique classique, la planarité
de graphe: étant donné un graphe G, décider si il existe un plongement de G sur le plan.

1
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L'absence de solution de l'énigme s'exprime donc en disant que K3,3 n'est pas planaire.
De plus, le problème de plongement de graphe peut être résolu en temps linéaire en la
taille du graphe [HT74]. Si la stratégie utilisée par J.Hopcroft et R.Tarjan est la première
fonctionnant en temps linéaire, les problèmes de planarité de graphe ont été vastement
étudiés [Pat06] et il existe de nombreuses autres méthodes pour décider si un graphe est
planaire, certaines étant plus anciennes [Kur30] et d'autres étant plus rapides [FOR06].
De plus il y a de nombreux ra�nements très proches de ce problème qui ont aussi étudiés.
Par exemple, à la place de plonger un graphe sur le plan, on peut chercher à placer les
sommets du graphe sur les croisements d'une grille la plus petite possible de manière à,
pour tout quadruplet de sommets u, v, w, x tel que les deux paires de sommets {u, v} et
{w, x} sont des arêtes du graphe, ne pas avoir de croisement entre le segment reliant u
et v et le segment reliant w et x [FPP90].

Figure 1.2: Une solution au problème des 3 maisons sur le tore. Source:Cmglee

De la même manière, la planarité de graphe est aussi un cas particulier d'un problème
plus général, la plongeabilité d'un graphe sur une surface: étant donné un graphe G et
une surface S , décider si il existe un plongement de G sur S . Les plongements que
l'on considère sont des plongements topologiques, ce qui signi�e que les arêtes peuvent
être dessinées comme n'importe quelle courbe. Par exemple, bien que K3,3 ne soit pas
dessinable sans croisement sur le plan, il est possible de le dessiner sans croisement
sur la surface d'un objet avec un trou comme un tore (Figure 1.2). La plongeabilité
d'un graphe sur une surface �xée peut être décidée en temps linéaire en la taille du
graphe. Ainsi, B.Mohar[Moh99] et K.Kawarabayashi, B.Mohar et B.Reed [KMR08] tous
deux présentent un algorithme qui décide la plongeabilité d'un graphe sur une surface
travaillant en temps linéaire lorsque la surface est �xée. Par contre, dans les 2 cas la
complexité de l'algorithme augmente très vite lorsque la complexité de la surface, ici son
nombre de poignées, augmente. Cette explosion de la complexité de l'algorithme lorsque
la surface se complexi�e est attendue car la plongeabilité d'un graphe sur une surface

https://commons.wikimedia.org/w/index.php?curid=86717521
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g

Figure 1.3: un 2-complexe dont les sommets sont {a}, {b}, {c}, {d}, {e}, {f} et {g}, les
arêtes sont {a, b}, {a, c}, {b, c}, {a, d}, {d, e}, {d, f}, {e, f}, {d, g}, {f, g}, {c, f} et {c, d} et
les triangles sont {a, b, c}, {d, f, g}, {d, e, f} et {c, d, f}.

arbitraire est NP-di�cile [Tho89] et donc, il n'est pas raisonnable d'espérer trouver un
algorithme dont le temps d'exécution est globalement polynomial (sinon cela prouverait
que P=NP).

Lorsque l'on veut représenter une surface de manière �nie, une méthode classique est
de la représenter comme un ensemble de triangles collés les uns aux autres. Cependant, il
est possible d'obtenir un ensemble de triangles collés les uns aux autres qui ne correspond
pas à une surface. Par exemple, en collant trois triangles le long d'un même côté, on
obtient une structure qui ne correspond à aucune surface. Du coup, on dé�nit une
structure nommée 2-complexe dont ces recollages sont des cas particuliers. Un 2-complexe
est un ensemble de points dont certaines paires sont reliées par une arête et certains
triplets sont les sommets d'un triangle tels que les sommets d'un triangle sont reliés deux
à deux par des arêtes (Figure 1.3). Ainsi, la plongeabilité d'un graphe sur une surface
est un cas particulier du problème étudié dans cette thèse, la plongeabilité de graphe
sur un 2-complexe: étant donné un graphe G et un 2-complexe C , décider si
il existe un plongement de G sur C . La �gure 1.4 montre un exemple de plongement
d'un graphe sur un 2-complexe.

1.1 Motivation

Ce problème est très large. Ainsi, on pourrait encore élargir le problème par exemple
aux 3-complexes en ajoutant dans C des tétraèdres pleins entre 4 de ses points ou encore
aux complexes de plus grande dimension en ajoutant des simplexes de dimension 4 ou
plus mais alors tous les graphes peuvent se dessiner sur C car tout graphe se plonge dans
un tétraèdre plein et C en contient au moins un. Donc, la plongeabilité d'un graphe
sur un 2-complexe est le cas le plus large non trivial dans lequel on cherche à plonger
un graphe sur une structure formée par des sommets, arêtes, triangles, tétraèdres plein
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et leurs équivalent en plus grande dimension. De plus, il existe plusieurs problèmes très
classiques de plongeabilité de graphes qui peuvent être réduits au problème de plongement
de graphe sur un 2-complexe (cf Section 5.1.1) et en particulier la plongeabilité d'un
graphe sur une surface.

De plus, les stratégies classiques utilisées pour construire un algorithme sur les sur-
faces ne s'appliquent pas aux 2-complexes (cf Section 5.1.2) et donc il n'y a pas de
méthode évidente pour décider la plongeabilité d'un graphe sur un 2-complexe à partir
des algorithmes pour le plongement de graphe sur les surfaces.

b)a)

e

c

b a

f

1

2

3

4

5

d

f

a b

c

1

2

3

4

5
e

d

c)

Figure 1.4: a): le 2-complexe C formé par une sphère (un tetrahèdre creux) et deux
disques partageant un point, une arête isolée reliant la sphère à l'un des disques et une
arête isolée attachée uniquement à la sphère. b): Un graphe G à plonger dessus c): Un
plongement de G sur C .

1.2 Domaines reliés

Les problèmes de plongements topologiques de graphes sont des problèmes clés de deux
domaines mathématiques et informatiques: la théorie topologique des graphes et la
topologie algorithmique.

Théorie topologique des graphes Le principe de la théorie topologique des graphes
est d'étudier et d'utiliser les graphes vus comme des objets topologiques. Pour ce faire
on utilise des représentations topologiques d'un graphe au travers d'un plongement ou
d'un dessin de celui-ci, la plupart du temps sur une surface.

Ensuite, on peut utiliser les propriétés topologiques de ces représentations d'un graphe
dans l'analyse de celui-ci. Ainsi, par exemple, on peut prouver que tous les graphes
planaires sont 4-coloriables [AH76].
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Inversement, on peut aussi utiliser les graphes a�n d'obtenir une représentation com-
binatoire des espaces et des propriétés topologiques. Ensuite, grâce à cette représentation
combinatoire, on peut étudier les espaces et les propriétés topologiques par le biais de la
combinatoire. Par exemple, B.Mohar et C.Thomassen [MT01] présentent les éléments de
base de l'analyse des surfaces et des plongements topologiques dessus comme des objets
combinatoires utilisant des graphes plongés dessus.

Or, dans pour les deux cas, il est important de quanti�er au mieux la complexité des
graphes utilisés pour respectivement soit pouvoir en déduire le plus de propriétés possibles
soit quanti�er la complexité de l'espace représenté. Sachant que souvent les graphes sont
étudiés en lien avec les surfaces, il est donc classique d'évaluer la complexité d'un graphe
selon les surfaces sur lesquelles celui-ci est plongeable. Or c'est le nombre de poignées
et de rubans de Möbius qui composent la surface (son genre) qui caractérise l'ensemble
des graphes plongeables dessus. Il est donc très classique pour quanti�er la complexité
d'un graphe d'utiliser le genre minimal d'une surface sur lequel il est plongeable appelé
le genre du graphe.

Topologie algorithmique [Veg04] Avec le développement de l'informatique, un do-
maine à l'interface de la topologie et de l'informatique est apparu: la topologie algo-
rithmique, présentée ainsi pour l'une des premières fois par T.Dey, H.Edelsbrunner et
S.Guha [DEG99]. L'idée est de chercher à construire des algorithmes qui calculent si des
propriétés topologiques sont véri�ées ou construisent des objets ayant ces propriétés.

Les problèmes de plongements topologiques de graphe sont un cas particulier d'une
classe clé de problème en topologie algorithmique: les problèmes de plongements topologiques
généraux dont l'objet est de chercher à plonger un objet topologique sur un autre. Ainsi,
il existe des problèmes centraux d'autres domaines de la topologie algorithmique qui
peuvent être réduits à un cas de plongement topologique et donc utiliser des résultats
connus pour les plongements a�n d'obtenir un algorithme. Par exemple, le problème du
n÷ud trivial qui est un problème central de la théorie des n÷uds: étant donné un n÷ud
dans l'espace, décider si il est un n÷ud trivial. Or, un n÷ud est trivial si et seulement
si il existe un disque plongé dans R3 dont le bord est le n÷ud [JT95]. Donc le problème
du n÷ud trivial peut être réduit à un problème de plongement topologique.

De plus, les complexes sont une structure qui apparaît naturellement en topologie
algorithmique. Par exemple, en topologie di�érentielle algorithmique, il est commun,
étant donné un objet topologique T , d'utiliser un complexe C plongé bijectivement sur
T , appelé une triangulation de T , a�n d'étudier des problèmes sur T ou de construire
une triangulation de T qui lui est di�éomorphe [BM07]. Les triangulations sont ainsi des
exemples de représentation d'un espace topologique par un complexe montrant comment
ceux-ci, et en particulier les 2-complexes, peuvent apparaître naturellement.

1.3 Contributions de la thèse

Cette thèse décrit deux algorithmes qui, tous deux, prennent en entrée un graphe G et
un 2-complexe C et décident si il est possible de plonger G sur C .
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Le premier algorithme a été dé�ni d'abord a�n d'avoir un algorithme dont le temps
d'exécution est polynomial quand le complexe est �xé. Cependant, dans cet algorithme,
le degré du polynôme dépend de la taille du complexe; en terme technique, l'algorithme
n'est pas FPT(�xed parameter tractable) paramétré par la taille du complexe. Or, avant
cette thèse, on ne savait pas si il existe ou non un algorithme FPT en la taille du complexe
décidant ce problème. Il était donc raisonnable de chercher un algorithme plus e�cace.
Ce qui est le cas du second algorithme qui lui est FPT en la taille du complexe.

Les 2 algorithmes sont totalement di�érents dans leurs stratégies pour résoudre le
problème.

Premier algorithme Dans le premier, le principe est de construire une série de prob-
lèmes de plus en plus restreints où une partie du graphe est déjà plongé. Au départ, on
a un graphe G que l'on veut plonger sur un complexe C . On va plonger un sous-graphe
de G de taille bornée sur C . L'idée est d'utiliser des arguments d'ordre topologique pour
restreindre de plus en plus la structure de C et du plongement partiel dessus quitte à
rajouter des arêtes et des sommets à G jusqu'à obtenir un problème de plongement déjà
traité. Le problème �nal est EEPCELL: étant donné un graphe G, une surface S , un
sous-graphe H de G plongé cellulairement sur S , décider si il est possible de plonger la
totalité de G sans changer le plongement de H. Or, B.Mohar [Moh99] a déjà construit
un algorithme décidant ce problème.

De plus, dans le même temps, cet algorithme prouve aussi que la plongeabilité d'un
graphe sur un 2-complexe est dans NP.

Second algorithme Le second algorithme se concentre sur des arguments d'ordre plus
combinatoire. L'idée est à l'inverse de restreindre et simpli�er le graphe à plonger a�n
de limiter le nombre de possibilités et ensuite construire un algorithme qui essaye de
plonger ce graphe plus simple. Au départ, on a aussi un graphe G que l'on veut plonger
sur un 2-complexe C . D'abord, on simpli�e G en supprimant des sommets dont le retrait
n'in�ue pas sur le fait que le graphe soit plongeable ou non (irrelevant vertex method).
Cela permet d'obtenir une décomposition en branche de G dont la largeur est bornée
par la taille de C . Ensuite, on présente un algorithme de programmation dynamique qui
décide si G est plongeable sur un complexe en parcourant une décomposition de G. Si la
stratégie utilisée est relativement standard, les arguments et les détails pour appliquer
cette stratégie sont spéci�que à cet algorithme.

De plus, cet algorithme fonctionnant en particulier pour les surfaces et n'utilisant
aucun algorithme précédent décidant si un graphe est plongeable sur une surface, il of-
fre une nouvelle stratégie pour construire un algorithme FPT décidant si un graphe est
plongeable sur une surface. La complexité en la taille du graphe est moins bonne que celle
d'autres algorithmes précédents pour décider la plongeabilité d'un graphe sur des sur-
faces. Par exemple, B.Mohar [Moh99] et K.Kawarabayashi, B.Mohar, B.Reed [KMR08]
donne tout deux un algorithme linéaire pour décider la plongeabilité d'un graphe sur des
surfaces. Cependant, les arguments prouvant la correction de cet algorithme sont plus
simples que les arguments des autres méthodes (cf Section 4.1.2).
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1.4 Organisation du reste de la thèse

Dans le Chapitre 3 nous allons commencer par présenter les notions de base nous utilis-
erons dans le reste de la thèse: topologie, complexité paramétrée, théorie des graphes,
des surfaces et des complexes.

Ensuite, dans le Chapitre 4, nous allons présenter un état de l'art de problèmes de
plongement topologique d'un complexe sur un autre et en particulier une surface ainsi
que des problèmes proches des problèmes de plongements topologiques de graphe sur les
2-complexes et les surfaces.

Par la suite, dans le Chapitre 5, nous allons d'abord détailler les motivations légiti-
mant l'intérêt du problème de plongements de graphe sur lequel se concentre cette thèse.
Dans ce chapitre, nous allons aussi présenter les notions et les propriétés fondamentales
sur les 2-complexes que nous avons dé�nies et prouvées que nous utiliserons dans la
dé�nition des deux algorithmes.

Après, nous allons présenter respectivement le premier et le second algorithme con-
struits durant cette thèse dans les Chapitres 6 et 7.

En�n, nous conclurons au Chapitre 8 en exposant de futures directions de recherches
potentielles en lien avec notre travail.
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Chapter2
Introduction in English

There is a well-known mathematical problem published �rst by Henry Dudeney [Dud13],
the 3-houses problem or 3-utilities problem: there are 3 houses that we want to connect
to a electricity plant, a gas pipeline and a water source such the pipes do not cross (see
Figure 2.1). This problem is known to have no solution. Trying to solve this problem
amounts to try to link 3 points of the plane (the houses) to each of 3 other points of the
plan (the utilities) with a path such that these paths do not cross. Mathematically, this
set of 6 points such that 3 are linked to the 3 others is known as K3,3. This way, the
problem amounts to looking for a drawing of K3,3 without crossing on the plane.

Figure 2.1: An example of the 3-utilities problem. Source:Cmglee

In mathematics, a set of points, called vertices, where some pairs, called edges, are
linked is called a graph and a drawing without crossing of a graph is called an embedding.
Thus, under innocuous appearances, the 3-houses problem is in fact an iconic case of a
classical mathematical problem, graph planarity: given a graph G, decide whether there
exists an embedding of G on the plane. The absence of a solution for the 3-utilities
problem is expressed by saying that K3,3 is not planar. Moreover, the graph planarity

9

https://commons.wikimedia.org/w/index.php?curid=86717521
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problem can be solved in time linear of the size of the graph [HT74]. Although the
strategy used by J.Hopcroft and R.Tarjan is the �rst working in linear time, the graph
planarity problem has been vastly studied [Pat06] and there exist several other strategies
to decide the graph planarity problem, some being older [Kur30] other being quicker
[FOR06]. Moreover, many re�nements very close to the graph planarity problem have
been studied. For example, instead of embedding graphs on the plane, we can try to
place the vertices of the graph on the vertices of the smallest grid possible such that, for
every quadruplet of vertices u, v, w, x where both pairs of vertices {u, v} and {w, x} are
edges of the graph, the segment linking u to v does not intersect the segment linking w
to x [FPP90].

Figure 2.2: A solution of the 3-utilities problem on the torus. Source:Cmglee

Similarly, graph planarity is also a particular case of a more general problem, the
embeddability of a graph on a surface: given a graph G and a surface S , decide whether
there exists an embedding of G on S . The embeddings we consider are topological
embeddings, meaning that the edges can be drawn as any curve. For example, although
K3,3 is not embeddable on the plane, it can be embedded on the surface of an object
with an handle like a torus (Figure 2.2). The embeddability of a graph on a �xed
surface can be decided in time linear in the size of the graph. Thereby, B.Mohar [Moh99]
and K.Kawarabayashi, B.Mohar et B.Reed [KMR08] both present an algorithm deciding
the embeddability of a graph on a surface in linear time when the surface is �xed.
Nonetheless, in both cases the complexity of the algorithm rises very quickly when the
complexity of the surface, here its number of handles, increases. This explosion of the
complexity of the algorithm when the surface becomes more complex is expected because
the embeddability of a graph on an arbitrary surface is NP-hard [Tho89]. Thus, it is not
reasonable to hope for an algorithm deciding the embeddability of a graph on arbitrary
surface working in globally polynomial time (otherwise, it would prove that P=NP).

When we want to represent a surface in a �nite manner, a classical method is to

https://commons.wikimedia.org/w/index.php?curid=86717521
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represent it as a set of triangles pasted together. Nonetheless, it is possible to construct
some sets of triangles pasted together that do not correspond to a surface. For example,
by pasting three triangles along the same side, we obtain a structure that does not
correspond to any surface. Thus, we de�ne a structure called 2-complexes such that
these pasting are all a particular case of it. A 2-complex is a graph where some cycles
of length 3 of the graph are �lled with a triangle (Figure 2.3). The embeddability of
a graph on a surface is a particular case of the problem studied in this thesis, the
embeddability of a graph on a 2-complex: given a graph G and a 2-complex
C , decide whether there exists an embedding of G on C . Figure 2.4 shows an
example of embedding of a graph on a 2-complex.

a

bc

d

e

f

g

Figure 2.3: a 2-complex with vertices {a}, {b}, {c}, {d}, {e}, {f} and {g}, edges
{a, b}, {a, c}, {b, c}, {a, d}, {d, e}, {d, f}, {e, f}, {d, g}, {f, g}, {c, f} and {c, d}, and trian-
gles {a, b, c}, {d, f, g}, {d, e, f} et {c, d, f}.

2.1 Motivation

This problem is quite large. For example, we could extend the problem furthermore to
3-complexes by adding to C some full tetrahedra bounded by triangles or to complexes
of higher dimension by adding to C some simplices of dimension 4 or more. All graphs
are embeddable on C since all graphs are embeddable in a a space of dimension 3 or
more. So, the embeddability of a graph on a 2-complex is the largest non-trivial case
in which we try to embed a graph on a structure formed by vertices, edges, triangles,
full tetrahedra and their equivalents of higher dimension. Moreover, there are several
classical variations of graph embeddability that can be reduced to the embeddability of
a graph on a 2-complex (see Section 5.1.1), in particular the embeddability of a graph
on a surface.

Furthermore, classical strategies used to construct an algorithm for embedding on
surfaces do not apply to 2-complexes (see Section 5.1.2). Thus, there is no obvious
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Figure 2.4: a): the 2-complex C formed by a sphere up to homeomorphism (a hollow
tetrahedron) and two disks sharing one point, one isolated segment between the sphere
and one disk and one isolated segment attached to only the sphere. b): a graph G to
embed on it c): an embedding of G on C .

method to decide e�ciently whether a graph is embeddable on a 2-complex that can be
deduced from the methods for the embeddability of graphs on surfaces.

2.2 Related domains

Problems concerning topological embeddings of graphs are key problems of two domains
at the interface between computer sciences and mathematics: topological graph theory
and computational topology.

Topological graph theory The goal of topological graph theory is to study and use
graphs seen as a topological object. To do so, we use some topological representations
of a graph through an embedding or a drawing of it, most of the time on a surface.

Then, we can use the topological properties of these representations of a graph when
studying it. Indeed, for example, we can prove that all planar graphs are 4-colorable
[AH76].

Conversely, we can also use graphs to obtain a combinatorial representation of topo-
logical spaces and properties. Then, using this combinatorial representation, we can
study problems on topological objects and properties with combinatorics. For example,
B.Mohar and C.Thomassen [MT01] present basic elements of the analysis of both sur-
faces and topological embeddings on surfaces seen as combinatorial objects using graphs
embedded on the surfaces.

In both cases, it is important to be able to quantify as precisely as possible the
complexity of graphs in order to respectively either be able to deduce as much properties
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as possible or be able to quantify as precisely as possible the complexity of the space the
graph represents.

Moreover, since graphs are often considered embedded on surfaces, it is standard
to estimate the complexity of a graph according to the surfaces on which the graph
is embeddable. As the set of graphs embeddable on a surface is characterized by the
number of handles and Möbius bands composing it (its genus), it is standard to quantify
the complexity of a graph with the minimal genus of a surface on which this graph is
embeddable. This genus is called the genus of a graph.

Computational topology [Veg04] With the development of computer sciences, a do-
main at the interface of topology and computer science appeared: computational topol-
ogy, presented as such one of the �rst times by T.Dey, H.Edelsbrunner and S.Guha
[DEG99]. The idea is to try to construct some algorithms that either decide whether a
topological property is veri�ed or construct a object satisfying a topological property.

Graph topological embedding problems are a particular case of a key class of problems
in computational topology: general embedding problems where the goal is to embed one
topological space into another. Thus, there exist some key problems of other domains of
computational topology that can reduced to a case of topological embedding problem.
Then, it would allow to use results known for topological embeddings to solve the reduced
problem. For example, consider the trivial knot problem which is a central problem in
knot theory: given a knot in R3, decide whether this knot is the trivial knot. Since a
knot is trivial if and only if there exists a disk embedded in R3 such that its boundary
is the knot [JT95], the trivial knot problem can be reduced to a topological embedding
problem.

Moreover, simplicial complexes are a structure appearing naturally in algorithmic
topology. For example, given an topological space T , consider a complex C embedded
bijectively on T , called a triangulation of T . In algorithmic di�erential topology, it is
common to either look for a triangulation of T di�eomorphic to it or use some trian-
gulations of T when studying problems on T [BM07]. This way, triangulations are an
example of the representation of a topological space through an complex showing how
these can arise naturally in algorithmic topology.

2.3 Contributions of this thesis

This thesis presents two algorithms that both take a graph G and a 2-complex C as an
input and decide whether it is possible to embed G on C . We provide the �rst algorithms
solving this problem.

The �rst algorithm was de�ned in order to have an algorithm working in polynomial
time when the complex is �xed. Nonetheless, in this algorithm, the degree of the poly-
nomial depends on the size of the complex; in technical terms, the algorithm is not FPT
(�xed parameter tractable) with parameter the size of the complex. The second algorithm
is a FPT algorithm in the size of the complex.

The two algorithms di�er greatly in the strategy they use to solve the problem.
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First algorithm [de2018embedding] In the �rst algorithm, the principle is to con-
struct a sequence of more and more restricted problems where a part of the graph is
already embedded. We start with an instance of the problem, a graph G and a 2-
complex C where we want to decide whether G is embeddable on C . We will embed on
C a subgraph H of G of bounded size. The idea is to use some topological arguments
to restrict more and more the structure of both C and the embedding of H on it even if
it means to add some vertices and edges to G. Eventually we obtain a problem already
studied B.Mohar [Moh99], EEPCELL: given a graph G, a surface S and subgraph H
of G cellularly embedded on S , decide whether it is possible to embed the whole G
without modifying the embedding of H.

Moreover, at the same time, this algorithm also proves that the embeddability of a
graph on a 2-complex is in NP.

Second algorithm [CM21] The second algorithm focuses on combinatorial argu-
ments. The idea is to �rst restrict and simplify the input graph in order to limit the
number of possible graphs and then construct an algorithm to embed these simpler
graphs. We start with an instance of the problem, a graph G and a 2-complex C where
we want to decide whether G is embeddable on C . First, we simplify G by removing ver-
tices such that their removal does not modify the embeddability of G (irrelevant vertex
method). This allow to have a branch decomposition of G with branchwidth bounded
by the size of C . Then, we present a dynamic programming algorithm deciding whether
G is embeddable on C using a branch decomposition of G. Although the global strat-
egy is quite standard, the details and arguments to use this strategy are speci�c to this
algorithm.

This algorithm works in particular for surfaces and does not use any previous al-
gorithm deciding the embeddability of graphs on surface. So, it gives a new strategy
to construct an FPT algorithm deciding whether a graph is embeddable on a surface.
This algorithm is not as e�cient as previous algorithms deciding graph embeddability on
surfaces. For example, both B.Mohar [Moh99] and K.Kawarabayashi, B.Mohar, B.Reed
[KMR08] provides algorithms to decide graph embeddability on surfaces in linear time
in the size of the input graph. Nonetheless, the arguments proving its correctness are
simpler than the arguments of other methods (see Section 4.1.2).

2.4 Organization of the rest of the thesis

In Chapter 3 we will start by presenting the basic notions that we will use in the rest
of the thesis: topology, parameterized complexity, graph theory, surfaces and simplicial
complexes.

Then, in Chapter 4, we will present a state of the art of topological embedding
problems of a simplicial complex on another, in particular on a surface, together with
some problems close to topological embeddings of graphs on surfaces and 2-complexes.

Afterwards, in Chapter 5, we will �rst detail the motivations legitimizing the interest
of the problem of embeddability of graphs on 2-complexes. In this chapter we will also
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present the fundamental notions and properties on 2-complexes that we have de�ned and
proved that we will use in both algorithms.

Then, we will present the �rst and the second algorithm we constructed during this
thesis in respectively Chapter 6 and 7.

Eventually, we will conclude in Chapter 8 by presenting some future potential research
directions linked to the work of this thesis.
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Chapter3
Preliminaries

In this chapter, we will present basic de�nitions and properties that will be used along
the thesis: topology, graph theory, simplicial complexes, surfaces and computational
complexity

3.1 Topological spaces

In all this thesis we will consider topological spaces.

De�nition 3.1.1 (topological space). A topological space X = (E,U) is a pair where E
is a set and U a set of subsets of E called the open sets of E such that:

� Both ∅ and E are elements of U.

� Any intersection of a �nite set of elements of U is an element of U.

� Any union of a collection (even in�nite) of elements of U is an element of U.

We will suppose known basic elements of topology like continuity, closed and compact
sets. We refer to [Sti93] for formal de�nitions.

3.1.1 Homeomorphisms

First, there is a key notion in topology: homeomorphism.

De�nition 3.1.2. Let X and Y be two topological spaces and f a function from X to Y.
Then, f is a homeomorphism (from X to Y) if it is continuous, bijective and its inverse
function is also continuous. When X=Y, f is called a self homeomorphism of X.

The notion of homeomorphism is very important because two homeomorphic spaces
have the same topological properties. Moreover, being homeomorphic happens to be
an equivalence relation. Thus, when looking for topological properties, spaces are often
considered up to homeomorphism. In the rest of this thesis we will often implicitly
consider spaces up to homeomorphism.

17
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3.1.2 Curves

One key kind of functions in the study of embedding of graphs is curves.

De�nition 3.1.3. Let X be a topological space. Then a curve (on X) is a continuous
function from [0, 1] to X.

Let ` be a curve on X. Then,

� ` is closed if `(0) = `(1).

� ` is simple if it is either injective, or closed and injective on [0, 1).

Later, a curve will be identi�ed with its image. Moreover, any point p of X is a closed
curve since it is the image of the constant function always equal to p.

Homotopy and contractibility of curves We will look for continuous deformation
of the space changing one curve to another with the same endpoints.

A such deformation is called a homotopy of a curve.

De�nition 3.1.4. Let X be a topological space, λ a continuous function from [0, 1]2 to
X, and ` and `′ two curves on X such that `(0) = `′(0) and `(1) = `′(1). Then, λ is
a homotopy from ` to `′ if for all x ∈ [0, 1], λ(x, 0) = `(x), λ(x, 1) = `′(x) and for all
t ∈ [0, 1], λ(0, t) = `(0) and λ(1, t) = `(1). Moreover, two curves with the same endpoints
are homotopic if there is a homotopy from one to the other.

Intuitively, the second parameter represents the time along the deformation. This
way, consider a homotopy λ between two curves ` and `′, then for all t, the function
x→ λ(x, t) is the state at the instant t of the deformation from ` to `′.

Moreover, in this thesis, homotopy will mainly be used to de�ne a key notion on
curves: contractibility.

