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Résumé

Comprendre la cognition et ses mécanismes sous-jacents (comment l’information est codée,
décodée et traitée) est l’un des objectifs des neurosciences. Certaines observations in-
diquent l’implication des oscillations Gamma (30-90 Hz) dans le traitement de l’information
en étant associées à différentes fonctions cognitives de haut niveau, telles que la mémoire,
la perception, l’attention, l’éveil focalisé et la prédiction. Néanmoins, malgré ces corréla-
tions, le rôle exact des oscillations Gamma est encore débattu. Afin d’étudier les principes
neuronaux de la transmission de l’information dans le cerveau, nous avons profité de
l’analyse des données électrophysiologiques acquises chez l’homme. Cette analyse a indiqué
comment des neurones individuels participent aux rythmes Gamma, nous permettant
d’utiliser ces caractéristiques pour construire et contraindre des modèles de réseaux infor-
matiques. Nous avons construit trois modèles de réseaux générant des rythmes Gamma
par trois mécanismes différents : soit par l’interaction exclusive entre neurones inhibiteurs
[Interneuron Gamma (ING)], soit par l’interaction de neurones inhibiteurs et excitateurs
via Pyramidal-Interneuron Gamma (PING) ou via un mécanisme lié à la présence d’un
type particulier de neurone excitateur - appelée Chattering cell en anglais, le Chattering
Induced Gamma (CHING). Ces modèles ont été explorés et comparés à des états électro-
physiologiques asynchrones, afin de déterminer quelles sont les conséquences de chaque
mécanisme oscillatoire dans la manière dont l’information est traitée par le réseau. La
transmission de l’information a été évaluée à travers de la mesure de la réactivité du
réseau (responsiveness), qui a été acquise dans des conditions saines et dans des con-
ditions pathologiques, imitant des états hallucinatoires ou semblables à des conditions
observées dans des patients schizophréniques. Ce travail apporte alors une compréhension
du rôle des oscillations Gamma non seulement dans des conditions saines, mais aussi dans
des conditions pathologiques.
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Abstract

Understanding cognition and its underlying mechanisms (how information is encoded,
decoded and processed) is one of the purposes of neuroscience. Gamma oscillations (30-90
Hz) are believed to be involved in information processing, and have been associated to
different high-level cognitive functions, such as memory, perception, attention, focused
arousal and prediction. Regardless of these observations the exact role of these oscilla-
tions is still debated. In order to study the neuronal principles of information transmission
in the brain, we took advantage of multi-unit electrophysiological data acquired in hu-
man. The analysis of this data indicated how individual neurons participate to Gamma
rhythms, and these features were used to build and constrain computational network
models. We built three network models generating Gamma rhythms by three different
mechanisms: either by the exclusive interaction between inhibitory neurons [Interneuron
Gamma (ING)] or by the interaction of inhibitory and excitatory neurons via Pyramidal-
Interneuron Gamma (PING) or via Chattering Induced Gamma (CHING). These models
were explored and compared to asynchronous states, in order to determine what are the
consequences of each oscillatory mechanism in the way information is processed by the
network. Information transmission was assessed by means of the measurement of net-
work responsiveness, which was acquired in healthy and in pathological states mimicking
hallucinatory states or schizophrenia disease. This work provides insight into the role of
Gamma oscillations during healthy and pathological conditions.
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Introduction
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Key Biological Concepts

The Brain, Neurons and Synapses

The brain1 is the center of the nervous system and is the most complex organ in all
vertebrates. In all mammals, the outer layer of the brain is denominated as the cerebral
cortex. In humans, it can be divided into four distinct lobes: parietal, occipital, frontal
and temporal. Each region of the cerebral cortex has its specificities: different cellular
composition with different patterns of connectivity.

The cerebral cortex is composed by two main categories of cells, the glia cells (required
for structural stabilization and energy supply) and another very heterogeneous class of
cells called neurons. Even though recent works have shown the possible implication of glia
cells in information processing [1], the main elementary computing units of the nervous
system are thought to be the neurons.

Neurons, like all livings cells, present an electric membrane potential, due to the dif-
ference between positive and negative charges in the intra- and extra-cellular domain.
On the other hand, unlike most cells, neurons are excitable. This means that the electric
membrane potential of neurons is capable of fluctuating and, as a consequence, generating
and transmitting electrical and chemical stimuli to other cells.

In spite of the large variety of neuronal shapes, a typical neuron can be divided into
three structural parts: soma, dendrites and axon. While the dendrites and the axon can be
seen as input and output "devices" of the neuron, the soma2 can be seen as the "information
processing center" of the cell. This information processing happens in a way that if the total
input leads the membrane potential to exceed a certain threshold, then an output signal
is generated and transmitted to other neurons by the axon. When this signal is generated,
we say that the neuron spiked and that an Action Potential3 was produced. The place
where this signal exchange takes place is called synapse. Neurons which are sending and
receiving this signal are respectively called presynaptic and postsynaptic neurons. This
process can happen in different ways depending on the nature of the synapse: electrical

1The brain is the ensemble of three structures: the cerebrum, the cerebellum and the brain stem.
2The soma, or cell body, is the part of the cell where the genetic information is stored and where most

of the physiological processes take place.
3The Action Potential is a rapid variation in the neuronal membrane potential, composed of a fast

period of depolarization (due to the opening of Na+ channels), and a slow period of repolarization and
hyperpolarization (due to inactivation of Na+ channels and opening of K+ channels). It is known as
the Absolute Refractory Period, the period of time that covers the effects of the increase in the K+

conductivity (with respect to the resting state) and the effects of the residual inactivation of the Na+

channels.
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Figure 1: The central nervous system parts and its units. A) Anatomical parts
of the central nervous system. It can be divided into 7 main parts (as indicated in the
figure). The brain is the ensemble of three structures: the cerebrum, the cerebellum and
the brain stem. The Cerebrum is composed by the cerebral cortex and several subcortical
structures (the hippocampus, the basal ganglia, and the olfactory bulb). The Diencephalon
is composed by the thalamus, the hypothalamus, the epithalamus and the subthalamus.
B) Anatomical division of the cerebral cortex into 4 lobes. C) General structure of a
neuron. Figures A, B and C were adapted from [2] (pages 9 and 25).

or chemical.
In chemical synapses, presynaptic and postsynaptic neurons are completely separated

from each other in space. On the other hand, in electrical synapses, pre- and postsynaptic
cells are directly connected (sharing their cytoplasm) by means of special channels called
gap-junctions.

Gap-junctions have been proposed to contribute to brain rhythms both experimentally
and theoretically [3, 4, 5, 6, 7]. However in the network models developed in this thesis,
we decided to ignore this level of description, and only included chemical synapses in our
models.

Chemical Synapses, Neuro-transmitters and Recep-
tors

At chemical synapses, the synaptic transmission happens by means of vesicles of small
organic molecules, called neurotransmitters, released by the presynaptic cell, due to the
rise of Ca2+ concentration within the synaptic terminal, following an Action Potential.
These vesicles diffuse in the extracellular medium between the pre- and the postsynaptic
cells, the synaptic cleft, and bind to the receptors on the postsynaptic neuron. This binding
leads to the opening of ion channels at the postsynaptic neuron, generating a change in its
membrane potential (see Figure 2). All these processes generate a time difference between
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the presynaptic spike and the postsynaptic response. This time difference is called synaptic
delay.

A

C

B

Figure 2: Synaptic transmission at chemical synapses. A) Membrane potential vari-
ation during an Action Potential on the presynaptic cell. B) Succession of events com-
posing the chemical synaptic transmission: the action potential arriving at the terminal
of a presynaptic axon causes voltage-gated Ca2+ channels at the presynaptic terminal
to open (left panel). This opening generates an intracellular high concentration of Ca2+

in the presynaptic terminal, allowing vesicles containing neurotransmitter to fuse with
the presynaptic cell membrane and release their contents into the synaptic cleft (middle
panel). Subsequently, the released neurotransmitter molecules diffuse across the synaptic
cleft and bind specific receptors on the postsynaptic membrane. These receptors cause
ion channels to open (or close), thereby changing the membrane conductance and the
membrane potential of the postsynaptic cell (right panel). C) Postsynaptic potential fluc-
tuation due to the synaptic transmission. This figure was adapted from [2].

Conductance changes by means of chemical synapses can either increase the post-
synaptic membrane potential (excitatory synapse) or decrease it (inhibitory synapses),
depending on the type of neurotransmitter released. Glutamate and γ-aminobutyric acid
(GABA) are respectively the main excitatory and inhibitory neurotransmitters in the
brain.

The glutamate-gated channels conduct both Na+ and K+ ions, with nearly equal
permeability. The two major glutamate receptors are α-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic (AMPA) and n-methyl-d-aspartate (NMDA) receptors. Unlike AMPA,
NMDA channels are additionally highly permeable to Ca2+, which is crucial for induction
of synaptic plasticity [8]. While the AMPA-mediated currents are fast (0.34-11ms), the
NMDA-mediated are considerably slower (6–350 ms) and present a complex relation with
respect to the membrane potential [9, 10, 11, 12]. Both AMPA and NMDA receptors are
ionotropic, meaning that these channels open directly when glutamate binds to them.
However, the opening of NMDA channels depends not only on the biding of neurotrans-
mitters but also on the membrane voltage. At the resting membrane potential extracellular
Mg2+ ions are tightly bond to NMDA channel pores, blocking ionic current. When the
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membrane is depolarized (for example, by the opening of AMPA receptor-channels), Mg2+

is expelled by electrostatic repulsion, allowing the flux of ions. Due to this Mg2+ block,
NMDA receptor channels rarely initiate neuronal excitation on their own. The magne-
sium block of the NMDA receptor channel (B) is accurately modeled by the following
phenomenological expression as a function of voltage of the membrane potential (V) [13]
:

B(V ) = 1
1 + exp(−0.062V ).([Mg2+]o/3.57) (1)

where [Mg2+]o is the external magnesium concentration (1 to 2 mM in physiolog-
ical conditions). NMDA-mediated synapses have been reported to participate in both
thalamo-cortical and intracortical synaptic pathways [14] acting on excitatory and in-
hibitory neurons [15].

The main receptors of the inhibitory neurotransmitters GABA are GABAA and GABAB.
While GABAA receptors are ionotropic, directly opening Cl− channels, GABAB recep-
tors are metabotropic, meaning that they activate second-messenger cascades, opening
indirectly other channels (often K+ channels). For this reason the current produced by
GABAA receptor channels are fast, while the ones from GABAB are slow. Most ofthe
fast inhibitory postsynaptic potentials are mediated by GABAA receptors in the central
nervous system. In this thesis only GABAA receptors are used in our models. Figure 3
depicts the representative postsynaptic currents due to GABAA, GABAB, AMPA and
NMDA receptor channels.

Neuronal Heterogeneity

Although all neurons inherit the same genes, depending on the particular cell’s develop-
mental history, only a restricted set of them are expressed. As a consequence, an enormous
variety of their enzymes, structural proteins, membrane constituents, ion channels, and
secretory products exists among neurons [2, 17, 18, 19]. This rich repertoire of channels
allows neurons to generate action potentials with a wide range of shapes (spike waveform),
firing rates and duration [20]. These physiological differences can be used to categorized
neurons into different types [21, 22, 23, 24].

McCormick and collaborators were the first to describe the so-called Regular-Spiking
(RS) and Fast-spiking (FS) neurons. When presented with prolonged stimuli of constant
amplitude, RS neurons exhibit pronounced adaptation of the spike frequency while FS
neurons undergo little or no adaptation [21] (see Figure 4A and 4B). In 1985, McCormick
and colleagues related electrophysiological aspects to morphological and immunocyto-
chemical features, identifying neocortical FS neurons as being GABA-mediated interneu-
rons [21] and RS neurons as being pyramidal neurons. Today, other types of cell are known
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Figure 3: Postsynaptic currents due to different receptors. A) AMPA-mediated cur-
rents. B) NMDA-mediated currents. C) GABAA-mediated currents. D) GABAB-mediated
currents. For all graphs, the averaged recording of the synaptic current (noisy trace) is
represented with the best fit obtained using detailed kinetic models (continuous trace)
[16]. This figure was adapted from [16]. Original works that provided the experimental
curves are cited in [16].

to also display regular spiking activity. This is the case for the Cholecystokinin-positive
basket cells (GABA-mediated interneuron) [25]. Likewise, two types of GABA-mediated
interneurons are known to display fast spiking activity: Chandelier cells4 and Parvalbumin-
positive (PV) Basket cells [25]. In this thesis three types of cells are used in our models:
Regular Spiking pyramidal cells (RS), Fast Spiking basket cells (FS) and Chattering (Ch)
cells.

Chattering Cells were proposed to be a biophysically distinct class of pyramidal neu-
rons because of its distinguished intrinsic firing properties [27]. These neurons, found in
superficial layers of the cortex, intrinsically generate bursts that repeat with a firing fre-
quency of 20 Hz and upwards due to a suprathreshold depolarizing current injection [27,
28, 29] (see Figure 4C).

4Chandelier cells are a type of GABA-mediated interneurons that differs from Basket cells both mor-
phologically and functionally. While Basket cells form axosomatic synapses (axons terminating on the
cell bodies of target neurons), Chandelier cells form axo-axonic synapses (axons terminating exclusively
on the axons of target neurons). Interestingly this morphological difference (inputs onto axon initial
segment) proffer this type of cell an excitatory effect on its postsynaptic neurons [26]. Based on the
classification by means of the expression of specific molecular markers, Chandelier cells are also classified
as Parvalbumin-positive (PV) [25].
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Regular Spiking Fast Spiking Chattering
A B C

Figure 4: Intrinsic firing patterns of different cell types. A) Extracellular recording
in mouse thalamocortical slice of a Regular Spiking (RS) pyramidal cell (adapted from
[30, 22]). B) Intracellular recording in guinea pig neocortical slices of Fast Spiking (FS)
inhibitory cells (adapted from [21, 22]). C) Intracellular recording in the cat neocortex in
vivo of a Chattering (Ch) neuron (adapted from [27]).

Cortical Layers

The neocortex, external region of cerebral cortex5, can be morphologically segmented
based on the density of specific pyramidal neurons, as well as by their afferent and efferent
projections [31]. Most of the neocortex contains six layers, numbered from the outer
surface (pia mater) of the cortex to the inner white matter [2]. Layer L4 receives most
of the stimulus coming from the primary sensory thalamic nuclei, together with L5b and
L6. Layers L1 and L5a receive inputs from associative thalamus, while layer L5b send
projections to subcortical areas. The cortical layers communicate with each other in an
intricate way. A scheme of their connections is depicted in Figure 5. In this thesis we are
particularly interested in layers 2/3.

Inhibitory neurons are present in all layers and usually have axons that remain within
the same area where their cell body are [2]. They are believed to receive inputs from
the same sources as the principal cells. It is estimated that inhibitory neurons constitute
around 20% to 25% of the neurons in the neocortex.

Brain States: States of Consciousness

Different brain states can be categorized based on two important concepts: awareness and
arousal6 [33]. The level of arousal is associated to the global capacity to respond to stimuli.
For instance, clinicians use scoring systems such as the Glasgow Coma Scale [35] to access
the level of arousal in patients. In this protocol, the patient reactions (eye opening, motor
response and verbal response) are measured with respect to censorial stimuli and scored
accordingly. Scores range from 3 to 15, in which 15 indicates a patient fully alert. The
level of awareness, on the other hand, is related to the ability to perceive and interact

5The neocortex constitutes 90% of the cortex. The remaining 10% is occupied by the allocortex, which
contains the olfactory system and the hippocampus.

6The concept of arousal is also associated to the nomenclature of wakefulness or vigilance [33, 34]
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Figure 5: The six layers of neocortex and their connections. A) Visualization (by
means of 3 different types of stain) of neocortical neurons arrangement in 6 different layers.
The Golgi stain unveil a subset of neuronal cell bodies, axons, and dendritic trees, while
the Nissl method allows only the visualization of cell bodies and proximal dendrites. The
Weigert stain method, on the other hand, enable the visualization of myelinated fibers
(like axons). Figure A was adapted from [2] (page 345) and originally extracted from [32].
B) Simplified diagram illustrating localization and input–output connectivity patterns of
excitatory neurons in the 6 cortical layers (adapted from [25] ). WM stands for white
matter.

with the environment in a complex and conscious way. In this perspective, awake states
are seen as the state in which the patient is fully aroused and fully aware. While a patient
in vegetative state is considered to be in a state in which there is some level of arousal,
but no level of awareness. The scheme depicted in Figure 6, illustrates these concepts.

In mammals and in most bird species, sleep is divided in two distinguishable neuro-
physiological states: rapid eye movement (REM) and non-rapid eye movement (NREM)
sleep [36]. REM sleep is characterized by inhibited muscular tone (as measured by elec-
tromyography) and involuntary saccadic eye movements (from where its name is derived).
In humans, NREM sleep can be divided into three gradual sleep depth levels [37]: stage
N1 (transition between wake and sleep), Stage N2 (light sleep) and Stage N3 (deep sleep,
also known as Slow Wave Sleep, SWS). The SWS receives this name because of its char-
acteristic extracellular activity, which exhibits slow oscillations (as will be discussed in
the next section).

In general, the level of arousal increases with the increase of awareness. This is what
is observed when we compare the different stages of NREM sleep with conscious wake-
fulness. However, an interesting exception exists: REM sleep. This sleep stage presents

9



Figure 6: Scheme illustrating different brain states. States of Consciousness are
classified with respect to the level of awareness and to the level of wakefulness (arousal).
Figure adapted from [33]

electrophysiological activity similar to the one observed during Awake states: single units
firing tonically, together with extracellular recordings capturing spontaneous bursts of
low-amplitude oscillations in the range of 15-90 Hz [38, 39, 40, 41, 42]. For this reason,
REM sleep is seen as a state with high awareness but no arousal.

Regardless of the difficulties to rigorously define awareness, some authors tried to quan-
tify it, by means of certain concepts of complexity theory. The Complement Research
Article inserted in the end of this thesis reviews some of them.

Brain Rhythms

The discovering of brain oscillations dates from 1929, when a controversial psychiatrist,
Hans Berger, trying to prove the existence of psychic phenomena, observed electrical
oscillations coming from electrodes placed at the head of one of his patients. This was the
first electroencephalogram (EEG) recording registered [43].

Brain rhythms is the generic therm used to describe oscillatory electro-magnetic phe-
nomena generated by the collective activity of neurons in the brain in a mesoscopic scale
(few millimeters to centimeters). This type of activity can be measured by methods such
as ECoG (electrocorticography), EEG (electroencephalography), LFP (local field poten-
tials) and MEG (magnetoencephalography), with temporal precision varying from the
order of milliseconds to seconds [44, 45]. See Figure 7.

The canonical classification of these oscillations has been defined in the following
frequency bands: Slow-oscillations (0.3-1 Hz), Delta (1–4 Hz), Theta (4–8 Hz), Alpha
(8–12 Hz), Beta (15–30 Hz), Gamma (30–90 Hz), High Gamma (90-140 Hz). In addition,
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Figure 7: Brain Rhythm Measurements. A) Schematic illustration of different tech-
niques of brain rhythm recordings. B) EEG is the less invasive method beeing recorded on
the scalp surface. It allows stable recordings over time but presents low spatial resolution
(covering a large area) and a low signal-to-noise ratio. C) ECoG is more invasive than
EEG, being recorded intracranially, in the surface of the brain. It allows a high signal-
to-noise ratio and stable recordings over time. D) Multi-electrode arrays (left). The LFP
is measured by means of penetrating electrodes directly in the brain tissue (right). This
technique is highly invasive and doesn’t allow very long recordings since the neuronal en-
vironment deteriorates over time leading to instabilities in the recordings. Its advantage
is that it allows a high signal-to-noise ratio close to the neurons. Some types of arrays
allow not only the measurement of LFP but also unit activity. This is the case of the
experimental data used in this thesis. Figure A was adapted from [44]. Figures B was
adapted from [46] and Figures C, D and E were adapted from [47].

other important rhythms are the Spindles and the Ripples oscillations, which are not
exclusively defined by their frequency band (see below). In principle, all these rhythms
could emerge in the brain at any given time and region, but some correlations between
certain rhythms regions and behavior have been established throughout the last decades.
Bellow we highlight some of these aspects related to each brain rhythm. These correlations
suggest possible mechanistic roles for each oscillation on cognitive phenomena, but the
exact function of these oscillations is still debated.

Brain Rhythms Features:

• Delta and Slow oscillations (SO): Mostly observed during deep non-REM sleep
or during anesthesia. Different evidences suggests that these rhythms, SO (0.3-1 Hz)
and Delta (1-4 Hz), have an important role on the formation and consolidation of
memories acquired during wakefulness [48, 49, 50, 51, 52]. SO and Delta oscillations
have been classically classified as two distinct neurophysiological phenomena with
different spatial and temporal properties [53, 51]. For example, while some obser-
vations indicate that SO are generated exclusively by cortical networks [54, 55, 56],
Delta rhythms generators were found in both cortex and thalamus, with mechanism
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of generation specific to each structure [57]. More recent studies indicate that SO
and Delta oscillations have competing roles in sleep-dependent memory consolida-
tion [58].

• Theta : In Hippocampus, it is observed during spatial navigation, and the precise
timing of spikes with respect to the Theta cycle is believed to partially encode spatial
information [59]. In addittion, Theta is also believed to play a role in the formation
and retrieval of episodic and spatial memory [60] in the hippocampus. In cortex,
Theta rhythms have been associated to working memory tasks, both in Human [61]
and in Monkey [62] .

• Alpha : Frequently observed in the occipital lobe, alpha rhythms are associated
with wakeful rest with eyes closed [63].

• Beta : Beta rhythms are more frequently associated to the inhibitory control in
the motor system. They occur during the preparation for the movement ("readiness
state") and cease at the onset of movement execution. Other studies, additionally
indicate that Beta oscillations are more generally involved in sensory-motor integra-
tion and top-down signaling [64].

• Gamma : Gamma oscillations occur in all cortical areas, thalamus and hippocam-
pus [65, 66, 67, 68, 69, 70, 71, 72, 73]. This type of activity has been associated to
different high-level cognitive functions, such as memory [74, 75, 76], perception [77,
78, 79, 80], attention [81, 82, 83, 84], focused arousal [85] and prediction [86].

• High Gamma : The terms fast Gamma [87] and high Gamma [88] were coined to
describe a frequency band between 90 and 140 Hz in the cortex. Two hypothesis
about high Gamma oscillations have been debated. One states that high Gamma
play the same role as Gamma oscillations but operate at a shorter timescales [75],
while other authors propose that high Gamma power is simply related to a spiking
activity increase [89, 90]. Furthermore, different works suggests [91, 92] that Gamma
and high Gamma have different mechanisms of generation, which would justify a
difference in the nomenclature for rhythms in the 30–90 Hz and the 90–140 Hz
bands.

• Ripple Oscillations : This type of high frequency oscillation is typically observed
during non-REM sleep, anesthesia and during consummatory behaviors (immobility,
drinking, eating and grooming). It has been traditionally studied in the hippocam-
pus [93, 67, 94], but recent work has proposed that ripples can also be recorded in
the cortex [57, 95, 96]. In hippocampus ripples are observed together with sharp
waves. Sharp wave ripples in hippocampus are typically characterized by periods
of approximately 50 to 100 ms of a large negative sharp wave with superimposed
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high frequency oscillatory activity (80–200 Hz) called ripples, followed by a period
of approximately 200 ms of a positive wave [94]. Ripple oscillations have been pro-
posed to play an important role in memory consolidation during non-REM sleep
or consummatory behaviors [97, 93], and, more recently, to be involved in memory
retrieval during active awake states [97, 95, 96].

• Spindle Oscillations : Also known as sleep spindles, it is a characteristic rhythm
that occurs during non-REM sleep (stages 2 and 3 [98]). It is typified as oscillations
(11-16 Hz) lasting for 0.5 to 3 seconds, whose amplitudes wax and wane [98, 99].
Spindles are the product of the interaction between thalamic reticular, thalamocor-
tical, and cortical pyramidal networks [100, 53]. It has been proposed that spindles
may be an essential element for memory formation [48] and short- and middle term
synaptic plasticity [51].
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Asynchronous and Irregular States

The spontaneous cortical activity observed in vivo is characterized by highly stochastic
and irregular neuronal spiking with low pairwise spike correlations in different brain states
[101, 102, 103, 104].

One of the first works to approach the spontaneous cortical activity in a theoretical
point of view, demonstrating it to be an emergent property of large networks of excitatory
and inhibitory neurons sparsely connected by strong synapses, was developed by Carl Van
Vreeswijk and Haim Sompolinsky [105]. In this seminal work based on binary neurons
(see the section Computational Models), the stochastic feature of spiking activity was
associated to the approximate balance between its excitatory and inhibitory inputs which
was dynamically adjusted by the own network intrinsic properties. This balanced state has
also been experimentally observed in vitro [106] and in vivo works [107, 108].

Subsequently, Nicolas Brunel and collaborators [109, 110] extended these results by
working with systems in which synaptic time scales were included. By means of spiking
networks of leaky integrate-and-fire neurons and mean field models (see the section Com-
putational Models), they showed that irregular firing activity in low firing rates could
be achieved in different conditions in networks with sparsely connected neurons with
strong synapses composed of excitatory and inhibitory units. In networks in which the
time constants of the membrane potentials of excitatory and inhibitory neurons were the
same, this stochastic firing behavior could only emerge when inputs were closely balanced.
On the other hand, if inhibitory neurons could depolarize faster than excitatory neurons
(through smaller membrane time constants), then this condition could be relaxed, leading
to irregular spiking activity close to what is observed in vivo, even if excitatory inputs
dominated [109]. Sub-sequential works have enlarged this view to more complex neuronal
and synaptic dynamics [111, 112]. More generally, this early analysis [110] showed that
different activity regimes could be achieved depending on the balance between inhibition
and excitation, and on the magnitude of external inputs. These regimes were classified
generically due to two main aspects: global activity (synchronous or asynchronous) and
individual neuronal activity (regular or irregular). Following this criteria, the observed
spontaneous activity observed in cortical regions in vivo has been classified to be in an
Asynchronous and Irregular (AI) state.

The AI state is precisely defined as a stationary global activity with strongly irregular
individual firing at low rates. However, spontaneous awake activity is far from being
stationary. In vitro studies have shown that to be able to correctly explain the inter-spike
intervals (ISI) of neuronal activity observed in vivo, factors such as synchrony need to
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be taken into consideration [113]. In addition, human ECoG measurements, in conditions
in which the subjects are awake and immobile, show the occurrences of different brain
rhythms in different brain regions [114]. Using the terminology developed by [110], resting
awake activity could be interpreted as the dynamical switch between Asynchronous and
Irregular states and Synchronous and Irregular states (brain oscillations). This switch,
according to these simplified models [110], could be controlled by the strength of an
external drive and by the balance between excitation and inhibition. The theoretical
description of brain oscillations will be detailed on chapter: Computational Models.

Different brain states are characterized by different levels of occurrences of different
brain rhythms [115]. In particular, during Slow-wave sleep (SWS), neuronal activity re-
mains irregular while it is strongly modulated by a Delta rhythm, which is characterized
by periods of sustained firing and periods of very low spiking activity called the Up and
Down states [102].

It has been proposed that the neuronal activity displayed during Up states of SWS are
similar to the activity displayed during awake states both in terms of spiking and rhyth-
mic activity observed on the LFP [38]. In Work 1, we review several works that have
shown similarities and differences between these two brain states. We compare previously
published results with our own analysis of human data provided by one of our collabora-
tors, focusing on differences of spiking patterns (firing rate and spiking correlations) and
on different neuronal participation on Gamma rhythms in awake and SWS.

Other properties of Awake-like states (Asynchronous and Irregular) are investigated
in Work 2, in which network responsiveness is measured and compared to periods of
increased synchrony where the networks present Gamma oscillations in a Synchronous
and Irregular manner.
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Gamma Oscillations

The first study characterizing Gamma-band activity (30-90 Hz) was developed by Edgar
Adrian in 1942 [116], who reported induced activity, due to olfactory stimulus, as si-
nusoidal oscillations between 30 and 60 Hz lasting for the duration of the stimulation.
Nevertheless, the study of Gamma oscillations gained the attention of the general scien-
tific community only in 1987, when Gray and Singer discovered 40 Hz oscillations at the
cellular level [66]. A complete review of historical hallmark studies is given by [117].

Gamma rhythms are observed in many brain regions, during both awake and sleep
states [118, 38, 69, 119, 74, 47], in different species. They have been reported to appear
spontaneously or due to external stimulus, being either induced, evoked, or emitted [120].
Interestingly, the spiking activity, measured concomitantly with Gamma activity on the
LFP, is highly irregular. Examples of this neuronal activity were observed in vivo in the
neocortex and hippocampus, where gamma oscillations were associated with stochastic
and sparse spiking activity of individual cells [68, 75, 121, 81, 122, 87, 69, 38, 123, 124].

