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RESUME ETENDU EN FRANCAIS

Contexte

La commande predictive (MPC) est une stratégie de controle optimal apparue a la
fin des années 1970, issue de la commande algorithmique par modele (MAC) [52] [53]
et de la commande matricielle dynamique (DMC) [16]. Ses premiéres applications, qui
ont vu le jour dans I'industrie des procédés chimiques dans les années 1980, sont dues
a la simplicité de I'algorithme et a sa capacité a gérer des systémes multivariables [22]
[11]. Depuis lors, plusieurs étapes importantes ont été franchies dans le développement du
MPC : contrdle adaptatif initié par la commande prédictive généralisée (GPC) [15] pour
un processus mono variable, formulation de I'espace d’état pour la mise en ceuvre d’un
horizon décroissant [22], prise en compte de la faisabilité par les variables accessoires [72]
et vérification associée [55], preuve de stabilité des MPC contraints [51] [54] [70] [34].

Gréace a la possibilité de traiter des dynamiques et des contraintes complexes [33] [10]
[30] en fournissant une stratégie de controle optimale, la MPC a gagné en popularité dans
de nombreuses industries au cours des dernieres décennies, par exemple des applications
étendues dans les industries de processus et chimiques [49], une croissance significative
dans les industries aérospatiales et automobiles [11], application émergente dans la gestion
de la chaine logistique [14] [47], I'économie [18] [27] et la finance [48] [59].

La MPC génere une action de controle optimale pour 'instant présent tout en con-
sidérant I'influence des comportements futurs du systéme. Ceci est réalisé en produisant
la séquence de contrdle optimale basée sur un modele dynamique, visant a minimiser
une fonction objectif, généralement quadratique, sur les prochaines étapes de controle
(appelées horizon de prédiction).

Typiquement, a chaque pas de temps, un probleme d’optimisation quadratique est
formulé sur la base de ’état du pas courant, de la fonction objectif, du modele dynamique,
et des contraintes d’entrées et d’états (et de sorties). Une séquence de commande de la
longueur de I’horizon de prédiction est obtenue en résolvant ce probléeme d’optimisation,
et seules les entrées de la premiere étape sont appliquées au systéme. La formulation et le

processus de résolution ci-dessus sont répétés apres chaque intervalle d’échantillonnage, et
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le nom de commande predictive provient donc de la caractéristique de prendre en compte
les étapes temporelles futures du systeme controlé tout en décidant de l'action de controle

de I'étape actuelle.

Aujourd’hui, 'enthousiasme de la recherche, qui a été lié a ’adoption industrielle des
technologies dans les années 1980 et aux aspects théoriques, y compris l'interprétation
de T'espace d’état et les preuves de stabilité dans les années 1990, s’oriente vers une
mise en ceuvre efficace et un calcul en ligne, c’est-a-dire comment résoudre efficacement

I'optimisation quadratique sous contrainte.

Dans la pratique, cependant, la solution optimale du probleme d’optimisation qui
en résulte, avec des exigences de respect des contraintes tout en minimisant la fonction
objectif, est parfois difficile a obtenir directement. Divers facteurs peuvent expliquer cela,
par exemple, contraintes sur l'optimisation centralisée par une structure distribuée ou
un souci de confidentialité, 'exigence d’un taux d’échantillonnage rapide par certaines
applications, la limite de la mémoire ou de la puissance de calcul des unités de controle,
pour n’en citer que quelques-uns. Parmi les méthodes efficaces de résolution du probleme,
la décomposition duale basée sur les multiplicateurs de Lagrange est depuis longtemps
appréciée pour sa capacité a relaxer les contraintes et a intégrer le processus de résolution
itératif qui en découle. Les facteurs critiques dans le processus itératif sont: la taille du

pas, la direction de recherche et la condition d’arrét.

La motivation principale de cette these est de générer une solution "suffisamment
bonne" (répondant aux conditions d’arrét prédéfinies ou aux exigences de sous-optimalité)
de 'optimisation résultant de MPC plus rapide (terminaison accélérée du processus itératif
basé sur la décomposition double), qui sera réalisée en exploitant les caractéristiques de
la stratégie MPC et de la structure d’optimisation résultante MPC.

Dans la section suivante, le probleme général d’optimisation résultant de MPC, son

probleme dual correspondant et le processus itératif seront formulés pour établir la base

mathématique de cette these.

Préliminaires mathématiques

Dans cette section, les préliminaires mathématiques fondamentaux du probleme
d’optimisation étudié dans cette these seront présentés, ce qui aidera le lecteur a for-

mer la base nécessaire pour les éléments présentés plus tard. Veuillez vous reporter a la
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Nomenclature ! pour les notations qui apparaissent dans cette section.

La formulation générale du probleme

Pour aborder la formulation du probléme, le systeme a controler est d’abord présenté.
Dans cette these, le systeme linéaire invariant dans le temps considéré est composé de
m sous-systemes avec un horizon de prédiction N € Ny, et caractérisé par une dynamique

de couplage comme suit :

m

i=1
ou z;(j) € R™ et uy(j — 1) € R™ sont les états a I'étape j et les entrées a 1'étape j — 1
du [-eéme sous-systeme, A; € R x"%i B, € R™1>"i gont des matrices de systéme, et
x1(0) = Zy, 7 € R™ est Iétat initial du l-iéme sous-systeme.
Outre la dynamique du systeme, les contraintes d’égalité linéaires généralisées des

variables d’entrée et d’état sont également considérées ci-dessous:

m

> Ayl +§B§-ul<y ~1)=aj 2)

ol Aé € Rnasxne le- € R4>™ et a; € R,
Dans la suite, des contraintes d’inégalité convexes sont imposées aux entrées et aux

états du systeme comme:
filx,u) <0, i=1,...,n, (3)

ot u = (ul,...,ul_ )T ueRY™ nu=nu +..+nu, = (zf,. . =), x € RV
nT = Ny + ... + Ty, pour V j = 1, N, u; = (us1(j)7, ..y un(§)))T, u; € R™, x; =
(1), oz ()T, @y € R™, f; : RN x RVN™ — R est convexe, et i désigne la i-ieme
contrainte d’inégalité, ce qui fait au total n contraintes d’inégalité.

Le systeme mentionné ci-dessus est régi par un critere de MPC, ce qui conduit au

1. Les variables présentées dans la Nomenclature sont celles qui apparaissent dans le §1, dont les
variations avec les accents sont utilisées dans les chapitres suivants pour différencier les significations
dans des contextes de problémes distincts, par exemple X et A désignent les multiplicateurs de Lagrange
associés aux contraintes d’inégalité dans le §2 et le §5 respectivement.
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probleme d’optimisation suivant:

J* =min J(u,x), (4)

La fonction objectif quadratique basée sur la MPC du probleme (4) est définie comme

suit:

N
ZJJ uj_1,T;),
7=1
Ji(wj1, ;) Z (Jlw(j = 1) ||R“ 2z,
= 2

ou Ry € ST et Ry, € ST™ sont les matrices de pénalité des variables d’état et d’entrée

respectivement.

Pour alléger la notation, le probléme (4) est reformulé sous une forme compacte comme:

T* = min J(y) (5a)
s.t. Ay =b, (5b)
f(y) <0, (5c)

o y € R™, ny = N(nz +nu), y = (yi,..yy)", £+ R = R" avec f(y) =

(fl(y)T7"‘7fn<y)T)T7 et v 1= 17"'7”7 fl<y) = fl'(.’B,’U/), y] = (wgﬂ?u}ll)Tu j(y) =
Uyl[Z, R = blkdiag(Ry,... Ry), R € S, R; = blkdiag(R?, RY), R, € S
R? = blkdiag(RY,, ..., R2,)), RY € §', R* = blkdiag(RY;, ..., R ), RY € S

L’expression de A et b peut étre dérivée de (1) et (2) comme:

— >y Auxi(0)

b=|:|, b= : ) (6a)
— >y Ay (0)

ai
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0
b] - O ) pOU.I'j 7£ 17 (6b)
| @5
-
A, B
e , (6c)
i AN BN
_An Ay, O 0
A — : , 6d
S Y N | 0 (6d)
0 0 0 0
T By, Bim
. . s | o
’ I B, ... B, (6e)
_Ajl- Ag” le B]m

oub € R™, A€ R"™ ™ n, = Nnr+na;+..+nay,Vj=1,.., N, A; € Rorztna)xnatnu)
B; e R(netnag)x(nztnu) g et T sont respectivement une matrice d’éléments 0 et une matrice

identité de taille propre.

Probleme dual et processus itératif général

Le coeur de cette theése est de terminer plus rapidement le processus itératif basé sur
la décomposition duale. Comme connaissances préalables, le probleme dual de (5), et les
hypotheéses élémentaires sont présentés dans cette sous-section.

En utilisant la décomposition duale, le probleme dual et le Lagrangien de (5) sont

formulés comme:

g" = max g(0,A) = maxmin L(y, 0, ), (7)
1
L(y,0,7) = Sllyllz + 0" (Ay = b) + X" f(y), (8)

ot @ € R™ et A € R sont les variables duales associées a la contrainte (5b) et (5¢)

5
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respectivement.
Hypotheése 1. La solution du probléme (5) existe.

Puisque J (y) est convexe, I'Hypothese 1 est équivalente & la non vacuité de I’ensemble

réalisable du probleme (5).

Hypotheése 2. L’intérieur de l'ensemble {y | Ay = b, f(y) < 0} n’est pas vide, par
exemple, il existe y € R™ qui satisfait Ay = b, et f(y) < 0.

Remarque 1. Avec I’Hypothése 2, la condition de Slater pour le probléme (5) est satis-

faite, de sorte que la dualité forte tient pour le probléeme (4), d savoir J* = g*.

En général, le probleme (7) peut étre résolu de maniere itérative comme:

0" = 0" + ab AG*, (9a)
A= AF 4ok ANE, (9b)

ot lexposant k € N, est le compteur d’itérations, af, a5 € Ry sont les tailles de pas,
AG* € RV et ANF € RV™ sont les directions de recherche associées a 0% et A* respec-
tivement.

Notons que (7) formule simplement 1'expression générale de A, dont la non négativité
au cours de l'itération est assurée soit par max{0, \* + a5AN¥} ou un critére de sortie
spécifique (sinon, g(6%, A*) est non borné ci-dessus), qui sera spécifié lorsque la méthode

itérative déterminée est utilisée.

Remarque 2. Soit (0*,X*) la solution du probléme (7), on sait [6] que sous certaines
conditions de of, o (par exemple, régle de minimisation limitée, régle d’Armijo, etc.), et
A% ANF (par exemple, direction réalisable, direction de descente, direction la plus raide,

etc.), les séquences {0%} et {\*} convergent vers 8* et X* respectivement.

Deux approches principales

En bref, les méthodes itératives et analytiques sont deux approches principales pour
résoudre le probleme d’optimisation convexe (5).
La méthode itérative a été étudiée pour la premiére fois en 1956 par Frank et Wolfe [20],

et a progressé au cours des dernieres décennies en combinaison avec la décomposition duale
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et les méthodes d’optimisation non linéaire et convexe générale [41], qui se répartissent

principalement en 2 classes: la méthode du premier ordre et la méthode du second ordre.

La méthode du premier ordre possede souvent un taux de convergence linéaire, dans
laquelle le gradient ou le sous-gradient des fonctions objectif et contrainte est utilisé pour
former la direction de recherche, notamment la méthode du gradient [2], la méthode du
sous-gradient [6], la méthode du gradient conjugué [57], etc. En vertu de sa simplicité de
mise en ceuvre, de son insensibilité au changement de dimension et de la simplicité du
calcul de la direction de recherche, la méthode du premier ordre est souhaitable pour les

processus itératifs, en particulier pour les structures distribuées.

La méthode du second ordre, ou le gradient du second ordre des fonctions objectif et
contrainte est utilisé pour former la direction de recherche, a un taux de convergence beau-
coup plus rapide (généralement quadratique) mais a une mise en ceuvre plus compliquée,
par exemple la méthode de Newton [29], la méthode quasi Newton [6], la méthode de Gauss
Newton [64], etc. Sa convergence rapide, généralement de plusieurs dizaines d’itérations,
peut atteindre une précision extrémement élevée, ce qui lui confere une priorité élevée

pour étre employée a toutes sortes de problemes d’optimisation convexe.

Les méthodes analytiques permettant de résoudre le probleme (5) avec (5c) étant
linéaires, dit optimisation quadratique linéaire sous contraintes, peuvent étre classées en

deux catégories : les méthodes numériques et les méthodes géométriques.

La méthode numérique, utilisant la programmation quadratique multiparamétrique
(mp-QP) [1], a été initialement proposée dans [5], ou I’état initial était considéré comme
les multi-variables pour former une cartographie hors ligne en partitionnant son espace
euclidien en régions critiques voisines. Cela s’obtient en deux étapes: premierement, ré-
soudre une programmation linéaire basée sur la condition de Karush-Kuhn-Tucker (KKT)
pour un polyedre avec un point de départ faisable donné; deuxiemement, visiter le coté
opposé d'une frontiere du polyedre (hyperplan) une par une pour former d’autres régions
critiques.

De nombreuses recherches, liées a la méthode numérique analytique, ont été dévelop-
pées soit pour étendre son champ d’application, soit pour améliorer son efficacité, notam-
ment la réduction de la partition inutile de la région critique [61], les cas de qualification
des contraintes d’'indépendance non linéaires et les cas de hessian semi-défini [60], trans-
fert optimal de I’ensemble actif dans I’horizon de prédiction N — 1 a N [37] [36], élagage
de l'ensemble infaisable pendant la partition de la région critique [26], utilisation de la

technique de traversée de graphe sans exigence de nondégénérescence [46]. I convient de

7
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noter qu’en pratique, visiter entierement toutes les régions prend énormément de temps
et épuise la mémoire, méme pour un probleme de taille moyenne [33], et la propriété "er-
godique" de la visite de la région critique limite son applicabilité uniquement aux systemes
de petite taille [63].

La méthode géométrique, proposée dans [56], tire parti de la propriété géométrique
des QP pour construire un ellipsoide centré sur la solution optimale sans contrainte,
grace auquel la solution souhaitée est trouvée au point le plus proche dans chaque région
partitionnée par ’hyperplan et ses normales. Cependant, cette méthode est limitée aux
cas de contraintes en boite.

Du §2 au §5, plusieurs méthodes différentes, dont la méthode du premier ordre, la
méthode du second ordre et la méthode analytique numérique, seront appliquées pour
résoudre le probleme (5), en fonction des différentes configurations et hypotheses. Une

revue de littérature plus détaillée sera donnée au début de chaque chapitre.

La motivation et principales contributions

La motivation

Un fait universel mais pessimiste concernant presque tous les types de méthodes itéra-
tives est que l'optimalité et la faisabilité, en termes de probléeme primaire (5), ne sont
garanties que dans la limite des itérations lorsque (9) est appliqué [8]. Par conséquent,
d’un point de vue arithmétique (le processus itératif doit se terminer dans un nombre
fini d’itérations, sinon aucune solution n’est atteinte) et pratique (toutes les simulations
et applications préferent que le temps de résolution soit le plus court possible), il est
obligatoire d’appliquer une condition d’arrét lors de la mise en ceuvre de (9).

Puisque la solution obtenue par une telle condition n’est pas assurée d’étre optimale,
la motivation de cette these est d’accélérer la fin du processus itératif (9) et de fournir des
solutions qui peuvent satisfaire les criteres prédéterminés, ce qui est réalisé en exploitant
la structure temporelle du probleme (5) montré dans (6) et la caractéristique MPC que

seule la premiere étape de la séquence de controle est appliquée au systeme.

Les principales contributions

Les principales contributions de cette these sont énumérées ci-dessous:
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1. des nouveaux traitements pour accélérer la terminaison du processus itératif, y
compris 2 algorithmes proposés dans le §2 pour réduire la complexité et améliorer

I’efficacité pendant les itérations ;

2. des nouvelles conditions d’arrét pour garantir la sous-optimalité, notamment la con-
dition d’arrét basée sur le gradient proposée dans le §3, et la condition d’arrét basée
sur 'identification de I’ensemble actif proposée dans le §5, ou la preuve mathéma-
tique de la borne inférieure de la sous-optimalité est

donnée ;

3. des nouveaux traitements pour assurer la faisabilité, notamment le mécanisme
de projection proposé dans le §3, 'approche basée sur la programmation conique

proposée dans le §5 ;

4. des conditions d’arrét améliorées avec garantie de sous-optimalité et de faisabilité
pour MPC (la caractéristique MPC selon laquelle seuls les composants de la pre-
miere étape de la séquence de contrdle sont appliqués au systéme est exploitée), y
compris la condition d’arrét basée sur le gradient proposée dans le §3, et le critere

basé sur la condition KKT modifiée proposé dans le §4.

Le contour

Apres avoir présenté 'introduction générale de la these dans ce chapitre, les techniques
de réduction des itérations requises dans une MPC distribuée sont illustrées dans le §2,
ou la limite de sous-optimalité est démontrée pour deux nouveaux algorithmes proposés.
Dans le §3, les conditions d’arrét de sous-optimalité basées sur le gradient sont constru-
ites pour I'horizon de prédiction complet, et une projection ciblée de premiere étape est
proposée pour produire une solution faisable et garantie de sous-optimalité. Dans le §4,
la condition d’arrét de la sous-optimalité de la premiere étape basée sur la méthode de
point intérieur dual primal est démontrée pour le probleme MPC avec des contraintes
d’inégalité convexes générales. Le §5, qui sort un peu du cadre de MPC, décrit la situ-
ation de 'optimisation quadratique générale avec contraintes linéaires. Dans le §5, une
condition de sous-optimalité intégrant la programmation du cone est congue pour générer
des solutions réalisables avec une garantie de sous-optimalité, ce qui permet une termi-
naison plus rapide du processus itératif. Une feuille de route est représentée a la Fig.
1, ou une image globale de l'itinéraire et des caractéristiques de ’avancement de chaque

chapitre est donnée.
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La motivation : accélérer
la fin du processus itératif

Les heuristiques permettant de réduire le nombre
d'itérations

Le systeme distribué
La dynamique découplée
L'élimination des oscillations des variables duales

e De ladynamique découplée a la dynamique de couplage
e De lataille de pas heuristique a la taille de pas optimale

Optimisation La structure d'itération distribuée :
, La dynamique de couplage
reSUItant Pour la séquence compléte et la premiére étape : |
d u M PC condition d'arrét de sous-optimalité, projection
assurant la faisabilité. |

e Incluant les contraintes d'inégalité
e De la méthode du premier ordre a la méthode du second
ordre

La taux de convergence quadratique

Les contraintes générales d'inégalité convexe

La dynamique de couplage

Pour la séquence compléte et la premiére étape :
condition d'arrét de sous-optimalité (sous infaisabilité
bornée)

La faisabilité absolue et la sous-optimalité absolue avec

bornée

I
| L'optimisation des contraintes d'inégalité linéaire |
| quadratique |
| 7 7 I Combiner la méthode du gradient et la programmation
| générale avec e |

Contraintes e la condition d'arrét de sous-optimalité avec garantie de |

| L. faisabilité
| ||nea|res o |a garantie d'itérations finies pour la sous-optimalité |
I

Figure 1 — La structure et la feuille de route technique de la these

Les fleches vers le bas indiquent le sens de I’évolution du chapitre précédent (ou heuristique
générale) vers le chapitre suivant. La case a droite de chaque fleche donne la principale amélio-
ration ou généralisation du chapitre ci-dessous par rapport au chapitre précédent. La case rem-
plie en bleu sous chaque chapitre indique les principales caractéristiques du probleme ou de la
méthode qui y figurent.
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Dans cette these, comme chaque chapitre s’attaque a une forme spécifique de probleme
(5) (caractérisé par une (5b) ou (5¢) plus simplifiée ou plus généralisée) en employant
différentes méthodes (méthode du premier ordre ou du second ordre, structure centralisée
ou distribuée), la bréve introduction de chaque chapitre est présentée ici, y compris la
différenciation du probléme, le savoir-faire de la technique proposée et les contributions
exactes. Ainsi, le lecteur peut avoir un apercu de l'essence de chaque chapitre sans avoir

a creuser dans les détails.

§2: La réduction dynamique de P’exigence d’itérations dans une
MPC distribuée

Le §2 traite d’un cas particulier du probleme (5), ou aucune interaction de la dy-
namique entre les sous-systemes n’est considérée, c’est-a-dire que la dynamique est décou-
plée. En outre, les contraintes d’inégalité rencontrées dans le §2 sont une forme spécialisée
de (5¢), qui se compose de contraintes d’inégalité locales et globales. Ces dernieres sont
en outre considérées comme étant séparées en composantes de chaque sous-systeme.

Le §2 commence par une initiative visant a réduire le nombre d’itérations dans la réso-
lution du probléme résultant de MPC distribuée. A cette fin, Palgorithme de fixation dy-
namique des multiplicateurs de Lagrange (DLMFA) est proposé en fixant continuellement
la valeur des multiplicateurs de Lagrange, et 'algorithme de dimensionnement dynamique
des problémes d’optimisation locale (LOPDSA) est proposé en réduisant continuellement
la taille du probleme d’optimisation locale pendant les itérations par une réduction de
I’horizon de prédiction original. Les algorithmes proposés améliorent les performances de
la méthode Uzawa en exploitant les contraintes séparables par étapes dans le contexte
MPC. Ces améliorations découlent du comportement particulier des multiplicateurs de
Lagrange et de leurs fluctuations sur I’horizon de prédiction. Des expériences numériques
montrent que le nombre d’itérations et le temps de calcul de LOPDSA sont considérable-

ment réduits par rapport a la méthode d’Uzawa.

§3: La terminaison accélérée basée sur la ¢ sous-optimalité pour

la MPC avec contraintes d’égalité

Le §3 est principalement basé sur la publication [17]. Dans le §3, le cas sans contrainte

d’inégalité du probleme (4) est considéré.

