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AIX-MARSEILLE UNIVERSITÉ

Abstract
Doctoral School: Sciences du Mouvement Humain

On the biomechanics of the tactile perception of friction

by Laurence Willemet

When manipulating objects, humans rely on their sense of touch to perceive subtle
movements and micro slippages. This synergy between sensations and motion
permits them to manipulate an impressive range of objects of different sizes,
shapes, and surface properties. This incredible dexterity relies on fast and
unconscious adjustments of the grip force by placing a 20% safety margin before
slip that holds an object strong enough to avoid a catastrophic fall yet gentle
enough not to damage it. In addition to being accurate, this regulation is swift: only
a hundred milliseconds after first making contact, grip forces are already adjusted
by taking into account the actual frictional strength of the contact. This astonishing
performance is owed to the sense of touch, which informs on the physical
properties of the surrounding world and contact state. Within the fingertip,
thousands of mechanoreceptors convert the complex mechanical interaction into
action potentials. However, how the brain copes with large amounts of data to infer
the state of the contact is still debated.

This thesis covers how the cutaneous tactile afferent made it possible for a swift
and precise regulation of the grip. Firstly, I show that humans can assess friction
without slippage, suggesting that the radial stretch of the skin can provide enough
information to regulate grip at the contact initialization. Secondly, I show that the
perceptual system uses a compact code to estimate the safety margin from the skin
deformation during an incipient slip, suggesting a mechanism to explain the rapid
reactions. Finally, I expose a new model based on contact mechanics to quantify the
sensitivity of the mechanoreceptors to the patterns of skin deformation highlighted
in the first two chapters. This model also correlates the spatial and temporal
detection threshold to detect a moving stimulus, suggesting a persistence of touch
that bridges discrete sensations into a continuous stimulus.

Taken together, these results reveal how the perception of friction is encoded in
the spatio-temporal deformation of the skin. The findings are useful for designing
bio-inspired tactile sensors for robotics or prosthetics and for improving haptic
human-machine interactions.

HTTP://WWW.UNIVERSITY.COM
https://ecole-doctorale-463.univ-amu.fr
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Résumé
Lorsque nous manipulons des objets, nous nous fions à notre sens du toucher pour
percevoir les mouvements subtils et les micro glissements. Cette synergie entre
sensations et mouvement nous permet de manipuler une grande variété d’objets de
différentes tailles, formes ou matériaux. Cette remarquable dextérité repose sur une
régulation rapide et inconsciente de notre force de préhension, en maintenant une
marge de sécurité avant glissement de 20% nous permettant ainsi de serrer l’objet
suffisamment fort pour éviter une perte d’adhérence mais suffisamment
délicatement pour ne pas l’endommager. En plus d’être précise, cette régulation est
très rapide : après seulement une centaine de millisecondes après l’initialisation du
contact, la force de préhension est déjà ajustée en fonction du frottement disponible
à l’interface. Nous devons cette performance hors-du-commun au sens du toucher
qui nous informe sur les propriétés physiques du monde qui nous entoure ainsi
que de l’état de contact. Le doigt humain est équipé de milliers de
mécanorécepteurs qui convertissent l’interaction mécanique complexe en potentiels
d’actions. Cependant, comment le cerveau reconstruit l’état de contact à partir de
ce volume considérable de données, continue à faire débat.

Cette thèse explore comment les afférents tactiles cutanés rendent possible une
régulation rapide et précise de la force de préhension. Tout d’abord, une expérience
psychophysique a permis de montrer que les humains étaient capables d’apprécier
le frottement à l’interface sans glissement, indiquant qu’une expansion radiale de la
peau peut apporter suffisamment d’informations pour réguler la force de
préhension à l’initialisation du contact. Dans un second temps, je propose un
encodage compact qui pourrait être utilisé par le système perceptuel pour estimer
la safety margin à partir de la déformation de la peau lors d’un glissement partiel,
suggérant un mécanisme pour expliquer nos promptes réactions. Enfin, j’expose un
nouveau modèle basé sur la mécanique du contact pour quantifier la sensibilité des
mécanorécepteurs aux motifs de déformation mis en évidence dans les deux
premières parties. Ce modèle corrobore également avec les seuils de détection
spatial et temporel, évoquant la présence d’une persistance tactile comblant un
signal discret en stimulus continu.

Dans leur ensemble, ces travaux révèlent l’encodage de la perception du
frottement dans la déformation spatio-temporelle de la peau. Ces résultats
pourront être utiles pour le design de capteurs tactiles bio-inspirés pour la
robotique ou les prothèses. Ils ont également vocation à améliorer les interactions
haptiques homme-machine.
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1.1 Problem statement

THE sense of touch is so familiar we cannot imagine living without it. Right
now you have my thesis manuscript in your hand, you are probably holding it

without thinking about how much grip force you have to apply to keep it from
slipping, even with your eyes closed. On the other hand, you have probably
already experienced, on a snowy winter night, going back home and dreaming
about getting warm by the fire, only to meet the difficult task of putting the key in
the lock of your door with numb fingers. Indeed, when your finger is exposed to
low temperature, cutaneous feedback is impaired and despite a perfectly
functioning motor system, precision manipulation can become challenging. Both of
these examples from our daily life show how valuable your sense of touch is.
Holding and manipulating are instinctive mechanisms, much simpler than playing
chess, however, there are barely understood in humans and almost never
embedded in robotic grippers without involving a huge amount of data. Where the
robots are now capable of defeating human in chess play, they still cannot play
chess because of manipulation complexity.

Robots today rely mostly on vision systems to perform tasks. Developing robots
that safely interact with humans is becoming a necessity in the field of rehabilitation,
assistive robotics, industrial fine manipulation, and to study human behavior. To
meet this tremendous challenge, future robots cannot rely only on vision, they have
to be equipped with other modalities such as touch to perceive their surrounding
environment. Objects possess plenty of global and local properties such as weight,
texture, and slipperiness that can only be perceived through touch and are hardly
accessible by vision.
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Biology can serve as an inspiration for the development of these robotics
systems. Even if research on the human touch is lagging that of the visual sense,
studying the fantastic dexterity of the human hand can serve as inspiration for
robotic systems in the years to come. The mechanical interaction with our
environment is captured by our brain to produce the proper motor commands for a
good force coordination. Now, imagine that you are not holding my thesis
manuscript but an egg (I hope you will manipulate it with the same care). At the
very moment you enter in contact with the egg surface, the mechanical deformation
of your skin and the resistance opposed to your limb inform the central nervous
system about the contact attributes, such as its texture, its curvature and its
slipperiness. If you feel the surface as slippery, you will increase your grip force to
avoid it from slipping out of your hand. Conversely, if the surface provides more
grip, you will relax the squeezing force to avoid potential damages. This delicate
balance relies on tactile cues and comes as a result of a reliable transduction of
friction [238, 8].

But amongst all the surface attributes that the human sensorimotor has to factor
in to decide the grasping force, friction is arguably the most important. So much so
that in our daily lives, we sometimes purposefully increase friction to successfully
perform these tasks. For example, to turn the page of this thesis, it would be easier
if you moistened your finger before, water increasing considerably the friction at
the interface. Friction is often defined in the case where two solids are sliding in
contact, as the resistance opposed to relative sliding between them. However,
friction also exists in static since the opposite resulting forces can be caused by
adhesion, surface roughness, and deformation and depend both on the
biomechanics and on the materials. Successful evaluation of the frictional
information at the interface between our skin and an object is responsible for
human performance in stable grasp.

The perception of friction is a central aspect of human and robotic grasping, yet
the cutaneous deformation that leads to an estimation of the frictional property of a
surface remains largely unknown. This thesis addresses two fundamental questions
about our innate sense of friction:

• How do frictional properties of a surface influence skin deformation? A
short mechanical interaction between our finger and an object allows us to
extract contact information. When the finger is sliding relatively to the object,
particular strain patterns of the skin are involved to decode the frictional
properties of the object in order to adjust the grip force. This force adjustment
occurs before the object starts to be lifted [107], which means that this strain
patterns appear well before a net tangential force develops.

• How do mechanoreceptors embedded deeper in the skin capture these
rapid interactions? Skin mechanoreceptors are located deep in the skin
tissue. The skin, being a soft viscoelastic material, acts as a mechanical filter
that is both spatial and temporal. This filter limits our perception of
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mechanical events and causes many tactile illusions. In particular, typical
strains pattern of skin surface induced by frictional changes can be altered at
the depth of the mechanoreceptors.

Solving these two questions would help understanding the main contribution of
skin mechanics to detect friction and incipient slippage, ensuring a stable grasp. It
could help, in a near future, to mimic human performance in robotic grippers.

1.2 Thesis overview

This thesis is organized as follows:
Chapter 2 provides a literature review of human touch, from their interaction

with objects to the action of their hand. First, I present the mechanical structures and
properties of skin tissue and how they can be modeled. Then, I detail the principles
of mechanotransduction to understand which kind of signals are transmitted to the
Central Nervous System (CNS). In the following section, I review how these signals
are shaped to produce actual percepts in terms of sensibility to pressure, localization,
and temporality. Finally, I present the control loop which allows us to adjust the grip
force for a proper manipulation.

Chapter 3 describes a computationally efficient mechanical model able to
capture large deformation of the skin, its viscoelastic behavior using Kelvin-Voigt
material and the local elastoplastic frictional interaction at the interface. The model
is purposefully made as parsimonious as possible, while balancing the accurate
representation of the influence of friction on the skin deformation. It is constructed
with a bottom-up approach, using as few parameters as possible to match the
observed static and dynamic behavior during exploration.

Chapter 4 elucidates the effects of the frictional properties of objects during
initial contact before slippage occurs. This chapter highlights a correlation between
participants’ conscious perception of frictional properties and stereotypical patterns
of skin deformation, validated by the model explained in the previous chapter. This
correlation provides insights into the tactile cues made available by contact
mechanics to the sensorimotor regulation of grip, as well as to the conscious
perception of the frictional properties of an object.

Chapter 5 pictures how the skin deforms when the finger slips on surfaces with
varying friction coefficient. In this chapter, we show a compact lexicon of skin
deformation modes able to encode the information of safety margin along the
slippage with 85% of accuracy.

Chapter 6 predicts the strains the mechanoreceptors (buried inside the skin
layers) are subjected to when the finger is pressing or sliding on a surface. The skin
is a viscoelastic medium which acts as a mechanical filter for the stress applied on
the surface. This filtering process can be responsible for the tactile persistency
illusion, already well-known in vision.



4 Chapter 1. Introduction

Chapter 7 concludes and discusses the main contributions of this thesis. In this
chapter, I also identify future research questions arising from the contributions and
their limitations.
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—————————————
Preface to Chapter 2
—————————————

HUMAN sense of touch provides a wealth of information about the contact
condition and the properties of the object being manipulated, such as its

material, curvature and frictional capacity at the interface. An accurate estimation
of these properties is crucial for a good object manipulation. This chapter reviews
the literature from the very interaction of the finger skin to the active hand motion
for a stable grasping. It is divided into four sections:

1. How do humans interact? This section describes hand’s anatomy, mechanics
and skin structure. At the end, a review of the mechanical models of skin
tissues are also presented.

2. How do humans sense? Tactile sensing system relies on
mechano-transduction ensured by thousands of mechanoreceptors. These
afferents are converting mechanical touch to processable tactile signals by the
central nervous system.

3. How do humans perceive? Once a skin deformation is sensed, i.e. sent to the
brain via the nerves, the central nervous system is responsible for extracting
information about objects or contact from the raw signals.

4. How do humans manipulate? This section details the control of grasping and
manipulation tasks using the contact information extracted from the tactile
signals as feedback.

2.1 How do humans interact: Bio-tribology of skin

Tribology comes from the greek tribos and means rubbing. The science of tribology
studies friction, wear, lubrication and how surfaces are interacting in relative
motion in general. As the human skin is always one of the interacting surfaces
when manipulating, this section explores first the anatomical structure of the
fingertip and how its biomechanical properties naturally arise from its anatomy.

2.1.1 Finger anatomy

The skin is the largest organ of our body. Its surface approximates 1.5 to 2 m2 in
adults and its weight can reach 3.5 to 4 kg, which represents 16% of the total body
weight of an adult. Skin can be considered as a membrane and its thickness varies
between 2 mm and 4 mm according to body locations [239]. The skin is
simultaneously impermeable to protect us against the external aggression as light
or microbe and permeable to interact with the environment [112].

There are two kinds of human skin: hairy skin characterized by hair follicles and
glabrous (hairless) skin found on the palms of the hands and on the soles of the feet.
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The glabrous skin is relatively rigid and thicker than the hairy skin, which is thin
and soft [112]. Skin structure is a complex superposition of layers, including the
epidermis, the dermis and the hypodermis, from surface to depth. The thickness
of these layers can range from 100 µm to few millimeters depending on anatomic
locations, subjects, gender and age. Each cutaneous layer is composed of different
type of cells. The structural differences of these layers make them specialized for
different functions.

Epidermis

The epidermis is the uppermost layer of the skin. It is almost totally impermeable for
two reasons: keeping water inside the body and acting as a barrier to viruses. The
epidermis is not smooth but instead folds into epidermal ridges and valleys forming
the fingerprints. The periodicity of these ridges is approximately 400 µm. This layer
is 0.1 mm thick on average, even if it varies from 0.04 mm at the eyelids to 1.6 mm at
finger palm. Corcuff [43] obtained µm-precision measure via Confocal Microscopy,
and the thickness of the epidermis on the human forearm has been measured to
36 µm with this method.

The epidermis is constituted of four layers of cells, called keratinocytes, stacked
on top of each other. The cells of the basal layer migrate gradually from towards
the surface, uptaking of keratin. Once they arrived at the surface, these cells are
eliminated by washing or rubbing clothing.

Stratum corneum

The superficial layer of the epidermis, called stratum corneum, is only 15 to 20 µm
thick [178]. It contains mainly water, which is responsible for its flexibility [241, 136].
Dry stratum corneum has an elastic modulus of about 1 GPa, but this value can
be reduced by approximately four orders of magnitude when it is saturated with
water [64]. The stratum corneum is also very fragile and can lead to infection when
it is damaged.

Dermis

Just below the epidermis, the dermis is the thickest layer of the skin. Its thickness
can be measured using ultrasound method. Interval between two echos provides
information about tissue inhomogeneities and can thus give a measure of the dermal
and epidermal thickness with a precision of 0.1 mm. This method results in thickness
for the dermis and the epidermis of 0.55± 0.88 mm on the forearm, depending on
age and sex [69].

The interface between epidermis and dermis shows some micro-waves or
papillae. It is made of cells called fibroblasts surrounded by an extra-cell matrix,
blood vessels and nerve endings. The fibroblasts produce permanently collagen
fibers and elastic fibers (elastin). These fibers are embedded in a fluid extracellular
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matrix, called the ground substance, which makes 20% of the dry weight. Collagen
fibers are the main constituent of the dermis (70% of the dry weight) and form an
irregular network of wavy coiled bundles. Collagen is characterized by high
strength (tensile strength of 1.5-3.5 MPa), low extensibility (rupture at strains in the
order of 5-6%), and high stiffness (Young’s modulus approximately 0.1 GPa to
1 GPa [150]). The width of the bundles is 1-40 µm. Elastin fibers are the second
main component of the dermis (4% of the dry weight). They are extremely elastic
compared to collagen and show reversible strains of more than 100% [84]. Their
diameter ranges between 0.5 and 3 µm. Collagen and elastin enable to take into
account the possible impact of stresses or strains while ensuring resistance and
elasticity to the skin (see section 2.1.2).

Hypodermis

Also known as subcutaneous tissue, the hypodermis is mainly composed of adipose
cells. This layer [60] is 1.1 mm thick on average and constitutes about 10% of the
body mass. Its role is to connect bones and muscles with the dermis.

Nail

The finger nail can be used as tools, weapons or for body care [74]. Thus, it has to
be hard but flexible and not too brittle. This hardness is controlled by skin
moisture [72]. The finger nail, principally composed of keratin, is linked to the
distal phalanx via two ligaments [148].

bone
nail bed

adipose tissue finger pulp

collagen
fibers

elastin
fibers

dermis

epidermis

FIGURE 2.1: Mechanical representation of the sagittal section of the fingertip

2.1.2 Mechanical properties of skin

Non-linear elasticity

Human skin in vivo is known as a complex mechanical material: non-linear,
viscoelastic, non-homogeneous, anisotropic and with hysteresis. The mechanical
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properties are intimately associated with its complex structure [173]. The dermis is
assumed to be the principal structure contributing to the mechanical properties of
the skin [60, 236], because of its significant stiffness and its high content of collagen
fibers.

The fingertip can be geometrically approximated to a hemisphere, however, it
does not obey the Hertzian theory of contact during indentation. Dynamic loading
properties affect the mechanical response of the fingertip [172, 158]. The relation
between force indentation and displacement of the finger pulp, called the
stress-strain relationship, can be split into 3 stages as represented on the
Figure 2.2 [200, 96]. In the first stage, for small strains, the relationship is linear with
a Young’s modulus of 5 kPa on average. This initial low stiffness can be attributed
to the elastin network in the dermis [164] and is responsible for the deformability of
the fingertip even at small loads. With a 1 N normal force, the indentation depth
already reaches 1 mm [172]. In the second stage, for strain greater than 0.3, the
collagen fibers begin to align and straighten in the direction of the applied load.
They are involved gradually stretch instead of the elastin fibers, resulting in a
non-linear exponential stress relationship. As a result, the skin becomes stiffer and
the resulting force increases rapidly with indentation. Finally, in the third stage, for
large strains, all collagen fibers are stretched, so further extension of the skin
requires extension of the collagen fiber. The stress-strain behavior appears as a
straight line again. The slope is steeper, which means that skin becomes more stiff.
It has been shown that this high stiffness is similar to that of pure collagen [201].

Even if the structure of the dermis is the principal cause of this non-linearity,
some authors also recognize the influence of the stratum corneum [52] and the
epidermis. As a matter of fact, skin is on average three times stiffer along the ridges
than across them [225]. As a result, fingertip skin can sustain a relative deformation
of 100% in stretching or shearing without any damage, while preserving its
strength along the ridges. Nonetheless, Delhaye et al. [56] highlighted a
realignment of the fingerprints perpendicularly to the tangential loading direction
during sliding, suggesting that fingerprints shape how the skin deforms under a
tangential traction.

Viscosity

Viscoelastic behavior of skin tissues has been evaluated in few studies [171, 159]
and was found to be highly non-linear [225, 124]. Viscoelastic effects are noticeable
during stage II and stage III, in which the collagen fibers are carrying part of the
load. A removal of the ground substance of the dermis induces a decrease in stress
level, stiffness and relaxation [153]. Thus, the ground substance is probably
responsible for this viscoelastic behavior. More precisely, the time-dependent
behavior of the skin can be attributed to the movement of the collagen network in
the ground substance [236]. Fibers exhibit viscous resistance while moving through
the ground substance to align in the direction of the load.
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FIGURE 2.2: A. Non-linear stress-strain relation for human skin under a
tension test. B. Equivalent model characterized by three parameters: E1, E2
and ε. (from [96])

Skin also exhibits the two main properties of viscoelastic materials: adhesion
and hysteresis. Adhesion occurs when skin surface asperities form a bond, creating
a sticky contact. Hysteresis is the energy lost within the tissue between loading and
unloading. It could be characterized by the delayed responses of a material to the
forces acting on it. These mechanisms will cause a relaxation behavior characteristic
of viscoelastic materials [114].

Pre-tension

The human skin is normally in a state of tension all along our lives. This tension
varies from body region in order to regulate extracellular matrix metabolism
through mechanochemical transduction [201]. In vivo tension ranges widely from
1.7 N/m to 138 N/m [101, 76, 61]. This value gives us an indication of the
stress-free configuration of the soft tissue.

Young’s modulus

The non-linear domain of the stress-strain curve occurs at stress levels which are not
normally encountered by in vivo skin for more than very short time periods [49].
Thus, the elasticity of the skin (Young’s modulus) is given by the ratio of stress over
strain in the first stage, when the strain experienced by the skin is less than 0.3. The
Young’s modulus can be measured thanks to a variety of methods: compression or
indentation tests, torsion tests, tensile tests and suction tests.

Indentation test determine the skin behavior under compressive loading. This
method is mostly used to measure the elastic limit and compressive strength.
Young’s modulus can then be calculated using Hertz theory of contact (2.1).

d =
P(1− ν2)

2R · E (2.1)
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where P is the applied load, d the resulting deformation, ν the Poisson’s ratio and
R the indenter radius. Bader and Bowker [9] used this method to obtain a Young’s
modulus of 1.1± 1.4 kPa depending on age and sex.

In a torsion test, a torque is applied by a disc attached to the skin. This test
can provide global mechanical properties as Young’s modulus. With this test, the
Young’s modulus ranges from 0.02 to 1.32 MPa depending on age [185, 5, 69].

Tensile test determine the skin behavior under axial tensile loading. The skin is
loaded parallel to its surface [146]. Across the tibia, a maximum Young’s modulus of
4 MPa was measured for strain lower than 0.3 and along the tibia, maximum Young’s
modulus can reach 20 MPa.

Suction test measure skin deformation caused by the application of a partial
vacuum via optical or ultrasound system. In the linear part of the stress-strain
relationship, skin elevates of 0.1 to 0.6 mm, which corresponds to a Young’s
modulus of 0.13-0.26 MPa [10, 60].

The dermis is known as the main contributor but as intimate connections exist
between skin layers, it is hard to isolate the contribution of the dermis from that of
the epidermis and the subcutaneous tissues. The table 2.1 summarizes the Young’s
moduli measured in vitro for each of the four skin layers.

Thickness [µm] Young’s modulus [MPa]
Stratum corneum 15-20 [42, 178] 13− 175 [241]

Epidermis 36 [43] 0.75± 2.4 [46, 79]
Dermis 0.80-0.87 103 [60] 0.035-0.075 [136, 165]

Hypodermis 1.1-1.2 103 [60] 0.002-0.008 [136, 165]

TABLE 2.1: Thickness and Young’s moduli of the four skin layers. Note
that the values gathered in this table are average across a large population
of subjects but skin thickness and elasticity vary considerably between
individuals.

The measured Young’s moduli is presenting a lot of variability coming from
many factors: the nature of the experimental techniques, but also skin
thickness [54], skin humidity, age, sex and regions of body [5, 136].