In the last decades, Gamma oscillations have been associated to different high-level
cognitive functions, which lead to the hypotheses that Gamma oscillations are important
for information processing and coding. The most popular theories are the Binding-by-
synchronization Hypothesis [125, 126], the Phase Coding Theory [127, 128], the Commu-
nication Through Coherence Theory [129, 130] and Communication through Resonance
Theory [131].

In Work 2, we take advantage of the human data provided by one of our collabora-
tors to further characterize individual neuronal activity during Gamma oscillations. We
typify neurons according to their phase-locking and firing rate changes inside and outside
Gamma bursts, inquiring about behavior changes. In Work 2 we also compare the result
of this analysis with computational models putting into perspective the different theo-
ries of information processing and coding involving Gamma previously cited. In addition,
we use these computational models to explore three mechanisms of Gamma generation
(detailed bellow), and examine their effects on the spiking patterns of individual cells.

Mechanisms of Generation

The mechanisms underlying Gamma oscillations have been widely studied experimentally,
both in vivo and in vitro [70, 132, 133, 134, 135]. Three important mechanisms are the
Interneuron Gamma (ING), in which Gamma oscillations are generated by the exclusively
interaction among inhibitory neurons; the Pyramidal-Interneuron Gamma (PING), in
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which Gamma is due to the interaction between inhibitory and excitatory neurons; and
the Chattering Induced Gamma (CHING)7, in which the rhythm production relies on
the presence of pacemaker excitatory cells known as Chattering neurons [27, 133]. The
theoretical approach to study the underlying mechanisms of Gamma oscillations will be
discussed in the next chapter.

Several experimental models have been used to examine oscillation dynamics as an
emergent property of neuronal networks. These protocols include the application of ago-
nists or antagonists of certain receptors, and/or the electrical activation of specific cells
types [135]. We describe in Figure 8 three important works that reported, by means of
extracellular recordings, how Gamma oscillations can be initiated or blocked in vitro by
means of these techniques.

In the work [136], Gamma oscillations are generated on Hippocampus (CA3) by means
of Carbachol, a cholinergic agonist. In this preparation Gamma rhythms are blocked either
by NBQX (AMPA receptor antagonist) or by Bicuculline (GABAA receptor antagonist),
showing that both excitatory and inhibitory synapses are involved in Gamma generation,
an in vitro demonstration of PING mechanism (Figure 8A).

The work [137] reported Gamma oscillation in CA3 due to Kainate (Kainate receptors
agonist). In this study, Gamma oscillations were abolished by Bicuculline, but were not
affected by the AMPA receptor antagonist GYKI 53655. This results indicate that the
observed rhythmic activity was mainly a consequence of inhibitory synaptic activity, an
illustration of ING mechanism (Figure 8B).

At last, the work [133] reported the importance of Chattering cells on Gamma rhythm
generation (CHING mechanism) on Cortex. In this study, Gamma oscillations were evoked
by Kainate and abolish after phenytoin application. Phenytoin is an anticonvulsant drug
that blocks persistent sodium conductance, acting preferentially on Chattering cells be-
cause of its electrophysiological behavior. It is known that Chattering cells are absent at
Hippocampus. The work of [133] showed that Kainate-induced Gamma oscillations were
only extinct by phenytoin on cortex and not in Hippocampus, indicating the importance
of Chattering cells on the rhythm generation, illustrating the CHING mechanism (Figure
8C).

Even-though these three mechanisms can be observed in cortex in vitro, it is still con-
troversial which of these mechanisms are engaged in different cortical regions in different
conditions in vivo [138, 132, 139, 140].

7The term Chattering Induced Gamma (CHING) was coined in this thesis to designate the Gamma
generation mechanism that relies on the presence of Chattering neurons.
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Figure 8: Extracellular recordings demonstrating different Gamma generation
mechanisms in vitro. A) Gamma oscillations were evoked on hippocampal region CA3
by means of Carbachol and are blocked by both AMPA receptor antagonist NBQX and the
GABAA receptor antagonist Bicuculline, illustrating PING mechanism. Figure adapted
from [136]. B) Kainate-induced Gamma oscillations in CA3 are abolished by Bicuculline
but suffer no effect from AMPA receptor antagonist GYKI 53655 application, illustrat-
ing ING mechanism. Figure adapted from [137]. C) Phenytoin blocks Kainate-induced
Gamma oscillations in cortex, but not in Hippocampus. Since Chattering cells are sensi-
tive to Phenytoin and are absent in Hippocampus, this preparation illustrates the CHING
mechanism. Figure adapted from [133].

19



20



Gamma Oscillations, NMDA
receptors and Schizophrenia

Schizophrenia is a mental disorder that affects around 1% of global population [141]. It is
characterized by three classes of symptoms: positive symptoms, which include delusions,
hallucinations and disordered thoughts or speech; negative symptoms, which comprehend
poverty of speech and deficits of normal emotional response, such as lack of motivation and
inability to experience pleasure; and cognitive deficits involving dysfunction of working
memory, long-term memory, attention and learning [142, 143, 144].

Several abnormalities have been identified in schizophrenic patients. These abnor-
malities extend from important differences in neurotransmitters systems to anatomical
deficits8 and are reflected in abnormal neuronal activity.

In healthy subjects, NMDA receptor antagonists can induce a psychotic state that re-
sembles all three classes of schizophrenic symptoms [147, 148, 149]. Likewise, in schizophrenic
patients, NMDA receptor antagonists can exacerbate the symptoms [148, 150]. These ob-
servations lead to the conception of the NMDA hypofunction paradigm [151, 152], which
states that the hypofunction of NMDA receptors (NMDAR) might be one of the causes
of schizophrenia9. Furthermore, a reduced expression or binding of NMDAR in thalamus
and in cortex have been identified in postmortem studies [156].

NMDA receptors are critical to the development and to the adult function of GABAer-
gic interneurons. NMDA receptors regulate the expression of GAD67 [157] (GABA syn-
thesizing enzyme) and the expression of parvalbumin10 (PV) [157]. In vitro studies have
shown that NMDA receptor antagonists, such as ketamine or phencyclidine, reduce the
expression of GAD67 and PV [157, 160, 161], and reduce inhibitory synaptic transmission
in cortical slices [162]. Furthermore, post-mortem analysis of schizophrenic patient’s brain
have shown a reduced expression of PV and GAD67 [163, 164, 165, 166, 167, 142].

8Schizophrenia is associated with widespread reductions in the volume of grey matter [145]. Since the
overall number of neurons is largely preserved, these volume reductions are believed to reflect a reduction
of synaptic connectivity [146].

9Another important paradigm used to study schizophrenia is the one of the hyperdopaminergic hypothe-
sis. This is supported by the fact that dopamine D2 receptor antagonists are able to provide anti-psychotic
effects [153, 154]. D2 dopamine receptor antagonists are one of the most common antipsychotic drug type
used to treat schizophrenia. On the other hand, this type of treatment are not effective on negative
symptoms or cognitive deficits [155], which has been one of the reasons to focus research attention on the
NMDA hypofunction paradigm.

10Parvalbumin, commonly known as PV, is a protein that modulates neuronal firing properties [158]
and neuronal plasticity in inhibitory neurons [159]. It is used as criterion to categorize inhibitory neurons
[25].

21



The reduction of GAD67 in schizophrenic patients have been shown to be principally
pronounced in a particular type of inhibitory neurons, the PV-positive neurons [168],
which receive an important amount of glutamatergic drive from NMDA channels [157].
In agreement, genetic ablation of NMDA receptors in PV-positive interneurons in rodents
mimics important phenotypical (reduction of GAD67 [169], increase of neuronal excitabil-
ity [169] and increase of spontaneous Gamma power [170, 171, 172]) and behavioral fea-
tures of schizophrenia [173]. These observations support the idea that the hypofunction
of NMDA receptors in PV-positive interneurons are specially important in this illness11.

An important question, which is still under debate, is whether the alterations observed
in Gabaergic neurons are the consequence or the cause of the modifications in the NMDA
neurotransmitter system.

NMDA receptor antagonists in sub-anesthetics doses
generate increase in neural activity and increase Gamma
power

As stated in previous sections, NMDA receptors mediate excitatory synaptic transmission.
Hence, it is intuitively expected that when applying NMDAR antagonists neural activity
be decreased. In agreement, NMDA receptor antagonists, such as Ketamine, have been
extensively used as anesthetics [176]. However, several preparations with sub-anesthetics
doses of NMDAR antagonists produce neural excitation [177, 178, 179, 180, 181, 182].
Several explanations have been proposed to explain this apparent paradox [144]. The in-
terpretation we adopt in this thesis, which is supported by experimental observations [15,
183, 162, 184], is that NMDAR antagonists in sub-anesthetics doses act preferentially on
inhibitory neurons, therefore increasing network activity indirectly by means of desinhi-
bition12. For example, the work reported in [15] showed, on medial prefrontal-cortex of
freely moving rats injected with an NMDAR antagonist dizocilpine maleate (MK801),
that approximately 69% of inhibitory FS neurons decreased their firing, while 86% of
excitatory RS neurons increased their firing after MK801 injection, leading to a global
excitatory effect.

Besides of producing neural excitation, Ketamine in sub-anesthetic doses has been
associated to the increase of self-generated and evoked Gamma oscillations. Works in
human healthy subjects, under sub-anesthetic doses of Ketamine, reported an increase
of induced Gamma amplitude during sensory tasks in primary motor and visual cortices

11Some works reported conflicting results and have questioned the hypothesis that PV-positive Fast
Spiking neurons play a role in Schizophrenia [174, 175]. Furthermore NMDA receptors are expressed
in both GABAergic and glutamatergic neurons, and it still remains unclear in which types of cells the
NMDA receptor hypofunction cause schizophrenia [175, 144].

12One in vitro study has reported conflicting results [174].
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[185] and an increase of evoked Gamma amplitude in auditory cortex, during steady-
state response [186] and in a paired-click paradigm [187]. In agreement, same results were
reproduced in animals in vivo. In rat neocortex, sub-anesthetic doses of Ketamine increase
Gamma power of spontaneous generated Gamma oscillations during free movement [188,
189, 190, 191] and were accompanied by a marked increase in locomotion, hyperactivity,
and ataxic behavior. Additionally, experiments in monkey with similar doses of Ketamine
also reported robustly induced spontaneous Gamma in primary motor cortex [192].

Gamma Oscillations in Schizophrenic Patients

Power and temporal correlations of neural oscillations during the resting state have been
demonstrated in studies with healthy twins to be highly heritable [193]. Following this
observation, dysfunctional neural oscillations could represent an endophenotype of certain
mental illness, guiding the search for its genetic contributions. Regarding schizophrenia,
important evidence for the relationship between anomalous neural oscillations and genetic
predisposition have been reported [194, 195, 196, 197]. Different abnormalities in Gamma
oscillations have been observed in schizophrenic patients, both in sensory-driven (evoked
oscillations) and in self-generated oscillations (spontaneous or induced) [198, 199].

Several works have reported evoked Gamma oscillation in schizophrenic patients pre-
senting reduced amplitude and reduced phase synchronization with respect to healthy
subjects during cognitive tasks. These studies include observations either during complex
tasks, such as during mental arithmetic calculations [200], or simple ones in which Gamma
band activity responses are measured due to auditory stimuli (steady-state evoked poten-
tials [201, 202, 203, 204, 205, 206, 207] or auditory oddball paradigm [208]), due to visual
stimuli (stimulus-locked evoked oscillation) [209, 210], or due to Transcranial Magnetic
Stimulation (TMS) [211]. On the other hand, in protocols measuring spontaneous (not
evoked) Gamma, several studies have found an increased power in Gamma band [212,
213, 214, 215, 199].

However, contrasting findings reporting an increase of evoked Gamma activity and a
decrease in spontaneous activity in schizophrenic patients also exist. Increases of Gamma
activity were reported in response to stimulus during both complex and simple tasks,
involving working memory [216] for example, or the auditory oddball selective attention
task [217]. While a decrease in spontaneous Gamma activity have been reported during
some cognitive tasks (not stimulus locked) [218, 219] or during resting conditions (when
the subject in not engaged in any cognitive task) [220]. In addition, other works have re-
ported no significant changes between schizophrenic patients and healthy subjects during
resting conditions [221, 214]. Similar discrepancies were detailed in [222, 223].

It has been proposed that part of these incompatibilities with respect of evoked Gamma
oscillations could be explained by technical reasons. Indeed, several studies [224, 209, 225,
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205, 209, 226] analyzed changes on the power of evoked Gammma activity relative to a
pre-stimulus baseline rather than relative to the absolute level of Gamma power. However,
differences in baseline levels influence directly the calculation of post-stimulus responses.
For example, the study [217], showed that the absolute magnitude of Gamma synchrony
was enhanced when the reference to this baseline period was removed.

While part of the discrepancies in evoked Gamma could be explained by the observed
increase of Gamma activity on stimulus base-line, the discrepant results with respect to
spontaneous Gamma activity could be in part related to the stage of the schizophrenic
disease of the patients used in each study. Since it has been recently shown that the resting-
state Gamma band activity is significantly different in each of the stages of schizophrenia
disease [227].

This recently study [227] observed, for example, a widespread decreased of resting-
state Gamma activity in frontal, temporal and sensorimotor areas in chronic schizophrenic
patients. On the other hand, in first-episode patients13, an increased activity was observed
on the occipital cortex (significant in the band 30-46 Hz, and strong in the band 64-90
Hz), while an activity decrease was only detected on the occipital cortex (significant in
the band 30-46 Hz, and moderate in the band 64-90 Hz). This increase of Gamma activity
in first-episode schizophrenic patients have also been detect in early works [217], which
showed, for example, an increased Gamma activity in first-episode patients in both resting
state and under an attention task. Several other works indicating this phenomena have
been systematically reviewed by Perrottelli and colleagues [223]. With this review, the
authors argue that the increase of Gamma activity could be used as a marker of the
illness onset, since the Gamma increase in the early phases of schizophrenia is a well
established fact.

Gamma oscillations, psychotic states and NMDAR hy-
pofunction

As stated in previous sections, the administration of sub-anesthetic doses of NMDAR
antagonists generate a significant increase of Gamma power on neuronal activity and
induces several schizophrenia-relevant symptoms, including hallucinations and delusions
[214, 228, 188, 191, 189, 190]

The increase of Gamma activity, even though not well established as a robust feature
of schizophrenia disease in chronic patients [198], has been frequently observed in patients
in early phases of the disease [223]. In addition, it was recently shown [229] that other
features of the early phases of schizophrenia (but not chronic phases), such as hyper-

13The term first-episode patients refers to patients in the early-course schizophrenia disease, who have
experienced only one or few psychotic episodes.
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connectivity, could be reproduced by the administration of an NMDAR antagonist 14.
Other evidences in favor of the hypofunction of NMDA receptors as one of the elements
related to schizophrenia can be found in the review [144].

In parallel, it has been shown [230] that first-episode patients presented 9.3% higher
scores than chronic patients on the Positive And Negative Syndrome Scale (PANSS) and
16.3% lower on the negative symptom scale. Concurrently, Gamma-band responses in
schizophrenic patients often correlate with positive psychotic symptoms, with higher
gamma-band activity corresponding to increased symptom load [225, 205, 209, 226].

On the other hand, despite of these independent observations, the role of the increase of
Gamma activity on the occurrence of psychotic states in schizophrenic patients is largely
controversial. In Work 3, we use network models endowed with NMDA synaptic con-
ductances to mimic schizophrenic states in which the hypo-function of NMDA synapses
generate an increase of excitation (due to inhibitory desinhibition) and an increase of
the Gamma power generated by the global network activity. In Work 3 we also explore
the effect of NMDA hypo-function on the capability of the network to respond to ex-
ternal stimuli, providing, as a consequence, a possible interpretation with respect to the
type of neuronal information processing occurring during hallucinations and/or delusions
occurring during psychotic states.

14In the referred work [229], a robust hyper-connectivity of the prefrontal cortex was observed in healthy
volunteers administered with sub-anesthetic doses of ketamine, similarly to the one observed in patients
in early schizophrenic stages. Interestingly this hyper-connectivity was not observed in chronic patients
[229].
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Computational Models

Historical Perspective

Individual neuron models

The mathematical study of neural activity dates the earliest eighteen century, when Louis
Lapicque, in 1907, published a paper on the excitability of nerve cells. Lapicque modeled
neurons by means of an analogy to electrical circuits, describing the neuronal membrane
as a circuit consisting of a parallel capacitor and a resistor. Lapique’s insights about the
fundamental relationship between the membrane parameters and its excitability gave rise
only decades later (1960s) to the simplified model known today as the Leaky Integrate-
and-Fire (LIF) [231].

A B

Figure 9: The neuron as a RC circuit. A) Equivalent circuit in which the neuronal
membrane is seen as capacitor C, coupled in parallel with a resistor R. V is the membrane
potential, Vrest is the resting membrane potential and I indicates an injected current. B)
Scheme representing the voltage trajectory of the integrate-and-fire model imagined by
Lapique, indicating that when V reaches a threshold value, an action potential is generated
and V is reset to a subthreshold value. Figure adapted from [232].

In 1943, Warren McCulloch and Walter Pitts developed an even more simplified model,
the formal neuron [233], in which neurons would be either active or inactive, presenting
as outputs 0 or 1. This type of model allowed the construction of neural networks which
could be simulated computationally with the technology available at the time and gave
important insights on the study of associative memory [234]. Subsequently, in 1952, Alan
Lloyd Hodgkin and Andrew Fielding Huxley explained and described mathematically for
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the first time the ionic mechanisms underlying the initiation and propagation of action
potentials in the squid giant axon, receiving for this work the Nobel Prize in Physiology
or Medicine in 1963.

Today this model is known as the Hodgkin-Huxley model (HH) [235] and a huge diver-
sity of variations of it is available: from extended versions, describing neurons with several
compartments (spines, dendrites, soma, axon segments) [236, 237] to simplified versions,
such as the Adaptive Exponential Integrate-and-Fire (AdEx) [238]. In addition, several
other models have been developed though-out the decades, the most importants being the
FitzHugh–Nagumo Model, [239], the Hindmarsh–Rose Model, [240], the Izhikevich Model
[241] and the Quadratic Integrate-and-Fire (QIF) [242]. See the reviews [243, 244, 237].

The network models developed in this thesis used the AdEx model to describe their
units. In this model, neurons are described by their membrane potential, that thanks to
a supplementary equation, is capable of displaying spike-frequency adaptation15. Further-
more, neurons in the AdEx model are point neurons, that is, their membrane potential is
assumed to be homogeneous in the whole cell body, which is the same as assuming that
the neuron have no structure: no axon and no dendrites, only a punctual soma. More
details about this model are described in the methods section of Work 2 and Work 3.

Network models and Oscillations

Yoshiki Kuramoto started a general theory to treat chemical and biological systems whose
elements behave as oscillators [247]. This theory has been proven to be useful in several
domains of knowledge, including neuroscience [248]. Nancy Kopell, Bard Ermentrout and
collaborators were some of the pioneers to apply Kuramoto’s ideas on the field. This
branch of theoretical neuroscience got known as the Coupled Oscillators Theory, in which
neurons are depicted as intrinsically rhythmic units that spike regularly and are coupled
by weak synaptic connections 16.

Great amount of our understanding on neural oscillations have been given by the Cou-
pled Oscillators Theory, which allowed the investigation of the effect of noise, couplings,
and delays on the synchrony and regularity of network dynamics [252, 253, 135, 254, 255,

15Spike-frequency adaptation is the name given for a phenomenon in which neurons, when stimulated
with a step current, display a gradual decrease of their firing frequency (after an initial increase). This
phenomena is caused by several biophysical mechanisms, which are reviewed in [245, 246].

16Couple Oscillators Theory is a general term assembling different types of description: from simplified
models, in which neurons are described by its Phase Response Curve (PRC) [249, 250, 251], to more
detailed models, in which the ideas from the PRC approach are extended, keeping the assumption of
weak synaptic disorder and weak noise. In these more detailed models, neurons fire synchronously with
the same firing rate as the network, acting as oscillators [252, 253, 135, 254, 255, 256, 257, 258, 247, 259,
260]. The Phase Response Curve (PRC) is a function that describes neuronal phase, characterizing the
way a neuron shifts its spike times with respect to the timing of depolarizing currents [249, 250, 251].
Neuronal phase is defined based on neuronal spikes: the phase oscillates between 0 to 2π, being the spike
time usually associated to the phase zero. PRC of individual neurons can be coupled and used to build
network models [261, 262, 263]
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256, 257, 258, 259, 260] and gave important qualitative predictions about the mechanisms
of oscillation generation for different neuron types [242, 257, 252, 64]. However, the condi-
tions under which neurons can be considered as coupled oscillators, e.g weak synapses and
weak noise, are frequently not fulfilled [264, 70, 265]. Furthermore, the assumed spiking
regularity of individual neurons during global oscillatory activity is typically not observed,
since, as stated earlier, in general even when coherent oscillations are detected in extra-
cellular recordings in vivo, neurons present a stochastic and sparse pattern of firing [68,
75, 121, 81, 122, 87, 69, 38, 123, 124].

Nicolas Brunel and collaborators developed models able of capturing both phenomena:
fast network oscillations combined with irregular neuron firing. These models assume fast
synapses with strong synaptic weights and synaptic delays [266, 110, 111, 112, 267]. This
type of description allows neurons to spike with firing rates much smaller than the network
oscillation frequency, in a stochastic way, similarly to what it is observed in vivo. This
type of dynamical regime is known as the firing rate regime [111], in contrast to fully
synchronized modes, like the ones observed in coupled oscillators models, known as the
spike-to-spike regime.

Another important theoretical approach, in the study of neural oscillations, is the
field of the so-called rate models (also known as mean-field models or mass models). This
approach describes the collective properties of a large numbers of neurons instead of
focusing on individual neural dynamics, by modeling the average firing rate of a particular
population of neurons. These models are obtained by means of heuristic arguments [268,
269, 270], not being directly derived from spiking neurons. The first firing rate models
were derived under the assumption that individual neurons spike stochastically [271, 272]
being able to characterize (stationary) oscillations in the firing rate regime [266, 110, 111,
112, 267]. These models were usually characterized by one single variable (the average
population firing rate), evolving according to an differential equation described by a time
constant τ and a steady-state input-output transfer function (f-I curve). These models, on
the other hand, could not describe neuronal activity if a significant portion of the neurons
fired synchronously (like in spike-to-spike regime). Recent firing rate models [273, 274]
have incorporated a second variable (describing the network synaptic activity) being able
to model oscillations in both regimes (spike-to-spike regime and firing rate regime).

In Work 2, we developed different network structures generating Gamma oscillations,
working in the firing rate regime, using Adaptive exponential integrate-and-fire neurons
[238]. These models were improved (with the addition of NMDA channels) in Work 3.

Gamma oscillations in theoretical models

Even though several experimental protocols have been used to examine the generation
mechanisms of Gamma oscillations, a more complete understanding requires the use of
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theoretical models [132, 70]. Gamma oscillations have been extensively modeled in the
literature with different neuronal models and networks structures [132, 70, 64]. In Work
2, three types of Gamma generation mechanisms were explored: the Interneuron Gamma
(ING), the Pyramidal-Interneuron Gamma (PING) and the Chattering Induced Gamma
(CHING).

In this section, we describe theoretically each of these mechanisms and reference some
of the most important theoretical hallmarks of the literature.

ING Model

The ING mechanism can be qualitatively understood as a succession of events: (1) The
rhythm starts when a subset of inhibitory neurons discharge together, generating syn-
chronous inhibitory post-synaptic potentials (IPSPs). (2) The neurons who receive these
inputs, have their spike times constrained, being able to spike again only when these
inhibitory currents decay. (3) These postsynaptic neurons are forced to discharge their
next spike closer in time to their pre-synaptic neurons, which will also spike when the
global inhibitory input decays. This spike time restriction increases network synchrony
progressively, generating the rhythm.

It has been shown theoretically that Gamma oscillations emerge spontaneously in a
networks exclusively composed of mutually connected inhibitory neurons if a sufficient
external drive is provided [275, 276, 277, 259, 278, 266, 111, 112] and certain conditions
are fulfilled. However, these conditions are different depending on the oscillatory regime
studied (firing rate regime or spike-to-spike regime). While in the spike-to-spike regime
the oscillation frequency strongly depends on synaptic decay time, allowing synchrony to
emerge even without any synaptic latency [275, 276, 277, 259], in the firing rate regime,
synchronization is generated by the presence of a neuronal phase-lag (either due to synap-
tic delays or due to the time a conductance-based neuron takes to respond to synaptic
currents because of its intrinsic properties) and depends weakly on synaptic decay times
[111, 112]. In addition, the frequency of Gamma oscillations generated by the ING mech-
anism is also differently determined in these two regimes. In the spike-to-spike regime the
oscillation frequency is mainly determined by the inhibitory synaptic decay time [276,
277], while in the firing rate regime it depends much more on the fastest time scales, like
latency and the rise times, than on the synaptic decay times.

PING Model

The PING model, based on the reciprocal interaction between pyramidal neurons and
interneurons, is the earliest proposed model to explain Gamma oscillations [271, 279, 280,
281, 111, 112]. This mechanism can be understood qualitatively as a succession of cycles
of picks of excitation and inhibition that alternate. In these cycles, excitatory neurons
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recruit inhibitory neurons that in turn reduce network activity. The new cycle starts
when inhibition decays.

PING models can also describe Gamma oscillations in both spike-to-spike regime and
firing rate regime. Furthermore, the parameters defining the oscillation frequency in each
of these conditions are similar. In both regimes, the oscillation frequency depends strongly
on excitatory and inhibitory synaptic time decays [282, 111].

The phase relationship between excitation and inhibition is an important aspect to be
discussed, since it has been suggested to be a marker of the type of Gamma generation
mechanism [140]. In theoretical models of PING mechanism, excitatory neurons can spike
both before and after inhibitory neurons [283, 284, 112] during Gamma oscillations.

It has been shown theoretically by [112] that in the firing rate regime, in models
composed of conductance based neurons (neurons that include non-linear spike generation
mechanisms in their equations), the spiking order of excitatory and inhibitory populations
depends exclusively on single-cell characteristics. When the IAMP A/IGABA ratio is the
same in excitatory and inhibitory neurons, excitatory cells tend to follow the inhibitory
ones in most of the physiologically plausible parameter space. On the other hand, when
the ratio of excitation to inhibition is weaker in excitatory cells than in inhibitory ones,
excitatory cells tend to precede inhibitory neurons [111, 112]. Furthermore, [283, 284] have
studied neuron phase differences during ING and PING (on the spike-to-spike regime) and
the conditions in which each mechanism take place when both of them are allowed by the
network structure. These works have indicated, in addition, in which conditions during
spike-to-spike Gamma oscillations inhibitory neurons proceed excitatory ones when the
PING mechanism take place.

CHING Model

Chattering cells, also known as Fast Rhythmic Bursting (FRB) cells, were proposed
decades ago to be Gamma generators in cortical networks due to certain experimental
observations [66, 27, 118]. Nonetheless very few computational models, in our knowledge,
were proposed to study the emergence of Gamma oscillations due to the presence of this
type of neurons.

By means of multi-compartment neurons and voltage-dependent currents described
by the Hodgkin-Huxley formalism, the study of [285] showed that Chattering cells have
an important role in recruiting feedback inhibition through their pacemaker rhythmic
spiking. They observed that this role is not only due to the increase of firing rate, but
specifically due to their bursting firing pattern. The work of [285] argues that Chattering
cells would be important on Gamma generation in brain regions in which the synaptic
transmission to interneurons is not highly reliable. In agreement, experimental studies
have shown that Chattering cells work as amplifiers of Gamma activity due to their
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intrinsic suprathreshold properties and to their profuse axonal projections to other chat-
tering cells and to other neurons on the network [27, 118, 133, 286]. In addition, other
computational multi-compartment models have shown the importance of the connection
via axonal gap junctions of Chattering cells with other pyramidal cells in the generation
of Gamma oscillations [133, 287].

In this thesis we developed a single compartment model of Adaptive exponential
integrate-and-fire neurons composed of Chattering cells, Regular spiking cells, Fast Spik-
ing cells, in which Gamma oscillations are generated exclusively thanks to presence of
Chattering Cells. We coined the term Chattering Induced Gamma (CHING) to refer to
Gamma oscillations generated thanks to the presence of these pacemaker excitatory cells.
This model is discussed in Work 2.
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Human Recordings Analysis

The data used in this thesis to constrain our models, both during Gamma and AI states,
has been already published in other works [288, 47] and was donated by one of our
collaborators, Sydney S. Cash (Department of Neurology, Massachusetts General Hospital
and Harvard Medical School, Boston).