De�nition 3.1.5. Let ` be a closed curve on a topological space X. Then ` is contractible
if it is homotopic to a point of X.

3.2 Graphs

Informally, a graph is a set of vertices connected by undirected edges. More formally
there are two classical de�nitions for graphs, one broad later called a multigraph and one
more restrictive called simple graphs .

3.2.1 Multigraphs and simple graphs

The most general de�nition for a graph in this thesis, called a multigraph, is the following:

De�nition 3.2.1. A multigraph is a triple G = (V,E, extr) where:

� V is a �nite set whose elements are called the vertices of G.



3.2. Graphs 19

� E is a �nite set whose elements are called the edges of G.

� extr is a mapping from elements of E to subset of V of cardinality 1 or 2.

Let e be an edge of G. Then, the elements of f(e) are called the endpoints of e.
Moreover, e is a loop if it has only one endpoint.

Often, a more restrictive de�nition of a graph, called a simple graph is used.

De�nition 3.2.2. A multigraph (V,E, extr) is a simple graph if E contains neither a
loop nor two edges with the same endpoints.

In a simple graph, an edge is characterized by the pair of its endpoints. Thus, in a
simple graph, each edge can be identi�ed with the pair of its endpoints. This way, in a
simple graph G = (V,E, extr), E is a set of pairs of elements of V and extr is simply
the identity map. Eventually, G is simply represented as the couple (V,E) since extr is
obvious.

3.2.2 Graph embeddings

When looking at a graph, we can try to draw it on a topological space by drawing vertices
as points and edges as curves between their endpoints. More speci�cally, we can look for
a crossing free drawing: an embedding.

De�nition 3.2.3. Let G = (V,E, extr) be a multigraph and X a topological space. Then
an embedding of is G on X is speci�ed by an injective function f from V to X and a
family of simple curves (ge)e∈E such that:

� For all e ∈ E with endpoints u and v (with u = v if e is a loop), {ge(0), ge(1)} =
{f(u), f(v)}.

� For all e ∈ E and all t ∈ (0, 1), ge(t) neither lies on the image of f nor the image
of any ge′ for any e

′ 6= e.

Let Π be an embedding of G on X of image Y . A face of Π is a connected component of
X \ Y .

Ambient isotopy of an embedding Sometimes it can be useful to continuously
deform one embedding into another. The notion used to represent a such continuous
deformation is called an ambient isotopy.

De�nition 3.2.4. Let G be a graph, X a topological space, and f and g two embeddings
of G on X. Then, an ambient isotopy from f to g is a continuous family (ht)t∈[0,1] of
self-homeomorphisms of X such that h0 is the identity and h1 ◦ f = g.

We will use ambient isotopies in particular in Chapter 6 in order to modify embed-
dings while maintaining some speci�c properties that do not translate through homeo-
morphism.
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3.2.3 New graphs obtained from an old one

When studying a graph G, it can be useful to look at some graphs associated with G,
often linked to G by the relation of being a subgraph. Thus, there are some standard
constructions of subgraphs that are very useful. Moreover, a minor of a graph is a more
general notion of smaller graphs which is sometimes used instead of subgraphs where
more adapted.

De�nition 3.2.5. Let G = (V,E, extr) and G′ = (V ′, E′, extr′) be two graphs, u0 a
vertex of G, e an edge of G, V0 a subset of V and E0 is a subset of E.

1. Subgraph. G′ is a subgraph of G (noted G′ ⊆ G) if V ′ ⊆ V , E′ ⊆ E and extr′

is the restriction of extr to E′. The notion of subgraph is often the notion used as
"smaller graphs" since there is a lot of properties of graphs that propagates to any
of its subgraphs.

2. Induced graph. G′ is the graph induced by V0 if V
′ = V0, E

′ =
{
e
∣∣∣e ∈ E∧extr(e) ⊆

V0

}
and extr′ is the restriction of extr to E′. Similarly, G′ is the graph induced

by E0 if E′ = E0, extr
′ is the restriction of extr to E′ and V ′ =

{
u
∣∣∣∃e ∈ E0, u ∈

extr′(e)
}
. The graph induced by V0 is the biggest subgraph of G whose set of vertices

is V0 while the graph induced by E0 is the smallest subgraph of G whose edges are
E0.

3. Graph Di�erence. The di�erence between G and V0 (noted G \ V0) is the graph
induced by V \ V0. This way we obtain the biggest subgraph without some vertices.

Similarly, the di�erence between G and H (noted G \G′) is the graph induced by
E \ E′. This way, we obtain the complement of a subgraph in a graph.

4. Subdivision. G′ is an atomic subdivision of G if there exists e ∈ E with endpoints
u and v (with u = v if e is a loop) and w ∈ V ′ such that V ′ = V ∪ {w} and
E′ = {e′, e′′}∪E \e such that extr′(e′) = {u,w} and extr′(e′′) = {v, w}. Moreover,
G′ is a subdivision of G if there exists a set of graphs G0, . . . , Gn such that G0 = G,
Gn = G′ and for all 0 ≤ i < n, Gi+1 is an atomic subdivision of Gi. Subdivisions
are useful to "re�ne" edges of a graph in order to modify edges of a graph by acting
on vertices while not having any in�uence on the image of an embedding of it.

5. Edge contraction. G′ is an edge contraction of G if there is an edge e of G with
endpoints u and v such that G′ is the graph obtained from G by removing e and
identifying u and v. Thus, there is a vertex w /∈ V such that V ′ = (V \{u, v})∪{w},
E′ = E \ {e} and extr′ is the function extr except that each instance of either u or
v in the set of the image of an edge is replaced by w. Edge contractions are mainly
used to de�ne the minors of G.

6. Minor. G′ is a minor of G if there exists a sequence of graphs G0, . . . Gn such that:
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� G0 is a subgraph of G and Gn = G′

� for all 0 ≤ i < n Gi+1 is an edge contraction of Gi.

All subgraphs of G are also a minor of it. Moreover, minors are sometimes used
instead of subgraphs as "smaller graphs" when the properties studied propagate to
all minors and not only subgraphs.

3.2.4 Graph structures

When studying graphs, it is possible to look at either structures of subgraphs or classes
of graphs with a particular structure.

Paths and cycles Let G be a graph and u and v two vertices of G.
A path of G linking u and v is an alternating sequence of vertices and edges of G:

v1, e1, v2 . . . , en, vn+1 such that v1 = u, vn+1 = v and for all 1 ≤ k ≤ n vk and vk+1 are
the endpoints of ek.

� A path v1, e1, . . . , vn+1 is simple if for all 1 ≤ k 6= k′ ≤ n, vk 6= vk′ .

� A path P is a closed path of G if there is a vertex u of G such that P is a path of
G from u to itself.

� A simple closed path of G is called a cycle

Since a cycle is a simple path, each edge or vertex appears at most once in the cycle.
Thus, a cycle immediately induces a cyclic order of both the edges and the vertices
appearing in it.

Later, a cycle will be simply de�ned by the cyclic order of edges appearing in it. Thus,
two cycles inducing the same cyclic order of edges will be identi�ed. This cyclic order
does not pinpoint a start to the cycle but, except for cycle composed of two vertices, it
still implies a direction for the course of this cycle.

Trees There is a class of graph widely studied: trees.

De�nition 3.2.6. A graph T is a (unrooted) tree if it is both connected and contains
no cycle.

Then, a vertex u is either a leaf when its degree is 1 or an internal node when its
degree is greater than one.

Trees have several key properties linked to its de�nition.

Proposition 3.2.7. Let T be a tree. Then:

� For each pair of vertices u, v of T , there is exactly one simple path of T between u
and v.

� For each edge e of T , T \ e is disconnected
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Figure 3.1: A (10× 10)-wall.

� Conversely, for each pair of vertices u, v of T such that the edge {u, v} is not in T ,
the graph obtained from T by adding e contains a cycle.

Often, when looking at a tree, we choose one vertex to be the root of the tree. Then,
the tree is a rooted tree.

In a rooted tree, we can de�ne the descendants of an internal node. Let t be an
internal node of a rooted tree T . Then, a node t′ is a descendant of t if t appears along
the path between t′ and the root of T . Moreover, a node t′ is a child of t if it is a
descendant of t connected to it.

Grids and walls

De�nition 3.2.8. Let g be an integer. The g×g-grid is the graph with vertices {(i, j)|1 ≤
i, j ≤ g} and an edge between (i, j) and (i′, j′) if either i′ = i+ 1 and j′ = j or i′ = i and
j′ = j + 1.

Furthermore, a graph G is a wall of size k × k if it is a subgraph of the (k × k) grid
obtained by removing alternatively the vertical edges of even (resp. odd) x-coordinate in
each even (resp. odd) line, and then the degree-one vertices; see Figure 3.1

3.3 Simplicial complexes

In this section, we will present the basic elements of simplicial complexes that will be
used in the rest of the thesis. We refer to [Mat03] for a broader and more exhaustive
presentation of simplicial complexes and their topology.

3.3.1 Simplex

Complexes will be de�ned as a set of canonical bricks: simplices.

De�nition 3.3.1. A simplex S is a �nite non-empty set whose elements are called the
vertices of S.

The dimension of S is dim(S) = |S| − 1.
Moreover, a simplex S′ is a face of S if S′ ⊂ S.

A simplex of dimension k > 0 is often used as a combinatorial de�nition of a k-
dimensional ball while a simplex of dimension 0 is seen as a point.
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Figure 3.2: A 2-complex with simplices: {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h} of dimension
0(vertices), {a, b}, {a, c}, {b, c}, {a, e}, {d, e}, {e, f}, {e, g}, {e, h}, {f, g}, {f, h}, {g, h} of
dimension 1 (edges) and {a, b, c}, {e, f, g}, {e, f, h}, {e, g, h}, {f, g, h} of dimension 2 (tri-
angles).

3.3.2 Combinatorial de�nition of a simplicial complex

A simplicial complex is a set of simplices closed under inclusion.

De�nition 3.3.2. A �nite set of simplices C is a simplicial complex if, for any simplex
S in C and any S′ ⊂ S, the set S′ is also a simplex of C . In other words, a set of
simplices is a simplicial complex if it contains all faces of any simplex included in it.

The vertices of C are the vertices of any simplex of C . Due to the de�nition of
a simplicial complex, the set of vertices of C is also the union of the singletons, the
simplices of dimension 0, of C .

Moreover, let k be an integer. Then C is a k-dimensional complex (or k-complex) if
the maximal dimension of a simplex in C is at most k.

See Figure 3.2 for an example of simplicial complex.
By de�nition, simple graphs are exactly 1-complexes.

1-skeleton Let d < k be two integers and C be a k-dimensional complex. Then the
d-skeleton of C is the simplicial complex C ′ formed by the simplices of dimension at
most d of C .
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C ′ can be a very useful tool in the study of C . Sometimes, it allows the use of
results and strategies applying to simplicial complexes of dimension d in the study of C .
Moreover, C ′ forms the "frame" that host higher-dimensional simplices of C . Thus, C ′

can be used instead of C when it retains enough of the structure of C for the problem
considered.

In the rest of this thesis, we will only use the 1-skeleton of a 2-complex C , the graph
formed by the vertices and edges of C .

3.3.3 Associated topological space

We can associate a topological space to any simplicial complex called the topological
representation of C .

De�nition Let C be a simplicial complex.
We construct the topological representation of C by associating inductively a topo-

logical space to each simplex of C .
First, we associate each vertex to a di�erent point.
Then, let S be a simplex of C of dimension k > 0 such that a topological space

has already been associated with the faces of S. We will always have that the union
of the topological space of the faces of S is homeomorphic to the sphere of dimension
k. We associate to S a topological space homeomorphic to a ball of dimension k whose
boundary is the union of the topological representation of all faces of S.

Eventually, the �nal topological space is the topological representation of C . It is evi-
dent that all topological representation of C are homeomorphic. Thus, later, a simplicial
complex will be implicitely associated with any of its topolgical representations.

The 1-dimensional case Embeddings of graphs gives a classical way to construct
a topological representation of graphs. Thus, an embedding associate a point to each
vertex and a space homeomorphic to a simple curve (the ball of dimension 1) whose
boundary is the image of vertices to edges.

Topological spaces associated with 2-dimensional complexes In this thesis, we
will focus on 2-complexes. Let C be a 2-complex. As a 2-complex, the simplices compos-
ing C are vertices, edges and triangles. Thus, the topological space associated with C
will be a set of closed disks, corresponding to triangles, some sharing a point or a part of
their boundary, some isolated arcs, corresponding to edges incident to no triangles, and
some isolated points, corresponding to vertices incident to no edge. Alternatively, it is
obtained from a simple graph by gluing a disk to some of its cycles of length three.

3.4 Surfaces

There is one class of topological representation of 2-complexes where the embedding of
graphs has been vastly studied: surfaces.
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a) d)c)b)
source:Wikipedia

Figure 3.3: a) An orientable surface: a sphere. b) An non-orientable surface: the Klein-
bottle. c) A surface with a boundary: the Möbius band. d) A non-connected surface:
two spheres.

In this section, we will present the basic elements of surfaces theory that will be
used in the rest of the thesis. We refer to [MT01] for a broader and more exhaustive
presentation of embeddings on surfaces.

3.4.1 De�nition

De�nitions of surfaces come in several forms, depending on whether the surface is re-
quired to be connected and whether it can have boundaries. In this thesis we will de�ne
both notions of connected surface without boundary and the notion of surface possibly
disconnected, possibly with boundary.

De�nition 3.4.1. De�nition of a surface possibly disconnected, possibly with

boundary

Let S be a compact topological space. S is a surface possibly disconnected, possibly
with boundary if each point p of S admits a neighborhood of p homeomorphic to a closed
disk. See Figure 3.3 for examples of general surfaces.

Moreover, let S be such a surface. A point of S is a boundary point of S if it
admits no neighborhood homeomorphic to an open disk. A connected component of the
set of boundary points of S is a boundary component of S . Moreover, any boundary
of a general surface is always homeomorphic to a simple closed curve.

Then, we de�ne surfaces which happen to be exactly connected surfaces with no
boundary.

De�nition 3.4.2. Surface

Let S be a surface possibly disconnected, possibly with boundary. S is a surface if
it is connected and without boundary

See a) and b) of Figure 3.3 for examples of surfaces.
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Remark: Thus, our de�nition of surface is the most restrictive one. In particular, a
surface possibly disconnected, possibly with boundary, is not necessarily a surface.

3.4.2 Facial walks and cellular embeddings

Embeddings on surfaces have a particular structure that allow to de�ne some objects
speci�c to it. First, we can de�ne cellular embeddings where the faces are all disks.
Then, we can de�ne the closed paths formed by going along a speci�ed face of the
embedding: the facial walks.

Cellular embeddings There is one particular case of embeddings on surfaces called
cellular embeddings where faces are disks. An embedding Π on a surface possibly discon-
nected without boundary S is a cellular embedding if each face of Π is homeomorphic
to an open disk.

Cellular embeddings are a key tool for the study of surfaces. In particular, they allow
to de�ne the two signi�cant characteristics of it: genus and orientability (See Section
3.4.3).

Facial walks A facial walk of a face of an embedded graph represents the part of the
graph that bounds this face.

De�nition 3.4.3. Let Π be an embedding of a graph G embedded on a surface S .
Consider a face F of Π. Then, the frontier of F is composed of one or more closed
curves corresponding to parts of Π. Consider one such curve `. Then, when going along
`, we meet alternatively the image of vertices and edges of G. This way, we obtain a
closed path of G called a facial walk of the face F of Π (associated with `).

Remark: It is possible that the curve considered is a single point. Then, the corre-
sponding facial walk is composed of a single vertex, the vertex mapped on this point.

3.4.3 Genus-orientation characterization of a surface

Up to homeomorphism, a surface only depends on two of its characteristics: its ori-
entability and its genus.

Orientability The orientability of a surface can be de�ned with a cellular embedding
of a graph on it.

De�nition 3.4.4. Let S be a surface and Π a cellular embedding of a graph on S .

Π is orientable if it is possible to choose a direction around the perimeter of each face
F of Π, associating a direction to each appearance of an edge along the facial walk of F ,
such that every appearance of an edge in facial walks of Π are in opposite direction. See
Figure 3.4 for an example of orientation of a cellular embedding on the sphere.

If one cellular embedding on S is orientable then all are. Thus, it is possible to de�ne
a surface as orientable if it admits an orientable cellular embedding.
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a) b)

Figure 3.4: a) A valid orientation on the sphere b) An invalid orientation of the sphere.

Intuitively, an orientable surface is a surface with an inside and outside. See Figure
3.3 for examples of general surfaces both orientable and non-orientable.

Closed curves on orientable surfaces have one key property that can be used as an
alternative de�nition of orientable surface depending their number of sides.

De�nition 3.4.5. One- and two-sided curves Let S be a surface and ` be a simple
closed curve. Then, ` is two-sided if there exists a connected neighborhood N of ` such
that N \ ` is not connected. Otherwise, if no connected neighborhood of ` is disconnected
by it, ` is one-sided.

Then,we have the following:

Proposition 3.4.6. Let S be a surface. Then, S is orientable if and only if all simple
closed curves are two-sided.

Thus, on a surface, there is two kinds of simple closed curves: the ones admitting
a connected neighborhood separated by it that are said to be two-sided and the one
that does not sepate any of their connected neighborhoods. As stated by the previous
proposition, all simple closed curves on a surface are two-sided if and only if this surface
is orientable. So, one-sided simple closed curves only appears on non-orientable surface.

Genus of a surface Let S be a connected surface with b boundaries, G a graph with
n vertices and e edges and Π a cellular embedding of G on it with k faces. We de�ne the
Euler characteristic (of S ) as χ = n − e + k. Then, the Euler characteristic have two
key properties:

� First, the Euler characteristic is the same for all cellular embeddings on S .
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� Second, for all connected general surfaces with boundary, its Euler's characteristic
χ satis�es χ ≤ 2.

Then the non-negative integer g = 2 − χ is called the (general) genus of S . If S is
orientable then g is always even and the orientable genus of S is g

2 .

Euler's theorem Euler's theorem proves that orientability and genus characterize a
surface up to homeomorphism.

Theorem 3.4.7. Euler's theorem Let S and S ′ be two surfaces. Then, S and S ′ are
homeomorphic if and only if they 1) have both the same genus and 2) they are either both
orientable or both not orientable.

Then, it obviously implies that the genus and orientability of a surface characterize
the set of graphs embeddable on it.

Corollary 3.4.8. Let S and S ′ be two surfaces. If 1)S and S ′ have both the same
genus and 2) they are either both orientable or both not orientable, then the set of graphs
embeddable on S is the same as the set of graphs embeddable on S ′.

Extension to non-connected surface and surface with boundary Both notions
of genus and orientability can be extended to surface possibly disconnected, possibly with
boundary.

First, the orientability is de�ned identically as the de�nition of orientability for sur-
faces without boundaries by considering an embedding where all faces are homeomorphic
to a disk. For non-connected surfaces, we say that it is orientable if all of its connected
components are orientable.

Then, we also de�ne the Euler's characteristic of a surface with boundary S from
a cellular embedding on it with the same formula, χ = n − e + k where n and e is
respectively the number of vertices and the number of edges of the embedded graph
and k the number of faces of the embedding. Nonetheless, the genus is then de�ned as
g = 2 − b − χ where b is the number of boundaries of S . This way we still have that
g ≥ 0. Moreover, g is also the genus of the surface without boundary obtained from S
by, for each boundary component B, adding a closed disk whose boundary is identi�ed
with B. For non-connected surfaces, we de�ne its genus as the sum of the genus of each
of its connected components.

Genus of a graph Let G be a graph. We can associate to G the minimal genus of a
surface on which G is embeddable. Thus, the genus of G is g if there exists a surface S of
genus g such that G is embeddable on S and G is not embeddable on any surface of genus
less than g. Similarly, the non-orientable genus of G is g if there exists a non-orientable
surface S of genus g such that G is embeddable on S and G is not embeddable on any
non-orientable surface of genus less than g. Moreover, the orientable genus of G is g if
there exists an orientable surface S of orientable genus g such that G is embeddable on
S and G is not embeddable on any orientable surface of orientable genus less than g.
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3.4.4 Combinatorial representation of an embedding on a surface

In this thesis, we are only looking at embeddings up to homeomorphism. Then, it is
natural, instead of giving its exact image, to look for a way to represent an embedding
such that all homeomorphic embeddings have the same. This will be done for cellular
embeddings by giving a representation that characterize the facial walks of the embed-
ding. Thus, it is obvious that two embeddings Π and Π′ of a graph G which faces both
are homeomorphic and admits the same facial walks are homeomorphic. Then, since in
a cellular embedding all faces are homeomorphic to disks, knowing the facial walks of a
cellular embedding characterize both the surface on which the graph is embedded and
the way it is embedded.

There is a way to represent these facial walks and thus a cellular embedding up to
homeomorphism: the combinatorial map. Combinatorial maps will not be de�ned in this
thesis. We refer to [MT01, Section 3.3] for a formal de�nition of the way to associate an
embedding to a combinatorial map. Here, we will only de�ne the rotation systems and
combinatorial maps while giving the intuition of their use to represent cellular embeddings
on surfaces.

Rotation system First, we de�ne the rotation system for embeddings on orientable
surfaces.

Let G be a graph, S an orientable surface and Π a cellular embedding of G on S .
Then Π maps the edges incident to a vertex around it in a cyclic order, which is well
de�ned if an orientation of S is chosen. Thus, Π induces naturally a map that associates
to each vertex a cyclic order of the edges incident to it. This map is a rotation system of
Π.

Since the rotation system is a map from vertices of G to a cyclic order of the edges
incident to it, we can de�ne a rotation system without any underlying embedding.

De�nition 3.4.9. Let G be a graph. A rotation system of G is a map that associates to
each vertex of G a cyclic order of the edges incident to it.

Reconstructing facial walk from a rotation system in the orientable case A
rotation system of a cellular embedding on an orientable surface (connected without
boundary) su�ces to reconstruct all facial walks of it:

Let G be a graph, S an orientable surface, Π a cellular embedding of G on S and
Λ the rotation system of Π.

The reconstruction of facial walks of faces of Π from Λ is as follows:
First, choose one vertex u and one edge e incident to it.
Then, until the sequence u, e appears a second time in the facial walk, repeat the

following step:
Let v, e′ be the end of the sequence already constructed with v a vertex and e′ an

edge incident to it. Let v′ be the other end of e′ and e′′ be the edge following e′ in the
cyclic order Λ(v′). Add v′, e′′ to the facial walk.
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The issue of non-orientable surface If S is not orientable, the same construction
strategy does not work. We will not de�ne formally rotation systems for non-orientable
surfaces, but we only indicate intuitively why more information is required. Since the
surface is non-orientable, the cyclic ordering of the edges around each vertex is de�ned
up to reversal only.

For example, see Figure 3.5. Both embeddings of G seem to have the same rotation
system Λ:

� A: 1,2,3

� B: 2,4,5

� C: 1,3

� D: 4,5

Nonetheless, if we go along the edges 3 and 1 on the Möbius band, we see that we
went from the yellow side of A to its green one. Thus, the next vertex seems to be 3
again and not 2. This way, after going through the edge 1, the cyclic order around each
vertex looks reversed.

So, on non-orientable surfaces, we can have some edges that are "twisted" (here it is 1)
and going through these reverse all cyclic order of the rotation system afterwards. Thus,
when representing an embedding on a non-orientable surface we need more information
than simply a rotation map, we also need to know for each edge whether it keeps the
cyclic orders around vertices or not.

To do so, we add to each edge a signature: positive when there is no inversion of the
cyclic order and negative otherwise.

Combinatorial map of a cellular embedding This leads to the de�nition of a
combinatorial map.

De�nition 3.4.10. Let G be a graph. Then, a combinatorial map of G is a couple (Λ, σ)
where Λ is a rotation system of G and σ is a map from the edges of G to {−1, 1} called
the signature of the combinatorial map.

We can reconstruct the facial walks from a combinatorial map like the orientable
case except that we reverse all orders in the rotation system when we add an edge with
signature −1.

3.5 Fixed parameter tractability

In this section, we will present the basic elements of parameterized complexity that will
be used in the rest of the thesis. We refer to [Cyg+15] for a broader and more exhaustive
presentation of the domain of parameterized complexity.
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Figure 3.5: Two cellular embeddings of a graph G on respectively a Möbius band and a
disk with the same rotation system

3.5.1 Fixed parameter tractability: de�nition and motivation

Problems In this thesis we will restrict ourselves to decision problems. A decision
problem P is a function that associate inputs to either true or false. Then, an algorithm
solves P if for each input I it returns P (I).

For example, we can de�ne the PRIMALITY problem: given an integer n, decide
whether n is a prime number.

P and NP classes There are classic classes of decision problems:

� P. A problem P is in P if there exists a constant c and a deterministic algorithm
A deciding P working in time O(nc), where n is the size of the input.

� NP. Intuitively, a problem in NP is a problem where YES instances can be ver-
i�ed to be true in polynomial time when the input is completed with a "small"
certi�cate. More precisely, a problem P is in NP if there exist two constants c, d
and a deterministic algorithm A such that for each input I of size n, P (I) equals
true if and only there exists a certi�cate C of size O(nc) such that A applied to I
and C returns YES in time O(nd).

� NP-hard problem. A problem P is NP-hard if, for all problems P ′ in NP, there
is a deterministic algorithm A working in polynomial time such that any instance
of P ′(X) is equivalent to P (A(X)). Thus, intuitively, a NP-hard problem is a
problem "containing" the di�culty of all NP-problems.

� NP-complete problem. A problem P is NP-complete if it is both in NP and
NP-hard.
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First, it is obvious that P⊆NP while it is unknown whether NP⊆P. It is commonly
assumed that P( NP. Under this assumption, no NP-complete problem can be solved
in polynomial time since otherwise any other NP problem would also have a polynomial
time algorithm solving it.

Moreover, under the same assumption, it is reasonable to look for complexity classes
that re�ne NP. A way to do such re�nements is the parameterized complexity.

.

Parameterized complexity When looking at problems, we can consider a measure-
ment of a part of the input or output called a parameter that encapsulate some complexity
of the considered problem. In this thesis we will restrict ourselves, as often done, to the
case when the parameter is an integer. A problem together with a parameter will later
be referred as a parameterized problem.

The idea is to express more precisely the working time of algorithms solving a pa-
rameterized problem in a function of both the size of the parameter and the size of the
input. Most of the time, we look to minimize the function in the size of the input. The
idea of parameterized complexity is that we expect to be able to solve the problem faster
if the parameter is small (or even bounded).

For example, we de�ne two problems that have a very intuitive parameter:

1. The VERTEX COVER problem: Given a graph G and an integer k decide whether
G contains a set S of k vertices of G such that, for each edge {u, v} of G, we have
either u or v in S. We parameterize VERTEX COVER by k, the size of the target
set S.

2. The CLIQUE problem: Given a graph G and an integer k decide whether G con-
tains a k-clique. (A k-clique is a set S of k vertices of G such that each pair of
vertices of S is connected by an edge in G.) We parameterize CLIQUE by k, the
size of the target k-clique.

Both problems are NP-complete. Nonetheless, when parameterized, the two prob-
lems will not allow the same e�ciency in the size of the graph:

1. VERTEX COVER can be decided by a deterministic algorithm that works in time
O(2kn) where n is the size of the input graph and k, the size of the target set, the
parameter [Cyg+15, Section3.4].

2. On the other hand, CLIQUE can be decided in time nO(k) where n is the size of
the input graph and k is the size of the target clique by verifying for each set of k
vertices whether it is a clique. It is expected that we cannot do signi�cantly better
(see W [1]-hardness below).

The cases like VERTEX COVER are considered as the best we could hope for NP-
complete problem while the cases like CLIQUE are the ones we would like to avoid. We
will then formerly de�ne the "good" cases as �xed parameter tractable.
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Fixed Parameter Tractable (FPT) A classical problem class when looking for pa-
rameterized complexity is the �xed parameter tractable problem class.

De�nition 3.5.1. Let P be a problem of parameter k. P is �xed parameter tractable
(FPT) with respect to k if there exists a function f , a constant c and a deterministic
algorithm solving P working in time f(k)nc where n is the size of the input.

For example, the VERTEX COVER problem parameterized by the size of the target
set is FPT since there exists an algorithm working in time f ′(k)n for some function f ′,
where k is the size of the target covering set and n the size of the input graph.

Consider an FPT problem P , all the problems (Pk)k∈N where P is restricted to the
case where the parameter is equal to k are all problems of P. The converse is widely
considered to be not true. For example the CLIQUE problem parameterized by k the
size of the target clique is admitted to not be an FPT problem. Still, trying to �nd a
k-clique in a graph can be done in time O(nk). This way, when k is �xed, we obtain a
polynomial algorithm for each instance of the CLIQUE problem restricted to clique of a
given size.