Poisson’s ratio

The Poisson’s ratio has only been measured in vitro for a cow teat and varies from
0.5 to 1.3 depending on the direction [132]. However, many studies assume the
Poisson’s ratio of human skin to be approximately equal to 0.48-0.5 [136].

2.1.3 Frictional properties of the skin

Friction is the resistance opposed to relative sliding between two objects in contact.
It is described by the friction coefficient µ, which is the ratio between the tangential
(Ft) and the normal component (Fn) of the interacting force according to Amontons’
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law:
Ft = µFn (2.2)

The value varies from 0 for the most slippery material as silk to 1 for the surface with
more adherence as sandpaper. Previous studies of friction have shown that static
coefficient of friction µs is both material and system dependent. It can vary with
normal load, sliding velocity, apparent contact area and also some environmental
factors [1, 170]. Dynamic coefficient of friction µd can be estimated when the finger
is sliding on the surface.

As skin presents a viscoelastic behavior as shown in section 2.1.2, it is subjected
to the law of adhesion and hysteresis. These two phenomenons imply a higher
frictional force than require breaking contact. Indeed, the junctions created because
of adhesion have to be sheared, and a larger force is required to compensate the
energy loss because of hysteresis.

Friction is more important during a distal-proximal exploration while during
an exploration in the ulnar and distal direction, the friction would be reduced [38].
This privileged direction is probably imposed by the fingerprints, even if their role
is still controversial and minor [228]. On the other hand, fingerprints are believed
to reinforce friction and adhesion [188] because the papillary ridges, mirror of the
fingerprint ridges, act as a lever that amplifies the mechanical stress [33].

How to measure the frictional strength

The frictional strength is defined as the lateral force at which the finger starts sliding.
At a macroscopic scale, the frictional strength of a contact is typically found from the
lateral force at which relative motion occurs [14]. But even when no tangential force
is exerted, this frictional strength is present, since the intimate contact of skin on the
surface holds a potential for adhesion. At the microscopic scale, the contact between
the skin and an atomically-flat surface is made by a collection of individual junctions
of a micrometer-scale area. The sum of the areas of all junctions constitutes the real
area of contact [174]. An increase in normal force will create more junctions, each
of which will have a larger area. Each of these junctions can carry a certain amount
of shear stress τ0 before local sliding can occur, and therefore the friction force can
be found to be linearly related to the real area of contact such that F = τAR, where
AR is the real area of contact. This linear dependence is observed for a large set of
materials, including rubbery and biological materials [12, 234].

τ is the interfacial shear strength of the contact, which arises from the dissipated
energy from the rupture of molecular junctions at the sliding interface. Hence, this
coefficient depends on the mean contact pressure W

AR as follows [28]:

τ = τ0 + α
W
AR (2.3)

W is the contact pressure and τ0 is estimated when W = 0. τ0 and α vary with
contact pressure and skin hydration [170]. When W = 5 N, τ0 has been estimated
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to 5.6 kPa and α = 0.8 ± 0.1 [7]. Consequently, the frictional force is given by a
two-term relation:

F = τ0AR + αW (2.4)

Thus, a powerful method to estimate the frictional resistance of a contact, even
before the fingertip starts sliding, is to measure an approximation of the real contact
area directly. An accurate measurement of the real area of contact can be found by
optical means in the case of biological materials such as glabrous skin. As a
testament of their efficacy, the real area of contact reported by these methods
correlates with friction force, confirming the adhesive theory of friction even in the
case of soft materials [234, 183].

The real contact area made by the collection of asperities is only a fraction of the
size of the apparent contact area that encompasses the entire contact [27].
Consequently, to measure the real area of contact of the finger on a glass surface,
ellipsoid fitting cannot be used, instead we must find a way to count the individual
asperities in intimate contact. For randomly rough surfaces, the asperities form a
self-similar pattern, where the general structure of the contact is found at different
levels of magnification [174]. Because of the fractal nature of this surface, the real
contact area made by rough surfaces depends on the magnification level, in the
same way that the length of the coast of Britain depends on the size of the
measurement quanta [145]. For a given spatial resolution, each pixel essentially
aggregates the complex fractal pattern. Therefore, using the optical measurement, a
value of the real area can only be found at a given length-scale, which is set by the
optical setup.

Simply looking through the glass plate at the contact region does not allow for
discriminating the intimate contact to the rest of the picture. Some methods take
the advantage of the reflection property of glass and absorption property of skin to
achieve high contrast between the regions where the skin asperities are in intimate
contact and the regions where the skin is further away from the plate.

The two methods reported in the literature that can achieve a separation of the
asperities from the background use the principle of frustrated reflection. When
light is incident on the interface of two media, it is partly transmitted into the
second medium and partly reflected back to the first one. If the angle of incidence
of the light beam exceeds a critical angle, the light beam is totally reflected back in
the first medium and does not propagate into the second one, called total internal
reflection [90]. However, there must be some light penetrating into the second
medium because the electric and magnetic fields cannot be discontinuous at the
interface. The amount of light entering this way into the second medium falls off
exponentially with penetration depth. Thus, if a third medium is placed at a
distance from the first medium in the order of magnitude of the light wavelength,
the incident light can then be transmitted to the third medium. This phenomenon is
called frustrated internal reflection. This principle allows imaging the asperities of
the fingertip interacting with a transparent glass plate, the thin air gap between the
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fingertip and the glass plate playing the role of the second medium.
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FIGURE 2.3: Finger skin imaging. A. Frustrated total internal reflection
method. B. Coaxial method. C. Dark-field light illumination.

The incident light ray can be reflected, either totally in the case of a total internal
reflection [7, 234, 24, 63], or partially in the case of an orthogonal reflection [213, 123,
55, 183] at the interface, enabling two different configurations:

• Frustrated total internal reflection (FTIR) is based on the evanescent wave
phenomenon and is illustrated Figure 2.3A. It can be achieved by capturing
the reflected image through a prism [7] or by collecting the scattered image of
light trapped inside a plate [234]. When the incident beam is at a shallow
angle with the surface, the glass plate is illuminated sideways and acts as a
light trap. Asperities of the fingertip close to the glass up to a few hundred
nanometers scatter the light out of the glass. This configuration has the
advantage of being compact, however, it produces images with fuzzy contour
of the contact.

• The coaxial method leverages an illumination exactly perpendicular to the
surface using a half-mirror (Figure 2.3B). Images have a sharper contour than
the FTIR method, but less contrasted because of a lesser amount of light
reflected back to the imager.

When the asperities of the skin couple with the transmitted wave field, the
reflected light is absorbed and scattered. This scattering creates darker regions in
the reflected image and provides a highly contrasted image of the individual
asperities in intimate contact. The reflected image highlighting the region where no
asperities are in contact and darkening the region of intimate contact can be
sampled with a camera. During this process, the number of photons collected on
each pixel is inversely correlated to the number of asperities present in the region
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imaged by the pixel. If the exposure of the camera is fixed, the brightness field
corresponds to an inverse image of the density of junctions resolved at a length
scale comparable to the half-wavelength of light. Darker areas represent a higher
density of asperities in intimate contact.

To capture this reflected image, the camera sensor discretizes the number of
photons collected during the exposure. The darker areas receive fewer photons and
lead to a lower value of the pixels. Conversely, the areas that do not face any finger
asperities receive the maximum number of photons per unit area. Therefore, the
exposure can be set such that this maximum number of photons induces a value of
the pixel that reaches the top of the dynamic range.

From the high-contrast image, it is possible to recover a value that is proportional
to the area of real contact at half-wavelength of light lengthscale. First, consider
the image without a fingertip, which might have a non-uniform illumination. The
resulting background image I0 corresponds to the dynamic range of each pixel. To
normalize the illumination on every subsequent image of the contact I f , a pixel-to-
pixel division of the image by the background image can be used. Once this is done,
the normalized image must be inverted to find the estimate of the light absorbed by
the contact Ia such that:

Ia = 1− I f /I0 (2.5)

The contact area is therefore found by summing the brightness of every pixel of the
absorption image Ia.

The absorbed-light method provides a granular measurement of the fractal real
contact area, with a theoretical resolution at the wavelength of the incident light,
which is in the order of 300 nm. The resolution is orders of magnitude better than
a simple thresholding and pixel-counting procedure, used in [64, 183] for instance.
The reason is that thresholding places the effective resolution at the size of a pixel,
which is in the order of tens of micrometers. Finally, the optical estimation of the real
area of contact AO is calibrated using a measurement of the apparent area of contact,
AA, expressed in mm, knowing that the real and apparent area are identical in the
hypothetical case that the contact is total.

Both previous methods allow a visualization of the intimate contact but when
friction is reduced, the center of the contact experienced ultrasonic levitation,
creating those white regions where asperities were not in intimate contact
(Figure 2.3A,B). Because of these white regions where no contact occurs, it is not
possible to compute the skin deformation by tracking points of interest in the
non-contacting region because of ultrasonic levitation. To reconstruct the skin
deformation in the whole contact area, a dark-field light illumination can be used
(Figure 2.3C). In this method, the light illuminates the fingerprints at a shallow
angle of 20◦, allowing a visualization of the skin asperities even before entering in
intimate contact with the plate.
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2.1.4 Mechanical models of skin tissue

Modeling the skin tissue have many applications in drug delivery, vaccines and in
cosmetic, and it can also be very useful to plan surgical incisions. The fields of
tactile interface will also benefit from an accurate model of skin to design suitable
stimuli [192, 99]. A fast and robust modeling of skin deformation can also serve to
control robotic sensor and prostheses. Last but not least, it could allow a better
understanding of how the mechanics of our finger contribute to human ability to
touch and grasp. Modeling the interaction of a deformable object has already been
a subject of numerous researches, which will be reviewed in this section.

Quasi-static model

Computational models of quasi-static deformation can be classified in two main
categories: macroscopic and structural models. These both categories depends on
the application.

In the macroscopic approach, skin is modeled as a homogeneous material,
ignoring the layers and their mechanical properties. The aim of these models is to
capture the macroscopic behavior, with mathematical relations describing the
relationships between the applied loads and the resulting deformation under
strictly normal loading. The simplest one is the linear-elastic model, as proposed by
Hooke’s law. It predicts the deformation of a fingertip in contact with a flat or a
curved surface with a reasonable accuracy. Some studies modeled the skin as a
bi-linear elastic material, based on the assumption that stress-strain relationship
follows a Hooke’s law with a Young’s modulus E1 for strain lower than εeq and E2

for strain higher than εeq (see Figure 2.2B).
Knowing the interfacial pressure p(x) and traction q(x) distribution on skin

surface, the model of Boussinesq & Cerruti [34, 26, 208] can be applied to
reconstruct the stresses deep in the skin layers:
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FIGURE 2.4: Skin modeled as a semi-infinite half plane
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(2.6)

Higher accuracy has been obtained with models based on an incompressible
fluid-filled membrane [206, 194, 214]. In these models, the finger was assumed to be
an elastic membrane enclosing a fluid-like soft tissue, and the predictions fit well to
in vivo experiments. Nevertheless, this model fails to capture the behavior when
boundary conditions become complex, and they do not take into account
non-linear skin elasticity.

In the structural approach, the skin is an assembly of microstructural elements
with explicit characteristics. These models take into account the specific geometry
of the skin layers, but also how they interact with each others [147] (Figure 2.5C).
Finite Element Analysis have recently been seen more attractive because of advances
in computing power. This method can take into account the geometry of the finger
and model the strains inside the deeper layers of the skin [143]. In this approach,
a finger section is modelled as a multi-layered structure using material properties
of the finger tissue (Figure 2.5AB). Subject-specific geometry has been incorporated
later in more detailed 3D-models [50, 212, 227] (Figure 2.5D).

Viscoelastic model

Even though everyday manipulation tasks nearly always includes movement,
models of dynamic behavior of the finger emerged much later. Non-linear
viscoelastic models of soft tissue could well describe pulp force-displacement [77].
Viscosity was implemented in 2D finite element models [240] and in 3D models
using nonlinear and inhomogeneous materials [215]. These models allow to
observe a time-dependent force responses of the fingertip.

However, the finite element methods incorporate too many parameters and
therefore can be prone to overfitting and require a lot of processing power.

Friction modeling

Friction modeling affects a lot of areas, that is why numerous models were
developed these last few years. Some of them are based on a spring-like
relationship between frictional force and displacement. In this section, Ff and Fn

will stand respectively for friction and normal force, µ for the friction coefficient. x
will be used as the position and ẋ as the sliding speed.

Coulomb friction model is represented using the following equation:

Ff = Fc · sign(ẋ) for ẋ 6= 0 (2.7)
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A B

CC D

FIGURE 2.5: Structural mechanical models of human skin, from 2D to 3D,
from general to subject specific. A. [143] B. [240] C. [147] D. [50]

Fc is the Coulomb friction force defined as Fc = µFn. Viscosity can be added
in Coulomb model by adding a linear part kv ẋ, where kv is the viscous coefficient.
Although simple, the Coulomb model presents a discontinuous friction force which
is not properly defined when ẋ = 0.

The first friction model that breaks with discontinuity was the Stribeck friction
model, described in equation (2.8)

Ff =
(

Fc + (Fs − Fc)e−|
ẋ

vs |
i)

sgn(ẋ) + kv ẋ (2.8)

Fs is the static friction force and vs the Stribeck velocity.

Ff Ff
Ff

Coulomb Viscous Coulomb Stribeck

Fs

FcFc
Fc

FIGURE 2.6: Coulomb, Viscous coulomb and Stribeck models of friction

Dahl model described the friction with an analogy of the stress-strain property
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for materials [47]. For small displacements, objects returned to its initial position.
Dahl modeled this elastic behavior by a spring. Larger displacements will cause
plastic deformation, resulting in the object displacement.

dFf (x)
dt

=
dFf (x)

dx
dx
dt

= σ0

∣∣∣∣1−
Ff

Fc
sign(ẋ)

∣∣∣∣
i

sign(1− Ff

Fc
sign(ẋ))ẋ

(2.9)

σ0 is the rest stiffness of the asperities at equilibrium point Ff = 0. i is an exponent
that codes how ductile or brittle the material is. For more ductile material, the
maximum stress before slippage will decline for increasing strain.

With this equation, Dahl takes into account pre-sliding and hysteresis. However,
Dahl model does not predict the Stribeck effect.

LuGre model deals with this issue, adding a viscous term and the Stribeck
function in Dahl equation [53]:





Ff = σ0z + σ1ż + σ2 ẋ

ż = ẋ− σ0
ẋ

g(ẋ)
z

g(ẋ) = Fc + (Fs − Fc)e−|
ẋ

vs |
i

(2.10)

z can be interpreted as the average deflection of the bristle. σ0 is the contact stiffness,
σ1 the damping coefficient of the bristle and σ2 the viscous friction coefficient. g(ẋ)
takes into account the Stribeck effect.

The stress-strain curves of Dahl and LuGre models are shown in Figure 2.7A and
B respectively. Hysteresis is observed in both models, but the curve is steeper for the
LuGre model, meaning that the system react quicker to an external perturbation.

This section reviewed the mechanical bases of the fingertip. Time has now come
for establishing a relationship between the stresses and strains and the neural
responses [175] in order to understand how do humans encode skin mechanical
deformation.

2.2 How do humans encode the mechanical deformation:
Mechanotransduction

In the previous section, we show how the skin deforms during a mechanical event.
This deformation is decoded through sensors located in different areas of the skin.
The particular locations of these sensors is not arbitrary, but comes from the fact
that the strain energy is concentrated at these locations [143]. The capture of
electrical signals during a mechanical stimulation reveals the presence of four types
of afferents or mechanoreceptors. These mechanoreceptors are able to transduce
mechanical disturbances into actions potentials that are transmitted to the central
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FIGURE 2.7: Mechanical equivalent of Dahl (A) and Lugre (B) models
(from [176]). Blue, red and yellow colors code friction coefficient of 0.1, 0.5
and 0.9 respectively.

nervous system through the nerves [58, 104]. Nerve endings can be free, allowing
the perception of pain, or connected to one of these four types of afferents. They are
classified according to two characteristics: the speed of adaptation to the
mechanical events (slowly adaptive SA and fast adaptive FA) and the size and
acuity of their receptive field (type I or type II). The word adapt here means that the
mechanoreceptors stops sending signals to the brain. Although mechanoreceptors
adapt differently, all of them adapt. For example, if you sit without moving,
eventually the skin will stop feeling the pressure of the chair. This adaptation
makes the sensitive system much more sensitive to a change than to a constant
stimulus. The speed of adaptation was measured via electrophysiology via a probe
clamp to the ulnar and median nerves running in arm (Figure 2.8).

2.2.1 Four types of afferents

SA type I afferents or Merkel cells

The Merkel’s cells are located at the interface between the dermis and the
hypodermis, on the ends of the ripples. They are distributed widely in the glabrous
skin, and their density can reach 100 per cm2 at the fingertip. Sensitive to the spatial
component of deformation up to 1% [66], they respond to punctate pressure and
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FIGURE 2.8: Four types of mechanoreceptors, their location (bottom left) and
their action potentials (bottom right) (adapted from [51, 219])

are involved in the perception of edges [175], curvature [83, 126] and the coarsest
textures [186, 110]. For a review, see [89].

SA type II afferents or Ruffini endings

The Ruffini endings are the mechanoreceptors whose role remains the least known
so far [167]. Indeed, the latter were only very rarely observed in the human
finger [105]. However, they are held responsible for the perception of lateral stretch
of the skin and the lateral force during incipient slip. Thus, they are probably
involved in friction perception, as human relies on tangential forces cues to assess
friction [204]. They also contribute to the proprioceptive sense of the hand.
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FA type I or Meissner corpuscules

Located in the glabrous skin, at the interface between the dermis and the epidermis,
the Meissner corpuscles are rather found in the furrows unlike Merkel cells. They
are composed of a stack of Schwann cells linked to the epidermal papillae with a
connective tissue. They respond to stimuli with a radius of 3 to 5 mm and their
sensibility is 4 times larger than the one of SA-I [109]. Insensitive to static
stimulation, they are efficient to frequencies between 8 and 64 Hz [104] and are thus
efficient in discriminating low frequency vibration. Therefore, the Meissner’s
corpuscles are very useful for the perception of slip and micro-slip occurring
during object manipulation [207, 107]. Also, it has been shown that their firing rate
change when skin strain rate is higher than 8%/s in dynamic on average [65]. Thus,
they are probably responsible for grip force adjustment reflex [238]. For a review,
see [168].

FA type II or Pacinian corpuscules

The Pacinian corpuscles are located deep in the layers of the dermis. They are oval
in shape and composed of about thirty concentric lamellae separated by collagen
fibers [16]. There are about 350 in the index finger and nearly 800 in the palm of the
hand. They measure 1 mm long on average and can reach 4 mm in adults. Their
size makes them the most studied mechanoreceptors. Receptive to displacements
of 40 nm and efficient in a large range of frequency – from 40 Hz to 1 kHz – [224,
104], they are the most sensitive of the mechanoreceptors. At frequencies of 200 to
300 Hz, they readily respond to skin displacements on the order of
10-100 nanometers. Between 60 and 250 Hz, their sensitivity to vibration increases
at a rate of 40 dB per decade, suggesting that they are sensitive to acceleration of
the skin [25]. They have an excellent temporal acuity, but their spatial acuity are
low, which make them good candidate for texture perception.

2.2.2 Summary

Table 2.2 summarizes the characteristics of human skin mechanoreceptors.
Each of these afferents is specialized to a spatial and a temporal frequency range

and map the spatio-temporal space as illustrated in Figure 2.9.

In conclusion, the whole spatio-temporal space is covered by the four types of
afferents, allowing for a good transmission of the stimuli presented. However, how
the central nervous system deals with these thousands of action potentials to extract
information is still at its infancy and will be reviewed in the next section.
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Fast Adapting Slowly Adapting

Meissner corpuscles (FA I) Merkel cells (SA I)
Small Receptive Location: superficial skin Location: superficial skin

field Frequency: 8 to 64 Hz Frequency: 0.4 to 10 Hz
Receptive field: 22 mm2 Receptive field: 9 mm2

Density: 150/cm2 Density: 100/cm2

Pacinian corpuscules (PC) Ruffini endings (SA II)
Large Receptive Location: deeper tissue Location: deeper tissue

field Frequency: 40 to 1 kHz Frequency: 15 to 400 Hz
Receptive field: 101 mm2 Receptive field: 59 mm2

Density: 20/cm2 Density: 10/cm2

TABLE 2.2: Mechanoreceptors properties. Values reported here are average,
they can differ between individuals
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FIGURE 2.9: Spatio-temporal sensitivity of skin mechanoreceptors

2.3 How do humans perceive

The tactile perception is the ability to judge a physical reality or a sensation from
what we sense. The perceived information are generally grouped into three
categories: object shape properties (including curvature and edge), object material
properties (including softness, friction, surface texture), and interaction information
(including forces and slippage). In this section, I reviewed the tactile sensitivity to
mechanical stimuli to quantify the range of sensations a human can perceive. In a
second time, the detection of slippage and the perception of friction are explained
in order to better understand the fast regulation of grip force during object
manipulation.

2.3.1 Tactile sensitivity

Sensitivity to pressure and vibrations are first listed. Then, the spatio-temporal
sensitivity to discrete stimuli is reviewed since it directly affects the object
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recognition capability [62] and directional sensitivity [229].

Pressure sensitivity

Pressure sensitivity was measured as the small amount of pressure a body can sense.
The pressure threshold does not vary much across body sites [230]. The highest
value is under our feet where it reaches 31 mg. Women are more sensitive than men
on average (mean values on the fingertips are 55 mg for men and 19 mg for women).

Vibrations sensitivity

To measure the sensitivity of the fingertip to vibrations, studies use a contactor
separated from the surround to prevent any travelling-wave effects on the skin.
Verillo [223] first described a two-limbed psychophysical function for vibrotactile
threshold as a function of the frequency. At lower frequencies (25-40 Hz), the
psychophysical function was relatively flat, meaning that the skin is not sensitive to
this frequency. However, beyond that frequency range the psychophysical function
was U-shape, with the threshold progressively declining up to approximately
250 Hz, at which point it began to increase up to 700 Hz. The smallest threshold
was measured at 100 nm when the frequency of the contactor was 250 Hz. These
results led to the proposition of a two-channel theory of vibrotactile sensitivity, the
low-frequency (non-pacinian channel) showing no spatial or temporal summation,
in contrast to the high-frequency (pacinian channel) which demonstrated both
forms of summation.

