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essential to certify that quantum processors truly 

work quantum mechanically, in order to validate 

experiments and their results. The main problems 

adressed in this thesis concern finding optimal 

strategies for the estimation and characterization of 

quantum states and channels, with a special focus 
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partition of a multi-qubit system, when only partial 

information about the corresponding quantum state 
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algorithm based on the truncated moment 
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problem of separability of quantum channels in 

terms of the Choi matrix representation; in this 
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Synthèse en français

Les progrès rapides de la technologie de l’information quantique exigent un
contrôle et une manipulation précis des systèmes quantiques et de leurs propriétés.
En particulier, il est essentiel de certifier que les processeurs quantiques fonctionnent
réellement de manière quantique, afin de valider les expériences et leurs résultats. Le
problème de la certification des états et des dispositifs quantiques est exigeant, et de
nombreuses tentatives ont été faites pour trouver des moyens de tester efficacement
leurs fonctionnalités de base, telles que leurs propriétés d’intrication. Les principaux
problèmes abordés dans cette thèse concernent la recherche de stratégies optimales
pour l’estimation et la caractérisation d’états et de canaux quantiques, avec un
accent particulier sur les corrélations d’intrication.
Dans notre premier travail, nous avons considéré la certification de l’intrication à
travers une partition donnée d’un système multi-qubit, lorsque seule une information
partielle sur l’état quantique correspondant est disponible ; nous avons abordé le
problème de la recherche de la meilleure stratégie de mesure en introduisant les
statistiques des longueurs des séquences de mesure, en choisissant des mesures de
Pauli multi-qubit comme observables. En utilisant un échantillon d’états inconnus
aléatoires, nous avons pu identifier la séquence de mesure (en moyenne) la plus
courte, c’est-à-dire la plus efficace, pour détecter l’intrication. L’étude a été réalisée
à l’aide d’un algorithme basé sur le problème des séquences de moments tronqués
(tms), qui fournit des conditions nécessaires et suffisantes pour l’intrication ou la
séparabilité d’un état quantique d’un système de dimension finie. Cette étude
aboutit à une stratégie très efficace, notamment pour les états symétriques, pour
lesquels seule une infime fraction (10−6) des états intriqués choisis au hasard ne
sont pas détectés pour les systèmes de 6 qubits ou plus.
Dans notre deuxième travail, nous avons poursuivi le problème de la séparabilité des
canaux quantiques pour répondre à la question de savoir si un dispositif quantique
donné est capable de créer de l’intrication ou non. La représentation de la matrice
de Choi, fournie par l’isomorphisme de Choi-Jamiołkowski, pose le problème en
termes de systèmes et d’ancillas, donnant différentes classes de séparabilité selon
la coupure considérée entre eux. Une fois de plus, le cadre tms s’est avéré bien

i



ii

adapté à cette étude, donnant une approche unifiée pour les différents problèmes de
séparabilité ; une solution a été trouvée en termes de tms associé aux coordonnées
de l’état de Choi, dans une base fixe, et la programmation semi-définie a été utilisée
pour obtenir un certificat de séparabilité. Nous avons exploré des exemples de
familles de canaux à 2 qubits et à un seul qubit, pour lesquels notre algorithme peut
donner une réponse dans les cas où d’autres critères ne sont pas concluants. Dans
un autre travail, nous avons porté notre attention dans une direction différente, en
mettant en évidence une connexion entre les domaines de l’information quantique,
de la condensation de Bose-Einstein (BEC) et de la gravité analogique, montrant
ainsi la pertinence des notions d’information quantique dans un contexte plus large.
Nous avons étudié les propriétés d’intrication d’un BEC analogue à un trou noir,
qui est décrit par un état gaussien à trois modes ; nous avons étudié les mesures
d’intrication bipartites et tripartites basées sur la description de la matrice de
covariance, à la fois à température nulle et à température finie, ce qui fournit la
meilleure configuration expérimentale pour la détection d’intrication.
Dans une dernière étape de cette thèse, nous avons commencé à examiner différentes
stratégies de mesure pour tester des dispositifs quantiques dont la fonctionnalité
peut être décrite par un seul paramètre ; nous avons utilisé une approche bayésienne
pour estimer ce paramètre, en exploitant les informations recueillies par les mesures
pour mettre à jour une distribution de probabilité conditionnelle, sans avoir besoin
d’estimer les valeurs attendues des observables. Le problème de la recherche du plan
d’expérience optimal peut dans ce cas se traduire par l’optimisation d’une fonction
d’utilité, qui guide habituellement le processus de mise à jour de manière adaptative
à chaque étape ; nous avons essayé de surpasser cette approche en regardant non
seulement l’étape suivante, mais aussi quelques autres, afin d’obtenir une réponse
de bon ou mauvais fonctionnement le plus tôt possible. De plus, nous avons choisi
l’état d’entrée du canal quantique en minimisant la probabilité d’erreur donnée par
la distance de Chernoff entre les sorties d’un canal idéal et d’un canal défectueux ;
enfin, nous avons considéré deux critères de décision finale différents et comparé
leur efficacité.



Abstract

English The rapid advance of quantum information technology requires pre-
cise control and manipulation of quantum systems and of their properties; in
particular, it is essential to certify that quantum processors truly work quantum
mechanically, in order to validate experiments and their results. The problem of
certification of quantum states and devices is a demanding one, thus many attempts
have been put forward to find ways of efficiently test their basic functionalities,
such as their entanglement properties. The main problems addressed in this thesis
concern indeed finding optimal strategies for the estimation and characterization of
quantum states and channels, with a special focus on entanglement correlations.
In our first work we considered the certification of entanglement across a given parti-
tion of a multi-qubit system, when only partial information about the corresponding
quantum state is available; we tackled the problem of finding the best measurement
strategy introducing the statistics of lengths of measurement sequences, choosing
multi-qubit Pauli-measurements as observables. Using a sample of random un-
known states, we were able to identify the (on average) shortest, i.e. most efficient,
measurement sequence to detect entanglement. The investigation was carried out
with an algorithm based on the truncated moment sequences (tms) problem, which
provides necessary and sufficient conditions for entanglement or separability of a
quantum state of a finite dimensional system. This study results in a very efficient
strategy especially for symmetric states, for which only a tiny fraction (10−6) of
randomly chosen entangled states are undetected for systems with 6 qubits or more.
We continued in our second work with the problem of separability of quantum chan-
nels to answer the question whether a given quantum device is able to create entan-
glement or not. The Choi matrix representation, provided by the Choi–Jamiołkowski
isomorphism, casts the problem in terms of systems and ancillas, giving different
classes of separability depending on the cut considered between them. Once again,
the tms framework turned out to be well suited for this study, giving a unifying
approach for the different separability problems; a solution is found in terms of the
tms associated to the coordinates of the Choi state, in a fixed basis, and semidefinite
programming is used to get a separability certificate. We explored examples of
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families of 2-qubit and single-qutrit channels, for which our algorithm can give an
answer in cases where other criteria remain inconclusive.
In a further work we shifted our attention to a different direction, highlighting a
connection between the fields of quantum information, Bose-Einstein condensation
(BEC) and analogue gravity, thus showing the relevance of quantum information
notions in a broader context. We studied the entanglement properties of a BEC
analogue of a black hole, which is described by a three-mode Gaussian state; we
investigated bipartite and tripartite entanglement measures based on the covari-
ance matrix description, both at zero and finite temperature, providing the best
experimental configuration for entanglement detection.
In a final stage of this thesis, we started looking at different measurement strate-
gies for testing quantum devices whose functionality can be described by a single
parameter; we used a Bayesian approach to estimate this parameter, exploiting the
information collected through measurements to update a conditional probability
distribution, without the need of estimating expected values of observables. The
problem of finding the optimal experimental design can be in this case translated
in the optimization of a utility function, which usually guides the update process
adaptively at each step; we tried to outperform this approach looking ahead not
only at the next step, but at a few ones, in order to obtain an answer of correct or
wrong functioning as soon as possible. Moreover, we chose the input state for the
quantum channel considered minimizing the error probability given by the Chernoff
distance between the outputs of an ideal and a faulty channel; finally, we considered
two different final decision criteria and compared their efficiency.

German Der rasante Fortschritt der Quanteninformationstechnologie erfordert
eine präzise Kontrolle und Manipulation von Quantensystemen und deren Eigen-
schaften. Insbesondere ist es unerlässlich zu zertifizieren, dass Quantenprozessoren
wirklich quantenmechanisch arbeiten, um Experimente und deren Ergebnisse zu
validieren. Das Problem der Zertifizierung von Quantenzuständen und -geräten ist
ein anspruchsvolles, und deshalb wurden viele Versuche unternommen, Wege zu
finden, um ihre grundlegenden Funktionalitäten, wie z. B. ihre Verschränkungseigen-
schaften, effizient zu testen. Die Hauptprobleme, die in dieser Arbeit adressiert
werden, betreffen in der Tat das Finden optimaler Strategien für die Schätzung
und Charakterisierung von Quantenzuständen und -kanälen, mit einem besonderen
Fokus auf Verschränkungskorrelationen.
In unserer ersten Arbeit betrachteten wir den Nachweis von Verschränkung über eine
gegebene Partition eines Multi-QuBit Systems, wenn nur partielle Informationen
über den entsprechenden Quantenzustand verfügbar sind. Wir beschäftigten uns mit
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dem Problem die beste Messstrategie zu finden, indem wir die Statistik der Längen
von Messsequenzen einführten und Multi-QuBit-Pauli-Messungen als Observablen
wählten. Unter Verwendung einer Stichprobe von zufälligen unbekannten Zuständen
konnten wir die (im Durchschnitt) kürzeste, d.h. effizienteste Messsequenz zum
Nachweis von Verschränkung identifizieren. Die Untersuchung wurde mit einem Al-
gorithmus durchgeführt, der auf dem „truncated moment sequences“ (tms)-Problem
basiert, das notwendige und hinreichende Bedingungen für Verschränkung oder
Separabilität eines Quantenzustands eines endlich dimensionalen Systems liefert.
Das Ergebnis dieser Untersuchung ist eine sehr effiziente Strategie insbesondere für
symmetrische Zustände, bei der nur ein winziger Bruchteil (10−6) zufällig gewählter
verschränkter Zustände für Systeme mit 6 Qubits oder mehr unentdeckt bleibt.
In unserer zweiten Arbeit haben wir uns mit dem Problem der Separabilität
von Quantenkanälen beschäftigt, um die Frage zu beantworten, ob ein gegebenes
Quantengerät in der Lage ist, Verschränkung zu erzeugen oder nicht. Die Choi-
Matrix-Darstellung, die durch den Choi-Jamiołkowski-Isomorphismus gegeben ist,
stellt das Problem in Form von Systemen und Ancillas dar und gibt verschiedene
Klassen der Separabilität in Abhängigkeit von dem betrachteten Schnitt zwischen
ihnen. Wieder einmal erwies sich der tms-Ansatz als gut geeignet für diese Studie,
da er einen vereinheitlichenden Ansatz für die verschiedenen Separabilitätsprobleme
bietet. Eine Lösung wird in Form des tms gefunden, das mit den Koordinaten des
Choi-Zustands in einer festen Basis verbunden ist, und semidefinite Programmierung
wird verwendet, um die Separabilität zu zertifizieren. Wir haben Beispiele für Fam-
ilien von 2-Qubit- und Ein-Qutrit-Kanälen untersucht, für die unser Algorithmus
eine Antwort in Fällen geben kann, in denen andere Kriterien nicht schlüssig sind.
In einer weiteren Arbeit lenkten wir unsere Aufmerksamkeit in eine andere Rich-
tung, indem wir eine Verbindung zwischen den Bereichen Quanteninformation,
Bose-Einstein-Kondensation (BEC) und analoger Gravitation aufzeigten und damit
die Relevanz von Quanteninformationsbegriffen in einem breiteren Kontext zeigten.
Wir untersuchten die Verschränkungseigenschaften eines BEC-Analogons eines
Schwarzen Lochs, das durch einen dreimodigen Gauß-Zustand beschrieben wird;
wir untersuchten für bipartite und tripartite Verschränkungsmaße, die auf der
Beschreibung der Kovarianzmatrix basieren, sowohl am Temperatur-Nullpunkt als
auch bei endlicher Temperatur, was die beste experimentelle Konfiguration für die
Verschränkungsdetektion darstellt.
In einer letzten Phase dieser Arbeit haben wir begonnen, verschiedene Messstrate-
gien für das Testen von Quantengeräten zu untersuchen, deren Funktionalität durch
einen einzigen Parameter beschrieben werden kann; wir haben einen Bayes’schen
Ansatz verwendet, um diesen Parameter zu schätzen, indem wir die durch Mes-
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sungen gesammelten Informationen ausnutzen, um eine bedingte Wahrschein-
lichkeitsverteilung zu aktualisieren, ohne die Notwendigkeit, erwartete Werte von
Observablen zu schätzen. Das Problem, die optimale Einstellung des Experiments
zu finden, kann in diesem Fall in die Optimierung einer Nutzenfunktion übersetzt
werden, die normalerweise den Aktualisierungsprozess bei jedem Schritt adaptiv
steuert; wir haben versucht, diesen Ansatz zu übertreffen, indem wir nicht nur
den nächsten Schritt, sondern einige Schritte vorausschauend betrachtet haben,
um so schnell wie möglich eine Antwort zu erhalten, ob die Funktion richtig oder
falsch ist. Darüber hinaus wählten wir den Eingangszustand für den Quantenkanal
unter Berücksichtigung der Minimierung der Fehlerwahrscheinlichkeit, die durch
den Chernoff-Abstand zwischen den Ausgängen eines idealen und eines fehler-
haften Kanals gegeben ist; schließlich betrachteten wir zwei verschiedene endgültige
Entscheidungskriterien und verglichen ihre Effizienz.
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Chapter 1

