
HAL Id: tel-03583890
https://theses.hal.science/tel-03583890v1

Submitted on 22 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Consensus Byzantin et blockchain : Modèles unifiés et
nouveaux protocoles

Antoine Durand

To cite this version:
Antoine Durand. Consensus Byzantin et blockchain : Modèles unifiés et nouveaux protocoles. Data
Structures and Algorithms [cs.DS]. Institut Polytechnique de Paris, 2021. English. �NNT : 2021IP-
PAT025�. �tel-03583890�

https://theses.hal.science/tel-03583890v1
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
1I

P
PA

T0
25 Byzantine consensus and

blockchain : Models unification
and new protocols

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Télécom Paris

École doctorale n◦626 Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat: Informatique

Thèse présentée et soutenue à Palaiseau, le 24 Novembre, par

ANTOINE DURAND

Composition du Jury :

Petr Kuznevtsov
Professeur, Télécom Paris (INFRES) Président

Maria Potop-Butucaru
Professeure, Sorbonne Université (LIP6) Rapportrice

Pierre Jouvelot
Chercheur, Mines-Paristech (CRI) Rapporteur

Joaquin Garcia-Alfaro
Professeur, Télécom SudParis (LINCS) Examinateur

Sara Tucci-Piergiovanni
Cheffe de laboratoire, CEA LIST Examinatrice

Emmanuelle Anceaume
Directrice de recherche, CNRS (IRISA) Examinatrice

Gérard Memmi
Professeur, Télécom Paris (INFRES) Directeur de thèse

2

Acknowledgements

This thesis has been supported by IRT-SystemX and Atos-Bull

I am thankful to all the great people that supported me directly or indirectly during my
PhD.

First of all, I had the chance of having a wonderful thesis director, Prof. Gérard
Memmi. I would also like to thank my friendly colleagues, Kei Brousmiche, Nicolas
Heulot, Omar Dib, Khalifa Toumi, Hanna-Mae Bisserier, Lucas Benmouffok, Natkamon
Tovanich and all the other people from the BST team and IRT-SystemX.

I am especially grateful to David Leporini, Guillaume Hebert and Thomas Domingos
from Atos for the numerous interesting discussions and continuous help during this thesis.

My thanks goes to all the researchers I had the chance to interact with, and particularly
to Emmanuelle Anceaume and Romaric Ludinard for their invaluable collaboration, which
gave shape to this thesis.

I am grateful to all the people from the BART research team; in particular Petr Kuznetsov,
Matthieu Rambaud, Emilio J. Gallego Arias, thanks to whom I really became part of the
research community.

3

Many thanks goes to the reviewers, Maria Potop-Butucaru and Pierre Jouvelot, who
went beyond their role to help improve this thesis, and as well as all the jury members.

Finally I would like to mention Louis Martin-Pierrat, Matthieu Regueira, Loïc Bryl
and Marianna Baziz for their help and fruitful discussions.

4

List of Abbreviations

ABC Atomic BroadCast
BA Byzantine Agreement
BFT Byzantine Fault Tolerance
(B/V/W/S)C (Binary / Vector / Weak / Strong) Consensus
CRS Common Reference String
DHT Distributed Hash Table
GST Global Stabilisation Time
IoT Internet of Things
PKI Public Key Infrastructure
PoS Proof of Stake
PoW Proof of Work
(T)RBC (Terminating) Reliable BroadCast
SMR State Machine Replication
UTXO Unspent Transaction Output
VRF Verifiable Random Function

5

Résumé

Avec l’avènement récent du Bitcoin et des algorithmes basés sur la blockchain, il y a eu
un regain d’intérêt autour de l’implémentation de protocoles de consensus dans des do-
maines applicatifs tels que la finance, la santé, la chaîne logistique, la traçabilité, l’internet
des objets, etc. Les contraintes de conception de protocoles capables de supporter de
telles applications sont très strictes, et incluent notamment la capacité à rejoindre et quit-
ter dynamiquement le système, à tolérer la présence de participants malveillants (fautes
Byzantines), et à passer à l’échelle en fonction du nombre de participants sans surcharger
le réseau. Simultanément, l’attention portée à ces protocoles a été une source de confu-
sion, submergeant un sujet déjà vaste et complexe avec des assertions imprécises et une
terminologie variable, limitant ainsi la possibilité de fonder des discussions de design sur
des bases bien formelles. Dans cette thèse, nous visons à améliorer cet état de fait de deux
manières complémentaires.

Premièrement, nous proposons une unification des fondamentaux de la blockchain,
grâce à une formalisation cohérente des modèles, spécifications avec réductions, et théorèmes
d’impossibilité d’intérêt pour les protocoles de consensus tolérant les fautes Byzantines.
Plus précisément, nous capturons différents niveaux de synchronie réseau et d’hypothèses
cryptographiques, nous formalisons certaines variantes du consensus et du broadcast Byzantin,
et nous recadrons les théorèmes qui excluent l’implémentation d’une spécification dans
un ensemble de modèles. En particulier, nous faisons l’argument qu’Atomic Broadcast
est une spécification appropriée pour les protocoles de blockchain, et que le choix d’une
définition appropriée pour la variante Byzantine du consensus devrait faire l’objet de con-
sidérations supplémentaires. Au-delà de l’unification des résultats existants, notre for-
mulation généralise les modèles et les théorèmes d’impossibilité existants pour couvrir
de manière transparente le cas des protocoles basées sur la blockchain, ce qui inclut no-
tamment le mécanisme de preuve de travail (Proof-of-Work), chose manquante jusqu’à
présent. Grâce à cette approche systématisée, nous sommes en mesure de comparer les

6

modèles de plusieurs blockchains de référence malgré leurs différences fondamentales,
ainsi que de procéder à une évaluation fine de leurs caractéristiques de performance. En
effet, de telles comparaisons ont fait l’objet d’un intérêt de recherche significatif, bien
qu’elles ne soient généralement pas fondées sur des bases formelles.

Ensuite, nous faisons une proposition de blockchain, StakeCube. La sécurité de Stake-
Cube est basée sur le modèle de preuve d’enjeu (Proof-of-Stake), et sa capacité de passage
à l’échelle repose sur un principe du partitionnement (sharding), qui est mis en œuvre par
une table de hachage distribuée, PeerCube [ALRB08]. StakeCube s’appuie sur un système
à deux niveaux où les shards exécutent un protocole de consensus pour gérer leur état local,
et nous tirons avantage d’un consortium de shards pour exécuter un protocole de consen-
sus d’ensemble qui détermine l’extension de la chaîne de blocs. Cette approche permet de
nouveaux compromis sur la distribution du coût en communication grâce à une taille de
shard et de consortium configurable, contrastant ainsi avec des conceptions plus simples
basées sur un seul nœud leader ou comité de nœuds. Nous avons également implémenté
une version restreinte de StakeCube et évalué ses performances, validant ainsi ses pro-
priétés théoriques et notamment celle de passage à l’échelle. En effet, comme StakeCube
troque la preuve de travail contre la preuve d’enjeu sans sacrifier le passage à l’échelle,
ce protocole est particulièrement bien adapté aux applications IoT. Pour mieux démontrer
cet aspect, nous avons implémenté une application IoT de place de marché d’énergie dans
StakeCube et nous avons pu tester avec succès sa viabilité lorsque exécuté sur un matériel
limité (Raspberry Pi Zero) dans un réseau de 500 nœuds.

7

Abstract

With the recent advent of Bitcoin and blockchain-based algorithms, there has been a re-
newed interest around the implementation of agreement protocols within applicative fields,
such as finance, health, traceability, the internet of things, etc. The design constraints for
protocols that are able to support such applications are very tight, including notably the
ability to dynamically join and leave the system, the tolerance of malicious participants
(a.k.a. Byzantine faults), and the ability to scale with the number of participants while
avoiding network overload. Simultaneously, the attention to these protocols has been a
source of misunderstanding, flooding an already large and complex subject with vague
claims and different terminology, thus limiting the possibility to formally discuss these
design constraints. In this thesis, we aim to improve this state of affairs in two ways.

First, we make a unifying view of the blockchain landscape through a consistent for-
malisation of models, specifications with reductions, and impossibility theorems of inter-
est for Byzantine tolerant agreement protocols. Specifically, we capture varying levels of
network synchrony and cryptographic assumptions, we formalise a few BFT variants of
consensus and broadcast, and we reframe the thoerms that exclude the implementation
of a specification under a range of model. Importantly, we argue that Atomic Broadcast
is a suitable specification for blockchain protocols, and that more consideration should
be spent towards choosing an appropriate definition for the BFT variant of consensus.
Beyond the unificaiton of existing results, our formulation generalises models and impos-
sibility theorems to seamlessly cover new blockchain-based design, including protocols
based on Proof-of-Work. Thanks to this systemizing approach, we are able to compare the
model of several prominent blockchains despite their fundamental differences, as well as
making a fine-grained assessment of their performance characteristics. Indeed, such com-
parisons are the subject of a significant research interest, but they typically are not based
on formal grounds.

Then, we make a proposal for a scalable blockchain, StakeCube. StakeCube’s security

8

is based on the Proof-of-Stake model, and its scalability relies on the sharding paradigm,
implemented through a distributed hash table named PeerCube [ALRB08]. StakeCube re-
lies on a two-tierd system where shards run agreement protocols to manage their own state,
and we take advantage of a consortium of shards to another agreement protocol driving the
addition of blocks to the chain. This approach offers new trade-offs for distributing com-
munication load thanks to a configurable shard and consortium size, in contrast to simpler
designs based on a single leader node or committee. We also implemented (a restricted ver-
sion of) StakeCube and evaluated its performance, thus validating its scalability property.
Notably, because StakeCube trades Proof-of-Work for Proof-of-Stake without sacrificing
scalability, it is particularly well suited for IoT applications. To further demonstrate this
aspect, we implemented an energy marketplace IoT application in StakeCube and were
able to successfully test its viability when executed on limited hardware (Raspeberry Pi
Zero) with 500 nodes.

1

Contents

1 Introduction 4
1.1 Thesis results . 10
1.2 Co-authored articles . 11

2 Background 12
2.1 The adversary . 14

2.1.1 Fault type . 16
2.1.2 Corruption threshold . 17
2.1.3 Adversarial adaptivity . 18

2.2 Synchronization . 20
2.2.1 Clocks . 20
2.2.2 Network . 21

2.3 Randomness . 24
2.4 Assumptions and Setup . 25
2.5 Problems . 27

2.5.1 Extensions . 30

3 Formalisation of distributed components 32
3.1 Preliminary work : A simple execution model 34

3.1.1 Deterministic modules and protocol execution 36
3.1.2 Extension to the probabilistic case 40

3.2 Modelling adversaries and primitives . 45
3.2.1 Adversary . 46

Computational power . 46
Faults and corruption structure 47

Contents 2

Corruption adaptivity . 50
3.2.2 Modules . 50

Setups . 51
Network . 51
Oracles . 54

3.2.3 Discussion . 59
3.3 Problems . 61

3.3.1 Consensus and variants . 64
3.3.2 Broadcasts protocols . 69

Terminating reliable broadcast (TRBC) 69
Reliable broadcast (RBC) . 70
Atomic broadcast (ABC) . 71

3.4 Analyzing performance . 75
3.4.1 Metrics . 77
3.4.2 dimensions . 78
3.4.3 Evaluation . 79

3.5 Lower Bounds . 81
3.5.1 On the corruption structure . 81
3.5.2 On performance . 85

3.6 Analyzing protocols . 89
3.6.1 Using the Bitcoin backbone protocol 89
3.6.2 Nakamoto consensus . 92
3.6.3 Ouroboros Praos . 94
3.6.4 Tendermint . 95
3.6.5 HoneyBadgerBFT . 97
3.6.6 Phantom . 98
3.6.7 Algorand . 100

4 StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 104
4.1 Introduction . 104

4.1.1 Related work . 107
4.2 Model . 108

4.2.1 StakeCube’s properties . 110

Contents 3

4.2.2 The PeerCube sharding structure 112
4.3 Design Principles of StakeCube . 114

4.3.1 Unpredictable and Perishable Users’ Credentials 115
4.3.2 Shard Membership . 117
4.3.3 Construction of the Next Block of the Blockchain 119
4.3.4 Inter Shard agreement . 122

4.4 Security Analysis . 125
4.4.1 Intershard agreement . 125

Safety . 125
Liveness . 126

4.4.2 Security of the sharding mechanism 127
Corruption Probability of a Core Set 128
Distribution of Malicious Credentials among all Shards 129
Putting it all Together . 131

4.5 Evaluation and Application . 131
4.5.1 Experiments . 132
4.5.2 Application . 137

5 Conclusion and Future work 140
5.1 Future Work . 141

4

Chapter 1

Introduction

The blockchain ecosystem has a remarkable history, as it was developed by individuals,
industrials, and academics concurrently.

Bitcoin and blockchain technology in general experienced a surge of interest in the
recent years, first as a new financial paradigm [Swa15], then as a distributed tool with
promising applications for a wide range of sectors [JS19], such as health, supply chain [LH19],
identity management [DP18, SP18b], transportation [AGMS20], energy [BAD+18], smart
cities [SP18a], and the internet of things [CK19, PTM+18, BBG+17].

Such promises naturally attracted a large number of competing enterprises and projects,
thus each of them attempting to differentiate from each other. Although this can boost in-
novation, it also encouraged the creation of new terminology and abstractions, even when
unnecessary. As a result, the overall blockchain ecosystem is quite fragmented, which is
especially visible when it comes to having a common terminology.

On the academic side, there is a proficient literature on distributed systems and most
particularly around the notion of consensus that largely predates blockchain technology
[NC17]. There are numerous variations on the problem definition, models, building blocks
and assumptions that make the scope of the topic already too large to be considered in its
entirety [GR06, Lyn96, Ray13]. More recently, a large research effort has been initiated to
analyse and improve blockchain technology in itself and its applications [GK20, DBD+18,
Shi20, Gra20]. This research effort has also spawned an impressive number of research
directions and concurrent works.

This proliferation contrasts with the widely recognized difficulty of designing and
proving secure distributed cryptographic algorithms. In turn, this complicates the task

Chapter 1. Introduction 5

of making a correct and thorough assessment of byzantine tolerant protocols, including
blockchain.

As a result, the blockchain landscape can be felt quite confusing, lacking a consistent
formalisation [Pot20] and numerous sources using terminology with different meaning
[GS18, NC17]. In practice, one should consider the meaning of the word "blockchain"
depending on context. To this regard, we provide here first a few definitions to make a
rough disambiguation:

• Blockchain data structure: An ordered set of data, commonly named blocks. Each
block includes the hash of the previous one, thus chaining the whole set. This is the
most literal definition, from which emerged the word "block-chain".

• Blockchain protocols: This definition aims at considering the notion of blockchain
as a distributed system, however it is one most prone to interpretations. On the one
hand, it can be used to designate any distributed algorithm that uses a blockchain
data structure, regardless of its goal. On the other hand, it can refer to the algorithm
that aims at maintaining a consistent state across multiple participants.

• Blockchain applications: Because a blockchain protocol is not an end in itself, there
is an application making use of the underlying blockchain protocol to achieve a
specific, arbitrary goal. This encompasses cryptocurrencies, but also frameworks,
platforms and systems that make use of a modular "engine", i.e., a protocol.

• Blockchain technology: A wider term to designate anything related to blockchain
data structure, protocols, applications, including their environment and ecosystem.
The name distributed ledger technology is sometimes equivalently used.

In this thesis, we will be most concerned about blockchain protocols. More specifi-
cally, we will favor the approach that defines blockchain protocols in terms of what they
are trying to achieve rather than how they are implemented. To remove ambiguity, it is pos-
sible to use the term "distributed ledger" for the former, and "blockchain-based protocols"
for the latter.

Our quest for disambiguation does not end here. Importantly, the trustlessness aspect
is deemed essential to blockchain protocols. Technically, this translates to a security prop-
erty, i.e., the ability to function even when a subset of participants are misbehaving in

Chapter 1. Introduction 6

arbitrary, malicious ways, also known as Byzantine faults. Such protocols are therefore
called Byzantine Fault Tolerant (BFT) protocols. This property implies that each partici-
pant does not have to trust any other participant to correctly execute the protocol, since any
of them may be malicious. Hence, asserting that blockchains are trustless should amount
to requiring this property in the definition. Crucially, this trustlessness aspect cannot be
absolute either, as some degree of trust in the participants as a whole must be present. This
is apparent through the necessity of an assumption limiting the proportion of malicious
participants in the network, e.g., by requiring an "honest (super)1 majority". However,
several prominent blockchain applications only tolerate crashing participants (not mali-
cious ones) [ABB+18], and therefore cannot qualify as blockchains in that specific sense.
In this thesis, we will focus on trustless protocols, although we remain neutral on whether
the canonical "blockchain" definition should require it.

Obviously, the given definition remains very vague; there is no precision on what "a
consistent state across multiple participants" is. An appealing approach is to define con-
sistency such that the participants globally emulate a single node running a centralized ap-
plication. This leads to the State Machine Replication (SMR) paradigm [Sch90b], where
an application is represented as a state machine, and each participant answers queries from
clients as if they were all forwarded to a single centralized state machine. In that sense,
blockchains protocols can be regarded as a way to transform a trusted third party into a
weakly trusted set of nodes. To achieve this, each participant locally maintains a copy of
the state machine, and the protocol makes them coordinate to execute the same sequence of
inputs, resulting in the same sequence of local state for all nodes. Consensus can roughly
be seen as the "one off" variation of SMR, in which participants only agree on their input
once. More generally, it is considered to be the theoretical core that quantifies the amount
of synchrony required by a distributed algorithm [Her91]. In fact, it comes with no surprise
that the possibility to reach consensus at all (and by extension, SMR) heavily depends on
the synchronicity of the network itself. So far, most academic work on blockchain has
adopted the State Machine Replication paradigm, or an equivalent formulation [AM17].
Nevertheless, much work has been devoted to satisfy properties that go further than what
is strictly required by SMR, to improve usability and efficiency. Examples include the
possibility to have nodes dynamically joining or leaving, smaller communication cost,
optimised latency and memory footprint, stronger and finer-grained threat model, etc.

1A supermajority of nodes contains at least two thirds of the network.

Chapter 1. Introduction 7

One may think that being able to relate blockchain terminology with its academic
counterpart would be sufficient to let someone search by himself what is possible -or not-
about their favorite blockchain concept. However the fact is that there is much more work
involved to be able to make precise statements without doubt. For instance, we mentioned
the necessity of some form of honesty assumption for nodes. Indeed one may regularly
encounter statements such as "consensus is solvable if and only if less of one third of
participants are misbehaving", but this is far from the complete picture. First, we will
point out in this thesis that it implicitly assumes some specific structure on misbehaving of
nodes, which is ill-suited to a generic description of blockchain protocol, e.g., Nakamoto
consensus, the protocol that underlies Bitcoin [Nak08a]. But more importantly, this claim
is not true in the case of a strongly synchronous network with digital signatures. Further-
more, one should pay attention to the definition of consensus used, because as we will
see they are not all strictly equivalent. For instance, the previous statement is not true in
the case of strong multi-valued consensus. And as a final detail, the cited statement also
depends on how nodes misbehave, e.g., maliciously or by crashing. This example shows
that such theorems can be quite misleading if taken without context. This is why we set
out to draw a more complete picture, where results are stated explicitly with full models
and definitions.

It took some time to have Bitcoin’s properties fully understood [GKL15, GKL17],
and it is easy to see why they could seem surprising to a distributed systems researcher.
The protocol works in a network orders of magnitude larger than what was previously
possible, with dynamic participants that do not even need to register2, all while seemingly
sidestepping impossibility results on the number of Byzantine participants tolerated, such
as the one in the example above. This thesis is making the point that the model, properties
and working principles of Bitcoin are not so different from the existing literature. We argue
that Proof-of-Work (PoW) in essence only provides a novel way to count and authenticate
nodes. This change, although somewhat straightforward, is quite fundamental, and the
specificities of Proof-of-Work-based authentication is what gives Bitcoin its surprising
properties. In a similar manner, Proof-of-Stake blockchains count and authenticate nodes
with respect to their stake, which has the additional advantage of being maintained by the
protocol itself. In fact, as we will see in Chapter 2, blockchains in general cannot deal with
arbitrary numbers of malicious nodes, and therefore needs a trust assumption to limit their

2Although we will see in Section 3.2 that this statement is more nuanced.

Chapter 1. Introduction 8

presence among honest nodes. In other words, they are not Sybil-resistant and need to
assume the existence of a Sybil resistant resource associated with nodes. This observation
motivates the view that for any X , "Proof-of-X" naturally designates protocols whose Sybil
resistance is based on the scarcity of the resource X , and nodes’ ability to prove ownership
of X . This definition however is not entirely in line with the term usage, especially within
commercial projects. Beyond Proof-of-Work, other Sybil resources include:

• Proof-of-Storage protocols, such as FileCoin3. Thanks to a cryptographic proof
system [FBGB18] nodes can demonstrate ownership of storage space and thus use it
as a Sybil resistant resource. This is especially interesting to implement applications
such as decentralized "cloud" storage marketplaces, but less for general-purpose
applications.

• Solutions based on Trusted Execution Environments (TEEs), such as Proof-of-Elapsed
Time. TEEs are hardware processors that are able to provide a cryptographic proof
of their correct execution. This system justifies the assumption that these processors
cannot be corrupted, hence providing a particularly strong Sybil resistance. On the
other hand, the whole system relies on the correctness of the TEE system.

• "Classical" BFT protocols, i.e., those that use the typical assumption of a bounded
proportion of malicious nodes. In this case, the security relies on the difficulty to
corrupt a node. However this concept is easily generalizable by adding a "weight"
to each participant [GB11b]. Thus, as long as the nodes weights are agreed upon
beforehand (i.e., they are part of the nodes identity), the security assumption can be
translated into a "majority honest weight" assumption, independently from how the
weights are defined.

Having related Proof-of-Work blockchains like Bitcoin with existing agreement pro-
tocols, the natural follow up question is whether it is possible to leverage that knowledge
to lift up roadblocks and unlock new applications. It has been conjectured that the use of
blockchains could be highly beneficial within IoT ecosystems, with the appealing promise
of a solid infrastructure handling the needs of billions of interconnected devices, integrat-
ing trust and security by design [PSAG20]. However interpolating the benefits of a large-
scale blockchain such as Bitcoin to an IoT setting is not straightforward [QQM+18b].

3https://filecoin.io

https://filecoin.io

Chapter 1. Introduction 9

Indeed, distributing the trust down to the end user means bringing the participating
blockchain nodes into the smallest device possible. In turn, this removes the possibil-
ity of Proof-of-Work (PoW) blockchains due to their excessive computational cost and
the security risk coming with an insufficient total hashrate. The straightforward way to
work around this issue is to change the trust assumption in order to remove the need for
mining and PoW. Among other alternatives, Proof-of-Stake (PoS) is particularly appeal-
ing due to its high versatility and better scalability. Indeed, because PoS blockchains’
computational burden mainly consists in generating and verifying signatures, their energy
consumption may be considered insignificant. But following the literature on BFT proto-
cols, their ability to scale with the number of nodes is limited, which presents a challenge
for IoT applications based on PoS blockchains.

In a nutshell, deterministic protocols have a minimal quadratic communication cost
(in the number of nodes) they must bear to achieve agreement for a set of nodes. How-
ever it is possible to reduce this cost using probabilistic protocols. Typical designs rely
on some kind of election mechanism, where a few nodes are randomly selected to exe-
cute communication-heavy tasks in place of others. The selected nodes solve consensus4,
and diffuse the result as the output of the overall protocol. As a result, the communication
heavy protocol is run only within a small set of nodes, and the communication cost is dom-
inated only by the linear cost of broadcasting. Importantly, the number of elected nodes
can be independent from the total number of participants (i.e., constant), because only the
proportion of honest nodes in the elected set matters, and that proportion approaches the
one of the overall set of participant as the size of subset grows. Hence, the size of the
subset only has to be big enough to guarantee a correct proportion of honest nodes within
(with some required probability). In simpler words, the subset size is a security parameter,
which has to be high enough to guarantee that the elected subset is representative of the
participants.

As a corollary, the overall proportion of honest nodes can only be strictly higher than
the one of the subset. If the targeted proportion of the subset is the same as the optimal
one for the overall protocol, then it cannot be optimal, only arbitrarily close to optimality.

4In general the protocol that they run is not precisely consensus but a specific task that drives agreement
for the overall protocol.

Chapter 1. Introduction 10

1.1 Thesis results
In Chapter 2 we start off with a broad overview of the existing models in the literature.

The first contribution of this thesis is to give a precise and coherent meaning to various
definitions and assumptions used in the context of Byzantine consensus and blockchain.
Concretely, we formulate in Chapter 3 a framework in which we faithfully capture the most
relevant models for blockchain protocols. As a first application we give the definitions of
distributed problems related to blockchain and characterise their strength by giving the
reductions from each other. We argue that even stating precisely the various definitions for
Byzantine consensus is subject to a small amount of interpretation, and that the strength
relationships between these definitions are not as clearly laid as they are fundamental.
Besides, using our framework, we are the first to make a comparison of such a wide range
of protocols based on a common model of execution. This allows us for instance to catch
some discrepancies in the terminology used in the literature.

We then extend these results, by giving lower and upper bounds in our model. The
lower bounds give the models in which consensus or its variants is not solvable, for in-
stance if the number of faulty nodes is too high. The upper bounds show the existence of
protocols. That is, we analyse a few prominent blockchain protocols, giving their execu-
tion model within our framework, and evaluating their asymptotic performances in terms
of communication complexity and latency. Notably, we find out that that many blockchain
protocols including Bitcoin implement State Machine Replication and therefore can be
compared on this basis. As a result, we are the first to make a comparison of such a
wide range of protocols based on a common model of execution. We are also able for
instance to catch some discrepancies in the terminology used in the literature to designate
synchronicity assumptions.

Then, in Chapter 4, we present StakeCube, a proposal for a scalable Proof-of-Stake
blockchain. StakeCube’s scalability is also attained using an election mechanism, instan-
tiated by its sharding structure. Roughly, StakeCube use a Byzantine resistant distributed
hash table, PeerCube [ALRB08], to gather participants into shards of constant size. Then,
a few number of shards are able to cooperate to create the new block to be appended to
the blockchain. PeerCube works by assigning a random, periodically renewed identifier to
nodes, which determines the grouping into shards. The shard size and node sojourn time

Chapter 1. Introduction 11

are computed to prevent Byzantine nodes from subverting the agreement protocols exe-
cuted within shards. In turn, the common randomness required by PeerCube is generated
along each new block. We design a novel agreement subprotocol for StakeCube, tailored
for ensuring consistency across shards despite the presence of a limited number of corrupt
shards. We implemented a prototype of StakeCube from scratch, and we show results from
experimental evaluation of its performance, demonstrating a communication cost in line
with theoretical analysis. At last, we validate StakeCube’s viability to run large scale IoT
applications, by implementing an energy marketplace [BAD+18] on top of StakeCube. In
this application, one node running on a Raspberry Pi Zero was able to participate without
effort in a network of 500 nodes.

1.2 Co-authored articles
During this thesis I worked on [BDH+18, DHLM19, DAL19, DHMA20, DBD+18]. Fur-
thermore, the Chapter 3 has been submitted for publication.

12

Chapter 2

Background

In this chapter, we first start by making an overview of the models relevant to blockchain
protocols and consensus in the literature, to give an overview of the different concepts we
wish to make more precise and relate. This include different security notions, approaches
to define specifications, faults, trust assumptions, network and clocks synchrony, and cryp-
tography in general. Then we make a quick tour of the definitions made in the literature to
capture the problem solved by blockchain systems.

Terminology Before going further, we start by clarifying some basic common ground.
A node is a computational device, generally Turing-equivalent, executing an algorithm.

Other synonyms include "machine", "processor", "party" or "player". An algorithm has
the same meaning as "program". A distributed environment is a system including multi-
ple machines or nodes running algorithms, potentially (concurrently) interacting with each
other and other components1. A distributed algorithm is an algorithm fitting for execution
in a distributed environment. We use the term protocol as a synonym for distributed al-
gorithm. An execution or run is a description of the evolution of a distributed system for
a fixed set of inputs. We call execution model the mathematical formalism used to make
that description. An implementation is an algorithm aiming at satisfying a specification. A
specification is the set of properties that an algorithm must satisfy. We sometimes use the
term problem instead, in the sense that a protocol is a solution to the problem of satisfying
the properties.

1The other components are sometimes called oracles.

Chapter 2. Background 13

Execution models Before describing any model, we must first make precise the notion
of protocol execution and what it means to have a correct implementation, i.e. what we
will call the execution model.

Early on, the security of cryptographic primitives has been interpreted as properties of
algorithms. Naturally, any specification can be expressed in terms of algorithms properties,
and pursuing this idea in a straightforward approach leads to game-based definitions. In
that case the security is defined in terms of a specific set of executions of the primitive
(i.e., the games) that must have a correct result. Most known examples include semantic
security, IND-CCA, IND-CPA for encryption, universal, selective or existential forgery
for signatures [KL14].

A second approach to security definition emerged from the need to conveniently ex-
press fine-tuned privacy requirements [Gol97]. Instead of requiring all implementations to
have some abstract properties, specifications can be given in terms of an ideal component,
and the implementation must behave similarly to the ideal one. The precise rule to com-
pare the ideal and actual executions varies with the security notion considered, with typical
examples including computational indistinguishability, statistical indistinguishability, or
equality for perfect security. This naturally expresses the idea that the cryptographic algo-
rithm must leak exactly as much information as the ideal component, a task that has proven
to be difficult using ad-hoc properties to be satisfied. Another major advantage of this ap-
proach is the possibility to make primitives composable [Can01], i.e., having the protocol
remaining secure even when the ideal components are swapped with an implementation.
This approach is called simulation-based or the ideal-real paradigm.

With the advent of executions models with malicious participants, many subjects in the
literature on distributed systems have largely blended with cryptography. In that regard,
the specifications for consensus and other problems were first approached with game-
based definitions, where some properties must hold for each protocol execution [LSP82].
Indeed, to this day the primary definition for e.g., consensus [CVNV11] remains expressed
as various requirements on the output of nodes for all executions. Concretely, the statement
"protocol P satisfies specification S" has can be seen in general as a statements of the
form "∀e ∈ EXEC(P),S(e)", where EXEC(P) is the set of all executions of P, and S is a
requirement such as consistency, liveness, validity (see next Section). In the probabilistic
case, the same statement can be expressed similarly by making EXEC into a probability

Chapter 2. Background 14

space of executions, and requiring that S holds with a sufficiently high probability2.
In the following, the specifications of interest for blockchain and consensus will be de-

scribed with the intent to follow classical game-based definitions. Of course, other models
do exist with a different representation of what it means to execute a protocol. Promi-
nently, the shared-memory model [Lyn96] is concerned with processors that access the
same memory, by opposition with the message passing model described in this chapter.
With the Heard-of model [CS09], Charron-Bost makes the key observation that separating
node failure from network behavior makes the models unnecessarily specific, and thus hav-
ing specifications purely expressed in terms of received messages is both more adequate
and simpler. On the side of the ideal-real paradigm, the Universal Composability frame-
work [Can01] by Canetti defines executions through Turing Machines that are enriched
to be able to spawn and interact with new machines. Alternatively, a similar approach
but with Task restricted Probabilistic Input/output Automata (task-PIOA) [CCK+08a] has
been proposed by Canetti and Lynch, with a notable treatment of long-lived protocols such
as blockchains [CCK+08b]. Other frameworks with similar goals includes the Reasctive
Simulatability (RSIM) framework [BPW07], the Inexhaustible Interactive Turing Machine
(IITM) framework [KTR20], Constructive Cryptography [Mau11].

Our execution model The remaining of this chapter is based on the message passing
model, where each node p ∈ Π communicates by exchanging messages. The nodes in
Π are Turing-equivalent devices that execute an algorithm P, i.e., the protocol, which
determines their interactions within their environment. We assume that local computation
costs (i.e., time and memory) are insignificant. A problem or specification is expressed
through some properties on the protocol execution. For a more formal execution model,
see Section 3.1.

2.1 The adversary
With a formal statement of correctness like ∀e ∈ EXEC(P),S(e), the entire model of ex-
ecution is represented by the set (or distribution space) EXEC. In a sense, it represents

2Because there is no privacy consideration to define consensus, one may argue that the only appeal of
simulation-based definitions in this case is composability.

Chapter 2. Background 15

everything that the protocol is guaranteed to withstand, and in real executions we can only
assume that reality is correctly modelled by one of these theoretical executions.

However the literature makes prominent usage of the notion of an "adversary" who de-
cides specific events that happen in an execution, such as delaying messages and corrupting
nodes. In essence, the adversary is only a construct that describes a set of executions. For
instance, the previous statement could be written instead : "∀A ∈ ADV,S(EXEC(P,A))",
where ADV is the set of all adversarial strategies, and EXEC(P,A) is the execution of P
with A’s strategy.

It is clear that the difference with the first statement is only a matter of notation, how-
ever there are mainly two advantages.

• The formalism with an adversary is more intuitive and can help with reasoning.
Typically, sentences of the form "The adversary can..." are generally clearer than
"It is possible that...". There is an intuitive appeal to think of a game between the
protocol designer and an adversary which can make a specific set of actions at each
step of the execution.

• Some security mechanisms may be constructed with some notions of adversary. For
instance, a common assumption requires that all adversarial actions are the result
of a polynomially bounded Turing machine, therefore giving life to a malicious
entity [DY83].

The latter assumption characterizes the computational power of the adversary. With-
out any assumption on its computational power, we are in the information-theoretic (IT)
setting. Even in the IT setting the adversary may still be allowed to break the protocol with
a small probability3. In this case, the probability must be a negligible function of a global
security parameter denoted by λ .

The "computational security" setting is obtained when the adversary is polynomial in
λ . Note that if the protocol is deterministic and secure for all of its executions then it is
IT secure, and computational security cannot even be defined because there is no security
parameter λ .

Expectedly, the most common use of the different assumptions regarding adversarial
power is to take advantage of some cryptographic primitives, such as digital signatures

3Perfect security requires that probability to be 0.

Chapter 2. Background 16

and hash functions. In conjunction with a trusted setup, they enable protocols to be built
in situations where impossibility results would otherwise apply. For instance, the use of
digital signatures is a workaround for the fundamental impossibility to distinguish a liar
among two nodes [PSL80].

2.1.1 Fault type
The primary objective of a protocol is to give guarantees despite to presence of corrupt
or faulty nodes that do not necessarily follow the protocol instructions. Typically, corrupt
nodes are assumed to stay corrupt forever. Although it may seem overly restrictive, this
is due to the idea that protocol design should not rely on faulty nodes becoming honest
again to function, whereas the question of how to safely recover nodes can be treated
as a practical (implementation dependent) one. Nonetheless, this possibility may also be
formally considered.

In any case, the effect of corruption on nodes behavior must be specified, which is the
fault type of the model. Among the most common options.

• Byzantine [LSP82]: There is no restriction at all on the actions of a Byzantine node,
or in other words, their behavior is arbitrary. Another formulation is to say that,
upon corruption, the adversary learns the node state and answers in its place, ef-
fectively creating a perfectly synchronized coalition with all corrupt nodes. This is,
the strongest possible adversary regarding fault type, since there are no restrictions
at all. Historically, this setting has been considered for critical distributed systems
where correct execution is required even in unexpected failures scenarios. However
another motivation is that nodes may actually act maliciously, possibly by the action
of its operator but more importantly in case where another actor take controls of the
node. Additionally, as evoked in the introduction, the ability to tolerate Byzantine
faults is an argument to qualify the system as being "trustless".

• Crash faults [PSL80]: The node stops responding altogether upon corruption. It
does not send any message nor does it interact with its environment in any way. This
setting is better suited in a context of distributed applications that must continue to
work even in the presence of hardware/software errors. In other words, compared to
Byzantine faults, the security aspect is absent.

Chapter 2. Background 17

• Honest but curious / passive / semi-honest adversary [KL14]: Corrupt nodes follow
protocol, but send their state and all data to the adversary. This model is appealing
for applications with third parties that are relied upon but cannot be audited, e.g. for
privacy concerns.

• Omission failures [PT86]: Nodes may fail to send or receive a message.

• Covert Adversary [AL07]: Corrupt nodes can behave arbitrarily, except that they
will not take any action that would lead them to be caught, e.g., if an honest node
collects and diffuse two votes by the same node (also known as an equivocation
proof).

• Rational [IML05, Amo20]: Nodes follow a strategy that aims at optimizing some
gain function. This type of fault is motivated by a game-theoretic approach to secu-
rity. This option can be motivated by the need of a more realistic fault model.

It is generally desirable to analyse protocols under multiple fault types. For instance,
Bitcoin is proven secure with up to half of the hashpower Byzantine [GKL20a], but that
assumption can be removed by instead assuming that nodes try to maximize their mon-
etary gains [BGM+18], although some other simplifying assumptions are used to prove
this result. Ouroboros [KRDO16, BGKR18] is shown secure under Byzantine faults, but
offers better performance with a covert adversary. Furthermore, all these fault types may
be combined, resulting in a refined model taking into account the possible interactions
between the multiple faults types. Examples include the BAR model (Byzantine Altruistic
Rational) [AAC+05], but also XFT (Byzantine and crash faults) [LVC+16]. In this thesis
we will focus on Byzantine faults alone.

