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Abstract

In this thesis, we study thediscretization of variational problems, via semi-discreteoptimal transport methods. Although these techniques yield much simpler ex-pressions for their solutions, they also introduce non-convex terms inwhat wereconvex problems before discretization.
The main model is that of a crowd, which minimizes a global energy accu-mulated during its motion. This evolution is modeled by a variational meanfield game problem, which energy features a term penalizing highly congestedarea. We approximate the solutions using the trajectories of a finite set of par-ticles, however, such finite crowds are not admissible for this problem, due tothe congestion term. In order to circumvent this issue, we consider a similar en-ergy, however one where the congestion is penalized by a regularized versionof the previous term. Our main result is then the convergence of these discreteminimizers towards a solution of the mean field game problem. However thisstatement requires the selection of an appropriate sequence of regularizationparameters, which cannot be determined just yet. This is only partially an im-pediment, as the discretization used is very robust, and even for relatively largevalues of these parameters, the numerical experiments showcase a satisfyingbehavior regarding the modeled phenomenon.
The regularization of the congestion term is defined as a Moreau envelope,using the 2-Wasserstein distance. These expressions introduce a non-convexityin the discretized problem which could make numerically computing their solu-tions difficult. In order to better understand these issues, we gather insightfulinformation regarding the structure of critical points for the simpler but relatednon-convex problem of uniform optimal quantization. These critical configura-tions and in particular, their limits asmeasureswhen the discretization becomesmore and more precise, remain a vastly unexplored part of these optimizationproblems.
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Notations

We make use of the following notations throughout this document:
• Ω is a compact smooth subset of Rd (a domain) which has non-empty in-terior.
• ≲ is an inequality which is true up to a multiplicative (positive) constantwhich does not depend on the significant parameters in the quantities thatare compared (which should be obvious from the context).
• ∫ (X) is the interior of the set X .
• if 1 ≤ p <∞, Lp(X) is the set of classes (up to the equivalence relationshipof being equal Lebesgue almost-everywhere) of real functions whose p-thpower is Lebesgue-integrable onX . If p =∞ it is the set of such classes offunctions which are (essentially) bounded on X .
• Γ will always be the Polish space C0([0;T ],Rd) endowed with the uniformconvergence norm and T , d can be fixed for the entirety of the document.
• M(X) is the space of finite (signed) Radon measures on the Polish space
X .

• M+(X) is the subspace of all positive measures inM(X).
• P(X) is the subspace of probability measures inM(X) (def: Appendix A).
• δx is the Dirac measure at x ∈ X , which gives mass 1 to {x} and 0 to anyset not containing x.
• spt(ρ) is the support of the measure ρ.
• T#ρ is the push-forward of the measure ρ along the Borel map T .
• ρ ⊥ µmeans that ρ and µ are mutually singular (def: Appendix A).
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• µ ≪ ρ means that µ is absolutely continuous with respect to ρ (def: Ap-pendix A).
• Hk is the k-dimensional Hausdorff measure (on Rd) (def: Definition 13).
• For a setA ⊂ Rd, |A| is the Lebesguemeasure of the set. For a real number
a, |a| is still the usual absolute value of a.

• PN(X) is the space of uniform discrete probability measures onX with atmost N points in their support (def: Appendix A).
• Π(ρ, µ) is the set of transport plans from ρ to µ (def: Definition 1).
• Cc(X, Y ) is the set of admissible dual potentials for an optimal transportwith cost c (def: Section 1.1, (1.4)).
• dom(F ) is the domain of the convex function F (def: Definition 14)
• F ∗ is the Legendre transform of the convex function F (def: Definition 16).
• ∂F (x) is the subgradient of the convex function F at x (def: Definition 15).On the other hand, ∂+F (x) is the supergradient of the concave function Fat x.
• χC is the convex indicator function of the convex set C (def: Appendix B).
• ϕc is the c-transform of the continuous, bounded function ϕ (def: Defini-tion 2). ϕcc is the bi-transform (ϕc)c of ϕ.
• µn −−−⇀

n→∞
µmeans that the sequence (µn)n∈N narrowly converges towards

µ (def: Appendix A).
• Pp(X) is the set of probability measures with finite p-th order moment on
X (def: Definition 3).

• Wp is the p-Wasserstein distance on Pp(X) (X is clear from the context).
• Lagi(Y,Φ) is the i-th Laguerre cell associated to thepoint cloudY = (y1, . . . , yN)and the weights Φ = (ϕ1, . . . , ϕN) (def: Definition 6).
• Lagi(Y ) is the i-th optimal Laguerre cell for the optimal transport between
µuniformsupported on thepoint cloudY and a reference probabilitymea-sure ρ. This Laguerre cell is also written Lagi when there can be no confu-sion on the point cloud considered.
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• B(Y ) = (b1(Y ), . . . , bN(Y )) is the point cloud obtained by taking the ρ-barycenters (in the same order) of each optimal Laguerre cell Lagi(Y ) (inthe optimal transport towards ρ).
• AC([0;T ], X) is the set of absolutely continuous curves [0;T ] valued in X(def: Definition 7).
• Hs is the Sobolev spaceHs([0;T ],Rd), again, for a T and d that can be fixedat the beginning of the document.
• WHs is the 2-Wasserstein distance on P2(Hs) associated with the Sobolevnorm.
• Γlin

δ is the subspace of Γ constituted of piecewise affine fonctions on the
([iδ; (i+ 1)δ])i of [0;T ].
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Introduction

Le point de départ de cette thèse est la description du mouvement d’une fouleen utilisant un nombre fini d’individus. Ce mouvement est effectué de manièreà éviter autant que possible l’attroupement d’individus (la congestion) en unmême endroit de l’espace. Un bon exemple d’un tel mouvement est donné parl’évacuation d’une salle, dans laquelle un incendie (ou autre péril) s’est déclaré.Les individus ont alors tous un but, par exemple atteindre l’issue de secours,mais une ruée générale vers cet objectif peut engendrer un blocage, lorsqu’untrop grand nombre d’individu tente de passer au même endroit afin de sortirplus vite. Ce genre de congestion s’interprète mathématiquement très facile-ment lorsque la population est tellement nombreuse que sa répartition peutêtre assimilée à celle d’une densité sur le domaine d’évolution (en l’occurence,la salle). Dans notre exemple d’incendie, pour ce genre de foules "infinie", la con-trainte se traduit par le fait que la densité µ de la foule ne doit jamais dépasser1. En revanche, dans le cas d’une foule discrète (et donc non-fictive), le mod-èle mathématique cesse d’être adapté, et demanière plus générale, exprimer lacontrainte de non-congestion est un problème n’acceptant pas de solution im-médiate. Mentionnons en particulier qu’il ne semble pas satisfaisant d’imposerseulement la condition que deux individus infinitésimaux ne se croisent jamais.Un modèle similaire fut proposé par Maury et al. [47] dans lequel les individussont représentés par des sphères dures dont le rayon tend vers 0 et il fut déjàobservé dans ce cas que les dynamiques observées à la limite ne correspondentpas à la contrainte de borne supérieure sur la densité.
Mouvement de foule avec congestion comme un problème variationnelLe mouvement de foule est décrit comme la minimisation d’une énergie durantle mouvement des individus dans un domaine. Un des termes de cette énergiesomme toutes les contributions infinitésimales des endroits où la concentra-tion de la population est trop importante, donnant une (trop) grande énergieaux population s’agglomérant trop durant le mouvement. Ce terme de "con-gestion" est habituellement accompagné d’un terme évaluant (en un sens) ladistance des individus par rapport à un but, lequel peut changer au cours du
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temps. Le mouvement résultant cherche à ménager la chèvre et le chou enessayant d’amener tous les individus vers leur but, tout en ne les concentrantpas trop dans une même zone. La construction du mouvement lui-même, et enparticulier sa discrétisation en temps dans les exemples numériques, peut en-suite se faire de plusieurs manières: La façon la plus intuitive, peut-être, étantdonné la nature du problème étudié, est d’effectuer une descente de gradi-ent sur l’énergie (terme de "congestion" + terme d’ "objectif") dans l’espace desmesures de probabilités. Ces flots gradients pour la métrique de Wassersteinont été introduits par Jordan, Kinderlehrer et Otto ([34]) comme une réécritured’équations d’advection-diffusion, et les applications de ces notions pour desmouvements de foules avec congestion sont étudiées dans Maury et al [46],et Mérigot et al [40]. Un autre point de vue, qui est celui que nous adoptonsdans le chapitre 2, s’est développé avec l’introduction des jeux à champsmoyensen 2006 (Lasry et Lions, [37], [38] et Caines, Huang et Malhamé, [33]), et, dansnotre cas, de leur formulation variationnelle (voir Cardaliaguet, [14], Santambro-gio, [64], et [8]). Ces jeux à champs moyens "non-congestionnés" sont étudiésdans Cardaliaguet, Mészáros et Santambrogio, [15]), etmodélise l’évolution de lafoule comme la minimisation d’une énergie, globale sur toute la durée du mou-vement cette fois-ci, la population étant représentée par une densité de proba-bilité evoluant continument dans le temps. Remarquons ici que ces deux mod-èles sont loin d’être équivalents en général. Le modèle "flot gradient" favoriseraun comportement peu prédictif pour sa population, abouttisant souvent à descomportement très égoistes à l’échelle des individus qui n’anticipent pas la tra-jectoire possible de leurs congénères. Par opposition, la foule modélisée parle jeu à champ moyen cherche un mouvement minimisant de façon globale àla fois en temps et espace, et la trajectoire totale des individus est donc plani-fiée en fonction de celle des autres individus, de manière à minimiser l’énergieaccumulée par toute la foule (le mécontentement global). Le second modèlen’est pas nécessairement "meilleur" parce qu’il implémente cette capacité d’unindividu à anticiper le mouvement des autres, dans le sens où il décrit le mouve-ment d’une foule suivant idéalement les consignes (d’évacuation dans notremé-taphore initiale) et une bonne modélisation d’une foule "réaliste" se trouveraitprobablement à mi-chemin de ces deux modèles mathématiques.
Afin de permettre la résolution numérique de ces problèmes (qui sont posés,par essence, en dimension infinie), la distribution de la population doit êtrediscrétisée. Dans la littérature (Achdou et Capuzzo-Dolcetta [1], Briceno-Arias,Kalise et Silva [13]), cela est souvent fait en approximant sa densité par une fonc-tion plus simple définie par morceau, et pour ce faire, les équations décrivantl’évolution de la foule (en particulier la fameuse équation de continuité) doiventêtre adaptées afin de conserver la régularité du mouvement. Au lieu de cette
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discrétisation "Eulérienne", gardant des mesures à densité en chaque temps,nous cherchons des approximations par des mesures discrètes en définissantun problème variationnel similaire au problème de jeux à champsmoyen initial,mais posé sur des populations ayant un nombre fini d’individus. Cette discréti-sation est qualifiée de "Lagrangienne" car elle se fait au niveau des individusde la population, et non de la proportion de ces individus en chaque point dudomaine. L’équation de continuité n’a alors pas à être changée, et se simplifiemême en un système d’EDO. L’énergie à minimiser en revanche doit être régu-larisée, afin d’être toujours bien définies pour des distributions de populationdiscrètes (qui sont, pour les termes de congestion utilisés, infiniment conges-tionnées). Le but est ensuite de montrer que lorsque les paramètres de régu-larisation sont pris très petits et que la population compte un grand nombred’individus, on retrouve, de façon approchée, la répartition de la population in-finie minimisant le problème de jeux à champ moyen.

Transport optimal et approximation discrètes de mesures La théorie dutransport optimal joue un rôle central dans cette thèse permettant à la fois dedéfinir une notion de continuité pour les déplacements d’individus mentionnédans le paragraphe précédent, mais fournissant également une métrique selonlaquelle juger de la qualité de nos approximations. Au coeur de cette théorie(voir Villani, [67], [68], Santambrogio, [63] et Peyré et Cuturi [56]), réside la no-tion de comparer deux mesures en terme de la quantité d’énergie (ou du coût)à dépenser pour déplacer la masse de l’une (un tas de sable dans la métaphoreoriginelle de Monge) vers celle de l’autre (un trou à remplir). Cette comparaison"horizontale" contraste avec celles plus standards, "verticales", induite par unenormeLp sur les éventuelles densités de cesmesures, ou de variation totale, parle fait que la "distance" entre les mesures est calculée suivant les déplacementsde matière dans l’espace ambiant, et non les différences de quantité de matièreen chaque point, permettant une prise en compte plus fine de la géométrie dudomaine. En particulier, elle permet de définir une notion de distance et de con-tinuité qui sont bien adaptées à la modélisation de foules, comme décrite dansle paragraphe précédent (ces faits sont bien connus, depuis les écrits fondateursde Lasry et Lions et Jordan, Kinderlehrer et Otto).
Dans notre cas, cette notion de distance nous permet également de définirune version régularisée de la pénalisation de congestion d’unemesure apparais-sant dans nos problèmes de jeux à champs moyens, laquelle est bien définie,mêmedans les cas où la population étudiée n’est pas distribuée selonunemesureà densité. Essentiellement (et même si ce n’est pas rigoureusement vrai), cettenouvelle fonction pénalise maintenant la distance de transport optimal de lamesure discrète à une mesure peu congestionnée. En revanche, le nouveau
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problème "discret" perd la convexité dont profitait son parent "continu", et uneétude des points critiques possibles s’impose.
Notion Lagrangiennedepoint critiquepour la quantificationoptimale. Leproblème d’approximation du mouvement non congestionné d’une foule parcelui d’une nombre fini d’individus possède denombreuses similarités évidentesavec celui d’approximer (au sens de la distance de Wasserstein) une densité deprobabilité par une distribution discrète et uniforme d’un nombre fini de partic-ules. Par certains aspect ce dernier problème peut être vu comme une coupeà un temps fixé du premier, et il est raisonnable d’espérer tirer des informa-tions utiles de l’étude de ces questions dans un cadre "plus simple". Le sec-ond problème est connu dans la littérature sous le nom de quantification op-timale d’une mesure (uniforme dans notre cas), et a été étudié sous plusieursformes (notamment, avec l’énoncé que nous considérons, par Balzer et al. [7],De Goes, Breeden, Ostromoukhov and Desbrun [17]). Nous nous concentronssur l’approximation par minimisation de la distance de Wasserstein entre notredensité et une mesure discrète uniforme, les positions des masses de Diracétant les inconnues de ce problème. Ce problème décrit, en un certain sens,une version statique en temps du problème de jeux à champs moyen étudiéedans le Chapitre 2 et fut introduit initialement par Balzer et al. comme une alter-native faisant intervenir les cellules de Laguerre, communes en transport opti-mal semi-discret, au lieu des méthodes basées sur les cellules de Voronoï, alorscommunément utilisées. La fonctionnelle (en les positions desmasses de Dirac)minimisée est alors non-convexe et exhibe des points critiques ne correspon-dant pas du tout à des échantillonages satisfaisant pour la mesure à densitésous-jacente. On notera cependant que l’expérience suggère qu’il est impossi-ble de rester bloquer sur un de ces points critiques "dégénérés" lors de la min-imisation.
Modèle et énoncésmathématiques: Nous commençons par étudier unprob-lème de mouvement de foules représenté par une mesure de probabilité surl’ensemble des trajectoires possibles, Γ := C0([0;T ],Rd):

Q ∈ P(Γ)
Nous considérons le problème de minimisation suivante, parmi les mesuresde probabilités sur Γ:

(Mµ0) : inf
{
J(Q) | Q ∈ P(Γ) s.t. e0#Q = µ0

}
où l’on minimise l’énergie globale:

J(Q) :=

∫
Γ

L(γ′)dQ+

∫ T

0

F (et#Q)dt+G(Q).
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Le premier terme est un terme cinétique L(γ′) =
∫ T
0
L(γ′(t))dt pénalisant lesvitesses trop grande le long des trajectoires. Le second terme, faisant intervenir

F , pénalise des valeurs trop larges de la densité de la population au temps t,
et#Q(et interdit la présence de singularités dans ces mesures). G, enfin, estune fonction continue pour la convergence étroite de mesures dans P(Γ), don-nant un but aux individus de la foule représentée par Q sous la forme d’unevaleur minimale à atteindre par Q. Mentionnons par exemple le terme "poten-tiel" G(Q) =

∫
Ω
ϕdeT#Q qui encouragera les individus à terminer leur trajec-toires aux points de Ω où le potentiel ϕ est le plus bas.

Nous qualifions ces problèmes de Jeux à champsmoyen variationnels, du faitque l’énergie J peut être vue comme une énergieminimisée par les joueurs d’unjeu à champs moyen mis sous forme variationnelle dans le sens où une mesurede probabilitéQ ∈ P(Γ)minimisant (Mµ0) induit une stratégiemixte d’équilibrepour les participant à un tel jeu. Notre but dans l’étude de ces problèmes étaitd’approcher leurs solutions par des mesures de probabilité discrètes sur Γ,
QN ∈ PN(Γ) :=

{
1

N

N∑
i=1

δγi

∣∣∣∣∣ (γ1, . . . , γN) ∈ ΓN

}

Pour ce faire, nous cherchons à construire QN comme un minimiseur pourune énergie similaire à J , mais optimisée sur l’espace discretPN(Γ). La fonction-nelle J elle-même, ne convient en revanche pas pour cette construction, car leterme de congestion F pourrait (et dans la plupart des cas va) être +∞ sur lesmesures discrètes, ne nous donnant aucune information sur notre éventuelleproximité à un minimiseur de J . Nous nous intéressons donc au problème (dis-cret en espace):
(MN,µ0N ,εN

) : inf
{
JεN (QN) | QN ∈ PN(Γ), e0#QN = µ0

N

}
,

où l’énergie JεN a été redéfinie afin d’être finie pour des mesures discrètes:
JεN (Q) :=

∫
Γ

L(γ′)dQ(γ) +

∫ T

0

FεN (et#Q)dt+G(Q)

et lamesure de départ estmainentant également unemesure discrète uniformedans PN(Rd). La suite de paramètre (εN)N∈N devra tendre vers 0 quand N tendvers l’infini afin d’obtenir une bonne approximation à la limite.
Le terme pénalisant la congestion, F (et#Q) a été remplacé par une versionrégularisée, que nous appelons par la suite l’enveloppe de Moreau de F (paranalogie avec une définition similaire dans un espace de Hilbert):
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Si µ ∈ P(Rd), Fε(µ) := inf
ρ∈M(Ω)

W 2
2 (ρ, µ)

2ε
+ F (ρ)

Les propriétés de cette enveloppe sont étudiées dans le premier chapitre.Dans les cas que nous étudions, les mesures construites sont discrètes et F estdonnée par une intégrale:
F (ρ) =

{∫
Ω
f(ρ(x))dx if ρ≪ dx

+∞ otherwise.
Le calcul des valeurs de Fε se fait alors en utilisant son expression duale,similaire à celle obtenue pour un problème de transport optimal:

Fε(µ) = max
Φ∈RN

N∑
i=1

[
ϕi
N
−
∫
Lagi(Y,Φ)

f ∗

(
ϕi −

∥x− yi∥2

2ε

)
dx

]
pour µ = 1

N

∑N
i=1 δyi , où (Lagi(Y,Φ))i sont les fameuses cellules de Laguerre(utilisées notamment en transport optimal semi-discret, [55]):

Lagi(Y,Φ) := {x ∈ Ω, c(x, yi)− ϕi ≤ c(x, yj)− ϕj for j = 1, . . . , N}

L’expression maximisée admet une Hessienne (en ϕ1, . . . , ϕN ) qui est inversiblesous une condition d’aire non nulle sur les cellules de Laguerre Lagi(Y,Φ), per-mettant d’approcher efficacement ses solutions via un algorithme de Newton.
Dans le Chapitre 2, nous montrons un résultat de convergence en un certainsens (Proposition 17, Chapter 2) du problème discret en espace (MN,µ0N ,εN

), versle problème continu (Mµ0). Cette convergence est très similaire à la fameuse
Γ-convergence, et implique en particulier que les minimiseurs pour le prob-lème discret en espace (MN,µ0N ,εN

) convergent étroitement (à une sous-suiteéventuelle près) vers unminimiseur du problème continu (Mµ0), quandN tendvers l’infini. Ce résultat requiert cependant une condition sur la décroissance de
εN vers 0. Plus précisément, cette décroissante doit se faire de façon à dominerà la fois la vitesse à laquelle µ0

N approxime µ0 au temps initial, c’est-à-dire que:
W 2

2 (µ
0
N , µ

0) = oN→∞(εN)

et la vitesse à laquelle une solutionQmin de (Mµ0) est approchée par unemesurede PN(Hs([0;T ],Rd)), pour un certain espace Hs ad-hoc:
Si τN := min

{
W 2

2 (Q̃, Qmin)
∣∣∣ Q̃ ∈ PN(Hs([0;T ],Rd))

} alors, il faut que:
τN = oN→∞(εN).
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Sous ces deux conditions de domination, la convergence mentionnée plus hauta lieu.
Enfin, dans les simulations numériques, nous considérons également le prob-lème complètement discrétisé, à la fois en espace et en temps:

(MN,µ0N ,δN ,εN
) : inf

{
JδN ,εN (Q) | Q ∈ PN(Γlin

δN
), e0#Q = µ0

N

}
Ici, δN est un pas de temps, tendant vers 0 quand N tend vers l’infini et Γlin

δN
estl’ensemble des trajectoires affines par morceaux sur des intervalles de taille δN .L’énergie totalement discrète minimisée est:

JδN ,εN (Q) :=

∫
Γ

L(γ′)dQ(γ) + δN

MN−1∑
i=1

FεN (eiδN#Q) +G(Q)

avecMNδN = T .De la même façon que pour le problème discret en espace et continu entemps (MN,µ0N ,εN
), nous montrons que les solutions du problème complète-ment discret (MN,µ0N ,δN ,εN

) convergent étroitement vers des solutions du prob-lème continu (Mµ0). Ce résultat requiert les mêmes hypothèses sur la décrois-sance de εN plus une condition similaire sur le pas de discrétisation en temps,
δN .

Nous approchons les solutions du problème discrétisé (MN,µ0N ,δN ,εN
) par unalgorithme de type quasi-Newton, limited-memory BFGS. Ce problème est de di-mension finie en les positions des trajectoires à chaque pas de temps, et le gradi-ent de l’expression minimisée peut se calculer explicitement pour certaines én-ergies potentiellesG. Les valeurs de εN et δN appropriées ne sont malheureuse-ment pas accessibles, à l’exception de certains cas très particuliers, mais les ré-sultats numériques sont très satisfaisants même pour des valeurs arbitraires de

εN , et les valeurs de T et δN peuvent être déterminées expérimentalement demanière à limiter .
Les fonctionnelles minimisées dans (MN,µ0N ,εN

) et (MN,µ0N ,δN ,εN
) ne sont pasconvexe et l’algorithme L-BFGS risque d’aboutir à un point critique (une trajec-toire) non minimisante. Dans l’espoir de bien choisir l’initialisation µ0

N et εN ,afin d’éviter ces trajectoires dans l’optimisation, nous étudions le problème del’approximation d’une mesure à densité par une mesure uniforme discrète:
min

{
W 2

2 (ρ, µ)

∣∣∣∣∣ µ =
1

N

N∑
i=1

δyi

}
. (1)
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Il s’agit évidemment d’un problème plus simple, cependant, il présente des diffi-cultés similaires du fait de l’interraction entre la distance de Wasserstein et unedépendance en la position de masses de Dirac. Ce dernier problème, parfoisappelé quantification optimale uniforme d’unemesure, a été étudié numérique-ment dans plusieurs publications (notablement [17], [69]) depuis sa premièremention par Balzer et al. [7]. Le problème général de quantification optimaleest plus ancien (nous référons le lecteur à [32] pour une présentation plus dé-taillée), et l’algorithme privilégié pour sa résolution est celui de Lloyd, consistantà partir d’un nuage de points et raffiner les positions dans cet échantillon en en-voyant chaque point vers le barycentre de zones d’une partition de l’espace quiest ensuite recalculée pour le nouveau nuage de points. Un algorithme similaireest utilisé pour la quantification optimal, où les points du nuage sont projetéssur le barycentre de la cellule de Laguerre optimale (pour le transport optimalvers ρ) associée: {
Y 0 ∈ ΩN

Y k+1 = B(Y k)
(2)

où B(Y ) = (b1(Y ), . . . , bN(Y )) est le nuage des barycentres des cellules de La-guerre optimales associées à Y :
bi(Y ) = N

∫
Lagi(Y,Φ)

xdρ(x).

Les études numériques que nous mentionnons mettent en évidence deuxfaits amplement observés et commentés dans la littérature, à savoir que le nu-age initial Y 0 doit être constitué de points bien espacés afin d’obtenir une bonneconvergence d’une part, et qu’une fois cette selection faite, peu d’itérations del’algorithmede Lloyd (voiremêmeune seule) aboutissent à unemesure donnantune bonne erreur de quantification. Cependant, il semblerait qu’aucune étudethéorique de ces affirmations n’ait été menée, et en particulier quantitative dutaux de convergence (en le nombre demasses deDirac,N ) d’unminimiseur localde (1) vers ρ, ou plus généralement de la distance entre les points dunuage initial,afin d’éviter d’obtenir un point critique non-minimisant en sortie d’algorithme.
Nous fournissons dans le chapitre 3 des estimations explicites (et en partic-ulier non-asymptotiques) pour la distance de Wasserstein entre la mesure uni-forme obtenue après une étape de l’algorithme de Lloyd et la mesure à den-sité échantillonnée. En particulier, si les points de Y 0 sont espacés d’au moins

C.N−1/d (en l’esprit, répartis sur un ensemble de dimension d), alors,
W 2

2

(
ρ,

1

N

N∑
i=1

δbi(Y )

)
≤ K.N− 1

d ,
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avec une constante explicite K ne dépendant que de d, C et Ω. Ces estiméesimpliquent en particulier l’observation empirique qu’en échantillonnant à partirde points suffisamment espacés, la mesure supportée sur les barycentres estproche de la mesure sous-jacente ρ au sens deW2, lorsque le nombre de pointstend vers l’infini.
Ce résultat peut être vu commeune variante de l’inégalité de Polyak-Łojasiewiczpour la minimisation de la fonction:

FN : Y ∈ (Rd)N 7→ W 2
2

(
ρ,

1

N

N∑
i=1

δyi

)
,

avec cependant un terme divergeant lorsque le nuage de points n’est pas assezespacé:
FN(Y )− Cd,Ω

1

N

(
1

ε

)d−1

≤ N ∥∇FN(Y )∥2

où ε est la distance minimale entre deux points du nuage Y . Similairement àune véritable inégalité de Polyak-Łojasiewicz, cette inégalité suggère que suivrele flot gradient deFN nous approche d’un point critique, tant que l’on peutmain-tenir une distance suffisante entre les points obtenus à chaque itération. Nousgarantissons cette distanceminimale durant lemouvement par une inégalité deGronwall (ou son analogue géométrique discrète en temps), ce qui nous permetd’étudier tout d’abord lesmesures obtenues après quelques pas de descente degradient pour FN :{
Y 0 ∈ ΩN

Y k+1 = Y k −NτN∇FN(Y k) = Y k + τN(B(Y k)− Y k)

Pour un pas de temps 0 < τN < 1 et un nuage de points espacés de C.N−1/d,nous déterminons kN tel que après kN pas de descente de gradient, le nuageobtenu est proche de ρ, au sens de Wasserstein:
W 2

2

(
ρ,

1

N

N∑
i=1

δ
y
kN
i

)
= ON→∞

(
W 2

2

(
ρ, δY 0

N

)1− 1
d
.N

−1

d2

)
.

Le taux de convergence (en N ) est bien pire dans ce cas qu’après une étapede l’algorithme de Lloyd, et ce résultat n’a pas d’intéret au-delà de présenter,dans un cas simple, cette non-dégénérescencede la structure dunuagedepoints,durant un tel mouvement de particules. En revanche, retournant au contextedesmouvements de foules non-congestionnés, il est possible d’évaluer les valeurs
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des paramètres dediscrétisation εN dans le cas duflot gradient étudié par Leclerc,Mérigot, Santambrogio et Stra. Cette étude est effectuée dans la Section 3.4 etnous permet de nous débarasser d’une hypothèse artificielle utilisée par les au-teurs pour démontrer la convergence du flot discrétisé.Cependant, les inégalité de type Gronwall, garantissant une distance mini-male entre les individus (les masses de Dirac) durant le mouvement, utilisentbeaucoup l’ordre 1 des équations différentielles vérifiées par les trajectoires, ets’adaptent mal à notre modèle (d’ordre 2 en temps) de jeu à champ moyen.
Le dernier chapitre de cette thèse se tourne vers les cas où les mesuresde quantification discrètes ne convergent pas vers la densité échantillonnée ρ.Même dans ces cas très dégénérés, il est possible de mettre en évidence unegrande régularité des mesures limites, héritée principalement de la symétriedes cellules de Laguerre (elle-même due aux conditions d’optimalités pour FN ).Nous démontrons tout d’abord que les limites de ces mesures discrètes sontsolutions d’un problème de minimisation de distance de Wasserstein, sous cer-taines restrictions de répartition faisant intervenir le support de lamesure limite,

µ∞:
min{W 2

2 (ρ, µ) | µ ∈ P(Ω), µ(C) = µ∞(C)

pour toute composante connexe C de spt(µ∞)}.

Nous nous intéressons ensuite aux mesures vérifiant une version continuede la condition de criticité "être le barycentre de sa cellule de Laguerre" (obtenuepour le support d’unemesure discrète optimale pour le problème de quantifica-tion uniforme). Cette nouvelle condition se définit en remplaçant les cellules (etla mesure échantillonnée sur celles-ci) par une désintégration de ρ par rapportau plan de transport entre µ et ρ: (ρy)y∈spt(µ). La condition de criticité devientalors:
Pour µ-presque tout y ∈ Ω, y =

∫
Ω

xdρy(x)

et on dit que la mesure µ est critique Lagrangienne (pourW 2
2 (., µ)) lorsque cettecondition µ-presque partout est vérifiée.Le résultat principal étudié dans ce chapitre est si, oui ou non, toute mesurecritique Lagrangienne est supportée sur une union dénombrable de surfacesrégulières de dimensions entières et est absolument continue sur chaque sur-face par rapport à la mesure de Hausdorff de même dimension. Une réponsepositive est suggérée par l’expérience, ainsi que par un résultat de "boules ex-térieures" pour le support d’une telle mesure: En effet, pour µ-presque toutpoint y ∈ Ω, et x ∈ spt(ρy), aucun point du support de µ ne peut être dans la

10



boule de diamètre [x, y].
Cette propriété est à priori trop faible pour obtenir une régularité meilleureque la rectifiabilité pour le support de µ, et en particulier, elle ne donne pasd’informations sur le comportement de la mesure Lagrangienne critique sur lesupport. Un résultat pouvant donner de la régularité supplémentaire est unthéorème prouvé par Alberti, donnant une structure C2-rectifiable pour les par-ties du support sur lesquelles la dimension de spt(ρy) est constante. Ce résultatest valable à un ensemble de mesure de Hausdorff nulle près, et la conjecturese réduit donc uniquement à démontrer l’absolue continuité de µ par rapport àla mesure de Hausdorff de dimension adéquate sur chaque partie du support.Cette affirmation reste encore une conjectures pour les parties du support dontla dimension k serait comprise entre 2 et d−1 (une définition rigoureuse du sensde cette dimension est donnée dans ce chapitre). En revanche, nous donnonsune démonstration complète de cette affirmation pour les parties de dimen-sions k = 0, 1 ou d et réduisons le résultat (pour toutes les dimensions possi-bles) à une propriété de continuité Lipschitz sur les variations de l’orientationdu support de ρy, en fonction de y.
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Chapter 1

Optimal transport and
discretization of congestion
penalizations

In this chapter, we briefly recall some well-known facts in the theory of optimaltransport and, in particular, on the semi-discrete case. We then present somenew results and proofs of properties for functions defined as Moreau envelopewith respect to the 2-Wasserstein distance (this is Section 1.2 of this chapter).

1.1 Optimal transport and the semi-discrete setting

Optimal transport was introduced in 1781 by G. Monge in his "Mémoire sur la
théorie des déblais et des remblais" [54]. It took the form of a very simple prob-lem of moving a mass of sand from a location to another while minimizing thetravelled distance.With this formulation, each particle of sand located at x is transported to
T (x) with a cost proportional to ∥T (x)− (x)∥ and the total cost to move a pileof sand S0 to a location S1 (a set of same volume) is proportional to∫

S0

∥T (x)− x∥ dx

which Monge then minimizes among the transport maps T : S0 → S1 under thecondition that they are volume preserving.Many issues, such as existence of such maps, of one which minimizes thetotal cost, lack of linearity in the solution T , . . . make this problem ill-posed andMonge’s solution is neither very satisfactory, nor general.
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The problem was explored again by A.N. Tolstoï in "Methods of finding the
minimal kilometrage in cargo-transportation in space" for the National Commis-sariat of Transportation of the Soviet Union in 1930 [66]. In this paper, the prob-lem is considered in a discrete setting, as different cargos are transported be-tween sources and destinations along the railway network of the Soviet Union.Although it seems doubtful that Tolstoï had a rigourous proof for it, his solu-tion is actually an optimum and he did discover the now well-known heuristic ofthere being no negative cycles in the transport plan (see [56], proposition 3.4).However, it is L. Kantorovich who is often considered to be the first math-ematician to rigourously study the problem and make significant advances re-garding its resolution in his paper "On the translocation of masses" for the Pro-ceedings of the USSR Academy of science in 1942 [35]. His definition of the op-timal transport cost is the one used today, defined as the minimal average costof pairing between two general probability measures, in Definition 1. He alsoshowed that, in some specific cases, the optimal transport cost can be com-puted from the now well-known Kantorovich Potentials (see Proposition 2).

Modern formulation of Optimal transport: Kantorovich’s formulation canbe developed in very general spaces and for very general costs. However, in thisthesis we will often make assumptions to guarantee the existence of these Kan-torovich Potentials (typically through compactness of the support of our mea-sures), or to obtain optimal transport plans which are given by maps (by consid-eringmeasures which admit densities with respect to Lebesguemeasures and acost given by the euclidean distance). We now recall a somewhat general settingin which transport problems can be studied and then develop the results for ex-istence of potentials or transport maps which we shall use. All of the notionson Optimal transport as well as the corresponding proofs can be found in thebooks by C. Villani, [67] and [68], or in the one by F. Santambrogio [63]:
Definition 1. Let X , Y be two Polish spaces and let c : X × Y → R be a lower
semi-continuous function, bounded from below. Let ρ ∈ P(X), µ ∈ P(Y ),

The optimal transport cost associated with c, between thesemeasures is the value
of the infimum:

Ic(ρ, µ) = inf
γ∈Π(ρ,µ)

∫
X×Y

c(x, y)dγ(x, y) (1.1)
and the set of transport plans between ρ and µ, Π(µ, ν) is the set:

Π(µ, ρ) = {γ ∈ P(X × Y ), πX#γ = ρ, πY#γ = µ} (1.2)
In the above Definition 1, lower semi-continuity of c is the property describedin Definition 17, Appendix B and πX#γ is the push-forward measure of γ along
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the projection on the first coordinate (and idem for πY#γ):
πX : (x, y) ∈ X × Y → x ∈ X, πY : (x, y) ∈ X × Y → y ∈ Y.

