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Introduction

Deux énergies géométriques de surface sont au cœur de ce manuscrit de thèse : l’aire et l’énergie
de Willmore. L’intérêt pour la notion d’aire est ancien puisque les premiers travaux sur le prob-
lème isopérimétrique datent de l’antiquité et qu’il existe toujours aujourd’hui une riche activité de
recherche autour des surfaces minimales en analyse, en géométrie, en théorie géométrique de la
mesure mais aussi en probabilités et en statistique. Le très vaste champ d’applications des surfaces
minimales motive également de nombreux travaux portant sur leur approximation discrète. L’énergie
de Willmore est peut-être un peu moins connue, ainsi que ses points critiques, les surfaces de Will-
more. On rappelle que l’énergie de Willmore désigne l’intégrale sur la surface du carré de la courbure
moyenne, qu’elle doit son nom aux travaux du géomètre T.J. Willmore dans les années 60 [137, 136]
mais que son existence est bien plus ancienne. En dimension 1, Bernoulli et Euler l’avaient déjà pro-
posée au 18e siècle comme énergie de torsion d’une tige élastique. Son étude pour les 2-surfaces dans
R

3 a commencé dès le début du 19e siècle avec Poisson [117] puis Germain [65] qui l’ont utilisée pour
caractériser les plaques élastiques fines. Plusieurs raisons expliquent l’engouement fort dont l’énergie
de Willmore(–Poisson–Germain...) bénéficie aujourd’hui :

• C’est un invariant pour les transformations conformes de R
3 et, à topologie fixée, elle offre

par minimisation une bonne définition d’immersion optimale. Mieux encore, l’énergie de Will-
more vérifie une propriété de quantification dépendant de la topologie : si Σ est une surface
orientable et fermée (i.e., compacte et sans bord) de genre g alors pour toute immersion f de
Σ dans R

3 on a W (f) ≥ βg où βg est une constante positive. En outre, il existe une surface
de Willmore (i.e. un point critique f de l’énergie) orientée, fermée et de genre g d’énergie
βg [128, 14]. L’inégalité W (f) ≥ βg reliant géométrie et topologie de la surface est remarquable.
Elle constitue le pendant pour la courbure moyenne (et sous forme d’inégalité) du lien établi
par le théorème de Gauss-Bonnet entre l’intégrale de la courbure gaussienne et la caractéris-
tique d’Euler. L’identification précise des βg et des surfaces dont c’est l’énergie a fait l’objet de
nombreux travaux depuis Willmore. Celui-ci avait démontré que β0 = 4π, qui coïncide avec
l’énergie des sphères plongées. Le cas g = 1, objet de la fameuse conjecture de Willmore, a
été résolu par Marques et Neves [94] qui ont confirmé que β1 = 2π2, énergie qu’on savait déjà
atteinte par le tore de Clifford. Le problème est toujours ouvert pour g ≥ 2. Une conjecture
due à Kusner affirme que l’énergie optimale serait atteinte par les projections stéréographiques
des surfaces de Lawson, une classe de surfaces minimales dans S

3 [79, 86]. Il est d’ailleurs im-
portant de souligner, pour mettre en avant le lien étroit qui lie surfaces minimales et surfaces
de Willmore, que la projection stéréographique sur R

3 d’une surface minimale de S
3 est une

surface de Willmore.

• L’énergie de Willmore n’est pas seulement utile comme outil de caractérisation géométrique et
topologique, elle joue aussi un rôle fondamental dans des applications variées : en biologie, elle
est contenue dans l’énergie de Canham-Helfrich qui régit la forme des membranes bilipidiques,
par exemple celle des globules rouges, voir [17, 98, 99] et les références incluses. Comme on
l’a vu en évoquant Bernoulli, Euler, Poisson et Germain, elle est aussi utilisée en mécanique
comme énergie de déformation des tiges ou des plaques élastiques. Elle apparaît également en
relativité générale dans la masse d’Hawking [68]. Elle intervient par ailleurs dans des modèles
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de reconstruction ou de segmentation d’images numériques [95, 9, 39, 13, 36, 96] et elle sert
d’énergie de régularisation pour des problèmes de complétion ou de régularisation de surfaces
discrètes ou de nuages de points [55, 29, 45].

Toutes ces applications sont à l’origine d’une très grande variété de méthodes pour l’approximation
numérique de minimiseurs de l’énergie de Willmore. On se focalisera dans cette thèse sur les méth-
odes dites de champ de phase qui permettent d’approcher l’aire ou l’énergie de Willmore du bord
d’un domaine ouvert (donc des énergies singulières concentrées) par des fonctionnelles très régulières
définies pour des fonctions régulières [30]. L’approche par champ de phase permet à la fois d’obtenir
des bonnes garanties de convergence (au sens de la Γ-convergence) des énergies approchées vers les
énergies limites et se prête très bien à l’approximation numérique.

Décrivons maintenant plus en détail le contenu de ce manuscrit. Il comporte deux parties in-
dépendantes rédigées en anglais. Bien que l’énergie de Willmore soit commune à ces deux parties,
les questions abordées ainsi que les techniques et outils utilisés sont très différents.

La partie I, intitulée De l’approximation champ de phase du flot de Willmore au flot de courbure moyenne
approché avec auto-évitement, a été l’objet d’une collaboration avec Elie Bretin. Elle comporte quatre
chapitres. Au chapitre 1, on rappelle les principes de l’approximation champ de phase, en partic-
ulier pour l’approximation de l’aire ou de l’énergie de Willmore. On rappelle également quelques
résultats connus sur les propriétés des flots-gradients associés à certaines approximations champ de
phase et leur convergence vers les flots gradients limites que sont le flot de courbure moyenne et
le flot de Willmore (i.e. le flot gradient L2 de l’énergie de Willmore). Le chapitre 2 est consacré à
l’analyse théorique et à l’approximation numérique du flot de De Giorgi-Bellettini-Paolini, c’est-à-
dire du flot gradient L2 associé au modèle classique d’approximation de l’énergie de Willmore dû à
De Giorgi, Bellettini et Paolini [18]. Ce flot converge vers le flot de Willmore lorsque tout est régulier,
mais les singularités qu’il laisse apparaître ne sont pas compatibles avec les propriétés de la relaxée
de l’énergie de Willmore. Au contraire, un autre modèle d’approximation dû à Mugnai [108] em-
pêche l’apparition de ces singularités indésirables. C’est dû à la présence d’un terme de réaction que
nous qualifions de terme d’"auto-évitement" car il empêche, lors du flot, le contact entre deux points
différents de l’interface approchée en générant une force répulsive au voisinage des singularités de
la fonction distance. Le chapitre 3 est consacré à une brève étude de ce terme avec une illustration
numérique de ses propriétés. Dans le chapitre 4, nous proposons un nouveau terme d’auto-évitement
qui offre davantage de robustesse. Nous montrons en particulier que ce terme, dit de saut, converge
vers une mesure portée par l’ensemble singulier d’un champ normal associé aux formes étudiées. On
déduit d’une analyse asymptotique et de simulations numériques une conjecture faisant apparaître
à des ordres variés les sous-ensembles de dimensions variées de cet ensemble singulier. Puis nous
étudions l’apport de ce terme de saut lorsqu’il est couplé au flot de courbure moyenne approché.
Le flot perturbé obtenu est particulièrement adapté pour obtenir des approximations numériques de
solutions du problème de Steiner en dimension 3, qui est notoirement difficile. Il est également bien
adapté pour résoudre numériquement le problème de Plateau et permet d’obtenir une approximation
de surfaces minimales aussi bien orientables que non orientables.

La partie II du manuscrit est intitulée Analyse asymptotique pour les sphères de Willmore dans une
variété tri-dimensionnelle, elle est composée du chapitre 5 et d’une annexe. L’étude des surfaces de
Willmore dans les espaces courbes est relativement récente, et plusieurs résultats d’existence ou de
non existence ont été prouvés depuis peu. En particulier, des petites sphères de Willmore ont été
construites comme étant des sphères géodésiques perturbées, cf. les travaux de Lamm & Metzger
[81], Mondino [104, 105], Lamm, Metzger & Schulze [82] et Chen & Li [40]. Toutes ces construc-
tions reposent sur le théorème des fonctions implicites et certaines non-dégénérescences de la variété
ambiante sont requises, notamment dans un voisinage d’un point critique de la courbure scalaire.
Réciproquement, on est ramené naturellement à la question suivante :

Soit p un point dans une variété tri-dimensionnelle (M,h). Supposons que, pour r > 0 suffisamment petit,
la boule géodésique Bh

r (p) contienne une surface de Willmore (ou plus généralement une surface de Willmore
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sous contrainte d’aire), alors p est-il essentiellement un point critique de la courbure scalaire de (M,h) ?

Lamm et Metzger ont montré dans leur travail pionnier [80] que ce phénomène de concentration ap-
paraît si on ne considère que les surfaces de Willmore de courbure moyenne positive. D’une manière
équivalente, un tel phénomène de concentration a lieu pour les surfaces de Willmore d’énergie in-
férieure à 4π + ε pour ε > 0 suffisamment petit. Laurain et Mondino ont généralisé ce résultat dans
[84] lorsque la borne d’énergie est inférieure à 8π − δ pour tout δ > 0. Plus précisément, ils mon-
trent que si (M,h) est une variété riemannienne de dimension 3 et (Φk(S2))k∈N une suite de sphères
de Willmore dans M (éventuellement sous contrainte d’aire) dont l’énergie de Willmore est unifor-
mément bornée par 8π − δ et telles que diam(Φk(S2)) → 0 lorsque k → +∞ alors, à une extraction
près, la suite (Φk(S2))k∈N converge vers un point critique p de la courbure scalaire de (M,h). Notons
que, grâce à une inégalité de Li et Yau [89], on ne peut avoir sous ces hypothèses que des sphères de
Willmore plongées.

On s’intéresse dans la partie II du manuscrit à ce qu’on peut dire quand on relâche la contrainte
d’énergie. Quitte à faire un changement d’échelle approprié autour du point p, nous étudions le
cas particulier où les surfaces limites peuvent être vues asymptotiquement comme deux sphères eu-
clidiennes qui se collent l’une à l’autre. Nous montrons comment obtenir des estimées ponctuelles
fortes pour la suite (Φk)k∈N en appliquant la technique développée par Druet, Hebey & Robert [57]
au système triple d’équations vérifiées par les surfaces de Willmore dont l’une est la reformulation
de Rivière sous forme divergence et les deux autres sont celles données par le paramétrage conforme
des surfaces. Ces trois équations sont des EDPs elliptiques avec des termes non-linéaires dominants
sous forme de Wente. En étudiant soigneusement le recollement entre les deux sphères et en adaptant
la méthode utilisée par Laurain [83] pour les surfaces à courbure moyenne constante, nous montrons
à l’aide des estimées fortes que ces sphères de Willmore doivent se concentrer en un point critique
de la courbure scalaire de (M,h). Nous ne savons pas pour l’instant comme étendre ces résultats
pour traiter le cas plus général d’un nombre quelconque de sphères avec apparition de caténoïdes.
Nous pensons néanmoins que la méthode utilisée pour obtenir des estimées fortes doit pouvoir être
généralisée.
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Part I: From the approximation of the
Willmore flow to a self-avoiding

approximate mean curvature flow
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Chapter 1

Phase-field approximations of the
perimeter and Willmore energies

1.1 Van der Waals-Cahn–Hilliard energy

An historical reference for the phase-field approach is van der Waals’s work on the thermodynamic
theory of capillary, where the free energy of a liquid-gas interface is studied (see [123] for an English
translation with insightful comments). Van der Waal advocates that there is no sharp transition be-
tween the liquid and gas phase states, but rather a smooth transition. The local concentration of liquid
with respect to gas can therefore be represented by a smooth scalar field u which is not binary, but
instead varies smoothly from 0 to 1. Van der Waals proposes a two-term model for the free energy of
such a diffuse liquid-gas interface:

ˆ

V

(
λ|∇u|2 + f0(u)

)
dx, (1.1.1)

where V denotes the volume enclosing the liquid-gas interface, λ is the capillarity coefficient, λ|∇u|2
is the local free inhomogeneity energy density, and f0(u) denotes the local bulk free energy density
associated with u.

Cahn and Hilliard [35] derived in 1958 a similar expression for the free energy of binary alloys but
emphasized the energy tradeoff between the two terms: as the width of the transition zone increases,
the decrease of the gradient term |∇u|2 is counterbalanced by an increase of the bulk free energy. This
leads to the van der Waals–Cahn–Hilliard energy (usually simply called the Cahn–Hilliard energy):

Fε(u) =

ˆ

V

(
ε

2
|∇u|2 + W (u)

ε

)
dx, (1.1.2)

where ε denotes the width of the transition layer and W is usually taken to be a smooth double-well
function of the form:

W (s) =
(1− s2)2

4

in the case where the two pure phase states are represented by {u = −1} and {u = 1}. Obviously, the
energy promotes the smoothness of gas and liquid densities while penalizing the non pure states.

It is natural to study the asymptotic behavior of Fε as ε → 0. A formal argument shows that,
when u is close to the characteristic function of a smooth set Ω, Fε(u) is close to the area of ∂Ω (up
to a multiplicative constant depending only on W ). This has been proved rigorously by Modica and
Mortola [103, 102] in the more general context of sets of finite perimeter and using the notion of
Γ-convergence that we recall now.
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1.2 Γ-convergence

One way to describe and understand the asymptotic behavior of a family of functionals in a vari-
ational context is the notion of Γ-convergence introduced by De Giorgi and Franzoni [52]. We recall
below its definition and some of its basic properties, see [47, 28] for more detailed presentations on
the topic.

Definition 1.2.1. Let X be a topological space and let Fε : X → R ∪ {+∞} be a sequence of functionals on
X . We say that the sequence (Fε)ε>0 Γ-converges to the Γ-limit F : X → R ∪ {+∞} on X as ε → 0 if the
following assertions hold for every u ∈ X :

1. Lower bound inequality: For every sequence (uε)ε>0 of X converging to u in X as ε→ 0, we have that:

F (u) ≤ lim inf
ε→0

Fε(u
ε).

2. Upper bound inequality: There exists a sequence (vε)ε>0 of X converging to u in X as ε→ 0 such that

lim sup
ε→0

Fε(v
ε) ≤ F (u).

In this case, we write that

Γ(X)− lim
ε→0

Fε = F or Γ− lim
ε→0

Fε(u) = F (u) for every u ∈ X.

Remark 1.2.2. In practice, combining both assertions in Definition 1.2.1, it is sometimes also convenient
to replace the upper bound inequality by the existence of a so-called recovery sequence (vε)ε>0 of X
converging to u in X as ε→ 0, and such that

lim
ε→0

Fε(v
ε) = F (u).

Notice that Γ-convergence remains stable under continuous perturbations [47]:

Proposition 1.2.3. Let X be a topological space and Fε : X → R ∪ {+∞} be a sequence of functionals such
that Γ− limε→0 Fε = F . Then for every continuous function G : X → R, we have that

Γ− lim
ε→0

Fε +G = F +G.

One of the most significant consequences of the Γ-convergence in a context of optimization is
the link between (global) minimizers of a Γ-convergent sequence (Fε) and (global) minimizers of the
Γ-limit:

Theorem 1.2.4 ( [47]). Assume that (Fε)ε>0 Γ-converges to a function F in X as ε→ 0+. For every ε > 0,
let xε be a minimizer of Fε in X . The following properties hold:

• If x is a cluster point of (xε) then x is a minimizer of F in X and F (x) = lim sup
ε→0

Fε(xε).

• If (xε) converges to x in X then x is a minimizer of F in X and F (x) = lim
ε→0

Fε(xε).

• In addition, if (Fε) is equi-coercive (i.e., for every t there exists a closed countably compact subset Kt of
X such that {Fε ≤ t} ⊂ Kt for every ε) then :

– min
y∈X

F (y) = lim
ε→0

inf
y∈X

Fε(y) = lim
ε→0

Fε(xε).

– If x is a cluster point of (xε) then x is a minimizer of F in X and F (x) = lim
ε→0

Fε(xε).

Remark 1.2.5. It is important to observe that, unfortunately, Γ-convergence does not imply the con-
vergence of local minimizers, see [28].
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1.3 Phase-field approximation of perimeter

To get a proper Γ-convergent approximation of perimeter, it is useful to extend the definition of the
Cahn–Hilliard energy to general L1-functions in the following way.

Definition 1.3.1. Let Ω be an open and bounded subset of RN . We define Pε : L
1(Ω)→ R+ by

Pε(u) =





ˆ

Ω

(
ε

2
|∇u|2 + W (u)

ε

)
dx if u ∈ H1(Ω),

+∞ otherwise in L1(Ω).
(1.3.1)

where W (s) =
(1− s2)2

4
.

Following a conjecture of De Giorgi, Modica and Mortola [103, 102] proved that, up to a multi-
plicative constant, the sequence (Pε)ε>0 Γ-converges as ε → 0 to the perimeter functional in L1(Ω).
The result holds in the context of functions of bounded variation and sets of finite perimeter, see [6].

Theorem 1.3.2 (Modica & Mortola [103, 102]). Let Ω be an open and bounded subset of R
N . Then

Γ- limε→0 Pε = c0P on L1(Ω), with c0 :=

ˆ 1

−1

√
2W (s) ds and P the perimeter functional defined by

P(u) =
{
|Du|(Ω) if u ∈ BV(Ω, {−1, 1}),
+∞ otherwise in L1(Ω),

(1.3.2)

with |Du|(Ω) the total variation of u defined by

|Du|(Ω) := sup

{
ˆ

Ω

u(x) divϕ(x) dx, ϕ ∈ C1
c (Ω,R

N ), ‖ϕ‖L∞(Ω) ≤ 1

}
.

Remark 1.3.3. P is called the perimeter functional for the following reason: when E is a subset of Ω
such that χE := 1 − 21E ∈ BV(Ω) with 1E the characteristic function of E, P(χE) coincides with
twice the perimeter of E.

Remark 1.3.4. Assuming that E has smooth boundary, there exists a so-called recovery sequence (uε)
such that uε → χE in L1 and

c0P(χE) = lim inf
ǫ→0

Pε(u
ε)

from which follows the upper bound inequality needed to prove the Γ-convergence. The recovery
sequence involves the function

q

(
dE(·)
ε

)
,

where dE is the signed distance function to E (negative in E, positive outside) and q is a so-called
optimal profile, i.e. a suitable minimizer of the 1D Cahn-Hilliard energy. More precisely, q : R→ R is of

class C1, q(0) = 0, q′ =
√
2W (q), lim

s→±∞
q(t) = ±1 and q is a minimizer of

ˆ

R

( |ϕ′(t)|2
2

+W (ϕ(t))

)
dt.

Recalling that W (s) =
(1− s2)2

4
, an explicit expression for q is q(t) = tanh

(
t√
2

)
and

c0 =

ˆ 1

−1

√
2W (s)ds =

ˆ

R

( |q′(t)|2
2

+W (q(t))

)
dt =

2
√
2

3
.
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1.4 De Giorgi-Bellettini-Paolini’s phase-field approximation of the

Willmore energy

The second part of the manuscript is devoted to the Willmore energy of smooth immersions into
a Riemannian manifold, and more precisely to Willmore surfaces, i.e. images of critical points of
the energy. A brief historical introduction to the Willmore energy is provided at the beginning of
Section 5.1. In this first part of the manuscript, we use the following simpler definition: given an
open set E ⊂ R

N with smooth boundary ∂E, the Willmore energy of E is

W(E) =

ˆ

∂E

H2
∂EdHN−1,

where HN−1 is the (N − 1)-dimensional Hausdorff measure and H is the (scalar) mean curvature of
∂E, i.e. the trace of its second fundamental form, see Definition 1.8.7.

Remark 1.4.1. We use two different definitions of the scalar mean curvature in the first and second
parts of this manuscript to stick with the conventions used in the respective literatures. The mean
curvature is the trace of the second fundamental form in the first part, i.e. the sum of the principal
curvatures, but it is the half-sum in the second part! Up to these two different conventions, everything
is consistent.

It is well known that the L2-gradient flow of the perimeter of smooth sets is the mean curvature
flow of their boundaries, see for instance [127]. It seems therefore natural to use the L2-gradient of
the van der Waals–Cahn–Hilliard functional to approximate the mean curvature. This is exactly what
motivates the phase field model proposed by Bellettini and Paolini [18], following a conjecture of
De Giorgi [51], to approximate the Willmore functional. A few other models have been proposed by
various authors, see [30] for a survey, but we shall focus here on two of them which are convenient
for our purpose of identifying a reaction term which promotes self-avoidance. De Giorgi–Bellettini–
Paolini’s model is defined as follows:

Definition 1.4.2. Let Ω be an open and bounded subset of RN . De Giorgi-Bellettini-Paolini’s phase field
model isWε : L

1(Ω)→ R+ defined by

Wε(u) :=





1

2ε

ˆ

Ω

(
ε∆u− W ′(u)

ε

)2

dx if u ∈ L1(Ω) ∩H2(Ω)

+∞ otherwise in L1(Ω).

(1.4.1)

The Γ–convergence as ε → 0 of Wε to the Willmore energy W (for the convergence in L1 and
in arbitrary dimension) has been first studied by Bellettini and Paolini in [18], where they proved for
smooth sets (and by extension for any set with finite relaxed Willmore energy, see the next section) the
upper bound inequality defined in Definition 1.2.1. In the case where N = 2, 3, Röger and Schätzle
[125] completed the proof of Γ–convergence by showing the lower bound inequality for the Willmore
energy of smooth sets. Independently, Nagasa and Tonegawa [111] also proved the Γ–convergence in
the case N = 2.

Theorem 1.4.3 ([125], [111]). Let N = 2, 3. The L1 − Γ limit ofWε coincides withW on smooth sets, i.e.,
for any χE = 1− 21E with E ⊂ Ω and ∂E ∈ C2, we have that:

(ΓL1(Ω)- limε→0
(Pε +Wε))(χE) = c0 (P +W) (E). (1.4.2)

with c0 :=

ˆ 1

−1

√
2W (s) ds.
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1.5 Γ-limit of the phase field approximation and relaxed Willmore

energy

The Willmore energy is properly defined for subsets of RN whose boundary is sufficiently smooth
to admit an L2-integrable mean curvature. In many situations, however, it is necessary to extend the
definition to less regular sets. This is possible by relaxation using the notion of lower-semicontinuous
envelope. We recall that the L1(Ω)-lower-semicontinuous envelope of the Willmore energy W is
defined for any set E of finite perimeter in Ω by

W(E) := inf{lim inf
n→+∞

W(En), En ⊂ Ω, ∂En ∈ C2, χEn → χE in L1(Ω) as n→ +∞}. (1.5.1)

By locality of the mean curvature [9, 88, 97], W coincides with W on smooth sets. Since the Γ-
convergence ofWε to the Willmore energyW is true for smooth sets, is it true that the Γ-limit ofWε

coincides with the relaxed Willmore energy W on sets with finite relaxed Willmore energy? Unfortu-
nately, it is not true: one can exhibit unsmooth sets for which the Γ-limit ofWε does not coincide with
the relaxed Willmore energy.

Proposition 1.5.1 (Bellettini-Dal Maso-Paolini [16], Dang-Fife-Peletier [50]).

1. There exists a bounded set E1 ⊂ R
2 of finite perimeter such that

ΓL1(Ω)- limε→0
Wε(E1) < +∞ and W(E1) = +∞; (1.5.2)

2. There exists a bounded set E2 ⊂ R
2 of finite perimeter such that

ΓL1(Ω)- limε→0
Wε(E2) <W(E2) < +∞, (1.5.3)

Both sets E1 and E2 are illustrated in Figure 1.1.

Proof. On the one hand, we haveW(E1) = +∞, since, thanks to Theorem 4.1 in Bellettini-Dal Maso-
Paolini [16], a domain with finite relaxed Willmore energy must admit a continuous unoriented tan-
gent everywhere on its boundary. The fact thatW(E2) < +∞ comes from Theorem 6.5 in [16], which
shows that a planar set which admit a continuous unoriented tangent everywhere on its boundary
has finite relaxed Willmore energy if and only if its boundary has an even number of cusp points. On
the other hand, the reason why Γ− limε→0Wε is finite on both E1 and E2 stems from the existence of
smooth solutions with singular nodal sets for the Allen-Cahn equation:

∆u−W ′(u) = 0.

Indeed, thanks to a result of Dang, Fife, and Peletier [50], there exists a unique solution u ∈ C∞(R2)
with values in (−1, 1) such that





u(x, y) < 0 if xy > 0,

u(x, y) > 0 if xy < 0 and
u(x, y) = 0 if xy = 0.

According to the above proposition, De Giorgi-Bellettini-Paolini’s approximationWε does not Γ-
converge to the relaxed Willmore energyW , or more precisely they coincide on smooth sets but not
always on general sets of finite relaxed Willmore energy. It is then natural to ask if there exists a
diffuse approximation for which the Γ-convergence holds also for unsmooth sets. As we will see in
the next section, the answer is positive in 2D.
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Figure 1.1: First line: the setE1 satisfying (1.5.2). Its boundary does not have everywhere a continuous
unoriented tangent, thus its related Willmore energy is infinite [16]. On the other hand, the charac-
teristic function of E1 is the limit of Dang-Fife-Peletier–type solutions whose De Giorgi–Bellettini–
Paolini’s energy is uniformly bounded. Second line: from left to right, the set E2 satisfying (1.5.3), a
limit configuration of Dang–Fife–Peletier–type solutions whose De Giorgi–Bellettini–Paolini’s energy
is uniformly bounded but whose relaxed Willmore energy is infinite, and a configuration showing
that the relaxed Willmore energyW(E2) is finite.

1.6 Bellettini-Mugnai’s phase field approximation of the second fun-

damental form energy

Let Ω ⊂ R
N be open and bounded, and define

K(E) =

ˆ

Ω∩∂E

K∂E dHN−1 (1.6.1)

whereE ⊂ Ω is an open set withC2-boundary in Ω andK∂E is the product of the principal curvatures
of ∂E (i.e. the Gauss curvature when N = 3). Let also

A(E) :=

ˆ

Ω∩∂E

|A∂E |2 dHN−1 (1.6.2)

with A∂E the second fundamental form of ∂E. Notice that if N = 2, |A∂E |2 = H2
∂E thus A(E) =

W(E). And if N = 3, A(E) = W(E) − 2K(E) thus, thanks to Gauss-Bonnet theorem, minimizing in
R

3 the Willmore energyW with constrained genus is equivalent to minimizingA sinceK(E) depends
only on the topology of E.

Bellettini and Mugnai introduced in [17] a phase-field approximation of A and used it to prove
the Γ-convergence of a phase-field approximation of the Helfrich energy under certain conditions.

Definition 1.6.1 (Bellettini-Mugnai [17]). Let Ω ⊂ R
N be open and bounded. The Bellettini-Mugnai’s

phase field modelWMu
ε is defined by

WMu
ε (u) =

1

2ε

ˆ

Ω\{|∇u|=0}

∣∣∣∣ε∇2u− W ′(u)

ε
~nu ⊗ ~nu

∣∣∣∣
2

dx. (1.6.3)

Bellettini and Mugnai showed that, in dimensions 2, 3, the Γ-limit of Wε coincides with A on
subsets of Ω with C2-boundary:
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Theorem 1.6.2 (Corollary 4.3 in [17]). Let Ω be a smooth domain in R
N with N = 2, 3. For any χE =

1− 21E with E ⊂ Ω and ∂E ∈ C2, we have:

ΓL1(Ω)- limε→0
(Pε +WMu

ε )(χE) = c0(P(E) +A(E)). (1.6.4)

with c0 :=
´ 1

−1

√
2W (s) ds.

In contrast with Proposition 1.5.1, which shows that the Γ-limit of De Giorgi-Bellettini-Paolini’s
model does not coincide in general with the relaxed Willmore energy on unsmooth sets, it was
proved by Mugnai in [109] in the two-dimensional case that such coincidence holds for the Γ-limit of
Bellettini-Mugnai’s model.

Theorem 1.6.3 (Theorem 4.1 in [109]). Let N = 2. For any set E of finite perimeter and χE = 1− 21E , we
have that

ΓL1(Ω)- limε→0
(Pε +WMu

ε )(χE) = c0(P +W)(E). (1.6.5)

Proposition 1.5.1 and Theorem 1.6.3 show that, although De Giorgi-Bellettini-Paolini’s modelWε

and Bellettini-Mugnai’s model WMu
ε have the same Γ-limit on smooth sets, this is not true for un-

smooth sets. What can be said about the associated L2-gradient flows? More precisely, do the gra-
dient flows of Wε and WMu

ε converge to the Willmore flow in a smooth setting? How do the flows
behave just before the appearance of singularities? These questions will be addressed in Chapters 2
and 3.

1.7 Signed distance function to a set and medial axis

If E ⊂ R
N is nonempty we denote by d(x,E) := inf

y∈E
‖x − y‖ the Euclidean distance to E of a point

x ∈ R
N . We also let d(x, ∅) = +∞.

Definition 1.7.1. Let E ⊂ R
N . The signed distance function to E is defined by:

∀x ∈ R
N , dE(x) := d(x,E)− d(x,RN \ E).

We collect below some basic regularity properties of the signed distance function, see [5, 54, 66].

Proposition 1.7.2. Let E ⊂ R
N be such that Γ = ∂E is nonempty. The following properties hold:

• dE is 1-Lipschitz, thus differentiable a.e. in R
N .

• dE is differentiable at x ∈ R
N \ Γ if and only if there exists a unique point y ∈ Γ such that dE(x) =

|y − x|. In this case,

∇dE(x) =





x− y
|x− y| if x ∈ R

N \ E,

− x− y
|x− y| if x ∈ E,

In particular, |∇dE | = 1 at any differentiability point.

• If Γ ∈ C1,1 and nΓ denotes the outer unit normal to E on Γ, there exists a neighborhood U of Γ such that
for any x ∈ U [54]:

– x has a unique orthogonal projection on Γ given by πΓ(x) = x− dE(x)∇dE(x).
– ∇dE(x) = nΓ(πΓ(x)) = ∇dE(z), ∀z ∈ [x, πΓ(x)] the line segment joining x to πΓ(x).
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– In addition, if Γ ∈ C2 and s = πΓ(x), ∆dE(x) =
∑N−1

i=1
κi(s)

1+κi(s)dE(x) where κi(s) are the principal
curvatures of Γ at s along ν = ∇dE(s).
In particular, for every z ∈ Γ, ∆dE(z) =

∑N−1
i=1 κi(z) = mean curvature at z.

• If k ∈ [2,+∞] is an integer, then

∂E is a (N − 1)-manifold of class Ck ⇐⇒ ∃U open, U ⊃ ∂E, dE ∈ Ck(U)

In such a case, we write ∂E ∈ Ck.

There is a rich literature on medial axes, skeletons and cut locus of sets with various definitions. For
it is more suitable for what we need later, we use the definition of medial axis based on the signed
distance function.

Definition 1.7.3 ([4]). The medial axis of E ⊂ R
N is the singular set SingE of dE defined by:

SingE = {x ∈ R
N , dE is not differentiable at x}

Remark 1.7.4. It follows that∇dE is well defined on R
N \SingE and takes values in S

N−1. In addition,
x ∈ SingE \ ∂E if and only if there exist at least two distinct points y1, y2 ∈ ∂E such that d(x, y1) =
d(x, y2).

The following regularity properties of the medial axis are proved in [93] for the distance function
to a closed, nonempty set, and easily extend to the signed distance function dE associated with a
general set E ⊂ R

N with nonempty boundary.

Proposition 1.7.5. If E ⊂ R
N has nonempty boundary then

• SingE \ ∂E is C2 − (N − 1)–rectifiable.

• If, in addition, ∂E is of classCr with r ≥ 3 then the closure SingE of SingE isCr−2−(N−1)–rectifiable.
In particular,

– the Hausdorff dimension of SingE is at most (N − 1).

– the vector field∇dE belongs to the space SBVloc(R
N ).

Remark 1.7.6. SingE is not (N − 1)-rectifiable in general. There is an example in [93] of a convex open
set in R

2 with C1,1 boundary such that the closure of its medial axis has positive Lebesgue measure.

The boundary of E is the set of points where dE vanishes. Is there a similar way to link the medial
axis of E with the (complementary of the) support of a map defined with dE or ∇dE? There is no
easy way to do it directly, but the medial axis can be obtained as (a subset of) the support of the
distributional limit of a sequence of well defined approximate maps, as we shall see in Chapter 4
together with various applications. There are essentially two difficulties with the medial axis:

• A smooth shape may have a non-smooth, and possibly very non smooth, medial axis [93].

• There is no continuous dependence of the medial axis of a set E with respect to perturbations
of E. A disk in R

2 has its center as medial axis but it is easy to design arbitrarily small perturba-
tions of the disk’s boundary to get a collection of medial axes with Hausdorff dimension 1 and
whose Hausdorff distance to the disk’s center is bounded from below by a positive number.
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1.8 Mean curvature flow and Willmore flow

We take exactly the definitions and characterizations of smooth flows, and in particular the mean
curvature flow, given by Bellettini in [15].

We first define the parametric smooth flow of codimension 1 immersed manifolds. Recall that,
given a k-dimensional oriented connectedC∞ submanifold S ⊂ R

N without boundary, an immersion
of S in R

N is a map ϕ ∈ C∞(S,RN ) such that ϕ is proper and, for any s ∈ S, dϕ(s) is injective. We
denote ϕ ∈ Imm(S,RN ). This immersion is an embedding if, in addition, ϕ is an homeomorphism
between S and ϕ(S). In such a case, we denote ϕ ∈ Emb(S,RN ).

Definition 1.8.1 (Parametric smooth flow [15]). Let S ⊂ R
N be a smooth (N − 1)-dimensional embedded

oriented connected manifold without boundary, let a, b ∈ R be with a < b and let ϕ ∈ C∞([a, b] × S;RN ).
We say that ϕ is a parametric smooth flow, and we write ϕ ∈ X ([a, b]; Imm(S,RN )), if for any t ∈ [a, b],
ϕ(t, ·) ∈ Imm(S,RN ).

If, in addition, ϕ(t, ·) ∈ Emb(S,RN ) for any t ∈ [a, b], then we write ϕ ∈ X ([a, b]; Emb(S,RN )) and we
say that ϕ is an embedded smooth flow.

If ϕ ∈ X ([a, b]; Imm(S,RN )), one can always choose locally a smooth unit vector field ν(t, ·) normal to
ϕ(t, S). The normal velocity vector associated with the parametric smooth flow is then defined as the map
V : [a, b]× S → R

n given by

V(t, s) := 〈ν(t, s), ∂ϕ
∂t

(t, s)〉ν(t, s), (t, s) ∈ [a, b]× S.

Remark 1.8.2. Remark that the velocity vector does not depend on the choice of orientation for ν, but
the velocity V (t, s) = 〈ν(t, s), ∂ϕ∂t (t, s)〉 does

We now define smooth flows implicitly using the signed distance function. We denote as P(RN )
the collection of subsets of RN .

Definition 1.8.3 (Implicit smooth flow [15]). We say that f is an implicit smooth flow if:

• there exist a, b ∈ R, a < b, such that f : [a, b]→ P(RN ),

• for any t ∈ [a, b] the set f(t) is closed,

• if we denote by d(t, z) := df(t)(z), (t, z) ∈ [a, b] × R
N , the time-dependent signed distance function

to f(t) then for any t ∈ [a, b] there exists an open set At ⊂ R
N containting ∂f(t) such that, setting

Q :=
⋃

t∈[a,b]({t} ×At), we have
d ∈ C∞(Q).

The outer normal velocity vector of the flow at x ∈ ∂f(t) is defined as −∂d
∂t (t, x)∇d(t, x), where∇ denotes the

gradient with respect to the space variables.
The outer normal velocity of the flow at x ∈ ∂f(t) is defined as −∂d

∂t (t, x).

Remark 1.8.4. Notice in particular that, by Proposition 1.7.2, ∂f(t) ∈ C∞ for any t ∈ [a, b].

Definition 1.8.5 ([15]). Let E ⊂ R
N be a closed set with ∂E ∈ C∞, and let f : [a, b] → P(RN ) be an

implicit smooth flow. If f(a) = E we say that f starts from E at time a.

Remark 1.8.6 (Implicit vs parametric flows [15]).
Assume that S ⊂ R

N is a smooth (N − 1)-dimensional embedded, oriented, connected, and compact
manifold without boundary and let ϕ ∈ X ([a, b]; Emb(S,RN )). If we denote by f(t) the closure of
one connected component of RN \ ϕ(t, S), then [4] f : [a, b] → P(RN ) is an implicit smooth flow.
Conversely, if f : [a, b] → P(RN ) is an implicit smooth flow and ∂f(t) is connected, then there
exists [4] a smooth (N−1)-dimensional embedded oriented connected manifold S without boundary
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(for instance S = ∂f(a)) and a map ϕ ∈ X ([a, b]; Emb(S,RN )) such that ∂f(t) = ϕ(t, S) for any
t ∈ [a, b].

If ϕ ∈ X ([a, b]; Emb(S,RN )) and ∂f(t) = ϕ(t, S), a reasonable choice of an inner normal unit
vector field is

ν(t, s) = −∇d(t, x), x = ϕ(t, s), ∀(t, s) ∈ [a, b]× S,
and it follows from d(t, ϕ(t, x)) = 0, t ∈ [a, b], s ∈ S, that the inner velocity of the flow is V (t, s) =
∂d
∂t (t, ϕ(t, s)) and the velocity vector is:

V(t, s) = −∂d
∂t

(t, x)∇d(t, x), x := ϕ(t, s) ∈ ∂f(t), (t, s) ∈ [a, b]× S.

Definition 1.8.7 (Second fundamental form and mean curvature of a codimension 1 immersion). Let
S ⊂ R

N be a smooth (N − 1)-dimensional embedded oriented connected manifold without boundary and
ϕ ∈ Imm(S,RN ). Let s1, · · · , sN−1 be local coordinates on S around s ∈ S given by a parameterization
c taking some open neighborhood O of an (N − 1)-dimensional Euclidean vector space into S and such that
ϕ̂ := ϕ ◦ c : O → R

N is the expression of ϕ in the local system of coordinates s1, · · · , sN−1. We denote by
g = (gαβ)α,β the Riemannian metric tensor induced on S by the scalar product of RN , i.e.:

g(s) = (gαβ(s))α,β := (〈 ∂ϕ̂
∂sα

(s1, . . . , sN−1),
∂ϕ̂

∂sβ
(s1, . . . , sN−1)〉)α,β , s = c(s1, . . . , sN−1).

By gαβ(s) we denote the α, β-component of the inverse matrix g−1 of g. Since ϕ is locally an embedding, we
can choose for σ ∈ S belonging to a suitable neighborhood of a point s ∈ S a smooth unit normal vector field
to the corresponding image point ϕ(σ), that will be denoted by ν(σ). If α, β ∈ [[1, . . . , N − 1]] we define for
s = c(s1, . . . , sN−1):

h(s) = (hαβ(s))α,β := (〈ν(s), ∂2ϕ̂

∂sα, ∂sβ
〉)α,β ,

and

• the second fundamental form at s, A(s) = (hαβ(s)ν(s))α,β , of the immersion ϕ;

• its scalar mean curvature H(s) :=
∑

α,β g
αβ(s)hαβ(s) = tr(g−1h);

• its mean curvature vector H(s) := H(s)ν(s).

• when N = 3, its Gaussian curvature K(s) = det(g−1h).

Remark 1.8.8. Remark that A, H (as well as K in dimension 3) are invariant under a change of sign of
ν, while H changes sign.

Remark 1.8.9. As mentioned earlier, we use two different definitions of the mean curvature in the first
and second parts of this manuscript to stick with the conventions used in the respective literatures.
The mean curvature is the trace of the second fundamental form in the first part, i.e. the sum of the
principal curvatures, but it is the half-sum in the second part.

Remark 1.8.10 (Mean curvature of an embedding). If ϕ ∈ Emb(S,RN ), we consider the open set E
such that ∂E = ϕ(S) and we let dE be the associated signed distance function. We choose in the
arguments above the unit normal vector ν so that ν(s) = −∇dE(ϕ(s)), i.e. ν is an inner unit normal
with respect to E. Then it can be proved [8] that, ϕ being an embedding:

{
H(s) = −∆d(x)∇d(x)
H(s) = ∆d(x)

, x = ϕ(s).

Definition 1.8.11 (Implicit smooth mean curvature flow [15]). We say that f is an implicit smooth mean
curvature flow if:
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• there exist a, b ∈ R, a < b, such that f : [a, b]→ P(RN ) is a smooth flow;

• the following equations hold for the signed distance function d of Definition 1.8.3:




∂d

∂t
(t, x) = ∆d(t, x)

d(t, x) = 0
, t ∈ [a, b], x ∈ ∂f(t)

Remark 1.8.12. Since |∇d(t, x)|2 = 1 for any (t, z) ∈ Q (see Definition 1.8.3), the mean curvature flow
can be equivalently defined using the velocity vector, i.e. f is an implicit smooth mean curvature flow
if:

−∂d
∂t

(t, x)∇d(t, x) = −∆d(t, x)∇d(t, x), t ∈ [a, b], x ∈ ∂f(t)

Definition 1.8.13 (Parametric smooth mean curvature flow [15]). Let S ⊂ R
N be a smooth (N − 1)-

dimensional embedded oriented connected manifold without boundary. We say thatϕ ∈ X ([a, b]; Imm(S,RN ))
is a parametric smooth mean curvature flow if, with the notations of Definition 1.8.1,

V(t, s) = H(t, s)ν(t, s), t ∈ [a, b], s ∈ S

where H(t, s) denotes the scalar mean curvature at s ∈ S of the immersion ϕ(t, ·) : S → R
N .

Remark 1.8.14 (Parametric vs implicit mean curvature flows). If ϕ ∈ X ([a, b]; Emb(S,RN )) is a para-
metric smooth mean curvature flow, it follows from the definitions and results above that the implicit
and the parametric definitions of the flow are equivalent, the normal velocity vector satisfies

V(t, s) = H(t, s) = −∆d(t, x)∇d(t, x), t ∈ [a, b], s ∈ S, x = ϕ(s)

and the inner normal velocity is:

V (t, s) = H(t, s) = ∆d(t, x), t ∈ [a, b], s ∈ S, x = ϕ(s)

Definition 1.8.15 (Parametric smooth Willmore flow). Let S ⊂ R
3 be a smooth 2-dimensional embedded

oriented connected manifold without boundary. We say that ϕ ∈ X ([a, b]; Imm(S,R3)) is a parametric smooth
Willmore flow if, with the notations of Definition 1.8.1,

V(t, s) = −[∆ϕH +H(
H2

2
− 2K)](t, s)ν(t, s), t ∈ [a, b], s ∈ S, (1.8.1)

where ν(t, ·) is the unit inner normal and ∆ϕ(t, ·), H(t, ·), and K(t, ·) denote, respectively, the Laplace-
Beltrami operator, the scalar mean curvature and the Gaussian curvature associated with the immersion ϕ(t, ·),
and with the assumption that ν(t, ·) is a unit inner normal to ϕ(t, S).

Remark 1.8.16. Recall that we use in this first part the definition of H as the sum of the principal
curvatures whereas the half-sum is used in the second part. If H is replaced with 2H , the right-hand
side in the above definition of the Willmore flow is consistent with equation (5.3.1) in the second part.

Definition 1.8.17 (Parametric smooth Euler-Bernoulli flow). Let S ⊂ R
2 be a smooth 1-dimensional

embedded connected manifold without boundary. We say that ϕ ∈ X ([a, b]; Imm(S,R2)) is a parametric
smooth Euler-Bernoulli flow (or, in short, an elastica flow) if, with the notations of Definition 1.8.1,

V(t, s) = −[∆ϕκ+
κ3

2
](t, s)ν(t, s), t ∈ [a, b], s ∈ S,

where κ(t, ·) denotes the curvature associated with the immersion ϕ(t, ·) and ν(t, ·) is a unit inner normal to
ϕ(t, S).
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1.9 Gradient flows and phase field approximation

1.9.1 Gradient flow associated with a functional

We first recall the definition of the gradient flow associated with a functional defined on a Hilbert
space.

Definition 1.9.1. Let Ω ⊂ R
N be open and let H = H(Ω,R) be a Hilbert space of functions from Ω to R.

Given a functional F : H → R ∪ {+∞}, its H-gradient flow is the equation

∂u

∂t
(t, x) = −δF

δu
(t, x), (1.9.1)

where δF
δu (t, ·) is the first variation of F with respect to u defined as the function of H which satisfies:

∀ϕ ∈ X,
〈
δF

δu
(t, ·), ϕ

〉

H

=
dF (u(t, ·) + ǫϕ)

dǫ

∣∣∣
ǫ=0

,

with 〈·, ·〉H the inner product in H . We shall also denote δF
δu = ∇HF (u).

We recalled earlier that Γ-convergence is a suitable notion of convergence for functionals for it
links global minimizers of a sequence of functionals with global minimizers of its Γ-limit. There
is no such link in general for local minimizers, see [28] for examples with no convergence of local
minimizers. Since local minimizers are stationary points of gradient flows, it is reasonable to expect
that, in general, the Γ-convergence of a sequence of functionals does not imply the convergence of
the associated gradient flows to the gradient flow of the Γ-limit. There are some exceptions though,
in particular for the mean curvature flow and the Willmore flow.

1.9.2 Gradient flows associated with phase-field approximations of the perimeter
and Willmore energies

Definition 1.9.2 (L2-gradient flow of the phase field approximate perimeter).
The L2-gradient flow of the phase field approximate perimeter Pε coincides with the Allen-Cahn equation up to
time rescaling t← εt, i.e. ε∂tuε = −∇L2Pε(uε) gives :




∂tu

ε = vε

vε = ∆uε − W ′(uε)

ε2

(1.9.2)

Definition 1.9.3 (H−1-gradient flow of the phase field approximate perimeter).
The H−1-gradient flow of the phase field approximate perimeter Pε coincides with the Cahn–Hilliard equation,
i.e. ∂tuε = −∇H−1Pε(uε) gives : 



∂tu

ε = −ε∆vε

vε = ∆uε − W ′(uε)

ε2

(1.9.3)

The computations of the gradient flow of De Giorgi-Bellettini-Paolini’s model (1.4.1) and Bellettini-
Mugnai’s model (1.6.3), and their connections with the Willmore flow have been discussed in [59, 60,
133, 30]. In particular, the following result holds:

Definition 1.9.4 (L2-gradient flow of De Giorgi-Bellettini-Paolini’s phase field model).
The L2-gradient flow of De Giorgi-Bellettini-Paolini’s model ∂tuε = −∇L2Wε(uε) is given, up to time rescal-
ing, by
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


∂tu

ε = −ε2∆vε +W ′′(uε)vε

vε = ∆uε − W ′(uε)

ε2

(1.9.4)

In the sequel, we shall refer to this flow as De Giorgi-Bellettini-Paolini’s flow.

1.9.3 Gradient flows of phase field approximations: existence of solutions and
convergence

We mentioned earlier that the gradient flows of a family of Γ-convergent functionals need not con-
verge to the gradient flow of the Γ-limit. There are some exceptions, though, as we shall see now with
a brief summary on known results on the Allen-Cahn equation, the Cahn–Hilliard equation, and the
L2-gradient flow of De Giorgi-Bellettini-Paolini’s phase field approximation of Willmore energy.

1. Existence of solutions to the gradient flow equations

Allen-Cahn equation: there is a rich literature on the existence and uniqueness of solutions to
this equation, see [15, 4] and the many references therein.

Cahn–Hilliard equation: Similarly, many contributions have addressed the existence and unique-
ness of solutions to this model, see [113, 100] and the references therein.

De Giorgi-Bellettini-Paolini’s approximation of the Willmore flow: Using a time-discretization
scheme, Colli and Laurençot [43] first proved the existence and uniqueness of (weak)
solutions, along with well-posedness properties, for the following De Giorgi-Bellettini-
Paolini’s approximation of the Willmore flow with a volume constraint:




∂tu

ε = −ε2∆vε +W ′′(uε)vε +W ′′(uε)vε

vε = ∆uε − W ′(uε)

ε2

(1.9.5)

where W ′′(uε)vε denotes the spatial average of W ′′(uε)vε, namely,

W ′′(uε)vε =
1

|Ω|

ˆ

Ω

W ′′(uε)vε dx.

Similar results have been proved in [44] for solutions to the flow with volume and area con-
straints: 



∂tu

ε = −ε2∆vε +W ′′(uε)vε +Aε +Bεvε

vε = ∆uε − W ′(uε)

ε2

(1.9.6)

where Aε and Bε are time-depending functions in L2 such that

Aε +Bεvε =W ′′(uε)vε.

Based on the ideas developed in [43, 44], the results have been generalized for periodic
solutions of the flow (1.9.4) by Zwilling [139].

The three flows above are either L2 or H−1 gradient flows. More general gradient flows can
actually be defined and studied in metric spaces, see the thorough study in [7].

2. Strong convergence to sharp geometric flows

23



• The convergence of the Allen-Cahn equation to the mean curvature flow of smooth in-
terfaces before the appearance of singularities has been proved by various authors with
various techniques and in various forms, see [15, 53, 32, 41, 78, 124, 61]. For example,
Evans, Soner, and Souganidis proved in [61] that the 0-level set Γε of solutions uε to the
Allen-Cahn equation (1.9.2) with well-prepared initial conditions converges to a smooth
front Γ evolving under the mean curvature flow. More precisely,

dist(Γε
t ,Γt)→ 0, as ε→ 0

for every 0 < t < T ∗ where T ∗ > 0 is the first time where Γ encounters topological changes
under the mean curvature flow.

• Pego [116] first formally showed that, with well-prepared initial conditions, the 0-level set
of the solutions uε to the Cahn–Hilliard equation (1.9.3) converges to a front Γ evolving
under the Hele-Shaw motion. Namely, we have, for every 0 < t < T ∗,





dist(Γε
t ,Γt)→ 0 as ε→ 0,

VΓt =
1

2

[
∂v

∂n

]

Γt

∆v = 0 on Ω\Γt

v = cHΓt
on Γt

∂v

∂N
= 0 on ∂Ω

(1.9.7)

where c > 0 depends only on W , n and N are the outer normals of Γt and ∂Ω, respectively,[
∂v
∂n

]
Γt

is the difference of approximate limits of v with respect to n on Γt (see Chapter 4
for more details) and T ∗ is the time before the appearance of singularities of Γ. A rigorous
proof of the convergence of the Cahn–Hilliard equation (1.9.3) has been later given in [3].
Then it was proved in [34] that under time rescaling t ← εt, and with well-prepared ini-
tial conditions, the 0-level set of the solutions converges to a smooth front Γ with normal
velocity VΓ = −∆ΓHΓ.