Framework

1.1 Quantum entanglement

Quantum systems can exhibit properties which have no counterpart in the
classical case; the most discussed in the last decades is a type of quantum correlation,
called quantum entanglement [82, 72, 58, 20]. The reason for the interest of
thousands of works in this quantum feature is not only fundamental, but practical
too; indeed, many experiments are now able to generate and exploit entanglement,
especially in quantum information and quantum computing tasks. Quantum
entanglement came into the scene as a threat raised by the EPR paradox [36] to
the completness of quantum mechanics description of the physical reality through
the wave function; this mysterious phenomenon, called initially "Verschränkung" by
Schrödinger [86], was then clarified by Bell in [10] with his inequalities, giving start
to the great interest around the topic. At present, not only has entanglement been
created in laboratory among many qubits (e.g. 18 qubits in [96]) and survived over
a distance of 1200 km among two qubits [100], but also it has been used in several
applications, such as quantum teleportation [12], quantum cryptography [37] which
ensures secure communication, and quantum algorithms, which are faster than
their classical counterparts [63]. Finally, entanglement has become of fundamental
importance for the ultimate goal of quantum computing, which are large-scale
quantum computers [68, 83, 59]; these are expected to perform certain operations
exponentially faster than classical computers [40]. Currently, quantum supremacy
has been achieved by a quantum processor with 53 qubits in 2019 [5].
We shall now discuss the main ingredients about entanglement which will be useful
for the results of this thesis.
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2 CHAPTER 1. FRAMEWORK

1.1.1 Entanglement detection

Let us now discuss more formally how one can define an entangled state; in the
following, we will consider finite dimensional systems, such as qubits. Let ρ be a
mixed state acting on a Hilbert space H = HA ⊗HB of a composite system; the
state ρ is entangled if it cannot be written as the convex sum of product states,
that is

ρ is entangled ⇒ @ ωi, ρAi , ρBi s.t. ρ =
∑
i

ωi ρ
A
i ⊗ ρBi (1.1)

where ωi ≥ 0, ∑i ωi = 1 and ρAi , ρ
B
i are density matrices acting on HA and HB

respectively. If instead such weights and product states exist, than the state is
said to be separable. Note that in Eq. (1.1) only two parties are considered, so
that in this case one talks about bipartite entanglement. While for bipartite pure
states the problem of separability is straightforward [87], for mixed bipartite states
more complicated criteria are needed to answer the question of separability or
entanglement; moreover, if we allow for more than two parties, that is we consider
a multipartite state acting on H = H1 ⊗H2...⊗HN , the problem of characterizing
entanglement gets even more difficult and there is yet no fully general solution to it.
Many separability criteria have been formulated [49], both in the bipartite and in
the multipartite case; among the most known there are the PPT (positive partial
transposition) criterion [80] and entanglement witnesses [73]. The former gives a
necessary and sufficient condition for systems of dimensions 2×2 or 2×3 (otherwise
it is only necessary) and it states that a state ρ acting on HA ⊗HB is separable
iff ρTB = (11A ⊗ TB)ρ ≥ 0, i.e. if the partial transposed state with respect to
system B is positive semidefinite; this criterion is simple to apply, but limited
in the multipartite case, since PPT entangled states exist (the so-called bound
entangled states). Entanglement witnesses instead are based on directly measurable
observables and thus are quite used experimentally; an observable W is called a
witness if tr(WρS) ≥ 0 for all separable states ρS and tr(WρE) < 0 for at least one
entangled state ρE. This approach can be used for detecting both bipartite and
multipartite entanglement and provides a clear geometrical picture: the expectation
value tr(Wρ) of an observable W depends linearly on the state and thus the set of
states for which tr(Wρ) = 0 holds defines a hyperplane, dividing the set of all states
in two parts; separable states lie in the part with tr(Wρ) > 0, while entangled
states detected by W lie in the part with tr(Wρ) < 0.
Other criteria are based on algorithmic approaches, in particular on casting the
separability problem in terms of convex optimization and semidefinite programming;
one of the most known is the method of symmetric extensions [31, 32] which gives a
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complete hierarchy of separability criteria and can be formulated as a semidefinite
program. This approach was later understood more generally within the theory
of truncated moment sequences, which will be further discussed in Sec. 1.2 and
applied to get some of the results of this thesis in Sec. 2.1 and 2.2.
Some of the above separability criteria require full or partial a priori knowledge
of the state; more precisely, knowledge of the density matrix describing the state
corresponds to knowing the outcome of any possible measurement on the system.
To estimate an unknown quantum state, a procedure called quantum tomography is
applied; to do so, several copies of the state are needed, in order to perform different
measure on each copy [28]. Full tomography soon becomes impractical; consider
e.g. a system of N qubits, whose corresponding Hilbert space has dimension 2N ,
then its density matrix, generally a mixed state ρ, is fully specified by 2N − 1
entries (because of the trace condition tr(ρ) = 1). Moreover, experimentally it
is only possible to perform a finite number of measurements, so the uncertainty
associated to the expectation values can yield unphysical states in the inversion
procedure. Many attempts to overcome the difficulties of full tomography have been
put forward, such as maximum likelihood estimation of the state [60], Bayesian
inference [14], compressed sensing [48] or more recently machine learning based
approaches [39]. We will see in Sec. 2.1 how partial information about the state of
two qubits can suffices when the aim of the experiment is entanglement detection
and in Sec. 3.1 how Bayesian inference works (no expectation values needed) in
the context of verification of quantum channels; we revise some of the essential
concepts of the latter in the next section.

1.1.2 Quantum channels

Quantum channels describe physical operations acting on quantum states;
consider a state ρ ∈ L(H), where L(H) is the set of linear operators in H, then
we define a linear map Φ : L(H)→ L(H) which acts on the state ρ as Φ(ρ) = ρ′.
The image ρ′ has to be again a proper quantum state and this imposes some
conditions on Φ, such as trace preservation and complete positivity [11]. The last
property means that the map Φ is such that Φ⊗ 11 is positive on all states acting
on an extended Hilbert space H⊗H′; the meaning of it becomes clearer defining
the reshuffled matrix DΦ = ΦR, known as the dynamical matrix. The reshuffling
operation for a matrix M ∈ Mk, with Mk the set of square k × k matrices and
k = mn, is defined as (MR)ij = tr((Ei ⊗ Ej)†M), where {Ei} and {Ej} are the
canonical basis in Mm, Mn respectively [75]. In terms of the dynamical matrix, the
complete positivity of Φ translates in DΦ ≥ 0, i.e. DΦ is positive semidefinite; when
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written in the canonical basis, the dynamical matrix coincides with the so-called
Choi matrix [24], defined as

CΦ =
∑
i,j

Φ(|i〉〈j|)⊗ |i〉〈j| (1.2)

An important result that we will use in Sec. 2.2 is the Choi-Jamiołkowski isomor-
phism [61], which establishes a channel-state duality: to each map Φ : L(H)→ L(H)
we can associate an operator acting on an enlarged Hilbert space H⊗H′, that is
indeed the Choi state CΦ/dim(H), which is a proper density matrix. The Hilbert
space H′ is the one of the so-called ancilla system, and in general can have different
dimension than H. The Choi matrix uniquely specifies the channel, and this turns
out to be useful for example in studying the separability problem of quantum
channels. As it will be motivated later, characterizing single and two-qubit channels
is already of great importance for quantum information and quantum computing
tasks. Single qubit channels can be parametrized as an affine transformation which
maps the Bloch ball 1 to an ellipsoid; if we indicate with n the Bloch vector, then
we can describe the action of a completely positive map as

n′ = ΛΦn + tΦ (1.3)

where the matrix ΛΦ determines the shape of the ellipsoid and the vector tΦ its
center of mass. Positivity conditions of the Choi matrices corresponding to these
maps give the well-known Fujiwara-Algoet conditions [42, 18]. As in the multipartite
case of states [49], the entanglement problem for quantum channels also defines
different classes of entanglement/separability depending on the partition, which
in this case we will call cuts, between the systems and the ancillas. We will
discuss the problem of entanglement for different examples of channels in Sec. 2.2,
exploring the various classes of separability which are depicted in Fig. 1.1; to explain
that, let us consider a bipartite system with subsystems A and B, a completely
positive map Φ : L(HA ⊗HB)→ L(HA ⊗HB) and the corresponding Choi state
CΦ = ∑

ijkl Φ(|ik〉 〈jl|)⊗ |ik〉 〈jl| acting on H = HA ⊗HB ⊗HA′ ⊗HB′ (where we
assumed, without loss of generality, that the Hilbert space of the system and of
the ancilla are equal). Fig. 1.1(a) describes an entanglement-breaking channel (EB)
[57], which regards separability between the system and the ancilla (note that it
can therefore be applied also to systems with only one subsystem); more precisely
Φ is EB if (Φ ⊗ 11)(ρ) is a separable state across the H − H ′ cut for any initial

1Geometrical description of the space of 1-qubit systems, given by positive-semidefiniteness of
the density matrix describing a generic 1-qubit mixed state.
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Figure 1.1: Different separability notions for quantum channels for a bipartite system
AB with ancillas A′B′, where connections represent entanglement. (a)
Entanglement-breaking channels destroy entanglement between A and all
the ancillas and B and all the ancillas. (b) Separable channels preserve
separability between (A−A′) and (B −B′). (c) Entanglement-annihilating
channels destroy entanglement between A and B.

state ρ or if the corresponding CΦ is separable across the (A − B) − (A′ − B′)
cut. Physically these channels correspond to the case in which the output state is
prepared according to the measurement outcomes made by the sender and sent via
a classical channel to the receiver. Fig. 1.1(b) corresponds instead to a separable
map (SEP) [62], which is a channel that maps separable states to separable states;
in particular, if we express Φ in terms of Kraus operators [11] as

Φ(ρ) =
∑
m

EmρE
†
m with

∑
m

E†mEm = 11 (1.4)

then Φ is in SEP if Em = Am⊗Bm. The corresponding state CΦ is separable across
the (A− A′)− (B −B′) cut; this can be seen swapping HA′ and HB in CΦ as

CΦ =
∑
m

∑
i,j

Am|i〉〈j|A†m ⊗ |i〉〈j| ⊗
∑
k,l

Bm|k〉〈l|B†m ⊗ |k〉〈l|. (1.5)

where ∑i,j Am|i〉〈j|A†m ⊗ |i〉〈j| is the Choi matrix of the completely positive map
ρ 7→ ∑

mAmρA
†
m (same for B). When CΦ is separable across all possible cuts we

call Φ a fully separable map (FS). Finally, Φ is called entanglement-annihilating [41]
if it destroys any entanglement within the system H (but not necessarily between
H and H ′), as depicted in Fig. 1.1(c).
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1.1.3 Continuous variables

In the sections above we have only discussed about finite dimensional systems,
but also continuous variable ones are of interest in quantum information [19]; in
particular, we summarize here some of the main results about Gaussian states,
which are defined as those states which have a Gaussian Wigner function [92]. A
nice consequence of this definition is that Gaussian states can be fully characterized
by their first and second moments and so studied through the covariance matrix
and the symplectic formalism [91]. For a N -mode Gaussian state, the 2N × 2N
covariance matrix (CM) σ, which is a real symmetric positive matrix, has entries

σij = 1
2〈ξ̂iξ̂j + ξ̂j ξ̂i〉 − 〈ξ̂i〉〈ξ̂j〉 (1.6)

where 〈Ô〉 = tr(ρÔ) and ξ =
√

2(q̂1, p̂1, ..., q̂N , p̂N)T is the vector of quadrature
operators, whose components satisfy the canonical commutation relations

[ξ̂i, ξ̂j] = 2 i J with J =
 0 1
−1 0

 (1.7)

Since we are only interested in studying entanglement properties of Gaussian states,
we can set the mean values of the quadrature operators to 0, as their shifting is
given by displacement operators, that are local unitary operations, under which
entanglement is unchanged. Positivity of the density matrix together with the
canonical commutation relations impose that σ fulfills the inequality σ+ i J ≥ 0 [92,
91], where J is the direct sum of the N J matrices. Unitary operations of the second
order in the quadrature operators instead act linearly on the vector of quadrature
operators, i.e. ξ → Sξ and S satisfies SJST = J. The latter property implies that
S ∈ Sp(2N,R), i.e. is real and symplectic [6]; since S is a linear transformation
on ξ, from Eq. (1.6) it follows that σ transforms as σ → SσST . The symplectic
framework is important for the analysis of covariance matrices; in particular, a
useful result is Williamson’s theorem [98], which ensures for any σ the existence of
a symplectic transformation S such that

SσST = diag(ν1, ..., νN , ν1, ..., νN) = ν (1.8)

The matrix ν is called the canonical scaled diagonal form and is unique up to the
ordering of the νj, which are known as the symplectic eigenvalues 2 of σ and they

2A nice physical interpretation of the symplectic eigenvalues can be seen in the case of a
thermal state, for which they can be related with the mean particle number.
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can be obtained from the eigenvalues of the matrix Jσ, which are equal to ±iνj.
Moreover, the symplectic eigenvalues give a simple expression for the PPT criterion
for continuous variables [90], which was shown to be necessary and sufficient for
1+N -mode Gaussian states andM+N -mode bisymmetric Gaussian states [88]; the
partial transposition operation on the covariance matrix σ is given by σPT = Λ σ Λ
with Λ = σz ⊕ 112N and the PPT criterion reads

νPTj ≥ 1 j = 1, ..., N (1.9)

as it can be easily derived looking at the condition imposed by the positivity of ρPT

on σPT . Further applications of this formalism and discussion about entanglement
for Gaussian states can be found in Sec. 2.3.