Push-forwards of measures through maps are defined in Appendix A, Defini-tion 9.
It is important to note here that, under these assumptions on X and c, theinfimumproblem (1.1) admits solutions. This is shown using the direct method inCalculus of Variations, of taking aminimizing sequence, showing some compact-ness on it and concluding by lower semi-continuity of the minimized functional.We make ample use of this method whenever we need to show existence ofsolutions to such variationnal problems (see the proof of Proposition 5 for anexample).
A major interest of Kantorovich’s formulation is that Problem (1) is a convexproblem which admits a dual formulation as a concave one, through the cele-brated Fenchel-Rockafellar duality (see Appendix B Theorem 46, as well as [23]).Let us recall here (Appendix B.1) that the spaceM(X) of finite signed (Borel)measures can naturally be put in duality with the space of continuous boundedfunctions on X (although it is not the topological dual of C0b (X), except whenXis compact). It is this duality which is exploited in Fenchel-Rockafellar theorem:

Theorem 1 (Kantorovich’s duality). Assume that X and Y are compact spaces.

Ic(ρ, µ) = sup
ψ, ϕ∈Cc(X,Y )

∫
X

ψdρ+

∫
Y

ϕdµ (1.3)
the supremum being taken over the space

Cc(X, Y ) = {ψ, ϕ ∈ C0b (X)× C0b (Y ),

∀(x, y) ∈ X × Y ψ ⊕ ϕ(x, y) := ψ(x) + ϕ(y) ≤ c(x, y)} (1.4)
We recall now a proof for this duality result, as it can be obtained in a verysimilar fashion to that in which we obtain strong duality for our regularized con-gestion Problem (1.13):

Proof. We define the following two convex functions and one linear map on theproduct of these last vector spaces:
F : ψ, ϕ ∈ C0(X)× C0(Y ) 7→

∫
X

ψdρ+

∫
Y

ϕdµ
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G : ϕ ∈ C0(X × Y ) 7→

{
0 if ϕ ≤ c

+∞ otherwise.
and

A : ψ, ϕ ∈ C0(X)× C0(Y ) 7→ ϕ⊕ ψ ∈ C0(X × Y )

Then, the dual formulation (1.3) can be simply written as:
− inf

{
F (−(ψ, ϕ)) +G(A(ψ, ϕ))

∣∣ ψ, ϕ ∈ C0(X)× C0(Y )
}

We are going to use Fenchel-Rockafellar theorem from Appendix B, Theo-rem 46, for the duality between C0(X×Y ) andM(X×Y ). The primal problème(1.1) could be formulated as an inf-convolution:
Ic(ρ, µ) = inf

γ∈M(X×Y )

∫
X×Y

c(x, y)dγ(x, y) + χΠ(µ,ρ)(γ)

with the definition of the convex indicator function of transport plans from ρ to
µ, χΠ(µ,ρ), from Appendix B. However, both functions in the sum enjoy too fewcontinuity in order for this to be done easily, and instead, we apply the theoremto the dual expression (or rather, its opposite in order to start from an infimum).
F is linear continuous on C0(X) × C0(Y ) and G is lower semi-continuous on
C0(X×Y ) and dom(G) ̸= ∅ therefore, the hypotheses of the theorem are triviallyverified. We may now write:

inf
{
F (−(ψ, ϕ)) +G(A(ψ, ϕ))

∣∣ ψ, ϕ ∈ C0(X)× C0(Y )
}

= sup {−F ∗(A∗(γ))−G∗(γ) | γ ∈M(X)×M(Y )}

(we recall that A∗ acts on the dual of C0(X × Y ) which isM(X × Y )). Now, for
α, β ∈M(X)×M(Y ) and γ ∈M(X × Y ):

F ∗(α, β) = sup
ϕ,ψ

∫
X

ψd(α− ρ) +
∫
X

ϕd(β − µ)

=χ{ρ}(α) + χ{µ}(β),

A∗(γ) = (πX#γ, πY#γ)

and
G∗(γ) = sup

ϕ≤c

∫
X×Y

ϕdγ

=

{∫
X×Y cdγ if γ ∈M+(X × Y )

+∞ otherwise
(1.5)
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since c was assumed lower semi-continuous.Plugging these expressions in Fenchel-Rockafellar’s theorem andmultiplyingeach side by −1, we obtain:
sup

{∫
X

ψdρ+

∫
Y

ϕdµ,

∣∣∣∣ ψ, ϕ ∈ C0(X)× C0(Y ), ψ ⊕ ϕ ≤ c

}
= inf

{∫
X×Y

cdγ | γ ∈M+(X × Y ), πX#γ = ρ, πY#γ = µ

}
(1.6)

which states strong duality for Problem Ic(ρ, µ). Furthermore, this is a casewhere Fenchel-Rockafellar’s theorem guarantees that the infimum (which is re-ally a supremum in the theorem) is attained, which is another way of obtainingexistence of an optimal transport plan in this case.
We restrain ourselves to the case where X and Y are both compact sets, bothfor simplicity and, again to keep close to the duality result that we show lateron. To obtain the same result for general Polish spaces X and Y , one simplyrestrains the problem to larger and larger compact sets insideX and Y and usestability of the transport plans and the fact that ρ and µ are Radon measures.This does require however that the cost be lower bounded by a separable ex-pression (see [68], Theorem 5.10).

c-concave functions: In this paragraph, we assume, again, that X and Y arecompact spaces and that c is continuous on X × Y (which is the case in mostof our problems) . A useful trick, which we adapt later on, comes from noticingthat any of the optimization variables, ψ for instance, can (and should) be takenas large as possible, since both ρ and µ are non-negative. This variable can thenbe eliminated from problem (1.3), using the c-transform of the other variable:
Definition 2. Let ϕ ∈ C0(Y ), we call c-transform of ϕ the function, in C0(X):

ϕc := inf
y∈Y

c(., y)− ϕ(y).

Similarly, and since no confusion should arise from this, for ψ ∈ C0(X), we call
c-transform of ψ the function in C0(Y ):

ψc := inf
x∈X

c(x, .)− ψ(x).

A function (in C0(X) or C0(Y )) will be called c-concave when it is the c-transform of
a (any) function.
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Looking back at the definition of Cc and the fact that ρ and µ are positive, onecan take the variable ψ as large as the c-transform of ϕ and replace the variable
ϕ by (ϕc)c ≥ ϕ as it yields a better competitor. Finally since ((ϕc)c)c ≡ ϕc, we areleft with the dual problem

Ic(ρ, µ) = sup
ϕ∈C0

b (Y )

∫
X

ϕcdρ+

∫
Y

ϕccdµ

= sup
ϕ c-concave

∫
Y

ϕdµ+

∫
X

ϕcdρ

(1.7)

Before continuing any further, we wish to make a remark here:The reason (at least one) for considering µ and ρ as measures on differentsets is of course that the functions in the dual problem can then be taken in thecontinuous and bounded functions on the support of the corresponding mea-sure, for instance for ϕ above, the support of µ. However, one has to be con-scious of the fact that the notion of c-concave function depends on the sets Xand Y considered. Therefore, although changing X to the support of ρ and Yto that of µ in either formulations of Ic(ρ, µ) does not change its value, it doeschange which Kantorovich potentials are c-concave and therefore the actual so-lutions of (1.7). This is a point which will have a small importance in particular insemi-discrete optimal transport, see below, and in the dual formulation of theregularized congestion Fε at the end of this chapter.
More importantly, a c-concave function has the same continuity modulus as

c, with respect to the corresponding variable. Assuming that X and Y are com-pact and c continuous, one can show, using the same direct method of calculusof variation and Arzelà-Arscoli theorem that there exists solutions for the dualProblem:
Proposition 2. The dual formulation (1.7) admits solutions called Kantorovich po-tentials for the optimal transport. Furthermore, there always exists pairs of c-concave
Kantorovich potentials (ϕ, ϕc) for the optimal transport.

Wasserstein distances: A key feature of Optimal transport is the fact that it in-duces, in some cases, a distance metrizing the narrow convergence on the spaceof probability measures P(X) (see Definition 11, Appendix A):
Indeed, consider the optimal transport problem (1.1) with X = Y , a cost

cp(x, y) = dX(x, y)
p being a power of the distance onX and p ≥ 1. Then Icp(ρ, µ)is finite if ρ and µ have finite p− th order moment:
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Definition 3. A measure µ ∈ P(X) has finite p-th order moment when there exists
x0 ∈ X ,

∫
X
dpX(x, x0)dµ(x) < +∞. Any x0 ∈ X can be chosen to test this property.

We denote Pp(X) the set of probability measures with finite p-th order moment
on X .

Taking the appropriate p-root, one can define a distance on the set Pp(X)called the p-Wasserstein distance. Here we note that we will use later on thenotation PN(X), for the set of uniform discrete probability measures over Npoints. Since such uniform discrete measures instantly enjoys finite p-th ordermoments for any p ≥ 1 no confusion should arise from these slightly awkwardnotations. Note also that we will be working in compact spaces in most cases, inwhich case probability measures (discrete or not) also enjoy finite moments ofany order.
Definition 4 (Wasserstein/Monge-Kantorovich distance). Let µ, ρ ∈ P(X) with
finite p-th order moment. The p-Wasserstein distance between µ and ρ is defined
as:

Wp(µ, ρ) =
p

√
Icp(µ, ρ)

with Icp defined by Definition 1.

As its name suggests,Wp is a distance onPp(X). It generally defines a strongernotion of convergence than the narrow convergence from Definition 11. How-ever, when X is compact, both topologies coincide:
Proposition 3. Let (µn)n∈N ∈ (Pp(X))N and µ ∈ Pp(X). Let x0 ∈ X .

The two following points are equivalent:

(1) limn→∞W p
p (µn, µ) = 0.

(2) µn −−−⇀
n→∞

µ and limn→∞
∫
X
dp(x0, x)dµn =

∫
X
dp(x0, x)dµ

In particular, if X is compact, (1)⇔ (2)⇔
(
µn −−−⇀

n→∞
µ
)

"Brenier" transport: Let us finish this section by identifying specific cases inwhich the optimal transport plan is actually induced by a map T : X → Y ,which was the model Monge assumed in his "traité". What this means in termsof transport plan is the existence of a measurable map T : X → Y such that theoptimal γ ∈ P(X × Y ) (for Problem (1.1)) is induced by T in the sense:
γ = (Id, T )#ρ.
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As we shall not use these results to the full extent of their generality, we as-sume for the remainder of this section thatX and Y are compact subsets ofRd.Generalizations to optimal transport on Riemannian manifolds can be found inMcCann [49], and Gigli [30] characterized the class of measures for which sucha transport map exists.
A very common assumption to obtain such transport is the following twistcondition on the cost c, allowing for almost all x ∈ X to find a unique target

y ∈ Y to be transported to:
Definition 5. We will say that the cost c satisfies the twist condition when there
exists open sets ΩY ⊃ Y and ΩX ⊃ X such that:

• c is C1(ΩX × ΩY ).

• For any x ∈ ΩX , the map

Y ∈ ΩY 7→ Dxc(x, y)

is one to one.
A first, very visual, example of such a transport "à la Monge" can be observedin what is usually referred to as semi-discrete optimal transport, and it causes atotal collapse of the complexity of the optimization problem, into a finite dimen-sional one.In this setting, one of the measures, ρ for instance, is absolutely continuouswith respect to the Lebesgue measure, while the other, µ is discrete:

ρ≪ dx, µ =
N∑
i=1

αiδyi

for some point cloud Y = (y1, . . . , yN) ∈ (Rd)N andmasses α1, . . . , αN in (R∗+)N ,such that∑N
i=1 αi = 1.When in this semi-discrete context, we will make the abuse of notations ofdenoting the support of µ using aN -tuples instead of a set, since it is convenientto be able to quickly assign the masses αi (and later on weights ϕi) to the corre-sponding points in spt(µ).

The dual formulation (1.7) rewrites into a simpler finite dimensional concaveproblem involving a specific decomposition of the domain into Laguerre cells:
Definition 6 (Laguerre cells). Consider a point cloud Y = (y1, . . . , yN) ∈ (Rd)N

and a set of reals Φ = (ϕ1, . . . , ϕN) ∈ RN . We call Laguerre cells associated to Y
with weights Φ the covering of Rd: For i = 1 . . . N ,

Lagi(Y,Φ) = {x ∈ Rd, c(x, yi)− ϕi ≤ c(x, yj)− ϕj for j = 1, . . . , N}

20



For a function ϕ : spt(µ)→ R, and weights Φ = (ϕ(y1), . . . , ϕ(yN)), Lagi(Y,Φ)is the subset of X upon which the minimum defining ϕc is attained for j = i:
ϕc := min

j
c(., yj)− ϕ(yj) = c(., yi)− ϕ(yi)

Notice also that the twist condition implies that the boundary of these Laguerrecells are Lebesgue-negligible, allowing us to rewrite Problem (1.7) as:

Ic(ρ, µ) = sup
Φ∈RN

N∑
i=1

αiϕi +

∫
Lagi(Y,Φ)

(c(x, yi)− ϕi)dρ(x) (1.8)

This is now a finite dimensional concave problem, and Φ is an optimal bunchof weights iff ρ(Lagi(Y,Φ)) = αi for every i. Furthermore, it is known since Au-renhammer et al. [6] that an optimal tesselation always exists and is, in somesense, unique. These optimality conditions are very similar to those we will getin proposition 9 below in the setting of discretized congestion penalty. Provided
Φ verifies these conditions, one can then write Ic(ρ, µ) as the separated sum:

Ic(µ, ρ) =
N∑
i=1

∫
Lagi(Y,Φ)

c(x, yi)dρ(x)

We mention that problem (1.8) is the maximisation of a smooth (up to C2,αunder some conditions on the domain and cost), concave function of theweights
Φ. We refer the reader to the article by Kitagawa, Mérigot and Thibert [36] orthe recent survey by Mérigot and Thibert [55] for a study of this problem and inparticular, an overview of the methods for its numerical solution.
Remark 1. In Chapter 4, we deal with point clouds that can vary (and in particulargrow larger) inside a compact domain Ω which also contains the support of ρ.Let us recall briefly how to obtain Kantorovich potentials (φ, φc) defined on thewhole domain Ω, from a set of optimal weights Φ for Problem (1.8), such that forany i, φ(yi) = ϕi:For such a set of weights, define the function ψ := infi c(., yi) − ϕi and φ :=
infx∈Ω c(x, .)− ψ(x). For any i = 1 . . . N ,

φ(yi) = inf
x∈Ω

sup
j
c(x, yi)− c(x, yj) + ϕj ≥ ϕi

(taking j = i) and for x ∈ Ω, if x ∈ Lagi(Y,Φ),
c(x, yi)− c(x, yj) + ϕj ≤ ϕi
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by definition. Therefore, since Lagi(Y,Φ) is non-empty for every i by optimalityof Φ, φ(yi) = ϕi. On the other hand, for any x ∈ Ω,
φc(x) = (ψc)c(x) ≥ ψ(x)

and,
Ic(µ, ρ) =

N∑
i=1

αiϕi +

∫
Ω

(inf
i
c(x, yi)− ϕi)dρ(x) ≤

∫
Ω

φdµ+

∫
Ω

φcdρ ≤ Ic(µ, ρ)

and φ is a Kantorovich potential for the transport from µ to ρ.
Let us also note here that if the cost c is given by the squared euclidean norm:

c(x, y) = C ∥x− y∥2, the Laguerre cells are convex polyhedra in Rd as they arethe defined by the linear inequalities:
Lagi(Y,Φ) =

{
x ∈ Rd, (2x− yi − yj) · (yj − yi) ≤

ϕi − ϕj
C

}
This is a very nice feature of this euclidean setting, and one of the reasonswhy we will use quadratic Wasserstein distances throughmost of this thesis. Onthe other hand, for the exponent p = 1, c(x, y) = ∥x− y∥, the Laguerre cells arenot even always convex and their boundaries are made of arcs of hyperbolae(as they are defined by constant differences of distances to two points)!
In this semi-discrete setting, it is obvious that the optimal transport plan willbe induced by the map: T : x ∈ Lagi(Y,Φ) 7→ yi. However, the existence ofthis transport map T is much more a consequence of the twist condition on cand the absolute continuity of ρ than the discrete nature of spt(µ). In fact, thefollowing celebrated theorem, gives the same structure to the optimal transportplan, for more general measures.

Theorem 4 (Brenier [12], Gangbo-McCann [49]). Let µ, ρ ∈ P(Rd). We assume
that ρ≪ dx and that the cost c verifies the twist condition.

Then there is a unique optimal transport plan for Ic(ρ, µ) and this transport plan
is induced by a map,

γ = (Id, T )#ρ.

This result with a cost given by the squared norm, c(x, y) = C ∥x− y∥2 wasthe original theorem, proven by Brenier, [12] and in this case, the optimal map Thas an explicit form involving the gradient of a (any) c-concave Kantorovich po-tential, ϕ. Indeed, in this case, a function being c-concave is equivalent to it being
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1-semiconcave (in the sense of Appendix B, Definition 18) and a c-concave Kan-torovich potential is differentiable almost everywhere (for the Lebesgue mea-sure and therefore for ρ). In that case, ϕc (with the notations of (1.7)) verifies
ρ-almost everywhere∇ϕc(x) = ∇xc(x, y) = 2C(x−y) (in particular, Kantorovichpotentials are uniquely defined, up to a constant, on the support of ρ). The trans-port map T of Brenier’s theorem is simply given by

T (x) = x− ∇ϕ
c(x)

2C

which is the gradient of the (convex) function ∥.∥2
2
− ϕc

2C
(see also [63], section 1.3.1for a proof and more general study).

1.2 Moreau envelope in the Wasserstein space
In the following chapter, we study variational problems for which the minimizedenergy features a congestion penalization term, in the form of a convex, lowersemi-continuous function F onM(Ω), where Ω is a compact smooth domain of
Rd in which the solutions of the problem evolve.To define the discretization used in Chapter 2, we need to be able to evaluate
F at discretemeasures onΩ, which typically give us the value+∞ and thereforelittle information on how congested these measures are. This is the case forinstance when F has the following integral form, very commonly featured inthese kinds of variational problems:

F (ρ) =

{∫
Ω
f(ρ(x))dx if ρ≪ dx

+∞ otherwise. (1.9)
Our solution is to replace this functional by a regularized version definedas a Moreau envelope (or Moreau-Yosida regularization) for the 2-Wassersteindistance (see Definition 4):

For µ ∈ P(Rd), Fε(µ) := inf
ρ∈M(Ω)

W 2
2 (ρ, µ)

2ε
+ F (ρ) (1.10)

Tomake expressionsmore concise, wewill use from time to time the optimal
transport cost associated with the cost cε(x, y) = ||x−y||2

2ε
(and more importantlythe associated Kantorovich potentials (ϕ, ϕcε)), instead of the standard squarednorm definingW2. Let us quickly notice the more concise expression for Fε:

Fε(µ) = inf
ρ∈M(Ω)

Icε(ρ, µ) + F (ρ). (1.11)
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The transport cost Icε(., ρ) (we recall Definition 1) is +∞ outside of P(Rd)while F is +∞ outside of dom(F ) and, in the end, the infimum in (1.10) is onlytaken on the intersection of those two sets. For this reason, we make the addi-tional assumption that P(Ω) ∩ dom(F ) ̸= ∅ otherwise there is nothing to study.
This regularization is inspired by a similar one used to discretize the incom-pressibility constraint in the numerical approximationof solutions to Euler’s equa-tions byQ.Mérigot and J-M.Mirebeau, [50]. In this paper, the discretemeasure µis projected on the set of measures verifying the constraints, which correspondsto computingFεwhenF is a convex indicator function. Formulation (1.10) ismoregeneral in the sense that F can be softer and, for example, such expressionswere also used to regularize the penalization F (ρ) = ρ log(ρ) by Leclerc, Mérigot,Santambrogio and Stra [40], in the context of Wasserstein gradient flows (wecome back to these kinds of crowd motions at the end of Chapter 3). The nameMoreau envelope comes directly from the same notion in a Hilbert space H .There, the Moreau envelope of a convex function g, with parameter ε, is givenby a similar inf-convolution

gε(x) = inf
y∈H

∥x− y∥2H
2ε

+ g(y).

It has the advantages of being finite, and evendifferentiable, for any x ∈ H , uponsome mild assumptions on g. Notice also that, assuming lower semi-continuityof g, gε(x) has limit g(x) as ε goes to 0, whereas the limit is inf g as ε goes to+∞.
For the remainder of this section F will be a convex lower bounded function,l.s.c. for the narrow convergence onM(Rd), with dom(F ) ⊂ M+(Ω). Theseare the same hypotheses as those made in the next chapter for the congestionpenalty of variational mean field game problems. In particular, we do not as-sume that F has the integral form (1.14) for now:

Proposition 5. For every ε > 0, the infimum defining Fε is attained and Fε is l.s.c
on P(Rd), for the narrow topology.

Furthermore, limε→0 Fε(µ) = F (µ) whereas, assuming µ has finite second order
moment, we also have limε→+∞ Fε(µ) = infρ∈P(Ω) F (ρ).

We will sometimes call an optimal ρ in Problem (1.10) aMoreau-Yosida projec-
tion of µ.
Proof. To show existence of minimizers for Problem (1.10) let us consider a min-imizing sequence (ρn)n∈N for this problem, i.e. a sequence inM(Ω) such that

lim
n→+∞

W 2
2 (ρn, µ)

2ε
+ F (ρn) = Fε(µ).
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As we mentioned, ρn ∈ P(Ω) for every n and Ω is compact, therefore, the se-quence is tight. Using Prokhorov (or even, in this compact case, Banach-Alaoglu)theorem, one can extract a subsequence from (ρn)n∈Nwhich narrowly convergestowards a measure ρ ∈ M(Ω). Now, both F (by hypothesis) and W 2
2 (., µ) arelower semi-continuous functions for the narrow topology and therefore:

W 2
2 (ρ, µ)

2ε
+ F (ρ) ≤ lim inf

n→+∞

W 2
2 (ρn, µ)

2ε
+ F (ρn) = Fε(µ)

and ρ is a minimizer for (1.10).
Furthermore, going back to the definition of lower semi-continuity, let us takea sequence µn narrowly converging to µ∞ in P(Ω), and for every n, a measure

ρn ∈ dom(F ) ∩ P(Ω) optimal for the problem defining Fε(µn). We may assumethat Fε(µn) has a finite limit as n→∞. Using Prokhorov theorem again, we canextract a subsequence from (ρn)n, narrowly converging towards a ρ∞ ∈ dom(F ).We extract the corresponding subsequence from µn and rename these new se-quences, ρn and µn. Then,
Fε(µ∞) ≤ W 2

2 (ρ∞, µ∞)

2ε
+ F (ρ∞)

≤ lim inf
n

W 2
2 (ρn, µn)

2ε
+ lim inf

n
F (ρn)

≤ lim inf
n

Fε(µn) = l

the first inequality being by definition of Fε(µ∞) and the second one, by lowersemi-continuity for the narrow topology of the two terms. This means, by defi-nition that Fε is l.s.c. since l was the inf limit of the initial sequence (µn)n∈N.Finally, to obtain the limits, let us immediately observe that for ε > ε′,
inf

ρ∈M(Ω)
F (ρ) ≤ Fε(µ) ≤ Fε′(µ) ≤ F (µ)

As ε→ 0, we may assume that (Fε(µ))ε remains upper bounded, otherwise,its limit is +∞ ≤ F (µ) and there is nothing to prove. Consider for any ε, ρε aminimizer for Eq. (1.10).
lim
ε→0

W 2
2 (ρε, µ) = lim

ε→0
2ε(Fε(µ)− F (ρε)) = 0

and using the lower semi-continuity of F ,
F (µ) ≤ lim inf

ε→0

W 2
2 (ρε, µ)

2ε
+ F (ρε) = Fε(µ)
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and we have our limit.As ε→ +∞ on the other hand, let us take ρε ∈ P(Ω) such that
lim

ε→+∞
F (ρε) = inf

P(Ω)
F

(in fact, this infimum is even attained but we do not need this).
Fε(µ) ≤

W 2
2 (ρε, µ)

2ε
+ F (ρε)

and since any probability measure on Ω is at bounded distance from µ as soonas µ has finite second order moment,
lim

ε→+∞
Fε(µ) ≤ lim

ε→+∞

W 2
2 (ρε, µ)

2ε
+ lim

ε→+∞
F (ρε) = inf

P(Ω)
F

Before diving into the computation of a dual formulation for Fε, let us men-tion that the Moreau-Yosida projection is unique and behaves in a continuousway either at absolutely continuous measures or when F enjoys a little moreconvexity.
Proposition 6. If either (1) µ ≪ dx, (2) F is strictly convex or (3) F is convex along
generalized geodesics (see Definition 20), then the optimal ρ in (1.10) is unique.

Moreover, writing ρµ the Moreau-Yosida projection of a measure µ (unique in
either of these three cases),

(1) µ 7→ ρµ is continuous (for the narrow topology) on L1(Ω) ∩ P(Ω).

(2) If F is strictly convex, µ 7→ ρµ is continuous on the whole of P(Ω).

(3) If F is convex along generalized geodesics and dom(F ) ⊂ L1(Ω), then µ 7→ ρµ

is 1
2
-Hölder on any Wasserstein neighbourhood of a sub-level of F .

More precisely, for any L and C > 0, there exists C ′ > 0 such that if µ, ν are
probabilitymeasureswithW2(µ, {F ≤ L}) ≤ C and alsoW2(ν, {F ≤ L}) ≤ C ,
then

W 2
2 (ρ

µ, ρν) ≤ W 2
2 (µ, ν) + C ′.W2(µ, ν)

Proof. As for uniqueness in (1) and (2), in both these cases the minimized func-
tional W 2

2 (.,µ)

2ε
+F is strictly convex, respectively (1) on L1(Ω) ∩ P(Ω) because so is

W 2
2 (., µ) and (2) everywhere when F is strictly convex. Therefore in these cases,the optimal ρ is unique.
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In the case (3) of F convex along generalized geodesics, uniqueness comesnaturally from the proof of Hölder regularity and we prove both claims at once!This proof is a straightforward adaptation of [61], p 50. Take µ, ν as aboveand ρµ, ρν , minimizers for (1.10). Consider the following generalized geodesics
(ρµt )t∈[0;1], (ρνt )t∈[0;1] such that for any ϕ ∈ C0(Ω):∫

Ω

ϕ(x)dρtµ(x) =

∫
Ω3

ϕ((1− t)x1 + tx3)dγ
µ
µ(x2, x1)dγ

ν
µ(x2, x3)∫

Ω

ϕ(x)dρtν(x) =

∫
Ω3

ϕ(tx1 + (1− t)x3)dγµν (x2, x1)dγνν (x2, x3)

and for m,n ∈ {µ, ν}, γmn is the optimal transport plan from n to ρm. One ofthese "geodesics", ρµt for instance represents a path, from ρµ to ρν in this case,followed from the point of view of one of the initial measures, µ in this instance.As F is convex along generalized geodesics and 1
2
W 2

2 is 1-convex along gen-eralized geodesics, one can write
W 2

2 (µ, ρ
µ)

2ε
+ F (ρµ) ≤

W 2
2 (µ, ρ

t
µ)

2ε
+ F (ρtµ)

≤(1− t)W
2
2 (µ, ρ

µ)

2ε
+ t

W 2
2 (µ, ρ

ν)

2ε
− t(1− t)

2ε
W 2

2 (ρ
µ, ρν)

+ (1− t)F (ρµ) + tF (ρν)

and
W 2

2 (ν, ρ
ν)

2ε
+ F (ρν) ≤W

2
2 (ν, ρ

t
ν)

2ε
+ F (ρtν)

≤tW
2
2 (ν, ρ

µ)

2ε
+ (1− t)W

2
2 (ν, ρ

ν)

2ε
− t(1− t)

2ε
W 2

2 (ρ
µ, ρν)

+ tF (ρµ) + (1− t)F (ρν)

and summing and rearranging the terms:

t(1− t)
ε

W 2
2 (ρ

µ, ρν) ≤ t

(
W 2

2 (µ, ρ
ν)

2ε
+
W 2

2 (ν, ρ
µ)

2ε

− W 2
2 (µ, ρ

µ)

2ε
− W 2

2 (ν, ρ
ν)

2ε

)
so that, dividing by t and letting t→ 0

2W 2
2 (ρ

µ, ρν) ≤ W 2
2 (µ, ρ

ν) +W 2
2 (ν, ρ

µ)−W 2
2 (µ, ρ

µ)−W 2
2 (ν, ρ

ν) (1.12)
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The end of the proof comes from the triangular inequality:
W 2

2 (µ, ρ
ν) ≤ W 2

2 (µ, ν) +W 2
2 (ν, ρ

ν) + 2W2(µ, ν)W2(ν, ρ
ν)

and similarly, switching the roles of µ and ν.By assumption,
W 2

2 (ν, ρ
ν) ≤ W 2

2 (ν, {F ≤ L}) + 2ε(L− inf F ) =: K

and, again, the same is true replacing ν with µ. Injecting these four inequalitiesin (1.12) (and dividing by 2),
W 2

2 (ρ
µ, ρν) ≤ W 2

2 (µ, ν) + 2
√
K.W2(µ, ν)

Now, taking µ = ν, we immediately get that ρµ = ρν and Problem (1.10) has aunique solution. For general µ, ν this simply states the Hölder continuity of theclaim.
Regarding the last point of the previous proposition, we emphasize the factthat our generalized geodesics are meant for the 2-Wasserstein distance. Forother powers, the p-Wasserstein distance fails to verify the strong convexityalong these generalized geodesics.
Being defined as the minimum of a convex function (bothW 2

2 (., µ) and F areconvex onM(Ω)), Fε can be rewritten as the supremum of a concave dual prob-lemusing once again Fenchel-Rockafellar duality. Wemakehere twohypotheseson our congestion penalizing functionF to ensure that this dual problemhas so-lutions. Let us point out the fact that, same as in the case of optimal transport,Fenchel-Rockafellar theorem, as stated in the appendix, cannot be used on theprimal formulation of the problem, as both terms are only l.s.c. with respect tothe narrow convergence. We therefore start from the dual formulation (1.13) andwork our way back to the primal one:
Proposition 7. For any µ ∈ P(Rd),

Fε(µ) = sup
φ cε−concave

∫
Rd

φdµ− F ∗(−φcε). (1.13)
This supremum is attained atφ if and only if for any ρ optimal for the primal problem,
ie ρ ∈ argminW 2

2 (., µ) + F ,

• (φ, φcε) is a pair of cε-concave Kantorovich potentials for the optimal transport
from µ to ρ.
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• (−φcε) ∈ ∂F (ρ) (or, equivalently, ρ ∈ ∂F ∗(−φcε)).

Assume furthermore that F has non-empty subgradient at two measures ρ− and
ρ+ such that ρ−(Ω) < 1 and ρ+(Ω) > 1, and that µ is supported on a compact set.
Then, the supremum is attained.

The definition of the Legendre transform F ∗ of F and of the cε-transform φcεof φ are given respectively in Appendix B and Section 1.1, Definition 2.
Proof. Take

G : ρ ∈M(Ω) 7→

{
Icε(ρ, µ) if ρ ∈ P(Ω)
+∞ otherwise

For ρ ∈ M(Ω), G(ρ) = supψ∈C0(Ω)

∫
Ω
ψdρ +

∫
Rd ψ

cεdµ = Ḡ∗(ρ), the Legendretransform of the convex continuous function
Ḡ : ψ ∈ C0(Ω) 7→ −

∫
Ω

ψcεdµ.

Therefore (this is Fenchel-Moreau’s theorem Theorem 45 in Appendix B), G∗ =
Ḡ.

We now have G∗ a convex continuous function, and F ∗ which is convex l.s.cand not +∞ everywhere. Applying Fenchel-Rockafellar duality theorem to thefollowing infimum problem:
inf

φ∈C0(Ω)
G∗(φ) + F ∗(−φ),

we can write:
inf

φ∈C0(Ω)
G∗(φ) + F ∗(−φ) = max

ρ∈M(Ω)
−G(ρ)− F (ρ)

= − min
ρ∈M(Ω)

G(ρ) + F (ρ)

= − min
ρ∈P(Ω)

W 2
2 (ρ, µ)

2ε
+ F (ρ)

But, this inf problem also rewrites:
inf

φ∈C0(Ω)
G∗(φ) + F ∗(−φ) = − sup

φ∈C0(Ω)

∫
Ω

φcε(x)dµ(x)− F ∗(−φ)

= − sup
φ cε-concave

∫
Ω

φcε(x)dµ(x)− F ∗(−φ)
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The reason why optimization can be done on cε is similar to that for optimaltransport. Indeed, for any ϕ ∈ C0(Ω), F ∗(−φ) ≥ F ∗(−(φcε)cε) since φ ≤ (φcε)cεand ∂F ∗ ⊂ dom(F ) is composed of positive measures only, by hypothesis (F ∗ isincreasing). Therefore, using the fact that φcεcεcε ≡ φcε , our supremum is, in theend:
− sup

φ∈C0(Ω)

∫
Ω

φcε(x)dµ(x)− F ∗(−φcεcε)

= − sup
φ cε-concave

∫
Ω

φcε(x)dµ(x)− F ∗(−φ).

Finally, a change of variable φ 7→ φcε (which brings us to a supremum on cε-concave functions on spt(µ)) we obtain the primal and dual problems that weclaimed:
min
ρ∈P(Ω)

W 2
2 (ρ, µ)

2ε
+ F (ρ) = sup

φ cε-concave

∫
Ω

φ(x)dµ(x)− F ∗(−φcε)

Optimality conditions for both problems are straightforward. Indeed, for ev-ery φ and ρ, both admissible for their respective problem, we have∫
Ω

φdµ+

∫
Ω

φcεdρ ≤ W 2
2 (µ, ρ)

2ε

with equality if and only if (φ, φcε) are Kantorovich potentials for the transportfrom µ to ρ, and,
F ∗(−φcε) + F (ρ) ≥ −

∫
Ω

φcε(x)dρ(x)

with equality iff ρ ∈ ∂F ∗(−φcε). Summing up these inequalities, and cancelingthe opposite terms, we get exactly
F (ρ) +

W 2
2 (ρ;µ)

2ε
≥
∫
Ω

φ(x)dµ(x)− F ∗(−φcε)

with equality if and only if (φ, φcε) are Kantorovich potentials for the transportfrom µ to ρ and, ρ ∈ ∂F ∗(−φcε).
Now, for the existence part of the proposition, letK be the compact supportof µ. Following the standard method in calculus of variations, consider a max-imizing sequence of cε-concave functions for the dual problem, (φn)n. Thesefunctions all have the same Lipschitz constant as cε, on the compact set K. Let

L be this common Lipschitz constant, and for n ∈ NMn = maxK φn, so that for
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any y ∈ K ,Mn − Ldiam(K) ≤ φn(y) ≤Mn. Setting C = maxx∈K, y∈Ω cε(x, y), thisgives us the bounds, for any y ∈ Ω and n ∈ N,
−Mn ≤ φcεn (y) ≤ C −Mn + L.diam(K) = A−Mn,

the constant A depending only on ε, Ω and the discrete measure µ.Assume now thatMn diverges towards +∞ as n → ∞ (this is equivalent to
(φn)n not uniformly bounded from above onK). Since there exists φ+ such that
φ+ ∈ ∂F (ρ+)with ρ+ of mass strictly more than 1, or equivalently, ρ+ ∈ ∂F ∗(φ+),we can write:

∫
Ω

φn(x)dµ(x)− F ∗(−φcεn ) ≤Mn − F ∗(φ+)−
∫
Ω

(−φcεn − φ+)dρ+

≤Mn(1− ρ+(Ω)) + Aρ+(Ω)

− F ∗(φ+) +

∫
Ω

φ+dρ+

and that last part diverges to −∞ as n → ∞, which is absurd since (φn)n is amaximizing sequence. Similarly, ifMn diverges towards−∞ asN →∞, the factthat F has a non-empty subgradient at a measure of mass strictly less than 1gives us again that φn cannot be a maximizing sequence.Therefore, (φn)n is uniformly bounded and, using Arzela-Ascoli theorem, wecan extract from it a subsequence that converges uniformly on K , as n → ∞.By upper semi-continuity of the functions in the dual problem, this limit is amaximizer.
Remark 2. The hypotheses on F are very natural ones considering our conges-tion terms have the integral form (1.14) in our numerical simulations. However,they are not the sharpest ones, even when F has this form, to obtain exis-tence. Indeed, consider a domain with Lebesgue measure 1, and F of the form
F (ρ) =

∫
Ω
f(ρ(x))dx with f = χ{1} (only a density equal to 1 almost every-where is allowed). One can check that the dual problem admits solutions whichare the classical Kantorovich potentials for the corresponding transport, since

Fε =
W 2

2 (.,dx)

2ε
. However, F itself does not satisfy the assumptions in proposition7, since it is only finite at the Lebesgue measure which is of mass exactly 1.

