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Abstract / Résumé

Abstract

In this thesis, we consider the problem of learning when data are strategically
produced. This challenges the widely used assumptions in machine learning that
test data are independent from training data which has been proved to fail in many
applications where the result of the learning problem has a strategic interest to some
agents. We study the two ubiquitous problems of classification and linear regression
and focus on fundamental learning properties on these problems when compared to
the classical setting where data are not strategically produced.

We first consider the problem of finding optimal classifiers in an adversarial setting
where the class-1 data is generated by an attacker whose objective is not known
to the defender—an aspect that is key to realistic applications but has so far been
overlooked in the literature. To model this situation, we propose a Bayesian game
framework where the defender chooses a classifier with no a priori restriction on
the set of possible classifiers. The key difficulty in the proposed framework is that
the set of possible classifiers is exponential in the set of possible data, which is itself
exponential in the number of features used for classification. To counter this, we first
show that Bayesian Nash equilibria can be characterized completely via functional
threshold classifiers with a small number of parameters. We then show that this low-
dimensional characterization enables us to develop a training method to compute
provably approximately optimal classifiers in a scalable manner; and to develop a
learning algorithm for the online setting with low regret (both independent of the
dimension of the set of possible data). We illustrate our results through simulations
and apply our training algorithm to a real bank fraud data set in a simple setting.

We then consider the problem of linear regression from strategic data sources. In
the classical setting where the precision of each data point is fixed, the famous
Aitken/Gauss-Markov theorem in statistics states that generalized least squares
(GLS) is a so-called “Best Linear Unbiased Estimator” (BLUE) and is consistent (the
model is perfectly learned when the amount of data grows). In modern data science,
however, one often faces strategic data sources, namely, individuals who incur a
cost for providing high-precision data. We model this as learning from strategic
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data sources with a public good component, i.e., when data is provided by strategic
agents who seek to minimize an individual provision cost for increasing their data’s
precision while benefiting from the model’s overall precision. Our model tackles the
case where there is uncertainty on the attributes characterizing the agents’ data—a
critical aspect of the problem when the number of agents is large. We show that,
in general, Aitken’s theorem does not hold under strategic data sources, though it
does hold if individuals have identical provision costs (up to a multiplicative factor).
When individuals have non-identical costs, we derive a bound on the improvement
of the equilibrium estimation cost that can be achieved by deviating from GLS, under
mild assumptions on the provision cost functions and on the possible deviations
from GLS. We also provide a characterization of the game’s equilibrium, which
reveals an interesting connection with optimal design. Subsequently, we focus on the
asymptotic behavior of the covariance of the linear regression parameters estimated
via generalized least squares as the number of data sources becomes large. We
provide upper and lower bounds for this covariance matrix and we show that, when
the agents’ provision costs are superlinear, the model’s covariance converges to zero
but at a slower rate relative to virtually all learning problems with exogenous data.
On the other hand, if the agents’ provision costs are linear, this covariance fails to
converge. This shows that even the basic property of consistency of generalized least
squares estimators is compromised when the data sources are strategic.
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Résumé

Dans cette thèse, nous considérons le problème de l’apprentissage lorsque les don-
nées sont produites de manière stratégique. Cela remet en question l’hypothèse
largement utilisée dans l’apprentissage automatique selon laquelle les données de
test sont indépendantes des données d’apprentissage. Cette hypothèse est invalide
lorsque le résultat de l’apprentissage a un intérêt stratégique pour certains agents.
Nous étudions les deux problèmes omniprésents de classification et régression linéaire
et plus particulièrement leur propriétés fondamentales par rapport aux modèles
classiques où les données ne sont pas produites stratégiquement.

Nous considérons d’abord le problème de la classification dans un contexte anta-
goniste où les données de classe 1 sont générées par un attaquant dont l’objectif
n’est pas connu du défenseur — un aspect qui est essentiel pour des applications
réalistes mais qui a jusqu’à présent été négligé dans la littérature. Nous proposons
un jeu bayésien où le défenseur choisit un classificateur sans restriction a priori
sur l’ensemble des classificateurs possibles. La principale difficulté de ce modèle
est que l’ensemble des classificateurs possibles est exponentiel dans l’ensemble des
données possibles, qui est lui-même exponentiel dans le nombre de caractéristiques
utilisées pour la classification. Pour contrer cela, nous montrons tout d’abord que les
équilibres de Nash Bayésiens peuvent être caractérisés complètement via des classi-
ficateurs à seuils exprimés avec un faible nombre de paramètres. Nous montrons
ensuite que cette caractérisation de faible dimension permet de développer une
méthode d’apprentissage utilisant des données d’entraînement pour calculer des clas-
sificateurs approximativement optimaux avec de fortes garanties et de développer
un algorithme d’apprentissage en ligne satisfaisant la propriété du “no-regret” (nos
résultats sont indépendants de la dimension de l’ensemble de données possibles).

Nous considérons ensuite le problème de la régression linéaire à partir de sources
de données stratégiques. Dans le cadre classique où la précision de chaque point
de données est fixe, le théorème d’Aitken/Gauss-Markov en statistique énonce que
l’estimateur des moindres carrés généralisés (GLS) est ce que l’on appelle le “meilleur
estimateur linéaire sans biais” et est consistant. Dans les applications récentes,
cependant, les données peuvent être stratégiques, c’est-à-dire que la production
de données précises est coûteuse. Nous modélisons cela comme l’apprentissage en
présence de données stratégiques avec un bien public, c’est-à-dire que les données
sont fournies par des agents stratégiques qui minimisent un coût individuel de
production de données précises tout en bénéficiant de la précision globale du
modèle. Nous modélisons l’incertitude sur les données des agents - un aspect critique
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du problème lorsque le nombre d’agents est important. Nous montrons qu’en général,
le théorème d’Aitken n’est plus valide dans ce cadre, bien qu’il soit maintenu si les
individus ont des coûts de provision identiques. Lorsque les individus ont des coûts
non identiques, nous donnons une borne sur l’amélioration du coût d’estimation
à l’équilibre qui peut être obtenu en s’écartant de GLS. Nous caractérisons aussi
l’équilibre du jeu, révélant une connexion intéressante avec le problème de design
optimal. Par la suite, nous étudions le comportement asymptotique de la covariance
des paramètres de régression linéaire estimés par GLS. Nous fournissons des bornes
pour cette covariance et montrons que, lorsque les coûts de production des agents
sont super-linéaires, la covariance du modèle converge vers zéro mais à un rythme
plus lent que les problèmes d’apprentissage classiques. En revanche, si les coûts
de production des agents sont linéaires, cette covariance ne converge pas. Cela
montre que même la propriété de base de consistance GLS est compromise lorsque
les sources de données sont stratégiques.
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Acronyms and Notations

Acronyms

BLUE , Best linear unbiased estimator,
BNE , Bayesian Nash equilibrium,
OGD , Online gradient descent,
OLS , Ordinary Least Squares estimator,
GLS , Generalized Least Squares estimator,
NE , Nash equilibrium,

ROC , receiver operating characteristic,
SAA , Sample average approximation.

Notations and Conventions

Γ , Strategic linear regression game,
ΓL , Strategic linear regression game considering estimator L,
G , Adversarial classification game,

∆(S) , The set of probability distribution over the set S.

Throughout this thesis we also use the following conventions:

• For any m ∈ N, we denote the set of integers {1, . . . ,m} by J1,mK

• We use bold symbols to denote vectors (all vectors are column vectors) and
subscripts to denote in coordinate. Thus, x = (x1, . . . , xn) is a n-coordinate
vectors with i-th coordinate xi.

• We denote the indicator function of a set S ⊂ A by 1S(x) =
{

1 if x ∈ E
0 Otherwise.

.

By abuse of notation, we denote for a function f the indicator 1{x′∈A,f(x)=c}(x)
as 1f(x)=c(x).

• For a set S, we denote 2S its powerset (the set of all subsets of S) and
sometimes identify this powerset with the set of all indicator functions of
subset of S.
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• For a random variable X taking values x ∈ X and with probability distribution
p, we denote p(x) = p(X = x) by abuse of notation. We also denote Ex∼D[x] =∫
X xp(x)dx and omit the subscript on the expected value if the context is clear.

• In game models, we denote a player by an index i and the set of other players
by the notation −i.

• We use the asymptotic notations of Bachman-Landau and Knuth. For any
functions f : S ⊆ R→ R and g : S ⊆ R→ R, we write:

– f(x) = O(g(x)) if there exists M > 0 and x0 ∈ S such that f(x) ≤Mg(x)
for all x ≥ x0.

– f(x) = Ω(g(x)) if there exists M > 0 and x0 ∈ S such that f(x) ≥Mg(x)
for all x ≥ x0.

– f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).

viii



Contents

Acknowledgments i

Abstract / Résumé iii

Acronyms and Notations vii

Contents ix

1. Introduction 1
1.1. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Failure of Classical Learning Schemes . . . . . . . . . . . . . . 1
1.1.2. Overcoming the Dependency Between Data Generation and

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3. Perspective of the Thesis . . . . . . . . . . . . . . . . . . . . . 5

1.2. Contributions and Organization of the Thesis . . . . . . . . . . . . . 6

2. Background 11
2.1. Notions of Classification and Linear Regression . . . . . . . . . . . . 11

2.1.1. Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2. Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. Notions of Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1. Strategic Game and Equilibrium . . . . . . . . . . . . . . . . . 15
2.2.2. Zero-Sum Game and Potential Game . . . . . . . . . . . . . . 19

I. Adversarial classification 21

3. State of the Art and Model 23
3.1. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2. Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1. Preliminary: reduction of dimensionality . . . . . . . . . . . . 29
3.2.2. Model discussion . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3. Example of Games . . . . . . . . . . . . . . . . . . . . . . . . 31

The One Feature Game . . . . . . . . . . . . . . . . . . . . . . 31
The Bank Fraud Data Set . . . . . . . . . . . . . . . . . . . . 31

ix



The Artificial Bank Fraud Game . . . . . . . . . . . . . . . . . 32

The Binary Features Game . . . . . . . . . . . . . . . . . . . . 32

4. Equilibrium Characterization 33
4.1. Optimal Defense Classifiers Are Threshold Classifiers . . . . . . . . . 33

4.1.1. The Complete Information Case: Insights on the Value of Gmax 37

4.2. Attacking in Response to Optimal Defenses: Balancing the Defender’s
Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3. Illustration of The Bayesian Nash Equilibrium . . . . . . . . . . . . . 41

5. Scalable Offline and Online Defense 43
5.1. Scalable Offline Stochastic Optimization . . . . . . . . . . . . . . . . 43

5.1.1. Numerical illustration . . . . . . . . . . . . . . . . . . . . . . 45

5.2. Scalable Online Learning . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1. Numerical Illustrations . . . . . . . . . . . . . . . . . . . . . . 52

5.3. Extension to Compact Vector Sets . . . . . . . . . . . . . . . . . . . . 53

5.4. Extension to Partially Strategic Attackers . . . . . . . . . . . . . . . . 55

II. Strategic Linear Regression 59

6. State of the Art and Model 61
6.1. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2. Models and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2.1. The Linear Regression Game . . . . . . . . . . . . . . . . . . 64

6.2.2. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.3. Examples Used in Proofs and Illustrations . . . . . . . . . . . 72

7. Structural Results About the Game 75
7.1. The Linear Regression Game is a Potential Game . . . . . . . . . . . 75

7.2. Equivalence Between Two Special Cases: the Complete Information
Case and the Independent and Identically Distributed Case . . . . . . 77

7.3. Price of Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8. Properties of Linear Unbiased Estimators in the Strategic Setting 83
8.1. Approximate Aitken’s Theorem for Strategic Linear Regression . . . . 83

8.1.1. Extension of the Non-Cooperative Game to Linear Unbiased
Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1.2. Near Optimality of the Generalized Least Squares Estimator . 86

Numerical Illustration of the Non-Optimality of GLS . . . . . . 87

x



8.2. Asymptotic Degradation of Estimates . . . . . . . . . . . . . . . . . . 92

8.2.1. Link With Optimal Design . . . . . . . . . . . . . . . . . . . . 92

General data provision costs . . . . . . . . . . . . . . . . . . . 94

8.2.2. Bounds on the Estimation Cost . . . . . . . . . . . . . . . . . 96

The Case of Identical Agents . . . . . . . . . . . . . . . . . . . 97

Asymptotic degradation of estimation cost in the general case 99

Illustration: Heterogeneous Agents With Different Exponents 103

Illustration: Agents With Polynomial Provision Costs . . . . . 104

Illustration: Agents With Non-Polynomial Provision Costs . . 105

8.2.3. The OLS Estimator Suffers From a Single Arbitrarily Bad Pro-
vision Cost While the GLS Estimator does not . . . . . . . . . 105

III. Conclusions and Perspectives 109

9. Conclusion and Future Works 111
9.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.2. Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A. Supplementary Materials for Chapter 4 A1
A.1. Proof of Lemma 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . A1

A.2. Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . A1

A.3. Proof of Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . A3

A.4. Proof of Lemma 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . A4

B. Supplementary Materials for Chapter 5 A5
B.1. Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . A5

B.2. Classical online gradient descent algorithm and associated regret bound A6

B.3. Proof of regret bound for the naive online learning algorithm . . . . A7

B.4. Proof of Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . A7

C. Supplementary Materials for Chapter 7 A9
C.1. Proof of Proposition 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . A9

C.2. Proof of Proposition 7.2 . . . . . . . . . . . . . . . . . . . . . . . . . A9

C.3. Proof of Theorem 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . A11

C.4. Proof of Theorem 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . A14

D. Supplementary Materials for Chapter 8 A17
D.1. Proof of Theorem 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . A17

D.2. Proof of Theorem 8.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . A22

xi



D.3. Proof of Proposition 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . A23
D.4. Proof of Theorem 8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . A23

E. Hardware and software used for experiments A27

List of Figures A29

Bibliography A31

F. Résumé Détaillé en Français A43
F.1. Chapitre 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . A43

F.1.1. Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A43
Échec des schémas d’apprentissage classiques . . . . . . . . . A43
Surmonter la dépendance entre la génération de données et

l’analyse . . . . . . . . . . . . . . . . . . . . . . . . A46
Perspective de la thèse . . . . . . . . . . . . . . . . . . . . . . A48

F.2. Contributions et organisation de la thèse . . . . . . . . . . . . . . . . A49
F.3. Chapitre 2: Notions Essentielles . . . . . . . . . . . . . . . . . . . . . A49
F.4. Chapitre 3: Modèle et État de l’art (Classification) . . . . . . . . . . . A50
F.5. Chapitre 4: Caractérisation de l’équilibre . . . . . . . . . . . . . . . . A51
F.6. Chapitre 5: Défense Extensible en Ligne et Hors Ligne . . . . . . . . A51
F.7. Chapitre 6: Modèle et État de l’art (Régression Linéaire) . . . . . . . A52
F.8. Chapitre 7: Résultats Structuraux sur le Jeu . . . . . . . . . . . . . . A53
F.9. Chapitre 8: Propriétés de l’estimation Linéaire non Biaisée Dans un

Cadre Stratégique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A53
F.10. Chapitre 9: Conclusion et Travaux Futurs . . . . . . . . . . . . . . . A54

F.10.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . A54
F.10.2. Futurs travaux . . . . . . . . . . . . . . . . . . . . . . . . . . A56

xii



Introduction 1
1.1 Context

Machine learning is an extensive field allowing us to exploit the ever increasing
quantity of available data to automate tasks performed by humans (such as self-
driving cars) or to analyze data sets too large and complex to be processed by humans
when classical programs fail to produce satisfactory answers. In many scenarios, the
learning process is done in two distinct steps. First, an analyst gathers data which
can be labeled (e.g., characteristics of bank transactions and whether or not these
transactions were fraudulent) or have a value of interest (e.g., medical data where
characteristics of patients are gathered to understand under which conditions a
disease is severe or not). Then, the analyst uses the gathered data to produce a result
which can take varying forms such as a classifier (classifying transactions between
fraudulent and non-fraudulent) or a regression (a model associating characteristics
to a value in order to predict the value of interest in future data points).

1.1.1 Failure of Classical Learning Schemes

A common assumption in many such settings is that the data gathering process is in
some sense independent from the following analysis and its result. In classification
it usually takes the form of the following assumption: "The training data and the
test data are drawn from the same distribution". This implies that whatever the
analyst does will not change the way data is produced compared to what happened
before the analysis. In regression, the variance of data points does not depend on
the analysis and is supposed to be a parameter of the problem.

In many applications however, these assumptions do not hold as the result of the
analysis has strategic value. In these settings, agents may modify either the way
they produce data or directly the data they send to the analyst to achieve their goal.
This can lead to conflict between the data generation process and the analysis which
we call either adversarial if data generators have interests directly in conflict with
the objectives of the analyst or simply strategic in which case their interests may or
may not align with the analyst.
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Adversarial settings arise typically when some agents are malicious. For example,
in classification, the goal of the analyst might be to recognize fraudsters, such
as fraudulent twitter accounts as studied in Thomas et al. [Tho+13]. It is clear
that fraudsters have an interest in not being classified as fraud and this leads to
an adaptation to evade classification. Such behavior however is not limited to
fraud and can also be observed when detecting network intrusion or preventing
DDoS attacks. It is well known that using standard classification algorithms for this
task leads to poor performance. Attackers are able to avoid detection by adjusting
the data that they generate while crafting their attacks (evasion attacks) or to
alter the training data set so that the resulting classifier performs poorly against
them (poisoning attacks). Nelson et al. [Nel+09] show that attackers can easily
fool a spam filter with access to a small portion of spam used to train the spam
filter. Goodfellow et al. [GSS15] explain why many machine learning models are
vulnerable to carefully crafted attacks (such as slightly modifying a few pixels from a
pictures and completely changing the label a neural network attributes to it) called
adversarial examples. Sommer and Paxson [SP10] show that the network intrusion
detection problem is fundamentally difficult to approach from a machine learning
perspective due its adversarial nature. Wang et al. [Wan+14] study malicious
crowdsourcing (called crowdturfing) systems where attackers pay users to carry
a range of attacks and exhibit that, while such attacks can efficiently be detected
by machine learning methods, these methods are also very vulnerable to evasion
and poisoning. There is a vast literature on adversarial classification to patch this
weakness (see Section 3.1 for a detailed discussion), but these works often propose
ad-hoc defense methods optimized against specific attacks without fully modeling
the attacker’s adaptiveness. This leads to an arms race as classifiers adapt to a
specific type of attack and attackers find ways to circumvent these defenses.

Strategic settings are encountered when users do not have malicious intents but have
some interest in the result of the analysis which may or may not conflict with the
result they should obtain. Such behavior is observed not only in specific applications
involving experts but also in the general population. For example, home buyers
in America may open multiple credit cards for the sole purpose of improving their
credit score. This omnipresence of strategic behavior has led to famous laws such as
Goodhart’s law (see Goodhart [Goo75]) which states that "Any observed statistical
regularity will tend to collapse once pressure is placed upon it for control purposes."
and was later generalized by Strathern [Str97] in the form of "When a measure
becomes a target, it ceases to be a good measure.". Among all possible examples
of strategic behavior to manipulate a measure, some of the most commonly cited
are teachers being under pressure to obtain good results from their students and
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focusing on performing in tests rather than in learning and universities manipulating
rankings by focusing their efforts on the specific metrics used for the ranking (see
[ES07; ESE16]). It should be noted, however, that the range of application of such
laws is broader than the examples we mentioned and includes varied settings such
as stores manipulating the quantity of product they request as shown in Caro et al.
[Car+10] or simply when agents do not wish to be perceived as outliers if the result
of the analysis can impact their life as discussed by Perote and Perote-Pena [PP04].
These strategic behavior affect the data produced by agents which then affects the
result of the analysis. In the university case for example, analysts learn the rank of
each university depending on characteristics manipulated by universities. There is a
growing body of work on these strategic considerations in particular in the context of
linear regression (see Section 6.1 for a detailed discussion) but these works usually
focus how to minimize the estimation error in various setting or how to guarantee
strategy proof estimators (where agents reveal their data truthfully) and do not
study the large array of possible statistical properties of classical estimators applied
in strategic settings.

1.1.2 Overcoming the Dependency Between Data Generation and
Analysis

In recent years, many game-theoretic models have emerged to circumvent the
faulty assumption that the data generation process is independent from the analysis.
Indeed, game-theory is a tool of choice to model such interactions as the main
solution concept of equilibrium implies that both the data generators and the analyst
act taking into account the strategic behavior of the other.

Several game-theoretic models of adversarial classification have emerged over the
last decade pioneered by models such as the one of Dalvi et al. [Dal+04] (see
Section 3.1 for a more detailed discussion). Most of them, however, have several
crucial limitations. In particular, they are deeply tied to classical learning algorithms.
Such algorithms rely on a reduction of the hypothesis class (i.e., the set of possible
classifiers from which the defender chooses its defense) to obtain tractable (often
convex for example) optimization problems to minimize the classification error. This
tie is both a strength of their models as they may be more likely to be adopted by
users and a weakness as, while classically used hypothesis classes usually represent
some prior knowledge on the shape the optimal classifier may have, this prior
knowledge has no reason to be valid when considering adversarially produced data
and may even be exploited by attackers. These game theoretic models also assume
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complete information about the attacker’s objective,1 which is often too strong
in practice as suggested by Vorobeychik and Kantarcioglu [VK18]. Finally, while
some of these models enjoy theoretical guarantees of errors (when considering
restricted sets of classifiers), they are usually aimed at practical applications and
lack a fundamental understanding of more general properties.

Considerations of strategic behavior have also become central in an emerging liter-
ature on learning with strategic data sources (see Section 6.1 for a more detailed
discussion). In these settings agents are not necessarily antagonist to the analyst
but have their own objectives. For example, we previously mentioned stores ma-
nipulating the quantity of product they request (see [Car+10]). In this case, stores
optimize their own benefits while the main company behind them optimizes their
global benefits. Such problems define a first category of models where agents
strategize to obtain a desired outcome from the analysis. This leads to authors
studying estimators which are strategy proof as in Perote and Perote-Pena [PP04],
Chen et al. [Che+18b], and Dekel et al. [DFP10a]. These works focus on estimators
having the desired property that no agent misreports their data. In some other
settings, agents incur some cost to provide data and strategize on this cost as they
may for example demand monetary compensation for their efforts. This is the case
in crowdsourcing with the model Dasgupta and Ghosh [DG13] or recommender
systems (see [ERK11; AZ97; Har+05]) where providing content or feedback re-
quires effort, or in applications where the data is produced by costly computations.
Costly data production may also come from sensitive personal information (as in
medical applications), revealing it with high precision entails a privacy cost that
might incentivize individuals to decrease the disclosure precision and add noise
to it (hence decreasing the precision as seen in Warner [War65] and Duchi et al.
[DJW13]). When providing high-quality data comes at a cost, it makes sense to
consider strategic behavior among data sources. In particular, one should ask: why
would strategic data sources provide any data at all? This literature mainly examines
the design of monetary incentive mechanisms to optimize the model’s error assuming
that agents maximize their incentives minus their individual provision costs, see e.g.,
Cai et al. [CDP15], Liu and Chen [LC16a], and Westenbroek et al. [Wes+20] and
references therein. In many applications, however, the underlying model also has a
public good component—i.e., the agents also benefit from the model’s precision. This
is the case in recommender systems (where users benefit from the overall service
quality), medical applications (where individuals benefit from the data analysis
through improved treatments or better healthcare advice), federated learning (see
[Yan+19; Kon+16; GKN17]), etc. An additional issue in such applications is that

1with the exception [Gro+13], but on regression.
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the number of participating agents is typically large, so there is a commensurate
degree of uncertainty regarding the state or incentives of other agents.

1.1.3 Perspective of the Thesis

As our previous literature discussion shows, the problem of characterizing fundamen-
tal properties of learning algorithms when data is strategically or even adversarially
produced is not sufficiently addressed. To the best of our knowledge, only Dritsoula
et al. [DLM17], Cullina et al. [CBM18], and Bhagoji et al. [BCM19] characterize
some classical learning properties in adversarial settings while Pinot et al. [Pin+20]
and Meunier et al. [Meu+21] lay game theoretic foundations for further extension
by showing that mixed Nash equilibrium exist in a model of practical importance.
For strategic considerations (in particular in regression), authors usually consider
how to minimize errors (see Abernethy et al. [Abe+15]) or guarantee that truthful
data are obtained (see Chen et al. [CSZ20]) while the field of classical statistical
properties to consider is much larger. Furthermore, the considered applications
usually gather a very large amount of data from varied sources and characterizing
the precise properties and goals of the different actors is unrealistic. For example,
students competing against other students have no reasonable way to determine the
exact characteristics of their competitors while networks face many different threats
with varying degrees of seriousness.

This thesis studies these problems where results are lacking. In particular, we study
learning problems in the presence of strategic data sources using a game theoretic
approach and considering the solution concept of Nash equilibrium which finely
models the adaptation of both the data producers and the analyst to the actions of
the other. We are interested in fundamental learning properties of models applicable
to settings where a large amount of data is gathered. This means that we should
guarantee the scalability of our methods both in terms of computation power and
information required. We aim to develop model and solution methods applicable to
a large array of settings covering both adversarial and strategic settings going from
bank fraud and network intrusion detection to learning with costly information as
seen in federated learning or medical settings.
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1.2 Contributions and Organization of the Thesis

In this thesis, we focus on learning problems where the data generation process
is not independent from the result of the analysis and model such settings using
game theory which allows us to consider the adaptation of both the data generation
process and the analyst to the actions of the other party. Throughout the thesis, we
focus on the two following key questions:

1. Do fundamental learning results still hold when the data generation process
depends on the result of the analysis?

2. Can game theoretic models reasonably be applied in learning settings where
there is a large quantity of available complex data?

We study the problems of adversarial classification and strategic linear regression
through these questions. In particular, from a high level perspective, we show that
fundamental learning results are challenged – optimal adversarial learning can
be performed with simple classifiers and classical estimators resulting from linear
regression are no longer optimal or even consistent when data are strategically
produced.

This thesis is organized into three parts. Part I (Chapters 3, 4 and 5) is dedicated
to the adversarial classification problem. Part II (Chapters 6, 7 and 8) presents our
results on the strategic linear regression problem. Due to the differences between
the two setting, we review in each part the corresponding literature. Finally, we
draw our conclusions in Part III and discuss potential future work. We present a
more detailed outline of this thesis and its contributions chapter by chapter in the
following paragraphs.

Chapter 2 reviews technical concepts necessary for the results of this thesis. We
introduce our learning problems (classification and linear regression) with their
associated fundamental results. We define the VC-dimension for classification and
the Generalized Least Squares estimator and its statistical properties. In particular,
this estimator is consistent and is the Best Linear Unbiased Estimator (BLUE) in
the sense that its covariance is minimum among linear unbiased estimators. We
then present the game theoretic framework used to analyze these problems with the
definition of a strategic (Bayesian) game, the notion of equilibrium and conditions
guaranteeing the existence and the ease of computation of said equilibrium.

Chapter 3 introduces the adversarial classification game which is the primary focus
of Part I. We first review literature related to adversarial classification, game theory
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and the interface between these two fields. We then formulate our adversarial
classification game. In this game a defender faces a mix of non-attackers who act
according to a fixed probability distribution and attackers who choose how they act
to maximize their utility. The defender is uncertain of the type of attackers they
face but has a prior belief on the probability that attackers are of given types. The
behaviors observed by the defender are translated into vectors of observable features
for the classification task. The defender randomizes among all possible classifiers
to minimize both the damage incurred by attackers and the false alarms due to the
detection of non-attackers as attackers. In this setting, we study the Nash equilibrium
of the game which corresponds to situations where both players act simultaneously.
We show that the strategy of the defender can be expressed in a simpler way as a
probability of detection function which describes the probability that each vector
is detected. We conclude this chapter by a discussion on our assumptions and the
settings on which our model is relevant to apply.

In Chapter 4, we characterize the equilibrium of the previously defined game. Our
first main contribution is the characterization of the optimal defense strategy. We
show that the defender optimally defends against attacks by deploying a strategy
inducing a probability of detection function belonging to a specific parametrized
class of functions. This result emphasizes the need for randomization in adversarial
classification setting while showing that simple – but not necessarily classically used
– classifiers lead to optimal defenses. More precisely, these probability of detection
functions can be achieved with simple strategies randomizing uniformly against
threshold classifiers where the thresholds are the previous parameters. We also
prove that these parameters correspond to the minimizers of a piecewise linear
convex function whose time required to evaluate at a given point depends on the
size of the vector space. This vector space however may be large and the parameters
necessary to evaluate this function (such as the probability distribution of non-
attackers) may be hard to evaluate. Interestingly, the space of optimal probability
of detection functions and threshold classifiers is not complex considering classical
classification complexity definition; the former is of pseudo-dimension 1 and the
latter of VC-dimension 1. We then characterize the strategy of the attacker as a
best-response to the strategy of the defender. This gives some intuitive properties
about the strategy of the attacker – they should attack with a behavior corresponding
to relevant vectors with a probability which balances the false alarm loss of the
defender and the loss due to attacks on this vector. We illustrate these results on a
simple artificial game.

Chapter 5 focuses on efficient computation of the optimal defense parameters with
limited information. To do so, we exploit our previous parametrization which shows
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that finding approximately optimal parameters in our class of parametrized functions
yields an approximately optimal defense. Our second main contribution provides
an algorithm to compute approximately optimal parameters on an offline setting.
We show that having access only to a labeled data set where the defender can
evaluate the false alarm cost of each data point as well as the utility of attackers in
case of detected or undetected attacks is sufficient to find approximately optimal
parameters. The structure of our game even implies that the defender is able to
find the optimal parameters with a probability growing potentially exponentially
fast with the size of the data set. Importantly, we obtain approximation guarantees
which do not depend on the size of the vector set. This is illustrated on both artificial
games and a real bank fraud data set. We then focus on the online setting where the
defender does not have access to historical data but must perform classification on
incoming vectors and learn on the fly. We show that if the defender’s objective is to
minimize the Stackelberg regret (i.e. how much they lost compared to how much
they would have lost when acting optimally considering that attackers adapt to their
strategy), they can achieve low-regret (once again independent in the size of the
vector set) by learning approximately optimal parameters. This is our third main
contribution. We finally illustrate the online learning process on an artificial game
with vectors consisting of a varying number of binary features.

Chapter 6 introduces our strategic linear regression game central to Part II. We
first review existing work related to strategic linear regression. We then present
our linear regression game. In this game, agents participate in a linear analysis
by providing data points with a chosen precision. On one hand they benefit from
a precise analysis in a public-good manner modeled by a cost depending on the
covariance of the estimator obtained. On the other hand, producing precise data is
costly either because of privacy concerns or because of computational challenges.
This creates a trade-off between providing precise data to obtain a precise estimator
and minimizing data provision cost.

In Chapter 7, we focus on game-theoretic properties of our linear regression game.
In particular, we show that it is a potential game, reducing the problem of finding
a Nash equilibrium to finding the minimum of a convex function. We then prove
that our game is applicable even when agents have limited information about other
agents when their data points are produced according to a common distribution.
To do so, we show an equivalence between the complete information game where
agents have complete knowledge of the data points of other agents and an average
game where they are only aware of the common underlying distribution. We finally
characterize the price of stability of the game – a measure of social efficiency which
quantifies the impact of selfishness on social welfare by comparing the overall loss
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of all agents to their overall loss if they had worked in coordination to minimize it.
The price of stability exhibits a worst-case scenario when the cost of producing data
increases linearly with the chosen precision.

Chapter 8 focuses on the statistical properties of the estimator resulting from the
analysis. We show that the Generalized Least Squares estimator is no longer the
Best Linear Unbiased Estimator (BLUE) but is approximately optimal among a class
of estimators satisfying suitable statistical properties. This is our fourth main
contribution. In our fifth main contribution we characterize the quality of the
estimation at equilibrium from two perspectives. First, we show that agents with data
provision costs linear in the precision lead to an optimal allocation of precision in the
sense that the estimator obtained directly relates to what an optimal design would
obtain. This is however not suitable in practice as we then show that in this case the
Generalized Least Squares estimator is not even consistent. More precisely, we show
that the presence of strategic agents always degrades the rate of convergence. For
superlinear costs, the GLS estimator remains consistent, but its covariance decreases
to zero at a rate slower than the standard Θ(1/n) rate. Additionally, as the data
provision costs become approximately linear, this rate becomes progressively slower,
(to the point that the GLS estimator fails to be consistent if the data provision costs
are linear).

Part III contains the conclusions of this work as well as potential future work. We
defer some of our proofs and technical detail to the Appendix.
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Background 2
We review in this chapter some important existing concepts which are necessary to
introduce the results of this thesis. Section 2.1 introduces two ubiquitous machine
learning problems and results quantifying the quality and complexity of learning in
these problems. Section 2.2 presents some of the fundamental definitions of game
theory with basic solution concepts. Note that this chapter exists for the sake of self
sufficiency and is not a full introduction to the topics we present. We thus omit many
fundamental results which are not necessary to the thesis. We however point the
reader to relevant books in each section for in-depth introductions to the relevant
topics.

2.1 Notions of Classification and Linear Regression

In this section, we introduce a subset of machine learning problems. We address
the basics of classification and linear regression needed for the development of
this thesis. Our notations for the general learning problem and definitions are
drawn from Shalev-Shwartz and Ben-David [SB14] which we refer the reader to
for a more in-depth introduction on machine learning. Our notations for the linear
regression problem are inspired from Greene [Gre03] which contains all the results
we present.

We aim to label objects drawn from a set X with labels from a label set Y. To
do so, we have access to training data: a finite sequence of labeled data points
((x1, y1), . . . , (xm, ym)) which we want to learn from. The learner wants to output a
prediction h : X → Y from a set of hypothesis class H associating any possible input
with a label. For this training to be possible we must define two major points: the
data generation process and the objective of the learner. First, the data is generated
by an unknown distribution D over X × Y = Z. Then, we quantify the quality of an
output of the learner through an average loss function LD(h) ≡ Ez∼D [`(h, z)] where
` : H × Z → R+ is the loss of attributing label h(x) to the data point z = (x, y).
Note that in many settings computing the average loss is not possible. To overcome
this, it is often useful to consider the empirical risk LS(h) =

∑m

i=1 `(h,zi)
m . Its exact
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properties however heavily depend on the setting and may be "optimal" such as with
the least squares linear estimator or lead to overfitting of the model on the training
data set.

Both classification and linear regression fit this general definition with different
label sets Y , hypothesis classes H, data distributions D and loss functions `. For this
section, we consider that X is a subset of Rd.

2.1.1 Classification

We first introduce some results on the binary classification problem where Y = {0, 1}
and the loss of the learner is the 0 − 1 loss `(h, z) = 1h(x) 6=y. Note that what
we present in this section can be generalized to multi-class classification where
Y = {1, . . . ,M} but this is out of scope of this thesis. For this problem, we consider
the agnostic probably approximately correct (PAC) framework defined as follows:

Definition 2.1. A hypothesis class H is agnostic PAC learnable if there exist a function
mH : (0, 1)2 → N and a learning algorithm with the following property: For every
ε > 0, δ ∈ (0, 1) and for every distribution D over X × Y, when running the learning
algorithm on m ≥ mH(ε, δ) i.i.d. examples generated by D, the algorithm returns a
hypothesis h such that, with probability of at least 1 − δ (over the choice of the m
training examples), we have:

LD(h) ≤ min
h′∈H

LD(h′) + ε. (2.1)

The notion of PAC learning patches an inherent difficulty of the learning framework
we presented– the data generation process is random which implies that we can
never truly be certain of our results. This definition allows us to prove that it is
possible to approach the optimum hypothesis with certain probability and that
improving either the quality of our solution or the probability that our solution is of
the wanted quality can be done if we gather more training data. A very important
notion for the PAC learning framework is the VC-dimension of a hypothesis class
which quantifies the complexity of the learning task. This definition is based on the
idea of shattering a set of points which determines if when the defender receives
points (c1, . . . , cm) with arbitrary labels, it is always possible for them to correctly
classify them using functions from their hypothesis class.
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Definition 2.2 (Shattering). Let C = (c1, . . . , cm) ⊂ X be a finite set. We say that H
shatters C if for all assignment of labels (y1, . . . , ym) to points of C, there exists h ∈ H
such that h(ci) = yi for all i ∈ {1, . . . ,m}.

Definition 2.3 (VC-dimension). The VC-dimension of a hypothesis class H, denoted
V C dim(H), is the maximal size of a set C ⊂ X that can be shattered by H. If H can
shatter sets of arbitrarily large size we say that H has infinite VC-dimension.

The VC-dimension intuitively represents a notion of complexity of the hypothesis
class considered and has a strong link with the notion of PAC learnable. In particular,
the fundamental theorem of statistical learning shows that a hypothesis class H is
PAC learnable if and only if it has finite VD-dimension and when it is PAC learnable,
the number of sample points needed to obtain a δ-ε PAC approximation can be
bounded by a function of δ, ε, the VC-dimension and constants and grows with the
VC-dimension. This does however not mean that it is always suitable to select a low
VC-dimension as this induces a bias in the solution. A simple hypothesis class may
contain no suitable hypothesis for the model we want to learn. Indeed, while the
VC-dimension bound guarantees that we will be able to find a hypothesis among the
best in H easily, even the best hypothesis in our hypothesis class may fail to model
what we want to learn in a satisfactory way. For example, it is trivial to "learn" the
optimal hypothesis when the hypothesis class H is reduced to a single hypothesis
but this does not exploit the information given by the training data. Such a trade-off
is similar to the well known bias-variance trade-off in statistical analysis. We will
use the notion of VC-dimension in Part I where one of the questions we address is
what types of classifiers a defender should use when classifying in the presence of
adversaries and how complex these classifiers should be.

2.1.2 Linear Regression

We then introduce the problem of linear regression. In this type of model, D defines
a linear relation between the label y ∈ Y = R and the "object" or regressor x:
y = β>x+ ε where ε represents noise drawn from a distribution with null expected
value and a given variance σ2. The objective of the learner in this case is to minimize
the squared error `(h, z) = (h(x)− y)2. In this setting, the learner is restricted to the
linear unbiased hypothesis class i.e. the class of hypothesis β̂ such that there exists
L ∈ Rd×n such that β̂ = Ly and which satisfies E

[
β̂
]

= β. Biased estimators (such
as the lasso) are also of interest in general but out of scope of this thesis as their
theoretical properties are complex and hard to quantify in practice making them

2.1 Notions of Classification and Linear Regression 13



challenging to incorporate in theoretical models. Note that the linear regression
model also allows to model cases where y is an affine function of x by adding a fixed
coordinate (often 1) to each vector.

In this section we refer to the hypothesis of the learner as an estimator to reflect the
goal of estimating the linear relation β between the regressor and the label. When
the learner minimizes the empirical risk associated to `, the problem is solved in
closed form with the ordinary least squares estimator (OLS) which enjoys strong
theoretical properties (which are stated later in this section in a more general
setting).