11
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La décomposition duale est un outil efficace pour traiter les MPC problémes, en par-
ticulier pour les MPC distribuées. Dans le §3, la limitation du nombre d’itérations est
proposée en arrétant le processus itératif une fois que la solution est suffisamment proche
de la solution optimale. Les concepts de sous-optimalité primale et duale sont introduits,
et les mécanismes de projection et les conditions d’arrét sont dérivés, respectivement. En
exploitant la structure particuliere du probleme MPC, ou seules les entrées de la premiere
étape sont appliquées au systeme, une condition d’arrét e sous-optimale plus rapide est
congue, se concentrant sur les composants uniquement a la premiere étape de ’horizon
de prédiction, réduisant ainsi davantage le nombre d’itérations nécessaires. Au-dela des
preuves théoriques développées, l'efficacité de la méthode, tant en temps de calcul qu’en

nombre d’itérations, est illustrée par diverses simulations.

§4: La terminaison accélérée basée sur la ¢ sous-optimalité pour

la MPC en utilisant la méthode primale duale de points intérieurs

Dans le §4, on consideére une structure séparable par étapes des contraintes d’inégalité
(1.3).

L’utilisation de la méthode primale duale de points intérieurs pour le probleme généré
par la MPC afin de résoudre une solution sous-optimale est une approche mature avec
des performances satisfaisantes. Dans le §4, la structure temporelle de la dynamique et
des contraintes d’inégalité du systeme est exploitée. Un critere d’arrét axé sur la pre-
miere étape avec la garantie d’'une sous-optimalité prédéfinie est proposé. La méthode qui
integre ce nouveau critere est supérieure en nombre d’itérations a la méthode de points in-
térieurs primale et duale existante. En plus des preuves mathématiques fournies, diverses

simulations illustrent ’efficacité et efficience de la méthode.

§5: La terminaison accélérée basée sur la ¢ sous-optimalité pour

P’optimisation quadratique avec contraintes linéaires

Dans le §5, une forme plus généralisée de (5b) est considérée, ou aucune dynamique
d’états ou d’entrées n’est spécifiée, mais ou les contraintes d’égalité linéaires générales
sont imposées aux variables. En particulier, pour les contraintes d’inégalité (3), la forme
linéaire générale non structurée est considérée.

De nombreuses méthodes utilisent la décomposition duale pour résoudre 'optimisation

quadratique avec contraintes linéaire. Un mécanisme itératif assure la convergence vers

12
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la solution optimale dans toutes ces méthodes. Cependant, la convergence est seulement
garantie dans la limite des itérations. Dans le §5, un degré de sous-optimalité est in-
troduit pour terminer le processus itératif plus rapidement tout en assurant le respect
des contraintes. Une des clés principales de ce travail est 'identification des contraintes
d’inégalités actives pendant le processus itératif. En plus des preuves mathématiques

fournies, diverses simulations illustrent I'efficacité de la méthode proposée.

Conclusion

Sous la condition d’arrét par étapes dans une MPC distribuée, les deux algorithmes
proposés dans le §2 peuvent réduire le nombre d’itérations requises en fixant la valeur des
multiplicateurs de Lagrange et en abandonnant les étapes satisfaisantes dans le probleme
de la MPC, respectivement.

Dans le cadre d'une MPC distribuée avec contraintes d’égalité et dynamique de cou-
plage, I’algorithme de projection & horizon de prédiction complet proposé dans le §3 pos-
sede un critere intégré basé sur le gradient et un mécanisme de projection pour garantir
la sous-optimalité et la faisabilité. Un algorithme de projection focalisé sur la premiere
étape avec garantie de sous-optimalité et de faisabilité a été proposé dans le §3, qui peut
réduire considérablement le nombre d’itérations et le temps de calcul en répondant a la
méme exigence de sous-optimalité.

Dans le cadre d’'une MPC avec une dynamique de couplage et des contraintes d’inégalité
convexes séparables par étapes, le critere ciblé de premiere étape dans le respect de la
sous-optimalité sous infaisabilité bornée pour la méthode de points intérieurs duale pri-
male a été proposé dans le §4. L’algorithme qui en résulte s’est avéré supérieur en ce qui
concerne le nombre d’itérations nécessaires, tant sur le plan théorique qu’expérimental.

Pour l'optimisation quadratique avec constraintes linéaires (pas nécessairement MPC),
en combinant la technique d’identification de 1’ensemble actif et la méthode du gradient
général, une méthode proactive a été proposée pour fournir la solution optimale dans le
§5. Un algorithme sous-optimal a été proposé dans le §5 basé sur la programmation du
cone pour accélérer la fin du processus itératif en générant des solutions réalisables avec
une sous-optimalité garantie. La borne inférieure de la sous-optimalité a également été
démontrée.

Les travaux futurs concernant les algorithmes et les techniques proposés dans cette

these peuvent étre abordés dans les directions suivantes : étendre I'application des tech-
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niques proposées, étudier en profondeur les propriétés des algorithmes proposés dans la
théorie du controle et de I'optimisation, combiner les techniques proposées avec de nou-

velles méthodes.
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CHAPTER 1

INTRODUCTION

1.1 Background

Model predictive control (MPC) is an optimal control strategy arisen in late 1970s
originated from Model Algorithmic Control (MAC) [52] [53] and Dynamic Matrix Con-
trol (DMC) [16]. Its early applications, emerged in chemical process industries in 1980s,
are due to its simplicity of the algorithm and ability to handle multi variables [22] [11].
Several notable milestones in MPC developments since then are: adaptive control initiated
Generalized Predictive Control (GPC) [15] for mono variable process, state space formu-
lation for receding horizon implementation [22], feasibility circumvention through slack
variables [72] and related verification [55], stability proof of constrained MPC controllers
[51] [54] [70] [34].

Thanks to the capability of handling complex dynamics and constraints [33] [10] [30]
in delivering optimal control strategy, MPC has gained increasing popularity in massive
industries over the last few decades, e.g. expansive applications in process and chemical
industries [49], significant growth in aerospace and automotive industries [11], emerging
application in supply chain management [14] [47], economics [18] [27] and finance [48] [59].

MPC generates optimal control action for the current time instant while considering
the influence of future behaviors of the system. This is achieved by producing the optimal
control sequence based on a dynamic model, aiming at minimizing an objective function,
usually quadratic, over the next several control steps (called prediction horizon).

At each time step, typically, a quadratic optimization problem is formulated based on
the state of the current step, objective function, dynamic model, and constraints of inputs
and states (and outputs). A control sequence of prediction horizon length is obtained by
solving such an optimization problem, and only the first step inputs are applied to the
system. The above formulation and solving process are repeated after each sampling
interval, and the name of model predictive control is thus originated from the feature

of taking into account the future time steps of the controlled system while deciding the
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control action of the current step.

Today, the research enthusiasm, which has been granted to industrial adoption of
the technologies in the 1980s and theoretical aspects including state space interpretation
and stability proofs in the 1990s, is shifted towards efficient implementation and online

computation [30], which is how to solve the constrained quadratic optimization efficiently.

In practice, however, the optimal solution for the resulting optimization problem, with
requirements to fulfill constraints while minimizing the objective function, is sometimes
intractable to obtain smoothly. Various factors may account for that, e.g., prohibition
of centralized optimization manner by distributed structure or confidentiality concern,
requirement of rapid sampling rate by certain applications, the limit of memory or com-
puting power of control units, to name a few. Among the efficient methods to solve the
problem, Lagrange multipliers based dual decomposition has long been appealing for its
capability in relaxing constraints and integrating the subsequent accessible iterative solv-
ing process. The critical factors in the iterative process are step size, search direction, and

stopping condition.

The primary motivation of this dissertation is to generate "good enough" solution
(meeting the predefined stopping conditions or suboptimality requirements) of optimiza-
tion resulted from MPC faster (accelerated termination of dual decomposition based it-
erative process), which will be realized by exploiting the features of MPC strategy and
MPC optimization structure.

In the following section, the general MPC resulting optimization problem, its cor-
responding dual problem, and the iterative process will be formulated to establish the

mathematical foundation of this dissertation.

1.2 Mathematical preliminaries

In this section, the mathematical preliminaries of the MPC optimization will be pre-
sented, which will help the reader to form the necessary basis for the materials presented

later. Please refer to Nomenclature! for notations that appeared in this section.

1. The variables presented in Nomenclature are those appeared in §1, whose variations with accents
are used in later chapters to differentiate the meanings under distinct problem settings, e.g. A and A
denote Lagrange multipliers associated with inequality constraints in §2 and §5 respectively.
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1.2.1 General problem formulation

To bring up the problem formulation, the system to be controlled is first presented.

In this dissertation, the linear time invariant system considered is composed of m
subsystems with prediction horizon N € Ny, and characterized by coupling dynamics as

follow:

i=1
where z;(j) € R™ and w(j — 1) € R™ are states at step j and inputs at step j — 1
of [-th subsystem, A;; € R™*"% and Bj; € R™*™ are system matrix, and z;(0) = Z;,

z; € R™ is the initial state of [-th subsystem.

Aside from system dynamics, the generalized linear equality constraints of input and

state variables are also considered below:

m

ZAéxl(j)—i-iB;ul(j—l) = a;, (1.2)

=1
where Al € R Bl e R™>*™ and a; € R™.

In the sequel, convex inequality constraints are imposed on system inputs and states

as:
filx,u) <0, i=1,...,n, (1.3)

where u = (ul, ..., v} )7, w € RY™ nu = nuy + ... + nuy,, z = (2F, ... 25)", = €
RN nx = nxy + ... + nxy, for Vj =1,..,N, u; = (wi(5)7, ..., um())?, u; € R™,
;= (x1()", sz ()T, &; € R™, f; : RN x RN™ — R is convex, and i denotes the

i-th inequality constraint, making in total n inequality constraints.

The above mentioned system is governed by a MPC criterion, leading to the following

optimization problem:

J* = min J(u,x), (1.4)

)

s.t. (1.1),(1.2), (1.3).
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The MPC based quadratic objective function of problem (1.4) is defined as:

N
=>_Ji(uj-,x),
7j=1
T, ) = 3 (Ul — Dl + ()l )
=1 2
where RY. € SI"! and R}, € S are penalty matrix of state and input variables respec-
lj ++ 1j + p

tively.

To lighten the notation, problem (1.4) is reformulated in a compact form as:

J"=min J(y), (1.5a)
s.t. Ay = b, (1.5b)
f(y) <0, (1.5¢)

where y € R™, ny = N(nz +nu), y = (y{,...,y5)", f: RY — R” with f(y)
(f@)", . fuly)D) and Vi = 1,0, fily) = fi(z, u), Y = ( Lui )t Jy) =
Ujy|[%, R = blkdiag(R;, ..., Ry), R € Siy, R, = blkdlag(Rw R“) R~ c ST*”“, Rt =
blkdiag(Rs,, .., R%.), R € S, RY = blkdiag(RY,, .., R,), RY € S,

1],...7 1],..

The expression of A and b can be derived from (1.1) and (1.2) as

1 — X% Auai(0)

b= ; bl = : ; (16&)
— 2% Amii(0)

ai

by=|" |, forj#1, (1.6b)




1.2. Mathematical preliminaries

Ay Ay, O 0
A= L 5 , 1.6d
7Aoo A O ... 0 (1.6d)
o 0 0 0
T By B
B, = ’ ], 1.6e
! I B,, ... By, (1.6¢)
_Ajl. LAY B}. ... By

where b € R, A € R"*% n, = Nnzx +na; + ... + nay, V j = 1,...N, A; €
Rnetna;)x(netnu) = R ¢ Rnetnag)x(nztnu) g and I are matrix of elements 0 and iden-

tity matrix of proper size respectively.

1.2.2 Dual problem and general iterative process

The core of this dissertation is to terminate faster the iterative process based on dual
decomposition. As prerequisite knowledge, the dual problem of (1.5), and elementary
assumptions are presented in this subsection.

Using dual decomposition, the dual problem and Lagrangian of (1.5) are formulated

as:

g ax (6, A) = maxmin L(y, 0, A), (1.7)

BN

1
L(y,0.7) = Sllyllz + 0" (Ay — b) + X" f(y), (1.8)
where 8 € R™ and A € R} are the dual variables associated with constraint (1.5b) and
(1.5¢) respectively.
Assumption 1. [t is assumed that the solution of problem (1.5) exists.

Since J(y) is convex, Assumption 1 is equivalent to non emptiness of feasible set of
problem (1.5).

Assumption 2. [t is assumed that the interior of set {y | Ay = b, f(y) < 0} is not
empty, e.g., there exists y € R™ that satisfies Ay = b and f(y) <O0.

Remark 1. With Assumption 2, the Slater’s condition for problem (1.5) is satisfied, such
that the strong duality holds for problem (1.4), namely J* = g*.
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In general, problem (1.7) can be typically solved in a iterative manner as:

0"t = 0" + al AG*, (1.9a)
AP = AP ok ANF] (1.9b)

where the superscript k& € N is iteration counter, o, ok € R are step size, A@F € RV
and AN € RV™ are search direction associated with 8% and A* respectively.

Note that (1.7) simply formulates the general expression of A, whose non negativeness
during the iteration is ensured either by max {0, A\* + a5 AN*} or specific quit crite-
rion (otherwise, g(6%, A¥) is unbounded above), which will be specified when determinate

iterative method is used.

Remark 2. Denote (0%, X*) the solution of problem (1.7), it is known [6] that under
certain conditions of af, ok (e.g. limited minimization rule, Armijo rule, etc.), and AQ*,
AX* (e.g. feasible direction, descent direction, steepest direction, etc.), the sequences {6}

and {\*} can converge to @* and X* respectively.

1.3 Two main approaches

In brief, the iterative and analytical methods are two main approaches to solve MPC
resultant optimization problem (1.5).

The iterative method was first studied in 1956 by Frank and Wolfe [20], and has been
advanced over the last decades in combination with dual decomposition and methods for
general nonlinear and convex optimization [41], which mainly lies in 2 classes: the first
order method and the second order method.

The first order method often possesses a linear convergence rate, in which the gradient
or sub-gradient of the objective and constraint functions is used to form the search direc-
tion, including gradient method [2], sub-gradient method [6], conjugate gradient method
[57], etc. By virtue of simplicity implementation, insensitivity to dimension change, and
light burden in computing the search direction, the first order method is desirable for
iterative process (1.9), especially for distributed structure.

The second order method, where the second order gradient of objective and constraint
functions is used to form the search direction, is entitled to much faster convergence rate
(usually quadratic) but more complicated implementation, e.g. Newton method [29], quasi

Newton method [6], Gauss Newton method [64], etc. Its formidable rapid convergence,
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usually several tens of iterations [8] can reach extremely high accuracy, granting it a high

priority to be employed to all kinds of convex optimization problems.

The analytical methods to solve problem (1.5) with (1.5¢) being linear can be classified

into two categories: the numerical and geometrical methods.

The numerical method, using multi-parametric quadratic programming (mp-QP) [1],
was initially proposed in [5], where the initial state was deemed as the multi-variables to
form an offline mapping by partitioning its Fuclidean space into neighboring critical re-
gions. That is obtained via two steps: first, solve a Karush-Kuhn-Tucker (KKT) condition
based linear programming for a polyhedron with a given feasible starting point; second,
visit the opposite side of the polyhedron border (hyperplane) one by one to form other

critical regions.

A great deal of research, related to analytical numerical method, has been developed
either to extend its application scope or to improve its efficiency, including reduction of
unnecessary critical region partition [61], non linear independence constrains qualification
cases and semi-definite hessian cases [60], optimal active set transfer in prediction horizon
N —1to N [37] [36], pruning infeasible set during critical region partition [26], using graph
traversal technique with no nondegeneracy requirement [46]. It is worth noting that in
practice, entirely visiting all regions is hugely time-consuming and memory exhausting
even for medium size problem|33], and the "ergodic' property of critical region visit limits

its applicability only for small size system [63].

The geometrical analytical method, which was proposed in [56], takes advantage of
the geometry property of QP to construct an ellipsoid centered at the unconstrained
optimal solution, by which the desired solution is found at the nearest point in each
region partitioned by hyperplane and its normals. However, this method is limited to box

constraints cases.

From §2 to §5, several distinct methods, including the first order method, and the sec-
ond order method, will be applied to solve problem (1.5), depending on different configu-
rations and assumptions. A more detailed literature review will be given at the beginning

of each chapter.
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1.4 Motivation and main contributions

1.4.1 Motivation

A universal but pessimistic fact about almost all kinds of iterative methods is that
the optimality and feasibility, in terms of primal problem (1.5), are only guaranteed in
the limit of iterations when (1.9) is applied [8]. Consequently, from both arithmetical
(the iterative process must be terminated within finite iterations; otherwise no solution
is attained) and practical (all simulations and applications prefer the solving time to
be as short as possible) perspective, a stopping condition is compulsory to enforce in
implementing (1.9).

Since the solution obtained by such a condition is not ensured to be optimal, the
motivation of this dissertation is to accelerate the termination of the iterative process
(1.9) and deliver solutions that can satisfy the predetermined criteria, which is realized
by exploitation of the temporal structure of problem (1.5) showed in (1.6) and the MPC

feature that only the first step of control sequence is applied to the system.

1.4.2 Main contributions

The main contributions of this dissertation are listed as follows:

1. new treatments to accelerate termination of the iterative process, including 2 algo-
rithms proposed in §2 to reduce the complexity and enhance the efficiency during

iterations;

2. new stopping conditions to guarantee suboptimality, including gradient based stop-
ping condition proposed in §3, and active set identification based stopping condi-
tion proposed in §5, where the mathematical proof of suboptimality lower bound
is given;

3. new treatments to ensure the feasibility, including projection mechanism proposed
in §3, cone programming based approach proposed in §5;

4. the improved stopping conditions with suboptimality and feasibility guarantee for
MPC (the MPC feature that only the first step components of the control sequence
are applied to the system is exploited), including gradient based stopping condition

proposed in §3, and modified KKT condition based criterion proposed in §4.
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1.5. Outline

1.5 Outline

After presenting the general introduction of the dissertation in §1, the techniques of
reducing the iterations requirement in a distributed MPC are illustrated in §2, where the
bound of suboptimality is demonstrated for two newly proposed algorithms. In §3, gradient
based suboptimality stopping conditions are constructed for the full prediction horizon,
and a first step focused projection is proposed to produce feasible and suboptimality
guaranteed solution. In §4, the first step focused suboptimality stopping condition based
on the primal dual interior point method is demonstrated for MPC problem with general
convex inequality constraints. §5, taking a step out of the MPC territory, delineates the
situation for general linear constrained quadratic optimization. In §5, a suboptimality
condition incorporating cone programming is designed to generate feasible solutions with
suboptimality guarantee, enabling faster termination of the iterative process. A road map
is depicted in Fig. 1.1, where an overall picture of each chapter’s advancement route and
features is given.

In this dissertation, as each chapter tackles with a specific form of problem (1.5) (char-
acterized by more simplified or more generalized (1.5b) or (1.5¢)) by employing different
methods (the first order or second order method, centralized or distributed structure), the
brief introduction of each chapter is presented here, including the problem differentiation,
the know-how of the technique proposed and exact contributions. As such, the reader can

catch a glimpse of the essence of each chapter without digging deep into details.

§2: dynamic reduction of the iterations requirement in a dis-
tributed MPC

In §2, a special case of problem (1.5) is dealt with, where no interaction of dynamics
among subsystems is considered, say the dynamics is decoupled. §2 is mainly based on
publication [17]. In addition, inequality constraints occurred in §2 are specialized form of
(1.5c), which consists of local and global inequality constraints. The latter moreover is
considered to be separated into components of each subsystems.

§2 starts with an initiative to reduce the iteration number in solving the problem
resulted from distributed MPC. To this aim, dynamic Lagrange multipliers fixation al-
gorithm (DLMFA) is proposed by continually fixing the value of Lagrange multipliers,
and local optimization problems dynamic sizing algorithm (LOPDSA) is proposed by

continually reducing the size of local optimization problem during the iterations through

23



Chapter 1 — Introduction

The motivation: to accelerate
termination of iterative process

Heuristics of reducing the iterations requirement

Distributed system
Decoupled dynamics
Eliminating dual variables oscillations

e From decoupled to coupling dynamics

e From heuristics step size to optimal step size
Chapter 3

Optlmlzatlon Distributed iteration structure
resulted Coupling dynamics
For full sequence and first step: suboptimality stopping
from MPC condition, projection ensuring feasibility
e Including inequality constraints
e From first order method to second order method
Chapter 4
e Quadratic convergence rate
e General convex inequality constraints
e Coupling dynamics
e For full sequence and first step: suboptimality stopping
condition (under bounded unfeasibility)
r-------"-"-"-="-—=-——="—-—-=-- ____________l
| e Absolute feasibility and suboptimality with linear |
| General linear Inequality constraints
. Chapter 5 |
| constrained |
| quadratic e Combine gradient method and cone programming
e Suboptimality stopping condition with feasibility |
|  optimization guarantee |
| o Finite iterations guarantee for bounded suboptimality
L~ oo

Figure 1.1 — Structure and technique road map of the dissertation

The downward arrows stand for evolution direction from the chapter above (or general heuristics)
to the chapter below. The box at the right of each arrow means the main improvement or
generalization of the chapter below compared to the chapter above. The blue-filled box under
each chapter indicates the main features of the problem or method that appeared therein.
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an original prediction horizon reduction. The proposed algorithms improve the Uzawa
method’s performance by exploiting the step separable constraints in the MPC context.
These improvements stem from the particular behavior of the Lagrange multipliers and
their fluctuations over the prediction horizon. Numerical experiments show that the iter-
ation number and the computation time of LOPDSA are significantly reduced compared
to the Uzawa method.

§3: ¢ suboptimality based accelerated termination for equality
constrained MPC

In §3, the equality constrained case of problem (1.5) is considered.

