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Abstract

The goal of this thesis is to develop deep learning methods for artwork analysis. More
precisely, we focus on three particular tasks: style-invariant patterns retrieval, near-
duplicated patterns discovery, and dense image alignment. All the tasks are very
challenging from a computer vision point of view, main difficulties include: i) no
annotations are available so that the approach we develop needs to be unsupervised ;
ii) there are differences in the artistic media (oil, pastel, drawing, etc) of the different
depictions we want to analyze, so we face cross-domain problems.

Our first task, style-invariant patterns retrieval aims at finding relevant motifs in
a collection of artworks similar to a given query motif. The retrieved motifs should
depict the same content but might have different styles. The task is motivated by
several image search applications in art images and historical documents. Beyond
heritage images, image retrieval has been widely used in image search tools such as
Google Image Search 1.

Our second task, near-duplicated patterns discovery aims at identifying repeated
visual patterns in a collection of artworks. The task is motivated by finding visual
correspondences among artworks, which might indicate authorship and provenance.
Beyond art history, near-duplicated pattern discovery can be used to discover com-
mon objects in generic image collection, which can be useful to ease data annotation
processes.

Our third task, dense image alignment aims at predicting pixel-level alignment
between images. Our goal is to compare two paintings or details of two artworks
depicting the same content but with different styles. On natural images, optical flow
is also beneficial to two-view geometry estimation and 3D reconstruction.

This thesis includes three technical contributions.
Our first contribution is a self-supervised approach to adapt standard deep fea-

tures for cross-domain matching by fine-tuning it on the specific art collection. More
precisely, we use spatial consistency between neighboring feature matches as super-
vision. The adapted features lead to more accurate style-invariant matching. We
leverage multi-resolution feature matching and geometric verification to identify near-
duplicated patterns in the dataset. Along with the approach, we also propose a

1https://www.google.com/imghp?hl=fr
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dataset which we refer to as the Brueghel (Shen et al., 2019; bru) dataset which
allows evaluating one-shot cross-domain art detail detection.

Our second contribution is learning co-segmentation for a pair of images on a
synthetic dataset. We generate training pairs by blending objects into a background
image and applying style transfer to the resulting composition. As a result, we have
access to ground-truth masks of the blended objects and correspondences between
the original and synthesized image. We empirically compare the performances ob-
tained with two networks: Sparse Nc-Net (Rocco et al., 2020) and a transformer-
based (Vaswani et al., 2017) architecture, and show that employing Poisson Blend-
ing (Pérez et al., 2003) and style transfer is crucial for generalization. In terms of
results, the trained transformer improves performance on near-duplicated art detail
detection and discovery. Additionally, we show that our approach performs well on
place recognition and object discovery in natural images.

Our last contribution is a two-stage method for generic image alignment. In the
coarse stage, we estimate Homography transformations between a pair of images using
standard deep feature matches and RANSAC; in the fine stage, we design and learn a
Convolutional Neural Network (CNN) to predict pixel-level alignment using a recon-
struction loss. The proposed approach is simple and allows aligning near-duplicated
art patterns. On natural images, the proposed approach shows competitive or better
performance across different tasks: optical flow estimation, sparse correspondences
evaluation, two-view geometry estimation, 3D reconstruction, and aligning Internet
images.



Résumé

L’objectif de cette thèse est de développer des méthodes d’apprentissage profond pour
l’analyse d’œuvres d’art. Plus précisément, nous nous concentrons sur trois tâches
particulières : la recherche de motifs invariants de style, la découverte de motifs
quasi-dupliqués et l’alignement dense d’images. Toutes les tâches sont très difficiles
du point de vue de la vision par ordinateur, les principales difficultés incluent : i)
aucune annotation n’est disponible, de sorte que l’approche que nous développons doit
être non-supervisée; ii) il existe des différences dans les supports artistiques (huile,
pastel, dessin, etc.) des différentes représentations que nous voulons analyser, nous
sommes donc confrontés à des problèmes inter-domaines.

Notre première tâche, style-invariant patterns retrieval vise à trouver des motifs
pertinents dans une collection d’œuvres d’art similaires à un motif de requête donné.
Les motifs récupérés doivent représenter le même contenu mais peuvent avoir des
styles différents. La tâche est motivée par plusieurs applications de recherche d’images
dans des images d’art et des documents historiques. Au-delà des images patrimoniales,
la recherche d’images est largement utilisée par exemple dans les outils de recherche
d’images tels que Google Image Search 2.

Notre deuxième tâche, découverte de motifs quasi-dupliqués vise à identifier des
motifs visuels répétés dans une collection d’œuvres d’art. La tâche est motivée par la
recherche de correspondances visuelles entre les œuvres d’art, qui pourraient indiquer
la paternité et la provenance. Au-delà de l’histoire de l’art, la découverte de motifs
similaires peut être utilisée pour découvrir des objets communs dans une collection
d’images naturelles, ce qui peut être utile, par exemple, pour faciliter le processus
d’annotation des données.

Notre troisième tâche, alignement dense d’images vise à prédire l’alignement au
niveau des pixels entre les images. Notre objectif est de comparer deux tableaux ou des
détails d’œuvres d’art représentant le même contenu mais avec des styles différents.
Sur les images naturelles, le flux optique est également bénéfique pour l’estimation
de la géométrie à deux vues et la reconstruction 3D.

Cette thèse comprend trois contributions techniques.
Notre première contribution est une approche auto-supervisée pour adapter un
2https://www.google.com/imghp?hl=fr
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descriptor standard de reseau de neurones pour la correspondance entre domaines
en fine-tuning sur la collection d’art spécifique. Plus précisément, nous utilisons la
cohérence spatiale entre les correspondances de caractéristiques voisines comme super-
vision. Le descriptor de reseau de neurones adapté conduit à une correspondance in-
variante de style plus précise. Nous utilisons de la correspondance de multi-résolution
et de la vérification géométrique pour identifier des modèles presque dupliqués dans
l’ensemble de données. Parallèlement à l’approche, nous proposons également un en-
semble de données que nous appelons Brueghel (Shen et al., 2019; bru) qui permet
d’évaluer la détection des détails de l’art inter-domaines.

Notre deuxième contribution est l’apprentissage de la co-segmentation pour une
paire d’images sur un jeu de données synthétique. Nous générons des paires d’entraînement
en mélangeant des objets dans une image d’arrière-plan et en appliquant un transfert
de style à la composition résultante. En conséquence, nous avons accès aux masques
de vérité terrain des objets mélangés et aux correspondances entre l’image originale
et l’image synthétisée. Nous comparons empiriquement les performances obtenues
avec deux réseaux : Sparse Nc-Net (Rocco et al., 2020) et une architecture à base de
transformer (Vaswani et al., 2017), et montrons que l’utilisation de Poisson Blend-
ing (Pérez et al., 2003) et de transfert de style est cruciale pour la généralisation. En
termes de résultats, le transformer entraîné améliore les performances de détection et
de découverte des détails d’art presque dupliqués. De plus, nous montrons que notre
approche fonctionne bien sur la reconnaissance de lieux et la découverte d’objets dans
les images naturelles.

Notre dernière contribution est une méthode en deux étapes pour l’alignement
d’images génériques. Au stade grossier, nous estimons les transformations d’homographie
entre une paire d’images en utilisant des correspondances de descriptors standard de
reseau de neurones et RANSAC ; au stade avancé, nous concevons et apprenons
un réseau de neurones convolutifs (CNN) pour prédire l’alignement au niveau des
pixels à l’aide d’une perte de reconstruction. L’approche proposée est simple et per-
met d’aligner des motifs artistiques presque dupliqués. Sur les images naturelles,
l’approche proposée montre des performances compétitives ou meilleures sur dif-
férentes tâches : estimation de flux optique, évaluation de correspondances creuses,
estimation de géométrie à deux vues, reconstruction 3D et alignement d’images In-
ternet.
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Chapter 1

Introduction

1.1 Goals

When creating an artwork, it is common for an artist to reuse the same visual elements
or motifs. However, the different versions might be differ in terms of color, style, artis-
tic media, and geometric deformation. Identifying repeated patterns yield insights on
artworks circulations and provenance, which is important for Art Historians. The goal
of this thesis is to develop deep learning methods for artwork analysis with a focus
on three tasks: (i) style-invariant patterns retrieval, (ii) discovering near-duplicated
visual patterns in a collection of artworks, (iii) dense image alignment. These tasks
are illustrated in Fig. 1.1.

Style-invariant patterns retrieval aims at retrieving motifs similar to a given
query pattern. The relevant motifs have the same content, whereas styles and context
might be different. An example from the Venus collection (Shen et al., 2022) is shown
in Fig. 1.1a. We can see the top retrieved artworks contain the same motif as the
queries but have a very different appearance.

Near-duplicated patterns discovery aims at identifying near-duplicated pat-
terns in a collection of images independently of any queries. Unlike image cluster-
ing, we do not assume that every image in the collection is associated to a unique
pattern and we also aim at localizing the repeated patterns. An example on the
Brueghel (Shen et al., 2019; bru) dataset is given in Fig. 1.1b. We are interested in
identifying the groups of repeated visual details (shown in red, blue and green circle),

1
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(a) Style-invariant patterns retrieval. Our first goal is to retrieve artworks depicting the same
content as given query motifs (blue bounding boxes).

(b) Near-duplicated patterns discovery. Our second goal is to identify near-duplicated visual
patterns (red, blue and green circle ) in a collection of artworks.

(c) Dense image alignment. Our third goal is to estimate pixel-level alignment for patterns that
are near-duplicated and are depicted with different styles.

Figure 1.1: The three main tasks addressed in this thesis
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they might be present in only a couple of images, an image may contain different
details and most images do not contain any.

Dense image alignment aims at estimating pixel-level alignment between im-
ages that depict similar content. We design a generic image alignment algorithm,
with a specific focus on the capacity to align images from different visual domains,
e.g. artwork depicting the same content with different styles. An example on the
Brueghel (Shen et al., 2019; bru) dataset can be seen in Fig. 1.1c.

The above three tasks can be complementary for artwork analysis. On artwork
analysis, if queries are available, we could retrieve artworks containing relevant motifs
and focus on analyzing on top retrieved artworks. If no queries are available, we could
perform discovery on the dataset and study the discovered clusters. For both cases,
detailed analysis is possible through dense alignment.

1.2 Motivations

Although this thesis mainly focuses on artworks analysis, the three tasks addressed in
the thesis are core computer vision problems. They are also motivated by a number
of applications beyond artworks analysis.

Image retrieval. Retrieving relevant images is an important problems in com-
puter vision. The task has several applications I tackled during my PhD but are not
discussed in details in this thesis: place recognition (Shen et al., 2021a), historical
watermark recognition (Shen et al., 2020b), sketch-based image retrieval (Shen et al.,
2020b) and matching illustrations in copied manuscripts (Kaoua et al., 2021):

• Place recognition (Fig. 1.2a, (Shen et al., 2021a)). Given a query image and
a database of geolocated images, the goal is to retrieve an image of the same
place. One challenge is that the images can have very different appearance, e.g.
images taken during day-time and night-time.

• Historical watermark recognition (Fig. 1.2b, (Shen et al., 2020b)). Queries
are photographs of historical documents and the searching database consists of
drawings of watermarks, the goal is to identify the watermark in the database
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(a) Place recognition. Given a query image and a database of geolocated images, the goal is to
retrieve an image of the same place.

(b) Historical watermark recognition. Given a query historical document and a database of
drawings of watermarks, the goal is to identify the drawing in the database which corresponds to the
historical document.

(c) Sketch-based image retrieval. Given a query sketch and a database of natural images, the
goal is to retrieve natural images correspond to the content of sketch.

(d) Matching illustrations in copied manuscripts. Given illustrations from copied manuscripts,
the goal is to match illustrations in manuscripts.

Figure 1.2: Applications of image retrieval.
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which can be seen in the photograph. The watermark provides clues to date
and locate paper, which is useful for historians. The main challenges include
fine-grained search, lack of annotations and the fact that watermarks in the
query photographs have a very different appearance compared to the drawings
in the database.

• Sketch-based image retrieval (Fig. 1.2c, (Shen et al., 2020b)). Given a query
sketch and a database of natural images, the goal is to retrieve natural images
correspond to the content of sketch. The application can be a tool for image
search when looking for a specific instance of an object, e.g. a specific type of
shoes, because it is easier to draw characteristics than describe them. The task
is challenging as the search is fine-grained, cross-domain and some details might
not be drawn in the query sketches.

• Matching illustrations in copied manuscripts (Fig. 1.2d, (Kaoua et al.,
2021)). Historical manuscripts often exist in different versions made by different
copyists and illustrations might even be re-used in different texts. The goal of
this task is to find corresponding illustrations in several manuscripts. In the
case of scientific manuscripts (e.g. botanical), retrieving corresponding illustra-
tions might help historians to understand the evolution of scientific knowledge.
The task is difficult because the order of the illustrations might differ in dif-
ferent manuscripts and content and styles might be changed in corresponding
illustrations.

Object discovery. The task is to automatically discover repeated objects in a
dataset without any human annotations. Most visual analysis deep learning works
rely on annotations (He et al., 2016; Zhou et al., 2018), which are costly. It would be
much more efficient to be able to directly analyze a collection of images and identify
the repeated objects. The main application of object discovery is to automatically
collect dataset annotations.

Imagine for example we want to collect segmentation annotations of cars. First,
we can search relevant images correspond to a key word “Car" through an image
search engine such as Google Search 1. The gathered images are noisy i.e. it might

1https://www.google.com.fr/imghp?hl=fr&ogbl

https://www.google.com.fr/imghp?hl=fr&ogbl
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Figure 1.3: Automatic dataset annotation is one of the motivation for object discovery.
Object discovery allows automatically collecting annotations from Internet images. Ex-
amples are from (Rubinstein et al., 2013). A noisy dataset can be gathered via Internet
searching engine then discovering common objects can remove distractors and obtain seg-
mentation annotations.

include irrelevant images such as images of wheel, logos of cars etc. An image discov-
ery algorithm should be able to take this noisy non-annotated dataset, identify the
relevant car images and even provide pixel-level annotations. A classical approach to
this task is the one of (Rubinstein et al., 2013), illustrated on figure 1.3.

Dense image alignment. Dense alignment of images, also known as the optical
flow problem, is a classical problem in computer vision. Precise optical flow leads to
numerous applications, shown in Fig. 1.4:

• Autonomous driving (Fig. 1.4a, (Geiger et al., 2012)). Estimating the op-
tical flow between images taken by cameras in a vehicle could be leveraged for
autonomous driving applications. The input images often have little appearance
difference and the dense optical flow yield insights into the geometric layout of
a scene as well as its decomposition into individually moving objects.

• 3D reconstruction (Fig. 1.4b, (Shen et al., 2020a; Truong et al., 2021a)).
Dense optical flow can be useful for two-view geometry estimation and recon-
structing meaningful 3D models from a pair of images (Shen et al., 2020a)
(Fig. 1.4, left). Dense optical flow can also replace keypoints matches and be
used in multi-view 3D reconstruction (Truong et al., 2021a) (Fig. 1.4, right).

• Medical image alignment (Fig. 1.4c, (Hill et al., 2001)). In medical applica-
tions, multiple medical images can be acquired at different times. To compare
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(a) Autonomous driving. Optical flow (2nd row) provides insight to segment moving objects (1st
row). Images from (Menze and Geiger, 2015b).

(b) 3D reconstruction. Dense flow field between a pair of images allows 3D reconstruction (left,
two-view geometry estimation (Shen et al., 2020a)). Dense flow can also replace keypoint matches
for multi-view 3D reconstruction (right, 3D reconstruction of Aachen (Sattler et al., 2018; Truong
et al., 2021a) ) .

(c) Medical images alignment. Axial slices from average images produced from MR scans, align-
ment using rigid registration (left), affine registration (middle) and non-rigid registration (right).
Figures from (Hill et al., 2001).

Figure 1.4: Example of applications of dense image alignment.
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the images and analyze their evolution, it would be useful to be able to align
densely the images.

1.3 Challenges

To solve our tasks, we will face three important challenges: lack of supervision, han-
dling domain gap between the depictions, and a scalability issue. These challenges
are illustrated in Fig. 1.5.

Lack of supervision. One critical challenge is that we cannot assume any annota-
tions are available. Indeed, it is expensive and time consuming to collect annotations.
For patterns retrieval, the annotations need to be specific to a collection and it is hard
for a human expert to find the same motifs when the size of the collection becomes
large. For discovery, the annotation process is even more difficult, as one needs
to identify all repeated patterns in a collection and the annotations should include
segmentation. For dense image alignment, the annotations would need to be done
pixel-wise. Indeed, the defomations happenning during the copy process are far from
being parametric or rigid, for example in the example of Fig. 1.5a, the three char-
acters groups are clearly moving with respect to each other. Note that collecting
annotations is also a general challenge for many other applications in vision, such as
object detection (Lin et al., 2014), semantic segmentation (Zhou et al., 2017) and 3D
reconstruction (Li and Snavely, 2018) etc.

Diversity of depiction styles. For artists, it is common to reuse the same visual
patterns. However, the depiction styles might be different. An example is shown in
Fig. 1.5b, the same content (Man on Egg) is repeated in four artworks but depicted
using different media and with different styles. Note that handling domain gap is
also an important and general challenge in computer vision. Related active research
topics include domain adaptation (Saenko et al., 2010) and domain generalization (Li
et al., 2017).

Scalability. We also face a scalability issue for patterns retrieval and discovery
problem. For retrieval, we aims at retrieving the same patterns at any scales in a
large dataset. For discovery, in addition to the scale issue, the repeated patterns
might be present only in a couples of images in a large collection of artworks. An
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(a) Difficulty of annotations. Alignment between related artworks cannot be well approximated
by a simple parametric transformation. For example, in this two versions of Diana and Actaeon in
the Brueghel (Shen et al., 2019; bru) dataset the displacements are very complex, and their alignment
would require an extremely tedious pixel-level annotations of the correspondences.

(b) Diversity of depiction styles. Four paintings on the topic Man on Egg in the Brueghel (Shen
et al., 2019; bru) dataset.

(c) Scalability. We want to identify repeated patterns (horse in green circle) in a large dataset that
could have any scales in the images, which is very computationnaly difficult.

Figure 1.5: The three challenges of our tasks: lack of supervision (Fig. 1.5a), diversity
of depiction styles (Fig. 1.5b) and scalability issue. (Fig. 1.5c).
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example is shown in Fig. 1.5c, the horses (in green circle) are repeated but with very
different scales in the images, and they are present only in a few images of a large
dataset (∼ 20 occurences over 1,587 images). Our algorithm thus has to scale to large
datasets, without missing rare occurence of small details.

1.4 Contributions

In this thesis, we have three main technical contributions.

Self-supervised style-invariant feature learning. Our first contribution is a
self-supervised feature fine-tuning strategy to address style-invariant feature match-
ing. Our key insight is leveraging spatial consistency to identify positive and negative
training pairs. The training pairs are then used to optimize a standard triplet loss,
which leads to features adapted to the training set for correspondences. We show that
the proposed approach enables matching features across different domains. We vali-
date our fine-tuning strategy on artwork datasets as well as geo-localization datasets.

Learning co-segmentation from synthetic data. Our second contribution is an
approach of learning co-segmentation from synthetic data. To generate the synthetic
data, we blend objects to background images using style transfer and Poisson blend-
ing Pérez et al. (2003). We also propose a transformer-based architecture (Vaswani
et al., 2017) for co-segmentation. We demonstrate that it is important to include cor-
respondences in the objective function. The approach is validated on various tasks
including one-shot art detail detection and place recognition.

Unsupervised two-stage robust dense image alignment. Our last contribu-
tion is an unsupervised approach for robust dense image alignment. Our approach
contains two stages: in the first stage, we estimate Homography transformations based
on standard multi-scale feature matching and RANSAC (Fischler and Bolles, 1981);
in the second stage, we learn a Convolutional Neural Network (CNN) through the
optimization of a reconstruction loss between target images and warped source im-
ages. The entire pipeline is unsupervised. We show that our approach performs well
on various tasks, including standard optical flow estimation, sparse correspondences
evaluation, two-view geometry estimation, and 3D reconstruction.
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1.5 Thesis Outline

This thesis is organized as follows.

