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Abstract

In this thesis, we study the discretization of variational problems, via semi-discrete
optimal transport methods. Although these techniques yield much simpler ex-
pressions for their solutions, they also introduce non-convex terms in what were
convex problems before discretization.

The main model is that of a crowd, which minimizes a global energy accu-
mulated during its motion. This evolution is modeled by a variational mean
field game problem, which energy features a term penalizing highly congested
area. We approximate the solutions using the trajectories of a finite set of par-
ticles, however, such finite crowds are not admissible for this problem, due to
the congestion term. In order to circumvent this issue, we consider a similar en-
ergy, however one where the congestion is penalized by a regularized version
of the previous term. Our main result is then the convergence of these discrete
minimizers towards a solution of the mean field game problem. However this
statement requires the selection of an appropriate sequence of regularization
parameters, which cannot be determined just yet. This is only partially an im-
pediment, as the discretization used is very robust, and even for relatively large
values of these parameters, the numerical experiments showcase a satisfying
behavior regarding the modeled phenomenon.

The regularization of the congestion term is defined as a Moreau envelope,
using the 2-Wasserstein distance. These expressions introduce a non-convexity
in the discretized problem which could make numerically computing their solu-
tions difficult. In order to better understand these issues, we gather insightful
information regarding the structure of critical points for the simpler but related
non-convex problem of uniform optimal quantization. These critical configura-
tions and in particular, their limits as measures when the discretization becomes
more and more precise, remain a vastly unexplored part of these optimization
problems.






Notations

We make use of the following notations throughout this document:

+ Q) is a compact smooth subset of R? (a domain) which has non-empty in-
terior.

+ < is an inequality which is true up to a multiplicative (positive) constant
which does not depend on the significant parameters in the quantities that
are compared (which should be obvious from the context).

* [(X) is the interior of the set X.

« if1 <p < oo, LP(X)isthe set of classes (up to the equivalence relationship
of being equal Lebesgue almost-everywhere) of real functions whose p-th
power is Lebesgue-integrable on X. If p = oo it is the set of such classes of
functions which are (essentially) bounded on X.

« T will always be the Polish space C°([0; T, R?) endowed with the uniform
convergence norm and 7, d can be fixed for the entirety of the document.

+ M(X) is the space of finite (signed) Radon measures on the Polish space
X.

+ M, (X) is the subspace of all positive measures in M(X).
« P(X) is the subspace of probability measures in M(X) (def: Appendix A).

* 0, is the Dirac measure at € X, which gives mass 1 to {z} and 0 to any
set not containing .

* spt(p) is the support of the measure p.
« T#pis the push-forward of the measure p along the Borel map 7.

* p L pmeansthat p and p are mutually singular (def: Appendix A).
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i < p means that u is absolutely continuous with respect to p (def: Ap-
pendix A).

H* is the k-dimensional Hausdorff measure (on R%) (def: Definition 13).

Foraset A C RY |A|is the Lebesgue measure of the set. For a real number
a, |a| is still the usual absolute value of a.

Pn(X) is the space of uniform discrete probability measures on X with at
most N points in their support (def: Appendix A).

II(p, ) is the set of transport plans from p to u (def: Definition 1).

C¢(X,Y) is the set of admissible dual potentials for an optimal transport
with cost ¢ (def: Section 1.1, (1.4)).

dom(F) is the domain of the convex function F' (def: Definition 14)
F*is the Legendre transform of the convex function F’ (def: Definition 16).

OF (z) is the subgradient of the convex function F' at z (def: Definition 15).
On the other hand, 0" F(x) is the supergradient of the concave function F’
at z.

Xc is the convex indicator function of the convex set C' (def: Appendix B).

¢° is the c-transform of the continuous, bounded function ¢ (def: Defini-
tion 2). ¢ is the bi-transform (¢°)¢ of ¢.

w, —— pmeans that the sequence (i, )n,en Narrowly converges towards

n—00

u (def: Appendix A).

P,(X) is the set of probability measures with finite p-th order moment on
X (def: Definition 3).

W, is the p-Wasserstein distance on P,(X) (X is clear from the context).

Lag,; (Y, ®)isthei-th Laguerre cell associated to the pointcloud Y = (y1,...,yn)

and the weights ® = (¢4, ..., ¢n) (def: Definition 6).

Lag,(Y) is the i-th optimal Laguerre cell for the optimal transport between
p uniform supported on the point cloud Y and a reference probability mea-
sure p. This Laguerre cell is also written Lag, when there can be no confu-
sion on the point cloud considered.
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B(Y) = (i(Y),...,bny(Y)) is the point cloud obtained by taking the p-
barycenters (in the same order) of each optimal Laguerre cell Lag;(Y") (in
the optimal transport towards p).

AC([0;T], X) is the set of absolutely continuous curves [0; 7] valued in X
(def: Definition 7).

H* is the Sobolev space H*([0; T, R?), again, for a T'and d that can be fixed
at the beginning of the document.

Whs is the 2-Wasserstein distance on P,(H?*) associated with the Sobolev
norm.

I'in js the subspace of I' constituted of piecewise affine fonctions on the
([20; (i 4+ 1)d]); of [0; 1.

VIl






Introduction

Le point de départ de cette thése est la description du mouvement d’'une foule
en utilisant un nombre fini d'individus. Ce mouvement est effectué de maniére
a éviter autant que possible l'attroupement d’individus (la congestion) en un
méme endroit de 'espace. Un bon exemple d'un tel mouvement est donné par
I'évacuation d'une salle, dans laquelle un incendie (ou autre péril) s'est déclaré.
Les individus ont alors tous un but, par exemple atteindre l'issue de secours,
mais une ruée générale vers cet objectif peut engendrer un blocage, lorsqu'un
trop grand nombre d'individu tente de passer au méme endroit afin de sortir
plus vite. Ce genre de congestion s'interpréte mathématiquement tres facile-
ment lorsque la population est tellement nombreuse que sa répartition peut
étre assimilée a celle d'une densité sur le domaine d'évolution (en l'occurence,
la salle). Dans notre exemple d'incendie, pour ce genre de foules "infinie", la con-
trainte se traduit par le fait que la densité i de la foule ne doit jamais dépasser
1. En revanche, dans le cas d'une foule discréte (et donc non-fictive), le mod-
ele mathématique cesse d'étre adapté, et de maniere plus générale, exprimer la
contrainte de non-congestion est un probléme n'acceptant pas de solution im-
médiate. Mentionnons en particulier qu’il ne semble pas satisfaisant d'imposer
seulement la condition que deux individus infinitésimaux ne se croisent jamais.
Un modéle similaire fut proposé par Maury et al. [47] dans lequel les individus
sont représentés par des sphéres dures dont le rayon tend vers 0 et il fut déja
observé dans ce cas que les dynamiques observées a la limite ne correspondent
pas a la contrainte de borne supérieure sur la densité.

Mouvement de foule avec congestion comme un probléme variationnel
Le mouvement de foule est décrit comme la minimisation d'une énergie durant
le mouvement des individus dans un domaine. Un des termes de cette énergie
somme toutes les contributions infinitésimales des endroits ou la concentra-
tion de la population est trop importante, donnant une (trop) grande énergie
aux population s'agglomérant trop durant le mouvement. Ce terme de "con-
gestion" est habituellement accompagné d’'un terme évaluant (en un sens) la
distance des individus par rapport a un but, lequel peut changer au cours du



temps. Le mouvement résultant cherche a ménager la chévre et le chou en
essayant d'amener tous les individus vers leur but, tout en ne les concentrant
pas trop dans une méme zone. La construction du mouvement lui-méme, et en
particulier sa discrétisation en temps dans les exemples numériques, peut en-
suite se faire de plusieurs manieres: La fagon la plus intuitive, peut-étre, étant
donné la nature du probleme étudié, est d’effectuer une descente de gradi-
ent sur I'énergie (terme de "congestion" + terme d’ "objectif") dans I'espace des
mesures de probabilités. Ces flots gradients pour la métrique de Wasserstein
ont été introduits par Jordan, Kinderlehrer et Otto ([34]) comme une réécriture
d'équations d'advection-diffusion, et les applications de ces notions pour des
mouvements de foules avec congestion sont étudiées dans Maury et al [46],
et Mérigot et al [40]. Un autre point de vue, qui est celui que nous adoptons
dans le chapitre 2, s'est développé avec l'introduction des jeux a champs moyens
en 2006 (Lasry et Lions, [37], [38] et Caines, Huang et Malhamé, [33]), et, dans
notre cas, de leur formulation variationnelle (voir Cardaliaguet, [14], Santambro-
gio, [64], et [8]). Ces jeux a champs moyens "non-congestionnés" sont étudiés
dans Cardaliaguet, Mészaros et Santambrogio, [15]), et modélise I'évolution de la
foule comme la minimisation d’'une énergie, globale sur toute la durée du mou-
vement cette fois-ci, la population étant représentée par une densité de proba-
bilité evoluant continument dans le temps. Remarquons ici que ces deux mod-
eles sont loin d'étre équivalents en général. Le modele "flot gradient" favorisera
un comportement peu prédictif pour sa population, abouttisant souvent a des
comportement tres égoistes a I'échelle des individus qui n'anticipent pas la tra-
jectoire possible de leurs congéneres. Par opposition, la foule modélisée par
le jeu a champ moyen cherche un mouvement minimisant de facon globale a
la fois en temps et espace, et la trajectoire totale des individus est donc plani-
fiée en fonction de celle des autres individus, de maniére a minimiser |'énergie
accumulée par toute la foule (le mécontentement global). Le second modele
n'est pas nécessairement "meilleur" parce qu'il implémente cette capacité d'un
individu a anticiper le mouvement des autres, dans le sens ou il décrit le mouve-
ment d’'une foule suivant idéalement les consignes (d'évacuation dans notre mé-
taphore initiale) et une bonne modélisation d'une foule "réaliste" se trouverait
probablement a mi-chemin de ces deux modeéles mathématiques.

Afin de permettre la résolution numérique de ces problémes (qui sont posés,
par essence, en dimension infinie), la distribution de la population doit étre
discrétisée. Dans la littérature (Achdou et Capuzzo-Dolcetta [1], Briceno-Arias,
Kalise et Silva [13]), cela est souvent fait en approximant sa densité par une fonc-
tion plus simple définie par morceau, et pour ce faire, les équations décrivant
I'évolution de la foule (en particulier la fameuse équation de continuité) doivent
étre adaptées afin de conserver la régularité du mouvement. Au lieu de cette
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discrétisation "Eulérienne", gardant des mesures a densité en chaque temps,
nous cherchons des approximations par des mesures discretes en définissant
un probléme variationnel similaire au probléme de jeux a champs moyen initial,
mais posé sur des populations ayant un nombre fini d'individus. Cette discréti-
sation est qualifiée de "Lagrangienne" car elle se fait au niveau des individus
de la population, et non de la proportion de ces individus en chaque point du
domaine. L'équation de continuité n'a alors pas a étre changée, et se simplifie
méme en un systeme d’EDO. L'énergie a minimiser en revanche doit étre régu-
larisée, afin d’étre toujours bien définies pour des distributions de population
discretes (qui sont, pour les termes de congestion utilisés, infiniment conges-
tionnées). Le but est ensuite de montrer que lorsque les parametres de régu-
larisation sont pris tres petits et que la population compte un grand nombre
d’individus, on retrouve, de facon approchée, la répartition de la population in-
finie minimisant le probléme de jeux a champ moyen.

Transport optimal et approximation discrétes de mesures La théorie du
transport optimal joue un rdle central dans cette thése permettant a la fois de
définir une notion de continuité pour les déplacements d'individus mentionné
dans le paragraphe précédent, mais fournissant également une métrique selon
lagquelle juger de la qualité de nos approximations. Au coeur de cette théorie
(voir Villani, [67], [68], Santambrogio, [63] et Peyré et Cuturi [56]), réside la no-
tion de comparer deux mesures en terme de la quantité d'énergie (ou du codt)
a dépenser pour déplacer la masse de I'une (un tas de sable dans la métaphore
originelle de Monge) vers celle de I'autre (un trou a remplir). Cette comparaison
"horizontale" contraste avec celles plus standards, "verticales", induite par une
norme L? sur les éventuelles densités de ces mesures, ou de variation totale, par
le fait que la "distance" entre les mesures est calculée suivant les déplacements
de matiere dans l'espace ambiant, et non les différences de quantité de matiere
en chaque point, permettant une prise en compte plus fine de la géométrie du
domaine. En particulier, elle permet de définir une notion de distance et de con-
tinuité qui sont bien adaptées a la modélisation de foules, comme décrite dans
le paragraphe précédent (ces faits sont bien connus, depuis les écrits fondateurs
de Lasry et Lions et Jordan, Kinderlehrer et Otto).

Dans notre cas, cette notion de distance nous permet également de définir
une version régularisée de la pénalisation de congestion d'une mesure apparais-
sant dans nos problemes de jeux a champs moyens, laquelle est bien définie,
méme dans les cas ou la population étudiée n'est pas distribuée selon une mesure
a densité. Essentiellement (et méme si ce n'est pas rigoureusement vrai), cette
nouvelle fonction pénalise maintenant la distance de transport optimal de la
mesure discrete a une mesure peu congestionnée. En revanche, le nouveau
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probleme "discret" perd la convexité dont profitait son parent "continu", et une
étude des points critiques possibles simpose.

Notion Lagrangienne de point critique pour la quantification optimale. Le
probleme d'approximation du mouvement non congestionné d’'une foule par
celuid'une nombre fini d'individus posséde de nombreuses similarités évidentes
avec celui d'approximer (au sens de la distance de Wasserstein) une densité de
probabilité par une distribution discréte et uniforme d'un nombre fini de partic-
ules. Par certains aspect ce dernier probléme peut étre vu comme une coupe
a un temps fixé du premier, et il est raisonnable d’espérer tirer des informa-
tions utiles de I'étude de ces questions dans un cadre "plus simple". Le sec-
ond probléme est connu dans la littérature sous le nom de quantification op-
timale d'une mesure (uniforme dans notre cas), et a été étudié sous plusieurs
formes (notamment, avec I'énoncé que nous considérons, par Balzer et al. [7],
De Goes, Breeden, Ostromoukhov and Desbrun [17]). Nous nous concentrons
sur I'approximation par minimisation de la distance de Wasserstein entre notre
densité et une mesure discréte uniforme, les positions des masses de Dirac
étant les inconnues de ce probleme. Ce probleme décrit, en un certain sens,
une version statique en temps du probléme de jeux a champs moyen étudiée
dans le Chapitre 2 et fut introduit initialement par Balzer et al. comme une alter-
native faisant intervenir les cellules de Laguerre, communes en transport opti-
mal semi-discret, au lieu des méthodes basées sur les cellules de Voronoi, alors
communément utilisées. La fonctionnelle (en les positions des masses de Dirac)
minimisée est alors non-convexe et exhibe des points critiques ne correspon-
dant pas du tout a des échantillonages satisfaisant pour la mesure a densité
sous-jacente. On notera cependant que lI'expérience suggére qu'il est impossi-
ble de rester bloquer sur un de ces points critiques "dégénérés" lors de la min-
imisation.

Modéle et énoncés mathématiques: Nouscommencons par étudier un prob-
leme de mouvement de foules représenté par une mesure de probabilité sur
I'ensemble des trajectoires possibles, I' := C°([0; 7], R9):

Qe P(I)

Nous considérons le probléme de minimisation suivante, parmi les mesures
de probabilités sur I':

(M,o) :inf {J(Q) | Q € P(T') s.t. eo#Q = p°}

ou I'on minimise I'énergie globale:

Q) = [ LiQ+ [ Fletui+ 6@,
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Le premier terme est un terme cinétique L(v) = fOTL(y’(t))dt pénalisant les
vitesses trop grande le long des trajectoires. Le second terme, faisant intervenir
F, pénalise des valeurs trop larges de la densité de la population au temps ¢,
e #Q(et interdit la présence de singularités dans ces mesures). G, enfin, est
une fonction continue pour la convergence étroite de mesures dans P(I"), don-
nant un but aux individus de la foule représentée par @ sous la forme d'une
valeur minimale a atteindre par . Mentionnons par exemple le terme "poten-
tiel' G(Q) = [, ¢der#Q qui encouragera les individus & terminer leur trajec-
toires aux points de () ou le potentiel ¢ est le plus bas.

Nous qualifions ces problemes de Jeux a champs moyen variationnels, du fait
que I'énergie J peut étre vue comme une énergie minimisée par les joueurs d'un
jeu a champs moyen mis sous forme variationnelle dans le sens ou une mesure
de probabilité @ € P(I') minimisant (M o) induit une stratégie mixte d'équilibre
pour les participant a un tel jeu. Notre but dans I'étude de ces problemes était
d'approcher leurs solutions par des mesures de probabilité discretes sur T,

N
=1

Pour ce faire, nous cherchons a construire (J;y comme un minimiseur pour
une énergie similaire a .J, mais optimisée sur I'espace discret Py (I"). La fonction-
nelle J elle-méme, ne convient en revanche pas pour cette construction, car le
terme de congestion F' pourrait (et dans la plupart des cas va) étre +oo sur les
mesures discretes, ne nous donnant aucune information sur notre éventuelle
proximité a un minimiseur de J. Nous nous intéressons donc au probleme (dis-
cret en espace):

(M, en) - nf {1 (Qn) | Qn € Py(D), eo#Qn = i},
ou I'énergie J., a été redéfinie afin d'étre finie pour des mesures discretes:

I (Q) = / L(¥)dQ(y) + / Fo (edQ)dt + G(Q)

etla mesure de départ est mainentant également une mesure discrete uniforme
dans Py (R?). La suite de paramétre (ey)yen devra tendre vers 0 quand N tend
vers l'infini afin d'obtenir une bonne approximation a la limite.

Le terme pénalisant la congestion, F'(e;#()) a été remplacé par une version

régularisée, que nous appelons par la suite I'enveloppe de Moreau de F' (par
analogie avec une définition similaire dans un espace de Hilbert):
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. W3 (p, 1)
RY, Fo(u) == inf —22 F
Sip e P(RY), Fo(n) s (p)

Les propriétés de cette enveloppe sont étudiées dans le premier chapitre.

Dans les cas que nous étudions, les mesures construites sont discretes et F' est
donnée par une intégrale:

F(p) = {fg flp(x))dr ifp < dx

+00 otherwise.

Le calcul des valeurs de F. se fait alors en utilisant son expression duale,
similaire a celle obtenue pour un probléme de transport optimal:

F(M)ImaXN ﬂ_/ f ¢}_—|Ix—yi||2 dzx
c PcRN i—1 N Lagi(y7q>) ! 26

pour p = + Zﬁvzl dy:» ou (Lag,; (Y, ®)); sont les fameuses cellules de Laguerre
(utilisées notamment en transport optimal semi-discret, [55]):

Lag,(Y,®) :={z € Q, c(z,y;) — ¢ < c(z,y;) —¢; forj=1,...,N}

L'expression maximisée admet une Hessienne (en ¢4, ..., ¢x) qui est inversible
sous une condition d'aire non nulle sur les cellules de Laguerre Lag,(Y, ®), per-
mettant d'approcher efficacement ses solutions via un algorithme de Newton.

Dans le Chapitre 2, nous montrons un résultat de convergence en un certain
sens (Proposition 17, Chapter 2) du probléme discret en espace (MN’H%vaN), vers
le probléme continu (M0). Cette convergence est tres similaire a la fameuse
I'-convergence, et implique en particulier que les minimiseurs pour le prob-
leme discret en espace (My 0 ) convergent étroitement (a une sous-suite
éventuelle pres) vers un minimiseur du probléme continu (M 0), quand N tend
vers l'infini. Ce résultat requiert cependant une condition sur la décroissance de
ey vers 0. Plus précisément, cette décroissante doit se faire de facon a dominer
a la fois la vitesse a laquelle 1%, approxime p° au temps initial, c'est-a-dire que:

W;(,u?v,,uo) = ONoo(EN)

etlavitesse alaquelle une solution Q.,;, de (M o) estapprochée par une mesure
de Py (H*([0; T],RY)), pour un certain espace H* ad-hoc:

Si 7y := min {W;(@, Quin) | Q € Py (H*([0; T],]R%.d))} alors, il faut que:
TN = ON—oo(EN)-
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Sous ces deux conditions de domination, la convergence mentionnée plus haut
a lieu.

Enfin, dans les simulations numériques, nous considérons également le prob-
léeme completement discrétisé, a la fois en espace et en temps:

(MN,,u(])\,,&N,sN) :inf {‘]51\1,51\1(@) ‘ Q € PN(F§2)> 60#@ = ,U?V}

Ici, v est un pas de temps, tendant vers o quand N tend vers l'infini et ;" est
'ensemble des trajectoires affines par morceaux sur des intervalles de taille .
L'énergie totalement discrete minimisée est:

My—1

Jinen(Q) = / LY)AQ(M) +0x 3 Foy (eisy#Q) + G(Q)

=1

avec Myoy =1T.

De la méme facon que pour le probleme discret en espace et continu en
temps (My 0 ), NOUS montrons que les solutions du probleme complete-
ment discret (MN#%(;N’EN) convergent étroitement vers des solutions du prob-
léme continu (M,,0). Ce résultat requiert les mémes hypothéses sur la décrois-
sance de ey plus une condition similaire sur le pas de discrétisation en temps,
ON.

Nous approchons les solutions du probléme discrétisé (My 0 5,.c,) Parun
algorithme de type quasi-Newton, limited-memory BFGS. Ce probléme est de di-
mension finie en les positions des trajectoires a chaque pas de temps, et le gradi-
ent de I'expression minimisée peut se calculer explicitement pour certaines én-
ergies potentielles G. Les valeurs de ¢y et 6y appropriées ne sont malheureuse-
ment pas accessibles, a I'exception de certains cas tres particuliers, mais les ré-
sultats numeériques sont tres satisfaisants méme pour des valeurs arbitraires de
en, et les valeurs de T et j peuvent étre déterminées expérimentalement de
maniéere a limiter .

Les fonctionnelles minimisées dans (MN’H%’EN) et (MN7M?V75N75N) ne sont pas
convexe et l'algorithme L-BFGS risque d'aboutir a un point critique (une trajec-
toire) non minimisante. Dans I'espoir de bien choisir I'nitialisation u%; et ey,
afin d'éviter ces trajectoires dans l'optimisation, nous étudions le probleme de
I'approximation d'une mesure a densité par une mesure uniforme discrete:

N
. 1
min § W3 (p, 1) | o= 5230y ¢ - ()
=1
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Il s'agit évidemment d'un probléeme plus simple, cependant, il présente des diffi-
cultés similaires du fait de l'interraction entre la distance de Wasserstein et une
dépendance en la position de masses de Dirac. Ce dernier probleme, parfois
appelé quantification optimale uniforme d'une mesure, a été étudié numérique-
ment dans plusieurs publications (notablement [17], [69]) depuis sa premiére
mention par Balzer et al. [7]. Le probléeme général de quantification optimale
est plus ancien (nous référons le lecteur a [32] pour une présentation plus dé-
taillée), et I'algorithme privilégié pour sa résolution est celui de Lloyd, consistant
a partir d'un nuage de points et raffiner les positions dans cet échantillon en en-
voyant chaque point vers le barycentre de zones d'une partition de I'espace qui
est ensuite recalculée pour le nouveau nuage de points. Un algorithme similaire
est utilisé pour la quantification optimal, ou les points du nuage sont projetés
sur le barycentre de la cellule de Laguerre optimale (pour le transport optimal
vers p) associée:

Yo e QN )

Yk—i—l — B(Yk)

ou B(Y) = (b1(Y),...,bn(Y)) est le nuage des barycentres des cellules de La-
guerre optimales associées a Y:

b;(Y)=N zdp(x).
Lag,; (Y,®)

Les études numériques que nous mentionnons mettent en évidence deux
faits amplement observés et commentés dans la littérature, a savoir que le nu-
age initial Y doit étre constitué de points bien espacés afin d’'obtenir une bonne
convergence d'une part, et qu'une fois cette selection faite, peu d'itérations de
I'algorithme de Lloyd (voire méme une seule) aboutissent a une mesure donnant
une bonne erreur de quantification. Cependant, il semblerait qu'aucune étude
théorique de ces affirmations n‘ait été menée, et en particulier quantitative du
taux de convergence (en le nombre de masses de Dirac, V) d'un minimiseur local
de (1) vers p, ou plus généralement de la distance entre les points du nuage initial,
afin d'éviter d’obtenir un point critique non-minimisant en sortie d'algorithme.

Nous fournissons dans le chapitre 3 des estimations explicites (et en partic-
ulier non-asymptotiques) pour la distance de Wasserstein entre la mesure uni-
forme obtenue aprés une étape de l'algorithme de Lloyd et la mesure a den-
sité échantillonnée. En particulier, si les points de Y sont espacés d'au moins
C.N~Y4 (en l'esprit, répartis sur un ensemble de dimension d), alors,

N

1 1

W22 <p7N25bZ(Y)> < K-N_(llv
=1
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avec une constante explicite K ne dépendant que de d, C et €. Ces estimées
impliquent en particulier 'observation empirique qu’en échantillonnant a partir
de points suffisamment espacés, la mesure supportée sur les barycentres est
proche de la mesure sous-jacente p au sens de W5, lorsque le nombre de points
tend vers l'infini.

Cerésultat peut étre vu comme une variante de l'inégalité de Polyak-tojasiewicz
pour la minimisation de la fonction:

N
1
Fn:Y e (Rd)N — W <P7 Nzéyz) )
i=1

avec cependant un terme divergeant lorsque le nuage de points n'est pas assez
espace:

1 /1\¢! ,

Fx(¥) = Caagy () < NIVENO)]

N \ e
ou ¢ est la distance minimale entre deux points du nuage Y. Similairement a
une véritable inégalité de Polyak-tojasiewicz, cette inégalité suggere que suivre
le flot gradient de Fy nous approche d'un point critique, tant que I'on peut main-
tenir une distance suffisante entre les points obtenus a chaque itération. Nous
garantissons cette distance minimale durant le mouvement par une inégalité de
Gronwall (ou son analogue géométrique discréte en temps), ce qui nous permet
d'étudier tout d'abord les mesures obtenues apres quelques pas de descente de
gradient pour Fy:

YoeQV
YVEH = Yk — NoyVEN(YF) = YF + 7y (B(YF) = YF)

Pour un pas de temps 0 < 7y < 1 et un nuage de points espacés de C.N~/1,
nous déterminons ky tel que aprés ky pas de descente de gradient, le nuage
obtenu est proche de p, au sens de Wasserstein:

N 1
1 =g 1
W22 (/77 ﬁ E 5yf]v) = ON—)oo (VVQ2 (P, 5Y197> ‘ .Nd2) .
=1

Le taux de convergence (en N) est bien pire dans ce cas qu'aprés une étape
de l'algorithme de Lloyd, et ce résultat n'a pas d'intéret au-dela de présenter,
dans un cas simple, cette non-dégénérescence de la structure du nuage de points,
durant un tel mouvement de particules. En revanche, retournant au contexte
des mouvements de foules non-congestionnés, il est possible d'évaluer les valeurs
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des parametres de discrétisation ¢y dans le cas du flot gradient étudié par Leclerc,
Mérigot, Santambrogio et Stra. Cette étude est effectuée dans la Section 3.4 et
nous permet de nous débarasser d'une hypothése artificielle utilisée par les au-
teurs pour démontrer la convergence du flot discrétisé.

Cependant, les inégalité de type Gronwall, garantissant une distance mini-
male entre les individus (les masses de Dirac) durant le mouvement, utilisent
beaucoup l'ordre 1 des équations différentielles vérifiées par les trajectoires, et
s'adaptent mal a notre modéle (d'ordre 2 en temps) de jeu a champ moyen.

Le dernier chapitre de cette thése se tourne vers les cas ou les mesures
de quantification discrétes ne convergent pas vers la densité échantillonnée p.
Méme dans ces cas tres dégénérés, il est possible de mettre en évidence une
grande régularité des mesures limites, héritée principalement de la symétrie
des cellules de Laguerre (elle-méme due aux conditions d’optimalités pour Fy).
Nous démontrons tout d'abord que les limites de ces mesures discretes sont
solutions d’'un probléme de minimisation de distance de Wasserstein, sous cer-
taines restrictions de répartition faisant intervenir le support de la mesure limite,

Hoo-

min{W3(p, ) | € P(Q), p(C) = p1e(C)
pour toute composante connexe C de spt(fi)}-

Nous nous intéressons ensuite aux mesures vérifiant une version continue
de la condition de criticité "étre le barycentre de sa cellule de Laguerre" (obtenue
pour le support d'une mesure discréte optimale pour le probléme de quantifica-
tion uniforme). Cette nouvelle condition se définit en remplacant les cellules (et
la mesure échantillonnée sur celles-ci) par une désintégration de p par rapport
au plan de transport entre u et p: (py)yespr(n). La condition de criticité devient
alors:

Pour u-presque touty € Q, y = / zdp,(z)
Q

et on dit que la mesure p est critique Lagrangienne (pour W(., 1)) lorsque cette
condition p-presque partout est vérifiée.

Le résultat principal étudié dans ce chapitre est si, oui ou non, toute mesure
critique Lagrangienne est supportée sur une union dénombrable de surfaces
régulieres de dimensions entieres et est absolument continue sur chaque sur-
face par rapport a la mesure de Hausdorff de méme dimension. Une réponse
positive est suggérée par I'expérience, ainsi que par un résultat de "boules ex-
térieures" pour le support d'une telle mesure: En effet, pour p-presque tout
pointy € Q, et x € spt(p,), aucun point du support de ;. ne peut étre dans la
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boule de diameétre [z, y].

Cette propriété est a priori trop faible pour obtenir une régularité meilleure
que la rectifiabilité pour le support de y, et en particulier, elle ne donne pas
d'informations sur le comportement de la mesure Lagrangienne critique sur le
support. Un résultat pouvant donner de la régularité supplémentaire est un
théoréme prouvé par Alberti, donnant une structure C?-rectifiable pour les par-
ties du support sur lesquelles la dimension de spt(p, ) est constante. Ce résultat
est valable a un ensemble de mesure de Hausdorff nulle pres, et la conjecture
se réduit donc uniquement a démontrer I'absolue continuité de p par rapport a
la mesure de Hausdorff de dimension adéquate sur chaque partie du support.
Cette affirmation reste encore une conjectures pour les parties du support dont
la dimension k serait comprise entre 2 et d— 1 (une définition rigoureuse du sens
de cette dimension est donnée dans ce chapitre). En revanche, nous donnons
une démonstration complete de cette affirmation pour les parties de dimen-
sions k = 0,1 ou d et réduisons le résultat (pour toutes les dimensions possi-
bles) a une propriété de continuité Lipschitz sur les variations de l'orientation
du support de p,, en fonction de y.