In this thesis, we extend these prior analysis, focusing on awake states. The data
was acquired extracellularly in patients suffering of intractable epilepsy, who had had
multi-electrode arrays implanted during therapeutic procedures. The arrays registered
simultaneously local field potentials (LFP) and single-unit activity. We considered the
data of one patient for which the recording was very stable, and in which several periods
of wakefulness could be analyzed. Figure 10A indicates the structure of the recording, in
which several brain states during the night could be observed: slow wave sleep (SWS), light
sleep, REM sleep and awake periods. Only long and consecutive periods of wakefulness,
containing several seconds of Gamma bursts, were considered (Segments 1, 2, 3, 4 and 5
indicated in 10A).

Eighty one electrodes were implanted on the temporal cortex of this patient (layer 2/3)
and 91 neurons could be identified (some neurons were recorded by the same electrode).
These neurons have been already previously [288, 47] classified as Regular Spiking Cell
(RS), putative excitatory, and Fast Spiking Cells (FS), putative inhibitory. From the 91
neurons, 23 were recognized as FS and 68 were recognized as RS. This classification was
performed by means of clustering based on the spike shape and functional interactions
(determined using cross-correlograms) [289, 288].

In each data part, periods of Gamma oscillations (Gamma bursts) were identified and
neural activity was characterized with respect to the Gamma cycles. The duration of these
data parts are indicated in Figure 10B, together with the total amount of Gamma periods
identified inside of each of them. The identification of Gamma bursts was done separately
for each electrode. We considered as Gamma bursts periods in which the amplitude of
Hilbert Transform envelope (absolute value) differed from the mean, by at least 2 standard
deviations, for a minimum duration of 3 Gamma cycles (See Figure 10C). These criteria
were not enough to identify all Gamma bursts (some Gamma bursts were ignored). On
the other hand, no false positives were included in the analysis. All the Gamma bursts
automatically identified by the algorithm were individually confirmed visually. The oscil-
lation phase was acquired using the angle of the imaginary part of the Hilbert Transform
(See Figure 10C).

Individual neuron spike times were analyzed with respect to Gamma periods, both in
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regard to their spiking phase and to their spiking frequency inside and outside Gamma
bursts. To identify neurons that were particularly phase-locked to Gamma oscillations, we
constructed individual phase distributions, which were tested for circular uniformity using
a Bonferroni-corrected Rayleigh test [61, 290]. A neuron was considered phase-locked if
we could reject circular uniformity at P < 0.01 (Z > Zc). Figure 11 depicts in A and B,
two examples of distributions of phase-locked neurons.

To identify firing rate changes inside Gamma bursts, the average firing rates inside
(fγ) and outside (fout) of Gamma bursts were computed for each neuron. A neuron was
considered to increase its firing significantly if the observed average number of spikes
inside Gamma bursts was higher than the percent point function of a 95% interval of
confidence of a Poissonian distribution with average firing rate fout. Cells which had firing
rates smaller than 0.1 Hz or cells whose electrode measured less than 1 second of Gamma
bursts, in the respective data segment, were classified as inconclusive. Figure 12 indicates
an example of this procedure.

The results of this experimental data analysis, which inquired the relationship between
individual neuron activity and Gamma rhythms measured on LFP, are characterized in
Work 2. This study showed, by means of this analysis, that the participation of individual
cells of Gamma oscillations is very sparse. During Gamma bursts, only a small percent-
age of the recorded neurons have been identified to be phase-locked to the rhythm and
only some cells increased their firing. Furthermore, throughout the night (different data
segments), neurons changed of behavior. That is, neurons that were previously changing
their firing during Gamma bursts kept their firing the same and/or neurons that were
previously identified to be phase-locked were not phase-locked in other periods of time.
In addition, this analysis showed that FS cells presented significant higher level of phase-
locking and firing rate increase in comparison to RS cells. Likewise, FS cells changed
its behavior less than RS cells. Figure 13 indicates that this neuronal behavior changes
across the five data segments used on our analysis. The models described in Work 2 were
capable of displaying most of these features.
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Figure 10: Human electrophysiological data. A) Structure of the recordings of one
patient during the night. Thirty eight periods of wakefulness (whose duration are indi-
cated) could be recorded. These periods were interspersed with sleep states (SWS, light
sleep and REM), represented by colored lines, without the indication of their duration. In
our analysis, only long and consecutive periods of wakefulness were considered: Segments
1, 2, 3, 4 and 5. B) Total duration of each of the 5 data parts selected for the analysis and
the respective total duration of Gamma bursts inside of each of them. Averages are indi-
cated by the dashed lines. C) Upper graph: Gamma periods detection. Raw LFP (black),
band-pass filtered LFP (yellow) and Hilbert Transform Envelope (red) are shown. Gamma
bursts were detected by means of the deviation from the average of the Hilbert Transform
envelope (dashed red line) of at least 2 SDs (dotted red line), with a minimum duration
of 3 Gamma cycles. The gray shaded region indicates one example of identified Gamma
burst. Lower graph: Oscillation Phase extraction. The oscillation phase were obtained by
the angle of the imaginary part of the Hilbert Transform. Phase distributions per neuron
were computed based on the oscillation phases where each neuron spiked.
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Figure 11: Phase-locking statistical test. Phase distribution of two randomly picked
cells from the human recordings during Data segment 1 : one excitatory (A) and one
inhibitory (B). The phase distribution of each cell was fitted to a Von Mises curve, which
allowed the estimation of its preferred phase θV M . The phase distribution of each neuron
was tested for circular uniformity using a Bonferroni-corrected Rayleigh test [61, 290]. A
neuron was considered phase-locked if the circular uniformity at P < 0.01, (Z > Zc) could
be rejected.

Figure 12: Firing rate change statistical test. A: Activity of two randomly picked
cells during several Gamma bursts: neuron 13 (inhibitory, left) and neuron 75 (excitatory,
right). The graphs display the firing patter around Gamma bursts (indicated by the black
doted lines). Each point corresponds to one spike in the correspondent tuple of time and
burst ID (y-axis). B: Histogram computing the distributions of all spikes inside all Gamma
bursts of neuron 13 (left) and neuron 75 (right). C: Exemplification of firing rate change
statistical test. The Poissonian distribution of these two neurons is constructed based on
their average firing rate calculated outside of Gamma bursts. The critical number of spikes
nc, indicated by the dotted lines, is calculated based on the percent point function of the
respective Poissonian Distribution for a period T, with an 95% interval of confidence.
The observed number of spikes nobsv is depict as a dot over the curve. According to this
procedure, only neuron 75 is considered to increase its firing, since nobsv > nc.

36



Inconclusive

Figure 13: Change of Cell Behavior across time during Gamma in experimental
data. Middle panel represents each cell by a circle in each of the 5 data segments. FS and
RS phase-locked cells are depicted respectively as red and green circles, while not phase-
locked or inconclusive cells (with respect to phase locked) of both types are depicted as
blue and gray circles respectively. Superposed to each cell circle, pointing up and down
triangles were added to indicate if the cell increased (△) or decreased (▽) its firing. If
the cell didn’t change its firing significantly a minus sign (-) was added. Side box plots
indicate, on the left, the percentage of phase-locked FS (red) and RS (green) cells in each
of the 5 data segments, and, on the right, the percentage of firing rate increase. Dotted
lines indicate the average value between the 5 data segments (phase-locking level: left and
firing rate increase: right). The box plot at the bottom depicts the superposed counts of
phase-locking and firing rate increase behavior of each individual cell, computed in the 5
data segments.

37



38



Developed Models

The models developed in this thesis had their parameters constrained by electrophysio-
logical data acquired in human as described in the previous chapter. We exploit differ-
ent network structures to investigate three well-known mechanisms of Gamma generation
[138, 132, 139, 140, 27, 133]: either by the exclusive interaction between inhibitory neurons
[Interneuron Gamma (ING)] or by the interaction of inhibitory and excitatory neurons
via Pyramidal-Interneuron Gamma (PING) or via Chattering Induced Gamma (CHING).
While networks with a structure similar to the PING Network have been largely used in
the literature, the structures of ING and CHING Networks were developed exclusively in
this thesis.

PING
Pyramidal-Interneuron 

Gamma

ING
 Interneuron 

Gamma

CHING
 Chattering Induced 

Gamma

A B C

Figure 14: Network structures of the three developed models.

Each of the three developed networks used the Adaptive Exponential Integrate-And-Fire
Model (Adex) [238] for its neural units, and were composed of different types of cells:
Regular Spiking Cells (RS), Chattering Cells (Ch) and Fast Spiking Cells (FS). Network
structures and individual cell parameters are described in detail in Work 2.

Parameter search

An extensive parameter search was performed to identify network and neuronal parameter
sets which could, in each model, reproduce experimental features. Physiologically plausible
distributions of firing rates, of membrane conductance and of inter-spike intervals were
used to constrain these models, the same way as the level of phase-locking and firing rate
changes during Gamma oscillations extracted from our data analysis.
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Parameter search in PING Network

For PING network, a parameter search with respect to the synaptic decays was performed.
Parameters were chosen in such a way that oscillations in the Gamma band would be
present in a network composed of neurons with neuronal parameters chosen in accordance
with previous publications [291, 292]. Figure 15 indicates this parameter search.

Parameter search in ING Network

The ING network is composed by the mixture of two networks: one being composed by
RS and FS neurons (which can not generate oscillations due to the choice of synaptic
conductances, τe=τi= 5 ms, like it is shown on Figure 15D), and one network being
composed by FS neurons that are highly connected (FS2 neurons17). This network of
highly connected FS neurons can generate Gamma oscillations by its own, thanks to its
dense connections, like it is shown in Figure 16.

For the ING network, a parameter search was performed to identify which interaction
between each population (RS, FS and FS2 neurons) could allow the model to reproduce
experimental features. Among these experimental features are the level of phase-locking
and the level of firing rate changes during Gamma oscillations, extracted from our data
analysis. Because this parameter search was highly multidimensional, it could not be
performed as systematically as the previous ones depicted in Figures 15 and 16. For this
reason, we present a scheme indicating the qualitative conclusions from this parameter
search, which justify the choice of probabilities of connections between each neuronal
population, used in this model (Figure 17).

Parameter search in CHING Network

The CHING network is exactly the same network displayed in Figure 15D (with synaptic
conductances: τe=τi= 5 ms), with the difference that 5% of its RS neurons were replaced
by Chattering cells. For this reason, the rhythms it presents are exclusively generated by
the Chattering activity. Consequently, the parameter search performed in this model was
entirely focused on the choice of the intrinsic cellular parameters of this neuronal type.
Again, since this parameter search was highly multidimensional, it could not be performed
in a systematical way. Several parameter combinations were tested taking into account
the following criteria: 1) cells should keep their chattering properties, 2) the oscillation
should be on Gamma band, 3) the oscillation should be on the firings rate regime, with
sparse and irregular firing, 4) cells should present physiologically plausible distributions of
firing rates, of membrane conductance and of inter-spike intervals, 5) cells should present

17We decided to rename this population as FS2, to stress the different pattern of connectivity between
this group of highly connected FS neurons, from the other FS neurons in the network.
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levels of phase-locking and firing rate changes during Gamma oscillations similar as the
one extracted from our data analysis.
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Figure 15: Synaptic time scale parameter search of a network composed of RS
and FS neurons randomly connected. The network used to produce this figure was
composed of 20000 excitatory Regular Spiking and 5000 inhibitory Fast Spiking neurons
connected randomly with a probability of connection of 2%. All synapses were delayed
by a time delay of 1.5 ms, and had reference synaptic strengths of QR

e = 1 nS or QR
i = 5

nS and reference synaptic time scales of τR
e =τR

i = 5 ms. Synaptic strengths (Qe,i) were
normalized at each tested time scale (τe,i) to keep the same synaptic gain, such that:
Qe,i = (QR

e,i.τ
R
e,i)/τe,i. A) Network oscillation frequency depicted in a color scheme as a

function of excitatory and inhibitory synaptic time scales. White color corresponds to
regions in which no oscillation was identified in RS population. B) Synchrony Index of
RS population (top) and network balance (bottom) as a function of synaptic time scales.
The Synchrony Index (SI) is based on the auto-correlation of the population frequency of
RS cells. To be calculated, the autocorrelation of the population frequency was fitted by a
damped cosine function and the value of this fitted function at zero time lag was defined
as the SI. If the exponential decay rate was higher than 100, it was considered that there
was no global oscillation at the population scale. The network balance was defined as the
rate between the average excitatory and inhibitory synaptic currents,

〈
⟨Iexc⟩N

⟨Iinh⟩N

〉
t
, in which

⟨⟩N stand for average among neurons and ⟨⟩t average on time. White squares indicate the
two different parameter sets used in our simulations ( τe=τi= 5 ms for AI Network, and
τe=1 ms , τi= 7.5 ms for PING Network, as decribed in Work 2). C) Same as B but
calculated for the FS population. D) Population frequency autocorrelation of RS (green
dots) and FS population (blue dots) neurons of the two used parameter sets. Solid lines
indicate the damped cosine fitted function.
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Figure 16: Gamma Network parameter search. The network connectivity (p) vs. inhibitory
synaptic strengths (Qi) parameter space of the Gamma Network are displayed as color-plots. A)
Average spiking frequency. B) Network oscillation frequency. C) Network balance: rate between
the average excitatory and inhibitory synaptic currents,

〈
⟨Iexc⟩N

⟨IInh⟩N

〉
t

, in which ⟨⟩N stand for

average among neurons and ⟨⟩t stand for average on time. D) Membrane Potential Synchrony
(χ), calculated by means of the equation: χ2 = σ2

V
1
N

ΣN
i σ2

Vi

, in which V (t) = 1
N ΣN

i Vi(t), σV
2 =

⟨[V (t)]2⟩t − [⟨V (t)⟩t]2 and σVi
2 = ⟨[Vi(t)]2⟩t − [⟨Vi(t)⟩t]2. The set of parameters which allowed

the Gamma Network to oscillate in the Gamma range are indicated by a star symbol. The white
and yellow curves depict parameter choices in which the product between p and Qi are the
same. The yellow curve indicates all parameters equivalent to a choice of p=60% and Qi= 5 nS
(Q′

i = 3/p′), while the white curve indicates all parameters equivalent to a choice of p=10% and
Qi= 5 nS (Q′

i = 0.5/p′), like it is usually used in other works [111]. Every point in each graph
is given by the average output of 10 simulations of 5 seconds each. In these simulations, each
neuron of the Gamma Network received 400 independent and identically distributed excitatory
Poissonian spike trains with a spiking frequency µExt=5 Hz and a synaptic strength of QExt=
1 nS (that decayed with synaptic time constant of τE=5 ms). E) Network activity for the
parameters indicated with a start in A, B, C and D (p=60% and Qi= 5 nS). The raster plot of
the whole network (e1), the population frequency (e2), the membrane potential of 3 randomly
chosen neurons (e3) and the power spectrum of the population frequency (e4) are indicated. The
population frequency is calculated as the total number of spikes (spikes of the whole network) in
a time bin of 1 ms, divided by the duration of this time bin. Because of the exclusive presence of
inhibitory neurons and its high level of recurrent inhibition, this network is capable of generating
Gamma rhythms with frequencies around 70Hz by means of an ING mechanism.

ING Network

Figure 17: Qualitative scheme indicating the role of each population interaction on
the network dynamics.
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Work 1

Cellular correlates of wakefulness
and slow-wave sleep: evidence for a

key role of inhibition

Reference: Susin, Eduarda, and Alain Destexhe. "Cellular correlates of wakefulness and
slow-wave sleep: evidence for a key role of inhibition." Current Opinion in Physiology 15
(2020): 68-73.

French Abstract:

Dans cet article, nous avons considéré et discuté certaines études récentes à propos
de corrélations cellulaires, dans des états de veille et de sommeil, basés sur des enreg-
istrements d’unités multiples. Ces études concernaient, d’entre autres, une nouvelle forme
d’homéostasie observée pendant le sommeil lent profond (SWS de l’anglais), où les cel-
lules les plus actives (haut taux de décharge) ont montré une baisse dans leur taux de
décharge pendant le SWS, tandis que, inversement, les cellules les moins actives ont mon-
tré une tendance à décharger plus rapidement dans le SWS. Également, autres références
ont montré une implication plus forte des neurones inhibiteurs par rapport aux neurones
excitateurs lors des oscillations Gamma dans le SWS, et une augmentation des corréla-
tions croisées par paires exclusivement entre les neurones inhibiteurs pendant le SWS.
Nous comparons les résultats de ces études (chez des modèles animaux) avec nos analyses
effectuées sur des enregistrements chez l’homme. Nous confirmons certaines similitudes
dans la dynamique cellulaire observées entre l’état de veille et le SWS, et soulignons les
différences qui sont principalement apparentes dans la dynamique et dans les corrélations
des neurones inhibiteurs. Ces résultats suggèrent que les réseaux inhibiteurs sont essen-
tiels dans la dynamique du sommeil, et devraient être une cible principale dans les études
futures.
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Cellular correlates of wakefulness and slow-wave sleep: evidence
for a key role of inhibition$

Eduarda Susin and Alain Destexhe

Recent studies have identified interesting cellular dynamics in

wakefulness and slow-wave sleep (SWS), as we review here for

unit recordings in animals and human. First, a novel form of

homeostasis was observed during sleep, where high-firing cells

in wake tend to fire slower during SWS, while low-firing cells in

wake tend to fire faster in SWS. Second, there seems to be a

stronger involvement of inhibitory cells compared to excitatory

cells during gamma oscillations in SWS. Third, pairwise cross-

correlations between cells seem to increase specifically during

SWS, but only for inhibitory neurons. We compare these results

between animal and human unit recordings, and confirm the

similarities in cellular dynamics in wake and SWS, and highlight

that differences are mostly apparent in the dynamics and

correlations of inhibitory cells. These results suggest that

inhibitory networks are key in the dynamics of sleep, and

should be a main target in future studies.
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Introduction
Slow-wave sleep (SWS) is characterized by the preva-

lence of slow waves in the delta (0.5–4 Hz) frequency

range, which are visible in the electroencephalogram

(EEG) and local field potentials (LFPs). Early studies

using intracellular recordings in anesthetized sleeping

animals [1–3] have shown that the depth-positive (sur-

face-negative) EEG components of slow waves are asso-

ciated with cellular hyperpolarization and pause of firing.

In natural SWS, extracellularly recorded neurons fire in

coincidence with the depth-negative component of slow-

wave complexes, whereas the depth-positive component

is associated with neuronal silence [4–6]. Similar relations

were found for delta waves in the intact brain [7], or

isolated cortex [8]. Thus it seems that slow-wave com-

plexes are characterized by alternating periods of sus-

tained firing and neuronal silence usually called “Up” and

“Down” states, respectively. It was further shown that, in

natural sleep, Up and Down states appear synchronously

in multiple cells recorded extracellularly [6], and the

relation between the slow-wave and cellular hyperpolari-

zation was later confirmed by intracellular recordings of

neurons in naturally sleeping animals [9�]. Note that

Down states are not periods of complete silence. A

possible relation between the residual activity during

Down states and memory consolidation has been pro-

posed based on extracellular recordings in prefrontal

cortical areas in rats [10]. This residual activity during

down states was also observed in human recordings [11�].

Early studies also showed that, in aroused states, cortical

cells fire tonically [12–14], and the EEG is dominated by

low-amplitude fast activity in the beta/gamma (15–75 Hz)

frequency range. Extracellular studies in natural SWS

found that all characteristics from the spiking activity,

LFP activity or LFP coherence, are identical between the

Up-states of SWS, wakefulness or rapid-eye movement

(REM) sleep [6]. These seemingly identical properties

led to the suggestion that SWS Up-states constitute small

episodes of activity replayed from wakefulness, possibly

involved in memory consolidation [15]. This view was

challenged recently by studies who found subtle differ-

ences in firing activity between natural SWS and wake-

fulness [16�], as we review in this paper.

Cellular correlates of wakefulness and slow-
wave sleep
Generic features of brain activity during wake and sleep

states in humans are illustrated in Figure 1. We used a

dataset where units could be separated into fast-spiking

(FS), presumed inhibitory, and regular-spiking (RS), pre-

sumed excitatory cells; some of these were confirmed by

direct functional identification [19]. In these human

recordings, during Wake and REM states, the activity

of both RS and FS cells is sustained, asynchronous and
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irregular, and the LFP is dominated by high-frequency

activity. In contrast, during SWS, the activity is domi-

nated by slow waves in the LFP, which are paralleled

with synchronized silences (Down states) where almost

all cells cease firing. Outside these periods (Up states),

the dynamics is sustained, asynchronous and irregular,

similar to Wake and REM states. These observations lead

to the statement that the Down states is what makes SWS

dynamics more synchronized, and in a sense, the higher

synchrony during SWS does not come from the firing of

units, but rather comes from these periods of non-firing.

Consistent with this interpretation, a previous extracellu-

lar study in marmoset cortical areas [18], found that there

was no significant increase of neural correlation during

SWS when recording spontaneous activity, providing

another evidence that SWS Up-states display firing

dynamics almost identical to wakefulness.

However, several observations have shown differences in

spiking activity during wake states and SWS. For

instance, a relevant feature that has been taken into

consideration is the firing level of single units in different

states. A recent work using wide-field calcium imaging in

cortical superficial and deep layers in mice [17�] showed

that the activity of excitatory neurons was highest during

Wake, followed by that of SWS and subsequently fol-

lowed by that of REM sleep (Wake > SWS > REM).

Using two-photon imaging in layer 2/3, the same study

[17�] also showed that paralvabumin-positive (PV+)

interneuron activity follow the relation: Wake = REM

> SWS, while somatostatin-positive interneurons follow:

Wake > SWS > REM. In human recordings, the firing

rates were comparable in all brain states [21], which would

tend to support that the recorded FS cells are PV+ cells,

although this should be confirmed with better statistics.

In addition, a recent analysis [16�] found important dif-

ferences between SWS and Wake by focusing on Up

states. By means of silicon probes implanted in frontal

cortical areas of rats, measurements of extracellular sig-

nals allowed simultaneous identification of brain state and

the assessment of the firing pattern of putative excitatory

and inhibitory cells. This analysis [16�] showed that

during SWS pyramidal cells that displayed high-firing

during Wake tended to decrease their activity during

SWS, while cells that displayed low-firing during wake

tended to increase their firing during SWS. We confirm

these findings also in humans through similar recordings

and data processing performed previously [19]. Figure 2

compares the results from [16�] with our own analysis

based on the data coming from [19]. Despite the small

number of cells available in the human data set, in a

confidence interval of 95%, it is possible to observe a

small slope with respect to the identity (0.67–0.94). These

results (in both data sets) indicate that a new type of

homeostasis, as argued by [16�], in which a homogeniza-

tion of firing is observed thorough the differential action

in cells with different levels of activity (in opposition to

previous homeostatic models [22,23]). On the other hand,
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Features of different brain states in Human. Selected parts of 10 s of recordings of LFP (top) and spiking activity (bottom) of SWS, Wake and

REM are shown. The data were recorded from the same human subject which had a multielectrode array implanted in temporal cortex before a

therapeutic surgery. LFP and spiking activity were simultaneously measured and the spikes were sorted allowing the identification of 68 putative

excitatory (blue) and 23 putative inhibitory (red). Data sample from [19].
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when considering putative inhibitory cells the result is

divergent in the two data sets (rat and human). No firing

alteration is observed in the firing of inhibitory cells

during Wake and SWS in rat [16�], while a tendency

close to that which is observed with excitatory cells is

observed in human inhibitory cells. This result should be

checked in data sets where more neurons are available.

A further difference observed during Up states in SWS

with respect to Wake states is the involvement of inhibi-

tory cells in gamma oscillations. As recently shown in

human recordings [11�], both putative excitatory regular-

spiking and putative inhibitory fast-spiking populations

increase their firing during gamma oscillations. Here, by

analyzing the pre-processed data from [19], we noted that

there is a significant increase on the average firing of the

inhibitory population during SWS with respect to its

activity during Wake (see Figure 3D). While no signifi-

cant increase in firing with respect to Wake is exhibited

by the excitatory population during SWS (see Figure 3E).

Indicating an increase of FS participation in gamma

generation during SWS.

Another key aspect to differentiate the network state

between Wake and SWS is the pairwise correlations

displayed by unit spikes. Figure 4A shows recordings

of multielectrode arrays implanted in two monkey cortical

areas (premotor dorsal — PMd — and motor neocortical

-MI, layers II/III) [11�], in which spiking activity and LFP

were simultaneously recorded. Cross-correlations

between spike trains were normalized by the geometric

mean of each cell pair’s average firing rates to avoid

spurious effects from cell-intrinsic firing levels [24].

Remarkably, comparing the correlation matrices between

Wake and SWS, one sees that pairs of cells become

correlated specifically during SWS (Figure 4). These

sleep-specific correlations appear even between distant

cortical areas. Interestingly, these pairwise spike train

correlations only concern pairs of FS cells. With this

observation we emphasize one more time that there
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Comparison of firing rate during Wake and SWS states in rat and human cortex. Each point in the graph characterizes the firing rate (log

scale) of an individual cell in the two states. Putative excitatory cells, both in rat and humans, suffer a change in their firing rate depending of their

level of activity. Neurons that are highly active during wake decrease their firing during SWS, while neurons that have very low firing rates increase

their firing (see arrows). Diverging results were found in the two data sets when looking to putative inhibitory cells. (A) Putative excitatory and

inhibitory neurons in rat (slopes, 95% confidence interval: 0.66-0.71 and 0.996-1.005). Figure adapted with permission from [16�]. (B) Putative

excitatory and inhibitory neurons in human (slopes, 95% confidence interval: 0.67–0.94 and 0.68–0.94). Data sample from [19].
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seems to exist a particularly high involvement of inhibi-

tory cells specifically during SWS. In agreement, a previ-

ous study [18] also reported an increase of correlations

during SWS in the response to auditory stimuli, but no

separation between RS and FS cells was attempted in that

study.

Furthermore, this particular involvement of inhibition

can also be detected from correlated patterns analyzed

using maximum entropy models. Such methods can infer

correlations from large data sets with the advantage that

they can uncover collective dynamics with very few ad hoc
assumptions. Recently, spiking activity in human record-

ings were used to infer the parameters of a Maximum

Entropy model that takes into account only and exactly

the single neurons’ spiking probability, and the pairwise

covariances observed in the data [20�]. In this work,

illustrated in Figure 4B, the empirical probability distri-

butions of population activity of FS and RS cells, during

Wake and SWS, were compared to the probability dis-

tributions predicted by the model. Population activity

was defined as the average number of active cells in a

certain time window. This work showed that a model

based exclusively on pairwise couplings can successfully

predict the activity of both neuron types during Wake

states (see the measures of the Kullback–Leibler diver-

gence, DKL, in Figure 4b1). However, it also demon-

strated that pairwise interactions alone are not enough

to describe the probability distribution displayed by the

FS population during SWS (Figure 4b2). This result

implies that, in contrast to the RS population, higher-

order, or even population-wide, interactions govern the

behavior of FS cells during SWS. This indicates another

important difference between Wake and SWS states with

respect to FS cells.

Discussion
In this paper, we briefly reviewed a few of recent studies

about the cellular correlates of wake and sleep states

based on multiple unit recordings. Similar to a previous

study in cats [6], it was found that in human and monkey

multielectrode recordings, wake and sleep states globally

display similar levels of firing. Most units fire irregularly

and asynchronously, and this pattern is seen in all brain
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Difference of firing rates during g events in RS and FS cells in Human Wake and SWS states. The color-maps indicating the average firing

rate per cell around g events in both Wake and SWS states are indicated in (A) and (B). The firing of regular spiking (RS) are displayed in the

bottom and the fast spiking (FS) cells is displayed in the top. Each line indicates the color-coded firing rate of each neuron in time averaged

between all the gamma periods detected. For each g event the firing rate was calculated in bins of 20 ms around the centered g period. The white

dashed lines indicate the beginning and the average end of g periods identified in the data. Gamma periods were identified by the variation of the

envelope obtained through the Hilbert Transform of the filtered LFP in the range of 30-50 Hz as is schematically shown in (C). Neurons were

ordered by their discharge probability during g. The average firing rate per population during g events in Wake and SWS are displayed in (D) and

(E). The color-coded firing rates shown in A and B were average in between neurons for each population: FS (D) and RS (E). The shadowed parts

indicate the standard error of the mean. Data sample from [19].
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states (Figure 1). Note that, in mice, a different level of

activity is observed between Wake and sleep depending

on the cell type. In the light of recent studies [11�], we

also found differences between Wake and SWS in human:

(1) there seems to exist a weak homeostasis of firing

activity, where high-firing cells in wake tend to fire lower

during SWS, and vice-versa for low-firing cells, as found in

rat excitatory neurons [16�] and which we confirm here in

human (Figure 2) for RS and FS cells. (2) There is a

stronger participation of FS cells during gamma oscilla-

tions in SWS compared to Wake (Figure 3). (3) Besides

the level of firing, there is also an increase of the spiking

correlation between pairs of FS cells, specifically during

sleep [11�] (Figure 4).