W [1]-hardness When looking at NP-complete problems, we can try to �nd an FPT
algorithm for some parameters as intuitive as possible for the problem. Nonetheless, it
is believed that not all NP problems parameterized by any parameter are FPT.

The complexity classes W [1], . . . ,W [n] called the W -hierarchy can be de�ned to ex-
tend FPT. It is commonly supposed that W [1]-hard problems are exactly problems that
are not FPT. In this thesis, we will not de�ne the classes of theW -hierarchy. Instead, we
will only refer to W [1]-hard problems which will be de�ned as the complement of FPT
problems. The reader can refer to [Cyg+15, pp. III, 13.3] for a formal de�nition of the
W -hierarchy.

For example, the CLIQUE problem parameterized by the size of output clique is
shown to be W [1]-hard. This, together with the hypothesis that W [1]-hard problems are
exactly problems that are not FPT, gives that CLIQUE is not an FPT-problem. Fur-
thermore, there is a common assumption even stronger for clique called the Exponential
Time Hypothesis (the reader can see [Cyg+15, pp. III, 14] for a formal de�nition of it)
that, in particular, assesses that there no deterministic algorithm that solve CLIQUE in
time O(no(k)), with n the size of the input graph and k the size of the target clique.

Thus, �nding whether an NP-complete problem parameterized by a given parameter
is either FPT or W [1]-hard is a pretty common �eld of parameterized complexity.

Slicewise polynomial (XP) Another classic complexity class in parameterized com-
plexity is XP extending the FPT class.

De�nition 3.5.2. Let P be a problem of parameter k. P is slicewise polynomial (XP)
with respect to k if, for each k, there exists a deterministic algorithm solving P working
in time polynomial in the size of the input.
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As stated before all FPT algorithms are working in polynomial time when the pa-
rameter is �xed. Thus, all FPT problems are also XP problems. The opposite is not
true.

Proposition 3.5.3. There exists someXP problems that are not �xed parameter tractable.

3.5.2 Branch decomposition

A very useful tool to construct FPT algorithms on graphs is the branchwidth and the
branch decomposition of a graph. The standard de�nition of branch decomposition uses
unrooted trees while in this thesis, we will use a close variant of it where the tree is
rooted.

We choose these rooted branch decompositions in order to make smoother the con-
struction of dynamic programming algorithms(see Section 3.5.3).

De�nition 3.5.4. Let G be a graph. A branch decomposition B of G is a tree rooted at
a leaf whose inner nodes are of degree 3 together with a bijective map from edges of G to
non root leaves of B.

Let B be a branch decomposition and b an edge of B. B \ b is composed of two
connected components B1 containing the root and B2. Then, it induces a partition of
edges of G (if b is the arc incident to the root, then one part of the partitionis empty) in
two subgraphs G1 and G2 that are the graphs induced by the edges labeling the leaves of
respectively B1 and B2. G1 and G2 are respectively called the upper part and the lower
part of the bipartition of G associated with b. The set S of vertices of G incident to both
at least one edge of G1 and at least one of G2 is the middle set of b. The width of B is
the maximum of the cardinality of the middle set of an edge of B.

Eventually, the branchwidth of G is the minimum on all branch decompositions B of
G of the width of B.

See Figure 3.6 for an example of branch decomposition.
The usual de�nition of a branch decomposition is identical, except that the tree

is unrooted, and thus the leaves are in bijection with the edges of G. The di�erence
is cosmetic: From any usual branch decomposition, one can trivially obtain a rooted
branch decomposition of the same width, by subdividing an arbitrary arc with a new
node ν and then connecting ν to a new leaf node ρ, which will serve as the root; the
converse operation obviously transforms any rooted branch decomposition into a usual
branch decomposition. Since each usual branch decomposition corresponds to a rooted
branch decomposition, and both have the same width, we henceforth only work with
rooted branch decompositions.

Connections with the treewidth Related to branch decomposition, and perhaps
more well-known, is the notion of tree decomposition. We will not use (nor de�ne) tree
decomposition and treewidth in this thesis. Let us, however, remark that the treewidth
is similar to branchwidth in two ways. First, proofs tactics for one can often be adapted
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Figure 3.6: A branch decomposition of a grid graph showing a partition of width 3
corresponding to an edge. (By: David Eppstein)

to the other. Second, for all graphs G, its treewidth tw and its branchwidth bw are
comparable as follows [RS91]:

bw ≥ 2⇒ bw ≤ tw + 1 ≤ 3

2
bw

In this thesis, branch decomposition is preferred to tree decomposition for one main
reason: dynamic programming strategies are often easier to de�ne with branch decom-
position.

Complexity of computing a branch decomposition We de�ne the BW problem:
given a graph G and an integer b, decide whether there exists a branch decomposition of
width at most w of G.

BW has been shown to be both an NP-complete problem and a FPT problem when
parameterized by b the target width [BT97]. Moreover, the FPT algorithm deciding BW
returns a branch decomposition of minimal width.

3.5.3 Dynamic programming

One key use of the branchwidth is a proof strategy to construct FPT algorithms: dynamic
programming.
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Principle of dynamic programming Let P be a problem applied to a graph G
containing n edges. Let B be a branch decomposition of G of width w, the branchwidth
of G, rooted on a leaf r.

The idea is to �rst �nd some subproblems expressed on the middle set of edges of B
such that:

1. Solutions of the subproblems of an edge e incident to non-root leaves can be con-
structed in time f(w) independent of G.

2. There exists a function g and a constant c1 independent of G such that solutions
of the subproblems of an edge e not incident to a non-root leaf can be constructed
from the solutions of the subproblems of other edges incident to the node descending
from it in time O(g(w)nc1).

3. A solution of the problem can be deduced from the solutions of subproblems on
the edge incident to the root in constant time h(w) independent of G.

With these subproblems, we can de�ne the dynamic programming strategy:

� First, thanks to 1, we can, by brute force, construct all solutions of subproblems of
edges incident to non-root leaves.

� Then, thanks to 2, we construct solutions of the subproblems for other edges from
the ones of the edges below it by bottom-up induction.

� Eventually, thanks to 3, we deduce a solution for the general problem from the
solutions of the edge incident to the root.

Moreover, B contains n− 1 edges incident to non-leaf edges and n edges incident to
leafs. Thus, the dynamic programming algorithm is an FPT algorithm since it works in
time O(g(w)nc1+1 + f(w)n+ h(w)).

INDEPENDENT SET example We will give an example of dynamic programming
used to construct an FPT algorithm solving INDEPENDENT SET. A set S of vertices
of a graph G is an independent set of G if there is no edge between two vertices of S in
G. We de�ne INDEPENDENT SET: Given a graph G and an integer k0 decide whether
there exists an independent set of G of cardinality at least k0. We will parameterize
INDEPENDENT SET by w the branchwidth of G.

We want to use dynamic programming to construct an FPT algorithm solving IN-
DEPENDENT SET.

Let (G, k0) be an instance of INDEPENDENT SET.
We �rst use a FPT algorithm to construct a branch decomposition B of G of width

w, the branchwidth of G and root it at some leaf r. For each edge b of B, let V (b),
G−b and G+

b be respectively the middle set of b, the lower and the upper part of the
bipartitition of G associated with b.

Then, the objects we will consider are, for each edge b of B and each set S ⊆ V (b),
the integer m(S, b) which will be the maximal size of an independent set S′ of G−b such
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that S′ ∩ V (b) = S. If there is no independent set containing S, then we will put
m(S, b) = −∞.

1. First, consider an edge b incident to leaf l other than the root and {u, v} the edge
associated with l. Then, G−b is only the edge {u, v} and V (b) = {u, v}. Thus there
are four sets included in V (b) with: m(∅, b) = 0, m({u}, b) = m({v}, b) = 1 and
m({u, v}, b) = −∞.

2. Then, we construct the core dynamic programming. Consider an edge b incident
to an internal node t incident to b, b1 and b2. We suppose that we have already
constructed all m(S, b1) and all m(S, b2). Then, let S be a subset of V (b). We
consider all sets S1 ⊆ V (b1) and all sets S2 ⊆ V (b2) such that S1∩V (b) = S∩V (b1),
S2 ∩ V (b) = S ∩ V (b2) and S1 ∩ V (b2) = S2 ∩ V (b1) and put the maximum among
all S1, S2 of m(S1, b1) +m(S2, b2)− |S1 ∩ S2| as m(S, b).

Since both V (b1) and V (b2) are of cardinality at most w, there are at most 2w+1 dif-
ferent ordered pairs of sets (S1, S2). Thus, by testing all possible couples, allm(S, b)
can be constructed in time O(2w). Moreover, an easy induction (see [Cyg+15, Sec-
tion 7.3.1] for details) shows that the value constructed for m(S, b) is correct.

3. Eventually, we have constructed all m(S, br) where br is the edge incident to the
root. Then, G−br = G. Thus, the maximum of m(S, br) among all S is the maximal
weight of an independent set.

Since B contains 2n − 1 edges where n is the number of edges of G, the dynamic
programming algorithm works in time O(2wn).

3.5.4 Irrelevant vertex method

Consider a graph problem P known to be FPT in the branchwidth that we want to
parameterize by another parameter k.

If we could bound the branchwidth by k, then we would immediately have a FPT
algorithm in k. Nonetheless, most of the time, it is impossible to limit the branchwidth
by k.

Thus, instead, we replace an instance by an equivalent one with a small branch
decomposition to then use the algorithm FPT in the branchwidth. A way to do so is the
irrelevant vertex method.

Excluded Grid Theorem The �rst step of any irrelevant vertex method is to apply
a version of the Excluded Grid Theorem.

The Excluded Grid Theorem is a vastly studied meta theorem that ensures that any
graph either have small branchwidth or contains a big grid as a minor. The Excluded
Grid Theorem states:

Theorem 3.5.5. [RS86a] There exists a function f such that for any integer g > 1, any
graph of branchwidth at least f(g) contains a g × g grid of size g as a minor.
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The two main goals in the study of the Excluded Grid Theorem are either to �nd the
smallest theoretical f possible such that the property holds or to construct an algorithm
that given a graph constructs either a branch decomposition of width at most f(g) or
a g × g grid minor for the smallest f possible. For example, [Chu15] showed that it is
possible to �nd a function f = O(g37) that applies to all graphs and gave a probabilistic
algorithm for the same f that returns either a branch decomposition of size f(g) or a
grid minor of size g working in expected polynomial time.

Principle of the irrelevant vertex method First, we use an FPT algorithm of
Excluded Grid Theorem for some function f .

We consider an integer g(k) large enough. Let G be an input graph.
We use the Excluded Grid Theorem to �nd either a branch decomposition of width

at most f(g(k)) or a grid of size g(k). Then, in the second case, we �nd a vertex v in
the grid such that the problem is equivalent when replacing G by G \ v. Then, v is said
to be an irrelevant vertex.

When obtaining an irrelevant vertex, we remove it and repeat the process until we
obtain an instance with a branch decomposition of size at most f(g(k)).

This altogether gives an FPT algorithm to obtain an equivalent input of small branch-
width.

Example: PLANAR ODD CYCLE PACKING We will give an example of irrel-
evant vertex method on PLANAR ODD CYCLE PACKING. First, we de�ne PLANAR
ODD CYCLE PACKING: given a planar graph G and an integer k, decide whether there
exists in G a set of k cycles of odd length not sharing any vertex. We will parameterize
PLANAR ODD CYCLE PACKING with k, the number of desired cycles.

Let A be an algorithm that, for some function f , �nds in a graph either a branch
decomposition of width at most f(k) or a grid minor of size 2

√
k(2k + 1).

Consider an instance (G, k). We want to replace it by an equivalent instance (G′, k)
with a branch decomposition B′ of G′ of width at most f(k). To obtain this, we apply
inductively the following process which is an irrelevant vertex method :

� First, we use A.

� If it returns a branch decomposition B of G of width at most f(k), we can choose
G′ = G and B′ = B.

� Otherwise, we have a wall W ⊆ G of size at least 2
√
k(2k + 1). Then, we can

easily �nd in W , k subwalls W1, . . . ,Wk of size 2(k + 1) that are disjoint from one
another. Let C1, . . . , Ck be the outer cycles of W1, . . . ,Wk. If all are of odd length,
we have k cycles of G of odd length not sharing any vertex. Thus, the answer is
YES.

� Otherwise, let W0 be one of the subwalls with an outer cycle of even length. Then,
we can �nd 2k disjoint cycles C ′1, . . . , C

′
2k inside W0 nested in one another such

that no two vertices of two distinct cycles are adjacent together with a vertex v0
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nested inside all not incident to any cycle. If at least k+1 cycles are of odd length,
then the answer is YES.

� Otherwise, v0 is irrelevant, meaning that G contains k disjoint odd cycles if and
only G \ v0 does too. We refer to [Gol+09, Lemma 4] for a proof of it.

Then, we repetitively apply the previous method until we obtain either the YES
answer or an instance where the branchwidth of the graph is at most f(k).
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Chapter4
Topological embedding problems

Often, simplicial complexes are used as a combinatorial representation of a topologi-
cal space. Thus, the following problem is a widely studied one: Given two simplicial
complexes S and T , determine whether there exists a topological embedding of S on T .

In the following chapters of the thesis we will study a restriction of the previous prob-
lem: Given a graph G and a 2-complex C , determine whether there exists a topological
embedding of G on C

In this chapter, we will present a quick overview of results known for some embedding
problems on simplicial complexes. This includes embeddings into the d-dimensional ball,
since the d-dimensional ball is homeomorphic to the d-dimensional simplicial complex
consisting of a single simplex of dimension d and all its faces. In order to keep this survey
short, we �rst exclusively focus on topological embedding problems in which geometry
plays no role. We then describe problems that have a similar �avor, but which do not
fall exactly into the class of topological embedding problems.

4.1 Topological embeddings on simplicial complexes

4.1.1 Embedding simplicial complexes into the d-ball

One of the main cases where topological embedding problems have been studied is the
case where the target space is the ball of dimension d.

Formally, for any �xed integers k and d, let us de�ne the problem EMBEDk→d:
given a k-dimensional complex C , decide whether C can be embedded in the d-ball.

First, there are two cases where EMBEDk→d is trivial:

� d < k: The (d + 1) simplex cannot be embedded on the d ball and, thus no k-
dimensional complex can be embedded on Rd.

� d ≥ 2k + 1: All k-dimensional complexes are embeddable on Rd. In fact, building
an embedding is easy. Let C be a simplicial complex of dimension k. First, we
can choose any embedding Π of the vertices of C in general position (for every
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i-dimensional a�ne space contains at most i + 1 vertices). Then, extending Π by
mapping each simplex of C to the convex hull of its vertices gives an embedding of
C .

This case applied to d = 3 and k = 1 gives that all 1-dimensional complexes, i.e.
graphs, are embeddable on any 3-dimensional complex.

Otherwise, when d ≥ k ≥ d−1
2 , some but not all k-dimensional complexes can be

embedded in Rd. There are three di�erent cases, each of them is studied with very
di�erent techniques:

� k ≤ d < 4: This is the low dimension case. When applied to k = 1 and d = 2,
EMBED1→2 is graph planarity testing. J.Hopcroft and R.Tarjan [HT74] gives an
algorithm deciding EMBED1→2 in linear time. Moreover, EMBED2→2 is known
to be decidable in polynomial time [MTW09, Appendix A]. Furthermore, both
problems EMBED2→3 and EMBED3→3 are known to be decidable [Mat+14].

�
d
2 ≤ k < 2d−2

3 : This is known as the meta-stable range (which only exists when
d ≥ 4). The meta-stable range is the "easy" non-trivial case as for all couples k, d
of the meta-stable range, EMBEDk→d is decidable in polynomial time [�KV17].

� d ≥ 4 and 2d−2
3 ≤ k ≤ d: Then, the problem is known to beNP-hard. EMBEDk→d

is even known to be undecidable when d ≥ 5 and d ≥ k ≥ d− 1 [MTW09].

Finally, a small remark: The aforementioned papers deal with embeddability on Rd, but
the algorithms immediately extends to the embeddability in the d-ball too.

4.1.2 Embedding graphs on surfaces

Another widely studied case is when the target space is a surface (and thus, without loss
of generality, the source space is a 2-complex). In this section, we restrict ourselves to
graphs while the general case of embedding of 2-complexes on surfaces is described the
next section.

Embedding graphs on surfaces have been quite largely studied. Deciding if a graph
is embeddable on an arbitrary surface is NP-complete [Tho89]. So, in the spirit of
parameterized complexity, one can consider the genus of the surface as a parameter and
hope to �nd e�cient algorithms when the genus is small or �xed. This is indeed the case.
There are three main approaches to attack this problem: the graph minor approach, the
approach by Mohar [Moh99] and the one by Kawarabayashi, Mohar and Reed [KMR08],
which we detail below.

On the one hand, the graph minor approach induces an algorithm working in time
quadratic in the size of the graph to embed it on a �xed surface.

On the other hand, the two other algorithms decide whether a graph G is embeddable
on a surface S are working in time linear in the size of G and at least exponential in
the genus of S . These algorithms are thus FPT in the genus of S while being very
e�cient when S is �xed. Both use the fact that any graph embeddable on a surface is
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embeddable on any surface with greater genus and same orientability. Thus, both papers
are in fact giving the smallest genus of a surface with the wanted orientability on which
the input graph can be embedded.

The graph minor approach A key property of the class of graphs embeddable on a
�xed surface is that it is minor-closed: Given a graph G embeddable on a surface S , all
minors of G are embeddable on S . Due to this, the graph minor theorem by Robertson
and Seymour [RS04] stipulates that, for each surface S , there is a �nite set of graphs
GS such that a graph G is embeddable on S if and only if G does not admit any graph
of GS as a minor. Thus, the graphs of GS are called the forbidden minors of S . Since
deciding whether a �xed graphM is a minor of an input graph G takes quadratic time in
the size of G [KKR12], this leads to a quadratic-time algorithm to decide embeddability
of a graph on a �xed surface.

Overview of the algorithm of [Moh99] For simplicity, we will present an overview
of [Moh99] only on the orientable case: The non-orientable one is handled similarly but
is a bit more technical.

First, a branch of a graph G is either (a) a maximal connected subgraph of G whose
vertices are all of degree one or two, or (b) a vertex of degree 3 or more. Then, for each
triple of integers g, k, n, we de�ne the cellular embedding extension problem (EEP) on
graphs with few branches EEP-CELL(g, k, n):

� Input: a graph G of size at most n, a subgraph H of G composed of at most k
branches such that each connected component of G \H intersects several branches
of H, and a cellular embedding ΠH of H on a surface S of genus g.

� Output:

� Return an embedding Π of G on S such that Π restricted to H is equal to
ΠH when there exists such a Π.

� Return a subgraph H ′ of G containing H with a number of branches bounded
by a function of k and g such that there exists no embedding of H ′ extending
ΠH otherwise.

The following property of EEP-CELL is a key ingredient of the paper that we will reuse
in Chapter 6.

Proposition 4.1.1. There is a function f : N2 → N such that every instance of EEP-
CELL(g, k, n) can be solved in time f(k, g) ·O(n)

Proof. The ideas are presented in [Moh99, p.23-24]
The algorithm �rst reduces the problem to an equivalent instance (G′, H ′,Π′,S )

whereH ′ still satis�es that each connected component ofG\H ′ intersects several branches
of H ′ while also satisfying that the vertices of H ′ contains all vertices of H of degree
di�erent from two (all these are also vertices in H ′ of degree di�erent from two) plus a
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constant number of vertices of degree two in H ′, where this constant number is bounded
from above in terms of the genus of S . For this purpose, [Moh99] relies on another
paper [JMM97]. After achieving this property, the paper reduces the EEP to a constant
number (where the constant depends on g) of �simple� extension problems [Moh99, Sec-
tion 4]. The EEPs are then solved in [Moh99, Theorem 5.4] which relies on several other
papers [JMM07; JM05; Moh06].

The general algorithm starts by constructing a subgraph H0 with a bounded number
of branches such that each connected component of G \H0 intersects several branches of
H0.

Iteratively, it �nds the minimal genus on which H0 is embeddable by trying one by
one surfaces of increasing genus. For each cellular orientable embedding ΠH0 of minimal
genus of H0, it solves EEP-CELL (G,H0,ΠH0). If at least one ΠH0 induces a positive
answer, then it is an embedding of G. Otherwise, let H1 be the union of all subgraphs
returned by the di�erent instances of EEP-CELL considered. It replaces H0 by H1, and
repeats the previous operation until it obtain an embedding of minimal genus of G.

The algorithm works in time at least doubly exponential on the genus of the surface
while linear in the size of G.

Overview of the algorithm of [KMR08]. The approach of [KMR08] is very dif-
ferent from [Moh99] but the strategy for the non-orientable case is also pretty much the
same as the one for the orientable one simply more technical. So, as in Paragraph 4.1.2,
we will also present an overview of [KMR08] only on the orientable case.

The extended abstract [KMR08] provide a completely di�erent strategy that does not
use embedding extension problem and works in time simply exponential in the genus of
the surface. This algorithm uses an irrelevant vertex method to limit the treewidth and
then uses a dynamic programming algorithm to solve the problem when the treewidth is
bounded.

The idea is to construct �rst a certain sequence of graphs G0, G1, . . . , Gb of decreasing
size where G0 is the input graph and Gb is of bounded size and thus easy to embed on
a surface with the minimal genus, where b depends only on the genus targeted. Gi+1

is obtained from Gi by either removing a large independent set or contracting a large
matching. Both transformations induce a reverse transformation giving Gi from Gi+1.

Then, this sequence is used to construct backwards another sequence of graphs
Hb, . . . ,H0 of bounded treewidth such that:

1. Hb = Gb

2. Hi is a subgraph of Gi with the same genus as Gi and bounded treewidth.

3. An embedding of minimal genus of Hi can be constructed from one of Hi+1.

4. An embedding of Gi can be deduced from one of Hi.
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In order to construct Hi from Hi+1, we de�ne �rst an intermediate graph H̃i. H̃i is the
subgraph obtained by restricting the transformation giving Gi from Gi+1 to Hi+1. Then,
there are two cases:

� If H̃i is of genus at least g + 1: it �nds a subgraph of Gi not embeddable on the
surface of genus g.

� If H̃i is of genus at most g: It constructs an irrelevant vertex method that �nds
and removes irrelevant vertices (See Section 3.5.4) of H̃i for the embeddability of
Gi until H̃i is of bounded treewidth. Then, Hi is the �nal H̃i.

For the third point, it gives a method to construct a cellular embedding of minimal
genus of Hi from one of Hi+1 and a branch decomposition of Hi.

Eventually, it shows that Gi have he same genus as Hi and how an embedding of Gi
can be deduced from an embedding of Hi.

Thus, it returns an embedding of G = G0 of minimal genus if this one is smaller than
g.

Unfortunately, [KMR08] is an extended abstract which never materialized into a
full version. While the general strategy is clear, the details are elusive and hard to
check [KP19, Footnotes]. Our algorithm in Chapter 7 uses the same general strategy
for embedding graphs on 2-complexes, and in particular provides a complete proof for
embedding graphs of bounded treewidth (or branchwidth) on surfaces of bounded genus
in linear time.

4.1.3 Embedding 2-complexes on surfaces

Figure 4.1: An example of 3-book with the spine edge in red.

After looking at embedding 1-complexes on surfaces, it is natural to look for embed-
ding of 2-complexes on surfaces. To do so B.Mohar [Moh97] uses the embeddability of
the 1-skeleton of re�nements of the 2-complex we try to embed.
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Figure 4.2: A 2-complex on the left and its barycentric subdivision on the right

First, not all 2-dimensional complexes are embeddable on some surface. For example,
the simplicial complex formed by three triangles sharing an edge known as the 3-book
(See Figure 4.1), is not embeddable on any surface.

On a surface, each point admits a neighborhood homeomorphic to a disk. So, as an
obviously necessary condition, any 2-complex C embeddable on some surface satis�es
that a neighborhood of each vertex of C is embeddable on a disk. Gross and Rosen
[GR81] prove that the condition is su�cient.

In the rest of this section, we will only consider 2-complexes embeddable on some
surface. When considering such a 2-complex C , we can look for the minimal genus of a
surface on which C is embeddable. As for graphs, we can de�ne:

� The orientable genus of C by considering embeddings on orientable surfaces only;

� The non-orientable genus of C by considering embeddings on non-orientable sur-
faces only;

� The Euler genus of C by considering embeddings on both orientable and non-
orientable surfaces.

In the rest of the section we will use the barycentric subdivision of a 2-complex which
is the 2-complex where each edge is subdivided and each triangle is subdivided in 6
triangles See Figure 4.2.

Obviously, if a 2-complex C is embeddable on a surface S , then all barycentric
subdivisions of C and in particular their 1-skeletons (the graph formed by simplices of
dimension one or less of the subdivision) are also embeddable on S . This naturally
raises the question to know if the converse holds: if the 1-skeleton of all subdivisions of
a 2-complex C are embeddable on a surface S then is C embeddable on S ? In this
spirit, Mohar [Moh97] proved the following results:

� Surprisingly, when looking for either the non-orientable or the Euler genus of a
2-complex C we can simply consider the 1-skeleton of the �fth subdivision. Thus,
the minimal non-orientable and the minimal Euler genus of a surface on which C
is embeddable are the same as the one of the 1-skeleton of the �fth barycentric
subdivision of C .
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� For the orientable genus, subdividing a constant number of times does not work; it
is necessary and su�cient to subdivide C Θ(log(g)) times. More precisely, for each
g, Mohar [Moh97] gives a 2-complex C0 not embeddable on the orientable surface of
genus g such that the 1-skeleton of the dlog2(g)eth subdivision of C0 is embeddable
on that surface. Nonetheless, let C be a 2-dimensional complex embeddable on
some orientable surface. Then, C is embeddable on the orientable surface of genus
g if and only if the one skeleton of the (1 + dlog2(g+ 2)e)th barycentric subdivision
of C is too.

The �rst point, combined with an FPT algorithm for embeddability of graphs on
surfaces [KMR08; Moh99], yields an FPT algorithm to decide given a 2-complex C and
a non-orientable surface S whether C is embeddable on S .

Nevertheless, there is no known FPT algorithm deciding whether a 2-complex is
embeddable on an orientable surface.

4.2 Related problems

4.2.1 Problems in the plane

A lot of problems where the target space is the plane that are close to topological em-
bedding have been studied.

Crossing number Instead of considering embeddings, we can consider general position
drawings. A general position drawing of a graph G on the plane is a mapping from G to
the plane where the images of edges are allowed to intersect except that:

� no more than two edges can intersect in any point except at vertices,

� edges do not intersect vertices except at their endpoints,

� the set of points where two edges intersect is �nite.

Given a graph G, its crossing number is the minimal number of crossings (points
where two edges intersect out of their endpoints) of a general position drawing of G on
the plane. This naturally leads to the following algorithmic problem: given a graph G of
size n and an integer k, decide whetherG have crossing number at most k. Kawarabayashi
and Reed [KR07] gave a FPT algorithm solving this problem working in time linear in
the size of G when k is �xed.

Planarity number of a graph As studied by Bienstock and Monma [BM88], we can
also look for the planarity number of a graph G. First, we de�ne the planarity number of
a planar embedding. Let Π be a planar embedding of a connected graph G; the planarity
number of Π is the minimal cardinality of a set F of faces of Π such that all vertices of
G appear in the facial walk of at least one of the faces of F . The planarity number of
G is the minimal planarity number among all planar embeddings of G. Bienstock and
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Monma [BM88] gave an algorithm taking an integer k and a graphG deciding whether the
planarity number of G is at most k and, if it is the case, constructing a planar embedding
Π and a set of faces F of Π realizing the planarity number of G. This algorithm is FPT
in the planarity number of G.

4.2.2 Removing vertices to lower the genus: a generalization of em-

bedding graphs on surfaces

Using a linear time algorithm embedding graphs on surfaces [Moh99; KMR08] as a black
box, Kociumaka and Pilipczuk [KP17] constructs a �xed parameter tractable algorithm
solving a problem a bit more general. Consider a graph G = (V,E), a positive integer k
and a surface S . Then, they gave an algorithm that:

� decides whether there exists a set V0 of at most k vertices of G such that the graph
G− V0 is embeddable on S ;

� when the answer is positive, returns both such a set V0 and an embedding of G\V0.

To achieve this, the article presents an irrelevant vertex method to �nd either:

� A small tree decomposition of G.