1.1.4 Monogamy of entanglement

Another peculiar feature which differentiates entanglement from classical corre-
lations is its monogamy; entanglement being monogamous means that, if systems
A and B are maximally entangled, then they cannot share entanglement with a
third system C. This holds even if A and B are not in a maximally entangled
state, but share anyway some entanglement; then the entanglement shareable with
C is limited, meaning that it is possible to get an inequality which regulates how
entanglement is distributed among many parties. The first result was given in [25]
for the case of three qubits, leading to what is known as the CKW inequality:

τ (1|2) + τ (1|3) ≤ τ (1|23) (1.10)

where τ is a proper 3 measure of bipartite entanglement, called the tangle, defined
as the square of the concurrence [55, 99]; not all measures of entanglement fulfill
the relation in (1.10). This inequality can be extended to n > 3 qubits [78], but
fails for systems of greater dimension (e.g. qutrits) [79]; it was moreover shown in
[38] through a connection with the Minkowski space that strict monogamy laws for
quantum correlations exist for all multi-qubit systems. From Eq. (1.10) an equality
can be written, defining a residual tangle which quantifies the genuine tripartite
entanglement between the three qubits:

τres = τ (1|23) − τ (1|2) − τ (1|3) (1.11)

3A good measure of entanglement needs to satisfy several properties [20], among which there
are nonnegativity on inseparable states and monotonicity under LOCC (local operations and
classical communications).
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Eq. (1.11) is invariant under permutation of the qubits; the latter feature is lost
when extending this result to continuous variables. In fact, an equivalent inequality
was proved for Gaussian states of three modes [2] and for all n-mode Gaussian states
[56]; the proper measure of entanglement in this case is called Gaussian contangle
Gτ and it is given (for mixed states) by the infimum over all pure Gaussian states
of the contangle Eτ , which is equal to the squared logarithmic negativity 4

Gτ (σ) = inf
σp≤σ

Eτ (σp) (1.12)

where p stands for pure and σp ≤ σ means that the matrix σ − σp is positive
semidefinite. The Gaussian contangle Gτ (σ) is an upper bound to the true contangle
Eτ and they only coincide for pure Gaussian states. Analogously to Eq. (1.11) one
can define a residual contangle Gres

τ [4] which this time is partition-dependent:

Gres
τ = min

i,j,k

(
Gi|jk
τ −Gi|j

τ −Gi|k
τ

)
(1.13)

We will apply definition (1.13) in Sec. 2.3 to quantify tripartite entanglement in an
analogue gravity setting.

1.2 Truncated moment problem and entanglement

An interesting mapping of the entanglement problem onto the mathematical
problem of truncated moment sequences was recently presented in [16]; the latter is
a well-known subject in the mathematical literature [26, 71] which turned out to be
very useful for the separability problem of quantum states and channels. Indeed, it
allows to obtain necessary and sufficient conditions for deciding whether a state is
entangled or separable, thanks to known theorems in the mathematical framework.
Moreover, it provides an algorithm which, with known numerical methods, is able
to give a definite answer for entanglement or separability of quantum states and
channels. We will discuss the theory needed to understand this mapping in the
next section, followed by a more detailed description of the resulting algorithm.

4The logarithmic negativity is defined as Eτ (ρ) ≡ ln2 ‖ρPT ‖1, where ‖Ô‖1 = Tr
√
Ô†Ô is the

so-called trace norm.
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1.2.1 Theory

Consider a nonnegative measure µ on Rn and its corresponding moments yα of
order α = (α1, ..., αn) ∈ Zn+ defined as

yα =
∫
xαdµ(x) (1.14)

where xα denotes the monomial xα1
1 ...x

αn
n . A finite set y = (yα)α∈Zn+ of such real

numbers is called a truncated moment sequence (tms). Suppose now that we are
given any set y of real numbers, then we can ask whether it corresponds to the
moments of some nonnegative measure µ; if so, µ is called a representing measure
for y (note that the measure µ is a probability measure if y0 = 1). The tms problem
concerns the characterization of such truncated sequences; solutions to this problem
are known, and we are especially interested in the case when the measure µ is
constrained to have a finite support K, defined by a semialgebraic set (the reason
will be clearer when the correspondence with entanglement is made, as will be
detailed below). In this case, which will be referred to as K-tms in the following,
the moments yα are given by

yα =
∫
K
xαdµ(x) (1.15)

where K is defined by polynomial inequalities as

K = {x ∈ Rn|g1(x) ≥ 0, ..., gm(x) ≥ 0} (1.16)

with gj(x) multivariate polynomials. Necessary and sufficient conditions for the
solution of the K-tms problem can be obtained in terms of moment matrices, their
corresponding flat extensions and localizing matrices, which will all be defined
below; for simplicity, we will consider here tms of even degree 2d. The entries of the
moment matrix of order t associated to a tms y = (yα)|α|≤2d (with |α| = ∑

i αi) are
defined as Mt(y)αβ = yα+β, with |α|, |β| ≤ t [70]; it is a symmetric matrix and its
size is given by the number of moments up to order t, that is

(
n+t
t

)
. The localizing

matrix of order t is instead defined as the moment matrix of order t of a shifted
sequence g ? y, which is given by (g ? y)α = ∑

γ gγyα+γ , where gγ are the expansion
coefficients over the basis of monomials xα of the polynomials gj in K. The m
polynomials defining K give rise to m localizing matrices Mt(gj ? y); this implies
that t ≤ d− d0 with

d0 = max
1≤j≤m

{1, ddeg(gj)/2e} (1.17)
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in order for all of them to be defined. Finally, we define an extension of a tms y
of degree 2d as a tms of degree 2d′ with d′ > d, whose moments up to order 2d
coincides with those of (yα)|α|≤2d; analogously, we can say that for t′ > t, Mt′(y) is
an extension of Mt(y). Mt′(y) is a flat extension if its rank is equal to the rank of
Mt(y), that is,

rkMt′(y) = rkMt(y). (1.18)

We will refer to Eq. (1.18) as the rank condition or flatness condition. We then
have the following theorem [27]:

Theorem 1: Let y be a tms and r = rkMt(y). Then y has a representing measure
µ supported on K if and only if Mt(y) ≥ 0 and there exists a flat extension Mt+d0(y)
(i.e. satisfying the rank condition in Eq. (1.18)) with Mt(gj ? y) ≥ 0 for 1 ≤ j ≤ m,
and d0 defined in Eq. (1.17).

The representing measure µ can be written as a sum of r delta functions with
positive weights, dµ(x) = ∑

j ωjδ(x− xj) and it is said to be r-atomic.
We can now apply this theorem to quantum states; consider a multipartite quantum
state ρ acting on the tensor product H = H(1) ⊗ ...⊗H(p) of Hilbert spaces H(i)

and let Sµ1µ2...µp = S(1)
µ1 ⊗ ...⊗ S

(p)
µp be an orthogonal basis of L(H) (set of bounded

linear operators on H). The state ρ can be expanded as

ρ = Xµ1µ2...µpSµ1µ2...µp (1.19)

(with implicit summation over repeated indices), where Xµ1µ2...µp = tr(ρSµ1µ2...µp)
are the (real) coordinates of the state. Moreover, a density matrix acting on
the single Hilbert space H(i) can be expanded as ∑µi x

(i)
µi
S(i)
µi
, with x

(i)
0 = 1; we

can then associate to each H(i) a set of variables x(i)
ai
, 1 ≤ ai ≤ κi, where κi =

dimL(H(i))−1. The vector of all these variables can be written as (x1, x2, ..., xn) :=
(x(1)

1 , x
(1)
2 , . . . , x(p)

κp ), with n = ∑
i κi; an arbitrary monomial of these variables reads

xα ≡ ∏n
k=1 x

αk
k . Finally, one can associate a tms y = (yα)|α|≤p of degree p with the

coordinates of ρ as yα = Xµ1µ2...µp , where α is the index such that xα = ∏p
i=1 x

(i)
µi
.

We can now see that the problem of finding whether ρ is separable across the
multipartition H(1) ⊗ ...⊗H(p) is equivalent to a K-tms problem; a quantum state
ρ is separable if it can be written as ρ = ∑

j ωjρ
(1)
j ⊗ ρ

(2)
j ⊗ ...⊗ ρ

(p)
j . Projecting the

separability condition on the basis Sµ1µ2...µp , coordinates of a separable state can
be written as

Xµ1µ2...µp =
∫
K
x(1)
µ1 x

(2)
µ2 ...x

(p)
µp dµ(x) (1.20)
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Eq. (1.20) is equivalent to Eq. (1.15), i.e. to asking whether there exists a positive
measure dµ, with support K, for a tms whose moments yα are given by the
coordinates Xµ1µ2...µp of the state ρ as explained above. If a solution to this tms
problem exists, as stated in Theorem 1, then the state ρ is separable.

1.2.2 Methods

Truncated K-moment problems can be solved numerically with semidefinite
programming (SDP) [53, 97, 17]; semidefinite approaches have been proposed to test
entanglement of quantum states in [32, 50] and then included in the framework of
the tms problem in [16]. The advantage of the latter formulation (based on Theorem
1) is that it yields an algorithm which can give a certificate of entanglement or
separability for a given quantum state; we recall the main ingredients here. In
general, a semidefinite problem can be written as

min
z

vTz s.t. F (z) ≥ 0 (1.21)

where v is a vector of real numbers, z is a vector of real variables and F (z) =
F0+∑i ziFi , with Fi real symmetric matrices; the inequality constraint in Eq. (1.21),
called linear matrix inequality (LMI), means that the matrix F (z) is positive
semidefinite. The objective funtion to minimize in Eq. (1.21) is a convex function;
this means that a local minimum is also a global one [67] and that interior point
methods can be used to carry out the optimization [95]. If a solution to the
optimization problem which fulfills the constraint in Eq. (1.21) exists, then the
SDP is said to be feasible, otherwise is called infeasible.
For a given tms yα of degree 2d, we define an extension zβ of degree 2d′ with d′ > d,
whose entries up to 2d are fixed by the ones of yα. The SDP program associated to
Theorem 1 can be defined as [16]

min
z

∑
α,|α|≤t0

vαzα

s.t. Mt(z) ≥ 0

Mt(gj ? y) ≥ 0 for j = 1, ...,m

zα = yα for |α| ≤ 2d

(1.22)

where t0 = d + d0 is the smallest extension order possible and vα are random
coefficients [54]. If the SDP in Eq. (1.22) is feasible, i.e. if it exists an extension z
which fulfills the constraints above, then, in order to have a certificate of entan-
glement or separability, one needs to check the flatness condition in Eq. (1.18). A
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Figure 1.2: Sketch of the algorithm to solve a K-tms problem associated to a quantum
state ρ with semidefinite programming. The output is a certificate of
entanglement or separability.

sketch can be helpful in understanding how such an algorithm works (see Fig. 1.2).
The algorithm takes as input a quantum state ρ, to which a tms yα is associated,
and starts constructing the smallest extension of the tms of order t0; if the SDP
is infeasible, then the algorithm stops and we can conclude that the state ρ is
entangled. Otherwise, when the SDP is feasible, the rank condition is checked; if
that is satisfied, i.e. if the extension is flat, then the state ρ is separable with respect
to the partition of the Hilbert space considered and a representing measure µ can
be extracted. If the flatness condition is not met, then the order t is increased and
the algorithm is iterated; the only case in which the algorithm remains inconclusive
(in a finite number of steps) is when feasible extensions are found for any t and any
chosen polynomial v, but the flatness condition is never fulfilled.
We will see in Sec. 2.1 and Sec. 2.2 how the algorithm explained above can be
adapted and applied to detect entanglement of quantum states and channels of
finite dimensional systems.



Chapter 2

Results

The advance of quantum information technology and the rapid increase of
quantum devices availability, together with the need of proper quantum states in
experiments, lead the studies and consecutive results of this thesis. In particular,
the problem of testing, characterizing and verifying properties of quantum systems
is still very challenging. More precisely, one aims at proving that quantum devices
truly work in a properly quantum way and that the states they act on are non-
classical; moreover, one would like to do this as quickly as possible, since already
testing basic quantum functionalities can be very expensive.
First motivation of our works is then the need for optimal experimental designs,
whose objective is to reduce the amount of resources needed, trying to overcome the
limits imposed by the exponential growth of the Hilbert space in which quantum
systems act. Looking at the several efforts made in this direction, one can say
that often the problem of stating the quantum nature of states and processors
translates in asserting whether the state is entangled or whether the device is able to
create entanglement. In fact, the latter is a resource on which quantum technology
largely relies, making fast entanglement detection the second main motivation of
our investigations, first focused on quantum states.
A quite natural continuation was then to explore how quantum entanglement evolves
under physical operations (quantum channels), taking into account the difficulties
represented by decoherence over long time scales; in this context, we directed our
attention to separability testing, relevant in validation of experiments in which
entanglement should be created.
A more general look at entanglement characterization led us also to consider detec-
tion and quantification of entanglement in a different area than quantum technology,
at the interface between general relativity and quantum physics, revealing the utility
of quantum information notions in a wider field.