Chapter 2: Related Work. We first review deep learning-based approaches for
artworks analysis in Sec. 2.1. In Sec. 2.2, we study related works on image retrieval.
We then provided analysis on object discovery and co-segmentation approaches that
are related to this thesis in Sec. 2.3. Finally, we review deep-learning based approach
for dense image alignment in Sec. 2.4.

Chapter 3: Learning Features for Artworks Analysis. This chapter presents
the first contribution of this thesis : our self-supervised feature fine-tuning strategy.
We explain the feature learning strategy in Sec. 3.3. We leverage it to perform ob-
ject discovery using a simple approach based on multi-scale feature matching and
RANSAC (Fischler and Bolles, 1981), which is detailed in Sec. 3.4. In Sec. 3.5, we
introduce the Brueghel dataset (Shen et al., 2019) and present experimental results
of the feature fine-tuning strategy and of the discovery approach on various art image
datasets as well as geo-localisation datasets.

Chapter 4: Learning Co-segmentation for Art Pattern Discovery. This
chapter is about the second contribution of this thesis: learning co-segmentation
from synthetic data. Our training data generation, as well as two architectures, are
detailed in Sec. 4.3. In Sec. 4.4, we present how to employ the output of the networks
to perform image retrieval. The approach is validated on two completely different
tasks: one-shot art detail detection and place recognition. We finally show how to
leverage the output of the networks for object discovery with using classical spectral
clustering on a correspondence graph in Sec. 4.5.

Chapter 5: Unsupervised Dense Image Alignment. This chapter includes the
last contribution of this thesis: Unsupervised two-stage robust dense image alignment.
In Sec. 5.3, we present our two-stage image alignment approach. Beyond qualitative
results on artworks alignment, we validate the approach on various tasks including:
optical flow evaluation (Sec. 5.4.1), sparse correspondences evaluation (Sec. 5.4.1),
two-view geometry estimation (Sec. 5.4.2) and day-night visual Localization (Sec. ??).
With the precise optical flow, we also explore several applications in Sec. 5.4.3, such
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as: texture transfer and Internet images alignment.

Chapter 6: Conclusion. We conclude with a summary of contributions of this
thesis, discussion and suggestions on future research directions.

1.6 Publication List

This thesis presents the contribution made in four papers (Shen et al., 2019, 2021a,
2020a, 2022):

• Xi Shen, Alexei A. Efros, Mathieu Aubry.
Discovering Visual Patterns in Art Collections with Spatially-consistent Feature
Learning.
Code & Project page : http://imagine.enpc.fr/~shenx/ArtMiner/
In Computer Vision and Pattern Recognition (CVPR), 2019.

• Xi Shen, Alexei A. Efros, Armand Joulin, Mathieu Aubry.
Learning Co-segmentation by Segment Swapping for Retrieval and Discovery.
Code & Project page : http://imagine.enpc.fr/~shenx/Coseg/
In submission, 2021.

• Xi Shen, François Darmon, Alexei A. Efros, Mathieu Aubry.
RANSAC-Flow: Generic Two-stage Image Alignment.
Code & Project page : http://imagine.enpc.fr/~shenx/RANSAC-Flow/
In European Conference on Computer Vision (ECCV), 2020

• Xi Shen, Robin Champenois, Shiry Ginosar, Ilaria Pastrolin, Morgane Rous-
selot, Oumayma Bounou, Tom Monnier, Spyros Gidaris, François Bougard,
Pierre-Guillaume Raverdy, Marie-Françoise Limon, Christine Bénévent, Marc
Smith, Olivier Poncet, K. Bender, Joyeux-Prunel Béatrice, Elizabeth Honig,
Alexei A. Efros, Mathieu Aubry
Spatially-consistent Feature Matching and Learning for Art Collections and Wa-
termark Recognition.
Code & Project page : http://imagine.enpc.fr/~shenx/HisImgAnalysis/
In submission, minor revision in International Journal of Computer Vision
(IJCV), 2022.

http://imagine.enpc.fr/~shenx/ArtMiner/
http://imagine.enpc.fr/~shenx/Coseg/
http://imagine.enpc.fr/~shenx/RANSAC-Flow/
http://imagine.enpc.fr/~shenx/HisImgAnalysis/
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We open-sourced and maintained implementations corresponding to the four pa-
pers 2, the implementation of ArtMiner (Shen et al., 2019) and RANSAC-Flow (Shen
et al., 2020a) on GitHub received 100 and 307 stars respectively.

We also extend the discovery score in the first publication (Shen et al., 2019) to
weakly supervised watermark recognition and unsupervised image collation, which led
to the following publications (Shen et al., 2020b; Bounou et al., 2020; Kaoua et al.,
2021):

• Xi Shen, Ilaria Pastrolin, Oumayma Bounou, Spyros Gidaris, Marc Smith,
Olivier Poncet, Mathieu Aubry.
Large-Scale Historical Watermark Recognition: dataset and a new consistency-
based approach.
Code & Project page : http://imagine.enpc.fr/~shenx/Watermark/
In International Conference on Pattern Recognition (ICPR), 2020.

• Oumayma Bounou, TomMonnier, Ilaria Pastrolin,Xi Shen, Christine Bénévent,
Marie-Françoise Limon-Bonnet, François Bougard, Mathieu Aubry, Marc Smith,
Olivier Poncet, Pierre-Guillaume Raverdy.
A Web Application for Watermark Recognition.
Web app : https://filigranes.inria.fr/#/filigrane-search
In Journal of Data Mining and Digital Humanities, 2021.

• Ryad Kaoua, Xi Shen, Alexandra Durr, Stavros Lazaris, David Picard, Math-
ieu Aubry
Image Collation: Matching illustrations in manuscripts.
Code & Project page : http://imagine.enpc.fr/~shenx/ImageCollation/
In International Conference on Document Analysis and Recognition (ICDAR),
2021

During my Ph.D., I also worked on learning with weak supervision (weakly su-
pervised learning) and few samples (few-shot learning), which results in the following
publications which are not directly related to the work presented in this thesis (Yuan
et al., 2019; Hu et al., 2020; Shen et al., 2021b):

• Xi Shen, Yang Xiao, Shell Xu Hu, Othman Sbai and Mathieu Aubry.
Re-ranking for Image Retrieval and Transductive Few-shot Classification.

2https://github.com/XiSHEN0220

http://imagine.enpc.fr/~shenx/Watermark/
https://filigranes.inria.fr/#/filigrane-search
http://imagine.enpc.fr/~shenx/ImageCollation/
https://github.com/XiSHEN0220
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Code & Project page : http://imagine.enpc.fr/~shenx/SSR/
In Conference on Neural Information Processing Systems (NeurIPS), 2021.

• Yuan Yuan, Lyu Yueming, Xi Shen, Tsang Ivor W and Yeung Dit-Yan.
Marginalized Average Attentional Network for Weakly-supervised Learning.
Code : https://github.com/yyuanad/MAAN
In International Conference on Learning Representations (ICLR), 2019.

• Shell Xu Hu, Pablo Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil
Lawrence, and Andreas Damianou.
Empirical Bayes Transductive Meta-learning with Synthetic Gradients.
Code : https://github.com/hushell/sib_meta_learn
In International Conference on Learning Representations (ICLR), 2020.

http://imagine.enpc.fr/~shenx/SSR/
https://github.com/yyuanad/MAAN
https://github.com/hushell/sib_meta_learn


Chapter 2

Related Work

2.1 Deep Learning for Artwork Analysis

There is a long-standing and fruitful collaboration between computer vision and art.
For artists and art historians, deep learning becomes a practical tool to analyze and
create art. In this section, we discuss deep learning approaches on four topics which
are related to artworks analysis: i) artwork retrieval and artistic influence discovery;
ii) artwork attributes classification; iii) object detection in artworks; iv) creating art.
These topics outline some main research trends and directions.

Artwork retrieval and artistic influence discovery. An important task for art
historians is identifying similarity relationships between artworks of different artists
and painting schools. These relationships enable art historians to discover the prove-
nance and influences from an artistic movement to another (David, 2019). Previous
works on this topics can be roughly divied into two directions: i) artwork retrieval:
when a query artwork is given and it is required to retrieve relevant artworks; ii)
artwork clustering: we are asked to analyse relationships of artworks in a dataset
without using any annotations.

For artwork retrieval, based on traditional handcraft features, (Shrivastava et al.,
2011) computed visual similarity between images cross different domains and show
that the proposed algorithm worked also for art images. In deep era, (Crowley et al.,
2015) aimed at matching photos of a person to paintings of the same person. It showed
that Convolutional Neural Network (CNN) representations perform clearly better
than traditional descriptors. Training on manually annotated artworks, (Seguin

15
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et al., 2016) has shown that a pre-trained CNN performs better than a classic bag-
of-words method in predicting whether pairs of paintings are visually related to each
other. DeepArt (Mao et al., 2017) learned visual art representations for retrieval
by a triplet-based deep ranking method. (Dovgalecs et al., 2013) proposed a system
for patterns spotting in historical documents, which aimed at detecting the same
patterns, based on a user made query. The system employed a two-stage approach:
an offline feature extraction based on SIFT (Lowe, 2004) and bag-of-words features
and an online query search phase. The performance can be improved through a
siamese neural network (Wiggers et al., 2019) and feature pyramid networks (Ubeda
et al., 2020). Beyond the advancement in research, several projects have built search
engines for artworks (img; tim).

For artwork clustering, (Gultepe et al., 2018) employed k-means on the top of
features which were then fed into a spectral clustering algorithm to group paintings.
Similarly, (Castellano and Vessio, 2020; Castellano et al., 2021; Castellano and Vessio,
2021) proposed a method aimed at finding visual links among paintings in a com-
pletely unsupervised way. Their methods are built upon visual attributes learned by
a deep pre-trained model. Furthermore, they showed that influences between painters
could be exploited from the retrieved paintings.

Artwork attributes classification. In visual art, another research direction aims
at recognizing some artwork attributes such as artist, genre, period, etc. A pioneer
work is (Karayev et al., 2014), which showed that a pre-trained CNN is able to predict
the painting school of an artwork. Beyond the quantitative results, (Karayev et al.,
2014) also observed that the predicted style of a painting is highly correlated with the
content of the painting. (Van Noord et al., 2015) focused on the artist attribution task,
which aimed at attributing an unseen artwork to the artist who created it. (Van Noord
et al., 2015) trained on a large collection of paintings using AlexNet (Krizhevsky
et al., 2012). Interestingly, for paintings with multiple authorship, it is possible
to distinguish areas created by different artists via visualizing the importance of
regions for the predictions. (Saleh and Elgammal, 2015) investigated different features
(classical and CNN features) and learned to predict a painting’s style, genre, and
artist. (Tan et al., 2016) aimed at solving the same tasks, and considered training
on each task individually. They observed that all the tasks can benefit from CNN
models pre-trained on ImageNet (Deng et al., 2009). (Saleh et al., 2016) trained a style
classification model and obtained the most appropriate features to classifier styles by
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empirically validated on artwork datasets for the style classification. (Chen and Yang,
2019) showed that combining features from both lower and higher layers improved the
performance of style classification. OmniArt (Strezoski and Worring, 2017) proposed
to solve multiple attributes predictions directly through a multi-output CNN model.
The overall training is carried out by minimizing an aggregated loss obtained as a
weighted combination of the separate losses.

Object detection in artworks. Several works aim at finding out when a specific
object first appeared in a painting or how the representation of an object evolved over
time. A pioneering work is (Crowley and Zisserman, 2014), which proposed a system
that retrieves training samples given an input query by crawling Google Images on-
the-fly. These are then used to learn a classifier. The final output of the classifier
is a ranked list of paintings containing the queried object. The approach has been
improved by moving from image-level classifiers to object detection systems (Crowley
and Zisserman, 2016). (Yin et al., 2016) used the same Brueghel data (bru; Honig,
2016) as us and annotate it to train detectors for five object categories (carts, cows,
windmills, rowboats, and sailboats). (Westlake et al., 2016) focused on detecting
people in artworks, they showed that deep features trained on natural images lead
to severe overfitting issue and fine-tuning on artwork dataset achieves clearly better
generalization. Similarly, (Ginosar et al., 2014) aimed at detecting people but with
a focus on Cubist paintings and empirically found that the deformable partbased
models (DPM) outperforms other classical detectors such as RCNN (Girshick et al.,
2014). (Gonthier et al., 2018) proposed a weakly supervised approach that can learn
to detect objects based only on image-level annotations. (Crowley and Zisserman,
2013) started from a large dataset of images of vases with text descriptions and aimed
at detecting gods and animals. It developed a weakly supervised learning approach
to solve the correspondence problem between the descriptions and unknown image
regions.

Different from detecting objects of pre-defined categories, one-shot detection aims
at detecting visual details that are similar to given queries details.The task is in-
teresting for art historians, as it is possible to track the circulation of these visual
patterns over long spatial and temporal migrations, as they are progressively copied
by several generations of painters. (Seguin et al., 2017) detected duplicated art de-
tails with using CNN features and sliding window proposals. Beyond matching 2D
art details, (Aubry et al., 2014) showed that it is possible to align non-photographic
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depictions to their 3D model. More precisely, (Aubry et al., 2014) proposed to learn
a set of visual elements that match in 2D depictions of the scene despite large varia-
tions in rendering style (e.g. watercolor, sketch, historical photograph) and structural
changes (e.g. missing scene parts, large occluders) of the scene. The proposed visual
elements allowed automatically finding an approximate viewpoint of paintings with
respect to a 3D model of the site.

Creating art. On the synthesis side, promising results have been obtained for
transferring artistic style to a photograph. (Gatys et al., 2015) found that optimizing
Gram matrix can be used to generate texture. Based on this idea, (Gatys et al., 2016)
first explored transfer the style of one image (style image) to another image(content
image). The output stylized image is obtained through optimizing two distances:
features between the generated image and the content image and the Gram matrix
between the generated image and the style image. However, as the stylized image
is obtained by iterative optimization until it matches the desired statistics, t (Gatys
et al., 2016) is computationally inefficient. To address the issue, (Johnson et al., 2016)
proposed to learn an image transformation network to transform input images into
output images through a perceptual loss, which is similar to (Gatys et al., 2016).
Beyond the task of style transfer, the proposed method is shown to be effective on
single-image super-resolution. Instead of optimizing the Gram matrix, the image
translation problem can also be properly addressed using GAN (Goodfellow et al.,
2014). Cycle-GAN (Zhu et al., 2017) is a representative work, which leverages cycle-
consistency between two domains without image-pair annotations. (Elgammal et al.,
2017) even tried to create art. (Elgammal et al., 2017) proposed Creative Adversar-
ial Network (CAN): a variant of a classic GAN which generated novel artworks by
maximizing the deviation from established styles and minimizing the deviation from
art distribution. The generated art was assessed by human evaluators, who regularly
confused the generated art with human art.

2.2 Image Retrieval

Given a query image, image retrieval searches for similar images in a set of test images.
In this section, we review some approaches from using handcrafted features to deep
learning techniques.
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Handcrafted features. Video Google (Sivic and Zisserman, 2003) consists of three
steps for image retrieval: i) computing SIFT keypoints (Lowe, 2004); ii) building
a visual vocabulary by K-means clustering with k clusters (visual words); iii) the
collection of visual words are used in Term Frequency Inverse Document Frequency
(TF-IDF) scoring of the relevance of an image to the query. More precisely, the image
d is represented by a k-vector Vd = [t1, t2, ...tk], where ti is :

ti =
nid
nd

log(
N

ni
) (2.1)

where nid is the number of occurrences of word i in image d, nd is the total number
of words in the image d, ni is the number of images which contains word i and N

is the total number of images in the whole database. The weighting is a product of
two terms: the word frequency nid

nd
, and the inverse document frequency log(N

ni
). The

intuition is that the word frequency weights words occurring often in a particular
document, whilst the inverse document frequency downweights words that appear
often in the database.

Video Google (Sivic and Zisserman, 2003) can be improved through different di-
rections. (Nister and Stewenius, 2006) proposed a hierarchical TF-IDF scoring using
hierarchically defined visual words that form a vocabulary tree, which allowed the
use of a larger vocabulary and showed a significant improvement of retrieval. (Philbin
et al., 2007) improved the efficiency by two aspects: i) it proposed to replace the
direct nearest neighbor computation in K-means by an approximated K-means using
kd-trees; ii) it showed that a re-ranking stage using spatial verification can efficiently
improve the performance.

(Jégou et al., 2010) proposed to aggregate local descriptors through a Vector of
Locally Aggregated Descriptors (VLAD), which can be seen as a simplification of the
Fisher kernel (Perronnin and Dance, 2007). The idea of the VLAD descriptor is to
accumulate, for each visual word µi, the differences xj −µi of the vectors xj assigned
to µi. This characterizes the distribution of the vectors with respect to the center.
The pseudo-code to compute VLAD is shown in Algo. 1

(Arandjelović and Zisserman, 2012) showed that three techniques can largely
improve the retrieval performance: i) RootSIFT instead of SIFT (Lowe, 2004); ii) Re-
ranking with discriminative query expansion; iii) Database-side feature augmentation.
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Algorithm 1: Computation of the VLAD (Jégou et al., 2010) descriptor
Data: A set of descriptors {x1, ... xT} extracted from an image. The set

{µ1,... µK} of centroids is learned on a training set using K-means.
Both xi and µi are d-dimenstional vectors.

Result: VLAD descriptor V =[v1, ...vK ], where vi is a d-dimension vector.
Initialized vi with 0
for t = 1, ..., T do

i = arg min ||xt − µj||;
vi := vi + xt − µi

end
/* Power normalization */
for u = 1, ..., Kd do

Vu := sign(Vu)|Vu|α
end
/* L2 normalization */
V := V

||V ||2

Figure 2.1: Proposed siamese network in (Gordo et al., 2017)

Deep learning based approaches. In the deep era, approaches focus on learning
a good global representation of images to map similar samples closer to each other
against dissimilar ones.

(Tolias et al., 2015) employed a pre-trained CNN network and extracted Regional
Maximum Activation of Convolutions (R-MAC) descriptors for image retrieval. The
R-MAC was an aggregation of max-pooled features of different regions at different
scales. Even without any training, the R-MAC was shown to be effective on different
image retrieval benchmarks.

One challenge in landmark retrieval is the lack of training set. A landmark dataset
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Figure 2.2: Proposed approach in (Radenović et al., 2018)

was proposed by (Babenko et al., 2014), which is a large-scale image dataset that
contains approximately 214k images of 672 famous landmark sites. The images were
collected through textual queries in an image search engine without thorough verifi-
cation. Based on this dataset, (Gordo et al., 2017) obtained a relatively clean dataset
by matching keypoints, spatial verification, and some post-processing within the im-
ages of each landmark class. In addition, (Gordo et al., 2017) also proposed to learn
a siamese network based on standard triplet loss, which can be illustrated in Fig. 2.1.

(Radenović et al., 2018) leverages a structure-from-motion (SfM) pipeline (Schon-
berger et al., 2015) to clean the dataset. (Radenović et al., 2018) also proposed
Generalized-mean pooling (GeM) to compute image-level descriptor. Let Xk be the
set of W ×H activations for feature map k ∈ {1...K}, where K is the total number
of channels. The descriptor f (g) after GeM is defined as:

f (g) = [f
(g)
1 , f

(g)
2 , ...f

(g)
K ], f (g)

k = (
1

|Xk|
∑
x∈Xk

xpk)
1
pk (2.2)

where pk is the pooling parameter, which can be manually set or learned since
this operation is differentiable and can be part of the back-propagation. From a pre-
trained network, (Radenović et al., 2018) conducted fine-tuning using a contrastive
loss. The full pipeline is illustrated in 2.2.

(Revaud et al., 2019a) investigated a new type of ranking loss that directly opti-
mize mAP. (Revaud et al., 2019a) leverages a histogram binning approximation, the
AP can be differentiated and thus employed to end-to-end learning.

Beyond learning global pooled descriptors, NetVLAD (Arandjelovic et al., 2016)
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proposed a new generalized VLAD layer inspired by the classical VLAD (Jégou et al.,
2010) descriptor. The key insight is to replace the hard assignment in the clustering
with a learnable soft assignment. The descriptor is defined as follows:

Vj,k =
N∑
i=1

exp(wTk xi + bk)∑
k′ exp(wTk′xi + bk′)

(xi(j)− µk(j)) (2.3)

where {wk}, {bk} and {µk} are learnable parameters. NetVLAD (Arandjelovic
et al., 2016) was trained with weak supervision, e.g. GPS labels, and validated on
place recognition benchmarks.