� A vertex v such that all solutions for G, k and S are obtained by adding v to one
for G− v, k − 1 and S . Thus, we replace G by G− k and k by k − 1.

Then, �nding a solution for G, k and S is equivalent to �nding one for G−v, k−1
and S by simply adding/removing v from G and the set V0 of a solution. Thus, it
replaces G by G− v and k by k − 1.

� An irrelevant vertex v for the considered problem. Then, G can be replaced by
G− v without loss of generality.

Then, it applies this method until it obtains either k < 0 or a small tree decomposition. In
the �rst case, the answer is negative. In the second case, it gives a dynamic programming
algorithm solving the problem thanks to the tree decomposition.

Our algorithm in Chapter 7 will use the same general strategy of �rst giving an
algorithm that either �nds a small branch decomposition, a subgraph not embeddable
on the target 2-complex, or an irrelevant vertex, and then giving an algorithm of dynamic
programming using the small branch decomposition.

4.2.3 Problems on 2-complexes

Although the embedding problem on 2-complexes itself had not been studied prior to
our work, related problems were considered.
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Finding a sphere in a 2-complex Consider the following problem: given a 2-
dimensional complex C and an integer k, decide whether there exists a set of at most k
triangles S of C such that the 2-complex formed by the triangles of S together with their
faces is homeomorphic to a sphere. Burton, Cabello, Kratsch and Pettersson [Bur+19]
showed that this problem isW [1] hard. This would imply that there is no FPT algorithm
to solve the problem (assuming FPT (W [1]).

Equivalence between 2-complex homeomorphism and graph isomorphism ÓDún-
laing, Watt and Wilkins [DWW00] gave a two-way polynomial time reduction between
the two following problems:

� Graph isomorphism: given two simple graphs G1 and G2, decide whether there
exists a bijective map f between the vertices of G1 and the vertices of G2 such
that there is an edge between two vertices u, v of G1 if and only if there is an edge
between f(u) and f(v).

� 2-complex homeomorphism: given two 2-dimensional complexes C1 and C2, decide
whether there exists a homeomorphism between C1 and C2.

Moreover, graph isomorphism is a well-studied problem in NP that is neither known
to be NP-complete nor solvable in deterministic polynomial time (like the integer prime
factorization problem or the unknotting problem). Thus, the same holds for homeomor-
phism of 2-complexes.

Book embeddings There is one particular kind of embedding of a graph on some 2-
complexes that has been studied: book embeddings. A book with k pages is a 2-complex
formed of k triangles attached together along a single common edge called the spine of
the book (See Figure 4.1 for an example of 3-book). A k page book embedding of a graph
G is an embedding of G on the book with k pages such that all vertices are mapped on the
spine and each edge is mapped to a single triangle. The pagenumber of a graph G is the
minimal k such that there exists a k page book-embedding of G. It is natural to search
to bound the pagenumber of a graph with its other numeric characteristics. For example,
the pagenumber of a graph of treewidth k is at most k+ 1 [GH01], the pagenumber of a
planar graph is most 4 and the pagenumber of a graph of genus g is dominated by

√
g

[Mal94]. There is an abundant literature on the subject of book embedding. We refer to
Dujmovic and Wood [DW04, Tab1] for an overview of results known on book embedding.

Nonetheless, later we will look for a general embedding of graphs on 2-complexes that
di�er from book embeddings in two main ways:

1. Vertices will be allowed to be mapped on any part of the 2-complex and not only
the spine

2. The image of edges will be allowed to intersect the inside of any number of triangles.
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In conclusion, we have seen that many embedding problems involving simplicial com-
plexes have been studied. From the next chapter and onwards, we will focus on the
algorithmic problem studied in this thesis, the embeddability of graphs on 2-dimensional
simplicial complexes. Speci�cally, in the next chapter, we will explain why this problem
is important in this context.



Chapter5
Embeddings on 2-complexes: motivations

and basic tools

We formally de�ne the central problem of the thesis, Embed : given a graph G and a
2-complex C , decide whether there exists a topological embedding of G on C . See Figure
1.4 for an example of an embedding on a 2-complex.

In the thesis, we will give two algorithms to solve this problem:

� One based on a topological reduction to instances of embedding extension prob-
lem on surfaces(see Section 4.1.1) which can be solved by the algorithm of Mohar
[Moh99].

� A FPT algorithm using an irrelevant vertex method to obtain a small branch
decomposition and a dynamic programming algorithm solving Embed on graph
of small branchwidth.

5.1 Motivations

As we shall see, Embed is a natural problem to study. First, it is a very general problem,
since, on the one hand, the class of simplicial complexes of dimension at most two is in
a sense the most general class of topological spaces into which the graph embedding
problem makes sense and, on the other hand, EMBED encompasses several problems
studied earlier in an uni�ed way.

Moreover, the strategies to solve the embedding problem for graphs on surfaces do
not extend easily to the case of 2-complexes.

5.1.1 Generality of the problem

Maximality of dimension 2 for the graph embedding problem. Simplicial com-
plexes allow the representation of essentially any reasonable topological space. Thus, at
�rst sight one could consider that the most general graph embedding problem is that in
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which the target space is an arbitrary simplicial complex. However, all graphs can be
embedded into the 3-simplex (the solid tetrahedron, see Section 4.1.1), and so embed-
dability on simplicial complexes trivially reduces to embeddability on 2-complexes. Thus,
our algorithm actually immediately solves the general problem of embedding graphs on
simplicial complexes.

Reduction from other problems to Embed . The Embed problem uni�es several
problems presented in the previous chapter:

1. The embeddability of graphs on surfaces, since every surface is a 2-complex.

2. The crossing number problem (see Paragraph 4.2.1). Indeed, let k be an integer;
we de�ne the complex Ck as the complex obtained from the sphere by taking k
disjoint open disks and replacing each of them with two isolated segments {u1, v1}
and {u2, v2} such that the endpoints appear along the boundary of the disk in the
cyclic order u1, v1, u2, v2. See Figure 5.1 on the left for an example for k = 3.
Then, a graph G is embeddable on Ck if and only if its crossing number is at most
k. Moreover, the same construction can be applied on a surface S other than the
sphere to obtain a complex such that a graph is embeddable on it if and only if it is
embeddable on S with at most k crossings. Thus, the Embed problem generalizes
the crossing number problem on arbitrary surfaces.

Figure 5.1: On the left: the 2-complex constructed for the crossing number problem for
k = 3. On the right: the 2-complex and the graph constructed for the planarity number
problem for k = 3

3. The planarity number of a graph (see Paragraph 4.2.1). Let k be an integer. We
will de�ne a complex Ck and, for each input graph G, a graph G′ such that G′ is
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embeddable on Ck if and only if G has planarity number at most k. Let K be a
2-connected graph (for all vertices v of K, K − v is connected) of genus 2k and Sk

a surface of Euler genus 2k on which K is embeddable.

First, we de�ne the complex Ck (See Figure 5.1 on the right for an example for
k = 3). Let S be a sphere, p1, . . . pk be k distinct points of S and q a point of Sk.
Let S ′ be the complex obtained by identifying all points p1, . . . , pk into a single
point p. Finally, let Ck be the complex formed by S ′, Sk and one isolated segment
ε between p and q.

We also de�ne, for each graph G, the graph G′ obtained from G and K by adding a
vertex v0 connected to all vertices of G and an edge e between v0 and an arbitrary
vertex v′ of K. Moreover, later we will de�ne G′′ as the subgraph of G′ induced by
G and v0.

Then, we have the following lemma:

Lemma 5.1.1. G have planarity number at most k if and only if G′ is embeddable
on Ck.

This lemma, together with our algorithm of Chapter 7, allows to solve the planarity
number problem with input a graph of size n and a target planarity number k in
time 2O(kc1 )nc2 for some constants c1 and c2 while Bienstock and Monma [BM88]
gave an algorithm solving the planarity number problem with the same input in
time O(ck0n) for some other constant c0.

Moreover, a similar construction can be applied on a surface S of genus g other
than the sphere by replacing Sk and K by respectively a surface of genus 2k + g
and a graph of the same genus embeddable on it to obtain an equivalent of the
planarity number for other surfaces than the plane.

Proof of Lemma 5.1.1. First, ifG has planarity number at most k, we can construct
an embedding Π0 on the sphere S where each vertex appears in the facial walk of
at least one face of the set of faces F of size at most k. Without loss of generality,
we can suppose that each face of F contains at least one point among p1, . . . , pk.
When identifying the points p1, . . . , pk, we obtain an embedding Π1 of G on S ′

where all vertices are incident to the face F0 containing p. Then, we embed v0 on
p, all edges between vertices of G and v0 on F0, K on Sk such that v′ is mapped
on q and e on ε. This way, we obtain an embedding of G′ on Ck.

Conversely, let Πk be an embedding of Gk on Ck and Π its restriction to G. First,
since K minus a vertex is connected, the image of K is either included in Sk or
in S ′. Indeed, otherwise there would be two parts of K only connected by at
most one path and thus, by removing one end of this path we would disconnect K.
Moreover, it is easy to see that every graph embeddable on S ′ has genus at most
2g−2 because, intuitively, S ′ can be obtained from the orientable surface of genus
2g−2 by pinching it; see Section 5.2.3 for a similar but more formal reasoning. So,
no graph of genus 2k can be embedded on S ′. So, K is embedded on Sk.
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Then, the image of G′′ either (1) intersects both Sk and S ′, (2) is included in Sk,
(3) or is included in S ′.

Case(1), �rst v0 is mapped on Sk. Otherwise, there would be at least two edges
mapped between S ′ and Sk, one connecting v0 to v′ and one connected v0 to any
vertex of the part of G′′ mapped on Sk, which is impossible since S ′ and Sk are
only connected by ε. For the same reason and since there is an edge between v0

and each vertex of G′′ mapped on S ′, there is at most one vertex u on S ′. Thus,
by mapping {u, v0} and u on Sk on a face incident to v0, we can assume that we
are in the case (2).

Case (2), since Sk is a surface of minimal genus on which K is embeddable, this
embedding is cellular [You63]. Thus, G′′ is mapped on a disk and thus Π restricted
to G is a planar embedding where all vertices of G share a face, the one containing
v0. So G obviously has planarity number 1 ≤ k.
Case (3), e goes through ε since it has one end, v0, in S ′ and one, vk, in Sk. Thus,
by shrinking ε in S ′, we can suppose that v0 is mapped on p0. Then, Π restricted
to G is an embedding such that all vertices are mapped on the boundary of the
face F0 that contains p0. The embedding Π′ of G on S corresponding to the one
of Π where the points p1, . . . , pk are not tied together. Then, Π′ is an embedding of
planarity number at most k. indeed, let F be the set of the faces that contains at
least one point among p1, . . . pk. F obviously contains at most k faces. Moreover,
all vertices of G are incident to at least face of F since in Π these vertices are
incident to the face obtained by identifying points p1, . . . , pk into p0.

Thus, G′ is embeddable on Ck if and only if G have planarity number at most k.

5.1.2 Generality of 2-complexes compared to surfaces

From a topological point of view, 2-complexes are far more general than surfaces. Thus,
as we shall see, some topological problems on 2-complexes become signi�cantly easier to
solve when restricted to surfaces.

First hard problem for complexes: homeomorphism. As seen in Section 3.4.3,
two surfaces are homeomorphic if and only if they have the same genus and orientability.
Moreover, both the genus and the orientability of a surface can be deduced in linear time
from a cellular embedding Π on it.First, the genus can be deduced from Π through the
Euler's formula. Moreover, the orientability can be deduced from Π through a traversal
of its dual graph.

On the other hand, as seen in Paragraph 4.2.3, deciding whether two complexes
are homeomorphic is in NP but neither known to be NP-complete nor decidable in
deterministic polynomial time.

Thus, deciding whether two 2-complexes are homeomorphic is assumed to be harder
than deciding whether two surfaces are homeomorphic.
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a) b) c) d)

Figure 5.2: 2-complexes and minor closure. a) The target complex: a sphere with one
isolated segment. b) A graph G0. c) A graph H0 obtained from G0 by contracting the
blue edge. d) An embedding of G0 on C0. However, H0 is not embeddable on C0 since,
for each edge e of H0, H0 − e is not planar.

Second hard problem for complexes: contractibility of a closed curve. The
contractibility problem CONTRACT is de�ned as follows: Given a topological space X
and a closed curve ` in X, is ` contractible?

The word problem WORD is de�ned as follows: Given a group de�ned by its �nitely
many generators and their �nitely many relations, and an element w of the group de�ned
as a word in the generators and their inverses, is w equal to the unit element of the group?
For example, consider the group with generators a and b with the relation rules a2b2 = 1
and b3 = b−1a−1. Is the group element a−4b3ab−1 equal to 1?

On one hand, F.Lazarus and J.Rivaud [LR12] showed that the contractibility problem
restricted to surfaces can be decided in linear time. On the other hand, W.Haken[Hak73]
gives a reduction from WORD to CONTRACT restricted to 2-complexes. Moreover,
W.Boone [Boo59] showed that WORD is undecidable. Thus, CONTRACT restricted
to 2-complexes is undecidable.

Thus CONTRACT is signi�cantly harder on 2-complexes than on surfaces.

5.1.3 The embedding problem: graph minor approach

The set of graphs embeddable on a surface is minor-closed. This leads to an algorithm
to decide the embeddability of graphs on surfaces (See Section 4.1.2).

In contrast, the set of graphs embeddable on a complex is not always minor-closed.
See Figure 5.2 for an example. This implies that the same approach does not extend to
2-complexes and that Robertson-Seymour theory cannot be applied directly.

Nevertheless, the following weaker property holds. For any given 2-complex C either:

� All graphs are embeddable on C when C contains a 3-book (see Section 5.2.1)

� There is a surface S such that any graph embeddable on C is also embeddable
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Figure 5.3: Illustration of the proof of Proposition 5.2.1. Left: The drawing of the
graph G and the dotted curve c. Right: The construction of the 3-book and the modi�-
cation of the drawing.

on S (see Section 5.2.3). Then, if K is a forbidden minor of S then any graph
admitting K as a minor is not embeddable on C .

5.2 Basic tools

In this section, we will present some basic structures on 2-complexes that will be useful
in the study of Embed .

5.2.1 3-books

A 3-book is the 2-complex formed of three triangles incident to one same edge. First, we
show the following property:

Proposition 5.2.1. All graphs are embeddable on a complex containing a 3-book.

Proof. Let G be a graph. We �rst draw G, possibly with crossings, in general position in
the interior of a closed disk D. Let c be a simple curve in D with endpoints on ∂D the
frontier of D and passing through all crossing points of the drawing of G. By perturbing
c, we can ensure that, in the neighborhood of each crossing point of that drawing, c
coincides with the image of one of the two edges involved in the crossing. See Figure 5.3,
left.

Let D′ be a closed disk disjoint from D. We attach D′ to D by identifying c with a
part of the boundary of D′ and obtain a complex homeomorphic to a 3-book. Now, in
the neighborhood of each crossing of the drawing of G, we push inside D′ the part of the
edge coinciding with c, keeping its endpoints �xed. See Figure 5.3, right. This removes
the crossings.

So G embeds in the topological representation of a 3-book. Thus, G embeds on C
since C contains a 3-book.

All graphs being embeddable on a complex containing a 3-book, in the rest of the
thesis we will only consider complexes containing no 3-book.
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5.2.2 Structures on vertices of 2-complexes without 3-books

First, a vertex incident to no edge is an isolated point and an edge incident to no triangles
is an isolated segment.

Link of a vertex Let C be a 2-complex without 3-book and p a vertex of C .
Intuitively, the link of p is the graph forming the frontier separating it from the rest

of the complex. Formally:

De�nition 5.2.2. The link of p (in C ) is the graph (V,E) where:

� V is the set of vertices u such that {p, u} is an edge of C .

� E is the set of edges {u, v} such that {p, u, v} is a triangle of C .

The link of a vertex will only be used to de�ne the following notion of link component
of a vertex.

Link components of a vertex Let C be a 2-complex without 3-book and p a vertex
of C .

Intuitively, a link component of p is the part of C comprised between p and a con-
nected component of the link of p. Formally:

De�nition 5.2.3. Let C ′ be a subcomplex of C . Then, C ′ is a link component of p if it
exists a connected component (V0, E0) of the link of p such that:

� The vertices of C ′ are V0 ∪ {p}.

� The edges of C are E0 ∪
{
{p, q} | q ∈ V0

}
.

� The triangles of C are
{
{p, q, r} | {q, r} ∈ E0

}
.

We can see that any vertex u of the link p of degree k correspond to an edge {p, u}
incident to k triangles of C . So, since the C contains no 3-book, all vertices of the link
of p have degree at most two. Thus, a connected component of the link of p can have
three forms: a single vertex, a cycle, or a simple path with two distinct endpoints. Let
Cp be a link component of p. There are three possibilities for the nature of Cp depending
on the type of connected component of the link associated with it. In each case we will
present the shape of Cp:

� The link corresponding to Cp is a single vertex. Then, the corresponding link
component is an isolated segment and its topological representation is as a simple
curve.

� The link corresponding to Cp is a cycle. Then Cp is a cone and its topological
representation is homeomorphic to a closed disk with p inside.

� The link corresponding to Cp is a simple path with two distinct endpoints. Then
Cp is a corner and its topological representation is homeomorphic to a closed disk
with p on the boundary.
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Figure 5.4: On the left: the complex C of Figure 1.4 with 5 singular points, numbered
from 1 to 5, and 2 isolated segments (one between 3 and 4 and one between 1 and 2)
where the cones are in green and the corners in yellow. On the right: A supersurface of C
where spheres and cylinders replacing respectively singular points and isolated segments
of C are respectively in red and green.

Singular points Intuitively, a singular point is a vertex where the complex is not
locally a surface.

Formally, we de�ne a singular point as follows:

De�nition 5.2.4. Let C be a complex and p a vertex of C . Then, p is a singular point
if either p is incident to no triangle or there is several link components of p (the link of p
is not connected). Otherwise, when p is not a singular point, we say that p is a regular
point

Surfaces, possibly disconnected, possibly with boundaries, are exactly 2-complexes
without singular points.

Lemma 5.2.5. Let C be a 2-complex containing no 3-book. Then, C is a surface, possibly
disconnected, possibly with boundaries, if and only if it contains no singular points.

Proof. Let C be a 2-complex containing neither a singular point nor a 3-book. First,
C contains no isolated segment. Otherwise, let p and q be the endpoints of an isolated
segment. Then, q is a vertex of degree 0 of the link of p. So, if the link of p contains
at least 2 vertices, its link is not connected. If the link of p contains only q, p is not
incident to any other edge and thus not incident to any triangle. Thus, in both case, p
is a singular point.
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Then, we will show that any point of C have a neighborhood homeomorphic to a
disk.

First, let p be a vertex of C . The link of p is connected. Thus, p have only one
link component Cp. Moreover, Cp is either a corner component in which case its regular
neighborhood is homeomorphic to a half-disk or a disk component in which case its
regular neighborhood is homeomorphic to a disk (it cannot be an isolated segment). So,
if C contains no singular points, all vertices of C have a neighborhood homeomorphic to
either a disk or a half-disk

Moreover, any point of an edge incident to one or two triangles admits a neigh-
borhood homeomorphic to respectively a half-disk or a disk. Thus, since C contains
neither a 3-book nor an isolated segment, all points of an edge of C have a neighborhood
homeomorphic to a disk.

Furthermore, a point inside a triangle admits the triangle as a neighborhood homeo-
morphic to a disk.

Thus, if C contains neither a singular point nor a 3-book, then all points of C admit
a neighborhood homeomorphic to either a disk or a half-disk and thus is a surface .

Conversely, let p be a vertex of a surface possibly disconnected, possibly with bound-
ary S. Then, p admits a neighborhood N homeomorphic to either a disk or a half-disk.
First, in both case, N intersects at least one triangle which is obviously incident to p. N
intersecting all triangles and edges incident go p, we can see that the link of p is either
a simple path when N is a half disk or a cycle when N is homeomorphic to a disk. In
both cases, the link of p is connected. Thus, p is not a singular point.

5.2.3 Supersurface

Let C be a 2-complex containing no 3-book. We de�ne a surface possibly disconnected,
possibly with boundary called a supersurface of C such that all graphs embeddable on
C are also embeddable on its supersurface. Intuitively, the supersurface is the surface
obtained from the complex by thickening all isolated segments and all singular points.

See Figure 5.4 for an example of supersurface.
Formally, a supersurface is de�ned as follows:
First, we replace every isolated vertex of C with a sphere and every isolated segment

of C with a cylinder. Then, for every singular point p, we do the following. We remove
a small neighborhood of p. We create a sphere with k boundary components, where k is
the number of link components at p. Finally, we attach a link component to each of the
k boundary components of the sphere:

� for each link component that was a cone, a small neighborhood of p was removed,
with boundary a circle; we attach that circle bijectively to a boundary component
of the sphere;

� for each link component that was a corner, a small neighborhood of p was re-
moved, with boundary a segment; we attach that segment to a part of a boundary
component of the sphere;
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� for each link component that was an isolated segment, the isolated segment was
replaced with a cylinder; we attach the corresponding boundary component of that
cylinder bijectively to a boundary component of the sphere.

(Remark: There exist several surfaces that can be obtained this way depending on
the orientations chosen for the paths and cycles we glue together.)

A supersurface of a 2-complex have the following property, the proof of which should
be intuitively clear.

Proposition 5.2.6. All graphs embeddable on a 2-dimensional complex C are also em-
beddable on S , a supersurface of C .

Proof. Consider an embedding of a graph G on C . It is not hard to transform that
embedding into an embedding of G on S : Each cylinder replacing an isolated segment
is used only along a single path connecting its two boundary components; if a singular
point p is used by the embedding of G on C , we can locally modify the embedding to
accommodate the local change from C to S at p (see again Figure 5.4).

Thus, all graphs embeddable on C are also embeddable on S .

In particular, the graphs embeddable on a �xed 2-complex have bounded genus.



Chapter6
Embedding graphs on 2-complexes: a �rst

algorithm

The contents of this chapter, written jointly with Éric Colin de Verdière and Bojan
Mohar, appeared in Proceedings of the34th International Symposium on Computational
Geometry(SoCG 2018)[CMM18].

6.1 Preliminaries

6.1.1 Result of this chapter

In this chapter we study the EMBED problem: given a graph G and a 2-complex C ,
decide whether there exists an embedding of G on C . We present a XP algorithm with
parameter the input complex (meaning that the algorithm works in polynomial time
when the input complex is �xed) deciding EMBED: given a graph G and a 2-complex
C , decide whether there exists an embedding of G on C . Simultaneously, we will also
prove that the problem Embed is in NP. Formally, the two results of this chapter are
the following:

Theorem 6.1.1. The problem Embed is NP-complete.

Theorem 6.1.2. The problem Embed can be solved in time f(c) ·nO(c), where n is the
number of edges and vertices of the input graph, c is the number of simplices and f is
some computable function of c.

As for Theorem 6.1.1, it is straightforward that the problem is NP-hard (as the case
where C is a surface is already NP-hard); the interesting part is to provide a certi�cate
checkable in polynomial time when an embedding exists. Note that Theorem 6.1.2 shows
that, for every �xed complex C , the problem of deciding whether an input graph embeds
into C is polynomial-time solvable. Actually, our algorithm is explicit, in the sense that,
if there exists an embedding of G on C , we can provide some representation of such
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an embedding (in contrast to various results in the theory of graph minors, where the
existence of an embedding can be obtained without leading to an explicit construction).
(In the rest of the chapter, we use the parameters n and c whenever we need to refer
to the input size. Moreover, to avoid to confound the 1-skeleton of C with G, when
necessary, we will refer to the vertices and edges of C as respectively nodes and arcs)

6.1.2 Strategy of the proof and organization of the chapter

First, recall that every graph is embeddable on a 3-book (Section 5.2.1). So, without
loss of generality,in this chapter we will assume that the input 2-complex C contains no
3-book.

The idea of the algorithm is to progressively reduce the problem to simpler problems.
Thus, we reduce Embed to embedding extension problems (EEP), similar to the Em-
bed problem except that an embedding of a subgraph H of the input graph G is already
speci�ed. In Section 6.2, we reduce Embed to EEPs on a pure 2-complex (a 2-complex
without isolated segments). In Section 6.3, we further reduce it to EEPs on a surface.
In Section 6.4, we reduce it to EEPs on a surface in which every face of the subgraph H
is a disk. Finally, in Section 6.5, we show how to solve EEPs of the latter type using a
key component in an algorithm by B.Mohar [Moh99] to decide embeddability of a graph
on a surface.

6.1.3 Embedding extension problems and reductions

An embedding extension problem (EEP) is a decision problem which asks if an em-
bedding of a subgraph can be extended to an embedding of the whole graph in the same
complex C . Formally, we will parameterize it with the size of the graph, the size of the
complex C and with a third parameter which will describe the "topological size" of the
pre-embedded subgraph. For the latter one we need a concept of a branch.

Let H be a graph. A simple path P with vertices u1u2 . . . uk or a cycle C with
vertices u1u2 . . . uk−1u1 (k ≥ 2) in H is a branch of H if degH(u1) 6= 2, degH(uk) 6= 2,
and degH(ui) = 2 for every i = 2, . . . , k−1. If H has a component isomorphic to a cycle,
we consider such a component as a branch as well. Under this convention we treat an
isolated vertex of H as a branch as well. Then every graph is the edge-disjoint union of
its branches.
EEP(n,m, c):
Input: A graph G with at most n vertices and edges, a subgraph H of G with at most
m branches, and an embedding Π of H into a 2-complex C with at most c simplices.
Question: Does G have an embedding into C whose restriction to H is Π?

To be precise, we will have to explain how we represent the embedding Π, but this will
vary throughout the proof, and we will be more precise about this in subsequent sections.
Let us simply remark that, since the complexity of our algorithm is a polynomial of
large degree (depending on the complex C ) in the size of the input graph, the choice
of representation is not very important, because converting between any two reasonable
representations is possible in polynomial time.
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We will reduce our original problem to more and more specialized EEPs. We will
use the word "reduce" in a somewhat sloppy sense: A decision problem P reduces to k
instances of the decision problem P ′ if solving these k instances of P ′ allows to solve the
instance of P in time O(k).

6.2 Reduction to EEPs on a pure 2-complex

Our �rst task is to reduce the problem Embed to a problem on a pure 2-dimensional
complex. More precisely, let EEP-Sing be the problem EEP, restricted to instances
(G,H,Π,C ) where: C is a pure 2-complex containing no 3-books; H is a set of vertices
of G; and Π is an injective map from V (H) to the nodes of C such that Π(H) contains
all singular points of C . In this section, we prove the following result.

Proposition 6.2.1. Any instance of Embed (n, c) reduces to (cn)O(c) instances of
EEP-Sing(cn, c,O(c)).

First, a de�nition. Consider a map f : P → V (G)∪{ε}, where P is a set of nodes in C
containing all singular points of C . We say that an embedding Γ of G in C respects f
if, for each p ∈ P , the following holds: If f(p) = ε, then p is not in the image of Γ;
otherwise, Γ(f(p)) = p.

In this section, we will need the following intermediate problem:
Embed-Resp(n,m, c):
Input: A graph G with at most n vertices and edges, a 2-complex C (not necessarily
pure) with at most c simplices that contains no 3-books, and a map f as above with
domain of size at most m.
Question: Does G have an embedding into C respecting f?

Lemma 6.2.2. Any instance of Embed (n, c) reduces to (O(cn))c instances of
Embed-Resp(cn, c, c).

Proof. By Proposition 5.2.1, we can without loss of generality assume that C contains
no 3-books. Let G′ be the graph obtained from G by subdividing each edge k times,
where k ≤ c is the number of singular points of C . We claim that G has an embedding
into C if and only if G′ has an embedding Γ′ into C such that each singular point of C
in the image of Γ′ is the image of a vertex of G′.

Indeed, assume that G has an embedding Γ on C . Each time an edge of G is mapped,
under Γ, to pass through a singular point p of C , we subdivide this edge and map this
new vertex to p; the image of the embedding is unchanged. This ensures that only
vertices are mapped to singular points. Moreover, there were at most k subdivisions,
one per singular point. So, by further subdividing the edges until each original edge
is subdivided k times, we obtain an embedding of G′ to C such that only vertices are
mapped on singular points. The reverse implication is obvious: If G′ has an embedding
into C , then so has G. This proves the claim.

To conclude, for each map from the set of singular vertices of C to V (G′) ∪ {ε},
we solve the problem whether G′ has an embedding on C respecting f . The graph G
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embeds on C if and only if the outcome is positive for at least one such map f . By
construction, there are at most (kn+ 1)k = (O(cn))c such maps, because V (G′) has size
at most kn.