• Under time rescaling t ← ε2t, the convergence of the rescaled De Giorgi-Bellettini-Paolini
flow (1.9.4) to the Willmore flow has been shown formally in [92, 133]. It was proved rig-
orously only recently in [63], the main arguments of the proof will be presented in Chapter
2.

3. Weak convergence to sharp geometric flows.
Alongside with the results on the strong convergence of phase-field flows, which are limited to
smooth flows without singularities, more general results of weak convergence in the sense of
varifolds have been proved, for instance:

• the convergence of the Allen-Cahn equation to Brakke’s mean curvature flow [74, 101].

• the convergence of the Cahn–Hilliard equation to Hele-Shaw’s motion [42].

The reader may refer to [15] for many more references regarding strong and weak approxi-
mations of the mean curvature flow. An interesting overview of phase field approximation of
geometric flows, with both theoretical and numerical aspects, is [58].
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Chapter 2

Analysis of
De Giorgi-Bellettini-Paolini’s flow

This chapter is devoted to the analysis of the approximation of the Willmore flow by the L2−gradient
flow associated with De Giorgi-Bellettini-Paolini’s model (1.4.1). We give a brief presentation of the
paper of Fei and Liu [63] which addresses the question of whether the gradient flow approximates
the Willmore flow. It had been shown formally to be true using the method of matched asymptotic
expansion, see [30] and the references therein, Fei and Liu provide a rigorous proof.

In the end of this chapter, we address the numerical approximation of De Giorgi-Bellettini-Paolini’s
flow. We propose a scheme based on the splitting of the associated operator into a convex part and
a (semi-)concave part. The convex part is processed implicitly and the concave part explicitly, which
guarantees that the scheme is energetically stable.

2.1 Convergence of De Giorgi-Bellettini-Paolini’s flow to the Will-

more flow for smooth surfaces

The L2−gradient flow of De Giorgi-Bellettini-Paolini’s model (1.4.1) defined in Chapter 1 is ∂tuε =
−∇L2Wε. By direct computations, we have that





∂tu
ε = −ε∆vε + 1

ε
W ′′(uε)vε

vε = ∆uε − W ′(uε)

ε2

(2.1.1)

We recall our choice for the double well potential W (s) = (1−s2)2

4 . Since we expect that a solution
uε to the equation can be characterized as a minimizer of the functional Wε which converges to ±1
almost everywhere as ε→ 0, we are interested by the behavior of uε in a slower timescale. Up to time
rescaling t← εt, the L2−gradient flow can be rewritten as:

(De Giorgi-Bellettini-Paolini’s flow)





∂tu
ε = −∆vε + 1

ε2
W ′′(uε)vε

vε = ∆uε − W ′(uε)

ε2

(2.1.2)

The well-posedness of De Giorgi-Bellettini-Paolini’s flow (2.1.2) has been proved in the previ-
ous section. The associated energy, De Giorgi-Bellettini-Paolini’s phase field model, is known to
Γ-converge to the Willmore energy of smooth sets in space dimensions 2, 3, see [18, 125, 30]. It is
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thus natural to ask the following question: Does De Giorgi-Bellettini-Paolini’s flow (2.1.2) converge to the
Willmore flow (1.8.1)?

Loreti and March first provide some elements of response in [92]. By using the formal method of
matched asymptotic expansion, they show that given a smooth front Γ := ∂E evolving by Willmore
flow (1.8.1), then an approximate solution (uεA, v

ε
A) of (2.1.2) (that is, satisfying equation (2.1.2) up to

the order εk for some k ∈ N
∗) such that the normal velocity of the front Γε := (uεA)

−1(0) converges to
the normal velocity of Γ, is expected to take the following form:





uεA(x, t) = q

(
dE(x)

ε

)
+ ε2

(
‖A‖2 − H2

2

)
η1

(
dE(x)

ε

)
+O(ε3),

vεA(x, t) = Hq′
(
dE(x)

ε

)
− εH2η2

(
dE(x)

ε

)
+O(ε2),

(2.1.3)

where H and ‖A‖2 are respectively the mean curvature and the second fundamental form of Γ, η1
and η2 are respectively solutions on R of




η′′1 (s)−W ′′(q(s))η1(s) = sq′(s) with lim

s→±∞
η1(s) = 0

η′′2 (s)−W ′′(q(s))η2(s) = q′′(s) with lim
s→±∞

η2(s) = 0.
(2.1.4)

Notice that η1 and η2 only depend on the double well potential W .
It is only recently that Fei and Liu provided in [63] a rigorous justification of this result. They

showed that, for well-prepared initial data, as ε goes to zero, the 0-level set of the solution to De
Giorgi-Bellettini-Paolini’s flow converges to a surface evolving by the Willmore flow before any for-
mation of singularities occurs.

Theorem 2.1.1 (Fei & Liu [63]). Given a smooth front Γ(t) = ∂E(t) evolving by Willmore flow for 0 ≤ t ≤
T . Then there exists a family of functions (uε0)ε>0 such that the solution (uε, vε) of (2.1.2)





∂tu
ε = −∆vε + 1

ε2
W ′′(uε)vε

vε = ∆uε − W ′(uε)

ε2
,

supplemented with initial and boundary conditions
{
uε(x, 0) = uε0(x) in Ω
∂νu

ε(x, t) = uε(x, t)− 1 = 0 in ∂Ω× (0, T ),
(2.1.5)

satisfies
uε → ±1 in Ω±(δ) for every δ > 0 and
vε(Γε, t) → HΓ(t) for every 0 < t < T

(2.1.6)

where Γε = {uε = 0}, HΓ(t) is the mean curvature of Γ, Ω+(δ) = {x ∈ Ω| dE(x) ≥ δ}, and Ω−(δ) = {x ∈
Ω| dE(x) ≤ −δ}.

For readers’ convenience, we give a sketch of the proof which divides in two parts: the first part
consists in constructing an approximate solution to the flow (2.1.2) whose level set converges to mo-
tion by Willmore flow; in the second part, the stability of the phase-field system (2.1.2) is proved,
which implies that the solution to (2.1.2) is close to the approximate solution if they are close enough
at initial time.

• Construction of an approximate solution:

Theorem 2.1.2 (Theorem 1.1 in [63]). Given a smooth front Γ(t) evolving by Willmore flow for 0 ≤
t ≤ T . Then, for an integer k large enough, there exist two functions uεA and vεA such that
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1. uε converges to ±1 outside of Γ, that is,

uεA → ±1 in Ω±(δ) for every δ > 0,

2. (uε, vε) satisfies the following system





∂tu
ε
A = ∆vεA −

W ′′(uεA)

ε2
vεA + εkR1 in Ω× (0, T )

vεA = ∆uεA −
W ′(uεA)

ε
+ εk+2R2 in Ω× (0, T ),

(2.1.7)

where R1(x, t) and R2(x, t) are uniformly bounded functions in ε.

3. (uεA, v
ε
A) have the following Taylor expansions (with a control of the error terms):





uεA(x, t) = q

(
dE(x)

ε

)
+ ε2

(
‖A‖2 − H2

2

)
η1

(
dE(x)

ε

)
+O(ε3),

vεA(x, t) = Hq′
(
dE(x)

ε

)
− εH2η2

(
dE(x)

ε

)
+O(ε2),

The construction of such an approximate solution is based on the approach via matched asymp-
totic expansions of Alikakos, Bates and Chen in [3], where a general approximate solution to the
Cahn–Hilliard equation is designed to prove that the Cahn–Hilliard equation converges to the
Hele-Shaw model.

• Stability of the flow (2.1.2):

Theorem 2.1.3 (Theorem 1.2. [63]). Let uε be a solution of (2.1.2) such that
ˆ

Ω

|∇l(uε − uεA)(x, 0)|2 dx ≤ cε48−10l for every 0 ≤ l ≤ 2,

for some c > 0, where uεA is defined as in Theorem 2.1.2. Then there exist C > 0 and ε0 > 0 such that,
for every 0 < ε < ε0,

sup
0≤t<T

ˆ

Ω

|∇l(uε − uεA)(x, t)|2 dx ≤ Cε48−10l for every 0 ≤ l ≤ 2.

In order to prove Theorem 2.1.3, as in De Mottoni-Schatzman [53] for the convergence of the
Allen-Cahn equation and in Alikakos-Bates-Chen [3] for the convergence of the Cahn–Hilliard
equation, the crucial step in [63] is to show a spectrum condition of the linearized operator associ-
ated with the system (2.1.2) at the approximate solution. More precisely, let Rε = uε − uεA, then
direct computations give

1

2

d

dt

ˆ

Ω

(Rε)2 dx+Qε
A(R

ε) =

ˆ

Ω

Hε
A(R

ε)Rε dx, (2.1.8)

where Qε
A is a functional defined by

Qε(ϕ) :=

ˆ

Ω

(Lε
A(ϕ))

2 dx− 1

ε2

ˆ

Ω

W (3)(uεA)v
ε
A(ϕ)

2 dx

with Lε
A(ϕ) := ∆ϕ− W ′′(uεA)

ε2
ϕ ∀ϕ ∈ H2(Ω)

(2.1.9)
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and Hε
A(R

ε) is the non-linear perturbation term with respect to Rε satisfying

‖Hε
A(R

ε)‖2L2(Ω) = o
(
‖R‖2H2(Ω)

)
.

In particular, Qε is the quadric form of the fourth-order operator:

Lε
A(ϕ) := (Lε

A)
2(ϕ)− 1

ε2
W (3)(uεA)v

ε
Aϕ. (2.1.10)

By studying the lower bound of the spectral of Lε
A, Fei and Liu show the following estimate on

Qε
A:

Lemma 2.1.4 (Fei-Liu [63]). There exist C > 0 and ε0 > 0 depending only on k such that for every
0 < ε ≤ ε0 and for every ϕ ∈ H2(Ω),

Qε(ϕ) ≥ ε4

4

ˆ

Ω

|∆ϕ|2 dx− C
ˆ

Ω

ϕ2 dx. (2.1.11)

Using Lemma 2.1.4 in (2.1.8), together with some bootstrap arguments, gives an estimate of
‖Rε‖2H2(Ω) which proves Theorem 2.1.3 of stability. Finally, combining Theorems 2.1.2 and 2.1.3,
we have the convergence of De Giorgi-Bellettini-Paolini’s flow (2.1.2) to the Willmore flow
(1.8.1) before singularities occur.

The study of the quadric form Qε
A plays an important role to prove the convergence to the Will-

more flow. Heuristically, we can write that

Wε(u+ tϕ) =Wε(u) + εt

ˆ

Ω

∇L2Wε(u)ϕdx+
(εt)2

2
Qε(ϕ) + o(ε2t2). (2.1.12)

In the following section, by reformulating the quadric term Qε
A, we show that De Giorgi-Bellettini-

Paolini’s modelWε can be written as the sum of a convex functional and an (almost)-concave func-
tional which provides a numerical scheme with unconditional stability.

2.2 Splitting numerical schemes

Let us first present the principle of splitting methods for gradient flow equations. We consider the
L2−gradient flow of a given functional F :

{
∂tu = −∇L2F (u) in Ω× (0, T ),

u(x, 0) = u0(x) in Ω.
(2.2.1)

In practice, numerical methods based on explicit time discretization are not convenient due to nu-
merical instabilities.

The splitting method has originally been introduced by Eyre in [62] in the context of implicit and
semi-implicit numerical methods for approximating the solutions to the Cahn–Hilliard equation. The
method has been implemented later in different contexts, and numerous variants and generalizations
have been actively developed since then.

The main idea of the method in its basic form is pretty straightforward: Assume that the functional
F can be decomposed into a convex part and a non linear part:

F (u) = F+(u) + F−(u),
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where F+ is convex quadratic and F− is non linear. The method consists in treating implicitely the
convex part and explicitly the non linear part. More precisely, the splitting scheme is implemented at
each time step as follows:

un+1 − un
h

= −∇L2F+(un+1)−∇L2F−(un). (2.2.2)

The numerical advantage of the above scheme is that usually∇L2F+ can be chosen to be linear, which
makes the computation of un+1 relatively easy.

One can verify that the splitting scheme defined in (2.2.2) corresponds actually to the following
minimization problem:





Rn(un+1) = min
v−un∈V

Rn(v),

Rn(v) :=
1

2h
〈v − un, v − un〉V + F+(v) + 〈∇F−(un), v − un〉V + F−(un),

(2.2.3)

where V is a Hilbert space and 〈·, ·〉V its inner product.
In the case where F− is concave, the scheme (2.2.2) is unconditionally F -stable. More precisely, the

scheme (2.2.2) ensures the decreasing of F , i.e.,

F (un+1) ≤ F (un) for every n ∈ N. (2.2.4)

Indeed, by the definition of (un) in (2.2.3), we have that

Rn(un+1) ≤ Rn(un) for every n ∈ N,

which gives

1

2h
‖un+1 − un‖2V + F+(un+1) + 〈∇F−(un), un+1 − un〉V + F−(un) ≤ F (un). (2.2.5)

Since F− is concave, we have that

〈∇F−(un), un+1 − un〉V + F−(un) ≥ F−(un+1)

which, together with (2.2.5), gives (2.2.4).
In the following, we first introduce the splitting scheme for the Cahn–Hilliard phase field ap-

proximation to the perimeter functional which has been widely studied in numerous works such as
[138, 91, 87]. Next, we turn our attention to De Giorgi-Bellettini-Paolini’s model for the approxima-
tion of the Willmore energy. We show that, despite that it is unlikely to write the functional Wε as
the sum of a convex part and a concave part, it is possible to writeWε as a sum of a convex part and
a locally concave part in a neighborhood of each (un). The proof is based on the reformulation of the
quadratic term Qε

A defined in (2.1.9).

2.2.1 Splitting scheme for the Allen-Cahn approximate mean curvature flow

We consider the Allen-Cahn equation:




∂tu = ∆u− W ′(u)

ε2

u(x, 0) = uε0(x)
(2.2.6)

where the optimal profile associated with an initial shape S is chosen in practice as initial condition,
i.e., uε0 = q(d(·,S)

ε ).
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Recall that (2.2.6) is the gradient flow associated with the (rescaled) Cahn–Hilliard approximation
of the perimeter:

Pε(u) =

ˆ

Ω

1

2
|∇u|2 + W (u)

ε2
dx. (2.2.7)

We can write that
Pε(u) = Pα

+(u) + Pα
−(u), (2.2.8)

where Pα
+ and Pα

−(u) are functionals defined by

Pα
+(u) =

1

2

ˆ

Ω

(
|∇u|2 + αu2

)
dx and Pα

−(u) = −
ˆ

Ω

(
α

2
u2 +

W (u)

ε2

)
dx (2.2.9)

for some α > 0. It is clear that for every α > 0, the functional Pα
+ is always convex.

We claim that Pα
− is concave as soon as we take

α ≥ 2

ε2
. (2.2.10)

Indeed, we easily calculate that

D2(Pα
−)(u)(ϕ,ϕ) = −

ˆ

Ω

(
α− 1

ε2
W ′′(u)

)
ϕ2 dx. (2.2.11)

We get that

D2(Pα
−)(u) ≤ 0 if and only if α ≥ M(u)

ε2
, (2.2.12)

where M(u) is defined by
M(u) := sup

|s|≤|u|
|W ′′(s)|.

Moreover, thanks to maximum principle, we have that

‖u‖∞ ≤ ‖uε0‖∞ ≤ 1, (2.2.13)

which gives M(u) ≤ sup|s|≤1 |W ′′(s)| = 2, and we can conclude that Pα
− is concave whenever (2.2.10)

holds. With such choices of Pα
+, Pα

−, the splitting scheme associated with the gradient flow of the
approximate perimeter is:

un+1 − un
h

= −∇L2Pα
+(un+1)−∇L2Pα

−(un)

2.2.2 Splitting scheme for De Giorgi-Bellettini-Paolini’s flow

Up to space and time rescalings, we can assume that ε = 1. Let Ω ⊂ R
N (N = 2, 3) be an open

bounded subset with smooth boundary. Consider




∂tu = ∆v −W ′′(u)v in Ω× (0, T ),

v = −∆u+W ′(u) in Ω× (0, T ),

∂νu = u− 1 = 0 in ∂Ω× (0, T ),

u(0) = u0 for x ∈ Ω,

(2.2.14)

for u ∈ H2
1 (Ω) := 1 +H2

0 (Ω), where H2
0 (Ω) = {f ∈ H2(Ω) | f = ∂νf = 0 on ∂Ω} and W (s) = (1−s2)2

4 .
Recall that (2.2.14) corresponds to the L2−gradient flow of the functional

E(u) :=
1

2

ˆ

Ω

(∆u−W ′(u))
2
dx =

1

2
‖v‖22.

The following theorem shows that one can decompose E as the sum of a convex part and a locally
concave part under proper settings:
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Theorem 2.2.1. Let u0 ∈ H2
1 (Ω), T > 0 and N ∈ N

∗. Then there exist α, β > 0 and h > 0 such that the
following decomposition holds:

E = E+ + E−

where E+ is a convex functional defined on H2
1 (Ω) by

E+(u) =
1

2

ˆ

Ω

|∆u|2 dx+ α

ˆ

Ω

u2 dx+ β

ˆ

Ω

|∇u|2 dx

and E− defined on H2
1 (Ω) by

E−(u) :=
1

2

ˆ

Ω

W ′(u)2 +

ˆ

Ω

W ′′(u)|∇u|2 − α
ˆ

Ω

u2 − β
ˆ

Ω

|∇u|2

is concave in a neighborhood of each un ∈ H2
1 (Ω), for all n ∈ N, defined by the iterative splitting scheme

un+1 − un
h

= −∇L2E+(un+1)−∇L2E−(un)

Proof. First, we write that E(u) =
1

2

ˆ

Ω

(∆u)2 + E1(u) + E2(u) where ∀u ∈ H2
1 (Ω),

E1(u) :=
1

2

ˆ

Ω

W ′(u)2 and E2(u) := −
ˆ

Ω

∆uW ′(u) =

ˆ

Ω

W ′′(u)|∇u|2.

Notice that the last identity derives from integrations by parts. Direct calculations show that, ∀R ∈
H2

0 (Ω),

D2E1(u)(R,R)+D2E2(u)(R,R) =

ˆ

Ω

(W ′′(u))2R2 +2

ˆ

Ω

W ′′(u)|∇R|2 +
ˆ

Ω

W (3)(u)(W ′(u)−∆u)R2.

Thanks to Cauchy-Schwarz inequality, we have that
∣∣∣∣
ˆ

Ω

W (3)(u)(W ′(u)−∆u)R2

∣∣∣∣ ≤ ‖W ′(u)−∆u‖2‖R2W (3)(u)‖2

≤ CF (u)‖u‖∞‖R2‖2
≤ CF (u)‖u‖∞‖R‖24,

for some C > 0. Remark that thanks to the Sobolev embedding theorem, ‖u‖∞ is finite for all u ∈
H2

1 (Ω).
Moreover, thanks again to the Sobolev embedding theorem, we have that H2

0 (Ω) →֒ H1
0 (Ω) →֒

L4(Ω) for n = 2, 3, which implies that there exists C(Ω) > 0 such that ∀R ∈ H2
0 (Ω),

‖R‖4 ≤ C(Ω)‖∇R‖2.

Combining the above inequalities, we obtain that
∣∣∣∣
ˆ

Ω

W (3)(u)(W ′(u)−∆u)R2

∣∣∣∣ ≤ C(Ω)F (u)‖u‖∞
ˆ

Ω

|∇R|2.

Finally, for u0 ∈ H2
1 (Ω) given, by choosing α, β ∈ R

+ such that

α > sup
|s|≤2‖u0‖∞

W ′′(s)2 and

β > sup
|s|≤2‖u0‖∞

2W ′′(s) + C(Ω)F (u0)‖u0‖∞,
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we define

E+(u) :=
1

2

ˆ

Ω

|∆u|2 + α

ˆ

Ω

u2 + β

ˆ

Ω

|∇u|2 and

E−(u) := E1(u) + E2(u)− α
ˆ

Ω

u2 − β
ˆ

Ω

|∇u|2.

It is clear by the choice of α and β that E+ is convex and for every R ∈ H2
0 (Ω), we have that

D2E−(u0) (R,R) < 0. (2.2.15)

For h > 0 small enough, we can prove by induction that the sequence (un)n∈N defined by the splitting
scheme

un+1 − un
h

= −∇L2E+(un+1)−∇L2E−(un)

is energetically stable. Indeed, as in (2.2.3), un+1 is characterized byRn(un+1) = minv−un∈H2
0 (Ω)Rn(v)

where Rn(v) := 1
2h 〈v − un, v − un〉L2 + E+(v) + 〈∇L2E−(un), v − un〉L2 + E−(un). In particular,

Rn(un+1) ≤ Rn(un), which leads to

E(un) = Rn(un) ≥ Rn(un+1) ≥ E+(un+1) + E−(un) + 〈∇L2E−(un), un+1 − un〉

= E+(un+1) + E−(un+1)−
1

2
D2E−(wn)〈un+1 − un, un+1 − un〉

≥ E+(un+1) + E−(un+1) = E(un+1)

withwn on the vector segment [un, un+1] and using the fact that (2.2.15) holds also forwn close enough
to u0.

2.3 De Giorgi-Bellettini-Paolini’s flow and formation of singulari-

ties not consistent with the relaxed Willmore energy

Figure 2.1: Numerical illustrations from [30]: two circles in 2D evolving by De Giorgi-Bellettini-
Paolini’s flow. Singularities appear in finite time, in particular the two disks merge to form a shape
which has infinite relaxed Willmore energy.

We recalled in a previous section that De Giorgi-Bellettini-Paolini’s phase field flow converges
to the Willmore flow as long as everything remains smooth. We also recalled in Section 1.5 that De
Giorgi-Bellettini-Paolini’s flow may allow the creation in finite time of singularities which correspond
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Figure 2.2: Numerical illustrations from [30]: cylinders in 3D evolving by De Giorgi-Bellettini-
Paolini’s flow. Singularities appear in finite time and shapes appear which have infinite relaxed Will-
more energy.
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to unsmooth nodal sets of smooth solutions to the Allen-Cahn equation. This can be illustrated nu-
merically as in Figures 2.1 and 2.2 taken from [30]. As shown formally in [30], the L2−gradient flow
of Mugnai’s model is equivalent to De Giorgi-Bellettini-Paolini’s flow until the latter is close to let a
singularity appear. But in contrast, with Mugnai’s flow, level sets of the phase field solution deform
themselves rather than colliding, see Figures 2.3 and 2.4 taken from [30]. It was actually emphasized
in [30] that Mugnai’s flow contains an additional reaction term with respect to De Giorgi-Bellettini-
Paolini’s flow. The next chapter is devoted to a more detailed analysis of this additional term.

Figure 2.3: Illustrations in 2D taken from [30]. Mugnai’s flow prevents from colliding, the interfaces
deform themselves rather than merging.
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Figure 2.4: Illustrations in 3D taken from [30]. Mugnai’s flow prevents from colliding, the interfaces
deform themselves rather than merging.
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Chapter 3

The self-avoidance term in Mugnai’s
flow

This chapter is devoted to the analysis and interpretation of a perturbation term carried by Mugnai’s
flow, i.e. the L2-gradient flow of Mugnai’s phase field approximation of the Willmore energy. This
perturbation term prevents the interfaces moved by the flow from colliding, see the previous section.

3.1 Approximation of the Willmore flow with Mugnai’s model

Let us recall that Mugnai’s approximation of the Willmore energy is given by

WMu
ε (u) :=





1

2ε

ˆ

Ω\{|∇u|6=0}

∣∣∣∣ε∇2u− W ′(u)

ε
~nu ⊗ ~nu

∣∣∣∣
2

dx if u ∈ L1(Ω) ∩W 2,2(Ω)

+∞ otherwise in L1(Ω)

, (3.1.1)

where ~nu := ∇u
|∇u| on {|∇u| 6= 0}, and ~nu is set to an arbitrary unit vector on {|∇u| = 0}.

The associated L2-gradient flow has been derived first in [30]. Up to time rescaling t← εt and on
the set {|∇uε| 6= 0}, the flow

∂tu
ε = −∇WMu

ε (uε)

is actually equivalent to De Giorgi-Bellettini-Paolini’s flow (2.1.2) plus a perturbation term (marked in
red):

(Mugnai’s flow)





∂tu
ε = ∆vε +

1

ε2
W ′′(uε)vε +

1

ε2
W ′(uε)B(~nε)

vε = ∆uε − W ′(uε)

ε2
,

(3.1.2)

where
B(~nε) = div (div(~nε)~nε)− div ((∇~nε)~nε) (3.1.3)

and∇~nε = ∇
(

∇uε

|∇uε|

)
is a squareN×N matrix such that (∇~nε)i,j = ∂~nε

i

∂xj
for every 1 ≤ i, j ≤ N . Notice

that B(~nε) is apparently of third order and highly non-linear with respect to its profile function uε.
A formal asymptotic expansion of a solution to this flow is provided in [30] and shows that, at

least in dimensions 2 and 3, Mugnai’s flow approximates the Willmore flow as long as everything
remains smooth. As illustrated by the numerical experiments of Section 2.3, the flows start to diverge
significantly when two parts of the 0-level set of a solution to Mugnai’s flow become too close. This
is due to the reaction term B(~nε) that we will now analyze further.
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In the following lemma, we first show that, surprisingly, B(~nε) can be written in a form à la
Wente, which plays an important role as a compensated compactness tool in the second part of this
manuscript. Under this form, B(~nε) is of second order only.

Lemma 3.1.1. If uε ∈ C2(Ω) has non vanishing gradient∇uε and ~nε = ∇uε

|∇uε| then

B(~nε) = 2
∑

1≤i<j≤N

(
∂~nεi
∂xi

∂~nεj
∂xj
−
∂~nεj
∂xi

∂~nεi
∂xj

)
. (3.1.4)

In the particular case where N = 2, the expression reduces to

B(~nε) = 2 det(∇~nε) = 0.

Proof. First, we write that

div(div(~nε)~nε) =
∑

1≤j≤N

∂j




 ∑

1≤i≤N

∂i~n
ε
i


~nεj




=
∑

1≤i,j≤N

(
(∂2ji~n

ε
i )~n

ε
j + ∂i~n

ε
i∂j~n

ε
j

)
and

div ((∇~nε)~nε) =
∑

1≤j≤N

∂j [(∇~nε)~nε]j =
∑

1≤j≤N

∂j


 ∑

1≤i≤N

(∂i~n
ε
j)~n

ε
i




=
∑

1≤i,j≤N

(
(∂2ij~n

ε
j)~n

ε
i + ∂i~n

ε
j∂j~n

ε
i

)
.

Since ∑

1≤i,j≤N

(∂2ji~n
ε
i )~n

ε
j =

∑

1≤i,j≤N

(∂2ij~n
ε
j)~n

ε
i ,

we get that

B(~nε) =
∑

1≤i,j≤N

(
∂i~n

ε
i∂j~n

ε
j − ∂i~nεj∂j~nεi

)
= 2

∑

1≤i<j≤N

(
∂i~n

ε
i∂j~n

ε
j − ∂i~nεj∂j~nεi

)
,

which gives (3.1.4). In particular, we have B(~nε) = 2 (∂x~n
ε
1∂y~n

ε
2 − ∂x~nε2∂y~nε1) = 2 det(∇~nε) if N = 2.

The fact that det(∇~nε) = 0 comes from the identity |~nε|2 = 1 even if N 6= 2. Indeed, the derivative
of the identity with respect to xj gives

∑

1≤i≤N

(∂j~n
ε
i )~n

ε
i = 0, for every 1 ≤ j ≤ N

which can be written as
(∇~nε)T ~nε = ~0 ∈ R

N , (3.1.5)

where (∇~nε)T is the transpose of the matrix ∇~nε. Since ~nε is not a null vector, (3.1.5) implies that the
matrix ∇~nε is not invertible. Therefore, det(∇~nε) = 0.

3.2 Numerical illustration of the self-avoidance term

The lemma of the previous section shows that, in dimension 2, B(~nε) vanishes at smooth points where
∇uε 6= 0. Numerical experiments show that it seems to be essentially true, up to negligible terms,
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in dimension 3 as well. Yet B(~nε) charges some singular points. We will study in the next chapter
another term which vanishes at smooth points but charges singular points, the so-called jump term
S~nε defined by

S~nε = 〈~nε, (∇~nε)T~nε〉

=
∑

1≤i,j≤N

~nεi
∂~nεi
∂xj

~nεj .

We compare in the next numerical experiments the values taken by B(~nε) and S~nε on various con-
figurations. The computation is done as follows: if Ω denotes the shape under study, uǫ is defined as
q(d(·,Ω)

ε ) with q the usual optimal profile, and ~nε = ∇uε

|∇uε| .

Figure 3.1 shows, in the first column, the values of uǫ = q(d(·,Ω)
ε ) with Ω defined successively

as two different annuli formed of two concentric circles. The middle column shows the values of
B(~nε) and the third column the values of S~nε. Remark that none of the terms charges smooth points.
B(~nε) shows a little hump at the center of the concentric circles, whereas S~nε charges the center of the
circles and the “median” circle between them. In other words, S~nε charges the whole singular set of
the signed distance function to the annuli, whereas B(~nε) charges only the center point.
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Figure 3.1: First column: values of uǫ = q(d(·,Ω)
ε ) with Ω = two different annuli; Second column:

associated values of B(~nε) where ~nε = ∇uε

|∇uε| ; Third column: associated values of the jump term S~nε.

In the case of the two spheres of Figure 3.2, both B(~nε) and S~nε charge their centers. In addition
S~nε charges also partially the median plane between the spheres, which is almost not charged by
B(~nε). The two terms behave essentially the same way with both tori shown in Figure 3.2

Finally, Figure 3.3 shows some values taken by B(~nε) for two 3D examples. B(~nε) does not charge
anything between two parallel planes but does charge the median axis between the two cylinders.
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What do these numerical experiments suggest? That both terms B(~nε) and S~nε charge only some
singular points of the signed distance function to the shape under study, and not the smooth points.
However, B(~nε) does not seem to charge consistently all parts of the singular set of the signed distance
function.

3.3 Formal asymptotic expansion of Mugnai’s flow

There are no known results on the existence and well-posedness of solutions to Mugnai’s flow (3.1.2).
The high non-linearity of B(~nε) with respect to uε makes the problem difficult. However, a formal
asymptotic expansion can be performed to identify the sharp limit. This is done in [30] where it is
shown that, given a smooth front Γ := ∂E evolving by Willmore flow (1.8.1) before the singularities
occur, an approximate solution (uεA, v

ε) of Mugnai’s flow (3.1.2) such that the normal velocity of the
front Γε := (uεA)

−1(0) converges to the normal velocity of Γ, is expected to take the following form:




uεA = q

(
dE(x)

ε

)
+ ε2

‖A‖2
2

η1

(
dE(x)

ε

)
+O

(
ε3
)
,

vεA = Hq′
(
dE(x)

ε

)
− ε‖A‖2η2

(
dE(x)

ε

)
+O(ε2),

(3.3.1)

where H and ‖A‖2 = H2 −K are respectively the mean curvature and the second fundamental form
of Γ, and η1 and η2 are respectively solutions on R of




η′′1 (s)−W ′′(q(s))η1(s) = sq′(s), with lim

s→±∞
η1(s) = 0,

η′′2 (s)−W ′′(q(s))η2(s) = q′′(s), with lim
s→±∞

η2(s) = 0.
(3.3.2)

Remark 3.3.1. Recall that the formal analysis of Loreti and March [92] shows that the approxime solu-
tion to De Giorgi-Bellettini-Paolini’s flow (2.1.2) admits the following Taylor:





uεA(x, t) = q

(
dE(x)

ε

)
+ ε2

(
‖A‖2 − H2

2

)
η1

(
dE(x)

ε

)
+O(ε3),

vεA(x, t) = Hq′
(
dE(x)

ε

)
− εH2η2

(
dE(x)

ε

)
+O(ε2).

In particular, when N = 2, the two approximate solutions coincide up to order ε3. And in dimension
3, also the expansions are different, they actually are both good approximations of the Willmore flow
as long as there is no topology change and no appearance of singularity, see [30].

3.4 Flow associated with a regularized Mugnai’s model

In the numerical scheme presented in [30] to approximate solutions of Mugnai’s flow, the normal
vector ~nε is regularized with a small parameter σ > 0, that is

~nεσ :=
∇uε√

|∇uε|2 + σ2
.

In order to preserve the variational aspect of the gradient flow, one can also regularize the normal
vector in the expression of Mugnai’s model (1.6.3) before computing the flow. For instance, one can
consider a regularized Mugnai’s model with regularized normal vector:

WMu
ε,σ (uε) =

1

2ε

ˆ

Ω

∣∣∣∣ε∇2uε − W ′(uε)

ε
~nεσ ⊗ ~nεσ

∣∣∣∣
2

dx, (3.4.1)
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Figure 3.2: First column: Two round spheres and two tori. Middle and right columns: values of
B(~nε) and S~nε on the plane {x3 = 0}. The following notations are used: if Ω denotes a shape, then
uǫ = q(d(·,Ω)

ε ) and ~nε = ∇uε

|∇uε| .
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Figure 3.3: First column: two parallel planes and two parallel cylinders. Middle column: values of
B(~nε) on the plane {x3 = 0}. Right column: values of B(~nε) on the plane {x1 = 0}.
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In this case, thanks to Lemma 3.1.1 and by direct computations, the gradient flow of the regularized
model (3.4.1) can be written as





∂tu
ε = −∆vε + 1

ε2
W ′′(uε)vε +

1

ε2
W ′(uε)B(~nεσ) +Aε

σ(u
ε)

vε = ∆uε − W ′(uε)

ε2
,

(3.4.2)

where

Aε
σ(u

ε) =
σ2

ε2

[
1

|∇uε|2 + σ2
(∆W ′(uε) +W ′′(uε)∆uε)

− 2

(|∇uε|2 + σ2)
W ′′(uε)〈(∇2uε)~nεσ, ~n

ε
σ〉

− 2

ε2
W ′(uε) div

(
W ′(uε)|~nεσ|2~nεσ

)

− 1

ε2
W ′′(uε)W ′(uε)

(
4|∇uε|4 + 3σ2|∇uε|2 + σ4

(|∇uε|2 + σ2)3

)]
.

(3.4.3)

Notice that for σ > 0 small enough, we have Aε
σ(u

ε) = ◦
(

1
ε2W

′(uε)B(~nε)
)
.

3.5 Conclusion

In comparison with De Giorgi-Bellettini-Paolini’s flow, Mugnai’s flow contains an additional second-
order reaction term which charges essentially only singular points of the gradient of the solution to
the flow, and which seems to prevent, according to numerical simulations, topology changes and ap-
pearance of singularities. However, we also observed that the parts of the singular set of the solution’s
gradient are not all charged consistently. The purpose of the next chapter is threefold:

• introduce and study a new, more consistent reaction term;

• associate it with an approximate mean curvature flow to get a new self-avoiding approximate mean
curvature flow;

• study applications of this new flow to the Steiner problem and the Plateau problem.
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Chapter 4

A self-avoiding approximate mean
curvature flow

4.1 The discontinuity set of singular maps

In the previous chapter, we showed that, according to the numerical simulations of [30] together with
Lemma 3.1.1, the additional term B(~nε) in Mugnai’s flow (3.1.2) charges singular points of the profile
function uε. More precisely, B(~nε) behaves as a repulsive force from the set where the gradient of uε

vanishes, thus prevents the front from topological changes in certain cases.
In this section, we first recall some well-known results on the distributional Jacobian, which is

widely considered as an optimal indicator describing the singular set of Sobolev maps. However,
by providing some examples, we show that the distributional Jacobian is not relevant to our frame-
work where the normal vector ~nε needs not be a Sobolev map in general. This leads us to introduce a
new jump term. We show that this jump term is able to charge the higher dimensional part of the skele-
ton, we also illustrate on simple configurations that other dimensional parts seem to be represented
in the asymptotic expansion of the jump term.

4.1.1 Distributional Jacobian of Sobolev maps

Let f = (f1, . . . , fN ) ∈ W 1,N−1(Ω,RN ) ∩ L∞(Ω,RN ) with Ω an open set of RM . The distributional
Jacobian of f can be defined as

Jf :=
1

N
d




N∑

i=1

(−1)i−1fi
∧

j 6=i

dfj


 , (4.1.1)

in the distributional sense. Notice that in case where f ∈ W 1,N (Ω,RN ), the Jacobian of f is basically
the determinant of the matrix (∇f)i,j = (∂jf

i)i,j :

Jf = det(∇f)dx, (4.1.2)

in the classical sense.
The distributional Jacobian has been actively studied in the last two decades. In particular, the

distributional Jacobian for Sobolev maps taking values in the unit sphere S
N−1 has been widely ad-

dressed. In the case where M = N , Brézis-Coron-Lieb proved that the distributional Jacobian can be
written as a sum of Dirac masses.
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Theorem 4.1.1 (Brézis, Coron & Lieb [31]). Let u ∈ W 1,N−1(Ω, SN−1) with Ω ⊂ R
N . There exists an at

most countable collection of points {ai}i∈J ⊂ Ω and integers {di}i∈J ⊂ Z such that

Ju = αN

∑

i∈J

diδai ,

where αN = 1
NHN−1(SN−1), δai

is the Dirac mass centered at the point ai for i ∈ J and di is the Brouwer
degree of u at ai.

The above theorem implies that a Sobolev map in WN−1(Ω, SN−1) may have a gradient whose
determinant vanishes almost everywhere, but the Jacobian is not necessarily zero. For instance, con-
sider E a ball centered at origin 0 ∈ R

2 and dE the signed distance function to E. One can verify that
dE ∈W 1,1(Ω, S1) and its gradient

fE := ∇dE(x) =
x

|x| if x 6= 0

is well-defined everywhere except at 0. Moreover, we have that

JfE = πδ0 and det(∇fE) = 0 in R
2 \ {0}.

Indeed, by differentiating the identity |fE |2 = 1 in R
2 \ {0}, we get that

(∇fE)T fE =

(
0
0

)
in R

2 \ {0}, (4.1.3)

where (∇fE)T is the transpose of the matrix (∇fE). Thanks to (4.1.3), the matrix (∇fE) is not in-
vertible and thus det(∇fE) = 0. For the computation of the distributional Jacobian JfE , we refer the
interested reader to Examples 3.1 in Jerrard-Soner [75]. Finally, several generalizations of Theorem
(4.1.1) to general Sobolev maps have been studied as well, see [75, 1].

While the distributional Jacobian is well-suited for characterizing singular points of Sobolev maps
in W 1,N (Ω, SN−1) as shown in Theorem 4.1.1, it does not necessarily fit to our context where the
signed distance function can easily fail to be a Sobolev map, which, to the author’s knowledge, causes
difficulties to define its distributional Jacobian. For example, consider two parallel ellipsoids in R

3.
The associated skeleton consists of two parallel segments and the signed distance function is not reg-
ular. Moreover, even if one may regularize the distance function in a symmetric way (for example, by
convoluting it with a radial mollifier) in order to approximate the Jacobian, the approximate Jacobian
(which can be computed by the determinant) is always zero since the third coordinate of the gradient
vanishes.

In fact, since the skeleton of a domain is meagre, as shown in the next section, it is more convenient
to work with functions of bounded variation.

4.1.2 BV functions and the jump term

In the following, we first introduce the notion of function of bounded variation and its basic proper-
ties, see [6] for more detailed information on the topic.

Given u ∈ L1(Ω), we say that u is a function of bounded variation if its distributional gradient Du is
a vector-valued Radon measure with finite total variation in Ω. More precisely, we have that

|Du|(Ω) := sup

{
ˆ

Ω

u div(~ϕ) dx | ~ϕ ∈ C1
c (Ω,R

N ), ‖~ϕ‖∞ ≤ 1

}
< +∞.

The class of such functions is denoted as BV (Ω). Endowed with the norm ‖u‖BV (Ω) := ‖u‖L1(Ω) +
|Du|(Ω), it is a Banach space. The notion of bounded variation can naturally be extended for vector-
valued functions.
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For every u ∈ BV (Ω), Du is a Radon measure which can be written as the sum of an absolutely
continuous part and a singular part with respect to the Lebesgue measure, i.e.:

Du = DAu+DSu.,

where DAu = ∇Audx with ∇Au the Radon-Nikodym derivative of Du with respect to the Lebesgue
measure in R

N , and DSu ⊥ dx. Also notice that u is approximately differentiable a.e. in Ω and its
approximate differential coincides with∇Au a.e. in Ω, see[6].

The singular part DSu decomposes into the jump part DJu and the Cantor part DCu. More pre-
cisely, we can write that

DJu = ([u]⊗ ν)HN−1xΣ(u), (4.1.4)

where Σ(u) is the jump set of u oriented by a unit vector ν, and [u] := u+ − u− is the difference of the
approximate limits of u with respect to ν on Σ(u). Namely, we have

u±(x) := lim
r→0

 

B±(x,r)

u(y) dy

where B+(x, r) = {y ∈ R
N | 〈y, ν(x)〉RN > 0} and B−(x, r) = {y ∈ R

N | 〈y, ν(x)〉RN < 0}.
The Cantor part DCu is a signed measure which does not charge anyHN−1−finite set, that is

DCu(O) = 0, ∀O ⊂ Ω s.t. HN−1(O) < +∞.

Finally, we say that u ∈ BV (Ω) is a function of special bounded variation, denoted by u ∈ SBV (Ω),
if its Cantor part vanishes, i.e. DCu = 0.

Now we are at the point to introduce the notion of jump term.

Definition 4.1.2. For every ~n ∈ SBV (Ω, SN−1), we define the (regularized) jump term S~nσ of ~n by

S~nσ =
∑

1≤i,j≤N

~nσi ∂j~n
σ
i ~n

σ
j = 〈nσ, (∇nσ)Tnσ〉,

where σ > 0 and ~nσ = fσ ∗ ~n is the mollification of ~n by a smooth kernel fσ = 1
σN f

(
·
σ

)
with f ∈ C∞

c (Ω)
and

´

Ω
f = 1.

The intention of the jump term is pretty straightforward: by formally deriving the identity

|~n|2 = 1

and then by considering its inner product with ~n, in the case where ~n is regular, we get that
∑

1≤i,j≤N

~ni∂j~ni~nj ≡ 0.

Therefore, we expect that the expression of the jump term introduced in the above definition preserves
only the singular part of the map ~n.

In the following, we show that the regularized jump term of a ~n ∈ SBV (Ω, SN−1) converges
asymptotically to a measure supported on the jump set Σ of ~n.

Theorem 4.1.3. Let ~n ∈ SBV (Ω, SN−1) with C1− jump set Σ oriented by the unit vector ν. Then

S~nσ → 1

12
|[~n]|2〈[~n], ν〉 dsΣ in D′(Ω) as σ → 0, (4.1.5)

where dsΣ is the measure volume on Σ and ~nσ = fσ ∗ ~n is the mollification of ~n by a smooth kernel fσ =
1

σN f
(

·
σ

)
with f ∈ C∞

c (Ω) and
´

Ω
f = 1.
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Proof. Since ~nσ = fσ ∗ ~n, we have that

∂j~n
σ
i = fσ ∗ ∂j~ni = fσ ∗ ∂Aj ~ni + fσ ∗ ∂Jj ~ni = fσ ∗ ∂Aj ~ni + fσ ∗ [~ni]νj dsΣ.

Therefore, for every function with compact support ϕ ∈ C∞
c (Ω), we can write that

∑

i,j

ˆ

Ω

~nσi ∂j~n
σ
i ~n

σ
j ϕdx = Iσ1 + Iσ2 ,

where
Iσ1 =

∑

i,j

ˆ

Ω

~nσi ∂
A
j ~n

σ
i ~n

σ
j ϕdx and Iσ2 =

∑

i,j

ˆ

Ω

~nσi g
σ
ij~n

σ
j ϕdx (4.1.6)

with
gσij = fσ ∗ [~ni]νj dsΣ.

Without loss of generality, we can assume that Ω = Σ(1) := {x ∈ Ω | d(x,Σ) ≤ 1} and that the map

τ : Σ(1)→ [−1, 1]× Σ

x 7→ (r, s)

is a diffeomorphism, with s = πΣ(x) the normal projection of x on Σ and r = 〈x − s, ν(s)〉, so that
x = s+ rν(s), . Thanks to the fact that

~nσi = fσ ∗ ~ni → ~ni a.e., fσ ∗ ∂Aj ~nσi → ∂Aj ~ni a.e. as σ → 0,

and |~n|2 =
∑

i ~n
2
i = 1, we get that, for every σ > 0, |~nσi (fσ ⋆ ∂Aj ~nσi )| ≤ C|∂Aj ~ni| for some C > 0 and

∑

i

~nσi
(
fσ ∗ ∂Aj ~nσi

)
→
∑

i

~ni∂
A
j ~ni =

1

2
∂j
(
|~n|2

)
= 0 a.e. as σ → 0, (4.1.7)

which, thanks to Lebesgue’s theorem, leads to

lim
σ→0

Iσ1 =
∑

i,j

ˆ

Ω

~ni∂
A
j ~ni~njϕdx = 0. (4.1.8)

In order to estimate Iσ2 defined in (4.1.6), by identifying x = (r, s)τ and taking z = r/σ, we can write
that

Iσ2 =
∑

i,j

ˆ 1

−1

ˆ

Σ

~nσi (r, s)g
σ
ij(r, s)~n

σ
j (r, s)ϕ(r, s)JΣ(r, s) ds dr

=
∑

i,j

ˆ ∞

−∞

ˆ

Σ

~nσi (σz, s)g
σ
ij(σz, s)~n

σ
j (σz, s)ϕ(σz, s)χ[−1/σ,1/σ](z)σJΣ(σz, s) ds dz,

(4.1.9)

where χ[−1/σ,1/σ] is the characteristic function of [−1/σ, 1/σ] and JΣ = det
(
∂(r,s)τ

−1(r, s)τ
)

is the
Jacobian of τ−1. We are now at the point of studying the pointwise limit of the integrand function as
σ goes to 0.

Let (σz0, s0)τ ∈ [−1, 1]× Σ, we have that

σgσij(σz0, s0)τ =

ˆ

Σ

σfσ((σz0, s0)τ − (0, s)τ )[~ni](s)νj(s)ds. (4.1.10)

As Σ is C1, we can parametrize locally Σ as a graph around s0. More precisely, up to rotation, we can
assume that ν(s0) = (0RN−1 , 1) and then there exist a neighbourhood V (s0) of s0 and δ > 0 such that
∀s ∈ V (s0), we can write that

s = s(u) = s0 + (u,Ψ(u)), (4.1.11)
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where Ψ : BN−1(0, δ) → R is a C1-map such that Ψ(0) = |∇Ψ(0)| = 0. For σ > 0 small enough, with
help of (4.1.11), (4.1.10) can thus be written as

σgσij(σz0, s0) =

ˆ

BN−1(0,δ)

σfσ ((σz0, s0)τ − (0, s(u))τ ) [~ni]νj (s(u))
√
1 + |∇Ψ(u)|2 du

=

ˆ

BN−1(0,δ/σ)

f

(
(σz0, s0)τ − (0, s(σu))τ

σ

)
[~ni]νj(s(σu))

√
1 + |∇Ψ(σu)|2 du,

(4.1.12)

where the second equality is obtained by replacing u by σu. Moreover we have that

(σz0, s0)τ − (0, s(σu))τ
σ

=
s0 + (0RN−1 , σz0)− s0 − (σu,Ψ(σu))

σ

=

(
−u, z0 −

Ψ(σu)

σ

)
→ (−u, z0) as σ → 0,

(4.1.13)

thanks to (4.1.11). Together with (4.1.12) and (4.1.13), we get that

σgσij(σz0, s0)→ g(z0)[~ni](s0)νj(s0) as σ → 0, (4.1.14)

where g(z0) =
´

RN−1 f(−u, z0)du =
´

RN−1 f(u, z0) du.
By analogy, for σ small enough, we also have

~nσi (σz0, s0) =

ˆ 1/σ

−1/σ

ˆ

Σ

fσ ((σz0, s0)τ − (σz, s)τ )~ni(σz, s)τσJΣ(σz, s)τ ds dz

=

ˆ 1/σ

−1/σ

ˆ

BN−1(0,δ/σ)

f

(
(σz0, s0)τ − (σz, s(σu))τ

σ

)

× ~ni(σz, s(σu))τJΣ(σz, s(σu)τ )
√
1 + |∇Ψ(σu)|2 du dz

(4.1.15)

Moreover, since we have that

~ni(σz, s(σu))τ →
{
~n+i (s0) if z > 0,

~n−i (s0) if z < 0,

JΣ(σz, s(σu))τ → 1 and

(σz0, s0)τ − (σz, s(σu))τ
σ

→ (−u, z0 − z) ,

(4.1.16)

as σ → 0. Notice that the second limit is due to the fact that JΣ(r, s)τ = 1 +HΣ(s)r + o(r), see [127].
Thanks to (4.1.15) and (4.1.16), we get that

~ni(σz0, s0)→
ˆ +∞

0

ˆ

RN−1

f(−u, z0 − z)~n+i (s0) du dz +
ˆ 0

−∞

ˆ

RN−1

f(−u, z0 − z)~n−i (s0) du dz

=

(
ˆ z0

−∞

g(z) dz

)
~n+i (s0) +

(
ˆ +∞

z0

g(z) dz

)
~n−i (s0)

= G(z0)~n
+
i (s0) + (1−G(z0))~n−i (s0),

(4.1.17)
as σ → 0, where G(z0) =

´ z0
−∞ g(z)dz.
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Finally, together with (4.1.9), (4.1.14), (4.1.16) and (4.1.17), we obtain that

lim
σ→0

Iσ2 =
∑

i,j

ˆ

Σ

ˆ

R

(
G(z)~n+i (s) + (1−G(z))~n−i (s)

)
(g(z)[~ni]νj)

×
(
G(z)~n+j (s) + (1−G(z))~n−j (s)

)
dz ϕ(0, s)τ ds

=
∑

i

ˆ

Σ

ˆ

R

G(z)g(z)[~ni](G(z)~n
+
i + (1−G(z))n−

i )〈~n+, ν〉(s)ϕ(0, s)τ ds

+
∑

i

ˆ

Σ

ˆ

R

(1−G(z))g(z)[~ni](G(z)~n+i + (1−G(z))n−
i )〈~n−, ν〉(s)ϕ(0, s)τ ds,

(4.1.18)

which, thanks to the fact that
∑

i

(
1− ~n+i ~n−i

)
= |[~n]|2

2 , leads to

lim
σ→0

Iσ2 =
∑

i

ˆ

Σ

ˆ

R

G(z)g(z)(2G(z)− 1)(1− ~n+i ~nii)〈~n+, ν〉(s)ϕ(0, s)τ ds

+
∑

i

ˆ

Σ

ˆ

R

(1−G(z))g(z)(2G(z)− 1)(1− ~n+i ~nii)〈~n−, ν〉(s)ϕ(0, s)τ ds

=

ˆ

Σ

(
ˆ

R

G(z)g(z)(2G(z)− 1) dz

) |[~n]|2
2
〈~n+, ν〉(s)ϕ(0, s)τ ds

+

ˆ

Σ

(
ˆ

R

(1−G(z))g(z)(2G(z)− 1) dz

) |[~n]|2
2
〈~n−, ν〉(s)ϕ(0, s)τ ds

=
1

12

ˆ

Σ

|[~n]|2〈[~n], ν〉ϕ(0, s) ds =
〈

1

12
|[~n]|2〈[~n], ν〉 dsΣ, ϕ

〉
.

