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Abstract

An arbitrarily high-order 2D CFD solver is developed in this thesis, which is intended for solving
compressible Navier-Stokes equations with Godunov-type Finite-Volume Method on general un-
structured polygonal computational grids. High-order accurate spatial discretization is made pos-
sible by a polynomial-based constrained least-squares (CLSQ) reconstruction scheme which treats
boundary conditions as additional equality constraints in the original least-squares functional, and
solves the constrained optimization problem with Lagrange multipliers. The CLSQ scheme achieves
scalable spatial order in both interior and boundary regions without the need for ghost cells. The
Riemann problem is solved at cell interfaces with an all-Mach corrected approximate-state HLLC
Riemann solver, and the steady-state solution is obtained by an implicit dual-time-stepping scheme
implemented with a choice of different iterative and approximately factored linear solvers. The new
CFD solver is tested on 3 laminar flow test-cases : a NACA0012 airfoil test-case, a zero-thickness
flat-plate boundary layer test-case and a backward-facing step with an expansion ratio of 101/52.
The solver shows excellent mesh flexibility and the order of accuracy is verified by comprehensive
qualitative and quantitative analyses. For the backward-facing step case, the results obtained by
the current CFD solver are in excellent agreement with the experimental data and with previous
2D computations. Moreover, the CLSQ reconstruction also demonstrates notable advantages over
traditional second-order interpolation-based spatial discretization schemes in predicting separation,
reattachment and small vortical structures in the near-wall region.
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Chapter 1

Introduction

1.1 Background

Accuracy and generality have long been the two centerpieces around which revolve virtually all
research projects in the field of Computational Fluid Dynamics (CFD) until this day. An ideal
CFD solver needs to be capable of solving a wide range of realistic flow problems on as many
types of geometries as possible, while producing results as accurate as the computational resources
allow. However, in reality, achieving high-order accuracy while guaranteeing robustness on complex
general computational grids presents a huge challenge for any CFD solver, and in most occasions,
satisfying one requires making compromises on the other.

During the development of CFD in the past few decades, four major frameworks of methods for
approximately solving the Navier-Stokes equations have risen to prominence, and have gained the
most popularity among all solver implementations; they are the Finite Difference Method (FDM),
the Finite Volume Method (FVM), the Finite Element Method (FEM) (in particular the Petrov-
Galerkin method), and the Spectral Method. The FDMs have the longest history of applications in
CFD and they are designed based on solving the strong form of the Navier-Stokes equations, which
consists of approximating the differential operator by differences of nodal data. The other three
methods aim to solve the weak form of the Navier-Stokes equations, which involves approximating
the solutions by trial functions with respect to a space of test functions. Both the FVM and
Spectral methods can be regarded as variations of the FEM in a broader sense, and they differ
mainly in the choices of test and trial functions.

According to Morton and Sonar [160] and Gerolymos and Vallet [91], the Finite Volume Methods
are mathematically equivalent to the Petrov-Galerkin-type Finite Element Methods with piece-wise
constant test functions, and the reconstruction of scalar fields based on cell-averaged input data
is a special case of the optimal recovery theory developed by Micchelli and Rivlin [157], in a sense
that the point values of the function to be approximated are recovered from a set of cell-averages.
This viewpoint is also shared by other authors such as Shu [191], who establishes the framework
of the Discontinuous Galerkin Method as a generalization of the FVM.

The Spectral Methods differ from the FEMs and FVMs in their choice of trial functions (or
basis functions). The trial functions used by spectral methods are infinitely differentiable global
functions, according to Canuto et al. [31], whereas those of FEMs (locally smooth) and FVMs
(locally polynomial) are local.

Numerous efforts have been invested to construct both accurate and general CFD solvers using
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1. Introduction

the four classes of methods mentioned above, thus making the study of high-order numerical
methods an extremely active branch in CFD.

For the FDMs, which are also the most mathematically straightforward methods, high-order
approximation schemes can be intuitively devised by expanding the stencil associated with each
node. However, the simplicity in constructing high-order schemes comes with the sacrifice in
generality. The FDM are only compatible with structured computational grids therefore their
applications are limited to regular and simple geometries, which results in the loss of geometric
flexibility. The extension to complex geometries requires using multi-block structured grids with
the associated difficulty of information transfer at block interfaces.

The Spectral Methods are inherently extensible to very high-order accuracy due to their usage
of infinitely differentiable trial functions (e.g., trigonometric polynomials, Legendre polynomials,
Chebyshev polynomials, etc.) everywhere in the computational domain. However, also due to
the globalness and smoothness of their trial functions, this family of methods have difficulties in
treating geometric singularity (e.g., sharp corners) and discontinuity in the solution [31]. Therefore,
although the high-order extension is naturally incorporated in these methods, their application is
restricted to simple geometries and mainly to smooth flow fields.

Until this day, the only viable candidates among the four types of methods that are able to
achieve high-order accuracy while preserving generality are the FVM and the FEM. Comparing
with the FVM, the high-order extensions of FEM are more straightforward and is achieved by
simply adding degrees of freedom to each element. The so-called hp-adaptivity can also be re-
alized since the order of approximation can be modified in specific elements [64]. However, the
traditional FEMs have notable disadvantages in fluid simulations comparing to the FVMs, namely
for solving problems with (pseudo-)time-dependence. In time-dependent FEMs, the residual of
solution at each time-step is required to be orthogonal to the test functions. This requirement
results in a large mass matrix M to be inverted at every time-step which adds considerably to the
computational burden during time-marching. Moreover, as pointed out by many previous authors
[109, 111, 228], the classic FEM proves to be a less natural choice for convection-dominated and
wave-dominated flows since the trial functions are typically spatially symmetric and they are in-
compatible with the concept of upwinding which is natural to FDM and FVM. The Discontinuous
Galerkin Finite Element Method (DG-FEM) has been developed to overcome the limitations of
traditional FEM by adopting a few important features from the FVM. In the context of DG-FEM,
the definitions of trial and test functions are local to each element, and the numerical flux is
computed at elemental interfaces to account for information from both sides. Moreover, the large
global mass matrix M in the FEM is reduced to a locally defined small matrices which are much
less costly to invert during time-marching. Through a series of works by Cockburn, Shu, Bassi,
Rebay, Hesthaven, Warburton and others [23, 25, 43, 50, 51, 52, 53, 54, 55, 109], the DG-FEM
has been well-established as a viable candidate for solving the Euler and Navier-Stokes equations
in all flow regimes. Nevertheless, despite all recent developments in this area, the DG-FEM still
remains a more computationally expensive method compared to the FVM and one of the major
reasons is that all interfaces between two neighboring elements need to be duplicated for the con-
structions of local test and trial functions. This directly doubles the computational costs and can
become disadvantageous for large-scale implementations [109]. Furthermore, DG-FEMs show less
robustness in the presence of strong shocks comparing to the high-order FVMs such as the WENO
schemes [191].

All aspects considered, until this day, the FVM still remains the most balanced method in
terms of accuracy, flexibility and economy. For numerical approximations of at most second order
in smooth regions, the family of Monotonic Upstream-centered Scheme for Conservation Laws
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(MUSCL) schemes and Total Variation Diminishing (TVD) schemes developed by van Leer [209]
and Harten [107] have attained dominant popularity since the late 1970s, and have long been
implemented in large-scale industrial applications with widely recognized robustness for various
flow problems. The WENO approach of Shu [191] further improves capturing of discontinuities
with the additional advantage of being scalable to arbitrary order-of-accuracy [88]. However,
beyond second order, the order increase for the FVMs is less straightforward than that of the
FEMs or Spectral Methods since their test functions are inherently piece-wise constant.

In order to benefit from the relatively simple implementation, the geometric flexibility and the
low computational overhead of the FVM, a great number of studies in CFD have been dedicated to
designing high-order (at least third-order) numerical schemes for the FVM. The most well-known
and widely implemented high-order schemes for FVMs and FDMs are the family of Essentially Non-
Oscillatory (ENO) schemes developed by Harten et al. [108], Shu and Osher [189, 190] where several
high-order stencils are constructed around each computational cell in the domain, and the stencil
with the smoothest solution is selected for the final reconstruction. In particular, the Weighted Es-
sentially Non-Oscillatory (WENO) schemes developed by Liu et al. [148] and generalized by Jiang
and Shu [119] in 1996 are a major improvement with respect to ENO schemes. For the WENO
schemes, instead of picking the stencil with the smoothest solution for reconstruction, each cell is
assigned with a set of lower order stencils and the high-order reconstruction is achieved by a convex
combination of the solutions in all lower order stencils, each with its respective weight proportional
to the smoothness of solution within that stencil. WENO schemes are capable of obtaining ar-
bitrarily high-order solutions in convection-and-shock-dominated flows while maintaining sharp
shock profiles with essentially no spurious oscillations. Among various implementations of WENO
schemes on structured grids, Balsara and Shu [18] developed a family of Monotonicity-Preserving
WENO (MPWENO) schemes based on the high-order monotonicity-preserving schemes of Suresh
and Huynh [202], which is O(∆x2r−1) accurate for r = 4, 5, 6. Gerolymos et al. [88] extended this
family of WENO schemes for r = 7, 8, 9 which is the implementation of the highest order to date
on structured grids to the author’s knowledge.

On general unstructured grids, the traditional reconstruction methods of ENO/WENO schemes
i.e., reconstruction via deconvolution and reconstruction via primitive function fail [5], and the
building block of the unstructured ENO/WENO schemes is the Least-Squares (LSQ) reconstruction
proposed by Barth and Frederickson [20]. Unstructured implementations of ENO/WENO schemes
have been carried out in the last three decades by Abgrall [5], Ollivier-Gooch [168], Hu and Shu
[110] and Zhang and Shu [225] among others, and the theoretical order of accuracy on arbitrary
grids are limited to third-order. Although the development of WENO schemes on structured
grids reached its maturity [191], there still exist many difficulties in developing WENO schemes
on unstructured grids, and particularly in finding positive linear weights even for the third-order
WENO on triangular grids as shown by Hu and Shu [110]. Until the time of writing this thesis, high-
order extensions of WENO schemes on unstructured grids still remain an active and challenging
area of research [226, 227].

As mentioned earlier, the success of unstructured ENO/WENO schemes relies on an accurate
and robust Least-Squares (LSQ) reconstruction scheme. For 2D advection equation in a periodic
domain, the LSQ scheme implemented by Gerolymos and Vallet [91] managed to reach 10th-order
accuracy on non-stretched unstructured polygonal grids through a posteriori verification. However,
in order to generalize the LSQ scheme to non-periodic domains with physical boundary conditions,
it is important for the LSQ scheme to retain its accuracy everywhere in the domain including at
boundaries. When the insertion of multiple layers of boundary ghost cells are not possible for
many real-life geometries (e.g., sharp corners, thin solid obstacles), the reconstructing polynomials
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need to account for the specific boundary conditions while maintaining the desired order. This
gives rise to a class of more general LSQ reconstruction schemes developed by Ollivier-Gooch
et al. [116, 169], Bertolazzi and Manzini [27] and Charest et al. [38, 39] among others, called
the Constrained LSQ (CLSQ) reconstruction schemes. This type of reconstruction schemes treat
interior and boundary cells in a unified manner by inserting additional equality constraints in the
LSQ system, and show great potential to become the cornerstone of a more general and robust class
of high-order ENO/WENO schemes on arbitrary unstructured grids. A recent implementation of
the CLSQ reconstruction in ENO-type schemes is the Central Essentially Non-Oscillatory (CENO)
scheme introduced by Charest et al. [39]. However, no result of formal grid convergence study has
been shown for wall-bounded viscous flow on stretched unstructured grids.

More research in the area of high-order CFD solver on general unstructured grids remains to
be undertaken.

1.2 Motivation

This thesis falls within the scope of collaborative project ANR-15-CE06-0009 NumERICCs (Nu-
merical and Experimental Research for Improved Control of Compressor Surge) funded by the
Agence Nationale de la Recherche. The NumERICCs project aims to develop novel techniques
for the active control of high pressure (HP) compressor surge. One of the major contributors of
compressor surge is the generation of tip leakage vortices and their interactions with the complex
secondary flow in the blade cascade [65, 86].
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Figure 1.1: (a): internal structure of an turbofan aircraft engine made by CFM; (b): tip leakage
vortices in a blade cascade.

In order to gain deep insight into the compressor surge, the challenge is to simulate the gen-
eration of tip leakage vortices and their interactions with secondary flow and shock waves. To
complete this challenge requires (i) : the CFD solver to have arbitrarily high-order resolution in
smooth regions and the capability to capture shock waves; (ii) : an accurate turbulence model
with advanced near-wall treatment; (iii) : the computational grid to be locally refined within the
tip-clearance-gap without interfering with the coarser meshes in the blade cascade, which neces-
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sitates the implementation of general unstructured grids. Extensive researches have been carried
out to meet the first two requirements, a very-high-order WENO scheme has been developed by
Gerolymos et al. [88] on structured grids, and a 7-equation (5-equation in 2D) Reynolds Stress
Model capable of modeling inhomogeneity and anisotropy near and away from the wall has been
proposed by Gerolymos et al. (GLVY-RSM) [92]. However, in order to migrate the experience ac-
quired in the aforementioned studies to general unstructured grids (requirement (iii)), high-order
accurate numerical methods need to be further developed for unstructured grids including the
CLSQ reconstruction schemes, efficient implicit time-integration methods on unstructured grids,
etc. This works is to be undertaken in this thesis.

1.3 Thesis Outline

This thesis begins with a detailed presentation of the governing equations for simulating com-
pressible flows including the continuous and discretized Navier-Stokes equations and ideal gas
thermodynamic relations. Next, the mathematical formulation of the novel CLSQ reconstruction
scheme based on the functional with Lagrange multipliers are discussed along with an analysis on
the existence and uniqueness of the solution to the system of constrained optimization problem.
Other numerical methods used in the current study are also discussed, such as the approximate
Riemann solver for numerical flux computation, the implicit time-integration schemes developed for
general unstructured grids, and the treatments of boundary conditions encountered in compressible
flow simulations. Furthermore, an detailed evaluation is dedicated to verify the robustness and
accuracy of the aforementioned computational methods on 2D general polygonal grids including
but not limited to a formal grid convergence study on the CLSQ scheme with wall-bounded vis-
cous flow. Finally, all computational methods developed in this study are implemented as a 2D
unstructured package within the open-source CFD code Aerodynamics [90], which is used to
study the flow physics of the classic laminar backward-facing step (BFS) test-case of Armaly et
al. [13]. Comparisons are made with the experimental data and various previous computational
studies, and we demonstrate that the method gives consistent results with reported data in the
literature while showing some notable advantages in the flow field prediction.
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Chapter 2

Governing Equations and
Computational Methods

2.1 Governing Equations

The flow is described by compressible Navier-Stokes equations are written in the indicial notation
in Eqn. 2.1

∂ρ

∂t
+

∂

∂x`
(ρu`) = 0 (2.1a)

∂ρui
∂t

+
∂

∂x`
(ρuiu`) = − ∂p

∂xi
+
∂τi`
∂x`

+ ρfVi (2.1b)

∂ρet
∂t

+
∂

∂x`
(ρhtu`) =

∂

∂x`
(umτm` − q`) + ρfVmum (2.1c)

where t is the time, xi ∈ {x, y, z} represent the Cartesian space coordinates, ρ is the density, p is
the static pressure, ui ∈ {u, v, w} are the velocity components in the Cartesian space coordinates,
p is the static pressure, τGij is the viscous stress tensor, fVi are the body-forces in the Cartesian
space coordinates which are neglected in the current study. The energy equation Eqn. 2.1c is
written with respect to the specific total energy et with

ρet = ρht − p (2.2a)

ht = h+ uiui/2 (2.2b)

h = e+ p/ρ (2.2c)

where e is the specific internal energy, h is the specific enthalpy, ht is the specific total enthalpy.
In Eqn. 2.1c, qi are the molecular heat-fluxes in the Cartesian coordinates. In the current
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thesis, the fluid is assumed to be ideal gas, which implies the following thermodynamic relations

p = ρRgT (2.3a)

Rg = const. (2.3b)

cp =
γ

γ − 1
Rg = const. (2.3c)

cv =
1

γ − 1
Rg = const. (2.3d)

a =

√
γ
p

ρ
=
√
γRgT (2.3e)

where Rg is the specific gas constant (Rg = 287.04 m2 · s−1 · K−1 for air), γ is the heat capacity
ratio (γ = 1.4 for air), cv = const. and cp = const. are respectively the specific heat capacity at
constant volume and that at constant pressure, c is the speed of sound. From Eqn. 2.3, the relation
between the static pressure p and the specific total energy is deduced in Eqn. 2.4

p = (γ − 1)ρ (et − uiui/2) . (2.4)

The viscous stress tensor τij is linearly correlated to the strain-rate tensor Sij following the
Newtonian law

τij = 2µ

(
Sij −

1

3
Θδij

)
+ µbΘδij (2.5)

where Sij := 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain-rate tensor, and Θ := ∂ui

∂xi
= Sii is the dilatation rate, δij

is the Kronecker symbol, µ := µ(T ) is the dynamic viscosity, µb is the bulk viscosity.
The heat-flux qi is calculated with Fourier’s law of thermal conduction in Eqn. 2.6

qi = −κ ∂T
∂xi

(2.6)

where κ = κ(T ) is the thermal conductivity, which, along with µ(T ), are determined by the
Sutherland’s law in Eqn. 2.7

µ(T ) = µ0

[
T

Tµ0

] 3
2 Sµ + Tµ0

Sµ + T
(2.7a)

κ(T ) = κ0
µ(T )

µ0
[1 +Aκ(T − Tµ0)] (2.7b)

where, for air, the constants and coefficients in Eqn. 2.7 are due to [85, 94] : Tµ0
= 273.15 K,

µ0 := µ(Tµ0
) = 17.11 × 10−6 Pa · s, Sµ = 110.4 K, κ0 := κ(Tµ0

) = 0.0242 W · m−1 · K−1, Aκ =

2.3×10−4 K−1. Note that, since both µ and κ are functions of temperature T , the Prandtl number
Pr = cpµ/κ is also a function of temperature Pr := Pr(T ). Bulk viscosity is neglected in Eqn. 2.5
following Stokes’ hypothesis

µb = 0. (2.8)

In order to model the system of equations Eqn. 2.1 later with a Finite Volume Method (FVM),
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it is important to rewrite Eqn. 2.1 in vector form as in Eqn. 2.9

∂U

∂t
+
∂F`
∂x`

= 0 (2.9)

where U ∈ R5 1 is the vector of conservative variables

U = [ρ, ρu, ρv, ρw, ρet]
> (2.10)

and the flux vectors F` consist of the convective fluxes F c
` and the viscous fluxes F v

` , which are
defined as follows

F`(U, gradU) =


ρu`

ρuu` + pδx`
ρvu` + pδy`
ρwu` + pδz`
ρetu` + pu`


︸ ︷︷ ︸

F c
` (U)

+


0

−τx`
−τy`
−τz`

−uiτi` + q`


︸ ︷︷ ︸
F v
` (U,gradU)

.
(2.11)

where gradU is the entry-wise gradient of U

gradU := [gradρ, gradu, gradv, gradw, gradet]
>. (2.12)

Finally we obtain the integral form of Eqn. 2.9

∂

∂t

∫
V

UdV +

∮
∂V

#»

F (U, gradU) · d #»

S = 0 (2.13)

where

#»

F = Fx
#»e x + Fy

#»e y + Fz
#»e z (2.14)

and V denotes an arbitrary fixed control volume with ∂V being the collection of its bounding
surfaces. Note that, in 2D, V is reduced to a planar surface with ∂V being its bounding curves.

1In this thesis, the symbol Rn is reserved for n-vectors of flow variables such as U , V , etc., whereas symbol En

is used to denote the n-dimensional Euclidean space.
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2. Governing Equations and Computational Methods

2.2 Overview of Computational Methodology

The integral form of the Navier-Stokes equations Eqn. 2.13 is discretized according to the finite
volume formulation

∂

∂t

∫
Ei

UdV +

∮
∂Ei

#»

F (U, gradU) · d #»

S = 0 (2.15)

where Ei denotes a discretized control volume which is hereafter termed as a computational cell
or cell for short, and ∂Ei denotes the bounding edges of cell Ei. In the present study, we limit
ourselves to general 2D polygonal grids, therefore Ei is a general polygon with straight edges.

The semi-discrete form of Eqn. 2.15 is applied to each discrete N -gon Ei, whose N edges are
denoted by Gij with j = 1, · · · , N . Note that

⋃n
j=0Gij is the discretized form of ∂Ei

d

dt
〈U〉Ei +

1

AEi

N∑
j=0

FNUM
Gij LGij = O(∆hp) (2.16)

where 〈·〉Ei is the cell-averaging operator in cell Ei, AEi is the area of Ei, LGij is the length of
Gij . The approximation error is O(∆hp) where ∆h is the characteristic grid spacing and p is the
order of spatial discretization. FNUM

Gij
is the edge-averaged numerical flux evaluated at edge Gij

with Gauss-Legendre quadrature rule

FNUM
Gij = F c,NUM

Gij
+ F v,NUM

Gij

=

N̄�∑
k=1

w�kF
c,NUM

(
UL�k

, [gradU ]L�k
, UR�k

, [gradU ]R�k
, #»n�k

)

+

N̄�∑
k=1

w�kF
v,NUM

(
UL�k

, [gradU ]L�k
, UR�k

, [gradU ]R�k
, #»n�k

)
(2.17)

where N̄� is the number of quadrature points per edge, F c,NUM and F v,NUM are the point-wise
numerical convective and viscous fluxes evaluated at each Gauss-Legendre quadrature point (de-
noted by �k) on the edge Gij . To provide arguments for F c,NUM and F v,NUM, we evaluate the left
and right conservative variables UL�k

and UR�k
, the entry-wise gradients (Eqn. 2.12) of the left

and right conservative variables [gradU ]L�k
and [gradU ]R�k

, and the unit face-normal vector #»n�k

which points from the left state to the right state. In the context of Godunov-type FVM, the solu-
tion of F c,NUM is obtained with a Riemann solver (see detailed discussion in Section. 2.4), whereas
F v,NUM is determined by simply taking the average on the high-order reconstructed viscous fluxes
in the left and right states of a quadrature point �k

F v,NUM
(
UL�k

, [gradU ]L�k
, UR�k

, [gradU ]R�k
, #»n�k

)
=

1

2

[
F v,NUM

(
UL�k

, [gradU ]L�k
, #»n�k

)
+ F v,NUM

(
UR�k

, [gradU ]R�k
, #»n�k

)] (2.18)

The input data on the computational grid are cell-averages, therefore, to evaluate any variable

9



2. Governing Equations and Computational Methods

or its derivatives at a given quadrature point (or at any point #»x ∈ E2 2 for that matter), a
spatial reconstruction scheme is required. For a high-order CFD solver of order p, the point-
data evaluation needs to be pth-order-accurate. For this purpose, we introduce the constrained
least-squares (CLSQ) reconstruction scheme later in Section. 2.3.

Expressing Eqn. 2.16 in terms of the residual vector REi gives

d

dt
〈U〉Ei +REi = O(∆hp) with REi =

1

AEi

N∑
j=0

FNUM
Gij LGij (2.19)

and we name REi the “steady residual” which tends to zero when the cell-averaged solution 〈U〉Ei
reaches a steady-state d〈U〉Ei/dt → 0. For a steady-state solution of Eqn. 2.19, a first-order
accurate implicit time-discretization is implemented

n+1〈U〉Ei − n〈U〉Ei
∆t

+
(
n+1REi − nREi

)
+ nREi = O(∆t,∆hp). (2.20)

Due to the steadiness of the converged solution, the temporal order of accuracy does not
interfere with the accuracy of CFD solver, and the final solution is as accurate as the pth-order
spatial discretization scheme. Since variables at time-step n + 1 cannot be evaluated directly, we
perform a first-order linearization on the residual increment

n+1REi − nREi ≈
n(

∂REi
∂〈U〉Ei

)
n
∆〈U〉Ei +

∑
Ej∈Ni

n(
∂REi
∂〈U〉Ej

)
n
∆〈U〉Ej (2.21)

and replacing Eqn. 2.21 into Eqn. 2.20 gives

n
∆〈U〉Ei

∆t
+
n(

∂REi
∂〈U〉Ei

)
n
∆〈U〉Ei +

∑
Ej∈Ni

n(
∂REi
∂〈U〉Ej

)
n
∆〈U〉Ej +nREi = O(∆t,∆hp) (2.22)

where n
∆〈U〉Ei =

n+1〈U〉Ei − n〈U〉Ei , n∆〈U〉Ej =
n+1〈U〉Ej − n〈U〉Ej , Ni is the set of neighbor

cells in the high-order reconstruction stencil Si associated with Ei as will be illustrated later in
Section. 2.3, Fig. 2.1.

n ( ∂REi
∂〈U〉Ei

)
and

n ( ∂REi
∂〈U〉Ej

)
are the residual Jacobian matrices of dimensions

4× 4 for 2D Navier-Stokes equations. The steady residual REi is computed based on cell-averaged
variables in the computational stencil Si (Fig. 2.1) through high-order reconstructing polynomials.
The expressions of residual Jacobians are extremely complex for high-order reconstruction schemes,
and for each cell Ei, we need to store Nb + 1 Jacobians where Nb is the number of neighbors in
a high-order reconstruction stencil Si. Therefore, computing directly with residual Jacobians is
extremely costly both in terms of time and of memory space. To circumvent this inconvenience,
we approximate the high-order numerical flux FNUM

Gij
in Eqn. 2.17 by a first-order-accurate Lax-

Friedrichs flux FAPP
Gij

and apply the “matrix-free” approach of Luo et al. [149] later in Section. 2.5.
It is important to realize that Eqn. 2.20 is a non-linear equation since REi is a non-linear

function of 〈U〉Ei . By linearizing Eqn. 2.20 into Eqn. 2.22, its non-linearity is lost. In order to
recover the non-linearity, we implement the dual-time-stepping (DTS) scheme of Gerolymos and

2In this thesis, the symbol En is used to denote the n-dimensional Euclidean space, whereas the symbol Rn is
reserved for n-vectors of flow variables such as U , V , etc.
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2. Governing Equations and Computational Methods

Vallet [87] by introducing an additional non-linear inner m-iteration for each outer n-iteration

m+1,n+1〈U〉Ei − m,n+1〈U〉Ei
∆t∗︸ ︷︷ ︸

non-linear iteration

+

[
m+1,n+1〈U〉Ei − n〈U〉Ei

∆t
+ m+1,n+1REi

]
= O(∆t,∆hp) (2.23)

and after some algebraic manipulations we obtain

m+1,n+1〈U〉Ei − m,n+1〈U〉Ei
∆t∗∗

+
(
m+1,n+1REi − m,n+1REi

)
+ m,n+1R∗Ei = O(∆t,∆hp)

with m,n+1R∗Ei =
m,n+1〈U〉Ei − n〈U〉Ei

∆t
+ m,n+1REi

and
1

∆t∗∗
=

(
1

∆t∗
+

1

∆t

) (2.24)

where we call R∗Ei the “unsteady residual” which tends to zero when the non-linear m-iteration
(also called the “inner iteration”) converges. The linear n-iteration (also called the “outer itera-
tion”) advances the series of converged non-linear solutions until REi → 0. The unsteady residual
increment m+1,n+1REi − m,n+1REi is also linearized through Eqn. 2.21 with the superscripts n(·)
and n+1

(·) replaced by m,n+1
(·) and m+1,n+1

(·) respectively. The final linearized form of Eqn. 2.24
is the following

m,n+1
∆〈U〉Ei

∆t∗∗
+
m,n+1(

∂REi
∂〈U〉Ei

)
m,n+1

∆〈U〉Ei+
∑
Ej∈Ni

m,n+1(
∂REi
∂〈U〉Ej

)
m,n+1

∆〈U〉Ej

+m,n+1R∗Ei = O(∆t,∆hp).

(2.25)

In Section. 2.5, we will discuss in detail the solution strategy of the linear system derived from
Eqn. 2.25 with the matrix-free approach.
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2. Governing Equations and Computational Methods

2.3 Constrained Least-Squares (CLSQ) Reconstruction

2.3.1 Reconstructing Polynomial

Figure 2.1: Schematic representation of a stencil associated with a boundary cell E0.

A constrained LSQ (CLSQ) reconstruction scheme is developed to achieve arbitrarily high-
order spatial discretization in the entire computational domain including near the boundaries. This
CLSQ scheme is a generalization of a previous LSQ reconstruction scheme proposed by Gerolymos
and Vallet [91], which has achieved a spatial order of accuracy up to p = 10 for solving 2D advection
equation on arbitrary polygonal grids. Similar to the methods used by Ollivier-Gooch and Van
Altena [169] and by Bertolazzi and Manzini [27], the current CLSQ scheme treats the interior and
boundary cells in a unified manner without the need for adding ghost cells at domain boundaries
to preserve order. The current CLSQ scheme aims to minimize an L functional with Lagrange
multipliers zi associated with both cell-average (imposed on reference cell E0) and boundary con-
dition (imposed on boundary quadrature points) equality constraints. The minimization problem
is defined in a distance-weighted least-squares sense, whereas the unweighted LSQ formulation is
adopted for the unconstrained version of the scheme in [91]. Distance weighting is indispensable in
grids containing high-aspect-ratio cells. All cells considered in the current study are straight-edge
polygons, and we shall extend this reconstruction scheme to curvilinear grids in future work 3.

For a general polygonal unstructured grid, consider a reference cell E0 around which we con-
3The only missing building block required for the method to correctly (achieving order > 2) adapt to curvilinear

grids is a module to perform numerical integration on curved edges and surfaces with high-order accuracy.
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2. Governing Equations and Computational Methods

struct an associated stencil S0 containing cells Ei, i = 0, · · · , Nb as illustrated in Fig. 2.1, where
Nb is the number of cells in stencil S0 excluding E0 itself. The collection of cells Ei, i = 1, · · · , Nb
form the neighborhood of E0 denoted by N0. The stencil is constructed in a layer-by-layer manner,
the algorithm searches for all immediate edge-neighbors of E0 before moving on to the neighbors’
neighbors and so forth until the number of neighbor cells Nb surpasses the number of polynomial
coefficients Nc by an empirically determined safety factor. The safety factor needs to be raised
whenever a unique CLSQ solution cannot be guaranteed.

The arbitrary flow variable to be reconstructed is φ(x, y). Define the reconstructing polynomial
in stencil S0 as PS0 ∈ πm(R2), πm(R2) is the vector space of bivariate polynomials of degree ≤ m

φ(x, y) ≈ PS0(x, y, φ) :=

Nc∑
`=1

c`(S0, φ)

(
x− xE0

∆xE0

)mx(`)(
y − yE0

∆yE0

)my(`)

=

Nc∑
`=1

c`(S0, φ)α`(x, y, E0), ∀(x, y) ∈ S0

(2.26)

where (xEi , yEi) are the centroid coordinates of cell Ei, ∆xE0 and ∆yE0 are the maximum distances
between two vertices of cell E0 along x and y directions, α`(x, y, E0) are the Nc basis polynomials of
PS0

with Nc being the number of polynomial coefficients of a bivariate polynomial of degreem with
m = p−1, where p corresponds to the order-of-accuracy with which PS0

approximates an arbitrary
variable φ(x, y), e.g., a 3rd-order polynomial is of degree 2, and α`(x, y, E0) ∈ {1, X, Y,X2, XY, Y 2}
with X = (x−xE0)/∆xE0 and Y = (y− yE0)/∆yE0 . Note that PS0 is not only a function of (x, y)

but also of φ(x, y) and S0 since different distributions of φ and selections of S0 result in different
polynomial coefficients c`(S0, φ), and the basis polynomials α`(x, y, E0) also depend on the shape
and location of cell E0. However, when a specific reconstruction is performed, we consider the
computational grid and φ(x, y) remain unchanged therefore PS0 , α` only depend on (x, y) and
c1, · · · , cNc are assumed to be constant with

Nc =

(
m+ 2

2

)
=

(
p+ 1

2

)
=
p(p+ 1)

2
. (2.27)

We compute the cell-averaged value of polynomial PS0 for Ei ∈ S0

〈PS0
〉Ei :=

1

AEi

∫∫
Ei

Nc∑
`=1

c`α`(x, y)dxdy

=

Nc∑
`=1

c`
AEi

∫∫
Ei

α`(x, y)dxdy

=

Nc∑
`=1

c` I`,Ei

(2.28)

where I`,Ei = A−1
Ei

∫∫
Ei
α`(x, y)dxdy is the [mx(`),my(`)]-moment in cell Ei with respect to #»xE0 ,

〈·〉Ei is the cell-averaging operator with respect to cell Ei, I`,Ei is the scalar value of the `th surface
integration moment of cell Ei with respect to the basis polynomial α`(x, y).

Numerically, I`,Ei is computed using Gaussian cubature points (denoted by ◦), we define w◦k
the weight associated with the kth cubature point in a given cell located at #»x ◦k = (x◦k , y◦k) ∈ Ei.
The locations and weights of cubature points are readily determined by Dunavant rules [68] up to

13
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p = 20 for a triangle T such that

∫∫
T
φ(x, y)dxdy ≈ AT

N̄◦∑
k=1

w◦kφ(x◦k , y◦k) (2.29)

where N̄◦ is the number of cubature points per triangle and #»x ◦k are determined by a linear
combination of coordinates of the three vertices #»x 1, #»x 2 and #»x 3 and their corresponding barycentric
coordinates c1,k, c2,k, c3,k tabulated in [68] for p ≤ 20.

#»x ◦k = c1,k
#»x 1 + c2,k

#»x 2 + c3,k
#»x 3 (2.30)

Note that for p ∈ {4, 8, 12, 16, 17, 19}, the orders of cubature rules are raised to the next higher
orders (p ∈ {5, 9, 13, 18, 18, 20}) that ensure full symmetry in barycentric coordinates, and PI
property (positive weights, cubature points lie within the triangle [68]). This approach was adopted
by Gerolymos and Vallet in [91], and we follow it in the current study. An arbitrary N -gon is
considered a union of n triangles defined by each one of its edges and its barycenter

Ei =

n⋃
j=1

Ti,j (2.31)

and by applying the cubature rules for each triangle Ti,j , the `th-order surface integration moment
of cell Ei in Eqn. 2.28 is obtained by

I`,Ei =

n∑
j=1

1

ATi,j

∫∫
Ti,j

α`(x, y)dxdy

=

N◦∑
k=1

w◦kα`(x◦k , y◦k)

(2.32)

where N◦ = n× N̄◦ is the total number of cubature points in the N -gon Ei.
The polynomial approximation PS0

(x, y) of the function φ(x, y) is obtained by requiring that
PS0 satisfies the cell-averaged values for cells Ei ∈ N0 in a distance-weighted least-squares sense,
and that PS0 needs to satisfy exactly the cell-average 〈PS0〉E0 = 〈φ〉E0 in the reference cell E0.