13
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However, present and future interest and extension of this work can be summarized
in pursuing new methods and strategy for fast quantum channel certification, that
we started investigating in the final chapter of this thesis; on a long-term basis,
this would result in having an efficient framework as the one of classical functional
testing, but for quantum devices, with the goal of demonstrating failure of quantum
processors as quickly as possible.
We discuss the results obtained in more detail in the following sections.

2.1 Optimal measurements for entanglement de-
tection

What is the most efficient measurement strategy to detect entanglement of
a state with only partial information available on it? This question motivated
the first application of the tms algorithm described in Sec. 1.2.2; indeed, as we
have seen, information on a quantum state is collected performing measurements,
each on a different copy of the system. In the mapping with the tms problem,
expectation values of measurements correspond to moments of a measure; it is then
quite natural to see how the tms framework suits the case of limited knowledge: we
can in fact specify only a set A of the moments up to a certain order and still have
a problem which is solvable via a semidefinite program as illustrated in Fig. 1.2.
The latter scenario is what is known as the AK-tms problem [76].
Thanks to the flexibility of this approach, we were able to obtain a statistics of
lengths of measurement sequences and to identify among them the best (i.e. fastest
on average) to detect entanglement. The states considered here are two-qubit
states, with a particular focus on symmetric two-qubit states (defined below), which
offer already a quite rich and complex scenario; remarks are made and differences
highlighted with the non-symmetric case, and also useful considerations are given
for the case of symmetric multi-qubit states.
Symmetric qubit states can be conveniently handled via the so-called tensor repre-
sentation presented in [44], which generalizes the Bloch sphere picture for spins-1/2;
a mixed symmetric state is defined as the mixture of symmetric pure states, each
of them being invariant under any permutation of the qubits and expressible as
a superposition of Dicke states [30]. The latter can either be seen as symmetric
states of N = 2j spins-1/2 or as eigenstates |j,m〉 of angular momentum operators
Jz and J2, with total angular momentum quantum number j. The state of a spin-j
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can be expanded as

ρ = 1
2N

3∑
µ1,µ2,...,µN=0

Xµ1µ2...µNPs(σµ1 ⊗ ...⊗ σµN )P †s (2.1)

where σ0 is the 2× 2 identity matrix, σ1, σ2, σ3 are the Pauli matrices and Ps is the
projector onto the symmetric subspace spanned by the Dicke states, with dimension
2j + 1. The tensor Xµ1µ2...µN is real, invariant under permutation of indices and
can be written as

Xµ1µ2...µN = tr(ρσµ1 ⊗ ...⊗ σµN ), 0 ≤ µi ≤ 3 (2.2)

Unit trace of the density matrix translates into X00...0 = 1 and, moreover, the tensor
fulfills the property

3∑
a=1

Xaaµ3µ4...µN = X00µ3µ4...µN (2.3)

for any choice of the µi. We recognize at this point that these are the coordinates
of the state to which we associated a tms problem as explained in Sec. 1.2.1 (see in
particular Eq. (1.20)); these real entries correspond to the expectation values of
the joint measurements σµ1 ⊗ ...⊗ σµN on the N qubits and thus to the moments
of the measure that we want to characterize. It can be shown that a symmetric
separable state has the following tensor representation

Xµ1µ2...µN =
∑
i

ωin
(i)
µ1n

(i)
µ2 ...n

(i)
µN

(2.4)

with ωi ≥ 0, n(i)
0 = 1 and n(i) the Bloch vector of the single qubit; in this case, the

semialgebraic set K is the unit sphere K = {x ∈ R3 : x2
1 + x2

2 + x2
3 = 1}, so that

the smallest extension order given by d0 in Eq. (1.17) is equal to 1.
At this point, we can ask two different questions, both relevant depending on the
experimental limitations present: what is the best set of measurements, i.e. the
most efficient to detect entanglement? On the other hand, what is instead the best
sequence of measurements? In the first case, the order in which the measurements
are performed is not relevant, while in the second case such order matters. We will
see how in our case the two strategies converge to equivalent optimality, even if
this is not the case in general.
We start by defining Ω{M} as the sample space of outcomes of the AK-tms algorithm
applied to the moments (yα)α∈A of an entangled state, which contains two possible
outcomes with the following probabilities: we denote with p(k) ≡ P (E, {M}) the
probability of detecting a state as entangled when the outcomes of a set of k
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observables {M} are known and with 1− p(k) ≡ P (Ē, {M}) the probability of not
detecting the state as entangled. The outcome ”E” corresponds to an infeasible
SDP, while the outcome Ē to a feasible SDP, meaning that the state with such
moments fixed is still compatible with a separable state.
On the other hand, we can also define the probability of detecting entanglement
at step k given that no entanglement was detected up to the step k − 1 when
going down a certain ordered sequence of measurements, which we call a path
γ; we denote these probabilities with q(k)(γ). At last, we denote with r(k)(γ) the
probability of stopping exactly at the kth step when measurements are taken along
the path γ, which is relevant in terms of running or not the tms calculations.
The three probabilities are linked by simple relations of probability theory; in
fact, e.g. for a set with k = 2 measurements, starting from the theorem of total
probability we have

P (E, {M1,M2}) = P (E, {M1})P (E, {M1,M2}|E, {M1})

+ P (Ē, {M1})P (E, {M1,M2}|Ē, {M1})

⇒ P (E, {M1,M2}|Ē, {M1}) = P (E, {M1,M2})− P (E, {M1})
1− P (E, {M1})

⇒ q(2)(γ) = p(2)(γ)− p(1)(γ)
1− p(1)(γ) (2.5)

where we used P (Ē, {M1}) = 1 − P (E, {M1}) and P (E, {M1,M2}|E, {M1}) = 1.
Then in general we have q(k)(γ) = p(k)(γ)−p(k−1)(γ)

1−p(k−1)(γ) .
We remark that p(0) = 0 (as nothing is measured) and thus q(1) = p(1); then,
inverting Eq. (2.5) we obtain that p(k)(γ) = ∑k

j=1 q
(j)(γ)∏k

n=j+1(1− q(n)(γ)).
The probabilities r(k)(γ) are instead the joint probability P (E, {M1, ...,Mk} ∩
Ē, {M1, ...,Mk−1}), which by means of the identity P (A ∩B) = P (A|B)P (B), can
be rewritten as r(k)(γ) = q(k)(γ)(1− p(k−1)(γ)) and so as

r(k)(γ) = q(k)(γ)
k−1∏
j=1

(1− q(j)(γ)) = p(k)(γ)− p(k−1)(γ) (2.6)

Considering Pauli spin operators as observables, full tomography of a symmetric
two-qubit state can be carried out with 8 measurements of the type σi⊗ σj ; indeed,
the tensor Xµ1µ2 is in this case a symmetric 4× 4 matrix with 10 unique entries,
from which we discard 11⊗ 11 and the third diagonal σz⊗σz because of the property
in Eq. (2.3), which reads ∑3

a=1Xaa = X00. The probability to detect a state as
entangled when only the outcomes of a subset of these 8 observables are known
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must not depend on the choice of the reference frame for the axes along which the
measurement is performed; this means that we can reduce the number of possible
sets of measurements considering invariance with respect to the exchange of two axes
or cyclic permutations of them. The number of the unique ones can be calculated
and it reaches its maximum (26 unique sets) for sets of 4 measurements. To find
the most efficient set at fixed length we tested a sample of 5× 104 random states,
generated according to [101]; we report the best set at each length in Table 2.1.
These results served in making a simplification in the case of ordered sequences, in
which we decided to fix the first measurement of the path to be the most efficient for
k = 1, in order to reduce computational times. For the same reason, we considered
that also the 8! sequence of measurements can be reduced defining a canonical
representation of a path γ of length k: it is constructed starting from its equivalent
list of k sets of length k′ and then keeping the first one in lexicographical order
among the ones that are obtained by relabelling of the axes; two paths are then
equivalent if they have the same canonical representation. Again, the best path
can be found testing a sample of thousands of random states; it is defined as the
one that detects as quickly as possible (on average) whether the state is entangled.
This can be expressed via the average depth at which the tms algorithm stops, and
thus in terms of the r(k)(γ) probabilities as

d(γ) =
8∑

k=1
kr(k)(γ) ⇒ γbest = arg min

γ∈S
d(γ) (2.7)

where S is the ensemble of all the inequivalent paths of length 8, which result to be
3228; d(γ) corresponds to the number of measurements needed on average to detect
a state as entangled, following the path γ. The minimum is found at d = 3.07 and
it corresponds to measure first two of the diagonal entries σi ⊗ σi of the moment
matrix (which for the property in Eq. (2.3) automatically give also the third) and
then an off diagonal one σi ⊗ σj. Note that, as for entanglement witnesses, we
can give a geometrical picture of performing measurements in sequence, with the
difference that our aim is not to choose an optimal entanglement witness, but to
determine whether the hyperplane given by fixing a moment, or equivalently by the
expectation value of the corresponding observable, cuts the convex set of separable
states or not. If it does, it means that it is still not enough to detect entanglement;
we then need to perform a second measurement, which fixes another hyperplane. If
the region defined by the intersection of the two hyperplanes falls outside the set of
separable states, then it means that measuring those two observables is sufficient
for detecting the states in the intersection region as entangled.
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p1=0.57

p2
(1)=0.62 p2

(2)=0.68

p3
(1)=0.76 p3

(2)=0.95 p3
(3)=0.77 p3

(4)=0.78

p4
(1)=1 p4

(2)=1 p4
(3)=1 p4

(4)=1

Figure 2.1: Counter-example showing that the best path does not always coincide with
the one with highest probability at each level; in this binary tree of depth
4 the random probabilities satisfy the same constraint as in our case, i.e.
p(k−1)(γ) ≤ p(k)(γ). It is easily verified that the best path, with d(γ) = 1.8,
is the red one, even if at depth 2 it does not have the highest p(2)(γ).

Rewriting d(γ) in terms of p(k)(γ), we can see the correspondence for the two
optimal strategies (sets or paths): d(γ) = 8p(8)(γ)− p(7)(γ)− p(6)(γ)− ...− p(1)(γ);
in our case, choosing the optimal set at each step k coincides with selecting the
best path, which is not obvious, as can be confirmed by the counter example
we found, illustrated in Fig. 2.1. We have seen how obtaining a distribution of
lengths d(γ) for a symmetric two-qubit system is already quite demanding; we
started a similar investigation for the non-symmetric case, as the tms algorithm
can deal in principle with any state, with no special symmetry and any number of
subsystems. The semialgebraic set K is now defined by the product of two Bloch
spheres and, while the order of the smallest extension stays the same, the size of the
corresponding moment matrix increases, slowing down the computation (we will
discuss more about the complexity of the algorithm in Sec. 2.2). The complexity of
the non-symmetric case limited our study to partial knowledge up to 5 observables
measured; full tomography involves now 15 observables in total and this time the
maximum in the number of inequivalent sets is reached at k = 7 with 254 unique
sets; the main difference with the symmetric case is the efficiency in detecting
entanglement of the best set of measurement at same k, as we report in Table
2.1. Conversely, we were able to find a surprisingly efficient strategy for symmetric
multi-qubit states, for which it suffices to look at the diagonal tensor entries, that
are entries of the form Xµ1...µjµ1...µj with 0 ≤ µi ≤ 3. As seen above, for a separable
state they correspond to terms of the form ∑

j ωj(nµ1 ...nµj )2j and they are positive,
since the nµi are real and ωj ≥ 0; this means that a negative value for any of
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k Best set P(E, {M1, ...,Mk})
Symmetric 1 {Mxx} ∼ 0.18
Symmetric

Non-symmetric 2 {Mxx,Myy}
{Mx1x2 ,My1y2}

∼ 0.45
∼ 0.01

Symmetric
Non-symmetric 3 {Mxx,Mxy,Myy}

{Mx1x2 ,My1y2 ,Mz1z2}
∼ 0.65
∼ 0.1

Symmetric
Non-symmetric 4 {Mxx,Mxz,Myy,Myz}

{Mx1x2 ,Mx1y2 ,My1x2 ,Mz1z2}
∼ 0.8
∼ 0.12

Symmetric
Non-symmetric 5 {Mx,Mxx,Mxz,Myy,Myz}

{Mx1x2 ,Mx1y2 ,My1x2 ,My1y2 ,Mz1z2}
∼ 0.82
∼ 0.23

Symmetric 6 {Mx,Mz,Mxx,Mxz,Myy,Myz} ∼ 0.87
Symmetric 7 {Mx,Mz,Mxx,Mxy,Mxz,Myy,Myz} ∼ 0.98

Table 2.1: Best set of measurements of length k for symmetric (up to k = 7) and
non-symmetric states (2 ≤ k ≤ 5). In the symmetric case the notation
Mij denotes the joint measurement σi ⊗ σj , while Mi stands for 11⊗ σi. In
the non-symmetric case the notation Mi1j2 denotes the joint measurement
σi1 ⊗ σj2 .

the corresponding measurement operators translates into entanglement detection.
Restricting the investigation to integer spin-j states (for 1 ≤ j ≤ 5), the number
of not detected entangled states (among the 106 random states tested) decreases
with the spin size j, and already for j = 4 all the states in the sample are detected.
Finally, we also highlighted the connection between the rate of detected entangled
states and how quantum a state is, quantified by the quantumness as in [43]: we
see that, the more quantum a state is, the faster it is detected as entangled.