Taken together, these results show that inhibition seems

to be a key to differentiate the network state between

Wake and SWS, even though the differences are subtle.

This is true for the level of firing of inhibitory cells, which

seems to be maximally involved during SWS gamma

oscillations. It is also true for the level of correlation

between inhibitory cells, which show remarkably high

correlations that specifically appear during SWS, some-

times extending to large cortical distances [11�]
(Figure 4A).

We presently do not know why inhibitory networks seem

different during sleep. A possibility is that the different

levels of cholinergic drive in Wake and SWS may
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Difference in pairwise spike train cross-correlations among RS and FS cells during Wake and SWS. (A) Spiking activity measured during b

oscillations through multielectrod arrays in two cortical areas in monkey (premotor dorsal, PMd, and motor neocortical, MI). Neurons could be

identified as RS and FS. a1) Cell-cell correlations matrices containing cells from the two areas (PMd and MI). For cells 57/69 (during SWS) the

type of target cells is indicated with colors (red, FS; and blue, RS). a2) Spatial location of different cells in the implanted arrays. Note that FS cells

(exemplified by cells 57 and 69) display synchronous activity even with cell recorded in another cortical area (M1). a3) Spike cross-correlogram

between cells 57 and 69 during SWS and Wake states. A significant peak is observed only during SWS. Figure A was adapted from [11�]. (B)

Empirical probability distributions of human spiking activity are compared with the ones predicted by Maximum Entropy model (see main text),

both in Wake (b1) and SWS (b2) for two type of cells (FS and RS). Measures of the Kullback-Leibler divergence, DKL, are indicated in the graphs.

Figure B was adapted from [20�].
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up-regulate some of the inhibitory neurons, resulting in

an increase of participation in gamma oscillations, as we

observed. However, this does not explain why inhibitory

cells are so correlated during SWS, which necessarily

comes from an excitatory drive yet to be identified.
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neurons expressing gamma
oscillations and asynchronous states

Reference: Susin, Eduarda, and Alain Destexhe. "Integration, coincidence detection and
resonance in networks of spiking neurons expressing Gamma oscillations and asynchronous
states." Plos Computational Biology (2021).

French Abstract:

Pendant l’état de veille, l’activité neuronale observée dans le cerveau est typiquement
asynchrone et irrégulière. Cependant, cette activité est également accompagnée de péri-
odes où des oscillations modulent l’activité des neurones. Une de ces oscillations, connues
comme des Ondes Gamma (30-90 Hz), a été associée au traitement de l’information. Dans
cette étude, nous utilisons des modèles informatiques pour étudier comment les circuits
cérébraux génèrent des oscillations d’une manière cohérente avec les enregistrements de
microélectrodes chez l’homme. Nous étudions ensuite comment ces réseaux réagissent aux
stimuli externes, en comparant les états asynchrones avec les états oscillatoires. Ceci est
testé selon plusieurs paradigmes: un mode intégrative où des entrées qui variant lentement
sont progressivement intégrées; un mode de détection de coïncidence où les entrées brèves
sont traitées en fonction de la phase des oscillations; et un mode de résonance où le réseau
est sondé avec des stimuli oscillatoires. Étonnamment, nous constatons que dans tous les
cas, la présence d’oscillations Gamma diminue la réactivité aux stimuli externes. Nous
discutons des implications possibles de cette diminution de réactivité sur le traitement de
l’information et proposons de nouvelles directions pour une exploration plus poussée.
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Abstract

Gamma oscillations are widely seen in the awake and sleeping cerebral cortex, but the

exact role of these oscillations is still debated. Here, we used biophysical models to examine

how Gamma oscillations may participate to the processing of afferent stimuli. We con-

structed conductance-based network models of Gamma oscillations, based on different cell

types found in cerebral cortex. The models were adjusted to extracellular unit recordings in

humans, where Gamma oscillations always coexist with the asynchronous firing mode. We

considered three different mechanisms to generate Gamma, first a mechanism based on

the interaction between pyramidal neurons and interneurons (PING), second a mechanism

in which Gamma is generated by interneuron networks (ING) and third, a mechanism which

relies on Gamma oscillations generated by pacemaker chattering neurons (CHING). We

find that all three mechanisms generate features consistent with human recordings, but that

the ING mechanism is most consistent with the firing rate change inside Gamma bursts

seen in the human data. We next evaluated the responsiveness and resonant properties of

these networks, contrasting Gamma oscillations with the asynchronous mode. We find that

for both slowly-varying stimuli and precisely-timed stimuli, the responsiveness is generally

lower during Gamma compared to asynchronous states, while resonant properties are

similar around the Gamma band. We could not find conditions where Gamma oscillations

were more responsive. We therefore predict that asynchronous states provide the highest

responsiveness to external stimuli, while Gamma oscillations tend to overall diminish

responsiveness.

Author summary

In the awake and attentive brain, the activity of neurons is typically asynchronous and

irregular. It also occasionally displays oscillations in the Gamma frequency range (30–90

Hz), which are believed to be involved in information processing. Here, we use computa-

tional models to investigate how brain circuits generate oscillations in a manner
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consistent with microelectrode recordings in humans. We then study how these networks

respond to external input, comparing asynchronous and oscillatory states. This is tested

according to several paradigms, an integrative mode, where slowly varying inputs are pro-

gressively integrated, a coincidence detection mode, where brief inputs are processed

according to the phase of the oscillations, and a resonance mode where the network is

probed with oscillatory inputs. Surprisingly, we find that in all cases, the presence of

Gamma oscillations tends to diminish the responsiveness to external inputs. We discuss

possible implications of this responsiveness decrease on information processing and pro-

pose new directions for further exploration.

Introduction

Gamma oscillations appear in many brain states and brain regions [1] and are detectable

mostly from the local field potential (LFP) as oscillations in the 30–90 Hz frequency range.

During sensory responses, oscillations in this frequency range were initially proposed to serve

as a mechanism for coordination of neural activity among cells coding for different aspects of

the same stimulus [2–5]. Strengthening of synaptic input due to temporal summation led to

the hypothesis that Gamma synchrony was necessary to effectively transmit specific sets of

information across cortical networks in the very noisy conditions in which the brain operates.

This concept was later expanded by proposing that synchronous Gamma also engages inhibi-

tion in target networks. Phase-locked inhibition creates strong suppression around the excit-

atory drive and creates windows of low and high neuronal excitability. Such observations led

to hypotheses that Gamma oscillations are important for information processing and coding.

The most popular theories are the Binding-by-synchronization Hypothesis [4, 5], the Phase

Coding Theory [6, 7], the Communication Through Coherence Theory [8, 9] and Communi-

cation through Resonance Theory [10].

An alternative hypothesis, instead of relying on oscillations for efficient cortical communi-

cation, posits that desynchronized states are optimal for the transfer of signals between cortical

networks [11, 12]. Desynchronized states, called Asynchronous-Irregular (AI) [13] because of

its features, are characterized in cortical cells in vivo by irregular firing with very weak correla-

tions and stationary global activity [14–18]. This type of activity can be modeled by networks

with balanced excitatory and inhibitory inputs [19].

In the present work, we aim at testing these two discrepant points of view using computa-

tional models. We take advantage of previously published electrophysilogical data, measured

extracellularly in human temporal cortex [20, 21], to characterize the behavior of individual

neurons during Gamma oscillations in resting awake states, and to compare such experimental

features to spiking neural networks generating Gamma. We exploit different network struc-

tures to investigate three well-known mechanisms of Gamma generation [22–27]: either by the

exclusive interaction between inhibitory neurons [Interneuron Gamma (ING)] or by the inter-

action of inhibitory and excitatory neurons via Pyramidal-Interneuron Gamma (PING) or via

Chattering Induced Gamma (CHING). First we compare to what degree each mechanism can

reproduce the observed experimental features of human Gamma oscillations and what are the

specificities of each mechanism, in the way neurons behave during Gamma. Subsequently,

we examine network responsiveness due to three types of stimulus: Gaussian slowly-varying

inputs (integration mode), precisely-timed Gaussian inputs (coincidence detection mode) and a

sinusoidal varying Poissonian input (resonance).
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Materials and methods

Neuron and network models

Each of the three networks developed in this work uses the Adaptive Exponential Integrate-
And-Fire Model (Adex) [28] for its neural units. In this model, each neuron i is described by its

membrane potential Vi, which evolves according to the following equations:

C
dViðtÞ
dt

¼ � gLðVi � ELÞ þ gLDexp
ðViðtÞ � VthÞ

D

� �

� wiðtÞ � ISyniðtÞ

ISyniðtÞ ¼ gEiðtÞðViðtÞ � EEÞ þ gIiðtÞðViðtÞ � EIÞ

tE;I
dgE;IiðtÞ
dt

¼ � gE;IiðtÞ þ QE;Ii

X

k

dðt � tkÞ

twi
dwiðtÞ
dt

¼ aðViðtÞ � ELÞ � wiðtÞ þ b
X

j

dðt � tjÞ

ð1Þ

where C is the membrane capacitance, gL is the leakage conductance, EL is the leaky membrane

potential, Vth is the effective threshold and Δ is the threshold slope factor. The synaptic current

(ISyni (t)) received from other neurons to neuron i is taken into account as conductance based:

every time a presynaptic neuron spikes at time tk, the excitatory (gEi) or the inhibitory (gIi) syn-

aptic conductance increase by a discrete amount QE or QI (excitatory or inhibitory synaptic

strength), depending on the nature of the presynaptic neuron. Synaptic conductances subse-

quently decay exponentially with a time constant τE or τI. EE and EI are the reversal potential

of excitatory (EE) and inhibitory (EI) synapses. The ∑k runs over all the presynaptic excitatory

or inhibitory neurons spike times. During the simulations, the equation characterizing the

membrane potential Vi is numerically integrated until a spike is generated. Formally this hap-

pens when Vi grows rapidly toward infinity. In practice, the spiking time is defined as the

moment in which Vi reaches a certain threshold (Vth). When Vi = Vth the membrane potential

is reset to Vrest, which is kept constant until the end of the refractory period Tref. After the

refractory period the equations start being integrated again. The adaptation current is

described by the variable wi. It increases by an amount b every time neuron i emits a spike at

times tj and decays exponentially with time scale τw. The parameter a indicates the subthresh-

old adaptation.

Three types of cells were used in our models: Regular Spiking Cells (RS), Chattering Cells

(Ch) and Fast Spiking Cells (FS). The cell specific activities are displayed in Fig 1 and their

parameters are indicated in Table 1.

Each of the three developed networks are composed of N = 25000 neurons, 80% excitatory

and 20% of inhibitory. All neurons are connected randomly. Additionally to recurrent connec-

tions, each neuron receive an external drive (noise). This noise was implemented as NExt =

20000 independent and identically distributed excitatory Poissonian spike trains with a spiking

frequency μExt, being sent to the network with a 2% probability of connection. These spike

trains were computed inside of the synaptic current term Isyn(t), by means of a discontinuous

increase of the excitatory synaptic conductance gE by an amount QExt (at every spike time).

This type of implementation adds to the network a low degree of correlation, since some neu-

rons share the same drive. Nevertheless, this extra correlation does not affect our results,

which kept being qualitatively the same when a drive with no correlations was applied. The
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patterns of connection and neuron type composition of each network model, as well as the

specific values of Poissonian stimulation (μExt and QExt), are described bellow.

• PING Network: It is composed of 25000 Adex neurons (20000 excitatory Regular Spiking

and 5000 inhibitory Fast Spiking cells). All neurons are connected randomly with a probabil-

ity of connection of 2%. All synapses are delayed by a time delay of 1.5 ms. The synaptic

excitatory (inhibitory) time scales are τE = 1.5 ms (τI = 7.5 ms), with synaptic strengths of

Fig 1. Neuronal response to an external current. A: External drive fluctuation. External current, in each neuron, varied from 0 to 0.5 nA

in a linear way, was kept constant for 500 ms, subsequently decreasing to 0 nA in a linear way. B: Isolated RS cell in response to the

external drive presented in A. C: Isolated FS cell in response to the external drive presented in A. D: Activity of one Ch cell, in a network

exclusively composed of 1000 Ch cells connected randomly with a probability of 2%.

https://doi.org/10.1371/journal.pcbi.1009416.g001
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QE = 5 nS (QI = 3.34 nS). Synaptic time scales were chosen accordingly to the parameter

search indicated in S1 Fig. For Gamma activity, the network was stimulated with an external

noise of μExt = 3 Hz and QExt = 4 nS. For an activity similar to an Asynchronous and Irregu-

lar activity (AI-like), the network was stimulated with an external noise of μExt = 2 Hz and

QExt = 4 nS.

• Asynchronous and Irregular (AI) Network: The AI Network was used in this work as one

of the building blocks for the ING and the CHING Network. It is composed of 25000 neu-

rons (20000 excitatory Regular Spiking and 5000 inhibitory Fast Spiking). All neurons are

connected randomly with a probability of connection of 2%. All synapses have synaptic

strengths of QE = 1 nS or QI = 5 nS, and are delayed by a time delay of 1.5 ms. This network,

independently of the strength of the the external noise, can not generate Gamma rhythms.

This is the case because the chosen synaptic excitatory and inhibitory time scales (τE = τI = 5

ms) are in a region of the parameter space in which the regime is asynchronous and irregu-

lar. See S1 Fig. Because of this feature, the AI Network was used as a control to study network

responsiveness (see Results section).

• Gamma Network: The Gamma Network was used in this work as one of the building blocks

for the ING Network. It is composed of 1000 inhibitory Fast Spiking neurons, highly con-

nected between each other. All neurons are connected randomly with a probability of con-

nection of 60%. All synapses have synaptic strengths of QI = 5 nS and synaptic time constant

of τI = 5 ms, and are delayed by a time delay of 1.5 ms. This network is capable of generating

oscillations by its own due to the exclusive presence of inhibitory neurons excited by an

external drive [29, 30]. Low oscillation frequencies in the Gamma range (�70 Hz) are possi-

ble thanks to the high connectivity patterns used (60%). S2 Fig displays the parameter space

of network connectivity vs. inhibitory synaptic strengths for this network. The parameters

chosen in our simulations (p = 60% and QI = 5 nS) are indicated.

• ING Network: The ING Network is constructed as a mixture of AI network with the Gamma
Network. It is composed of 25000 neurons: 20000 RS and 4000 FS from the AI network plus

1000 FS neurons from the Gamma Network. The Fast Spiking neurons in the original AI
network and the ones in the Gamma Network share all the same parameters of FS cells in

Table 1. The only difference among them is their pattern of connectivity. To make it clear,

we call as FS2, the FS neurons that were part of the Gamma Network, and we keep calling as

FS the ones that were part of the AI Network. In the ING Network, FS2 cells send and receive

Table 1. Specific neuron model parameters.

Parameter RS FS Ch

Vth -40 mV -47.5 mV -47.5 mV

Δ 2 mV 0.5 mV 0.5 mV

Tref 5 ms 5 ms 1 ms

τw 500 ms 500 ms 50 ms

a 4 nS 0 nS 80 nS

b 20 pA 0 pA 150 pS

C 150 pF 150 pF 150 pF

gL 10 nS 10 nS 10 nS

EL -65 mV -65 mV -58 mV

EE 0 mV 0 mV 0 mV

EI −80 mV −80 mV −80 mV

Vrest -65 mV -65 mV -65 mV

https://doi.org/10.1371/journal.pcbi.1009416.t001
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random connections to RS neurons with a probability of 15%, FS2 cells send random con-

nections to FS neurons with a probability of 15% while FS cells send random connections to

FS2 neurons with a probability of 3%. This combination of the Gamma network with the AI
Network allows the oscillation frequency to slow down further, reaching� 55 Hz. All synap-

ses have synaptic strengths of QE = 1 nS or QI = 5 nS and synaptic time scales of τE = τI = 5

ms. Synapses are delayed by a time of 1.5 ms. For Gamma activity the network was stimu-

lated with an external noise of μExt = 3 Hz, while for Asynchronous and Irregular activity,

the network was stimulated with an external noise of μExt = 2 Hz. The external noise used

had a synaptic strength of QExt = 0.9 nS.

• CHING Network: The CHING Network is constructed the same way as the AI network, with

the difference that 5% of the RS cells were replaced by Chattering Cells (Ch). This way, the

CHING Network is composed of 25000 neurons: 19000 RS, 1000 Ch and 5000 FS. All cells in

the network are randomly connected to each other with a probability of 2%. All synapses

have synaptic time scales of τE = τI = 5 ms and are delayed by a time delay of 1.5 ms. Excit-

atory synapses have synaptic strengths of QE = 1 nS, while inhibitory synapses from FS cells

to Ch or to RS have synaptic strengths of QI = 7 nS. Synapses from FS to FS have synaptic

strengths of QI = 5 nS. The network receives external noise with synaptic strength of QExt = 1

nS in excitatory cells (RS and Ch) and QExt = 0.75 nS in FS cells. For Gamma, external noise

of μExt = 2 was used, while for Asynchronous and Irregular activity, μExt = 1 Hz.

Simulations

All neural networks were constructed using Brian2 simulator [31]. All equations were numeri-

cally integrated using Euler Methods and dt = 0.1 ms as integration time step. The codes for

each one of the three developed networks are available at ModelDB platform: http://modeldb.

yale.edu/267039.

LFP model

To model the LFP generated by each of the three developed networks, we used a recent method

developed by [32]. This approach calculates the contribution of individual neurons to the LFP

by means of the convolution of individual neuron spike trains (generated by the networks)

with a phenomenological Kernel K, which had its parameters fitted from unitary LFPs (the

LFP generated by a single axon, uLFP) measured experimentally [32]. Each neuron spike train

is convoluted with a particular Kernel Kp
that depends on the particular neuron position ~xp in

a 2-D space.

Kp
ð~x; tÞ ¼ Að~xÞexp½� ðt � tpickÞ

2
=ð2s2Þ�

tpick ¼ t0 þ d þ j~x� ~xp j=va

Að~xÞ ¼ A0exp½� j~x� ~xp j=l�

ð2Þ

in which σ is the standard deviation in time, tpick is the peak time of the uLFP, t0 is the time of

the spike of a particular cell p, d is a constant delay, va is the axonal speed, and j~x � ~xp j is the

distance between the position of particular cell (~xp) and the position of the electrode (~x). Að~xÞ
gives the space-dependent amplitude, in which A0 is the maximal amplitude, and λ is the

space constant of the decay. These parameters were estimated separately for excitatory and
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inhibitory contributions (Kp
E and Kp

I ) [32, 33]. The LFP, at a particular electrode position~x, is

given by the sum of all individual neuron contributions:

LFPð~x; tÞ ¼ ð3Þ

X

p

Z

Kp
Eð~x; t � tÞ

X

j

dðt � tjpÞ

 !

dtþ
X

p

Z

Kp
I ð~x; t � tÞ

X

j

dðt � tjpÞ

 !

dt ð4Þ

In which ∑p runs over neurons p, and ∑j runs over all spike times of neuron p. To be able to

apply this method to our simulations (which don’t presume any neuronal localization in

space), we randomly displaced the network neurons in 2-D grid, assuming that the electrode

was displaced on its center and was measuring the LFP in the same layer as neuronal soma.

The program code of the kernel method is available in ModelDB (http://modeldb.yale.edu/

266508), using python 3 or the hoc language of NEURON.

Detection of Gamma rhythms and Gamma phase

In both, experimental and simulated signals, Gamma rhythms were detected by means of the

Hilbert transform of the band-filtered LFP. The identification of Gamma bursts was done sepa-

rately for each electrode. We considered as Gamma bursts periods in which the amplitude of

Hilbert Transform envelope (absolute value) differed from the mean, by at least 2 standard devi-

ations for the experimental data, and by at least 1 standard deviation for the numerical ones, for

a minimum duration of 3 Gamma cycles. This criteria were not enough to identify all Gamma

bursts (some Gamma bursts were ignored). On the other hand, no false positives were included

in the analysis. All the Gamma bursts automatically identified by the algorithm were individu-

ally confirmed visually. The oscillation phase was acquired using the angle of the imaginary

part of the transform. The LFP was band-pass filtered in the band of 30–50 Hz (unless indicated

otherwise). To band-pass the LFP signals, we used a FIR (Finite Impulse Response) filter using

the Kaiser window method with a 60 dB stop-band attenuation and a 5Hz width from pass to

stop transition [34]. To implement the filter we used the following functions from the Python-

based ecosystem Scipy: signal.kaiserord, signal.lfilter and signal.firwin [35].

Spike-LFP phase-locking

Every time a Gamma period was identified, in both experimental and simulated signals, the

spiking times of each neuron was stored and compared to the Gamma rhythm phase. This

information allowed the construction of the phase distribution of each neuron. For the experi-

mental data, considering that the identification of Gamma bursts was done separately for each

electrode, neurons measured in particular electrode, had their phases and firing rates analyzed

exclusively with respect to the rhythm measured in this electrode. Neuron phases were calcu-

lated from -π to π. In this way neurons with negative phases should be interpreted as spiking

preferentially before than neurons with positive phases. The phase distribution of each neuron

was tested for circular uniformity using a Bonferroni-corrected Rayleigh test [36, 37]. A neuron

was considered phase-locked if we could reject circular uniformity at P< 0.01. See S3 Fig. Neu-

rons that spiked less then 5 times inside Gamma bursts, or neurons whose electrode measured

less then 1 second of Gamma, in the respective data segment, were classified as inconclusive.

Firing rate change

The average firing rate of each neuron outside Gamma bursts (fout) was computed based in the

total time, excluding the activity inside Gamma bursts and their duration. In accordance, the
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average firing rate inside Gamma bursts (fγ) was calculated based on the total Gamma duration

and the activity occurring exclusively inside Gamma bursts. A neuron was considered to

increase its firing significantly if the observed number of spikes in the measured time was

higher than the percent point function of a 95% Interval of Confidence of a Poissonian distribu-

tion with average firing rate fout. Cells that had firing rates smaller then 0.1 Hz or cells whose

electrode measured less then 1 second of Gamma bursts, in the respective data segment, were

classified as inconclusive. See S4 Fig.

Responsiveness

The level of responsiveness (R) of a network, due to a stimulus (S) in a time window of duration

T, is defined as the difference between the total number of spikes generated by the whole net-

work due to a stimulus (NS
spikes) and the total number of spikes generated in the absence of the

stimulus (Nspikes), normalized by the network size (total number of neurons Nn) and the dura-

tion of the time window T.

R ¼
NS
spikes � Nspikes

TNn

ð5Þ

Phase-dependent responsiveness

The Phase-dependent responsiveness of a network R(θ), in a time window of duration T, due to

a stimulus S presented to the network in a particular phase θ of the Gamma cycle, is defined as

the difference between the total number of spikes generated by the whole network due to a

stimulus at the θ phase, NS
spikesðyÞ, and the total number of spikes generated in the absence of

the stimulus at the θ phase, Nspikes(θ), normalized by the network size (total number of neurons

Nn) and the time window T.

RðyÞ ¼
NS
spikesðyÞ � NspikesðyÞ

TNn

ð6Þ

Human recordings

In one epileptic patient with intractable seizures, 10x10 Neuroprobe silicon multielectrode

arrays (400-μm inter-electrode separation, 1 mm electrode length, Blackrock Microsystems)

were implanted in the middle temporal gyrus (layers II/III). Electrodes were implanted in

regions expected to be removed, and after the monitoring session, the implant area was

excised. The patient consented to the procedure, which was approved by the Massachusetts

General Hospital Institutional Review Board in accordance with the ethical standards of the

Declaration of Helsinki. This data set have already been published previously [20, 21]. Neurons

could be classified through clustering based on the spike shape and functional interactions

(determined using cross-correlograms) [20, 38] as Regular Spiking Cell (RS), putative excit-

atory, and Fast Spiking Cells (FS), putative inhibitory. From 81 electrodes, 91 neurons could

be detected: 23 FS and 68 RS.

Results

We first analyze Gamma oscillations from human recordings, then examine network models

of Gamma oscillations and compare them to the experimental data. Finally, we examine the
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responsiveness and resonant properties of these networks, comparing Gamma and asynchro-

nous states.

Human recordings analysis

In this paper, aiming to constrain our computational models to observed experimental fea-

tures, we extend the human data analysis performed in [20, 21], focusing on awake states. The

data was acquired extracellularly in patients suffering of intractable epilepsy, who had multi-

electrode arrays implanted during therapeutic procedures. The arrays registered simulta-

neously local field potential (LFP) and unit activity. We considered here one patient for which

the recording was very stable, and in which several periods of wakefulness could be analyzed.

In each electrode, Gamma rhythms were identified and neural activity was characterized

with respect to the Gamma cycles. Fig 2A illustrates a specific instant in which Gamma bursts

were observed in most of the electrodes (spiking activity and the respective electrode band-fil-

tered LFP are shown). Gamma rhythms were determined through the Hilbert transform of the

filtered LFP (30–50 Hz). Fig 2B and 2C give an example of how Gamma is detected and how

neural phase with respect to the oscillation is extracted (see Detection of Gamma rhythms and
Gamma phase in Materials and methods Section). The data were acquired during the night.

Five awake periods could be recorded, having a mean duration of 27 minutes, containing on

average 13 seconds of Gamma (Fig 2D). During these periods the patient was in a resting

awake condition.

In accordance with other studies, the spiking activity during Gamma bursts was observed

to be very irregular and close to a Poissonian process, with a spiking frequency much smaller

than the population frequency [21, 39–41]. Moreover, conformable to [21], on average, only

4% of RS cells and 17% of FS cells were Phase-Locked (Fig 2E), with RS cells having a phase

preference later in the cycle than the FS cells (see S5 Fig). Furthermore, by measuring the firing

rate change of each cell inside and outside Gamma bursts (Fig 2F), we encountered on average

47% of FS cells that increased their firing inside Gamma bursts, while only 17% of RS cells did.

These observations suggest that Gamma oscillations modulate spiking activity in two manners:

by means of firing rate increase and by defining time windows were some neurons are more

likely to spike (phase-locking).

Contrary to the intuition that all neurons in a network generating Gamma would be partici-
pating to the rhythm, this analysis indicates that, only a small percentage of neurons has its

activity modulated by the oscillation (either by phase-locking or by firing rate increase). We

call this group of neurons as Gamma participating cells.

To better characterize the non-participation to Gamma rhythms, we followed each cell in

each of the 5 waking periods present in the recordings, searching for behavioral changes. We

observed that in different data segments, different groups of neurons were identified to partici-

pate to Gamma, indicating that the group of Gamma participating cells varies with time (see

S6 Fig). Furthermore, cells that were classified as phase-locked in different data segments, had

their preferred phase changed from one recording to the other (see cells 65 and 22 in S5 Fig).

We called this feature as dynamical phase preference. Fig 3 indicates the individual cell behavior
consistency, that is, how frequently a cell keeps being identified to a certain behavior: either

being phase-locked or to have its firing rate changed inside Gamma bursts in a particular data

segment. Stacked bars of Fig 3A and 3B indicate a color-coded behavior distribution of indi-

vidual neurons, inside of the 5 data segments, with respect to firing rate change and phase-

locking respectively. Neurons are ordered in a way in which inhibitory cells are displayed in

the beginning. Red neuron indexes stand for FS cells and green neuron indexes stand for RS

cells. Fig 3C and 3D depict the distribution among all recorded neurons of each behavior (C:
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Firing Rate Increase, D: Phase-Locking). A behavior consistency of zero denotes that the indi-

cated percentage of neurons never presented that behavior, while a behavior consistency of 5

denotes that the indicated percentage of neurons presented that behavior in all 5 data seg-

ments. FS cells tended to participate of Gamma bursts with higher consistency than RS cells.

Fig 2. Human electrophysiological data. A: Simultaneously recorded LFP and multi-units activity. The Filtered LFP (30–50 Hz) of the 81 electrodes

are shown together with the spiking times of 91 neurons. Some neurons were recorded by the same electrode, which had its LFP duplicated in the

figure. The identification of Gamma bursts was done separately for each electrode. This way, neurons measured in a particular electrode, had their

phases and firing rates analyzed exclusively with respect to the rhythm measured in its respective electrode. Spikes of Fast Spiking (FS) neurons,

presumably inhibitory, are shown in red, and spikes from Regular Spiking (RS) neurons, presumably excitatory, are shown in green. B: Gamma periods

detection. Raw LFP (black), band-pass filtered LFP (yellow) and Hilbert Transform Envelope (red) are shown. Gamma bursts were detected by means

of the deviation from the average of the Hilbert Transform envelope (dashed red line) of at least 2 SDs (dotted red line), with a minimum duration of 3

Gamma cycles. The gray shaded region indicates one example of identified Gamma burst. C: Oscillation Phase extraction. The oscillation phases were

obtained by the angle of the imaginary part of the Hilbert Transform. The phase distributions of each neuron were computed based on the oscillation

phases where each neuron spiked. D: Data organization. Five awake periods could be recorded during one night. Each period had a different total time

duration (yellow bars in minutes) and a different average duration of total Gamma occurrences (orange bars in seconds). Since each electrode was

analyzed individually, the average indicated in the bars is the average among all the electrodes in the respective segment. E: Percentage of neurons

identified as phase-locked in each data segment. The average amount of Phase-locked neurons in the five data segments was of 4% in RS and 17% in FS.