(4.1.19)

Hence, together with (4.1.8) and (4.1.19), we prove Theorem 4.1.3.

Remark 4.1.4. In the case where N = 2 and ~n = ∇dE is the gradient of a signed distance function on

a certain domain E, ~n⊥ :=

(
−∂ydE
∂xdE

)
satisfies

∇ · ~n⊥ = 0 in D′(Ω),

(or equivalently, ∇× ~n = 0 in D′(Ω)). Thanks to the divergence-free hypothesis and the trace theory
of functions of bounded variation, we can write that

~n+ = cos θν⊥ + sin θν and ~n− = cos θν⊥ − sin θν

on the jump set Σ(~n), where θ is the angle between ~n+ and ν⊥. Therefore, we have that [~n] = 2 sin θ =
〈[~n], ν〉, which, combined with Theorem 4.1.3, implies

lim
σ→0

S~nσ =
1

12
〈[~n], ν〉3dsΣ in D′(Ω).

Notice that, up to a multiplicative constant, the quantity
´

Σ
1
12 〈[~n], ν〉3dsΣ coïncides with the line-

energy functional It→t3 which appears as the asymptotic energy of the Aviles-Giga model (Gε)ε defined
by

Gε(m
ε) =

ˆ

Ω

(
ε|∇mε|2 + 1

ε
g
(
|1− |mε|2|

))
dx (4.1.20)

for mε ∈ H1(Ω,R2) satisfying the divergence-free hypothesis ∇ · mε = 0 in Ω and with g : t 7→ t2.
The variational model (4.1.20) has been originally introduced by Aviles and Giga [10] in 1987 and
its asymptotic behavior has been studied in their seminal works [11]-[12]. The Aviles-Giga model is
related to numerous physical applications such as theory of liquid crystals in smectic states, Bloch
walls in micromagnetics, thin-film blisters, etc., see e.g. [10, 72, 114]. For more recent results on the
link between line-energy functions and BV functions with vanishing divergence, we refer to [70, 71]
and[73].
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4.2 Asymptotic behavior of the jump term on simple configura-

tions

Thanks to Theorem 4.1.3, the jump term S~nσ approximates the 1-codimensional jump set of ~nweighted
by the weight of the jump and the angle with the normal to the set. However, S~nσ does not neces-
sarily charge at the limit as σ goes to 0 singular parts of higher codimension. For instance, consider
~n(x) = x/|x| ∈W 1,1(Ω, S1). As shown in the previous section, the distributional Jacobian satisfies

J~nσ → πδ0 in D′(Ω) as σ → 0,

whereas the jump term satisfies

S~nσ → 0 in D′(Ω) as σ → 0.

Indeed, since the singular part of D~n vanishes, thanks to (4.1.6) and (4.1.8), we have that, for every
ϕ ∈ C∞

c (Ω),

〈S~nσ, ϕ〉 = Iσ1 → 0 as σ → 0.

However, in the following we study the case where the map ~n = ∇dE is chosen to be the gradient of
a signed distance function to a given domain E. It is clear that the discontinuity set of ~n corresponds
to the skeleton of E, we illustrate with some basic examples that higher codimensional parts of the
jump set Σ(~n) actually appear in the Taylor expansion of S~nσ at higher orders of σ.

4.2.1 Case of a round sphere

In this case, the associated skeleton Σ is a singleton. Without loss of generality, we can assume that
Σ = {0RN } and therefore we have

~n(x) =
x

|x| , ∀x 6= 0.

Thanks to the definition of ~nσ and its symmetric properties, we get that

~nσ(x) = h

( |x|
σ

)
~n(x), ∀x 6= 0, (4.2.1)

where h : R+ → R is a smooth function such that h(0) = 0, limx→+∞ h(x) = 1 and

0 ≤ h(x) ≤ 1 for every x ≥ 0.

By injecting (4.2.1), since
∑

i,j ni∂jninj = 0 almost everywhere, we get that

S~nσ(x) =
∑

i,j

h

( |x|
σ

)
~ni

(
h

( |x|
σ

)
∂j~nj

)
h

( |x|
σ
~nj

)

=
∑

j

(
h

( |x|
σ

))2

h′
( |x|
σ

)
~nj

xj
σ|x|

=
1

σ

(
h

( |x|
σ

))2

h′
( |x|
σ

)
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Therefore, for every ϕ ∈ C∞
c (Ω), we get that

〈S~nσ, ϕ〉 = 1

σ

ˆ

RN

(
h

( |x|
σ

))2

h′
( |x|
σ

)
ϕ(x) dx

=
1

σ

ˆ ∞

0

ˆ

Sr

(
h
( r
σ

))2
h′
( r
σ

)
ϕ(r, s)dsSrdr

=
1

σ

ˆ ∞

0

(
h
( r
σ

))2
h′
( r
σ

)
rN−1

(
ˆ

SN−1

ϕ(r, s) ds

)
dr

= σN−1

ˆ ∞

0

h(u)2h′(u)

(
ˆ

SN−1

ϕ(σu, s) ds

)
uN−1 du

∼ σN−1

ˆ

RN

h(|x|)2h′(|x|)dxϕ(0),

which gives
1

σN−1
〈S~nσ, ϕ〉 →

(
ˆ

RN

h(|x|)2h′(|x|)dx
)
ϕ(0), (4.2.2)

as σ → 0.

4.2.2 Case of a circular tube in R
3

We now discuss the case where the skeleton Σ is a regular curve in R
3 and Γ := Σσ = {x ∈

R
3 | d(x,Σ) ≤ σ} is a tube obtained by thickening the curve.

For every ϕ ∈ C∞
c (Γ), we claim that

〈S~nσ, ϕ〉 ∼ σ
ˆ

Σ

(
ˆ

D

h(u, s)2∂uh(u, s) du

)
ϕ(0, s) ds, (4.2.3)

as σ → 0.

Proof. For σ > 0 small enough, we can write that for every x ∈ Σσ , there exist s ∈ Σ and u ∈ D such
that x = s+ σu.

Therefore, by analogy with (4.1.15), we have that

~nσ(x0) =

ˆ

Σσ

~n(y)fσ(xσ0 − y) dy

=

ˆ

Dσ

ˆ

Σ

~n(y)fσ(xσ0 − y)J(z, s) ds dz

= σ2

ˆ

D

ˆ

Σ

~n(s, σu)fσ(xσ0 − y)J(σu, s) ds du

∼
ˆ

D

ˆ

R

f(−z, u0 − u)~n∞s0 (u) dz du

= hσ~n∞s0 (u0)

(4.2.4)

where ~n∞s0 (u) = limt→0+ ~ns0(tu) and hσ(·) = h( ·
σ ). Combining (4.2.4) with polar coordinates, we have

that

〈S~~nσ, ϕ〉 =
∑

i,j

ˆ

Σσ

~nσi ∂j~n
σ
i ~n

σ
j ϕdx

=

ˆ

Σ

ˆ σ

0

ˆ 2π

0

1

σ
h
( r
σ
, θ
)2
hr

( r
σ
, θ
)
rϕ(r, θ, s)J(r, θ, s)drdθ ds
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= σ

ˆ

Σ

ˆ 1

0

ˆ 2π

0

h(u, θ)hu(u, θ)uϕ(σu, θ, s)J(σu, θ, s) du dθ ds

= σ

ˆ

Σ

ˆ 1

0

ˆ 2π

0

h(u, θ)hu(u, θ)ϕ(0, θ, s)J(0, θ, s)u du dθ ds

∼ σ
ˆ

Σ

(
ˆ

D

h(u, s)2∂uh(u, s)

)
ϕ(0, s) ds,

as σ → 0.

4.2.3 Asymptotic comparisons between B~n and S~n

We now compare the asymptotics of B~n and of the jump term S~n on simple examples.

2D examples

In 2D, thanks to Lemma 3.1.1, B~n is proportional to the distributional Jacobian, i.e. B~n = 2J~n.

1. Case Γ = {(−1, 0)} ∪ {(1, 0)} ∪ {x = 0}, which corresponds to the skeleton of 2 circles of same
radius inferior to 1. We calculate that

~n(x) =





(x+ 1, y)√
(x+ 1)2 + y2

if x < 0 and (x, y) 6= (−1, 0).

(x− 1, y)√
(x− 1)2 + y2

if x > 0 and (x, y) 6= (1, 0).

Moreover, for (x, y) /∈ Γ,

∂xn1 =
y2

((x± 1)2 + y2)
3/2

.

∂yn2 =
(x± 1)2

((x± 1)2 + y2)
3/2

.

∂xn2 = − (x± 1)y

((x± 1)2 + y2)
3/2

= ∂yn1.

Here we also set ν = (1, 0) which is the normal vector on the median line {x = 0}. Therefore we
have

[~n]|{x=0} =
(−2, 0)√
1 + y2

= 〈[~n], ν〉ν.

(a) Since ~n is locally W 1,1 around (1, 0) and (−1, 0), for every ϕ ∈ C∞
c (R2\{x = 0}), one has

〈B~nσ, ϕ〉 → 2π (ϕ(1, 0) + ϕ(−1, 0)) .

For every ϕ ∈ C∞
c (R2\{0}), by integration by parts, we have that

〈B~nσ, ϕ〉 = 2 (−〈nσ
1∂yn

σ
2 , ∂xϕ〉+ 〈nσ1∂xnσ2 , ∂yϕ〉)

= −2
(
ˆ

{x<0}

nσ1∂yn
σ
2ϕdxdy +

ˆ

{x>0}

nσ
1∂yn

σ
2ϕdxdy + o(1)

)

→
ˆ

{x=0}

ϕ(0, y) [n1∂yn2]{x=0} dy,
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where

[n1∂yn2]{x=0} = n1∂yn2(0
+, y)− n1∂yn2(0

−, y) = − 2

(1 + y2)2
.

Therefore, B~n charges both circles centers as well as the median plan.

(b) Since ~n is W 1,1 in neighbourhoods of (1, 0) and (−1, 0), S~n does not charge these points,
namely, we have

〈S~nσ, ϕ〉 → 0 as σ → 0,

for every compactly supported function ϕ in Ω\{x = 0}. Thanks to Theorem 4.1.3, we
deduce that, for every ϕ ∈ C∞

c (R2),

〈S~nσ, ϕ〉 → 1

12

ˆ

{x=0}

ϕ|[~n]|2〈[~n], ν〉 ds{x=0}

= −2

3

ˆ +∞

−∞

ϕ(0, y)
1

(1 + y2)3/2
dy

as σ → 0. Notice that if we consider the configuration contained in a domain Ω ⊂
{(x, y) | a ≤ y ≤ b}, then S~n is "equivalent" to the uniform measure on {x = 0} in the
sense that there exist C1, C2 > 0 such that

C1

ˆ b

a

ϕ(0, y) dy ≤
ˆ b

a

ϕ(0, y)
1

(1 + y2)3/2
dy ≤ C2

ˆ b

a

ϕ(0, y) dy,

for any ϕ ≥ 0.

The previous example shows that S~n charges only the median line at first order.

2. Case Γ = {(0, 0)} ∪ ∂B(0, 1) which corresponds to the skeleton of an annulus. We have

~n(x) =





x

|x| if |x| > 1.

− x

|x| if |x| < 1.

By setting ν = x for |x| = 1, we get 〈[~n], ν〉 = 2

(a) In a local neighbourhood of the origin point, it is clear that B~nσ → 2J~n = 2πδ0.

In order to study the asymptotic behavior of B~nσ around the circle ∂B(0, 1), we choose
a radial regularized normal vector ~nσ . Namely, we consider ~nσ = (nσ

1 , n
σ
2 ) where nσ

1 =
fσ cos θ and nσ

2 = fσ sin θ for some smooth radial functions fσ : R+ → R such that, as
σ → 0, fσ(r)→ 1 if r > 1 and fσ(r)→ −1 if r < 1. Using Lemma 3.1.1 in polar coordinates,
we can write

B~nσ = 2

(
∂nσ1
∂x

∂nσ2
∂y
− ∂nσ1

∂y

∂nσ2
∂x

)

=
2

r
fσ
∂fσ

∂r

(
cos2 θ + sin2 θ

)2

=
2

r
fσ
∂fσ

∂r
.
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For every ϕ ∈ C∞
c (R2\{0}), we get that

〈B~nσ, ϕ〉 =
ˆ

R2

B~nσϕ

=

ˆ 2π

0

ˆ +∞

0

B~nσrϕ(r, θ) dr dθ

= 2

ˆ 2π

0

ˆ +∞

0

fσ∂r(f
σ)ϕ(r, θ) dr dθ

→ Cds∂B(0,1) in D′(R2\{0})

as σ → 0.

(b) Thanks to Theorem 4.1.3, we have

S~nσ → 2

3
ds∂B(0,1) in D′(R2)

as σ → 0.

The example of the annuli shows that S~n charges only the circle whereas J~n charges both the
origin and the circle.

3D examples

1. Case Γ = {x = 1, y = 0} ∪ {x = −1, y = 0} ∪ {x = 0} which corresponds to the skeleton of two
parallel vertical cylinders.

(a) It is clear that the third coordinate of ~n remains constant outside of Γ. Therefore, thanks to
3.1.1, we have

B~n = 2

(
∂~n1
∂x

∂~n2
∂y
− ∂~n2

∂x

∂~n1
∂y

)

in the distributional sense, which, by analogy with 1.(a) in the 2D case, gives

〈B~n, ϕ〉 = π

ˆ

{x=1,y=0}

ϕ(1, 0, z) dz − π
ˆ

{x=−1,y=0}

ϕ(−1, 0, z) dz

+

ˆ

{x=0,y=0}

ϕ(0, 0, z)[n1∂yn2]{x=0,y=0} dz.

(b) Similarly as in the case of two circles in 2D, we have

〈S~nσ, ϕ〉 → −2

3

ˆ

R2

ϕ(0, y, z)
1

(1 + y2 + z2)3/2
dy

as σ → 0.

2. Case Γ = {x = 0}which corresponds to the skeleton of two parallel planes. We have ~n(x, y, z) =
(1, 0, 0) if x < 0 and ~n(x, y, z) = (−1, 0, 0) if x > 0.

(a) Here we can take for instance the regularized normal vector ~nσ of the form (nσ
1 , 0, 0) with

nσ
1 a smooth function accross the median plane Γ. Thanks to Lemma 3.1.1, we have B~nσ =

0, therefore B~nσ → 0 as σ → 0.

(b) By Theorem 4.1.3, we have S~nσ → 2
3ds{x=0} as σ → 0.

In this example, we observe that B~nσ vanishes with some symmetric regularizations while the
limit S~nσ is independent on the choice of the regularization.
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Summary on the consistency of B~n and the jump term S~n for BV maps: With the above 2D or 3D
examples, one can conclude that no matter the given configuration, the jump term always charges the
1-codimensional part of the corresponding skeleton at first order, whereas the reaction term B~n from
Mugnai’s model charges systematically the 0-dimensional parts of the skeleton and charges the rest
of the skeleton rather inconsistently depending on the given configurations.

Theoretically, to the author’s knowledge, it seems so far not clear if we can canonically define
either B~n or the Jacobian for BV maps. The above examples also indicate that even by regularizing
the normal vector to properly compute B~nσ in the classical sense, the asymptotic limits depend on
the choice of the regularization. This does not meet the criteria in our study, since the main interest of
this chapter is to be able to capture the skeleton of any given configuration up to suitably negligible
sets.

4.2.4 Numerical illustration of the asymptotic behavior of S~nσ

We now compute some approximations of S~nσ for various numerical examples on a Cartesian grid
either in 2D or in 3D. More precisely, ~nσ = fσ ∗ ~n is computed using a Gaussian kernel fσ =

1
σN exp−π

|x|2

σ2 with N = 2, 3.

2D numerical examples

In the 2D case, we provide some illustrations of the jump term in Figure 4.1 obtained with a resolution
of 27 nodes for each dimension of the grid, where we consider three different sets E whose skeletons
consist of, respectively:

• two concentric circles,

• two parallel lines,

• and a rectangle.

We compute the jump term S~nσ using different values of the regularization parameter σ > 0 (see the
caption for the details).

3D numerical examples

We also try with the same 3D test presented in Figure (4.2), with a numerical resolution of 27 nodes
for each dimension of grid. Examples in Figure (4.2) are:

• two concentric spheres,

• two parallel planes,

• and a circular torus.

The values taken by the jump term are captured on the three hyperplanes {x1 = 0}, {x2 = 0} and
{x3 = 0}.

In both figures 4.1 and 4.2, one can clearly observe that the skeleton of the set E is well localized
in each configuration. Thanks to the observations together with Theorem 4.1.3 and the heuristic re-
sults (4.2.1) and (4.2.3) in the case of round spheres and circular tubes in R

3, one could conjecture that
if ~n is the gradient of the signed distance function associated with E, its jump term S~nσ character-
izes asymptotically the jump set Σ(~n), which corresponds to the skeleton of E. More precisely, it is
attempting to propose the following conjecture:
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Figure 4.1: Numerical values of S~nσ in 2D for various configurations and various values of σ; The
first column of each line corresponds to the considered set E; On each line, the columns 2, 3, and 4
correspond to S~nσ with, respectively, σ = 0.02, 0.01 and 0.005.
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Figure 4.2: Numerical values of S~nσ for 3D examples. Each line shows the set E, then the values
taken by the jump term on the planes {x1 = 0}, {x2 = 0}, and {x3 = 0}, respectively.
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Conjecture 4.2.1.

Snσ ∼
N−1∑

j=0

σj αj HN−1−j

Σj
(4.2.5)

where

• αj are R-valued density functions;

• Σj are (N − 1− j)-dimensional sets;

• the discontinuity set of n satisfies Σ(n) =
⋃

j

Σj

Actually, the numerical computations of Figures 4.1 and 4.2 show that the magnitude on the jump
term appears to be linear with respect to σ and does not depend on the dimension of the skeleton.
For instance, in the case of two concentric circles as in Figure 4.1, one can notice that the jump term
computed at the center has the same order of magnitude (up to a sign difference) as it has on the
circle. This is not in contradiction with (4.2.5) for the following reason: on the one hand, the Dirac
mass δ0 at the center can be numerically represented by the inverse of the pixel’s area, which gives in
2D

µ0(Σ) ≃
1

σ2
.

On the other hand, the uniform measure on the discrete circle satisfies µ1(σ) ≃ 1
Lσ since the circle of

length L is approximated numerically by a band of area Lσ in 2D. Therefore, thanks to (4.2.5), we
have that σµ0(Σ) ≃ Lµ1(σ) ≃ 1

σ , which justifies the fact that the jump term has approximately the
same magnitude at the center and on the circle in Figure 4.1.

4.3 Approximate mean curvature flow with a forcing term

In this section, we address perturbed Allen-Cahn equations of the form:




∂tu
ε = ∆uε − W ′(uε)

ε2
+ gε for (x, t) ∈ Ω× (0, T ),

uε(x, 0) = u0(x) for x ∈ Ω,

∂νu
ε
|∂Ω ≡ 0 for t > 0

, (4.3.1)

where Ω ⊂ R
n, n ≥ 2 is an open bounded set with smooth boundary and the forcing term gε satisfies

sup
ε>0

ˆ T

0

ˆ

Ω

εgε(x, t)dxdt < +∞. (4.3.2)

In [110], Mugnai and Röger showed that equation (4.3.1) is a phase-field approximation of the forced
mean curvature flow

V = H + g,

in the varifold sense, where g is an approximate limit of gε∇uε defined by

lim
ε→0

ˆ T

0

ˆ

Ω

η · ∇uεgε dx dt =
ˆ T

0

ˆ

Ω

η · g dµ,

for every η ∈ C0
c ((0, T ) × Ω,RN ), with µ is a Radon measure on (0, T ) × Ω obtained as the limit of

diffuse surface area measures µε defined as

µε :=

(
ε

2
|∇uε|2 + 1

ε
W (uε)

)
LN+1.
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One can also consider the case where gε does not depend on ε:




∂tu
ε = ∆uε − W ′(uε)

ε2
(1 + fσ) for (x, t) ∈ Ω× (0, T )

uε(x, 0) = u0(x) for x ∈ Ω,
(4.3.3)

where u ∈ C∞(Ω×]0, T ]) ∩ C0([0, T ], C∞(Ω)), fσ ∈ C∞(Ω) and W (s) = 1
4 (1 − s2)2 is the bistable

potential. In [118], Qi and Zheng showed that, if 1 + fσ ≥ a for some a > 0, then the equation (4.3.3)
converges to the forced mean curvature flow as

V = H +
∇⊥fσ

2(1 + fσ)
, (4.3.4)

in the varifold sense, where∇⊥fσ := ∇fσ ·ν is the normal component of∇fσ with ν the outer normal
of the front Γ.

In the following sections, we first show the convergence result (4.3.4) by using the formal method
of matched asymptotic expansion. Next, we discuss the behavior of the forcing term in (4.3.4) and we
prove that, under certain conditions on fσ , (4.3.4) provides a flow with obstacle.

Remark 4.3.1. One can verify that equation (4.3.3) is the L2−gradient flow (up to time rescaling) of the
following functional:

E(uε) =

ˆ

Ω

(
ε|∇uε|2

2
+
W (uε)

ε
dx+

ˆ

Ω

W (uε)

ε
fσ
)
dx.

The first integral is well-known as the phase-field approximation of perimeter of the interface Γ,
whereas the second integral can be regarded as a "penalized weight” on the obstacle.

Remark 4.3.2. In practice, as shown in the next section where we are interested in numerical applica-
tions of the perturbed phase-field approximation, we usually consider periodic solutions of (4.3.3)





∂tu
ε = ∆uε − W ′(uε)

ε2
(1 + fσ) for (x, t) ∈ Ω× (0, T )

uε(x, 0) = u0(x) for x ∈ Ω,
(4.3.5)

where Ω = [0, L]N with N = 2, 3.

4.3.1 Formal asymptotic expansion: first order

Similarly as for the asymptotic analysis of Mugnai’s flow in [30], see Chapter 3, we find the inner
solution of equation (4.3.3) up to order ε−2 and we show that formally that the level set of an approx-
imate solution of (4.3.3) with well prepared initial data approximates a front Γ moved by the forced
mean curvature flow (4.3.4). We assume that the zero level set of a solution uε to equation (4.3.3) is
a smooth n − 1 dimensional front Γ which is the boundary of a domain E ⊂ Ω evolving in time.
For convenience, we assume that Γ does not intersect ∂Ω and that as ε → 0, uε converges to −1 in
E and to 1 outside of E almost everywhere, that is, ∀t ∈]0, T [, for every compact sets K1 ⊂⊂ E and
K2 ⊂⊂ Ω \ E, we have that

uε(x)→
{
−1, if x ∈ K1

1, if x ∈ K2

, as ε→ 0.

Following the method of matched asymptotic expansion used in [53, 3, 63], we assume that the solu-
tion uε of (4.3.3) has the following Taylor expansion in a neighbourhood of Γ:

u(x, t) = U(z, x, t) =

∞∑

i=0

εiU i(z, s, t), (4.3.6)

60



where for every x close to Γ, we write x = (z, s) ∈ R× Γ with s := π(x) ∈ Γ the normal projection of
x on Γ, U i are smooth bounded fonctions such that

U i(0, s, t) = 0 and lim
z→±∞

U i(z, s, t) = 0, ∀i ∈ N, ∀(s, t) ∈ Γ×]0, T ] (4.3.7)

and the parameter z is the stretched signed distance in a neighbourhood of Γ:

z =
d(x, t)

ε
,

where d(x, t) is the signed distance defined by

d(x, t) =

{
dist(x,Γ) if x ∈ Ω \ E
− dist(x,Γ) if x ∈ E .

Then it follows that 



∇uε = ∇ΓU +
1

ε
Uz∇d,

∆u = ∆ΓU +
1

ε
Uz∆d+

1

ε2
Uzz

∂tu = ∂tU +
1

ε
V Uz

,

where V = ∂td(x, t) is the normal velocity of Γ, which is positive when the front moves toward E (i.e
when E “shrinks”). Moreover, we can write that

fσ(x) =

∞∑

i=0

εizi

i!
f i(s), (4.3.8)

where
f i(s) = (∂iνf

σ) (0, s) ,

with
(
∂iνf

σ
)

the ith normal derivative of fσ . In particular, we have

fσ = f0

∇⊥fσ = f1
on Γ. (4.3.9)

4.3.2 Formal asymptotic expansion: second order

At order ε−2, equation (4.3.3) gives

U0
zz −W ′(U0)(1 + f0(s)) = 0, for z ∈ R. (4.3.10)

It is clear that
U0(z) := q

(√
1 + f0(s)z

)
,

where

q(s) := tanh

(
s√
2

)
,

is a solution of (4.3.10) and satisfies the matching condition (4.3.7). Notice that by differentiating
(4.3.10), we also get that

U0
zzz −W ′′(U0)(1 + f0(s))U0

z = 0. (4.3.11)

Next at order ε−1, we get that

V U0
z = U1

zz −W ′′(U0)(1 + f0(s)) +HU0
z −W ′(U0)zf1(s).
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By multiplying by U0
z and integrating, we get that

V

ˆ +∞

−∞

(U0
z )

2 =

ˆ +∞

−∞

U0
z (U

1
zz −W ′′(U0)(1 + f0(s))) +

ˆ +∞

−∞

H(U0
z )

2 −
ˆ +∞

−∞

W ′(U0)zf1(s)U0
z

=

ˆ +∞

−∞

U1
(
U0
zzz −W ′′(U0)(1 + f0(s))U0

z

)
+H

ˆ +∞

−∞

(U0
z )

2+

= H

ˆ +∞

−∞

(U0
z )

2 +
1

2
f1

ˆ +∞

−∞

W ′(U0)zU0
z ,

thanks to (4.3.11) and integration by parts. Moreover, since W ′(U0) =
U0

zz

1+f0(s) , we get that

V

ˆ +∞

−∞

(U0
z )

2 = H

ˆ +∞

−∞

(U0
z )

2 − f1(s)

1 + f0(s)

ˆ +∞

−∞

U0
zzU

0
z z

= H

ˆ +∞

−∞

(U0
z )

2 +
f1(s)

2(1 + f0(s))

ˆ +∞

−∞

(U0
z )

2,

which implies

V = H +
f1(s)

2(1 + f0(s))

= H +
∇⊥fσ

2(1 + fσ)
on Γ.

4.3.3 Perturbed mean curvature flow with static obstacles

Here, we show that if the perturbation term fσ satisfies a growth condition around a given point then
the front Γ moved by the flow (4.3.4) will never intersect with the point if the initial distance at t = 0
between the interface Γ and the point 0 is far enough. In this case, we say that the flow (4.3.4) is a
perturbed mean curvature flow with a static obstacle point.

Without loss of generality, we can assume that the obstacle point is the origin point 0. We denote
δ := dist(Γ, 0) > 0 and take s0 ∈ Γ such that δ = |s0 − 0|. Additionally, we assume in the following
that the obstacle point 0 is at the interior of Γ, i.e 0 ∈ Ω−. The study of the opposite case can be proved
in a similar way.

First of all, thanks to the definition of δ, we have the following lemma giving an upper-bound
control on the mean curvature.

Lemma 4.3.3. If 0 ∈ Ω−, H(s0) ≤ N−1
δ .

Proof. Thanks to the definition of s0, up to some linear transformation on the plane, we can assume
that the obstacle point has coordinates (0, δ), s0 has coordinates (0, 0) and the curve can be locally
considered as the graph of a regular fonction ψ defined on a neighborhood of 0 such that ψ(0) =
ψ′(0) = 0. Therefore, it is clear that the (signed) curvature at (0, 0) is

k(s0) =
ψ′′(0)

(1 + ψ′(0))
3
2

= ψ′′(0),

and we have that

ψ(x) = ψ′′(0)
x2

2
+ o(x2), as x→ 0.

Thanks to the definition of δ, we have that, for all x in a neighborhood of 0,

(x− 0)2 + (ψ(x)− δ)2 ≥ δ2,

62



which gives
x2 − 2δψ(x) + ψ(x)2 ≥ 0.

Hence, by dividing the above inequality by x2, as x goes to 0, we obtain that

ψ′′(0)δ ≤ 1,

which leads to
k(s0) ≤

1

δ
.

We are now in position to prove the following theorem thanks to Lemma 4.3.3.

Theorem 4.3.4. Let fσ(x) =
∑+∞

i=0
εizi

i! f
i(s) defined as in (4.3.8). If there exists δN > 0 such that

δNf
1(s0)

2(1 + f0(s0))
< 1−N, (4.3.12)

for every s0 ∈ Γ(0) satisfying dist(Γ(0), 0) = |s0 − 0| = δN , and if dist(Γ(0), 0) > δN , then

dist(Γ(t), 0) ≥ δN ,

for every 0 ≤ t < T ∗ before the singularities occur.

Proof. Assume that there exists t > 0 such that dist(Γ(t), 0) = δN . Thanks to Lemma 4.3.3 and the
definition of forced mean curvature flow (4.3.4), there exists s ∈ Γ(t) such that ∇⊥fσ(s) = f1(s) and
that

V (s) = H(s) +
∇⊥fσ(s)

2(1 + fσ(s))
≤ N − 1

δN
+

f1(s)

2(1 + f0(s))
< 0,

thanks to (4.3.12). Therefore, the distance between Γ and 0 is bounded below by δN , which completes
the proof.

A Gaussian kernel as perturbative term: Consider

fσ(x) =
1

σN
e−

|x|2

σ2 .

It is clear that
fσ → δ0 as σ → 0,

in the distribution sense, where δ0 is the Dirac function centered at 0.

Claim 4.3.5. There exists σn > 0 such that, for every σ ≤ σn, V (s0) < 0 if cσ,n ≤ δ ≤ dσ,n, for some
0 < cσ,n < dσ,n.

Proof. By the definitions of δ and s0, we first notice that

∇⊥fσ(s0) = ∂ν(s0)f
σ

where
ν(s0) =

s0 − 0

|s0 − 0| =
s0
δ
.

Therefore, we have that

f0(s0) =
1

σN
e−

δ2

σ2 and f1(s0) = −
2δ

σN+2
e−

δ2

σ2 .
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Thanks to (4.3.4) and Lemma 4.3.3, we have that

V (s0) ≤
n− 1

δ
+

1

2

− 2δ
σ(n+2) e

− δ2

σ2

1 + 1
σn e

− δ2

σ2

.

In order to have V < 0, it is sufficient to require that,

g(δ) :=
(n− 1) δ2

σ(n+2) e
− δ2

σ2

1 + 1
σn e

− δ2

σ2

> n− 1.

Since g is continuous on [0,+∞[ such that limδ→+∞ g(δ) = g(0) = 0 and that, for σ < 1,

max g ≥ g(−σ2 lnσn) =
− lnσn

2
.

Hence, the theorem is proved by taking σ small enough and the existences of cσ,n and dσ,n derive
from the intermediate value theorem.

Remark 4.3.6. The above example indicates that, in the case 0 ∈ Ω−, the Gaussian kernel fσ in (4.3.3)
acts as a ”repulsive source” avoiding the interface from getting in collision with the point 0. Moreover,
the repulsive zone contains an annulus whose smaller radius is at most of order σ and whose bigger
one is at least of order −σ lnσ. These observations can actually be extended to the case where the
obstacle is a general C2-subset.

Remark 4.3.7. One of the interests of using the flow (4.3.3) is that when the interface is far from the
obstacle, it behaves exactly as a mean curvature flow. When the interface starts approaching the
obstacle, the perturbed term will prevent the interface from self colliding by forcing the interface and
the obstacle to remain beyond a minimal distance, denoted by σ̃ depending on σ when the interface
become stationary. It is natural to extend this idea to dynamic obstacles, and even obstacles defined
by the interface itself, actually its skeleton. This is the purpose of the next section.

4.4 Self-avoiding approximate mean curvature flow

Inspired by Theorem 4.1.3 on the approximation of the skeleton and by Theorem 4.3.4 on the mean
curvature flow with static obstacles, we propose a phase-field approximation of the mean curvature
flow with a self-avoidance term. The motion is similar to mean curvature flow as long as the interface is
far enough from its skeleton, but a reaction term (actually the jump term associated with the skeleton)
starts to be active when the interface gets closer to its skeleton, and prevents them to be too close. We
will provide arguments that this new self-avoiding mean curvature flow applied to filaments in R

3

approximates the codimension 2 mean curvature flow. Instead of defining directly the motion of a
filament, we consider a tubular fattening of it and let is evolve according to the new flow. Thanks
to Theorem 4.3.4, the fattening does not degenerate. These results could be generalized to higher
dimensions.

4.4.1 Definition of the flow and numerical approximation scheme

In this section, we introduce a mean curvature flow perturbed with a term depending on a skeleton-
based obstacle. Thanks to the results on the characterization of singular sets by the jump term defined
in Definition 4.1.2, together with our analysis of the perturbed Allen-Cahn equation (4.3.1), a natural
phase field candidate is the Allen-Cahn equation coupled with the jump term, i.e.,

∂tu
ε = ∆uε − W ′(uε)

ε2
(1 + fσuε) (4.4.1)
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where
fσuε = c(fσ ∗ |S~nσuε |) and nσ

uε = fσ ∗ ∇u
ε

|∇uε| .

Here, fσ is the Gaussian kernel of size σ > 0 seen at the end of the previous section and c is a constant
to be chosen in order to enforce or relax the topological constraint.

To approximate numerically this flow, we propose a quasi-static approach, i.e. the sequence of
approximate solutions (un)n is defined recursively as un+1(x) = v(x, h) where v is solution of the
following PDE {

∂tv(x, t) = ∆v(x, t)− W ′(v(x,t))
ε2 (1 + fσun(x))

v(·, 0) = un
(4.4.2)

and h represents the time step of the quasi-static formulation. Notice that the above equation is a
L2-gradient flow of the perturbed Cahn–Hilliard energy

Jε
un(v) =

ˆ

ε

2
|∇v|2 + 1

ε
W (v) (1 + fσun)) dx.

From a numerical point of view, equation (4.4.2) is solved in a box Q with periodic boundary
conditions. Moreover, we use a semi-implicit approach based on a convex-concave splitting of the
perturbed Cahn–Hilliard energy. More precisely, we define the solution vp as an approximation of v
at the time pδt given by the following scheme

vp+1 − vp
δt

= (∆vp+1 − α

ǫ2
vp+1)−

(
(1 + fσun)

W ′(vp)

ε2
− α

ǫ2
vp
)
.

Here, δt represents the time step of the scheme. The stabilized coefficient α is assumed to be suffi-
ciently large to ensure the concavity of the the functional

v 7→
ˆ

Q

(1 + fσun)
W (v)

ǫ2
− α v2

2ε2
dx.

Indeed, in that case, we can prove the decreasing of the perturbed Cahn–Hilliard energy

Jε
un(vp+1) ≤ Jε

un(vp),

and obtain an energy-unconditionally stable scheme. More precisely, this scheme can be written as

vp+1 = (Id − δt(∆−
α

ǫ2
Id))

−1

(
vp − δt

(
(1 + fσun(x))

W ′(vp)

ε2
− α

ǫ2
vp
))

where the operator (Id − δt(∆ − α
ǫ2 Id))

−1 is computed in Fourier space using the Fast Fourier Trans-
form thanks to the periodic boundary conditions on the box Q.
In practice, we consider the box Q = [−0.5, 0.5]3, discretized with N nodes on each axis. All the 3D
numerical experiments presented in this section are obtained using a resolution of N = 27, a phase-
field parameter ε = 2/N , and h = δt = ε2. As for the jump term, we set σ2 = 0.1ε2 and c = 0.35εN3.
In order to ensure the stability of the splitting scheme as shown in Chapter 2, section 2.2, the regular-
ized parameter α is defined as

α =
1

ε2
sup
x∈Q
|W ′′(u(x))|.

4.4.2 Application to a dumbbell

The first numerical experiment illustrates the influence of the jump term in our new self-avoiding
approximate mean curvature flow. We consider a dumbbell as the initial set, and it is well known
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that the classical mean curvature flow yields a topology change in finite time. It is illustrated on the
first line of Figure 4.3 where we plot the 0−level set of an approximate solution un to the Allen-Cahn
equation computed at different times tn = nh without using the jump term (which corresponds to
using c = 0). On the second line, we plot the 0−level set of the approximate solution un to the self-
avoiding approximate mean curvature flow. We clearly observe here that the jump term forces the
topological conservation.

Figure 4.3: Evolution of a dumbbell: the solution un plotted at different times t. The first and second
lines correspond to the approximate mean curvature flow with or without, respectively, the additional
jump term.

4.4.3 Application to a circle in 3D and codimension 2 mean curvature flow

We will now advocate, both with a numerical example and an asymptotic analysis, that the self-
avoiding approximate mean curvature flow is a good candidate for approximating a codimension 2
mean curvature flow.

Numerical illustration

The second numerical experiment concerns the evolution of a circle in R
3. We plot in Figure 4.4 the

solution at different times tn = nh. We can clearly observe a fattened circle which decreases along the
iterations. We also illustrate in the last plot the evolution of the squared mass of u,

t 7→
(
ˆ

Q

u(x, t) dx

)2

along the iterations. Notice that in the case of a fattened circle, this term is proportional to the square
of the radius of the circle which is expected to decrease linearly in the case of the mean curvature
flow, see Remark 4.4.1 below. We can clearly observe numerically such a decreasing (except at the
every beginning of the simulation) which means that the circle evolves consistently with the mean
curvature flow. One reason for the "bad" behavior at the very beginning is presumably an inconsistent
initialization which is quickly regularized by the flow.
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Figure 4.4: Evolution of a circle: the solution un plotted at different times t and the squared mass
t 7→ (

´

Q
u(x, t)dx)2 along the iterations.

Formal analysis of the velocity

Consider, for all u ∈ S, Ψ(u) =

(
R cosu

R sinu

)
, which parametrizes a circle Γ of radius R > 0 lying on the

horizontal plane R
2 × {0} in R

3. The curvature of Γ is 1/R.
We start by fattening the curve with an offset δ > 0, hence we obtain a circular torus. Let Φ be a

parameterization of the torus defined by

Φ(u, v) =



(R+ δ cos v) cosu

(R+ δ cos v) sinu

δ sin v


 .

By direct computations, the outer normal ~n and the scalar mean curvature H can be written as

~n(u, v) =




cosu cos v

sinu cos v

sin v




and

H(u, v) = −
(
1

δ
+

cos v

R+ δ cos v

)
.

The velocity of the torus on Φ(u, v) under the flow (4.3.4) is

VΦ(u,v) = H(u, v) + gσ(δ). (4.4.3)

We denote the mean curvature vector as ~H := H~n. For every u ∈ S, the motion of the point Ψ(u) is
the average velocity of the torus on the associated sectional points, that is the mean value of VΦ(u,v)

for all v ∈ S.

~VΨ(u) =
1

2π

ˆ 2π

0

VΨ(u,v)~n(u, v)dv

=
1

2π

ˆ 2π

0

~H(u, v)dv +
1

2π

ˆ 2π

0

gσ(δ)~n(u, v)dv

=
1

2π




cosu
´ 2π

0
cos2 v

R+δ cos vdv

sinu
´ 2π

0
cos2 v

R+δ cos vdv
´ 2π

0
cos v sin v
R+δ cos vdv


 .

(4.4.4)

Notice that the forcing term gσ(δ) in (4.4.3) does not have in average any impact on the velocity in
(4.4.4).
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Since we have that
ˆ 2π

0

cos v sin v

R+ δ cos v
dv = 0

and that

ˆ 2π

0

cos2 v

R+ δ cos v
dv =

ˆ
π
2

0

(
cos2 v

R+ δ cos v
+

cos2 v

R− δ cos v

)
dv +

ˆ 0

−π
2

(
cos2 v

R+ δ cos v
+

cos2 v

R− δ cos v

)
dv

= 4R

ˆ
π
2

0

cos2 v

R2 − δ2 cos2 v dv

=
4R

δ2

(
R2

ˆ
π
2

0

1

R2 − δ2 cos2 v dv −
π

2

)
.

(4.4.5)
Moreover, by the change of variables x = tan v, we get that

ˆ
π
2

0

(
1

R2 − δ2 cos2 v

)
dv =

ˆ ∞

0

(
1

R2(1 + x2)− δ2
)
dx =

π

2

1

R
√
R2 − δ2

. (4.4.6)

Therefore, together with (4.4.4), (4.4.5) and (4.4.6), we get that

~VΨ(u) =
R

δ2


1− 1√

1− δ2

R2





cosu
sinu
0


 ∼ − 1

2R

(
1 +O

(
δ2

R2

))
~nΨ(u), (4.4.7)

where ~nΨ(u) is the normal vector of Ψ. Consequently, the circle of radius R > 0 moves with a normal
velocity V ∼ − 1

2R at first order, i.e. consistently with the codimension 2 mean curvature flow.

Remark 4.4.1. Thanks to (4.4.7), one can show that the square of the radius R of the circle decreases
linearly as illustrated in Figure 4.4. Indeed, we have that

V =
d

dt
R ∼ − 1

2R
,

which gives
1

2

d

dt
(R2) = R

d

dt
R ∼ −1

2
.

Hence, we get that

R2 ∼ −t.

4.4.4 Applications to smooth curves (and filaments) in 3D

The study of the previous section can be extended to more general smooth curves in 3D.

Numerical experiments

We present two evolutions of filaments (i.e., fattened smooth curves) in Figure 4.5. The first column
shows the evolution of a simple filament which converges, using periodic boundary conditions, to a
simple line. The second column shows the evolution of a more complex filament with the presence
of a triple junction.
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Figure 4.5: Each column illustrates the numerical evolution along time of a filament flowed by the
self-avoiding mean curvature flow.
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Formal analysis of the velocity

In the following, we will describe how to generalize the result of the circular case to any C2-curve
in R

3. Given a closed curve Γ in R
3, as shown in the previous section, we consider the tube with

thickness δ > 0 obtained by fattening the curve. For every s ∈ Γ, one can construct a circular torus
τ(s) as follows:

The torus τ(s) is generated by the circle consisting of the orthogonal sectional points at s (which is a circle of
radius δ) and the osculating circle of Γ on s of radius |R(s)|, where R(s) is the inverse of the curvature of Γ
at s.

Thanks to the previous result, since s is the barycenter of its orthogonal sectional points, the velocity
at s is therefore the average of the velocities on the sectional set, which leads to

~Vs =
R(s)

δ2


1− 1√

1− δ2

R(s)2


~n(s),

where ~n(s) is the normal vector of Γ on s.

Open space curves

For open curves in R
3, the process is the same as for closed curves except at the end points. The

velocity on each end point of the curve is indeed the mean value of the velocities on the semi-spherical
cap of radius δ centered on the end point.

Up to some linear transformation, we can assume that the end point is (0, 0, 0) and the semi-
spherical cap is parametrized by Φ : [0, 1]× S with

Φ(r, θ) := δ



r cos θ
r sin θ√
1− r2


 .

It is clear that H(r, θ) = − 2
δ and the normal vector is

~n(r, θ) =



r cos θ
r sin θ√
1− r2


 .

Direct computations shows that the mean velocity vector on the end point is

~V =

(
−2

δ
+ gσ(δ)

)
1

2π

ˆ 2π

0

~n(r, θ)|Φr ∧ Φθ|(r, θ)drdθ =
(
−2

δ
+ gσ(δ)

)

0
0
1
3


 .

Notice that in absence of the forcing term gσ(δ), i.e under the classical mean curvature flow, the end
point moves towards the curve, therefore shortens the curve. However with the presence of gσ , the
end point becomes stationary in finite time. Since the regular part of the curves keeps evolving under
the mean curvature flow at first order, the flow actually provides a natural approach to the Steiner
problem in R

3.

Videos

To get a better idea of numerical flows computed with our model, videos (in .avi format) can be
downloaded at the following addresses.
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• Video of the flow shown in Figure 4.5, left: Filament 1.

• Video of the flow shown in Figure 4.5, right: Filament 2.

• In the previous video, the filament remains connected but the inner cycle disappears. It is
actually possible to play with that by simply changing the weight of the jump term: a higher
weight yields a higher sensitivity. This is the choice made for the numerical simulation shown
in this third video where the inner cycle is conserved: Filament 3.

Conclusion

The above numerical experiments together with the formal analysis indicate that our self-avoiding
approximate mean curvature flow:

• manages to preserve the topology of general (smooth) sets thanks to the jump term;

• gives an approximation of the mean curvature flow in codimension 2 in the case where we have
filaments as initial sets.

4.5 Application to the Steiner problem in 3D

The numerical experiments and observations of the previous sections on the Allen-Cahn equation
coupled with the jump term (4.4.1) lead us naturally to address the application to Steiner’s problem
in dimension 3. Recall that Steiner’s problem consists in finding, for a given collection of points
a0, . . . , aN ∈ Q, a compact connected set K ⊂ Q containing all the ai’s and having minimal length. In
other words, it amounts to solving the following minimization problem

min{H1(K), K ⊂ Q, K connected, ai ∈ K, ∀i}, (4.5.1)

where H1(K) stands for the one-dimensional Hausdorff measure of K. The numerical approxima-
tion of solutions to this problem is notoriously difficult, especially in dimension ≥ 3, see for instance
[77, 76, 49, 27, 24, 25, 37, 38, 26]. The model we propose provides an effective and natural way to ap-
proximate these solutions in 3D (and actually even in higher dimension for the extension is straight-
forward).

A fattened problem

We consider an approximation of Steiner’s problem in dimension 3 for the σ̃-tubular set Kσ̃ := {x ∈
R

3 | dist(x,K) ≤ σ̃} which is the σ̃-fattening of K. We choose the fattening parameter σ̃ to be small
enough as in Claim 4.3.5 so that the minimal distance between the boundary of Kσ̃ and its skeleton
K is ensured.
It is clear that the length of K is approximated by the perimeter of Kσ̃ in the sense that

P(Kσ̃) ≃ 2πσ̃H1(K).

Moreover, the property that K contains all the ai points can be replaced by the inclusion constraint:

∪Ni=1 B(ai, σ̃) ⊂ Kσ̃, (4.5.2)

which means that Kσ̃ contains all the balls B(ai, σ̃) of radius σ̃.
Therefore, we are now interested in a phase-field approximation of the following approximate

minimization problem:

min{H2(Kσ̃) | ∪Ni=1 B(ai, σ̃) ⊂ Kσ̃ and dist(∂Kσ̃,Σ(Kσ̃)) ≥ σ̃},

where Σ(Kσ̃) is the skeleton of ∂Kσ̃ .
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Phase-field approximation of the fattened Steiner problem

There is a natural way to approximate the inclusion constraint (4.5.2) using phase fields. This can be
done by first introducing the function uεin defined by

uεin(x) := q

(
dist(x,∪Ni=1{ai})− σ̃

ε

)
,

where dist(x,∪Ni=1{ai}) denotes the distance function to the points ai and q is the usual optimal profile
associated with the double-well function. The inclusion constraint (4.5.2) can thus be implemented
by considering the inequality constraint:

uεin ≤ uε.

Indeed, it is not difficult to observe that

uεin ≤ uε =⇒ ∪Ni=1B(ai, σ̃) ⊂ {x;uε(x) ≥ 0}

Therefore, we define recursively the sequence {un}n∈N by

un+1(x) = max(v(x, h), uεin(x)), (4.5.3)

where v is solution to the equation:




∂tv(x, t) = ∆v(x, t)− W ′(v(x, t))

ε2
(1 + fσun(x)),

v(·, 0) = un.
(4.5.4)

Numerical experiments

We define Q = [−0.5, 0.5]3 and use the following settings: N = 27, ε = 2/N , h = δt = ε2, σ2 = 0.1ε2,
c = 0.35εN3, and σ̃ = 0.02.
Remark that in 3D, according to conjecture (4.2.5):

fσun ≃ µ(Σn
2 ) + σµ(Σn

1 ) + σ2µ(Σn
0 )

where Σn
i is the i-dimensional component of the skeleton Σn of un. Therefore, in order to make sure

the entire skeleton is an obstacle for the flow, we set

c ≃ εN3 ≃ 1

σ2

which is of order σ−2 so that even in the worst case where the skeleton is a union of discrete points,
the perturbation term cfσun charges effectively the skeleton Σn at time nh.

The first example in Figure 4.6 represents the case where the ai’s are the vertices of a cube. The
initial set is also a cube containing all nodes ai. We show in Figure 4.6 approximate solutions at
different times of the phase-field flow (4.5.3)-(4.5.4).

Notice that even if the initial set is of dimension 3 (the initial cube), the stationary solution is close
to a tubular thickening of a 1-dimensional set K containing all the nodes ai. We observe that this
solution approximates well the Steiner tree associated with the vertices of the cube, in particular at
each triple junction all angles equal 2π/3.

As a comparison, we consider in Figure 4.7 an example with 10 points randomly distributed in Q
which leads exactly to the same conclusion.
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Figure 4.6: A Steiner tree associated with the vertices of a cube: illustration of the approximate so-
lutions at different times along the numerical flow. The red and blue interfaces are, respectively, the
0-level set of un and the set ∪Ni=1B(ai, σ̃).

Figure 4.7: A Steiner tree associated 10 points randomly chosen in Q: illustration of the approximate
solutions at different times along the numerical flow. The red and blue interfaces are, respectively,
the 0-level set of un and the set ∪Ni=1B(ai, σ̃).
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Videos

To get a better idea of numerical flows computed with our model, videos (in .avi format) can be
downloaded at the following addresses.

• Video of the flow illustrated in Figure 4.6: Approximation of the Steiner set of cube’s vertices.

• Approximation of the Steiner tree associated with 50 randomly chosen points: Approximation
of the Steiner set of 50 random points.

4.6 Application to the Plateau problem

Our last numerical application is devoted to the celebrated Plateau problem. Recall that the Plateau
problem in dimension 3 consists in finding, for a given closed Jordan curve γ, a surface E in R

3 with
(locally) minimal area such that the boundary of E coincides with γ. In other words, it amounts to
solving the following minimization problem:

min{H2(E), E ⊂ Ω, connected and such that ∂E = γ}, (4.6.1)

whereH2(E) stands for the 2-dimensional Hausdorff measure of E.