Dual decomposition is an efficient tool in dealing with MPC problems, particularly for
distributed MPC. In §3, limiting the iteration number is proposed by stopping the iterative
process once the solution is close enough to the optimal one. The concepts of primal and
dual suboptimality are introduced, and projection mechanisms and stopping conditions
are derived, respectively. By exploiting the particular structure of the MPC problem where
only the first step inputs are applied to the system, a faster e suboptimality stopping
condition is devised. Focusing on components only at the first step of the prediction
horizon, the proposed algorithm can further reduce the iteration number needed. Beyond
the theoretical proofs developed, the method’s efficiency, both in computation time and

iteration number, is illustrated by various simulations.

§4: € suboptimality based accelerated termination for MPC using

primal dual interior point method

In §4, a step separable structure of the inequality constraints (1.3) is considered.

Employing primal dual interior point method to MPC generated problem to solve for
a suboptimal solution is a mature approach with satisfying performance. In §4, the step-
based structure of dynamics and inequality constraints of the system is exploited. A first
step focused stopping criterion with the guarantee of predefined suboptimality is proposed.
The method that integrated this newly criterion is superior on iteration number than
the existing primal dual interior point method. In addition to the mathematical proofs

provided, various simulations illustrate the effectiveness and efficiency of the method.
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§5: € suboptimality based accelerated termination for linear con-

strained quadratic optimization

In §5, a more generalized form of (1.5b) is considered, where no dynamics of states or
inputs are specified, but the general linear equality constraints are imposed to variables.
In particular, for inequality constraints (1.3), the general unstructured linear form is
considered.

Many methods use dual decomposition to solve linear constrained quadratic opti-
mization problems. An iterative mechanism ensures the convergence towards the optimal
solution in all these methods. However, the convergence is only guaranteed in the limit of
iterations. In §5, a degree of suboptimality is introduced to terminate the iterative process
faster while ensuring the fulfillment of constraints. One of the primary keys of this work is
identifying the active inequalities constraints during the iterative process. In addition to
the mathematical proofs provided, various simulations illustrate the effectiveness of the

method proposed.
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CHAPTER 2

DYNAMIC REDUCTION OF THE
ITERATIONS REQUIREMENT IN A
DISTRIBUTED MPC

In this chapter, a distributed system structure, consisting of decoupled dynamics and
separable global inequality constraints, is considered. The resulting MPC problem is first
solved by the Uzawa method, of which the persistent oscillation of Lagrange multipliers
during the iterations is then investigated. Two algorithms, aiming at eliminating the
fluctuate behaviors of Lagrange multipliers, are proposed to terminate the iterative process

faster.

2.1 Introduction

Computational techniques and algorithms have been widely studied to improve the
Uzawa method’s performance or extend its applicability. Among all these works, a fun-
damental one is the Augmented Lagrangian (AL) method[25], for which an additional
quadratic penalty is introduced to tackle the relaxed constraints. By doing so, the dual
problem iteration is robustified. The Alternating Direction Method of Multipliers (ADMM)
is derived by applying the quadratic penalty in a distributed context, which has gained
popularity in recent years due to its better feasibility and rapid convergence[7][62]. In
various circumstances, it also has been studied for limited communication among network
nodes[38] and hierarchical structure[9)].

Other researches, focused on the decomposition method and gradient, have been car-
ried out as well for distributed MPC. As in layering decomposition, nodes of a network are
partitioned to form several layers, each of which is in charge of an optimization subprob-
lem and thus coordinates with interface variables[13]. Combined with dual decomposition

and accelerated gradient method, the algorithm proposed in [24] obtains a much faster
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convergence rate compared to regular gradient method.

In this chapter, the goal is to reduce the iteration number required in iterative process
based on the particular structure of the MPC problem. In detail, it can be noticed that
there is a precise sequencing in the convergence of Lagrange multipliers, which is then
exploited to propose a continuous reduction in the complexity of local problems during
the iterative process. The proposed strategy achieves a bounded suboptimal solution with
a significant reduction of computation effort compared to the Uzawa method.

This chapter is organized as follows. In §2.2, the system and resulting optimization
problem are formulated. §2.3 presents the behavior of the Lagrange multipliers during
the Uzawa method. §2.4 proposes DLMFA and LOPDSA to reduce the number of iter-
ations and study their suboptimality. Experiments and results are presented in §2.5 and

conclusions are given in §2.6.

2.2 Problem statement

In this section, the dynamics and constraints of system considered are presented first,

the resulting MPC problem is formulated subsequently.

2.2.1 Centralized problem statement

The decoupled dynamics of the system is:
l’l(]) = Allﬁl(]. — 1) + Bllul(j — 1), [ = 1, .,y ] = 1, ...,N, (21)

where z;(j) € R™ and u;(j —1) € R™ are states at step j and inputs at step j — 1 of I-th
subsystem, A, € R™>"* B, € R™*™u are system matrix, and x;(0) = x;, £, € R™™ is
the initial state of I-th subsystem, and denote xy = (x1(0)7, ..., 2,,(0)T)T.

The local and global inequality constraints imposed on states and inputs are respec-

tively as: forVj=1,... N, [ =1,...,m,

f]l(xl<])>ul(j - 1)) <0, (2'2)
S (), i — 1)) < 0, (2.3)

where f]l c R x R™ — R™ ) fy o R x R™ — R7 and for the consistency of total

28



2.2. Problem statement

inequality constraints number defined in (1.3), it holds that N(mn; + ny) = n.
With decoupled dynamics (2.1), local inequality constraints (2.2), and global inequality
constraints (2.3), the resulting centralized problem is formulated as below.

J* =min J(u,x), (2.4)

u,x

st (2.1),(2.2), (2.3).

Here, objective function J(u,x) can be decomposed into local parts as:

J(’U,,.’B) = Z\Z(Uth);
=1
N 1 )
T, X1) = 3 5 ([l = DIy, + [2e(5) 7).
j:l

where U; = (u;(0)7, ..., (N — 1)T)T, and X; = (2(1)7, ..., 2 (N)T)T.

2.2.2 Dual decomposition method and distributed structure

Due to global constraints (2.3), problem (2.4) cannot be solved in a distributed manner
directly. Hence, the Lagrange multipliers associated with (2.3) is introduced to form the

Lagrangian in a distributed structure as follows:

Z (U, X1, A), (2.5)

N
Li(Uy, X1, A) = (U, X)) Z M fila(5), w(j — 1)), (2.6)

where A = (AT, .., AL)7, and A; € RY is the Lagrange multiplier associated with con-
straints (2.3) at step j.

The Lagrangian dual functions can be introduced under constraints (2.1) (2.2):

G =3 G, (2.7)

gl<A) = mg? Ll(Ul,Xl,X), (28)



Chapter 2 — Dynamic Reduction of The Iterations Requirement in A Distributed MPC

With abovementioned dual functions, the dual problem of the centralized MPC problem

can be defined as:

G* = max G(N), (2.9a)
sit. A > 0. (2.9b)

Fit Remark 1 into the notation of this chapter, it gives:
g =J. (2.10)

Remark 3. Based on Assumption 2 and the fact that constraints (2.1) and (2.2) of prob-
lem 2.4 are completely local for each subsystem, given any feasible X the local dual function
Gi(X) can be consequently solved as independent convex minimization of Ly(Uy, X;, X) with
corresponding solution satisfying (2.1) and (2.2), for which there are abundant mature
methods[6][8] and solvers (MOSEK, CPLEX, etc.) to address. As a result, constraints(2.1)
and (2.2) are ezempted from formulating Lagrangian (2.5) (2.6), which on one hand helps
to maintain a concise notation of this chapter, on the other hand would not degenerate

the performance and demonstration of aftermentioned algorithms.

2.3 Uzawa algorithm and its behavior

2.3.1 Uzawa algorithm

At the start of (k + 1)-th iteration, (u*,a* A¥) is known from k-th iteration. The
Lagrange multipliers can be iterated along their subgradient direction in search of the

maximum of Lagrangian dual function as:
AL — AP L oF f (2F | ub), (2.11)

where o” is the step size in (k + 1)-th iteration, and

flat ub) = <<liﬁ<xf<1>,uf<o>>>% <liﬁ<xf<zv>,uf<zv — 1))
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Then, for [-th subsystem:

gl(j\kﬂ) = min Ll(Ul,Xl,j\k“), (212)

U, Xy
st (2.1),(2.2).

By solving (2.12), U™ is obtained for each subsystem.
Generally, the stopping conditions C of Uzawa algorithm could be formulated in the

form as:
c=(r,..ciHT, (2.13)

And for j =1,..., N, the C; could be typically defined as the logical conjunction of these
3 inequality below:

I = Ao < e, (2.14)
=1
[ uf T — b < e, (2.16)

where €y, € Ryg, ¢, € Ryy and ¢, € R.( are respectively thresholds of dual variable

convergence, global constraints fulfillment and primal variable convergence.

Algorithm 1 Uzawa Algorithm

Initialize @0, °, u® and A°.

Set k=0

while C is not satisfied do
Update A**! by (2.11)
solve G(AF+1) xF*1 and u**! by xy, A
k+—k+1

end while

return G(A**!), zF! and uFt!

2.3.2 Behavior of the Uzawa algorithm during the iteration

Applying the Uzawa algorithm, it can be constantly observed that the Lagrange mul-

tipliers of the first few steps in the prediction horizon always converge faster than the
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later steps, whose convergence is delayed by visible fluctuations as illustrated in Fig. 2.1.
The fact is that the convergence of Lagrange multipliers is sequential, based on which

more efficient algorithms can be proposed.

First, the compact expression of local objective function according to problem (2.4) is
formulated as:

(O = 11Xl + U, (2.17)

Xl = E[El(O) + ElUl7 (218)

where Ry € SY™, R} = blkdiag(R%, ..., Rfy), Ry € SV Ry = blkdiag(RY,, ..., Riy) ,
Fy € RNmeona and Fy = (AL (AT, .., (AT, B € RNmeoxNnu - and

By 0 e 0
AyB B 0
B = ll‘ i i ’
: . 0
Ay "By -+ AuBy B
In accordance, (2.18) can be rewritten as:
Q]l(l) All Bul(O)
x] 2 A2 1-: Al_iBllulj
| _ 4], ), | S BmG)
z(N) A SN AN T Bu(5)

Among the input variables of all time steps, u;(0) has clearly the highest impact on (2.17)
based on the lower triangular structure of £ y in (2.18).
Next, introduce L(w,A) = %, Li(U;, X), and Li(U;, A) = PO Li;(U;, A) can be

presented with step separable structure as:

Lia (U, A) Ji1(U) AT fi(w(0))
: = Lo+ : , (2.19)
Lin(U,N)|  [Jn@)] [ AL filw(N —1))

where for [ = 1,...,m,and j = 1, ..., N, by substituting (2.1), fi(w,(j—1)) = fi(z:(5), w(j—
1)), fi: R™ — R"_ and denote fi(U;) = ((fi(w(O))7, ..., (filu (N —1)))7T.
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Given that u(j — 1) at each step in fy(2;(j), w(j — 1)) possess the same weight,
obviously the input variables of the first time step, u;(0), account the highest weight in

local Lagrangian among input variables of all time steps.

=1 2 73 ——j=4 5

DMPC Lagrangian multiplier evolution, N=5

H
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Number of iterations

Figure 2.1 — Typical Lagrange multiplier evolution with Uzawa algorithm with N =5

2.4 Dynamic reduction of the iterations requirement
in a distributed MPC

Based on the analysis and conclusions drawn in §2.3, there is an incentive to eliminate

the fluctuations of Lagrange multipliers in iterations and accelerate the convergence by
features of distributed MPC.
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2.4.1 Dynamic Lagrange multipliers fixation algorithm

As a start, the idea of fixing the value of Lagrange multipliers of earlier satisfied
steps along the prediction horizon is proposed to remove the fluctuations of steps already
satisfied, which can mitigate the possible disturbance caused by these fluctuations to later
steps’ iteration.

DLMFA is introduced hereinafter by the following rules:

1. the fixation should always start from the first step in an active sequence (an active
sequence is the remaining part of the prediction horizon whose first some steps are fixed
before);

2. the fixation should proceed continually from the first to the last step in an active

sequemnce.

Algorithm 2 Dynamic Lagrange Multipliers Fixation Algorithm (DLMFA)

1: Initialize @y, x°, u® and A°.

2: Set k=0and d; = 0.
> d; is the number of steps of Lagrange multipliers has been fixed before the current
iteration

3: while C(g,41.n) is not satisfied do

4 if d; > 0 then

5 A € Al

6: end if .

T A?{Z-li-lzN) = Al 1wy OF Fan (28, ub)

8 solve G(AF+1) xF*1 and u**! by xy, A+

9: if C(d,41:d,+4) 1s satisfied and d > 0 then

10: dy < dy +d > update d; when new fixation of Lagrange multipliers happens

11: end if

12: k< Fk+1

13: end while

14: return G(AFHY), F+! and wFt!

Nevertheless, facts should be noticed that supposing 5\]- is fixed, while u; is still served
as variables in solving G;(X) and its value will definitely be changed due to later iterations,
making the conditions (2.15)(2.16) might be failed in the final solution. As a result, this
may cause worse suboptimality. Consequently, a better proposal is to "fix" u; as well once
5\j is fixed during the iteration, which can be achieved by dynamically redefining the local

optimization problem’s size and will be demonstrated in §2.4.2.
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2.4.2 Local optimization problems dynamic sizing algorithm

Algorithm 3 Local Optimization Problems Dynamic Sizing Algorithm (LOPDSA)

1: Initialize xy, °, u® and A°.

N

10:
11:
12:
13:
14:
15:
16:
17:

Set k=0 and d; = 0. > d; is the number of steps has been dropped before the
current iteration

while C(4,11.n) is not satisfied do

k
A +}r1 N) A(dt+1 Ny T f(dt+1 N)(m(dt-i-l N> ](Cdt+1:N))

solve G(A(/) L) T ’(“;;HN and u? (hi1:vy DY Ty A
if Cla,41:d,+d) 18 satlsﬁed and d > 0 then
save results: (g, +1.d,+d) < u@il:dﬁd)
get z;(d; + d) by (2.1), then get x4, 14
substitute ul(j;-li-d:N—l) into Vu(dt—i-d:N—l)L(dt—i—d—&-l:N)(u(dt+d:N—1)aA(dt-i-d—i-l:N)) =
0, to rebuild X'&Zidﬂw)
dy < dy+d > update d; when new drop happens
end if
k+—Fk+1
end while
substitute @ into V,L(u, A) = 0, to rebuild X
get L(a, \) by @, A and x
G(A) < L(@, \)
return G(A), £ and u*t!

To dynamically fix u(j) and redefine the local optimization problem, the step j from

the solving process of G(A) can be removed when C; is satisfied, and by updating the

initial state with fixed u(j), the solution obtained would finally coincide with problem
(2.7).

Without loss of generality, suppose that after k-th iteration, d (d € Nyg) steps are to

be dropped and no step has been dropped before. Then the new local problem after drop

for [-th subsystem is:

Uz,gljvn : 10 (a1 [ e rny T HUL@N- Iz @iy’ (2.20a)
s.t. Xparin) = Franv-ayz (d) + Epan-aUs@n-1), (2.20Db)
Z j),w(j—1)) <0, j=d+1,..,N. (2.20d)

=1

35



Chapter 2 — Dynamic Reduction of The Iterations Requirement in A Distributed MPC

Note that (2.20b) is equivalent to (2.18) taking xF(d) as x;(0) from step d + 1 to N,
resulting Fj (1.x—q) and £y 1.x—a)Uy,a:n—1) presented in the expression.

Recall from MPC: the computation effort increases rapidly with the prediction horizon
length, sometimes exponentially, which also adds the impulse to dynamically redefine the
size of the local optimization problem, as the prediction horizon is indeed dynamically
reduced while solving G(\).

It is essential to rebuild the Lagrange multipliers by intermediate input variables of
the remaining steps in the prediction horizon whenever the local optimization problem
size is redefined. In this way, a "warm start" can be achieved to continue the Lagrange
multipliers iteration efficiently.

Recall that nu = nu;+...+nu,,, and n, is the number of global inequality constraints at
each time step. The following theorem will demonstrate the condition to rebuild Lagrange

multipliers.

Theorem 1. In LOPDSA, the sufficient and necessary condition to completely rebuild

Lagrange multipliers under Assumption 2 is:

ng < nu. (2.21)

Proof. Sufficient Condition: Without loss of generality, assume that after k-th iteration
d (d € N5g) steps are to be dropped and no step have been dropped before. As f(a:, u)
is differentiable, the necessary condition for newly generated local problem with updated

active sequence to achieve the minimum by KKT conditions[8] is as: VI =1, ..., m,

VUW:N,nEl,(dﬂ;N)(Ul,(d:Nfl), Adi1.n)) = 0. (2.22)
Combining (2.22) for m subsystems, a equation group can be formed by (2.18) as below:

Ef(l:Nfd)Ri(d+1:N)X11(d+1¢N) +_R%,(d+1:N)U17(d1N—1)+
V fi@n—1)(Ur@:n-1)) Ag+1:8) = 0,
: (2.23)

Ezr;,(lzN—d) an,(dﬂ:N)Xm,(dH:N) + Rum,(d-',-l:N) Um,(d:Nfl) +

V Fon(a:n—1) (U @:n—1)) Aa+1:8) = O.

(2.23) can be regarded as a linear equation group with Agyp.n serving as (N — d)n,

variables to be solved. The positive definite matrix R}, ;.y makes the augmented matrix
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of [-th equation in (2.23) to be full row rank. If condition (2.21) is satisfied, the augmented
matrix rank of (2.23) is therefore (N — d)nu.

To conclude, Ag1.x could be solved uniquely by (2.23) if equality in (2.21) holds, or
be calculated completely (e.g. select (N — d)n, row from (2.23) by certain rules to form
a linear equation with unique solution, or approximate Ag1.x completely by least square
method, etc.) if strict inequality in (2.21) holds.

Necessary Condition: Here (2.21) is shown as the necessary condition by contradiction.
Suppose that Lagrange multipliers in LOPDSA could be completely rebuilt, and ng, > nu.

With that said, the augmented matrix rank (N — d)nu is now less than the variable
number (N — d)n, in (2.23), which means there exists infinite solutions of this linear
equation group. In other words, Agi1.y cannot be solved uniquely or be entirely calcu-
lated due to insufficient information. Namely, Lagrange multipliers cannot be completely

rebuilt, which is a contradiction to the assumption. O

Assume that the condition (2.21) is satisfied, LOPDSA is introduced hereinafter by
the following rules:

1. the drop should always start from the first step in an active sequence, only in this
way the validity of dynamics in (2.1) can be ensured;

2. the drop should proceed continually from the first to the last step in a prediction
horizon. Otherwise, the initial state cannot be updated if discontinuous drops happen in

the iteration.

2.4.3 Suboptimality of local optimization problems dynamic siz-
ing algorithm
From here, the theoretical bounds for the Lagrangian dual function are derived. To
better illustrate the drop mechanism, denote 5\0,(121\7) =X, andfor1 <i+1<j <N,
5\1-,(“1:]-) is the part of the optimal solution 5‘i,(i+1:N) of G(i+1.n) When ¢ steps have been
dropped before.
Suppose that €y is sufficiently small, such that when (2.14) is satisfied for the whole

prediction horizon, sequence {5\'“ } starts to oscillate in the neighbor of X%, thus it gives:

AT =Xl < er, j =1, N, (2.24)
AR — 5\0,(1:N)||oo < €x. (2.25)
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Since the dual function (2.7) is the pointwise infimum of a family of affine functions
of A, it is concave[8]. By the property of concave function, Uzawa algorithm and DLMFA

have:
G € My (), J7), (2.26)

where for 1 < i < j < N and ey € Rug, My (euy)) = min{G. ) ( max{0, 5\’““ -

1}), Gy ()\’(“f]l + ey - 1)}, Mg (eq.j)) denotes the lower bound of Q”)()\kj]l))
with 4 as the steps have been dropped before and e(;;) as the maximum norm of the
difference between )\ and )\0 ,:N)- Note that, the subscript 0 in )\0 ,(1:N) means no drop
has happened before solvmg it, which means it is the part of the optimal solution A* of

problem (2.9).

As for LOPDSA, the result is illustrated by example N = 2, and suppose that the first
step has been dropped before the second step converges. In this case, the suboptimality
of g(lzl)(X’gﬁ)) is the same as that of Uzawa algorithm. And it gives: g(lzl)(i’;jj)) €
[May(ex), Jip)-

Every time there are steps dropped, a different optimization problem is actually formed
for the remaining steps as the prediction horizon and initial state are different since then.

Now, (2.25) for the second step becomes:

||>\]erl ALl < €, (2.27)
||)\1,(22 /\0 2:2)|]c0 = 22), (2.28)

where for 1 <i+1<j <N, efi: i) denotes the maximum norm of the difference between
S\i,(iﬂzj) and 5\0,(i+1:j); which can be obtained by substituting corresponding centralized
solution into (2.22) with constraint (2.9b).

Note that, if (2.3) is removed in problem (2.4), and the resulting solution satisfies
(2.3), then in this case the global constraints (2.3) is inactive and A, ;1.x) = 0.