RS neurons are shown in green and FS neuron in red. F: Percentage of neurons that increased their firing during Gamma, in each data segment. The

average amount neurons in the five data segments which increased their firing during Gamma was of 17% in RS and 47% in FS. Same color scheme as

in E.

https://doi.org/10.1371/journal.pcbi.1009416.g002
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While 34.8% of FS increased their firing inside Gamma bursts in at least 4 of the 5 data seg-

ments, only 4.4% of RS cells did the same. Moreover 8.7% of FS cells kept being phase-locked

in at least 4 data segments, in comparison to only 1.5% in RS population (see S7 Fig). Likewise,

we call the reader’s attention to the significant number of cells that never increase their firing

rate inside Gamma bursts (Fig 3C,� 40% of the recorded neurons) and to the significant

number of cells that never presented phase-locking (Fig 3D,� 80% of the recorded neurons).

The behavior of individual cells during Gamma is quantified in S8 Fig.

Furthermore, another important aspect to be acknowledge is a possible correlation between

high firing rate cells (inside Gamma bursts) and those cells that show higher phase locking.

Nonetheless, the human data set used in this study is too small to be able to arrive to any con-

clusion. In our analysis cells with high firing rates were observed to be not phase-locked (or

phase-locked), the same way as cells with lower firing rates were observed to phase-locked

(or not phase-locked). See S9 Fig. The same is true if we try do drive conclusions about the co-

occurrences of firing rate increase and phase-locking (see S6 Fig).

In summary our analysis shows that, during Gamma bursts, only a small percentage of the

recorded neurons participate of the rhythm. This participation takes place in two ways: phase-

locking and/or firing rate increase. FS cells presented significant higher level of phase-locking

and firing rate increase in comparison to RS cells. Likewise the level of consistency behavior

were also more marked in FS cells than RS cells. Our analysis further indicates that, the group

of Gamma participating cells changes with time as well as their phase-preference.

Network models of Gamma oscillations

Gamma oscillations have been extensively modeled in the literature with different neuronal

models and networks structures [23, 42]. The low and irregular firing rates observed during

Gamma oscillations have been reproduced in recurrent networks of spiking neurons [13, 30,

43–45] by means of strong recurrent inhibition and strong noise (due to external inputs and/

or due to synaptic disorder). Networks displaying this type of activity are known to be in the

Fig 3. Individual neural behavior consistency on human recordings. Stacked bars indicating the color-coded distribution, inside of the 5 data

segments, of individual neural behavior relative to firing rate change (A) and phase-locking (B). Neurons are ordered in a way in which inhibitory

neurons are displayed in the beginning of the graph. Red neuron indexes stand for FS cells and green neuron indexes stand for RS cells. Items C andD
indicate respectively the statistics of the consistency indexes among the recorded neurons for Firing Rate Increase and Phase-Locking.

https://doi.org/10.1371/journal.pcbi.1009416.g003
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firing rate regime [30]; in contrast to models fully synchronized, in which neurons behave as

periodic oscillators. In this last regime, known as an spike-to-spike regime, neurons spike at

every cycle (or once every two cycles), with an average firing rate close to the frequency of

oscillatory network activity [46–54]

It is well established, experimentally and theoretically, that inhibition plays a crucial role in

generating Gamma rhythms [21, 23, 29, 42, 55–59]. Nonetheless, it is still controversial [22–

25] whether Gamma oscillations are generated by the exclusively interaction among inhibitory

neurons [Interneuron Gamma (ING)] or via the interaction of inhibitory and excitatory neu-

rons [Pyramidal-Interneuron Gamma (PING)]. Furthermore, a third mechanism, less explored

in the literature, relies on the presence of pacemaker excitatory cells known as Chattering neu-
rons [26, 27]. We named this third mechanism as Chattering Induced Gamma (CHING).

To compare to what degree each of three previously mentioned mechanisms can reproduce

the observed experimental features, and what are the consequences of each mechanism, we

constructed three neural networks working in the firing rate regime, adapted to generate

Gamma by means of ING, PING or CHING. Network and neuronal parameters were chosen

in a way to allow each model to reproduce experimental features as well as possible, with physi-

ologically plausible firing rates and membrane conductance distributions (see S10 and S11

Figs). We call the reader’s attention to the fact that, while networks with a structure similar to

our PING Network have been largely used in the literature, the structures of ING and CHING
Networks were developed exclusively for this study.

Like in previous works [60], all three networks are capable of generating spontaneous

Gamma bursts. These Gamma bursts are controlled by fluctuations of recurrent drive gener-

ated by the network dynamics, which for this reason occur irregularly and in an unpredictable

fashion. However, more predictable Gamma bursts can be obtained by increasing the external

drive (in all three networks). Fig 4 shows the behavior of the three networks when a fluctuation

on the Poissonian input generates Gamma, mimicking the Gamma bursts observed experi-

mentally. Note however that, outside of Gamma bursts (low input amplitude), the networks do

not necessarily display a pure AI state: all three networks display reminiscent low-amplitude

oscillations. In all cases, the firing dynamics remained irregular and with low synchrony, so we

called them AI-like states.
We next performed on the network models an equivalent analysis as in the human data

recordings. Each cell was followed in 5 different simulations containing on average 13 seconds

of Gamma bursts (same duration as in the experimental recordings, mimicking the five experi-

mental data segments) and statistical tests to identify phase-locking and firing rate changes

were performed. Fig 5A, 5B and 5C display respectively the quantification of behavior consis-

tency for PING, ING and CHINGNetworks. Accordingly to the unit recordings [21], the cells

were generally more depolarized and increased their firing during Gamma. On the other

hand, within the three models, only the ING Network (Fig 5Bc) is capable of describing the

appropriate amount of neurons that increase their firing in different data segments, during

Gamma. The PING and CHING networks predict an over-estimation of this number. The

presence of a sub-population of highly connected inhibitory neurons, capable of generating

Gamma rhythms by their own (see Neuron and Network Models: Gamma Network in Materials

and methods Section), allows the ING Network to provide a compensation for external excit-

atory fluctuations: whenever there is an augmentation of input in the network (generating

Gamma), there is in addition a concomitant augmentation of inhibition thanks to the FS2

population.

In comparison to the experimental data analysis performed previously, all three models are

capable of correctly describing the frequency of re-occurrence of phase-locking inside of a

group of neurons in different data segments. That is, all three models predict the same the
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same intensity of phase-locking consistency as the one observed on the human recordings (Fig

3D). On the other hand, regardless of the mechanisms of Gamma generation, all networks pre-

dict an over estimated phase-locking level (total number of phase-locked neurons per data seg-

ment) (see S12 Fig). With respect to the human data set, the PING and ING networks predict a

comparable level of phase-locking in the excitatory population but an exaggerated level in the

inhibitory population. In contrast, the CHING Network predicts a comparable level of phase-

locking in the inhibitory population but an exaggerated level in the excitatory one. Side by

side, the CHING Network is the one that still captures the best the level of phase-locking in

both populations (excitatory and inhibitory).

The right prediction of phase-locking consistency can be explained by the type of activity

regime in which each network works: the fluctuation-driven regime. Since this regime allows

neurons to spike with low firing rates in an irregular fashion, participating of the global

Gamma oscillation only in certain cycles due to the subthreshold randomness. Nonetheless,

the over-estimation of phase-locking level, indicates that the simple fact of being in the fluctua-
tion-driven regime is not enough to capture all levels of description. We hypothesize that the

network structure play a key role in the way neurons behave during oscillations. Fig 5 illus-

trates how different network structures (different connectivities in the ING Network or differ-

ent neuron types in the CHING Network) influence network activity.

Fig 4. Neural activity of different Gamma generation mechanisms networks. PING Network (left), ING Network (middle) and CHING Network
(right). A: Scheme of each network structure and pattern of connectivity. B: External Poissonian noise fluctuation generating Gamma bursts. C: Raster

plot of network activity inside and outside Gamma bursts. Only 1000 neurons of each cell type are shown. D: Membrane potential activity of randomly

picked neurons of each type. Pay attention to the well defined subthreshold oscillation exclusively present in the ING Network. E: Simulated LFP (raw—

in black) and its filtered version (yellow).

https://doi.org/10.1371/journal.pcbi.1009416.g004
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In the presented human recordings, inhibitory neurons tended to spike earlier in the cycle

than excitatory neurons. Fig 6 shows the phase preference with respect to the Gamma cycle of

all the neurons considered phase-locked in the human data recordings (Fig 6A) and in each of

the three developed networks (Fig 6B, 6C and 6D). The ING and CHING networks predict the

Fig 5. Individual neural behavior consistency in computational models. A: PING Network. B: ING Network. C: CHING Network. Same

analysis and color codes used in Fig 3. To mimic the five experimental independent data segments in the Human data recordings (Fig 3) on

the network models, five simulations (per model) were performed, containing on average the same amount of total Gamma bursts duration

as in the experimental data (13 seconds). In addition, to match the number of recorded neurons in the experimental data, in the models a

subset of 100 randomly picked neurons were selected in each case.

https://doi.org/10.1371/journal.pcbi.1009416.g005
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same relationship as observed in the human recordings (inhibition preceding excitation) while

the PING Network predicts the opposite. Moreover, in the same way as the human data set (S5

Fig), cells that were classified as phase-locked, have their preferred phase changed from one

simulation to other (dynamical phase preference). We argue that this feature is also a conse-

quence of the fluctuation-driven regime.
The phase relationship between excitation and inhibition is an important aspect to be dis-

cussed, since it has been suggested to be a marker of the type of Gamma generation mecha-

nism [25]. It has been shown theoretically by [45] that, in models composed of conductance

based neurons (neurons that include non-linear spike generation mechanisms on their equa-

tions) the spiking order of excitatory and inhibitory populations depends exclusively on sin-

gle-cell characteristics. Based on their analysis, when the IAMPA/IGABA ratio is the same in

excitatory and inhibitory neurons, excitatory cells tend to follow the inhibitory ones in most of

the physiologically plausible parameter space. On the other hand, when the ratio of excitation

to inhibition is weaker in excitatory cells than in inhibitory ones, excitatory cells tend to pre-

cede inhibitory neurons [30, 45]. In our simulations, the only network in which this theory

can be directly applied (because of the network structure) is the PING Network, in which the

IAMPA/IGABA ratio in excitatory cells is weaker than in inhibitory cells. Interesting discussions

about neural properties and population phase-differences can also be found on [61, 62].

Concluding this section, we showed that network models working in the firing rate regime,
regardless of the mechanism of Gamma generation, can reproduce qualitatively some of the

Fig 6. Phase preference of phase-locked cells. A: Human Data (Data segment 2). B: PING NetworkData. C: ING NetworkData. D: CHING Network
Data. The preferred phases of each phase-locked cell are displayed in polar graph representation. Note that, since phases were calculated from −π to π
(see Spike-LFP phase-locking in Materials and methods Section), these polar graphs should be interpreted clockwise with time. The vector size gives a

measure of the phase distribution of each cell. Big amplitude vectors indicate very concentrated distributions while small amplitude vectors indicate less

concentrated ones (see S3 Fig). The color of each vector encodes the type of the cell of whom it represents the phase: red (FS), dark red (FS2), green (RS)

and dark green (Ch). Cell number IDs are indicated. Dark colored vectors indicate the average phase among each neuron type and Δθ the phase

difference among them. Data segment 2 presented 43 minutes of recordings, containing 14 seconds of Gamma activity.

https://doi.org/10.1371/journal.pcbi.1009416.g006
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most important features of experimental neural activity during Gamma: phase-locking consis-

tency and dynamical phase preference. On the other hand, all models predict an overestima-

tion of the phase-locking levels. Additionally, only the ING Networkmodel was capable of

describing a reasonable level of firing rate increase inside Gamma bursts, as found in the

human recordings. We advocate that just the simple fact of being in the fluctuation-driven

regime is not enough to capture all levels of description of Gamma oscillations, and hypothe-

size that the network structure play a key role in the way neurons behave during oscillations.

Considering that the different types of spontaneous activity exhibited by the three presented

models could greatly influence how the network processes external input, we have investigated

this issue of responsiveness to external input in the next section.

Responsiveness and resonance during Gamma oscillations

Responsiveness. The way information is encoded and processed in the brain is still a

largely investigated enigma. Several ways of encoding information have been considered, such

as firing rates [63, 64], pairwise correlations [65, 66], spike pattern irregularity [67–70] and

spike packets [71], among others. In particular, two main theories have been dominating the

debate: Temporal Coding in which individual neurons encode information by means of precise

spike timings (working as coincidence detectors), and the Rate Coding in which neurons

encode information by means of changes in their spike rates (working as temporal integra-

tors). Regardless of the encoded strategy used to encode information, the way the network is

capable of responding to a certain stimulus is of prime importance. To identify how Gamma

rhythms change the response properties of a network to an external stimulus with respect to

AI, in this section we applied two protocols, investigating the effect of Gamma in both, the

coincidence detection mode and in the integration mode [72, 73].

In the integration mode protocol, we compared how each of the three developed models

responded to slowly-varying inputs (occurring in a time window much bigger than the

Gamma period). In this protocol, each network received Poissonian drive (spikes from an

external network) with firing rates varying in time, in a Gaussian manner, both during

Gamma and AI-like states. The applied Gaussian inputs had a standard deviation of 50 ms,

allowing the stimulus to interact with different Gamma cycles. Several amplitudes of slowly-

varying Gaussian were tested, and the responsiveness of excitatory and inhibitory populations

were measured separately. Responsiveness (see Eq 5) was defined as the difference between the

total number of spikes (in a time window of duration T) generated by the whole network in

the presence and in the absence of the stimulus (normalized by the network size and the time

window duration T).

Fig 7 shows the responsiveness of the PING Network, the ING Network and the CHING Net-
work, when the integration mode protocol was applied. To be able to measure the real impact

of Gamma oscillations on network responsiveness, we used as a control the responsiveness

curves from the AI-Network, in which no oscillation is generated, independently of the level of

external drive. See Neuron and Network Models: AI Network in Materials and methods Section

and S13 Fig. All models, regardless of the mechanism of Gamma generation, were less respon-

sive during Gamma bursts in comparison with their baseline responsiveness during AI-like

states. Furthermore, the responsiveness of a network in a real AI-state (gray curve generated

by the AI Network) is equal or higher to the AI-like responsiveness, in each of the networks,

and is always higher then the Gamma state responsiveness in all cases. In addition, to further

investigate this result, we examined the responsiveness of individual cells (S14 Fig). Due to the

previous finding that only a restricted group of cells participate to Gamma, one could imagine

that there could still be few cells (Gamma participating cells) that would be more responsive,
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Fig 7. Network responsiveness to a Gaussian input with varying amplitude. The responsiveness, in different states (Gamma and AI-

like), was measured in the three developed networks and compared to the responsiveness of the AI Network as a control. A:

Responsiveness protocol scheme for Gamma state. A Gamma burst is generated due to fluctuations of the external drive (black dashed

line). During the Gamma activity, a Gaussian input (green line) is applied. The total number of spikes due to the stimulus, in time

window of 500 ms, is measured. To measure the total number of spikes in the absence of the stimulus, another drive fluctuation is created

generating Gamma. The total number of spikes inside of a time window of 500 ms is measured again (this time, without the Gaussian

input). Only the situation in response to a stimulus is depicted in the scheme. This procedure was repeated 100 times per each Gaussian

amplitude input. To measure responsiveness in AI and AI-like states no drive fluctuation was applied (the black dashed line in the figure
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while all others (Gamma non-participating cells) would be less responsive, leading to a yet

overall less prominent responsiveness. Nonetheless, S14 Fig shows the contrary. All cells seem

to follow the same decrease of responsiveness during Gamma oscillations, and we found no

evidence that some subset of cells would be more responsive, for all amplitudes tested.

In the coincidence detection mode protocol, the responsiveness at different Gamma

phases was measured. To do this, precisely-timed inputs (occurring in a time window much

smaller than the Gamma period) were applied and related to Gamma cycles in each of the

three developed networks. In this protocol the amplitude of the stimulation was kept con-

stant, while the time of the application of the Gaussian stimulus changed with respect to the

phase of the Gamma oscillation. This procedure allowed each network to be stimulated at

different Gamma phases (see S15 Fig). Fig 8 indicates the network response of excitatory

cells per Gamma phase, in different states: Gamma state (blue), AI-like (black) and AI-

like modulated by a control external current oscillating at Gamma frequency (gray). All

responses were normalized by the average response of AI-like states without external cur-

rent modulation (black).

AI-like states, when modulated by an external oscillatory current, displayed, in all network

models, preferred phases in which the network response was higher in comparison to the non-

modulated AI-like state. This constitutes an important control, because the external current

creates periods of higher and lower excitability in the network, which is translated in a phase-

dependent response (as shown by the gray curves in Fig 8). Likewise, when generating

Gamma, our models (PING and ING) demonstrate an equivalent type of phase-dependence

response (even-tough with a narrow amplitude range). On the other hand, in agreement with

the integration mode protocol, our simulations show that the responsiveness during Gamma

states at all phases are less or equal to that during AI-like states.

Resonance. In Physics, when dealing with an oscillatory system, one of the first features

to be explored is its resonant properties. In general, resonance describes the phenomenon of

increased amplitude in a system, that occurs due to the application of an oscillatory stimulus

whose frequency is equal or close to the natural frequency of the system. It has been shown

experimentally that this phenomenon can also be observed in inhibitory [56] and excitatory

[74] neuronal populations. Furthermore, theoretical studies [75] have shown that resonance is

a fundamental property of spiking networks composed of excitatory and inhibitory neurons.

Resonance has also been proposed as a mechanism to gate neuronal signals [76] and to com-

municate information [10].

We tested the resonant properties of each of our networks in AI-like and Gamma states. In

this protocol, each network received Poissonian drive with firing rates varying in time in a

sinusoidal manner, with different frequencies (Fig 9A). Fig 9B, 9C and 9D depict, for each fre-

quency and oscillation phase, the average number of spikes per RS neuron and time bin, dur-

ing Gamma and AI-like states, for the PING, ING and CHINGNetworks. All values were

normalized by the average firing inside of each state to exclude the state dependent firing rate

level (which is higher on Gamma). To enhance the comprehension of the responsive proper-

ties of each network, a linear version of the color maps depicted in Fig 9 (amplitude vs. phase)

was kept constant). B: Input Amplitude Variation. The stimulus consisted of a Gaussian fluctuation in the firing rate of the external drive.

The Gaussian amplitude varied from 0.05 Hz to 2.5 Hz (step of 0.05 Hz) and had a standard deviation of 50 ms. Items C, D and E display

respectively the responsiveness of the PING Network, the ING Network and the CHING Network, inside Gamma bursts (green for

excitatory cells, red for inhibitory cells), and outside Gamma bursts—AI-like activity—(black for both types of cells). Every point

corresponds to the average responsiveness measured in 100 simulations. Standard error of the mean are indicated by the shaded region

around each curve. The responsiveness of the AI-Network was added as a control in each case (gray curve in C, D and E). To implement

the responsiveness protocol the AI-Network received a constant drive with μExt = 3 Hz, in addition to the Gaussian inputs. See S13 Fig.

https://doi.org/10.1371/journal.pcbi.1009416.g007
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Fig 8. Phase-dependent network response. A: External oscillatory current applied at AI-like state as function of its oscillation phases (gray curve)

and the filtered LFP measured during Gamma states as function of its oscillation phases (blue curve). All networks received a current oscillating

from 0 to 0.1 nA in a sinusoidal manner with a Gamma frequency Fγ. To match the Gamma oscillation frequency generated by each network, the

frequency of the external current applied to PING and CHING networks was Fγ = 40 Hz, while the one applied to ING network was Fγ = 55 Hz. The

LFP depicted is the one from PING network. ING and CHING also displayed a similar LFP pattern. B: PING Network phase-dependent response C:

ING Network phase-dependent response. D:CHING Network phase-dependent response. The phase-dependent network response was calculated

according to Eq 6, in a time window of duration T equal to one Gamma cycle (T = 25ms for the PING and CHING Networks and T = 18ms for
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is provided in S16 Fig. In addition, S17 Fig depicts the resonant properties in other cell types

(FS, FS2 or Ch) during Gamma state for each one of the networks.

We observe that, in both AI-like and Gamma states, all models display resonant properties

around the Gamma band, with the main difference in between these two states being a shift of

the resonance frequency center. In this protocol we detect a similar level of responsiveness per

phase (reflected in the measured number of spikes per time bin) in AI and Gamma, indicating

that networks receiving oscillatory inputs have the same latent potential to resonate at Gamma

ranges regardless if they are displaying AI or Gamma oscillations. One should note that each

model presents its own particularities. While the PING network presents just a shift of the cen-

ter frequency of resonance, the ING network presents an enlarged potential of resonance in AI

(in addition to the frequency shift). During AI, the ING network presents an equal resonance

in several bands other than Gamma. Moreover, when a Gamma oscillation is triggered in this

network, this resonance is shrunk and becomes more concentrated in the Gamma band. The

CHING network, on the other hand, presents a strong resonance in the 15–25 Hz frequency

range during AI, while during Gamma this resonance is lost.

Concluding this section, we investigated three dynamical properties (Responsiveness,

Phase-dependent-responsiveness and Resonance) in different states (AI-like and Gamma) of

each of the three developed networks. We encounter that, regardless of Gamma generating

mechanism (PING, ING or CHING), the network responsiveness, in both coincidence detec-
tion and integrativemode, is decreased at Gamma states with respect to AI. On the other hand,

the resonant properties around the Gamma band in all networks did not change significantly

from one state to the other. The main resonant properties changes between AI and Gamma

states in each model were most prominent around other bands. The implications of these

observations on the role Gamma rhythms in neural computations and information transfer

will be discussed in the next section.

Discussion

In this paper, we have examined the genesis and responsiveness of Gamma oscillations con-

strained by human recordings. We analyzed Gamma oscillations from previous studies [20,

21], where the recordings were stable, and in which RS and FS cells were discriminated. We

compared the results of this analysis to conductance-based network models implementing

three different mechanisms that were proposed for Gamma oscillations, PING, ING and

CHING. We next examined these three networks with respect to their responsiveness and res-

onance to external inputs. We discuss these aspects below.

Human data analysis

Compared to a previous analysis of the cellular correlates of Gamma oscillations [21], we con-

firm here the low level of cellular engagement and a greater participation of FS cells during

Gamma, either through phase-locking or through firing rate increase. FS cells not only pre-

sented a higher percentage of phase-locking or firing rate increase during Gamma, but they

also presented a more consistent behavior compared to RS cells which were much more vari-

able. Our analysis further indicates that, the group of Gamma participating cells changes with

ING). Responses measured inside AI-like activity (outside Gamma bursts) are shown in black, and in gray when the networks received a

supplementary oscillatory external current. Responses measured inside Gamma bursts are displayed in blue. All curves were normalized by the

average response inside AI-like activity without external current modulation. Solid lines indicate the average, and the shaded region indicates the

standard error of the mean. The curves were calculated based on the output of 12000 simulations (120 positions of the Gaussian stimulus in 100

numerical seeds for external Poissonian drive). The Gaussian stimulus used had an amplitude of 50 Hz and standard deviation of 1 ms.

https://doi.org/10.1371/journal.pcbi.1009416.g008
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Fig 9. Resonant properties of computational models. A: Representation of external Poissonian noise varying in time in a

sinusoidal manner around μnoise. In this protocol sinusoidal frequencies varied from 5 Hz to 100 Hz (step of 5 Hz). Two oscillatory

frequencies are depicted: 20Hz (blue) and 40 Hz (black), together with their phases (second axis) and time bins (vertical line). For

all frequencies the average Poissonian noise (μnoise) was kept the same, varying from μnoise − Δnoise and μnoise + Δnoise. The bins were

chosen in a way in which the oscillatory phases (from -π to π) were divided into 25 intervals (for all frequencies), resulting in time

bins of different duration for each oscillatory frequency. B: Resonant properties of PINGNetwork. C: Resonant properties of ING
Network. D: Resonant properties of CHINGNetwork. The color maps displayed in B, C and D depict, for each oscillatory

frequency and oscillation phase, the average number of spikes per RS neuron per time bin, during Gamma and AI-like states. All
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time as well as their phase-preference. The analysis performed on this work is very qualitative,

since it was based on a single patient. Nonetheless, this very sparse participation of RS and FS

cells during Gamma was seen in different patients, and the same was observed in monkey for

beta oscillations [21].

Responsiveness

The occurrence of Gamma rhythms have been correlated with conscious perception [77–81]

and several authors support these rhythms as being a suitable marker of consciousness. On the

other hand, it has been proposed that the Asynchronous and Irregular activity, observed dur-

ing awake and aroused states, due to its specific responsiveness properties, is an ideal setting

for integrating multiple external inputs [12]. In support of this, it was concluded in a review

that asynchronous states constitute the most reliable correlate of conscious states [82].

Previous work [12] has compared the responsiveness of a fully synchronized network

(spike-to-spike regime) with a network in AI state, showing that the AI state is the best state to

integrate multiple external inputs. It was also shown that, in rate-based networks, the most

chaotic states could display the highest responsiveness, as measured using Shannon informa-

tion [83]. In the present work, we compared the responsive properties of AI state with Gamma

states generated by means of three different mechanism: PING, ING and CHING. Each of

these networks were submitted to two types of inputs. First, a slowly-varying input integrated

by the population of neurons over a substantial period of time (integrative mode). Second, we

examined precisely-timed inputs, occurring in a time window smaller than the Gamma period

(coincidence detection mode). For the integrative mode, we systematically found that the

Gamma oscillations yielded less responsiveness than the AI-like states and even lesser respon-

siveness than real AI states (generated by the AI Network, used as a control). In the coincidence
detection mode, we found that the response was only weakly modulated by the phase of the

Gamma. This was assessed by comparing the Gamma oscillation to a sinusoidal control input,

in which case the response was clearly phase-dependent. In agreement with the integrative
mode, the responsiveness measured in the coincidence detection mode protocol was generally

higher for the AI-like states. In addition, in the coincidence detection mode, among the three

models, the ING Network is the only one that presents a similar responsiveness between

Gamma and AI states, which stresses again the importance of network topology on networks

behaviors.

A smaller responsiveness during Gamma states is somehow surprising since neurons are in

general more depolarized in this state and additionally increase their firing, as we showed in

our data analysis. On the other hand this observation is intuitively easy to understand, if we

take into account the fact that Gamma oscillation are composed of successions of periods of

high inhibition, which define time windows in which neurons are less likely to spike. While

during Gamma states, these time windows of high inhibition constrain the times a certain neu-

ron can spike, during AI states neurons can spike at all moments with the same probability.

Indeed, we observed that the response during Gamma oscillations is phase-dependent, while

there is no phase preference during AI states. However, although there was a phase depen-

dence, Gamma oscillations did not provide a preferred phase where the network is more

responsive than during AI states. The fact that higher levels of inhibition during Gamma could

values were normalized by the average firing inside of each state to exclude the state dependent firing rate level (which is higher on

Gamma). Δnoise = 0.5 Hz in all network models but μnoise varied in each case. For AI, in PING and ING Networks μnoise = 2 Hz and

in CHING Network μnoise = 1 Hz, while for Gamma, μnoise = 3 Hz in in PING and ING Networks and μnoise = 2 Hz in CHING

Network.

https://doi.org/10.1371/journal.pcbi.1009416.g009
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explain their diminished responsiveness should be testable experimentally using intracellular

recordings in vivo.

Given our model results, what this decrease of responsiveness could be useful for, and

what are the advantages of a higher responsive state in AI? This questions can be approached

in the light of the Phase Coding Theory (PC). This theory was initially formulated with

respect to Theta rhythm [6], but lately extended to Gamma [7]. This theory states that, within

the Gamma cycle, the excitatory input to pyramidal cells is converted into a temporal code

whereby the amplitude of excitation is re-coded in the time of occurrence of output spikes

relative to the cycle [7]. In this view, the cells that are most excited fire earlier in the cycle,

while cells that are not excited enough are prohibited to spike due the new wave of inhibition

composing the cycle. This process can be seen as a winner-take-all phenomena (or more pre-

cisely a few-winners-take-all phenomena, since it involves several neurons neurons) [7].