2.2 A solution to the channel separability prob-
lem

Thanks to the generality offered by the tms approach, we were able to extend the
results obtained for quantum states to the field of quantum channels, providing a
necessary and sufficient condition for the separability problem; the latter translates
again in the application of the tms algorithm, which gives a definite answer to
the question whether a quantum channel is able to create entanglement or not.
We exploit the Choi matrix representation of quantum channels and the channel-
state duality described by the Choi-Jamiołkowski isomorphism, and explore three
different classes of separability across different cuts between systems and ancillas,
as discussed in Sec. 1.1.2. We recall that we consider a completely positive map
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Φ : L(HA ⊗HB)→ L(HA ⊗HB) whose corresponding Choi state reads

CΦ =
∑
ijkl

Φ(|ik〉 〈jl|)⊗ |ik〉 〈jl| (2.8)

It acts on H = HA⊗HB⊗HA′⊗HB′ , with SµAµBµA′µB′ = S(A)
µA
⊗S(B)

µB
⊗S(A′)

µA′
⊗S(B′)

µB′

an orthogonal basis for H (S(•)
µ are Hermitian matrices forming an orthogonal basis

of the set of bounded linear operators on H•). Theorem 1 in Sec. 1.2.1 can be
translated in a necessary and sufficient condition on the Choi matrix to be separable,
according to the different cuts seen in Sec. 1.1.2 (EB, SEP and FS). We remark that
the entanglement annihilating maps do not fit our setting, since only entanglement
between the subsystems A and B is broken; such a scenario gives a necessary and
sufficient condition in terms of the partial trace of the Choi state, which cannot be
cast in a tms form. In fact, we want to decompose the Choi matrix as ∑k Pk ⊗Qk,
where Pk and Qk are positive operators acting on a different partition of the Hilbert
space, depending on which cut is considered; also the semialgebraic set K is defined
according to the decomposition we are interested in. We consider e.g. the EB case:
conditions for K are obtained expanding Pk over a basis of operators SABλ and Qk

over SA′B′λ′ ; then K is given by the positivity of the real expansion coefficients cλ, dλ′
as ∑

λ

cλS
AB
λ ≥ 0

∑
λ′
dλ′S

A′B′

λ′ ≥ 0
(2.9)

Moreover, the Choi matrix can be written as CΦ = ∑
λ,λ′ Xλλ′S

AB
λ ⊗ SA

′B′
λ′ ; the

coordinates Xλλ′ are then mapped to a tms of degree 2 (since we look for separability
across a bipartition) (yα)α≤2, from which we can obtain necessary and sufficient
conditions for channels as in Theorem 1:

Theorem 2 :
(i) The channel Φ is EB if and only if, considering extensions (yβ)β≤2t of (yβ)β≤2,
there exists a flat extension (yβ)β≤2(t+d0) of (yβ)β≤2t (possibly with t = 1), with
Mt(y) ≥ 0 and Mt(gj ? y) ≥ 0 for j = 1, ...,m, where the gj are polynomials of
variables cλ and dλ′ defined by the conditions ∑λ cλS

AB
λ ≥ 0, ∑λ′ dλ′S

A′B′
λ′ ≥ 0, and

d0 = max1≤j≤m{1, ddeg(gj)/2e}.
(ii) The channel Φ is SEP if and only if, considering extensions (yβ)β≤2t of (yβ)β≤2,
there exists a flat extension (yβ)β≤2(t+d0) of (yβ)β≤2t (possibly with t = 1), with
Mt(y) ≥ 0 and Mt(gj ? y) ≥ 0 for j = 1, ...,m, where the gj are polynomials of
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variables cλ and dλ′ defined by the conditions ∑λ cλS
AA′
λ ≥ 0, ∑λ′ dλ′S

BB′
λ′ ≥ 0, and

d0 = max1≤j≤m{1, ddeg(gj)/2e}.

Finally, in the case of fully separable channels, the Choi matrix must be separable
across any cut; it can be expanded as CΦ = XµAµBµA′µB′

S(A)
µA
⊗ S(B)

µB
⊗ S(A′)

µA′
⊗ S(B′)

µB′
,

such that the coefficients XµAµBµA′µB′
are mapped to a tms of order 4.

Theorem 2 gave us the possibility to investigate different examples of quantum
channels through a tms algorithm analogous to the one for states; once one fixes the
channel Φ, the algorithm takes only two inputs, the Choi state and the polynomials
defining K. Moreover, keeping the second input fixed, we can easily go from one
separability problem (SEP or EB) to another one swapping Hilbert spaces. Differ-
ently from the states case, specifying the coordinates of the Choi state does not
directly correspond to fixing the expectation values of some physical observables,
since the latter are now relative to the enlarged space system-ancilla. To get again
that correspondence, we need to switch to the superoperator representation Φij,kl ,
obtained through a reshuffling operation in the computational basis; this results in
measurements on the output state Φ(ρinput) (note that for another basis this results
in general in a linear combination of physical measurements on the system).
We studied examples of 2-qubit and single qutrit channels, for which the set K is
now different than the state case seen in Sec. 2.1, since it is not relative to single
qubit, unless the FS case is considered. The polynomial inequalities in K can be
written starting from the characteristic polynomials of the matrices in Eq. (2.9);
they have degree 4 and thus d0 = 2, as defined in Eq. (1.17). Our investigation was
limited by the complexity of the SDP program applied to separability of quantum
channels; in fact, while the fully separable case is still tractable for a generic 2-qubit
channel, the EB and SEP problems become too complex. This can be quantified
looking at the decision variables of the SDP, given by the number of free entries
of the extension of the moment matrix Mt(y) of order t, which corresponds to the
number of monomials from n variables up to degree 2t, that is

(
n+2t

2t

)
(while the

size of the moment matrix is
(
n+t
t

)
). Since the variables of the tms in Eq. (1.20)

are (xµ)1≤µ≤15 for the system, (x′µ)1≤µ≤15 for the ancilla and the smallest extension
possible is given by t = 3, the number of decision variables exceeds 106 and the
numerics require too much time and memory. Moreover, the most common method
to solve SDP is the Interior Point Method, which at each iteration requires the
solution of a linear system with O(N3) complexity, where N is the number of
linear constraints in the SDP involving all the n variables; finally, the number
of semidefinite constraints is given by

(
n+t
t

)
+ m

(
n+t−1
t−1

)
+ m

(
n+t−2
t−2

)
, where m is

the number of inequalities in the semialgebraic set for each set of variables. Even
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though these figures make the complexity of the problem grow very fast, we were
able to study three different families of channels:
Fully symmetric Choi states These are channels whose corresponding Choi
matrix is a fully symmetric state, i.e.

(11− P )CΦ(11− P ) = (11− P )CΦP = PCΦ(11− P ) = 0 (2.10)

where for a 2-qubit channel P is the projection operator onto the symmetric subspace
spanned by the Dicke states P = ∑2

m=−2 |D
(m)
4 〉〈D

(m)
4 |. If a fully symmetric state is

separable with respect to an arbitrary partition, then it is fully separable; it follows
that in this case we only need to explore the FS separability problem. We obtained
results for symmetric states of 4 qubits (i.e. spin-2 states) in Sec. 2.1.
Planar channels These channels are given by a linear combination of tensor
products of single-qubit planar channels, such as

Φ = aφ
(1)
pl ⊗ φ

(1)
pl + bφ

(2)
pl ⊗ φ

(2)
pl (2.11)

Recalling the definition of a single qubit channel in Eq. (1.3), planar channels are
those that map the Bloch ball to a disk; more precisely, the matrix ΛΦ can be
rewritten, up to unitary rotations, as diag(λ1, λ2, λ3). Planar channels are the ones
with one of the λi = 0; in Eq. (2.11) φpl can be either unital (tΦ=0) or not, and
positivity conditions depending on the λis can be calculated accordingly. We chose
to expand the corresponding Choi matrix over tensor products of Pauli matrices,
resulting in a matrix invariant under partial transposition with respect to any qubit;
this entails separability across the 1× 3 bipartition as found in [65]. We can then
still explore the three different classes of separability with the tms algorithm and the
results for the ∼ 103 tests done gave all full separability of the Choi states, leading
us to conjecture that all the states corresponding to channels as in Eq. (2.11) are
fully separable (this made investigation of the SEP and EB cases superfluous).
Qutrit channels Finally we considered damping qutrit channels defined as

ΦD : ζ → ζ ′ = Λζ with Λ = diag(Λ1, ...,Λ8) (2.12)

where ζi = 3
2 tr(ρλi), ρ = 1

3(11 + ∑8
i=1 ζiλi) and the {λi} are the Gell-Mann ma-

trices. As done in [22], we set Λi 6=3,8 = x,Λi=3 = y,Λi=8 = y2; the corresponding
Choi state is a maximally mixed state for x = y = 0, while it corresponds to a
maximally entangled state of two qutrits for x = y = 1. In this case only the
EB problem is defined and the tms problem has degree 2; we compare the results
obtained through the tms algorithm with the ones obtained in [22] via the negativity



2.3. ENTANGLEMENT IN AN ACOUSTIC BLACK HOLE 23

Rank condition Size biggest moment matrices Run-time
Fully

symmetric rkM3(y) = rkM2(y) 20× 20 1s

Planar rkM3(y) = rkM2(y)
rkM4(y) = rkM3(y)

165× 165
495× 495 10s/6min

Damping
single-qutrit rkM3(y) = rkM1(y) 969× 969 5h

Table 2.2: Complexity of the moment poblem in terms of the rank condition for the
extensions explored and of the size of the highest order moment matrices
involved. For the first two examples, the corresponding run-time for a single
run of the algorithm refers to a standard computer with a 64bit Windows
operating system, 4GB RAM and Intel Core i7 CPU 2.00GHz-2.60GHz,
while for the third example a more powerful machine was used (a single run
required between 150 and 300 GB of RAM).

N(ρ) = 1
2(‖ρPT‖1−1), where ‖ρPT‖1 is the trace norm of the partial transpose with

respect to the system qutrit. The negativity N(ρ) cannot detect PPT-entangled
states (meaning that there are entangled states with N(ρ) = 0). Our algorithm
is instead able to give a certificate of separability (in the class EB) for states for
which the negativity criterion remains inconclusive.

We give some more detailed figures of complexity and run-time for these three
different examples in Table 2.2.

2.3 Entanglement in an acoustic black hole

Entanglement is a benchmark for the quantum nature of physical systems and
for this reason is sometimes relevant also in settings apparently very far from
the quantum information or quantum computing field. Here we considered the
study of entanglement in an analogue gravity platform, such as a Bose-Einstein
condensate (BEC), which is experimentally implementable; an extensive discussion
of the background theory of analogue gravity and BECs (see e.g. [9] and [47]) is
beyond the scope of this thesis, so we will limit ourselves to the essential notions
needed to lay the ground for investigating entanglement, both its detection and
quantification.
The idea of analogue black holes came from Unruh [94] after the prediction of
Hawking radiation in [51, 52]; this radiation is so faint that it cannot be detected
in our universe, so Unruh suggested that an acoustic analogue of a black hole may
be implemented in a pipe: if the flow happens to be supersonic in some region
of space, an acoustic wave emitted from this region will not be able to propagate
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𝒗 < 𝒄 𝒗 = 𝒄 𝒗 > 𝒄

Figure 2.2: Sound waves propagation in a transonic flow which moves from left to right.
In the subsonic region on the left the velocity v of the fluid is less than the
speed of sound c and the sound waves propagate in all directions. v then
reaches c at the sonic horizon (dashed line) and overcomes it on the right,
in the supersonic region. The latter is indicated with a gray background to
recall the analogy with the interior of the black hole; in this region, sound
waves are dragged by the flow.