"






Chapter 1

Optimal transport and
discretization of congestion
penalizations

In this chapter, we briefly recall some well-known facts in the theory of optimal
transport and, in particular, on the semi-discrete case. We then present some
new results and proofs of properties for functions defined as Moreau envelope
with respect to the 2-Wasserstein distance (this is Section 1.2 of this chapter).

1.1 Optimal transport and the semi-discrete setting

Optimal transport was introduced in 1781 by G. Monge in his "Mémoire sur la
théorie des déblais et des remblais” [54]. It took the form of a very simple prob-
lem of moving a mass of sand from a location to another while minimizing the
travelled distance.

With this formulation, each particle of sand located at x is transported to
T'(z) with a cost proportional to ||7'(z) — (z)|| and the total cost to move a pile
of sand S, to a location S; (a set of same volume) is proportional to

|7 (z) — x| da
So

which Monge then minimizes among the transport maps 7' : Sy — S; under the
condition that they are volume preserving.

Many issues, such as existence of such maps, of one which minimizes the
total cost, lack of linearity in the solution 7', ... make this problem ill-posed and
Monge's solution is neither very satisfactory, nor general.
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The problem was explored again by A.N. Tolstoi in "Methods of finding the
minimal kilometrage in cargo-transportation in space” for the National Commis-
sariat of Transportation of the Soviet Union in 1930 [66]. In this paper, the prob-
lem is considered in a discrete setting, as different cargos are transported be-
tween sources and destinations along the railway network of the Soviet Union.
Although it seems doubtful that Tolstoi had a rigourous proof for it, his solu-
tion is actually an optimum and he did discover the now well-known heuristic of
there being no negative cycles in the transport plan (see [56], proposition 3.4).

However, it is L. Kantorovich who is often considered to be the first math-
ematician to rigourously study the problem and make significant advances re-
garding its resolution in his paper "On the translocation of masses" for the Pro-
ceedings of the USSR Academy of science in 1942 [35]. His definition of the op-
timal transport cost is the one used today, defined as the minimal average cost
of pairing between two general probability measures, in Definition 1. He also
showed that, in some specific cases, the optimal transport cost can be com-
puted from the now well-known Kantorovich Potentials (see Proposition 2).

Modern formulation of Optimal transport: Kantorovich’s formulation can
be developed in very general spaces and for very general costs. However, in this
thesis we will often make assumptions to guarantee the existence of these Kan-
torovich Potentials (typically through compactness of the support of our mea-
sures), or to obtain optimal transport plans which are given by maps (by consid-
ering measures which admit densities with respect to Lebesgue measures and a
cost given by the euclidean distance). We now recall a somewhat general setting
in which transport problems can be studied and then develop the results for ex-
istence of potentials or transport maps which we shall use. All of the notions
on Optimal transport as well as the corresponding proofs can be found in the
books by C. Villani, [67] and [68], or in the one by F. Santambrogio [63]:

Definition 1. Let X, Y be two Polish spaces and let ¢ : X x Y — R be a lower
semi-continuous function, bounded from below. Let p € P(X), u € P(Y),

The optimal transport cost associated with ¢, between these measures is the value
of the infimum:

Lipy) = inf / (,y)dv (2, y) (1.1)
XxY

~vEl(p,u)

and the set of transport plans between p and p, I1(u, v) is the set:

I, p) = {7y € P(X XY), nx#y = p,ny#7y = pu} (1.2)

In the above Definition 1, lower semi-continuity of c is the property described
in Definition 17, Appendix B and wx# is the push-forward measure of v along

14



the projection on the first coordinate (and idem for my#~):
x: () e X XY 52X, nmy:(r,y) e X XY syeY.

Push-forwards of measures through maps are defined in Appendix A, Defini-
tion 9.

It is important to note here that, under these assumptions on X and ¢, the
infimum problem (1.1) admits solutions. This is shown using the direct method in
Calculus of Variations, of taking a minimizing sequence, showing some compact-
ness on it and concluding by lower semi-continuity of the minimized functional.
We make ample use of this method whenever we need to show existence of
solutions to such variationnal problems (see the proof of Proposition 5 for an
example).

A major interest of Kantorovich’'s formulation is that Problem (1) is a convex
problem which admits a dual formulation as a concave one, through the cele-
brated Fenchel-Rockafellar duality (see Appendix B Theorem 46, as well as [23]).
Let us recall here (Appendix B.1) that the space M(X) of finite signed (Borel)
measures can naturally be put in duality with the space of continuous bounded
functions on X (although it is not the topological dual of C{(X), except when X
is compact). It is this duality which is exploited in Fenchel-Rockafellar theorem:

Theorem 1 (Kantorovich's duality). Assume that X and Y are compact spaces.

I.(p,p) =  sup /wdp+/¢du (1.3)
X Y

¥, $ECE(X,Y)
the supremum being taken over the space
CH(X,Y) ={¢, 9 € CJ(X) x G(Y),
V(z,y) € X xY ¥ @ d(x,y) = v(x) + ¢(y) < c(z,9)} (1.4)

We recall now a proof for this duality result, as it can be obtained in a very
similar fashion to that in which we obtain strong duality for our regularized con-
gestion Problem (1.13):

Proof. We define the following two convex functions and one linear map on the
product of these last vector spaces:

F:¢,¢€CO(X)><CO(Y)»—>/){zﬂdp—%/yqbd,u
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0 ifo <c

G:0elC% (X xY)r—
¢ ( ) {+OO otherwise.

and
A:p,p €CUX) xCUY) s o @ € CO(X xY)

Then, the dual formulation (1.3) can be simply written as:

—inf {F(=(,9)) + G(A(,9)) | ¥, 6 € C°(X) x C°(Y)}

We are going to use Fenchel-Rockafellar theorem from Appendix B, Theo-
rem 46, for the duality between C°(X xY) and M (X x Y. The primal probléme
(1.1) could be formulated as an inf-convolution:

Lip,p) = inf y)dy(z,
(p: 1) et /X N c(z,y)dy(x,y) + Xri(up (V)

with the definition of the convex indicator function of transport plans from p to
I X1i(u,p), from Appendix B. However, both functions in the sum enjoy too few
continuity in order for this to be done easily, and instead, we apply the theorem
to the dual expression (or rather, its opposite in order to start from an infimum).
F is linear continuous on C(X) x C°(Y) and G is lower semi-continuous on
C’(X xY) and dom(G) # 0 therefore, the hypotheses of the theorem are trivially
verified. We may now write:

inf {F(—(¥,9)) + G(A®, 9)) | ¥, 6 € C°(X) x C°(Y) }
=sup{—F"(A*(7)) = G*(7) [ v € M(X) x M(Y)}
(we recall that A* acts on the dual of C°(X x Y') which is M(X x Y')). Now, for
a,f e MX)Xx MY )andy e M(X xY):

F*(a, B) =sup /X pd(a— p) + /X $d(8 — 1)

R
=X{p} (@) + xg3(8),

A7 (7) = (WX#% WY#V)
and

G*(7) =sup pdy

¢p<c JXxY
) [y edy iy e M(X xY) (1:5)
400 otherwise
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since c was assumed lower semi-continuous.
Plugging these expressions in Fenchel-Rockafellar's theorem and multiplying
each side by —1, we obtain:

sup{ /X Ydp+ /Y o,

:inf{/ cdy |y € M(X XY), mx#y = p, WY#’Y:M} (1.6)
XxY

b6 € COX) x COY), @ o < }

which states strong duality for Problem I.(p, ). Furthermore, this is a case
where Fenchel-Rockafellar's theorem guarantees that the infimum (which is re-
ally a supremum in the theorem) is attained, which is another way of obtaining
existence of an optimal transport plan in this case. O

We restrain ourselves to the case where X and Y are both compact sets, both
for simplicity and, again to keep close to the duality result that we show later
on. To obtain the same result for general Polish spaces X and Y, one simply
restrains the problem to larger and larger compact sets inside X and Y and use
stability of the transport plans and the fact that p and p are Radon measures.
This does require however that the cost be lower bounded by a separable ex-
pression (see [68], Theorem 5.10).

c-concave functions: In this paragraph, we assume, again, that X and Y are
compact spaces and that ¢ is continuous on X x Y (which is the case in most
of our problems) . A useful trick, which we adapt later on, comes from noticing
that any of the optimization variables, ¢ for instance, can (and should) be taken
as large as possible, since both p and i are non-negative. This variable can then
be eliminated from problem (1.3), using the c-transform of the other variable:

Definition 2. Let ¢ € C°(Y'), we call c-transform of ¢ the function, in C°(X):

¢ = inf c(.,y) — &(y).

yey

Similarly, and since no confusion should arise from this, for ¢ € C°(X), we call
c-transform of + the function in C°(Y'):

Y= inf c(x,.) — Y(z).

zeX

A function (in C°(X') or C°(Y")) will be called c-concave when it is the c-transform of
a (any) function.
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Looking back at the definition of C¢ and the fact that p and . are positive, one
can take the variable ¢ as large as the c-transform of ¢ and replace the variable
¢ by (¢°)¢ > ¢ as it yields a better competitor. Finally since ((¢¢)°)¢ = ¢°, we are
left with the dual problem

I(p,p) = sup / ¢°dp + / ¢dp

BEC(Y)

S L T
¢ c-concave

Before continuing any further, we wish to make a remark here:

The reason (at least one) for considering i and p as measures on different
sets is of course that the functions in the dual problem can then be taken in the
continuous and bounded functions on the support of the corresponding mea-
sure, for instance for ¢ above, the support of u. However, one has to be con-
scious of the fact that the notion of ¢c-concave function depends on the sets X
and Y considered. Therefore, although changing X to the support of p and Y
to that of y in either formulations of I.(p, 1) does not change its value, it does
change which Kantorovich potentials are c-concave and therefore the actual so-
lutions of (1.7). This is a point which will have a small importance in particular in
semi-discrete optimal transport, see below, and in the dual formulation of the
regularized congestion F. at the end of this chapter.

(1.7)

More importantly, a c-concave function has the same continuity modulus as
¢, with respect to the corresponding variable. Assuming that X and Y are com-
pact and ¢ continuous, one can show, using the same direct method of calculus
of variation and Arzela-Arscoli theorem that there exists solutions for the dual
Problem:

Proposition 2. The dual formulation (1.7) admits solutions called Kantorovich po-
tentials for the optimal transport. Furthermore, there always exists pairs of c-concave
Kantorovich potentials (¢, ¢°) for the optimal transport.

Wasserstein distances: Akey feature of Optimal transportis the fact thatitin-
duces, in some cases, a distance metrizing the narrow convergence on the space
of probability measures P(X) (see Definition 11, Appendix A):

Indeed, consider the optimal transport problem (1.1) with X = Y, a cost
cp(z,y) = dx(x,y)? being a power of the distance on X and p > 1. Then I, (p, ;1)

is finite if p and u have finite p — th order moment:
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Definition 3. A measure ;. € P(X) has finite p-th order moment when there exists
zg € X, [ d%(x,x0)dp(x) < +oo. Any zy € X can be chosen to test this property.

We denote P,(X) the set of probability measures with finite p-th order moment
on X.

Taking the appropriate p-root, one can define a distance on the set P,(X)
called the p-Wasserstein distance. Here we note that we will use later on the
notation Py (X), for the set of uniform discrete probability measures over N
points. Since such uniform discrete measures instantly enjoys finite p-th order
moments for any p > 1 no confusion should arise from these slightly awkward
notations. Note also that we will be working in compact spaces in most cases, in
which case probability measures (discrete or not) also enjoy finite moments of
any order.

Definition 4 (Wasserstein/Monge-Kantorovich distance). Let u, p € P(X) with
finite p-th order moment. The p-Wasserstein distance between . and p is defined
as:

Wy (, p) = {/ L, (11, p)
with 1., defined by Definition 1.

As its name suggests, W, is a distance on P,(X). It generally defines a stronger
notion of convergence than the narrow convergence from Definition 11. How-
ever, when X is compact, both topologies coincide:

Proposition 3. Let (1,)nen € (Po(X))N and pu € Py(X). Let zp € X.

The two following points are equivalent:

(2) ptn —— pand limy, oo [ (20, 2)dp, = [y &P (o,

In particular, if X is compact, (1) < (2) < (Mn I M)
"Brenier" transport: Let us finish this section by identifying specific cases in
which the optimal transport plan is actually induced byamap 7 : X — Y,
which was the model Monge assumed in his "traité". What this means in terms
of transport plan is the existence of a measurable map 7' : X — Y such that the
optimal v € P(X x Y') (for Problem (1.1)) is induced by T in the sense:

= (Id,T)#p.
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As we shall not use these results to the full extent of their generality, we as-
sume for the remainder of this section that X and Y are compact subsets of R<,
Generalizations to optimal transport on Riemannian manifolds can be found in
McCann [49], and Gigli [30] characterized the class of measures for which such
a transport map exists.

A very common assumption to obtain such transport is the following twist
condition on the cost ¢, allowing for almost all x € X to find a unique target
y € Y to be transported to:

Definition 5. We will say that the cost c satisfies the twist condition when there
exists open sets )y DY and Qx D X such that:

« cisCHQx x Qy).
* Forany x € Qx, the map
Y € Qy = Dyc(z,y)
is one to one.

Afirst, very visual, example of such a transport "a la Monge" can be observed
in what is usually referred to as semi-discrete optimal transport, and it causes a
total collapse of the complexity of the optimization problem, into a finite dimen-
sional one.

In this setting, one of the measures, p for instance, is absolutely continuous
with respect to the Lebesgue measure, while the other, p is discrete:

N
p <L dz, = Z a0y,
i=1

for some pointcloud Y = (yi,...,ynx) € (RY)™ and masses o, . .., ay in (R*+)¥,
such that SV | o = 1.

When in this semi-discrete context, we will make the abuse of notations of
denoting the support of p using a N-tuples instead of a set, since it is convenient
to be able to quickly assign the masses «; (and later on weights ¢;) to the corre-
sponding points in spt(u).

The dual formulation (1.7) rewrites into a simpler finite dimensional concave

problem involving a specific decomposition of the domain into Laguerre cells:

Definition 6 (Laguerre cells). Consider a point cloud Y = (y1,...,yn) € (RH)Y
and a set of reals ® = (¢,...,¢y) € RY. We call Laguerre cells associated to Y
with weights ® the covering of R%: Fori =1...N,

Lag;(Y,®) = {z € R, c(z,y;) — ¢ < c(x,y;) — ¢ forj=1,...,N}
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For a function ¢ : spt(u) — R, and weights ® = (¢(y1), ..., #(yn)), Lag; (Y, ®)
is the subset of X upon which the minimum defining ¢¢ is attained for j = i:

¢ = rnjiHC(-,yj) = o(y;) = c(,yi) — o)

Notice also that the twist condition implies that the boundary of these Laguerre
cells are Lebesgue-negligible, allowing us to rewrite Problem (1.7) as:

N

Lip) = sup 3 i + / IRCERAE (1.8)
ag; (¥,

N
PeRN (5

This is now a finite dimensional concave problem, and ® is an optimal bunch
of weights iff p(Lag,(Y, ®)) = «; for every i. Furthermore, it is known since Au-
renhammer et al. [6] that an optimal tesselation always exists and is, in some
sense, unique. These optimality conditions are very similar to those we will get
in proposition g below in the setting of discretized congestion penalty. Provided
® verifies these conditions, one can then write I.(p, 1) as the separated sum:

L =3 [ ctr o)

=1

We mention that problem (1.8) is the maximisation of a smooth (up to C*
under some conditions on the domain and cost), concave function of the weights
®. We refer the reader to the article by Kitagawa, Mérigot and Thibert [36] or
the recent survey by Mérigot and Thibert [55] for a study of this problem and in
particular, an overview of the methods for its numerical solution.

Remark 1. In Chapter 4, we deal with point clouds that can vary (and in particular
grow larger) inside a compact domain €2 which also contains the support of p.
Let us recall briefly how to obtain Kantorovich potentials (¢, ¢°) defined on the
whole domain €2, from a set of optimal weights ® for Problem (1.8), such that for
any i, p(y;) = ¢i:

For such a set of weights, define the function ¢ := inf; ¢(., ;) — ¢; and ¢ :=
inf,eqc(z,.) —¢(x). Foranyi=1...N,

p(y:) = inf sup c(z, 4:) — e, y;) + ¢; > ¢
r J

(taking j = 1) and for z € Q, if v € Lag,(Y, ®),
c(z,yi) — c(z,y;) + 95 < i
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by definition. Therefore, since Lag,(Y, ®) is non-empty for every i by optimality
of @, p(y;) = ¢;. On the other hand, for any z € €,

() = (V) (x) = ¢(x)

and,

N
Ie(p, p) = iPi inf c(x, y;) — ¢i)d < d ‘dp < I(n,
(1. p) ;a¢+/9(1516(95y) ¢i)dp(z) /QSO#+/QS0 p < Le(p. p)

and ¢ is a Kantorovich potential for the transport from p to p.

Let us also note here that if the cost cis given by the squared euclidean norm:
c(z,y) = Cllz — y|*, the Laguerre cells are convex polyhedra in R? as they are
the defined by the linear inequalities:

Lag;(Y,®) = {x eRY (20 —yi — ;) - (y; — vi) < %}

This is a very nice feature of this euclidean setting, and one of the reasons
why we will use quadratic Wasserstein distances through most of this thesis. On
the other hand, for the exponent p = 1, ¢(z,y) = ||z — y||, the Laguerre cells are
not even always convex and their boundaries are made of arcs of hyperbolae
(as they are defined by constant differences of distances to two points)!

In this semi-discrete setting, it is obvious that the optimal transport plan will
be induced by the map: 7' : = € Lag;(Y,®) — y;. However, the existence of
this transport map 7' is much more a consequence of the twist condition on ¢
and the absolute continuity of p than the discrete nature of spt(u). In fact, the
following celebrated theorem, gives the same structure to the optimal transport
plan, for more general measures.

Theorem 4 (Brenier [12], Gangbo-McCann [49]). Let u, p € P(RY). We assume
that p < dx and that the cost c verifies the twist condition.

Then there is a unique optimal transport plan for 1.(p, iv) and this transport plan
is induced by a map,

v = (1d, T)#p.

This result with a cost given by the squared norm, ¢(z,y) = C ||z — y||* was
the original theorem, proven by Brenier, [12] and in this case, the optimal map T
has an explicit form involving the gradient of a (any) c-concave Kantorovich po-
tential, ¢. Indeed, in this case, a function being c-concave is equivalent to it being
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1-semiconcave (in the sense of Appendix B, Definition 18) and a c-concave Kan-
torovich potential is differentiable almost everywhere (for the Lebesgue mea-
sure and therefore for p). In that case, ¢¢ (with the notations of (1.7)) verifies
p-almost everywhere V¢©(x) = V,c(x,y) = 2C(x —y) (in particular, Kantorovich
potentials are uniquely defined, up to a constant, on the support of p). The trans-
port map 7" of Brenier's theorem is simply given by

V()
T(r) = ¢ —
(@) =2 - —7
which is the gradient of the (convex) function 'T”Q — %(see also [63], section 1.3.1

for a proof and more general study).

1.2 Moreau envelope in the Wasserstein space

In the following chapter, we study variational problems for which the minimized
energy features a congestion penalization term, in the form of a convex, lower
semi-continuous function £ on M(2), where Q is a compact smooth domain of
R? in which the solutions of the problem evolve.

To define the discretization used in Chapter 2, we need to be able to evaluate
F at discrete measures on €, which typically give us the value +oo and therefore
little information on how congested these measures are. This is the case for
instance when F' has the following integral form, very commonly featured in
these kinds of variational problems:

1.
+00 otherwise. (1.9)

Flp) = {fﬂ fp(z))dz if p < dx

Our solution is to replace this functional by a regularized version defined

as a Moreau envelope (or Moreau-Yosida regularization) for the 2-Wasserstein
distance (see Definition 4):

2
For p € P(RY), F.(u) := inf Walps1)

F 1.10
PEM(R) 2e + (p) (1:10)

To make expressions more concise, we will use from time to time the optimal

transport cost associated with the cost c.(z,y) = % (and more importantly
the associated Kantorovich potentials (¢, ¢*)), instead of the standard squared
norm defining W5. Let us quickly notice the more concise expression for F_:

Fe(p) = onf ) Lo (P, 1) + F(p). (1.11)
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The transport cost I._(., p) (we recall Definition 1) is +occ outside of P(R?)
while F'is +oo outside of dom(F') and, in the end, the infimum in (1.10) is only
taken on the intersection of those two sets. For this reason, we make the addi-
tional assumption that P(2) N dom(F') # 0 otherwise there is nothing to study.

This regularization is inspired by a similar one used to discretize the incom-
pressibility constraintin the numerical approximation of solutions to Euler's equa-
tions by Q. Mérigot and J-M. Mirebeau, [50]. In this paper, the discrete measure
is projected on the set of measures verifying the constraints, which corresponds
to computing F. when F'is a convex indicator function. Formulation (1.10) is more
general in the sense that F' can be softer and, for example, such expressions
were also used to regularize the penalization F'(p) = plog(p) by Leclerc, Mérigot,
Santambrogio and Stra [40], in the context of Wasserstein gradient flows (we
come back to these kinds of crowd motions at the end of Chapter 3). The name
Moreau envelope comes directly from the same notion in a Hilbert space H.
There, the Moreau envelope of a convex function g, with parameter ¢, is given
by a similar inf-convolution

-l =yl
= inf ———+ :
9e(x) = Inf ===+ g(y)
It has the advantages of being finite, and even differentiable, forany z € H, upon
some mild assumptions on g. Notice also that, assuming lower semi-continuity
of g, g-(z) has limit g(z) as € goes to 0, whereas the limitis inf g as £ goes to +oc.

For the remainder of this section F' will be a convex lower bounded function,
l.s.c. for the narrow convergence on M(R?), with dom(F) C M, (). These
are the same hypotheses as those made in the next chapter for the congestion
penalty of variational mean field game problems. In particular, we do not as-
sume that F' has the integral form (1.14) for now:

Proposition 5. For every ¢ > (, the infimum defining F_ is attained and F is I.s.c
on P(R?), for the narrow topology.

Furthermore, lim. o F.(1) = F'(u) whereas, assuming p has finite second order
moment, we also have lim._, F.(;1) = inf ,cpq) F(p).

We will sometimes call an optimal p in Problem (1.10) a Moreau-Yosida projec-
tion of p.

Proof. To show existence of minimizers for Problem (1.10) let us consider a min-
imizing sequence (p, ).y for this problem, i.e. a sequence in M(2) such that

hm‘@@mm

n—-+4+o0o g

+ F(pn) = Fe(p)-

24



As we mentioned, p, € P(Q2) for every n and 2 is compact, therefore, the se-
quence is tight. Using Prokhorov (or even, in this compact case, Banach-Alaoglu)
theorem, one can extract a subsequence from (p,, ),en Which narrowly converges
towards a measure p € M(Q). Now, both F' (by hypothesis) and W2(., u) are
lower semi-continuous functions for the narrow topology and therefore:

2 2

F(p,) = F.
5 im fnf —=5"==+ (Pn) (1)

and p is a minimizer for (1.10).

Furthermore, going back to the definition of lower semi-continuity, let us take
a sequence u, narrowly converging to u, in P(2), and for every n, a measure
pn € dom(F) NP () optimal for the problem defining F.(u,,). We may assume
that F.(u,) has a finite limit as n — oo. Using Prokhorov theorem again, we can
extract a subsequence from (p,,),, narrowly converging towards a p,, € dom(F)).
We extract the corresponding subsequence from p,, and rename these new se-
quences, p, and u,. Then,

R R Ut R i F

2
< lim inf M
n 2e
< liminf F.(u,) =1

FE(UOO) <

+ liminf F(p,)

the first inequality being by definition of F.(u.) and the second one, by lower

semi-continuity for the narrow topology of the two terms. This means, by defi-

nition that F. is |.s.c. since [ was the inf limit of the initial sequence (1, )nen-
Finally, to obtain the limits, let us immediately observe that for ¢ > &/,

peiﬁf oF (p) < Fe(p) < Fo(p) < F(p)

As ¢ — 0, we may assume that (F.(u)). remains upper bounded, otherwise,
its limit is +00 < F(u) and there is nothing to prove. Consider for any ¢, p. a
minimizer for EqQ. (1.10).

lim W3 (pe, 1) = lim 2e(F.(u) — F(p:)) = 0
e—0 e—0

and using the lower semi-continuity of F,

2
F(u) < liminf 2P 1)

=230 % +F(p€>:Fs<:U’)
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and we have our limit.
As ¢ — 400 on the other hand, let us take p. € P(Q) such that

lim F(p.) = inf F
im Flpe) = inf

(in fact, this infimum is even attained but we do not need this).

Ry < TPy

and since any probability measure on 2 is at bounded distance from p as soon
as i has finite second order moment,

2
lim F.(p) < lim M—i— lim F(Pe):gl(flg)F

e—+00 e—+00 g e—+00

]

Before diving into the computation of a dual formulation for F, let us men-
tion that the Moreau-Yosida projection is unique and behaves in a continuous
way either at absolutely continuous measures or when F' enjoys a little more
convexity.

Proposition 6. If either (1) u < dx, (2) F is strictly convex or (3) F is convex along
generalized geodesics (see Definition 20), then the optimal p in (1.10) is unique.

Moreover, writing p" the Moreau-Yosida projection of a measure . (unique in
either of these three cases),

(1) > p*is continuous (for the narrow topology) on L' (Q) N P().
(2) If F'is strictly convex, i — pt is continuous on the whole of P(£2).

(3) If F'is convex along generalized geodesics and dom(F) C LY(2), then p — p*
is %-Hd/der on any Wasserstein neighbourhood of a sub-level of F.

More precisely, for any L and C' > 0, there exists C' > 0 such that if u, v are
probability measures with Wy (i, {FF < L}) < Cand also W, (v, {F < L}) < C,
then

W3 (p",p") < Wip,v) + C" . Wa(u, v)

Proof. As for uniqueness in (1) and (2), in both these cases the minimized func-

tional %&_“) + Fis strictly convex, respectively (1) on L}(Q2) N P(Q2) because so is
W3(., ) and (2) everywhere when F is strictly convex. Therefore in these cases,
the optimal p is unique.
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In the case (3) of F' convex along generalized geodesics, uniqueness comes
naturally from the proof of Holder regularity and we prove both claims at once!

This proof is a straightforward adaptation of [61], p 50. Take p, v as above
and p*, p¥, minimizers for (1.10). Consider the following generalized geodesics
(P} )tepo): (PY )eeoa) such that for any ¢ € CO(Q):

y/a¢(x)dpz(x):: , O((1 = t)xy + taz)dy, (xe, v1)dy,, (T2, T3)
) Q3

/ o(@)dp () = [ otz + (1 — as)dnt (22, 2)dr? (22, 75)
Q 03

and for m,n € {u,v}, 4" is the optimal transport plan from n to p™. One of
these "geodesics", p)' for instance represents a path, from p# to p” in this case,
followed from the point of view of one of the initial measures, p in this instance.

As F'is convex along generalized geodesics and %Wf is 1-convex along gen-
eralized geodesics, one can write

W3 (s, ) W3, p},)
2P 4 P(pf) <—— L F(p
9 T () < 5 T ()
Wi, p") Wi, p)  t(1—1)
<(1 — 2 ) 2 ’ . 20 p v
+ (L =t)F(p") +tF(p”)
and
W3 (v, p*) W3 (v, pl,) ;
2 P L Py <—2 v L
W2 p W2 v t(1—t
<t Q(Vap)+(1_t) 2(V7p)_ ( )Wg(pu,pu)

- 2e 2e 2e
FEF(p) + (1= O F (")

and summing and rearranging the terms:

1— 2 v 2 1
t( t)WQQ(pM’pu) < t(WQ (Q/W ) U (2v,,0 )
19 19

W (") WE (v, pY)
2¢e 2e

so that, dividing by ¢ and letting ¢ — 0

2W5 (0", p") < W5 (s p°) + W5 (v, ) = W3, p') = W5 (v, p")  (112)
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The end of the proof comes from the triangular inequality:
W3 (1, p7) < W5 (u,v) + W5 (v, ) + 2Wa (1, 1) Wa (v, p”)

and similarly, switching the roles of ; and v.
By assumption,

W2, p") Wi, {F < L}) +2¢(L —inf F) = K

and, again, the same is true replacing v with pu. Injecting these four inequalities
in (1.12) (and dividing by 2),

W3 (", p) < W3, v) + 2V K Wa(u, v)

Now, taking u = v, we immediately get that p* = p” and Problem (1.10) has a
unique solution. For general p, v this simply states the Holder continuity of the
claim. O

Regarding the last point of the previous proposition, we emphasize the fact
that our generalized geodesics are meant for the 2-Wasserstein distance. For
other powers, the p-Wasserstein distance fails to verify the strong convexity
along these generalized geodesics.

Being defined as the minimum of a convex function (both WZ(., 1) and F are
convex on M(f)), F. can be rewritten as the supremum of a concave dual prob-
lem using once again Fenchel-Rockafellar duality. We make here two hypotheses
on our congestion penalizing function F' to ensure that this dual problem has so-
lutions. Let us point out the fact that, same as in the case of optimal transport,
Fenchel-Rockafellar theorem, as stated in the appendix, cannot be used on the
primal formulation of the problem, as both terms are only l.s.c. with respect to
the narrow convergence. We therefore start from the dual formulation (1.13) and
work our way back to the primal one:

Proposition 7. For any i € P(R?),

F.(u)=  sup / wdp — F*(—p=). (1.13)
R4

@ Ce—concave

This supremum is attained at o if and only if for any p optimal for the primal problem,
ie p € argminWi (., ) + F,

* (p, p®)isa pair of c.-concave Kantorovich potentials for the optimal transport
from p to p.
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* (=) € OF (p) (or, equivalently, p € OF*(—p°)).

Assume furthermore that F' has non-empty subgradient at two measures p~ and
pt such that p=(2) < 1 and p™(Q) > 1, and that p is supported on a compact set.
Then, the supremum is attained.

The definition of the Legendre transform F* of F' and of the c.-transform ¢
of  are given respectively in Appendix B and Section 1.1, Definition 2.

Proof. Take

I. (p, if Q
G:peM(Q)H{ o) i 06?( )
+00 otherwise

For p € M(Q), G(p) = supyeeoy Jo vdp + [pa¥=dp = G*(p), the Legendre
transform of the convex continuous function

G:9 el —/Qz/ﬁsdu.