Lemma 6.2.3. Embed-Resp(n,m, c) reduces to EEP-Sing(n,m,O(c)).

Proof. Formally, we describe a set of transformations on C , G, and f . The invariant is
that they preserve the existence or non-existence of an embedding of G into C respect-
ing f .

Step 1. We start by dissolving all degree-two vertices of G that are not in the
image of f . (By dissolving a degree-two vertex v, incident to edges vv1 and vv2, we
mean removing v and replacing vv1 and vv2 with a single edge v1v2.) It is clear that the
original graph G has an embedding in C respecting f if and only if the new graph (still
called G) has an embedding in C respecting f .

Step 2. If a singular point is not used, then we can remove it without a�ecting
the embeddability of G. However, removing a vertex from a 2-complex does not yield a
2-complex. We thus de�ne a 2-complex that has the same properties. Let p be a singular
point of a 2-complex C . Let T be the set of triangles and segments of C incident with p,
uniquely partitioned into T1, . . . , Tk, where each Ti is either a cone, a corner, or an isolated
segment. The withdrawal of p from C is the complex obtained by doing the following
operation for each i = 1, . . . , k: We �rst create a new node pi, and then replace, in each
triangle and edge of Ti, the node p by pi.

For every singular point p of C such that f(p) = ε and incident to at least two
segments, we withdraw p from C . For each created node pi, we let f(pi) = ε. The
fact that G embeds, or not, on C respecting f is preserved: Indeed, if G embeds on the
original complex respecting f , then this corresponds to an embedding on the complex
obtained by withdrawing p, and avoiding p1, . . . , pk, thus respecting f ; conversely, if G
embeds on the complex obtained by withdrawing p, respecting f , then it avoids the pis,
and, after identifying together the points pi, 1 ≤ i ≤ k, to a single point p, this embedding
avoids p, and thus respects f .

Step 3. At this point, every singular point p with f(p) = ε is incident to exactly
one segment, and to no triangle. For each isolated segment pq of C such that u := f(p)
and v := f(q) are both di�erent from ε, and G contains an edge uv connecting u and v,
we remove uv from G and remove pq from C . We need to prove that this operation does
not a�ect the (non-)existence of an embedding of G respecting f . First, assume that,
initially, there was an embedding Γ of G on C respecting f ; then either segment pq is used
by uv, in which case clearly there is still an embedding after this operation, or edge uv
does not use segment pq at all, in which case we can �rst modify Γ by embedding edge uv
on segment pq and by moving the edges on pq on the space where uv was before, so we
are now in the previous case. Conversely, if after this operation G has an embedding
on C respecting f , trivially it is also the case before.

Step 4. For each isolated segment pq of C such that u := f(p) and v := f(q) are
both di�erent from ε, but G contains no edge connecting u and v, we do the following.
In C , we remove pq and add a new segment p′q′ where p′ and q′ are new nodes; we also
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extend f by letting f(p′) = f(q′) = ε. Finally, if G contains at least one edge of the
form ux, where x has degree one and is not in the image of f , we remove a single such
edge; similarly, if it contains at least one edge of the form vy, where y has degree one and
is not in the image of f , we remove a single such edge. This operation does not a�ect
our invariant, for similar reasons; for example, if initially there was an embedding of G
respecting f , then segment uv can only contain edges of G that are themselves connected
components of G, which we can re-embed on the new segment p′q′, or edges of the form
ux or vy, where x and y have degree one and are not in the image of f .

Step 5. For each isolated segment pq where u := f(p) is di�erent from ε but
f(q) = ε, we remove pq from C and add a new segment p′q′ where p′ and q′ are new
nodes; we also extend f by letting f(p′) = f(q′) = ε. Finally, if G contains at least one
edge of the form ux, where x has degree one and not in the image of f , we remove a
single such edge. The invariant is preserved, for reasons similar to the previous case.

Step 6. Now, every segment of the complex (still called C ) is incident to one or two
triangles, except perhaps some segments that are themselves connected components of C
and whose endpoints are not in the domain of f . If there is at least one such segment,
we remove all of them from C , and remove all edges uv from G that are themselves
connected components of G and such that u and v are not in the image of f ; as above,
this does not a�ect whether G embeds into C respecting f .

Step 7. Finally, for each node p of C incident to no segment, such that u := f(p) is
di�erent from ε, we do the following: If u has degree zero, we remove p and u; otherwise,
we immediately return that G does not embed into C respecting f . For each node p of C
that is incident to no segment and such that f(p) = ε, we remove p, and remove a single
degree-zero vertex of G not in the image of f , if one exists.

Conclusion. Now, C has no node that is itself a connected component; each of its
segments is incident to one or two triangles. Also, f maps each singular point of C to a
vertex of G. It may map some other nodes of C to ε, but such nodes are non-singular
and, if an embedding uses them, a slight perturbation will avoid them, so we can remove
the nodes p such that f(p) = ε from the domain of f without a�ecting the result. Now,
we have an EEP as speci�ed in the statement of Proposition 6.2.1.

Finally, it is easy to check that, in each of the seven steps above, the numbers of
vertices and edges of G do not increase, and the number of simplices of C increase by
at most a multiplicative constant. Moreover, the domain of f also does not increase (it
increases when we withdraw singular points, but the images of the new nodes are ε, and
such nodes are later removed from the domain of f).

Proof of Proposition 6.2.1. It follows immediately from Lemmas 6.2.2 and 6.2.3.

6.3 Reduction to an EEP on a possibly disconnected surface

The previous section led us to an embedding extension problem in a pure 2-complex
without 3-books where the images of some vertices are predetermined. Now, we show
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that solving such an EEP amounts to solving another EEP in which the complex is a
surface.

Let EEP-Surf be the problem EEP, restricted to instances where the input com-
plex is (homeomorphic to) a possibly disconnected triangulated surface without boundary
(which we denote by S instead of C , for clarity). To represent the embedding Π in such
an EEP instance (G,H,Π,S ), it will be convenient to use the fact that, in all our con-
structions below, the image of every connected component of H under Π will intersect
the 1-skeleton of S at least once, but only in a �nite number of points. (Note that H
may use some nodes of S .) Consider the overlay of the triangulation of S and of Π,
the union of the 1-skeleton of S and of the image of Π; this overlay is the image of a
graph on S ; each of its edges is either a piece of the image of an edge of H or a piece
of a segment of S ; each of its vertices is the image of a vertex of H and/or a node
of S . By the assumption above on Π, this overlay is cellularly embedded on S , and
we can represent it by its combinatorial map [Lin82; Epp03] (possibly on surfaces with
boundary, since at intermediary steps of our construction we will have to consider such
surfaces).

In this section, we prove the following proposition.

Proposition 6.3.1. Any instance of EEP-Sing(n,m, c) reduces to an instance of EEP-
Surf(O(n+m+ c), O(m+ c), O(c)).

We will �rst reduce the original EEP to an intermediary EEP on a surface with
boundary.

Lemma 6.3.2. Any instance of EEP-Sing(n,m, c) reduces to an instance of EEP(n+
O(c),m+O(c), O(c)) in which the considered 2-complex is a possibly disconnected surface
with boundary.

Proof. The key property that we will use is that, since C is pure and contains no 3-books,
each singular point is incident to cones and corners only.

Figure 6.1 illustrates the proof. Let (G,H,Π,C ) be the instance of EEP-Sing. We
�rst describe the construction of the instance (G′, H ′,Π′,S ) where S is a supersurface
of C (see Section 5.2.3).

We de�ne H ′, G′, and Π′ from H, G, and Π (again, refer to Figure 6.1). Let p be a
singular point of C and vp the vertex of H mapped on p by Π. Let cp be the number
of cones at p and c′p be the number of corners at p. In H (and thus also G), we add a
set Lp of cp + c′p loops with vertex vp. Let qp be a point in the interior of Sp; in Π, we
map vp to qp, and we map these cp+ c′p loops on Sp in such a way that each loop encloses
a di�erent boundary component of Sp (thus, if we cut Sp along these loops, we obtain
cp + c′p annuli and one disk).

Finally, we add to H (and thus also to G) a set Ep of c′p new edges, each connecting
vp to a new vertex. In Π, each new vertex is mapped to the boundary component of Sp
corresponding to a corner, but not on the corresponding arc.

Let us callG′ andH ′ the resulting graphs, and Π′ the resulting embedding ofH ′. Note
that, from the triangulation of C with c simplices, we can easily obtain a triangulation
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Figure 6.1: The modi�cation of singular vertices in the proof of Lemma 6.3.2. We
transform the neighborhood of each singular vertex to make it surface-like. Moreover,
we add to H one loop per cone or corner, and for each corner, we add a vertex and an
edge.

Figure 6.2: In the proof of Lemma 6.3.2, we push some parts of the graph outside Sp
by an ambient isotopy of S that moves a small enough open disk or annulus (in blue),
which is disjoint from Lp and Ep, to a larger part.
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of S with O(c) simplices, and that the image of each edge of H crosses O(1) edges of
this triangulation.

It remains to prove that the two EEPs constructed are equivalent.
Let us �rst prove that any solution Γ of the EEP instance (G,H,Π,C ) yields a

solution of the EEP instance (G′, H ′,Π′,S ). Let p be a singular point of C , and let vp
be the vertex of H mapped to p. We need to modify Γ locally in the neighborhood Np

of p that is removed when transforming C to S . Without loss of generality, up to
an ambient isotopy of Γ that does not move H, we can assume that the image of Γ
intersects Np exactly in straight line segments having p as one endpoint. To build a
solution of (G′, H ′,Π′,S ), we �rst remove the part of Γ inside Np, and we reconnect vp
to each point of the image of Γ lying on the boundary of Np, by simple paths on Sp;
this is certainly possible because each point of Sp not in the image of Ep ∪ Lp can be
connected to vp by a simple path that does not meet Ep ∪ Lp (except at vp). Thus,
(G′, H ′,Π′,S ) has a solution.

Conversely, let Γ′ be a solution of the EEP (G′, H ′,Π′,S ); we build a solution of
(G,H,Π,C ). As above, let qp be a point of S that was obtained from a singular point p
of C . We now show that we can assume that Γ does not enter Sp, except for vp, Ep, Lp,
and the edges in G′ incident to vp.

First, the part of Γ lying in the connected component Dp of Sp minus the image of Lp
that is a disk corresponds to a planar subgraph of G, connected to the rest of G by vp
only; we can re-embed this planar subgraph of G in Sp \Dp. Next, consider a cone at p.
The part of Sp enclosed by the corresponding loop of Lp is an annulus; the situation is as
on Figure 6.2, top, and, by an ambient isotopy of S , we can push the part of Γ that lies
in the annulus outside it, except for those edges touching vp. Finally, consider a corner
at p, and the annulus that is the part of Sp enclosed by the corresponding loop in Lp.
The local picture for this part of Sp is as shown on Figure 6.2, bottom, and similarly by
an ambient isotopy of S we can push the part of Γ on Sp outside it, except for those
edges touching vp.

Now, a solution of (G,H,Π,C ) can be obtained by the following procedure, for each
of the singular points p: (1) Remove the sphere replacing p in S , a supersurface of C ,
together with the image of Γ inside it; (2) add back the regular neighborhood Np of p in
C that was removed when constructing S ; (3) reconnect to p the points on the image
of Γ that lie on the boundary of Np.

We now deduce from the previous EEP the desired EEP on a surface without bound-
ary.

Lemma 6.3.3. Any instance of EEP-Sing(n,m, c) on a possibly disconnected surface
with boundary reduces to an instance of EEP-Surf(n+O(m), O(m), O(c)).

Proof. Figure 6.3 illustrates the proof. Let (G,H,Π,S ) be an instance of an EEP on
a possibly disconnected surface with boundary. We �rst describe the construction of
(G′, H ′,Π′,S ′), the EEP instance on a possibly disconnected surface without boundary.
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Figure 6.3: The removal of boundary components in the proof of Lemma 6.3.3. We attach
a disk to every boundary component of the surface. Moreover, if there is a boundary
component c containing at least one vertex of H, say v1, . . . , vk, we add to H a new
vertex v, mapped inside the corresponding disk, and add, in H, one edge between v and
each of the vis, that edge being mapped inside the disk.

Let S ′ be obtained from S by gluing a disk Db along each boundary component.
Let b be a boundary component of S . If Π maps at least one vertex to b, then we add to
H (and thus also to G) a new vertex vb, which we connect, also by a new edge, to each of
the vertices mapped to b by Π. We extend Π by mapping vertex vb and its incident edges
inside Db. Let us call G′ and H ′ the resulting graphs, and Π′ the resulting embedding
of H ′. For each vertex of H on a boundary component, we added to H and G at most
one vertex and one edge and thus at most two branches. There remains to prove that
these two EEPs are equivalent. Clearly, any solution of (G,H,Π,S ) yields a solution of
(G′, H ′,Π′,S ′). Conversely, let Γ′ be a solution of (G′, H ′,Π′,S ′); we build a solution
of (G,H,Π,S ). Let b be a boundary of S . There are two cases:

� If no vertex of H is mapped to b, then Π′ maps H ′ outside the closure of Db, so,
by an ambient isotopy of Γ′ that does not move H ′, we can push Γ′ outside Db.

� Otherwise, the disk Db is split into sectors by the edges incident to vb; the image
of H ′ by Π′ does not enter the interior of each sector, and intersects the boundary
of a sector exactly along the image of vb and of two edges incident to vb. Thus, by
an ambient isotopy that keeps the image of H ′ �xed, we can push the image of G′

out of each sector.

After doing this for every boundary component b, we obtain that the restriction of Γ′

to G is a solution of (G,H,Π,S ).

Finally:

Proof of Proposition 6.3.1. It su�ces to apply Lemmas 6.3.2 and 6.3.3.
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6.4 Reduction to a cellular EEP on a surface

Let EEP-Cell be the problem EEP, restricted to instances (G,H,Π,S ) where S is
a surface and H is cellularly embedded and intersects each connected component of G.

In this section, we prove the following proposition.

Proposition 6.4.1. Any instance of EEP-Surf(n,m, c) reduces to (n+m+ c)O(m+c)

instances of EEP-Cell(O(n+m+ c), O(m+ c), c).

For the proof of Proposition 6.4.1, which is given in the rest of Section 6.4, it will
be necessary not to store an embedding Π of a graph G on a surface S by its overlay
with the triangulation, as was done in the previous section. Instead, we forget the
triangulation. In other words, we have to store the combinatorial map corresponding
to Π, but taking into account the fact that Π is not necessarily cellular. We need to store,
for each face of the embedding, whether it is orientable or not, and a pointer to an edge
of each of its boundary components (with some orientation information). Such a data
structure is known under the name of extended combinatorial map [CM14, Section 2.2]
(only orientable surfaces were considered there, but the data structure readily extends
to non-orientable surfaces).

6.4.1 Reduction to connected surfaces

We �rst build intermediary EEPs over connected surfaces. Let EEP-Conn be the
problem EEP, restricted to instances (G,H,Π,S ) where S is a surface (connected and
without boundary) and H intersects every connected component of G.

Lemma 6.4.2. Any instance of EEP-Surf(n,m, c) reduces to O(c(m + c)c) instances
of EEP-Conn(n,m+ c, c).

More precisely (and this is a fact that will be useful to prove that Embed is in
NP), any instance of EEP-Surf(n,m, c) is equivalent to the disjunction (OR) of at
most (m+ c)c instances, each of them being the conjunction (AND) of O(c) instances of
EEP-Conn(n,m+ c, c).

Proof. We start by removing the connected components of G that are planar and disjoint
from H. (Testing planarity takes linear time [HT74].) This does not change the solution
of the EEP, because such connected components can be embedded on an arbitrarily
small planar portion of S (provided S is non-empty, but otherwise the original EEP-
Surf instance can be solved trivially). So without loss of generality, every connected
component of G disjoint from H is non-planar. Let V0 be an arbitrary set of vertices, one
per non-planar connected component of G disjoint from H. Without loss of generality,
the number of vertices in V0 is at most the genus of S , and hence at most c, because
otherwise the initial EEP has no solution.

Let H ′ := H ∪ V0; every connected component of G intersects H ′. For each vertex
of V0, we guess the face of Π it has to be embedded in, and extend Π accordingly, by
adding the images of V0 in Π; let Π′ be the resulting embedding of H ′. By the previous
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paragraph, the number of these guesses is at most (m + c)|V0| ≤ (m + c)c. It is clear
that the initial EEP has a solution if and only if one of these EEPs (G,H ′,Π′,S ) has a
solution.

These EEPs are almost of the form announced in the lemma, except that S can be
disconnected. However, in any solution of this EEP, we know the connected component
of S each connected component ofG has to embed in, because each connected component
of G intersects H. We can thus reformulate the EEP as the conjunction of several EEPs,
one per connected component of S . (Of course, we can discard the connected components
of S disjoint from H.)

6.4.2 Simplifying the faces

The strategy for the proof of Proposition 6.4.1 is as follows. For each EEP (G′, H ′,Π′,S ′)
from the previous lemma, we will extend H ′ to make it cellularly embedded in S by
adding either paths connecting two boundary components of a face of H ′, or paths with
endpoints on the same boundary component of a face of H ′ in a way that the genus of
the face decreases. We �rst de�ne an invariant that will allow us to control the number
of steps needed until this process terminates.

Let Π be an embedding of a graph H on a surface S . The cellularity defect of
(H,Π,S ) is the non-negative integer

cd(H,Π,S ) :=
∑

f∈F(Π)

genus(f) +
∑

f∈F(Π)

(number of boundaries of f − 1)

where F(Π) denotes the set of faces of Π.
Some obvious remarks: Π can contain isolated vertices. By convention, each of them

counts as a boundary component of the face of Π it lies in. With this convention, every
face of H has at least one boundary component, except in the very trivial case when G
is empty. This implies that Π is a cellular embedding if and only if cd(H,Π,S ) = 0. We
will also use the following property, usually without mentioning it.

Lemma 6.4.3. Let S be a 2-complex with c simplices that is homeomorphic to a surface
and let H be a graph with m branches that is embedded in S . Then cd(H,Π,S ) < 2m+c.

Proof. Note that the genus of S is smaller than c and hence∑
f∈F(Π)

genus(f) ≤ genus(S ) < c.

Similarly, every boundary component contains a branch of H and each branch of H
participates in at most two boundary components (or twice in the same boundary com-
ponent). Thus, ∑

f∈F(Π)

(number of boundaries of f − 1) ≤ 2m.
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A lollipop in a graph is a closed path of the form p · q · p̄, where p is a simple path
(possibly reduced to a single vertex) and q is a cycle, such that p and q share exactly
one vertex (the end-vertex of p). The basepoint of the lollipop is the initial vertex of p.
The following lemma reduces an EEP to EEPs with a smaller cellularity defect.

Lemma 6.4.4. Any instance (G,H,Π,S ) of EEP-Conn(n,m, c) with positive cellu-
larity defect reduces to O(m2n2) instances (G′, H ′,Π′,S ) of EEP-Conn(n+1,m+3, c)
where cd(H ′,Π′,S ) < cd(H,Π,S ). For each such instance, the graph G′ is obtained
from G by adding exactly one edge, and the subgraph H ′ is obtained from H by adding a
simple path or a lollipop containing the added edge that is embedded under Π′ in one of
the faces of the embedding Π of H in such a way that it does not separate that face.

Admitting Lemma 6.4.4, the proof of Proposition 6.4.1 is straightforward:

Proof of Proposition 6.4.1. We �rst apply Lemma 6.4.2, obtaining O(c(m+c)c) instances
of EEP-Conn(n,m + c, c). To each of these EEPs, we apply recursively Lemma 6.4.4
until we obtain cellular EEPs. The cellularity defect of the initial instance (G,H,Π,S )
is O(m+c), being at most the genus of S plus 2m, because each boundary component of
a face of Π is incident to at least one branch of H (and each branch accounts for at most
two boundary components in this way). Thus, the number of instances of EEP-Cell
at the bottom of the recursion tree is (n + m + c)O(m+c), in each of which the size of
the graph is O(n+m+ c), the pre-embedded subgraph has O(m+ c) branches, and the
surface is the same, thus having at most c simplices.

6.4.3 Proof of Lemma 6.4.4

It remains to prove Lemma 6.4.4. The proof uses standard notions in surface topology,
homotopy, and homology. We refer to textbooks and surveys [MT01; Sti93; Col18]. We
only consider homology with coe�cients in Z/2Z.

We start with some auxiliary de�nitions and lemmas. The reversal of a path w of a
graph is denoted by w̄. The concatenation of two paths w and w′ is denoted by w · w′.
We use the same notation for paths on a surface.

Let f be a surface with a single boundary component and let a be a (possibly non-
simple) arc in f intersecting the boundary component of f exactly at its endpoints. If we
contract the boundary component to a single point, the arc a becomes a closed simple
curve, which can be null-homologous or non-null-homologous, and one-sided or two-sided.
We employ the same adjectives, null-homologous, non-null-homologous, one-sided, and
two-sided, for the arc a.

Lemma 6.4.5. Let f be a surface with boundary, let b be a point in the interior of f ,
and let b1, b2, and b3 be points on the boundary of f . For each i, let pi be a (possibly
non-simple) path connecting bi to b. Let a1 = p2 · p̄3, a2 = p3 · p̄1, and a3 = p1 · p̄2. Let
P be any of the following possible properties of the arcs ai:

� �the endpoints of ai lie on the same boundary component of f �;
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� �ai is null-homologous� (if f has a single boundary component);

� �ai is two-sided� (if f has a single boundary component).

Then the following holds: If both a1 and a2 have property P, then so has a3.

Proof. This is a variant on the 3-path condition from Mohar and Thomassen [MT01,
Section 4.3]. The �rst item is immediate. The second one follows from the fact that
homology is an algebraic condition: The concatenation of two null-homologous paths is
null-homologous, and removing spurs (subpaths of the form q · q̄) from a path does not
a�ect homology. The third one is similar: The concatenation of two two-sided paths is
two-sided, and removing spurs does not a�ect sidedness.

Lemma 6.4.6. Let G be a graph, H a subgraph of G, and Π be an embedding of H
on S . Let K be a subgraph of G that is either a simple path intersecting H exactly at its
endpoints, or a lollipop intersecting H exactly at its basepoint. Let Π′ be an embedding
of H ∪K extending Π such that the embedding of K does not separate the face f of Π
it belongs to. Let f ′ be the face of Π′ corresponding to f . Then cd(H ∪ K,Π′,S ) =
cd(H,Π,S )− 1. Moreover:

1. If K has its endpoints on two distinct boundary components of f , then f ′ has the
same genus and orientability character as f , and one boundary component less
than f .

2. If K has its endpoints on the same boundary component of f , then we have the
following possibilities:

� if K is two-sided, then f ′ has the same orientability characteristic as f ; more-
over, the genus of f ′ equals that of f , minus two, and the number of boundary
components of f ′ equals that of f , plus one;

� if K is one-sided, then f is non-orientable, the genus of f ′ equals that of f
minus one, and the number of boundary components of f ′ equals that of f .
Moreover:

� if the genus of f is one, then f ′ is orientable;

� if the genus of f is odd and at least 3, then f ′ may be either orientable or
non-orientable;

� if the genus of f is even, then f ′ is non-orientable.

Proof. Let us �rst prove that cd(H ∪K,Π′,S ) = cd(H,Π,S )− 1. By the choice of K,
we have that the Euler characteristic of f ′ exceeds that of f exactly by one. Moreover,
the Euler characteristic of f equals two, minus its genus, minus its number of boundary
components, and similarly for f ′. The result on the cellularity defect follows.

The other assertions also follow from Euler characteristic arguments. Speci�cally, we
�rst remark that, in all cases, the claim on the number of boundary components of f ′

is correct (this only depends on whether K connects the same or di�erent boundary
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components of f , and whether it is one- or two-sided). Then the genus follows, as above,
from Euler characteristic arguments. The claims on the orientability use the following
facts: If f is orientable, then so is f ′; if f ′ has genus zero, then it is orientable; if f ′ has
odd genus, then it is non-orientable.

Proof of Lemma 6.4.4. Since cd(H,Π,S ) ≥ 1, there must be a face f of H with either
(1) at least two boundary components, or (2) a single boundary component but positive
genus. We will consider each of these cases separately, but �rst we introduce some
common terminology.

Let F be an arbitrary spanning forest of G − E(H) rooted at V (H). This means
that F is a subgraph of G− E(H) that is a forest with vertex set V (G) such that each
connected component of F contains exactly one vertex of V (H), its root, and each vertex
of G is in F . The algorithm starts by computing an arbitrary such forest F in linear
time.

For each vertex u of G, let r(u) be the unique root in the same connected component
of F as u, and let F (u) be the unique path connecting u to r(u). If u and v are two
vertices of G, let Guv be the graph obtained from G by adding one edge, denoted uv,
connecting u and v. (This may be a parallel edge if u and v were already adjacent in G,
but in such a situation when we talk about edge uv we always mean the new edge.) Let
F (uv) be the unique path in G between u and v that is the concatenation of F (u), edge
uv, and F (v). Thus, F (uv) intersects H precisely at its endpoints. Note that F (uv)
is either a simple path with its ends in H or a lollipop with its basepoint in H (and
otherwise disjoint from H).
Case 1: f has at least two boundary components.

Assume that (G,H,Π,S ) has a solution Γ. We claim that, for some vertices u and v
of G, the embedding Γ extends to an embedding of Guv in which the image of F (uv) lies
in f and connects two distinct boundary components of f .

Indeed, let γ be a curve drawn in f connecting two vertices of H in di�erent boundary
components of f and chosen such that it intersects the boundary of f exactly at its end-
points. We can deform γ so that it intersects Γ only at the images of vertices, and never
in the relative interior of an edge. We can, moreover, assume that γ is simple (except
perhaps that its endpoints may coincide if they join occurrences of the same vertex in
di�erent boundary components of f). Let v1, . . . , vk be the vertices of G encountered
by γ, in this order. We denote by γ[i, j] the segment of γ between vertices vi and vj .
For some i, we have that F (vi) · γ[i, i + 1] · F (vi+1) connects two di�erent boundary
components of f : Otherwise, by induction on i, applying the �rst case of Lemma 6.4.5
to the three paths γ[1, i], F (vi), and γ[i, i+ 1] · F (vi+1), we would have that, for each i,
γ[1, i] ·F (vi) has its endpoints on the same boundary component of f , which is a contra-
diction for i = k (for which the curve is γ). So let i be such that F (vi) ·γ[i, i+1] ·F (vi+1)
connects two di�erent boundary components of f . By letting u = vi and v = vi+1, and
embedding the edge uv as γ[i, i + 1], gives the desired embedding of Guv. This proves
the claim.

By de�nition of Fuv, and since it connects two distinct boundary components of f , it
is actually a path (without repeated vertices) in f . (Its endpoints may coincide on S .)
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The strategy now is to guess the vertices u and v and the way the path F (uv) is drawn
in f , and to solve a set of EEPs (Guv, H ∪ F (uv),Π′,S ) where Π′ is chosen as an
appropriate extension of Π.

Let us �rst assume that f is orientable. One subtlety is that, given u and v, there
can be several essentially di�erent ways of embedding F (uv) inside f , if there is more
than one occurrence of r(u) and r(v) on the boundary of f . So we reduce our EEP to
the following set of EEPs: For each choice of vertices u and v of G, and any occurrences
of r(u) and r(v) on the boundary of f , we consider the EEP (Guv, H ∪ F (uv),Π′,S )
where Π′ extends Π and maps F (uv) to an arbitrary path in f connecting the chosen
occurrences of r(u) and r(v) on the boundary of f .

It is clear that, if one of these new EEPs has a solution, the original EEP has a
solution. Conversely, let us assume that the original EEP (G,H,Π,S ) has a solution;
we now prove that one of these new EEPs has a solution. By our claim above, for some
choice of u and v, some EEP (Guv, H∪F (uv),Π′′,S ) has a solution, for some Π′′ mapping
F (uv) inside f and connecting di�erent boundary components of f . In that mapping,
F (uv) connects two occurrences of r(u) and r(v) inside f . We prove that, for these
choices of occurrences of r(u) and r(v), the corresponding EEP described in the previous
paragraph, (Guv, H ∪ F (uv),Π′,S ), has a solution as well. These two EEPs are the
same except that the path F (uv) may be drawn di�erently in Π′ and Π′′, although they
connect the same occurrences of r(u) and r(v) on the boundary of f . By Lemma 6.4.6,
under Π′, the face f is transformed into a face f ′ that has the same genus and orientability
character as f , but one boundary component less. The same holds, of course, for Π′′.
Moreover, the ordering of the vertices on the boundary components of the new face is the
same in Π′ and Π′′. Thus, there is a homeomorphism h of f that keeps the boundary of f
�xed pointwise and such that h ◦ Π′′|F (uv) = Π′|F (uv). This homeomorphism, extended
to the identity outside f , maps any solution of (Guv, H ∪ F (uv),Π′′,S ) to a solution of
(Guv, H ∪ F (uv),Π′,S ), as desired.