2.1.2 Corruption threshold
We will see in Section 3.5 that not much can be achieved if the adversary can corrupt
any node it wants. Only reliable broadcast, which is effectively the weakest protocol
we consider can tolerate an arbitrary number of faults, and only with a fairly strong
model4. Therefore an assumption limiting the quantity of corrupt nodes is necessary to

4See Section 3.5 theorems 4 and 7.

Chapter 2. Background 18

work around impossibility theorems. Fundamentally, it means that these protocols (in-
cluding blockchains) are not Sybil resistant [Dou02], implying that a notion of identity is
required for the participants, and the protocol cannot tolerate an adversary able to artifi-
cially create many identities.

Classically, each node as a physical machine represents a single identity, and the im-
possibility proof exhibits an attack on any consensus protocol or some other problem, only
assuming that up to t nodes can be corrupt with t that must be sufficiently high with respect
to n, the total number of nodes [FR03]. Roughly speaking, the optimal value for t is: n for
reliable broadcast in synchronous network, bn

2c for consensus in synchronous networks,
and bn

3c otherwise. For more precise statements, see Section 3.5.
Interestingly, the notion of identity formulated in the impossibility proof has few re-

quirements and does not need to be specifically tied to physical machines, public keys, or
something else. Indeed the whole reason to have node identities at all is to formalise Sybil
attacks and the impossibility to resist such attacks. Therefore, the only requirement for
protocols is to make their assumptions with identities that adequately prevent the impossi-
bility result to apply. As shown in Section 3.5, the precise condition to prevent agreement
is the existence of a k-sized partition of the node set such that the adversary is able to
corrupt any of the partition sets. As a result, any kind of (non-duplicable) resource whose
ownership is provable is suitable to escape Sybil attacks, because assuming that at most
1/k of that resource is owned by malicious nodes prevents the existence of any k-sized
partition. This mechanism is how protocols based on Proof-of-Work (or any other) fal-
sify the premise of the impossibility result, by assuming a sufficiently high fraction of
the "work" (i.e., hashpower) is owned by honest nodes. Therefore we feel justified to put
forth a definition for the definition of a "Proof-of-X protocol", which is the presence of an
assumption limiting the ownership of X by malicious nodes.

2.1.3 Adversarial adaptivity
Having specified what happens upon corruption, we can further restrict when corruption
can take place, which is related to the notion of the adversary adaptivity [CDD+01].

• Static: Nodes must be corrupted before any of them makes an input to the protocol,
and the set of corrupted nodes cannot change during execution.

Chapter 2. Background 19

• Adaptive/dynamic : Honest nodes can be corrupted during protocol execution. This
means that the adversary can corrupt nodes depending on the protocol inputs, and
it can wait for relevant information before choosing which nodes to corrupt. In this
setting it may be needed to add the assumption that honest nodes can forget some
part of their state, to gain the ability to force a secret information to expire.

• Weakly dynamic: Same as dynamic, except that corruption takes some prescribed
time to be effective, or more generally, waits for some precondition. This is par-
ticularly useful in context of committee election, as mentioned in the introduction.
If the correctness of the protocol relies for a short duration on a set of nodes that
could be corrupted, then by taking this set at random and with a weakly dynamic
adversary we can ensure that it will not be able to corrupt those nodes before they
finish their task. If the overall protocol is long-lasting, e.g. like a blockchain, the
weakly dynamic adversary is an attractive design trade-off, capturing the evolution
of the set of corrupted nodes while letting honest ones complete some short lived
actions.

• After-the-fact-removal (implies dynamic), also known as strongly dynamic: When
an honest node sends a message on the network, depending on its content the ad-
versary is able to corrupt the node immediately and remove the message from the
network before it is received by any other node. One may argue that after-the-fact-
removal makes more sense than dynamic alone, because if the adversary is able
to instantly corrupt a node right at the moment after sending a message, it seems
implausible that the adversary would be unable to prevent the message from being
further dispatched in the network. As an interesting note, this is the only assump-
tion regarding adversarial adaptivity that explicitly depends on the existence of a
network.

With dynamic adversaries comes the possibility for transient faults, a.k.a. mobile or
recovery faults. Instead of staying corrupted for the remaining of the protocol, nodes can
become honest again. This may seem a weakening of the adversary because it does not
seem to gain anything from it, but depending on the protocol the opposite may be true. If
the adversary is limited by the corruption threshold, it can work around that limitation by
recovering some nodes that aren’t needed anymore. With transient faults, also comes the
question of what is the state of nodes after recovery. Indeed re-joining an existing network

Chapter 2. Background 20

often requires trust assumptions e.g., to contact at least one honest node, and possibly a
costly procedure. Furthermore, if the adversary is not weakly dynamic, an assumption on
the rate at which corruptions change may be required, to prevent the unrealistic situation
where the adversary would corrupt every node at a high frequency to effectively control
all of them without exceeding the corruption threshold.

2.2 Synchronization

2.2.1 Clocks
To keep track of the passing of time, each node has a local clock that regularly ticks.
This can only give meaningful information if their clocks have some level of consistency,
hence the existence of clock synchrony assumptions. Even without explicit timeouts in the
protocol, the possibility to have nodes blocked due to processing times requires consid-
erations on how synchronized is time keeping. The assumptions are stated in terms of φ ,
the bound (over all executions) of the maximum factor between any two nodes clock rate.
In the landmark paper by Dwork, Lynch and Stockmeyer, three possible assumptions are
identified [DLS88].

• Strong: φ exists and is known to the nodes, i.e., given to the protocol as a public
parameter.

• Partial: φ exists, however it is not given to the protocol, and it is generally not
possible to infer it during execution.

• Asynchronous : No assumptions at all, there is no φ . Or equivalently, φ = ∞.

More recently, and particularly in the context of blockchain, the issue of clock syn-
chronization is less of a concern, and roughly only one setting is considered, "loosely
synchronized clocks" or "roughly synchronized clocks". There are two equivalent formu-
lations:

• There is a known bounded offset between any two node’s clocks, i.e., an absolute
bound over all executions.

Chapter 2. Background 21

• Only assume strong synchrony, but with a protocol that terminates in finite time.

The justification is that hardware performance makes the issue of clock drift mostly moot,
and then being able to obtain some correct date information once is a reasonable assump-
tion. But perhaps confusingly, the latter assumption is stronger than strong clock syn-
chrony assumption.

Because clocks are local to each node, there is no use in having clocks at all if they are
fully asynchronous.

2.2.2 Network
The network provides a send/receive interface for messages between nodes. Its basic func-
tionality is to deliver sent messages to some recipient node. A wide range of network
topologies have been studied, for instance depending on connectivity and in ring networks.
In this thesis we focus on the simplest model and most relevant to blockchains in general:
point to point complete communication graphs. That is, any node may send a message
to any other node. One interesting alternative is if honest nodes can only multicast to all
nodes, because they don’t need to know who is participating to send messages.

First, let us give some assumptions that define the basic functionality of a communica-
tion network.

• Eventual delivery : A message will eventually be delivered to its recipient.

• Reliable channel : Messages are not duplicated, created nor modified.

Those two assumptions together form a secure channel.
Generally the adversary can read message contents; secrecy can be assumed but this

is useful mostly when participants have to transmit secrets to specific parties, and it’s
often not the case with agreement protocols. If the adversary cannot spoof the message
sender then the channels are said to be authenticated, or equivalently the messages are "oral
messages" [LSP82]. This should not be confused with solving the authenticated version of
a problem, i.e., when digital signatures are available. The difference can be summarized
as below.

Chapter 2. Background 22

• Digital signatures are transferable, while with authenticated channels a node cannot
prove to a third party that some other node sent a message. This is important because
this change affects solvability results.

• Although information-theoretic security is impossible for signatures, we can model
an ideal signature scheme that has information-theoretic security even if it can-
not be implemented in the plain model. This technique can roughly be seen as
equivalent to an ideal transferable-authenticated channel. For a practical applica-
tion, unconditionally secure pseudo-signatures may be employed for the same pur-
pose [FWW04, PW96].

The definitions for network synchronicity are analogous to clock ones. They are stated
in terms of ∆, the bound (over all executions) of the maximum time it takes for a message
to be delivered [DLS88].

• Strong synchrony : ∆ exists and is known to the nodes.

Alternatively, a "round" or "step-lock" formalism is possible : Each node has access
to a global "round" clock, and sent messages are guaranteed to be received before
the end of the current round. The equivalence between the two formalism is subject
to caveats, see Section3.2.2.

• Partial synchrony [DLS88]. There are two formulations.

– ∆ exists, but it is not given to the protocol and it isn’t possible in general to
infer it. This is analogous to the definition for the clock partial synchrony
assumption.

– ∆ exists and is known to the nodes, but it holds after some arbitrary Global
Stabilization Time (GST), unknown to the protocol. This formulation is also
called eventual synchrony.

Both definitions are generally seen as equivalent, although there are also some small
technical caveats, see Section 3.2. In practice, the GST model is useful to design
protocols as if they had a synchronous round structure, simply by proving that the
protocol remains safe if the network is asynchronous. The underlying reason is than
many protocols rely on an estimation mechanism for ∆, whose functioning details

Chapter 2. Background 23

are irrelevant to the protocol design. Hence, the GST formalism is a practical way
to simply consider the resulting round structure.

• Asynchronous : there is no ∆, or ∆ = ∞. The difference between partial synchrony
and asynchrony only concerns infinite runs : A finite part of an execution is always
partially synchronous. Another wording is to say that, in an asynchronous network,
the delivery time of new messages may increase forever.

The synchrony assumptions depends on the notion of clocks. Indeed, ∆ is intended to
be expressed in "real time steps" which has meaning only if clocks give some. Because
clock delays can equivalently be seen in terms of network delay, only the weakest assump-
tion of the two will prevail [DLS88]. If the protocol doesn’t make use of timeouts, then
the formulation of clocks can be embedded in the network functionality.

In the context of crash faults, an alternative formulation can be made in terms of failure
detectors [FGK11]. Using this abstraction, the network is asynchronous but there is an
additional oracle that nodes can access to learn about the state of other nodes (crashed or
not). Depending on the reliability and accuracy of that information, the failure detector
encodes varying strengths of assumptions.

On dealing with strong synchrony The asynchronous model has a lot of very strong
negative results, but on the other hand strong synchrony is contriving important assump-
tion, and consequently partial synchrony is an attractive middle ground to these extremes.
However another alternative is to try to mitigate the issues with strong synchrony directly.

• Even in real implementations, it is difficult to obtain hard guarantees on the ∆ bound,
which generally remains a hopeful assumption. This contrasts with the devastating
effects of violating this bound, potentially breaking safety for all nodes. To answer
to this issue, the sluggish type of faults may be added [GPS19], where sluggish
nodes follow the protocol honestly but may violate the ∆ bound. This does not raise
the overall corruption threshold, but sluggish nodes will still be guaranteed safety.
In a sense this is similar to allowing the adversary to mark some corrupt nodes as
being "honest, partially synchronous" nodes.

• Because the ∆ bound has to always hold, even in worst-case execution, it has to
be overestimated. This can be mitigated with responsive protocols [PS17b], which

Chapter 2. Background 24

are protocols whose latency is independent of ∆. Of course strongly synchronous
protocols cannot be always responsive, otherwise they would simply be partially
synchronous. Therefore responsive protocols are only so under some conditions,
i.e., optimistically.

• Some flexibility can be added by giving each node the ability to choose its own ∆ in-
dependently from the other nodes. Furthermore, at least in the case of Proof-of-Work
protocols, it is possible to make all the online phase of the protocol independent from
∆, such that its value is only needed to extract the output from data generated in the
online phase. For instance, Spectre and Phantom [SLZ16, SZ18] let nodes generate
a blockchain through mining without knowing ∆, and knowing its value let compute
each transaction’ probability of being ever invalidated.

This approach also provides graceful security degradation. Let con f idence∆(tx) be
the function that evaluates the probability for a transaction tx to be reverted. If
con f idence only tends to 0 when ∆ goes to infinity, then violation of the bound only
results in a higher-than-expected probability of failure, not total breakdown.

2.3 Randomness
Historically, protocols have been divided between and deterministic and probabilistic ones.
A probabilistic protocol P is not required to be secure for all executions, rather, it must
satisfy some properties with probability p.

Investigation of probabilistic protocols has been motivated in no small part due to
the FLP impossibility [FLP85], which states that consensus cannot be solved with one
crash fault by a deterministic protocol in an asynchronous network. Because the FLP
impossibility shows the existence of non-terminating executions, probabilistic protocols
circumvent this result by ensuring that these executions have probability 0. This is possible
if, for instance, honest nodes periodically makes a coinflip that always has a non-zero
chance of leading to a terminating execution. In that case, the protocol may even have
probability 1 of being secure; although the other side of the coin is that any bound on the
execution length must hold with probability < 1, because any step from a non-terminating
execution can be reached with non-zero probability.

Chapter 2. Background 25

As a result, and also due to the existence of other bounds on probabilistic protocols5,
they have acquired a reputation of being inefficient, despite the possibility of expected
constant execution time [CKPS01]. However, as cryptography becomes overwhelmingly
used, especially in the BFT setting, modern protocols tends to be almost always probabilis-
tic, since cryptographic primitives are most often considered in a computational setting
where the adversary has a (negligible) probability of winning. Therefore, any protocol
that uses, e.g., hash functions may be considered as probabilistic, in the sense that they
satisfy their properties with some probability p (which in this case cannot even be 1).

Lastly, we point out that the definition of probabilities in distributed systems is not
as straightforward as it may seem. The probability space of executions is dependent on
the actions of the adversary, however as illustrated in the beginning of this chapter, the
adversary is nothing more than a universally quantified set. Such details on the formalism
are sometime stepped aside, e.g., by considering the probability space "over all players
and the adversary random coins" [Can01].

2.4 Assumptions and Setup
Commonly for cryptographic protocols, some additional assumptions may be required.
Broadly speaking, they may fall in three categories:

• The modelling of a real-world components, such as hardware security modules or
the time required to solve Proof-of-Work challenges.

• Cryptographic assumptions, typically the computational hardness of some problem.

• Trusted setups, when some interactive program is run before any intervention of the
adversary, and obviously before the protocol input is known.

These assumptions are not solely the concern of cryptography, because they also influence
whether consensus (or any other problem) is solvable [FR03].

Regarding setups for BFT protocols, there are a few common assumptions of interest.

5See for instance Section 3.5 and Theorem 6.

Chapter 2. Background 26

• Public parameters, Common Reference String (CRS), correlated randomness: A
trusted dealer samples a string from a known distribution and sends it to all parties.
This assumption is typically used by protocols based on zero-knowledge proofs,
where generating the string implies the knowledge of a trapdoor breaking the scheme.

• Public Key Infrastructure (PKI) model: Every node generates a public/private key
pair and sends the public part to every other node. Note that new nodes joining the
network must also transmit their public key, which is akin to an "online extension"
of this setup assumption. Additionally, one can see the public key of a node as also
playing the role of network address, either because it has an address attached, or
because the network is able to resolve a public key.

More generally, any idealized cryptographic primitive can be assumed to be available
for the protocol to work. For instance, oracles, setup and computational assumptions are
often used only to build up cryptographic primitives. In this case, it is our impression
that directly assuming the required primitive in its idealized form is preferable, for several
reasons:

• It simplifies presentation, allowing to focus on the protocol semantics instead of
implementation details.

• Perhaps paradoxically, a weaker model without setup and computational assump-
tions may be simpler to describe and work with, e.g. by focusing purely on combi-
natorial arguments.

• The assumptions needed for the actual protocol may be hidden by the stronger cryp-
tographic ones. Thus this approach can strictly strengthen the proven results.

• Specifying a given implementation for cryptographic primitives may be unnecessar-
ily restrictive, and there is no issue in suggesting an implementation with desirable
properties, to describe a complete instantiation of the overall protocol.

• More generally, this approach essentially boils down to favoring fine-grained mod-
ular designs.

Chapter 2. Background 27

2.5 Problems
Having reviewed the existing models in which BFT protocols executes, we now turn our
attention to the specifications that they satisfy. These specifications acts as an abstraction
of the object implemented by protocols, and in this case in particular we are interested in
the definition of a blockchain as a distributed object.

Blockchain To define what a blockchain is, we evoked the State Machine Replication
(SMR) approach in Chapter 1, in which a blockchain protocol aims at emulating a central-
ized stateful application. To make things more precise, the definition we will focus on in
this thesis is atomic broadcast (ABC), also known as total-order broadcast [DSU04a].An
atomic broadcast protocol lets any node initiate the A-broadcast of a message (i.e., transac-
tions in the blockchain case) at any moment, locally A-delivers messages, and guarantees
the following. In the context of blockchain, messages can directly be valid transactions.

• Liveness and validity: All messages A-broadcast by honest nodes must eventually
be A-delivered by all honest nodes.

• Consistency : All honest nodes A-delivers the same sequence of messages.

This definition predates the blockchain era, and since then other abstractions have been
built to better fit its specificities.

The first6 and most prominent effort to define a blockchain is due to Garay and Ki-
ayias [GKL15, GKL20a] through the Transaction Ledger abstraction. Although the ex-
ecution model of the transaction ledger is the UC framework [Can01], the properties
themselves are stated in an ad-hoc manner not compatible with other UC definitions7.
This gap has been fixed [KZZ16] with a formalisation of the transaction ledger in the
GUC [CDPW07], an extension of the UC framework.

Definition 1 (Transaction Ledger). A protocol that maintains a list of blocks of transac-
tions is a Transaction Ledger if it satisfies the two following properties.

6At their level of formalisation.
7Concretely, the transaction ledger is not a UC functionality.

Chapter 2. Background 28

• Persistence: Once a node of the system proclaims a certain transaction tx as stable,
the remaining nodes, if queried, will either report tx in the same position in the
ledger or will not report as stable any transaction in conflict to tx. Here the notion of
stability is a predicate that is parametrized by a security parameter k; specifically, a
transaction is declared stable if and only if it is in a block that is more than k blocks
deep in the ledger.

• Liveness: If all honest nodes in the system attempt to include a certain transac-
tion then, after the passing of time corresponding to u slots (called the transaction
confirmation time), all nodes, if queried and responding honestly, will report the
transaction as stable.

These properties are parametrized by k and u, and the definition is loosely equivalent8

to atomic broadcast with k = poly(λ) and latency O(∆u). The Liveness property of the
transaction ledger may seem slightly weaker than ABC because all nodes must input a
transaction to guarantee its inclusion. However, it is still possible to satisfy ABC liveness
using a transaction ledger, the input message m of the a-broadcast is multicasted to all
other nodes, and upon reception they submit m to the transaction ledger. In practice, for
instance with Bitcoin, this mechanism is instantiated by the transaction pool.

This definition is sometimes broken up in three parametrized properties on the blockchain
data structure: Common Prefix (CP), Chain Growth (CG) and Chain Quality (CQ). Infor-
mally, Common Prefix states that pruning kp blocks from a chain results in the same chain
for all honest nodes. Chain Growth (CG) states that every kg consequent rounds, each node
adds at least τ blocks, i.e., τ is a round/block conversion parameter. Chain Quality (CQ)
states that in every chain segment of length kq, there is at least a proportion µ of honest
blocks. kp-persistence is straightforward to prove from kp-CP. For liveness, the proof from
all three properties yields max(kg,

kq+kp
τ

)-liveness.
Anceaume et al. proposed a blockchain abstraction [APL+19a] where they considered

a block tree structure with read and append operations. Then they define a weak and a
strong consistency criteria on the operations history to capture the blockchain properties.
The strong criterion implies a common prefix on the tree which we expect to be equivalent
to the atomic broadcast. Anta et al. gave an abstraction of a Distributed Ledger Object

8See Section 3.3 for the definition of loose reduction and equivalence.

Chapter 2. Background 29

(DLO) [AKGN18] with a similar approach, and they show how their abstractions reduces
to ABC.

Related problems Beyond a specific target application, the consensus problem is con-
sidered to be a fundamental primitive for distributed algorithms. Its executions are finite
which makes it conceptually simpler, and its equivalence with atomic broadcast9 means
that any distributed application can still be implemented through consensus. A solution to
the consensus problem [Fis83] is a protocol that lets all nodes start with one input value,
and guarantees the following properties.

• Liveness : All honest nodes eventually deliver a value, exactly once.

• Consistency : All honest nodes deliver the same value.

• Validity : The delivered value must be the input value of one honest node.

Beyond the other definitions that we are considering in Section 3.3, there are many
variations which may be considered [CVNV11]. Liveness can be weakened by removing
the completeness requirement, to only require that some honest node eventually delivers a
value, exactly once. Consistency can be weakened by making it approximate [DLP+86]
w.r.t. some distance function: The honest nodes output must be closer to each other than
a given ε . Another option is the k-set version [Cha93] with a weaker agreement property :
The number of different honest outputs is at most k.

Another fundamental problem in distributed systems is the Reliable Broadcast [LSP82].
A reliable broadcast protocol is parametrized by a sender node S. It lets an honest node
R-broadcast a message to all nodes, while guaranteeing that even a corrupt sender cannot
force other nodes to R-deliver different messages. Reliable broadcast is strictly weaker
that consensus, can be implemented in an asynchronous network, and is commonly used
as a building block in practical protocols.

• Liveness : If the sender S is honest, then all honest nodes eventually R-deliver a
message exactly once.

• Consistency : All honest nodes R-deliver the same message.

9This affirmation is not without caveats, see Section 3.3.

Chapter 2. Background 30

• Validity : If the sender S is honest, then the R-delivered message is the R-broadcast
of S.

In regard to cryptocurrencies, there is a somewhat overlooked but crucial hindsight that
solving consensus is not necessary to build a payment system [GKM+19]. Therefore it is
possible to build a cryptocurrency application using primitives that are strictly weaker than
consensus, such as Lattice Agreement [LAQ20] or Reliable Broadcast [CGK+20]. The
resulting protocol benefits from less restrictive bounds and thus can weaken its assumption
on network synchrony, improve fault tolerance, and improve performance. On the other
hand, Turing-complete smart contracts are incompatible with this technique since they are
equivalent to State Machine Replication.

2.5.1 Extensions
The problems presented here as well as the ones added in Section 3.3 can be seen as a
description of the core functionality provided by the distributed objects. Different algo-
rithms may provide others desirable properties. Although they are technically a part of the
problem definition as solved by the protocol, it may be more intuitive to consider them as
some kind of "added feature".

Support for reconfiguration Reconfigurable protocols add the possibility to have mem-
bers that can be changed during execution. This is mostly useful for protocols that are
expected to be long-lived, such as Atomic Broadcast. In fact, the possibility to have nodes
easily leave and re-join the system at any moment is one of the main characteristics of
permissionless environments.

With a common assumption that all nodes know the set of participants, the straightfor-
ward way to support reconfiguration is to solve consensus to agree on an updated set of
members, while taking into account that the "members update" operation also impacts how
other operations complete. Additionally Kuznetsov and Tonkikh showed that for Lattice
agreement protocols, reconfiguration itself can be solved with Lattice agreement [KT20].

Fairness There are several related notions of fairness that can be considered. Regarding
the SMR abstraction, fairness can seek to address that the adversary can choose the final or-
dering of commands [KZGJ20]. Another concern is to bound the proportion of commands

Chapter 2. Background 31

that are issued by corrupt nodes [PS17a]. This definition in particular can be relevant in
the context of rational10 players, to ensure that players are rewarded in accordance with
their effort.

Requirements on performance Protocols can be designed with specific conditions on
e.g. the number of exchanged bits, the time to finish execution, etc. Furthermore, opti-
mistic protocols [KAD+07, PS18] are more efficient under some conditions. Elette Boyle,
Ran Cohen and Aarushi Goel [BCG20] presented a consensus protocol with a "balanced"
communication cost which must be the same for all parties.

Improved bootstrapping For protocols with dynamic participation, it is expected that
nodes will commonly (re-)join after being out of the system for extended periods, there-
fore requiring to recover an up-to-date state to resume execution. Besides, this operation
fundamentally requires trust assumptions to reconnect to the network (contacting at least
one honest node). This is complicated by the possibility of honest nodes being corrupted
after leaving the network. Some protocols may offer the possibility to do so without
having to download lengthy transcripts, e.g. through check-pointing or zero-knowledge
proofs [KK20, LSGZ19], while minimizing the assumptions required for a successful join.

Guaranteeing different properties under different conditions/models This gives rise
to "degrading" versions of a problem, e.g. when the guarantees change with different cor-
ruption thresholds [HKL20].

Verifiability A "validated" version of some problem is required to produce a certificate
along the output that can be checked for validity. The verifier, given the protocol instance
and public parameters, should be convinced that the protocol took place as specified. In
the case of "public verifiability" the verifier needs not to be a protocol member.

10See Section 2.1.1.

32

Chapter 3

Formalisation of distributed
components

The primary objective of this chapter is to establish a library of definitions of the prim-
itives and problem specifications commonly used by BFT protocols. More importantly,
these definitions must be based on a common model of execution, thus ensuring a con-
sistent terminology. To illustrate how this contribution helps to clarify the blockchain
landscape, we show some uses of this library. First, we relate the definitions we just made
with each other, through reductions and impossibility theorems from the literature, yield-
ing a formalised map of the BFT landscape that is both clear and precise1. This map
highlights fundamental differences in the definitions of BFT consensus, an observation
that we believe has been largely ignored within existing research. Then, we map our li-
brary to existing implementations of blockchain protocols, i.e., we analyse their model and
specification which we interpret using the components we have defined. As a bonus, we
are also able to use our formalism to compare performance metrics.

We do not aim at making a framework that would be explicitly used in subsequent
work to make security proofs. Rather, we want to make a simple and coherent description
of models and specifications that constitute the base of recent protocols, to ensure that
any ambiguity in terminology can be resolved at least in principle. As an example of
this contribution, we argue in Section 3.6.1 that the network model of two prominent
papers [GKL20a, BGKR18] are stated inaccurately, partial synchrony is claimed, whereas
an interpretation in our framework requires a strongly synchronous network.

1See Figure 3.2

Chapter 3. Formalisation of distributed components 33

Related work The main motivation of this work is the absence of a coherent collection
of definitions for both the primitives and the specifications of distributed components. To
make those definition, we first provide a minimal formalism (in Section 3.1) that serves
as an abstraction layer for an execution model. This execution model is by no means
intended to be novel or to improve other state of the art frameworks such as the Uni-
versal Composability (UC) framework [Can01], I/O Automatas [CCK+08a, CCK+08b],
the RSIM framework [BPW07], Constructive Cryptography [Mau11], the MOSS frame-
work [LHSW20] and the IITM framework [KTR20]. On the contrary, we intend for future
work to replace our execution model with an existing one2.

Indeed, existing work regarding the formalisation of BFT protocols has largely focused
on either the execution model alone, e.g. with one of the framework mentioned above, or
making definitions of primitives and specifications specifically for one protocol in isola-
tion; thus they are far from forming a complete characterisation of the state-of-the-art.
However, there has been some effort to make standard definitions of common distributed
components for existing execution model. Liu-Zhang and Maurer [LM20] build on the
constructive cryptography framework to formalise a synchronous network, and they pro-
vide a specification for reliable broadcast as well. Kiayias et al. [KZZ16] have provided
definitions for a synchronous network and a fair distributed ledger in the GUC fram-
work [CDPW07], an extension of the UC framwork. To the extent of our knowledge,
there are no formalised definition of Byzantine consensus within one of these framework.

Garay and Kiayias [GK20] took the UC framework as an execution model to clas-
sify several protocols, Their work is similar to what is done in Section 3.6, since they are
interpreting protocols in a common set of models. Independently of any framework, Milo-
sevicet al. [MHS11] related a wide variety of consensus definitions to atomic broadcast
in the Byzantine case, which is similar to our contributions in Section 3.3. For those last
two papers, our contributions goes on step further by making our definitions significantly
more formal and complete. Additionally, we combine the impossibility theorems with the
reductions to complete the picture, and we make precise metrics evaluation of existing
protocols.

Regarding the UC framework, it should be noted that some existing blockchain pro-
tocols described within this framework [GKL20a, BGKR18, DPS16] uses its execution
model but formalizes the blockchain abstractions using ad-hoc properties instead of UC

2see Section 5.1.

Chapter 3. Formalisation of distributed components 34

functionalities that are covered by the UC notion of security. In a sense, the resulting
approach is very similar to ours, but based on a substantially more complex formalism.

In Section 3.1, we start by formalising a basic execution model that will serve as a
common ground for the following sections. We give definitions for various adversaries
and primitives that are used as model in Section 3.2; we give definitions for protocols
specifications (i.e. properties they must satisfy) in Section 3.3, and we relate them by their
strength. Then, in Section 3.4 we provide common performance metrics, namely latency
and communication cost, in our framework. In Section 3.5 we lay out necessary trust
assumptions and minimal costs to solve the problems from Section 3.3, and reinterpret
the proofs in our model. Then, in Section 3.6 we analyse a few prominent blockchain
protocols, by giving their model and metrics, as interpreted in our framework.

3.1 Preliminary work : A simple execution model
In this section we make a small and simple execution model that will be the basis for the
definitions in the remaining of the chapter. In the interest of systematisation, we made
the overall framework as modular as reasonably possible, the intent being that a specific
model can be simply described by picking the desired components.

Overview We first define an abstract "execution" object which gives an ordered list of
events. Then we define an abstract container "module" object that represents interfaces
which the nodes can connect to, with their properties. The properties themselves are stated
in terms of admissible executions. The modules will be used to define clocks, network,
randomness, setups, ideal signatures, random oracle, PoW oracle, as well as all the prob-
lem definitions (i.e., specifications) in the following section. Then, given a distributed
algorithm P that uses a module list A, we define the set of all executions of P in A, ad-
missible with respect to adversary abilities. Finally, we say that a protocol P meets its
specification B if all its executions are admissible executions of B.

To simplify presentation we first cover the deterministic case and then update the defi-
nitions to capture probabilistic executions. In Table 3.1 we give a reference to most nota-
tions used in this section.

Chapter 3. Formalisation of distributed components 35

Notation Meaning
P ∈ P[M] protocol P
p,q ∈Π nodes p and q from the set of nodes Π

m ∈M module m from set of modules M
Ei, i ∈ EI event Ei at index i from execution E
E[X], T[X] executions and execution trees over X
PT [φ] probability of φ within probability space induced by T

_ any value (existentially quantified)
Events(·) Event set (of a protocol or module)

MA
P |= S,MA

P |=λ S protocol P with adversary A (statistically) satisfies module S
Am, admissibility predicate of module m
I,O sets of input and output values

Ci,Hi set of corrupt and honest nodes at index i
C corruption structure

∆, Φ, network delay, nodes clocks offset
λ security parameter
· set cardinality

negl(·), poly(·) a negligible function, any polynomial function
O(·), Ω(·), Θ(·) upper, lower, and exact asymptotical bound

TABLE 3.1: Summary of notations

Chapter 3. Formalisation of distributed components 36

Notations For naturals a and b, Ja,bK is the set of natural numbers between a and b, and
[x,y] is the set of reals between the reals x and y. For a set X , P(X) is the power set of X ,
#X is the cardinality of X . A×B is the Cartesian product of the sets A and B, which we
also call tuples. Function abstraction is noted x 7→ f (x). The logical truth and false are
noted > and ⊥, respectively.

3.1.1 Deterministic modules and protocol execution
We start off by introducing the basic objects of our formalism, sequences, modules, events
and protocols. First, let Π be a finite set, representing all the nodes in the system, with
n := #Π the number of nodes. We use sequences of events as the basic object to describe
executions, with events being tuples that contains information about an input/output to the
nodes, or a corruption.

Definition 2 (Sequence). For a given a set X , a sequence E over X is a tuple (EI,EF),
where EI ∈

⋃
k∈N{J0,kK}∪{N} and EF : EI→ X . For simplicity, we will write Ei in place

of EF(i) for any i ∈ EI .
For a given set X , we note E[X] the set of sequences over X . We then call X the event

set of E.

Let E ∈ E[X]. The preimage of E is noted E−1, i.e., E−1(x) := {i ∈ EI | Ei = x} for
some x ∈ X . In the following we extensively use this preimage notation as way to select
specific events from an execution, i.e., a filter operation. To this end, we also introduce
the notation "_", which stands for an arbitrary placeholder in the component of a tuple.
Formally it is defined as follows. First, the notation E−1 is extended in the standard way
to sets, i.e., for a set X ′ ⊆ X we have E−1(X ′) :=

⋃
x∈X ′ E

−1(x). Then, we interpret tuples
containing "_" as the set of tuples with all possible values for those components. Let
Πi∈IAi be a set of tuples, then the tuple (a0, . . . ,ai, . . .)∈Πi∈I(Ai∪{_}), is a shorthand for
the set

{(a′0, . . . ,a′i, . . .) ∈Πi∈IAi | ∀i ∈ I,ai 6= _⇒ ai = a′i}

Those two notations combined placeholder stands for an existentially quantified vari-
able over the appropriate domain. For instance, if E ∈ E[A×B] and a ∈ A, then E−1(a,_)
is a shorthand for {i ∈ EI | ∃b ∈ B, Ei = (a,b)}.

Chapter 3. Formalisation of distributed components 37

We now define a module as an object that interact with the nodes through inputs out-
puts, and that guarantees additional properties as expressed by a predicate on sequences.

Definition 3 (Module). A module m is a tuple (lm, Im,Om,Am), such that:

• lm is a finite string called label of m, which serves as the interface name used by
nodes3.

• Im and Om are countable sets, called input set and output set respectively.

• Am ⊆ E[X] is called the admissibility predicate of m. Here, X is a parameter to
Am that may be any countable set such that Events(m) ∈ X , with Events(m) from
definition 4 below. Am is seen as a predicate over E[X], i.e., for a sequence E, we
write Am(E) instead of E ∈ Am.

We call Events(m), the event set of m that contains all events related to m, the constant
m indicates an event related to a module. It contains input events indicated by i, with
the node making the input as well as its value; output events indicated by o, with the
node receiving the output as well as its value; and corruption events, with the node being
corrupt. It also contains corruption events, with the node being corrupt, as indicated by
the constant c.

Definition 4 (Module event set).

Events(m) :={(m, i, lm)}×Π× Im

∪ {(m,o, lm)}×Π×Om

∪ {c}×Π

Additionally, we use a dot notation for tuple projection. For an event e ∈ Events(m),
e.p ∈ Π is the node component (whether it is an input, output or corruption event), and
e.v ∈ Im∪Om is the output or input value.

Concretely, Am can rely on the existence of a total order of events, among which are
its own and corruptions events. Am(E) may hold depending the presence of elements in

3When the module represents a subprotocol, the label does play a role of session identifier.

Chapter 3. Formalisation of distributed components 38

the sequence that are not in Events(m), but it can only do so "blindly", i.e., based on their
order, independently from their content.

Given a module list M, we note P[M] the set of protocols that uses M. A protocol
P ∈ P[M] is modelised as a state machine that accepts top-level inputs or outputs from
modules, and returns top-level outputs and inputs to modules.

Definition 5 (Protocol). A protocol P ∈ P[M] is a tuple (IP,OP,SP,S0
P,FP), such that:

• IP and OP are countable sets, called input set and output set respectively.

• SP is a countable set called the states set and S0
P ∈ SP is called the initial state.

• FP : S× (I
⋃

m∈M Om)→ SP× (OP
⋃

m∈M Im)
∗ is a computable function called the

transition function. Its input domain is a state and an input in IP or output from M’s
output set. Its output domain is a resulting state and list of input values in M or
output from OP.

We define the event set of P similarly to modules, that is:

∀P ∈ P[M], Events(P) := {(p, i)}×Π× IP

∪ {(p,o)}×Π×OP⋃
m∈M

Events(m)

Given P ∈ P[M], we call the executions of P the set E[Events(P)].
As can be seen from definitions 4 and 5, an event’s first component is its type which

can be either m for module, p for protocol or c for corruption. For a module or protocol
event, its second component is either i for input or o for output.

In terms of physical interpretation, an event Ei can be seen as an atomic time step,
and an execution E contains all the information to describe the evolution of the system.
However we emphasize that this interpretation only serves as a thinking tool, and does not
have any formal implication.

Finally, we will call a model M of P a predicate on P’s executions. This predicate
defines the executions of P that are deemed to be compliant with the model in which P
runs. It includes basic requirements such as the fact that honest nodes follows the protocol,
as well as some of the adversary capabilities, such as a weak adaptivity.

Chapter 3. Formalisation of distributed components 39

Definition 6 (Protocol models - deterministic version). Given protocol P∈P[M], a model
of P is a unary predicateM⊆ E[Events(P)]. Like with other predicates, we writeM(E)
to mean E ∈M.

In section 3.2, after extending our framework to probabilistic executions, we will be
making definitions of models MA for each type of adversary A. For this deterministic
version, we give an example of requirement forM, which expresses that all executions of
P must be admissible for all its modules.