A fattened Plateau problem

We consider a σ̃-fattened minimal surface problem for the σ̃-tubular thickening of a given Jordan
curve γ

γσ̃ := {x; dist(x, γ) < σ̃} ,

by considering the following minimization problem:

min
{
P(Eσ̃) +

c

σ̃
H3(Eσ̃);Eσ̃ ⊂ Ω, connected and γσ̃ ⊂ Eσ̃

}
. (4.6.2)

whereH3(Eσ̃) stands for the volume of Eσ̃ . Here, σ̃ being chosen sufficiently small, the volume term
is present to ensure that Eσ̃ has a thickness of size σ̃ which requires the existence of a connected set
E such that

Eσ̃ ≃ {x ∈ Q; dist(x,E) ≤ σ̃}, and P(Eσ̃) ≃ 2H2(E).

Figure 4.8 shows what may happen if this volume term is not used: it it not possible to get in the limit
a "thin" volume which approximates a surface.

As previously, starting from an initial connected set, the connectedness property is conserved
thanks to the jump term in the self-avoiding mean curvature flow.

Remark 4.6.1. In contrast with the fattened Plateau problem, it is not necessary to penalize the volume
in the fattened Steiner problem. The reason is straightforward: in the Steiner problem the vertices
constraints coupled with an area-minimizing property of the flow yield a natural decreasing of the
volume to reach a final tubular set.

Phase-field approximation of the fattened Plateau Problem

Similarly to the fattened Steiner problem, we build recursively a sequence (un)n by combining a
perturbed Allen Cahn equation with an additional inclusion constraint, i.e. we compute:

un+1(x) = max(v(x, h), uεin), (4.6.3)
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where v is solution of the following flow



∂tv(x, t) = ∆v(x, t)− W ′(v(x, t))

ε2
(1 + fσun(x)) +

cvolume

εσ

√
2W (un),

v(·, 0) = un.
(4.6.4)

with uεin defined as

uεin(x) = q

(
dist(x, γσ̃)

ε

)
,

and the last term in the first equation of (4.6.4) corresponds to the approximation of the volume term.

Numerical experiments

As previously, we define Q = [−0.5, 0.5]3 and we set N = 27, ε = 2/N , h = δt = ε2, σ2 = 0.1ε2,
c = 0.35εN3, and σ̃ = 0.02.
In Figure 4.8, we plot the solution obtained at different times using the parameter cvolume = 0. In
this case, the volume is not penalized during the iteration. In particular, we can observe that the
stationary set Eσ has not the right form in the sense that its thickness is not of size σ̃ and cannot be
associated with a minimal 2-dimensional surface. This experiment shows all the interest to penalize
the volume in our computations. All following numerical experiments in this section are done with
the setting cvolume = 1.

The main motivation of Figure 4.9 is to illustrate the influence of the initial set and its topology
on the result. Each column corresponds to a particular choice of an initial configuration, the images
show the numerical solution of the flow at different times. We observe that our model is able to
compute a minimal surface associated with the given boundary but the topology of this minimal
surface depends logically on the choice of the initial set.

With Figure 4.10, we illustrate the ability of our method to approximate non orientable minimal
surfaces and minimal surfaces with triple line singularities. The first column shows an example of
a non smooth (approximate) minimal surface whereas the second one gives an approximation of a
Möbius strip. Notice that in the latter case, we start from an initial connected set given by a cube with
a cylinder hole.

Videos

To get a better idea of numerical flows computed with our model, videos (in .avi format) can be
downloaded at the following addresses.

• Video of the flow illustrated in Figure 4.9, right: An (approximate) Plateau solution.

• Approximation of a Möbius strip with a singularity line: A singular (approximate) Möbius strip.

• An hybrid solution combining a Steiner set and a minimal surface: A Steiner-Plateau hybrid
solution.
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Figure 4.8: Using the self-avoiding mean curvature flow without volume penalization: the stationary
shape is not at all close to a minimal surface
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Figure 4.9: Numerical approximation of solutions to the Plateau problem using the proposed flow.
The experiment illustrates the influence on the result of the initial set’s topology. Each column shows
the numerical solution at different times starting from two different initial configurations.
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Figure 4.10: Numerical approximation of solutions to the Plateau problem using the proposed flow.
First column: convergence to a minimal surface with a triple line singularity. Second column: con-
vergence to a Möbius strip, an example of non-orientable surface that our model can compute.
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Asymptotic analysis of Willmore
spheres in Riemannian manifolds
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Chapter 5

Asymptotic analysis of embedded
Willmore spheres in Riemannian
manifolds of dimension 3

In this chapter, we present some partial results in the direction of proving that small embedded Will-
more spheres concentrating in a Riemannian manifold of dimension 3 must concentrate at a critical
point of the scalar curvature. This type of results were proven for constant mean curvature spheres
by Laurain [83] using the Wente structure of the associated equation. It has also been proven by
Laurain-Mondino [84] with a small energy condition.

We present here a way to get strong pointwise estimates for such a sequence, in the spirit of [83],
showing how to use the Rivière formulation of Willmore equation in terms of a triple system of elliptic
PDE’s with nonlinear leading terms in Wente form.

However, this remains programmatic since, in the decomposition of the sequence of Willmore
surfaces into standard "bubbles", spheres and catenoids should appear and we are not, at now, able
to deal with the appearance of catenoids. But we are convinced that the way we find strong estimates
should be very useful for the general case. So we present them here. Since it has no meaning to deal
with multiple spheres without considering catenoids, we just restrict ourself to show how it works
for two spheres. And we shall explain from place to place what is lacking to deal with the general
situation.

5.1 Willmore energy and Willmore immersions

Let (M,h) be a Riemannian manifold and Φ : Σ→ (M,h) be a smooth immersion of a closed surface
Σ into (M,h). The Willmore energy of Φ is given by

Wh(Φ) :=

ˆ

Σ

H2dσg, (5.1.1)

where dσg is the volume form associated to the pullback metric g := Φ∗(h|Σ) on Σ, and the mean
curvatureH is half of the trace of the second fundamental formA. We can write simplyW(Φ) instead
ofWh(Φ) if there is no risk of confusion. In addition, we say that Φ is a Willmore immersion if Φ is a
critical point of the Willmore functionalW and Φ(Σ) is then said to be a Willmore surface in (M,h).

The investigation of Willmore energy in 3-dimensional Euclidean space has originally been intro-
duced by Poisson [117] and Sophie Germain [65], inspired by the works of Bernoulli and Euler on
the theory of elasticity and the study of Chladni figures in the early XIX century (interested readers
can refer to [46], for example). In the 20’s, Blaschke [23] and his student Thomsen [132] started the

81



study of the conformal invariant theory of critical points of this functional. This functional was later
referred as Willmore energy, after the name of the english mathematician Thomas Willmore who re-
discovered the functional in the 60’s, see [137] and [136]. Since then, the subject has become one active
branch in geometric analysis. We also refer to Nitsche [112], Palmer [115], Dall’Acqua [48], Grunau
[67] and recently Alessandroni-Kuwert [2] . . . etc. for topics on Willmore surfaces with fixed and/or
free boundaries.

5.2 Existence of Willmore surfaces in manifolds and concentration

phenomena

Concerning Willmore surfaces in manifolds, several existence and non-existence results have been
recently revealed: using a pertubative method, Willmore spheres (with possibly small area constraint
or not) have been constructed as perturbations of small geodesic spheres by Lamm-Metzger [81],
Mondino [104]-[105], Lamm-Metzger-Schulze [82] and Chen-Li [40]. Mondino-Rivière [107] gener-
alize the existence result for any value of area constraint. All these constructions are based on the
implicit function theorem, where certain non-degeneracies of the ambient manifold are required, no-
tably in a neighborhood of a critical point of the scalar curvature.

Hence, conversely, we are naturally lead to the following question: let p be a point of a given 3-
dimensional Riemannian manifold (M,h). Assume that, for r small enough, the geodesic ball Bh

r (p)
contains a Willmore surface (or more generally Willmore surface under area constraint), what can we
say about p?

In several different contexts, it appears that p has to be a critical point of the scalar curvature. Druet
[56] first gave the response in the case of isoperimetric domains, when he showed that isoperimetric
domains of small volume necessarily concentrate at a critical point of the scalar curvature (more
precisely a maximum point of scalar curvature). In the case of constant mean curvature surfaces, the
answer was given by Laurain [83] for embedded CMC spheres with small diameter while the mean
curvature goes to infinity. In the case of Willmore surfaces, Lamm and Metzger first showed that
the concentration phenomena appears if we restrict ourself to Willmore surfaces with positive mean
curvature in their pioneer work [80]. In an equivalent way, such concentration phenomena holds for
Willmore surfaces with its energy below 4π + ε for ε > 0 small enough. Laurain and Mondino in [84]
next generalized the result to any energy threshold 8π − δ for any δ > 0. More precisely, they prove
the following theorem.

Theorem 5.2.1 (Laurain-Mondino [84]). Let (M,h) be a 3-dimensional Riemannian manifold. Let p ∈ M
and let δ > 0 be given. If, for any r small enough, there exists an embedded Willmore sphere with area
constraint contained in the geodesic ball Bh

r (p) such that its Willmore energy is bounded above by 8π− δ, then
p is a critical point of the scalar curvature of (M,h).

Notice that, thanks to the Li-Yau inequality in [89], only embedded Willmore spheres occur under
these assumptions. Instead of considering the Willmore energy, one can also consider the energy
functional given by the second fundamental form:

Definition 5.2.2. Let (M,h) be a Riemannian manifold and Φ : Σ → (M,h) be a smooth immersion of a
closed surface Σ into (M,h). We define the energy Ah(Φ) by

Ah(Φ) :=
1

2

ˆ

Σ

|A|2 dσg = 2

ˆ

Σ

H2 −
ˆ

Σ

(
K −Kh (TΦ)

)
dσg (5.2.1)

where K is the Gauss curvature and Kh (TΦ) is the sectional curvature of the ambient manifold (M,h) on the
tangent space of Φ(Σ)

Thanks to the definition 5.2.2 of Ah, Theorem 5.2.1 can be reformulated as follows:
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Theorem 5.2.3. Let (M,h) be a smooth 3-dimensional Riemannian manifold and let (Φk(S2))k∈N be a se-
quence of area-constrained Willmore spheres in M satisfying the following assumptions:

1. diam(Φk(S2)) = εk with limk→+∞εk = 0,

2. the energies of Φk(S2) are uniformly bounded above by 12π − δ i.e,

sup
k∈N

Ah(Φ
k) < 12π − δ.

Then, up to a subsequence of (Φk(S2))k∈N, (Φk(S2))k∈N converge to p ∈ M which is a critical point of the
scalar curvature of (M,h).

Indeed, since we always have that
ˆ

Σ

K dσg = 4π for Σ = S
2,

we get that

Ah(Φ
k) = 2Wh(Φ

k)− 4π +

ˆ

S2

Kh(TΦ
k) dσgk , (5.2.2)

which implies
sup
k∈N

Ah(Φ
k) < 12π − δ ⇐⇒ sup

k∈N

Wh(Φ
k) < 8π − δ. (5.2.3)

since under the hypothesis of Theorem 5.2.1, we have that
ˆ

S2

Kh

(
TΦk

)
dσgk . Cpdiam

(
Φk(S2)

)
→ 0 as k →∞.

In this part of the thesis, we will focus on the analysis aspect of the nature of the problem, and
provide key elements which seems promising to generalize the result to the most general case for any
energy upper bound threshold C > 0.

In Section 5.3, we will first introduce the conservative form given by Mondino-Rivière [106] for
Willmore immersions in manifolds. Under proper rescaling of the metric, we show that the Lagrange
multiplier due to the area constraint can be treated as a perturbative error. Hence, we are lead to
consider Willmore spheres in (R3, hε) where hε is the rescaled metric, close to the usual Euclidean
metric h0.

In Section 5.5, working with relevant parametrization for our Willmore spheres, we perform a local
blow-up analysis at the points where concentration phenomena appear: we describe asymptotically
the Willmore spheres as a sum of bubbles and remainder, by using the pointwise technique developed
in Druet-Hebey-Robert [57], which allows to obtain first pointwise estimates on the remainder. In
Section 5.7, exploiting compensated compactness results in Lorentz spaces, together with help of
Green’s representation formula, we are able to improve the pointwise estimates by re-injecting them
in the Willmore system. At the end of the section, under the assumption that the remainder and
bubble interactions can be absorbed by the Riemannian error term due to hε, we prove Theorem
5.2.3.

Finally in Section 5.7.2, using the fact that, with relevant initial conditions, the linearized Willmore
operator contains only trivial solutions, we study carefully the interaction between bubbles and prove
the assumption made in Section 5.7.

5.3 Preliminaries

Throughout the rest of the thesis, (M,h) will be a 3-dimensional Riemannian manifold. By abuse
of notations, we denote by D both the Levi-Civita connection of (M,h) and the associated covariant

83



exterior derivative. ⋆h designs the Hodge operator associated to h on multi-vectors of M from ΛpM
into Λ3−pM . The Riemannian curvature tensor is given by the following formula:

Riemh(X,Y )Z := DXDY Z −DYDXZ −D[X,Y ]Z,

where [X,Y ] is the Lie bracket of X and Y .
Since here we deal particularly with immersions Φ of S2 onto (M,h), with help of stereographic

projection and local conformal coordinates, it would be convenient to consider Φ as a conformal
immersion of a disc or a plane into (M,h). Recall that an immersion Φ of the 2-dimensional unit
disc D into (M,h) is said to be a conformal immersion if there exists λ ∈ C∞(D) such that the pullback
metric g := Φ∗h = e2λ(dx2 + dy2). We call λ the conformal factor of Φ. We also denote by (~e1, ~e2) the
orthonormal basis of Φ∗(TD) given by ~e1 := e−λ∂xΦ and ~e2 := e−λ∂yΦ where eλ = |∂xΦ| = |∂yΦ|.
Finally, the unit normal vector ~n to Φ(D) is given by

~n = ⋆h(~e1 ∧ ~e2).

Discovered in the Ph.D work of Thomsen [132] and attributed to the work of Schadow, an Euler-
Lagrange equation of the Willmore functional has been established for surfaces immersed in R

3.
Weiner [134] next derived its form for surfaces immersed in higher dimensions and in curved spaces.
An immersion Φ : Σ→ (M,h) is then said to be a Willmore immersion if it satisfies

∆gH + 2H(H2 − (Kg −Kh)) +HRich(~n, ~n) = 0 on Σ, (5.3.1)

where ∆g = divg∇ is the negative Laplace-Beltrami operator corresponding to the induced metric g,
Kg is the Gauss curvature on (Σ, g), Kh is the sectional curvature of (M,h) on TΦ(Σ) and Rich is the
Ricci tensor of (M,h). More generally, Willmore surfaces under area-constraint are characterized by

∆gH + 2H(H2 − (Kg −Kh)) +HRich(~n, ~n) = αH on Σ, (5.3.2)

where α ∈ R is the Lagrange multiplier.
Remark that the above equation (5.3.2) is a non-linear elliptic PDE of fourth order with respect

to its parametrization. Despite of its simplicity, the equation is not quite convenient for variational
approaches. In fact, under weak formulation, H is required to be at least L3

loc(Σ), which does not fit
with the Willmore functional, giving only L2-integrability of H .

In consecutive works [120]-[121]-[122], Rivière develops powerful analytical tools for the study
of Willmore immersions into R

3. In particular, by describing the conservative laws of the confor-
mally invariant functional, Rivière manages to give a local reformulation of the Willmore equation
(5.3.6) in a divergence form. Moreover, derived from the divergence form, a coupled system of Wente-
type equations permits to use compensated compactness developped by Wente [135] and Tartar [130]
and leads to numerous outcomings: in [21], Bernard and Rivière proved an energy quantization re-
sult for any sequence of Willmore surfaces with fixed genus with uniformly bounded energy and
non-degenerating conformal type; in [85], Laurain and Rivière recently generalized this result in de-
generating case, and showed strong compactness of Willmore immersions with energy below 12π.

In this section, we focus on the following divergence form generalized by Mondino and Rivière in
[106] for Willmore immersions into manifolds, or more generally, for conformal immersion satisfying
the Euler-Lagrange equation (5.3.2) with area constraint. We have:

Proposition 5.3.1 (see Mondino-Rivière [106], Corollary II.1.). A conformal immersion Φ : D → (M,h)
is an area-constrained Willmore immersion if and only if

2e2λ
[
R⊥

Φ(TΦ) + ~HRich(~n, ~n)− α ~H
]
= D∗

[
D ~H − 3π~n(D ~H)− ⋆h

(
~H ∧D⊥~n

)]
, (5.3.3)

for some α ∈ R, where we denote by π~n : TΦM → (Φ∗(TD))
⊥ the orthogonal projection from the tangent bun-

dle to (M,h) onto the normal bundle to Φ(D), ~H := H~n the mean curvature vector, D · :=
(
D∂xΦ · , D∂yΦ ·

)
,
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D⊥ · :=
(
−D∂yΦ · , D∂xΦ ·

)
and D∗ represents an operator acting on couples of vector fields (~V1, ~V2) along

Φ∗(TΣ) defined by

D∗(~V1, ~V2) := D∂xΦ
~V1 +D∂yΦ

~V2,

and finally we have e2λR⊥
Φ(TΦ) := ∗h

(
~n ∧Riemh(∂yΦ, ∂xΦ) ~H

)
.

Given any conformal immersion Φ : R2 → (M,h), it is well known that

D∗DΦ = 2e2λ ~H = ⋆hD~n ∧∇⊥Φ,

where ∇ · =
(

∂
∂x · , ∂

∂y ·
)

and ∇⊥ · =
(
− ∂

∂y · , ∂
∂x ·
)

.

To be supplemented with the conformal equation and the usual perturbed harmonic map equation
for the Gauss map (which can be obtained from Lemma II.1. in [107], for example) , it is thus clear that
a conformal area-constrained Willmore immersion from R

2 into (M,h) satisfies the following system
of equations:





D∗DΦ = ⋆hD~n ∧∇⊥Φ

D∗D~n = − ⋆h
(
D~n ∧D⊥~n

)

− ⋆h (~n ∧Riemh(∂yΦ, ∂xΦ)~n)− 2 ⋆h

(
D ~H ∧∇⊥Φ

)

D∗
[
D ~H − 3π~n(D ~H)− ⋆h

(
~H ∧D⊥~n

)]
=

2e2λ
[
R⊥

Φ(TΦ) +
~HRich(~n, ~n)

]
− α ⋆h D~n ∧∇⊥Φ

, (5.3.4)
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In geodesic normal coordinates, the above system can be rewritten as




∆(Φ)k = −
(
Γk
ij

)
(Φ)

(
∇(Φ)i · ∇(Φ)j

)
+
√
|h|hik

(
∇~n ∧∇⊥Φ

)
i

+
√
|h|hik

(
~Γmn(Φ)(~n)

m(∇Φ)n ∧∇⊥Φ
)
i

∆(~n)k = −2
(
Γk
ij

)
(Φ)

(
∇(~n)i · ∇(Φ)j

)

− (Γk
ij)(Φ)(~n)

i(∆Φ)j

− (Γk
ij, l)(Φ)(~n)

i(∇(Φ)j · ∇(Φ)l)
−
√
|h|hik

(
∇~n ∧∇⊥~n

)
i

− 2
√
|h|hik

(
~Γmn(Φ)(~n)

m(∇Φ)n ∧∇⊥~n
)
i

−
√
|h|hik

(
~Γmn(Φ)(~n)

m(∇Φ)n ∧ ~Γmn(Φ)(~n)
m(∇⊥Φ)n

)
i

− 2
√
|h|hik

(
∇ ~H ∧∇⊥Φ

)
i

− 2
√
|h|hik

(
~Γmn(Φ)( ~H)m(∇Φ)n ∧∇⊥Φ

)
i

− e−2λR(∂xΦ, ∂yΦ, ~n, ∂yΦ)∂xΦ
− e−2λR(∂yΦ, ∂xΦ, ~n, ∂xΦ)∂yΦ

div
(
∇( ~H)k − 3

(
∇ ~H ·hε ~n

)
(~n)

k
)
= −2

(
Γk
ij

)
(Φ)

(
∇( ~H)i · ∇(Φ)j

)

− (Γk
ij)(Φ)( ~H)i(∆Φ)j

− (Γk
ij, l)(Φ)( ~H)i(∇(Φ)j · ∇(Φ)l)

+ 3div
((
hαβ(Φ)Γ

α
ij(Φ)( ~H)i(∇Φ)j(~n)β

)
~n
)

+ 3∂xH
(
Γk
ij(Φ)(~n)

i∂xΦ
j
)

+ 3∂yH
(
Γk
ij(Φ)(~n)

i∂yΦ
j
)

+
√
|h|hik

(
∇ ~H ∧∇⊥~n

)
i

+
√
|h|hik

(
~Γmn(Φ)( ~H)m(∇Φ)n ∧∇⊥~n

)
i

+
√
|h|hik

(
∇ ~H ∧ ~Γmn(Φ)(~n)

m(∇⊥Φ)n
)
i

+
√
|h|hik

(
~Γmn(Φ)( ~H)m(∇Φ)n ∧ ~Γmn(Φ)(~n)

m(∇⊥Φ)n
)
i

+ 3e−2λR
(
∂xΦ, ∂yΦ, ~H, ∂yΦ

)
∂xΦ

+ 3e−2λR
(
∂yΦ, ∂xΦ, ~H, ∂xΦ

)
∂yΦ

+ 2e2λ ~HRich(~n, ~n)

− α
√
|h|hik

(
∇~n ∧∇⊥Φ

)
i

− α
√
|h|hik

(
~Γmn(Φ)(~n)

m(∇Φ)n ∧∇⊥Φ
)
i

,

(5.3.5)
where

∇ ~H ·hε ~n := hε(Φ)(∇ ~H,~n) = hεij(Φ)(∇ ~H)i (~n)
j

the (Γk
ij)’s are the Christoffel symbols of the Levi-Civita connection D,R (X,Y, Z,W ) is given by

R (X,Y, Z,W ) := h(Riemh(X,Y )Z,W ) = RijmkX
jY jZmW k,
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and ~ΓmnX
mY n is a vector in R

3 with coordinates (Γk
mnX

mY n). We also have

~n =
⋆hΦx ∧ Φy

|Φx ∧ Φy|h
and ~H =

∆gΦ

|∇Φ|2h
with

(⋆hΦx ∧ Φy)k =
√
|h|hik(Φx ∧ Φy)i and ∆gΦ

k = ∆Φk + Γk
ij(Φ)(∇Φi · ∇Φj).

Later we will exploit the above system (5.3.5) in order to study the asymptotic behavior of area-
constrained Willmore spheres.

In comparison, we also describe the system verified by conformal Willmore immersions into R
3

with area constraint: 



∆Φ = ∇~n ∧∇⊥Φ

∆~n = ∇⊥~n ∧∇~n− 2∇ ~H ∧∇⊥Φ

L~n(∇ ~H) = α∇~n ∧∇⊥Φ

(5.3.6)

where, for every ~N ∈W 1,2(R2, S2), L ~N denotes

L ~N (∇~f) := div
(
∇~f − 3π ~N (∇~f)

)
+∇⊥ ~N ∧∇~f.

Notice that L ~N is a self-adjoint operator in W 1,2(R2;R3).
In order to simplify our notation and to enhance the clarity of the lecture for readers, from now

on we will denote by ε the index of sequences instead of εk and (Σε) instead of (Σk)k∈N.
Let (Φε) be a sequence satisfying the assumptions in Theorem 5.2.3. Take a system of coordinates

(y1, y2, y3) around p. For every ε > 0, we consider the exponential chart centered at a point pε ∈
(M,h) such that Σε ⊂ Bhε

2ε (p
ε). Notice that, up to a subsequence, pε → p as ε→ 0. Then, by rescaling

the exponential chart by a factor 1
ε with respect to 0, we obtain a sequence of immersions, still denoted

by Φε, from S
2 into (R3, hε), where hε is the rescaled metric defined by

hε(y)(· , ·) := h(εy)(ε−1· , ε−1·).

Thanks to the invariance of the Willmore functional under rescaling, it is clear that (Φε) remains a
sequence of area-constrained Willmore immersions in (R3, hε) such that

diamhε
(Φε(S2)) = 1, Φε(S2) ⊂ Bhε

2 (0) and sup
ε>0
Whε

(Φε) < +∞. (5.3.7)

Lemma 5.3.2. Let Φε : S2 → (R3, hε) be a sequence of smooth immersions such that diamhε
(Φε(S2)) = 1,

Φε(S2) ⊂ Bhε
2 (0) and supε>0Whε

(Φε) < +∞. Then, we have

1

2
≤ diamh0

(Φε(S2)) ≤ 2, Φε(S2) ⊂ Bh0
3 (0) and sup

ε>0
Wh0

(Φε) < +∞, (5.3.8)

where h0 is the usual Euclidean metric in R
3. Moreover, there exists a constant C > 0 such that

1

C
≤ Areah0(Φ

ε) ≤ C. (5.3.9)

Proof. (5.3.8) is a consequence of the expansion of the metric in normal coordinates, see Lemma 6.5.1
in Appendix 6. The inequality (5.3.9) directly stems from the fact that, by Lemma 1.1 in Simon [129],
there exists C > 0 such that, for all compact connected surface Σ in R

3,
√
Areah0

(Σ)

Wh0(Σ)
≤ diam(Σ) ≤ C

√
Areah0

(Σ)Wh0(Σ).
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Next, we show that the associated Lagrange multiplier αε can be treated as a small perturbation
term. The idea is based on the observation that, as shown in Lamm-Metzger [81] and in Laurain-
Mondino [84], area-constrained Willmore surfaces embedded in R

3 are actually “true” Willmore sur-
faces. Indeed, let Σ be some area-constrained Willmore surface embedded in R

3 and let α be the
corresponding Lagrange multiplier. By considering the first variations of the Willmore and the area
functionals with respect to the position vector field of Σ, one get that

δ~xW(Σ) = αδ~xArea(Σ).

Since the Willmore energy is invariant by homothetic transformations, δ~xW(Σ) = 0, while δ~xArea(Σ) =
2Area(Σ), so that it follows immediately that α = 0.

In case of surfaces embedded in curved space, the Lagrange multiplier does not a priori vanish,
but more the curved space is flat, less the Lagrange multiplier becomes.

Lemma 5.3.3 (see Lamm-Metzger [81] and Laurain-Mondino [84]). Let (Φε)ε>0 be a sequence of smooth
area-constrained Willmore immersions of S2 into (R3, hε) and Φε(S2) ⊂ Bh0

(0, 2). Then the Lagrange multi-
pliers αε satisfy:

αε = O(ε2). (5.3.10)

Next, we show that, under area and energy controls, for any conformal immersion of the standard
sphere S

2, we get Lorentz estimates on its associated conformal factor.

Lemma 5.3.4. Let Φε : (S2, g0)→ (M,hε) be a conformal immersion such that

sup
ε>0

(
Areahε

(Φε(S2)) +Whε
(Φε)

)
< +∞,

where g0 is the usual metric on S
2. We denote by λε the associated conformal factor, that is, eλ

ε

g0 = gε :=
(Φε)∗(hε), where gε = (Φε)∗(hε). Then, there holds

sup
ε>0
‖∇λε‖L2,+∞

g0
(S2) < +∞, (5.3.11)

where ‖f‖L2,+∞
g0

(S2) := supt>0 t
2µg0(|f | ≥ t) with µg0 the induced measure defined on (S2, g0), for all mea-

surable functions f on (S2, g0).

Proof. Since Kg0 ≡ 1, the well-known Liouville’s equation gives the following identity:

∆g0λ
ε = −e2λε

Kgε + 1 on S
2 (5.3.12)

where ∆g0 = div(∇g0 ·). Since
1

2
|Aε|2 − 1 = 2H2 −Kgε

where Aε is the second fundamental form of Φε, we get that

|Kgε | ≤ 4H2 + 2−Kgε .

Integrating the Liouville’s equation (5.3.12) over (S2, g0) gives that
ˆ

S2

|∆g0λ
ε|dσg0 ≤

ˆ

S2

e2λ
ε |Kgε |dσg0 +

ˆ

S2

1dσg0

≤ 4

ˆ

S2

H2dσgε + 2

ˆ

S2

1dσgε −
ˆ

S2

Kgεdσgε + 4π

≤ 4Whε
(Φε(S2)) + 2Areahε

(Φε(S2)),

(5.3.13)
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thanks to Gauss-Bonnet theorem. Hence we obtain with Lemma 5.3.2 that

sup
ε>0
‖∆g0λ

ε‖L1(S2) < +∞.

Finally, thanks to standard elliptic estimates (see Theorem 3.3.6. in Hélein [69], for example), we
deduce (5.3.11).

Lemma 5.3.5. There exist ε0 > 0 and C > 0 such that, for any conformal immersion Φ : D→ R
3, if

ˆ

D

|∇~n|2 dx ≤ ε0,

then we have

‖λ− λ‖L∞(D1/2) ≤ C
(
ˆ

D

|∇~n|2 dx+ ‖∇λ‖L2,+∞(D)

)
(5.3.14)

where λ is the conformal factor of Φ defined as eλ = |∂xΦ| = |∂yΦ| and

λ :=
1

π

ˆ

D

λ dx.

Proof. Assume ‖∇λ‖L2,+∞(D) < +∞ and ε0 <
8π
3 . Thanks to Hélein’s moving frames theorem (see,

e.g, Hélein [69]), there exists (~e1, ~e2) ∈
(
W 1,2(D,R3) ∩ C∞(D,R3)

)2
such that





‖~e1‖2 = ‖~e2‖2 = 1, ~e1 · ~e2 = 0 on D,

∆λ = ∇⊥~e1 · ∇~e2 on D,
ˆ

D

|∇~ei|2 dx ≤
ˆ

D

|∇~n|2 dx, ∀i = 1, 2.

(5.3.15)

Write λ = µ+ ν, where µ and ν are solutions of
{
∆µ = ∇⊥~e1 · ∇~e2 on D

µ = 0 on ∂D
and

{
∆ν = 0 on D

ν = λ on ∂D
. (5.3.16)

Thanks to Wente’s inequality 6.3.4, we have

‖µ‖L∞(D) + ‖∇µ‖L2(D) ≤ C‖∇~e1‖L2(D)‖∇~e2‖L2(D) ≤ C
ˆ

D

|∇~n|2 dx (5.3.17)

for some C > 0. Thus, we obtain that

‖∇ν‖L2,+∞(D) ≤ ‖∇µ‖L2,+∞(D) + ‖∇λ‖L2,+∞(D)

≤ C
(
ˆ

D

|∇~n|2 dx+ ‖∇λ‖L2,+∞(D)

)
.

(5.3.18)

for some C > 0.
Next, thanks to Poincaré’s inequality, we have that

‖ν − ν‖L1(D) ≤ C‖∇ν‖L1(D) ≤ C‖∇ν‖L2,+∞(D) (5.3.19)

for some C > 0, where ν := 1
π

´

D
ν dx.

Since W 1,1(D) −֒→ L1(∂D), we deduce that

‖ν − ν‖L1(∂D) ≤ C‖∇ν‖L2,+∞(D) (5.3.20)
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for some C > 0.
Moreover, since ν is harmonic, we get that

‖ν − ν‖L∞(D1/2) ≤ C‖ν − ν‖L1(∂D) ≤ C‖∇ν‖L2,+∞(D). (5.3.21)

Combining (5.3.17) and (5.3.18) with (5.3.21), we get that

‖λ− λ‖L∞(D1/2) ≤ ‖µ− µ‖L∞(D1/2) + ‖ν − ν‖L∞(D1/2)

≤ ‖∇µ‖L2,+∞(D) + ‖∇ν‖L2,+∞(D)

≤ C
(
ˆ

D

|∇~n|2 dx+ ‖∇λ‖L2,+∞(D)

) (5.3.22)

for some C > 0 with µ = 1
π

´

D
µdx.

Corollary 5.3.6. Let Φε : (S, g0) → (M,h) be a sequence of conformal immersions of S into (M,h). For any
connected compact set K ⊂ S

2\{S} containing the north pole N , we have that

sup
ε>0
‖λε − λε(N)‖L∞(K) ≤ CK ,

where CK only depends on supε>0 ‖∇g0~n
ε‖L∞(K).

Proof. For any x ∈ K and ρ > 0 such that Bg0
ρ (x) ⊂ K, we have that

sup
ε>0

ˆ

B
g0
ρ (x)

|∇g0~n
ε|2 dσg0 ≤ C ′

K2π(1− cos
ρ

2
) ≤ CKρ

2

where C ′
K = supε>0 supK |∇g0~n

ε|2.
We choose ρ > 0 small enough such that CKρ

2 ≤ ε0 where ε0 is defined as in Lemma 5.3.5.
Therefore, thanks to Lemma 5.3.5, for ε > 0, there exists cεx ∈ R such that

sup
ε>0

sup
y∈B

g0
ρ/2

(x)

|λε(y)− cεx| ≤ Cρ (5.3.23)

for some Cρ > 0 only depending on ρ > 0.
Finally, thanks to the connectedness and the compactness of K and the Vitali’s covering theorem,

one can cover K by a finite number of balls of radius ρ
4 , such that every two distinct points of K can

be joined by a chain of balls of the cover, which gives the desired result.

ε−regularity and Strong convergence

Theorem 5.3.7 (ε−regularity theorem for conformal Willmore immersions, Rivière [121]). There exists
ε0 > 0 such that, for every conformal Willmore immersion Φ : D→ R

3, if we have
ˆ

D

|∇~n|2 dx ≤ ε0,

then, for every l ∈ N
∗, there exists Cl

(
‖∇λ‖L2,+∞(D1/2)

)
> 0 such that

‖e−λ∇lΦ‖L∞(D1/2) ≤ Cl

(
‖∇λ‖L2,+∞(D1/2)

)[ˆ

D

|∇~n|2 dx+ 1

] 1
2
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Corollary 5.3.8. Let Φε : D→ R
3 be a sequence of conformal Willmore immersion such that

sup
ε>0

ˆ

D

|∇~nε|2 dx ≤ ε0

and lim supε>0 ‖∇λε‖2,+∞ < +∞. Then, up to a subsequence of (Φε)ε>0, we have, for every l ∈ N,

Φε − cε
rε

→ Φ∞ in Cl
loc(D)

where rε > 0, cε ∈ R
3 and Φ∞ is a conformal Willmore immersion on D.

Proof. Set Φ̃ε = e−λε(0) (Φε − Φε(0)). Thanks to Corollary 5.3.6 and the defintion of Φ̃ε, we have that

Φ̃ε(0) = 0, ∀ε > 0,

sup
ε>0
‖λ̃ε‖Lε(Dρ)

= sup
ε>0
‖λε − λε(0)‖L∞(Dρ)

≤ Cρ and

sup
ε>0

ˆ

D

|∇ñε|2 dx = sup
ε>0

ˆ

D

|∇~nε|2 dx ≤ ε0

(5.3.24)

for every 0 < ρ < 1 and for some Cρ > 0, where ñε is the normal vector of Φ̃ε. Thanks to the
ε−regularty theorem 5.3.7, together with (5.3.24), we get that, for every l ∈ N,

sup
ε>0
‖Φ̃ε‖L∞(Dρ)

+ ‖∇lΦ̃ε‖L∞(Dρ)
≤ Cl,ρ (5.3.25)

for some Cl,ρ > 0. Therefore, thanks to Arzelà-Ascoli theorem, there exists a conformal immersion
Φ∞ such that, up to a subsequence of (Φε)ε>0,

Φ̃ε =
Φε − cε
rε

→ Φ∞ in Cl
loc(D) (5.3.26)

with cε = Φε(0) and rε = e−λε(0) > 0.
Finally, Φ∞ is a Willmore immersion since, by strong convergence, Φ∞ also verifies the Euler-

Lagrange equation (5.3.1).

5.4 Willmore spheres in R
3

As in many works on compactness problem and bubbling phenomena, we need to know global solu-
tions of the Willmore equation in the entire domain. In [33], Bryant showed that the only embedded
Willmore spheres in R

3 are naturally Euclidean spheres:

Lemma 5.4.1 (Bryant, [33]). If Φ : S2 → R
3 is a Willmore immersion without transversal self-intersection,

then Φ is embedded and Φ(S) is a round sphere.

Remark 5.4.2. Moreover, up to compose Φ with πN , the stereographic projection with respect to the
North pole N , if Φ : R2 → C is conformal then there exist r > 0, C ∈ R

3 and P,Q ∈ C[X] irreducible
polynomials with max{deg(P ), deg(Q)} = 1 such that

Φ = rω with ω(z) = π−1
N

(
P (z)

Q(z)

)
+ C. (5.4.1)

In particular, setting ωε = ω
(

·−aε

µε

)
for some µε > 0 and aε ∈ R

2, we get that

|∇ωε(x)| = O

(
µε

|x− aε|2 + (µε)2

)
. (5.4.2)

For the purpose of convenience, we set ω̂ := ω − p where p is the barycenter of ω. It is clear that
|∇ω| = |∇ω̂|, ~nrω = −ω̂ and ~Hrω = − 1

r ω̂. Notice that (ω̂x, ω̂y, ω̂) forms an orthogonal basis of R3.
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5.5 Energy tracking and bubble extraction

In this section, we will describe the bubbling phenomenon for Φε and show that one can write asymp-
totically Φε as the sum of round spheres. Precisely, we have, up to a subsequence of (Φε),

Φε = rε0Bε0 + rε1Bε1 + ϕε

where riBεi are so called “bubbles” which corresponds to Willmore spheres in R
3 and ϕε is the re-

mainder converging to zero in some sense which we will precise later.
In the more general situation of arbitrary energy, it is believed that Φε can be written as a sum

of Willmore surfaces in R
3, these surfaces being round spheres and catenoids. Below, we show how

to extract successively these surfaces in the decomposition. However, we need to stop at the second
sphere since the third "bubble" could be a catenoid and we were not able to classify the surfaces that
could appear in this process (even if we conjecture that only spheres and catenoids should appear).

5.5.1 Bubble extraction and weak estimates

In [21], Bernard and Rivière have proved the quantization of energy while the conformal factor stay
in a compact of moduli space. Here we establish a similar result for our embedded spheres with
pointwise estimates. To do so, our technique is based on a systematic method developed by Druet,
Hebey and Robert in [57].

The following construction of bubbles can originally be found in Druet [56] for Yamabe-type equa-
tions and Laurain [83] for CMC surfaces. However, some new ingredients are needed here since we
need to control three quantities, ∇Φε, ∇~nε and ∇ ~Hε.

The claims in what follows are up to a subsequence of (Φε).

First bubble extraction Up to compose Φε with a rotation of S2, we can assume that, for every ε > 0,
the North pole N ∈ S

2 is the maximum point of the quantity |∇g0Φ
ε|+ |∇g0~n

ε|:
1

µε
:= (|∇g0Φ

ε|+ |∇g0~n
ε|) (N) = max

S2
(|∇g0Φ

ε|+ |∇g0~n
ε|) .

Replacing Φε by Φε(x) := Φε
(
π−1
N (µεπN (x))

)
for all x ∈ S

2, where πN : S2 → R
2 is the stereographic

projection with respect to the North pole N , one can verify that the quantity |∇g0Φ
ε| + |∇g0~n

ε| is
bounded on every compact subset of S2\{S}.

• The case where λε(N)→ +∞ is excluded, otherwise we would have

Area(Φε(K))→ +∞

for any compact set K ⊂ S
2\{S}.

• If supε>0 |λε(N)| < +∞, then for any compact setK ⊂ S
2\{S} containing the North pole, x ∈ K

and for every ρ > 0, we have that
ˆ

B
g0
ρ (x)∩K

|∇g0~n
ε|2 dσg0 ≤ CKρ

2.

By taking ρ > 0 such that CKρ
2 ≤ ε0, we get that, up to a subsequence of (Φε),

Φε − cε
rε

→ Φ0 in Cl
loc(S

2\S),

where Φ0 is a conformal Willmore immersion on S
2\{S} and lim sup rε < +∞. Moreover,

since Φ0 has finite energy and finite area, Φ0 can be extended to a branched conformal Will-
more immersion on S

2. Indeed, up to compose Φ0, ~n0, ~H0 with π−1
N , it is clear that Φ0, ~n0, ~H0 ∈
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C∞(R2\{0}) satisfy the Willmore equation (5.3.6) with α = 0 on R
2\{0}. Moreover for all r > 0,

we have
ˆ

Br(0)

L~n
Φε◦π

−1
N

(
∇ ~HΦε◦π−1

N

)
dx = αε

ˆ

Br(0)

∆(Φε ◦ π−1
N )dx+ o(1). (5.5.1)

By divergence theorem, we get
ˆ

∂Br(0)

(
∂ν ~HΦε◦π−1

N
− 3π~n

Φε◦π
−1
N

(∂ν ~HΦε◦π−1
N

) + ~HΦε◦π−1
N
∧ ∂τ~nΦε◦π−1

N

)
rdθ

= αε

ˆ

∂Br(0)

∂ν(Φ
ε ◦ π−1

N )rdθ + o(1),

(5.5.2)

where ν is the unit normal vector and τ the unit tangent vector to the boundary of Br(0). The
strong convergence of Φε ◦ π−1

N to Φ0 and the fact that αε = o(1) in lemma 5.3.3 allow us to pass
to the limit in the last identity. As ε→ 0, we obtain that

ˆ

∂Br(0)

(
∂ν ~HΦ0

− 3π~nΦ0
(∂ν ~HΦ0

) + ~HΦ0
∧ ∂τ~nΦ0

)
rdθ = 0. (5.5.3)

Thanks to the above identity for all r > 0, we can thus apply the singularity removability
theorem established in Theorem I.2. of [20] which shows that Φ0 extends to a branched smooth
Willmore immersion in R

2. Moreover, since Φ0 is obtained as the limit of smooth embeddings,
Φ0 has in fact no branched points in R

2, see Lemma A.1. in Laurain [83] or Li [90]. Hence, it
turns out that we have

~n0 = ~nΦ0 :=
(Φ0)x ∧ (Φ0)y
|(Φ0)x ∧ (Φ0)y|

and ~H0 = ~HΦ0 :=
∆Φ0

|(Φ0)x ∧ (Φ0)y|
.

Similarly, we can also show that Φ0 has no branched points at infinity by considering Φ0 ◦ I
where I : x 7→ x

|x|2 is the inversion centered at 0, and thus Φ0 can be extended to a Willmore
immersion in S

2. Finally, by the classification result of Bryant [33], Φ0 parametrizes a round
sphere and we can write Φ0 = r0ω0 for some r0 > 0 and a simple embedded unit sphere ω0.

• If λε(N)→ −∞, then set Φ̂ε = e−λε(N)(Φε − Φε(0)). Thanks to Corollary 5.3.6, we have that

sup
ε>0
‖λ̂ε‖L∞(K) ≤ CK

for every connected compact set K containing the North pole N and for some CK > 0. There-
fore, similarly to the previous case, up to a subsequence, we have that

Φ̂ε → Φ̂∞ in Cl
loc(S

2\{S}), ∀l ∈ N

where Φ̂∞ is a conformal Wilmore immersion in S
2\{S}.

1. If Φ̂∞ has finite area, similarly to the previous case, we have that Φ̂∞ can be extended to a
embedded Willmore sphere and thus is a round sphere.

2. If Φ̂∞ has infinite area, noting that Φ̂∞ has integer density 1 at the South pole S (obtained
as a limit of embeddings), by Li [90], Φ̂∞ is a complete conformal Willmore immersion
with finite energy and thus Φ̂∞ is a plane, which contradicts the fact that

1 = |∇g0Φ
ε|(N) + |∇g0~n

ε|(N) = |∇g0Φ
ε|(N) + |∇g0~̂n

ε|(N)→ 0 as ε→ 0.

Finally, let a0 ∈ R
2 be a maximum point of |∇ω0|, by replacing ω0 by ω0(·+ a0), we can assume

that |∇ω0| attains its maximum at 0.
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Reparametrization of Willmore spheres Up to compose Φε by Φε ◦ π−1
N : R2 → R

3, we have that

1. Φε satisfies the Willmore system (5.3.6) on the entire plane R
2 such that Φε is conformal and

sup
ε>0
‖∇λε‖2,+∞ < +∞.

2. for all l ∈ N,
Φε

0 − cε0
rε0

→ ω0 in Cl
loc(R

2\{0}) as ε→ 0. (5.5.4)

where Φε
0 = Φε(·+ a0), cε0 ∈ R

3 and lim supε>0 r
ε
0 < +∞,

3. ω0 is a simple embedded unit sphere and |∇ω0| attains its maximum at 0.

4. We also have, for R > 0

lim
ε→0

sup
|x|≥R

(1 + |x|2)
(∣∣∣∣∇

(
Φε

rε0
− ω0

)∣∣∣∣+ |∇ (~nε − ~n0) |
)

= 0,

sup
ε>0
‖Φε‖∞ < +∞, sup

ε>0
‖∇Φε‖2 < +∞ and sup

ε>0

1

2
‖∇~nε‖22 < 12π − δ.

Construction of bubble tree

After choosing proper reparametrizations, we are now at the point to extract the second bubble. We
prove the following theorem:

Theorem 5.5.1. We have either

Φε
0 − cε0
rε0

→ ω0, in Cl
loc(R

2), for every l ∈ N (5.5.5)

or there exist

1. ω1 a embedded unit sphere for which |∇ω1| attains its maximum at 0,

2. aε1 a sequences of R2 and rε1, µ
ε
1 sequences of positive real numbers such that

lim
ε→0

aε1 = 0, lim sup
ε>0

rε1 < +∞ and lim
ε→0

µε
1 = 0,

such that, up to a subsequence of Φε, we have the following assertions:

Φε
1 − cε1
rε1

→ ω1 in Cl
loc(R

2) as ε→ 0 (5.5.6)

for all l ∈ N, where Φε
1 = Φε(µε

1 ·+aε1) and

sup
x∈R2

(1 + |x|2)dε1(x) (|∇ϕε(x)|+ |∇νε(x)|) = o(1) as ε→ 0 (5.5.7)

with

dε1(x) :=
|x− aε1|+ µε

1√
1 + |x|2

,

ϕε := Φε − rε0ωε
0 − rε1ωε

1 and

νε := ~nε − ~̂nε0 − ~̂nε1

where ~̂nε0 and ~̂nε1 are respectively the normal vector of ωε
0 and ωε

1 with (aε0, µ
ε
0) = (a0, 1) and ωε

i = ωi(
·−aε

i

µε
i
).

Notice that we have 0 ≤ dε1(x) ≤ 1.
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Proof of Theorem 5.5.1. If we have

sup
x∈R2

(|x− aε0|+ µε
0)
(
|∇Φε − rε0∇ωε

0|+ |∇~nε −∇~̂nε0|
)
(x)→ 0

as ε→ 0, then we get automatically (5.5.5) by ε-regularity theorem.
Now assume that

lim inf
ε>0

sup
x∈R2

(|x− aε0|+ µε
0)
(
|∇Φε − rε0∇ωε

0|+ |∇~nε −∇~̂nε0|
)
(x) > 0. (5.5.8)

Let aε1 ∈ R
2 be such that

(|aε1−aε0|+µε
0)
(
|∇Φε − rε0∇ωε

0|+ |∇~nε −∇~̂nε0|
)
(aε1) = sup

x∈R2

(|x−aε0|+µε
0)
(
|∇Φε − rε0∇ωε

0|+ |∇~nε −∇~̂nε0|
)
(x).

(5.5.9)
The supremum is achieved in R

2 since, thanks to the choice of parametrization, we have that

(
|∇Φε − rε0∇ωε

0|+ |∇~nε −∇~̂nε0|
)
(x) = O

(
1

1 + |x|2
)

as x→ +∞.

Moreover, we get that
aε1 → 0 as ε→ 0,

since, by construction, (
|∇Φε − rε0∇ωε

0|+ |∇~nε −∇~̂nε0|
)
(x)→ 0

as ε→ 0 on R
2\{0}.

Setting
1

µε
1

:= (|aε1 − aε0|+ µε
0)
(
|∇Φε − rε0∇ωε

0|+ |∇~nε −∇~̂nε0|
)
(aε1) ,

we have that
µε
1 → 0 as ε→ 0,

otherwise the quantity
(Φε − cε0)− rε0ωε

0

would be uniformly bounded in C1(R2) and thus would converge uniformly to 0 on R
2 which would

contradict (5.5.8).
Next, we set

Φε
1 = Φε(µε

1 ·+aε1) ,
~nε1 = ~nε(µε

1 ·+aε1) and
~Hε
1 = ~Hε(µε

1 ·+aε1) .

Then we get that
λε1 = log |∂xΦε

1| = logµε
1 + λε and (5.5.10)

sup
ε>0
‖∇λε1‖2,+∞ = sup

ε>0
‖∇λε‖2,+∞ < +∞. (5.5.11)

Moreover, for all x ∈ R
2, we have that

(|∇Φε
1|+ |∇~nε1|) (x)

= µε
1 (|∇Φε|+ |∇~nε|) (µε

1x+ aε1)

≤ µε
1

(
|∇Φε − rε0∇ωε

0|+ |∇~nε −∇~̂nε0|
)
(µε

1x+ aε1) + µε
1

(
|rε0∇ωε

0|+ |∇~̂nε0|
)
(µε

1x+ aε1)

≤ 1 + o(1) + µε
1

(
|rε0∇ωε

0|+ |∇~̂nε0|
)
(µε

1x+ aε1)

(5.5.12)
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since
µε
1

(
|rε0∇ωε

0|+ |∇~̂nε0|
)
(µε

1x+ aε1) = O(µε
1) = o(1). (5.5.13)

Then, using the definition of aε1, (5.5.12) and (5.5.13), we obtain that, for all x ∈ R
2,

(|∇Φε
1|+ |∇~nε1|) (x) ≤ 1 + o(1). (5.5.14)

Hence |∇Φε
1| + |∇~nε1| is bounded on every compact subset of R2. Moreover, Φε

1 still verifies the Will-
more system (5.3.5), since the system is conformally invariant. Thanks to (5.5.11), (5.5.14) and Corol-
lary 5.3.8, up to a subsequence, there exist cε1 ∈ R

3 and rε1 > 0 and a unit embedded sphere ω1 such
that we have, for all l ∈ N,

Φε
1 − cε1
rε1

→ ω1 in Cl
loc(R

2) as ε→ 0. (5.5.15)

It remains to show (5.5.7). Assume by contradiction that there exists δ0 > 0 such that, for all ε > 0,

sup
x∈R2

(1 + |x|2)dε1(x) (|∇ϕε(x)|+ |∇νε(x)|) ≥ δ0. (5.5.16)

Let aε2 ∈ R
2 be such that

(1 + |aε2|2)dε1(aε2) (|∇ϕε(aε2)|+ |∇νε(aε2)|) = sup
x∈R2

(1 + |x|2)dε1(xε) (|∇ϕε(x)|+ |∇νε(x)|) .