The corresponding minimization problem is formulated as follows

minimize J :=
∑
Ei∈N0

d−2
E0,Ei

(〈PS0
〉Ei − 〈φ〉Ei)2 (2.33)

where

dE0,Ei =
√

(xEi − xE0
)2 + (yEi − yE0

)2 (2.34)

and 〈φ〉Ei is the cell-averaged variable in cell Ei.
Rewrite Eqn. 2.33 in matrix form

minimize J :=
[
I c− 〈φ〉

]> [I c− 〈φ〉] (2.35)

14



2. Governing Equations and Computational Methods

with

c = [c1, . . . , cNc ]
> (2.36a)

I =


I1,E1

dE0,E1
· · · INc,E1

dE0,E1

...
. . .

...
I1,ENb
dE0,ENb

· · · INc,ENb
dE0,ENb

 (2.36b)

〈φ〉 =

[
〈φ〉E1

dE0,E1

, . . . ,
〈φ〉ENb
dE0,ENb

]>
(2.36c)

where I is an Nb by Nc matrix containing the moments of inertia of the Nc monomials in each of
the Nb neighboring cells Ei with respect to #»xEi . 〈φ〉 is a vector containing cell-averaged data for
Ei ∈ N0. By expanding Eqn. 2.35, we obtain

J =
[
I c− 〈φ〉

]> [I c− 〈φ〉]
=
(
I c
)> (I c)− 〈φ〉>I c− (I c)> 〈φ〉+ 〈φ〉>〈φ〉

= c>
(
I>I
)
c− 2

(
I>〈φ〉

)>
c+ 〈φ〉>〈φ〉.

(2.37)

However, solving the above-mentioned minimization problem does not satisfy (i) the fact that
the cell-averaged value 〈φ〉E0 needs to be satisfied exactly, i.e., the “cell-average constraint”; (ii)
the boundary conditions, or the “BC constraints”. In the present work, the boundary conditions
are prescribed exactly at Gauss-Legendre quadrature points (denoted by the symbol �) on the
boundary edges of E0. The BC is considered to be of either Dirichlet or Neumann type, and is
imposed on different primitive variables, which leads to each primitive variable being associated
with a degree m reconstructing polynomial.

2.3.2 Dirichlet Type

For a Dirichlet type boundary condition, at each Gauss-Legendre quadrature point on the boundary
edges of E0 we impose

Nc∑
`=1

c`α`(x�i , y�i) = φ�i , i = 1, . . . , N� (2.38)

or in matrix form

α>�i c = φ�i , i = 1, . . . , N� (2.39)

with α�i = [α1(x�i , y�i), . . . , αNc(x�i , y�i)]
>. N� is the total number of Gauss-Legendre quadra-

ture points taken into account for the reconstruction, which is equal to the number of quadrature
points per boundary edge N̄� multiplied by the number of boundary edges in cell E0.
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2.3.3 Neumann Type

At each quadrature point on the boundary edge of E0, instead of fixing value of variable φ, the
face-normal derivative of φ is imposed

Nc∑
`=1

c`

(
∂α`
∂n

)
�i

=

(
∂φ

∂n

)
�i

, i = 1, . . . , N� (2.40)

or in matrix form(
∂α

∂n

)>
�i

c =

(
∂φ

∂n

)
�i

, i = 1, . . . , N� (2.41)

where #»n�i is the inward-pointing boundary unit face-normal at quadrature point �i #»n�i = nx
#»e x+

ny
#»e y. Note that #»n�i is a constant vector if all quadrature points lie on a straight edge 4. (∂α/∂n)

�i
is the vector containing face-normal derivatives of all α` for ` = 1, · · · , Nc at quadrature point �i(

∂α

∂n

)
�i

=

[
∂α1

∂n
, · · · , ∂αNc

∂n

]>
�i

(2.42)

The mean constraint is imposed on the reference cell E0

〈PS0〉E0 =

Nc∑
`=1

c` I`,E0 = 〈φ〉E0 (2.43)

or in matrix form

〈PS0
〉E0

= I>E0
c = 〈φ〉E0

. (2.44)

From equations 2.35, 2.39, 2.41, 2.44, a CLSQ minimization problem can be defined by intro-
ducing the L functional with Lagrange multipliers z1, . . . , zN�+1.

The Lagrangian function is constructed as follows

L(c, z) =



J (c) +

N�∑
i=1

zi
(
α>�i c− φ�i

)
+ zN�+1

(
I>E0

c− 〈φ〉E0

) Dirichlet BC

J (c) +

N�∑
i=1

zi

[
(∂α/∂n)

>
�i
c− (∂φ/∂n)�i

]
+ zN�+1

(
I>E0

c− 〈φ〉E0

) Neumann BC.

(2.45)

The optimal state (ĉ, ẑ) is found by solving the following optimality conditions

∂L
∂ci

(ĉ, ẑ) = 0, i = 1 . . . , Nc
∂L
∂zj

(ĉ, ẑ) = 0, j = 1 . . . , N� + 1 (2.46)

4 #»n�i is not a constant vector for curvilinear edges
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with the first Nc conditions being determined according to the expression of J in Eqn. 2.37

∂L
∂c

(ĉ, ẑ) = 2
(
I>I
)
ĉ− 2 I>〈φ〉+

[
K>, IE0

]
ẑ = 0 (2.47)

where K is an N� by Nc BC constraint matrix

K =



[
α�1

, . . . , α�N�

]>
Dirichlet BC

[(
∂α
∂n

)
�1

, . . . ,
(
∂α
∂n

)
�N�

]>
Neumann BC.

(2.48)

By deriving L with respect to z, the last N�+1 conditions correspond to the N�+1 constraints
in matrix form

∂L
∂z

(ĉ, ẑ) =

[
K
I>E0

]
ĉ−

[
k

〈φ〉E0

]
= 0 (2.49)

where k is an N�-vector

k =



[
φ�1

, . . . , φ�N�

]>
Dirichlet BC

[(
∂φ
∂n

)
�1

, . . . ,
(
∂φ
∂n

)
�N�

]>
Neumann BC.

(2.50)

Finally, by regrouping equations 2.47 - 2.50, we obtain a block linear system of equations, which
are named the Karush–Kuhn–Tucker (KKT) equations by Boyd and Vandenberghe [29] and can
be written in compact matrix form

2 I>I K> IE0

K 0 0

I>E0
0 0


[
ĉ

ẑ

]
=


2 I>〈φ〉

k

〈φ〉E0

 (2.51)

where dividing the first row by 2 gives
I>I K> 1

2 IE0

K 0 0

I>E0
0 0


︸ ︷︷ ︸

A

[
ĉ

ẑ

]
=


I>〈φ〉
k

〈φ〉E0

 (2.52)

with A being an (Nc + N� + 1) by (Nc + N� + 1) square matrix, named the KKT matrix. 0 is
the zero matrix of flexible sizes filling the empty entries in A.
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Define an (Nc +N� + 1) by (Nb +N� + 1) matrix B as

B =

[
I> 0

0 IN�+1

]
(2.53)

where IN�+1 is the N� + 1 by N� + 1 identity matrix. Thus[
ĉ

ẑ

]
= C

[
〈φ〉
k

]
(2.54)

where C = A−1 B and C is geometry-dependent, i.e., it does not vary with the input cell-averaged
data 〈φ〉Ei .

2.3.4 Interior Cell Treatment

Figure 2.2: Schematic representation of a stencil associated with an interior cell E0.

As mentioned earlier, interior and boundary cells are treated in a unified manner. For an
interior cell E0, since no boundary condition is imposed, as shown in Fig. 2.2, the BC constraint
matrix K is removed from the KKT matrix A, and the vector ẑ is reduced to a single scalar value
ẑ. Both I>E0

and ẑ are associated to the cell-average constraint. The matrix form of KKT equations
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can be rewritten for an interior cell as[
I>I 1

2 IE0

I>E0
0

]
︸ ︷︷ ︸

A

[
ĉ

ẑ

]
=

[
I>〈φ〉
〈φ〉E0

]
. (2.55)

The B matrix for an interior cell shrinks to an (Nc + 1) by (Nb + 1) matrix

B =

[
I> 0

0 1

]
(2.56)

and the polynomial coefficients ĉ and the Lagrange multiplier ẑ satisfying the optimality conditions
are calculated by[

ĉ

ẑ

]
= C

[
〈φ〉
〈φ〉E0

]
(2.57)

with C = A−1 B.

2.3.5 Existence and Uniqueness Analysis

The CLSQ solution exists if and only if the KKT matrix A is invertible. In Appendix. A, a detailed
analysis on the invertibility of A matrix is given based on the results in [29, 49, 80, 89, 215]. Here,
we briefly summarize the conclusions of the analysis by listing several sufficient conditions for the
CLSQ reconstruction problem to admit a unique solution :

1. Stencil S0 is adequately selected such that Nb is sufficiently greater than Nc, and the uncon-
strained LSQ reconstruction problem admits a unique solution;

2. Cell-average constraint is not a linear combination of BC constraints;

3. For Dirichlet type BC constraints: N̄� determined by Eqn. A.2b with p ≥ 2 and number of
boundary edges ≤ 2;

4. For Neumann type BC constraints: N̄� determined by Eqn. A.2b with p ≥ 3 and number of
boundary edges ≤ 1.

The LSQ reconstruction is a polynomial reconstruction problem and the satisfaction of BC
constraints is a polynomial interpolation problem. In Appendix. A, the analysis is mainly focused
on the BC constraints part of the problem, and the unique solution to the unconstrained LSQ
reconstruction is achieved in the current study by simply adding layers of edge-neighbors to the
associated stencil. However, Gerolymos [89] proved that, for 1D uniform grids, the interpolating
polynomial and the reconstructing polynomial of a given data set are always related by a bijective
mapping. If this proof can be generalized to general 2D polygonal grids in the future, the underlying
notions of unisolvent points (Definition. A.1) and natural lattices (Definition. A.2) can be applied
to the LSQ reconstruction problem for more efficient and robust construction of stencils Si.
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2.4 Low-Mach Corrected HLLC Riemann Solver

It is well-known that approximate Riemann solvers perform best for problems where the flow
velocity is not excessively small compared to the local speed of sound. However, as a general Navier-
Stokes solver, the current compressible code needs to be capable of correctly solving low-speed flow
cases where the maximum Mach number M � 1. Numerically, due to the stiffness caused by large
speed difference between the acoustic wave and local transport, it has been well established that
the convergence at very low Mach number (typically lower than M ≈ 0.1 equivalent to local flow
speed u ≈ 3.4m/s) becomes slow [48, 150, 210, 213]. Moreover, by performing asymptotic analyses
on the continuous and semi-discretized Euler equations, Guillard et al. [102, 103] found that
Roe and Godunov-type Riemann solvers give inaccurate pressure solution when the Mach number
approaches zero. Guillard et al. [102] proved that the pressure fluctuation is of order M2 in the
continuous Euler equations while being of order M in the semi-discretized form, which results in
the inaccurate solution of pressure field. Dellacherie et al. [63] proposed a general framework for
constructing all-Mach (AM) Godunov-type schemes by modifying the interfacial numerical flux
FX where the superscript “X” can be replaced by the name of any Riemann solver such as “HLL”,
“HLLC”, etc. Based on the work of Dellacherie et al. [63], Xie et al. [218] proposed an all-Mach
version of the widely used HLLC Riemann solver developed by Toro et al. [206]. In the present
study, we focus on the low-Mach regime (M � 1) of the all-Mach correction therefore the qualifiers
“all-Mach” and “low-Mach” are used interchangeably in this section.

We begin by briefly reminding the conventional HLLC approximate Riemann solver (without
low-Mach correction). The HLLC solution is characterized by four distinct states, left (·)L, star
left (·)∗L, star right (·)∗R and right (·)R states, which are delimited by the left, right and contact
waves as shown in Fig. 2.3.

t

0 x

UR

U∗
RU∗

L

UL

SRS∗SL

Figure 2.3: HLLC approximate Riemann solver. Four distinct constant regions are delimited by
the left, right and contact waves.
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The interfacial vector of conservative variables in each state is expressed as follows

UHLLC =


UL if 0 ≤ SL
U∗L if SL ≤ 0 ≤ S∗

U∗R if S∗ ≤ 0 ≤ SR
UR if 0 ≥ SR

(2.58)

with

U∗K = [ρ∗K , (ρu)∗K , (ρv)∗K , (ρet)
∗
K ]> K = {L,R}. (2.59)

The point-wise interfacial numerical flux FHLLC has the following expression

FHLLC =


FL if 0 ≤ SL
F ∗L if SL ≤ 0 ≤ S∗

F ∗R if S∗ ≤ 0 ≤ SR
FR if 0 ≥ SR

(2.60)

where SL and SR are the estimated left and right wave speeds, S∗ is the speed of the contact wave.
Note that for high-order flux reconstruction, FHLLC takes different value at each Gauss-Legendre
quadrature point on the edge, while for low-order flux approximation, FHLLC is edge-averaged. F ∗L
and F ∗R are determined by Rankine-Hugoniot jump conditions

F ∗K = FK + SK(U∗K − UK) K = {L,R} (2.61)

from which the expressions for pressure in left and right star regions are obtained after some
algebraic manipulations

p∗K = pK + αK(S∗ − VnK ) K = {L,R} (2.62)

where we define αK = ρK(SK − VnK ). Since the pressure remains constant across the contact
wave, by equating p∗L with p∗R in Eqn. 2.62 the expression of contact wave speed is obtained as

S∗ =
pR − pL + αLVnL − αRVnR

αL − αR
(2.63)

By replacing S∗ in either K = L or K = R of Eqn. 2.62 with Eqn. 2.63, the pressure in the star
region can be expressed in terms of the left and right state variables as

p∗L := p∗R = p∗ =
αLpR − αRpL − αLαR(VnL − VnR)

αL − αR
. (2.64)

Toro [207] pointed out an important relation between the conservative variables U and the flux
F , which can be rewritten in the face-normal direction as

FK = VnKUK + pKDK K = {L,R} (2.65a)

F ∗K = S∗ U∗K + p∗KD
∗ K = {L,R} (2.65b)
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where

DK = (0,nx,ny, VnK )> K = {L,R} (2.66a)

D∗ = (0,nx,ny, S
∗)> K = {L,R} (2.66b)

VnK are the face-normal velocities in the left and right states. The contact wave speed is equal to
the face-normal flow speed in the left and right star regions S∗ = V ∗nL = V ∗nR .

Therefore U∗K is derived from the jump conditions Eqn. 2.61 by substituting FK and F ∗K with
Eqn. 2.65

U∗K =
(SK − VnK )UK + p∗KD

∗ − pKDK

SK − S∗
(2.67)

where p∗K and S∗ are determined in Eqn. 2.62 and Eqn. 2.63 respectively. U∗K is subsequently
inserted back into Eqn. 2.65b to obtain the final expression of F ∗K . For the 2D Euler system, F ∗K
can be written in vector form as

F ∗K = S∗


ρ∗K

(ρu)∗K
(ρv)∗K
(ρet)

∗
K


︸ ︷︷ ︸

U∗K

+p∗K


0

nx
ny
S∗


︸ ︷︷ ︸
D∗

.
(2.68)

We refer to Eqn. 2.60 for selecting the appropriate HLLC numerical flux FHLLC based on local
wave speeds, and the final expression for the choice of HLLC numerical flux is obtained as

FHLLC =


VnLUL + pLDL if 0 ≤ SL
S∗ U∗L + p∗LD

∗ if SL ≤ 0 ≤ S∗

S∗ U∗R + p∗RD
∗ if S∗ ≤ 0 ≤ SR

VnRUR + pRDR if 0 ≥ SR.

(2.69)

Remark that, in the literature, there exists different notations where p∗ or pLR = 1
2 (p∗L+p∗R) is used

instead of p∗K . Since, as mentioned previously, the contact wave speed S∗ is obtained by imposing
p∗L = p∗R (which is conforming to the exact solution), all notations above are mathematically
equivalent.

The only unknowns in the calculation of HLLC flux remain the left and right wave speeds
SL and SR which can be estimated based on various algorithms. In present study, the algorithm
proposed by Einfeldt et al. [77] is adopted

SL = min(VnL − aL, V̂n − â), SR = max(VnR + aR, V̂n + â) (2.70)

where Vn denotes the normal velocity component Vn := unx+vny and (̂.) denotes the Roe averaged

22



2. Governing Equations and Computational Methods

variables

ρ̂ =
√
ρLρR

û =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

v̂ =

√
ρLvL +

√
ρRvR√

ρL +
√
ρR

V̂n = ûnx + v̂ny

ĥt =

√
ρLhtL +

√
ρRhtR√

ρL +
√
ρR

ĥ = ĥt −
1

2
(û2 + v̂2) â =

√
(γ − 1)ĥ.

(2.71)

Dellacherie et al. [63] developed an all-Mach Godunov scheme for both the linear wave equation
and the non-linear fully compressible Euler equations. Two expressions for the all-Mach scheme
are possible. In the first expression, the all-Mach corrected numerical flux FAM-X is the sum of the
unmodified interfacial numerical flux FX computed by Riemann solver X (X can be Roe, HLLC,
etc.), and a low-Mach correction term.

FAM-X = FX + (θLR − 1)
ρ̂ â

2


0

(VnL − VnR)nx
(VnL − VnR)ny

0

 (2.72)

where θLR is a scaling function evaluated at the same location as FAM-X based on the estimated
local Mach number MLR (not computed by a Riemann solver)

θLR = θ(MLR) with θ(M) = min(M, 1). (2.73)

There exists multiple methods to evaluate MLR. Dellacherie et al. [63] suggested two possible
algorithms

MLR =
∣∣∣√û2 + v̂2

∣∣∣ /â or MLR =
∣∣∣V̂n∣∣∣ /â (2.74)

and the latter is less dissipative than the former. Xie et al. [218] proposed to computed M as

MLR = max

(√
u2
L + v2

L/aL,
√
u2
R + v2

R/aR

)
. (2.75)

The second expression of Dellacherie et al. consists of introducing the all-Mach corrected
pressure solution p∗∗

FAM-X =


ρ∗V ∗n

(ρu)∗V ∗n + p∗∗nx
(ρv)∗V ∗n + p∗∗ny

(ρet + p)∗V ∗n

 with p∗∗ = θLRp
∗ + (1− θLR)

pL + pR
2

(2.76)

where [ρ∗, (ρu)∗, (ρv)∗, (ρet + p)∗] are solutions of the local Riemann problem at edge interface
between cells Ei and Ej , and p∗ is determined in Eqn. 2.64.

As pointed out by Dellacherie et al. [63], these two expressions 2.72, 2.76 are equivalent in the
linear case but not for the non-linear Euler equations. Dellacherie et al. performed 1D and 2D
numerical tests using the second expression Eqn. 2.76 which showed the all-Mach scheme is stable
and robust on both triangular and Cartesian grids. Xie et al. [218] proposed an all-Mach corrected
HLLC Riemann solver based on the second expression of Dellacherie et al. Eqn. 2.76 denoted by
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AM-HLLC-P. “P” stands for “pressure-control”, a technique developed to tackle the problem of
shock instability for the HLLC solver when facing strong shocks. The pressure-control technique
will be discussed in future works on computations in the hypersonic regime, and omitted in the
present study. Various numerical tests with Mach number ranging from 10−3 to 20 were performed,
the AM-HLLC-P scheme gives accurate pressure field down to M = 10−3. The AM-HLLC-P is
adopted in the present study without pressure-control technique for strong shocks. Finally, based
on the solution of unmodified HLLC numerical flux, the all-Mach HLLC flux is derived using the
second expression in Eqn. 2.76

FAM-HLLC =


VnLUL + pLDL if 0 ≤ SL
S∗ U∗L + p∗∗L D

∗ if SL ≤ 0 ≤ S∗

S∗ U∗R + p∗∗R D
∗ if S∗ ≤ 0 ≤ SR

VnRUR + pRDR if 0 ≥ SR

with


p∗∗K = θLRp

∗
K + (1− θLR)pL+pR

2

θLR = min(MLR, 1)

MLR = max
(√

u2
L + v2

L/aL,
√
u2
R + v2

R/aR

)
.

(2.77)

In the current study, all test-cases are performed atM ≥ 0.2 for higher convergence rate, there-
fore the benefits of the AM-HLLC-P Riemann solver are not expected to be obvious. The influence
of low-Mach correction on the pressure field is demonstrated in Appendix. B. Computations are
performed for Mach numbersM = {0.01, 0.05, 0.2} and the AM-HLLC-P Riemann solver generates
consistent pressure fields for all three Mach numbers, whereas considerable discrepancy is observed
between different Mach numbers using the conventional HLLC Riemann solver.
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2.5 Implicit Time-integration

Following Eqn. 2.25, we rewrite the implicit dual-time-stepping (DTS) scheme into a compact form
in which the high-order term O(∆t,∆hp) is left out, and the residual increment is expressed in
terms of the sum of high-order numerical flux increments

m,n+1
∆〈U〉Ei

∆t∗∗i
+

∑
Ej∈ENi

m,n+1
∆FNUM

Gij
LGij

AEi

= −m,n+1R∗Ei (2.78)

where ENi is the set of direct edge neighbors of cell Ei which shall not be confused with the
neighbors in a reconstruction stencil Ni, Ej is the cell that shares the edge Gij with cell Ei,
m,n+1R∗Ei is determined in Eqn. 2.24. Note that ∆t∗∗i is local to cell Ei

1

∆t∗∗i
=

(
1

∆t∗i
+

1

∆ti

)

with ∆t
(∗)
i = min

Ei

[
CFL(∗) ∆hEi

Smax
,VNN(∗) ∆h2

Ei

2νeq

]

νeq = max
Ei

{
4

3
ν,
γ − 1

ρRg
κ

}
, Smax = max

Ei
(SL, S

∗, SR)

(2.79)

where ∆hEi is defined as twice the minimum normal distance between the cell centroid and cell
edges of Ei, Smax is local maximum wave speed, SL, S∗ and SR are the estimated left, contact and
right wave speeds for the AM-HLLC Riemann solver discussed in Section. 2.4, equations 2.63 and
2.70, νeq is the local equivalent kinematic viscosity, κ is the thermal conductivity in W.m−1.K−1.
CFL denotes the convective Courant–Friedrichs–Lewy condition and VNN denotes the viscous von
Neumann condition. In this study, we assume CFL = VNN and CFL∗ = VNN∗.

The high-order flux increment is linearized with respect to 〈U〉Ei and 〈U〉Ej in the same way
as with the high-order residual increment in Eqn. 2.21

m,n+1
∆FNUM

Gij
≈
m,n+1

∂FNUM
Gij

∂〈U〉Ei
m,n+1

∆〈U〉Ei +
∑
Ej∈Ni

m,n+1
∂FNUM

Gij

∂〈U〉Ej
m,n+1

∆〈U〉Ej (2.80)

where Ni is the set of neighbor cells in the high-order computational stencil Si associated with Ei,
which is different from the set of direct edge neighbors ENi ⊆ Ni.

We approximate the high-order flux FNUM
Gij

by a first-order Lax-Friedrichs flux FAPP
Gij

FNUM
Gij = FAPP

Gij +O(∆h)

=
1

2

[
F c(〈U〉Ei , #»nGij ) + F c(〈U〉Ej , #»nGij ) + λGij (〈U〉Ei − 〈U〉Ej )

]
+O(∆h)

(2.81)

where the first-order Lax-Friedrichs flux is computed based on cell-averaged conservative variables
in Ei and Ej . Since the approximation is only first-order accurate in space, FAPP

Gij
is evaluated

on the entire edge Gij rather than on each individual quadrature point �k and no numerical
integration is required. λGij is the spectral radius of the flux Jacobian matrix evaluated on Gij

λGij = |VnGij |+ aGij +
2νeqGij

| #»nGij · ( #»xEj − #»xEi)|
(2.82)
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where #»xEi is the centroid coordinates of cell Ei, VnGij , aGij and νeqGij
are respectively the normal

velocity component, the local speed of sound and the local equivalent kinematic viscosity evaluated
on Gij . Since in the present study we are interested only in steady-state solutions, the implementa-
tion of first-order numerical flux for time-discretization does not affect the order of accuracy when
convergence is reached.

The above first-order approximation of the linearized high-order Jacobian product in Eqn. 2.80
gives

m,n+1
∆FNUM

Gij
=
m,n+1

∆FAPP
Gij

+O(∆h)

≈
m,n+1

∂FAPP
Gij

∂〈U〉Ei
m,n+1

∆〈U〉Ei +

m,n+1
∂FAPP

Gij

∂〈U〉Ej
m,n+1

∆〈U〉Ej
(2.83)

where the key difference between Eqn. 2.80 and Eqn. 2.83 is that the Jacobian product with respect
to 〈U〉Ej in Eqn. 2.83 requires no summation over Ni since it only concerns the edge neighbor Ej .
Finally, Eqn. 2.78 can also be rewritten in terms of the low-order flux

m,n+1
∆〈U〉Ei

∆t∗∗i
+

∑
Ej∈ENi

m,n+1
∆FAPP

Gij
LGij

AEi

= −m,n+1R∗Ei . (2.84)

If the outer time-step ∆ti tends to infinity, then the time-integration tends to a single-time-
stepping scheme with ∆t∗∗i → ∆t∗i and m,n+1R∗Ei →

nREi hence the scheme is completely lin-
earized. As will be shown in subsequent chapters, for largely separated flows (e.g. laminar
backward-facing step at high Reynolds number), the inner time-stepping improves or makes pos-
sible the convergence.

A linear solver is required at each m-iteration to solve for m,n+1
∆〈U〉Ei . When discussing

linear solvers, for the sake of simplicity, the superscript m,n+1
(·) is hereafter dropped since it is

understood that the linear system to solve is encountered only during m-iteration, and ∆t∗∗i is
simply written as ∆ti.

Next, we derive the linear system of the implicit scheme for a general polygonal cell Ei admitting
both interior and boundary edges. If edge Gij is a boundary edge, then we consider that cell Ei
admits a fictitious exterior neighbor Ej in which 〈U〉Ej is a function of 〈U〉Ei , the boundary state
variables UBC and #»nGij . The detailed discussion on boundary conditions is found in Section 2.7.
Since UBC and #»nGij are constant, Eqn. 2.83 can be rewritten for a boundary edge Gij without
superscript m,n+1

(·)

∆FBC,APP
Gij

=
∂FBC,APP

Gij

∂〈U〉Ei
∆〈U〉Ei +

∂FBC,APP
Gij

∂〈U〉Ej
∂〈U〉Ej
∂〈U〉Ei

∆〈U〉Ei . (2.85)

The first-order-accurate Lax-Friedrichs flux defined in Eqn. 2.81 is also reformulated for a
boundary edge Gij as follows

FBC,APP
Gij

(
〈U〉Ei , UBC, #»nGij

)
=

1

2

{
F c
(
〈U〉Ei , #»nGij

)
+ F c

(
〈U〉Ej , #»nGij

)
+ λGij

[
〈U〉Ei − 〈U〉Ej

]}
with 〈U〉Ej := 〈U〉Ej

(
〈U〉Ei , UBC, #»nGij

) (2.86)
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therefore Eqn. 2.84 can be elaborated for a general cell Ei, by separating fictitious exterior neighbors
(Ej ∈ ENi ∩ Ω̄) from real neighbors (Ej ∈ ENi ∩ Ω), where Ω is the set of real cells in the
computational domain

∆〈U〉Ei +
∆ti
AEi

[ ∑
Ej∈ENi∩Ω

(
∂FAPP

Gij

∂〈U〉Ei
∆〈U〉Ei +

∂FAPP
Gij

∂〈U〉Ej
∆〈U〉Ej

)
LGij

+
∑

Ej∈ENi∩Ω̄

(
∂FBC,APP

Gij

∂〈U〉Ei
∆〈U〉Ei +

∂FBC,APP
Gij

∂〈U〉Ej
∂〈U〉Ej
∂〈U〉Ei

∆〈U〉Ei

)
LGij

]
= −∆tiREi

(2.87)

factorize ∆〈U〉Ei and ∆〈U〉Ej and we obtainI +
∆ti
AEi

 ∑
Ej∈ENi

∂FAPP
Gij

∂〈U〉Ei
LGij +

∑
Ej∈ENi∩Ω̄

∂FBC,APP
Gij

∂〈U〉Ej
∂〈U〉Ej
∂〈U〉Ei

LGij


︸ ︷︷ ︸

Di

∆〈U〉Ei

+
∑

Ej∈ENi∩Ω

∆ti
AEi

∂FAPP
Gij

∂〈U〉Ej
LGij︸ ︷︷ ︸

Nij

∆〈U〉Ej = −∆tiREi .

(2.88)

Knowing that for each closed cell Ei we have

∑
Ej∈ENi

∂F c(〈U〉Ei , #»nGij )

∂〈U〉Ei
LGij =

∑
Ej∈ENi

∂
#»

F c(〈U〉Ei)
∂〈U〉Ei

· #»nGijLGij

=
∂

#»

F c(〈U〉Ei)
∂〈U〉Ei

·
∑

Ej∈ENi

#»nGijLGij︸ ︷︷ ︸∮
∂Ei

grad(1)dS=0

= 0
(2.89)

therefore by replacing Eqn. 2.86 into Eqn. 2.88 with some algebraic manipulations, we have

Di =

1 +
∆ti

2AEi

∑
Ej∈ENi

λGijLGij

 I +
∆ti

2AEi

∑
Ej∈ENi∩Ω̄

[(
∂F c(〈U〉Ei , #»nGij )

∂〈U〉Ei
+ λGijI

)

+ 2

(
∂F c(〈U〉Ej , #»nGij )

∂〈U〉Ej
− λGijI

)
∂〈U〉Ej
∂〈U〉Ei

]
LGij

(2.90a)

Nij =
∆ti

2AEi

(
∂F c(〈U〉Ej , #»nGij )

∂〈U〉Ej
− λGijI

)
LGij , Ej ∈ ENi ∩ Ω. (2.90b)
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For the sake of compactness, all Jacobians in Eqn. 2.90 are replaced by J

Di =

1 +
∆ti

2AEi

∑
Ej∈ENi

λGijLGij

 I

+
∆ti

2AEi

∑
Ej∈ENi∩Ω̄

[(
Ji + λGijI

)
+ 2

(
Jj − λGijI

)
Jij
]

LGij

(2.91a)

Nij =
∆ti

2AEi

(
Jj − λGijI

)
LGij , Ej ∈ ENi ∩ Ω (2.91b)

Ji =
∂F c(〈U〉Ei , #»nGij )

∂〈U〉Ei
Jj =

∂F c(〈U〉Ej , #»nGij )

∂〈U〉Ej
Jij =

∂〈U〉Ej
∂〈U〉Ei

. (2.91c)

The Jacobian Jij is computed based on conservative variables
∂〈U〉Ej
∂〈U〉Ei

, whereas, in practice, the

matrix J′ij is used which is computed from primitive variables ∂〈V 〉j
∂〈V 〉i . Therefore a transformation

matrix T is needed, where

T =
∂U

∂V
=


1 0 0 0

u ρ 0 0

v 0 ρ 0
u2+v2

2
ρu ρv 1

γ−1

 (2.92a)

T−1 =
∂V

∂U
=


1 0 0 0
−u
ρ

1
ρ 0 0

−v
ρ 0 1

ρ 0
(γ−1)(u2+v2)

2
(1− γ)u (1− γ)v (γ − 1)

 (2.92b)

and we obtain the final expression for Di

Di =

1 +
∆ti

2AEi

∑
Ej∈ENi

λGijLGij

 I

+
∆ti

2AEi

∑
Ej∈ENi∩Ω̄

(Ji + λGijI
)

+ 2
(
Jj − λGijI

)
TjJ

′
ijT
−1
i︸ ︷︷ ︸

Jij

LGij .

(2.93)

In Eqn. 2.93, the cell Ei is considered a general cell with both interior and boundary edges. If
Ei is an interior cells where 〈U〉Ej does not depend on 〈U〉Ei , Eqn. 2.93 simplifies to

Di =

1 +
∆ti

2AEi

∑
Ej∈ENi

λGijLGij

 I (2.94)

and Di becomes an identity matrix with a scaling factor.
The face-normal flux Jacobian Ji (same for Jj) is derived analytically term-by-term knowing
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that

F c(〈U〉Ei , #»nGij ) =


uρVn

uxVn + pnx
uyVn + pny
(ue + p)Vn

 (2.95)

where, for the sake of conciseness, vector (uρ, ux, uy, ue)
> denote the cell-averaged conservative

variables 〈U〉Ei = (ρ, ρu, ρv, ρet)
>. Note that u is a shorthand notation for a given component in

〈U〉Ei , which should be distinguished from the streamwise velocity component u. Therefore, the
normal velocity Vn and pressure p can also be expressed in terms of u(·)

Vn = unx + vny =
ux

uρ
nx +

uy

uρ
ny

p = (γ − 1)

[
ue −

1

2

(
u2
x

uρ
+

u2
y

uρ

)]
.

(2.96)

By deriving F c(U) = (fρ, fx, fy, fe)
> in terms of (uρ, ux, uy, ue)

>, we obtain each term of the
face-normal Jacobian matrix

∂fρ
∂ux

= nx
∂fρ
∂uy

= ny

∂fx
∂uρ

=
u2
x(γ − 3)nx − 2uxuyny + u2

y(γ − 1)nx

2u2
ρ

∂fx
∂ux

=
uyny − ux(γ − 3)nx

uρ

∂fx
∂uy

=
uxny − uy(γ − 1)nx

uρ

∂fx
∂ue

= (γ − 1)nx

∂fy
∂uρ

=
u2
x(γ − 1)ny − 2uxuynx + u2

y(γ − 3)ny

2u2
ρ

∂fy
∂ux

=
uynx − ux(γ − 1)ny

uρ

∂fy
∂uy

=
uxnx − uy(γ − 3)ny

uρ

∂fy
∂ue

= (γ − 1)ny

∂fe
∂uρ

= − (uxnx + uyny)[uρueγ − (γ − 1)(u2
x + u2

y)]

u3
ρ

∂fe
∂ux

=
2γuρuenx − (γ − 1)(3u2

xnx + 2uxuyny + u2
ynx)

2u2
ρ

∂fe
∂uy

=
2γuρueny − (γ − 1)(u2

xny + 2uxuynx + 3u2
yny)

2u2
ρ

∂fe
∂ue

=
γ(uxnx + uyny)

uρ
.