Example (simple model requirement).

MP(E) := ∀m ∈M, Am(E)

To complete this introduction we finally give the security statement that P correctly
implement a specification module S. This is done simply by requiring the admissible
executions of P to be also admissible for S. However we first we need to slightly modify
P’s execution to make them fit for AS.

Definition 7 (Stripping function). Let S be module, P a protocol such that IP = IS and
OP = OS. Then Sm(E) is a function that takes E ∈ E[Events(P)] and removes all mod-
ules inputs/outputs from the execution, i.e., events in E−1(m,_,_,_,_); and prefixes the
protocol’s inputs/outputs with m’s label lm, i.e., it maps (p,d, p,v) to (m,d, lm, p,v).

Definition 8 (Implementation correctness - deterministic version). Let P ∈ P[M] be a
protocol in modelMP. P is secure with respect to (or satisfies) module S iff the stripped
admissible executions of P are also admissible for S, i.e.,

∀E ∈ E[Events(P)],MP(E)⇒ AS(SS(E))

Note that definitions 6 and 8 are only for illustration purposes and will not be used oth-
erwise, however they both have an extended version in the full framework, i.e., definitions
14 and 16 respectively.

Remark The definition of P’s executions look very similar to the definition of a module,
with input and output set, event set, and admissible executions. This is expected because
the end goal is to state that executions of P are consistent with some specification module.

Chapter 3. Formalisation of distributed components 40

The reason to not define the protocol as a module itself is that it would have to be dependent
on the module list it uses, which would in turn considerably complicate the definition of
modules. In general, any notion that changes the overall protocol execution cannot be
formalised as a module.

3.1.2 Extension to the probabilistic case
Next we extend our model to allow for random executions, which is not a straightforward
addition. The current approach with our model is to define all the possible executions, and
then state the admissibility of each execution separately. Mixing probabilistic events that
relates multiple executions with combinations of unrelated events is tricky. Our approach
is based on the key hindsight by Lynch [Lyn96, Section 4.1.2] that there is one probability
space for each adversarial strategy. We first define execution trees that captures any pos-
sible probability spaces over executions. Then we treat each probability space as a single
execution like in the deterministic case, such that admissibility predicates now qualify over
executions trees.

First, we introduce the notations for probability spaces.

Definition 9 (discrete probability space). A discrete probability space µ ∈ D is a tuple
(Ωµ ,Pµ) where Ωµ is a finite set called the outcome set of µ , and Pµ : P(Ωµ)→ [0,1]
is a σ -additive function called the probability measure of µ . A σ -additive function is a
function Pµ such that ∀A,B⊆Ωµ ,Pµ(A∪B) = Pµ(A)+Pµ(B). Furthermore, we use the
standard notation Pµ [Φ] to mean Pµ({x ∈Ωµ | Φ}).

Probabilistic events We add the possibility for a module to have a probability space
associated to its output set. That is, instead of producing an output event during an exe-
cutions, modules may instead produce a probability distribution over the output set. The
definition of an execution does not change, only the event set of modules is modified to
allow for probabilistic output events.

Definition 10 (Probabilistic module). A probabilistic module m is a tuple (lm, Im,Om,Am)
exactly as from definition 3, except that:

• Am ⊆ T[X]. Here, X is a parameter to Am that may be any countable set such that
Events(m) ∈ X , with T[X] from definition 11 below.

Chapter 3. Formalisation of distributed components 41

• The event set of m is probabilistic:

Events(m) := {c}×Π

∪ {(m, lm, i)}×Π× Im⋃
µ∈D

Ωµ⊆Om

{(m, lm,o)}×Π×Ωµ ×{(Ωµ ,Pµ)}

We also keep the same dot notations for the event set of probabilistic modules, i.e.,
e.p ∈Π and e.v ∈ Im∪Om for e ∈ Events(m), and we add E.µ ∈D.

For simplicity, all modules outputs have an associated probability space. We say that
the output (m,o, p,v,µ) is deterministic iff Ωµ = {v} and probabilistic otherwise. Without
loss of generality, we will consider all modules to be probabilistic modules and we only
write "module" instead.

Given that each probabilistic event also give the resulting outcome in the execution,
they have an associated probability which is simply the probability function Pµ applied
to the outcome. By extension, we can associate a probability to each execution, which is
the product of probability of all their probabilistic events, i.e., for E ∈ E[Events(P)] the
probability of E is Πi∈EIPEi.µ({Ei.v}).

Execution trees We can see that although we have assigned probabilities to executions,
we do not have a clear notion of probability space over executions. Given that if two
executions differs by some non-probabilistic event they are considered completely inde-
pendent, it is not clear to see whether two executions should be considered to be part of
the same probability space, or if they are to be considered separately. To fill this gap, we
define the notion of execution tree:

Definition 11 (Execution tree). For a given set X , the set of execution trees over X is noted
T[X]. A tree T is a subset of E[X], such that:

• For any probabilistic event Ei in an execution E ∈ T , for every outcome v2 ∈Ωµ in
the probability space Ei, there is another execution E ′ ∈ T such that, E j = E ′j for any

Chapter 3. Formalisation of distributed components 42

j < i and E ′i is the same as Ei except that its outcome is v instead. That is:

∀E ∈ T,∀i ∈ E−1(m,o_,_,_,_), let (m,o, l, p,v1,µ) := Ei,∀v2 ∈Ωµ ,∃E ′ ∈ T,

i ∈ E ′I ∧ (∀ j < i,E j = E ′j)∧E ′i = (m,o, l, p,v2,µ)

• Any two executions in T must have the same prefix up until some probabilistic event
Ei with a different outcome. That is:

∀E,E ′ ∈ T,∃i ∈ E−1(m,o_,_,_,_), let (m,o, l, p,v1,µ) := Ei,

i ∈ E ′I ∧ (∀ j < i,E j = E ′j)∧∃v2 6= v1, E ′i = (m,o, l, p,v2,µ)

For a given protocol P, each probability tree T induces a probability space for the
executions of P, with executions as outcomes and.

Definition 12 (Execution trees as probability space). The discrete probability space asso-
ciated to an execution tree T ∈ T[Events(P)] is4 (ΩT ,PT) ∈D.

ΩT := T
∀E ∈ T, PT ({E}) := Πi∈EIPEi.µ({Ei.v})

Intuitively, an execution tree represents one possible probabilistic execution, which
fits the view that every system run (probabilistic or not) is entirely independent from one
another. Interestingly, we can see that two executions may have multiple execution trees
in common, although their respective probabilities remains the same within each tree.

Adversaries and models Given that in Section 3.2 we will define a unique modelMA
P

for a given adversaryA and protocol P, we introduce the notation immediately, which lets
us define security with respect to an adversary A, instead of with respect to an arbitrary
modelM.

Definition 13 (Adversary). An adversary A is a tuple with three elements.

1. Either "computational" or "unbounded" (see Section 3.2.1).

4This is a slight abuse of notation, since technically T is not a member of D.

Chapter 3. Formalisation of distributed components 43

2. A corruption structure C ∈ P(Π) (see Section 3.2.1).

3. Either "static" or a predicate D (see Section 3.2.1).

Definition 14 (Protocols models). The model of P against adversary A is the unary pred-
icateMA

P ⊆ T[Events(P)], defined as follows:

MA
P (T) := MODULES(T)∧STRUCTURE(C)(T)∧HONESTD(T)∧

computational ∈ A⇒ COMPUTATIONAL(T)∧
static ∈ A⇒ (D = true∧STATIC(T))

Where each component will be defined further in Section 3.2, except MODULES which
is below.

The MODULES predicate is better seen as a necessary requirement of our execution
model, and thus we state it here. It requires that every protocol execution is admissible for
all its modules.

MODULES(T) := ∀m ∈M, Am(T)

Probabilistic security We are now ready to state the probabilistic statement of security.
It is analogous to the deterministic version, except that we must quantify over execution
trees instead of just executions. However we also need to account for the fact that only
modules can make truly random outputs, the protocol output themselves only have a prob-
ability that is derived from the random module events that happened so far. To do so,
we extend the stripping function to execution trees by converting protocols outputs into
probabilistic events.

Definition 15 (Stripping function - generalized). Let S be module, P a protocol such that
IP = IS and OP = OS, and let T ∈ T[Events(P)]. Then SS(T) is an execution tree where, for
all E ∈ T , any protocol output event Ei is converted into a probabilistic event by inserting
a probability space µ ∈D in Ei. The probability function SF is the unique one such that
the execution probability in T and SS(T) are the same, i.e., ∀T,PT = PSS(T). Additionally,
SS(T) also applies SS(E) from definition 7 to each individual execution E ∈ T .

Chapter 3. Formalisation of distributed components 44

Definition 16 (Implementation Correctness - generalized). Let P ∈ P[M]. P against ad-
versary A is secure with respect to module S is notedMA

P |= S, and defined below.

MA
P |= S := ∀T ∈ T[Events(P)],MA

P (T)⇒ AS(SS(T))

Additionally, we writeMA
P [M] |= S to mean that P ∈ P[M] andMA

P |= S.

Random sampling Having treated probabilistic run, the definition of the module that
allows random sampling is quite simple. It lets any node make an empty input, upon which
it immediately returns a random bit. For the sake of clarity, we give a full formalisation
this module: We have Irand = {sample}, Orand = {0,1}. The admissibility predicate is:

Arand(T) := ∀E ∈ T, ∀p ∈Π, ∀i ∈ E−1(m, i, rand, p,sample),

i+1 ∈ E−1(m,o, rand, p,_,({0,1},b 7→ 0.5))

This definition however only lets us have probabilistic specifications, like the rand
module, but does not capture probabilistic protocols that implements specifications (prob-
abilistic or not).

Statistical security To be deemed secure, a probabilistic protocol must be secure with
a sufficiently high probability p. The precise notion of "sufficiently high" requires the
existence of a security parameter λ that tunes the protocol security, i.e., such that 1− p
becomes negligible as λ is increased. In this case, a negligible function is a function that
tend to 0 faster than any inverse polynomial,i.e., negl(f) := ∀c,∃N,∀x > N, | f (x)|< x−c.

Definition 17 (Statistical Implementation Correctness). Let P ∈ P[M] be a probabilistic
protocol. P against adversary A is statistically secure with respect to module (or statisti-
cally satisfies) S is notedMA

P |=λ S, and defined below.

MA
P |=λ S := params(N) ∈M ∧

Let θλ := {SS(T) | T ∈ T[Events(P)]∧MA
P (T) ∧

∀E ∈ T, ∀p ∈Π, E−1(m,o,params, p,λ) 6= /0}
negl(λ 7→ max

T∈θλ

1−PT [AS(T)])

Chapter 3. Formalisation of distributed components 45

Additionally, we writeMA[M] |=λ S to mean ∃P ∈ P[M], MA
P |=λ S.

3.2 Modelling adversaries and primitives
In this section, we build our library of components for BFT protocols, by giving a formal
definition for a restricted set of models that we presented in Chapter 2. We start by giving
the predicates to capture common adversaries in Section 3.2.1, then we describe a few
modules that capture typical ideal primitives in Section 3.2.2; together, they constitute the
protocols’ models.

Choosing the models We chose to formalise models that constitute a sufficiently com-
plete baseline core for BFT protocols, while staying as simple as possible. We also want
to be able to express most of the impossibility proofs that shape the space of blockchain
protocols, the hope being that other models used in the literature may mostly be seen as
variations from the baseline we present.

At the very least we need to model the three main types of synchrony assumption, as
well as probabilistic algorithms. We also need digital signatures since many of the pro-
tocols will consider the authenticated setting. As we stated in the previous chapter, we
prefer to have an ideal signature module and keep the possibility of information-theoretic
security. However, even with ideal signatures, protocols that use e.g., hash functions can
only be computationally secure and we must also add this possibility to our model. Con-
sequently, we also formalise the random oracle and obviously the Proof-of-Work oracle
for protocols that use them. We include all variations of the assumptions on the adver-
sary’s ability to corrupt nodes, through a generalisation of the threshold adversary to ar-
bitrary corruption structures. Protocols that leverage random, public committees to drive
agreement such as StakeCube often rely on delayed adversarial corruption to ensure that
committee members stay honest for a sufficiently long time. Therefore we also include a
mechanism to capture a generic notion of weakened adaptivity. Finally, we must be able
to pass some public parameters to the protocol during an initial setup phase. Because we
allow to specify any parameter value to any nodes, our formalisation is actually able to ex-
press any kind of trusted interactive setup assumptions, including public key infrastructure
and common reference string.

Chapter 3. Formalisation of distributed components 46

In summary, the captured models can be represented by choosing on for each of the
following components:

• Adversary computational power: polynomial or unbounded.

• Adversary adaptivity: static, weakly dynamic, or dynamic.

• Corruption structure: configured with the sets of nodes that may be corrupted.

• Randomness: probabilistic, deterministic.

• Network: strong synchrony, weak synchrony, asynchrony.

• Setup: any interactive trusted setup.

• Cryptographic primitives (any combination thereof): local random coin, random
oracle, signatures, PoW, verifiable random functions.

3.2.1 Adversary
Computational power

In the model described so far, any combination of events that satisfy the admissibility
properties is an execution (tree). In other words, there is no bound on an adversarial
computational power and we have captured the notion of information-theoretic security.
To capture computationally bounded adversaries, we require executions to be the output
of a polynomial-time Turing Machine. To this end, we again add a requirement to AP.

Definition 18 (Computational adversary). Let T ∈ T[Events(P)] for some protocol P.
COMPUTATIONAL(T) holds iff

There is a Turing Machine A polynomial in λ , such that for every execution E ∈ T all
events in E are output (in sequence) byA, except for probabilistic events, in which caseA
only output the event without its outcome, and then receives the event outcome as input.

The computational setting always implicitly implies a statistical implementation cor-
rectness.

Chapter 3. Formalisation of distributed components 47

Faults and corruption structure

In the above, we did not yet require honest nodes to follow the protocol. But to do so,
we first need to define faults. We do so in two steps, first we define Ci, the set of cor-
rupted nodes at index i, which is computed from the corruption events. Then we add the
requirements on the behavior of nodes depending on whether they belong in Ci.

Definition 19 (Corrupt and Honest nodes). Let E be a sequence and i ∈ EI an event index.

Ci := {p ∈Π | ∃ j ∈ E−1(c, p), j < i}
C :=

⋃
i∈N

Ci

Hi := Π\Ci

H := Π\C

This definition of C relies on the fact that nodes cannot recover and be removed from Ci.
In the following, "honest" and "corrupt" will be synonymous with H and C, respectively.
Note that theses definitions are part of the admissibility predicate, and we always require
them to be present, in order to let the modules be dependent on their existence.

We now add the admissibility condition to have honest nodes execute the protocol.

Definition 20 (Honest nodes execution). HONEST(T) holds iff,
For all E ∈ T , For any i in E−1(i, p,_)∪E−1(_,o, p,_) for some p∈Hi, then the events

following Ei are all the events returned from the transition function FP(S,Ei), in any order.
The state S used for computation is inductively defined by FP, i.e., it is the state returned
from the previous p output/input to module, or S0

P if there are none.

This definition allows the protocol to make multiple input/output at once, but lets the
adversary reorder them. This is to capture, for instance, the sending of multiple messages.
To have a module represent local computation, one can require the module’s output to be
the next event after an input.

With the model defined so far, by default corrupt nodes are not restricted in the inputs
they make, and we only added the assumption that correct ones are making inputs/outputs
according to the protocol. This means that with the current definitions corrupt nodes are
in fact Byzantine. To simplify the definitions later in this chapter we add the assumption

Chapter 3. Formalisation of distributed components 48

that corrupt nodes do not make any protocol input or output. There is no loss of generality
here because in any case the protocol inputs or outputs of Byzantine nodes are ill-defined.

∀E ∈ T,∀i ∈ EI,∀p ∈Ci, i /∈ E−1(p,_, p,_)

For illustrative purpose, we show how crash fault could be defined within our frame-
work, by requiring that once nodes are corrupt, they won’t be making any subsequent input
to any module, or outputs to the protocol.

Example (Crash faults).

∀E ∈ T,∀i ∈ EI,∀p ∈Ci, i /∈ E−1(p,o, p,_)∪E−1(m, i,_, p,_)

Corruption structure To consistently model the limited ability of the adversary to cor-
rupt nodes even based on hashpower or stake ownership, we choose to generalise state-
ments regarding the count of corrupt nodes into sets of corrupt nodes. We use the term
corruption structure to refer an assumption on the set of nodes that the adversary can
corrupt at a fixed point in time.

Because the granularity of corruption is at the node level, any corruption structure can
be encoded as a set of subset of nodes that may be corrupted. Hence, given C ⊆ P(Π), we
say that we assume the corruption structure C to mean that at any time during execution,
the set of corrupt nodes Ci is in C. Formally, we add this condition in the protocol execution
admissibility predicate:

Definition 21 (Corruption structure). Let T ∈ T[Events(P)] for some protocol P.

STRUCTURE(C) := ∀i ∈ EI, Ci ∈ C

Furthermore, we assume the corruption structure is monotone. This is not necessary
strictly speaking but it makes the framing of some theorems slightly more consistent with
the literature [FHM99].

∀C ∈ C, ∀C′ ⊂C, C′ ∈ C

Using the terminology from Chapter 2, the assumption on the corruption structure is
the formal interpretation of the trust assumption.

Chapter 3. Formalisation of distributed components 49

Prominently in the literature, the corruption structures considered are of the form
Ct = {C ∈ P(Π) | #C < t} for some threshold t ∈ J0,nK. Protocols are said to tolerate
an optimal number of corruptions when they assume a corruption structure of this form
with the highest possible threshold, which is generally either t = dn

3e or t = dn
2e. However,

we can see that this can only be optimal among the corruption structures in Ct .
This is clearly apparent when considering protocols with different corruption struc-

tures, e.g., in Bitcoin, if a single honest node owns more than 1/2 of the hashpower, all the
n−1 other nodes may be corrupt, which is more than what the corruption structure Ct with
the optimal t would allow. The generalization of the threshold adversary we give here is
in line with the formulation of Byzantine Quroum Systems by Malhki and Reiter [MR98],
as well as the work of Maurer, Hirt and Fitzi on generalized adversaries [HM97, FHM99].

Thus the generalisation of a threshold adversary to corruption structures begs the ques-
tion of what is the optimal corruption structure.. In that regard, we show in Section 3.5
that the theorems proving the upper bounds on t can be generalized in a straightforward
manner. Concretely, we replace the threshold assumption n > kt by the following predi-
cate:

Definition 22 (k -cover).

k -cover(C) := ∃π1, . . . ,πk ∈ C,
⋃

πi = Π

For brevity, we omit the C parameter further in this thesis.

We can easily see that in Ct , n
k > t is equivalent to ¬k -cover. We use this predicate in

place of n > kt to generalize theorems that are reframed in our model, i.e., Lemma 15 and
14, Theorems 3, 4 and 5.

It is also possible to generalize the Ct corruption structures into the weighted ones [GB11a].
For a set of nodes weights W : Π→Q,Σp∈ΠW (p) = 1 and fractional threshold α ∈ [0;1],
the weighted corruption structure is :

Definition 23 (Weighted corruption structure).

C(W,α) := {C ∈ P(Π) | Σp∈CW (p)< α}

Like with Ct , we can easily see that k−1 >α is equivalent to ¬k -cover within C(W,α). In
effect these structures generalizes threshold assumptions such as honest majority or super-
majority in a Proof-of-Work and Proof-of-Stake context, by setting the weights according

Chapter 3. Formalisation of distributed components 50

to the nodes hashpower or stake, respectively. As a result, they will be the main tool to
modelize the corruption assumption of blockchain protocols.

Corruption adaptivity

We are now armed to define the notion of adversarial adaptability. This is done by chang-
ing the behavior of nodes upon corruption. Instead of executing the protocol (i.e., being
honest) right until there is a corruption event, they do so until there is a corruption event
and some predicate D is satisfied. Here, D takes an execution E ∈ E[Events(P)], a point in
the execution i ∈ EI a node p and is holds if p is corrupted at event Ei.

To implement this, we modify the definition of Ci to take D as a parameter. Because Ci
is part of the definition of the HONEST predicate, it means that HONEST now takes the
D argument as well.

Definition 24 (Adversarial D adaptivity).

Ci(D) := {p ∈Π | ∃ j < i, E j = (c, p)∧D(E, i, p)}

The predicate D is used to define how weakly the adversary is adaptive. For a fully
dynamic (rushing) adversary, D = (E, i, p) 7→ >; for a weakly adaptive adversary, D may
require for instance that t time elapsed since the corruption event.

However a static adversary requires that all corruptions happen before the beginning
of the protocol, which cannot be expressed using only D.

Definition 25 (Static adversary). Let T ∈ T[Events(P)] for some protocol P.

STATIC(T) := ∀E ∈ T, ∀k ∈ EI,∀p ∈Π, D(E, i, p) ∧
∀i ∈ E−1(c,_),∀ j ∈ E−1(p, i,_,_), i < j

3.2.2 Modules
In this subsection we now give the formalisation of a few modules, including networks,
signatures and PoW mining.

Chapter 3. Formalisation of distributed components 51

Setups

We can express setup assumptions by having modules output some information to the
nodes prior to any corruption taking place and prior to any input being made to the proto-
col. We choose a slightly stronger requirement, forbidding the protocol to make any input
to any module before the end of the setup. We define a predicate SETUP that states that a
given event Ei happens during setup:

Definition 26 (Setup events).

SETUP(i) := ∀ j ≤ i, j /∈ E−1(m, i,_,_,_)∪E−1(c,_)

This predicate in itself does not define a module, it is intended to be used by other
modules to express that some events happen before the beginning of the protocol, i.e.,
during setup. Because any value can be given to the nodes before input, hence it is pow-
erful enough to build modules that capture public parameters, Common Reference String
(CRS), Public Key Infrastructure (PKI), or any interactive program.

Network

In this subsection we define four modules, clock, strong_sync, weak_sync and async_net.

Nodes clocks The clock interface does not accept input and simply outputs a "tick" event
regularly. Because local computation time is considered insignificant, nodes can build and
track any notion of time they wish. We only consider one possible setting, namely loosely
synchronised clocks.

Definition 27 (Loosely synchronised clocks). The module "clock" has label lclocks :=
clock and is defined below.

Iclock := /0 ; Oclock := {tick}

Chapter 3. Formalisation of distributed components 52

Aclock(T) := ∀E ∈ T, ∃Φ ∈ N,
∀p ∈Π,∃i ∈ E−1(m,o,clock, p,Φ),SETUP(i) (3.1)
∧
∀p ∈Π,∀i ∈ EI,∃ j ∈ E−1(m,o,clock, p, tick), j ≥ i (3.2)
∧

∀p,q ∈Π,∀i ∈ EI,
|#{ j ∈ E−1(m,o,clock, p, tick) | j ≤ i}−
#{ j ∈ E−1(m,o,clock,q, tick) | j ≤ i}|< Φ

(3.3)

Equation 3.1 simply states that the offset bound Φ is a public parameter to the algo-
rithm, 3.2 requires clocks to always output new ticks, and 3.3 states that at any time, the
tick count of two nodes differs by at most Φ.

Network The network lets any node input a message and a recipient, and output message
reception with sender.

Iasync_net := {0,1}∗×Π ; Oasync_net := {0,1}∗×Π (3.4)

We can notice a small issue on this formalism: the value given by the node that repre-
sents the recipient is in Π. However, theoretically Π should only exist as a formal object
in our model, not an actual value that can be handled by nodes. To be formally correct, the
network module should give to each node a representation of Π, for instance during setup,
and sending a message to the representation of p ∈Π then implies a reception by p itself.
To avoid cluttering, we do not make the representation explicit in this work.

This remark may seem like a trivial technical detail, but it does translate to significant
practical issues. Indeed, what plays the role of the node representation in an implementa-
tion is virtually never the network address directly, but most likely a public key or a DNS
record. In any case the translation to a network address involves non-trivial protocols and
is very much a design concern for the algorithm at hand. For instance, in Bitcoin the is-
sue is significantly mitigated by the fact that nodes only need to multicast messages to all
other nodes, thus removing the need to address each node specifically. But the issue still
remains, because the network module must address the participants as a whole, and it does
require a gossip protocol, which is an integral part of Bitcoin’s design.

Chapter 3. Formalisation of distributed components 53

The "Secure channel" assumption can be stated as the existence of an appropriate bi-
jection on the send and receive events:

Definition 28 (Asynchronous secure channel). The module "async_net" has label lasync_net :=
net, its input and output sets are defined by equation 3.4 and Aweak_sync is stated below.

Aasync_net(T) := Aclock(T)∧∀E ∈ T,

∃rcpt : E−1(m, i,net,_,_)↔ E−1(m,o,net,_,_) such that,
∀p,q ∈Π,∀m ∈ {0,1}∗, rcpt(m, i,net, p,(m,q)) = (m,o,net,q,(m, p))

∀i ∈ EI, rcpt(i)> i

sent := rcpt−1

The module for a partially synchronous network require the existence of a clock mod-
ule. Formally speaking, the module itself is parameterized by a clock module and should
be noted "weak_net(clocks)", although we omit the parameter from now on. The partially
synchronous network is defined the same way as the asynchronous one, except with one
added assumption.

Definition 29 (Partial synchrony). The module "weak_sync" has label lweak_net := net, it
is defined by Iweak_sync := Iasync_net, Oweak_sync := Oasync_net, and Aweak_sync below.

Aweak_sync(T) := Aasync_net(T)∧ ∀E ∈ T,

∃∆ ∈ N,∀i ∈ E−1(m, i,net, p,(m,q)),

#{ j ∈ E−1(m,o,clock, p, tick) | i≤ j ≤ rcpt(i)}< ∆

This definition fits the model of partial synchrony where ∆ exists but is unknown to the
protocol. Recall that in the alternative one there is an unknown time (GST) after which
a known bound ∆ holds. We choose this definition because (I) the GST formalisation is
a higher level abstraction, and (II) formalizing GST would have require a small technical
twist in the definition to be strictly equivalent to the one we have just given. To see this,
consider a protocol that should implement a GST network given a partially synchronous
one. To be correct, the GST network should output a ∆GST value at the beginning of the
execution (e.g., as a setup), and then provide a network interface that will guarantee a ∆GST

Chapter 3. Formalisation of distributed components 54

bound after some finite time. It seems obvious that, given that we have no information on
the actual ∆partial of underlying partially synchronous network, we cannot do better than
give an arbitrary value, which is unsuccessful in case ∆GST > ∆partial . The solution in
practice is quite known and simple: Output an arbitrary ∆GST , and periodically increase
its value. Therefore, we could make a GST definition equivalent by requiring the network
provide ∆GST not just once at the protocol onset, but a finite number of times during
execution. Then the two formulations would be equivalent, with the only difference being
that the GST abstraction encapsulate the mechanism to estimate and update ∆.

Then as well, to define the strongly synchronous network we add the assumption that
∆ is given as a public parameter:

Definition 30 (Strong synchrony). The module "strong_sync" has label lsync_net := net, it
is defined by Istrong_sync := Iasync_net, Ostrong_sync := Oasync_net, and Aweak_sync below.

Astrong_sync(T) := Aweak_sync(T)∧∀p ∈Π,∃i ∈ E−1(m,o,net, p,∆), SETUP(i)

Once again we choose the formulation closer to reality. The alternative round-based
formulation (see Section 2.2.2) being more useful for theoretical analysis. However in
this the "loose synchrony assumption" lets us easily bootstrap to a lock-step execution by
emulating the round-based network: Let round 0 start at a fixed time, and set the round
duration to ∆ + Φ. In the case where we only have strong clock synchrony, we must
either have rounds of growing (unbounded) length, or to execute an agreement protocol to
periodically re-synchronize clocks. Interestingly, this means that the two formalisms are
not strictly equivalent without the loose synchrony assumption.

Our definition for strong synchrony matches the case of a rushing adversary, because
it is able to make any message (e.g., its own) delivered instantaneously, before any other.

Oracles

In this subsection we introduce a few modules of interest that capture an idealized version
of cryptographic primitives, including Proof-of-Work mining. We describe the modules
for signatures, the random oracle and verifiable random functions in a slightly less formal
manner, since their definition is already unambiguous in the literature.

Chapter 3. Formalisation of distributed components 55

Public parameters For completeness we describe the "params" module that gives to
nodes all the public parameters of the protocol.

Definition 31 (Public parameters module). The module "params" is parametrized by the
set of public parameters, PP. We have Iparams(PP) := /0, Oparams(PP) := PP, and,

Aparams(PP)(T) := ∀p ∈Π,∃i ∈ EI, E−1(m,o,params, p,_) = {i}∧SETUP(i)

Ideal signatures The "signatures" module is an ideal abstraction of a signature scheme.
It is defined similarly to the certification functionality FCERT by Canetti [Can04], who
showed how to implement it using a setup (PKI) and an EUF-CMA secure signature
scheme. Note that these definition purposefully encapsulate and hide any PKI assump-
tion necessary for the implementation. In short:

Definition 32 (Ideal signatures module). The module "signatures" is parameterized by a
countable message space M.

Isignatures := {sign}×M∪{verify}×M×{0,1}∗×Π

Osignatures := {sign}×{0,1}∗∪{verify}×{true, false}

Asignatures(T) is defined as follows: Upon input (sign,m) from node p, immediately output
(sign,σ) to p, where σ may be any value in {0,1}∗. Upon input (verify,m,σ ,q) from
node p, immediately output (verify,b) to p, where b = true iff node q previously made the
input (sign,m) to the module and received (sign,σ).

Random oracle Contrarily to the ideal signatures where even an unbounded adversary
cannot forge a signature, the random oracle may still require to be used with a polynomial
adversary, e.g., when using the collision resistance property.

Definition 33 (Random Oracle). The module "RO" is parameterized with a message space
M and has IRO := M, ORO := J0,2λ − 1K, and ARO(T) is defined as follows: Upon input
x from node p, if x has never been input to the module, then immediately output a prob-
abilistic event with the uniform distribution on ORO. Otherwise, immediately output the
outcome from the first probabilistic output that followed x input.

Chapter 3. Formalisation of distributed components 56

Verifiable Random Functions Since this cryptographic primitive is a component of sev-
eral schemes presented (including StakeCube), we give a definition here. This definition
follows the same paradigm than with ideal signatures.

Definition 34 (Verifiable Random Function). The module "VRF" is parameterized by a
countable message space M.

IVRF := {eval}×M∪{verify}×M×{0,1}∗× J0,2λ −1K×Π

OVRF := {eval}×{0,1}∗× J0,2λ −1K∪{verify}×{true, false}

AVRF(T) is defined as followss: Upon input (eval,m) from node p, immediately output a
probabilistic event (eval,σ ,r) to p where r is from the uniform distribution on J0,2λ −
1K and σ ∈ ×{0,1}∗. Upon input (verify,m,σ ,r,q) from node p, immediately output
(verify,b) to p, where b = true iff node p previously input (eval,m) to the module and
obtained (sign,σ ,r).

PoW oracle We now give a module for the PoW oracle. Obviously the random oracle
alone is not sufficient to express PoW, since it has no notion of time. Hence we define
a PoW oracle tightly linked to the clock module. In short, it lets nodes configure it with
a message m and probability d, and periodically, depending on the node hashrate, it will
output a value which is a valid PoW string with probability d.

Definition 35 (Proof-of-Work oracle). The module "PoW" is parametrized by a hashrate
hp ∈ N for each node p ∈ Π and a countable message space M. It relies on the existence
of the clock module.

IPoW := {config}×M×N∪{verify}×{0,1}∗×M×N

OPoW := {mine}×{success, fail}×{0,1}∗∪{verify}×{true, false}

Chapter 3. Formalisation of distributed components 57

APoW(T) is informally explained after its definition.

APoW(T) :=

∀p ∈Π,∀i, j ∈ E−1(m,o,PoW, p,(mine,_,_),_),

#{k ∈ E−1(m,o,PoW,clock, p, tick) | i < k < j}= hp
(3.5)

∧
∀p ∈Π,

minE−1(m,o,clock,PoW, p, tick) = minE−1(m, i,PoW, p,(config,_,_))+1
(3.6)

∧
∀p ∈Π,∀σ ∈ {0,1}∗,∀µ ∈D,∀i ∈ E−1(m,o,PoW, p,(mine,_,σ),µ),

Ωµ = {(mine,r,σ) | r ∈ {success, fail}}∧Pµ({(mine,success,σ)}) = d
(3.7)

∧
∀p ∈Π,∀(verify,σ ,m,d) ∈ {verify}×{0,1}∗×M×N,
∀i ∈ E−1(m, i,PoW, p,(verify,σ ,m,d)),

i+1 ∈ E−1(m,o,PoW, p,(verify,b)), where,

b = true⇔∃q ∈Π,∃ j ∈ E−1(m,o,PoW,q,(mine,success,σ),_), j < i ∧
∃d′ ≥ d, Ek.v = (config,m,d′) where k := max{k′ ∈ E−1(m, i,PoW, p,_) | k′ < i}

(3.8)

Predicate 3.5 requires that, for any node p, for any two outputs Ei and E j to p, there are
exactly hp "tick" outputs from the clock module to p. Predicate 3.5 requires that, for any
node p, the first output to p is immediately after the first input (config,m,d) from p. Pred-
icate 3.7 requires that, for any node p, the outputs of the form (mine,r,σ) are probabilistic
with P[r = success] = 1−P[r = fail] = d and σ ∈ {0,1}∗. Predicate 3.8 requires that, upon
input (verify,σ ,m,d) from p, immediately output (verify,b) to p, where b = true iff there
is a node q such that q previously received the output Ei with value (mine,success,σ) and
q’s last input before Ei was (config,m,d′) with d′ ≥ d.

Chapter 3. Formalisation of distributed components 58

First and foremost, we made the choice to capture a slighter higher level abstraction
than a hash function with a bounded number of queries. Specifically, we encapsulate the
mechanism that compares the hash output with a target, and discards it if the target is
not met. This formulation makes the intended function of Proof-of-Work mining more
evident.

As previously observed by Garayet al. [GKP20], the PoW mining primitive is analo-
gous to digital signatures, with the difference that instead of authenticating a value with
respect to a specific node, it authenticates a value with respect to the ownership of a spe-
cific amount of hashrate. Intuitively, both primitives are used in a similar way, to let the
protocol know what share of the network is vouching for a message. In both cases, the
share of the node is deduced (implicitly or not) from the knowledge of the size of the
whole network. The fundamental difference from digital signatures is the introduction of
time, which makes equivocation impossible: Given a valid PoW, we are guaranteed (prob-
abilistically) that some node has spent the required time to "sign" the associated message,
and no other.

Notably, the PoW oracle does not directly give the value of the nodes hashpower to
each other, instead, it has to be estimated from the received PoWs. In turn, if ones wishes
to estimate node hashpower only from PoWs, then this is only possible within a strongly
synchronous networks. The intuition is that delaying the transmission of a PoW decreases
the apparent hashpower of the mining node. To compute a bound on the miner hashpower,
the estimate on the mining time has to include the network delay, which therefore must be
known. To put this argument more formally:

Theorem 1. Let P ∈ P[PoW,weak_net] such that M(unbounded,C,(E,i,p)7→>)
P |=λ B where

C 6= /0 and B is a module that outputs a bound on the nodes hashpower, i.e.,

OB := {0,1}∗×N ; IB := /0

AB(T) := ∀E ∈ T,∃(σ ,b) ∈ OB, #E−1(m,o, lB,_,(σ ,b)) 6= /0 ∧ b≥ hp2

Then there exists P′ ∈P[PoW,weak_net] whose output is a bound on the network delay δ .

Proof Sketch. First let us observe that a valid PoW only contains information on the num-
ber of attempts that have been made to obtain it. Thus, for a fixed security parameter λ , a
received PoW only gives a bound on ζ h−1

p where ζ is the time spent mining on that PoW

Chapter 3. Formalisation of distributed components 59

and p is the mining node. Thus computing a bound on hp implies a known bound ζ ′ ≥ ζ .
At one extreme, corrupt nodes are able to send a PoW instantly after mining, therefore we
must assume that mining ended at the latest time, i.e., at the reception of the PoW string.
At the other extreme, the adversary can force any PoW sent over the network to be delayed
by δ . As a result, regardless of how ζ ′ is computed, we have ζ ′ > ζ + δ which implies
that ζ ′ is actually a known bound on the network delay. Thus P′ is simply constructed by
outputting ζ ′ after the first P output. ut

One may be surprised that the oracle apparently does not give information on the total
hashpower to nodes. However if honest nodes are required to transmit their PoW and
if they manage to agree on a common set of these PoWs, they can deduce a common
upper bound on the hashpower of honest nodes and in turn of the whole network. In
essence, this is what the difficulty adjustment mechanism does for Bitcoin: it uses the set
of common PoW stored in the blockchain to deduce a bound on the overall hashrate change
and update the protocol parameters accordingly. With that in mind, it becomes apparent
that at any time during execution, the evaluation of the hashpower share associated to a
PoW string is done with respect to last estimated total hashpower. Hence the protocol must
assume that the hashpower of newly joining miners has a bound which can be accounted
for [GKL20b, CEM+20], which goes against the folklore idea that joining nodes in PoW-
based protocols do not need to register. In that sense, Bitcoin ignores the participation
of new nodes, until they have participated for long enough to be "noticed" and have their
hashpower registered as part of the difficulty adjustment.