upstream and will be trapped, see Fig. 2.2. Therefore, sound waves play here the
role of light, trapped in the interior of gravitational black holes. Unruh showed
that these acoustic black holes should emit a faint sonic radiation, analogous to the
Hawking radiation of gravitational black holes. This analogue radiation emerges
from the sonic horizon, which corresponds to the boundary between the subsonic
and the supersonic regions of the flow, as schematically depicted by the vertical
dashed line in Fig. 2.2. Any sound wave crossing this horizon from the subsonic
area to the supersonic region will be trapped, in analogy with a light wave passing
through the "event horizon" of a gravitational black hole.
Beyond this kinematic picture, the analogy with the gravitational case becomes
complete looking at the hydrodynamic equations for sound waves, which indeed in
[94] were shown to correspond to the wave equation of a massless scalar field in a
curved spacetime; moreover, once the sound field is quantized, it can be shown that
the presence of a sonic horizon, which disconnects the subsonic and the supersonic
region, leads to the spontaneous creation of particles (i.e. phonons) from the horizon,
as in the Hawking radiation case.
Bose-Einstein condensates of atomic vapor are good candidates for studying ana-
logue Hawking radiation, since they are quantum systems, thus they present
quantum fluctuations that can lead to spontaneous emission of particles at the
sonic horizon, and because the interactions between the atoms are well described
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by Bogoliubov theory [15]; he suggested a perturbation theory which takes into
account the interactions and which predicts the emergence of sound-like excitations
from quantum fluctuations in the condensate. A one-dimensional analogue black
hole configuration using a BEC has been experimentally realized [93, 29]; in order
to obtain a sonic horizon, a proper external potential can be used to change the
density profile and thus the velocity at which the excitations propagate along the
condensate. It is then possible to modulate the flow velocity in order to create a
subsonic and a supersonic region.
We considered a stationary flow of a one-dimensional BEC which is upstream
subsonic and downstream supersonic in the so-called "waterfall configuration", in
which the external potential used is a step function; in this case, analytical results
can be obtained [69] and sound-like excitations propagate in the BEC according
to a dispersion relation for the frequency ω of Bogoliubov type [81], which give
rise to a scattering process onto the sonic horizon. In particular, in this setting,
we have three different modes describing three different scattering processes which
involve one or more propagation channels, both ingoing (towards the horizon) and
outgoing (away from the horizon); any wave propagating along an ingoing channel
will scatter at the horizon and be transmitted or reflected along different outgoing
channels.
Each mode can be described by a quantum boson operator (i.e. the propagating
modes behave as bosons satisfying the canonical commutation relations), result-
ing in two annihilation and one creation operators (the latter is due to negative
norm of some of the channels [69, 84]); we denote the "incoming" modes with
(b̂0(ω), b̂1(ω), b̂2(ω)), corresponding to scattering processes initiated by a wave inci-
dent along one of the "in" channels directed towards the horizon, and analogously
the "outgoing" ones with (ĉ0(ω), ĉ1(ω), ĉ2(ω)). In our picture, the mode associated
with ĉ0(ω) is denoted as the Hawking outgoing mode; indeed, it corresponds to
a sound-like excitation travelling in the subsonic region and escaping from the
sonic black hole, in analogy with the Hawking particle which escapes from the
gravitational field of a black hole. The other two, associated with operators ĉ1(ω)
and ĉ2(ω), are instead denoted as the companion and the partner respectively;
the latter carries a negative energy and thus represents the counterpart of the
partner particle involved in the Hawking pair produced in the gravitational case.
Due to dispersive effects in the system, the presence of mode 2 is limited to a
range of frequencies ω up to a frequency threshold Ω; moreover, such a waterfall
configuration is uniquely determined once the downstream (corresponding to the
supersonic region) or upstream (subsonic region) Mach number is fixed. The latter
is defined asmα = Vα

cα
, where Vα is the upstream (α = u andmu ≤ 1) or downstream
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(α = d and md ≥ 1) velocity and cα is the speed of sound in the BEC, which reads
cα =

√
gnα/m, with g the coupling constant between the atoms of the condensate,

nα the atomic density of the BEC and m their mass.
The two sets of operators b̂(ω) and ĉ(ω) can be expressed as linear combinations
of each other, so a Bogoliubov transformation relating them can be found; in
particular, the Bogoliubov transformation associated with this scattering process
leads to a three-mode Gaussian pure state, given by the vacuum of the b modes |0〉b
expanded over the Fock basis for excitations of c type.
This allowed us to explore entanglement of such state by means of the known results
for Gaussian states discussed in Sec. 1.1.3 and Sec. 1.1.4. Bipartite entanglement
of the three reduced two mode states can equally be detected by the PPT criterion
in Eq. (1.9) or by the criterion found in [35], which is equivalent in this case to
the violation of a Cauchy-Schwarz inequality for entangled modes pairs. We found
that both criteria detect entanglement in the reduced states 0|2 (Hawking-partner)
and 1|2 (companion-partner), while the reduced state 0|1 is separable (Hawking-
companion).
Nonetheless, the three modes share genuine tripartite entanglement, which we could
quantify, since in the case of a three-mode pure Gaussian state explicit expressions
for the residual contangle in Eq. (1.13) were found (see [4]); it results that the
residual contangle only depends on the local mixedness ai, which are defined as the
inverse of the purity for the single-mode reduced states. In particular, the minimum
in Eq. (1.13) is given by taking as reference mode i the one with the smallest ai; in
our setting, at fixed mu = 0.59 (corresponding to the experimental value found in
Ref. [29]), this is realized by mode 1 up to a threshold frequency ωc, above which
a0 becomes the smallest. The residual contangle diverges at ω → 0, while for higher
frequencies rapidly decreases to zero and vanishes at the upper-bound frequency Ω;
this is expected since above this threshold mode 2 disappears and the tripartite state
no longer exists. Moreover, we explored the behaviour of the residual contangle
as a function of the Mach number; in fact, integrating Gres

τ (ω) over all frequencies,
we found that the amount of tripartite entanglement is maximal for mu = 0.14,
thus suggesting which is the best choice of parameters for an experimental measure
of tripartite entanglement in the waterfall configuration of this one-dimensional
condensate. Finally, tripartite entanglement of our state can be unitarily localized
in a two-mode squeezed state [89] via a Bogoliubov transformation; this can be
described via a simple equivalent optical setup using non-degenerate parametric
down-conversion to create a two-mode squeezed state. If we identify one of the
modes as the partner, then the other one, directed to a beam-splitter, generates the
two other outgoing channels, respectively the companion and the Hawking mode.
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We could extend the study of the bipartite entanglement for the Hawking-partner
pair to the case in which the BEC has a finite temperature; in this case, our state is no
more the vacuum and it is no more pure, but it is instead a mixed state, whose modes
have a finite occupation number. Once again, the PPT and the Cauchy-Schwarz
criterion gave the same results about the detection of bipartite entanglement, as
a function of the frequency ω of the excitations and of the temperature TBEC
of the condensate, at fixed mu = 0.59; as the temperature increases, the range
of frequencies at which entanglement is present decreases, until TBEC ∼ 1.8 g nu,
above which entanglement is destroyed, thus suggesting experimentally a maximum
temperature of the Bose gas when observation of entanglement is of interest. As
before, we also explored the dependency on the Mach number at fixed TBEC ; for
low temperatures of the condensate, entanglement persists for a larger fraction of
the frequency domain when mu approaches 1, while this region is a lot reduced for
temperatures TBEC ∼ 1.8 g nu and shifted to lower Mach numbers (mu < 0.6).
At last, we moved our attention to the quantification at finite temperatures of bipar-
tite entanglement of the Hawking pair, to underline the relevance of the approach
based on the symplectic spectrum, and thus of the PPT criterion, instead of the
Cauchy-Schwarz one, the latter being more often used in the context of analogue
gravity setups. We defined as the "PPT measure" the quantity 1− νPT− , where ν− is
the smallest symplectic eigenvalue 1, and as the "Cauchy-Schwarz parameter" ∆CS

the quantity ∆CS ≡ |〈ĉ0 ĉ2〉|2 − (a0−1) (a2−1)
4 , where the mean value is taken over the

mixed state at finite temperature; both quantities are nonnegative for entangled
states. We show that, while the PPT measure is an entanglement monotone at any
temperature, the Cauchy-Schwarz parameter is not, except for TBEC = 0. The PPT
approach should then be preferred for quantifying entanglement in the transsonic
flow of a BEC at finite temperature.

1see [3] for further explanations on the reason why only the smallest symplectic eigenvalue is
enough.



Chapter 3

Discussion and future directions

The problem of efficient channel certification remains an open and expensive
one; several methods have been proposed (see e.g. [64] for a recent review),
such as randomized benchmarking or cross-entropy benchmarking (the latter was
used in [5] for showing quantum supremacy of the latest processor mentioned in
Sec. 1.1). Any certification protocol aims at obtaining an output which accepts
or rejects the hypothesis that the quantum device is working correctly, providing
also a corresponding level of confidence. In principle, since we are dealing with
quantum processes, i.e. quantum maps acting on states, one could deal with this
problem by certifying output states on a large set of input states or by considering
the correspondence with the Choi state, as we did in Sec. 2.2 for entanglement
properties of quantum maps. Nevertheless, these methods are not efficient enough
and suffer of the so-called state preparation and measurement (SPAM) errors. More
often certification problems can be translated into estimation problems, in which
the functioning of the quantum device can be described by a finite number of
parameters and one seeks estimating them with a certain precision. Especially
suited for this type of processes are Bayesian updating methods, whose advantage
is that single outcomes of experiments can be exploited (no need for mean values
from many measurements). Core of these methods is the Bayes rule for conditional
probabilities; suppose we perform the experiments e = {e1, e2, ..., en} to infer the
vector of unknown parameters x and throughout the experimental process we collect
the data D = {d1, d2, ..., dn}, then we can write:

Pr(x|D) = Pr(D|x)Pr(x)
Pr(D) (3.1)

where the probability on the left hand side is referred to as the posterior, while Pr(x)
is called the prior and it contains any a priori knowledge on the parameters. Pr(D|x)

28
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is the likelihood, which in this context is represented by the Born rule, and finally
Pr(D) is a normalization factor. Analytic calculation of the probability distribution
in (3.1) soon becomes impractical (after few experiments/updates), thus numerical
methods, often involving Monte Carlo algorithms, have been implemented to
overcome these difficulties; in the following we will consider the so-called sequential
Monte Carlo algorithms (SMC) [33], where sequential indicates that data are
processed sequentially, since the role of the prior for each successive datum is
taken by the posterior from the last. The latter method, also known as particle
filtering, approximates the prior continuous probability distribution Pr(x) with a
discrete approximation that can be written as ∑i ωiδ(x− xi), where the {xi} are
the locations of a set of "particles" (samples) and ωi the corresponding "weights"
(probabilities). From this expression, a particle filter {ω′i,x′i} for the posterior
probability distribution Pr(x|D) can be obtained, setting x′i = xi and updating
the weights as ω′i = ωiPr(D|xi)/

∑
j ωjPr(D|xj). This update method suffers of

numerical instability as data is collected, a problem known as impoverishment of
the filter; solutions to it are known as resampling algorithms [34] which substitutes
the impoverished filter with a new one that is not, but still approximates the same
probability distribution, modifying the choice of particle locations.
This way of including new knowledge into the process of estimation naturally
suggests adaptive strategies to perform at each update the best experiment possible;
a lot of effort has been put in the context of Bayesian experimental design [21], which
casts the problem of choosing the best experiment into the theoretical problem
of optimizing a utility function. The latter quantity depends on the possible
future designs/experiments e′ = {en+1, en+2, ..., en+m}, the possible future data
D′ = {dn+1, dn+2, ..., dn+m} and the model parameters x; the optimal Bayesian
design e′∗, among the ones in the design space E, is then the one that maximises
the expected utility function [85, 45]:

e′∗ = arg max
e′∈E

E[U(e′,x,D′)] (3.2)

where E[...] denotes the expected value (which is taken over different variables
depending on the choice of U) and U(e′,x,D′) is the utility function, which
optimized at each step gives indeed a sequential or adaptive design (we will see
that a step in the optimization can consist in one or more experiments, i.e. m ≥ 1);
if instead a unique e′∗ is used throughout the whole experiment, it is called a
static design. In the former case, common choices of utility functions for parameter
estimation problems are functions of the posterior covariance matrix or information-
based utilities [85, 45], as e.g. the information gain (IG) [74] defined via the
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Kullback-Leibler divergence (KLD) between the prior and the posterior distribution;
omitting the dependence on e and D to simplify notation, we have:

IG(e′,D′) ≡ Ex|e′,D′

[
log Pr(x|e

′,D′)
Pr(x)

]
=
∫

X
Pr(x|e′,D′) log Pr(x|e

′,D′)
Pr(x) dx

(3.3)
where the index of E indicates the variable for the expectation to be taken over. In
the following we will consider two different options for the utility function U and
see how they perform for a specific example of parameter estimation for a quantum
channel.