Such a coding strategy enables transmission and read out of amplitude information within a

single Gamma cycle without requiring rate integration, proving a fast processing and readout

by means of coincidence detection, rather than on rate integration [84], in agreement with

more recent work [60, 76, 85]. Furthermore, this type of encoding strategy would, in princi-

ple, allow an improvement of signal-to-noise ratios, since neurons not conveying informa-

tion would be hindered to spike. In this perspective, according to our models, Gamma

oscillations would allow a network to respond quicker at the expense of decreasing the

strength of its response. On the other hand, more responsive states such as AI, would be bet-

ter suited to respond to low amplitude stimulus (due to their high sensitivity) at the cost of

loosing temporal precision. Thus, AI states, because of their high responsiveness, seem well

suited to detect inputs, while gamma oscillations, due to their tighter time precision, seem

better suited to transmit timing information. Such possibilities constitute interesting direc-

tions to explore by future models.

Resonance

In this work we reproduced previous results [75] showing that resonance is a fundamental

property of spiking networks composed of excitatory and inhibitory neurons. We compared

the resonant properties during AI and Gamma states generated by three different mechanism

(ING, PING and CHING) and verified that, apart from a shift on the resonant frequency cen-

ter, the resonant properties around the Gamma band in all networks did not change signifi-

cantly from one state to the other. We call the reader attention to the particularities of each

network model, especially the enlarged potential of resonance of ING network during AI.

Even though previous work proposed the importance of resonance in information transfer

and processing in the brain [10], this aspect has been left aside until recently [86]. The most

popular view, known as the Communication Through Coherence (CTC) Theory [8, 9], pro-

poses a mechanistic explanation for how different neural regions could communicate by

means of coherence [60]. This theory advocates that, since oscillations generate a rhythmic

modulations in neuronal excitability (defining time windows in which neurons are capable to

respond), only coherently oscillating groups can effectively communicate. In contrast, a recent

work [86] present results indicating that, to the contrary, coherence is a consequence of com-

munication, not a cause of it. This study shows that if an oscillating network is connected to

another network that owns resonant properties around this same frequency, these two net-

works present coherent activity, and that the presence of these resonant interactions could

explain more than 50% of the observed coherence. Furthermore, they show that the oscillating

network sends information to the resonant one (the Granger-causality between field potentials

is dominated by oscillatory synchronization in the sending area).
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In this perspective, the enlarged potential of resonance of ING network in different bands

during AI, indicates that this type of network structure (with heterogeneous connectivity pat-

terns in between inhibitory neurons) could potentially convey information equally well in

several bands. This stress the importance of network topology for neuronal information pro-

cessing and also constitutes interesting directions to further explore.

Supporting information

S1 Fig. Synaptic time scale parameter search of a network composed of RS and FS neurons

randomly connected. The network used to produce this figure was composed of 20000 excit-

atory Regular Spiking and 5000 inhibitory Fast Spiking neurons connected randomly with a

probability of connection of 2%. All synapses were delayed by a time delay of 1.5 ms, and had

reference synaptic strengths of QR
e ¼ 1 nS or QR

i ¼ 5 nS and reference synaptic time scales of

tRe ¼ t
R
i ¼ 5 ms. Synaptic strengths (Qe,i) were normalized at each tested time scale (τe,i) to

keep the same synaptic gain, such that: Qe;i ¼ ðQR
e;i:t

R
e;iÞ=te;i. A: Network oscillation frequency

depicted in a color scheme as a function of excitatory and inhibitory synaptic time scales.

White color corresponds to regions in which no oscillation was identified in RS population. B:

Synchrony Index of RS population (top) and network balance (bottom) as a function of synap-

tic time scales. The Synchrony Index (SI) is based on the auto-correlation of the population

frequency of RS cells. To be calculated, the autocorrelation of the population frequency was

fitted by a damped cosine function and the value of this fitted function at zero time lag was

defined as the SI. If the exponential decay rate was higher then 100, it was considered that

there was no global oscillation at the population scale. The network balance was defined as the

rate between the average excitatory and inhibitory synaptic currents, h
hIexciN
hIinhiN
it, in which hiN

stand for average among neurons and hit average on time. White squares indicate the two

different parameter sets used in our simulations (τe = τi = 5 ms for AI Network, and τe = 1 ms,

τi = 7.5 ms for PING Network). C: Same as B but calculated for the FS population. D: Popula-

tion frequency autocorrelation of RS (green dots) and FS population (blue dots) neurons of

the two used parameter sets. Solid lines indicate the damped cosine fitted function.

(TIF)

S2 Fig. Gamma Network parameter search. The network connectivity (p) vs. inhibitory syn-

aptic strengths (Qi) parameter space of the Gamma Network are displayed as color-plots. A:

Average spiking frequency. B: Network oscillation frequency. C: Network balance: rate

between the average excitatory and inhibitory synaptic currents, h
hIexciN
hIInhiN
it , in which hiN stand

for average among neurons and hit average on time. D: Membrane Potential Synchrony

(χ), calculated by means of the equation: w2 ¼
s2
V

1
NS

N
i s

2
Vi

, in which VðtÞ ¼ 1

N S
N
i ViðtÞ,

sV
2 ¼ h½VðtÞ�2it � ½hVðtÞit�

2
and sVi

2 ¼ h½ViðtÞ�
2
it � ½hViðtÞit�

2
. The set of parameter which

allowed Gamma Network to oscillate in the Gamma range are indicated by a star symbol. The

white and yellow curves depict parameter choices in which the product between p and Qi
are the same. The yellow curve indicates all parameters equivalent to a choice of p = 60% and

Qi = 5 nS (Q0i ¼ 3=p0), while the white curve indicates all parameters equivalent to a choice of

p = 10% and Qi = 5 nS (Q0i ¼ 0:5=p0), like it is usually used in other works [30]. Every point in

each graph is given by the average output of 10 simulations of 5 seconds each. In this simula-

tions each neuron of the Gamma Network received 400 independent and identically distrib-

uted excitatory Poissonian spike trains with a spiking frequency μExt = 5 Hz and a synaptic

strength ofQExt = 1 nS that decayed with synaptic time constant of τE = 5 ms. E: Network activ-

ity for the parameters indicated with a start in A, B, C and (p = 60% and Qi = 5 nS). The raster
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plot of the whole network (e1), the population frequency (e2), the membrane potential of 3

randomly chosen neurons (e3) and the power spectrum of the population frequency (e4) are

indicated. The population frequency is calculated as the total number of spikes (spikes of the

whole network) in a time bin of 1 ms, divided by the duration of this time bin. Because of the

exclusive presence of inhibitory neurons and its high level of recurrent inhibition, this network

is capable of generating Gamma rhythms with frequencies around 70Hz by means of an ING

mechanism.

(TIF)

S3 Fig. Phase-locking statistical test. A and B: Phase distribution of two randomly picked

cells from the human recordings (Data segment 1): one excitatory (A, green) and one inhibi-

tory (B, red). The phase distribution of each cell was fitted to a Von Mises curve, which allowed

the estimation of its preferred phase yVM . The phase distribution of each neuron was tested for

circular uniformity using a Bonferroni-corrected Rayleigh test [36, 37]. C and D: Rayleigh Z

calculated for all recorded neurons: excitatory (C, green) and inhibitory (D, red). A neuron

was considered phase-locked if the circular uniformity at P < 0.01, (Z > Zc) could be rejected.

In these plots, neurons were ordered according to their Z value and not according to their

original indexes. E: Preferred phases, yVM , of each phase-locked cell, displayed in polar graph

representation. Dark colored vectors indicate the average phase among each neuron type and

Δθ the phase difference among RS and FS. Data segment 1 presented 22 minutes of recordings,

containing 9 seconds of Gamma activity.

(TIF)

S4 Fig. Firing rate change statistical test. A: Activity of two randomly picked cells during sev-

eral Gamma bursts: neuron 13 (inhibitory, left) and neuron 75 (excitatory, right). The graphs

display the firing patter around Gamma bursts (indicated by the black doted lines). Each point

corresponds to one spike in the correspondent tuple of time and burst ID (y-axis). B: Histo-

gram computing the distributions of all spikes inside all Gamma bursts of neuron 13 (left)

and neuron 75 (right). C: Exemplification of firing rate change statistical test. The Poissonian

distribution of these two neurons is constructed based on their average firing rate calculated

outside of Gamma bursts. The critical number of spikes nc, indicated by the dotted lines, is

calculated based on the Percent Point Function of the respective Poissonian Distribution for a

period T, with an 95% Interval of Confidence. The observed number of spikes nobsv is depict as

a dot over the curve. According to this procedure, only neuron 75 is considered to increase its

firing, since nobsv> nc.
(TIF)

S5 Fig. Phase preference of phase-locked cells per data segment in the human record-

ings. A: Data segment 1—containing 22 minutes of recordings and 9 seconds of total

Gamma activity. B: Data segment 2—containing 43 minutes of recordings and 14 seconds of

total Gamma activity. C: Data segment 3—containing 28 minutes of recordings and 16 sec-

onds of total Gamma activity. D: Data segment 4—containing 26 minutes of recordings and

13 seconds of total Gamma activity. E: Data segment 5—containing 16 minutes of record-

ings and 11 seconds of total Gamma activity. The preferred phases of each phase-locked cell

are displayed in polar graph representation. Phases were calculated from −π to π. The vector

size gives a measure of the phase distribution of each cell. Big amplitude vectors indicate

very concentrated distributions while small amplitude vectors indicate less concentrated

ones. The color of each vector encodes the type of the cell of whom it represents the phase:

red (FS), and green (RS). Cell number IDs are indicated. Dark colored vectors indicate the
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average phase among each neuron type and Δθ the phase difference among them.

(TIF)

S6 Fig. Change of Gamma participating cells with time in experimental data. The middle

panel represents each cell by a circle in each of the 5 data segments. FS and RS phase-locked

cells are depicted respectively as red and green circles, while not phase-locked or inconclusive

(with respect to phase locked) cells of both types are depicted as blue and gray circles respec-

tively. Superposed to each cell circle, pointing up and down triangles were added to indicate if

the cell increased (4) or decreased (5) its firing. If the cell didn’t change its firing significantly

a minus sign (-) was added. Side box plots indicate, on the left, the percentage of phase-locked

FS (red) and RS (green) cells in each of the 5 data segments, and, on the right, the percentage

of firing rate increase. Dotted lines indicate the average value (phase-locking level: left and

firing rate increase: right) between the 5 data segments. The bottom box plot depicts the super-

posed counts of phase-locking or firing rate increase behavior of each individual cell, com-

puted in the 5 data segments.

(TIF)

S7 Fig. Behavior consistency of RS and FS cells in human recordings. Distributions of con-

sistency indexes among the recorded neurons with respect to to firing rate increase are dis-

played respectively in A and B for RS cells and FS cells, while C and D display the consistency

indexes distribution of phase-locking for RS and FS.

(TIF)

S8 Fig. Neural behavior time distribution in the human data. The activity of each neuron

inside and outside Gamma bursts in all 5 data segments were quantified. Taking into account

that each data segment had a different duration, containing a different total Gamma duration,

and that some neurons were silent in some data segments, each neuron was analyzed individu-

ally, taking into account the percentage of the total amount of time in which the neuron was

active. A: Phase-locking time distribution. The grid plot in the middle displays the amount of

time (with respect to the total recording time) in which each neuron was considered phase-

locked (A, y axis), and the the amount of time in which each neuron was considered not

phase-locked (A, x axis). RS neurons are depicted in green and FS neurons in red, together

with their ID number. Neurons lying outside of the diagonal are neurons of whom statistical

analysis was inconclusive at some data segments, due to the reduced number of spikes. At the

top left corner, lie neurons that were always considered phase-locked, while neurons that were

never considered phase-locked are placed at the bottom right corner. Pie plots indicate the per-

centage of neurons that passed at least 50% of the total time being either phase-locked or not

phase-locked (neurons that fall inside of the colored quadrants) and the neurons lying on the

left white quadrant. B: Same analysis as A but displaying the firing rate change time distribu-

tion. This analysis indicates that only a small percentage of neurons passed at least 50% of the

total time being either phase-locked (RS: 4.4%, FS: 13%) or increasing its firing (RS: 20.6%, FS:

52.2%). Moreover, even though no cell was 100% of the time phase-locked to Gamma, some

cells were 100% of the time not phase-locked to Gamma (RS: 22.1%, FS: 13%) and others never

increased their firing (RS: 41.2%, FS: 17.4%).

(TIF)

S9 Fig. Firing rate distribution of individual neurons inside Gamma bursts and their

phase-locking classification in human data recordings. The average firing rate of each neu-

ron in each of the 5 data segments (inside Gamma bursts) is depicted as a point in this graph

(each neuron presents 5 points). The color of each point corresponds to the neuron classifica-

tion with respect to phase-locking in the correspondent data segment (purple: phase-locked,
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red: not phase-locked and gray: inconclusive). The average firing rate inside Gamma bursts

was calculated based on the total Gamma duration (recorded by the electrode, that also

recorded the particular neuron, in the respective data segment) and the total number of spikes

emitted by this particular neuron exclusively inside the Gamma bursts of the respective data

segment. Cells classified as inconclusive are cells that spiked less then 5 times inside Gamma

bursts, or cells whose electrode measured less then 1 second of Gamma bursts in the respective

data segment. FS neurons are depicted on the left and RS neurons on the right. Box plots refer-

ent to each neuron distribution are added to help in the visualization (regardless of the reduced

number of points). The box extends from the lower to upper quartile values of the data, with

a line at the median. The whiskers extend from the box to show the range of the data. Flier

points are those past the end of the whiskers and are depicted with black circle together with

the color point. This graph illustrates the fact that phase-locking and not phase-locking behav-

iors are observed both in cells with high and low firing rates.

(TIF)

S10 Fig. Firing rate distributions. Firing rate distributions of different neuron types (inside

and outside Gamma bursts) are depicted in A, B, C and D for each studied system. A: Human

recordings. B: PING Network. C: ING Network and D: CHING Network. Average firing rates of

each cell type is indicated by the dotted line.

(TIF)

S11 Fig. Average excitatory and inhibitory synaptic conductances. A: Illustration of the ana-

lyzed system: PING Network, ING Network and CHING Network. B: Ratio between excitatory

conductance (Ge) and leakage conductance (GL). C: Ratio between inhibitory conductance

(Gi) and leakage conductance (GL). Averages are indicated by the dotted line. The distributions

fall inside of the physiological range observed experimentally [87].

(TIF)

S12 Fig. Average level of phase-locking. The average level of phase-locking is defined as the

averaged percentage of cells in the network considered to be phase-locked, across the 5 seg-

ments of data recorded. The analysis was done separately for excitation and inhibition. A:

Human Data recordings, B:PING Network, C: ING Network and D: CHING Network. The per-

centage of cells signaled as inconclusive relates to cells in which the number of spikes inside

Gamma burst were too small to allow statistical significant phase-locking.

(TIF)

S13 Fig. Network responsiveness of a network composed of RS and FS neurons randomly

connected with different synaptic time scales. A: AI network receiving a Poissonian drive of

3Hz. B: PING network receiving a Poissonian drive of 3Hz (inducing Gamma). C: PING net-
work receiving a Poissonian drive of 2Hz (not inducing Gamma). In addition to the drive

each network received a Gaussian stimulus of 2Hz pick and a standard deviation of 50 ms. The

drive and stimulus are depicted in each case in a1, b1 and c1. The raster plot of each network

during the stimulation is depicted in each case in a2, b2 and c2. The membrane potential of 3

randomly picked neurons are depicted in each case in a3, b3 and c3. The raw and the filtered

simulated LFP are depicted in each case in a4, b4 and c4.

(TIF)

S14 Fig. Responsiveness of individual cells in computational models. A: PING Network. B:

ING Network. C: CHING Network. To estimate the individual cell responsiveness, we calcu-

lated the average spiking frequency of each cell inside (y-axis) and outside stimulus (x-axis)

during AI-like states (left) and Gamma states (right). RS cells are displayed in green and FS
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cells in red. In each plot the linear regression from the points is depicted with the identity. We

observe that all cells follow the same rule of responsiveness (proportional to their firing outside

the stimulus). No difference can be seen between the responsiveness of neurons classified as

Gamma participating and the Gamma non-participating cells.

(TIF)

S15 Fig. Phase-dependent network response protocol. A: Protocol scheme in ING Network

when it displays Gamma oscillations (45-65 Hz). Top: stimulus used to measure network

phase-dependent response. The stimulus consisted of fast Gaussian fluctuation (standard devi-

ation of 1 ms) which modulated the firing rate of the external Poissonian spike trains injected

into network from 0 to 50 Hz. Middle: Raster plot indicating the network response to the

Gaussian stimulus. The network responsiveness was calculated according to Eq 6, in a time

window T = 18ms (shaded gray area). Bottom: Gamma oscillation phase around the the stimu-

lus pick. The phase at the time the stimulus was applied is indicated. The Phase-dependent net-

work responsiveness was measured in three different network states: B: AI state (Poissonian

noise = 2Hz, no external current). C: AI-modulated states (Poissonian noise = 1Hz, with sinu-

soidal external current). D: Gamma state (Poissonian noise = 3Hz, no external current). Items

A, B and C display the Raster activity of ING Network without the Gaussian stimulation. Only

20% of network is shown.

(TIF)

S16 Fig. Linear representation of color maps depicted in Fig 9. A: Resonant properties of

PINGNetwork. B: Resonant properties of INGNetwork. C: Resonant properties of CHING
Network. The curves displayed in B, C and D depict, for each oscillatory frequency (color

scheme) the amplitude (average number of spikes per neuron per time bin) as a function of

the oscillation phase, during Gamma and AI-like states. All values were normalized by the

average firing inside of each state to exclude the state dependent firing rate level (which is

higher on Gamma). Δnoise = 0.5 Hz in all network models but μnoise varied in each case. For

AI, in PING and ING Networks μnoise = 2 Hz and in CHING Network μnoise = 1 Hz, while for

Gamma, μnoise = 3 Hz in in PING and ING Networks and μnoise = 2 Hz in CHING Network.

(TIF)

S17 Fig. Resonant properties of computational models during Gamma in each cell type. A:

Resonant properties of PINGNetwork. B: Resonant properties of INGNetwork. C: Resonant

properties of CHINGNetwork. The color maps displayed in A, B and C depict, for each oscil-

latory frequency and oscillation phase, the average number of spikes per cell type (RS, FS,

FS2 or Ch) and time bin, during Gamma state. Differently than Fig 9 no normalization was

applied. Δnoise = 0.5 Hz in all network models but μnoise varied in each case. In PING and ING

Networks μnoise = 3 Hz and in CHING Network μnoise = 2 Hz.

(TIF)
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58. Zemankovics R, Veres JM, Oren I, Hájos N. Feedforward inhibition underlies the propagation of cholin-

ergically induced gamma oscillations from hippocampal CA3 to CA1. Journal of Neuroscience. 2013; 33

(30):12337–12351. https://doi.org/10.1523/JNEUROSCI.3680-12.2013 PMID: 23884940

PLOS COMPUTATIONAL BIOLOGY Integration, coincidence detection and resonance in networks of spiking neurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009416 September 16, 2021 31 / 33

86



59. Susin E, Destexhe A. Cellular correlates of wakefulness and slow-wave sleep: evidence for a key role of

inhibition. Current Opinion in Physiology. 2020; 15:68–73. https://doi.org/10.1016/j.cophys.2019.12.

006

60. Palmigiano A, Geisel T, Wolf F, Battaglia D. Flexible information routing by transient synchrony. Nature

neuroscience. 2017; 20(7):1014. https://doi.org/10.1038/nn.4569 PMID: 28530664

61. Viriyopase A, Memmesheimer RM, Gielen S. Cooperation and competition of gamma oscillation mech-

anisms. Journal of neurophysiology. 2016; 116(2):232–251. https://doi.org/10.1152/jn.00493.2015

PMID: 26912589

62. Viriyopase A, Memmesheimer RM, Gielen S. Analyzing the competition of gamma rhythms with

delayed pulse-coupled oscillators in phase representation. Physical Review E. 2018; 98(2):022217.

https://doi.org/10.1103/PhysRevE.98.022217 PMID: 30253475

63. Barlow HB. Single units and sensation: a neuron doctrine for perceptual psychology? Perception. 1972;

1(4):371–394. https://doi.org/10.1068/p010371 PMID: 4377168

64. Churchland MM, Byron MY, Cunningham JP, Sugrue LP, Cohen MR, Corrado GS, et al. Stimulus onset

quenches neural variability: a widespread cortical phenomenon. Nature neuroscience. 2010; 13

(3):369–378. https://doi.org/10.1038/nn.2501 PMID: 20173745

65. Riehle A, Grün S, Diesmann M, Aertsen A. Spike synchronization and rate modulation differentially

involved in motor cortical function. Science. 1997; 278(5345):1950–1953. https://doi.org/10.1126/

science.278.5345.1950 PMID: 9395398

66. Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, Slovin H, et al. Dynamics of neuronal interactions

in monkey cortex in relation to behavioural events. Nature. 1995; 373(6514):515–518. https://doi.org/

10.1038/373515a0 PMID: 7845462

67. Thorpe S, Delorme A, Van Rullen R. Spike-based strategies for rapid processing. Neural networks.

2001; 14(6-7):715–725. https://doi.org/10.1016/S0893-6080(01)00083-1 PMID: 11665765

68. Deneve S. Bayesian spiking neurons I: inference. Neural computation. 2008; 20(1):91–117. https://doi.

org/10.1162/neco.2008.20.1.91 PMID: 18045002

69. Shinomoto S, Kim H, Shimokawa T, Matsuno N, Funahashi S, Shima K, et al. Relating neuronal firing

patterns to functional differentiation of cerebral cortex. PLoS Comput Biol. 2009; 5(7):e1000433. https://

doi.org/10.1371/journal.pcbi.1000433 PMID: 19593378

70. Maimon G, Assad JA. Beyond Poisson: increased spike-time regularity across primate parietal cortex.

Neuron. 2009; 62(3):426–440. https://doi.org/10.1016/j.neuron.2009.03.021 PMID: 19447097

71. Luczak A, McNaughton BL, Harris KD. Packet-based communication in the cortex. Nature Reviews

Neuroscience. 2015; 16(12):745–755. https://doi.org/10.1038/nrn4026 PMID: 26507295
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Work 3

A network model of the modulation
of Gamma oscillations by NMDA

receptors in cerebral cortex

French Abstract:

Des médicaments psychotiques, tels que la kétamine, induisent des symptômes proches
de la schizophrénie et stimulent l’augmentation d’oscillations Gamma, similaires à ce que
s’observe chez les patients touches par cette maladie. Toutefois, les mécanismes sous-
jacents à ces effets ne sont toujours pas bien décrits. Dans cette étude, nous avons utilisé
des modèles informatiques de réseaux de neurones corticaux générant des oscillations
Gamma, où nous avons intégré l’action de médicaments tels que la kétamine pour bloquer
partiellement les récepteurs de n-méthyl-d-aspartate (NMDA). Le modèle développé décrit
la modulation des oscillations Gamma par des antagonistes des récepteurs de NMDA, en
supposant que les antagonistes affectent davantage les récepteurs de NMDA sur les in-
terneurones inhibiteurs. Le modèle a ensuite été utilisé pour comparer la réactivité du
réseau aux stimuli externes. Nous avons constaté que lorsque les canaux de NMDA sont
bloqués, une augmentation de la puissance des oscillations Gamma est observée, conjoin-
tement avec une augmentation de la réactivité du réseau. Cependant, cette augmentation
de la réactivité s’applique non seulement aux états oscillatoires dans la fréquence Gamma,
mais également aux états asynchrones sans oscillations apparentes. Nous concluons que
les antagonistes des canaux de NMDA induisent un état d’excitabilité accru, qui produit
une réponse aux stimuli externes exacerbée, et qui peut ou non produire des oscillations
Gamma. Nous cogitons que cet effet stimulant peut expliquer des phénomènes tels qu’une
perception altérée ou des hallucinations.
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A network model of the modulation of gamma
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Abstract—Psychotic drugs such as ketamine induce symptoms
close to schizophrenia, and stimulates the production of gamma
oscillations, as also seen in patients, but the underlying mecha-
nisms are still unclear. Here, we have used computational models
of cortical networks generating gamma oscillations, and have
integrated the action of drugs such as ketamine to partially
block n-methyl-d-Aspartate (NMDA) receptors. The model can
reproduce the modulation of gamma oscillations by NMDA-
receptor antagonists, assuming that antagonists affect NMDA
receptors predominantly on inhibitory interneurons. We next
used the model to compare the responsiveness of the network
to external stimuli, and found that when NMDA channnels are
blocked an increase of Gamma power is observed altogether
with an increase of network responsiveness. However, this re-
sponsiveness increase applies not only to gamma states, but also
to asynchronous states with no apparent gamma. We conclude
that NMDA antagonists induce increased excitability state, which
may or may not produce gamma oscillations, but the response
to external inputs is exacerbated, which may explain phenomena
such as altered perception or hallucinations.

Index Terms—Schizophrenia, NMDAR hypofunction, Gamma
oscillations, Network Model, Psychosis

I. INTRODUCTION

SCHIZOPHRENIA is a mental disorder characterized by
three classes of symptoms: positive symptoms (such

as delusions, hallucinations and disordered thoughts or
speech), negative symptoms (comprehending poverty of
speech and deficits of normal emotional response), and cogni-
tive deficits [1–3]. Several abnormalities have been identified
in schizophrenic patients, including important differences in
neurotransmitters systems, anatomical deficits and abnormal
neural rhythms [4, 5].

Gamma oscillations (30-90 Hz) in early-course schizophre-
nia patients are commonly reported to present increased power
and/or phase synchronization [6–8]. In parallel, positive cor-
relation between psychotic symptoms and the Gamma power
have been identified in schizophrenic patients, in which higher
Gamma-band activity corresponded to increased symptom
load [9–12]. These findings indicate that hallucinations and
delusions could be related to an excess of oscillatory synchro-
nization in the Gamma band.

NMDA receptor (NMDAR) antagonists, commonly used in
sub-anesthetic doses as animal and human models to study
Schizophrenia [13], induce a psychotic state that resembles all
three classes of symptoms of the disease [14–16]. Furthermore,
NMDAR antagonists also increase Gamma power amplitude,
both in human and in animal models [17–24].

In this study we investigate by means of computational
models how NMDAR antagonists, such as ketamine, affect the
dynamics of neural networks and how the generated boosting
of Gamma activity affects the network response, providing
an interpretation for the observed correlation between Gamma
Power and psychotic episodes.

II. RESULTS

Computational model reproduces experimental features

Several preparations with sub-anesthetics doses of NMDAR
antagonists have reported to produce neural excitation [25–30].
Since NMDAR mediate excitatory synaptic transmission, this
behavior is intriguing. Several hypothesis have been proposed
to explain this apparent paradox [3]. One of the possible
explanations is that NMDAR antagonists in sub-anesthetics
doses act preferentially on inhibitory neurons, increasing
network activity indirectly by means of desinhibition. Even
though some contrasting results have been observed [31], this
interpretation has been supported experimentally by several
works [32–35]. Network excitability have also been reported
to increase in schizophrenic patients [36, 37], and its increase
in sensory and association cortex have been correlated with
hallucinations [38, 39].

Another important effect of NMDAR antagonists in sub-
anesthetics doses is the increase of Gamma-band activity.
These observations were reported in human [17–19], monkey
[24] and rats [20–23], both during cognitive tasks or free
movement.

The network model developed in the present work (see
Methods) is able to reproduce both of these features (increase
of network excitability and increase of Gamma power). Fig-
ure 1 depicts the network behavior with respect to the to
different NMDA synaptic strengths, QNMDA, in excitatory
Regular Spiking (RS) and in inhibitory Fast Spiking (FS)
cells. We mimic the block of NMDA channels due to the
action of NMDAR antagonists by decreasing QNMDA in
RS and FS cells according to Figure 1A (see Methods).
Points of higher synaptic strengths are associated with healthy
conditions, while points with lower synaptic strengths are
associated to pathological conditions supposedly similar to the
schizophrenic brain. The network dynamics for two sets of
NMDA synaptic strengths are shown in Figure 1B and Figure
1C by means of a Raster Plot. As the synaptic strengths of
NMDA channels decreased (higher concentration of NMDAR
antagonists), the firing rate of excitatory RS cells increased
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while the firing rate of inhibitory FS cells decreased (Figure
1D). In addition, the Gamma power of the population activity
(see Methods) presented an increase (Figure 1E and F).

Network Responsiveness during Gamma rhythms in different
levels of NMDAR block

We investigated how the decrease of NMDA synaptic
strength changed the network dynamics and its capacity to
respond to external stimulus.