3.2.3 Discussion
To synthesize, we have a framework where a protocol P uses a module list M and securely
satisfy a specification module S against an adversary A. Statements of perfect and statis-
tical security are MA

M |= S and MA
M |=λ S, respectively. The constraints on the overall

execution are defined by choosing an adversaryA. We provide definition for an adversary
that may be computationally bounded or not, limited by a given corruption structure, and
static or dynamic. Furthermore, we have defined the following modules:

Chapter 3. Formalisation of distributed components 60

• Three versions of a clock plus network module. The clock is always the same and
represents the loose clock synchrony assumption, i.e., a bounded offset. The three
versions are for asynchronous, partially and strongly synchronous networks.

• A setup module that lets nodes obtain public protocol parameters, including the
security parameter λ in the case of statistical security.

• Four oracle modules, one for ideal signatures, one for ideal Verifiable Random Func-
tions, one Proof-of-Work oracle, and one Random Oracle.

• One module to modelize local randomness generator (coin toss).

Limitations There are two important points that limit the usefulness of our framework as
currently stated. First, we cannot express dynamic participation, where the node set Π may
change during execution. This does not preclude us from analyzing protocols that support
this model (e.g., reconfigurable protocols) since strictly speaking we capture a subset of
the possible executions. Secondly, we only capture an omniscient adversary that has all
information about the system. This is technically not an issue within this thesis due to our
idealized treatment of e.g., signatures that would otherwise require secret information.

Multiple sessions The presented framework defines the executions of a single session
of a protocol. One may represent multiple sessions of a module through a single module
that can start an arbitrary number of concurrent sessions. In general, this is implemented
by assigning unique session identifiers.

On the notion of time The notion of time backing the PoW oracle is taken from the
nodes clocks. An alternative could have been to use a newly defined absolute, global time
and require its consistency with local clocks, such as in [LHSW20]. However we argue
that this second approach is more cumbersome, and is at best equivalent because in any
case nodes only get time information from their clocks. Furthermore, our formulation
clearly highlights that the oracle is as useful as the clocks (and network) are synchronized.

Chapter 3. Formalisation of distributed components 61

Infinite runs The possibility of infinite executions instead of say, arbitrarily long ex-
ecution, seems unrealistic and more complicated than necessary. However, infinite runs
are required to modelize admissible non-terminating runs, e.g., in reliable broadcast. Even
more, we could describe an ever-going protocol specification that has no finite admissible
run, because the protocol is not intended to be stopped.

But more importantly, a protocol requiring a computationally bounded adversary can-
not have infinite execution. Indeed, a polynomial Turing Machine is obviously unable to
output an infinite sequence of event. Protocols that implement a specification requiring
infinite runs do so by inductive reasoning : Assuming that the protocol has been correct
up until time t, they show how to extend its execution to time t +15. In the case of com-
putational security, the step from t to t +1 has a negligible chance to fail, hence why such
security proofs are conditional to a polynomial execution length. It becomes apparent that
this condition is redundant if the formal framework for the security proof already requires
a polynomial adversary. With regard to practice, this remark translates to the fact that with
a concrete parametrization, the tolerated probability of failure directly implies a limit in
the execution length.

3.3 Problems
In the following section we give specifications for BFT protocols, in terms of properties
to be satisfied. The modules described in this section can be used as an abstraction of the
problem solved by a protocol, thus with the models from Section 3.2 we are completing
the library of component we aimed to build.

Each relevant property is expressed both as English statement from the literature and
its formal interpretation as a predicate on executions6. Each module m is defined by having
its admissibility predicate Am be the conjunction of the stated properties. Nonetheless, we
allow ourselves to change the formulation of the properties from their original statement
as long as it stays equivalent, for the sake of coherence and precision. Only if the original
statement is not correct strictly speaking we will make non-equivalent changes.

5A common term for such steps is epoch.
6All specifications in this section are deterministic, otherwise the properties would be predicates on

execution trees.

Chapter 3. Formalisation of distributed components 62

Remark We expressed all interactions between the node and the protocol implementa-
tion in terms of input/output. More specifically, nodes instantiate and start the protocol by
making inputs. This has the advantage of making explicit how each specification expects
the protocol to be started, e.g. by assuming that all nodes eventually makes an input.

Reductions The main way to understand the relations between different definitions is
to examine the reductions between models. But in order to state the definition, we first
introduce two notations. To ensure that a reductions holds for any adversary, we use the
strongest possible adversary AS.

AS := (unbounded,P(Π),(E, i, p) 7→ >)

Additionally, for a module A, we note A∗ the set of modules with an arbitrary but finite
number of copies of A, each copy being distinguished by a unique label.

Definition 36 (Modules Reduction). For modules A and B, a reduction from A to B is a
protocol P ∈ P[B] such thatMAS

P |= A.

Reductions induce a preordering on the modules, where A≥ B iff there is a reduction
from B to A. We say that A is weaker, stronger, or equivalent to B to mean A ≤ B, A ≥ B
and A≥ B∧A≤ B, respectively7.

This is the natural definition to order models by solvability, which is mostly useful to
characterise the strength relation between different problems. However in many cases it
may seem overly restrictive. For instance, strictly speaking, consensus cannot readily be
transformed into reliable broadcast although it is considered to be a stronger problem. This
is because, although there is a reduction that solves reliable broadcast given an implemen-
tation of consensus, it relies on the broadcast sender to initially transmit its input value,
e.g. through the network. However the consensus specification module by itself does not
include a network. More intuitively, this strict strength relation should be interpreted as a
direct implication between the modules properties.

This is why we put forth a less restrictive order relation, where the protocol may use
an asynchronous network as well as other instances of the initial modules.

7Note that weaker or stronger are not in the sense of "strictly weaker" or "strictly stronger" here.

Chapter 3. Formalisation of distributed components 63

Definition 37 (Loose Modules Reduction). For modules A and B, a reduction from A to B
is a protocol P ∈ P[B ∪ M] such thatMAS

P |= A, where M ⊂ {async_net,signatures,A∗}.

The loose reductions also induce preordering on the modules, where A ≥loose B iff
there is a loose reduction from B to A. We also say that they are loosely weaker, loosely
stronger, or loosely equivalent with respect to that order.

The goal of this definition is to still faithfully capture a "solvability" order, because we
do not assume specific corruption structure nor synchronicity, while not guaranteeing that
the transformation is efficient in practice. The downside is that

Note that we do not consider reductions that requires assumptions on the network
synchronicity or the adversarial structure, because such assumptions can be used to build
protocols from scratch. They can be useful to build practical protocols, but they are unfit
to characterize strength relationship between definitions.

The relationship between the models we have given so far can be simply deduced from
the choices of the modules and the adversary.

One-shot and continuous protocols We propose to distinguish two types of protocols:
one-shot and continuous. Intuitively, One shot are protocols such that for all executions,
either : there is a time t at which we can consider the protocol as terminated, or, the pro-
tocol did not terminate on that run. One-shot protocols may be simpler to analyse because
executions don’t need to be infinite, only finite and arbitrarily long. This dichotomy is
typically made informally, however we can give it a precise meaning with our framework.

Definition 38 (One shot and Continuous protocols). A module m is said to be one-shot iff
for all its admissible executions its set of outputs is finite, i.e.,

∀E ∈ {E ′ ∈ T | T ∈ T[Events(m)]∧Am(T)}, #E−1(m,o,_,_,_) ∈ N

Otherwise, m is continuous.

Note that this definition relies on the assumption that Byzantine nodes do not make
protocol outputs or inputs, and we will continue to do so in the remaining of this thesis. In
particular this mean that, in context, for most of the following uses, the statement "for all
honest nodes" will be equivalent to "for all nodes". We chose to keep the "honest" qualifier
only for statements made in plain English, to keep the wording closer to the literature.

Chapter 3. Formalisation of distributed components 64

3.3.1 Consensus and variants
In this subsection we define five variants of consensus : multivalued, binary, strong, weak
and vector consensus. They all are one-shot protocols, they all are parametrised by a count-
able input set V , i.e., Iconsensus :=V , they all require that honest nodes eventually make an
input with a value in V , and they all include the two following properties, agreement and
liveness.

Property (Agreement/Consistency). All honest nodes’ outputs are equal.

∃vout ∈V,∀i ∈ E−1(m,o,_,_,v′), v′ = vout

This property defines a unique value vout which is the protocol output. We reuse such
defined vout for other problems where the same agreement property is also required.

Property (Liveness/Termination). All honest nodes eventually output a value (exactly
once).

∀p ∈ H, #E−1(m,o,_, p,_) = 1

The definition of each consensus variant is completed by a different Validity property.
They are listed below.

Binary and multivalued consensus In the binary version of consensus (BC), the input
domain V has only two values. Binary consensus is of particular interest, because its
simplicity means that there are no variations in the definition and as a result is a useful
base case to make impossibility proofs, bounds, and reductions.

Property (Binary Validity). #V = 2, and if all honest nodes input the same value v, then
the output will be v.

∃v ∈V, ∀i ∈ E−1(m, i,_,_,v′),v′ = v⇒ v = vout

Because there is only two values to choose from, we can see that the output will always
be the input of some honest node, even if honest nodes propose different values. In prac-
tical implementations, this version of consensus is mostly useful when used as primitive

Chapter 3. Formalisation of distributed components 65

for other protocols, i.e. when the parent protocol may ensure that all honest nodes have the
same input.

In the multivalued version the input domain V is arbitrary. The validity condition is
less obvious than in the binary case, which led to multiple (non equivalent) definitions for
consensus (C), strong consensus (SC) and weak consensus (WC), respectively.

Property (Validity [DLS88, MR97, Fit03]). If all honest nodes input the same value v,
then the output will be v.

∃v ∈V, ∀i ∈ E−1(m, i,_,_,v′), v′ = v⇒ v = vout

Property (Strong Validity [FG03, Nei94]). There is some honest node such that its input
is the protocol output.

∃p ∈ H, E−1(m, i,_, p,vout) 6= /0

Property (Weak Validity [Fis83]). If there are no failure, then there is some (honest) node
such that its input is the protocol output.

C = /0⇒ E−1(m, i,_,_,vout) 6= /0

The first two are directly inspired from the binary case. In fact, if #V = 2 then they are
both equivalent to binary validity.

A relaxed version of Strong Validity has been considered, where the output may be
the input of any node, corrupt or not [BHRT00, CVL10, SvR08]. However this definition
is flawed in the context of Byzantine faults, since Byzantine nodes do not have an input.
Indeed, this relaxed version of Strong Validity has been primarily intended for the model
with crash faults. More generally, in the context of Byzantine faults, statements about state
and/or computation of nodes can only qualify over honest nodes.

One may think Validity as an ill-suited generalization of the binary consensus. Indeed,
if we think of an application where all nodes make input directly from the environment
(i.e. there is no top level protocol determining inputs), then it would seem that in normal
operation there is always two honest parties with different inputs and therefore the output
can be anything. However we will see in the following that this is not as restricting as it
seems.

On the contrary, Strong Validity may intuitively be seen as a "correct" reformulation of
Binary Validity in the multivalued case. However this leads to a much stronger definition
of consensus (see Section 3.5).

Chapter 3. Formalisation of distributed components 66

External validity consensus (EC) External Consensus is parametrized by a validity
predicate P : V → {true, false}, which determines whether an output value is valid or not.
This definition, introduced by Cachin et al. [CKPS01], has been put forward in the context
of blockchains, with the justification that to iteratively output new blocks through consen-
sus, we only need the block to be valid with respect to the application semantics, and we
don’t mind to output messages (i.e. transactions) made by Byzantine nodes [CV17, Gra20].

Property (External Validity [CKPS01]). The output value of honest nodes satisfy P.

P(vout) = true

This definition however calls for some clarifications: we choose to interpret P as an
algorithm given as a public parameter to the protocol. The other case would be where P
is essentially a placeholder predicate that parametrise the problem definition itself, such
as "P(x) := x is the input of an honest node". This second option seems problematic
because it is essentially equivalent to having an arbitrary validity property, which would
be impossible to solve in general. For this reason we put it aside.

It is worth noticing that this issue on clarification of the nature of the P parameter can
also be raised for the nature of the input set V . Indeed, like P, little is said about what the
protocol knows about V , for instance: Is it computable, is there a test membership/sam-
pling procedure (i.e."∈"), does the protocol have representation of V ? At the very least, a
representation and an (efficient) test membership procedure must be given to the protocol,
otherwise it is not possible to ensure that the output is in V . This leads us to see that the
requirement that the output being in V was implicit until now, although it must be present
for any multivalued consensus. More formally:

Oconsensus :=V

where "consensus" is any of the consensus we have defined so far: binary consensus,
strong consensus, consensus, external consensus. This observation leads to the conclusion
that there is no point to distinguish externally valid values from the values in V , since
in both cases their only purpose is to ensure that the output belongs to some arbitrary
set. Indeed, external consensus may be equivalently stated as a multivalued consensus
without any further Validity property, simply by setting P(v) := v ∈ V , and conversely
V := {v | P(v)}.

Chapter 3. Formalisation of distributed components 67

This may come as a surprise, because if EC removes the validity requirement with
respect to consensus, then it would seem that there is no requirement at all on the output
value. However, it still has to be related to the nodes inputs, because the protocol im-
plementation only has the P procedure at its disposal, and no way to sample or find an
element in V otherwise. This could seen as a technical quirk, but we argue that this is a
fundamental property of external consensus. In practice, the set V is generally difficult to
sample from, e.g. because it requires a valid signature. Conversely, say if 0 ∈ V , then an
external validity consensus can trivially always output 0. In the context of blockchain, if
the empty block is considered valid, then there is nothing in the specification preventing
the adversary to always force the output of the empty block, e.g., in [CGLR18]. Further-
more, even if the external consensus protocol may include the honest node’s input in a
normal operation (e.g. without faults), the adversary could force it to always output the
empty bloc.

As a small additional note, there is another implicit parameter to multivalued con-
sensus: A procedure for deciding equality in V , otherwise different inputs cannot distin-
guished.

Vector consensus (VC) Closely related to interactive consistency [PSL80] in the con-
text of crash faults. It let all nodes agree on a vector of values where each element is a
node input. This mean that for vector consensus we have OVC := Π→ V ∪{�} where
� represents "no value". This formulation has been initially proposed by Doudou [DS98]
as an alternative to strong consensus, motivated by the observation that quantifying over
all nodes is meaningless with Byzantine nodes. The vector validity is stated as fol-
low [CNV06, DS98]: If node p is honest, then the element of the output at the index
p must be equal to p’s input or have no value at all. Additionally, at least t +1 non-empty
values must be from honest nodes, where t is the maximum count of tolerated faults.

This definition is not entirely satisfactory. In [BKR94], Ben-Oret al. defined a close
cousin of vector consensus, the Asynchronous Common Subset [MXC+16]. In their def-
inition, instead of requiring (I) strictly more than t non-empty values from honest nodes,
they require (II) less than or equal to t empty values. Indeed, the adversary can always
make all corrupt nodes mute, ensuring t empty values. Then requirement (II) essentially
states that there are no more empty values than the ones that may be from corrupt nodes.
It is easy to see that (II) implies (I) if and only if n > 3t, and (I) does not imply (II). But

Chapter 3. Formalisation of distributed components 68

more importantly, atomic broadcast (i.e. SMR) is only stronger than vector consensus with
(II), and therefore is not stronger than vector consensus with (I) if n ≤ 3t. Similarly, the
loose reduction to binary consensus is with (I). Therefore, we prefer to choose definition
(II).

To the extent of our knowledge, there is no definition of vector consensus for general
corruption structures. In any case, the generalization is straightforward, the key observa-
tion being that "≤ t" translates to "∈ C".

Property (Vector validity - II, generalized). If node p is honest, then the element of the
output at the index p must be equal to p’s input or have no value at all. Additionally, the
set of nodes with empty values must be a member of C.

Let vin : Π→V such that ∀p ∈Π, E−1(m, i,_, p,vin(p)) 6= /0
then ∀p ∈ H, vout(p) = vin(p)∧
{p ∈Π | vout(p) =�} ∈ C

Interestingly, this is the only problem that is dependent on the existence of a threshold
(or a corruption structure), although the definition itself does not make any assumption on
its value. In the following we will implicitly refer to this version of vector consensus.

Reductions

Lemma 1. Strong consensus is stronger than consensus and weak consensus.

Proof. If all nodes submit the same input, then a strong consensus protocol guarantees
that it will be the output. Also Weak validity is exactly Strong Validity conditioned to the
absence of corrupt nodes. ut

Lemma 2. Consensus is stronger than binary consensus and external consensus.

Proof. Simply instantiate Consensus with V := {0,1} for the binary case. Also external
consensus is just consensus with Validity removed. ut

Lemma 3. Weak consensus is stronger than external consensus.

Proof. Trivially, external consensus is also consensus with Validity removed. ut

Chapter 3. Formalisation of distributed components 69

Lemma 4 ([BKR94]). Binary consensus is loosely stronger than vector consensus.

This reduction has been first proposed by Ben-Oret al. [BKR94]. It relies on reliable
broadcast, which itself is loosely weaker than weak consensus (Lemma 8).

Proof. Every node start a reliable broadcast instance as a sender, with its value as input.
Then they wait until the set senders from the reliable broadcast that did not terminate is a
member of C. For each node p, spawn an associated binary consensus instance and input
1 if the RBC instance with sender p delivered a value, and 0 otherwise. Wait for all binary
consensus to terminate, and for all RBC instances where the associated binary consensus
returned 1. The vector output is formed by those RBC values and ⊥ for the nodes where
binary consensus returned 0. ut

Lemma 5. External consensus is loosely stronger than vector consensus.

This reduction is very similar to lemma 4 but replaces the binary consensus instances
by one external consensus, it starts in the same manner and also requires reliable broadcast.

Proof. Every node starts a reliable broadcast instance as a sender, with its value as input.
Then they wait until the set senders from the reliable broadcast that did not terminate is a
member of C. Input the vector of values from RBCs that terminated to external consensus,
with V requiring a vector of signed values with the set of empty values in C. Wait from the
external consensus output and return its value. ut

Lemma 6. Vector consensus is stronger than weak consensus.

Proof. The consensus input are directly transmitted to vector consensus instantiated with
OVC = Π→V ∪{⊥}. When the vector is output, return the value from an arbitrarily fixed
index. If there are no faults, this value can only be from one of the honest processes. ut

3.3.2 Broadcasts protocols
Terminating reliable broadcast (TRBC)

TRBC is the broadcast variant of consensus. In the Byzantine case, termed as Byzantine
generals problem, or Byzantine agreement [LSP82]. It is a one shot protocol parametrized
by a specific sender node s ∈Π. It assumes that eventually the sender makes an input, and
has the same Agreement and Liveness properties as consensus.

Chapter 3. Formalisation of distributed components 70

Property (Validity). If the sender is honest, then the output of all honest nodes is the
sender’s input.

s ∈ H⇒ E−1(m, i,_,s,vout) 6= /0

Implicitly the output can be anything if the sender is corrupt. Because a corrupt sender
may not send any message, honest nodes need a default value that they can output, such
that OT RBC = {0,1}l ∪{�}. For the same reason, broadcast agreement can only be solved
with synchronous networks (at least in all the models we formalise), as the nodes need a
way to detect a silent sender in finite time to make an output.

A weaker variation is possible by allowing honest nodes to output ⊥ even if some
others did not. Contrary to the consensus problem, there is no issue here about the validity
condition. Furthermore, with this validity condition, we can see that nodes don’t need any
knowledge about the input set, merely a representation for storage and a procedure for
testing equality in V . Hence we decide to choose a canonical one, i.e. binary strings, and
drop the need for an arbitrary set V as a parameter.

Reliable broadcast (RBC)

RBC [LSP82] is a one shot protocol parametrized by a specific sender node S ∈ Π. It
assumes that eventually the sender makes an input.

Property (Agreement/Consistency). All honest nodes outputs are equal.

∃vout ∈V,∀i ∈ E−1(m,o,_,_v′),v′ = vout

Property (Liveness/Termination). If an honest node output a value, then all honest players
eventually output a value (exactly once).

∃p ∈ H, E−1(m,o,_, p,_) 6= /0⇒∀p′ ∈ H, #E−1(m,o,_, p′,_) = 1

Property (Validity). If the sender is honest, then some honest node eventually output the
sender’s input.

S ∈ H⇒∃p ∈ H, E−1(m,o,_, p,vin(S)) 6= /0

The Liveness property for RBC is significantly different and much weaker than with
consensus and broadcast: the protocol is allowed to not terminate if the sender is malicious
and no honest node terminates. In that sense RBC can be seen as a tool that gives safety
properties but is fundamentally asynchronous.

Chapter 3. Formalisation of distributed components 71

Reductions

Lemma 7. Terminating reliable broadcast is stronger than reliable broadcast.

Proof. Trivially, because RBC is TRBC with a weakened liveness property. ut

Lemma 8. External consensus is loosely stronger than reliable broadcast.

Proof. The sender sends its message to all participants. Nodes wait for the sender message
and then use it as input value for an external consensus instance, with V requiring a signed
message from the sender. If the sender is honest, all honest nodes will receive and submit
the same value to consensus. Because only the sender only signed its input, it’s the only
value in V that can be output by external consensus. ut

Lemma 9. Binary consensus is loosely stronger than reliable broadcast.

Proof. First, let us see that Lemma 8 also works with consensus, because if the sender is
honest all nodes submit the same message. Now, we can replace consensus with binary
consensus, by having in parallel one instance of binary consensus for each bit of the sender
message. ut

Atomic broadcast (ABC)

Atomic broadcast is a continuous protocol that makes no assumption on inputs.Informally,
it lets any node spawn RBC instances as sender, with the requirement that the order of all
RBC outputs must be the same for all honest nodes [Lam78, CASD95]. For practical ap-
plications, protocols often use a formalism base on the State Machine Replication (SMR)
paradigm [Sch90b] rather than consensus, because this abstraction is indeed closer to how
a real-life application might interact with the protocol. There are many equivalent ways
to formulate specifications for SMR protocols, in this thesis we selected ABC as a simple
and common abstraction. This approach is also relevant for blockchain, which can also be
seen as a growing common log of transactions, and therefore we view the ABC abstrac-
tion as being suitable to define blockchain protocols. Like consensus, the ABC module is
parametrized by the set of values V . We also have IABC :=V and OABC :=V .

Chapter 3. Formalisation of distributed components 72

Property (Agreement/Consistency). ∀k, all honest nodes’ k-th output are equal.

Let vout : Π×N→ EI such that

∀p ∈Π,∀k ∈ N, ∃i ∈ E−1(m,o,_, p,vout(p,k)), #{ j ∈ E−1(m,o,_, p,_) | j < i}= k
then, ∀k ∈ N,∀p1, p2 ∈ H, vout(p1,k) = vout(p2,k)

Property (Validity and Liveness). All honest players inputs are eventually output by all
honest nodes.

∃R : E−1(m, i,ABC,_,_)↔ N, such that,
∀q, p ∈ H,∀v ∈V,vout(q,R(m, i,ABC, p,v)) = v

The Validity and Liveness properties have been merged to make the formulation sim-
pler, i.e., we require the existence of a bijection between the input of a value v and the
output index at which v is delivered.

Is the SMR/ABC abstraction appropriate for blockchain? One may argue that Bit-
coin is not a SMR protocol but something weaker, because it lacks finality [Vuk15]. Bit-
coin transactions have a probability of being reverted that tend to 0 over time but never
reaches it, and they are deemed final once they reach some predefined threshold. By
comparison, protocols based on signatures and votes can label a transaction as final in-
stantly after gathering sufficiently many votes. First, we emphasize that the outputs of
atomic broadcast are only the final transactions, thus for a Nakamoto-style blockchain, the
transactions whose revert probability is not under the threshold that susceptible to chain
reorganisation are all internals of the protocol that are unknown to the ABC abstraction.
Secondly, we can observe that lack of finality may be seen as a nonzero probability of
violating safety [GPS18], i.e.,

Finality(P) := ∀T ∈MA
P ,PT [Agreement(P)] = 1

It is easy to see that finality in that sense is not satisfied by most protocols of interest be-
cause it implies perfect security8 and the usage of most of cryptography implies a nonzero

8Although for Agreement only.

Chapter 3. Formalisation of distributed components 73

probability of protocol failure. Hence non-final protocols are not weaker than those as
satisfying regular ABC probabilistically, e.g., in the case of a computationally bounded
adversary. This is explicitly visible if we consider that signatures-based protocols can have
safety violated with some (negligible) probability due to, e.g., a forged signature, the same
way that PoW protocols can have safety violated with some (negligible) probability due
to, e.g., a few PoW mined way faster than expected. For instance, Lemma 10 shows that
this intuitive notion of finality does not apply to Tendermint [Buc16], a protocol designed
with a per-block agreement, which goes against common belief.

Lemma 10 (Tendermint [Buc16] is not final).

¬Finality(Tendermint)

Proof. Let (KeyGen,Sign,Verify) be the signature scheme of Tendermint and let PKeyGen
be the probability mass function of KeyGen. Let T ∈MA

Tendermint be the following execu-
tion tree. After setup, the adversary generates #Π key pairs (ski, pki) using KeyGen. The
adversary then impersonates all nodes by assuming that ski is the private key of node i, and
breaks Agreement, e.g., by equivocating on behalf of honest nodes. If for all honest nodes
the generated (ski, pki) pair is equal to node i own key pair, then the attack succeeds. This
event happens with probability (∑(sk,pk)PKeyGen(sk, pk)]2)#Π > 0, therefore T is such that
PT [Agreement(Tendermint)]< 1. ut

Reductions

Lemma 11. Terminating reliable broadcast is loosely stronger than atomic broadcast.

Proof. Nodes simply execute a TRBC instance as a sender in a round robin manner. They
can reliably wait for the previous instance to terminate, and each honest node can periodi-
cally contribute some output to ABC. ut

Lemma 12. Strong consensus is loosely stronger than ABC.

Proof. This is done by buffering inputs and sending them to all nodes, thus creating some-
thing similar to an "input pool" by analogy with Bitcoin’s transaction pool. The outputs
are obtained by repeatedly executing strong consensus. That is, the first instance of strong

Chapter 3. Formalisation of distributed components 74

consensus is started right at the beginning of the protocol, and honest nodes provide input
to the i-th instance right when all the instances from 0 to i−1 terminated. For each strong
consensus instance, the input provided is the current contents of the input pool, and the
output of each consensus constitutes a batch of outputs for ABC. ut

Note that using consensus does not work in this reduction because ABC requires that
(honest) inputs are eventually committed, and the adversary could force one honest node
to always have an empty value. This may not be an issue e.g. in the case of a blockchain
because having merely valid outputs is sufficient.

Lemma 13. Atomic broadcast is stronger than vector consensus.

Proof. All nodes A-broadcast their input once, and wait for A-delivery of other values
until the set of nodes that didn’t deliver is a member of C. ut

We now give two reductions that are conditioned by the corruption structures ¬2-cover
and ¬3-cover, analogous to the 1/3 and 1/2 corruption thresholds. We chose to still
include these reductions because they motivate the justification that "SMR" is equiva-
lent to "consensus", but also highlights the preconditions to this equivalence. Recall that
k -cover := ∃π1, . . . ,πk ∈ C,

⋃
πi = Π.

Lemma 14. Assuming ¬3-cover, atomic broadcast is stronger than consensus.

Proof. The reduction starts exactly as in Lemma 13. Given the vector output, let S be the
set of honest sender nodes with non-empty values S. We have that S /∈C, because otherwise
S together with the set of senders of empty values and the set of remaining nodes would
all be in C and cover Π. If all honest nodes had the same input v then out of the vector
output we can compute a set of senders not in C such that they all have the same value v′.
Because at least one of them is honest, v = v′, which can be the output for consensus. ut
Lemma 15. Assuming ¬2-cover, vector consensus is loosely stronger than atomic broad-
cast.

Proof. This is done in the same iterated manner than from strong consensus (lemma 12),
except that the output batch is obtained by taking the union of the vector values. The set
of non-empty values from the vector cannot be in C, otherwise this set together withe set
of empty values would form a 2-cover, per vector validity. Therefore, there is at least
one honest value in each vector output, which ensures that all honest input will eventually
appear in the output. ut

Chapter 3. Formalisation of distributed components 75

Equivalence graph
The given reductions can be naturally represented by a graph with specifications as vertices
and reductions as edges, shown in Figure 3.1. We draw the transitive reduction of this
graph based on the reductions given. For readability we do not distinguish the two types
of reductions.

FIGURE 3.1: Problems relationships. Arrows mean "is loosely stronger
than". The dashed arrows are conditional.

3.4 Analyzing performance
One of the motivations of this chapter is to compare existing blockchain protocols. But
beyond model and specifications, metrics such as communication cost and latency are a
key point of comparison. In this section we precisely define the evaluation of these metrics
as a function of a few dimensions, namely node count, network delay (actual and bound),
output size and security parameter. These definitions are solely based on the network
module and ABC module described in sections 3.2 and 3.3, which result in standardized
performance analysis of BFT protocols

There are two objectives in mind. First, the definitions must assume as little as possible
on the underlying model, in order to be applicable to any ABC protocol. In particular this

Chapter 3. Formalisation of distributed components 76

means that definitions must stay correct even within infinite executions. Secondly, we
generalize complexities to capture multiple dimensions, even if their value changes during
execution. In particular this will let us capture the actual network delay and the protocol
payload size as dimensions in the complexity analysis, leading to fine-grained protocol
comparisons. As a result the stated definitions are slightly involved, however in simple
cases they collapse to the usual evaluation of communication complexity and latency.

Our approach is structured as follows. Each metric is defined by a function that takes
a point in time of an execution (i.e., an event) and returns the metric value aggregated up
until that point. For instance, for communication cost it will return the number of bits
sent by honest nodes so far. Then we consider a tuple D that represents all the dimensions
in which the metrics are expressed, such as ∆ and λ . For each dimension dim, Ddim is a
function that also takes a point in time and returns the dimension value at that point. For
instance, for ∆ it will be the maximum delay of the messages sent so far. Note that all
dimensions are defined in this manner, although it is not necessary for the ones that are
constant during all executions.

The general idea is to define a metric as a function that maps the dimension values to
the metric value, by taking a point in execution where the dimensions evaluation matches
the input. More precisely, the metrics value for one execution is the function that takes a
tuple of dimension values D and returns the metric value at the latest point in the execution
i such that at that point each dimension dim has a value Ddim(i) have a value smaller than
in the tuple Ddim.

Definition 39 (Metrics and dimensions). Let P be a protocol, T ∈ T[Events(P)] such that
MA

P (T) holds, and let E ∈ T . A metric is a function M : EI → N. A dimension is a
monotonically increasing function D : EI → N.

Definition 40 (Metric evaluation). Let P be a protocol, M a metric and D a named tuple
of dimensions of length l. The metric value of one execution is M(E) : Nl → N.

M(E) := D 7→M(max{i ∈ EI | ∀Ddim ∈ D, Ddim(i)≤ Ddim})

The overall metric value for the protocol P is the worst case value over the averages of the
admissible execution trees of P.

M(P) := D 7→ max
T∈T[Events(P)]

MA
P (T)

ET [M(E)(D)]

Chapter 3. Formalisation of distributed components 77

For simplicity we have defined dimensions and metrics with domain N, but it can easily
be generalized to arbitrary ones.

Our approach may seem slightly counter-intuitive. Indeed, a natural approach could
be to model a metric directly as a single value M(E) associated to each execution E. But
then, to evaluate the asymptotic complexity of maxT M(E) as a function of the dimensions,
they must also have a single value D(E) for each execution. This breaks down when
considering infinite executions, for which some metrics and dimensions cannot have a
finite value, e.g. communication cost. Furthermore, associating a single dimension value
to each execution can raise difficulties, for instance for network delay in the asynchronous
models.

Instead, our intuition is to see the metric for one execution as a function from the di-
mensions values to the metric value, which is illustrated in our definition of M(E). As a
result, our approach is much more appropriate to make complexity statements with dimen-
sions that changes value during execution.

Taking the metrics average may be questionable at first glance. However because our
framework appropriately distinguishes probabilistic and non-probabilistic events, we can
naturally take the metrics average while taking the worst case value for non-probabilistic
choices, which is manifested by taking the maximum over execution trees.

In our case, we are mostly interested on the performance guarantees, which are repre-
sented by taking a worst case value (since our metrics evaluate a cost to be minimized).
One possible criticism of taking the worst case value is that it is not representative of real
execution. Indeed the existence of arbitrary behavior means that the worst case perfor-
mance is essentially the resilience to Denial-of-Service attacks, although this is only really
relevant for optimistic protocols.

3.4.1 Metrics
Latency The latency metric is noted L. In the context of cryptocurrencies, latency trans-
lates directly to the time an end user has to wait before his transaction is effective. We first
define the latency of one input, which is the number of ticks that an honest process sees
between the input broadcast and its delivery. Then, the execution latency is the maximum
latency of all the inputs.

Chapter 3. Formalisation of distributed components 78

Definition 41 (Latency).

L :=i 7→ max
j∈E−1(p,i,_,_)

j<i

INPUT _LAT ENCY (j)

where INPUT _LAT ENCY (i) := Let (p, i, p,v) = Ei in

#{ j ∈ E−1(m,o,clock, p, tick) | i < j < E−1(p,o, p,v)}

This notion of latency is specific to ABC protocols, however, a similar approach can
easily be applied to define the latency of all one-shot protocols, by taking the number of
clock tick between the first input and the last output (for terminating execution).

Communication cost The communication cost metric is noted CC. It is the number of
bits sent by honest players.

Definition 42 (Communication cost).

CC := i 7→ ∑
j∈E−1(m,i,net,_,_)

j<i ∧ E j.p∈H j

length(E j.v)

We will use the term confirmation time as a synonym to latency, and bit complexity as
a synonym to communication complexity.

3.4.2 dimensions
Node count The first dimension is noted n and has value Dn := i 7→ #Π, which does not
change during execution. Notably, the dependence of communication cost on n is what
characterises a protocol’s scalability.

Security parameter The other dimension that does not change during execution is λ

with value Dλ := i 7→ λ .

Chapter 3. Formalisation of distributed components 79

Total payload Noted d, this dimension quantifies the minimal amount of data that was
output by an honest node.

Dd := i 7→ min
p∈Hi

∑
j∈E−1(p,o,_,_)

j≤i

length(E j.v)

As a side effect, and especially in the context of ABC protocols, the use of d allows to
distinguish a "constant overhead" communication cost, i.e., that occurs independently of
the data to broadcast, from an "efficiency" cost which reflects the overhead that scales
with the amount of data transmitted. We also remark that, depending on the algorithm,
the bound on network delays ∆ may also cover messages of size d. Thus, in practice,
increasing d could in turn increase ∆.

Network delay Noted δ , this dimension is the actual network delay.

Dδ :=i 7→ max
j∈E−1(m,o,net,p,m)

j≤i

Delay(j)

where Delay(j) := #{k ∈ E−1(m,o,clock, p, tick) | sent(j)≤ k ≤ j}

Network delay bound For protocols that use a strongly or partially synchronous net-
work, we additionally have the network bound dimension D∆ := i 7→ ∆.

3.4.3 Evaluation
The metrics as currently presented are not intended to be used with their precise value.
In general, only their asymptotic complexity are evaluated and discussed. This is the case
first and foremost with impossibility proofs: we will give asymptotical bounds on com-
munication cost when considered as a function of the number of nodes, and on latency
when considered as a function of the message delay. To this end, we use the standard
multivariate big-O notations Ω(·), Θ(·) and O(·) for asymptotical upper, exact and lower
bounds.

• f (x) = O(g(x)) iff limsup
||x||→∞

| f (x)|
g(x) < ∞

Chapter 3. Formalisation of distributed components 80

Notation Meaning
∆ Network delay, known upper bound
δ Network delay, (actual) upper bound
n number of nodes
b protocol output size

poly(λ) any polynomial in λ

polyv(λ) any polynomial in λ and arbitrary in v

TABLE 3.2: Summary of metrics

• f (x) = Θ(g(x)) iff f (x) = O(g(x))∧ f (x) = Ω(g(x))

• f (x) = Ω(g(x)) iff liminf
||x||→∞

| f (x)|
g(x) > 0

where x is the tuple of arguments to functions f and g, and || · || is the infinite norm, i.e.,
||x|| = maxi(xi). Specifically, the arguments considered in the big-O notations are the
dimensions defined above.

Handling the security parameter It is common to have the performance metrics depend
on some intricate variable which is shown to be polynomial in λ , but its precise depen-
dencies to the other dimensions are difficult to track, or are even unknown. As a result, we
choose to use poly(λ) to denote any function polynomial in the security parameter, but we
will add in subscript the additional dimensions it takes (with an arbitrary complexity). For
instance, polyδ (λ) is a function that is polynomial in λ and arbitrary in δ . Importantly,
although the length of digital signatures and hashes are technically poly(λ) we will treat
them as constants, notably because in practice these values are evaluated once and kept
the same for all further use of the primitive (in any application), and thus they are in effect
independent from the protocol security parameter.