We are interested in a more general version of the linear regression problem where
the data points ((x1, y1), . . . , (xm, ym)) of the training set are not identically dis-
tributed and we have instead yi = β>xi + εi where εi has null expected value and
variance σ2

i . For ease of notation, we will use the precision instead of the variance de-
fined as λi = 1/σ2

i . Assuming that the learner has access to the value of the variance
σ2
i , the previous empirical risk minimization is no longer suitable as the resulting

OLS estimator is no longer optimal (in a sense precised later in Proposition 2.1).

The goal is then to find the unbiased estimator with "low" covariance Cov(β̂) =
E
[
(β̂ − β)>(β̂GLS − β)

]
which captures finely the uncertainty of the estimation of β.

To do so, we use the partial order on positive semi-definite matrices � where A � B
if A−B ∈ Sd+. This partial order is sufficient as the results state that there exists an
estimator achieving minimum covariance among linear unbiased estimators. The
solution to this problem is also known in closed form as the generalized least squares
(GLS) estimator. To write this estimator clearly, let us first introduce some notations.
Denote by λ = [λi]i∈N the vector of precisions and by Λ = diag(λ) the diagonal
matrix whose diagonal is given by vector λ. y = [yi]i∈N is the n-dimensional vector
of label variables, and X = [xTi ]i∈N ∈ Rn×d the n× d matrix whose rows comprise
the transposed feature vectors. Then, the learner chooses hypothesis h = β̂GLS

defined as follows:
β̂GLS = (X>ΛX)−1X>Λy. (2.2)

This estimator has the following covariance Cov(β̂GLS) = (XTΛX)−1.

This estimator enjoys very strong properties with regards to the other linear unbiased
estimators. In particular the following optimality result known as the Aitken (our
Gauss-Markov when all variances are equal and the estimator is OLS) theorem
holds:
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Proposition 2.1 (Aitken [Ait35]). GLS is the best linear unbiased estimator (BLUE) in
the sense that its covariance is minimal in the semidefinite order among the covariances
of all linear unbiased estimators.

A simple proof of this theorem can be made by remarking that any linear unbiased
estimator L can be written L = (X>ΛX)−1X>Λ+D withDX = 0. Then, computing
the covariance of any estimator written this way shows that it is higher than the
one of GLS. The GLS estimator is also consistent (i.e. it converges in probability to β
when the number of data points grows) and is asymptotically normally distributed
(i.e. we have

√
m
(
β̂GLS − β

)
d→ N (0, Q∗−1) where Q∗ = plim 1

mX
>ΛX). We will

use these results in Part II where one of the questions we address is whether they
still hold in a setting where data points are strategically produced.

Now that we have introduced the practical problems we study in this thesis, we
will introduce the tools we use to analyze them in settings where data production
depends on the algorithms used to analyze data. In particular, such interaction is
well modeled using game-theory.

2.2 Notions of Game Theory

Game theory is a mathematical tool modeling situations where multiple agents (or
players) make decisions whose outcome depends on the decisions of other agents.
This field dates back to the 18th century with the analysis of a french card game
([Bel07]). Its most well-known application however dates from the 19th century
with the Cournot duopoly and the field starts to formally exist on its own only with
the work of Von Neumann [Von16]. Finally, the solution concepts we study in today’s
literature originated from Nash [Nas51] with the notion of equilibrium which then
gave rise to a plethora of other solution concepts (such as Wardrop equilibrium of
Wardrop [War52]) with different economical interpretations. In this section, we
briefly introduce specific results needed for the thesis of this vast field. The notations
and definitions are based on the book of Fudenberg and Tirole [FT91].

2.2.1 Strategic Game and Equilibrium

A game in strategic form is defined by the following elements:

• The set of players i ∈ P = {1, . . . , I}.
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• The pure strategy space Si for each player i.

• The payoff functions ui(s) associating a strategy profile s = (s1, . . . , sn) to a
utility obtained by player i

We denote Γ = (P, (Si)i∈P , (ui)i∈P) this strategic form. We say that players partici-
pate in a static complete information game if the following assumptions are verified:
players are rational1, have common knowledge2 about all parameters of the game
and choose their actions simultaneously and independently. Note that this definition
is based on utilities i.e. what players gain. Authors sometimes define their games
based on costs which is a strictly equivalent formulation (we can multiply utilities by
−1 to obtain costs and vice-versa) and only changes the assumptions of concavity of
utilities to convexity of costs when they are needed.

It is often useful to reason in terms of best-response of a player to the actions of
the other players. We use the notation −i to denote characteristics of every player
except player i. For example, a strategy profile is often written as s = (si, s−i).
We then say that s∗i is a best-response to the action of other players s−i if s∗i ∈
arg maxsi∈Si ui(si, s−i).

To obtain meaningful results on the interaction of players, we sometimes need to
account for possible randomization among their actions. We thus extend the model
to include mixed strategies which allows players to randomize among their pure
strategies. We denote Σi = ∆(Si) the set of probability distributions over Si. This
set is called the set of mixed strategies of player i and any σi ∈ Σi is a mixed strategy.
It is then straightforward to extend the definition of payoffs and best-responses to
these mixed strategies.

Next, we present the notion of Nash equilibrium, one of the most important solution
concepts in game theory. It defines a set of stable strategy-profiles relevant in many
applications.

Definition 2.4 (Nash equilibrium). A mixed-strategy profile σ∗ is a Nash equilibrium
if, for all players i, we have:

ui(σ∗i , σ∗−i) ≥ ui(si, σ∗−i) for all si ∈ Si. (2.3)

1See Osborne and Rubinstein [OR94] p.5 for an introduction on the definitions of Morgenstern and
Von Neumann [MV53] and Savage [Sav72]

2While the notion of common knowledge can be grasped intuitively, its formal definition is complex.
A great introduction to the topic is in Osborne and Rubinstein [OR94] p.67
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A Nash equilibrium σ∗ has the intuitive interpretation that no player has incentive to
unilaterally deviate from the strategy profile σ∗. Another interpretation is that the
strategies of each player i are best-responses to the strategies of each other player −i.
This leads to the vision of a Nash equilibrium as a fixed-point of the best-response
function which is often used to prove the existence of Nash equilibrium.

In general, a strategy profile achieving such a property is not guaranteed to exist and
when it exists is not guaranteed to be unique. This is problematic as when several
Nash equilibrium exist, if different agents act according to different equilibrium
they can obtain an arbitrarily bad result and game theoretic assumptions prevent
players from concerting over the choice of the equilibrium. Thus, game theoretic
models often aim to show that there exists a unique equilibrium of the considered
game or to show that all equilibrium are interchangeable. The next two results offer
assumptions under which a Nash equilibrium always exists.

Theorem 2.1 (Nash [Nas51]). Every finite strategic game has a mixed strategy Nash
equilibrium.

Theorem 2.2 (Debreu [Deb52], Glicksberg [Gli52], and Fan [Fan52]). Consider a
strategic-form game whose strategy spaces Si are nonempty compact convex subsets of
an Euclidean space. If the payoff functions ui are continuous in s and quasi-concave in
si, there exists a pure strategy Nash equilibrium.

Note that many more results exist to guarantee that a game admits a Nash equilib-
rium under less different assumptions (such as non-continuous payoff) but are not
necessary for the results of this thesis.

In many applications, however, all parameters are not necessarily common knowl-
edge. In particular, it is frequent for players to have private information which
influences the outcome of the game and can only be guessed by other players.
To model this, we say that a player has a private type θi ∈ Θi (we assume that
Θi is finite in this thesis) and players type are drawn from a known distribution
p(θ1, . . . , θI). We denote p(θi|θ−i) the conditional probability of player i about the
other players type. In this setting, the utility of each player depends on the type of
all players and their action and is written as ui(s1, . . . , sI , θ1, . . . , θI). The action of
a player now depends on their type and we write si(θi) the action of player i when
their type is θi. If player i knows their type θi and the strategies of other players
σ−i(·), they can optimize their expected gain using their prior p(θ−i|θi). This defines
an "expanded" complete information game in which players optimize their gain
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with respect to each of their possible types. We thus define the notion of Bayesian
equilibrium through the notion of Nash equilibrium of this expanded game.

Definition 2.5 (Bayesian Nash equilibrium). A Bayesian Nash equilibrium in a game
of incomplete information with a finite number of types θi for each player i, prior
distribution p and pure strategy spaces Si is a Nash equilibrium of the "expanded game"
in which each player i’s space of pure strategies is the set SΘi

i of maps from Θi to Si

We will often use a more straightforward definition of Bayesian Nash equilibrium. It
is easy to see that a mixed-strategy profile σ∗ is a Bayesian Nash equilibrium if for
all i and θi, we have:

σ∗i (θi) ∈ arg max
σi(θi)∈Σi

∑
θ−i

p(θi|θ−i)ui(σi(θi), σ∗−i(θ−i), (θi, θ−i)). (2.4)

There exists other notions of equilibrium assuming different timing of actions or
behavior of players. In particular, another natural equilibrium to consider in the
classification setting is the Stackelberg equilibrium. In a Stackelberg game, a player
acts first (the leader). All other players observe the action of the leader and act
simultaneously. For simplicity’s sake, we only present here the case of two-players
Stackelberg games which are widely used in the literature. In Stackelberg games,
the strategy of the follower depends on the strategy of the leader. We thus denote σ1

the strategy of the leader and f(σ1) the strategy of the follower where f : Σ1 → Σ2

represents the strategy of the follower as response to the strategy of the leader. The
leader-follower dynamic naturally defines a notion of equilibrium similar to the
notion of Nash equilibrium.

Definition 2.6 (Strong Stackelberg Equilibrium). Consider a Stackelberg game where
player 1 is the leader and player 2 the follower. A pair of strategies ((σ∗1, f(σ∗1))) is a
Strong Stackelberg equilibrium if the following conditions hold:

1. u1(σ∗, f(σ∗)) ≥ u1(σ, f(σ)) for all σ ∈ Σ1.

2. u2(σ1, f(σ1)) ≥ u1(σ1, σ2) for all σ1 ∈ Σ1 and σ2 ∈ Σ2.

3. u1(σ1, f(σ1)) ≥ u1(σ1, σ2) for all σ2 ∈ arg maxσ′2 u1(σ1, σ
′
2) (The follower breaks

ties in favor of the leader).

In this definition, we say that the follower breaks ties in favor of the leader. Other
Stackelberg equilibrium exist such as the Weak Stackelberg equilibrium where the
follower breaks ties unfavorably for the leader. In the type of classification settings
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we consider however, the Strong Stackelberg equilibrium is the most interesting.
Indeed, in classification it is natural to assume that the defender commits to their
defense strategy and the attacker observes this strategy and acts. It is then possible
for the defender to force the action of the attacker to be the most favorable outcome
among their possible best responses (for example by defending slightly more against
an unfavorable type of attack). Similarly to Nash equilibrium, every finite game
admits a Strong Stackelberg equilibrium.

While the existence of (Bayesian) Nash equilibrium is well understood in the settings
we consider, finding the equilibrium is in general a hard problem even for two player
games (see Daskalakis et al. [DGP09] and Chen and Deng [CD06]). We see in the
next section some specific types of games which have structural properties which
makes computing their equilibrium less challenging.

2.2.2 Zero-Sum Game and Potential Game

The first type of game we introduce are the so-called zero-sum games where players
compete and the gain of a player corresponds exactly to the loss of their adver-
saries.

Definition 2.7 (Zero-sum game). A game is called zero-sum if for all strategy profile
s, we have:

I∑
i=1

ui(s) = 0. (2.5)

In general, it is challenging to compute the equilibrium of even zero-sum games
(as long as the number of players is greater than two) as any two player game can
be modeled as a three player zero-sum game where the payoff of the third player
simply ensures the zero-sum property. We consider however in this thesis only the
special case of two player zero-sum games. In this case, the gain of a player is
exactly the loss of the other player. Combined with the best-response property of the
equilibrium, it means that any of the two players should strive to maximize their
minimum gain. This leads to players having incentives to find min-max strategies.

Definition 2.8 (min-max strategy). A min-max strategy for player i is a (mixed)
strategy σ such that for all σ′, we have:

min
s−i

ui(σi, s−i) ≥ min
s−i

ui(σ′, s−i). (2.6)
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Two player zero-sum games reduce the problem of finding an equilibrium to finding
a min-max of the utility function of each player. In particular, in the case of finite
games, the equilibrium can be found through a linear program of size polynomial in
the sizes of strategy spaces (this is no longer true even for 3 players zero-sum games).
Another property of zero-sum game is that any combination of Nash equilibrium
forms a Nash equilibrium thus bypassing the need for uniqueness of equilibrium.
This type of game appears on Part I. Additionally, in two player zero-sum games, any
Nash equilibrium is a Stackelberg equilibrium of the Stackelberg game where any of
the two players is the leader and the other the follower.

Next, we define another type of game whose structure facilitates the computation of
a Nash equilibrium: potential games.

Definition 2.9 (Potential game). A game Γ is a potential game if there exists a function
φ : S → R such that ∀i, ∀si ∈ Si, ∀s−i ∈ S−i, ∀s′i ∈ Si, we have:

φ(si, s−i)− φ(s′i, s−i) = ui(si, s−i)− ui(s′i, s−i) (2.7)

It is easy to see that any global minimum of the potential function is a Nash
equilibrium. Additionally, if the potential function is strictly concave, there exists
a unique Nash equilibrium which is the unique maximizer of φ. In these settings,
the problem of finding an equilibrium is thus reduced to finding the maximum of a
concave function which admits an extensive literature with practical algorithms. This
type of game appears on Part II and appears otherwise in many different problems
such as congestion games.
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Part I

Adversarial classification





State of the Art and Model 3
In this part (Chapters 3, 4 and 5), we present our first example of learning with
strategic, or in this case adversarial, data. More precisely, we tackle the problem of
adversarial classification where a defender aims to classify incoming vectors from
attacks and non-attacks and attackers aim to evade classification. We model this
interaction with a game where the defender receives vectors from either attackers or
non-attackers. Attackers choose the vector they use among a finite set of vectors V
and non-attackers follow a fixed distribution on V . The defender chooses a classifier
without any a priori restriction on the set of possible classifiers. This raises two main
issues. First, the number of possible classifiers is exponential in |V|. Then, V itself is
exponential in the number of features used to classify. Indeed, even considering the
simplest case of k binary features leads to a vector set of size 2k and a set of possible
classifiers 2V of size 22k . We focus on two key questions:

1. Which classifiers should the defender use at the equilibrium?

2. How can the defender compute optimal strategies in a scalable (in the number
of features) manner?

We show that randomization is crucial to optimal defenses but, surprisingly, the
defender can defend against attacks optimally using a class of classifiers with low
complexity (of VC-dimension 1) using a parametrization depending on the gains
of attackers. This parametrization in turns allows us to develop approximation
methods which can generalize to unknown vectors both offline and online.

This first chapter reviews existing work broadly related to adversarial classification
and to our model and introduces our adversarial classification game. In Chapter 4
we then characterize the equilibrium and show in particular that the optimal strategy
of the defender can be parametrized with few parameters. This answers our first
question. We then answer our second question in Chapter 5 where we show that
our previous characterization can be used with approximate parameters to provide
approximately optimal strategies both offline using an existing data set and online.
Additionally, these methods require knowledge of only a few parameters of the
game.
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3.1 State of the Art

In this section, we review existing work relevant to this part organized as follows.
The first 4 paragraphs review concepts broadly related to adversarial classification
and learning in general. The last 2 paragraphs review game theoretic concepts
related to our specific game and methods.

Adversarial learning: The literature on adversarial learning usually studies two
types of attacks: ‘poisoning attacks’, where the attacker can alter the training set to
tamper the classifier’s training ([Dal+04; GR06; Bar+10; LL10; Hua+11; ZK14]);
and ‘evasion attacks’, where the attacker tries to reverse engineer a fixed classifier to
find a negative instance of minimal cost ([LM05; Nel+10; LV15]). This literature,
however, does not fully model the attacker’s adaptiveness, which often leads to an
arms race. In recent years, the adversarial learning research focused on evasion
attacks called adversarial examples that affect deep learning algorithms beyond
attack detection applications ([GSS15; Pap+16; Pap+18]). These works, however,
follow the same pattern.

Game-theoretic models of adversarial classification: A number of game-theoretic
models of adversarial classification have been proposed, with various utility functions
and hypotheses on the attacker’s capabilities. Most of them, however, restrict a priori
the possible classifiers: Zhou et al. [Zho+12] and Zhou and Kantarcioglu [ZK14]
rely on kernel methods; Kantarcioglu et al. [KXC11] assumes that the defender uses
a single type of classifier (though unspecified in the model); Dalvi et al. [Dal+04]
focuses on naive Bayes classifiers (and only compute one-stage best responses);
Brückner and Scheffer [BS11] and Brückner et al. [BKS12] constrain the classifier
to a specific form and look for the (pure) equilibrium value of the parameters; Li
and Vorobeychik [LV14] uses a different model but also restrict to linear classifiers;
Dasgupta et al. [DCM20] restricts the defender to a set of adversarially trained
classifiers of different strengths; Li and Vorobeychik [LV15] uses a more general
classifier, but restricts for most results to a family of classifiers constructed on a
given basis (their model of the attacker is also more constrained than ours); and
Lisý et al. [LKP14] abstracts away the classifier through a ROC curve (attacker and
defender only select thresholds). In contrast, the objective of our work is to derive
the optimal form of the classifiers so we do not make any restriction a priori on the
classifiers used. In a recent paper, Dritsoula et al. [DLM17] (see also Dritsoula et al.
[DLM12] for a similar model specialized for network intrusion) propose a model
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where the defender can select any classifier (i.e., function from the set of data to
{0, 1}). A key difficulty lies in the exponential size of the resulting set of classifiers.
The authors show that it is possible to restrict it to a small set of threshold classifiers
on a function that appears in the attacker’s payoff. The classifiers identified, however,
have no parameter and their solution method is ad-hoc for the restrictive model
chosen—with complete information and simplistic payoffs—, hence it cannot extend
to more realistic scenarios. In realistic adversarial classification scenarios with
uncertainty on the attacker’s payoff, the leaves open the questions: What classifiers
should the defender use at equilibrium? And how to compute optimal classifiers in a
scalable manner?. Our work greatly generalized this work both from a modeling
perspective and from the scope of our results which include practical algorithms
(see Section 3.2.2).

At the exception of Lisý et al. [LKP14], Li and Vorobeychik [LV15], and Dritsoula
et al. [DLM17], the aforementioned papers build deterministic classifiers while
recent papers tend to advocate for randomization: Bulò et al. [Bul+16] introduces
random strategies on top of Brückner et al. [BKS12] while Perdomo and Singer
[PS19b] highlights the importance of randomized attacks and Pinot et al. [Pin+20]
of randomized defenses (see also their Meunier et al. [Meu+21]). In our work,
we completely characterize the equilibrium and naturally find that it must involve
randomized attack and defense strategies.

It is important to understand that these works consider two main types of model.
Brückner and Scheffer [BS11], Brückner et al. [BKS12], and Pinot et al. [Pin+20]
study adversarial learning problems where the learning problem is defined even
without attackers (e.g., image recognition), whereas Dalvi et al. [Dal+04], Lisý et al.
[LKP14], Zhou et al. [Zho+12], Zhou and Kantarcioglu [ZK14], Kantarcioglu et al.
[KXC11], and Li and Vorobeychik [LV14; LV15] study adversarial classification where
the learning problem is to detect attacks and exists only because there are attackers
(e.g., spam filtering). These models lead to different attack methods and defenses.
Our work belongs to the second category, of adversarial classification problems.

Fundamental properties of adversarial learning: Some recent works generalize fun-
damental learning properties when facing an adversary. Cullina et al. [CBM18]
extend PAC theory to adversarial settings and show that fundamental learning
bounds can be extended to this setting and that the adversarial VC dimension can
be either larger or smaller than the standard one. Bhagoji et al. [BCM19] show
that there exists inherent lower bounds on the robustness a classifier can achieve
in the presence of an attacker who can modify each vector to a neighbor vector
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before the classification process. This robustness can be characterized by a distance
between the classes the classifier should separate. Intuitively, the distance between
classes depends on the number of "adversarially indistinguishable" pairs of vectors
the attacker can make. It is noteworthy that in their setting the optimal defense is
not randomized while their model is similar to Pinot et al. [Pin+20]. This comes
from the combination of the fact that the model of Bhagoji et al. [BCM19] is closer to
a Stackelberg setting where the defender is the leader and the fact that the attacker
incurs no cost to modify a vector.

Interaction with other machine learning concepts: It is also important to mention
that adversarial machine learning does not exist without machine learning and
thus all concerns regarding machine learning algorithms are relevant to study in
adversarial machine learning. In particular, there is a rapidly growing literature
on fairness (Kusner et al. [Kus+17] and Jabbari et al. [Jab+17]) which aims to
avoid discrimination with regards to sensitive attributes (with different notion of
fairness) and differential privacy (Dwork and Lei [DL09] and Abadi et al. [Aba+16])
which aims to ensure that little information can be obtained about the training set
by observing the machine learning model. The interaction between these notions
and adversarial learning can be studied with two perspectives. The first one is
how does the algorithm adapted for adversarial learning fare with regards to these?
Such a question is studied for example in Milli et al. [Mil+19a] where strategic
classification is shown to worsen disparities between sub-populations or in Phan et al.
[Pha+19] where the generation of adversarial examples to train the model must be
modified due to privacy concerns arising from the reuse of private training data for
adversarial generation. The second one is the opposite – how does the mechanism
to ensure wanted properties of the learning algorithm affect the adversarial setting?
This question is studied for example in Ma et al. [MZH19] where differential privacy
is used as a tool to prevent poisoning attacks as the output of the classifier does not
depend too much on a single data point under differential privacy. On the contrary
in Giraldo et al. [Gir+] differential privacy is shown to facilitate poisoning attacks
in a setting where the privacy process happens before data is received by the learner
and solutions specific to adversarial learning under differential privacy are studied.
Such models, however, are recent and few.

Security games: Our game has similarities with security resource allocation games
([CL09; Kie+09; Boš+11; MTS12; FJT13; Bal+15; Sch+18; Bro+16]) used in
applications such as airport security with the model of Pita et al. [Pit+09]. These
works consider a defender with limited resources (guards, radars, etc.) to be
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allocated to the defense of critical targets. In these settings, problems are at a
relatively low scale and are usually entirely described via loss in case of attack
of an undefended target. The challenge is then the management of the limited
amount of resources, which produces NP-hard problems (see Korzhyk et al. [KCP10])
preventing these models to be transferred to very large scale settings. Our work
studies a similar setting applied to classification, where targets would correspond to
attack vectors in V. In contrast to the security games literature, we do not impose
limited resources (the defender self-restricts its detection to limit false alarm costs),
which eliminates the combinatorial issue. We are then able to provide a very different
characterization of the solutions with applicability to classification as well as to scale
to very large sets V, a problem that is never studied in classical security games.

Exponential zero-sum games: Our game reparametrization with ‘randomized clas-
sifiers’ to reduce the dimension of the set of classifiers from 2|V| to |V| borrows ideas
classical in security games. This technique is also studied for more generic zero-sum
games (see Immorlica et al. [Imm+11]); but with objectives and limitations similar
to security games.

3.2 Model

We consider the following situation. A defender receives data examples that can
be either attacks (class 1) or non-attacks (class 0) and wants to predict the class of
incoming data. We assume that a data example is represented by a feature vector
v that belongs to the same set V regardless of the class. This vector is typically a
simplified representation of the actual attack/non-attack (e.g., spam/non-spam) in
a feature space used to perform the classification. We assume that the probability
that a data example is an attack, denoted pa, is fixed.

Vectors corresponding to non-attacks follow a fixed probability distribution P0 on
V whereas vectors corresponding to attacks are generated by attackers. Attackers
choose the vector they generate to maximize a utility function (see (3.1)) depending
on the classification of the defender (this models adaptation to the defender’s
actions). To model the uncertainty of the defender, we assume that strategic attackers
are endowed with a type i ∈ J1,mK that encodes their utility. The defender does not
know the type of the attacker but holds a prior (pi)i∈J1,mK on the possible types.
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The defender chooses a classifier in C = 2V , that is a function mapping a vector to
a predicted class. We assume that the defender maximizes a utility function that
balances costs/gains in different cases as follows.

• A false negative incurs a loss Uui (v) when facing a type-i attacker.

• A true positive incurs a gain Udi (v) when facing a type-i attacker.

• A false positive incurs a false alarm cost Cfa(v).

• A true negative incurs no cost.

We assume that the attacker’s gain is the opposite of the defender’s for false negatives
and true positives (the classification outcomes involving the attacker).

Summarizing the above discussion, the utilities of the attacker and defender, when
the attacker is of type i, are defined as follows:

UAi (v, c) =Uui (v)1c(v)=0 − Udi (v)1c(v)=1, (3.1)

UDi (v, c) =− paUAi (v, c)− (1− pa)
∑
v′∈V

Cfa(v′)P0(v′)1c(v′)=1.

We assume that V is finite and all functions of v are arbitrary. Our main result,
however, extends to V compact assuming mild restrictions on the functions defining
the payoffs (see Section 5.3).

The above primitives define a Bayesian game that we denote by G. Note that we
assume that all parameters of the game including pa, P0, and the utility functions
(but not the attacker’s type) are known to both players. (We will discuss later how
to relax this assumption.) As we will see, in this game, equilibria exist only in mixed
strategy (intuitively, both players have an incentive to be unpredictable). For the
defender, a mixed strategy β is a probability distribution on C. A mixed strategy
of the attacker is a function α : J1,mK → ∆(V) such that for all i ∈ J1,mK, αi. is a
probability distribution over V chosen by a type-i attacker.

The defender’s utility depends on the attacker they face. With the belief the defender
holds on the probability of each attacker type, it is natural that the defender tries to
maximize their average utility. The equilibrium is also described with the average
utility of the different attacker types, but as the actions of different attacker types
are unrelated it is equivalent to each type maximizing its own utility.
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Finally, for all i ∈ J1,mK, we define

Gi = max
v∈V

(
−Udi (v)

)
and Gi = max

v∈V
(Uui (v)) ,

which respectively represent the minimum possible gain of the attacker (even if all
vectors are always detected they can gain this quantity) and their maximum possible
gain.

3.2.1 Preliminary: reduction of dimensionality

The first difficulty of the model we study is the exponential size of C in V. This
issue is commonly found in resource allocation games (similar reparametrizations
are found in other games such as dueling algorithms) and circumvented through
the use of a probability of allocation function: only the probability that an abstract
resource is allocated to a target is considered thus ignoring the actual allocation and
removing combinatorial complexity (assuming that one can compute this function
at equilibrium). In our case, in the spirit of Dritsoula et al. [DLM17], we define a
probability of detection π, for any strategy β of the defender, as

πβ(v) =
∑
c∈C

βc1c(v)=1.

This transformation exploits the fact that, as long as a vector is detected, the actual
classifier used for the detection is not important. Thus, with this probability of
detection function, we can rewrite the payoffs independently of classifiers:

UAi (α, β) =
∑
v∈V

αiv

[
Uui (v)− πβ(v) ·

(
Uui (v) + Udi (v)

)]
;

UDi (α, β) = −paUAi (α, β)− (1− pa)
∑
v∈V

Cfa(v)P0(v)πβ(v). (3.2)

Any probability of detection function can be attained through simple threshold
classifiers crafted for this function. To see this, consider the set of threshold classifiers
c(v) = 1πβ(v)≥t for some t ∈ [0, 1]. Then, picking a random threshold uniformly on
[0, 1] defines a strategy achieving detection probability πβ(·). Note that this is the
main difference between our work resource allocation games in which computing a
strategy achieving an allocation probability is generally NP-hard.
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3.2.2 Model discussion

The main motivating scenarios for our model are detection of malicious behaviors
such as spam (in emails, social media, etc.), fraud (e.g., bank or click fraud), or
illegal intrusion. In such scenarios, the attacker is the spammer, fraudster or intruder
while the non-attacker represents a normal user (e.g., non-spam message). The
vector v is a representation of the observed behavior on which the classification
is done. For spam filtering, it can be a simplified representation of the messages
obtained by extracting features such as the number of characteristic words. The
distribution P0 represents the distribution over those features for normal messages
(not chosen with any adversarial objective). In our basic model, we assume that it is
known by both players. It is reasonable in applications where it can be estimated
from observation of a large number of easily obtainable messages (e.g., in social
media they are public). We relax it in Chapter 5 where we show that the defender
can learn well without a priori knowledge of P0, pa and pi.

In our model the defender is uncertain of its own utility as soon as they have
uncertainty regarding the attacker they face. Although not the most classical setting,
it is meaningful and well studied in Bayesian games (see Forges [For92])—recall
that the defender maximizes an expectation of this utility at the BNE. It is well
justified in our case. For instance, if a fraudster manages to get access to sensitive
information or to an account, the amount of harm may differ depending on the skills
and resources of the fraudster.

The interaction between classifier and attacker is often modeled as a Stackelberg
game where the attacker observes and reacts to the defender’s strategy. We focus
on the (Bayesian) Nash equilibrium which makes sense if the attacker cannot have
perfect information about the defender’s strategy. More generally though, we will
see that in our game the defender’s strategy at BNE must be min-max; hence, any
strategy of the defender in a strong Stackelberg equilibrium would have the same
property. We use the Stackelberg model in the online setting where there would be
a bigger difference. Note that the fact that the defender seeks min-max strategies
also yields robustness.

Our payoff function generalizes that of Dritsoula et al. [DLM17] in a practically
important way. In their model, a reward R(v) is granted to an attack with vector
v regardless of the outcome and a fixed detection cost cd is paid if the attack is
detected. This is unreasonable in many applications such as bank fraud. In contrast,
here, we allow the utility in case of detected and undetected attacks to be arbitrary
unrelated functions of v (which would be equivalent to letting the detection cost cd
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depend on v). This key generalization alone breaks the ad-hoc method of Dritsoula
et al. [DLM17] to compute the equilibrium. On top of it, we also generalize to
a Bayesian game (of which the complete information game is a particular case
where m = 1), and consider training and online learning problems of practical
importance.

3.2.3 Example of Games

In this section we present the 4 different games we use to illustrate our results.
Games 1, 3, and 4 rely on artificial distributions where we define and know every
parameter of the game. Game 2 is defined with a real bank fraud data set where P0

and pa are unknown. Game 3 is an artificial version of Game 2 where we know every
parameter to estimate the efficiency of our training methods on the real data set.

The One Feature Game

Game 1 is a game with two possible types of attacker in which classification is based
on a single feature. The attackers’ strategy space consists of 101 attack v0, · · · , v100.
For Attacker 1, an undetected attack yields a utility Uu1 (vr) = r. A detected attack
incurs a cost Ud1 (vr) = 30 ∗ (r mod (10)), (see Figure 4.1b). Attacker 2, whose
strategy space is the same as Attacker 1, has Uu2 (vr) = 100 − r and bears a cost
Ud2 (vr) = 300 − 30(r mod (10)) in case of detected attack. Their gain and cost
functions mirror that of Attacker 1, being interested in low vectors while Attacker 1
is interested in high vectors. Hence, the defender faces two attackers with different
interests. There is a proportion pa = 0.2 of attackers. The defender bears a constant
false alarm cost Cfa = 140. A non-attacker follows a binomial distribution, they play
the vector vr with probability P0(vr) =

(100
r

)
θr0(1− θ0)100−r with θ0 = 0.2.

The Bank Fraud Data Set

Game 2 is a bank fraud setting where we do not know every parameter but have
access to a labeled data set (In our case we use the data set of ULB [ULB]).

The dataset we consider ([ULB]) contains transactions made by European cardhold-
ers in September 2013. A data vector is composed of 31 features: the amount of
the transaction (in e) denoted A, the time since the first transaction in the dataset,
whether the transaction was malicious (i.e., the label), and 28 anonymized features
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coming from a PCA (Principal Component Analysis). We instantiate our game with
this static data set by replacing each attack in the data set by an abstract adaptative
attack in our model. For simplicity, we focus only on the amount of the transaction
and consider a single attacker type with the following gains: Uu(v) = A, Ud(v) = 0,
and Cfa(v) = `×A for a given ` > 0. This models an attacker that gains the trans-
action’s amount if successful (and the bank loses it), but gains nothing if detected.
On the other hand, when a valid transaction is blocked, the bank pays a fraction `
of the transaction as a false alarm cost. This choice of utility functions is meant to
illustrate the equilibrium in a reasonable and simple scenario and not to represent
a practical ready-to-implement setting. In the dataset, the fraction of attacks is
pa = 0.00172, the maximum transaction is 25, 691.16e with an average of 88.35e.
There are N = 284, 807 transactions in total.

The Artificial Bank Fraud Game

Game 3 is a game similar to Game 2, but with features following an artificial
(controlled) distribution. We consider vectors v of the form v = A where A is
the amount of the transaction discretized on integer amounts. We define as in
Section 5.1.1, Uu(v) = A, Ud(v) = 0 and Cfa(v) = `A for some ` > 0. We prescribe
the following non-attacker distribution: P0(v) = p(A) where the amount of the
transaction of a user follows a binomial distribution between 0 and 25691 with a
mean of 88.

The Binary Features Game

Game 4 aims to illustrate learning where there is no correlation between vectors
and costs as well as the presence of multiple attackers. It is a game with four types
of attackers with vectors of k binary features, for k up to 19 to be able to compute
the exact optimum for comparison. For each attacker type i and vector v, Uui (v),
Udi (v) and Cfa(v) are assigned a random value uniformly between 10 and 20. We
set pa = 0.1 and generate pi’s randomly. The non-attacker distribution P0 is drawn
randomly and uniformly on the |V|-dimensional unit simplex.
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Equilibrium Characterization 4
In this chapter, we fully characterize the equilibrium of the adversarial classification
game. In Section 4.1, we characterize the optimal randomized defense strategy.
We exhibit a class of probability of detection function which can be achieved by
threshold classifiers and which are sufficient to optimally defend against attacks. In
particular, the probability of detection functions we consider can be expressed with
few parameters and are of low pseudo-dimension, paving the way for our methods
to compute optimal defense in a scalable fashion in Chapter 5. In Section 4.2, we
characterize the optimal attack strategy in response to a defense strategy. Our result
shows that the attacker’s strategy should strike a simple balance between the false
alarm costs the defender should endure to detect them and their gain. Finally, we
illustrate the shape of the equilibrium in Section 4.3 on the simple Game 1.

4.1 Optimal Defense Classifiers Are Threshold
Classifiers

In this section, we first characterize the optimal defense strategy of the defender. We
show that it can be expressed with few parameters representing the gain of each
type of attacker. We use this property and characterize the complexity of the optimal
defense. Surprisingly, this complexity is low as we show that the class of optimal
probability of detection functions has pseudo-dimension 1 and the class of optimal
classifiers has VC-dimension 1.

Finding a Bayesian Nash equilibrium is often hard in general games. We thus first
reduce this problem to finding a min-max problem on the probability of detection.
To do so, we compile the key property that our game is essentially a zero-sum game
with the action space reduction via the probability of detection.

Using the payoffs defined in (3.1), we can do the following transformation of payoffs
without changing both players’ equilibrium strategies. First, scale the payoff of
the defender by a factor 1/pa. Then, add the false alarm term to the payoff of the
attacker (this term is independent from the action of the attacker so does not change
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their strategy). It is then easy to see that this defines an "average" zero-sum game
where for all i ∈ J1,mK, we have UAi (α, β) = −UDi (α, β). Using the definition of a
BNE, this implies that at equilibrium they maximize their minimum average gain
and gives the following lemma (whose proof can be found in Appendix A.1):

Lemma 4.1. Let (α∗, β∗) be a BNE. Then

β∗ ∈ arg max
β

min
α

∑
i

piU
D
i (α, β). (4.1)

Computing the min-max strategies of Lemma 4.1 can be done via a classical transfor-
mation to a linear program, but this “naive” program would be of size exponential
in |V|. Even by expressing it in terms of πβ, the program would remain of size |V|,
which may be too large. Instead, we will leverage the min-max property to show
that the equilibrium can be described compactly using a small number of parameters
G = (G1, · · · , Gm) that can be interpreted as the utility of the attacker for each type.
Formally, we define:

Definition 4.1 (Optimal probability of detection). For any G ∈ [G1, G1] × ... ×
[Gm, Gm], let

πG(v) = max
{

0,max
i

{
Uui (v)−Gi

Uui (v) + Udi (v)

}}
, ∀v ∈ V. (4.2)

As we will see, this quantity is the unique probability of detection that guarantees
attacker utility below G while minimizing the false alarms, so it plays a key role in
the BNE strategy. In particular, it allows us to express the strategy of the defender as
the maximum of a concave function of G:

Definition 4.2 (Minimum gain function UD). For all G ∈ [G1, G1]× ...× [Gm, Gm],
let

UD(G) = −pa
∑
i

piGi − (1− pa)
∑
v∈V

Cfa(v)P0(v)πG(v).

This function represents the minimum utility of the defender assuming they use
a probability of detection function πG(·) for some G. It allows us to state our
parametrization result which is the main tool we use to prove all our core results.

Proposition 4.1. For any

Gmax ∈ arg max
G∈[G1,G1]×...×[Gm,Gm]

(UD(G)),
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any strategy of the defender that yields a probability of detection function π(v) =
πGmax(v) for all v ∈ V is a min-max strategy and maxβ minα

∑
i piU

D
i (α, β) =

UD(Gmax).

Sketch of proof. A proof of Proposition 4.1 can be found in Appendix A.2. The proof
relies on the min-max property of the problem which implies that the defender
must maximize their minimum gain. We show that for a given utility profile G, the
minimum gain of the defender as defined in (4.1) is at least UD(G). However, the
key difficulty is that not all utility profiles G ∈ [G1, G1]× ...× [Gm, Gm] are feasible
and the set of feasible utility profiles needs not be convex due to our Bayesian game
and arbitrary functions; hence UD(G) could be meaningless. Our proof bypasses
this difficulty by showing that πGmax(·) is a min-max strategy in any case and shows
as a corollary that Gmax is a feasible utility profile.

Proposition 4.1 essentially states that in order to find the equilibrium strategy,
the defender should only find m parameters (G1, · · · , Gm), corresponding to the
maximum utility that they should let the attacker gain for each type. Then, from
those parameters, the probability of detection function is naturally defined. This
result has multiple consequences.

First, from this characterization we deduce that one does not need to know all
the parameters of the problem to find a good strategy. Finding “good enough”
parameters for the utility of the different attacker types allows the defender to fully
define its strategy. This is the main tool allowing us to define strategies which
can generalize to unknown vectors in Chapter 5. In particular, in Theorem 5.1 we
prove that near-optimal (and even optimal with high probability) classifiers can be
computed by training the model on a labeled dataset with very limited information.
Note that this is a key difference between our work and security games where the
probability of allocation is computed directly using a linear program. There, the
lack of a simple expression for the allocation probability prevents the definition of
strategies that can generalize. It is also worth noting that unlike linear programs,
our method can be generalized to a continuous vector set—we refer to Section 5.3
for details about that.