While network excitability is related to an overall increase of
spiking activity, network responsiveness relates to the network
capacity to react to a certain stimulus, producing additional
spikes then the ones generated by spontaneous activity. These
two dynamical measurements (excitability and responsiveness)
are not always congruent, meaning that it is possible to observe
an increase in excitability but a concomitant decrease in
responsiveness [40].

Network responsiveness was defined as the difference be-
tween the total number of spikes generated by the whole
network in the presence and in the absence of the stimulus (see
Eq 6). We measured network responsiveness at different levels
of NMDAR block for different stimulus amplitudes (Figure 2).
The stimulus consisted of a variation in time of the external
Poissonian drive, in a Gaussian manner (see Methods).

Network responsiveness in RS cells increased with the
increased level of NMDAR block, while the responsiveness of
FS neurons decreased. In this case, both, network excitability
and network responsiveness, behave in the same direction.

The increase of network responsiveness can be understood
from Figure 3. The NMDA receptors block depolarizes RS
cells, while FS neurons are overall hyperpolarized. For weak
levels of NMDA receptors block, no or weak depolarization is
observed in FS cells, while for strong levels of NMDA block
a significant hyperpolarization is observed.

Gamma states vs. AI states

Gamma oscillations (30-90 Hz) are believed to be involved
in information processing [41–46], and have been associated to
different high-level cognitive functions, such as memory [47–
49], perception [50–53], attention [54–57], focused arousal
[58] and prediction [59]. In parallel, studies with schizophrenic
patients have reported a positive correlation between psychotic
symptoms and the power of Gamma oscillations [9–12].

In contrast, Asynchronous-and-Irregular (AI) states [60] are
usually associated to conscious states [61], being observed
during awake and aroused states [62]. This regime are char-
acterized by irregular and sustained firing with very weak
correlations [63–67].

In a previous study [40] we reported that AI states, in
comparison to oscillatory states in Gamma band, provide
the highest responsiveness to external stimuli, indicating that
Gamma oscillations tend to overall diminish responsiveness.
This observation could indicate that Gamma rhythms present
a masking effect, conveying information in its cycles on spike
timing at the expense of decreasing the strength of the network
response.

In the present study, we compare AI and Gamma states at
different levels of NMDAR block. Figure 4 depicts the respon-
siveness of RS neurons, with respect to different stimulus am-
plitudes (same protocol as Figure 2), for different ensembles
of NMDA synaptic strengths. In agreement with Figure 2, pa-
rameter sets in which NMDA synaptic strengths are decreased
(mimicking the action NMDAR antagonists) correspond to
regions of the parameter space with higher responsiveness. For
example, QNMDA

FS = 0.4 nS and QNMDA
FS =0.36 nS displayed

higher responsiveness then the networks in which the NMDA
synaptic strengths wrere QNMDA

FS = 1 nS and QNMDA
FS =0.8 nS.

Interestingly, in both conditions, responsiveness in AI states
were always superior to the one in Gamma. This result was
also observed in a similar model in the obscene of NMDA
channels [40]. This example illustrates a general tendency,
which was also observed with other parameter sets.

III. DISCUSSION

In this work, we used computational models to investigate
the effect of psychotic drugs such as ketamine in cerebral
cortex, and how gamma oscillations relate to these effects.
Our findings are (1) NMDA receptors antagonists modulate
the rhythms produced by a simple network model consisting
of two distinct cell types, RS and FS cells, which generate
Gamma oscillations by means of the PING mechanism [68].
This modulation is obtained assuming that the NMDAR block
predominantly affects interneurons. (2) The boosted gamma
oscillations following partial block of NMDA receptors, was
accompanied by an increased responsiveness to external in-
puts. (3) This increase of responsiveness could also be seen
for asynchronous states, with no apparent gamma. We discuss
below the implications of these findings.

A first prediction of the model is that it was necessary
that the antagonism affects predominantly NMDAR receptors
on interneurons. This feature is supported by a number of
observations. Intuitively, if the NMDAR block would occur
predominantly on excitatory cells, then it is difficult to see
how diminishing excitation could augment the activity and
excitability of the network. This long-standing question was
resolved recently by finding that indeed, NMDAR antagonists
primarily affects NMDA receptors on interneurons. It was
observed that the application of Ketamine or MK-801 in sub-
anesthetic doses leads to an increased activity of glutamatergic
neurons both in cortex [25, 35] and in hippocampus [33], and
that this increase of glutamatergic activity is a consequence of
the disinhibition of GABAergic neurons [32, 34]. In addition,
it has also been reported in hippocampus that inhibitory
neurons are more sensitive to NMDAR antagonists than glu-
tamatergic neurons [69, 70]. Thus, our model completely
supports these findings, and could reproduce the increase of
Gamma power induced by NMDA receptor antagonists. On
the other hand, contrasting results also exist. For example,
[31] argue that NMDAR have less impact on the activity of
inhibitory neurons than on the one of excitatory neurons, since
they and other authors observed that NMDAR block depressed
large EPSP–spike coupling more strongly in excitatory than in
inhibitory neurons [31, 71, 72].
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A
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Fig. 1. Network dynamics with respect to different levels of NMDA channels block in the network. A) Possible trajectory in the parameter space of
QNMDA

RS vs. QNMDA
FS , mimicking the action of NMDA receptor (NMDAR) antagonists (the higher the intensity of the NMDAR antagonists, the smaller the

NMDA synaptic strengths). The thin line indicates the identity for reference. The arrow indicates the sens of action of NMDAR antagonists. Points of higher
synaptic strengths are associated with healthy conditions, while points with lower synaptic strengths are associated to pathological conditions supposedly
similar to the schizophrenic brain. B) and C) Raster plots indicating the activity of only 1000 cells of each type (FS in red and RS in green), for two parameter
sets. B: QNMDA

RS = 0.8 nS and QNMDA
FS = 1 nS, and C: QNMDA

RS = 0.213 nS and QNMDA
FS = 0.2 nS. D) Average firing rate of RS (green) and FS cells

(red) with respect to the trajectory in parameter space depicted in A. Only the values of QNMDA
FS are indicated in the x axis. Standard errors of the mean

(SEM) are indicated as error bars. E) Average normalized Power Spectrum of the network LFP for different NMDA synaptic strength. Like in D, the synaptic
strengths follow the curve indicated in A, but only the values of QNMDA

FS are indicated in the color scheme. Notice the shift of the Power Spectrum pick
toward smaller frequencies with the increase of NMDA channel block. F) Power Spectrum peak amplitude with respect to the levels of NMDA channels block
(following the synaptic strengths indicated in A). The color scheme (presented for better visualization) are the same as in E. Standard errors of the mean
(SEM) are indicated as error bars. Results expressed in D, E and F are the outcome of 50 simulations average. The arrows indicate the sense of the behavior
according to amount of block of NMDA channels.

The second finding, which is probably the main finding
of our study, is that the network has a marked increased
responsiveness under the boosted Gamma condition. This
increased responsiveness could be tested experimentally either
in vitro, by testing the response of cortical slices with and
without application of NMDAR antagonists, or in vivo, by
monitoring their response following administration of NMDA
antagonists.

The third finding is that the increase of responsiveness is not
specific to gamma oscillations, because it was also present for
asynchronous states with no apparent gamma. The underlying
mechanism is that the antagonism of NMDA receptors produce
an overall depolarization of RS cells, and hyperpolarization of

FS cells. Consequently, there is an increase of responsiveness
of RS cells, with a corresponding decrease for FS cells, as
we observed. In this model, the increase of responsiveness is
due to the depolarizing effect on RS cells, and are not due
to gamma oscillations. Indeed, the highest responsiveness was
seen for asynchronous states, also in agreement with a previous
modeling study [40].

Possible implications to understand brain pathologies

Our model exhibits several interesting properties that can
be related to pathologies. First, the model provides a possible
explanation for the symptoms associated to ketamine and
others NMDA receptor antagonists, such as hallucinations. The
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Filtered LFP

Fig. 2. Network responsiveness to broad Gaussian inputs in different levels of NMDA channel blocked during Gamma rhythms. A) Responsiveness
protocol scheme. The total number of spikes generated by the network were measured during an external stimulus and in its absence in a time window of 500
ms. The stimulus consisted of a Gaussian fluctuation in the firing rate of the external noise input. Responsiveness was calculated according to Equation 6. B)
Gaussian input amplitude variation. The Gaussian amplitude varied from 0.05 Hz to 2.5 Hz (step of 0.05 Hz), always keeping the same standard deviation of
50 ms. C and D depict respectively the responsiveness of RS (C) and FS (D) neurons for different Gaussian amplitudes in different levels of NMDAR block,
when the network was displaying Gamma activity. The color-scheme indicates the synaptic weights of NMDA synapses (QNMDA) in RS and FS cells. The
arrow indicates the sense of the simulated action of NMDA antagonist (decreasing synaptic strength). Every point corresponds to the average responsiveness
measured in 15 simulations. Standard error of the mean are indicated by the shaded region around each curve.

Fig. 3. Membrane potential polarization as a function of NMDA receptor
block. The average membrane potential of RS (green, left y-axis) and FS (red,
right y-axis) is expressed as function of NMDA synaptic weights of RS and
FS cells. The values of QNMDA

RS and QNMDA
FS follow the trajectory in the

parameter space indicated in Figure 1A. Only the values of QNMDA
FS are

indicated in the x axis. The average was performed first in between neurons
(〈〉N ), obtaining an average curve as a function of time, and subsequently with
respect time (〈〉t). The values plotted correspond to the average of 〈〈V 〉N 〉t
in between 10 simulations. The error bars indicate the standard error of the
mean between these simulations.

enhanced responsiveness produced by antagonizing NMDA re-
ceptors may explain exacerbated responses to sensory stimuli,
which may be related to phenomena such as altered perception
or hallucinations. Indeed, it is well documented that ketamine
produces hallucinations together with a marked increase of
gamma oscillations [73–75].

Besides hallucinations, the model seems also a priori con-

Fig. 4. Network responsiveness to broad Gaussian inputs of different
amplitudes during Gamma and AI states. The responsiveness of RS
neurons, due to different Gaussian amplitudes stimuli (same as in the protocol
of Figure 2), was measured in different states AI and Gamma for NMDA
synaptic parameter sets: QNMDA

RS = 0.8 nS and QNMDA
FS = 1 nS (Gamma:

black, AI: gray), and QNMDA
RS = 0.36 nS and QNMDA

FS = 0.4 nS (Gamma:
blue, AI: light blue). The Gaussian amplitude varied from 0.05 Hz to 2.5 Hz
(step of 0.05 Hz), always keeping the same standard deviation of 50 ms.

sistent with the previously reported role for FS neurons in
schizophrenia. Post-mortem analysis of schizophrenic patient
brains have shown a reduced expression of parvalbumin (PV)
and GAD67 [1, 76–80]. In parallel, genetic ablation of NMDA
receptors in PV-positive interneurons in rodents mimics impor-
tant behavioral [81] and phenotypical features of of the disease
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(reduction of GAD67 [82], increase of neuronal excitability
[82] and increase of spontaneous Gamma power [83–85]).
These observations support the idea that the hypofunction
of NMDA receptors in PV-positive interneurons are specially
important in this illness.

However, NMDA receptors are expressed in both GABAer-
gic and glutamatergic neurons [32], and it still remains unclear
in which types of cells the NMDA receptor hypofunction
causes schizophrenia [3, 86]. Some works reported conflicting
results and have questioned the hypothesis that PV-positive
Fast Spiking neurons play a role in Schizophrenia [31, 86].

In our model, the effect of NMDAR antagonists is to
increase excitability due to desinhibition, consistent with a
number of experimental observations [25–30]. This increased
excitability is accompanied by a Gamma power increase,
as also found in experiments with ketamine [17–19] or in
schizophrenic patients [6–12]. The model could reproduce
all these experimental observations only assuming a larger
decrease of the NMDA synaptic strengths in FS cells than
in RS cells (see Figure 1A). These results support the idea
sustained by some authors [87], that PV-positive Fast Spiking
inhibitory neurons play a key role in schizophrenia. Another
modeling study also stressed the importance of NMDA chan-
nels into FS neurons [88]. Thus, models support the view
that the hypofunction of NMDA receptors on FS cells could
explain a number of features typical of schizophrenia, such as
anomalous responses and boosted gamma oscillations.

IV. METHODS

Neuronal Model

Neural units are described by the Adaptive Exponential
Integrate-And-Fire Model (Adex) [89]. In this model, each
neuron i is described by its membrane potential Vi, which
evolves according to the following equations:

C
dVi(t)

dt
= − gL(Vi − EL) + gL∆exp

[
(Vi(t) − Vth)

∆

]

− wi(t) − ISyn
i (t)

τwi

dwi(t)

dt
= a(Vi(t) − EL) − wi(t) + b

∑

j

δ(t− tj)

(1)
where C is the membrane capacitance, gL is the leakage
conductance, EL is the leaky membrane potential, Vth is the
effective threshold, ∆ is the threshold slope factor and ISyn

i (t)
is postsynaptic current received by the neuron i (see next
section). The adaptation current, described by the variable wi,
increases by an amount b every time the neuron i emits a spike
at times tj and decays exponentially with time scale τw. The
subthreshold adaptation is governed by the parameter a.

During the simulations, the equation characterizing the
membrane potential Vi is numerically integrated until a spike
is generated. Formally this happens when Vi grows rapidly
toward infinity. In practice, the spiking time is defined as the
moment in which Vi reaches a certain threshold (Vth). When

Vi = Vth the membrane potential is reset to Vrest, which is
kept constant until the end of the refractory period Tref . After
the refractory period the equations start being integrated again.

In the developed network two types of cells were used:
Regular Spiking (RS) excitatory cells and Fast Spiking (FS)
inhibitory cells. The cell specific parameters are indicated in
Table I.

TABLE I
Specific Neuron Model Parameters

Parameter RS FS
Vth -40 mV -47.5 mV
∆ 2 mV 0.5 mV
Tref 5 ms 5 ms
τw 500 ms 500 ms
a 4 nS 0 nS
b 20 pA 0 pA
C 150 pF 150 pF
gL 10 nS 10 nS
EL -65 mV -65 mV
EE 0 mV 0 mV
EI 80 mV 80 mV
Vrest -65 mV -65 mV

Synaptic Models
The post-synaptic current received by each neuron i is

composed by three components: two excitatory, referent to
AMPA and NMDA synaptic channels, and one inhibitory,
referent to GABAA channels.

ISyn
i (t) = IAMPA

i (t) + IGABAA
i (t) + INMDA

i (t)

in which

IAMPA
i (t) = GAMPA

i (t)(Vi(t) − EAMPA)

IGABAA
i (t) = GGABAA

i (t)(Vi(t) − EGABAA)

INMDA
i (t) = GNMDA

i (t)(Vi(t) − ENMDA)B(Vi(t))

(2)

EAMPA= 0 mV, EGABAA= -80 mV and ENMDA= 0 mV
are the reversal potentials of AMPA, GABAA and NMDA
channels. While the AMPA and GABAA-mediated currents
are fast, the NMDA-mediated are considerably slower and
present a complex relation with respect to the membrane
potential [90–93]. This complex relation , due to magnesium
block, is accurately modeled by the phenomenological expres-
sion B(V) [94] :

B(V ) =
1

1 + exp(−0.062V ).([Mg2+]o/3.57)
(3)

where [Mg2+]o= 1 mM is the external magnesium
concentration (1 to 2 mM in physiological conditions).
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Because of the fast dynamicas of AMPA and GABAA

channels, their synaptic conductances (GX with X=AMPA
, GABAA) are usually modeled to increase discontinuously
by a discrete amount QX , every time a presynaptic neuron
spikes at time tk, and to subsequently decay exponentially
with a decay time constant τXdecay according to the following
equation:

τXdecay
dGX

i(t)

dt
= −GX

i(t) +QX
∑

k

δ(t− tk) (4)

In which,
∑

k runs over all the presynaptic spike times. The
synaptic time constantes used for AMPA and GABAA

synapses are τAMPA
decay = 1.5 ms and τGABAA

decay = 7.5 ms.

NMDA channels synaptic conductances, GNMDA, be-
cause of their slow dynamics, are usually modeled as a bi-
exponential function characterized by a rise time constant,
τNMDA
rise = 2 ms, and a decay time constant τNMDA

decay = 200 ms,
according to the following equation:

GNMDA
i = QNMDA

i si(t)
NMDA

dsi(t)
NMDA

dt
= −si(t)

NMDA

τNMDA
decay

+ αxi(t)(1 − si(t)
NMDA)

dxi(t)

dt
= − xi(t)

τNMDA
rise

+
∑

k

δ(t− tk)

(5)

In which, QNMDA
i is the synaptic strength of the NMDA

synapse towards the neuron i, α= 0.5/ms and x(t) is an
auxiliary variable. The

∑
k runs over all the presynaptic spike

times. Both, s(t)NMDA and x(t), are adimensional.

Synaptic strenghs of NMDA synapses (towards RS and
FS neurons) were chosen according to the parameter search
expressed in Figure 5, while the synaptic parameters of
AMPA and GABAA synapses were chosen according to
previous works [40, 95] (QAMPA= 5 nS and QGABAA= 3.34
nS). All synapses (AMPA, GABAA and NMDA) were
delayed by time of 1.5 ms. With these choice of parameters
the NMDA/AMPA charge ratio in the network is on average
higher in RS cells then in FS cells (see Figure IV), in agree-
ment with experimental measurements in prefrontal cortex of
adult mice [31] and rat [96].

Network Structure

The network developed in this work is composed of 5000
neurons (4000 RS and 1000 FS). Each neuron (RS or FS)
was connected randomly to every other neurons in the network
with a probability of 10%, receiving on average 500 excitatory
synapses (mediated by both AMPA and NMDA channels)
and 100 inhibitory synapses (mediated by GABAA channels).

LFP

A

B

C

D

Fig. 5. Parameter space of NMDA synaptic weights in RS and FS cells.
A) Average spiking rate in RS cells. B) Average spiking rate in FS cells. C)
LFP Power Spectrum pick. D) LFP Power Spectrum amplitude. The parameter
space of NMDA synaptic weights (QNMDA) was explored for RS and FS
cells in the developed network model. QNMDA

RS and QNMDA
FS varied from 0

nS to 1 nS in steps of 0.05 nS. Each point in the color maps corresponds to the
average of 10 simulations of 5 seconds. Points in which QNMDA

RS =QNMDA
FS

are highlighted. Small squares indicate a possible trajectory in the parameter
space (in the direction of the arrow) generated by the action of NMDAR
antagonists. This is the same trajectory indicated in Figure 1A.
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External Input

In addition to recurrent connections, each neuron received
an external drive to keep the network active. This external
drive consisted of Next = 5000 independent and identically
distributed excitatory Poissonian spike trains with a spiking
frequency µext. These spike trains were sent to the network
with a 10% probability of connection and were computed
inside of the synaptic current term IAMPA, with a synaptic
strength of QAMPA

Ext = 0.8 nS. For Gamma activity, the network
was stimulated with a drive with µext= 3 Hz. For Asyn-
chronous and Irregular activity, the network was stimulated
with a drive with µext= 2 Hz. The external drive mimicked
cortical input, like if the network was embedded in a much
bigger one.

To test network responsiveness, an additional external input
was included in the simulations. This external input, similar
to the external drive, also consisted of Next = 5000 inde-
pendent and identically distributed excitatory Poissonian spike
trains, connected to the network with a 10% probability. The
difference of this input was its firing rate time dependence
(µext(t)). The spiking frequency of the spike trains varied in
a Gaussian manner, with a standard deviation of 50 ms and
variable amplitude. These spike trains were computed inside
of both synaptic current terms IAMPA and INMDA, with
a synaptic strengths of QAMPA

Ext = 0.8 nS, and QNMDA
ExtRS and

QNMDA
ExtFS as indicated in each case.

Block of NMDA channels: effect of NMDAR antagonists

In this work, we mimic the effect of NMDAR antagonists by
changing the value of the NMDA synaptic weights QNMDA.
In Figure 5 a possible trajectory in the parameter space
generated by the action of NMDAR antagonists is depicted.
This is the same trajectory indicated in Figure 1A.

Simulations

All neural networks were constructed using Brian2 simula-
tor [97]. All equations were numerically integrated using Euler
Methods and dt=0.1 ms as integration time step. The codes
for each one of the three developed networks are available at
ModelDB platform.

Population activity: LFP model

To measure the global behavior of the neuronal population,
we used a simulated Local Field Potential (LFP). This LFP
was generated by the network, by means of a recent method
developed by [98]. This approach calculates the LFP by
convolving the spike trains of the network with a Kernel that
have been previously estimated from unitary LFPs (the LFP
generated by a single axon, uLFP) measured experimentally.
Since this method assumes a spatial neuronal displacement,
to be able to apply it to our simulations, we randomly
displaced part of the network (50 neurons) in 2-D grid,
assuming that the electrode was displaced on its center and was
measuring the LFP in the same layer as neuronal soma. The
program code of the kernel method is available in ModelDB
(http://modeldb.yale.edu/266508), using python 3 or the hoc
language of NEURON.

A

B

C

Fig. 6. Excitatory synaptic currents. A) Average AMPA current of one
randomly picked RS (green) and one randomly picked FS (red) neuron.
B) Average NMDA current of one randomly picked RS (green) and one
randomly picked FS (red) neuron. C) Ratio of NMDA and AMPA charges
for RS and FS cells. The synaptic charge ratio of each neuron was calculated
separately. The Bars indicate the mean and the standard deviation among the
RS and FS population. The NMDA synaptic strengths in RS and FS cells are
QNMDA

RS =0.8 nS and QNMDA
FS = 1 nS (which, in our model, describes a

healthy condition).

Power Spectrum

The Power spectrum of the simulated LFP was calculated
by means of the Welch’s method, using a Hamming window
of length 0.25 seconds and 125 overlapping points. We used
the Python-based ecosystem Scipy function signal.welch to do
our calculations.

Synaptic Charge

The synaptic charge (AMPA or NMDA) of each neuron is
defined as the area under the curve of the average synaptic
current (shaded areas of Figure A or B), which was calculated
from the presynaptic input time until 10 ms after it.

Responsiveness

The level of responsiveness (R) of a network, due to an
stimulus (S) in a time window of duration T , is defined as
the difference between the total number of spikes generated by
the whole network due to an stimulus (NS

spikes) and the total
number of spikes generated in the absence of the stimulus
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(Nspikes), normalized by the network size (total number of
neurons Nn) and the duration of the time window T .

R =
NS

spikes −Nspikes

TNn
(6)
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Discussion

One of the main goals of neuroscience is to understand the underlying processes of
cognition, that is, how information is encoded, decoded and processed in the brain [293].
Several ways of encoding information have been hypothesized, such as firing rates [294,
295], pairwise correlations [296, 297], spike pattern irregularity [298, 299, 300, 301] and
spike packets [302], among others.

An important aspect to be taken into consideration, when exploring cognitive mecha-
nisms and their related information processes of coding, decoding and transmission, is the
environment in which the information is treated. It has been shown, in different studies
and protocols, that the brain state promotes major changes in the way the external and
internal stimuli are processed. For example, it is well known that attention modulates
how neurons respond to external stimuli throughout visual cortex [303]. The same way,
the level of responses vary with sleep stage [304] and level of anesthesia [305].

In this thesis we explored in different ways how the activity of individual neurons
and their collective behavior interfere in information transmission in the network. We
devoted our attention to three particular brain states: Slow-wave sleep, Asynchronous-
and-Irregular activity (AI) and Gamma activity. In particular, Gamma and AI activity
were studied both in normal and in pathological conditions associated to schizoid brain
conditions. To do this, we analyzed LFP and single units in the human cortex, provided
by one of our collaborators Sydney S. Cash (Department of Neurology, Massachusetts
General Hospital and Harvard Medical School, Boston). In this analysis, we evaluated
spiking patterns (firing rate, spike regularity and spiking correlations) and the neuronal
participation on Gamma rhythms in Awake and Slow-wave sleep states. In Work 1, we
compared previously published results with our own analysis, stressing differences and
similarities between these two states, with respect to neuronal activity and its contribu-
tions on Gamma rhythms.

To investigate the principles of information transmission in the brain, we developed
network models constrained by this analysis. These models were capable of generating
Gamma rhythms and Asynchronous-and-Irregular activity with spiking activity similar
to experimental observations, like it is described in Work 2. We developed three different
models, each one capable of generating Gamma rhythms by a different mechanism: PING,
ING or CHING. The transfer of information was studied in these models, both during
Gamma and AI states. Information transmission was measured by means of network
responsiveness, that is, the the capacity level of the network to produce additional spikes
in response to a certain stimulus. This type of measurement, associated to the change in
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spiking probability after a stimulus, is easily comparable to experimental measurements,
obtained, for example, by EEG, LFP, Calcium imaging, etc. In addition, networks with
different level of responsiveness can exhibit drastic changes in their behavior. For example,
a decrease in responsiveness imposes important restrictions on the conditions for a cell
to fire with respect to the number of necessary coincidental inputs, forbidding network
responses due to weak stimuli. Conversely, networks with high levels of responsiveness can
easily detect single afferent stimuli, that would be subthreshold otherwise.

In Work 2, we compared network responsiveness during Gamma and AI states in
different paradigms, and found that in all cases, the presence of Gamma oscillations tends
to diminish the responsiveness to external inputs. Our models allowed the interpretation
that Asynchronous-and-Irregular states would be better suited to stimulus detection, al-
lowing the perception of even low amplitude stimuli (due to their high sensitivity), while
Gamma oscillating states, at the expense of loosing stimulus sensitivity, would be able to
encode temporal information. This interpretation comes from the Phase Coding Theory
[128], which states that input strengths could be converted into spike-timing relative to
the cycle (most excited fire earlier in the cycle, while cells that are not excited enough are
prohibited to spike). This was observed in our models by the phase-dependence respon-
siveness present in Gamma states, and absent in AI states.

In a third study, Work 3, we compared network responsiveness in healthy and patho-
logical conditions related to the schizoid brain, during Gamma oscillations and AI states.
The schizoid condition was simulated in our networks by means of different levels of
NMDA receptors block in the respective channels of the models. In this work, as in Work
2, a similar result with respect to Gamma and AI states responsiveness was observed. In
healthy and pathological conditions (with all levels of NMDA receptors block), AI states
displayed a bigger responsiveness than Gamma states. The interesting observation, on
the other hand, was that responsiveness increased with the severity of NMDA receptors
block, meaning that pathological states were in general, both during Gamma and AI
states, more responsive than healthy states. This observation led us to the interpretation
that the hallucinations observed during psychotic episodes in schizophrenic patients could
be potentially related to an incapacity of the neuronal network to process all the stimuli
in the environment, since the network would be excessively responsive, responsive even to
stimuli that in normal conditions would be ignored.

Furthermore, our experimental analysis, compared to previous studies on cellular cor-
relates of Gamma oscillations [47], confirmed a sparse participation of neuronal activity
during Gamma rhythms. We observed two forms of neuronal participation to the rhythms:
phase-locking and/or firing rate increase. FS cells presented significant higher level of
phase-locking, firing rate increase, and behavior consistency than RS cells. In addition,
we identified that the group of Gamma participating cells changes with time as well as
their phase-preference. The combination of this analysis with the developed theoretical
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work brought important theoretical insights. In Work 2, while most of these features
could be obtained by choosing parameters which set the network dynamics into a firing
rate regime, the right level of firing rate increase could only be reproduced with a partic-
ular network configuration, in the ING Network. This network was also the one in which
the difference in responsiveness between AI and Gamma was smaller. Furthermore, we
showed (Work 2) that the resonant properties of each of the developed models (PING,
ING and CHING) strongly depended on the patterns of connections and on the neuronal
composition. These examples illustrate how network structure drastically change network
dynamics and consequently how the information is transmitted by a network.

Another important aspect explored in the thesis is the question if Gamma oscilla-
tions have an active role in information processing or alternatively, if they are just an
epiphenomenon of this process. Several hypotheses concerning the Gamma role have been
proposed. The most popular theories are the Binding-by-synchronization Hypothesis [125,
126], the Phase Coding Theory [127, 128], the Communication Through Coherence Theory
[129, 130] and Communication through Resonance Theory [131]. Even though exploring
these hypothesis was one of the initial ambitions of this thesis, our models could not
provide any evidences in favor or against them. On the contrary, these theories guided us
to allow the interpretation of our results. In this perspective, for example, if the Commu-
nication through Resonance Theory [131] is indeed one of the mechanism of information
transmission, network structure and network resonant properties should be explored in
future models.