Spatial sensitivity

The two-points threshold is defined as the smallest spacing between 2 points that can
be identified as two different points by a person. It can give an idea on how finely
innervated are the areas of skin and is widely used to assess tactile perception [199].
The typical values obtained depends widely on the body areas (Figure 2.10A), with
a mean varying from 1.1 mm on the tongue to 36-75 mm on the back. These values
place the tactile acuity between vision and audition. Tactile spatial acuity is also
variable as a function of age, sex and laterality [230].

Although the two-points threshold is the most commonly used clinical method
to assess the tactile spatial resolution, many researchers criticized this test for two
main reasons [45]. Firstly, value of two-points threshold has been observed very
variable both across and within subject. The value depends on the criterion subjects
adopted for answering that they perceive one or two points. Secondly, people can
use non-spatial cues to achieve the task. These non-spatial cues can be temporal if
the 2 points are not perfectly simultaneously presented but also intensity cues [111].
For example, one point feels probably sharper than two nearby points [218] which
will influence the neural responses of the mechanoreceptors [222].
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Thus, alternative measures emerge, including gap detection and grating
orientation task. In the gap detection test [209], a continuous or a discontinuous
edge is presented randomly and subjects have to indicate if they feel a gap or not.
But our mechanoreceptors are very sensitive to edges, which makes this task
biased. In the grating orientation task, a horizontal or vertical is presented
alternatively (Figure 2.10B). Subjects have to indicate the orientation of the grating
as the width of the grooves and ridges decrease. This task gives a more accurate
and less variable measure of spatial acuity [220]. Important is to notice that the
grating orientation threshold is always smaller than the actual two-points threshold
and reach 1 mm on average on the finger.
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Temporal sensitivity

Searching for a specific coin in our pocket or reading braille are tasks involving a
perfect sequential processing of the spatial patterns. Thus, temporal sensitivity has
been studied for sixty years. The first study deals with the perception of temporal
order [94]. Temporal separation of two contact events, at different locations, is
needed as it helps in detecting the presence of multiple events. Mechanical taps
were presented to the two index fingers, and subjects have to answer which
location received the tap first. They found that 20 ms is required between the onsets
of the taps to report correctly the temporal order.

A good way to measure temporal sensitivity can also be through the vibrations.
Humans are able to detect vibrations up to 700 Hz [223]. More recently, the
temporal sensitivity was measured through the ability to detect a silent interval
between two vibrotactile stimuli called gap. The gap-detection threshold is
expressed as the amplitude of the stimulus flanks required for 75% correct
detection of the gap [221]. This gap detection threshold decreases with increasing
gap duration [81].

As the two-points threshold in spatial, the gap-detection threshold in temporal
is also criticized because of the same reasons. In 1990, Craig et al. [44] set up a test
where subjects have to discriminate between a horizontal and a vertical stimulus
(Figure 2.11B). He concludes that the temporal separation between two events at
different locations on fingertips is on the order of 30-50 ms.
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Spatio-temporal sensitivity: tactile motion

Stimulus movement across the skin can be detected by a passive observer in terms
of direction [125, 78] and speed. Essick [70] found that brushing the arm at different
speed yields to the Weber fraction of 25%. However, these results can be criticized
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as the stimuli have limited length, therefore the actual velocity could have been
determined by either speed or duration. Fixed duration of stimuli was applied
in [59] and participants could not rely on time to assess the velocity. They also
explored the effect of various textures on speed judgment, and it appears that
speed estimates are varying with spatial period.

B
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D

FIGURE 2.12: Tactile illusions of motion. A. Barber-pole illusion [21]. B. Comb
illusion [91]. C. Gestalt principles of grouping: proximity, similarity, closure,
continuation, connectedness. D. Saltatory effect or rabbit illusion [80, 39]. E.
Tactile rivalry or apparent motion quartet [31].

The tactile counterpart of optic flow, referred to tactile flow, can be defined in
terms of displacement of iso-strain curves [20]. An analogy can be drawn between
the increase of the divergence in optic flow and the spread of the contact area in
tactile flow, allowing for discrimination of a relative motion. Consenting the
existence of a tactile flow would also give a possible explanation for several
illusions, including the barber-pole illusion also known as the aperture
problem [21]. When subjects touch a translating pads with oriented gratings, they
perceived a direction of motion biased towards the orientation of the gratings
(Figure 2.12A).

In addition to the sensation of tactile motion that results from real movement
across the skin, an illusion of motion may also be produced. Vision researchers
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have long known of highly robust illusion involving the visual perception of
motion [3]. Even if it is sometimes assumed that vision is the main source of
perceptual illusion, all senses, including touch, are subjected to illusions. An
illusion occurs when there is a discrepancy between perception and reality.
Studying tactile illusions allow gaining insight into the nature of touch and the
cognitive process used by human to integrate the sensory information [129]. The
illusion of apparent motion is experienced when observers fail to detect a missing
portion of a raw sensory input, and it is produced by delivering a series of two
pulses or more to adjacent locations in quick temporal succession. A simple
experiment can be carried at home with a comb. If you hold the comb as pictured in
Figure 2.12B and gently strokes the teeth back and forth, you might feel as if an
embossing is running on your index finger. In this illusion, each individual motion
is only few micrometers, but the resulting sensation is quite strong. Few studies try
to quantify the maximal inter-stimulus onset interval (ISOI) –the time interval
between two stimuli– to perceive an apparent motion. It was found that an optimal
motion is obtained for a combination of a stimulus duration and a stimulus onset
interval [197, 120]. For example, for a 25 ms stimulus, the interval between stimulus
onsets should be less than 75 ms to feel a continuous motion. Interestingly, the
curve of optimal movement is comparable to the one obtained for visual perception
of motion [161], suggesting that similar brain mechanisms or neural circuits are
shared by the senses. The contribution of spatial and temporal properties of a
moving stimulus in the apparent motion illusion proves the complex neural
integration of the spatio-temporal sequence of impulses [113, 78]. Most people
failed to detect 2 mm gaps when the traversal time fell below 0.2 second. One
possible explanation of this phenomenon is that predictions made by the brain are
based on the previous exposure sensory, exactly in the same manner as the Occam’s
razor, which conducts to choose the simplest theory as the good one. More
interestingly, when the brief temporal gaps inserted into a vibrotactile target were
filled with vibrotactile noise, the target vibration was perceived to continue through
the noise if the target vibration was sufficiently weak relative to the noise [121].

The apparent motion witnesses a strong interdependence between space and
time, which can conduct to other kind of illusions. For example, the apparent
distance between 3 equally spaced stimuli that are presented successively depends
upon the inter-stimuli temporal interval [92]. If the time between the first and the
second stimuli is shorter than the time between the second and the third stimuli,
the distance between the first and the second stimuli will be judged as shorter. This
illusion is called the tau effect. In the same way, the apparent temporal interval
increase with increasing spatial separation, known as the kappa effect [210].
Similarly, it has been proven that we can convince the brain that a patch of skin
does not exist if we are rapidly skipping over it [193]. The induced illusion of
completion results in a length contraction to resolve the discrepancy between space
and time. This experiment reveals the existence of Gestalt principle of grouping in



2.3. How do humans perceive 29

touch (Figure 2.12C).
Another interaction between space and time is the saltation effect also known as

the rabbit illusion. This effect is produced when a series of short pulses are
delivered successively at three different locations on the skin. The resulting
sensation resembles a sweeping movement punctuated by taps [80], as if a tiny
rabbit is hopping up their arms (Figure 2.12D). It has been proven that the number
of taps to produce the optimal illusion lies between 3 and 6. More recently,
Cholewiak and Collins [39] compared the veridical and the saltatory modes for
drawing a good line in terms of length, smoothness, spatial distribution and
straightness (Figure 2.12D). They found that effective lines were produced in both
modes, and the two sets were perceptually equivalent when the interburst interval
is higher than 10 ms.

Last but not least, our perception of apparent motion can alternate between
possible interpretation of a stimulus. The best example is undoubtedly the rivalry.
In vision, when pairs of dots are presented alternatively at the diagonal corners of a
square, they will appear to jump either vertically or horizontally between the four
corners locations (Figure 2.12E). However and surprisingly, the tactile quartet is
perceived by the participants as a smooth motion [31].

Tactile perception of motion is important in textures [115] or shapes [130]
recognition. Perceiving a relative movement between skin and a surface can also be
useful in slip detection, which will be reviewed in the next section.

2.3.2 Slip detection

Detection of slip means to perceive the relative movement between the skin and a
surface. Slip plays an important role in grip force control, as it produces feedback
on the actual safety margin to apply to avoid loss of grip. When we lift an object,
the tangential force increases gradually and if the forces start to be imbalanced, the
object will start to move relative to the fingertips, which thus experiences incipient
slippage of the object. Full slip is reached when the grip on the object is lost. But
prior to full slip of the object, partial slips will develop at the fingertip-object
interface, in the areas of contact where the pressure is minimal. Indeed, pressure
and traction are unequally distributed on the finger surface (Figure 2.13), due to its
shape and elasticity. Consequently, partial slips will start to develop at the
periphery of the contacts with the formation of a slip annulus [7, 55]. This annulus
of slippage then propagates to the center of the contact area, increasing in size with
the tangential force until complete slippage. This phenomenon has been described
mathematically by Cattaneo [32] and Mindlin [152]. They assumed a coulombic slip
boundary condition (τ = µp, for traction τ and pressure p), which leads to an
axi-symmetric distribution of tractions as follows:
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τ1(r) =
Ft

2πa2

(
a2 − r2

a2

)1/2

, r ≤ a

τ2(r) = −
Ft

2πa2

( c
a

)( c2 − r2

c2

)1/2

, r ≤ c

(2.11)

where r is the radial coordinate with an origin in the center of the contact, a is the
radius of the contact area and c the radius of the no slip area.

Even if this model succeeds to describe simply the overall behavior of the finger
during incipient slippage, it does not fit well to in vivo experiment [213, 7, 1],
especially for high normal force.
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FIGURE 2.13: Incipient slippage visualization on a contact mechanics point of
view. The pressure and traction distributions are shown in solid lines, while
the dashed lines show the maximal traction that can develop. The stuck and
slip areas, corresponding to several stick ratios SR, are marked in the views of
the contact area in blue and red respectively. (adapted from "A Soft Touch on
efficient neuromuscular control of the precision grip, Felix Roël")

The stick ratio is defined as the ratio between the no-slip areas to the total
contact area. As the slip area increases, the stick ratio decreases until reaching zero
during full slip. Thus, the stick ratio can quantify the partial slip progression
during a manipulation task. However, during a slip-to-stick transition, the stuck
region may disappear catastrophically [216], which could lead to a sudden slippage
of the object. This phenomenon is mathematically consistent with the condition
that the coefficient of dynamic friction is smaller than the static value.

It was thought since few decades that slip detection of a smooth glass is barely
impossible. Indeed, the high frequency deformations of the skin caused by the
relative motion of a fine surface texture along the fingertips, can be sensed by the
Pacinian corpuscles to detect slippage before it occurs [106]. Thus, Srinivasan et
al. [207] found that only a single 4 µm-high asperity is enough to detect a relative
motion. However, FA-II afferents is known to rarely respond to partial slips, due to
their lower frequency contents in comparison to full slips [106]. Hence, the
detection of the moving surface features can be attributed more on the FA-I
afferents or the SA depending on the dot height [127]. Furthermore, the subjects of
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this study [207] applied a normal force lower than 0.2 N, inducing only very little
skin deformation. Yet, for a normal force greater than 2 N, it has been observed that
humans are able to detect slip on a smooth glass plate once the relative motion
between the finger and the plate exceeds 2.3 mm [13]. This particular relative
displacement induces a stick ratio of approximately 52% and results in a shear
deformation difference between the maximal compressive and tensile strains of
approximately 45% [56]. But to date, no study relates the influence of skin
deformation on tactile encoding of incipient slippage.

To conclude, the transition between stick and slip is a mechanical event
perceptible even in the absence of asperities on the surface. However, the complex
dynamics of the skin during the onset of sliding makes it hard to understand with a
simple model yet.

2.3.3 Friction perception

Friction underpins every single tactile interaction, from lifting a glass of water to
perceiving the subtle wear of a fabric. It is essential to dexterously manipulate
objects [87, 30, 162] and its variation during tactile exploration helps distinguish
material properties [205, 85].

When the finger is sliding on a surface, the frictional strength of the contact is
found by measuring the lateral force at which relative motion occurs [14], see
section 2.3.2. The initial slip provides sufficient information for the central nervous
system to be able to assess the friction coefficient of a smooth surface [204]. When
exploring actively a varying friction glass surface, subjects are capable of ranking
the friction accurately with a Weber index of 0.18 [184], meaning that they can
detect an 18% reduction of the friction coefficient.

But even when no tangential force is exerted, there is evidence that the
somatosensory system recognizes the frictional strength on first contact [107], since
when lifting an object, humans adjust their grip force to friction before the
development of the tangential force. However, the mechanisms responsible for this
early perception are still unknown.

2.4 How do humans manipulate: Human hand’s action

In the previous chapter, tactile perception and sensitivity to various stimuli was
listed. However, perception and action are intimately linked together, and we
cannot study one without looking at the other. To convince ourselves, we can take
an example that you can do safely at home. Consider firstly moving your head; you
are able to reconstruct your eye motion in the motionless world because the images
of the external world move over the retina. And now, if you move your (closed) eye
by pressing on it with a finger, you interpret the motion as a motion of the external
world, showing that perception is intimately linked to self-motion.
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2.4.1 Action and perception

Do we act to perceive, or do we perceive to act? On one hand, action is a means of
acquiring perceptual information about the environment. It is known for decades
now that hand motion is often necessary for perception [82, 130], such that moving
your hand over an object’s surface enables you to feel its shape and texture. But on
the other hand, action responses are performed according to how we perceive our
environment. For example, grip force adjustments are performed quickly after the
observer detect a partial slippage of the object in his hand.

However, it was recently discovered that there is an independence between the
neural mechanisms responsible for perception and action-related computations in
the brain. In the well-known size-weight illusion, when lifting objects, large boxes
are perceived to be lighter than small boxes of the same weight [157]. It was first
hypothesize that the illusion was due to the manner of lifting the object. Since they
expect a larger object to be heavier, they lift it with greater force, therefore the larger
object is lifted more easily than the smaller one, causing it to be perceived as lighter.
But further experiments showed that after several lifts, while the perceptual
illusion persists, participants learned to scale their grip forces according to the true
object weights, regardless of the object size [75]. Nevertheless, the illusion persists,
suggesting that the sensorimotor system can operate independently of the
cognitive and perceptual system. Interestingly, similar illusions also occur with
differences in materials: metal containers felt lighter than wooden containers of the
same size and mass [191], Similarly, it has been found that adding a delay on the
sensory inputs can create a discrepancy between the adjustment of the grip force
and the perception of stiffness of an elastic object [133]. These results support the
idea that there is a gap between perception and action.

2.4.2 Grip force control

A prehensile task, such as drinking from a cup, involves stably grasping an object,
according to its inner properties (weight, texture, compliance). Stable grasp has
been widely studied using the experimental setup developed by Westling and
Johansson [231]. A schematic drawing is presented in Figure 2.14A. In this protocol,
subjects were asked to lift a manipulandum between the thumb and the index
finger. The forces exerted on the object by the two fingers can be resolved into two
components: the applied grip force normal to the fingertip-object contacts, and the
friction force that develops tangential to the contacts due to the local static friction.
Temporal evolution of the forces are shown in Figure 2.14B. The process can be
decomposed in 4 phases: the pre-loading phase corresponding to the formation of
the grip, the loading phase in which grip force and load force increase in parallel,
the transitional phase reached when the object is lift to a given position and the
static phase when the forces reach a steady-state.
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FIGURE 2.14: A. Schematic illustration of the apparatus to study grip force
control. B. Phases of the lifting: (a) pre-load, (b) load, (c) transitional phase,
(d) static phase. C and D. Forces coordination when lifting objects of different
weights (200, 400 and 800 g) and different surface textures (silk, suede and
sandpaper). Reprinted from [231, 107]

During a precision grip, the grip forces have to be large enough to compensate
the weight and prevent the object from slipping between the fingers but not
excessive to not cause damage to fragile objects and allow for object reorientation in
the hands, necessary when we are washing our hands with a soap or when we are
peeling an apple. The minimum force at which the object starts to slip, called the
slip force, is proportional to the load force and varies with friction at the
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interface [232]. The difference between the slip force and the actual grip force
applied by the subject is known as the safety margin and is smaller in dexterous
subjects. The grip forces required to lift an object are known to be unconsciously
regulated to a value 20% above what would cause slippage [67].

The stability of the grasp is empowered by a real-time regulation of the grip force.
Following a sudden load force perturbation, only 70 ms are necessary to react [106,
40]. This latency is smaller than the latency of a voluntarily initiated change in force
(140 ms) but comparable in magnitude to long-latency reflex responses, meaning
that the grip force regulation is presumably supraspinally mediated.

The prior experiences about the object play the first feed-forward role in the
human’s control system for applying initial grip force, and the estimation of change
in friction force contributes to the adjustment of grip force. According to Johansson
and Westling [107], the adjustment of grip force in humans begins once the contact
is made, even before the appearance of tangential load. The initial grip force
changes according to the frictional state of the contact surface. This result indicates
that human may use early estimate of friction by applying of a simple normal
pressure onto the object to adjust their initial grip force. These results were
confirmed by Cadoret et al. [30], who proved that people rely on friction cues to
optimize their grip force, regardless whether the friction comes from macroscopic
surface features (texture) or a coating (talc or water).

When the finger are anesthetized, eliminating feedback from cutaneous
mechanoreceptors, forces are no longer optimally adapted to the weight of the
object and the friction at skin-object interface, and we observed larger safety margin
than usual [88, 238, 8, 155]. These results suggest that tactile afferents play a critical
role in the encoding of friction. Particularly, a change in friction has been proved to
be most likely signaled by FA I afferents as they are sensitive to material
properties [106].

2.4.3 Passive vs active sensing

A recognition task where the person is not able to move is known as passive
sensing, whereas active sensing refers to an exploration where the user makes
voluntary movements. These movements depend on the knowledge about objects
you wanted to investigate. For example, if you want to know the object hardness
you will better press on it, whereas if you want to know the texture of a material,
you will probably slide over the surface. These movements were first described by
Lederman and Klatzky [130] as exploratory procedures and are reported in
Figure 2.15. Exploratory procedures are invariable to the object explored.

Active touch is estimated to be twice more accurate than passive touch. There
are many reasons for that. Firstly, the mechanoreceptors activated with static
stimuli are fewer [36]. Secondly, being passively touched tends to focus the
observer’s attention on his or her subjective bodily sensations, whereas contact
resulting from active exploration tends to guide the observer’s attention to
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FIGURE 2.15: Exploratory procedures of for active tactile perception

properties of the external environment. Last but not least, when a motor signal is
transferred from the central nervous system to the periphery, an efferent copy of
this signal is generated and transferred to the forward model to predict the effect of
an action [116]. The efferent copies make us insensitive to our own tickle because
they inform the brain about the actual stimulation.

In opposition to a voluntary planned action, a reflex is a nearly instantaneous
movement in response to a sudden stimulus. A reflex response is processed by the
spinal cord before the impulse reaches the brain. The average reaction time for a
tactile stimulus has been measured equal to 155 ms [156], in between the one for an
auditory stimulus (140-160 ms) and a visual stimulus (180-200 ms). Below that
threshold, the action is considered as spinally mediated and does not need any
conscious thought.

2.4.4 Predictive coding

Predictive coding is a theory of brain function in which the brain is constantly
generating and updating a mental model of the environment in vision [180],
audition [189], and multimodality [68]. The mental model is constructed by making
sense of the word as experienced by a top-down approach at various temporal and
spatial scales. This model is making predictions (priors) which are compared
against the sensory input (likelihood), yielding to a prediction error. If this error is
larger than the level of expected statistical noise, the generative model will update
so that it better predicts the sensory input in the future. If, instead, the model
accurately predicts the sensory signal, activity at higher levels cancels out activity
at lower levels, and the posterior probability of the model is increased.

Recently, Adams et al. [2] state that the motor actions are not commands but
descending proprioceptive predictions, suggesting that the perceptual and motor
systems are both involved to predict the sensory input.



36 Chapter 2. State of the art

2.5 Conclusion

This chapter reviews the state-of-the-art from tactile sensing to human hand
actions. The Figure 2.16 illustrates the four most essential steps of the control loop
towards dexterous human manipulation. When the finger enters in contact with an
object, its soft skin deforms because of its mechanical properties. Our
mechanoreceptors, buried inside the skin layers, are sensitive to this skin
deformation and send actions potentials to the sensorimotor system. With this large
amount of data, the brain is able to infer the physical properties as friction. This
mechanism of perception provide enough information to regulate the grip force
according to the object in contact and thus perform various different actions.

Contact
mechanics

Mechano-
transduction

Tactile
perception

skin
deformation

actions potentials

Hand
action

grip force regulation
manipulation

physical
properties
(friction)

FIGURE 2.16: From object contact to human hand action.
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—————————————
Preface to Chapter 3
—————————————

THE tactile perception of shape, softness, or slipperiness stems
from the deformation of the skin induced by the contact with an object. This

mechanical deformation is encoded by mechanoreceptors embedded in the skin
tissues and is subsequently interpreted as distinct tactile sensations, which allow
environment perception as well as object manipulation. As a consequence,
modeling how the skin deforms when subjected to external forces is paramount to
understanding the pattern of deformation that leads to specific tactile sensations.
Finite-element analysis or analytical models have shown that contact mechanics
underpins tactile sensations such as softness or vibrations. However, these
approaches are restricted in their ability to generalize: finite-element analysis
comprises too many free parameters, and analytical models involve boundary
conditions that are too restrictive. In this work, I describe a parsimonious
finite-difference model which includes frictional effect and explains skin mechanics
with a minimum of four parameters, while retaining a strong predictive power.
This 2D-model was validated against several quasi-static and dynamic
measurements reported in the literature. The model is both explainable and
accurate, making it a powerful framework for predicting the deformation of the
skin when being in contact with arbitrary surfaces. This ability has a wide range of
applications, from the rendering of artificial tactile sensations to the control of
robotic grippers.