Now that ef,,) can be solved, the following relation holds:

H)\ 2: 2) A0,(2:2)“00 S €\ + 62‘2:2) = 6(2:2)’
g(2:2) (X?;_Ql)) € [M(212) (€(2:2))7 J(*QZQ)]'
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In the end, for this example N = 2:
Gy (Al € [Maay(ex) + M) (e)), Jia)-

From this example, It can be concluded that every time a drop happens, the lower bound
of G(A*¥*+1) for LOPDSA decreases. With that said, the possible lowest bound of G(AF+1)
for LOPDSA is achieved under the condition that each time only one step drops for all N
steps along the prediction horizon. Finally for LOPDSA, when stopping condition (2.14)

for whole prediction horizon is satisfied:

G € [Mamy(er) + > My (eaa), T (2:29)

2.5 Numerical experiment

Table 2.1 — Performance comparison among Uzawa algorithm, DLMFA and LOPDSA

N d 10 15 20 25
Uzawa 248 404 1258 3502 8442
Iteration DLMFA | 248 404 1252 3491 8339

number LOPDSA | 248 236 510 1119 2007

Uzawa | 6.90 11.0 37.2 112 312
Computation | DLMFA | 5.96 10.6 36.0 112 310

time (s) LOPDSA | 7.81 9.73 224 51.1 104

In this section, all 3 algorithms are tested in numerical experiment with a system
consisting of 4 identical subsystems, each of which has 2 states and 1 input. The main
parameters of the test are defined as: xy = [5, 10, 15, 20; 5, 10, 15, 20], A = 0, for each
[=1,..m,and j =0,..N—1, Ay = [0.9422,0.0360; 0.0225, 0.8612], By, = [0.9707;0.0117],
the global constraints are 31", u;(j) > 1; the local constraints are w;(j) € [0, 1], the step
length applied in the example is diminishing non summable as: o* = N/ V'k; the stopping
conditions parameters are ey = 1 x 1072, ¢, = 1 x 1072 and ¢, = 1 x 1072, Specifically,
the optimization problems are formulated using YALMIP[31] on MATLAB 2018b, solved
using quadprog, and tested on a Windows 10 PC with 2.20 GHz Core i7-8750H and 16GB
RAM.

Table 2.1 shows that as the prediction horizon continues to grow linearly, LOPDSA re-

duces the iteration number exponentially compared to the Uzawa algorithm and DLMFA.
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Table 2.2 — Suboptimality comparison among Uzawa algorithm, DLMFA and LOPDSA

with centralized optimal solution as a benchmark

Suboptimality Test Suboptimality (x107%)

N | Lower Bound* of
Uzawa & DLMFA | UZ8Wa DLMFA  LOPDSA

5 -4.18 -2.71 -2.71 -2.71
10 -34.5 -1.58 -13.7 -07.0
15 -102 -0.49 -12.9 -60.1
20 -193 -0.27 -178 -29.1
25 -309 -0.01 -601 -18.1

* Calculated as M(y.y(€x) by substituting ey = 1x 1073 into
(2.25) (2.26).

Besides, starting from N = 15, DLMFA reduces the iteration number compared to the
Uzawa algorithm, but merely less than 2% in all cases.

As for computation time, DLMFA is slightly lower than the Uzawa algorithm in all
cases due to the limited iteration number reduction and its simplified treatment to La-
grange multipliers iteration. On account of more sophisticated treatments in LOPDSA,
the advantage of its computation time is mitigated to some extent. Still, it grows expo-

nentially compared to DLMFA and Uzawa algorithm as the prediction horizon increases.

Table 2.2 shows that suboptimality of DLMFA and LOPDSA are within the theoretical
bound. It is worth mentioning, suboptimality of DLMFA tends to increase rapidly when
N grows, which links to the argument mentioned in §2.4.1.

Figure 2.2 exhibits that all drops/fixes appear continually and homogeneously except

one stagnation at 20, revealing the potential in various predictions horizon size application.

2.6 Conclusions

In this chapter, the fluctuated behavior during the iteration of the Lagrange multiplier
in the Uzawa method applied to distributed MPC has been studied. DLMFA and LOPDSA
have been proposed to reduce the iteration requirement. Numerical experiments have
showed that in meeting the same stopping conditions with the Uzawa Algorithm, not only
the solution precision of LOPDSA has been generally maintained, but its computation

time and iteration number have been reduced significantly, especially in large N cases. By
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Fixation, N=25
Dynamic sizing, N=25

20

15

10

Remaining steps to be dropped or fixed

O L L L L L L L P |
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Iteration number

Figure 2.2 — Trajectory of fixes in DLMFA and drops in LOPDSA with N = 25
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contrast, DLMFA has revealed limited ability to save computation effort and deteriorating
suboptimality as the prediction horizon continues to grow.

In §3, in contrast to decoupled dynamics considered in this chapter, the more gener-
alized coupling dynamics among subsystems will be addressed. Furthermore, the decisive
parameter in the iterative process, step size, will be updated to the optimal value for the
first order method.
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CHAPTER 3

¢ SUBOPTIMALITY BASED ACCELERATED
TERMINATION FOR EQUALITY
CONSTRAINED MPC

In this chapter, the coupling dynamics among subsystems and global equality con-
straints are considered. The absence of inequality constraints allows the construction of
gradient based criterion, which guarantees the predefined suboptimality and the feasibility
ensured projection. The fully distributed iterative process is established by employing the
optimal step size of the first order method, the Nesterov gradient descent. The particular
characteristic of MPC, only the first step inputs applied to the system, is exploited to

derive the first step focused stopping condition and projection mechanism.

3.1 Introduction

Due to the attractive accessibility for distributed structure, the updated mainstream
techniques in solving optimization problems resulted from MPC are based on the first-
order gradient, or subgradient method [69], where the step size is a decisive parameter.

Vast research has been implemented in this field, such as: for fixed step size, e.g.,
exact first-order algorithm (EXTRA)[58], and distributed inexact gradient method and
the gradient tracking technique (DIGing) [39]; for diminishing step size, e.g., distributed
(sub)gradient descent (DGD) algorithm [40]. It is worth mentioning that a method orig-
inally proposed by Nesterov [42] has been proved by Theorem 2.2.2 of [41] to be the
optimal first-order gradient method for strongly convex optimization (with one time con-
tinuously differentiable objective function whose first derivative is Lipschitz continuous).
The Nesterov gradient descent method has been developed in [3] [42], and has been fitted
to MPC in [24].

The updated dual objective value is used to approximate primal optimum in [23] [45] to
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generate a suboptimal solution. Still, the lasting approximation gap is presumed to cause
over-conservative solutions. Since the dual problem is exactly unconstrained optimization,
the gradient-based suboptimality condition can be applied in [8], whose implementation
is spared of approximation gap and requires no knowledge of the optimal solution.

Another key problem that arises after the iterative process termination is how to gen-
erate a feasible solution with a suboptimality guarantee. One typical way is to employ
an adaptable constraint tightening technique during the iteration[23][71], yet heuristic
adaption may cause extra iterations. Alternatively, an e accuracy feasibility, the largest
violation of feasible constraints, is introduced in [45] as a stopping condition to obtain a
'good enough" solution, which is still not feasible indeed. This chapter proposes a projec-
tion mechanism to obtain primal feasible solutions with a suboptimality guarantee based
on the gradient norm of dual function.

This chapter is an extension of the work [17], where a heuristic for reducing the local
problem size has been elaborated to diminish the complexity in distributed MPC gener-
ated optimization. Then main contribution of this chapter is twofold. First, the gradient
based stopping condition and projection mechanism can generate feasible solutions with
suboptimality guarantee. Second, the first step focused e suboptimality stopping condi-
tion and related projection mechanism can faster the iterative process in generating the
first step components of feasible solutions with suboptimality guarantee.

This chapter is organized as follows. §3.2 sets up the optimization problem and funda-
mentals. §3.3 proposes gradient-based stopping condition and projection ensured feasibil-
ity and e-suboptimality. §3.4 demonstrates the first step focused stopping condition and
the first step projection with proof of feasibility and e-suboptimality. Numerical experi-

ments and results discussions are presented in §3.5. And conclusions are given in §3.6.

3.2 Problem statement and fundamentals

3.2.1 Problem statement

To start with, the coupling dynamics and global equality constraints are formed as:
forVi=1,...m,and j=1,.... N,
21(j) =D _(Auai(j — 1) + Buwi(j — 1)), (3.1)

i=1
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iAéml(J') + f: Blu(j — 1) = aj, (3.2)

=1

where x;(j) € R™ and u;(j — 1) € R™ are states at step j and inputs at step j — 1 of I-th
subsystem, A;; € R™>*"% B, € R™*"™i are system matrix, and z;(0) = z;, ; € R™™ is
the initial state of [-th subsystem, Aé e R > Bj- € R">™ and a; € R™,
Next, the MPC optimization problem can be formulated in a compact form as:
J*=min J(y), (3.3a)
s.t. Ay = b, (3.3b)

where (3.3b) is taken from (1.5b), and please refer to (3.1), (3.2), and (1.5) for composition
of A, b, and y respectively.

Assumption 3. In this chapter, R is assumed to be definite positive, and A is assumed

to be full row rank.

Correspondingly, the dual problem of problem (3.3) is formulated as:

g = max g(0) = max myin L(y,0), (3.4)
_ 1
L(y,0) = 5lyllz + 6" (Ay —b), (3.5)

where 8 € R" is the dual variables associated with constraint (3.3b).

3.2.2 e-suboptimality definition

Definition 1. y is said to be an € primal solution of problem (3.3) if and only if: Ay = b,
and ||7(y) = T*|| < e

As the dual problem (3.4) is intended to solve prior to get a primal solution, corre-

spondingly the e suboptimal solution from the dual point of view is defined as follows.

Definition 2. (yg,0) is said to be an € dual solution of problem (3.4) if and only if:
yo = argmin, L(y,0) and ||L(ys,0) — T*|| < e.

Note that, an e suboptimal solution (yy, ) of problem (3.4) cannot guarantee that
yp is primal feasible, which consequently demands a further feasibility verification with

respect to problem (3.3).
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3.2.3 Distributed Nesterov gradient descent method

Here, the Nesterov gradient descent method[24] is adopted for iterative process (1.9),

and in context of this chapter it is formulated as:
0" = 6* + (Ay’f - b), (3.6)
where 0% = @ + F5 (08— 0", gf =yt + I (yF —y* '), and vy = [[ARTTAT||.
Using the first order optimality condition V,L(y,8) = 0, the corresponding y***
Yyl =_—R1'ATe (3.7)

Denote 8 = (07, ...,0%)", and for j = 1,...,N, 0; = (67 (5),...,00(5), 07 (4))". Exploiting
the step and subsystem separable structure of A, b, and the block diagonal structure of

R, (3.6) and (3.7) can be rewritten in a distributed manner as: for VI = 1,...,m, and

j=1,...N,
o) = B 7 thul +Z§;Auxi<j —1) - (), (3.8)
051 () = 0% 7 X;A;xz +ZBlu2 1) — a;), (3.8b)
a1 = 1) = —(RY) T (BYTOHH( +ZB o+ (3.5¢)

() = = (R T (A" 0,7 () — 0 +2A595+1(J+1)) j=1..N-1

=1

(3.8d)
2t (G) = —(RY) T (ADTO;T () — ;71 (4)), 5= N. (3.8e)

Observe the summation appeared in (3.8a) - (3.8¢), the compute efficiency of distributed
manner can be further improved by introducing the following sets to skip the 0 item in

summadtion.

Na=1{ie{l,....m}| Ay #0}, (3.9a)
Na={ie{l,...,m} | By # 0}, (3.9b)
My ={ie{l,...,m}| Ay # 0}, (3.9¢)
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My ={ic{l,...,m} | By # 0}, (3.9d)
Pi={ie{l,...,m}| A, #0}, (3.9e)
={ie{l,...,m} | B #0}. (3.9f)

As such, (3.8a) - (3.8d) can be written as: for Vi =1,...,m,and j =1,.... N,

1 ) ) .
07 (7) = 0FG) + = (X0 Buwi(G— 1)+ > Auwi(j — 1) — m()), (3.10a)
’y i€EN €N
0,7 (7) = 05 Z Ajxi(j) + D Bjui(j — 1) — ay), (3.10D)
i€P; 1€Q;
(G = 1) = (R TBYTOTG) + Do Bagrt(). (3.10¢)
€My
et () = —(RE)THADTTG) =0 )+ DD ARG+ 1), =1, N - L
1EMy
(3.10d)

Note that the summations exist in (3.10) can be further partitioned to row and column
wise, which merely needs to apply the similar set definition as in (3.9), but will make the
notations too tedious to follow by the reader. For this reason, the further partition of the

matrix is spared, which, of course, is easily reachable in implementation.

3.3 The gradient based stopping condition and pro-
jection

In this section, the stopping condition to guarantee a predefined suboptimality € in
solving problem (3.4) is first studied. Then a linear projection that produces a primal

e-suboptimal solution is proposed.

3.3.1 Stopping condition of ¢ suboptimal solution

As formulated in (3.5), the Lagrangian is a continuous quadratic function with pos-
itive definite hessian, thus differentiable. Given @ € R"¢, using the first order necessary

optimality condition V,L(y,8) = 0 gives:
yo = R TAT0, (3.11)
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Substituting (3.11) into (3.5) yields:
1
g(0) = —§0TAR‘1AT0 — 60" (3.12)

Based on the explicit expression of g(0) in (3.12), its first and second order gradient are

respectively as:

V§(0) = Ay, — b, (3.13)
V3(0) = —AR A", (3.14)

Lemma 1. Define 3 = mineig( AR AT), in implementing iterative process (3.6) (3.7),
if
Ay* — bJI® < 25¢ (3.15)

is satisfied, then (y*,0%) is an e dual solution of problem (3.4).

Proof. First, a convex optimization problem is introduced as:
F*= min F(0), (3.16)

where F'(0) = —g(0) and [* = —g*.
Subsequently, it gives:

IVg(@)|* =IVF(O)|* = || Ays — b]I*, (3.17)
1£(8) — F7[| = [lg" — 9(0)]]. (3.18)

Viewing (3.7) and (3.11), combined with (3.13), at each iteration it holds that:
Vj(0%) = Ay* — b, (3.19)

Recall 9.1.2 of [8], for problem (3.16) to attain e-suboptimality such that F(8) — F* < e,

the sufficient condition is:
IVE(9)]| < (28e)"2. (3.20)
Using (3.17) (3.18) and (3.20), the proof can be concluded. O

48



3.3. The gradient based stopping condition and projection

3.3.2 From dual ¢ suboptimal solution to primal ¢ suboptimal

solution

If (yg,0) is an € suboptimal solution of problem (3.4), it is not necessarily that y €
Y = {y | Ay = b}, then an specific projection from y onto feasible set of problem (3.3)
is needed. First, a matrix F € R™*(w="¢) ig introduced to satisfy AF = 0, and denote

B = mineig(F'RF). (3.21)

Particularly, (3.21) could be fulfilled by the following treatment: given any F' € R™*("y="e)

8

then F' = VbF"'.
min eig(F'""RF")’ o Vb

with AF’ = 0 and mineig(FTRF’) # 3, let b =

Because the following holds:
min eig( F? RF) = min eig(bF"" RF’') = b(min eig(F" RF")) = j.
Then, the feasible set Y can be formulated as:
Y={y|Ay=b}={yg+Ft|tec R "}, (3.22)

this characterization is based on any gy € Y.
Next, inspired by linear projection operator P; in [12], P, from y € R™ onto Y is
proposed as P.(Y): Yy — Ye.

Yo=Y — AZ(APAZ)_I(Apy —b,), (3.23)
where A, = FTR® A, b,=h®b, let p=ny —n., h € R"" is any vector satisfying
1Rl] < 1[Vg(6)]]. (3.24)

Lemma 2. If (yg,0) is an € suboptimal dual solution of problem (3.4), then y. = P.(y)

is an € primal solution of problem (3.3).

Proof. First, it will be proved that y. is a feasible solution of problem (3.3). Left mul-
tiplying the right side of (3.23) by A,, gives A,y. = b,, which could be partitioned

as:

Ay, = b, (3.25)
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F'Ry. = h. (3.26)

By (3.25), it can be concluded that y. € Y, is a primal feasible solution of problem (3.3).

Next, the e suboptimality of y. will be proved. By (3.22), Problem (3.3) is equivalent
to:

Jr = min J(t), (3.27)

where J(t) = 1||§ + Ft||%, and J* = J".

Accordingly,
VJ(t) = F'R(y + Ft),

V2J(t) = F'RF.
By making y, = 9§ + Ft., it gives VJ(t.) = FT Ry..
Next, by (3.24):

IVI(E)|I* = [Ih]* < [[Vg(0)I* = || Ay — b]|*. (3.28)

As J(t.) = J(y.), then by (3.15) and (3.21), it gives ||T(y.) — J*|| < e. And this
completes the proof. n

Integrating e suboptimality stopping condition (3.15) and projection operator P., Al-

gorithm 4 presents the procedures to generate € primal solution for problem (3.3).

Algorithm 4 Full Prediction Horizon Stopping Condition With Projection (FPH-P)

1: Initialize: 8° =071 ¢, S and k = 0. y~! and y° are given by (3.7).
2: while (3.15) is not satisfied do

3 Update primal and dual variables by (3.8¢) and (3.10)

4: k+—k+1

5: end while

6: yf = Pe(yk)
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Projection
. Pe (3.23)
New stopping

condition EE—
(3.15)

Iterative process
(3.8¢e) (3.10)

Figure 3.1 — Schematic diagram of Alg. 4 (FPH-P)

3.4 The first step focused stopping condition and pro-
jection

In the context of MPC, where only inputs of the first step in the current prediction
horizon are applied, two questions in turn arise. Can (3.15) be transformed to stopping
condition focused only on the first step? Is there a way to generate a feasible solution only
using the first step elements while guarantee the e suboptimality? These two questions

are consecutively addressed in this section.

3.4.1 The first step focused stopping condition

Note that in the MPC context, the step separated structure existing in problem (3.3)
for both objective function and constraints enables a step-based partition, which will serve
as the basis of this section.

Here, the stopping condition (3.15) is converted into the first step oriented one, which
consists of 2 steps. The first step is to partition the prediction horizon into two parts: the
first step and interval from step 2 to V.

As a prerequisite, A and b are decomposed into block form as:

A — A(l:l) 0 : b— b(l:l) .
Bo.ny Apny b:n)

Based on (3.29), the gradient Vg(0) and iteration of y* are partitioned as:

~—~

3.29)

yzclzl) = _Rall) (Aasl)oflzl) + B’(E:N)HFQ:N))? (330)
Yoy = _R(_Q?N)A?Q:N)O?Q:Nﬁ (3.31)
v@@:l) = A(1:1)yé€1;1) —baa, (3.32)
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vgézN) = B(2:N)yé€1:1) + A(Z:N)yé:N) —ba.ny, (3.33)

where the variables in step partitioned gradient expression are omitted hereafter to lighten

the notation.

The second step is to reconstruct (3.15): setting the required gradient norm from
step 2 to N as 0. By doing so, a less demanding stopping condition for the first step
with € suboptimality guarantee is created, which enables a possible earlier termination of

iterative process (3.6)-(3.7). As such, the early stopping condition is proposed as:

"v§é€1:1)”2 < 2fe. (3.34)
Theorem 2. Let yo.n) and 0 be solved by the following equations:

BonYlia) + Aenen) — bawy =0, (3.35)
’!Jécm) DyenN) = ~-R'A76. (3.36)

Then, if (3.34) is satisfied in implementing iterative process (3.6) (3.7), (yéfl:l) DYn),0)

is an € dual solution of problem (3.4).

Proof. By Assumption 3, all constraints of (3.3b) are linear independent, thus A is full
row rank. Next, by partition (3.29), Ay is correspondingly full row rank. As such, by
(3.35) (3.36), y2:n) and 0 could be solved explicitly. Since Y(2:n) and 0 are solvable, by
(3.11) and (3.36), it gives

yf;lﬂ) D Yo.n) = arg;nin L(y.0). (3.37)

which means (yéﬂ) @ Ya:n), 0) is a dual solution of problem (3.4).

It remains to prove the following inequality.
7 = LYl @ Y, 0) < e
By Lemma 1, it needs to have:
1V3(0)[]* < 28e.
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By (3.32) (3.33) and (3.36),
IVG(O)I* = [IVgin I + [ Bem Yl + AenPen) — bew |

The proof can be concluded by (3.35) and (3.34). O

Lemma 3. In implementing iterative process (3.6)-(3.7), let k1 and ko be defined as:

ki = inf{k | ||Vl < 28¢), (3.38)
ko = inf{k | ||[V3"||* < 28¢}, (3.39)
then kl < ]{32.

Proof. Since for Vk, ||[Vg*||* = vafm)”? + vaé;N)HQ, and HVQ&N)HQ > 0, then it gives
V36| < 1IV5*]? < 26e.

As a consequence, by (3.38), k1 < ko holds. And this completes the proof. n

3.4.2 The first step focused projection

In this subsection, the projection operator P, 1.1y from y.1) € R"™0:D onto Y1, is

speciﬁed as Pe,(l:l)(y(lzl)): Ya:) = Ye,(1:1)-
Ye,(1:1) = Y1) — A;ﬂj(l;l)(Ap,(lzl)Ag’(lﬂ))il(Ap,(lzl)y(lzl) - bp,(l:l))? (340)

where Ay (1.1) = ng)R(m) ® A1), by .1y = haa) @by, Vian(0aa)) = Aqnyyaa) —
b(1:1)7 let Paa) = ny(m) — ne7(1:1) and h(l:l) € RPa:) ig any vector Satisfying ||h(11)H S
IV g1y (0l

Lemma 4. If yf,.)) satisfies (3.34), then yE .,y = Pea1)(Y(1y)) is the first step compo-

nents of an € primal solution of problem (3.3).