Finally, we summarize the introduced dimensions and notations in Table 3.2.

Chapter 3. Formalisation of distributed components 81

3.5 Lower Bounds
An impossibility theorem, or lower bound, is a theorem of the form ∀P∈P[A], ¬MA

P |=B,
for modules A, B and adversary A. Typically they are made by contradiction, that is, we
assume the existence of such protocol P, then show the existence of an execution (that is,
an attack on P) that implies a contradiction with B.

Impossibility results are transitive, therefore we state impossibility results in the strongest
model possible for the weakest problem applicable.

Claim. Given modules A, B, B′ and A′, if B′ is loosely stronger than B and A′ is loosely
stronger than A, and if ¬MA[A] |= B, then ¬MA[A′] |= B′.

3.5.1 On the corruption structure
The following proofs give conditions for solving problems that can be satisfied through
appropriate corruption structures. Except for the celebrated Fischer Lynch Paterson im-
possibility (FLP) impossibility [FLP85], they all rely on the impossibility for honest nodes
to distinguish multiple contradictory scenarios. To create these scenarios, the adversary
needs a corruption structure that form a cover of the nodes, thus materializing the trust
assumptions required for our protocols.

We recall the k -cover predicate from definition 22 :

k -cover := ∃π1, . . . ,πk ∈ C,
⋃

πi = Π

In the following proofs the k -cover assumption implicitly defines the sets π1, . . . ,πk such
that

⋃
πi = Π and ∀i, j, πi∩π j = /0, which is an implication of the monotonic corruption

structure (see Section 3.2.1).

Asynchronous deterministic consensus impossibility The celebrated FLP impossi-
bilty [FLP85] shows that no protocol can deterministically terminate in asynchronous net-
works. Because network asynchrony and determinism are the only options in our models
that may be weakened, this theorem establishes that there are no one-size-fits-all solution
for consensus.

Chapter 3. Formalisation of distributed components 82

Theorem 2 (FLP). For any protocol P in the model with crash faults (and therefore with
byzantine faults too), deterministic algorithm, asynchronous network, static adversary and
no signatures, if C 6= /0 then P cannot be a Binary Consensus protocol.

∀C 6= /0,∀P ∈ P[async_net], ¬M(unbounded,C,static)
P |= BC

We do not give the full proof here, as it does not benefit from being reformulated in
our model, and many high quality proofs already exist [Abr19, Rob08].

Split-brain scenarios The two following proofs are variations on the idea that, by split-
ting all nodes into three sets π1, π2, π3, the malicious nodes, e.g. π1, can act with respect
to each set as if the other one was corrupt. Without any mean to cross-check their infor-
mation, an honest set of nodes, e.g. π2, cannot know whether π1 or π3 is actually corrupt
and therefore must pick a fixed set to agree with, breaking consistency in case where it is
corrupt.

The first theorem is essentially an adaptation from the original consensus impossibil-
ity [PSL80, FLM85] to probabilistic, computational broadcast. Interestingly, the proof for
this specific case was only made rigorous in 2003 by Fitzi [Fit03].

Theorem 3 (Unauthenticated RBC [Fit03]). For any protocol P in the model with Byzan-
tine faults, probabilistic algorithm, synchronous network, static adversary (and no signa-
tures), if 3-cover holds, then P cannot be a RBC protocol.

∀P ∈ P[rand,sync_net],∀C ⊆ P(Π), 3-cover⇒¬M(computational,C,static)
P |=λ RBC

Proof. First, we consider a protocol P′ in the same model than P, in which each node em-
ulates some execution of P. In particular P′ acts as an intermediary between the simulated
execution of P and the network, and in the following the view of P′ nodes implicitly refers
to the simulated P view. The nodes Π′ in P′ are partitioned into six sets π ′i , i ∈ Z/6Z,
such that each node in π ′i executes a session of P among π ′i−1∪π ′i ∪π ′i+1, and additionally
there is an bijection f between π ′i and π ′i+3 such that p and f (p) are executing the same
instance9 of P. In effect, this means that the π ′i are organized in an hexagon where each set

9By instance, we mean same parameters and identities, but not necessarily the same inputs.

Chapter 3. Formalisation of distributed components 83

only communicates to its neighbor, each pair of opposing sets are copies of each other, and
all nodes are behaving as if they were executing P within a smaller network partitioned
into three sets.

Let R′ be an execution tree of P′ with no corruption event, such that the two sender
nodes in R′ belong to π ′s and π ′s+3, and they have input v0 and v1, respectively, with v0 6= v1.

We now show that for every adjacent pair π ′i ,π
′
i+1, there is an execution tree Ri,i+1 of

P where π j is corrupt and the joint view of π j+1 and π j−1 is the same as the simulated
execution of P from π ′i and π ′i+1 in R′. Indeed, the adversary can map π ′i+1 to π j+1 and
π ′i to π j−1 ; make π j act with respect to π j+1 and π j−1 as π ′i+2 with π ′i+1 and π ′i−1 with
π ′i , respectively. In simpler words, the adversary in P can make π j simulate four adjacent
sets of nodes in R′, such that the two honest sets in P interact with themselves and the two
different copies of π j in R′.

Because of consistency in Ri,i+1, π ′i and π ′i+1 must output with overwhelming proba-
bility the same value. Since this holds for all i∈Z/6Z, all nodes in R′ also output the same
value v. Additionally, because of liveness and validity in Rs,s+1, π ′s must output v = v0,
and because of validity in Rs+3,s+4, π ′s+1 must output v = v1, yielding a contradiction with
overwhelming probability.

ut

In this proof, the synchronous network allows the two set of nodes (i.e., the two π j+1
and π j−1 when they are not senders) to communicate, but they cannot cross-check their
views because without signatures there is no way to verify whether πi is really acting
according to what it received from the other set.

Alternatively, a very similar proof can be made if the network doesn’t give the oppor-
tunity to the two π j±1 to communicate at all. As a result, the same theorem applies in the
case of a partially synchronous network, even assuming signatures.

Theorem 4 (Authenticated RBC). For any protocol P in the model with Byzantine faults,
probabilistic algorithm, partially synchronous network, static adversary, signatures, if
3-cover holds, then P cannot be a RBC protocol.

∀P∈P[rand,weak_net,signatures],∀C ⊆P(Π), 3-cover⇒¬M(computational,C,static)
P |=λ RBC

Chapter 3. Formalisation of distributed components 84

In this case the adversary only has to simulate the absence of communication from one
set of nodes, instead of the six-partitioned simulation. As a result, although the proof idea
is very similar to theorem 3, the proof itself is significantly simpler.

Proof. Without loss of generality, assume that the sender node is in π1. Let v2 and v3 be
two different sender inputs. Let j and k in {2,3} and j 6= k.

Let R j be an execution tree where π j is corrupt and do not send any messages, and
the sender has input v j. Liveness and Validity imply that, with overwhelming probability,
all nodes in πk must output v j within a finite time Tj. Let R′j be an execution tree where
all nodes are honest, all communications from/to πk are delayed by ∆, and the sender had
input v j. Let R be an execution tree where π1 is corrupt, and acts exactly as in R′j towards
πk and as in Rk towards π j.

Because π1 acts the same towards πk in R and in R j, both executions trees are indis-
tinguishable by πk up until time ∆ when πk starts receiving messages from π j only in R.
However, if ∆ > max(Tj,Tk), then in R πk and π j have already terminated by that time,
since they did so in R j and Rk, respectively. In particular, their output value are v j and vk
respectively, and therefore consistency is violated with overwhelming probability.

ut

Because RBC is the weakest protocol we presented, these results also apply to all of
them. Indeed these two theorems together make up the baseline requirements for agree-
ment protocols, such as one third of nodes being honest.

Byzantine distinguishers The previous theorems lets open the possibility to tolerate an
arbitrary number of faults in synchronous networks. The next one closes this possibility
for Consensus. Roughly, the reason is that if an honest node can get their input accepted,
then Byzantine nodes can act indistinguishably from honest nodes and get their "input"
accepted. The proof by Neiger [Nei94] is for deterministic algorithm ; we extend it to the
probabilistic case.

Theorem 5 (synchronous Consensus). Let V be a finite set, for any protocol P in the
model with Byzantine faults, probabilistic algorithm, strongly synchronous network, static
adversary, signatures, if #V -cover holds, then P cannot be a strong consensus protocol

Chapter 3. Formalisation of distributed components 85

with input set parameter V .

∀V,∀P ∈ P[rand,weak_net,signatures],∀C ⊆ P(Π),

#V -cover⇒¬M(computational,C,static)
P |=λ SC(V)

Proof. Let i and j in {1,2,3} and i 6= j. First, let A be an execution tree where no nodes
are corrupt, all nodes in π j have the same input v j, and vi 6= v j. By liveness and validity,
honest nodes in π j will all output a value v j, with overwhelming probability.

Then, let execution tree B be exactly the same as A, with the only exception that the
partition π j is corrupted. Because corrupting a node only removes an admissibility con-
dition, the π j nodes in B act exactly in the same way, and all other events are the same,
thus B is also an admissible execution tree. For the same reason, the output in B is v j with
overwhelming probability. Given that v j was the input only of π j in A, and that all nodes
in π j are corrupt in B, v j is not the input of any honest node. Therefore there is an admis-
sible execution tree (namely, B) where strong validity does not hold with overwhelming
probability. ut

Note that this proof in fact applies to Binary Consensus. Indeed, if #V = 2 then Strong
consensus is equivalent to consensus and binary consensus.

3.5.2 On performance
This subsection gives proofs on the minimum communication complexity and latency to
solve problems, for varying synchrony and randomization assumptions. These theorems
are weaker however, because they are not transitive under loose reduction. Indeed, loose
reductions are allowed to use the network and therefore they do not preserve communica-
tion and latency metrics.

As a further consequence, those results are much more prone to be invalidated by as-
suming the existence of some cryptographic primitive. For instance, a common way to
improve communication complexity is by using threshold signature that enable to com-
press the votes of n nodes into a constant sized string.

Theorem 6 (Quadratic deterministic RBC communication cost). For any protocol P in the
model with a deterministic algorithm, synchronous network, static adversary and signa-
tures, if P is an RBC protocol, then the communication cost of P is Ω(nmaxC∈C #C).

Chapter 3. Formalisation of distributed components 86

∀P ∈ P[sync_net,signatures],∀C ∈ P(Π),

M(computational,C,static)
P |= RBC⇒ CC(P) = Ω(nmax

C∈C
#C)

The proof idea is from [DR82] and [HH93, Section 6], which bounds the minimum
number of signatures exchanged during the protocol.

Proof. First, define the communication graph G(E) of an execution E to be the undirected
graph where nodes are vertices and there is an edge between p1 and p2 iff either p1 or p2
exchange at least one signature from the other in E (possibly indirectly). Additionally, for
graphs G,G′ that share the same vertices, G∪G′ is the graph where the set of edges is the
union of the edges of G and G′.

Let’s assume the following: There are two admissible executions, A and B, such that
no nodes are corrupt, the sender is the same in both executions, its input value is va and vB
in A and B respectively, with va 6= vb. Let U := G(A)∪G(B), and furthermore assume that
there is C ∈ C such that, removing the all the nodes in C from U makes it disconnected.

We now show that this assumption leads to a contradiction, in a similar manner to
Theorem 4 but only in the deterministic case: let R be the execution where the set of
corrupt nodes C makes U disconnected, and UA and UB the two remaining disconnected
subgraphs of U . The adversary makes nodes in C behave towards nodes in UA and UB
exactly as in A and B, respectively. They are able to do so because no signatures are
exchanged between nodes in A and B, hence all other messages are unverifiable. Because
R is indistinguishable from A and B in the view of nodes in A and B, respectively, they
must each output va and vb respectively in R. Therefore consistency is violated.

The negation of our assumption holds: For each such A, B pair, for any C∈C, removing
C from U = G(A)∪G(B) does not make it disconnected. Therefore U has a connectivity
of at least maxC∈C #C, which implies at least d(nmaxC∈C #C)/2e edges. So G(A) and G(B)
have Ω(maxC∈C #C) edges, and so does the number of sent signatures and the number of
sent bits. ut

The next theorem is a result by Garay, Katz, Koo and Ostrovsky. Although they techni-
cally state their proof in the model with a rushing, dynamic adversary, we observe that the
same proof holds with a static adversary, because all corruptions events take place before
the protocol starts.

Chapter 3. Formalisation of distributed components 87

Theorem 7 (Linear Latency [GKKO07]).

∀P ∈ P[rand,sync_net,signatures],∀C ⊆ P(Π),

∃π1, . . . ,πk ⊂Π,
⋃

πi = Π ∧ ∀i,Π\ (πi∪πi+1) ∈ C ∧

M(computational,C,static)
P |=λ RBC⇒ L(P) = Ω(δk)

Proof. Let π1, . . . ,πk ⊂ Π such that
⋃

πi = Π, ∀i,Π \ (πi ∪ πi+1) ∈ C, and without loss
of generality ∀i 6= j, πi ∩π j = /0. For convenience, we also define π0 := πk+1 := /0. Let
v0 6= v1 and Sb

i be the execution trees such that: The sender is in π1 with input vb, all
communications are delayed by ∆, the nodes in Π \ (πi ∪ πi+1) are corrupt, and for all
j ∈ J1,kK\{i, i+1}, each corrupt node in π j execute P except that it ignores and doesn’t
send any message to nodes in π j−1∪π j∪π j+1.

For any i≥ 2, in Sb
i−1, nodes from πi−1 and πi must have the same output, nodes in πi

cannot distinguish Sb
i−1 from Sb

i . Given that in Sb
1 the sender is honest, by induction on i,

in Sb
i all nodes in πi must output vb with overwhelming probability. However we also have

that for nodes in πi, the execution trees S0
i and S1

i are indistinguishable until ∆(i−1) time
has elapsed, because any information on b must be sent through π1,π2, . . . ,πi−1, taking ∆

ticks each time. If with overwhelming probability πi outputs b before ∆(i−1) in Sb
i , then

it must do the same in Sb+1 mod 2
i , thus violating Validity. The conclusion is reached by

taking i = k. ut

In particular if C = P(Π) then the latency is Ω(δn)

An updated look on the problem space The results above are mapped into the repre-
sentation of the problems relationships in Figure 3.2, by drawing the separations we have
just proven. This figure illustrates that, although choosing definition of the BFT variant of
consensus is broadly seen as a technical detail, the choice is far from inconsequential. For
instance, if the objective is to implement ABC, then consensus is needlessly strong, de-
spite being the most popular choice. Also notably, this figure shows that being thoughtful
of problem reductions led us to cover most cases using only four theorems.

Chapter 3. Formalisation of distributed components 88

FIGURE 3.2: Problems relationships, with impossibility results. Each dot-
ted box regroups all the problems that cannot be solved under some models,
and they are annotated with the precise impossibility theorem that apply as

well as the models that are excluded.

Chapter 3. Formalisation of distributed components 89

3.6 Analyzing protocols
A preliminary version of this section has been published online [DHLM19].

The main objective of this section is to show how different blockchains can be un-
derstood and compared using our framework. To do so, we selected a few prominent
blockchain protocols which we interpret them within our framework. We have chosen pro-
tocols to be representative of the different techniques and working principles of blockchains,
and we only considered those that are sufficiently formalised to enable a fair assessment
of their model and properties. Phantom [SZ18] to have a second PoW-based protocol to
compare with the Nakamoto consensus [GKL20a], Ouroboros Praos [BGKR18] is a non
PoW-based synchronous protocol, Algorand [Mic17] is somewhat similar to Ouroboros
but in a partially synchronous setting, Tendermint [Kwo14] operates similarly to clas-
sical SMR protocols [CL02], HoneyBadgerBFT [MXC+16] is asynchronous and Stake-
Cube [DAL19] is our contribution.

In concrete terms, we state the model under which they operate, and we give com-
plexities for latency and communication cost. In turn, those results are also useful by
themselves to make sensible comparisons between the different protocols. Note that even
if we provide a high-level reasoning to motivate the metrics results, we entirely rely on the
proofs provided in the reference papers, and we only complete them when necessary. In
particular, we do not attempt to make the results tighter.

All the protocols presented satisfy Atomic Broadcast, assume Byzantine faults, and
are probabilistically secure against a computational adversary.Let us recall however that
the computational security implies that the protocol cannot run for an unbounded length
of time.

3.6.1 Using the Bitcoin backbone protocol
For the Nakamoto consensus10 and Ouroboros Praos, we will rely on the backbone pro-
tocol formalism from Garay et al. [GKL15, GKL20a, BGKR18]. For both protocols the

10We use the term "Nakamoto consensus" or "Nakamoto" for short to refer to Bitcoin’s underlying ABC
protocol.

Chapter 3. Formalisation of distributed components 90

authors adopt the notion of protocol execution from the Universal Composability frame-
work [Can01], thus we fall in the category of computationally bounded adversaries. How-
ever, they don’t use the UC notion of security (UC-realization). Instead, they state the
specifications through some ad-hoc properties on the view of all participants, i.e. the exe-
cution. As a result they follow a similar definitional approach to us, with the difference that
the model of protocol execution comes from the UC framework. Both protocols satisfy the
specification of a Transaction Ledger as detailed in Section 2.5, which is decomposed into
three parametrized properties (Common Prefix, Chain Growth and Chain Quality) that we
reuse to give the asymptotical complexities.

For Nakamoto [GKL20a] Garay et al. present two analyses, one with a synchronous
network and one extended to a partially synchronous network. For Ouroboros Praos [BGKR18]
Bernardo et al. use a partially synchronous network similar to the one from the Nakamoto
analysis. In all three cases, the network only allows to send a message to all nodes, i.e. a
multicast interface. They describe a network functionality (analogous of our modules)
that offers a global round clock to all nodes. Sent messages are delivered either in the
same round in the case of strong synchrony and after up to ∆ rounds in the case of par-
tial synchrony, meaning that such rounds in the partially synchronous case do not have a
prescribed duration and act more as "real time step" or "time slot".

However, we believe there is a slight issue in the formulation used for the partially
synchronous networks. First of all, let us remark that both protocols are stated to be secure
assuming that less than half of the stake/hashpower is owned by malicious nodes, i.e.,
¬2-cover holds. This comes as surprising, since we have shown that Binary Consensus
(and by extension, Atomic Broadcast) cannot be solved in partially synchronous networks
when the adversary can form a partition with three set of corrupt nodes. This is clearly the
case here, for instance by corrupting sets of nodes owning a third of the stake/hashpower.

On the other hand, we have seen in the previous section that in the case where we
assume the negation of 2-cover, a strongly synchronous network is required to solve con-
sensus. Furthermore, recall that the only difference between partial and strong synchrony
is that the ∆ bound is made available to nodes in the strongly synchronous case.

Indeed, with careful examination we observe that both Nakamoto and Ouroboros Praos
actually needs the value ∆ to execute, and as a result are better stated to be strongly syn-
chronous protocols. In essence, for both cases, even if the protocols can be proven secure
assuming they are correctly parametrized, to be able to output transactions with a known

Chapter 3. Formalisation of distributed components 91

value for the probability of failure, the nodes must have a bound on ∆. To make the claim
more concrete, we trace the usage of ∆ for both protocols.

For Ouroboros Praos, the protocol takes a parameter f that tunes the probability for
a node to be eligible to multicast the current block. To know whether a given node is
eligible to multicast a block, a procedure that takes f as a parameter is executed within
the protocol. Then to prove the security of the protocol, the authors require that f satisfies
an inequality [BGKR18, Theorem 9 equation 12], which encodes the "Majority of Honest
Stake" assumption but also depends on ∆. In particular, if f and all the other protocol
parameters are known to the nodes, then assuming that the inequality holds means that
nodes can solve it to obtain (an upper bound on) ∆.

For Nakamoto the value of ∆ is required in two places. First, with a reasoning similar
to Ouroboros, we have an inequality [GKL20a, Honest Majority Assumption (Bounded
Delay)] that is stated depending on ∆ and another parameter f . In turn, f is explicitly used
in the protocol, to set the target difficulty for Proof-of-Work mining, and this means again
that ∆ must be known. But in a more straightforward manner, they prove the Persistence
property of the Transaction Ledger with parameter k = O(∆). Given that the knowledge of
k is necessary to output any transaction (otherwise it is not possible to know which ones
are confirmed), this is another reason mandating a known ∆.

Formally, these remark can be expressed with the following lemma.

Lemma 16 (Nakamoto and Praos are strongly synchronous).

∃P ∈ P[MPraos], MAPraos
P |= strong_net

∃P′ ∈ P[MNakamoto],MANakamoto
P′ |= strong_net

Where (MNakamoto,ANakamoto) and (MPraos,APraos) are the models of Nakamoto consensus
and Ouroboros Praos, respectively.

Proof Sketch. We have that weak_net ∈ MNakamoto and weak_net ∈ MPraos. Let the sets
PPNakamoto and PPPraos be the set of public parameters of both protocols, i.e., params(PPNakamoto)∈
MNakamoto and params(PPPraos) ∈ MPraos. We have shown above that, knowing an ele-
ment from PPNakamoto or PPPraos, it is possible to compute a bound on the delay ∆ of the
weak_net module. Recall that strong_net requires a setup event that outputs the module’s
∆ to all nodes. Both P and P′ work in the same manner; after receiving the protocol’s

Chapter 3. Formalisation of distributed components 92

parameters from the params module, they compute ∆ and output it to all nodes. Finally,
inputs and outputs to the protocol are forwarded to the weak_net module, to implement
the sending and receiving of the strongly synchronous network. ut

As an additional remark, the original Ouroboros [KRDO16] protocol is clearly stated
to be strongly synchronous. It is possible that the change of network terminology between
Ouroboros and Ouroboros Praos is due to the fact that the network in Ouroboros is ex-
pressed in a round-based formalism, and not in Ouroboros Praos where any message can
independently take up to ∆ time to be diffused. Similarly, the analysis of Nakamoto pre-
sented as partially synchronous may still be appealing over the first, strongly synchronous
one, because in effect rounds are translated into "real time steps".

3.6.2 Nakamoto consensus
Model We have already shown that the model from Garay et al. [GKL20a] is strongly
synchronous, with a computational adversary. Their model is completed by the Random
Oracle ideal functionality, which also integrate the Proof-of-Work mining primitive. That
is, the Random Oracle is given the ability to answer "mining" queries from node, with a
limit of q queries per node per network round (or 1 in the "partially" synchronous analysis).
Then an additional interface is added to be able to verify the result of a query without
having to make the same query again and be limited by q.

The equivalence with our PoW module is as follows: the RO input plays the role of
the input value m, and the query bound q is ∆h−1

p . In both cases, the verification interface
checks whether a value is indeed the output of the RO to some node. The difficulty param-
eter d as well as the probability of mining a valid PoW is encoded within the Nakamoto
protocol itself, instead of being part of the model in our framework with the PoW module.
Contrarily to the model from Garay et al., our PoW module does not have an interface to
compute hashes, therefore we also have to add the standard Random Oracle module to the
model.

Regarding the corruption structure, they state an "Honest Majority Assumption" such
that the proportion of hashpower (expressed in RO queries per round) available to the
malicious nodes is lower than 1−d(λ ,∆)

2−d(λ ,∆) with d a function bounded between 0 and 1. This
"Honest Majority Assumption" is easily modeled as a weighted corruption structure with

Chapter 3. Formalisation of distributed components 93

each node being weighted by its hashpower. As expected, d is an increasing function,
meaning that the amount of tolerated malicious hashpower gets further from the optimal
value (1/2) down to 0 as the the security parameter is increased.

Corruption takes effect immediately, therefore the adversary is dynamic (D=(E, i, p) 7→
true). This does not come as a surprise since honest miners multicast their PoW string as
soon as they find it, after which there is no advantage in corrupting that node anymore.

Note that Bitcoin Backbone analysis does not require digital signatures to prove the
security of the transaction ledger, and indeed we do not include them in our model. To
clarify, although the actual Bitcoin does use them, they are part of the application-layer
transactions, i.e. the messages sent through ABC.

Our inability to express dynamic participation in the case of Nakamoto consensus
means that we do not consider changes in the computing power of the participants, nor
the addition of new miners. The original analysis from Garay et al. does not capture this
aspect either, but it has been addressed in subsequent works [GKL20b, CEM+20].

Claim.

BITCOIN ∈ P[params,RO,async_net,PoW],

M(computational,C(W,1/2−ε(λ ,∆)),dynamic)
BITCOIN |=λ ABC

with W (p) := hp(∑
q∈Π

hq)
−1 and ε : N2→ [0,

1
2
]

Metrics In the Bitcoin Backbone analysis, the authors articulate their proofs on the as-
sumption of a typical execution, that roughly states that parties produce blocks at a rate
close enough to their expected value (i.e., hashpower). Then they show that any execution
of k rounds is typical with probability 1− e−Θε (k), where ε is a variable that quantifies
how close the block production rate is to its expected value. In turn, the proofs will rely on
ε being appropriately bounded, an assumption that is integrated in their version "honest
majority assumption". In particular this assumption gives a bound on ε that depends on ∆,
hence, an execution longer than poly∆(λ) rounds is typical with overwhelming probability.

CP, CQ and CG are proven assuming a typical execution, with kp = kq ≥ 2k f and
τ = (1− ε) f for some variable f , hence we have u-Liveness with u≥ 4k

1−ε
= poly∆(λ).

Chapter 3. Formalisation of distributed components 94

The analysis regarding communication complexity is simpler: All b bits from the out-
put are blocks that have been multicast once, hence the communication cost is at least bn.
Furthermore, this cost is only increased if the adversary forces orphaned blocks. Since all
messages on the network are blocks with a valid PoW, it is clear that the overall number
of blocks received by honest nodes is a constant factor of the number of blocks that will
end up in the blockchain. Hence the communication cost of such protocols is O(bn).

Claim. L(BITCOIN) = poly∆(λ) and CC(BITCOIN) = Θ(bn).

3.6.3 Ouroboros Praos
Model We have already shown that the model from Bernardo et al. [BGKR18, BGK+18]
is strongly synchronous, with Byzantine faults and a computational adversary. Like with
Bitcoin, we now complete the model.

The ideal functionalities additionally included are the Random Oracle and digital sig-
natures, for which we already have the corresponding modules defined. However to deal
with the dynamic adversary, they must prevent the adversary from reusing the keys of
corrupt nodes to simulate alternative executions from the protocol past phases. To do so
they use Forward Secure signatures, which allows the signer to update its key after each
signature, deleting the previous one. This additional functionality however is not captured
by our signature module.

Node corruptions take effect immediately and the adversary is fully dynamic. This is
possible due to the usage of VRFs, on a principle similar to how Bitcoin miner can be
corrupted just after sending a block without issue. The Ouroboros nodes uses the VRF to
learn locally whether they are randomly selected to multicast a block, and once the block
is sent they don’t have a privileged role anymore. The verifiability of the VRF output
ensures that nodes cannot cheat their eligibility.

Regarding the corruption structure, the authors assume that the proportion of stake
owned by honest nodes is higher than 1

2d(λ ,∆), where d is an (increasing) function lower
bounded by 1. This assumption is modeled by a weighted corruption structure using stake
as weights.

Chapter 3. Formalisation of distributed components 95

Claim.

PRAOS ∈ P[params,RO,sync_net,VRF, forward_signatures],

M(computational,C(W,1/2−ε(λ ,∆)),dynamic)
PRAOS |=λ ABC

with W (p) := Sp(∑
q∈Π

Sq)
−1 and ε : N2→ [0,

1
2
]

where Sp is node p’s stake, as defined by the protocol.

Metrics In Ouroboros Praos, for every time slot, each node can be independently elected
to multicast a new block, with a probability that only change depending on the amount of
stake owned. The generation of the randomness to seed the election of block leaders is
implemented by having each leader include a VRF output in their block, and periodically
concatenating the VRF output to form a random seed for the future VRF evaluation.

Given this method of block production, Common Prefix, Chain Growth and Chain
Quality can be proven using only combinatorial arguments on the distribution of honest
and malicious leaders in the block tree. This is done through the analysis of "characteris-
tics strings", which are an encoding of the schedule of honest and malicious leaders. The
authors show that a string of length of k time slots is "forkable" with probability negl(k),
for an appropriate notion of "forkable" that is latter used to prove CP, CQ and CG. In
particular, the distribution of characteristics strings only depends on the (stakewise) pro-
portion of malicious leaders, and therefore k is only a function of the security parameter,
i.e. k = poly(λ) and u = Θ(k)

Claim. L(PRAOS) = Θ(∆poly(λ)) and CC(PRAOS) = Θ(bn).

3.6.4 Tendermint
Tendermint had a first complete description in [Kwo14, Buc16], than was subsequently
analysed by Amoussou-Guenou et al. [APPT19, APPT18], which we use as a basis.

Model Tendermint follows more classical approaches to State Machine Replication [CL02]
and as such fits very nicely into one of our models.

Chapter 3. Formalisation of distributed components 96

They assume a partially synchronous network with the GST formalism. All nodes sign
their messages with a digital signature algorithm. Tendermint uses a hash function that we
modelize with the Random Oracle.

The corruption threshold is bn/3c nodes, which is simply represented as a corruption
structure with equal weights for all nodes. In practice however the protocol members
are intended to be chosen through an external mechanism, and the selection may assign
weights to nodes, e.g. in a Proof-of-Stake fashion.

The adversarial adaptivity is not explicitly specified, however it is straightforward to
see that it can be dynamic: the leader is not expected to be honest, and the schedule of
leaders may be well known when the adversary choose corruptions. However, in a model
with transient failures, this argument does not hold anymore.

Claim.

TENDERMINT ∈ P[params,RO,weak_net,signatures],

M(computational,C(W,1/3),dynamic
TENDERMINT |=λ ABC

with W (p) := #Π
−1

Metrics Its normal case operation is reminiscent of PBFT [CL02], except that leaders are
always changed after each broadcast, successful or not. For each block, there is a leader
that will execute RBC implemented through two all-to-all voting rounds. To optimize
bandwidth, only the hash of the block is included in the voting messages. This requires
the b bytes of the block content to be sent to all n nodes, and the additional cost of n2 bytes
for the Reliable Broadcast, taking three of communication steps. That is, a single leader
attempting to append a block takes Θ(bn+n2) bit complexity and Θ(1) latency. Malicious
leaders can ensure that their attempt does not succeed, and because the leader order is
arbitrary they may be all malicious first, thus increasing latency by a factor maxC∈C #C =
Θ(n). This does not impact the overall communication cost however, because all honest
leaders will also append a block and only a constant fraction of nodes are malicious.

Tendermint is optimistic in the sense that in failure free executions, i.e. if C = /0, the
Latency becomes Θ(δ).

Claim. L(TENDERMINT) = Θ(δn) and CC(TENDERMINT) = Θ(bn+n2).

Chapter 3. Formalisation of distributed components 97

Interestingly, the use of hash functions in Tendermint is only needed to optimize com-
munication if the value to be agreed on is large enough. Without hash functions, Tender-
mint is deterministic and benefits from Information Theoretic security (obviously assum-
ing ideal signatures), but because all votes must then include the full values its communi-
cation cost raises to Θ(bn2).

3.6.5 HoneyBadgerBFT
Model In HoneyBadger BFT [MXC+16] the network is asynchronous, up to 1/3 of
the nodes may be corrupt, and the adversary is static. The protocol makes use of a hash
function and digital signatures. The authors explicitly assume a "Purely asynchronous
network", "Static Byzantine faults" and "Trusted setup", and they aim to solve Atomic
Broadcast. The setup only serves to implement a PKI for the digital signatures and the
common coin, both of which we directly modeled with modules.

The protocol is based on an asynchronous implementation of Binary Consensus, which
by the FLP impossibility must be probabilistic. The Binary Consensus used is a protocol
from Mostefaoui et al. [MHR14] which relies on a Common coin protocol, implemented
using a threshold signature scheme and a trusted setup. To complete HoneyBadger BFT’s
model, we give the module for the common coin:

Definition 43 (Common Coin specification module). The "common_coin" module is a one
shot protocol with Icommon_coin := /0 and Ocommon_coin := {0,1}λ . It has the same Liveness
and Consistency properties from consensus, as well as Unpredictability. Recall that per
the Agreement property, all honest nodes outputs the same value vout.

Property (Unpredictability). The honest nodes output follows a uniform random law on
Ocommon_coin.

∀v ∈ Ocommon_coin, PT [vout = v] = 2−λ

Claim.

HBBFT ∈ P[params,RO,async_net,signatures,common_coin],

M(computational,C(W,1/3),static)
HBBFT |=λ ABC

with W (p) := #Π
−1

Chapter 3. Formalisation of distributed components 98

Metrics This protocol is built on the Asynchronous Common Subset (ACS) primitive.
ACS is a slight variation of vector consensus where the information of which node is asso-
ciated to each value is erased, although the requirements themselves do not change [MXC+16].
HoneyBadgerBFT (HBBFT) uses the reduction to Reliable Broadcast and binary consen-
sus from Ben-Or et al. [BKR94] to implement ACS. This reductions is essentially identical
to the reduction of vector consensus in Lemma 4 from Section 3.3.

The RBC terminates in three rounds and has Θ(bn+n2 log(n)poly(λ)) bit complexity.
The binary consensus is an asynchronous probabilistic protocol with Θ(n2 poly(λ)) bit
complexity. At each round it has 1/2 probability to terminate. HBBFT has to wait for
all BA instances of them to terminate, the time for this to happen is Θ(log(n)) rounds on
average.

However one of HBBFT achievements is that at the end of this procedure, it com-
mits data from all nodes inputs. That is, if all nodes have an input of size B, then
the batch committed will be of size Θ(nB) bits. Hence, for b bits committed, there
are Θ(bn + n3 log(n)poly(λ)) bits received by honest players. Note that the authors
do provide an analysis, but they state their results in terms of overhead, i.e., the total
cost divided by b. Furthermore, by specifying minimum input size (batching policy) of
Ω(n2 log(n)poly(λ)) = O(b), they obtain the O(n) figure which is a constant per-node
overhead. This emphasis on the low overhead is less visible in our results, although it is
translated by the fact that HBBFT complexity on the b factor is bn instead of bn2 for other
BFT-style protocols, i.e. a reduction factor of n consistent with the authors’ analysis.

Claim. L(HBBFT) = Θ(δ log(n)) and CC(HBBFT) = Θ(bn+n3log(n)poly(λ)).

3.6.6 Phantom
Model Phantom [SZ18] is a Proof-of-Work protocol whose mining operation is very
similar to Bitcoin, except that blocks may have more than one parent. As a result, the
model is essentially the same as for Bitcoin, however the authors use their own formula-
tion based on an earlier proposal [SLZ16]. Formally there is only a statement of safety
(Proposition 7) which is compatible with the ABC formalism, moreover the authors ex-
plicitly aims to be a generalized version of Bitcoin, thus we are confident in choosing ABC
to faithfully capture Phantom’s properties.

Chapter 3. Formalisation of distributed components 99

The network is strongly synchronous, the authors state "if an honest node v ∈N sends
a message of size b MB at time t, it arrives at all honest nodes by time t +D the latest.",
where a bound one D is known to the protocol. Up to 1

2(1−d(λ ,∆)) of the hashpower may
be corrupt, with d an (increasing) function lower bounded by 0. Although not mentioned
explicitly, the adversary is dynamic for the same reason than with Bitcoin.

The Proof-of-Work mining is modelled by a Poisson process. This is well in accor-
dance with our module which modelizes mining by a Binomial distribution, and the latter
converges towards the Poisson distribution whenever the number of tries goes to infinity.
Like with Bitcoin, we also require the Random Oracle to answer hash queries unrelated to
mining.

Claim.

PHANTOM ∈ P[params,RO,sync_net,PoW],

M(computational,C(W,1/2−ε(λ ,∆)),dynamic)
PHANTOM |=λ ABC

with W (p) := hp(∑
q∈Π

hq)
−1 and ε : N×N→ [0,

1
2
]

Metrics In Phantom the block structure is a Directed Acyclic Graph (DAG), which al-
lows blocks to be linked to any number of previous blocks instead of one. A key ob-
servation in Phantom is that the PoW merely serves as a network-level synchronization
primitive, thus decoupling the mining hardness from the security of the protocol. And
indeed the mining rate is independent from λ and only required to be high enough so that
blocks are not mined faster than they can be transmitted through the network. As such,
there is little restriction on the mining process. More precisely, the entirety of the online
protocol consists in mining on top of all the blocks with no successor in the block graph.

The online protocol maintains the DAG that grows over time, and another sub-protocol
independently determines which values from the DAG will be the ABC output. Roughly
speaking, transactions are extracted from the blocks graph, and for each of them the proto-
col computes whether their probability to be undone is greater than a given ε . Confirming
a transaction still requires poly(λ) blocks to be mined on top of it, but since block creation
is more flexible, we only need to wait a O(∆) additive delay, to ensure that all honest nodes
received the blocks needed to confirm the transaction.