Therefore (this is Fenchel-Moreau’s theorem Theorem 45 in Appendix B), G* =
G.

We now have G* a convex continuous function, and F* which is convex |.s.c
and not +oo everywhere. Applying Fenchel-Rockafellar duality theorem to the
following infimum problem:

inf G* F*(—
ke () + F*(—),

we can write;

inf G*(¢) + F*(—p) = max —Glp) — F(p)

PeCO(Q) pPEM(Q)
=— min G F
Juin Gp) + Flp)
W2
— — min 2(p7ﬂ) ‘I’F( )
pEP(Q) 2e
But, this inf problem also rewrites:
it G () +F(=p) == sup [ o (a)duta) - P (=)
peCO () peco(Q) Ja

— / o (2)dp(z) — F*(—)

® ce-CONcave
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The reason why optimization can be done on c. is similar to that for optimal
transport. Indeed, for any ¢ € C°(Q2), F*(—¢) > F*(—(¢%)%) since ¢ < (p)%
and OF* C dom(F') is composed of positive measures only, by hypothesis (F* is
increasing). Therefore, using the fact that %% = ¢, our supremum is, in the
end:

= swp [ o (@duta) - P (=)

peCO(Q)

. wptéwmwmm—we@.

© ce-CONcave

Finally, a change of variable ¢ — % (which brings us to a supremum on c.-
concave functions on spt(u)) we obtain the primal and dual problems that we
claimed:

min D201 | gy Wptéw@wquW—ww

PEP() 2e © ce-concave

Optimality conditions for both problems are straightforward. Indeed, for ev-
ery ¢ and p, both admissible for their respective problem, we have

W2
Q Q 2¢e

with equality if and only if (p, ¢*) are Kantorovich potentials for the transport
from p to p, and,

F%wﬂ+F@z—[y%@@w

with equality iff p € OF*(—¢°). Summing up these inequalities, and canceling
the opposite terms, we get exactly

W3 (p; 1)

F(p) + 9

> [ ela)dnte) = F (=)
with equality if and only if (p, ¢*) are Kantorovich potentials for the transport
from pto pand, p € OF*(—¢).

Now, for the existence part of the proposition, let K be the compact support
of . Following the standard method in calculus of variations, consider a max-
imizing sequence of c.-concave functions for the dual problem, (¢,),. These
functions all have the same Lipschitz constant as c., on the compact set K. Let
L be this common Lipschitz constant, and for n € N M,, = maxg ¢, so that for
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anyy € K, M,, — Ldiam(K) < ¢,(y) < M,. Setting C' = max,ck, yeq (7, y), this
gives us the bounds, forany y € Q2 and n € N,

—M, < ¢(y) < C — M, + Ldiam(K) = A — M,

the constant A depending only on ¢, €2 and the discrete measure .

Assume now that M, diverges towards +oco as n — oo (this is equivalent to
(¢n)n not uniformly bounded from above on K). Since there exists ¢ such that
pT € OF(p™) with p* of mass strictly more than 1, or equivalently, p™ € 9F* (™),
we can write:

/ on(@)du(e) — F* (=) < M, — F*(p") - / (—gr — o)dp*
Q Q
< My(1— p*(Q) + ApH ()

—F (") + / prdp”
)
and that last part diverges to —oo as n — oo, which is absurd since (¢,), is a
maximizing sequence. Similarly, if M,, diverges towards —oo as N — oo, the fact
that F' has a non-empty subgradient at a measure of mass strictly less than 1
gives us again that ¢,, cannot be a maximizing sequence.

Therefore, (¢, ), is uniformly bounded and, using Arzela-Ascoli theorem, we
can extract from it a subsequence that converges uniformly on K, as n — oc.
By upper semi-continuity of the functions in the dual problem, this limit is a
maximizer. O

Remark 2. The hypotheses on F are very natural ones considering our conges-
tion terms have the integral form (1.14) in our numerical simulations. However,
they are not the sharpest ones, even when F' has this form, to obtain exis-
tence. Indeed, consider a domain with Lebesgue measure 1, and F' of the form
F(p) = [, f(p(z))dz with f = X3 (only a density equal to 1 almost every-
where is allowed). One can check that the dual problem admits solutions which
are the2c|assica| Kantorovich potentials for the corresponding transport, since
Wi (. dz)

F. = == However, F itself does not satisfy the assumptions in proposition
2e

7, since it is only finite at the Lebesgue measure which is of mass exactly 1.

Allowing F' to be very general can allow the use of more complex penaliza-

2
tions, such as F(p) = [, ™2 which can appear when viewing second-order
mean field games with entropy penalization as first order mean field games (this
is done in particular in [28] or [16]). However in our numerical simulations, we
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focus on the cases where F' has the simpler integral form:

Flp) = {fQ )dz i p < dx

1.1
400 otherwise. (1:14)

mentioned earlier. From now on, and until the end of this chapter, we assume
that F has this integral form and we make the following assumptions on the
function f, which guarantee that F' be convex, lower semi-continuous for the
narrow topology (see for instance [63], proposition 7.7) and that dom(F) C R™:

1. fis convex and lower semi-continuous (for the standard topology on R).
2. dom(f) C R*
3. fissuperlinear, lim, 1, f(z)/z = +oc.

Our hypotheses on 0F guaranteeing existence of solutions to the dual formula-
tion are equivalent to the simpler assumption that @ be in the interior of dom( f)
as the following proposition justifies:

Lemma 1. With our hypotheses on F, let o € C°(Q), and p € M(Q), then p € OF (p)
if and only if p < dx and for a.e x € Q, p(x) € df(p(x)). In fact:

F*:pelQ) — /Qf*(cp(a:))dx

Proof. Let p € M(Q), p € C°(Q2). Then, by definition of the Legendre transforms
F*and f*:

FW@==ﬂm‘/¢wMM@x—F@)

PEM(Q) JQ

-—wp/w@ﬁ@%—ﬂd@ﬁx

pLdzx

- [ rieta

On the other hand, ¢ € 9F(p) if and only if p < dz and

/f dx+/f dx—/go(x)p(x)dx (1.15)

Now, for a.e. z € (2, there holds f(p(z)) + f*(p(z)) > ¢(z)p(z), therefore (1.15)
is equivalent to

F(p@)) + f(¢(x)) = @(a)p(z), for ae. zin Q (1.16)
which is itself equivalent to ¢(z) € 0f(p(x)) almost everywhere on €. O
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We now state the corresponding dual problem for this simpler form of F.
Notice that the integral form of the function transforms the optimality condition
p € OF(—¢*) into an equality almost everywhere, completely determining the
optimal p for the primal problem in this case:

Proposition 8. For ;i € P(RY):

Fw= swp [ édu— / f* (6% (2))dz (1.17)
R4 Q

¢ ce—concave

Assume that & € int(dom(f)) and that p € P(R?) has compact support, then

the supremum in (1.17) is attained.

Finally, we write pn = p**dx + p¢ the decomposition of u into absolutely con-
tinuous and singular parts, with dx L ;™. Consider p € P(Q) (resp ¢ c.-concave)
optimal for the primal formulation for F.(u), (1.10) (resp for the dual formulation
(1.17)). Then for a.e. x € ), exactly one of the following is true:

* p(x) = () (=¢=(x)) and Vo= (x) # 0.
* p(x) = p*(x) and Vo (x) = 0.
In particular, the optimal p is unique.

Remark 3. Uniqueness of p comes essentially from the (Lipschitz) regularity of
¢%. As such regularity cannot be expected for p, the dual problem (1.17) could
admit multiple solutions ¢.

The form of the optimal p at the end of the previous proposition exactly
states, in the general case, that the projection p saturates the constraint en-
forced by F. This is a result already oserved by A. R. Mészaros et al. in [20] as
a consequence of A. Figalli [25]. In their case f = xjo,;) and the optimal p is the
projection of u on the set of constraint-abiding densities p < dx. We note that
the first possible expression for p simplifies into p(z) = 1 almost everywhere on
{V ¢ # 0}, which is the highest possible value permitted.

Proof. The dual formulation1.17 and the existence result are direct consequences
of Lemma 1 and the same results in Proposition 7. We will only make the remark
that

ﬁ € int(dom(f))

&3 >0, 8f(’61’—5) £ (@ and of (ﬁh?) #0
Sde >0, OF ((% —6) ]lgdx> # () and OF (<%+5) 19d$> # (0
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and this last line is the assumption on JF sufficient to have existence in Propo-
sition 7, with the measures p™ = (4 + ¢) Iodz and p~ = (§ — ¢) Loda.

Take p, ¢ optimal for the primal and dual problems. Using the optimality
conditions from proposition 7, recall that ¢, ¢° are c.-concave Kantorovich po-
tentials for the transport from u to p and for a.e. = € Q, p(x) € If*(—¢*(z))
(again, this is the conclusion of Proposition 7 with the equivalent form of Lemma
1). In particular, the optimal transport from p to u is given by the map defined
Lebesgue-almost-everywhere T' = I'd — V¢, using Brenier's theorem, and the
fact that c. trivially verifies the twist condition, on R% x R¢ even. Furthermore,
for A € R, the set

Ay ={z € Q, ¢“(x) = Aand V¢ (z) exists and is not 0}

is Lebesgue negligible. This last claim follows from the co-area formula, as

HA(Ay) = / - / Loy (@ de’l(a:)dt:O
o=t qu%

since the integrand is nonzero if and only if t = \. Therefore, for almost any x €
(2, we can assume that V¢ () is well-defined and, if V¢ (z) # 0, 0 f*(—¢%(z))
is a singleton (since there only are a countable amount of non-differentiability
points for f*, Appendix B, Theorem 44). We can conclude in that case that

plz) = () (=% (x)).

Otherwise, if V¢ (x) = 0, the optimal transport map 7' is simply Id at z,
implying that p < p?**dxz on A = {V¢“ = 0}. However, T' = Vu for a convex
function u, Lebesgue-almost everywhere on the set A and therefore p*°-almost
everywhere on A, T (z) = {Vu*(z)} = {z} and p(z) = p*(z). O

1.3 Computations in the semi-discrete setting

In this section, we show how one can compute the value of F.(u) when p is a
discrete measure on R, for instance, i has the form e, #Q for some Q € Py(T)
(with the definitions of ¢, and I' from pages 51-52 of the next chapter). Rea-
soning in a very similar fashion as for semi-discrete optimal transport, we then
rewrite Eq. (1.17) as a concave finite dimensional problem over RY. To solve
this problem, a Newton-like algorithm seems appropriate, using the first and
second order derivatives computed in Propositions 10 and 12 below. For conve-
nience, we rewrite the Moreau envelope F. as a function of the positions of the
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Dirac masses in a uniform discrete measure, instead of the measure itself: For
Y € (RN,

F.Y):=F. (% Z 5%)

Proposition 9. Assume that -} € int(dom(f)).

1€2]
Then, for Y € (R%)Y,

F.(Y) = max 3 @—/ * ¢>A——”x_y"”2 da (1.18)
c RN i—1 N Lagi(YﬁI’) ! 25 '

with the definition of the Laguerre cells Lag,(Y, ®) from Section 1.1, Definition 6.

A pair p € P(Q) and ® € RY are optimal for respectively the primal and dual
problems defining F.(Y") if and only if the following conditions hold for every i =
1...N:

* (Areq) [, o (f*) (65 — co(w,y:))de = §

+ (Density) p(x) = (f*)(6; — c.(x, ), for a.e. x € Lag,(V, ®)

Proof. ForanyY € (R%)¥,

N
Fo(Y) < sup Y {%—/L v (i — ce(@, y3))d | - (1.19)
ag; (¥,

N
®EeRN T3

Indeed, let ¢ be solution of problem (1.13) for u = % Zf\il dy,. Forany z € Q,

p(r) = inf c.(v,y) —¢(y) <infe(z,y:) — o(vi)
yeR4 i

and since f* is non-decreasing, inequality (1.19) is straightforward.

For the other inequality, similar arguments as for proposition 7 guarantee
that the supremum in (1.19) is indeed a maximum, and that ® € R is optimal if
and only if it satisfies (Area). Take such a ® in RY optimal, then for any p’ € P(Q),
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o+ [ P (@)de > > N + /Lagi(Y,‘P)(Cs(x’ yi) — ¢i)dp ()

4 / W

Y o /
N z_: N /Lagz(Yé)(gbi — )
— f(p'(x))dz

N
Z / - Cs('r?yi))dx
i=1 Lag,; (Y,®)

The first inequality comes from the dual formulation of optimal transport in the
semi-discrete case, Eq. (1.8), and the second one from the definition of f*. Taking
the infimum in p’ yields the reverse inequality.

To conclude, we notice as before that this is an equality if and only if:

ZI@

(1) the optimal transport from ' to p is given by the Laguerre cells Lag; (Y, ®).
and

(2) p(z) belongs to f*(¢; — c.(z,y;)) for everyi = 1... N and Lebesgue a.e.
x € Lag,(Y, ®).

Since sup,(¢; — c-(.,¥;)) has nonzero gradient almost everywhere on €2, we
are in the first case of proposition 8 and we get similarly that (2) is equivalent
to p(z) = (f*) (sup; ¢; — c.(x,y;)) for a.e. = € 2 which is exactly (Density). But
then, (Area) is exactly equivalent to (1) (see the optimality conditions in the semi-
discrete setting in Section 1.1). This concludes the proof. O

As we mentioned, the expression maximized in (1.18) is differentiable in ® (as
well asinY almost everywhere). We end this section by computing these deriva-
tives, necessary in order to numerically approximate the Moreau-Yosida projec-
tions of discrete measures in Py (R?), as well as solutions of the fully discrete
mean field game problem (My .0 s, ) Of Chapter 2, Section 2.3. We denote by
G, the maximized functional:

G'(Y(ID)G]RNX(Rd)NHf: @—/ IS gb»—M dx
T N Lag,(Y,®) ' 2e

=1
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Proposition 10. G. is C', concave with respect to ® and fori = 1..N, and Y €
(RN and ® € RY, we have

G (V) = 4 oy (- Lzl
0¢i N g 2¢

Proof. The proof of this claim is a variation of the corresponding one for semi-
discrete transport, by Aurenhammer, Hoffmann and Aronov [6]. Take, Y €

(RHN and @, ¥ € RY:
el
Lagl (v,®) # 2e

2
L
Lag, (Y,¥) 2e
N 2
bi — P * |z — il
Sz;[ N _</Lagi<y,qf>f (qﬁi_ 2 )
_p (m e —ul ) d)]

GE(K (I)) - G€<Y> ‘I]) :ZN: [

> {@—wi

B oo (o e =wllPY,
/Lagz'(Y,\If)(f) (wl 2e )(qbz wz)dx]

The firstinequality comes from the definition of Lag,(Y, ®) and the increasing
nature of f* and the second one, from the convexity of f* and the fact that

— 0% = maxy); — (., ;)

has Lebesgue-negligible level sets. Therefore, G. is concave and the vector

_ (4 ny |z — will®
= (N ) /Lagmw(f | (wi % >dx> e

belongs to the supergradient 0TG.(Y, ¥) for every ¥ (see Appendix B, Defini-
tion 15). The function (f*)" is continuous except on an at most countable set of
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reals, and the level sets of x — 9; — W are negligible, as are the boundaries
of the Laguerre cells. By dominated convergence, ¢.(¥) defines a continuous
(w.r.t. ) selection of supergradients for G.(Y,.) and therefore, this last func-
tion is C* for any Y, with the partial derivatives that we claimed. O

Remark 4. G. being a concave function in @, this proposition is another way to
show the optimality condition we claimed earlier, namely, fori =1... N:

/ oy (o -l w2 L
Lag, (V;®) 2 N

We also note that these expressions are very reminiscent of those obtained
by Bourne, Wirth and Schmitzer in [11] for unbalanced semi-discrete optimal
transport. Here, our congestion penalization plays the role of the mass discrep-
ancy penalization between our discrete measure p and the Lebesgue measure
on €2, which does not have mass 1 under the assumptions of proposition 9. This
suggests that one could rewrite F. as an unbalanced transport problem between
these measures.

Proposition 11 (Gradient of F.). For Y = (y1,...,yn) € (RHY, let py, ®y be op-
timal for the primal and dual problem defining F.(Y'). Finally, we denote B(Y') =
(01(Y),...,bn(Y) the barycenters of the Laguerre cells, according to the probability
measure (on this cell) N.py:

b;(Y)=N xdpy () (1.20)

Lag; (Y, ®y)

Then, F. € C'((RY)N \ Dy), where we must remove the diagonal set:
Dy = {Y e RHYN|Zi#j, yi = yj} (1.21)

For everyY ¢ Dy, we have

Proof. We show that 7. : Y — F.(Y) — 5= "IV, |lyi||* is concave on (R%)™ with
the vector —5—(b;(Y)); in its supergradient at Y (F. is semi-concave in the sense
of Appendix B, Definition 18). Then showing that this is a selection of supergradi-
ents which is continuous on Dy, will, as previously, prove that F. and therefore

F.isC' onthis set. The supergradient is still valid in configurations where several
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Figure 1.1: From left to right, (1) 50 points scattered in the bottom left corner
of a 5 x 5 square, (2) the "charged" Laguerre cells obtained by intersecting the
Laguerre cells with the support of the optimal p defining F. and (3) the vectors
joining each point to the barycenter of its Laguerre cell. 9,, F; is colinear, oppo-
site, to the corresponding vector b(Y'); —y;, fori=1... N.

points coincide, but continuity, and more generally, the fact that the supergra-
dient is a singleton, does not hold for such points.

First, let us take X,Y € (R%)Y,

~ 1

J_"e(y) SQ_EWQQ ( ZéyzapX) _|_F PX Z ||
= 1

S —(|lz 2_22, z+ 2 2 2) + - dz
S eI 2wt il Phox(e) + (=)

=1
1 N
2
eI
=1

N
. 1
<F(X)-) = d Ay — 4
<F(X) ;_lg/LagZ(X@X)Z px(2) - (yi — x4)
B SN
~~ Ne i

The second inequality might seem counter-intuitive, but it merely states that the
Laguerre cells Lag,(X, ®x) may yield a greater transport cost than the optimal
Laguerre cells (even though @ is the variable in which the dual formulation is
maximized).
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That last inequality exactly means that 7. is concave and that for every X € (R%)Y,

1 L
(_N_gbZ<X)>l:1N €0 fe(X) (1.22)

We now show that B : Y € (R*)V \ Dy ~ B(Y) is continuous and therefore,
that (1.22) gives a continuous selection of super-gradients:

First, in order to make some parts of the proof more concise, we will write
forY € (RHN, uy = L 5°N 4, and for & € RV, &% the continuous bounded
function on ) defined by:

O (x) = c.(x,y;) — ¢; on the Laguerre cell Lag; (Y, ®).

Take (Y™),en @ sequence converging to Y in (RY)N \ Dy. Let for all n, p",
®" be optimal for the primal and dual problems defining F.(Y™) respectively (p"
is uniquely defined for all n). The functions ($")% are c.-concave Kantorovich
potentials in the transport from p™ to py~, and, for almost every x € (2, we have
the equality p"(x) = (f*)" (=(®")*(x)).

By similar arguments as for Proposition 7, up to a subsequence, (®"),, con-
verges towards a ® € R (and therefore, (®")% uniformly converges on (2 to-
wards ®¢). Using the (Density) condition from Proposition 9, p™ = (f*)'(—(®")%)
converges almost everywhere (up to a subsequence) towards p = (f*)'(—®%).
And since p" is bounded in L>°(2), the convergence is also a weak-* conver-
gence in L>°(Q). In particular, ®* is a c.-concave Kantorovich potential for the
optimal transport from p to uy, since uy» narrowly converges towards uy and
p" towards p in their respective spaces. But then p = py is the unique minimizer
for the primal problem. In particular, b;(Y) = NfLagi(Y@) zp(z)de.

Finally, for all : and n,

I5:(Y™) = bi(¥) | = N\

/ xp"(z)dz —/ zp(z)dz
Lag;(Y",®n) Lag;(Y,®)
/ xp"(x)dx —/ xp"(x)dx
Lag;(Y",®") Lag,; (Y,®)

/ xp"(z)dx — / xp(x)dzx
Lag, (Y,®) Lag, (Y,®)

Now, let 7™ (resp T') be the Brenier map for the optimal transport from p”
(resp py) to pyn (resp py), with cost c.. For n large enough,

/ xp"(x)dx —/ xp"(x)dx
Lag;(Y",®") Lag,;(Y,®)

SZp"((T”Zy?ﬂTZyj)U(T":y?ﬂT=yi)>

i#]

<

~

+
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But since y? converges to y; for every j, this last termis bounded by p" (|| 7" — T'|| >
w;) With w; = 5inf;; [|ly; — y;|| (> 0) and we can write

16:(Y") = oY) S p"(IT" = T = wi) + 0ns00(1)

In a similar fashion as [68], Corollary 5.21, we show that the right-hand side
vanishes,

lim p"([|T" = T[] = w;) = 0
n—oo

which willimmediately grant us the continuity of Y — B(Y') on Dy, and conclude
our proof:

Take n > 0. Lusin theorem allows us to find a (compact) set A such that
p,(Q\A) < nand T coincides with a continuous function 7 on A. Then also
p"(2\A) < 2n for n large enough, by the weak-* convergence in L>°(2) which
we established earlier, and,

P"(

T = T|| < w) < P ((IT" = T <) N A) + p"(O\A)
< p"(IT" =T < wi) + 21
Usual stability theorems, considering the fact that p” and p are absolutely

continuous with respect to Lebesgue, state that the optimal transport plan 7
from p™ to p,, narrowly converges to the optimal transport plan = from p,, to .

Consider then the (open) set A = {(:c, Y), ‘y — T(:U)H < wi}. One has

|-y < p(HT - TH < w;) = m(A)
< liminf 7"(A)
" — TH < wi)
< liminf p"(|T" = T|| < w;) + 27

< liminf p”(

and, this is true for any n > 0, hence, lim p,,(||7" — T'|| < w;) = 1 and we have
the limit we wanted. O

Note that with a (simpler) similar proof, one can show that, G, is C! with
respect to Y on R?\ Dy, with the same partial derivatives:
ForY ¢ Dy and ® € RY,

0 1 o o ,_Hx—yz’HQ
3 G.(Y,®) = (vi —2)(f)' | s — ——=— | dz (1.23)
Yi Lag,(Y,®)

€ 2e
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we omit this proof here, due to this similarity, but we note that G. is in fact C!
on the whole ((RY)Y \ Dy) x R,

To obtain second order directional derivatives of G. w.r.t. Y and ®, we rely on
the approach by De Gournay, Kahn and Lebrat in [18] using their Lemma 1.1 and
1.2 p.9 with a function that depends non-linearly on the positions of the Dirac
masses and the weights. In the following proposition and its proof, we denote
Lag;;(Y, ®) the intersection of the Laguerre cells Lag,;(Y, ®) and Lag;(Y, ®):

Lagij(ya ®) = Lag,(Y,®) N Lagj(yv D)
Proposition 12. Assume that f* isC? onR. Let Y € (RY)"N \ Dy, ® € RY, then, for

1<i#j<N:

2
05,05, G (Y, D) = / Ly (@—M) IH N (x)  (12)

Lag,;(Y,®) lys — ;] 2e

2
" r—1Y;
05,05.G=(Y, @) = _/ (f) (@: — ||2—y||> dx
Lagi(y7q>) 9

5 [ (- R e o

ji 7/ Lagi;(Y.®) Hyl o yj”

8¢i8ine<Y, q)) = / M(f*)” <¢Z — M)

Lag;(Y,®) €

2
| BT (@_ux—gyin ) i (z) (1.26)

71 JLag; (Y.®) lys — 5l

0,0, CL(Y, ®) = — / (=) oy (qsi - M) A z) (127)

Lag,;(Y,®) lys — vl 2e

ayjaine(}/a (I)) — / (yi - :B)(y] - x)T (f*)/ <¢Z . ||:E - yi||2 de_l(:E)

Lag,;(Y,®) e llyi — ysll 2e
(1.28)
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1 112
ayiaina(Y’ (I)> = ]d/ _<f*)/ b; — M Ao
Lag; (Y,®) & 2e

(yi — 2)(yi — SU)T N |z — y¢||2
— ,— 21 d
T N <¢ - ) :

(yi z)(yz x)T *\/ ||$ yi||2 d—1
_ E i — —— ] d z) (1.
/Lagij(Y,@) (f ) <¢ > " ( ) (1 29)

2 P 2

Proof. As these expressions are all obtained in a very similar fashion, we only
prove the one for 9,,0,,G. (it is, from our point of view, the most involved one).
Let Y, ® be as in the proposition, v € (RY)Y, ||v|| = 1. We apply lemma 1.1 of [18]
with the function:

a: (:L‘,t) € ) x [—1;1} — (yz-+tv —IE)(f*)/ (CZZ B ”l’—yQiE— th )

whichis C! on Q x R, bounded. Now (we use the same notations as De Gournay
et al. in their paper):

ayiayigGe(K @)U = 6@(0)
:—Ei/ 5@ﬂﬂlwmmwﬂ%m+/ da(r,0) (1.30)

71 JLag; (V.2) [V u (z,0)] Lag;(Y,®)
where we recall that
(1) = fﬁi(t) a(z,t)dz,
+ Li(t) = Lag,(Y + t, ®)
11 r—Y;—1v 2 r—1Y; 2
C (g, ) = Ll <|| -l _¢j>

Now, for z in €2,

Ou¥ (z,0) = —v.(y; — z) and V,u (z,0) = -
g €
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and of course, for almost every x € ),

Oia(x,0) =v(f*) (qﬁi _ M)

2e

- 1” Ay — )y — x)(f)" (cbi M=y = ol )

€ 2e

(s (-t

- (= )~ 2 ()’ (@» -l ) )

2e

and replacing these terms in (1.30) (and dividing by ¢) yields exactly the right
expression for 9,,0, G.(Y, ®). O

Let us end this section with a few remarks:

Remark 5. The above formulas are actually valid when f* is only 2! on R. In
this case, an (unpublished) result by Serrin (see [41]) states that a € W1, with
a derivative given Lebesgue-almost everywhere by the chain rule. Lemma 1.1 of
[18] is then still valid and our expressions are unchanged. However, in the case
of the function

0 if0<p<dx

F:pe MQ) —
P & {—i—oo otherwise.

featured in the numerical section of Chapter 2, (f*)’ = 1g-+ is the Heaviside func-
tion, which does not satisfy even these weaker conditions.

Another point concerns the two first expressions, where we differentiate
with respect to ® twice. One can notice that the "Hessian" matrix D3G., for
fixed Y € Dy, is diagonally dominant (as the sums of integrals over the borders
Lag;;(Y, ®) of Lag,(Y, ®) cancel each other). This means that this matrix is non-
singular provided that the "residual diagonal terms" are non-zero:

*\ /! o Hl’ _ yzH2
/ ) (cbz le=ul ) £0

In this case, the optimal @ is unique, whereas, in the case of the dual formulation
of optimal transport in the semi-discrete case, it was only unique up to a con-
stant A(1,...,1). One can then use a Newton algorithm in order to approximate
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the optimal weights ® for the dual formulation of Fy (instead of a damped New-
ton one, as for semi-discrete OT). This is used in particular in the Pysdot library
for Python in order to estimate the value of F. and its gradient, and therefore in
the numerical simulations of Chapter 2 (among other tricks from computational
geometry to compute these kinds of integrals over Laguerre cells).
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Chapter 2

Discretization of Variational Mean
Field Games with Congestion

In this chapter we study the motions of a crowd which moves while trying to
avoid overcrowded areas. The model we used is defined as the solution to a vari-
ational problem, which we discretize according to the trajectories of the mem-
bers of the crowd (hence the Lagrangian discretization). Convergence results
for these discretization can be obtained, and, solving numerically these discrete
problems, one can observe behaviours for the finite crowds that are compatible
with the congestion constraint that was modelized. These results and observa-
tions are gathered in [65].

When dealing with such motions, a well-adapted mathematical setting is to
represent the crowd by a curve on the probability space P(Q2), where Q C R?is
the domain in which the motion takes place:

p € C([0; 7], P(2))

where continuity is meant for the narrow convergence or equivalently, if we as-
sume that  is compact, any Wasserstein distance on P(£2). Governing this mo-
tion is often the so-called continuity equation:

Ot + V(o) =0 (2.1)
where v : [0; T]xQ — Réis avector field representing the velocity of the particles

charged by . Mathematically speaking, equation (2.1) is verified in the sense of
distributions, meaning that for any compactly supported ¢ € C°(]0; T[xQ, R%),

/ (Orp + Vi - v)du(t, z)dt = 0. (2.2)
[0;T)x R4
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Note also that often (and in particular in our model), we want to fix the initial
distribution of the crowd equal to a x° € P(R?). In this case we say that the
equation is verified in the sense of distribution with initial data u° to express
that:

/ (006 + Vo6 - 0)du(t, 2)dt = — / 6(0, ) (z) 2.3)
[0;T]xQ Q

for any test function ¢ € C>([0; T'[x 2, R?), and the reader can note that the test
functions ¢ can now be non-zero at ¢t = 0. In particular, both these definitions
imply Neumann boundary conditions v(¢,.)u(t,.) = 0 on 9(R2). In this chapter,
we will omit to precise in which sense p solves (2.1), as it will always be in the
sense of distributions with an initial data which will always be obvious.

The continuity equation expresses in particular conservation of the mass of
i, which translates, in the context of crowd motions, to no individual leaving the
domain. It is also equivalent to a stronger continuity for the trajectory of the
population, i (we refer the reader to [4] or [63] for a proof):

Theorem 13. Let (1:)c(o,r) O family of measures in P.(RY) and v in L" (dy,dt, RY x
[0; T']), both verifying the continuity equation (2.1).
Then, pu : t — py is in AC([0; T, P,.(R)).

On the other hand, if i € AC([0;T], P,(R%)), then, there exists a vector field
v € L' (du(t)dt, R? x [0; T]) such that (u,v) solves the continuity equation.

Furthermore, the smallest (in I.” norm) vector field v introduced in the second
part must verify for dt-a.e t € [0; T, [|0|ir gy = |1](2), the W,-metric derivative
of 1 (see [4], Theorem 1.1.2).