To mitigate the noise with weak GPS labels, NetVLAD (Arandjelovic et al., 2016)
only utilized the easiest top-1 image of the query for training, (Ge et al., 2020) pro-
posed to improve the performance by exploring hard training samples. Recently,
Patch-NetVLAD (Hausler et al., 2021) improved the performance of NetVLAD (Arand-
jelovic et al., 2016) through multi-scale local patches matching and geometric verifi-
cation.

2.3 Object Discovery and Co-segmentation

There are a number of approaches aiming at discovering, localizing, and segmenting
objects from unlabelled images. Many methods (Tang et al., 2014; Cho et al., 2015;
Vo et al., 2019, 2020) use bounding box proposals and formulate the object discovery
as an optimization problem. This relies on the quality of proposals that are typically
not adapted for non-photorealistic data, such as artworks.

Recently, LOST (Siméoni et al., 2021) showed promising performance on object
discovery using self-supervised transformer DINO (Caron et al., 2021). Their ap-
proach extracts DINO (Caron et al., 2021) features of patches and computes the
similarities of the patches. The patch with the smallest number of positive corre-
lations with other patches is considered as the initial seed for foreground regions.
LOST (Siméoni et al., 2021) extends the initial seed to a region by adding patches
that have positive correlations with the initial seed. The final object proposal is
obtained by extracting the connected component that contains the initial seed. Al-
though without any learning procedures, LOST (Siméoni et al., 2021) improves the
state-of-the-art by a large margin.

Some approaches focus on the co-segmentation task and try to predict masks of
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salient objects directly (Rother et al., 2006; Vicente et al., 2011; Rubinstein et al.,
2013; Taniai et al., 2016; Yuan et al., 2017; Li et al., 2018; Hsu et al., 2018; Li et al.,
2019; Chen et al., 2020b).

A representative work is (Rubinstein et al., 2013), which works well in the presence
of significant amounts of noise images (images not containing a common object), as
typical for datasets collected from Internet search. The main idea behind (Rubinstein
et al., 2013) is that common object patterns should be salient, while being sparse with
respect to smooth transformations across images. To capture the salient part in an
image, it employed an off-the-shelf saliency measure proposed in (Cheng et al., 2014).
Given a normalized saliency map Mi for the image i, the saliency term Φsaliency at
the position x = (x, y) is defined as:

Φi
saliency(x) = log(Mi(x)) (2.4)

To establish reliable correspondences between pixels in foreground regions present
in different images, (Rubinstein et al., 2013) proposed a weighed SIFT objective
function. Formally, let Fi→j denote the flow field from the image i to the image j,
which is computed using SIFT Flow (Liu et al., 2010). Using Fi→j as the warping
function, x̂ is the transformed position of x, therefore x̂ = Fi→j(x). Given the binary
masks bi, bj, the weighed SIFT flow objective function Eflow becomes:

Eflow(Fi→j ;bi,bj) =
∑
x

bi(x)(bj(x̂)||Si(x)− Sj(x̂)||1︸ ︷︷ ︸
Lfeat

+C0(1− bj(x̂)︸ ︷︷ ︸
Lmask

)+
∑
y∈N i

x

α||Fi→j(x)−Fi→j(y)||2

︸ ︷︷ ︸
Lr

)

(2.5)

where Si are the dense SIFT descriptors of the image i, N i
x is the neighborhood of

x, α weighs the smoothness term, and C0 is a large constant. The objective function
contains three parts: Lfeat computes dense feature similarities between two images
considering displacement; Lmask pushes the estimated masks to be 1; Lr regular-
izes the flow. The difference between this objective function and the original SIFT
flow (Liu et al., 2010) is that it encourages matching foreground pixels between two
images.

Based on the saliency and the computed correspondences, the foreground likeli-
hood at x of the image i is :
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Φi(x) =

Φi
saliency(x) + λmatch

1
|Ni|
∑

j∈Ni
||Si(x)− Sj(x̂)|| , bi(x) = 1

β , bi(x) = 0

where Ni is a set of similar images for the image i computed using global descrip-
tors. β and λmatch are two hyper-parameters.

Three regularization terms are considered: i) intra-image compatibility between
adjacent pixels; ii) inter-image compatibility between two matched pixels; iii) color
model.

For the intra-image compatibility term, it is defined as follows:

Φi
intra(x,y) = 1y∈N i

x, bi(x) 6=bi(y) exp(− ||Ii(x)− Ii(y)||22︸ ︷︷ ︸
Intensity Diff.

) (2.6)

where 1 is the indicator function.
For the inter-image compatibility term, it is defined as follows:

Φi,j
inter(x, x̂) = 1bi(x)6=bj(x̂) exp(− ||Si(x)− Sj(x̂)||1︸ ︷︷ ︸

Feature Diff.

) (2.7)

where x̂ is the corresponded pixel of x in the image j.
For the color model, once the masks are obtained, the color histograms of the

background and foreground regions of the image i can be estimated, denoted h0
i and

h0
j . the term considering the color model is :

Φi
color(x) = − logh

bi(x)
i (x) (2.8)

Denote B = {bi}, F = {Fi→j}, H = {h0
i ,h

1
i }, the final cost function is:

Etotal(B;F,H) =

N∑
i=1

∑
x

(Φi(x) + λcolorΦi
color(x) + λintra

∑
y

Φi
intra(x,y) + λinter

∑
j∈Ni

Φi,j
inter(x, x̂))

(2.9)

where Ni is a set of similar images for the image i. λcolor, λintra and λinter are three
hyper-parameters. The algorithm alternates between optimizing the correspondences
F (Eqn. 2.5), and the binary masks B (Eqn. 2.9).

Some similar objective functions are also employed in the deep era for object
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Figure 2.3: Proposed CNN architecture in (Li et al., 2018). MC is a mutual correlation
layer, which is similar to Flownet (Dosovitskiy et al., 2015).

discovery. In (Chen et al., 2020b), the training losses contain five components:

L = Lmatch + λcycleLcycle + λtripletLtriplet + λcontrastLcontrast + λmaskLmask (2.10)

where Lmatch is the foreground-guided matching loss which minimizes the distance
between corresponding features based on the estimated geometric transformation.
Both the forward-backward consistency loss Lcycle and transitivity consistency loss
Ltriplet regularize the network training by enforcing the predicted geometric transfor-
mations to be consistent across a pair of images (Lcycle) and three images (Ltriplet).
Lcontrast optimizes the masks such that they are with higher inter-image foreground
similarity and large intra-image figure-ground separation. Lmask penalizes the in-
consistency of the predicted object masks of an input image pair and the estimated
geometric transformations between that pair.

The solution of co-segmentation becomes much simpler if training data and an-
notations are available. (Li et al., 2018) proposed a pure CNN framework for object
co-segmentation, which is illustrated in Fig. 2.3. MC is a mutual correlation layer,
which is similar to Flownet (Dosovitskiy et al., 2015; Ilg et al., 2017). In detail, the
mutual correlation layer performs a pixel-wise comparison between two feature maps
fA and fB. Given a point (i, j) and a point (m, n) inside a patch around (i, j), the
correlation between feature vectors fA(i, j) and fB(m,n) is defined as:

CAB(i, j, k) = fA(i, j)fB(m,n) (2.11)

where k = (n − j)D + (m − i) and D × D is patch size. Since the common
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objects can locate at any place on the two input images, the patch size is set to
D = 2 max(w−1, h−1)+1, where w and h are the width and height of the feature maps
fA and fB. The object co-segmentation is thus a binary image labeling problem and
can be optimized using the standard cross-entropy loss function to train the network.
To train the network, (Li et al., 2018) adapted the PASCAL dataset (Everingham
et al., 2010) and created approximately 161K, 42K, 40K pairs for training, validation,
and testing.

Another research direction is to discover discriminative patches in a dataset with-
out using annotations. The desired patches need to satisfy two requirements: i) they
need to occur frequently enough in the dataset; ii) they need to be different enough
from the rest of the dataset. (Singh et al., 2012) proposed to solve the problem with
an iterative algorithm.

For initialization, the input to the algorithm is a "discovery dataset“ D as well
as a much larger "natural world dataset“ N . Both D and N are divided into two
equal, non-overlapping subsets (D1, N1 and D2, N2). S patches are randomly sampled
from D1 at multiple scales, disallowing highly overlapping patches or patches with no
gradient energy (e.g. sky patches). (Singh et al., 2012) proposed to run standard k-
means clustering in HOG (Dalal and Triggs, 2005) space of the patches with k quite
high to have more pure clusters. Clusters with less than 3 patches are removed.

For the iterative algorithm, given an initial set of clusters, a linear SVM classifier
is trained for each cluster, using patches within the cluster as positive examples and
all patches of N1 as negative examples. The trained discriminative classifiers are then
run on the held-out validation set D2, and new clusters are formed from the top m
firings of each detector. The new clusters are then used to train linear SVMs for the
next iteration. The algorithm will be stopped if the clusters are unchanged. The final
output clusters can be ordered according to their purity and discriminativeness.

As follow-up work, (Doersch et al., 2013) developed an extension of the classic
mean-shift algorithm to density ratio estimation, showing that the resulting algorithm
could be used for element discovery. (Doersch et al., 2013) also proposed the Purity-
Coverage plot as a principled way of experimentally analyzing and evaluating different
visual discovery approaches.
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2.4 Dense Image Alignment

One classical approach is Lucas-Kanade (Lucas et al., 1981) is one classical approach
that estimates a dense flow field between a pair of images under a brightness constancy
assumption. The main limitation is that it tends to work only for small displacements.
This has been partially addressed with hierarchical flow estimation (Szeliski, 2006),
as well as using local features in addition to pixels to increase robustness (Brox
et al., 2009; Revaud et al., 2015; Bailer et al., 2015; Hu et al., 2016). However, all
such methods are still limited to aligning very similar images, where the brightness
constancy assumption mostly holds.

SIFT-Flow (Liu et al., 2010) was an early method that aimed at expanding optical
flow-style approaches for matching pairs of images across physically distinct, and
visually different scenes. SIFT-Flow (Liu et al., 2010) proposed to extend SIFT (Lowe,
2004) descriptors to pixel-wise SIFT features S. The energy function for SIFT flow is
defined as:

ESIFT−Flow(F1→2) =
∑
x

min(||S1(x)− S2(F1→2 ◦ x)||1, t)︸ ︷︷ ︸
Feat. Diff

+ η||F1→2 ◦ x− x||1︸ ︷︷ ︸
Small Displ.

)

+
∑

y∈N 1
x

min(α||F1→2(x)u −F1→2(y)u||1, d)

︸ ︷︷ ︸
Smoothness along u

)

+
∑

y∈N 1
x

min(α||Fi→j(x)v −F1→2(y)v||1, d)

︸ ︷︷ ︸
Smoothness along v

)

(2.12)

where F1→2 is the flow field from image 1 to image 2, which can be also used as
the warping function. x is the pixel position at (x, y). u and v correspond to the
horizontal and vertical direction of the flow. N 1

x denotes the neighborhood of x in
the image 1. t, η, α, and d are hyper-parameters. The Feat. Diff. term in Eqn. 2.12
constrains the SIFT descriptors to be matched along with the flow vector. The Small
Displ. term constrains the flow vectors to be as small as possible. The smoothness
terms constrain the flow vectors of adjacent pixels to be similar.

SIFT-Flow (Liu et al., 2010) was later generalized to joint image set alignment
using cycle consistency in (Zhou et al., 2015).

In the deep era, flows can be learned in a completely supervised way using synthetic
data. Representative works are Flownet1 (Dosovitskiy et al., 2015) and Flownet2 (Ilg
et al., 2017).
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Figure 2.4: Proposed two CNN architectures in Flownet1 (Dosovitskiy et al., 2015).

In Flownet1 (Dosovitskiy et al., 2015), it proposed two architectures to learn
optical flow, which are illustrated in Fig. 2.4. A simple choice is to stack the two input
images together and feed them through a CNN to extract the motion information.
This is referred as FlowNetSimple in Fig. 2.4 (top). Another choice is to process
the correlation between features, which is the architecture FlowNetCorr in Fig. 2.4
(bottom). Formally, denote f1 and f2 as feature maps in image 1 and image 2. The
correlation of two features at x1 in the first map and x2 in the second map is then
defined as:

c(x1,x2) =
∑

o∈[−k,k]×[−k,k]

f1(x1 + o)f2(x1 + o) (2.13)

where k defines the kernel size to compare features.
To train the networks, (Dosovitskiy et al., 2015) created a simple synthetic dataset,

named Flying Chairs, by applying affine transformations to images collected from
Flickr and a publicly available rendered set of 3D chair models.

Flownet2 (Ilg et al., 2017) improved over Flownet1 (Dosovitskiy et al., 2015) via
three points: i) a learning schedule consisting of multiple datasets; ii) a warping
operation that allows stacking multiple networks; iii) a special training dataset and
a specialized network for small, subpixel motion and real-world data.
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Figure 2.5: Estimating progressively more complex geometric transformations in (Rocco
et al., 2017).

Generating synthetic data is also a key component to learning dense flow field be-
tween images with very different appearances. A pioneer work is (Rocco et al., 2017),
which generates image pairs with randomly sampled affine and thin-plate spline (TPS)
transformations. The proposed architecture is illustrated in Fig. 2.5. The network
first estimates an affine transformation then a more complex TPS transformation
with the warped images. Similar to Flownet1 (Dosovitskiy et al., 2015), the motion
prediction is obtained through process correlations between features, which is the
matching layer in Fig. 2.5. (Rocco et al., 2017) proposed measuring loss on an imagi-
nary grid of points which is being deformed by the transformation. More precisely, a
grid of points G in image A is transformed using the ground truth and neural network
estimated transformations TθGT

and Tθ̂ with parameters θGT and θ̂, respectively, and
measure the discrepancy between the two transformed grids:

L(θ̂, θGT ) = ||TθGT
◦ G − Tθ̂ ◦ G||

2
2 (2.14)

Similarly, DGC-Net (Melekhov et al., 2019) learned from images pairs generated
with synthetic transformation. DGC-Net adapted a coarse-to-fine strategy and in-
cluded a feature correlation layer in a U-Net (Ronneberger et al., 2015) architecture
to progressively improve flow resolution. The idea is illustrated in Fig. 2.6. Note that
the largest resolution of the flow field predicted by DGC-Net is 240 × 240.

The follow-up work (Laskar et al., 2020) improved DGC-Net by constraining the
matching layer to be locally and globally consistent and leveraging a better universal
decoder.

Local and global correlation layers have also shown to be effective in GLU-Net (Prune
et al., 2020). The local correlation cl between the target F l

t ∈ RHl×Wl×dl and source
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Figure 2.6: DGC-Net proposed in (Melekhov et al., 2019), which is an iterative architecture
consisting of four major components: 1) the feature pyramid creator. 2) the correlation
layer. 3) the fully convolutional correspondence map decoders. 4) the warping layer. The
matchability decoder is a tiny CNN that predicts a confidence map of correspondences.

F l
s ∈ RHl×Wl×dl is defined as:

cl(x,d) = F l
t (x)TF l

s(x + d), ||d||∞ ≤ R (2.15)

where x is a coordinate in the target feature map and d is the displacement from
this location. The displacement is constrained to ||d||∞ ≤ R, i.e. the maximum
motion in any direction is R. The resulting 3D correlation volume cl thus has a
dimensionality of Hl ×Wl × (2R + 1)2.

A global correlation layer evaluates the pairwise similarities between all locations
in the target and source feature maps. The resulting 3D correlation volume C l thus
has a dimensionality of Hl ×Wl ×Hl ×Wl.

The Global-Local architecture is present in Fig. 2.7. Note that the input images
have two resolutions and the global correlation is only computed for low-resolution
pairs.

(Rocco et al., 2018a) fine-tuned the model from (Rocco et al., 2017) on real-world
datasets with weak supervision, namely, only matched (positive) pairs are provided
and no annotations of correspondences are available. The key insight is to maximize
the sum of soft-inlier for positive pairs.
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Figure 2.7: GLU-Net proposed in (Prune et al., 2020).

Figure 2.8: Neighbourhood Consensus Network (Nc-Net) architecture proposed in (Rocco
et al., 2018b).

(Rocco et al., 2018b) introduced the idea of using 4D convolutions on the feature
correlations to learn to filter neighbor consensus. The idea is illustrated in Fig. (?).
A fully convolutional neural network is used to extract dense image descriptors fA
and fB for images A and B, respectively. All pairs of individual feature matches fAi,j
and fBk,l are represented in the 4D space of matches (i, j, k, l) (here shown as a 3D
perspective for illustration), and their matching scores stored in the 4D correlation
tensor c. These matches are further processed by 4D convolutions to produce the
final set of output correspondences.



Chapter 3

Learning Features for Artworks
Analysis

Discovering near duplicate patterns in large collections of artwork is harder than
standard instance mining due to differences in the artistic media (oil, pastel, drawing,
etc), and imperfections inherent in the copying process. The key technical insight is
to adapt a standard deep feature to this task by fine-tuning it on the the specific
art collection using self-supervised learning. More specifically, spatial consistency
between neighbouring feature matches is used as supervisory fine-tuning signal. The
adapted feature leads to more accurate style-invariant matching, and can be used with
a standard discovery approach, based on geometric verification, to identify duplicate
patterns in the dataset. The approach is evaluated on several different datasets and
shows surprisingly good qualitative discovery results. For quantitative evaluation of
the method, we annotated 273 near duplicate details in a dataset of 1587 artworks
attributed to Jan Brueghel and his workshop. Beyond artwork, we also demonstrate
improvement on localization on the Oxford5K photo dataset as well as on historical
photograph localization on the Large Time Lags Location (LTLL) dataset. Code and
data are available at http://imagine.enpc.fr/~shenx/ArtMiner

3.1 Introduction

Visiting a world-class art museum might leave one with an impression that each paint-
ing is absolutely unique and unlike any other. In reality, things are more complicated.
While working on a painting, an artist would typically create a number of preliminary

32
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(a) common detail (dog) discovered in our
new Brueghel dataset of 1587 artworks

(b) relationship between painting and two
studies discovered from collection of 195 art-
works by Dante Gabriel Rossetti

Figure 3.1: Examples of repeated visual patterns automatically discovered by our algorithm.
Sources: (a) left: Nymphs Sleeping After the Hunt, Spied on by Satyr (oil), center: Diana’s
Nymphs After the Hunt (oil), right: Seventeen Studies of Different Dogs (drawing); (b) The
Bower Meadow (left: chalk, center: oil, right: pastel)

sketches and studies to experiment with various aspects of the composition. Many of
these studies also find their way into (usually more provincial) museums. Some artists
enjoy returning time and again to the same subject matter (e.g. Claude Monet and
his series of 25 paintings of the same haystacks). Moreover, during the Renaissance, it
was not uncommon for an artist (or an apprentice in his workshop) to reuse the same
visual elements or motifs (an angel, a cart, a windmill, etc) in multiple paintings,
with little or no variation. For example, Flemish painter Jan Brueghel is believed
to have created many paintings that were imitations, pastiches, or reworkings of his
own works, as well as these of his father, Pieter Breughel the Elder (Honig, 2016).
Art historians are keenly interested in mapping out such visual connections between
artworks to discover influences, find provenance, and even establish authorship. Cur-
rently, this is being done entirely by hand, with researchers spending months or even
years in museum archives hoping to discover common visual patterns.

This chapter presents an approach for automatically discovering repeated visual
patterns in art collections, as shown on Fig. 3.1. We propose to learn a deep visual
feature able to find correspondences between near-duplicate visual elements across
different artworks. This task is quite challenging, requiring a feature that is both
highly discriminative (i.e. tuned to find copies of the same object instance rather
then samples of an object category), but also invariant to changes in color, style,
artistic media, geometric deformation, etc. Manually collecting and labelling a large
enough artwork dataset containing enough variability requires enormous effort by
professional art historians, which is exactly what we are trying to avoid. Therefore,
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we propose a method which learns in a self-supervised way, adapting a deep feature
to a given art collection without any human labelling. This is done by leveraging
neighbourhood spatial consistency across matches as free supervisory signal.