Chapter 3. Formalisation of distributed components 100

More precisely, Phantom implements a procedure Risk that gives a bound on the prob-
ability that safety will not hold for this transaction. The authors then show that the bound
returned is smaller than a given ε after O(log(1

ε
)) honest blocks are created. Hence, with

ε = O(e−λ) and since this procedure requires the upper bound ∆, we have that the number
of honest blocks required is poly∆(λ). The time taken for this to happen is obtained by
multiplying it by the rate of honest block production, which only depends on ∆11. Then
for all nodes to be aware of these blocks an additional ∆ overhead is added, resulting in
O(∆+poly∆(λ)) latency.

Communication complexity on the other hand is simpler. In fact, the same analysis
as the others blockchain style algorithms is applicable. Blocks all require a valid PoW
to be sent through the network, and the PoW creation rate is bounded according to the
corruption structure.

Claim. L(PHANTOM) = Θ(∆+poly∆(λ)) and CC(PHANTOM) = Θ(bn).

3.6.7 Algorand
Model Algorand [Mic17, GHM+17] uses a partially synchronous network, the Random
Oracle, forward secure signatures, and Verifiable Random Functions.

As expected in a partially synchronous network they assume that a proportion h > 2
3 of

the stake is owned by honest nodes. However since Algorand uses an election mechanism,
the probability of failure of the protocol increases as h goes to 2

3 .
Like with Ouroboros Praos, their usage of VRFs gives the possibility to tolerate dy-

namic adversaries. In fact, the Algorand protocol tolerates after-the-fact removal12, which
we could modelize by allowing the adversary to corrupt nodes right after they receive in-
put from a module (i.e. before the events returned by the transition function are included
in the execution).

11Indirectly, through the mining hardness.
12See Section 2.1.3.

Chapter 3. Formalisation of distributed components 101

Claim.

ALGORAND ∈ P[params,RO,weak_net,VRF, forward_signatures],

M(computational,C(W,1/3−ε(λ)),dynamic)
ALGORAND |=λ ABC

with W (p) := Sp(∑
q∈Π

Sq)
−1 and ε : N→ [0,

1
3
]

where Sp is node p’s stake, as defined by the protocol.

Metrics Like Ouroboros and Snow White [DPS16], Algorand relies on a public random-
ness computed in previous blocks. It is used to elect a committee (instead of a leader) at
each round that will have sufficiently many honest nodes, with overwhelming probability.
These committees run a consensus protocol which does not require private state from the
nodes (except from their private key), since committees would not be able to pass it on to
the next committee properly. This property is called player replaceability by the authors.
Except from this property, common techniques from BFT algorithms can be used to reach
agreement in a constant number of rounds. In particular, since it has been ensured that
committees have a constant fraction of honest nodes, standard quorum-based arguments
are still valid.

More precisely, at each round, each user has a fixed probability p to be part of the
committee. To bound the number of malicious nodes in a committee, the authors leverage
the fact that ∀t ′ < t, the probability of having at most t ′ malicious nodes in a uniformly
sampled committee of size k is 1−negl(k). Thus, the committees expected size is poly(λ).

As a result, each round that would be equivalent to a n2 all-to-all communication in a
traditional BFT algorithm is now a "committee-to-all", Θ(npoly(λ)) communication.

To optimize bandwidth, Algorand does some kind of leader election, though a block
proposing step. The average committee size for the block proposers is the smallest such
that there is at least one proposer with overwhelming probability, which is still poly(λ)
asymptotically.

Claim. L(ALGORAND) = Θ(δ) and CC(ALGORAND) = Θ(bnpoly(λ)).

Chapter 3. Formalisation of distributed components 102

Discussion
In Table 3.3 we summarize the above results as well as from Chapter 4. Concretely, For
each protocol P in Table 3.3, we have made the following claim.

P ∈ P[params,RO,M],M(computational,C(W,α),(E,i,p)7→>)
P |=λ ABC

where: W (p) := hp(∑q∈Π hq)
−1 if the protocol uses the PoW module, or, if the protocol has

a stake public parameter, W (p) is p’s relative stake. α is the contents of the "Adversary"
column, M is the contents of the "Modules" column. We also claimed that L(P) is equal
to the contents of the "Latency" column and that CC(P) is equal to the contents of the
"Communication Cost" column.

This table clearly outlines the relation between the protocol’s models and their perfor-
mance metrics. The major drawback of Bitcoin is visible in its latency: the dependence
on ∆ is arbitrary, and could very well be exponential for instance. The same concern also
applies to Phantom, and this is due to the fact that the confidence in a transaction depends
on the time it take for PoW string to be transmitted. Moreover, we must recall that ∆ must
hold for all messages, of any length; thus increasing block size has a theoretically unknown
impact the protocol latency. Theses considerations points towards the idea that PoW-based
protocols should analyse how their latency depends on ∆ to be correctly assessed. Inter-
estingly, we can see that all three synchronous protocols have their corruption threshold
dependent on ∆, and for the same reason for each of them: the "honest majority" assump-
tion is stated as an inequality that depends on ∆. As expected, the 1/2 corruption threshold
is synonymous with strong synchrony, and the PoW oracle is able to replace digital signa-
tures. The 1/x−ε is indicative of protocols making use of the election mechanism, which
also imply the presence of poly(λ) in either latency or communication cost. On the other
hand Tendermint and HoneyBadgerBFT doesn’t use the election mechanism and bear a
communication cost at least quadratic in n. StakeCube and Algorand seem very similar,
and indeed they share a common approach, their differences are found in more subtle de-
tails: Algorand tolerates a rushing adversary, while the constants in the communication
cost are lower for StakeCube.

Chapter 3. Formalisation of distributed components 103

Algorithm Adversary Modules Latency Communication Cost

Nakamoto [GKL20a] 1/2− ε(λ ,∆) sync_net∗, PoW poly∆(λ) Θ(bn)
Phantom [SZ18] 1/2− ε(λ ,∆) sync_net, PoW Θ(∆+poly∆(λ)) Θ(bn)
Ouroboros Praos [BGKR18] 1/2− ε(λ ,∆) sync_net∗, signatures†, VRF Θ(∆poly(λ)) Θ(bn)
Algorand [Mic17] 1/3− ε(λ) weak_net, signatures†, VRF Θ(δ) Θ(bnpoly(λ))
StakeCube [DAL19, DHMA20] 1/3− ε(λ) weak_net, signatures, VRF Θ(δ) Θ(bnpoly(λ))
Tendermint [Buc16] 1/3 weak_net, signatures Θ(δn), f.f. Θ(δ) Θ(bn+n2)
HoneyBadgerBFT [MXC+16] 1/3 async_net, signatures Θ(δ log(n)) Θ(bn+n3 log(n)poly(λ))

TABLE 3.3: Comparison Summary. The minus ε indicates that the frac-
tional threshold is lowered as a function of the security parameter and in
some cases of the network bound. f.f. is the value for failure free execu-
tions. ∗ : The respective papers claims partial synchrony, see Section 3.6.1
for clarification. † : The primitive required is forward-secure signatures,

which we do not have modelised.

104

Chapter 4

StakeCube: Leveraging sharding to
scale Proof-of-Stake protocols

This chapter is based on previous work [DAL19] and [DHMA20] that has been improved
and extended.

4.1 Introduction

FIGURE 4.1: StakeCube logo. Courtesy of Atos.

Permissionless blockchains aim at achieving the impressive result of being a persistent,
distributed, consistent and continuously growing log of transactions, publicly auditable
and writable by anyone. Despite the openness of the environment and thus the inescapable
presence of malicious behaviours, security and consistency of permissionless blockchains
do not demand the presence of a trusted third party.

Unfortunately, resilience of PoW-based solutions fundamentally relies on the massive
use of computational resources, which is a real issue today. Lot of investigations have

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 105

been devoted to finding a secure alternative to PoW, but most of them either rely on the
intensive use of a large quantity of physical resources (e.g., proof-of-space [ABFG14],
proof-of-space/time [MO16]) or make compromises in their trust assumptions (e.g. proof-
of-elapsed-time [Int19], delegated proof-of-stake [EOS19]). In contrast, solutions based
on proof-of-stake (PoS) seem to be a quite promising way to build secure and permis-
sionless blockchains. Indeed, proof-of-stake relies on a limited but abstract resource, the
crypto-currency, in such a way that each node weight in the protocol is proportional to the
fraction of currency it owns. It is an elegant alternative in the sense that all the information
needed to verify the legitimacy of a stakeholder to create a block (i.e., crypto-currency
possession) is already stored in the blockchain. Finally, by being a sustainable alterna-
tive (creating a block requires just a few number of operations), throughput scalability
concerns exhibited by PoW-based solutions should be a priori more tractable.

In this chapter we present a new blockchain protocol called StakeCube which aims
at improving scalability of the block-wise Byzantine agreement approach by combin-
ing sharding techniques, users presence and stake transfer to operate in a PoS setting.
The key idea of StakeCube is to organize nodes (i.e. stakeholders) into shards and within
each shard, to randomly choose a constant size committee in charge of executing the dis-
tributed algorithms that contribute to the creation of blocks. Each block at height h in
the blockchain is by design unique (no fork is possible), and once a block is accepted in
the blockchain, the next one is created by a sub-committee of shards whose selection is
random with a distribution that depends on the content of the last accepted block.

In a typical Proof-of-Stake fashion, StakeCube relies on a sufficiently high fraction
of stake being owned by honest nodes. The stake distributed is recorded and maintained
in the blockchain itself, allowing participating nodes to update it by making input to the
protocol, i.e. submitting transactions. We might expect that solely relying on stakehold-
ers (the owners of the coins of the crypto-currency system) to the secure construction of
the blockchain makes sense due to their incentive to be fully involved in the blockchain
governance, rather than delegating it to powerful miners.

StakeCube relies on an election mechanism as described in Chapter 1 to be efficient in
terms of communication cost. The mechanism in question is sharding. Sharding refers to
a distributed architecture design that partitions the processing load among disjoint shards,
such that the overall system can become scalable. The concept of sharding has been iden-
tified as a promising development path to help solve blockchain scalability issue, and we

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 106

demonstrate with StakeCube the practical viability of such approach.The sharding struc-
ture in StakeCube is provided by a distributed hash table, PeerCube [ALRB08]. PeerCube
is Byzantine fault tolerant and well suited to an environment with high churn rates, which
is typical in a permissionless context. Each node is assigned to a unique shard, and within
each shard a committee of nodes – the core set – will be tasked to realize the communica-
tion heavy tasks. In turn, to prevent the adversary from adaptively corrupting committees,
we guarantee that the shard assignment is unpredictable, and that the sojourn time of users
in their shard is limited. Doing so is an effective way to protect the system against eclipse
attacks [ASLT11, AS07].

Given this sharding structure, we let nodes issue requests to join the protocol to their
respective shards. Each shard locally updates its view to take into account the newcomers
and departures. Views are updated, signed and installed once, and this occurs right before
the creation of a new block. The creation of blocks is efficiently handled by an agreement
among a verifiable sub-committee of shards. Indeed, to fine tune the shard size, Stake-
Cube is able to tolerate a set number of corrupt shards, i.e. shards that contain too many
malicious nodes to be able to correctly execute the protocols they are tasked with. This
implies that the block creation procedure cannot be done by a single shard, but requires an
inter-shard agreement protocol.

On a high level, the inter-shard agreement protocol works similarly to a classical con-
sensus algorithm, except that it is tailored to work in a setting where a shard’s vote may
come from different nodes at each step. In a round-robin manner, it lets each participating
shard internally generate a new block to be proposed. If the block goes through the all the
voting steps, it will be the next block in the blockchain. The procedure for a single shard
to generate a block is based on vector consensus and Verifiable Random Functions, both
to make the block content (transactions) and to generate the common random value that
seeds the randomness required in subsequent executions.

The overall scalability and efficiency of StakeCube comes from the fact that the core
shards size is independent from the total number of nodes, and that shards only execute
protocols that require a constant number of communication rounds.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 107

4.1.1 Related work
Omniledger [KKJG+18] is the closest work to ours. It is a PoS-compatible, sharded,
distributed ledger, resilient against a weakly dynamic adversary that corrupts up to 1

4 of
participants. In contrast to our approach, Omniledger assumes a strongly synchronous set-
ting, and each shard maintains its own ledger and, global synchronization of transactions is
achieved through an atomic commit protocol tailored to their usage. Ouroboros [KRDO16],
representative of the leader-based approach, is a synchronous PoS protocol resilient against
a weakly dynamic adversary that owns 1/2− ε of stake. Moreover, Ouroboros has been
recently improved to work in the partially synchronous setting against a dynamic adver-
sary [BGKR18, BGK+18], while keeping the same design principles as the original one.
In Ouroboros, a unique leader is elected at each round to broadcast its block which con-
trasts with our sharded approach where the block creation process is distributed. Snow
White [DPS16] is a synchronous PoS protocol resilient against a weakly dynamic adver-
sary that owns 1/2 of the active stake. This protocol also relies on a leader election.
Algorand [Mic17] is a representative of the blockwise Byzantine agreement approach.
It provides a distributed ledger against an strongly adaptive adversary without assuming
strong synchrony assumptions. However, by its design, agreement for each block of the
blockchain is achieved by involving a very large number of stakeholders so that each one
needs to effectively participate only for one exchange of messages.

Other blockchain experimentations In Section 4.5.1 we describe the experiments we
made for StakeCube. On that matter, existing large scale blockchain experiments have also
been made for Algorand [Mic17], Elastico [LNZ+16] and the Red Belly Blockchain [CGLR17b].
Runchao Han et al. evaluated several blockchains specifically with IoT in mind [HSGX20],
namely Hyperledger Fabric v0.6 with PBFT, Fabric v1.0 with BFT-SMaRt, Ripple with
BFT Ripple consensus, Tendermint with hybrid PBFT and Casper, R3 Corda with BFT-
SMaRt. Their work showed that these algorithms do not scale well passed the tens of
devices. There are several works that evaluate Hyperledger Fabric [TNV18, NQTN18,
SWTR18] with up to 32 nodes. Some of these works make use of the Caliper [Fun]
tool, which also supports most of the Hyperledger projects as well as Ethereum. Block-
bench [DWC+17] is a framework supporting Ethereum, Parity and Fabrice, although it
focuses more on resources utilised by smart contracts rather than network usage.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 108

4.2 Model
On a high level, our solution is structured as a reduction to a few existing problems as
building blocks, which could technically serve as an (abstract) model by themselves. How-
ever this view in terms of reductions is mostly useful for pedagogical purposes. The full
StakeCube protocol includes specific implementations of these building blocks that all use
the same base model. Namely :

• Computational security.

• Byzantine faults, with the assumption that at any point in time the fraction of stake
owned by byzantine nodes is at most α .

• Weakly adaptive adversary. Specifically corruption must wait T blocks before being
effective, where T is a protocol parameter. Each block being produced in a constant
number of round, a weaker (but not as tight) requirement is to wait O(∆T) time.

• Any set of nodes owning a fraction of 1
3 − ε(λ) of the total stake can be corrupted.

• Probabilistic. This is due to the use of verifiable random functions.

• Partially synchronous network (including the loosely synchronized clocks).

• As setup, we assume an initial uniformly random value is known to all participants.
Otherwise, we require the initial knowledge of other nodes public keys, their stake,
and the protocol parameters. All this initial information forms the genesis block.

• Random oracle, digital signatures, Verifiable random functions.

Users own some minimal amount of stake (i.e. money), which gives them the right to
participate to StakeCube. We adopt (a simplified version of) what is commonly known
as the Bitcoin Unspent Transaction Output (UTXO) model. An UTXO can be roughly
seen as a user’s account credited by some stake. An UTXO is uniquely characterized
by a public key pki and its associated amount of stake si. Each public key is related to
the digital signature scheme, which allows stakeholders to use the public keys (or a hash
thereof) of their UTXOs as a reference to them, as demonstrated in the "Public Keys as
Identities principle" of Chaum [Cha88]. At any time, a user can own multiple UTXOs.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 109

UTXOs can be debited only once, and once debited, an UTXO does not exist anymore. To
simplify discussion, we make transactions outputs contain pki instead of its hash.

StakeCube is also able to accommodate dynamic participation. Since nodes are identi-
fied with a UTXO key, executing a transaction implies the removal of the node with a spent
UTXO, and the addition of the node with the newly created UTXO. As already mentioned,
our model from Chapter 4 does not support dynamic participation, thus we describe this
aspect in a more classical manner. In any case, StakeCube’s guarantees are given to the
honest nodes currently participating. The trust assumption requires 2

3 + ε(λ) stake to be
owned by honest participating nodes, at any point in time. In turn, the stake distribution
considered in this assumption is the one agreed on by all nodes, i.e., the result of apply-
ing all accepted transactions to the initial distribution. Similarly to the fact that the PKI
assumption is necessary to authenticate nodes, we must also assume that newly joining
nodes are able to correctly transmit their public key (or its hash) when the transaction is
submitted. For the same reason, they must also be able to obtain the public keys of the
other currently participating nodes.

StakeCube’s parameters

• The security parameter λ ∈N. We tolerate an adversary with polynomial runtime in
λ , and all StakeCube’s properties are guaranteed with probability 1−negl(λ).

• The epoch length T ∈ N, in blocks. In a nutshell, increasing this parameter makes
the protocol more efficient, but also weakens the tolerated adversary, due to the weak
adaptivity assumption.

• The maximum share of stake owned by malicious nodes α ∈ [0,1/2]

• The maximum number of corrupted shards Fshard ∈ N.

• The number of core members in a shard smin ∈ N.

• The maximum number of nodes in a shard smax ∈ N.

• The initial stake distribution S0 : Π→ N.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 110

Increasing either Fshard and smin reduces the adversary probability of defeating the
protocol, but increases the communication cost. In the security analysis Section 4.4, we
show that StakeCube is secure and scalable for any Fshard if smin = poly(λ) and smax =√

(n). However this analysis does not yield practical values for these parameters. In
the implementation, we run experiments to heuristically estimate safe values for these
parameters.

We assume the presence of Byzantine (i.e. malicious) users which controls up to α ≤
1/3− ε(λ) of the total amount of stake currently available in the system. Here, ε(λ)
quantifies the gain in the effective adversarial power, related to the security parameter.

We denote by H the hash function modelized from the random oracle. We assume that
all messages are signed by the sender. Signatures are solely used to authenticate nodes
messages, thus by only considering valid messages we never need to refer to the signature
scheme directly.

To setup the genesis block, any prior stake distribution can be used, with the only
constraint that two thirds of stake must be owned by honest nodes. Then, a common coin
tossing protocol modified to take into account the stake weights may be used to generate
the initial randomness.

Additionally, StakeCube uses two subprotocol: A vector consensus protocol and an
inter-shard agreement protocol, which is roughly similar to a verifiable weak consensus
protocol. The inter-shard protocol makes shards coordinate to verify and agree on a single
block despite the presence of corrupt shards. The vector consensus has two usages : first,
to let each shard agree on the set of newcomers to update the view, secondly, to let one
leader shard propose a set of transactions for the next block, which is required by our
inter-shard protocol.

4.2.1 StakeCube’s properties
Formally, StakeCube is a probabilistic Atomic Broadcast protocol with the message space
V being valid blocks. Its model and security of StakeCube are stated in claim 4.2.1 using
the framework from Chapter 3, although this statement doesn’t account for StakeCube’s
ability to have stake (and therefore participants) change during execution.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 111

Claim (StakeCube is secure).

StakeCube ∈ P[params,weak_net,RO,signatures,VRF],

M(computational,C(W,α),D)

StakeCube |=λ ABC

where W (p) := S0(p)(∑
q∈Π

S0(q))−1

D(E, i, p) := ∀q ∈ H, #{ j ∈ E−1(p,o,q,_) | j > i} ≥ T

Internally, it let any honest user i locally maintain a sequence of blocks Bi
0,B

i
1, . . . ,B

i
h,

where h represents the index (or the height) of the block in the sequence1. This sequence
of blocks represents i’s copy of the distributed ledger, extensions to the ledger are output
from the protocol, and input can be made by submitting transactions to be appended.

StakeCube has an inductive structure: we describe a protocol that builds the block
Bh+1, assuming that it was successful for the blocks up to Bh. The way to obtain the
ABC protocol from the block construction protocol is very similar to the reduction to
vector consensus (Lemma 15): nodes maintain an input pool from which they take the
content that will end up in the blocks. Even more similar to that reduction, the block
contents in StakeCube is, too, the union of the output of a vector consensus instance,
although it is executed among a very specific set of nodes. The straightforward input pool
implementation as described in the reduction would undermine our efficiency results, but
simple strategies can mitigate this issue, such as limiting broadcast to neighbouring shards.

In StakeCube, participation is voluntary: Any honest user can join a shard (determined
by the protocol), whenever she wishes, with the objective of eventually being involved in
the Byzantine resilient protocols executed in this shard. Participation is temporary: The
sojourn time of an honest user in a shard is defined by the time it takes for StakeCube to
create T blocks. Once she leaves, she can participate again by joining another shard, and
does so until she spends her UTXO. As users may own multiple UTXOs, they can simul-
taneously and verifiably sit in different shards. In the following, a user that issues a join
request with its current credential is called an active user. StakeCube satisfy Scalability

1This is similar to the Transaction Ledger formulation from Garay et al.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 112

and Efficiency properties. This is achieved due to the properties of the block creation pro-
cess. Adding a new block takes two Byzantine fault tolerant protocols to be run in parallel
within each shard, one network wide message diffusion by each shard, one inter-shard
Byzantine agreement, and finally one broadcast for the block (more details will be given
in Section 4.3.3).

Scalability

Theorem 8 (StakeCube is scalable). CC(StakeCube) = Θ(bnpoly(λ))

StakeCube relies on an election mechanism, where the communication heavy protocols
are executed by the shards members. For every block, the communication cost is computed
as follow: First, O(bn) bits are required to multicast the transactions to the transaction pool
of all nodes. Running the view update is Θ(s3

min) per shard, which is in total Θ(s3
min

n
smax

) =

Θ(
√

npoly(λ)). Diffusing views is an all-shards to all-shards communication between
core members, taking Θ(npoly(λ)) bits. Constructing the next block with the inter-shard
agreement requires Θ(bsmin + s3

min) for the block proposal and Θ(bsminFshard + s2
minF2

shard)
for voting and Θ(bn) for diffusing the full blocks, which totals to Θ(bpoly(λ)+bn) .

The communication cost of each individual node varies greatly depending on its cur-
rent role (e.g. core member, shard committee, etc), but because these roles are assigned
randomly, the amortized per-node communication cost is sublinear in n.

Efficiency

Theorem 9 (StakeCube is efficient). L(StakeCube) = Θ(∆)

All Byzantine fault tolerant protocols we rely on use a constant number of rounds.
Thus adding a new block also takes a constant number of rounds. Because a transaction,
once diffused, will be included in the next block and blocks are permanently attach to the
blockchain, it takes at most two blocks to include a newly received transaction.

4.2.2 The PeerCube sharding structure
A Distributed Hash Table (DHT) Distributed hash tables (DHTs) build their topology
according to structured graphs, and for most of them, the following principles hold: each

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 113

node of the system has an assigned identifier, and the identifier space, e.g., the set of 256-
bit strings, is partitioned among all the nodes of the system. Nodes self-organize within
the graph according to a distance function based on the identifier space.

Sharded DHT The notion of Sharded DHT is similar to a regular DHT, except that each
vertex of the DHT is a set of nodes instead of a single node. That is, nodes gather to-
gether into shards, and shards self-organize into a DHT graph topology. Sharded DHTs
can be made robust to adversarial strategies as achieved in SChord [FSY05], and Peer-
Cube [ALRB08], and robust to high churn as achieved in PeerCube [ALRB08] by running
Byzantine tolerant algorithms within each shard. For these reasons, we rely on PeerCube
architecture, while weakening its model by removing the assumption of a global trusted
party supplying verifiable random identifiers, and by removing the assumption of a static
adversary. For self-containment reasons, we now recall the main design features of Peer-
Cube. Briefly, this is a DHT that conforms to an hypercube. Each vertex (i.e. shard) of the
hypercube is dynamically formed by gathering nodes that are logically close to each other
according to a distance function applied on the identifier space.

Shards are built so that the respective common prefix of their members is never a prefix
of one-another. This guarantees that each shard has a unique common prefix, that in turn
serves as a shard’s label. The shard’s label characterizes the position of the shard in the
overall hypercubic topology, as in a regular DHT. Shards size is upper and lower bounded.
Whenever the size of shard S exceeds a given value smax, S splits into two shards such
that the label of each of these two new shards is prefixed by S label, and whenever the
size of S falls under a given value smin, S merges with another shard to give rise to a new
shard whose label is a prefix of S label. Each shard self-organizes into two sets, the core
set and the spare set. The core set is a fixed-size random subset of the whole shard. It is
responsible for running the Byzantine agreement protocols in order to guarantee that each
shard behaves as a single and correct entity (by for example forwarding all the join and
lookup requests to their destination) despite malicious participants [ALS12]. Members of
the spare set merely keep track of shard state. Joining the core set only happens when some
existing core member leaves, in which case the new member of the core set is randomly
chosen among the spare set. By doing this, nodes joining the system weakly impact the
topology of the hypercube [ALRB08].

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 114

To distribute communication load, inter-shard communication is defined to happen be-
tween the core sets, which are then responsible for forwarding the message to the spare
set. However, if the whole core is corrupted, then shards can now mount eclipse attacks
against to prevent any honest spare member from progressing indefinitely. To prevent this
situation, we require that there is at least one honest core member in each shard, includ-
ing corrupted ones. Because StakeCube’s security parametrization has two independent
parameters, i.e. smin and Fshard, we can always meet this requirement.

Efficient representation Because in our implementation the entire PeerCube structure
is replicated by all nodes, we made a few design choices. It is seen as a binary tree,
where a path in the tree represents a label and a leaf is a PeerCube identifier. Hence,
shard information is stored at the path addressed by its label, and nodes are stored at the
leaves addressed by their identifier. Additionally, each tree node also stores the number
of nodes belonging in the subtree. This allows us to efficiently batch update operations:
inserting/deleting a node with its identifier is logarithmic; updating shards after several
modifications only takes one iteration of the whole tree, with depth limited to the shards
nodes.

4.3 Design Principles of StakeCube
The key idea of StakeCube is to have an election mechanism not to elect a single com-
mittee but multiple ones in parallel, thus forming a shard system. The randomization of
shards members gives a statistical bound on the number of malicious participants sitting at
each shard, ensuring the correct execution of the agreement primitives within. More pre-
cisely, we compute bounds that may still cause some shards to have too many malicious
participants (they become corrupted shards), but the overall number of corrupted shards
is bounded by the parameter Fshard. This technique allows us to fix a small shard size while
keeping the ability to make security-efficiency trade-offs.

On a high level, the life cycle of a transaction tx is as follow. First, it gets added in
the transaction pool of the nodes. Then, after shards have updated their views, the core
members of the current leader shard execute a vector consensus protocol. One of the
members may propose tx, and if successful, the output vector will contain tx. From that

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 115

vector, a block proposal containing tx is locally computed and sent to the other shards that
are members of the shard committee. Following the inter-shard agreement protocol, this
block is voted by the shards, and if successful will gather enough votes to form a final
block with a certificate, after which it will be sent to the whole network. At that point the
block is delivered and tx is confirmed.

To be able to tolerate the presence of a Byzantine adversary, we must guarantee that
the adversary cannot predict the shards in which users will sit, and that the sojourn time of
users in their shard is limited. To achieve this, we introduce the notion of unpredictable and
perishable users’ credentials in Section 4.3.1. Then to cope with this induced churn, we
show how to update, sign and install the shards’ views in Section 4.3.2. This process occurs
right before the acceptation of a new block. Finally, as described in Section 4.3.3 the
creation of blocks is efficiently handled by an agreement among a verifiable sub-committee
of shards.

4.3.1 Unpredictable and Perishable Users’ Credentials
As described in Section 4.2.2, PeerCube critically relies on a (global) trusted party supply-
ing verifiable random identifiers to nodes. In this section, we detail how to construct those
in our decentralized setting, using the already known public keys and some randomness
present in each block. For each unspent public key, i.e. for each UTXO, owned by a user,
a sequence of unpredictable and perishable credentials are tightly assigned to her. Validity
of a credential spans T blocks, with T some positive integer. The credential σ assigned to
user i for her UTXO (pki,ski) is computed as follows. Let Bh0 be the block at height h0 of
the blockchain such that pki was created in Bh0 , i.e., it exists a transaction in Bh0 such that
pki appears in the output list of that transaction. For any blockchain height h ≥ h0 +T ,
such that UTXO (pki,ski) still exists when Bh is accepted in the blockchain,

σpki(h) := H(pki||Bh′.ρ), where h′ := h0 + b
h−h0

T
cT, (4.1)

with Bh′.ρ a random number included in Bh′ whose computation is detailed in Section 4.3.3.
Suppose that i’s UTXO (pki,ski) is created in block Bh. Then by Relation 4.1, i’s first cre-
dential for UTXO (pki,ski) is computed based on the content of block Bh+T and perishes
at block Bh+2T . Then, i’s second credential for (pki,ski) is computed based on the content

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 116

of block Bh+2T and perishes at block Bh+3T , and so on until i spends (pki,ski). User i’s
credential uniquely characterizes the shard to which user i is allowed to sit, and this shard
is the one whose label prefixes i’s current credential σpki(h). By the non-inclusion property
of PeerCube [ALRB08], there does not exist a shard whose label is the prefix of another
shard, and thus, there is a unique shard whose label prefixes credential σpki(h). When
her current credential expires, i leaves the shard she is in, and if she wants to continue to
participate to StakeCube, joins a new shard based on her new credential.

There are a couple of details that should be noted.

1. User i does not need to participate in StakeCube for the entire life of her UTXO
(pki,ski). She can join StakeCube (i.e. join a shard) at any time h under credential
σpki(h), however once a user joins her shard, she must stay online (and actively
participate if she is a core member) until σpki(h) expires. As a result, there does
not exist any explicit leave request. A leave simply consists in not issuing a join
request upon credential renewal. A consequence of this rule is that, in case user i
participates under credential σpki(h) and spends her UTXO (pki,ski) before σpki(h)
expires, then i continues to participate under σpki(h) until σpki(h) expires. Note that
because a transaction only grants credentials after a delay, this rule does not allow a
user to simultaneously own multiple credentials for the same stake. Note also that
if i is disconnected for a small amount of time this does not jeopardize the safety of
the shard, only its liveness.

2. Recall that the adversary has a bounded fraction α of stake in StakeCube. To de-
fend StakeCube against Sybil attacks (i.e., the fact that the adversary creates a con-
siderable number of UTXOs with the objective of overpopulating each shard with
malicious owners of those UTXOs), we require that each UTXO cannot be credited
with more than M stake, with M some predefined constant. Consequently, by the
fact that for any h > 0 one credential σ(h) represents exactly one UTXO, there is
a bound αcred > α on the fraction of malicious credentials in StakeCube, which is
reached when all malicious UTXOs have 1 stake and all honest ones maximize their
stake, i.e., each honest UTXO has M stake. Note that UTXOs with M′ stake, such
that M′ > M may be handled by granting them dM′/Me credentials, although we
do not treat this case explicitly. Section 4.4 analyzes the distribution of malicious
credentials among shards.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 117

Regarding the behaviour of the adversary, there are a couple of remarks to note.

1. At any time, the adversary might spend some selected UTXOs in order to create new
ones and thus new credentials with the objective of targeting some shards. However,
because of the initial T blocks delay required to obtain the first credential for an
UTXO (see Relation 4.1), any newly created UTXO will give rise to a credential
only after all existing credentials are renewed as well. Therefore, the adversary has
no preferred strategy regarding transactions and forced renewal.

2. Each block Bh contains a random seed, denoted by Bh.ρ , which cannot, by construc-
tion, be either biased or predictable before the block is created (how such seeds are
generated is detailed in Section 4.3.3). Thus by Relation 4.1, the adversary cannot
determine nor influence the value of renewed credentials. Consequently, for any
blockchain height h≥ 0 and for any pki, σpki(h+T) is unpredictable while for any
0≤ h′ ≤ h, the sequence (σpki(h

′+T))0≤h′≤h is computable and verifiable from the
blockchain.

4.3.2 Shard Membership
As described above, during the period of time that elapses between the creation of an
UTXO to its spending, the UTXO owner can participate to the blockchain construction
by successively joining a series of shards. In practice this may give rise to a voluminous
amount of join requests, which might be highly prejudicial to StakeCube’s scalability and
efficiency if each joining request led to the insertion of the newcomer in the core running
the distributed operations. Rather, by relying on PeerCube design (see Section 4.2.2), a
newcomer joins the spare set of the shard and not its core set. This newcomer will be a
candidate for being elected as a member of the core set whenever the core set will undergo
a membership modification. Management of the view composition, and election in the
core set is the subject of the remaining of this section.

View of a Shard The view of a shard S reflects the composition of both its core and
spare sets, denoted respectively by Sc and Ss. Update of the view is strongly correlated to
blockchain events: any block appended to the blockchain is preceded, in each shard, by
the update and the installation of the shard view. In the following, the view of shard S

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 118

installed right before block Bh is appended to the blockchain is denoted by viewS(h). We
have viewS(h) = (Sc(h),Ss(h)), where Sc(h) (resp. Ss(h)) represents the composition of
S’s core set (resp. spare set) at time h.

Update of the Shard View When a newcomer (i.e. a user under a valid credential) issues
a request to join her shard S, her request is propagated and broadcast to the members of
Sc. Core members i locally store the join request in their buffer bi of pending requests.
Note that expiration of credentials do not need to be locally memorized, prior to being
handled by the view update algorithm, since by Relation 4.1, credentials can only expire
when a new block is appended to the blockchain. Let viewS(h−1) be the current view of
S when a (honest) core member i ∈ Sc(h−1) receives some valid block Bh (Section 4.3.3
details the creation of blocks). The following three steps are successively executed:

1. A Byzantine vector agreement protocol is run among Sc(h−1) members to decide
on the set of newcomers: core members i propose their local buffer bi, and the
outcome of the protocol is a vector v(h) of newcomers such that non-null values
for honest core members i are equal to their buffer bi. Each honest core member i
replaces its local buffer bi with the union of the users of the decided vector. We have
bi = ∪b j∈v(h),b j 6=⊥b j.

2. Each user i ∈ Sc(h− 1) removes from bi the set rS(h) of users whose credential
expires with Bh. User i initializes a new spare set Ss(h) with Ss(h) = bi∪Ss(h−1)\
rS(h), and orders Ss(h).

3. Each user i∈Sc(h−1) initializes a new core set Sc(h) with Sc(h)= Sc(h−1)\rS(h).
If Sc(h−1)∩rS(h) 6= /0, some previous core members i∈ Sc(h−1) have credentials
that expire with Bh. As a consequence, an election among the users of Ss(h) is
carried out for i’s replacement, so as to keep |Sc(h)|= smin. The core election works
as follows:

(a) A pseudo-random number generator PRG(Bh.ρ) is initialized with the last
block random seed.

(b) PRG(Bh.ρ) is used to draw a random number j ∈ J1, |Ss(h)|K. The j-th member
of Ss(h) is removed from Ss(h) and added to Sc(h). This process is repeated
until |Sc(h)|= smin.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 119

Once these steps are completed, each core member j installs her new view view j
S(h)

with the new values of Sc(h) and Ss(h), signs it, and sends it to the spare members. Once
a spare receives αcoresmin +1 signatures on the same view, it installs it. In the meantime,
each core member j resets its buffer b j = /0. Note that multiple join requests may lead
a shard S to split into two shards, or, on the contrary, may lead two shards S ′ and S ′′
to merge within a single one S. The treatment of such topological changes are detailed
in [ASLT11].

To summarize, the shard membership procedure ensures that, for any shard S of Stake-
Cube, all members of S install the same view viewS(h) before appending block Bh to their
copy of the blockchain.

Diffusing Views Merely installing the new view for each shard is not sufficient. We
need the other shards of StakeCube to maintain this knowledge to be able to verify any
signed information exchanged during inter-shard communication (e.g. during the block
proposal procedure, see Section 4.3.3). Therefore, whenever a new view viewS(h) is in-
stalled along with its αcoresmin + 1 signatures, it is also broadcast to the whole network
as a notification of the view update. This broadcast operation can be made efficient by
relying on PeerCube’s structure, allowing shards to only relay the view to its neighboring
shards. Note that shards only store the last view viewS ′(h) of any other shard S ′ and not
the whole history of S ′ views. Moreover, a new view viewS ′(h+1), can be verified against
the last view viewS ′(h), so that corrupted shards can only lie on their core members and
omit newcomers.