It also follows from Lemma 6.4.6 that the cellularity defect decreases by one. To
conclude this case, we note that the number of new EEPs is O(m2n2): indeed, there are
O(n) possibilities for the choice of each of u and v, and O(m) possibilities for the choice
of each of the occurrence of r(u) and r(v) on the boundary of f .

If f is non-orientable, the same argument works, except that there are two possibili-
ties for the cyclic ordering of the vertices along the new boundary component of the new
face: If we walk along one of the boundary components of f (in an arbitrary direction),
use p, and walk along the other boundary component of f , we do not know in which
direction this second boundary component is visited. So we actually need to consider
two EEPs for each choice of u, v, and occurrences of r(u) and r(v), instead of one. The
rest is unchanged.
Case 2: f has a single boundary component and positive genus. The proof
is similar to Case 1. The main di�erence is that, instead of curves connecting di�erent
boundary components of f , we now consider curves in f that are non-null-homologous.
Another di�erence is that the walks F (uv) may repeat vertices and edges; however, by
construction, Fuv is either a (simple) path or a lollipop.
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Assume that (G,H,Π,S ) has a solution Γ. We claim that, for some vertices u and v
of G (allowing the possibility that u = v), the embedding Γ extends to an embedding of Guv
in which the image of F (uv) lies in f and is non-null-homologous. The proof is similar
in spirit to the corresponding claim in Case 1: We let γ be a non-null-homologous curve
in f intersecting the boundary of f exactly at its endpoints; we can assume similarly
as before that it is simple and intersects only vertices of Γ, in the order v1, . . . , vk. For
some i, F (vi) · γ[i, i + 1] · F [vi+1] must be non-null-homologous, by induction and by
Lemma 6.4.5; this gives an embedding of Guv. Moreover, if f is non-orientable, γ can be
chosen to be one-sided. Then the above proof also shows that the image of F (uv) can
be chosen so that it will be one-sided.

If f is orientable, we reduce the original EEP to the following set of EEPs: For each
choice of vertices u and v of G, and each occurrence of r(u) and r(v) on the boundary of f ,
we consider the EEP (Guv, H∪F (uv),Π′,S ) where Π′ extends Π and embeds F (uv) in f
in such a way that (1) F (uv) is non-null-homologous, and (2) F (uv) connects the chosen
occurrences of r(u) and r(v) on the boundary of f . As before, the only subtlety is to prove
that, if we have two EEPs (Guv, H ∪ F (uv),Π′,S ) and (Guv, H ∪ F (uv),Π′′,S ) such
that F (uv) are not embedded exactly in the same way in Π′ and Π′′, but are non-null-
homologous in f and connect the same occurrences of r(u) and r(v) on the boundary
of f , then these EEPs are equivalent. This follows from Lemma 6.4.6: The image of
F (uv) in Π′ is non-null-homologous, thus non-separating, and thus cuts f into a face
that is an orientable surface with two boundary components and with (Euler) genus that
of f minus two; the same holds in Π′′. Moreover, the ordering of the vertices along the
boundary components of the new face is the same in both Π′ and Π′′. Thus, as in the
previously treated case, there is a homeomorphism h of f that keeps the boundary of f
�xed pointwise and such that h◦Π′′|F (uv) = Π′|F (uv). We complete the proof in the same
way as before. It also follows from Lemma 6.4.6 that the cellularity defect decreases by
one. The number of these new EEPs is O(m2n2).

If f is non-orientable, then we consider only embeddings where the embedding of
F (uv) in f is one-sided (which is possible by Lemma 6.4.5). If the genus of f is even
or equal to 1, then a similar argument can be used: Regardless of the way we embed
F (uv) in a way that (1) it is one-sided and (2) it connects the chosen occurrences r(u)
and r(v) on the boundary of f , cutting f along F (uv) results in a surface whose topology
is uniquely determined, by Lemma 6.4.6. (Note that F (uv) is non-separating because
it is one-sided.) Moreover, the ordering of the vertices along the boundary of the new
face is uniquely determined. The cellularity defect also decreases by one, and the same
argument as above concludes.

Finally, if the genus of f is odd and at least three, then cutting f along F (uv) results
in a surface in which the ordering of the vertices along the single boundary component
is uniquely determined, but this surface, with one boundary component and with genus
that of f minus one, can be orientable or not. Thus, for each choice of vertices u and v
of G, and each occurrence of r(u) and r(v) on the boundary of f , we actually need to
consider two EEPs, one in which F (uv) is embedded as a one-sided curve in a way that
it cuts f into an orientable surface, and one in which F (uv) is embedded in a way that
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it cuts f into a non-orientable surface. The rest of the argument is unchanged.

6.5 Solving a cellular EEP on a surface

Theorem 6.5.1. There is a function f : N2 → N such that every instance of EEP-

Cell(n,m, c) can be solved in time f(m, c) ·O(n).

When solving EEPs on surfaces, a useful property of the embedded subgraph is the
following one. We say that a subgraph H of G has property (E) if H has no local
bridges. This means that every branch of H forms an induced subgraph of G, and for
every connected component of G − V (H), its neighbors in H are not all contained in a
single branch of H. In fact, what we need is a weaker version of property (E) where we
�rst prescribe a subset V0 of vertices of H, where V0 contains all vertices whose degree
in H is di�erent from two, and possibly a constant number of vertices whose degree in H
is equal to two. To each vertex in V0, whose degree is 2 in H, we add an edge to make it
a degree-3 vertex. Let Ĥ be the resulting graph. Then we say that H has property (E)
with respect to V0 if the above property holds with respect to the branches of Ĥ.

Proof of Theorem 6.5.1. This is essentially the main result from [Moh99]. The algorithm
from [Moh99] �rst reduces the problem to an instance (G′, H ′,Π′,S ) such that H ′ sat-
is�es property (E) with respect to a subset V0 that contains all vertices of H of degree
di�erent from two (all these are also vertices in H ′ of degree di�erent from two) plus a
constant number of vertices of degree two in H ′, where this constant number is bounded
from above in terms of the genus of S , which is itself bounded from above by c. For this
purpose, [Moh99] relies on another paper [JMM97]. After achieving this property, the
paper [Moh99] reduces the EEP to a constant number (where the constant depends on c)
of �simple� extension problems [Moh99, Section 4], which are then solved in [Moh99,
Theorem 5.4].

6.6 Proof of Theorems 6.1.1 and 6.1.2

We can �nally prove our main results. First, let us prove that we have an algorithm with
complexity f0(c) · nO(c).

Proof of Theorem 6.1.2. This immediately follows from Propositions 5.2.1, 6.2.1, 6.3.1,
6.4.1, and Theorem 6.5.1. Consider an instance of Embed (n, c). Proposition 5.2.1 allows
to discard the 2-complexes containing a 3-book. Proposition 6.2.1 reduces the problem
to (cn)O(c) instances of EEP-Sing(cn, c,O(c)). Proposition 6.3.1 reduces each such
instance into an instance of EEP-Surf(O(cn), O(c), O(c)). Proposition 6.4.1 reduces
that instance into O(cn)O(c) instances of EEP-Cell(O(cn), O(c), O(c)). Theorem 6.5.1
shows that each such instance can be solved in time f(O(c), O(c)) · O(cn) ≤ f1(c)n for
appropriate function f1 : N→ N.

Finally, we prove that the problem Embed is NP-complete:
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Proof of NP-completeness. Let us �rst prove that the problem is NP-hard. The following
problem Graph-Genus is NP-hard: Given a graph G and an integer g, decide whether
G embeds on the orientable surface of genus g [Tho89]. This almost immediately implies
that Embed is NP-hard; the only subtlety is that in Graph-Genus, g is speci�ed
in binary, thus more compactly than a triangulated surface of genus g (and thus Ω(g)
triangles). To be very precise, given an instance (G, g) of Graph-Genus, we transform
it in polynomial time into an equivalent instance of Embed as follows: If G has at most
g edges, then we transform it into a constant-size positive instance of Embed (every
graph with g edges embeds on the orientable surface of genus g); otherwise, we consider
the instance (G,C ) where C is a 2-complex that is an orientable surface of genus g; since
G has at least g edges, the transformation takes polynomial time in the size of (G, g).

We now prove that the problem Embed belongs to NP. The case where C contains a
3-book is trivial; let us assume that it is not the case. The proof of Proposition 6.3.1 shows
that an Embed instance is positive if and only if at least one instance of EEP-Surf,
among (cn)O(c) of them, is positive. The certi�cate indicates which of these instances is
positive (this requires a polynomial number of bits), together with a certi�cate that this
instance is indeed positive (see below). To check this certi�cate, the algorithm builds
the corresponding instance of EEP-Surf (as done in Section 6.3�this takes polynomial
time) and checks the certi�cate.

Here is a way to provide a certi�cate for an instance of EEP-Surf. In Section 6.4, we
have proved that, if we have an instance (G,H,Π,S ) of EEP-Surf, then there exists a
cellular embedding Γ′ (in the form of a combinatorial map) of a graph G′ containing G,
and such that Γ′ extends Π. Moreover, G′ is obtained from G by adding a number of
edges that is O(c), where c is the size of the original complex. (Recall that in the instance
of EEP-Surf, the size of H is O(c).) The cellular embedding Γ′ of G′, given as a com-
binatorial map, is the certi�cate that (G,H,Π,S ) is positive: Given (G,H,Π,S ) and
this certi�cate, we can in polynomial time check that G′ contains G, that the restriction
of Γ′ to H is indeed Π, and that the combinatorial map of Γ′ is indeed an embedding
on S .



Chapter7
Embedding graphs on 2-complexes: a

�xed-parameter tractable algorithm

The contents of this chapter, written jointly with Éric Colin de Verdière will appear in
29th Annual European Symposium on Algorithms (ESA 2021).

7.1 Overview and structure of the chapter

In this chapter we study the EMBED problem: given a graph G and a 2-complex C ,
decide whether there exists an embedding of G on C . We describe algorithms that are
�xed-parameter tractable in the complexity of the input complex deciding it.

Theorem 7.1.1. One can solve the embeddability problem of graphs into 2-dimensional
simplicial complexes in deterministic f(c)n3 or in expected time 2c

O(1)
nO(1), where c is

the number of simplices of the input 2-complex, n is the number of vertices and edges of
the input graph and f is some computable function of c.

Our strategy is standard in graph algorithms and parameterized complexity (see, e.g.,
the book by Cygan et al. [Cyg+15, Chapter 7]): we show by dynamic programming that
the problem can be solved e�ciently for graphs of bounded branchwidth, and then, using
an irrelevant vertex method, we prove that one can assume without loss of generality
that the input graph G has branchwidth bounded by a polynomial in the size of the
input 2-complex. In the context of surface-embedded graphs, this paradigm has been
used in the extended abstract by Kawarabayashi et al. [KMR08] and in the article by
Kociumaka and Pilipczuk [KP19]; our algorithm takes inspiration from the former, for the
idea of the dynamic programming algorithm, and from the latter, for some arguments
in the irrelevant vertex method. However, handling 2-complexes requires signi�cantly
more e�ort.More precisely, Theorem 7.1.1 follows immediately from the following two
theorems.

79
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Theorem 7.1.2. One can solve the embeddability problem of graphs into two-dimensional
simplicial complexes in time (c+w)O(c+w)n, where c is the number of simplices of the input
2-complex, and where n and w are the number of vertices and edges and the branchwidth
of the input graph, respectively.

Theorem 7.1.3. Let C be a 2-complex with c simplices and G a graph with n vertices
and edges. We can correctly report that G is embeddable on C , or correctly report that
G is not embeddable on C , or compute a subgraph H of G, of branchwidth polynomial in
the number of simplices of C , such that G embeds on C if and only if H does:

� in deterministic time f(c) · n3,

� or in expected polynomial time.

We now present the structure of the chapter, indicating which techniques are used.
We also emphasize which components would be simpler if we were just aiming for an
algorithm for embedding graphs on surfaces.

In Section 7.2, we show that we can make some simple assumptions on the input, and
present data structures for representing 2-complexes and graphs embedded on them. If
we restrict ourselves to the case where the input 2-complex is homeomorphic to a surface,
we essentially consider combinatorial maps of graphs on surfaces, except that the graphs
need not be cellularly embedded (such a data structure is called an extended combinatorial
map [CM14, Section 2.2]). The case of 2-complexes is largely more involved.

In Section 7.3, we show that if our input graph G has an embedding into our input
2-complex C , then there exists an embedding of G on C that is sparse with respect to a
branch decomposition of G. This means that each subgraph of G induced by the leaves
of any subtree of the branch decomposition can be separated from the rest of G using
a graph embedded on C , called partitioning graph, of small complexity. We �nd that
this new structural result, even in the surface case, is interesting and can prove useful in
other contexts. If the target space were a surface, we could assume that G is 3-connected
and has no loop or multiple edges, which would imply (still with some work) that any
embedding of G would be sparse, but again the fact that we consider 2-complexes requires
additional work.

In Section 7.4, we present the dynamic programming algorithm, which either deter-
mines the existence of an embedding of G on C , or shows that no sparse embedding
of G on C exists (and thus no embedding at all, by the previous paragraph). The idea
is to use bottom-up dynamic programming and to consider all regions of the 2-complex
in which the subgraph of G (induced by a subtree of the branch decomposition) can be
embedded. The complexity depends exponentially on the branchwidth of G.

The previous arguments, most notably in Section 7.3, implicitly assumed that, if G
has an embedding into C , it has a proper and cellular embedding, in particular, in which
the faces are homeomorphic to disks. In Section 7.5, we show that we can assume this
property. Essentially, we build all 2-complexes �smaller� than C , such that G embeds
on C if and only if it embeds into (at least) one of these 2-complexes, and moreover if it
is the case, it has an embedding into (at least) one of these 2-complexes that is proper
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and cellular. If C were an orientable surface, we would just consider the surfaces of lower
genus; but here a more sophisticated approach is needed.

The above ingredients allow to prove Theorem 7.1.2 (Section 7.6).
In Section 7.7, we show, using an irrelevant vertex method, that we can assume that G

has branchwidth polynomial in the size of C (Theorem 7.1.3). In a nutshell, if G has large
branchwidth, then using the result by Chekuri and Chuzhoy [CC16], we can compute a
subdivision of a large wall, and then (unless G has large genus and is not embeddable
on C ) compute a large planar part of G containing a large wall; the central vertex of
this wall is irrelevant, in the sense that its removal does not a�ect the embeddability
or non-embeddability of the graph into C ; iterating, we obtain a graph of branchwidth
polynomial in the size of C .

7.2 Preprocessing and data structures on 2-complexes

7.2.1 Some preprocessing

Proposition 7.2.1. To decide the embeddability of a graph G on a 2-complex C , we
can without loss of generality, after a linear-time preprocessing, assume the following
properties on the input:

� C has no 3-book and no connected component that is reduced to a single vertex;

� G has no connected component reduced to a single vertex, and at most one connected
component homeomorphic to a segment.

Proof. It is known that every graph can be embedded into a 3-book (see Section 5.2.1).
So we can without loss of generality assume that C contains no 3-book. We remove all
the isolated vertices of C , and remove the same number of isolated vertices of G (to the
extent possible); this does not a�ect whether G embeds into C . We then replace each
isolated vertex of G with an isolated edge; since C has no more isolated vertex, this does
not a�ect embeddability of G into C . Finally, for the same reason, if G contains at least
two connected components homeomorphic to segments, we replace all these components
with a single edge.

In the rest of this chapter, without loss of generality, we implicitly assume
that C and G satisfy the properties stated in Proposition 7.2.1.

7.2.2 Detached surface

Detaching a singular point p in C consists of the following operation: replace p with
new vertices, one for each cone, corner, and isolated segment at p. Detaching all singular
points of a 2-complex without isolated vertices yields a disjoint union of (1) isolated
segments and (2) a surface, possibly disconnected, possibly with boundary, called the
detached surface (see Figure 7.1, right). The trace of the singular points on the
detached surface are the marked points. Conversely, C can be obtained from a surface
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Figure 7.1: On the left: the complex C of Figure 1.4. On the right: the corresponding
detached surface.

(possibly disconnected, possibly with boundary) and a �nite set of segments by choosing
�nitely many subsets of points and identifying the points in each subset together.

The boundary of C is the closure of the set of points of C that have an open
neighborhood homeomorphic to a closed half-plane. Equivalently, it is the union of the
edges of C incident with a single triangle.

7.2.3 Topological data structure for 2-complexes

We now describe a topological data structure for 2-complexes without 3-book or iso-
lated vertex that is more appropriate for our purposes. It records only the 2-complex
up to homeomorphism, not the combinatorial information given by its simplices. Such a
2-complex C is obtained from a surface S (possibly disconnected, possibly with bound-
ary) and a �nite set S of segments by identifying together �nitely many �nite subsets
of points. Our data structure stores separately the detached surface S , the set S of
isolated segments, and the singular points, and two-way pointers representing incidences
between them. In more detail:

� we store the list of the connected components of the detached surface S , and
for each such component S ′ we store (1) whether it is orientable or not; (2) its
genus; (3) a list of pointers to the singular points in the interior of S ′; (4) for each
boundary component of S ′, a cyclically ordered list of pointers to the singular
points appearing on that boundary component (if S ′ is orientable, the boundary
components must be traversed in an order consistent with an arbitrarily chosen
orientation of S ′);

� we store the list S of isolated segments, and for each of them, two pointers to the
singular points at its endpoints;
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� conversely, to each singular point is attached a list of pointers to the occurrences
of that singular point on the detached surface or as an endpoint of an isolated
segment.

The size of a 2-complex (without 3-book or isolated vertex) is the sum of the number
of isolated segments, the number of connected components of the detached surface, the
total genus of the detached surface, the total number of boundary components of the
detached surface, and the total number of marked points of the detached surface (the
occurrences of the singular points). This is, up to a constant factor, the size of the
topological data structure indicated above, if the genus is stored in unary.

Given a 2-complex C without 3-book or isolated vertex, described by vertices, edges,
and triangles and their incidence relations, we can easily compute a representation of C
in that data structure, in polynomial time: Indeed, by ignoring the incidences created by
vertices, we easily build a triangulation of the surface S (possibly disconnected, possibly
with boundary) and a list of segments S; we then compute the topology of S ; �nally, we
mark the singular points, which are the vertices with several occurrences on S and/or
on S. We remark that the size of the resulting data structure is at most linear in the
number of vertices, edges, and triangles of the 2-complex C , because, by Euler's formula,
any triangulated surface (possibly with boundary) with k simplices has genus O(k) and
a number of boundary components that is O(k). Thus, in the rest of this chapter,
without loss of generality, we implicitly assume that C is given in the form of
the above topological data structure. (Conversely, it is not hard to see that every
2-complex is homeomorphic to a 2-complex whose number of simplices that is linear in
its size, but we will not need this fact.)

We will need the following lemma.

Lemma 7.2.2. Given two 2-complexes C and C ′, given in the topological representation
above, of sizes c and c′ respectively, we can decide whether C and C ′ are homeomorphic
in time (c+ c′)O(c+c′).

Proof. (We remark that this essentially follows from more general results [DWW00]; the
running time of our algorithm might be improvable, but this su�ces for our purposes.)
As a preprocessing, in the topological data structures of C and C ′, we do the following:
whenever a singular point is incident to exactly two isolated segments and is not incident
to the detached surface, we dissolve that singular point, removing it and replacing the
two incident edges with a single one. Clearly, this does not a�ect whether C and C ′ are
homeomorphic.

After this preprocessing, C and C ′ are homeomorphic if and only if their topological
data structures are isomorphic. By this, we mean that there is a bijective correspon-
dence ϕ from the isolated segments, the connected components of the detached surface,
and the boundary components of each connected component of the detached surface
of C to those of C ′ that preserves the genus, the orientability, the incidences, and the
cyclic ordering of the singular points on each boundary component. More precisely, for
the latter point: for each connected component C of the detached surface of C , if C
is orientable, then the lists of singular points appearing on each boundary component
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of C and ϕ(C) are identical up to global reversal of all these cyclic orderings simultane-
ously, corresponding to a change of the orientation of the connected component; if C is
non-orientable, then the lists of singular points appearing on each boundary component
of C and ϕ(C) are identical up to the possible individual reversal of some of these cyclic
orderings. The proof is tedious but straightforward, and the existence of an isomorphism
can obviously be tested in the indicated time.

7.2.4 Proper and cellular graph embeddings on 2-complexes

Let C be a 2-complex with size c, G a graph, and Γ an embedding of G on C . The
embedding Γ is proper if:

� the image of Γ meets the boundary of C only on singular points;

� the vertices of Γ cover the singular points of C .

The embedding Γ is cellular if each face of Γ is an open disk plus possibly some
part of the boundary of C . We emphasize that this de�nition slightly departs from the
standard one. Moreover, we will only consider cellular embeddings that are proper.

Traditional data structures for graphs on surfaces handle graphs embedded cellularly;
rotation systems [MT01] constitute one example of such a data structure. In order to have
e�cient algorithms, re�ned data structures, e.g., with the gem representation [Epp03,
Section 2], are needed. The basic element in the gem representation is the �ag, an
incidence between a vertex, an edge, and a face of the graph. Three involutions allow
to move from each �ag to a nearby �ag. Each �ag contains a pointer to the underlying
vertex, edge, and face.

One can easily extend such data structures to possibly non-cellular embeddings on
surfaces [CM14, Section 2.2]. In this framework, one must store the topology of each
face, which is not necessarily homeomorphic to a disk. Also, a face may have several
boundary components; two-way pointers connect each face to one �ag of each boundary
component (or to an isolated vertex of the graph, if that boundary component is a single
vertex); if a face is orientable and has several boundary components, then these pointers
must induce a consistent orientation of these boundary cycles. It is important to remark
that this data structure also allows to recover the topology of the underlying surface.

Let Γ be a proper graph embedding of a graph G on a 2-complex C (under the
assumptions of Proposition 7.2.1). Let S be the detached surface of C . Because Γ is
proper, it naturally induces an embedding Γ′, of another graph G′, on S ; some vertices
of G located on singular points of C are duplicated in G′, the vertices of G located in the
relative interior of isolated segments are absent from G′, and the edges of G not in G′ are
edges on the isolated segments of C . Our data structure, called combinatorial map,
for storing the graph embedding Γ and the 2-complex C consists of storing (1) the graph
embedding Γ′ on S , as indicated in the previous paragraph, (2) the isolated segments
of C , together with, for each such isolated segment, an ordered list alternating vertices
and edges of Γ (or, instead of an edge, a mark indicating the absence of such an edge in
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the region of the isolated segment between the incident vertices), (3) the identi�cations
of vertices of Γ′ that are needed to recover Γ (and thus implicitly C ).

Isomorphisms between combinatorial maps are de�ned in the obvious way, similar to
the concept of isomorphism between topological data structures: Two combinatorial maps
are isomorphic if there is an isomorphism between the combinatorial maps restricted to
the detached surfaces, isomorphisms between the maps on each isolated segments, and
such that incidences are preserved on the singular points. We can easily test isomorphism
between two combinatorial maps of size k and k′, respectively, in (k + k′)O(k+k′) time.

We will need an algorithm to enumerate all proper embeddings of small graphs on a
given 2-complex. This is achieved in the following lemma.

Lemma 7.2.3. Let C be a 2-complex of size c and k an integer. We can enumerate the
(c+ k)O(c+k) combinatorial maps of graphs with at most k vertices and at most k edges

properly embedded on C in (c+ k)O(c+k) time.

Proof. The strategy is the following. In the �rst step, we enumerate a set of proper graph
embeddings on some 2-complexes, which necessarily contains all the desired combinatorial
maps. In the second step, we prune this set to keep only the desired combinatorial maps,
by eliminating those that contains too many vertices or edges, or that correspond to an
embedding on a 2-complex not homeomorphic to C .

First step. Let Γ be a proper embedding of a graph with at most k vertices and
k edges on C . Let S be the detached surface associated to C ; this surface is possibly
disconnected and has genus at most c. The image of Γ on S is a graph with at most
k + c vertices and k edges.

We �rst enumerate, in a possibly redundant way, the set M1 of combinatorial maps
of cellular graph embeddings with at most k + c vertices and k edges on a possibly
disconnected surface without boundary. There are 2O(c+k) such combinatorial maps,
which can be enumerated in 2O(c+k) time, for example using rotation systems. Some
vertices may be isolated, if the corresponding connected component of S is a sphere.

By simplifying the surface, every graph embedding can be transformed into a cellular
graph embedding: remove each face and paste a disk to each cycle of the graph that
was a boundary component of a face. Conversely, every (possibly non-cellular) graph
is obtained from some cellular one by (1) connecting some faces together (creating a
face of genus zero with several boundary components) and (2) adding some genus and
non-orientability to some faces. So, for each map in M1, we perform all these operations
in all possible ways, by putting genus at most c in each face. For each such map in M1,
there are (c + k)O(c+k) possibilities. We thus obtain, in (c + c)O(c+k) time, a set M2 of
(c+ k)O(c+k) combinatorial maps on surfaces, and the set M2 contains all combinatorial
maps of (possibly non-cellular) graph embeddings on surfaces of genus at most c.

Finally, we add at most c isolated segments, choose how endpoints of these isolated
segments and vertices of the embedding on the detached surface are identi�ed, and decide
how each isolated segment is covered by the embedding. There are (c+k)O(c+k) ways to do
this. We thus have computed, in (c+k)O(c+k) time, a setM of (c+k)O(c+k) combinatorial
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Figure 7.2: On the left: The same 2-complex as Figure 7.1. On the right: a supersurface
of C as used in Lemma 7.2.4.

maps of graphs on 2-complexes, which contains all the combinatorial maps indicated in
the statement of the lemma.

Second step. First, we easily discard the combinatorial maps in M containing more
than k vertices or k edges. Then, we discard the maps inM corresponding to a 2-complex
di�erent from C . For this purpose, for each map m inM , we iteratively remove the edges
of the graph embedding, preserving the underlying 2-complex. When removing an edge
from the detached surface, the topology of the incident face(s) change; we preserve this
information. Finally, we remove every isolated vertex that does not lie on a singular
point of the 2-complex. The data structure that we have now is essentially the one
that is described in Section 7.2.3; we can thus easily decide whether that 2-complex is
homeomorphic to C (Lemma 7.2.2), and discard m if and only if it is not the case.

Finally, and although this is not strictly needed, we can easily remove the duplicates
in the combinatorial maps, by testing pairwise isomorphism between these maps.

7.2.5 Graphs embeddable on a �xed 2-complex have bounded genus

Lemma 7.2.4. Let C be a 2-complex without 3-book. Let c be either the size of C or its
number of simplices. Every graph embeddable on C is embeddable on a surface of genus
at most 10c.

Proof. Let S be a supersurface of C . Recall that any graph embeddable on C is em-
beddable on S . It thus su�ces to prove that the genus of S is at most 10c. Indeed, if
c is the size of C , this follows from Euler's formula (intuitively, the number of �handles�
created is at most the number of link components). If c is the number of simplices of C ,
it follows from the fact that the total genus of the detached surface is at most c, again
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by Euler's formula, and from the fact that each isolated edge or triangle contributes to
an increase of at most six for the genus in the construction above.

7.3 Partitioning graphs

Let C be a 2-complex and G a graph, which satisfy the properties of Proposition 7.2.1. In
this section, we lay the structural foundations of the dynamic programming algorithm,
described in the next section (Proposition 7.4.1). The goal, in this section and the
following one, is to obtain an algorithm that takes as input C and G, and, in time FPT
in the size of C and the branchwidth of G, reports correctly one of the following two
statements:

� G has no proper cellular embedding on C ,

� G has an embedding on C .

This algorithm uses dynamic programming on a rooted branch decomposition of G.
When processing a node of the rooted branch decomposition, it considers embeddings of
the subgraph of G induced by the edges in the leaves of the subtree rooted at that node
in a region of C . This region will be delimited by a partitioning graph embedded on C .
Our dynamic program will roughly guess the partitioning graph at each node of the
rooted branch decomposition. For this purpose, we need that, if G has a proper cellular
embedding on C , it has such an embedding that is sparse: at each node of the rooted
branch decomposition of G, the partitioning graph corresponding to the embedding of
the induced subgraph is small (its size is upper-bounded by a function of the branchwidth
of G and of the size of C ). The goal of this section is to prove that this is indeed the
case.