For every ε > 0, the supremum is achieved in R
2 since, thanks to the choice of parametrization and

Remark 5.4.2, we have that

|∇ϕε(x)|+ |∇νε(x)| = O

(
1

1 + |x|2
)

and dε1(x)→ 1 as |x| → +∞.

Moreover, we get that
aε2 → 0 as ε→ 0

since |∇ϕε|+ |∇νε| → 0 on R
2\{0}.

Next, we set
1

µε
2

:= |∇ϕε(aε2)|+ |∇νε(aε2)|.

Since we have (1 + |aε2|2)dε1(aε2)→ 0 as ε→ 0, thanks to (5.5.16), we get that

µε
2 → 0 as ε→ 0.

Now, we distinguish between two cases according to

lim inf
ε→0

min{dε0(aε2), dε1(aε2)}
µε
2

> 0.

First case:

lim inf
ε→0

min{dε0(aε2), dε1(aε2)}
µε
2

= +∞. (5.5.17)

In this case, we set

Φε
2 = Φε(µε

2 ·+aε2) and

~nε2 = ~nε(µε
2 ·+aε2) .
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Then, for all x ∈ R
2, we get that

(|∇Φε
2|+ |∇~nε2|) (x)

= µε
2 (|∇Φε|+ |∇~nε|) (µε

2x+ aε2)

≤ µε
2(|∇ϕε(µε

2x+ aε2)|+ |∇νε(µε
2x+ aε2)|+O (µε

2 |∇ (rε0ω
ε
0 + rε1ω

ε
1)| (µε

2x+ aε2))

+O (µε
2 |∇ (n̂ε

0 + n̂ε1)| (µε
2x+ aε2))

≤ 1 + o(1) +O (µε
2 |∇ (ωε

0 + ωε
1)| (µε

2x+ aε2)) .

(5.5.18)

Thanks to (5.4.2) and (5.5.17), we get that

µε
2 |∇ (ωε

0 + ωε
1)| (µε

2x+ aε2) = o(1). (5.5.19)

Then, using the definition of aε2, (5.5.17), (5.5.18) and (5.5.19), we obtain that, for all x ∈ R
2,

(|∇Φε
2|+ |∇~nε2|) (x) ≤ 1 + o(1). (5.5.20)

Hence |∇Φε
2| and |∇~nε2| are bounded on every compact subset of R

2. Moreover, Φε
2, ~nε2 and

~Hε
2 still verify the Willmore system (5.3.5), since the system is conformally invariant. Standard

elliptic theory and simple bootstrap arguments confirm that there exists some Φ2 ∈ C∞(R2)
satisfying (5.3.6) with α = 0 such that, up to a subsequence, we have, for all l ∈ N,

Φε
2 − cε2
rε2

→ Φ2 in Cl
loc(R

2) as ε→ 0. (5.5.21)

Thanks to Laurain [83] and Li [90], we can show that ∇Φ2 does not vanish on R
2 and that

Φ2 extends as a smooth immersion in S
2. Hence, by the classification result of Bryant [33], Φ2

parametrizes a round sphere: Φ2 = r2ω2 for some r2 > 0 and ω2 embedded unit sphere.

Let R > 0. It appears that, thanks to (5.5.17), for ε small enough, we can write

1

2

ˆ

R2

|∇~nε|2dx ≥
2∑

i=0

1

2

ˆ

R2∩BRµε
i
(aε

i )\S
ε
i (R)

|∇~nε|2 dx (5.5.22)

where Sεi (R) =
{
x ∈ BR−1µε

j
(aεj)| j s.t. limε→0

µε
j

µε
i
= 0
}

.

Moreover, thanks to (5.5.4), (5.5.15) and (5.5.21), we obtain that

1

2

ˆ

R2

|∇~nε|2 dx ≥
2∑

i=0

1

2

ˆ

(
B(µε

i
)−1

(
−

aε
i

µε
i

)
∩BR(0)

)
\Si(R)

|∇n̂i|2 dx+ δεR

≥ 3× 4π + δεR

(5.5.23)

where Si(R) =
⋃

x∈Si
B 1

R
(x) and limR→+∞ limε→0 δ

ε
R = 0. Therefore, we have that

lim inf
ε→0

1

2
‖∇~nε‖22 ≥ 12π,

which contradicts with the energy threshold assumption.

Second case:

0 < lim
ε→0

min{dε0(aε2), dε1(aε2)}
µε
2

< +∞. (5.5.24)

First we have that
µε
1

µε
2

+
µε
2

µε
1

+
aε1 − aε2
µε
1

→ 0 as ε→ 0. (5.5.25)
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Indeed, assuming by contradiction this is not the case, then, up to a subsequence,

µε
1 = O(µε

2), µ
ε
2 = O(µε

1) and
∣∣∣∣
aε2 − aε1
µε
1

∣∣∣∣ = O(1) as ε→ 0, (5.5.26)

which contradicts with the fact that

|∇ϕε(µε
1 ·+aε1)|+ |∇νε(µε

1 ·+aε1)| → 0 on R
2 as ε→ 0, (5.5.27)

thanks to (5.5.7).

Next, we set

Φε
2 = Φε(µε

2 ·+aε2),
~nε2 = ~nε(µε

2 ·+aε2),

b12 := lim
ε→0

aε1 − aε2
µε
2

.

For all x ∈ R
2\{b12}, we have that

(|∇Φε
2|+ |∇~nε2|) (x)

= µε
2 (|∇Φε|+ |∇~nε|) (µε

2x+ aε2)

≤ µε
2 (|∇ϕε|+ |∇νε|) (µε

2x+ aε2) +O (µε
2 |∇ (ωε

0 + ωε
1)| (µε

2x+ aε2))

≤ min{dε0(aε2), dε1(aε2)}
min{dε0(µε

2x+ aε2), d
ε
1(µ

ε
2x+ aε2)}

+O (µε
2 |∇ (ωε

0 + ωε
1)| (µε

2x+ aε2)) .

(5.5.28)

Thanks to (5.4.2) and (5.5.24), we get that

min{dε0(aε2), dε1(aε2)}
min{dε0(µε

2x+ aε2), d
ε
1(µ

ε
2x+ aε2)}

+ µε
2 |∇ (ωε

0 + ωε
1)| (µε

2x+ aε2) = O

(
1

|x− b12|

)
. (5.5.29)

Then, combining (5.5.24), (5.5.28) and (5.5.29), we obtain that, for all x ∈ R
2\{b12},

(|∇Φε
2|+ |∇~nε2|) (x) ≤ O

(
1

|x− b12|

)
. (5.5.30)

Hence, (|∇Φε
2|+ |∇~nε2|) is bounded on every compact set of R2\{b12}. Up to subsequence, there

exists a Φ2 ∈ C∞(R2\{b12}) such that, for every l ∈ N,

Φε
2 − cε2
rε2

→ Φ2 in Cl
loc(R

2\{b12}). (5.5.31)

As previously shown in Reparametrization of Willmore spheres, we can apply the singularity
removability theorem at b12 and at infinity, so that Φ2 can be extended to a branched immersion
in S

2 and satisfies the Willmore equation (5.3.1). Again, since Φ2 is obtained as the limit of
smooth embeddings, by Laurain [83] and Li [90], Φ2 has no branched points in S

2. Therefore,
by the classification result of Bryant [33], there exist r2 > 0 and a embedded unit sphere ω2

given by (5.4.1) such that Φ2 = r2ω2.

By analogy with the first case, thanks to (5.5.25), for R > 0 and ε > 0 small enough, we can
write

1

2

ˆ

R2

|∇~nε|2dx ≥
2∑

i=0

1

2

ˆ

R2∩BRµε
i
(aε

i )\S
ε
i (R)

|∇~nε|2 dx

≥
2∑

i=0

1

2

ˆ

(
B(µε

i
)−1

(
−

aε
i

µε
i

)
∩BR(0)

)
\Si(R)

|∇n̂i|2 dx+ δεR

≥ 3× 4π + δεR

(5.5.32)
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where

Sεi (R) =
{
x ∈ BR−1µε

j
(aεj)| j s.t. lim

ε→0

µε
j

µε
i

= 0

}
,

Si(R) =
⋃

x∈Si
B 1

R
(x) and limR→+∞ limε→0 δ

ε
R = 0. (5.5.32) contradicts with the energy thresh-

old assumption.

Thus in either case we have reached a contradiction, which shows that (5.5.7) is true and completes
the proof of Theorem 5.5.1.

Remark 5.5.2. In the general situation, as long as the weak estimate (5.5.7) of Proposition 5.5.1, one
could continue the process as we did with this aε2. And the aim would be to prove that the limiting
Willmore surfaces, obtained after rescaling, are either spheres or catenoids (which all carry the same
amount of energy). And the process has to stop once there is no energy left (as we did here).

Thanks to Theorem 5.5.1, we give in the following another pointwise estimates on∇ϕε:

Proposition 5.5.3. For any 0 < α < 1, we have

(1 + |x|2)|∇ϕε|(x) = o

(
dε1(x)

−α +
rε1 + µε

1

dε1(x)

)
(5.5.33)

Proof. Assume by contradiction that

lim inf
ε→0

sup
x∈R2

(1 + |x|2)|∇ϕε(x)|(
dε1(x)

−α +
rε1+µε

1

dε
1(x)

) ≥ ε0 (5.5.34)

for some ε0 > 0.
For every ε > 0, supx∈R2

(1+|x|2)|∇ϕε(x)|(
dε
1(x)

−α+
rε1+µε

1
dε1(x)

) is attained by some xε ∈ R
2 thanks to the fact that

|∇ϕε(x)| = o

(
1

1 + |x|2
)

and
(
dε1(x)

α +
rε1 + µε

1

dε1(x)

)
6→ 0 as x→ +∞.

Claim 5.5.4. We have
|xε − aε1|

µε
1

→ +∞ as ε→ 0.

Proof of Claim 5.5.4: Otherwise, since Φε
1−cε1
rε1

converges to ω1, we have that

µε
1

rε1
|∇ϕε(xε) + rε0∇ωε

0(x
ε)| = µε

1

rε1
|∇Φε(xε)−∇ωε

1(x
ε)| = o(1)

which implies

|∇ϕε(xε)| = o

(
rε1
µε
1

)
+O (1) .

Moreover, since dε1(x
ε) ∼ Cµε

1 as ε→ 0 for some C > 0, we obtain that

|∇ϕε(xε)| = O(1) + o

(
rε1
µε
1

)
& ε0

(
dε1(x

ε)−α +
rε1 + µε

1

dε1(x
ε)

)
&

(
1

(µε
1)

α
+

1

µε
1r

ε
1

)
,

which leads to a contradiction.
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Now, we set

ϕ̃ε(x) :=
1

dε1(x
ε)|∇ϕε|(xε)ϕ

ε(aε1 + dε1(x
ε)x) ,

Φ̃ε(x) :=
1

dε1(x
ε)|∇ϕε|(xε)Φ

ε(aε1 + dε1(x
ε)x) and

ñε(x) := nε(aε1 + dε1(x
ε)x) .

Remark that, thanks to (5.5.34), on any compact set K of R2\{0}, we have that

∇Φ̃ε(y) = ∇ϕ̃ε(y) +
rε1

|∇ϕε(xε)|∇ω
ε
1 (a

ε
1 + dε1(x

ε)y) +
rε0

|∇ϕε(xε)|∇ω
ε
0(a

ε
1 + dε1(x

ε)y)

= ∇ϕ̃ε(y) +O

(
rε1µ

ε
1

dε1(x
ε)2|∇ϕε(xε)|

)
+O

(
rε0

|∇ϕε(xε)

)

= ∇ϕ̃ε(y) +O


 rε1µ

ε
1

ε0dε1(x
ε)2
(
dε1(x

ε)−α +
rε1+µε

1

dε
1(x

ε)

)


+ o(1)

= ∇ϕ̃ε(y) + o(1)

Write xε = aε1 + dε1(x
ε)yε so that we have

yε → y0 as ε→ 0

with |y0| = 1 and
|∇ϕ̃ε(yε)| = 1.

Thanks to (5.5.34), we have that, for every y ∈ K,

|∇ϕ̃ε(y)| ≤
dε1(a

ε
1 + dε1(x

ε)y)−α +
rε1+µε

1

dε
1(aε

1+dε
1(x

ε)y)

dε1(x
ε)−α +

rε1+µε
1

dε
1(x

ε)

(1 + o(1))

≤ d1(x
ε)1−α

dε1(x
ε)1−α + rε1 + µε

1

|x|−α +
rε1 + µε

1

dε1(x
ε)1−α + rε1 + µε

1

|x|−1 + o(1)

(5.5.35)

with equality at y = yε. Up to a subsequence, we set

C1 := lim
ε→0

dε1(x
ε)1−α

dε1(x
ε)1−α + rε1 + µε

1

∈ [0, 1],

which gives
|∇Φ̃ε(y)| ≤ C1|y|−α + (1− C1)|y|−1 + o(1) (5.5.36)

on every compact set K of R2\{0}.
Moreover, thanks to (5.5.7) and the fact that µε

1 = o (dε1(x
ε)), for every y ∈ K, we get that

|∇ñε(y)| ≤ dε1(xε)|∇νε| (aε1 + dε1(x
ε)y) + dε1(x

ε)|∇N ε
0 | (aε1 + dε1(x

ε)y) + dε1(x
ε)|∇N ε

1 |(aε1 + dε1(x
ε)y)

= o(1).
(5.5.37)

Thanks to (5.5.36), (5.5.37) and the first equation of (5.3.5), by standard elliptic theory, up to a subse-
quence, Φ̃ε − Φ̃ε(0) converges to some Φ0 in C∞

loc(R
2\{0}) where Φ0 satisfies

∆Φ0 = 0 on R
2\{0} (5.5.38)

and
|∇Φ0(y)| ≤ C1|y|−α + (1− C1)|y|−1 on R

2\{0}. (5.5.39)

100



Thanks to Bôchner’s theorem (see, e.g. Raynor [119]) together with (5.5.38) and (5.5.39), we have
that

Φ0 = ~γ0 log r + ~C (5.5.40)

for some ~γ0, ~C ∈ R
3.

Finally, since Φ0 is conformal, we get that ~γ0 = ~0 and thus∇Φ0 ≡ 0, which is in contradiction with
the fact that ∇Φ̃ε(yε)→ 1 as ε→ 0.

Similarly, we can also obtain a pointwise estimate on |∇ηε| where

ηε := ~Hε − 1

rε0
Hε

0 −
1

rε1
Hε

1 :

Proposition 5.5.5. Set

ηε = ~Hε − 1

rε0
Hε

0 −
1

rε1
Hε

1.

Then we have, for any 0 < α < 1,

(1 + |x|2)|∇ηε(x)| = o

(
dε1(x)

−α +
1

rε1d
ε
1(x)

)
. (5.5.41)

Proof of Proposition 5.5.5: Assume by contradiction that

lim inf
ε→0

sup
x∈R2

(1 + |x|2)|∇ηε(x)|(
dε1(x)

−α + 1
rε1d

ε
1(x)

) ≥ ε0 (5.5.42)

for some ε0 > 0.
For ε > 0, supx∈R2

(1+|x|2)|∇ηε(x)|(
dε
1(x)

−α+ 1
rε1dε1(x)

) is attained by some xε ∈ R
2 thanks to the fact that

|∇ηε(x)| = o

(
1

1 + |x|2
)

and
(
dε1(x)

−α +
1

rε1d
ε
1(x)

)
6→ 0 as x→ +∞.

Moreover, since |∇ηε| → 0 in R
2\{0} as ε→ 0, we also get that

lim
ε→0

xε = 0

and limε→0 r
ε
1|∇ηε(x)| = +∞.

Claim 5.5.6. We have
|xε − aε1|

µε
1

→ +∞ as ε→ 0.

Proof of Claim 5.5.6: Otherwise, since we have

µε
1r

ε
1|∇ηε(xε) +∇Hε

0(x
ε)| = µε

1|rε1∇ ~Hε(xε)−∇Hε
1(x

ε)| = o(1)

we get that µε
1r

ε
1|∇ηε(xε)| = o(1) +O (µε

1r
ε
1) which implies

|∇ηε(xε)| = o

(
1

µε
1r

ε
1

)
+O (1) .

Moreover, since dε1(x
ε) ∼ Cµε

1 as ε→ 0 for some C > 0, we obtain that

|∇ηε(xε)| = o

(
1

µε
1r

ε
1

)
+O (1) &

(
1

(µε
1)

α
+

1

µε
1r

ε
1

)
,

which gives contradiction.
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Next, we set

Φ̃ε(y) = Φε(aε1 + dε1(x
ε)y)

ñε(y) = ~nε(aε1 + dε1(x
ε)y)

H̃ε(y) =
1

dε1(x
ε)|∇ηε(xε)|

~Hε(aε1 + dε1(x
ε)y)

η̃ε(y) =
1

dε1(x
ε)|∇ηε(xε)|η

ε(aε1 + dε1(x
ε)y)

(5.5.43)

Notice that, thanks to (5.5.42), we get that

∇H̃ε(y) = ∇η̃ε(y) + 1

rε0|∇ηε(xε)|
∇Hε

0(a
ε
1 + dε1(x

ε)y) +
1

rε1|∇ηε(xε)|
∇Hε

1(a
ε
1 + dε1(x

ε)y)

= ∇η̃ε(y) +O

(
1

|∇ηε(xε)|

)
+O

(
µε
1

rε1|∇ηε(xε)dε1(xε)2
)

= ∇η̃ε(y) + o(1) +O


 µε

1

rε1ε0

(
dε1(x

ε)−α + 1
rε1d

ε
1(x

ε)

)
dε1(x

ε)2




= ∇η̃ε(y) + o(1) +O

(
µε
1

dε1(x
ε)

)

= ∇η̃ε(y) + o(1)

(5.5.44)

on every compact set K of R2\{0}.
Write xε = aε1 + dε1(x

ε)yε so that yε → y0 as ε→ 0 with |y0| = 1 and |∇η̃ε(yε)| = 1. Then we have,
for every y ∈ K,

|∇η̃ε(y)| ≤
dε1(a

ε
1 + dε1(x

ε)y)−α + 1
rε1d

ε
1(a

ε
1+dε

1(x
ε)y)

dε1(x
ε)−α + 1

rε1d
ε
1(x

ε)

(1 + o(1))

≤ dε1(x
ε)1−α

dε1(x
ε)1−α + 1

rε1

|y|−α +

1
rε1

dε1(x
ε)1−α + 1

rε1

|y|−1 + o(1)

.
1

|y| + o(1)

(5.5.45)

since

lim
ε→0

1
rε1

dε1(x
ε)1−α + 1

rε1

= 1.

Moreover, thanks to estimates (5.5.7) and the fact that µε
1 = o(dε1(x

ε)), for every y ∈ R
2\{0}, we
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have

|∇Φ̃ε(y)| ≤ dε1(xε)|∇ϕε|(aε1 + dε1(x
ε)y) + rε0d

ε
1(x

ε)|∇Bε0|(aε1 + dε1(x
ε)y) + rε1d

ε
1(x

ε)|∇Bε1|(aε1 + dε1(x
ε)y)

= o

(
dε1(x

ε)

dε1(a
ε
1 + dε1(x

ε)y)

)
+ o(1) +O

(
rε1d

ε
1(x

ε)µε
1

(µε
1)

2 + |dε1(xε)y|2
)

= o

(
1

µ̃ε + |y|

)
+ o

(
µ̃ε

(µ̃ε)2 + |y|2
)

= o

(
1

µ̃ε + |y|

)
.

|∇ñε(y)| ≤ dε1(xε)|∇νε|(aε1 + dε1(x
ε)y) + dε1(x

ε)|∇N ε
0 |(aε1 + dε1(x

ε)y) + dε1(x
ε)|∇N ε

1 |(aε1 + dε1(x
ε)y)

= o

(
dε1(x

ε)

dε1(a
ε
1 + dε1(x

ε)y)

)
+ o(1) +O

(
dε1(x

ε)µε
1

(µε
1)

2 + |dε1(xε)y|2
)

= o

(
1

µ̃ε + |y|

)
+O

(
µ̃ε

(µ̃ε)2 + |y|2
)

(5.5.46)
with µ̃ε

1 :=
µε
1

dε
1(x

ε) → 0 as ε→ 0.
For R > 0, using Hodge decomposition, we can write that

∇H̃ε − 3
(
∇H̃ε ·h̃ε ñ

ε
)
ñε = ∇Cε

R +∇⊥Dε
R +∇Eε

R on D0(R)

where ∇H̃ε ·h̃ε ñε := hε(Φ̃ε)(∇H̃ε, ñε), Eε
R is a harmonic function on D0(R), Cε

R and Dε
R verify




∆Cε

R = div
(
∇H̃ε − 3

(
∇H̃ε ·h̃ε ñ

ε
)
ñε
)

on D0(R)

Cε
R = 0 on ∂D0(R)

and




∆Dε

R = 3div((∇⊥H̃ε ·h̃ε ñ
ε)ñε) on D0(R)

∂Dε
R

∂ν
= 0 on ∂D0(R)

Thanks to the third equation of the Willmore system (5.3.5), together with (5.5.45) and (5.5.46), for
every y ∈ R

2\{0}, we can write that

div
(
∇H̃ε − 3(∇H̃ε ·h̃ε ñ

ε)ñε
)
(y) = O(|∇H̃ε(y)||∇⊥ñε(y)|) + o

(
|∇H̃ε(y)||∇Φ̃ε(y)|

)

+ o
(
|H̃ε(y)∇Φ̃ε(y)||∇ñε(y)|

)
+ o

(
|∇ñε(y)||∇Φ̃ε(y)|

)

≤ o
(

1

|y|(µ̃ε
1 + |y|)

)
+O

(
µ̃ε
1

|y| ((µ̃ε
1)

2 + |y|2)

)

≤ o
(

1

|y| (µ̃ε
1 + |y|)

)
and

3div((∇⊥H̃ε ·h̃ε ñ
ε)ñε)(y) = O(|∇⊥H̃ε(y)||∇ñε(y)|) + o

(
|∇Φ̃ε(y)||∇H̃ε(y)|

)

≤ o
(

1

|y|(µ̃ε
1 + |y|)

)

(5.5.47)

Thanks to (5.5.47), there exist some CR, DR ∈ C∞(D0(R)\{0}) and dε ∈ R
3 such that, for every l ∈ N,

Cε
R → CR in Cl

loc(D0(R)\{0}) and Dε
R − dε → DR in Cl

loc(D0(R)\{0})

where CR and DR verify

{
∆CR(y) = 0 on D0(R)\{0}

CR = 0 on ∂D0(R)
and




∆DR(y) = 0 on D0(R)\{0}

∂DR

∂ν
= 0 on ∂D0(R)

(5.5.48)
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Using Green’s representation formula and estimates on∇H̃ε, we can also prove that CR andDR have
at most logarithm singularities at 0. Therefore, thanks to Bôchner’s theorem (see, e.g. Raynor [119]),
we can write that

CR(r) = ~γ ln(R/r) and DR(r) = ~δ1 ln(R/r) + ~δ2 (5.5.49)

for some ~γ, ~δ1, ~δ2 ∈ R
3.

Thanks to the divergence theorem and (5.5.47), we also have

ˆ

∂D0(R)

∂Cε
R

∂νR
dlR = −

ˆ

∂D0(R)

(
∂H̃ε

∂νR
− 3

(
∂H̃ε

∂νR
·h̃ε ñ

ε

)
ñε

)
dlR = o(1). (5.5.50)

Therefore, we get that
´

∂D0(R)
∂νCR dlR = 0, which implies ~γ = ~0.

In addition, we also have ~δ1 = ~0, since ∂DR

∂ν = 0 on ∂D0(R). Thus we get

∇CR ≡ ∇DR ≡ 0 (5.5.51)

for every R > 0.
Finally, since lim|y|→+∞∇H̃ε(y) = 0, we have that

Eε
R → 0 in Cl (D0(R)) as R→ +∞. (5.5.52)

Combining (5.5.51) and (5.5.52) with the diagonal extraction procedure, we obtain that

∇H̃ε − 3(∇H̃ε ·h̃ε ñ
ε)ñε → 0 in Cl

loc(R
2\{0})

and thus ∇H̃ε → 0 in Cl
loc(R

2\{0}), which is in contradiction with the fact that ∇H̃ε(yε) = 1 + o(1).
Hence (5.5.41) is proved.

Remark 5.5.7. These improved weak estimates are necessary since the sizes of the various spheres and
catenoids which could appear in the decomposition need not be comparable. Note also that, working
only on the gradient of Φε, it should be possible to consider also bubbles modelled on catenoids. One
would have to adapt these weak estimates.

5.5.2 Energy quantization

In this section, we show that, in addition to the weak estimates (5.5.7), we have

‖∇νε‖L2 + ‖∇ϕε‖L2 → 0 as ε→ 0. (5.5.53)

We first prove that
‖∇νε‖L2 → 0 as ε→ 0. (5.5.54)

This is in fact a direct consequence of energy quantization established in Bernard-Rivière [21]. Indeed,
it is well known that (M,h) can be smoothly embedded in R

n for some n ≥ 3 (n = 120 suffices), one
can therefore consider (Φε) as a sequence of conformal Willmore immersions with area constraint into
R

n.
We next apply the Energy tracking procedure (Lemma III.2 in [21]) around aεi for each 1 ≤ i ≤ p,

then, for 0 < α < 1, we can define the corresponding “α-neck region” Ωε(α) of Φε such that the
L2-norm of ∇~nε converges to the sum of the bubble energy∇ω̂i on the complement of Ωε(α), that is,

∀ 0 < α < 1, lim
ε→0

ˆ

R2\Ωε(α)

|∇νε|2dx = 0. (5.5.55)

This set Ωε(α) characterizes the junction between the bubbles rε0ω
ε
0 and rε1ω

ε
1. It remains to show that

asymptotically there is no energy left in neck regions.
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Since (Φε)ε>0 is a local Palais-Smale sequence for the Willmore functional (see [19] for more de-
tails), thanks to the control on conformal factor in Lemma 5.3.4, we are allowed to use Lemma V.1 and
Lemma VI.1 in [21], where uniform controls of Willmore immersion in neck regions are established,
on Ωε(α). Therefore, we deduce the no-neck energy property

lim
α→0

lim
ε→0

ˆ

Ωε(α)

|∇~nε|2dx = 0. (5.5.56)

Combining (5.5.55) and (5.5.56), we get (5.5.54).
In order to prove L2-convergence for ∇ϕε, one can check that ϕε verifies

∆ϕε = −
(
∇~̂nε0 ∧∇⊥(rε1ω

ε
1) +∇~̂nε1 ∧∇⊥(rε0ω

ε
0)
)

−∇~̂nε0 ∧∇⊥ϕε −∇~̂nε1 ∧∇⊥ϕε

+∇νε ∧∇⊥ϕε +O(ε2(|∇Φε|+ |∇~nε|)2).

(5.5.57)

With the help of stereographic coordinates, we can consider ϕε, ωε
i and νε as maps defined on S

2.
Observe that we have

rε1∇~̂nε0 ∧∇⊥ωε
1 + rε0∇~̂nε1 ∧∇⊥ωε

0 → 0 in L1(S2).

For i = 0, 1, let Uε
i and V ε be solutions of

∆Uε
i = ∇ωε

i ∧∇⊥ϕε and ∆V ε = ∇νε ∧∇⊥ϕε on S
2. (5.5.58)

Thanks to the generalized Wente inequality proved by Ge [64] (see Lemma 6.3.6) applied to (5.5.58)
together with (5.5.54) and the fact ‖∇ϕε‖2,+∞ → 0 as ε→ 0, we obtain that

‖∇Uε
i ‖2 = O(‖∇ω̂ε

i ‖2‖∇ϕε‖2,+∞) = o(1) and ‖∇V ε‖2 = O(‖∇νε‖2‖∇ϕε‖2,+∞) = o(1). (5.5.59)

Coming back to (5.5.57) with the fact that ‖Φε‖∞, ‖∇Φε‖2 and ‖∇~nε‖2 are uniformly bounded, we
get that

‖∇ϕε‖22 → 0 as ε→ 0. (5.5.60)

Hence, we retrieve the L2-convergence (5.5.53).

5.6 Adjustments of bubbles

We have previously shown that Φε behaves asymptotically as a sum of two round spheres. Since
Willmore spheres in manifolds are not exactly round and, thanks to the expansion of the metric in
normal coordinates, one can verify that the derivatives of curvature terms appear at order ε3 in the
Willmore system (5.3.5). Therefore, we would like to modify the form of our bubble rεθω

ε
θ such that it

solves the Willmore system (5.3.5) at order ε2. For each θ = 0, 1, we set

rεθBεθ = rεθc
ε
θ + rεθ(ω̂

ε
θ + ε2(rεθ)

2ϕε
θ),

N ε
θ = −ω̂ε

θ + ε2(rεθ)
2νεθ ,

Hε
θ =

1

rεθ
(−ω̂ε

θ + ε2(rεθ)
2ηεθ),

(5.6.1)
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whereN ε
θ andHε

θ represent respectively the linearized normal vector and linearized mean curvature
vector of rεθBεθ at rεθBεθ with

νεθ =
2

|∇ω̂ε
θ|2

(((ϕε
θ)x · ω̂ε

θ)(ω̂
ε
θ)x + ((ϕε

θ)y · ω̂ε
θ)(ω̂

ε
θ)y)

+
1

3
Rε(ω̂ε

θ, c
ε
θ, ω̂

ε
θ + cεθ, ·) +

1

6
Rε(ω̂θ, c

ε
θ, ω̂

ε
θ, c

ε
θ)ω̂

ε
θ,

ηεθ =
∆ϕε

θ

|∇ω̂ε
θ|2

+
2

|∇ω̂ε
θ|2

((ϕε
θ)x · (ω̂ε

θ)x + (ϕε
θ)y · (ω̂ε

θ)y) ω̂
ε
θ

+
1

3
Ricε(ω̂ε

θ + cεθ, ·)−
1

3
Rε(ω̂ε

θ, c
ε
θ, ω̂

ε
θ, ·) +

1

6
Rε(ω̂ε

θ, c
ε
θ, ω̂

ε
θ, c

ε
θ)ω̂

ε
θ,

(5.6.2)

where cεθ = O(1) is a constant vector in R
3 to be chosen later.

We also require that rεθBεθ is conformal up to order ε3, that is, at rεθBεi , we have

〈(rθBεθ)x, (rθBεθ)y〉hε(rθBε
θ)

= O(ε3(rεθ)
5|∇Bεθ|2)

〈(rθBεθ)x, (rθBεθ)x〉hε(rθBε
θ)
− 〈(rθBεθ)y, (rθBεθ)y〉hε(rθBε

θ)
= O(ε3(rεθ)

5|∇Bεθ|2),
(5.6.3)

which, thanks to expansion of the metric hε in Lemma 6.5.1, gives

(ϕε
θ)x · (ω̂ε

θ)y + (ϕε
θ)y · (ω̂ε

θ)x = −1

3
Rε ((ω̂ε

θ)x, ω̂
ε
θ + cεθ, ω̂

ε
θ + cεθ, (ω̂

ε
θ)y)

2 ((ϕε
θ)x · (ω̂ε

θ)x − (ϕε
θ)y · (ω̂ε

θ)y) = −
1

3
(Rε ((ω̂ε

θ)x, ω̂
ε
θ + cεθ, ω̂

ε
θ + cεθ, (ω̂

ε
θ)x)−Rε ((ω̂ε

θ)y, ω̂
ε
θ + cεθ, ω̂

ε
θ + cεθ, (ω̂

ε
θ)y))

(5.6.4)
Finally, we take

(ϕε
θ)k :=

1

6
Ricε(ω̂ε

θ, ·)k −
1

12
Scal(pε)(ω̂ε

θ)k +

((
αε

ε2
− 1

3
Scal(pε)

)
fεθ + gεθ

)
(ω̂ε

θ)k

− 1

6
Rε(ω̂ε

θ, c
ε
θ, c

ε
θ, ·)k −

1

3
Rε(ω̂ε

θ, c
ε
θ, ω̂

ε
θ, ·)k

(5.6.5)

where

fεθ (x) = f

( |x− aεθ|
µε
θ

)
and

gεθ =
1

4
(Rimnj(p

ε)(cεθ)
m(cεθ)

n)

(
(ω̂ε

θ)
i(ω̂ε

θ)
j +

2δij
(1 + r2)

)

+
1

12
(Rimnj(p

ε)(cεθ)
m(cεθ)

n −Ricij(pε))
(
(ω̂ε

θ)
i(ω̂ε

θ)
j − δij

4(1 + r2)

)
,

with

f(r) :=
2r2

1 + r2
ln r − ln(1 + r2)− 1

1 + r2

and r2 = x2 + y2. By Lemma 5.3.3, one can verify that

|∇ϕε
θ|2 + |∇νεθ |2 + |∇ηεθ|2 = O(|∇ω̂ε

θ|2).

Notice that the case where only one bubble appears is studied in [84] by Laurain and Mondino. In
our case where we have (at least) two bubbles rεθBεθ , since these bubbles are not centered at the same
point, we also need to take into account the presence of their barycenter in (5.6.5).

Thanks to the conformality (5.6.3) together with the fact that in dimension 3,

Rimnj = (hinRicmj − hijRicmn + hmjRicin − hmnRicij) +
Scal

2
(hijhmn − hinhmj) (5.6.6)
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one can check that (rεθBεθ,N ε
θ ,Hε

θ) solves the first two equations in (5.3.5) up to order ε3, since they
are directly derived from the conformality of the immersion. The last equation in (5.3.5) is also satis-
fied up to order ε3 thanks to the choice of f we made. Computations are tedious but straightforward.
Thus we have the following:

Proposition 5.6.1. For θ ∈ {0, 1}, rθBεθ , N ε
θ andHε

θ verify the following system of equations:




∆(rεθBεθ)k = −(Γε)kij(r
ε
θBεθ)

(
∇(rεθBεθ)i · ∇(rεθBεθ)j

)

+
√
|hε|(hε)ik(rεθBεθ)

(
∇N ε

θ ∧∇⊥rεθBεθ
)
θ

+
(
~Γε
mn(r

ε
θBεθ)(N ε

θ )
m(∇rεθBεθ)n ∧∇⊥rεθBεθ

)
k

+O
(
ε3(rεθ)

4|∇Bεθ|2
)

∆(N ε
θ )

k = −2(Γε)kij(r
ε
θBεθ)

(
∇(N ε

θ )
i · ∇(rεθBεθ)j

)

− (Γε)kij(r
ε
θBεθ)(N ε

θ )
i(∆rεθBεθ)j

− (Γε)kij, l(r
ε
θBεθ)(N ε

θ )
i(∇(rεθBεθ)j · ∇(rεθBεθ)l)

−
√
|hε|(hε)ik(rεθBεθ)

(
∇N ε

θ ∧∇⊥N ε
θ

)
θ

− 2
(
~Γε
mn(r

ε
θBεθ)(N ε

θ )
m(∇rεθBεθ)n ∧∇⊥N ε

θ

)
k

− 2
√
|hε|(hε)ik(rεθBεθ)

(
∇Hε

θ ∧∇⊥rεθBεθ
)
θ

− 2
(
~Γε
mn(r

ε
θBεθ)(Hε

θ)
m(∇rεθBεθ)n ∧∇⊥rεθBεθ

)
k

− ε2 2

|∇(rεθBεθ)|2
Rε(∂x(r

ε
θBεθ), ∂y(rεθBεθ),N ε

θ , ∂y(r
ε
θBεθ))∂x(rεθBεθ)

− ε2 2

|∇(rεθBεθ)|2
Rε(∂y(r

ε
θBεθ), ∂x(rεθBεθ),N ε

θ , ∂x(r
ε
θBεθ))∂y(rεθBεθ)

+O
(
ε3(rεθ)

3|∇Bεθ|2
)

div
(
∇Hε

θ − 3
(
∇Hε

θ ·hε
θ
N ε

θ

)
N ε

θ

)
k
= −2(Γε)kij(r

ε
θBεθ)

(
∇(Hε

θ)
i · ∇(rεθBεθ)j

)

− (Γε)kij(r
ε
θBεθ)(Hε

θ)
i(∆rεθBεθ)j

− (Γε)kij, l(r
ε
θBεθ)(Hε

θ)
i(∇(rεθBεθ)j · ∇(rεθBεθ)l)

+ 3div
((
(hε)αβ(r

ε
θBεθ)Γα

ij(r
ε
θBεθ)(Hε

θ)
i(∇(rεθBεθ)j)(N ε

θ )
β
)
N ε

θ

)

+ 3∂x
(
hεij(r

ε
θBεθ)(Hε

θ)
i(N ε

θ )
j
)
(Γε)kij(r

ε
θBεθ)(N ε

θ )
i(∂xr

ε
θBεθ)j

+ 3∂y
(
hεij(r

ε
θBεθ)(Hε

θ)
i(N ε

θ )
j
)
(Γε)kij(r

ε
θBεθ)(N ε

θ )
i(∂yr

ε
θBεθ)j

+
√
|hε|(hε)ik(rεθBεθ)

(
∇Hε

θ ∧∇⊥N ε
θ

)
θ

+
(
~Γε
mn(r

ε
θBεθ)(Hε

θ)
m(∇rεθBεθ)n ∧∇⊥N ε

θ

)
k

+
(
∇Hε

θ ∧ ~Γε
mn(r

ε
θBεθ)(N ε

θ )
m(∇⊥rεθBεθ)n

)
k

+ ε2
6

|∇(rεθBεθ)|2
Rε(∂x(r

ε
θBεθ), ∂y(rεθBεθ),Hε

θ, ∂y(r
ε
θBεθ))∂x(rθBεθ)

+ ε2
6

|∇(rεθBεθ)|2
Rε(∂y(r

ε
θBεθ), ∂x(rεθBεθ),Hε

θ, ∂x(r
ε
θBεθ))∂y(rεθBεθ)

+ ε2Ric(N ε
θ ,N ε

θ )∆(rεθBεθ)k

− αε
(
∇N ε

θ ∧∇⊥ (rεθBεθ)
)k

+O
(
ε3(rεθ)

3|∇Bεθ|2
)

.

(5.6.7)
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where rεθBεθ,N ε
θ andHε

θ are defined as in (5.6.1) and

∇Hε
θ ·hε

θ
N ε

θ := hε(rεθBεθ) (∇Hε
θ,N ε

θ ) = hεij(r
ε
θBεθ)(∇Hε

θ)
i(N ε

θ )
j .

Moreover, rεθBεθ verifies the conformality up to order ε3, that is, at rεθBεθ , we have that

〈(rεθBεθ)x, (rεθBεθ)y〉hε(rεθB
ε
θ)

= O(ε3(rεθ)
5|∇Bεθ|2)

〈(rεθBεθ)x, (rεθBεθ)x〉hε(rεθB
ε
θ)
− 〈(rεθBεθ)y, (rεθBεθ)y〉hε(rεθB

ε
θ)

= O(ε3(rεθ)
5|∇Bεθ|2)

. (5.6.8)

Now, we try to rotate our modified bubbles rεθBεθ in such a way that each revised rεθBεθ is tangent
to the Willmore spheres Σε at extremal points. Set

ϕε := Φε − rε0Bε0 − rε1Bε1, νε := ~nε −N ε
0 −N ε

1 , and ηε := ~Hε − 1

rε0
Hε

0 −
1

rε1
Hε

1.

We have the following proposition:

Proposition 5.6.2. For θ ∈ {0, 1}, up to change the (aεθ)’s and (µε
θ)’s in Theorem 5.5.1, rotate and translate

the bubbles rεθBεθ , we have:

• For all l ∈ N, we have that

Φε(aε0 + µε
0·)

rε0
− Bε0(aε0 + µε

0·)→ 0 in Cl
loc(R

2\{−a0}) as ε→ 0 and

Span{Φε
x(a

ε
0),Φ

ε
y(a

ε
0)} = Span{(rε0Bε0)x(aε0), (rε0Bε0)y(aε0)},

Φε
x(a

ε
0) = (rε0Bε0)x(aε0).

|~nε −N ε
0 |(aε0) = O

(
ε3
)

∣∣∣∣ ~Hε − 1

rε0
Hε

0

∣∣∣∣ (aε0) = O(ε2).

(5.6.9)

where cε0 is chosen so that Φε(aε0) = rε0Bε0(aε0).

• For all l ∈ N, we have that

Φε(aε1 + µε
1·)

rε1
− Bε1(aε1 + µε

1·)→ 0 in Cl
loc(R

2) as ε→ 0 and

Span{Φε
x(a

ε
1),Φ

ε
y(a

ε
1)} = Span{(rε1Bε1)x(aε1), (rε1Bε1)y(aε1)},

Φε
x(a

ε
1) = (rε1Bε1)x(aε1)

|~nε −N ε
1 | (aε1) = O(ε3(rε1)

3)∣∣∣∣ ~Hε − 1

rε1
Hε

1

∣∣∣∣ (aε1) = O
(
ε2rε1

)
(5.6.10)

where cε1 is chosen so that Φε(aε1)− rε1Bε1(aε1) = O(ε2(rε1)
3) and cε1 = O(1). Moreover, we have that

∣∣∣∣∇
(
Φε

rε1
− Bε1

)
(aε1)

∣∣∣∣ = O

(
ε3(rε1)

3

µε
1

)
,

∣∣∣∣∇2

(
Φε

rε1
− Bε

1

)
(∇Bε1)(aε1)

∣∣∣∣ = O

(
ε3(rε1)

3

(µε
1)

3

)
.

(5.6.11)

• The estimates (5.5.7) in Theorem 5.5.1 and the L2-convergence (5.5.53) still remain true.
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Proof. We first prove (5.6.9). Thanks to Theorem 5.5.1 and the adjustment of rε0Bε0 in (5.6.1), there
exists δ0 > 0 such that, for every l ∈ N,

∇Φε
0

rε0
−∇Bε0(µε

0 ·+aε0)→ 0 in Cl(B(aε0, δ0)) as ε→ 0 (5.6.12)

where Φε
0 = Φε(µε

0 ·+aε0). Thanks to (5.6.12), there exist µ̃ε
0 > 0, θ̃ε0 ∈ R and R̃ε

0 ∈ SO(3) satisfying

µ̃ε
0 = µε

0(1 + o(1)), R̃ε
0 → Id as ε→ 0,

Span{(Φ̃ε
0)x(0), (Φ̃

ε
0)y(0)} = Span{(r̃ε0R̃ε

0Bε0)x(aε0), (r̃ε0R̃ε
0Bε0)y(aε0)},

(Φ̃ε
0)x(0) = (r̃ε0R̃

ε
0Bε0)x(aε0).

(5.6.13)

where f̃ε0 = fε(eiθ̃
ε
0 µ̃ε

0 · +aε0) and 1
r̃ε0

:= H̃ε
0 · ñε

0(0). Therefore, up to replace Bε0 by R̃ε
0Bε0

(
µε
0·

eiθ̃
ε
0 µ̃ε

0

)
, rε0

by r̃ε0 and µε
0 by eiθ̃

ε
0 µ̃ε

0, we get that

Span{Φε
x(a

ε
0),Φ

ε
y(a

ε
0)} = Span{(rε0Bε0)x(aε0), (rε0Bε0)y(aε0)},

Φε
x(a

ε
0) = (rε0Bε0)x(aε0).

(5.6.14)

Moreover, we choose cε0 ∈ R
3 such that Φε(aε0) = rε0Bε0(aε0). Since ~nε = ⋆hε

Φε∧Φε

|Φε∧Φε| , together with
(5.6.1), (5.6.14) and (6.5.1), we get that

|~nε −N ε
0 | (aε0) = O(ε3). (5.6.15)

Thanks to the choice of rε0, together with (5.6.15) and the fact that
∣∣∣ 1
rε0
N ε

0 (a
ε
0)− 1

rε0
Hε

0(a
ε
0)
∣∣∣ = O

(
ε2(rε0)

)
=

O(ε2) given by (5.6.1), we also obtain that
∣∣∣∣ ~Hε − 1

rε0
Hε

0

∣∣∣∣ (aε0) = O(ε2). (5.6.16)

Next, we prove (5.6.10). Thanks to Theorem 5.5.1, there exists δ1 > 0 such that, for every l ∈ N,

Φε
1

rε1
− ω̂1 → 0 in Cl(B(0, δ1)) (5.6.17)

as ε→ 0, where Φε
1 = Φε(µε

1 ·+aε1). Thanks to (5.6.17) and the fact that

|∇ω̂1|(0) = max
R2
|∇ω̂1| (5.6.18)

there exists ãε1 ∈ R
2 such that

|ãε1 − aε1| = o(µε
1) and

∣∣∣∣∇
(
Φε

1

rε1

)∣∣∣∣ attains its local maximum at ãε1. (5.6.19)

In addition, (5.6.17) also implies the existence of µ̃ε
1 > 0, θ̃ε1 ∈ R and R̃ε

1 ∈ SO(3) satisfying

µ̃ε
1 = µε

1(1 + o(1)), R̃ε
1 → Id as ε→ 0,

Span{(Φ̃ε
1)x(0), (Φ̃

ε
1)y(0)} = Span{(rε1R̃ε

1ω1)x(0), (r
ε
1R̃

ε
1ω1)y(0)},

(Φ̃ε
1)x(0) = (rε1R̃

ε
1ω1)x(0).

(5.6.20)

where Φ̃ε
1 = Φε(eiθ̃

ε
1 µ̃ε

1 ·+ãε1).

109



Thanks to (5.6.18) and (5.6.1), there exists bε1 = o(1) such that |∇(R̃ε
1B̃ε1)| attains its local maximum

at bε1. Moreover, thanks to the adjustment of bubble (5.6.1), we also have that that
∣∣∣∇R̃ε

1

(
ω̃ε
1 − B̃ε1

)∣∣∣ =
O(ε2(rε1)

2) in a neighborhood of 0, where B̃ε1 = Bε(eiθ̃ε
1 µ̃ε

1 ·+ãε1). Therefore, we get that

|bε1| = O(εrε1)∣∣∣∣∣∇
(
Φ̃ε

1

rε1

)
(0)−∇R̃ε

1B̃ε1(bε1)
∣∣∣∣∣ = O(εrε1),

(5.6.21)

which implies that there exist µ̂ε
1 > 0, θ̂ε1 ∈ R and R̂ε

1 ∈ SO(3) satisfying

µ̂ε
1 = µ̃ε

1(1 +O(εrε1)),

|R̂ε
1 − Id| = O(εrε1)

(5.6.22)

such that

Span{(Φ̂ε
1)x(0), (Φ̂

ε
1)y(0)} = Span{(r̂ε1R̂ε

1R̃
ε
1B̃ε1)x(bε1), (r̂ε1R̂ε

1R̃
ε
1B̃ε1)y(bε1)} and

(Φ̂ε
1)x(0) = (r̂ε1R̂

ε
1R̃

ε
1B̃ε1)x(bε1).

(5.6.23)

where f̂ε1 = f̃ε1 (e
iθ̂ε

1 µ̂ε
1·) and 1

r̂ε1
:= Ĥε

1 · n̂ε1(0).

Up to replace Bε1 by R̂ε
1R̃

ε
1B̃ε

(
·−ãε

1

eiθ̂
ε
1µε

1

+ bε1

)
,rε1 by r̂ε1, µε

1 by ei(θ̃
ε
1+θ̂ε

1)µ̃ε
1µ̂

ε
1 and aε1 by ãε1, we get that

Span {(Φε
1)x(a

ε
1), (Φ

ε
1)y(a

ε
1)} = Span {(rε1Bε1)x(aε1), (rε1Bε1)y(aε1)}

(Φε
1)x(a

ε
1) = (rε1Bε1)x(aε1)

(5.6.24)

Now, we take
rε1c

ε
1 := Φε(aε1)− rε1ω̂ε

1(a
ε
1) = O(rε1). (5.6.25)

Thanks to the above adjustments (5.6.22), (5.6.24) and the choice (5.6.25) of cε1 we obtain that

|Φε(aε1)− rε1Bε1(aε1)| = O(ε2(rε1)
3) (5.6.26)

and ∣∣∣∣∣

(
Φε

rε1

)

y

(aε1)− (Bε1)y(aε1)
∣∣∣∣∣ = O(εrε1). (5.6.27)

Using the quasi-conformality (5.6.8) of rε1Bε1 and the conformality of Φε with respect to the metric hε,
together with (5.6.26) and (5.6.27), we get that

∣∣∣∣∇
(
Φε

rε1
− Bε1

)
(aε1)

∣∣∣∣ = O

(
ε3(rε1)

3

µε
1

)
,

∣∣∣∣∇2

(
Φε

rε1
− Bε1

)
(∇Bε1)(aε1)

∣∣∣∣ = O

(
ε3(rε1)

3

(µε
1)

3

)
.

(5.6.28)

Moreover, thanks to the fact that

(~nε)k =
(hε)ikνi
|(hε)ijνiνj |

at Φε(aε1) and (N ε
1 )

k =
(hε)ikνi
|(hε)ijνiνj |

+O
(
ε3(rε1)

3
)

at rε1Bε1(aε1)

with ν(aε1) =
Φε

x(a
ε
1)∧Φε

y(a
ε
1)

|Φε
x(a

ε
1)∧Φε

y(a
ε
1)|

=
(rε1B

ε
1)x(a

ε
1)∧(rε1B

ε
1)y(a

ε
1)

|(rε1B
ε
1)x(a

ε
1)∧(rε1B

ε
1)y(a

ε
1)|

thanks to (5.6.24), we get that

|~nε −N ε
1 |(aε1) = O

(
ε2|Φε − rε1Bε1|(aε1) + ε3(rε1)

3
)
= O(ε3(rε1)

3). (5.6.29)
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Thanks to the choice of rε1 in (5.6.23), together with (5.6.29) and the fact that
∣∣∣ 1
rε1
N ε

1 −Hε
1

∣∣∣ (aε1) =

O
(
ε2(rε1)

)
given by (5.6.1), we also obtain that

∣∣∣∣ ~Hε − 1

rε1
Hε

1

∣∣∣∣ (aε1) = O
(
ε2rε1

)
(5.6.30)

Finally, one can also verify that the estimates (5.5.7) established in Theorem 5.5.1 and the L2-
convergence (5.5.53) still hold.