(2.97)

All omitted partial derivatives in Eqn. 2.97 are equal to zero.
Once all matrices are determined analytically, Eqn. 2.88 can be arranged into a block linear

29



2. Governing Equations and Computational Methods

system as follows
D1 N12 . . . N1NΩ

N21 D2 . . . N2NΩ

...
...

. . .
...

NNΩ1 NNΩ2 . . . DNΩ


︸ ︷︷ ︸

M


∆〈U〉E1

∆〈U〉E2

...
∆〈U〉ENΩ

 =


−∆t1RE1

−∆t2RE2

...
−∆tnRENΩ

 (2.98)

where NΩ is the number of cells in the computational domain Ω. ∆〈U〉Ei and REi are, for 2D
laminar flows, 4-entry vectors corresponding to conservative variable increments and residuals in
cell Ei. M is a sparse block matrix whose elements are 4× 4 square matrices. The sparsity of M
depends on the grid connectivity, that is, at the ith row, Nij = 0 ∀Ej /∈ ENi.

To solve the above block linear system Eqn. 2.98, three different linear solvers are investigated
in the scope of this thesis: the approximately factored LU Symmetric Gauss-Seidel (LU-SGS)
method [117], the iterative version of LU Symmetric Gauss-Seidel (BLU-SGS) method [42], and
the classical Jacobi iterative method. The first two methods both belong to the symmetric Gauss-
Seidel category in the sense that increments ∆〈U〉Ej of upper/lower neighbors at the current
iteration are required to compute ∆〈U〉Ei . The Jacobi method, on the other hand, does not require
neighbor information at current time-step (only at the previous iteration). This key difference
results in different boundary treatments for the two families of methods. For the two iterative
methods (BLU-SGS and Jacobi), the linear iteration is indexed by k, which is performed for each
m-iteration while dual-time-stepping. No k-iteration is required for the approximately factored
LU-SGS method therefore the updated increment new

∆〈U〉Ei is obtained after completing the
forward and backward sweeps.

As shown in Eqn. 2.91, the sub-matrices ofMmatrix contain Jacobian matrices which are costly
to compute and to store, to obviate this inconvenience, a matrix-free approach is used whenever
〈U〉 and ∆〈U〉 of the current iteration are readily available, the objective is to approximate the con-
vective flux increment ∆F without computing or storing any Jacobian matrices unless absolutely
necessary. Such an approximation is suggested by Luo et al. [149]

∂F

∂〈U〉∆〈U〉 ≈ F (〈U〉+ ∆〈U〉)− F (〈U〉) (2.99)

where F is a generic flux function. Eqn. 2.99 can be considered as a procedure of “de-linearization”
for Eqn. 2.83. The idea of matrix-free method is that, the flux increment ∆F is linearized into a
Jacobian-∆〈U〉 product only when ∆〈U〉 is not available at the current iteration and needs to be
solved for (i.e., 〈U〉 of the next iteration remains unknown). However, whenever ∆〈U〉 is known at
the current iteration, the flux increment can be evaluated directly by taking the difference between
the next and current fluxes ∆F = F (〈U〉+ ∆〈U〉)−F (〈U〉) without any linearization, which gives
no reason to compute or to store the Jacobian matrix. Therefore, the fully linearized

m,n+1
∆FAPP

Gij

in Eqn. 2.83 can be de-linearized with Eqn. 2.99 whenever m,n+1∆UEi or m,n+1∆UEj becomes
known. Next, we will apply the matrix-free method to three types of linear solvers.

2.5.1 Jacobi Iterative Method

For Jacobi method, the matrix-free approach Eqn. 2.99 can be implemented for both interior
and boundary cells. ∆〈U〉Ej and 〈U〉Ej from the previous linear k-iteration (k−1

∆〈U〉Ej and
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k−1〈U〉Ej ) are used to update k∆〈U〉Ei . For a given boundary cell, k−1
∆〈U〉Ej in its correspond-

ing fictitious exterior cell is updated according to the appropriate boundary condition relations
whenever k−1

∆〈U〉Ei is recomputed. Therefore, for Jacobi method, k−1
∆〈U〉Ej and k−1〈U〉Ej are

always known ∀Ej ∈ ENi resulting in diagonal Di matrices and matrix-free approximation for all
Nij matrices everywhere in the computational domain. For Jacobi method, Eqn. 2.98 becomes

Di
k
∆〈U〉Ei +

∑
j∈Ω

∆tiLGij
2AEi

[
k−1∆F c

Ej − λGij
k−1

∆〈U〉Ej
]

= −∆tiREi

with k−1∆F c
Ej = F c

(
k−1〈U〉Ej +

k−1
∆〈U〉Ej , #»nGij

)
− F c

(
k−1〈U〉Ej , #»nGij

) (2.100)

where Di is given by Eqn. 2.94, and the iterative solution using Jacobi method is given by

k
∆〈U〉Ei =

−∆tiREi −
∑
j∈Ω

∆tiLGij
2AEi

[
k−1∆FEj − λGij k−1

∆〈U〉Ej
]

1 + ∆ti
2AEi

∑
Ej∈ENi λGijLGij

. (2.101)

Algorithm 1: Iterative Jacobi solver

input : oldREi ,
old〈U〉Ei

output: new〈U〉Ei
1

0〈U〉Ei :=
old〈U〉Ei , 0

∆〈U〉Ei := 0;
2 while convergence not reached do
3 compute k∆〈U〉Ei (Eqn. 2.101);
4 end
5 update new〈U〉Ei =

old〈U〉Ei +
k
∆〈U〉Ei

2.5.2 Block LU-SGS Iterative Method

When using a Gauss-Seidel-based method, since ∆〈U〉 of boundary cells are unknown at current
iteration, non-diagonalDi matrices must be computed and stored for boundary cells using Eqn. 2.93
in order to account implicitly for the contribution of boundary conditions. The full matrix form
of the iterative BLU-SGS method [42] is given by

Forward sweep :

∗
∆〈U〉Ei = D−1

i

−∆tiREi −

∑
j<i

Nij
∗
∆〈U〉Ej +

∑
j>i

Nij
k−1

∆〈U〉Ej

 (2.102)

Backward sweep :

k
∆〈U〉Ei = D−1

i

−∆tiREi −

∑
j<i

Nij
∗
∆〈U〉Ej +

∑
j>i

Nij
k
∆〈U〉Ej

 (2.103)

using Di from Eqn. 2.93 or Eqn. 2.94 depending on whether Ei is a boundary cell. It is important
to realize that j < i and j > i implies that cell Ei is located on a higher or lower hyperplane than Ej
in a reordered unstructured grid, and the reordering strategy will be discussed in Section 2.6. The
matrix-free approximation is applied to Nij matrices to replace exact Jacobian, and the resulting
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matrix-free form is as follows
Forward sweep :

∗
∆〈U〉Ei = D−1

i

−∆tiREi −

∑
j<i

∆tiLGij
2AEi

[
∗∆F c

Ej − λGij
∗
∆〈U〉Ej

]

+
∑
j>i

∆tiLGij
2AEi

[
k−1∆F c

Ej − λGij
k−1

∆〈U〉Ej
]

with ∗∆F c
Ej = F c

( ∗〈U〉Ej +
∗
∆〈U〉Ej , #»nGij

)
− F c

( ∗〈U〉Ej , #»nGij
)

k−1∆F c
Ej = F c

(
k−1〈U〉Ej +

k−1
∆〈U〉Ej , #»nGij

)
− F c

(
k−1〈U〉Ej , #»nGij

)
(2.104)

Backward sweep :

k
∆〈U〉Ei = D−1

i

−∆tiREi −

∑
j<i

∆tiLGij
2AEi

[
∗∆F c

Ej − λGij
∗
∆〈U〉Ej

]

+
∑
j>i

∆tiLGij
2AEi

[
k∆F c

Ej − λGij
k
∆〈U〉Ej

]
with ∗∆F c

Ej = F c
( ∗〈U〉Ej +

∗
∆〈U〉Ej , #»nGij

)
− F c

( ∗〈U〉Ej , #»nGij
)

k∆F c
Ej = F c

(
k〈U〉Ej +

k
∆〈U〉Ej , #»nGij

)
− F c

(
k〈U〉Ej , #»nGij

)
(2.105)

The BLU-SGS method is not an approximate factorization method, thus providing better
convergence rate comparing to LU-SGS with the help of an additional inner k-iteration.

Algorithm 2: Iterative BLU-SGS solver

input : oldREi ,
old〈U〉Ei

output: new〈U〉Ei
1

0〈U〉Ei :=
old〈U〉Ei , 0

∆〈U〉Ei := 0;
2 while convergence not reached do
3 forward sweep: compute ∗∆〈U〉Ei (Eqn. 2.104);
4 backward sweep: compute k∆〈U〉Ei (Eqn. 2.105);
5 end
6 update new〈U〉Ei =

old〈U〉Ei +
k
∆〈U〉Ei

2.5.3 Approximately Factored LU-SGS Method

The original approximately factored LU-SGS scheme is developed by Jameson et al. [117]. In
the current study, we adopt an unstructured formulation proposed by Luo et al. [149]. The
factorization step is the following

(D + L)D−1(D + U)∆〈U〉 = R+���
��(LD−1U)∆〈U〉 (2.106)
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where U is the upper triangular sub-matrix of M, L is the lower triangular sub-matrix of M and
D is the diagonal sub-matrix. Note that the term (LD−1U) is neglected, and let

∗
∆〈U〉 = D−1(D + U)∆〈U〉 (2.107)

Forward sweep :

∗
∆〈U〉Ei = D−1

i

−∆tiREi −
∑
j<i

Nij
∗
∆〈U〉Ej

 (2.108)

Backward sweep :

new
∆〈U〉Ei =

∗
∆〈U〉Ei −D−1

i

∑
j>i

Nij
new

∆〈U〉Ej . (2.109)

As with the BLU-SGS, matrix-free approach is applied to Nij , Di is computed in the same
manner as for BLU-SGS depending on whether cell Ei is a boundary cell.

Forward sweep :

∗
∆〈U〉Ei = D−1

i

−∆tiREi −
∑
j<i

∆tiLGij
2AEi

(
∗∆F c

Ej − λGij
∗
∆〈U〉Ej

)
with ∗∆F c

Ej = F c
(∗〈U〉Ej +

∗
∆〈U〉Ej , #»nGij

)
− F c

(∗〈U〉Ej , #»nGij
) (2.110)

Backward sweep :

new
∆〈U〉Ei =

∗
∆〈U〉Ei −D−1

i

∑
j>i

∆tiLGij
2AEi

[
new∆F c

Ej − λGij
new

∆〈U〉Ej
]

with new∆F c
Ej = F c

(new〈U〉Ej +
new

∆〈U〉Ej , #»nGij
)
− F c

(new〈U〉Ej , #»nGij
) (2.111)

Note that the superscript k(·) is dropped for LU-SGS method since there is no linear iteration
involved.

Algorithm 3: Approximately factored LU-SGS solver

input : oldREi ,
old〈U〉Ei

output: new〈U〉Ei
1 forward sweep: compute ∗∆〈U〉Ei (Eqn. 2.110);
2 backward sweep: compute new

∆〈U〉Ei (Eqn. 2.111);
3 update new〈U〉Ei =

old〈U〉Ei +
new

∆〈U〉Ei
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2.6 Grid Reordering Strategy

As shown in 2.102 and 2.103, performing BLU-SGS on unstructured grids requires constructing
multiple hyperplanes. A general guideline for such a grid reordering procedure is proposed by
Sharov and Nakahashi [184]. The key is to reorder an unstructured grid into hyperplanes in such
a manner that no cell on a given hyperplane has edge-neighbors on this hyperplane, and that most
cells (except for those on the first and last hyperplanes) on hyperplane i have neighboring cells
on hyperplanes j > i and j < i. Although the guideline remains identical, the grid reordering
procedure in [184] is based on cell-vertex scheme while the current one is based on cell-centered
data structure. Meanwhile, the current procedure starts from an hyperplane 1 (denoted by HP1)
containing an arbitrary number of non-edge-neighboring cells instead of only one cell, which is
a generalization of the procedure in [184]. This generalization makes the BLU-SGS solver more
parallelizable in a sense that the workload is more equally distributed among processes. However,
in terms of convergence rate, the computation converges faster with a more balanced reordering,
which is characterized by more cells having both upper and lower neighbors.

The current grid reordering strategy is given as follows:

1. Set the mask of each cell to TRUE;

2. Set i = 1 and k = 0, select Ni arbitrary non-edge-neighboring cells to form HPi, and set
masks of those cells to FALSE;

3. Set i = i + k + 1, put all TRUE cells that are edge-neighbors to any member of HP(i−k−1)

into HPi, and set masks of those cells to FALSE;

4. Separate all edge-neighbors within HPi : assign a color number j(0 ≤ j ≤ k) (k + 1 colors)
to each member of HPi, such that any pair of cells sharing the same j are not neighbors;

5. Repeat from step 3 until all masks in the grid turn FALSE;

6. Redefine hyperplane indices such that each cell originally in HPi now belongs to HP(i+j),
where j, if defined in step 4, is the individual color number of the cell.

Since by naively including edge-neighbors to form the next hyperplanes, there is no guarantee
to obtain hyperplanes not containing edge-neighbors within themselves, the success of this strategy
relies on a robust graph-coloring algorithm for separating edge-neighbors within a given hyperplane,
i.e., finding the correct k and j in the fourth step of the above strategy. We define k + 1 as the
chromatic number of a hyperplane. However, no detailed description is given for the graph-coloring
algorithm used in [184], and for this reason, we have adopted the well-established Welsh-Powell
graph-coloring algorithm [214] and modified this algorithm for the current purpose. The current
version of the Welsh-Powell algorithm consists of the following steps:

1. Store all cells in HPi in a list named L;

2. Sort the list L in a descending order based on the number of edge-neighbors within HPi
(termed as the valence);

3. Set the global variable k = 0;

4. Initialize the group number j of each cell in L to −1;

5. Loop through L, for each cell in L, assign its j = k if j < 0 and if it is not a neighbor of any
other member in L whose j = k;
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6. Increment k by 1;

7. Repeat from step 5 until every cell in L has a group number j ≥ 0.

Is is shown in [214] that the upper-bound of the chromatic number k + 1 of a given HPi is
deg(HPi) + 1, where deg(HPi) is defined by the maximum valence among all its member cells. The
complete grid-reordering strategy is illustrated in Fig. 2.4 through an simplified example of six
triangle and quadrilateral cells.

There are several points worth noting in Fig. 2.4. Firstly, in this simplified example, the Welsh-
Powell algorithm is shown in detail only for the original HP2. In reality, we perform this algorithm
for every newly discovered hyperplane since it is impossible to determine whether there exit any
edge-neighbors in advance. However, it is clear that if a hyperplane does not admit any edge-
neighbors (e.g., HP5 in Fig. 2.4), the Welsh-Powell algorithm will assign j = 0 to every one of its
member cells, thus allowing their indices i to remain unmodified at the end the grid reordering
procedure.

Secondly, we note that the chromatic number for the original HP2 is k + 1 = 3, which is equal
to the upper bound defined by deg(HP2) + 1 since cells 2, 3, and 4 all have a valence of 2.

Finally, this simplified example intends to demonstrate that the current grid reordering strategy
is operational on any arbitrary polygonal unstructured grids with different types of N -gons.
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1

2 3

4

5 6

The next HPi will have a new index i = 1 + k + 1 = 2

1

2 3

4

5 6

The next HPi will have a new index i = 2 + k + 1 = 5

1

2 3

4

5 6

All cells in the grid are explored and marked as FALSE. Update hyper-plane indices HPi =
HPi+j for cells with defined color number j (Welsh-Powell algorithm performed on HP5

without being expanded here in detail to avoid repetition)

1

2 3

4

5 6

The six-cell grid is reordered into 5 hyper-planes. No edge-neighbors found in any hyper-plane. �

HP1

HP1

HP1

HP1

HP2 HP2

HP2

HP2 HP2

HP2

HP2

HP5 HP5

HP5 HP5

HP3

HP4

Start Welsh-Powell algorithm to separate edge-neighbors in HP2 :

Set k = 0, loop through list L while any j < 0 :Cell ID in L Valence j
2 2 0
3 2 −1
4 2 −1

End of loop #1, 2 cells in L with j < 0.
Restart loop with k = 0 + 1

Cell ID in L Valence j
2 2 0
3 2 1
4 2 −1

End of loop #2, 1 cell in L with j < 0.
Restart loop with k = 1 + 1

Cell ID in L Valence j
2 2 0
3 2 1
4 2 2

End of loop #3, no cell in L with j < 0. Algorithm termi-
nates with k = max2≤n≤4(jn) = 2

Cell ID Mask j i = 1 k = 0
1 FALSE −
2 TRUE −
3 TRUE −
4 TRUE −
5 TRUE −
6 TRUE −

Cell ID Mask j i = 2 k = 0
1 FALSE −
2 FALSE −1
3 FALSE −1
4 FALSE −1
5 TRUE −
6 TRUE −

Cell ID Mask j i = 5 k = 2
1 FALSE −
2 FALSE 0
3 FALSE 1
4 FALSE 2
5 FALSE −1
6 FALSE −1

Cell ID Mask j i = 5 k = 0
1 FALSE −
2 FALSE 0
3 FALSE 1
4 FALSE 2
5 FALSE 0
6 FALSE 0

Figure 2.4: Illustration of the current grid reordering procedure on a simplified unstructured grid,
starting from a single-cell HP1.
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2.7 Boundary Conditions

2.7.1 Boundary Numerical Flux

In this section, we discuss the computation of boundary numerical flux FBC,NUM
Gij

through the
resolution of boundary Riemann problem [32, 67]. To begin with, we distinguish three distinct
states that define a boundary Riemann problem as shown in Fig. 2.5 :

(i). Interior state, denoted by (·)i, is the extrapolated state from the interior computational
domain, equivalent to the right state (·)R in the standard Riemann problem (Section. 2.4)

(ii). Boundary state, denoted by (·)BC, is associated with all boundary variables imposed regardless
of the solution in the interior computational domain

(iii). Exterior state, denoted by (·)j , is equivalent to the left state (·)L in the standard Riemann
problem. For every boundary condition we have Vj := Vj(Vi, VBC) and Uj := Uj(Ui, UBC).

Boundary state (·)BC

Interior state (·)i
(1) : CLSQ reconstructed to ⊠
(2) : Cell-average for time-integration

✏✏✏✶
Exterior state (·)j
Vj := Vj(Vi, VBC) Uj := Uj(Ui, UBC)

PPP✐

Boundary Riemann problem

FBC,NUM
Gij

?

✏✏✏✮
❇
❇
❇
❇
❇
❇
❇❇▼

#»nGij

Figure 2.5: Boundary treatment in the current study, � are the Gauss-Legendre quadrature points
on the boundary edge.

As illustrated in Fig. 2.5, we solve a Riemann problem at each boundary quadrature point based
on the interior and exterior state variables. To clarify on the terminology, notations “interior state”
and “exterior state” are used instead of “left state” and “right state” in the context of boundary
Riemann problem. Left and right states are relative to the edge-normal vector #»nGij , and since the
boundary normal vectors in the current code are always inward-pointing, the terms “interior” and
“exterior” states give a better representation of the flow physics.

The boundary Riemann problem is similar to the standard “interior” Riemann problem dis-
cussed in Section. 2.4 and the only difference between them lies in the computation of exterior
state 5 variables. For the interior Riemann problem, both left and right state variables are re-
constructed by the high-order polynomials defined within the two stencils associated with Ei and
Ej (i.e., Si and Sj). However, for the boundary Riemann problem, Vj and Uj are calculated

5In the context of interior Riemann problem, the “exterior state” is a relative concept, it can be either the left
or the right state depending on which cell is considered the reference
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directly based on the specific boundary condition relations, as shown in Fig. 2.5. In both cases,
the point-wise fluxes need to be numerically integrated over quadrature points on edge Gij

FBC,NUM
Gij

= F c,BC,NUM
Gij

+ F v,BC,NUM
Gij

=

N̄�∑
k=1

w�kF
c,BC,NUM

(
Ui�k , [gradU ]i�k , Uj�k , [gradU ]j�k ,

#»n�k

)

+

N̄�∑
k=1

w�kF
v,BC,NUM

(
Ui�k , [gradU ]i�k , Uj�k , [gradU ]j�k ,

#»n�k

)
(2.112)

where the interior state variables Ui�k and their gradients [gradU ]i�k are reconstructed to each
boundary quadrature by CLSQ schemes (Section 2.3) for computations of high-order numerical
fluxes FBC,NUM

Gij
, the j index represents in this case the exterior state instead of the neighbor cell

Ej . The all-Mach corrected AM-HLLC Riemann solver is used to compute the convective flux
F c,BC,NUM
Gij

while the viscous flux F v,BC,NUM
Gij

is averaged between the interior and exterior states

F v,BC,NUM
(
Ui�k , [gradU ]i�k , Uj�k , [gradU ]j�k ,

#»n�k

)
=

1

2

[
F v,BC,NUM

(
Ui�k , [gradU ]i�k ,

#»n�k

)
+ F v,BC,NUM

(
Uj�k , [gradU ]j�k ,

#»n�k

)] (2.113)

where the exterior state gradients [gradU ]j�k are assumed to be identical to their interior state
counterparts [gradU ]j�k = [gradU ]i�k . From Section. 2.7.2 to Section. 2.7.6, specific BC rela-
tions between Vi and Vj are given, which serve to determine Uj�k and to complete the boundary
numerical flux computation.

During the implicit time-integration, the interior state at each boundary quadrature point takes
directly the cell-averaged variables of the parent cell, and the exterior state takes the cell-averaged
variables from a fictitious cell Ej mirror-symmetrical to Ei about edge Gij . The first-order-accurate
boundary-reformulated Lax-Friedrichs flux FBC,APP

Gij
(see Eqn. 2.86) is used for the implicit time-

discretization. Boundary treatment for implicit time-integration scheme is discussed in detail in
Section. 2.5 and we shall not repeat in the current section. From Section. 2.7.2 to Section. 2.7.6,
the Jacobian matrix J′ij in Eqn. 2.93 is given for relatively simple boundary conditions which can
be applied directly for implicit time-integration.
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2.7.2 Adiabatic No-slip Wall

Special care needs to be taken for no-slip wall BCs, since they require different treatments for the
computations of FBC,NUM

Gij
and FBC,APP

Gij
. For the high-order boundary flux FBC,NUM

Gij

Vj(Vi, VBC) =


ρi
ui
vi
pi

 (2.114)

while for the first-order FBC,APP
Gij

, the cell-averaged velocity components in the fictitious cell Ej
〈u〉Ej and 〈v〉Ej are set opposite to those in cell Ei to ensure a zero approximation of the velocity
vector on edge Gij

〈V 〉Ej (〈V 〉Ei , VBC) =


〈ρ〉Ei
−〈u〉Ei
−〈v〉Ei
〈p〉Ei

 (2.115)

Based on Eqn. 2.115, we obtain J′ij

J′ij :=
∂〈V 〉Ej
∂〈V 〉Ei

=


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

. (2.116)

2.7.3 Isothermal No-slip Wall

When a wall is defined as isothermal, we assign to it a constant temperature Tw. Since we always
impose Neumann type boundary condition for pressure, we let pj = pi, and by following the ideal
gas law, ρj = pi/(RgTw), where Rg is the specific gas constant [J · kg−1 ·K−1]. Thus we have for
the high-order flux FBC,NUM

Gij

Vj(Vi, VBC) =


pi

RgTw

ui
vi
pi

 (2.117)

while for the first-order FBC,APP
Gij

〈V 〉Ej (〈V 〉Ei , VBC) =


〈p〉Ei
RgTw

−〈u〉Ei
−〈v〉Ei
〈p〉Ei

 (2.118)
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Based on Eqn. 2.117, we obtain J′ij

J′ij :=
∂〈V 〉Ej
∂〈V 〉Ei

=


0 0 0 1

RgTw

0 −1 0 0

0 0 −1 0

0 0 0 1

. (2.119)

Apart from the two no-slip wall BCs (Section. 2.7.2 and Section. 2.7.3), other BCs (sections 2.7.4-
2.7.6) treat the low- and high-order numerical fluxes with the same BC relations.

2.7.4 Riemann Invariant Inflow and Outflow

The Riemann invariant boundary condition is generally employed as the far-field boundary con-
dition in the case of external aerodynamics (airfoil, etc.). The exterior state variables Vj are
determined by combining information from interior and boundary states. Depending on the lo-
cal Mach number and flow direction at inlet, the incoming (R+) and outgoing (R−) Riemann
invariants are calculated based on the interior or boundary state variables, such that

if Mi ≤ −1 (supersonic outflow) : R+ = Vni +
2ai
γ − 1

, R− = Vni −
2ai
γ − 1

if Mi ≥ 1 (supersonic inflow) : R+ = Vn∞ +
2a∞
γ − 1

, R− = Vn∞ −
2a∞
γ − 1

else (subsonic) : R+ = Vn∞ +
2a∞
γ − 1

, R− = Vni −
2ai
γ − 1

(2.120)

where Mi =
Vni
ai

, and c =
√

γp
ρ . Note that the face normal unit vector #»n always points inward (for

codes having outward-pointing normal vectors, the +/− signs in Eqn. 2.120 are reversed). For all
three cases above

Vnj =
1

2
(R+ +R−), Tj =

[
γ−1

4 (R+ −R−)
]2

γR
(2.121)

where Vnj and Tj are the normal velocity and temperature in the exterior state Vj .
Depending on the sign of Vni (whether the local flow is entering or exiting the domain), the

exterior state velocity vector
#»

V j is computed accordingly by assuming that the tangential velocity
remains constant from interior to exterior state.

#»

V j =

{
#»

V i + (Vnj − Vni ) #»n if Vni < 0 (outflow)
#»

V∞ + (Vnj − Vn∞) #»n if Vni > 0 (inflow)
(2.122)

Exterior state density and pressure are determined by isentropic relations

ρj =

ρi
(
Tj
Ti

) 1
γ−1

if Vni < 0 (outflow)

ρ∞
(
Tj
T∞

) 1
γ−1

if Vni > 0 (inflow)
(2.123)
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pj =

pi
(
Tj
Ti

) γ
γ−1

if Vni < 0 (outflow)

p∞
(
Tj
T∞

) γ
γ−1

if Vni > 0 (inflow)
(2.124)

The definition of primitive variables in the exterior state for Riemann invariant boundary con-
dition depends on the local flow. We distinguish four cases: supersonic inflow (supIn), supersonic
outflow (supOut), subsonic inflow (subIn), and subsonic outflow (subOut).

2.7.4.1 Supersonic Inflow

From equations 2.120 - 2.124 we obtain the expressions of exterior state primitive variables for
supersonic inflows

V
(supIn)
j (Vi, VBC) =


ρ∞
u∞
v∞
p∞

 (2.125)

Based on Eqn. 2.125, we obtain J
′(supIn)
ij

J
′(supIn)
ij = 0. (2.126)

It is clear that, when the local flow is entering the domain at supersonic normal velocity, the
exterior state V (supIn)

j depends entirely on the infinity state, not on the interior state Vi. Therefore,
it is evident that the Jacobian J

′(supIn)
ij is a zero matrix. The underlying physical significance is

that the infinity state remains constant.

2.7.4.2 Supersonic Outflow

Similarly, from equations 2.120 - 2.124 we obtain

V
(supOut)
j (Vi, VBC) =


ρi
ui
vi
pi

 (2.127)

Based on Eqn. 2.127, we obtain J
′(supOut)
ij

J
′(supOut)
ij = I. (2.128)

Conversely, the exterior state V (supOut)
j in the supersonic outflow case depends entirely on the

interior state, not on the infinity state. Therefore, the Jacobian J
′(supOut)
ij is an identity matrix.
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2.7.4.3 Subsonic Inflow/Outflow

For subsonic Riemann invariant condition, the exterior state variables are computed by equations
2.120 - 2.124

V
(subIn)
j (Vi, VBC) =


ρ∞ (Tj/T∞)

1
γ−1

u∞ + (Vnj − Vn∞)nx
v∞ + (Vnj − Vn∞)ny

p∞ (Tj/T∞)
γ
γ−1

 (2.129)

V
(subOut)
j (Vi, VBC) =


ρi (Tj/Ti)

1
γ−1

ui + (Vnj − Vni)nx
vi + (Vnj − Vni)ny
pi (Tj/Ti)

γ
γ−1

 . (2.130)

The expressions of corresponding Jacobians J′(subIn)
ij and J

′(subOut)
ij become extremely cumber-

some due to the involvement of incoming and outgoing Riemann invariants R±. Their complete
expressions can be obtained by performing partial differentiation in a Computer Algebra System
(CAS) such as Maxima or Mathematica.

2.7.5 Reservoir Inflow

The reservoir inflow boundary condition is characterized by constant total enthalpy Ht and out-
going Riemann invariant R−. The flow is adiabatic and isentropic across the boundary interface
with an inward-pointing normal vector #»n .

Ht =
a2
j

γ − 1
+

1

2
(V 2
nj + V 2

tj ) =
a2
t

γ − 1
(2.131)

where Vtj :=
#»

V j · #»
t and #»

t is the unit face-tangential vector at inlet boundary. Note that the
tangential velocity component remains constant across boundary interface, therefore exterior state
Vtj can be replaced by the boundary state VtBC =

#»

V BC · #»
t . at is the total speed of sound computed

based on the total temperature and Mach number in the boundary state

at =
√
γRgTt (2.132)

Tt = TBC

[
1 +

MBC(γ − 1)

2

]
(2.133)

MBC =

√
u2
BC + v2

BC

aBC
=

√
u2
BC + v2

BC

γpBC/ρBC
. (2.134)

The expression of outgoing Riemann invariant R− is given in Eqn. 2.120, and since R− is
conserved along the path between interior and exterior states, it can be expressed in terms of the
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exterior state variables

R− = Vnj −
2aj
γ − 1

(2.135)

which gives

a2
j

γ − 1
=

(γ − 1)(Vnj −R−)2

4
. (2.136)

By inserting Eqn. 2.136 back into Eqn. 2.131 we obtain a quadratic equation with respect to
Vnj

V 2
nj

2
+K1Vnj +

K2

2
= 0 (2.137)

where

K1 = − (γ − 1)R−
γ + 1

K2 =

(γ − 1)

[
R−2

+
2t2BC
γ−1 −

(
2at
γ−1

)2
]

γ + 1

with R− being rewritten by replacing exterior state variables in Eqn. 2.135 by interior state vari-
ables

R− = Vni −
2ai
γ − 1

.

Coefficients K1 and K2 are therefore both known based on interior and boundary variables,
which allows Eqn. 2.137 to be solved. For the solution to be physically consistent, we either retain
the largest positive root or set Vnj to zero

Vnj = max(0,−K1 +
√
K2

1 −K2). (2.138)

Once Vnj is obtained, we can then determine the exterior state temperature Tj by inserting
Vnj into Eqn. 2.135

Tj =

[
γ−1

2 (Vnj −R−)
]2

γR
(2.139)

and exterior state density and pressure are deduced according to the isentropic relations

ρj = ρBC

(
Tj
TBC

) 1
γ−1

pj = pBC

(
Tj
TBC

) γ
γ−1

.

(2.140)

Finally, the exterior state velocity is computed by admitting that the tangential component is
kept constant between the boundary and exterior states

#»

V j =
#»

V BC + (Vnj − VnBC) #»n . (2.141)
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The exterior state variables

Vj(Vi, VBC) =


ρBC (Tj/TBC)

1
γ−1

uBC + (Vnj − VnBC)nx
vBC + (Vnj − VnBC)ny
pBC (Tj/TBC)

γ
γ−1

 . (2.142)

As with the subsonic Riemann invariant condition, the complete expression of Jacobian J′ij for
reservoir inflow also needs to be derived automatically by a Computer Algebra System (CAS).

Physically, the reservoir and the subsonic Riemann invariant inflow boundary conditions are
very similar in the sense that they both assume the flow is isentropic across the boundary. However,
the reservoir inlet also imposes that the flow to be adiabatic (constant specific total enthalpy Ht),
with the exterior state normal velocity component Vnj and temperature Tj being computed based
on this adiabatic assumption. The reservoir inflow condition is therefore more adapted for internal
channel flows while Riemann invariant condition is more suitable for far-field of external flows.

2.7.6 Pressure Outflow

The pressure outflow boundary condition is widely implemented for internal channel flows. For a
subsonic flow, the static pressure at outlet pj is prescribed as po, whereas for a supersonic flow, all
state variables are extrapolated from the interior state.

First, we determine the boundary pressure

pj =

{
po if Mi < 1

pi if Mi ≥ 1
(2.143)

where Mi = Vni/ai. The interior temperature is determined by the ideal gas law Ti = pi/(Rgρi).
The final expression of the exterior state is the following

Vj(Vi, VBC) =


pj
RgTi

ui
vi
pj

 . (2.144)
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Chapter 3

Evaluation of Computational
Methods

3.1 Evaluation of Implicit Schemes

In this section, test results are compiled to compare the performances of the implicit pseudo
dual-time-stepping scheme with the three implicit schemes mentioned in Section. 2.5, the iterative
Jacobian scheme, BLU-SGS schemes [42], and the approximately factored LU-SGS scheme [117].
Tests are performed on a laminar backward-facing step configuration first introduced by Armaly
et al. [13]. Again, we refer to Section. 4.2 Fig. 4.1 for a detailed description of the test-case
configuration. The Reynolds number for this test-case is computed based on the bulk streamwise
velocity at inlet uB and the hydraulic diameter of the inlet channel Dh = 2Hi and is denoted by
the two-subscript notation Revel,len where the velocities and lengths are listed in Tab. 4.1

ReuB ,Dh =
uBDh

ν
=

2uBHi

ν
. (3.1)

Experimental results [13] place the laminar flow regime at ReuB ,Dh < 1200. For the purpose
of evaluating different implicit solvers, we confine ourselves to the laminar regime by showing
convergence results at three Reynolds numbers ReuB ,Dh = 100, 389, 1000. Within the laminar
regime, as the Reynolds number increases, the reattachment length x1 becomes longer which leads
to a larger recirculation zone (see Fig. 4.1). A priori, test cases at higher Reynolds number is
more difficult to converge due to increased recirculation lengths and non-linearity, therefore the
laminar BFS presents itself as a relevant test-case to evaluate the performance of the current
implicit scheme, since the purpose of using pseudo dual-time-stepping is to better account for the
non-linearity in the solution, which cannot be achieved by simply implementing iterative linear
solvers. In the following study, we will investigate the performances of the dual-time-stepping
version of Jacobi, BLU-SGS, and LU-SGS implicit schemes discussed in Section. 2.5 as well as how
they interact with the flow physics and high-order spatial discretization schemes.