Using our trained feature, we demonstrate that a simple voting and regression
procedure, in line with classic verification step of instance recognition (Philbin et al.,
2007), lets us discover visual patterns that are repeated across artworks within the
dataset. We demonstrate our visual pattern discovery approach on several collec-
tions of artwork, including a new annotated dataset of 1587 works attributed to the
Brueghel family. To further evaluate the generality of our method, we have also
evaluated it on a set of historical and modern architecture photographs, resulting
in state-of-the-art localization task performance on the Large Time Gap Location
dataset (Fernando et al., 2015).

Our main contributions are: 1) a self-supervised approach to learn a feature for
matching artistic visual content across wide range of styles, media, etc; 2) the intro-
duction of a large new dataset for evaluating visual correspondence matching; 3) an
approach to discover automatically repeated elements in artwork collections.

3.2 Related Work

Computer vision and art. There is a long standing and fruitful collaboration
between computer vision and art. On the synthesis side, promising results have been
obtained for transferring artistic style to a photograph (Hertzmann et al., 2001; Gatys
et al., 2016; Zhu et al., 2017), or even trying to create art (Elgammal et al., 2017;
Hertzmann, 2018). On the analysis side, there are several efforts on collection and
annotation of large-scale art datasets (Karayev et al., 2014; Mensink and Van Gemert,
2014; Picard et al., 2015; Wilber et al., 2017; Strezoski and Worring, 2017; Mao
et al., 2017), and using them for genre and authorship classification (Karayev et al.,
2014; Tan et al., 2016; Strezoski and Worring, 2017). Others focus on applying and
generalizing visual correspondence and object detection methods to paintings using
both classical (Shrivastava et al., 2011; Crowley and Zisserman, 2013; Aubry et al.,
2014; Ginosar et al., 2014, 2018), as well as deep (Crowley et al., 2015; Crowley and
Zisserman, 2016; Westlake et al., 2016; Gonthier et al., 2018). Most closely related to
us is work of Yin et al. (Yin et al., 2016), which used the same Brueghel data (bru),
annotating it to train detectors for five object categories (carts, cows, windmills,
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rowboats and sailbaots).
Our goal, however, is to go further and focus on the computational analysis of

relationships between individual artworks. Seguin et al. (Seguin et al., 2016, 2017)
propose to find visual relationships in collections of paintings. However, while they
use off-the-shelf CNNs trained in a supervised manner, we focus on the design of
a new self-supervised feature learning specifically trained for the task. This allows
us to focus on near-exact reproduction of detail, rather than a more generic visual
similarity, which is what most art historians are actually interested in regards to
specific corpora, such as the works of Brueghel family (Honig, 2016).

Spatial consistency as supervisory signal. Spatial consistency is a widely used
signal in many computer vision tasks from geometry to retrieval. The classic work of
Sivic et al. (Sivic and Zisserman, 2003) performs instance retrieval based on the ex-
traction of spatially consistent local feature matches. This direction has been further
developed with specially adapted features for place recognition across large visual
changes (Fernando et al., 2015; Hauagge and Snavely, 2012; Verdie et al., 2015;
Aubry et al., 2014). Beyond instances, this idea has been extended to discovering
object categories (Cho et al., 2015) and their segmentations (Rubinstein et al., 2013).
Our discovery of repeated patterns through correspondence consistency is reminiscent
of the line of work on mid-level visual element discovery (Singh et al., 2012; Doer-
sch et al., 2013, 2014). These idea have been used in the context of temporal and
spatial image collection analysis, to discover the elements characteristic of a specific
location (Doersch et al., 2012), or the evolution of these elements over time (Jae Lee
et al., 2013).

Spatial consistency has also been used to learn deep visual features for object
category in a self-supervised way, either by predicting the spatial configuration of
patches (Doersch et al., 2015) or predicting the patch given its context (Pathak
et al., 2016). In a similar spirit, Rocco et al. (Rocco et al., 2018b) recently demon-
strated how to learn visual representations through geometric consistency to predict
object-category-level correspondences between images. We, on the other hand, aim at
learning features for matching only stylistically different versions of the same instance.
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(a) Candidates from one pro-
posal region (b) Selection with verification regions

(c) Training
with positive

regions

Figure 3.2: Feature Learning Strategy. (a) Our approach relies on candidate correspondences
obtained by matching the features of a proposal region (in red) to the full database . (b)
The candidate correspondences are then verified by matching the features of the verification
region (in blue) of the query in the candidate images and checking for consistency . (c)
Finally, we extract features from the positive regions (in green) from the verified candidates
and use them to improve the features using a metric learning loss.

3.3 Dataset-specific Feature Learning

This section describes our strategy for adapting deep features to the task of matching
artworks across styles in a specific dataset. Starting with a standard ImageNet pre-
trained deep features, our idea is to extract hard-positive matching regions form the
dataset that we then use in a metric learning approach to improve the features. Our
two key hypothesis are that: (i) our dataset includes large parts of images that are
copied from each other but are depicted with different styles, and (ii) the initial
feature descriptor is good enough to extract some positive matches. Our training
thus alternates between two steps that we described bellow: (1) mining for hard-
positive training samples in the dataset based on the current features using spatial
consistency, and (2) updating the features by performing a single gradient step on
the selected samples.

3.3.1 Mining for positive feature pairs

For our approach to work, it is crucial to select positive matching examples that are
both accurate and difficult. Indeed, if the features are trained with false matches,
training will quickly diverge, and if the matches are too easy, no progress will be
made.

To find these hard-positive matching features, we rely on the procedure visualized
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P2 P4 P6 P8 P10 P12 P14
Figure 3.3: Different region configurations. red: query regions, which are used to get pro-
posal regions, blue: verification regions, green: positive regions.

in Fig. 3.2.

Candidate sampling. Proposal regions are randomly sampled from each image in
the dataset to be used as query features. These are matched densely at every scale to
all the images in the dataset using cosine similarity in feature space. This can be done
efficiently and in parallel for many queries using a normalization and a convolution
layer, with the weights of the convolution defined by the query features. For each
query we select one of its top K matches as candidate correspondences (Fig. 3.2a).
These candidates contain a high proportion of bad matches, since most of the queries
are likely not repeated K times in the dataset and since our feature is imperfect.

Candidate verification. To verify the quality of candidate matches given by the
previous step, we rely on special consistency: a match will be considered valid if its
neighbours agree with it. More precisely, let’s assume we have a candidate match
between features from the proposal region pA in image A and a corresponding region
pB in image B, visualized in red in Fig. 3.2b. We define a verification region around
pA, visualized in blue. Every feature in this region is individually matched in image
B, and votes for the candidate match if it matched consistently with pB. Summing
the votes of all the features in the verification region allows us to rank the candidate
matches. A fixed percentage of the candidates are then considered verified. The choice
of the verification region is, of course, important to the success of this verification step.
The key aspect is that the features in the verification region should be, as much as
possible, independent of the features in the proposal region. On the other hand,
having them too far apart would reduce the chances of the region being completely
matched. For our experiments, we used the 10x10 feature square centred around the
query region (Fig. 3.2b).
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Generating hard positives. Finally, given a set of verified correspondences, we
have to decide which features to use as positive training pairs. One possibility would
be to directly use features in the proposal region, since they have been verified. How-
ever, since the proposal region has already been “used” once (to verify the matches),
it does not bring enough independent signal to make quality hard positives. Instead,
we propose to sample positives from a different positive region. We evaluated different
configurations for the positive region, as visualized in Fig. 3.3 (in green). We choose
to keep only 4 positive pairs per verified proposal, positioned at the corners of a square
and denote the different setups as P2 to P14, the number corresponding to the size
of the square. We will show in the experiments that P12 and P14 perform better
than the alternatives in Sec 3.5.3. The features from the positive regions (Fig. 3.2b
in green) are then used as hard positives for feature fine-tuning (Fig. 3.2c).

3.3.2 Feature fine-tuning

After each selection of positive feature pairs, we update of our feature using a single
gradient step of the following triplet metric learning loss:

L(P1,P2, {Ni}) = −min(λ, s(P1,P2)) +
1

Nneg

Nneg∑
i=1

max(s(P1,Ni), 1− λ) (3.1)

where P1 and P2 are corresponding features in the positive regions, {Ni}{i=1,2...Nneg}

are negative samples, s is the cosine similarity metric and λ is a hyper-parameter. We
select the negatives as the set of top matches to P1 in P2’s image. This selects hard
negatives and avoids any difference in the distribution of the depiction styles in our
positive and negative samples. We chose a relatively high number of negative Nneg to
account for the fact that some of them might in fact correspond to matching regions,
for example in the case of repeated elements, or for location near the optimal match.

Implementation details. In all of our experiments, we used conv4 features of
the ResNet-18 (He et al., 2016) architecture. We resized all images such that their
maximum spatial dimension in the feature map was 40, leading to approximately 1k
features per image at the maximum scale. For each image, we used 7 different scales,
regularly sampled at two octaves with 3 scales per octave. For positive sampling, we
used square queries of 2×2 features, K = 10 candidate matches for each query. From
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Figure 3.4: Discovery through geometric consistency.

these candidate, the top 10% with the most votes from neighbours were considered
verified. Note that these parameters might need to be adjusted depending on the
diversity and size of the dataset, but we found that they performed well both for
the Brueghel (bru) and LTLL (Fernando et al., 2015) datasets. For training on
Oxford5K (Philbin et al., 2007) dataset, the query patches are only sampled inside the
annotaed bounding boxes of the 55 query images, and we only find candidate matches
in 2000 images randomly sampled in the whole dataset. The hyper-parameters of
the triplet loss, Nneg and λ, are fixed to 20 and 0.8 respectively. Our models were
trained with the Adam (Kingma and Ba, 2015) optimizer with learning rate 1e-5
and β = [0.9, 0.99]. Using a single GPU Geforce GTX 1080 Ti, training converged
in approximately 10 hours, corresponding to 200 iterations of the feature selection
and training. Most of the time is spent extracting and verifying candidate matches.
ImageNet pre-training was used for initialization in all experiments.

3.4 Spatially Consistent Pattern Mining

In this section, we describe how our algorithm discovers repeated patterns in a dataset
given style-invariant features learned in the previous section. We follow the classic
geometric verification approach (Philbin et al., 2007): for all pairs of images in the
dataset, we first compute features and match them between the two images, then
select consistent matches, and finally find image regions that have many consistent
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feature matches. This allows us to build a graph between all corresponding image
regions, from which we extract clusters of related images and repeated elements. In
the following, we present briefly each of these steps.

3.4.1 Identifying region correspondences

Our discovery procedure for a pair of images is visualized in Fig. 3.4. We start by
computing dense correspondences between the two images using our learned feature.
These will be quite noisy. We first use Hough voting to identify potential groups of
consistent correspondences. As a first approximation, each correspondence votes for
a translation and change in scale. We then extract the top 10 translation candidates,
and, using a permissive threshold, focus on the correspondences in each group inde-
pendently. Within each group, we use RANSAC to recover an affine transformation
and the associated inliers. This allows to account for some deformation in the copy
process, but also variations in the camera viewpoint with respect to the artwork.

3.4.2 Scoring correspondences

After deformations between image regions are identified, we score the correspondence
based both on the quality of the match between the features and geometric criteria.
We use the following weighted average of the feature similarity:

S(I) =
1

N

∑
i∈I

e
(−
e2i

2σ2
)
si (3.2)

where I is the index of the inlier correspondences, ei is the error between corre-
spondence i and the geometric model, si the similarity of the associated descriptors

and
1

N
is normalization by the number of features in the source image.

3.4.3 Region correspondences graph

Using the score S, we can separate our dataset into clusters of connected images.
These clusters are already interesting and visually appealing, especially for dataset
with few repeated details. However, to avoid obtaining very large clusters when many
details are repeated in overlapping sets of images, one needs to individually identify
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each detail region. To do that we built a graph from all the connected image pairs.
The nodes are the regions that are mapped between pairs of images. Each image can
contain several overlapping regions. We connect regions that are matched to each
other as well as regions in the same image that overlap with an Intersection over
Union (IoU) score greater than a given threshold (0.5 in our experiments). Finally,
we extract the connected components in this graph. Each of them corresponds to a
different detail that is repeated in all images of the group.

3.5 Experiments

In this section, we analyse and evaluate our approach. We first present the main
datasets we used, including our new annotations of the Brueghel dataset (bru) specif-
ically targeted toward the new task we propose. Second, we provide detailed results
and analysis for the task of one-shot visual pattern detection. Finally, we present
quantitative and qualitative results for our discovery procedure.

3.5.1 Datasets

Brueghel. We introduce new annotations for the Brueghel dataset (bru), that we
will release together with the images we used. Indeed, to the best of our knowledge,
no other annotation for the task of near duplicate detection in artwork is currently
available.

The Brueghel dataset contains 1,587 artworks done in different media (e.g. oil,
ink, chalk, watercolour) and on different materials (e.g. paper, panel, copper), de-
scribing a wide variety of scenes (e.g. landscape, religious, still life) This dataset is
especially adapted for our task since it assembles paintings from artists related to
the same workshop, who thus had many interaction with each other, and includes
many copies, preparatory drawings, and borrowed details. With the help of our art
history collaborators, we selected 10 of the most commonly repeated details in the
dataset and annotated the visual patterns in the full dataset using the VGG Im-
age Annotator tool (Dutta et al., 2016). The 10 annotated patterns can be seen
in Fig. 3.5 as queries (blue boxes), and our full annotation are visible in the project
page http://imagine.enpc.fr/~shenx/ArtMiner. We were careful to select
diverse patterns, and for each of them to annotate only duplicates, and not full object
classes. Note for example that for the horses and lion classes, we annotated separately

http://imagine.enpc.fr/~shenx/ArtMiner
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Figure 3.5: Detection example with our trained features on the Brueghel dataset. We
show the top 4 matches (in green) for one example of query from each of our 10 annotated
categories. Notice how the matches style can be different from the one of the query.

two variants of the details (front and back facing lion, front and right facing horse).
This resulted in 273 annotated instances, with a minimum of 11 and a maximum of
57 annotations per pattern.

These annotations allow us to evaluate one-shot duplicate detection results. In our
evaluation, we use an IoU threshold of 0.3 for positives, because precise annotations
of the bounding boxes in different environment is difficult and approximate detections
would be sufficient for most applications. In practice, our detected bounding boxes,
visualised in Fig. 3.5 (green boxes) often appear more consistent than the annotations.
We compute the Average Precision for each query, average them per class and report
class level mean Average Precision (mAP).

Large Time Lags Locations (LTLL). While our discovery algorithm targets copy
detection in art, it should also be able to detect same object instances in photographs
as well. We thus test our algorithm on the LTLL (Fernando et al., 2015) dataset.
It contains historic and modern photographs captured from 25 locations over a time
interval of more than 150 years. In total the dataset contains 225 historical and
275 modern photographs of the same locations. The task proposed in LTLL is to
recognize the location of an old picture using annotated modern photographs. We
use our discovery procedure to find the images most similar to the query. As in the
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Table 3.1: Experimental results on Brueghel, IoU > 0.3 for both tasks.
Method (Feature) Cosine similarity Discovery score (Equ.3.2)
ImageNet pre-taining 58.0 54.8
Context Prediction (Doersch et al., 2015) 58.8 64.29
Ours (trained on Brueghel) 75.3 76.4
Ours (trained on LTLL) 65.2 69.95

original paper (Fernando et al., 2015), we report classification accuracy.

Oxford5K. We also evaluate our approach on Oxford buildings (Philbin et al.,
2007) dataset. The dataset contains 5062 images for 11 different landmarks. We
follow the standard evaluation protocol and report retrieval mAP for the 55 queries.

DocExplore. The DocExplore dataset (En et al., 2016), which is dedicated to
spotting repeated patterns in manuscripts and is the closest existing dataset related
to our task and provides extensive comparisons. However the repeated patterns in
this dataset are rare and small, all exactly in the same style, with the same colors, and
most of the data is text. We thus used it to validate our baseline one-shot detection
approach, but could not use it for feature training. DocExplore contains over 1500
images with 1464 instances of 35 different details. For our experiments, we only
considered the 18 largest details (the other ones corresponding to small letters).

WikiArt. To show the generality of our approach, we ran our discovery algo-
rithm on paintings of other artists (Peter Paul Rubens, Dante Gabriel Rossetti and
Canaletto) that we collected from WikiArt (wik, a,b) (respectively 387, 195 and 166
artworks).

3.5.2 One-shot detection

We evaluated our feature learning strategy using one-shot detection. This was per-
formed simply by computing densely features on the dataset and computing their
cosine similarity with the features corresponding to the query. The query was resized
so its largest dimension in the feature map would be 8. Note that unlike standard
deep detection approaches (Girshick et al., 2014; Ren et al., 2015), we do not use re-
gion proposals because we want to be able to match regions which do not correspond
to objects.
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(a)

(b)

(c)

Figure 3.6: From a single query, shown on the left, we show the detection results obtained
with cosine similarity with ImageNet feature (a) and our trained features (b) as well as the
ones (c) obtained with our features and the discovery score presented in Sec. 3.4.2.

Examples results using this approach for each of the 10 details we annotated on
the Brueghel dataset are shown in Fig. 3.5. It gives a sense of the difficulty of the
task we target and the quality of the results we obtain. Note for example how the
matches are of different styles, and how the two types of lions (top row) and the two
types of horses (bottom row) are differentiated. In the following, we compare these
results with baselines and analyse the differences.

Validation on DocExplore (doc). To validate that our one-shot detection ap-
proach is competitive with classical methods for finding repeated details, we ran it
on the DocExplore (doc) dataset with ResNet-18 features trained on ImageNet. Our
cosine-similarity based dense approach resulted in mAP of 55% on the 18 categories
we considered, a clear improvement compared to the best performance of 40% ob-
tained in (En et al., 2016) with classical approaches.

Comparison and analysis on Brueghel. Here, we compare the one shot detec-
tion performance with different features using cosine similarity and the score described
in Eqn.3.2. In Fig. 3.6, we present the top 6 matches from the same query using dif-
ferent approaches. On this example, it can be seen that while ImageNet feature only
gets the matches in similar styles, our trained feature obtains duplicated horses in
different styles, showing that the learned feature is more invariant to style. More-
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Figure 3.7: Failures of SIFT matching with geometric verification on images where our
algorithm succeeds (Fig. 3.1).

over, the matching can still be improved with the discovery score. The corresponding
quantitative results are presented in Tab. 3.1 and confirm these observations. Indeed
learning features improves the score by approximately 30%. The discovery procedure
and score provides a small additional boost, which is a first validation of our discov-
ery procedure. We also report results for two baselines that we re-implemented: the
classical Video Google (Sivic and Zisserman, 2003) approach and deep feature learnt
with Context Prediction (Doersch et al., 2015). With the Video Google (Sivic and
Zisserman, 2003) baseline, we obtained only 21.53% as retrieval mAP, showing the
difficulty to address our task with SIFT (Lowe, 2004) features. Some failure examples
are visualized in Fig. 3.7. For Context Prediction, we trained the network using the
Brueghel dataset and the same ResNet18 architecture and ImageNet initialization
as for our method. We only obtain an improvement of 0.8% compared to ImageNet
feature, much lower than the 17% provided by our method. Interestingly, training
our feature on the LTLL dataset also gave a boost in performance compared to the
ImageNet feature, but is clearly worst than training on the Brueghel data, showing
the dataset specific nature of our training.

3.5.3 Positive region configuration

We now focus on evaluating the different positive region settings described in Sec. 3.3.1
and Fig. 3.3. For each of them, we analyse the performance of the features on one-
shot learning on the Brueghel dataset and its evolution during training. The results
can be seen in Fig. 3.8. Interestingly, the performance initially always improves over
ImageNet features. However, when the positive region is close to the proposal region,
the performance decreases after some iterations of our training procedure, and ends
up with worse performance than the initial features. But if the positive region is far
enough from the query (P12 and P14), the performance improves much more and
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Figure 3.8: Evolution of the mean Average Precision for one-shot matching on the Brueghel
dataset during training. Performance decreases after a few iterations for settings where we
extract positive regions correlated with the proposal region.
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Figure 3.9: Discovery between a pair of images during training.

does not subsequently deteriorate. We thus use P12 for all our other experiments.