Second, the result from Proposition 4.1 shows that the presence of strategic adver-
saries simplifies learning in our problem. Indeed, the class of real valued functions
{πG} which contains the optimal strategy is of low pseudo-dimension (e.g., if there
exist v1 (resp. v0) of class 1 (resp 0) with Uu(v0) > Uu(v1) and Ud(v0) < Ud(v1),
these two points cannot be shattered). This can be explained by the predictable
aspect of adversaries acting according to their best-response. On the contrary, when
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facing non-strategic adversaries the optimal strategy would be a cost-sensitive adap-
tation of the naive Bayes classifier, which can potentially be any arbitrary function
of 2V (especially since we make no assumption on P0). This can be explained by
the predictable aspect of adversaries. As they act according to their best-response,
the defender knows what to expect. On the contrary, when facing non-strategic
adversaries the optimal strategy would be a cost-sensitive adaptation of the naive
Bayes classifier. Such a classifier can potentially be any arbitrary function of 2V ,
especially since we make no assumption on P0. This simplification is also shown in
Theorem 5.1 where we show that there exists training methods which are optimal
with high probability. This is noteworthy as such a possibility was hinted at by Cul-
lina et al. [CBM18] who show that, for adversaries who can modify vectors in some
neighborhood, the adversarial VC dimension can be either lower or higher than the
standard one—i.e., the complexity can either increase or decrease in the presence
of adversaries. In our adversarial classification model, the complexity drastically
decreases. This also suggests that classifiers relying on simply adapting classical
training might be inefficient as they do not take into account the fundamental
complexity differences between classical and adversarial learning.

With Proposition 4.1 describing the probability of detection function at equilibrium,
we can deduce a characterization in terms of threshold classifiers.

Definition 4.3 (Generalized threshold classifiers). For all G ∈ Rm, we define

CTG = {c ∈ C : c(v) = 1πG(v)≥t,∀v ∈ V for some t ∈ [0, 1]}.

Theorem 4.1. There exists G ∈ Rm such that the defender can achieve equilibrium
payoff using only classifiers from CTG.

This theorem settles our first main question: “which classifiers should the defender
use at the equilibrium?”. These are threshold classifiers on a non-standard func-
tion with threshold t representing a probability of detection. A threshold t can
be interpreted as classifying as an attack if, even when being detected with prob-
ability t, at least one type of attacker gains at least Gi on average. Interestingly,
CTG has a VC dimension of only 1 as the set composed of v1 (resp. v0) of class 1
(resp. 0) with πG(v1) < πG(v0) cannot be shattered. This strengthens our previous
remark on the complexity of adversarial classification. Efficient randomized classifi-
cation for adversarial settings does not require high capacity classifiers but rather
classifiers tailored to the players payoffs. Then, our threshold classifiers may be
linear classifier if payoffs are linear as the condition πG(v) ≥ t can be rewritten as
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maxi
{
Uui (v)−Gi − t(Uui (v) + Udi (v))

}
≥ 0. This means that in the linear setting,

our threshold classifiers correspond to the defender picking a linear classifier for each
type of attacker and outputting class 1 if at least one of the linear classifiers outputs
it. In general settings however, linear classifiers may perform sub optimally.

The fact that the defender uses specifically threshold classifiers is noteworthy as
there is already a literature on the choice of threshold and on this choice in an
adversarial setting as in Lisý et al. [LKP14]. However, the random choice of the
threshold in our setting is surprisingly simple. By construction it is a threshold on
the probability of detection and choosing a threshold uniformly over [0, 1] gives the
desired strategy. This emphasizes that randomization is necessary to defend against
an adversary but also that the choice of the set of classifiers to use is crucial to obtain
good results.

Finally, let us notice that the equilibrium characterization naively leads to a linear
programming solution polynomial in |V| to compute an exact equilibrium—simply
by observing that function UD is piecewise linear. The result is presented in Proposi-
tion 4.2; note that a fairly similar program could be obtained without our equilibrium
characterization. We give in Section 4.2 a linear program that allows computing the
attacker’s strategy in time polynomial in |V|.

Proposition 4.2. Maximizing UD(G) is equivalent to solving the following linear
program:

maximize
π,G

−pa
m∑
i=1

piGi − (1− pa)
∑
v∈V

Cfa(v)P0(v)πv

subject to: Gi ≥ Uui (v)− πv(Uui (v) + Udi (v)),∀i,∀v
πv ≤ 1,∀v.

4.1.1 The Complete Information Case: Insights on the Value of Gmax

While Theorem 4.1 characterizes the shape of the equilibrium, it does not give any
insight on the choice of the optimal parameter Gmax. In the complete information
case, however, we can state more precise results allowing us to have a better grasp
on the strategy of the defender by characterizing precisely the minimum of UD(·).
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Function UD(·) is piecewise linear but it is also concave and we can compute its
super-gradient. for all G ∈]G,G[ such that G = Uu(v) for some v ∈ V, we have:

∂UD(G) = [− pa + (1− pa)
∑

v′,Uu(v′)>G
Cfa(v′) P0(v′)

Uu(v′) + Ud(v′) ,

− pa + (1− pa)
∑

v′,Uu(v′)≥G
Cfa(v′) P0(v′)

Uu(v′) + Ud(v′) ].

We otherwise have, for all G ∈]G,G[ such that G 6= Uu(v) for all v ∈ V:

∂UD(G) = {−pa + (1− pa)v′,
∑

Uu(v′)≥G
Cfa(v′) P0(v′)

Uu(v′) + Ud(v′)}. (4.3)

This is proved by observing that UD(·) can be expressed as a minimum of functions
UDv (G) = −Gpa − (1− pa)

∑
v′,Uu(v′)≥Uu(v)Cfa(v′) Uu(v′)−G

Uu(v′)+Ud(v′)P0(v′).

As UD(·) is a concave function, its maximum is attained either at one end of the
definition’s interval (when the derivative is negative at G or positive at G) or when 0
belongs to the super-gradient of the function. This allows us to gather some insights
on the choice of Gmax by the defender. Intuitively, the previous equations mean
that the defender chooses the gain of the attacker to strike a balance between the
probability that they face an attack pa and the increase in risk associated to the
detection of non-attackers (1− pa)

∑
v′,Uu(v′)>GCfa(v′) P0(v′)

Uu(v′)+Ud(v′) .

This piecewise linearity of UD(·) also trivially leads to the following proposition.

Proposition 4.3. The maximum of the function UD(.) will always be attained at
Gmax = G or at Gmax = Uu(v) for some v. Thus, at the equilibrium there is always a
vector that yields the maximum reward of the attacker that is either never detected or
always detected.

4.2 Attacking in Response to Optimal Defenses:
Balancing the Defender’s Risk

In this section, we characterize the strategy of the attacker as response to an optimal
strategy of the defender. Our characterization cannot be used for an efficient
computation of the attacker’s equilibrium strategy as we do not believe a low-
dimensional parametrization of their strategy to be possible and we instead focus on
understanding the probability that attackers use different attacks.
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First, as mentioned in Lemma 4.1, the game is equivalent to a zero-sum game
meaning that it would be easy to compute the strategy of the attacker through a
min-max linear program. This, however, only uses the basic properties of the game
and does not yield any more insight. We note here that while Proposition 4.2 allows
us to compute the strategy of the defender through a linear program, the dual of
this linear program does not give the attacker’s equilibrium strategy. Indeed, the
dual is the following:

minimize
αiv ,πv

∑
v∈V

∑
i∈J1,mK

αivU
u
i (v) +

∑
v∈V

πv

subject to: πv ≥ 0, ∀v ∈ V
αiv ≤ 0, ∀i ∈ J1,mK,∀v ∈ V∑
v∈V α

i
v = −pi, ∀i ∈ J1,mK∑

i∈J1,mK α
i
v(Uui (v) + Udi (v)) + πv ≥ −1−pa

pa
Cfa(v)P0(v), ∀v ∈ V

The second and third constraints could make sense if we considered the variables
−αiv/pi, but the first and fourth constraints do not correspond to the problem. In-
deed, with these constraints πv is unrestricted so it does not necessarily correspond
to a probability of detection function. Additionally, αiv does not fit the characteriza-
tion of the strategy of the attacker at equilibrium given in Lemma 4.2 below. While
it may seem counter-intuitive that the dual of the linear program giving the min-max
strategy of the defender does not output the min-max strategy of the attacker, recall
that the min-max strategy of the defender was not computed with the standard
linear program for min-max problems but through a linear program computing the
maximum of a piecewise-linear function.

Instead of characterizing the strategy of the attackers at equilibrium as a standalone
min-max linear program, we view it as a response to the optimal strategy of the
defender. This yields the following characterization of the attacker’s strategy at
equilibrium:

Lemma 4.2. Let (α∗, β∗) be a BNE of G, then:

∀v ∈ V s.t. 0 < πβ
∗(v) < 1 : pa

∑
i

piα
∗i
v(Uui (v) + Udi (v)) = (1− pa)Cfa(v)P0(v),

∀v ∈ V s.t. πβ
∗(v) = 0 : pa

∑
i

piα
∗i
v(Uui (v) + Udi (v)) ≤ (1− pa)Cfa(v)P0(v),

∀v ∈ V s.t. πβ
∗(v) = 1 and v ∈ V : pa

∑
i

piα
∗i
v(Uui (v) + Udi (v)) ≥ (1− pa)Cfa(v)P0(v).

4.2 Attacking in Response to Optimal Defenses: Balancing the
Defender’s Risk
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Intuitively, Lemma 4.2 states that the attacker’s strategy strikes a balance between
the risk (1− pa)Cfa(v)P0(v) the defender takes to detect a vector v and the average
gain associated with the detection of vectors pa

∑
i piα

i
v(Uui (v) + Udi (v)). The proof

of this lemma can be found in Appendix A.4. It allows us to find the best-response
of the attacker α∗ to a min-max strategy β∗ of the defender, hence allowing us to
find a BNE (though we emphasize that finding the strategy of the attacker is not the
focus of this section).

Proposition 4.4. Let β∗ ∈ arg maxβ minα
∑
i piU

D
i (α, β). Then there exists a solution

to the linear program findα(β∗):

max
αiv

0

s.t.: 0 ≤ αiv ≤ 1,∀i ∈ J1,mK,∀v ∈ V ,∑
v∈Vα

i
v = 1, ∀i ∈ J1,mK ,

αiv = 0, ∀i ∈ J1,mK,∀v ∈ V, s.t. : Uui (v)− (Uui (v) + Udi (v))πβ∗(v) < Gi ,∑
i pi α

i
v(Uui (v) + Udi (v)) = 1−pa

pa
Cfa(v)P0(v), ∀v ∈ V, s.t. : πβ∗(v) ∈ (0, 1) ,∑

i pi α
i
v(Uui (v) + Udi (v)) ≤ 1−pa

pa
Cfa(v)P0(v), ∀v ∈ V, s.t. : πβ∗(v) = 0 ,∑

i pi α
i
v(Uui (v) + Udi (v)) ≥ 1−pa

pa
Cfa(v)P0(v), ∀v ∈ V, s.t. : πβ∗(v) = 1 ,

where Gi = maxv(Uui (v)− (Uui (v) + Udi (v))πβ∗(v)). Additionally, for any solution α∗

of findα(β∗), (α∗, β∗) is a BNE.

Proof. Let β∗ be a min-max strategy for the defender. Then, from the proof of
Lemma 4.1, for any α∗ ∈ arg maxα minβ −

∑
i piU

D
i (α, β), (α∗, β∗) is a BNE. Thus,

it satisfied the conditions of Lemma 4.2; using those, it is trivial to check that α∗ is a
solution of findα(β∗). So this linear program admits a solution.

Next, any solution α∗ of findα(β∗) satisfies the conditions of Lemma 4.2, which
implies that

β∗ ∈ arg max
β

∑
i

piU
D
i (α∗, β). (4.4)

Additionally, from the third constraint of the linear program, we observe that for
any given i, by definition of Gi, for all v ∈ V s.t. v /∈ arg maxv′(Uui (v′)− (Uui (v′) +
Udi (v′))πβ∗(v′)), we have α∗iv = 0. Thus, we have

α∗ ∈ arg max
α

∑
i

piU
A
i (α, β∗). (4.5)

Combining (4.4) and (4.5), we conclude that (α∗, β∗) is a BNE.
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The linear program finds a valid strategy of the attacker which fits the conditions
stated in Lemma 4.2 with the additional condition that each type of attacker must
play their most rewarding vectors. While we had to resort to a linear program,
finding the strategy of the attacker is still done in polynomial time in m|V| as we
have a program with m|V| variables and O(m|V|) constraints. It seems unlikely
that a low-dimensional characterization similar to Section 4.1 can be found for the
attacker’s strategy as the defender’s characterization heavily rely on the probability
of detection function which removes the constraint to optimize on the simplex (the
only constraint for π is that for all v in V we have 0 ≤ π(v) ≤ 1).

4.3 Illustration of The Bayesian Nash Equilibrium

We provide here basic illustrations of our results concerning the structure of the BNE.
We use Game 1 as it is the easiest to interpret the results. Figure 4.1a illustrates the
behavior of both players at NE when Attacker 2 is not present (p2 = 0). The attacker
wants to play high vectors but must follow the distribution of the non-attacker over
the vector they deem rewarding enough in regards to the defender’s strategy to
remain stealthy as stated in Lemma 4.2. The defender detects vectors with some
spikes in the probability of detection function corresponding to the spikes in the cost
incurred by detection. Indeed, at the equilibrium they make the attacker indifferent
between some vectors and in order to do so, vectors which suffer from a sudden
increase in cost incurred by detection can be detected less.

(a) (b)

Figure 4.1.: Game 1 illustration with only Attacker 1: (a) NE strategies; (b) parameters.

Figure 4.2 illustrates the impact of the presence of more than one type of attacker.
In Figure 4.2a where both attackers are equally likely we observe that, compared to
Figure 4.1a, Attacker 1 benefits from not being the only type of attacker as they play
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(a) (b)

Figure 4.2.: Game 1 with both attackers: (a) BNE strategies p1 = p1 = 0.5; (b) BNE
strategies p1 = 0.95, p2 = 0.05.

more rewarding vectors than when they were alone because the defender has less
interest in detecting him. However, in Figure 4.2b where the Attacker 2 becomes less
likely to appear, the situation of Attacker 1 gets closer to when they were the only
attacker and they are reduced to playing less rewarding vectors. On the contrary,
Attacker 2 benefits from being less likely as it is less interesting for the defender to
detect them so they can play more rewarding vectors. Note that this situation is
much better for Attacker 2 than for Attacker 1. Some of the most rewarding vectors
for Attacker 2 are also used by non-attackers often so they can play them and remain
stealthy while the most rewarding vectors of Attacker 1 are almost never used by the
non-attackers so they are reduced to playing much less rewarding vectors to remain
stealthy.

Summary: In this chapter, we characterized the strategies at the equilib-
rium of both the defender and the attacker. We showed that the optimal
defense is random and can be parametrized using few parameters (in num-
ber independent in |V|) representing the gain of each type of attacker. This
parametrization allows us to compute the optimal strategy of the defender
in time polynomial in |V|, which is still not satisfactory as |V| is exponential
in the number of features used to classify. This however builds the tools we
need to provide efficient approximation of the optimal defense in the next
chapter. We then characterized the strategy of the attacker as a response
to the optimal defense strategy and showed that attackers should attack
relevant vectors with probability tailored to strike a balance between the
false alarm risk and the difference between detected and undetected gains.
We finally illustrated the shape of the equilibrium on a simple artificial ex-
ample.
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Scalable Offline and Online
Defense

5

Our previous results allow computing the equilibrium in time polynomial in |V|.
Yet, two major challenges remain: (i) |V| may be too large, in particular it grows
exponentially with the number of features k; and (ii) computing the equilibrium
requires knowledge of all parameters of the game and in particular of P0, which
can be hard to evaluate. We now answer our second main question “How can the
defender compute optimal strategies in a scalable manner?”. In this chapter, we
provide two answers exploiting our low-dimensional characterization of the strategy
of the defender depending on the data available to the defender. In Section 5.1,
we tackle this problem from a stochastic optimization perspective assuming that
the defender has access to historical data. We show that our problem is well suited
to stochastic optimization techniques due to its polyhedral nature. In Section 5.2,
we assume that the defender only has access to information on-line and provide an
algorithm which is low-regret for the so-called Stackelberg regret. Both of these
methods require limited knowledge of the parameters of the game (they notably do
not require knowledge of P0 and pa). We finally show in Section 5.3 that both of
these methods can be applied in a broader setting where V is no-longer finite but
compact under mild technical assumptions. Finally, we extend our model to cover a
mix of strategic and non-strategic attackers in Section 5.4. Our results hint that in
this setting a mix between our low-dimensional characterization of the defender’s
strategy and classical learning algorithms may be suitable.

5.1 Scalable Offline Stochastic Optimization

In this section, we propose a training method that solves both issues by leveraging
stochastic programming techniques. To do so, we first express UD(G) as an expected
value as follows: UD(G) = E[UD(G, ξ)] where UD(G, ξ) = Gi with probability papi
and UD(G, ξ) = Cfa(v)πG(v) with probability (1−pa)P0(v) for all v ∈ V . Leveraging
the specific form of this stochastic function, we apply a stochastic programming
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technique called sample average approximation (SAA, see [Sha03; KPH15; Ver+03;
LSW06]) to obtain our training method, Algorithm 1.

Algorithm 1 Sample average approximation

Sample ξ1 . . . , ξN
Define ŨD(G) = 1/N

∑N
i=1 U

D(G, ξi)
Maximize ŨD(G) on [G1, G1]× ...× [Gm, Gm]

The maximization step in Algorithm 1 can be done exactly through a linear program
in the spirit of Proposition 4.1, in time polynomial in N since ŨD(G) is piecewise
linear. Thus the complexity of this algorithm depends only on the sample size and
not on the problem dimension. Additionally, very little information is required:
the defender only needs to have access to N samples, which may correspond to a
labeled dataset, as well as to the parameters Cfa(v), Uu(v), and Ud(v) for non-attack
samples. Yet the following theorem shows that Algorithm 1 outputs a very good
approximation of the defender’s min-max strategy.

Theorem 5.1. Let Ŝ be the set of maximizers of ŨD(G) from Algorithm 1 and pN =
Pr[Ŝ ⊆ arg maxUD(G)]. We have

lim sup
N→∞

1
N

log(1− pN ) < 0.

Sketch of proof. A proof of Theorem 5.1 can be found in Appendix B.1. It relies on a
strong result for sample average approximation (Theorem 15 of Shapiro [Sha03]),
which fully exploits the structure of our problem as it requires the optimized stochas-
tic function to be piecewise linear and to depend on random variables with finite
support (extensions to continuous supports are possible under mild assumptions).
This result is then enabled by the polyhedral structure of the problem.

Theorem 5.1 states that Algorithm 1 will find an exact maximum of UD(G) with
probability exponentially close to one (where the randomness is in the draw of
the training set from unknown P0, pa and pi). Then, from Theorem 4.1, this
immediately gives an exact min-max strategy of the defender. The rate of the
exponential convergence of pN to 1 is not given by Theorem 5.1. It is possible
to state a stronger result that gives the rate if the problem is “well conditioned”—
which roughly means that arg maxUD(G) is a singleton and the function is not
flat around the optimum. More precisely, if there is a unique optimal solution we
use the following bound to determine the conditioning of the problem. Denoting
by f ′(x, d) the derivative of f in the direction d, there is a finite number of dj s.t.
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UD′(Gmax, dj) > 0 and the event pN happens if and only if ŨD′(Gmax, dj) > 0. We
then have limN→∞

1
N log(1− pN ) < −maxj (UD′(Gmax,dj)2

2Var(UD′(Gmax,ξ,dj)] ([Sha03], Ch. 6 Sec.
3.4).

This is however not guaranteed in any instance of our game, and such a result is
anyways impractical because it depends on the true optimal value. From the high-
probability result of Theorem 5.1, it is easy to derive that the output of Algorithm 1
is exponentially close to the true optimum since the function is bounded; although
the exponential rate may be arbitrarily low if the problem is not well conditioned.
In that case, though, worst case bounds show convergence of expected value at least
in N−1/2 and depending only on V ar[UD(Gmax, ξ)] (see Shapiro [Sha03]).

Theorem 5.1 combined with Theorem 4.1 shows that using SAA on top of our
equilibrium characterization solves the key difficulties of our problem: we are able
to compute an exact min-max strategy for the defender with high probability from a
labeled training set without knowledge of P0, pa and pi. It is remarkable that we
do not need to estimate P0 from the training set, this is automatically done within
the stochastic approximation procedure. Other stochastic approximation algorithms
(e.g., as stochastic gradient descent) could be used but without strong convexity
property (which is our case since our function is piecewise linear), they only have
convergence guarantees in N−1/2.

5.1.1 Numerical illustration

We now illustrate our offline defense on a real bank fraud data set (Game 2).

Figure 5.1 represents the histogram of valid transaction amounts in [0, 700] (where
the majority of transactions occur) and the probability of detection function πG

obtained through our training for different values of ` (G` denotes the parameter
trained on the dataset with false alarm cost factor `). When ` is small, the defender
classifies “aggressively” as fraud by accepting a high false alarm rate. When `

increases, the probability of detection functions show that the defender flags as
fraud less often. For example, transactions of 700e are flagged with probability
∼ 0.9 by the most aggressive strategy (` = 0.006) but only with probability ∼ 0.1 for
the least aggressive strategy (` = 0.074). The results presented here are computed
through our training method in Algorithm 1 and may not be exact. We do not
evaluate the quality of our approximation as we only have access to the empirical
distribution P0. We perform this investigation later in this section on games based
on artificial distributions. The results suggest that the approximation is good even
for much smaller training sets as hinted by the theoretical guarantee.
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Figure 5.1.: Empirical distribution of transaction amounts and representation of defender
min-max strategies for various l.

We now provide illustrations of the training process on Game 3 and Game 4. We
use Game 3 to validate our previous experiments by showing that near-optimal
defenses can be found on similar games with small data sets and that large data sets
systematically yield a very good approximation. We use Game 4 to illustrate training
in a setting with multiple attackers and no simple correspondence between features
and costs.

First, Figure 5.2 shows the parameter G trained by the defender depending on `

(using the credit card fraud data set withN = 284, 807). Recall thatG corresponds to
the gain of the attacker acting according to its best-response. Thus, a higher G means
that the defender is willing to let the attacker gain more. This is compensated by the
fact that when G increases, πG(v) decreases and so do the false alarms. We observe
that the parameter G increases with the value of ` which corresponds to the fact
that a defender facing higher false alarm costs is less willing to detect non-attacks.
We also show computation time for the training on the data set for completeness.
These are averaged over 10 run and plotted with error bars corresponding to one
standard deviation and simply show that the training process can be applied with
a medium sized data set with reasonable computation times. In the following
figures, we evaluate the efficiency of our training process using a metric we call
approximation ratio which is simply the ratio 100 ∗UD(Gmax)/UD(G̃) (expressed in
percentage) where Gmax is a maximizer of UD and G̃ is the outcome of the sample
average approximation algorithm. This value is always between 0 and 100 with 100
corresponding to a perfect training.
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Figure 5.2.: Strategy of the defender training on the data set and computation times

Figure 5.3 illustrates training on Game 2 for different values of the parameter `
(0.001 and the parameters for which we plotted the corresponding probability of
detection function in Figure 5.1). We plot the ratio between the loss of the defender
using the optimal solution and the loss of the defender using the trained solution as
well as the probability to obtain the optimal solution through training depending
on the size of the data set. These are obtained by running our training algorithm
on 300 different random training sets (each training set is generated i.i.d. with
replacement). The approximation ratio is the average over the training set and is
plotted with error bars corresponding to one standard deviation. The probability to
obtain the optimal solution is computed on these random training sets. We observe
that ` = 0.001 is a best-case for pN . This is caused by the fact that the equilibrium
in this setting is trivial. The defender experiences such low false alarm that at
equilibrium they classify all vectors as attacks. On the contrary, this is a worse case
for the approximation ratio as a slight difference in the proportion of attackers in the
training set can lead to a drastic change in strategy in this setting. We also observe
that while pN stays relatively low (but still significant) in all other experiments, the
approximation ratio also reaches near 100% on average for data sets of size 5000. For
comparison, we remind that Game 2 is defined with |V| = 25692 vectors. Figure 5.4
shows the efficiency of the training process through the same metrics when we
vary ` with a training set of the same size as the data set used in Section 5.1.1
(N = 284807). For each ` we performed experiments on 10 random data sets of size
N = 284807. As previously we plot the averaged approximation ratio with error bars
corresponding to one standard deviation. We observe that we systematically obtain
the optimal solution, suggesting that a data set of this size is sufficient to correctly
learn. Finally, Figure 5.5 shows training on Game 3 where for each training set size,
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Figure 5.3.: Approximation ratio for Game 2.

Figure 5.4.: Approximation ratio for N = 284807
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Figure 5.5.: Approximation ratio and pN for Game 3.

we perform experiments 10 different random games with 4 types of attackers and
k = 19. For each game, we perform experiments on 20 randomly generated training
sets (generated iid with replacement) for a total of 200 experiments per data set size.
We observe that the probability to obtain the optimal solution is always null. This
is due to the linearity of the problem which makes the optimal values of G being
equal to Uu(v) for some v. As there is no relation between the costs of different
vectors, with such small data sets, the probability that the vectors corresponding
to the optimal parameters are present in the data set are very small and the linear
program coming from the sample average approximation procedure cannot find
the true optimal. We observe, however, that the approximation ratio is very good
even for very small training sets. Note that the efficiency of the approximation is
particularly striking in this case as we are able to obtain near-perfect results with
training sets of size only 100 while the number of possible vectors is |V| = 219. This
illustrates well the independence in |V| of the training efficiency. Also note that our
discussion in Section 5.1 about convergence of expected value in at least N−1/2 rate
translates directly to the approximation ratio. Our graphs suggest, however, that in
many of our settings convergence happens at a faster rate.

5.2 Scalable Online Learning

In the previous section, we showed how the defender can compute an approximate
min-max strategy from a training set. Yet, such historical data is not always available.
We now show how our low-dimensional characterization of the min-max strategy
also allows the defender to learn a good strategy on-line, without a priori knowledge
of P0, pa and pi, while incurring low loss as captured by the regret.
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Specifically, we consider the following setting. At each time step t = 1, . . . , T , the
defender chooses a probability of detection function πt and receives a vector vt
that is classified as an attack with probability πt(vt). They incurs a loss l(vt) that is
Cfa(vt) in case of false positive and 0 in case of true negative if facing a non-attacker;
and −Udi (vt) and Uui (vt) in case of true positive and false negative respectively
when facing a type i attacker. We assume that after classification, the defender can
observe the type of attack (for convenience, we denote by type i = 0 non-attacks)
and that they can compute Cfa(vt) and Uui (vt), Udi (vt) for all i. Finally, as in Chen
et al. [CLP20], we assume that attackers act according to best responses to πt in a
Stackelberg fashion, i.e., if the defender faces an attacker of type i at time t we have
vt ∈ arg maxv{Uui (v)(1− πt(v))− Udi (v)πt(v)}. The defender seeks to minimize the
Stackelberg regret:

Definition 5.1 (Stackelberg regret). The average Stackelberg regret for a sequence of
vectors (v1, . . . , vT ) is:

R(T ) =
T∑
t=1

Eπt [l(vt)]−min
π

T∑
t=1

Eπ[l(vt)].

The notion of Stackelberg regret has two implications. First, the sequence of vectors
depends on the probabilities of detection used. In particular, minπ

∑
tEπ[l(vt)] must

be computed taking into account what would be the best response of the attacker to
π. Second, it is key to remember that in our setting, the unknown quantities are P0,
pa and pi. There is no learning of the attacker’s strategy as it is best-response to the
utilities Uui , U

d
i assumed to be known.

It is possible to achieve low regret in T using naively the online gradient descent
algorithm of Zinkevich [Zin03]—see Appendix B.2—to learn π directly. This gives,
however, a bound on the Stackelberg regret of

R(T ) ≤ D2√T
2 +

(√
T − 1

2

)
L2, (5.1)

with L = max(maxv{Cfa(v)},maxv,i{|Uui (v) + Udi (v)|}) (maximum gradient) and
D2 = |V| (maximum L2 distance between two π functions)—see a proof in Ap-
pendix B.3. This bound is meaningless if the number of features k is large as
|V| = Ω(2k). This approach is computationally infeasible as the full strategy π may
not fit into memory.

50 Chapter 5 Scalable Offline and Online Defense



Building on our characterization of the min-max strategy, we parametrize the de-
fender’s strategy by G to propose an alternate learning scheme as Algorithm 2
(where ΠS denotes the Euclidean projection on a set S).

Algorithm 2 Efficient online gradient descent

Choose G1 ∈ [G1, G1]× ...× [Gm, Gm] arbitrarily
for t = 1, . . . , T do

Predict πGt and receive vector vt and type i
if vt came from a non-attacker then

grad ∈ ∂(πGt(vt)Cfa(vt))
else if vt came from an attacker of type i then

grad = ei (ith vector of the canonical base of Rm)
end if
Gt+1 = Π[G1,G1]×...×[Gm,Gm](Gt − 1√

t
grad)

end for

Algorithm 2 exploits the fact that each attacker best responds to the defender’s
strategy, hence only strategies of the form πG(·) are worth using. Thus, instead of
learning directly π, the defender learns the parameters G. Note that this implies
that the defender must be able to evaluate the bounds on the attackers gain they can
impose. Algorithm 2 presents two major advantages: First, the defender’s strategy is
compactly represented with a small number m of parameters, independent of |V|.
Second, we get a much better regret bound:

Theorem 5.2. Algorithm 2 gives Stackelberg regret bound (5.1) with

L = max{1,max
v,i
{

Cfa(v)
Udi (v) + Uui (v)

}} and D = ||G−G||2.

Sketch of proof. Theorem 5.2 is proved in Appendix B.4; the proof leverages our
characterization of the min-max strategy with parameters G.

This result formalizes the intuition that learning G rather than π allows a much
smaller regret (D is now independent in |V|). Parameter L2 now represents the
change in false alarm cost one can expect at worst when changing parameters
G; which is different from L2 in the naive procedure that corresponded to a gra-
dient with respect to π. Note that we use the online gradient descent algorithm
of Zinkevich [Zin03] for this theorem but similar results could be obtained using
any low-regret online learning algorithm (with different constants) as our proof
relies on applying online learning algorithms as black boxes to have low regret for
the learning problem of UD(G) (a low dimensional function) which translate to
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low Stackelberg regret for UD(π) (a high dimensional function). The choice of the
learning algorithm to employ depends on the information available to the defender.
In particular, we chose to present the version of Zinkevich [Zin03] as it does not
require the computation of L (the maximum norm of the gradient of the function to
optimize) which can be potentially hard to evaluate in our setting. We performed
numerical experiments that illustrate the result of Theorem 5.2 in the next section
(in particular the independence in |V|). In addition, we observe that Gt converges
(fast) towards Gmax (which is not implied by the no-regret property but is suggested
by the similarity between online gradient descent and stochastic approximation
algorithms in this particular setting).

5.2.1 Numerical Illustrations

We now illustrate Theorem 5.2 using Game 4.

Figure 5.6a displays the regret the defender accumulates when learning with Algo-
rithm 2 for different values of k = log2(|V|), at time T = 50, 000. For each k, we
average over 10 random games. In this experiment, D is close to 40 in all games
which makes the regret bound of Theorem 5.2 at least 150, 000; the observed regret
is significantly smaller (below 5, 000). We observe that increasing the number of
features does not significantly impact the regret, in agreement with the bound of
Theorem 5.2 that does not depend on the dimensionality of the problem, which
illustrates the strength of our parametrization of the defender’s strategy.

Figure 5.6b displays the distance between the parameters learned by Algorithm 2
and the optimal Gmax over time. For this experiment, we run the online algorithm
on each game 10 different times with random starting point for the strategy of
the defender. First, we observe that Gt converges towards Gmax, hence the online
strategy converges to the min-max strategy. This is interesting as it is not implied
by the no-regret property. Second, it is remarkable to see that the convergence is
fast (in 10, 000 steps even when k = 19). This can seem counter intuitive as one
would be unable to learn P0 in so few steps. However, what we need to learn is
only the average false alarm cost associated to a strategy, this is learned fast through
the update of the parameters G. Figure 5.7 illustrates online learning on Game 3
with k = 19 and a number of possible attackers varying from 1 to 4. In Figure 5.7a,
we observe that the regret accumulated by the defender increases with the number
of attacker types. This illustrates the fact that our strategy is parametrized by the
number of attackers and increasing this number increases the complexity of what
we need to learn. Similarly, Figure 5.7b illustrates how far the learned strategy is
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(a) Regret for different numbers of features. (b) Comparison BNE-online strategy.

Figure 5.6.: Regret and distance to the equilibrium

(a) (b) (c)

Figure 5.7.: Illustration of online learning on Game 2: (a) Regret for different numbers of
attackers; (b) Distance to equilibrium for different numbers of attackers; (c)
Distance to equilibrium for m = 4 with error bars.

from the equilibrium during learning. These two graphs can be contrasted with
Figures 5.6a and 5.6b respectively, in which we observed that the regret and distance
to equilibrium were not varying with the number of features. Thus, this illustrates
the fact that our characterization is indeed independent from the number of vectors
considered but depends only on the complexity of the characterization, i.e., the
number of possible types of attackers. Finally, Figure 5.7c shows the same plot as
Figure 5.6b (or Figure 5.7b with m = 4) with error bars that were omitted in the
previous plots for readability.

5.3 Extension to Compact Vector Sets

Until now, we assumed that the set V of possible data is finite, but we make no other
assumption on V. That leaves a lot of flexibility; in particular it is possible to model
situations where the features are categorical or boolean, or discrete numerical values
(or a combination of those). Yet, some features are naturally continuous and it can
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be convenient to model them as such instead of considering a discretization. One
of the advantage of our characterization of the BNE is that is naturally extends to
continuous feature spaces, as we sketch next.

To extend the model to continuous feature space, we assume that V is a compact
metric set and that the defender’s strategy space D is the set of M -Lipschitz contin-
uous functions π from V to [0, 1]. We use the same parameters and notation as in
the finite game with the exception of P0(·), which is now a continuous probability
distribution. We assume that it has a density and denote it f0. We then have the
following payoffs:

UAi (v, π) =Uui (v)(1− π(v))− Udi (v)π(v),

UDi (v, π) =− paUui (v)(1− π(v)) + Udi (v)π(v)− (1− pa)
∫
V
cfa(v′)f0(v′)π(v′) dv′ .

Let us suppose that all functions are continuous and integrable. This ensures that
the game is continuous and well defined, which, thanks to Glicksberg’s theorem
(see Glicksberg [Gli52]), ensures the existence of a BNE. Finally, we define G, G
and πG as in the finite case. Let us assume that there exists M ∈ R such that, for
all G ∈ [G1, G1]× · · · × [Gm, Gm] the function πG(·) is M -Lipschitz . This ensures
that the optimal strategies of Definition 4.1 are available to the defender. Note
that for this assumption to hold, it is sufficient to assume that Uui (·) is Lipschitz
and that there exists ε ∈ R such that ∀v ∈ V, we have |Uui (v) + Udi (v)| ≥ ε. The
first assumption simply implies that the variation of costs associated to undetected
attacks should be bounded and the second one that there should always be at least
a small difference between the reward an attacker gets with an undetected attack
(Uui (v)) and a detected attack (−Udi (v)).

Note that in this continuous setting, we defined the game with strategies π directly
for the defender (defining C for the discrete game was useful to get a finite game but
this is irrelevant here) and therefore bypass many technical issues on the potential
compactness of C. We also see that the defender need not use mixed strategies
as the payoff of any mixed strategy can be attained with a pure strategy π being
the average of the functions in the mixed strategy. This is explained by the fact
that π already represents a random classification, removing the need for further
randomization.

We can then extend some of our results to the continuous case, in particular Theo-
rem 4.1 that leads to the form of optimal classifiers. Again for the continuous case,
intuitively, considering any equilibrium with attacker utility profile G, the defender
must have a probability of detection function π(·) = πG(·) as it is the probability of
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detection which gives gain Gi for each attacker while minimizing the false alarm
cost. This gives the following proposition.

Proposition 5.1. For all G ∈ [G1, G1]× · · · × [Gm, Gm], let

UD(G) = −pa
m∑
i=1

piGi − (1− pa)
∫
V
Cfa(v)f0(v)πG(v) dv .

For all Gmax ∈ arg maxG∈[G1,G1]×···×[Gm,Gm](U
D(G)), πGmax(·) is a min-max strat-

egy.

Proposition 5.1 states that, as in the discrete case, finding a BNE in the continuous
case amounts to finding the maximum of a concave function (function UD(·) defined
above). This problem can be solved using classical convex optimization tools,
assuming that one can efficiently evaluate the function, in particular the integral that
appears in the function. If one is unable to derive an exact formula for the integral
stochastic optimization methods can still be applied. Theorem 5.1 however does not
hold as it relies on the piecewise linearity of the function to optimize. Thus, only
classical bounds in N−1/2 hold. Note, however, that our results on online learning
remain valid in the continuous setting as the proof of Theorem 5.2 does not rely on
the assumption that V is finite.

5.4 Extension to Partially Strategic Attackers

We now extend our model to include non-strategic attackers. More precisely, we
assume that attackers can either be strategic or non-strategic, with probability ps
and (1− ps) respectively. Vectors generated by non-strategic attackers follow a fixed
probability distribution P1n on V.

The defender chooses a classifier in C = 2V , that is a function mapping a vector to
a predicted class. We assume that the defender maximizes a utility function that
balances costs/gains in different cases as follows.

• A false negative incurs a loss Uui (v) (resp. Uun (v)) when facing a type i (resp.
non-strategic) attacker.

• A true positive incurs a gain of Udi (v) (resp. Udn(v)) when facing a type i (resp.
non-strategic) attacker.

• A false positive incurs a false alarm cost Cfa(v).
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• A true negative incurs no cost.

Summarizing the above discussion, the utilities of the attacker and defender, when
the attacker is of type i, are now defined as follows:

UAi (v, c) =Uui (v)1c(v)=0 − Udi (v)1c(v)=1,

UDi (v, c) =− papsUAi (v, c)

− (1− pa)
∑
v′∈V

Cfa(v′)P0(v′)1c(v′)=1

+ pa(1− ps)
∑
v′∈V

Udn(v′)P1n(v′)1c(v′)=1

− pa(1− ps)
∑
v′∈V

Uun (v′)P1n(v′)1c(v′)=0. (5.2)

For ease of notation, for all v, we define the quantities

Cd(v) = (1− pa)Cfa(v)P0(v), and

Ug(v) = pa(1− ps)(Uun (v) + Udn(v))P1n(v);

We can then rewrite the payoffs of the players:

UAi (α, β) =
∑
v∈V

αiv

[
Uui (v)−

(
Uui (v) + Udi (v)

)
πβ(v)

]
;

UDi (α, β) =− papsUAi (α, β)

+
∑
v∈V

πβ(v) (Ug(v)− Cd(v))− Ug(v). (5.3)

We also define the set

Vd = {v ∈ V : Ug(v) ≥ Cd(v)}

of vectors that are always more rewarding to detect for the defender. In a standard
classification setting without a strategic attacker, the classification rule that maxi-
mizes the defender’s utility (which corresponds to a Bayesian setting with prior on
the classes) would be to simply classify vectors of Vd as 1 and others as 0.