3.1.1 Iterative Error and Reduction

Instead of using fixed numbers of inner and linear iterations (static approach), the dynamic ap-
proach is used to terminate each iterative procedure based on fixed threshold relative error ε∗ or
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reduction r∗. The dynamic approach is more general and robust than the static approach, which
allows automatic adjustment of the required number of iterations for different test-cases depending
on parameters such as grid size, time-step size, flow complexity, etc. Moreover, less iterations are
needed when the solution is close to convergence which reduce the total computational time. For
two-dimensional laminar flows.

Here we define the function of iterative error ε estimation for an arbitrary vector of 2D flow
variables Q ∈ R4 (can be U , ∆U , etc.) at iteration ` ≥ 1 on N sampling units (cells, points, etc.)

`ε
(
`Q, `+1Q

)
= log10


√√√√√1

4

∑N
i=1

`
i∆q

2
ρ∑N

i=1
`
iq

2
ρ

+

∑N
i=1

(
`
i∆q

2
x + `

i∆q
2
y

)
∑N
i=1

(
`
iq

2
x + `

iq
2
y

) +

∑N
i=1

`
i∆q

2
e∑N

i=1
`
iq

2
e


 (3.2)

where `∆q = `+1q− `q, qρ is related to the continuity equation, qx, qy are related to the momentum
equations and qe is related to the energy equation. The iterative reduction r at the same iteration
` is given by

`r
(
`ε, `−1ε

)
= log10


∣∣∣10

`ε − 10
`−1ε

∣∣∣
10`−1ε

 = log10

∣∣∣10
`ε − 10

`−1ε
∣∣∣− `−1ε (3.3)

where 0ε = 0 and therefore 1r = log10 |10
1ε − 1| − 1. The iterative reduction can be interpreted

as the convergence of the iterative increment, characterizing the acceleration of solution towards
convergence. The index ` is generic in the sense that equations 3.2 and 3.3 remain valid for an
arbitrary iterative procedure, in the context of implicit dual-time-stepping, ` can be replaced by
k (linear solver iteration), m (inner iteration), or n (outer iteration). However, in practice, the
convergence is monitored differently for each iterative procedure :

1. linear solver k-iteration : kε := kε
(
k∆U, `+1∆U

)
2. inner m-iteration : mr := mr

(
mε,m−1ε

)
with mε := mε

(
mU,m+1U

)
3. outer n-iteration : nε := nε

(
nU, n+1U

)
note that for LU-SGS linear solver, calculating kε is meaningless since no linear iteration is needed.
For both BLU-SGS and Jacobi schemes, the linear solver is terminated at the kth iteration if kε ≤ ε∗
where ε∗ is a predefined threshold error. For all three time-integration schemes above, the dual
pseudo time-stepping is terminated at themth pseudo-time-step if mr ≤ r∗ where r∗ is a predefined
threshold reduction.

In general, a test-case with more complex flow features (e.g. large separated region) or greater
number of cells tends to require more k- andm-iterations to reach ε∗ and r∗. Similarly, the required
iterations also increase as the Courant number CFL grows since the residual term in Eqn. 2.88 is
directly multiplied by the time-step size. In loose terms, nε decreases in three characteristic phases
: (1) oscillating descent down to approximately nε ≈ −4 ∼ −5; (2) smooth steady descent down
to nε ≈ −8; (3) slow asymptotic convergence for nε < −8. Each change of phase is often marked
by a change of slope in the convergence history nε(t). However, note that the three phases are
not strictly defined in a mathematical sense, but rather in an empirical sense by observation 1.

1it is generally accepted that the slope is related to the dominant eigenvalue of the iterative error, therefore the
change of slope indicates that a different magnitude of error is dominant, e.g., a steep slope indicates a large-scale
error while a gentle slope implies that the error is small-scale and remains local
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Once the solution enters the last phase, further variation in the flow field becomes negligible and
the solution is then considered converged. The precise locations of phase changes are controlled
by various factors which differ considerably from case to case, and need to be determined visually
for each individual test according to its convergence history. In practice, the solution is considered
converged to a steady-state if any one of the following criteria is satisfied :

• the n-iteration error nε ≤ −8

• the solution reaches the third smoothly descending convergence phase.

3.1.2 Backward-Facing Step at ReuB ,Dh
= 100
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Figure 3.1: Convergence history using both Jacobi and BLU-SGS methods with different CFL at
ReuB ,Dh = 100.
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At ReuB ,Dh = 100, the reattachment length is relatively short, fast convergence can be achieved
without dual time-stepping for both Jacobi and BLU-SGS methods. When increasing the Courant
number CFL from 100 to 1000, as shown in Fig. 3.1, the convergence is accelerated. For a given
CFL, solution reaches the last slow convergence phase faster using BLU-SGS than Jacobi method.

Different threshold linear errors ε∗ are compared as shown in Fig. 3.2 using Jacobi method.
With a high threshold error −1.0, the solutions diverge at the very beginning regardless of the CFL
condition which indicates that the linear system is under-resolved. By decreasing ε∗, the linear
system is properly resolved at ε∗ = −2.0 and by further lowering ε∗ down to −3.0, the solution
enters the third phase of convergence at nε ≈ −7.5 in less computational time. Although the
convergence criterion is met slightly earlier with ε∗ = −3, the iterative error is driven to a much
lower level nε = −10 in less time with ε∗ = −2.0, therefore, it is not evident to decide which one is
a better choice. In practice, ε∗ = −3.0 is retained as the optimal threshold linear error for Jacobi
method, but we also admit ε∗ = −2.0 as a valid choice. For test-cases where using ε∗ = −3.0 tends
to over-resolve the linear system, relaxing the threshold error up to ε∗ = −2.0 can prove to be a
robust solution.

Using BLU-SGS at CFL = 400, ε∗ = −2.0 is clearly the optimal threshold linear error in
terms of computational time as shown in Fig. 3.3. It is noteworthy that, for BLU-SGS method,
the solution converges even with a high threshold linear error ε∗ = −1.0 whereas Jacobi method
fails under this condition. This is due to the fact that BLU-SGS implicitly takes into account the
boundary conditions (Eqn. 2.93), knowing that nε is computed based on the sum of conservative
variable increments in the entire computational domain (Eqn. 3.2), it is clear that when Jacobi
and BLU-SGS methods return identical nε, linear solution obtained by BLU-SGS at each time-
step tends to respect more scrupulously the boundary conditions, which leads to better convergence
with a relatively high ε∗.

Another observation is that BLU-SGS method over-resolves the linear system for a low threshold
linear error ε∗ = −3.0 and leads the solution to diverge at a high Courant number CFL = 1000

(curve not shown in Fig. 3.3).
To illustrate the performances of different linear solvers at ReuB ,Dh = 100, the fastest converged

test-case using each linear solver is shown in Fig. 3.4. The optimal threshold error has been found
to be ε∗ = −2.0 for BLU-SGS solver and ε∗ = −3.0 for Jacobi solver. According to Fig. 3.4,
BLU-SGS shows slightly faster convergence than Jacobi and both BLU-SGS and Jacobi methods
demonstrate substantially enhanced convergence property comparing to the approximately factored
LU-SGS method.

3.1.3 Backward-Facing Step at ReuB ,Dh
= 389

At ReuB ,Dh = 389, the flow is approaching the upper limit of two-dimensionality dominance
[13], the recirculation zone is enlarged and convergence is expected to be more difficult than the
flow at ReuB ,Dh = 100. BLU-SGS solver, from this Reynolds number onwards, starts to show
higher sensitivity to the Courant number than Jacobi method and converged solution can only be
obtained at Courant number less or equal to 200, whereas Jacobi method is always scalable up to
CFL = 1000.

Cases with different threshold linear errors ε∗ are compared at this Reynolds number in Fig. 3.6.
As ε∗ increases, Jacobi method shows the same trend as ReuB ,Dh = 100 : high ε∗ = −1.0 causes
the solution to diverge as expected and the optimal ε∗ is found to be −3.0 as with ReuB ,Dh = 100.
Recall that for BLU-SGS method, ε∗ = −1.0 is sufficient to ensure convergence at ReuB ,Dh = 100

which still remains valid at this increased Reynolds number as shown in Fig. 3.6. Moreover, −2.0
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Figure 3.2: Convergence history using Jacobi method with different ε∗ at ReuB ,Dh = 100.

remains the optimal ε∗ for BLU-SGS.
Fig. 3.7 shows the best performance comparison of BLU-SGS, Jacobi, and LU-SGS atReuB ,Dh =

389. With reduced Courant number, BLU-SGS solver with ε∗ = −2.0 maintains only a marginal
advantage over Jacobi method with ε∗ = −3.0. LU-SGS results are given at two Courant numbers
1000 and 10000, since the two curves almost overlap, it is clear that the LU-SGS method is no
longer scalable beyond CFL = 1000, and remains disadvantageous in computational time.

Compared with ReuB ,Dh = 100, flow over the backward-facing step at ReuB ,Dh = 389 takes
slightly more computational time to reach convergence due to increased non-linearity and recircu-
lation downstream of the step.

3.1.4 Backward-Facing Step at ReuB ,Dh
= 1000

At ReuB ,Dh = 1000, flow approaches the upper limit of the laminar regime for the given configura-
tion [13]. The reattachment length is almost at its peak value. Tests at this Reynolds number are
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Figure 3.3: Convergence history using BLU-SGS method with different ε∗ at ReuB ,Dh = 100.

used to demonstrate the importance of dual time-stepping (m-iteration) when largely separated
flow is encountered.

We first investigate the role played by the threshold non-linear reduction for the dual pseudo-
time-stepping r∗ on the convergence. For this purpose, we show the results obtained with Jacobi
and BLU-SGS methods. As plotted in Fig. 3.8 and 3.9, when no pseudo-time-stepping (number of
pseudo-time-step Mit = 1) is used, both Jacobi and BLU-SGS methods show no sigh of convergence
within a reasonable amount of time.

By implementing DTS with Jacobi solver (Fig. 3.8), convergence is obtained with a threshold
reduction r∗ = −0.5 within 1000 n-iterations. As the reduction criterion becomes more strin-
gent, the number of iterations needed to reach convergence remain almost unchanged while the
computational time increases gradually with decreasing r∗ from −0.5 to −1.5. However, despite
longer computational time is required for r∗ = −1.5, it can be preferred to r∗ = −0.5 for gen-
eral applications since the convergence is more likely to be guaranteed with a more stringent r∗

condition.
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With the BLU-SGS method, the convergence behavior is different from the Jacobi method with
regard to r∗. When r∗ is set to −0.5, the convergence history oscillates but fails to converge with
a very high CFL∗ = 1013 and a low CFL∗ = 100 is required to obtain convergence as shown in
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Figure 3.6: Convergence history using both Jacobi and BLU-SGS methods with different ε∗ at
ReuB ,Dh = 389.

Fig. 3.10. However, by decreasing the threshold r∗ to −1.0, the BLU-SGS solution manages to
converge to nε = −8.0 within 15000s wall-time using the same processing power which is a tenfold
increase in convergence time required comparing to the low-Reynolds case at ReuB ,Dh = 100

(Fig. 3.4). By further bringing down the threshold reduction to r∗ = −1.5, although convergence
can eventually be achieved, the system is visibly over-resolved and the iterative error descends
with an extremely low rate and it requires approximately 8 times as much computational time and
6 times as many n-iterations as using r∗ = −1.0. Therefore, it is evident that r∗ = −1.0 is the
optimal threshold reduction for DTS with BLU-SGS method at ReuB ,Dh = 1000 and using linear
iterations alone is insufficient for BFS flows at high Reynolds number with strong recirculation.
Note that at this high Reynolds number, the maximum possible Courant number for BLU-SGS is
further reduced to 100 while that of Jacobi method is maintained at 1000.

Since the necessity of dual pseudo-time-steps is established, the scalability with respect to the
dual Courant number CFL∗ needs to be viewed. As shown in Fig. 3.11, faster convergence is
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obtained when higher CFL∗ is used for the m-iteration since fewer dual-time-steps are needed
(Fig. 3.11) knowing that before each m-iteration, the high-order approximation residual m,n+1R∗Ei
need to be reconstructed with the CLSQ scheme, which induces a considerable computational
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overhead. However, improvement brought by higher CFL∗ is not limitless, note that for CFL∗ ∈
[104, 1013], a rise in CFL∗ even slows down the convergence slightly, this can be explained by the
fact that, beyond CFL∗ = 103, the number of dual-time-steps Mit at each n-iteration stays almost
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unchanged. Meanwhile, larger dual-time-step size ∆t∗ takes more linear k-iterations to resolve,
therefore the slower convergence rate is attributed to the increased number of linear iterations.
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Figure 3.11: Comparison history using BLU-SGS method with different CFL∗ for r∗ = −1.0 at
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The best performance of each linear solver is plotted for ReuB ,Dh = 1000 in Fig. 3.12. For
this critical case, Jacobi method fails to converge with threshold linear error ε∗ = −2.0, which
works perfectly at ReuB ,Dh = 100 and 389, and only ε∗ = −3.0 makes the convergence possible.
On the other hand, BLU-SGS method is more restricted in terms of choice of CFL number and
r∗ and it is in turn the Jacobi method which gives the fastest convergence with CFL = 1000 and
r∗ = −0.5. The approximately factored LU-SGS method fails to give converged solution within a
realistic amount of time with r∗ = −1.0 as shown in Fig. 3.12.
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3.1.5 Implicit Scheme for High-order Spatial Discretization

It is observed that the order of accuracy of the CLSQ reconstruction also influence the convergence
of implicit time-integration. As the order of accuracy is raised, the difference in approximation
order between the high- and low-order numerical fluxes FNUM and FAPP increases, since FNUM is
computed using HLLC Riemann solver based on CLSQ reconstructed flow variables at interfacial
quadrature points, while FAPP is computed on the cell interface based on the cell-averages of both
sides. An increase in the order of reconstruction will also elevate the order of FNUM whereas that
of FAPP remains unchanged. Therefore more iterations are required to eliminate this increased
gap. For test-cases with relatively high Reynolds number, it might be necessary to use additional
m-iterations in order to reach convergence. This is demonstrated by several examples using the
Jacobi method with CLSQ3, CLSQ4, CLSQ5 and CLSQ6 reconstruction schemes as shown in
Fig. 3.13.

In Fig. 3.13, for ReuB ,Dh = 200, the difference in convergence rate is negligible among all
four CLSQ schemes, and converged steady-state solutions are obtained with single-time-stepping
up to CLSQ6. When the Reynolds number increases to ReuB ,Dh = 389, although the solutions
can still be driven to convergence without dual-time-stepping, CLSQ4-6 schemes clearly require
more n-iterations to converge to steady-state. At ReuB ,Dh = 800, although the convergence of
Jacobi implicit scheme is considerably slower than ReuB ,Dh = 200, ReuB ,Dh = 389 due to stronger
non-linearity as discussed previously, it still requires no dual-time-stepping for the lowest order
CLSQ3 scheme. However, for higher order reconstructions CLSQ4, CLSQ5 and CLSQ6, the error
level nε shows no sign of descending with single-time-stepping. To obtain converged steady-state
solution with CLSQ4, CLSQ5 and CLSQ6, it is indispensable to use additional m-iterations with
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Figure 3.13: Study on the effects of high-order CLSQ reconstruction on the convergence of implicit
scheme using Jacobi method. Reynolds numbers ReuB ,Dh = 200, 389, 800 are investigated with
CLSQ3, CLSQ4, CLSQ5 and CLSQ6.

a threshold reduction r∗ = −1.0, which is not necessary for CLSQ3 reconstruction. Finally, the
convergence history is given at ReuB ,Dh = 800 using dual-time-stepping for CLSQ4, CLSQ5 and
CLSQ6 in Fig. 3.13. The three high-order reconstruction schemes take comparable amount of
time to converge although it is observed that the rate of convergence is progressively reduced as
the order of discretization increases from 4 to 6. This is due to the fact that a greater number
of m-iterations Mit is required to eliminate the increasing gap between low- and high-order flux
approximations (Fig. 3.14) as mentioned before, and since the CLSQ reconstruction is needed for
each new m-iteration, a visible computational overhead is caused.
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3.1.6 Summary on Implicit Scheme Evaluation

In this section, the performance of the implicit scheme with dual-time-stepping has been evaluated
using the laminar BFS configuration of Armaly et al. [13]. Three linear solvers have been tested
and it has been demonstrated that the iterative linear solvers such as Jacobi solver and BLU-SGS
solver provide substantially faster convergence than the approximately factored LU-SGS solver
within a wide range of Reynolds number.

As mentioned earlier, the solution is considered converged once the third characteristic phase
of slow descent of error nε is reached. The entrance of the third phase is presignaled by a change-
of-slope point which is located at approximately nε = −8.0. As the results indicated previously,
by lowering the threshold linear error ε∗, the change of slope is encountered at higher value of nε
and the subsequent slope of error

∣∣∂nε
∂n

∣∣ in the third phase decreases (figures 3.2, 3.3, 3.6). For all
Reynolds numbers studied, Jacobi solver requires more stringent ε∗ condition than BLU-SGS solver
to obtain optimal convergence rate, and tends to diverge when ε∗ is relatively high (figures 3.2,
3.6). However, BLU-SGS solver is more sensitive to the increasing Courant number and to the r∗

criterion at high Reynolds numbers. At ReuB ,Dh = 1000, the maximum CFL reachable using BLU-
SGS is limited to 100, and a high value of r∗ = −0.5 does not ensure convergence either. In terms
of convergence rate to a steady-state solution, BLU-SGS solver maintains a marginal advantage
over Jacobi solver in this BFS configuration at ReuB ,Dh = 100, 389. This is largely due to the fact
that, for OpenMP parallelized code, Jacobi method is parallelized on the entire unstructured grid
while BLU-SGS method is parallelized in every reordered hyperplane, which leads to a considerable
performance penalty. Furthermore, since the specific boundary conditions need to be implicitly
accounted for in the D matrix for the BLU-SGS method therefore a completely matrix-free scheme
cannot be achieved. As discussed in Section. 2.7, the construction of D is BC-dependent and needs
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to be modified from one test-case to another. This reduces the attractiveness of the BLU-SGS
method comparing to the Jacobi method especially when the improvement in convergence rate is
far from impressive in a parallelized CFD solver.

The performance of implicit scheme is highly dependent on the flow conditions and the spatial
order of discretization schemes. In the BFS test-case, we have demonstrated that as the Reynolds
number increases, the flow tends to become increasingly non-linear with expanding recirculation
zones, and that the pseudo dual-time-stepping becomes necessary to ensure the convergence at
high Reynolds numbers. Moreover, high-order spatial discretization leads to larger difference in
the approximation order between the high-order numerical fluxes FNUM used in the reconstruction
phase and the low-order averaged fluxes FAPP used in the time-integration phase. This increasing
difference can only be eliminated by additional iterations during time-integration, and by the im-
plementation of dual-time-stepping. However, considering the computational costs saved by using
low-order flux approximation instead of performing CLSQ reconstruction at each linear iteration,
this still proves to be a small price to pay. These two performance issues are not independent
from each other, rather, they are coupled to a certain extent as shown in Fig. 3.13. The decrease
in convergence rate due to order increase is not noticeable for low Reynolds number BFS flows
ReuB ,Dh < 400 while becoming increasingly important as the Reynolds number rises. Conversely,
the single-time-stepping convergence is possible for CLSQ3 but not for CLSQ5-6 schemes only
when the Reynolds number is high.

As a general rule, if a set of DTS parameters {CFL,CFL∗, ε∗, r∗} ensure a converged solution
for a BFS test-case at relatively high Reynolds number ReuB ,Dh and/or with a relatively high
order of CLSQ reconstruction, then the convergence would also be ensured with the same set of
parameters for a test-case at a lower Reynolds number and/or with a lower order of CLSQ scheme.
For this specific Armaly et al. [13] test-case, the set of parameters {CFL = 100,CFL∗ = 100, ε∗ =

−2, r∗ = −1.5}, which are also named the “safe parameters”, can be used to achieve convergence at
any ReuB ,Dh between 100 and 1000 using BLU-SGS linear solver, although it does not guarantee
the fastest convergence rate at that specific Reynolds number. For the Jacobi solver, the safe
parameters are {CFL = 1000,CFL∗ = 100, ε∗ = −3, r∗ = −1.5} since, in the case of BFS, Jacobi
solver does not show sensitivity to the CFL number which can be maintained at CFL = 1000

for any ReuB ,Dh , and the more stringent ε∗ = −3 does not over-resolve the linear system. In
theory, using more stringent r∗ criteria further increase the stability, therefore can be preferential
for general applications (not limited to BFS flows). However, for the current Armaly et al. [13]
BFS test-case, a decrease in r∗ from −1.0 to −1.5 drastically increases the computational time
as shown in Fig. 3.9, therefore a judicious choice of parameters always depends on the specific
test-case to solve.
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3.2 Evaluation of Constrained Least-Squares (CLSQ) Recon-
struction

In this section, we aim to evaluate the performance of CLSQ reconstruction scheme by carrying
out a grid convergence study on the BFS test-cases of Armaly et al. The uniform grid refinement
is implemented with a refinement ratio of two in each dimension, and solutions of primitive vari-
ables are reconstructed to the same set of sampling points for all grid levels, which are all of the
barycenters of the first (coarsest) grid cells. Among the three types of polygonal grids in Fig. 3.36,
the Cartesian grid is chosen for this study since the division of rectangles is angle-preserving and
its convergence property is superior to the triangular grid.

Consider a grid convergence study with N successively refined grids. Converged solution of
a certain primitive variable on the finest grid vN is regarded as the reference solution, and the
relative error on the `th grid is computed by the second Euclidean L2 norm

εv` = ‖v` − vN‖2 , ∀v ∈ {ρ, u, v, p} (3.4)

where v is the symbol for a generic primitive variable, not to be confused with the vertical velocity
component v.

Meanwhile, εv` can be expressed as a function of the characteristic grid length h` and the order
of accuracy p

εv` = Chp` +O(hp+1
` ) (3.5)

with C being a constant specific to the scheme. In order to determine p, we ignore the high-order
term O(hp+1

` ) in Eqn. 3.5. Thus

log10(εv`) = log10(C) + p log10(h`) (3.6a)

log10(εv`−1
) = log10(C) + p log10(h`−1) (3.6b)

and p is obtained by subtracting Eqn. 3.6a from Eqn. 3.6b

p =
log10(εv`−1

)− log10(εv`)

log10(h`−1/h`)
(3.7)

where we have h`−1/h` = 2 for a uniform refinement ratio of 2. Note that the order of convergence
p measures how fast the computational error ε` vanishes as the grid is systematically refined by
a given ratio. This order also characterizes the accuracy of a reconstruction scheme such as the
CLSQ. Therefore, the terms “order of convergence”, “convergence rate”, “order of accuracy” and
“order of discretization” can be employed interchangeably.

The evaluation of observed convergence rate is performed for the backward-facing step test-case
at ReuB ,Dh = 100 on four uniformly refined Cartesian grids tabulated in Tab. 3.1. All geometric
parameters of the grids are illustrated in Fig. 3.15, where N denotes the number of grid points
on a given line segment, r denotes the geometric progression rate of grid spacing in the indicated
direction (r ≥ 1.0). For the grid generation procedure, the entire domain is divided into three
rectangular blocks and the blue-colored lines in Fig. 3.15 represent the bounding grid lines of all
three blocks. The red-colored parameters in Fig. 3.15 are prescribed as input, and other parameters
are calculated based on the input such that (i): the computational grid fills exactly the physical
domain and (ii): there is no discontinuity of grid spacing between two blocks of grids. A buffer
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zone with a length of Lbuffer is used to relax the vertical grid spacing so that the meshes are not
unnecessarily clustered downstream of the step. The objective of this analysis is to determine the
observed order of accuracy p of the third-order CLSQ reconstruction (CLSQ3) scheme, and to
verify if it matches the theoretical value 3.

Hi, Ny1

H , Ny2

ry1

ry2

ry3 ry3

ry4

ry5

rx1 rx2

∆y1

∆y2

∆y3

∆x1

Ho

Li, Nx1 Lo, Nx2

Lbuffer

Figure 3.15: BFS Cartesian grid parameters : blue lines correspond to the bounding grid lines,
parameters colored in red are independent parameters and the other parameters in black are
generated automatically based on them. Parameter values for the current BFS test-case are given
in Tab. 3.1.

Fig. 3.16 and Fig. 3.17 show the distributions of pressure and skin-friction coefficients on the
channel floor downstream of the step (Fig. 3.16) and near the step (Fig. 3.17). Results are given
from Grid 0 to Grid 3 in Tab. 3.1, and a clear tendency of grid convergence is observed as the grid
is refined. The solutions of both wall coefficients are visibly improved when refining from Grid 0
to Grid 1, but start converging from Grid 1 to Grid 3. No significant difference can be discerned
between solutions on Grid 2 and Grid 3 except in the close vicinity of the singularity point x = 0

as shown in Fig. 3.17. Since we have repeatedly shown that the wall coefficients always tend to
diverge at singularity point, the results in figures 3.16 and 3.17 imply that a grid converged solution
is obtained starting from Grid 2.

To quantitatively examine the order of accuracy of the CLSQ3 scheme, ε` and p are calculated
using equations 3.4 and 3.7. The results are shown in log-scale for four different primitive variables
ρ, p, u, and v respectively in Fig. 3.18. The normalized grid spacing for the `th Grid is defined as

∆h∗` =
∆h`
∆h0

(3.8)

where ∆h0 denotes the characteristic grid spacing of Grid 0.
This quantitative analysis shows that, for variables ρ, p, and u, the order of convergence p

approaches or slightly overpasses the theoretical order of accuracy of the CLSQ3 scheme at Grid
3. For the vertical velocity component v, although its convergence rate fails to reach 3 at Grid 3,
it follows the general increasing trend of the three other primitive variables. The very low values
|v| � uB are probably the cause of this delay in terms of grid refinement in reaching the theoretical
order of convergence.

With the results shown in figures 3.16 and 3.18, we have verified both qualitatively and quan-
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Table 3.1: Uniformly refined grids used for grid convergence study for the laminar BFS test-case.
* denotes the independent parameter given as input, all parameters are shown in Fig. 3.15. Grid
1-3 are generated by successive subdivisions of Grid 0, hence the geometric progression rates are
not applicable.

Grid 0 Grid 1 Grid 2 Grid 3
Ncells 2704 10804 43204 172804
*Nx1 31 61 121 241
*Nx2 76 151 301 601
*Ny1 16 31 61 121
*Ny2 16 31 61 121
*rx1 1.0733 - - -
rx2 1.0494 - - -
*ry1 1.1 - - -
*ry2 1.1 - - -
ry3 1.0719 - - -
ry4 1.0123 - - -
ry5 1.0045 - - -

*Hi/H 52/49 52/49 52/49 52/49

*Ho/H 101/49 101/49 101/49 101/49

*Li/H 10 10 10 10
*Lo/H 50 50 50 50

*Lbuffer/H 10 10 10 10
∆x1/H 15.82% 7.909% 3.955% 1.977%

∆y1/H 5.705% 2.853% 1.426% 0.713%

∆y2/H 5.705% 2.853% 1.426% 0.713%

∆y3/H 6.720% 3.360% 1.680% 0.840%
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Figure 3.16: Grid convergence result of the pressure coefficient Cp and the skin-friction coefficient
cf on the bottom wall plotted against x-coordinate normalized by the step height H.
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Figure 3.17: Grid convergence result of the pressure coefficient Cp and the skin-friction coefficient
cf on the bottom wall plotted against x-coordinate normalized by the step height H.

titatively that the CLSQ3 scheme is grid-converged and therefore consistent. The observed order
of accuracy p proves to be close to the theoretical value of 3 for the CLSQ3 scheme as illustrated
by Fig. 3.18. It is important to realize that the grid convergence study in this section verifies the
order of convergence of the CLSQ3 scheme in a strict sense by using the reconstructed variables to
all cell barycenters rather than an arbitrarily selected sub-set. This study shows that the current
CLSQ3 scheme yields a discretization error of order O(∆h3) for the laminar BFS test-case with
the presence of non-periodic inlet, outlet, and adiabatic wall boundaries. The imposition of wall
boundary conditions shows no effect on the spatial discretization error due to the application of
constrained reconstruction mentioned in Section 2.3.
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Figure 3.18: Evaluation of the observed order of accuracy p for the CLSQ3 scheme on the Backward-
Facing Step. The relative error ε and observed order p are plotted against the inverse normalized
grid spacing. Results are shown for four primitive variables.

The possibility to extend the CLSQ scheme to higher orders is further investigated up to CLSQ6.
Four computations are performed with CLSQ schemes from the third- to sixth-order on Grid 2. In
Fig. 3.19, distributions of pressure and skin-friction coefficients are plotted downstream of the step.
In this region where no singularity point is present, the curves of Cp and cf distributions remain
smooth, and solutions obtained by different orders of CLSQ schemes are almost indistinguishable
from one another. This shows that the current CLSQ reconstruction produces consistent results
as the order is scaled up to p = 6.

By focusing particularly on the region in the vicinity of the discontinuous step corner, as shown
in Fig. 3.20, where large gradients in the streamwise direction are expected for all flow variables
due to the sudden expansion. In this region, the smoothness of Cp and cf is conserved for all
scheme orders up to p = 6 before and after the step. The solutions are well bounded as the order
of CLSQ scheme increases, no spurious oscillation is witnessed in the immediate neighborhood of
the singularity point. A good agreement is observed among solutions of all orders in the near-step
region, with only a minor inconsistency for the pressure coefficient within 10% step height upstream
of the step, where the even orders (CLSQ4 and CLSQ6) reach the local minimum slightly earlier
than the odd orders (CLSQ3 and CLSQ5).
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Figure 3.19: Results of the pressure coefficient Cp and the skin-friction coefficient cf on the bottom
wall plotted against x-coordinate normalized by the step heightH. Spatial discretization performed
with CLSQ3-CLSQ6.
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Figure 3.20: Results of the pressure coefficient Cp and the skin-friction coefficient cf on the bottom
wall plotted against x-coordinate normalized by the step heightH. Results zoomed to the near-step
region. Spatial discretization performed with CLSQ3-CLSQ6.

3.3 Evaluation of Arbitrary Polygonal Grids

In this section, we test the computational methods presented in the previous Chapter. 2 on general
unstructured grids. The objective is to demonstrate their robustness on unstructured grids with
an arbitrary combination of polygonal cells in different regions. We will also show that satisfactory
results can be obtained even with the presence of stretched and skewed polygons in the domain.
Three test-cases are investigated: the zero-thickness flat-plate boundary layer (FPBL) case, the
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low-Reynolds NACA 0012 airfoil test-case and the backward-facing step (BFS) case. Both test-
cases involve wall-bounded viscous flow therefore it is important to apply high-aspect-ratio cells in
the near-wall regions for accurate results within boundary layers.

3.3.1 Zero-thickness FPBL

The computational domain is rectangular with a length of 3L in the x-direction and a height of
6L in the y-direction. The flat-plate lies on the domain centerline along the x-direction with a
length of L. The domain is artificially divided into a farfield and a near-wall region as shown
in Fig. 3.21, the near-wall region is defined by a bounding box with a distance of 0.05L to the
plate in each direction. The incoming flow is parallel to the flat plate with a free-stream Mach
number M∞ = 0.4. The Reynolds number is defined by the free-stream velocity and the plate
length ReuB ,L = ρ∞u∞L/µ∞ = 5 × 105. The plate is considered as a no-slip adiabatic wall,
Riemann invariant boundary condition is applied to the front, upper and lower boundaries while
the downstream boundary is treated as a pressure outlet.

L

3L

3L

0.1L

(a) (b)

ρ∞, p∞, T∞, ~V∞
• ReuB,L = ρ∞u∞L

µ∞
= 5× 105

• M∞ = 0.4

• Plane thickness h = 0

Figure 3.21: Geometric set-up of the flat-plate boundary layer test-case. (a): global computational
domain; (b): near-wall region.

A series of unstructured polygonal grids are tested in this case to demonstrate flexibility in
choice of grids. As shown in Fig. 3.22, the farfield and near-wall regions are meshed separately.
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In the farfield region (Fig. 3.22.a), the mesh is quad-dominant with a small amount of scattered
triangular cells. By splitting any number of quadrilateral cells in different ways, a tri-dominant or
completely triangulated farfield mesh can also be obtained. When approaching the domain infinity,
since a low level of disturbance is expected, several cells can be merged into a large polygon in
order to reduce the total number of cells. Conversely, the cells close to the near-wall region can be
further divided in various suitable manners, as shown in Fig. 3.22.b, to ensure a smooth transition
between the farfield and near-wall meshes.

(a) (b)

Figure 3.22: Quad-dominant unstructured grid for zero-thickness flat-plate boundary layer. (a):
farfield mesh; (b): interface between farfield and near-wall regions.

Different polygonal meshes are generated within the near-wall region as shown in Fig. 3.23.
Meshes (a)-(d) are pseudo-structured, constructed based on their Cartesian counterpart (e) by
connecting the vertices, edge-centers and cell-centers in four different manners. According to
Gerolymos and Vallet [91], by examining the performance of different tessellations of the same
grid, the relative advantages and disadvantages of cell-centered and center-vertex FVMs can be
understood.

Five computations are performed using different combinations of farfield and near-wall meshes
mentioned above with third-order CLSQ reconstruction (CLSQ3). Fig. 3.24 shows the pressure
contours in the vicinity of the plate leading edge computed on all five near-wall meshes in Fig. 3.23.
Close to the leading edge, high pressure gradient is expected due to the presence of singularity
point at x = 0. According to Fig. 3.24, all five types of near-wall meshes give comparable results
of pressure contours near the leading edge. Judging from the density of isobaric lines, the quad-
dominant mesh (a) predicts the rapidest pressure change, while the Cartesian mesh (e) predicts the
smoothest. The differences in the density and shape of isobaric lines become more pronounced in
regions closer to x = 0, where the local meshes need to be further refined in order to accommodate
the sharply increasing pressure gradient when approaching the singularity point.