Thanks to Proposition 5.6.1 and the expansion of metrics, we check that ϕε, νε and ηε satisfy the
following linearized system of (5.3.5):

Proposition 5.6.3. Under the preceding notations, we have





∆ϕε = ∇νε ∧∇⊥ϕε +∇N ε
0 ∧∇⊥ϕε +∇N ε

1 ∧∇⊥ϕε

+ rε0
(
∇N ε

1 ∧∇⊥Bε0 +∇νε ∧∇⊥Bε0
)

+ rε1
(
∇N ε

0 ∧∇⊥Bε1 +∇νε ∧∇⊥Bε1
)

+Rε(ϕ)

∆νε = −∇νε ∧∇⊥νε − 2
(
∇⊥N ε

0 ∧∇νε +∇⊥N ε
1 ∧∇νε +∇⊥N ε

0 ∧∇N ε
1

)

− 2∇ηε ∧∇⊥ϕε

− 2∇ηε ∧
(
rε0∇⊥Bε0 + rε1∇⊥Bε1

)

− 2

(
1

rε0
∇Hε

0 +
1

rε1
∇Hε

1

)
∧∇⊥ϕε

− 2
rε1
rε0
∇Hε

0 ∧∇⊥Bε1 − 2
rε0
rε1
∇Hε

1 ∧∇⊥Bε0

+Rε(ν),

div (∇ηε − 3 (∇ηε ·hε ~nε)~n) = −∇⊥νε ∧∇ηε −∇⊥N ε
0 ∧∇ηε −∇⊥N ε

1 ∧∇ηε

− 1

rε0
∇⊥(νε +N ε

1 ) ∧∇Hε
0 −

1

rε1
∇⊥(νε +N ε

0 ) ∧∇Hε
1

+ 3

(
div

((
∇ 1

rε0
Hε

0 ·hε
0
(~n−N ε

0 )

)
~n

)
+ div

((
∇ 1

rε0
Hε

0 ·hε
0
N ε

0

)
(~n−N ε

0 )

))

+ 3

(
div

((
∇ 1

rε1
Hε

1 ·hε
1
(~n−N ε

1 )

)
~n

)
+ div

((
∇ 1

rε1
Hε

1 ·hε
1
N ε

1

)
(~n−N ε

1 )

))

+Rε(η),

(5.6.31)
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where, thanks to Lemma 6.5.1, the remainders Rε(ϕ), Rε(ν), Rε(η) verify:

Rε(ϕ)k := −(Γk
ij)

ε(Φε)


(∇Φε)i(∇Φε)j −

∑

θ=0,1

(∇rεθBεθ)i(∇rεθBεθ)j



+Bε
ik(Φ

ε)


(∇~nε) ∧ (∇⊥Φε)−

∑

θ=0,1

(∇N ε
θ ) ∧ (∇⊥rεθBεθ)




i

+ ~Γε
mn(Φ

ε)(~nε)m


(∇Φε)

n ∧∇⊥Φε −
∑

θ=0,1

(∇rεθBεθ)n ∧∇⊥rεθBεθ




+O


ε2

∑

θ=0,1

rεθ|Φε − rεθBεθ||∇ω̂ε
θ|2



+O
(
ε3(|Φε − rε1Bε1|2|∇Φε|2 + |Φε − rε1Bε1|3|∇~nε||∇Φε|)

)
+O

(
ε3(rε1)

4|∇ω̂ε
1|2
)

(5.6.32)

Rε(ν)k := −2(Γk
ij)

ε(Φε)


(∇~nε)i(∇Φε)j −

∑

θ=0,1

(∇N ε
θ )

i(∇rεθBεθ)j



− (Γk
ij)

ε(Φε)(~nε)i


(∆Φε)j −

∑

θ=0,1

(∆rεθBεθ)j



− ∂l(Γε)kij(Φ
ε)(~nε)i


(∇Φε)j(∇Φε)l −

∑

θ=0,1

(∇rεθBεθ)j(∇rεθBεθ)l



−Bε
ik(Φ

ε)


(∇~nε) ∧ (∇⊥~nε)−

∑

θ=0,1

(∇N ε
θ ) ∧ (∇⊥N ε

θ )




i

− 2Bε
ik(Φ

ε)


(∇ ~Hε) ∧ (∇⊥Φε)−

∑

θ=0,1

(∇ 1

rεθ
Hε

θ) ∧ (∇⊥rεθBεθ)




i

− 2~Γε
mn(Φ

ε)(~nε)m


(∇~nε)n ∧∇⊥Φε −

∑

θ=0,1

(∇N ε
θ )

n ∧∇⊥rεθBεθ




− 2~Γε
mn(Φ

ε)( ~Hε)m


(∇Φε)

n ∧∇⊥Φε −
∑

θ=0,1

(∇rεθBεθ)n ∧∇⊥rεθBεθ




+O


ε2

∑

θ=0,1

|Φε − rεθBεθ||∇ω̂ε
θ|2



+O


ε2

∑

θ=0,1

rεθ|~nε −N ε
θ ||∇ω̂ε

θ|2



+O


ε2

∑

θ=0,1

∣∣∣∣ ~Hε − 1

rεθ
Hε

θ

∣∣∣∣ |∇(rεθBεθ)|2



+O
(
ε3|Φε − rε1Bε1|3(|∇~nε|2 + |∇ ~Hε||∇Φε|)

)
+O

(
ε3(rε1)

3|∇ω̂ε
1|2
)

and

(5.6.33)
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Rε(η)k := −2(Γk
ij)

ε(Φε)


(∇ ~Hε)i(∇Φε)j −

∑

θ=0,1

(∇ 1

rεθ
Hε

θ)
i(∇rεθBεθ)j




− (Γk
ij)

ε(Φε)


( ~Hε)i(∆Φε)j −

∑

θ=0,1

(
1

rεθ
Hε

θ)
i(∆rεθBεθ)j




− ∂l(Γk
ij)

ε(Φε)( ~Hε)i


(∇Φε)j(∇Φε)l −

∑

θ=0,1

(∇rεθBεθ)j(∇rεθBεθ)l



+Bε
ik(Φ

ε)


(∇ ~Hε) ∧ (∇⊥~nε)−

∑

θ=0,1

(∇ 1

rεθ
Hε

θ) ∧ (∇⊥N ε
θ )




i

+ ~Γε
mn(Φ

ε)( ~Hε)m


(∇Φε)

n ∧∇⊥~nε −
∑

θ=0,1

(∇rεθBεθ)n ∧∇⊥N ε
θ




+∇ ~Hε ∧ ~Γε
mn(Φ

ε)(~nε)m(∇⊥~nε)n −
∑

θ=0,1

∇
(

1

rεθ
Hε

θ

)
∧ ~Γε

mn(Φ
ε)(~nε)m(∇⊥N ε

θ )
n

+
∑

θ=0,1

3div

(
(hε(Φε)− hε(rεθBεθ))ij

(
∇ 1

rεθ
Hε

θ

)i

(~nε)j(~nε)

)

+ 3div


(hε)αβ(Φ

ε)~Γα
ij(Φ

ε)


( ~H)i(∇Φε)j(~n)β~n−


∑

θ=0,1

(
1

rεθ
Hε

θ

)i

∇(rεθBεθ)j(N ε
θ )

βN ε
θ








+ 3∇( ~Hε · ~nε) • (Γε)kij(Φ
ε)(~nε)i (∇Φε)

j − 3
∑

θ=0,1

∇( 1
rεθ
Hε

θ · N ε
θ ) • (Γε)kij(Φ

ε)(N ε
θ )

i (∇ (rεθBεθ))j

+O


ε2

∑

θ=0,1

1

rεθ
|Φε − rεθBεθ||∇ω̂ε

θ|2



+O


ε2

∑

θ=0,1

|~nε −N ε
θ ||∇ω̂ε

θ|2



+O


ε2

∑

θ=0,1

rεθ

∣∣∣∣ ~Hε − 1

rεθ
Hε

θ

∣∣∣∣ |∇ω̂ε
θ|2



+O
(
ε3|Φε − rε1Bε1|3

(
|∇ ~Hε||∇~nε|

)
+ ε3|Φε − rε1Bε1|2|∇ ~Hε||∇Φε|

)
+O

(
ε3(rε1)

2|∇ω̂ε
1|2
)
.

(5.6.34)

where Bε
ik(Φ

ε) =
(√
|hε|hε − δ

)ik
.

In addition, combining (5.6.8) and the conformality of Φε, we have that

Proposition 5.6.4. Under the preceding notations, ϕε satisfies the relation of quasi-conformality: for θ = 0, 1,
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at rθBεθ , we have that

〈ϕε
x, ϕ

ε
y〉+

(
〈(rεθBεθ)x, ϕε

y〉+ 〈ϕε
x, (r

ε
θBεθ)y〉

)

= O
(
rεθr

ε
1−θ〈(Bεθ)x, (Bε1−θ)y〉

)
+O

(
ε2(rεθ)

2|Φε − rεθBεθ||∇Bεθ|2
)

+O
(
ε2rε1−θ|∇Bε1−θ|2

)
+O

(
ε3(|Φε − rεθcεθ|2|∇Φε|2 + |Φε − rεθcεθ|3(|∇~nε||∇Φε|)

)

+O
(
ε3(rεθ)

5|∇ω̂ε
θ|2
)

and

〈ϕε
x, ϕ

ε
x〉 − 〈ϕε

y, ϕ
ε
y〉+

(
〈(rεθBεθ)x, ϕε

x〉 − 〈(rεθBεθ)y, ϕε
y〉
)

= O
(
rεθr

ε
1−θ〈(Bεθ)x, (Bε1−θ)x〉hε

− 〈(Bεθ)y, (Bε1−θ)y〉hε

)

+O
(
ε2(rεθ)

2|Φε − rεθBεθ||∇Bεθ|2
)

+O
(
ε2rε1−θ|∇Bε1−θ|2

)
+O

(
ε3(|Φε − rεθcεθ|2|∇Φε|2 + |Φε − rεθcεθ|3(|∇~nε||∇Φε|)

)

+O
(
ε3(rεθ)

5|∇ω̂ε
θ|2
)

.

(5.6.35)

5.7 Strong pointwise estimates

Throughout the rest of this section, we show how to use the system of equations with nonlinearities
of Wente type to obtain strong pointwise estimates on our sequence, starting from the weak ones
obtained previously. We shall also show how to deduce that the Willmore surfaces concentrate at a
critical point of the scalar curvature once these estimates are obtained.

The aim would be to obtain these estimates with a sum of an arbitrary number of bubbles (spheres
and catenoids) and one would have to adapt the arguments below to catenoids. However, even if we
know that "two spheres imply a catenoid", we present the estimates with two spheres to show how
to deal with interaction terms in the estimate. At last, we shall assume that the two bubbles rε0Bε0 and
rε1Bε1 do not degenerate, that is,

lim inf
ε→0

rε0 > 0 and lim inf
ε→0

rε1 > 0.

This last assumption is useful only for the conclusion, not for the estimates. If this is not the case, we
believe (and heuristics tell so) that the interaction with the catenoid would be the leading term.

5.7.1 Strong pointwise estimates

Set
ρεϕ := sup

x∈R2

(
1 + |x|2

)
|∇ϕε(x)|,

ρεν := sup
x∈R2

(
1 + |x|2

)
|∇νε(x)|,

ρεη := sup
x∈R2

(
1 + |x|2

)
|∇ηε(x)|,

ρε := max{ρεϕ, ρεν , ρεη} and

(5.7.1)

ρεϕ,i,R := sup
x∈Ωε

i (R)

(
1 + |x|2

)
|∇ϕε(x)|,

ρεν,i,R := sup
x∈Ωε

i (R)

(
1 + |x|2

)
|∇νε(x)|,

ρεη,i,R := sup
x∈Ωε

i (R)

(
1 + |x|2

)
|∇ηε(x)|

ρεi,R := max{ρεϕ,i,R, ρ
ε
ν,i,R, ρ

ε
η,i,R}

(5.7.2)
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for R > 0 and i = 0, 1, where

Ωε
0(R) := Daε

0
(Rµε

0)\Daε
1

(
µε
0

R

)
and Ωε

1(R) := Daε
1
(Rµε

1)\Daε
0

(
µε
1

R

)
.

With the help of (5.6.31) in Proposition 5.6.3, we are now able to enhance the pointwise estimates
(5.5.7) established in Theorem 5.5.1.

In order to obtain precise pointwise estimates, we will adapt a “bootstrap” approach which con-
sists of studying successively the equations of the system (5.6.31) and getting estimates with the help
of previous ones.

Claim 5.7.1. For every R > 0 and x ∈ D0(R), we have that

(1 + |x|)|∇ϕε|(x) .
(
ρεϕ,0,R + rε0ρ

ε
ν,0,R + ε3 +R−1

(
ρεϕ + rε0ρ

ε
ν

))
(1 + |x|)−1

+
((
ρεϕ,1,R + rε1ρ

ε
ν,1,R

))(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)

+
((
ρεϕ + rε1ρ

ε
ν

))(
R+

|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)

+

(
ε3(rε1)

4

µε
1

+ 1

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+
√
‖∇νε‖2‖∇ϕε‖2ρεϕρεν (1 + |x|)−1

(5.7.3)

Proof of Claim 5.7.1: Let us write with Proposition 5.6.3 and the Green’s representation formula in
Lemma 6.2.2 that

(1 + |x|) |∇ϕε(x)| . (1 + |x|) |∇ψε
ϕ,ν(x)|

+

ˆ

R2

1 + |y|
|x− y| |∇B

ε
0(y)| (|∇ϕε|+ rε0|∇νε|) (y) dy

+

ˆ

R2

1 + |y|
|x− y| |∇B

ε
1(y)| (|∇ϕε|+ rε1|∇νε|) (y) dy

+

ˆ

R2

1 + |y|
|x− y| |∇B

ε
0(y)||∇Bε1(y)| dy

+ ε2
ˆ

R2

1 + |y|
|x− y|

(
|∇ϕε(y)|2 + |∇νε(y)||∇ϕε(y)|

)
dy

+ ε2
∑

i=0,1

rεi

ˆ

R2

1 + |y|
|x− y| |∇B

ε
i (y)|2|Φε − rεiBεi |(y)dy

+ ε3
ˆ

R2

1 + |y|
|x− y|

(
|∇Bε0|2 + (rε1)

4|∇Bε1|2
)
(y) dy.

(5.7.4)

Claim 5.7.2. For every x ∈ R
2, we have that

(1 + |x|2)2|∇ψε
ϕ,ν(x)|2 . ‖∇νε‖L2(R2)‖∇ϕε‖L2(R2)ρ

ε
ϕρ

ε
ν . (5.7.5)

In particular, thanks to (5.5.53), we get that

(1 + |x|) |∇ψε
ϕ,ν | = o

(
(ρεϕ + ρεν) (1 + |x|)−1

)
. (5.7.6)
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Proof of Claim 5.7.2: With the help of stereographic coordinates π : R2 → S
2 and thanks to conformal

invariance of the equation and the energy, ψε
ϕ,ν ◦ π−1, ϕε ◦ π−1 and νε ◦ π−1 are maps defined on

(S2, g0) satisfying
∆g0(ψ

ε
ϕ,ν ◦ π−1) = ∇g0(ϕ

ε ◦ π−1) ∧∇g0(ν
ε ◦ π−1) on S

2.

Thanks to Lemma 6.3.8 and , we have

‖∇g0(ψ
ε
ϕ,ν ◦ π−1)‖2∞ . ‖∇g0(ϕ

ε ◦ π−1)‖∞‖∇g0(ν
ε ◦ π−1)‖∞‖osc(ψε

ϕ,ν ◦ π−1)‖∞
. ‖∇g0(ϕ

ε ◦ π−1)‖∞‖∇g0(ν
ε ◦ π−1)‖∞‖∇g0(ϕ

ε ◦ π−1)‖2‖∇g0(ν
ε ◦ π−1)‖2

. ‖∇g0(ϕ
ε ◦ π−1)‖∞‖∇g0(ν

ε ◦ π−1)‖∞‖∇ϕε‖2‖∇νε‖2.
(5.7.7)

Moreover, since for every f ∈ C∞(S2) and ∀x ∈ R
2, we have

‖∇g0f(π(x))‖g0(π(x)) = e−λ(x)‖∇(f ◦ π)(x)‖euc
where (π∗)(g0) = e2λheuc with eλ = 2

1+|x|2 . We get that, for every x ∈ R
2

(1 + |x|2)2|∇ψε
ϕ,ν(x)|2 . ‖∇ϕε‖2‖∇νε‖2ρεϕρεν .

In particular, thanks to (5.5.53), ∇ϕε → 0 and ∇νε → 0 in L2(R2) as ε→ 0, we obtain that

(1 + |x|)−1 |∇ψε
ϕ,ν(x)| .

√
‖∇ϕε‖2‖∇νε‖2ρεϕρεν (1 + |x|)−1

= o
(
(ρεϕ + ρεν) (1 + |x|)−1

)
. (5.7.8)

Thanks to the definitions (5.7.1) of ρε and (5.7.2) of ρεi,R, we can also write that, for i = 0, 1

ˆ

R2

1 + |y|
|x− y| |∇B

ε
i (y)| (|∇ϕε|+ rεi |∇νε|) (y) dy

. (ρεϕ,i,R + rεi ρν,i,R)

ˆ

Ωε
i,R

1

|x− y| (1 + |y|) |∇B
ε
i (y)| dy + (ρεϕ + rεi ρ

ε
ν)

ˆ

R2\Ωε
i,R

1

|x− y| (1 + |y|) |∇B
ε
i (y)|dy

. ρεi,R

ˆ

R2

1

|x− y|(1 + |y|)
µε
i

(µε
i )

2 + |y − aεi |2
dy + ρε

ˆ

R2\Ωε
i,R

1

|x− y|(1 + |y|)
µε
i

(µε
i )

2 + |y − aεi |2
dy.

This leads by direct computations to
ˆ

R2

1 + |y|
|x− y| |∇B

ε
0(y)| (|∇ϕε|+ rε0|∇νε|) (y)dy .

(
ρε0,R +R−1ρε

)
(1 + |x|)−1 and

ˆ

R2

1 + |y|
|x− y| |∇B

ε
1(y)| (|∇ϕε|+ rε1|∇νε|) (y)dy

. ρε1,R

(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)
+ ρε

(
R+

|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)
.

(5.7.9)

In order to estimate the term in |∇Bε0||∇Bε1|, we can write that
ˆ

R2

1 + |y|
|x− y| |∇B

ε
0(y)||∇Bε1(y)|dy .

ˆ

R2

1 + |y|
|x− y|

µε
0

(µε
0)

2 + |y − aε0|2
µε
1

(µε
1)

2 + |y − aε1|2
dy

.

ˆ

R2

1

|x− y|
1

1 + |y|
µε
1

(µε
1)

2 + |y − aε1|2
dy

.

ˆ

R2

1∣∣∣x−aε
1

µε
1
− y
∣∣∣

1

1 + |µε
1y + aε1|

1

1 + |y|2 dy

.

(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)
.

(5.7.10)
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Claim 5.7.3. For every 1 < β < 2, we have

ε2
ˆ

R2

1 + |y|
|x− y| |∇ϕ

ε|2(y) dy = o
(
ε2(ρεϕ)

2−β (1 + |x|)−1
)

+ o
(
ε2(ρεϕ)

2−β(rε1 + µε
1)

β (µε
1 + |x− aε1|)1−β

(1 + |x|)β−2
)
.

(5.7.11)

In particular, by taking β = 4
3 , we get that

ε2
ˆ

R2

1 + |y|
|x− y| |∇ϕ

ε|2(y) dy = o
(
(ε3 + ρεϕ) (1 + |x|)−1

)
+ o

(
ε3(rε1)

4

µε
1

(
1 +
|x− aε1|
µε
1

)−1
)
. (5.7.12)

Proof of Claim 5.7.3: For 1 < β < 2, we can write that

ˆ

R2

1 + |y|
|x− y| |∇ϕ

ε|2(y) dy ≤ (ρεϕ)
2−β

ˆ

R2

1

|x− y| (1 + |y|)3−2β
|∇ϕε|β(y) dy.

Thanks to the pointwise estimates (5.5.33) in Proposition 5.5.3, we have, for every 0 < α < 1,

|∇ϕε|(y) = o

(
1

(µε
1 + |y − aε1|)α (1 + |y|)2−α +

rε1 + µε
1

(µε
1 + |y − aε1|) (1 + |y|)

)
,

so that

ˆ

R2

1 + |y|
|x− y| |∇ϕ

ε|2(y)dy = o

(
(ρεϕ)

2−β

ˆ

R2

1

|x− y|
1

(µε
1 + |y − aε1|)αβ (1 + |y|)3−αβ

dy

)

+ o

(
(ρεϕ)

2−β (rε1 + µε
1)

β
ˆ

R2

1

|x− y|
1

(µε
1 + |y − aε1|)β (1 + |y|)3−β

dy

)

(5.7.13)
Taking 0 < α < 1 such that αβ < 1, we can write that

ε2
ˆ

R2

1 + |y|
|x− y| |∇ϕ

ε|2(y) dy = o
(
ε2(ρεϕ)

2−β (1 + |x|)−1
)

+ o
(
ε2(ρεϕ)

2−β(rε1 + µε
1)

β (µε
1 + |x− aε1|)1−β

(1 + |x|)β−2
)
.

(5.7.14)

Take β = 4
3 . Thanks to Young’s inequality, we have that

ε2
ˆ

R2

1 + |y|
|x− y| |∇ϕ

ε|2(y) dy = o
(
ε2(ρεϕ)

2
3 (1 + |x|)−1

)

+ o
(
ε2(ρεϕ)

2
3 (rε1 + µε

1)
4
3 (µε

1 + |x− aε1|)−
1
3 (1 + |x|)− 2

3

)
.

= o
(
ε3 (1 + |x|)−1

)
+ o

(
ε

3
2 ρεϕ (1 + |x|)−1

)

+ o
(
ε3 (rε1 + µε

1)
4
(µε

1 + |x− aε1|)−1
)

= o
(
(ε3 + ρεϕ) (1 + |x|)−1

)
+ o

(
ε3(rε1)

4

µε
1

(
1 +
|x− aε1|
µε
1

)−1
)
.

(5.7.15)
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Claim 5.7.4. For every 0 ≤ β < 1 and 0 ≤ γ < 1 such that β + γ > 1, we have that

ε2
ˆ

R2

1 + |y|
|x− y| |∇ϕ

ε||∇νε(y)| dy = o
(
ε2(ρεϕ)

1−γ(ρεν)
1−β

(
1 + |x|−1

))

+ o
(
ε2(ρεϕ)

1−γ(ρεν)
1−β (rε1 + µε

1)
γ
(µε

1 + |x− aε1|)1−β−γ
(1 + |x|)β+γ−2

)
.

(5.7.16)

In particular, by taking β = 1
2 and γ = 2

3 , we get that

ε2
ˆ

R2

1 + |y|
|x− y| |∇ϕ

ε||∇νε(y)| dy = o
((
ε3 + ρεϕ + ρεν

)
(1 + |x|)−1

)

+ o

(
ε3(rε1)

4

µε
1

(
1 +
|x− aε1|
µε
1

)−1
)
.

(5.7.17)

Proof of Claim 5.7.4: Let 0 ≤ β < 1 and 0 ≤ γ < 1 such that β + γ > 1. Thanks to (5.5.7) in Theorem
5.5.1 and (5.5.33) in Proposition 5.5.3, proceeding as in Claim 5.7.3, we have that, for every 0 < α < 1
such that β + αγ < 1,

ε2
ˆ

R2

1 + |y|
|x− y| |∇ϕ

ε||∇νε(y)| dy = o

(
ε2(ρεϕ)

1−γ(ρεν)
1−β

ˆ

R2

1

|x− y|
1

(µε
1 + |y − aε1|)αγ+β

(1 + |y|)3−(αγ+β)
dy

)

+ o

(
ε2(ρεϕ)

1−γ(ρεν)
1−β(rε1 + µε

1)
γ

ˆ

R2

1

|x− y|
1

(µε
1 + |y − aε1|)β+γ

(1 + |y|)3−(β+γ)
dy

)

= o
(
ε2(ρεϕ)

1−γ(ρεν)
1−β (1 + |x|)−1

)

+ o
(
ε2(ρεϕ)

1−γ(ρεν)
1−β(rε1 + µε

1)
γ (µε

1 + |x− aε1|)1−(β+γ)
(1 + |x|)(β+γ)−2

)
.

(5.7.18)
Take β = 1

2 , γ = 2
3 . Thanks to Young’s inequality, we have that

ε2
ˆ

R2

1 + |y|
|x− y| |∇ϕ

ε||∇νε(y)| dy = o
(
ε2(ρεϕ)

1
3 (ρεν)

1
2 (1 + |x|)−1

)

+ o
(
ε2(ρεϕ)

1
3 (ρεν)

1
2 (rε1 + µε

1)
2
3 (µε

1 + |x− aε1|)−
1
6 (1 + |x|)− 5

6

)

= o

((
ε12 +

(
(ρεϕ)

1
3 (ρεν)

1
2

) 6
5

)
(1 + |x|)−1

)

+ o

((
ε

3
2 (ρεϕ)

1
3 (ρεν)

1
2

) 6
5

(1 + |x|)−1

)

+ o
(
ε3 (rε1 + µε

1)
4
(µε

1 + |x− aε1|)−1
)

= o

((
ε3 +

(
(ρεϕ)

5
6 + (ρεν)

5
6

) 6
5

)
(1 + |x|)−1

)

+ o

(
ε3(rε1)

4

µε
1

(
1 +
|x− aε1|
µε
1

))

= o
((
ε3 + ρεϕ + ρεν

)
(1 + |x|)−1

)

+ o

(
ε3(rε1)

4

µε
1

(
1 +
|x− aε1|
µε
1

))

.

(5.7.19)
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Let us write now that

(Φε − riBεi )(x) = (Φε − riBεi )(x)− (Φε − riBεi )(aεi ) +O(ε2(rεi )
3),

thanks to Proposition 5.6.2. Thus we have that

|(Φε − rεiBεi )(x)| ≤ C
(
ε2(rεi )

3 + |ϕε(x)− ϕε(aεi )|+ rε1−i|Bε1−i(x)− Bε1−i(a
ε
i )|
)
. (5.7.20)

We clearly have, thanks to the definition (5.7.1) of ρεϕ that

|ϕε(x)− ϕε(aεi )| . ρεϕ|x− aεi | . ρεϕ (|x− aεi |+ µε
i ) .

Thus, by straightforward computations, we can already write that

ε2
ˆ

R2

1 + |y|
|x− y| |∇B

ε
i (y)|2|(Φε − rεiBεi )|(y) dy

. ε4(rεi )
3

ˆ

R2

1 + |y|
|x− y|

(
µε
i

(µε
i )

2 + |y − aεi |2
)2

dy

+ ε2ρεϕ

ˆ

R2

1 + |y|
|x− y|

(µε
i )

2

(µε
i )

3 + |y − aεi |3
dy

+ ε2rε1−i

ˆ

R2

1 + |y|
|x− y|

(µε
i )

2

(µε
i + |y − aεi |)

4 |Bε1−i(y)− Bε1−i(a
ε
i )|dy

.
ε4(rεi )

3

µε
i + |x− aεi |

+ ε2ρεϕ
µε
i

µε
i + |x− aεi |

+ ε2rε1−i

ˆ

R2

1

|x− y|
(µε

i )
2

(µε
i + |y − aεi |)

4 |Bε1−i(y)− Bε1−i(a
ε
i )|dy

.

(
ε4(rεi )

3

µε
i

+ ε2ρεϕ

)(
1 +
|x− aεi |
µε
i

)−1

+ ε2rε1−i

ˆ

R2

1 + |y|
|x− y|

(µε
i )

2

(µε
i + |y − aεi |)

4 |Bε1−i(y)− Bε1−i(a
ε
i )| dy.

(5.7.21)

Estimating the last integral is more tricky. By distinguishing appropriate cases, we claim the
following:

Claim 5.7.5. For i = 0, 1, we have that, for all x ∈ R
2,

ˆ

R2

1 + |y|
|x− y|

(µε
i )

2

(µε
i + |y − aεi |)4

|Bεj (y)− Bεj (aεi )|dy .


µε

j

(
1 +
|x− aεi |
µε
i

)−1

+ µε
i

(
1 +
|x− aεj |
µε
j

)−1

 ,

where j = 1− i and aεi is chosen as in Proposition 5.6.2.

Proof of Claim 5.7.5: We first write that

ˆ

R2

1

|x− y|
(µε

i )
2

(µε
i + |y − aεi |)4

|Bεj (y)− Bεj (aεi )|dy = Aε
1(x) +Aε

2(x) +Aε
3(x),
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where

Aε
1(x) =

ˆ

B |aε
j
−aε

i
|

2

(aε
i )

1

|x− y|
(µε

i )
2

(µε
i + |y − aεi |)4

|Bεj (y)− Bεj (aεi )|dy,

Aε
2(x) =

ˆ

B |aε
j
−aε

i
|

2

(aε
j)

1

|x− y|
(µε

i )
2

(µε
i + |y − aεi |)4

|Bεj (y)− Bεj (aεi )|dy and

Aε
3(x) =

ˆ

Bc
|aε

j
−aε

i
|

2

(bεj)
⋂

Bc
|aε

j
−aε

i
|

2

(aε
j)

1

|x− y|
(µε

i )
2

(µε
i + |y − aεi |)4

|Bεj (y)− Bεj (aεi )|dy.

We now estimate Aε
1(x), A

ε
2(x) and Aε

3(x).

• Estimating Aε
1(x): One can verify that

|∇Bεj (y)| ≤ C
µε
j

(µε
j)

2 + |aεi − aεj |2
≤ Cµε

j for all y ∈ B |aε
j
−aε

i
|

2

(aεi ),

since µε
i + |aεi − aεj | = O

(
|aεi − aεj |

)
, thanks to Proposition 5.6.2. Thus we have that

|Bεj (y)− Bεj (aεi )| ≤ Cµε
j (|y − aεi |+ µε

i ) ,

from which we deduce that

Aε
1(y) ≤ Cµε

j

ˆ

R2

1

|x− y|
(µε

i )
2

(µε
i + |y − aεi |)

3 dy ≤ Cµε
j

(
1 +
|x− aεi |
µε
i

)−1

. (5.7.22)

• Estimating Aε
2(x): Either |aεi − aεj | = O (µε

i ) or not, thanks to the definition of aεi , we can verify
that

µε
i + |aεi − aεj | ≤ C(µε

i + |y − aεi |) for all y ∈ B |aε
j
−aε

i
|

2

(aεj),

which leads to

Aε
2(x) ≤ C

(µε
i )

2

(µε
i + |aεi − aεj |)4

ˆ

B |aε
j
−aε

i
|

2

(aε
j)

1

|x− y| |B
ε
j (y)− Bεj (aεi )|dy. (5.7.23)

For all y ∈ B |aε
j
−aε

i
|

2

(aεj), let y⊤ ∈ [aεj , a
ε
i ] be such that |y − aεj | = |y⊤ − aεj |. We can write that

|Bεi (y)− Bεi (aεi )| ≤ |Bεi (y)− Bεi (y⊤)|+ |Bεi (y⊤)− Bεi (aεi )|

≤ C
(

µε
j |y − aεj |(

µε
j

)2
+ |y − aεj |2

+
µε
j

µε
j + |y − aεj |

|aεj − aεi |
µε
j + |aεj − aεi |

)

≤ C
µε
j

µε
j + |y − aεj |

|aεj − aεi |
µε
j + |aεj − aεi |

.

(5.7.24)

Indeed, we have that

|Bεi (y)− Bεi (y⊤)| ≤ Cmax
ŷy⊤

|∇Bεi | × |y − y⊤| ≤ C
µε
j

(µε
j)

2 + |y − aεj |2
|y − aεj |,

where ŷy⊤ is the circular arc centered on aεj joining y and y⊤. By distinguishing appropriate
cases, we also get that

|Bεj (y⊤)− Bεj (aεi )| ≤ C
ˆ |aε

j−aε
i |

|aε
j−y|

µε
j

(µε
j)

2 + t2
dt ≤

µε
j

µε
j + |y − aεj |

|aεj − aεi |
µε
j + |aεj − aεi |
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Coming back to (5.7.23) together with (5.7.24), direct computations show that

Aε
2(x) ≤

(µε
i )

2

(µε
i + |aεi − aεj |)4

|aεj − aεi |µε
j

µε
j + |aεj − aεi |

ˆ

B |aε
j
−aε

i
|

2

(aε
j)

1

|x− y|
1

µε
j + |y − aεj |

dy

≤ C
(µε

i )
2µε

j |aεj − aεi |3(
µε
i + |aεi − aεj |

)4 (
µε
j + |aεj − aεi |

)2
1(

|aεj − aεi |+ |x− aεj |
) ln

(
2 +

|aεj − aεi |
µε
j + |x− aεj |

)
.

(5.7.25)

(i) If we have
|x− aεj |+ µε

j

|aεj − aεi |
→ 0 as ε→ 0,

we can write that

Aε
2(x) ≤ C

(µε
i )

2µε
j |aεj − aεi |3(

µε
i + |aεi − aεj |

)4 (
µε
j + |aεj − aεi |

)2
|aεj − aεi |

|aεj − aεi |+ |x− aεj |
1

µε
j + |x− aεj |

≤ C µε
i(

µε
j + |aεj − aεi |

)2
µε
j

µε
j + |x− aεj |

µε
i |aεj − aεi |3(

µε
i + |aεi − aεj |

)4
|aεj − aεi |

|aεj − aεi |+ |x− aεj |

≤ Cµε
i

(
1 +
|x− aεj |
µε
j

)−1

,

since we have
µε
i |a

ε
j−aε

i |
3

(µε
i+|aε

i−aε
j |)

4 ≤ 1 and
|aε

j−aε
i |

|aε
j−aε

i |+|x−aε
j |
≤ 1.

(ii) Else, if we have
|x− aεj |+ µε

j

|aεj − aεi |
9 0 as ε→ 0,

we can write that

Aε
2(x) ≤ C

(µε
i )

2µε
j |aεj − aεi |3(

µε
i |aεi − aεj |

)4 (
µε
j + |aεj − aεi |

)2
1

|aεj − aεi |+ |x− aεj |

≤ C
µε
j(

µε
j + |aεj − aεi |

)2
µε
i

µε
i + |x− aεi |

×
µε
i |aεj − aεi |3(

µε
i + |aεi − aεj |

)4
µε
i + |x− aεi |

|aεj − aεi |+ |x− aεj |
.

Using the fact that |x− aεi | ≤ |x− aεj |+ |aεj − aεi |+ µε
i , we get that

Aε
2(x) ≤ Cµε

j

(
1 +
|x− aεi |
µε
i

)−1

×
µε
i |aεj − aεi |3(

µε
i + |aεi − aεj |

)4

(
1 +

µε
i

|aεj − aεi |+ |x− aεj |

)

≤ Cµε
j

(
1 +
|x− aεi |
µε
i

)−1
(

µε
i |aεj − aεi |3(

µε
i + |aεi − aεj |

)4 +
(µε

i )
2|aεj − aεi |2(

µε
i + |aεi − aεj |

)4

)

≤ Cµε
j

(
1 +
|x− aεi |
µε
i

)
.

Hence, we show that in all cases,

Aε
2(x) ≤ C

(
µε
j

(
1 +
|x− aεi |
µε
i

)
+ µε

i

(
1 +
|x− aεj |
µε
j

))
. (5.7.26)
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• Estimating Aε
3(x): Proceeding as we did in (5.7.24), we have that

|Bεj (y)−Bεj (aεi )| ≤ C
µε
j

µε
j + |aεj − aεi |

|y − aεj |
µε
j + |y − aεj |

for all y ∈ Bc
|aε

j
−aε

i
|

2

(aεi )∩Bc
|aε

j
−aε

i
|

2

(aεj), (5.7.27)

which leads to

Aε
3(x) ≤ C

µε
j

µε
j + |aεj − aεi |

ˆ

R2\B |aε
j
−aε

i
|

2

(aε
j)

1

|x− y|
(µε

i )
2|y − aεj |(

µε
i + |y − aεj |

)5 dy.

By straightforward computations together with the fact that µε
i = O

(
|aεj − aεi |

)
, we get that

Aε
3(x) ≤ C

(µε
i )

2µε
j

µε
j + |aεj − aεi |

1

(µε
j)

2 + |aεj − aεi |2
1

µε
j + |x− aεi |+ |aεj − aεi |

≤ C µε
i

µε
j + |aεj − aεi |

µε
j

(µε
j)

2 + |aεj − aεi |2
µε
i

µε
i + |x− aεi |

≤ Cµε
j

(
1 +
|x− aεi |
µε
i

)−1

.

(5.7.28)

Hence, the claim is proved, thanks to (5.7.22), (5.7.26) and (5.7.28).

Thanks to Claim 5.7.5 together with (5.7.21), we thus get that

ε2rεi

ˆ

R2

1 + |y|
|x− y| |∇B

ε
i (y)|2|(Φε − riBεi )|(y) dy

.

(
ε4(rεi )

4

µε
i

++ε2rεi ρ
ε
ϕ + ε2rεi r

ε
1−iµ

ε
1−i

)(
1 +
|x− aεi |
µε
i

)−1

.

(5.7.29)

At last, it remains to write that

ε3
ˆ

R2

1 + |y|
|x− y| |∇B

ε
i (y)|2 dy .

ε3

µε
i

(
1 +
|x− aεi |
µε
i

)−1

(5.7.30)

by direct computations.
Coming back to (5.7.4) with (5.7.5), (5.7.9), (5.7.10), (5.7.12), (5.7.17), (5.7.29), and (5.7.30), we obtain

Claim 5.7.1.

Claim 5.7.6. For every R > 0 and x ∈ D0(R), we have that

(1 + |x|)|∇νε(x)| .
(
ρε0,R + ε3 +R−1ρε

)
(1 + |x|)−1

+

((
1

rε1
ρεϕ,1,R + ρεν,1,R + rε1ρ

ε
η,1,R

))(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)

+

(
1

rε1
ρεϕ + ρεν + rε1ρ

ε
η

)(
R+

|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+

(
ε3(rε1)

3

µε
1

+
1

rε1

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+ o

((
ρε +

1

rε1

)
(1 + |x|)−1

)
.

(5.7.31)
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Proof of Claim 5.7.6: Applying the Green’s representation formula in Lemma 6.2.2 to the second equa-
tion of Proposition 5.7.10, and estimating various terms as in Claim 5.7.1, see in particular (5.7.9),
(5.7.10), (5.7.12), (5.7.17), (5.7.29) and (5.7.30), we can write that

(1 + |x|) |∇νε(x)| . (1 + |x|) |∇ψε
ν,ν(x)|+ (1 + |x|) |∇ψε

η,ϕ(x)|

+ ε2
ˆ

R2

1 + |y|
|x− y| |∇ν(y)|

2 dy

+ ε2
ˆ

R2

1 + |y|
|x− y|

(
rε0 |~nε −N ε

0 |+ (rε0)
2

∣∣∣∣ ~Hε − 1

rε0
Hε

0

∣∣∣∣
)
|∇Bε0|2(y) dy

+ ε2
ˆ

R2

1 + |y|
|x− y|

(
rε1 |~nε −N ε

1 |+ (rε1)
2

∣∣∣∣ ~Hε − 1

rε1
Hε

1

∣∣∣∣
)
|∇Bε1|2(y) dy

+

(
1

rε0
ρεϕ,0,R + ρεν,0,R + ρεη,0,R + ε3 +R−1(ρεϕ + ρεν + ρεη)

)
(1 + |x|)−1

+

((
1

rε1
ρεϕ,1,R + ρεν,1,R + rε1ρ

ε
η,1,R

))(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)

+

(
1

rε1
ρεϕ + ρεν + rε1ρ

ε
η

)(
R+

|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+

(
ε3(rε1)

3

µε
1

+
1

rε1

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

(5.7.32)
Proceeding as in Claim 5.7.2, since ∇νε → 0 in L2(R2) as ε→ 0, we have that, for all x ∈ R

2

(1 + |x|)|∇ψε
ν,ν(x)| . ‖∇νε‖2ρεν (1 + |x|)−1

= o(ρεν (1 + |x|)−1
). (5.7.33)

Proceeding as in Claim 5.7.3, we have

ε2
ˆ

R2

1 + |y|
|x− y| |∇ν

ε(y)|2 dy .
(
(ε3 + ρεν)(1 + |x|)−1

)
+ o

(
ε3

µε
1

(
1 +
|x− aε1|
µε
1

)−1
)
. (5.7.34)

Proceeding as in (5.7.20), thanks to Proposition 5.6.2, we get that, for i = 0, 1,

ε2
ˆ

R2

1 + |y|
|x− y|

(
rεi |~nε −N ε

i |+ (rεi )
2

∣∣∣∣ ~Hε − 1

rεi
Hε

i

∣∣∣∣
)
|∇Bεi |2(y) dy

. o

((
ε3(rεi )

3

µε
i

+ ρεν + 1

)(
1 +
|x− ai|ε

µε
i

)−1
)

+ o

((
ε3(rεi )

3

µε
i

+

(
ρεη +

(rεi )
2

rε1−i

)))(
1 +
|x− aεi |
µε
i

)−1

.

(5.7.35)

In order to control |∇ψε
η,ϕ(x)|, since we do not necessarily have ∇ηε → 0 in L2(R2) as ε → 0, we

must exploit estimates similar to those obtained in Claim 5.7.1.

Claim 5.7.7. We have

(1 + |x|)|∇ψε
η,ϕ(x)| = o

((
ε3 + ρεϕ + ρεν + ρεη

)
(1 + |x|)−1

)

+ o

(
ε3(rε1)

3

µε
1

(
1 +
|x− aε1|
µε
1

)−1
)
.

(5.7.36)
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Proof of Claim 5.7.7. Thanks to Proposition 5.6.3 and the definition of ψε
η,ϕ, using Green’s representa-

tion formula (6.2.4), we can write that

(1 + |x|)|∇ψε
η,ϕ(x)| .

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)||∇ϕε(y)| dy

.

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)||∇ψε
ϕ,ν(y)| dy

+
∑

i=0,1

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(
|∇ψε

i,ϕ(y)|+ rεi |∇ψε
i,ν(y)|+ rεi |∇ψε

i,1−i(y)|
)
dy

+ ε2
ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(
|χε

ϕ,ϕ(y)|+ |χε
ϕ,ν(y)|

)
dy

+ ε2
∑

i=0,1

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(
rεi |χε

i (y)|+ |χε
i,ϕ(y)|+ rεi |χε

i,ν(y)|+ rεi |χε
i,1−i(y)|

)
dy

+ ε3
ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(
|χε

0(y)|+ (rε1)
4|χε

1(y)|
)
dy,

(5.7.37)
where

χε
ϕ,ϕ(x) :=

ˆ

R2

x− y
|x− y|2 |∇ϕ

ε(y)|2dy,

χε
ϕ,ν(x) :=

ˆ

R2

x− y
|x− y|2 |∇ϕ

ε(y)||∇νε(y)| dy,

χε
i (x) :=

ˆ

R2

x− y
|x− y|2 |∇B

ε
i (y)|2|Φε − riBεi (y)|dy,

χε
i,ϕ(x) :=

ˆ

R2

x− y
|x− y|2 |∇B

ε
i (y)||∇ϕε(y)|dy,

χε
i,ν(x) :=

ˆ

R2

x− y
|x− y|2 |∇B

ε
i (y)||∇νε(y)|dy and

χε
i,1−i(x) :=

ˆ

R2

x− y
|x− y|2 |∇B

ε
i (y)||∇Bε1−i(y)|dy.

Thanks to (5.5.53) and the generalized Wente inequality in Lorentz spaces, see Lemma 6.3.6, we
have

‖∇ψε
ϕ,ν‖2,1 + ‖∇ψε

i,ϕ‖2,1 + ‖∇ψε
i,ν‖2,1

≤ C (‖∇ϕε‖2 + ‖∇νε‖2 + |∇Bεi ‖2) (‖∇ϕε‖2 + ‖∇νε‖2) = o(1).

Therefore, using Hölder inequality in Lorentz spaces, we obtain that

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|


|∇ψε

ϕ,ν(y)|+
∑

i=0,1

|∇ψε
i,ϕ(y)|+ rεi |∇ψε

i,ν(y)|


 dy

. ρεη

ˆ

R2

1

|x− y| (1 + |y|)


|∇ψε

ϕ,ν(y)|+
∑

i=0,1

|∇ψε
i,ϕ(y)|+ rεi |∇ψε

i,ν(y)|


 dy

. ρεη sup
x∈R2

∥∥∥∥
1

|x− ·|

∥∥∥∥
2,+∞


‖∇ψε

ϕ,ν‖2,1 +
∑

i=0,1

‖∇ψε
i,ϕ‖2,1 + rεi ‖∇ψε

i,ν‖2,1




= o(ρεη).

(5.7.38)
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Let us now use (5.7.10) to write that

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)||∇ψε
0,1(y)| dy .

ˆ

R2

1

|x− y| |∇η
ε(y)|

ln
(
2 +

|y−aε
1|

µε
1(1+|y|)

)

1 +
|y−aε

1|
µε
1

dy.

Let us write now thanks to definition (5.7.1) that,

|∇ηε(y)| . ρεη
1

1 + |y|2 ,

so that,
ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)||∇ψε
0,1(y)|dy

. ρεη

ˆ

R2

1

|x− y|
1

(1 + |y|2)
ln
(
2 +

|y−aε
1|

µε
1(1+|y|)

)

1 +
|y−aε

1|
µε
1

dy

= o
(
ρεη(1 + |x|)−1

)
.

(5.7.39)

Thanks to (5.7.11) in Claim 5.7.3 and the definition (5.7.1) of ρεη , we can write

|∇ηε(y)|1−γ ≤ (ρεη)
1−γ (1 + |y|)−2(1−γ) (5.7.40)

and we obtain that, thanks to the weak estimates (5.5.41) on |∇ηε|, for every 1 < β < 2 and 0 < α, γ <
1,

ε2
ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)||χε
ϕ,ϕ(y)|dy

= o

(
ε2(ρεη)

1−γ(ρεϕ)
2−β

ˆ

R2

1

|x− y| |∇η
ε(y)|γ (1 + |y|)2γ−3

dy

)

+ o

(
ε2(ρεη)

1−γ(ρεϕ)
2−β(rε1 + µε

1)
β

ˆ

R2

1

|x− y| |∇η
ε(y)|γ (µε

1 + |y − aε1|)1−β
(1 + |y|)2γ+β−4

dy

)

= o

(
ε2(ρεη)

1−γ(ρεϕ)
2−β

ˆ

R2

1

|x− y| (r
ε
1)

−γ (µε
1 + |y − aε1|)−γ

(1 + |y|)γ−3
dy

)

+ o

(
ε2(ρεη)

1−γ(ρεϕ)
2−β

ˆ

R2

1

|x− y| (µ
ε
1 + |y − aε1|)−αγ

(1 + |y|)αγ−3
dy

)

+ o

(
ε2(ρεη)

1−γ(ρεϕ)
2−β(rε1 + µε

1)
β

ˆ

R2

1

|x− y| (r
ε
1)

−γ (µε
1 + |y − aε1|)1−(β+γ)

(1 + |y|)γ+β−4
dy

)

+ o

(
ε2(ρεη)

1−γ(ρεϕ)
2−β(rε1 + µε

1)
β

ˆ

R2

1

|x− y| (µ
ε
1 + |y − aε1|)1−(β+αγ)

(1 + |y|)αγ+β−4
dy

)
.

(5.7.41)
Since 0 < γ < 1 and 3− γ > 2, we get

o

(
ε2(ρεη)

1−γ(ρεϕ)
2−β

ˆ

R2

1

|x− y| (r
ε
1)

−γ (µε
1 + |y − aε1|)−γ

(1 + |y|)γ−3
dy

)

+ o

(
ε2(ρεη)

1−γ(ρεϕ)
2−β

ˆ

R2

1

|x− y| (µ
ε
1 + |y − aε1|)−αγ

(1 + |y|)αγ−3
dy

)

= o
(
ε2(ρεη)

1−γ(ρεϕ)
2−β (1 + |x|)−1

)
.

(5.7.42)
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Take β = 3
2 , γ = 2

3 and 0 < α < 1 such that αγ + β < 1, then we have

ε2
ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)||χε
ϕ,ϕ(y)|dy = o

(
ε2
(
ρεη
)1/3 (

ρεϕ
)1/2

(1 + |x|)−1
)

+ o
(
ε2
(
ρεη
)1/3 (

ρεϕ
)1/2

(rε1 + µε
1)

3/2
(rε1)

−2/3 (µε
1 + |x− aε1|)−1/6

(1 + |x|)−5/6
)
.

(5.7.43)
Proceeding as in (5.7.19), thanks to Young’s inequality, we obtain that

ε2
ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)||χε
ϕ,ϕ(y)|dy = o

(
ε2(ρεη)

1
3 (ρεϕ)

1
2 (1 + |x|)−1

)

+ o
(
ε2(ρεη)

1
3 (ρεϕ)

1
2 (rε1 + µε

1)
3
2 (µε

1 + |x− aε1|)−
1
6 (1 + |x|)− 5

6

)

= o

((
ε12 +

(
(ρεη)

1
3 (ρεϕ)

1
2

) 6
5

)
(1 + |x|)−1

)

+ o

((
ε

3
2 (ρεη)

1
3 (ρεϕ)

1
2

) 6
5

(1 + |x|)−1

)

+ o
(
ε3 (rε1 + µε

1)
9
(µε

1 + |x− aε1|)−1
)

= o

((
ε3 +

(
(ρεη)

5
6 + (ρεϕ)

5
6

) 6
5

)
(1 + |x|)−1

)

+ o

(
ε3(rε1)

9

µε
1

(
1 +
|x− aε1|
µε
1

)−1
)

= o
((
ε3 + ρεη + ρεϕ

)
(1 + |x|)−1

)

+ o

(
ε3(rε1)

9

µε
1

(
1 +
|x− aε1|
µε
1

)−1
)

.

(5.7.44)
Similarly to (5.7.44), we can also deduce from Claim 5.7.4 that

ε2
ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)||χε
ϕ,ν(y)|dy = o

((
ε3 + ρεη + ρεϕ + ρεν

)
(1 + |x|)−1

)

+ o

(
ε3(rε1)

4

µε
1

(
1 +
|x− aε1|
µε
1

)−1
) . (5.7.45)

Now, we establish estimates on χε
i , χε

i,j , χε
i,ϕ and χε

i,ν . Since supε>0 ‖Φε
i − riBεi ‖∞ < +∞, we can

write that

|χε
i (x)| ≤

ˆ

R2

1

|x− y|

(
µε
i

(µε
i + |y − aεi |)2

)2

dy

.
1

(µε
i + |x− aεi |)γ

for 0 ≤ γ < 3,

(5.7.46)

while

|χε
i,1−i(x)| .

ˆ

R2

1

|x− y|
µε
i

(µε
i + |y − aεi |)2

µε
1−i

(µε
1−i + |y − aε1−i|)2

dy

.