Allowing F to be very general can allow the use of more complex penaliza-
tions, such as F (ρ) =

∫
Ω

∥∇ρ∥2
ρ

which can appear when viewing second-ordermean field gameswith entropy penalization as first ordermean field games (thisis done in particular in [28] or [16]). However in our numerical simulations, we
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focus on the cases where F has the simpler integral form:
F (ρ) =

{∫
Ω
f(ρ(x))dx if ρ≪ dx

+∞ otherwise. (1.14)
mentioned earlier. From now on, and until the end of this chapter, we assumethat F has this integral form and we make the following assumptions on thefunction f, which guarantee that F be convex, lower semi-continuous for thenarrow topology (see for instance [63], proposition 7.7) and that dom(F ) ⊂ R+:

1. f is convex and lower semi-continuous (for the standard topology on R).
2. dom(f) ⊂ R+

3. f is superlinear, limx→+∞ f(x)/x = +∞.
Our hypotheses on ∂F guaranteeing existence of solutions to the dual formula-tion are equivalent to the simpler assumption that 1

|Ω| be in the interior of dom(f)

as the following proposition justifies:
Lemma1. With our hypotheses onF , letφ ∈ C0(Ω), and ρ ∈M(Ω), thenφ ∈ ∂F (ρ)
if and only if ρ≪ dx and for a.e x ∈ Ω, φ(x) ∈ ∂f(ρ(x)). In fact:

F ∗ : φ ∈ C0(Ω) 7→
∫
Ω

f ∗(φ(x))dx

Proof. Let ρ ∈M(Ω), φ ∈ C0(Ω). Then, by definition of the Legendre transforms
F ∗ and f ∗:

F ∗(φ) = sup
ρ∈M(Ω)

∫
Ω

φ(x)dρ(x)x− F (ρ)

= sup
ρ≪dx

∫
Ω

φ(x)ρ(x)− f(ρ(x))dx

=

∫
Ω

f ∗(φ(x))dx

On the other hand, φ ∈ ∂F (ρ) if and only if ρ≪ dx and∫
Ω

f(ρ(x))dx+

∫
Ω

f ∗(φ(x))dx =

∫
Ω

φ(x)ρ(x)dx (1.15)
Now, for a.e. x ∈ Ω, there holds f(ρ(x)) + f ∗(φ(x)) ≥ φ(x)ρ(x), therefore (1.15)is equivalent to

f(ρ(x)) + f ∗(φ(x)) = φ(x)ρ(x), for a.e. x in Ω (1.16)
which is itself equivalent to φ(x) ∈ ∂f(ρ(x)) almost everywhere on Ω.
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We now state the corresponding dual problem for this simpler form of F .Notice that the integral form of the function transforms the optimality condition
ρ ∈ ∂F (−ϕcε) into an equality almost everywhere, completely determining theoptimal ρ for the primal problem in this case:
Proposition 8. For µ ∈ P(Rd):

Fε(µ) = sup
ϕ cε−concave

∫
Rd

ϕdµ−
∫
Ω

f ∗(−ϕcε(x))dx (1.17)
Assume that 1

|Ω| ∈ int(dom(f)) and that µ ∈ P(Rd) has compact support, then
the supremum in (1.17) is attained.

Finally, we write µ = µacdx + µsing the decomposition of µ into absolutely con-
tinuous and singular parts, with dx ⊥ µsing. Consider ρ ∈ P(Ω) (resp ϕ cε-concave)
optimal for the primal formulation for Fε(µ), (1.10) (resp for the dual formulation(1.17)). Then for a.e. x ∈ Ω, exactly one of the following is true:

• ρ(x) = (f ∗)′(−ϕcε(x)) and∇ϕcε(x) ̸= 0.

• ρ(x) = µac(x) and∇ϕcε(x) = 0.
In particular, the optimal ρ is unique.
Remark 3. Uniqueness of ρ comes essentially from the (Lipschitz) regularity of
ϕcε . As such regularity cannot be expected for ρ, the dual problem (1.17) couldadmit multiple solutions ϕ.The form of the optimal ρ at the end of the previous proposition exactlystates, in the general case, that the projection ρ saturates the constraint en-forced by F . This is a result already oserved by A. R. Mészáros et al. in [20] asa consequence of A. Figalli [25]. In their case f = χ[0;1] and the optimal ρ is theprojection of µ on the set of constraint-abiding densities ρ ≤ dx. We note thatthe first possible expression for ρ simplifies into ρ(x) = 1 almost everywhere on
{∇ϕcε ̸= 0}, which is the highest possible value permitted.
Proof. Thedual formulation 1.17 and the existence result are direct consequencesof Lemma 1 and the same results in Proposition 7. We will only make the remarkthat

1

|Ω|
∈ int(dom(f))

⇔∃ε > 0, ∂f

(
1

|Ω|
− ε
)
̸= ∅ and ∂f

(
1

|Ω|
+ ε

)
̸= ∅

⇔∃ε > 0, ∂F

((
1

Ω
− ε
)
1Ωdx

)
̸= ∅ and ∂F

((
1

Ω
+ ε

)
1Ωdx

)
̸= ∅
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and this last line is the assumption on ∂F sufficient to have existence in Propo-sition 7, with the measures ρ+ =
(
1
Ω
+ ε
)
1Ωdx and ρ− =

(
1
Ω
− ε
)
1Ωdx.Take ρ, ϕ optimal for the primal and dual problems. Using the optimalityconditions from proposition 7, recall that ϕ, ϕcε are cε-concave Kantorovich po-tentials for the transport from µ to ρ and for a.e. x ∈ Ω, ρ(x) ∈ ∂f ∗(−ϕcε(x))(again, this is the conclusion of Proposition 7 with the equivalent form of Lemma1). In particular, the optimal transport from ρ to µ is given by the map definedLebesgue-almost-everywhere T = Id −∇ϕcε , using Brenier’s theorem, and thefact that cε trivially verifies the twist condition, on Rd × Rd even. Furthermore,for λ ∈ R, the set

Aλ := {x ∈ Ω, ϕcε(x) = λ and∇ϕcε(x) exists and is not 0}
is Lebesgue negligible. This last claim follows from the co-area formula, as

Hd(Aλ) =

∫ +∞

−∞

∫
ϕcε=t

1Aλ
(x)

∥∇ϕcε(x)∥
dHd−1(x)dt = 0

since the integrand is nonzero if and only if t = λ. Therefore, for almost any x ∈
Ω, we can assume that∇ϕcε(x) is well-defined and, if∇ϕcε(x) ̸= 0, ∂f ∗(−ϕcε(x))is a singleton (since there only are a countable amount of non-differentiabilitypoints for f ∗, Appendix B, Theorem 44). We can conclude in that case that

ρ(x) = (f ∗)′(−ϕcε(x)).

Otherwise, if ∇ϕcε(x) = 0, the optimal transport map T is simply Id at x,implying that ρ ≤ µacdx on A = {∇ϕcε = 0}. However, T = ∇u for a convexfunction u, Lebesgue-almost everywhere on the set A and therefore µac-almosteverywhere on A, T−1(x) = {∇u∗(x)} = {x} and ρ(x) = µac(x).

1.3 Computations in the semi-discrete setting

In this section, we show how one can compute the value of Fε(µ) when µ is adiscrete measure on Rd, for instance, µ has the form et#Q for some Q ∈ PN(Γ)(with the definitions of et and Γ from pages 51-52 of the next chapter). Rea-soning in a very similar fashion as for semi-discrete optimal transport, we thenrewrite Eq. (1.17) as a concave finite dimensional problem over RN . To solvethis problem, a Newton-like algorithm seems appropriate, using the first andsecond order derivatives computed in Propositions 10 and 12 below. For conve-nience, we rewrite the Moreau envelope Fε as a function of the positions of the
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Dirac masses in a uniform discrete measure, instead of the measure itself: For
Y ∈ (Rd)N ,

Fε(Y ) := Fε

(
1

N

N∑
i=1

δyi

)

Proposition 9. Assume that 1
|Ω| ∈ int(dom(f)).

Then, for Y ∈ (Rd)N ,

Fε(Y ) = max
Φ∈RN

N∑
i=1

[
ϕi
N
−
∫
Lagi(Y,Φ)

f ∗

(
ϕi −

∥x− yi∥2

2ε

)
dx

]
(1.18)

with the definition of the Laguerre cells Lagi(Y,Φ) from Section 1.1, Definition 6.
A pair ρ ∈ P(Ω) and Φ ∈ RN are optimal for respectively the primal and dual

problems defining Fε(Y ) if and only if the following conditions hold for every i =
1 . . . N :

• (Area) ∫
Lagi(Y,Φ)

(f ∗)′(ϕi − cε(x, yi))dx = 1
N

• (Density) ρ(x) = (f ∗)′(ϕi − cε(x, yi)), for a.e. x ∈ Lagi(Y,Φ)

Proof. For any Y ∈ (Rd)N ,

Fε(Y ) ≤ sup
Φ∈RN

N∑
i=1

[
ϕi
N
−
∫
Lagi(Y,Φ)

f ∗(ϕi − cε(x, yi))dx
]
. (1.19)

Indeed, let φ be solution of problem (1.13) for µ = 1
N

∑N
i=1 δyi . For any x ∈ Ω,

φcε(x) = inf
y∈Rd

cε(x, y)− φ(y) ≤ inf
i
cε(x, yi)− φ(yi)

and since f ∗ is non-decreasing, inequality (1.19) is straightforward.
For the other inequality, similar arguments as for proposition 7 guaranteethat the supremum in (1.19) is indeed a maximum, and that Φ ∈ RN is optimal ifand only if it satisfies (Area). Take such aΦ inRN optimal, then for any ρ′ ∈ P(Ω),
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ρ′ ≪ dx

W 2
2 (ρ

′, µ)

2ε
+

∫
Ω

f(ρ′(x))dx ≥
N∑
i=1

ϕi
N

+

∫
Lagi(Y,Φ)

(cε(x, yi)− ϕi)dρ′(x)

+

∫
Lagi(Y,Φ)

f(ρ′(x))dx

=
N∑
i=1

ϕi
N
−
∫
Lagi(Y,Φ)

(ϕi − cε(x, yi))ρ′(x)

− f(ρ′(x))dx

≥
N∑
i=1

ϕi
N
−
∫
Lagi(Y,Φ)

f ∗(ϕi − cε(x, yi))dx

The first inequality comes from the dual formulation of optimal transport in thesemi-discrete case, Eq. (1.8), and the second one from the definition of f ∗. Takingthe infimum in ρ′ yields the reverse inequality.To conclude, we notice as before that this is an equality if and only if:
(1) the optimal transport from ρ′ to µ is given by the Laguerre cells Lagi(Y,Φ).
and
(2) ρ(x) belongs to ∂f ∗(ϕi − cε(x, yi)) for every i = 1 . . . N and Lebesgue a.e.

x ∈ Lagi(Y,Φ).
Since supi(ϕi − cε(., yi)) has nonzero gradient almost everywhere on Ω, weare in the first case of proposition 8 and we get similarly that (2) is equivalentto ρ(x) = (f ∗)′(supi ϕi − cε(x, yi)) for a.e. x ∈ Ω which is exactly (Density). Butthen, (Area) is exactly equivalent to (1) (see the optimality conditions in the semi-discrete setting in Section 1.1). This concludes the proof.
As wementioned, the expressionmaximized in (1.18) is differentiable inΦ (aswell as in Y almost everywhere). We end this section by computing these deriva-tives, necessary in order to numerically approximate the Moreau-Yosida projec-tions of discrete measures in PN(Rd), as well as solutions of the fully discretemean field game problem (MN,µ0N ,δN ,εN

) of Chapter 2, Section 2.3. We denote by
Gε the maximized functional:

Gε : (Y,Φ) ∈ RN × (Rd)N 7→
N∑
i=1

[
ϕi
N
−
∫
Lagi(Y,Φ)

f ∗

(
ϕi −

∥x− yi∥2

2ε

)
dx

]
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Proposition 10. Gε is C1, concave with respect to Φ and for i = 1..N , and Y ∈
(Rd)N and Φ ∈ RN , we have

∂

∂ϕi
Gε(Y,Φ) =

1

N
−
∫
Lagi(Y,Φ)

(f ∗)′

(
ϕi −

∥x− yi∥2

2ε

)
dx

Proof. The proof of this claim is a variation of the corresponding one for semi-discrete transport, by Aurenhammer, Hoffmann and Aronov [6]. Take, Y ∈
(Rd)N and Φ, Ψ ∈ RN :

Gε(Y,Φ)−Gε(Y,Ψ) =
N∑
i=1

[
ϕi − ψi
N

−

(∫
Lagi(Y,Φ)

f ∗

(
ϕi −

∥x− yi∥2

2ε

)
dx

−
∫
Lagi(Y,Ψ)

f ∗

(
ψi −

∥x− yi∥2

2ε

)
dx

)]

≤
N∑
i=1

[
ϕi − ψi
N

−

(∫
Lagi(Y,Ψ)

f ∗

(
ϕi −

∥x− yi∥2

2ε

)

− f ∗

(
ψi −

∥x− yi∥2

2ε

)
dx

)]
and
Gε(Y,Φ)−Gε(Y,Ψ) ≤

N∑
i=1

[
ϕi − ψi
N

−
∫
Lagi(Y,Ψ)

(f ∗)′

(
ψi −

∥x− yi∥2

2ε

)
(ϕi − ψi)dx

]
The first inequality comes from the definition ofLagi(Y,Φ) and the increasingnature of f ∗ and the second one, from the convexity of f ∗ and the fact that

−Ψcε := max
j
ψj − c(., yj)

has Lebesgue-negligible level sets. Therefore, Gε is concave and the vector
gε(Ψ) :=

(
1

N
−
∫
Lagi(Y,Ψ)

(f ∗)′

(
ψi −

∥x− yi∥2

2ε

)
dx

)
i=1..N

belongs to the supergradient ∂+Gε(Y,Ψ) for every Ψ (see Appendix B, Defini-tion 15). The function (f ∗)′ is continuous except on an at most countable set of
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reals, and the level sets of x 7→ ψi− ||x−yi||2
2ε

are negligible, as are the boundariesof the Laguerre cells. By dominated convergence, gε(Ψ) defines a continuous(w.r.t. Ψ) selection of supergradients for Gε(Y, .) and therefore, this last func-tion is C1 for any Y , with the partial derivatives that we claimed.
Remark 4. Gε being a concave function in Φ, this proposition is another way toshow the optimality condition we claimed earlier, namely, for i = 1 . . . N :∫

Lagi(Y,Φ)

(f ∗)′

(
ϕi −

∥x− yi∥2

2ε

)
dx =

1

N
.

We also note that these expressions are very reminiscent of those obtainedby Bourne, Wirth and Schmitzer in [11] for unbalanced semi-discrete optimaltransport. Here, our congestion penalization plays the role of the mass discrep-ancy penalization between our discrete measure µ and the Lebesgue measureon Ω, which does not have mass 1 under the assumptions of proposition 9. Thissuggests that one could rewriteFε as an unbalanced transport problembetweenthese measures.
Proposition 11 (Gradient of Fε). For Y = (y1, ..., yN) ∈ (Rd)N , let ρY ,ΦY be op-
timal for the primal and dual problem defining Fε(Y ). Finally, we denote B(Y ) =
(b1(Y ), . . . , bN(Y ) the barycenters of the Laguerre cells, according to the probability
measure (on this cell) N.ρY :

bi(Y ) = N

∫
Lagi(Y,ΦY )

xdρY (x) (1.20)
Then, Fε ∈ C1((Rd)N \ DN), where we must remove the diagonal set:

DN =
{
Y ∈ (Rd)N | ∃i ̸= j, yi = yj

} (1.21)
For every Y /∈ DN , we have

∂

∂yi
Fε(Y ) =

yi − bi(Y )

Nε

Proof. We show that F̃ε : Y 7→ Fε(Y )− 1
2Nε

∑N
i=1 ∥yi∥

2 is concave on (Rd)N withthe vector− 1
Nε

(bi(Y ))i in its supergradient at Y (Fε is semi-concave in the senseof Appendix B, Definition 18). Then showing that this is a selection of supergradi-ents which is continuous on DN , will, as previously, prove that F̃ε and therefore
Fε is C1 on this set. The supergradient is still valid in configurationswhere several
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Figure 1.1: From left to right, (1) 50 points scattered in the bottom left cornerof a 5 × 5 square, (2) the "charged" Laguerre cells obtained by intersecting theLaguerre cells with the support of the optimal ρ defining Fε and (3) the vectorsjoining each point to the barycenter of its Laguerre cell. ∂yiFε is colinear, oppo-site, to the corresponding vector b(Y )i − yi, for i = 1 . . . N .

points coincide, but continuity, and more generally, the fact that the supergra-dient is a singleton, does not hold for such points.
First, let us take X, Y ∈ (Rd)N ,

F̃ε(Y ) ≤ 1

2ε
W 2

2

(
1

N

N∑
i=1

δyi , ρX

)
+ F (ρX)−

1

2Nε

N∑
i=1

∥yi∥2

≤
N∑
i=1

∫
Lagi(X,ΦX)

1

2ε
(||z||2 − 2z · yi + ||yi||2)ρX(z) + f(ρX(z))dz

− 1

2Nε

N∑
i=1

∥yi∥2

≤F̃ε(X)−
N∑
i=1

1

ε

∫
Lagi(X,ΦX)

zdρX(z) · (yi − xi)

≤F̃ε(X)−
N∑
i=1

bi(X)

Nε
· (yi − xi)

The second inequality might seem counter-intuitive, but it merely states that theLaguerre cells Lagi(X,ΦX) may yield a greater transport cost than the optimalLaguerre cells (even though Φ is the variable in which the dual formulation ismaximized).
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That last inequality exactlymeans that F̃ε is concave and that for everyX ∈ (Rd)N ,(
− 1

Nε
bi(X)

)
i=1...N

∈ ∂+F̃ε(X). (1.22)
We now show that B : Y ∈ (Rd)N \DN 7→ B(Y ) is continuous and therefore,that (1.22) gives a continuous selection of super-gradients:First, in order to make some parts of the proof more concise, we will writefor Y ∈ (Rd)N , µY = 1

N

∑N
i=1 δyi and for Φ ∈ RN , Φcε the continuous boundedfunction on Ω defined by:

Φcε(x) = cε(x, yi)− ϕi on the Laguerre cell Lagi(Y,Φ).
Take (Y n)n∈N a sequence converging to Y in (Rd)N \ DN . Let for all n, ρn,

Φn be optimal for the primal and dual problems defining Fε(Y n) respectively (ρnis uniquely defined for all n). The functions (Φn)cε are cε-concave Kantorovichpotentials in the transport from ρn to µY n , and, for almost every x ∈ Ω, we havethe equality ρn(x) = (f ∗)′ (−(Φn)cε(x)).By similar arguments as for Proposition 7, up to a subsequence, (Φn)n con-verges towards a Φ ∈ RN (and therefore, (Φn)cε uniformly converges on Ω to-wardsΦcε). Using the (Density) condition fromProposition 9, ρn = (f ∗)′(−(Φn)cε)converges almost everywhere (up to a subsequence) towards ρ = (f ∗)′(−Φcε).And since ρn is bounded in L∞(Ω), the convergence is also a weak-* conver-gence in L∞(Ω). In particular, Φcε is a cε-concave Kantorovich potential for theoptimal transport from ρ to µY , since µY n narrowly converges towards µY and
ρn towards ρ in their respective spaces. But then ρ = ρY is the unique minimizerfor the primal problem. In particular, bi(Y ) = N

∫
Lagi(Y,Φ)

xρ(x)dx.
Finally, for all i and n,
∥bi(Y n)− bi(Y )∥ = N

∥∥∥∥∫
Lagi(Y

n,Φn)

xρn(x)dx−
∫
Lagi(Y,Φ)

xρ(x)dx

∥∥∥∥
≲

∥∥∥∥∫
Lagi(Y

n,Φn)

xρn(x)dx−
∫
Lagi(Y,Φ)

xρn(x)dx

∥∥∥∥
+

∥∥∥∥∫
Lagi(Y,Φ)

xρn(x)dx−
∫
Lagi(Y,Φ)

xρ(x)dx

∥∥∥∥
Now, let T n (resp T ) be the Brenier map for the optimal transport from ρn(resp ρY ) to µY n (resp µY ), with cost cε. For n large enough,∥∥∥∥∫
Lagi(Y

n,Φn)

xρn(x)dx−
∫
Lagi(Y,Φ)

xρn(x)dx

∥∥∥∥
≲
∑
i ̸=j

ρn
(
(T n = yni ∩ T = yj)

⋃
(T n = ynj ∩ T = yi)

)
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But since ynj converges to yj for every j, this last term is boundedby ρn(∥T n − T∥ ≥
ωi) with ωi = 1

2
infj ̸=i ∥yi − yj∥ (> 0) and we can write
∥bi(Y n)− bi(Y )∥ ≲ ρn(∥T n − T∥ ≥ ωi) + on→∞(1)

In a similar fashion as [68], Corollary 5.21, we show that the right-hand sidevanishes,
lim
n→∞

ρn(∥T n − T∥ ≥ ωi) = 0

whichwill immediately grant us the continuity ofY 7→ B(Y )onDN , and concludeour proof:Take η > 0. Lusin theorem allows us to find a (compact) set A such that
ρy(Ω\A) ≤ η and T coincides with a continuous function T̃ on A. Then also
ρn(Ω\A) ≤ 2η for n large enough, by the weak-* convergence in L∞(Ω) whichwe established earlier, and,

ρn(
∥∥∥T n − T̃∥∥∥ < ωi) ≤ ρn((∥T n − T∥ < ωi) ∩ A) + ρn(Ω\A)

≤ ρn(∥T n − T∥ < ωi) + 2η

Usual stability theorems, considering the fact that ρn and ρ are absolutelycontinuous with respect to Lebesgue, state that the optimal transport plan πnfrom ρn to µyn narrowly converges to the optimal transport plan π from ρy to µy.
Consider then the (open) set Ã =

{
(x, y),

∥∥∥y − T̃ (x)∥∥∥ < ωi

}. One has
1− η ≤ ρ(

∥∥∥T̃ − T∥∥∥ < ωi) = π(Ã)

≤ lim inf πn(Ã)

≤ lim inf ρn
( ∥∥∥T n − T̃∥∥∥ < ωi

)
≤ lim inf ρn

(
∥T n − T∥ < ωi

)
+ 2η

and, this is true for any η > 0, hence, lim ρn(∥T n − T∥ < ωi) = 1 and we havethe limit we wanted.
Note that with a (simpler) similar proof, one can show that, Gε is C1 withrespect to Y on Rd \ DN , with the same partial derivatives:For Y /∈ DN and Φ ∈ RN ,

∂

∂yi
Gε(Y,Φ) =

1

ε

∫
Lagi(Y,Φ)

(yi − x)(f ∗)′

(
ϕi −

∥x− yi∥2

2ε

)
dx (1.23)
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we omit this proof here, due to this similarity, but we note that Gε is in fact C1on the whole ((Rd)N \ DN)× RN .
To obtain second order directional derivatives ofGεw.r.t. Y andΦ, we rely onthe approach by De Gournay, Kahn and Lebrat in [18] using their Lemma 1.1 and1.2 p.9 with a function that depends non-linearly on the positions of the Diracmasses and the weights. In the following proposition and its proof, we denote

Lagij(Y,Φ) the intersection of the Laguerre cells Lagi(Y,Φ) and Lagj(Y,Φ):
Lagij(Y,Φ) = Lagi(Y,Φ) ∩ Lagj(Y,Φ)

Proposition 12. Assume that f ∗ is C2 on R. Let Y ∈ (Rd)N \DN , Φ ∈ RN , then, for
1 ≤ i ̸= j ≤ N :

∂ϕi∂ϕjGε(Y,Φ) =

∫
Lagij(Y,Φ)

ε

∥yi − yj∥
(f ∗)′

(
ϕi −

∥x− yi∥2

2ε

)
dHd−1(x) (1.24)

∂ϕi∂ϕiGε(Y,Φ) = −
∫
Lagi(Y,Φ)

(f ∗)′′

(
ϕi −

∥x− yi∥2

2ε

)
dx

−
∑
j ̸=i

∫
Lagij(Y,Φ)

ε

∥yi − yj∥
(f ∗)′

(
ϕi −

∥x− yi∥2

2ε

)
dHd−1(x) (1.25)

∂ϕi∂yiGε(Y,Φ) =

∫
Lagi(Y,Φ)

(yi − x)
ε

(f ∗)′′

(
ϕi −

∥x− yi∥2

2ε

)

+
∑
j ̸=i

∫
Lagij(Y,Φ)

yi − x
∥yi − yj∥

(f ∗)′

(
ϕi −

∥x− yi∥2

2ε

)
dHd−1(x) (1.26)

∂ϕj∂yiGε(Y,Φ) = −
∫
Lagij(Y,Φ)

(yi − x)
∥yi − yj∥

(f ∗)′

(
ϕi −

∥x− yi∥2

2ε

)
dHd−1(x) (1.27)

∂yj∂yiGε(Y,Φ) =

∫
Lagij(Y,Φ)

(yi − x)(yj − x)T

ε ∥yi − yj∥
(f ∗)′

(
ϕi −

∥x− yi∥2

2ε

)
dHd−1(x)

(1.28)
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∂yi∂yiGε(Y,Φ) = Id

∫
Lagi(Y,Φ)

1

ε
(f ∗)′

(
ϕi −

∥x− yi∥2

2ε

)
dx

−
∫
Lagi(Y,Φ)

(yi − x)(yi − x)T

ε2
(f ∗)′′

(
ϕi −

∥x− yi∥2

2ε

)
dx

−
∑
j ̸=i

∫
Lagij(Y,Φ)

(yi − x)(yi − x)T

ε ∥yi − yj∥
(f ∗)′

(
ϕi −

∥x− yi∥2

2ε

)
dHd−1(x) (1.29)

Proof. As these expressions are all obtained in a very similar fashion, we onlyprove the one for ∂yi∂yiGε (it is, from our point of view, the most involved one).Let Y , Φ be as in the proposition, v ∈ (Rd)N , ∥v∥ = 1. We apply lemma 1.1 of [18]with the function:

a : (x, t) ∈ Ω× [−1; 1] 7→ (yi + tv − x)(f ∗)′

(
ϕi −

∥x− yi − tv∥2

2ε

)

which is C1 on Ω×R, bounded. Now (we use the same notations as De Gournayet al. in their paper):
∂yi∂yiεGε(Y,Φ)v = ∂tξ(0)

= −
∑
j ̸=i

∫
Lagij(Y,Φ)

∂tu
ij(x, 0)

∥∇xuij(x, 0)∥
a(x, 0)dHd−1(x) +

∫
Lagi(Y,Φ)

∂ta(x, 0) (1.30)

where we recall that
• ξ(t) = ∫Li(t)

a(x, t)dx,

• Li(t) = Lagi(Y + tv,Φ)

• uij(x, t) = ∥x−yi−tv∥2
2ε

− ϕi −
(

∥x−yj∥2

2ε
− ϕj

)
Now, for x in Ω,

∂tu
ij(x, 0) =

1

ε
v.(yi − x) and∇xu

ij(x, 0) =
yi − yj
ε
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and of course, for almost every x ∈ Ω,
∂ta(x, 0) =v(f

∗)′

(
ϕi −

∥x− yi∥2

2ε

)

− 1

ε
v · (yi − x)(yi − x)(f ∗)′′

(
ϕi −

∥x− yi − tv∥2

2ε

)

=

(
Id(f ∗)′

(
ϕi −

∥x− yi∥2

2ε

)

− 1

ε
(yi − x)(yi − x)T (f ∗)′′

(
ϕi −

∥x− yi − tv∥2

2ε

))
v

and replacing these terms in (1.30) (and dividing by ε) yields exactly the rightexpression for ∂yi∂yjGε(Y,Φ).
Let us end this section with a few remarks:

Remark 5. The above formulas are actually valid when f ∗ is only W 2,1
loc on R. Inthis case, an (unpublished) result by Serrin (see [41]) states that a ∈ W 1,1, witha derivative given Lebesgue-almost everywhere by the chain rule. Lemma 1.1 of[18] is then still valid and our expressions are unchanged. However, in the caseof the function

F : ρ ∈M(Ω) 7→

{
0 if 0 ≤ ρ ≤ dx

+∞ otherwise.
featured in the numerical section of Chapter 2, (f ∗)′ ≡ 1R+ is the Heaviside func-tion, which does not satisfy even these weaker conditions.

Another point concerns the two first expressions, where we differentiatewith respect to Φ twice. One can notice that the "Hessian" matrix D2
ΦGε, forfixed Y ∈ DN , is diagonally dominant (as the sums of integrals over the borders

Lagij(Y,Φ) of Lagi(Y,Φ) cancel each other). This means that this matrix is non-singular provided that the "residual diagonal terms" are non-zero:∫
Lagi(Y,Φ)

(f ∗)′′

(
ϕi −

∥x− yi∥2

2ε

)
̸= 0

In this case, the optimalΦ is unique, whereas, in the case of the dual formulationof optimal transport in the semi-discrete case, it was only unique up to a con-stant λ(1, . . . , 1). One can then use a Newton algorithm in order to approximate
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the optimal weightsΦ for the dual formulation ofFY (instead of a damped New-ton one, as for semi-discrete OT). This is used in particular in the Pysdot libraryfor Python in order to estimate the value ofFε and its gradient, and therefore inthe numerical simulations of Chapter 2 (among other tricks from computationalgeometry to compute these kinds of integrals over Laguerre cells).
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Chapter 2

Discretization of Variational Mean
Field Games with Congestion

In this chapter we study the motions of a crowd which moves while trying toavoid overcrowded areas. Themodel we used is defined as the solution to a vari-ational problem, which we discretize according to the trajectories of the mem-bers of the crowd (hence the Lagrangian discretization). Convergence resultsfor these discretization can be obtained, and, solving numerically these discreteproblems, one can observe behaviours for the finite crowds that are compatiblewith the congestion constraint that was modelized. These results and observa-tions are gathered in [65].
When dealing with such motions, a well-adapted mathematical setting is torepresent the crowd by a curve on the probability space P(Ω), where Ω ⊂ Rd isthe domain in which the motion takes place:

µ ∈ C0([0;T ],P(Ω))

where continuity is meant for the narrow convergence or equivalently, if we as-sume that Ω is compact, any Wasserstein distance on P(Ω). Governing this mo-tion is often the so-called continuity equation:
∂tµ+∇x.(µv) = 0 (2.1)

where v : [0;T ]×Ω→ Rd is a vector field representing the velocity of the particlescharged by µ. Mathematically speaking, equation (2.1) is verified in the sense ofdistributions, meaning that for any compactly supported ϕ ∈ C∞c (]0;T [×Ω,Rd),∫
[0;T ]×Rd

(∂tϕ+∇xϕ · v)dµ(t, x)dt = 0. (2.2)
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Note also that often (and in particular in our model), we want to fix the initialdistribution of the crowd equal to a µ0 ∈ P(Rd). In this case we say that theequation is verified in the sense of distribution with initial data µ0 to expressthat: ∫
[0;T ]×Ω

(∂tϕ+∇xϕ · v)dµ(t, x)dt = −
∫
Ω

ϕ(0, x)dµ0(x) (2.3)
for any test function ϕ ∈ C∞c ([0;T [×Ω,Rd), and the reader can note that the testfunctions ϕ can now be non-zero at t = 0. In particular, both these definitionsimply Neumann boundary conditions v(t, .)µ(t, .) = 0 on ∂(Ω). In this chapter,we will omit to precise in which sense µ solves (2.1), as it will always be in thesense of distributions with an initial data which will always be obvious.

The continuity equation expresses in particular conservation of the mass of
µ, which translates, in the context of crowdmotions, to no individual leaving thedomain. It is also equivalent to a stronger continuity for the trajectory of thepopulation, µ (we refer the reader to [4] or [63] for a proof):
Theorem 13. Let (µt)t∈[0;T ] a family of measures in Pr(Rd) and v in Lr(dµtdt,Rd ×
[0;T ]), both verifying the continuity equation (2.1).

Then, µ : t 7→ µt is in AC([0;T ],Pr(Rd)).

On the other hand, if µ ∈ AC([0;T ],Pr(Rd)), then, there exists a vector field
v ∈ Lr(dµ(t)dt,Rd × [0;T ]) such that (µ, v) solves the continuity equation.

Furthermore, the smallest (in Lr norm) vector field v introduced in the second
part must verify for dt-a.e t ∈ [0;T ], ∥v∥Lr(dµ(t)) = |µ′|(t), the Wr-metric derivative
of µ (see [4], Theorem 1.1.2).

In Theorem 13, the absolute continuity is, of course,meantwith respect to theWasserstein distanceWr on Pr. Let us recall that absolutely continuous curvesare continuous paths on a metric spaceX , which have integrable velocity in thefollowing sense (we refer the reader to the monograph by Ambrosio, Gigli andSavare, [4]):
Definition 7. Let µ : [0;T ] → X , (X, d) a metric space, then µ is absolutely con-
tinuous, µ ∈ AC([0;T ], X) when there exists a function g : [0;T ] → R+ summable,
such that for any 0 < t0 < t1 < T ,

d(µ(t0), µ(t1))) ≤
∫ t1

t0

g(t)dt.