In this setting, the structure of the game remains. Theorem 4.1 however does not
hold due to the presence of vectors which should always be detected. We thus adapt
the class of optimal probability of detection we consider:
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Definition 5.2 (Optimal probability of detection).

πG(v) =

 maxi{
Uui (v)−Gi

Udi (v)+Uui (v)} if v /∈ Vd,

1 if v ∈ Vd.
(5.4)

Which in turn defines the minimum gain function:

Definition 5.3 (Minimum gain function UD). For allG ∈ [G1, Gi]×...×[Gm, Gm], let

UD(G) = −paps
m∑
i=1

piGi −
∑
v∈V

(Cd(v)− Ug(v))πG(v).

We then have the following theorem, similar to Theorem 4.1

Theorem 5.3. For any Gmax ∈ arg maxG(UD(G)), any strategy of the defender
that yields a probability of detection function π(v) = πGmax(v) for all v ∈ V is an
equilibrium strategy.

With this theorem, we are now ready to adapt our main results in the presence of
non-strategic attackers. To do so, we have two possible main choices.

1. Ignore the vectors in Vd and use the probability of detection function defined
in Definition 4.1. It is then possible to adapt trivially our method (replacing
(1−pa)Cfa(v)P0(v) by Cd(v)−Ug(v)) to this setting at the cost of an imprecision
equal to the loss of opportunity associated with the vectors in Vd. More
precisely, this adds the term

∑
v∈Vd Ug(v) − Cd(v) to the approximations we

make.

2. Use classical learning to train a classifier which separates vectors belonging in
Vd from other vectors. With this approach, our methods can also be trivially
adapted. The imprecision term however depends on the accuracy of the
classifier.

If non-strategic attackers are unlikely to be present, the first method might produce
better results as it removes potential bias from the training of the classifier. On the
contrary, if non-strategic attackers are likely to be present, the second method might
produce better results as the added imprecision term

∑
v∈Vd Ug(v)− Cd(v) could be

too high.
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Summary: In this chapter, we showed that it is possible to efficiently com-
pute an approximately optimal defense both offline and online with lim-
ited knowledge of the parameters of the game using our previous low-
dimensional parametrization. In particular, the defender needs not to have
access to P0 and pa which can be hard to evaluate precisely. Both our re-
sults guarantee approximations independent in the size of the vector set
|V|. Our offline method relies on sample average approximation and yields
a non-null probability to find the optimal solution. Our online method re-
lies on an adaptation to our parametrization of classical online learning
algorithms such as gradient descent. We validated our results on both real
data sets and artificial games. Finally, we show that our results extend to
more general settings. We can consider compact vector sets at the cost of a
slightly worse offline guarantee. We can also consider partially strategic at-
tackers in which case our approach can be combined with classical learning
approaches.
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Part II

Strategic Linear Regression





State of the Art and Model 6
The model presented in this part is an extension of the model of Ioannidis
and Loiseau [IL13a]. Some of the results and ideas presented in this part
appear in our previously published article ([Gas+20]).

In this part (Chapters 6, 7 and 8), we present our second example of learning with
strategic data. More precisely, we tackle the problem of linear regression when
data comes from strategic data sources. Our main focus is the key question: Do
fundamental results on linear regression still hold when data are produced by strategic
data sources? We answer by the negative in general. In particular, estimators are no
longer guaranteed to be consistent when the cost of producing data increases linearly
with its precision. The GLS estimator is also no longer BLUE but is approximately
optimal when considering a restricted family of estimators satisfying assumptions
which are suitable in practice.

This first chapter reviews existing work broadly related to strategic linear regression
and introduces our linear regression game. In Chapter 7 we then focus on game-
theoretic properties of the linear regression game showing results fundamental for
the rest of the analysis and for the applicability of our game in real-life settings.
We finally answer our main question in Chapter 8 where we study the quality of
the linear regression estimation in the strategic setting and the effect that different
estimators have on the linear regression game.

6.1 State of the Art

There is a growing body of work on scenarios where one wants to learn from
data provided by sources that choose their effort when generating data ([CDP15;
Luo+15; LC16a; Wes+20]). These works assume that the data sources maximize a
monetary incentive minus effort exerted and look for mechanisms that minimize the
model’s error under the assumption that the analyst collecting data cannot see the
effort exerted by the data sources. The data elicitation and crowdsourcing literature
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contain similar mechanism design problems for cases where either the effort exerted
or the data report (or both) are unverifiable ([FCK15; DG13; SZ16; Kon+20]).
More broadly, there is an important literature on mechanism design for statistical
estimation problems that assumes that the data sources are strategic in some way,
notably for cases where agents may lie on their cost for revealing data as studied in
Abernethy et al. [Abe+15], Chen et al. [Che+18a], and Chen and Zheng [CZ19]
(see also related problems of mechanism design in the context of differential privacy
with the work of Ghosh and Roth [GR11] and Dwork and Roth [DR14]).

A number of papers also consider data acquisition in sequential settings ([Abe+15;
LC16b; Che+18a]). All this literature, however, considers agents that aim to
maximize the payment received but are insensitive to the quality of the learning
result. Moreover, agents aim to optimize payments while the learning algorithm
is fixed; the only exceptions to the latter are Chorppath and Alpcan [CA13] and
Caragiannis et al. [CPS16], which are restricted to the case of averaging and do
not consider learning tasks such as regression. In contrast, in this thesis, we do
not involve payments but assume that data sources benefit from the result of the
learning algorithm.

Several works analyze mechanism design problems related to linear regression with
strategic data sources, where the agents directly report their response variable yi
(or their input variable xi) and may lie about it or strategically optimize it [PP04;
DFP10b; CPS16; Che+18b; BT19; HS20; SEA20; CSZ20] (see also similar problems
in the context of classification [MPR12; Har+16; Don+18; Mil+19b; KR19; ZCC19;
MMH20; TG20; BG20]). In particular, Dekel et al. [DFP10b] consider a broad class
of regression problems in which data sources may misreport their private values,
and determine loss functions under which empirical risk minimization is group
strategyproof. The special case of linear regression is also treated, albeit in a more
restricted setting, by Perote and Perote-Pena [PP04], who identify more general
strategyproof mechanisms for the 2-dimensional case. More recently, Chen et al.
[Che+18b] consider a similar setting and propose a family of group strategyproof
regression mechanisms for any dimension, extending the results of both Dekel et al.
[DFP10b] and Perote and Perote-Pena [PP04]. In contrast, we assume that the
agents choose the precision of the data provided. More importantly, the fundamental
difference is that those works all assume that the agents are motivated by the
accuracy or decision of the learned model in their own direction while we assume
that agents equally benefit from the public good component.

Closer to our setting, Hossain and Shah [HS19] consider the pure Nash equilibrium
as a solution concept in regression games and investigate its efficiency, albeit in
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a model closer to Dekel et al. [DFP10b] and Chen et al. [Che+18b] than to ours.
Interestingly, this work considers the mean squared error, a standard quantity to
measure a model’s quality in linear regression, instead of our estimation cost based
on the covariance matrix. Our estimation cost, however, includes a somewhat
broader family of functions satisfying mild assumptions (see Assumption 6.3).

Our work is also related to different other fields of the literature which we quickly
cover in the following paragraphs.

Data Perturbation for Privacy. Perturbing a dataset before submitting it as input to
a data mining algorithm has a long history in privacy-preserving data-mining (see
for example Vaidya et al. [VCZ06] and Domingo-Ferrer [Dom08]). Independent
of an algorithm, early research focused on perturbing a dataset prior to its public
release as in the works of Traub et al. [TYW84] and Duncan and Mukherjee [DM00].
Perturbations tailored to specific data mining tasks have also been studied in the
context of, e.g., reconstructing the original distribution of the underlying data by
Agrawal and Srikant [AS00], building decision trees by Agrawal and Srikant [AS00],
clustering by Oliveira and Zaiane [OZ03], and association rule mining by Atallah
et al. [Ata+99]. We approach such perturbation techniques via a non-cooperative
setting, where individuals strategically choose the perturbation to their data.

The above setting differs from the framework of ε-differential privacy proposed
in Dwork [Dwo06] and Kifer et al. [KST12], which has also been studied from
the perspective of mechanism design by [NST12]. In differential privacy, noise is
added to the output of a computation, which is subsequently publicly released. The
analyst performing the computation is a priori trusted; as such, individuals submit
unadulterated inputs. Several works study mechanisms incentivizing data disclosure
under costs quantified by differential privacy (see [LR12; DFI14; GR11; CIL15])
whereby individuals are compensated for the privacy cost they incur. In contrast, we
do not assume that the analyst is trusted, which motivates input perturbation. Such
input perturbations also correspond to the more recently studied notion of local
differential privacy of Duchi et al. [DJW13] and Kairouz et al. [KOV16], though
such studies focus on the privacy/utility tradeoff, ignoring the strategic aspect of the
input perturbation.

Experimental Design. In classic experimental design (see [Puk06; ADT07; BV04]),
an analyst observes the public features of a set of experiments, and determines
which experiments to conduct with the objective of learning a linear model (from
non-strategic sources). The quality of an estimated model is quantified through
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a scalarization of its variance as defined in Boyd and Vandenberghe [BV04]. As
discussed in Section 6.2.1, many such scalarizations are used in the literature,
including the so-called A-optimality, I-optimality, and V-optimality criteria we define
in Section 6.2.2. We focus on non-negative scalarizations, to ensure meaningful
notions of efficiency (as determined by the price of stability in Section 7.3). As
we note in Section 6.2.1, convexity implies that the information gain (i.e., the cost
reduction) due to new experiments is a submodular function. This has implications
about mechanism design as well. For example, Horel et al. [HIM14] exploit this to
produce a polytime mechanism with approximation guarantees for a version of the
experimental design problem in which subjects report their private values truthfully,
but may lie about the costs they require for their participation.

Public Good Provision Problems. We finally note that our model has analogies to
models used in public good provision problems which have been the subject of many
studies in economics (see, e.g., Morgan [Mor00] and references therein). Indeed,
the variance reduction of estimators can be seen as a public good in that, when a
source contributes data, all other sources in the game benefit. As is standard in such
literature, our model assumes that the disclosure costs (corresponding to provision
costs in public good problems) and the estimation cost (mapping to the public good
benefit) are fully separable. However, in all these works the public good is simply the
sum of contributions from all agents. To the best of our knowledge, the only work
that considers a public good component in the context of learning from strategic
data sources is our previous publication [Gas+20] and the publications the model is
based on (see Ioannidis and Loiseau [IL13b] and Chessa et al. [CGL15]). We also
note that our game has the structure of an aggregative game in the sense of Cornes
and Hartley [CH12]. This structure, however, does not offer any further insights (or
help establish any of our results).

6.2 Models and Assumptions

6.2.1 The Linear Regression Game

We consider settings where globally successful data analysis may also provide a
utility to the individuals from which the data is collected. This is evident in medical
studies: an experiment may lead to the discovery of a treatment for a disease, from
which an experiment subject may benefit. In the case of recommender systems, users
may indirectly benefit from overall service improvements, as data disclosed may lead
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to, e.g., improved product recommendations or better-targeted advertising. Similarly,
open collaboration projects, by their nature, implicitly assume a common underlying
utility, linked to the success of the collaboration. If such benefits outweigh associated
privacy or effort costs, individuals may consent to the collection and analysis of
high-quality data, e.g., by participating in a clinical trial, completing a survey, or
disclosing their preferences in a recommender service.

We model this by strategic data sharing in which a group of n agents wants to
collectively learn a linear model y ≈ β>x. Here, x is a d-dimensional vector, y is a
scalar and the vector β represents the weights of the linear model that agents want
to estimate.

We assume that an agent i can choose a precision level λi(xi) ∈ R+ and produce an
unbiased estimate ŷi of β>x with this precision.Note that we can also impose an
upper bound λmax on the precision that an agent can choose; all our results would
still hold for large-enough n as the constraint is never binding. In the sequel, we
assume λmax =∞ to simplify the exposition. More explicitly, the response variable
reported by the i-th agent for a data point xi is

ŷi = β>xi + εi, (6.1)

where εi is an error term of mean 0 and variance 1/λi(xi).

For each data point (xi, ŷi) they hold, agents send this estimate ŷi, along with
the corresponding attribute xi and of the precision λi(xi) to an aggregator (or
analyst) that publicly discloses an estimate β̂. The error terms εi are assumed to
be independent, but we do not make any further assumption on their distribution.
We assume that regressors xi are distributed with a n-dimensional joint distribution
µjoint.

The analyst receives the n triplets (xi, ŷi, λi(xi)) and uses them to produce an
estimate β̂ that is then sent to the agents. Here, we call the ensemble λ = (λi,λ−i) a
precision profile. In what follows, we assume that the analyst computes this estimate
by using generalized least squares (GLS) and denote it β̂GLS. In this setting, we model
the covariance of the resulting GLS estimator as:

VGLS(λ) =
(
E
[∑
i∈N

λi(xi)xix>i

])−1

. (6.2)

Note that this quantity is well defined only if the matrixMGLS(λ) = E
[∑

i∈N λi(xi)xix>i
]
,

called the information matrix, is invertible. If it is not, the estimator β̂GLS is not
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unique as the generalized least squares problem has infinitely many solutions. We
also sometimes refer to the setting where the analyst uses the ordinary least squares
(OLS) estimator, in which case the definition of the game is simply obtained by
replacing the covariance in (6.2) by the covariance of the OLS estimator:

VOLS(λ) = E

(∑
i∈N

xix
>
i

)−1 ∑
i∈N

xix
>
i

λi(xi)

(∑
i∈N

xix
>
i

)−1
 . (6.3)

Note that the covariance we consider is a function of the expected information
matrix E

[∑
i∈N λi(xi)xix>i

]
rather than the expected value of the inverse of the

information matrix E
[(∑

i∈N λi(xi)xix>i
)−1

]
. We discuss this below (6.4) after

defining the different costs the agents face.

We then posit that each agent tries to balance a trade-off between two components:

1. Idiosyncratic cost: The value ŷ may be either sensitive or costly to produce. It
is sensitive for example when it represents a disease likelihood, a total debt or
any attribute that might hurt the agent if it is disclosed with full precision (e.g.,
by a potential increase in cost of health insurance): Here, the agent possesses
a value y but only reveals a noisy version of it ŷ. It is costly to produce when it
is the result of a simulation involving heavy computations, or when it requires
human work. We represent all these scenarios by assuming that releasing an
estimator ŷ with precision λi(x) induces a cost ci(λi(x)) to agent i. We refer
to it as the (data) provision cost.

2. Public good benefit: A key feature of our model is that all agents benefit
from the learned model β̂. For example, in a medical context, agents would
be interested to know that a given disease is correlated to their weight or
cholesterol level; in recommender systems, agents might be interested to
know what affects the good rating of a restaurant; etc. We model this benefit
as a public good, that is, we assume that each agent benefits equally from
the estimated model’s precision—which, in turn, depends on each agent’s
prescribed precision. As it is easier to maintain a cost-oriented perspective, we
represent this by considering that each agents incurs an estimation cost defined
as a function of the covariance of the obtained estimator:

Cestim(λ) = F

((
Eµjoint

[∑
i∈N

λi(xi)xix>i

])−1)
, (6.4)
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Where F : Sd+ → R+ is a so-called scalarization function that maps the covari-
ance of the estimator to a cost.

Scalarizations are standard in optimal design , and they include standard metrics of a
model’s quality (such as the mean squared error) as special cases (see Section 6.2.2).
By convention, if the information matrix is not invertible and VOLS(λ) is not well
defined, the estimation cost is infinite.

The public good component (6.4) is a function of the inverse of the expected
information matrix. In particular, agent i is included in this expectation, so they
minimize a function that includes their individual contribution xi. In this regard,
(6.4) can be seen as a slightly weaker Bayesian model where agents would optimize
over Eµjoint

[
F ((

∑
i∈N λi(xi)xix>i )−1)

]
. The Bayesian model however introduces

a series of modeling artifacts due to the nonzero probability of encountering an
ill-defined linear regression problem when drawing vectors from a finite set. Our
model in contrast can encompass uncertainty of agents over the data points of over
agents similarly to Bayesian models (see Section 7.2) but does not encounter such
issues and can be justified in several relevant settings. While this is not the most
intuitive model (if data points are created according to a given distribution, each
agent should hold only a single data point), there are several justification for it. First,
from a modeling standpoint, it still makes sense if µjoint represents a deterministic
attribution of vectors (i.e. µjoint(x) = 1 for some x ∈ (Rd)n) as this is the complete
information setting considered by Gast et al. [Gas+20]. Another relevant application
of this model is in the context of federated learning as in Yang et al. [Yan+19].
There, each agent performs a local estimation and the estimations are combined to
get a model. This paradigm can be used for reasons of efficiency (there are many
agents, each capable of a local optimization as in Konečny et al. [Kon+16]) or
privacy (all agents want to compute a joint representative model without explicitly
having to share their personal data in the spirit of Geyer et al. [GKN17]). Our model
can be viewed as an instance of both cases. Finally, we show in Theorem 7.1 that
the complete information setting is equivalent to the independent and identically
distributed setting presented in Section 6.2.3 where the data point of each agent
is generated through a common distribution µ. This latter model is relevant as it
requires only knowledge of the common distribution rather than the knowledge of
the data point of each agent which is unrealistic to assume when the number of
agents grows.
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To proceed, we model the collective behavior of agents by considering a game in
which each agent i ∈ N chooses their strategy λi : X → R+ in order to minimize
their cost Ji(λi,λ−i), defined here as

Ji(λi,λ−i) = Eµjoint [ci(λi(xi))] + Cestim(λ), (6.5)

where the expectation is taken with respect to the law µjoint of the attribute vectors x.
Note that this quantity can also be written exclusively using the marginal probability
distribution of each agent i denoted µimarg. This marginal distribution sometimes
allows us to write results and assumptions in a cleaner way. Additionally, given that
agent i chooses the function λi : X → R+, minimizing the expected data provision
cost Eµjoint [ci(λi(xi))] as in (6.5) is equivalent to minimizing the cost for each value
of xi separately.

The setting described above defines a game that we refer to as the linear regression
game denoted Γ. We emphasize that the strategy of each agent is a function
λi : X → R+, i.e., each player’s strategy space is the |X |-dimensional orthant RX+ .
Throughout this part, to avoid confusion, we will denote such functions with the
Greek letter λ and we will use the Latin letter ` for scalar values such as λi(xi).

We present all our results on the GLS estimator and point out when they are also
valid for the OLS estimator (which changes the covariance matrix of the estimator
but keeps the structure of the game). This is justified in two major ways. First, for
the model to hold, the agents must believe that the analyst will use the estimator
they specified. When the analyst knows the precision, GLS is BLUE and once the
analyst receives data points, they have no reason to use another estimator. If the
analyst does not know the precision, it makes sense to use the OLS model which does
not use this information. Additionally, even if the analyst convinces the agents that
another estimator will be used (for example through a trusted third party), we show
in Section 8.1 that GLS is approximately optimal when considering a wide class of
estimators which satisfy intuitive properties.

We note here that as our model formally relies on the GLS estimator—which is based
on a principle of truthful revelation of data and of its precision to the analyst. This
is a natural assumption to make for our envisioned applications where agents are
motivated by the model’s quality. However, there are other settings where strategic
considerations might lead agents to act in a different manner: For instance, if
the agents are rewarded as a function of the precision, they might be tempted to
untruthfully disclose a higher precision; as another example, agents may be unable
to properly quantify the precision of their data points. In such settings, it is possible
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to consider the ordinary least squares (OLS) estimator instead of GLS, as OLS is
oblivious to the disclosed precision of the data points.

6.2.2 Assumptions

We first define assumptions which are necessary for our game to be properly de-
fined.

Assumption 6.1. The attribute set X is finite, Eµjoint

[∑n
i=1 xix

>
i

]
is positive definite

and for all vectors x of X , there is an agent i such that µimarg(x) > 0.

This first assumption states that we consider no useless vector in the model (we can
reduce any model to this case by simply removing vectors which are present with
probability 0) and that the attribute space is well explored. Indeed, the assumption
Eµjoint

[∑n
i=1 xix

>
i

]
is valid if and only if the family of vectors of X span Rd. This

assumption makes our model properly defined from a statistical point of view but
we still need assumptions to ensure that our model is well defined from a game
theory perspective.

Assumption 6.2. The provision costs ci : R+ → R+ are non-negative, increasing, and
convex.

Assumption 6.3. The scalarization F : Sd+ → R+ is non-negative, increasing in the
positive semidefinite order, and convex. F is homogeneous of degree q, i.e., for all a > 0
and all V ∈ Sd+, F (aV ) = aqF (V ).

The monotonicity and convexity assumptions in Assumptions 6.2 and 6.3 are stan-
dard and natural. Increasing the precision λi leads to a higher disclosure cost.
In contrast, increasing λi can only decrease the estimation cost: this is because
decreasing the variance of an agent’s provided perturbed variable also decreases
the variance in the positive semidefinite sense (as the matrix inverse is a positive
semidefinite decreasing function).

The convexity assumption in Assumption 6.3 is also standard and natural. Intu-
itively, the naturalness of Assumption 6.3 stems from the following observation:
the convexity of F implies that the so called information gain, i.e., the relative
reduction in F as a new label is collected, exhibits a diminishing returns property, as
additional labels affect estimation quality less and less. Scalarizations of positive
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semidefinite matrices and, in particular, of the covariance matrix V (λ), are abundant
in statistical inference literature in the context of experimental design, see Boyd
and Vandenberghe [BV04], Pukelsheim [Puk06], and Atkinson et al. [ADT07] (also
known as batch active learning). Similar to our setting, in experimental design
an analyst has access to samples with known feature vectors xi ∈ Rd, i ∈ N , and
wishes to conduct a limited number of k experiments, where k � N , to collect labels
yi ∈ R for a subset of these samples. Given a budget k, the experimental design
problem amounts to determining which labels to collect. The standard approach
is to accomplish this by minimizing a scalarization function of the covariance of
the estimator applied to the labels selected (see detailed discussions in Boyd and
Vandenberghe [BV04], Pukelsheim [Puk06], and Atkinson et al. [ADT07].). In what
follows, we present several important scalarizations satisfying our assumptions.

The trace: The trace trivially satisfies Assumption 6.3 with q = 1. It is used in
optimal design to minimize the average variance of the estimates of the regression
coefficients and is known as the A-optimal design criterion.

The squared Frobenius norm: It is defined on the set of matrices V = [vij ] of
dimensions d× d as:

||V ||2F =
d∑
i=1

d∑
j=1

v2
ij

= trace(V V >).

It is easy to check that this scalarization satisfies Assumption 6.3 with q = 2.

The mean squared error: We define the mean squared error of an estimator β̂
estimating a linear model β as:

MSE(β̂) = E
[
(β̂ − β)(β̂ − β)>

]
. (6.6)

This mean squared error is simply the estimator’s covariance matrix. It is a property
of the estimator and it is a classical proxy to assess its quality (see Dekking et al.
[Dek+05]). In particular, in the linear regression setting, it does not depend on
the realization of the values ỹi but only on the independent variables xi and on the
precision of the response variables ỹi (unlike the empirical mean squared error).
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A similar definition can also be applied to the predicted value for a given data point
x. In this case it is referred to as the mean squared error of the predictor:

MSE(β̂>x) = E
[
(β̂>x− β>x)2

]
.

This quantity gives an indication on the average amount of error the estimator makes
when predicting the value of the model on a given data point x. It is used in optimal
design to define scalarizations by considering the average mean squared error made
by the estimator on specific data points. To properly define these criteria, we first
write this quantity in a more convenient form.

The mean squared error of the predictor of the linear model on a parameter x is:

MSE(β̂>x) = Var(β̂>x) + Bias(β̂>x,β>x).

As β̂ is unbiased, we can rewrite the mean-squared error depending only on the
variance. Let V be the covariance matrix of a linear unbiased estimator β̂. We then
have:

MSE(β̂>x) = Var(β̂>x)

= xV x>.

We now define the two main design criteria (or scalarizations) that are based on this
mean squared prediction error:

1. The average mean squared error. Given a set V and a probability distribution
ρ on V, we define the average mean-square error scalarization as:

F : V →
∫
V
xV x>ρ(dx).

This scalarization is trivially convex, increasing in the positive semi-definite
order and homogeneous of degree q = 1. It is known in the optimal design
litterature as the I (integrated) optimal design criterion and is used to minimize
the average prediction error. In our setting this scalarization can be directly
applied with V = X and ρ = µ.
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2. The mean squared error over a set of specific points. Given a finite set
{x1, . . . , xm} of possible attribute vectors, we define the mean-squared error
on that specific set of points as:

F : V →
m∑
i=1

xiV x
>
i .

This scalarization is similar to the previous one and has the same properties
but is used to minimize the prediction error only on a specific set of points of
interest. It is known in the optimal design literature as the V optimal design
criteria.

Finally, our main results hold for a class of provision cost functions which we call
near-homogeneous and satisfy the following assumptions.

Assumption 6.4. There exist 1 ≤ pmin ≤ pmax ∈ R+ ∪ {+∞} such that, for all i ∈ N ,
the disclosure cost ci : R+ → R+ satisfies:

apminci(λ) ≤ ci(aλ) ≤ apmaxci(λ), for all λ ∈ R+ and a ≥ 1. (6.7)

Intuitively, Assumption 6.4 captures “near-homogeneity” of the provision cost func-
tions. It is, for example, satisfied when all agents have monomial provision costs
ci(λ) = riλ

pi , where ri is a constant, with different exponents pi ∈ [pmin, pmax]. Note
that our asymptotic results such as Theorem 8.4 imply that the precision each agent
provides tends to 0 when the number of agents grows. In practice, this means that
only the behavior of the data provision costs near 0 matter and our results can thus
often be extended when Assumption 6.4 is only verified locally around 0.

6.2.3 Examples Used in Proofs and Illustrations

Our negative results and our illustrations on this linear regression game often rely
on simple settings for ease of understanding. In particular,

The complete information case: When there exists x = (x1, . . . , xn) such that
µjoint(x) = 1, there is no uncertainty on the vector each agent possesses. We refer to
this case as the complete information game. In this setting, the choice of λi(xk) for
k 6= i does not change the cost of agents. We thus sometimes abuse notations in this
case and denote the strategy of agent i by `i = λi(xi). In this case, we use the matrix
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notations of Chapter 2 to write the estimators. This is the model studied in Ioannidis
and Loiseau [IL13a] and Chessa et al. [CGL15] and used for the experiments showed
in Figure 8.3.

The mean estimation case: A special case of the previous complete information
setting is when the set of possible vectors is reduced to a singleton (usually X = {1}
or X = {−1, 1} for convenience). In this case, the linear regression corresponds to
the estimation of the mean value of ŷ. This setting is useful to grasp intuition of the
model while removing the need for linear algebra as in this case the cost of an agent
is simply: Ji(λi,λ−i) = Eµjoint [ci(λi(xi))]+F ( 1

Eµjoint [
∑

i∈N λi(xi)] ). We often consider

this setting with F being the trace function which is the identity function in this
1-dimensional case. This model is used for the experiments showed in Figures 8.1,
8.2, 8.9, 8.10, and 8.11.

The independent and identically distributed case: In this setting, the probability
distribution µjoint can be expressed as a product of identical and independent
probability distributions µ. Formally, for all x ∈ X n, we have µjoint(x) = µ(x1) ×
· · · × µ(xn). This model is of practical importance as we show in Theorem 7.1 that
it is equivalent in some sense to the complete information case while requiring
minimal information. Indeed, in this settings, agents only need to know the common
distribution µ rather than the full distribution µjoint which can be impractical to
evaluate when the number of agents grow. This is the model studied in Gast et al.
[Gas+20] and used for the experiments showed in Figures 8.4, 8.5, and 8.7.
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Structural Results About the
Game

7
In this chapter, we introduce structural results in our game which concern game
theoretical aspects. In Section 7.1 we show that our game is a potential game.
While this property is very common, it is crucial in our analysis of the statistical
properties of the estimators in the next chapter. We then show in Section 7.2 that
our assumptions allows us to consider two very important special cases which can
be used to model interactions where there are few agents (the complete information
model) of interactions where there are many agents and precise information about
data points of other agents is hard to obtain (the independently and identically
distributed model). Finally, in Section 7.3, we provide some bounds on the price
of stability of our game which characterizes the social inefficiency of the linear
regression game due to the selfishness of the agents.

7.1 The Linear Regression Game is a Potential Game

For a given precision profile, we define φ(λi,λ−i)

φ(λ) = Eµjoint

 n∑
j=1

cj(λj(x))

+ Cestim(λ). (7.1)

Using the form of Ji(λi,λ−i) in (6.5), a strategy λi minimizes Ji(λi,λ−i) over all
possible strategies λi (for a fixed λ−i) if and only if it minimizes (7.1). Since the
function φ is independent of i, this shows that the game is a potential game as
defined in Neyman [Ney97] and φ is the potential of the game. It is easy to see that
this potential function is convex under Assumptions 6.1, 6.2, and 6.3 (and we show
it rigorously in Appendix C.2). In this case, the set of Nash equilibria coincides with
the set of local minima of the function φ. We note here that there may exist equilibria
with infinite cost which we call trivial depending on. Intuitively, if no single agents
can output data leading to a well-defined estimator, the situation where no agents
participate is a Nash equilibrium with infinite cost as no estimator is obtained. For
example, if d ≥ 2 and X = {[1, 0]>, [0, 1]>} in the complete information setting
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with µjoint([1, 0]>, [0, 1]>) = 1, the strategy profile λ∗ = 0 is a Nash equilibrium. We
formalize this observation in the next proposition.

Proposition 7.1. There exists a trivial Nash equilibrium of infinite cost if and only if
there exists no agent i such that Eµimarg

[
xix
>
i

]
� 0.

The proof is given in Appendix C.1. In this part, we will focus on non-trivial Nash
equilibria. We note here that it is easy to guarantee that no trivial Nash equilibria
exists. In particular, we can add non-strategic agents who produce data points with
fixed precision and who guarantee that the estimators we consider are well defined.
In practice, this would correspond to public data bases already available in many
settings. Our model can be thought of as a limit the model including non-strategic
agents when the precision of non-strategic points goes to 0. As stated in the next
proposition, expressing the game as a potential game simplifies the study of its
non-trivial Nash equilibria.

Proposition 7.2. Under Assumptions 6.1, 6.2, and 6.3 a precision profile λ∗ is a
non-trivial Nash equilibrium of the linear regression game if and only if it minimizes
φ. Such an equilibrium exists. It is unique if all provision cost functions ci are strictly
convex. When there are multiple non-trivial equilibria, the estimation cost Cestim(λ∗)
does not depend on the equilibrium.

The proof is given in Appendix C.2. We note here that this proof can be straightfor-
wardly adapted to the OLS estimator. This result transforms the problem of studying
the Nash equilibria into the easier problem of studying the minima of a convex
function. Note that the main assumption that makes our linear regression game
a potential game is that the estimation cost is independent of i, which is natural
since the model’s quality depends on a unique covariance matrix. It is also robust to
variations such as introducing agent-dependent multiplicative factors, but we keep
here the simplest formulation. This property is central to all of our proofs as we
rely on exhibiting either approximate minimum of the potential (see the proof of
Theorem 8.4) or constructing good parameters for the potential from an existing
solution (see the proof of Theorem 7.3).
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7.2 Equivalence Between Two Special Cases: the
Complete Information Case and the Independent
and Identically Distributed Case

In this section, we present two important special cases which can be modeled with
our assumptions. We assume that data points are independently and identically
distributed with a probability distribution µ. This assumption defines two possible
games:

1. The most natural model is the complete information case where each agent
knows the data point of each other agent. This is modeled in our case by
setting µjoint(x) = 1 for some x = (x1, . . . , xn) where x1, . . . , xn are drawn
independently according to distribution µ. This models intuitively the strategic
linear regression setting but requires each agent to know the distribution µjoint

which means that each agent must have knowledge about the n−1 data points
of others. In asymptotic settings, this is not realistic. We denote the potential
function of this game φci

x .

2. The second model is the independent and identically distributed case where
the data point of each agent is independently produced from a common
distribution µ (the joint distribution µjoint is the product distribution of the in-
dependent and identically distributed random variables). This model requires
only knowledge of the common distribution. We denote the potential function
of this game φ.

We show that when n→ +∞, the equilibrium of the complete information game,
that we denote by λci∗, and the equilibrium of our linear regression λ∗ are equivalent
and can be exchanged.

Notations and assumptions: We assume that the provision costs functions satisfy
Assumptions 6.2 and 6.4 and that the estimation cost satisfies Assumption 6.3. In
addition, we assume that there is a finite number T of provision cost functions and
we denote by nt the number of agents having provision cost ct for t ∈ T := J1, T K.
With these assumptions, we can state our theorem.

7.2 Equivalence Between Two Special Cases: the Complete
Information Case and the Independent and Identically Distributed

Case
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Theorem 7.1. Let λ∗ be a non-trivial equilibrium of the linear regression game and
λci∗ be a non-trivial equilibrium of the complete information game. For all 0 < ε < 1/2,
we have with probability at least 1− |X |

∑
t 2 exp(−2n2ε

t ):

1

maxx,t
(
µ(x)+nε−1/2

t
µ(x)

)pmax−1φ(λ∗) ≤ φci
x (λci∗) ≤ max

x,t

(
µ(x)

µ(x)− nε−1/2
t

)pmax−1

φ(λ∗),

(7.2)

φci
x (λ∗) ≤ Dn max

x,t
(µ(x) + n

ε−1/2
t

µ(x) )pmax−1φci
x (λci∗), (7.3)

and
φ(λci∗) ≤ D′n max

x,t
( µ(x)
µ(x)− nε−1/2

t

)pmax−1φ(λ∗); (7.4)

where

Dn = max(max
x,t

(µ(x) + n
ε−1/2
t

µ(x)nt
), 1

(minx,t( µ(x)
µ(x)−nε−1/2

t

))q
) and

D′n = max(max
x,t

( µ(x)
µ(x)− nε−1/2

t

), 1
(minx,t( µ(x)

µ(x)+nε−1/2
t

))q
).

The intuition behind the theorem is as follows. Equation (7.2) states that the
minimum of the potentials are equivalent with high probability. Thus, computing
the equilibrium of our linear regression game gives a general result on how large
complete information games behave. Equations (7.3) and (7.4) state that the
equilibrium are essentially equivalent. This means that agents can safely compute the
equilibrium of the linear regression game without needing to acquire the information
of all other agents. We remark that (7.2) applied with pmax = 1 yields φ(λ∗) =
φci
x (λci∗). Finally, we emphasize that the complexity of Theorem 7.1 comes from the

necessity to prove equivalence of potential to show that our results are also valid for
the complete information game. Indeed, it is easy to show that both potentials go to
0 as long as pmin > 1 (see Section 8.2).

The proof of this theorem can be found in Appendix C.3. It relies on using Hoeffding’s
inequality to bound with high probability the difference between number of agents
having data point x and provision cost of type t and its average. We then exploit our
homogeneity assumptions to show that these two games are similar by factorizing
the ratio between the number of agents with data point x of type t and its average.
This shows that the potentials can be written as a function of the potential of the
other game times a factor which goes to 1 as the number of agents grows.
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7.3 Price of Stability

We now turn our attention to issues of efficiency. We define the social cost function
C : Rn → R+ as the sum of all agent costs, and say that a strategy profile λopt is
socially optimal if it minimizes the social cost, i.e.,

C(λ) = Eµjoint

[∑
i∈N

ci(λi)
]

+ nCestim(λ), and λopt ∈ arg min
λ∈[X→R+]n

C(λ).

Let opt = C(λopt) be the minimal social cost. We define the price of stability as the
ratio of the social cost of the best Nash equilibrium in Γ to opt, i.e.,

PoS = min
λ∈NE

C(λ)
opt

,

where NE ⊆ [X → R+]n is the set of Nash equilibria of Γ. Intuitively, the price of
stability represents the social inefficiency induced by the selfishness of agents. If
they coordinated, they could aim for a common reduction of cost and experience
a lesser cost on average. They instead take less socially-optimal decisions as other
agents might engage in "free-riding", i.e. not being productive and only enjoying the
result of the effort of other agents.

Note that there exists other measures of social efficiency such as the price of anarchy
which compares the social cost to the worst Nash equilibrium in Γ to opt. In our case,
however, recall that depending on the characteristics of the joint distribution µjoint,
trivial Nash equilibrium of infinite cost may exist making the price of anarchy infinite.
When there exists no trivial Nash equilibrium, however, or when we ignore trivial
Nash equilibrium (for example through modeling artifacts), Theorem 7.1 implies
that all equilibrium achieve the same social cost and thus the price of stability and
the price of anarchy have the same value.

The fact that our game admits a potential function has the following immediate
consequence (see for example Schäfer [Sch11] and Sandholm [San10]):

Theorem 7.2. Under Assumptions 6.2 and 6.3, PoS ≤ n.

The following result provides tighter bounds when the provision costs additionally
satisfy Assumption 6.4.

Theorem 7.3. In addition to Assumptions 6.2 and 6.3, assume that the provision
cost functions satisfy Assumption 6.4 with pmin ≥ 1 and pmax ∈ R ∪ {∞}. Then, the
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price of stability satisfies PoS ≤ n
q

pmin+q . Additionally, for all pmin, q ≥ 1, and all
ε > 0, there exists a game in which the estimation cost and the provision costs satisfy
Assumptions 6.4 and 6.3, respectively, such that PoS ≥ n

q
pmin+q (1− ε).

Note that, as the bound does not depend on pmax, we can set pmax =∞ in Assump-
tion 6.4, which is equivalent to replacing this assumption by

apminci(λ) ≤ ci(aλ), for all λ ∈ R+ and a ≥ 1.

The proof of the upper bound relies on deriving a “good” solution from the social
optimum and showing that, if the PoS is too high, this “good” solution attains a
lower potential than a Nash equilibrium (a contradiction). The proof of the lower
bound in Theorem 7.3 relies on explicitly characterizing the socially optimal profile
in a certain game class, and showing it equals the Nash equilibrium λ∗ multiplied by
a scalar. We note here that this proof can be straightforwardly adapted to the OLS
estimator.

The theorem states that, among monomial provision costs and for any estimation
cost satisfying Assumption 6.3, the largest PoS is n

q
1+q and is attained for linear

provision costs. Similarly, among all estimation costs satisfying Assumption 6.3 and
all provision costs satisfying the assumptions presented in Theorem 7.3, the largest
PoS is n; this is approached as q tends to infinity. We obtain a similar worst-case
characteristic of linear provision cost regarding the estimation cost experienced by
agents in Theorem 8.4. When q tends to infinity, however, it represents a best-case
scenario for the estimation cost.

We note that a similar worst-case efficiency of linear functions among convex cost
families has also been observed in the context of other games, including routing
games as in Roughgarden and Tardos [RT02] and resource allocation games as
in Johari and Tsitsiklis [JT04]. As such, Theorem 7.3 indicates that this behavior
emerges in our linear regression game as well but only concerning the provision cost:
We observe a worst-case efficiency of linear functions in this game for the provision
cost but a worst-case efficiency of highly convex functions for the estimation cost.