ˆ

R2

1

|x− y|

(
µε
i

(µε
i + |y − aεi |)2

)2

dy +

ˆ

R2

1

|x− y|

(
µε
1−i

(µε
1−i + |y − aε1−i|)2

)2

dy

.

(
1

(µε
i + |x− aεi |)γ

+
1

(µε
1−i + |x− aε1−i|)γ

)
for 0 ≤ γ < 3, .

(5.7.47)
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Thanks to (5.7.46), (5.7.47) and the weak estimates (5.5.41) on |∇ηε|, we can write that, for 0 ≤ γ1, γ2 <
3 and for 0 < α < 1,

ε2
ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(
rεi |χε

i (y)|+ rεi |χε
i,1−i(y)|

)
dy

= o

(
ε2(ρεη)

1−β

ˆ

R2

1

|x− y|
1

(1 + |y|)1−αβ

1

(µε
1 + |y − aε1|)αβ+γ1

dy

)

+ o

(
ε2(ρεη)

1−β

ˆ

R2

1

|x− y|
1

(1 + |y|)1−β

1

(µε
1 + |y − aε1|)β+γ2

dy

)
(5.7.48)

By taking α = 1
2 , β = 2

3 , γ1 = 4
3 and γ2 = 1 in (5.7.48), thanks to Young’s inequality, we get that

ε2
ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(
rεi |χε

i (y)|+ rεi |χε
i,1−i(y)|

)
dy

= o
(
ε2(ρεη)

1/3
(
1 + (rεi )

−2/3
)
(µε

1 + |x− aε1|)−2/3
(1 + |x|)−1/3

)

= o

(
ε3

rεiµ
ε
1

(
1 +
|x− aε1|
µε
1

)−1
)

+ o
(
ρεη (1 + |x|)−1

)
.

(5.7.49)

Next, thanks to (5.5.7) and (5.7.1) we can write that, for every 0 < γ < 1,

|χε
i,ϕ(x)|+ rεi |χε

i,ν(x)| .
ˆ

R2

1 + |y|
|x− y|

µε
i

(µε
i + |y − aεi |)2

(|∇ϕε(y)|+ rεi |∇νε(y)|) dy

.

ˆ

R2

1 + |y|
|x− y|

µε
i

(µε
i + |y − aεi |)

2

(
(ρεϕ)

1−γ |∇ϕε(y)|γ
) 1

(1 + |y|)1−2γ
dy

+

ˆ

R2

1 + |y|
|x− y|

µε
i

(µε
i + |y − aεi |)

2

(
rεi (ρ

ε
ν)

1−γ |∇νε(y)|γ
) 1

(1 + |y|)1−2γ
dy

= o

((
ρεϕ)

1−γ + rεi (ρ
ε
ν)

1−γ
) ˆ

R2

1

|x− y|
µε
1

(µε
1 + |y − aε1|)2+γ

1

(1 + |y|)1−γ
dy

)

= o
((
ρεϕ)

1−γ + rεi (ρ
ε
ν)

1−γ
)
(µε

1)
1−γ (µε

1 + |y − aε1|)−1
(1 + |y|)γ−1

)
.

(5.7.50)
Thanks to (5.7.50) and the weak estimates (5.5.41) on |∇ηε|, we can write that, for every 0 < β < 1,
0 < α < 1, 0 < γ1 < 1 and 0 < γ2 < 1,

ε2
ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(
|χε

i,ϕ(y)|+ rεi |χε
i,ν(y)|

)
dy

= o

(
ε2(ρεη)

1−β

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|β
(
|χε

i,ϕ(y)|+ rεi |χε
i,ν(y)|

) 1

(1 + |y|)2(1−β)
dy

)

= o

(
ε2
(
(ρεϕ)

1−γ1 + rεi (ρ
ε
ν)

1−γ1
)
(ρεη)

1−β(µε
1)

1−γ1(rε1)
−β

ˆ

R2

1

|x− y|
1

(µε
1 + |y − aε1|)1+β

1

(1 + |y|)3−(β+γ1)
dy

)

+ o

(
ε2
(
(ρεϕ)

1−γ2 + rεi (ρ
ε
ν)

1−γ2
)
(ρεη)

1−βµε
1

ˆ

R2

1

|x− y|
1

(µε
1 + |y − aε1|)1+(αβ+γ2)

1

(1 + |y|)3−(αβ+γ2)
dy

)

(5.7.51)
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Taking β = 1
2 and γ1 = 1

2 into (5.7.51), we obtain that

o

(
ε2
(
(ρεϕ)

1−γ1 + rεi (ρ
ε
ν)

1−γ1
)
(ρεη)

1−β(µε
1)

1−γ1(rε1)
−β

ˆ

R2

1

|x− y|
1

(µε
1 + |y − aε1|)1+β

1

(1 + |y|)1/2
dy

)

= o
(
ε2
(
(ρεϕ)

1
2 (ρεη)

1
2 + rεi (ρ

ε
ν)

1
2 (ρεη)

1
2

)
(rε1)

− 1
2 (µε

1 + |x− aε1|)−
1
2 (1 + |x|)− 1

2

)

= o

(
ε3

µε
1(r

ε
1)

(
1 +
|x− aε1|
µε
1

)−1
)

+ o
(
ρε (1 + |x|)−1

)

(5.7.52)
Taking γ2 = 2

3 and α = 2
3 into (5.7.51), we have αβ + γ2 = 1 and thanks to Young’s inequality, we get

that

o

(
ε2
(
(ρεϕ)

1−γ2 + rεi (ρ
ε
ν)

1−γ2
)
(ρεη)

1−βµε
1

ˆ

R2

1

|x− y|
1

(µε
1 + |y − aε1|)1+(αβ+γ2)

1

(1 + |y|)3−(αβ+γ2)
dy

)

= o

(
ε2
((
ρεϕ
) 1

3 (ρεη)
1
2 + rεi (ρ

ε
ν)

1
3 (ρεη)

1
2

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

))

= o

((
ε12 +

[(
ρεϕ
) 1

3 (ρεη)
1
2

] 6
5

+ rεi

[
(ρεν)

1
3 (ρεη)

1
2

] 6
5

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

))

= o

((
ε12 +

[(
ρεϕ
) 5

6 + (ρεη)
5
6

] 6
5

+ rεi

[
(ρεν)

5
6 + (ρεη)

5
6

] 6
5

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

))

= o

(
(
ε3 + ρε

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

))

(5.7.53)
Coming back to (5.7.51) with (5.7.52) and (5.7.53), we get that

ε2
∑

i=0,1

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(
|χε

i,ϕ(y)|+ rεi |χε
i,ν(y)|

)
dy

= o
(
ρε (1 + |x|)−1

)
+ o

((
εε

µε
1

+ ρε
)(

1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

))
.

(5.7.54)

At last, proceeding as in (5.7.49), we can use (5.7.1), (5.7.34) and (5.7.30) to write that, for 0 < γ < 3,

ε3
ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(
|χε

0,0(y)|+ (rεi )
4|χε

1,1(y)|
)
dy

= O

(
ε3
(
ˆ

R2

1

|x− y| |∇η
ε(y)| 1

1 + |y| dy + (rεi )
4

ˆ

R2

1

|x− y| |∇η
ε(y)| 1

(µε
1 + |y − aε1|)γ

dy

))

= O

(
ε3ρεη

ˆ

R2

1

|x− y|
1

1 + |y|3 dy
)
+O

(
ε3(rε1)

4(ρεη)
1/3(rε1)

−2/3 (µε
1 + |x− aε1|)−2/3

(1 + |x|)−1/3
)

= O
(
ε3ρεη(1 + |x|)−1

)
+ o

(
ρεη (1 + |x|)−1

)
+O

(
ε4(rε1)

3

µε
1

(
1 +
|x− aε1|
µε
1

)−1
)
.

(5.7.55)
Coming back to (5.7.37) with (5.7.37), (5.7.38), (5.7.39), (5.7.44), (5.7.45), (5.7.49), (5.7.54) and (5.7.55),
we get Claim 5.7.7.

Hence, combining (5.7.32) with (5.7.33) and Claim 5.7.7, we get Claim 5.7.6.
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Claim 5.7.8. For every R > 0 and x ∈ D0(R), we have that

(1 + |x|)|∇ηε(x)| .
(
ρεν,0,R + ρεη,0,R + ε3 +R−1(ρεϕ + ρεν + ρεη)

)
(1 + |x|)−1

+

((
1

rε1
ρεν,1,R + ρεη,1,R

))(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)

+

(
1

rε1
ρεν + ρεη

)(
R+

|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+

(
ε3(rε1)

2

µε
1

+
1

rε1

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+ o

((
ρε +

1

rε1

)
(1 + |x|)−1

)
.

(5.7.56)

Proof of Claim 5.7.8: First, thanks to Hodge decomposition theorem, we can write that

∇ηε − 3 (∇ηε ·hε ~nε)~nε = ∇Cε +∇⊥Dε, (5.7.57)

where Cε, Dε ∈ C∞(R2,R3) satisfy

(|∇Cε|+ |∇Dε|) (x) = O

(
1

|x|2
)

as |x| → +∞.

Thanks to the third equation of the system (5.6.31) in Proposition 5.6.3, we have that





∆Cε = −∇⊥νε ∧∇ηε −∇⊥N ε
0 ∧∇ηε −∇⊥N ε

1 ∧∇ηε

− 1

rε0
∇⊥(νε +N ε

1 ) ∧∇Hε
0 −

1

rε1
∇⊥(νε +N ε

0 ) ∧∇Hε
1

+ 3

(
div

((
∇ 1

rε0
Hε

0 ·hε
0
(~n−N ε

0 )

)
~n

)
+ div

((
∇ 1

rε0
Hε

0 ·hε
0
N ε

0

)
(~n−N ε

0 )

))

+ 3

(
div

((
∇ 1

rε1
Hε

1 ·hε
1
(~n−N ε

1 )

)
~n

)
+ div

((
∇ 1

rε1
Hε

1 ·hε
1
N ε

1

)
(~n−N ε

1 )

))

+Rε(η)

∆Dε = 3div
((
∇⊥ηε ·hε ~nε

)
~nε
)

= hε(Φε)ijdiv
(
(∇⊥ηε)i(~nε)j~nε

)
+ ∂lh

ε
ij(Φ

ε) (∇Φε)
l
(∇⊥ηε)i(~nε)j)~nε.

(5.7.58)

We apply the Green’s representation formula (6.2.4) to (5.7.58). Most of the terms have already
been estimated in Claims 5.7.1 and 5.7.6, see in particular (5.7.9), (5.7.10), (5.7.12), (5.7.29), (5.7.34) and

129



(5.7.30). We thus get that

(1 + |x|) |∇Cε(x)| . (1 + |x|) |∇ψε
η,ν(x)|

+
(
ρε0,R + ε3 +R−1(ρε)

)
(1 + |x|)−1

+

((
1

rε1
ρεν,1,R + ρεη,1,R

))(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)

+

(
1

rε1
ρεν + ρεη

)(
R+

|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+

(
ε3(rε1)

2

µε
1

+
1

rε1

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+

ˆ

R2

1 + |y|
|x− y|

(∣∣∣∣div
((
∇ 1

rε0
Hε

0 ·hε
0
(~n−N ε

0 )

)
~n

)∣∣∣∣+
∣∣∣∣div

((
∇ 1

rε0
Hε

0 ·hε
0
N ε

0

)
(~n−N ε

0 )

)∣∣∣∣
)
(y) dy

+

ˆ

R2

1 + |y|
|x− y|

(∣∣∣∣div
((
∇ 1

rε1
Hε

1 ·hε
1
(~n−N ε

1 )

)
~n

)∣∣∣∣+
∣∣∣∣div

((
∇ 1

rε1
Hε

1 ·hε
1
N ε

1

)
(~n−N ε

1 )

)∣∣∣∣
)
(y) dy

+ o

((
ρε +

1

rε1

)
(1 + |x|)−1

)
and

(1 + |x|) |∇Dε(x)| . (1 + |x|) |∇ψε
η,ν(x)|

+

(
ρε0,R + ε3 +R−1(ρε) + o

(
1

rε1

))
(1 + |x|)−1

+
(
ρεη,1,R

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)

+
(
ρεη
)(

R+
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+

(
ε3(rε1)

2

µε
1

+
1

rε1

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+ ε2
ˆ

R2

1 + |y|
|x− y| |∇ϕ

ε(y)||∇ηε(y)| dy.

+ o

((
ρε +

1

rε1

)
(1 + |x|)−1

)
.

(5.7.59)

In order to get estimates on |∇ψε
η,ν(x)|, we show that we have the following claim:

Claim 5.7.9.

(1 + |x|) |∇ψε
η,ν(x)| = o

((
ε3 + ρε +

1

(rε1)
+
ε3(rε1)

µε
1

)
(1 + |x|)−1

)
+ o

(
ε3(rε1)

2

µε
1

(
1 +
|x− aε1|
µε
1

)−1
)
.

(5.7.60)

Proof of Claim 5.7.9: Thanks to Proposition 5.7.10 and the definition of ψε
η,ν , together with (5.7.44),
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(5.7.54) and (5.7.55), we can write with the Green’s representation formula that

(1 + |x|)|∇ψε
η,ν(x)| . (1 + |x|)|∇ψε

η,ϕ,η(x)|

+

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)||∇ψε
ν,ν(y)|dy

+
∑

i=0,1

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(

1

rεi
|∇ψε

i,ϕ(y)|+ |∇ψε
i,ν(y)|+ rεi |∇ψε

i,η(y)|+
1

rεi
|∇ψε

i,1−i(y)|
)
dy

+ ε2
ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(
|χε

ϕ,ϕ(y)|+ |χε
ϕ,ν(y)|+ |χε

ϕ,η(y)|++|χε
ν,η(y)|

)
dy

+ ε2
∑

i=0,1

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(
|χε

i (y)|+
1

rεi
|χε

i,ϕ(y)|+ |χε
i,ν(y)|+ rεi |χε

i,η(y)|+
1

rεi
|χε

i,1−i(y)|
)
dy

+ ε3
ˆ

R2

1

|x− y| |∇η
ε(y)|

(
|χε

0,0(y)|+ (rε1)
2|χε

1,1(y)|
)
dy

≤ (1 + |x|)|∇ψε
η,ϕ,η(x)|

+

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)||∇ψε
ν,ν(y)|dy

+
∑

i=0,1

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(

1

rεi
|∇ψε

i,ϕ(y)|+ |∇ψε
i,ν(y)|+ rεi |∇ψε

i,η(y)|+
1

rεi
|∇ψε

i,1−i(y)|
)
dy

+ o
((
ε3 + ρε

)
(1 + |x|)−1

)
+ o

(
ε3(rε1)

2

µε
1

(
1 +
|x− aε1|
µε
1

)−1
)
,

(5.7.61)
where ψε

η,ϕ,η is the bounded solution in C2(R2,R3) of



∆ψε

η,ϕ,η = ∇ηε ∧∇⊥ψε
ϕ,η

lim
|x|→+∞

ψε
η,ϕ,η(x) = 0

. (5.7.62)

Note here that we estimated the terms in |χε
ϕ,η| and in |χε

ν,η| similarily as we did for the terms in |χε
ϕ,ϕ|

in (5.7.44).
Thanks to the weak estimates (5.5.41) on |∇ηε| together with (5.5.53), we have that

rε1‖∇ηε‖2,+∞ + ‖∇ϕε‖2 = o(1), (5.7.63)

which, with the help of generalized Wente inequality in Lemma 6.3.6, implies that rε1‖∇ψε
ϕ,η‖2 = o (1)

and then that (rε1)
2‖∇ψε

η,ϕ,η‖2 = o(1) by the definition (5.7.62) of ψε
η,ϕ,η . Therefore, thanks to Lemma

6.3.8, we have

(1 + |x|)|∇ψε
η,ϕ,η(x)| . ‖∇ψε

η,ϕ,η‖1/22 (ρεη)
1/2‖(1 + |x|2)∇ψε

ϕ,η‖1/2∞ (1 + |x|)−1

= o

(
1

rε1
(ρεη)

1/2‖(1 + |x|2)∇ψε
ϕ,η‖1/2∞ (1 + |x|)−1

)
.

= o
(
ρεη(1 + |x|)−1

)
+ o

(
1

(rε1)
2
‖(1 + |x|2)∇ψε

ϕ,η‖∞(1 + |x|)−1

)
(5.7.64)

Moreover, thanks to Claim 5.7.7, we have

(1 + |x|)|∇ψε
η,ϕ(x)| . o

(
(ε3 + ρε)(1 + |x|)−1

)

+ o

(
ε3(rε1)

3

µε
1

(
1 +
|x− aε1|
µε
1

)−1
)

(5.7.65)
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which, together with (5.7.64), we get that

(1 + |x|)|∇ψε
η,ϕ,η(x)| = o

(
ρεη(1 + |x|)−1

)
+ o

((
ε3

(rε1)
2
+

ρε

(rε1)
2
+
ε3(rε1)

µε
1

)
(1 + |x|)−1

)
(5.7.66)

Again, thanks to generalized Wente inequality, we state that

‖∇ψε
ν,ν‖2,1 + ‖∇ψε

i,ϕ‖2,1 + ‖∇ψε
i,ν‖2,1 + rεi ‖∇ψε

i,η‖2,1 = o(1) (5.7.67)

as ε→ 0, since we have that ‖∇ϕε‖2 + ‖∇νε‖2 + ‖∇ηε‖2,+∞ = o(1) and ‖∇Bεi ‖2,1 = O(1). Therefore,
using Hölder’s inequality in Lorentz spaces, we can write that

ˆ

R2

1 + |y|
|x− y| |∇η

ε(y)|
(
|∇ψε

ν,ν(y)|+ |∇ψε
i,ϕ(y)|+ |∇ψε

i,ν(y)|+ rεi |∇ψε
i,η(y)|

)
dy = o

(
ρεη
)
. (5.7.68)

Coming back to (5.7.61) with (5.7.68) and (5.7.66), we obtain Claim 5.7.9.

Let us now write thanks to the definition of νε that
∣∣∣∣div

((
∇ 1

rεi
Hε

i ·hε
i
(~n−N ε

i )

)
~n

)∣∣∣∣+
∣∣∣∣div

((
∇ 1

rεi
Hε

i ·hε
i
N ε

i

)
(~n−N ε

i )

)∣∣∣∣

.
1

rεi

(
|∆Hε

i |+ |∇Hε
i ||∇N ε

i |+ ε2|∇Hε
i ||∇Φε|

)
|~nε −N ε

i |

+
1

rεi
|∇Hε

i ||∇νε|+
1

rεi
|∇Hε

i ||∇N ε
1−i|

.
1

rεi
(|∇Bεi |2 + ε2|∇Bεi ||∇Φε|)|~nε −N ε

i |+
1

rεi
|∇Bεi ||∇νε|

+
1

rεi
|∇Bεi ||∇Bε1−i|.

(5.7.69)

Here we used the fact that |~nε|+ |N ε
i |+ |~nε −N ε

i | = O(1) and that

|∆Hε
i |+ |∇N ε

i |2 + |∇Hε
i |2 = O

(
|∇Bεi |2

)

thanks to Proposition 5.6.1.
Proceeding as in (5.7.20), thanks to Proposition 5.6.2, we can write that

|(~nε −N ε
i )(x)| ≤ | (~nε −N ε

i ) (x)− (~nε −N ε
i ) (a

ε
i )|+ |~nε −N ε

i |(aεi )
.
(
ε3 + |νε(x)− νε(aεi )|+ |N ε

1−i(x)−N ε
1−i(a

ε
i )|
)

which leads together with (5.7.69) to
ˆ

R2

1 + |y|
|x− y|

(∣∣∣∣div
((
∇ 1

rε0
Hε

0 ·hε
0
(~n−N ε

0 )

)
~n

)∣∣∣∣+
∣∣∣∣div

((
∇ 1

rε0
Hε

0 ·hε
0
N ε

0

)
(~n−N ε

0 )

)∣∣∣∣
)
(y) dy

+

ˆ

R2

1 + |y|
|x− y|

(∣∣∣∣div
((
∇ 1

rε1
Hε

1 ·hε
1
(~n−N ε

1 )

)
~n

)∣∣∣∣+
∣∣∣∣div

((
∇ 1

rε1
Hε

1 ·hε
1
N ε

1

)
(~n−N ε

1 )

)∣∣∣∣
)
(y) dy

.
(
ρε0,R + ε3 +R−1(ρε)

)
(1 + |x|)−1

+

((
1

rε1
ρεν,1,R + ρεη,1,R

))(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)

+

(
1

rε1
ρεν + ρεη

)(
R+

|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+

(
ε3(rε1)

2

µε
1

+
1

rε1

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)
.

(5.7.70)
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Note here that we estimated the terms in |N ε
1−i(x) − N ε

1−i(a
ε
i )| as we did for the terms in |Bε1−i(x) −

Bε1−i(a
ε
i )|, see Claim 5.7.5.

Coming back to (5.7.59) together with Claim 5.7.9 and (5.7.70), we get that

|∇Cε(x)|+ |∇Dε(x)| ≤ C
∑

i,j 6=i

((
ρεi,R +

ε3

µε
i

+ τ εij

)(
1 +
|x− aεi |
µε
i

)−2/3
)

+ δεRρ
ε

+ o


∑

i,j 6=i

(
ε3

µε
i

+ τ εij

)
 .

(5.7.71)

Finally, using the fact that |∇ηε| ≤ |∇ηε− 3(∇ηε ·hε ~nε)~nε| . |∇Cε|+ |∇Dε| together with (5.7.71),
we get Claim 5.7.8.

Thanks to Claims 5.7.1, 5.7.6 and 5.7.8, we get the following strong pointwise estimates on |∇ϕε|,
|∇νε| and |∇ηε|:
Proposition 5.7.10. We have that, for every R > 0,

(1 + |x|)|∇ϕε|(x) .
(
ρε0,R + ε3 +R−1ρε

)
(1 + |x|)−1

+
((
ρεϕ,1,R + rε1ρ

ε
ν,1,R

))(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)

+
((
ρεϕ + rε1ρ

ε
ν

))(
R+

|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)

+

(
ε3(rε1)

4

µε
1

+ 1

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+ o
(
ρε (1 + |x|)−1

)

(5.7.72)

(1 + |x|)|∇νε(x)| .
(
ρε0,R + ε3 +R−1ρε

)
(1 + |x|)−1

+

((
1

rε1
ρεϕ,1,R + ρεν,1,R + rε1ρ

ε
η,1,R

))(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)

+

(
1

rε1
ρεϕ + ρεν + rε1ρ

ε
η

)(
R+

|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+

(
ε3(rε1)

3

µε
1

+
1

rε1

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+ o

((
ρε +

1

rε1

)
(1 + |x|)−1

)

(5.7.73)

(1 + |x|)|∇ηε(x)| .
(
ρε0,R + ε3 +R−1(ρεϕ + ρεν + ρεη)

)
(1 + |x|)−1

+

((
1

rε1
ρεν,1,R + ρεη,1,R

))(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +
|x− aε1|
µε
1

)

+

(
1

rε1
ρεν + ρεη

)(
R+

|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+

(
ε3(rε1)

2

µε
1

+
1

rε1

)(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+ o

((
ρε +

1

rε1

)
(1 + |x|)−1

)
.

(5.7.74)
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5.7.2 Interactions between bubble terms and Riemannian terms

Thanks to the pointwise estimates (5.5.7), (5.5.41), we get that

Lemma 5.7.11. For every R > 0, we have that

1

rε1
(ρεϕ,0,R + ρεν,0,R) + ρεη,0,R = o

(
1

rε1

)
. (5.7.75)

Before proving our main theorem 5.2.3, we state that the dominating term in our strong pointwise
estimates (5.7.72) is ε3

µε
1

due to the derivatives of the curvature of the space (R3, hε). The main goal of
this section is thus to prove the following Lemma:

Lemma 5.7.12. We have that (
ρε +

1

rε1

)
= O

(
ε3(rε1)

3

µε
1

)
. (5.7.76)

By contradiction, we assume that

ε3(rε1)
3

µε
1

= o

(
1

rε1
+ ρε

)
.

Claim 5.7.13. We have

ρε = O

(
1

rε1

)
(5.7.77)

Proof. By contradiction, we assume that
1

rε1
= o(ρε). (5.7.78)

Combining (5.7.78) with (5.7.72), (5.7.73) and (5.7.74), together with Lemma 5.7.11, we get that, for
every R > 0,

(1 + |x|)
(

1

rε1
|∇ϕ|+ |∇νε|+ rε1|∇ηε|

)
(x) .

(
R−1ρε

)
(1 + |x|)−1

+ ρε
(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+ o
(
ρε (1 + |x|)−1

)
(5.7.79)

in D0(R). Let xε ∈ R
2 be such that

(
1 + |xε|2

)( 1

rε1
|∇ϕε|+ |∇νε|+ rε1|∇ηε|

)
(xε) =

ρε

2
.

Claim 5.7.14. Up to a subsequence, there existsR > 0 such that xε ∈ Ωε
1(R). In particular, we have ρε

2 ≤ ρε1,R
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Proof. First, we cannot have |xε| → +∞ as ε→ 0, since, thanks to Theorem 5.5.1, we have that

sup
|x|≥R

(1 + |x|2) (|∇ϕε|(x) + |∇νε(x) + |∇ηε(x)|) = o(1) for every R > 0. (5.7.80)

Therefore, we have supε>0 |xε| < +∞.

Next, if we have |x−aε
1|

µε
1
→ +∞ as ε→ 0, thanks to (5.7.79), we get that, for R > 0 big enough,

ρε

2
. (1 + |xε|)

(
1

rε1
|∇ϕε|+ |∇νε|+ rε1|∇ηε|

)
(xε)

.
ρε

R
+ o(ρε) + o(ρε)

=
ρε

R
+ o(ρε),

(5.7.81)

which gives contradition by taking R > 0 large enough and thus proves Claim 5.7.14.

On every compact set of R2, we have that

1

rε1
|∇ϕ̃ε|+ |∇ν̃ε|+ rε1|∇η̃ε| = O(µε

1ρ
ε),

|∇B̃ε1|+ |∇Ñ ε
1 |+ |∇H̃ε

1| = O(1),

1

rε1
|∇rε0B̃ε0|+ |∇Ñ ε

0 |+
rε1
rε0
|∇H̃ε

0| = O

(
µε
1

rε1

)
= o(µε

1ρ
ε),

(5.7.82)

where f̃ := f(µε
1 ·+aε1).

Thanks to (5.7.82) and Proposition 5.6.3, by straightforward computations, we get that





∆ϕε = ∇N ε
1 ∧∇⊥ϕε + rε1

(
∇νε ∧∇⊥Bε1

)
+ o (µε

1r
ε
1ρ

ε)

∆νε = −2∇⊥N ε
1 ∧∇νε − 2∇ηε ∧

(
rε1∇⊥Bε1

)

− 2

(
1

rε1
∇Hε

1

)
∧∇⊥ϕε + o (µε

1ρ
ε) ,

div (∇ηε − 3 (∇ηε · N ε
1 )N ε

1 ) = −∇⊥N ε
1 ∧∇ηε

− 1

rε1
∇⊥νε ∧∇Hε

1 + o

(
µε
1ρ

ε

rε1

)
.

(5.7.83)

For convenience reasons, we also write

LB̃ε
1

(
1

rε1
ϕ̃ε, ν̃ε, rε1η̃

ε

)
= o(µε

1ρ
ε), (5.7.84)

where the meaning of LB̃ε
1

is given before the beginning of Subsection 6.5 in Appendix 6. Thanks to
Proposition 5.6.4 and Propsition 5.6.2, we also get the relation of quasi-conformality:

〈
(B̃ε1)x,

1

rε1
ϕ̃ε
y

〉
+

〈
1

rε1
ϕ̃ε
x, (B̃ε1)y

〉
= o(µε

1ρ
ε),

〈
(B̃ε1)x,

1

rε1
ϕ̃ε
x

〉
−
〈

1

rε1
ϕ̃ε
y, (B̃ε1)y

〉
= o(µε

1ρ
ε),

(5.7.85)
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supplemented with the conditions
∣∣∣∣∣∇
(
rε0B̃ε0 + ϕ̃ε

rε1

)∣∣∣∣∣ (0) = o(µε
1ρ

ε) and

∣∣∣∣∣∇
2

(
rε0B̃ε0 + ϕ̃ε

rε1

)
(∇B̃ε1)

∣∣∣∣∣ (0) = o(µε
1ρ

ε)

∣∣∣∣∣∇
2

(
rε0B̃ε0
rε1

)
(∇B̃ε1)

∣∣∣∣∣ (0) = o(µε
1ρ

ε).

(5.7.86)

Then, by standard elliptic theory, ϕ̃ε−ϕ̃ε(0)
µε
1ρ

εrε1
, ν̃ε

µε
1ρ

ε and rε1 η̃
ε

µε
1ρ

ε respectively converge to some ϕ̃, ν̃ and η̃ in
C2

loc(R
2) which satisfy

Lω1
(ϕ̃, ν̃, η̃) = 0 in R

2, (5.7.87)

and the relation of conformality

〈(ω1)x, ϕ̃y〉+ 〈ϕ̃x, (ω1)y〉 = 0,

〈(ω1)x, ϕ̃x〉 − 〈ϕ̃y, (ω1)y〉 = 0,
(5.7.88)

supplemented with the conditions

|∇ϕ̃|(0) = 0 and |∇2ϕ̃(∇ω1)|(0) = 0. (5.7.89)

Therefore, thanks to the classification of linearized solution in Proposition 6.4.3, see Appendix 6, we
get that

∇ϕ̃ ≡ ∇ν̃ ≡ ∇η̃ ≡ 0,

which indicates ρε1,R = o(ρε) and thus contradicts the fact that ρε

2 ≤ ρε1,R. Hence, we prove (5.7.77).

Thanks to Lemma 5.7.11, Proposition 5.7.10, and Claim 5.7.13, we now get that

(1 + |x|)
(

1

rε1
|∇ϕ|+ |∇νε|+ rε1|∇ηε|

)
(x) . o

(
1

rε1
(1 + |x|)−1

)

+
1

rε1

(
1 +
|x− aε1|
µε
1

)−1

ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+ o

(
1

rε1
(1 + |x|)−1

)
on D0(R)

(5.7.90)
Again we rescale around aε1 by setting f̃ := f (µε

1 ·+aε1). Thanks to (5.7.90), we get that

1

rε1
|∇ϕ̃ε|+ |∇ν̃ε|+ rε1|∇η̃ε| = O

(
µε
1

rε1

)
,

|∇B̃ε1|+ |∇Ñ ε
1 |+ |∇Hε

1| = O(1) and

1

rε1
|∇(rε0B̃ε0)|+ |∇Ñ ε

0 |+ rε1

∣∣∣∣∇
(

1

rε0
H̃ε

0

)∣∣∣∣ = O

(
µε
1

rε1

)
(5.7.91)

Thanks to (5.7.90) and Claim (5.7.13), together with (5.6.11) and Proposition 5.6.3, on every compact
subset of R2, by straightforward computations and weak estimates (5.5.7), we get that

LB̃ε
1

(
1

rε1
(ϕ̃ε + r0B̃ε0), ν̃ε + Ñ ε

0 , r
ε
1

(
η̃ε +

1

rε0
H̃ε

0

))
= o

(
µε
1

rε1

)
, (5.7.92)
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and the relation of quasi-conformality

〈(
B̃ε1
)
x
,
1

rε1

(
rε0B̃ε0 + ϕ̃ε

)
y

〉
+

〈
1

rε1

(
rε0B̃ε0 + ϕ̃ε

)
x
,
(
B̃ε1
)
y

〉
= o

(
µε
1

rε1

)
,

〈(
B̃ε1
)
x
,
1

rε1

(
rε0B̃ε0 + ϕ̃ε

)
x

〉
−
〈

1

rε1

(
rε0B̃ε0 + ϕ̃ε

)
y
,
(
B̃ε1
)
y

〉
= o

(
µε
1

rε1

)
,

supplemented with the conditions
∣∣∣∣∇

1

rε1

(
rε0B̃ε0 + ϕ̃ε

)∣∣∣∣ (0) = o(µε
1τ

ε),

∣∣∣∣∇2 1

rε1

(
rε0B̃ε0 + ϕ̃ε

)
(∇B̃ε1)

∣∣∣∣ (0) = o(µε
1τ

ε).

Thanks to standard elliptic theory,
ϕ̃ε+rε0B̃

ε
0−(ϕ̃

ε+rε0B̃
ε
0)(0)

µε
1

,
rε1(ν̃

ε+Ñ ε
0 )

µε
1

and
(rε1)

2
(
η̃ε+ 1

rε0
H̃ε

0

)

µε
1

respec-
tively converge in C2

loc(R
2) to some σ̃ϕ, σ̃ν and σ̃η , which satisfy

Lω1
(σ̃ϕ, σ̃ν , σ̃η) = 0 on R

2, (5.7.93)

and the relation of conformality

〈(ω1)x, (σ̃ϕ)y〉+ 〈(σ̃ϕ)x, (ω1)y〉 = 0,

〈(ω1)x, (σ̃ϕ)x〉 − 〈(σ̃ϕ)y, (ω1)y〉 = 0,

supplemented with the initial conditions

|∇ (σ̃ϕ)| (0) = 0,
∣∣∇2 (σ̃ϕ) (∇ω1)

∣∣ (0) = 0.

Thanks to Proposition 6.4.3, we get that

∇σ̃ϕ ≡ ∇σ̃ν ≡ ∇σ̃η ≡ 0. (5.7.94)

On the other hand, thanks to the definition of rε0Bε0, we have that ∇
(

rε0B̃
ε
0

µε
1

)
converges in C2

loc(R
2)

to some non-zero constant 2-vector∇B̃0, and thus

|∇B̃0| > 0. (5.7.95)

Coming back to (5.7.94) together with (5.7.95), we obtain that, for all xε ∈ B(aε1, Rµ
ε
1) with R large

enough, we have (
1

rε1
|∇ϕε|+ |∇νε|+ rε1|∇ηε|

)
(xε) ≥ C 1

rε1
, (5.7.96)

for some C > 0.
Combining (5.7.96) with the estimates (5.7.90), for every R > 0 large enough, by taking any |xε −

aε1| = Rµε
1, we get that

C
1

rε1
.

1

rε1
(1 +R)

−1
ln(2 +R) + o

(
1

rε1

)
, (5.7.97)

which gives contradiction as R→ +∞. Therefore, we prove Lemma 5.7.12.
Thanks to Lemma 5.7.12 and Proposition 5.7.10, we have the following proposition:
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Proposition 5.7.15. For R > 0 and x ∈ D0(R), we have that

(1 + |x|)
(

1

rε1
|∇ϕε(x)|+ |∇νε(x)|+ rε1|∇ηε(x)|

)
.
ε3(rε1)

3

µε
1

(
1 +
|x− aε1|
µε
1

)
ln

(
2 +

|x− aε1|
µε
1 (1 + |x|)

)

+ δεR
ε3(rε1)

3

µε
1

,

(5.7.98)
where limR→+∞ limε→0 δ

ε
R = 0.

5.7.3 How to conclude with these strong estimates ?

In order to prove our main theorem 5.2.3, we first place ourselves close to the bubble rε1Bε1. Set f̃ =
f(µε

1 ·+aε1). Thanks to Proposition 5.7.15, we have that

|∇(B̃ε0)|+ |∇Ñ ε
0 |+ |∇H̃ε

0| = O(µε
1)

= O
(
ε3(rε1)

4
)

|∇(B̃ε1)|+ |∇Ñ ε
1 |+ |∇H̃ε

1| = |∇ω̃ε
1|(1 + o(1))

(5.7.99)

Set

ϕ̃ε = Φ̃ε − rε1B̃ε1
ν̃ε = ñε − Ñ ε

1

η̃ε = η̃ε − 1

rε1
H̃ε

1.

(5.7.100)

Thanks to (5.7.99) and (5.6.31), we get that, on every compact set of R2,





∆ϕ̃ε = ∇Ñ ε
1 ∧∇⊥ϕ̃ε +∇ν̃ε ∧∇⊥rε1B̃ε1

+O (|∇ν̃ε||∇ϕ̃ε|)
+Rε(ϕ̃)

∆ν̃ε = −2∇⊥Ñ ε
1 ∧∇ν̃ε − 2∇η̃ε ∧∇⊥rε1B̃ε1 − 2

1

rε1
∇H̃ε

1 ∧∇⊥ϕ̃ε

+O
(
|∇ν̃ε|2 + |∇η̃ε||∇ϕ̃ε|

)

+Rε(ν̃),

div (∇η̃ε − 3 (∇η̃ε · ñε) ñε) = −∇⊥Ñ ε
1 ∧∇η̃ε −∇⊥ν̃ε ∧∇ 1

rε1
H̃ε

1

+ 3

(
div

((
∇ 1

rε1
H̃ε

1 · (ν̃ε)
)
ñε

)
+ div

((
∇ 1

rε1
H̃ε

1 · Ñ ε
1

)
(ñε − Ñ ε

1 )

))

+O (|∇ν̃ε||∇η̃ε|)
+Rε(η̃),

(5.7.101)
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where

Rε(ϕ̃)k := o
(
|∇Ñ ε

1 ||∇ϕ̃ε|+ |∇ν̃ε||∇rε1B̃ε1|
)

+O
(
ε2rε1|Φ̃ε − rε1B̃ε1||∇ω̃ε

1|2
)

− ε3(rε1)4Bikjmn(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n〈∇(ω̃ε)i,∇(ω̃ε)j〉

+ ε3
(rε1)

4|∇ω̃ε|2
12

Ricmn, j(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε

1 + cε1)
jω̃ε

+ ε3
(rε1)

4|∇ω̃ε|2
6

Rijmk, n(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε

1 + cε1)
j(ω̃ε)i

+ ε3(rε1)
4
(
Biljmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ωε)i(ωε)l(ωε
x)

j
)
ω̃ε
x

+ ε3(rε1)
4
(
Biljmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ωε)i(ωε)l(ωε
y)

j
)
ω̃ε
y

− ε3(rε1)4
(
Biljmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ωε)i〈∇(ω̃ε)j ,∇(ω̃ε)l〉
)
ω̃ε

+O
(
ε3(|Φ̃ε − rε1B̃ε1|2|∇Φ̃ε|2 + |Φ̃ε − rε1B̃ε1|3|∇ñε||∇Φ̃ε|)

)

+O
(
ε4(rε1)

4|∇ω̃ε
1|2
)

(5.7.102)

Rε(ν̃)k := o

(
|∇Ñ ε

1 ||∇ν̃ε|+ |∇η̃ε||∇rε1B̃ε1|+ |
1

rε1
∇H̃ε

1||∇ϕ̃ε|
)

+O
(
ε2|Φ̃ε − rε1B̃ε1||∇ω̃ε

1|2
)

+O
(
ε2
∣∣∣Φ̃ε − rε1B̃ε1

∣∣∣ |H̃ε||∇(rε1B̃ε1)|2
)

+O

(
ε2
∣∣∣∣H̃ε − 1

rε1
H̃ε

1

∣∣∣∣ |∇(rε1B̃ε1)|2
)

+ 2ε3(rε1)
3Bikjmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n〈∇(ω̃ε)i,∇(ω̃ε)j〉

− ε3 (r
ε
1)

3|∇ω̃ε|2
12

Ricmn, j(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε

1 + cε1)
jω̃ε

− ε3 (r
ε
1)

3|∇ω̃ε|2
6

Rijmk, n(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε

1 + cε1)
j(ω̃ε)i

− ε3(rε1)3|∇ω̃ε|2Bikjmn(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε)i(ω̃ε)j

+ ε3(rε1)
3Bikjmn(p

ε)(δml(ω̃ε
1 + cε1)

n + δnl(ω̃ε
1 + cε1)

m)(ω̃ε)i〈∇(ω̃ε)j ,∇(ω̃ε)l〉
+O

(
ε3|Φ̃ε − rε1B̃ε1|3(|∇ñε|2 + |∇H̃ε||∇Φ̃ε|)

)
+O

(
ε4(rε1)

3|∇ω̃ε
1|2
)

and

(5.7.103)
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Rε(η̃)k := o

(
|∇Ñ ε

1 ||∇η̃ε|+ |∇ν̃ε||∇
1

rε1
H̃ε

1|
)

+ 2ε3(rε1)
2Bikjmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n〈∇(ω̃ε)i,∇(ω̃ε)j〉

− ε3 (r
ε
1)

2|∇ω̃ε|2
12

Ricmn, j(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε

1 + cε1)
jω̃ε

− ε3 (r
ε
1)

2|∇ω̃ε|2
6

Rijmk, n(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε

1 + cε1)
j(ω̃ε)i

− ε3(rε1)2|∇ω̃ε|2Bikjmn(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε)i(ω̃ε)j

+ ε3(rε1)
2Bikjmn(p

ε)(δml(ω̃ε
1 + cε1)

n + δnl(ω̃ε
1 + cε1)

m)(ω̃ε)i〈∇(ω̃ε)j ,∇(ω̃ε)l〉

− ε3 (r
ε
1)

2

2
Rijml, n(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ω̃ε
1 + cε1)

j(ω̃ε)l(ω̃ε
x)

iω̃ε
x

− ε3 (r
ε
1)

2

2
Rijml, n(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ω̃ε
1 + cε1)

j(ω̃ε)l(ω̃ε
y)

iω̃ε
y

− 5ε3(rε1)
2
(
Biljmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ωε)i(ωε)l(ω̃ε
x)

j
)
ω̃ε
x

− 5ε3(rε1)
2
(
Biljmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ω̃ε)i(ω̃ε)l(ω̃ε
y)

j
)
ω̃ε
y

+ ε3Aεω̃ε
1

+O

(
ε2

1

rεθ
|Φ̃ε − rεθB̃εθ||∇ω̃ε

θ|2
)

+O

(
ε2|Φ̃ε − rεθB̃εθ|

∣∣∣∣div
(((

1

rεθ
∇H̃ε

θ

)
· Ñ ε

θ

)
Ñ ε

θ

)∣∣∣∣
)

+O

(
ε2|Φ̃ε − rεθB̃εθ|

∣∣∣∇(rε1B̃ε1)
∣∣∣
∣∣∣∣
1

rεθ
∇H̃ε

θ

∣∣∣∣
)

+O

(
ε2|Φ̃ε − rεθB̃εθ|

∣∣∣∣div
(((

1

rεθ
H̃ε

θ∇(rεθB̃εθ)
)
· Ñ ε

θ

)
Ñ ε

θ

)∣∣∣∣
)

+O

(
ε2|Φ̃ε − rεθB̃εθ|

∣∣∣∇(rε1B̃ε1)
∣∣∣
∣∣∣∣
1

rεθ
H̃ε

θ∇(rεθB̃εθ)
∣∣∣∣
)

+O

(
ε2

1

rεθ
|ñε − Ñ ε

θ ||∇ω̃ε
θ|2
)

+O
(
ε3|Φ̃ε − rε1B̃ε1|3

(
|∇H̃ε||∇ñε|

)
+ ε3|Φ̃ε − rε1B̃ε1|2|∇H̃ε||∇Φ̃ε|

)
+O

(
ε4(rε1)

2|∇ω̃ε
1|2
)
,

(5.7.104)
for some scalar function Aε.

Thanks to (5.7.99), (5.7.98) and Proposition 5.6.2, we have that

1

rε1
|∇ϕ̃ε|+ |∇ν̃ε|+ rε1|∇η̃ε| = O(ε3(rε1)

3)

O (|∇ν̃ε||∇ϕ̃ε|) = o(ε3(rε1)
4)

O
(
|∇ν̃ε|2 + |∇η̃ε||∇ϕ̃ε|

)
= o

(
ε3(rε1)

3
)

O (|∇ν̃ε||∇η̃ε) = o
(
ε3(rε1)

2
)

ε2|Φ̃ε − rε1B̃ε1| = o
(
ε3(rε1)

3
)

ε2|ñε − Ñ ε
1 | = o

(
ε3(rε1)

3
)

ε2|H̃ε − 1

rε1
H̃ε

1| = o
(
ε3(rε1)

2
)
.

(5.7.105)
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Therefore, we obtain that





∆ϕ̃ε = ∇Ñ ε
1 ∧∇⊥ϕ̃ε +∇ν̃ε ∧∇⊥rε1B̃ε1

+Rε(ϕ̃) + o(ε3(rε1)
4)

∆ν̃ε = −2∇⊥Ñ ε
1 ∧∇ν̃ε − 2∇η̃ε ∧∇⊥rε1B̃ε1 − 2

1

rε1
∇H̃ε

1 ∧∇⊥ϕ̃ε

+Rε(ν̃) + o
(
ε3(rε1)

3
)
,

div (∇η̃ε − 3 (∇η̃ε · ñε) ñε) = −∇⊥Ñ ε
1 ∧∇η̃ε −∇⊥ν̃ε ∧∇ 1

rε1
H̃ε

1

+ 3

(
div

((
∇ 1

rε1
H̃ε

1 · (ν̃ε)
)
ñε

)
+ div

((
∇ 1

rε1
H̃ε

1 · Ñ ε
1

)
(ñε − Ñ ε

1 )

))

+Rε(η̃) + o(ε2(rε1)
2),

(5.7.106)
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where

Rε(ϕ̃)k = −ε3(rε1)4Bikjmn(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n〈∇(ω̃ε)i,∇(ω̃ε)j〉

+ ε3
(rε1)

4|∇ω̃ε|2
12

Ricmn, j(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε

1 + cε1)
jω̃ε

+ ε3
(rε1)

4|∇ω̃ε|2
6

Rijmk, n(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε

1 + cε1)
j(ω̃ε)i

+ ε3(rε1)
4
(
Biljmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ωε)i(ωε)l(ωε
x)

j
)
ω̃ε
x

+ ε3(rε1)
4
(
Biljmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ωε)i(ωε)l(ωε
y)

j
)
ω̃ε
y

− ε3(rε1)4
(
Biljmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ωε)i〈∇(ω̃ε)j ,∇(ω̃ε)l〉
)
ω̃ε

+ o(ε3(rε1)
4)

Rε(ν̃)k = 2ε3(rε1)
3Bikjmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n〈∇(ω̃ε)i,∇(ω̃ε)j〉

− ε3 (r
ε
1)

3|∇ω̃ε|2
12

Ricmn, j(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε

1 + cε1)
jω̃ε

− ε3 (r
ε
1)

3|∇ω̃ε|2
6

Rijmk, n(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε

1 + cε1)
j(ω̃ε)i

− ε3(rε1)3|∇ω̃ε|2Bikjmn(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε)i(ω̃ε)j

+ ε3(rε1)
3Bikjmn(p

ε)(δml(ω̃ε
1 + cε1)

n + δnl(ω̃ε
1 + cε1)

m)(ω̃ε)i〈∇(ω̃ε)j ,∇(ω̃ε)l〉
+ o(ε3(rε1)

3) and

Rε(η̃)k = 2ε3(rε1)
2Bikjmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n〈∇(ω̃ε)i,∇(ω̃ε)j〉

− ε3 (r
ε
1)

2|∇ω̃ε|2
12

Ricmn, j(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε

1 + cε1)
jω̃ε

− ε3 (r
ε
1)

2|∇ω̃ε|2
6

Rijmk, n(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε

1 + cε1)
j(ω̃ε)i

− ε3(rε1)2|∇ω̃ε|2Bikjmn(p
ε)(ω̃ε

1 + cε1)
m(ω̃ε

1 + cε1)
n(ω̃ε)i(ω̃ε)j

+ ε3(rε1)
2Bikjmn(p

ε)(δml(ω̃ε
1 + cε1)

n + δnl(ω̃ε
1 + cε1)

m)(ω̃ε)i〈∇(ω̃ε)j ,∇(ω̃ε)l〉

− ε3 (r
ε
1)

2

2
Rijml, n(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ω̃ε
1 + cε1)

j(ω̃ε)l(ω̃ε
x)

iω̃ε
x

− ε3 (r
ε
1)

2

2
Rijml, n(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ω̃ε
1 + cε1)

j(ω̃ε)l(ω̃ε
y)

iω̃ε
y

− 5ε3(rε1)
2
(
Biljmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ωε)i(ωε)l(ω̃ε
x)

j
)
ω̃ε
x

− 5ε3(rε1)
2
(
Biljmn(p

ε)(ω̃ε
1 + cε1)

m(ω̃ε
1 + cε1)

n(ω̃ε)i(ω̃ε)l(ω̃ε
y)

j
)
ω̃ε
y

+ ε3Aεω̃ε
1

+ o(ε3(rε1)
2).

(5.7.107)

Dividing respectively the equations in (5.7.106) by ε3(rε1)
4, ε3(rε1)

3 and ε3(rε1)
2 , thanks to (5.7.107)

and standard elliptic theory, we get that, up to a subsequence,∇
(

ϕ̃ε

ε3(rε1)
4

)
,∇
(

ν̃ε

ε3(rε1)
3

)
and∇

(
η̃ε

ε3(rε1)
2

)
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respectively converge to∇ϕ, ∇ν and ∇η in C0
loc(R

2) for some ϕ, ν, η ∈ C2(R2) satisfying

∆ϕ+∇ω ∧∇⊥ϕ−∇ω ∧∇⊥ν = −Bikjmn(p)(ω + c)m(ω + c)n〈∇ωi,∇ωj〉

+
|∇ω|2
12

Ricmn, j(p)(ω + c)m(ω + c)n(ω + c)jω

+
|∇ω|2
6

Rijmk, n(p)(ω + c)m(ω + c)n(ω + c)jωi

+
(
Biljmn(p)(ω + c)m(ω + c)n(ω)i(ω)l(ωx)

j
)
ωx

+
(
Biljmn(p)(ω + c)m(ω + c)n(ω)i(ω)l(ωy)

j
)
ωy

−
(
Biljmn(p)(ω + c)m(ω + c)n(ω)i〈∇ωj ,∇ωl〉

)
ω,

(5.7.108)

∆ν − 2∇ω ∧∇⊥ν − 2∇ω ∧∇⊥ϕ+ 2∇ω ∧∇⊥η

= 2Bikjmn(p)(ω + c)m(ω + c)n〈∇ωi,∇ωj〉

− |∇ω|
2

12
Ricmn, j(p)(ω + c)m(ω + c)n(ω + c)jω

− |∇ω|
2

6
Rijmk, n(p)(ω + c)m(ω + c)n(ω + c)jωi

− |∇ω|2Bikjmn(p)(ω + c)m(ω + c)n(ω)i(ω)j

+Bikjmn(p)(δ
ml(ω + c)n + δnl(ω + c)m)(ω)i〈∇ωj ,∇ωl〉 and

(5.7.109)

div (∇η − 3 (∇ω · ν +∇η · ω)ω)
+∇ω ∧∇⊥η +∇ω ∧∇⊥ν = 2Bikjmn(p)(ω + c)m(ω + c)n〈∇ωi,∇ωj〉

− |∇ω|
2

12
Ricmn, j(p)(ω + c)m(ω + c)n(ω + c)jω

− |∇ω|
2

6
Rijmk, n(p)(ω + c)m(ω + c)n(ω + c)jωi

− |∇ω|2Bikjmn(p)(ω + c)m(ω + c)n(ω)i(ω)j

+Bikjmn(p)(δ
ml(ω + c)n + δnl(ω + c)m)(ω)i〈∇ωj ,∇ωl〉

−
2
Rijml, n(p)(ω + c)m(ω + c)n(ω + c)j(ω)l(ωx)

iωx

−
2
Rijml, n(p)(ω + c)m(ω + c)n(ω + c)j(ω)l(ωy)

iωy

− 5
(
Biljmn(p)(ω + c)m(ω + c)n(ω)i(ω)l(ωx)

j
)
ωx

− 5
(
Biljmn(p)(ω + c)m(ω + c)n(ω)i(ω)l(ωy)

j
)
ωy

+Aω,

(5.7.110)

where ω = limε→0 ω̃
ε
1, c = limε→0 c

ε
1 and Aε → A in C0

loc(R
2) for some scalar function A. In addition,

since we have hε(Φ̃ε)(ñε, ñε) = 1, thanks to Lemma 6.5.1, we also get that

∇ω · ν +∇ν · ω =
1

12
(Rijmk, n(p) +Rkjmi, n(p)) (ω + c)m(ω + c)n(ω + c)j(ω)i(∇ω)k

+
1

12
(Rikmj, n(p) +Rimkj, n(p) +Rinmj, k(p)) (ω + c)m(ω + c)n(ω)i(ω)j(∇ω)k.