In Theorem 13, the absolute continuity is, of course, meant with respect to the
Wasserstein distance W, on P,. Let us recall that absolutely continuous curves
are continuous paths on a metric space X, which have integrable velocity in the
following sense (we refer the reader to the monograph by Ambrosio, Gigli and
Savare, [4]):

Definition 7. Let i : [0;7] — X, (X,d) a metric space, then p is absolutely con-
tinuous, 1 € AC([0;T], X) when there exists a function g : [0;T] — R™ summable,
such that forany 0 <ty <t, <T,

dlptto) ) < [ " gty

to

The smallest (dt-almost everywhere) such function g is the metric derivative |u'| men-
tioned in Theorem 13.
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As we said, the specificity of our crowd motion comes from the fact that the
population tries to avoid overcrowded (congested) areas during its movement.
Let us mention two ways in which it has been enforced in a mathematical model,
aside from the mean field game one which we use:

In Maury et al. [47], [46] one considers a granular model in which each indi-
vidual ¢; is represented by a ball B(g¢;, ;). Then, if the desired velocity of individ-
ual i is U; (for instance VV (¢;) for a potential V' : 2 — R), the actual velocity of
the individual is given by the projection of U := (Uy, ..., Uy) onto the feasibility
condition:

(lg: — gsll = (ri+75))+ =0 = (Ui =Uj).(¢i —¢q;) =0

(or a generalisation of this condition in the case of weaker non-congestion con-
ditions).

This model corresponds to the individuals having non-overlaping "zones"
around them and having to adapt their trajectory to their proximity to others.

The corresponding "macroscopic model", also presented in [46] as well as
[45], (although the authors insist on the fact that it is not obtained from the
"microscopic" one above, as the limit model as the radii r; vanish) is given by the
evolution of a density p(t) along the system of equations:

{&p +V.(pu) =0

w = e, (U) (2.4)

where the continuity equation is verified in the sense of (2.3), with a fixed initial
data p°. Here, the desired velocity at z, U(z), is projected on the set of feasible
velocity:

C, = {v c L*(Q,R?), /

v.Vq < 0Vq € Hll)}
Q

defined by duality with the set of pressures:
H = {qeH(Q), ¢>0ae.inQ q(z)=0ae. on{p<1}}.

When U = VV is given by the gradient of a potential, this last problem is
a case of Wasserstein gradient flow (introduced in the pioneering work of Otto
et al. [34] and detailed in [4]), where the gradient descent is done on the en-
ergy [, f(p(x)) + V(2)p(x)dz, where f = xp, is the convex indicator function
of the non-congestion condition on the density 0 < p < 1. An actual discretiza-
tion of this problem and the one when f(r) = rlog(r) (in the sense that it fea-
tures a convergence result as the number of players goes to infinity), is given
in Leclerc, Mérigot, Santambrogio and Stra, [40]. This discretization is done us-
ing the Moreau-Yosida regularization studied in the previous chapter, (1.10). The
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convergence of the discrete measures .y, which is one in the sense of the uni-
form topology associated with the 2-Wasserstein distance, is proven under some
assumptions and we present arguments to get rid of some of them in Section 3.4
of the next chapter.

Similarly to the mean field games we study below, the population repre-
sented by u will evolve towards the objective represented by the potential V,
without violating the constraint enforced by f. However, in this setting, the play-
ers lack the global planning aspect of the solutions to the variationnal problem
and numerical computation can feature, in some cases, more selfish behaviours
that can generate blockades (think of the narrow corridor in the non-convex ex-
ample of Section 2.4).

2.1 Variational mean field gamesin Lagrangian set-
ting

The model we use is inspired by mean field games, which were introduced by
Lasry and Lions in [37, 38] and, independentely by Caines, Huang and Malhamé
in [33]. This setting focuses on the limit, as its size grows to infinity, of a popula-
tion which moves in order to minimize a global energy accumulated by its indi-
viduals. Under suitable conditions of symmetry on the terms in the energy, one
can show that the infinite limit population is distributed according to a density
with each infinitesimal player minimizing the same energy along its movement.
For these kinds of motions, the global density moves according to a mean field
system similar to (2.5) (with an additional second order term in cases where the
movement features stochastic parts).

This is the point at which we pick up the model and let us start by considering
a simple case where the members of the crowd (which we sometimes name
"players", borrowing the term from the game theoretical aspect of this model)
evolve in a domain €2 (which we will assume to be compact and smooth), while
each trying to minimize an accumulated energy, which for this example we take

equal to:
T
J

Here, x € H([0; T, 2) represents the trajectory of a player, 2’ its velocity whereas
w is the density of the population. Congestion, in this case, is penalized through
the function g which is non-decreasing on R. Passing through regions where u
is high will then cause the player to have a higher energy (which he wants to
avoid). V and ® are scalar functions on R¢ which define what we will call the

(4Ol
2

+g(u(t, z(t) + V(2(t)) | dt + 2 (2(T)).

50



potential energy. To have low energy, players have to pass through areas where
V is low (and end their trajectory where ® is). At equilibrium, each player is
following an optimal path, avoiding crowded areas while passing where their
potential energy is low. Optimal control theory then links the evolution of the
population’s density i to that of the so-called value function:

6 (to, 20) s inf { / [% T gt 2(8)) + V(w(t)) | dt + B(a(T))

x € W' ([to; T)), (to) = xo}

via a mean-field game system (with the appropriate boundary conditions):

—09+ WL = g(u) + vV
O — V. (uVe) =0 (2.5)
1(0,.) = u°, §(T,.) =

The idea to obtain a variational form for this mean field game is to consider
a primitive f for g, f/ = g, in such a way that f is a convex function (g was
non-decreasing). The first (Hamilton-Jacobi) equation in system (2.5) can then

be interpreted as —0;¢ + m — V belonging to the subgradient of this convex
function f at the values of the density p;. The system then states optimality
conditions for the following minimization problem, with ;. seen as a curve in
Co([0;T], P(2)):

inf //[”“” )+ Flult, ))+V(x)u(t,x)]dxdt

8tu+v (;w

+/Q<I>(x),u(T,x)dx (2.6)

To be slightly more precise, this inf problem is nonconvex, but it can be made
convex with the change of variable w = v and then (2.5) become optimality con-
ditions for the pair u, w = uV¢. Of course, solutions to (2.5) are often defined in
a very weak sense (as viscosity solutions), and the previous discussion must be
adapted in order to be followed rigourously. For an overview of this variational
formulation and a rigourous statement and proof of this result, in particular un-
der strong assumptions on f, we refer the reader to the course notes on mean
field games by Cardaliaguet [14], the lecture notes by Santambrogio [64] as well
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as the survey on variational mean field games by Santambrogio, Carlier and Be-
namou, [8].

Forsaking the PDE setup of (2.5), we will consider the following, more general,
form of Problem (2.6):

inf{J(11,0) | Gt + V.(u0) = 0, u(0) = o} 2.7)

where

JWW%iA{LL@@@M@@M+FWWJ)ﬁ+GW)

Now is as good a time as any to be a little more precise on what each term
in this energy is and what assumptions we make on them:

* Thefirsttermin J, fOT Jo L(v(t, x))du(t, z)dt is the one we call "kinetic" term
and measures the cost of displacement of . following the velocity field v.
It can be interpreted as the crowd getting tired from maintaining a high
velocity during its motion and obviously, a discontinuous move brings an
infinite amount of fatigue, which from a mathematical standpoint, guaran-
tees smooth trajectories. The standard assumptions, in mean field games,
are that L : R? — R is a convex continuous function on R¢ which behaves
like ||.||” for some r > 1. More precisely, there exists C' > 0,

1 C
Vp e RY, —lpll" = C < L(p) < " +C 8)

* In order to stay consistent with the congestion term in mean field game
(2.6), we take F' to be a convex function on M(Q) with domain in M, (Q)
(the space of positive finite measures on 2). The point of the Moreau en-
velope, described in the previous chapter, is to define a congestion penal-
ization even when F' is finite only on a very restricted class of measures.
For this reason, we do not need to assume a lot of regularity for F' and we
make the most basic assumptions in order to have minimizers for Problem
(2.7). Specifically, we ask that F' be lower semi-continuous for the narrow
topology on M(£2) and lower bounded on this set. Upon giving F' the in-
tegral form from Chapter 1, Section 1.2, (1.14), we recover the congestion
term of Problem (2.6). Let us also mention that in the case:

0 if0<pu<dzx

F Q ; do =
e M( )H/QX[OJ}(/‘(M v {+oo otherwise
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we recover the "hard" constraint studied by Maury et al., where crowds
are given an infinite (unacceptable) energy when more than one player is
at a given position (in a continuous sense). For more general F, this term
models the impact, on J, of congestion in the population as described in
the initial example. Finally, notice that in (1.14), F'is finite only on measures
which are absolutely continuous with respect to the Lebesgue measure.
We will therefore need to smooth it up in order to compute an analog for
discrete populations, which is the raison d'étre of the Moreau envelope F..

The last term we call "potential” term and this is an abuse of notations
from the case where G derives from an actual potential (V' or ® in the
example above). It represents how far (not necessarily in the sense of a
distance) the crowd is from a target "preferred" disposition towards which
it will try to move. G is a continuous function over the set AC([0; T, P, (R%))
of absolutely continuous curves with respect to the topology induced by
W, (which is stronger than the one induced by the narrow topology on
C°([0; 7], P(RY))).

Theorem 13 guarantees that any curve in C°([0; 7], P(R?)) with a finite ki-
netic term is in AC([0; T, P,(R%)) and therefore that G is well-defined at
that curve and more generally, continuous on the set of admissible curves.
Therefore, we will not be smoothing GG and, to guarantee existence of so-
lutions to the variational mean field game problem, we only make the ad-
ditional assumption that G is lower bounded. The role of GG is to drive the
players toward a goal (the trajectories with the lowest potential energy),
and this last term often favours congestion, working in opposition to the
congestion term F. In our numerical simulations, G will be given as the
mean value of a potential across the population, at intermediate times (V/
in the introductory example above) and/or at final time (® in the example).

To approximate solutions to Problem (2.7), we wish to use a finite popu-

lation of players, whose motion should describe "well enough" the global be-
haviour of the continuous crowd. Although we could continue using the space
C([0; 7], P(R%)) and simply replace p(t) with a discrete uniform probability mea-
sure in Py (R%) and adapt v, it is more convenient to recast the mean field game
problem (2.7) into a minimization problem on the distribution of possible tra-
jectories for the players, @ € P(C°([0;T],R%)). We recall here the notation
I = C°([0; T], R?) for this space of trajectories. Notice that curves in I do not
have to remain inside €2, however, since F' is +oo at measures charging points
outside €, the congestion term will also enforce this restriction in our continuous
problem.

Acurve in C°([0; T], P(Q2)) admissible for the variational mean field game (2.7)

53



can always be seen as a probability measure in P(I"). This is stated by the fol-
lowing theorem by Lisini (see also Theorem 8.2.1 of [4]). This correspondence
gives a very natural way of seeing the density of the population at time ¢, u(t), as
the distribution Q of the players’ trajectories evaluated at time ¢, e,#Q), where ¢,
is the (continuous) operator of evaluation at timeton T, e, : v € T — ~(¢):

Theorem 44 (Lisini, [42]). Let u € C([0; T]; P(R?)), be solution (in the sense of dis-
tributions) of the continuity equation O, + V.(uv) = 0, with a L™ (du.dt) velocity
vector field v and r > 1. Then there exists a probability measure Q € P(I") such
that:

1. Q-almost every v € T is in W ([0; T|; R?) and satisfies ~'(t) = v(t,~(t)) for
L'-almost every t € [0;T).

2. u(t) = e #Q forevery t € [0;T).
Conversely, any () € P(I') which satisfies

/F VI dQ() < 4o 2.9)

induces an absolutely continuous curve in AC([0; T; P,.(R%)), solution to a continuity
equation, via ju(t) = e;#Q.

We can now define the continuous problem which we will be discretizing us-
ing the Moreau envelope from Chapter 1, (1.10). For the rest of this chapter, we fix
an initial distribution of players, p° € P(Q), admitting a density with respect to
the Lebesgue measure on 2. The variational problem we consider is the rewrit-
ing of (2.7) as a minimization problem over P(I"), using the representation of
Theorem 14:

(M) :inf {J(Q) | Q € P(T)s.t. eg#Q = p°}
with 1Q) = [ [ LG/ O)ara@e) + [ Pleck @it +6(Q)

The kinetic and the congestion terms have simply been replaced by their cor-
responding equivalents on measures on I'. L therefore stays the same convex
continuous function on R? verifying inequalities (2.8) and F' is the same convex
function, now penalizing e,#@). Notice that in order for these two terms to be
finite,  must verify the converse implication in Theorem 14 and therefore in-
duce an admissible pair (u, v) for the Eulerian formulation (2.6), and conversely
so. Let us mention here that we will be using the abuse of notation, for y € T,

L) e o OY@)atify € W0 T, RY)
T otherwise
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in the future as no confusion should arise.

The potential term G in (M,,0) is a little more fuzzy: in problem (2.7) it was a
continuous function on AC([0; T], P.(R%)). As we will not revisit this Eulerian
formulation, for Problem (M), we will take G to be any continuous, lower
bounded function on the subset of measures in P(I") verifying the finite kinetic
energy condition (2.9) of Theorem 14, and +oo on the remainder of P(I") (for
simplicity). Should the reader need to go back to the Eulerian setting, Theo-
rem 14 followed by Theorem 13 can give a meaning to GG as a continuous (lower
bounded) function on AC([0; T], P.(R?)) as well as equality of the minimal val-
ues of both problems.

We now briefly recall why (M,,0) admits minimizers. These minimizers then
induce minimizers for the Eulerian formulation, using the correspondence of
Theorem 14:

Proposition 15. The functional J above is I.s.c (for the narrow convergence on
P(I')). The minimization problem (M,,0) admits solutions.

Inthe rest of this paper, Q.. will always denote (any) one of these minimizers
for Problem (M ,0).

Proof. We first prove that J is |.s.c by treating its terms separately. Theorem 4.5
of [31] and the bounds in (2.8) on L directly imply the lower-semicontinuity on
P(T') of the kinetic term, Q — [, L(7)dQ(~).

Take now (@, ).en @ Sequence converging to ()« in P(I'). To prove the rest
of our lower semi-continuity, we may assume that J(Q,,) is upper bounded. By
continuity of e, on I, for every t, e;#Q,, narrowly converges to e;#Q), as n goes
to infinity. Thus, by lower semi-continuity of F' and Fatou Lemma, we get as
desired

T

T T
/0 Fle,#Qu)dt < /0 lim inf F(e#Qu)dt < liminf /0 Fe#Qy)dt.

Finally, from the bound on (J(@,,))nen and the fact that /' and G be lower bounded,
every (,, and therefore also )., are contained in a sub-level set:

{aerm)| [ a0m <c}
r
for some C' > 0. G is continuous on this set by assumption, and thus:

J(Qu) < liminf J(Qy).

n—-+o0o
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To show existence of minimizers for (M), we follow, again, the standard
method in calculus of variations. We first note that for any upper bound C' > 0,
the set

Ke:={yel'|L(y) < C, ~(0) €}

iscompact. Indeed, Qisitself compact and any curve in K is Holder-continuous.
Compactness of Ko immediately follows from Arzela-Ascoli's theorem. If we
take a minimizing sequence (@), for (M,0) we notice that it is tight since for

anyn and C,
J(Qn) — A
Qur\Ke) < ) =4
for A=Tinf F +inf G.
Using Prokhorov's theorem, we can extract from it a sequence converging,
for the narrow topology, to a Q.. € P(T) (in particular, eg#Q., = u°). But then,

by lower-semi-continuity, (0, is @ minimizer for our problem since

J(Qw) < liminf J(Qn) =inf {J(Q) | Q € P(T) st e#Q =p"}. O

2.2 Space discretization in P(I)

Our discretization is Lagrangian in the sense that it aims at approximating the
solution Qi by discrete measures Qn € Py (I') following the point of view of
Theorem 14. Not having too many informations on Q),,;,, @ good way to do sois to
look for these discrete measures as minimizers of a variational problem similar
to (M,0). For such measures, we can prescribe the initial distribution eg#Qn =
1% € Pn(R?) and continuity of e, tells us that it will have to approximate p° in
some sense. Similarly, the kinetic and potential terms are well-defined on "rea-
sonable" discrete measures (meaning supported on Wb ([0; 7], R?) curves for
L). However, for such discrete distributions of trajectories, the value of the con-
gestion term I could be oo (and will be in the specific cases we consider later
on), giving us no information as to how close to an optimal uncongested motion
we could be!

To avoid this problem, we replace the congestion term by the regularized
version of it, F., defined in the previous chapter, (1.10). Proposition 5 tells us
that, as ¢ — 0, F. behaves as F, penalizing congested measures, or ones that
are not supported in Q (since F(p) < +oo implies spt(p) C €2). On the other
hand, for any ¢ > 0, F. is finite at discrete measures, penalizing them less and
less as € becomes larger. Since we wish for a regime in the middle (congestion
being penalized, but by a finite value), we expect to have to let € go to zero, but
not too fast, in order to have convergence, in some sense, to a minimizer Q.
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The corresponding discretization (or rather regularization) of our energy J is
then straightforward, as the kinetic and potential terms are well-defined in this
discrete case:

(Mg o) - inf {J(Q) | Q € Py(T), eo#Q = piy}
where J.(Q) :== /FL(V’)dQ(v) +/0 F.(e#Q)dt + G(Q)

Immediately, using similar arguments as for Problem (M o), we have exis-
tence of minimizers for these discrete problems:

Proposition 16. For every N € N*, ¢ > 0, J. is |.s.c for the narrow convergence and
for every 118 € P (), the infimum in (M N,.¢) IS attained.

As we mentioned, we expect minimizers for Problem (M ¢ .) to converge,
in some sense, to a minimizer of (M,,0) as N — oo and ¢ — 0. This is the case,
but only provided ¢ is related to NV in such a way that it does not vanish too
quickly as N — oo. The kind of convergence we get is very much in the spirit
of I'-convergence and is stated in Proposition 17 below. Note however that the
result stated in (Upper bound) is weaker than the usual I'-limsup one.

The proof of this proposition uses a quantization argument for a solution
Qmin Of (M,0) (see Chapter 3, (3.1)), using measures supported on a Sobolev
space H*. From standard Sobolev inclusions, we can find % < s < 1such that

Wh([0; T, RY) — H*([0; T], R?) — C([0; T, RY)

These injections are compact (recall that r is the exponent in the definition of
the Lagrangian L). From now on, we will denote H?*([0; 7], R?) by H* and the 2-
Wasserstein distance associated with the Sobolev norm on P,(H?) by Wgs. In
particular, Qu;, is supported on H* and we will take our quantization measures
supported in this same space.

The reason behind this choice is the following: to prove the (Upper bound)
part of proposition 17 below, we need to approximate Q).,;, using discrete prob-
abilities which have lower kinetic energy. Although the approximation can be
done by quantization measures according to most Wasserstein distances, tak-
ing one associated with a Hilbert norm (on the H® Sobolev space), yields quan-
tization measures supported on suitable barycenters, in some sense. L being a
convex function, this gives us measures with a lower kinetic energy than Q,,
which will be useful in the proof of the (Upper bound) claim below:

Proposition 17. Let (cy)n be a positive sequence vanishing at infinity and assume
that 1% narrowly converges towards 1° in P(R?).
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* (Lower bound) Let (QQx)n narrowly converge to ), in P(T"). Then, we have

J(Qw) < liminf J. (Qu)-

For N € N, let
r o= inf { W2 (Qw, Quin) | Qv € Py (B%)} (2.10)

be the optimal N-point quantization error for Q. in P(H?).

* (Upper bound) Assume that Ty = on_.o(en) and W2 (u%, 1°) = on—eo(en).
Then for any sequence (Q ) n where Q is a minimizer, respectively for (M 0 .\.),

limsup J; (Qn) < J(Qumin)-

N—o00

The proof of (Lower bound) is a straightforward proof of I'-liminf inequality:

Proof of proposition 17 (Lower bound). Take @y and Q). as in the proposition. For
every t € [0;T] and every N, define pl; as a minimizer in the problem defining

FEN (6t#QN)'

One can assume that J., (Qx) is bounded from above. Therefore, there ex-

ists C' > 0 such that fOT Wi(es#Qn, ply)dt < Cey for every N, since F and G are
also bounded from below. Up to extracting a subsequence, we can assume that
for almost all t € [0;T], py narrowly converges, as N goes to infinity, towards
e # Q. Using Fatou lemma, we get

T

T T
/ Fe#Qs)dt < / liminf F, (e, #Qn)dt < lim inf/ F., (e;#Qn)dt
0 0 N—o0 N—oo 0

The lagrangian part (as well as G of course) is I.s.c for the narrow conver-
gence, and we can write:

T
[ L0000+ [ PletQuit+ G(@w) <limint [ L(+)d@x ()
r 0 < Jr
T
-l—lijgﬁgf/o F., (e #Qn)dt
+lim inf G(Q)
<liminf /., (Qw)

which is our claim. O

To prove the (Upper bound)) inequality, we first need a lemma on the mini-
mizers of the problem defining 7:
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Lemma 2. for every N € N there exists Qn € P(H?) optimal for (2.10), Ty =
WH-Q]IS(QNv Qmm) and/

/F L(+)dQx(7) < / L )AQuin ().

Furthermore, T — 0 as N goes to infinity and in particular, Q 5 narrowly converges
towards Qui, in P(I'), as N — oo.

Proof. W2.(., Qumi) is |.s.c for the narrow convergence on Py/(T'), from the lower
semi-continuity of the H* norm with respect to the uniform norm on I'. Take a
minimizing sequence (Q,,),, for our problem. We can choose @,, to have lower
kinetic energy than Qx:

To see this, fixn € N,and set Q, = + 37 suand P = L 37 65 x Qi an
optimal transport plan from Q,, to Q..i, (in particular, Q7 ;. € P(T) for every i).

We construct a competitor to @,, for the infimum problem (2.10), supported
on the barycenters of the measures @Q° . (which play the role of the Laguerre
cells from semi-discrete optimal transport, Definition 6):

For:=1...N, set

0= / VAQ i (7).

Each #' is a minimizer of the convex functional [, ||. — 7|/
Indeed, this functional is differentiable on H?*, with gradient

2.dQ¢ . (v) over H?,

2 [ (.= 1)dQh()

which vanishes at n'. Therefore,
1 N
w2 (N;am,c;@ = Z/ I =112
<> [15 -
N i=1 YT

and we can assume that @, is supported on the barycenters n;. But, then by con-
vexity of L, ,, has lower kinetic energy than Q i,: fr Y)dQn () < fr YN AdQmin (Y)-
Similarly to proposition 15, we can conclude that (Qn)n is tight and up to a sub-
sequence, it narrowly converges towards a minimizer QN of W& (., Quin) OVEr
Py (I'), which verifies

1:0Qin (V)

Hs dem( ) W]I-Q]IS (Qna Qmin)

/F L(y)dQx(7) < / LY )dQuin(7)
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To show that 7 vanishes at infinity, it is sufficient to show that there exists
(Qn)n, such that, for every N, Qn € Py (H?), @Qx narrowly converges towards
Quin in P(H?), and [1.||7||%.dQn(v) converges towards [, ||7V|[3:dQmin(7), as N
goes to infinity. This can be done, for instance, as in Theorem 2.13 of [9], by
sampling trajectories in the support of Qi and using a law of large numbers.
Finally, since s > 5, H? is continuously injected in I', and we have the narrow
convergence in P(I") (for the uniform norm, this time). O

We will also need the following lemma to compare the "global" Wasserstein
distance Wys to the local one at time ¢:

Lemma3. LetQ, Q" € P(H?). Then, there exists C' > 0, such that foreveryt € [0;T),

WQ(Q#Q, et#Q/) < CWHS(Q» Q/)

Proof. Since s > £, Sobolev injections give the existence of C' > 0 such that
[|.||oc < Cl.||ms on H*. Take P, an optimal transport plan from @ to @’ with the
cost given by ||.||%., and ¢ € [0;T]. Then, (e, e;)#P is a transport plan from e;#Q

to e, #(@)’, and we can write:

W@@#ﬂ&@#@@fiéIjh%ﬂ—v%ﬂWdPWRV%

<0 [ |0 = PlRdPl ) 0
X

Proof of proposition 17 (Upper bound): Set N € N* and Q~ and 7y as in Lemma
2. As is, Qy is not necessarily admissible since it may not satisfy eq#Qxn = 1%
However, since they are discrete measures with the same amount of Diracs and
the same masses, we can simply translate the curves in spt(Q ) in order for it to
be admissible for (My 0 . ), Using vectors that are constant in time. This new

measure, which we denote by QM%N is admissible for (M .0 ., ), has the same
kinetic energy as Qv and satisfies W3, (Q,0 v, Qn) = WE(uQ, co#Qn).
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Now, if @y is a minimizer for (My 0 . ), then

Joe(Qx) < Tey(Quge) < [ L)) + GG )

I
/T Wg(et#éu?\”Na et#Qmin)
+
0

28]\7

+ F(e/#Qmin)dt
(eo#Qn, 1Y)

EN

_ 2
< / L) dQuin(7) + GOy n) + T2

N /T W3 (er#Qn, e1#Qumin) F
0

EN

(et#Qmin)dt

(2.11)

Lemma 3 gives us the bound:

T B -
|2 (et Qe @uin) dt S W2 (@ Quin) = 7
0
And, by convexity of the transport cost,
W3 (eo#Qn, ) < 2 (Wf(eo#éw,uo) + W3, u?v)) S (v + W5 (1%, 1))

and QM%,N narrowly converges to Q..i, in P(T). If we chose (en) yen and (u%) vew
such that 7y and W2 (u°, u%) are negligible compared to ey, as N — oo, then
taking the limsup in inequalities (2.11) gives us

lim sup JEN (QN) S J(Qmin)' O

N—o0

Corollary 17.4. With the same notations and assumptions on (e x ) nen and (u%) Nen
as in proposition 17 (Upper bound), () narrowly converges, up to a subsequence,
towards a minimizer of J. In particular, if (M ,0) has a unique minimizer Q,, then
any such sequence (Q) n) nen narrowly converges toward Qi (this time without ex-
traction).

Proof. Similarly to I'-convergence, this is a direct consequence of propostion 17.
By the (Upper bound) property, up to a subsequence, J.,(Qx) converges to-
wards a limit / < min J. Then as before, [, LdQy is bounded in N and (1) is
tight in P(R9), therefore, (Qy )y is tight, in P(T). Let us extract from it a subse-
quence converging towards Q., € P(T'). Then ey#Q., = 1°, and by the (Lower
bound) property, J(Q~) <! < min J hence, (), is a minimizer of (M,). O
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The proper sequence ¢y of parameters (or rather their precise behaviour
as N — o0), remains beyond our reach even in the simpler convex situation
presented in section 2.4. However, one can obtain an upper bound on the van-
ishing rate of 7y by bounding the box-dimension, in H* of the support of the
minimizing measure Q... This bound is given by the following correspondence
between optimal quantization and optimal covering of a set. We refer the reader
to [50] proposition 4.2 for a proof, as well as [29] for more details on the subject
of vector quantization:

Proposition 18. for a metric space (X, dy), take Q) € P(X) supported on > C X.
Define the optimal quantization error of Q,

v =min {3, ,(Q.Q) | @ € Px(X)}

as in proposition 17, and the optimal covering radius of ¥ as the quantity (where, dy
is the Hausdorf distance between subsets of X),

ry = inf {dy (%, P) | P C X, |P| < N}.

Then, assuming ry = On_s <N -5 ) one gets:

ONHOO (N_l) IfD <2
v = Onosoe (NT'IDN) if D =2 (2.12)
ON oo (N—%) ifD > 2

The constant D in this proposition is called the box-dimension or Minkowski
dimension of the set X.

An initial point to make is that Proposition 18 with X = R? guarantees that
we can choose 9, in such a way that, for instance for d > 3, WZ(u%;, u°) be
ON_m(N*Q/d). This is an information to take into account when choosing ey
(although it is likely to be redundant with the one given by the growth of 7y,
defined in proposition 17).

Let us give one positive result, when the velocity field associated with the
measure Qi IS Lipshitz-continuous (a similar conclusion was reached by Mérigot
and Mirebeau in [50]):

Proposition 19. Define ()..;, as in Section 2.1 and take (u,v) solution to the con-
tinuity equation, induced by Q. according to Theorem 14. We assume that v is
Lipshitz-continuous with respect to x, uniformly in t.

Then, spt(Qumin) is of box-dimension at most d, where ) C R,
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Proof. With these notations, Theorem 14 tells us that

spt(Quin) C A == {y € W' ([0; T],R?) | for a.e. t € [0;T7], v(t) € Q
and ~'(t) = v(t,y(t)} (2.13)

In particular, spt(Qumn) is bounded in W17 ([0; T, R?) and therefore in the larger
space H*([0; 7], R?), since © is compact. By Cauchy-Lipshitz theorem (v is Lipshitz-
continuous with respect to z, uniformly in t), the function ey : v — 7(0) is bi-
lipschitz continuous on A, for the W norm and therefore, for the H* norm.
This exactly means that a covering of spt(Qmin) by balls corresponds to a cover-
ing of the corresponding subset of €2 by as many balls and conversely, therefore,

=

7N (Pt(Qmin)) = Onsoo(N74) O

This proposition would allow us to chose €y dominating the corresponding
bound for 7y according to (2.12), depending on the dimension of the domain
(2. However, it is worthwhile to mention that such regularity is much higher
than the one recently obtained for solutions of congested mean field games
(and in particular variational ones). On this topic, let us cite a recent result by
Santambrogio and Lavenant [39], in the already restrictive case of €2 convex, a

quadratic Lagrangian L = L= ” , @ potential term G given by the integral of H!
potentials (V' and & in the mtroductory example) and a strong congestion en-
forced by F' = x,<d4. (see the numerical Section 2.4, case of a convex domain,
(2.17)). Under these assumptions, one can claim Hélder continuity of the value
function ¢ appearing in the mean field system (2.5), which then only translate,
through v = —V,¢ into slightly better than IL? integrability (w.r.t. ¢ and z) for the
velocity field v.

We finish this section by mentioning a stronger convergence result, in the
cases where F' has the integral form 1.14 with a function f strongly convex on R.
We recall the notation for the Moreau-Yosida projections of )y at various times,
introduced in the proof of Proposition 17, (Lower bound):

py :t€[0;T] — argmin p, t#QN / flp

associated with a sequence (Qx)n of minimizers for problem (My 0 . ), in this
section. Let us assume that problem (M o) has a unique solution, Q.. We take
the appropriate values for the parameters ey and 1, such that (up to a subse-
quence), @y narrowly converges to Qi, and J., (Qn) converges to J(Qmin) (See

17).
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Lemma 4. With these notations,

i [ v = [ [ sesQuntonas

Proof. From lower semi-continuity of F', we already have,

/ FlertQuin(2))dadt < Timinf / Flow (0)(a))drdt
[0;TIxQ [0;T]xQ

N—oo

But, on the other hand,

/[0 , Jon(ow)ast < [ i@ - o)

[0;7]xT
+/ f(et#len(x))dedt
[0;T]x$2
+ G(Quin) — G(Qn) + 0n—o0(1)

and taking the limsup as N — oo, we obtain

lim sup /[O;T]XQ flpn (t)(x))dzdt < / f(e# Qumin(2))dzdt

N—oo [0;T] %2

and our lemma. O

Strong convergence immediately follows at least in two cases:
Proposition 20. Under the assumptions on ey, 1%, Qn and Q.. listed above,

- If f is strongly convex, then py strongly converges in 1.?([0; T] x Q) (as a
function of t and x), towards py, : (t,2) € [0;T] X Q — e;#Qmin ().

cIf f:p—|p|™ m > 2is a power, then a similar strong convergence is true,
this time in L™ (]0; T] x ).