3.5.4 Visual pattern discovery

In this part, we focus more specifically on our discovery procedure, show qualitative
results on various datasets, and evaluate quantitatively for place recognition on the
LTLL dataset.

Training visualization. To visualise the influence of the feature training for our
discovery task, we selected a pairs of matching images and ran discovery on them
with the features at different steps of training. Fig. 3.9 visualises the results on a
pair of images from the LTLL dataset. During training, larger and larger parts of the
images can be matched in a consistent way, and be discovered as similar elements by
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Table 3.2: Discovery with image, classification accuracy on LTLL and retrieval mAP on
Oxford5K

Method LTLL (%) Oxford (%)
B. Fernando et al.(Fernando et al., 2015) 56.1 -
F. Radenović et al.(Radenović et al., 2018) - 87.8
ResNet18 max-pool, image level 59.8 14.0
ResNet18 + discovery 80.9 85.0
Ours (trained LTLL + discovery) 88.5 83.6
Ours (trained Oxford + discovery) 85.6 85.7

our method. This shows both the efficiency of our feature training and it’s relevance
for our task.

Quantitative analysis on one-shot localisation. We evaluate our approach on
one-shot localisation for both the LTLL and Oxford5K datasets. The results are re-
ported in Tab. 3.2. We compare our discovery score to cosine similarity with standard
max-pooled features as well as the state of the art results of (Fernando et al., 2015)
on LTLL and (Radenović et al., 2018) on Oxford5K.

On LTLL, we use the class of the nearest neighbour in modern photographs to lo-
calise the historical images. Using the discovery score provides a very important boost
compared to the results of (Fernando et al., 2015) and the max-pooled features. Using
our fine-tuning procedure on the LTLL dataset improves again the results, demon-
strating again the interest of our proposed dataset specific fine-tunning procedure.

Similarity, on the Oxford5K dataset, we obtain an important boost using the
discovery score compared to cosine similarity with max-pooled features. Fine-tuning
the features on Oxford5K improves the mAP by 0.7%. This improvement is less
important than on LTLL, which is expected since there is no specific domain gap
between queries and targets in the Oxford5K dataset. Our result on Oxford5K is also
comparable to the state-of-the-art result obtained in (Radenović et al., 2018) which
performs fine-tuning on a large image collection with ResNet101. As expected the
retrieval mAP is better when fine-tuning on the Oxford dataset than on LTLL.

Qualitative analysis. We show example of our discovery results in Fig. 3.10.
More results are available in our project webpage http://imagine.enpc.fr/
~shenx/ArtMiner.

http://imagine.enpc.fr/~shenx/ArtMiner
http://imagine.enpc.fr/~shenx/ArtMiner
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Figure 3.10: Example of image clusters discovered by our method. The three cluster without
artist names correspond to data from the Brueghel dataset (bru)

Computational cost. We implement an efficient algorithm for the single shot de-
tection by considering query features as convolutional kernels. We can thus match
one query to 53 images/sec on a single GPU (Geforce GTX 1080 Ti). The discovery
step is slower, since it requires matching all the features of one image to another, and
takes approximately 0.2 seconds/pair of images on a single GPU. It takes about 40
minutes to query one image on Oxford5K using discovery procedure on one GPU and
the discovery on the whole dataset of Brueghel took approximately 20 hours using 4
GPUs.

3.6 Limitations and Discussion

When performing discovery on different datasets, we observed some interesting failure
modes visualized in Fig. 3.11. In the Brughel dataset, we discovered the identical
circular frame of a set of paintings as a repeated pattern, as well as matched the faces
in a set of similar but not identical paintings from portrait collections of Peter Paul
Rubens.

More generally our method has several limitations. First, the time to perform
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Figure 3.11: Failure examples in paintings of Peter Paul Rubens and Brughel dataset

discovery is important, which makes our approach impractical for applications such
as localization. Moreover, the time for performing complete discovery on a dataset is
quadratic in the number of images in this dataset, which limits the size of the datasets
we can handle to a few thousands images. Second, our discovery procedure relies on
an affine transformation model, which might not always be rich enough. Finally, our
feature learning requires having access to a dataset which includes many repeated
patterns and a good feature initialization.

3.7 Conclusion

We have introduced a new approach to adapt features for instance matching on a spe-
cific dataset without human supervision. We have demonstrated quantitatively the
promise of our method both for one-shot cross-modal detection and for cross-modal
instance discovery. Last but not least, we demonstrate diverse near duplicate discov-
ery results in several artwork datasets, including some that have not been detected
by humans.



Chapter 4

Learning Co-segmentation for Art
Pattern Discovery

The goal of this chapter is to efficiently identify visually similar patterns from a pair
of images, e.g. identifying an artwork detail copied between an engraving and an oil
painting, or matching a night-time photograph with its daytime counterpart. Lack
of training data is a key challenge for this task. We present a simple yet surprisingly
effective approach to overcome this difficulty: we generate synthetic training pairs
by taking object segments from COCO and copy-pasting them into another image.
We then learn to predict the repeated object masks. We find that it is crucial to
predict the correspondences as an auxiliary task and to use Poisson blending and
style transfer on the training pairs to generalize on real data. We analyse results
with two deep architectures relevant to our joint image analysis task: a transformer-
based (Vaswani et al., 2017) architecture and Sparse Nc-Net (Rocco et al., 2020), a
recent network designed to predict coarse correspondences using 4D convolutions. We
show our approach provides clear improvements for artwork details retrieval on the
Brueghel dataset (bru; Shen et al., 2019) and achieves competitive performance on
two place recognition benchmarks, Tokyo247 (Torii et al., 2015) and Pitts30K (Torii
et al., 2013). We then demonstrate the potential of our approach by performing object
discovery on the Internet object discovery dataset (Rubinstein et al., 2013) and the
Brueghel dataset (bru; Shen et al., 2019).

50
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4.1 Introduction

Identifying repeated patterns lies at the very heart of the computer vision problem,
and is a key component of Intelligence itself. Yet, in practice, our best methods for
performing such a fundamental task often leave a lot to be desired. E.g. while we
now have good methods for discovering exact pattern matches (used extensively to
find copyright infringements), as well as approximate matches of salient objects (see
object discovery and co-segmentation approaches in Section 2), detecting visually
similar details within a larger visual context remains surprisingly difficult. Spotting
the repetition of visual detail has several applications. E.g. identifying copied details
in artworks allows art historians to discover influences, find provenance, and establish
authorship (Shen et al., 2019). Matching repeated details can boost performances in
visual localisation for place recognition (Hausler et al., 2021).

Reliable pair-wise image co-segmentation and correspondence identification could
also enable object discovery in image collections (Chen et al., 2020b). However,
identifying repeated content in image pairs remains challenging, especially in the
cases where images appear very different from each other. Moreover, there is no
available generic training dataset for this task.

In this chapter, we show it is possible to learn to detect repeated visual patterns –
jointly predicting co-segmentation and correspondences – without any human-labelled
correspondences. Instead, we generate synthetic correspondence pairs via automatic
data augmentation. More precisely, we use a “segment swapping” approach, where
we blend object segments in a random background using Poisson blending and ap-
ply style transfer to the resulting image to obtain challenging training image pairs
(Fig. 4.1a). We compare using as image segments either COCO (Lin et al., 2014)
instance segmentation or unsupervised segments, which produced slightly lower but
comparable results. On the generated image pairs, we have access to the ground-truth
matchability masks as well as the correspondences which we use as supervisions for
training a network (Fig. 4.1b). Surprisingly, we find that models trained on such a
dataset generalize well to real data. We experimented with two network architectures
which we adapt to predict co-segmentation and correspondences in image pairs: the
recent Sparse Nc-Net (Rocco et al., 2020) architecture, designed for predicting image
coarse correspondences, and an architecture based on Transformers (Vaswani et al.,
2017) which we refer to as cross-image transformer.

We analyze the effectiveness of our data generation process, architectures and
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(a) Data generation by “segment swapping”. Instead of directly pasting an object from a source
image on a background (3rd column), we use Poisson blending (Pérez et al., 2003) and add style
transfer (Huang and Belongie, 2017) to the result (4th column).

(b) We train our cross-image transformer or Sparse Nc-Net (Rocco et al., 2020) on the generated
pairs. Both networks jointly predict masks and correspondences.

Figure 4.1: Learning co-segmentation by “segment swapping”. We generate training data
with “segment swapping” (Fig. 4.1a) and learn co-segmentation either with our cross-image
transformer or Sparse Nc-Net (Rocco et al., 2020) (Fig. 4.1b).

training strategy on two types of tasks. First, we perform retrieval tasks using the
predicted pair-wise co-segementation masks and correspondences. We show clear
performance improvement for artwork details retrieval on the Brueghel (Shen et al.,
2019) dataset and results comparable to state of the art for visual localization on
two challenging place recognition benchmarks, Tokyo247 (Torii et al., 2015) and
Pitts30K (Torii et al., 2013). This last result is especially impressive, since these
benchmarks are very competitive, and many dedicated methods leveraging geo-referenced
images or real correspondence for supervision have been proposed. On the contrary,
our approach is generic and relies solely on our synthetic “segment swapping” training.
We further make use of the predicted masks and correspondences to build a candidate
correspondence graph and perform discovery with spectral clustering (Ng et al., 2001;
Leordeanu and Hebert, 2005). We demonstrate results on par with state-of-the-art
on the standard co-segmentation Internet (Rubinstein et al., 2013) dataset and show
qualitative results on the challenging Brueghel (Shen et al., 2019) dataset.

Our full code is available at our project page https://imagine.enpc.fr/

https://imagine.enpc.fr/~shenx/SegSwap/
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~shenx/SegSwap/.

4.2 Related Work

Learning correspondences between different images. SIFT-Flow (Liu et al.,
2010) was an early method that aligns visually distinct scenes by incorporating visual
features, such as SIFT (Lowe, 2004), into optical flow style approaches. More recently,
many deep learning based approaches have been developed to predict correspondences
from correlations of input features (Rocco et al., 2017; Melekhov et al., 2019; Prune
et al., 2020; Shen et al., 2020a; Truong et al., 2021b,a). Of particular interest, ar-
chitectures based on attention mechanisms and Transformers (Vaswani et al., 2017)
have been introduced to predict image correspondences. SuperGlue (Sarlin et al.,
2020) is an attention-based graph neural network for key-point matching. Closer to
this chapter, COTR (Jiang et al., 2021) is an sequence-to-sequence transformer ar-
chitecture that takes an image and 2D coordinates of a query points as inputs to
predict correspondences. Finally, LoFTR (Sun et al., 2021) adopts a coarse-to-fine
approach to matching with a transformer encoder. As opposed to our work, these
transformer-based methods are trained on a large dataset with ground-truth poses
and depth while we only train on a synthetic dataset. Additionally, our model is only
composed of an encoder and outputs a mask of the common regions along with the
correspondences.

Learning correspondences without annotated data. There is a large body of
work that use synthetic images (Dosovitskiy et al., 2015) or images with synthetic
deformations (Rocco et al., 2017; Seo et al., 2018; Melekhov et al., 2019; Prune et al.,
2020) to learn correspondences without real annotated training data. However, these
approaches do not try to identify the matchable regions, which are essential to discover
visual details. Some other approaches train directly on real images using proxy signals
for correspondences, such as photometric or cycle consistency (Zhou et al., 2015;
Wang et al., 2018b; Janai et al., 2018; Shen et al., 2020a; Truong et al., 2021b,a).
Again, they focus on the quality of the correspondences and are not designed to
predict matchable regions in vastly different images. On the contrary, the core of our
approach is to discover these similar regions. This makes our approach particularly
suited for retrieval tasks.

https://imagine.enpc.fr/~shenx/SegSwap/
https://imagine.enpc.fr/~shenx/SegSwap/
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Our approach is also inspired by related data augmentation techniques, specif-
ically, the CopyPaste augmentation used by Ghiasi et al. (Ghiasi et al., 2021) for
instance segmentation and the stylised-ImageNet augmentation used in Geirhos et
al. (Geirhos et al., 2019) to increase shape bias in neural networks.

Object discovery and co-segmentation. There is a wide variety of approaches
aiming at discovering objects and their location from unlabelled images. Many meth-
ods (Tang et al., 2014; Cho et al., 2015; Vo et al., 2019, 2020) use bounding box
proposals and formulate the object discovery as an optimization problem. This relies
on the quality of proposals which are typically not adapted for non-photorealistic
data, such as artworks. Other approaches (Rother et al., 2006; Vicente et al., 2011;
Rubinstein et al., 2013; Taniai et al., 2016; Yuan et al., 2017; Li et al., 2018; Hsu et al.,
2018; Li et al., 2019; Chen et al., 2020b) focus on predicting masks of salient objects
directly. Some (Yuan et al., 2017; Li et al., 2018, 2019) require foreground masks
for training, while others (Joulin et al., 2010, 2012; Vicente et al., 2011; Hsu et al.,
2018; Li et al., 2019; Chen et al., 2020b) are designed to segment common repeated
objects in a image collection. These approaches make strong assumptions about the
frequency of appearance of an object, while, in many practical scenarios, common
objects are rare and discovering them is about seeking a needle in a haystack (bru;
Shen et al., 2019). Our approach is related to (Rubinstein et al., 2013; Taniai et al.,
2016), as we both leverage dense correspondences to discover objects. As opposed to
our work, Taniai et al. (Taniai et al., 2016) focuses on a single pair of images while
we also show results over an entire collection of images. Rubinstein et al. (Rubinstein
et al., 2013) makes the assumption that the common object is also the most salient
in the image. This works well with images form internet queries but does not apply
to artworks where the common object can be a detail in a richer scene.

4.3 Co-segmentation by Segment Swapping

We show an overview of our approach in Fig. 4.1. In Sec. 4.3.1, we introduce our “seg-
ment swapping” data generation process (Fig. 4.1a). We then present in Section 4.3.2
the two architectures we use (Fig. 4.1). We discuss our loss and training strategy in
Section 4.3.3.
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Figure 4.2: Segments extracted without any human annotations

4.3.1 Training data generation by segment swapping

We generate training pairs using the COCO dataset (Lin et al., 2014). We first sample
a source image, from which we extract one or two objects. We then build the target
image by applying geometric transformations to the objects and blending them into a
random background image using Poisson blending (Pérez et al., 2003). The geometric
transformations include rotation, translation, scaling, and thin-plate spline (TPS). A
style augmentation is then performed on both the source and target images using an
AdaIN (Huang and Belongie, 2017) model trained on the Brueghel dataset (bru; Shen
et al., 2019). We provide more examples of training samples in the project page.

Training pairs generation. We generate training pairs using images from the
COCO dataset (Lin et al., 2014). We first sample a source image, from which we
extract one or two segments (as explained below). We then build the target im-
age by applying geometric transformations to the objects and blending them into
a random background image using Poisson blending (Pérez et al., 2003). The ge-
ometric transformations include rotation, translation, scaling, and thin-plate spline
(TPS). A style augmentation is then performed on both the source and target im-
ages using an AdaIN (Huang and Belongie, 2017) model trained on the Brueghel
dataset (bru; Shen et al., 2019). An example of training pair can be seen in Fig. 4.1a
and we provide more examples of training samples in the project page https:

//imagine.enpc.fr/~shenx/SegSwap/.

Segments definition. The simplest way to define segments for our data generation
process is to use the instance annotations from COCO (Lin et al., 2014). We compare
this approach to a completely unsupervised segment extraction, which we defined
using the following strategy:

(1) given an image, we compute bounding box proposals via the Selective Search (Ui-
jlings et al., 2013);

https://imagine.enpc.fr/~shenx/SegSwap/
https://imagine.enpc.fr/~shenx/SegSwap/
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(2) we compute a simple saliency for each feature in the bounding box, i.e. for
each Moco (Chen et al., 2020a) Conv4 feature (i,j) inside the box we use as saliency
its average cosine distance with its neighbours, which is illustrated in Equ. 4.1.

Saliency(i, j) =
1

|N (i, j)|
∑

(m,n)∈N (i,j)

1− cos(F(i, j),F(m,n)) (4.1)

whereN (i, j) is the set containing neighbours of (i, j), cos denotes the cosine similarity
and F(i, j) is the Conv4 feature at position (i, j). We only keep boxes which average
saliency is high enough (≥ 0.5);

(3) the final mask for each box is obtained using GrabCut (Rother et al., 2004)
initialized by the saliency map.

The examples of unsupervised segments are provided in Fig. 4.2.

4.3.2 Architectures

Our networks take as input a source image Is and a target image It, from which
features maps Fs and Ft of spatial dimension W × H are extracted by a feature
extraction backbone. These feature maps are then processed either by our cross-image
transformer or our sparse Nc-Net (Rocco et al., 2020) architecture to predict both
the masks of the repeated objects in the source and target images, Ms ∈ [0, 1]W×H

and Mt ∈ [0, 1]W×H respectively, and the correspondences both from source to target
Cs→t and target to source Ct→s. Both Cs→t and Ct→s are represented as matrices of
size W ×H × 2. To simplify notation, we sometime use the masks as continuous 2D
functions, which in practice is done by performing bilinear interpolation.

Cross-image transformer. We built an architecture based on the classic trans-
former encoder (Vaswani et al., 2017) which alternates multi-headed attention and
fully connected feed-forward networks (FFN) blocks. The FFN blocks contain two
layers with a ReLu non-linearity. Similar to (Sarlin et al., 2020), we use two types
of attention layers: one is the standard self-attention (SA) layer, the other one is a
cross attention (CA) layer where the attention is only computed between features
from different images. We include the same 2D positional encoding as DeTR (Carion
et al., 2020) on top of the feature map before SA. Our transformer alternates these
two types of attention layers as shown in Fig. 4.1b, with a total of five attention and
FFN blocks. Each attention layer has 2 heads and the dimension of the features is
256. Our last layer is followed by a sigmoid and has three outputs, that we interpret



57

as masks and correspondences for each image. We provide an ablation study of this
architecture in the project page.

Sparse Nc-Net. Nc-Net (Rocco et al., 2020) is designed to learn coarse correspon-
dences under weak supervision. It takes as input the correlations between Fs and
Ft, seen as a 4D volume of affinities Ainput ∈ RW×H×W×H , and processes them with
4D convolutions. The final 4D convolution predicts affinities Apred ∈ RW×H×W×H , on
which softmax functions are applied in dimensions corresponding to source and target
giving Aspred(i, j, k, l) =

exp(Apred(i,j,k,l))∑
k,l exp(Apred(i,j,k,l))

and Atpred(i, j, k, l) =
exp(Apred(i,j,k,l))∑
i,j exp(Apred(i,j,k,l))

.
We use the maxima of these affinities as source and target masks, i.e., Ms(i, j) =

maxk,lAspred(i, j, k, l) and Mt(k, l) = maxi,j Atpred(i, j, k, l). Correspondences are ob-
tained with soft-argmax:

Cs(i, j) =

∑
k,l

k

W
As

pred(i, j, k, l),
∑
k,l

l

H
As

pred(i, j, k, l)


Ct(k, l) =

∑
i,j

i

W
At

pred(i, j, k, l),
∑
i,j

j

H
At

pred(i, j, k, l)

 .

(4.2)

Since 4D convolutions are computational heavy, we instead use sparse 4D convolutions
with the same architecture as Sparse Nc-Net (Rocco et al., 2020).

4.3.3 Loss and training

On our synthetic training data we have access to the ground truth masksMs
gt andMt

gt

and ground truth correspondences Cs→t
gt and Ct→s

gt on the source and target images.
Our loss is the sum of two symmetric terms for source and target, for simplicity we
write only the source loss Lssup. It includes a cross-entropy (CE) loss on the predicted
mask Lmask and the transported mask Ltmask, as well as a regression loss Lcorr on the
correspondences:

Ls
sup = CE(Ms

gt,M
s)︸ ︷︷ ︸

Lmask

+CE(Ms
gt,M

t(Cs→t))︸ ︷︷ ︸
Ltmask

+ η
1∑

i,j M
s
gt(i, j)

∑
i,j

Ms
gt(i, j)‖Cs→t(i, j)−Cs→t

gt (i, j)‖︸ ︷︷ ︸
Lcorr

(4.3)

where i and j correspond to the feature coordinates, η is a scalar hyper-parameter,
and CE(Mgt,M) = − 1

W×H
∑

i,j Mgt(i, j) log(M(i, j)) + (1 −Mgt(i, j)) log(1 −M(i, j)). Note
that this loss is computed both for positive pairs (source and target pairs generated
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by segment swapping) and negative pairs (sampled from two different pairs, without
repeated objects) for which Ms

gt = Mt
gt = 0 and by convention Lcorr = 0.