3.1 Introduction

Tactile sensations are uniquely fitted to perceive facets of the environment that
would be impossible to gather from vision or audition. Object exploration and
manipulation induce skin deformation, which is relayed to the central nervous
system via action potentials produced by thousands of mechanoreceptors [103,
109]. This deformation sends cues to the brain to infer properties of the object in
contact such as the natural frictional resistance exerted by the object on our
finger [219], and allows the central nervous system to adapt its grip force control to
the lifted object [207, 8, 238]. Thus, skin mechanics play a fundamental role in the
human sense of touch.

Let’s take the example of a lifting task, in which the tangential force increases
gradually. A collection of local stick-to-slip transitions occur progressively which
are ignited at the periphery of the contact area [7, 55]. This annulus of slippage then
propagates to the center of the contact area, increasing in size with the tangential
force until complete slippage. The evolution of the amount of slippage is
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materialized in the stick-to-slip ratio, which is the proportion of stuck skin to the
total amount of skin on contact. The strain that travels through the skin during this
slippage has been studied and modeled by Cattaneo [32] and Mindlin [152], for a
description of the model see section 2.3.2. However, recent observations of in vivo
measurements are in contradiction with Cattaneo and Mindlin’s mathematical
equations [212, 203]. Hertzian contact theory has been shown to predict the
pressure distribution under light contact force [1], but fails for higher forces.
Finally, recent optical measurements of surface strains of fingertip contact has
shown an asymmetric strain profile which is in contradiction with the theories of
Hertz and of Cattaneo and Mindlin [56]. The complexity of the skin dynamics
during the onset of sliding makes it hard to capture in a simple model. However,
studying skin behavior is key to understanding human slip detection, which could
help mimic its performance in robotic grippers [95, 141].

On the other hand, modelling the relevant aspect of the contact and frictional
behavior of the skin interacting with arbitrary surfaces in real-time models must be
the solution for computation in robotics [86, 181] or for haptic rendering on 2D glass
plates [182, 154]. Yet, to the best of our knowledge, none of the models available to
date incorporate friction.

In this chapter, I built a 2D model of the fingertip that incorporates local
deformations of a stiff skin supported by underlying tissues. The model captures
the viscoelastic behavior of the skin using Kelvin-Voigt material and the local
elastoplastic frictional interaction at the interface using Dahl friction model. We
show that an elastic membrane supported by a bed of springs is mechanically
sufficient to model the static deformation of the skin. This, combined with a model
of friction, can explain the transition from stick to slip. With this model, we can
simulate the temporal evolution of subject-specific skin deformation in any
arbitrary contact conditions. With only four parameters (2 spring stiffnesses, 1
damping coefficient and 1 finger radius), this model is very simple but succeeds in
capturing a wide range of skin behaviors in static and in dynamic conditions,
making it more accurate than the Waterbed model [206]. Furthermore, its simplicity
allows for a faster and more trustworthy execution than finite-element analysis. As
speed is a key for robotics, our model could be used in the near future in control
applications.

3.2 Finite-difference mechanical model

The model is composed of a chain of massless elements maintained together by
elastic springs. This chain can be assimilated to the external layer of the skin (the
epidermis). Its shape is maintained using elastic springs that connect the massless
elements to a virtual bone, analogous to the mechanical behavior of the
subcutaneous tissues. The both elements on the outside of the membrane are also
attached to the bone and model the effect of the rigid nail. Overall, the model
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resembles the discrete version of a curved elastic membrane on a spring
foundation. The viscosity of the skin is modeled by dampers, connecting each
particle to the mass of the system. All connectivities are represented in Figure 3.1A.
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3.2.1 Dynamic equation

Each spring applies forces to its endpoint particles i proportional to the length
deviation (linear elasticity), discounted by a damping term proportional to the rate
of length change. Let Fi be the forces acting on the particles i by all springs and
dampers and Ui be the displacement of the particles i. Then the internal force on
each element i can be written as follows:

Fi = −km(Ui−1 − 2Ui + Ui+1)− kt(Ui − Ub)− ζU̇i (3.1)

where km is the stiffness of the external layer of the skin, kt is the stiffness of the
subcutaneous tissues and ζ is the damping coefficient.

Springs and dampers dependencies are then embedded in matrices K and B
respectively. As mass and inertia are neglected [235], the equation of motion can be
written as follows:

BU̇(t) + K(U) U(t) + Fext(t) = 0 (3.2)

where U is the vector of normal and tangential displacements and Fext is the
vector of external forces.

The stiffness matrix K is repopulated at each time-step to take into account the
geometric changes, which influence the distance between each element. As it
depends on the position of each element, the system of equations is essentially
non-linear. The displacement vector U and the impedances are decomposed into a
normal and a tangential component. For example, the normal and tangential
components of spring stiffness are given by km sin α and km cos α respectively,
where α is the angle between the surface and the spring.
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The dynamic equation can be written in discrete time as follows:

B
(

U(t + dt)− U(t)
dt

)
+ K(U) U(t)− Fext(t) = 0 (3.3)

U(t + dt) = U(t) + dt
(
−B−1K(U) U(t)− B−1Fext(t)

)
(3.4)

The algorithm follows the procedure steps shown in Figure 3.1B. After resolving
the contact, the forces are updated and displacements computed using Runge-Kutta
algorithm at the fourth order.

3.2.2 Sizing of the model

Material properties of human skin have already been measured by several
researchers [77, 143, 225] (see section 2.1.2). In [225], the effective Young’s modulus
of the external layer of the skin was measured by stretching the skin across the
ridges. The resulting mean modulus was 1.54± 1.08 MPa.

Afterwards, the Young’s modulus of the internal layers was adjusted so that the
relationship between the load and the computed contact area corresponded with
the one measured by [194]. When the Young’s modulus is equal to 0.025 MPa, the
computed contact width best fits Serina’s observations (Figure 3.2A).

The value of the spring stiffnesses (km and kt) are computed from the Young’s
moduli of membrane and subcutaneous tissue respectively:

km =
Em d em

dL
and kt =

Et π r2

2 r
(3.5)

where d is the diameter of the contact area, em is the thickness of the membrane, dL
is the distance between two elements, and r is the radius of the finger. Consequently,
the spring stiffnesses for the membrane and the internal layers were set to 2.5 kNm
and 0.13kNm respectively.

The damping coefficient ζ was set according to a step response of finger traction
as in [225]. The damping was chosen to obtain a time constant equal to 10 ms,
corresponding to a damping coefficient of 0.1 (Figure 3.2B).

The time step must be small enough to ensure the stability of the system
according to the damping coefficient, leading to the following equation for a
sampled data system [41]:

ζ >
kcdt

2
thus, dt <

2ζ

kc
(3.6)

According to this criterion, the sampling frequency was set to 400 kHz.
Moreover, the spacing between the elements should respect the

Courant-Friedrich-Lewy (CFL) condition, which ensures the convergence of the
system. The CFL condition links the spatial and the temporal stepping ∆x and ∆t
through the following equation (3.7).
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C =
v∆t
∆x
≤ Cmax (3.7)

where v is the maximum magnitude of the velocity and Cmax is method dependent.
When the method is explicit, Cmax is taken equal to 1. The maximum of speed
magnitude approaches 440 m/s and the temporal discretization is defined equal to
2.5 µs according to equation (3.6). Then the spatial step should be higher than
1.1 mm. Taking 201 elements along this chain allows for the respect of this
condition of convergence.

3.2.3 Contact modeling

To model the normal force developing when a finger makes contact with the
surface, we used the penalty method by adding a high-stiffness spring kc between
one contact element and the surface.

Modeling friction is one of the most challenging tasks because of its
nonlinearity (see section 2.1.4). Dahl [48] proposed a model to compute the friction
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force in order to model presliding displacements in control applications. In most
cases, the equation of the friction force can be written as follows:

dF(x)
dt

=
dF(x)

dx
dx
dt

= σ0

∣∣∣∣1−
F
Fc

sign(ẋ)
∣∣∣∣
n

sign(1− F
Fc

sign(ẋ))ẋ
(3.8)

where F(x) is the friction force function, Fc is the coulomb friction force and σ0 is the
rest stiffness at equilibrium point F = 0, equal to 1e4 here. n is a coefficient which
codes how ductile or brittle the material is. Thus, F(x) approaches the coulomb
friction force Fc as long as ẋ > 0 and −Fc when the direction of motion is reversed.

3.3 Results of the simulation

In the simulation, the external forces were applied on the bone and the stress-strain
distributions of the elements in contact were resolved at each time step.

3.3.1 Static deformation: comparison with the waterbed model

The resulting static deformation was first compared with existing behavior from the
literature. In Srinivasan’s study [206], fingertips were indented in vivo using a line
load and the resulting skin surface deflection profile was photographed and used
to infer the mechanical behavior of the materials that make up the fingertip. The
waterbed model was built to predict the surface deflection in the region of interest,
less than 3 mm from the load.
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FIGURE 3.3: Surface deflection profile under a line load and comparison with
the waterbed model

Figure 3.3 plots the skin deflection obtained with our model and with the
waterbed model. The sum of the squared differences between our model and the
waterbed model is very low (7.8e−6 mm for the normal displacement and
8.1e−9 mm for the tangential one). These results show that the model follows
theoretical profiles of skin deflection observed under line load. The small errors
found lead us to conclude that the fingertip is mechanically equivalent to an elastic
membrane supported by a bed of springs in static.
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3.3.2 Ultrasonic clic caused by rapid changes in friction

Current touchscreen technologies developed for intuitive human computer
interactions often lacks haptic feedback given by conventional input methods. In
many tasks, one of the main issues for the virtual keyboard on screen is to
reproduce the click sensation. Monnoyer et al. [154] have investigated the
feasibility of modulating friction via ultrasonic vibration to simulate tactile
feedback for keystroke. The vibrations of the ultrasonic lubrication are in the order
of a micrometer and well outside the perceptual window of touch, but it has been
shown that they decrease the friction, via a reduction of the area of contact [234,
237]. Remarkably, this behavior arises even in the absence of sliding or lateral
forces, when the finger is static. In this study, they showed that participants can
perceive sudden changes of friction while they are pressing down. Surprisingly,
only a reduction of the friction coefficient leads to a robust percept. The physical
mechanism that provides such tactile feedback remains elusive. In this section, we
hypothesize that the percept is associated with the sudden release of a latent elastic
strain upon activation of the friction-reduction device. A rapid change of friction,
created using ultrasonic lubrication, results in a subtle skin deformation with
enough amplitude to be detectable.
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displacements of skin points for no change (dotted line), falling friction
(0.2, 0.4, 0.5), and rising friction (−0.2,−0.4,−0.5).

We simulated the interaction between the finger skin and a glass plate under 7
friction changes from −0.5 to 0.5 with a normal force of 4 N applied to the bone
element. Results of the simulation are depicted in Figure 3.4A where displacements
are represented in red and stresses in black. In the falling-friction condition, the
lateral component of the interfacial pressure decreases significantly after the
friction change, which happens at 0 ms. This release of the mechanical stress frees
the lateral displacement of the skin in contact. However, in the rising-friction
condition, the elements start to expand laterally before the mechanical detent, when
the friction is low. Then, when we increase friction, the lateral component of the
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interfacial pressure increases and locks the elements in place. The simulated
median displacements are plotted on Figure 3.4B. They plateau in all conditions but
despite this saturation, the median of all points displacement is 8 times higher in
the maximal falling-friction condition compared to the rising-friction condition.

3.3.3 Stick-slip transition
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To validate the model in dynamic, we simulated finger slippages on a glass plate
with various friction coefficients using the finite-difference mechanical model. A
normal force fn = 1N was firstly applied on the bone, and once a balance was
achieved, a tangential force ft = 1N was added to the bone. In Figure 3.5A, the
surface profile is represented for 3 coefficients of friction from 0.2 to 0.8 at different
positions.

The elements located on the periphery start to slip first, whereas the elements in
the center are still stuck. Strain linear profiles are shown on Figure 3.5B. Their global
behavior is the same for all friction conditions, with a compression ahead the stuck
area and a dilatation behind it. However, their amplitude is highly dependent on
friction and that from the very beginning of the incipient slip.

3.3.4 Bump exploration

Since the development of touchscreens 30 years ago and specially now because of
the health crisis, we feel the need to experience vivid sensations when we touch a
screen. Particularly, the simulation of 3D profiles and shapes on a 2D glass plate
has been widely studied [134, 179, 128]. During an object exploration, it has been
shown that geometry perception is highly correlated with the lateral forces applied
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to the finger [182]. The principle consists in reproducing the 3D sensation of shape
by modulating the lateral forces or their correlated variables (such as friction) on the
subject’s finger. If the friction force increases, the finger will feel more resistance,
giving the sensation of climbing on a hill. Conversely, a reduction in friction force
will simulate a hole. Thus, a 0.3 cm-high/deep and 4 cm-wide gaussian profile can
easily be reconstructed virtually [182].

In this section, we simulated the exploration of a physical and a virtual bump.
The displacement and interfacial pressure experienced by the skin are shown in
Figure 3.6A and B respectively. The bump follows a sinusoidal curve with the
period defined at 40 mm, corresponding approximately to a third of the contact
area. The friction variation follows the same behavior but shifts in space
(Figure 3.6C). The three curves plotted in Figure 3.6D represent the traction profile
at three different locations (during the ascent, on the top of the bump and during
the descent) for a physical and for a virtual bump.
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We computed the mean distance between the traction profiles (blue and red) to
determine a quantitative indicator for assessing whether a surface with a spatial
variation of the friction coefficient can create a realistic tactile representation of a
physical bump. The normalized distances (according to the uniform-friction
distance) are plotted on Figure 3.6E for a bump height from 0.6 to 2.0 mm and a
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friction variation from 0.2 to 0.8. We found a minimum distance when the physical
bump height exceeded 0.8 mm. The optimal friction variation is then equal to 0.4.

3.4 Discussion

The results given in this chapter show the validity of our mechanical model of
human skin in static and in dynamic. The structure of the fingertip was proved to
be mechanically equivalent to an elastic membrane supported by a bed of springs.
This mechanical model ensures a minimal number of parameters to predict and
match available experimental data. It is demonstrated that this simple model gives
us an acceptable prediction of surface deflection [206]. Moreover, damping matches
the viscoelastic response of the skin and particularly the relaxation time of
10 ms [171]. Finally, the discrete-time implementation of Dahl model is reliable to
the dynamic evolution of the friction force and guarantees continuity and
convergence.

The model can be used to highlight the ultrasonic click perception and the tactile
shape illusion occurring when the friction state varies along the surface. Indeed, for
bumps higher than 0.8 mm, a friction change of 0.4 ensures a more similar frictional
stress profile than no friction variation. These findings can be useful to design tactile
interfaces.

Nonetheless, this model has been shown to be computationally efficient in 2D
compared to the finite-element analysis models. However, future work will focus
on developing it in 3D to take into account for the longitudinal deformation as well.

3.5 Conclusion

In this chapter, we proposed a numerical finite-difference model of the finger cross-
section. Finger geometry and material properties data were used to reconstruct a
stress/strain profile that was as realistic as possible. This model can help future
researchers to understand the mechanisms involved throughout an interaction with
an object. Investigating such mechanisms will enhance future developments of the
next generation of sensory-controlled prosthetic and robotic manipulators. Indeed,
in the field of robotics, detecting the friction coefficient will allow us to control the
normal force so that the tangential force is within the friction cone to avoid any
slippage.

The simulated skin surface deformation obtained with the mechanical model
presented in this chapter matches the basic case from the literature. In the next
chapters, we will show that this model predicts a trend quantitatively similar to the
experimental data acquired for different friction conditions not only on initial
contact (Chapter 4) but also when the finger is sliding on a surface (Chapter 5). The
model will be used as a strong predictor of the stress experienced by the surface
layers and thus, by the mechanoreceptors buried inside the dermis (Chapter 6).
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—————————————
Preface to Chapter 4
—————————————

HUMANS efficiently estimate the grip force necessary to lift a variety of objects,
including slippery ones. The regulation of grip force starts with the initial

contact, and takes into account the surface properties, such as friction. This
estimation of the frictional strength has been shown to depend critically on
cutaneous information. However, the physical and perceptual mechanism that
provides such early tactile information remains elusive.

In this chapter, we elucidate the effects of the frictional properties of objects
during initial contact. We found a correlation between participants’ conscious
perception of friction and radial strain patterns of skin deformation. The results
provide insights into the tactile cues made available by contact mechanics to the
sensorimotor regulation of grip as well as to the conscious perception of the
frictional properties of an object.

4.1 Introduction

We lift glasses of water, regardless of whether they are empty or full and whether
they are dry or wet. The sensorimotor mechanisms responsible for this astonishing
performance are far from being understood. The grip forces required to lift an
object are known to be unconsciously regulated to a value typically 20% above
what would cause slippage [67]. Remarkably, this regulation starts from the
moment our fingers touch the surface. It has been shown that just a hundred
milliseconds of contact with a surface is enough to start adjusting fingertip forces to
friction. Humans provide larger grasping forces if the surface is made of slippery
silk but smaller if it is made of sandpaper since it provides better grasp [107, 30]. It
has been further demonstrated that it is friction and not texture, which determines
these adjustments [30]. Since 1 mm of indentation of the fingertip is sufficient to
reach 80% of the final gross contact area, and that fingers move faster than 10 mm/s
toward an object, within these 120 ms the sensorimotor system already should be
able to extract some estimates of the frictional properties from the initial
deformation of the finger pad.

On a physical level, the overall so-called frictional strength of the contact is given
by the number of asperities in intimate contact and their individual shear
strength [17, 63, 160]. It is the measure of the maximum lateral force on the contact
that will lead to slippage. This frictional strength is the main determinant in
regulating grip force applied to lift an object of a given weight [30]. Failure to
properly assess the frictional strength of the surface at initial contact –due to the
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presence of gloves or anesthesia for instance– is followed by larger than usual grip
forces, consequently increasing the real area of contact [238, 8, 155].

Despite its crucial importance, the mechanical deformation that underpins the
encoding of the frictional strength on initial contact remains unclear. It is well
known that the timing of the impulses of tactile afferents encodes the information
related to force direction [22], local curvature [102], edges [177], shapes [122] and
also contains information about the frictional strength [119, 117]. One hypothesis
suggests that, at the mechanical level, micro-slip events at the finger-object interface
induce vibrations of the skin [190, 93]. Another hypothesis postulates that the
sensation of friction is mediated by a radial pattern of skin strain within the contact
area. The magnitude of the strain induces internal stresses, which are 21% smaller
on slippery surface than on high-friction surface [103].

Interestingly, roboticists have leveraged these findings to estimate friction on
initial contact from the gradient of the lateral traction field. This metric is used to
control the force applied by robotic grippers to soft and fragile objects [137, 37, 142].
In haptic rendering it is possible to produce tactile sensations by releasing the
accumulated stress using ultrasonic friction modulation [154]. However, the
perception of the frictional strength with a single normal motion is not as salient.
Khamis et al. recently showed that participants were unable to differentiate a 73%
reduction in friction of a glass plate when it was pressed against their fingertips by
a robotic manipulator [118].

Friction is consciously perceived in a passive condition only when the plate starts
sliding [85, 184, 6, 207]. The change in the frictional state from stuck to sliding is
perceived after a global lateral displacement of 2.3 mm [13]. This transition induces
large deformations of the skin along with a particular strain pattern [56, 217, 6, 212].
These results suggest that large or rapid deformations can elicit a tactile sensation,
but the quasi-static radial strain pattern is too subtle to induce a reliable percept.

We hypothesize that the frictional strength can be perceived when actively
touching the surface. Active exploration is known to promote acuter sensitivity
than passive touch [202, 139, 82]. We present evidence that during the first instant
of contact between the finger and an object, a radial strain pattern exists. Its
magnitude is affected by the interfacial friction and correlates with the perception
of friction. Combined with the results of the motor control literature, a picture
emerges explaining the mechanical basis upon which friction is encoded.

4.2 Materials and Methods

4.2.1 Participants and protocol

Fourteen right-handed volunteers (3 females and 11 males), ranging from 19 to 55
years old, participated in the study. They were naive to the purpose of the
experiments and had no previous experience with haptic devices. None of them
reported having any skin conditions or perceptual deficits. The study was
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conducted with the approval of Aix-Marseille University’s ethics committee
(2019-14-11-003), and the participants gave their informed consent prior to the
procedure.

Participants sat in a chair in darkness and wore noise-cancelling headphones
projecting pink noise, blocking any visual or auditory cues. The last phalanx of
their left index finger was connected to a vertical linear guide, preventing any
lateral movement (Figure 4.1A). The approach angle of the finger was maintained
at 30◦. The entire session was composed of 2 blocks of 20 min, separated by a
10-min break. Participants were asked to compare the slipperiness, a correlate of
the friction coefficient, of the same surface presented with different levels of
friction. The friction of the plate was set by the amplitude of ultrasonic vibrations.
After pressing twice, they stated which stimulus was the most slippery using
dedicated buttons.

4.2.2 Setup

The apparatus combining a friction plate and a custom-made optical system is
shown in Figure 4.1B,C.
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FIGURE 4.1: A. Linear rail to maintain the angle between the finger and the
surface constant equal to 30◦. B. Friction reduction device with custom-made
optical system. C. Experimental setup. The friction between the fingertip
and glass plate is reduced in the presence of flexural ultrasonic waves. A
dual-illumination setup where blue light illuminates the skin at a 20◦ angle,
and red light is normally incident to the glass surface. D. Close-up view of
the illumination combining a dark-field blue light to highlight the fingerprint
ridges, and a red light, coaxially oriented with the camera, to illuminate only
the asperities of the skin in intimate contact with the glass plate. E. Typical
images of the fingertip profile (left) and the asperities in intimate contact
(right).
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Optical system

In order to accurately measure the plate-fingertip interaction, we used a bespoke
illumination apparatus that highlights the topography of the skin, while
synchronously showing the micro-junctions that comprise the real area of contact.
A 450 nm blue light (Thorlabs M455L3) illuminates the fingerprints at a shallow
angle of 20◦. A 660 nm red light (Thorlabs M660L4) is shone via a beam-splitter, so
its principal axis is orthogonal to the surface of the glass and parallel to the optical
axis of the camera. This type of illumination used in [212] leverages the frustration
of the 4% reflection of the glass surface by the skin to image the asperities in great
details. A dichroic filter (Thorlabs DMLP 550) and a set of mirrors spatially
separate the two illumination sources. The images were captured at 300 frames per
second by a high-speed camera (Phantom VEO E310) with a resolution of 512x640
pixels covering a total area of 16x21 mm.