Proof. Letus firsthandle the case where f is a power. In this case, lemma 4 guar-
antees that ||pn ||~ converges to || pmin|l ~. Since py already narrowly converges
towards pni, this convergence is also a weak convergence in duality with L™
where m’ = . But, from the convergence of the norms, this implies strong
convergence in L using the Radon-Riesz property.
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If f is strongly convex, one can claim for any N € N* and almostany ¢ € [0; T
andz € (),

Flox(0)(@) + 3 F (puin0)(2)
1 (3on 0w + e

1 1
3 lpn(x) — pmin(x)||2 < 5

Integrating the right-hand side in ¢ and z, and taking the inf-limit as N — oo,
one would obtain a negative value, from Lemma 4 and the lower semi-continuity
of F' (remember that py narrowly converges to py, from our previous Lower
bound properties). Looking at the integral of the left-hand side, this exactly
states the strong-IL? convergence that we claimed. O

More generally, if there exists functions j and j* on R and a constant C' > 0
such that for pand pin R,

fp)+ () =p-p+Clilp) — i)

we get strong convergence of the functionals j(px) towards j(pmi) in L2, pro-
vided some invertibility on j, which implies strict convexity for f. This is a com-
mon assumption to show regularity results via duality on the solutions of a con-
vex problem (see for instance [58]). This convergence could bring no informa-
tion, and j = j* = 0 are actually always suitable for any convex function f. How-
ever, in the case of f strongly convex, j(p) = p with j*(p) = (f*)'(p) are suitable
and we recover the first case of proposition 20. Similarly, j(p) = p.|p|™?~! and
3*(p) = p.|p|™ />~ are suitable in the situation f = |.|™. Again, we recover the
L™ convergence claimed above. We highlighted the two cases of Proposition 20,
where we recover the values (as a density) of e;#Q i, in an almost-everywhere
way.

2.3 The fully discrete problem

We now use a uniform time discretization 0, 9, ..., Mé = T to compute a fully dis-
cretized version, with respect to space and time, of problem (M o). Rather than
writing heavy formulae for a new global energy, we will change the subset of
P(I") upon which the minimization is done, allowing for an energy almost iden-
tical to J.. The Lagrangian and potential parts will remain the same as in J and
J., whereas the congestion term will be approximated by a Riemann sum. This
is mainly done in order to simplify computations, and any time-discretization of
curves in I’ which allows W' bounds of the sort of (2.14) and (2.15) should also
work here.
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We perform our optimization on the space of functions in I which are affine
on each interval [id, (i + 1)6] with i = 0... M — 1, denoted I'i». Our fully discrete
problem is then:

(Mg, 52) 1 inf {J5-(Q) | Q € Pn(l3") st eo#Q = piy }

M-1

with Jj(Q) == / LR +5 3 F (esttQ) + G(Q)

Similarly to (My 0 ) and (M,0), we have existence of minimizers for any
value of the parameters, and we omit the demonstration as it would be almost
identical:

Proposition 21. Forevery N € N*, §, ¢ > 0, J;5. is I.s.c for the narrow convergence
and for every i1y, € Pn(9Q), the infimum in (M 0 s.) is attained.

What is more interesting is a similar convergence result to the one in propo-
sition 17, with an additional constraint on the parameters of the time discretiza-
tions, dy:

Proposition 22. Assume that (0x)n, (ex)n converge to 0, and that 1% narrowly
converges towards p° in P(R%) as N — oo:

* (Lower bound) Let (QQx) N narrowly converge to Q). in P(T"). We then have

J(Qoo) < liminf Js, ., (Qn).
N—o0

* (Upper bound) Under the same assumptions as in proposition 17, and also
assuming that (6x)*™ = o(ey) where ' = -~ is the dual exponent for r,
introduced in (2.8). Then for every sequence (Qy)n, With Qx a minimizer re-
spectively for (M y. T ), we have

limsup Js e (Qn) < J(Qrmin)

N—oo

Proof of Proposition 22 (Lower bound): We can assume that Js, ., (Q~) is bounded
from above uniformly in N. In particular, Qy is supported in W' for every N.
Then, as before,

[ 2004G) < timint [ £6)a0x(0).

r
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For every v € W', and idy <t < (i + 1)dn,

T 2/r
() = Aidw)|? < 52" ( / \h’(U)IVdU) (244)

and, integrating this inequality along Qx, we get W (e, #Qn, e:#Qn) < OéfV/T'
for every t in Jidn; (i + 1)dn], since [, L(7')dQn(v) is bounded. In particular,
for every t, e|¢/s, sy # @ N Narrowly converges towards e, #Q . Then, by Fatou
lemma,

My—1

T (i+1)5N
| Feaai <tpine > [ R enpua
My—1

<liminfoy Y Fry(eisy#Qn)
1=1

N—o00

and that last term is exactly the congestion term in Js, .. Finally, continuity of
G gives us our (Lower bound) inequality. O

Proof of Proposition 22 (Upper bound). We momentarily fix N € N*. Take Qy and
Q.o v as in lemma 2 and the proof of proposition 17 and define the piecewise

affine interpolation operator, T;™ : v € I' — ~; where, for ¢ in [idy; (i + 1)dx],
and y € T, yin(t) = y(idy) + WM (4 j5y). The measure Qi =

ON

T(}g‘#Qu%N will take the role of competitor for the problem (MN,H?W(;MN), role

that Qo had for problem (My o ...

Then, convexity of L gives us for every N, the inequalities

/F L(y)dQ%; (1) < / L(v)d0x(7) < / L(+)dQuin()-

T
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For F,

ENT

we have, as previously,

N N DN W eisn #Qu0. vy € Qumin)
- 5 (€isy # Q8 N> €17 Qmin

on E Fé‘N(ei(SN#QgV,(sN)dt SZ/§ - 2&5]\7
i=1 i=1 7N

+ F(ei#Qmin)dl
< g: /i(iH)éN W2 (eisn #Qn, er#Qn)

i=1

SN EN
+ WQZ(et#QNa et#Qmin) dt

EN

) TF )d
+ /0 (e HQuan)dt

W21, eo#Qn

EN
2/r
W3 (1°, 1) +51\f/ N

EN EN EN

+7T

™N

T
<c T / F(er#tQuin)dt
0

Finally, for v € Wh" and idy <t < (i +1)dx

o0 stisyy - LD =2 5| < [

0N

b gy [N
+ / 1y ()| du

o Jis

" T 1/r
<20y ([ o)
0

(2.15)

and, integrating along Q.v, limy_..c Wi (Q%; , Q) = 0, therefore, by continuity
of GonT, limy_so G(Qﬂivn’éN) = G(Qmin)- To conclude, we observe, as earlier that

Hlin O+ W20, 1) + 7
J5N,6N(QN) < JéN,SN( IJV:‘SN) < J(Q)+C N 2(” MN) N

EN
+G(QWs,) — G(Q) (2.16)

and, as soon as (dx)y is taken such that 5]2\,/"/ = 0N oo(en) along with the same

growth for the other parameters as in proposition 17, one can conclude

limsup Js, y (Qn) < J(Q) O

N—o0

As previously, minimizers of J;, ., narrowly converge to minimizers of .J,
under these assumptions on ey, dy and u4;.
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2.4 Numerics

In this section, we approximate solutions to Problem (MN7“9V75N,EN). This prob-
lem is a non-convex one, if only due to the non-convexity of the space of op-
timization. To obtain approximately minimizing discrete trajectories, we use
a Low-memory BFGS algorithm on the energy J;, ., replacing the measures
Q< F}si; by their expressions in term of the positions of each individual at each
time (except for the positions at ¢ = 0 which are fixed). As we mentioned in
the previous chapter, the gradient of this scalar function in high dimension is
computed using the expression in Proposition 11. There is no guarantee, a pri-
ori, that the trajectories we obtain via quasi-Newton algorithm are close to an
actual minimum one, however, the estimates on optimal quantization from the
next chapter, and especially the results on gradient flows from Lemma 7 and
Lemma 9 allow us to be hopeful that these trajectories are indeed close to min-
imizing the fully discrete problem (My 0 5, .cy), Provided gradient descent is
initialized on (constant) trajectories not too close to each other, meaning with
positions aligned on a regular grid.

The following trajectories have all been computed using an energy J with the
same Lagrangian, given by the squared norm: L : z — 3|z ?, or equivalently,

L(v) = OT Mdt with our abuse of notations. The congestion term F' and
the potential energy GG have to be somewhat tailored to each domain. However,
F will always enforce the "hard" congestion constraint p < 1 in some sense,
and G always penalize the distance (euclidean for the convex domain, derived
from an Eikonal equation for the non-convex one) to a set of target points. The
various integrals over Laguerre cells are computed using the Pysdot' library for
Python. This library also allows the approximation of the optimal weights in the
dual formulation of Proposition 9 using a Newton algorithm on the maximized

convex function,

GQ:(Y,<D)€(Rd)NxRNH§: ﬁ_/ P P 1
i=1 N Lag; (Y,®) 2e

which is concave and smooth (although we did not obtain the second order regu-
larity needed to guarantee total convergence). Solutions to the eikonal equation
featured in the second example were approximated using the code available on
J.-M. Mirebeau’s Github?. Finally, the code used to obtain Fig. 2.1 and Fig. 2.2 can

"https://github.com/sd-ot/pysdot
2https://github.com/Mirebeau/HamiltonFastMarching.git, see [52], [53], [22]
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Figure 2.1: On the first 7 images (top left to bottom right), the evolution of the
“charged" Laguerre cells (intersected with the support of px(t)) at several time
steps for 400 particles in the convex domain [—1; 10]%. The final picture (bottom
right) represents the full trajectories of the particles.

be found on the author’s Github3.

Evolution in a convex domain: In this case, our players evolve in a convex
domain Q = [—1; 10]%. We use the "strong" congestion penalization,

0 if0<p<dz

2.1
400 otherwise 217)

F:peM(Q)— /QX[o;u(p(x))dx = {

with x .1 being the convex indicator function of [0; 1]. Admissible population tra-
jectories for the continuous problem (M,,0) cannot have a density higher than
1 at almost any time or position.

The conclusions of, Proposition g apply in this case, provided |©2| > 1 to guar-
antee existence of dual solutions. With f = xp.}, f* = max(.,0) is the positive
part function on R and (f*)" = 1g+ (almost everywhere). For y € (R%)", the
associated optimal density in F.(y) is given on Lag,(y, ¢) by the (Density) condi-

tion:
2 .
— Y 1 if ||z — yl]? < 2e¢;
plz) = g+ <¢1_M> :{ if |2 —l|* < 220

2e 0 otherwise

3https://github.com/CSarrazin-prog/Congested _MFG.git
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and the charged Laguerre cells (intersected with the support of p) are the in-
tersection of the actual Laguerre cells, with the respective balls B(y;, v/2¢;).
Although proposition 20 does not apply in this case, one can expect these cells
to give a good idea of the support of the limit measure e;#Q i, and we have
highlighted them on the pictures instead of the actual player’s positions for this
reason. The "charged" Laguerre cell, Lag,(Y, ®) N spt(p) defines a zone around
y; where non-congestion prevents other points to be. These zones correspond
to a more flexible version of the "hard" balls around the particles used by Maury
et al. [47] to represent the non-congestion constraint in this case.

Finally, the potential term is defined as the integral of actual potentials V and
d:

G QePD) / / V(y(1))dt + ®(4(T))dQ(~)

with V(z) = (lz — (6,6)|]> — 9)? and ®(z) = ||z — (11,6)|>. V penalizes the
players when moving away from the circle S'((6,6), 3) in the course of their tra-
jectory, while ® gives high energy to trajectories ending too far away from the
point (11,6). We ran the optimization for a population of 400 players, each of
mass 1/40 (for a total mass of 10, in order to have visible charged Laguerre cells),
starting aligned on a regular grid on the square [0;4] x [0; 4] (top left image of
Fig. 2.1). These pictures where obtained for values of the discretization parame-
terse =0.01,§ =1/64and T = 15.

In this case, the hypothesis of a Lipschitz velocity field for the continuous so-
lution of (M ,0) could not hold as, in the experiment, we observe some (but not
many) players around the circle from the other side, in order to avoid waiting.
However this seems to be the only point of splitting for our optimal trajectories,
which suggests that spt(Qmin) should still be of dimension 2. In such a case, any
sequence e dominating In(/V)/N should be suitable to obtain the convergence
of Proposition 22.

Evolution in a non-convex domain: This second example features a crowd
motion in a non-convex domain Q2 = Q; U Q, U 23 made of two "rooms", ; =
[0;8]2 and Q3 = [11;19] x [0; 8] connected by a narrow corridor, Q, = [8;11] x
[3.5;4.5].

Here, we had to adapt our congestion term, as the Newton algorithm, com-
puting the optimal Laguerre cells, did not always converge for Dirac masses lo-
cated too far away from €2 (which was the case for some particles not using the
corridor before convergence was reached). To make this optimization easier we
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Figure 2.2: On the top six images are represented the positions and “charged"
Laguerre cells of 400 particles moving in €2. The bottom picture shows the tra-
jectories of all the particles.

fixed a small maximum density 0 < m < 1 for the area outside 2 but inside its
convex envelope conv(2), and 1 inside Q. This results in the congestion penal-
ization:

F:pe M(conv(Q)) — f(z, p(z))dx
conv(Q2)

0 ifo<p<landz e
where f: (z,p) € conv(Q) x R+— <0 if0 <p<mandz € conv(Q)\
+o0o otherwise

Although this isn't quite the framework of Propositions g to 11, these can be
easily adapted to this form of congestion. The optimal p for positions Y of the
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players is then given by:

1 ifz € Lag,(Y,®) N B(yi, v/2e0;) N2
Fora.e.z € Q, p(x) = ¢ m ifx € Lag,(Y,®) N By, vV2e¢;) N (conv(Q)\Q)
0 otherwise

The support of the Moreau projection will still be an intersection of balls with
the Laguerre cells, but the value of the optimal density p will not be 1 everywhere
on this support. Instead, p(x) = m a.e. on conv(Q)\2, giving us larger charged
Laguerre cells for the points passing near the border (or outside) of ). For low
values of the outside density m, only very few particles can fit outside the corri-
dor, and we should recover the strong penalization of the convex example.

Finally, due again to the non-convexity of €2, penalizing trajectories that do
not end in the right-side room using the euclidean distance did not yield satisfy-
ing results (or even convergence for the L-BFGS algorithm). We therefore define
our potential term using a solution to an Eikonal equation:

G QePT) o / (+(T))dQ(")

with ® being solution of the Eikonal equation on conv({2):

outside.
®(18,1) = B(18,7) =0

| =1 on Q.
|=v

and v being a small value of the velocity, outside the corridor. Such a potential
term penalizes heavily trajectories which end far away from the closest point
between (18,1) and (18,7), while also discouraging trajectories that do, but while
moving outside of €2. Notice that, unlike the one made for F, this prescription
|IV®(z)|| = v outside Q is dictated by the theory since our discrete trajecto-
ries could pass outside the corridor and we do not regularize G. We therefore
need to chose a potential term which is continuous at least at trajectories mov-
ing though conv(£2). However, even for our value v = 0.1, trajectories leaving (2
were, in the end, mostly rejected by the optimization, provided the maximum
time 7' is large enough for them to wait their turn and use the corridor. In the
end, we chose to take a fairly strong congestion penalization outside the corri-
dor, with m = 1073, while putting a much weaker penalization on the speed in
this "forbidden zone", via the Eikonal equation with a value v = 0.1. This resulted
in no particles crossing the borders of (2, even though very few trajectories cut

73



the corners of the corridor.

To obtain the motion of Fig. 2.2, we ran the optimization for 400 particles,
each of mass 1/8, starting on a regular grid over the first square ;. The tra-
jectories on these images were obtained for a slightly higher value ¢ = 0.1, as
players need to be flexible enough to move through the narrow corridor. We
then chose a time step of iy = 1/2% and a maximum time T' = 600 to avoid
certain phenomena of "teleportation” from one room to the other. Notice that
we recover a well-known phenomenon where "channels" naturally form in the
corridor, in order to optimize the flow of the players in this very congested seg-
ment of the motion.
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Chapter 3

Optimal quantization of measures

In this chapter, we study the simpler, but not unrelated problem of approximat-
ing a probability with density, using a discrete uniform one. The convergence es-
timates for one step of the Lloyd algorithm are gathered in [51]. We then present
an application of these estimates, in the context of uncongested crowd motions.

3.1 The optimal quantization problem

For a measure p < dz in P(R?), we will call N-points optimal uniform quantiza-
tion of p any solution of the minimization problem:

2
inf {w RS PN(Rd)} (3.1)

This problem can also be linked to these of Wasserstein Generative Adver-
sarial Networks ( we refer the reader to Arjovsky, Chintala and Bottou [5]) and
perhaps more closely Wasserstein regression (see Genevay, Peyré and Cuturi
[27]). The model studied in this chapter is simpler in the sense that the discrete
quantization x can be supported on any point cloud in R, whereas Wasserstein
GAN and regression often construct their measure py as the push-forward of a
"simple" reference measure (not p necessarily) through a map 7, depending on
a parameter (e.g. a computed by a neural net with weights 6). In this section,
we are only interested in the non-convexity of the Lagrangian discretization and
not its interaction with the generative process, hence the simpler setting.

Let us immediately state existence of solutions as well as necessary (but not
sufficient, as we will see) conditions for optimality:

Proposition 23. Let p < dz in P(2). Then Problem (3.1) admits solutions. Further-
more, if 1 = vaz 1 0y, IS such a solution supported on a point cloud Y, then for
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yi=N zdp(z)
Lag;(Y,®)
where (Lag;(Y,®)),—1..n are the optimal Laguerre cells for the optimal transport
from p to p.

Note in particular that provided € is convex and p > 0 on €2, then an optimal
w is supported on © and in fact, y; € Lag;(Y, ®) for every i (where & is optimal
for the transport between p and .

The proof of this proposition could easily be done using the standard method
in calculus of variations and a reasoning similar to that of Lemma 2. Instead, we
reformulate this problem as a finite dimensional one, in the spirit of the under-
lying semi-discrete optimal transport:

We define the optimal quantization error function:

W3 (% i1 8s )
2

Fn:Y € (RHYY (3.2)

Then, Fy enjoys the following properties:

Proposition 24. The function Fy is %—semiconcave (see Definition 18) on (R%)Y
and is of class C' on (R*)™ \ Dy. Here, the singular "diagonal” set Dy = {Y €
(RYN | 3i # jy; = y;} of point clouds of cardinal strictly less than N.
In addition, for any Y ¢ Dy one has
1
VINY) = 5 = Bn(Y)) (3-3)
where By(Y) = (b1(Y),...,bn(Y)) and b;(Y") is the p-barycenter of the ith optimal
Laguerre cell,
bi(Y)=N zdp(x).
Lag; (Y)
The proof of semiconcavity and regularity is almost identical to that of Propo-
sition 11 and can be found, for instance, in Proposition 21 from [50]. Note also
that Fy is coercive and |.s.c and therefore, Proposition 23 is immediate.

Remark 6. Let us note here that (3.1) is not the widely used definition of optimal
guantization of measures and usually, the masses of the Dirac are also variables
of the optimization. The problem is then:

) W p) -
S e 3

=1
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Similar results as these of Proposition 23 are well-known for these problems,
let us mention the book by Graf and Luschgy [32] as a reference for these prob-
lems. In this case, the optimal positions are barycenters of their Voronoi cells
instead of the Laguerre ones:

Vor;(Y) = {x € RY, |z — yiH2 <z — yj]|2 ’ forj=1,... ,N} (3.5)

(which are Laguerre cells for a set of weights ® = 0) and the optimal masses «;
are given by the semi-discrete optimality conditions

a; = p(Vor;(Y)).

Areason (or at least a feature) to fix the masses in EqQ. (3.1) is to obtain a dis-
tribution of points for which the local density of points is related to the sampled
density p. Indeed, at regions where p becomes larger, the Dirac masses of . cor-
respond to very small (in the sense of their Lebesgue measure) Laguerre cells of
p-measure 1/N, allowing a lot more points to fit in these regions for the optimal
measure. On the contrary, an optimal . for Problem (3.4) features more similar
shapes of cells, compensating for this with lower/higher values in front of the
corresponding Dirac masses. In particular, it is well-known that for a minimizer
of Problem (3.4),

p € argmin { W3 (fi, p) | Card(spt(1) < N)},

if one defines the uniform measure on the suport of u:

o
M—Card(,u) Z o

yEspt(p)

then, i narrowly converges towards p%id. The concave power showcases well
the uniformization of the Dirac masses’ positions in spt(u).

In the remainder of this chapter, for Y € (R%)", we denote the uniform prob-
ability measure supported on the points in Y, uy = % Zf\il d,,.This way, our
guantization energy rewrites:

W2(p,
2

Other than in dimension 1, neither Problem (3.1), nor its Voronoi counterpart

(3.4) are convex with respect to the positions of the Dirac masses. In particular,

Fn could admit several minimizers and, often, several critical points which are
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not even local minimizers. For instance, if p = 1 on the unit square Q = [0, 1]?,
one can check (Fig. 3.1) that the point cloud

Ve 1 1 3 1 2N -1 1
M \\env2)\ent2) U eN 2
represented on the left of the figure, or the 4 N-points cross-shaped one
1 2 1 1 2 1
Yy = -+ sa ]l & + 2\/§ —1 a_> )
(25w 2) (2% 5vw2V2- 3
1 1
+ ——(NVN — N -1 ,—) ,
(5 o VR - (V- VR,

-3 8 (- shvon-nd)

"’(%_T(N\/_( )N—l),%),

(53 a7m) (s ).

53— e (WN = (V= )V =T))
(1,1+(222),3(¢1,—1i<mn)]v, ’
- 3(\1/_1+—(N\3/[( 1) N—D))

22 3N

on the right are critical points of Fy but not minimizers. In fact, these critical
points become arbitrarily bad as N — +o0 in the sense that

lim Fn(V)

N—+oo min Fy

On the other hand, actual minimizers correspond (as expected) to good ap-
proximations of p, in the sense that their quantization error vanishesas N — oc.
This is a direct consequence of the upper bound given by the estimates (2.12)
mentioned in Chapter 1:

N—i ifd>2
. —1 H _
min Fy = min 2W2 (hy;p) S x 1 log N f}tj = ? (3.6)
- | = 1.

Note here that a consequence of the observation in Section 3.3 below is that
the constantin these bounds depends of p, and can very much degenerate when
p is allowed to be a function of NV (see Section 3.3).
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Figure 3.1: Critical points for F5, (on the left) and F,, (on the right) for a sampled
density p = dz. The Laguerre cells of each point are also drawn, and feature
some very characteristic anisotropic dimensions.

3.2 Lloyd’s algorithm for optimal uniform quanti-
zation

Considering the non-convex behavior mentioned in the previous section, it might
seem-counter-intuitive that the main algorithm used to numerically approxi-
mate optimal quantization measures is a gradient descent algorithm, with large
step-size. This algorithm was already recommended in Balzer et al. [7], which
is commonly considered as the first use of Laguerre cells as an alternative to
Voronoi ones to do quantization of measures. It consists, similarly to the al-
gorithm used for non-uniform quantization from which it borrows its name, in
sending each point of aninitial point cloud to the p-barycenter of their respective
Laguerre cells, and reiterating until some stopping criterion is attained:

Algorithm 1: Lloyd's Algorithm

Input: N > 0, Yy € (RY)Y

Y « YN:

B+ Yy,

while StoppingCriterion not reached do
Compute the optimal weights ® < ®°P'(Y);
Compute the barycenters of the Laguerre cells B < By(Y);
Send each point to the corresponding barycenter Y < B

Output: Y a quasi-critical point cloud

Let us come back to the gradient expression from Proposition 24 to see that
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the algorithm above is also a discrete gradient descent, for the functional N.Fy;,
which we summarize as the system:

YU c (Rd)N ( )
Yk+1 _ Yk + TN(BN(Yk) _ Yk) 3.7

Taking 7v = 1, one indeed recovers the iterations of Lloyd’s algorithm.

First, we mention some preliminary results for the possible limits of (3.7):
Proposition 25. Let N be a fixed integer and Y° & Dy. Then:

* The iterates (Y*);>o € (RN of the Lloyd algorithm are all well defined and in
fact, the sequence (Y*),o belongs to a compact subset of (R)N \ Dy.

» The energy k — Fy(Y'*) is decreasing, and limy,_, ;. | VFx (Y*)|| = 0.
Proof. GivenY = (yi,...,yn) € (RY)N \ Dy, one has foranyi € {1,..., N},

/ e — w2 dpla) = / e — B(Y) + bi(Y) — w2 dp(a)
Lag;(Y')

Lag;(Y)

1
=/ lz = b:(Y)* dp() + 5 18 (Y) = il
Lag; (Y)
Summing these equalities over i, we get

1 2 2 2
L UBw(Y) = Y2 = W2 (o, uy) — / e — b)) do(a)
N Z Lag,(Y)

< WQQ(pa fy) — W22(p7 5BN(Y)>'

Thus, .
N|[VFx(Y)|? = ~ 1BY) = Y|* <2(Fn(Y) = Fn(B(Y))). (3.8)

This implies that the values of Fy are decreasing during the Lloyd algorithm,
as long as it can be performed.

Next up, let us show that the sequence evolves in a compact subset of (R4)Y \ Dy,
proving that these iterations can indeed be performed indefinitely:

Assumethat Y* € (R4)N\Dy. Since pis absolutely continuous, it is uniformly
integrable which means that for every ¢ > 0 there is § = d(¢) > 0 such that for
any set A with Lebesgue measure |A| < § we have p(A) < . On the other hand,

p is supported on the compact domain 2 and, as such, inside a ball B(0, R). We
claim that we have [b;(Y) — b;(Y)| > r = d(35)/(wa—1 R*") and in fact, that
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every barycenter b;(Y') is at distance at least r/2 from each face of the convex
polytope Lag;(Y).

Indeed, let us takei € {1... N} and assume that one of the faces of Lag;(Y*)
lies on the hyperplane {z; = 0} while the whole cell is located on top, inside
{zq > 0}. Let s > 0 be such that half of the mass of Lag;(Y"*) is located below

Tq = S.
1

2N

The Lebesgue measure of this "bottom half" is upper bounded by w,_; R4 s
since 2 C B(0; R) and therefore, s > r with the previous definition. Since half
of the mass (according to p) of the cell Lag,(Y) is above the level x; = s the
xq-coordinate of the barycenter is at least /2. This shows that the p-barycenter
lies at distance at least r/2 from each of its faces and therefore at distance r of
the other barycenters. On the other hand, boundedness of the sequence (Y*),,
immediately follows from the fact that Fy(Y*) is upper bounded by Fy(Y?).
Indeed, the second order moment of + SV o, is bounded by its Wasserstein
distance to p:

]. N k112 N 2 2 )
LSl <2 / of —a2|* + 2l dp(e)
3 (z R

N
1
<2 <W22 (ﬁ Zég,p) +max ||x||2> <2Fn(Y?) +C.
i=1

As a consequence, the iterations Y* lie in a compact subset of (RY)YN \ Dy.
Furthermore, since (Fy(Y%))ren is bounded from below, we immediately get by
applying (3.8) to Y* and then summing in k, that 3, || VFx (Y#)||* < 400 and
in particular,

p(Lag;(Y*) N {za < s}) =

lim |[VFy(Y")|=0. O
k——+o0

For the non-uniform version of the quantization problem, convergence re-
sults for the algorithm (only to a critical point, but not up to a subsequence) can
be found in [21] and [10]. These claims rely on the assumption that there is only
a finite number of centroidal diagrams with the same energy (meaning, in our
case, a finite number of critical point clouds for Fy with the same value of Fy),
which is usually a hypothesis of genericity. Under this assumption, we can also
conclude positively to the convergence of the whole sequence Y* to a critical
point for Fy, using the following proposition which implies in particular that the
set of limit points is a finite connected set, i.e. a singleton:

Proposition 26. Let N, Y & Dy and (Y*)>q be as in the previous Proposition 25.
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Then all limit-points of (Y*),>¢ are critical points for Fx and Fy is constant on
this limit set. Furthermore, this set of limit points is a compact connected set with
empty interior.

Proof. For convenience, let us call A the set of limit points of (Y*);~.

Since Fy is decreasing along the iterations of the Lloyd algorithm, all the
limit points in A must have the same value of Fy. Furthermore, the conver-
gence |V (Y*)|| — 0 along these iterations, together with the fact that they
remain in a compact set upon which Fy is C! implies that any point of A must
be a critical point.

Compactness of A isimmediate from the fact that A is constituted of the limit
points of a bounded sequence in (R4)Y and therefore is closed and bounded,
by a diagonal argument.

There is a similar result for the connectedness of such a set of limit points,
but we will recall the proof:

Assume that we can take U open suchthat A C U U (UOC) and let us obtain a
contradiction. Then, one can define an extractor ¢ by induction:

#(0) =min{k >0 |Y* e U, Y* € U¢}
(i + 1) = min{k > ¢(i) | Y* € U, Y+ € U°}.

¢(1) is well defined for i > 0, otherwise either A C U or A C (UOC). Using com-
pactness, and up to another extraction, we can assume thatOY‘W) converges
towards a € U N A whereas Y?(W+! converges towards b € (U¢) N A. But, we
recall that for any i,

[y oo+t — yas(z')H? < AN (Fn(YVOO) = Fp(YO0H1))

and therefore, taking the limit as i — oo, we have a contradiction a = b, since the
right-hand side goes to 0 (recall that F' is constant and continuous at any point
of A).