The smallest (dt-almost everywhere) such function g is the metric derivative |µ′|men-
tioned in Theorem 13.
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As we said, the specificity of our crowd motion comes from the fact that thepopulation tries to avoid overcrowded (congested) areas during its movement.Let usmention twoways in which it has been enforced in amathematical model,aside from the mean field game one which we use:In Maury et al. [47], [46] one considers a granular model in which each indi-vidual qi is represented by a ball B(qi, ri). Then, if the desired velocity of individ-ual i is Ui (for instance ∇V (qi) for a potential V : Ω → R), the actual velocity ofthe individual is given by the projection of U := (U1, . . . , UN) onto the feasibilitycondition:
(∥qi − qj∥ − (ri + rj))+ = 0 =⇒ (Ui − Uj).(qi − qj) ≥ 0

(or a generalisation of this condition in the case of weaker non-congestion con-ditions).This model corresponds to the individuals having non-overlaping "zones"around them and having to adapt their trajectory to their proximity to others.The corresponding "macroscopic model", also presented in [46] as well as[45], (although the authors insist on the fact that it is not obtained from the"microscopic" one above, as the limit model as the radii ri vanish) is given by theevolution of a density ρ(t) along the system of equations:{
∂tρ+∇.(ρu) = 0

u = ΠCρ(U)
(2.4)

where the continuity equation is verified in the sense of (2.3), with a fixed initialdata ρ0. Here, the desired velocity at x, U(x), is projected on the set of feasiblevelocity:
Cρ =

{
v ∈ L2(Ω,R2),

∫
Ω

v.∇q ≤ 0 ∀q ∈ H1
ρ

}
defined by duality with the set of pressures:

H1
ρ =

{
q ∈ H1(Ω), q ≥ 0 a.e. in Ω, q(x) = 0 a.e. on {ρ < 1}

}
.

When U = ∇V is given by the gradient of a potential, this last problem isa case of Wasserstein gradient flow (introduced in the pioneering work of Ottoet al. [34] and detailed in [4]), where the gradient descent is done on the en-ergy ∫
Ω
f(ρ(x)) + V (x)ρ(x)dx, where f ≡ χ[0;1] is the convex indicator functionof the non-congestion condition on the density 0 ≤ ρ ≤ 1. An actual discretiza-tion of this problem and the one when f(r) = r log(r) (in the sense that it fea-tures a convergence result as the number of players goes to infinity), is givenin Leclerc, Mérigot, Santambrogio and Stra, [40]. This discretization is done us-ing the Moreau-Yosida regularization studied in the previous chapter, (1.10). The
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convergence of the discrete measures µN , which is one in the sense of the uni-form topology associatedwith the 2-Wasserstein distance, is proven under someassumptions andwe present arguments to get rid of some of them in Section 3.4of the next chapter.Similarly to the mean field games we study below, the population repre-sented by µ will evolve towards the objective represented by the potential V ,without violating the constraint enforced by f . However, in this setting, the play-ers lack the global planning aspect of the solutions to the variationnal problemand numerical computation can feature, in some cases, more selfish behavioursthat can generate blockades (think of the narrow corridor in the non-convex ex-ample of Section 2.4).

2.1 Variationalmeanfield games in Lagrangian set-
ting

The model we use is inspired by mean field games, which were introduced byLasry and Lions in [37, 38] and, independentely by Caines, Huang and Malhaméin [33]. This setting focuses on the limit, as its size grows to infinity, of a popula-tion which moves in order to minimize a global energy accumulated by its indi-viduals. Under suitable conditions of symmetry on the terms in the energy, onecan show that the infinite limit population is distributed according to a densitywith each infinitesimal player minimizing the same energy along its movement.For these kinds of motions, the global density moves according to a mean fieldsystem similar to (2.5) (with an additional second order term in cases where themovement features stochastic parts).This is the point at which we pick up themodel and let us start by consideringa simple case where the members of the crowd (which we sometimes name"players", borrowing the term from the game theoretical aspect of this model)evolve in a domain Ω (which we will assume to be compact and smooth), whileeach trying to minimize an accumulated energy, which for this example we takeequal to: ∫ T

0

[
∥x′(t)∥2

2
+ g(µ(t, x(t))) + V (x(t))

]
dt+ Φ(x(T )).

Here, x ∈ H([0;T ],Ω) represents the trajectory of a player, x′ its velocity whereas
µ is the density of the population. Congestion, in this case, is penalized throughthe function g which is non-decreasing on R. Passing through regions where µis high will then cause the player to have a higher energy (which he wants toavoid). V and Φ are scalar functions on Rd which define what we will call the
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potential energy. To have low energy, players have to pass through areas where
V is low (and end their trajectory where Φ is). At equilibrium, each player isfollowing an optimal path, avoiding crowded areas while passing where theirpotential energy is low. Optimal control theory then links the evolution of thepopulation’s density µ to that of the so-called value function:

ϕ : (t0, x0) 7→ inf

{∫ T

t0

[
∥x′(t)∥2

2
+ g(µ(t, x(t))) + V (x(t))

]
dt+ Φ(x(T ))∣∣∣∣∣x ∈ H1([t0;T ]), x(t0) = x0

}

via a mean-field game system (with the appropriate boundary conditions):
−∂tϕ+ ∥∇ϕ∥2

2
= g(µ) + V

∂tµ−∇.(µ∇ϕ) = 0

µ(0, .) = µ0, ϕ(T, .) = Φ

(2.5)

The idea to obtain a variational form for this mean field game is to considera primitive f for g, f ′ = g, in such a way that f is a convex function (g wasnon-decreasing). The first (Hamilton-Jacobi) equation in system (2.5) can then
be interpreted as −∂tϕ+ ∥∇ϕ∥2

2
− V belonging to the subgradient of this convexfunction f at the values of the density µt. The system then states optimalityconditions for the following minimization problem, with µ seen as a curve in

C0([0;T ],P(Ω)):

inf
∂tµ+∇.(µv)=0

µ(0)=µ0

∫ T

0

∫
Ω

[
∥v(t, x)∥2

2
µ(t, x) + f(µ(t, x)) + V (x)µ(t, x)

]
dxdt

+

∫
Ω

Φ(x)µ(T, x)dx (2.6)
To be slightly more precise, this inf problem is nonconvex, but it can be madeconvexwith the change of variablew = µv and then (2.5) become optimality con-ditions for the pair µ, w = µ∇ϕ. Of course, solutions to (2.5) are often defined ina very weak sense (as viscosity solutions), and the previous discussion must beadapted in order to be followed rigourously. For an overview of this variationalformulation and a rigourous statement and proof of this result, in particular un-der strong assumptions on f , we refer the reader to the course notes on meanfield games by Cardaliaguet [14], the lecture notes by Santambrogio [64] as well
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as the survey on variational mean field games by Santambrogio, Carlier and Be-namou, [8].
Forsaking the PDE setup of (2.5), wewill consider the following, more general,form of Problem (2.6):

inf{J(µ, v) | ∂tµ+∇.(µv) = 0, µ(0) = µ0} (2.7)
where

J(µ, v) =

∫ T

0

[∫
Ω

L(v(t, x))µ(t, x)dx+ F (µ(t, .))

]
dt+G(µ)

Now is as good a time as any to be a little more precise on what each termin this energy is and what assumptions we make on them:
• The first term in J , ∫ T

0

∫
Ω
L(v(t, x))dµ(t, x)dt is the onewe call "kinetic" termand measures the cost of displacement of µ following the velocity field v.It can be interpreted as the crowd getting tired from maintaining a highvelocity during its motion and obviously, a discontinuous move brings aninfinite amount of fatigue, which from amathematical standpoint, guaran-tees smooth trajectories. The standard assumptions, in mean field games,are that L : Rd → R is a convex continuous function on Rd which behaveslike ∥.∥r for some r > 1. More precisely, there exists C > 0,

∀p ∈ Rd,
1

rC
||p||r − C ≤ L(p) ≤ C

r
||p||r + C (2.8)

• In order to stay consistent with the congestion term in mean field game(2.6), we take F to be a convex function onM(Ω) with domain inM+(Ω)(the space of positive finite measures on Ω). The point of the Moreau en-velope, described in the previous chapter, is to define a congestion penal-ization even when F is finite only on a very restricted class of measures.For this reason, we do not need to assume a lot of regularity for F and wemake themost basic assumptions in order to haveminimizers for Problem(2.7). Specifically, we ask that F be lower semi-continuous for the narrowtopology onM(Ω) and lower bounded on this set. Upon giving F the in-tegral form from Chapter 1, Section 1.2, (1.14), we recover the congestionterm of Problem (2.6). Let us also mention that in the case:
F : µ ∈M(Ω) 7→

∫
Ω

χ[0;1](µ(x))dx =

{
0 if 0 ≤ µ ≤ dx

+∞ otherwise
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we recover the "hard" constraint studied by Maury et al., where crowdsare given an infinite (unacceptable) energy when more than one player isat a given position (in a continuous sense). For more general F , this termmodels the impact, on J , of congestion in the population as described inthe initial example. Finally, notice that in (1.14), F is finite only onmeasureswhich are absolutely continuous with respect to the Lebesgue measure.We will therefore need to smooth it up in order to compute an analog fordiscrete populations, which is the raison d’être of the Moreau envelope Fε.
• The last term we call "potential" term and this is an abuse of notationsfrom the case where G derives from an actual potential (V or Φ in theexample above). It represents how far (not necessarily in the sense of adistance) the crowd is from a target "preferred" disposition towards whichit will try tomove. G is a continuous function over the setAC([0;T ],Pr(Rd))of absolutely continuous curves with respect to the topology induced by
Wr (which is stronger than the one induced by the narrow topology on
C0([0;T ],P(Rd))).
Theorem 13 guarantees that any curve in C0([0;T ],P(Rd)) with a finite ki-netic term is in AC([0;T ],Pr(Rd)) and therefore that G is well-defined atthat curve andmore generally, continuous on the set of admissible curves.Therefore, we will not be smoothing G and, to guarantee existence of so-lutions to the variational mean field game problem, we only make the ad-ditional assumption that G is lower bounded. The role of G is to drive theplayers toward a goal (the trajectories with the lowest potential energy),and this last term often favours congestion, working in opposition to thecongestion term F . In our numerical simulations, G will be given as themean value of a potential across the population, at intermediate times (Vin the introductory example above) and/or at final time (Φ in the example).

To approximate solutions to Problem (2.7), we wish to use a finite popu-lation of players, whose motion should describe "well enough" the global be-haviour of the continuous crowd. Although we could continue using the space
C([0;T ],P(Rd)) and simply replace µ(t)with a discrete uniform probability mea-sure in PN(Rd) and adapt v, it is more convenient to recast the mean field gameproblem (2.7) into a minimization problem on the distribution of possible tra-jectories for the players, Q ∈ P(C0([0;T ],Rd)). We recall here the notation
Γ := C0([0;T ],Rd) for this space of trajectories. Notice that curves in Γ do nothave to remain inside Ω, however, since F is +∞ at measures charging pointsoutsideΩ, the congestion termwill also enforce this restriction in our continuousproblem.A curve in C0([0;T ],P(Ω)) admissible for the variationalmean field game (2.7)
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can always be seen as a probability measure in P(Γ). This is stated by the fol-lowing theorem by Lisini (see also Theorem 8.2.1 of [4]). This correspondencegives a very natural way of seeing the density of the population at time t, µ(t), asthe distributionQ of the players’ trajectories evaluated at time t, et#Q, where etis the (continuous) operator of evaluation at time t on Γ, et : γ ∈ Γ 7→ γ(t):
Theorem 14 (Lisini, [42]). Let µ ∈ C([0;T ];P(Rd)), be solution (in the sense of dis-
tributions) of the continuity equation ∂tµ + ∇.(µv) = 0, with a Lr(dµtdt) velocity
vector field v and r > 1. Then there exists a probability measure Q ∈ P(Γ) such
that:

1. Q-almost every γ ∈ Γ is in W1,r([0;T ];Rd) and satisfies γ′(t) = v(t, γ(t)) for
L1-almost every t ∈ [0;T ].

2. µ(t) = et#Q for every t ∈ [0;T ].

Conversely, any Q ∈ P(Γ) which satisfies∫
Γ

∥γ′∥rLr dQ(γ) < +∞ (2.9)
induces an absolutely continuous curve inAC([0;T ];Pr(Rd)), solution to a continuity
equation, via µ(t) = et#Q.

We can now define the continuous problem which we will be discretizing us-ing theMoreau envelope fromChapter 1, (1.10). For the rest of this chapter, we fixan initial distribution of players, µ0 ∈ P(Ω), admitting a density with respect tothe Lebesgue measure on Ω. The variational problem we consider is the rewrit-ing of (2.7) as a minimization problem over P(Γ), using the representation ofTheorem 14:
(Mµ0) : inf

{
J(Q) | Q ∈ P(Γ) s.t. e0#Q = µ0

}
with J(Q) =

∫
Γ

∫ T

0

L(γ′(t))dtdQ(γ) +

∫ T

0

F (et#Q)dt+G(Q).

The kinetic and the congestion terms have simply been replaced by their cor-responding equivalents on measures on Γ. L therefore stays the same convexcontinuous function on Rd verifying inequalities (2.8) and F is the same convexfunction, now penalizing et#Q. Notice that in order for these two terms to befinite, Q must verify the converse implication in Theorem 14 and therefore in-duce an admissible pair (µ, v) for the Eulerian formulation (2.6), and converselyso. Let us mention here that we will be using the abuse of notation, for γ ∈ Γ,
L(γ′) :=

{∫ T
0
L(γ′(t))dt if γ ∈W1,r([0;T ],Rd)

+∞ otherwise
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in the future as no confusion should arise.The potential term G in (Mµ0) is a little more fuzzy: in problem (2.7) it was acontinuous function on AC([0;T ],Pr(Rd)). As we will not revisit this Eulerianformulation, for Problem (Mµ0), we will take G to be any continuous, lowerbounded function on the subset of measures in P(Γ) verifying the finite kineticenergy condition (2.9) of Theorem 14, and +∞ on the remainder of P(Γ) (forsimplicity). Should the reader need to go back to the Eulerian setting, Theo-rem 14 followed by Theorem 13 can give a meaning to G as a continuous (lowerbounded) function on AC([0;T ],Pr(Rd)) as well as equality of the minimal val-ues of both problems.
We now briefly recall why (Mµ0) admits minimizers. These minimizers theninduce minimizers for the Eulerian formulation, using the correspondence ofTheorem 14:

Proposition 15. The functional J above is l.s.c (for the narrow convergence on
P(Γ)). The minimization problem (Mµ0) admits solutions.

In the rest of this paper,Qminwill always denote (any) one of theseminimizersfor Problem (Mµ0).
Proof. We first prove that J is l.s.c by treating its terms separately. Theorem 4.5of [31] and the bounds in (2.8) on L directly imply the lower-semicontinuity on
P(Γ) of the kinetic term, Q 7→ ∫

Γ
L(γ′)dQ(γ).Take now (Qn)n∈N a sequence converging to Q∞ in P(Γ). To prove the restof our lower semi-continuity, we may assume that J(Qn) is upper bounded. Bycontinuity of et on Γ, for every t, et#Qn narrowly converges to et#Q∞ as n goesto infinity. Thus, by lower semi-continuity of F and Fatou Lemma, we get asdesired∫ T

0

F (et#Q∞)dt ≤
∫ T

0

lim inf
N→∞

F (et#QN)dt ≤ lim inf
N→∞

∫ T

0

F (et#QN)dt.

Finally, from theboundon (J(Qn))n∈N and the fact thatF andGbe lower bounded,every Qn and therefore also Q∞ are contained in a sub-level set:{
Q ∈ P(Γ)

∣∣∣∣ ∫
Γ

∥γ′∥rLr dQ(γ) < C

}
for some C > 0. G is continuous on this set by assumption, and thus:

J(Q∞) ≤ lim inf
n→+∞

J(Qn).
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To show existence of minimizers for (Mµ0), we follow, again, the standardmethod in calculus of variations. We first note that for any upper bound C > 0,the set
KC := {γ ∈ Γ | L(γ′) ≤ C, γ(0) ∈ Ω}

is compact. Indeed,Ω is itself compact and any curve inKC is Hölder-continuous.Compactness of KC immediately follows from Arzela-Ascoli’s theorem. If wetake a minimizing sequence (Qn)n for (Mµ0) we notice that it is tight since forany n and C ,
Qn(Γ\KC) <

J(Qn)− A
Cfor A = T inf F + inf G.Using Prokhorov’s theorem, we can extract from it a sequence converging,for the narrow topology, to a Q∞ ∈ P(Γ) (in particular, e0#Q∞ = µ0). But then,by lower-semi-continuity, Q∞ is a minimizer for our problem since

J(Q∞) ≤ lim inf
n→∞

J(Qn) = inf
{
J(Q) | Q ∈ P(Γ) s.t. e0#Q = µ0

}
.

2.2 Space discretization in P(Γ)
Our discretization is Lagrangian in the sense that it aims at approximating thesolution Qmin by discrete measures QN ∈ PN(Γ) following the point of view ofTheorem 14. Not having toomany informations onQmin, a goodway to do so is tolook for these discrete measures as minimizers of a variational problem similarto (Mµ0). For such measures, we can prescribe the initial distribution e0#QN =
µ0
N ∈ PN(Rd) and continuity of e0 tells us that it will have to approximate µ0 insome sense. Similarly, the kinetic and potential terms are well-defined on "rea-sonable" discrete measures (meaning supported on W1,r([0;T ],Rd) curves for
L). However, for such discrete distributions of trajectories, the value of the con-gestion term F could be +∞ (and will be in the specific cases we consider lateron), giving us no information as to how close to an optimal uncongested motionwe could be!

To avoid this problem, we replace the congestion term by the regularizedversion of it, Fε, defined in the previous chapter, (1.10). Proposition 5 tells usthat, as ε → 0, Fε behaves as F , penalizing congested measures, or ones thatare not supported in Ω (since F (ρ) < +∞ implies spt(ρ) ⊂ Ω). On the otherhand, for any ε > 0, Fε is finite at discrete measures, penalizing them less andless as ε becomes larger. Since we wish for a regime in the middle (congestionbeing penalized, but by a finite value), we expect to have to let ε go to zero, butnot too fast, in order to have convergence, in some sense, to a minimizer Qmin.
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The corresponding discretization (or rather regularization) of our energy J isthen straightforward, as the kinetic and potential terms are well-defined in thisdiscrete case:
(MN,µ0N ,ε

) : inf
{
Jε(Q) | Q ∈ PN(Γ), e0#Q = µ0

N

}
where Jε(Q) :=

∫
Γ

L(γ′)dQ(γ) +

∫ T

0

Fε(et#Q)dt+G(Q)

Immediately, using similar arguments as for Problem (Mµ0), we have exis-tence of minimizers for these discrete problems:
Proposition 16. For everyN ∈ N∗, ε > 0, Jε is l.s.c for the narrow convergence and
for every µ0

N ∈ PN(Ω), the infimum in (MN,µ0N ,ε
) is attained.

As we mentioned, we expect minimizers for Problem (MN,µ0N ,ε
) to converge,in some sense, to a minimizer of (Mµ0) as N → ∞ and ε → 0. This is the case,but only provided ε is related to N in such a way that it does not vanish tooquickly as N → ∞. The kind of convergence we get is very much in the spiritof Γ-convergence and is stated in Proposition 17 below. Note however that theresult stated in (Upper bound) is weaker than the usual Γ-limsup one.The proof of this proposition uses a quantization argument for a solution

Qmin of (Mµ0) (see Chapter 3, (3.1)), using measures supported on a Sobolevspace Hs. From standard Sobolev inclusions, we can find 1
2
< s ≤ 1 such that

W1,r([0;T ],Rd) ↪−→ Hs([0;T ],Rd) ↪−→ C([0;T ],Rd)

These injections are compact (recall that r is the exponent in the definition ofthe Lagrangian L). From now on, we will denote Hs([0;T ],Rd) by Hs and the 2-Wasserstein distance associated with the Sobolev norm on P2(Hs) by WHs . Inparticular, Qmin is supported on Hs and we will take our quantization measuressupported in this same space.The reason behind this choice is the following: to prove the (Upper bound)part of proposition 17 below, we need to approximateQmin using discrete prob-abilities which have lower kinetic energy. Although the approximation can bedone by quantization measures according to most Wasserstein distances, tak-ing one associated with a Hilbert norm (on the Hs Sobolev space), yields quan-tization measures supported on suitable barycenters, in some sense. L being aconvex function, this gives us measures with a lower kinetic energy than Qmin,which will be useful in the proof of the (Upper bound) claim below:
Proposition 17. Let (εN)N be a positive sequence vanishing at infinity and assume
that µ0

N narrowly converges towards µ0 in P(Rd).
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• (Lower bound) Let (QN)N narrowly converge to Q∞ in P(Γ). Then, we have

J(Q∞) ≤ lim inf
N→∞

JεN (QN).

For N ∈ N, let
τN := inf

{
W 2

Hs(Q̃N , Qmin)
∣∣∣ Q̃N ∈ PN(Hs)

} (2.10)
be the optimal N-point quantization error for Qmin in P(Hs).

• (Upper bound) Assume that τN = oN→∞(εN) andW 2
2 (µ

0
N , µ

0) = oN→∞(εN).
Then for any sequence (QN)N whereQN is aminimizer, respectively for (MN,µ0N ,εN

),

lim sup
N→∞

JεN (QN) ≤ J(Qmin).

The proof of (Lower bound) is a straightforward proof of Γ-liminf inequality:
Proof of proposition 17 (Lower bound). TakeQN andQ∞ as in the proposition. Forevery t ∈ [0;T ] and every N , define ρtN as a minimizer in the problem defining
FεN (et#QN).One can assume that JεN (QN) is bounded from above. Therefore, there ex-
ists C > 0 such that ∫ T

0
W 2

2 (et#QN , ρ
t
N)dt ≤ CεN for every N , since F and G arealso bounded from below. Up to extracting a subsequence, we can assume thatfor almost all t ∈ [0;T ], ρtN narrowly converges, as N goes to infinity, towards

et#Q∞. Using Fatou lemma, we get∫ T

0

F (et#Q∞)dt ≤
∫ T

0

lim inf
N→∞

FεN (et#QN)dt ≤ lim inf
N→∞

∫ T

0

FεN (et#QN)dt

The lagrangian part (as well as G of course) is l.s.c for the narrow conver-gence, and we can write:∫
Γ

L(γ′)dQ∞(γ) +

∫ T

0

F (et#Q∞)dt+G(Q∞) ≤ lim inf
N→∞

∫
Γ

L(γ′)dQN(γ)

+ lim inf
N→∞

∫ T

0

FεN (et#QN)dt

+ lim inf
N→∞

G(QN)

≤ lim inf
N→∞

JεN (QN)

which is our claim.
To prove the (Upper bound)) inequality, we first need a lemma on the mini-mizers of the problem defining τN :
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Lemma 2. For every N ∈ N∗, there exists Q̃N ∈ P(Hs) optimal for (2.10), τN =
W 2

Hs(Q̃N , Qmin) and, ∫
Γ

L(γ′)dQ̃N(γ) ≤
∫
Γ

L(γ′)dQmin(γ).

Furthermore, τN → 0 asN goes to infinity and in particular, Q̃N narrowly converges
towards Qmin in P(Γ), as N →∞.

Proof. W 2
Hs(., Qmin) is l.s.c for the narrow convergence on PN(Γ), from the lowersemi-continuity of the Hs norm with respect to the uniform norm on Γ. Take aminimizing sequence (Qn)n for our problem. We can choose Qn to have lowerkinetic energy than Qmin:To see this, fix n ∈ N, and set Qn = 1

N

∑N
i=1 δγ̃i and P = 1

N

∑N
i=1 δγ̃i ×Qi

min anoptimal transport plan from Qn to Qmin (in particular, Qi
min ∈ P(Γ) for every i).We construct a competitor to Qn for the infimum problem (2.10), supportedon the barycenters of the measures Qi

min (which play the role of the Laguerrecells from semi-discrete optimal transport, Definition 6):For i = 1 . . . N , set
ηi =

∫
Γ

γdQi
min(γ).

Each ηi is a minimizer of the convex functional ∫
Γ
||.− γ||2HsdQi

min(γ) over Hs.Indeed, this functional is differentiable on Hs, with gradient
2

∫
Γ

(.− γ)dQi
min(γ)

which vanishes at ηi. Therefore,
W 2

Hs

(
1

N

N∑
i=1

δηi , Qmin

)
≤ 1

N

N∑
i=1

∫
Γ

||ηi − γ||2HsdQi
min(γ)

≤ 1

N

N∑
i=1

∫
Γ

||γ̃i − γ||2HsdQi
min(γ) = W 2

Hs(Qn, Qmin)

andwe can assume thatQn is supported on the barycenters ηi. But, then, by con-vexity of L,Qn has lower kinetic energy thanQmin: ∫Γ L(γ′)dQn(γ) ≤
∫
Γ
L(γ′)dQmin(γ).Similarly to proposition 15, we can conclude that (Qn)n is tight and, up to a sub-sequence, it narrowly converges towards a minimizer Q̃N of W 2

Hs(., Qmin) over
PN(Γ), which verifies ∫

Γ

L(γ′)dQ̃N(γ) ≤
∫
Γ

L(γ′)dQmin(γ)
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To show that τN vanishes at infinity, it is sufficient to show that there exists
(QN)N , such that, for every N , QN ∈ PN(Hs), QN narrowly converges towards
Qmin in P(Hs), and ∫

Γ
||γ||2HsdQN(γ) converges towards ∫Γ ||γ||2HsdQmin(γ), as Ngoes to infinity. This can be done, for instance, as in Theorem 2.13 of [9], bysampling trajectories in the support of Qmin and using a law of large numbers.Finally, since s > 1

2
, Hs is continuously injected in Γ, and we have the narrowconvergence in P(Γ) (for the uniform norm, this time).

We will also need the following lemma to compare the "global" WassersteindistanceWHs to the local one at time t:

Lemma3. LetQ,Q′ ∈ P(Hs). Then, there existsC > 0, such that for every t ∈ [0;T ],

W2(et#Q, et#Q
′) ≤ CWHs(Q,Q′)

Proof. Since s > 1
2
, Sobolev injections give the existence of C > 0 such that

||.||∞ ≤ C||.||Hs on Hs. Take P , an optimal transport plan from Q to Q′ with thecost given by ||.||2Hs , and t ∈ [0;T ]. Then, (et, et)#P is a transport plan from et#Qto et#Q′, and we can write:

W 2
2 (et#Q, et#Q

′) ≤
∫
Γ×Γ

||γ1(t)− γ2(t)||2dP (γ1, γ2)

≤ C2

∫
Γ×Γ

||γ1 − γ2||2HsdP (γ1, γ2).

Proof of proposition 17 (Upper bound): Set N ∈ N∗ and Q̃N and τN as in Lemma2. As is, Q̃N is not necessarily admissible since it may not satisfy e0#Q̃N = µ0
N .However, since they are discrete measures with the same amount of Diracs andthe samemasses, we can simply translate the curves in spt(Q̃N) in order for it tobe admissible for (MN,µ0N ,εN

), using vectors that are constant in time. This new
measure, which we denote by Q̃µ0N ,N

is admissible for (MN,µ0N ,εN
), has the same

kinetic energy as Q̃N and satisfiesW 2
Hs(Q̃µ0N ,N

, Q̃N) = W 2
2 (µ

0
N , e0#Q̃N).
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Now, if QN is a minimizer for (MN,µ0N ,εN
), then

JεN (QN) ≤ JεN (Q̃µ0N ,N
) ≤

∫
Γ

L(γ′)dQ̃N(γ) +G(Q̃µ0N ,N
)

+

∫ T

0

W 2
2 (et#Q̃µ0N ,N

, et#Qmin)

2εN
+ F (et#Qmin)dt

≤
∫
Γ

L(γ′)dQmin(γ) +G(Q̃µ0N ,N
) + T

W 2
2 (e0#Q̃N , µ

0
N)

εN

+

∫ T

0

W 2
2 (et#Q̃N , et#Qmin)

εN
+ F (et#Qmin)dt

(2.11)
Lemma 3 gives us the bound:∫ T

0

W 2
2

(
et#Q̃N , et#Qmin

)
dt ≲ W 2

Hs

(
Q̃N , Qmin

)
= τN .

And, by convexity of the transport cost,
W 2

2 (e0#Q̃N , µ
0
N) ≤ 2

(
W 2

2 (e0#Q̃N , µ
0) +W 2

2 (µ
0, µ0

N)
)
≲
(
τN +W 2

2 (µ
0, µ0

N)
)
,

and Q̃µ0N ,N
narrowly converges toQmin inP(Γ). If we chose (εN)N∈N and (µ0

N)N∈Nsuch that τN and W 2
2 (µ

0, µ0
N) are negligible compared to εN , as N → ∞, thentaking the limsup in inequalities (2.11) gives us

lim sup
N→∞

JεN (QN) ≤ J(Qmin).

Corollary 17.1. With the same notations and assumptions on (εN)N∈N and (µ0
N)N∈N

as in proposition 17 (Upper bound), QN narrowly converges, up to a subsequence,
towards a minimizer of J . In particular, if (Mµ0) has a unique minimizer Qmin, then
any such sequence (QN)N∈N narrowly converges toward Qmin (this time without ex-
traction).

Proof. Similarly to Γ-convergence, this is a direct consequence of propostion 17.By the (Upper bound) property, up to a subsequence, JεN (QN) converges to-wards a limit l ≤ min J . Then as before, ∫
Γ
LdQN is bounded in N and (µ0

N)N istight in P(Rd), therefore, (QN)N is tight, in P(Γ). Let us extract from it a subse-quence converging towards Q∞ ∈ P(Γ). Then e0#Q∞ = µ0, and by the (Lower
bound) property, J(Q∞) ≤ l ≤ min J hence, Q∞ is a minimizer of (Mµ0).
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The proper sequence εN of parameters (or rather their precise behaviouras N → ∞), remains beyond our reach even in the simpler convex situationpresented in section 2.4. However, one can obtain an upper bound on the van-ishing rate of τN by bounding the box-dimension, in Hs of the support of theminimizing measureQmin. This bound is given by the following correspondencebetween optimal quantization and optimal covering of a set. We refer the readerto [50] proposition 4.2 for a proof, as well as [29] for more details on the subjectof vector quantization:
Proposition 18. For a metric space (X, dX), take Q ∈ P(X) supported on Σ ⊂ X .
Define the optimal quantization error of Q,

τN = min
{
W 2
dX ,2

(Q, Q̃)
∣∣∣ Q̃ ∈ PN(X)

}
as in proposition 17, and the optimal covering radius of Σ as the quantity (where, dH
is the Hausdorf distance between subsets of X),

rN = inf {dH(Σ, P ) | P ⊂ X, |P | ≤ N} .

Then, assuming rN = ON→∞

(
N− 1

D

)
one gets:

τN =


ON→∞ (N−1) if D < 2

ON→∞ (N−1 lnN) if D = 2

ON→∞

(
N− 2

D

)
if D > 2

(2.12)

The constantD in this proposition is called the box-dimension or Minkowskidimension of the set Σ.An initial point to make is that Proposition 18 with X = Rd guarantees thatwe can choose µ0
N in such a way that, for instance for d ≥ 3, W 2

2 (µ
0
N , µ

0) be
ON→∞(N−2/d). This is an information to take into account when choosing εN(although it is likely to be redundant with the one given by the growth of τN ,defined in proposition 17).Let us give one positive result, when the velocity field associated with themeasureQmin is Lipshitz-continuous (a similar conclusionwas reachedbyMérigotand Mirebeau in [50]):
Proposition 19. Define Qmin as in Section 2.1 and take (µ, v) solution to the con-
tinuity equation, induced by Qmin according to Theorem 14. We assume that v is
Lipshitz-continuous with respect to x, uniformly in t.

Then, spt(Qmin) is of box-dimension at most d, where Ω ⊂ Rd.
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Proof. With these notations, Theorem 14 tells us that
spt(Qmin) ⊂ A := {γ ∈W1,r([0;T ],Rd) | for a.e. t ∈ [0;T ], γ(t) ∈ Ω

and γ′(t) = v(t, γ(t))} (2.13)
In particular, spt(Qmin) is bounded inW1,r([0;T ],Rd) and therefore in the largerspaceHs([0;T ],Rd), sinceΩ is compact. By Cauchy-Lipshitz theorem (v is Lipshitz-continuous with respect to x, uniformly in t), the function e0 : γ 7→ γ(0) is bi-lipschitz continuous on A, for the W1,r norm and therefore, for the Hs norm.This exactly means that a covering of spt(Qmin) by balls corresponds to a cover-ing of the corresponding subset ofΩ by asmany balls and conversely, therefore,

rN(spt(Qmin)) = ON→∞(N− 1
d )

This proposition would allow us to chose εN dominating the correspondingbound for τN according to (2.12), depending on the dimension of the domain
Ω. However, it is worthwhile to mention that such regularity is much higherthan the one recently obtained for solutions of congested mean field games(and in particular variational ones). On this topic, let us cite a recent result bySantambrogio and Lavenant [39], in the already restrictive case of Ω convex, a
quadratic Lagrangian L = ∥.∥2

2
, a potential term G given by the integral of H1

potentials (V and Φ in the introductory example) and a strong congestion en-forced by F = χρ≤dx (see the numerical Section 2.4, case of a convex domain,(2.17)). Under these assumptions, one can claim Hölder continuity of the valuefunction ϕ appearing in the mean field system (2.5), which then only translate,through v = −∇xϕ into slightly better than L2 integrability (w.r.t. t and x) for thevelocity field v.
We finish this section by mentioning a stronger convergence result, in thecases where F has the integral form 1.14 with a function f strongly convex on R.We recall the notation for theMoreau-Yosida projections ofQN at various times,introduced in the proof of Proposition 17, (Lower bound):

ρN : t ∈ [0;T ] 7→ argminρ
W 2

2 (ρ, et#QN)

2εN
+

∫
Ω

f(ρ(x))dx

associated with a sequence (QN)N ofminimizers for problem (MN,µ0N ,εN
), in thissection. Let us assume that problem (Mµ0) has a unique solution,Qmin. We takethe appropriate values for the parameters εN and µ0

N such that (up to a subse-quence),QN narrowly converges toQmin and JεN (QN) converges to J(Qmin) (see17).
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Lemma 4. With these notations,

lim
N→∞

∫ T

0

∫
Ω

f(ρN(t)(x))dx =

∫ T

0

∫
Ω

f(et#Qmin(x))dx

Proof. From lower semi-continuity of F , we already have,∫
[0;T ]×Ω

f(et#Qmin(x))dxdt ≤ lim inf
N→∞

∫
[0;T ]×Ω

f(ρN(t)(x))dxdt

But, on the other hand,∫
[0;T ]×Ω

f(ρN(t)(x))dxdt ≤
∫
[0;T ]×Γ

L(γ′)d(Qmin −QN)(γ)

+

∫
[0;T ]×Ω

f(et#Qmin(x))dxdt

+G(Qmin)−G(QN) + oN→∞(1)

and taking the limsup as N →∞, we obtain
lim sup
N→∞

∫
[0;T ]×Ω

f(ρN(t)(x))dxdt ≤
∫
[0;T ]×Ω

f(et#Qmin(x))dxdt

and our lemma.
Strong convergence immediately follows at least in two cases:

Proposition 20. Under the assumptions on εN , µ0
N , QN and Qmin listed above,

• If f is strongly convex, then ρN strongly converges in L2([0;T ] × Ω) (as a
function of t and x), towards ρmin : (t, x) ∈ [0;T ]× Ω 7→ et#Qmin(x).

• If f : ρ 7→ |ρ|m, m ≥ 2 is a power, then a similar strong convergence is true,
this time in Lm([0;T ]× Ω).