Proof. By Theorem 2, (yégm) @ g(gzN),é) is an € dual solution of problem (3.4). Im-
plementing projection P,, by Lemma 2, an € primal solution of problem (3.3) is y. =
Pe(yéclzl) @ Y(2:n)), which could be partitioned as Ye = Ye,(1:1) D Ye,(2:N)-

By (3.25) (3.29), for feasibility fulfillment:

A1:1)Ye,1:1) = by, (3.41)
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A2:N)Ye,2:N) T B@:n)Ye,(1:1) = ba:n)- (3.42)

By (3.28) (3.29), for e suboptimality fulfillment:

FLy RanTean|® < gt = 1A@yyfy — bay |, (3.43)
| F . n) R2:ny e 2 || = 0. (3.44)

Let y¥ 14y = Pe:)(Y1))s YL 1.1) satisfies (3.41) and (3.43). Then substituting g .1y by
YL 1.1y in (3.42), a linear equation group (with y? .y being variable to be solved) can be

formed as:

ApnYe e + Bemye ) = baw, (3.45)

F(E:N)R(ZN)yf,(zzN) =0.
As yf,(Q:N) € R™aen, A(Z:N) € RMe.@:N)XY(2:N) F(Q:N) € R™@:N)*PN) and R(g;N) S ST{E:N),
by Assumption 3, rank(Ao.n)) = Ne,2:n), rank(F(:g:N)R(gzN)) = pen) , thus (3.45) has
the unique solution of y¥ ..

Consequently, yi(m) &) yf’(gz ~) 18 indeed an e primal solution of problem (3.3) by
Definition 1, of which yf,(m) is the first step components. And this completes the proof. [

Algorithm 5 depicts the mechanism combining the first step focused stopping condition

and the first step projection. Note that in this section, the presence of y.n), 0 and yf’@: N)

Algorithm 5 First Step Stopping Condition With Projection (FS-P)

1: Initialize: 8° =071 ¢, S and k = 0. y~! and y° are given by (3.7).
2: while (3.34) is not satisfied do

3: Update primal and dual variables by (3.8e) and (3.10)

4: k+—k+1

5: end while

6

1 yf,(1:1) = Pe,(1:1)(yf“1;1))

are purely for establishing mathematical proof, only yfm) and y. (1.1) need to be computed

in implementing FS-P.
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3.5. Numerical experiments

Fist step projection
Stopping Pe,(1:1) (3.40)

condition —
(3.34)

Iterative process
(3.8€) (3.10)

Figure 3.2 — Schematic diagram of Alg. 5 (FS-P)

Table 3.1 — Suboptimality performance comparison among FS, FS-P, FPH and FPH-P.
The magnitude of 1 x 1073, 1 x 10™* and 1 x 1075 are omitted from the results according to
the relative suboptimality referred for space-saving. As a result, any result showed with absolute
value less than 1 means predefined suboptimality is guaranteed.

Prodefined AV?. Bel. Errf)r Ma?c. Bel. Erfor
Rel. ¢ Alg. Prediction Horizon Prediction Horizon
10 20 30 40 50 10 20 30 40 50
FPH |-0.58 -0.48 -0.47 -0.44 -0.46-0.94 -0.91 -0.92 -0.89 0.95
10-3 FS |-0.48 -0.56 -0.58 -0.67 -0.70|-0.91 -0.95 -0.96 -0.99 -0.98
FPH-P| 0.89 0.87 0.86 0.83 0.85]0.99 0.99 0.99 0.99 0.99
FS-P | 0.83 0.85 0.84 0.86 0.85|0.99 0.99 0.99 0.99 0.99
FPH [-0.54 -0.51 -0.51 -0.50 -0.50|-0.91 -0.93 -0.93 -0.97 -0.92
104 FS ]-0.55 -0.50 -0.50 -0.50 -0.47|-0.98 -0.97 -0.94 -0.98 -0.99
FPH-P| 0.88 0.87 0.88 0.86 0.85]0.99 0.99 099 0.99 0.99
FS-P 1 0.85 0.83 083 0.86 0.85]0.99 0.99 099 0.99 0.99
FPH [-0.57 -0.56 -0.54 -0.51 -0.50|-0.92 -0.94 -0.96 -0.94 -0.92
10-5 FS |-0.53 -0.48 -0.45 -0.46 -0.50|-0.92 -0.96 -0.94 -0.98 -0.91
FPH-P| 0.89 0.89 087 0.84 0.85]0.99 0.99 0.99 0.99 0.99
FS-P | 0.81 0.81 0.80 0.81 0.81{0.99 0.99 0.99 0.99 0.99
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3.5 Numerical experiments

In this section, FPH-P and FS-P are tested under 5 prediction horizons, from 10 to 50
with the incremental interval of 10. Of each prediction horizon, 100 independent randomly
generated numerical experiments are carried out using MATLAB 2018b on a Windows 10
PC with 2.20 GHz Core i7-8750H CPU and 16GB RAM.

The tested system, with A;; and Bj; randomly generated by MATLAB command drss,
consists of 5 subsystems, each of which contains 2 inputs and 2 states. More in details,
each element of xy is randomly drawn from uniform distribution [—0.5,0.5]. The global
equality constraints are Y./%, u;(j) = 1, for j = 0,..., N — 1. The penalty matrix R = I,
and the predefined relative suboptimality ! tested are 1 x 1072, 1 x 10™* and 1 x 107°.

Particularly, for projection treatment, making the first element of h equal to || Vg(6%)||
and rest elements equal 0 in Step 6 of FPH-P can generated y*; and make the first element
of h(11y equal to [[Vgfi,|| and rest elements equal 0 in Step 6 of FS-P to get yf .y
Subsequently, yf,(&N) is solved by (3.45) using yé(m).

In Table 3.1, FPH refers to g(6*%) when (3.15) in FPH-P is satisfied. Specifically, FS
refers to the full length prediction objective value g(8), and 0 is solved by (3.35) (3.36)
when (3.34) is satisfied. The benchmark value J* for relative error comparison is solved
by commercial optimization solver MOSEK programmed in platform YALmIP[31].

Table 3.1 shows that the predefined suboptimality of all N cases is guaranteed by
implementing FS, FPH, and their projections. The discrepancies of both average and
maximal relative error between FS and FPH are comparably minor, so as that between
FS-P and FPH-P, which suggests that using the first step stopping condition does not
impact the fulfillment of feasibility and e suboptimality.

In Fig. 3.3, by projection mechanism, the trajectory of FS-P and FPH-P are closer to
the optimal solution than FS and FPH. Furthermore, the later the step appeared in the
input sequence of FS-P and FPH-P, the tighter the gap between them and the optimal
solution.

From Fig. 3.6, Fig. 3.5 and Fig. 3.4, statistically, F'S consumes significantly fewer
iterations compared to FPH in majority tests of all IV cases for all relative suboptimality.
Note that, ratio as 1 denotes that ki = k9 in Lemma 3, which is the worst case that
could happen to FS in terms of iteration number. Generally, the ratio of FS to FPH in

computation time is even smaller than that in the iteration number. Observing (3.34)

1. The relative suboptimality is computed as suboptimality divided by J*.
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0.05 T T T T T T T T T

-0.05

2]
8_ | Optimal
E | ----Fs
S -0.1°f : FPH i
© , ----FSP
= | - - - - FPH-P
> |
-0.15 | -
=== |
L | |
| |
| |
-0.2 - | | .
| |
l____l
l====
_025 | | | | | | | | |

Time step

Figure 3.3 — Input sequence comparison of one subsystem in a test among optimal solution,
FS, FPH, FS-P and FPH-P

N = 10 and predefined relative € as 1 x 1073, yé“lil) ® Y(2:n) and yf,(1:1) &) yf’(QzN) are presented
respectively for F'S and FS-P, note that only inputs of the first time step would be applied.
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Time
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Figure 3.4 — Iteration number and computation time ratio of FS to FPH with predefined
relative € as 1 x 107°

Sample value exceeded +/ — 2.70 shows as whisker. Sample value less, greater than or equals to
1 means FS spends less, more or the same time/iterations as FPH in the same test. The lower
value, the better performance of FS.
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Time
1.1r Iter # | |
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Prediction horizon length (N)

Figure 3.5 — Iteration number and computation time ratio of F'S to FPH with predefined
relative € as 1 x 1074

Sample value exceeded +/ — 2.70 shows as whisker. Sample value less, greater than or equals to
1 means FS spends less, more or the same time/iterations as FPH in the same test. The lower
value, the better performance of FS.
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Time
1.1r Iter # | |

0.8
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-
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e
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-
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Ratio of FS to FPH

|______
|____
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Prediction horizon length (N)

Figure 3.6 — Iteration number and computation time ratio of FS to FPH with predefined
relative e as 1 x 1073

Sample value exceeded +/ — 2.70 shows as whisker. Sample value less, greater than or equals to
1 means FS spends less, more or the same time/iterations as FPH in the same test. The lower
value, the better performance of FS.
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3.6. Conclusion

and (3.15), at each iteration, F'S only need to calculate gradient for the first step. At the
same time, the full prediction horizon calculation is required of FPH, resulting in an even

larger time advantage of F'S as N increases.

3.6 Conclusion

In this chapter, in tackling optimization resulted from MPC, projection onto the primal
feasible set with e-suboptimality guarantee has been proposed based on an € dual solution.
The early stopping condition in the MPC context has been demonstrated through a step-
based partition technique by focusing on the first step components. The first step focused
projection with e-suboptimality and feasibility guarantee has also been introduced to
generate applicable inputs for the system.

Through random numerical experiments, the e-suboptimality condition has been ver-
ified for both algorithms. Due to less demanding stopping condition and computation
burdens, the first step focused algorithm has generally outperformed the full prediction
horizon algorithm largely in iteration number and computation time.

In §4, the general convex inequality constraints will be included in the problem setting,
with which suboptimality criterion for both full sequence and the first step will be derived.
In contrast to Chapter 1 and 2, the second order method will be studied for optimization

resulted from MPC to achieve faster convergence.
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CHAPTER 4

¢ SUBOPTIMALITY BASED ACCELERATED
TERMINATION FOR MPC USING PRIMAL
DUAL INTERIOR POINT METHOD

In this chapter, by employing the logarithmic barrier function, the inequality con-
straints can be converted into an item in the objective function of the MPC optimization
problem, making it only an equality constrained problem. By introducing the modified
KKT condition, the suboptimality criterion can be designed in the presence of bounded
primal and dual infeasibility, which is a more flexible condition for the iterative process to
quit. Targeting at an accelerated termination, the step-wise structure of MPC is exploited.
The first step focused criterion is invented to guarantee the predefined suboptimality and

the bounded primal and dual infeasibility.

4.1 Introduction

The iterative method adopted in this chapter, primal dual interior point method[35][67],
with quadratic convergence rate[68] and good scalability, is deemed strongly favorable over
the gradient and steepest descent methods[8].

Plentiful work has been made to apply primal dual interior point method in MPC
formulation in searching for a suboptimal solution, e.g., the inequality constraints are
converted into equality constraints by adding non-negative slack variables in search of
Newton step [35], which is retrofitted to peculiar MPC KKT system structure by block
elimination [50] [66]; a fast computation of Newton step based on Cholesky factorization is
applied to linear inequality constrained system, achieving an order of magnitude decrease
of complexity|[63], which in [19] has been further decreased by a low rank matrix forward
substitution scheme, and can be extended to quadratic inequality constraints.

Given characteristics of MPC that only first step inputs are applied to the system, by
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exploiting the step separable structure of system dynamics and inequality constraints, the
first step focused criterion is designed to ensure the predefined suboptimality with only
the first step component being determined. More in details, the first step components
alone can be tested by stopping conditions, as long as the remaining steps (from step 2
to N in the prediction horizon) can form the components of the optimal solution of full
sequence. In this way, an accelerated termination of the iterative process compared to the
traditional primal dual interior point method is possible.

The main contribution of this chapter is threefold. First, the first step focused criterion
suited for the interior point method is proposed to generate a suboptimal solution for
the MPC problem. Second, the superiority of the first step focused criterion in terms of
iteration number is demonstrated both theoretically and experimentally. Third, the whole
methodology in this chapter accommodates the general convex inequality constraints,
unlike many methods that can only work with linear inequality constraints.

This chapter is organized as follows. §4.2 sets up the optimization problem and funda-
mentals of barrier function based approximation. §4.3 introduces the primal dual interior
point method for general convex optimization resulted from MPC. §4.4 proposes the first
step focused stopping criterion, whose effectiveness is demonstrated. Numerical experi-

ments and results discussions are presented in §4.5. And conclusions are given in §4.6.

4.2 Problem statement and fundamentals

In this section, the control system and MPC optimization problem are presented.
To eliminate the inequality constraints, the logarithmic barrier function is introduced to
formulate the approximate problem to the original problem, of which the approximation

error is also given.

4.2.1 Problem statement

The coupling dynamics and global equality constraints are formed as: for VI =1, ..., m,
and j =1,..., N,

x1(j) = f:(Alz‘l‘i(j — 1) + Buui(j — 1)), (4.1)
iAéxl(j)—i-iB;ul(j—l) = a;, (4.2)
=1 =1
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where z;(7) € R™ and u;(j — 1) € R™ are states at step j and inputs at step j — 1 of [-th
subsystem, A;; € R™>*"%i B, € R™1X"™i are system matrix, and z;(0) = z;, ; € R™ is

the initial state of [-th subsystem, Ag e R > B;- € R">™ and a; € R™.

The inequality constraints considered in this chapter is:
fi,j(mj,uj_l) SO, jzl,...,N, izl,...,nj, (43)

where f; ; : R™ x R™ — R is assumed to be convex and twice continuous differentiable,
n; € N5 denotes the number of inequality constraints at step j, for the consistency of
total inequality constraints number defined in (1.3), it holds that ny + ... + ny = n, and

for j =1,..., N, composition of x; and w;_; can be referred to (1.3).

Note that the total number of n of inequality constraints is crucial to building subop-

timality criterion, which will be shown in the following subsection.

The MPC resulted problem can be compactly formulated as below:

J* =min J(y). (4.4a)
st. Ay = b, (4.4b)
fly) <o, (4.4c)

where (4.4b) is taken from (1.5b), composition of A, b, and y can be referred to (3.1),
(3.2) and (1.5) respectively, f : R — R” with f(y) = (fi(y1)7, ..., fx(yn)")7, and
YZ = 1a ey Mgy ] = 1a "'7N7 f](y]) = (fl,j(yj)Ta'-'afnj,j<yj)T)T7 fi,j(yj) = fi,j(wjaujfl)a
fij s RmwE R

4.2.2 Barrier function based approximation

In this subsection, based on Chapter 11 of [8], the approximation problem of (4.4) is

formulated using barrier function, whose approximation bound is derived subsequently.
First, the logarithmic barrier function ¢ of f is introduced as:
N 1y 5
D(y) = =D D log(—fi;(ys)). (4.5)
j=1i=1

where the domain of ¢ is {y € R™ | f(y) < 0}.
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The gradient and hessian of ¢ are as:
N nj
iV
) ppaisiiiy fus(y;) (4.6)
j=1i=1 fza(yj)

Y& Vfw Y vfw y)" L& sz” Y)) 4.7
]z:uz; fu(yj) gz:uz; fz](yj) . (47)

Now, the approximate problem of (4.4) is formulated as:

myin tT(y) + ¢o(y), s.t. (4.4b), (4.8)

where t € R. is a parameter of approximation (the quantitative analysis will be illus-
trated later), and the optimal solution is denoted as y*(¢).

Next, the Lagrangian associated with problem (4.8) is introduced as:
L(y,0) =tI (y) + ¢(y) + 0" (Ay — b), (4.9)

where 8 € R" is the dual variable associated with equality constraint (4.4b).
A point (y*(t),0%(t)) is said to be primal and dual optimal of problem (4.8), if it
satisfies the KKT condition equations listed below, which are necessary and sufficient

condition for optimality.

tRy*(t) + Vo (y* (1)) + AT6*(t) = 0, (4.10a)
Ay*(t) —b=0. (4.10b)

Subsequently, a dual variable A} () € R is defined by

1
)\;k (t) = T 17 i = 17 ooy Mg ] = 17 "'>N7 (411)
7 tfi;(y;) ’

*

where y* = ((y))7, ..., (yy)T)", and A;,;(t) must be positive, since f;;(y7) < 0 must be
fulfilled.
Dividing ¢ to both sides of (4.10a) by (4.6), it gives:

Ry*(t) + Vf(y* ()X (t) + AT6*(t) = 0, (4.12)
where 0%(t) € R | 0*(t) = 0*(t) /t, X*(t) = (AT, ..., A (t)T)T, A*(t) € R, and for
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J =1, Ny XS() = (A ;0)7 s (A, ()T, and Xj(t) € R™.

Alternatively, (4.12) can be interpreted as the minimization over y of the following
Lagrangian (with solution as (y*(t), A*(¢), 8*(t))):

L(y,X,0)=T(y) + A f(y) + 6" (Ay — b), (4.13)

where A € R” is the dual variable associated with inequality constraint (4.4c). Consider

the dual function associated with problem (4.4):
(X, 0) = myinﬁ(y,)\,e). (4.14)

Then for Vt > 0, (A*(),0%(t)) is a dual feasible point of g, and it gives:

T (1) + X0 F(y' (1) + 0° (1) (Ay’ (1)  b)
= Iy (1) —nt, (4.15)

gA*(1),67(1))

where the second equality uses (4.11) and X*(t)T f(y*(t)) = POARD DD ) fi (y7).
Since Slater’s condition is satisfied by Assumption 2, the strong duality of problem
(4.4) holds, namely

max (X, 0)=7J" (4.16)

By (4.15) and (4.16), it gives
Ty () =T <n/t. (4.17)

That is to say, the worst approximation error of problem (4.8) w.r.t. problem (4.4) is n/t,

which will be used in the next section to conceive a suboptimality criterion.

4.3 Primal dual interior point method

In this section, the primal dual interior point method introduced in Chapter 11 of [§]
is fitted to problem setting of the previous section: (4.10) and (4.11) are interpreted as the
modified KKT condition in solving problem (4.8), which is solved iteratively by Newton
method.

67



Chapter 4 — € suboptimality based accelerated termination for MPC using primal dual interior
point method

4.3.1 Modified KKT condition

With KKT condition equations (4.10) and approximation analysis of §4.2.2, the mod-
ified KKT condition equations for problem (4.8) can be formulated as:

Ry +Vf(y)A+ AT6 =0, (4.18a)
Ay —b=0, (4.18b)
~Nijfij(y)=1/t,i=1,...n;, j=1,...,N. (4.18c¢)

It can be concluded that a point (y, A, @) is primal and dual optimal of problem (4.8) if
it satisfies (4.18) and y is in the domain of ¢, namely f(y) < 0.

4.3.2 ¢ suboptimal solution via Newton method

Observing (4.17), it is intuitive that the higher ¢, the lower approximation bound of
n/t, which can be finally decreased to 0 as ¢t approaches infinity.

By (4.15), the duality gap w.r.t. problem (4.4) for any point (y, A, @) satisfying the
modified KKT condition (4.18) is n/t. Applying (4.11), this duality gap can be rewritten
as —ATf(y). When (4.18) is not satisfied by (y, A, 8), the notion of surrogate duality
gap is introduced by the following definition to measure this intermediate approximation

error.

Definition 3. (Surrogate duality gap [8]) The surrogate duality gap w.r.t. problem (4.4)
of a point (y, X, 0) is said to be —AT f(y) if and only if X > 0 and f(y) < 0.

Incorporating Definition 3 and the modified KKT condition (4.18), the suboptimality
of any point (y, A, @) w.r.t. problem (4.4) can be quantified by the definition below.

Definition 4. (e suboptimal solution) Given € > 0, €, > 0, and ¢4 > 0, a point (y, X, 8),
with X > 0 and f(y) < 0, is said to be an (e, €p, €4) suboptimal solution of problem (4.4)
if it satisfies:

Ira(y, X, 0)[| < €a, |Irp(y, X, 0)]] < 6, =ATf(y) <e,
where

ra(y, X, 0) = Ry + VFf(y) A+ AT6, (4.19)
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rp(y) = Ay — b. (4.20)

To solve the modified KKT condition (4.18) as a whole, a Newton step (Ay, AX, AB)

can be solved by the following linear equation:

Ay ra(y, X, 0)
KKT [AX] = — | ry(y,A) |, (4.21)
AO rp(Y)

where 7,(y, A\) = —diag(ADf(y)) — (1/t) - 1, 1 is the vector of proper size with entries
of 1, Df(y) = (V11(y1), - Vi a(®1), 0 VANYN), oo Vi v (Un))

R+ D*f(y) Df(y)" AT
KKT = |—diag(A)Df(y) —diag(f(y)) 0 |,
A 0 0

and D? f(y) = diag(\i1 X1 V2Fii(y1), o 20N A VEFin (yn))-

The iterative process in solving (y*(t), A*(t),0*(¢)) is in this manner: at the begin-
ning of (k + 1)-th iteration, the Newton step (Ay*, AX* AG*%) is solved by (4.21) using
(y*, Ak 0%), and the (k + 1)-th iteration is proceeded as:

yk—l—l yk Ayk
AL = IAF] + s |[ANF| (4.22)
0k+1 Bk A@k

where s € R is the step length, and will be determined by a back tracking line search
in the PDIPM from Step 4 to 9 (Step 4 ensures the non negativeness of A*1).
To lighten the notation, let r§ = rq(y* A*,0%), rh = r (y*), r¥ = r (y", AF), and

= ()", (FE)T, (rf)T)T. The following algorithm PDIPM illuminates the primal dual

interior point method to solve an (¢, €,, €4) suboptimal solution of problem (4.4).

Note that, at each outer loop, parameter ¢ is increased by factor p of —n/(f(y*)TAF),
which coincides with the intention that ¢ expands to infinity (see (4.17)) along the iteration
as f(y*)"AF approaches to 0 (regarding the optimality condition of problem (4.4)).
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Algorithm 6 Primal Dual Interior Point Method (PDIPM)

1: Initialize: f(y°) < 0, A° > 0,8° ¢ > 0,¢, > 0,¢5 >0, up > 1, B € [0.3,0.7],
a € 10.01,0.1) and k£ = 0.