Finally, note that we also see the worst-case efficiency of linear functions later for
the convergence rate of the estimation cost in Theorem 8.4. In this case, however,
highly convex functions for the estimation cost no-longer correspond to a worst-case
efficiency but to a best-case efficiency. Intuitively, the role of the estimation cost in
the price of stability is that when it is highly convex it shrinks quickly and thus does
not incentivize agents to exert efforts leading to poor social cost. What Theorem 8.4
implies when compared to this theorem is that, purely from an estimation cost
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perspective, the benefit of having an estimation cost which shrinks faster outweighs
the loss due to the absence of incentive for agents to exert efforts.

Summary: In this chapter, we studied the game-theoretic aspect of the lin-
ear regression game. We showed that it is a potential game. This property
will be central to our proofs. We also showed that our assumptions allow
us to apply our model in a complete information setting while minimizing
the information that needs to be available to each agent to only a single
common distribution. Finally, we characterized the social inefficiency of this
linear regression game and exhibited a higher inefficiency when provision
costs are linear and when scalarizations are highly convex.
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Properties of Linear Unbiased
Estimators in the Strategic
Setting

8

In this chapter, we study the statistical properties of linear estimators when data are
strategically produced. We focus specifically on the quality of the estimation through
the scalarization of the covariance and answer the two following key questions:

1. Does the GLS estimator produce the best-quality estimation? That is to say,
is the estimation cost associated to GLS at equilibrium the lowest among
estimation costs associated to any linear unbiased estimator at equilibrium?

2. Is the estimation still consistent in the presence of strategic agents? And if so,
how does the convergence rate compare to the non-strategic case?

We first provide in Section 8.1 both a positive and a negative answer to question 1 –
GLS produces an approximately best-quality estimation among a class of estimators
satisfying suitable statistical properties. We then characterize in Section 8.2 how the
presence of strategic agents degrades the quality of estimation and prove that the
estimation may not even be consistent in this case.

8.1 Approximate Aitken’s Theorem for Strategic Linear
Regression

8.1.1 Extension of the Non-Cooperative Game to Linear Unbiased
Estimators

Suppose now that the data analyst uses a linear unbiased estimator β̂L which may
depend on the data points and precision. Similarly to the model introduced in
Section 6.2, we define a game ΓL in which each agent i chooses her λi to minimize
her cost; this time, however, the estimation cost depends on the variance of β̂L. A
natural question to ask is the following: it is possible that, despite the fact that the
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analyst uses an estimator that is “inferior” to β̂GLS in the BLUE sense, an equilibrium
reached under β̂L is better than the equilibrium reached under β̂GLS in terms of
equilibrium estimation cost? If so, despite the Aitken theorem, the data analyst
would have an incentive to use β̂L instead and to inform the agents that she will use
β̂L and not β̂GLS.

In this section, we provide both a positive and a negative answer to this question,
depending on specific assumptions on the disclosure costs and the class of estimators
considered. Formally, we consider the game ΓL defined as in Section 6.2, except
that the estimation cost depends on the covariance of the estimator. This defines the
following public cost: CLestim(λ) = F (Eµjoint [VL(λ)]). We study a class of estimators
satisfying the following assumptions:

Assumption 8.1. β̂L is linear and unbiased.

Assumption 8.2. Eµjoint [VL(λ)] is convex and for all a > 0, we have Eµjoint [VL(aλ)] =
1
aEµjoint [VL(λ)].

The first assumption simply states that we consider the same type of estimators as
GLS with the suitable properties of linearity of the absence of bias. Note that we
consider only unbiased estimators here as our measure of quality is the covariance
of the estimator. Biased estimators would allow us to trivially set this covariance to
0 by simply considering a constant estimator. We would then have to include the
bias in our measure of quality, which is not practical as it is not possible to estimate
the bias without access to the true parameters of the problem.

The second assumption ensures that the estimator used follows suitable statistical
properties. In particular, the way its covariance depends on λ follows the same
convexity and multiplicative properties as GLS. Intuitively, it means that the analyst
does not break the structure of information they receive with their estimator. Indeed,
recall that GLS is BLUE and its covariance thus represents an inherent quantity of
information of the data set (it is a special case where the Cramér-Rao bound is tight
and corresponds to the covariance of GLS). This quantity of information fits our
Assumption 8.2 and an estimator exploiting the data set in a coherent fashion should
keep this structure. These assumptions hold for the following examples:

1. The Generalized least squares estimator where

VGLS(λ) =
(
Eµjoint

[∑
i∈N

λi(xi)xix>i

])−1

. (8.1)
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2. The ordinary least squares estimator where

VOLS(λ) = Eµjoint

(∑
i∈N

xix
>
i

)−1 ∑
i∈N

xix
>
i

λi(xi)

(∑
i∈N

xix
>
i

)−1
 . (8.2)

3. Estimators which can be written L = LGLS + Eµjoint

∑i∈N


d1(x1)>

...
dn(xn)>


 with

di(xi) ∈ Rd and Eµjoint

[∑
i∈N di(xi)>xi

]
= 0. In this case, we have

VL(λ) = VGLS(λ) + Eµjoint

[∑
i∈N

di(xi)di(xi)>

λi(xi)

]
. (8.3)

Then, ΓL is still a potential game with potential function φL(λ) = Eµjoint

[∑n
j=1 cj(λj(x))

]
+

CLestim(λ). Note that this assumes that agents believe that the analyst will use the
estimator β̂L as otherwise it will be common knowledge that the estimation cost
is Cestim(λ). This is not trivial as once the analyst holds the data point and the
precision, the GLS estimator is always better than any other estimator. This can be
done through trusted third parties for example but this issue emphasizes the need
for the analyst to use "reasonable" estimators which justifies our assumptions.

This potential function has the same form as the potential of the original game,
given by (7.1) and the same convexity properties by Assumption 8.2. Since the proof
of Theorem 7.2 mostly relies on the convexity of the potential, a straightforward
adaptation yields the following result.

Theorem 8.1. Under Assumptions 6.1, 6.2 and 6.3, for any linear estimator L satisfy-
ing Assumptions 8.1 and 8.2, a precision profile λ∗ is a non-trivial Nash equilibrium of
the linear regression game if and only if it minimizes φL. Such an equilibrium exists. It
is unique if all provision cost functions ci are strictly convex. When there are multiple
equilibria, the estimation cost CLestim(λ∗) does not depend on the equilibrium.

In what follows, we denote a non-trivial equilibrium of ΓL by λ∗L and we denote by
λ∗GLS a non-trivial equilibrium of the game Γ with the same parameters except that
GLS is used as estimator.
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8.1.2 Near Optimality of the Generalized Least Squares Estimator

For a given linear unbiased estimator L, the estimation cost at equilibrium is
CLestim(λ∗L). We say that a linear estimator is efficient if it provides a small esti-
mation cost at equilibrium. In the following theorem, we provide both a negative
and a positive result about the efficiency of GLS: on the one hand, GLS is not always
the most efficient estimator; on the other hand, under Assumptions 6.3, 6.4, 8.1,
and 8.2, the ratio between the estimation cost at equilibrium of GLS and any other
estimator is bounded by pmax(q+pmin)

pmin(q+pmax) ; in order words, GLS is never too far from the
most efficient estimator.

Theorem 8.2. Assume that the disclosure cost and scalarization functions satisfy
Assumptions 6.2 and 6.3. Then: (i) There exists a game Γ such that GLS is not the most
efficient estimator; i.e., there exists an unbiased linear estimator L such that, for these
game parameters,

CLestim(λ∗L) < CGLS
estim(λ∗GLS).

(ii) For all games that additionally satisfy Assumptions 6.4, GLS is pmax(q+pmin)
pmin(q+pmax) -optimal,

i.e., for all unbiased estimators L satisfying Assumptions 8.1, and 8.2

CGLS
estim(λ∗GLS) ≤ pmax(q + pmin)

pmin(q + pmax)C
L
estim(λ∗L).

The proof is provided in Appendix D.1. Note that the bound in Theorem 8.2(ii) is
clearly smaller than or equal to pmax/pmin. By remarking that it can be written as
(1+ q

pmin
)/(1+ q

pmax
), it is easy to see that it is also smaller than or equal to 1+q. This

shows that GLS is pmax/pmin-optimal for any q and (1 + q)-optimal for any pmin, pmax.
Note also that Theorem 8.2(ii) trivially implies the following:

Corollary 8.1. Under Assumptions 6.2 and 6.3, Assumption 6.4 with pmin = pmax = p,
GLS is the most efficient estimator among estimators satisfying Assumptions 8.1 and
8.2.

Note that pmin = pmax = p, which literally translates to ci(aλ) = apci(λ) for all
i ∈ N , λ ∈ R+ and a ≥ 1, means that all agents have monomial costs functions with
the same exponent. Put differently, for all i, there exists a constant ri > 0 such that
ci(λi) = riλ

p
i . Theorem 8.2(i) may seem counter-intuitive as GLS is optimal in the

case of non-strategic agents: by Aitken’s theorem, if precision are fixed and known,
then the best linear unbiased estimator is GLS, i.e., for all λ: CLestim(λ) > Cestim(λ).
Our result demonstrates that this is not the case with strategic agents.
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Numerical Illustration of the Non-Optimality of GLS

The proof of the non-optimality of GLS (Theorem 8.2(i)) is a constructive proof
that uses a counter-example with two agents in a one-dimensional model (d = 1)
where both agents have the same public data. This raises the question of whether
the sub-optimality of GLS arises in higher dimensions or, more generally, in more
complicated scenarios. Although extending our analytical proof to more general
cases appears to be difficult, in this section, we provide three numerical counter-
examples that illustrate the gap of sub-optimality of GLS. In particular, our numerical
counter-examples suggest that the sub-optimality of GLS is not limited to the simple
counter-example of our analytical proof.

These counter-examples are constructed by using an estimator L(δ) equal to GLS
plus a small perturbation term of the form δ times D>, i.e.,

L(δ) = GLS + δD> ≡ (X>ΛX)−1X>Λ + δD>,

for an appropriately selected D. The idea behind our counter-examples is that when
using a perturbed estimator (with perturbation δ > 0), that is less accurate than
GLS under non-strategic agents, some agents will tend to choose a higher precision
than under GLS at equilibrium. In all of our numerical examples, a small enough δ
leads to an estimation cost at equilibrium smaller than the one of GLS because some
agents will use a higher precision. When δ increases too much, the gain brought by
the higher precision of agents is canceled by the loss of precision that is caused by
using the estimator L(δ) that is less precise than GLS.

In all of our examples, the equilibrium costs of the estimators are very close to that
of GLS and our examples are far from attaining the bound pmax(q+pmin)

pmin(q+pmax) provided by
Theorem 8.2. We believe that this bound is loose and can probably be refined.

We present three examples because each example is of independent interest. The
first two involve 1-dimensional models (d = 1). In the first example, we use a
perturbation term that affects all agents. For this example, we believe that GLS is
sub-optimal only when the two exponents pmin and pmax are significantly different.
In the second example, we use a perturbation that only affects two “less generous”
agents. This allows us to build a counter-examples with similar disclosure costs (with
exponents pmin = 1.01 and pmax = 1.1). Our third example includes several counter
examples in settings for different values d ≥ 2. This setting has d symmetrical agents
and a single (d+ 1)-th agent whose public vector xd+1 is significantly different.
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Figure 8.1.: Counter-example 1: Estimation cost and precision of agents as a function of
the perturbation δ.

Example 1 (1-dimensional model with two agents). We consider a 1-dimensional
model (d = 1) with two agents (n = 2) in which the public data of each agent is
xi = 1. For such a game, the estimator GLS is (X>ΛX)−1X>Λỹ = (λ1 + λ2)−1λ>ỹ

and its covariance is 1/(λ1 + λ2). We consider a linear estimator L(δ) of the form

GLS +
[ √

δ
−
√
δ

]
=
[
λ1/(λ1+λ2)+

√
δ

λ2/(λ1+λ2)−
√
δ

]
.

According to (8.3), its covariance is 1/(λ1 + λ2) + δ/λ1 + δ/λ2, where δ/λ1 + δ/λ2

is the loss of precision due to using a linear estimator that is less precise than GLS.
We assume that the disclosure cost of Agent 1 is c1(λ) = λ1.01 (pmin = 1.01) while
the disclosure cost of Agent 2 is c2(λ) = λ20 (pmax = 20). The scalarization function
is the identity, which means that CL(δ)

estim(λ) = 1/(λ1 + λ2) + δ/λ1 + δ/λ2.

In Figure 8.1(a), we plot the estimation cost at equilibriumC
L(δ)
estim(λ∗L(δ)) as a function

of δ. We observe that with GLS we get an estimation cost of approximately 0.99.
When δ increases, the estimation cost at equilibrium decreases up to δ = 0.012
for which it reaches approximately 0.96. This decrease is explained by the fact
that for small δ, the gain due to a higher precision used by Agent 1 is larger than
the loss of precision δ/λ1 + δ/λ2. When δ exceeds 0.012, this loss of precision is
more important than the gain due to higher precision. This behavior is further
illustrated in Figure 8.1(b), where we plot the precision released by the two agents.
We observe that the precision of Agent 1 increases with δ while the precision of
Agent 2 decreases (slightly).

Example 2 (1-dimensional model with four agents). We consider a 1-dimensional
game with four agents in which the public data of each agent equals xi = 1. Agents
1 and 2 have disclosure costs ci(λ) = λ1.01 while Agents 3 and 4 have disclosure
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Figure 8.2.: Counter-example 2: Estimation cost and precision of agents as a function of
the perturbation δ.

costs ci(λ) = λ1.1. We consider a linear unbiased estimator that is equal to GLS plus
a perturbation cost that only affects the first two agents: D = [

√
δ,−
√
δ, 0, 0]. Note

that this perturbation is only applied to the most selfish agents as they are the ones
we must incentivize to give more.

In Figure 8.2, we plot the estimation cost at equilibrium C
L(δ)
estim(λ∗L(δ)) as a function

of δ. With GLS (δ = 0), we get an estimation cost of 0.9955, which is larger than
the value 0.9950 that we obtain for δ = 3.10−4. As for Example 1, when δ increases,
the precision used by the least generous agents (Agents 1 and 2) increase while the
precision of the most generous agents decrease.

While the previous two counter-examples are in dimension 1 and with agents that
all have xi = 1, the sub-optimality of GLS is not limited to that case. To illustrate
that, we consider in the next counter-example models in dimension d with d ≥ 2.
Note that, as we assume that matrix X has rank d, we need at least d players whose
feature vectors xi’s span the d dimensions. Note also that, with d players in d

dimensions, GLS is the only linear unbiased estimator. Indeed, as matrix X would
then be invertible, the non-bias condition leads to D> = 0. In Example 3 below, we
consider the simplest case of models with d+ 1 agents, though it is clear that one
could construct similar counter examples with any number of agents larger than or
equal to d+ 1.

Example 3 (d-dimensional models with d+ 1 agents). We consider a d-dimensional
game with d+ 1 agents. The public data of the first d agents spans the d dimensions:
xi is a vector where all components equal 0 except the ith one that is equal to
1. All components of the public data of Agent d + 1 are equal to 1/d: xd+1 =
[1/d, · · · , 1/d]>. We assume that the disclosure costs of the first d agents are ci(λ) =
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λ20 (for i ∈ {1, · · · , d}), and the disclosure cost of the last agent is cd+1(λ) = λ1.5.
1/σ2 = 1.

The perturbation matrixD is a (d+1)×dmatrix whose first column is
√
δ[1, · · · , 1,−d],

all other entries being 0. Hence, the public feature matrix X and the perturbation
matrix D are the following (d+ 1)× d matrices:

X =


1 0

. . .

0 1
1/d . . . 1/d

 , D =



√
δ 0 0 . . .

... 0 0 . . .√
δ 0 0 . . .

−d
√
δ 0 0 . . .

 . (8.4)

It is easy to verify that D>X = 0, which implies L(δ) = GLS + D> is an unbiased
estimator.

In Figure 8.3, we report the estimation cost at equilibrium C
L(δ)
estim(λ∗L(δ)) as a function

of δ. We consider models of dimension d ∈ {2, 5, 10, 15}. We observe that for all
dimensions d, the behavior is similar to the one observed in Figure 8.1(a) and 8.2(a):
when δ is small enough, using the estimator L(δ) provides a higher precision at
equilibrium (i.e., a lower equilibrium estimation cost as seen on the graphs). This
comes from the fact that when δ increases, the precision at equilibrium provided by
Agent d+1 increases with δ whereas the precision provided by Agents 1 to d is almost
independent of δ. When δ increases too much, the estimation cost increases again
because of the non-optimality of the estimator L(δ) (for given individual precisions).
We also observe that the maximal gain that can be obtained by using an estimator
other than GLS (and the perturbation δ for which it is achieved with our particular
perturbation matrix D) seems to decrease when the dimension d increases.

Finally, although the public feature matrix X in (8.4) has a particular form, many
d-dimensional models with d+ 1 agents can be cast in this model via an appropriate
change of basis. In fact, we conjecture that for any matrix of public features X with
at least d+ 1 agents, there exist disclosure costs such that GLS is not optimal.

Note that if we do note restrict the analyst to estimators satisfying Assumption 8.2,
the linear regression game can produce arbitrary results as illustrated by the fol-
lowing examples. Consider a linear regression game with two agents, X = {−1, 1}
and µjoint(−1, 1) = 1 (i.e. agent 1 holds data point −1 and agent 2 holds data point
2). Agent 1 has provision cost c1(`) = c2(`) = `p. The scalarization is the trace
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Figure 8.3.: Counter-example 3: Estimation cost and precision of agents as a function of
the perturbation δ for models in dimension d ≥ 2.

(corresponding to the identity function in this 1 dimensional case). The analyst uses

the estimator L = LGLS +
(
d(λ1(−1), λ1(1))
d(λ1(−1), λ1(1))

)
where

d(λ1(−1), λ1(1)) =
{
D if min(λ1(−1), λ2(1)) ≤M,

0 otherwise.

The potential in this game is then:

φL(λ) =

 λ1(−1)p + λ2(1)p + 1
λ1(−1)+λ2(1) if min(λ1(−1), λ2(1)) ≥M,

λ1(−1)p + λ2(1)p + 1
λ1(−1)+λ2(1) + D2

λ1(−1) + D2

λ2(1) otherwise.

It is then easy to see that for any M , there exists a value of D high enough such that
the unique Nash equilibrium is λ1(−1) = λ2(1) = M . In this case, the estimation
cost is 1/2M and the analyst can pick an estimator producing an arbitrarily low
estimation cost. This, however, relates to our earlier discussion about the fact
that the agents must believe that the analyst will use the estimator β̂L which is
impractical in this case. Indeed, in this example, it would mean that the analyst
voluntarily ruins the estimation if one of the data points received is not precise
enough.
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8.2 Asymptotic Degradation of Estimates

Now that we established that the GLS estimator is approximately optimal among a
class of estimators satisfying suitable statistical properties, we shift our focus from
comparing estimators between them to assessing the quality of a single estimator.
Specifically, we characterize the quality of an estimator by the convergence rate of
its estimation cost. We work on the GLS estimator (and sometimes extend to OLS) as
our near-optimality result implies that its convergence rate is optimal.

The quality of estimation is influenced by two aspects in our model. First, the total
precision of data points gathered. If agents are willing to provide more precise data
points the covariance will shrink faster. Then, the allocation of precision of data
points: for a given total precision the quality of estimation may vary depending on
which data points are precise and which are not. This is usually studied in optimal
design and we draw a parallel with this field in this section.

We show that, surprisingly, in our model the cases corresponding to optimal alloca-
tion of precision also correspond to worst-case for the total precision of data points.
We show that these worst-case scenarios are caused by linearity of the provision
costs and that in these settings the GLS estimator even fails to be consistent. On the
contrary, when provision costs are not linear, we retrieve the consistency of GLS but
the convergence rate of the covariance is degraded with a degree of degradation
depending on how close the provision costs are to being linear and how convex the
scalarization is.

8.2.1 Link With Optimal Design

In optimal design (see Pukelsheim [Puk06], Atkinson et al. [ADT07], and Boyd and
Vandenberghe [BV04] for a detailed introduction), an analyst chooses the xi’s of
the set of (non-strategic) data sources in order to maximize the quality of the linear
model estimated via a scalarization of the covariance matrix. Formally, the optimal
design problem for the scalarization F and the design space X is to find a probability
measure ν∗ that minimizes:

ν∗ ∈ arg min
ν

F

(∑
x∈X

xx>ν(x)
)−1

 . (8.5)
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Classical scalarizations used in optimal design are the trace (A-optimal design) or
the mean squared error (I and V-optimal design) (refer to Boyd and Vandenberghe
[BV04] Chapter 7 for nomenclature.).

In our linear regression game, the agents have an incentive to produce a useful
information matrix to minimize the estimation cost but they are limited by the
inherent allocation µ of attribute vectors and by the provision costs ci. An equilibrium
is a minimum of the potential (7.1) that contains the estimation cost Cestim(λ), which
can be rewritten as:

Cestim(λ) = F

(∑
x∈X

xx>
∑
i∈N

λi(x)µ(x)
)−1

 . (8.6)

The similarity between (8.5) and (8.6) suggests a potential link between the Nash
equilibria of the linear regression game and the solutions of the optimal design
problem on X by interpreting

∑
i λi(x)µimarg(x) as a design ν(x):

Theorem 8.3. Consider a linear regression game that satisfies Assumptions 6.1 and 6.3
and such that all provision costs are linear (i.e., ci(`) = a` for all i ∈ N and ` ∈ R+,
where a is a constant). Let λ∗ be a non-trivial Nash equilibrium and let νλ∗ be the
measure such that νλ∗(x) =

∑
i∈N λ

∗
i (x)µimarg(x) for all x ∈ X . Then, the probability

measure defined by νλ∗(x)/
∑
y∈X νλ∗(y) is an optimal design of (8.5).

Sketch of proof. A detailed proof is given in Appendix D.2. The main idea is to
see the minimization problem (8.5) as an optimization problem with constraint∑
x∈X ν(x) = 1. When the provision costs are linear, the potential φ is a Lagrangian

of this optimization problem with a dual variable mini∈N ai. The fact that νλ∗ is
proportional to an optimal design is then a consequence of the homogeneity of the
scalarization (Assumption 6.3).

While the shape of νλ∗ for an equilibrium λ∗ is that of an optimal design, the
total expected precision

∑
x∈X νλ∗(x) depends on the provision costs. Theorem 8.3

merely states that agents contribute proportionally to an optimal design but does
not characterize how the total precision depends on the number of agents or on the
agents’ costs. We leave this discussion to Section 8.2.2 (in particular Theorem 8.4).
Note that this theorem implies that there is a heavy free-riding aspect to this game.
Indeed, if we consider the complete information setting, agents which have data
points x which do not belong to an optimal design are pure free-riders. We illustrate
in the next section however that this free-riding characteristic disappears when
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data provision costs become superlinear. In this case, the difference between the
maximum and minimum precision given depending on the data point shrinks.

General data provision costs

The particular connection between optimal design and Nash equilibria exhibited
in Theorem 8.3 is tightly connected to the linearity of provision costs. When costs
are strictly convex, the allocation of precision across X at equilibrium is in general
sub-optimal. For instance, if an agent has a provision cost ci(`) = `p with p > 1,
then the derivative of this provision costs at 0 is zero, c′i(0) = 0. In such a case, this
agent will provide a positive precision, λi(x) > 0, for all attribute vectors x ∈ X
even though the support of an optimal design might be smaller than X . We illustrate
Theorem 8.3 in a polynomial regression setting that is an instance of our linear
regression game as follows. Let X = {[1, x, · · · , xd−1]>, x ∈ J−10 . . . 10K} be the set
of attribute vectors. In these examples, we consider settings where the data point of
each agent is independently produced from a common distribution µ. We compare
in Figure 8.4 the allocation of precision at equilibrium νλ∗ as defined in Theorem 8.3
to the optimal design for different monomial provision costs (c(`) = `p). We set
µ to the uniform distribution on X , d = 4, n = 10 and the scalarization F is the
trace. Other parameters give similar results (see below). We observe that when
the provision costs are near-linear (p = 1.01), the precision function is similar to
the optimal design yet different. When p = 1.2 or p = 3, however, the precision for
the vector [1, 0, . . . , 0] is maximal whereas the optimal design sets a weight 0 to it.
Intuitively, the convexity of provision costs yields a more spread-out allocation of
precision than the optimal design. This shows that equilibrium can be different from
optimal design, even when costs are close to linear.

We now extend our previous observations to the following more general settings:

(a) In Figure 8.5, we vary the degree d of the polynomial regression (Figure 8.4
has d = 4).

(b) In Figure 8.6, we vary the distribution µ (Figure 8.4 has a uniform distribution
that corresponds to the first row in Figure 8.6). Here, we fix d = 4 and we do
not plot the optimal design as it does not depend on µ.

(c) In Figure 8.7, we use a different scalarization, the squared Frobenius norm
(F (M) =

∑
ijM

2
ij), while keeping a uniform distribution µ and d = 4.

Figure 8.5 illustrates the optimal design ν∗ and the allocation of precision at equi-
librium νλ∗ as defined in Theorem 8.3 in the same setting as Figure 8.4 (d = 4)
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Figure 8.4.: Optimal design ν∗ and allocation of precision at equilibrium νλ∗ .

with different degrees for the polynomial regression (d = 3, 5, 6). We observe that
for d = 3 and d = 5, the optimal design puts maximal weight on the central vector
[1, x, · · · , xd−1] with x = 0 while for d = 4 and d = 6, this vector does not belong to
the support of the optimal design. We observe a similar property for the equilibrium
of games with near-linear data provision cost. The allocations of precision at equilib-
rium for p = 1.2 and p = 1.5, however, are significantly different from the optimal
design for all values of d (in particular with a maximum of precision for the central
vector with x = 0), and they have a shape that does not significantly vary with the
degree d.

Figure 8.6 illustrates the allocation of precision at equilibrium νλ∗ as defined in
Theorem 8.3 in the same setting as Figure 8.4 with various distributions µ of the
agents’ xi vectors. The first row of graphs corresponds to the exact same setting
as Figure 8.4 (uniform distribution) while the next rows show the results for other
distributions. In addition to Figure 8.4, we plot the results for monomial costs of
exponent p = 1.5, but we do not plot the optimal design ν∗ as it is the same for all
distributions (and shown on Figure 8.4). We first observe that, for all distributions,
the allocation of precision at equilibrium is close to the optimal design (and hence
almost independent of the distribution) for near-linear provision costs (p = 1.01).
For more convex provision costs however, the allocation of precision at equilibrium
varies with µ in non-trivial ways. In the second row of Figure 8.6 (compared to
the first), we observe that νλ∗([1, x, · · · , xd−1]) shrinks for values of x close to 0.
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Figure 8.5.: Optimal design ν∗ and allocation of precision at equilibrium νλ∗ with various
degrees d of the polynomial regression (here µ is uniform and the scalarization
is the trace as in Figure 8.4).

This is explained by two factors: i) vectors with x close to 0 have a low probability
according to µ and ii) provision costs are superlinear meaning that the agent cannot
compensate this probability by multiplying the precision attributed to this vector
without prohibitively increasing its cost. We observe a similar behavior for the third
row of Figure 8.6 where νλ∗ has a shape similar to the first row with values skewed
to the left where vectors have higher probability.

Figure 8.7 illustrates the optimal design ν∗ and the allocation of precision at equi-
librium νλ∗ as defined in Theorem 8.3 in the same setting as Figure 8.4 but when
using the squared Frobenius norm as a scalarization to define the estimation cost
instead of the trace. We observe that both figures show similar trends. In particular,
Figure 8.7 with the squared Frobenius norm exhibits the same behaviors as discussed
before on Figure 8.4 for the trace: the allocation of precision at equilibrium is close
to the optimal design for p = 1.01 while it departs significantly for p = 1.2 and
p = 1.5 where the precision for the vector [1, 0, . . . , 0] is maximal (instead of zero in
the optimal design).

8.2.2 Bounds on the Estimation Cost

The previous section shows that linear provision costs drive agents to allocate their
precision proportionally to an optimal design, while non-linear costs lead to a non-
optimal allocation. In this section, we show that the situation is radically different
when considering the total model precision.
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Figure 8.6.: Allocation of precision at equilibrium νλ∗ with various distributions µ (here
d = 4 and the scalarization is the trace as in Figure 8.4). The optimal design
ν∗ does not depend on µ and is therefore the same as in Figure 8.4.
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Figure 8.7.: Optimal design ν∗ and allocation of precision at equilibrium νλ∗ with the
squared Frobenius norm as a scalarization F (here µ is uniform and d = 4 as
in Figure 8.4).

The Case of Identical Agents

To gain intuition, we begin with the case of agents with identical monomial costs
and independently and identically distributed data points. In this simple setting,
the equilibrium for the n-agent game is obtained by scaling the solution of the
optimization problem that would correspond to a single-agent game:

Proposition 8.1. Consider a linear regression game satisfying Assumptions 6.1 and
6.3 and such that for all agent i ∈ N and precision ` ∈ R+: ci(`) = `p with p ≥ 1.
Assume that the data point of each agent is independently produced from a common
distribution µ. Let λsingle = arg min

λ∈R|X|+
Eµ [λ(x)p] + Cestim(λ).

(i) The precision profile λ∗ with λ∗i = n
− 1+q
p+qλsingle for all i = 1, . . . , n is a Nash

equilibrium.

(ii) The estimation cost at any non-trivial equilibrium isCestim(λ∗) = n
−q p−1

p+qCestim(λsingle).
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Sketch of proof. Identical agents have identical strategies at equilibrium. Thus we
rewrite the potential as the potential of a single-agent game with scaled cost functions
and scalarization. The full proof is given in Appendix D.3.

Proposition 8.1(i) illustrates a major difference between the strategic and non-
strategic settings. Indeed, in a non-strategic setting, each agent would provide data
with a fixed precision, say λns(x) = `ns for all x. By contrast, in the presence of
strategic data sources, the equilibrium precision given by each agent goes to 0 when
the number of agents grows. Moreover, the convergence rate is governed by the
parameters p and q: when p→∞, the precision of each agent is almost constant,
similar to the non-strategic case; instead, when the costs are linear (p = 1), the
precision given by each agent goes to 0 at a Θ(1/n) rate.

As a consequence, when aggregating the data from n non-strategic data sources, the
estimation cost would be

Cestim(λns) = n−qCestim(λns) (8.7)

where λns = (λns, · · · , λns) (which corresponds to the standard 1/n rate if q = 1). By
contrast, when aggregating the data from n strategic data sources, Proposition 8.1(ii)
shows that the rate of decrease is smaller, again governed by the parameters p and q.
In the extreme, when the costs are linear (p = 1), the estimation cost does not even
go to 0 as n→∞. This shows that GLS is not consistent in the presence of strategic
data sources with linear provision costs: in this case, the estimator’s covariance does
not vanish as the number of data sources grows large.

To quantify how strategic considerations lead to a degradation of the GLS estimator,
we can consider the ratio between the strategic and non-strategic estimation costs:

Cestim(λ∗)/Cestim(λns) = Θ(n
q(q+1)
p+q ). (8.8)

This ratio goes to infinity for any possible value of the parameters, implying in
turn that strategic agents always end up incurring an asymptotic degradation of the
GLS estimator as n → ∞. In particular, higher values of q imply a more drastic
degradation because the estimation cost is reduced in a neighborhood of 0, which
thus makes agents less willing to exert effort. A high p implies a smaller degradation
as agents are less sensitive to their provision costs as long as their precision is
smaller than 1. Note that this ratio follows variations similar to the price of anarchy
(Theorem 7.3) when p and q vary. Intuitively, this corresponds to the fact that the
agents’ incentive to produce a high quality estimator diminishes when p diminishes
(as it is costly to produce data) and when q increases (as the estimation cost shrinks
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Figure 8.8.: Influence of p and q on (a) the estimation cost Cestim(λ∗) and (b) the degrada-
tion ratio Cestim(λ∗)/Cestim(λns).

faster). Recall that the only difference between the potential and the social cost is the
fact that the estimation cost has higher weight in the social cost as it is a public good.
Thus, the price of anarchy and the degradation of the estimation cost compared to
the non-strategic case are correlated. Note however that the convergence rate of
the estimation cost does not follow the same variations (it increases with q) which
shows that the loss of effort exerted by the agents when q is high is compensated by
the more generous scalarization.

Figure 8.8 illustrates the convergence of the estimation cost and the degradation
ratio for various values of p and q. Figure 8.8a pictures the convergence of the
estimation cost (in n−q

p−1
p+q ). It illustrates the inconsistency of GLS when provision

costs are linear (p = 1) and the better convergence rate with larger p and q. In
more detail, Figure 8.8b depicts the degradation of the estimation cost due to the
presence of strategic agents. We observe that the relative position of the curves
is different than in Figure 8.8a: the degradation ratio is higher for (p = 2, q = 3)
than for (p = 1, q = 2), whereas the first case yields a consistent estimator and the
second does not. This illustrates the dual impact of q on the linear regression game:
a lower q implies a lower estimation cost but also implies a lower effort, making the
estimation cost prohibitively high relative to the non-strategic setting.

Asymptotic degradation of estimation cost in the general case

We are now ready to state our result characterizing the asymptotic behavior of the
estimation cost under non-identical and general provision costs. The next theorem
provides upper and lower bounds on how the estimation cost decreases as n→∞.
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Theorem 8.4. Assume that Assumptions 6.1, 6.2, 6.3 and 6.4 hold. Then there exist
constants d,D > 0 that depend on n only through Eµjoint

[
1
n

∑
i∈N xix

>
i

]
and such that,

for any non-trivial equilibrium λ∗, we have:

dn
−q pmin−1

pmin+q−α ≤ Cestim(λ∗) ≤ Dn−q
pmin−1
pmin+q , (8.9)

where α = q (pmax−pmin)(q+1)
pmax(q+pmin) .

Sketch of proof. A full proof is given in Appendix D.4. To get the upper bound, we
first obtain an upper bound of the potential φ by evaluating it on a well-chosen
precision profile λ inspired by Proposition 8.1. Combining this with the assumption
that apminci(`) ≤ ci(a`), ∀` ∈ R+ and with the homogeneity of the estimation cost
gives the right-hand-side of (8.9). The lower bound is harder to get. We first exploit
the previous upper bound to get an upper bound on the total provision cost (the left
part of the potential (7.1)). Using the assumption that ci(a`) ≤ apmaxci(`), ∀` ∈ R+,
we deduce an upper bound on the total precision. We then consider an optimal design
scaled with this total precision and show, using the estimation cost homogeneity,
that it gives the left-hand-side of (8.9). From this sketch of proof, observe that the
constant d involves the estimation cost of an optimal design while the constant D
involves the estimation cost of a non-strategic precision profile Cestim(λns).

First, let us note that Theorem 8.4 also holds for the OLS estimator. Indeed, our
upper bound relies on a fixed homoskedastic strategy for which the GLS estimator
corresponds to OLS and our lower bound relies on the comparison of the estimator
to an optimal design which still holds for OLS. Our analysis for OLS reveals however
a potential shortfall of OLS: a single agent with a high provision cost can cause
arbitrarily bad estimation cost (whereas GLS is robust to such agents). We discuss all
this in detail in the Section 8.2.3. Theorem 8.4 is our main result: it characterizes
the decay of the GLS estimates covariance with strategic data sources for general
data provision costs that satisfy a mild assumption governed by the two parameters
pmin, pmax. This assumption roughly specifies that the provision costs grow faster
than `pmin and slower than `pmax; it is satisfied for instance by a sum of monomial
terms with exponents between pmin and pmax and such that coefficients do not vanish
or explode.

In this degree of generality, it is no longer possible to express the equilibrium
precision in closed form (as in Proposition 8.1). Nevertheless, Theorem 8.4 shows
that we are able to provide precise bounds for the estimation cost.
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The bounds we obtained depend on several factors. First, the convergence rates
depend only on pmin, pmax and q. These convergence rates are discussed in detail in
the next paragraphs. Then, the multiplicative factors depend on all parameters of
the problem and in particular on the correlation between the different data points.
More precisely, the multiplicative factor of the upper bound is

D =
(
cmax(1) + F ((Eµjoint

[
1
n

n∑
i=1

xix
>
i

]
))−1)

)
.

This term depends on F ((Eµjoint

[
1
n

∑n
i=1 xix

>
i

]
))−1) which precisely captures the

impact on correlation on the estimation cost when agents allocate precision uniformly.
Note that the correlation between data points may be arbitrarily bad leading to this
term being arbitrarily high but there is a lower bound on its value given by the
solution of the optimal design problem on X . It also depends on the provision costs
through the term cmax which intuitively represents the multiplicative factor of the
provision costs. Indeed, if we consider a monomial cost c(`) = a`p, the exponent of
the monomial influences the convergence rate while the constant a influences the
multiplicative factor of the estimation cost. The multiplicative factor of the lower
bound is

d = F

(∑
x∈X

xx>ν∗(x)
)−1

 `max

1 +
F ((Eµjoint

[
1
n

∑n
i=1 xix

>
i

]
)−1)

cmin(`max)

−
q

pmax

.

Where ν∗ is an optimal design on X considering the scalarization F and `max is
an upper bound on the precision given by a single agent. This factor depends on
the parameter of the problem similarly to the factor of the upper bound with a
new dependency on the optimal design. Intuitively, the optimal design appears in
the bound as a limit to how efficient the allocation of precision by agents can be.
Recall that in Section 8.2.1, we showed that agents allocate precision optimally
when their provision cost is linear and more uniformly when their provision cost is
highly convex. Thus, for linear provision cost, the dependency on ν∗ is likely to be
closer to the actual provision cost while for highly convex provision cost, the factor
F ((Eµjoint

[
1
n

∑n
i=1 xix

>
i

]
))−1) of the upper bound representing uniform precision

allocation is likely to be more relevant.

An important special case to consider is the independently and identically distributed
case where Eµjoint

[
1
n

∑n
i=1 xix

>
i

]
= Eµ

[
xx>

]
is independent from n. In this case,

the impact of the correlation between data points is constant and the only important
parameters asymptotically are pmin, pmax and q. We tailor the rest of the discussion
to settings where data points are iid for clarity but our conclusions also apply when
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there is only some kind of regularity to the distribution µjoint when the number
of agents grow so that Eµjoint

[
1
n

∑
i∈N xix

>
i

]
does not vary too much. We believe

that pathological cases where Eµjoint

[
1
n

∑
i∈N xix

>
i

]
varies in such a way that GLS is

no longer consistent of simply varies in unpredictable way are not relevant to the
application we target and no result could be obtained without further assumptions.

The upper bound in (8.9) shows that, as soon as pmin > 1 (i.e., data provision
costs are superlinear), the estimation cost converges to zero for any scalarization,
meaning that the consistency property of GLS is preserved. If pmin = 1 though, this
is not guaranteed (and even guaranteed to fail if pmin = pmax = 1, i.e., for linear
costs). Even when convergence to zero is guaranteed (pmin > 1), the lower bound
in (8.9) shows that the convergence rate is slower that the standard rate of Θ(n−q)
(or Θ(1/n) for scalarizations with q = 1).