Proof. Let us first handle the casewhere f is a power. In this case, lemma 4 guar-antees that ∥ρN∥Lm converges to ∥ρmin∥Lm . Since ρN already narrowly convergestowards ρmin, this convergence is also a weak convergence in duality with Lm′

where m′ = m
m−1

. But, from the convergence of the norms, this implies strongconvergence in Lm using the Radon-Riesz property.
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If f is strongly convex, one can claim for anyN ∈ N∗ and almost any t ∈ [0;T ]and x ∈ Ω,
1

8
∥ρN(x)− ρmin(x)∥2 ≤

1

2
f(ρN(t)(x)) +

1

2
f(ρmin(t)(x))

− f
(
1

2
(ρN(t)(x) + ρmin(t)(x))

)
.

Integrating the right-hand side in t and x, and taking the inf-limit as N →∞,onewould obtain a negative value, from Lemma 4 and the lower semi-continuityof F (remember that ρN narrowly converges to ρmin from our previous Lower
bound properties). Looking at the integral of the left-hand side, this exactlystates the strong-L2 convergence that we claimed.

More generally, if there exists functions j and j∗ on R and a constant C > 0such that for p and ρ in R,
f(ρ) + f ∗(p) ≥ p · ρ+ C|j(ρ)− j∗(p)|2,

we get strong convergence of the functionals j(ρN) towards j(ρmin) in L2, pro-vided some invertibility on j, which implies strict convexity for f . This is a com-mon assumption to show regularity results via duality on the solutions of a con-vex problem (see for instance [58]). This convergence could bring no informa-tion, and j = j∗ ≡ 0 are actually always suitable for any convex function f . How-ever, in the case of f strongly convex, j(ρ) = ρ with j∗(p) = (f ∗)′(p) are suitableand we recover the first case of proposition 20. Similarly, j(ρ) = ρ.|ρ|m/2−1 and
j∗(p) = p.|p|m′/2−1 are suitable in the situation f ≡ |.|m. Again, we recover the
Lm convergence claimed above. We highlighted the two cases of Proposition 20,where we recover the values (as a density) of et#Qmin in an almost-everywhereway.

2.3 The fully discrete problem
Wenowuse a uniform time discretization 0, δ, ..., Mδ = T to compute a fully dis-cretized version, with respect to space and time, of problem (Mµ0). Rather thanwriting heavy formulae for a new global energy, we will change the subset of
P(Γ) upon which the minimization is done, allowing for an energy almost iden-tical to Jε. The Lagrangian and potential parts will remain the same as in J and
Jε, whereas the congestion term will be approximated by a Riemann sum. Thisis mainly done in order to simplify computations, and any time-discretization ofcurves in Γ which allowsW1,r bounds of the sort of (2.14) and (2.15) should alsowork here.
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We perform our optimization on the space of functions in Γ which are affineon each interval [iδ, (i+ 1)δ] with i = 0 . . .M − 1, denoted Γlin
δ . Our fully discreteproblem is then:

(MN,µ0N ,δ,ε
) : inf

{
Jδ,ε(Q) | Q ∈ PN(Γlin

δ ) s.t. e0#Q = µ0
N

}
with Jδ,ε(Q) =:=

∫
Γ

L(γ′)dQ(γ) + δ
M−1∑
i=1

Fε (eiδ#Q) +G(Q)

Similarly to (MN,µ0N ,ε
) and (Mµ0), we have existence of minimizers for anyvalue of the parameters, and we omit the demonstration as it would be almostidentical:

Proposition 21. For every N ∈ N∗, δ, ε > 0, Jδ,ε is l.s.c for the narrow convergence
and for every µ0

N ∈ PN(Ω), the infimum in (MN,µ0N ,δ,ε
) is attained.

What is more interesting is a similar convergence result to the one in propo-sition 17, with an additional constraint on the parameters of the time discretiza-tions, δN :
Proposition 22. Assume that (δN)N , (εN)N converge to 0, and that µ0

N narrowly
converges towards µ0 in P(Rd) as N →∞:

• (Lower bound) Let (QN)N narrowly converge to Q∞ in P(Γ). We then have

J(Q∞) ≤ lim inf
N→∞

JδN ,εN (QN).

• (Upper bound) Under the same assumptions as in proposition 17, and also
assuming that (δN)2/r

′
= o(εN) where r′ = r

r−1
is the dual exponent for r,

introduced in (2.8). Then for every sequence (QN)N , with QN a minimizer re-
spectively for (MN,µ0N ,δN ,εN

), we have

lim sup
N→∞

JδN ,εN (QN) ≤ J(Qmin)

.

Proof of Proposition 22 (Lower bound): Wecanassume that JδN ,εN (QN) is boundedfrom above uniformly in N . In particular, QN is supported in W1,r for every N .Then, as before, ∫
Γ

L(γ′)dQ∞(γ) ≤ lim inf
N→∞

∫
Γ

L(γ′)dQN(γ).
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For every γ ∈W1,r, and iδN ≤ t ≤ (i+ 1)δN ,

||γ(t)− γ(iδN)||2 ≤ δ
2/r′

N

(∫ T

0

||γ′(u)||rdu
)2/r

(2.14)

and, integrating this inequality along QN , we getW 2
2 (eiδN#QN , et#QN) ≤ Cδ

2/r′

Nfor every t in ]iδN ; (i + 1)δN ], since ∫Γ L(γ′)dQN(γ) is bounded. In particular,for every t, e⌊t/δN ⌋δN#QN narrowly converges towards et#Q∞. Then, by Fatoulemma,

∫ T

0

F (et#Q∞)dt ≤ lim inf
N→∞

MN−1∑
i=0

∫ (i+1)δN

iδN

FεN (eiδN#QN)dt

≤ lim inf
N→∞

δN

MN−1∑
i=1

FεN (eiδN#QN)

and that last term is exactly the congestion term in JδN ,εN . Finally, continuity of
G gives us our (Lower bound) inequality.

Proof of Proposition 22 (Upper bound). Wemomentarily fixN ∈ N∗. Take Q̃N and
Q̃µ0N ,N

as in lemma 2 and the proof of proposition 17 and define the piecewise
affine interpolation operator, T lin

δN
: γ ∈ Γ 7→ γlinδN where, for t in [iδN ; (i + 1)δN ],and γ ∈ Γ, γlinδN (t) = γ(iδN) +

γ((i+1)δN )−γ(iδN )
δN

(t − iδN). The measure Q̃lin
N,δN

=

T lin
δN
#Q̃µ0N ,N

will take the role of competitor for the problem (MN,µ0N ,δN ,εN
), role

that Q̃µ0N ,N
had for problem (MN,µ0N ,εN

).
Then, convexity of L gives us for every N , the inequalities

∫
Γ

L(γ′)dQ̃lin
N,δN

(γ) ≤
∫
Γ

L(γ′)dQ̃N(γ) ≤
∫
Γ

L(γ′)dQmin(γ).
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For FεN , we have, as previously,
δN

N∑
i=1

FεN (eiδN#Q̃
lin
N,δN

)dt ≤
N∑
i=1

∫ (i+1)δN

iδN

W 2
2 (eiδN#Q̃µ0N ,N

, et#Qmin)

2εN

+ F (et#Qmin)dt

≤
N∑
i=1

∫ (i+1)δN

iδN

W 2
2 (eiδN#Q̃N , et#Q̃N)

εN

+
W 2

2 (et#Q̃N , et#Qmin)

εN
dt

+ T
W 2

2 (µ
0
N , e0#Q̃N)

εN
+

∫ T

0

F (et#Qmin)dt

≤C

[
W 2

2 (µ
0, µ0

N)

εN
+
δ
2/r′

N

εN
+
τN
εN

]
+

∫ T

0

F (et#Qmin)dt

Finally, for γ ∈W1,r and iδN < t ≤ (i+ 1)δN∥∥∥∥γ(t)− γ(iδN)− γ((i+ 1)δN)− γ(iδN)
δN

(t− iδN)
∥∥∥∥ ≤ ∫ t

iδN

||γ′(u)||du

+
t− iδN
δN

∫ (i+1)δN

iδN

||γ′(u)||du

≤ 2δ
1/r′

N

(∫ T

0

||γ′(u)||rdu
)1/r

(2.15)
and, integrating along Q̃N , limN→∞W 1

L∞(Q̃lin
N,δN

, Q̃N) = 0, therefore, by continuity
ofG on Γ, limN→∞G(Q̃lin

N,δN
) = G(Qmin). To conclude, we observe, as earlier that

JδN ,εN (QN) ≤ JδN ,εN (Q̃
lin
N,δN

) ≤ J(Q) + C
δ
2/r′

N +W 2
2 (µ

0, µ0
N) + τN

εN
+G(Q̃lin

N,δN
)−G(Q) (2.16)

and, as soon as (δN)N is taken such that δ2/r′N = oN→∞(εN) along with the samegrowth for the other parameters as in proposition 17, one can conclude
lim sup
N→∞

JδN ,εN (QN) ≤ J(Q)

As previously, minimizers of JδN ,εN narrowly converge to minimizers of J ,under these assumptions on εN , δN and µ0
N .
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2.4 Numerics

In this section, we approximate solutions to Problem (MN,µ0N ,δN ,εN
). This prob-lem is a non-convex one, if only due to the non-convexity of the space of op-timization. To obtain approximately minimizing discrete trajectories, we usea Low-memory BFGS algorithm on the energy JδN ,εN , replacing the measures

Q ∈ Γlin
δN

by their expressions in term of the positions of each individual at eachtime (except for the positions at t = 0 which are fixed). As we mentioned inthe previous chapter, the gradient of this scalar function in high dimension iscomputed using the expression in Proposition 11. There is no guarantee, à pri-
ori, that the trajectories we obtain via quasi-Newton algorithm are close to anactual minimum one, however, the estimates on optimal quantization from thenext chapter, and especially the results on gradient flows from Lemma 7 andLemma 9 allow us to be hopeful that these trajectories are indeed close to min-imizing the fully discrete problem (MN,µ0N ,δN ,εN

), provided gradient descent isinitialized on (constant) trajectories not too close to each other, meaning withpositions aligned on a regular grid.
The following trajectories have all been computed using an energy J with thesame Lagrangian, given by the squared norm: L : x 7→ 1

2
∥x∥2, or equivalently,

L(γ′) =
∫ T
0

∥γ′(t)∥2
2

dt with our abuse of notations. The congestion term F andthe potential energyG have to be somewhat tailored to each domain. However,
F will always enforce the "hard" congestion constraint ρ ≤ 1 in some sense,and G always penalize the distance (euclidean for the convex domain, derivedfrom an Eikonal equation for the non-convex one) to a set of target points. Thevarious integrals over Laguerre cells are computed using the Pysdot1 library forPython. This library also allows the approximation of the optimal weights in thedual formulation of Proposition 9 using a Newton algorithm on the maximizedconvex function,

Gε : (Y,Φ) ∈ (Rd)N × RN 7→
N∑
i=1

[
ϕi
N
−
∫
Lagi(Y,Φ)

f ∗

(
ϕi −

∥x− yi∥2

2ε

)
dx

]

which is concave and smooth (althoughwedid not obtain the secondorder regu-larity needed to guarantee total convergence). Solutions to the eikonal equationfeatured in the second example were approximated using the code available onJ.-M. Mirebeau’s Github2. Finally, the code used to obtain Fig. 2.1 and Fig. 2.2 can
1https://github.com/sd-ot/pysdot2https://github.com/Mirebeau/HamiltonFastMarching.git, see [52], [53], [22]
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Figure 2.1: On the first 7 images (top left to bottom right), the evolution of the“charged" Laguerre cells (intersected with the support of ρN(t)) at several timesteps for 400 particles in the convex domain [−1; 10]2. The final picture (bottomright) represents the full trajectories of the particles.
be found on the author’s Github3.

Evolution in a convex domain: In this case, our players evolve in a convexdomain Ω = [−1; 10]2. We use the "strong" congestion penalization,

F : ρ ∈M(Ω) 7→
∫
Ω

χ[0;1](ρ(x))dx =

{
0 if 0 ≤ ρ ≤ dx

+∞ otherwise (2.17)

withχ[0;1] being the convex indicator function of [0; 1]. Admissible population tra-jectories for the continuous problem (Mµ0) cannot have a density higher than
1 at almost any time or position.The conclusions of, Proposition 9 apply in this case, provided |Ω| > 1 to guar-antee existence of dual solutions. With f ≡ χ[0;1], f ∗ ≡ max(., 0) is the positivepart function on R and (f ∗)′ ≡ 1R+ (almost everywhere). For y ∈ (Rd)N , theassociated optimal density in Fε(y) is given on Lagi(y, ϕ) by the (Density) condi-tion:

ρ(x) = 1R+

(
ϕi −

∥x− yi∥2

2ε

)
=

{
1 if ||x− yi||2 ≤ 2εϕi

0 otherwise
3https://github.com/CSarrazin-prog/Congested_MFG.git
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and the charged Laguerre cells (intersected with the support of ρ) are the in-tersection of the actual Laguerre cells, with the respective balls B(yi,
√
2εϕi).Although proposition 20 does not apply in this case, one can expect these cellsto give a good idea of the support of the limit measure et#Qmin, and we havehighlighted them on the pictures instead of the actual player’s positions for thisreason. The "charged" Laguerre cell, Lagi(Y,Φ) ∩ spt(ρ) defines a zone around

yi where non-congestion prevents other points to be. These zones correspondto amore flexible version of the "hard" balls around the particles used byMauryet al. [47] to represent the non-congestion constraint in this case.
Finally, the potential term is defined as the integral of actual potentials V and

Φ:
G : Q ∈ P(Γ) 7→

∫
Γ

∫ T

0

V (γ(t))dt+ Φ(γ(T ))dQ(γ)

with V (x) = (∥x− (6, 6)∥2 − 9)2 and Φ(x) = ∥x− (11, 6)∥2. V penalizes theplayers when moving away from the circle S1((6, 6), 3) in the course of their tra-jectory, while Φ gives high energy to trajectories ending too far away from thepoint (11, 6). We ran the optimization for a population of 400 players, each ofmass 1/40 (for a total mass of 10, in order to have visible charged Laguerre cells),starting aligned on a regular grid on the square [0; 4] × [0; 4] (top left image ofFig. 2.1). These pictures where obtained for values of the discretization parame-ters ε = 0.01, δ = 1/64 and T = 15.
In this case, the hypothesis of a Lipschitz velocity field for the continuous so-lution of (Mµ0) could not hold as, in the experiment, we observe some (but notmany) players around the circle from the other side, in order to avoid waiting.However this seems to be the only point of splitting for our optimal trajectories,which suggests that spt(Qmin) should still be of dimension 2. In such a case, anysequence εN dominating ln(N)/N should be suitable to obtain the convergenceof Proposition 22.
Evolution in a non-convex domain: This second example features a crowdmotion in a non-convex domain Ω = Ω1 ∪ Ω2 ∪ Ω3 made of two "rooms", Ω1 =

[0; 8]2 and Ω3 = [11; 19] × [0; 8] connected by a narrow corridor, Ω2 = [8; 11] ×
[3.5; 4.5].Here, we had to adapt our congestion term, as the Newton algorithm, com-puting the optimal Laguerre cells, did not always converge for Dirac masses lo-cated too far away from Ω (which was the case for some particles not using thecorridor before convergence was reached). To make this optimization easier we
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Figure 2.2: On the top six images are represented the positions and “charged"Laguerre cells of 400 particles moving in Ω. The bottom picture shows the tra-jectories of all the particles.

fixed a small maximum density 0 < m ≪ 1 for the area outside Ω but inside itsconvex envelope conv(Ω), and 1 inside Ω. This results in the congestion penal-ization:
F : ρ ∈M(conv(Ω)) 7→

∫
conv(Ω)

f(x, ρ(x))dx

where f : (x, ρ) ∈ conv(Ω)× R 7→


0 if 0 ≤ ρ ≤ 1 and x ∈ Ω

0 if 0 ≤ ρ ≤ m and x ∈ conv(Ω)\Ω
+∞ otherwise

Although this isn’t quite the framework of Propositions 9 to 11, these can beeasily adapted to this form of congestion. The optimal ρ for positions Y of the
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players is then given by:

For a.e. x ∈ Ω, ρ(x) =


1 if x ∈ Lagi(Y,Φ) ∩ B(yi,

√
2εϕi) ∩ Ω

m if x ∈ Lagi(Y,Φ) ∩ B(yi,
√
2εϕi) ∩ (conv(Ω)\Ω)

0 otherwise
The support of theMoreau projection will still be an intersection of balls withthe Laguerre cells, but the value of the optimal density ρwill not be 1 everywhereon this support. Instead, ρ(x) = m a.e. on conv(Ω)\Ω, giving us larger chargedLaguerre cells for the points passing near the border (or outside) of Ω. For lowvalues of the outside densitym, only very few particles can fit outside the corri-dor, and we should recover the strong penalization of the convex example.
Finally, due again to the non-convexity of Ω, penalizing trajectories that donot end in the right-side room using the euclidean distance did not yield satisfy-ing results (or even convergence for the L-BFGS algorithm). We therefore defineour potential term using a solution to an Eikonal equation:

G : Q ∈ P(Γ) 7→
∫
Γ

Φ(γ(T ))dQ(γ)

with Φ being solution of the Eikonal equation on conv(Ω):
∥∇Φ(x)∥ = 1 on Ω.
∥∇Φ(x)∥ = v outside.
Φ(18, 1) = Φ(18, 7) = 0

and v being a small value of the velocity, outside the corridor. Such a potentialterm penalizes heavily trajectories which end far away from the closest pointbetween (18,1) and (18,7), while also discouraging trajectories that do, but whilemoving outside of Ω. Notice that, unlike the one made for F , this prescription
∥∇Φ(x)∥ = v outside Ω is dictated by the theory since our discrete trajecto-ries could pass outside the corridor and we do not regularize G. We thereforeneed to chose a potential term which is continuous at least at trajectories mov-ing though conv(Ω). However, even for our value v = 0.1, trajectories leaving Ωwere, in the end, mostly rejected by the optimization, provided the maximumtime T is large enough for them to wait their turn and use the corridor. In theend, we chose to take a fairly strong congestion penalization outside the corri-dor, with m = 10−3, while putting a much weaker penalization on the speed inthis "forbidden zone", via the Eikonal equationwith a value v = 0.1. This resultedin no particles crossing the borders of Ω, even though very few trajectories cut
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the corners of the corridor.
To obtain the motion of Fig. 2.2, we ran the optimization for 400 particles,each of mass 1/8, starting on a regular grid over the first square Ω1. The tra-jectories on these images were obtained for a slightly higher value ε = 0.1, asplayers need to be flexible enough to move through the narrow corridor. Wethen chose a time step of δN = 1/28 and a maximum time T = 600 to avoidcertain phenomena of "teleportation" from one room to the other. Notice thatwe recover a well-known phenomenon where "channels" naturally form in thecorridor, in order to optimize the flow of the players in this very congested seg-ment of the motion.
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Chapter 3

Optimal quantization of measures

In this chapter, we study the simpler, but not unrelated problem of approximat-ing a probability with density, using a discrete uniform one. The convergence es-timates for one step of the Lloyd algorithm are gathered in [51]. We then presentan application of these estimates, in the context of uncongested crowdmotions.

3.1 The optimal quantization problem

For a measure ρ≪ dx in P(Rd), we will call N -points optimal uniform quantiza-tion of ρ any solution of the minimization problem:
inf

{
W 2

2 (µ, ρ)

2
| µ ∈ PN(Rd)

}
(3.1)

This problem can also be linked to these of Wasserstein Generative Adver-sarial Networks ( we refer the reader to Arjovsky, Chintala and Bottou [5]) andperhaps more closely Wasserstein regression (see Genevay, Peyré and Cuturi[27]). The model studied in this chapter is simpler in the sense that the discretequantization µ can be supported on any point cloud inRd, whereas WassersteinGAN and regression often construct their measure µθ as the push-forward of a"simple" reference measure (not ρ necessarily) through a map Tθ depending ona parameter (e.g. a computed by a neural net with weights θ). In this section,we are only interested in the non-convexity of the Lagrangian discretization andnot its interaction with the generative process, hence the simpler setting.Let us immediately state existence of solutions as well as necessary (but notsufficient, as we will see) conditions for optimality:
Proposition 23. Let ρ≪ dx in P(Ω). Then Problem (3.1) admits solutions. Further-
more, if µ = 1

N

∑N
i=1 δyi is such a solution supported on a point cloud Y , then for
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i = 1 . . . N ,
yi = N

∫
Lagi(Y,Φ)

xdρ(x)

where (Lagi(Y,Φ))i=1...N are the optimal Laguerre cells for the optimal transport
from ρ to µ.

Note in particular that provided Ω is convex and ρ > 0 on Ω, then an optimal
µ is supported on Ω and in fact, yi ∈ Lagi(Y,Φ) for every i (where Φ is optimalfor the transport between ρ and µ.The proof of this proposition could easily be done using the standardmethodin calculus of variations and a reasoning similar to that of Lemma 2. Instead, wereformulate this problem as a finite dimensional one, in the spirit of the under-lying semi-discrete optimal transport:We define the optimal quantization error function:

FN : Y ∈ (Rd)N 7→
W 2

2 (
1
N

∑N
i=1 δyi , ρ)

2
(3.2)

Then, FN enjoys the following properties:
Proposition 24. The function FN is 1

N
–semiconcave (see Definition 18) on (Rd)N

and is of class C1 on (Rd)N \ DN . Here, the singular "diagonal" set DN = {Y ∈
(Rd)N | ∃i ̸= jyi = yj} of point clouds of cardinal strictly less than N.

In addition, for any Y /∈ DN one has

∇FN(Y ) =
1

N
(Y −BN(Y )) (3.3)

where BN(Y ) = (b1(Y ), . . . , bN(Y )) and bi(Y ) is the ρ-barycenter of the ith optimal
Laguerre cell,

bi(Y ) = N

∫
Lagi(Y )

xdρ(x).

The proof of semiconcavity and regularity is almost identical to that of Propo-sition 11 and can be found, for instance, in Proposition 21 from [50]. Note alsothat FN is coercive and l.s.c and therefore, Proposition 23 is immediate.
Remark 6. Let us note here that (3.1) is not the widely used definition of optimalquantization of measures and usually, themasses of the Dirac are also variablesof the optimization. The problem is then:

inf

{
W 2

2 (µ, ρ)

2

∣∣∣∣∣ µ =
N∑
i=1

αiδyi , α ∈ ∆N

}
(3.4)
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Similar results as these of Proposition 23 are well-known for these problems,let us mention the book by Graf and Luschgy [32] as a reference for these prob-lems. In this case, the optimal positions are barycenters of their Voronoi cellsinstead of the Laguerre ones:
Vori(Y ) =

{
x ∈ Rd, ∥x− yi∥2 ≤ ∥x− yj∥2

∣∣ for j = 1, . . . , N
} (3.5)

(which are Laguerre cells for a set of weights Φ = 0) and the optimal masses αiare given by the semi-discrete optimality conditions
αi = ρ(Vori(Y )).

A reason (or at least a feature) to fix the masses in Eq. (3.1) is to obtain a dis-tribution of points for which the local density of points is related to the sampleddensity ρ. Indeed, at regions where ρ becomes larger, the Dirac masses of µ cor-respond to very small (in the sense of their Lebesguemeasure) Laguerre cells of
ρ-measure 1/N , allowing a lot more points to fit in these regions for the optimalmeasure. On the contrary, an optimal µ for Problem (3.4) features more similarshapes of cells, compensating for this with lower/higher values in front of thecorresponding Dirac masses. In particular, it is well-known that for a minimizerof Problem (3.4),

µ ∈ argmin
{
W 2

2 (µ̃, ρ) | Card(spt(µ̃) ≤ N)
}
,

if one defines the uniform measure on the suport of µ:
µ̂ =

1

Card(µ)

∑
y∈spt(µ)

δy,

then, µ̂ narrowly converges towards ρ 2
2+d . The concave power showcases wellthe uniformization of the Dirac masses’ positions in spt(µ).

In the remainder of this chapter, for Y ∈ (Rd)N , we denote the uniform prob-ability measure supported on the points in Y , µY := 1
N

∑N
i=1 δyi .This way, ourquantization energy rewrites:

FN(Y ) =
W 2

2 (ρ, µY )

2
.

Other than in dimension 1, neither Problem (3.1), nor its Voronoi counterpart(3.4) are convex with respect to the positions of the Dirac masses. In particular,
FN could admit several minimizers and, often, several critical points which are
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not even local minimizers. For instance, if ρ ≡ 1 on the unit square Ω = [0, 1]2,one can check (Fig. 3.1) that the point cloud
YN =

((
1

2N
,
1

2

)
,

(
3

2N
,
1

2

)
, . . . ,

(
2N − 1

2N
,
1

2

))
represented on the left of the figure, or the 4N -points cross-shaped one

YN =
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1

2
+

2

3
√
N
,
1

2

)
,
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1

2
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2

3
√
N
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1

2

)
,

. . . ,
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√
N − (N − 1)

√
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on the right are critical points of FN but not minimizers. In fact, these criticalpoints become arbitrarily bad as N → +∞ in the sense that

lim
N→+∞

FN(YN)
minFN

= +∞.

On the other hand, actual minimizers correspond (as expected) to good ap-proximations of ρ, in the sense that their quantization error vanishes asN →∞.This is a direct consequence of the upper bound given by the estimates (2.12)mentioned in Chapter 1:

minFN = min
Y ∈(Rd)N

1

2
W 2

2 (µY , ρ) ≲


N− 2

d if d > 2

N−1 logN if d = 2

N−1 if d = 1.

(3.6)
Note here that a consequence of the observation in Section 3.3 below is thatthe constant in these bounds depends of ρ, and can verymuch degeneratewhen

ρ is allowed to be a function of N (see Section 3.3).
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Figure 3.1: Critical points forF20 (on the left) andF40 (on the right) for a sampleddensity ρ = dx. The Laguerre cells of each point are also drawn, and featuresome very characteristic anisotropic dimensions.
3.2 Lloyd’s algorithm for optimal uniform quanti-

zation
Considering thenon-convex behaviormentioned in theprevious section, itmightseem-counter-intuitive that the main algorithm used to numerically approxi-mate optimal quantization measures is a gradient descent algorithm, with largestep-size. This algorithm was already recommended in Balzer et al. [7], whichis commonly considered as the first use of Laguerre cells as an alternative toVoronoi ones to do quantization of measures. It consists, similarly to the al-gorithm used for non-uniform quantization from which it borrows its name, insending each point of an initial point cloud to the ρ-barycenter of their respectiveLaguerre cells, and reiterating until some stopping criterion is attained:
Algorithm 1: Lloyd’s Algorithm
Input: N > 0, YN ∈ (Rd)N

Φ← (0)N ;
Y ← YN ;
B ← YN ;
while StoppingCriterion not reached doCompute the optimal weights Φ← Φopt(Y );Compute the barycenters of the Laguerre cells B ← BN(Y );Send each point to the corresponding barycenter Y ← B

Output: Y a quasi-critical point cloud
Let us come back to the gradient expression from Proposition 24 to see that
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the algorithm above is also a discrete gradient descent, for the functionalN.FN ,which we summarize as the system:{
Y 0 ∈ (Rd)N

Y k+1 = Y k + τN(BN(Y
k)− Y k)

(3.7)
Taking τN = 1, one indeed recovers the iterations of Lloyd’s algorithm.

First, we mention some preliminary results for the possible limits of (3.7):
Proposition 25. Let N be a fixed integer and Y 0 ̸∈ DN . Then:

• The iterates (Y k)k≥0 ∈ (Rd)N of the Lloyd algorithm are all well defined and in
fact, the sequence (Y k)k≥0 belongs to a compact subset of (Rd)N \ DN .

• The energy k 7→ FN(Y k) is decreasing, and limk→+∞
∥∥∇FN(Y k)

∥∥ = 0.

Proof. Given Y = (y1, . . . , yN) ∈ (Rd)N \ DN , one has for any i ∈ {1, . . . , N},∫
Lagi(Y )

∥x− yi∥2 dρ(x) =
∫
Lagi(Y )

∥x− bi(Y ) + bi(Y )− yi∥2 dρ(x)

=

∫
Lagi(Y )

∥x− bi(Y )∥2 dρ(x) + 1

N
∥bi(Y )− yi∥2 .

Summing these equalities over i, we get
1

N
∥BN(Y )− Y ∥2 = W 2

2 (ρ, µY )−
∑
i

∫
Lagi(Y )

∥x− bi(Y )∥2 dρ(x)

≤ W 2
2 (ρ, µY )−W 2

2 (ρ, δBN (Y )).

Thus,
N ∥∇FN(Y )∥2 = 1

N
∥B(Y )− Y ∥2 ≤ 2(FN(Y )−FN(B(Y ))). (3.8)

This implies that the values ofFN are decreasing during the Lloyd algorithm,as long as it can be performed.
Next up, let us show that the sequence evolves in a compact subset of (Rd)N \ DN ,proving that these iterations can indeed be performed indefinitely:Assume that Y k ∈ (Rd)N \DN . Since ρ is absolutely continuous, it is uniformlyintegrable which means that for every ε > 0 there is δ = δ(ε) > 0 such that forany set A with Lebesgue measure |A| < δ we have ρ(A) < ε. On the other hand,

ρ is supported on the compact domain Ω and, as such, inside a ball B(0, R). Weclaim that we have |bi(Y ) − bj(Y )| ≥ r := δ( 1
2N

)/(ωd−1R
d−1) and in fact, that
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every barycenter bi(Y ) is at distance at least r/2 from each face of the convexpolytope Lagi(Y ).Indeed, let us take i ∈ {1 . . . N} and assume that one of the faces of Lagi(Y k)lies on the hyperplane {xd = 0} while the whole cell is located on top, inside
{xd ≥ 0}. Let s > 0 be such that half of the mass of Lagi(Y k) is located below
xd = s:

ρ(Lagi(Y
k) ∩ {xd ≤ s}) = 1

2N

The Lebesgue measure of this "bottom half" is upper bounded by ωd−1R
d−1ssince Ω ⊂ B(0;R) and therefore, s ≥ r with the previous definition. Since halfof the mass (according to ρ) of the cell Lagi(Y ) is above the level xd = s the

xd-coordinate of the barycenter is at least r/2. This shows that the ρ-barycenterlies at distance at least r/2 from each of its faces and therefore at distance r ofthe other barycenters. On the other hand, boundedness of the sequence (Y k)kimmediately follows from the fact that FN(Y k) is upper bounded by FN(Y 0).Indeed, the second order moment of 1
N

∑N
i=1 δyki is bounded by its Wassersteindistance to ρ:

1

N

N∑
i=1

∥∥yki ∥∥2 ≤2
(

N∑
i=1

∫
Lagi(Y )

∥∥yki − x∥∥2 + ∥x∥2 dρ(x)
)

≤2

(
W 2

2

(
1

N

N∑
i=1

δyki , ρ

)
+max

x∈Ω
∥x∥2

)
≤ 2FN(Y 0) + C.

As a consequence, the iterations Y k lie in a compact subset of (Rd)N \ DN .Furthermore, since (FN(Yk))k∈N is bounded from below, we immediately get by
applying (3.8) to Y k and then summing in k, that∑+∞

k=1

∥∥∇FN(Y k)
∥∥2 < +∞ andin particular,

lim
k→+∞

∥∥∇FN(Y k)
∥∥ = 0.

For the non-uniform version of the quantization problem, convergence re-sults for the algorithm (only to a critical point, but not up to a subsequence) canbe found in [21] and [10]. These claims rely on the assumption that there is onlya finite number of centroidal diagrams with the same energy (meaning, in ourcase, a finite number of critical point clouds for FN with the same value of FN ),which is usually a hypothesis of genericity. Under this assumption, we can alsoconclude positively to the convergence of the whole sequence Y k to a criticalpoint forFN , using the following proposition which implies in particular that theset of limit points is a finite connected set, i.e. a singleton:
Proposition 26. Let N , Y 0 ̸∈ DN and (Y k)k≥0 be as in the previous Proposition 25.
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Then all limit-points of (Y k)k≥0 are critical points for FN and FN is constant on
this limit set. Furthermore, this set of limit points is a compact connected set with
empty interior.

Proof. For convenience, let us call A the set of limit points of (Y k)k≥0.
Since FN is decreasing along the iterations of the Lloyd algorithm, all thelimit points in A must have the same value of FN . Furthermore, the conver-gence ∥∥∇FN(Y k)

∥∥ → 0 along these iterations, together with the fact that theyremain in a compact set upon which FN is C1 implies that any point of A mustbe a critical point.
Compactness ofA is immediate from the fact thatA is constituted of the limitpoints of a bounded sequence in (Rd)N and therefore is closed and bounded,by a diagonal argument.
There is a similar result for the connectedness of such a set of limit points,but we will recall the proof:
Assume that we can take U open such that A ⊂ U ∪ ˚(U c) and let us obtain acontradiction. Then, one can define an extractor ϕ by induction:{

ϕ(0) = min{k ≥ 0 | Y k ∈ U, Y k+1 ∈ U c}
ϕ(i+ 1) = min{k > ϕ(i) | Y k ∈ U, Y k+1 ∈ U c}.

ϕ(i) is well defined for i ≥ 0, otherwise either A ⊂ U or A ⊂ ˚(U c). Using com-pactness, and up to another extraction, we can assume that Y ϕ(i) converges
towards a ∈ U ∩ A whereas Y ϕ(i)+1 converges towards b ∈ ˚(U c) ∩ A. But, werecall that for any i,∥∥Y ϕ(i)+1 − Y ϕ(i)

∥∥2 ≤ 2N(FN(Y ϕ(i))−FN(Y ϕ(i)+1))

and therefore, taking the limit as i→∞, we have a contradiction a = b, since theright-hand side goes to 0 (recall that F is constant and continuous at any pointof A).
Finally, assume that there exists a ∈ A and r > 0 such that B(a, r) ⊂ A. Take

ak = Y ϕ(k) a subsequence of (Y k)k≥0 converging to a. Then there exists a rankKsuch that ak ∈ B(a, r) for any k > K and after the rank ϕ(K), (Y k)k≥ϕ(K) wouldbe stationary, equal to a, since∇FN = 0 onB(a, r). This is a contradiction to thefact that there are other limit points of A in this ball.
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We can observe on the "bad" critical points in Fig. 3.1 that the point cloud YNis highly concentrated, in the sense that the distance between two points in YN isat the lowest 1
2N
, whereas in an evenly distributed point cloud, one would expecttheminimumdistance between points to be of orderN−1/2 in this 2-dimensionalsetting.In fact, this is a widely admitted starting condition, when using Lloyd algo-rithm (1), that the initial points be well spaced in the domain Ω. However, to ourknowledge, no mathematical proof of this dependency on the initial conditionshas been given in the literature so far.From there, one could ask oneself whether or not it is easy to choose aninitial Y 0 such that Lloyd algorithm ends up converging to an actual minimizer(or at least close to a good local one). It turns out that this is a highly nontrivialquestion (see Section 3.4 for our very partial answer). However, a very surpris-ing experimental fact is that one step of the Lloyd algorithm is in fact enoughto obtain a discrete measure very close to the density ρ (in the sense of FN ),provided one did not start from an adversely chosen point cloud.We now state the main result of this section, which quantifies the error onthis 1-step approximation. We will use the following notation for ε > 0:
Iε(Y ) = {i ∈ {1, . . . , N} | ∀j ̸= i, ∥yi − yj∥ ≥ ε}

and
DN,ε = {Y ∈ (RN)d | ∃i ̸= j, ∥yi − yj∥ ≤ ε}.