3.1 Beyond the "myopic" approach: a case study

We consider the problem of testing a single-qubit quantum channel which
rotates the input state of an angle θ around the ẑ axis; the action of such a device
is completely characterized by the single parameter θ. We conceive of a scenario
in which a company provides us with a device as described above and our aim is
to verify, as soon as possible, whether it performs as the company states; more
formally, we want to establish whether the true parameter θt characterizing the
channel lies in the confidence region given by the company. In the case of a single
parameter this region is simply an interval centered around the mean value θc
estimated by the company; in the following we will refer to this interval as SPEC.
The certification process consists then of two different stages; in the first one, we
update the posterior probability distribution following an adaptive strategy, and in
the second one we use a decision criterion to accept or reject the value θc given by
the company.
Many adaptive experimental designs involve going only one step ahead in the future,
which in terms of the notation used in Sec. 3 means to consider only one experiment
and one outcome {en+1, dn+1}; this is called the myopic approach and it is in general
not optimal, since one should look ahead to all future observations and decisions
that can be made at each step in the experiment. The last approach is known as
backward induction [13] and it is computationally very expensive, so it remains
limited to simple design problems, making myopic approaches more appealing for
more complex problems. In the following we will use a strategy which goes beyond
the single step optimization, but is anyway limited to a finite number of steps
ahead (1 ≤ m ≤ 4) in the future observations. To this end, we use in Eq. (3.2) two
different utility functions, the negative variance of the posterior distribution and the
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expected information gain, which is usually addressed as the mutual information 1;
considering a finite number l of possible outcomes for each experiment, the mutual
information at fixed m is given by:

Ex,D′|e′ [IG] ≡ IG
(m) =

∑
k

wkIGk(e′,D′) (3.4)

where k runs up to the total number of possible outcome sequences lm, wk is the
probability of obtaining the kth sequence of outcomes of length m and IGk is the
information gain of the kth sequence. Note that in this case the prior distribution
in Eq. (3.3) is not the one relative to the previous single step, but rather the one of
m steps back.
Once we stop the update process (we will discuss below when it is reasonable to
stop it in the case here considered) we can apply a decision criterion which allows
us to express agreement or disagreement with the company; again, we consider two
different options. The first criterion only relies on the position of the mean of the
posterior distribution obtained, looking whether it falls inside or outside the SPEC;
the second one instead compares the SPEC interval with a chosen credible region
for the posterior distribution. We took the highest posterior density (HPD) region
as the credible one, which in our case contains 95% of the probability mass; the
overlap of this credible interval with the SPEC gives the decision method used in
[66], which we will call the "HPD+SPEC" criterion. According to the latter, we
accept the value θc estimated by the company if the 95% HPD credible region falls
inside the SPEC, we reject it if it entirely falls outside. If the overlap is partial,
this criterion remains inconclusive.
To start with the above certification process for the single-qubit rotation chan-
nel considered, which we denote as Φrot, we need to fix an initial input state
ρ

(0)
in ; we chose it as ρ(0)

in = |+〉〈+| along the x̂ axis, as this state is more affected
by a rotation around the ẑ axis and, moreover, since it maximises the Chernoff
distance, as will be explained in Sec. 3.1.1. The experiment is carried out per-
forming 2-outcome measurements, given by two POVM elements, e.g. projectors
Π(i)

1 = (I + σi)/2 (Π(i)
2 = I−Π(i)

1 ), with σi the Pauli matrices σx and σy (the one
with σz gives no information in this case). The likelihood of obtaining one of the
two outcomes is given by the Born rule Tr(Π(i)

1,2ρout), where at the first update
ρout = Φrot(ρ(0)

in ).
To simulate an experiment, we choose as initial prior a uniform distribution over
the [−π, π] interval, we fix the true angle θt, the company angle θc and a SPEC

1Formally, the mutual information corresponds to the KLD between the joint distribution
Pr(x,D′|e′) and the product of the marginal distributions for x and D′ [85].
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around it as [θc−∆θc, θc + ∆θc], where ∆θc represents the uncertainty associated to
the parameter θc given by the company. Moreover, we also introduce the possibility
of choosing a third action besides the two measurements mentioned above, which
consists in applying the channel again over the output state without measuring (this
is practically implemented including the identity operator as possible measurement).
The choice of this third action entails that the input state is not always reset to ρ(0)

in

between the single experiments and, furthermore, that the likelihood will depend
on Mθt, where M is equal to the number of times we chose the third action, with
M ≤ m. 2 Indeed, quantum mechanically, if one e.g. applies twice the rotation
channel and then measures the qubit or measures twice the qubit after applying
the rotation only once, they will get different outcome probabilities (for a small
rotation angles θ, the leading term in the likelihood function increases to ∼ θ2 from
∼ θ2

2 ).
Assuming that there is only one true parameter, according to the central limit
theorem (or to the Bernstein-von Mises theorem in the context of Bayesian infer-
ence), the posterior distribution tends toward a normal distribution for N � 1
measurements. In this case the width of the posterior distribution decreases as
SDprior/

√
N , where SD is the standard deviation. Using this information we can

estimate after how many measurements it becomes reasonable to stop the update
process, i.e. when the width of the posterior becomes comparable with that of a
uniform distribution inside the SPEC. This is given by N = σ2

prior

σ2
SPEC

, where σ2 is the
variance.
We show in the following some preliminary results obtained for θt = π/10 and
several values of θc with a fixed ∆θc = π

18 ; the fixed width of the SPEC gives
N ≈ 300. We find that the optimization over sequences of measurements using
both the negative variance and the mutual information over a sequence gives an
advantage, i.e. the final posterior distribution is narrower than the one obtained
with the same number of measurements (but different number of updates) with the
myopic approach. After few initial oscillations, the best sequence of measurements
always coincides with the one which contains M = m− 1 times the identity, while
in the myopic approach the third possible action is never chosen. We present the
average values (over 2000 random samples) of the final posterior variance and the
number of steps needed on average to reach the optimal measurement in Table 3.1,
for sequences of measurements of length 1 to 4 and for both the utility functions
considered. To compare the efficiencies of the different optimization methods,
we calculate the probability of success (i.e. the probability of reaching the right

2It is actually possible to show that even without including this third possible action the joint
probability of obtaining two outcomes successively is not always factorizable.



3.1. BEYOND THE "MYOPIC" APPROACH: A CASE STUDY 33

Measurement
sequence length Utility function Average variance Number of steps before

optimal measurement sequence

1 MI
VAR

0.0033
0.0034

2 MI
VAR

0.0017
0.0017

5
8

3 MI
VAR

0.0012
0.0012

12
7

4 MI
VAR

0.0012
0.0009

14
8

Table 3.1: Average values (over 2000 random samples) of the final posterior variance and
number of steps needed on average to reach the optimal measurement, for
sequences of measurements of length 1 to 4 and for both the utility functions
considered.

conclusion agreeing or disagreeing with the company) for the two different decision
criteria; we recall that for the "HPD+SPEC" criterion we cannot in fact define a
probability of error, since the cases of no success are actually inconclusive cases and
one should continue the experiment doing more measurements 3. Nonetheless, we
consider here a fixed number of measurements (N = 300) and compare the success
probabilities in this case.
We present the results for each utility function and decision method in Fig. 3.1,
comparing sequences of 1, 2, 3 and 4 measurements. The calculations are performed
with the Qinfer package [46] which uses SMC methods; in particular, we consider
the credible region as there implemented, i.e. particles in the returned region are
selected by including the highest-weight particles first until the desired credibility
level (95%) is reached. Moreover, using a particle filter with 2000 particles, we
found good agreement when comparing the numerical values of the MI for all length
of the measurement sequences with the analytical ones, relative to the first update.
We can see that the probability of success decreases and reaches the minimum
value when the true angle θt almost coincides with one of the boundary of SPEC
(here θt ' θc − ∆θc). Looking at the results for the decision criterion based on
the position of the mean, we can estimate the statistical fluctuations looking at
these minimum values of the probabilities, which in this case should all be equal
to 1/2; in this way we get fluctuations of ∼ 5%. We can see that the probability
of success for both criteria grow going from sequences of measurements of length
1 (myopic approach) to length 4; a deviation from this behaviour can be seen in

3Numerical tests show that the overlap between the posterior HPD and the SPEC does not
decrease regularly as the variance; indeed the credible regions still oscillate after 350 updates (for
an example download animation at [1]).
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Figure 3.1: Success probabilities for different lengths of measurement sequences for the
two utility functions considered, here indicated with MI and VAR, and
for the two different final decision criterion, denoted as HPD+SPEC and
MEAN. The calculations are performed with QInfer and the probabilities
are averaged over 2000 random particle filters with 2000 particles. The
probabilities increase going from length 1 to 4, with a deviation from this
behaviour only of sequences of 4 measurements for MI with HPD+SPEC
(first few points). The minimum is reached when θt ' θc − ∆θc and
flucuations amount to ∼ 5%.

the case of mutual information optimization over sequences of length 4 with the
HPD+SPEC criterion; indeed, the first few corresponding probabilities (see the
upper-left panel in Fig. 3.1) are smaller than the ones for sequences of length 2 and
3. This deviation would require further investigation.
Finally, we compare in Fig. 3.2 the results presented in Fig. 3.1 only for sequences
of length 4 to highlight which is the most efficient combination of adaptive mea-
surement strategy and final decision criterion. We can conclude that both utility
functions give greater and equal success probabilities using the position of the mean
as final decision criterion.
Future directions of this study would include similar investigation for different
rotation angles, extensions to M > 4 of the length of measurements sequence and
generalizations to multi-parameter estimation problems.
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Figure 3.2: Success probabilities for measurement sequences of length 4 for the two
utility functions considered, here indicated with MI and VAR, and for
the two different final decision criterion, denoted as HPD+SPEC and
MEAN. The calculations are performed with QInfer and the probabilities
are averaged over 2000 random particle filters with 2000 particles. The
position of the mean as final decision criterion results more efficient than
HPD+SPEC and equally efficient for both utility functions.

3.1.1 Chernoff distance

Lastly, we investigated the problem of discriminating two different quantum
channels; to this end, we considered the results obtained in the context of quantum
hypothesis testing for quantum states (see e.g. [8]) and applied them to the output
states returned by the channels considered. As in the previous section, we are
interested in knowing whether a channel performs as intended more than estimat-
ing the characterizing parameters with high precision. In particular, we want to
estimate the probability of error in stating that a given device does or does not
work correctly (correct functioning corresponds to the one of an ideal channel). We
considered here a special class of quantum channels, i.e. those which square to the
identity operator, such as e.g. the Hadamard, the Not and the Z channels; the
reason is that we want to answer the question:

Given e.g. a faulty Hadamard channel, is it easier (smaller probability of er-
ror) to conclude that the "squared" channel (applied twice to the input) does or does
not act as the identity operator than saying whether it does or does not act as an
ideal Hadamard channel?

To clarify the above statement, consider an input qubit channel prepared in the
pure state ψin = 1√

2(|0〉 + |1〉); the application of an ideal Hadamard gate will
rotate it to the pure state |0〉. If one now measures the Pauli observable σx, they
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will get the two possible outcomes (+,−), each with probability 1/2. If instead the
Hadamard gate is applied twice to the input (equivalent to applying the identity)
before measuring σx, the qubit is left in the state ψin and one will get the + outcome
with probability 1. When the two experiments are repeated several times, one will
get a sequence of (+,−,−,+,+...) and one of (+,+,+,+,+...). If now instead the
application of a faulty Hadamard gate is considered, one can see that it is easier to
notice a deviation from the expected sequence of all + than from the one of + and
− with probability 1/2.
Following the reasoning above, let us consider two quantum states ρ and τ acting on
a finite-dimensional Hilbert space and occurring with prior probabilities π0 and π1

respectively; the probability of error Pe in distinguish two probability distributions
decreases exponentially in the number of draws from the distributions, which we
indicate with N. We thus have

Pe,N ∼ e−Nξ (3.5)

The approximation in Eq. (3.5) becomes more and more precise when going to the
asymptotic limit; in the classical case, the asymptotic error exponent was found by
Chernoff in [23] and later generalized to the quantum case in [7, 77]. In the latter
case, ξ corresponds to the quantum Chernoff distance ξQCB defined as

ξQCB = − log( inf
0≤s≤1

Tr(ρ1−sτ s)) = lim
N→∞

− 1
N

logPe,N (3.6)

The quantity Tr(ρ1−sτ s) in Eq. (3.6) is real and non-negative for every 0 ≤ s ≤ 1.
We set τ as the output of the ideal channel and ρ as the output of the faulty channel;
we can then maximize the Chernoff distance ξQCB over the possible input states to
maximize the distinguishability of the outputs and thus obtain the fastest decay of
Pe,N possible. This always resulted in choosing pure states as input states.
The Hadamard (H), Not (X) and Z channels can all be explained as rotations on
the Bloch sphere, which are in general written as Rn̂(θ) = exp

(
−i θ2 n̂ · σ̄

)
, where θ

is the rotation angle, n̂ is the rotation axis and σ̄ is the vector of Pauli matrices;
H, X and Z all perform rotation of θ = π, with n̂ = x̂ + ẑ, n̂ = x̂ and n̂ = ẑ

respectively.
We considered both the case of a narrow distribution of the faultiness ε (i.e. δ(ε)
corresponding to only one fixed value of ε) and of a broader distribution of errors,
uniform on the interval [0, 1/2], to see how the probabilities compare also when we
are far from the ideal case.
We show in Fig. 3.3 the results for Pe,N for the Z gate in the two scenarios above.
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Figure 3.3: (left) Probabilities of error Pe,2N ("not squared" case) and Pe,N ("squared"
case) as a function of ε (N = 100). Output states of the faulty and ideal Z
gate are more distinguishable in the "squared" case; the minimum is reached
for pure qubit states on the xy-plane. (right) Same probabilities for a
uniform distribution P (ε) over [0, 1/2] as a function of the exponent s in
Eq. (3.6) and of the angle θ ∈ [0, π] in the usual representation of the Bloch
sphere for one qubit states; the minimum probabilities of error are 1.6×10−2

and 4× 10−4 for the "not squared" and "squared" case respectively.
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Figure 3.4: Probabilities of error Pe,2N ("not squared" case) and Pe,N ("squared" case)
as a function of ε (N = 100). Pe,N in the "squared" case decreases to zero
faster than Pe,2N in the "not squared" one.