The consistency of GLS when pmin > 1 can be interpreted economically through
the first order conditions. At equilibrium, agents will invest so that their marginal
benefit equals marginal cost. If the derivative of costs is 0 at 0 effort, then agents
will invest positive effort even in the limit as n grows large, as long as the model
isn’t perfectly learned. We thus always learn at equilibrium when n grows. On the
other hand, if the derivative of the cost function at 0 is positive, then after a certain
amount of data is collected no agent will be willing to invest non-zero effort, since
the costs for doing so outweigh the benefit.

We immediately see that for the case pmax = pmin = p, the exponent α is equal to 0
and the exponents of the left-hand side and of the right hand-side of (8.9) coincide
and are equal to the exponent of Proposition 8.1. When pmin and pmax are different,
the bounds loosen. Intuitively, the upper bound then involves the parameter pmin

because, when precision are close to zero, the agents with exponent pmin are the
ones that have the smallest precision at equilibrium due to larger marginal provision
costs. The lower bound, however does not correspond exactly to the n−q

pmax−1
pmax+q that

one could expect (in fact it decreases faster than n−q
pmax−1
pmax+q ). Whether this is a proof

artifact or a consequence of our assumption on the provision costs (which is weak
and allows for very diverse costs) remains an open question. We perform below a
numerical investigation of the result of Theorem 8.4 illustrating the lower and upper
bounds.
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To illustrate our results, we consider a one-dimensional model with X = {1}. The
scalarization is the trace (which satisfies Assumption 6.3 with q = 1). This means
that Cestim(λ) = (

∑
i λi(1))−1. Recall that Theorem 8.4 shows that

dn
−q pmin−1

pmin+1−α ≤ Cestim(λ∗) ≤ Dn−q
pmin−1
pmin+1 .

The goal of this section is to compare the upper and lower bounds of Theorem 8.4
to Cestim(λ∗), to see if the true convergence rate is close to the lower or to the upper
bound.

In the remaining of this subsection, we will display Cestim(λ∗) as a function of n in
loglog-scale and compare it to three possible convergence rates:

(a) n
−q pmin−1

pmin+q−α (the rate of the lower bound of Theorem 8.4);

(b) n
−q pmin−1

pmin+q (the rate of the upper bound of Theorem 8.4, which is the conver-
gence rate when all players have cost ci(`) = `pmin);

(c) n
−q pmax−1

pmax+q (the convergence rate when all players have cost ci(`) = `pmax).

Note that (a) is the fastest convergence rate, followed by (c) and then by (b).

In all plots in this section, we normalize the values such that they all start at the same
point for n = 3 (n = 3 is the smallest game for which we compute Cestim(λ∗)).

Illustration: Heterogeneous Agents With Different Exponents

We first consider heterogeneous agents. For a given n, n/3 agents have provision
costs ci(`) = `pmax and 2n/3 agents have provision costs ci(`) = `pmin . This setup
satisfies the assumptions of Theorem 8.4 with the corresponding pmin and pmax. We
consider two setups: (pmin, pmax) = (1, 4) and (pmin, pmax) = (2, 3).

Figure 8.9 compares the convergence rate of Cestim(λ∗) to the three bounds defined
above. This figure suggests that the estimation cost behaves as when all players
have an estimation cost `pmax . Intuitively, this is explained by the fact that in the
game, an agent that has a cost ci(`) = `pmin will give a very small precision. Hence,
the game will almost behave as if this agent was not in the game. This explains why
the convergence rate of Cestim(λ∗) is driven by agents having exponent pmax.
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(a) Comparison for pmin = 1 and pmax = 4 (b) Comparison for pmin = 2 and pmax = 3

Figure 8.9.: Comparison of the rate of convergence of the estimation cost with different
bounds for agents with heterogeneous costs

(a) Comparison for pmin = 1 and pmax = 4 (b) Comparison for pmin = 2 and pmax = 3

Figure 8.10.: Comparison of the rate of convergence of the estimation cost with different
bounds for agents with polynomial costs

Illustration: Agents With Polynomial Provision Costs

We then consider agents with polynomial provision costs. We assume that the n
agents have the same provision cost ci(`) =

∑pmax
k=pmin

`k. Again, these provision costs
satisfy the assumptions of Theorem 8.4 with the corresponding pmin and pmax.

Figure 8.10 compares the convergence rate of the covariance to the upper and
lower bounds of Theorem 8.4. We observe that the convergence rate is close to the
upper bound n(pmin−1)/(pmin+1). This result is natural as polynomials are sums of
monomials and it is logical to expect the convergence rate to be according to the
"worst" monomial of degree pmin.
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Figure 8.11.: Comparison of the rate of convergence of the estimation cost with the upper
bound of Theorem 8.4 for agents with hyperbolic cosine costs.

Illustration: Agents With Non-Polynomial Provision Costs

This result on polynomial functions alongside the fact that the precision of each agent
goes to 0 when the number of agents goes to infinity hints at the behavior of the
estimation cost with more general provision costs. Indeed, if agents have provision
costs which have a Taylor expansion at 0, their cost can be well approximated by a
polynomial function. The previous figure then suggests that the convergence rate in
this case is driven by the first non-null term of the Taylor expansion of the function
of degree pmin.

We illustrate this in Figure 8.11 where we consider homogeneous agents with
provision costs ci(`) = cosh(`)− 1. Recall that cosh(`)− 1 =

∑∞
k=1

`2k

(2k)! . This model
therefore satisfies our assumptions with pmin = 2 and pmax =∞. According to our
previous observations, we expect the convergence rate in this case to be the upper
bound (pmin − 1)/(pmin + 1) with pmin = 2. Note that in this case our lower bound
and n−q(pmax−1)/(pmax+1) both represent convergence rates of n−q corresponding to
the non-strategic setting. Figure 8.11 suggests indeed that the convergence rate is
close to this upper bound.

8.2.3 The OLS Estimator Suffers From a Single Arbitrarily Bad
Provision Cost While the GLS Estimator does not

In this section, we show that, while our main result holds when the analyst uses the
OLS estimator, ΓGLS and ΓOLS behave fundamentally differently when only subsets of
agents satisfy our non-trivial assumptions.
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Proposition 8.2. Assume that Assumptions 6.1, 6.3 and 6.2 hold. Assume that for
all i ∈ N , we have ci(0) = 0. Additionally, assume that there exist pmin ≥ 1 a
function cmax : R+ → R+ and SN ⊆ N such that for all i ∈ SN and all a > 1, ` > 0:
apminci(`) ≤ ci(a`) and ci(`) ≤ cmax(`) <∞. Then there exists a constant D > 0 that
does not depend on |SN | and such that, for any non-trivial equilibrium, we have:

Cestim(λ∗) ≤ D|SN |
−q pmin−1

pmin+q , (8.10)

Proof. We define the particular constant strategy

λi(x) =

 |SN |
− q+1
pmin+q if i ∈ SN ,

0 Otherwise.

The algebra to obtain the bound is then exactly the same as in Appendix D.4.

This proposition states that for any subset of agents, the convergence rate of the
estimation cost is at least as good as if only those agents participated. For example,
if half a population suffers from linear provision cost ci(λ) = λ while the other
half of the population has highly convex provision costs ci(λ) = λp, the estimation
cost will converge to 0 with rate at least n−q

p−1
p+q . This is significant as we have

previously proved that if only agents with linear provision costs participate, GLS
is not consistent and the estimation cost does not go to 0. This property is tightly
linked to the GLS estimator. Indeed, GLS weights the data points according to their
precision and low precision data points do not hinder the estimation. Formally, for
any λ, λn+1, we have

∑
i λ

n+1
i=1 (xi)xix>i �

∑n
i=1 λi(xi)xix>i thus adding a data point

can only improve the information matrix of the estimator. This is no longer true
when using the OLS estimator as it gives the same weight to widely inaccurate data
points as to very precise data points.

We show this difference on an example. We consider an OLS regression game where
n agents are willing to give precise data (they have low provision cost) while one
agent suffers from prohibitively high provision cost. Formally, let us consider ΓOLS

the game where X = {1}, n+ 1 agents participate, ci(λ) = λp for all i in {1, . . . , n}
and cn+1(λ) = (n+ 1)2λ. In the following game, we also consider the scalarization
F (·) to be the trace which in this case is the identity function. We have in this game
the following potential:

φOLS(λ) =
n∑
i=1

λpi + (n+ 1)2λn+1 + 1
(n+ 1)2

n+1∑
i=1

1
λi
. (8.11)
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It is then easy to show that at equilibrium, we have λ∗i = (n+ 1)−2/(p+1) for all i in
{1, . . . , N} and λ∗n+1 = (n + 1)−2 . This implies that the equilibrium achieves the
following estimation cost:

COLS
estim(λ∗) = 1

(n+ 1)2n(n+ 1)2/(p+1) + 1. (8.12)

This estimation cost does not converge to 0 when n + 1 grows large. Also note
that even if p grows large meaning that n of the n+ 1 agents almost do not suffer
any cost for providing data, the estimation cost still does not converge to 0. In
contrast, the cost functions we defined satisfy the assumptions of Proposition 8.2
meaning that if the analyst used the GLS estimator, they would obtain a consistent
estimator with convergence rate at least n−q

p−1
p+q . Alternatively, if the analyst refused

the participation of agent n+ 1, they would also obtain a consistent estimator. This
implies that designing a mechanism to control participants in the OLS model could
greatly improve the estimation cost at equilibrium in some cases. This remains an
open problem.

Summary: In this chapter, we characterized some statistical properties of
linear estimation when data points are strategically produced. We showed
that, while Aitken’s theorem does not hold in this setting, an approximate
version holds among a class of linear unbiased estimators satisfying suitable
assumptions. We then showed that when agents have linear provision cost,
they allocate precision optimally among data points. We finally showed
that the convergence rate of the estimation cost worsens when both the
provision cost and the estimation cost become more linear. Importantly, the
worst-case is attained for linear provision costs which make GLS no longer
satisfy the key consistency property. There is thus a conflict between the
quantity of precision produced by agents (which lessens when provision
costs become linear) and the quality of the allocation of precision (which is
optimal only if provision costs are linear).
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Part III

Conclusions and Perspectives





Conclusion and Future Works 9
In this part, we present a high level overview of the results obtained in this thesis
and then discuss several open challenges offering direction for future work related
to the content of this thesis.

9.1 Conclusion

In this thesis, we choose to investigate learning problems when the data generation
process may depend on the analysis and its result. In particular, we studied the
classification problem and the linear regression problem with two key questions to
answer:

1. Do fundamental learning results still hold when the data generation process
depends on the result of the analysis?

2. Can game theoretic models reasonably be applied in learning settings where
there is a large quantity of available complex data?

We answered Question 1 by the negative in general showing that learning in the
presence of strategic data requires careful consideration of otherwise well known
properties and parameters. For classification, we showed that one can optimally
defend against attacks only through a random defense but using simple classifiers
which may or may not belong to classical sets such as linear classifiers. Furthermore,
this dependency does not depend on parameters studied in classical learning such
as the distribution of non-attacks or the probability of attack but only on the game-
theoretical metric of payoffs of detected and undetected attacks. This emphasizes
that defenders could potentially hugely benefit from modeling attackers rather than
applying well known learning algorithms on classical hypothesis classes such as
linear or kernel classifiers. When considering linear regression problems, we showed
that some results (approximately) hold such as the optimality of GLS while others
are compromised in many settings – the linear regression process may not yield
consistent estimators if participating agents are reluctant to produce precise data
(which translates mathematically into linearity of data provision costs) and even
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when they are consistent, their rate of convergence worsens. In practice, this means
that analysts may underestimate the number of agents needed in an experiment to
achieve a certain precision. Furthermore, our results showed that if analysts have
a limit on the number of participants they can recruit, they should aim to avoid
agents whose cost to produce data increases linearly with the precision. This is even
more relevant when analysts do not have access to the precision of each data point
and use the OLS estimator, in which case even a single strategic agent with high
provision cost may ruin the estimation. The rate of convergence of estimators is
also in direct conflict with the quality of the allocation of data as we showed that
agents reluctant to provide precise data are particularly careful with their usage of
resources leading to optimal designs while agents willing to provide data do so more
uniformly regardless of how informative their data points are.

We provided training methods and approximation methods to answer question 2.
More precisely, we showed that a defender could train near optimal classifiers simply
by having access to parameters describing the cost of false alarm, true positive and
false negative associated to a behavior. This training can be performed both online or
offline with a data set and does not require access to difficult to evaluate parameters
such as the behavior of non-attackers or even the probability of attack. In practice,
this means that our model can be applied similarly to classical learning model using
a data set or online information. We believe that our model could potentially be
applied to bank fraud settings where taking into account the weighted classification
problem (where misclassifying transaction has different consequences depending
on the characteristics of the transaction) is crucial. Our experiments on a real bank
fraud data set (albeit with a simplistic model) also show that reasonably sized data
sets may be sufficient to train defenses robust to adaptive attackers. For linear
regression, we showed that agents do not need to have complete information about
the data points of other agents when data points are independently and identically
distributed. We showed that it is sufficient to have access to the underlying data
distribution which can be reasonably estimated in many settings with publicly
available data. In particular, the two previously mentioned models yield equivalent
(in terms of cost) and interchangeable (in terms of strategies) equilibrium.

9.2 Future Works

Many potential future work follow the line of work of this thesis of studying funda-
mental properties of learning algorithms when data are strategically produced. It
should first be noted that our work relies on game theory which necessitates the
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definition of payoffs for the participating agents. Instantiating these payoffs in real
settings to match users’ perception is challenging as they may encompass subjective
considerations. Thus, a first line of work may be to close this gap between theoretical
payoffs and real users’ perception using tools such as conjoint analysis.

We divide the rest of this section following the organization of this thesis, starting
with possible problems related to classification and ending with problems related to
(linear) regression.

Classification. We studied the adversarial classification problem where a defender
classifies behavior between malicious or non-malicious and a behavior is malicious if
it comes from an attacker. In these settings, there is no preexisting learning problem
in the absence of attackers. Such problems appear in fraud or network attacks but do
not cover the whole field of machine learning. In particular, the important problem
of picture recognition widely studied in the literature of adversarial examples (see
Goodfellow et al. [GSS15] for example) does not fit our model well. Indeed, in
such applications there is a preexisting learning problem defined theoretically by an
unknown data distribution which may be modified to a certain extent by an attacker.
We call such models adversarial machine learning. Preliminary work has been done by
Meunier et al. [Meu+21] who show the existence of a Nash equilibrium and Bhagoji
et al. [BCM19] who exhibit a bound on the possible robustness of classifiers. The
former, however, do not characterize the equilibrium and the latter do not consider
a game and consider that the attacker does not pay any cost to modify data points.
Thus, results about the robustness of classification in a game-theoretic setting where
the modification of data points incurs a cost to the attacker are missing. Additionally,
in adversarial machine learning one can consider multi-class classification settings
(for example classifying a picture of an animal between different possible species)
which to the best of our knowledge have not been studied. This may lead to hardness
results when increasing the number of possible classes in the spirit of results of
hardness to compute robust attacks of Perdomo and Singer [PS19a]. Combining
the previous two points, a promising line of work would be to consider a problem
where there is an underlying distribution corresponding to a multi-class classification
problem. An attacker can modify this distribution to a certain extent and a defender
simultaneously chooses a classifier (this corresponds to a game where the notion
of equilibrium considered is the Nash equilibrium but a Stackelberg setting where
the defender is the leader could be interesting. Stackelberg settings where the
attacker is the leader are less interesting as the optimal defense is simply a naive
Bayes classifier). The goal would be to obtain bounds on the minimum error rate a
defender can achieve depending on the similarity between the different classes as
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well as to produce defenses which can achieve performances close to these bounds
assuming access to a training set generated with the original distribution. Finally,
while we considered adversarial settings in classification, there exists a literature on
strategic classification where data producers have goals which do not align but also
do not necessarily oppose the classifier. This is however less related to our line of
work on classification.

Linear regression. We studied the linear regression model where agents strate-
gically chose the precision of the data points they produce to minimize a mix of
their individual provision cost and a cost linked to the precision of the result of the
regression. In this line of work, several different directions are possible. First, we
assumed that agents reported their precision truthfully which may not be. Thus, it
would be beneficial to study models and mechanisms encouraging truthful revela-
tion of data. Then, we studied a public good model where agents have incentive
to obtain a precise estimator while other models study settings where agents have
incentive to obtain a specific result from the estimation. To the best of our knowl-
edge, however, adversarial settings where agents can manipulate their data points
to a certain extent and aim to maximize the error of estimation do not exist in the
literature. This raises modeling challenges as the estimation error depends on both
bias and variance of estimation which may be hard to evaluate. Finally, we studied
a subset of parametric regression with linear regression. We believe however that
some of our results (in particular the asymptotic degradation of the precision of the
estimator) may be possible to extend in non-parametric settings using of bounds
on the quality non-parametric of estimation as presented in Györfi et al. [Gyö+02].
In particular, algorithms such as k-nearest neighbors have error guarantees under
mild assumptions on the distribution of data and on the function to estimate. When
data are strategically produced, we could observe a degradation of these guaran-
tees and, specifically, this degradation could vary locally if some data points are
inherently more costly to produce or more sensitive than others. Such behavior is
not observed in our model as linear regression is a parametric model where each
data point contains information allowing us to estimate the global parameters of
the problem while k-nearest neighbor is a non-parametric model where data points
contain information only on the local behavior of the function to estimate.
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Supplementary Materials for
Chapter 4

A

A.1 Proof of Lemma 4.1

Proof of Lemma 4.1. Let (α∗, β∗) be a BNE. From the definition of a BNE, we have
α∗ ∈ arg maxα

∑
i piU

A
i (α, β∗); that is, α∗ is a best response of the attacker to β∗

(for each attacker type). By observing that the average gain of the defender can be
written as ∑

i

piU
D
i (α, β) = −pa

∑
i

piU
A
i (α, β) + f(β)

where f(β) = (1 − pa)
∑
v Cfa(v)P0(v)πβ(v) does not depend on α, we deduce

that α∗ ∈ arg minα
∑
i piU

D
i (α, β∗). Then from the definition of a BNE again , we

conclude that β∗ ∈ arg maxβ minα
∑
i piU

D
i (α, β).

Remark A.1. Note that by symmetry we also have α∗ ∈ arg maxα minβ −
∑
i piU

D
i (α, β).

Hence, for any α∗ such that α∗ ∈ arg maxα minβ −
∑
i piU

D
i (α, β) and β∗ such that

β∗ ∈ arg maxβ minα
∑
i piU

D
i (α, β), (α∗, β∗) is a BNE.

A.2 Proof of Proposition 4.1

Proof of Theorem 4.1. In this proof, to simplify the exposition, we assimilate β and
πβ and write by abuse of notation UAi (α, π) and UDi (α, π) to denote the attacker
and defender payoff (3.2) for any defender strategy β such that πβ = π.

Let Gmax ∈ arg maxG UD(G) and let πGmax(.) be the associated probability of
detection function (4.2). We show that πGmax(.) is a min-max strategy in two steps.

Step 1: Let G be any arbitrary vector in [G1, G1] × · · · × [Gm, Gm] and let πG(.) be
the associated probability of detection function (4.2). By definition of πG, we
have

max
v
{Uui (v)− πG(v) · (Uui (v) + Udi (v))} ≤ Gi, ∀i ∈ J1,mK; (A.1)
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that is, every type of attacker i can have at most Gi payoff if the defender uses
strategy πG. From the definition of the utility (3.2), this implies that

min
α

∑
i

piU
D
i (α, πG) ≥ −pa

∑
i

piGi + (1− pa)
∑
v

Cfa(v)P0(v)πG(v).

Finally, noting that the right hand side of the above inequality is exactly UD(G)
and applying it to G = Gmax, we obtain

min
α

∑
i

piU
D
i (α, πGmax) ≥ UD(Gmax). (A.2)

Step 2: Conversely, let π be any arbitrary probability of detection function and define
Gπ as the vector with components

Gπi = max
v
{Uui (v)− π(v) · (Uui (v) + Udi (v))}, (i ∈ J1,mK). (A.3)

Again, from the definition of the utility (3.2), we have

min
α

∑
i

piU
D
i (α, π) = −pa

∑
i

piG
π
i − (1− pa)

∑
v

Cfa(v)P0(v)π(v);

that is that the minimum payoff of the defender is achieved when each attacker
type maximizes its gain. Using (A.3), we have, for all type i and vector v,

π(v) ≥ Uui (v)−Gπi
Uui (v)+Udi (v) , hence π(v) ≥ max

{
0,maxi

{
Uui (v)−Gπi
Uui (v)+Udi (v)

}}
= πGπ(v) for

all v. Plugging this inequality in the above equation gives

min
α

∑
i

piU
D
i (α, π) ≤ −pa

∑
i

piG
π
i −(1−pa)

∑
v

Cfa(v)P0(v)πGπ(v) = UD(Gπ).

Since UD(Gπ) ≤ UD(Gmax) for all π by definition of Gmax as a maximum of
function UD, we finally get

min
α

∑
i

piU
D
i (α, π) ≤ UD(Gmax). (A.4)

To conclude, observe that combining (A.2) and (A.4) gives that, for all π, we
have minα

∑
i piU

D
i (α, πGmax) ≥ minα

∑
i piU

D
i (α, π); hence πGmax is a min-max

strategy.
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Remark A.2. From the proof above, we observe that minα(
∑
i piU

D
i (α, πGmax)) =

UD(Gmax), which implies that, for all i and any maximizer Gmax of the function
UD(·), we have for all i

max
v
{Uui (v)− πGmax(v) · (Uui (v) + Udi (v))} = (Gmax)i;

that is, when the defender uses strategy πGmax the attacker gets a payoff of exactly
(Gmax)i for all type. It is important to note that this is not obvious and it is not the
case for all vectors G in [G1, G1] × · · · × [Gm, Gm]. In particular, the set S = {G :
∃π,∀i, Gi = maxv{Uui (v)− π(v) · (Uui (v) + Udi (v))}} of all G that are “best response
for each type” to a strategy π is not equal to [G1, G1]× · · · × [Gm, Gm] and may not
even be convex. For a G outside this set S, the maximum payoff of the attacker against
strategy πG will not be Gi for all i, hence the interpretation of UD as the minimum
utility of the defender no longer holds outside S. On the other hand, maximizing UD

on S directly is not possible as it may not be convex. Our proof bypasses this difficulty
by using inequality (A.1) that is valid for all G in [G1, G1]× · · · × [Gm, Gm].

A.3 Proof of Proposition 4.2

Proof of Proposition 4.2. Let OPT be the optimal objective value of the linear pro-
gram. First note that, for any G, the parameters πG and G form a valid solution
of the linear program by definition. Thus, maxG UD(G) ≤ OPT . Conversely, for
any optimal solution of the linear program π∗, G∗, we have π∗v = πG∗(v) as it is the
probability of detection achieving utility profile G while minimizing false alarms.
We also trivially have G∗i = maxv{Uui (v)− piv(Uui (v) + Udi (v))} ∈ [Gi, Gi] thanks to
the first constraint of the linear program and the fact that we want to minimize the
objective function. Thus, OPT ≤ maxUD(G).

Combining the two, we obtain OPT = maxG UD(G) andG∗ ∈ arg maxUD(G).
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A.4 Proof of Lemma 4.2

Proof. In this proof, to simplify the exposition we assimilate β and πβ and write by
abuse of notation UDi (α, πβ) to denote the defender payoff (3.2). Let (α, β) be a
strategy profile; then we have for all v ∈ V:

∂
∑
i piU

D
i

(
α, πβ

)
∂π(v) = pa

∑
i

αivpi(Uui (v) + Udi (v))− (1− pa)Cfa(v)P0(v). (A.5)

As (α∗, β∗) is a BNE, by definition, β∗ ∈ arg maxβ
∑
i piU

D
i (α∗, β). This implies that:

For all v ∈ V such that πβ
∗(v) = 0, we have:

∂
∑
i piUi

(
α∗, πβ

∗
)

∂π(v) = pa
∑
i

α∗ivpi(Uui (v) + Udi (v))− (1− pa)Cfa(v)P0(v) ≤ 0.

For all v ∈ V such that 0 < πβ
∗(v) < 1, we have:

∂
∑
i piUi

(
α∗, πβ

∗
)

∂π(v) = pa
∑
i

α∗ivpi(Uui (v) + Udi (v))− (1− pa)Cfa(v)P0(v) = 0.

For all v ∈ V such that πβ
∗(v) = 1, we have:

∂
∑
i piUi

(
α∗, πβ

∗
)

∂π(v) = pa
∑
i

α∗ivpi(Uui (v) + Udi (v))− (1− pa)Cfa(v)P0(v) ≥ 0.

which directly concludes the proof.
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Supplementary Materials for
Chapter 5

B

B.1 Proof of Theorem 5.1

Proof of Theorem 5.1. We start by recalling the setup, assumptions and the main
theorem we use from [Sha03]. Consider a stochastic optimization problem of the
form

min
x∈X
{f(x)} = E[F (x, ξ)],

where ξ is a random vector with support Ξ, with the following assumptions:

(C1) The set X is a convex closed polyhedron;

(C2) For every ξ ∈ Ξ the function F (·, ξ) is proper convex and lower semi continuous
and piecewise linear on its domain;

(C3) The support Ξ of ξ is finite.

Then the following theorem holds:

Theorem B.1 ([Sha03]). Let Ŝ be the set of optimal solutions of the sample average
approximation problem (Algorithm 1, with N samples) and S the set of optimal
solution from the true problem. Let pN = Pr[Ŝ ⊆ arg maxUD(G)]. We have

lim sup
N→∞

1
N

log(1− pN ) < 0.

The result of Theorem 5.1 then immediately follows by observing that Assumptions
(C1)-(C3) trivially hold for the function UD(G) defined in Definition 4.2 and written
as an expectation as explained above Algorithm 1 (withX = [G1, G1]×· · ·×[Gm, Gm]
and Ξ is the set of all possible vectors in V and all possible attacker types, hence
|Ξ| = |V|+m).

We then justify the fact that bounds in expected value are also relevant for our
setting by proving the following lemma:
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Lemma B.1. Let G ∈ [G1, G1] × · · · × [Gm, Gm]. Then, minα
∑
i piU

D
i (α, πG) ≥

UD(G).

Proof. By definition of πG (see (4.2)), we have for all i ∈ J1,mK and v ∈ V,
Udi (v)−Gi

Uui (v)+Udi (v) ≤ πG(v). This directly implies UAi (v, πG) = Udi (v)−(Uui (v)+Udi (v))πG(v) ≤
Gi. We thus have:

min
α

∑
i

piU
D
i (α, πG) = −pa max

α

∑
i

piU
A
i (α, πG)− (1− pa)

∑
v

Cfa(v)P0(v)πG(v)

≥ −pa
∑
i

piGi − (1− pa)
∑
v

Cfa(v)P0(v)πG(v)

≥ UD(G).

Lemma B.1 simply shows that any approximate maximum of UD(G) also gives an
approximate min-max strategy. Thus, any stochastic optimization algorithm which
yields bounds in expected value for the minimization of UD(G) also yields the same
expected values guarantees about the minimum gain of the defender.

B.2 Classical online gradient descent algorithm and
associated regret bound

In this section, we present the online gradient descent algorithm (termed “greedy
projection” in Zinkevich [Zin03]) and the associated regret bound from Zinkevich
[Zin03]. Let (c1, . . . , cT ) be convex functions defined on a convex set S. Let ΠS to
be the Euclidean projection on S, and let ηt, t = 1, · · · , T , be a sequence of learning
rates. Let ∂ct(x) denote the set of sub-gradients of ct at point x. The online gradient
descent algorithm is as follows.

Algorithm 3 Online gradient descent (OGD)

Initialize x1 ∈ S arbitrarily
for t = 1 . . . T do

Observe ct
Select xt+1 = ΠS(xt − ηt∇ct(xt)) for any ∇ct(xt) ∈ ∂ct(xt)

end for

Then, Zinkevich [Zin03] shows that we have the following regret bound.
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Theorem B.2 (Zinkevich, 2003). Assume that

max
x1,x2∈S

||x2 − x1||2 ≤ D

and
||∇ct(x)||2 ≤ L, ∀t ∈ {1, . . . , T}, x ∈ S, ∀∇ct(x) ∈ ∂ct(x).

Let (x1, . . . , xt) be vectors in S selected by Algorithm 3 with ηt = 1√
t
. Then, the regret

accumulated at time T , defined as R(T ) ≡
∑T
t=1 ct(xt)−minx

∑T
t=1 ct(x), is bounded

by:

R(T ) ≤ D2√T
2 +

(√
T − 1

2

)
L2.

Importantly, note that although the bounds L and D appear in the regret bound of
Theorem B.2, it is not necessary to know them to run the online gradient descent
algorithm and they are not used in the algorithm. Note also that our functions ct
may not be differentiable. As noted in footnote 3 of Zinkevich [Zin03], the algorithm
works also in that case, using sub-gradients as presented above.

B.3 Proof of regret bound for the naive online learning
algorithm

Assume that the defender uses Algorithm 3 directly with S being the set of prob-
ability distributions on V and with functions ct such that ct(πt) = Eπt [l(vt)]. If
at time t the defender faced an attacker of type i, we have ct(πt) = maxv[(1 −
πt(v))Uui (v)− πt(v)Udi (v)]. If the defender faced a non-strategic attacker, we have
ct(πt) = Cfa(vt)πt(vt). It is easy to verify that c1, · · · , cT satisfy the conditions of
Theorem B.2 with L = max(maxv{Cfa(v)},maxv,i{|Uui (v) + Udi (v)|}) and D2 = |V|,
hence leading to the regret bound of Theorem B.2 with those constants.

B.4 Proof of Theorem 5.2

Proof of Theorem 5.2. Algorithm 2 corresponds to online gradient descent from
Algorithm 3 applied with S = [G1, G1] × · · · × [Gm, Gm] and with functions ct
defined as follows: ct(G) = Gi if the defender faces an attacker of type i at time t
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and ct(G) = πG(vt)Cfa(vt) if the defender faced a non-attacker at time t. We first
show that

∑
t

EπGt [l(vt)]−min
π
Eπ[

∑
t

l(vt)] ≤
∑
t

ct(Gt)−min
G

∑
t

ct(G), (B.1)

in two steps.

Step 1: Let π∗ ∈ arg minπ Eπ[
∑
t l(vt)] and define

Gπ
∗
i = max

v
{Uui (v)− π∗(v) · (Uui (v) + Udi (v))}. (B.2)

By definition of Gπ
∗
i , we have for all i ∈ J1,mK and v ∈ V , π∗(v) ≥ Udi (v)−Gπ∗i

Uui (v)+Udi (v) ;
thus, π∗(v) ≥ πGπ∗ (v).

Note that we have Eπ∗ [l(vt)] ≥ ct(Gπ∗). Indeed, if at time t a non-attacker
was encountered with vector vt, we have

Eπ∗ [l(vt)] = π∗(vt)Cfa(vt) ≥ πGπ∗ (vt)Cfa(vt) ≥ ct(Gπ∗);

and if an attacker of type i was encountered, we have

Eπ∗ [l(vt)] = max
v
{Uui (v)− π∗(v) · (Uui (v) + Udi (v))} = Gπ

∗
i = ct(Gπ∗).

We thus have minπ Eπ[
∑
t l(vt)] = Eπ∗ [

∑
t l(vt)] ≥

∑
t ct(Gπ∗) ≥ minG

∑
t ct(G).

Additionally, it is trivial to verify that for all t and G, we have EπG [l(vt)] ≤
ct(G). Combined with the previous inequality, we get:

min
π
Eπ[

∑
t

l(vt)] = min
G

ct(G). (B.3)

Step 2: As stated above, it is trivial to verify that for all t and G, we have EπG [l(vt)] ≤
ct(G). In particular, this holds for G = Gt, which directly implies:

∑
t

EπGt [l(vt)] ≤
∑
t

ct(G). (B.4)

Combining (B.3) and (B.4) immediately gives (B.1). To conclude the proof, we
apply the regret bound of Theorem B.2 to the right-hand side of (B.1), noting that
each loss function is convex and that it can be easily verified from the definitions of
D and L that the conditions of Theorem B.2 are satisfied.
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Supplementary Materials for
Chapter 7

C

C.1 Proof of Proposition 7.1

Step 1: if there does not exist i such that Eµimarg

[
xix
>
i

]
� 0, there exists a trivial

Nash equilibrium. Let λ∗ = 0. Then, for any agent i and any λ = (λi, λ∗−i), we
have that Eµjoint

[∑n
j=1(λ)j(x)xjx>j

]
is non-invertible. We thus have Cestim(λ) =∞

and φ(λ) = φ(λ∗). Thus, λ∗ is an equilibrium.

Step 2: if there exists i such that Eµimarg

[
xix
>
i

]
� 0, there exists no trivial Nash

equilibrium. By contradiction, assume that there exists a trivial Nash equilibrium
λ∗ of infinite estimation cost. We will show that agent i can achieve a finite payoff.
Let λi(x) = 1 for all x ∈ X and λ = (λi, λ∗−i). Then, we have Ji(λi, λ∗−i) ≤
E [ci(λi(x))]+Cestim(λ). As by assumption we have Eµimarg

[
xix
>
i

]
� 0 the estimation

cost Cestim(λ) is finite and thus the individual cost of agent i, Ji(λi, λ∗−i) is finite and
strictly lower than infinity. Thus, λ∗ is not an equilibrium.

Note that we work by contradiction for step 2 as this proof is completely separated
from the proofs of existence of equilibrium. We thus do not assume that there exists
any equilibrium in this proof.

C.2 Proof of Proposition 7.2

Recall that a strategy λ is a function from the finite set X to R+. Hence, a strategy
λ is an element of the finite dimensional space RX and a precision profile λ is
essentially a vector (of dimension n|X |).

Step 1: The potential function is convex. The potential function
φ(λ) = E

[∑n
j=1 cj(λj(xj))

]
+ Cestim(λ) takes values in the extended positive real

numbers line R̄+ = R+ ∪ {+∞}.
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Recall that Cestim(λ) = F

((
E
[∑

i∈N λi(xi)xix>i
])−1

)
.

We denote V (λ) = E
[∑

i∈N λi(xi)xix>i
]−1

and M(λ) = E
[∑

i∈N λi(xi)xix>i
]
. We

have that V (λ) is strictly convex and goes to infinity when M(λ) goes to a non-
invertible matrix (i.e., the largest eigenvalue of V goes to infinity for any sequence
λn that converges to a λ such that M(λ) is non-invertible). As F is convex and
increasing, this shows that Cestim(λ) is strictly convex and goes to +∞ when M(λ)
goes to a non-invertible matrix, which then implies that Cestim(λ) : Rn+ → R̄+ is
continuous. As the functions ci are convex, we conclude that the potential function
φ is strictly convex and continuous on R̄+.

Step 2: The potential admits a minimum. We first consider the potential evaluated
at an arbitrary value and show that this implies boundedness of agents precision
at equilibrium. Let φ(1) = E [

∑
i ci(1)] + F ((E

[∑
i xix

T
i

]
)−1). By Assumption 6.2,

lim`→+∞ ci(`) = +∞. For all x ∈ X , we denote µi(x) the the probability that agent
i has data point x when data points are generated with the joint distribution µjoint.
If µi(x) = 0, then the value of λi(x) does not change the potential and we can set it
to 0. Otherwise, lim`→+∞ ci(`)µ(x) = +∞. Hence, there exists `max such that for all
i and all x, ci(`max)µ(x) > φ(1). This shows that if λ is a precision profile such that
λi(x) > `max for some i and x, then φ(λ) ≥ φ(1).

Let B be the subset of λ such that φ(λ) ≤ φ(1). By continuity and convexity of
φ, B is a non-empty convex and compact subset of [0, `max]n on which φ(λ) < ∞.
This implies that there φ admits a minimum and that all global minimum of φ are
attained in B.

If different non-trivial equilibria exist, they have the same estimation cost. As
shown before, a non-trivial equilibrium is a minimum of the potential function φ
defined for all precision profiles λ as

φ(λ) = Eµjoint

[∑
i

ci(λi(x))
]

+ Cestim(λ).

In the above equation, Cestim(·) is not necessarily strictly convex. Recall indeed that
Cestim(λ) is defined as

Cestim(λ) = F

((
Eµjoint

[∑
i

λi(xi)xixTi

])−1)
.
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If there exist λ 6= λ′ (which is the case for any linear regression game with
n ≥ 2 players) such that Eµjoint

[∑
i λi(xi)xixTi

]
= Eµjoint

[∑
i λ
′
i(xi)xixTi

]
, then

Cestim(λ) = Cestim(λ′) = Cestim((λ+ λ′)/2) and Cestim(·) is not strictly convex.

Yet, we show below that Cestim(·) is strictly convex when viewed as a function
of M(λ) = Eµjoint

[∑
i λi(xi)xixTi

]
. Indeed F is an increasing convex function

(by Assumption 6.3) and M 7→ M−1 is a strictly convex function, the function
M 7→ F (M−1) is a strictly convex function.

Assume that there exist two non-trivial equilibria λ∗ and λ̃∗ and assume by contra-
diction that Eµjoint

[∑
i λ
∗
i (xi)xixTi

]
6= Eµjoint

[∑
i λ̃
∗
i (xi)xixTi

]
. Let λ′ = (λ∗ + λ̃∗)/2.

The strict convexity of M 7→ F (M−1) implies that Cestim(λ′) < (Cestim(λ∗) +
Cestim(λ̃∗))/2. This implies that φ(λ′) < (φ(λ∗) + φ(λ̃∗))/2, which contradicts
the fact that λ∗ and λ̃∗ are minima of the potential function φ. Thus, if two different
equilibria exist, they have the same information matrix and yield the same estimation
cost.

C.3 Proof of Theorem 7.1

Lemma C.1. There exists an equilibrium of the complete information game λci∗ such
that:

∀i, i′,∀x ∈ X and ci = ci′ ⇒ λci∗
i (x) = λci∗

i′ (x) (C.1)

There exists an equilibrium of the linear regression game λ∗ such that:

∀i, i′, ci = ci′ ⇒ ∀x ∈ X , λ∗i (x) = λ∗i′(x) (C.2)

Proof. Consider an equilibrium λci∗ of the complete information game. We define
the following strategy profile:

∀i ∈ N, ∀x ∈ X , λi(x) =
n∑

i′=1
1ci=ct

λci∗
i′ (x)
nxit

,

where nxit is the number of players with features xi and cost type t.

This strategy profile is simply that each agent provides data with the precision
being the average of the precision of similar agents in the equilibrium. It achieves
the same estimation cost as the equilibrium and with our convexity assumptions
achieves a lower total provision cost. This is thus a minimum of the potential and
an equilibrium.
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The proof for the linear regression game follows the same steps.