Note that DN,ε is an ε-neighborhood around the generalized diagonal DN .
Theorem 27 (Quantization by barycenters). Let Ω ⊆ Rd be a compact convex set,
ρ a probability density onΩ and consider a point cloud Y = (y1, . . . , yN) inΩN \DN .
Then, for all 0 < ε ≤ 1,

W 2
2

(
ρ,

1

N

N∑
i=1

δbi(Y )

)
≤ Cd,Ω

(
ε1−d

N
+ 1− Card(Iε(Y ))

N

)
. (3.9)

where Cd,Ω = 22d−1

ωd−1
(diam(Ω) + 1)d+1 and where ωd−1 is the volume of the unit ball

in Rd−1.

Notice here that, unlike in the rates of (3.6), the constant does not dependon ρ. However, this comes with a tradeoff, as the exponent inN becomes muchworse.The proof relies on a sort of concavity for the Laguerre cells, with respect totheir weights. Let us recall our notation A ⊕ B for the Minkowski sum of sets:
A⊕B = {a+ b | (a, b) ∈ A×B}.
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Proof. Wedenoteµ = 1
N

∑N
i=1 δyi and the correspondingmeasure on thebarycen-

ters B(Y ): µb = 1
N

∑N
i=1 δbi(Y ).Let ϕ1 ∈ RN be a solution to the dual Kantorovich problem (1.8) between ρand µ. We let ϕt = tϕ1 and we denote Lagti = Lagi(Y, ϕ

t) ∩ Ω′ the ith Laguerrecell intersected with the slightly enlarged convex set Ω′ = Ω⊕B(0, 1). This way,
Lag1i ⊇ Lagi(Y ) ∩ Ω whereas Lag0i is in fact the intersection of the i-th Voronoicell defined in (3.5) with Ω′.We will now prove an upper bound on the sum of the diameters of the cells
Lagi(Y ) whose index lies in Iε(Y ). First, we notice the following inclusion, whichholds for any t ∈ [0, 1]:

(1− t)Lag0i ⊕ tLag1i ⊆ Lagti, (3.10)
Indeed, let x0 ∈ Lag0i and x1 ∈ Lag1i , so that for all j ∈ {1, . . . , N} and k ∈ {0, 1},∥∥xk − yi∥∥2 − ϕki ≤ ∥∥xk − yj∥∥2 − ϕkj .
Expanding the squares and substracting ∥∥xk∥∥2 on both sides these inequalitiesbecome linear in ϕki , ϕkj and xk, implying as desired:

xt = (1− t)x0 + tx1 ∈ Lagti.

For any index i ∈ Iε, the point yi is at distance at least ε from other points,implying that B(yi,
ε
2
) is contained in the Voronoi cell Vi(Y ) defined using Ω′.Using that Lag0i = Vi(Y ) ∩ Ω′, that Ω′ = Ω ⊕ B(0, 1) and that yi ∈ Ω, we deducethat Lag0i contains the same ball. On the other hand, Lag1i contains a segment

Si of length diam(Lag1i ) and inclusion (3.10) with t = 1
2
gives

1

2
(B(yi, ε/2)⊕ Si) ⊆ Lag

1/2
i .

The Minkowski sum in the left-hand side contains in particular the product of a
(d − 1)-dimensional ball of radius ε/2 with an orthogonal segment with length
diam(Lag1i ) ≥ diam(Lagi(Y )). Thus,

1

2d

(
ωd−1

εd−1

2d−1
diam(Lagi(Y ))

)
≤ |Lag1/2i |.

Using that the Power cells Lag 1
2
i form a tesselation of the domain Ω′, we obtain

∑
i∈Iε(Y )

diam(Lagi(Y )) ≤ 22d−1

ωd−1

|Ω′|ε1−d ≤ 22d−1

ωd−1

(diam(Ω) + 1)dε1−d (3.11)
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We now estimate the transport cost between µb and the density ρ. The cost dueto the points whose indices do not belong to Iε(Y ) can be bounded in a crudeway by
∑

i ̸∈Iε(Y )

∫
Lagi(Y )

∥x− bi∥2 dρ(x) ≤ (1− CardIε(Y )

N
)diam(Ω)2.

Note that we used ρ(Lagi(Y )) = 1
N
. On the other hand, the transport cost as-sociated with indices in Iε(Y ) can be bounded using (3.11) and and the fact that

bi(Y ) ∈ Lagi(Y ):
∑

i∈Iε(Y )

∫
Lagi(Y )

∥x− bi∥2 dρ(x) ≤
1

N

∑
i∈Iε(Y )

diam(Lagi(Y ))2

≤ 1

N
diam(Ω)

∑
i∈Iε

diam(Lagi(Y ))

≤ 22d−1

ωd−1

(diam(Ω) + 1)d+1 ε
1−d

N

In conclusion, we obtain the desired estimate:
W 2

2 (ρ, µb) ≤
22d−1

ωd−1

(diam(Ω) + 1)d+1 ε
1−d

N
+ diam(Ω)2

(
1− CardIε

N

)
≤ 22d−1

ωd−1

(diam(Ω) + 1)d+1

(
ε1−d

N
+

(
1− CardIε

N

))
.

Note that this result is actually true for more general costs (not only for thequadratic one). The proof of such result make use of a very natural change ofvariable by taking the so-called c-exponential map. Let us consider a cost c on
Rd × Rd such that (we use here the notations from Loeper [43]):
(A0) c is C4 on Ω′ × Ω with Ω′ := Ω + B̄(0, η).
(A1) c verifies the following twist condition on the whole domain Ω′ (which istechnically a twist condition on c∗ : (x, y) 7→ c(y, x)):

∀y ∈ Ω, x ∈ Ω′ 7→ Dyc(x, y)

is injective.
(A2) For all (x, y) ∈ Ω′ × Ω, det(D2

x,yc(x, y)) ̸= 0.
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This allows the definition for Y ∈ ΩN of the c-exponential maps
expcyi : p ∈ Ωi → (−Dyc(., yi))

−1(p) ∈ Ω′

where the sets Ωi (the c-exponential charts) are taken such that these maps are
C1,1 diffeormorphisms. Let us note here ([43], Definition 2.6) that, under con-ditions A0 − A2, these maps are bi-lipshitz with constants that do not dependon the point cloud considered: There exists Kc,Ω > 0 such that for any Y ∈ ΩN ,
i = 1 . . . N and p1 ̸= p2 ∈ Ωi,

1

Kc,Ω

≤
∥∥expcyi(p1)− expcyi(p

2)
∥∥

∥p1 − p2∥
≤ Kc,Ω (3.12)

We make the additional following assumption, which is a stronger version ofLoeper’s condition (Aw) of [43] Theorem 3.2,which is itself a reformulation ofthe celebrated Ma-Trudinger-Wang condition for the regularity of the transport,[44]). Note that this stronger condition is known from the work of Kim, Figalliand McCann [26] as The Non-Negative-Cross-Curvature (NNCC) condition andis equivalent, under the previous regularity conditions on c, to convexity of theset of c-concave functions (which is essentially the arguments that we use in ourproof).We assume that for any Y ∈ ΩN and i ∈ {1 . . . N}, the exponential charts
Ωi = −Dxc(Ω, yi) are convex and that Loeper’s functions:

p ∈ Ωi 7→ c(expcyi(p), yi)− c(exp
c
yi
(p), yj) (3.13)

are convex for any j.This assumption is stronger than the usual Loeper’s condition (Aw) wherethese functions were only assumed to be quasi-convex (meaning that their sub-level sets are convex). With these definitions, we can make the correspondingclaim to Theorem 27:
Theorem 28. Let c,Ω and (Y ∈ Rd)N be defined as above in order to verifyA0−A2
and the (NNCC) condition. Then, there exists C > 0 such that for any ρ a probability
density, 0 ≤ ε ≤ 1:

Ic

(
1

N

N∑
i=1

δbi(Y ), ρ

)
≤ Cc,d,Ω

(
ε1−d

N
+ 1− Card(Iε(Y ))

N

)
(3.14)

with a constant Cc,d,Ω that only depends on the cost c and the domain Ω ⊂ Rd.

Proof. The proof is very similar to that of Theorem 27, and the stronger Loeper’scondition is used to obtain a similar concavity of the Laguerre cells with respect
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to their weights, only this time through the exponential maps expci . Indeed, withthe notations of the proof of Theorem 27, the Laguerre cells are defined by
c(x, yi)− c(x, yj) ≤ ϕi − ϕj

and the convexity of Loeper’s functions gives us again the "convexity of the La-guerre cells", in the following sense:if x0 = expcyi(p0) ∈ Lag0i , x1 = expcyi(p1) ∈ Lag1i , then
x1/2 = expcyi

(
1

2
p0 +

1

2
p1

)
∈ Lag

1/2
i .

Because of the bi-Lipschitz condition (3.12), the assumption i ∈ Iε implies that
(expcyi)

−1(Vori(Y ) ∩ Ω′) contains a ball of radius Kc,Ω
ε
2
. Similarly, for every i,

(expcyi)
−1(Lag1i ∩ Ω′) contains a segment of lengthKc,Ωdiam(Lag1i ∩ Ω′).To finish the proof, we rephrase the same arguments on the size of the in-termediate Laguerre cells, but in the exponential chart instead of Ω′. For conve-nience sake, we rewrite cLagti := (expcyi)

−1(Lagti ∩ Ω′) and we obtain:
Kd
c,Ω

2d

(
ωd−1

(ε
2

)d−1

diam(cLag1i )

)
≤ |cLag1/2i |

Again, this gives us an upper bound on the sum of the diameters of the La-guerre cells, since the Lebesgue measure of the sets Ωi are uniformly boundedby a constant that does not depend on Y (because of the bi-Lipschitz bound onthe c-exponentialmaps, once again). The transport costs on the points whose in-
dices are not in Iε(Y ) are once again crudely upper boundedby(1− CardIε(Y )

N

)
supΩ2 c.

The rest of the proof is identical, noting that c(x, yi) ≤ L ∥x− yi∥with a constant
L that depends only on c and Ω.

Theorem 27 could be extended mutatis mutandis to the case where ρ is ageneral probabilitymeasure (i.e. not a density). However, this would imply sometechnical complications in the definition of the barycenters bi by introducing adisintegration of ρ with respect to the transport plan π.An immediate application is the case, mentioned earlier, where the pointsare spread in a pattern of dimension close enough to d, in some sense. Moreprecisely, we assume that the distance between any pair of distinct points of
YN ∈ (Rd)N is bounded from below by εN ≥ CN−1/β , implying that IεN (YN) =
N . This corresponds to the value one could expect for a point cloud uniformlysampled from a set with Minkowski dimension β. When β > d− 1, the followingcorollary asserts that one step of Lloyd’s algorithm is enough to approximate ρ,in the sense that the uniform measure δBN (YN ) over the barycenters convergestowards ρ as N → +∞ (with an exponential convergence rate):
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Corollary 28.1 (Quantization by barycenters, asymptotic case). Assume εN ≥
C ·N−1/β with C, β > 0. Then, with α = 1− d−1

β

∀Y ∈ (Rd)N \ DεN , W 2
2

(
ρ,

1

N

N∑
i=1

δbi(Y )

)
≤ Cd,Ω
Cd−1

N−α, (3.15)

and in particular, if β > d− 1,

lim
N→+∞

max
Y ∈(Rd)N\DεN

W 2
2

(
ρ,

1

N

N∑
i=1

δbi(Y )

)
= 0. (3.16)

Remark 7. Let us make a note here that the results of Theorem 27 are tight inthe following two sense:
• (Optimality of the exponent when β = d) There is no reason to believe thatthe exponent in the upper bound (3.15) is optimal in general. However, itseems to be optimal in a “worst-case sense” when β = d:
More precisely, for any dimension d, n ∈ N andN = nd, there exists a sep-arable probability density ρN overX = [−1, 1]d such that if YN is a uniformgrid of size n× · · · × n = N in X , then

W 2
2

(
1

N

N∑
i=1

δbi(Y N ), ρN

)
≥ CN− 1

d ,

whereC is independent ofN . Notice, on the other hand, that in this settingevery point in YN is at distance at least CN−1/d from any other point in YN .Applying 28.1 with β = d, i.e. α = 1
d
, we get

W 2
2

(
1

N

N∑
i=1

δbi(Y N ), ρN

)
≤ C ′N− 1

d .

Comparing this upper boundwith the previous lower bound, one sees thatit is not possible to improve the exponent while keeping a constant inde-pendent of ρ.
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• (Optimality of (3.16)) The assump-tion β > d− 1 for (3.16) is tight:
If ρ is the Lebesgue measure on
[0, 1]d, it is possible to construct apoint cloud YN with N points onthe (d−1)-cube {1

2
}×[0, 1]d−1 suchthat distinct points in YN are at dis-tance at least εN ≥ C · N−1/(d−1)

(see figure on the right).
Then, the barycenters B(Y N)are also contained in the lower-dimensional cube, so that
W 2

2

(
ρ,

1

N

N∑
i=1

δbi(Y N )

)
≥ 1

12
.

The next corollary is a probabilistic analogue of Corollary 28.1, assuming thatthe initial point cloud Y is drawn from a probability density σ on Ω. Note that σcan be distinct from ρ. The proof of this corollary relies on McDiarmid’s inequal-ity to quantify the proportion of ε-isolated points in a point cloud that is drawnrandomly and independently according to σ.
Corollary 28.2 (Quantizationbybarycenters, probabilistic case). Consider a prob-
ability measure σ ∈ L∞(Ω)∩P(Ω) and letX1, ..., XN be i.i.d. random variables with
distribution σ. Then, there exists a constant C > 0 depending only on ∥σ∥L∞ and d,
such that for N large enough,

P

(
W 2

2

(
1

N

N∑
i=1

δbi(X), ρ

)
≲ N− 1

2d−1

)
≥ 1− e−CN

2d−3
2d−1

In a point cloud Y, we shall call ε-isolated the points yi such that i ∈ Iε(Y ),and ε-connected points yi such that i ̸∈ Iε(Y ). Let us also introduce, in the hopeof making the proofs clearer, the proportion of ε-isolated points in Y :
κ(Y ) =

1

N
Card(Iε(Y )).

Lemma 5. Let X1, . . . , XN be independent, Rd-valued, random variables. Then,
there is a constant Cd > 0 such that

P({|κ(X1, . . . , XN)− E(κ)| ≥ η}) ≤ e−Nη
2/Cd .
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Proof. This lemma is a consequence of McDiarmid’s inequality. To apply thisinequality, we need evaluate the amplitude of variation of the function κ alongchanges of one of the points xi. Denote cd the maximum cardinality of a subset
S of the ball B(0, ε) such that the distance between any distinct points in S is atleast ε. By a scaling argument, one can check that cd does not, in fact, dependon ε. To evaluate

|κ(x1, . . . , xi, . . . , xN)− κ(x1, . . . , x̃i, . . . , xN)|,

we first note that at most cd pointsmay become ε-isolated when removing xi. Toprove this, we remark that if a point xj becomes ε-isolated when xi is removed,this means that ∥xi − xj∥ ≤ ε and ∥xj − xk∥ > ε for all k ̸∈ {i, j}. The number ofsuch j is bounded by cd. Symmetrically, theremay be atmost cd points becoming
ε-connected under addition of x̂i. Finally, the point xi itself may change statusfrom ε-isolated to ε-connected. To summarize, we obtain that with Cd = 2cd+1,

|κ(x1, . . . , xi, . . . , xN)− κ(x1, . . . , x̃i, . . . , xN)| ≤
1

N
Cd.

The conclusion then directly follows from McDiarmid’s inequality.
Lemma 6. Let σ ∈ L∞(Rd) be a probability density and let X1, . . . , XN be i.i.d.
random variables with distribution σ. Then,

E(κ(X1, . . . , XN)) ≥ (1− ∥σ∥L∞ωdε
d)N−1.

Proof. The probability that a pointXi belongs to the ballB(Xj, ε) for some j ̸= icanbebounded fromabovebyσ(B(Xj, ε)) ≤ ∥σ∥L∞ωdε
d, whereωd is the volumeof the d-dimensional unit ball. Thus, the probability thatXi is ε-isolated is largerthan

(1− ∥σ∥L∞ωdε
d)N−1.

We conclude by noting that
E(κ(X1, . . . , XN)) =

1

N

∑
1≤i≤N

P(Xi is ε-isolated).

Proof of Corollary 28.2. We apply the previous Lemma 6 with εN = N− 1
β and β =

d− 1
2
. The expectation of κ(X1, . . . , XN) is lower bounded by:

E(κ(X1, . . . , XN)) ≥
(
1−N− d

β ∥σ∥L∞ωd

)N−1

≥1− CN1− d
β
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for large N , since β < d. By Lemma 5, for any η > 0,
P(κ(X1, . . . , XN) ≥ 1− CN1− d

β − η) ≥ 1− e−KNη2 ,

for constants C,K > 0 depending only on ∥σ∥L∞ and d. We choose η = N− 1
2d−1 ,

so that η is of the same order as N1− d
β since 1 − d

β
= − 1

2d−1
.Thus, for a slightlydifferent C ,

P(κ(X1, . . . , XN) ≥ 1− Cη) ≥ 1− e−KNη
2

.

Now, for ω1, . . . , ωN such that
κ(X1(ω1), . . . , XN(ωN)) ≥ 1− Cη,

Theorem 27 yields:
W 2

2

(
δBN (X(ω)), ρ

)
≲
N

d−1
β

N
+ η ≲ N− 1

2d−1

and such a disposition happens with probability at least
1− e−KNη

2

= 1− e−KN
2d−3
2d−1

.

Finally, theorem 27 can be interpred as a modified Polyak-Łojasiewicz-type(PŁ for short) inequality for the function FN . The usual PŁ inequality for a differ-entiable function F : RD → R is of the form
∀Y ∈ RD, F (Y )−minF ≤ C ∥∇F (Y )∥2 ,

whereC is a positive constant. This inequality has been originally used by Polyak[57] to prove convergence of gradient descent towards the global minimum of
F . Note in particular that such an inequality implies that any critical point of F isa global minimum of F . As could be seen on Fig. 3.1, FN has critical points thatare not minimizers, so that we cannot expect the standard PŁ inequality to hold.What we get is a similar inequality relating FN(Y ) and ∥∇FN(Y )∥2 but with aterm involving the minimimum distance between the points in place ofminFN .
Corollary 28.3 (Polyak-Łojasiewicz-type inequality). Let Y ∈ (Rd)N \ DN,ε. Then,

FN(Y )− Cd,Ω
1

N

(
1

ε

)d−1

≤ N ∥∇FN(Y )∥2 (3.17)
Proof. We first note that by Proposition 24, we have

∥∇FN(Y )∥2 = 1

N2
∥BN(Y )− Y ∥2 .
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We then useW 2
2 (δBN (Y ), δY ) ≤ 1

N
∥BN(Y )− Y ∥2 to get:

W 2
2 (ρ, δY ) ≤ 2W 2

2 (ρ, δBN (Y )) + 2N ∥∇FN(Y )∥2 .

Thus, using Theorem 27 to boundW 2
2 (ρ, δBN (Y )) from above, we get the desiredresult.

We note that when ε ≃ ( 1
N

)1/d, the term 1
N

(
1
ε

)d−1 in (3.17) has order ( 1
N

)1/d.
On the other hand, we recall (3.6),minFN ≲

(
1
N

)2/d when d > 2. Thus, inequality
(3.17) is not truly a PŁ-inequality, as the order of the second term 1

N

(
1
ε

)d−1 is notthat of the minimum of F .

3.3 Numerical results

In this section, we report some experimental results in dimension d = 2. This isby no means a performance study, but rather a set of observations, related tothe theoretical convergence results of the previous sections. For actual efficientimplementations for uniform quantization of measure, and in particular speedcomparisons, we refer the reader to articles on Blue Noise Sampling, [17] forcomputations using Lloyd’s algorithm and [70] for a more general overview.
Gray-scale picture A first, somewhat toy-, application for optimal quantiza-tion is the sparse representation of a grey-scale image, via points clusteringmore closely in darker areas. On figure 3.2, we plotted the point clouds obtainedafter a single Lloyd step toward the density representing the image on the left(Puffin), starting from regular grids. Underneath the pictures are the graphs, inlog-log scale of the quantization error with respect to the number of points. Theobserved rates of convergence, close toN−1.00, are coherent with the theoreticalestimateO(log(N)/N) of (3.6). In the background of the Puffin, one can also ob-serve that some structure of the starting grid has been conserved after the Lloydstep. These artefacts are actually symptomatic of a remarkable phenomenon,which is that Laguerre cells with respect to a separable density on one side anda grid-structured point cloud on the other will also be aligned along a grid. Thisresult is proven in the next chapter, Proposition 33.
Examples in separable cases: In this example, we showcase the optimalityof the exponent in Corollary 28.1, even under assumptions of regularity on theunderlying density.
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Figure 3.2: Approximative optimal quantization of a density ρ correspondingto a gray-scale image (Wikimedia Commons, CC BY-SA 3.0). (Middle) We displaythe point clouds obtained after one step of Lloyd’s algorithm, starting from aregular grid of size N ∈ {3750, 7350, 15000, 43350}. (Bottom) Quantization error
W 2

2 (ρ, δBN
) as a function ofN the number of points, showing thatW 2

2 (ρ, δBN
) ≃

N−1.00.
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Figure 3.3: Point clouds obtained after one step of the Lloyd algorithm in thesampling of the Gaussian density represented on the top left. The point cloudson top were constructed starting from a random initial distribution of 400,961,1600 and 2500 points. The ones on the bottom were reached from an ini-tial point cloud aligned on a regular grid (of the same sizes).
We first observewhat happenswhen the approximated density is a Gaussianone (truncated to the unit square Ω = [0, 1]2), with low variance:

ρ(x, y) =
1

Z
e−8((x− 1

2
)2+(y− 1

2
)2)

where Z is a normalization constant. In the experiments represented on the leftcolumn of Fig. 3.3, the initial point clouds Y 0
N are randomly sampled uniformly in

[0, 1]2, and the subsequent pictures represent the barycenters of the Laguerrecells. In this case, we observe a decrease rate for the quantization energyN−0.95

with respect to the number of points, similar to the case of the gray scale imageson Fig. 3.2.However, when starting from a regular grid (pictures on the left of Fig. 3.3),we observed a similar grid-like formation for the barycenters, which is stable(meaning the Lloyd algorithm does not move the points after the first step). Thisformation also gave us a much worse quantization error, of the order ofN−0.78.Of course, the cause of this behavior is the separability of the density in thiscase (meaning a Gaussian one). This comes down directly from the same con-figuration in dimension one, using the factorization of the Laguerre cells in theseparable case (Proposition 33):
Proposition 29. For any σ > 0, consider ρσ := mσe

− |x|2

2σ2 1[−1;1]dx the truncated
centered Gaussian density, where mσ is taken so that ρσ has unit mass. Then, for
every δ ∈ (0, 1), there exists a constant C > 0 and a sequence of variances (σN)N∈N
such that

∀Y ∈ (Rd)N \ DN , W 2
2

(
δBN (Y ), ρσN

)
≥ CN−(2−δ)
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Proof. We denote g : x ∈ R 7→ 1√
2π
e−

|x|2
2 the density of the centered Gaussian

distribution and Fg its cumulative distribution function, so that
m−1
σ =

∫ 1

−1

e−
|x|2

2σ2 dx = σ
√
2π

∫ 1/σ

−1/σ

g(y)dy =
√
2πσ(Fg(1/σ)− Fg(−1/σ)) (3.18)

Note that, whenever σ → 0, we have σmσ → (
√
2π)−1. We denote the cumu-lative distribution function of ρσ by Fσ : [−1, 1] → [0, 1]. Given any point cloud

Y = (y1, . . . , yN) such that y1 ≤ · · · ≤ yN , the Power cells Pi(Y ) is simply thesegment
Pi(Y ) = [F−1

σ (i/N), F−1
σ ((i+ 1)/N)].

Since these segments do not depend on Y , we will denote them (Pi)1≤i≤N . Fi-nally, defining bi = N
∫
Pi
xdρσ(x) as the barycenter of the ith power cell and

µB = 1
N

∑
i δbi , we have
W 2

2 (µB, ρσ) =
N∑
i=1

∫
Pi

(x− bi)2dρσ(x)

≥ ρσ(−1)
N∑
i=1

∫
Pi

(x− bi)2dx

≥ Cρσ(−1)
N∑
i=1

(F−1
σ ((i+ 1)/N)− F−1

σ (i/N))3,

(3.19)

where we used that ρσ attains its minimum at ±1 to get the first inequality.We nowwish to provide an approximation for F−1
σ (t), t ∈ [0, 1]. We first note,using Taylor’s formula, that we have

F−1
σ (t) = σF−1

g

(
Fg

(
−1
σ

)
+ t

[
Fg

(
1

σ

)
− Fg

(
−1
σ

)])
= σF−1

g

(
Fg

(
−1
σ

)
+

t√
2πσmσ

)
= −1 + σ(F−1

g )′
(
Fg

(
−1
σ

))
t√

2πσmσ

+
σ

2
(F−1

g )′′(s)
t2

2πσ2m2
σ

for some s ∈ [Fg(− 1
σ
), Fg(− 1

σ
) + t(Fg(

1
σ
)− Fg(− 1

σ
))]. But,

(F−1
g )′(t) =

1

g ◦ F−1
g (t)

=
√
2πe

|F−1
g (t)|2

2 ,

(F−1
g )′′(t) = −

g′ ◦ F−1
g (t)(

g ◦ F−1
g (t)

)3 = 2πF−1
g (t)e|F

−1
g (t)|2 ,
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and we see that
|F−1
σ (t)−

(
−1 + t

mσ

e
1

2σ2

)
| ≤ e

1
σ2

t2

2σ2m2
σ

Therefore, if we denote ε(σ, t) the second-order error in the above formula,
i.e. ε(σ, t) = e

1
σ2 t2

2σ2m2
σ
, the size of the first Power cell P0(Y ) is of order:

F−1
σ (1/N)− F−1

σ (0) =
1

Nmσ

e
1

2σ2 +O

(
ε

(
σ,

1

N

))
.

We will choose σN depending on N in order for the first term in the left-handside to dominate the second one:
ε

(
σN ,

1

N

)
= o

(
1

Nmσ

e
1

2σ2

)
. (3.20)

In this way, we have
(F−1

σ (1/N)− F−1
σ (0))3ρσ(−1) ≥

c

N3m3
σ

e
3

2σ2mσe
− 1

2σ2

=
c

N3m2
σ

e
1
σ2 .

(3.21)

We now choose σ = σN such that e 1
2σ2 = Nα for an exponent α to be chosen.We need α > 0 so that σN → 0. This last condition and (3.18) implies thatmσN isof order √logN . This means that the condition (3.20) is satisfied if α < 1 and Nlarge enough.The sum in (3.19) is lower bounded by its first term, (3.21), and we get

W 2
2 (δB, ρσ) ≥ c

1

N3m2
σN

e
1

σ2
N ≥ C

(
N2α−3

ln(N)

)
for some constant C > 0, since σ depends logarithmically on N . Finally, if wewant this last expression to be larger thanN−(2−δ) we can take for instance 2α >
1 + δ and N large enough.
Corollary 29.1. Fix δ ∈ (0, 1). Given any n ∈ N, consider an axis-aligned discrete
grid of the form ZN = Y1× · · · × Yd in Rd, withN = Card(ZN) = nd, where each Yj
is a subset of R with cardinal n. Finally, define σN := σn,δ as in Proposition 29 Then
we have

W 2
2 (δBN (ZN ), ρσN ⊗ · · · ⊗ ρσN ) ≥ CN− (2−δ)

d ,

where the constant C is independent of N .
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Figure 3.4: A critical point for FN , with ρ given by (3.22), which realises a goodapproximation in the sense of Theorem 27, but does not realize a minimum for
FN , for large N .

Note that one can construct a much simpler example of a family of densi-ties that cannot be approximated by discrete uniformmeasures at a better rate(which, however, does not share the smoothness of ρσN ):This can be done, as for the Gaussian example in dimension d = 1 and thengeneralized to higher dimensions using separablemeasures (see Fig. 3.4 below):For N ∈ N∗ set
ρN :=

(
1

N + 1
1[−1;0] +

N

N + 1
1[0;1]

)
dx (3.22)

Then, the only critical point forFN (defined from the density ρN ) is the cloud:
YN =

(
−1

2
,
1

2N
,
3

2N
, . . . ,

2N − 1

2N

)
and

FN(YN) =
1

12N
+ oN→∞

(
1

N

)
.

Now, for any d, consider
ρdN := ρ⊗dN = ρN ⊗ · · · ⊗ ρN

on the domain [−1; 1]d. The point cloud Y ⊗d
N defined as the tensor product ofthe set of coordinates of YN d times with itself, is a critical point for FN (thistime with the density ρdN ) and it is the point cloud of barycenters B(Y ) for any

97



starting cloud Y aligned on the main axes, e.g. sampled on a regular grid. Usingthe decomposition of the Laguerre cells from Proposition 33, we obtain
FN(B(Y )) = FN(Y ⊗d

N ) =
d

12N
+ oN→∞

(
1

N

)
≥ C

(Nd)
1
d

which is the convergence rate of Corollary 28.1.

3.4 Applications to the initialization of some parti-
cle flows

Wefinish this chapter by studying the implication of Theorem 27 on the choice ofinitial datum for some minimizing movements, whose energy features a semi-discrete transport term. To clarify, we first consider the simple gradient flowof FN , giving us convergence bounds, but ones that cannot be used in practiceand consist more in a proof of concept. We then apply the same techniquesto the (more interesting) case of uncongested crowd motions as a Wassersteingradient flow.
Gradient flow for the uniform quantization energy: The modified Polyak-Łojasiewicz inequality (3.17) suggests that the discrete gradient flow (3.7) willbring us close to a point cloud with low Wasserstein distance to ρ, provided wecan guarantee that the the points in the clouds Y k remain far from the gener-alized diagonal DN during the iterations. We prove in Lemma 7 below that if
Y k+1 = Y k − τN∇FN(Y k) and τN ∈ (0, 1), then

∀i ̸= j,
∥∥yk+1

i − yk+1
j

∥∥ ≥ (1− τN)
∥∥yki − ykj ∥∥ . (3.23)

We note that this inequality ensures that Y k never touches the generalized diag-onal DN , so that the gradient ∇FN(Y k) is well-defined at each step (we alreadyproved an analogous result for the limit case τN = 1 in Proposition 25). Com-bining this inequality with Theorem 27, one can actually prove that if the pointsin the initial cloud Y 0
N are not too close to each other, then a few steps of gradi-ent discrete gradient descent leads to a discrete measure Y k

N that is close to thetarget ρ. Precisely, we arrive at the following theorem:
Theorem 30. Let 0 < α < 1

d−1
− 1

d
, εN ≳ N− 1

d
−α, and Y 0

N ∈ ΩN \ DεN . Let (Y k
N)k

be the iterates of (3.7) starting from Y 0
N with timestep 0 < τN < 1. We assume that
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limN→∞ τN = 0 and we set

kN =

⌊
1

dτN
ln(FN(Y 0

N)Nε
d−1
N )

⌋
.

Then,

W 2
2

(
ρ, δ

Y
kN
N

)
= ON→∞

(
W 2

2

(
ρ, δY 0

N

)1− 1
d
.N

−1

d2
+α(1− 1

d)
)
. (3.24)

Remark 8. Note that the exponential behavior implied by 3.23 and Lemma 7 iscoherent with the estimates that are known in the absolutely continuous settingfor the continuous gradient flow. When transitioning from discrete measures toprobability densities, lower bounds on the distance between points become up-per bounds on the density. The gradient flow µ̇t = −1
2
∇µW

2
2 (ρ, µt) has an explicitsolution µt = σ1−e−t , where σ is a constant-speed geodesic in the Wassersteinspace with σ0 = µ0 and σ1 = ρ. In this case, a simple adaptation of the esti-mates in Theorem 2 in [62] shows the bound ∥µt∥L∞ ≤ etd ∥µ0∥L∞ . Still in thisabsolutely continous setting, it is possible to remove the exponential growth ifthe target density is also bounded, as a consequence of displacement convexity[48, Theorem 2.2]. There seems to be no discrete counterpart to this argument,explaining in part the discrepancy between the exponent of N in (3.24) with theone obtained in Corollary 28.1.

Lemma 7. Let Y 0 ∈ (Rd)N \ DN,εN for some εN > 0. Then, the iterates (Y k)k≥0 of(3.7) satisfy for every k ≥ 0, and for every i ̸= j∥∥yki − ykj ∥∥ ≥ (1− τN)kεN (3.25)
Proof. We consider the distance between two trajectories after k iterations:

ek =
∥∥yki − ykj ∥∥ .

Assuming that ek > 0, the convexity of the norm immediately gives us:
ek+1 − ek ≥

(
yki − ykj∥∥yki − ykj ∥∥

)
·
(
yk+1
i − yk+1

j −
(
yki − ykj

))
=τN

(
yki − ykj∥∥yki − ykj ∥∥

)
·
(
bki − bkj

)
− τN

∥∥yki − ykj ∥∥
where we denoted bki := bi(Y

k
N) the barycenter of the ith Laguerre cell Lagi(Y k

N)in the tesselation associated with the point cloud Y k
N . Since each barycenter bki
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lies in its corresponding Laguerre cell, the scalar product (yki − ykj ) · (bki − bkj ) isnon-negative: Indeed, for any i ̸= j,∥∥yki − bki ∥∥2 − ∥∥ykj − bki ∥∥2 ≤ ϕki − ϕkj

Summing this inequality with the same inequality with the roles of i and jreversed, we obtain: (
yki − ykj

)
·
(
bki − bkj

)
≥ 0

thus giving us the geometric inequality ek+1 ≥ (1− τN)ek. Since Y 0
N was chosenin ΩN \ DN,εN , this yields ek ≥ (1− τN)ke0 and inequality 3.25.

Lemma 8. For any k ≥ 0

FN(Y k
N) ≤ FN(Y 0

N)η
k
N + 2Cd,Ω(1− ηN)

ε1−dN

N

AkN − ηkN
AN − ηN

, (3.26)
where we denote ηN = 1− τN

2
(2− τN) and AN = (1− τN)1−d.

Proof. This is obtained in a very similar fashion as Lemma 7. For any k ≥ 0, thesemi-concavity of FN yields the inequality:
FN(Y k+1

N )−
∥∥Y k+1

N

∥∥2
2N

−

(
FN(Y k

N)−
∥∥Y k

N

∥∥2
2N

)
≤
(
−B

k
N

N

)
·
(
Y k+1
N − Y k

N

)
with Bk

N := B(Y k
N) in accordance with the previous proof.Rearranging the terms,

FN(Y k+1
N )−FN(Y k

N) ≤− τN(1−
τN
2
)

∥∥Bk
N − Y k

N

∥∥2
N

=− τN(1−
τN
2
)W 2

2 (δBk
N
, δY k

N
)

≤τN(1−
τN
2
)

(
−1

2
W 2

2 (δY k
N
, ρ) +W 2

2 (ρ, δBk
N
)

)
by applying first the triangle inequality to W2(δBk

N
, δY k

N
). Using Theorem 27 andLemma 7, this yields:

FN(Y k+1
N ) ≤(1− τN

2
(2− τN))FN(Y k

N) + Cd,ΩτN(2− τN)
ε1−dN

N
(1− τN)k(1−d)

≤ηNFN(Y k
N) + 2Cd,Ω(1− ηN)

ε1−dN

N
AkN .

and we simply iterate on k to end up with the bound claimed in Lemma 8.
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Proof of Theorem 30. To conclude, we simply make (order 1) expansions of theterms in (3.26). The definition of kN in Theorem 30, although convoluted, wasmade so that both terms in the right-hand side of this inequality,FN(Y 0
N)η

kN
N and

(1 − ηN)
ε1−d
N

N

A
kN
N −ηkNN
AN−ηN

have the same asymptotic decay to 0 (as N → +∞): Withthe notations of the previous proposition, we have for fixed N :
W 2

2

(
ρ, δ

Y
kN
N

)
≤ W 2

2

(
ρ, δY 0

N

)
ηkNN + 4Cd,Ω

(1− ηN)
AN − ηN

AkNN − η
kN
N

Nεd−1
N

(3.27)
Define, for clarity’s sake, the maximum duration of this gradient descent:

TN = kNτN =
1

d
ln
(
FN(Y 0

N)Nε
d−1
N

)
+ON→∞(τN).