Implementation details. We implement our approach using the Pytorch library
and our full implementation is available in the project page https://imagine.
enpc.fr/~shenx/SegSwap/. We use as backbone features the conv4 features of
a ResNet-50 (He et al., 2016) trained on ImageNet (Deng et al., 2009) with MOCO-
v2 (Chen et al., 2020a). We freeze the backbone during the training, as learning
backbone features leads to overfiting on the synthetic training set. For all the ex-
periments, we optimise the loss defined in Eqn. 4.3 with η = 8 and use the Adam
optimiser (Kingma and Ba, 2015) with momentum terms β1 = 0.5 and β2 = 0.999.
At each iteration, we sample 5 positive and 15 negative pairs. For the transformer
architecture, after training 200k iterations with learning rate 2e-4, we train with hard
negative pairs and learning rate 1e-5 for 5k iterations. Hard negatives are obtained
by sampling a pool of Npool = 500 images from different synthetic pairs, comput-
ing predicted masks for all the pairs of images in the pool, and keeping those with
mask prediction higher than a threshold τ = 0.04 in a hard negative pair pool for
Khard = 1000 iterations of training. For Sparse Nc-Net (Rocco et al., 2020) training
200k iterations with learning rate 2e-4 without hard negative mining leads to the
best performance. The entire trainings of the transformer and Sparse Nc-Net (Rocco
et al., 2020) take approximately 30 hours and 15 hours respectively on a single GPU
Tesla-V100-16GB. An ablation study of the architectures and more training details
are provided in the project page.

4.4 Application to Image Retrieval

In this section, we show how our model can be used for retrieval tasks. We first
explain how we use it to compute an image similarity score in Sec. 4.4.1. We then
present experimental results in Sec. 4.4.2, including art detail retrieval on the Brueghel
dataset (bru; Shen et al., 2019) and place recognition on Pitts30k (Torii et al., 2013)
and Tokyo 24/7 (Torii et al., 2015).

https://imagine.enpc.fr/~shenx/SegSwap/
https://imagine.enpc.fr/~shenx/SegSwap/
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Table 4.1: Art detail retrieval and detection on Brueghel (Shen et al., 2019; bru). For
detection, we employ ArtMiner (Brueghel (Shen et al., 2019) + cos (Shen et al., 2019)) as
a post-processing and reports results with IoU > 0.3 (Shen et al., 2019)

Feat. + Methods mAP
Retrieval Det.(IoU > 0.3)

Brueghel (Shen et al., 2019) + cos (Shen et al., 2019) 75.5 75.3
Brueghel (Shen et al., 2019) + discovery (Shen et al., 2019) 76.6 76.4
MocoV2 (Chen et al., 2020a) + cos (Shen et al., 2019) 79.0 78.7
MocoV2 (Chen et al., 2020a) + discovery (Shen et al., 2019) 80.8 79.6
Ours + Unsupervised segments
Transformer 83.3 79.8
Sparse-Ncnet 82.4 73.5

Ours + COCO segments (Lin et al., 2014)
Transformer 84.4 81.8
Sparse-Ncnet 83.3 73.7

4.4.1 Score between a pair of images

We propose the following score S to measure the similarity between a pair of im-
ages based on predicted correspondences and masks. S is the sum of weighted local
features similarities, where our predicted correspondences are used to associate fea-
tures and the weight Ms

joint is the product of the source and transported target mask
Ms

joint(i, j) = Mt(Cs→t(i, j))Ms(i, j):

S(Is, It) =
∑
i,j

Ms
joint(i, j)︸ ︷︷ ︸
Mask

cos(Fs(i, j),Ft(Cs→t(i, j)))︸ ︷︷ ︸
Feat. similarity

(4.4)

4.4.2 Experiments

Qualitative results on our different datasets can be seen in Fig. 4.3. The predicted
masks, shown with transparency, are able to capture repeated regions even in chal-
lenging cases, such as large difference of scale, viewpoints, lightening conditions
and depiction styles. More visual results are provided in the project page https:
//imagine.enpc.fr/~shenx/SegSwap/.

Art detail retrieval. We evaluate our approach on the Brueghel dataset (bru;
Shen et al., 2019) in Tab. 4.1. Our score allows us to directly retrieve images from
a selected query detail. To further compare with the detection performance in Art-
Miner (Shen et al., 2019), we crop a 320 × 320 patch around the predicted regions

https://imagine.enpc.fr/~shenx/SegSwap/
https://imagine.enpc.fr/~shenx/SegSwap/
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Table 4.2: Image-based localization on Tokyo 24/7 (Torii et al., 2015) and Pitts30k (Torii
et al., 2013). We follow Patch-NetVLAD (Hausler et al., 2021) and re-rank the top-100
images ranked by NetVLAD (Arandjelovic et al., 2016) features.

Method Supervision Tokyo 24/7 Pitts30k-test
R@1 R@5 R@10 R@1 R@5 R@10

AP-GEM (Revaud et al., 2019a; Hausler et al., 2021) Image location 40.3 55.6 65.4 75.3 89.3 92.5
DenseVLAD (Torii et al., 2015; Hausler et al., 2021) Image location 59.4 67.3 72.1 77.7 88.3 91.6
NetVLAD (Arandjelovic et al., 2016; Hausler et al., 2021) Image location 73.3 82.9 86.0 86.0 93.2 95.1
CRN (Kim et al., 2017a; Ge et al., 2020) Image location 75.2 83.8 87.3 - - -
SARE (Liu et al., 2019; Ge et al., 2020) Image location 79.7 86.7 90.5 - - -
IBL (Ge et al., 2020) Image location 85.4 91.1 93.3 - - -

Re-ranking Top-100 from NetVLAD (Arandjelovic et al., 2016; Hausler et al., 2021)
Patch-NetVLAD (Hausler et al., 2021) Image location 81.9 85.7 87.9 88.6 94.5 95.8
Patch-NetVLAD (Hausler et al., 2021) + RANSAC Image location 86.0 88.6 90.5 88.7 94.5 95.9
SuperGlue (Sarlin et al., 2020; Hausler et al., 2021)? Pose+Depth 88.2 90.2 90.2 88.7 95.1 96.4
Ours + Unsupervised segments
Transformer Segment swapping 76.5 82.9 85.4 83.5 92.9 95.3
Nc-Net Segment swapping 83.2 87.0 87.6 85.6 94.1 95.5

Ours + COCO segments (Lin et al., 2014)
Transformer Segment swapping 80.0 86.0 87.9 84.7 93.5 95.6
Nc-Net Segment swapping 85.4 88.3 89.2 86.8 94.4 95.8

? uses learnt keypoint detector Superpoint (DeTone et al., 2018)

and use ArtMiner (Shen et al., 2019) as a post-processing to obtain the bounding
box prediction. The correspondences are more accurate for the cross-image trans-
former which achieves much better results for detection. We also observe that, in this
benchmark, the performances with unsupervised segments are close to the ones using
COCO (Lin et al., 2014) instance annotations, which suggests that our approach does
not depend on human annotations. Note that the best performance of ArtMiner is
obtained with a discovery score which is expensive to compute and involves multi-
scale feature matching and RANSAC. Our approach is thus simpler, faster and more
effective.

Place recognition. In Tab. 4.2 we compare our approach to state of the art for
place recognition on the Pitts30k (Torii et al., 2013) and Tokyo 24/7 (Torii et al.,
2015) datasets. The descriptions of the datasets are in the project page. We follow
the standard evaluation protocol (Sattler et al., 2012; Gronat et al., 2013; Torii et al.,
2013; Arandjelović and Zisserman, 2014; Torii et al., 2015; Ge et al., 2020). The query
image is correctly localized if one of the top N retrieved database images is within d
= 25 meters from the ground truth TUM coordinate of the query. The recall is then
reported for N = 1, 5, 10. For Tokyo 24/7, we follow (Torii et al., 2015; Ge et al.,
2020) and perform spatial non-maximal suppression on ranked database images before
evaluation. To enable fast evaluation, we follow PatchVlad (Hausler et al., 2021) and
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(a) Retrieval results on Brueghel (bru; Shen et al., 2019). green bounding-boxes are one-shot detec-
tion results.

(b) Retrieval results on Tokyo24/7 (Torii et al., 2015).

(c) Retrieval results on Pitts30k (Torii et al., 2013).

Figure 4.3: Visual results for retrieval on different datasets. For each query image (1st
column), we show its 3 most similar images with the predicted masks as transparency. For
Brueghel (bru; Shen et al., 2019), we also show the detection results.

evaluate our score on the top-100 images given by NetVLAD (Arandjelovic et al.,
2016). Although our approach is not specifically designed for place recognition, it
achieves performances comparable to Patch-NetVLAD (Hausler et al., 2021) without
RANSAC. Note that the competing approaches either employ specific supervisions or
more complicated process such as RANSAC, while our approach is trained only with
our synthetic segment swapping data. Note that on this task where retrieving dis-
criminative repeated regions is sufficient and correspondence accuracy is not critical,
the Nc-Net architecture preforms better. Similar to the Brueghel results, leveraging
COCO (Lin et al., 2014) annotated segments leads to superior performance. Training
with unsupervised segments still leads to competitive results using the NC-Net archi-
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Table 4.3: Ablation study. We report retrieval mAP on Brueghel (bru; Shen et al., 2019)
and R@1 on Tokyo 24/7 (Torii et al., 2015) with our cross-image transformer using COCO
segments (Lin et al., 2014).

Dataset Losses Cross-image Transformer

Posson blending Style transfer Lmask Ltmask Lcorr
Brueghel Tokyo 24/7
mAP R@1

3 3 3 3 3 84.4 80.0
7 3 3 3 3 75.1 60.0
3 7 3 3 3 75.6 57.8
3 3 7 3 3 80.9 67.8
3 3 3 7 3 79.8 61.3
3 3 3 3 7 8.5 13.3

tecture. However, it gives clearly worst results using the transformer architecture on
Tokyo 24/7. We think this performance gap could be bridged using more advanced
unsupervised segments.

Ablation study. An ablation study of our approach using the cross-image trans-
former architecture is shown in Tab. 4.3 on the Brueghel (bru; Shen et al., 2019)
and Tokyo24/7 (Torii et al., 2015) datasets. We notice that: (i) Poisson blend-
ing (Pérez et al., 2003) and style transfer (Huang and Belongie, 2017) are both critical;
(ii) the three terms of the loss are necessary for good performance. More analysis
on the importance of learning correspondences for the generalization of the mask
predicition, the similarity score and the architectures are provided in the project
page https://imagine.enpc.fr/~shenx/SegSwap/.

4.5 Application to Object Discovery and Co-segmentation

4.5.1 Correspondences graph and clustering

In the spirit of (Leordeanu and Hebert, 2005), we see object discovery as a graph
clustering problem, where the vertices V of the graph G = (V , E) are correspondences
between images and the weights of the edges encodes consistency between the corre-
spondences. Let us consider a set of N images (I1, ..., IN). For every pair of images
our network predicts correspondences that we add to the set of vertices V if the as-
sociated mask value is higher than a threshold. Each vertex vi = (si, ti, x

s
i , x

t
i,mi)

https://imagine.enpc.fr/~shenx/SegSwap/
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Table 4.4: Co-segmentation on Internet (Rubinstein et al., 2013). We report pixel level
precision P and Jaccard index J

Method Airplane Car Horse Avg
P J P J P J P J

DOCS (Li et al., 2018)∗ 0.946 0.64 0.940 0.83 0.914 0.65 0.933 0.70
Sun et al. (Sun and Ponce, 2016) 0.886 0.36 0.870 0.73 0.876 0.55 0.877 0.55
Joulin et al. (Joulin et al., 2010) 0.493 0.15 0.587 0.37 0.638 0.30 0.572 0.27
Kim et al. (Kim et al., 2011) 0.802 0.08 0.689 0.00 0.751 0.06 0.754 0.05
Rubinstein et al. (Rubinstein et al., 2013) 0.880 0.56 0.854 0.64 0.828 0.52 0.827 0.43
Chen et al. (Chen et al., 2014) 0.902 0.40 0.876 0.65 0.893 0.58 0.890 0.54
Quan et al. (Quan et al., 2016) 0.910 0.56 0.885 0.67 0.893 0.58 0.896 0.60
Hati et al. (Hati et al., 2016) 0.777 0.33 0.621 0.43 0.738 0.20 0.712 0.32
Chang et al. (Chang and Wang, 2015) 0.726 0.27 0.759 0.36 0.797 0.36 0.761 0.33
Lee et al. (Lee et al., 2015) 0.528 0.36 0.647 0.42 0.701 0.39 0.625 0.39
Jerripothula et al. (Jerripothula et al., 2016) 0.905 0.61 0.880 0.71 0.883 0.61 0.889 0.64
Jerripothula et al. (Jerripothula et al., 2017) 0.818 0.48 0.847 0.69 0.813 0.50 0.826 0.56
Hsu et al. (Hsu et al., 2018) 0.936 0.66 0.914 0.79 0.876 0.59 0.909 0.68
Chen et al. (Chen et al., 2020b) 0.941 0.65 0.940 0.82 0.922 0.63 0.935 0.70
Ours + Unsupervised segments
transformer 0.941 0.66 0.919 0.79 0.887 0.57 0.916 0.67
Nc-Net 0.682 0.19 0.791 0.56 0.774 0.27 0.749 0.34

Ours + COCO segments (Lin et al., 2014)
transformer 0.941 0.67 0.928 0.82 0.916 0.60 0.928 0.70
Nc-Net 0.655 0.23 0.857 0.61 0.873 0.43 0.795 0.42

∗ learned with strong supervision (i.e., manually annotated object masks)

in the graph is thus associated to a predicted correspondence and defined by the
indices si and ti of the images it connects, the associated coordinates xsi and xti and
the predicted mask value mi. We use cycle consistency to define the weights of the
edges between the different vertices. More precisely, we only connect correspondences
which have exactly one image in common. For example, let’s assume that we have
two vertices vi and vj such that If si = sj = s and ti 6= tj. We use our network to
predict correspondence fields Cti→tj and Ctj→ti and we define the weight εi,j of the
edge between vi and vj as:

εi,j =
1

2
mimjexp(−

‖xsi − xsj‖
σ

)

(
exp(−

‖xti −Ctj→ti(xtj)‖
σ

) + exp(−
‖xtj −Cti→tj (xti)‖

σ
)

)
(4.5)

where σ is a scalar hyper-parameter. The edges are defined similarly in the cases
si = tj, ti = sj and ti = tj. More details about the way we define the graph and in
particular strategies to limit the number of vertices are given in the project page.

Given the correspondence graph, we use the spectral decomposition of its adja-
cency matrix (Ng et al., 2001; Leordeanu and Hebert, 2005) either to obtain clusters
of correspondences for object discovery, or a foreground potential for co-segmentation.
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(a) Co-segmentation results in Internet (Rubinstein et al., 2013) dataset for the Horse, Airplane and
Car categories.

(b) Examples of discovered clustered on Brueghel (bru; Shen et al., 2019).

Figure 4.4: Visual results for object discovery. We show co-segmentation results on the
Internet (Rubinstein et al., 2013) in Fig. 4.4a and some discovered clusters in Brueghel (Shen
et al., 2019; bru) in Fig. 4.4b.

For discovery we first compute Neig principal eigenvectors then performing K-means
with Kcluster clusters. For co-segmentation, we directly use the first eigenvector to
define a foreground potential. Note that because we only consider in the graph cor-
respondences with mask values higher than a threshold, the full graph is extremely
sparse that the eigen-decomposition can be efficiently computed.

4.5.2 Experiments

Object co-segmentation on Internet dataset (Rubinstein et al., 2013). We
build the correspondences graph using for each image only the correspondences in
the five most similar images according to the retrieval score of Eqn. 3.2. We then
use the principal eigen-vector of the correspondence graph to define a seed for Grab-
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Cut (Rother et al., 2004). More precisely, for every image we associate to each
position the sum of the eigen-vector values for the correspondences at this position.
Note that GrabCut (Rother et al., 2004) is crucial to achieve good performance on
this dataset, and is widely used by competing approaches such as (Rubinstein et al.,
2013; Jerripothula et al., 2016; Quan et al., 2016; Hsu et al., 2018; Chen et al., 2020b).
More details about the GrabCut (Rother et al., 2004) can be found in the project
page. We follow the standard evaluation protocol (Rubinstein et al., 2013; Chen
et al., 2020b) and report pixel-level precision P and the Jaccard index J on three
subsets: Airplane, Car, Horse. The precision P measures pixel accuracy. The Jaccard
index J is the IoU between the segmented object and ground truth object. Quan-
titative results are presented in Tab. 4.4 and qualitative results in Fig. 4.4b. Our
cross-image transformer obtains performance comparable to the state of the art un-
supervised approaches. Again, the performances using annotated COCO (Lin et al.,
2014) segments and unsupervised segments are close, which demonstrates that the
success of our approach does not come from implicitly leveraging annotated object
segmentations. Sparse Nc-Net performances are clearly worse for this task. This can
be understood by looking at qualitative results: the segmentation masks predicted
by Nc-Net tend to be more localized in discriminative regions.

Discovery on Brueghel dataset (bru; Shen et al., 2019). Images are resized
to 640 × 640, as many repeated details in Brueghel (bru; Shen et al., 2019) are small.
We also remove duplicate images and images with similar borders to focus on more
interesting repeated details.

Again, we only include in the graph the correspondences from the five most similar
images according to the retrieval score to limit the size of the graph and we perform
K-means for Kcluster = 500 clusters with Neig = 100 principal eigen vectors. The
graph has ∼900K nodes and it took 10 hours to compute predictions of all the pairs
and 2 hours to perform the eigen-decomposition and clustering. Fig. 4.4b presents
some interesting clusters that are not covered by ArtMiner (Shen et al., 2019)1. More
results and details are in the project page https://imagine.enpc.fr/~shenx/
SegSwap/.

1http://imagine.enpc.fr/~shenx/ArtMiner/visualRes/brueghel/brueghel.html

https://imagine.enpc.fr/~shenx/SegSwap/
https://imagine.enpc.fr/~shenx/SegSwap/
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4.6 Conclusion

In this chapter, we presented a “segment swapping” approach to generate pairs of im-
ages with repeated patterns from which we show it is possible to train co-segementation
and correspondence prediction networks. We evaluated two architectures, a cross-
image transformer and Sparse Nc-Net (Rocco et al., 2020). We also compared using
annotated segments in COCO (Lin et al., 2014) and segments extracted in a com-
pletely unsupervised way, which shows that our approach is not reliant on COCO (Lin
et al., 2014) object annotations. The trained models shows competitive or better per-
formance on various datasets and different tasks, including art detail retrieval, place
recognition and object discovery.



Chapter 5

Unsupervised Dense Image Alignment

In the chapter, we consider the generic problem of dense alignment between two
images, whether they be two frames of a video, two widely different views of a
scene, two paintings depicting similar content, etc. Whereas each such task is typ-
ically addressed with a domain-specific solution, we show that a simple unsuper-
vised approach performs surprisingly well across a range of tasks. Our main in-
sight is that parametric and non-parametric alignment methods have complemen-
tary strengths. We propose a two-stage process: first, a feature-based parametric
coarse alignment using one or more homographies, followed by non-parametric fine
pixel-wise alignment. Coarse alignment is performed using RANSAC on off-the-shelf
deep features. Fine alignment is learned in an unsupervised way by a deep net-
work which optimizes a standard structural similarity metric (SSIM) between the
two images, plus cycle-consistency. Despite its simplicity, our method shows com-
petitive results on a range of tasks and datasets, including unsupervised optical flow
on KITTI, dense correspondences on Hpatches, two-view geometry estimation on
YFCC100M, localization on Aachen Day-Night, and, for the first time, fine align-
ment of artworks on the Brughel dataset. Our code and data are available at
http://imagine.enpc.fr/~shenx/RANSAC-Flow/.
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(a) Optical flow estimation. (b) Visual localization.