4.3.3 Construction of the Next Block of the Blockchain
We propose a Byzantine resilient cross-shard mechanism to agree on a unique valid block,
despite the presence of at most Fshard corrupted shards (see Section 4.4 for Fshard computa-
tion). Indeed, the presence of an adaptive adversary may compromise the safety of some
shards by succeeding in having more than a proportion αcore of malicious users sitting in
their core set. Although the probability of such event can be made arbitrarily low (see the
analysis in Section 4.4), we must handle it. The presence of corrupted shards put us in the
same situation as in a consensus protocol: given the same initial chain, any shard is able
to create the next block, and the decision must be a unique block, despite malicious users

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 120

lying or not responding. As will be shortly described, agreeing on a unique valid block
is efficiently and robustly achieved by running a verifiable Byzantine agreement among a
subset of the shards of StakeCube randomly selected.

Reaching Consensus on the Next Block The process of creating a new block Bh starts
right after Bh−1 has been accepted. A committee of shards, denoted in the sequel by C,
is elected among the shards of StakeCube. The election of each of these shards relies
on the seed of the previous block Bh−1. Once elected, committee C executes a verifiable
Byzantine agreement to decide on the unique block Bh to be appended to the blockchain.
The main steps of this process are as follows:

1. All shards S compute the elected committee C, similarly to the core election proce-
dure (see Section 4.3.2), i.e.,

(a) Let L be the set of all the shards’ labels (recall from Section 4.3.2 that each
shard diffuses its new view viewS(h)). L is then ordered through a canonical
order.

(b) A pseudo-random number generator PRG(Bh−1.ρ) is initialized, where Bh−1.ρ
is the seed of the last block Bh−1.

(c) PRG(Bh−1.ρ) is used to draw a random number j ∈ J1, |L|K. The j-th member
of L is removed from L and added to C (initially initialized to /0). This process
is repeated until C contains sC shards, with sC = (Fshard/αcorrupted)+ 1. Re-
call that Fshard is the maximal number of corrupted shards in StakeCube (whose
computation is presented in Section 4.4), and αcorrupted is the fraction of mali-
cious nodes tolerated by the inter-shard agreement protocol (see Section 4.3.4).

2. Members of committee C run the inter-shard agreement protocol, with their pro-
posed block Bh as input (the construction of the proposed block is described in the
next paragraph). Finally the decision is a block Bh′ signed by 2Fshard +1 shards.

3. Block bh is broadcast by the committee to all nodes and appended to StakeCube
users’ copy of the blockchain.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 121

Security remark By definition of sC, committee C cannot be corrupted, independently
of the shards selected by the election. Committee C is still chosen randomly for two
reasons. First, it naturally spreads the load of creating a block across the whole network.
Second, it prevents corrupted shards from trying to manipulate the election process to get
in the committee and slow it down.

Efficiency remark We rely on a leader-based Byzantine Agreement algorithm to ben-
efit from its optimistic efficiency. Indeed, since Fshard can be made arbitrarily small (see
Section 4.4), and the members of committee C are randomly selected, we expect the first
leader to almost always be an honest shard.

Construction of the Proposed Block We finally describe how the current leader shard
S of C constructs its block Bh (see the above case 2). The construction results from an
agreement on the content of block Bh among the core members of S and on the generation
of the seed of Bh. Let viewS(h) = (Sc(h),Ss(h)) be the current view of shard S.

1. Each core member in Sc(h) proposes (i) its list of pending transactions and (ii) its
VRF value seeded with Bh−1.ρ together with the VRF proof, to the Byzantine vector
consensus protocol. The decision value is a vector of input values, such that non-
null values for honest core members are equal to their list of pending transactions
and their VRF value and VRF proof.

2. Construction of block Bh is then realized as follows.

• The hash of the previous block Bh−1 is inserted in Bh’s header.

• The union of transactions from the decided vector defines Bh’s body.

• The VRF from the first non-empty value from the decided vector defines the
seed Bh.ρ of Bh.

• The corresponding VRF proof is inserted in Bh’s header as a proof of random-
ness for seed Bh.ρ .

Note that the computation of random seed is not entirely unpredictable. Indeed the adver-
sary is able to choose which nodes include its VRF, thus giving it smin choices for the seed.
This weakening can be accounted for by increasing the security parameter accordingly.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 122

When a new block is created, it has to be efficiently broadcast to all nodes participating
to StakeCube, e.g. through a gossip protocol. For ease of implementation, we rely on a
simple diffusion protocol based on the sharding structure: Whenever a shard member
receives a block for the first time, the node forwards it to all its neighbour shards. Because
inter-shard communication is done through core-to-core broadcast, corrupt shards are not
an issue regarding this diffusion protocol.

4.3.4 Inter Shard agreement
In [DAL19], an algorithm from Chen & al [GHM+17] is suggested for the inter-shard
agreement. However, running an algorithm with shards instead of nodes as participants
required some adaptations, as well as some additional optimisation related to our setting.
In this section, we present an inter-shard agreement protocol that has been inspired from
the suggested algorithm. Critically, we conserve the property of "player-replaceability"
which lets different players vote at each step. This property specifically allows us to have
different players from the same shard act as one. More precisely, we will say that:

1. A shard S has sent a message m to the shard D whenever at least 2 f +1 core members
of S have sent m to all the core members of D.

2. A node p has received a message m from a shard S whenever it has received m from
at least 2 f +1 core members of D.

3. A shard D has received a message m from the shard S whenever at least 2 f +1 core
members of D have received m from the shard D.

According to these definitions, we can deduce that if shard S sent a message m to shard
D, then D will eventually receive m from D, and that eventual synchrony assumptions
also apply. That is, inter-shard communication shares the same properties and synchrony
assumptions than inter-node communication.

Note that if a honest shard sends a message to a corrupted shard, its honest members
will receive the message nonetheless, thus allowing them to continue receiving blocks until
the shard becomes honest again.

Moreover, the algorithm from Chen & al. is not entirely optimal for our setting. More
precisely, it achieves security against a rushing adversary. In our case, the adversary is

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 123

only weakly adaptive and has to wait T blocks before corrupting a node, i.e. more than the
duration of the agreement. This means that security against static adversaries is sufficient
for our inter-shard agreement. Because of the rushing adversary, the original algorithm
cannot rely on a known leader and has to determine leadership after block proposals are
sent. We can define a leader rotation determined from the initial common randomness
(i.e. the block seed), and all shards will wait for its proposal. Note that if no proposal is
received, the timers will eventually timeout and the next period will start.

The pseudo code for the inter-shard agreement is given in Algorithms 1 and 2. This
algorithm is presented in an event-driven style, where each "upon" block describes the
processing of a specific event. Note that this does not imply any kind of parallelism in
the treatment of events. In fact, in our implementation, message processing is exclusively
single-threaded to ensure that the node state stays consistent. Let H be the set of hashes
values, V :=H∪{⊥} the set of votes values, B the set of blocks and leader(period) the
identifier of the leader shards for the current period, determined in a round-robin man-
ner. The send primitive sends an inter-shard message to all shards, and gossip efficiently
diffuses an inter-node message to all shards core members.

Differences with the original algorithm Our algorithm ensures that a vote will always
be sent only for one value at each period. Because the leader is known in advance, we are
already expecting its proposition to soft vote.

Additionally, when the current period is reached after next voting a value, all other
honest nodes should also reach the same period with the same value. Hence we already
know that the leader is going to propose it and we can soft vote it in advance. Note that in
this case in the original algorithm, the soft voted value also ignores the leader proposal.

Because we can soft vote in advance or just wait for the leader proposal, the "voting"
step of the original algorithm becomes empty for us and can be removed. In this algo-
rithm, "value" refer to hashes of block. The block data itself is broadcast when its value is
proposed, and we allow soft votes to be sent without knowing the block data.

However the block data is required to be known to cert vote or output it, which ensure
than only valid blocks can be committed. This is an implementation of the "one step"
extension of the original algorithm.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 124

Algorithm 1: Inter-shard agreement Pt.1
local variables:
period ∈ N the current period, initially 0
prevNextVote ∈ V the value that made the node go to the current period, initially
⊥
knownBlocks⊂H×B the hashset of blocks received from gossip, initially (/0, /0)
timer an object that expires after some timeout duration.
procedure start_period()

start timer;
if prevNextVote 6=⊥∧ prevNextVote ∈ knownBlocks.KeySet() then

if leader(period) == sel f then
send (Propose, period, prevNextVote);
gossip (period,knownBlocks[prevNextVote]);

send (So f tVote, period, prevNextVote);
else if leader(period) == sel f then

newBlock← GenBlock();
send (Propose, period,H(newBlock));
gossip (period,newBlock);

end
upon receiving (Propose, period,v) from leader(period) do

if prevNextVote =⊥∨ prevNextVote /∈ knownBlocks.KeySet() then
send (So f tVote, period,v);

end
upon receiving (So f tVote, period,v) from 2Fshard +1 distinct senders do

if v ∈ knownBlocks.KeySet() then
if timer not expired then

send (CertVote, period,v);
else

send (NextVote, period,v);
end
upon receiving (CertVote, period,v) from 2Fshard +1 distinct senders do

wait until v ∈ knownBlocks.KeySet();
output knownBlocks[v];

end

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 125

Algorithm 2: Inter-shard agreement Pt.2
upon timer expires do

if (CertVote, period,v) has been sent then
send (NextVote, period,v);

else
send (NextVote, period, prevNextVote);

end
upon receiving (NextVote, p,v) from 2Fshard +1 distinct senders do

if p≥ period then
prevNextVote← v;
increase timer timeout;
period← p+1;
start_period();

end

4.4 Security Analysis
In this section we first prove the security of the intershard agreement protocol, by show-
ing safety and liveness property. Then we prove security of the sharding mechanism, by
showing how to compute StakeCube’s parameters to ensure that no shard can be corrupted.

4.4.1 Intershard agreement
Safety

Theorem 10 (Intershard agreement Safety). No two honest nodes ever decide on different
blocks.

Proof. First, we should note that honest nodes may send a CertVote or So f tVote only once
per period, and they may send up to two NextVote per period but with one of them being
v 6= ⊥. Furthermore, because a message needs to be sent by 2 f +1 nodes from the same
shard S to be sent by S , the previous remark also applies to shards instead of nodes.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 126

Assume two honest nodes n1 and n2 output blocks b1 and b2 at periods p1 and p2,
respectively. W.l.o.g., assume p1 ≤ p2.

First case, if p1 = p2 Safety is proven through a classical quorum argument: Among
the 2Fshard +1 CertVote received by n1 and n2, ar least Fshard +1 of them comes from the
same shards. Hence at least one of them is from the same honest shard that sent the same
block b = b1 = b2.

Other cases, if p1 < p2 First, note that because an honest node received 2Fshard + 1
CertVote for H(b1), there are at least Fshard + 1 honest shards that may only NextVote
once with value H(b1). Hence any value v 6= H(b1) may have at most 2Fshard NextVote
and only H(b1) may have 2Fshard +1 NextVote at period p1.

Therefore, for all honest nodes at period p1+1, prevNextVote=H(b1). For any honest
node n, if prevNextVote 6=⊥, then n may only So f tVote or NextVote their prevNextVote
value. Hence, only H(b1) may have 2Fshard +1 So f tVote, CertVote or NextVote at period
p1 +1.

Finally, we have that only b1 may be output at period p1 + 1, and that for all honest
nodes at period p1 +2, prevNextVote = H(b1). By induction on p′ > p1, only b1 may be
output on subsequent periods.

ut

Liveness

Theorem 11 (Intershard agreement Liveness). Eventually, any new block gets accepted

Proof. We have shown that once a value v 6=⊥ receives 2Fshard +1 NextVote at period p,
it will continue to do so for all periods p′ > p.

For a value v 6=⊥ to receive 2Fshard +1 NextVote at period p, it is sufficient that:

1. All honest nodes are at period p

2. leader(p) is honest

3. They all receive the leader proposal and each other’s So f tVote before their timer
expire.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 127

As a preliminary remark, we can see that for any period p′ 6= 0 reached by an honest
node, all honest nodes will eventually receive 2Fshard + 1 NextVote from period p′− 1.
Moreover, for every period p′ where no block is output, at least one honest node will reach
p′.

Assume that no block has been output yet. We can deduce that for the first item to
hold, it is sufficient that all honest nodes receive 2Fshard + 1 NextVote from period p− 1
before their timer expires. Hence, assuming that leader(p) is honest, if the honest nodes’
timer duration is greater that the time it takes for these messages to be received, the first
and third items will hold. Because the second item holds infinitely often, and due to the
eventual synchrony assumption, we can deduce that, eventually, all items will hold.

We now have that there is a period ps and a value v such that for all period p′ ≥ ps, all
honest nodes have prevNextVote = v. For a block to be output a period p′, it is sufficient
that :

1. All honest nodes are at period p′

2. They all receive each other’s So f tVote and CertVote before their timer expire.

Using the eventual synchrony assumption similarly to the previous paragraph, we can show
that these conditions will eventually hold, and that a honest node will output a block. ut

Verifiability If there are 2Fshard + 1 CertVote for the value v at the same period, then
only a block b s.t. H(b) = v may be output. Therefore the set of CertVote constitutes a
certificate for the block b which can convince any node of the protocol output.

This can be used to certify a block for an external party knowing the protocol partic-
ipants, but we also use it as a mean to guarantee totality: Once a node outputs a block b,
broadcasting its certificate will ensure that all honest nodes will eventually output b.

4.4.2 Security of the sharding mechanism
We analyze the probability that some of the shards of StakeCube are corrupted and show
that their core set contains more than αcoresmin malicious users, where αcore is the propor-
tion of tolerated byzantine nodes in the shards cores, i.e., αcore = 1/3 for our instantiation.
To conduct such an analysis, we examine a simplified scenario. We approximate the be-
haviour of StakeCube by taking the amortized execution over one epoch of T blocks. That

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 128

is, we study the corruption probability when all the shards are built and the cores are
elected over one period. This is equivalent to the scenario in which all credentials are syn-
chronously renewed at the same block. Note that, for a fixed number of active users, the
number of credential renewals, core election, and topological changes is statistically the
same for every period of length T . In this section, we prove the following.

Theorem 12 (Stakecube’s sharding is secure). In the scenario sketched above, for every
shard S in StakeCube, the proportion of corrupt nodes within its core set Sc is strictly less
than αcoresmin, except with probability negligible in λ .

Corruption Probability of a Core Set

First, let us analyse the probability of malicious nodes getting from the spare set to the
core set. Let s be the size of a shard S, αshard be a bound on the ratio of malicious users
within S. We assume that 0 ≤ αshard < αcore ≤ α . We compute an upper bound on the
probability that the fraction of malicious users in the core set is higher than αcore by the
end of the period. As described in Section 4.3.2, the core set is elected by randomly taking
smin credentials from shard S, without replacement. Let Y be the random variable equal
to the number of malicious credentials within the core, i.e., Y follows an hypergeometric
distribution whose probability measure is given by

∀k ∈ J0,sminK,P[Y = k] =
(
bsαshardc

k

)(
bs(1−αshard)c

smin− k

)(
s

smin

)−1

(4.2)

Applying the Hoeffding bound [Hoe94] on relation (4.2) leads to the following bound

P[Y/smin ≥ αcore]≤ e−2(αcore−αshard)
2smin

Thus, assuming that the fraction of malicious users in a shard is below αshard
2, we can

conclude that

λ ≥−2(αcore−αshard)
2smin⇒ P[Y/smin ≥ αcore] = negl(λ) (4.3)

Where the right-hand side of the implication is exactly the statement of 12 for one
shard S .

2This assumption is treated in the next subsection.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 129

Distribution of Malicious Credentials among all Shards

The above section assumes that the fraction of malicious users in all the shards is below
αshard. In this section we compute an upper bound on the probability that this assumption
does not hold for one of the shards. We make simplification assumptions on how the
shards are formed. First, we assume that there are K shards of size S, giving rise to i.e. n =
SK credentials in total. Second, we assume that the shards configuration in StakeCube
during the concerned period results from a random credential assignment to all the shards.
Recall that αcred is the overall ratio of malicious credentials. Let Xi be the random variable
representing the number of malicious credentials in the i-th shard, with 1 < i < K. And
finally, we note X=(X1, . . . ,Xk)∈{0,S}K be the vector made of these K random variables.
Random variable X represents the distribution of malicious credentials in StakeCube. It
follows a multivariate hypergeometric distribution, i.e., each of the n = SK credentials is
assigned to a shard. We analyse the shard assignment of a random sample of size nαcred.
Let I be the set of vectors representing StakeCube when nαcred credentials are malicious.
We have

I = {x ∈ [0,S]K |
K

∑
i=1

xi = nαcred}

�and

∀x ∈ I,P[X = x] =
(

n
nαcred

)−1 K

∏
i=1

(
S
xi

)
We are interested in computing the probability that a given shard j among the K ones

contains more than m malicious credentials, that is, let Im, j be defined as follows :

Im, j = {x ∈ I | x j ≥ m}

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 130

We have:

P[]X j ≥ m] = P[X ∈ Im, j]

= ∑
x∈Im, j

(
n

nαcred

)−1 K

∏
i=1

(
S
xi

)

=
S

∑
k=m

(
S
k

)(
n

nαcred

)−1

∑
x1,...,xK−1∈[0,S]

∑1≤i≤K−1 xi=nαcred−k

∏
1≤i≤K,i6= j

(
S
xi

)

Knowing that ∑1≤i≤K−1 xi = nαcred−k and ∑1≤i≤K−1 S = n−S, we can apply Vander-
monde’s identity:

∀ j,P[X ∈ Im, j] =
S

∑
k=m

(
n

nαcred

)−1(S
k

)(
n−S

nαcred− k

)
We now get our result by applying first the (univariate) Hoeffding bound, and then the
union bound.

∀ j,P[X ∈ ISαshard, j]≤ e−2(αshard−αcred)
2S

Thus the probability that at least one shard of the system contains more than αshardS mali-
cious credentials is bounded by

P[X ∈ ∪K
j=1ISαshard, j] ≤ Ke−2(αshard−αcred)

2S

Moreover, due to the union bound, this upper bound also holds if the shards have
different sizes and S is the minimum, hence, we can simply use S := smin. As for K,
the worst case is reached when there is a maximal number of shards, i.e. K := n/smin.
Therefore we can conclude that

λ ≥ 2(αshard−αcred)
2smin− ln

n
smin
⇒ P[X ∈ ∪K

j=1ISαshard, j] = negl(λ) (4.4)

Where the term ∪K
j=1ISαshard, j is the set of shards assignations to malicious credentials,

such that at least one shard has a fraction greater than or equal to αshard of malicious cre-
dentials. i.e., equation 4.4 bounds the probability that the assumption required for equation
4.3 does not hold.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 131

Putting it all Together

In the previous subsection we got exponentially decreasing bounds on the probability that
at least one shard is corrupted, i.e., proving security when the bound on the number of
malicious shards Fshard is set to 0. This obviously imply that StakeCube is still secure for
other values of Fshard.

The adversary has a fraction α of stake. Requiring each credential to be associated to
at most M stake gives us the following (worst case) ratio of malicious credentials, which
is reached when each malicious UTXOs has 1 stake and each honest one maximizes its
stake, i.e., has M stake. We then have:

αcred =
1

1+M−1(α−1−1)
(4.5)

Thus M should be as small as possible to decrease the adversary effective stake. How-
ever low values of M may require users to participate with a large number of credentials
in parallel, increasing the communication cost for individual users.

By combining equations 4.3, 4.4 and 4.5, we obtain the following inequalities that
imply theorem 12. Given λ , α and M, they can be solved to obtain αshard and smin.

αshard ≤
1

1+M−1(α−1−1)
+

√
λ − ln n

smin

2smin
and smin ≥

λ

2(αcore−αshard)2 (4.6)

4.5 Evaluation and Application
We implemented a prototype version of StakeCube to test its practical performance and
verify its behaviour within large-scale applications.

We experimentally measure communication cost as well as transaction confirmation
time and throughput under varying network size, security parameters and load. To the best
of our knowledge, StakeCube is the first blockchain reaching scalability levels well in the
thousands of nodes.

Finally, we demonstrate StakeCube’s viability with a large scale IoT application: an
energy marketplace [HKMS17a]. In this application energy producers and consumers

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 132

sell directly to each other through a blockchain. We implemented this application on
StakeCube, and executed it with a large number of nodes, with one Raspberry Pi Zero
among them. We measured its resources usage and found it to be largely within capacity.
All data related to the experiments available on Github3.

Modifications To make the implementation more tractable, we had to make a simplifi-
cation of StakeCube. Specifically, our prototype does not support the join operation. This
means that we assume that participating nodes can only leave or join the network by emit-
ting transactions that spend or give them stake, respectively. All honest users that own
stake are required to participate in the algorithm and cannot be offline.

As a result, the original shard update phase of StakeCube can be completely removed
and the computation of the shard membership can be carried out from the knowledge of
the last block. Although this simplification is indeed a major change in the algorithm,
we argue that it does not significantly affect the focus of this experiment, which is the
evaluation of performance as a function of the total number of users.

4.5.1 Experiments
The implementation contains approximately 10,000 lines of C++. It runs as a docker
image that can be scaled and run on multiple concurrent host machines. Each docker
container is allowed only one computing core. We run the experiments across five virtual
machines, each with 30GiB of RAM, 6 virtual CPU, and 30 GiB of storage. A trusted
setup phase consists for all the nodes in exchanging key material, shared randomness and
connection information. Once initialized, the core of the protocol is triggered and all the
nodes output their metrics until each node has locally a chain of blocks of a pre-determined
size.

Figure 4.2 gives an overview of the software architecture of StakeCube. We have two
applicative executables, one for the generic evaluation, and one for the energy marketplace.
The latter is configured with a "marketplace" smartcontract protocol.

Parametrization We introduce the notations f := αcoresmin and F := Fshard. In Stake-
Cube all nodes store the same instance of the sharding structure provided by PeerCube.

3https://github.com/Maschmalow/StakeCube_experiment_data

https://github.com/Maschmalow/StakeCube_experiment_data

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 133

FIGURE 4.2: StakeCube software architecture. The "Protocol" box is a
common state machine abstraction implemented by all protocols, where
messages are processed to update the state. The bootstrap protocol is re-
sponsible for the genesis initialisation (parameters, public keys, stake, net-
work addresses). The smartcontracts are in a static array of protocols used

for validating transactions.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 134

This structure represents the shard membership (core and spare) of the whole network.
Hence, we can use it to simulate the corruption in StakeCube. To do so, we generate
N credentials with αN of them marked as corrupted, compute the shard membership of
nodes and then count the number of corrupted shards. For a given α and f , this gives
us a simple approximation of the probability distribution of the number of corrupt shards.
That is, we can estimate the appropriate F to ensure correctness for varying α and f . Us-
ing this method we computed the following security parameters: f = 5,F = 5,α = 0.1
; f = 5,F = 10,α = 0.15 ; f = 7,F = 7,α = 0.15. The full dataset is available in the
repository.

Limitations Because the implementation is an early stage prototype, it underperforms
in several aspects. Most notably, the networking code had to be kept simple and naive.
For instance, each protocol message is sent in a dedicated TCP connexion, which creates
a large overhead. We also did not implement a mechanism for nodes to synchronize and
update their states when they communicate. For instance, this means that nodes will keep
exchanging outdated blocks even when it is not necessary.

In that respect, we expect that a fully optimised implementation to exhibit a large
performance gain, and our experimentation can only be a proof of viability. But despite
these issues, we were able to run experiments with up to five thousand nodes, and to keep
reasonable transaction output even above a thousand nodes.

Metrics For each block, we output the following metrics, aggregated over nodes:

1. The median of the block interval time.

2. The number of bytes sent.

For a given run, the values are averaged over blocks and plotted for varying parameters,
namely:

1. Number of nodes. This parameter is set as the ’x’ axis to allows us to verify Stake-
Cube’s scalability.

2. Block size. The experiments with a small number of transactions per block indicate
StakeCube minimal costs. The one with higher number of transaction has been

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 135

chosen to optimise transaction throughput, with the intention to be representative of
operations under maximum load.

3. Security parameters, as chosen in Section 4.5.1 above.

The error bars represent the standard deviation of the metric for the run. Lines in Fig-
ure 4.3 are linear regressions, with the coefficient of determination R2 in the legend. Note
that because the (maximum) number of transactions in a block is fixed, the transaction
throughput can be obtained from the block interval time.

0 1,000 2,000 3,000 4,000 5,000 6,000

0

0.2

0.4

0.6

0.8

1

1.2

·104

Number of nodes

To
ta

lM
iB

ex
ch

an
ge

d

f=5 F=5 R2=0.9942
f=7 F=7 R2=0.9803

f=5 F=10 R2=0.9915

FIGURE 4.3: Communication cost as a function of the number of nodes
when the number of transactions per block is 10.

In Figure 4.3 we show the number of bytes exchanged in the network, i.e. the com-
munication cost. We can see that the scalability property of StakeCube clearly holds, as

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 136

1,000 2,000 3,000 4,000 5,000

0

200

400

600

800

1,000

Number of nodes

B
lo

ck
tim

e
in

se
co

nd
s

f=5 F=5
f=7 F=7

f=5 F=10

FIGURE 4.4: Block time as a function of the number of nodes when the
number of transactions per block is 10

shown by the linear regressions with R2 ≥ 0.98. Thus we can conclude that StakeCube is
able to tackle the scalability issue of PoS blockchains.

Figure 4.4 shows the block interval time as a function of the number of nodes in the
system. Due to the high variance, we cannot conclude that we achieved a constant number
of communication rounds per block. Furthermore, even without variance, the block inter-
val time could increase with the number of nodes solely because the network is slowing
down. However the fact that experimental variations have much more influence than the
number of nodes is a piece of evidence that our algorithm performs correctly.

We observed during the experiments that the variations were mostly due to sporadic
communication failures between nodes, which happens when the network and the oper-
ating system become overloaded. Unfortunately, we were not capable to address the real
causes of such experimental variations.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 137

400 600 8001,0001,2001,4001,6001,8002,0002,2002,4002,600
0

200

400

600

800

1,000

1,200

1,400

Number of nodes

B
lo

ck
tim

e
in

se
co

nd
s

f=5 F=5
f=7 F=7

FIGURE 4.5: Block time as a function of the number of nodes when the
number of transactions per block is 2,000

In Figure 4.5 we show again the block interval time but with blocks containing 2,000
transactions of 128 bytes each. This Figure shows a transaction output between 1,100 and
300 bytes/s. We did not show the communication cost for 2,000 Tx/block because it is
very similar to a scaled version of Figure 4.3 and does not give any additional information.

4.5.2 Application
To demonstrate StakeCube’s viability in large-scale environment, we used it to implement
an IoT application. We ran an energy marketplace backed by StakeCube on a Raspberry
Pi Zero, and confirm that it is able to handle the load even over large networks. The en-
ergy marketplace is a blockchain-based answer for the demand of decentralized solutions

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 138

for the energy infrastructure [HKMS17a]. In this application, energy producers and con-
sumers such as households and electric vehicles are trading electricity on an local energy
marketplace. Because participants may be numerous and are typically running in a small
system-on-chip, we see this application as particularly fitting for StakeCube.

Indeed, we implemented an energy marketplace pseudo smart contract where each
node can sell and buy an electricity token and the orders are matched using a double
auction algorithm [BAD+18]. Although StakeCube does not support smart contracts yet,
we made the prototype modular enough to easily add any type of transaction with its
own validation function. As a result the code is similar to what would be in an actual
smart contract, the difference being that it is statically linked with the StakeCube program
instead of loaded through a transaction.

We ran this application in a network of 500 nodes including one Raspberry Pi Zero,
which has 512MiB of RAM and a 1GHz single-core CPU. During execution, we moni-
tored the usage metrics on the Raspberry using the command "vmstat −t 1"; we saw that
the StakeCube executable used at most 15MiB of RAM and that except for short spikes (at
most two seconds) when receiving blocks, the CPU was mostly idling. The full monitoring
trace is available in the repository.

As a further step, Atos assisted us in developing a user interface for this application.
A snippet of this interface is shown in Figure 4.6; it displays the list trade orders made on
the blockchain as well as how these orders were matched by the auction algorithm.

Chapter 4. StakeCube: Leveraging sharding to scale Proof-of-Stake protocols 139

FIGURE 4.6: Energy marketplace Dashboard. Top Tables are the lists of
Asks and Bids sent by the traders. Bottom table is the output of the auction

algorithm, i.e. matching bids and asks.

140

Chapter 5

Conclusion and Future work

This thesis was initially motivated by the need to understand and solve the issues that hinge
the use of blockchain protocols for IoT applications, but our contributions have become
much more foundational. At first, we first explored several technologies and undertook
to derive a framework to be able to compare them. This framework has been gradually
developed until becoming mature enough to tackle the issue of making a taxonomy of the
blockchain landscape. In the quest to benefit the most from the blockchain paradigm, we
have introduced StakeCube, a new protocol that focuses on the key property of blockchains
: scalability. In that sense, we finally answered to the initial motivation of this thesis, with
an application to IoT architectures.

As a first foundational step, we have reformulated in a common framework an im-
portant part of the existing models for the execution of distributed algorithms, while ac-
counting for the novelties introduced by Proof-of-Work algorithms such as Bitcoin. This
framework is a stepping stone towards a comprehensive and consistent formalisation of the
model space for Byzantine protocols. We have shown how to understand what is possible
and what is not in this generalized model, by re-stating impossibility proofs and prob-
lems reductions. Then, we have made a fair comparison of the model and performance
metrics of existing blockchain. Our second contribution is the design of StakeCube, a
new Proof-of-Stake blockchain that leverage sharding to scale with the number of nodes.
StakeCube is based on a Byzantine tolerant distributed hash table, PeerCube [ALRB08],
which is taken advantage of to distribute the communication load to multiple shards. We
have verified experimentally StakeCube’s scalability and its viability for large scale IoT
applications.

Chapter 5. Conclusion and Future work 141

5.1 Future Work

On the framework
Extensions There are two main aspects that must be captured by our formalism before
it could be considered sufficiently complete. First, the ability to modelize dynamic partic-
ipation and in fine. reconfiguration. This is a delicate operation because this means that
the set Π now changes with time and is in fact execution dependent. This brings circular
dependencies in our model and all the definitions that depends on one canonical set of
nodes must be rethought.

Secondly, the framework as we laid out in this thesis requires an omniscient adversary
which is fed all the input/output between the nodes and modules. Therefore our model
could be further generalized by letting modules hide some information from the adversary.

But more importantly, it would be greatly beneficial to replace the basic execution
model we gave in Section 3.1 with one of the existing state-of-the-art framework [Can01,
CCK+08a, Mau11]. Besides extending the supported models, this would also helps to-
wards the goal of having standardized, reusable, definitions for distributed components.

Exploring the BFT landscape There are a few questions that are prompted by the re-
ductions and impossibilities in Figure 3.2. Completing this picture with other existing
problems is a first, straightforward improvement. Taking it one step further, there is an in-
teresting question in finding new advantageous definitions, e.g. a weakened atomic broad-
cast unconditionally equivalent to external consensus.

Surprisingly, we observe that although we have many reductions between different
problems, there are few impossibility proof for reductions, i.e., the non-existence of re-
ductions. Consequently, it is an open question to re-draw our reduction graph from Figure
3.1 but with only strict relations.

The current picture suggests that weak, external and vector consensus are all solvable
exactly when reliable broadcast is, which would be quite surprising. To the extent of our
knowledge, there is no complete characterization of the solveability of these problems in
the BFT case.

Chapter 5. Conclusion and Future work 142

Formal verification Furthermore, we believe it would greatly benefit to the distributed
systems community to have our model formally verified using a proof assistant such as
Coq or Isabelle/HOL. Such formalisation would readily yield a software framework to
implement protocols along with their correctness proof. In fact, distributed systems and
blockchain protocols are known to be difficult to implement securely, and formal methods
have already been identified as an effective mean to tackle this issue.

On StakeCube
Extending the threat model We plan to extend the fault model to include rational play-
ers, wich would open the possibility for make StakeCueb incentive-compatible. We leave
to future work to prove StakeCube’s security with collision resistant hash functions instead
of the random oracle, as well as the investigation of the input pool mechanisms.

Stake-weighted election We plan to improve StakeCube by taking into account the stake
associated with each credential as weights into both the core election and the election of
the shard in charge of creating the next block. This would remove the adversary gain
in power due to UTXOs with different stake being counted the same, thus leading to an
important gain in security.

Sharding transactions It is also an open question to leverage StakeCube’s sharding
structure to improve on blocks storage and processing costs. One possible approach would
be to send blocks contents only to a few shard, and then to let the shard committee only
agree on which shard’s input constitute the final block.

Optimisation An interesting path to explore would be to optimize StakeCube in the case
where we set the parameter fshard to 0, which is to say that shards are sufficiently big so
that none get ever corrupted. This would remove the need for the inter shard agreement
and make each shard only need to know the existence of their neighbour. The previous
improvement on block storage and processing would be trivial, as each shard could be the
only responsible for their assigned transactions. In effect, this would result in what could
be described as a network of interconnected and independent systems. Although the shard

Chapter 5. Conclusion and Future work 143

size and total number of shards needed to make this construction worth the cost make this
question more of theoretical interest.

144

References

[AAC+05] Amitanand S. Aiyer, Lorenzo Alvisi, Allen Clement, Michael Dahlin,
Jean-Philippe Martin, and Carl Porth. BAR fault tolerance for cooperative
services. In Andrew Herbert and Kenneth P. Birman, editors, Proceedings
of the 20th ACM Symposium on Operating Systems Principles 2005, SOSP
2005, Brighton, UK, October 23-26, 2005, pages 45–58. ACM, 2005.

[ABB+18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Fer-
ris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessan-
dro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed
Cocco, and Jason Yellick. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018,
pages 30:1–30:15, 2018.

[ABFG14] Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi.
Proofs of space: When space is of the essence. In Security and Cryptogra-
phy for Networks - 9th International Conference, SCN 2014, Amalfi, Italy,
September 3-5, 2014. Proceedings, pages 538–557, 2014.

[Abr19] Ittai Abraham. The flp impossibility, asynchronous consensus lower bound
via uncommitted configurations, 2019. Online, accessed April 2021.

[AGMS20] Vittorio Astarita, Vincenzo Pasquale Giofrè, Giovanni Mirabelli, and Vit-
torio Solina. A review of blockchain-based systems in transportation. Inf.,
11(1):21, 2020.

BIBLIOGRAPHY 145

[AKGN18] Antonio Fernández Anta, Kishori M. Konwar, Chryssis Georgiou, and
Nicolas C. Nicolaou. Formalizing and implementing distributed ledger
objects. SIGACT News, 49(2):58–76, 2018.

[AL07] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries:
Efficient protocols for realistic adversaries. In Theory of Cryptography, 4th
Theory of Cryptography Conference, TCC 2007, Amsterdam, The Nether-
lands, February 21-24, 2007, Proceedings, pages 137–156, 2007.

[ALRB08] Emmanuelle Anceaume, Romaric Ludinard, Aina Ravoaja, and Francisco
Brasileiro. PeerCube: A Hypercube-Based P2P Overlay Robust against
Collusion and Churn. In IEEE International Conference on Self-Adaptive
and Self-Organizing Systems (SASO), 2008.

[ALS12] Emmanuelle Anceaume, Romaric Ludinard, and Bruno Sericola. Perfor-
mance evaluation of large-scale dynamic systems. ACM SIGMETRICS
Performance Evaluation Review, 39(4), 2012.

[AM17] Ittai Abraham and Dahlia Malkhi. The blockchain consensus layer and
BFT. Bulletin of the European Association for Theoretical Computer Sci-
ence, 123, 2017.

[Amo20] Yackolley Amoussou-Guenou. Governing the commons in blockchains.
(Gouvernance des biens communs dans les blockchains). PhD thesis, Sor-
bonne University, France, 2020.

[APB94] James H. Anderson, David Peleg, and Elizabeth Borowsky, editors. Pro-
ceedings of the Thirteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, Los Angeles, California, USA, August 14-17, 1994.
ACM, 1994.

[APL+19a] Emmanuelle Anceaume, Antonella Del Pozzo, Romaric Ludinard, Maria
Potop-Butucaru, and Sara Tucci Piergiovanni. Blockchain abstract data
type. In The 31st ACM on Symposium on Parallelism in Algorithms and
Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019, pages
349–358, 2019.

BIBLIOGRAPHY 146

[APPT18] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-
Butucaru, and Sara Tucci Piergiovanni. Correctness of tendermint-core
blockchains. In Cao et al. [CERF18], pages 16:1–16:16.

[APPT19] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-
Butucaru, and Sara Tucci Piergiovanni. Dissecting tendermint. In Atig
and Schwarzmann [AS19], pages 166–182.

[AS07] Baruch Awerbuch and Christian Scheideler. Towards scalable and robust
overlay networks. In 6th International workshop on Peer-To-Peer Systems,
IPTPS 2007, Bellevue, WA, USA, February 26-27, 2007, 2007.

[AS19] Mohamed Faouzi Atig and Alexander A. Schwarzmann, editors. Net-
worked Systems - 7th International Conference, NETYS 2019, Marrakech,
Morocco, June 19-21, 2019, Revised Selected Papers, volume 11704 of
Lecture Notes in Computer Science. Springer, 2019.

[ASLT11] Emmanuelle Anceaume, Bruno Sericola, Romaric Ludinard, and Frederic
Tronel. Modeling and evaluating targeted attacks in large scale dynamic
systems. In Proceedings of the 2011 IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2011, Hong Kong, China,
June 27-30 2011, pages 347–358, 2011.