The interaction of the light sources at the skin-plate interface is illustrated in
Figure 4.1D, and the resulting images are shown in Figure 4.1E.

While participants were pressing down, the motion of individual points on the
surface of the skin was tracked using the images from the blue grazing illumination.
The high-contrast images created with the coaxial red illumination show the micro-
junctions formed by the contact at the interface, providing a temporal reference of
the instant when a particular point was in intimate contact.

Ultrasonic lubrication

The frictional resistance of the plate against the skin was controlled by ultrasonic
lubrication [234], allowing for repeatable stimuli where the surface topography and
physicochemistry remained unchanged. The friction reduction device uses a
flexural standing wave to induce micrometric levitation of the skin of the fingertip.
The device is composed of a rectangular glass plate vibrating at a frequency of
29.194 kHz in the 1× 0 mode, with dimensions of 67 × 50 × 5 mm3. The plate is
mounted onto an aluminum frame attached to a 6-axis force sensor (ATI Nano 43)
to measure forces exerted by the finger with 10 mN accuracy.

To demonstrate the ability of the plate to reduce friction, participants were asked
to slide their finger over the surface while the amplitude of the ultrasonic carrier
was modulated with a 4 Hz sinusoid. The evolution of the normal and tangential
forces was measured with a custom-built tribometer. The tribometer relied on a rigid
elastic structure, which nanometre-scale deformation was measured via a Fabry-
Perot interferometer, see [18] for construction details. This high-precision sensor
can resolve forces with amplitudes lower than 1 mN. Participants were asked to
keep the normal force steady around 0.5 N on average. The epochs where the finger
was moving from the right to the left and the vibration envelope increased were
selected (Figure 4.2A). The friction coefficient was computed from the ratio of lateral
to normal forces for each separate epoch (Figure 4.2B). When the finger was steadily
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reduction for increasing ultrasonic amplitude across all trials. The black
line represents the median friction coefficient. C. Vignettes showing the
force at which contact is fully made for a high- and a low-friction condition
respectively. The apparent contact areas are shown on top and the real contact
areas on the bottom. D. Evolution of the normalized apparent area of contact
with the normal force. E. Median normalized apparent contact area for a
normal force of 3 N. Black lines and grey boxes represent mean ± SD. F.
Influence of the vibration amplitude on the normalized real area of contact.
Images of contact area differences between the higher and lower levels of
friction are shown for 1, 2, and 3 N. G. Median normalized real contact area
for a normal force of 3 N. Black lines and gray boxes represent mean ± SD.

sliding and the amplitude of the ultrasonic wave was changed from α = 10−3 µm to
α = 3 µm, the coefficient of friction varied from µ = 0.81 down to µ = 0.18 when
the maximum amplitude was applied, leading to a 78% relative reduction in friction
(Figure 4.1C).
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Since no frictional forces were present during the normal indentation by the
participants during the 2-Alternative Forced Choice (2-AFC) procedure, the friction
coefficient cannot be computed from the force ratio. Thus, we used the area of
contact as a proxy measurement for friction. The area of contact of skin on glass can
be characterized in two ways; the apparent area of contact, which is the
macroscopic area due to the gross deformation of the tissues; and the real area of
contact, which is made by summing the contribution of the microscopic scale
junctions between the asperities of the skin and the glass plate.

The forces at which contact is fully made were computed to see the impact of
friction reduction by ultrasonic vibration amplitude. After applying a Gaussian
filtering to blur the image, we computed the time instant from which the brightness
of the contact image reached the mean value of the brightness for each pixel. These
values of time instants gave us the heatmaps shown in Figure 4.2C. The contact
between the finger and the glass plate initially started towards the center and
expanded radially, for all trials. The center of the contact in the low friction case
experienced ultrasonic levitation, creating the white areas where asperities were
never in intimate contact.

The observed contact areas varied significantly across participants with values
ranging from 84.7 ± 21.5 mm2. The variation is attributed to differences in skin
reflectance, humidity, and fingertip size. The contact areas were normalized to the
median size of each individual to compare the results across all participants. The
apparent contact area is not affected by the ultrasonic levitation (Figure 4.2DE), as
previously shown by Wiertlewski et al. [234]. However, the normalized real contact
area evolved almost linearly with the normal force (see Figure 4.2F), and the slope
of the relationship was negatively correlated with vibration amplitude (Spearman’s
coefficient = -0.28, p < 0.0001). The correlation is illustrated in Figure 4.2G, in which
the maximal vibration amplitude of 3 µm caused a 38% reduction in the contact area,
consistent with ultrasonic lubrication theories [234] and with friction theories [27].
It reveals that fewer asperities were in intimate contact, thus potentially allowing
more lateral movement of the skin unimpeded by friction.

4.2.3 Data analysis

Force data

Force data were synchronized to the images via a signal that triggered when the
normal force exceeded 0.7 N and was interpolated to match the time vector of the
images and denoised with a zero-lag 50 Hz second-order low-pass filter.

Real contact area

Gathering the real contact area followed a three-stage process (see Figure 4.3A): i)
The raw image of the contact area was first normalized to a reference image
containing only the illumination function. ii) Once the uniformity of the light was
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the first instant of contact and filtered with a median filter of radius 5. (4).
Binarized image with Otsu’s threshold obtained from the histogram of the
filtered image of contact. (5). Opened image (dilated with circle of radius 8)
using grayscale mathematical morphological transform of Matlab and ellipse
extraction. (6). Contact area in mm2 as a function of the normal force.
B. Processing stages of the divergence: (1). Raw image of the full finger.
(2). Processed image of the full finger with contrast adjustment and contour
sharpening. (3). Optimal features selection at the first instant of contrast. (4).
Features tracking using Lucas & Kanade algorithm. (5). Computation and
interpolation of the divergence in the apparent contact area. (6). Median of
divergence as a function of the normal force.

restored, a 2d median filter with a 9x9 kernel removes salt and pepper noise. iii)
The denoised and illumination-corrected images were thresholded using Otsu’s
method to measure the number of asperities in intimate contact. The contact
surface in mm2 was computed by summing the number of white pixels scaled by
pixel resolution in mm/px. The pixel resolution was computed for each subject and
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ranged between 0.032 and 0.037 mm/px.

Displacement field

Once the image of the contact was found, we computed the deformation field from
the topographic image obtained with the blue grazing light (Figure 4.3B). Robust
features of interest that lied in the apparent area of contact were tracked. To do
so, the image of contact was registered according to the topographic image, using
a calibration object containing 3 non-aligned points. The registered image followed
the same treatment as the one used to compute the contact area. At the end, the
binarized contact image was dilated with a radius of 8 pixels and an ellipse was
extracted from this image.

Contrast of the topographic image was adjusted, and the contour was sharpened.
The algorithm of Shi & Tomasi [198] was used to select 700 optimal features to track
inside the ellipse of contact. Then, these features were tracked using Lucas & Kanade
algorithm [140]. The tracker tracks each point from the previous to the current frame
and computes the bidirectional error, which is the distance in pixels from the original
location of the points to the final location after the backward tracking. If the maximal
bidirectional error exceeds 1 pixel, the point is considered to be not reliably tracked.

The 700 most salient features of the fingerprint were tracked from the start until
the normal force reached 3 N. The image showing the micro-junctions formed by
the contact at the interface provides a temporal reference to mark when the tracked
points were in intimate contact. Subtracting the position of each point once it first
touches the plate, we obtained the 2-dimensional displacement field. The
displacements of these features are interpolated on a uniformly sampled
rectangular grid to compute the divergence using equation (4.1) and the gradient
function in Matlab. ∫

S
∇ · −→u (x, y)dS =

∫

S

∂ux

∂x
+

∂uy

∂y
dS (4.1)

where ux and uy are the x and y components of the displacement vector u(x, y)
respectively, and S is the apparent area of contact.

The evolution of the median of the divergence field quantified the observed
expansion.

The global displacement was computed for each trial by summing all the
displacements in the apparent contact area. Trials in which the global displacement
exceeded 0.3 mm were removed from the divergence analysis to prevent
participants from using this cue for the discrimination task. Seventy-nine trials out
of 840 were removed.
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4.3 Results

4.3.1 Empirical skin deformation

We can build an intuitive understanding why the skin experiences a radial lateral
stretch by considering that the fingertip is geometrically approximated to a
deformable half-sphere. Upon compression against a flat surface, the skin of the
fingertip changes from a quasi-hemisphere to a flat disk (Figure 4.4A). If the friction
is considered to be infinitely high, the elements in contact are locked in place and
are not able to move laterally. Thus, the length of the arc of the skin L is compressed
to fit within the contact area a. Both of these dimensions can be estimated from the
finger radius R and the normal indentation δ, which depends on how much the
finger is pressing on the surface (4.2). Figure 4.4B plots both lengths as a function of
δ.

L = R arccos
(

R− δ

R

)

a2 = (R2 − (R− δ)2)

(4.2)
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Skin strain ε can be computed with (4.3). For a 3 mm normal indentation, this
model estimates a 10% lateral compression (Figure 4.4C).

ε =
L− a

L
(4.3)

It ensues a volume reduction, which can build-up stress at the interface, if friction
is high. Conversely, if the surface is slippery, a noticeable deformation is observed
(see Figure 4.4D).

The mechanical behavior of the finger observed during the experiment is
qualitatively consistent with the prediction of the geometrical model. Figure 4.4E
shows the evolution of the real area of contact constituted by the micro-junctions
and the movement of the skin in a high-friction and a low-friction condition for a
typical trial. Notably, the real area of contact, shown against a white background,
grows with increasing normal force, and its brightness depends significantly on the
level of friction reduction. This observation is consistent with previous works and
with the adhesive theory of friction, in which the sliding friction force is a function
of the real area of contact made by all the individual asperities in intimate
contact [234, 24].

The displacement vector fields ~u(x, y) are computed from the difference in
position between the final image and the moment when a particular point is
detected to make contact. For typical trials a noticeable difference in skin
movement between the high- and the low-friction conditions is found, see
Figure 4.4E.

4.3.2 Friction discrimination performance

During the 2-Alternative Forced Choice procedure, the reference stimulus was the
highest friction when the plate vibrates with a 10−3 µm amplitude. The comparison
stimuli covered the range of amplitudes from 0.5 to 3 µm at intervals of 0.5 µm,
with each stimulus appearing 10 times. The reference and the comparison were
presented in random order. After pressing twice on the surface, participants had
to indicate which stimulus they felt was the most slippery, following a typical 2-
alternative forced-choice protocol. The procedure is depicted in Figure 4.5A.

We computed the probabilities of responding that the comparison stimulus was
the most slippery, and the mean friction discrimination performance for all subjects
is reported in Figure 4.5B. Despite the considerable inter-subject variability, there is
a significant effect of plate vibration amplitude on the mean success rate (Repeated
measures ANOVA, F(5,55) = 4.77, p = 0.0011). The results were fitted with a
psychometric function, with which we could extract the 75% detection threshold.
Participants were able to discriminate the difference of friction, with differences in
vibration amplitude as low as 1.13± 0.69 µm, which corresponds to a reduction of
the real contact area of only 8%. As the number of asperities in contact decreased,
the skin could freely expand in the lateral direction, see Figure 4.5C.
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The contact area and displacement field in both high- and low-friction
conditions are shown in Figure 4.6A. In the low-friction case, the regions where the
contact was virtually non-existent matched the locations of the regions of maximal
displacement of the tracked points. The amount of contact area was measured via
the local brightness of a 10-pixel radius circle around each of the tracked points.
The displacement of each point positively correlates with the local brightness,
hence with the local density of asperities in intimate contact (Spearman’s coefficient
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of 0.58, p < 0.0001). The data are shown in Figure 4.6B. This relation provides
evidence that at the scale of fingertip features, friction does influence the lateral
mobility.

The lateral displacements of the skin along the x and y axes are shown in
Figure 4.6C for the low- and high-friction cases. The projection along the central
axis reveals that the center of the contact experiences a deformation gradient whose
value depends on the frictional state.
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To explore the effect of friction on the displacement field, we decomposed it into
a constant field, a divergent field and a rotational field (see Figure 4.7A).

Lateral global displacements were estimated by computing the median of all
vectors in the apparent contact area at each time instant. They represent the
constant part of the deformation field. Global displacement takes relatively small
values (avg=0.08 mm ± 0.10 mm SD) (Figure 4.7B).

Figure 4.7D plots the median across trials of the average divergence for
increasing plate vibration amplitude. Intuitively, the averaged divergence of a
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vector field captures its outward or inward flux. A positive divergence implies that
the finger expands radially. The divergence grows with the normal force. The rate
of growth is positively correlated with the vibration amplitude (Spearman’s
coefficient = 0.115, p < 0.0001). The growth of the average divergence is notable at
the early stage of fingertip compression and hits an inflection point after 1 N. After
this inflection point, the dependence on friction is more pronounced. Above 2 N,
the curves flatten, likely due to saturation of the compression of the fingertip
pulp [194, 172]. Despite the saturation above 2 N, the differences in average
divergence are significant (ANOVA, F(6,1569) = 4.85, p = 10−5), with values twice
as large for the low-friction case (3 µm) than for the high-friction case (10−3 µm).
Large divergence reflects that the skin moves significantly without friction. In the
high-friction case, the low divergence values signal the presence of residual radially
distributed stress of the skin.

The curl is a vector denoted infinitesimal rotation of a vector field. In our case,
the curl is directed along the z-axis and is computed as following:

∫

S
∇×−→u (x, y)dS =

∫

S

∂uy

∂x
− ∂ux

∂y
dS−→z (4.4)

As the divergence, curl is computed for each point of the apparent contact area.
Taking the median curl of all points gives the speed of rotation of the finger around
itself. We found that divergence and curl follows the same global evolution against
the normal force. Both metrics are positively linearly correlated with a Pearson’s
correlation coefficient of 0.7726 (p < 0.0001) (see Figure 4.7F). A possible
explanation of this phenomenon postulates that fingerprints align with the
direction of the stimulus, as observed in [56].

4.3.4 Skin deformation and friction perception

The global lateral displacement of the skin, computed from the median of the
vector field at each time instant, did not significantly influence the response of the
participant (Spearman’s coefficient = 0.14, p = 0.2), see Figure 4.7C.

Nonetheless, the probability of correctly identifying the most slippery stimulus
was positively correlated with the amount of diverging skin deformation observed
(Spearman’s coefficient = 0.28, p = 0.009). Figure 4.7E shows the difference in
divergence between the reference stimulus and the comparison stimulus as a
function of participants’ discrimination performance. While the correlation is weak,
friction was unambiguously discriminated when the skin experienced the largest
inter-stimulus difference in divergence. Correlation does not imply causation,
however, in the next part, we were focusing on finding the best predictor of
participant’s answer.
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FIGURE 4.8: A. Typical normal force time series for one trial. B. Force angle
peaks of all trials as a function of the vibration amplitude. C. The probabilities
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4.3.5 Influence of the kinematics of the exploratory procedure

Normal pressure results in a force vector angle which depends on the vibration
amplitude (ANOVA, F(6,1593) = 67.9, p<0.001) (Figure 4.8B). The peak force angle
is on average 9.9◦ ± 4.9◦ SD when the friction is high and 4.2◦ ± 2.1◦ SD when the
friction is low. This suggests that in high-friction cases, tangential forces induced at
the interface limit the global displacement of the finger, whereas in low-friction
cases, tangential forces are released and micro-slips occur. However, the force
vector angle is not correlated with the participants’ answers (Spearman’s coefficient
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= 0.24, p = 0.03), which suggests it was not used as a cue to assess friction
(Figure 4.8C).

Participants were free to press at any normal force and as long as desired.
Consequently, the recorded normal forces (avg = 5.5 ± 3.5 N) and the time to reach
it (mean = 1.47 ± 0.39 s) showed significant variations (Figure 4.8D and E). The
total duration of every trial varies from 1 s to 2.5 s (Figure 4.8F). In any case, the
amount of force applied or the duration of the trial were not significantly correlated
with participants’ answer (ANOVA, p = 0.31 for normal force, p = 0.99 for time to
max force and p = 0.91 for total duration) (Figure 4.8G, H and I). Nonetheless, large
normal forces were found to be associated with low probabilities. Our hypothesis is
that when participants haven’t any valuable cues to discriminate friction, they
press harder to induce larger skin deformation.

The force rates applied by the participants follow a normal distribution of mean
3.6 N/s and standard deviation 3 N/s (Figure 4.8J). In the bar plot in Figure 4.8K, the
probability that participants will identify the comparison stimulus as most slippery
is shown as a function of the force rate for each vibration amplitude. We found that
the force rate has a significant influence on the participants’ answers for the vibration
amplitude α <= 2 µm (Linear Mixed Model, p = 0.018). The faster the indentation
speed, the more the chance to detect correctly the most slippery stimulus. Thus, the
kinematics of the exploratory procedure play a significant role for the low vibration
amplitudes.

4.3.6 Strain energy and mechanoreceptors thresholds

It is worth considering whether the amount of skin deformation is enough to induce
a supraliminal response. We estimate the stimulation of the mechanoreceptors by
computing the strain components, according to the following method.

Strain computation

The strain components were obtained via the same procedure as in [56]. A Delaunay
triangulation was first constructed with the 700 tracked points, only considered once
they enter in contact with the plate. This triangulation is illustrated in Figure A.1A
and C. Then, we used the following formulas to compute the strain components of
each triangle.

εxx =
∂u
∂x

+ 0.5
[(∂u

∂x
)2

+
( ∂v

∂x
)2
]

εyy =
∂v
∂y

+ 0.5
[(∂u

∂y
)2

+
(∂v

∂y
)2
]

εxy = 0.5
[

∂u
∂y

+
∂v
∂x

]
(4.5)

The strain energy densities ud were computed for each triangle based on average
values of Young’s modulus and Poisson’s ratio, respectively equal to 1 MPa and 0.4.
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Note that these values can nonetheless vary from one participant to another.

ud =
E(1− ν)

2(1 + ν)(1− 2ν)
(ε2

xx + ε2
yy) +

Eν

(1 + ν)(1− 2ν)
εxx εyy +

E
1 + ν

ε2
xy (4.6)

The total strain energy on the whole contact area was obtained by integrating the
strain energy densities on a volume, assuming that the strains are uniform for a
given depth of 2 mm [56].

U =
∫

ud dV ≈ 0.002
∫

ud dS (4.7)
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FIGURE 4.9: A. Median longitudinal strain for each vibration amplitude. B.
The strain-rate peaks after 0.4 N for each vibration amplitude. C. Evolution of
the strain energy for various coefficient of friction.

Strain components are shown for a low- and a high- friction case in Figure 4.5C.
Median longitudinal strain components for each vibration amplitude are plotted in
Figure 4.9A. They are all positive, suggesting a skin expansion once the contact is
made, both in the high- and the low-friction condition. Nonetheless, the data show
that the participants’ skin is subjected to a longitudinal strain whose magnitude
depends on the vibration amplitude (Spearman’s coefficient ρ = 0.17, p < 0.0001).
The strain magnitude estimates fall between 2 and 4%, which is sufficient to change
firing rate in FA and SA afferents [66]. The median strain rates were computed for
each of the vibration amplitudes by differentiating the longitudinal strain
component with respect to time. Similarly, the dynamics of the stimulation shows
significant differences between friction condition (Figure 4.9B). They peak at the
very beginning of the normal indentation when the normal force reaches
0.37 ± 0.7 N. This is compatible with the evidence in literature that a stimulation
with a strain rate higher than 8%/s elicits a response in all afferent types [65].

The strain energy densities along the skin surface were computed using (4.6).
Total strain energy follows the same behavior as the divergence with a plateau after
2 N (Figure 4.9C). The action of pressing down against the surface stores
mean=0.32± 0.52 mJ of strain energy. As for strain components, there is a strong
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correlation between the total strain energy and the vibration amplitude (ANOVA,
F(6,1481) = 3.2, p = 0.004).

Finally, median longitudinal strain (Figure A.1H) and resulting strain energy
differences (Figure A.2E) are not correlated with participants’ answers. However,
we found a weak correlation between the strain rate and the probability of
answering that the comparison is "more slippery" (ANOVA, F(5,70) = 2.12, p =
0.023), suggesting that a sufficient deformation speed is required to enable subjects
to sense frictional differences [65].

4.3.7 Ideal Observer Analysis

normalized divergence

criterion

σ1 σ2

µ1
µ2

d' =
µ2 − µ1

σ21 + σ
2
2

0 0.2 0.4 0.6 0.8 1
p(false alarms)

0

0.2

0.4

0.6

0.8

1

p(
hi

ts
)

A B

C

hitsfalse alarms

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

divergence
force angle
global disp
strain rate

SED
force rate

real contact area

Metric d’ AUC
Divergence 0.46 0.61
Force Angle 0.16 0.56

Global displacement 0.14 0.54
Real contact area 0.05 0.52

Force rate 0.09 0.42
Strain Energy Density 0.01 0.48

Strain rate 0.05 0.50

FIGURE 4.10: Ideal Observer Analysis. A. Fitted gaussian curve of the number
of trials when participants are answering reference (red) and comparison
(green) as a function of the normalized divergence. B. Receiver Operating
Characteristics, representing the probability of answering the comparison
when the metric is higher than a criterion (p(hits)) as a function of the
probability of answering the reference when the metric is higher than a
criterion (p(false alarms)). C. The table gathers the sensitivity index d′ and
the area under the ROC curve (AUC) for each metric listed.

To test the contribution of each variable as a predictor of friction differentiation
ability, we computed the performance of an ideal observer. The following variables
were tested: divergence, force angle, global displacement, strain rate, strain energy
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density, force rate, and real contact area. Since global displacement and force angle
were undesired in the experiment, the other metrics were set to NaN (not a number)
for trials that present a global displacement higher than 0.2 mm, in order to evaluate
the contribution of these variables when no other cues were available. The incorrect
trials (i.e. when participants answered that the reference was more slippery) were
first separated from the correct trials, (i.e. when they answer the comparison was
more slippery). Each of the variables was normalized according to the 0.9 quantile
and grouped in bins of 0.05. We counted the correct/incorrect instances in each
bin and fit a normal distribution to it. The sensitivity indexes (d′) were extracted
from the means (µ1 and µ2) and standard deviations (σ1 and σ2) of the Gaussian
distributions of the normalized variables for correct (green) and incorrect (red) trials,
as represented in Figure 4.10A.