Finally, assume that there exists a € A and r > 0 such that B(a,r) C A. Take
a* = Y**) a subsequence of (Y*),, converging to a. Then there exists a rank K
such that a* € B(a,r) for any k > K and after the rank ¢(K), (Y*)>4(x) would
be stationary, equal to a, since VFy = 0 on B(a, ). This is a contradiction to the
fact that there are other limit points of A in this ball. O
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We can observe on the "bad" critical points in Fig. 3.1 that the point cloud Yy
is highly concentrated, in the sense that the distance between two pointsin Yy is
at the lowest 51, whereas in an evenly distributed point cloud, one would expect
the minimum distance between points to be of order N /2 in this 2-dimensional
setting.

In fact, this is a widely admitted starting condition, when using Lloyd algo-
rithm (1), that the initial points be well spaced in the domain €2. However, to our
knowledge, no mathematical proof of this dependency on the initial conditions
has been given in the literature so far.

From there, one could ask oneself whether or not it is easy to choose an
initial Y° such that Lloyd algorithm ends up converging to an actual minimizer
(or at least close to a good local one). It turns out that this is a highly nontrivial
question (see Section 3.4 for our very partial answer). However, a very surpris-
ing experimental fact is that one step of the Lloyd algorithm is in fact enough
to obtain a discrete measure very close to the density p (in the sense of Fy),
provided one did not start from an adversely chosen point cloud.

We now state the main result of this section, which quantifies the error on
this 1-step approximation. We will use the following notation for ¢ > 0:

LY)={ie{l,...,N}[Vi# i llyi —uill = e}
and
Dy ={Y € )" |3 # j, llyi — ysll < e}
Note that Dy is an e-neighborhood around the generalized diagonal Dy.

Theorem 27 (Quantization by barycenters). Let Q) C R? be a compact convex set,
p a probability density on 2 and consider a point cloud Y = (y, ..., yn) in QN \ Dy.
Then, forall 0 < e <1,

N
1 gl—d Card(I.(Y
W3 <Pa N E 5bi(Y)> < Can (T +1- W) . (3.9)
i=1

2d—1

where Cyq = 2
in R41.

(diam(Q) + 1)?*! and where w,_, is the volume of the unit ball

d—1

Notice here that, unlike in the rates of (3.6), the constant does not depend
on p. However, this comes with a tradeoff, as the exponent in N becomes much
worse.

The proof relies on a sort of concavity for the Laguerre cells, with respect to
their weights. Let us recall our notation A & B for the Minkowski sum of sets:
A®B={a+0b]|(a,b) € Ax B}.
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Proof. We denote y = % Zf\il d,, and the corresponding measure on the barycen-
ters B(Y): = + SN b

Let ' € RY be a solution to the dual Kantorovich problem (1.8) between p
and pu. We let ¢' = t¢! and we denote Lag! = Lag,(Y, ¢') N ' the ith Laguerre
cell intersected with the slightly enlarged convex set ' = Q @ B(0, 1). This way,
Lag; DO Lag;(Y) N Q whereas Lag! is in fact the intersection of the i-th Voronoi
cell defined in (3.5) with €.

We will now prove an upper bound on the sum of the diameters of the cells
Lag;(Y) whose index lies in I.(Y). First, we notice the following inclusion, which
holds forany ¢ € [0, 1]:

(1 —t)Lag] @ tLag; C Lag;, (3.10)

Indeed, let 2° € Lag) and z! € Lag}, so thatforall j € {1,..., N} and k € {0, 1},
o =" = o < fla* = u]]" — o

Expanding the squares and substracting ||=*||* on both sides these inequalities
become linear in ¢}, ¢ and z*, implying as desired:

' = (1 —t)2° + tz' € Lag!.

For any index i € I, the point y; is at distance at least € from other points,
implying that B(y;, 5) is contained in the Voronoi cell V;(Y') defined using (V.
Using that Lag? = V;(Y) N &, that Q' = Q @ B(0,1) and that y; € ©, we deduce
that Lag? contains the same ball. On the other hand, Lag; contains a segment
S; of length diam(Lag; ) and inclusion (3.10) with ¢ = 1 gives

1

5(B(i2/2) © 5,) C Lag}””.
The Minkowski sum in the left-hand side contains in particular the product of a
(d — 1)-dimensional ball of radius /2 with an orthogonal segment with length
diam(Lag;) > diam(Lag,(Y)). Thus,

1 et 1/2
5 wd_lﬁdlam(Lagi(Y)) < |Lag;""|.

1
Using that the Power cells Lag? form a tesselation of the domain €', we obtain
2d— 2d—1

1
> diam(Lag,(V)) < ——|]e' ¢ < 2—(diam(Q) 4 1)det (3.11)

Wy Wy
el (Y) d-1 d-1
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We now estimate the transport cost between p;, and the density p. The cost due
to the points whose indices do not belong to I.(Y) can be bounded in a crude
way by

> /L e — b2 dp(e) < (1 — YD) G,

i1 (Y) ag;(Y) N

Note that we used p(Lag,;(Y)) =
sociated with indices in I.(Y') ca
b;(Y) € Lag,(Y):

> / o= bl dp() < = 3 diom(Lag, (V)

ag, (Y)

. On the other hand, the transport cost as-
e bounded using (3.11) and and the fact that

CTZIH

iel( i€l (Y)
1
< Ndiam(ﬂ) Z diam(Lag;(Y))
icl.
92d~1 1-d

< (diam(€) + 1)d+15T

Wd—1

In conclusion, we obtain the desired estimate:

92d-1 gl—d Card],
2 < : d+1 2 . €
W3 (p, 1) < o (diam(€2) 4+ 1) N + diam(€2) (1 I )
92d—1 gl—d Cardl,
< diam(Q) + 1) | — 1— ). O
T We—1 ( lam( )+ ) ( N * ( N )>

Note that this result is actually true for more general costs (not only for the
quadratic one). The proof of such result make use of a very natural change of
variable by taking the so-called c-exponential map. Let us consider a cost c on
R? x R? such that (we use here the notations from Loeper [43]):

(A0) cisC*on ' x Qwith ' := Q + B(0,7).

(A1) c verifies the following twist condition on the whole domain Q' (which is
technically a twist condition on ¢* : (z,y) — c(y, z)):

VyeQ, x€Q w— Dyc(x,y)
is injective.
(A2) Forall (z,y) € ' x Q, det(D? c(z,y)) # 0.
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This allows the definition for Y € Q¥ of the c-exponential maps
expj, 1 p € Q — (=Dyc(,5:)) "' (p) €Y

where the sets (; (the c-exponential charts) are taken such that these maps are
C! diffeormorphisms. Let us note here ([43], Definition 2.6) that, under con-
ditions A0 — A2, these maps are bi-lipshitz with constants that do not depend
on the point cloud considered: There exists K.q > 0 such that for any Y € QV,
i=1...Nandp'#p*ecqQ,

L _ lexps, (1) — expg, (07)]
Ko~ [Pt — P

S KC,Q (3-12)

We make the additional following assumption, which is a stronger version of
Loeper's condition (Aw) of [43] Theorem 3.2,which is itself a reformulation of
the celebrated Ma-Trudinger-Wang condition for the regularity of the transport,
[44]). Note that this stronger condition is known from the work of Kim, Figalli
and McCann [26] as The Non-Negative-Cross-Curvature (NNCC) condition and
is equivalent, under the previous regularity conditions on ¢, to convexity of the
set of c-concave functions (which is essentially the arguments that we use in our
proof).

We assume that for any Y € QY and i € {1... N}, the exponential charts
Q; = —D,c(9,y;) are convex and that Loeper's functions:

p € Qi = clexpy, (p), yi) — c(expy, (p), y;) (3.13)

are convex for any j.

This assumption is stronger than the usual Loeper’s condition (Aw) where
these functions were only assumed to be quasi-convex (meaning that their sub-
level sets are convex). With these definitions, we can make the corresponding
claim to Theorem 27:

Theorem 28. Letc, Qand (Y € R%)Y be defined as above in order to verify A0 — A2
and the (NNCC) condition. Then, there exists C' > 0 such that for any p a probability
density, 0 <e < 1.

N
1 gl—d Card(I.(Y))
I, (N ;5@-(1/)7,0) < Cean (T +1- T) (3.14)

with a constant C. 4. that only depends on the cost ¢ and the domain Q C R<.

Proof. The proofis very similar to that of Theorem 27, and the stronger Loeper’s
condition is used to obtain a similar concavity of the Laguerre cells with respect
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to their weights, only this time through the exponential maps exp¢. Indeed, with
the notations of the proof of Theorem 27, the Laguerre cells are defined by

c(a,y:) = cl@,y;) < ¢ — &5

and the convexity of Loeper’s functions gives us again the "convexity of the La-
guerre cells", in the following sense:
if 7o = expy, (po) € Lag?, v, = exp; (p1) € Lag}, then

T1j2 = expe, (%Po + %pl) € Lag;””.
Because of the bi-Lipschitz condition (3.12), the assumption ¢ € I. implies that
(expg )~ (Vor;(Y) N &) contains a ball of radius K.q5. Similarly, for every i,
(exp,) ! (Lag; N ) contains a segment of length K. qdiam(Lag; N ¢Y').
To finish the proof, we rephrase the same arguments on the size of the in-
termediate Laguerre cells, but in the exponential chart instead of €. For conve-
nience sake, we rewrite “Lag; := (expf,)~'(Lag; N €) and we obtain:

K¢ d-1
L (wd1 (%) diam(%agi)) < |’Lag,’?|

Again, this gives us an upper bound on the sum of the diameters of the La-
guerre cells, since the Lebesgue measure of the sets §2; are uniformly bounded
by a constant that does not depend on Y (because of the bi-Lipschitz bound on
the c-exponential maps, once again). The transport costs on the points whose in-

dicesarenotin I.(Y') are once again crudely upper bounded by (1 — Ca%”y)) SUpPg:2 C.

The rest of the proof is identical, noting that ¢(x, y;) < L ||z — y;|| with a constant
L that depends only on c and . O

Theorem 27 could be extended mutatis mutandis to the case where p is a
general probability measure (i.e. not a density). However, this would imply some
technical complications in the definition of the barycenters b; by introducing a
disintegration of p with respect to the transport plan 7.

An immediate application is the case, mentioned earlier, where the points
are spread in a pattern of dimension close enough to d, in some sense. More
precisely, we assume that the distance between any pair of distinct points of
Yy € (RY)Y is bounded from below by ey > CN~Y8, implying that 1., (Yy) =
N. This corresponds to the value one could expect for a point cloud uniformly
sampled from a set with Minkowski dimension 5. When 5 > d — 1, the following
corollary asserts that one step of Lloyd's algorithm is enough to approximate p,
in the sense that the uniform measure 6z, (v, over the barycenters converges
towards p as N — +oo (with an exponential convergence rate):
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Corollary 28.1 (Quantization by barycenters, asymptotic case). Assume sy >
C - N~YB with C,3 > 0. Then, with v = 1 — <1

B
1 — C,
d,Q rr—a
VWY € ®YV\D... W2 (p, ~ ;abi(y)> <N (3.15)
and in particular, if 5 > d — 1,
1 N
. 2 - _
N1—1>I-I|—100 Ye(ﬂgl)%v}imm Ws (p, N ; 6bi(Y)> 0 (3.16)

Remark 7. Let us make a note here that the results of Theorem 27 are tight in
the following two sense:

*+ (Optimality of the exponent when § = d) There is no reason to believe that
the exponent in the upper bound (3.15) is optimal in general. However, it
seems to be optimal in a “worst-case sense” when 5 = d:

More precisely, for any dimension d, n € Nand N = n¢, there exists a sep-
arable probability density py over X = [—1,1]¢ such that if Yy is a uniform
grid of sizen x --- xn = Nin X, then

N
1 _1
|15 (N ;:1 6b7;(YN)7pN> > CN™ 4,
where C'isindependent of N. Notice, on the other hand, thatin this setting

every point in Yy is at distance at least C N~'/ from any other pointin Yy.
Applying 28.1 with 8 = d, i.e. « = 1, we get

N

1 1

Wy (N z: 5bi(YN)7pN> <C'N7d,
=1

Comparing this upper bound with the previous lower bound, one sees that
it is not possible to improve the exponent while keeping a constant inde-
pendent of p.
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* (Optimality of (3.16)) The assump-
tion 5 > d — 1 for (3.16) is tight:

If p is the Lebesgue measure on
[0,1]9, it is possible to construct a
point cloud Yy with N points on
the (d—1)-cube {1} x[0,1]4"! such
that distinct pointsin Yy are at dis-
tance at least ey > C - N~-V(d=1)
(see figure on the right).

Then, the barycenters B(YY)
are also contained in the lower-
dimensional cube, so that

1 & 1
w3 (paﬁ E 5bi(YN)> > o
=1

The next corollary is a probabilistic analogue of Corollary 28.1, assuming that
the initial point cloud Y is drawn from a probability density o on ). Note that o
can be distinct from p. The proof of this corollary relies on McDiarmid's inequal-
ity to quantify the proportion of e-isolated points in a point cloud that is drawn
randomly and independently according to o.

Corollary 28.2 (Quantization by barycenters, probabilistic case). Consider a prob-
ability measure o € L>°(Q) NP () and let X, ..., X be i.i.d. random variables with
distribution o. Then, there exists a constant C' > 0 depending only on ||o||L~ and d,
such that for N large enough,

2d—3

N
1 1 2d—1
P (W§ <N25@<x>,p) S N) >1—e N
=1

In a point cloud Y, we shall call e-isolated the points y; such thati € I.(Y),
and e-connected points y; such thati ¢ I.(Y). Let us also introduce, in the hope
of making the proofs clearer, the proportion of e-isolated points in Y

k(YY) = %Card(IE(Y)).

Lemma 5. Let Xi,..., Xy be independent, Re-valued, random variables. Then,
there is a constant C; > 0 such that

P{|c(Xy,....,Xn) —E(k)| > n}) < e~ N*/Ca_
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Proof. This lemma is a consequence of McDiarmid’s inequality. To apply this
inequality, we need evaluate the amplitude of variation of the function « along
changes of one of the points z;. Denote ¢, the maximum cardinality of a subset
S of the ball B(0, ¢) such that the distance between any distinct points in S'is at
least . By a scaling argument, one can check that ¢, does not, in fact, depend
on ¢. To evaluate

|k(z1, .oy xy ey aN) — R(T1, o By e TN

we first note that at most ¢, points may become e-isolated when removing ;. To
prove this, we remark that if a point z; becomes e-isolated when z; is removed,
this means that ||z; — z;|| < e and ||z; — x| > e forall k & {4, j}. The number of
such j is bounded by ¢;. Symmetrically, there may be at most ¢, points becoming
e-connected under addition of z;. Finally, the point z; itself may change status
from e-isolated to e-connected. To summarize, we obtain that with C; = 2¢;+ 1,

- 1
|k(z1, .y an) — R(T1, o By )| < NC'd.

The conclusion then directly follows from McDiarmid'’s inequality. O

Lemma 6. Let 0 € L>®°(RY) be a probability density and let X, ..., Xy be i.i.d.
random variables with distribution o. Then,

E(k(X1,...,Xn)) > (1 = ||o||ecwae®)¥ 1.

Proof. The probability that a point X; belongs to the ball B(Xj, ¢) for some j # i
can be bounded from above by o(B(X;,€)) < ||o||L~wae?, where w, is the volume
of the d-dimensional unit ball. Thus, the probability that X is e-isolated is larger
than

(1 = Jlo[[owas®) V1.

We conclude by noting that

E(k(X1,...,Xy)) = % Z P (X, is e-isolated). O

1<i<N

Proof of Corollary 28.2. We apply the previous Lemma 6 with ey = N~7 and g =
d— % The expectation of (X3, ..., Xy) is lower bounded by:

_d
E((X, ., Xx)) 2 (1= N7H o)

>1 - CN'" %

90



for large N, since 8 < d. By Lemma 5, for any n > 0,
Pr(X1,..., Xn) > 1—CN"5 —p) > 1 — e KN,

for constants C, K > 0 depending onIy on HaHLw and d. We choosen = N~7T,

so that 7 is of the same order as N'~ fsincel — 4 = 52-7-1hus, for a slightly
different C,
Ple(Xy,..., Xn) > 1—Cn) > 1 —e KNP,

Now, for wy,...,wy such that
R(Xl(w1)7 s 7XN(WN)) >1- C77;

Theorem 27 yields:

d—1
N7 __ L
Wy (0y (x@): ) < 4y < Nz

and such a disposition happens with probability at least

2d—3
_ 2 _ 2d—1
1 — e BNm" — 1 _ o KN O

Finally, theorem 27 can be interpred as a modified Polyak-tojasiewicz-type
(Pt for short) inequality for the function Fy. The usual Pt inequality for a differ-
entiable function F' : RP? — R is of the form

VY eRP, F(Y)—minF < C|VF®Y)|?,

where C'is a positive constant. This inequality has been originally used by Polyak
[57] to prove convergence of gradient descent towards the global minimum of
F. Note in particular that such an inequality implies that any critical point of F'is
a global minimum of F. As could be seen on Fig. 3.1, Fx has critical points that
are not minimizers, so that we cannot expect the standard Pt inequality to hold.
What we get is a similar inequality relating Fx(Y) and ||V Fx(Y)|” but with a
term involving the minimimum distance between the points in place of min Fy.

Corollary 28.3 (Polyak-tojasiewicz-type inequality). Let Y € (RY)N \ Dy .. Then,

11\
Fal¥) = Can (2) < NIVFAOF (317

N
Proof. We first note that by Proposition 24, we have

1
IVFEN(Y)|? = e |Bn(Y) = Y|?.
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We then use W2 (6p,(v),0v) < = | By (Y) — Y| to get:
W3(p,dy) < 2Wi(p, dpyv)) + 2N |[VFx (V)%

Thus, using Theorem 27 to bound W3(p, d5,(v)) from above, we get the desired
result. O

1 1/d,

We note that when ¢ ~ (4)"%, the term L (1)*"" in (3.17) has order (%)
)

On the other hand, we recall (3.6), min Fy < (+)”" when d > 2. Thus, inequality

(3.17) is not truly a Pt-inequality, as the order of the second term - v (g)df is not
that of the minimum of F.

3.3 Numerical results

In this section, we report some experimental results in dimension d = 2. This is
by no means a performance study, but rather a set of observations, related to
the theoretical convergence results of the previous sections. For actual efficient
implementations for uniform quantization of measure, and in particular speed
comparisons, we refer the reader to articles on Blue Noise Sampling, [17] for
computations using Lloyd’s algorithm and [70] for a more general overview.

Gray-scale picture A first, somewhat toy-, application for optimal quantiza-
tion is the sparse representation of a grey-scale image, via points clustering
more closely in darker areas. On figure 3.2, we plotted the point clouds obtained
after a single Lloyd step toward the density representing the image on the left
(Puffin), starting from regular grids. Underneath the pictures are the graphs, in
log-log scale of the quantization error with respect to the number of points. The
observed rates of convergence, close to N=1%, are coherent with the theoretical
estimate O(log(N)/N) of (3.6). In the background of the Puffin, one can also ob-
serve that some structure of the starting grid has been conserved after the Lloyd
step. These artefacts are actually symptomatic of a remarkable phenomenon,
which is that Laguerre cells with respect to a separable density on one side and
a grid-structured point cloud on the other will also be aligned along a grid. This
result is proven in the next chapter, Proposition 33.

Examples in separable cases: In this example, we showcase the optimality
of the exponent in Corollary 28.1, even under assumptions of regularity on the
underlying density.
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Figure 3.2: Approximative optimal quantization of a density p corresponding
to a gray-scale image (Wikimedia Commons, CC BY-SA 3.0). (Middle) We display
the point clouds obtained after one step of Lloyd’s algorithm, starting from a
regular grid of size N € {3750, 7350, 15000, 43350}. (Bottom) Quantization error
W3 (p,d5,) as a function of N the number of points, showing that W2 (p, dp,, ) =
N—l.OO_
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Figure 3.3: Point clouds obtained after one step of the Lloyd algorithm in the
sampling of the Gaussian density represented on the top left. The point clouds
on top were constructed starting from a random initial distribution of 400,
961,1600 and 2500 points. The ones on the bottom were reached from an ini-
tial point cloud aligned on a regular grid (of the same sizes).

We first observe what happens when the approximated density is a Gaussian
one (truncated to the unit square 2 = [0, 1]?), with low variance:

o(2,y) = Se—Ha=HH=-3)?)
Z

where 7 is a normalization constant. In the experiments represented on the left
column of Fig. 3.3, the initial point clouds Y are randomly sampled uniformly in
[0,1]?, and the subsequent pictures represent the barycenters of the Laguerre
cells. In this case, we observe a decrease rate for the quantization energy N 0%
with respect to the number of points, similar to the case of the gray scale images
on Fig. 3.2.

However, when starting from a regular grid (pictures on the left of Fig. 3.3),
we observed a similar grid-like formation for the barycenters, which is stable
(meaning the Lloyd algorithm does not move the points after the first step). This
formation also gave us a much worse quantization error, of the order of N—0-78,

Of course, the cause of this behavior is the separability of the density in this
case (meaning a Gaussian one). This comes down directly from the same con-
figuration in dimension one, using the factorization of the Laguerre cells in the
separable case (Proposition 33):

2
Proposition 29. For any o > 0, consider p, := mge‘% 1i_y,1dx the truncated
centered Gaussian density, where m, is taken so that p, has unit mass. Then, for
every § € (0, 1), there exists a constant C' > 0 and a sequence of variances (o) yen
such that
VY e (Rd)N \ Dy, W22 (6BN(Y)7PUN) 2 CN~C0
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- 2
Proof. We denote g : z € R \/%e_% the density of the centered Gaussian

distribution and £} its cumulative distribution function, so that

||

m,t = /_l e 2?dr = o\2r ( )dy = V2ro(F,(1/0) — F,(=1/0)) (3.18)

—1/c

Note that, whenever ¢ — 0, we have om, — (v/27)~!. We denote the cumu-
lative distribution function of p, by F, : [-1,1] — [0, 1]. Given any point cloud
Y = (y1,...,yn) such that y; < --- < yy, the Power cells P;(Y) is simply the
segment

B(Y) = [F,'(i/N), F; (i + 1) /N)].
Since these segments do not depend on Y, we will denote them (P;);1<;<x. Fi-
nally, defining b; = prl_ xdp,(z) as the barycenter of the ith power cell and

1B =~ > ; 0, We have

Wi(uspe) = 3 [ (o= dne(a)

—1)2/ (z — b;)?da (3.19)

P;
N

> Cpo(—1) Y (F; /N) = F; (i/N))’,

=1

where we used that p, attains its minimum at £1 to get the first inequality.
We now wish to provide an approximation for F.-1(¢), ¢t € [0, 1]. We first note,
using Taylor's formula, that we have

rro=or (5(5) 4[5 (3)-5(3)])
=oF,! (Fg (_71) + \/%;Om()
/2

=—-1+ U(Fgfl)/ <Fg (;)) —\/2_7:50777, + 5 (Fg*l)//(s) S
for some s € [Fy(—2), Fy(—2) + t(F, () — F,(—2))]. But,

| Q

1 17y L))
F_l / t - —_— = 2 2
( g )() gongl(t) V 4T7e )
"o F(t 2
(ngl)//(t) — goly ( )3 — 27TFg 1(t)e|F9 ]
(90 F,1(1)
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and we see that

t 4 2
FY)— -1+ —ez? || <eo?—n—
15 (0) ( +mae2 >| = 202m2

Therefore, if we denote ¢(o, t) the second-order error in the above formula,
1
i.e.e(o,t) =eo? # the size of the first Power cell Py(Y") is of order:

F7Y(1/N) = F740) = N:ngeziz +0 (5 (a, %)) .

We will choose oy depending on N in order for the first term in the left-hand
side to dominate the second one:

1 1 1
—_ ) = 262
€ <aN, N) 0 (nge ) i (3.20)

(F, 1 (L/N) = F10))po(—1) >

In this way, we have

c L (3.21)

We now choose o = o such that ez — N for an exponent « to be chosen.
We need o > 0 so that oy — 0. This last condition and (3.18) implies that m,, is
of order /log N. This means that the condition (3.20) is satisfied if « < 1 and N
large enough.

The sum in (3.19) is lower bounded by its first term, (3.21), and we get

) 1 1 N2a73
05, Pg) > C——e°N > o
WQ(B’p)_CN?’m?TNeN _C<1I1(N>)

for some constant C' > 0, since ¢ depends logarithmically on N. Finally, if we
want this last expression to be larger than N~(2-% we can take for instance 2o >
1+ §and N large enough. O

Corollary 29.1. Fix § € (0,1). Given any n € N, consider an axis-aligned discrete
grid of the form Zy =Yy x - - x Yy in RY, with N = Card(Zy) = n?, where each Y;
is a subset of R with cardinal n. Finally, define o := 0,5 as in Proposition 29 Then
we have -

W22(53N(ZN)’ Poy @+ & pUN) >CN™ T,

where the constant C'is independent of N.
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Figure 3.4: A critical point for Fy, with p given by (3.22), which realises a good
approximation in the sense of Theorem 27, but does not realize a minimum for
Fn, forlarge N.

Note that one can construct a much simpler example of a family of densi-
ties that cannot be approximated by discrete uniform measures at a better rate
(which, however, does not share the smoothness of p,,,):

This can be done, as for the Gaussian example in dimension d = 1 and then
generalized to higher dimensions using separable measures (see Fig. 3.4 below):

For N € N* set

1 N
PN = (N—_H]l[—m] + N 1]1[0;1}) dw (3.22)
Then, the only critical point for F (defined from the density py) is the cloud:
Ve — 1 1 3 2N — 1
N7\ 272N 2N 2N

and

1 1
Fn(Yv) = 1557 + on-o (N) :
Now, for any d, consider

PR =P =N ® - ®pN

on the domain [—1; 1]%. The point cloud Y3* defined as the tensor product of
the set of coordinates of Yy d times with itself, is a critical point for Fy (this
time with the density p%) and it is the point cloud of barycenters B(Y') for any
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starting cloud Y aligned on the main axes, e.g. sampled on a regular grid. Using
the decomposition of the Laguerre cells from Proposition 33, we obtain

FalBO) = (V9 =g57 + 0w (37

which is the convergence rate of Corollary 28.1.

3.4 Applications to the initialization of some parti-
cle flows

We finish this chapter by studying the implication of Theorem 27 on the choice of
initial datum for some minimizing movements, whose energy features a semi-
discrete transport term. To clarify, we first consider the simple gradient flow
of Fy, giving us convergence bounds, but ones that cannot be used in practice
and consist more in a proof of concept. We then apply the same techniques
to the (more interesting) case of uncongested crowd motions as a Wasserstein
gradient flow.

Gradient flow for the uniform quantization energy: The modified Polyak-
tojasiewicz inequality (3.17) suggests that the discrete gradient flow (3.7) will
bring us close to a point cloud with low Wasserstein distance to p, provided we
can guarantee that the the points in the clouds Y* remain far from the gener-
alized diagonal Dy during the iterations. We prove in Lemma 7 below that if
YEL =Y* — 7y VFEN(YF) and 7y € (0, 1), then

Vi |y =y = =) [|vE - (323)

We note that this inequality ensures that Y* never touches the generalized diag-
onal Dy, so that the gradient V.Fy(Y*) is well-defined at each step (we already
proved an analogous result for the limit case 7,y = 1 in Proposition 25). Com-
bining this inequality with Theorem 27, one can actually prove that if the points
in the initial cloud Y,J are not too close to each other, then a few steps of gradi-
ent discrete gradient descent leads to a discrete measure Y} that is close to the
target p. Precisely, we arrive at the following theorem:

Theorem 30. Let0 < a < 72 — L ey > N2 and Y € QN \ D.,,. Let (Y{),
be the iterates of (3.7) starting from Y3 with timestep 0 < 7y < 1. We assume that
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limy_oo 7v = 0 and we set

kN = \\di ln(fN<Y]8)N€§lV1)J .
™~
Then,
=% 1 (1
VV22 <p7 6y]’;N) =ONooo (W22 (pa 5Y1(\),> N&T (1 d>> . (3.24)

Remark 8. Note that the exponential behavior implied by 3.23 and Lemma 7 is
coherent with the estimates that are known in the absolutely continuous setting
for the continuous gradient flow. When transitioning from discrete measures to
probability densities, lower bounds on the distance between points become up-
per bounds on the density. The gradient flow /i, = —1V,W#(p, s1;) has an explicit
solution y; = o1_.-t, where o is a constant-speed geodesic in the Wasserstein
space with g = po and o7 = p. In this case, a simple adaptation of the esti-
mates in Theorem 2 in [62] shows the bound || |lj- < €™ |/uol|y~ - Still in this
absolutely continous setting, it is possible to remove the exponential growth if
the target density is also bounded, as a consequence of displacement convexity
[48, Theorem 2.2]. There seems to be no discrete counterpart to this argument,
explaining in part the discrepancy between the exponent of NV in (3.24) with the
one obtained in Corollary 28.1.

Lemma 7. Let Y° € (RY)N \ Dy, for some ey > 0. Then, the iterates (Y*);>q of
(3.7) satisfy for every k > 0, and for every i # j

i = yill = (1= 7w)"en (3.25)
Proof. We consider the distance between two trajectories after k iterations:

ee = [|v7 =5l

Assuming that e, > 0, the convexity of the norm immediately gives us:

Chi1 — <ﬁ) A V1)

where we denoted b¥ := b;(Y}) the barycenter of the ith Laguerre cell Lag;(Y¥)
in the tesselation associated with the point cloud Y¥. Since each barycenter b*
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lies in its corresponding Laguerre cell, the scalar product (yF —y*) - (bF — b¥) is
non-negative: Indeed, for any i # j,

o = B = Il = v < of — o

Summing this inequality with the same inequality with the roles of ¢ and j
reversed, we obtain:

(i —wj) - (b7 =) = 0
thus giving us the geometric inequality e;,; > (1 — 7y)ex. Since Y was chosen
in QN \ Dy, this yields e, > (1 — 7x)¥ey and inequality 3.25. O
Lemma 8. Forany k > 0

61_d Ak _ nk
Fn(YR) < Fn(Y@)ny + 2Caa(1 — nN)%AN—nN, (3.26)
N — NN

where we denote ny =1 — Z5(2 — 7y) and Ay = (1 — 7n)* %

Proof. This is obtained in a very similar fashion as Lemma 7. For any k£ > 0, the
semi-concavity of Fy yields the inequality:

mor - DETE - (o - BEL) < (58 ot

with BY, := B(Y{) in accordance with the previous proof.
Rearranging the terms,

o 135~ 2"
2 N

E

=—7n(1 = 7N)W22(5B§V,5YJ@)

Fn(Y§H) — Fn(Yh) < — (1l —

T, 1
<7n(1-— TN) (_§W22(5Y]@7P) + W5 (p, 531’3))

by applying first the triangle inequality to W(d e , dy ). Using Theorem 27 and
Lemma 7, this yields:

T 1-d
Fn(Vy) <(1- TN@ — ) Fn(Yn) + Caarn(2 — TN)—% (1 — 1)k
k et o,
<nnFn(Yy) +2C50(1 — UN)%AN.

and we simply iterate on £ to end up with the bound claimed in Lemma 8. [
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Proof of Theorem 30. To conclude, we simply make (order 1) expansions of the
terms in (3.26). The definition of ky in Theorem 30, although convoluted, was
made so that both terms in the right-hand side of this inequality, Fx(Y9)7% and
1— k k

(1-— nm#% have the same asymptotic decay to 0 (as N — +o0c): With
the notations of the previous proposition, we have for fixed V:
(1—nn) AN — 0y’
Ay —nn  Negt

w3 (p, 5Y§N> < Wy (p, 5y13) MY +4Cag (3.27)

Define, for clarity’s sake, the maximum duration of this gradient descent:

1
TN = kNTN = C—Z ln (fN(Y]?;)Né‘?\;l) + ON%OO(TN)

Because of the assumption A}im 7n = 0, we may write:
—00

AkN kN (d*l)TN T
N 7 ::e + ON— 0 al 1
(Ney " )e

d—1 d—1 d—1

(Ve ya

aswell as v = e IV + oy ( Iy ) and substituting Ty,
N

d—1
W2 (p.ovy) T
W3 (p.byen ) < T v |
T (Ve (Ve

-
<2 (p,éng) T Nate(i-a) 0

Initialization of Wasserstein gradient flows: We now turn our attention to
discretized congested crowd motions in the gradient flow setting of Mérigot et
al. [10] and we make some observations for our model of crowd motions.