As there is a symmetric equilibrium, this implies that instead of considering strategy
profiles, we may restrict our attention to functions λt(x) that associate a type of cost
and a data point to a precision. This is true for the independently and identically
distributed game, in which λi(x) is replaced by λt(x) when ci = ct. This is also true
for the complete information game, when λi(x) is replaced by λt(x) when ci = ct.
We work with these functions for the rest of the section and by abuse of notation we
redefine the potential of the games as follows:

φci
x (λ) =

∑
x∈X

T∑
t=1

ct(λt(x))nxt + F ((
∑
x∈X

xxT
T∑
t=1

λt(x)nxt )−1) (C.3)

φ(λ) =
∑
x∈X

T∑
t=1

ct(λt(x))ntµ(x) + F ((
∑
x∈X

xxT
T∑
t=1

λt(x)ntµ(x))−1), (C.4)

where as before, nt is the number of players having cost function ct and nxt is the
number of players having cost function ct and features x in the complete information
game.

By abuse of notation, we write λ∗ = (λ∗t )t∈T the equilibrium of our linear regression
game and by λci∗ = (λci∗

t )t∈T the equilibrium of the complete information game.
They are the minimum of (respectively) the potential functions (C.3) and (C.4).

The equilibrium are defined as λci∗ ∈ arg min(φci
x (λ)) and λ∗ ∈ arg min(φ(λ)),

where the potential functions are defined in Equations (C.3) and (C.4).

We define λ̃∗(x) = λ∗(x)µ(x)nt
nxt

. As λci∗ attains the minimum of φci, we have:

φci
x (λci∗) ≤ φci

x (λ̃∗)

=
∑
x

∑
t

ct(λ∗t (x)µ(x)nt
nxt

)nxt + F ((
∑
x

xxT
∑
t

λ∗t (x)µ(x))−1)

≤
∑
x

∑
t

(µ(x)nt
nxt

)pmaxct(λ∗t (x))nxt + F ((
∑
x

xxT
∑
t

λ∗t (x)µ(x))−1) (C.5)

=
∑
x

∑
t

(µ(x)nt
nxt

)pmax−1ct(λ∗t (x))nxt µ(x) + F ((
∑
x

xxT
∑
t

λ∗t (x)µ(x))−1)

≤ max
x,t

(µ(x)nt
nxt

)pmax−1φ(λ∗), (C.6)

where the inequality (C.5) comes from the assumption on the costs and the inequality
(C.6) comes from the fact that maxx(µ(x)nt

nxt
) ≥ 1 (Indeed, we have by definition∑

x n
x
t = nt =

∑
x µ(x)nt. Thus, there exists x ∈ X such that nxt ≥ µ(x)nt).
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We can prove similarly that:

φ(λ∗) ≤ max
x,t

( nxt
µ(x)nt

)pmax−1φci
x (λci∗)

We thus obtain that:

1
maxx,t( nxt

µ(x)nt )
pmax−1

φ(λ∗) ≤ φci
x (λci∗) ≤ max

x,t
(µ(x)nt

nxt
)pmax−1φ(λ∗) (C.7)

High probability bound on µ(x)nt
nxt

Hoeffding inequality implies that for all t, x, we have P (|nxt − ntµ(x)| ≥ k) ≤
2 exp(−2k2

n2
t

). We apply this with k = n
1/2+ε
t for 0 < ε < 1/2 to obtain:

P (|nxt − ntµ(x)| ≥ n1/2+ε
t ) ≤ 2 exp(−2n2ε

t ) (C.8)

We thus have P
(
∪t,x

(
|nxt − ntµ(x)| ≥ n1/2+ε

t

))
≤ |X|

∑
t 2 exp(−2n2ε

t ). We also

note that if we have |nxt − ntµ(x)| ≤ n1/2+ε
t , then:

µ(x)nt
ntµ(x) + n

1/2+ε
t

≤ µ(x)nt
nxt

≤ µ(x)nt
ntµ(x)− n1/2+ε

t

,

which yields:
µ(x)

µ(x) + n
ε−1/2
t

≤ µ(x)nt
nxt

≤ µ(x)
µ(x)− nε−1/2

t

. (C.9)

Combined with (C.7), this shows that with probability at least |X |
∑
t 2 exp(−2n2ε

t ),
we have:

1

maxx,t(µ(x)+nε−1/2
t

µ(x) )pmax−1
φ(λ∗) ≤ φci

x (λci∗) ≤ max
x,t

( µ(x)
µ(x)− nε−1/2

t

)pmax−1φ(λ∗)
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We conclude this proof by computing the value of the potential of the complete
information game with the linear regression game equilibrium:

φci
x (λ∗) =

∑
x

∑
t

ct(λ∗t (x))nxt + F ((
∑
x

xx>
∑
t

λ∗t (x)nxt )−1)

=
∑
x

∑
t

ct(λ∗t (x)) nxt
µ(x)nt

ntµ(x) + F ((
∑
x

xx>
∑
t

nxt
µ(x)nt

ntµ(x))−1)

≤max
x,t

( nxt
µ(x)nt

)
∑
x

∑
c

ct(λ∗t (x))ntµ(x)

+ 1
(minx,t( nxt

µ(x)nt ))
q
F ((

∑
x

xx>
∑
t

λ∗t (x)ntµ(x))−1)

≤Dnφ(λ∗),

where Dn = max(maxx,t(µ(x)+nε−1/2
t

µ(x)nt ), 1
(minx,t( µ(x)

µ(x)−nε−1/2
t

))q
).

Combined with the previous result, we obtain:

φci
x (λ∗) ≤ Dn max

x,t
(µ(x) + n

ε−1/2
t

µ(x) )pmax−1φci
x (λci∗).

We can show similarly that:

φ(λ∗ci) ≤ D′n max
x,t

( µ(x)
µ(x)− nε−1/2

t

)pmax−1φ(λ∗),

where D′n = max(maxx,t( µ(x)
µ(x)−nε−1/2

t

), 1
(minx,t( µ(x)

µ(x)+nε−1/2
t

))q
).

C.4 Proof of Theorem 7.3

Proof. To simplify the notation, in this proof, we write p instead of pmin; hence we
show that PoS ≤ n

q
p+q .

Upper Bound. Recall that Assumption 6.4 implies that ∀λ ∈ R+, ∀a ≥ 1, apci(λ) ≤
ci(aλ). This implies, by rewriting the assumption with λ′ = aλ, that ci(λ

′

a ) ≤
a−pci(λ′) for all a ≥ 1 and for all λ′.
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Recall that we denote by λ∗ the unique non-trivial Nash equilibrium. Suppose that
PoS > n

q
p+q , that is

∑
i∈N

ci(λ∗i ) + nCestim(λ∗) > n
q
q+p (

∑
i∈N

ci(λopt
i ) + nCestim(λopt)).

We will show that this implies that λ∗ is not an equilibrium, which is a contradiction.

By using that ci(λ∗i ) ≥ 0 and dividing the above inequality by n, we obtain:

∑
i∈N

ci(λ∗i ) + Cestim(λ∗) ≥ 1
n

(∑
i∈N

ci(λ∗i ) + nCestim(λ∗)
)

> n
− p
q+p

∑
i∈N

ci(λopt
i ) + n

q
p+qCestim(λopt)

≥
∑
i∈N

ci

(
λ

opt
i

n
1
p+q

)
+ Cestim

(
λopt

n
1
p+q

)
,

where for the last inequality, we used Assumption 6.4 and Assumption 6.3 with
a = n1/(p+q).

This would imply that λ∗ is not the minimum of the potential function which is a
contradiction. Thus, we have PoS ≤ n

q
p+q .

Lower Bound. Fix p ≥ 1 and q ≥ 1. We consider a 1-dimensional model (d = 1) with
x1 = 1 and σ2 = (q/p)1/(p+q). Let ci(λi) = λpi for all i and F (V ) = trace(V )q = V q

(the last equality holds because when d = 1, the covariance matrix is a scalar).
Hence, the covariance matrix is V (λ) = (

∑
i∈N λi)−1.

As all agents are identical, and by uniqueness of the Nash equilibrium, the Nash
equilibrium is a symmetric Nash equilibrium where all agents will give the same
value λ∗ where λ∗ is the unique minimizer of the potential function:

nλp + (nλ)−q.

The minimum of this function is attained when its derivative is equal to 0. This
implies that npλp−1 = nq(nλ)−q−1 which implies that λp+q = (q/p)n−1−q. This
shows that λ∗ = ((q/p)n−1−q)1/(p+q).

Similarly, the socially optimal λopt is also symmetric and is attained when all agents
give λopt the unique minimizer of the social cost:

nλp + n(nλ)−q.
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This implies that

λopt = (n(q/p)n−1−q)1/(p+q) = n1/(p+q)λ∗. (C.10)

Hence, we get:

PoS = C(λ∗)
C(λopt) = n(λ∗)p + n(nλ∗)−q

n(λopt)p + n(nλopt)−q

= (λ∗)p + (nλ∗)−q

(λopt)p + (nλopt)−q

= (nλ∗)−q
(nλopt)−q

(λ∗)p+q + 1
(λopt)p+q + 1

=
(
λopt

λ∗

)q 1 + (λ∗)p+q

1 + (λopt)p+q

= nq/(p+q)
1 + (q/p)n−1−q

1 + (q/p)n−q ,

where we use the expression in (C.10) for λ∗ and λopt in the last line. This shows
that, for any ε, for large enough n, the price of stability is at least nq/(p+q)(1− ε).
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Supplementary Materials for
Chapter 8

D

D.1 Proof of Theorem 8.2

Proof. Proof of (i)

We consider the same setting as Example 1, i.e., a 1-dimensional model (d = 1) with
two agents in which the public data of each agent is xi = 1. For such a game, the GLS
estimator is (XTΛX)−1XTΛỹ = (λ1 + λ2)−1λT ỹ and its covariance is 1/(λ1 + λ2).
We consider a linear estimator β̂(δ) with δ ≥ 0 of the form β̂GLS + δT ỹ where δ ∈ R2

is a vector with coefficients δ1 = −δ2 =
√
δ. Note that δ1 = −δ2 guarantees that

this linear estimator is unbiased. We assume that the disclosure cost of Agent 1 is
c1(λ) = λp1 while the disclosure cost of Agent 2 is c2(λ) = λp2 . For a given δ, we
denote the equilibrium of the game by λ∗(δ).

Overall, this proof is decomposed in two steps:

Step 1: We compute the derivative of the estimation cost at δ = 0 to
show that it is negative if and only if λ∗1(0)(2p1−p2−p1p2)+λ∗2(0)(2p2−
p1 − p1p2) > 0.

Step 2: We show that there exists x > 0 such that the above inequality is
satisfied for p1 = 1/x and p2 = 1 + x.

We describe both steps in detail below.

Step 1. According to (8.3), the covariance of the estimator is 1/(λ1 + λ2) + δ/λ1 +
δ/λ2, where δ/λ1 + δ/λ2 is the loss of precision due to using a linear estimator that
is less precise than GLS. We assume that the scalarization function is the identity,
which means that the estimation cost is

Cδestim(λ) = 1
λ1 + λ2

+ δ

λ1
+ δ

λ2
. (D.1)
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The equilibrium λ∗(δ) is the minimum of the potential function Φδ(λ) = Cδestim(λ) +
λp1

1 +λp2
2 . The estimation cost at equilibrium is Cδestim(λ∗(δ)). Our goal in this step is

to compute the derivative of Cδestim(λ∗(δ)) with respect to δ and to obtain a condition
that ensures that it is negative at δ = 0. Let use denote by (λ∗)′i(δ) = dλ∗i (δ)/(dδ)
the derivative of λ∗i (δ) with respect to δ. To simplify notation, we will omit the
dependence on δ and simply denote λ∗i = λ∗i (0) and λ′i = (λ∗)′i(0) when it is not
confusing. The derivative of the estimation cost evaluated at δ = 0 is equal to

d

dδ

(
Cδestim(λ∗(δ))

) ∣∣∣
δ=0

= − λ′1 + λ′2
(λ∗1 + λ∗2)2 + 1

λ∗1
+ 1
λ∗2

= − λ′1 + λ′2
(λ∗1 + λ∗2)2 + λ∗1 + λ∗2

λ∗1λ
∗
2
.

(D.2)

In particular, the above derivative is negative if an only if λ′1+λ′2
(λ∗1+λ∗2)3λ

∗
1λ
∗
2 > 1. In what

follows, we compute the derivatives λ′i as a function of the values of λ∗i and pi.

The equilibrium λ∗(δ) is the minimum of the potential function Φδ(λ) = Cδestim(λ) +
λp1

1 + λp2
2 . By using the first order condition ∂Φδ/∂λi = 0, this implies that for all

δ ≥ 0:

− 1
(λ∗1(δ) + λ∗2(δ))2 −

δ

(λ∗i (δ))2 + pi(λ∗i (δ))pi−1 = 0, for i ∈ {1, 2}. (D.3)

The derivative of λ∗i (δ) with respect to δ exists thanks to the implicit function
theorem. By differentiating (D.3) with respect to δ, we obtain

0 = d

dδ

(
− 1

(λ∗1(δ) + λ∗2(δ))2 −
δ

(λ∗i (δ))2 + pi(λ∗i (δ))pi−1
)

= 2(λ∗)′1(δ) + (λ∗)′2(δ)
(λ∗1(δ) + λ∗2(δ))3 − 1

(λ∗i (δ))2 + 2δ (λ∗)′i(δ)
(λ∗i (δ))3 + pi(pi − 1)(λ∗i (δ))pi−2(λ∗)′i(δ).

(D.4)

Equation (D.3), evaluated at δ = 0, shows that pi(λ∗i )pi−1 = 1
(λ∗1+λ∗2)2 . Evaluating

Equation (D.4) at δ = 0 and plugging this equality gives

0 = 2 λ′1 + λ′2
(λ∗1 + λ∗2)3 −

1
(λ∗i )2 + pi(pi − 1)(λ∗i )pi−2λ′i

= 2 λ′1 + λ′2
(λ∗1 + λ∗2)3 −

1
(λ∗i )2 + 1

(λ∗1 + λ∗2)2
pi − 1
λ∗i

λ′i. (D.5)
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In order to isolate the term λ′1 + λ′2, we multiply the above equation by λ∗i /(pi − 1)
and we sum over i ∈ {1, 2}. This gives:

0 = 2 λ′1 + λ′2
(λ∗1 + λ∗2)3

(
λ∗1

p1 − 1 + λ∗2
p2 − 1

)
− 1
λ∗1(p1 − 1) −

1
λ∗2(p2 − 1) + λ′1 + λ′2

(λ∗1 + λ∗2)2

= λ′1 + λ′2
(λ∗1 + λ∗2)3

( 2λ∗1
p1 − 1 + 2λ∗2

p2 − 1 + λ∗1 + λ∗2

)
− 1
λ∗1(p1 − 1) −

1
λ∗2(p2 − 1) .

This shows that

λ′1 + λ′2
(λ∗1 + λ∗2)3 =

1
λ∗1(p1−1) + 1

λ∗2(p2−1)
2λ∗1
p1−1 + 2λ∗2

p2−1 + λ∗1 + λ∗2

= 1
λ∗1λ

∗
2

λ∗2(p2 − 1) + λ∗1(p1 − 1)
2λ∗1(p1 − 1) + 2λ∗2(p2 − 1) + (λ∗1 + λ∗2)(p1 − 1)(p2 − 1) .

In particular, this implies that the derivative (D.2) is negative if and only if

λ∗2(p2 − 1) + λ∗1(p1 − 1)
2λ∗1(p1 − 1) + 2λ∗2(p2 − 1) + (λ∗1 + λ∗2)(p1 − 1)(p2 − 1) > 1.

After some algebra, this gives

λ∗1(2p1 − p2 − p1p2) + λ∗2(2p2 − p1 − p1p2) > 0, (D.6)

where, again, by abuse of notation we denote λ∗1 = λ∗1(0) and λ∗2 = λ∗2(0).

Step 2. We now consider p1 = 1+1/x and p2 = 1+x and x→∞. To emphasize the
dependence in x, let us denote by λ∗(x) = (λ∗1(x), λ∗2(x)) the value of the precision
at equilibrium (for GLS) and Φx(·) the potential of the game. By definition, λ∗(x)
minimizes Φx(λ) = 1/(λ1 + λ2) + λ

1+1/x
1 + λ1+x

2 . This implies that for all ε > 0,
Φx(λ∗(x)) ≤ Φx(0, 1 − ε). As limx→∞Φx(0, 1 − ε) = 1/(1 − ε) and because this is
true for all ε, this implies that

lim
x→∞

Φx(λ∗(x)) = lim
x→∞

( 1
λ∗1(x) + λ∗2(x) + (λ∗1(x))1+1/x + (λ∗2(x))1+x

)
≤ 1.

This implies that limx→∞ λ
∗
1(x) = 0 and limx→∞ λ

∗
2(x) = 1.

For our values of p1 = 1 + 1/x and p2 = 1 + x, the left-hand side of (D.6) equals
λ1(x)(1/x−2x−1)+λ2(x)(x−2/x−1). As limx→∞ λ2(x) = 1 and limx→∞ λ1(x) = 0,
this term is asymptotically equivalent to x and is therefore positive for x large enough.
This implies that there exists a value x such that d/(dδ)Cδestim(λ∗(δ)) < 0. Hence,
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for this x, there exists a perturbation value δ > 0 such that β̂(δ) is an estimator that
is more efficient than GLS.

Proof of (ii)

We will start by proving Lemma D.1. This lemma can easily be explained if we
recall Assumption 6.4 and Assumption 6.3. Indeed, they dictate how the different
components of the potential function behave when all agents multiply or divide the
amount of information they give. If the sum of individual costs is too great compared
to the common cost then dividing the amount that all agents give greatly reduces
the individual costs while slightly augmenting the common cost, which is beneficial.
The same goes the other way around where agents multiply the amount they give.
This formalizes an intuition that one can have about this model: there is a balance
between the individual costs paid to achieve the objective of reducing the common
cost and the objective itself.

Lemma D.1. Under Assumptions 6.2, 6.3, and 6.4, for any estimator L satisfying
Assumption 8.2 the ratio between the sum of individual costs and the common cost is
bounded. Formally, the equilibrium λ∗ satisfies:

Eµjoint

[∑
i∈N

ci(λi(xi))
]
≤ q

pmin
CLestim(λ∗) and CLestim(λ∗) ≤ pmax

q
Eµjoint

[∑
i∈N

ci(λi(xi))
]
.

Proof. This proof mainly relies on the fact that λ∗ is the minimum of the potential
function. Let λ∗ be the unique non-trivial equilibrium. Let κ ∈ (0, 1) be a multiplica-
tive factor applied to the equilibrium profile. As λ∗ is the minimum of the potential
function, we have φL(λ∗) ≤ φL(κλ∗) and φL(λ∗) ≤ φL(λ∗/κ). This implies that:

Eµjoint

[∑
i∈N

ci(λi(xi))
]

+ CLestimλ
∗ ≤ Eµjoint

[∑
i∈N

ci(κλi(xi))
]

+ CLestim(κλ∗)

≤ κpminEµjoint

[∑
i∈N

ci(λi(xi))
]

+ κ−qCLestim(λ∗),

and

Eµjoint

[∑
i∈N

ci(λi(xi))
]

+ CLestim(λ∗) ≤ Eµjoint

[∑
i∈N

ci(λi(xi)/κ)
]

+ CLestim(λ∗/κ)

≤ κ−pmaxEµjoint

[∑
i∈N

ci(λi(xi))
]

+ κqCLestim(λ∗).
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Where we used Assumptions 6.3, 6.4, and 8.2 to obtain the last term of each
inequality. The above equations imply that:

(1− κpmin)Eµjoint

[∑
i∈N

ci(λi(xi))
]
≤ (κ−q − 1)CLestim(λ∗), and

(1− κq)CLestim(λ∗) ≤ (κ−pmax − 1)Eµjoint

[∑
i∈N

ci(λi(xi))
]
.

As κ ∈ (0, 1), we have 1−κpmin > 0 and κ−pmax − 1 > 0. Hence, the above equations
imply that

1− κq

κ−pmax − 1C
L
estim(λ∗) ≤ Eµjoint

[∑
i∈N

ci(λi(xi))
]
≤ κ−q − 1

1− κpmin
CLestim(λ∗).

This inequality is valid for every κ ∈ (0, 1). As limκ→1
1−κq

κ−pmax−1 = q/pmax and
limκ→1

1−κ−q
1−κ−pmin = q/pmin, this gives

q

pmax
CLestim(λ∗) ≤ Eµjoint

[∑
i∈N

ci(λi(xi))
]
≤ q

pmin
CLestim(λ∗).

We are now ready to prove Theorem 8.2(ii). Let ΦL(λ) = Eµjoint [
∑
i∈N ci(λi(xi))] +

CLestim(λ) be the potential function for any linear unbiased estimator and ΦGLS(λ) =
Eµjoint [

∑
i∈N ci(λi(xi))] +CGLS

estim(λ) be the potential function for GLS. Recall that λ∗L
and λ∗GLS denote the non-trivial equilibria for the linear unbiased estimator and for
GLS respectively. By optimality of GLS, for all λ we have CLestim(λ) ≥ CGLS

estim(λ). This
implies that for all λ, we have ΦL(λ) ≥ ΦGLS(λ). Therefore

ΦL(λ∗L) = min
λ

ΦL(λ) ≥ ΦGLS(λ∗GLS) = min
λ

ΦGLS(λ). (D.7)

By applying the inequalities of Lemma D.1, we obtain:

ΦGLS(λ∗GLS) = Eµjoint

[∑
i∈N

ci((λ∗GLS)i(xi))
]
+CGLS

estim(λ∗GLS) ≥ q

pmax
CGLS

estim(λ∗GLS)+CGLS
estim(λ∗GLS),

and

ΦL(λ∗L) = Eµjoint

[∑
i∈N

ci((λ∗L)i(xi))
]

+ CLestim(λ∗L) ≤ q

pmin
CLestim(λ∗L) + CLestim(λ∗L).
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Combining the above two inequalities with (D.7), we conclude that

CGLS
estim(λ∗GLS) ≤

q
pmin

+ 1
q

pmax
+ 1C

L
estim(λ∗L) = pmax(q + pmin)

pmin(q + pmax)C
L
estim(λ∗L).

D.2 Proof of Theorem 8.3

Recall that the provision cost of a player i is ci(`) = a`.

Let λ∗ be an equilibrium of the game and let ν∗ be an optimal design. Recall that
νλ∗(x) =

∑
i∈N λ

∗
i (x)µimarg(x) for all x ∈ X . Let b =

∑
x∈X νλ∗(x). Let λν∗ be the

strategy such that λν∗(x) = bν∗(x)/
∑
i∈N µ

i
marg(x) for all x (λν∗ is well defined as

Assumption 6.1 ensures that
∑
i∈N µ

i
marg(x) > 0) and consider the precision profile

λν∗ = (λν∗ , 0, · · · , 0). We have:

φ(λ∗) = F ((
∑
x

xxT νλ∗(x))−1) +
∑
i

a
∑
x

λ∗i (x)µimarg(x)

≥ F ((
∑
x

xxT νλ∗(x))−1) + ab (D.8)

= b−qF ((
∑
x

xxT νλ∗(x)/b)−1) + ab (D.9)

≥ b−qF ((
∑
x

xxT ν∗(x))−1) + ab (D.10)

= F ((
∑
x

xxTλν∗(x)µ(x))−1) + a1
∑
i∈N

∑
x

(λν∗(x))iµimarg(x) (D.11)

= φ(λν∗),

where the second inequality (D.10) is because ν∗ is an optimal design. The equalities
(D.9) and (D.11) are due to the homogeneity of F (Assumption 6.3 implies that
F ((bM)−1) = b−qF (M−1)), and in (D.11) we also use that by definition of λν∗ and
since

∑
x ν
∗ = 1 we have

∑
x λν∗(x)µ(x) = b.

If νλ∗/b was not an optimal design, the inequality (D.10) would be strict which
would imply that φ(λ∗) > φ(λν∗) which would contradict the fact that λ∗ is a
minimum of the potential. This implies that (D.10) is an equality which means that
νλ∗(x)/b is an optimal design.
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D.3 Proof of Proposition 8.1

An equilibrium is a minimum of the potential function φ. When all costs are identical,
this function is symmetric. As φ is a convex function, this implies that there exists
a minimum of φ that is symmetric. A symmetric precision profile λ = (λ, . . . λ) is
a Nash equilibrium if and only if it minimizes the potential φ. By symmetry, this
potential can be rewritten as:

φ(λ, . . . , λ) = nEµ [λ(x)p] + Cestim(nλ)

Let us define the function f : RX+ → R+ that associates to a strategy λ, the quantity
f(λ) = Eµ [λ(x)p] + Cestim(λ). Recall that λsingle is the minimum of f . For a given
strategy λ, we have:

φ(n−
q+1
p+qλ, . . . , n

− q+1
p+qλ) = nEµ

[
λ(x)pn−

q+1
p+q p

]
+ Cestim(nn−

q+1
p+qλ)

= n
q 1−p
p+qEµ [λ(x)p] + n

−q p−1
p+qCestim(λ)

= n
−q p−1

p+qCestim(λ),

where we used the homogeneity of F , which implies thatCestim(aλ) = a−qCestim(λ).

For any n ∈ {1, 2, . . . }, the function λ 7→ n
− q+1
p+qλ is a bijection from RX+ to RX+ .

Hence, λ is a minimum of f if and only if (n−
q+1
p+qλ, . . . , n

− q+1
p+qλ) is a minimum of φ.

Thus, the precision profile λ∗ such that ∀i : λ∗i = n
− 1+q
p+qλsingle is an equilibrium.

The second part of the proposition follows immediately from the homogeneity of F ,
which implies that for this equilibrium, Cestim(λ∗) = n

−q p−1
p+qCestim(λsingle). Moreover,

all equilibria have the same estimation cost by Proposition 7.2.

D.4 Proof of Theorem 8.4

Proof. Upper bound

In this first step, we compute the value of the potential function for a particu-
lar constant strategy in which all players use the precision λ(x) = n

− q+1
pmin+q for
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all values of x ∈ X . By abuse of notation, we denote this precision profile by
(n−

q+1
pmin+q , . . . , n

− q+1
pmin+q ). The value of the potential for this precision profile is

φ(n−
q+1

pmin+q , . . . , n
− q+1
pmin+q ) = Eµjoint

[
n∑
i=1

ci(n
− q+1
pmin+q )

]
+ F ((Eµjoint

[
n∑
i=1

xxTn
− q+1
pmin+q

]
)−1)

=
n∑
i=1

ci(n
− q+1
pmin+q ) + F ((n

pmin−1
pmin+qEµjoint

[
1
n

n∑
i=1

xix
T
i

]
)−1)

≤
n∑
i=1

n
−pmin

q+1
pmin+q ci(1) + F ((n

pmin−1
pmin+qEµjoint

[
1
n

n∑
i=1

xix
T
i

]
)−1)

(D.12)

= n
−pmin

q+1
pmin+q

n∑
i=1

ci(1) + n
q(1−pmin)
pmin+q F ((Eµjoint

[
1
n

n∑
i=1

xix
T
i

]
)−1)

(D.13)

≤ n−
q(pmin−1)
pmin+q cmax(1) + n

q(1−pmin)
pmin+q F ((Eµjoint

[
1
n

n∑
i=1

xix
T
i

]
))−1)

(D.14)

= n
− q(pmin−1)

pmin+q

(
cmax(1) + F ((Eµjoint

[
1
n

n∑
i=1

xix
T
i

]
))−1)

)
,

(D.15)

where we use that ci(1) ≥ apminci(1/a) with a = n
q+1

pmin+q (from the theorem’s
assumption) in (D.12), the homogeneity of F (Assumption 6.3) in (D.13), and the
theorem’s assumption, which implies that ci(1) ≤ cmax(1) for all i, in (D.14).

As ci(`) ≥ 0 and λ∗ is a minimum of the potential, it holds that

Cestim(λ∗) ≤ φ(λ∗) ≤ φ(n−
q+1

pmin+q , . . . , n
− q+1
pmin+q ).

Hence, the right-hand-side of (8.9) holds withD =
(
cmax(1) + F ((Eµjoint

[
1
n

∑n
i=1 xix

T
i

]
))−1)

)
.

Lower bound

By (D.15), φ(λ∗) ≤ n
− q(pmin−1)

pmin+q (cmax(1) + F ((Eµjoint

[
1
n

∑n
i=1 xix

T
i

]
)−1)). Recall

that all ci are increasing convex and infi ci(1) ≥ cmin(1) > 0. This implies that
lim`→∞ infi ci(`) = ∞ as infi ci(`) > `pmincmin(1). As λ∗ is a minimum of the
potential, this implies that there exists a value `max independent of n such that
λ∗i (x) ≤ `max.

We first obtain a bound on the total amount of precision given by all players. To
do that we use Jensen’s inequality for concave function in (D.16). Then we use
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that ci(`max) ≤ (`max/λi(x))pmaxci(λi(x)) as `max/λi(x) > 1 to obtain (D.17) and
ci(`max) ≥ cmin(`max) to obtain (D.18):

(
Eµjoint

[
n∑
i=1

1
n
ci(λi(x))

]) 1
pmax

≥ Eµjoint

[
n∑
i=1

1
n

(ci(λi(x)))
1

pmax

]
(D.16)

≥ Eµjoint

[
n∑
i=1

1
n

((λi(x)/`max)pmaxci(`max))
1

pmax

]
(D.17)

≥ (cmin(`max))
1

pmax

`max

1
n
Eµjoint

[
n∑
i=1

λi(x)
]
. (D.18)

This shows that

Eµjoint

[
n∑
i=1

λ∗i (x)
]
≤ n`max

(cmin(`max))1/pmax

(
Eµjoint

[
n∑
i=1

1
n
ci(λ∗i (x))

]) 1
pmax

≤ n`max

(cmin(`max))1/pmax

( 1
n
φ(λ∗)

)1/pmax

≤ n`max

(cmin(`max))1/pmax

(
1
n
n
− q(pmin−1)

pmin+q

(
cmax(`max) + F ((Eµjoint

[
1
n

n∑
i=1

xix
T
i

]
)−1)

))1/pmax

,

(D.19)

where we used (D.18) for the first inequality, the fact that Cestim(λ) ≥ 0 for the
second and (D.15) to obtain the last inequality.

Note that the exponent of n in (D.19) is

1− 1/pmax −
q(pmin − 1)

pmax(pmin + q) = pmax(pmin + q)− (pmin + q)− q(pmin − 1)
pmax(pmin + q)

= pmax(pmin + q)− pmin(1 + q)
pmax(pmin + q)

= pmax(pmin − 1) + (pmax − pmin)(1 + q)
pmax(pmin + q)

= pmin − 1
pmin + q

+ α/q,

where α = q (pmax−pmin)(q+1)
pmax(q+pmin) is the same α as in Theorem 8.4.
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Plugging this into (D.19) yields the upper bound on the total amount of precision
given by all players:

Eµjoint

[
n∑
i=1

λ∗i (x)
]
≤ `max

1 +
F ((Eµjoint

[
1
n

∑n
i=1 xix

T
i

]
)−1)

cmin(`max)


1

pmax

n
pmin−1
pmin+q+α/q

.

(D.20)

Recall that νλ∗(x) =
∑
i λi(x)µ(x). Following what we did in (D.10) with the

notation b =
∑
x∈X νλ∗(x) = Eµjoint [

∑
i λ
∗
i (x)], we have
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Combining (D.21) and (D.20) shows that the right-hand-side of (8.9) holds with

d = F
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Hardware and software used
for experiments

E
All experiments were run on a Dell xps-13 laptop with a Quad core Intel Core
i7-8550U (-MT-MCP-) CPU under Ubuntu 18.04. Experiments were made using
Python 3 code which will be made publicly available.

A27





List of Figures

4.1. Game 1 illustration with only Attacker 1: (a) NE strategies; (b)
parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2. Game 1 with both attackers: (a) BNE strategies p1 = p1 = 0.5; (b)
BNE strategies p1 = 0.95, p2 = 0.05. . . . . . . . . . . . . . . . . . . . 42

5.1. Empirical distribution of transaction amounts and representation of
defender min-max strategies for various l. . . . . . . . . . . . . . . . 46

5.2. Strategy of the defender training on the data set and computation times 47

5.3. Approximation ratio for Game 2. . . . . . . . . . . . . . . . . . . . . 48

5.4. Approximation ratio for N = 284807 . . . . . . . . . . . . . . . . . . 48

5.5. Approximation ratio and pN for Game 3. . . . . . . . . . . . . . . . . 49

5.6. Regret and distance to the equilibrium . . . . . . . . . . . . . . . . . 53

5.7. Illustration of online learning on Game 2: (a) Regret for different
numbers of attackers; (b) Distance to equilibrium for different num-
bers of attackers; (c) Distance to equilibrium for m = 4 with error
bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.1. Counter-example 1: Estimation cost and precision of agents as a
function of the perturbation δ. . . . . . . . . . . . . . . . . . . . . . 88

8.2. Counter-example 2: Estimation cost and precision of agents as a
function of the perturbation δ. . . . . . . . . . . . . . . . . . . . . . 89

8.3. Counter-example 3: Estimation cost and precision of agents as a
function of the perturbation δ for models in dimension d ≥ 2. . . . . 91

8.4. Optimal design ν∗ and allocation of precision at equilibrium νλ∗ . . . 95

8.5. Optimal design ν∗ and allocation of precision at equilibrium νλ∗ with
various degrees d of the polynomial regression (here µ is uniform and
the scalarization is the trace as in Figure 8.4). . . . . . . . . . . . . . 96

8.6. Allocation of precision at equilibrium νλ∗ with various distributions µ
(here d = 4 and the scalarization is the trace as in Figure 8.4). The
optimal design ν∗ does not depend on µ and is therefore the same as
in Figure 8.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A29



8.7. Optimal design ν∗ and allocation of precision at equilibrium νλ∗ with
the squared Frobenius norm as a scalarization F (here µ is uniform
and d = 4 as in Figure 8.4). . . . . . . . . . . . . . . . . . . . . . . . 97

8.8. Influence of p and q on (a) the estimation cost Cestim(λ∗) and (b) the
degradation ratio Cestim(λ∗)/Cestim(λns). . . . . . . . . . . . . . . . . 99

8.9. Comparison of the rate of convergence of the estimation cost with
different bounds for agents with heterogeneous costs . . . . . . . . . 104

8.10.Comparison of the rate of convergence of the estimation cost with
different bounds for agents with polynomial costs . . . . . . . . . . . 104

8.11.Comparison of the rate of convergence of the estimation cost with the
upper bound of Theorem 8.4 for agents with hyperbolic cosine costs. 105

A30 List of Figures



Bibliography

[Aba+16] Martin Abadi, Andy Chu, Ian Goodfellow, et al. “Deep learning with differential
privacy”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 2016, pp. 308–318. cit. on p. 26

[Abe+15] Jacob Abernethy, Yiling Chen, Chien-Ju Ho, and Bo Waggoner. “Low-Cost
Learning via Active Data Procurement”. In: Proceedings of the Sixteenth ACM
Conference on Economics and Computation (EC ’15). 2015, pp. 619–636.

cit. on pp. 5, 62, A48

[ADT07] Anthony Atkinson, Alexander Donev, and Randall Tobias. Optimum experimental
designs, with SAS. Oxford University Press New York, 2007.

cit. on pp. 63, 70, 92

[Ait35] A. C. Aitken. “On Least Squares and Linear Combinations of Observations”. In:
Proceedings of the Royal Society of Edinburgh 55 (1935), pp. 42–48.

cit. on p. 15

[AS00] Rakesh Agrawal and Ramakrishnan Srikant. “Privacy-preserving Data Mining”.
In: Proceedings of the 2000 ACM SIGMOD International Conference on Manage-
ment of Data. 2000, pp. 439–450. cit. on p. 63

[Ata+99] Mike Atallah, Elisa Bertino, Ahmed Elmagarmid, Mohamed Ibrahim, and Vassil-
ios Verykios. “Disclosure limitation of sensitive rules”. In: Workshop on Knowl-
edge and Data Engineering Exchange (KDEX’99). 1999, pp. 45–52. cit. on p. 63

[AZ97] Christopher Avery and Richard Zeckhauser. “Recommender Systems for Evalu-
ating Computer Messages”. In: Commun. ACM 40.3 (Mar. 1997), pp. 88–89.

cit. on pp. 4, A47

[Bal+15] Maria-Florina Balcan, Avrim Blum, Nika Haghtalab, and Ariel D. Procaccia.
“Commitment Without Regrets: Online Learning in Stackelberg Security Games”.
In: Proceedings of EC. 2015, pp. 61–78. cit. on p. 26

[Bar+10] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. “The security
of machine learning”. In: Machine Learning 81.2 (2010), pp. 121–148.

cit. on p. 24

[BCM19] Arjun Nitin Bhagoji, Daniel Cullina, and Prateek Mittal. “Lower Bounds on
Adversarial Robustness from Optimal Transport”. In: In Advances in Neural
Information Processing Systems (NIPS). 2019.

cit. on pp. 5, 25, 26, 113, A48, A56

[Bel07] David Bellhouse. “The problem of Waldegrave”. In: Electronic Journal for the
History of Probability and Statistics 3.2 (2007), pp. 1–12. cit. on p. 15

A31



[BG20] Mark Braverman and Sumegha Garg. “The Role of Randomness and Noise in
Strategic Classification”. In: Proceedings of The Symposium on Foundations of
Responsible Computing (FORC). 2020. cit. on p. 62

[BKS12] Michael Brückner, Christian Kanzow, and Tobias Scheffer. “Static Prediction
Games for Adversarial Learning Problems”. In: Journal of Machine Learning
Research 13 (2012), pp. 2617–2654. cit. on pp. 24, 25

[Boš+11] Branislav Bošanský, Viliam Lisý, Michal Jakob, and Michal Pěchouček. “Com-
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Résumé Détaillé en Français F
F.1 Chapitre 1: Introduction

F.1.1 Contexte

L’apprentissage automatique est un vaste domaine qui nous permet d’exploiter la
quantité toujours croissante de données disponibles pour automatiser des tâches
effectuées par des humains (comme les voitures à conduite autonome) ou pour anal-
yser des ensembles de données trop volumineux et complexes pour être traités par
des humains lorsque les programmes classiques ne parviennent pas à produire des
réponses satisfaisantes. Dans de nombreux scénarios, le processus d’apprentissage
se fait en deux étapes distinctes. Tout d’abord, un analyste recueille des données qui
peuvent être étiquetées (par exemple, les caractéristiques des transactions bancaires
et le caractère frauduleux ou non de ces transactions) ou qui ont une valeur d’intérêt
(par exemple, des données médicales où les caractéristiques des patients sont re-
cueillies pour comprendre dans quelles conditions une maladie est grave ou non).
Ensuite, l’analyste utilise les données recueillies pour produire un résultat qui peut
prendre différentes formes, comme un classificateur (classification des transactions
entre frauduleuses et non frauduleuses) ou une régression (modèle associant des
caractéristiques à une valeur afin de prédire la valeur d’intérêt dans des points de
données futurs).