The normalized static pressure p/p∞ is reconstructed on the plate wall, as well as along the
streamline on the centerline upstream of the leading edge x < 0, while the skin-friction coefficient
cf is reconstructed on the plate wall. Here cf is calculated by

cf =
µ ∂u
∂y

∣∣∣
y=0

0.5ρ∞u2∞
. (3.9)
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(a) (b)

(c) (d)

(e)

0.3%L

Figure 3.23: Four types of stretched polygonal meshes in the near-wall region. (a): quad-dominant;
(b): isosceles triangles; (c): right-angled triangles; (d): hexagons; (e): Cartesian.

According to Fig. 3.25, identical results of both p/p∞ and cf are obtained on all five grids far
from the leading edge at x = 0. Visible differences are observed only within close vicinity of the
plate leading edge −1% < x/L < 2%. As shown previously in Fig. 3.24, this discrepancy is caused
by the large gradients of pressure and velocity near the singularity point at x = 0, and by the
relatively wide horizontal grid spacing in this region. We can expect that computations on the five
different grids give similar results as the grid spacing in x-direction is reduced. However, as the
x = 0 point is singular, for a zero-thickness plate, this grid-convergence is not reported here.

An important advantage of operating on arbitrary unstructured grids is the possibility for local
adaptive refinement. To accurately capture the flow behavior near the leading edge singularity, the
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(a) (b)

(c) (d)

(e)

0.6%L

Figure 3.24: Static pressure contour plots obtained on four types of stretched polygonal meshes in
the near-wall region. (a): quad-dominant; (b): isosceles triangles; (c): right-angled triangles; (d):
hexagons; (e): Cartesian. The flat-plate is represented by the black solid line. Minor unsmoothness
issue due to ParaView rendering.

grid with triangulated farfield and isosceles triangular near-wall region (TriFar-IsoTriNW) is locally
refined within a rectangular bounding box centered on x = 0. Four levels of adaptive refinement
are illustrated in Fig. 3.26 with (a) being the first level and (d) being the last. Each level of
refinement takes place in a smaller bounding box contained in the one of the previous level, and is
colored differently, the color blue corresponds to the unrefined original grid. Each triangular cell
in the targeted region is subdivided into four smaller congruent triangles by connecting its three
edge-centers (see Fig. 3.35). The local grid refinement allows us to reduce the grid spacing in the

69



3. Evaluation of Computational Methods

 0.995

 1

 1.005

 1.01

 0  5000  10000  15000  20000

 0

 0.02

 0.04

 0.06

 0  5000  10000  15000  20000

 1

 1.005

 1.01

 1.015

 1.02

-20000 -15000 -10000 -5000  0

p
/
p
∞

✻

c f

✻

p
/
p
∞

✻

Rex ✲Rex ✲

Rex ✲

Upper wall downstream of leading edge

Streamine upstream of leading edge

 TriFar-IsoTriNW

 TriFar-RigTriNW

 QuadDFar-QuadDNW

 QuadDFar-CartNW

 QuadDFar-HexaNW

Figure 3.25: Pressure and skin-friction coefficient distributions (Eqn. 3.9) computed with different
stretched near-wall meshes. TriFar-IsoTriNW: triangulated farfield, isosceles triangular near-wall;
TriFar-RigTriNW: triangulated farfield, right-angled triangular near-wall; QuadDFar-QuadDNW:
quad-dominant farfield, quad-dominant near-wall; QuadDFar-CartNW: quad-dominant farfield,
Cartesian near-wall; QuadDFar-HexaNW: quad-dominant farfield, hexagonal near-wall.

region where large gradient is present without drastically increasing the total number of cells in
the computational domain.

Results of p/p∞ and cf distributions are shown in Fig. 3.27 for each level of adaptive refinement.
From the original grid to the 4th refinement level, the curves of both p/p∞ and cf admit a sharper
slope as the grid spacing ∆h → 0. Compared to Fig. 3.25, the maximum values of p/p∞ and cf
located at the first sampling point next to the singularity point x = 0 increase substantially on
the adaptively refined grids and there is no indication of converging to any upper bound. We can
deduce that, by further refining the local mesh around the leading edge, the computed values of
p/p∞ and cf will blow up and reach infinity. Note that the singularity point is a purely numerical
phenomenon and does not exist in reality, any realistic flat-plate would have a nonzero thickness
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(a) (b)

(c) (d)

Figure 3.26: Four levels of adaptively refined grids targeting on the leading edge of a zero-thickness
flat plate. (a) is the coarsest, (d) is the finest. The flat-plate is represented by the black solid line.

as well as a finite curvature at the corners. However, according to this result, it is reasonable to
assume that p/p∞ and cf would sharply increase as the leading edge becomes thinner. Although
the maximum values of p/p∞ and cf do not show any boundedness as the local grid spacing
∆h→ 0, the p/p∞ and cf plots are clearly converging towards the last refinement level away from
the leading edge as indicated by Fig. 3.27.

This test-case intends to demonstrate that the method performs satisfactorily with different
types of grids and gives consistent and accurate results on any arbitrary polygonal grid including
cases with high-aspect-ratio and/or highly skewed cells. Improved resolution can be obtained
by local adaptive mesh-refinement without unnecessarily increasing the mesh density beyond the
regions of interest.
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Figure 3.27: Pressure and skin-friction coefficient distributions in the close vicinity of leading edge,
computed using TriFar-IsoTriNW grid with 4 levels of adaptive refinement.

3.3.2 Low-Reynolds NACA 0012 Airfoil

A low-Reynolds laminar test-case is performed on the NACA 0012 airfoil at ReV∞,Lchord
= 1000

where V∞ =
√
u2∞ + v2∞ is the incoming streamwise flow velocity at infinity which correspond to

a Mach number M∞ = 0.2 and Lchord is the chord length of the airfoil. The test-case geometry is
shown in Fig. 3.28 with the angle of attack AoA ranging from 0◦ to 20◦. The airfoil is placed at the
center of the square computational domain with its leading edge placed at (0, 0). Four boundary
edges of the domain are sufficiently far from the airfoil and the Riemann invariant BC is imposed
on all of them. The airfoil is considered as adiabatic no-slip wall with its trailing edge rounded to
avoid singularity point. The third-order CLSQ3 reconstruction scheme is used for all computations
in this section.

ReV∞,Lchord
= 1000 is an extremely low Reynolds number for an airfoil, which corresponds

approximately to the Reynolds regime where typically fly the small insects such as dragonflies
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Figure 3.28: Geometric set-up of the low-Reynolds NACA 0012 test-case at ReV∞,Lchord
= 1000.

The dashed circle corresponds to near-wall region.

and honeybees [161, 193]. This low Reynolds number is chosen for the current study since the
flow remains laminar even for high angle of attack AoA and the transition to turbulence is very
unlikely to occur [161]. Following the DNS studies [98], also discussed below, the flow is laminar
and steady for AoA ≤ 8◦, with laminar instability (vortex shedding) appearing at higher AoA. As
will be shown later, using large ∆t and non-time-consistent local time-stepping yields converged
computations even at higher AoA, but they should only be considered as computational tests.
With this test-case, we intend to demonstrate the robustness of the current numerical methods
on different types of polygonal grids and the effectiveness of using local adaptive refinement to
improve the accuracy of solutions.

Three types of unstructured grids are generated for this test-case : (i) the purely quadrilateral
grid denoted by Quad, (ii) the baseline quad-dominant grid mixed with triangular cells denoted by
QuadD-0 and (iii) the QuadD-0 grid refined within the separated region over the upper wall of the
airfoil denoted by QuadD-1. Note that Quad and QuadD-0 are dual grids in the sense that they
have the same number of grid points but with different connectivity among them. Two views of
each grid are shown in Fig. 3.29 around the airfoil and near the trailing edge.

In Fig. 3.30, we compare the pressure contours and surface pressure coefficient Cp distributions
obtained on grids Quad, QuadD-0 and QuadD-1 at a high angle of attack AoA = 17◦. The wall
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(a) : Quad (b) : Quad trailing edge

(c) : QuadD-0 (d) : QuadD-0 trailing edge

(e) : QuadD-1 (f) : QuadD-1 trailing edge

Figure 3.29: Three types of unstructured grids used for the low-Reynolds NACA 0012 airfoil test-
case : Quad is the purely quadrilateral grid, QuadD-0 is the baseline quad-dominant grid and
QuadD-1 is the quad-dominant grid refined within the separation bubble. All grids are shown for
AoA = 17◦.

pressure coefficient is calculated as

Cp =
p− p∞

0.5ρ∞V2∞
(3.10)

whose distribution is plotted for each grid against the normalized chord length x/Lchord in Fig. 3.30.d.
As shown in Fig. 3.30, all three grids generate almost identical results of pressure contour lines on
the lower side of the domain, and, on the lower surface, the Cp distributions show no difference up
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till x ≈ 0.5Lchord. On the lower surface near the trailing edge, QuadD-0 gives slightly lower Cp than
the two other grids. On the upper surface, however, visible difference in pressure contour lines can
be observed between the grid Quad and QuadD-0 although the two grids have the same number
of vertices. Cp is slightly lower on the entire upper surface for QuadD-0 than for Quad as shown
in Fig. 3.30.d. However, by refining the mesh QuadD-0 exclusively in the separation bubble, grid
QuadD-1 is generated and excellent agreement is observed between QuadD-1 and Quad in terms of
pressure contour lines and Cp distributions on both upper and lower surfaces.
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Figure 3.30: Pressure contours (a, b, c) and pressure coefficient distribution on the upper and lower
surfaces of the airfoil (d). AoA = 17◦. Minor unsmoothness issue due to ParaView rendering.

It is important to note that, at ReV∞,Lchord
= 1000, the Cp distribution around an airfoil is

fundamentally different from high-Reynolds test-cases (ReV∞,Lchord
= O(106)) due to the presence

of the large laminar separation bubble. According to the experimental data at AoA = 15◦ given
by Ladson et al. [138], for 3× 106 ≤ ReV∞,Lchord

≤ 9× 106, the upper surface Cp drops to around
−6 and rises back to 0 at the trailing edge as shown in Fig. 3.31. This implies that the lift of the
airfoil is considerably reduced at low Reynolds regime. In fact, Mueller [161] pointed out that the
airfoil performance decreases sharply as ReV∞,Lchord

drops below 105.
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Figure 3.31: Chord-wise pressure coefficient distributions at low and high Reynolds numbers for
AoA = 15◦. Data source : Ladson et al. [138].

In Fig. 3.32, we visualize the upper wall separation bubble at AoA = 17◦ by coloring the
region with negative cell-averaged x-velocity in black, and the skin-friction coefficient cf on the
upper surface is plotted in Fig. 3.32.d. The skin-friction coefficient is defined with respect to the
wall-normal direction as follows

cf =
µ ∂u
∂n

∣∣
wall

0.5ρ∞V2∞
. (3.11)

Unlike the pressure coefficient, cf distributions are in excellent agreement for all three grids,
and the separation and reattachment locations are almost identically predicted on the three grids
which gives a separated bubble of about 85%Lchord in length as indicated by Fig. 3.32.d. Although
there is no significant difference in the cf distribution, we can observe that the unrefined QuadD-0
grid predicts a slightly shorter separation bubble comparing to Quad and QuadD-1, whereas Quad
and QuadD-1 give very close predictions on the bubble size (Fig. 3.32.a and .c).

Results given in Fig. 3.30 and Fig. 3.32 show that Quad grid gives more accurate results than
QuadD-0 for both pressure contour and separation bubble, since by exclusively refining the mesh
within the bubble, results obtained on QuadD-1 reaches an excellent agreement with those obtained
on Quad.

In Fig. 3.33, separation bubbles are visualized for four different angles of attack AoA =

{0◦, 5◦, 10◦, 20◦}. At AoA = 0◦, the laminar boundary layer is attached to the airfoil and no
flow separation is observed. As the angle of attack progressively increases, the separation bubble
begins to appear and grows larger with increasing AoA. However, even though the separated region
occupies almost the entire chord length, the bubble always remains closed up till AoA = 20◦ and
reattaches near the trailing edge.
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Figure 3.32: Separation bubbles colored in black containing cells with negative u (a, b, c) and
distribution of the skin-friction coefficient on the upper surface of the airfoil (d). AoA = 17◦.

The lift and drag coefficients are defined as

CL =

#»

F · #»e ‖
0.5ρ∞V2∞

(3.12a)

CD =

#»

F · #»e⊥
0.5ρ∞V2∞

(3.12b)

where
#»

F is the vector of total force exerted on the airfoil by the surrounding flow which is computed
by numerically integrating the reconstructed pressure value on all Gauss-Legendre quadrature
points of each wall boundary edge and finding the sum over all those wall edges. #»e ‖ is the unit
vector parallel to the incident flow with an angle of attack AoA, #»e⊥ is the unit vector perpendicular
to #»e ‖.

CL and CD data are presented in Fig. 3.34 and we remark that the slope of CL curve becomes
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(a) : AoA = 0◦ (b) : AoA = 5◦

(c) : AoA = 10◦ (d) : AoA = 20◦

Figure 3.33: Cells with negative u constituting the separation bubble at four different angles of
attack AoA = 0◦, 5◦, 10◦, 20◦. Computations performed on Quad grids.

less steep from AoA ≈ 8◦ but remains nevertheless increasing, which indicates that the airfoil
does not stall at least for AoA = 20◦. However, the lift-drag ratio CL/CD begins to decline from
AoA ≈ 8◦ which indicates that any further increase in AoA from this point will compromise the
performance of the NACA 0012 airfoil.

Previous numerical studies by Kurtulus [137] and by Gopalakrishnan Meena et al. [98] showed
that the flow over NACA 0012 airfoil becomes unsteady for an angle of attack AoA ≥ 8◦, and
different modes of periodic von Kármán vortex shedding are observed in the wake region. In
Fig. 3.34.a, the time-averaged lift and drag coefficients CL and CD obtained from the unsteady
DNS by Gopalakrishnan Meena et al. [98] are compared with the current steady-state solutions of
CL and CD. A good agreement between CL and CL is observed for 0◦ ≤ AoA ≤ 7◦ and the current
CD result is almost identical to the DNS data for 0◦ ≤ AoA ≤ 9◦. However, as the unsteadiness
of the flow grows stronger at higher angles of attack up till AoA = 20◦, the current steady-state
computations underestimate both CL and CD approximately by 50% comparing to the DNS data.

The objective of this study on very low-Reynolds NACA 0012 airfoil has managed to demon-
strate that the current numerical methods are robust on arbitrary polygonal grids with the ability
to handle arbitrary local grid refinement. However, by comparing to the previous DNS data [98],
we realize that the flow field is predominantly unsteady for moderate and high angles of attack
and therefore the current steady-state simulations tend to give inaccurate results as AoA increases
beyond 8◦. It is an interesting perspective in the future to further investigate the unsteadiness of
the flow field with time-consistent computations using arbitrarily high-order CLSQ schemes and

78



3. Evaluation of Computational Methods

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

 0

 0.15

 0.3

 0.45

 0.1  0.15  0.2  0.25

 0

 1

 2

 3

 0  5  10  15  20

C
L
,C

D

✻

C
L

✻

C
L
/
C

D

✻

AoA ✲CD✲

AoA ✲

 CL CLSQ3

 CD CLSQ3

 CL Gopalakrishnan Meena et al.

 CD Gopalakrishnan Meena et al.

 Drag polar CLSQ3

 CL/CD CLSQ3

Figure 3.34: Curves of lift and drag coefficients for 0◦ ≤ AoA ≤ 20◦ compared to the time-averaged
lift and drag coefficients from the unsteady DNS simulations of Gopalakrishnan Meena et al. [98]

adaptive local refinements within the wake region.
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3.3.3 Backward-Facing Step (BFS)

The detailed description of the BFS test-case by Armaly et al. [13] is given in Section. 4.2 with
a sketch of the computational domain shown in Fig. 4.1. In this section, we focus on discussing
the possibility of meshing the domain with three different types of unstructured polygonal grids
without elaborating on the flow physics.

The three types of baseline (coarse) polygonal grids are (a): Cartesian grid (i.e., Grid 0 in
Tab. 3.1), (b): triangular grid and (c): pentagonal-hexagonal grid as illustrated in Fig. 3.36.
Note that the pentagonal-hexagonal grid also contains a very small number of rectangles and
triangles at the vertical wall, the pentagons are used at the horizontal walls and along the dividing
line between the upper and lower subdomains, and the interior domain is meshed by hexagons.
Tests are performed for Reynolds number ReuB ,Dh = 100 which admits a relatively small primary
recirculation zone and no roof vortex. In order to enhance the resolution of the separated flow
downstream of the step, adaptive mesh refinement is performed which created at most 3 layers of
locally refined meshes enveloping the primary recirculation zone. Each cell in the refined region is
divided by rules illustrated in Fig. 3.35 according to its shape. Note that the divisions of pentagons
and hexagons do not preserve the angle, therefore an excessive number of divisions tends to create
smaller pentagons and hexagons with angles close to 0◦ or 180◦. For this reason, the number of
refinement levels is limited to 1 for the pentagonal-hexagonal grid 2.

Quadrilateral Triangle

Pentagon Hexagon

Figure 3.35: Subdivision rules for quadrilateral, triangular, pentagonal and hexagonal cells. Red
line segments represent the dividing lines.

As shown in Fig. 3.37, three levels of adaptively refined layers are constructed around the
primary recirculation zone colored in blue where the streamwise velocity u < 0. Although the

2this problem can be easily handled by subdividing N-gons with N > 4 into N quadrilaterals. It is an issue
related to the adaptive subdivision methodology, not to the solver itself. The subdivision method of Fig. 3.35 for
pentagon and hexagons is not appropriate for stretched grids, and is only used here for illustration purposes in order
to maintain pentagons and hexagons in the level 1 refinement
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(a): Cartesian

(b): Triangular

(c): Pentagonal-hexagonal

Figure 3.36: Three types of baseline unstructured meshes for the BFS test-case of Armaly et al.
[13].

majority of cells are divided according to rules in Fig. 3.35, the interfaces between two levels of
layers are meshed in different ways in order to avoid hanging nodes on edges with a jump in mesh
size between both sides. By breaking the division rules in Fig. 3.35 at layer interfaces, irregular
triangles and quadrilaterals are created in the process therefore the Cartesian grid in Fig. 3.36
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becomes rectangle-dominant grid in Fig. 3.37, and the pentagonal-hexagonal grid in Fig. 3.36
becomes pentagon-hexagon-dominant grid in Fig. 3.37 as a matter of terminology. All three levels
of refinements (level 1-3) are applied to the rectangle-dominant grid, the level 1-2 are applied
to the triangular grid. Only the level 1 is applied to the pentagon-hexagon-dominant grid since
any further division of the stretched near-wall pentagons and hexagons will result in increasingly
skewed cells (this can be remedied using a different subdivision technique as mentioned before).

The mesh quality optimization for unstructured grids is not within the scope of the current
study, rather, we intend to demonstrate that the numerical schemes remain robust and accurate
for arbitrary polygonal grids even the ones with low-quality cells. As shown in Fig. 3.38, the
time-integration error nε for each type of polygonal grid is driven down to the machine epsilon
ε ≈ −14 with its respective finest level of adaptive refinement (level 3 for the rectangle-dominant
grid, level 2 for the triangular grid and level 1 for the pentagon-hexagon-dominant grid). This
demonstrates that the method is reasonably insensitive to mesh quality and remains robust for
arbitrary polygonal grids.

The normalized streamwise velocity profiles are plotted in Fig. 3.39 at sampling stations within
the level-1 refined region for the three baseline grids in Fig. 3.36 with no refinement. Excellent
agreement is observed among the three polygonal grids which again confirms the insensitivity to
mesh type.

Velocity profiles at the same sampling stations are shown in Fig. 3.40 for all adaptive refinement
levels of each of the three types of polygonal grids. Excellent agreement is again observed across
all refinement levels. Although a closer view is needed to determine if the solutions are grid-
converged, it is confirmed that the profiles remain smooth and physically consistent after adaptive
mesh refinements even though the mesh quality is not ideal and the mesh size is discontinuous at
interfaces between two layers of refinements.

Next, we investigate the effects of adaptive mesh refinement by showing the reconstructed
pressure and skin-friction coefficients on the bottom wall. Fig. 3.41 and Fig. 3.42 respectively
show the wall coefficients downstream of step (0 ≤ x ≤ 20) and near the step (−0.5 ≤ x ≤ 0.2) on
adaptively refined rectangle-dominant grids. Both wall coefficients show a clear converging trend
towards the curves of Level 3 downstream of the step. The same converging trend is observed
in the near-wall region in Fig. 3.42 except for the values of local extrema extremely close to the
singularity point x = 0. The local extrema of Cp and cf show no sign of converging as the mesh
is progressively refined. This phenomenon is also observed in the previous Section. 3.3.1 for the
zero-thickness flat-plate boundary layer test-case and we have suggested that the reason for non-
converging locally extrema is caused by the geometric singularity rather than the inconsistency
of spatial discretization, since the wall coefficient curves converges well towards the finest level of
refinement everywhere away from x = 0.

Reconstructed wall coefficients on the bottom wall are also plotted for the 2-level refined tri-
angular grid and are shown in Fig. 3.43 and Fig. 3.44. Compared to the rectangle-dominant grid,
the convergence property is less ideal for the triangular grids. In Fig. 3.43, the improvement of
solution is less pronounced than that in Fig. 3.41 for the rectangle-dominant grids and all three
levels of grids give almost identical wall coefficient distributions downstream of the step as well as
in the near-step region. This observation shows that the adaptive refinement procedure brings less
improvement in solutions for the triangular grids comparing to the rectangular grids. Although
the current CLSQ reconstruction schemes remain robust on arbitrary polygonal grids, the mesh
quality is still an important factor for good grid convergence property. Therefore, in the next
Section. 3.2, we will adopt the Cartesian grid for the formal convergence rate evaluation of the
third-order CLSQ scheme.

82



3. Evaluation of Computational Methods

(a): Rectangle-dominant

✲✛ Level 3

✲✛ Level 2

✲✛ Level 1

(b): Triangular

✲✛ Level 2

✲✛ Level 1

(c): Pentagon-hexagon-dominant

✲✛ Level 1

Figure 3.37: Three levels of adaptive refinement enveloping the primary recirculation zone at
ReuB ,Dh = 100. The zone colored in red has x-velocity u > 0 while the blue region has u < 0.
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Figure 3.38: Convergence history comparison among the three types of adaptively refined polygonal
grids.
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Figure 3.39: Normalized streamwise velocity profiles. Comparison made among the three baseline
unstructured grids without adaptive refinement.
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Figure 3.40: Streamwise velocity profiles on the three adaptively refined unstructured grids. Com-
parison made among all levels of refinement. (a) : rectangle-dominant, (b) : triangular, (c) :
pentagon-hexagon-dominant.
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Figure 3.41: Pressure coefficient Cp and the skin-friction coefficient cf on the bottom wall plotted
against x-coordinate normalized by the step heightH. Computed with 4 levels of adaptively refined
Cartesian grids.

-2.4

-2.35

-2.3

-2.25

-2.2

-2.15

-2.1

-2.05

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2

C
p

✻

c f

✻

x/H ✲x/H ✲

 Level 0  Level 1  Level 2  Level 3

Figure 3.42: Pressure coefficient Cp and the skin-friction coefficient cf on the bottom wall plotted
against x-coordinate normalized by the step heightH. Computed with 4 levels of adaptively refined
Cartesian grids. Results near the step x = 0 are shown.
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Figure 3.43: Pressure coefficient Cp and the skin-friction coefficient cf on the bottom wall plotted
against x-coordinate normalized by the step heightH. Computed with 3 levels of adaptively refined
triangular grids.

-2.4

-2.35

-2.3

-2.25

-2.2

-2.15

-2.1

-2.05

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2

C
p

✻

c f

✻

x/H ✲x/H ✲

 Level 0  Level 1  Level 2

Figure 3.44: Pressure coefficient Cp and the skin-friction coefficient cf on the bottom wall plotted
against x-coordinate normalized by the step heightH. Computed with 3 levels of adaptively refined
triangular grids. Results near the step x = 0 are shown.
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Chapter 4

Flow Physics Analyses

4.1 Literature Review on Laminar BFS Flows

Widely considered as one of the most studied test-cases in CFD for solver validation, the backward-
facing step (BFS) flow has attracted an enormous amount of research throughout the last decades
due to its relative geometrical simplicity and complex flow features such as boundary-layer sepa-
ration and reattachment, adverse pressure gradient, flow instabilities, etc. Studies on the BFS can
be categorized based on different criteria. In terms of flow regimes, one can focus on the laminar,
transitional, or fully turbulent BFS flows. Based on the methodology, researches are divided into
experimental and numerical investigations or a combination of these two. Given the abundance
of literature, the terminology adopted by different authors varies significantly and particularly in
definitions of geometrical parameters and Reynolds number. Therefore it is important to establish
a standardized BFS nomenclature at the beginning of this literature review.

In the present study, unless clearly specified otherwise, the height of inlet channel upstream of
the step is denoted by Hi while that of the outlet channel downstream of the step is denoted by Ho,
and the step height is denoted by H, knowing that Ho = Hi+H (Fig. 4.1). The Reynolds number
is a pivotal parameter in the BFS configuration, and a large number of definitions are encountered
in the literature. We adopt a two-subscript notation Revel,len to denote different Reynolds numbers
having appeared in the literature. Subscript “vel” denotes the velocity and subscript “len” denotes
the length as shown in Tab. 4.1 where uB is the bulk velocity, u∞ is the free-stream or maximum

Table 4.1: Velocities and lengths used for Reynolds number definitions in the literature of laminar
BFS.

i velocity j length

1 uB 1 H

2 u∞ 2 Hi

3 Dh

velocity, which, for laminar channel flows, is the streamwise velocity on the centerline. Ideally, all
above quantities are evaluated at the step before the separation occurs, however, many authors
have computed their Reynolds numbers based on the inlet flow conditions assuming a negligible
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difference between the two states. For instance, Reu∞,Dh denotes the Reynolds number based on
the free-stream velocity and hydraulic diameter at step.

In 1960, Moore [159] experimentally investigated the reattachment of a laminar boundary layer
over BFS and concluded that, after reattachment, the incipient laminar boundary layer often turned
turbulent. Goldstein et al. [97] reported the possibility for a laminar BFS flow to remain laminar
after reattachment as long as the displacement thickness δ1 > 0.4H and Reu∞,H < 520, empirical
formulas to predict reattachment length were given. De Brederode et al. [62] investigated the
two-dimensionality in three-dimensional BFS flow and showed that the laminar or turbulent flow
was essentially 2D (negligible corner flow effects) in a channel with an aspect ratio AR > 10. This
criterion later became a standard practice for three-dimensional experimental and computational
studies to produce nominally two-dimensional flows.

Thanks to the development in flow measurement techniques such as the Laser-Doppler Ve-
locimetry (LDV), in 1983, Armaly et al. [13] carefully studied the separation and reattachment
locations in a range of 70 < ReuB ,Dh < 8000 with a fixed expansion ratio of 1.94 and a aspect
ratio of 36. Armaly et al. identified the ReuB ,Dh ranges for the laminar (ReuB ,Dh < 1200), tran-
sitional (1200 < ReuB ,Dh < 6600), and turbulent (ReuB ,Dh > 6600) flow regimes and showed
that two-dimensional flow behavior was only witnessed at ReuB ,Dh < 400 and ReuB ,Dh > 6000.
Multiple separated regions appeared and vanished as Reynolds number increased. Following the
authors’ notation, in the present study, the principal reattachment length is denoted by x1. A
secondary recirculating region was found downstream of x1 [13] which stretched over around 2H

at the onset of flow transition (ReuB ,Dh ≈ 1200) and disappeared at Re ≈ 2300. We denote its
head and tail by x2 and x3 respectively. A roof vortex was also found by Armaly et al. at the wall
opposite to step which appeared from the beginning of laminar regime to the end of transitional
regime due to adverse pressure gradient. We denote the head of the roof vortex by x4 and its
tail by x5. Second-order accurate 2D computations were performed by Kim and Moin [130] using
a fractional-step incompressible code. Good agreement was obtained with [13] in terms of the
prediction on principal reattachment length for ReuB ,Dh ≤ 500. Deviation from the experimental
data was observed for higher Reynolds number due to three-dimensionality. Caruso et al. [82]
obtained almost identical computational result to [130] at ReuB ,Dh ≤ 600 with an overlapping
grid technique. Thangam and Knight [204] investigated the combined effects of Reynolds number
and expansion ratio on the principal reattachment length and concluded that increasing ER led
to delayed reattachment at a given Reynolds number Reu∞,Dh due to increased adverse pressure
gradient and wall friction. Moreover, the authors reported that, with high ER at high Reu∞,Dh ,
the pressure rise downstream of the step caused the streamlines to deflect towards the bottom
which further accelerated reattachment resulted in a non-linear reattachment-length-Re curve.

In [84], Gartling provided 2D numerical solutions of laminar BFS flows up to ReuB ,Dh = 800

with an expansion ratio of 2.0. Computations were performed using a Galerkin-based finite element
code with up to second-order accuracy for the momentum equations and first-order for pressure.
At ReuB ,Dh = 800, Gartling reported an expected discrepancy with [13] due to three-dimensional
effects for ReuB ,Dh > 400, however, the results confirmed the presence of roof vortex at ReuB ,Dh =

800 and predictions on the separation and reattachment locations showed reasonable agreement
with that of previous computations [82, 130]. Kaiktsis et al. [124] performed DNS computations
based on a high-order spectral element method and suggested that the BFS flow experienced
quasi-periodic unsteadiness at ReuB ,Dh = 800 which contradicted most of previous experimental
and numerical results. However their finding was consistent with Sethian and Ghoniem [183] who
performed computations solving the two-dimensional vortex transport equation from Reynolds
numbers ReuB ,H = 50 to ReuB ,H = 5000 and found unsteady vortex pattern at ReuB ,H = 500
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(corresponding to ReuB ,Dh ≈ 1000). Sethian and Ghoniem attributed their discrepancy with the
experimental result in [13] to the lack of vortex-stretching term in their 2D simulation. Gresho
et al. [99] later demonstrated that the flow was indeed steady and stable at ReuB ,Dh = 800 to
both large or small perturbations using four independent time-marching and steady-state methods.
The authors also suggested that the unsteadiness reported by [124] was numerically induced due
to under-resolution. The error committed in [124] was also recognized (according to Gresho et al.
[99]) by one of its co-authors Karniadakis. In a later revisit on this problem, Kaiktsis et al. [125]
argued that the fundamental frequency of perturbation close to the shear layer frequency could
induce flow unsteadiness at ReuB ,Dh ≤ 1200.

Barton [21] investigated the influence of upper wall on flow reattachment and suggested that
the upper recirculation region caused downward deflection of streamlines which resulted in reduced
reattachment distances. Later, the author further studied the entrance effects on laminar BFS
flows [22] and concluded that the use of entrance channel had the effect of reducing the principal
reattachment length x1 and the upper separation length x3. Calculations with entrance channels
gave better agreement with available experimental data than those without. By imposing a uniform
velocity profile at the beginning of entrance channel, the author observed a thicker boundary layer
at the upper wall than at the lower wall at the step.

Due to improvement on computational resources in the late 90’s, an increasing amount of
three-dimensional computations on BFS flows became available. Steady three-dimensional com-
putations were performed by Jiang et al. as well as by Williams and Baker [118, 217] on the
experimental configuration of Armaly et al. [13] to account for 3D effects at ReuB ,Dh > 400,
and the computational results of x1 up to ReuB ,Dh = 800 showed good agreement with [13]. A
series of three-dimensional computations were published by the research group of Chiang and Sheu
[44, 45, 46, 185] focusing on the vortical structure of 3D laminar BFS flows. The range of Reynolds
number was limited to 100 ≤ ReuB ,Dh ≤ 1000 in this series. Streamline patterns were draw so that
the separation/reattachment line, critical points, and vortical cores could be identified. The end-
wall effects were carefully studied and more two-dimensional-like flow pattern as the channel width
increased from 2H to 100H (35H in [13]). For a fixed channel width, the authors noted that the
end-wall effect increased with the Reynolds number which agreed with the finding of Armaly et al.
that for a laminar BFS flow, three-dimensionality is important beyond ReuB ,Dh = 400. However,
discrepancy was shown between experimental and 3D numerical results in terms of stream-wise
velocity profiles at ReuB ,Dh = 1000 [46]. Guerrero and Cotta [101] showed computational results
using a stream-function-based semi-analytical method up to ReuB ,Dh = 1942 which corresponds to
ReuB ,Dh = 1000 in [13]. The 2D computations showed good agreement with experimental data by
Armaly et al. at low Reynolds number but failed, as expected, at ReuB ,Dh = 1000 although excel-
lent similarity to 2D result in [46] at the same Reynolds number was shown. The above numerical
tests showed that computations had difficulty predicting the flow approaching transitional regime,
this may be attributed to the controversial unsteadiness problem at ReuB ,Dh > 800 [99, 124, 125].

Iwai et al. [114] performed 3D computations based on [13] resolving also the energy equation
at small Reynolds numbers ReuB ,Dh < 400. Adiabatic condition was imposed on side walls while
bottom and upper walls were considered isothermal, the study provided data for heat transfer
properties namely the distribution of Nusselt number Nu at the bottom wall defined as Nu =

qwH/[k(Tw−Ti)], where qw is the wall heat flux, k is the thermal conductivity, Tw and Ti are wall
and inlet temperature respectively and both are constant. Maximum Nusselt number was found
to rise as the channel aspect ratio and Reynolds number increased which implied a higher heat
transfer rate. Based on the experiment in [14], 3D numerical solutions were obtained by Nie and
Armaly [164] in a relatively low-aspect-ratio channel (width W = 8cm, H = 1cm, ER = 2) at
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fixed Reynolds number ReuB ,Dh = 343 with varying step height H and the distributions of Nusselt
number and its gradient were found to be highly related to the step height, authors showed that the
gradient of Nusselt number increased with step height in the principal recirculating flow region. The
same configuration in [14] was repeatedly adopted in numerical and experimental studies by Armaly
et al. [15, 165, 166] to investigate flow patterns within the principal recirculation region ([166] also
studied transitional and turbulent cases). This series of works demonstrated the development of
multiple so-called “jet-like” flows from sidewalls which traveled in the span-wise direction and finally
impinged on the bottom wall. These jet-like flows were reported to be responsible for increased
Nusselt number and reduced reattachment length in the recirculating region and make it difficult
to define the reattachment line other than using the two-dimensional definition ∂u/∂y|w = 0 [165].
Similar to the principal recirculation region, the size of lateral recirculation regions (jet-like flows)
increased with Reynolds number [15].