(c) 2-view geometry estimation. (d) Dense image alignment.

(e) Artwork alignment. (f) Texture transfer.

Figure 5.1: RANSAC-Flow provides competitive results on a wide variety of tasks and
enables new challenging applications.

5.1 Introduction

Dense image alignment (also known as image registration) is one of the fundamental
vision problems underlying many standard tasks from panorama stitching to opti-
cal flow. Classic work on image alignment can be broadly placed into two camps:
parametric and non-parametric. Parametric methods assume that the two images are
related by a global parametric transformation (e.g. affine, homography, etc), and use
robust approaches, like RANSAC, to estimate this transformation. Non-parametric
methods do not make any assumptions on the type of transformation, and attempt to
directly optimize some pixel agreement metric (e.g. brightness constancy constraint in
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Figure 5.2: Overview of RANSAC-Flow. Stage 1: given a pair of images, we compute
sparse correspondences (using off-the-shelf deep features), use RANSAC to estimate a ho-
mography, and warp second image using it. Stage 2: given two coarsely aligned images,
our self-supervised fine flow network generates flow predictions in the matchable region. To
compute further homographies, we can remove matched correspondences, and iterate the
process.

optical flow and stereo). However, both approaches have flaws: parametric methods
fail (albeit gracefully) if the parametric model is only an approximation for the true
transform, while non-parametric methods have trouble dealing with large displace-
ments and large appearance changes (e.g. two photos taken at different times from
different views). It is natural, therefore, to consider a hybrid approach, combining
the benefits of parametric and non-parametric methods together.

In this chapter, we propose RANSAC-flow, a two-stage approach integrating para-
metric and non-parametric methods for generic dense image alignment. Fig. 5.2 shows
an overview. In the first stage, a classic geometry-verification method (RANSAC) is
applied to a set of feature correspondences to obtain one or more candidate coarse
alignments. Our method is agnostic to the particular choice of transformation(s) and
features, but we’ve found that using multiple homographies and off-the-shelf self-
supervised deep features works quite well. In the second non-parametric stage, we
refine the alignment by predicting a dense flow field for each of the candidate coarse
transformations. This is achieved by self-supervised training of a deep network to
optimize a standard structural similarity metric (SSIM) (Wang et al., 2004) between
the pixels of the warped and the original images, plus a cycle-consistency loss (Zhou
et al., 2016).
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Despite its simplicity, the proposed approach turns out to be surprisingly effec-
tive. The coarse alignment stage takes care of large-scale viewpoint and appearance
variations and, thanks to multiple homographies, is able to capture a piecewise-planar
approximation of the scene structure. The learned local flow estimation stage is able to
refine the alignment to the pixel level without relying on the brightness constancy as-
sumption. As a result, our method produces competitive results across a wide range of
different image alignment tasks, as shown in Fig. 5.1: (a) unsupervised optical flow es-
timation on KITTI (Menze and Geiger, 2015a) and Hpatches (Balntas et al., 2017),
(b) visual localization on Aachen Day-Night (Sattler et al., 2018), (c) 2-view ge-
ometry estimation on YFCC100M (Thomee et al., 2016), (d) dense image alignment,
and applications to (e) detail alignment in artwork and (f) texture transfer. Our code
and data are available at http://imagine.enpc.fr/~shenx/RANSAC-Flow/.

5.2 Related Work

Feature-based image alignment. The classic approach to align images with very
different appearances is to use sparse local image features, such as SIFT (Lowe, 2004),
which are designed to deal with large viewpoint and illumination differences as well as
clutter and occlusion. These features have to be used together with a geometric reg-
ularization step to discard false matches. This is typically done using RANSAC (Fis-
chler and Bolles, 1981; Raguram et al., 2012; Barath and Matas, 2018; Barath et al.,
2019) to fit a simple geometric transformation (e.g. affine or homography) (Szeliski,
2006). Recently, many works proposed to learn better local features (Luo et al., 2019;
DeTone et al., 2018; Tian et al., 2017; Mishchuk et al., 2017; Luo et al., 2018; Revaud
et al., 2019b). Differentiable and trainable version of RANSAC have also been devel-
oped (Zhang et al., 2019; Qi et al., 2017a; Plötz and Roth, 2018; Ranftl and Koltun,
2018).

Using mid-level features (Singh et al., 2012; Kim et al., 2017b, 2018, 2019) instead
of local keypoints, proved to be beneficial for matching visual content across modali-
ties, e.g. 3D models and paintings (Aubry et al., 2014). Recently, (Shen et al., 2019)
learned deep mid-level features for matching across different visual media (drawings,
oil paintings, frescoes, sketches, etc), and used them together with spatial verifica-
tion to discover copied details in a dataset of thousands of artworks. (Rocco et al.,
2017) used deep feature map correlations as input to a regression network on syn-

http://imagine.enpc.fr/~shenx/RANSAC-Flow/
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thetic image deformations to predict the parameters of an affine or thin-plate spline
deformation. Finally, transformer networks (Jaderberg et al., 2015) can also learn
parametric alignment typically as a by-product of optimizing a classification task.

Direct image alignment. Direct, or pixel-based, alignment has its roots in classic
optical flow methods, such as Lucas-Kanade (Lucas et al., 1981), who solve for a
dense flow field between a pair of images under a brightness constancy assumption.
The main drawback is these methods tend to work only for very small displacements.
This has been partially addressed with hierarchical flow estimation (Szeliski, 2006),
as well as using local features in addition to pixels to increase robustness (Brox
et al., 2009; Revaud et al., 2015; Bailer et al., 2015; Hu et al., 2016). However, all
such methods are still limited to aligning very similar images, where the brightness
constancy assumption mostly holds. SIFT-Flow (Liu et al., 2010) was an early method
that aimed at expanding optical flow-style approaches for matching pairs of images
across physically distinct, and visually different scenes (and later generalized to joint
image set alignment using cycle consistency (Zhou et al., 2015)). Some approaches
such as SCV (Cech et al., 2010) and MODS (Mishkin et al., 2015), were proposed
to grow matches around initial warping. In the deep era, (Long et al., 2014) showed
that ConvNet activation features can be used for correspondence, achieving similar
performance to SIFT-Flow. (Choy et al., 2016) proposed to learn matches with
a Correspondence Contrastive loss, producing semi-dense matches. (Rocco et al.,
2018b) introduced the idea of using 4D convolutions on the feature correlations to
learn to filter neighbour consensus. Note that these latter works target semantic
correspondences, whereas we focus on the case when all images depict the same
physical scene.

Deep Flow methods. Deep networks can be trained to predict optical flow and
to be robust to drastic appearance changes, but require adapted loss and architec-
tures. Flows can be learned in a completely supervised way using synthetic data,
e.g. in (Dosovitskiy et al., 2015; Ilg et al., 2017), but transfer to real data remains a
difficult problem. Unsupervised training through reconstruction has been proposed
in several works, targeting brightness consistency (Ahmadi and Patras, 2016; Wang
et al., 2018a), gradient consistency (Ren et al., 2017) or high SSIM (Jason et al., 2016;
Yin and Shi, 2018). This idea of learning correspondences through reconstruction has
been applied to video, reconstructing colors (Vondrick et al., 2018), predicting weights
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for frame reconstruction (Kong and Fowlkes, 2019; Lai and Xie, 2019), or directly op-
timizing feature consistency in the warped images (Wang et al., 2019). Several papers
have introduced cycle consistency as an additional supervisory signal for image align-
ment (Zhou et al., 2016; Wang et al., 2019). Recently, feature correlation became
a key part of several architectures (Ilg et al., 2017; Sun et al., 2018) aiming at pre-
dicting dense flows. Particularly relevant to us is the approach of (Melekhov et al.,
2019) which includes a feature correlation layer in a U-Net (Ronneberger et al., 2015)
architecture to improve flow resolution. A similar approach has been used in (Laskar
et al., 2020) which predicts dense correspondences. Recently, Glu-Net (Prune et al.,
2020) learns dense correspondences by investigating the combined use of global and
local correlation layers.

Hybrid parametric/non-parametric image alignment. Classic “plane + par-
allax” approaches (Sawhney, 1994; Kumar et al., 1994; Irani et al., 2002; Wulff et al.,
2017) aimed to combine parametric and non-parametric alignment by first estimat-
ing a homography (plane) and then considering the violations from that homography
(parallax). Similar ideas also appeared in stereo, e.g. model-based stereo (Debevec
et al., 1996). Recently, (Yin and Shi, 2018; Cao et al., 2019) proposed to learn op-
tical flow by jointly optimizing with depth and ego-motion for stereo videos. Our
RANSAC-Flow is also related to the methods designed for geometric multi-model
fitting, such as RPA (Magri and Fusiello, 2014), T-linkage (Magri and Fusiello, 2017)
and Progressive-X (Barath and Matas, 2019).

5.3 Method

Our two-stage RANSAC-Flow method is illustrated in Fig. 5.2. In this section, we
describe the coarse alignment stage, the fine alignment stage, and how they can be
iterated to use multiple homographies.

5.3.1 Coarse alignment by feature-based RANSAC

Our coarse parametric alignment is performed using RANSAC to fit a homography
on a set of candidate sparse correspondences between the source and target images.
We use off-the-shelf deep features (conv4 layer of a ResNet-50 network) to obtain
these correspondences. We experimented with both pre-trained ImageNet features



73

as well as features learned via MoCo self-supervision (He et al., 2020), and obtained
similar results. We found it was crucial to perform feature matching at different
scales. We fixed the aspect ratio of each image and extracted features at seven scales:
0.5, 0.6, 0.88, 1, 1.33, 1.66 and 2. Matches that were not symmetrically consistent
were discarded. The estimated homography is applied to the source image and the
result is given together with the target image as input to our fine alignment. We
report coarse-only baselines in Sec. 5.4 for both features as “ImageNet (He et al.,
2016)+H " and “MoCo (He et al., 2020)+H ".

5.3.2 Fine alignment by local flow prediction

Given a source image Is and a target image It which have already been coarsely
aligned, we want to predict a fine flow Fs→t between them. We write Fs→t as the
mapping function associated to the flow Fs→t . Since we only expect the fine alignment
to work in image regions where the homography is a good approximation of the
deformation, we predict a matchability mask Ms→t , indicating which correspondences
are valid. In the following, we first present our objective function, then how and why
we optimize it using a self-supervised deep network.

Objective function. Our goal is to find a flow that warps the source into an image
similar to the target. We formalize this by writing an objective function composed of
three parts: a reconstruction loss Lrec, a matchability loss Lm and a cycle-consistency
loss Lc. Given the pair of images(Is, It) the total loss is:

L(Is, It) = Lrec(Is, It) + λLm(Is, It) + µLc(Is, It) (5.1)

with λ and µ hyper-parameters weighting the contribution of the matchability
and cycle loss. We detail these three components in the following paragraphs. Each
loss is defined pixel-wise.

Matchability loss. Our matchability mask can be seen as pixel-wise weights for
the reconstruction and cycle-consistency losses. These losses will thus encourage the
matchability to be zero. To counteract this effect, the matchability loss encourages
the matchability mask to be close to one. Since the matchabiliy should be consistent
between images, we define the cycle-consistent matchability at position (x,y) in It,
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(x’,y’) in Is with (x, y) = Fs→t(x
′, y′) as:

M cycle
t (x, y) = Mt→s(x, y)Ms→t(x

′, y′) (5.2)

where Ms→t is the matchability predicted from source to target and Mt→s the one
predicted from target to source. M cycle

t will be high only if both the matchability
of the corresponding pixels in the source and target are high. The matchability loss
encourages this cycle-consistent matchability to be close to 1:

Lm(Is, It) =
∑

(x,y)∈It

|M cycle
t (x, y)− 1| (5.3)

Note that directly encouraging the matchability to be 1 leads to similar quantitative
results, but using the cycle consistent matchability helps to identify regions that are
not matchable in the qualitative results.

Reconstruction loss. Reconstruction is the main term of our objective and is
based on the idea that the source image warped with the predicted flow Fs→t should
be aligned to the target image It. We use the structural similarity (SSIM) (Wang
et al., 2004) as a robust similarity measure:

LSSIMrec (Is, It) =
∑

(x,y)∈It

M cycle
t (x, y) (1− SSIM (Is(x

′, y′), It(x, y))) (5.4)

Cycle consistency loss. We enforce cycle consistency of the flow for 2-cycles:

Lc(Is, It) =
∑

(x,y)∈It

M cycle
t (x, y)‖(x′, y′),Ft→s(x, y)‖2 (5.5)

Optimization with self-supervised network. Optimizing objective functions
similar to the one described above is common to most optical flow approaches. How-
ever, this is known to be an extremely difficult task because of the highly non-convex
nature of the objective which typically has many bad local minima. Recent works
on the priors implicit within deep neural network architectures (Shocher et al., 2018;
Ulyanov et al., 2018) suggest that optimizing the flow as the output of a neural net-
work might overcome these problems. Unfortunately, our objective is still too complex
to obtain good result from optimization on just a single image pair. We thus built a
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larger database of image pairs on which we optimize the neural network parameters
in a self-supervised way (i.e. without need for any annotations). The network could
then be fine-tuned on the test image pair itself, but we have found that this single-
pair optimization leads to unstable results. However, if several pairs similar to the
test pair are available (i.e. we have access to the entire test set), the network can be
fine-tuned on this test set which leads to some improvement, as can be seen in our
experiments where we systematically report our results with and without fine-tuning.

To collect image pairs for the network training, we simply sample pairs of images
representing the same scene and applied our coarse matching procedure. If it led to
enough inliers, we added the pair to our training image set, if not we discarded it. For
all the experiments, we sampled image pairs from the MegaDepth (Li and Snavely,
2018) scenes, using 20, 000 image pairs from 100 scenes for training and 500 pairs
from 30 different scenes for validation.

5.3.3 Multiple homographies

The overall procedure described so far provides good results on image pairs where
a single homography serves as a good (if not perfect) approximation of the overall
transformation (e.g. planar scenes). This is, however, not the case for many image
pairs with strong 3D effects or large objects displacements. To address this, we it-
erate our alignment algorithm to let it discover more homography candidates. At
each iteration, we remove feature correspondences that were inliers for the previous
homographies as well as from locations inside the previously predicted matchability
masks, and recompute RANSAC again. We stop the procedure when not enough
candidate correspondences remain. The full resulting flow is obtained by simply
aggregating the estimated flows from each iteration together. The number of ho-
mographies considered depends on the input image pairs. For example, the average
number of homographies we obtain from pairs for two-view geometry estimation in
the YFCC100M (Thomee et al., 2016) dataset is about five. While more complex
combinations could be considered, this simple approach provides surprisingly robust
results. In our experiments, we quantitatively validate the benefits of using these
multiple homographies (“multi-H").
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5.3.4 Architecture and implementation details

In our fine-alignment network, the input source and target images (Is, It) are first
processed separately by a fully-convolutional feature extractor which outputs two
feature maps (fs, ft). Each feature from the source image is then compared to
features in a (2K + 1) × (2K + 1) square neighbourhood in the target image using
cosine similarity, similar to (Dosovitskiy et al., 2015; Ilg et al., 2017). This results in
a W ×H × (2K + 1)2 similarity tensor s defined by:

s(i, j, (m+K + 1)(n+K + 1)) =
fs(i, j).ft(i−m, j − n)

‖fs(i, j)‖‖ft(i−m, j − n)‖
(5.6)

wherem,n ∈ [−K, ...,K] and “." denotes dot product. In all our experiments, we used
K = 3. This similarity tensor is taken as input by two fully-convolutional prediction
networks which predict flow and matchability.

Our feature extractor is similar to the Conv3 feature extractor in ResNet-18 (He
et al., 2016) but with minor modifications: the first 7× 7 convolutional kernel of the
network is replaced by a 3 × 3 kernel without stride and all the max-poolings and
strided-convolution are replaced by their anti-aliasing versions proposed in (Zhang,
2019). These changes aim at reducing the loss of spatial resolution in the network, the
output feature map being 1/8th of the resolution of the input images. The flow and
matchability prediction networks are fully convolutional networks composed of three
Conv+Relu+BN blocks (Convolution, Relu activation and Batch Normalization (Ioffe
and Szegedy, 2015)) with 512, 256, 128 filters respectively and a final convolutional
layer. The output flows and matchability are bilinearly upsampled to the resolution
of the input images. Note we tried using up-convolutions, but this slightly decreased
the performance while increasing the memory footprint.

We use Kornia (Riba et al., 2020) for homography warping. All images were
resized so that their minimum dimension is 480 pixels. The hyper-parameters of our
objective are set to λ = 0.01, µ = 1. We provide a study of λ and µ in Sec. 5.4.4.
The entire fine alignment model is learned from random initialization using the Adam
optimizer (Kingma and Ba, 2015) with a learning rate of 2e-4 and momentum terms
β1, β2 set to 0.5, 0.999. We trained only with Lrec for the first 150 epochs then added
Lc for another 50 epochs and finally trained with all the losses (Eqn. 5.1) for the final
50 epochs. We use a mini-batch size of 16 for all the experiments. The whole training
converged in approximately 30 hours using a single GPU Geforce GTX 1080 Ti for
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(a) Input (b) Predicted (c) Ground truth (d) Error map

Figure 5.3: Visual results on KITTI (Menze and Geiger, 2015a). We show the inputs,
predicted flow, ground-truth flow and the error map in (a), (b), (c) and (d) respectively.

Table 5.1: Dense correspondences evaluation on KITTI 2015 (Menze and Geiger, 2015a) and
Hpatches (Balntas et al., 2017). We report the AEE (Average Endpoint Error) and Fl-all
(Ratio of pixels where flow estimate is wrong by both 3 pixels and ≥ 5%). The computational
time for EpicFlow and FlowField is 16s and 23s respectively, while our approach takes 4s.

Method
KITTI 2015 Hpatches

Train (AEE ↓) Test (Fl-all ↓) Viewpoint (AEE ↓)
noc all noc all 1 2 3 4 5

Supervised Approaches
FlowNet2 (Ilg et al., 2017; Melekhov et al., 2019; Yin and Shi, 2018) 4.93 10.06 6.94 10.41 5.99 15.55 17.09 22.13 30.68
PWC-Net (Sun et al., 2018; Melekhov et al., 2019) - 10.35 6.12 9.60 4.43 11.44 15.47 20.17 28.30
Rocco (Rocco et al., 2017; Melekhov et al., 2019) - - - - 9.59 18.55 21.15 27.83 35.19
DGC-Net (Melekhov et al., 2019) - - - - 1.55 5.53 8.98 11.66 16.70
DGC-Nc-Net (Laskar et al., 2020) - - - - 1.24 4.25 8.21 9.71 13.35
Glu-Net (Prune et al., 2020) 6.86 9.79 - - 0.59 4.05 7.64 9.82 14.89

Weakly Supervised Approaches
ImageNet (He et al., 2016) + H 13.49 17.26 - - 1.33 3.34 3.71 6.04 10.07
Cao et al. (Cao et al., 2019) 4.19 5.13 - - - - - - -

Unsupervised Approaches
Moco (He et al., 2020) + H 13.86 17.60 - - 1.47 2.96 3.43 7.73 10.53
DeepMatching (Revaud et al., 2016; Melekhov et al., 2019) - - - - 5.84 4.63 12.43 12.17 22.55
DSTFlow (Ren et al., 2017) 6.96 16.79 - 39 - - - - -
GeoNet (Yin and Shi, 2018) 6.77 10.81 - - - - - - -
EpicFlow (Revaud et al., 2015; Yin and Shi, 2018) 4.45 9.57 16.69 26.29 - - - - -
FlowField (Bailer et al., 2015) - - 10.98 19.80 - - - - -

Moco Feature
Ours 4.15 12.63 14.60 26.16 0.52 2.13 4.83 5.13 6.36

w/o fine-tuning 4.67 13.51 - - 0.53 2.04 2.32 6.54 6.79
w/o Multi-H 7.04 14.02 - - - - - - -

ImageNet Feature
Ours 3.87 12.48 14.12 25.76 0.51 2.36 2.91 4.41 5.12

w/o fine-tuning 4.55 13.51 - - 0.51 2.37 2.64 4.49 5.16
w/o Multi-H 6.74 13.77 - - - - - - -

the 20k image pairs from the MegaDepth. For fine-tuning on the target dataset, we
used a learning rate of 2e-4 for another 10K iterations.