Échec des schémas d’apprentissage classiques

Une hypothèse commune à de nombreux contextes de ce type est que le processus
de collecte des données est, dans un certain sens, indépendant de l’analyse suivante
et de son résultat. Dans le domaine de la classification, cela prend généralement
la forme de l’hypothèse suivante : "Les données d’apprentissage et les données de
test sont tirées de la même distribution". Cela implique que quoi que fasse l’analyste,
cela ne changera pas la façon dont les données sont produites par rapport à ce qui
s’est passé avant l’analyse. Dans la régression, la variance des points de données ne
dépend pas de l’analyse et est censée être un paramètre du problème.
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Cependant, dans de nombreuses applications, ces hypothèses ne tiennent pas car le
résultat de l’analyse a une valeur stratégique. Dans ce contexte, les agents peuvent
modifier soit la façon dont ils produisent les données, soit directement les données
qu’ils envoient à l’analyste pour atteindre leur objectif. Cela peut conduire à un
conflit entre le processus de génération de données et l’analyse, que nous appelons
soit antagoniste si les générateurs de données ont des intérêts directement en conflit
avec les objectifs de l’analyste, soit simplement stratégique dans le cas où leurs
intérêts peuvent ou non s’aligner sur ceux de l’analyste.

Les contextes antagonistes surviennent généralement lorsque certains agents sont
malveillants. Par exemple, dans la classification, l’objectif de l’analyste peut être
de reconnaître les fraudeurs, tels que les comptes Twitter frauduleux étudiés dans
Thomas et al. [Tho+13]. Il est clair que les fraudeurs ont un intérêt à ne pas être
classés comme fraudeurs et cela conduit à une adaptation pour échapper à la classi-
fication. Ce comportement ne se limite toutefois pas à la fraude et peut également
être observé lors de la détection d’intrusions dans un réseau ou de la prévention
d’attaques DDoS. Il est bien connu que l’utilisation d’algorithmes de classification
standard pour cette tâche conduit à des performances médiocres. Les attaquants
sont en mesure d’éviter la détection en ajustant les données qu’ils génèrent lors de
la conception de leurs attaques (attaques d’évasion) ou de modifier l’ensemble de
données d’entraînement de sorte que le classificateur résultant soit peu performant
contre eux (attaques d’empoisonnement). Nelson et al. [Nel+09] montrent que
les attaquants peuvent facilement tromper un filtre anti-spam en ayant accès à une
petite partie des spams utilisés pour entraîner le filtre anti-spam. Goodfellow et al.
[GSS15] expliquent pourquoi de nombreux modèles d’apprentissage automatique
sont vulnérables aux attaques soigneusement conçues (telles que la modification
légère de quelques pixels d’une image et le changement complet de l’étiquette qu’un
réseau neuronal lui attribue) appelées exemples antagonistes. Sommer and Paxson
[SP10] montrent que le problème de la détection des intrusions dans les réseaux
est fondamentalement difficile à aborder du point de vue de l’apprentissage au-
tomatique en raison de sa nature contradictoire. Wang et al. [Wan+14] étudient
des systèmes de crowdsourcing malveillant (appelés crowdturfing) dans lesquels
les attaquants paient les utilisateurs pour qu’ils mènent une série d’attaques et
montrent que, si ces attaques peuvent être efficacement détectées par des méth-
odes d’apprentissage automatique, ces méthodes sont également très vulnérables à
l’évasion et à l’empoisonnement. Il existe une vaste littérature sur la classification
antagoniste pour pallier cette faiblesse (voir la section 3.1 pour une discussion
détaillée), mais ces travaux proposent souvent des méthodes de défense ad-hoc
optimisées contre des attaques spécifiques sans modéliser complètement la capacité

A44 Appendix F Résumé Détaillé en Français



d’adaptation de l’attaquant. Cela conduit à une compétition constante, les classi-
fieurs s’adaptant à un type d’attaque spécifique et les attaquants trouvant des moyens
de contourner ces défenses.

Les contextes stratégiques sont rencontrés lorsque les utilisateurs n’ont pas d’intentions
malveillantes mais ont un certain intérêt dans le résultat de l’analyse qui peut ou
non entrer en conflit avec le résultat qu’ils devraient obtenir. Un tel comportement
est observé non seulement dans des applications spécifiques impliquant des experts,
mais aussi dans la population générale. Par exemple, les acheteurs de maison en
Amérique peuvent ouvrir plusieurs cartes de crédit dans le seul but d’améliorer
leur score de crédit. Cette omniprésence du comportement stratégique a conduit à
des lois célèbres telles que la loi de Goodhart (voir Goodhart [Goo75]) qui stipule
que "Toute régularité statistique observée aura tendance à s’effondrer dès qu’une
pression sera exercée sur elle à des fins de contrôle" et a été généralisée plus tard
par Strathern [Str97] sous la forme de "Lorsqu’une mesure devient une cible, elle
cesse d’être une bonne mesure". Parmi tous les exemples possibles de comportement
stratégique visant à manipuler une mesure, certains des plus couramment cités sont
les enseignants qui subissent des pressions pour obtenir de bons résultats de leurs
élèves et se concentrent sur les performances aux tests plutôt que sur l’apprentissage,
et les universités qui manipulent les classements en concentrant leurs efforts sur les
métriques spécifiques utilisées pour le classement (voir [ES07; ESE16]). Il convient
toutefois de noter que le champ d’application de ces lois est plus large que les
exemples que nous avons mentionnés et comprend des contextes variés tels que des
magasins manipulant la quantité de produits qu’ils demandent comme le montre
Caro et al. [Car+10] ou simplement lorsque les agents ne souhaitent pas se démar-
quer d’un résultat "normal" si le résultat de l’analyse peut avoir un impact sur leur vie
comme le discute Perote and Perote-Pena [PP04]. Ces comportements stratégiques
affectent les données produites par les agents, ce qui affecte ensuite le résultat de
l’analyse. Dans le cas des universités par exemple, les analystes apprennent le rang
de chaque université en fonction des caractéristiques manipulées par les universités.
Il existe un nombre croissant de travaux sur ces considérations stratégiques, en
particulier dans le contexte de la régression linéaire (voir la section 6.1 pour une
discussion détaillée), mais ces travaux se concentrent généralement sur la manière
de minimiser l’erreur d’estimation dans divers contextes ou sur la manière de garan-
tir des estimateurs à l’épreuve de la stratégie (où les agents révèlent leurs données
de manière véridique) et n’étudient pas le large éventail de propriétés statistiques
possibles des estimateurs classiques appliqués dans des contextes stratégiques.
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Surmonter la dépendance entre la génération de données et l’analyse

Ces dernières années, de nombreux modèles de théorie des jeux ont vu le jour pour
contourner l’hypothèse erronée selon laquelle le processus de génération de données
est indépendant de l’analyse. En effet, la théorie des jeux est un outil de choix
pour modéliser de telles interactions car le concept principal de solution d’équilibre
implique que les générateurs de données et l’analyste agissent en tenant compte du
comportement stratégique de l’autre.

Plusieurs modèles de classification antagoniste basés sur la théorie des jeux ont vu le
jour au cours de la dernière décennie, avec pour pionnier des modèles tels que celui
de Dalvi et al. [Dal+04]. (voir la section 3.1 pour une discussion plus détaillée). La
plupart d’entre eux présentent cependant plusieurs limites cruciales. En particulier,
elles sont profondément liées aux algorithmes d’apprentissage classiques. Ces algo-
rithmes reposent sur une réduction de la classe d’hypothèses (c’est-à-dire l’ensemble
des classificateurs possibles parmi lesquels le défenseur choisit sa défense) afin
d’obtenir des problèmes d’optimisation traitables (souvent convexes par exemple)
pour minimiser l’erreur de classification. Ce lien est à la fois une force de leurs mod-
èles, car ils peuvent être plus susceptibles d’être adoptés par les utilisateurs, et une
faiblesse car, alors que les classes d’hypothèses utilisées classiquement représentent
généralement une certaine connaissance préalable sur la forme que peut avoir le
classificateur optimal, cette connaissance préalable n’a aucune raison d’être valide
lorsqu’on considère des données produites de manière antagoniste et peut même
être exploitée par les attaquants. Ces modèles de théorie des jeux supposent égale-
ment une information complète sur l’objectif de l’attaquant,1 ce qui est souvent trop
fort en pratique comme le suggère Vorobeychik and Kantarcioglu [VK18]. Enfin,
si certains de ces modèles présentent des garanties théoriques d’erreurs (lorsqu’on
considère des ensembles restreints de classificateurs), ils sont généralement destinés
à des applications pratiques et il leur manque une compréhension fondamentale de
propriétés plus générales.

Les considérations sur le comportement stratégique sont également devenues cen-
trales dans la littérature émergente sur l’apprentissage avec des sources de données
stratégiques. (voir la section 6.1 pour une discussion plus détaillée). Dans ces
contextes, les agents ne sont pas nécessairement antagonistes à l’analyste mais
ont leurs propres objectifs. Par exemple, nous avons mentionné précédemment les
magasins qui manipulent la quantité de produits qu’ils demandent (voir [Car+10]).
Dans ce cas, les magasins optimisent leurs propres bénéfices tandis que la principale
entreprise derrière eux optimise ses bénéfices globaux. De tels problèmes définissent

1à l’exception de [Gro+13], mais sur la régression.
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une première catégorie de modèles où les agents élaborent des stratégies pour
obtenir un résultat souhaité de l’analyse. Cela conduit les auteurs à étudier des
estimateurs qui sont à l’épreuve de la stratégie comme dans Perote and Perote-Pena
[PP04], Chen et al. [Che+18b], and Dekel et al. [DFP10a]. Ces travaux se con-
centrent sur des estimateurs ayant la propriété souhaitée qu’aucun agent ne fausse
ses données. Dans d’autres contextes, les agents encourent un certain coût pour
fournir des données et élaborent une stratégie en fonction de ce coût, car ils peuvent
par exemple demander une compensation monétaire pour leurs efforts. C’est le
cas dans le crowdsourcing avec le modèle Dasgupta and Ghosh [DG13] ou dans
les systèmes de recommandation (voir [ERK11; AZ97; Har+05]) où fournir du
contenu ou des commentaires demande un effort, ou dans les applications où les
données sont produites par des calculs coûteux. La production de données coûteuses
peut également provenir d’informations personnelles sensibles (comme dans les
applications médicales), dont la divulgation avec une grande précision entraîne un
coût de confidentialité qui pourrait inciter les individus à diminuer la précision de
la divulgation et à y ajouter du bruit (d’où une diminution de la précision comme
dans Warner [War65] and Duchi et al. [DJW13]). Lorsque la fourniture de données
de haute qualité a un coût, il est logique d’envisager un comportement stratégique
entre les sources de données. En particulier, il convient de se demander pourquoi
les sources de données stratégiques fournissent des données, quelles qu’elles soient.
Cette littérature examine principalement la conception de mécanismes d’incitation
monétaire pour optimiser l’erreur du modèle en supposant que les agents maximisent
leurs incitations moins leurs coûts de fourniture individuels, voir par exemple Cai
et al. [CDP15], Liu and Chen [LC16a], and Westenbroek et al. [Wes+20] et ses
références. Dans de nombreuses applications, cependant, le modèle sous-jacent
comporte également une composante de bien public—-c’est-à-dire que les agents
également bénéficient de la précision du modèle. C’est le cas dans les systèmes de
recommandation (où les utilisateurs bénéficient de la qualité globale du service),
les applications médicales (où les individus bénéficient de l’analyse des données
grâce à l’amélioration des traitements ou à de meilleurs conseils en matière de
santé), l’apprentissage fédéré (voir [Yan+19; Kon+16; GKN17]), etc. Un problème
supplémentaire dans ce type d’applications est que le nombre d’agents participants
est généralement important, ce qui entraîne un degré d’incertitude proportionnel
concernant l’état ou les incitations des autres agents.
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Perspective de la thèse

Comme le montre notre discussion bibliographique précédente, le problème de
la caractérisation des propriétés fondamentales des algorithmes d’apprentissage
lorsque les données sont produites de manière stratégique, voire adversariale, n’est
pas suffisamment abordé. À notre connaissance, seuls Dritsoula et al. [DLM17],
Cullina et al. [CBM18], and Bhagoji et al. [BCM19] caractérisent certaines propriétés
classiques d’apprentissage dans des contextes antagonistes, tandis que Pinot et al.
[Pin+20] and Meunier et al. [Meu+21] posent les bases de la théorie des jeux pour
une extension ultérieure en montrant que des équilibres de Nash mixtes existent dans
un modèle d’importance pratique. Pour les considérations stratégiques (en particulier
dans la régression), les auteurs s’intéressent généralement à la manière de minimiser
les erreurs (voir Abernethy et al. [Abe+15]) ou de garantir l’obtention de données
véridiques (voir Chen et al. [CSZ20]) alors que le champ des propriétés statistiques
classiques à considérer est beaucoup plus large. En outre, les applications considérées
rassemblent généralement une très grande quantité de données provenant de sources
variées et la caractérisation des propriétés et des objectifs précis des différents acteurs
est irréaliste. Par exemple, les étudiants en compétition avec d’autres étudiants
n’ont aucun moyen raisonnable de déterminer les caractéristiques exactes de leurs
concurrents, tandis que les réseaux font face à de nombreuses menaces différentes
avec des degrés de gravité variables.

Cette thèse étudie ces problèmes où les résultats font défaut. En particulier, nous étu-
dions les problèmes d’apprentissage en présence de sources de données stratégiques
en utilisant une approche de théorie des jeux et en considérant le concept de so-
lution de l’équilibre de Nash qui modélise finement l’adaptation des producteurs
de données et de l’analyste aux actions de l’autre. Nous nous intéressons aux
propriétés d’apprentissage fondamentales des modèles applicables à des contextes
où une grande quantité de données est collectée. Cela signifie que nous devons
garantir l’évolutivité de nos méthodes tant en termes de puissance de calcul que
d’informations requises. Nous visons à développer des modèles et des méthodes de
solution applicables à un large éventail de contextes couvrant à la fois des contextes
adverses et stratégiques, allant de la fraude bancaire et de la détection d’intrusion
dans les réseaux à l’apprentissage avec des informations coûteuses comme on le voit
dans l’apprentissage fédéré ou les contextes médicaux.
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F.2 Contributions et organisation de la thèse

Dans cette thèse, nous nous concentrons sur les problèmes d’apprentissage où le
processus de génération de données est non indépendant du résultat de l’analyse et
nous modélisons de tels contextes en utilisant la théorie des jeux qui nous permet
de considérer l’adaptation du processus de génération de données et de l’analyste
aux actions de l’autre partie. Tout au long de la thèse, nous nous concentrons sur les
deux questions clés suivantes :

1. Les résultats d’apprentissage fondamentaux sont-ils toujours valables lorsque
le processus de génération de données dépend du résultat de l’analyse ?

2. Les modèles de la théorie des jeux peuvent-ils raisonnablement être appliqués
dans des contextes d’apprentissage où il existe une grande quantité de données
complexes disponibles ?

Nous étudions les problèmes de classification antagoniste et de régression linéaire
stratégique à travers ces questions. En particulier, d’un point de vue large, nous
montrons que les résultats fondamentaux de l’apprentissage sont remis en question :
l’apprentissage antagoniste optimal peut être réalisé avec des classificateurs simples
et les estimateurs classiques issus de la régression linéaire ne sont plus optimaux ni
même consistants lorsque les données sont produites de manière stratégique.

Cette thèse est organisée en trois parties. La partie I (Chapitres 3, 4 et 5) est
dédiée au problème de la classification antagoniste. La partie II (Chapitres 6, 7 et
8) présente nos résultats sur le problème régression linéaire stratégique. En raison
des différences entre les deux cadres, nous passons en revue dans chaque partie la
littérature correspondante. Enfin, nous tirons nos conclusions dans la partie III et
discutons des travaux futurs potentiels.

F.3 Chapitre 2: Notions Essentielles

Nous passons en revue dans ce chapitre certains concepts importants existants
qui sont nécessaires pour introduire les résultats de cette thèse. La section 2.1
présente deux problèmes d’apprentissage automatique omniprésents et des résultats
quantifiant la qualité et la complexité de l’apprentissage dans ces problèmes. La
section 2.2 présente certaines des définitions fondamentales de la théorie des jeux
avec des concepts de solution de base. Notez que ce chapitre existe par souci
d’autosuffisance et ne constitue pas une introduction complète aux sujets que nous
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présentons. Nous omettons donc de nombreux résultats fondamentaux qui ne sont
pas nécessaires à la thèse. Nous indiquons cependant au lecteur les livres pertinents
dans chaque section pour une introduction approfondie aux sujets concernés.

F.4 Chapitre 3: Modèle et État de l’art (Classification)

Ce chapitre introduit la première partie des travaux de thèse sur le classification
antagoniste. Dans cette partie (Chapitres 3, 4 et 5), nous présentons notre premier
exemple d’apprentissage avec des données stratégiques, ou dans ce cas antagonistes.
Plus précisément, nous abordons le problème de la classification antagoniste où
un défenseur vise à classifier les vecteurs entrants d’attaques et de non-attaques
et où les attaquants visent à échapper à la classification. Nous modélisons cette
interaction par un jeu dans lequel le défenseur reçoit des vecteurs provenant soit
d’attaquants, soit de non-attaquants. Les attaquants choisissent le vecteur qu’ils
utilisent parmi un ensemble fini de vecteurs V et les non-attaquants suivent une
distribution fixe sur V. Le défenseur choisit un classificateur sans aucune restriction
a priori sur l’ensemble des classificateurs possibles. Cela soulève deux problèmes
principaux. Tout d’abord, le nombre de classificateurs possibles est exponentiel
en |V set|. Ensuite, V est lui-même exponentiel en le nombre de caractéristiques
utilisées pour classifier. En effet, même en considérant le cas le plus simple de
k caractéristiques binaires, on obtient un ensemble de vecteurs de taille 2k et un
ensemble de classificateurs possibles 2V de taille 22k . Nous nous concentrons sur
deux questions clés :

1. Quels classificateurs le défenseur devrait-il utiliser à l’équilibre ?

2. Comment le défenseur peut-il calculer des stratégies optimales de manière
évolutive (en nombre de caractéristiques) ?

Nous montrons que l’aléatoire dans la stratégie est cruciale pour les défenses op-
timales mais, de manière surprenante, le défenseur peut se défendre contre les
attaques de manière optimale en utilisant une classe de classificateurs de faible
complexité (de VC-dimension 1) en utilisant une paramétrisation dépendant des
gains des attaquants. Cette paramétrisation nous permet à son tour de développer
des méthodes d’approximation qui peuvent se généraliser à des vecteurs inconnus à
la fois hors ligne et en ligne.

Ce chapitre passe en revue les travaux existants liés de manière générale à la
classification antagoniste et à notre modèle et présente notre jeu de classification
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antagoniste. Dans le chapitre 4 nous caractérisons ensuite l’équilibre et montrons en
particulier que la stratégie optimale du défenseur peut être paramétrée avec peu de
paramètres. Ceci répond à notre première question. Nous répondons ensuite à notre
deuxième question dans le Chapitre 5 où nous montrons que notre caractérisation
précédente peut être utilisée avec des paramètres approximatifs pour fournir des
stratégies approximativement optimales à la fois hors ligne en utilisant un ensemble
de données existant et en ligne. De plus, ces méthodes ne nécessitent la connaissance
que de quelques paramètres du jeu.

F.5 Chapitre 4: Caractérisation de l’équilibre

Dans ce chapitre, nous caractérisons complètement l’équilibre du jeu de classification
adversatif. Dans la section 4.1, nous caractérisons la stratégie de défense optimale
aléatoire. Nous exposons une classe de fonctions de probabilité de détection qui
peuvent être réalisées par des classificateurs à seuil et qui sont suffisantes pour se
défendre de manière optimale contre les attaques. En particulier, les fonctions de
probabilité de détection que nous considérons peuvent être exprimées avec peu de
paramètres et sont de faible pseudo-dimension, ce qui ouvre la voie à nos méthodes
pour calculer la défense optimale de manière évolutive dans le chapitre 5. Dans
la section 4.2, nous caractérisons la stratégie d’attaque optimale en réponse à une
stratégie de défense. Notre résultat montre que la stratégie de l’attaquant doit
trouver un équilibre simple entre les coûts de fausse alarme que le défenseur doit
endurer pour les détecter et leur gain. Enfin, nous illustrons la forme de l’équilibre
dans la Section 4.3 sur le jeu simple 1.

F.6 Chapitre 5: Défense Extensible en Ligne et Hors
Ligne

Nous répondons dans ce chapitre à notre deuxième question principale : "Com-
ment le défenseur peut-il calculer des stratégies optimales d’une manière extensible
?". Dans ce chapitre, nous fournissons deux réponses exploitant notre caractéri-
sation basse dimensionnelle de la stratégie du défenseur en fonction des données
dont il dispose. Dans la section 5.1, nous abordons ce problème sous l’angle de
l’optimisation stochastique en supposant que le défenseur a accès à des données
historiques. Nous montrons que notre problème est bien adapté aux techniques
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d’optimisation stochastique en raison de sa nature polyédrique. Dans la section 5.2,
nous supposons que le défenseur n’a accès qu’à des informations en ligne et nous
fournissons un algorithme à faible regret pour le regret dit de Stackelberg. Ces
deux méthodes nécessitent une connaissance limitée des paramètres du jeu (elles ne
nécessitent notamment pas la connaissance de P0 et pa, respectivement la probabilité
de distribution caractérisant les non-attaquants et la probabilité de présence d’un
attaquant). Nous montrons enfin dans la Section 5.3 que ces deux méthodes peuvent
être appliquées dans un cadre plus large où V n’est plus fini mais compact sous de
légères hypothèses techniques. Enfin, nous étendons notre modèle pour couvrir
un mélange d’attaquants stratégiques et non stratégiques dans la section 5.4. Nos
résultats indiquent que dans ce contexte, un mélange entre notre caractérisation
à faible dimension de la stratégie du défenseur et les algorithmes d’apprentissage
classiques peut être approprié.

F.7 Chapitre 6: Modèle et État de l’art (Régression
Linéaire)

Dans cette partie (Chapitres 6, 7 et 8), nous présentons notre deuxième exemple
d’apprentissage avec des données stratégiques. Plus précisément, nous abordons
le problème de la régression linéaire lorsque les données proviennent de sources
de données stratégiques. Nous nous concentrons principalement sur la question
clé : Les résultats fondamentaux sur la régression linéaire sont-ils toujours valables
lorsque les données sont produites par des sources de données stratégiques ? Nous
répondons par la négative en général. En particulier, il n’est plus garanti que les
estimateurs soient consistants lorsque le coût de production des données augmente
linéairement avec leur précision. De même, l’estimateur GLS n’est plus BLUE mais est
approximativement optimal lorsqu’on considère une famille restreinte d’estimateurs
satisfaisant des hypothèses convenables en pratique.

Ce premier chapitre passe en revue les travaux existants liés de manière générale
à la régression linéaire stratégique et présente notre jeu de régression linéaire.
Dans le chapitre 7, nous nous concentrons ensuite sur les propriétés théoriques du
jeu de régression linéaire en montrant des résultats fondamentaux pour le reste de
l’analyse et pour l’applicabilité de notre jeu dans des contextes réels. Nous répondons
enfin à notre question principale dans le chapitre 8 où nous étudions la qualité de
l’estimation de la régression linéaire dans le cadre stratégique et l’effet des différents
estimateurs sur le jeu de régression linéaire.
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F.8 Chapitre 7: Résultats Structuraux sur le Jeu

Dans ce chapitre, nous introduisons des résultats structurels de notre jeu qui con-
cernent des aspects de la théorie des jeux. Dans la section 7.1, nous montrons
que notre jeu est un jeu potentiel. Bien que cette propriété soit très courante, elle
est cruciale dans notre analyse des propriétés statistiques des estimateurs dans le
chapitre suivant. Nous montrons ensuite dans la Section 7.2 que nos hypothèses
nous permettent de considérer deux cas particuliers très importants qui peuvent
être utilisés pour modéliser des interactions où il y a peu d’agents (le modèle à
information complète) ou des interactions où il y a beaucoup d’agents et où il est
difficile d’obtenir des informations précises sur les points de données des autres
agents (le modèle indépendamment et identiquement distribué). Enfin, dans la
section 7.3, nous fournissons quelques limites sur le prix de stabilité de notre jeu
qui caractérise l’inefficacité sociale du jeu de régression linéaire due à l’égoïsme des
agents.

F.9 Chapitre 8: Propriétés de l’estimation Linéaire non
Biaisée Dans un Cadre Stratégique

Dans ce chapitre, nous étudions les propriétés statistiques des estimateurs linéaires
lorsque les données sont produites de manière stratégique. Nous nous concentrons
spécifiquement sur la qualité de l’estimation par la scalarisation de la covariance et
répondons aux deux questions clés suivantes :

1. L’estimateur GLS produit-il la meilleure qualité d’estimation ? En d’autres
termes, le coût d’estimation associé à GLS à l’équilibre est-il le plus faible parmi
les coûts d’estimation associés à tout estimateur linéaire sans biais à l’équilibre
?

2. L’estimation est-elle toujours consistante en présence d’agents stratégiques ?
Et si oui, comment le taux de convergence se compare-t-il à celui du cas non
stratégique ?

Nous fournissons d’abord dans la section 8.1 une réponse positive et négative à
la question 1 – GLS produit une estimation approximativement de meilleure qual-
ité parmi une classe d’estimateurs satisfaisant des propriétés statistiques appro-
priées. Nous caractérisons ensuite dans la Section 8.2 comment la présence d’agents
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stratégiques dégrade la qualité de l’estimation et prouvons que l’estimation peut
même ne pas être consistante dans ce cas.

F.10 Chapitre 9: Conclusion et Travaux Futurs

F.10.1 Conclusion

Dans cette thèse, nous avons choisi d’étudier les problèmes d’apprentissage lorsque
le processus de génération de données peut dépendre de l’analyse et de son résultat.
En particulier, nous avons étudié le problème de classification et le problème de
régression linéaire avec deux questions clés auxquelles il faut répondre :

1. Les résultats fondamentaux de l’apprentissage sont-ils toujours valables lorsque
le processus de génération des données dépend du résultat de l’analyse ?

2. Les modèles de la théorie des jeux peuvent-ils raisonnablement être appliqués
dans des contextes d’apprentissage où il existe une grande quantité de données
complexes disponibles ?

Nous avons répondu à la question 1 par la négative en général, en montrant que
l’apprentissage en présence de données stratégiques nécessite une prise en compte
attentive de propriétés et de paramètres par ailleurs bien connus. Pour la classifi-
cation, nous avons montré que l’on peut se défendre de manière optimale contre
les attaques uniquement par une défense aléatoire mais en utilisant des classifica-
teurs simple qui peuvent ou non appartenir à des ensembles classiques tels que les
classificateurs linéaires. De plus, cette dépendance ne dépend pas des paramètres
étudiés dans l’apprentissage classique tels que la distribution des non-attaques ou
la probabilité d’attaque mais uniquement de la métrique de la théorie des jeux des
gains des attaques détectées et non détectées. Cela souligne le fait que les défenseurs
pourraient potentiellement bénéficier énormément de la modélisation des attaquants
plutôt que d’appliquer des algorithmes d’apprentissage bien connus sur des classes
d’hypothèses classiques comme les classificateurs linéaires ou à noyau. En consid-
érant les problèmes de régression linéaire, nous avons montré que quelques résultats
tiennent (approximativement), comme l’optimalité de GLS, tandis que d’autres sont
compromis dans de nombreux contextes - le processus de régression linéaire peut
ne pas produire des estimateurs consistants si les agents participants sont réticents à
produire des données précises (ce qui se traduit mathématiquement par la linéarité
des coûts de fourniture de données) et même lorsqu’ils sont consistants, leur taux
de convergence se dégrade. En pratique, cela signifie que les analystes peuvent
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sous-estimer le nombre d’agents nécessaires dans une expérience pour atteindre une
certaine précision. De plus, nos résultats ont montré que si les analystes ont une
limite sur le nombre de participants qu’ils peuvent recruter, ils devraient chercher
à éviter les agents dont le coût de production des données augmente linéairement
avec la précision. Ceci est encore plus pertinent lorsque les analystes n’ont pas
accès à la précision de chaque point de données et utilisent l’estimateur OLS, auquel
cas même un seul agent stratégique avec un coût de fourniture élevé peut ruiner
l’estimation. Le taux de convergence des estimateurs est également en conflit direct
avec la qualité de l’allocation des données, car nous avons montré que les agents
réticents à fournir des données précises sont particulièrement prudents dans leur
utilisation des ressources, ce qui conduit à des allocations optimales, tandis que les
agents disposés à fournir des données le font de manière plus uniforme, quel que
soit le degré d’information de leurs points de données.

Nous avons fourni des méthodes d’entraînement et des méthodes d’approximation
pour répondre à la question 2. Plus précisément, nous avons montré qu’un défenseur
pouvait entraîner des classificateurs quasi optimaux simplement en ayant accès
aux paramètres décrivant le coût des fausses alarmes, des vrais positifs et des
faux négatifs associés à un comportement. Cet entraînement peut être effectué
en ligne ou hors ligne avec un ensemble de données et ne nécessite pas l’accès à
des paramètres difficiles à évaluer tels que le comportement des non-attaquants ou
même la probabilité d’une attaque. En pratique, cela signifie que notre modèle peut
être appliqué de manière similaire à un modèle d’apprentissage classique utilisant un
ensemble de données ou des informations en ligne. Nous pensons que notre modèle
pourrait potentiellement être appliqué à des contextes de fraude bancaire où la prise
en compte du problème de classification pondérée (où une mauvaise classification
de la transaction a des conséquences différentes selon les caractéristiques de la
transaction) est cruciale. Nos expériences sur un ensemble de données réelles de
fraude bancaire (bien qu’avec un modèle simpliste) montrent également que des
ensembles de données de taille raisonnable peuvent être suffisants pour former des
défenses robustes aux attaquants adaptatifs. Pour la régression linéaire, nous avons
montré que les agents n’ont pas besoin d’avoir des informations complètes sur les
points de données des autres agents lorsque les points de données sont distribués de
manière indépendante et identique. Nous avons montré qu’il suffit d’avoir accès à la
distribution sous-jacente des données, qui peut être raisonnablement estimée dans
de nombreux contextes avec des données accessibles au public. En particulier, les
deux modèles mentionnés précédemment donnent des équilibres équivalents (en
termes de coût) et interchangeables (en termes de stratégies).
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F.10.2 Futurs travaux

De nombreux travaux futurs potentiels suivent la ligne de travail de cette thèse
qui consiste à étudier les propriétés fondamentales des algorithmes d’apprentissage
lorsque les données sont produites de manière stratégique. Il faut d’abord noter que
notre travail s’appuie sur la théorie des jeux qui nécessite la définition de gains pour
les agents participants. L’instanciation de ces gains dans des contextes réels pour
correspondre à la perception des utilisateurs est un défi car ils peuvent englober des
considérations subjectives. Ainsi, une première ligne de travail pourrait consister à
combler cet écart entre les gains théoriques et la perception réelle des utilisateurs
en utilisant des outils tels que l’analyse conjointe.

Nous divisons le reste de cette section en suivant l’organisation de cette thèse, en
commençant par les problèmes possibles liés à la classification et en terminant par
les problèmes liés à la régression (linéaire).

Classification. Nous avons étudié le problème de la classification antagoniste où
un défenseur classe un comportement entre malveillant et non-malveillant et où
un comportement est malveillant s’il provient d’un attaquant. Dans ce contexte, il
n’y a pas de problème d’apprentissage préexistant en l’absence d’attaquants. De
tels problèmes apparaissent dans les attaques de fraude ou de réseau mais ne cou-
vrent pas tout le champ de l’apprentissage automatique. En particulier, l’important
problème de la reconnaissance d’images largement étudié dans la littérature des
exemples adverses (voir Goodfellow et al. [GSS15] par exemple) ne correspond pas
bien à notre modèle. En effet, dans de telles applications, il existe un problème
d’apprentissage préexistant défini théoriquement par une distribution de données
inconnue qui peut être modifiée dans une certaine mesure par un attaquant. Nous
appelons ces modèles adversarial machine learning. Des travaux préliminaires ont
été réalisés par Meunier et al. [Meu+21] qui montrent l’existence d’un équilibre de
Nash et Bhagoji et al. [BCM19] qui exposent une limite sur la robustesse possible
des classificateurs. Cependant, les premiers ne caractérisent pas l’équilibre et les
seconds ne considèrent pas un jeu et considèrent que l’attaquant ne paie aucun
coût pour modifier les points de données. Il manque donc des résultats sur la
robustesse de la classification dans un cadre de théorie des jeux où la modification
des points de données entraîne un coût pour l’attaquant. De plus, dans le cadre
de l’apprentissage automatique contradictoire, on peut considérer des paramètres
de classification multi-classes (par exemple, classer la photo d’un animal entre dif-
férentes espèces possibles) qui, à notre connaissance, n’ont pas été étudiés. Cela
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peut conduire à des résultats de difficulté inhérente au problème lorsqu’on aug-
mente le nombre de classes possibles dans l’esprit des résultats de difficulté pour
calculer des attaques robustes de Perdomo and Singer [PS19a]. En combinant les
deux points précédents, une piste de travail prometteuse serait de considérer un
problème où il existe une distribution sous-jacente correspondant à un problème
de classification multi-classes. Un attaquant peut modifier cette distribution dans
une certaine mesure et un défenseur choisit simultanément un classificateur (ceci
correspond à un jeu où la notion d’équilibre considérée est l’équilibre de Nash mais
un cadre de Stackelberg où le défenseur est le leader pourrait être intéressant. Les
configurations Stackelberg où l’attaquant est le leader sont moins intéressantes car
la défense optimale est simplement un classificateur Bayes naïf). L’objectif serait
d’obtenir des limites sur le taux d’erreur minimum qu’un défenseur peut atteindre
en fonction de la similarité entre les différentes classes ainsi que de produire des
défenses qui peuvent atteindre des performances proches de ces limites en supposant
l’accès à un ensemble d’entraînement généré avec la distribution originale. Enfin,
bien que nous ayons considéré la classification antagoniste, il existe une littérature
sur la classification stratégique où les producteurs de données ont des objectifs qui
ne s’alignent pas mais ne s’opposent pas nécessairement au classificateur. Cette
littérature est toutefois moins liée à notre domaine de travail sur la classification.

Régression linéaire. Nous avons étudié le modèle de régression linéaire où les
agents choisissent stratégiquement la précision des points de données qu’ils pro-
duisent pour minimiser un mélange de leur coût de fourniture individuelle et d’un
coût lié à la précision du résultat de la régression. Dans cette ligne de travail,
plusieurs directions différentes sont possibles. Premièrement, nous avons supposé
que les agents ont déclaré leur précision de manière véridique, ce qui peut ne pas
être le cas. Ainsi, il serait bénéfique d’étudier des modèles et des mécanismes
encourageant la révélation véridique des données. Ensuite, nous avons étudié un
modèle de bien public dans lequel les agents sont incités à obtenir un estimateur
précis, tandis que d’autres modèles étudient des situations dans lesquelles les agents
sont incités à obtenir un résultat spécifique de l’estimation. Cependant, à notre
connaissance, il n’existe pas dans la littérature de situations antagonistes où les
agents peuvent manipuler leurs points de données dans une certaine mesure et
visent à maximiser l’erreur d’estimation. Cela pose des problèmes de modélisation,
car l’erreur d’estimation dépend à la fois du biais et de la variance de l’estimation,
qui peuvent être difficiles à évaluer.

Enfin, nous avons étudié un sous-ensemble de la régression paramétrique avec
la régression linéaire. Nous pensons cependant que certains de nos résultats (en
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particulier la dégradation asymptotique de la précision de l’estimateur) peuvent
être étendus dans des cadres non-paramétriques en utilisant des bornes sur la
qualité non-paramétrique de l’estimation telles que présentées dans Györfi et al.
[Gyö+02]. En particulier, les algorithmes tels que k-plus proches voisins ont des
garanties d’erreur sous des hypothèses légères sur la distribution des données et sur
la fonction à estimer. Lorsque les données sont produites de manière stratégique,
nous pourrions observer une dégradation de ces garanties et, plus précisément,
cette dégradation pourrait varier localement si certains points de données sont
intrinsèquement plus coûteux à produire ou plus sensibles que d’autres. Un tel
comportement n’est pas observé dans notre modèle car la régression linéaire est
un modèle paramétrique où chaque point de données contient des informations
permettant d’estimer les paramètres globaux du problème alors que le k-plus proche
voisin est un modèle non-paramétrique où les points de données contiennent des
informations uniquement sur le comportement local de la fonction à estimer.



Abstract
In this thesis, we consider the problem of learning when data are strategically produced. This challenges the
widely used assumptions in machine learning that test data are independent from training data which has
been proved to fail in many applications where the result of the learning problem has a strategic interest
to some agents. We study the two ubiquitous problems of classification and linear regression and focus on
fundamental learning properties on these problems when compared to the classical setting where data are not
strategically produced.
We first consider the problem of finding optimal classifiers in an adversarial setting where the class-1 data
is generated by an attacker whose objective is not known to the defender—an aspect that is key to realistic
applications but has so far been overlooked in the literature. To model this situation, we propose a Bayesian
game framework where the defender chooses a classifier with no a priori restriction on the set of possible
classifiers. The key difficulty in the proposed framework is that the set of possible classifiers is exponential in
the set of possible data, which is itself exponential in the number of features used for classification. To counter
this, we first show that Bayesian Nash equilibria can be characterized completely via functional threshold
classifiers with a small number of parameters. We then show that this low-dimensional characterization
enables us to develop a training method to compute provably approximately optimal classifiers in a scalable
manner; and to develop a learning algorithm for the online setting with low regret (both independent of the
dimension of the set of possible data). We illustrate our results through simulations and apply our training
algorithm to a real bank fraud data set in a simple setting.
We then consider the problem of linear regression from strategic data sources. In the classical setting where
the precision of each data point is fixed, the famous Aitken/Gauss-Markov theorem in statistics states that
generalized least squares (GLS) is a so-called “Best Linear Unbiased Estimator” (BLUE) and is consistent (the
model is perfectly learned when the amount of data grows). In modern data science, however, one often faces
strategic data sources, namely, individuals who incur a cost for providing high-precision data. We model this
as learning from strategic data sources with a public good component, i.e., when data is provided by strategic
agents who seek to minimize an individual provision cost for increasing their data’s precision while benefiting
from the model’s overall precision. Our model tackles the case where there is uncertainty on the attributes
characterizing the agents’ data—a critical aspect of the problem when the number of agents is large. We show
that, in general, Aitken’s theorem does not hold under strategic data sources, though it does hold if individuals
have identical provision costs (up to a multiplicative factor). When individuals have non-identical costs, we
derive a bound on the improvement of the equilibrium estimation cost that can be achieved by deviating
from GLS, under mild assumptions on the provision cost functions and on the possible deviations from GLS.
We also provide a characterization of the game’s equilibrium, which reveals an interesting connection with
optimal design. Subsequently, we focus on the asymptotic behavior of the covariance of the linear regression
parameters estimated via generalized least squares as the number of data sources becomes large. We provide
upper and lower bounds for this covariance matrix and we show that, when the agents’ provision costs are
superlinear, the model’s covariance converges to zero but at a slower rate relative to virtually all learning
problems with exogenous data. On the other hand, if the agents’ provision costs are linear, this covariance fails
to converge. This shows that even the basic property of consistency of generalized least squares estimators is
compromised when the data sources are strategic.
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