2: repeat 3

3 t=—un/(f(y")"A)

4 s = 0.99min{1, min{—A}; /AN, | AN}, < 0}}

5 repeat

6: get (Ayk, AN AG%) by (4.21)

7

8

9

get (,yk:Jrl’ Ak+170k+1) by (4‘22)
s = s
until f(y*') <0, and ||r*+1]] < (1 — as)||7¥]
10: k<« k+1
11: until [|r5]] < eq, [|[r¥]] < €, and —F(y*)TAF <€
12: return (y*, \*, 6%)

4.4 Accelerated termination of Primal dual interior
point method for MPC

In MPC strategy, at each time instant, only the first step inputs of the control sequence,
ug, would be applied to the system. With this in mind, the step separated structure of
both objective function and constraints in problem (4.4) enables a step-based partition,
which can be used to design an accelerated termination criterion in solving an (e, €y, €4)

suboptimal solution when primal dual interior point method is implemented.

4.4.1 Accelerated termination criterion

At current time instant, only inputs of the first step in the prediction horizon are
applied in MPC. At subsequent time instant, the initial state z; will be updated, based
on which the renewed MPC problem (4.4) with the exact prediction horizon length N is
to be solved. As a consequence, the first step decision variables are sufficient for MPC

control law. And the first step focused criterion is derived in this subsection.

As a prerequisite, A, b and f(y) can be decomposed into block form as:

_|Aay 0 ;| fa ( 1) ]
A=  fly) =
[B(Q:N) A(Q:N)] fw) [ N))
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where A1) = B, Ay € R, By = (A],0,...,0)7, By € RV Unexny

By

Ag Bg
ANy = L :

AN BN

A(Z:N) S R(N—l)nmX(N—l)ny, f(2:N)<y(2:N)) = (f2<y2)T7 ) fN(yN)T)T7 and for J= 17 ) Na
the expression of A; and B; can be referred to (1.6).

As a result, equality constraint (4.4b) can be partitioned as:

A(1:1)’y1 = b(l:l)a
B.nyyr + Ae:nye:n) = ban.

Likewise, (4.19) can be partitioned as

Ta,1:1) (Y1, A1, 01, 02:n))
| 7d,(2:N) (’y(2:N), )‘(2:N)7 9(2:N))
Riy + Vi(y) A + Al 6 + Bl O
| Ro:mye:n) + V fen) (Yen)Aen) + A@;N)Q(Q:N)-

Td('!/, Aa 0) -

In the continuation, the following problem is considered.

yfgl]gl) Je:n) (Yen)), (4.24a)
s.t. Bo.nyyr + A(2:N)y(2:N) = bp.n), (4.24b)
e (yem) <0, (4.24c)

where j(z:N) (y(Q:N)) = %||y(2:N)||%-I(2:N)‘

Suppose that there exists y; enabling problem (4.24) to be solvable, then there must
exist (YN, 5\(2; N)s é(g; ~)) satisfying the corresponding KKT conditions as follows.

Rin Py + Al (2: N)9 2:N) V.f(Q:N)('g(ZN))j\(ZN) =0, (4.25a)
5\ f ) (Y2:ny) =0, (4.25b)
vy > 0, (4.25¢)
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Ba.nyr + Aenlen) = ban. (4.25d)

Now, given g; € R™*™ X, € RY}), and 0, € R™*t"%  the norm minimization problem

below is considered:

min Hrd,(l:l)@l; 5\1, 9_17 9(2:}\/))”- (4.26)
0. N)

The following assumption will help to design the first step focused criterion for an (e, €, €4)

suboptimal solution of problem (4.4).

Assumption 4. Let (Q,S\,O_) be generated by PDIPM, €, €, and €; are assumed to be

sufficiently small such that when

|Ira i) (F1, A1, 01, 0:n) || < eq, (4.27)
| Aqyy1 — bay|| < e, (4.28)
—Mfi(y) <e, (4.29)
are satisfied, it leads to:
|7,y (Y1, Ad, 64, é(Q:N))H < |[ra,a1)(Y1: A1, 01, 00.3))||- (4.30)

Remark 4. Denote y* the optimal solution of problem (4.4), and denote its associated
dual variable of (4.4b) as 0*. In implementing PDIPM, it is evident that as y, converges
to yi, both é(Q:N) and HA@;N) converge to 02*2:]\,). And when y; = y7, it must have é(g;N) =
005.n): but not necessarily Oa.ny = 0(,.y). As such, when (Y1, A1, 01) is close enough to
(y1, A}, 07), it is acceptable to assume that Q. is closer than O(s.ny to 0’("2:1\,) in terms of
Fuclidean norm. Since problem (4.26) is unconstrained convez optimization, (4.30) should

hold when €, €, and €, are sufficiently small and (4.27) (4.28) (4.29) are satisfied.

Remark 5. Note that when inequality constraints are linear, problem (4.4) becomes
quadratic linear constrained optimization. Since Newton step solved in (4.21) can be inter-
preted as solving an equation: making gradient of quadratic approximation of expression
to be minimized being 0. Recall (4.19) and (4.13), r4(y, A, 0) is indeed the gradient of
ﬁ(y,)\, 0), resulting ||rq(y, X, 0)|| reduces to extreme good value, say equal or less than
magnitude of 1072 with just few iterations (showed in Table 4.2.). To conclude, Assump-

tion 4 is quite reasonable when (4.4¢) is linear.
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Proposition 1. Let (y, A, 0) be generated by PDIPM, if (4.27) (4.28), and (4.29) are
satisfied, and 4, enables problem (4.24) to be solvable, then (Y1, A1, 0:) is the first step

components of an (€, €,, €4) suboptimal solution of problem (4.4).

Proof. By (4.25b) (4.25¢), it gives )\(2 .v) = 0. Since f 2:3) (Y(2:3)) < 0, there must exist a
sufficiently small A,y € RZ2F+F" guch that

IV fon (Gn)) /(2:N)||2 < E?l — |[ra,:0) (@1, Av, 01, Oy |, (4.31)
f2 M (Peny) <e+ Afi(g), (4.32)

Finally, it can be concluded that:

A A171 b A(11)Z71—b( 1)
Y(2:N)

Bo.nyy + A YNy — b(2:N)]

|

= [|[Aqnyy — ban | < &, (4.33)
7 < y Y 0
R Ayl +Vf Ayl /1 AT 1
Y(2:N) YN | ) [Ny 02:n)
A1, 01,00
< |:7”d(1~1 (yl, 1, Y1, ))} <ey (4.34)
Ve (Ge: N))A(2:N)
N1 A
— [ Ao 1o (4.35)
Aoy [fen(Gen)

where the inequality of (4.33) uses (4.25d), the first and second inequalities of (4.34) use
(4.30) and (4.31) respectively, and the inequality of (4.35) uses (4.32).

y A 0

Y , ! oA ! is an (e, €, €4) subopti-
Yoy | | Aewn
mal solution of problem (4.4). And (91, A1, 8;) is the first step components of an (e, e, €4)

)

Consequently, by Definition 4,
O2:v)

suboptimal solution of problem (4.4). O
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4.4.2 The accelerated termination algorithm

In this subsection, an accelerated termination algorithm of primal dual interior point
method for MPC is delineated, which employs Proposition 1 and gives the proof of fewer
iterations required for solving a suboptimal solution of the same level.

First, problem (4.36) can be used to test whether problem (4.24) is solvable, which
indeed verifies if the intersection of (4.24b) and (4.24¢) is empty or not.

ymin, f (4.36a)
s.l. f(z;N) (Y:n)) < he, (4.36b)
Bony + ApenYen) = ban. (4.36¢)
h <0, (4.36d)

where e is column vector of proper size with entries of 1.

Algorithm 7 Accelerated Termination of Primal Dual Interior Point Method(ATPDIPM)

1: Initialize: f(y°) < 0, A > 0,8° ¢ > 0,¢, > 0,¢5 >0, up > 1, B € [0.3,0.7],
a € 10.01,0.1] and k£ = 0.

2: while 1 do

5 = —n/(F(y")A)

4 s = 0.99min{1, min{—A}; /AN, | AN}, < 0}}

5: repeat

6: get (Ayk, AN AG%) by (4.21)

T: get (yFr AP M) by (4.22)

8 s = fs

9:  until f(y**!) <0, and ||r*| < (1 — as)||r¥|]

10: if (4.27) (4.28) (4.29) are sasisfied then

11: if problem (4.36) has a solution by taking y¥™' as 4, then Break
12: else if ||rh™|| < eq, |[rEHY]] < €, and —f(y*T1)TA ! < ¢ then Break
13: end if

14: end if

15: k+—k+1
16: end while

17: return (yp™, AFT

Proposition 2. Given € > 0, ¢, > 0, and ¢ > 0, termination of ATPDIPM requires
fewer or the same iterations than that of PDIPM.
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Proof. At k-th iteration, after each inner loop of PDIPM and ATPDIPM, it gives Vj =
1,...,N, f'j(yfﬂ) < 0 and A?H > 0, thus —fj(ny)T)\?H > 0. In accordance, if
—F(y*)TAF < e, it must give — fi (g ) TAFT! <.

Suppose that [|r|| < eq, ||rF|| <€, and —f(y")TA* < € are satisfied at k-th iteration
in implementation of PDIPM, they must also be satisfied at k-th iteration in implemen-
tation of ATPDIPM, since the same iterative process (4.22) is utilized. However, if prior
to k-th iteration, problem (4.36) has a solution, then ATPDIPM can be terminated. And

this completes the proof. O]

4.5 Numerical experiments

In this section, in total 500 randomly generated tests (100 tests per each prediction
horizon from 5 to 25 with interval of 5) are carried out to compare the general performance
between the conventional and the first step focused primal dual interior point method.
Each test are implemented under 3 different relative suboptimality ': 1 x 1073, 1 x 1074,
1 x 107°. For each test, the parameter for stopping condition are: ¢, = 1 x 1071°, and
€, = 1 x 107*. All numerical experiments are carried out using MATLAB 2020b on a
Windows 10 PC with 2.20 GHz Core i7-8750H CPU and 16GB RAM.

In detail, the tested system consists of 5 subsystems, and VI = 1,...,5, i = 1,...,5,
nx; = nu; = 2, A;; and Bj; are randomly generated by MATLAB command drss, inequality
constraints (4.4c) are as: 0 < w < 1. The penalty matrix is set as R = I. Each element
of z; is drawn from uniform distribution [—0.5,0.5]. For both PDIPM and ATPDIPM,
parameters for back tracking line search are: « = 0.1, § = 0.5 and p = 10, parameters for
initialization are: y° = 0.5-1, A =1, and 8° =0 - 1.

Note that results of ATPDIPM in terms of €, €, and ¢; are computed from (Y™ @
Y2:N), At g 5\(2:]\[), 0l o é(g;N)), where (yF™, A1 951 are first step components of
(y*+h AFFL @E+1) Note that in Proposition 1, a sufficiently small Ao,y intervenes in the
full sequence solution, but it is most for theoretical proof concern, and has no effect to

results in numerical experiments if A,y takes infinitely small positive value.

1. The relative suboptimality is computed as suboptimality divided by J*.
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Table 4.1 — Overall performance comparison between PDIPM and ATPDIPM of one single
test with N =15

Predefined 1% 10°° 1x 10 1% 1073
relative e

Algorithm | PDIPM | ATPDIPM | PDIPM | ATPDIPM | PDIPM | ATPDIPM
[teration # 22 19 21 17 19 16

Time (s) | 0.5727 0.4781 0.5067 0.4169 0.4405 0.3935

Relative € 2.37e-7 1.02e-6 2.21e-6 2.58e-5 4.94e-5 1.31e-4
|7 353e-16 | 2.48¢-9 |3.37e-16 | 246e-9 | 3.89¢-16 | 6.85¢-9
74| 1.90e-15 | 4.71e-16 | 1.91e-15 | 5.36e-16 | 2.54e-15 | 4.25e-16

4.5.1 Specific performance of a single test

To let the reader catch a glimpse of the exact indicators of PDIPM and ATPDIPM,
their main performance is detailed by a single test with N = 15. Please refer to Appendix
A for parameters setting of this single test.

Table 4.1 shows that the predefined relative ¢, €, and ¢, are fulfilled by 2 algorithms, of
which PDIPM preserves higher precision in terms of € and ¢,. Of all predefined relative e,
ATPDIPM consumes 3-4 fewer iterations than that of PDIPM, resulting in a proportional

advantage on computation time.

4.5.2 Statistics comparison among 500 tests

In this subsection, the statistics of 500 random tests are exhibited. As results of rela-
tive €, €, and €; reveal no noticeable statistical discrepancies among different prediction
horizons, the results of each prediction horizons are therefore aggregated into one item,
as showed in Table 4.2.

Statistics in Table 4.2 exhibit that the predefined relative €, €, and ¢, are fulfilled by 2
algorithms. PDIPM preserves higher precision in terms of € and ¢,, because in ATPDIPM,
suboptimality and primal residual are mainly caused by the first step, which usually are
just below the predefined bound. As for PDIPM, it generally takes 2-4 more iterations to
terminate, and can achieve much higher precision for full sequence due to the quadratic
convergence rate. In terms of €4, as explained in Remark 5 that ||ry4(y, A, 8)|| reduces to
extreme good value in just few iterations, which makes ||rq q.1)(y1, A, 01, é(g:N))H becom-
ing smaller after swapping 07(2:]\;) for é(g;N). Given ||rq .z (YN, 5\(2:N), é(g;N)H can take
0 when quit happens in ATPDIPM, the overall ||r4|| can be less than that of PDIPM.
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Table 4.2 — Statistics of suboptimality between PDIPM and ATPDIPM of 500 tests

Predefined 1x 1075 1x 1074 1x 1073

relative e

Algorithm | PDIPM | ATPDIPM | PDIPM | ATPDIPM | PDIPM | ATPDIPM

Ave. Rel. € | 4.22e-7 1.29¢e-6 6.01e-6 1.56e-5 6.7e-5 1.67e-4

Max. Rel. € | 2.18e-6 4.53e-6 2.36e-5 7.3e-5 2.89e-4 5.77e-4
Ave. €, 1.55e-13 8.11e-9 4.68e-11 1.51e-7 1.62¢-9 3.07e-5
Max. €, 2.95e-11 2.98e-7 1.73e-8 2.95e-6 2.95e-7 9.8e-5
Ave. ¢4 1.19¢-14 | 4.02e-15 1.14e-14 | 3.15e-15 1.05e-14 | 3.02e-15
Max. €4 2.52e-12 | 9.19e-13 | 2.53e-12 | 6.17e-13 | 2.24e-12 | 7.45e-13

From Fig. 4.1, Fig. 4.3 and Fig. 4.5, ATPDIPM consumes less iterations than PDIPM
under all predefined relative €, which coincides with Proposition 1. In terms of the impact
on iteration number ratio by predefined suboptimality, no significant differences are shown
among these 3 figures, indicating that the iteration number needed for PDIPM and AT-
PDIPM changes proportionally as predefined suboptimality varies. Indeed, both methods
spend a few more iterations steadily as predefined suboptimality decreases tenfold, which
verified the behaviors of iteration number resulting from quadratic convergence rate.

From Fig. 4.2, Fig. 4.4 and Fig. 4.6, ATPDIPM spends statistically less time than
PDIPM under all predefined relative € for prediction horizon of 15, 20, and 25. For N = 10,
the majority cases of ATPDIPM possess an advantage on computation time over PDIPM.
However, for N = 5, due to an extremely short prediction horizon, the gain by fewer
iterations is not enough to cover loss by a more complex quit mechanism, leading to

overall inferiority of ATPDIPM in computation time.

4.6 Conclusion

In this chapter, focusing on first step components, an accelerated termination criterion
has been proposed to generated (e,€,, €;) solution of the general MPC resulted convex
optimization problem in implementation of the primal dual interior point method.

The effectiveness of the accelerated termination criterion has been demonstrated under
the mild assumption. In terms of iteration number, the superiority of the new stopping
criterion based algorithm has been demonstrated by mathematical proof and random nu-
merical experiments. Concerning computation time, the dominance of the newly proposed

algorithm has been testified for medium to long prediction horizon.
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Figure 4.1 — Tteration number ratio of ATPDIPM to PDIPM with predefined relative e
as 1 x 107°

Sample value exceeded +/ —2.70 shows as whisker, the same setting for other box plots. Sample
value less, greater than, or equals to 1 (green horizontal line) means ATPDIPM consumes fewer,

more, or the same iterations as PDIPM in the same test. The lower value, the better performance
of ATPDIPM.
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Figure 4.2 — Computation time ratio of ATPDIPM to PDIPM with predefined relative e
as 1 x107°
Sample value less, greater than or equals to 1 (green horizontal line) means ATPDIPM spends

less, more or the same time as PDIPM in the same test. The lower value, the better performance
of ATPDIPM.
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Figure 4.3 — Iteration number ratio of ATPDIPM to PDIPM with predefined relative €
as 1 x107°
Sample value less, greater than, or equals to 1 (green horizontal line) means ATPDIPM consumes

fewer, more, or the same iterations as PDIPM in the same test. The lower value, the better
performance of ATPDIPM.
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Figure 4.4 — Computation time ratio of ATPDIPM to PDIPM with predefined relative e
as 1 x 1074
Sample value less, greater than or equals to 1 (green horizontal line) means ATPDIPM spends

less, more or the same time as PDIPM in the same test. The lower value, the better performance
of ATPDIPM.

81



Chapter 4 — € suboptimality based accelerated termination for MPC using primal dual interior
point method

1 T L T T il
0.95 i
+
— -1
) |
=) e T
< 09F 1 | | R
o [ : [ |
= I - | |
N I I : |
i 0.85 ' [ .
< |
S |
T | i | | |
) | | | ' L
Q2 0.75F | | | —= -
= L L | %
c $ ' T
c $ 1
o 0.7r + T g
[
I +
So6s5F + 1
5 10 15 20 25

Prediction horizon

Figure 4.5 — Iteration number ratio of ATPDIPM to PDIPM with predefined relative e
as 1 x 1073
Sample value less, greater than, or equals to 1 (green horizontal line) means ATPDIPM consumes

fewer, more, or the same iterations as PDIPM in the same test. The lower value, the better
performance of ATPDIPM.
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Figure 4.6 — Computation time ratio of ATPDIPM to PDIPM with predefined relative e
as 1 x 1073
Sample value less, greater than or equals to 1 (green horizontal line) means ATPDIPM spends

less, more or the same time as PDIPM in the same test. The lower value, the better performance
of ATPDIPM.
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In §5, taking a step out of the MPC domain, the general linear constrained quadratic
optimization will be handled. In contrast to this section, the suboptimality criterion with

feasibility guarantee will be derived chiefly.
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CHAPTER 5

¢ SUBOPTIMALITY BASED ACCELERATED
TERMINATION FOR LINEAR
CONSTRAINED QUADRATIC
OPTIMIZATION

In this chapter, to enlarge the application of the suboptimality criterion, the general
linear constrained quadratic optimization problem is tackled. Equipped with cone pro-
gramming (CP), the suboptimality criterion developed in this section can work without
information of exact gradient or the optimal active set, enabling the methodology to be
adopted in a broader scope. To highlight, the lower bound of suboptimality, which can
be computed using only the initialization parameters, is demonstrated to be sufficient to

make the iterative process terminated within finite iterations.

5.1 Introduction

Quadratic programming has long tracked massive interest in the society of control
system, applied mathematics, and computer science, for it encompasses a large vari-
ety of applications, such as computational geometry, finance, process networks, robotics,
telecommunications, energy, and data confidentiality, etc[21].

In general, iterative method is a main approach to solve QP due to its scalability and
convergence feature. However, during the iterative process, the optimality is only guar-
anteed in the limit of iterations, and the feasibility is not ensured at any iterate. As a
compromise, a suboptimal (with suboptimality to be determined depending on compu-
tation difficulty and time sensitivity) but feasible (in some applications for concerns of
security or physical limits) solution is sometimes preferred over optimal solution in prac-

tical application. In [4], suboptimality focused on variables has been investigated, but
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no definite criterion of objective value suboptimality has been proposed, and the method
may generally fail under large suboptimality bound. In [28], though arbitrary suboptimal-
ity is fulfilled, solving an exponentially increasing number of QP is required to build the

stopping criterion.

In this chapter, consolidating the iterative method and KKT criterion, a proactive
method is proposed to solve for the optimal solution by dynamically identifying if the ac-
tive set is optimal or not. Furthermore, the gradient norm based suboptimality in Chapter
2 is extended to general linear constrained quadratic optimization. This extension can de-
liver an arbitrary suboptimal and feasible solution, which requires no information of the

optimal active set.

By transforming the original problem into only equality constrained problem using
active set identified, whose explicit optimum and the best dual function value found
during the iteration can be used to build € suboptimality criterion. In the continuation, a
cone programming (CP) incorporating feasibility check and e suboptimality criterion can
be used to produce a feasible € suboptimal solution of the original problem. It must be
highlighted that the identified active set only needs to be close enough, not necessarily
identical, to the optimal active set to complete such a process, which enables the iterations

to be terminated earlier than finding the optimal active set.

The main contributions of this chapter are threefold. First, the proactive method
can deliver the optimal solution using a relative small scale of iterations compared to the
traditional iterative method. Second, the suboptimal method can generate feasible solution
of predefined suboptimality without knowing the optimal active set, which enables an even
earlier termination of the iterative process prior to finding the optimal active set. Third,
the lower bound of suboptimality has been demonstrated with finite iterations termination

guarantee.

This chapter is organized as follows. §5.2 sets up the optimization problem and fun-
damentals. §5.3 proposes the proactive method combining the KKT criterion and general
iterative approach. §5.4 illustrates transformations from active inequality constrains into
equality ones, and proposes criterion to generate € primal solution. Numerical experiments

and results discussions are presented in §5.5. And conclusions are given in §5.6.
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5.2 Problem statement and fundamentals

In this section, the linear constrained quadratic problem is formulated. Besides, €
primal solution, iteration mechanism, and definition of active set are introduced as fun-

damentals for methods studied later.

5.2.1 Problem statement and preliminaries

In this chapter, a general linear equality and inequality constrained quadratic problem

is considered as below:

p =min J(y), (5.1a)
Ay =b, (5.1b)
Cy <d, (5.1c)

where A € R"™*™W_ rank(A) = n,, n, € Nyg, b € R, C € R%*™ and d € R,
J(y) = 3||y||%. in this chapter R is assumed to be positive definite .