Because of the assumption lim
N→∞

τN = 0, we may write:
AkNN − ηkN
Nεd−1

N

=
e(d−1)TN

Nεd−1
N

+ oN→∞

(
TN

(Nεd−1
N )

1
d

)

as well as ηkN = e−TN + oN→∞

(
TN

(Nεd−1
N )

1
d

)
, and substituting TN ,

W 2
2

(
ρ, δ

Y
kN
N

)
≲
W 2

2

(
ρ, δY 0

N

) d−1
d

(
Nεd−1

N

) 1
d

+ oN→∞

(
TN

(Nεd−1
N )

1
d

)

≲W 2
2

(
ρ, δY 0

N

)1− 1
d
N

−1

d2
+α(1− 1

d)

Initialization of Wasserstein gradient flows: We now turn our attention todiscretized congested crowd motions in the gradient flow setting of Mérigot etal. [40] and we make some observations for our model of crowd motions.
In the case of Mérigot et al., we recall that the motion of a crowd avoidingcongestion is modelized by the gradient flow, in the Wasserstein space P(Ω), ofan energy E(µ) = F (µ) +

∫
Ω
V dµ where F has the two, now familiar, forms:
F (ρ) =

∫
Ω

ρ log(ρ)

and
F (ρ) = χρ≤dx(ρ) =

∫
Ω

χ[0;1](ρ(x))dx
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(χA is the convex indicator function of the set A). Let us also note that the po-tential V is assumed to be C1(Rd).
As wementioned, the discretization of the problem is almost identical to thatof Section 2.2 and the authors look for discrete solutions in C0([0;T ],PN(Ω)) in-duced by curves XN = (xN1 , . . . x

N
N) verifying the differential system:{

(xNi )
′(t) = −∇xiFε(XN(t))−∇V (xi(t))

XN(0) = XN
0

(3.28)
As in the case of discretized Mean Field Games, one expects to recover theoptimal motion for the Wasserstein gradient flow of E, as ε→ 0 and N →∞.
We recall the general form of the main two results (one for each congestionpenalty) of this paper, Theorem 2.1 and 3.1:

Theorem 31 (Leclerc, Mérigot, Santambrogio, Stra). Let µ0 ∈ P(Ω) be such that
F (µ0) < +∞. For every N ∈ N, let εN ∈ (0,∞) and µN(0) ∈ PN(Rd). Finally, let
XN ∈ C1([0;T ], (Rd)N) be a solution of (3.28) and µN : [0;T ] → PN(Rd) be the
corresponding curve of measures.

Assume that
W 2

2 (µ
0, µN(0)) ≤ CεN , lim

N→+∞
εN = 0 (3.29)

and ∫ T

0

W 2
2

(
ρN ,

1

N

N∑
i=1

δbi(XN )

)
dt ≤ CεN (3.30)

where ρN is the Moreau-Yosida projection of µN for F and a regularization param-
eter εN , bi(XN) is the ρN -barycenter of the i-th optimal Laguerre cell defined by this
regularization (see Chapter 1, Proposition 11) and C > 0 is a constant independent of
N .

Then, as N →∞ and up to subsequences, µN converges to µ ∈ C0([0;T ],P(Ω))
for the uniform convergence associated to the 2-Wasserstein distance, where µ is a
weak solution of the Wasserstein gradient flow for E, starting at the measure µ0.

Let us note here that the hypothesis (3.30) is one that is not satisfying andone would like (3.30) to automatically hold, depending on an adequate choice of
εN . However, assuming that the left-hand side of this inequality will decay to 0 ina uniformway, asN →∞ (so that εN might be chosen à-priori) is non-trivial. Theauthors manage to get rid of this hypothesis in the 1-dimensional case (where

102



the barycenters bi(Y ) are always at the optimum for FN , see Chapter 4, Propo-sition 32).
To find εN verifying the hypotheses of Theorem 31, we can use Theorem 27 inorder to bound the distance between the discrete measure on the barycentersand ρN during the motion, similarly to the gradient flow case. This, of coursealso requires that a reverse-Gronwall inequality in the style of Lemma 7 existsfor the position of the curves xN1 , . . . , xNN . Luckily, this is the case, provided wehave initial datum that was sufficiently spread, and that the potential term Vis semi-concave (which was the case in their numerical computations, where Veven had Lipschitz-continuous gradient).

Lemma 9. Let XN be defined for every N as in Theorem 31, with a C1(Rd), semi-
concave potential V . Assume that there exists a constant η > 0, such that for any
i ̸= j,

∥∥xNi (0)− xNj (0)∥∥ ≥ η > 0.
Then, for any t ∈ [0;T ],

∥∥xNi (t)− xNj (t)∥∥ ≥ e−KN tη
whereKN = 1

εN
+ L and L is a constant of semi-concavity of V

In particular, W 2
2

(
ρN(t),

1
N

∑N
i=1 δbi(XN (t))

)
≤ Cd,Ω

eKN (d−1)t

Nηd−1 , with the constant
Cd,Ω from Theorem 27.
Proof. The proof of the first part of the lemma is similar to that of Lemma 7.Each curve (xNi )i satisfies the first order differential equation:

(xNi )
′ =

bi(X
N)− xNi
εN

−∇V (xNi )

Now, from the definition of L as a semi-concavity constant:
For x, y ∈ Rd, (∇V (x)−∇V (y)) · (x− y) ≤ L ∥x− y∥2

and take i ̸= j. Defining as in the previous lemma, but this time in a continuous
setting, e(t) = ∥xNi (t)−xNj (t)∥2

2
, one has, similarly to the gradient flow of FN ,

e′(t) =
(
(xNi )

′(t)− (xNj )
′(t)
)
·
(
xNi (t)− xNj (t)

)
≥ 1

εN

[
−
∥∥xNi (t)− xNj (t)∥∥2 + (bi(XN(t))− bj(XN(t))

)
·
(
xNi (t)− xNj (t)

)]
−
(
∇V (xNi (t))−∇V (xNj (t))

)
·
(
xNi (t)− xNj (t)

)
≥− 2

(
1

εN
+ L

)
e(t)

since (bi(XN(t))− bj(XN(t))
)
·
(
xNi (t)− xNj (t)

), again, is non-negative. And, us-ing this time a continuous reverse Gronwall’s lemma,∥∥xNi (t)− xNj (t)∥∥2 ≥ e−2KN tη
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Taking thebarycenters and applying Theorem27, oneobtains, for any t ∈ [0;T ],
W 2

2

(
ρN(t),

1

N

N∑
i=1

δbi(XN (t))

)
≤ Cd,Ωe

KN (d−1)t

Nηd−1
.

Choosing any εN such that∫ T

0

e

(
1

εN
+L

)
(d−1)t

dt ≤ CNεNη
d−1
N

will be suitable for Theorem 31, where C is a constant independant of N and
ηN the smallest distance between two points of the support of a good N -pointquantization measure of µ0 (and we can take this measure for µ0

N ). One can set,for instance εN = 1
ln(N)+(d−1) ln(ηN )

> 0, since ηN is of order N− 1
d . These values

are by no mean optimal to obtain convergence of the discretized gradient flow.
Remark 9. Sadly, these computations are difficult to adapt in the variational MFGsetting. Indeed, in Section 2.2, we introduced a discrete measure on curves thatminimized the energy:

Jε(Q) :=

∫
Γ

L(γ′)dQ(γ) +

∫ T

0

Fε(et#Q)dt+G(Q)

over the space of uniform discrete measures on curves, PN(Γ).Assuming even that we are in a simple case whereG is given by a C1,1
c poten-tial V :

G(Q) =

∫ T

0

∫
Γ

V (γ(t))dQ(γ)dt

Doing first order variations on the curves, γi → γi + h with h ∈ C∞c ([0;T ],Rd)tells us that if QN is a minimizer for (MN,µ0N ,εN
), every γi ∈ spt(QN) verifies:

γ′′i (t) =
γi(t)− bi(γ1(t), . . . , γN(t))

NεN
+∇V (γi(t))

in the sense of distributions and therefore at almost every t ∈ (0;T ) since theleft-hand side is L2(dt). Gronwall evaluations in the spirit of the two previouscases cannot be done as easily here. Indeed, we can notice that, if we define eas in the proof of Lemma 7 or Lemma 9, then, at least formally,
e′′(t) =2((γ′′i (t)− γ′′j (t)) · (γi(t)− γj(t)) +

∥∥γ′i(t)− γ′j(t)∥∥2)
=
∥γi(t)− γj(t)∥2

NεN
− (bi(t)− bj(t)) · (γi(t)− γj(t))

NεN

+ (∇V (γi(t))−∇V (γj(t))) · (γi(t)− γj(t)) +
∥∥γ′i(t)− γ′j(t)∥∥2

(3.31)

104



(we noted bi(t) the barycenter at time t: bi(γ1(t), . . . , γN(t)))).Notice that, in this case, the negative term −(bi(t) − bj(t)) · (γi(t) − γj(t))could be compensated by the positive one ∥∥γ′i(t)− γ′j(t)∥∥2 and we do not haveenough information on either one. On the other hand, even if we had positivelower bounds for the distance between two curves of spt(QN), this would onlygive us a bound similar to (3.30) of Theorem 31, these do not translate easilyinto bounds on JεN (QN)−J(Qmin), that could be used for the proof of an upperbound result like that of Proposition 17.
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Chapter 4

Lagrangian critical measures

4.1 Critical points for the quantization energy
We begin this chapter by recalling that for N ∈ N, Y ∈ (Rd)N is a critical pointfor FN when every point yi is the ρ-barycenter of its associated Laguerre cell:

yi = N

∫
Lagi(Y )

xdρ(x)

This condition is not sufficient most of the time for the point cloud to mini-mize FN , with the notable exception of the one-dimensional case:
Proposition 32. Let ρ ∈ P(R) ∩ L1(R). Then, FN : Y 7→ W 2

2 (ρ,
1
N

∑N
i=1 δyi) has a

unique critical point, which is also its minimum.
Proof. In dimension 1, the optimal transport between ρ and any µ ∈ PN(R) isgiven by the cumulative distribution function R of ρ, meaning that the Laguerrecells for this transport are the intervals:[

R−1

(
i

N

)
;R−1

(
i+ 1

N

)]
independently of the positions of the Dirac masses. This means that the onlycritical point for FN is the one with each point at the ρ-barycenters of these in-tervals, and since FN admits a minimizer, it is this critical point.
Proposition 33. Let ρ ∈ P(Rd) ∩ L1(Rd) be the separable product of d real densi-
ties, ρ = ρ1 ⊗ · · · ⊗ ρd. For N = nd, take d n-tuples yi = (yi1, . . . , y

i
n)i=1...d). Take

Y ∈ (Rd)N to be the cloud of points, aligned with the cartesian grid, with their i-th
coordinate in {yi1, . . . , yin} for every i.

Then, the barycenters B(Y ) of the corresponding Laguerre cells are aligned on a
parallel grid, and in fact, B(Y ) is a critical point for FN .
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Let us remark briefly that this is an example where the Lloyd algorithm of theprevious chapter converges to a critical point in one step. It is also one whereone can obtain the worst dependency in N of the quantization error (the valueof FN ), meaning with the highest exponent−1/d (see Section 3.3 of the previouschapter).
Proof. Let us write, in the spirit of our notations so far, Y = (y1, . . . , yN), and
µY = 1

N

∑N
k=1 δyk . For i = 1 . . . d, take ϕi := (ϕi1, . . . , ϕ

i
n) the optimal weights for thedual formulation of the optimal transport problem between ρi and the discretemeasure 1

n

∑n
k=1 δyik :We wish to show that the optimal transport between ρ and µY is given bythe Laguerre cells: Lagk(Y ) := Lagk(Y,Φ), where if yk = (y1k1 , . . . , y

d
kd
), then ϕk =

ϕ1
k1
+ · · ·+ϕdkd . To show this, we only need to prove the visual fact that these cellseach contain the product of the corresponding 1-dimensional Laguerre cells:

d∏
i=1

Lagk(y
i, ϕi) ⊂ Lagk(Y,Φ)

Indeed, the left-hand side of this inclusion has ρ-mass 1/N , therefore, so doesthe right-hand side, as the total mass of ρ is 1 and this inclusion is an equality.But this inclusion is immediate from the definition of Φ and the separability ofour cost (the squared euclidean norm):If for i = 1 . . . d, xi ∈ Lagk(y
i, ϕi) and x = (x1, . . . xd), then for any k′1, . . . , k′d,

∥x− yk∥2 + ϕk =
d∑
i=1

∥∥xi − yiki∥∥2 + ϕiki

≤
d∑
i=1

∥∥∥xi − yik′i∥∥∥2 + ϕik′i

(4.1)

and x is in Lagk(Y,Φ). Therefore each Laguerre cell Lagk(Y,Φ) has the correctmass 1/N and is optimal for the dual formulation of semi-discrete optimal trans-port.Notice also that, from Proposition 32, these Laguerre cells do not depend onthe actual coordinates of the Dirac masses, as long as these are aligned par-allel to the main axes. Therefore the i-th coordinates of their ρ-barycentersare simply the barycenters, according to ρi of the 1-dimensional Laguerre cells
Lagk(y

i, ϕi) and therefore, these barycenters are also aligned parallel to themain axes.
Consider a sequence (µN)N∈N of discrete measures µN = 1

N

∑N
i=1 δyNi sup-

ported on critical points (Y N)N∈N for FN , with an increasing size N . Such a se-quence is tight and therefore, applying Kolmogorov’s theorem, one can assume
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(up to considering a sub-sequence) that it narrowly converges towards a mea-sure µ ∈ P(Ω). In the best case scenario, this measure is ρ, however, when thediscrete measures are poorly chosen, such as those of Fig. 3.1 or Fig. 4.1 below,the limit measure can be singular. A consequence of Theorem 27 is that conver-gence to such a "bad" measure cannot happen, unless the minimum distancebetween two Dirac masses in the discrete measures µN goes to 0 faster than
N

1
d−1 . Indeed the points in this cloud are invariant through the Lloyd algorithmand therefore in this case, Theorem 27 gives a convergence rate of µN towards

ρ for the 2-Wasserstein distance.
One can observe experimentally that the support of these narrow limits can-not be too irregular and in particular, seems to inherits the symmetry imposedby the optimality condition Y = B(Y ) in the discrete cases. This is the object ofthe next Section 4.2 and for now, let us cite some results on these limitmeasures,directly induced by the discrete settings.In the remainder of this section, (µN)N∈N is a sequence of discrete measuressupported on critical points of increasing size, as described above, and we as-sume that (µN)N∈N narrowly converges towards µ∞ as N → ∞. Furthermore,we assume thatΩ is convex and that ρ > 0 almost everywhere onΩ. This last as-sumption allows us to assume that the measures µN are also supported inside

spt(ρ), since they are supported on barycenters (and therefore so is µ∞).
Proposition 34. Assume that spt(µ∞) has its connected components all connected
by Lipschitz-continuous arcs (between any two points of the same component, one
may draw a Lipshitz-continuous path). Then,
µ∞ ∈ argmin{W 2

2 (ρ, µ) | µ ∈ P(Ω), µ∞(C) = µ(C)

for any connected component C of spt(µ∞)}. (4.2)
Proof. With these notation, let us fix N and consider ΦN ∈ RN an optimal setof weights for the semi-discrete dual formulation of Optimal Transport (1.8). We
first show that for any i, j, |ϕNi − ϕNj | ≤ ∥∥yNi − yNj ∥∥2: indeed, for such i, j, since
yNj is inside its Laguerre cell, one has

−ϕNj =
∥∥yNj − yNj ∥∥2 − ϕNj
≤argmink=1...N

∥∥yNk − yNj ∥∥2 − ϕNk
≤
∥∥yNi − yNj ∥∥2 − ϕNk

The bound for the absolute value comes straightforwardly, exchanging i and
j.
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The sequence µN narrowly converges to µ∞. On one hand, this tells us thatevery point of the support of µ∞ is limit of a sequence of points in the supportsof the measures µN :
∀y ∈ spt(µ∞), ∃(yN)N∈N ∈ ΩN s.t.

∀N ∈ N, yN ∈ spt(µN) and lim
N→∞

yN = y.

On the other hand, there exists a Kantorovich potential ϕ∞ for the optimaltransport from µ∞ to ρ such that if yNiN ∈ spt(µN) converges to y ∈ spt(µ∞) as
N →∞, then ϕNiN converges to ϕ∞(y) (uniformly in y). One can see this by con-structing Kantorovich potentials for the semi-discrete transport that are definedon the whole domain Ωwith values ϕNi at yNi (for everyN , but, most importantlyalso for every i = 1 . . . N ), see Remark 1 in Chapter 1. This sequence of potentialsis still equicontinuous and equibounded, since they are c-concave, and we mayassume, invoking Arzelà-Ascoli theorem, that a subsequence of it uniformly con-verges onΩ to a Kantorovich potential for the optimal transport betweenµ∞ and
ρ. For any y, y′ ∈ spt(µ∞), taking yN , y′N ∈ spt(µN), such that limN→+∞ yNiN = y,
limN→+∞ yNjN = y′, then for any N ,

|ϕNiN − ϕ
N
jN
| ≤

∥∥yNiN − yNjN∥∥2
and taking the limit as N →∞, one has

|ϕ∞(y)− ϕ∞(y′)| ≤ ∥y − y′∥2 .

Now, assume that y and y′ are connected, in the support of µ∞, by a pathwithfinite length γ ∈ C0([0; 1],Ω) (i.e, a Lipschitz continuous curve, up to reparametriza-tion). Taking for any n ∈ N, a chain y0 = y = γ(0), y1 = γ(1/n), . . . , yn = y′ = γ(1)on this path,
|ϕ∞(y)− ϕ∞(y′)| =

n∑
i=0

ϕ∞(yi)− ϕ∞(yi+1) ≤ L2

n∑
i=1

1

n2

where L is the Lipschitz constant of the path, and letting n→∞, we arrive at
ϕ∞(y) = ϕ∞(y′).

Now, take µ′ ∈ P(Ω) such that for any connected component C of spt(µ∞),
µ′(C) = µ∞(C). µ∞ has finite mass and therefore, it only charges an at mostcountable number of connected (disjointed) sets (C1, C2, . . . ). Recall that anysuch component is also connected by Lipschitz paths and therefore, ϕ∞ is con-stant on any of these components, ϕ∞ ≡ ϕ∞

i ∈ R on Ci. Furthermore, ϕ∞ is
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Figure 4.1: From left to right, the support of the probability density ρ (which isconstant on this support), a critical point cloud for FN which is not a minimizerand the limit measure obtained by adding points in a way that keeps the degen-eracy in top part of the figure (see formula (3.1)). The limit measure µ∞ is NOTuniform on the vertical segment (but it is on the lower rectangle due to Propo-sition 35).
lower bounded on spt(µ∞), since it is continuous on this compact set, and, up toadding a constant to every Kantorovich potentials in the previous proof, wemayassume that ϕ∞ ≥ 0. Decomposing the integral of the cost along all connectedcomponents, we obtain,

W 2
2 (ρ, µ

∞) =
∑
i

∫
Ci

ϕ∞dµ∞ +

∫
Ω

(ϕ∞)c(x)dρ(x)

=
∑
i

ϕ∞
i µ

∞(Ci) +

∫
Ω

(ϕ∞)c(x)dρ(x)

=
∑
i

ϕ∞
i µ

′(Ci) +

∫
Ω

(ϕ∞)c(x)dρ(x)

=

∫
Ω

ϕ∞(y)dµ′(y) +

∫
Ω

(ϕ∞)c(x)dρ(x) ≤ W 2
2 (ρ, µ

′)

(4.3)

and this exactly states that µ∞ is aminimizer for the restricted Problem (4.2).
On the other hand, the support of µ∞ cannot be too large without forcing µ∞

to actually be ρ on most of it:
Proposition 35. Let us write µ∞ = µacdx + µsing the decomposition of µ∞ into
absolutely continuous and singular part, such that dx ⊥ µsing.

Then, µac(x) = ρ(x) for dx-almost every x ∈ spt(µ∞). Furthermore, for any open
set A ⊂ spt(µ∞), µsing(A) = 0.

Proof. Let for any N , uN be a Brenier potential for the transport from ρ to µN ,i.e. a convex function on Rd such that the optimal transport map from ρ to µN is
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∇uN . In fact, we may assume uN(x) = ∥x∥2
2
−ϕN(x) ρ-almost everywhere, where

ϕN is a c-concave Kantorovich potential for the same transport. Thismeans that,as N → ∞ and up to considering instead a subsequence, ϕN (respectively uN )uniformly converges, on Ω, towards ϕ∞ a Kantorovich potential (resp u∞ a Bre-nier potential) for the transport from ρ to µ∞.
Now, for anyN , and y ∈ spt(µN), y ∈ ∂u∗N(y), since these points are barycen-ters of the Laguerre cells ∂u∗N(y). Therefore, since every point in spt(µ∞) is alimit (as N → ∞) of points in spt(µN), for any y ∈ spt(µ∞), y ∈ ∂u∗∞(y) and for

dx-almost every y ∈ spt(µ∞), the subgradient is a singleton and y = ∇u∗∞(y).By duality, this immediately tells us that dx-almost every y ∈ spt(µ∞) ∩ spt(ρ)satisfies y ∈ ∇u∞(y) and making the same reasoning with u∞ instead of u∗∞, weget that the optimal transport between µ∞ and ρ is given by the identity map inboth direction, dx-almost everywhere on spt(µ∞) ⊂ spt(ρ), hence the equality
µac(x) = ρ(x).

On the other hand, take x ∈ spt(µ∞) such that there exists a radius r > 0with
B(x, r) ⊂ spt(µ∞). Then, as we mentioned earlier, for dx-almost every y in thisball, ∇u∞(y) and ∇u∗∞(y) are well-defined and equal to y. Since u∞ is a convex
function, this implies that u∞ (and therefore also u∗∞) is equal to ∥.∥

2
on this ball,and optimal transport between ρ and µ∞ is given in both sense by the identitymap on this ball (therefore, µsing does not charge any point in this set).

The reader will notice that in this last result, we do not use the fact that µ∞

was a limit of discrete measure, other than to guarantee that the optimal trans-port plan between µ∞ and ρ charges the pair (x, x) for µ∞-almost every x ∈ Ω (ina very informal way). Section 4.2 tries to formalize this assumption to prove thatany measure that satisfies it has to be supported on a smooth structure. This isa very natural expectation, considering Theorem 27 and the fact that the Lloydalgorithm leaves stable certain lower dimensional subspaces (see Remark 7, sec-ond point) and it would allow us to understand better these "nasty" equilibriumsituations and, in particular, how to avoid entering their zone of attraction whenusing this algorithm.

4.2 Lagrangian critical measures forW 2
2

A first order of business is defining a notion of critical point which is not depen-dent on being supported on a finite (or even countable) point cloud. Fortunately,the disintegration theorem applied to µ (a potential critical point) and ρ on oneside, and the optimal transport plan γ between the two, allows for a very natu-ral disintegration of ρ along µ. The fibers of this disintegration (see Theorem 42,
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Appendix A) gives us an equivalent of the notion of Laguerre cells, in this contin-uous setting:
Proposition 36 (Disintegration along the transport plan). Let µ ∈ P(Ω) and T
be the optimal transport map from ρ to µ. Then, there exists a family of measures
{ρy}y∈Ω ⊂ P(Ω) uniquely defined at least at µ-almost every y, such that

• For any Borel measurable set B ⊂ Ω, y 7→ ρy(B) is a Borel measurable func-
tion.

• For µ-almost every y, ρy is supported on the fiber T−1(y).

• For every Borel-measurable function f : Ω→ R+ ∪∞:∫
Ω

f(x)dρ(x) =

∫
Ω

∫
Ω

f(x)dρy(x)dµ(y)

or equivalently, for any Borel set A,

ρ(A) =

∫
Ω

ρy(A)dµ(y).

Although this result can be demonstrated by applying the disintegration the-orem 42 to µ and ρ = T#µ for an optimal transport map T , the existence ofsuch a disintegration for the transport plan γ instead of ρ can be proven with-out assuming the existence of T . We therefore prove Proposition 36 as a conse-quence in this case of the more general disintegration result. In particular, thedisintegration of γ along µ is still valid even when it is not given by an optimaltransport map T (however Proposition 36 would need to be written differentlyin that case).
Proof. With the notations of the proposition, let us recall that π2#γ = µ where
π2 is the projection of Ω× Ω on its second component.Applying Theorem 42, we can disintegrate γ along µ, giving us the family ofmeasures which we write (γy)y∈Ω ∈ P(Ω2)Ω.

Then, according to the theorem, for µ-almost every y ∈ Ω, γy is supported in
π−1
2 (y) ∩ spt(γ) and therefore, ρy = π1#γy is supported on T−1(y).Finally, for any Borel set A ⊂ Ω,∫

A

ρ(x)dx =

∫
A×Ω

dγ =

∫
Ω

γy(A× {y})dµ(y) =
∫
Ω

ρy(A)dµ(y)

(The computations are almost identical for the integral of a Borel map f on Ω).
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Themeasure ρy corresponds to the law ofX ∼ ρ, conditional to Y = y, when
(X, Y ) follows the law of the optimal transport plan between ρ and µ.Note also that in the case when µ is discrete supported on y1, . . . , yN , ρy issimply ρ Lagi(Y ), so that spt(ρy) can be seen as the equivalent of a Laguerrecell in the continuous limit case N →∞.

Equippedwith this notion, we can now reformulate the condition of being thebarycenter of one’s Laguerre cell as a property which passes well to the narrowlimit:
Definition 8. Let µ ∈ P(Rd) and (ρy)y∈Rd be the disintegration of ρ along the opti-
mal transport plan between ρ and µmentioned in Proposition 36.

We say that µ is Lagrangian critical forW 2
2 (., ρ) when

for µ-almost every y ∈ Rd, y =

∫
Ω

xdρy(x).

In the remainder of this section, µ will always denote a Lagrangian critical(probability) measure forW 2
2 (., ρ).As we are staying focused on the problem of optimal quantization (3.1), wewill omit in the future the specification "for W 2

2 (., ρ)" and only say that µ is La-grangian critical when it verifies Definition 8. Furthermore, leaving for amomentthe formalism of the disintegration theorem, we can give amore concise formu-lation of Definition 8:
Lemma 10. Let µ ∈ P(Rd) and γ be the optimal transport plan from ρ to µ.

Then, µ is Lagrangian critical if and only if, for any ξ ∈ C0(Ω,Rd):∫
Ω×Ω

(y − x) · ξ(y)dγ(x, y) = 0

Proof. From Brenier’s theorem, we know that the optimal transport plan from ρto µ is given by a map T : Ω→ Ω,
γ = (Id, T )#ρ.

Therefore, one can claim the following equivalent statements:For µ-almost every y ∈ Ω,
y =

∫
Ω

xdρy(x)
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⇐⇒ For any ξ ∈ C0(Ω,Rd),∫
Ω

(y −
∫
Ω

xdρy(x)) · ξ(y)dµ(y) = 0

⇐⇒ For any ξ ∈ C0(Ω,Rd),∫
Ω×Ω

(y − x) · ξ(y)dρy(x)dµ(y) = 0

⇐⇒ For any ξ ∈ C0(Ω,Rd),∫
Ω×Ω

(T (x)− x) · ξ(T (x))dρy(x)dµ(y) = 0

⇐⇒ For any ξ ∈ C0(Ω,Rd),∫
Ω×Ω

(T (x)− x) · ξ(T (x))dρ(x) = 0

⇐⇒ For any ξ ∈ C0(Ω,Rd),∫
Ω×Ω

(y − x) · ξ(y)dγ(x, y) = 0

Let us quickly mention an interpretation of our notion of critical measure interm of internal perturbations µ 7→ (Id+ ξ)#µ for a smooth map ξ:Considering first outer perturbations of µ, µ 7→ µ+ χ, for a small χ ∈ L1(Ω),∫
Ω
dχ = 0, being a critical measure for these variations, namely

d

dε
W 2

2 (µ+ εχ, ρ)
∣∣∣
ε=0

= 0

happens only at χ = 0. Indeed, µ 7→ W 2
2 (ρ, µ) is strictly convex since ρ ≪ dxand therefore, there is only one critical measure for the outer variations, ρ (thisis proposition 7.19, and in fact the whole section 7.2.2 of [63]).On the other hand, for ξ ∈ C0b (Ω,Rd) and ε > 0 small enough (such that forall x ∈ Ω, x+ εξ(x) ∈ Ω +B(0; 1)),

W 2
2 ((Id+ εξ)#µ, ρ)−W 2

2 (µ, ρ) ≤
∫
Ω

∥T (x) + εξ(x)− x∥2

− ∥T (x)− x∥2 dρ(x)

≤ 2ε

∫
Ω

(T (x)− x) · ξ(x)dρ(x)

+ ε2
∫
Ω

∥ξ(x)∥2 dρ(x)

≤ 2ε

∫
Ω

(y − x) · ξ(x)dγ(x, y) +Oε→0(ε
2)
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where T is the optimal transport map from ρ to µ and γ = (Id, T )#ρ is theoptimal transport plan. Using µε = (Id+ εξ)#µ instead of µ, we obtain symmet-rically,
W 2

2 (µε, ρ)−W 2
2 (µ, ρ) ≥ 2ε

∫
(Ω+B(0;1))2

(y − x) · ξ(x)dγε(x, y)−Oε→0(ε
2)

with γε the unique optimal transport plan from ρ to µε.
The (also unique) optimal transport plan γ = (Id, T )#ρ from ρ to µ is thenarrow limit of γε as ε → 0 (see [63], theorem 1.50). Taking this limit in theequality above, we have that the derivative of µ 7→ W 2

2 (µ, ρ) with respect toinner variations in the direction ξ ∈ C0b (Ω) is
2

∫
Ω×Ω

(y − x) · ξ(y)dγ(x, y).

It is 0 for every ξ iff µ is Lagrangian critical.
Lemma 10 gives us the stability of the notion of Lagrangian critical measure,up to narrow limits. The argument is once again the same stability, but for trans-port plans:

Proposition 37. For any N ∈ N, a discrete measure µ = 1
N

∑N
i=1 δyi such that

Y = (y1, . . . , yN) is a critical point for FN , is Lagrangian critical.

Furthermore, any narrow limit of Lagrangian criticalmeasures is itself Lagrangian
critical.

Proof. As we already mentioned, for any i = 1 . . . N , ρyi = ρ Lagi(Y ) with theformalism of Theorem 42. The first part of the proposition is then immediatesince each point yi is the ρ-barycenter of its Laguerre cell.
For the second part, take a sequence (µn)n∈N of Lagrangian critical measures(the n is not related to the size of the support of µn in this case) and assumeit converges narrowly towards µ ∈ P(Ω). For n ∈ N, we write γn the optimaltransport plan from ρ to µn. Then (γn)n∈N is tight since (µn)n∈N is, and (up to asub-sequence) it narrowly converges towards the optimal transport plan γ from

ρ to µ (this is theorem 1.50 of [63]). The conclusion comes from taking the narrowlimit in Lemma 10: for ξ ∈ C0(Ω,Rd),∫
Ω×Ω

(y − x)ξ(y)dγ(x, y) = lim
n→∞

∫
Ω×Ω

(y − x)ξ(y)dγn(x, y) = 0
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Figure 4.2: The support (in black) of a Lagrangian critical measure which cannotbe obtained as a narrow limit of uniform discrete Lagrangian critical measures.
Let us note here that, with Definition 8, not every Lagrangian critical measureis limit of measures supported uniformly on a critical point for FN . The simplestcounter-example to this comes from the 1-dimensional case,Ω ⊂ R. In this case,the only Lagrangian critical measure which is such a limit is ρ, since there is onlyone critical point for FN , for any N , and that critical point defines a discretemeasure narrowly converging towards ρ, according to the convergence rates of(3.6). On the other hand, on the set Ω = [−1; 1], take

ρ(x) =
1

2
1[−1;1] and µ = ρ1[−1;0]dx+

1

2
δ1/2,

(see Fig. 4.2), then µ is Lagrangian critical (but it is not ρ). Indeed, for any −1 ≤
y ≤ 0, ρy = δy and ρ1/2 = 1[0;1] and µ-almost every point y ∈ Ω is the ρy barycen-ter of Ω. On the other hand, Proposition 35 is also true for any Lagrangian crit-ical measure, since, as we mentioned, we only use the fact that every point is abarycenter of points in the subgradient of a Brenier potential.