In the work of Biswas et al. [28], computations were performed at very low Reynolds number
10−4 ≤ ReuB ,Dh ≤ 1 to capture Moffatt eddies [158] when Reynolds number approaching zero.
Pressure loss was investigated in the work and was found to be positively related to the step
height and negatively related to the Reynolds number except for flows with high expansion ratio
ER ≥ 2.5 at ReuB ,Dh > 200. Three-dimensional computation confirmed the onset of transitional
regime at ReuB ,Dh = 1200 instead of 800 predicted by Kaiktsis et al. [124]. Reattachment locations
determined by streamline pattern and by zero-gradient method were not identical which confirmed
the claim in [165].

Further attention to the nonlinear dynamics approaching the transitional point was paid by Rani
and Sheu [173] by employing the bifurcation theory. A more recent study by Malamataris [151] with
3D steady-state Galerkin finite element code on a configuration of ER = 2, AR = 40 (experiment
set-up of Lee and Mateescu and Tylli et al. [145, 208]) placed the steadiness upper bound at
ReuB ,Dh = 950 while the experimental data on the same configuration showed ReuB ,Dh = 1150

[145] and ReuB ,Dh = 800 [208] respectively.
The latest publication on laminar BFS flow by Juste et al. [123] focused on the development of

the roof separation region in low-aspect-ration channels with AR = 4 and AR = 8 for an expansion
ratio of 2 and at Reynolds numbers from 50 to 1000. Both experiments and computations were
performed, results showed a downstream movement of roof vortex as well as an increase in length
with increasing Reynolds number. In the case where AR = 8, the roof vortex was reported to
grow faster in width and height than in the AR = 4 case which could even cause merging with the
principal recirculation zone near sidewalls at high Reynolds number. The blockage effect at upper
wall increased at sidewalls as Reynolds number increased causing larger difference in reattachment
length near sidewalls and at centerline.

A detailed literature review on the experimental and numerical turbulent BFS flows is given in
Appendix. C.
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4.2 Results of Laminar BFS Flows with CLSQ3

In this section, we study the numerical solutions to the BFS flow cases computed by the current two-
dimensional compressible code, and we compare the results with experimental data documented
by Armaly et al. [13]. In this section, we carry out the flow field study using the third-order
CLSQ reconstruction scheme (CLSQ3). The grid is Cartesian generated according to the sketch in
Fig. 3.15 and meshing parameters can be found in Tab. 3.1, we used the Grid 2 in this table for the
rest of flow physics analysis since the grid convergence study suggests that the relative difference
in second Euclidean norm between Grid 2 and Grid 3√√√√∑N

i=1 |Grid3vi − Grid2vi|2∑N
i=1 |Grid3vi|2

< 1%

for v := {u, v} and√√√√∑N
i=1 |Grid3vi − Grid2vi|2∑N

i=1 |Grid3vi|2
= O(10−6)

for v := {ρ, p, T}, where N is the number of cells on the coarsest Grid 0. Therefore we consider
the test results obtained on Grid 2 is effectively grid-converged.

Two vortices are observed during the experiment with increasing Reynolds number from 100 ≤
ReuB ,Dh ≤ 1000, namely the primary recirculation zone immediately downstream of the step,
and the secondary roof vortex appearing at around ReuB ,Dh = 400. As the flow departs from
the laminar regime to transitional regime (1200 < ReuB ,Dh < 6600), a short tertiary vortex is
produced downstream of the primary vortex at the bottom wall. A schematic representation of the
Armaly test-case is given in Fig. 4.1, in which the various separation and reattachment lengths are
denoted by from x1 to x5 conforming to the notation used by Armaly et al. [13], x1 denotes the
primary separation length, [x2, x3] denotes the interval of tertiary vortex in the turbulent regime
and is not observed in the current numerical study, [x4, x5] denotes the interval of roof vortex. In
addition, we introduced the length of corner vortex xc in the current data. The corner vortex is
two orders of magnitude shorter than the primary recirculation zone, and is not documented in
previous experimental and numerical studies. The step height is denoted by H, the inlet channel
height as Hi and outlet channel height as Ho. The inlet is placed at a length of Li = 10H upstream
of the step, and the outlet at Lo = 50H downstream.

The reservoir inlet boundary condition, as described in Section 2.7.5, is prescribed to the
inflow while the pressure outlet (Section 2.7.6) is used for the outflow boundary condition. All
channel walls are considered as adiabatic no-slip (Section 2.7.2). The inflow Mach number is fixed
systematically atM = 0.2 in order to generate as little numerical stiffness as possible while staying
within the incompressible flow regime (M < 0.3). The step height H varies from case to case
to produce the desired Reynolds number ReuB ,Dh while maintaining the correct expansion ratio
ER = 101/52. The prescribed outlet static pressure is adjusted in order to obtain a streamwise
velocity of M = 0.2 at the midpoint of inlet plane x = −10H. To predict the outlet pressure prior
to the simulation, we need to take into account of the pressure loss ∆pf related to friction and
the pressure rise ∆pexp related to sudden expansion at the step. Due to the presence of primary
recirculation zone and roof vortex, it is clear that the total friction loss ∆pf cannot be estimated
directly by the analytical Darcy-Weisbach equation without knowing the exact locations where the
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Figure 4.1: Schematic representation of Armaly et al. [13] test-case.

flow starts or ceases to be fully developed. In the current study, an initial estimate of ∆pexp is
denoted by ∆pexp,ini obtained from the Borda-Carnot equation [152, p. 262] for sudden expansion
in a closed channel

∆E = ∆

(
p+

1

2
ρu2

B

)
=

1

2
ρ(uB2

− uB1
)2 (4.1)

where the change in ρ is assumed negligible, uB1
and uB2

are respectively the bulk velocities before
and after the expansion, ∆E = E1 − E2 is the loss of mechanical energy after the expansion, and
since uB2 = (Hi/Ho)uB1 , we obtain

∆pexp,ini = p2 − p1 = ρu2
B1

Hi

Ho

(
1− Hi

Ho

)
, Hi < Ho (4.2)

and since the outlet pressure is given by

po = pi + ∆pf,ini + ∆pexp,ini (4.3)

where ∆pf,ini is an initial estimate of ∆pf , we adjust ∆pf,ini by “trial and error” to obtain the correct
outlet pressure po which guarantees an inlet centerline velocity u∞i

corresponding to M = 0.2.
It is important to note that, although values of pi − po for the BFS test-cases are adjusted

to recover M = 0.2 at inlet and are therefore accurate, both ∆pf,ini and ∆pexp,ini are inaccurate
initial estimates and the correct values of ∆pf and ∆pexp need to be reevaluated according to the
converged computational results.

Flow field visualizations are presented in Fig. 4.2, Fig. 4.3 and Fig. 4.4 for a global understanding
of the flow physics involved in this test-case. Fig. 4.2 shows the field of x-velocity u for three
Reynolds numbers ReuB ,Dh = {100, 389, 1000}. It is observed that, as the Reynolds number
increases, the primary recirculation zone grows larger resulting in a longer reattachment length x1.
The secondary roof vortex is not present at low Reynolds number, however, from ReuB ,Dh = 389,
the top-wall boundary layer starts to show sign of separation and a mean-flow curvature can be
observed approximately above the primary reattachment. At ReuB ,Dh = 1000, the roof vortex is
fully developed and forces the mean-flow to bend downwards which curbs the further development of
the primary recirculation zone. The vortical structure of the flow is better illustrated by streamlines
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Table 4.2: Table of pressure data for Armaly et al. [13] test-cases at different Reynolds numbers
ReuB ,Dh ranging from 100 to 1000.

ReuB ,Dh Reu∞,H ∆pf,ini (Pa) po/pi ξ = po−pi
0.5∗ρiu2

Bi

100 70.67 -10261.2 0.9046 -7.6900
125 88.34 -8020.0 0.9268 -5.9028
150 106.01 -6571.7 0.9412 -4.7455
200 141.35 -4784.0 0.9588 -3.3194
291 205.66 -3145.5 0.9751 -2.0115
389 274.92 -2251.9 0.9839 -1.2984
399 282.69 -2178.5 0.9846 -1.2453
437 308.66 -1960.0 0.9868 -1.0671
493 348.67 -1692.0 0.9894 -0.8536
500 353.37 -1664.9 0.9897 -0.8320
586 414.41 -1371.0 0.9926 -0.5961
643 454.41 -1220.0 0.9941 -0.4763
687 485.85 -1121.0 0.9951 -0.3972
712 503.00 -1073.0 0.9956 -0.3587
789 557.30 -941.0 0.9969 -0.2535
800 565.38 -923.6 0.9970 -0.2394
898 634.47 -796.0 0.9983 -0.1377
946 668.76 -745.0 0.9988 -0.0966
971 685.91 -722.0 0.9990 -0.0781
1000 706.73 -697.0 0.9993 -0.0571
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in Fig.4.4.

ReuB ,Dh
= 100

ReuB ,Dh
= 389

ReuB ,Dh
= 1000

u/uBi (m/s)

−0.1 0.7 1.5

Figure 4.2: fields of x-velocity u scaled by the inlet bulk velocity uBi = 45.37m/s for ReuB ,Dh =
{100, 389, 1000} of Armaly et al. [13] test-case.

The vorticity field is given in Fig. 4.3 which depicts the evolution of bottom-wall boundary layers
into a separated shear layer behind the step and its subsequent restitution back to a boundary
layer after the reattachment. Due to the height difference in the inlet and outlet channels, the wall-
normal velocity gradient ∂u/∂y within boundary layers before the step is greater than that in the
redeveloped boundary layers downstream of the step, which results in a higher level of vorticity in
the former. For low and intermediate Reynolds numbers, the roof boundary layer remains attached
to the wall and undergoes a smooth transition from a thinner to a thicker boundary layer. However,
at ReuB ,Dh = 1000, a boundary layer separation is observed on the roof at about a step height
before the reattachment of the lower-wall boundary layer.

The streamlines are shown in Fig. 4.4 for ReuB ,Dh = {100, 389, 1000} and are colored based on
local velocity magnitude. Precise locations of flow separation and reattachment can be identified
by saddle points between two adjacent streamlines. An important observation in Fig. 4.4 is the
presence of corner vortex extremely close to the intersection between bottom-wall and step. For
ReuB ,Dh = 389, 1000 this corner vortex is clearly visible although very small compared to the
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ReuB ,Dh
= 100

ReuB ,Dh
= 389

ReuB ,Dh
= 1000

∂u
∂y − ∂v

∂x (s−1)

−8 × 106 0 1× 107

Figure 4.3: Vorticity fields for ReuB ,Dh = 100, 389, 1000 of Armaly et al. [13] test-case. Minor
unsmoothness issue due to ParaView rendering.

primary recirculation. For low Reynolds number, the visibility is reduced and a magnified view is
required for its observation.

A close view a the corner vortex is given in Fig. 4.5 for the three Reynolds numbers mentioned
before. Similar to the primary and roof vortices, the size of the corner vortex also grows with
increasing Reynolds numbers from 100 to 1000. In the study of Biswas et al. [28], the authors
suggested that the corner vortex and the primary recirculation zone are two successive levels of
Moffatt eddies [158] and the latter shrinks to the former when the Reynolds number tends to
zero. Biswas et al. provided data showing that the length of corner vortex remains constant at
xc ≈ 0.39H for ReuB ,Dh < 10, however, the xc data for ReuB ,Dh ≥ 100 is absent from their study
[28]. The xc data will be provided for several Reynolds numbers between Reynolds numbers 100

and 1000 later in this section in Fig. 4.9.
Separation and reattachment locations x1, x4, x5 are compared between the current 2D numer-

ical study and the experimental data measured at the center plane of the test section. The result
shown in Fig. 4.6 covers the laminar regime from ReuB ,Dh = 100 to 1000.

As observed by multiple previous studies [13, 28, 44, 46, 130], in terms of the primary reattach-
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ReuB ,Dh
= 1000

√
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−0.1 0.7 1.5

Figure 4.4: Streamlines colored by velocity magnitude scaled by the inlet bulk velocity uBi =
45.37m/s for ReuB ,Dh = {100, 389, 1000} of Armaly et al. [13] test-case.

ment length x1, excellent agreement with the experimental data is obtained by 2D computations
up to ReuB ,Dh ≈ 400 beyond which the effects of three-dimensionality become dominant as a
secondary separated region starts to appear. The first appearance of the secondary roof vortex
is reported by Armaly et al. at ReuB ,Dh ≈ 430 in their experiment, where it occupies a length
(x5−x4) of 3.65H. However the Reynolds number at which the onset of this vortex occurs remains
unclear in [13].

In the current study, the onset of roof vortex is detected at ReuB ,Dh = 399, where its length
is as short as x5 − x4 = 0.1708H. It is noteworthy that, at ReuB ,Dh = 399, the height of the
roof vortex is smaller than the minimum cell height ∆ymin = 0.0093H. In the numerical study
of Biswas et al. [28], the finest grid has ∆ymin = 0.01H which is close to the current study. We
compare the current 2D grid and the finest grid adopted by Biswas et al. in Tab.4.3. However,
Biswas et al. failed to detect the presence of roof vortex up till ReuB ,Dh = 500. Earlier 2D
computation performed by Chiang and Sheu [44, 46] managed to detect the appearance roof vortex
at ReuB ,Dh = 450. In terms of discretization scheme, Chiang and Sheu [46] implemented the
second-order Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme while
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Figure 4.5: Magnified view of corner vortex for ReuB ,Dh = {100, 389, 1000} of Armaly et al. [13]
test-case.

Biswas et al. [28] adopted a second-order central differencing scheme. The methods used to evaluate
velocity gradient at wall edges remain unclear for both of the two previous studies. However, since
neither author implemented a constrained polynomial-based reconstruction, it is reasonable to
assume that “mirror state” ghost cells are involved for near-wall cells, and, for the velocity gradient
∇V , the wall ghost cell takes the value of associated interior cell while taking the opposite value
for V . Generally, a Green-Gauss-type gradient evaluation method is used along side with QUICK
and central-differencing schemes. To detect a separation bubble in which the streamwise velocity
gradient turns negative, at least one cell needs to be placed inside the bubble. Since the separation
bubble remains extremely small at its onset, Green-Gauss gradient evaluation requires a very fine
mesh near wall to detect this separation. We assume that it is due to this reason that the roof
vortex is already relatively large when first detected in the previous studies [28, 44, 46].

This limitation is avoided by using the current CLSQ reconstruction since the velocity gradient
is directly constructed to Gauss-Legendre quadrature points of wall edges. Specifically, a separa-
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Figure 4.6: Flow separation and reattachment locations of Armaly et al. [13] test-case, comparison
with experimental data.

Table 4.3: 2D grid comparison between present study and Biswas et al. [28]

Grid ∆ymin/H Nelm Li/H Lo/H

Biswas et al. 0.01 44000 5 25

Present Gird 2 (Tab. 3.1) 0.0093 43204 10 50

tion/reattachment point is predicted by linear interpolation between a pair of adjacent quadrature
points with positive and negative values of wall-normal velocity gradient ∂u/∂y, as illustrated in
Fig. 4.7.

Even if the first grid point is place beyond the separation bubble, the scheme can still detect
a separation if wall-normal velocity gradient turns out to be negative at quadrature points. This
detection has the same accuracy as the order of CLSQ scheme, and a separation bubble can be
detection if its length is larger than the interval between two neighboring quadrature points, with
no requirement on its height (coverage in wall-normal direction).

The predicted separation location of the roof recirculation zone coincides with the experimental
data up to ReuB ,Dh ≈ 600, whereas predicted computed reattachment location agrees with the
measurements up to ReuB ,Dh ≈ 800. As ReuB ,Dh increases from 100 to 1000, the 2D code yields
a shorter primary recirculation zone starting from ReuB ,Dh ≈ 400, and an earlier separation on
the roof from ReuB ,Dh ≈ 600 resulting in a larger roof vortex comparing to the Armaly experi-
ment. Our current predictions on the separation and reattachment locations are compared with
2D computational results in [28, 44, 130] as shown in Fig. 4.8. Although data are not found for
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Figure 4.7: Prediction of flow separation and reattachment locations by linear interpolation be-
tween two Gaussian quadrature points denoted by �.

ReuB ,Dh > 800 or 400 < ReuB ,Dh < 450, excellent agreement with current results is observed for
Reynolds range reported by previous authors. However, computational results of Kim and Moin
[130] and Chiang et al. [44] give slightly higher values for all separation and reattachment lengths.
Results given by Biswas et al [28] are almost identical to the current data.

This good agreement among four sets of independent 2D predictions shows that the discrepancy
between numerical and experimental results is caused by the 3D effects when ReuB ,Dh exceeds 400

rather than inaccurate numerical resolutions.
In addition, prediction of the corner vortex length xc is obtained in the current study as shown

in Fig. 4.9. The growth of corner vortex follows a similar trend as that of the primary recirculation
zone in Fig. 4.6 but the curve xc has a less sharp slope everywhere than the curve x1.

Normalized pressure drop distributions are extracted at the inlet channel centerline y = H +

Hi/2 extending to the outlet for different ReuB ,Dh and compared with those presented in the
Biswas study [28], the results are plotted in Fig. 4.10. According to [28], the Reynolds-scaled
pressure drop ReuB ,Dh(p−pref)/(0.5ρrefu

2
B,ref) is computed with respect to the reference streamwise

station xref = −5H. Note that, by scaling with ReuB ,Dh , all curves are superposed on one another
upstream of the step, and share the same downward slope downstream of the step after reaching
the peak pressure caused by the sudden expansion, which indicates that the two occurrences of
pressure drops remain linear and therefore follow the Darcy-Weisbach equation

∆pf =
λ

Re

L

Dh
ρ
u2
B

2
(4.4)

where λ is the friction coefficient depending on the shape of cross section.
The pressure rise ∆pexp and the pressure loss related to friction ∆pf are reevaluated based on

converged computational results which are different from the initial estimates ∆pexp,ini and ∆pf,ini.
Pressure data are extracted along y = H + Hi/2 based on which we calculate the total drop of
pressure po − pi and the exact pressure rise due to sudden expansion ∆pexp. The friction-induced
pressure drop ∆pf is obtained by taking the difference between the total pressure drop and the
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Figure 4.8: Flow separation and reattachment locations of Armaly et al. [13] test-case, comparison
with previous 2D computational results. Data sources : Biswas et al. [28], Chiang et al. [44], Kim
and Moin [130].

pressure rise

∆pf = (po − pi)−∆pexp. (4.5)

The values of po−pi, ∆pexp and ∆pf are scaled by 0.5ρiu
2
Bi

and are plotted against the Reynolds
number ReuB ,Dh in Fig. 4.11, where ρi, uBi are the flow density and bulk velocity evaluated at
channel inlet x = −10H corresponding to a centerline Mach number M = 0.2. It is clear that
the dimensionless (pi − po)/(0.5ρiu2

Bi
), ∆pf/(0.5ρiu

2
Bi

) and ∆pexp/(0.5ρiu
2
Bi

) are all functions of
ReuB ,Dh , and that the pressure rise ∆pexp increases sharply from ReuB ,Dh = 100 to ReuB ,Dh ≈ 400

before reaching a constant value. Note that the flattening of the ∆pexp curve occurs at almost
the same Reynolds number where the onset of roof vortex is observed (ReuB ,Dh = 399). This
phenomenon can be explained by the fact that, starting from ReuB ,Dh = 399, the rapidly enlarging
roof vortex restricts the flow passage between the primary and roof separation zones, resulting in
a decreased effective expansion ratio and curtailed pressure rise behind the step. Therefore, we
observe that ∆pexp increases sharply from ReuB ,Dh = 100 to ReuB ,Dh ≈ 400, and once the roof
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Figure 4.9: Length of corner vortex xc normalized by step height H for ReuB ,Dh = 100, 200, 291,
389, 500, 800, 1000 of Armaly et al. [13] test-case.
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Figure 4.10: Reynolds-scaled pressure drop distribution along channel axis, comparison with Biswas
et al. [28] results.

vortex appears, the growth slows down drastically and flattens after ReuB ,Dh ≈ 500.
The dimensionless friction-induced pressure drop ∆pf/(0.5ρiu

2
Bi

) can be computed by applying
Eqn. 4.4 to 2D channel flows

∆pf = − λ

ReuB ,Dh

L

Dh

ρ

2
u2
B (4.6)

where λ is the friction coefficient, and White [216, p. 382] showed that λ = 96 for parallel plates
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Figure 4.11: Normalized pressure drops and pressure rise in the entire channel plotted against
Reynolds number.

with infinite width, which is equivalent to a 2D channel flow. The hydraulic diameter Dh = 2Hi

before the step and Dh = 2Ho after, therefore the total friction-induced pressure drop is given by

∆pf = − 48

ReuB ,2Hi

(
Li,dev

Hi

ρi
2
u2
Bi +

H2
i

H2
o

Lo,dev

Hi

ρo
2
u2
Bo

)
(4.7)

where Li,dev and Lo,dev are the lengths in the inlet and outlet channels over which the flow is fully
developed. While the flow can be considered fully developed in the entire inlet channel therefore
Li,dev = Li, Lo,dev decreases with increasing Reynolds number since the primary recirculation zone
grows with ReuB ,Dh (Fig. 4.6). Assume that the density variation is negligible at M = 0.2, the
final expression of ∆pf is given by

∆pf = − 48

ReuB ,2Hi

ρi
2
u2
Bi

[
Li,dev + (Hi/Ho)

4Lo,dev

Hi

]
with Lo,dev := Lo,dev(ReuB ,2Hi).

(4.8)

As shown in Fig. 4.11, the curve of dimensionless friction-induced pressure drop ∆pf/(0.5ρiu
2
Bi

)

is very close to that of −800/ReuB ,Dh , and, according to Eqn. 4.8, the slight difference is caused
by the fact that Lo,dev is a function of ReuB ,Dh rather than a constant.

By examining the flow separations and pressure distribution at different Reynolds numbers, we
realize that the onset of roof vortex is a critical point within the laminar flow regime. It marks the
transition from a two-dimensional flow to a three-dimensional flow, and it has significant influence
on the pressure rise downstream of the step. Accurately capturing the first appearance of the
roof vortex has therefore an important engineering interest for channel flows facing an sudden
expansion.

Velocity profiles at multiple streamwise stations for three Reynolds numbers 100, 389 and 1000
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are shown in Fig. 4.12, and the present results are compared against the experimental data by
Armaly et al. [13], the 2D numerical results by Chiang and Sheu [46] and by Guerrero and Cotta
[101].

From Fig. 4.12 we observe that, for ReuB ,Dh < 400, all 2D numerical results including the
current ones show excellent agreement with the experimental data. However, although the primary
reattachment length x1 predicted by Chiang et al. is almost identical to that obtained in the current
study, we note that the present code gives slightly better agreement with the experimental data at
the step (x/H = 0.0) as well as in the primary separated region as shown in Fig. 4.12.(a) and (b). At
ReuB ,Dh = 1000, all 2D computations deviate from experimental data as expected due to dominant
three-dimensional effects as shown in Fig. 4.12.(c). However, the deviation from experimental data
mainly takes place at stations in the vicinity (approximately ±3H) of the primary reattachment
point x1 = 13.04H for ReuB ,Dh = 1000. This implies that, far from the reattachment region,
the flow remains two-dimensional. A great agreement is still observed among all three sets of 2D
computational data at ReuB ,Dh = 1000.
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Figure 4.12: Streamwise velocity profiles compared with data from different experimental and
numerical studies at ReuB ,Dh = 100, 389, 1000. Data sources : Chiang and Sheu [46], Guerrero
and Cotta [101], Armaly et al. [13].
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4.3 Results with High-order CLSQ schemes

In Section. 3.2, we have demonstrated the consistency of the current CLSQ scheme with increasing
spatial discretization order by comparing the pressure coefficient Cp and skin-friction coefficient cf
reconstructed to the lower wall (Fig. 3.19 and Fig. 3.20). Here, we further investigate the effects
of high-order spatial discretization on the flow features of BFS by showing more test results from
the 3rd to the 6th-order CLSQ reconstruction.

The separation and reattachment locations for different orders of CLSQ schemes are given in
Fig. 4.13 up to 6th-order. For x1, x4 and x5, perfect agreement is observed among the four orders
of CLSQ schemes even at high Reynolds numbers ReuB ,Dh = 800, 1000 where the convergence to
steady-state becomes difficult for CLSQ4, CLSQ5 and CLSQ6 as shown in Section. 3.1 due to the
increasing gap between the high and low order numerical fluxes and non-linearity of the flow.
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Figure 4.13: Flow separation and reattachment locations of Armaly et al. [13] test-case for
ReuB ,Dh = 100, 200, 291, 389, 500, 800, 1000. Comparison made among results obtained by
CLSQ3, CLSQ4, CLSQ5 and CLSQ6.

The same observation is made with the normalized streamwise velocity profiles at ReuB ,Dh =

100, 389, 1000. As shown in Fig. 4.14, velocity profiles remain almost identical for CLSQ3-6 schemes
at all sampling stations for Reynolds numbers {100, 389, 1000}.

The corner vortex is also investigated using the four CLSQ schemes and the result at ReuB ,Dh =

100 is shown in Fig. 4.15. With different orders of spatial discretization, the vortical structure
remains almost identical near the corner.

Furthermore, the length of corner vortex xc is plotted for seven different Reynolds numbers
ReuB ,Dh = 100, 200, 291, 389, 500, 800, 1000 in Fig. 4.16. As indicated by the plots, the difference
progressively grows larger as the Reynolds number increases from 100 to 1000. This trend is not
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observed in Fig. 4.16 for the curves of x1, x4, x5 as they remain almost identical for all orders
of CLSQ schemes. However, the xc prediction at each Reynolds number is clearly converging
towards the result obtained with the highest order CLSQ6 scheme. This difference between xc
prediction and those of x1, x4, x5 can be explained by the ratio between the vortex size and the
local grid spacing. In the case of the corner vortex, the vortex size is comparable to the local
grid spacing as shown in Fig. 4.15, therefore the approximation error is mostly dictated by the
order of spatial discretization. Theoretically, this phenomenon also exists for x1, x4, x5, however,
since their vortex-size-grid-spacing ratios are substantially higher than that of xc, the primary and
roof vortices are considerably better resolved thus leading to a negligible difference caused by the
spatial discretization.

As discussed in the previous Section. 4.2, the onset of the roof vortex is an important flow
feature which indicates the precise Reynolds number from which the BFS flow becomes essentially
three-dimensional. This onset can be accurately captured with the current CLSQ3 reconstruction
scheme without extremely fine near-wall mesh. In this section, we further investigate the location
and length of the nascent roof vortex with higher order CLSQ schemes.

Computations are performed with CLSQ3, CLSQ4, CLSQ5 and CLSQ6 for Reynolds numbers
around 400 and the onset of roof vortex is found at ReuB ,Dh = 399 for all four orders of CLSQ
schemes. In Fig. 4.17, separation and reattachment locations of the roof vortex x4 and x5 are
shown for CLSQ3-6 schemes at ReuB ,Dh = 399. The length of roof vortex x5 − x4 is comparable
to the local horizontal grid spacing ∆x ≈ 0.17H. The vortex lengths computed with CLSQ5 and
CLSQ6 are almost twice as long as those computed with CLSQ3 and CLSQ4, since according to
Eqn. A.2b, the number of quadrature points per edge N̄� = 2 for CLSQ3 and CLSQ4, N̄� = 3

for CLSQ5 and CLSQ6. Remind that the separation and reattachment points are determined
by linear interpolation between a pair of adjacent quadrature points with positive and negative
velocity gradient ∂u/∂y (Fig. 4.7), a larger number of quadrature points per edge allows a more
precise capture of separation locations. This difference in vortex length is clearly due to the linear
interpolation procedure rather than the spatial accuracy of the CLSQ scheme, since the difference
between two CLSQ schemes with the same number of N̄� (CLSQ3 and CLSQ4, CLSQ5 and
CLSQ6) is negligible.

In this section, some important flow features of the BFS test-case are investigated by using
different orders of reconstruction schemes CLSQ3, CLSQ4, CLSQ5 and CLSQ6, and the results
show a great consistency among all four orders of CLSQ schemes. The predictions of the primary
and roof separation and reattachment locations (Fig. 4.13) are almost identical with the four
CLSQ schemes including the prediction of the onset of roof vortex (Fig. 4.17). This proves that
the boundary constraints imposed at wall quadrature points are well satisfied regardless of the
reconstructing polynomial order p. The streamwise velocity profiles are also compared among
the four CLSQ schemes and no visible difference is observed in Fig. 4.14, which shows that the
polynomial reconstruction is consistent for interior cells with increasing spatial order of accuracy.

Furthermore, as we have discussed in Section. 3.1, the increase in the spatial order of dis-
cretization leads to a slower convergence towards steady-state solution with the current implicit
dual-time-stepping schemes. This is due to the increasing gap between the low- and high-order
numerical fluxes which requires more iterations to eliminate, especially when the Reynolds number
is high. Results in the current section have demonstrated that the implicit dual-tile-stepping can
indeed successfully eliminate the difference in flux approximation and always give identical results
for CLSQ3, CLSQ4, CLSQ5 and CLSQ6 reconstructions.
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Chapter 5

Conclusions and Perspectives

5.1 Summary

In the present study, numerical methods have been developed in the context of a two-dimensional
finite-volume CFD solver for compressible Navier-Stokes equations with arbitrarily high spatial
order on arbitrary polygonal grids. The cell-averaged input data is reconstructed in a stencil
associated with every cell in the computational domain by a bivariate polynomial, whose coefficients
are determined by minimizing a functional with Lagrange multipliers. Each Lagrange multiplier is
associated with an equality constraint including the cell-average constraint (that the cell-average
in the reference must be satisfied exactly), and a number of Dirichlet or Neumann type boundary
constraints on the boundary edges. This reconstruction method is termed as the Constrained
Least-Squares (CLSQ) scheme, which is a generalized version of the constraint-free LSQ scheme
developed by Gerolymos and Vallet [91], and an extension of the pth-order (p ≤ 4) method of
Ollivier-Gooch and Van Altena [169] to arbitrary spatial order. The interfacial numerical flux
is computed using the method of Godunov which involves solving the Riemann problem at every
Gauss-Legendre quadrature point on the intercell edge including the boundary edges. The Riemann
problem is solved by the approximate-state HLLC Riemann solver developed by Toro et al. [206]
with the all-Mach correction proposed by Xie et al. [218]. For a steady-state solution, the implicit
pseudo dual-time-stepping scheme is used and tested with different linear solvers such as the Jacobi
iterative solver, the LU-SGS solver by Jameson and Yoon [117], and the Block LU-SGS (BLU-SGS)
solver by Chen and Wang [42].

Extensive tests have been conducted in Chapter. 3 on general polygonal unstructured grids
for three laminar flow test-cases : the zero-thickness flat-plate boundary layer (FPBL), the low-
Reynolds NACA 0012 airfoil and the backward-facing step (BFS) of Armaly et al. [13]. Progres-
sively, we have demonstrated that

• the implicit pseudo dual-time-stepping scheme is stable for a Courant number up to CFL =

1000 beyond which the improvement in convergence rate is very limited. Iterative linear
solvers Jacobi and BLU-SGS give comparable convergence rate and both are superior to the
approximately factored LU-SGS solver.

• the numerical methods in the current study give physically consistent results on all unstruc-
tured polygonal meshes tested in the current study with good agreement among them. The
solver shows good robustness even on grid with low-quality computational cells.

111



5. Conclusions and Perspectives

• the third-order CLSQ (CLSQ3) scheme is indeed third-order accurate according to a formal
grid convergence study on the BFS test-case, and the scheme is consistent up to sixth spatial
order (CLSQ6).

For the NACA 0012 airfoil test-case, previous studies [98, 137] showed that the flow field
becomes unsteady and periodic von Kármán vortex shedding appears in the wake region for an
angle of attack AoA ≥ 8◦. The current steady-state simulations with large ∆t and local time-
stepping tend to underestimate the lift and drag coefficients by approximately 50% at high AoA

comparing to the unsteady DNS data [98] suggesting a strongly beneficial effect of the vortex-
shedding on lift. Unsteady simulations of low-Reynolds airfoils need to be performed in the future
in order to thoroughly understand the dynamics of airfoils in a viscosity-dominated flow.

A detailed flow field analysis has been performed on the BFS test-case of Armaly et al. [13]. The
current computational results are compared with the experimental data and previous 2D numerical
studies. An excellent agreement with the experiment has been observed for ReuB ,Dh < 400,
which corresponds to the regime where the BFS flow remains essentially two-dimensional. For
100 ≤ ReuB ,Dh ≤ 1000, the current computational results are in excellent agreement with different
previous 2D computations. Two new flow features are observed in the present study which have
not been reported previously thanks to the implementation of high-order CLSQ reconstruction
schemes :

• the onset of the secondary roof vortex is found at ReuB ,Dh = 399 which corresponds to the
beginning of three-dimensional effects

• the length of the small corner vortex xc is determined for 100 ≤ ReuB ,Dh ≤ 1000.

These new observations can provide reference data for future experimental and numerical investi-
gations on BFS flows.

5.2 Perspectives

The extensive numerical studies conducted in this thesis have shown that the implementation
of current 2D unstructured CFD solver based the high-order CLSQ reconstruction is successful.
However, further improvements still remain to be carried out for more complex CFD applications.
Three important perspectives for future work will be briefly discussed in this section.

5.2.1 Finite-curvature Boundary Edges

The current CLSQ reconstruction schemes manage to achieve arbitrarily high-order accuracy at
boundaries by imposing boundary conditions exactly at quadrature points of boundary edges.
However, a limitation is encountered when the physical boundary is curved with a finite curvature
while the boundary cells remain straight-edge polygons. As pointed out by Bassi and Rebay [24],
the geometric approximation at boundaries needs to be of at least the same order as the spatial
discretization in order to obtain true high-order accurate solutions. This means that for the
CLSQ3 scheme to preserve order with curved physical boundaries, the geometric approximation of
boundary edges needs to be at least quadratic.