The probability of hits is given by the proportion of correct trials for which the
variable produces a response greater than a criterion, whereas the probability of
false alarms is the proportion of incorrect trials for which the variable exceeds the
criterion. The receiver operating characteristics (ROC) were computed from the
probability of hits as a function of the probability of false alarms when the criterion
ranges from 0 to 1. The ROCs are shown in Figure 4.10B for all tested variables. The
larger the area under the curve, the better the predictor. The sensitivity index d′ and
the area under the curve (AUC) of the ROC are summarized in table 4.10C. The
performance of the ideal observer was on a par with the performance of the
participants of the psychophysics experiments. Amongst all tested variables, the
divergence metric leads to the highest sensitivity index and the highest AUC,
suggesting that it is the best predictor amongst the others studied. It is followed by
the force angle and the global displacement, indicating that undesired minor lateral
motion present in some trials also facilitated the friction discrimination task. On the
contrary, the low values of d′ and AUC obtained for real contact area, strain rate,
SED, and force rate, mean that the participants perform at chance according to
those metrics, or they possibly may even interfere with correct judgement,
confirming our findings that the divergence was the most relevant metric
predicting participants performance. Note that in the case of an ideal observer,
choosing a criterion of 13.1 µm/mm for the divergence leads to a probability of hits
of 75%.

4.4 Predictions from the mechanical model

We developed an axisymmetric spring-damper model presented in chapter 3, to
estimate the stress experienced by the skin. The model captures the large
deformation of the skin, its viscoelastic behavior using Kelvin-Voigt material and
the local elastoplastic frictional interaction at the interface.

We simulated the interaction with a plate surface under four different
coefficients of friction from 0.1 to 0.6, with a normal force of 3 N applied to the bone
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element. The simulation was initiated before contact and ran until it reached static
equilibrium. The simulated displacements and interfacial pressure in response to
an external normal force of 1, 2 and 3 N for µ = 0.1 and µ = 0.6 are shown
Figure 4.11A and B respectively. Figure 4.11C shows the simulated divergence of
skin displacement for all friction coefficients. The divergence varies from
∇u = 0.02 for a coefficient of friction µ = 0.6 to ∇u = 0.04 for µ = 0.1. The model
predicts a trend quantitatively similar to the experimental data.

These observed lateral displacements can be explained by the stress acting on
each element because of friction. We estimated those lateral traction in the case of a
low- and a high-friction contact. The normal component of the interfacial pressure
remains identical across frictional conditions. However, the lateral component
directly depends on the friction, with the high-friction case seeing 40% larger
tangential stress (Figure 4.11D). The maximum of the stress is located in the center
of the contact area and is consistent with the traction observed in [103, 142]. In the
low-friction case, the low tangential traction results in a free lateral displacement of
the skin as the skin flattens in contact with the plate. In this case, every point moves
outward such that the contact length approaches the initial curved length of the
fingertip (dashed line). Conversely, in the high-friction case, the tangential traction
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constrains the motion of skin in contact. The elements are secured in place once
they touch the plate, resulting in little displacement and a 40% increase in stored
elastic stress compared with the low-friction case.

4.5 Discussion

A short one-second haptic normal force contact was sufficient to allow participants
to discriminate the frictional strength of a surface. When pressing, the skin
conformed to the surface, and the observed deformation was directly tied to the
frictional strength of the surface. The results demonstrate that no gross lateral
motion of the whole contact area was necessary to elicit the perception of friction.
The observers fundamentally relied on cutaneous cues, involving a particular
spatio-temporal pattern following an outward expansion, quantified by the
divergence of the skin deformation.

The deformation of the skin is caused by the absence of friction at the interface,
unfettering the lateral motion of the skin while it is compressed against the surface.
Under low-friction conditions, fewer asperities are in intimate contact, and
therefore, they cannot hold the lateral force, inducing local slippage. Conversely, in
high-friction conditions, the asperities make sufficiently large contact and thus
restrain lateral relaxation of the skin, which causes an accumulation of the elastic
stress. Psychophysics experiments demonstrated that the magnitude of friction
reduction effect correlates with likelihood of subjects identifying the most slippery
surface. Such frictional effects are accompanied by corresponding skin deformation
changes, which we were able to describe by a biomechanical model. As there were
no net lateral forces present, the pattern of outward skin expansion characterized
by divergence was the decisive factor to assess friction when other cues are not
available.

We estimate that the action of pressing down against a high-friction surface
stores approximately 0.3 millijoules of potential elastic energy in the skin
(Figure 4.9C). This amount is 10 times lower than what was found when detecting
slippage during relative motion, where the strain can reach 25%. This result
suggests that information about the frictional strength is available well before
slippage is detected [13, 56].

The amount of lateral skin deformation during pressing is sufficient to trigger
a significant difference in the activation of all types of tactile afferents [57, 117, 98].
Since the action is faster here, the relative speed between the skin and the glass plate
at the periphery of the contact is larger than 10 mm/s. This speed, combined with
the spatial nature of the deformation pattern, suggests that fast adapting afferents
predominantly contribute to the encoding of friction upon initial contact.

An early estimation of the frictional strength has been associated with early
adjustment of the grip force during precision grasping tasks. New evidence
obtained in the current study extends these findings showing that in a
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well-controlled perceptual task, abolishing all additional contributing factors like
lateral force and texture cues, friction discrimination was possible perceptually.
This indicates that information about the initial skin deformation pattern can be
sufficient to obtain frictional information. However, during object manipulation
beyond initial touch, when load forces develop, more sensory signals become
available, improving force coordination and making overall adjustments to friction
more accurate [117, 103]. Gloves and other mechanical filters are well known to
affect the regulation of grip forces, resulting in an overcompensation of the safety
margin increases regardless of the friction of the surface [8, 103, 119]. The presence
of this mechanical filters might remove the ability to gauge the divergence of the
field during the first instant of contact, hence defaulting motor control to a more
robust grasping state.

The skin deformation increases with the applied normal force, and its rate of
increase is a function of the friction of the surface. Despite growing at different
rates, the divergence of the displacement field reaches a plateau at 2 N of normal
force for all friction conditions, which is similar to the level of grasping force at
which friction starts to influence the rate of grip force increase [107]. This result
suggests that during the first instant of contact, grasp control may rely on the
measured divergence of the skin deformation.

Interestingly, the perception of the softness of an object during active touch is
correlated with the rate of growth of the contact surface [19]. Since friction influences
the rate of change in the elastic energy, we can conjecture that cross-coupling might
exist between softness and friction, with slippery surfaces appearing more compliant
to the touch.

Despite having similar levels of friction variations and observed skin
displacement up to 0.2 mm in magnitude, previous studies in which participants
passively perceived the stimuli showed that the discrimination of friction is a
challenging task [118]. In contrast, the active exploration procedure of this study,
even if constrained, resulted in a fundamentally more successful discrimination of
the frictional conditions. The stark difference could be explained using predictive
coding theory [29]. To determine friction, the observer has to assess the total
deformation separating at least these two components, one encoding the
indentation magnitude and another related to the lateral deformation encoding the
frictional strength. In the active case, observers possess an efferent copy based on
which they could predict the dynamics of gross deformation of the fingertip. The
ability to predict sensory consequences of own actions (reafference) would enable
the nervous system to better extract and isolate sensory signal features related
specifically to the diverging deformation pattern, and thus focus attention on
frictional cues.

Alternatively, it is possible that a difference in indentation speed may have
played the major role determining detectability of the frictional differences. Khamis
et al. [118] report a force rate of 1.7± 0.3 N/s, whereas in this study the force rate is
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3.6 ± 3 N/s, which would provide a more potent activation of fast adapting
afferents (Figure 4.8K).

This study establishes the link between skin deformation and performance in a
friction discrimination task. Similar to the suggestion in [56], an artificial tactile
stimulation stretching the skin radially while the user is pressing down, could
indicate the amount of friction. These cues could facilitate the manual control of
teleoperated devices or render a virtual sensation of slipperiness. The biomechanics
can also inspire the control of robotic grippers and prostheses based on radial
lateral skin stretch [137].

4.6 Conclusion

Humans have the remarkable ability to manipulate a large variety of objects
regardless of how fragile, heavy or slippery they are. To correctly scale the grip
forces, the nervous system gauges the slipperiness of the surface. This information
is present at the instant we first touch an object, even before any frictional force
develops. This study demonstrates that a radial tensile strain of the skin is involved
in the perception of slipperiness during this initial contact. These findings can
inform the design of advanced tactile sensors for robotics or prosthetics and for
improving haptic human-machine interactions.
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—————————————
Preface to Chapter 5
—————————————

TACTUALLY detecting incipient slippage swiftly can be the difference between a
secure grasp and dropping an object. In less than 200 ms, tactile information

is processed to determine the frictional strength of the contact from the deformation
of the skin and react accordingly. Given the thousands of afferents innervating the
fingertips, it is unclear how the nervous system can process the large influx of data in
a sufficiently short time span to make a robust decision whether the grip force needs
to be increased. In this study, we measured the deformation of the skin during the
initial stages of incipient sliding for a wide range of frictional conditions. We show
that the dominant patterns of deformation are sufficient to estimate the distance
between the frictional force and the frictional strength of the contact. From these
stereotypical patterns, a classifier is able to predict if an object is about to slide during
the initial stages of incipient slip. The prediction is robust to the actual value of
the interfacial friction, showing sensory invariance. These results suggest that the
nervous system efficiently encodes tactile information by projecting the measured
deformation of the skin onto a compact basis of deformation patterns, that we call
Eigenstrains. Our findings suggest that only 6 of these Eigenstrains are necessary
to classify the slippage sensed by tens of thousands of afferents. These findings
are relevant to the understanding of the unconscious regulation of grasp, and the
insights are directly applicable to the design of robotic grippers and prosthetics that
rapidly react to external perturbations.

5.1 Introduction

Dexterous tasks, such as picking fruits or writing with a pen, continuously recruit
sensorimotor feedback to detect and avoid slippage. The amplitude of the grasping
forces applied to the object rely on cutaneous afferents, which encode the
deformation of the skin. Using this information, the sensorimotor system
continuously balances between applying enough force to keep the object steady,
while at the same time having a light enough touch to permit posture adjustments.
During this process, a margin of safety between the frictional strength of the contact
(i.e. the maximum admissible lateral force before slippage) and the external load
forces acting on the object is maintained [107]. This safety margin sets the grip force
10% to 20% higher than the minimum admissible force, depending on the
unpredictability of the forces at play [87]. The typical evolution of the forces during
grasping an object is shown in figure 5.1A.

To maintain this safety margin, tactile afferents which encode the
spatio-temporal deformation of the skin are continuously monitored [106]. As a
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cogent evidence, in the absence of tactile sensations following anesthesia, the
dexterity of the participants is drastically degraded because they struggle to
regulate their grip forces [8, 238]. Grip force adjustments are likely triggered by
early signs of incipient slippage of the object in contact with the skin. At a
mechanical level, during incipient slippage, the contact transitions from a state
where it is completely stuck, to an intermediate state where the outer region of the
contact slips. This slip region grows to eventually encompass the entire contact
area, at which stage the stuck area vanishes and the object fully slips [7]. This
transition, predicted by Cattaneo-Mindlin theory [212] and illustrated in
figure 5.1B, induces stereotypical patterns of skin deformation [13], leading to a
compression of the tissues on the leading edge and to a stretch on the trailing
edge [56].
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FIGURE 5.1: A. Normal and tangential component of the lateral force in a
typical grasping task. To avoid slippage, the nervous system regulates the
grasping force fn to keep a safety margin from the maximum load bearing
capacity ft = µ fn. B. Typical evolution of the interaction force, area of contact
and skin deformation during the transition from stick to slip.

Reacting quickly to incipient slip requires processing signals sent by thousands
of afferents to detect a specific pattern in the spatio-temporal deformation. In
addition, the deformation depends on the friction of the surface, but since the safety
margin is independent of friction [30], the detection has to be friction-invariant.
Given the complexity of the task, how can the nervous system process efficiently
the afferent signals in a swift amount of time to quickly detect slippage, regardless
of the friction of the surface, in order to avoid a catastrophic loss of grip?

In this article, we formulate the hypothesis that the nervous system must
compress the peripheral information by projecting it on a compact basis of
functions. This compression removes the redundancy and promotes perceptual
invariance to friction when detecting incipient slippage. To test this hypothesis, we
extracted a compact dictionary of deformation patterns from a large dataset
containing the spatio-temporal evolution of skin strains during the transition from
stick to slip at different frictional conditions. We show that the dictionary is crucial
to efficiently decode the safety margin from the pattern of strain produced during
slippage. These results reveal the contribution of skin mechanics to the detection of
incipient slippage, and can inspire reactive control of robotic grippers based on
tactile events [95, 141].
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FIGURE 5.2: Steps of perceptual computation from a friction-dependent strain
field to a friction-invariant estimate of the safety margin.

5.1.1 Encoding of slippage

At the onset of sliding, the deformation of the skin likely stimulates upward of
thousands of mechanoreceptors, whose neural activity propagates toward the
central nervous system [105, 119, 109]. The timing and the number of the first
spikes of neural activity produced by this deformation contain crucial information,
which is exploited by the nervous system to adapt the safety margin for a stable
grasp [219, 102]. External perturbations elicit responses within 100 to 150 ms [40]
during which central processing only accounts for approximately 15 ms of the total
time [102]. This latency is comparable in magnitude to long-latency reflex
responses, suggesting that the grip force regulation is mediated
supra-spinally [149].

Given the speed of the reaction, the number of stimulated mechanoreceptors,
and the limited capacity of the brain, the nervous system likely compresses the
information contained in the afferents. One possible compression mechanism
involves projecting the incoming skin deformation pattern onto a compact
dictionary of strain primitives. A dimensionality reduction that reduces the
high-dimensional space of the neural information –from upward of 1,000 afferents
in the fingertip down to few principal components– can enable a swift estimation of
the safety margin to determine if more grip force should be applied (Figure 5.2).

5.1.2 Efficient coding hypothesis

The dimensionality reduction conjecture derives from the efficient coding
hypothesis, first introduced by Barlow [11]. Efficient coding postulates that
information is transmitted from the sensory organs to the nervous system with a
minimal number of action potentials, using a compact lexicon that minimizes the
neural activity by removing the information redundancy. Moreover, this lexicon
must be independent of the friction coefficient, since the same reflexive behavior
can be observed on objects having surfaces of various frictional strength [57].

How can we gain access to a likely candidate of this compact lexicon?
Considering that the sensory system evolves in the natural world, a representation
must be created where natural stimuli are encoded efficiently [15]. Therefore, by
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distilling the lexicon from a large sample of natural stimuli, we can find a compact
function decomposition by maximizing the sparsity of the signal. The sparsity
assumption allows us to extract useful patterns from big datasets and, thus, reduce
the computational cost. In the specific case of detecting incipient slippage, these
stimuli are the strain patterns, representative of the deformation of the skin. Similar
dimensionality reduction approaches have been successful in distilling sparse
representation of natural images [163] and audio signals [135]. The sparsity
condition ensures that the information is embedded in a population code with a
minimum number of neurons active at any one time, leading to a more than 20-fold
compression of images or audio waveforms without losing perceptual
accuracy [242]. Similar efficient coding strategies have been observed in touch, and
facilitate the classification of hand gestures from vibrotactile surface wave
propagation [196] or to identify material properties from the vibrotactile signal they
produce [151].

5.1.3 Rationale behind dimensionality reduction

Amongst the numerous dimensionality reduction methods, matrix factorization
methods can efficiently compress natural stimuli. For instance, independent
component analysis finds features separating the signal in statistically independent
parts. When applied to natural images, it recovers a functional basis that resembles
Gabor filters [15], hinting at a possible structure of the computation used in the
early stages of the visual processing. Similarly, Non-negative Matrix
Factorization [131] has been popular for explaining sensory processing since it
promotes basis functions that capture local features. As an example, this
factorization trained on a database containing human faces leads to a dictionary
containing representations of the mouth and the nose.

In our specific case of decoding the safety margin from the skin deformation, we
postulate that the nervous system uses a compact set of basis patterns (i.e. that
includes only a minimal amount of projective axes) to accelerate the processing.
This compact set of bases should capture the most variance of the skin deformation
patterns and should maximally decorrelate the output signal. This set of
requirements makes the principal component analysis the most suited method.
Principal component analysis can be computed by taking the Singular Value
Decomposition of the entire database of strain patterns and truncating the result to
conserve only the first most representative principal components [166, 73]. For an
overview of the dimensionality reduction methods and how it applies to our
specific case, refer to Appendix C.
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5.2 Materials and Methods

5.2.1 Data collection

Twelve volunteers participated in the study. They gave their informed consent prior
to the experiment. Their fingertip was secured in a dedicated 3D printed plastic
shell to ensure a constant angle between the finger and the glass plate around 20◦.
The frictional resistance of the plate against the skin was controlled by ultrasonic
lubrication [234]. The device uses a flexural standing wave to induce a micrometric
levitation of the skin of the fingertip, thereby reducing the interfacial friction. The
rectangular glass plate vibrated at a frequency of 29.97 kHz in the 3× 0 mode, 68×
120× 11 mm3. The friction of the plate could be changed from high, medium and
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low friction, corresponding to average coefficients of sliding friction of 1.1, 0.8 and
0.5 respectively for vibration amplitudes of 0.17, 1.6, and 2.9 µm (Figure 5.3B).

Images of the fingertip were captured at 300 frames per second by a high-speed
camera (Phantom Miro M110). Frustrated Total Internal Reflection (F.T.I.R) was
used to highlight the asperities of the skin in intimate contact with the glass plate,
while darkening everything that is not touching the plate [100]. This technique
create highly contrasted images of the skin asperities at pixel resolution, that is
0.0535 mm. An illustration of the apparatus can be found Figure 5.3A and typical
images for a high- and low-friction case are shown in Figure 5.3C.

The plate moved in the radial direction with a speed of 10 mm/s, for a total
displacement of 20 mm, ensuring that the finger reaches a full slippage (Figure 5.3D).
The normal force was maintained constant by a balance mechanism, and the lateral
force was servo-controlled by a current-controlled coreless motor (Maxon RE 36)
through a capstan transmission (Figure 5.3E).

The haptic surface is mounted onto an aluminum frame attached to a 6-axis force
sensor (ATI Nano 43). Force data was synchronized to the images using a digital
trigger also used to start the movement. The time-domain data were interpolated to
match the time vector of the images. The force data were filtered using a zero-lag
50 Hz second order low-pass filter. The glass plate displacement was measured with
an encoder attached to the shaft of the DC-motor.

5.2.2 Dataset of spatio-temporal skin deformation

The deformation of the skin was measured from the images of the contact
illuminated by frustrated total internal reflection (FTIR). Contrast of the image was
adjusted, and the contour was sharpened. 3000 optimal features were selected
within a fitted ellipse of contact, extracted from the binarized image. The selected
features were nearly equally spaced with a minimum spacing of 10 pixels, to be
sure the entire population of features is equally distributed inside the ellipse of
contact. Then, these features were tracked frame by frame with a sub-pixel
accuracy. The relative displacement of each feature was obtained by subtracting its
current position to the initial value found before the movement started. For good
measure of plate displacement, a checkboard pattern was printed on the glass plate
to get an external reference of the relative motion.

The strain fields were obtained via the same procedure as in [56]:

εxx =
∂u
∂x

+ 0.5
[(∂u

∂x
)2

+
( ∂v

∂x
)2
]

(5.1)

The longitudinal strain components εxx were computed from 0.05 to 6 mm every
0.2 mm of relative position between the finger and the plate during the slippage.
Strains were then interpolated on a grid of size 76× 101.

To find the set of basis function that encodes incipient slippage, we collected the
spatio-temporal evolution of the skin deformation when the participants’ finger
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touched the plate that slid from left to right. We captured the temporal evolution of
the strain pattern of the index fingertip of 12 participants, using 7 levels of frictional
conditions and 4 repetitions, resulting in 336 individual videos. We selected 30
frames of these videos, totaling in 10,080 data points. For each data point, the
spatial strain field of the fingertip was matched to the safety margin Sm. First, the
static friction limit f ∗t was identified from the lateral force time series by
considering the average force when the finger was fully sliding. Then, the safety
margin was computed for all instant in time from:

Sm(t) =
f ∗t − ft(t)

f ∗t
(5.2)

The data set of skin strains is represented by a m × n matrix, ε, where m is the
number of spatial positions at which the strain is interpolated (7,676) and n is the
number of recorded trials times the number of relative positions between the finger
and the plate at which the strain is computed (10,080).
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From the start of plate motion and until full slippage is reached, the finger
experiences longitudinal strains, whose amplitude depends on the frictional
strength of the contact as shown in Figure 5.4A.

5.3 Results

5.3.1 Empirical strain patterns
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During the transition from stick to slip, the finger deforms and the strain field
propagates from the periphery to the center of the contact area. The largest values
of the strain are located at the periphery of the contact. The strain wave is always
compressive ahead of the stuck area (red in figures) and tensile on the trailing edge
(blue in figures) consistent with previous observations [56], see Figure 5.5B. For all
friction conditions, as the plate displacement increases, the magnitude of the tensile
and compressive longitudinal strains increases (Figure 5.5A). The magnitude of the
compressive strain increases significantly with increasing vibration amplitudes
(ANOVA, F(6,329)=2.18, p = 0.045), whereas the magnitude of the tensile strain
decrease with increasing vibration amplitudes (ANOVA, F(6,328)=6.3, p = 0.0091),
see Appendix B. For a high-friction condition, the maximum compressive strain
experienced by the finger is on average 25% larger than when friction is low.
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5.3.2 Model validation

To better understand the influence of friction on the skin deformation during
sliding, we simulate the interaction using a finite-difference time-domain model
capturing the viscoelasticity of the stratum corneum and soft cutaneous tissues as
well as the local frictional behavior. The details of the implementation are
presented in the chapter 3. The model is composed of a chain of massless elements
linked by high-stiffness springs (2.5 kN.m−1). The full chain lies on a bed of soft
springs (31.5 N.m−1) attached to a rigid element modeling the bone to which the
external forces are applied. A normal force fn = 1 N was first applied on the bone
to compress the tissues. Once the static equilibrium is achieved, a tangential force
ft = 1 N is added on the bone. The resulting simulated strain profiles are shown in
Figure 5.5B. The simulated strain fields follow a similar trend than the experimental
ones, with a compressive part ahead of the stuck area and a dilatation behind it.