Restricted, as it is, between two parts of the support of ρy, we expect thesupport of a Lagrangian critical measure µ to be aligned on very regular curves.This is backed up by experiments, for instance, the limit measure of the discreteones represented on Fig. 3.1 in the case of ρ = dx are supported on a finite unionof segments. We can also observe on Fig. 4.1 that the (apparently) smooth sub-manifolds containing the support can be of several dimensions (dimensions 1and 2 on the figure).The following lemma gives a first mathematical statement of these obser-vations. It states that, from µ-almost every point y ∈ Ω, one can define a thin"trumpet" on each side of this point, such that locally, the support of µ is con-fined to these thin sets:
Lemma 11. Let µ ∈ P(Ω) be Lagrangian-critical. Then, for µ-almost every y ∈ Ω,
there exists Cy > 0, n ∈ {0 . . . d} and an n-dimensional linear subspace Πy of Rd

such that for any w ∈ Πy, ∥w∥ = 1 and z ∈ sptµ,
|w · (y − z)| ≤ Cy ∥y − z∥2

Proof. For µ-almost every y ∈ Rd, we take Πy = span{x − y, x ∈ spt(ρy)} and
n = dim(Πy). Let us first notice that our statement is trivial (and almost empty)when n = 0 so that we may assume that there exists z ̸= y in spt(ρy).
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Now, c-cyclical monotonicity states that for any x ∈ spt(ρy), and z ∈ spt(µ), zcannot be in the ball of diameter [x; y], otherwise said:
(x− y) · (z − y) ≤ ∥y − z∥2

We can findN > n nonzero vectors xi− y such that for any w ∈ Πy, ∥w∥ = 1,there exists i with w.(xi − y) > 0. Indeed, consider the covering of the compactset S(0, 1) ∩ Πy, with the open sets
Ux = {w ∈ S(0, 1) ∩ Πy, w · (x− y) > 0}

for x ∈ spt(ρy). It is a covering since y is the barycenter of Πy with respect to ρy.One can extract from it a finite covering, which gives us x1, . . . xN such that forany w ∈ S(0, 1) ∩ Πy, w.(xi − y) > 0. Notice then that the orthogonal in Πy to
span((xi−y)i) is {0} and that family generatesΠy (and is not linearly independanthence N > n).Now set C ′

y to be the min positive correlation between any unit vector in Πyand one of our reference vectors normalized (xi − y)/ ∥xi − y∥:
C ′
y = min

w
max
i

{
w · (xi − y)
∥xi − y∥

, w ∈ Πy, ∥w∥ = 1, i = 1 . . . N

}
Compactness ensures that C ′

y exists, is attained and is strictly positive.Now, for any z ∈ spt(µ), and w ∈ Πy, ∥w∥ = 1,
|w · (z − y)| ≤

∥∥PΠy(z − y)
∥∥

≤max
i

1

C ′
y ∥xi − y∥

(z − y) · (xi − y)

≤Cy ∥z − y∥2
(4.4)

where the constant only depends on y and spt(ρy).
Let us illustrate here Lemma 11 a little: Considering the support of the limitmeasure µ∞ represented on Fig. 4.1, one could think that this is the possiblesupport for a Lagrangian critical measure associated with the uniform densityon the whole square (instead of one supported only the non-convex set in lightbrown on the figure). However, this is in fact forbidden by the lemma. Indeed,points (of the support of ρ) in the sub-diagonal

F< = {(x, y) | x ∈ [0; 1/2], 1/2 < y < 1− x}

have to be sent by optimal transport to the border set
F= = {(x, 1/2) | x ∈ [0; 1/2]}
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(via an orthogonal projection). Taking such x ∈ F< and y ∈ F= its orthogonalprojection, the vector w = (x − y)/ ∥x− y∥ is in Πy. But, taking zε = y − εw, zεshould be in spt(µ∞) for any ε > 0 small enough. This contradicts the lemmasince |w · (zε− y)| = ε dominates ∥zε − y∥2 = ε2 as ε→ 0. Therefore, Lagrangiancritical measures associated with the Lebesgue measure on Ω = [0; 1] × [0; 1]cannot have this support.
A direct corollary is that the support of µ is included in a countable union ofLipshitz manifolds. We note that this result is much weaker than what we areafter, since Lipshitz-regularity of the support seems to be the least we can ex-pect, looking at the supports of the Lagrangian critical measures in the previouspictures. On the other hand, it does give a lower-bound regarding the regular-ity we can expect on this set. Finally, this corollary also gives no structure (atleast not directly) to the actual measure µ, allowing the support, even in theseLipschitz-continuous submanifolds to be very degenerate:

Corollary 37.1. Let µ be a Lagrangian critical measure and denote

En := {y ∈ Ω | Πy exists and dim(Πy) = d− n}

Then, with the definition above, En is n-rectifiable for any 1 ≤ n ≤ d, and in fact,
there exists a countable family of Lipschitz-continuous maps fi : Rn → Rd, i ∈ N
such that

En ⊂
∞⋃
i=0

fi(Rn)

Proof. Let y ∈ En such that y ∈ ∫Ω xdρy(x) and y verifies Lemma 11 (µ-almost anypoint of En does so). Let us fix for a time Π = Πy and C = Cy. Consider the tubeorthogonal to Π and of width η > 0, inside Ω:
Ωy
i1,...,id−n

=

(
d−n⊕
j=1

[ijη; (ij + 1)η] ej ⊕
d⊕

j=d−n+1

Rej

)
∩ Ω

with e1, . . . ed−n an orthogonal basis of Π, completed into an orthogonal basis of
Rd by ed−n+1, . . . , ed, and i1, . . . , id−n chosen in Z such that y ∈ Ωy

i1,...,id−n
.

Then Lemma 11 implies that there exists a constant C ′ =
√
Cη such that, forany w ∈ Π, ∥w∥ = 1 and z ∈ spt(µ) ∩ Ωy

i1,...,id−n
:

|w · (y − z)| < C ′ ∥y − z∥

In particular taking η < 1
C
there cannot be any point of spt(µ) inside Π and

Ωy
i1,...,id−n

(except for y), since such a point z would verify
sup|w.(y − z)| = ∥y − z∥ < ∥y − z∥ (4.5)
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where the supremum is taken among unit vectors in Π. On the other hand, forany z ∈ spt(µ) ∩ Ωy
i1,...,id−n

,
∥PΠ⊥(z)− PΠ⊥(y)∥ ≥

√
1− C ′ ∥z − y∥ (4.6)

(provided we took there again η such that C ′ < 1).
As is, Π and C ′ depend heavily on y, however, this last condition (4.6) is openin term of choosing the affine sub-space Π and the constant C. Therefore, upto shifting a little the inclination of Πy and the value of Cy, and forgetting theiractual definition from Lemma 11, we may assume that there exists an at mostcountable amount of such n-dimensional affine hyperplanes Πy and constant

Cy when one goes through µ-almost every point of y ∈ Ω (for instance, by ap-proximating their parameters with rationals). But then, for such a subspace Πand constant C , the set En,C′,Π of points y associated with this subspace and theconstant C ′ =
√
Cη, for η < 1

C
rational is included in a finite union of graphsof lipshitz functions on Rn. To see this, we only have to show that every "tube"

En,C′,Π∩Ωy
i1,...,id−n

is included in the graph of such a Lipschitz function (since thesesets are in countable amount). But all these points are associated with the samehyperplane Π and we have established in this case (in (4.5)) that the function:
f : x 7→ y ∈ En,C′,Π ∩ Ωη

i1,...,id−n
such that PΠ⊥(y) = x

is well defined on a subset of Π⊥
y (namely the orthogonal projection of En,C′,Π ∩

Ωy
i1,...,id−n

onto that sub-space) and Lipschitz-continuous with a constant at most√
1− C ′ > 0 (this, on the other hand, was (4.6)). Up to extending this function tothe whole of Rn, we have the inclusion claimed in Corollary 37.1.
Lemma 11 states that any point ofΠy at a distance less than 1

2Cy
from y, has a

unique projection (the point y itself) onto spt(µ). This is very close to the notionof reach positiveness for the set spt(µ):A set A ⊂ Ω is said to have positive reach, ε > 0, when for any x ∈ Rd, if thedistance d(x,A) < ε, then x has a unique projection on A :
argmin{d(x, y) | y ∈ A} is a singleton.

The positive reach property would imply C1,1 regularity of the different partsof this support, seen as manifolds (this is, for instance, (C) of [59]). However, wepoint out that, in the case of our Lagrangian critical measures, the reach posi-tiveness property is only verified on the affine sub-space Πy, which would notbe enough.
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Recall however the fact that the optimal transport from ρ to µ is given (ρ-almost everywhere) by the gradient of a convex function u:
γ = (Id,∇u)#ρ

This implies that the optimal transport plan γ is supported on the "graph" ofthe subgradient of u∗:
spt(γ) ⊂

⋃
x∈Ω

∂u∗(x)× x. (4.7)
It might be obvious now, but the dimension of the support of µ near a point

xwill be the complementary of the dimension of ∂u∗(x). Note that this last set isa convex one, and therefore, its dimension is simply the geometrical dimensionof the affine space generated by this set. The truth of this claim, as well as theregularity that one can expect for the different parts of spt(µ), are suggested bya remarkable theorem by Alberti (see Theorem 44 Appendix B). This result givesstrong rectifiability to the set of points sharing the same dimension of subgra-dient for a given convex function.
For 0 ≤ n ≤ d, denote En,C the set of all points in Ω verifying Lemma 11 with

Cy = C and dim(Πy) = n, such that
En =

⋃
C

En,C . (4.8)
Notice here, that we can take the possible constants (Cy)y∈Ω to be chosen in

Q and therefore, (4.8) describes En as a countable (at most) union of sets whichwe expect to be C2 smooth, of dimension n (following Alberti’s theorem).
From the proof of Lemma 11, we can claim that

En ⊂ {y ∈ Ω | dim(∂u∗(y) ≥ d− n}. (4.9)
Indeed, for y ∈ En, µ-almost surely, the support of ρy generates the d− n lin-ear space Πy, and, from inclusion (4.7), we can assume (again, µ-almost surely)

spt(ρy) ⊂ ∂u∗(y) and therefore, this subgradient is of dimension at least d− n.
Alberti’s theorem tells us that the right-hand side of inclusion (4.9) is con-tained in a C2, n-dimensional manifold, up to anHn-negligible set. If we were toshow that µ≪ Hn on the set in the left-hand side of the inclusion, we would getthat the support of µ is included in a countable union of C2-submanifolds andthat µ behaves "regularly" on these manifolds. Looking back at the examplesof support of Lagrangian critical measures, this seems very likely that µ be ab-solutely continuous with respect to this n-dimensional Haussdorf measure (andone can check that this is indeed the case in these examples).
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Proposition 38. Assume that y 7→ Πy is Lipshitz continuous on En,C for some
n ∈ {1 . . . d} and C ∈ Q.

Then, µ is absolutely continuous with respect to the n-dimensional Hausdorff
measure Hn on En,C . Furthermore, En,C is included in the countable union of C2
manifolds of dimension n, up to a µ-negligible set. If this is true for all C ∈ Q, so is
En.

Proof. Let C ∈ Q and A ⊂ En,C be negligible for the Hausdorff measure withdimension d − n. We wish to prove that µ(A) = 0. By construction of Πy, it issufficient to show thatB = ∪x∈A(x+Πx)∩B(0, R) is Lebesgue-negligible for any
R > 0 since all the µ-mass on A comes from ρ-mass on B for a large enough R.Since A is negligible for Hn, for any ε > 0, one can find a finite number ofballs B(xi, ri) such that A ⊂ ⋃iB(xi, ri) and∑i r

n
i ≤ ε. Denoting

Ai = A ∩B(xi, ri),

let us fix for a while x ∈ Ai. Then, for any w ∈ Πx, the orthogonal projection v of
w onto Pxi verifies |v| ≤ R and

|w − v| ≤ Rd(Πx,Πxi) ≤ RLri

where L is the Lipshitz constant of y 7→ Πy on En,C . But then Πx ∩ B(0, R) iscontained in (Πxi ∩B(0, R)) +B(0, RLri).The sets Bi = ∪x∈Ai
(x+ Πx) ∩ B(0, R) cover B and we have just shown thatfor every i,

Bi ⊆B(xi, ri) + (Πxi ∩B(0, R)) +B(0, RLri)

=(Πxi ∩B(0, R)) +B(0, (1 +RL)ri)
(4.10)

Πxi is of dimension n, therefore, L(Bi) ≲ rd−ni , as it is contained in the sumof a n dimensional ball with a cube of length (2 + 2RL)ri. But then,
L(B) ≤

∑
i

L(Bi) ≲
∑
i

rd−ni ≤ ε,

andB is Lebesgue-negligible, therefore,A is µ-negligible and µ is absolutely con-tinuous with respect toHd−n on the set En,C .Now, to conclude, we simply notice that, En,C is included in the set of pointsin the subgradient of a convex function which are of dimension at least k − n.This function is in fact a Brenier potential ϕ associated with the transport from µto ρ. Alberti’s theorem tells us that the set {y ∈ Ω, dim(∂ϕ(y)) = n} is includedin a C2 submanifold of dimension d − n, up to removing a Hd−n-negligible set.Therefore, the same is true for En,C up to removing a µ-negligible set.
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Proposition 39. y 7→ Πy is Lipshitz-continuous on E1,C (resp E0,C , Ed,C ). In partic-
ular, µ ≪ H1 on this set (resp µ ≪ H0, µ ≪ Hd) and E1 (resp E0, Ed) is contained
µ-almost everywhere in an at most countable union of C2 paths (resp countable sub-
set of Rd, countable union of d-dimensional sub-manifolds).

Proof. We start by proving the absolute continuity of µ on E0,C as it ends up notneeding the Lipschitz continuity. Indeed, we claim that the points in this set arestrongly isolated (even from the whole support of µ):Take y ∈ E0,C for some C > 0, one has that for any w ∈ Sd−1(0, 1), z ∈ spt(µ)and z ̸= y:
|w · (y − z)| ≤ C ∥y − z∥2

For a vector w colinear to y − z this yields
∥y − z∥ ≥ 1

C

and there exists a ball around y which contains no other point of spt(µ). Since
E0,C is a set of isolated points, it is at most countable and µ ≪ H0 on this set.The Lipschitz continuity of y 7→ Πy is trivial since the lower bound on the radiusof the ball does not depend on y ∈ E0,C .

The optimal transport plan between ρ and µ on Ed,C is given by the identitymap in both directions, since ∂u∗(y) is a singleton for any y in this set. This im-plies that µ = ρ on this set (and in particular, µ≪ Hd). Once again, the Lipschitzcontinuity condition on y 7→ Πy is empty, since Πy is {0} for any y ∈ Ed,C .
Finally, in the case d = 1, we use Proposition 38 and we have to show theLipschitz continuity. It is a consequence of Lemma 11, since dim(Πy) = d − 1

µ-almost everywhere on E1,C .Indeed take y, z ∈ E1,C . Then, for any u ∈ BRd(0, 1),
u.(y − z) = PΠ⊥

y
(y − z).u+ PΠy(y − z).u (4.11)

and, since the last term is bounded by C ∥y − z∥2,∣∣∣∣∣∣∣∣∣PR(y−z) − PΠ⊥
y

∣∣∣∣∣∣∣∣∣ ≤ C ∥y − z∥

Doing the same at point z and summing these inequality yields:∣∣∣∣∣∣∣∣∣PΠ⊥
z
− PΠ⊥

y

∣∣∣∣∣∣∣∣∣ ≤ C ∥y − z∥

and the same inequality is true for PΠy = Id− PΠ⊥
y
and PΠz
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The reader will notice that, in the case d = 2, Proposition 39 exhausts allpossibilities and therefore, a Lagrangian critical measure µ is supported on acountable union of smooth manifolds of dimension 2 or less, and is regular withrespect to the corresponding Hausdorff measure on each manifold.
This is still a far cry from the result we were hoping to obtain, and in par-ticular, it does not prevent µ from having a very irregular support, even whenProposition 39 is valid (for instance, a Cantor set of non-zeromass on a part of di-mension 1). On the other hand, one can easily construct examples of Lagrangiancritical measures featuring either an infinite amount of connected components,or (in the case of Fig. 4.1) an infinite amount of components En,C for the samedimension n but different "curvatures" C , which indicates that we cannot hopefor much better than a countable union of regular manifolds for these supports.An encouraging result, in this regard, is one of De Pauw [19] which, in spirit,reduces the problem to adding vectors to the spacesΠy in order to obtain a Lip-schitz selection of hyperplanes (of higher dimensions, but adding in this way afinite amount of directions). Indeed, the plansΠy only need to be contained in ahigher dimensional sub-spaceΠ′

y, itselfmoving along spt(µ) Lipschitz-continuously:Under this weaker hypothesis, taking A ⊂ Ek,C negligible for the k dimen-sional Haussdorf measure, the set of pointsB for which dim(Π′
y) = d−k′ > d−kverifies for any y ∈ B,

Hd−k′(Π′
y ∩ (y +Πy)) = 0

as the sets measured are affine hyperplanes of dimensions strictly less than
d − k′. Using the main result of [19], ρ gives no mass to B + ΠB := {b + x | b ∈
B, x ∈ Πb} and therefore, µ gives no mass to B. All that remains to do is useProposition 38 on the remaining set. Of course, the larger space Π′

y would bemade of Πy and vectors contradicting the Lipschitz-continuity of the projectionat y, but, so far, there does not seem to be a canonical way to add these vectorsthat does not depend heavily on the point y, preventing us from getting eitherglobal Lipschitz-continuity or a countable amount of such hyperplanes.
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Appendix A

Measure theory

In this appendix, we develop several properties of measures, which we makeample use of in the rest of this thesis. To this avail, let us set a Polish (metric,complete and separable) space (X, d). For a more general overview of measuretheory we refer the reader to Evans and Garzepy [24].By a measure on (X, d), we mean an application from the Borelian tribe T to
R (we do not consider infinite measures) verifying for any Borel set A ⊂ X :

• IfA =
⋃∞
i=1Ai such that the Borel setsAi are disjoints, for i ̸= j,Ai∩Aj = ∅:

∞∑
i=1

|µ(Ai)| < +∞ and µ(A) =
∞∑
i=1

µ(Ai).

• µ(A) = sup{µ(K) | K ⊂ A, K compact}. (Our measures are Radon mea-sures by default).
The space of measures over X will be denotedM(X)

We say that µ ∈M(X) is a probability measure when µ ≥ 0 (for any Borel set
A, µ(A) ≥ 0) and µ(X) = 1. We denote P(X) the (convex) space of probabilitymeasures over X . Let us also mention that we will writeM+(X) for the spaceof positive measures onX and PN(X) for the space of probability measures on
X which are discrete and supported on N points at most:

PN(X) =

{
1

N

N∑
i=1

δxi

∣∣∣∣∣ (x1, . . . , xN) ∈ XN

}

Given a Borel map T : X → Y , Y another Polish space, one can define theimage of a measure µ ∈M(X) through the map T :
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Definition 9. Let ρ ∈ M(X) and T be a measurable mapping from X to Y . Then
the push-forward measure of ρ along T is the measure T#ρ ∈M(Y ) defined by:

For any Borel set A ⊂ Y , T#ρ(A) = ρ(T−1(A))

or equivalently, for any ϕ ∈ C0b (Y ),∫
Y

ϕ(y)d(T#ρ)(y) =

∫
X

ϕ(T (x))dρ(x)

Note here that T#µ has the same total mass as µ, only now in the space Y .

A.1 Narrow convergence of measures
The Radon property µ(A) = sup{µ(K) | K ⊂ A, K compact} implies that anysingle measure is tight. More generally:
Definition 10. A family {µi}i of measures on the Polish space (X,d) is said to be tight
when:

For any ε > 0, there exists a compact set K ⊂ X such that µi(X \ K) < ε for
every i ∈ I

This notion of tightness implies sequential compactness for a specific topol-ogy onM(X), defined by duality with the space of real continuous boundedfunctions on X , C0b (X):
Definition 11. Let (µn)n∈N ∈ M(X), µ ∈M(X). Then we say that (µn)n∈N con-
verges narrowly to µ, which we denote by µn −−−⇀

n→∞
µ when:

For any ϕ ∈ C0b (X), limn→∞
∫
X
ϕdµn =

∫
X
ϕdµ

Note here thatM(X) is NOT the topological dual (for this convergence) of
C0b (X) except when X is compact.

Compactness for tight sequences is given by the celebrated Prokhorov’s the-orem, which specifies, in some sense, the usual weak-⋆ compactness of Banach-Alaoglu theorem for P(X), in the cases where X is not compact:
Theorem40 (Prokhorov). If the sequence of probabilitymeasures (µn)n∈N ∈ P(X)N

is tight, then one may extract a sub-sequence (µϕ(n))n∈N which narrowly converges
towards a measure µ ∈ P(X):

µϕ(n) −−−⇀
n→∞

µ

Conversely, any sequence (µn)n∈N narrowly converging is tight.
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A.2 Absolutely continuous measures and the dis-
integration theorem

Absolute continuity of a measure ρ with respect to a measure µ states that ρsees at most the same sets as µ (and sometimes less):
Definition 12. Ameasure ρ ∈M(X) is said to be absolutely continuouswith respect
to µ ∈M(X) (written ρ≪ µ) when for any Borel set A,

µ(A) = 0 =⇒ ρ(A) = 0.

On the other hand, ρ and µ are said to be mutually singular (ρ ⊥ µ) when there
exists a Borel set B such that ρ(X \B) = µ(B) = 0.

The following differentiation theorem by Lebesgue gives, for two measures,a useful decomposition of one into a part regular for the other and one singular:
Theorem 41. Let µ, ν be two measures inM(X). Then there exists µac and µsing in
M(X) such that µac ≪ ν, µsing ⊥ ν and,

µ = µac + µsing

Although the image of a measure µ through a map, T#µ is not always ab-solutely continuous with respect to µ (T can collapse the mass of µ too much),the following disintegration theorem allows for a representation of the imagemeasure as the product of measures, one of which is the original measure µ:
Theorem 42. Let ρ ∈ M(X) and π : X → Y be a Borel map (where Y is another
Polish space). Let µ = π#ρ.

Then there exists a family of measures (ρy)y∈Y ∈M(X)Y such that:

• For any Borel set B ⊂ X , y ∈ Y 7→ ρy(B) is a Borel measurable map.

• For µ-almost every y, ρy is supported on the fiber π−1(y).

• for every Borel-measurable function f : X → R+ ∪∞:∫
X

f(x)dρ(x) =

∫
Y

∫
π−1(y)

f(x)dρy(x)dµ(y)

or equivalently,for any Borel set A ⊂ X ,

ρ(A) =

∫
Y

ρy(A)dµ(y).
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A.3 The Hausdorff measure for lower dimensional
sets

We finish this appendix in the Euclidean space X = Rd. The natural Borel mea-sure on Rd to place on sets of dimension lower than d is the Hausdorff measureof the same dimension, and we use it at several points in this thesis. Note that itis not finite on sets of size too large, so it is not inM(Rd) with our assumptions(however, this does not pose us any issues):
Definition 13. Let 0 ≤ k ≤ d be an integer.

The k-dimensional Haussdorf measure of a set S ⊂ Rd is:

Hk(S) := α(k) lim
δ↓0

inf

{∑
i

(diamUi)
k

∣∣∣∣∣ S ⊂⋃
i

Ui, diam(Ui) < δ

}

where α(k) is the Lebesgue volume of the unit ball in Rk.

This definition can be extended to k not being an integer, but we shall onlyconsider Haussdorf measure on integer dimension in our computations.
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Appendix B

Convex analysis

We recall in this appendix several facts on convex functions. For a more generaloverview of this branch of analysis, we refer the reader to Ekeland and Temam[23]. These functions are usually taken with value in R̄ := R ∪ +∞ as it is oftenconvenient to give an infinite value to vectors which we want to forbid when do-ing minimization. We also assume that our functions are proper, meaning thatthey cannot be+∞ everywhere (and the fact that they cannot be−∞ is alreadyassumed).
To fix things, ifX is a real vector space, a function f : X → R̄ is convex onXwhen for any t ∈ [0; 1], x, y ∈ X ,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

It is concave when −f is convex (the previous inequality is reversed).
Definition 14. Let f be convex, bounded frombelow. We call domain of f the convex
set:

dom(f) := {x ∈ X | f(x) < +∞}
A simple illustration is given by the convex indicator function of a convex set

C , in some way the simplest convex function of domain C:
χC : x 7→

{
0 if x ∈ C
+∞ otherwise

B.1 Convex duality:
Convex functions admit a very natural "weaker" notion of gradient, as a maxi-mal slope for a hyperplane underneath their curve. This slope is naturally de-
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fined as an element of E∗, the topological dual of E. We make here the remark,as a non-trivial example, that the space of (finite Radon) measuresM(X) on aPolish compact space X is the topological dual of the space of real continuous(bounded) functions on X , C0(X), through the dot-product
µ, ϕ ∈M(X)× C0b (X) 7→

∫
X

ϕ(x)dµ(x),

meaning that any continuous linear functional over C0(X) can be representedas the dot-product with a fixed measure over X . However, if X is not compact,
M(X) is not this topological dual but the above duality would be sufficient tostate most of the following theorems.
Definition 15. Let f : E → R̄ be convex.The subdifferential of f at x ∈ E is the set
of slopes:

∂f(x) := {p ∈ E∗| ∀y ∈ E, f(y) ≥ f(x) + p · (y − x)}

Similarly, for a concave function f , one can define its supergradient at x ∈ Eas the set ∂+f(x) = −∂(−f)(x). We use the notation ∂+ in this second caseonly to make a difference with the notation for the subgradient. As we considervery few concave function in this thesis, this asymmetry of notations should notprove too disturbing.It is an immediate but critical fact that, from this definition, x ∈ E is a min-imum of the convex function f if and only if 0 ∈ ∂f(x) and a symmetric fact istrue for concave functions and their maxima.
As intuition dictates, the less vectors in its sub-gradient a convex functionhas, the smoother it will be. This is stated, in the simpler context of X = Rd

equiped with the Euclidean topology, in the following proposition. The readerwill note that most of it still holds true for much more general normed vectorspaces, however, we have no use for such generalizations:
Proposition 43. Let f : Rd → R̄. Then, if f has a non-empty sub-differential (with
the previous definition) everywhere where it is finite, then f is convex.

Furthermore, if ∂f(x) is a singleton, then f is differentiable at x and

∂f(x) = {∇f(x)}.

Finally, if there exists a continuous selection of sub-gradients

x ∈ dom(f) 7→ yx ∈ ∂f(x),

then f is C1 on its domain.
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Obviously, the same is true for concave functions, replacing sub-differentialswith super-differentials.
A very notable point is the following theorem by Alberti which strengthensthe celebrated Rademacher theorem on Lipschitz continuous functions:

Theorem 44 (Alberti, [3]). Let u : Rd → R be a convex function and 0 < k < d an
integer. Then the set

{x ∈ Rd | dim(∂u(x)) ≥ k}
is aHd−k-rectifiable set of class C2 and dimension d− k, i.e it can be covered (up to
removing aHd−k-negligible set) by countablymany (d−k)-dimensional submanifolds
of class C2.

The dimension of the C2-manifolds are simply that of the underlying space
Rn−k in their definition. On the other hand, the k-dimensional Hausdorff mea-sure is, once again, the one given in Definition 13, Appendix A.

In particular, coupling this theorem with Proposition 43, we immediately getthat any convex function f on Rd is differentiable except on a countable unionof sets essentially of dimension d− 1, and in dimension d = 1, a convex functionis differentiable everywhere on its domain except on an at most countable set!
To a convex function onE, one can associate another onE∗ through duality.Note that in this definition, no assumption is made on the reflexivity of E, thesecond definition being made in order to have a symmetrical transformationalready:

Definition 16. For a convex function f : E → R̄ l.s.c and proper, the Legendre
transform of f at p ∈ E∗ is defined as:

f ∗(p) = sup
x∈E
⟨p, x⟩ − f(x)

Symmetrically, the Legendre transform of f ∗ (or bitransform of f ) is defined as:

f ∗∗(x) = sup
p∈E∗
⟨p, x⟩ − f ∗(p)

We will make the assumption on all our convex functions that they are alllower semi-continuous, which is the lowest regularity assumption one canmakein order for a function to have a minimum on every compact set:
Definition 17. For a Polish spaceX , a function f : X → R̄ is lower semi-continuous
(l.s.c.) when for any sequence (xn)n∈N ∈ XN and x ∈ X :

lim
n→∞

xn = x =⇒ f(x) ≤ lim inf
n→∞

f(xn)
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It is interesting to note, although we do not use it, that convex functionswhich are lower semi-continuous for the standard topology on E, are also l.s.c.for the weak-⋆ topology (which is a stronger notion of continuity).
The lower semi-continuity hypothesis, togetherwith the fact thatwe assumedthat our convex functions were proper, guarantees that taking the bi-transformof a convex function f brings one back to the original function. Furthermore, inthat case, the sub-gradients of f and f ∗ are reciprocates of one another in thefollowing sense:

Theorem 45 (Fenchel-Moreau). Let f : E → R̄ be a convex (proper) l.s.c. function,
f ∗ its Legendre transform.

Then, f ∗∗ = f

Furthermore, for any x ∈ E and p ∈ E∗

p ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(p)

Wefinish these reminders on convex dualitywith a central result in Legendre-Fenchel duality, the celebrated Fenchel-Rockafellar duality theorem. Throughthis result, one can rewrite a convex minimization problem into a concave one(over the dual space E∗) which, often, enjoys more regularity. Note that thereexists a multitude of versions of this result and we give here the one that is bestfitted to our needs:
Theorem 46 (Fenchel-Rockafellar, [60]). Let f , g be convex l.s.c. functions over re-
spectively the Banach vector spaces E and F and A ∈ L(E,F ) continuous. Assume
that g is continuous at a point of Adom(f).

Then,
inf
x∈E

f(x) + g(Ax) = max
p∈E∗
−f ∗(A∗p)− g∗(−p)

where A∗ is the standard adjoint operator of A.

B.2 Different kinds of convexity
Often, especiallywhendealingwith geometrical transport ofmeasures, the abovenotion of convexity is not enough to describe all observed phenomena. We re-call the following "alternative" definitions of convexity, which sometimes haveto replace the "rougher" scalar one of the previous section.
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The functional featuring semi-discrete optimal transport terms studied inthis thesis are all a little less than concave, which is a natural consequence oftheir definition as Moreau envelopes:
Definition 18. Let (E, ∥.∥) be a normed vector space. The function f : E → R̄ is
said to be α-semiconcave (α > 0) when f − α ∥.∥2

2
is a concave function.

Similarly, f is α-semiconvex when f + α ∥.∥2
2

is convex (−f is semiconcave).

One can note that there is a stronger notions of concavity/convexity, in thesame spirit (andwemake someuse of this regularity in the case of optimal trans-port costs):
Definition 19. Let E be a convex subset of a normed vector space (X, ∥.∥). The
function f : E → R̄ is α-convex (or strongly convex) when f − α ∥.∥2

2
is a convex

function.
Similarly, f is α-concave when f + α ∥.∥2

2
is concave (−f is strongly-convex).

Note that if f is a λ-convex function, it also verifies a stronger convexity in-equality: For x, y ∈ E2, and t ∈ [0; 1],
f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− λt(1− t)

2
∥x− y∥2

Finally, we move completely to the (convex) space P(Ω): A different kind ofconvexity, more suitable for optimal transport, is the one observed when fol-lowing geodesics and generalized geodesics in this space. We refer the readerto the seminal work of Carlier and Agueh on Wasserstein barycenter for a defi-nition of both notions and examples, [2]. We merely recall the definition of thesecond notion of convexity, as we make use of this property on the Wassersteindistance in the proof of Proposition 6:
Definition 20. Let Ω ⊂ Rd and F : P(Ω) → R̄. We say that F is convex along
generalized geodesics when, for any µ, ρ0, ρ1 in P(Ω), t ∈ [0; 1]

F (ρtµ) ≤ tF (ρ0) + (1− t)F (ρ1)

where ρtµ is the generalized geodesic between ρ0 and ρ1, with respect to µ defined
by:

For any ϕ ∈ C0(Ω),
∫
Ω

ϕ(x)dρtµ(x) =

∫
Ω3

ϕ((1− t)x1 + tx3)dγ
0(x2, x1)dγ

1(x2, x3)

and γi is an optimal transport plan between µ and ρi.
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Let us recall briefly that when F has the integral form (1.14) considered in theend of Chapter 1, with the necessary assumptions on f to obtain lower semi-continuity and convexity, assuming furthermore:
• f(0) = 0.
• dom(f) ⊂ R+

• The function t ∈ R∗
+ 7→ tdf(t−d) is convex and non-increasing.

then F is convex along generalized geodesics (see [4], proposition 9.3.9).
We finish this appendix by mentioning that the 2-Wasserstein distance (on

P2(Rd)) is 2-strongly convex along generalized geodesics meaning, with the no-tations of Definition 20, that:For any µ, ν, ρ0, ρ1 in P(Ω), t ∈ [0; 1]:
W 2

2 (ν, ρ
t
µ) ≤ tW 2

2 (ν, ρ
0) + (1− t)W 2

2 (ν, ρ
1)− t(1− t)W 2

2 (ρ
0, ρ1)
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Titre: Discrétisation Lagrangienne de problèmes variationnels dans des espaces de Wasserstein.
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Résumé: Dans ce mémoire, nous étudions la dis-
crétisation de problèmes variationnels, au moyen
de méthodes du transport optimal semi-discret.
Bien que les techniques simplifient grandement
la résolution de ces problèmes elles introduisent
également des termes non-convexes dans des prob-
lèmes qui étaient convexes avant discrétisation.
Le modèle principalement étudié est celui d’une
foule se déplaçant de façon à minimiser une én-
ergie globale qu’elle accumule durant son mouve-
ment. Cette évolution est modelée par un prob-
lème de jeu à champ moyen variationnel, pour la
minimisation d’une énergie comprenant un terme
qui pénalise la présence de zones de congestions.
Nous approchons les solutions par les trajectoires
d’un nombre fini d’individus, cependant ces foules
discrètes ne sont pas admissible pour le problème
de jeu à champ moyen, à cause justement du terme
de congestion. Pour définir un problème simi-
laire pour notre foule discrète, nous remplaçons
le terme problématique par une régularisation de
type Moreau-Yosida. Notre résultat principal af-
firme alors la convergence des minimiseurs du prob-
lème discret vers une solution du problème de jeu

à champ moyen initial. Cependant, cette conver-
gence est conditionnelle à un choix approprié de
paramètres de régularisation et sa détermination
est encore une question ouverte. Cela n’empêche
pas la résolution du problème discret pour des
choix arbitraires de ces paramètres, laquelle génère
des trajectoires cohérentes avec le comportement
imposé par le problème de jeu à champ moyen cor-
respondant. La régularisation du terme de conges-
tion, définie par une enveloppe de Moreau pour
la distance de Wasserstein 2 introduit donc une
non-convexité dans le problème discrétisé, et l’on
est en droit de craindre d’aboutir à des situa-
tions critiques non-minimisantes en le résolvant
numériquement. Afin de mieux comprendre ces
dangers, nous avons étudié la structure de ces sit-
uations critiques pour le problème non convexe,
plus simple mais néanmoins proche, de quantifi-
cation optimale uniforme d’une mesure. Bien que
nous ayons réussi à clarifier la forme de ces points
critiques et en particulier le devenir de la dis-
crétisation lorsque le nombre de particules croit à
l’infini, la classification complète de ces configura-
tions possibles demeure largement inachevée.
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Title: Lagrangian discretization of variational problems in Wasserstein spaces.
Keywords: Optimal transport; Calculus of variations; Critical points; Variationnal principles; Extremal
problems.

Abstract: In this thesis, we study the discretiza-
tion of variational problems, via semi-discrete op-
timal transport methods. Although these tech-
niques yield much simpler expressions for their so-
lutions, they also introduce non-convex terms in
what were convex problems before discretization.
The main model is that of a crowd, which mini-
mizes a global energy accumulated during its mo-
tion. This evolution is modeled by a variational
mean field game problem, which energy features
a term penalizing highly congested area. We ap-
proximate the solutions using the trajectories of a
finite set of particles, however, such finite crowds
are not admissible for this problem, due to the con-
gestion term. In order to circumvent this issue,
we consider a similar energy, however one where
the congestion is penalized by a regularized ver-
sion of the previous term. Our main result is then
the convergence of these discrete minimizers to-
wards a solution of the mean field game problem.
However this statement requires the selection of

an appropriate sequence of regularization parame-
ters, which cannot be determined just yet. This is
only partially an impediment, as the discretization
used is very robust, and even for relatively large
values of these parameters, the numerical experi-
ments showcase a satisfying behavior regarding the
modeled phenomenon. The regularization of the
congestion term is defined as a Moreau envelope,
using the 2-Wasserstein distance. These expres-
sions introduce a non-convexity in the discretized
problem which could make numerically computing
their solutions difficult. In order to better under-
stand these issues, we gather insightful informa-
tion regarding the structure of critical points for
the simpler but related non-convex problem of uni-
form optimal quantization. These critical configu-
rations and in particular, their limits as measures
when the discretization becomes more and more
precise, remain a vastly unexplored part of these
optimization problems.
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