Several possible approaches to treat curved boundaries will be considered. The most straight-
forward method is to use isoparametric boundary cells and to map the curved cells into straight-
edge reference cells by Jacobian transformations [24]. This method is accurate and efficient for
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low-order approximations, however, the systematic call for Jacobian transformations can create
excessive computational overhead for high-order approximations on moving grids. For fixed grids,
on the other hand, this problem is not particularly concerning since the transformed quadrature
points and weights are computed only once and stored for the rest of the simulation. Moreover,
the generation of curved meshes is not completely solved and remains a matter of ongoing research
[57, 212].

An alternative method is the Reconstruction of Off-site Data (ROD) proposed recently by Costa
et al. [57, 58]. In short, the ROD method performs reconstruction on the straight-edge polygonal
computational domain while taking into account of data on the physical boundaries outside of this
discretized polygonal grid. This method requires no modification to the original polygonal grids
but rather modifies the boundary constraints in the least-squares reconstruction procedure, which
appears to be a more natural choice to solve the curved boundary problem in the context of the
current CLSQ scheme.

Both of the aforementioned approaches will be implemented and investigated in a future work.

5.2.2 Turbulence Modeling

As mentioned in Chapter. 1, this thesis is a part of a larger project intended to model the complex
flow interactions within the blade cascade of an aircraft engine. For this purpose, an accurate and
efficient RANS turbulence model needs to be integrate in the package of numerical methods. The
7-equation Reynolds Stress Model developed by Gerolymos-Lo-Vallet-Younis (GLVY-RSM) [92]
will be integrated in the current CFD solver among other RANS models. The turbulent variables
introduced by the model will be reconstructed in a unified manner using the high-order CLSQ
schemes. We refer to Appendix. D for the Favre-Reynolds-averaged Navier-Stokes equations to
model compressible turbulent flows and the equations of the GLVY-RSM second-moment closure.
The turbulent extensions of the boundary conditions listed in Section. 2.7 are also given in this
appendix.

The first step in the future is to validate the current numerical methods equipped with GLVY-
RSM on the well-defined turbulent BFS test-case proposed by Driver and Seegmiller [66], whose
parameters are tabulated in Appendix. C, Tab. C.2. According to the literature review on the
studies of turbulent BFS flows in Appendix. C, the low-Reynolds RSMs generally give the most
accurate prediction on the BFS flows among all RANS models known to date. Since GLVY-RSM is
a wall-normal-free low-Reynolds RSM, we intend to perform a comprehensive study on the Driver
and Seegmiller [66] test-case and to compare results with the experimental data and previous
numerical studies.

Numerically, since we have shown in Section. 3.3 that the current CFD solver is robust on
arbitrary polygonal grids and is able to handle multiple levels of adaptive local refinement, it is
interesting to investigate the improvement brought by adaptive refinement on the prediction of
turbulent BFS flows. Furthermore, the effects of high-order CLSQ reconstruction scheme on the
performance of RSM will be thoroughly investigated in this test-case. As shown in Tab. C.4,
most turbulent numerical studies on BFS flows in the literature to date use second-order accurate
numerical schemes for mean-flow equations and first-order schemes for the turbulence model. It
is reasonable to expect that a comprehensive study on turbulent BFS flows using arbitrarily high-
order CLSQ schemes can throw light upon the connection between spatial reconstruction order
and accurate Reynolds-Stress modeling.
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5.2.3 Unstructured WENO Extension

For simulations of transonic and supersonic flows on unstructured polygonal grids, a WENO scheme
needs to be developed based on the current CLSQ reconstruction. Major challenges are expected
in this future development including finding positive linear weights and selecting appropriate sub-
stencils by a more sophisticated algorithm, and both of them remain very active fields of research
to date.
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Appendix A

Existence and Uniqueness of the
CLSQ Solution

The CLSQ solution exists if and only if the KKT matrix A is invertible. Here we strive to examine
under which circumstances does the singularity arise and how to solve it in order to make the
CLSQ reconstruction more robust.

We consider Eqn. 2.51 is equivalent to Eqn. 2.52 and Eqn. 2.51 is in KKT form.

Theorem A.1. A KKT matrix of the form

[M>M Q>

Q 0

]
is invertible iff Q has linearly inde-

pendent rows and that
[
M>, Q>

]>
has linearly independent columns.

Theorem A.1 is proved by Boyd and Vandenberghe in [29, p. 345]. The column-independence
needs to be respected by

[
I>, K>, IE0

]>, and since the constraint sub-matrix consists of BC

constraints and cell-average constraint, the row independence needs to be satisfied by
[
K>, IE0

]>.
A necessary condition for A to be invertible requires that N�+1 ≤ Nc and that Nc ≤ Nb+N�+1.
To summarize

Nc −Nb ≤ N� ≤ Nc − 1. (A.1)

In practice, two necessary but not sufficient criteria are respected for determining Nb and N̄�

in order to satisfy Eqn. A.1 :

Nb > Nc (A.2a)

N̄� = b(p− 1)/2c+ 1 (A.2b)

and since the number of boundary edges in cell E0 is generally ≤ 2, N� ≤ Nc − 1 is satisfied as
we impose Eqn. A.2b knowing that Nc is calculated by Eqn. 2.27. Eqn. A.2 is not a sufficient
condition for A to be invertible, however, it provides a starting point to gain more insights on its
invertibility.

Firstly, for
[
I>, K>, IE0

]> to have linearly independent columns, it is sufficient for I to be
column-independent which is equivalent to

rank(I) = Nc (A.3)
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A. Existence and Uniqueness of the CLSQ Solution

Table A.1: Number of Gauss-Legendre quadrature points per boundary edge N̄� and number of
polynomial coefficients Nc for different polynomial orders p [91].

p N̄� Nc

2 1 3
3 2 6
4 2 10
5 3 15
6 3 21

and since rank(I) = rank(I>I), Eqn. A.3 is equivalent to

rank(I>I) = Nc (A.4)

which implies that the A matrix for the unconstrained LSQ system (Eqn. 2.55) is invertible, hence
the unconstrained LSQ reconstruction problem admits a unique solution. Since the computational
grid is an arbitrary polygonal unstructured grid, Eqn. A.3 cannot be mathematically guaranteed
simply by the number of neighbors Nb in the stencil S0. It is possible for an Nb by Nc matrix
I (Nb > Nc) to be rank-deficient for a specific stencil configuration. Therefore, it is important
to increase the stencil size so that Nb is sufficiently larger than Nc to such an extent that the
full-rankedness of I is preserved. The stencil selection algorithm needs to be carefully designed to
avoid any drastic local increase of stencil size. As mentioned earlier in Section. 2.3, the current
stencil construction algorithm absorbs immediate edge-neighbors in a layer-by-layer fashion until
the number of neighbor cells in the stencil Nb surpasses the number of polynomial coefficients Nc
by an empirically determined safety factor. We need to increase the safety factor whenever the
matrix I is rank-deficient and the unique solution of the unconstrained LSQ reconstruction problem
cannot be guaranteed.

For the rest of this chapter, we will focus on examining the row-independence of
[
K>, IE0

]>
matrix. First, we make the assumption that I>E0

is not a linearly combination of rows of matrix
K. In practice, this assumption is verified by a posteriori results in almost all cases. Therefore we
study whether K is row-independent. The row-independence of the BC constraint matrix K can be
interpreted as a multivariate interpolation problem in two-dimensions R2, which is also equivalent
to studying whether the boundary Dirichlet and Neumann BCs are well-posed. It is important to
realize that, for the CLSQ reconstruction problem to yield a unique solution, we need to ensure
two conditions : (i). the stencil is admissible in the sense that the corresponding unconstrained
LSQ reconstruction problem admits a unique solution; (ii). the BC constraints are well-posed.
The second condition will be studied in detail next.

The K matrix is row-independent iff there exists a bivariate polynomial that interpolates arbi-
trary data set at all boundary quadrature points. In order to study the existence of such polyno-
mials, it is necessary to introduce the definition of πm(Rd)-unisolvent points by Wendland [215],
where πm(Rd) is the vector space of polynomials on Rd of degree ≤ m.

Definition A.1 (Unisolvency). [215, Def. 2.6, p. 21] The set of points X = {p1, · · · , pN} ⊆ Rd

with N ≥ dimπm(Rd) are πm(Rd)-unisolvent if the zero polynomial is the only polynomial in the
polynomial space πm(Rd) that vanishes on all of them.

Note that dimπm(Rd) =
(
m+d
d

)
, where m = p− 1, and for d = 2 we obtain Eqn. 2.27.
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A. Existence and Uniqueness of the CLSQ Solution

Theorem A.2. [215, Lemma 2.8, p. 22] A set of πm(Rd)-unisolvent points X = {p1, · · · , pN} ⊆ Rd

guarantees a unique d-variate polynomial interpolation of order at most m if N = dimπm(Rd) =(
m+d
d

)
.

Theorem A.2 has been proved by many previous authors [80, 215] to whom we refer the detailed
proof.

Chung and Yao [49] introduced the notion of mth-order “natural lattice” of cardinality
(
m+d
d

)
which is a set of πm(Rd)-unisolvent points. Thus, according to Theorem A.2, themth-order natural
lattice guarantees a unique d-variate polynomial interpolation of degree at most m.

Definition A.2 (Natural lattice). [49, Def. 2, p. 737] Suppose that there exist M = m + d

distinct hyperplanes H1, · · · , HM in Rd such that the intersection of any d distinct hyperplanes
⊆ {H1, · · · , HM} is a point in Rd and that different choices of hyperplanes generate different points.
Then this set of points is defined as themth-order natural lattice generated byH1, · · · , HM denoted
by Xmnat.

Chung and Yao further proved the existence of a mth-order natural lattice on Rd for any given
m and d. In particular, natural lattices on R2 are shown in Fig. A.1. Note that a hyperplane in
R2 is a line.

X 1
nat X 2

nat X 3
nat

X 4
nat X 5

nat

Figure A.1: Schematic representations of two-dimensional natural lattices Xmnat, where m = p− 1
is the highest polynomial degree [49].
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In the context of the current CLSQ scheme, the number of Gauss-Legendre quadrature points
per boundary edge N̄� is determined by Eqn. A.2b, therefore, for a pth-order CLSQ scheme, if
a boundary cell has no more than 2 boundary edges, all of its boundary quadrature points must
form a subset of a (p− 1)th-order natural lattice in two dimensions.

Corollary A.2.1. If a set points X = {p1, · · · , pN} ⊆ Rd is a subset of the mth-order natural
lattice Xmnat as defined in Definition A.2, then the associated matrix K = [αp1 , . . . , αpN ]> has
linearly independent rows.

Proof. Matrix P = [αp1 , . . . , αpNc ]> is an Nc by Nc square matrix associated with the mth-order
natural lattice Xmnat, where Nc =

(
m+d
d

)
. Since a unique interpolation is guaranteed according

Theorem A.2, P must be invertible, which implies that all rows of P are linearly independent.
Therefore, any subset X ⊆ Xmnat of cardinality N ≤ Nc must admit an associated matrix K =

[αp1 , . . . , αpN ]> with linearly independent rows.

In two-dimensional space, Corollary A.2.1 guarantees that the BC constraint matrix K is row-
independent if boundary conditions are imposed on no more than 2 boundary edges, and if the
number of quadrature points per edge N̄� is determined by Eqn. A.2b for p ≥ 2 (at least for
Dirichlet type constraints, next we will demonstrate that this is not sufficient for Neumann type
constraints).

Next, consider the Neumann type boundary conditions where the wall-normal gradient is im-
posed on each quadrature point of a boundary edge. According to Eqn. 2.48, an example of K4

neu

is shown in Eqn. A.5 for the 4th-order CLSQ scheme with Neumann type constraints.

K4
neu =


0 nx ny 2X1nx Y1nx +X1ny 2Y1ny 3X2

1 nx 2X1Y1nx +X2
1 ny Y 2

1 nx + 2X1Y1ny 3Y 2
1 ny

0 nx ny 2X2nx Y2nx +X2ny 2Y2ny 3X2
2 nx 2X2Y2nx +X2

2 ny Y 2
2 nx + 2X2Y2ny 3Y 2

2 ny

0 nx ny 2X3nx Y3nx +X3ny 2Y3ny 3X2
3 nx 2X3Y3nx +X2

3 ny Y 2
3 nx + 2X3Y3ny 3Y 2

3 ny


(A.5)

K4
neu is column-equivalent to K4

† by elementary column operations (exchanging two columns,
scaling a column by a nonzero factor, adding a multiple of one column to another) assuming that
nx = const, ny = const.

K4
† =


0 0 0 0 1 X1 Y1 X2

1 X1Y1 Y 2
1

0 0 0 0 1 X2 Y2 X2
2 X2Y2 Y 2

2

0 0 0 0 1 X3 Y3 X2
3 X3Y3 Y 2

3

 =
[
0 K3

dir

]
(A.6)

where the nonzero columns of K4
† form a third-order Dirichlet type constraint matrix K3

dir. To
generalize, a pth-order Neumann type constraint matrix Kpneu is column-equivalent to an N� by Nc
matrix Kp† =

[
0 Kp−1

dir

]
. Therefore we have rank(Kpneu) = rank(Kp−1

dir ), which implies that a set of
quadrature points generate a row-independent Kpneu matrix iff they also generate a row-independent
Kp−1

dir matrix.
According to Fig. A.1 and Eqn. A.2b, the set of boundary quadrature points for the pth-order

CLSQ scheme is also a subset of the (p− 2)th-order natural lattice for p ≥ 3. For instance, when
p = 3, the number of quadrature points per edge N̄� = 2 while each hyperplane in X 2

nat also
contains 2 colinear points, and since there are m + 1 colinear points on each hyperplane of Xmnat,
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the gap between N̄� and m+ 1 widens as the order grows. Therefore, the BC constraint matrix K
of Neumann type is row-independent for the CLSQ scheme with p ≥ 3 if only one boundary edge
is associated with a given reconstruction stencil.

A further revisit to the matrix K4
neu in Eqn. A.5 shows that, for quadrature points on boundary

edges with different unit normal vectors #»n�i such as in a corner boundary cell, K4
neu is no longer

column-equivalent to K4
† therefore the row-independence of the sub-matrix K3

dir does not guarantee
the row-independence of K4

† or that of K4
neu. In practice, the row-independence of Kpneu, although

not mathematically guaranteed, can still be achieved in many cases, special attention is needed
to monitor the full-rankedness of Kpneu matrix if the reference cell E0 contains multiple boundary
edges. Alternatively, in case that E0 is a corner boundary cell, we can split E0 from the corner
into two boundary cells, each with one single boundary edge to enhance robustness of the scheme.

Proposition A.1. In general, if the number of quadrature per edge N̄� is determined by Eqn. A.2b,
there exists a pth-order bivariate polynomial in stencil S0 which can either interpolate the values
(Dirichlet type BC) of φ(x, y) at all boundary quadrature points on no more than 2 boundary
edges for p ≥ 2, or interpolate the gradient projected onto a fixed face-normal vector #»n (Neumann
type BC) for p ≥ 3.

In summary, this analysis shows that the current CLSQ reconstruction scheme guarantees a
unique solution in a given stencil S0 when the following conditions are satisfied :

1. Stencil S0 is adequately selected such that Nb is sufficiently greater than Nc, such that the
unconstrained LSQ reconstruction problem admits unique solution;

2. Cell-average constraint is not a linear combination of BC constraints (assumed);

3. For Dirichlet type BC constraints: N̄� determined by Eqn. A.2b with p ≥ 2 and number of
boundary edges ≤ 2;

4. For Neumann type BC constraints: N̄� determined by Eqn. A.2b with p ≥ 3 and number of
boundary edges ≤ 1.

The above-mentioned conditions can be satisfied in most cases for an arbitrary polygonal grid
with special care taken at domain corners. However, when they cannot be ensured occasionally, we
need to pay close attention to the invertibility of matrix A and make necessary modifications to the
grid or to the local order of the scheme. An approach adopted by many previous authors [38, 169]
is to perform Gaussian elimination to remove all linearly dependent constraints, and the K matrix
is thus reduced to row echelon form before being assembled into A. This approach guarantees a
full-ranked BC constraint matrix, but can also lead to an over-constrained or ill-constrained stencil
being left undetected. Therefore, an analysis on the existence and uniqueness of CLSQ solutions
allows us to understand under which circumstances can we expect a singular KKT matrix A and
to remedy this defect a priori.

Finally, we remark that, although this analysis addresses mainly the well-posedness problem of
BC constraints, the notions of unisolvency and natural lattices can be potentially extended for the
construction of admissible LSQ stencils Si. As shown by Gerolymos [89], polynomial interpolation
and reconstruction problems are closely related. For a 1D grid with constant ∆x, the interpolating
polynomial and the reconstructing polynomial of a given data set are related by a bijective mapping
R : πm(Rd) → πm(Rd) [89, Theorem 5.1, p. 296]. This relation will be studied in the future for
general 2D polygonal grids, which can potentially contribute to a more efficient stencil construction
algorithm.
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Appendix B

Low-Mach Laminar BFS Flow Tests

The laminar BFS test-case of Armaly et al. [13] is used to evaluate the performance of the AM-
HLLC-P Riemann solver proposed by Xie et al. [218] (see Section. 2.4 for detailed expressions). The
test-case configuration is given in Fig. 4.1 and we perform all computations on the Grid 2 in Tab. 3.1
with 43204 computational cells and a minimum wall-normal grid spacing ∆y1 = ∆y2 = 1.426%H

(grid parameters in Fig. 3.15).
Three computations are performed at inlet centerline Mach numbersM = {0.01, 0.05, 0.2} with

each of the HLLC and AM-HLLC-P Riemann solvers at ReuB ,Dh = 100. We intend to investi-
gate the difference in pressure field solutions obtained with and without the low-Mach correction
technique.

The normalized pressure field pN(x, y) enables us to compare pressure field solutions among
flows with different Mach numbers, and it is defined by Guillard and Viozat [102] and Xie et al.
[218] as

pN(x, y) =
p(x, y)− pmin

pmax − pmin
(B.1)

where pmin and pmax are respectively the minimum and maximum pressure values in the domain.
Note that pN ranges from 0 to 1 which characterizes the magnitude of pressure fluctuation. Obvi-
ously, as Mach number M → 0 (quasi-incompressible flow), we expect pN(x, y) to be independent
of the inflow Mach number M . In practice, this limit is achieved for max #»x∈ΩM ≤ 0.35 [93,
Appendix A].

Fig. B.1 shows the normalized pressure fields obtained using the conventional HLLC Riemann
solver without any low-Mach correction. The region near the step is examined since it corresponds
to the location where large pressure gradient is observed due to the sudden expansion as shown
previously in Fig. 4.10. In Fig. B.1, we observe that the conventional HLLC solver does not
give correct pressure fields as the Mach number decreases from 0.2 to 0.01. By reducing the
Mach number, the lower bound of pN drops rapidly from 0.28 to 0.09 and the pressure contour
lines cluster heavily towards the singular step corner. This deterioration of pressure solution at
decreasing Mach number was already observed previously by Guillard and Viozat [102], Guillard
and Murrone [103] and Xie et al. [218] with inviscid airfoil test-cases.

Improved pressure solutions are obtained with the AM-HLLC-P Riemann solver on the same
grid as shown in Fig. B.2. An essentially constant range of pN is maintained with decreasing
inlet Mach number, and structure of pressure contour lines remains consistent from M = 0.01 to
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(a) : M = 0.2 (b) : M = 0.2 step zoom

(c) : M = 0.05 (d) : M = 0.05 step zoom

(e) : M = 0.01 (f) : M = 0.01 step zoom
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Figure B.1: Normalized pressure pN field for the Armaly et al. [13] test-case at ReuB ,Dh = 100
and M = 0.01, 0.05, 0.2. HLLC Riemann solver without low-Mach correction is used for numerical
flux computations.

M = 0.2. In Fig. B.2.e and .f, oscillations of small amplitude are observed on certain pressure
contour lines atM = 0.01. This phenomenon is also present in the original publication of Xie et al.
at M = 0.01 for a channel flow with circular arc bump. These oscillations typically occur at low
Mach number when the mesh is stretched and irregular. However, comparing to the uncorrected
HLLC solver the accuracy of pressure field solution at low Mach number is substantially improved.

Finally, Fig. B.3 shows the streamwise velocity u profiles at multiple different stations. Com-

136



B. Low-Mach Laminar BFS Flow Tests

(a) : M = 0.2 (b) : M = 0.2 step zoom

(c) : M = 0.05 (d) : M = 0.05 step zoom

(e) : M = 0.01 (f) : M = 0.01 step zoom
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Figure B.2: Normalized pressure pN field for the Armaly et al. [13] test-case at ReuB ,Dh = 100
and M = 0.01, 0.05, 0.2. Low-Mach corrected HLLC Riemann solver AM-HLLC-P [218] is used for
numerical flux computations.

putations are performed on the same grid (Grid 2 in Tab. 3.1) with both HLLC and AM-HLLC-P
Riemann solvers. We verify that the low Mach number M � 1 only has influence on the pressure
field solutions, and in particular in the immediate neighborhood of the step-corner geometric sin-
gularity, since it can be observed that u profiles at all stations are identical for M = 0.01, 0.05, 0.2

with and without low-Mach correction technique. In other words, although the experimental study
of Armaly et al. [13] is conducted at extremely low Mach numbers (O(10−4)), performing compu-
tations at M = 0.2 with the same Reynolds number does not reduce the accuracy of the results,
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and the convergence rate is considerably accelerated atM = 0.2 due to the relatively low numerical
stiffness.
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Figure B.3: Streamwise velocity profiles at ReuB ,Dh = 100 and inlet Mach number M =
0.01, 0.05, 0.2 computed with HLLC and AM-HLLC-P Riemann solvers. Experimental data sources
: Armaly et al. [13].
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Appendix C

Literature Review on Turbulent BFS
Flows

Many different velocities and lengths appear in the literature to define the Reynolds number
Revel,len and these physical quantities are listed in Tab. C.1 where uτ is the wall-friction velocity, δ

Table C.1: Velocities and lengths used for Reynolds number definitions in the literature of turbulent
BFS.

i velocity j length

1 uB 1 H

2 u∞ 2 Hi

3 uτ 3 Dh

4 δ

5 δ1

6 δ2

is the boundary layer thickness, δ1 is the displacement thickness and δ2 is the momentum thickness.
The definitions of δ1 and δ2 are given by Schlichting and Gersten [180, p. 258] for a flow parallel
to a longitudinal wall along x-axis

δ1 =

∫ δ

0

(
1− ρu

ρ∞u∞

)
dy (C.1a)

δ2 =

∫ δ

0

ρu

ρ∞u∞

(
1− ρu

ρ∞u∞

)
dy (C.1b)

In this appendix, the subscripts of Revel,len are replaced by the quantities in Tab. C.1 to avoid
any ambiguity. For instance, the Reynolds number defined by the bulk velocity and the step
height is denoted by ReuB ,H . A sketch of a generic BFS test-case is provided in Fig. C.1, where
we denote the inlet channel height by Hi, the outlet channel height by Ho, the step height by H
and the channel width by W . As with the laminar test-cases, the expansion ratio is defined by
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ER = Ho/Hi, the aspect ratio is defined by AR = W/Ho. The length of the primary recirculation
region is denoted by x1.

Hi

H

Ho

x1

W

Front view

top view

Figure C.1: Schematic representation of a generic turbulent BFS test-case with front and top
views.

Due to its vast engineering applications, turbulent BFS flows have received substantial attention
in the literature. Early experiments conducted by Tani et al. [203] at Reynolds numbers Reu∞,H
up to 6×104 demonstrated insensitivity of bottom wall pressure distribution to the step height and
incoming boundary layer thickness. Abbott and Kline [1] performed experiments on fully turbulent
BFS flows from Reu∞,Hi = 2 × 104 to 5 × 104 in both single and double expansion channels and
suggested that the reattachment length x1 was independent of Reynolds number in their Reu∞,Hi
range. Heat transfer and temperature distribution was measured by Seban [181]. De Brederode et
al. gave an estimate of minimum aspect ratio of AR = 10 to yield a essentially two-dimensional flow
[62]. Always limited to the low Reynolds number regime, Bradshaw and Wong [30] first rigorously
studied the reattachment mechanism of the turbulent shear layer. They suggested that large-
scale eddies in the separated turbulent shear layer were divided into upstream and downstream-
propagating portions, which caused rapid reduction in turbulent length scale and shear stress
downstream. A very slow recovery to the thin boundary layer was discovered by the authors which
extended at least 30 times the boundary layer thickness at step. Chandrsuda and Chandrsuda and
Bradshaw [36, 37] provided hot-wire anemometry measurements of fluctuating turbulent velocity
statistics of separating thin laminar boundary layers (0.04H) reattaching to fully turbulent states
over a BFS. The Reynolds numbers Reu∞,δ2 = 400 with δ2 : H = 1 : 255 which gives Reu∞,H ≈ 105,
and although the boundary layer was laminar before the step, results showed sharp changes of
turbulent quantities before and after the reattachment, concretely, the decreases of triple velocity
correlations and turbulent shear stresses in the wall-normal direction, and increase of then pressure
redistribution term due to wall effects. Their results provided valuable insights for future design
of near-wall Reynolds Stress Models (RSM). Chandrsuda [36] also recommended the use of LDV
for more reliable measurements of turbulent quantities. Kim et al. [129] performed experiments to
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study BFS flows already turbulent before separation using hot-wire anemometer. Being aware of
the limits of this device, measurements were not made in the recirculation zone. Reynolds numbers
in this study ranged from Reu∞,H = 3× 104 to 4.5× 104 and the independence of flow structures
from Reynolds number was demonstrated in this range, and a reattachment length of x1 ≈ 7H

was measured for all Reynolds numbers. The authors made similar observations on the decay of
turbulent fluctuations after the reattachment as in [36, 37]. However, the intermittency report
showed that large eddies in the turbulent mixing layer traveled alternately up and downstream
instead of being split in two parts as suggested by Bradshaw andWong [30]. In addition, Castro and
Bradshaw and Gillis and Johnston [33, 96] showed that convex streamwise curvature of separated
shear layer had stabilizing effects which reduced turbulent shear stresses.

Multiple experimental works using improved devices such as pulsed-wire anemometer and LDV
allowing to measure back-flow regions were conducted. Baker [17] used both experimental and
numerical approaches to study the fully turbulent reattaching shear layer at Reu∞,H = 5 × 104,
since the emphasis of the study was on the recirculation zone, pulsed-wire technique was adopted
and showed better results in regions where turbulent intensity was high compared to hot-wire
measurements. The author [17] also performed 2D computations using the two-equation model by
Launder and Spalding [141] with a wall-function, which gave good agreement with experimental
data in terms of mean-flow variables but under-predicted the reattachment length. Etheridge and
Kemp [78] was one of the first to use LDV measurement on BFS flows. Their results confirmed
that the turbulent length scale decreased rapidly at reattachment as observed by Chandrsuda and
Bradshaw [37] even though the initial boundary layer thickness in [78] was much higher (δ/H ≈ 2.0)
than that in [37] (δ/H ≈ 0.04) and was in a transitional state. Eaton et al. [74] and Eaton and
Johnston [75] experimentally studied effects of the state of the separating boundary layer (laminar,
transitional, or turbulent) on the BFS flow using pulsed-wire. Boundary layer thicknesses were
identical while their states were different. The authors [74, 75] found that the reattachment length
x1 increased rapidly with increasing Reynolds number when the initial boundary layer remained
laminar, the maximum value of x1 was obtained at the beginning of the transitional regime and
started to decrease until the boundary layer became fully turbulent where the flow was no longer
dependent of the Reynolds number. Kuehn [136] was the first to show that the reattachment
length x1 was strongly influenced by the adverse pressure gradient caused by sudden expansion.
He concluded that the reattachment length increased with increasing step height and upper wall
deflection at the same Reynolds number and boundary layer state. In 1981, Eaton and Johnston
[76] reviewed then existing experimental data and suggested that five independent parameters
could affect the reattachment length : (1) state of initial boundary layer (before the step), (2)
thickness of initial boundary layer δ, (3) turbulent intensity in the free-stream, (4) adverse pressure
gradient due to channel geometry, (5) channel aspect ratio which introduces end-wall effects. Durst
and Tropea [72] systematically studied BFS flows ranging from 2000 < Reu∞,H < 20000 and
1.06 < ER < 3.0 using LDV. Within the given Reynolds number range, the flow was identified to
be in the transitional regime and showed high Reynolds number dependence. The expansion ratio
ER affected the reattachment length to similar extent for all Reynolds numbers studied, but the
effect saturated for high expansion ratio 2 < ER < 3.

In 1985, Driver and Seegmiller [66] proposed a well defined turbulent BFS flow test case to vali-
date turbulence models. The test-case consisted of a nominally two-dimensional channel with a low
expansion ratio step (ER = 1.125). The incoming boundary layer was fully turbulent with a thick-
ness of δ ≈ 1.5H and the Reynolds number based on momentum thickness Reu∞,δ2 = 5000 which
corresponded to Reu∞,H ≈ 37500. Inlet Mach number wasMa = 0.128 to ensure incompressibility.
Experimental measurements gave a reattachment length x1 = 6.26H. Measurements were com-
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pared with numerical results obtained by Sindir [194] using k−ε model and Algebraic-Stress Model
(ASM) with and without modified dissipation rate of turbulent kinetic energy (production term
modified). Authors showed that the modified ASM gave excellent prediction of the reattachment
length x1 while unmodified ASM and both k − ε models gave almost 30% of under-prediction.
However, all turbulence closures in [66, 194] failed to predict the locations and values of the max-
imum Reynolds-stresses in the reattachment zone due to their inherent defects. To overcome the
shortcoming that ASM does not model the convection or diffusion of Reynolds-stresses, Amano
and Goel [11] numerically studied the turbulent BFS flow using a hybrid eddy-viscosity Reynolds
Stress model in a sense that the diffusion of turbulent kinetic energy k and its dissipation ε was
approximated by the eddy-viscosity hypothesis while Reynolds stresses were modeled separately
with their own transport equations. Results of k−ε model, ASM, and hybrid RSM were compared
against experimental data at Reu∞,δ2 = 5000 and ER = 1.5 and ER = 1.33 documented in a
private communication with Seegmiller and Driver [182], RSM gave best prediction in the relaxing
region while ASM performed best in the recirculation zone, and all statistical turbulence models
under-predicted the reattachment length. No significant improvement of RSM was observed versus
ASM. A later paper by the same authors [12] compared the abilities to correctly predict the triple
velocity correlations of different RSMs [56, 61, 104, 188] under the hybrid framework in [11]. Based
on comparisons with experimental data in [37], the authors concluded that all existing RSMs failed
to predict the magnitudes of triple velocity correlations due to the lack of their transport equations.
Celenligil and Mellor [34] numerically reproduced the test case of Kim et al. [129] using a RSM
with wall-function introduced in [153, 154]. The authors obtained an over-predicted reattachment
length x1 ≈ 7.89H while the experimental data gave x1 ≈ 7.0H. Yoo et al. [223] compared
numerical results using the standard k − ε model, the RSM with standard ε equation, the RSM
with ε modification proposed by Hanjalić and Launder [104], and the RSM with ε modification
proposed by Launder et al. [143]. The authors showed that the best overall agreement with the
experimental data provided by Kim et al. [129] was obtained with the RSM in [143] (x1 = 7.10H

compared to x1 ≈ 7.0H in the experiment [129]). All turbulence closures showed slower return to
turbulent boundary layer downstream of reattachment than the experimental data. Obi et al. [167]
also compared the performances of k− ε model and a RSM with wall-function and showed that, as
opposed to the finding of [223], all models under-predicted the primary reattachment length. The
RSM not only gave better results than k − ε model in terms of the primary reattachment length
(x1 = 6.73H for RSM, x1 = 6.08H for k − ε, x1 ≈ 7.0H for the experiment) but also predicted
the length of the secondary corner vortex with much closer agreement with the experimental data
by a factor of three. However, the authors [167] also noted that the ad hoc wall-damping created
excessively high anisotropy in the recirculation zone which caused the reattaching streamline to
bend unrealistically towards the bottom wall. They suggested that an improved pressure-strain
φij model which took into account of the flow anisotropy was needed for better predictions. Note
that all RSMs discussed until this point do not account for near-wall (wall-functions are used) or
low Reynolds number effects.

Various numerical simulations using modified k − ε turbulence models were also carried out
on turbulent BFS flows. Chen [40] suggested that the considerable discrepancies in BFS flows
predictions produced by earlier two-equation models and RSMs [131] were due to the inability of
the single turbulence scale to model the whole turbulent energy spectrum. By decomposing the
turbulent kinetic energy dissipation rate ε into low and high-wave-number parts, the author showed
a significant overall improvement over the single-scale model with respect to the experimental data
provided by [129], specifically in terms of the reattachment length where the experimental study
gave x1 ≈ 7H, the multi-scale k − ε model predicted x1 = 6.7H while the single-scale counterpart
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predicted x1 = 5.2H. Other modifications on the two-equation k − ε model were made to better
predict BFS flows. Speziale [200] and Benocci and Skovgaard [26] suggested that by introducing
anisotropy (or non-linearity) to the k − ε equations, the prediction could be largely improved.
So and Yoo [196] and Karniadakis et al. [126] showed that new wall-functions could significantly
improve the prediction of the reattachment length. Avva et al. [16] attributed the inaccuracies
of two-equation models to the insufficient order of numerical schemes, by using a second-order
accurate scheme and by taking into account the streamline curvature effects [33], the authors
were able to eliminate the error produced by the baseline k − ε model of Launder and Spalding
[141]. Thangam and Speziale [205] made an important review to address the inadequacies of
two-equation turbulence model (namely the k − ε model) to predict BFS flow due to inaccurate
assumption of isotropic turbulent eddy-viscosity. Thangam and Speziale introduced an anisotropic
eddy-viscosity which improved the prediction of reattachment length to x1 = 6.9H compared
to x1 ≈ 7.0H showed by experimental data [129]. Steffen, Jr. [201] evaluated four different
low-Reynolds-number k − ε models [47, 120, 140, 186] on their predictions of the Driver and
Seegmiller [66] test-case, and comparison was made to a high-Reynolds-number k − ε model with
wall-function. The author [201] showed that, while similar mean-flow quantities were obtained, the
four low-Reynolds-number models (without anisotropic eddy-viscosity of Speziale [200]) severely
under-predicted the reattachment length x1 = 6.26H (from 4.9 [120] to 5.4 [47, 140]). Although
the wall-function slightly improved the result (x1 = 5.5H with wall-function), the defects of k − ε
models in predicting the Reynolds stresses and turbulent kinetic energy reported by [205] were
still present. A new low-Reynolds-number k − ε model was proposed by Abe et al. [2, 3] which
replaced the wall shear velocity uτ by the Kolmogorov velocity uε := (νε)1/4 to account for the low-
Reynolds-number effects near-wall. The numerical results showed good agreement with multiple
BFS flow experiments in terms of reattachment length, and, by solving the temperature equation
[3], the heat transfer coefficient distribution was well predicted comparing to the experimental
data provided by Vogel and Eaton [211] (will be reviewed later). Abe et al. [4] further developed
a non-linear version of [2, 3] by taking into account of features in the RSM and ASM. Excellent
agreements in terms of reattachment lengths with five BFS cases [73, 75, 127, 144, 211] were shown,
and the prediction on skin friction distribution was improved compared to the original linear eddy-
viscosity model [2]. Durbin [71] developed a three-equation k − ω − v2 model to account for the
transport effects of turbulent fluctuation normal to streamlines v2. Tests were performed on cases
of Jovic and Driver [121] (will be reviewed later) and Driver and Seegmiller [66], the reattachment
lengths predicted in both cases agreed perfectly with experimental data. The low skin friction
coefficient in the recirculation zone in the Jovic and Driver test-case [121] was also reproduced
by the computation. The k − ω − v2 model [71] proved able to predicted largely separated, non-
equilibrium turbulent flows.