The fingertip model allows us to observe the pressure and traction fields at the
interface between the skin and the surface that cannot be accessed by experimental
means, see Figure 5.5C. During the transition from stick to slip, we observe that the
elements on the outer edge are the first to slide, since the interaction pressure is
collinear with the friction cone. In the high friction condition, the lateral motion of
the elements is constrained, resulting in a larger skin strain. Conversely, in the low
friction condition, the outside layer experiences lower tangential traction, and the
lateral stress is released for smaller lateral displacement.

5.3.3 Dimensionality reduction

We postulate that the strain field must contain information about the safety margin
before slippage. Since this estimate of the safety margin exists before gross sliding
occurs, the estimate is likely independent of the actual friction coefficient of the
surface. While we do not have access to the neural encoding of the afferent to find a
base of neuronal activation, we can infer it from the skin displacement. Our dataset
allows us to find a potential set of basis patterns expressed in terms of strain fields.

To find the Eigenstrain patterns, we performed a Singular Value Decomposition
(SVD) of the 10,080 individual strain patterns contained in the dataset. The method
outputs a set of orthogonal eigenvectors ui(x) representing the dictionary of strain
patterns, and eigenvalues σi, whose magnitude relates to the variance explained.
The weight of each Eigenstrain as a function of time is embedded in v(t), such that
each vector vi reveals the temporal evolution of the ith eigenvectors. To compress
the information, we selected the first r elements of the set. The original evolution
of the skin strain can be recovered by adding these eigenvectors, weighted by time-
dependent vectors, œivi(t) as follows.

ε̂(x, t) =
r

∑
i=1

ui(x)œivi(t) (5.3)
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FIGURE 5.6: A. Six first bases ui. B. Temporal evolution of the weights of
the six bases for a low and a high-friction condition (in violet and green
respectively).

The first six primitives are shown in Figure 5.6A. u1 is the major principal
component, illustrating the typical pattern of compression ahead of the stuck area
and stretching behind it. u2 and u3 include higher frequency details at the
periphery of the contact, whereas the following bases improve the details at the
center of the contact area.

The figure 5.6B shows the recruitment of each basis œivT
i as a function of time,

for the high and low friction coefficients. The recruitment of the first basis differs
between high and low friction conditions from the early stages of the slippage,
when the finger has moved 0.25 mm relative to the plate (Spearman’s correlation,
ρ = −0.17, p = 0.0024). The amplitude of the first basis captures the intensity of the
skin deformation. On the other hand, the recruitment of bases 2, 4, 5 and 6 are not
significantly impacted by the level of friction. Similarly, the recruitment of the third
basis changes significantly with friction when the relative displacement is higher
than 1 mm (Spearman’s correlation, ρ = −0.21, p = 8.4 × 10−5). œ2vT

2 do not
significantly differ between the friction conditions, suggesting that the friction does
not significantly influence the tensile pattern embedded in u2.
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to a ten-fold testing when taking 90% of the data for training and 10% for
testing, and the light green line corresponds to a cross-subject testing when
only one subject among 14 is used for testing. The solid lines and shaded
areas stand for mean ± std. Classification rates using the whole strain matrix
ε are given inside the dotted box. C. Time needed for the classification
using ΣVT normalized by the time using the whole matrix of strains for
the cross-subject and the 10-fold classifier. D. Kullback-Leibler divergence
and sparsity of the V matrix for an increasing number of bases. E. Effect of
safety margin quantization on the classification rate when using 6 bases for
the decomposition. The confusion matrix is shown for 5 classes. F. Effect of
time and space contributions to the classification rate from 6 temporal values
to 6 spatial values (bases).

5.3.4 Tactile encoding efficiency of the safety margin

We trained two support-vector machine classifiers to predict the safety margin from
the recruitment of the basis œvT. The first one was trained using 90% of the whole
dataset (10-fold) and the second one with data of the whole subjects, except one
which was used for testing (cross-subject). The prediction map using the first two
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bases with the 10-fold classifier is shown in figure 5.7A for 2 classes of safety margin:
higher and lower than 0.5.

Compressing the tactile information with only 2 bases leads to a classification
rate of 70%, whereas this number increases with the number of bases and exceeds
90% of accuracy for 6 bases (see Figure 5.7B). Adding more than 6 bases leads to
marginal increase of the classification rates, and the performance of the 10-fold
classifier drops when using the entire dataset. The classification rates for
cross-subject classifiers are lower and present larger standard deviations than the
one with a ten-fold training, due to the high inter-subject variability.

Since humans react in a remarkably short amount of time, we qualitatively
compared the speed of each classification approach, by studying the influence of
the number of bases on the computational effort. To get a qualitative estimate of the
computational effort, we computed the time needed for the cross-subject and
10-fold classifiers to perform the prediction, normalized by the time of classification
using the whole matrix of strains (Figure 5.7C). For both classifiers, the predictions
using a limited number of bases are performed more than 600 times faster than
using the entire strain data; the latter takes around 23 s. Moreover, the relative
classification time between the limited number of bases and the entire strain matrix
is minimum when considering only 6 bases. This minimum of computational effort
suggests that the 6-bases kernel provides an efficient estimation, while preserving
accuracy.

This value matches the tradeoff between precision and compactness of the bases.
Kullback-Leibler divergence quantified the dissimilarity between ε(x, t) and ε̂(x, t)
as follows:

DKL(ε, ε̂) = ∑
(

ε(x, t) ln
ε(x, t)
ε̂(x, t)

− ε(x, t) + ε̂(x, t)
)

(5.4)

A small value of divergence means that ui accurately captures the information
contained in the strain data in all conditions. Divergence decreases with the
truncation rank r and plateau for r = 9 (Figure 5.7D), denoting that a higher
number of bases leads to more accurate estimate of the strain fields. On the other
hand, the number of bases that need to be activated, should also be restricted to
promote compactness of the information. The compactness can be measured with
the sparsity, expressed as the l2 norm of the matrix V for each value of the rank r, as
follows:

S(v) =
√

∑
i

v2
i (5.5)

A higher number of basis increases the complexity of the computation since the V
matrix become sparser (Figure 5.7D). A sparse matrix may result in a spreading of
the main information on many primitives, which will be hard to capture in few
milliseconds. Overall, selecting less than 6 bases lacks of estimate accuracy,
whereas considering more than 6 bases leads to a recruitment matrix V not compact
enough, which is less efficient to process

To increase the accuracy of safety margin estimates, we reduced the interval
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quantization of the safety margin by increasing the number of classes from 3 to 10
(Figure 5.7E). The classification rate using 6 bases decreases when the number of
classes increases, but stays higher than 0.7 even when the safety margin was
predicted with a 0.1-precision using 10 classes. Increasing the discretization of the
safety margin comes with a significant tradeoff in the classification rate.

We also studied the influence of adding short-term memory to the classifier. We
trained the classifier with knowledge of the short-term evolution of the recruitment
of each basis. We find that the accuracy of the safety margin estimation using the
10-fold classifier trained with the contribution of the 6 bases at a given time instant
was 20% higher than using the contribution of the first basis at 6 consecutive
instants. However, adding priors on the weight of the first and second bases
increases the accuracy of the cross-subject classifier by 10%, in comparison with
exclusively spatial or exclusively temporal values (Figure 5.7F).

5.4 Discussion

The findings suggest the existence of a pre-neuronal compression of the tactile
information of incipient slippage. The six strain primitives obtained with the
singular value decomposition enable a reduction of the dimensionality of the tactile
signal while keeping a sufficient accuracy of the predictions. We found a major
contribution of the compressing strain in the encoding of friction, which has
recently been shown to excite the response of fast adapting afferents of type 1
(FA-I) [57].

The first 6 bases were found to optimally encode the safety margin, leading to
a 90% accuracy of the safety margin quantized over 2 classes. This estimation is
reliable compared to the 76% accuracy obtained with a similar classifier for colon
cancer detection [4]. When the safety margin was quantized with more than 7 classes
this accuracy decreased to 85%. Globally, if the number of bases exceeds the number
of classes, the classification rate obtained is higher than 80%. However, since the
goal of the sensorimotor system is to react to an excessive reduction of the safety
margin, a quantization with only two classes is a perfectly acceptable hypothesis.

The safety margin was estimated at specific time stamps, without taking the
history of the deformation that led to a particular strain pattern. Taking dynamical
effects into account could help improve the prediction of an impending slippage.
Since the adjustment of the grip force is a continuous process, it is likely that the
nervous system constantly monitors the time differences in strain to make a
judgment. Assuming that the detection of slippage makes use of predictive coding,
the evolution of the strain could be associated with priors on the weight and
material property to lead to a robust classification [35].

The classification rate of the 10-fold classifier is 10% lower when the prediction
is made with exclusively temporal evolution of the first base compared to purely
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spatial one. Future investigations will include several scanning speeds to properly
study the influence of the skin dynamics to the classification of the safety margin.

It is worth noting that the mechanics dictating the skin deformation is strongly
influenced by the friction of the surface. Large friction coefficients lead to large
compressive and tensile strain of the skin, in line with previous findings. The strain
profiles observed when the finger is sliding on a friction-modulated glass plate
matched with the previous one observed in the literature with a slip annulus
forming at the periphery first [56, 1, 7]. The classifier successfully removes the
dependence to friction, suggesting that the information of the safety margin is
contained not in the magnitude of the strain, which is strongly influenced by
friction, but in the relative recruitment of the different Eigenstrains.

In this study, the database is constituted with data acquired in constrained
conditions when the plate is moving in the ulnar direction to mimic a slippage of an
object due to gravity. Since it is known that the direction of the slippage has a
significant influence on the strain experienced by the finger [56], future studies will
take into account all directions along which the safety margin can be estimated.
Another limitation is that the glass plate used for this experiment is perfectly flat,
contrary to most of the objects manipulated in everyday life, which are textured
and curved. To extend these results to the robotic field to control reactive grippers,
the effect of material properties, curvature and texture must be investigated.

Interestingly, the optimal basis of strain pattern resembles a collection of Gabor
filters, containing alternative patterns of compression and tension. While the first
basis has only one cycle of alternating strains, the higher order pattern contains a
higher frequency feature that captures finer details of the interaction. It has been
hypothesized that a bank of Gabor filters is used to encode tactile
features [delhaye2019rapid]. Our experiment only studied one direction of
stimulation, which would follow that of gravity in a grasping task, but it is likely
that different orientations might be encoded in the nervous system. These filters are
central to the perception of movement in the visual system, and their presence in
the tactile perceptual system suggests that their function is shared across
modalities.

5.5 Conclusion

The corresponding temporal evolutions of the recruitment of each of the six bases,
compactly represent the evolution of the strain field. By virtue of its compactness,
this code simplifies and accelerates the decoding by the nervous system, which is
needed to react in a timely manner while avoiding slippage of an object in hand.
Even if the existence of this compact lexicon in the human nervous system still
needs to be confirmed, the Eigenstrain decomposition can be directly used to design
efficient control policies for robotic grippers that can manipulate object while
preventing slippage [james2018slip, 137].
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—————————————
Preface to Chapter 6
—————————————

IN the previous chapter, the strains experienced by the finger skin surface when
interacting with objects with various friction coefficient was quantified via

imaging methods. However, the mechanoreceptors, buried inside the skin layers
are subjected to a filtered version of these strains since the skin is a viscoelastic
medium acting as a mechanical filter. In this chapter, I expose a new model based
on contact mechanics to quantify the sensitivity of the mechanoreceptors to the
patterns of skin deformation highlighted in the first two chapters. This model also
correlates with the perceptual thresholds that limit the resolution of both spatially
distributed events, also known as the two-point threshold, and temporally distinct
events, known as the gap-detection threshold. Thus, in the second section, I am
interested in how these limits impact the perception of discrete moving stimuli that
evolves both through time and space. We found that the spatiotemporal gap of
stimulation can be masked, hinting at the potential role of skin mechanics in an
illusion of continuity.

6.1 Introduction

Our ability to perceive dynamic simulations on our skin is essential for interacting
with our environment. However, the sense of touch, like vision and audition, is not
a perfect sensor. In vision, two stimuli sparsely spaced in space and time give us
a persuasive impression of motion because the visual system blurs discrete images
as a continuous moving scene [3]. The present study is interested in understanding
whether similar behavior in touch is caused by the viscoelastic behavior of the skin
that applies a spatio-temporal filter to the mechanical signal on the surface.

Touch is subject to finite spatial and temporal acuity. The spatial acuity depends
on body location: two points threshold experiments report that two indentations of
the skin spaced lower than 2 mm in the fingertip and 20 mm in the forearm can be
felt as one [144]. Similarly, in time two successive stimuli can be felt as one if they are
less than 30 ms apart, it is called the gap-detection threshold [169]. One hypothesis
is that the mechanoreceptors, buried several millimeters deep in the tissues, receive
a degraded image of the mechanical interaction that happens at the surface. This
degradation is caused by the viscoelastic properties of the skin that diffuse and delay
stimulation, therefore acting as a mechanical filter to surface pressure.

Considering this spatio-temporal filtering, Kitagawa et al. [121] have already
proved that the illusion of continuity exists in the vibrotactile domain. Moreover,
Cholewiak et al. [39] showed that the feeling of continuous motion depends on two
parameters, the burst duration and the interburst interval. In this chapter, I propose



6.2. Viscoelastic model of the skin 91

to study whether the spatio-temporal sensitivity of human is caused by the
viscoelastic properties of their skin or not, with the help of a viscoelastic model.

6.2 Viscoelastic model of the skin

To estimate the stress inside the tissues, the skin can be modeled as a viscoelastic
semi-infinite half plane [225]. In this context, the spatio-temporal stimulation at the
surface is spatially filtered by continuum mechanics, which diffuses stresses σ(x, t)
deeper in the soft tissues, where the mechanoreceptors are located. These stresses
change consequently the local strains, following a linear first-order viscoelastic
relaxation, resulting in a temporal filtering of the original stimulation
(Figure 6.1A,B).

v

σ(x, t)

surface

mechanoreceptors

a

b
p(x, t) σ(x, t)|z (x, t)|z

p(x, t)

x
z

Boussinesq
& Cerruti

Visco-elastic
behavior

FIGURE 6.1: A. Infinite half-plane model of the skin. The stress deep in
the skin is a filtered version of the stimulus applied on the surface. B.
Computation steps of the strains deep in the skin

6.2.1 Spatial stress distribution

To compute the strain to which the mechanoreceptors are sensitive to [208], the
model first calculates the stress using Boussinesq and Cerruti equation [108]. This
model considers the skin as a semi-infinite homogeneous elastic medium on which
a localized normal pressure p(x, t) and tangential traction q(x, t) are applied. The
equation (6.1) leads to the shear and orthogonal normal stresses as a function of
their position x and depth z as follows:

σx = −2 z
π

∫

S

p(s, t)(x− s)2ds
((x− s)2 + z2)2 −

2
π

∫

S

q(s, t)(x− s)3ds
((x− s)2 + z2)2

σz = −
2 z3

π

∫

S

p(s, t)ds
((x− s)2 + z2)2 −

2 z2

π

∫

S

q(s, t)(x− s)ds
((x− s)2 + z2)2

(6.1)

If only a localized normal pressure P is applied on the skin, then the equations
become:

σx = −2 P
π

x2z
(x2 + z2)2 and σz = −

2 P
π

z3

(x2 + z2)2 (6.2)
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These equations result in a blur of the pressure profile on the surface which diffuses
the stresses on a larger area and removes the high spatial frequency content of the
stimulation [226].

6.2.2 Temporal attenuation of strain

The stresses induce a deformation of the body which follows the viscoelastic
Hooke’s law. The compressive and shear strains ε can be expressed, in the Laplace
domain, as a function of the local stresses:

[
L(εx)

L(εz)

]
=

1
E∗

[
1 −ν

−ν 1

] [
L(σx)

L(σz)

]
(6.3)

where L is the Laplace transform, ν is the Poisson’s coefficient and E∗ = E + sη

is the complex Young modulus of the skin layers, with E = 1.1 MPa the elastic
modulus and η is the viscosity of the skin and s the Laplace operator. Time variation
of the strain is computed numerically using a 4th-order Runge-Kutta solver. The
viscoelastic behavior leads to a low-pass filtering of the surface pressure with a cut-
off frequency set to E/η = 100 Hz.

6.3 Mechanical stresses and strains at the depth of the
mechanoreceptors

6.3.1 Influence of friction on strains during a simple press

The pressure and traction applied on the skin surface during a simple press on a high
and a low friction surface were computed with the mechanical model detailed in 3
and plotted in Figure 6.2A,B. The stress profile deep in the skin tissue are shown in
Figure 6.2C. Thus, the mechanoreceptors located 2 mm under the skin surface will be
subjected to a resulting stress 20% higher in the high-friction than in the low-friction
case (Figure 6.2D).

The tangential strains 2 mm below the skin surface are plotted in Figure 6.2E
and Figure 6.2F shows the time evolution of the total strain at the interface, which
is 20% higher in the high-friction case. This 20% difference between a high and a
low friction case is in the same order of magnitude of the just-noticeable difference
typical for the somatosensory system, suggesting that signalling differences between
two frictional conditions is possible.

6.3.2 Evolution of strains during the transition from stick to slip

The same mechanical model was used to compute the stress the skin is subjected to
when sliding on a high- and a low-friction surface (Figure 6.3A). Pressure and
traction distribution on the skin surface (Figure 6.3B) creates a stress diffusion deep
in the skin layers (Figure 6.3C), due to Boussinesq & Cerruti model. The stress
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FIGURE 6.2: Influence of friction on in-depth strains during a simple press.
A. Evolution of interfacial pressure and skin deformation. B. Normal and
tangential stresses for a high- and a low-friction condition. C. Spatial stress
distribution inside the finger skin. The black dots correspond to the position
of the mechanoreceptors, separated by 1.2 mm and 2 mm below the skin
surface. D. Normal and tangential stresses at the mechanoreceptors’ depth.
E. Temporal attenuation of the strains 2 mm below the skin surface. We can
see a dilatation of the central part and a compression aside. F. The internal
layer of the skin is almost 20% more compressed in the high-friction case.

profiles 2 mm below the skin surface are highly asymmetric especially for the
high-friction condition.

The tangential strains 2 mm below the skin surface show a maximal compression
of 30% in the center of the contact area and a dilatation of the skin on both sides of
the contact area (Figure 6.3E). The time evolution of the total strain at the interface
is 18% higher in the high-friction case than in the low one (Figure 6.2F).
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Recent findings showed that slippage could be detected on a perfectly flat
surface, if the compressive strain of skin surface is larger than 25% [13, 56]. We can
now affirm that it corresponds to a threshold of 15% at the depth of the
mechanoreceptors.

-10 -5 0 5 10
0

10

20

30

-20

-10

0

10

20

-10 -5 0 5 10
x (mm)

ta
ng

en
tia

l s
tr

es
s 

(k
P

a)
no

rm
al

 s
tr

es
s 

(k
P

a)

x (mm)

-5 0 5
-8

-6

-4

-2

0

-5 0 5
-8

-6

-4

-2

0

-5 0 5
-8

-6

-4

-2

0

-5 0 5
-8

-6

-4

-2

0

T
an

g
en

ti
al

 s
tr

es
s

N
o

rm
al

 s
tr

es
s

x (mm)

z 
(m

m
)

x (mm)

z 
(m

m
)

t = 170 ms

x (mm) x (mm)

µ=0.1µ=0.6

z = 2 mm

relative position
between the
finger and
the plate

A B

C D

E F

0

2.5

5

-10 -5 0 5 10
0

10

20

-10 -5 0 5 10
x (mm)

ta
ng

en
tia

l s
tr

es
s 

(k
P

a)
no

rm
al

 s
tr

es
s 

(k
P

a)

µ=0.1

µ=0.6

x (mm)

-10 -5 0 5 10
-60

0

60

30

-30

x (mm)

T
an

g
en

ti
al

 s
tr

ai
n

(%
) |"

xx
|

(%)

0 50 100
time (ms)

0

10

20

30

-10 -5 0 5 10
-60

-30

0

30

60

x (mm)

∫

FIGURE 6.3: Influence of friction on in-depth strains during sliding. A.
Evolution of interfacial pressure and skin deformation. B. Normal and
tangential stresses for a high- and a low-friction condition. C. Spatial stress
distribution inside the finger skin. The black dots correspond to the position
of the mechanoreceptors, separated by 1.2 mm and 2 mm below the skin
surface. D. Normal and tangential stresses at the mechanoreceptors’ depth.
E. Temporal attenuation of the strains 2 mm below the skin surface. We can
see a dilatation of the central part and a compression aside. F. The internal
layer of the skin is almost 20% more compressed in the high-friction case.
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6.4 Tactile persistency

In the previous section, we show that partial slippages can be detected on a flat
surface due to a compressive strain of 15% at the depth of the mechanoreceptors.
However, it was long hypothesized that the relative motion between the skin and
an object is mediated by micro-vibrations produced by dynamic events such as
micro-slippage. This hypothesis was formed because it was observed that the
relative motion could escape detection if the surface was atomically smooth [207].
Thus, this viscoelastic model of the skin can serve to study how a moving signal on
the surface triggers the mechanoreceptors buried inside the skin layers.

6.4.1 Spatio-temporal model

The spatio-temporal model presented in 6.2, embodies two main characteristics of
skin mechanics that could explain perceptual confounds. First, the spatial filtering
provides a lower limit on the resolution of individual tactile stimulation, which
could be the cause of the two-points threshold [208]. Second, the temporal filtering
is also likely to impede discrimination between two successive impulses at the
same location.

In realistic conditions, such as an object moving on the surface of the skin, the
stimulus evolves spatially and temporally. If the velocity of the moving stimulus is
constant then, a discontinuity will induce impulsive pressure on the surface, which
are both separated in space and time. The resulting strain in the soft tissues, 2 mm
deep in the skin will be a filtered version similar to Figure 6.4.
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FIGURE 6.4: Spatio-temporal representation of the normal strains applied on
the surface (black bars) and 2 mm deep in the skin (blue lines and contour
plots)

This filtered version of the 2 impulses looks like two blurred signals in space and
time, but it is not clear whether the central nervous system is able to discriminate
between these two, given a spatial density of the mechanoreceptors. Indeed, they
can be induced by two discrete stimuli or a larger and longer one with one missing
point. Future work will focus on computing the probability of both scenarios using
for example a Wiener deconvolution since the characteristics of the filter are known.
Anyway, the results of the simulation would like us to think that humans have a
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tactile illusion of persistency, where 2 discrete stimuli can be felt as one continuous
stimulus. In the next section, this illusion will be tested experimentally on human
subjects.