Definition 5. The feasible set of problem (5.1) is defined as Y :
Y ={yeR"Y | Ay =b,Cy < d}. (5.2)

Assumption 5. [t is assumed that Y is compact, closed, and not empty, and there is at

least one y in the interior of Y. It is also assumed that n, < ny.

Definition 6. y is said to be an € primal solution of problem (5.1) if and only if y € Y

and
J(y) —p <e (5.3)

The main objective of this chapter is to find an efficient way to solve an e primal

solution of problem (5.1).

1. Refer to [60] for case R € S}, in which the technique does not change the method presented in
this chapter.

87



Chapter 5 — € Suboptimality Based Accelerated Termination for Linear Constrained Quadratic
Optimization

5.2.2 Dual problem and iterative process

In this subsection, dual variables are introduced to form the dual function and dual
problem associated with (5.1), which can be solved by a general iterative process.

To begin with, the dual problem and Lagrangian of problem (5.1) are defined as:

§* = max §(0,\) = max min L(y, 0, \), (5.4)

where 6 € R and X € R%s are the dual variables associated with constraint (5.1b) and

(5.1c) respectively.

Remark 6. Since R € S1Y, (5.1b) and (5.1¢) are linear, problem (5.1) is convex. As
the Slater’s condition is satisfied by Assumption 5, the strong duality holds by Slater’s
theorem[8], namely p* = g*.

A general gradient method is initiated to solve dual problem (5.4) as:

0+t = gk + o/g(Ayk - b), (5.5a)
N = max{0, A" + o (Cy" — d)}, (5.5b)
Yl = _RI(ATG! 1 CTARY), (5.5¢)
where 0/5,0/5“\ € R. are step size associated with 8% and A* respectively, and (5.5¢) is

obtained by subsituting A*+! and 8**! into V,L(y,8, ) = 0.

Assumption 6. [t is assumed that o/ef and o/i satisfy one of step size conditions: min-
imization rule, Armijo rule and diminishing stepsize [6], such that the sequence {y*}
converges to the optimal solution of problem (5.1), namely
Jim g =y (5.6)
Note that iterative process (5.5) alone cannot generate e primal solution of problem
(5.1), since y* € Y is not guaranteed at any iterate.

Let P = {1,...,n;}, definitions of active constraint, active set and inactive set are

given as follows.
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Definition 7. During iterative process (5.5), the i-th constraint of (5.1c): Ciy < d;
(C = @4 Ci, d = @y d;), is said to be active at y* if Cyy* > d;, i.c., the equality
is reached or the inequality is violated; or S\f > 0, its corresponding dual variable is
turned positive. Denote A* and I* the active and inactive set of constraints (5.1c) at k-th

iteration, which are defined as:

AP ={ieP| Cy* >d; or X >0}, (5.7)
TF = P\ A~ (5.8)

Let y* denote the optimal solution of problem (5.1), A* and Z* are used to denote the
optimal active and inactive set, A* = {i € P | Ciy* = d,;}?, I* = P\ A"

5.2.3 KKT criterion for active set

Below, a linear programming (LP) based on KKT condition [26] can be used to test if
A¥ is the optimal active set of problem (5.1), whose solution is denoted as (y*, X*, s*, h*)

if it exists.

yj\irkl’iilzk’h —h (5.92)
st. Ry+ AT0 + Chd 4 = 0, (5.9b)

Ay —b=0, (5.9¢)
Cry—dy =0, (5.9d)

Cry —dz + s =0, (5.9¢)

her < Agr, (5.9f)

hey < Sz, (5.9¢)

0<h, (5.9h)

where C_Ak = ®i€Ak Ci, CAk € Rckxny’ dAk = @ieAk di, dAk € Rck, CIk = ®i61k CZ',
dr = @,c7r d;, e1 and e are column vectors of ones of appropriate size.
It is not assumed that the strict complementarity condition or the linear independence

constraint qualification (LICQ) is satisfied® in this chapter, where the former is said to

1

2. It is felicitous to replace ">" with "=", and remove the dual variable check at the optimal solution.
3. The notion of LICQ and strict complementarity condition are borrowed from [43].
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hold if matrix A4 (A = A @ Cu) has full row rank and the latter is said to hold if
A; > 0 for each Cyy* = d;. As a result, A* is not necessary to be unique. Nonetheless, LP
(5.9) is still valid to generate y*.

5.3 Proactive optimal active set identification method
(POASIM)

In this section, combining iterative process and KK'T criterion, a method is proposed to
solve problem (5.1) by proactively checking active set generated in iterative process, which
fundamentally requires fewer iterations compared to the conventional iterative method
(result of a illustrative example is presented in §5.5.1).

This proactive algorithm is summarized in Alg. 8. Note that A* and A% (i = 1,..k)
are possible to be identical, it is sufficient to only test .4* that has not been tested be-
fore. The optimal solution of problem (5.5.1) can be obtained if the optimal active set is
identified, which, however, cannot be guaranteed to happen in implementing POASIM.
Therefore, it is one crucial drawback of POASIM, and it can be overcome by the subop-

timal method proposed in the next section.

Algorithm 8 Proactive Optimal Active Set Identification Method (POASIM)

1: Initialize: 71, A71, k = 0 and €. y~! is obtained by (5.5¢).

2: repeat

3: Update primal and dual variables by (5.5), update A* by (5.7)
4 if LP (5.9) has a solution then return y*

5 end if

6: k+—k+1

7: until y* is returned

5.4 Active set based ¢ suboptimal approach

In this section, based on Definition 7, problem (5.1) is dynamically converted into
equality constrained formulation during the iteration, whose optimal solution can be
solved explicitly. Together with the best dual objective value of problem (5.4), it can

be checked that whether an e primal solution of problem (5.1) is achievable under A" .
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5.4.1 Transforming active constraints into equality constraints

Definition 7 can be used to identify the active and inactive constraints of (5.1c) at
k-th iteration. By doing so, Problem (5.1) can be dynamically converted into the equality

constrained problem (denote its optimizer as y%,) below:

T = min J(y) (5.10a)
s.t. Ay = b, (5.10b)

where A s = A @ Cyr, and by = b @ d 4.

Lemma 5. y% can be solved by the linear equation group below:

(5.11)

AAky = i)Ak,
Fl.Ry =0,

where F g € RW*w=mr=ck) s o orthonormal null space matriz of A g satisfying A g F g =
0.

Proof. By Assumption 5, rank(F};k) = ny — n, — ¢. Since rank(AAk) = ¢ +n, and
R € S%., the linear equation group (5.11) has row rank as ny, which means it has the
unique solution.

Here, the feasible set Y1 of problem (5.10) is characterized as:

YAk :{y e R™ ’ AAky = EAk}
={Ggar + Fpetgr | tgo € R Y (5.12)

where the second equation is based on any ¢y 4» € Y.

It is trivial that the solution of the linear equation group is a feasible solution of
problem (5.10) since (5.10b) is satisfied.

Next, the optimality will be proved. By (5.12), problem (5.10) is equivalent to:

tAk

Where J_Ak(t_Ak) = %H’gAk + FAktAkH%{? and J:\k = jjk
ACCOI‘dngly, it giVGS VJAk (tAk) = FEkR(gA’f + FAktAk), VQJ_Ak (tAk) = szRFAk
For Vit 4o € R™~"=% 4 feasible solution of (5.10b) can be assigned, denoted as y 4, to
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have ysx = Gar + Fyrt ge, then it gives VI g (b4r) = F 3 Ry 4.

At last, the necessary and sufficient optimality condition of unconstrained convex
optimization (5.13) is given as: ||VJ 41 (t4+)|| = 0. And the proof can be concluded by
(5.11). m

5.4.2 Active set based ¢ suboptimal criterion

To emphasis the main contribution, henceforth the methodology only for case cx+n, <
ny will be delineated®. Let gf,, = sup;cyien., 6(6%, X'). Since the solution of problem
(5.10) is not unique, the relation between gf.,, and y%, is needed to build the e sub-
optimality criterion. By the primal-dual theory[8], it gives gk, < p*. Combining with
Definition 6, if y € Y, and satisfies

T(Y) = Gpest < € (5.14)

then y is an € primal solution of problem (5.5.1).

In solving an e primal solution of problem (5.1), condition (5.14) can further reduce
the gap between gf , and p* by taking advantage of the sequence {gr ., } generated. Since
the solution of problem (5.10) is not unique, we need the relation between g ., and Yok
as a base to build the criterion for € suboptimality.

There are 3 possibilities between J3. and gj.,, depending on the identification cor-

rectness of A* and the gap between g& _, and J*:

‘7.:11‘ < gllfestv (515)
0 <Tas — Gpest < € (5.16)
€ <‘7.Zk - gll)gest' (517)

Note that in case (5.17), no definite € suboptimality criterion can be devised without
knowing A*, since even J3, the optimum by far fails (5.14). The following 2 propositions
will be used to build criteria for e suboptimality when (5.15) or (5.16) is satisfied.

Proposition 3. Given A € R, if y satisfies (5.10b) and ||F},. Ry|| < (26AkA)%, where

4. The case ¢ + n, > ny is unsolvable, executing A* « A*\{i € A* | AF < A'*} (X'F denote the

k

ny-th largest value of 5\1», i € A¥), it can be converted into case ¢ + n, = ny, in which case the only

solution can be obtained by solving linear equation (5.10b).
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B g = min eig(F 1, RF 4x), then it must have:
J(y) — T <A (5.18)

Proof. As y satisfies (5.10b), it is a feasible solution of problem (5.10). Since problem
(5.13) is convex and unconstrained, and V2J 4 (t4x) is lower bounded by B4« (because
A 4 is full row rank), then (5.18) holds by applying (9.10) of [8]. O

Now, consider the CP below, and denote its optimizer as (Ysup, Syi, ') if it exists.

min  —h (5.19a)

y)szk 7h

s.t. (5.10b), (5.9¢), (5.9g), (5.9h),
| F4 Ryl < (2845 (€ + Ghose — Tir))

N

(5.19b)

Based on e suboptimality criteria demonstrated in Proposition 3, CP (5.19) can be used
to obtain an e primal solution of problem (5.1), which will be illustrated in the following

proposition.
Proposition 4. If LP (5.19) has a solution and
jj\k o gl])cest <, (520)

then ygup is an € primal solution of problem (5.1).

Proof. First, consider case (5.15), let 6" = gi.,, — T As Y satisfies (5.10b),(5.9¢),
(5.9¢), (5.9h), it gives A 4xYsup = b, and Crrysyy < dzr. Since at each iteration, C
consists of Czr and C 4, then by (5.2), ysp € Y. Subsequently, by the primal-dual
theory[8], it gives

0 S j(ysub) - glljest' (521)
As (5.19b) is satisfied by ysuw, it holds by Proposition 3 that:
0 S ‘-7<ysub) - gllfest S €. (522)

As a consequence, combining Y, € Y, (5.21) and (5.22), ysu is an € primal solution of
problem (5.1) by (5.14).
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Second, consider case (5.16), let A* = T4, —gp..,, by (5.18) it holds that: J (y) — T <
e — A*. Namely, J(y) — gi..; < €. The rest of the proof remains the same with that of
case (5.15). O

In a cost ascending order, Alg. 9 presents the complete algorithm to compute an e
primal solution of problem (5.1): first check whether Y’ is an e primal solution; if not,

then check whether an e primal solution can be found by CP (5.19) using gr ;.

Algorithm 9 Active Set Based Suboptimal Algorithm (ASBSA)

1: Initialize: 71, A=' k= 0 and €. y~! is obtained by (5.5¢)
2: repeat
3: Update primal and dual variables by (5.5), update A* by (5.7), compute y*, by
(5.11)
if Y €Y then
if y*. satisfies (5.14) then return y?;
end if
end if
if y’,. satisfies (5.20) then
if CP (5.19) has a solution then return yg,,
10: end if
11: end if
12: k< k+1
13: until one of y%, and ys, is returned

5.4.3 Optimization properties of ASBSA

From here, the following 2 lemmas will be used to derive the lower bound of e: for any

value above the bound, ASBSA can terminate within finite iterations.

Lemma 6. Under Assumption 6, in implementing ASBSA, (5.20) can be satisfied within
finite iterations for Ve > 0.

Proof. First, consider the following problem: § = inf;cz«{min, ||y — y*|| | Ciy = d;}.
Then, as y* asymptotically converges to y* by Assumption 6, there exists a k; such that
Vk > ki, |ly* — y*|| < 4. So, for A* generated by (5.7), Vk > ki, it gives Z* N A* = 0.
Therefore, it gives A* C A* for Yk > k;, which means Y is a proper subset of the feasible
set of problem (5.10), thus it must holds that:

Tix < T* Yk > ky. (5.23)
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For a given € > 0, there exists a ky by Remark 6 such that
T* = Ghg < € Vk > k. (5.24)
Consequently, combing (5.23) and (5.24), it gives
Tar = Ghest < € Yk > max{ki, ko}. (5.25)

And this completes the proof. O

Here, consider the following norm minimization:
5= myin ||FiRy||, st.y €Y,

where Fy € R™*(™="r) is a orthonormal null space matrix of A satisfying AF4 = 0.

Lemma 7. Under Assumption 6, for Ve > §/204, where B4 = mineig(F3 RFy), an ¢

suboptimal solution of problem (5.1) can be generated within finite iterations in imple-

menting ASBSA.
Proof. By Lemma 6, given an arbitrary ¢ > 0, there exist a k such that
T2k = Gbest < € (5.26)
Next, consider the problem:
§F = min |F3xRyl|, s.t. (5.10b), Cpry < dgx.

Observing CP (5.19), for € = (6%)%/284x + Thr — Ghs, an €° suboptimal solution of
problem (5.1) can be found by solving CP (5.19).
By (5.26), an ((60%)2/28 4 + €') suboptimal solution of problem (5.1) can be generated

with at most k iterations. If it can be shown that
(6%)2/2B.4r < 6%/2Ba, (5.27)

then for € = §/264 + €, an e suboptimal solution of problem (5.1) can be generated with
at most k iterations. Since € can be arbitrary small, we have that for Ve > §/284, an e

suboptimal solution of problem (5.1) can be generated within finite iteration.
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The proof of (5.27) is given from here. If A 4+ = A, (5.27) trivially holds. Considering
the case Ay # A, it indicates that A = A ® Cyr. Subsequently, by AF = 0,
AF . =0, and C 4 F 4 = 0, the null space of A 4 is a subspace of the null space of A.
Since F' € RW*(w=) and Fy € RWX(W=nr=¢) there exists a semi-orthogonal matrix
P e Rw=nxy=nr=c) with PTP = I, such that FP = Fy. It follows F1. RF . =
PTFTRFP. Then by Poincaré separation theorem|32],

Ba < Bax. (5.28)

For any y € Y,
|FiRy|l = ||[P"F"Ry|| < [|P"]|||F" Ry|| = || F" Ry, (5.29)

where the inequality uses Cauchy-Shwarz inequality, and the equality uses the property

of semi-orthogonal matrix that ||PT|| = ||P|| = 1.

Finally, (5.27) can be concluded by (5.28) and (5.29), and this completes the proof. [

Remark 7. Note that € > §/234 is a sufficient condition for ASBSA to be terminated
within, finite iterations. In practice, it is possible to take € much lower than §/2B, which

will be illustrated with a numerical example in §5.5.1.

Regarding implementation of ASBSA, economic computation techniques as follows

can further improve its efficiency:

1. for each distinct A*, its according variables C 4, d r, Crzx, dx, Yo, Far and J s
can be stored, then if A" = A* i = 1,2,..., the above mentioned variables can

be retrieved from the stored data, instead to compute from the scratch ®;
2. it requires that A* in Step 9 of ASBSA has not been tested by CP (5.19) before;

3. at each iteration, if y%, satisfies (5.14) and Yue €Y, then ASBSA can be termi-
nated without excess computation. In addition, to avoid unnecessary solving of CP
(5.19), for each y%, € Y and J(y) — gk, > €, denote D 4 = T — €, then at
every k > k, we can claim that Y’ is an € suboptimal solution of problem (5.1) if

k
pest > D.Ak‘

5. This technique can also be applied to POASIM.
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5.5 Numerical experiments

In the numerical experiments, Nesterov gradient descent[42] [24] is adopted as follows
for iteration (5.5a) (5.5b), which is proved to be the best first order gradient method [41].

~ A 1 - ~
0k+1 — ek T Z(A’gk . b)7

< 1
AP = max{0, A\F + Z(Cgk —d)},

where for a vector v, DF = v* + 2L (UF —pE1) [ = ||[ERT'E" |5, and E = (AT, C™)7,

Specifically, 2 groups of experiments are carried out: 1. single small size problem for
a clear-cut comparison of time and iteration number magnitude among 2 algorithms pro-
posed (POASIM and ASBSA) and pure iterative process; 2. for each ny equals 10, 20, 50, 100,
and 200, 1000 randomly generated tests for general performance comparison between
POASIM and ASBSA. All numerical experiments are carried out using MATLAB 2020b
on a Windows 10 PC with 2.20 GHz Core i7-8750H CPU and 16GB RAM.

In detail, 0 < y < 1 is set for inequality constraints (5.1¢c), n, = ny/2, the sparsity
concerning matrix A is randomly drawn from uniform distribution (0, 1) of each problem,
and each non zero entry of A is randomly drawn from uniform distribution (—0.5,0.5),
and the i-th element of b is randomly drawn from uniform distribution (0, A, - 1) to make
problem (5.1) feasible, where A; and 1 denote the i-th row of A and column vector of

ones of appropriate size respectively. The penalty matrix is set as R = 1I.

5.5.1 Single test for comparison among 4 methods

To initiate a perception of 2 newly proposed algorithms (POASIM, ASBSA) and pure
iterative process (5.5), here the comparison is presented by small size (ny=10) test, whose
parameter setting can be found in Appendix B. From Table. 5.1, when e suboptimality
is only concerned, Nesterov gradient descent discloses evident superiority in iteration
number and time. However, if feasibility is required, Nesterov gradient descent requires
5000 times more iterations, which results in worse time performance than 2 proposed
methods. POASIM and ASBSA, promised to deliver optimal (of course feasible) solutions,
reveal favorable results in iteration number and time, and hence will be investigated
further with randomly generated problems of larger size in the following subsection.

Note that, in this test, 6/284 = 0.0348, if take € = §/2f34, then the corresponding
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Table 5.1 — Performance comparison among Nesterov gradient descent, POASIM, and
ASBSA of a single test
with ny=10, and predefined relative ¢ as 1 x 1072

Nesterov
= . POASIM | ASBSA
Computation | 5 ¢ 10-3 | 43 10~ | 8.9 x10~2 | 1.7 x10-2
time (s)
# of iterations
or (5.9) solved 15 74803 20 15
Primal feasible no yes yes yes

* solved by (5.5a)-(5.5b), a posterior € suboptimality criterion is used: p* —
g(ék, ;\k) < 0.01p*, where p* is known as a parameter.

#* golved by (5.5a)-(5.5b), € suboptimality criterion: p* — §(6%, AF) < 0.01p*,
feasibility criterion: ||[Ay —b|| <1x 10716, Cy —d < 1 x 10716, the magnitude
1 x 10716 is computed from optimal solution y* that solved by POASIM.

Table 5.2 — Random tests statistics of ASBSA: average and maximal relative error

The magnitude of 1 x1074, 1x 1073, 1 x 1072 and 1 x 10~! are omitted from the results according
to the relative suboptimality referred for space-saving. As a consequence, any result presented
with value less than 1 means that predefined suboptimality is fulfilled.

Ave. Rel. Error Max. Rel. Error
Predefined Rel. Subopt. | 10~* 10~ 1072 10='|10~* 10=* 1072 107!
ny = 10 0.02 0.02 0.04 0.08 096 0.98 0.97 0.96
ny = 20 0.01 0.02 0.09 0.02 ] 0.57 0.63 0.86 0.94
ny = 50 0.01 0.05 0.19 0.35]0.80 0.91 0.98 0.89
ny = 100 0.03 0.09 0.26 0.38 |0.74 0.89 0.95 0.83
ny = 200 0.01 0.09 0.25 0.390.72 0.73 0.86 0.71

relative suboptimality is 0.0424, which is a sufficient condition for ASBSA to be terminated
within finite iterations. In fact, it is quite reasonable to take much smaller € in practice,
e.g. in the next subsection, predefined relative suboptimality is set as small as 0.0001, and

all the tests can generate € suboptimal solution within in finite iterations.