In the case of Mérigot et al., we recall that the motion of a crowd avoiding

congestion is modelized by the gradient flow, in the Wasserstein space P({2), of
an energy E(u) = F(u) + [, Vdu where I has the two, now familiar, forms:

F(p) = /Q plog(p)

and
ﬂm=M@m»=LmM@@mm
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(x4 is the convex indicator function of the set A). Let us also note that the po-
tential V is assumed to be C!(R%).

As we mentioned, the discretization of the problem is almost identical to that
of Section 2.2 and the authors look for discrete solutions in C°([0; T, Px(€2)) in-

duced by curves XV = (zV, ... 2¥) verifying the differential system:

{(xg.v ) (t) = =V, Fo(XN (1) = VV (24(t)) (3.28)

X¥(0) = X¢

As in the case of discretized Mean Field Games, one expects to recover the
optimal motion for the Wasserstein gradient flow of £, ase — 0 and N — oc.

We recall the general form of the main two results (one for each congestion
penalty) of this paper, Theorem 2.1and 3.1:

Theorem 31 (Leclerc, Mérigot, Santambrogio, Stra). Let u° € P(2) be such that
F(u°) < +o0. Forevery N € N, let ey € (0,00) and ux(0) € Px(R?). Finally, let
XN e c1([0; 1], (RYN) be a solution of (3.28) and uy : [0;T] — Pn(RY) be the
corresponding curve of measures.

Assume that

W2(u°, un(0)) < Cey, lim ey =0 (3.29)

N—+oc0

and
T 1 N
/0 W3 | pw, N ; Op,xny | dt < Cen (3.30)

where py is the Moreau-Yosida projection of ju for F and a regularization param-
eter ey, bi(X™) is the px-barycenter of the i-th optimal Laguerre cell defined by this
regularization (see Chapter 1, Proposition 11) and C' > 0 is a constant independent of
N.

Then, as N — oo and up to subsequences, 11y converges to u € C°([0; T], P(Q))
for the uniform convergence associated to the 2-Wasserstein distance, where 1 is a
weak solution of the Wasserstein gradient flow for E, starting at the measure ji°.

Let us note here that the hypothesis (3.30) is one that is not satisfying and
one would like (3.30) to automatically hold, depending on an adequate choice of
en. However, assuming that the left-hand side of this inequality will decay to 0 in
auniformway, as N — oo (so that ey might be chosen a-priori) is non-trivial. The
authors manage to get rid of this hypothesis in the 1-dimensional case (where
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the barycenters b;(Y") are always at the optimum for Fy, see Chapter 4, Propo-
sition 32).

To find ey verifying the hypotheses of Theorem 31, we can use Theorem 27 in
order to bound the distance between the discrete measure on the barycenters
and py during the motion, similarly to the gradient flow case. This, of course
also requires that a reverse-Gronwall inequality in the style of Lemma 7 exists
for the position of the curves =V, ... z¥. Luckily, this is the case, provided we
have initial datum that was sufficiently spread, and that the potential term V'
is semi-concave (which was the case in their numerical computations, where V/
even had Lipschitz-continuous gradient).

Lemma 9. Let X be defined for every N as in Theorem 31, with a C*(R%), semi-
concave potential V. Assume that there exists a constant n > 0, such that for any
i # J, || (0) =2} (0)|| =5 > 0.

Then, for any t € [0;T], ||« (t) — 2¥ (t)|| > e K~y

where Ky = % + L and L is a constant of semi-concavity of V

K (d—1)t

In particular, W3 <pN(t), LS G XN(t))> < Coo“§,a1 With the constant
Ca.q from Theorem 27.

Proof. The proof of the first part of the lemma is similar to that of Lemma 7.
Each curve (zV); satisfies the first order differential equation:

(XNY _ N
(ay = W2 gy
N

Now, from the definition of L as a semi-concavity constant:
Forz,y € RY, (VV(x) = VV(y)) - (z —y) < Lz —y|”

and take ¢ # j. Defining as in the previous lemma, but this time in a continuous
2N (1) -2 (1) ||
2

K3

setting, e(t) =
¢'(t) = (") (t) = (23)' (1)) - (&' (t) — 25 (1))

> [~ [la¥(®) — 2 O + (@) = b)) - (50 - o 0)]

— (VV(&'(1) = VV(z5' (1)) - (7' () — 2} (1))

7

, one has, similarly to the gradient flow of Fy;,

since (by(XN(t)) — b (XN(t))) - (x(t) — 2 (t)), again, is non-negative. And, us-
ing this time a continuous reverse Gronwall's lemma,

e (®) = 2 @] = e
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Taking the barycenters and applying Theorem 27, one obtains, forany ¢ € [0; T,

N
1 Cd7Q€KN(d—l)t
W3 (ﬂN(t)aN E :5b¢(XN(t))> < Npi 1 -
=1

Choosing any ¢ such that
g (£+L) @1t d_1
/ e\eN dt < CNenny
0

will be suitable for Theorem 31, where C'is a constant independant of V. and
ny the smallest distance between two points of the support of a good N-point
quantization measure of 1° (and we can take this measure for %,). One can set,
for instance ey = 1n(N)+(d1—1)1n(nN) > 0, since ny is of order N~4. These values
are by no mean optimal to obtain convergence of the discretized gradient flow.

Remark 9. Sadly, these computations are difficult to adapt in the variational MFG
setting. Indeed, in Section 2.2, we introduced a discrete measure on curves that
minimized the energy:

J.(Q) = / L(¥)dQ() + / Fu(e#tQ)dt + G(Q)

over the space of uniform discrete measures on curves, Py ().
Assuming even that we are in a simple case where G is given by a C!*! poten-
tial V:

G(Q) = / / V(1(6)dQ ()t

Doing first order variations on the curves, v; — v; + h with b € C°([0; T], R¢)
tells us that if Qx is a minimizer for (My 0 . ), every v; € spt(Qx) verifies:

" _ ’Vi(t)_bi(ﬂyl(t)?"'afVN(t))
i (1) = Nen

in the sense of distributions and therefore at almost every t € (0;T') since the
left-hand side is L?(d¢). Gronwall evaluations in the spirit of the two previous
cases cannot be done as easily here. Indeed, we can notice that, if we define e
as in the proof of Lemma 7 or Lemma 9, then, at least formally,

¢ (t) =2((3/ (1) =7 (1)) - (6 () = %) + 1B = %O

) = @IF at) = (1)) - (ra(t) = (8)
NEN NgN

+ (VV(3(t) = YV (35(8) - (a(t) = (D) + [ ®) = @)

+VV((t))

(3:31)
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(we noted b;(t) the barycenter at time ¢: b;(y1(t),...,7n(t)))).

Notice that, in this case, the negative term —(b;(t) — b;(t)) - (7:(t) — v;(t))
could be compensated by the positive one ||~i(t) — 73(75)“2 and we do not have
enough information on either one. On the other hand, even if we had positive
lower bounds for the distance between two curves of spt(Qy), this would only
give us a bound similar to (3.30) of Theorem 31, these do not translate easily

into bounds on J., (Qn) — J(Qmin), that could be used for the proof of an upper
bound result like that of Proposition 17.
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Chapter 4

Lagrangian critical measures

4.1 Critical points for the quantization energy

We begin this chapter by recalling that for N € N, Y € (R%)¥ is a critical point
for Fiy when every point y; is the p-barycenter of its associated Laguerre cell:

yi=N zdp(z)
Lag;(Y)

This condition is not sufficient most of the time for the point cloud to mini-
mize F, with the notable exception of the one-dimensional case:
Proposition 32. Let p € P(R) NLY(R). Then, Fy : Y + W(p, + "N 45,,) has a
unique critical point, which is also its minimum.
Proof. In dimension 1, the optimal transport between p and any p € Py (R) is
given by the cumulative distribution function R of p, meaning that the Laguerre
cells for this transport are the intervals:

7 () (%)

independently of the positions of the Dirac masses. This means that the only
critical point for Fy is the one with each point at the p-barycenters of these in-
tervals, and since Fiy admits a minimizer, it is this critical point. O

Proposition 33. Let p € P(RY) NIL'(RY) be the separable product of d real densi-
ties, p = p1 @ -+ @ pg. For N = n4, take d n-tuples v = (yi,...,y!)i=1..q). Take
Y € (RN to be the cloud of points, aligned with the cartesian grid, with their i-th
coordinate in {yt, ..., y:} for every i.

Then, the barycenters B(Y") of the corresponding Laguerre cells are aligned on a
parallel grid, and in fact, B(Y') is a critical point for Fy.
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Let us remark briefly that this is an example where the Lloyd algorithm of the
previous chapter converges to a critical point in one step. It is also one where
one can obtain the worst dependency in N of the quantization error (the value
of Fly), meaning with the highest exponent —1/d (see Section 3.3 of the previous
chapter).

Proof. Let us write, in the spirit of our notations so far, Y = (y,...,yx~), and
p == S 3, Fori=1...d take ¢’ := (¢,...,¢.) the optimal weights for the
dual formulation of the optimal transport problem between p; and the discrete
measure >0 0y

We wish to show that the optimal transport between p and NY is given by
the Laguerre cells: Lag, (V) := Lag, (Y, ®), where if y, = (y.,,...,4¢ ), then ¢, =
¢y, +---+¢f . Toshow this, we only need to prove the visual fact that these cells
each contain the product of the corresponding 1-dimensional Laguerre cells:

l_ILaglC ) C Lag, (Y, ®)

Indeed, the left-hand side of this inclusion has p-mass 1/N, therefore, so does
the right-hand side, as the total mass of p is 1 and this inclusion is an equality.
But this inclusion is immediate from the definition of ® and the separability of
our cost (the squared euclidean norm):

Iffori=1...d, 2" € Lag,(y', ') and z = (z!,...2%), then forany k{,... k),

d
lz —yel® + o =S |l — vk, | + 0k,
=1 (4.1)
2 .
+ Ok

z' _yzza.‘

and z is in Lag, (Y, ®). Therefore each Laguerre cell Lag, (Y, ®) has the correct
mass 1/N and is optimal for the dual formulation of semi-discrete optimal trans-
port.

Notice also that, from Proposition 32, these Laguerre cells do not depend on
the actual coordinates of the Dirac masses, as long as these are aligned par-
allel to the main axes. Therefore the i-th coordinates of their p-barycenters
are simply the barycenters, according to p; of the 1-dimensional Laguerre cells
Lag,(y', ¢*) and therefore, these barycenters are also aligned parallel to the
main axes. O

Consider a sequence (u")yen of discrete measures ¥ = + Zl 1 Oy SUp-
ported on critical points (Y)yey for Fy, with an increasing size N. Such a se-
quence is tight and therefore, applying Kolmogorov's theorem, one can assume
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(up to considering a sub-sequence) that it narrowly converges towards a mea-
sure u € P(£2). In the best case scenario, this measure is p, however, when the
discrete measures are poorly chosen, such as those of Fig. 3.1 or Fig. 4.1 below,
the limit measure can be singular. A consequence of Theorem 27 is that conver-
gence to such a "bad" measure cannot happen, unless the minimum distance
between two Dirac masses in the discrete measures iV goes to o faster than
N1, Indeed the points in this cloud are invariant through the Lloyd algorithm
and therefore in this case, Theorem 27 gives a convergence rate of p/¥ towards
p for the 2-Wasserstein distance.

One can observe experimentally that the support of these narrow limits can-
not be too irregular and in particular, seems to inherits the symmetry imposed
by the optimality condition Y = B(Y) in the discrete cases. This is the object of
the next Section 4.2 and for now, let us cite some results on these limit measures,
directly induced by the discrete settings.

In the remainder of this section, (1) yen is a sequence of discrete measures
supported on critical points of increasing size, as described above, and we as-
sume that (u)yen Narrowly converges towards > as N — oo. Furthermore,
we assume that 2 is convex and that p > 0 almost everywhere on €. This last as-
sumption allows us to assume that the measures p are also supported inside
spt(p), since they are supported on barycenters (and therefore so is u™).

Proposition 34. Assume that spt(u°) has its connected components all connected
by Lipschitz-continuous arcs (between any two points of the same component, one
may draw a Lipshitz-continuous path). Then,

p € argmin{W3(p, u) | 1 € P(Q), p*(C) = u(C)
for any connected component C of spt(u>)}. (4.2)

Proof. With these notation, let us fix N and consider ®¥ ¢ RY an optimal set
of weights for the semi-discrete dual formulation of Optimal Transport (1.8). We

first show that for any i, j, N — N < ||y — yJNHQ indeed, for such i, j, since
ij is inside its Laguerre cell, one has

0y =l — "= o
<argmin_y v [|o —u)||" = o7

S AR

The bound for the absolute value comes straightforwardly, exchanging i and
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The sequence iV narrowly converges to ;. On one hand, this tells us that
every point of the support of ;> is limit of a sequence of points in the supports
of the measures p:

Vy € spt(u™), Iy )nen € O sit.

VN e N, yV € spt(u”) and Nh_I)n vV =y,

On the other hand, there exists a Kantorovich potential ¢> for the optimal
transport from p*> to p such that if y{fv € spt(u?) converges to y € spt(u™) as
N — oo, then nggv converges to ¢ (y) (uniformly in y). One can see this by con-
structing Kantorovich potentials for the semi-discrete transport that are defined
on the whole domain Q2 with values ¢ at y (for every N, but, most importantly
alsoforeveryi=1...N),see Remark1in Chapter 1. This sequence of potentials
is still equicontinuous and equibounded, since they are c-concave, and we may
assume, invoking Arzela-Ascoli theorem, that a subsequence of it uniformly con-
verges on () to a Kantorovich potential for the optimal transport between ;> and
p. For any y,y" € spt(u™), taking yv, ¥’V € spt(p?), such that limy ., o yfyv =,
limy_ 100 ¥y, = ¥/, then forany N,

2
(60 = Pl < vy = v |
and taking the limit as N — oo, one has
0™ (y) = 6= < lly —¥/|I*-

Now, assume that y and 3’ are connected, in the support of 11, by a path with
finite length v € C°([0; 1], ©2) (i.e, a Lipschitz continuous curve, up to reparametriza-
tion). Taking foranyn € N,achainyy, =y =v(0),y1 = v(1/n),...,yn =y = v(1)
on this path,

n

6°00) = 620 = 30 0% — 0 ) < 120

where L is the Lipschitz constant of the path, and letting n — oo, we arrive at
> (y) = o™ ().

Now, take i/ € P(2) such that for any connected component C of spt(u*),
W (C) = p=(C). p™ has finite mass and therefore, it only charges an at most
countable number of connected (disjointed) sets (C,Cs,...). Recall that any
such component is also connected by Lipschitz paths and therefore, ¢> is con-
stant on any of these components, ¢ = ¢ € R on C;. Furthermore, ¢ is
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EgEpEoEnDonnon:

Figure 4.1: From left to right, the support of the probability density p (which is
constant on this support), a critical point cloud for Fy which is not a minimizer
and the limit measure obtained by adding points in a way that keeps the degen-
eracy in top part of the figure (see formula (3.1)). The limit measure > is NOT
uniform on the vertical segment (but it is on the lower rectangle due to Propo-
sition 35).

lower bounded on spt (1), since it is continuous on this compact set, and, up to
adding a constant to every Kantorovich potentials in the previous proof, we may
assume that ¢ > 0. Decomposing the integral of the cost along all connected
components, we obtain,

W) =3 [ o=+ [ @) @apta)

= eC+ [ (@) @ante)
Z Q (4.3)
— Y e(C) + / (6™)°(x)dp(x)

— [ Wi + [ @) @apla) < W)

and this exactly states that 4 is a minimizer for the restricted Problem (4.2). O

On the other hand, the support of 4> cannot be too large without forcing p*
to actually be p on most of it:

Proposition 35. Let us write u> = p*dxz + p* the decomposition of u> into
absolutely continuous and singular part, such that dz L p*™e.

Then, 1i*°(z) = p(x) for dz-almost every = € spt(u>°). Furthermore, for any open
set A C spt(u™>), *™8(A) = 0.

Proof. Let for any N, uy be a Brenier potential for the transport from p to u%,
i.e. a convex function on R? such that the optimal transport map from p to pV is
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Vuy. In fact, we may assume uy(z) = @ — ¢n(z) p-almost everywhere, where
¢y is a c-concave Kantorovich potential for the same transport. This means that,
as N — oo and up to considering instead a subsequence, ¢y (respectively uy)
uniformly converges, on (2, towards ¢, a Kantorovich potential (resp u, a Bre-
nier potential) for the transport from p to u>.

Now, for any N, and y € spt(u"), y € duy (y), since these points are barycen-
ters of the Laguerre cells du},(y). Therefore, since every point in spt(u™) is a
limit (as N — oo) of points in spt(u), for any y € spt(u™), y € ou’_(y) and for
dz-almost every y € spt(u™), the subgradient is a singleton and y = Vu’_(y).
By duality, this immediately tells us that dz-almost every y € spt(u) N spt(p)
satisfies y € Vus(y) and making the same reasoning with u, instead of u’_, we
get that the optimal transport between ;> and p is given by the identity map in
both direction, dz-almost everywhere on spt(us) C spt(p), hence the equality
p(x) = p().

On the other hand, take = € spt(u™) such that there exists aradius r > 0 with
B(z,r) C spt(u>). Then, as we mentioned earlier, for dz-almost every y in this
ball, Vu.(y) and Vu: (y) are well-defined and equal to y. Since u is a convex
function, this implies that u., (and therefore also « ) is equal to “7” on this ball,
and optimal transport between p and . is given in both sense by the identity
map on this ball (therefore, p*¢ does not charge any point in this set). O

The reader will notice that in this last result, we do not use the fact that ;>
was a limit of discrete measure, other than to guarantee that the optimal trans-
port plan between ;> and p charges the pair (x, z) for u>°-almost every x € Q (in
a very informal way). Section 4.2 tries to formalize this assumption to prove that
any measure that satisfies it has to be supported on a smooth structure. This is
a very natural expectation, considering Theorem 27 and the fact that the Lloyd
algorithm leaves stable certain lower dimensional subspaces (see Remark 7, sec-
ond point) and it would allow us to understand better these "nasty" equilibrium
situations and, in particular, how to avoid entering their zone of attraction when
using this algorithm.

4.2 Lagrangian critical measures for IV}

A first order of business is defining a notion of critical point which is not depen-
dent on being supported on afinite (or even countable) point cloud. Fortunately,
the disintegration theorem applied to p (a potential critical point) and p on one
side, and the optimal transport plan + between the two, allows for a very natu-
ral disintegration of p along u. The fibers of this disintegration (see Theorem 42,
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Appendix A) gives us an equivalent of the notion of Laguerre cells, in this contin-
uous setting:

Proposition 36 (Disintegration along the transport plan). Let p € P(Q2) and T
be the optimal transport map from p to u. Then, there exists a family of measures
{pytyea C P(Q) uniquely defined at least at ui-almost every y, such that

* For any Borel measurable set B C ), y — p,(B) is a Borel measurable func-
tion.

* For p-almost every y, p, is supported on the fiber T (y).

* For every Borel-measurable function f : @ — R* U oco:

| s@asta) = [ [ rap @

or equivalently, for any Borel set A,
o) = [ Pyt

Although this result can be demonstrated by applying the disintegration the-
orem 42 to p and p = T#u for an optimal transport map 7', the existence of
such a disintegration for the transport plan ~ instead of p can be proven with-
out assuming the existence of T. We therefore prove Proposition 36 as a conse-
guence in this case of the more general disintegration result. In particular, the
disintegration of v along ( is still valid even when it is not given by an optimal
transport map 7' (however Proposition 36 would need to be written differently
in that case).

Proof. With the notations of the proposition, let us recall that me#~v = u where
my IS the projection of 2 x {2 on its second component.

Applying Theorem 42, we can disintegrate ~ along p, giving us the family of
measures which we write (v,),ea € P(Q%)%.

Then, according to the theorem, for p-almost every y € (2, v, is supported in

75 ' (y) N spt(y) and therefore, p, = m 4, is supported on T (y).
Finally, for any Borel set A C ),

[ otarte= [ ar= [ aax whin) = [ pa)aut)

(The computations are almost identical for the integral of a Borel map f on ().
O
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The measure p, corresponds to the law of X ~ p, conditional to Y = y, when
(X,Y) follows the law of the optimal transport plan between p and p.

Note also that in the case when p is discrete supported on y1,...,yn, py iS
simply p L Lag,(Y"), so that spt(p,) can be seen as the equivalent of a Laguerre
cell in the continuous limit case N — oc.

Equipped with this notion, we can now reformulate the condition of being the
barycenter of one's Laguerre cell as a property which passes well to the narrow
limit:

Definition 8. Let . € P(RY) and (p,),cra be the disintegration of p along the opti-
mal transport plan between p and p. mentioned in Proposition 36.

We say that p is Lagrangian critical for W2 (., p) when

for u-almost every y € R%, y = / xzdpy(x).
Q

In the remainder of this section, x will always denote a Lagrangian critical
(probability) measure for WZ(., p).

As we are staying focused on the problem of optimal quantization (3.1), we
will omit in the future the specification "for W2(., p)" and only say that y is La-
grangian critical when it verifies Definition 8. Furthermore, leaving for a moment
the formalism of the disintegration theorem, we can give a more concise formu-
lation of Definition 8:

Lemma 10. Let u € P(R?) and ~ be the optimal transport plan from p to pu.
Then, w is Lagrangian critical if and only if, for any & € C°(Q, R%):

/Q Q(y —x) - &(y)dy(z,y) =0

Proof. From Brenier’s theorem, we know that the optimal transport plan from p
topisgivenbyamap 7 :Q — Q,

v = (Id, T)#p.

Therefore, one can claim the following equivalent statements:
For u-almost every y € (),

y= /Q zdpy(z)
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<= Forany ¢ € C°(Q,RY),
/Q(y—/grcdpy(fv)) ~E(y)duly) =0
<= Forany ¢ € C°(Q,RY),
[ -2 n) =o
QxQ
<= Forany¢ € C°(Q,RY),
/Q Q(T(m) — ) -§(T(x))dpy(x)du(y) = 0
<= Forany ¢ € C°(Q,RY),
[ @@ )i =o
QxQ
<= Forany ¢ € C°(Q,RY),
[ -t =o
QxQ

]

Let us quickly mention an interpretation of our notion of critical measure in
term of internal perturbations p +— (Id + &)#u for a smooth map &:

Considering first outer perturbations of y, p +— u + x, for a small x € L1(Q),
Jo, dx = 0, being a critical measure for these variations, namely

d
Zwe2 =0
=W (L+ex,p) .

happens only at x = 0. Indeed, p — W2(p, u) is strictly convex since p < dz
and therefore, there is only one critical measure for the outer variations, p (this
is proposition 7.19, and in fact the whole section 7.2.2 of [63]).

On the other hand, for ¢ € C2(Q, R?) and € > 0 small enough (such that for
allz € Q, v +¢e€(x) € Q+ B(0;1)),

W2((1d + <€), p) — W2 (s p / I7(x) + et (x) —
T () — 2l dp(a)
<9 / (T(z) - ) - £(x)dp(z)

e /||s 2 dp(a

< 25/Q(y—x) E(x)dy(z,y) + Oco(e?)
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where T is the optimal transport map from p to p and v = (Id,T)#p is the
optimal transport plan. Using p. = (Id+ e&)#u instead of u, we obtain symmet-
rically,

v@w@m—wéwmxz%/‘ (y — 2) - £@)d (2, y) — Omso(e?)
(Q+B(0;1))2

with ~. the unique optimal transport plan from p to ..

The (also unique) optimal transport plan v = (Id,T)#p from p to u is the
narrow limit of 7. as ¢ — 0 (see [63], theorem 1.50). Taking this limit in the
equality above, we have that the derivative of u — W2(u, p) with respect to
inner variations in the direction ¢ € CP(Q2) is

2/QXQ(y —x)-§(y)dy(z,y).

Itis O for every ¢ iff u is Lagrangian critical.

Lemma 10 gives us the stability of the notion of Lagrangian critical measure,
up to narrow limits. The argument is once again the same stability, but for trans-
port plans:

Proposition 37. For any N € N, a discrete measure ;1 = % Zf\i L Oy, Such that
Y = (y1,...,yn) is a critical point for Fy, is Lagrangian critical.

Furthermore, any narrow limit of Lagrangian critical measures is itself Lagrangian
critical.

Proof. As we already mentioned, foranyi =1...N, p,, = pL Lag,;(Y) with the
formalism of Theorem 42. The first part of the proposition is then immediate
since each point y; is the p-barycenter of its Laguerre cell.

For the second part, take a sequence (., ).en Of Lagrangian critical measures
(the n is not related to the size of the support of u, in this case) and assume
it converges narrowly towards u € P(2). For n € N, we write ~, the optimal
transport plan from p to p,. Then (v, )nen is tight since (i, )nen is, and (up to a
sub-sequence) it narrowly converges towards the optimal transport plan v from
pto p (thisis theorem 1.50 of [63]). The conclusion comes from taking the narrow
limit in Lemma 10: for £ € C°(Q, RY),

téﬂ@—xxwmewzlm. (v — D) dy(e,y) =0 O

n—o0 OxQ
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Figure 4.2: The support (in black) of a Lagrangian critical measure which cannot
be obtained as a narrow limit of uniform discrete Lagrangian critical measures.

Let us note here that, with Definition 8, not every Lagrangian critical measure
is limit of measures supported uniformly on a critical point for Fiy. The simplest
counter-example to this comes from the 1-dimensional case, 2 C R. In this case,
the only Lagrangian critical measure which is such a limit is p, since there is only
one critical point for Fy, for any N, and that critical point defines a discrete
measure narrowly converging towards p, according to the convergence rates of
(3.6). On the other hand, on the set 2 = [—1; 1], take

1 1
p(z) = Sl and = pli_igde + 551/27

(see Fig. 4.2), then p is Lagrangian critical (but it is not p). Indeed, for any —1 <
y <0, py =06, and p /o = Lpp,1;) and p-almost every point y € € is the p, barycen-
ter of 2. On the other hand, Proposition 35 is also true for any Lagrangian crit-
ical measure, since, as we mentioned, we only use the fact that every point is a
barycenter of points in the subgradient of a Brenier potential.

Restricted, as it is, between two parts of the support of p,, we expect the
support of a Lagrangian critical measure p to be aligned on very regular curves.
This is backed up by experiments, for instance, the limit measure of the discrete
ones represented on Fig. 3.1in the case of p = dx are supported on a finite union
of segments. We can also observe on Fig. 4.1 that the (apparently) smooth sub-
manifolds containing the support can be of several dimensions (dimensions 1
and 2 on the figure).

The following lemma gives a first mathematical statement of these obser-
vations. It states that, from p-almost every point y € €, one can define a thin
"trumpet" on each side of this point, such that locally, the support of  is con-
fined to these thin sets:

Lemma 11. Let u € P(2) be Lagrangian-critical. Then, for u-almost every y € €,
there exists C,, > 0, n € {0...d} and an n-dimensional linear subspace 11, of R?
such that for any w € 11, ||w|| = 1 and z € spty,

w- (y—2) < Cylly — =’

Proof. For u-almost every y € RY, we take II, = span{z — y,z € spt(p,)} and
n = dim(Il,). Let us first notice that our statement is trivial (and almost empty)
when n = 0 so that we may assume that there exists z # y in spt(p,).
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Now, ¢-cyclical monotonicity states that for any = € spt(p,), and z € spt(p), 2
cannot be in the ball of diameter [z; y], otherwise said:

(z—y) (z—y) <ly— 2|

We can find N > n nonzero vectors z; — y such that for any w € 11, ||w]| = 1,
there exists i with w.(z; — y) > 0. Indeed, consider the covering of the compact
set S(0,1) N1I,, with the open sets

Uy, ={weS0,1)N1l,, w-(x—y) >0}

for x € spt(p,). Itis a covering since y is the barycenter of 11, with respect to p,.
One can extract from it a finite covering, which gives us x1, ... xy such that for
any w € S(0,1) N 11, w.(z; —y) > 0. Notice then that the orthogonal in II, to
span((x;—y);) is {0} and that family generates I, (and is not linearly independant
hence N > n).

Now set C;, to be the min positive correlation between any unit vector in II,
and one of our reference vectors normalized (x; — y)/ ||z; — y||:

<

c :minmax{w-M, well, |Jw| =1, izl...N}
O s =y

Compactness ensures that C; exists, is attained and is strictly positive.
Now, for any z € spt(u), and w € 11, ||w|| = 1,

w- (2 = y)l <|| P, (z = v)]

< max ;(2 —y) - (i —y) (4.4)
i Oz =yl
<Cyllz =yl
where the constant only depends on y and spt(p,). O

Let us illustrate here Lemma 11 a little: Considering the support of the limit
measure ., represented on Fig. 4.1, one could think that this is the possible
support for a Lagrangian critical measure associated with the uniform density
on the whole square (instead of one supported only the non-convex set in light
brown on the figure). However, this is in fact forbidden by the lemma. Indeed,
points (of the support of p) in the sub-diagonal

Fo={(z,y) |z e0;1/2], 12 <y <1—=x}
have to be sent by optimal transport to the border set

Fo = {(z,1/2) | = € [0;1/2]}
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(via an orthogonal projection). Taking such x € F_. and y € FL_ its orthogonal
projection, the vector w = (z — y)/ ||z — y|| is in IL,. But, taking z. = y — cw, 2.
should be in spt(us) for any e > 0 small enough. This contradicts the lemma
since |w - (2. — y)| = ¢ dominates ||z. — y||* = £* as ¢ — 0. Therefore, Lagrangian
critical measures associated with the Lebesgue measure on 2 = [0;1] x [0;1]
cannot have this support.