6.4.2 Materials and Methods

Procedure

This experiment was achieved on subjects’ forearm, due to its size. Although the
forearm and the finger skin have different dynamic parameters, both viscoelastic.
Thus, similarly to the finger, the forearm skin is filtering a stimulus on the surface
both spatially and temporally due to its viscoelasticity.

The experiment starts with the participant’s spatial and temporal acuity
measurements. The spatial acuity was defined as the two-points threshold, which is
the smallest spacing between 2 points that can be identified as two by the subject
(Figure 6.5A); and the temporal acuity was computed using a speaker which was
activated twice separated by a short glance (Figure 6.5B). To estimate the thresholds
of each subject, we used a MoBS (Modified Binary Search) technique, an adaptive
procedure allowing a rapid convergence to the actual threshold.

Stimuli

Discrete spatio-temporal stimuli were provided via a wheel rolling without
slippage on the skin (Figure 6.5C). The wheels were imprinted with a square-wave
pattern which duty cycle (ratio between the size of the tooth and the spatial period)
could be changed (Figure 6.5D). The wheels were driven by a servo-controlled
DC-motor (Faulhaber 2657W012CXR-275) on a linear rail and maintained at a
constant normal force via a low-stiffness suspension. Participants were presented
with six 50 mm-diameter wheels with a fixed tooth length and variable gap. The
duty cycles of these wheels vary from 50% to 90% based on preliminary
investigations, which corresponds to a range of spatial periods between 11.8 mm
and 22.3 mm.

A 2-Alternative Forced Choice procedure was chosen for the psychophysical
experiment. A random series of paired stimuli (one patterned and one smooth
wheel) was presented to the participant’s forearm. In each trial, subjects had to
report which wheel was the smooth one and his/her answers were saved. Three
different linear speeds were tested for each wheel: 5 cm/s, 10 cm/s and 20 cm/s.
The setup is shown in Figure 6.5C and the stimuli presented in Figure 6.5D.

6.4.3 Results

Spatial and temporal acuity measurements

The spatial acuity measurement varies across participants with values ranging from
5.8 ± 3.9 mm. These values are lower than the expected two-points threshold on the
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FIGURE 6.5: A. Spatial acuity measurement. B. Temporal acuity measurement
with the speaker. C. Photography of the experimental setup with wheels. D.
Schematics of the presented stimuli. Trajectories follow a no-slip condition.

forearm (20 mm) and this is partly due to the fact that we used our custom-made
apparatus with sharp pins. The temporal acuity measurement is also variable across
subjects with values ranging from 44 ± 29 ms.

Psychophysical experiment
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deviation computed with a bootstrap method. B. Correct identification ratio
in the space-time domain. The color gives the correct identification ratio, with
blue corresponding to a ratio above 75%. The red lines plot the spatial and
temporal acuity measurements.

The results of eight participants are presented in Figure 6.6A. The percentage of
correct identification of the smooth wheel decreases with increasing duty cycles, for
all three speeds. At the lowest duty cycle, the mean ratio of correct identification for
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all subjects and speeds is approximately 90% and at the highest duty cycle, the
subjects made correct identification in 60% of cases in average. According to the
method of constant stimuli, this study suggests that the limit of the spatio-temporal
acuity could be located around 75% of duty cycle, which translate to a gap of
3.3 mm. The effect of speed on the ratio of correct identification is present only for
duty cycle higher than 75%. Before this threshold, the proportion of correct answer
is slightly higher for the lowest speed. However, above this threshold, participants
have a better chance to identify the smooth wheel correctly when the highest speed
is presented, shining light to a contribution to the mechanoreceptors sensitive to
higher temporal frequency. Figure 6.6B maps the ratio of correct identification in
the spatio-temporal space (with logarithmic scales). Red dots code for low
percentage when blue dots code for higher score. The spatio-temporal sensitivity of
skin mechanoreceptors are highlighted by the 3 colored zones. On this figure, we
can see that the zone when the spatial frequency is lower than the mean of the
spatial acuity and the temporal frequency lower than the mean of the temporal
acuity elicits more than 75% of correct identification. Furthermore, there is one
point outside this zone where the ratio of correct identification is higher than 75%,
but the temporal frequency is higher than the temporal acuity limit. Our hypothesis
is that the frequency of this stimulus might turn on the Pacinian Corpuscles, which
might help to distinguish the discontinuity.

6.5 Conclusion

The study conducted extends the notion of two points threshold to discontinuous
mechanical events that evolve both in time and space. All in all, the results are
consistent with the hypothesis that the viscoelastic behavior of the skin acts as a
filter that blurs the mechanical stimulation on the surface. While this study focused
on square-wave signals displayed on the forearm, the approach can be extended to
richer spatio-temporal signals and to different body parts.
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IN this thesis, I strived to understand how the skin deforms when interacting with
objects to extract tactile invariants as friction. This chapter first summarizes the

main contributions and discuss in a second time the implications of the results and
potential research leads.

7.1 Summary of the contributions

Everyday tasks involve a fine manipulation driven by the friction between the
fingertip and the object in contact. The applied grip force should be strong enough
to avoid a catastrophic loss of grip, yet gentle enough so that the object is not
squeezed in our hands. For example, when removing the stem of a cherry, the
tangential force is increasing gradually at the interface. However, we are able to
control our grip force in real time so that the cherry does not slip away, yet it is not
getting squeezed. This grip adjustment is as much swift as precise since the safety
margin is maintained between 10 and 20% in less than 200 ms.

The first contribution of this thesis is the development of a mechanical model of
the finger skin (see chapter 3). This model is able to predict the frictional dynamics
of the interaction with an object and, thus, can be used as a strong predictor of the
stress experienced by our mechanoreceptors buried deep inside the skin layers.

In chapter 4, I showed that humans are able to gauge the slipperiness of a surface
at the very beginning of the contact, before any tangential force is observed so before
any shear deformation of the skin occurs. This astonishing ability emerges from a
specific pattern of deformation, appearing as an outward skin expansion. I found
that the amplitude of this pattern is correlated with friction at the interface.
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The regulation of grip forces starts at the very beginning of contact, and
continue during the transport and release of the object. During the subsequent
phases, the deformation of the skin following partial slips contain important cues
that are used to quickly react to potential slippage by adjust the grip force in real
time. But the pattern of deformation depends dramatically on the coefficient of
friction of the surface. Given the widely different signals, how can the nervous
system decode slippage? In chapter 5, I present a novel method to quantify the
margin from total slippage from the skin deformation during incipient slippage.
This method, based on dimensionality reduction, has been proven to correctly
estimate the safety margin with an 85% accuracy, regardless of the level of friction.

Finally, in chapter 6, we looked at the sensitivity of the mechanoreceptors to
these skin strain patterns. Since they are located deep in the skin layers, the
mechanical stress they are subjected to is less important due to the skin acting as a
high-frequency filter. With the help of a parsimonious model, we discovered a
tactile illusion of persistency, producing a perception of continuous motion when
not.

7.2 Applications to robotics

In this thesis, I was mainly focused on human tactile perception. However, I had the
chance to collaborate with roboticists to initiate the importance of studying how a
soft material is deforming to distill tactile attributes (friction, edges, shapes...) when
interacting with objects. The first results we obtained so far was about curvature
perception with a tactile sensor developed in my lab, called ChromaTouch, based on
color-mixing principle [137]. It has been demonstrated that a stable grasp depends
on local curvature [97]. Indeed, when holding an object, we generally try to find the
most concave part in order to lift it efficiently. With ChromaTouch, we presented a
method to estimate the local curvature after a millimeter-size indentation from the
sensor deformation and Hertz contact theory [138, 187] (Figure 7.1).

We can imagine robots that, in a near future, can adjust their grasping force
according to the frictional strength earlier, using this divergent pattern of
deformation highlighted in chapter 4. Also, the dimensionality reduction method
presented in chapter 5 could help in turn to control prosthesis or robotic grippers
for soft objects manipulation as fruits or biological materials, by providing gentle
touch to robots.

7.3 Future directions

This thesis contributes largely to the neuroscience field by highlighting the
mechanisms responsible for an early and precise adjustment of the grip force. The
findings can improve haptic human-machine interaction and can inform the design
of advanced tactile sensors for robotics or prosthetics. The multidisciplinary
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of the markers. B. Profile of the sensor deformation (top) and displacement
of the central cross-section of the sensor (bottom). C. Results of the curvature
estimation for an increasing normal indentation.

involved in this thesis and the promising nature of the results suggests several
avenues for further investigation.

How to measure the frictional strength of a contact? In Chapter 5, the dynamic
friction coefficient between the skin and the glass plate was quantified by the ratio
of the tangential and the normal force when the finger was steadily sliding over the
plate. But even when no tangential force is exerted, the frictional strength is
present, since the intimate contact holds a potential for adhesion. In Chapter 4, this
frictional strength were measured by counting the number of skin asperities which
are in intimate contact with plate. However, optical methods can be bulky and
computationally expensive in terms of processing.

During my thesis, we developed a new method based on the principle of
absorption and reflection of acoustic waves to estimate the frictional strength of a
contact on glass plates [100]. When using an ultrasonic friction reduction device, a
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portion of the acoustic energy is transferred to the fingertip while the number of
junctions between the skin and the glass plate is reducing. Thus, the ultrasonic
impedance can be used to provide a measure of the real contact area and hence, the
frictional strength of the contact from a calibration value. Because of its low
computational effort, this method is suited for controlling friction on the surface
haptic devices or estimating friction on robotic grippers.

Nonetheless, the method has not been applied yet to others materials, especially
soft ones. Therefore, more work is needed to develop a reliable method in those
conditions.

How sensitive are the mechanoreceptors to the stimuli elicited by different
friction coefficient presented in this thesis? This thesis quantified the strain
differences of the finger skin surface when in contact with various friction surfaces.
A model had been developed to approximate the strains the mechanoreceptors,
2 mm below the skin surface, are subjected to. Nonetheless, how the central
nervous system is extracting the friction attribute from those deformation patterns
still need to be clarified. Microneurography is a recent method, developed in the
late 1960s, to visualize the impulses conducted in the peripheral nerves. The
principal advantage of this method is that the subject is awake and able to
cooperate and perform voluntary actions. Thus, microneurography will be a
powerful tool in the near future to describe the huge quantity of sensory signals
sent during a grasping task.

How friction influences the grip force regulation on initial contact and after a
perturbation?

encoder

motors

glass plate

cable

pulley

tension 
spring

bearing

force sensor
piezoelectric
actuatorspiezoelectric

sensor

FIGURE 7.2: Manipulandum
equipped with friction
reduction glass plate to
study grip force reactions
to load force and friction
perturbation

The results on tactile perception of friction and
estimation of the safety margin highlighted in this
thesis, have for aim a better understanding of the
astonishing grip force regulation in humans. The
work achieved in this thesis was based on two
previous studies: On one hand, Johansson et al. [107]
showed that participants might be regulating their
grip force according to textures, a correlate of
friction, and on the other hand, Cadoret et al. [30]
shows that friction, not textures, are influencing
the regulation of the grip force. However, in the
latter the friction conditions were not randomized,
making them predictable by the participants. To the
best of our knowledge, the influence of friction on
grip force regulation from the initial contact has not
been studied yet.

Future work will focus on mounting ultrasonic
glass plates on a manipulandum similar to the one
developed by Johansson, to replicate his experiment
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with changes of friction coefficient instead of textures. A schematic of this device is
presented on Figure 7.2. This device can also be used to highlight the safety margin
humans are applying. Furthermore, it will help to understand how fast and accurate
is our reaction to a load force or friction perturbation.

Can we prevent a slippage before it occurs? In this thesis, we mainly focus on the
grip force adaptation to sensory feedback signals relevant to object properties (as
friction) or to mechanical events (as slippage). Previous study shows that when
passively exploring stimuli, participants performed at chance level in a friction
discrimination task [118], whereas in the chapter 4, active exploration procedure
results in a more successful discrimination. In the active case, we are able to predict
the dynamic of gross deformation of our own actions to isolate sensory features as
the diverging deformation pattern. Whereas in the passive case, the nervous
system while trying to disentangle features of the global indentation of the skin and
subtle effects of friction might have to deal with too many permutations to rely on
frictional cues. This early predictive behavior was also observed in the case of
transient perturbations, as in catch trials [23]. In this case, the short duration of load
force increase does not allow a reactive correction to ensure a stable grasp,
therefore, the strategy must be predictive with a preparatory grip force prior to the
perturbation and an increase of the grip force after the perturbation [233]. Those
feedforward mechanisms in motor commands are responsible for this anticipatory
responses to prevent a slippage.

Can a specific skin deformation drive actual tactile perception on fingertip?
Bicchi et al. [19] have shown that softness perception is correlated with the rate of
growth of the contact surface. In chapter 4, we also highlighted a correlation
between the friction perception and the outward pattern of skin deformation.
Correlation between skin deformation and perception has already been proven, but
the causation still cannot be deduced. Previous study has already shown that it is
possible to create a stiffness illusion with skin stretch [71]. A future experiment will
focus on driving particular patterns of skin deformation and studying what the
participants are feeling. For example, applying a diverging pattern of deformation
to the skin can make the material in contact appear softer or more compliant to the
touch.

How do we perceive the world? Perception is defined by the ability to see, hear, or
become aware of something through our senses. The mechanisms underlying our
senses have triggered our curiosity for thousands of years. However, research on
touch is still in its infancy compared to visual and auditory perception. In 1944,
Joseph Erlander and Herbert Gasser put their hands on the mechanisms of tactile
perception, and received the Nobel Prize of Physiology or Medicine for their
discovery of different types of sensory nerve fibers that react to painful and
non-painful touch. But yet, 77 years after, how the nervous system senses and
interprets our environment is still containing unsolved questions. One month ago,
David Julius and Ardem Patapoutian have been rewarded by the Nobel Prize again
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for their work on the mechanisms converting temperature and mechanical stimuli
into electrical impulses in the nervous system.

Nonetheless, it was for long hypothesized that the brain extracted knowledge
from sensations. The 21st century witnessed an inversion with the theory of
predictive coding [180]. According to this theory, the brain is actively constructing
explanations for each external sensation. Hence, perception is a process of inference
in which the brain interprets noisy sensory signals with respect to some prior beliefs
or expectations. Predictive coding speculates that the brain is processing the

FIGURE 7.3: A. Hierarchical predictive coding. R1, R2 and R3 are three cortical
regions from the lowest to the highest. Bottom-up projections (red) originate
from “error units” (orange) in superficial cortical layers and terminate on
“state units” (light blue) in the deep layers; while top-down projections
(dark blue) convey predictions originating in deep layers and project to the
superficial layers. Prediction errors are associated with precisions, which
determine the relative influence of bottom-up and top-down signal flow via
precision weighting (dashed lines). B. Probability distributions over the value
of a sensory signal (x-axis). On the left, high precision-weighting of sensory
signals (red) enhances their influence on the posterior (green) as compared
to the prior (blue). On the right, low sensory precision weighting has the
opposite effect. (from [195])

information using top-down or inside-out connections that convey predictions
from high to lower levels of the brain, back out to the sensory surfaces. In
Figure 7.3A, blue arrows convey the brain’s predictions about the causes of sensory
signals. The prediction error (i.e. the difference between what the brain expects and
what it gets at each level of description) should be minimized at each levels of the
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hierarchy. Perception is becoming a form of best guessing: sensory signals and
prior belief can be represented as probability distributions (Figure 7.3B), and
perception is the optimal combination of both. Predictive coding offers a new way
of thinking to understand how the central nervous system is interpreting the
environment.

Are we in touch with the reality? Touch, as all senses, is subjected to illusions, and
we can experience a discrepancy between perception and reality (see Figure 2.12 in
chapter 2). In chapter 6, a new illusion of tactile persistency was highlighted,
whereby a discontinuous stimulus can be felt as continuous when the
spatio-temporal frequency is high. All of these illusions question about whether we
can trust our feelings. Illusions aren’t necessarily a bad thing, but a sign that your
brain can handle confusing situations well. But be aware, "touching is not
believing" and your sense are not always telling you the truth!
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Appendix A
Additional results of the friction
perception experiment

A.1 Motivations

This appendix presents some additional results about the friction perception
experiment. Notably, the first section shows how the other components of skin
strain and the strain energy evolve along the trial and according to the friction
condition. The second section pictures the individual performance against the
friction discrimination task and highlight two groups of skin properties.

A.2 Strain components

We found a strong linear correlation between the median longitudinal strains and
the divergence (Pearson’s coefficient = 0.77) (Fig.A.1G).

Strain energy densities are shown for a typical trial in Fig. A.2A. The median
strain energy rates for each vibration amplitude are plotted in Fig. A.2C. These
rates peak at 1.2± 0.2 mJ/s when the normal force reaches 0.4± 0.1 N. The linear
correlation between total strain energy and divergence is plotted in Fig. A.2D. Its
slope varies from one participant to another (slope = 3.6 ± 2.3 mJ) because the
Young’s modulus we chose for this calculation does not fit for every participant of
the study.

A.3 Individual performance

The median of all divergence difference between reference and comparison was
computed for each participant. Since the distribution is bimodal (see Fig.A.3A) we
divided the population of subjects into two groups. The first group contains the
participants with small medians of divergences and therefore stiffer skins. The
second group shows higher divergences, physically meaning larger deformations.
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FIGURE A.1: Raw contact image and fingerprint image with the Delaunay
triangulation built from the tracked points in a low friction condition (A)
and in a high friction condition (C). Three strain components (εxx, εyy and
εxy) represented as heatmaps for a low friction condition (B) and a high
friction condition (D). E. Median strain components (εxx, εyy and εxy) for
each vibration amplitude as a function of the normal force. F. Median strain
components rate in %/s for each vibration amplitude. G. Correlation between
longitudinal strain and the divergence metric (y = 0.040x− 0.225, R2 = 0.61).
Each color stands for one participant. The probabiliy to answer comparison is
"more slippery" is plotted against the median of longitudinal strain difference
(H) and the median strain rate of the comparison stimulus (I).
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participant’s skin. Each color stands for one participant. E. The probability to
answer comparison is "more slippery" are plotted against the median of strain
energy difference.

We believe that the main contributor of the difference between the two groups is a
difference in skin stiffness, as softer skin deform more under similar loading.

In both cases, the divergence difference increases with the probabilities of
answering comparison is "more slippery" (Fig.A.3B). Nevertheless, we observed
that the group with softer skin has higher probabilities for the small vibration
amplitude α <= 1 µm than the group with stiffer skin (Fig.A.3C).
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FIGURE A.3: Individual performance in friction discrimination. A. The
histogram shows the median difference of divergences of each subject, and the
dotted line divides the population of participants into 2 groups. B. The one on
the left has a stiffer skin and experiences small deformations. The group on
the right has a softer skin, experiencing more deformation. C. The group with
softer skin has higher probability to detect the more slippery stimulus for the
small vibration amplitudes, lower than 1µm.
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Appendix B: Skin strains during
incipient slippage

This appendix aims at showing the individual skin strains acquired during the
experiment of chapter 5. Four skin strain data for each friction condition (high,
medium, low) and each subject are presented in Figure B.1. For subject 11, the
ultrasonic vibrations cause a limited friction reduction, leading to no low friction
strain data. The inter-subject variability is high, whereas the data for a same subject
is repeatable. The magnitude of the tensile and compressive longitudinal strains are
shown for all friction conditions in figure B.2.
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FIGURE B.1: Strains for all subjects (S1 to S12) when the relative displacements
between the finger and the plate is 6 mm.
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FIGURE B.2: Median compressive strains (A) and tensile strains (B) as a
function of the vibration amplitude when the relative displacement is 6 mm.
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Appendix C: Dimensionality
reduction technique

An overview of the existing dimensionality reduction techniques are presented in
Figure C.1. In our case we are looking for a linear method that projects the original
data on a smaller space by extracting some components-based features. Amongst
the linear method, Factor Analysis assumes that the latent factors exist in the
observed data. Independent Component Analysis (ICA) is seeking for statistically
independent directions which might be not orthogonal. The main drawback of ICA
is that it is not able to rank each component. The Non-negative Matrix
Factorization decomposed the input in a non-negative linear combination. This
method is often used by the neuroscientists because it is biologically-inspired, since
our neurons are more likely to sum inputs. However, it has been found recently
that we have some inhibitory neurons by opposition to the excitatory ones, that
would be able to subtract the information [211]. Finally, the Principal Components
Analysis (PCA) can explain the maximal variance of a dataset and give the
direction of the greatest variability. The Singular Value Decomposition (SVD) is a
computationally-efficient PCA since the factorization is done on the data matrix
rather on the covariance matrix which is large.

Feature selection

Feature extraction

Components/
Factors based

Projection base

Linear method

Non-linear method

Random forest,
Forward features
selection

Factor Analysis,
PCA, ICA, NMF

Kernel-PCA

t-SNE, MDS

FIGURE C.1: Overview of the dimensionality reduction methods.
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How to choose the best dimensionality reduction technique?

The dimensionality reduction method was chosen based on a time-efficiency
criterion. The technique must maximize the distance between classes while running
in a reasonable amount of time. The distance was estimated with the Generalized
Discrimination Value (GDV) ∆ computed from the mean intra-class distances d and
the mean inter-class distance d, Euclidean speaking:

∆ =
1√
2

(
d(CSm<0.5) + d(CSm>0.5)

2
− d(CSm<0.5, CSm>0.5)

)
(C.1)

where the classes CSm<0.5 and CSm>0.5 correspond to a safety margin respectively
lower and higher than 0.5. The GDV is always between 0 and -1, and a GDV close to
1 refers to a high discriminability between the classes.
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FIGURE C.2: Comparison between dimensionality reduction methods.

Fig. C.2 shows the 2D-points in the space determined by the first 2 bases. The
red and the blue color represent the safety margin lower and higher than 0.5
respectively. The GDV and the total time are shown above each plot. The singular
value decomposition is the fastest method, keeping an acceptable Generalized
Discrimination Value. It is interesting to note that even if the t-SNE algorithm has
the lowest GDV, the mapping of the classification is not meaningful in terms of
principal components.

Moreover, we found that the set of primitives extracted with the singular value
decomposition is invariant to friction, consistent with the human reflexive behavior
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with surfaces of various frictional strength. For those reasons, we decided to use the
singular value decomposition to reduce the dimensionality.
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