5.4 Experiments

In this section, we evaluate our approach in terms of resulting correspondences (Sec. 5.4.1),
downstream tasks (Sec 5.4.2), applications to texture transfer and artwork analy-
sis (Sec. 5.4.3) as well as analysis of hyper-parameters in the objective function 5.1
(Sec. 5.4.4). We provide more visual results at http://imagine.enpc.fr/~shenx/

http://imagine.enpc.fr/~shenx/RANSAC-Flow/
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Table 5.2: Sparse correspondences evaluation on RobotCar (Maddern et al., 2017; Larsson
et al., 2019) and MegaDepth (Li and Snavely, 2018). We report the accuracy over all
annotated alignments for pixel error smaller than d pixels. All the images are resized to
have minimum dimension 480 pixels.

Method
RobotCar MegaDepth

Acc(≤ d pixels ↑) Acc(≤ d pixels ↑)
1 3 5 1 3 5

ImageNet (He et al., 2016)+H 1.03 8.12 19.21 3.49 23.48 43.94
Moco (He et al., 2020)+H 1.08 8.77 20.05 3.70 25.12 45.45
SIFT-Flow (Liu et al., 2010) 1.12 8.13 16.45 8.70 12.19 13.30
NcNet (Rocco et al., 2018b)+H 0.81 7.13 16.93 1.98 14.47 32.80
DGC-Net (Melekhov et al., 2019) 1.19 9.35 20.17 3.55 20.33 34.28
Glu-Net (Prune et al., 2020) 2.16 16.77 33.38 25.2 51.0 56.8

Moco Feature
Ours 2.10 16.07 31.66 53.47 83.45 86.81

w/o Multi-H 2.06 15.77 31.05 50.65 78.34 81.59
w/o Fine-tuning 2.09 15.94 31.61 52.60 83.46 86.80

ImageNet Feature
Ours 2.10 16.09 31.80 53.15 83.34 86.74

w/o Multi-H 2.06 15.84 31.30 50.08 77.84 81.08
w/o Fine-tuning 2.09 16.00 31.90 52.80 83.31 86.64

RANSAC-Flow/.

5.4.1 Direct correspondences evaluation

Optical flow. We evaluate the quality of our dense flow on the KITTI 2015 flow (Menze
and Geiger, 2015a) and Hpatches (Balntas et al., 2017) datasets and report the results
in Table 5.1.

On KITTI (Menze and Geiger, 2015a), we evaluated both on the training and
the test set since other approaches report results on one or the other. Note we could
not perform an ablation study on the test set since the number of submissions to the
online server is strictly limited. We report results both on non-occluded (noc) and
all regions. Our results are on par with state of the art unsupervised and weakly
supervised results on non-occluded regions, outperforming for example the recent
approach (Cao et al., 2019; Prune et al., 2020). Unsurprisingly, our method is much
weaker on occluded regions since our algorithm is not designed specifically for optical
flow performances and has no reason to handle occluded regions in a good way. We
find that the largest errors are actually in occluded regions and image boundaries
(Fig. 5.3). Interestingly, our ablations show that the multiple homographies is critical

http://imagine.enpc.fr/~shenx/RANSAC-Flow/
http://imagine.enpc.fr/~shenx/RANSAC-Flow/
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(a) Source (b) Target (c) Coarse align. (d) Fine align. (e) Flows

Figure 5.4: Visual results on RobotCar (Maddern et al., 2017) (1st row), Megadepth (Li
and Snavely, 2018) (2nd row) and Hpatches (Balntas et al., 2017) (3rd row) using one
homography. We show the source and target in (a), (b). The overlapped images after
coarse and fine alignment are in (c) and (d) with zoomed details. The coarse (top) and fine
(bottom) flows are in (e).

to our results even if the input images appear quite similar.
For completeness, we also present results on the Hpatches (Balntas et al., 2017).

Note that Hpatches dataset is synthetically created by applying homographies to a set
of real images, which would suggest that our coarse alignment alone should be enough.
However, in practice, we have found that, due to the lack of feature correspondences,
adding the fine flow network significantly boosts the results compared to using only
our coarse approach. While these results show that our approach is reasonable, these
datasets only contain very similar and almost aligned pairs while the main goal of
our approach is to be able to handle challenging cases with strong viewpoint and
appearance variations.

Sparse correspondences. Dense correspondence annotations are typically not
available for extreme viewpoint and imaging condition variations. We thus eval-
uated our results on sparse correspondences available on the RobotCar (Maddern
et al., 2017; Larsson et al., 2019) and MegaDepth (Li and Snavely, 2018) datasets.
In Robotcar, we evaluated on the correspondences provided by (Larsson et al., 2019),
which leads to approximately 340M correspondences. The task is especially challeng-
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ing since the images correspond to different and challenging conditions (dawn, dusk,
night, etc.) and most of the correspondences are on texture-less region such as roads
where the reconstruction objective provides very little information. However, view-
points in RobotCar are still very similar. To test our method on pairs of images with
very different viewpoints, we used pairs of images from scenes of the MegaDepth (Li
and Snavely, 2018) dataset that we didn’t use for training and validation. Note that
no real ground truth is available and we use as reference the result of SfM reconstruc-
tions. More precisely, we take 3D points as correspondences and randomly sample 1
600 pairs of images that shared more than 30 points, which results in approximately
367K correspondences.

On both datasets, we evaluated several baselines which provide dense correspon-
dences and were designed to handle large viewpoint changes, inluding SIFT-Flow (Liu
et al., 2010), variants of NcNet (Rocco et al., 2018b), DGC-Net (Melekhov et al., 2019)
and the very recent, concurrently developed approach Glu-Net (Prune et al., 2020).
In the results provided in Tab. 5.2, we can see that our approach is comparable to Glu-
Net on RobotCar (Maddern et al., 2017; Larsson et al., 2019) but largely improves
performances on MegeDepth (Li and Snavely, 2018). We believe this is because by
the large viewpoint variations on MegeDepth is better handled by our method. This
qualitative difference between the datasets can be seen in the visual results in Fig. 5.4.
Note that we can clearly see the effect of fine flows on the zoomed details.

5.4.2 Evaluation for downstream tasks

Given the limitations of the correspondence benchmarks discussed in the previous
paragraph, and to demonstrate the practical interest of our results, we now evaluate
our correspondences on two standard geometry estimation benchmarks where many
results from competing approaches exist. Note that competing approaches typically
use only sparse matches for these tasks, and being able to perform them using dense
correspondences is a demonstration of the strength and originality of our method.

Two-view geometry estimation. Given a pair of views of the same scene, two-
view geometry estimation aims at recovering their relative pose. To validate our
approach, we follow the standard setup of (Zhang et al., 2019) evaluating on 4×1000

image pairs for 4 scenes from YFCC100M (Thomee et al., 2016) dataset and reporting
mAP for different thresholds on the angular differences between ground truth and
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Table 5.3: Two-view geometric estimation on YFCC100M (Thomee et al., 2016; Zhang et al.,
2019)

Method mAP @5◦ mAP@10◦ mAP@20◦

SIFT (Lowe, 2004) 46.83 68.03 80.58
Contextdesc (Luo et al., 2019) 47.68 69.55 84.30
Superpoint (DeTone et al., 2018) 30.50 50.83 67.85
PointCN (Moo Yi et al., 2018; Zhang et al., 2019) 47.98 - -
PointNet++ (Qi et al., 2017b; Zhang et al., 2019) 46.23 - -
N3Net (Plötz and Roth, 2018; Zhang et al., 2019) 49.13 - -
DFE (Ranftl and Koltun, 2018; Zhang et al., 2019) 49.45 - -
OANet (Zhang et al., 2019) 52.18 - -

Moco Feature
Ours 64.88 73.31 81.56

w/o multi-H 61.10 70.50 79.24
w/o fine-tuning 63.48 72.93 81.59

ImageNet Feature
Ous 62.45 70.84 78.99

w/o multi-H 59.90 68.80 77.31
w/o fine-tuning 62.10 70.78 79.07

predicted vectors for both rotation and translation as the error metric. For each
image pair, we use the flow we predict in regions with high matchability (> 0.95) to
estimate an essential matrix with RANSAC and the 5-point algorithm (Hartley and
Zisserman, 2003). To avoid correspondences in the sky, we used the pre-trained the
segmentation network provided in (Zhou et al., 2017) to remove them. While this
require some supervision, this is reasonable since most of the baselines we compare
to have been trained in a supervised way. As can be seen in Tab. 5.3, our method
outperforms all the baselines by a large margin including the recent OANet (Zhang
et al., 2019) method which is trained with ground truth calibration of cameras. Also
note that using multiple homographies consistently boosts the performance of our
method.

Once the relative pose of the cameras has been estimated, our correspondences
can be used to perform stereo reconstruction from the image pair as illustrated in
Fig. 5.1(c) and in the project webpage. Note that contrary to many stereo recon-
struction methods, we can use two very different input images.

Day-Night Visual Localization. Another task we performed is visual localiza-
tion. We evaluate on the local feature challenge of the Visual Localization bench-
mark (Sattler et al., 2018, 2012). For each of the 98 night-time images contained in
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Table 5.4: Visual Localization on Aachen night-time (Sattler et al., 2018, 2012).

Method 0.5m,2◦ 1m,5◦ 5m,10◦

Upright RootSIFT (Lowe, 2004) 36.7 54.1 72.5
DenseSfM (Sattler et al., 2018) 39.8 60.2 84.7
HAN + HN++ (Mishchuk et al., 2017; Mishkin et al., 2018) 39.8 61.2 77.6
Superpoint (DeTone et al., 2018) 42.8 57.1 75.5
DELF (Noh et al., 2017) 39.8 61.2 85.7
D2-net (Dusmanu et al., 2019) 44.9 66.3 88.8
R2D2 (Revaud et al., 2019b) 45.9 66.3 88.8

Moco Feature
Ours 44.9 68.4 88.8

w/o Multi-H 42.9 68.4 88.8
w/o Fine-tuning 41.8 68.4 88.8

ImageNet Feature
Ous 44.9 68.4 88.8

w/o Multi-H 43.9 66.3 88.8
w/o Fine-tuning 44.9 68.4 88.8

the dataset, up to 20 relevant day-time images with known camera poses are given.
We followed evaluation protocol from (Sattler et al., 2018) and first compute image
matching for a list of image pairs and then give them as input to COLMAP (Schon-
berger and Frahm, 2016) that provides a localisation estimation for the queries. To
limit the number of correspondences we use only correspondences on a sparse set of
keypoints using the Superpoint (DeTone et al., 2018). Our results are reported in
Tab. 5.4 and are on par with state of the art results.

5.4.3 Applications

One of the most exciting aspect of our approach is that it enables new applications
based on the fine alignment of historical, internet or artistic images.

Texture transfer. Our approach can be used to transfer texture between images.
In Figure 5.5 and 5.1(f) we show results using historical and modern images from the
LTLL dataset (Fernando et al., 2015). We use the pre-trained segmentation network
of (Zhou et al., 2018), and transfer the texture from the source to the target building
regions.

Internet images alignment. As visualized in Fig. 5.1(d) and Fig. 5.6, we can
align sets of internet images, similar to (Shrivastava et al., 2011). Even if our image
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(a) Source (b) Target (c) Texture transfer

Figure 5.5: Texture transfer : (a) source, (b) target and (c) texture transferred result.

(a) Source (b) Coarse align. (c) Fine align.

Figure 5.6: Aligning a group of Internet images from the Medici Fountain, similar to (Shri-
vastava et al., 2011). We show the source images (a), the average image after coarse
(b) and fine alignment (c). The GIF animation can be found in our project webpage
http://imagine.enpc.fr/~shenx/RANSAC-Flow/.

set is not precisely the same, much more details can be seen in the average of our
fine-aligned images.

Artwork analysis. Finding and matching near-duplicate patterns is an important
problem for art historians. Computationally, it is difficult because the duplicate
appearance can be very different (Shen et al., 2019). In Fig. 5.7, we show visual results
of aligning different versions of artworks from the Brueghel dataset (Shen et al., 2019)
with our coarse and fine alignment. We can clearly see that a simple homography
is not sufficient and that the fine alignment improves results by identifying complex
displacements. The fine flow can thus be used to provide insights on Brueghel’s copy
process. Indeed, we found that some artworks were copied in a spatially consistent
way, while in others, different parts of the picture were not aligned with each other.
This can be clearly seen in the flows in Fig. 5.9, which are either very regular or

http://imagine.enpc.fr/~shenx/RANSAC-Flow/
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(a) Inputs (b) W/o align. (c) Coarse align. (d) Fine align. (e) Flows

Figure 5.7: Aligning pairs of similar artworks from the Brueghel (bru): We show the pairs
in (a). The average images without alignment, after coarse and fine alignment are in (b),
(c) and (d). The coarse (top) and fine (bottom) flows are in (e).

very discontinuous. The same process can be applied to more than a single pair
of images, as illustrated in Fig. 5.1(e) and 5.8 where we align together many similar
details identified by (Shen et al., 2019). Visualizing the succession of the finely aligned
images allows to identify their differences.

5.4.4 Dependency on λ and µ

Our training has 3 stages (Sec. 5.3.4): the model was firstly learned with the recon-
struction loss Lrec then added cycle-consistent flow loss Lc and finally trained with all
the losses (Eqn. 5.1). In Tab. 5.5, we provide an analysis on the weighting parameters
λ and µ on sparse correspondences evaluation on MegaDepth (Li and Snavely, 2018)
and report the accuracy at 3 pixels. We can see the stage 2 is not very sensitive with
respect to µ (Tab. 5.5a), while the stage 3 with adding the mask loss is slightly more
sensitive (Tab. 5.5b). Note that we then use the same parameters for fine-tuning on
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(a) Source (b) (Shen et al., 2019) (c) Coarse align. (d) Fine align.

Figure 5.8: Aligning details discovered by (Shen et al., 2019): (a) sources; average from (Shen
et al., 2019) (b), with coarse (c) and fine (d) alignment; The GIF animation can be found
in our project webpage http://imagine.enpc.fr/~shenx/RANSAC-Flow/.

Table 5.5: Dependency on λ and µ, we evaluate on sparse correspondences on MegaDepth (Li
and Snavely, 2018) and report the accuracy at 3 pixels. (a) Training stage 2: dependency
on µ with λ = 0; (b) Training stage 3: dependency on λ with µ = 1 (optimal in Tab. 5.5a).

µ Acc. (≤ 3 pixels)
2 78.2
1 78.3
0.5 78.3

(a) Training stage 2: depen-
dency on µ with λ = 0.

λ Acc. (≤ 3 pixels)
0.02 83.0
0.01 83.5
0.005 80.5

(b) Training stage 3: dependency
on λ with µ = 1 (optimal in
Tab. 5.5a).

the different datasets.

http://imagine.enpc.fr/~shenx/RANSAC-Flow/
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Figure 5.9: Analyzing copy process from flow. The flow is smooth from the middle to the
right one, while it is irregular from the middle to the left one.

5.5 Conclusion

We have introduced a new unsupervised method for generic dense image alignment
which performs well on a wide range of tasks. Our main insight is to combine the
advantages of parametric and non-parametric methods in a two-stage approach and
to use multiple homography estimations as initializations for fine flow prediction. We
also demonstrated it allows new applications for artwork analysis.



Chapter 6

Conclusion

In this chapter, we summarize the main contributions of this thesis and outline some
research directions for future work.

6.1 Summary of Contributions

In this thesis, we focused on three tasks for artwork analysis: style-invariant patterns
retrieval, near-duplicated patterns discovery, and dense image alignment. We have
investigated three methods to solve these problems. The technical contributions are
detailed below.

In Chapter 3, we proposed a self-supervised feature fine-tuning strategy to ad-
dress style-invariant feature matching. Our approach consists of leveraging spatial
consistency to identify positive and negative training pairs. We optimized a standard
triplet loss on these training samples. Our approach can learn features adapted to
the training set for matching. In terms of experimental results, we showed that our
approach can match features in artworks across different styles. Our approach also
improved performance on one-shot art detail detection on (bru; Shen et al., 2019) as
well as geo-localization datasets: LTLL (Fernando et al., 2015) and Oxford (Philbin
et al., 2007).

In Chapter 4, we proposed an approach of learning co-segmentation from syn-
thetic data. To generate the training data, we blended objects to background images
using style transfer (Huang and Belongie, 2017) and Poisson blending Pérez et al.
(2003). We also designed an architecture based on transformer (Vaswani et al., 2017)
for co-segmentation. The network was learned using masks and correspondences of

87



88

the blended objects. We also validated the choices of our objective functions and the
process of the data generation using Sparse Nc-Net (Rocco et al., 2020). Our ap-
proach has been evaluated on various tasks including one-shot art detail detection on
Brueghel (Shen et al., 2019; bru) and place recognition on the Pitts30k (Torii et al.,
2013) and Tokyo 24/7 (Torii et al., 2015) datasets.

In Chapter 5, we proposed an unsupervised approach for robust dense image
alignment. Our approach is a two-stage approach:: in the first stage, we extract
multi-scale features and match them to estimate Homography transformations using
RANSAC (Fischler and Bolles, 1981); in the second stage, we designed and learned a
Convolutional Neural Network (CNN) through the optimization of a reconstruction
loss between target images and warped source images. Our approach is without any
supervision. We showed that our approach performs well on various tasks, including
standard optical flow estimation on KITTI (Menze and Geiger, 2015a), sparse corre-
spondences evaluation on RobotCar (Maddern et al., 2017; Larsson et al., 2019) and
MegaDepth (Li and Snavely, 2018), two-view geometry estimation on YFCC (Thomee
et al., 2016), and 3D reconstruction on Aachen night-time (Sattler et al., 2018, 2012)

6.2 Future Work

In this section, we analyze some future research directions that could extend the
works presented in this thesis.

Interactive annotation system incorporating unsupervised / weakly su-
pervised techniques. As presented in Chapter. 1, the main challenge of artwork
analysis is the lack of training data and the main application for object discovery is to
automatically collect datasets, it would be useful and efficient to develop annotations
tools that can use unsupervised or weakly supervised algorithms. Note that many
annotation tools have been developed and made a significant impact on scientific re-
search, representative works are VGG Image Annotator (VIA) (Dutta et al., 2016)
and LabelMe (Russell et al., 2008). However, these tools only provide a user interface
for annotators and no machine learning algorithms are involved. Another advantage
is that the task will be better defined by users. In this thesis, we focus on retrieving
or detecting near-duplicated patterns. However, for some art historians, obtaining
semantically similar patterns might be also interesting. With the system, the task
will be better defined and fit to personal interests.
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This direction seems to be too engineering as a research topic, but there indeed
exists some practical problems that are interesting for scientific research. For exam-
ple, if annotators have a fixed budget, such as labeling 10 samples per class, how to
leverage algorithms to recommend these samples to annotators. If annotators label
bounding boxes, how to find a robust and efficient way to obtain pixel-level annota-
tions. Besides, as new annotations come, how to efficiently update a model without
catastrophic forgetting (Kirkpatrick et al., 2017; Kemker et al., 2018) etc.

Learning from synthetic data and weakly supervised pairs. In Chapter 4,
we showed that it is possible to learn co-segmentation from synthetic data. Moreover,
the learned models achieved promising results on different tasks. One interesting di-
rection would be how to leverage weakly supervised pairs and synthetic data during
the training. Positive pairs, which contain repeated segments, are not complicated to
obtain. One solution has been presented in Chapter 5, which consists of leveraging
multi-scale feature matching and geometric verification. Note that this weakly super-
vised learning can be done on test sets. Then the problem is highly related to the
topic of test time fine-tuning (Sun et al., 2020).

End-to-end dense image alignment. In Chapter 5, we presented a two-stage
method for unsupervised dense image alignment. The first stage consists of using
RANSAC to estimate Homography transformations, which is not differentiable. As
future work, it would be interesting to adapt this coarse-to-fine regime such that the
overall approach is fully differentiable. As predicting matchable regions significantly
improves the accuracy of the correspondence (in Sec. 5.4.4), It might be interesting
to learn both matchable regions and optical flow end-to-end, which is different from
other works on learning optical flow. One possible solution would be designing a
proper synthetic dataset for training.
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