Vogel and Eaton [211] experimentally studied the heat transfer downstream of a BFS at
Reu∞,H = 2.8 × 104 with an expansion ratio of ER = 1.25, and showed that the heat trans-
fer coefficient rose near reattachment and reached its maximum just before the reattached point
where the highest level of turbulence intensity was measured. Adams and Johnston [7, 8] system-
atically investigated the effects of inflow conditions on the downstream reattaching flow. Reynolds
number 8000 < ReuB ,Hi < 4 × 104 and the boundary layer thickness 0 < δ/H < 2. Suction
tools were used so that the boundary layer thickness could be adjusted without changing the
Reynolds number based on step height Reu∞,H , and the expansion ratio was fixed at ER = 1.25.
In terms of static pressure distribution, the authors [7, 8] reported that, within the given Reynolds
number range, the maximum pressure recovery and the streamwise pressure gradient ∂C∗p/∂X∗

(X∗ = x/x1) both decreased as the boundary layer thickness δ/H increased, and did not depend
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on the state of the boundary layer or the Reynolds number. The turbulent intensity and Reynolds
stresses also followed this trend. In terms of the reattachment length, the authors showed that
x1/H could increase by as much as 30% when laminar boundary layer transitioned to turbulent,
however, once the boundary layer became fully turbulent, any further increase in δ/H would not
affect x1/H. The authors also suggested that if boundary layer state transition occurred when
Reu∞,H was increasing, x1/H could still depend on Reu∞,H up to Reu∞,H = 4 × 104. Ötügen
[170] studied the effect of expansion ratio on the reattachment length, contradictory result was
obtained to previous works [72, 136] as the author discovered a decrease in x1/H when ER was
high and increasing. According to a more recent analysis [163], the discrepancy was most likely
due to insufficient aspect ratio at high expansion ratio.

Lasher and Taulbee [139] were one of the first to use low-Reynolds-number RSM on the BFS
flow. Near-wall turbulence models of Hanjalić and Launder [105] and Shima [187] were employed.
Numerical results were compared with multiple experiments [66, 129, 182]. Short reattachment
lengths were obtained for all cases comparing to the experimental data although improvement was
showed over the hybrid model by Amano and Goel [11]. The authors [139] attributed this discrep-
ancy to the incorrect modeling of the pressure-strain term φij . The authors also suggested that
the inherent unsteadiness of the flow could induce inaccuracies to the prediction of reattachment
length. Lien and Leschziner [147] carefully evaluated then existing k − ε and RSM turbulence
models of the Launder-Reece-Rodi (LRR) type [142] on their abilities to predict BFS flows. The
study showed that k − ε models could not produce similarly accurate predictions as the RSMs
unless a Re-Normalization Group (RNG) formulation [219, 220] was adopted within the non-linear
k − ε model framework proposed by Speziale [200]. A high level of anisotropy was observed as
in previous studies [139, 167] which, according to the authors, implied “fundamental defects in
the pressure-strain proposals” [147]. Later, Hwang and Peng [112] tested a LRR type RSM using
the near-wall model proposed by Chen and Patel [41] on two BFS benchmark cases [66, 129] and
very good agreement with the experimental data. In terms of reattachment lengths, the model of
Hwang and Peng gave x1 = 6.1H for [129] where the experimental result was x1 ≈ 6.2H, and they
predicted x1 = 7.0H for [66] where the experimental length was x1 ≈ 7.0H.

An important reference-setting work was carried out by Le et al. [144] in collaboration with
Jovic and Driver [121]. Le et al. [144] performed a Direct Numerical Simulation (DNS) on the
turbulent BFS flow at Reynolds number Reu∞,H = 5100 with an expansion ratio of ER = 1.20.
The experiment conducted by Jovic and Driver [121] was to validate the results obtained by the
DNS simulation, all mean velocity components and velocity fluctuations were measured by LDV.
At this relatively low Reynolds number, a large corner vortex extending to x = 1.76H could be
found, and the maximum skin friction coefficient (negative) in the recirculation zone was reported
to be 2.5 times higher than that in high-Reynolds-number BFS flows. The time-averaged primary
reattachment length x1 = 6.28H in the DNS study and 6.0H < x1 < 6.1H in the experimental
data. By plotting the budget of the turbulent kinetic energy in the recirculation zone (x = 4.0H),
Le et al. [144] showed that the maximum production and dissipation occurred at the same y/H
but the latter accounted for only 60% of the former which implied the break-down of equilibrium
assumption in the recirculation zone. The turbulent kinetic energy budget at near the domain
outlet at x = 20H showed influence of the separated shear layer which implied that the flow was
not recovered. A later study by Jovic and Driver [122] systematically investigated the change in the
skin friction coefficient in the recirculation zone with increasing Reynolds number Reu∞,H . They
concluded that the minimum Cf,min in the recirculation zone decreased with increasing Reu∞,H by
following Cf,min = −0.19Re−0.5

u∞,H indicating a “laminar-like” behavior. Kasagi and Matsunaga [127]
conducted detailed measurements of the flow over a three-dimensional BFS at Reu∞,H = 5540 with
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ER = 1.504 using Particle-Tracking Velocimeter (PTV). They found a mean reattachment length
of x1 = 6.51H, and demonstrated the anisotropy of Reynolds stresses near the reattachment as
well as the important influence of the triple velocity correlations on the Reynolds stress transport.
Although the inflow conditions were different from the DNS study by Le et al. [144], results of
multiple turbulent quantities and the turbulent kinetic energy budget showed excellent agreement
with those in [144]. Later experiments using Particle Image Velocimeter (PIV) measurement at
similar Reynolds numbers [135, 178, 179] all showed good qualitative and quantitative agreements
with the DNS data [144].

Ever since the publication of the DNS data [144], results obtained by many numerical studies
using low-Reynolds-number RSMs were compared with results in [144]. Ko [132, 133] used the RSM
with elliptic relaxation proposed by Durbin [70] on multiple turbulent BFS test-cases including
[66, 121, 129, 144] (5100 ≤ Reu∞,H ≤ 45000, 1.125 ≤ ER ≤ 1.5). This near-wall RSM [70] was
developed from a simpler eddy-viscosity-based version of Durbin [69], the latter did not perform
well for largely separated flow with strong adverse pressure gradient [70]. Slight under-prediction
was observed compared to the experimental (or DNS) data in terms of the reattachment length
but good agreement with differences less than 10% was obtained nevertheless ([129]: x1 = 6.8H

measured 7.0H, [66]: x1 = 6.1H measured 6.3H, [121, 144]: x1 = 5.4H measured 6.0H − 6.28H).
Significant under-prediction on the peak negative skin friction coefficient in the recirculation zone
was observed for all test-cases. At low Reynolds number Reu∞,H = 5100 [121, 144], Durbin’s
RSM model gave accurate prediction on the recovery of turbulent boundary layer downstream of
the reattachment, while for high Reynolds test-cases [66, 129], the predicted recoveries were slow
indicated by low skin friction coefficient in the recovery region. So and Yuan [199] examined the
performances of many non-linear k − ε models and low-Reynolds RSMs including those proposed
by So et al. [197] and by Yuan and So [224], the latter is a wall-normal-free version of the former.
Comparisons were made based on the experimental data of Jovic and Driver [121]. While the
two new near-wall RSMs [197, 224] more accurately predicted the skin friction distribution in
the recirculation zone, that in the recovery region downstream of reattachment was severely over-
predicted compared to the eddy-viscosity-based model of Durbin [69]. The implementation of
wall-normal did not appear to affect the prediction of RSM. The authors reported that the non-
linear k − ε models predicted the reattachment length better than the RSMs as long as their wall
models had “asymptotic consistency” when approaching the wall.

The low-Reynolds-number RSM proposed by Hanjalić and Jakirlić [106] gave better overall
predictions on both the low- [121, 144] and high-Reynolds number [66] test-cases compared to
those given by Ko [132] with the elliptic relaxation RSM, especially in terms of wall skin friction
coefficient distribution. The authors compared the new low-Reynolds RSM to high-Reynolds RSMs
of LRR type with wall-functions and the low-Reynolds model showed significant improvement in
the near-wall regions. Compared with the DNS data [144], the low-Reynolds model accurately
predicted the primary (x1 = 6.38H DNS 6.28H), secondary, and tertiary reattachment bubbles.
This low-Reynolds model was later modified and developed into the εh-Reynolds-Stress Model
[115]. Craft [60] made modifications to the low-Reynolds-number RSM developed by Craft and
Launder [59] tested it on Driver and Seegmiller [66] and Le et al. [144] cases. Detailed report on
the reattachment lengths was not given in [60] but the mean velocity profiles showed reasonable
agreement with the experimental and DNS data. The velocity fluctuations u′ and v′ agreed well
with the DNS data at Reu∞,H = 5100 but showed significant under-prediction in the recovery
region of Driver and Seegmiller case at higher Reynolds number.

Up to this point, we have covered most of the results on turbulent BFS flows using advanced
RANS models. Thanks to the increasing computational power in more recent years, LES, hybrid
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RANS-DNS and RANS-LES methods were tested on turbulent BFS benchmark cases. Although
Akselvoll and Moin [9] had already performed LES on BFS flow, the test-case was that of the DNS
case by Le et al. [144] where the Reynolds number was low (Reu∞,H = 5100). However, in that
study [9], the authors showed that the LES gave better overall results than a DNS with coarse grid.
Keating et al. [128] used LES to study the test-case of Vogel and Eaton [211] (Reu∞,H = 28000,
ER = 1.25). The authors [128] confirmed the observation by Vogel and Eaton [211] that the maxi-
mum heat transfer occurred slightly before the reattachment, and the computed mean reattachment
length was within 3% of error comparing to the measurements. Frendi et al. [83] compared the
predictive abilities of the Detached Eddy Simulation (DES), Unsteady RANS (URANS), and Par-
tially Averaged Navier-Stokes (PANS) models on the Driver and Seegmiller benchmark case [66].
Better agreement with the experimental data was showed for the PANS model comparing to DES
and URANS. Fadai-Ghotbi et al. [79] performed URANS simulations on the Driver and Seegmiller
case and showed that the grid-converged URANS solution returned to a steady RANS solution
which indicated that URANS models were unable to reproduce the physical unsteadiness of the
BFS flow. Probst et al. [172] compared two variants of DES, the Delayed DES (DDES) and the
Improved Delayed DES (IDDES) with the steady-state low-Reynolds εh-Reynolds Stress Model by
Jakirlić and Hanjalić [115]. The Driver and Seegmiller benchmark case [66] was used for the com-
parison, and both DES-based models showed improvement over the RSM in terms of the prediction
of reattachment length (the RSM tended to over-predict x1/H). Gritskevich et al. [100] introduced
the k − ω Shear Stress Transport (SST) based DDES and IDDES approaches. Numerical results
were compared to the experimental data of Vogel and Eaton [211] and the SST-IDDES approach
gave excellent prediction in terms of the skin friction distribution and the mean velocity profiles.
Shur et al. [192] made modifications to the DES approach to accelerate the transition from RANS
to DES and these modifications gave improved solution to the BFS problem. Smirnov et al. [195]
compared the IDDES solution to RANS solution using the k−ω SST model [155]. The Vogel and
Eaton [211] experiment was used as the test-case and the authors concluded that IDDES model
gave better prediction on the skin friction coefficient while k−ω SST model showed advantage on
the prediction of heat transfer coefficient distribution.

More DNS computations and PIV flow measurements have been performed from 2000 to recent
years. Meri and Wengle [156] simulated a turbulent BFS flow at Reu∞,H = 3300 with ER = 1.5

the incoming flow was a fully developed turbulent channel flow with Reuτ ,Hi = 360. The DNS
data was used to validate their LES results. Barri et al. [19] used DNS to compute a fully
turbulent BFS flow at ReuB ,H = 5600 with an expansion ratio of ER = 2.0. The inflow Reynolds
number based on Hi and the wall-friction velocity uτ was the same as in [156] at Reuτ ,Hi = 360.
Normalized turbulent flow quantities were compared to the PIV measurements by Kasagi and
Matsunaga [127], although the two studies had different geometries (in [127], ER = 1.5), the
DNS solution was almost identical to the PIV measurement everywhere in the computational
domain. The latest PIV measurements on turbulent BFS flows were made by Nadge and Govardhan
[163] which consisted of a complete parametric study on the effects of Reynolds number and
expansion ratio. Among other important findings in this study, the authors suggested that the
flow structure within the recirculation zone became independent of Reynolds number Reu∞,H and
the expansion ratio ER when the Reu∞,H > 3.6 × 104. However, the reattachment length was
already independent of Reu∞,H if Reu∞,H > 2 × 104 for all ERs investigated which indicated
that the constant reattachment length is necessary but insufficient for the flow structure to be also
constant. In terms of the expansion ratio, the authors showed that for ER > 1.80, the reattachment
length was very weakly influenced by the expansion ratio. A recent DNS study was carried out by
Kopera et al. [134] on a similar geometry to Le et al. [144] (ER = 2.0) with increased Reynolds
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number Reu∞,H = 9000. The authors computed a mean reattachment length of x1 = 8.62H

and showed that the skin friction coefficient distribution agreed with that in [144] while the peak
negative cf decreased slightly due to increased Reynolds number as shown by Jovic and Driver
[122].

The latest DNS data on the BFS flow to the author’s knowledge was obtained by Pont-Vílchez et
al. [171]. The inflow Reynolds number Reuτ ,Hi = 790 was more than twice as high as that of Barri
et al. [19]. The Reynolds number based on the inlet bulk velocity was not directly given by the
authors but since the expansion ratio is identical to that of Barri et al. [19] (ER = 2.0), ReuB ,H ≈
12289 can be deduced. By comparing the computed mean reattachment length x1 = 8.8H with the
measured data in [163], the authors deduced that the flow was closed to the Reynolds-independent
range Reu∞,H > 2 × 104. A notable increase in the negative peak skin friction coefficient in the
recirculation region compared to Barri et al. [19] was observed which agreed with the conclusion
drawn by Jovic and Driver [122]. The DNS data in this study can be used as valuable reference
for future works on turbulence modeling.

In order to summarize the progress made in the study of turbulent BFS flows, benchmark cases
(experiments and Direct Numerical Simulations) are summarized in Table (C.2). Each case is
codified by the initials of its authors.

Table C.2: Turbulent benchmarks cases tested for BFS flows in the literature.

Case Reu∞,H Reu∞,δ2 δ/H B.L.
state

ER x1/H Equipment Remarks

Baker 1977 [17] (Bak) 50000 3500 0.7 Tur. 1.10 5.7-6.0 Pulsed-wire -

Chandrsuda and Brad-
shaw 1981 [37] (CB)

102000 400 0.04 Lam. 1.65 5.9 Hot-wire Upper wall inclined 1.7◦ downward

Kim et al. 1980 [129]
(KKJ)

30000,
45000

1300 0.30, 0.45 Tur. 1.33,
1.5

7± 1 Hot-wire Measurements unavailable in recircula-
tion zone

Eaton and Johnston
1980 [75] (EJ)

11000-39000 240-890 0.18-0.23 Lam.,
tra.,
tur.

1.67 6.97-8.2 Pulsed-wire Three set-ups with the same ER and dif-
ferent inflow B. L.s

Adams et al. 1984 [6]
(AJE)

26000 - - - 1.25 - - Parameters provided by Avva et al. [16]
(incomplete)

Seegmiller and Driver
1984 [182] (SD)

- 5000 - - 1.33,
1.5

5.0,
5.33

- Private communication with Amano and
Goel, information incomplete

Driver and Seegmiller
1985 [66] (DrS)

37500 5000 1.50 Tur. 1.125 6.26 LDV Upstream Mach number 0.128

Vogel and Eaton 1985
[211] (VE)

28000 3370 1.07 Tur. 1.25 6.67 LDV Heat transfer was studied

Durst and Schmitt 1985
[73] (DuS)

100000 4000 - Tur. 2.0 8.4 LDV Momentum thickness δ2/H = 0.04

Jovic and Driver 1994
[121] (JD)

5100 610 1.2 Tur. 1.2 6± 0.15 LDV Double-expansion channel

Le et al. 1997 [144]
(LMK)

5100 670 1.2 Tur. 1.2 6.28 DNS No-stress upper wall to simulate double-
expansion channel in [121]

Kasagi and Matsunaga
1995 [127] (KM)

5540 - - Tur. 1.504 6.51 PTV Upstream B.L. state unknown

Reynolds-Averaged Navier-Stokes turbulence models that were tested for BFS flows in the
literature are tabulated in Table (C.3). Each model is codified by the initials of its authors followed
by its type, and in case of multiple models of the same type proposed by a group of authors, the
year is added to distinguish among them.

The published numerical studies on turbulent BFS flows are summarized in (Table C.4). Bench-
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mark case and model names are taken from Table (C.2) and Table (C.3). The spatial discretization
scheme is presented if available (some were not explicitly mentioned by the authors, or mentioned
without full detail).
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Table C.3: RANS models tested on turbulent BFS flows in the literature.

Model Type Remarks

Daly and Harlow [61] (DH-RSM) RSM HRN model

Jones and Launder 1972 [120] (JL-KE) k − ε LRN model

Hanjalić and Launder 1972 [104] (HL-RSM-72) RSM HRN model

Rodi 1972 [174, 175] (Rod-ASM) ASM Standard ASM

Mellor 1973 [153] (Mel-RSM) RSM Wall function

Shir 1973 [188] (Shir-RSM) RSM HRN model, wall reflection effects

Launder and Spalding 1974 [141] (LSp-KE) k − ε Wall function

Launder and Sharma 1974 [140] (LSh-KE) k − ε Standard k − ε model, LRN model

Launder et al. 1975 [142] (LRR-RSM) RSM HRN model

Hanjalić and Launder 1976 [105] (HL-RSM-76) RSM LRN model

Cormack et al. 1978 [56] (CLS-RSM) RSM HRN model

Gibson and Launder 1978 [95] (GL-RSM) RSM HRN model, wall reflection effects

Mellor and Yamada 1982 [154] (MY-RSM) RSM Wall function

Chien 1982 [47] (Chi-KE) k − ε LRN model

Sindir 1982 [194] (Sin-ASM) ASM Production term modified in ε-equation

Amano and Goel 1985 [11] (AG-RSM) RSM Hybrid RSM-eddy-viscosity model

So and Yoo 1986 [196] (SY-KE) k − ε Wall function

Speziale 1987 [200] (Spe-KE) k − ε Non-linear k − ε, wall-function

Shima 1988 [187] (Shim-RSM) RSM LRN model

Myong and Kasagi 1990 [162] (MK-KE) k − ε LRN model, damping function

Rubinstein and Barton 1990 [176] (RB-KE) k − ε Non-linear k − ε, RNG formulation

Durbin 1991 [69] (Dur-RSM-91) RSM LRN model, elliptical relaxation

Yakhot et al. 1992 [220] (YOTGS-KE) k − ε Re-Normalization Group (RNG) formulation

Yakhot et al. 1992 [220] (YOTGS-RSM) RSM Re-Normalization Group (RNG) formulation

Lien and Leschziner 1993 [146] (LL-KE) k − ε LRN model

Shih and Lumley 1993 [186] (SL-KE) k − ε LRN model, no wall model

Durbin 1993 [70] (Dur-RSM-93) RSM LRN model, elliptical relaxation

Menter 1993 [155] (Men-KW) k − ω Shear Stress Transport (SST)

Yang and Shih 1993 [221] (YaSh-KE) k − ε LRN model, wall-normal vector

So et al. 1994 [197] (SASY-RSM) RSM LRN moel, wall-normal vector

Abe et al. 1994 [2, 3] (AKN-KE-94) k − ε LRN model, non-linear eddy-viscosity

Abe et al. 1997 [4] (AKN-KE-97) k − ε LRN model, non-linear Reynolds stress features

Sarkar and So 1997 [177] (SS-KE) k − ε Near-wall model, wall-function

So et al. 1997 [198] (SSGZ-KE) k − ε LRN moel, no wall-function

Yuan and So 1997 [224] (YuSo-RSM) RSM LRN model, wall-normal-free

Hanjalić and Jakirlić 1998 [106] (HJ-RSM) RSM LRN model, wall-normal vector

Craft 1998 [60] (Cra-RSM) RSM LRN model, wall-normal-free

Jakirlić and Hanjalić 2002 [106] (JH-RSM) RSM LRN model, wall-normal vector, homogeneous εh
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Table C.4: Published studies on turbulent BFS flows in the literature.

Study Benchmark cases Models used Discretization scheme Remarks

Baker 1977 [17] Bak LSp-KE 1st-order upwind FD -

Sindir 1982 [194] DrS LSh-KE, Rod-ASM, Sin-ASM - -

Amano and Goel
1985 [11]

SD Rod-ASM, AG-RSM Hybrid central-4th-order-power-law FD
based on cell Reynolds number [10]

-

Celenligil and Mel-
lor 1985 [34]

KKJ MY-RSM 2nd-order central FD (stream function
method)

-

Amano and Goel
1986 [12]

CB DH-RSM, HL-RSM-72, Shir-
RSM, CLS-RSM

- Hybrid RSM-eddy-viscosity
models [11]

Avva et al 1988 [16] DrS, AJE, KKJ, EJ LSp-KE 2nd-order deferred correction FD Streamline curvature
modification

Yoo et al. 1989 [223] KKJ LSh-KE, LRR-RSM, GL-RSM - ε modifications of HL-RSM-72
and Launder et al. [143] were
used

Obi et al. 1991 [167] KKJ, DuS LSp-KE, LRR-RSM, GL-RSM Collocated FV, upwind for convective
flux, central-differencing for diffusive flux

-

Lasher and Taulbee
1992 [139]

KKJ, DrS, SD HL-RSM-76, Shim-RSM FD, Power law and QUICK for convective
term

-

Thangam and
Speziale 1992 [205]

KKJ LSp-KE, Spe-KE Central-differencing for mean-flow vari-
ables, fourth-order central scheme for
Reynolds stresses

-

Steffen, Jr. 1993
[201]

DrS JL-KE, Chi-KE, LSh-KE, SL-KE 2nd-order TVD FV scheme of
Chakravarthy and Osher [35]

-

Ko 1993 [132] KKJ, DrS, JD, LMK Dur-RSM-93 FV, 3rd-order QUICK scheme -

Abe et al. 1994 [2] KKJ, EJ, KM, DrS,
VE, DuS

AKN-KE-94 FD, 3rd-order upwind for momentum,
1st-order upwind for k − ε, central dif-
ferencing for other terms

Focused on flow features

Lien and Leschziner
1994 [147]

DrS (6◦ upper wall) JL-KE, YOTGS-KE, LL-KE,
Spe-KE, RB-KE, GL-RSM

Collocated cell-centered FV, QUICK for
main-flow variables and MUSCL TVD for
turbulent model

LL-KE with Yap correction
[222]. Different combinations
and variants were used for some
models, please refer to [147] for
details

Hwang and Peng
1995 [112]

KKJ, DrS LRR-RSM Staggered FV, power-law differencing for
convective and diffusive terms, central
differencing for source term

LRR-RSM with near wall model
of Chen and Patel [41]

Abe et al. 1995 [3] KKJ, EJ, KM, DrS,
VE, DuS

AKN-KE-94 FD, 3rd-order upwind for momentum,
1st-order upwind for k − ε, central dif-
ferencing for other terms

Focused on heat transfer

Abe et al. 1997 [4] KKJ, EJ, KM, DrS,
VE, DuS

AKN-KE-97 FD, 3rd-order upwind for momentum,
1st-order upwind for k − ε, central dif-
ferencing for other terms

-

So and Yuan 1998
[199]

JD, LMK LSh-KE, Chi-KE, MK-KE,
AKN-KE-94, YaSh-KE, SS-
KE, SSGZ-KE, Dur-RSM-91,
SASY-RSM, YuSo-RSM

- -

Hanjalić and Jakirlić
1998 [106]

JD, LMK, KKJ,
DrS, DuS

LRR-RSM, GL-RSM, HJ-RSM Collocated FV, 2nd-order upwind for
HRN model, 2nd-order deferred correc-
tion for LRN model

All models with Yap correction
[222]

Craft 1998 [60] LMK, DrS Cra-RSM Collocated cell-centered FV, QUICK for
main-flow variables and MUSCL TVD for
turbulent model

Iacovides and Raisee correction
[113]

Probst et al. 2010
[172]

DrS JH-RSM Unstructured FV, 2nd-order central
scheme (DLR-TAU code)

Yap correction [222]

Smirnov et al. 2018
[195]

VE Men-KW QUICK scheme for SINF/Flag-S code,
2nd-order upwind for ANSYS Fluent

-
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Appendix D

Turbulent Equations and Boundary
Conditions

D.1 Favre-Reynolds-averaged Navier-Stokes Equations and
GLVY-RSM

Density-weighted Favre-averaging [81] for compressible flows variable

f = f̄ + f ′ = f̃ + f ′′,

f̃ =
ρf

ρ̄

(D.1)

where (̄·) is the Reynolds-averaging operator, (̃·) is the density-weighted Favre-averaging operator,
(·)′ and (·)′′ are the respective fluctuating parts.

The Favre-Reynolds-averaged Navier-Stokes equations are the following

∂ρ̄

∂t
+
∂ρ̄ũ`
∂x`

= 0

∂ρ̄ũi
∂t

+
∂

∂x`
[ρ̄ũiũ` + p̄δi`]−

∂

∂x`
[τ̄i` − ρu′′i u′′` ] = 0

∂

∂t
[ρ̄h̆t − p̄] +

∂ρ̄ũ`h̆t
∂x`

− ∂

∂xl
[ũi(τ̄i` − ρu′′i u′′` )− (q̄` + ρh′′u′′` )] = Sh̆t

(D.2)

where (̆·) denotes the averaged variable which is neither a Favre-average nor a Reynolds-average, Sh̆t
denotes the turbulent source term introduced by the model. The GLVY-RSM [92] is used to close
the system, where transport equations for the Favre-Reynolds-averaged Reynolds stresses rij =

ũ′′i u
′′
j and for the modified turbulence kinetic energy (TKE) dissipation rate ε∗ = ε− 2ν̆(grad

√
k)2
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are given by

∂

∂t
(ρ̄rij) +

∂

∂x`
(ρ̄rij ũ`)︸ ︷︷ ︸

Cij

=−ρri`
∂ũj
∂x`
− ρrj`

∂ũi
∂x`︸ ︷︷ ︸

Pij

+
∂

∂x`

(
µ̆
∂rij
∂x`

)
︸ ︷︷ ︸

d
(µ)
ij

+d
(u)
ij + Πij − ρεij +�

�>
≈ 0

Kij (D.3a)

∂ρ̄ε∗

∂t
+
∂ (ρ̄ε∗ũ`)
∂x`

=
∂

∂x`

[
Cε

k

ε∗
ρ̄rm`

∂ε∗

∂xm
+ µ̆

∂ε∗

∂x`

]
+Cε1Pk

ε∗

k
− Cε2 ρ̄

ε∗2

k
+ 2µ̆Cµ

k2

ε∗
∂2ũi
∂x`∂x`

∂2ũi
∂xm∂xm

(D.3b)

Pk := 1
2P`` ; Cε = 0.18 ; Cε1 = 1.44 (D.3c)

Cε2 = 1.92(1− 0.3e−Re
∗
T

2

) ; Cµ = 0.09e
− 3.4

(1+0.02Re∗
T

)2 (D.3d)

k := 1
2r`` ; Re∗T :=

k2

ν̆ε∗
; µ̆ := µSutherland(T̃ ) ; ν̆ :=

µ̆

ρ̄
(D.3e)

and for a detailed description of the modeling terms (d(u)
ij , Πij , εij) in Eqn. D.3, we refer to the

original publication [92] of Gerolymos-Lo-Vallet-Younis.

D.2 Boundary Conditions

The derivations of boundary conditions are given in Section. 2.7. Here, we only provide the
exterior state of each boundary condition discussed in Section. 2.7 with addition turbulent variables
including the four Reynolds stresses in 2D and the modified turbulent kinetic energy dissipation
rate. For relatively simple boundary conditions, the expression of the Jacobian matrix J′ij is also
provided.

D.2.1 Adiabatic No-slip Wall

As mentioned in Section. 2.7.2, special care needs to be taken for no-slip wall BCs, since they
require different treatments for the computations of FBC,NUM

Gij
and FBC,APP

Gij
. For the high-order
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boundary flux FBC,NUM
Gij

Vj(Vi, VBC) =



ρi
ui
vi
pi

ũ′′u′′i
ũ′′v′′i
ṽ′′v′′i
w̃′′w′′i
ε∗i


(D.4)

while for the first-order FBC,APP
Gij

, the cell-averaged velocity components in the fictitious cell Ej
〈u〉Ej and 〈v〉Ej , as well as all turbulent variables 〈rij〉Ei and 〈ε∗〉Ei are set opposite to those in
cell Ei to ensure a zero-value approximation of the velocity vector and turbulent variables on edge
Gij

〈V 〉Ej (〈V 〉Ei , VBC) =



〈ρ〉Ei
−〈u〉Ei
−〈v〉Ei
〈p〉Ei

−〈ũ′′u′′〉Ei
−〈ũ′′v′′〉Ei
−〈ṽ′′v′′〉Ei
−〈w̃′′w′′〉Ei
−〈ε∗〉Ei


(D.5)

Based on Eqn. D.5, we obtain J′ij

J′ij :=
∂〈V 〉Ej
∂〈V 〉Ei

=



1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1


. (D.6)
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D.2.2 Isothermal No-slip Wall

For the high-order boundary flux FBC,NUM
Gij

Vj(Vi, VBC) =



pi
RTw

ui
vi
pi

ũ′′u′′i
ũ′′v′′i
ṽ′′v′′i
w̃′′w′′i
ε∗i


(D.7)

while for the first-order FBC,APP
Gij

〈V 〉Ej (〈V 〉Ei , VBC) =



〈p〉Ei
RgTw

−〈u〉Ei
−〈v〉Ei
〈p〉Ei

−〈ũ′′u′′〉Ei
−〈ũ′′v′′〉Ei
−〈ṽ′′v′′〉Ei
−〈w̃′′w′′〉Ei
−〈ε∗〉Ei


(D.8)

Based on Eqn. D.8, we obtain J′ij

J′ij :=
∂〈V 〉Ej
∂〈V 〉Ei

=



0 0 0 1
RgTw

0 0 0 0 0

0 −1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1


. (D.9)

Apart from the two no-slip wall BCs mentioned above, other BCs in the rest of this appendix
treat the low- and high-order numerical fluxes with the same BC relations.
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D.2.3 Riemann Invariant Inflow and Outflow

(1) Supersonic Inflow

V
(supIn)
j (Vi, VBC) =



ρ∞
u∞
v∞
p∞

ũ′′u′′∞
ũ′′v′′∞
ṽ′′v′′∞
w̃′′w′′∞
ε∗∞


(D.10)

Based on Eqn. D.10, we obtain J
′(supIn)
ij

J
′(supIn)
ij = 0. (D.11)

(2) Supersonic Outflow

V
(supOut)
j (Vi, VBC) =



ρi
ui
vi
pi

ũ′′u′′i
ũ′′v′′i
ṽ′′v′′i
w̃′′w′′i
ε∗i


(D.12)

Based on Eqn. D.12, we obtain J
′(supOut)
ij

J
′(supOut)
ij = I. (D.13)

(3) Subsonic Inflow/Outflow

V
(subIn)
j (Vi, VBC) =



ρ∞ (Tj/T∞)
1

γ−1

u∞ + (Vnj − Vn∞)nx
v∞ + (Vnj − Vn∞)ny

p∞ (Tj/T∞)
γ
γ−1

ũ′′u′′∞
ũ′′v′′∞
ṽ′′v′′∞
w̃′′w′′∞
ε∗∞


(D.14)
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D. Turbulent Equations and Boundary Conditions

V
(subOut)
j (Vi, VBC) =



ρi (Tj/Ti)
1

γ−1

ui + (Vnj − Vni)nx
vi + (Vnj − Vni)ny
pi (Tj/Ti)

γ
γ−1

ũ′′u′′i
ũ′′v′′i
ṽ′′v′′i
w̃′′w′′i
ε∗i


. (D.15)

D.2.4 Reservoir Inflow

Vj(Vi, VBC) =



ρBC (Tj/TBC)
1

γ−1

uBC + (Vnj − VnBC)nx
vBC + (Vnj − VnBC)ny
pBC (Tj/TBC)

γ
γ−1

ũ′′u′′BC
ũ′′v′′BC
ṽ′′v′′BC
w̃′′w′′BC
ε∗BC


. (D.16)

D.2.5 Pressure Outflow

Vj(Vi, VBC) =



pj
RgTi

ui
vi
pj

ũ′′u′′i
ũ′′v′′i
ṽ′′v′′i
w̃′′w′′i
ε∗i


. (D.17)
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