[BAD+18] Kei-Leo Brousmiche, Andra Anoaica, Omar Dib, Tesnim Abdellatif, and
Gilles Deleuze. Blockchain energy market place evaluation: An agent-
based approach. In 2018 IEEE 9th Annual Information Technology, Elec-
tronics and Mobile Communication Conference (IEMCON), pages 321–
327, 2018.

[BBG+17] Aymen Boudguiga, Nabil Bouzerna, Louis Granboulan, Alexis Olivereau,
Flavien Quesnel, Anthony Roger, and Renaud Sirdey. Towards better avail-
ability and accountability for iot updates by means of a blockchain. In
2017 IEEE European Symposium on Security and Privacy Workshops, Eu-
roS&P Workshops 2017, Paris, France, April 26-28, 2017, pages 50–58.
IEEE, 2017.

BIBLIOGRAPHY 147

[BCG20] Elette Boyle, Ran Cohen, and Aarushi Goel. Breaking the o(
√

n)-bit bar-
rier: Byzantine agreement with polylog bits per-party. IACR Cryptol.
ePrint Arch., 2020:130, 2020.

[BDH+18] Kei-Léo Brousmiche, Antoine Durand, Thomas Heno, Christian Poulain,
Antoine Dalmieres, and Elyes Ben Hamida. Hybrid cryptographic protocol
for secure vehicle data sharing over a consortium blockchain. In IEEE In-
ternational Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physi-
cal and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
iThings/GreenCom/CPSCom/SmartData 2018, Halifax, NS, Canada, July
30 - August 3, 2018, pages 1281–1286, 2018.

[BGK+18] Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell,
and Vassilis Zikas. Ouroboros genesis: Composable proof-of-stake
blockchains with dynamic availability. In ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2018.

[BGKR18] D. Bernardo, Peter Gaži, Aggelos Kiayias, and Alexander Russell.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In International Conference on the Theory and Applications
of Cryptographic (EUROCRYPT), 2018.

[BGM+18] Christian Badertscher, Juan A. Garay, Ueli Maurer, Daniel Tschudi, and
Vassilis Zikas. But why does it work? A rational protocol design treatment
of bitcoin. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II,
pages 34–65, 2018.

[BHRT00] Roberto Baldoni, Jean-Michel Hélary, Michel Raynal, and Lénaick Tan-
guy. Consensus in byzantine asynchronous systems. In Michele Flammini,
Enrico Nardelli, Guido Proietti, and Paul G. Spirakis, editors, SIROCCO

BIBLIOGRAPHY 148

7, Proceedings of the 7th International Colloquium on Structural Infor-
mation and Communication Complexity, Laquila, Italy, June 20-22, 2000,
pages 1–15. Carleton Scientific, 2000.

[BKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure com-
putations with optimal resilience (extended abstract). In Anderson et al.
[APB94], pages 183–192.

[BPW07] Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reactive
simulatability (RSIM) framework for asynchronous systems. Inf. Comput.,
205(12):1685–1720, 2007.

[Buc16] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of
blockchains. 2016.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In Foundations of Computer Science, 2001. Proceed-
ings. 42nd IEEE Symposium on, pages 136–145. IEEE, 2001.

[Can04] Ran Canetti. Universally composable signature, certification, and authen-
tication. In 17th IEEE Computer Security Foundations Workshop, (CSFW-
17 2004), 28-30 June 2004, Pacific Grove, CA, USA, page 219. IEEE Com-
puter Society, 2004.

[CASD95] Flaviu Cristian, Houtan Aghili, H. Raymond Strong, and Danny Dolev.
Atomic broadcast: From simple message diffusion to byzantine agreement.
Inf. Comput., 118(1):158–179, 1995.

[CCK+08a] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses D. Liskov,
Nancy A. Lynch, Olivier Pereira, and Roberto Segala. Analyzing secu-
rity protocols using time-bounded task-pioas. Discret. Event Dyn. Syst.,
18(1):111–159, 2008.

[CCK+08b] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Nancy A. Lynch, and
Olivier Pereira. Modeling computational security in long-lived systems.

BIBLIOGRAPHY 149

In CONCUR 2008 - Concurrency Theory, 19th International Confer-
ence, CONCUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings,
pages 114–130, 2008.

[CDD+01] Ran Canetti, Ivan Damgård, Stefan Dziembowski, Yuval Ishai, and Tal
Malkin. On adaptive vs. non-adaptive security of multiparty protocols.
In Birgit Pfitzmann, editor, Advances in Cryptology - EUROCRYPT 2001,
International Conference on the Theory and Application of Cryptographic
Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding, volume 2045
of Lecture Notes in Computer Science, pages 262–279. Springer, 2001.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally
composable security with global setup. In Theory of Cryptography, 4th
Theory of Cryptography Conference, TCC 2007, Amsterdam, The Nether-
lands, February 21-24, 2007, Proceedings, pages 61–85, 2007.

[CEM+20] T.-H. Hubert Chan, Naomi Ephraim, Antonio Marcedone, Andrew Mor-
gan, Rafael Pass, and Elaine Shi. Blockchain with varying number of
players. IACR Cryptol. ePrint Arch., 2020:677, 2020.

[CERF18] Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Ferreira, edi-
tors. 22nd International Conference on Principles of Distributed Systems,
OPODIS 2018, December 17-19, 2018, Hong Kong, China, volume 125 of
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[CGK+20] Daniel Collins, Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov,
Matteo Monti, Matej Pavlovic, Yvonne-Anne Pignolet, Dragos-Adrian
Seredinschi, Andrei Tonkikh, and Athanasios Xygkis. Online payments by
merely broadcasting messages. In 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2020, Valencia,
Spain, June 29 - July 2, 2020, pages 26–38, 2020.

[CGLR17b] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal.
(leader/randomization/signature)-free byzantine consensus for consortium
blockchains. CoRR, abs/1702.03068, 2017.

BIBLIOGRAPHY 150

[CGLR18] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT:
efficient leaderless byzantine consensus and its application to blockchains.
In 17th IEEE International Symposium on Network Computing and Ap-
plications, NCA 2018, Cambridge, MA, USA, November 1-3, 2018, pages
1–8, 2018.

[Cha88] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1988.

[Cha93] Soma Chaudhuri. More choices allow more faults: Set consensus problems
in totally asynchronous systems. Inf. Comput., 105(1):132–158, 1993.

[CK19] Omar Cheikhrouhou and Anis Koubâa. Blockloc: Secure localization in
the internet of things using blockchain. In 15th International Wireless
Communications & Mobile Computing Conference, IWCMC 2019, Tang-
ier, Morocco, June 24-28, 2019, pages 629–634. IEEE, 2019.

[CKPS01] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Se-
cure and efficient asynchronous broadcast protocols. In Kilian [Kil01],
pages 524–541.

[CL02] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and
proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461, November
2002.

[CNV06] Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. From consen-
sus to atomic broadcast: Time-free Byzantine-resistant protocols without
signatures. The Computer Journal, 49(1), 2006.

[CS09] Bernadette Charron-Bost and André Schiper. The heard-of model: com-
puting in distributed systems with benign faults. Distributed Comput.,
22(1):49–71, 2009.

[CV17] Christian Cachin and Marko Vukolic. Blockchain consensus protocols in
the wild (keynote talk). In Richa [Ric17], pages 1:1–1:16.

BIBLIOGRAPHY 151

[CVL10] Miguel Correia, Giuliana Santos Veronese, and Lau Cheuk Lung. Asyn-
chronous byzantine consensus with 2f+1 processes. In Sung Y. Shin,
Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-
Cheng Hung, editors, Proceedings of the 2010 ACM Symposium on Ap-
plied Computing (SAC), Sierre, Switzerland, March 22-26, 2010, pages
475–480. ACM, 2010.

[CVNV11] Miguel Correia, Giuliana Santos Veronese, Nuno Ferreira Neves, and
Paulo Veríssimo. Byzantine consensus in asynchronous message-passing
systems: a survey. Int. J. Crit. Comput. Based Syst., 2(2):141–161, 2011.

[DAL19] Antoine Durand, Emmanuelle Anceaume, and Romaric Ludinard. Stake-
cube: Combining sharding and proof-of-stake to build fork-free secure
permissionless distributed ledgers. In Mohamed Faouzi Atig and Alexan-
der A. Schwarzmann, editors, Networked Systems - 7th International Con-
ference, NETYS 2019, Marrakech, Morocco, June 19-21, 2019, Revised Se-
lected Papers, volume 11704 of Lecture Notes in Computer Science, pages
148–165. Springer, 2019.

[DBD+18] Omar Dib, Kei-Leo Brousmiche, Antoine Durand, Eric Thea, and Elyes
Ben Hamida. Consortium blockchains: Overview, applications and chal-
lenges. volume 11, 2018.

[DBL11] 25th IEEE International Symposium on Parallel and Distributed Process-
ing, IPDPS 2011, Anchorage, Alaska, USA, 16-20 May, 2011 - Conference
Proceedings. IEEE, 2011.

[DBL17] Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017. ACM, 2017.

[DBL19] 26th Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019. The Internet
Society, 2019.

BIBLIOGRAPHY 152

[DHLM19] Antoine Durand, Elyes Ben Hamida, David Leporini, and Gérard Memmi.
Asymptotic performance analysis of blockchain protocols. CoRR,
abs/1902.04363, 2019.

[DHMA20] Antoine Durand, Guillaume Hébert, Gérard Memmi, and Emmanuelle An-
ceaume. The stakecube blockchain : Instantiation, evaluation & applica-
tions. In 2020 Second International Conference on Blockchain Computing
and Applications (BCCA), pages 9–15, 2020.

[DLP+86] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and
William E. Weihl. Reaching approximate agreement in the presence of
faults. J. ACM, 33(3):499–516, 1986.

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in
the presence of partial synchrony. J. ACM, 35(2):288–323, 1988.

[Dou02] John R. Douceur. The sybil attack. In Peter Druschel, M. Frans Kaashoek,
and Antony I. T. Rowstron, editors, Peer-to-Peer Systems, First Interna-
tional Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002,
Revised Papers, volume 2429 of Lecture Notes in Computer Science, pages
251–260. Springer, 2002.

[DP18] Paul Dunphy and Fabien A. P. Petitcolas. A first look at identity manage-
ment schemes on the blockchain. IEEE Secur. Priv., 16(4):20–29, 2018.

[DPS16] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Provably se-
cure proofs of stake. Cryptology ePrint Archive, Report 2016/919, 2016.
https://eprint.iacr.org/2016/919.

[DR82] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for
byzantine agreement. In Probert et al. [PFS82], pages 132–140.

[DS98] Assia Doudou and André Schiper. Muteness detectors for consensus with
byzantine processes. In Brian A. Coan and Yehuda Afek, editors, Pro-
ceedings of the Seventeenth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC ’98, Puerto Vallarta, Mexico, June 28 - July 2,
1998, page 315. ACM, 1998.

https://eprint.iacr.org/2016/919

BIBLIOGRAPHY 153

[DSU04a] Xavier Défago, André Schiper, and Péter Urbán. Total order broadcast
and multicast algorithms: Taxonomy and survey. ACM Comput. Surv.,
36(4):372–421, 2004.

[DWC+17] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi,
and Kian-Lee Tan. Blockbench: A framework for analyzing private
blockchains. In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 1085–1100. ACM, 2017.

[DY83] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key
protocols. IEEE Trans. Inf. Theory, 29(2):198–207, 1983.

[EOS19] EOS.IO. Technical white paper v2, 2019. Accessed: 2019-03-10.

[FBGB18] Ben Fisch, Joseph Bonneau, Nicola Greco, and Juan Benet. Scaling proof-
of-replication for filecoin mining. Benet//Technical report, Stanford Uni-
versity, 2018.

[FG03] Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for
strong and differential consensus. In Elizabeth Borowsky and Sergio Ra-
jsbaum, editors, Proceedings of the Twenty-Second ACM Symposium on
Principles of Distributed Computing, PODC 2003, Boston, Massachusetts,
USA, July 13-16, 2003, pages 211–220. ACM, 2003.

[FGK11] Felix C. Freiling, Rachid Guerraoui, and Petr Kuznetsov. The failure de-
tector abstraction. ACM Comput. Surv., 43(2):9:1–9:40, 2011.

[FHM99] Matthias Fitzi, Martin Hirt, and Ueli M. Maurer. General adversaries in
unconditional multi-party computation. In Kwok-Yan Lam, Eiji Okamoto,
and Chaoping Xing, editors, Advances in Cryptology - ASIACRYPT ’99,
International Conference on the Theory and Applications of Cryptology
and Information Security, Singapore, November 14-18, 1999, Proceed-
ings, volume 1716 of Lecture Notes in Computer Science, pages 232–246.
Springer, 1999.

BIBLIOGRAPHY 154

[Fis83] Michael J. Fischer. The consensus problem in unreliable distributed sys-
tems (A brief survey). In Marek Karpinski, editor, Fundamentals of Com-
putation Theory, Proceedings of the 1983 International FCT-Conference,
Borgholm, Sweden, August 21-27, 1983, volume 158 of Lecture Notes in
Computer Science, pages 127–140. Springer, 1983.

[Fit03] Matthias Fitzi. Generalized communication and security models in Byzan-
tine agreement. PhD thesis, ETH Zurich, Zürich, Switzerland, 2003.

[FLM85] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossi-
bility proofs for distributed consensus problems. In Malcolm and Strong
[MS85], pages 59–70.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM, 32(2):374–382,
1985.

[FR03] Faith E. Fich and Eric Ruppert. Hundreds of impossibility results for dis-
tributed computing. Distributed Comput., 16(2-3):121–163, 2003.

[FSY05] Amos Fiat, Jared Saia, and Maxwell Young. Making chord robust to byzan-
tine attacks. In Algorithms - ESA 2005, 13th Annual European Symposium,
Palma de Mallorca, Spain, October 3-6, 2005, Proceedings, pages 803–
814, 2005.

[Fun] The Linux Fundation. Hyperledger caliper. accessed February 2010.

[FWW04] Matthias Fitzi, Stefan Wolf, and Jürg Wullschleger. Pseudo-signatures,
broadcast, and multi-party computation from correlated randomness. In
Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryp-
tologyConference, Santa Barbara, California, USA, August 15-19, 2004,
Proceedings, pages 562–578, 2004.

[GB11a] Vijay K. Garg and John Bridgman. The weighted byzantine agreement
problem. In 25th IEEE International Symposium on Parallel and Dis-
tributed Processing, IPDPS 2011, Anchorage, Alaska, USA, 16-20 May,
2011 - Conference Proceedings [DBL11], pages 524–531.

BIBLIOGRAPHY 155

[GB11b] Vijay K. Garg and John Bridgman. The weighted byzantine agreement
problem. In 25th IEEE International Symposium on Parallel and Dis-
tributed Processing, IPDPS 2011, Anchorage, Alaska, USA, 16-20 May,
2011 - Conference Proceedings [DBL11], pages 524–531.

[GHM+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies.
In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP), Shanghai, China, October 28-31, 2017 [DBL17], pages 51–68.

[GK20] Juan A. Garay and Aggelos Kiayias. Sok: A consensus taxonomy in the
blockchain era. In Stanislaw Jarecki, editor, Topics in Cryptology - CT-
RSA 2020 - The Cryptographers’ Track at the RSA Conference 2020, San
Francisco, CA, USA, February 24-28, 2020, Proceedings, volume 12006
of Lecture Notes in Computer Science, pages 284–318. Springer, 2020.

[GKKO07] Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky.
Round complexity of authenticated broadcast with a dishonest majority.
In 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings,
pages 658–668. IEEE Computer Society, 2007.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin back-
bone protocol: Analysis and applications. In Oswald and Fischlin [OF15],
pages 281–310. Original version.

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin back-
bone protocol with chains of variable difficulty. In Jonathan Katz and Ho-
vav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 20-24, 2017, Proceedings, Part I, volume 10401 of Lecture Notes in
Computer Science, pages 291–323. Springer, 2017.

[GKL20a] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin back-
bone protocol: Analysis and applications. IACR Cryptol. ePrint Arch.,
2014:765, 2020. Updated version.

BIBLIOGRAPHY 156

[GKL20b] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. Full analysis of
nakamoto consensus in bounded-delay networks. IACR Cryptol. ePrint
Arch., 2020:277, 2020.

[GKM+19] Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, and
Dragos-Adrian Seredinschi. The consensus number of a cryptocurrency.
In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019,
pages 307–316, 2019.

[GKP20] Juan A. Garay, Aggelos Kiayias, and Giorgos Panagiotakos. Consensus
from signatures of work. In Stanislaw Jarecki, editor, Topics in Cryptology
- CT-RSA 2020 - The Cryptographers’ Track at the RSA Conference 2020,
San Francisco, CA, USA, February 24-28, 2020, Proceedings, volume
12006 of Lecture Notes in Computer Science, pages 319–344. Springer,
2020.

[Gol97] Oded Goldreich. On the foundations of modern cryptography. In Advances
in Cryptology - CRYPTO ’97, 17th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 17-21, 1997, Proceed-
ings, pages 46–74, 1997.

[GPS18] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi.
Blockchain protocols: The adversary is in the details. In Symposium on
Foundations and Applications of Blockchain, page 24, 2018.

[GPS19] Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of
partition tolerance. In Advances in Cryptology - CRYPTO 2019 - 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part I, pages 499–529, 2019.

[GR06] Rachid Guerraoui and Luís E. T. Rodrigues. Introduction to reliable dis-
tributed programming. Springer, 2006.

[Gra20] Vincent Gramoli. From blockchain consensus back to byzantine consen-
sus. Future Gener. Comput. Syst., 107:760–769, 2020.

BIBLIOGRAPHY 157

[GS18] Vincent Gramoli and Mark Staples. Blockchain standard: Can we reach
consensus? IEEE Commun. Stand. Mag., 2(3):16–21, 2018.

[HD14] Magnús M. Halldórsson and Shlomi Dolev, editors. ACM Symposium on
Principles of Distributed Computing, PODC ’14, Paris, France, July 15-
18, 2014. ACM, 2014.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang.
Syst., 13(1):124–149, 1991.

[HH93] Vassos Hadzilacos and Joseph Y. Halpern. Message-optimal protocols for
byzantine agreement. Math. Syst. Theory, 26(1):41–102, 1993.

[HKL20] Martin Hirt, Ard Kastrati, and Chen-Da Liu-Zhang. Multi-threshold asyn-
chronous reliable broadcast and consensus. In 24th International Confer-
ence on Principles of Distributed Systems, OPODIS 2020, December 14-
16, 2020, Strasbourg, France (Virtual Conference), pages 6:1–6:16, 2020.

[HKMS17a] José Horta, Daniel Kofman, David Menga, and Alonso Silva. Novel mar-
ket approach for locally balancing renewable energy production and flexi-
ble demand. In 2017 IEEE International Conference on Smart Grid Com-
munications, SmartGridComm 2017, Dresden, Germany, October 23-27,
2017, pages 533–539, 2017.

[HM97] Martin Hirt and Ueli M. Maurer. Complete characterization of adver-
saries tolerable in secure multi-party computation (extended abstract). In
James E. Burns and Hagit Attiya, editors, Proceedings of the Sixteenth
Annual ACM Symposium on Principles of Distributed Computing, Santa
Barbara, California, USA, August 21-24, 1997, pages 25–34. ACM, 1997.

[Hoe94] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. In The Collected Works of Wassily Hoeffding. 1994.

[HSGX20] Runchao Han, Gary Shapiro, Vincent Gramoli, and Xiwei Xu. On the
performance of distributed ledgers for internet of things. Internet Things,
10:100087, 2020.

BIBLIOGRAPHY 158

[IML05] Sergei Izmalkov, Silvio Micali, and Matt Lepinski. Rational secure com-
putation and ideal mechanism design. In 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2005), 23-25 October 2005,
Pittsburgh, PA, USA, Proceedings, pages 585–595, 2005.

[Int19] Intel. Hyperledger Sawtooth description, 2019. Accessed: 2019-03-10.

[JS19] Joe Abou Jaoude and Raafat George Saadé. Blockchain applications -
usage in different domains. IEEE Access, 7:45360–45381, 2019.

[KAD+07] Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and
Edmund L. Wong. Zyzzyva: speculative byzantine fault tolerance. In
Proceedings of the 21st ACM Symposium on Operating Systems Princi-
ples 2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007,
pages 45–58, 2007.

[Kil01] Joe Kilian, editor. Advances in Cryptology - CRYPTO 2001, 21st Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Com-
puter Science. Springer, 2001.

[KK20] Dimitris Karakostas and Aggelos Kiayias. Securing proof-of-work ledgers
via checkpointing. IACR Cryptol. ePrint Arch., 2020:173, 2020.

[KKJG+18] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out, decen-
tralized ledger via sharding. In IEEE Symposium on Security and Privacy
(SSP), 2018.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. CRC Press, 2014.

[KRDO16] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain pro-
tocol. Cryptology ePrint Archive, Report 2016/889, 2016. https:
//eprint.iacr.org/2016/889.

https://eprint.iacr.org/2016/889
https://eprint.iacr.org/2016/889

BIBLIOGRAPHY 159

[KT20] Petr Kuznetsov and Andrei Tonkikh. Asynchronous reconfiguration with
byzantine failures. In 34th International Symposium on Distributed Com-
puting, DISC 2020, October 12-16, 2020, Virtual Conference, pages 27:1–
27:17, 2020.

[KTR20] Ralf Küsters, Max Tuengerthal, and Daniel Rausch. The IITM model:
A simple and expressive model for universal composability. J. Cryptol.,
33(4):1461–1584, 2020.

[Kwo14] Jae Kwon. Tendermint: Consensus without mining. 2014.

[KZGJ20] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-
fairness for byzantine consensus. In Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, pages
451–480, 2020.

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust
multi-party computation using a global transaction ledger. In Advances in
Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Aus-
tria, May 8-12, 2016, Proceedings, Part II, pages 705–734, 2016.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[LAQ20] Giuseppe Antonio Di Luna, Emmanuelle Anceaume, and Leonardo Quer-
zoni. Byzantine generalized lattice agreement. In 2020 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), New Orleans,
LA, USA, May 18-22, 2020, pages 674–683. IEEE, 2020.

[LH19] Ming Li and George Q. Huang. Blockchain-enabled workflow manage-
ment system for fine-grained resource sharing in e-commerce logistics. In
15th IEEE International Conference on Automation Science and Engineer-
ing, CASE 2019, Vancouver, BC, Canada, August 22-26, 2019, pages 751–
755. IEEE, 2019.

BIBLIOGRAPHY 160

[LHSW20] Hemi Leibowitz, Amir Herzberg, Ewa Syta, and Sara Wrótniak. The
modular specifications security framework. IACR Cryptol. ePrint Arch.,
2020:1040, 2020.

[LM20] Chen-Da Liu-Zhang and Ueli Maurer. Synchronous constructive cryptog-
raphy. In Theory of Cryptography - 18th International Conference, TCC
2020, Durham, NC, USA, November 16-19, 2020, Proceedings, Part II,
pages 439–472, 2020.

[LNZ+16] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth
Gilbert, and Prateek Saxena. A secure sharding protocol for open
blockchains. In ACM SIGSAC Conference on Computer and Communi-
cations Security, 2016.

[LSGZ19] Derek Leung, Adam Suhl, Yossi Gilad, and Nickolai Zeldovich. Vault:
Fast bootstrapping for the algorand cryptocurrency. In 26th Annual Net-
work and Distributed System Security Symposium, NDSS 2019, San Diego,
California, USA, February 24-27, 2019 [DBL19].

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine gener-
als problem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(3):382–401, 1982.

[LVC+16] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko
Vukolic. XFT: practical fault tolerance beyond crashes. In Kimberly Kee-
ton and Timothy Roscoe, editors, 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016, pages 485–500. USENIX Association, 2016.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[Mau11] Ueli Maurer. Constructive cryptography - A new paradigm for security def-
initions and proofs. In Theory of Security and Applications - Joint Work-
shop, TOSCA 2011, Saarbrücken, Germany, March 31 - April 1, 2011,
Revised Selected Papers, pages 33–56, 2011.

BIBLIOGRAPHY 161

[MHR14] Achour Mostéfaoui, Moumen Hamouma, and Michel Raynal. Signature-
free asynchronous byzantine consensus with t 2<n/3 and o(n2) messages.
In Halldórsson and Dolev [HD14], pages 2–9.

[MHS11] Zarko Milosevic, Martin Hutle, and André Schiper. On the reduction of
atomic broadcast to consensus with byzantine faults. In 30th IEEE Sympo-
sium on Reliable Distributed Systems (SRDS 2011), Madrid, Spain, Octo-
ber 4-7, 2011, pages 235–244, 2011.

[Mic17] Silvio Micali. ALGORAND. CoRR, abs/1607.01341, 2017.

[MO16] Tal Moran and Ilan Orlov. Proofs of space-time and rational proofs of
storage. In Cryptology ePrint Archive, Report 2016/035, 2016.

[MR97] Dahlia Malkhi and Michael K. Reiter. Unreliable intrusion detection in
distributed computations. In 10th Computer Security Foundations Work-
shop (CSFW ’97), June 10-12, 1997, Rockport, Massachusetts, USA, pages
116–125. IEEE Computer Society, 1997.

[MR98] Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems. Dis-
tributed Comput., 11(4):203–213, 1998.

[MS85] Michael A. Malcolm and H. Raymond Strong, editors. Proceedings of the
Fourth Annual ACM Symposium on Principles of Distributed Computing,
Minaki, Ontario, Canada, August 5-7, 1985. ACM, 1985.

[MXC+16] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The
honey badger of BFT protocols. In Weippl et al. [WKK+16], pages 31–42.

[Nak08a] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf, 2008.

[NC17] Arvind Narayanan and Jeremy Clark. Bitcoin’s academic pedigree. Com-
mun. ACM, 60(12):36–45, 2017.

[Nei94] Gil Neiger. Distributed consensus revisited. Inf. Process. Lett., 49(4):195–
201, 1994.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

BIBLIOGRAPHY 162

[NQTN18] Qassim Nasir, Ilham A. Qasse, Manar Wasif Abu Talib, and Ali Bou Nas-
sif. Performance analysis of hyperledger fabric platforms. Security and
Communication Networks, 2018:3976093:1–3976093:14, 2018.

[OF15] Elisabeth Oswald and Marc Fischlin, editors. Advances in Cryptology -
EUROCRYPT 2015 - 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-
30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes in Computer
Science. Springer, 2015.

[PFS82] Robert L. Probert, Michael J. Fischer, and Nicola Santoro, editors. ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Ot-
tawa, CanadaAugust 18-20, 1982. ACM, 1982.

[Pot20] Maria Potop-Butucaru. Blockchains and the commons. In Networked Sys-
tems - 8th International Conference, NETYS 2020, Marrakech, Morocco,
June 3-5, 2020, Proceedings, pages 28–44, 2020.

[PS17a] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceedings
of the ACM Symposium on Principles of Distributed Computing, PODC
2017, Washington, DC, USA, July 25-27, 2017, pages 315–324, 2017.

[PS17b] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the
permissionless model. In Andréa W. Richa, editor, 31st International Sym-
posium on Distributed Computing, DISC 2017, October 16-20, 2017, Vi-
enna, Austria, volume 91 of LIPIcs, pages 39:1–39:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

[PS18] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic in-
stant confirmation. In Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part II, pages 3–33, 2018.

BIBLIOGRAPHY 163

[PSAG20] Deepa Pavithran, Khaled Shaalan, Jamal N. Al-Karaki, and Amjad Gawan-
meh. Towards building a blockchain framework for iot. Clust. Comput.,
23(3):2089–2103, 2020.

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching
agreement in the presence of faults. J. ACM, 27(2):228–234, 1980.

[PT86] Kenneth J. Perry and Sam Toueg. Distributed agreement in the pres-
ence of processor and communication faults. IEEE Trans. Software Eng.,
12(3):477–482, 1986.

[PTM+18] Alfonso Panarello, Nachiket Tapas, Giovanni Merlino, Francesco Longo,
and Antonio Puliafito. Blockchain and iot integration: A systematic survey.
Sensors, 18(8):2575, 2018.

[PW96] Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosig-
natures and byzantine agreement for t≥ n/3. IBM, 1996.

[QQM+18b] Han Qiu, Meikang Qiu, Gérard Memmi, Zhong Ming, and Meiqin Liu.
A dynamic scalable blockchain based communication architecture for iot.
In Smart Blockchain - First International Conference, SmartBlock 2018,
Tokyo, Japan, December 10-12, 2018, Proceedings, pages 159–166, 2018.

[Ray13] Michel Raynal. Distributed Algorithms for Message-Passing Systems.
Springer, 2013.

[Ric17] Andréa W. Richa, editor. 31st International Symposium on Distributed
Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, volume 91
of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[Rob08] Henry Robinson. A brief tour of flp impossibility, 2008. Online, accessed
April 2021.

[Sch90b] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Comput. Surv., 22(4):299–319, 1990.

BIBLIOGRAPHY 164

[Shi20] Elaine Shi. Streamlined blockchains: A simple and elegant approach (A
tutorial and survey). IACR Cryptol. ePrint Arch., 2020:87, 2020.

[SLZ16] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. SPECTRE: A
fast and scalable cryptocurrency protocol. IACR Cryptol. ePrint Arch.,
2016:1159, 2016.

[SP18a] Pradip Kumar Sharma and Jong Hyuk Park. Blockchain based hybrid net-
work architecture for the smart city. Future Gener. Comput. Syst., 86:650–
655, 2018.

[SP18b] Quinten Stokkink and Johan Pouwelse. Deployment of a blockchain-
based self-sovereign identity. In IEEE International Conference on Inter-
net of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), iThings/GreenCom/CPSCom/Smart-
Data 2018, Halifax, NS, Canada, July 30 - August 3, 2018, pages 1336–
1342. IEEE, 2018.

[SvR08] Yee Jiun Song and Robbert van Renesse. Bosco: One-step byzantine asyn-
chronous consensus. In Gadi Taubenfeld, editor, Distributed Computing,
22nd International Symposium, DISC 2008, Arcachon, France, Septem-
ber 22-24, 2008. Proceedings, volume 5218 of Lecture Notes in Computer
Science, pages 438–450. Springer, 2008.

[Swa15] Melanie Swan. Blockchain: Blueprint for a New Economy. O’Reilly Me-
dia, Inc., 1st edition, 2015.

[SWTR18] Harish Sukhwani, Nan Wang, Kishor S. Trivedi, and Andy Rindos. Perfor-
mance modeling of hyperledger fabric (permissioned blockchain network).
In 17th IEEE International Symposium on Network Computing and Appli-
cations, NCA 2018, Cambridge, MA, USA, November 1-3, 2018, pages
1–8. IEEE, 2018.

BIBLIOGRAPHY 165

[SZ18] Yonatan Sompolinsky and Aviv Zohar. PHANTOM and GHOSTDAG:
A scalable generalization of nakamoto consensus. IACR Cryptol. ePrint
Arch., 2018:104, 2018.

[TNV18] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. Performance
benchmarking and optimizing hyperledger fabric blockchain platform. In
MASCOTS 2018, Milwaukee, WI, USA, September 25-28, pages 264–276,
2018.

[Vuk15] Marko Vukolic. The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication. In Open Problems in Network Security - IFIP WG
11.4 International Workshop, iNetSec 2015, Zurich, Switzerland, October
29, 2015, Revised Selected Papers, pages 112–125, 2015.

[WKK+16] Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors. Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016. ACM, 2016.

Titre : Consensus Byzantin et blockchain : Modèles unifiés et nouveaux protocoles

Mots clés : blockchain ; consensus ; fondations ; pannes Byzantines ; scalabilité ; sharding

Résumé :
Les applications distribuées utilisent des protocoles
de consensus afin de maintenir un état consistent
sur plusieurs machines dans un réseau. L’avènement
récent de bitcoin et des algorithmes basés sur la blo-
ckchain a suscité un regain d’intérêt pour ces proto-
coles, notamment en ce qui concerne leur capacité
à passer à l’échelle et à tolérer les participants ma-
licieux. Cependant, cette attention a été source de
confusion, submergeant un sujet déjà vaste et com-
plexe avec des assertions imprécises et une termino-
logie variable.
Dans cette thèse, nous proposons une unification des
fondamentaux de la blockchain, grâce à un forma-
lisme capturant un large éventail de modèles com-
muns pour les protocoles de consensus. Nous utili-
sons ce formalisme pour décrire les spécifications de
divers protocoles de consensus d’intérêt pour la blo-
ckchain. Nous recadrons et précisons les théorèmes
qui décrivent les conditions dans lesquelles un pro-
tocole est possible ou non. Nous utilisons également

notre formalisme pour décrire le modèle de plusieurs
blockchains de référence malgré leurs différences
fondamentales, et nous pouvons également évaluer
et comparer finement leurs caractéristiques de per-
formance.
Ensuite, nous faisons une proposition pour une blo-
ckchain, StakeCube. La sécurité de StakeCube est
basée sur le modèle de preuve d’enjeu (Proof-of-
Stake), et sa capacité de passage à l’échelle repose
sur un principe du partitionnement (sharding), qui est
mis en œuvre par une table de hachage distribuée.
Nous avons également implémenté une version res-
treinte de StakeCube et évalué ses performances, va-
lidant ainsi sa propriété de passage à l’échelle. No-
tamment, comme StakeCube troque la preuve de tra-
vail (Proof-of-Work) contre la preuve d’enjeu sans sa-
crifier le passage à l’échelle, ce protocole est par-
ticulièrement bien adapté aux applications IoT. Pour
mieux démontrer cet aspect, nous avons implémenté
une application IoT de marché d’énergie dans Stake-
Cube et avons pu tester avec succès sa viabilité.

Title : Byzantine consensus and blockchain : Models unification and new protocols

Keywords : blockchain ; consensus ; foundations ; Byzantine faults ; scalability ; sharding

Abstract :
Any distributed application makes use of agreement
protocols in order to maintain a consistent state
across multiple machines in a network. With the
recent advent of Bitcoin and blockchain-based algo-
rithms, there has been a renewed interest around
such agreement protocols, especially regarding their
ability to scale and tolerate malicious participants. Ho-
wever this attention has been a source of misunders-
tanding, flooding an already large and complex sub-
ject with vague claims and different terminology.
In this thesis, we make a unifying view of the block-
chain landscape, by proposing a formulation capturing
a wide range of accepted models for agreement pro-
tocols. We use this formalism to describe the specifi-
cations of various agreement protocols of interest for
blockchain. We reframe and make precise the theo-
rems that describe the conditions under which a pro-

tocol is possible or not. We also use our framework to
describe the model of several prominent blockchains
despite their fundamental differences, and we are able
to make a fine-grained assessment and comparison
of their performance characteristics.
Then, we make a proposal for a scalable blockchain,
StakeCube. StakeCube’s security is based on the
Proof-of-Stake model, and its scalability relies on the
sharding paradigm, implemented through a distribu-
ted hash table. We also implemented (a restricted ver-
sion of) StakeCube and evaluated its performance,
thus validating its scalability property. Notably, be-
cause StakeCube trades Proof-of-Work for Proof-of-
Stake without sacrificing scalability, it is particularly
well suited for IoT applications. To further demonstrate
this aspect, we implemented an energy marketplace
IoT application in StakeCube and were able to suc-
cessfully test its viability.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Thesis results
	Co-authored articles

	Background
	The adversary
	Fault type
	Corruption threshold
	Adversarial adaptivity

	Synchronization
	Clocks
	Network

	Randomness
	Assumptions and Setup
	Problems
	Extensions

	Formalisation of distributed components
	Preliminary work : A simple execution model
	Deterministic modules and protocol execution
	Extension to the probabilistic case

	Modelling adversaries and primitives
	Adversary
	Computational power
	Faults and corruption structure
	Corruption adaptivity

	Modules
	Setups
	Network
	Oracles

	Discussion

	Problems
	Consensus and variants
	Broadcasts protocols
	Terminating reliable broadcast (TRBC)
	Reliable broadcast (RBC)
	Atomic broadcast (ABC)

	Analyzing performance
	Metrics
	dimensions
	Evaluation

	Lower Bounds
	On the corruption structure
	On performance

	Analyzing protocols
	Using the Bitcoin backbone protocol
	Nakamoto consensus
	Ouroboros Praos
	Tendermint
	HoneyBadgerBFT
	Phantom
	Algorand

	StakeCube: Leveraging sharding to scale Proof-of-Stake protocols
	Introduction
	Related work

	Model
	StakeCube's properties
	The PeerCube sharding structure

	Design Principles of StakeCube
	Unpredictable and Perishable Users' Credentials
	Shard Membership
	Construction of the Next Block of the Blockchain
	Inter Shard agreement

	Security Analysis
	Intershard agreement
	Safety
	Liveness

	Security of the sharding mechanism
	Corruption Probability of a Core Set
	Distribution of Malicious Credentials among all Shards
	Putting it all Together

	Evaluation and Application
	Experiments
	Application

	Conclusion and Future work
	Future Work