Let (E1, . . . , Ek) be an (ordered) partition of the edge set E(G) of G. (We will only
use the cases k = 2 or k = 3.) The middle set of (E1, . . . , Ek) is the set of vertices of G
whose incident edges belong to at least two sets Ei.

Let Γ be a proper cellular embedding of G on C . Since Γ is cellular, every boundary
of C is incident to at least one vertex of Γ. Let Γ̂ be obtained from Γ by adding edges
as follows: for any pair of vertices u and v of Γ consecutive along a given boundary
component of C , we connect u and v via a new edge that runs along the boundary
component. For each (ordered) partition (E1, . . . , Ek) of the edge set of G, we let Ê1 be
the union of E1 and of these new edges, and Êi = Ei for each i 6= 1; thus, (Ê1, . . . , Êk)
is a partition of the set of edges of Γ̂.

The partitioning graph Π(Γ, E1, . . . , Ek) (or more concisely Π) associated to Γ and
(E1, . . . , Ek) is a graph properly embedded on C (but possibly non-cellularly), with labels
on its faces, de�ned as follows:

� The vertex set of Π is the union of the singular points of C and of (the images
under Γ of) the middle set of E1, . . . , Ek.
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Figure 7.3: Construction of the partitioning graph Π = Π(Γ, E1, E2), for three choices
of the partition (E1, E2) of the same embedding Γ. Only a part of the 2-complex C is
shown, with a boundary at the upper part, and without singular point. Left: The graph
embeddings Γ (in thick lines) and Π (in thin lines). Right: The sole graph Π, together
with the labelling of its faces.
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Figure 7.4: The partitioning graph Π = Π(Γ, E1, E2, E3). Left: The graph embeddings
Γ (in thick lines) and Π (in thin lines). Right: The sole graph Π, together with the
labelling of its faces.
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� The relative interiors of the edges of Π are disjoint from the edges of Γ̂ and from
the isolated segments of C . Let f be a face of Γ̂ (which is homeomorphic to an
open disk plus possibly some points of the boundary of C ). Let us describe the
edges of Π inside f .

If, for some i ∈ {1, . . . , k}, the boundary of f is comprised only of edges of Γ̂ that
lie in a single set Êi, then Π contains no edge inside f . Otherwise, the boundary
of f is a succession of edges of Ê1, Ê2, . . . , Êk. The edges of Π inside f run along
the boundary of f ; for each i ∈ {1, . . . , k}, for each (maximal) group of consecutive
edges in Êi along the boundary of f , we create an edge of Π that runs along
this group, with endpoints the corresponding vertices on the boundary of f (see
Figures 7.3 and 7.4). These vertices either are in the middle set of (E1, . . . , Ek), or
lie on the boundary of C (and thus on singular points of C ).

It follows from the construction that Γ̂ and Π intersect only at common vertices.

� Each face of Π is labelled by an integer in {0, . . . , k} as follows: faces of Π containing
edges in Êi are labelled i, and the other ones are labelled 0. By construction of the
graph Π, each face of Π contains edges from at most one set Êi, so this labelling is
well de�ned.

Henceforth, we �x a rooted branch decomposition B ofG, the root of which is denoted
by ρ. Every arc α of B naturally partitions E(G) into two parts E1 and E2, in which
E1 is the part on the same side as ρ; this (ordered) partition is the edge partition

associated to α. Recall that Γ is a proper and cellular embedding of G on C ; we let
Π(Γ, α) be Π(Γ, E1, E2). Similarly, every node ν of B naturally partitions E(G) into
three parts E1, E2, and E3, in which E1 is the part on the same side as ρ; this partition
is the edge partition associated to ν; we let Π(Γ, ν) be Π(Γ, E1, E2, E3).

We say that Γ is sparse (with respect to B) if the following conditions hold, letting
c be the size of C and w the width of B:

� For each arc α of B, the graph Π(Γ, α) has at most 74c+ 26w edges;

� similarly, for each internal node ν of B, the graph Π(Γ, ν) has at most 3(74c+26w)
edges.

The result of this section is the following.

Proposition 7.3.1. Let C be a 2-complex and G a graph, which satisfy the properties
of Proposition 7.2.1. Let B be a rooted branch decomposition of G. Assume that G has
a proper cellular embedding on C . Then it has a proper cellular embedding Γ on C that
is sparse (with respect to B).

7.3.1 Monogons and bigons

A monogon of a graph Π embedded on a 2-complex C is a face of Π that is an open
disk whose boundary is a single edge of Π (a loop). Similarly, a bigon of Π is a face of Π
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that is an open disk whose boundary is the concatenation of two edges of Π (possibly
the same edge appearing twice). The following general lemma on graphs embedded on
surfaces without monogons or bigons will be used; some particular cases have been used
before [Cha+08, Lemma 2.1].

Lemma 7.3.2. Let S be a surface of genus g without boundary. Let Π be a graph
embedded on S , not necessarily cellularly. Assume that Π has no monogon or bigon.
Then |E(Π)| ≤ max{0, 3g + 3|V (Π)| − 6}.

Proof. We begin by adding edges to Π as long as it is possible to do so, without intro-
ducing any new vertex, monogon, or bigon. Let Π′ be the resulting embedded graph. We
claim that every face of Π′ is a triangle (a disk incident with three edges), except in the
following cases:

1. Π′ is the empty graph;

2. S is a sphere, and Π′ has two vertices and no edge;

3. S is a sphere, and Π′ has a single vertex and no edge;

4. S is a projective plane, and Π′ has a single vertex and no edge.

Indeed, let f be a face of Π′. If f has no boundary component, then since S is connected,
we are in Case 1 (an isolated vertex would account for a boundary component). Assume
that f has at least two boundary components. We add an edge in f connecting vertices
on these two boundary components. This cannot create any monogon or bigon, except
if the two boundary components are both reduced to a single vertex and S is a sphere
(Case 2). So we can assume that f has a single boundary component. If f is orientable
and has genus zero, then either we are in Case 3, or S is a disk of degree at least four,
in which case we can add an edge to split it into smaller disks without creating any
monogon or bigon. If f is orientable and has Euler genus at least two (i.e., orientable
genus at least one), we can add an edge that forms a non-separating arc (relatively to
the boundary) in f ; it does not form any monogon or bigon. If f is non-orientable and
has (non-orientable) genus at least two, we can add an edge that forms a separating arc
in f , cutting that surface into two non-orientable surfaces of genus at least one; it does
not form any monogon or bigon. Finally, if f is non-orientable and has (non-orientable)
genus one, either the boundary component is reduced to a single vertex, so we are in
Case 4, or this face has degree at least one; then it is a Möbius band with at least one
vertex and one edge on its boundary, and we can add a loop that is a non-contractible
arc (relatively to the boundary) in f , without forming any monogon or bigon. The only
remaining possibility is that f is a triangle.

It is clear that the statement of the lemma holds whenever we are in one of the four
above cases. So we can assume without loss of generality that each face of Π′ is a triangle.
Since V (Π) = V (Π′) and |E(Π)| ≤ |E(Π′)|, it su�ces to prove the result for Π′ instead
of Π. Double-counting the incidences between edges and faces implies that the number
of triangles τ satis�es 3τ = 2|E(Π′)|; plugging this into Euler's formula implies that
|V (Π′| − |E(Π′)|/3 = 2− g, so |E(Π′)| = 3g + 3|V (Π′)| − 6, as desired.



7.3. Partitioning graphs 91

2

4 5

1

3 6

2

4 5

1

3 6

2

4
5

1

3 6

Figure 7.5: Left: A vertex with 6 intervals, numbered from 1 to 6. Middle: The cyclic
order obtained by applying the �rst type of simpli�cation operation on intervals 1 and 2.
After the simpli�cation, the intervals 1 and 3 are merged into a single one, and similarly
for the intervals 2 and 6. Right: The cyclic order obtained by applying the second type of
simpli�cation to the con�guration on the left, on pairs of intervals {1, 2} and {4, 5}. After
the simpli�cation, the intervals 1, 3, and 5 are merged, and similarly for the intervals 2,
6, and 4.

7.3.2 Vertex simpli�cations

The proof of Proposition 7.3.1 starts with any proper cellular embedding of Γ, and
iteratively changes the cyclic ordering of edges around vertices in a speci�c way. Let
(E1, E2) be an (ordered) partition of E(G), let v be a vertex of G, and let C be a link
component at v (if the image of v under Γ is a singular point, there may be several such
link components). We restrict our attention to the edges of Γ̂ incident to v and belonging
to C, in cyclic order around v. For i = 1, 2, an interval (at v, relatively to (Ê1, Ê2)) is
a maximal contiguous subsequence of edges in this cyclic ordering that all belong to Êi;
the interval is labelled i. Simplifying v (with respect to (E1, E2)) means changing the
cyclic ordering of the edges of Γ̂ incident to v in C by one of the two following operations
(Figure 7.5):

1. either exchanging two consecutive intervals in that ordering, in a way that the
ordering of the edges in each interval is preserved; this operation is allowed only if
v is incident to at least four intervals;

2. or performing the previous operation twice, on two disjoint pairs of consecutive
intervals in that ordering; this is allowed only if v is incident to at least six intervals.

We will rely on the following lemma.

Lemma 7.3.3. Let Γ be a proper cellular embedding of G on C , and let (E1, E2) be an
(ordered) partition of E(G). Let Γ′ be another proper cellular embedding of G, obtained
from Γ by simplifying one or two vertices with respect to (E1, E2), while keeping the other
cyclic orderings unchanged. Then:

1. |E(Π(Γ′, E1, E2))| < |E(Π(Γ, E1, E2))|;

2. for each (ordered) partition (Ẽ1, Ẽ2) of E(G) such that ˆ̃Ei ⊆ Êj for some i, j ∈
{1, 2}, we have |E(Π(Γ′, Ẽ1, Ẽ2))| ≤ |E(Π(Γ, Ẽ1, Ẽ2))|.
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Proof. The proof is based on the following easy but key observations (the second one will
be reused later):

� A simpli�cation of v strictly decreases the number of intervals at v;

� the number of half-edges of Π(Γ, E1, E2) at v in the link component C equals twice
the number of intervals associated to (Ê1, Ê2) at v in C.

The �rst point of the lemma immediately follows. For the second point, let us consider,
in the cyclic ordering around v in C, a maximal contiguous sequence of edges in ˆ̃Ei. Since
ˆ̃Ei ⊆ Êj , when simplifying with respect to (E1, E2), this sequence is still contiguous in

the new embedding Γ′. It follows that the number of intervals associated to ( ˆ̃E1,
ˆ̃E2)

does not increase when replacing Γ with Γ′.

7.3.3 Rearranging Γ with respect to an edge partition

We can now prove the following lemma:

Lemma 7.3.4. Let Γ be a proper cellular embedding of G on C , and let (E1, E2) be an
(ordered) partition of E(G). There exists a proper cellular embedding Γ′ of G such that:

� |E(Π(Γ′, E1, E2))| ≤ 74c+ 26w, where w is the size of the middle set of (E1, E2);

� for each (ordered) partition (Ẽ1, Ẽ2) of E(G) such that ˆ̃Ei ⊆ Êj for some i, j ∈
{1, 2}, we have |E(Π(Γ′, Ẽ1, Ẽ2))| ≤ |E(Π(Γ, Ẽ1, Ẽ2))|.

Proof. Here is an overview of the proof. Let Π := Π(Γ, E1, E2). We will assume that Π
has �many monogons or bigons� (in a sense made precise below) and show that there is
another cellular embedding Γ′ of G such that:

� |E(Π(Γ′, E1, E2))| < |E(Π(Γ, E1, E2))|;

� for each (ordered) partition (Ẽ1, Ẽ2) of E(G) such that ˆ̃Ei ⊆ Êj for some i, j ∈
{1, 2}, we have |E(Π(Γ′, Ẽ1, Ẽ2))| ≤ |E(Π(Γ, Ẽ1, Ẽ2))|.

By repeatedly iterating this argument, and up to replacing Γ with Γ′, this implies that
we can assume without loss of generality that Π has �not too many monogons or bigons�.
We will then show that this latter property implies that Π has at most 74c+ 26w edges,
which concludes.

First, let v be a vertex of Π, and let C be a link component of C at v in Π. Assume
that v has at least 8 incident half-edges in C (and thus at least four intervals), and that
Π has a monogon incident to v in C. By construction of Π, the monogon is not labelled 0.
Thus, a non-empty subgraph of Γ lies inside the monogon, attached to the rest of Γ only
by v, and corresponds to an interval s of Γ at v in C. In Γ, we move the part of Γ that lies
inside the monogon on the other side of the edges comprising an adjacent interval s′; see
Figure 7.6. This simpli�es v by swapping s with s′, because Γ has at least 4 intervals at v
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Figure 7.6: Decreasing the number of monogons in Π.
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Figure 7.7: Decreasing the number of bigons in Π.
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in C. Note that there is no singular point in the interior of the monogon, because there
would be a vertex of Π located on the singular point. The resulting graph embedding Γ′

is still proper and cellular, and satis�es the desired properties, by Lemma 7.3.3.
Now, let us assume that Π contains a sequence of bigons B1, . . . , B8 such that Bi

and Bi+1 share an edge for each i. So without loss of generality, we can assume that B1

and B5 are labelled 1, B3 and B7 are labelled 2, and the other bigons are labelled 0. We
modify Γ by exchanging the parts of Γ inside B3 and B5; see Figure 7.7. The resulting
embedding Γ′ is also proper and cellular. This operation simpli�es the endpoints u and v
of these bigons. (If u = v, this is Case 2 from the de�nition of a simpli�cation.)

We can iterate the above procedures, but only �nitely many times because |E(Π(Γ, E1, E2))|
strictly decreases at each step. We have proved that, up to changing our initial embed-
ding Γ, we can assume without loss of generality the following: (i) Let v be a vertex of Π
that is incident to a monogon of Π in a link component C; then v is incident to at most
7 half-edges in C, and thus at most 4, since this number is a multiple of 4 by construction;
(ii) Π has no sequence of 8 consecutive bigons as above. To conclude, it su�ces to prove
that any graph Π satisfying these conditions has at most 74c+ 26w edges.

We modify Π by removing all monogons, and then by iteratively replacing each bigon
with a single edge, when the edges bounding the bigon are distinct. The removal of
monogons does not create any sequence of 8 consecutive bigons, because monogons are
attached to vertices of degree at most 4 in their link component. So in the �rst step,
for each vertex v and each link component C of v, at most two monogons in C attached
to v are removed; the number of such monogons is at most 2w (for the vertices of Π not
on a singular point of C ) plus 2c (for the vertices of Π on singular points of C ). In the
second step, the number of edges is divided by at most 8. Thus, if Π′ denotes the new
embedding, we have:

|E(Π)| ≤ 2(c+ w) + 8|E(Π′)|. (7.1)

We now bound the number of edges of Π′. For this purpose, let S be the detached
surface of C , and let Π′′ be the graph naturally corresponding to Π′ on S (see Sec-
tion 7.2.4). Any bigon of Π′′ whose boundary consists of the same edge repeated twice
is itself a connected component of S : either a sphere, in which case the corresponding
connected component of Π′′ is made of two vertices and a single edge, or a projective
plane, in which case the corresponding connected component of Π′′ is made of a single
vertex and a single edge. Thus, in these connected components, the number of edges
of Π′′ is at most the number of vertices. Let S0 be obtained from S by removing these
connected components, and Π′′0 the restriction of Π′′ to S0.

Π′′0 has no monogon or bigon. Let S̄0 be obtained from S0 by attaching a handle
to each boundary component; it has a natural cellular graph embedding with at most
2c edges, and thus genus at most 2c; the graph Π′′0 corresponds to an embedding of a
graph Π̄′′0 on S̄0, with no monogon or bigon. Lemma 7.3.2 applied to the restriction
of Π̄′′0 to each connected component of S̄0 implies that |E(Π̄′′0)| ≤ 6c+ 3|V (Π̄′′0)|.

Thus, |E(Π′)| = |E(Π′′)| ≤ 6c + 3|V (Π′′)|. Moreover, |V (Π′′)| ≤ c + w. Now,
Inequality (7.1) implies that |E(Π)| ≤ 2(c + w) + 8(6c + 3(c + w)) = 74c + 26w, as
desired.
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7.3.4 Proof of Proposition 7.3.1

Proof of Proposition 7.3.1. Let B be a rooted branch decomposition of G, and let Γ be
a proper cellular embedding of G on C . We consider each arc α of the rooted branch
decomposition in turn, in an arbitrary order. For each such arc, we modify Γ by applying
Lemma 7.3.4. We �rst claim that after these iterations, for each arc α of B, we have
|E(Π(Γ, α))| ≤ 74c+ 26w.

First, immediately after applying the above procedure to an arc α̃ of B, corresponding
to the (ordered) partition (Ẽ1, Ẽ2) of E(G), we have |E(Π(Γ, Ẽ1, Ẽ2))| ≤ 74c+ 26w. We
now prove that subsequent applications of Lemma 7.3.4 to other arcs of the rooted branch
decomposition do not increase this number of edges. Indeed, let α be another arc, corre-
sponding to the (ordered) partition (E1, E2) of E(G), to which we apply Lemma 7.3.4.
The arc α partitions the nodes of the tree B into two sets N1 and N2, and similarly α̃
partitions the nodes of the tree B into two sets Ñ1 and Ñ2. Because B is a tree, we have
Ñi ⊆ Nj for some i, j ∈ {1, 2}. This implies that ˆ̃Ei ⊆ Êj for some i, j ∈ {1, 2}; so the
second item of Lemma 7.3.4 implies that the number of edges of Π(Γ, Ẽ1, Ẽ2) does not
increase when processing arc α. This proves the claim.

Finally, there remains to prove that, for each internal node ν of B, the graph Π(Γ, ν)
has at most 3(74c+26w) edges. Let (E1, E2, E3) be the edge partition associated with ν.
By the claim we have just proved, it su�ces to prove that the number of edges of this
graph is at most the sums of the numbers of edges of Π(Γ, E1, E2∪E3), Π(Γ, E1∪E2, E3),
and Π(Γ, E1 ∪ E3, E2).

Let v and C be as above. We look at the cyclic ordering, around v at C, of the
half-edges of Γ̂ (ignoring the possible boundary component of C that may arise once
in this cyclic ordering). Between two such consecutive half-edges, there are either zero
or two half-edges in Π(Γ, ν). In the latter case, this means that these two consecutive
half-edges of Γ are in two di�erent sets Ei and Ej . Thus, between these two consecutive
half-edges of Γ, necessarily two half-edges appear in at least one of Π(Γ, E1, E2 ∪ E3),
Π(Γ, E1 ∪ E2, E3), and Π(Γ, E1 ∪ E3, E2). This concludes the proof.

7.4 Dynamic programming algorithm

The result of this section is the following proposition.

Proposition 7.4.1. Let C be a 2-complex and G a graph, which satisfy the properties
of Proposition 7.2.1. Let c be the size of C and n the number of vertices and edges of G.
Let B be a rooted branch decomposition of G of width w. In (c + w)O(c+w)n time, one
can report one of the following statements, which is true:

� G has no sparse proper cellular embedding into C ;

� G has an embedding into C .

(Proposition 7.3.1 implies that we can remove the adjective �sparse� in the above
proposition.)
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7.4.1 Bounding graphs

Let B be a rooted branch decomposition of G of width w. Recall (see Section 3.5.2) that
the root ρ of B is a leaf associated to no edge of G. Our algorithm will use dynamic
programming in the rooted branch decomposition. For each arc α of B, let Gα be the
subgraph of G induced by the edges of G corresponding to the leaves of the subtree of B
rooted at α. The general idea is that we compute all possible relevant embeddings of Gα
in subregions of C . Such subregions will be delimited by a graph embedded on C of
small complexity. For the dynamic program to work, we also need to keep track of the
location of the vertices in the middle set of α. More precisely, a bounding graph for Gα
is a proper labelled graph embedding Π on C (but possibly non-cellular), such that:

� some vertices of Π are labelled; these labels are exactly the vertices of the middle
set associated with α, and each label appears exactly once;

� each unlabelled vertex of Π is mapped to a singular point of C ;

� each face of Π is labelled 0, 1, or 2;

� Gα has an embedding Γα that respects Π: each vertex of Π labelled v is mapped,
under Π, to the image of v in Γα; moreover, the relative interior of each edge of Γα
lies in the interior of a face of Π labelled 2.

(It may seem strange to require that each singular point of C be covered by a vertex
of Π; however, it is necessary to cover at least the singular points on the boundary of C ,
and this more general requirement, albeit slightly arti�cial, simpli�es the argumentation.
Also, it is slightly simpler to have three labels for the faces of a bounding graph, although
two would su�ce.)

A bounding graph for Gα is sparse if it has at most 74c+ 26w edges. Remark that,
if Γ is a sparse proper cellular embedding of G on C (as de�ned in Section 7.3), then
Π(Γ, α) is a sparse bounding graph for the restriction of Γ to Gα.

Henceforth, we regard two (labelled) properly embedded graphs as equal if and only
if their (labelled) combinatorial maps are isomorphic. A list Lα of sparse bounding
graphs for Gα is exhaustive if the following condition holds: If G has a sparse proper
cellular embedding on C , then for each such embedding Γ, the (combinatorial map of
the) graph Π(Γ, α) is in Lα.

The induction step for the dynamic programming algorithm is the following.

Proposition 7.4.2. Let ν be a non-root node of B and α be the arc of B incident
to ν that is the closest to the root ρ. Assume that, for each arc β 6= α of B incident
to ν, we are given an exhaustive list of sparse bounding graphs for Gβ. Then we can, in
(c+ w)O(c+w) time, compute an exhaustive list of (c+ w)O(c+w) sparse bounding graphs
for Gα.

Assuming Proposition 7.4.2, the proof of which is deferred to the next subsection, it
is easy to prove Proposition 7.4.1:
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Proof of Proposition 7.4.1, assuming Proposition 7.4.2. We apply the algorithm of Propo-
sition 7.4.2 in a bottom-up manner in the rooted branch decomposition B. Let α be
the arc of B incident with the root node ρ. We end up with an exhaustive list of sparse
bounding graphs for Gα = G. By de�nition of a bounding graph, if this list is non-empty,
then G has an embedding on C . On the other hand, by de�nition of an exhaustive list,
if this list is empty, then G has no sparse proper cellular embedding on C .

There are O(n) recursive calls, each of which takes (c+ w)O(c+w) time.

7.4.2 The induction step: Proof of Proposition 7.4.2

Proof of Proposition 7.4.2. First case. Let us �rst assume that ν is a (non-root) leaf
of B; thus, Gα is a single edge uv. We will compute all the labelled combinatorial maps
of sparse bounding graphs for Gα. It is clear that this will be an exhaustive list. Indeed,
assume that G has a sparse proper cellular embedding Γ on C ; by sparsity, Π(Γ, α) has
at most 74c+ 26w edges; thus, one of the labelled combinatorial maps computed will be
equal to that of Π(Γ, α).

So let us describe how to enumerate all the labelled combinatorial maps of bounding
graphs for Gα. Using Lemma 7.2.3, we enumerate all possible labelled (combinatorial
maps of) proper graph embeddings Π on C such that:

� two vertices of Π are labelled u and v; the other vertices are unlabelled; the singular
points of C are covered by the vertices of Π; conversely, every vertex of Π, except
perhaps u and/or v, is mapped to singular points of C ;

� Π has at most 74c+ 26w edges;

� each face of Π is labelled 0, 1, or 2;

� Π has a face labelled 2 whose boundary contains both vertices u and v.

It is clear that these labelled combinatorial maps represent all the sparse bounding graphs
for Gα.

Second case. Let us now assume that ν is an internal node of B. As above, let α
be the arc of B incident to ν that is the closest to the root ρ. Let β and γ be the arcs
di�erent from α incident to ν. Let Lβ and Lγ be exhaustive lists of bounding graphs
for Gβ and Gγ , respectively. Intuitively, every pair of bounding graphs in Lβ and Lγ

that are compatible, in the sense that the regions labelled 2 in each of these two graphs
are disjoint, will lead to a bounding graph in Lα. This is the motivating idea to our
approach. More precisely, we will enumerate labelled combinatorial maps Π, each of
which can be �restricted� to two compatible graphs, which are possible bounding graphs
for Gβ and Gγ . If these two restrictions lie in Lα and Lβ , this leads to a graph that is
added to Lα.

We �rst introduce some terminology. Let Π be a graph properly embedded on C
(possibly non-cellularly), with faces labelled 0, 1, 2, or 3, and with labels on some vertices.
Let i, j, k be integers such that {i, j, k} = {1, 2, 3}. We will de�ne a graph embedding
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Πi,j obtained from Π by somehow �merging� faces i and j. First, for an illustration,
refer back to Figures 7.3 and 7.4: If Π is the graph embedding depicted on the right of
Figure 7.4, then the con�gurations shown on the right of Figure 7.3 correspond, from
top to bottom, to Π2,3, Π1,3, and (Π1,2)− (the latter being the graph Π1,2 in which each
face label 3 is replaced by a 2).

Formally, Πi,j is de�ned as follows. First, let us replace all face labels j by i. Now, for
each face f of Π that is homeomorphic to a disk and labelled 0, we do the following. The
boundary of f is made of edges of Π; for the sake of the discussion, let us temporarily
label each such edge by the label of the face on the other side of f . If all edges on the
boundary of f all labelled i, then we remove all these edges, and f becomes part of a
larger face labelled i. Otherwise, for each maximal subsequence e1, . . . , e` of edges along
the boundary of f that are all labelled i, we remove each of e1, . . . , e`, and replace them
with an edge inside f from the source of e1 to the target of e`. Finally, we remove all
isolated vertices that do not coincide with a singular point of C , and all vertices in the
relative interior of an isolated segment that are incident to two faces with the same label.

For any labelled combinatorial map Π, we denote by Π− the same map where each
label 3 on a face is replaced by a 2. The easy but key properties of this construction are
the following:

(i) Assume that Π1,3 is a bounding graph for Gβ and (Π1,2)− is a bounding graph
for Gγ . Then Π2,3 is a bounding graph for Gα.

(ii) The node ν naturally partitions the edge set of G into three parts, which we
denote by E1 (on the side of α), E2 (on the side of β), and E3 (on the side
of γ). Assume that G has a sparse proper cellular embedding Γ on C and that
Π = Π(Γ, E1, E2, E3). Then:

� Π(Γ, α) = Π(Γ, E1, E2 ∪ E3) = Π2,3;

� Π(Γ, β) = Π(Γ, E1 ∪ E3, E2) = Π1,3;

� Π(Γ, γ) = Π(Γ, E1 ∪ E2, E3) = (Π1,2)−.

Property (ii) is, again, illustrated by Figures 7.3 and 7.4: If (E1, E2, E3) is the edge
partition depicted on Figure 7.4, then the edge partitions depicted on Figure 7.3, left,
are, respectively, (E1, E2 ∪ E3), (E1 ∪ E3, E2), and (E1 ∪ E2, E3). As shown above, the
corresponding partitioning graphs are respectively Π2,3, Π1,3, and Π−1,2.

If Π is the graph embedding depicted on the right of Figure 7.4, then the con�gura-
tions shown on the right of Figure 7.3 correspond, from top to bottom, to Π2,3, Π1,3, and
(Π1,2)− (the latter being the graph Π1,2 in which each face label 2 is replaced by a 2).

We compute our exhaustive list Lα of sparse bounding graphs for Gα as follows.
Initially, let this list be empty. Using Lemma 7.2.3, we enumerate all combinatorial
maps Π of graphs with at most c+3w vertices and 3(74c+26w) edges properly embedded
on C (possibly non-cellularly), with faces labelled 0, 1, 2, or 3, and such that the labels
appearing on the vertices are exactly the vertices of the middle set of α, β, or γ (and each
label appears exactly once). This takes (c + w)O(c+w) time. Whenever Π1,3 ∈ Lβ and
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(Π1,2)− ∈ Lγ , we add Π2,3 to Lα. Finally, we eliminate duplicates by testing pairwise
isomorphism between the labelled combinatorial maps in Lα, and remove the graphs
that are not sparse or contain vertices that bear a label not in the middle set of α.

Lα contains only sparse bounding graphs for Gα, by (i) above. Moreover, let Γ be
a sparse proper cellular graph embedding of G on C . By sparsity, one of the graphs Π
enumerated in the previous paragraph is Π(Γ, ν). By de�nition of Lβ and Lγ , we have
that Π(Γ, β) ∈ Lβ and Π(Γ, γ) ∈ Lγ , so by (ii) above, Π(Γ, α) ∈ Lα, which implies that
Lα is exhaustive.