Albeit no conclusion could be made with respect to the role of Gamma oscillations
per se, in Work 3 our models could give a possible interpretation for the role of Gamma
oscillations increase in pathological conditions. In our study, we observed an increase of
responsiveness in conditions associated to the hyper-production of Gamma, such as in
early schizophrenic patients. This increase of responsiveness was accompanied by Gamma
power increase. However, since the same effects were also observed during AI states, this
increase of responsiveness was not a direct effect of this Gamma increase, but rather, an
effect of the increase of excitability generated by alteration of NMDA receptors. In this
situation, the Gamma power increase appeared to be a simple side effect of altered or
anomalous NMDA function, suggesting that Gamma oscillations have no direct role per
se in the pathological condition.

In summary, in this thesis we performed an analysis of experimental data from the
human cortex, analyzing how neurons participate to Gamma rhythms. We observed that:
(1) there are two types of neuronal participation, phase-locking and firing rate increase,
that (2) neuronal participation of Gamma rhythms is sparse and that (3) inhibitory
neurons participate to the rhythm more expressively than excitatory neurons. Based on
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these features, we built and constrained three network models generating Gamma by
three different mechanisms: PING, ING and CHING. These models were used as a tool
to explore the principles of information transmission in the brain, which was accessed by
the measurement of network responsiveness. Our models indicated that network structure
should be the center of future studies, since it affects different dynamical properties, such
as responsiveness. We explored network responsiveness in healthy and in pathological
states similar to that seen in schizophrenia disease, and found that Gamma oscillations
diminish network responsiveness in comparison to AI, in both, healthy and pathological
conditions. Furthermore, our models indicated that schizoid pathological states were more
responsive than healthy states, providing a possible comprehension of positive symptoms
associated to schizophrenia. In our interpretation, these symptoms are possibly caused
by the hypofunction of NMDA channels, rather than by the the excess of Gamma. In
this perspective, we suggest that the increase of Gamma oscillations, observed during
early phases of the disease, represents a side effect of the increase of neuronal synchrony,
generated by the NMDA anomalies present in the disease.
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Work 4

Bridging Single Neuron Dynamics to
Global Brain States

Reference:
Goldman, J. S., Tort-Colet, N., Di Volo, M., Susin, E., Bouté, J., Dali, M., Carlu, M.

Nghiem, T., Górski, T. & Destexhe, A. (2019). Bridging single neuron dynamics to global
brain states. Frontiers in systems neuroscience, 13, 75.

French Abstract:

Les réseaux de neurones biologiques produisent de l’information de fonds spontanés à
plusieurs échelles. L’activité, qui encapsule ces informations, devient plus complexe dans
les états cérébraux qui affichent des capacités plus élevées pour la cognition. Dans cette
perspective, les états d’éveil attentif sont plus complexes que les états endormis ou anesthésiés,
par exemple. Dans cet article, nous couvrant dès les courants des canaux ioniques (micro-
échelle) à l’échelle du cerveau entier (macro-échelle), en exposant différentes études à
propos des mécanismes qui contrôlent les différents états dynamiques du cerveau. D’une
façon similaire dont les interactions microscopiques entre les molécules sont liées à des
structures macroscopiques de la matière, en utilisant la physique statistique, la dynamique
des phénomènes neuronaux peuvent être liés à la dynamique macroscopique du cerveau
à travers des échelles mésoscopiques. Pendant des états de conscience, on observe que
des stimuli externes provoquent des effondrements de complexité au-delà des dynamiques
spontanées, accompagnées d’une dynamique multi-dimensionnel, asynchrone et irrégulier.
En revanche, la complexité des états d’inconscience ne peut pas être davantage réduite au-
delà de la synchronie et de la régularité caractéristiques des activité spontanée observées
pendant ces états. Dans cet article, nous proposons que l’augmentation de dimensionnal-
ité des états dynamique spontanée observées pendant les états de conscience promeut la
réactivité du cerveau, améliorant la capacité émergente des réseaux de neurones à encoder
des informations sur plusieurs échelles.

109



PERSPECTIVE
published: 06 December 2019

doi: 10.3389/fnsys.2019.00075

Frontiers in Systems Neuroscience | www.frontiersin.org 1 December 2019 | Volume 13 | Article 75

Edited by:

Per E. Roland,

University of Copenhagen, Denmark

Reviewed by:

Mario Rosanova,

University of Milan, Italy

Sacha Jennifer van Albada,

Julich Research Centre, Germany

*Correspondence:

Jennifer S. Goldman

jennifer.goldman@mail.mcgill.ca

†Present address:

Matteo di Volo,

Laboratoire de Physique Théorique et

Modelisation, Université de

Cergy-Pontoise, Cergy-Pontoise,

France

Received: 28 June 2019

Accepted: 19 November 2019

Published: 06 December 2019

Citation:

Goldman JS, Tort-Colet N, di Volo M,

Susin E, Bouté J, Dali M, Carlu M,

Nghiem T-A, GórskiT and Destexhe A

(2019) Bridging Single Neuron

Dynamics to Global Brain States.

Front. Syst. Neurosci. 13:75.

doi: 10.3389/fnsys.2019.00075

Bridging Single Neuron Dynamics to
Global Brain States
Jennifer S. Goldman 1*, Núria Tort-Colet 1, Matteo di Volo 1†, Eduarda Susin 1, Jules Bouté 1,

Melissa Dali 1, Mallory Carlu 1, Trang-Anh Nghiem 2, Tomasz Górski 1 and Alain Destexhe 1

1Department of Integrative and Computational Neuroscience (ICN), Centre National de la Recherche Scientifique (CNRS),

Paris-Saclay Institute of Neuroscience (NeuroPSI), Gif-sur-Yvette, France, 2Department of Physics, Ecole Normale

Supérieure, Paris, France

Biological neural networks produce information backgrounds of multi-scale spontaneous

activity that become more complex in brain states displaying higher capacities for

cognition, for instance, attentive awake versus asleep or anesthetized states. Here, we

review brain state-dependent mechanisms spanning ion channel currents (microscale)

to the dynamics of brain-wide, distributed, transient functional assemblies (macroscale).

Not unlike how microscopic interactions between molecules underlie structures formed

in macroscopic states of matter, using statistical physics, the dynamics of microscopic

neural phenomena can be linked to macroscopic brain dynamics through mesoscopic

scales. Beyond spontaneous dynamics, it is observed that stimuli evoke collapses of

complexity, most remarkable over high dimensional, asynchronous, irregular background

dynamics during consciousness. In contrast, complexity may not be further collapsed

beyond synchrony and regularity characteristic of unconscious spontaneous activity. We

propose that increased dimensionality of spontaneous dynamics during conscious states

supports responsiveness, enhancing neural networks’ emergent capacity to robustly

encode information over multiple scales.

Keywords: computational neuroscience, neural network models, mean-field models, membrane biophysics,

low-dimensional manifold, cerebral cortex, coupling, desynchronized

INTRODUCTION

Brain activity transitions between healthy states, including stages of sleep, restful and aroused
waking, as well as pathological states such as epilepsy, coma, and unresponsive wakefulness
syndrome. From such a diversity of brain states, phenomenological categories encompassing
similar spatio-temporal activity patterns can roughly, but usefully, be defined: unconscious (e.g.,
sleep and anesthesia) and conscious (e.g., waking and dreaming) brain states. At the macroscopic,
global scale, unconscious brain states are dominated by high voltage, low frequency oscillatory
brain activity related to the microscopic alternation of synchronous neuronal spiking and near
silence (Steriade et al., 1993; Brown et al., 2010). Conversely, conscious states are macroscopically
characterized by low voltage, high frequency, complex “disorganized” dynamics resulting from
more asynchronous irregular (AI) microscopic network activity (Tsodyks and Sejnowski, 1995;
Van Vreeswijk and Sompolinsky, 1996; Brunel, 2000), thought to be important for neural coding
(Skarda and Freeman, 1987; Van Vreeswijk and Sompolinsky, 1996; Tononi and Edelman, 1998;
Zerlaut and Destexhe, 2017).

Much as different states of matter like solids, liquids, and gases emerge from interactions
between populations of molecules, different brain states may emerge from the interactions
between populations of neurons. Statistical physics provides a mathematical framework to
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uncover structures of microscopic interactions underlying
macroscopic properties. In this sense, macroscopically observed
high synchrony, low complexity brain signals recorded from
unconscious states may be accounted for by an increased
coupling in the system’s components, behaving more like a
solid (Peyrache et al., 2012; Le Van Quyen et al., 2016; Olcese
et al., 2016; Nghiem et al., 2018a). In contrast, conscious brain
states may be described as higher complexity (Sitt et al., 2014;
Engemann et al., 2018; Nghiem et al., 2018a), perhaps liquid-like.

Though quantitative expressions directly linking order and
complexity are not straightforward, various definitions and
metrics of complexity have been described to vary between
brain states. Reports of enhanced complexity in conscious
compared to unconscious states may be understood as increased
dimensionality (El Boustani and Destexhe, 2010), namely the
number of degrees of freedom needed to capture a system’s
dynamics. Intuitively, dimensionality relates, though is not
reducible to, algorithmic complexity which quantifies the length
of a deterministic algorithm required to reproduce an exact
signal. For a random signal resulting from purely stochastic
dynamics (similar to neural activity observed during conscious
states), the length of the algorithm would be as long as the
signal itself. In contrast, a purely oscillatory signal (reminiscent
of unconscious brain dynamics) can be recapitulated by a
shorter algorithm, easily described by a periodic trajectory in
few dimensions.

Here, we aim to connect spatial scales from microscopic
(nanometers to micrometers—molecules to whole neurons) to
macroscopic brain activity (centimeters to meters—brain areas
to individual subjects’ brains), describing both spontaneous and
evoked dynamics. Toward linking interpretations of studies
between scales, mesoscopic data (micrometers to millimeters—
populations of thousands to tens of thousands of neurons)
have been useful to inform models of neuronal assemblies.
The perspective concludes by discussing a hypothesis best
tested with a multi-scale understanding of brain function: the
global complexity of neural activity increases in conscious
brain states so as to enhance responsiveness to stimuli. We
suggest responsiveness may depend on the capacity of neural
networks to transiently collapse the dimensionality of collective
dynamics—in particular neural assemblies sensitive to stimulus
features—into evoked low-dimensional trajectories supporting
neural codes (Figure 1A).

MACROSCOPIC SIGNALS VARY
ROBUSTLY BETWEEN BRAIN STATES

Both spontaneous and evoked (Figures 1A,B) neural signals
vary macroscopically across brain states, as demonstrated
in electroencephalography (EEG), magnetoencephalography
(MEG), and functional magnetic resonance imaging (fMRI).
In unconscious states, neural activity is dominated by low-
frequency, high-amplitude signals (Niedermeyer and Lopes da
Silva, 2005). Accordingly, analyses of entropy (Sitt et al., 2014;
Engemann et al., 2018), complexity (Tononi and Edelman,
1998), and dimensionality (El Boustani and Destexhe, 2010)

during unconscious states indicate a relative simplicity of
signals compared to conscious states. In unconscious states,
synchronous activity slowly sweeps across the cortex (Massimini
et al., 2004) along paths formed by cortical tracts (Capone
et al., 2017). In both conscious resting and unconscious states,
the default mode network (Raichle et al., 2001; Boly et al.,
2008) establishes a pattern of synchronization between brain
areas, producing correlations in ultra-slow (< 1 Hz) dynamics
(Brookes et al., 2011). Sustained, slow oscillations were initially
reported in the thalamocortical system (Steriade, 2003), but
are also observed experimentally in isolated cortex, without
thalamus (Sanchez-Vives and McCormick, 2000; Timofeev et al.,
2000). Thalamocortical connections shape slow wave dynamics
(Destexhe et al., 2007; Poulet et al., 2012; David et al., 2013;
Crunelli et al., 2015; Zucca et al., 2019) although slow oscillations
appear to be the default state of cortical networks (Sanchez-Vives
and McCormick, 2000; Sanchez-Vives et al., 2017).

Patterns of neocortical regions activated in resting state
networks have been successfully retrieved using eigenmodes of
the structural connectivity matrix, i.e., the possible oscillatory
patterns at frequencies allowed by white matter tract lengths
(Atasoy et al., 2016). In active states, the executive control
network replaces the default mode (Fox et al., 2005), and the co-
activation of different cortical regions is more strongly controlled
by correlations in external stimuli than by white matter structural
connectivity (Gilson et al., 2018), with patterns of activity
propagating recurrently between low-level, sensory areas and
high-level, associative areas.

During conscious states, on the background of globally
disorganized neural activity, transient patterns emerge (Duncan-
Johnson and Donchin, 1982; Goodin and Aminoff, 1984; Sur and
Sinha, 2009; Uhlhaas et al., 2009; Luck and Kappenman, 2011;
Churchland et al., 2012; Sato et al., 2012; Singer, 2013; Chemla
et al., 2019). Under an interpretation of brain states in analogy to
states of matter, microscopic changes in the interactions between
neurons could permit the emergence of larger-scale structures in
brain activity.

MICROSCOPIC MECHANISMS;
BIOPHYSICS OF BRAIN STATES

Experiments have demonstrated that during unconscious brain
states, the membrane potential (Vm) of single cells slowly
oscillates between hyperpolarized and depolarized potentials
associated with alternating periods of silence (Down states,
also termed “OFF periods”) and AI-like firing (Up states, also
termed “ON periods”) (Steriade et al., 1993) (Figure 2A). During
conscious brain states, neurons show sustained but sparse and
irregular AI firing patterns (Vreeswijk and Sompolinsky, 1998;
Destexhe et al., 1999; Brunel, 2000; Steriade, 2000; Renart et al.,
2010; Dehghani et al., 2016; di Volo and Torcini, 2018). It
was found that, during AI states, excitatory (E) and inhibitory
(I) synaptic inputs are near-balanced (Dehghani et al., 2016),
as predicted theoretically (Van Vreeswijk and Sompolinsky,
1996). In AI states, voltage fluctuations drive neurons over
the threshold for firing action potentials, resulting in irregular
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FIGURE 1 | Complex dynamics associated with conscious brain states provide a potential substrate for neural coding. (A) Schematics of spontaneous (top) and

evoked (bottom) dynamics in connected neuronal assemblies encoding different related concepts (different colors) in unconscious (left) and conscious (right) brain

states. In unconscious brain states, slow, synchronous, large amplitude oscillations are observed. Stimuli delivered during unconscious states evoke large amplitude,

transient responses similar to spontaneous activity. In contrast, during conscious states, asynchronous, irregular firing of neurons results in macroscopically

desynchronized, low amplitude signals. Only networks recruited by the perturbation (here, a rabbit) produce lower-dimensional patterns that propagate relatively

further in time and space. (B) Global mean-field power (GMFP) recorded with EEG in response to transcranial magnetic stimulation, during deep, non-rapid eye

movement (NREM) sleep versus wakefulness. Mean EEG signal is represented by black traces. Background colors represent temporal latency (light blue, 0 ms; red,

300 ms) of maximum current sources, also shown in cortical space on the right, where yellow crosses represent the location of stimulation (right dorsolateral premotor

cortex). Reprinted with permission from AAAS (Massimini et al., 2005). If brain dynamics between states may be described in analogy to states of matter, perturbing

unconscious brains results in large, brief signals perhaps akin to a small perturbation of a solid, which can displace the solid briefly, but will not modify its internal

structure. In contrast, the same perturbation delivered during conscious, liquid-like brain states results in smaller but more complex patterns that propagate further in

time and space. Under this interpretation, in coding networks, responses evoked during conscious states could represent a form of transient “crystallization,”

consistent with neural trajectories lying on low-dimensional manifolds.

spiking dynamics, also known as fluctuation-driven regimes
(Kuhn et al., 2004; Destexhe, 2007; Destexhe and Rudolph-Lilith,
2012). To understand mechanisms at work during fluctuation-
driven dynamics, computational models have further shown that
three parameters are important to capture neuronal responses in
this regime, the average membrane voltage Vm, the amplitude
of Vm fluctuations, and the conductance state of the membrane
(Reig et al., 2015; Zerlaut et al., 2016).

Neuromodulators, including acetylcholine, play important
biological roles in modulating the membrane properties of

neurons (McCormick, 1992) and thus transitions between
AI and slow oscillatory dynamics through the regulation of
membrane currents (Hill and Tononi, 2005). Neuromodulators
are present at higher concentrations during conscious states
(McCormick, 1992; Jones, 2003) and, most generally, inhibit
potassium (activity-dependent and leak K+) channels, which
leads to depolarization of cells and suppression of spike-
frequency adaptation. At low neuromodulatory concentrations,
during unconscious states, K+ leak channels are constitutively
open and activity-dependent K+ channels open when neurons
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FIGURE 2 | Simple, high-amplitude signals in unconscious brain states are associated with synchronous regular neuronal firing, whereas complex, low-amplitude

signals in conscious brain states emerge from asynchronous irregular firing. (A) Data sample from Peyrache et al. (2012), Dehghani et al. (2016),

(Continued)
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FIGURE 2 | Le Van Quyen et al. (2016), Teleńczuk et al. (2017), and Nghiem et al. (2018b), containing local field potential (LFP; top), spike times (action potentials;

middle), and spike counts (bottom) recorded from a human subject during NREM sleep (left) and wakefulness (right). Spikes from inhibitory (orange) and excitatory

(blue) neurons were separated and spike counts were calculated in bins of 5ms. Up states shaded in the left panel. (B) Transition between slow-wave (unconscious)

and activated (conscious) state dynamics in vivo (top) and in silico (bottom). Experimentally the transition is generated by electrical stimulation of acetylcholine neurons

in the pedunculopontine tegmentum (PPT) of anesthetized cat (Volgushev et al., 2011), triggering awake-like, desynchronized dynamics in cortex (Rudolph et al.,

2005). A prominent consequence of enhancing cholinergic signaling in cortex is a reduction of spike-frequency adaptation (McCormick, 1992). In silico, a similarly

desynchronizing effect can be generated by reducing the parameter responsible for spike-frequency adaptation. Simulated traces shown in the bottom were modified

from Destexhe (2009), which used a network of adaptive exponential integrate-and-fire neurons. The average Vm of the network, the Vm of a randomly chosen neuron,

and the raster plot of the network are shown. Reproduced with permission from Destexhe (2009). (C) State dependence of network responsiveness. The

responsiveness of two spiking networks to a Gaussian pulse is shown. Raster plots display spike times of excitatory (blue) and inhibitory (orange) neurons connected

by conductance-based synapses. Population activity (spike counts, thin line), as well as mean-field model (thick lines), and standard deviation (shaded area) of

population firing rate generated by a mean-field model developed in di Volo et al. (2019). Responsiveness is found to vary between different network states, obtained

by changing the ratio of the time-averaged global excitatory conductance (GE ) (Destexhe et al., 2003) to membrane leakage conductance (GL).

spike, allowing K+ ions to exit cells thus hyperpolarizing the
membrane. Accumulating self-inhibition in the form of spike-
frequency adaptation during Up periods results in the transition
to Down states. Conversely, spike-frequency adaptation wears
off during Down states, allowing noise fluctuations (present
ubiquitously; Destexhe and Rudolph-Lilith, 2012) to trigger
transitions to Up states (Destexhe, 2009; Jercog et al., 2017;
Nghiem T.-A. E. et al., 2018; di Volo et al., 2019) (Figure 2B).
Computationally speaking, for high values of spike-frequency
adaptation, bistability can be observed, with solutions at firing
rate zero (Down state) and non-zero (Up state) values (Holcman
and Tsodyks, 2006; di Volo et al., 2019). The more chaotic
dynamics of AI states associated with consciousness allows for
more reliable stimulus encoding (D’Andola et al., 2017), more
reliable propagation (Zerlaut and Destexhe, 2017), and more
sustained responses (Nghiem T.-A. E. et al., 2018) to stimuli over
time. In contrast, during unconscious states, neuronal responses
are more unreliable and vary greatly depending on the stimulus
amplitude and whether cells receive inputs in Up or Down
periods (Rosanova and Timofeev, 2005; Reig et al., 2015).

The Ising model for spin glasses (Jaynes, 1982) fitted to neural
data (Schneidman et al., 2006) has revealed divergent types
of emergent neuronal dynamics in conscious and unconscious
states. While neuronal interactions are pairwise in wakefulness
(Nghiem et al., 2017), coupling becomes population-wide in
deep sleep (Tavoni et al., 2017; Nghiem et al., 2018b). In
particular, inhibitory neurons organize synchronous activity
across populations (Nghiem et al., 2018b; Zanoci et al., 2019),
especially during deep sleep (Peyrache et al., 2012; Le Van Quyen
et al., 2016; Olcese et al., 2016) where inhibitory neurons regulate
rhythms of slow wave dynamics (Compte et al., 2008; Funk et al.,
2017; Zucca et al., 2017, 2019).

To summarize, between unconscious and conscious
brain states, microscopic data appear intuitively related to
macroscopic data: synchronous microscopic Up and Down
states resulting from constitutive and activity-dependent,
hyperpolarizing currents due to reduced neuromodulation
correspond to relatively simple, high-amplitude macroscopic
dynamics observed in unconscious states. Active, disorganized,
desynchronized, AI, low adaptation, high neuromodulation
conditions correspond to low amplitude, complex, conscious
brain signals. On backgrounds of differing spontaneous
dynamics, generalizable patterns of activity (a.k.a. neural

graphoelements) are observed. Cash et al. have elegantly shown
that K-complexes (graphoelements characteristic of sleep stage
2) are complementarily observed both at microscopic and
macroscopic scales (Cash et al., 2009). Other identifiable patterns
also begin to emerge in empirical and theoretical data, including
phase cones (Freeman and Barrie, 2000) and interacting traveling
waves (Sato et al., 2012; Chemla et al., 2019). Since statistical
physics has successfully described neuronal interactions for
different brain states, we ask next whether mesoscale methods
from statistical physics can help represent spontaneous and
evoked dynamics of neuronal populations, thus formally linking
knowledge between micro- and macroscopic scales.

MESOSCALE BRIDGES; POPULATIONS OF
NEURONS

Brain dynamics at mesoscopic scales, describing thousands of
neurons, are investigated empirically by electrophysiology and
more recently, voltage-sensitive dyes (Arieli et al., 1996; Chemla
and Chavane, 2010). At mesoscales, brain activity follows the
trend of increasing complexity of spontaneous activity with
consciousness (Figure 2A). Studying the effects of inputs at
the mesoscale, studies have shown that perturbations during
deep sleep states induce slow waves, but, during waking states,
perturbations can result in chains of phase-locked activity
(Pigorini et al., 2015) leading to causal global interactions
(Rosanova et al., 2018).

Mean-field models offer a formalism for scaling up
microscopic detail to collective macroscopic dynamics using few
equations, offering a computational advantage for simulations.
In describing states of matter, mean-field models simplify
the probabilistic behavior of molecules to the relatively more
predictable behavior of macroscopic states (Kadanoff, 2009).
A rich literature has begun to develop mean-field models of
neuronal populations, showing that global variables describing
population activity can be usefully derived from the biophysics
of neurons and their interactions (Ohira and Cowan, 1993;
Ginzburg and Sompolinsky, 1994; El Boustani and Destexhe,
2009; Buice et al., 2010; Dahmen et al., 2016). Mean-field models
have qualitatively reproduced temporal features of spontaneous
dynamics including AI (El Boustani and Destexhe, 2009), Up
and Down dynamics (Compte et al., 2003; Jercog et al., 2017;
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Tartaglia and Brunel, 2017; di Volo et al., 2019), and transitions
between these states (di Volo et al., 2019; Tort-Colet et al.,
2019). In addition, connecting mean-fields provides a tool
for simulating the propagation of patterns through time and
space, across mesoscale structures. For example, recent work
deriving mean-field models of networks with conductance-based
synapses has reproduced the suppressive interaction between
traveling waves observed in visual cortex during conscious
states, a biological phenomenon that could not be captured by
current-based networks (Chemla et al., 2019).

Mean-field models have highlighted that, while complicated
to apply mathematically in the framework of conductance-
based models (di Volo et al., 2019), voltage-dependent
interactions constitute a significant non-linearity in the
membrane evolution equations. Voltage-dependent interactions
appear to be important for explaining non-trivial responses
of biological neurons, through the mean and fluctuations
of the cells’ membrane voltage (Reig et al., 2015). In
fact, while these results do not imply that differences in
responsiveness are due only to conductances, they show
that voltage dependent synapses play a role in the nonlinear
state-dependent response of a neural network. As shown in
Figure 2C, various levels of membrane conductance, regulated
by voltage-dependent synapses, are shown to differently shape
population responses.

Finally, renormalization group theory, a method of coarse-
graining microscopic detail to obtain macroscopic laws helping
to understand how order can emerge from apparent disorder
(Wilson, 1979; Cardy, 1996; Goldenfeld, 2018) has recently begun
to be applied to neural assemblies (Meshulam et al., 2019),
laying further foundation for the formal connection of our
understanding of brain function across scales.

DISCUSSION

In this paper, we briefly reviewed work on the measurement
and modeling of brain states at different scales, from single
neurons to cell assemblies and global brain activity, considering
both spontaneous and evoked dynamics. In particular, we
highlighted that increased complexity in the dynamics of
conscious brain states relates to changes in single-neuron
biophysics, tuned by neuromodulation. In unconscious states,
reduced neuromodulation promotes activity-dependent self-
inhibition of excitatory neurons as they spike, leading to
alternating, synchronous transients of silence and firing,
that produce high-amplitude, low-complexity, synchronous
signals, on resonant frequencies of the structural connectome.
During conscious states, neuronal discharges are asynchronous,
irregular and fluctuation-driven, resulting from sustained
membrane depolarization in cortical neurons, promoting
effective neural communication.

Beyond conscious and unconscious categories proposed
here for the sake of brevity, important differences exist
within categories of unconscious and conscious states (Brown
et al., 2010; El Boustani and Destexhe, 2010; Nghiem et al.,
2018a). Unlike healthy wakefulness and sleep, epileptic

networks display both excessively high conductance and
strongly synchronized, regular dynamics (El Boustani
and Destexhe, 2010). Further, brain signals in coma are
both low-amplitude and low-complexity, in contrast to
high-amplitude signals observed in other unconscious
states, but also to complex signals observed in conscious
states (El Boustani and Destexhe, 2010). Such anomalous
deviations from the overall trend of coordinated changes
in complexity and amplitude may illuminate mechanisms
underlying disease-causing deviations from healthy brain
states (Mackey and Glass, 1977).

To characterize brain states, it has been useful to consider
not only spontaneous dynamics but also patterns evoked by
perturbations. It was found that macroscopic responsiveness
highly depends on brain state and different patterns of responses
are evoked in conscious versus unconscious states (Massimini
et al., 2005). Such state-dependent responsiveness can also be
seen at the level of local networks in vivo and in silico, for
example in the different reliability of responses to perturbations
given during Up and Down periods of slow waves (Reig et al.,
2015; Zerlaut and Destexhe, 2017). In simulations, different
responsiveness could be accounted for by three parameters:
membrane voltage, voltage fluctuation amplitude, andmembrane
conductance (Reig et al., 2015). These parameters could be well
described by mean-field models (di Volo et al., 2019), able
to capture fundamental properties of spontaneous dynamics
and also state-dependent responses at mesoscales. As such, the
data-driven coupling of such mean-field models may serve as
natural candidates for modeling the emergence of mesoscopic
and macroscopic-scale patterns.

Transient collapses of dimensionality found in encoding
networks were also discussed as substrates potentially supporting
neural codes. Such collapses in complexity have been observed
in active ensembles at scales spanning microscopic (Churchland
et al., 2010; Fairhall, 2019) to macroscopic (Quiroga et al., 2001;
Zang et al., 2004) activity. This echoes recent work studying
recordings of neural populations which highlighted that neural
representations of stimuli may lie on low-dimensional manifolds
(Churchland et al., 2012; Sadtler et al., 2014; Gallego et al.,
2017; Zhao and Park, 2017; Golub et al., 2018; Chaudhuri
et al., 2019; Recanatesi et al., 2019; Stringer et al., 2019).
Indeed neurons do not fire independently, which would yield
dynamics of dimensionality as high as the number of neurons,
but instead follow constrained trajectories of activity that can
be captured by descriptions of much lower dimensionality that
depend on spontaneous and evoked dynamics. For example, a
neural population firing in synchrony could be fully described
by a periodic orbit trajectory constrained to a low-dimensional
space (Churchland et al., 2012). Since spontaneous global
network activity increases in dimensionality during conscious
states, we ask whether the transient collapse of complexity
in specific networks, translating the emergence of simpler
dynamical structures from disorder, may be associated to
neural codes.

As an analogy, windmills facing all in one direction
display low complexity, but can only be synchronously
active or inactive. Windmills facing in random directions,
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in contrast, are a higher complexity configuration able to
represent wind from any direction through the activity of
a subset. The activity of an ensemble of windmills tuned
to a particular direction of wind could represent a collapse
of complexity and the generation of information by that
subset (in this case, about the direction of wind). Similarly,
enhanced dimensionality associated with conscious states
could subserve neural information through the collapse
of complexity in neural assemblies tuned to encode
particular representations.
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