(5.7.111)
Multiplying (5.7.108) by −2, (5.7.109) by 1 and (5.7.110) by −1 and summing them up, together
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with (5.7.111), we get that

− 2
(
∆ϕ+ 2∇ω ∧∇⊥ϕ

)

+
(
∆ν −∇ω ∧∇⊥ν − 3div(πω(∇ν))

)

−
(
∆η −∇ω ∧∇⊥η − 3div(πω(∇η))

)

= 2Bikjmn(p)(ω + c)m(ω + c)n〈∇ωi,∇ωj〉

− |∇ω|
2

3
Rijmk, n(p)(ω + c)m(ω + c)n(ω + c)j(ω)i

+
1

2
Rijml, n(p)(ω + c)m(ω + c)n(ω + c)j(ω)l(ωx)

iωx

+
1

2
Rijml, n(p)(ω + c)m(ω + c)n(ω + c)j(ω)l(ωy)

iωy

− 1

4
(Rijml, n(p) +Rkjmi, n(p)) (ω + c)m(ω + c)n(ω + c)j(ω)i(ωx)

lωx

− 1

4
(Rijml, n(p) +Rkjmi, n(p)) (ω + c)m(ω + c)n(ω + c)j(ω)i(ωy)

lωy

− 1

4
(Rilmj, n(p) +Rimlj, n(p) +Rinmj, l(p)) (ω + c)m(ω + c)n(ω)i(ω)j(ωx)

lωx

− 1

4
(Rilmj, n(p) +Rimlj, n(p) +Rinmj, l(p)) (ω + c)m(ω + c)n(ω)i(ω)j(ωy)

lωy

+ 3
(
Biljmn(p)(ω + c)m(ω + c)n(ω)i(ω)l(ωx)

j
)
ωx

+ 3
(
Biljmn(p)(ω + c)m(ω + c)n(ω)i(ω)l(ωy)

j
)
ωy

+A′ω,

(5.7.112)

for some scalar function A′, where πω(∇ν) := (∇ν · ω)ω and πω(∇η) := (∇η · ω)ω. Note that we also
know, thanks to Proposition 5.7.10 and Lemma 5.7.12 that,

(|∇ϕ|+ |∇ν|+ |∇η|) (x) = O
(
|x|−2/3

)
and

(|ϕ|+ |ν|+ |η|) (x) = o(|x|) as |x| → +∞.
(5.7.113)

For all q = 1, 2, 3, we denote Zq by Z1 = ωx, Z2 = ωy and Z3 = xωx + yωy . Notice that we have

∆Zq + 2∇ω ∧∇⊥Zq = 0,

∇ω ∧∇⊥Zq + div(πω(∇Zq)) = 0.

Multiplying (5.7.112) byZq , and integrating by parts on R
2, thanks to the fact that integrals containing

an odd number of coordinates of ω vanish and the fact that

〈∇ωi,∇ωj〉 = |∇ω|
2

2

(
δij − ωiωj

)
,
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By direct computations, we obtain that, for q = 1, 2, 3,

0 =

ˆ

R2

−2ϕ ·
(
∆Zq + 2∇ω ∧∇⊥Zq

)

+ ν ·
(
∆Zq −∇ω ∧∇⊥Zq − 3div(πω(∇Zq))

)

− η ·
(
∆Zq −∇ω ∧∇⊥Zq − 3div(πω(∇Zq))

)
dx

=

ˆ

R2

(2Bikjmn(p)ω
mωn

(
δij − ωiωj

)
(Zq)k)

|∇ω|2
2

dx

+
∑

m,n

(c)m(c)n
ˆ

R2

(2Bikjmn(p)
(
δij − ωiωj

)
(Zq)k

− 2

3
(Rijmk, n(p) +Rimjk, n(p) +Rinmk, j(p))ω

iωj(Zq)k

− 1

4
(Rikmj, n(p) +Rimkj, n(p) +Rinmj, k(p))ω

iωj(Zq)k

+ 3Bijkmn(p)ω
iωj(Zq)k)

|∇ω|2
2

dx

=

ˆ

R2

(2Bikjmn(p)ω
mωn

(
δij − ωiωj

)
(Zq)k)

|∇ω|2
2

dx,

(5.7.114)

where the integrability on R
2 and validity of integration by parts are insured by (5.7.113) and by the

fact that

(|Zq|+ |∇Zq|) (z) = O

(
1

1 + |z|2
)

for all q = 1, 2, 3.

With help of stereographic projection and the following identities on the sphere:
ˆ

S2

ymyndσg0 =
4π

3
δmn and

ˆ

S2

ymynyqykdσg0 =
4π

15
(δmnδqk + δmqδnk + δmkδnq),

together with symmetries of Riemannian curvature tensor, from (5.7.114) we get, for all q = 1, 2, 3,
ˆ

S2

Bikjmn(p)ω
mωn(δij − ωiωj)(δqk − ωqωk)dσg0 = 0,

which gives
Ric ,m

mq (p) = 0. (5.7.115)

It is natural that (5.7.115) is independent of c, since our choice on system of coordinates is arbitrary.
Finally, thanks to Bianchi’s second identity, (5.7.115) implies

∇Scal(p) = 0.

Hence, we complete the proof of the main Theorem 5.2.3.
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Chapter 6

Appendix

6.1 Reformulation of Willmore equation

In this section, we briefly explain how we obtain the reformulation of the third equation of the Will-
more system (5.3.5) from (5.3.4):

The left hand side of the third equation in (5.3.4) can be rewritten as

D∗
[
D ~H − 3π~n(D ~H)− ⋆h

(
~H ∧D⊥~n

)]
= D∗D ~H − 3D∗

(
h(D ~H,~n)~n

)
− ⋆h

(
D ~H ∧D⊥~n

)

= D∗D ~H − 3D∗ (∇H~n)− ⋆h
(
D ~H ∧D⊥~n

)
.

(6.1.1)

Here we use the fact that
D ~H = ∇H~n+HD~n,

h(D ~H,~n) = ∇H~n
(6.1.2)

since h(~n, ~n) = 1, h(D~n,~n) = 0, and that D commute with the Hodge operator ⋆h and DD⊥~n = 0.
In normal coordinates, we can write that

D~n = ∇~n+ ~Γij(Φ)(~n)
j(∇Φ)j ,

D ~H = ∇ ~H + ~Γij(Φ)( ~H)j(∇Φ)j ,
D∗D ~H = ∆ ~H + 2~Γij(Φ)(∇ ~H)i(∇Φ)j + ~Γij(Φ)( ~H)i(∆Φ)j

+ ∂l~Γij(Φ)( ~H)i(∇Φ)j(∇Φ)l and

⋆h

(
D ~H ∧D⊥~n

)k
=
√
|h|(h−1)ik(Φ)

(
D ~H ∧D⊥~n

)
i

(6.1.3)

Moreover, thanks to (6.1.2) and (6.1.3), we have that

D∗ (∇H~n) = ∆H~n+∇H •D~n
= ∆H~n+∇H • ∇~n+∇H •

(
~Γij(Φ)(~n)

i(∇Φ)j
)

= div (∇H~n) +∇H •
(
~Γij(Φ)(~n)

i(∇Φ)j
)

= div
(
h
(
D ~H,~n

)
~n
)
+∇H •

(
~Γij(Φ)(~n)

i(∇Φ)j
)
.

(6.1.4)

Again thanks to (6.1.3), we also get that

div
(
h
(
D ~H,~n

)
~n
)
= div

(
((∇ ~H) · ~n)~n

)
+ div

(
(h− δ)ij(Φ)(∇ ~H)i(~n)j~n

)

+ div
([
hαβ(Φ)

(
Γα
ij(Φ)( ~H)i(∇Φ)j

)
(~n)β

]
~n
) (6.1.5)
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Combining (6.1.1), (6.1.3), (6.1.4) and (6.1.5), we obtain the third equation of the system (5.3.5) in
normal coordinates.

6.2 Green’s representation formula

Let G be a two-variable function on R
2 × R

2 defined as

G(x, y) = G(|x− y|) = 1

2π
ln |x− y| for all x 6= y.

It is well-known that G is the fundamental solution of the Laplacian on the plane, namely that, for
every fixed x,

∆yG(x, y) = δx.

Lemma 6.2.1. Let ψ, f ∈ C2(R2) be two maps such that∇ψ ∈ L∞(R2), f = O
(

1
|x|2

)
and

∆ψ = f.

Then, we have

∇ψ(x) =
ˆ

R2

∇yG(x, y)f(y)dy for all x ∈ R
2. (6.2.1)

In particular, if f(x) = 1
1+|x|2 , then, by straightforward computations, we have that

|∇ψ(x)| ≤ C ln(2 + |x|)
1 + |x| , for some C > 0. (6.2.2)

Proof of Lemma 6.2.1: Let x ∈ R
2 and R > 0 be such that x ∈ BR(0). Applying the Green’s representa-

tion formula to the equation and integrating by parts, we obtain that

∇ψ(x) =
ˆ

BR(0)

GR (x, y)∇f(y)dy +
ˆ

∂BR(0)

∂νGR(x, y)∇ψ(z)dl

= −
ˆ

BR(0)

∇yGR(x, y)f(y)dy +

ˆ

∂BR(0)

GR(x, y)f(y)dl +

ˆ

∂BR(0)

∂νGR(x, y)∇ψ(y)dl,
(6.2.3)

where ν is the outter normal vector of ∂BR(0) and GR(x, y) is defined by

GR(x, y) :=




G(|x− y|)−G

( |x|
R

∣∣∣∣y −
R2x

|x|2
∣∣∣∣
)

if x 6= 0

G(|y|)−G(R) if x = 0

.

Using the fact that, for x fixed, we have that

∇GR(x, y) = O

(
1

|y|

)
, GR (x, y) = O (ln |y|) as |y| → +∞

and that

∇(∂νGR(x, y)) = O

(
1

R2

)
for y ∈ ∂BR(0) and as R→ +∞,

we obtain (6.2.1) by taking the limit of (6.2.3) as R→ +∞.
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Lemma 6.2.2. Let ϕ ∈ C∞(R2) with |∇ϕ(y)| . (1 + |y|)−2 and |∇2ϕ(y)| . (1 + |y|)−3. Then we have
that

(1 + |x|) |∇ϕ(x)| ≤ 1

2π

ˆ

R2

1 + |y|
|x− y| |∆ϕ(y)| dy. (6.2.4)

Proof. Let x ∈ R
2. For every R > |x|, we have

ϕ(x) =

ˆ

D0(R)

G(x, y)∆ϕ(y) dy

+

ˆ

∂D0(R)

G(x, y)∂νϕ(y) dy

+

ˆ

∂D0(R)

〈y, y − x〉
|x− y|2|y|ϕ(y) dy.

(6.2.5)

Therefore, we have

∇ϕ(x) = 1

2π

ˆ

D0(R)

y − x
|y − x|∆ϕ(y) dy

+
1

2π

ˆ

∂D0(R)

y − x
|y − x|∂νϕ(y) dy

+
1

2π

ˆ

∂D0(R)

(
R2 − |x|2

)
y + 2

(
〈x, y〉 −R2

)
x

R|x− y|4 ϕ(y) dy.

(6.2.6)

Thanks to the decreasing condition on ϕ and (6.2.6), as R→ +∞, we get

∇ϕ(x) = 1

2π

ˆ

R2

y − x
|y − x|∆ϕ(y) dy. (6.2.7)

Notice that again thanks to the decreasing condition, one can write
ˆ

R2

∆ϕ(y) dy = 0. (6.2.8)

Therefore, for every x 6= 0, we also have

∇ϕ(x) = 1

2π

ˆ

R2

(
y − x
|y − x|2 +

x

|x|2
)
∆ϕ(y) dy. (6.2.9)

Thanks to (6.2.7) and (6.2.9), we get

|∇ϕ(x)| ≤ 1

2π

ˆ

R2

1

|x− y| |∆ϕ(y)| dy (6.2.10)

and

|∇ϕ(x)| ≤ 1

2π

ˆ

R2

|y|
|x− y||x| |∆ϕ(y)| dy, ∀x 6= 0. (6.2.11)

Multiply (6.2.11) by |x| and sum up with (6.2.10), we obtain that

(1 + |x|)|∇ϕ(x)| ≤ 1

2π

ˆ

R2

1 + |y|
|x− y| |∆ϕ(y)| dy. (6.2.12)
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6.3 Lorentz-Wente type inequality

Here we recall the notion of Lorentz spaces, which can be seen as interpolation spaces between Lp

spaces, and some general estimates developed in Tartar [131].

Definition 6.3.1. Let Ω be an open subset in a measured space (X,µ), 1 ≤ p < +∞ and 1 ≤ q ≤ +∞. Then
the Lorentz space Lp,q(Ω) is defined as the space of measurable fonctions f on Ω such that, when q < +∞,

‖f‖p,q := p
1
q

(
ˆ +∞

0

tq−1 (µ({|f | ≥ t}))
q
p dt

) 1
q

< +∞

and when q = +∞,

‖f‖p,+∞ := sup
t>0

t (µ({|f | ≥ t})) 1
p < +∞.

Remark 6.3.2. Notice that for p ≥ 1, we have that

Lp = Lp,p

and that
Lp,q ⊂ Lp,r whenever 1 ≤ q ≤ r ≤ +∞.

Lemma 6.3.3 (Theorem 3.3.6., Hélein [69]). Let φ be solution of

∆gφ = f ∈ L1(Σ).

Then, ∇gφ ∈ L2,+∞(Σ) and
‖∇gφ‖L2,+∞(Σ) ≤ C‖f‖L1(Σ). (6.3.1)

where C > 0 only depends on Σ.

Lemma 6.3.4 (see Wente [135]). Let a, b ∈W 1,2(D) and φ be solution of

{
∆φ = ∇⊥a · ∇b on D

φ = 0 on ∂D.
(6.3.2)

Then φ ∈ C0(D) ∩W 1,2(D) and there exists C > 0 such that

‖φ‖L∞(D) + ‖∇φ‖L2(D) ≤ C‖∇a‖L2(D)‖∇b‖L2(D). (6.3.3)

Lemma 6.3.5 (Neumann boundary condition version of Wente’s lemma, see Lemma 3.1.2 in Hélein
[69] and Lemma A.6 in Rivière [121]). Let a, b ∈ W 1,1(D) such that ∇a ∈ L2,+∞(D) and ∇b ∈ L2,1(D).
Let φ be solution of 



∆φ = ∇a · ∇⊥b on D

∂φ

∂ν
= 0 on ∂D.

(6.3.4)

Then we have
‖∇φ‖L2,+∞(D) ≤ C‖∇a‖L2,+∞(D)‖∇b‖L2,1(D) (6.3.5)

for some C > 0.
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Lemma 6.3.6 (Theorem 3., Ge [64]). Let (Σ, g) be a smooth compact surface. Assume that a, b ∈ W 1,1(Σ)
such that ∇a ∈ L2,p(Σ) and ∇b ∈ L2,q(Σ) for p ≥ 1, q > 1 such that 1

p + 1
q = 1

r ≤ 1. Let φ be solution of

∆gφ = ∇⊥
g a ·g ∇gb on Σ.

Then we have ∇φ ∈ L2,r(Σ) and

‖∇φ‖L2,r(Σ) ≤ C(Σ, p, q)‖∇a‖L2,p(Σ)‖∇b‖L2,q(Σ) (6.3.6)

Remark 6.3.7. The inequality (6.3.6) still remains true for Σ = Ω a bounded domain of R2, provided
that

φ = 0 on ∂Ω.

Lemma 6.3.8 (Lemma A.2., Bethuel-Brezis-Hélein [22]). Let Ω = R
2 or be a bounded domain of R2.

Assume ψ satisfies {
∆ψ = f on Ω

ψ = 0 on ∂Ω
. (6.3.7)

Then,
‖∇ψ‖2∞ ≤ C‖f‖∞‖ψ‖∞, (6.3.8)

where C is a constant depending only on Ω.

Also, notice that the L2,+∞-norm of the derivative of the Green function (seen as map on y ∈ R2)
is uniformly bounded, namely, we have that, for every x ∈ R

2,

‖∇yG(x, y)‖L2,+∞(R2) ≤ C,
where C > 0 is a constant independent of x.

6.4 Global solutions for the linearized Willmore system

In this section, we establish and solve the linearized Willmore system around a sphere: Φ = rω + ϕ,
~n = −ω̂ + ν and ~H = − 1

r ω̂ + η, where ω is defined in (5.4.1), Remark 5.4.2.
First, we can derive the relations between the components of derivatives of ϕ under the orthogonal

basis (ω̂x, ω̂y, ω̂).

Lemma 6.4.1. Let ϕ ∈ H2(R2,R3) satisfy the conformal condition with respect to the sphere rω:
{
ϕx · ω̂y + ω̂x · ϕy = 0

ϕx · ω̂x − ϕy · ω̂y = 0
. (6.4.1)

Then, there exist a, b, c, d ∈ H2(R2,R) such that

ϕx = aω̂x + bω̂y + cω̂

ϕy = −bω̂x + aω̂y + dω̂.

Moreover, we have
ay = −bx + d

ax = by + c

cy = |∇ω̂|2b+ dx

(6.4.2)

and in particular,
∆b = −|∇ω|2b
∆a = cx + dy.

(6.4.3)
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Proof. The existence of (a, b, c, d) directly stems from (6.4.1). By using the fact that φxy = φyx, we
obtain (6.4.2).

With help of conformal parametrization, we can now classify the solutions of the linearized Will-
more system.

Proposition 6.4.2. Let ϕ, ν, η ∈ H2(R2,R3) satisfy the linearized Willmore system:





∆ϕ = −∇ω ∧∇⊥ϕ+ r∇ν ∧∇⊥ω

∆ν = −2∇⊥ω ∧∇ν + 2
1

r
∇ω ∧∇⊥ϕ− 2r∇η ∧∇⊥ω

∆η = 3div(

(
−1

r
∇ω · ν −∇η · ω

)
(−ω)) +∇⊥ω ∧∇η + 1

r
∇⊥ν ∧∇ω

(6.4.4)

where r > 0 and
ν =

2

r|∇ω̂|2 (ω̂x ∧ ϕy + ϕx ∧ ω̂y + (ω̂x · ϕx + ω̂y · ϕy)ω̂)

η =
∆ϕ

r2|∇ω̂|2 +
2(ϕx · ω̂x + ϕy · ω̂y)

r2|∇ω̂|2 ω̂.

(6.4.5)

Assume ϕ verifies (6.3.7). Then using the same notation as in Lemma 6.4.1, we have

∆a = −|∇ω|2a.

Proof. Set Y = 1
r|∇ω̂|2

(
∆a+ |∇ω̂|2a

)
. The second identity in (6.4.5) gives that

η =
1

r
(ν + Y ω̂). (6.4.6)

Next we multiply the third equation in (6.4.4) by r, using (6.4.6) and the fact that∇ω̂ · ν +∇ν · ω = 0,
we get that

∆ν +∆(Y ω̂) = 3div((∇Y )ω̂) + 2∇⊥ω̂ ∧∇ν +∇⊥ω̂ ∧∇(Y ω). (6.4.7)

Combined with the second equation in (6.4.4), we obtain that

∆(Y ω̂) = 3div((∇Y )ω̂)− 2∇ν ∧∇⊥ω̂ − 2

r
∇ω̂ ∧∇⊥ω̂ +∇(Y ω̂) ∧∇⊥ω̂. (6.4.8)

A straightforward computation shows that

Y∆ω̂ = (∆Y )ω̂ − |∇ω̂|2Y ω̂, (6.4.9)

which implies
∆Y = 0 on R

2,

and hence, Y ≡ 0 since ϕ ∈ H2(R2,R3).

The following proposition shows that under proper initial conditions on ϕ, there exist only trivial
solutions for the linearized Willmore system.

Proposition 6.4.3. Let ϕ, ν, η ∈ C∞(R2,R3) ∩ H2(R2,R3) be as in Proposition 6.4.2 complemented with
initial conditions ∇ϕ(0) = 0 and 〈∇2ϕ,∇ω〉(0) = 0. Then we get

∇ϕ ≡ 0 and ν ≡ η ≡ 0.
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Proof. Thanks to Proposition 6.4.2, using the same notation as in Lemma 6.4.1, we have that

∆a = −|∇ω|2a and ∆b = −|∇ω|2b.
Moreover, thanks to Lemma 6.2.1, since |∇ω(x)| ≤ C 1

1+|x|2 , we have that

|∇ϕ(x)| ≤ C ln(2 + |x|)
1 + |x| ,

which, together with the initial conditions on ϕ, leads to




a(0) = b(0) = 0,

∇a(0) = ∇b(0) = 0 and

|a|+ |b| = O
(
1 + |x|3/2

) . (6.4.10)

Since ϕ ∈ H2(R2,R3), a and b can be extended as maps in H1(S2) satisfying

∆S2a = −2a, ∆S2b = −2b.
Hence, a and b can be written as linear combinations of the first eigenvectors of ∆S2 . Then, together
with (6.4.10), (see Lemma C.1 of [83] for more details), we get that

a ≡ b ≡ 0,

which proves Proposition 6.4.3.

For convenience reasons, we usually replace ν by rν and η by r2η, so we can omit the radius
r. In order to simplify the notations, for every given triplet (ϕ, ν, η) satisfying (6.4.5), we denote by
Lω(ϕ, ν, η) the linearized Willmore operator (6.4.4) with respect to ω.

Lω(ϕ, ν, η) :=





∆ϕ+∇ω̂ ∧∇⊥ϕ−∇ν ∧∇⊥ω̂

∆ν + 2∇⊥ω̂ ∧∇ν − 2∇ω̂ ∧∇⊥ϕ+ 2∇η ∧∇⊥ω̂

∆η + 3div((∇ω̂ · ν +∇η · ω̂) (−ω̂))−∇⊥ω̂ ∧∇η −∇⊥ν ∧∇ω̂
.

6.5 Taylor expansion of the metric

The following lemma is a simple consequence of the expansion of the metric under a normal coordi-
nates centered at p ∈M , see [126].

Lemma 6.5.1.

(hε)ik = δik +
ε2

3
Rijmk(p)y

jym +
ε3

6
Rijmk,n(p)y

jymyn + o(ε3)

√
|hε| = 1− ε2

6
Ricmn(p)y

myn − ε3

12
Ricmn,jy

mynyj + o(ε3)

(hε)ik(y) = δik −
ε2

3
Rijmk(p)y

jym − ε3

6
Rijmk,n(p)y

jymyn + o(ε3)

(Γε)
k
ij(y) = ε2Aikjm(p)ym + ε3Bikjmn(p)y

myn + o(ε3)

(Γε)
k
ij, l(y) = ε2Aikjl(p) + ε3Bikjmn(p)(δ

mlyn + δnlym) + o(ε3),

(6.5.1)

where (hε)ik is the inverse matrix of (hε)ik and

Aikjm(p) =
1

3
(Rjmik(p) +Rimjk(p))

Bikjmn(p) =
1

12
(2Rjmik,n(p) + 2Rimjk,n(p) +Rjmnk,i(p) +Rimnk,j(p)−Rimnj,k(p)) .

153



154



Bibliography

[1] G. Alberti, S. Baldo, and G. Orlandi. Functions with prescribed singularities. Journal of the
European Mathematical Society, 5(3):275–311, Sept. 2003.

[2] R. Alessandroni and E. Kuwert. Local solutions to a free boundary problem for the Willmore
functional. Calc. Var. Partial Differential Equations, 55(2):55:24, 2016.

[3] N. D. Alikakos, P. W. Bates, and X. Chen. Convergence of the Cahn-Hilliard equation to the
Hele-Shaw model. Archive for Rational Mechanics and Analysis, 128(2):165–205, June 1994.

[4] L. Ambrosio. Geometric evolution problems, distance function and viscosity solutions. In
Calculus of variations and partial differential equations (Pisa, 1996), pages 5–93. Springer, Berlin,
2000.

[5] L. Ambrosio and N. Dancer. Calculus of variations and partial differential equations. Springer-
Verlag, Berlin, 2000. Topics on geometrical evolution problems and degree theory, Papers from
the Summer School held in Pisa, September 1996, Edited by G. Buttazzo, A. Marino and M. K.
V. Murthy.

[6] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity prob-
lems. Oxford Mathematical Monographs, 2000.

[7] L. Ambrosio, N. Gigli, and G. Savare. Gradient Flows: In Metric Spaces and in the Space of Proba-
bility Measures. Lectures in Mathematics. ETH Zürich. Birkhäuser Basel, 2 edition, 2008.

[8] L. Ambrosio and C. Mantegazza. Curvature and distance function from a manifold. J. Geom.
Anal., 8(5):723–748, 1998. Dedicated to the memory of Fred Almgren.

[9] L. Ambrosio and S. Masnou. A direct variational approach to a problem arising in image re-
construction. Interfaces and Free Boundaries, 5:63–81, 2003.

[10] P. Aviles and Y. Giga. A mathematical problem related to the physical theory of liquid crystal
configurations. In Miniconference on Geometry/Partial Differential Equations, 2, pages 1–16. Centre
for Mathematics and its Applications, Mathematical Sciences Institute, The Australian National
University, 1987.

[11] P. Aviles and Y. Giga. The distance function and defect energy. Proceedings of the Royal Society of
Edinburgh Section A: Mathematics, 126(5):923–938, 1996.

[12] P. Aviles and Y. Giga. On lower semicontinuity of a defect energy obtained by a singular limit
of the Ginzburg–Landau type energy for gradient fields. Proceedings of the Royal Society of Edin-
burgh Section A: Mathematics, 129(1):1–17, 1999/ed.

[13] C. Ballester, M. Bertalmío, V. Caselles, G. Sapiro, and J. Verdera. Filling-in by joint interpolation
of vector fields and gray levels. IEEE Trans. Image Process., 10(8):1200–1211, 2001.

155



[14] M. Bauer and E. Kuwert. Existence of minimizing Willmore surfaces of prescribed genus. Int.
Math. Res. Not., 2003(10):553–576, 2003.

[15] G. Bellettini. Lecture notes on mean curvature flow, barriers and singular perturbations, volume 12 of
Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di
Pisa (New Series)]. Edizioni della Normale, Pisa, 2013.

[16] G. Bellettini, G. Dal Maso, and M. Paolini. Semicontinuity and relaxation properties of a curva-
ture depending functional in 2d. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze,
20(2):247–297, 1993.

[17] G. Bellettini and L. Mugnai. Approximation of Helfrich’s Functional via Diffuse Interfaces.
SIAM Journal on Mathematical Analysis, 42(6):2402–2433, 2010-01-01.

[18] G. Bellettini and M. Paolini. Approssimazione variazionale di funzionali con curvatura. In
Seminario Analisi Matematica, Univ. Bologna, pages 87–97, 1993.

[19] Y. Bernard and T. Rivière. Local Palais-Smale sequences for the Willmore functional. Comm.
Anal. Geom., 19(3):563–599, 2011.

[20] Y. Bernard and T. Rivière. Singularity removability at branch points for Willmore surfaces.
Pacific J. Math., 265(2):257–311, 2013.

[21] Y. Bernard and T. Rivière. Energy quantization for Willmore surfaces and applications. Ann. of
Math. (2), 180(1):87–136, 2014.

[22] F. Bethuel, H. Brezis, and F. Hélein. Asymptotics for the minimization of a Ginzburg-Landau
functional. Calc. Var. Partial Differential Equations, 1(2):123–148, 1993.

[23] W. Blaschke. Vorlesungen über Differentialgeometrie III. Springer, Berlin, 1929.

[24] M. Bonafini, G. Orlandi, and E. Oudet. Variational approximation of functionals defined on
1-dimensional connected sets: the planar case. SIAM J. Math. Anal., 50(6):6307–6332, 2018.

[25] M. Bonafini and E. Oudet. A convex approach to the Gilbert-Steiner problem. Interfaces Free
Bound., 22(2):131–155, 2020.

[26] M. Bonnivard, E. Bretin, and A. Lemenant. Numerical approximation of the Steiner problem in
dimension 2 and 3. Math. Comp., 89(321):1–43, 2020.

[27] M. Bonnivard, A. Lemenant, and F. Santambrogio. Approximation of length minimization
problems among compact connected sets. SIAM J. Math. Anal., 47(2):1489–1529, 2015.

[28] A. Braides. Gamma-Convergence for Beginners. Oxford University Press, July 2002.

[29] E. Bretin, F. Dayrens, and S. Masnou. Volume reconstruction from slices. SIAM J. Imaging Sci.,
10(4):2326–2358, 2017.

[30] E. Bretin, S. Masnou, and É. Oudet. Phase-field approximations of the Willmore functional and
flow. Numerische Mathematik, 131(1):115–171, 2015-09-01.

[31] H. Brezis, J.-M. Coron, and E. H. Lieb. Harmonic maps with defects. Communications in Mathe-
matical Physics, 107(4):649–705, 1986.

[32] L. Bronsard and R. V. Kohn. Motion by mean curvature as the singular limit of Ginzburg-
Landau dynamics. Journal of Differential Equations, 90(2):211–237, 1991-04-01.

[33] R. L. Bryant. A duality theorem for Willmore surfaces. J. Differential Geom., 20(1):23–53, 1984.

156



[34] J. W. Cahn, C. M. Elliott, and A. Novick-Cohen. The Cahn–Hilliard equation with a concen-
tration dependent mobility: Motion by minus the Laplacian of the mean curvature. European
Journal of Applied Mathematics, 7(3):287–301, 1996-06.

[35] J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. The
Journal of Chemical Physics, 28(2):258–267, 1958.

[36] F. Cao, Y. Gousseau, S. Masnou, and P. Pérez. Geometrically guided exemplar-based inpainting.
SIAM J. Imaging Sci., 4(4):1143–1179, 2011.

[37] A. Chambolle, L. A. D. Ferrari, and B. Merlet. A phase-field approximation of the Steiner
problem in dimension two. Adv. Calc. Var., 12(2):157–179, 2019.

[38] A. Chambolle, L. A. D. Ferrari, and B. Merlet. Variational approximation of size-mass energies
for k-dimensional currents. ESAIM Control Optim. Calc. Var., 25:Paper No. 43, 39, 2019.

[39] A. Chambolle and T. Pock. Total roto-translational variation. Numer. Math., 142(3):611–666,
2019.

[40] J. Chen and Y. Li. Bubble tree of branched conformal immersions and applications to the Will-
more functional. Amer. J. Math., 136(4):1107–1154, 2014.

[41] X. Chen. Generation and Propagation of Interfaces in Reaction-Diffusion Systems. Transactions
of the American Mathematical Society, 334(2):877–913, 1992.

[42] X. Chen. Global asymptotic limit of solutions of the Cahn-Hilliard equation. Journal of Differen-
tial Geometry, 44(2):262–311, 1996.

[43] P. Colli and P. Laurençot. A phase-field approximation of the Willmore flow with volume con-
straint. Interfaces and Free Boundaries, 13(3):341–351, Oct. 2011.

[44] P. Colli and P. Laurençot. A Phase-Field Approximation of the Willmore Flow with Volume and
Area Constraints. SIAM Journal on Mathematical Analysis, 44(6):3734–3754, 2012-01-01.

[45] K. Crane, U. Pinkall, and P. Schröder. Robust fairing via conformal curvature flow. ACM Trans.
Graph., 32(4), July 2013.

[46] A. Dahan-Dalmédico. Mécanique et théorie des surfaces: les travaux de Sophie Germain. His-
toria Math., 14(4):347–365, 1987.

[47] G. Dal Maso. An Introduction to Γ-Convergence. Birkhäuser Boston, 1993.

[48] A. Dall’Acqua. Uniqueness for the homogeneous Dirichlet Willmore boundary value problem.
Ann. Global Anal. Geom., 42(3):411–420, 2012.

[49] C. DAmbrosio, M. Fampa, J. Lee, and S. Vigerske. On a nonconvex MINLP formulation of
the Euclidean Steiner tree problem in n-space. In International Symposium on Experimental Algo-
rithms, page 122–133. Springer, 2015.

[50] H. Dang, P. C. Fife, and L. A. Peletier. Saddle solutions of the bistable diffusion equation.
Zeitschrift für angewandte Mathematik und Physik ZAMP, 43(6):984–998, 1992-11-01.

[51] E. De Giorgi. Some remarks on Γ-convergence and least square methods. In G. D. Maso and
G. Dell’Antonio, editors, Composite Media and Homogenization Theory, pages 135–142. Birkhaüser,
Boston, 1991.

[52] E. De Giorgi and T. Franzoni. Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei
Rend. Cl. Sci. Fis. Mat. Nat. (8), 58(6):842–850, 1975.

157



[53] P. De Mottoni and M. Schatzman. Geometrical Evolution of Developed Interfaces. Transactions
of the American Mathematical Society, 347(5):1533–1589, 1995.

[54] M. C. Delfour and J.-P. Zolésio. Shape analysis via oriented distance functions. J. Funct. Anal.,
123(1):129–201, 1994.

[55] M. Droske and M. Rumpf. A level set formulation for Willmore flow. Interfaces Free Bound.,
6(3):361–378, 2004.

[56] O. Druet. Sharp local isoperimetric inequalities involving the scalar curvature. Proc. Amer.
Math. Soc., 130(8):2351–2361 (electronic), 2002.

[57] O. Druet, E. Hebey, and F. Robert. A C0-theory for the blow-up of second order elliptic equa-
tions of critical Sobolev growth. Electron. Res. Announc. Amer. Math. Soc., 9:19–25, 2003.

[58] Q. Du and X. Feng. Chapter 5 - The phase field method for geometric moving interfaces and
their numerical approximations. In A. Bonito and R. H. Nochetto, editors, Handbook of Numerical
Analysis, volume 21 of Geometric Partial Differential Equations - Part I, pages 425–508. Elsevier,
2020-01-01.

[59] Q. Du, C. Liu, R. Ryham, and X. Wang. A phase field formulation of the Willmore problem.
Nonlinearity, 18(3):1249–1267, 2005-02.

[60] Q. Du, C. Liu, and X. Wang. A phase field approach in the numerical study of the elastic bending
energy for vesicle membranes. Journal of Computational Physics, 198(2):450–468, 2004-08-10.

[61] L. C. Evans, H. M. Soner, and P. E. Souganidis. Phase transitions and generalized motion by
mean curvature. Comm. Pure Appl. Math., 45(9):1097–1123, 1992.

[62] D. J. Eyre. Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation. MRS
Online Proceedings Library Archive, 529, 1998/ed.

[63] M. Fei and Y. Liu. Sharp interface limit of a phase field model for elastic bending energy.
arXiv:1904.11139 [math], Apr. 2019.

[64] Y. Ge. A remark on generalized harmonic maps into spheres. Nonlinear Anal., 36(4, Ser. A:
Theory Methods):495–506, 1999.

[65] S. Germain. Recherches sur la théorie des surfaces élastiques. Courcier, Paris, 1821.

[66] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order. Classics in
Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

[67] H.-C. Grunau. The asymptotic shape of a boundary layer of symmetric Willmore surfaces of
revolution. In Inequalities and applications 2010, volume 161 of Internat. Ser. Numer. Math., pages
19–29. Birkhäuser/Springer, Basel, 2012.

[68] S. W. Hawking. Gravitational radiation in an expanding universe. J. Math. Phys., 9:598–604,
Apr. 1968.

[69] F. Hélein. Harmonic maps, conservation laws and moving frames, volume 150 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, second edition, 2002. Translated from
the 1996 French original, With a foreword by James Eells.

[70] R. Ignat. Two-dimensional unit-length vector fields of vanishing divergence. Journal of Func-
tional Analysis, 262(8):3465–3494, 2012-04-15.

[71] R. Ignat. Singularities of divergence-free vector fields with values into s1 or s2: Applications to
micromagnetics. Confluentes Mathematici, 04(03):1230001, 2012-09-01.

158



[72] R. Ignat and B. Merlet. Lower Bound for the Energy of Bloch Walls in Micromagnetics. Archive
for Rational Mechanics and Analysis, 199(2):369–406, 2011-02-01.

[73] R. Ignat and B. Merlet. Entropy method for line-energies. Calculus of Variations and Partial
Differential Equations, 44(3):375–418, July 2012.

[74] T. Ilmanen. Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature.
Journal of Differential Geometry, 38(2):417–461, 1993.

[75] R. Jerrard and H. Soner. Functions of Bounded Higher Variation. Indiana University Mathematics
Journal, 51(3):645–677, 2002.

[76] D. Juhl, D. Warme, P. Winter, and M. Zachariasen. The geosteiner software package for com-
puting steiner trees in the plane: an updated computational study, 2014. 11th DIMACS Imple-
mentation Challenge ; Conference date: 04-12-2014 Through 05-12-2014.

[77] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of Computer Computations, The IBM Research Symposia Series, pages 85–103.
Plenum Press, New York, 1972.

[78] R. V. Kohn and P. Sternberg. Local minimisers and singular perturbations*. Proceedings of the
Royal Society of Edinburgh Section A: Mathematics, 111(1-2):69–84, 1989/ed.

[79] R. Kusner. Comparison surfaces for the Willmore problem. Pac. J. Math., 138(2):317–345, 1989.

[80] T. Lamm and J. Metzger. Small surfaces of Willmore type in Riemannian manifolds. Int. Math.
Res. Not. IMRN, 2010(19):3786–3813, 2010.

[81] T. Lamm and J. Metzger. Minimizers of the Willmore functional with a small area constraint.
Ann. Inst. H. Poincaré Anal. Non Linéaire, 30(3):497–518, 2013.

[82] T. Lamm, J. Metzger, and F. Schulze. Foliations of asymptotically flat manifolds by surfaces of
Willmore type. Math. Ann., 350(1):1–78, 2011.

[83] P. Laurain. Concentration of CMC surfaces in a 3-manifold. Int. Math. Res. Not. IMRN,
2012(24):5585–5649, 2012.

[84] P. Laurain and A. Mondino. Concentration of small Willmore spheres in Riemannian 3-
manifolds. Anal. PDE, 7(8):1901–1921, 2014.

[85] P. Laurain and T. Rivière. Energy quantization of willmore surfaces at the boundary of the
moduli space, 2016.

[86] H. B. Lawson, Jr. Complete minimal surfaces in S3. Ann. of Math., 92:335–374, 1970.

[87] H. G. Lee and J.-Y. Lee. A semi-analytical Fourier spectral method for the Allen–Cahn equation.
Computers & Mathematics with Applications, 68(3):174–184, Aug. 2014.

[88] G. Leonardi and S. Masnou. Locality of the mean curvature of rectifiable varifolds. Adv. Calc.
of Var., 2(1):17–42, 2009.

[89] P. Li and S. T. Yau. A new conformal invariant and its applications to the Willmore conjecture
and the first eigenvalue of compact surfaces. Invent. Math., 69(2):269–291, 1982.

[90] Y. Li. Some remarks on willmore surfaces embedded in R
3. J. Geom. Anal., 25:1–14, 2015.

[91] Y. Li, H. G. Lee, D. Jeong, and J. Kim. An unconditionally stable hybrid numerical method for
solving the Allen–Cahn equation. Computers & Mathematics with Applications, 60(6):1591–1606,
Sept. 2010.

159



[92] P. Loreti and R. March. Propagation of fronts in a nonlinear fourth order equation. European
Journal of Applied Mathematics, 11(2):203–213, 2000-04.

[93] C. Mantegazza and A. C. Mennucci. Hamilton-Jacobi equations and distance functions on Rie-
mannian manifolds. Appl. Math. Optim., 47(1):1–25, 2003.

[94] F. C. Marques and A. Neves. Min-Max theory and the Willmore conjecture. Annals of Mathe-
matics, 179(2):683–782, 2014.

[95] S. Masnou and J. Morel. Level lines based disocclusion. In Proceedings of the 1998 IEEE Inter-
national Conference on Image Processing, ICIP-98, Chicago, Illinois, USA, October 4-7, 1998, pages
259–263. IEEE Computer Society, 1998.

[96] S. Masnou and J. M. Morel. On a variational theory of image amodal completion. Rend. Semin.
Mat. Univ. Padova, 116:211–252, 2006.

[97] U. Menne. Second order rectifiability of integral varifolds of locally bounded first variation. J.
Geom. Anal., 23(2):709–763, 2013.

[98] B. Merlet. A highly anisotropic nonlinear elasticity model for vesicles. I: Eulerian formulation,
rigidity estimates and vanishing energy limit. Arch. Ration. Mech. Anal., 217(2):651–680, 2015.

[99] B. Merlet. A highly anisotropic nonlinear elasticity model for vesicles. II: Derivation of the thin
bilayer bending theory. Arch. Ration. Mech. Anal., 217(2):681–740, 2015.

[100] A. Miranville. The Cahn–Hilliard Equation: Recent Advances and Applications. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, 2019.

[101] M. Mizuno and Y. Tonegawa. Convergence of the Allen–Cahn Equation with Neumann Bound-
ary Conditions. SIAM Journal on Mathematical Analysis, 47(3):1906–1932, 2015-01-01.

[102] L. Modica. The gradient theory of phase transitions and the minimal interface criterion. Arch.
Rational Mech. Anal., 98(2):123–142, 1987.

[103] L. Modica and S. Mortola. Un esempio di Γ−-convergenza. Boll. Un. Mat. Ital. B (5), 14(1):285–
299, 1977.

[104] A. Mondino. Some results about the existence of critical points for the Willmore functional.
Math. Z., 266(3):583–622, 2010.

[105] A. Mondino. The conformal Willmore functional: a perturbative approach. J. Geom. Anal.,
23(2):764–811, 2013.

[106] A. Mondino and T. Rivière. Willmore spheres in compact Riemannian manifolds. Adv. Math.,
232:608–676, 2013.

[107] A. Mondino and T. Rivière. Immersed spheres of finite total curvature into manifolds. Adv.
Calc. Var., 7(4):493–538, 2014.

[108] L. Mugnai. Gamma-convergence results for phase-field approximations of the 2D-Euler elastica
functional. ESAIM Control Optim. Calc. Var., 19(3):740–753, 2013.

[109] L. Mugnai. Gamma-convergence results for phase-field approximations of the 2d-euler elastica
functional. ESAIM: Control, Optimisation and Calculus of Variations, 19(3):740–753, 2013.

[110] L. Mugnai and M. Röger. Convergence of Perturbed Allen-Cahn Equations to Forced Mean
Curvature Flow. Indiana University Mathematics Journal, 60, Mar. 2009.

160



[111] Y. Nagase and Y. Tonegawa. A singular perturbation problem with integral curvature bound.
Hiroshima Mathematical Journal, 37(3):455–489, 2007-11.

[112] J. C. C. Nitsche. Boundary value problems for variational integrals involving surface curva-
tures. Quart. Appl. Math., 51(2):363–387, 1993.

[113] A. Novick-Cohen. The Cahn-Hilliard equation. In Handbook of differential equations: evolutionary
equations. Vol. IV, Handb. Differ. Equ., pages 201–228. Elsevier/North-Holland, Amsterdam,
2008.

[114] M. Ortiz and G. Gioia. The morphology and folding patterns of buckling-driven thin-film
blisters. Journal of the Mechanics and Physics of Solids, 42(3):531–559, Mar. 1994.

[115] B. Palmer. Uniqueness theorems for Willmore surfaces with fixed and free boundaries. Indiana
Univ. Math. J., 49(4):1581–1601, 2000.

[116] R. L. Pego and O. Penrose. Front migration in the nonlinear Cahn-Hilliard equation. Proceedings
of the Royal Society of London. A. Mathematical and Physical Sciences, 422(1863):261–278, 1989-04-
08.

[117] S. D. Poisson. Mémoire sur les Surfaces Élastiques. Mem. Cl. Sci. Math. Phys. Inst. de France, 1812.

[118] Y. Qi and G.-F. Zheng. Convergence of solutions of the weighted Allen–Cahn equations to
Brakke type flow. Calculus of Variations and Partial Differential Equations, 57(5):133, Aug. 2018.

[119] G. E. Raynor. Isolated singular points of harmonic functions. Bull. Amer. Math. Soc., 32(5):537–
544, 1926.

[120] T. Rivière. Conservation laws for conformally invariant variational problems. Invent. Math.,
168(1):1–22, 2007.

[121] T. Rivière. Analysis aspects of Willmore surfaces. Invent. Math., 174(1):1–45, 2008.

[122] T. Rivière. Variational principles for immersed surfaces with L2-bounded second fundamental
form. J. Reine Angew. Math., 695:41–98, 2014.

[123] J. S. Rowlinson. Translation of J. D. van der Waals’ “The thermodynamik theory of capillar-
ity under the hypothesis of a continuous variation of density”. Journal of Statistical Physics,
20(2):197–200, Feb. 1979.

[124] J. Rubinstein, P. Sternberg, and J. B. Keller. Fast Reaction, Slow Diffusion, and Curve Shortening.
SIAM Journal on Applied Mathematics, 49(1):116–133, 1989-02-01.

[125] M. Röger and R. Schätzle. On a Modified Conjecture of De Giorgi. Mathematische Zeitschrift,
254(4):675–714, 2006-12-01.

[126] T. Sakai. Riemannian geometry, volume 149 of Translations of Mathematical Monographs. American
Mathematical Society, Providence, RI, 1996. Translated from the 1992 Japanese original by the
author.

[127] L. Simon. Lectures on geometric measure theory, volume 3 of Proceedings of the Centre for Mathemat-
ical Analysis, Australian National University. Australian National University, Centre for Mathe-
matical Analysis, Canberra, 1983.

[128] L. Simon. Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom.,
1(2):281–326, 1993.

[129] L. Simon. Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom.,
1(2):281–326, 1993.

161



[130] L. Tartar. The compensated compactness method applied to systems of conservation laws. In
Systems of nonlinear partial differential equations (Oxford, 1982), volume 111 of NATO Adv. Sci. Inst.
Ser. C Math. Phys. Sci., pages 263–285. Reidel, Dordrecht, 1983.

[131] L. Tartar. Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez.
B Artic. Ric. Mat. (8), 1(3):479–500, 1998.

[132] G. Thomsen. Über die Auswertung der Quantenintegrale für den unsymmetrischen Kreisel.
Math. Ann., 94(1):146–162, 1925.

[133] X. Wang. Asymptotic Analysis of Phase Field Formulations of Bending Elasticity Models. SIAM
Journal on Mathematical Analysis, 39(5):1367–1401, 2008-01-01.

[134] J. L. Weiner. On a problem of Chen, Willmore, et al. Indiana Univ. Math. J., 27(1):19–35, 1978.

[135] H. C. Wente. An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl.,
26:318–344, 1969.

[136] T. J. Willmore. Note on embedded surfaces. An. Şti. Univ. “Al. I. Cuza” Iaşi Secţ. I a Mat. (N.S.),
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Questions d’approximation et de compacité

pour des problèmes variationnels géométriques

Résumé : La première partie de cette thèse est consacrée à l’étude théorique et numérique de l’approxi-

mation par méthode de champ de phase de deux flots géométriques, le flot de courbure moyenne et le

flot de Willmore. L’analyse d’un modèle particulier d’approximation du flot de Willmore nous amène à

proposer un nouveau terme de réaction qui charge les singularités du champ normal associé à une forme

en évolution. On en déduit un nouveau modèle d’approximation du flot de courbure moyenne qui empêche

les changements de topologie. Ce modèle est en particulier bien adapté à l’approximation numérique de

solutions en 3D du problème de Steiner et du problème de Plateau.

Dans la deuxième partie de la thèse, on étudie le comportement asymptotique de petites sphères de

Willmore plongées dans une variété riemannienne de dimension 3. En utilisant la formulation de l’équation

de Willmore donnée par Rivière en un système triple d’EDPs elliptiques, on montre que, dans le cas où

seules deux sphères apparaissent dans la décomposition asymptotique, les petites sphères de Willmore se

concentrent nécessairement en un point critique de la courbure scalaire de la variété ambiante.

Mots clés : Approximation par méthode de champ de phase, Flots géométriques, Contraintes topolo-
giques, Energie de Willmore, Phénomènes de concentration, Analyse non linéaire.

Questions of approximation and compactness for some geometric variatio-
nal problems

Abstract : The first part of this thesis is devoted to the theoretical and numerical study of the phase field

approximation of two geometric flows, the mean curvature flow and the Willmore flow. The analysis of a

particular model of approximation of the Willmore flow leads us to propose a new reaction term which

charges the singularities of the normal field associated to an evolving shape. We derive a new model of

approximation of the mean curvature flow which prevents topology changes. This model is in particular

well adapted to the numerical approximation of 3D solutions of the Steiner problem and the Plateau

problem.

In the second part of the thesis, we study the asymptotic behavior of small embedded Willmore spheres

in a Riemannian manifold of dimension 3. Using the formulation of Willmore equation derived by Rivière

in terms of a triple system of elliptic PDEs, we show that, in the case where only two spheres appear

in the asymptotic decomposition, small embedded Willmore spheres necessarily concentrate at a critical

point of the scalar curvature of the ambient manifold.

Keywords : Phase-field approximation, Geometric flows, Topological constraints, Willmore energy,
Concentration phenomena, Nonlinear Analysis.
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