7.5 Reduction to proper cellular embeddings

This section is devoted to proving the following result:

Proposition 7.5.1. Let C be a 2-complex with at most c simplices, and G a graph with
at most n vertices and edges and branchwidth at most w. Assume that G and C satisfy
the properties of Proposition 7.2.1. In cO(c) +O(cn) time, one can compute a graph G′,
and cO(c) 2-complexes Ci, such that:

1. each Ci and G′ satisfy the properties of Proposition 7.2.1;

2. G′ has at most 5cn vertices and 5cn edges, and branchwidth at most w;

3. each Ci has size at most c;

4. if, for some i, G′ embeds into Ci, then G embeds into C ;

5. if G embeds into C , then for some i, G′ has a proper cellular embedding into Ci.

We start with auxiliary results. Let S be a surface (possibly disconnected, possibly
with boundary). A cutting operation on S consists of cutting it along a simple closed
curve, and attaching a disk to the resulting boundary component(s). A cutting operation
is essential if the simple closed curve is non-contractible.

The following result is not hard and essentially folklore (a related but slightly weaker
result is provided by Matou²ek et al. [Mat+16, Lemma 3.1]), but we could not �nd a
precise reference.

Lemma 7.5.2. Let S be a (connected) surface with genus g. The number of possibly
disconnected surfaces, up to homeomorphism, that can be obtained from S by a cutting
operation is at most g + 3, and we can compute them in linear time. Moreover, this
cutting operation leads either to a single surface with genus strictly smaller than g, or to
two surfaces, the sum of the genera of which equals g, and the size of the surface (sum of
the number of connected components, total genus, and number of boundary components)
increases by at most one.

Proof. This basically follows from the classi�cation of surfaces together with Euler's
formula. A cutting operation of S along a closed curve γ falls into exactly one of the
following three categories:
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1. Case where γ is separating. The cutting operation on S results in two surfaces S1

and S2, in which their respective genera g1 and g2 satisfy g = g1 + g2. Moreover,
if S is non-orientable, then at least one of S1 or S2 is non-orientable. Finally, all
pairs of surfaces (S1,S2) satisfying these constraints can be obtained as the result
of a cutting operation on S .

2. Case where γ is non-separating but two-sided. This is only possible if g ≥ 2. The
cutting operation on S results in a single surface S ′ with genus g − 2. If S is
orientable, then so is S ′; otherwise, S ′ is either orientable or non-orientable (unless
of course g = 2, in which case it is necessarily orientable, or g is odd, in which case
it is necessarily non-orientable). All surfaces S ′ satisfying these constraints can be
obtained.

3. Case where γ is one-sided. This is only possible if S is non-orientable and g ≥
1. The cutting operation on S results in a single surface S ′ with genus g − 1,
orientable or not (unless of course g = 1, in which case it is orientable, or g is even,
in which case it is non-orientable). All surfaces S ′ satisfying these constraints can
be obtained.

Lemma 7.5.3. Let S be a surface with k connected components, total genus g, and
with b boundary components in total. In (k + g + b)O(g+b) time, we can enumerate all
(k + g + b)O(g+b) possibly disconnected surfaces with boundary, up to homeomorphism,
arising from S by one or several successive essential cutting operations. These surfaces
have O(k + g + b) connected components and size O(k + g + b).

Proof. It is useful to organize the set of all surfaces (possibly disconnected, possibly with
boundary) arising by essential cutting operations in a tree with root S , in which the
children of a node result from a single essential cutting operation. We prove that (1) the
depth of the tree is O(g+b) and that (2) each node of the tree has O((k+1)(g+1)(b+1))
children, which concludes (because by Lemma 7.5.2, the size of a surface increases by at
most one by a cutting operation).

Let S ′ be a (possibly disconnected, possibly with boundary) surface resulting from a
sequence of essential cutting operations on S . By Lemma 7.5.2, the total genus of S ′ is
at most g. Moreover, since we consider only essential cutting operations, each connected
component of S ′ either has positive genus or contains at least one boundary component,
unless it was itself a connected component of S ; so the number of connected components
of S ′ is at most k + g + b.

Let ϕ(S ′) be equal to twice the total genus of S ′ minus its number of connected
components. By Lemma 7.5.2, this potential function strictly decreases at each cutting
operation. Moreover, we have ϕ(S ) = 2g − k, and by the previous paragraph ϕ(S ′) is
at least −(k + g + b). This proves (1).

By Lemma 7.5.2, for any surface of genus g without boundary, there are at most
g + 3 ways of performing a cutting operation up to homeomorphism. After a sequence
of essential cutting operations, we have a surface S ′ with at most k + g + b connected
components, with total genus at most g, and with b boundary components. The number
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of surfaces that can be obtained from S ′ by a cutting operation is at most k(g+3)(b+1),
since we �rst choose which connected component to cut along, the way to cut it ignoring
the boundary components, and the number of boundary components in each connected
component (if the cut is separating).

We can now conclude the proof of this section.

Proof of Proposition 7.5.1. First, if the detached surface of C is non-empty, then we test
the planarity of each connected component of G [HT74] in O(n) time, and remove every
connected component ofG that is planar; obviously, this does not a�ect the embeddability
of G on C .

In a second step, we split each isolated segment of C into �ve isolated segments. For
each subset S of the isolated segments, we build a new 2-complex obtained from C by
removing S. We obtain 2O(c) 2-complexes, each of size O(c). The input graph G embeds
on C if and only if it embeds into one of these 2-complexes; moreover, if G embeds on C ,
it embeds into one of the 2-complexes in a way that every isolated segment is covered
by the embedding. (Indeed, remember that G has at most one connected component
homeomorphic to a segment.)

We now iteratively dissolve every degree-two vertex of G, and then subdivide 5c
times each edge of G. This new graph G′ has at most 5cn vertices and edges, and
branchwidth at most w. Clearly, G embeds on C if and only if G′ embeds in one of the
2-complexes de�ned in the previous paragraph; moreover, if G embeds on C , then G′ has
an embedding on one of these 2-complexes in which the relative interior of every edge
is distinct from any singular point (and, as above, such that every isolated segment is
covered by the embedding).

Each singular point p of each of these 2-complexes is incident to at least two link
components. For each such singular point p and for each partition of the link components
at p, we replace p with new vertices, one for each element in the partition; two link
components at p stay adjacent via one of these new vertices if and only if these link
components are in the same part. We obtain cO(c) 2-complexes, each of size O(c). The
input graph G embeds on C if and only if G′ embeds in one of these 2-complexes;
moreover, if G embeds on C , then G′ has an embedding into one of these 2-complexes in
which every link component of each singular point p is used by an edge of G connected
to p in that link component (and, as above, such that every isolated segment is covered
by the embedding, and such that the relative interior of every edge is distinct from any
singular point).

Every embedding of a graph into a 2-complex can be perturbed so that it avoids the
boundary of the 2-complex, except possibly at singular points. This means that, if G
embeds on C , then G′ has a proper cellular embedding into one of the 2-complexes built
in the previous paragraph, except that the faces of G′ may fail to be disks, but are more
general (connected) surfaces with boundary.

To dispense ourselves from this latter exception, we need to build more 2-complexes.
This case occurs only if the detached surface is non-empty, so by our earlier preprocess-
ing, we can assume that G′ contains no planar connected component, and so has O(c)
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connected components (because, by Lemma 7.2.4, in order for G′ to be embeddable on
a 2-complex of size O(c), it must have genus O(c)).

The detached surface S is a surface (possibly disconnected, possibly with boundary);
the trace of the set of singular points on S corresponds to marked points, some in the
interior of S , some on the boundary. Henceforth, we regard the former as small boundary
components. For each 2-complex obtained above, we consider, up to homeomorphism,
all 2-complexes arising from zero, one, or several essential cutting operations on S ,
and then by removing an arbitrary subset of the connected components of the resulting
surface. Up to homeomorphism, by Lemma 7.5.3, there are cO(c) ways of cutting S ;
since we consider all 2-complexes obtained up to homeomorphism, we need to consider
each boundary component of the detached surface S as labelled (which is not the case
in Lemma 7.5.3); however, this only adds a factor of cO(c). In total, we obtain, in cO(c)

time, cO(c) 2-complexes, each of size O(c). Then, for each such 2-complex, we consider all
possible ways of removing an arbitrary subset of connected components of the 2-complex;
the number of the resulting 2-complexes is still cO(c). By construction, the input graph G
embeds on C if and only if G′ embeds in one of these 2-complexes. Moreover, assume that
it is the case; as shown above, G′ has a proper embedding into one of the 2-complexes
de�ned in the previous paragraph, except that faces of G′ are (connected) surfaces, not
necessarily disks. Whenever a face has non-empty boundary and is not homeomorphic
to a disk, we perform an essential cutting operation of that face along a closed curve
inside that face; the closed curve along which we cut is non-contractible in S , because
otherwise it would bound a disk in S , which would itself contain a planar connected
component of G′, and we have shown above that we may assume that no such component
exists. After iterating this operation as much as possible, every face of G′ in the resulting
2-complex is either is a disk or has empty boundary; in the latter case, G′ avoids the
corresponding connected component, so we can simply remove it. Eventually, after a
number of essential cutting operations of S and removing some connected components
of the 2-complex, the embedding of G′ is cellular in one of the cO(c) 2-complexes of size
O(c) enumerated above.

7.6 Algorithm for bounded branchwidth: Proof of Theo-

rem 7.1.2

Proof of Theorem 7.1.2. By Proposition 7.2.1, we can assume that C has no 3-book
and no connected component that is reduced to a single vertex, and that G has no
connected component reduced to a single vertex and at most one connected component
homeomorphic to a segment. If necessary, we convert the combinatorial description of C
into the topological data structure (Section 7.2.3).

We apply Proposition 7.5.1. In cO(c) + O(cn) time, we obtain a graph G′ and a set
of cO(c) 2-complexes Ci such that:

1. each Ci and G′ satisfy the properties of Proposition 7.2.1;

2. G′ has at most 5cn vertices and 5cn edges, and branchwidth at most w;
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3. each Ci has size at most c;

4. if, for some i, G′ embeds into Ci, then G embeds into C ;

5. if G embeds into C , then for some i, G′ has a proper cellular embedding into Ci.

We then run the algorithm from Proposition 7.4.1 in each of the instances (Ci, G′), in
total time (c+ w)O(c+w)n. This algorithm correctly reports either that G′ has no sparse
proper cellular embedding into Ci or that G′ has an embedding into C . If for at least one
of these instances, the algorithm reports that G′ embeds into Ci, then we report that G
embeds into C . Otherwise, we report that G does not embed into C .

There remains to prove that the algorithm is correct. If our algorithm reports that G
embeds into C , then it is obviously indeed the case (Property (4) above). Conversely, let
us assume that G has an embedding into C . Thus, by Property (5) above, let i be such
that G′ has a proper cellular embedding into Ci. By Proposition 7.3.1, G′ also has such
an embedding into Ci that is sparse. Thus, the algorithm in Proposition 7.4.1 (correctly)
reports that G′ has an embedding into Ci, and �nally our overall algorithm reports that
G has an embedding into C .

7.7 Reduction to bounded branchwidth: Proof of Theo-

rem 7.1.3

This section is devoted to the proof of Theorem 7.1.3. The deterministic and randomized
algorithms di�er only in the algorithm that we use as a subroutine to compute a large
grid minor. The proof technique is based on an irrelevant vertex method; we borrow
ingredients to Kociumaka and Pilipczuk [KP19, Section 5], but some new arguments are
needed, in particular in the beginning of the proof of Proposition 7.7.1.

7.7.1 Finding a large planar part

As an intermediate goal towards the proof of Theorem 7.1.3, we will prove in this sub-
section:

Proposition 7.7.1. Let G be a graph with n vertices and edges and g ≥ 2 be an integer.
We can do one of the following:

1. compute a rooted branch decomposition of G of width gO(1);

2. correctly report that G has genus at least g;

3. or compute a cycle γ of G such that one connected component of G − γ is planar
and contains a subdivision of the (g × g)-wall, which is also computed.

either in deterministic f(c) · n2 time for some computable function f , or in expected
polynomial time.

We will use the following lemma.
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Lemma 7.7.2. Let G be a graph with n vertices and edges and k ≥ 2. Then, one
can compute either a rooted branch decomposition of G of width kO(1) or a (k × k)-grid
minor of G in deterministic f(c) ·n2 time for some computable function f , or in expected
polynomial time.

Proof. We can obviously assume that k is at most the number of vertices of G, for
otherwise any rooted branch decomposition of G has width at most k. Let d be a large
enough universal constant, which can be computed from the hidden constants in the O(·)
notation of the results used below.

We �rst use any algorithm to approximate the treewidth, e.g., Fomin et al. [Fom+18,
Theorem 1.1]: Provided d is large enough, in polynomial time, we either compute a tree
decomposition of width at most (dkd)2, and thus immediately obtain a (rooted) branch
decomposition of width (dkd)2 [RS91, Theorem 5.1], as desired, or correctly report that
the treewidth is at least dkd.

In the latter case, provided d is large enough, G has a (k × k)-grid minor, by a
result by Chekuri and Chuzhoy [CC16]. We can compute it in expected polynomial
time, by an algorithm from the same article [CC16]. Alternatively, we can compute it in
deterministic f(k) · n2 time, for some computable function f , by a result by Robertson
and Seymour [RS95, Algorithm 4.4].

We remark that the above proof contains some bottlenecks in the running time in
Theorems 7.1.3 and 7.1.1. Speci�cally:

� the randomness is solely due to the above use of the algorithm in the article by
Chekuri and Chuzhoy [CC16];

� the fact that the dependence in the size of the 2-complex is not speci�ed is solely
due to the use of Robertson and Seymour [RS95, Algorithm 4.4] in computing a
grid minor, but it can in principle be made explicit.

Proof of Proposition 7.7.1. We can again obviously assume that g is at most the number
of vertices of G. We apply Lemma 7.7.2 with k = 60d√ge4. If the outcome is a rooted
branch decomposition, then the algorithm returns it (Case 1). Otherwise, we have com-
puted a (60d√ge4 × 60d√ge4)-grid minor of G, and thus a subgraph Ẇ of G that is a
subdivision of a (60d√ge4 × 60d√ge4)-wall W .

We �rst compute disjoint non-adjacent (50gd√ge×50gd√ge)-wallsW1, . . . ,Wg ofW ,
and the corresponding subdivisions Ẇ1, . . . , Ẇg that are subgraphs of Ẇ , in a way that
W −Wi is connected for each i. For each i, we consider the subgraph Gi of G induced by
the vertices v of G such that: (1) there exists a path from v to Ẇi; (2) every path from
v to Ẇj , for some j 6= i, uses at least one vertex from Ẇi. The graphs Gi are pairwise
disjoint. We test the planarity of each of them in linear time [HT74]. If all of them are
non-planar, then G has genus at least g, so we correctly report this (Case 2). So without
loss of generality, one of these graphs, say G1, is planar, and our algorithm computes it.

By 3-connectivity, W1, and thus also Ẇ1, has a unique combinatorial embedding in
the plane, up to symmetry and up to the choice of the outer (in�nite) face; we consider
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Figure 7.8: Illustration of the proof of the claim in Proposition 7.7.1. The wall W1 (left),
and a schematic view of the Jp minor (right), illustrated with g = 6. Let K−5 be the
graph K5 with one edge removed. IfW1 has many vertices connected to the outside, then
a set U of at least g vertices connected to the outside (represented as big disks on the
left) are pairwise distant. In the neighborhood of these vertices, we build a K−5 minor for
each vertex in U , in which the vertex of U is the �central� vertex (the thick paths need
to be contracted to obtain copies of K−5 ). Using the fact that the neighborhoods are far
apart, we build a Jg-minor of G (right), in which the apex results from the contraction
of the subdivided wall Ẇ1 minus the union of the K−5 minors, and each path connecting
u ∈ U to Ẇ −Ẇ1 (which is connected by assumption) is contracted, except its �rst edge,
to connect u to the apex.

the natural embedding of W1 in which the outer face has the largest degree. An inner
vertex of W1 is one that is at distance at least 6 from the outer face in the natural
embedding of W1. Remark that each vertex of W1 is a vertex of Ẇ1. We say that a
vertex u of W1 is connected to the outside if there is, in G, a path whose vertices are,
in this order, u, possibly some vertices of Ẇ1 but not of W1, possibly some vertices of
G− Ẇ1, and �nally one vertex in Ẇ − Ẇ1.

We claim the following: If at least 1000g inner vertices of W1 are connected to the
outside, then G has genus at least g. The strategy is similar to the argument in Kociu-
maka and Pilipczuk [KP19, Lemma 5.3]; we summarize the proof. If at least 1000g inner
vertices of W1 are connected to the outside, then a set U of g inner vertices of W1 are
connected to the outside, and at pairwise distance at least 16 in W1. This implies that
G contains, as a minor, the graph Jg obtained from g copies of K5 by subdividing an
edge from each copy with a degree-two vertex and identifying these g new vertices into
a single vertex, the apex of Jg; see Figure 7.8. This graph has genus at least g, by the
main result of an article by Miller [Mil87, Theorem 1]. This proves the claim.

In polynomial time, we can compute the inner vertices ofW1 connected to the outside.
If there are at least 1000g of these, we report that G has genus at least g (Case 2), which
is correct by the above claim. Otherwise, from the (50gd√ge×50gd√ge)-wallW1, we can
compute a cycle γ in W1, enclosing a (g × g)-wall W ′1 in W1 (in the natural embedding
of W1) such that no vertex of W1 inside γ (in the natural embedding of W1) is connected
to the outside. Let γ̇ be the cycle of Ẇ1 corresponding to γ, and let H be the connected
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component of G− γ̇ containing the vertices of this (g × g)-wall. There remains to prove
that H is planar, and since G1 is planar, it su�ces to prove that H is a subgraph of G1.
If it were not the case, H would contain a vertex of Ẇj for some j 6= 1; but that would
imply that a vertex of W ′1 is connected to the outside, which is not the case. We can
thus correctly report γ (Case 3).

7.7.2 Finding an irrelevant vertex

The following proposition will imply that if the third possibility in the statement of
Proposition 7.7.1 holds (for some g large enough), then one has an irrelevant vertex for
the embedding instance.

Proposition 7.7.3. Let C be a 2-complex with c ≥ 1 simplices. Let G be a graph and
γ be a cycle in G such that one connected component of G− γ is planar and contains a
subdivision of the (1000c× 1000c)-wall. Let v be the central vertex of this wall. Then G
is embeddable on C if and only if G− v is.

The proof of Proposition 7.7.3 builds upon the article by Kociumaka and Pilipczuk [KP19,
Section 5.3]: The strategy is the same, up to simple variations to take into account the
fact that we consider a 2-complex, not a surface. Rather than repeating the same argu-
ments, we summarize the proof, emphasizing the di�erences.

A circular wall W [KP19, Figure 8] of height h and circumference ` is a 3-regular
graph that, in some embedding ofW in the plane, is represented as the union of h vertex-
disjoint cycles, called circles, organized in a concentric way, such that any two consec-
utive circles are connected by ` radial edges; in successive layers, the radial edges are
interleaved. A ring R of this circular wall W is a subgraph contained in the (closed)
annulus between two circles at distance four in the radial order; a ring thus contains �ve
vertex-disjoint circles, consecutive in this concentric order, together with edges connect-
ing them; the central circle of R is the third one in that order. A central brick of R
is the boundary of a face of W incident to its central circle.

If G is embeddable on C , then obviously G−v is also embeddable on C ; the hard part
is the reverse direction. In the given subdivision of the (1000c×1000c)-wall in G, we �rst
compute a subdivision Ẇ of a circular wallW of height 45c+10 and circumference three,
so that v is located inside the inner circle of this circular wall in the planar embedding
of W ; see Kociumaka and Pilipczuk [KP19, Figures 8 and 9].

Let us consider an embedding ψ of G− v on C . This induces embeddings of Ẇ − v
andW−v on C , also denoted by ψ. Each ring ofW corresponds naturally to a subdivided
ring of Ẇ . Such a subdivided ring is embedded plainly in ψ if it lies in the detached
surface S of C and each central brick of the ring is a two-sided closed curve in S and
bounds a disk on S , the interior of which does not contain any vertex or edge of Ẇ .

We have the following lemma.

Lemma 7.7.4. Some subdivided ring of Ẇ is embedded plainly in ψ.

Proof. At most c vertices or edges of W are mapped, under ψ, to a singular point
of C . At most c edges of W are mapped, under ψ, to an isolated segment of C . Our
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circular wall of height 5(9c+ 2) and circumference 3 contains 9c+ 2 vertex-disjoint rings
of circumference 3. Thus, there exists a set R of 7c + 2 vertex-disjoint rings of W of
circumference 3, the vertices and edges of which are mapped, under ψ, to the complement
of the singular points and the isolated segments of C .

In other words, ψ maps each ring of R to the detached surface S of C , and thus also
to the surface S̄ obtained by attaching a handle to every boundary component of S .
The resulting surface has a natural cellular graph embedding with at most 7c edges, and
thus has genus at most 7c. Since R contains 7c+ 2 rings, this implies that some ring in
R is embedded plainly, by ψ, in S̄ ; see the proof of Kociumaka and Pilipczuk [KP19,
Lemma 5.4] for details. Hence it is also embedded plainly, by ψ, in C .

The rest of the proof of Proposition 7.7.3 uses the same arguments as in Kociumaka
and Pilipczuk [KP19], so we only summarize it:

Proof of Proposition 7.7.3. Let R be the ring obtained from Lemma 7.7.4. Its central
cycle γ is mapped, under ψ, to a two-sided cycle in the detached surface S , and moreover,
the edges of R incident to γ are partitioned, under ψ, between the sides of γ exactly
as in the natural embedding [KP19, Corollary 5.5]. Since R is embedded plainly in
the detached surface, one can embed the (planar) part of G that lies inside R in a
neighborhood of γ, and then insert v without interfering with the rest of the embedding.

7.7.3 Proof of Theorem 7.1.3

Proof of Theorem 7.1.3. We �rst apply Proposition 7.2.1: without loss of generality, C
has no 3-book and no connected component that is reduced to a single vertex, and G
has no connected component reduced to a single vertex, and at most one connected
component homeomorphic to a segment. Let n be the number of vertices and edges of
the input graph G, and c be the number of simplices of C . We apply Proposition 7.7.1
to the graph G, letting g = 1000c. In deterministic f(c) · n2 time for some computable
function f , or in expected time polynomial in n and c, we obtain one of the following
outcomes:

1. a rooted branch decomposition of G of width O(g)O(1);

2. that G has genus at least g, and is thus not embeddable on C (Lemma 7.2.4);

3. a cycle γ of G such that one connected component of G− γ is planar and contains
a subdivision of the (g × g)-wall.

In the �rst two cases, we are done. In the third case, by applying Proposition 7.7.3,
we obtain a vertex v such that G embeds on C if and only if G − v does. By iterating
the same procedure a number of times that is at most the number of vertices of G, we
necessarily reach case (1) or (2), which concludes.
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We remark that the proof goes through if the input 2-complex is given in the form of
the topological data structure, and c denotes its size, instead of the number of simplices
of C .

As mentioned above, the proof of Theorem 7.1.1 follows immediately from Theo-
rems 7.1.2 and 7.1.3.
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Conclusion

In this thesis, we studied the embeddability of graphs on 2-complexes which is obviously
NP-hard as a generalization of embedding of graphs on surfaces. We presented two
algorithms solving this problem, the �rst also proving that the problem is NP-complete
and the second being FPT with parameter the size on the input 2-complex. Now, a FPT
algorithm is the best we can reasonably ask for a NP-complete problem from general
complexity class point of view. Nonetheless, there are still many natural problems that
arise from it.

A more e�cient algorithm to solve Embed In this thesis, we presented an
algorithm deciding whether a graph is embeddable on a 2-complex in time f0(c)n3 for
some computable function f0. Nonetheless, the more restrictive problem when the target
space is a surface is known to have algorithms linear in the size of the input graph, solving
it in time f1(g)n for some function f1, where g is the genus of the input surface and n
is the size of the input graph [Moh99; KMR08]. There is no known obstruction to �nd
an algorithm that solves Embed in similar time, linear in the size of the graph. Thus,
it could be reasonable to look for an algorithm deciding the embeddability of graphs on
2-complexes in time O(f2(c)n) for some function f2.

Looking for speci�c topological embedding For the problem that we have con-
sidered in this thesis, we have completely ignored the combinatorial structure of the
2-complex into which we try to embed the input graph: any two homeomorphic com-
plexes are equivalent for this problem

In this thesis, we considered the problem where we looked for any topological embed-
ding of the input graph on the input complex. It would be very interesting to look only
for embeddings having some speci�c property. In order to still consider embeddings up
to homeomorphism, the properties we consider must translate through homeomorphism.
For example, we could consider a LEW-embedding of a graph G de�ned as a topological
embedding of G such that there is no non-contractible cycle in the image of G with fewer
edges than the facial walk of any face of the embedding. Then, we consider the following
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problem that extends a version on orientable surfaces studied by C.Thomassen [Tho90]:
given a graph G and a 2-complex C such that G is embeddable on C , decide whether
there exists LEW-embedding of G on C . As shown by C.Thomassen [Tho90], these
Lew-embeddings restricted to orientable surfaces have some strong properties. First, if a
graph G have a LEW-embedding on an orientable surface of genus g, then the orientable
genus of G is g. Moreover, a 3-connected graph G have at most one LEW-embedding on
an orientable surface.

It is reasonable to hope that we could obtain some similar properties for LEW-
embeddings on 2-complexes.

Not looking for topological embeddings For the problem that we have considered
in this thesis, we have completely ignored the combinatorial or geometric structure of
the 2-complex into which we try to embed the input graph: any two homeomorphic com-
plexes are equivalent for this problem. This makes impossible to consider any potential
property of an embedding that are not maintained through homeomorphisms. Then, by
considering the exact embedding, it is possible to look for some speci�c embeddings. For
example, on a 2-complex C with a metric, we can de�ne a straight line embedding of a
graph as an embedding where all edges are mapped as a segment (instead of an arbitrary
curve for general embeddings) between the image of its endpoints. This way, we could
de�ne the problem of the straight line embeddability problem: given a graph G and a
2-complex C with a metric such that there exists a topological embedding of G on C ,
decide whether there exists a straight line embedding of G on C . Similarly, we could
look for embeddings having some property using the exact combinatorial structure of the
input 2-complex. For example, we could consider the "insimplex" embeddability prob-
lem: given a graph G and a 2-complex C such that there exists a topological embedding
of G on C , decide whether there exists an embedding of G on C such that the image of
each edge is included in either one edge or one triangle of C .

Finding some other FPT parameters In this thesis, we presented an FPT algorithm
deciding the embeddability of graphs on 2-complexes with parameter the size of the input
complex. Similarly, as presented in Section 4.1.2, there exists some FPT algorithms
solving the embeddability of graphs on surfaces where the parameter is the genus of
the input surface. For the embeddability of graphs on surfaces there exists some other
parameters such that there is an FPT algorithm deciding it (for example the treewidth
of the input graph [Bod88]). Similarly, we could try to �nd a parameter p other than
the size of the input complex such that there exists a FPT algorithm deciding whether
a graph is embeddable on a 2-complex with parameter p. Similarly to surfaces, a great
candidate for p could also be the treewidth of the input graph.

Finding characteristics of a 2-complex characterizing the set of graphs em-
beddable on it We can de�ne an equivalence relation R on 2-complexes by: two
2-complexes are equivalent if and only the set of graph embeddable on one is the same
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Figure 8.1: Two complexes, the sphere and two triangles linked by an isolated edge, that
are not homeomorphic while having the same set of graphs embeddable on it.

as the set of graphs embeddable on the other. R is a coarser relation than being home-
omorphic since two homeomorphic 2-complexes obviously have the same set of graphs
embeddable on it while there is some couples of 2-complexes equivalent with R that are
not homeomorphic (See Figure 8.1 for an example of such couple of 2-complexes). It
would be interesting to �nd whether it is possible to decide e�ciently the relation R.

Moreover, as presented in Section 3.4.3, two connected surfaces are equivalent with
R if and only if the two have the same genus and are either both orientable or both
non-orientable. Thus, the equivalence class of R to which belongs a connected surface is
characterized by its genus and orientability. Then, similarly, it would be very interesting
to �nd a simple combinatorial characterization of the equivalent class of R to which
belongs a 2-complex.
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