A direct corollary is that the support of x is included in a countable union of
Lipshitz manifolds. We note that this result is much weaker than what we are
after, since Lipshitz-regularity of the support seems to be the least we can ex-
pect, looking at the supports of the Lagrangian critical measures in the previous
pictures. On the other hand, it does give a lower-bound regarding the regular-
ity we can expect on this set. Finally, this corollary also gives no structure (at
least not directly) to the actual measure p, allowing the support, even in these
Lipschitz-continuous submanifolds to be very degenerate:

Corollary 37.1. Let ;1 be a Lagrangian critical measure and denote
&, = {y € Q|11 exists and dim(Il,) = d — n}

Then, with the definition above, &, is n-rectifiable for any 1 < n < d, and in fact,
there exists a countable family of Lipschitz-continuous maps f; : R — R¢, i € N
such that

& | JH®Y
=0

Proof. Lety € &, suchthaty € [, zdp,(x) and y verifies Lemma 11 (u-almost any
point of &, does so). Let us fix for a time II = I1, and C = C),. Consider the tube
orthogonal to IT and of width n > 0, inside Q:

d—n d
Qlyl,...,id—n - (@ [Z]na (l] + 1)77] € & @ Rej) ARy

j=1 j=d—n+1
with ey, ... eqs_,, an orthogonal basis of II, completed into an orthogonal basis of
R by es_pit,...,eq andiy, ..., iz_, chosenin Z such that y € Qﬁ’l

yeeld—n”

Then Lemma 11 implies that there exists a constant ¢’ = /C'n such that, for
any w € 11, ||w|]| = 1 and z € spt(p) N QY

yeertd—n "
w- (y—2)| < C'ly — 2|

In particular taking n < % there cannot be any point of spt(x) inside 1T and

QY . (except for y), since such a point z would verify

oo ld—

suplw.(y — 2)| = [ly — z[l < |ly — | (4-5)
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where the supremum is taken among unit vectors in II. On the other hand, for
any z € spt(u) N QY

yeetd—n'

1P (2) = Pue ()] 2 V1= C" ||z — (4.6)

(provided we took there again n such that ¢’ < 1).

As is, IT and C’ depend heavily on y, however, this last condition (4.6) is open
in term of choosing the affine sub-space II and the constant C. Therefore, up
to shifting a little the inclination of II, and the value of C,, and forgetting their
actual definition from Lemma 11, we may assume that there exists an at most
countable amount of such n-dimensional affine hyperplanes II, and constant
C, when one goes through p-almost every point of y € 2 (for instance, by ap-
proximating their parameters with rationals). But then, for such a subspace II
and constant C, the set &, ¢ 1 of points y associated with this subspace and the
constant ¢’ = /Ch, forn < % rational is included in a finite union of graphs
of lipshitz functions on R™. To see this, we only have to show that every "tube"
En,crmNCY, ;. isincludedin the graph of such a Lipschitz function (since these
sets are in countable amount). But all these points are associated with the same
hyperplane IT and we have established in this case (in (4.5)) that the function:

fro—=yeonnQ _suchthat Pyi(y) =

i
is well defined on a subset of IT,- (namely the orthogonal projection of &, ¢/ N
Qf . onto that sub-space) and Lipschitz-continuous with a constant at most

v 1 —C" > 0 (this, on the other hand, was (4.6)). Up to extending this function to
the whole of R”, we have the inclusion claimed in Corollary 37.1. O

Lemma 11 states that any point of I, at a distance less than % fromy, has a
Yy

unique projection (the point y itself) onto spt(u). This is very close to the notion
of reach positiveness for the set spt(u):

Aset A C Qis said to have positive reach, e > 0, when for any x € RY, if the
distance d(z, A) < ¢, then x has a unique projectionon A:

argmin{d(z,y) | y € A} is a singleton.

The positive reach property would imply C'!! regularity of the different parts
of this support, seen as manifolds (this is, for instance, (C) of [59]). However, we
point out that, in the case of our Lagrangian critical measures, the reach posi-
tiveness property is only verified on the affine sub-space II,, which would not
be enough.
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Recall however the fact that the optimal transport from p to p is given (p-
almost everywhere) by the gradient of a convex function u:

v = (Id,Vu)#p

This implies that the optimal transport plan ~ is supported on the "graph" of
the subgradient of u*:
spt(7y) C U ou*(x) X . (4.7)
z€eQ
It might be obvious now, but the dimension of the support of ;1 near a point
x will be the complementary of the dimension of du*(z). Note that this last set is
a convex one, and therefore, its dimension is simply the geometrical dimension
of the affine space generated by this set. The truth of this claim, as well as the
regularity that one can expect for the different parts of spt(u), are suggested by
a remarkable theorem by Alberti (see Theorem 44 Appendix B). This result gives
strong rectifiability to the set of points sharing the same dimension of subgra-
dient for a given convex function.

For 0 < n < d, denote &, ¢ the set of all points in Q2 verifying Lemma 11 with
C, = C and dim(Il,) = n, such that

En=J&uc (4.8)
C

Notice here, that we can take the possible constants (C,),cq to be chosen in
Q and therefore, (4.8) describes &,, as a countable (at most) union of sets which
we expect to be C? smooth, of dimension n (following Alberti's theorem).

From the proof of Lemma 11, we can claim that
En C{y € Q| dim(du*(y) > d —n}. (4.9)

Indeed, for y € &,, u-almost surely, the support of p, generates the d — n lin-
ear space 1I,, and, from inclusion (4.7), we can assume (again, p-almost surely)
spt(py) C Ou*(y) and therefore, this subgradient is of dimension at least d — n.

Alberti's theorem tells us that the right-hand side of inclusion (4.9) is con-
tained in a C?, n-dimensional manifold, up to an H"-negligible set. If we were to
show that © < ‘H" on the set in the left-hand side of the inclusion, we would get
that the support of yx is included in a countable union of C?-submanifolds and
that ;. behaves "regularly” on these manifolds. Looking back at the examples
of support of Lagrangian critical measures, this seems very likely that x be ab-
solutely continuous with respect to this n-dimensional Haussdorf measure (and
one can check that this is indeed the case in these examples).
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Proposition 38. Assume that y — 1l is Lipshitz continuous on &, « for some
ne{l...d}and C € Q.

Then, u is absolutely continuous with respect to the n-dimensional Hausdorff
measure H™ on &, c. Furthermore, &, ¢ is included in the countable union of C?
manifolds of dimension n, up to a u-negligible set. If this is true for all C € Q, so is
En.

Proof. Let C' € Q and A C &, ¢ be negligible for the Hausdorff measure with
dimension d — n. We wish to prove that u(A) = 0. By construction of I, it is
sufficient to show that B = U,c4(2+11,) N B(0, R) is Lebesgue-negligible for any
R > 0 since all the y-mass on A comes from p-mass on B for a large enough R.

Since A is negligible for H", for any ¢ > 0, one can find a finite number of
balls B(x;,;) such that A C |, B(z;,r;) and >, ri* < e. Denoting

Ai =A N B(IEZ‘,TZ‘),

let us fix for a while x € A;. Then, for any w € 11, the orthogonal projection v of
w onto P,, verifies [v| < R and

|lw —v| < Rd(Il,,I1,,) < RLr;

where L is the Lipshitz constant of y — II, on &, ¢. But then I, N B(0, R) is
contained in (II,, N B(0, R)) + B(0, RLr;).

The sets B; = Uzeca,(z + 11,) N B(0, R) cover B and we have just shown that
for every i,

=(IT,, N B(0, R)) + B(0, (1 + RL)r;) (4.10)

I1,, is of dimension n, therefore, £(B;) < r¢™", as it is contained in the sum
of a n dimensional ball with a cube of length (2 + 2RL)r;. But then,

LB) <Y LB)SY <,

and B is Lebesgue-negligible, therefore, A is y-negligible and . is absolutely con-
tinuous with respect to H%™" on the set €, c.

Now, to conclude, we simply notice that, &, ¢ is included in the set of points
in the subgradient of a convex function which are of dimension at least k£ — n.
This function is in fact a Brenier potential ¢ associated with the transport from u
to p. Alberti's theorem tells us that the set {y € Q, dim(d¢(y)) = n} is included
in a C? submanifold of dimension d — n, up to removing a H¢ "-negligible set.
Therefore, the same is true for &,  up to removing a p-negligible set. O
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Proposition 39. y — II, is Lipshitz-continuous on &, ¢ (resp &.c, Eac). In partic-
ular, i < H' on this set (resp n < H°, p < HY) and & (resp &y, E4) is contained
p-almost everywhere in an at most countable union of C? paths (resp countable sub-
set of RY, countable union of d-dimensional sub-manifolds).

Proof. We start by proving the absolute continuity of © on & ¢ as it ends up not
needing the Lipschitz continuity. Indeed, we claim that the points in this set are
strongly isolated (even from the whole support of p):
Take y € & ¢ for some C > 0, one has that for any w € S471(0, 1), 2 € spt(p)
and z # v
w-(y—2)| < Clly 2|

For a vector w colinear to y — z this yields

S 1

ly— 2l =

and there exists a ball around y which contains no other point of spt(u). Since

&o.c is a set of isolated points, it is at most countable and ;1 < H° on this set.

The Lipschitz continuity of y — I, is trivial since the lower bound on the radius
of the ball does not depend ony € & c.

The optimal transport plan between p and ;. on &; ¢ is given by the identity
map in both directions, since du*(y) is a singleton for any y in this set. This im-
plies that 1 = p on this set (and in particular, 4 < H?). Once again, the Lipschitz
continuity condition on y — II, is empty, since I, is {0} forany y € & ¢.

Finally, in the case d = 1, we use Proposition 38 and we have to show the
Lipschitz continuity. It is a consequence of Lemma 11, since dim(Il,) = d — 1
p-almost everywhere on & ¢.

Indeed take y, z € & ¢. Then, for any u € Bga(0, 1),

u.(y —z) = Pz (y — 2)u+ P, (y — 2).u (4.11)
and, since the last term is bounded by C' ||y — z|°,

[l Pecs—o = P || < Clly 21

Doing the same at point z and summing these inequality yields:

‘HPH? ~ Fy

< Clly -z
and the same inequality is true for Py, = Id — P and Pp, O
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The reader will notice that, in the case d = 2, Proposition 39 exhausts all
possibilities and therefore, a Lagrangian critical measure p is supported on a
countable union of smooth manifolds of dimension 2 or less, and is regular with
respect to the corresponding Hausdorff measure on each manifold.

This is still a far cry from the result we were hoping to obtain, and in par-
ticular, it does not prevent p from having a very irregular support, even when
Proposition 39 is valid (for instance, a Cantor set of non-zero mass on a part of di-
mension 1). On the other hand, one can easily construct examples of Lagrangian
critical measures featuring either an infinite amount of connected components,
or (in the case of Fig. 4.1) an infinite amount of components E,, - for the same
dimension n but different "curvatures" C, which indicates that we cannot hope
for much better than a countable union of regular manifolds for these supports.

An encouraging result, in this regard, is one of De Pauw [19] which, in spirit,
reduces the problem to adding vectors to the spaces 11, in order to obtain a Lip-
schitz selection of hyperplanes (of higher dimensions, but adding in this way a
finite amount of directions). Indeed, the plans II, only need to be contained in a
higher dimensional sub-space IT; , itself moving along spt () Lipschitz-continuously:

Under this weaker hypothesis, taking A C & ¢ negligible for the k£ dimen-
sional Haussdorf measure, the set of points B for which dim(Il})) = d— k" > d—k
verifies for any y € B, ,

HE (1T, 0 (y + T1,)) = 0

as the sets measured are affine hyperplanes of dimensions strictly less than
d — k'. Using the main result of [19], p givesno massto B+ Ilp :={b+ x| b €
B,z € II,} and therefore, i gives no mass to B. All that remains to do is use
Proposition 38 on the remaining set. Of course, the larger space II; would be
made of 11, and vectors contradicting the Lipschitz-continuity of the projection
at y, but, so far, there does not seem to be a canonical way to add these vectors
that does not depend heavily on the point y, preventing us from getting either
global Lipschitz-continuity or a countable amount of such hyperplanes.
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Appendix A

Measure theory

In this appendix, we develop several properties of measures, which we make
ample use of in the rest of this thesis. To this avail, let us set a Polish (metric,
complete and separable) space (X, d). For a more general overview of measure
theory we refer the reader to Evans and Garzepy [24].

By a measure on (X, d), we mean an application from the Borelian tribe 7 to
R (we do not consider infinite measures) verifying for any Borel set A C X:

« If A=J;2, A;suchthatthe Borel sets A; are disjoints, fori # j, A;NA; = 0:
D (A < 400 and  p(A) = u(A).
i=1 i=1

« u(A) =sup{u(K) | K C A, K compact}. (Our measures are Radon mea-
sures by default).

The space of measures over X will be denoted M (X)

We say that © € M(X) is a probability measure when . > 0 (for any Borel set
A, n(A) > 0)and p(X) = 1. We denote P(X) the (convex) space of probability
measures over X. Let us also mention that we will write M (X)) for the space
of positive measures on X and Py (X) for the space of probability measures on
X which are discrete and supported on N points at most:

Pr(X) = {%Za (z1,...,25) € XN}

Given a Borelmap T': X — Y, Y another Polish space, one can define the
image of a measure p € M(X) through the map T
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Definition 9. Let p € M(X) and T be a measurable mapping from X to Y. Then
the push-forward measure of p along T is the measure T#p € M(Y') defined by:

For any Borel set A C Y, T#p(A) = p(T~'(A))

or equivalently, for any ¢ € C)(Y),

/Y o(y)A(THp) () = /X O(T(2))dp(x)

Note here that T#u has the same total mass as p, only now in the space Y.

A.1 Narrow convergence of measures

The Radon property u(A) = sup{u(K) | K C A, K compact} implies that any
single measure is tight. More generally:

Definition 10. A family {p.;}; of measures on the Polish space (X,d) is said to be tight
when:

For any € > 0, there exists a compact set K C X such that 11;(X \ K) < ¢ for
everyi € |

This notion of tightness implies sequential compactness for a specific topol-
ogy on M(X), defined by duality with the space of real continuous bounded
functions on X, C)(X):

Definition 11. Let (1,)neny € M(X), € M(X). Then we say that (p,)nen CON-
verges narrowly to u, which we denote by (i, —— u when:
n—oo

Forany ¢ € C)(X), limy, o0 [y ¢dpn = [ odp

Note here that M(X) is NOT the topological dual (for this convergence) of
CY(X) except when X is compact.

Compactness for tight sequences is given by the celebrated Prokhorov's the-
orem, which specifies, in some sense, the usual weak-x compactness of Banach-
Alaoglu theorem for P(X), in the cases where X is not compact:

Theorem 4o (Prokhorov). Ifthe sequence of probability measures (i1, )nen € P(X)N
is tight, then one may extract a sub-sequence (ji4(n))nen Which narrowly converges
towards a measure ;1 € P(X):

Ko (n) 2

n—0o0

Conversely, any sequence (ji,)nen Narrowly converging is tight.
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A.2 Absolutely continuous measures and the dis-
integration theorem

Absolute continuity of a measure p with respect to a measure y states that p
sees at most the same sets as p (and sometimes less):

Definition 12. Ameasure p € M(X) is said to be absolutely continuous with respect
to p € M(X) (written p < 1) when for any Borel set A,

u(A) =0 = p(A) =0.

On the other hand, p and 1. are said to be mutually singular (p L 1) when there
exists a Borel set B such that p(X \ B) = u(B) = 0.

The following differentiation theorem by Lebesgue gives, for two measures,
a useful decomposition of one into a part regular for the other and one singular:

Theorem 4. Let y, v be two measures in M(X). Then there exists ;1> and y*s in
M(X) such that p** < v, ¢ 1 v and,
sing

po=p+p

Although the image of a measure u through a map, T#u is not always ab-
solutely continuous with respect to u (T can collapse the mass of ;1 too much),
the following disintegration theorem allows for a representation of the image
measure as the product of measures, one of which is the original measure pu:

Theorem 42. Let p € M(X)and 7 : X — Y be a Borel map (where Y is another
Polish space). Let 1 = w#p.

Then there exists a family of measures (p,),ey € M(X)Y such that:
* Forany Borel set B C X,y € Y — p,(B) is a Borel measurable map.
* For u-almost every y, p, is supported on the fiber 7= (y).

« for every Borel-measurable function f : X — R* U oc:

/f )dp(x //ﬂl z)dpy(z)dp(y)

or equivalently,for any Borel set A C X,
o) = [ pduty).
Y
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A.3 The Hausdorff measure for lower dimensional
sets

We finish this appendix in the Euclidean space X = R?. The natural Borel mea-
sure on R? to place on sets of dimension lower than d is the Hausdorff measure
of the same dimension, and we use it at several points in this thesis. Note that it
is not finite on sets of size too large, so it is not in M(RR%) with our assumptions
(however, this does not pose us any issues):

Definition 13. Let 0 < k < d be an integer.
The k-dimensional Haussdorf measure of a set S C R% is:

510

)

H*(S) := a(k) lim inf {Z(diamUi)k

S c Ui, diam(U;) < 5}

where (k) is the Lebesgue volume of the unit ball in R”,

This definition can be extended to £ not being an integer, but we shall only
consider Haussdorf measure on integer dimension in our computations.
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Appendix B

Convex analysis

We recall in this appendix several facts on convex functions. For a more general
overview of this branch of analysis, we refer the reader to Ekeland and Temam
[23]. These functions are usually taken with value in R := R U 400 as it is often
convenient to give an infinite value to vectors which we want to forbid when do-
ing minimization. We also assume that our functions are proper, meaning that
they cannot be +o0o everywhere (and the fact that they cannot be —oc is already
assumed).

To fix things, if X is a real vector space, a function f : X — R is convex on X
when forany t € [0;1], z,y € X,
fltz+(1—-t)y) < tf(x)+ (1 =1)f(y).

It is concave when — f is convex (the previous inequality is reversed).

Definition 14. Let f be convex, bounded from below. We call domain of f the convex
set:

dom(f) :={z € X | f(z) < +o0}

A simple illustration is given by the convex indicator function of a convex set
C, in some way the simplest convex function of domain C:

= 0 ifzeC
i
xe 400 otherwise

B.1 Convex duality:

Convex functions admit a very natural "weaker" notion of gradient, as a maxi-
mal slope for a hyperplane underneath their curve. This slope is naturally de-
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fined as an element of E*, the topological dual of . We make here the remark,
as a non-trivial example, that the space of (finite Radon) measures M(X) on a
Polish compact space X is the topological dual of the space of real continuous
(bounded) functions on X, C°(X), through the dot-product

o € MOX) % CX) = [ ola)duta),

meaning that any continuous linear functional over C°(X) can be represented
as the dot-product with a fixed measure over X. However, if X is not compact,
M(X) is not this topological dual but the above duality would be sufficient to
state most of the following theorems.

Definition 15. Let f : E — R be convex.The subdifferential of f at x € E is the set
of slopes:
Of(x) ={pe E"|Vy € E, f(y) > f(x) +p-(y — )}

Similarly, for a concave function f, one can define its supergradientatz € £
as the set 07 f(z) = —9(—f)(z). We use the notation 9" in this second case
only to make a difference with the notation for the subgradient. As we consider
very few concave function in this thesis, this asymmetry of notations should not
prove too disturbing.

It is an immediate but critical fact that, from this definition, x € E is a min-
imum of the convex function f if and only if 0 € df(x) and a symmetric fact is
true for concave functions and their maxima.

As intuition dictates, the less vectors in its sub-gradient a convex function
has, the smoother it will be. This is stated, in the simpler context of X = R¢
equiped with the Euclidean topology, in the following proposition. The reader
will note that most of it still holds true for much more general normed vector
spaces, however, we have no use for such generalizations:

Proposition 43. Let f : R? — R. Then, if f has a non-empty sub-differential (with
the previous definition) everywhere where it is finite, then f is convex.

Furthermore, if 0f (z) is a singleton, then f is differentiable at x and
Of (x) = {Vf(x)}.
Finally, if there exists a continuous selection of sub-gradients
x € dom(f) — y, € df(x),

then fis C! on its domain.
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Obviously, the same is true for concave functions, replacing sub-differentials
with super-differentials.

A very notable point is the following theorem by Alberti which strengthens
the celebrated Rademacher theorem on Lipschitz continuous functions:

Theorem 44 (Alberti, [3]). Let u : RY — R be a convex function and 0 < k < d an
integer. Then the set

{z € R?| dim(du(x)) > k}
is a H *-rectifiable set of class C? and dimension d — k, i.e it can be covered (up to

removing a H~*-negligible set) by countably many (d—k)-dimensional submanifolds
of class C2.

The dimension of the C2-manifolds are simply that of the underlying space
R"* in their definition. On the other hand, the k-dimensional Hausdorff mea-
sure is, once again, the one given in Definition 13, Appendix A.

In particular, coupling this theorem with Proposition 43, we immediately get
that any convex function f on R¢ is differentiable except on a countable union
of sets essentially of dimension d — 1, and in dimension d = 1, a convex function
is differentiable everywhere on its domain except on an at most countable set!

To a convex function on E, one can associate another on E* through duality.
Note that in this definition, no assumption is made on the reflexivity of E, the
second definition being made in order to have a symmetrical transformation
already:

Definition 16. For a convex function f : E — R l.s.c and proper, the Legendre
transform of f at p € E* is defined as:

/*(p) = sup (p, z) — f(x)

zel

Symmetrically, the Legendre transform of f* (or bitransform of f) is defined as:
[ (@) = sup (p,x) — f*(p)
peE*

We will make the assumption on all our convex functions that they are all
lower semi-continuous, which is the lowest regularity assumption one can make
in order for a function to have a minimum on every compact set:

Definition 17. For a Polish space X, a function f : X — R is lower semi-continuous
(Ls.c.) when for any sequence (z,,)nen € XN and z € X:

lim z, =2 = f(z) <liminf f(z,)

n—oo n—oo
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It is interesting to note, although we do not use it, that convex functions
which are lower semi-continuous for the standard topology on FE, are also l.s.c.
for the weak-* topology (which is a stronger notion of continuity).

The lower semi-continuity hypothesis, together with the fact that we assumed
that our convex functions were proper, guarantees that taking the bi-transform
of a convex function f brings one back to the original function. Furthermore, in
that case, the sub-gradients of f and f* are reciprocates of one another in the
following sense:

Theorem 45 (Fenchel-Moreau). Let f : E — R be a convex (proper) I.s.c. function,
f* its Legendre transform.

Then, f** = f
Furthermore, for any x € E and p € E*
p € 0f(x) < x € df*(p)

We finish these reminders on convex duality with a central resultin Legendre-
Fenchel duality, the celebrated Fenchel-Rockafellar duality theorem. Through
this result, one can rewrite a convex minimization problem into a concave one
(over the dual space E*) which, often, enjoys more regularity. Note that there
exists a multitude of versions of this result and we give here the one that is best
fitted to our needs:

Theorem 46 (Fenchel-Rockafellar, [60]). Let f, g be convex I.s.c. functions over re-
spectively the Banach vector spaces E and F and A € L(E, F') continuous. Assume
that g is continuous at a point of Adom( f).

Then,

inf f(x) + g(Ax) = max — f “(A'p) — g"(—p)

where A* is the standard adjoint operator of A.

B.2 Different kinds of convexity

Often, especially when dealing with geometrical transport of measures, the above
notion of convexity is not enough to describe all observed phenomena. We re-
call the following "alternative" definitions of convexity, which sometimes have
to replace the "rougher" scalar one of the previous section.
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The functional featuring semi-discrete optimal transport terms studied in
this thesis are all a little less than concave, which is a natural consequence of
their definition as Moreau envelopes:

Definition 18. Let (E, ||.||) be a normed vector space. The function f : E — R is
2
said to be a-semiconcave (a > 0) when f — a% is a concave function.

. 2 . . .
Similarly, f is a-semiconvex when f + a% is convex (— f is semiconcave).

One can note that there is a stronger notions of concavity/convexity, in the
same spirit (and we make some use of this regularity in the case of optimal trans-
port costs):

Definition 19. Let E be a convex subset of a normed vector space (X, ||.||). The

_ 2
function f : E — R is a-convex (or strongly convex) when f — a% is a convex
function.

2
Similarly, f is a-concave when f + a% is concave (— f is strongly-convex).

Note that if f is a A-convex function, it also verifies a stronger convexity in-
equality: For z,y € E? and t € [0;1],

Flte+ (L= t)y) < 1)+ (1— )~ AL g2

Finally, we move completely to the (convex) space P(f2): A different kind of
convexity, more suitable for optimal transport, is the one observed when fol-
lowing geodesics and generalized geodesics in this space. We refer the reader
to the seminal work of Carlier and Agueh on Wasserstein barycenter for a defi-
nition of both notions and examples, [2]. We merely recall the definition of the
second notion of convexity, as we make use of this property on the Wasserstein
distance in the proof of Proposition 6:

Definition 20. Let O c R? and F : P(Q) — R. We say that F is convex along
generalized geodesics when, for any i, p°, p' in P(Q), t € [0;1]

F(pl,) <tF(p°) + (1 —t)F(p')

where p!, is the generalized geodesic between p° and p', with respect to 1 defined
by:

For any ¢ € C°(9), / d(x)dpj () = [ G((1 = t)ay + tag)dy’(xa, 21)dy (22, 23)
Q Q3
and ~' is an optimal transport plan between 1, and p'.
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Let us recall briefly that when F' has the integral form (1.14) considered in the
end of Chapter 1, with the necessary assumptions on f to obtain lower semi-
continuity and convexity, assuming furthermore:

* f(0)=0.
« dom(f) C R*
* The function t € R% + t4f(t~%) is convex and non-increasing.

then F'is convex along generalized geodesics (see [4], proposition 9.3.9).

We finish this appendix by mentioning that the 2-Wasserstein distance (on
Py (R%)) is 2-strongly convex along generalized geodesics meaning, with the no-
tations of Definition 20, that:

For any u, v, p°, ptin P(Q), t € [0;1]:

W3 (v, py,) < tW3 (v, p°) + (1 = W5 (v, p') — t(1 = ) W3 (0", p')
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Résumé: Dans ce mémoire, nous étudions la dis-
crétisation de problémes variationnels, au moyen
de méthodes du transport optimal semi-discret.
Bien que les techniques simplifient grandement
la résolution de ces problémes elles introduisent
également des termes non-convexes dans des prob-
l[émes qui étaient convexes avant discrétisation.
Le modéle principalement étudié est celui d'une
foule se déplacant de facon a minimiser une én-
ergie globale qu'elle accumule durant son mouve-
ment. Cette évolution est modelée par un prob-
léme de jeu a champ moyen variationnel, pour la
minimisation d'une énergie comprenant un terme
qui pénalise la présence de zones de congestions.
Nous approchons les solutions par les trajectoires
d'un nombre fini d'individus, cependant ces foules
discrétes ne sont pas admissible pour le probléme
de jeu & champ moyen, a cause justement du terme
de congestion. Pour définir un probléme simi-
laire pour notre foule discréte, nous remplacons
le terme problématique par une régularisation de
type Moreau-Yosida. Notre résultat principal af-
firme alors la convergence des minimiseurs du prob-
léme discret vers une solution du probléme de jeu

a champ moyen initial. Cependant, cette conver-
gence est conditionnelle & un choix approprié de
paramétres de régularisation et sa détermination
est encore une question ouverte. Cela n'empéche
pas la résolution du probléme discret pour des
choix arbitraires de ces paramétres, laquelle génére
des trajectoires cohérentes avec le comportement
imposé par le probléme de jeu & champ moyen cor-
respondant. La régularisation du terme de conges-
tion, définie par une enveloppe de Moreau pour
la distance de Wasserstein 2 introduit donc une
non-convexité dans le probléme discrétisé, et I'on
est en droit de craindre d'aboutir a des situa-
tions critiques non-minimisantes en le résolvant
numériquement. Afin de mieux comprendre ces
dangers, nous avons étudié la structure de ces sit-
uations critiques pour le probléme non convexe,
plus simple mais néanmoins proche, de quantifi-
cation optimale uniforme d'une mesure. Bien que
nous ayons réussi a clarifier la forme de ces points
critiques et en particulier le devenir de la dis-
crétisation lorsque le nombre de particules croit a
I'infini, la classification compléte de ces configura-
tions possibles demeure largement inachevée.
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Title: Lagrangian discretization of variational problems in Wasserstein spaces.
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problems.

Abstract: In this thesis, we study the discretiza-
tion of variational problems, via semi-discrete op-
timal transport methods. Although these tech-
niques yield much simpler expressions for their so-
lutions, they also introduce non-convex terms in
what were convex problems before discretization.
The main model is that of a crowd, which mini-
mizes a global energy accumulated during its mo-
tion. This evolution is modeled by a variational
mean field game problem, which energy features
a term penalizing highly congested area. We ap-
proximate the solutions using the trajectories of a
finite set of particles, however, such finite crowds
are not admissible for this problem, due to the con-
gestion term. In order to circumvent this issue,
we consider a similar energy, however one where
the congestion is penalized by a regularized ver-
sion of the previous term. Our main result is then
the convergence of these discrete minimizers to-
wards a solution of the mean field game problem.
However this statement requires the selection of

an appropriate sequence of regularization parame-
ters, which cannot be determined just yet. This is
only partially an impediment, as the discretization
used is very robust, and even for relatively large
values of these parameters, the numerical experi-
ments showcase a satisfying behavior regarding the
modeled phenomenon. The regularization of the
congestion term is defined as a Moreau envelope,
using the 2-Wasserstein distance. These expres-
sions introduce a non-convexity in the discretized
problem which could make numerically computing
their solutions difficult. In order to better under-
stand these issues, we gather insightful informa-
tion regarding the structure of critical points for
the simpler but related non-convex problem of uni-
form optimal quantization. These critical configu-
rations and in particular, their limits as measures
when the discretization becomes more and more
precise, remain a vastly unexplored part of these
optimization problems.
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