5.5.2 Random tests between POASIM and ASBSA

In this subsection, for each ny equals 10,20, 50, 100, and 200, 1000 independent ran-

domly generated linear constrained quadratic problems are used to test POASIM, each of
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Table 5.3 — Random tests statistics of POASIM: active inequality constraints ratio and

number of LP calculated

Problem size

Active Inequality
Constraints Ratio

Number of LP Calculated

Ave. Max. Min. | Ave. Max. Min.
ny = 10 12.64% 25.00% 5.00% | 3.76 11 1
ny = 20 12.45% 25.00% 2.50% | 6.59 19 1
ny = 50 13.53% 25.00% 5.00% | 15.77 41
ny =100 | 14.16% 24.50% 6.00% |28.19 73 11
ny =200 | 14.92% 24.25% 8.50% |49.94 127 23

Table 5.4 — Random tests statistics of ABSBA: number of y%, returned and CP calculated

ny 10 | 20 | 50 | 100 | 200

Ave. CP | 0.07 | 0.04 | 0.09 | 0.24 | 0.40

104 Max. CP | 2 2 3 4 7
Min. CP | 0 0 0 0 0

Y 937 | 975 | 941 | 849 | 728

Ave. CP | 0.11 | 0.12 | 0.27 | 0.55 | 0.84

10-3 Max. CP | 3 2 6 5 6
Min. CP | 0 0 0 0 0

Y 915 | 933 | 821 | 618 | 402

Ave. CP | 0.29 | 0.42 | 1.03 | 1.55 | 2.06

10-2 Max. CP | 3 5 9 11 | 21
Min. CP | 0 0 0 0 0

Y 843 | 773 | 413 | 123 | 17

Ave. CP | 0.73 | 1.29 | 2.58 | 3.92 | 6.36

10-1 Max. CP | 6 11 | 23 | 44 | 86
Min. CP | 0 0 0 0 1

Y 671 | 422 | 53 4 0
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Table 5.5 — Random tests statistics: computation time ratio of one CP in ABSBA to one
LP in POASIM

ny 10 20 50 100 200
Ave. | 0.88 | 1.10 | 2.09 | 3.07 | 3.40
107* | Max. | 1.91 | 2.85 [ 6.16 | 8.17 | 8.63
Min. | 0.22 | 0.56 | 0.79 | 1.29 | 1.36
Ave. | 0.86 | 1.19 | 2.41 | 3.58 | 3.79
1073 | Max. | 1.71 | 3.47 | 8.00 | 10.43 | 10.70
Min. | 0.21 | 0.53 | 0.78 | 1.17 | 1.37
Ave. | 0.84 | 1.40 | 2.87 | 4.15 | 4.53
1072 | Max. | 2.09 | 4.01 | 9.15 | 10.55 | 10.65
Min. | 0.22 | 048 | 0.71 | 1.24 | 1.62
Ave. | 0.86 | 1.37 | 2.85 | 4.14 | 3.99
1071 | Max. | 2.27 [ 4.29 [ 9.01 | 11.30 | 12.21
Min. | 0.21 | 0.48 | 0.79 | 1.84 | 2.21

which is tested under 4 different relative suboptimality ¢ particularly for ASBSA: 0.0001,
0.001, 0.01 and 0.1.

Table 5.2 shows that the predefined suboptimality of all random tests is fulfilled, the
maximum relative error in general is significantly larger than the average relative error of
all tests. What is not presented in Table 5.2 but worth mentioning is that all solutions
delivered by ASBSA are primal feasible.

For every figure from Fig. 5.1 to 5.5, as predefined relative suboptimality increases
from 1 x 1074 to 1 x 107!, the boxplot of iteration number ratio of ASBSA to POASIM
declines steadily. The reason behind this is that the higher suboptimality, the higher toler-
ance of incorrectness of A*, thus the higher possibility for (5.15) or (5.16) to occur, since
the gap between &, and p* becomes more tolerated. This tendency is also shown in
Table. 5.4, where the average number of CP calculated grows exponentially as predefined
relative suboptimality increases for all ny cases. Regarding the influence of problem size,
under each suboptimality, the iteration number ratio of ASBSA to POASIM decreases re-
markably as ny increases, primarily due to 2 factors shown in Table. 5.3: first, the number
of LP calculated grows proportionally to ny; second, comparable low number (less than
10) of LP for ny equals 10 and 20, while ASBSA needs at least several tens of iterations to
make (5.15) or (5.16) happen. As a result, ASBSA only comes into statistically dominant

w.r.t. iteration number starting from ny = 50 under predefined relative suboptimality

6. The relative suboptimality is computed as suboptimality divided by p*.
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107!, and achieves the best performance in case ny = 200 with overall superiority under
10~! and 1072

Few facts for time performance analysis: computing CP dominates the total compu-
tation time of ASBSA, as it generally consumes 4 — 5 x 10* fold time than that of one
iteration of (5.30); computation time ratio of one CP to one LP increases logarithmi-
cally as ny increases under the same predefined relative suboptimality, and the ratio is
comparably insensitive to the change of suboptimality. As shown from Fig. 5.6 to 5.10,
ASBSA outperforms POASIM in terms of computation time under relative suboptimality
1x107%, 1x 1072 and 1 x 1072 in all ny cases, for comparably low average number of CP
calculated for ASBSA in these cases (showed in Table. 5.4). Note that the considerable
number of g%, returned as the primal suboptimal solution (showed in Table. 5.4) can
also account for time supremacy of ASBSA, which spares the effort in computing CP and

results in even less computation time.

5.6 Conclusion

In this chapter, combining the first order gradient method and KK'T criterion, a proac-
tive method (POASIM) has been proposed in solving for the optimal solution for linear
constrained quadratic optimization by dynamically identifying the active set in a iterative
manner. In the hope of terminating the process faster, a suboptimal method (ASBSA)
based on cone programming has been further initiated to generate suboptimal and feasible
solutions. The suboptimal method can be considerably beneficial when the optimal active
set is prohibitive to identify during the iterative process. A lower bound of suboptimality
has been demonstrated, above which ASBSA can generate suboptimal solutions within
finite iterations with no information nor assumption on the optimal active set.

Through random numerical experiments, the e-suboptimality and feasibility have been
verified for the suboptimal method, which has moreover revealed statistical improvement
of computation time and iteration number compared to the proactive method under cer-

tain predefined relative suboptimality and problem sizes.
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Figure 5.1 — Iteration number ratio of ASBSA to POASIM with ny = 10

Sample value exceeded +/ — 2.70 shows as whisker, the same setting for other box plots. Sample
value less, greater than, or equals to 1 (green horizontal line) means ASBSA consumes fewer,
more, or the same iterations as POASIM in the same test. The lower value, the better perfor-

mance of ASBSA.
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Figure 5.2 — Iteration number ratio of ASBSA to POASIM with ny = 10

Sample value less, greater than, or equals to 1 (green horizontal line) means ASBSA consumes
fewer, more, or the same iterations as POASIM in the same test. The lower value, the better
performance of ASBSA.
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Figure 5.3 — Iteration number ratio of ASBSA to POASIM with ny = 10

Sample value less, greater than, or equals to 1 (green horizontal line) means ASBSA consumes
fewer, more, or the same iterations as POASIM in the same test. The lower value, the better
performance of ASBSA.
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Figure 5.4 — Iteration number ratio of ASBSA to POASIM with ny = 10
Sample value less, greater than, or equals to 1 (green horizontal line) means ASBSA consumes
fewer, more, or the same iterations as POASIM in the same test. The lower value, the better

performance of ASBSA.
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Figure 5.5 — Iteration number ratio of ASBSA to POASIM with ny = 10

Sample value less, greater than, or equals to 1 (green horizontal line) means ASBSA consumes
fewer, more, or the same iterations as POASIM in the same test. The lower value, the better
performance of ASBSA.
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Figure 5.6 — Computation time ratio of ASBSA to POASIM with ny = 10

Sample value less, greater than, or equals to 1 (green horizontal line) means ASBSA consumes
less, more, or the same computation time as POASIM in the same test. The lower value, the
better performance of ASBSA.
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Figure 5.7 — Computation time ratio of ASBSA to POASIM with ny = 20

Sample value less, greater than, or equals to 1 (green horizontal line) means ASBSA consumes
less, more, or the same computation time as POASIM in the same test. The lower value, the
better performance of ASBSA.
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Figure 5.8 — Computation time ratio of ASBSA to POASIM with ny = 50

Sample value less, greater than, or equals to 1 (green horizontal line) means ASBSA consumes
less, more, or the same computation time as POASIM in the same test. The lower value, the
better performance of ASBSA.

109



Chapter 5 — € Suboptimality Based Accelerated Termination for Linear Constrained Quadratic
Optimization

1.8 + -
1.6 .
1.4 + .
1.2 .

-— e =

L +
0.8 +

o
~
T
1

Computation time ratio of ASBSA to POASIM

0.0001 0.001 0.01 0.1

Figure 5.9 — Computation time ratio of ASBSA to POASIM with ny = 100

Sample value less, greater than, or equals to 1 (green horizontal line) means ASBSA consumes
less, more, or the same computation time as POASIM in the same test. The lower value, the
better performance of ASBSA.

110



5.6. Conclusion

181

14r

121

- + HH A+
|

|
I
I
I

Computation time ratio of ASBSA to POASIM

0.0001 0.001 0.01 0.1

Figure 5.10 — Computation time ratio of ASBSA to POASIM with ny = 200

Sample value less, greater than, or equals to 1 (green horizontal line) means ASBSA consumes
less, more, or the same computation time as POASIM in the same test. The lower value, the
better performance of ASBSA.
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CHAPTER 6

CONCLUSION

6.1 Conclusion

In this dissertation, targeting at accelerating the iterative solving process of MPC
resulted or related convex optimization problem, several algorithms have been proposed,
each of which has been studied theoretically and experimentally in comparison with the

referred conventional approach.

6.1.1 Conclusion of algorithms and methods proposed

The overall conclusion of each algorithm proposed in this dissertation is given below.

Under the step-wise stopping condition in a distributed MPC, 2 algorithms have been
proposed in §2, which can reduce the iterations requirement by fixing the Lagrange mul-
tipliers” value and dropping satisfying steps in the MPC problem respectively. In the nu-
merical experiment, through dynamically reducing problem size and using a "warm start"
strategy, the dynamic sizing algorithm has consumed essentially fewer iteration number
and less computation time compared to Uzawa method in meeting the same stopping
condition.

In the setting of equality constrained distributed MPC with coupling dynamics, the
full prediction horizon projection algorithm proposed in §3 has employed an integrated
gradient-based criterion and projection mechanism to guarantee suboptimality and feasi-
bility. In exploiting the MPC feature that only the first step of control sequence is applied,
a first step focused projection algorithm with suboptimality and feasibility guarantee has
been proposed in §3, which can substantially reduce the iteration number and computation
time in meeting the same suboptimality requirement. Its effectiveness has been verified
through random numerical experiments, in which the advantages of iteration number and
computation time has continued to grow as required suboptimality decreases.

In MPC setting with coupling dynamics and step separable convex inequality con-
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straints, the first step focused criterion in meeting with suboptimality under bounded in-
feasibility has been proposed in §4. The resulting algorithm has been demonstrated to be
superior than the traditional primal dual interior point method in iteration number both
theoretically and experimentally. In terms of computation time, it has shown a statistical
advantage in medium and long prediction horizon cases under all tested suboptimality
compared to the traditional primal dual interior point method.

For general linear constrained quadratic optimization (not necessarily be MPC), com-
bining active set identification technique and general gradient method, a proactive method
has been proposed to deliver the optimal solution in §5. In addition, a suboptimal algo-
rithm has been proposed in §5 based on cone programming to accelerate the iterative
process termination in generating feasible solutions with guaranteed suboptimality. The
lower bound of suboptimality has also been demonstrated, above which the suboptimal-
ity can lead to the termination of iterative process within finite iterations. Through ran-
dom numerical experiments, the suboptimal algorithm has statistically outperformed the
proactive method in iteration number under low suboptimality and large problem sizes,

and in computation time under low and medium suboptimality with all problem sizes.

6.1.2 Comparison among algorithms and methods proposed

Of all the algorithms proposed in this dissertation, the comparison of specific con-
straints tackled, iterative manner structure, and iterative method type is exhibited in
Table. 6.1. In parallel, for performance overview, the comparison including features of
proposed algorithms on convergence rate, with or without € suboptimality guarantee, pri-
mal feasible or not, with or without iteration number guarantee and solution length is
summarized in Table. 6.2. These 2 tables can be utilized to match the specific computa-
tion target and problem setting to the suited algorithm, thus forming a handy guideline
for study and application.

6.2 Future directions

Future work with regard to algorithms and techniques proposed in this dissertation

can be addressed in the following directions:

1. expand application of techniques proposed:
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6.2. Future directions

application of step drop treatment and "warm start" strategy (§2) under quan-
tified criteria and recursive implementation,

employment of gradient based suboptimality condition and feasibility guaran-
teed projection (§3) in linear inequality constrained cases, which could be either
eliminated by barrier function [8], or transformed into equality constraints by
active constraint identification technique[43] [44] or active set method[65],
application of the first step focused criterion to the primal dual interior point
method (§4) with no additional assumption on dual residual, or no presence of
dual residual,

application of cone programming, backtracking mechanism during the iterative
process, approximation of optimal objective value (§5) in MPC context, and in
various problem sizes and settings,

verification of effectiveness and efficiency of algorithms and methods proposed

through real case study and large scale systems;

. study properties of algorithms proposed in control and optimization theory:

stability proof establishment of suboptimal algorithms proposed for MPC, with
or without terminal state constraints,

recursive feasibility verification,

implementation of primal dual interior point method using Hessian approxima-
tion/factorization with banded or sparse structure, and quasi-Newton method,
complexity study of algorithms proposed to determine the suited circumstances

with theoretical proofs;

. combine techniques proposed with other methods:

combination of the accelerated termination idea with machine learning for bet-
ter performance,

combination of accelerated termination idea with matured optimization tech-
niques, e.g., semidefinite programming, alternative direction multiplier method,

augmented Lagrangian, etc.
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Table 6.1 — Problem and optimization method oriented indicators of algorithms proposed

Alg Location Iteration Inequality Inequality Inequality Iteration | Equality Cons.
' method Cons. type | Cons. requirement | Cons. structure | structure (Dynamics)
eneral subsystem &
DLMFA §2.4.1 gradient %onvex continuous step-wise distributed uncoupled
separable
LOPDSA §2.4.2 ditto™ ditto ditto ditto ditto ditto
Nesterov not not not - .
FPH-P 53.3.2 descent considered applicable applicable distributed coupling
FS-P §3.4.2 ditto ditto ditto ditto ditto ditto
Primal dual . .
ATPDIPM | §4.4.2 | interior point general . tWIC? step-wise centralized coupling
method convex differentiable separable
POASIM §5.3 gene.ral linear n.ot general centralized g(?neral
gradient applicable linear
ASBSA §5.4.2 ditto ditto ditto ditto ditto ditto

* ditto means that the content in the current cell is the same as that of the neighbor cell above in the same column, and the same
setting is applied to Table. 6.2.
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Table 6.2 — Performance oriented indicators of algorithms proposed

. Convergence | € suboptimality | Primal Solution lteration
Alg. Location . number
rate guarantee feasibility | length
guarantee
full
DLMFA §2.4.1 O(1/k) no no -
sequence
LOPDSA §2.4.2 ditto ditto ditto ditto ditto
full
- 2 -
FPH-P §3.3.2 O(1/k*) yes yes sequence
. : . first
FS-P §3.4.2 ditto ditto ditto step < FPH-P
ATPDIPM | §4.4.2 quadratic yes bounded Stresgt) < PDIPM
not full
POASIM 55-3 applicable yes yes sequence )
ASBSA §5.4.2 ditto ditto ditto ditto finite*

* For € greater than the lower bound, an € primal suboptimal solution can be solved within finite
iteration, see details in §5.4.3.
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APPENDICES

A Parameters setting of test in §4.5.1

For [ =1, ...,5, the initial state z; is listed as follows:

_ —0.0206 _ —0.0227| _ —0.2808
Ty = y Lo = , L3 = )
—0.3389 —0.3715 —0.1042
_ 0.1813 _ 0.4529
Ty = , Ty = .
0.1204 —0.4253

Forl=1,..,5andi=1,...,5, A is listed as follows:

0.0022  —0.0088 —0.9526  0.0894
Ap = , A = )
—0.0088  0.0178 0.0894 —0.4309
—0.7201 —0.0294 0.3288 —0.8206
Az = , A = 5
—0.0294 —0.7301 0.8206  0.3288

Ass =

9

[ —0.1094 0.5314 | 04027 —0.1144]
05314 0.0895) 7 | —0.1144 0.2278 |

| 04210 —0.1690 [ —0a761 0.1235
] —01690 —05903]7 | 01235 —0.1211]

s [ 0.3077 —0.1710 [ —05149  0.0562
70 01710 03077 |0 P | 00562 —0.5087]

[ 05770 0.2454 | [ 04570  0.2825 |
Az = , Agg = )

| 02454 —0.5099) | 02825 —0.7817

[ _0.0161 —0.1895 [ 0.3047  —0.2041]
A33 - ) A34 == 9

| 01895 —0.0161 ~0.2041  0.8310

A35 =

[ 0.2651 0.1833 | 0.9479 0.2706
01833 02843 " | 02706 —0.4063|°
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A44

Asy

A53

A55

Forl=1,....,5and i =
By =

B

Bis

B35 -

B42 -

0.9224 0.0638] 4 [ 0.4919 0.5599]

0.0638 0.9476] | 0.5599 0.3018]
0.0319 0.0848] [ 05160 0.3943

0.0848 0.6632] | 0.3043 0.3281]
0.7582  —0.2475) ) | 0.1910 0.8040
~0.2475 05570 |7 | 0.8040 0.2009]
0.7958 —0.3538) ) 07921 —0.1207
~0.3538 0.0904 |7 77| —0.1207 09205 |’
0.3815 —0.1060)

—0.1060  0.6187 |

1,...,5, By; is listed as follows:

05721 0.38373 [ —0.8422 0.7102
0.4684 —1.1608| 7 0 1.8255|
08236 ~1.0633] [ 05568 —1.1780
1.4745 o |7 0  —06155|
0.6088 —02087] [ 1.1273 0.7249
0 o |77 0 1.2263|°
~1.06116 —1.1690 [ 05182 0.0458
—0.2915 o | TP 0 —02173|"
1.2777 —0.2188) 0 0
7B25: )
0 0 | 14087 —1.0024
0.2019 1.3625 | b [ 0 —1.5257
0.8034 —0.7657) 2 00227 0 |’
0 —1.4667 24911 0
) B34 - )

0 0 —0.2947 0.4339
0.0162 0.3014 B 0 —18177

0 o | 7" | —08237 —1.0549|°
—0.8770 0.4858 [ 02659 0
—0.1062 04752 TP 0 —0.2041|
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A. Parameters setting of test in §4.5.1

0 0
15776 —0.1874]
1.3649  0.0066 |
0.2663 —0.4058)|
0.3811 1.7053]
—0.438 0

0.0800 —0.7723]

0

0.3162 | '

, Bys =

7B52:

) B54:

121

0 1.1115
0.5311 0.5826

0.6295 0
—0.6692 0]’

—0.3698 1.4027
—0.4564 1.0883

b

|
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B Parameters setting of test in §5.5.1

[ 0.2410  0.0000  0.0000 0.3928 —0.4095
0.2647  0.0368  0.0000  0.0000  0.0000
0.0000  0.0000 —0.1215 0.0000 —0.1425
0.0000  0.0000 —0.2545 0.0000 —0.1178
0.0000 —0.4767 —0.4422 0.0000  0.0000
0.0000  0.0000 —0.4789 —0.4363 0.2437

—0.3338 0.1515 —0.0908 —0.0650 0.0000
0.0000  0.0000  0.4786 —0.4162 0.0000
0.0368  0.3294  0.0000  0.0000  0.4502

| 0.0000  0.0000  0.0457  0.0000  0.1763

N
I

- T
b=10.1904 0.0343 —0.6409 —0.3417 0.0641| .
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La terminaison Accélérée dans les ltérations Basées sur la Décomposition Duale pour

la Commande Prédictive

Mot clés : Commande prédictive, Sous-optimalité, Optimisation convexe, Décomposition duale,

Faisabilité.

Résumé : La commande prédictive (MPC) a
suscité un intérét croissant au cours des der-
niéres décennies pour sa capacité a livrer des
actions de commande optimales tout en sa-
tisfaisant les contraintes. Cependant, la solu-
tion optimale du probleme d’optimisation reé-
sultant est parfois difficile a obtenir en pratique
en raison de 'exigence d’échantillonnage ra-
pide ou des limites de puissance de calcul. La
décomposition duale, qui permet d’intégrer les
contraintes et les interactions du systeme, est
depuis longtemps une fagon attrayante de trai-
ter le probleme. Un processus itératif est mis
en ceuvre pour déterminer la solution souhai-
tée. Bien que convergeant vers la solution op-
timale, 'optimalité et la faisabilité ne sont ga-
ranties que dans la limite des itérations. Dans

cette these, de nouvelles conditions d’arrét,
avec garantie de sous-optimalité et de faisa-
bilité, sont proposées pour obtenir des solu-
tions sous-optimales et accélérer la fin du pro-
cessus itératif. Cette idée d’'une terminaison
accélérée est explorée dans diverses confi-
gurations utilisant différentes méthodes itéra-
tives, pour lesquelles les preuves théoriques
correspondantes sont fournies, et I'efficacité
est illustrée par des exemples numériques. Le
travail proposé, y compris les conditions d’ar-
rét et les algorithmes pour résoudre les solu-
tions sous-optimales, peut étre appliqué soit
aux problémes résultants de MPC avec des
formulations spécifiques, soit a I'optimisation
convexe générale.
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Accelerated Termination in Dual Decomposition Based lIterations for Model Predictive

Control

Keywords: Model predictive control, Suboptimality, Convex optimization, Dual decomposition,

Feasibility

Abstract: Model Predictive Control (MPC)
has attracted increasing interest over the last
decades for its capability in delivering optimal
control actions while satisfying constraints.
However, the optimal solution of the resulting
optimization problem is sometimes intractable
to acquire in practice due to rapid sampling
requirements or computing power limits. Dual
decomposition, competent in integrating con-
straints and interactions of the system, has
long been an appealing way to treat the prob-
lem. Subsequently, an accessible iterative pro-
cess proceeds to determine the desired solu-
tion. Although converging towards the optimal
solution, the optimality and feasibility are only

guaranteed in the limit of iterations. In this dis-
sertation, new stopping conditions, with sub-
optimality and feasibility guarantee, are pro-
posed to obtain suboptimal solutions and ac-
celerate the termination of the iterative pro-
cess. The idea of accelerated termination is
explored in various configurations using dif-
ferent iterative methods, in which the corre-
sponding theoretical proofs are provided, and
the effectiveness is illustrated through numer-
ical examples. The proposed work, including
stopping conditions and algorithms to solve
suboptimal solutions, can be applied either to
MPC resulting problems with specific formula-
tions or to general convex optimization.
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