We find that the Chernoff distance in Eq. (3.6) is always greater (states more
distinguishable) in the "squared" case than in the "not squared" one; this means
that the probability of error in discriminating the two channel outputs goes to zero
faster in the "squared" case, i.e. they are more easily distinguishable. We remark
that in order to make a fair comparison between the "squared" and "not squared"
case we need to allow for a double number of draws N in the latter one. We see how
the advantage of the "squared" case holds also in the case of a uniform distribution
of errors. Analogous results are obtained for the Hadamard and Not gates. If
we consider instead a channel which does not square to the identity operator, (e.g.
a rotation channel with small rotation angle θ = π/10 as in Sec. 3.1), the same
behaviour for the error probabilities as for the Z channel can be seen only when the
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distribution of errors is narrow and we are still close to the ideal case, while it is
lost otherwise and it makes no difference to compare the ideal and faulty channel in
the "not squared" or "squared" case. To conclude, we present the results in Fig. 3.4.
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With the advance of quantum information technology, the question of how to most efficiently test quantum
circuits is becoming of increasing relevance. Here we introduce the statistics of lengths of measurement
sequences that allows one to certify entanglement across a given bipartition of a multiqubit system over the
possible sequence of measurements of random unknown states and identify the best measurement strategies in
the sense of the (on average) shortest measurement sequence of (multiqubit) Pauli measurements. The approach
is based on the algorithm of truncated moment sequences, which allows one to deal naturally with incomplete
information, i.e., information that does not fully specify the quantum state. We find that the set of measurements
corresponding to diagonal matrix elements of the moment matrix of the state are particularly efficient. For
symmetric states their number increases only like the third power of the number N of qubits. Their efficiency
increases rapidly with N , leaving already for N = 4 less than a fraction 10−6 of randomly chosen entangled
states undetected.

DOI: 10.1103/PhysRevA.100.012328

I. INTRODUCTION

With the availability of the first small quantum processors,
the task of characterizing such processors has become a key
challenge. Indeed, long before proving full functionality, one
of the major questions that faces a quantum processor is
whether it “truly” works quantum mechanically—or could
rather be explained by classical processes. Similar questions
arise already at the level of a quantum state: Given a physical
system in an unknown quantum state, can the statistics arising
from it be explained by a classical state? If the state is fully
characterized, one can apply nonclassicality measures to find
out, but since a mixed quantum state of N qubits is specified
by d = 22N − 1 real parameters, it is clear that an answer
based on full quantum state tomography quickly becomes im-
practical. In addition, one can only estimate expectation val-
ues based on averages over finitely many measurements that
are themselves imperfect, and the resulting uncertainty can
lead to nonphysical states in the inversion procedure underly-
ing full quantum state tomography. More robust approaches
to state tomography are maximum likelihood estimation of
the state [1–4] and Bayesian inference [5,6], which output
estimates of the state that are by construction bona fide phys-
ical states, as well as “self-consistent quantum tomography,”
which does not necessarily rely on perfect measurements [7],
but none of these approaches remedies the efficiency problem.

Recent developments based on compressed sensing make
use of prior information on states. They provide a large gain
in efficiency, in particular, for the typically low-rank states
relevant for quantum information tasks [8–12] or matrix-
product states that describe interacting condensed-matter sys-
tems in low dimensions [13,14]. Machine learning aimed at

*nadia.milazzo@u-psud.fr

determining by itself what the best measurements are for a
certain task, or to recognize entanglement from measurement
data, was considered, e.g., in [15–18], but the efficiency of
such approaches needs further study. Other proposals include
few-copy multiparticle entanglement detection based on prob-
abilistic verification [19,20].

For testing quantum circuits, the approach of randomized
benchmarking has emerged [21–24]. Key to this approach is
that for estimating fidelities between actual and ideal gate sets,
only low moments of the matrix elements are required. In this
case, averaging over the full unitary group can be replaced by
averaging over a unitary t design [25] or producing required
input states by random quantum circuits (see also [26]). Refer-
ences [27] and [28] showed that a small number of parameters
of a quantum process can be efficiently obtained, but it is
not as clear what the most relevant parameters that should be
chosen are.

It is often stated that quantum states and quantum pro-
cessors are much harder to test and characterize than their
classical analogs because of the exponential growth of the
Hilbert space [13,29,30]. However, also classically the num-
ber of possible memory configurations of N bits increases
exponentially as 2N —and with N of order 1013 for a standard
laptop computer, it is completely out of the question to test
all possible configurations. Costs of integration itself have
decreased exponentially according to Moore’s law; for the
same reason, functional testing of classical memory devices
has evolved to the most expensive (because time-consuming)
part of the production of integrated memory chips. Functional
testing of classical memories has therefore evolved to test-
ing the most critical known configurations with the goal of
demonstrating failure of memory cells as quickly as possible.
“Most critical” depends on the architecture of the chip, and
information on its design goes into the design of memory
patterns to be tested. For example, a cell on a given bit line
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might resist storing a “0,” most likely if all other cells on the
same bit line contain a “1.” In MRAM devices, magnetic stray
fields from a set of cells can destabilize others in the vicinity
when uniformly polarized, etc.

Quantum information processing may still have a long way
to go before such economical pressure on functional testing
will be felt. At the moment, rather than showing failure, one
would like to prove basic quantum functionalities as quickly
as possible. Nevertheless, the principles of classical functional
testing can also provide guidance in the current state of affairs
on characterizing quantum processors and states: rather than
aiming at full quantum tomography, one may want to focus on
producing states that are likely to be particularly unstable and
show their “functionality” as quickly as possible. In practice,
this will require information about the physical realization of
the quantum processor, but in the absence of such input, a
reasonable target is highly entangled states or, more generally,
highly nonclassical states known to be prone to decoherence.
Indeed, experimental efforts have early on concentrated on
producing such states (see, e.g., [31–35] for states with large
numbers of entangled particles).

The question then arises: What is the most efficient mea-
surement strategy to prove that such a state is entangled
(or, more generally, nonclassical)? That is, What would you
choose to measure first, second, and so on, in order to be able
to prove as quickly as possible, with the limited knowledge
about the state that you will gain from those measurements,
chosen from a given set, that the state is entangled? What are
the minimum and average numbers of measurements needed
to prove entanglement or, more generally, the statistics on the
length of measurement sequences when going down a certain
path of measurements?

These are the questions that we start to answer in the
present paper. Note that this is not about choosing optimal
entanglement witnesses but, rather, about deciding whether or
not the intersection of hyperplanes defined by the expectation
values of certain observables cuts the set of separable states
(see Fig. 4). Perfectly suited for answering these questions is
the formalism of truncated moment sequences (TMSs) that
we introduced in [36] for the analysis of entanglement. The
TMS problem aims at finding a probability measure for which
only some moments are known. If the probability measure is,
furthermore, constrained to be supported on a compact set K ,
the problem is known as the K-TMS problem. As reviewed
below, it can be solved with a hierarchy of flat extensions
that maps onto a convex optimization algorithm, using a
semidefinite relaxation procedure. Each expectation value can
be associated with a moment of a measure, and instead of
fixing all moments up to a certain order as in the standard
TMS algorithm, one might just specify any set A of moments.
The problem of deciding whether a classical measure that
reproduces all these moments exists is then known as the
“AK-TMS” problem [37]. It can still be solved with a convex
optimization algorithm.

In the present work we exploit this approach in order to
obtain the statistics of lengths of measurement sequences in
the simplest case of two qubits depending on the chosen
measurement strategy. For larger numbers of qubits, the full
numerical solution of the AK-TMS problem becomes too
demanding, but it turns out that surprisingly efficient sufficient

conditions for entanglement can be obtained for symmetric
states from the diagonal matrix elements of the moment
matrix used in the approach (see below for a definition). These
correspond to certain linear combinations of expectation val-
ues of (possibly multipartite) measurements in the Pauli basis
and have to be positive for a solution of the AK-TMS problem
to exist. Checking the positivity of moment matrices is in fact
the first step in the TMS algorithm, and negativity of any of
the diagonal matrix elements hence witnesses entanglement.
With these we can find numerical estimates of the fraction of
randomly drawn states that are already detected as entangled
by just measuring the observables corresponding to the diag-
onal matrix elements of the moment matrix.

Similar ideas for certifying entanglement with incomplete
measurements were considered in [38] for continuous vari-
able systems. Here we focus on the statistics of lengths of
sequences of measurements for multiqubit systems and the
insights that can be drawn from the TMS algorithm, which we
review in the next section, before applying it to incomplete
measurements.

II. FRAMEWORK AND NOTATION

We now briefly summarize the TMS algorithm approach
described in detail in [36], which is the framework for the
following sections. The basic idea is to map the quantum
entanglement problem onto the mathematically well-studied
truncated moment problem. Indeed, finding out whether an
arbitrary multipartite state can be decomposed into product
states corresponds to finding out about the existence of a prob-
ability distribution whose lowest-order moments are fixed.
Analytically, the mapping allows one to make use of theorems
from the TMS literature providing necessary and sufficient
separability conditions; numerically, semidefinite optimiza-
tion techniques yield an algorithm which gives a certificate of
entanglement or separability. The algorithm applies—at least
in principle—to arbitrary quantum states with an arbitrary
number of constituents and arbitrary symmetries between the
subparts. The general case is dealt with in [36]; we only recall
here the main key points for the case of symmetric states
of qubits, defined as mixtures of symmetric pure states (the
latter are invariant under any permutation of the qubits). To do
so, we use a convenient representation in terms of symmetric
tensors which was introduced in [39], generalizing the Bloch
sphere picture of spins-1/2. We can write a generic state ρ of
a spin- j state as

ρ = 1

2N

3∑
μ1,μ2,...,μN =0

Xμ1μ2...μN Ps
(
σμ1 ⊗. . .⊗σμN

)
P†

s , (1)

where σ0 is the 2 × 2 identity matrix, σ1, σ2, and σ3 are the
Pauli matrices, and Ps is the projector onto the symmetric
subspace spanned by the Dicke states | j, m〉 (eigenstates of
pseudoangular momentum component Jz and with total angu-
lar momentum quantum number j). They can also be seen as
symmetric states of N = 2 j spins-1/2 (or qubits). The tensor
Xμ1μ2...μN is then given by

Xμ1μ2...μN = tr
(
ρσμ1 ⊗. . .⊗σμN

)
, (2)
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with 0 � μi � 3. It is real and invariant under permutation of
indices and verifies X00...0 = tr(ρ) = 1. Moreover, it has the
property that

3∑
a=1

Xaaμ3μ4...μN = X00μ3μ4...μN (3)

for any choice of the μi. A separable pure state can be
seen as a spin-coherent state, which in representation (2)
has tensor entries Xμ1μ2...μN = nμ1 nμ2 . . . nμn , with n0 = 1 and
(n1, n2, n3) the unit vector giving the direction of the coherent
state on the Bloch sphere. In terms of this tensor representa-
tion, a symmetric state is separable if and only if its tensor
representation can be written as

Xμ1μ2...μN =
∑

i

ωin
(i)
μ1

n(i)
μ2

. . . n(i)
μN

, ωi � 0, (4)

where n(i)
0 = 1 and n(i) is the Bloch vector of the single qubit.

If we express (4) in the equivalent integral form,

Xμ1μ2...μN =
∫

K
xμ1 xμ2 . . . xμN dμ(x), (5)

with x0 = 1, K = {x ∈ R3 : x2
1 + x2

2 + x2
3 = 1} the unit

sphere, and dμ(x) = ∑
i ωiδ(x − n(i) ) a positive measure on

K , we can say that a symmetric state is separable if and only
if there exists a positive measure dμ supported by K such
that all entries of the tensor Xμ1μ2...μN are given by moments
of that measure.

Problems of this type are known as K-TMS problems,
or AK-TMS problems in the case of partial knowledge of
a state where only a subset of the moments, specified by
set A, is known. They can be solved by a semidefinite
relaxation procedure. The algorithm proposed in [36] uses
indeed semidefinite programming (SDP) and the concept of
“extensions,” introduced in [40], but based on a matrix of
moments and a theorem in the theory of moment sequences.
In order to present more clearly the mathematical setting
for the AK-TMS problem, we introduce a more compact
notation for Eq. (5). For any N-tuple (μ1, . . . . , μN ) we define
a triplet α = (α1, α2, α3) of integers such that xμ1 xμ2 . . . xμN =
xα , where we use the notation xα = xα1

1 xα2
2 xα3

3 . The degree of
the monomial xα is |α| = ∑

i αi. We then set yα ≡ Xμ1μ2...μN .
The (yα )|α|�d is a TMS, that is, a sequence of moments of
μ truncated at degree d . When only a subset α ∈ A of these
moments is known, we consider the TMS (yα )α∈A. With this
notation we can rewrite (5) as

yα =
∫

K
xαdμ(x). (6)

To a TMS y of degree d , for any integer k � d/2, we can
associate a matrix Mk (y) defined by Mk (y)αβ = yα+β with
|α|, |β| � k, which we call the kth-order moment matrix.
A necessary condition for a TMS to admit a representing
measure is that the moment matrix of any order be positive
semidefinite. A second necessary condition can be obtained
from the polynomial constraint x2

1 + x2
2 + x2

3 = 1, which de-
fines set K . For even degree d we define a “shifted TMS” of
degree d − 2, and its moment matrix of order k − 1 is called
the kth-order localizing matrix of y. It is necessarily positive
semidefinite if a TMS admits a representing measure.

Beyond these two necessary conditions, a sufficient condi-
tion was obtained in [41] for an even-degree TMS. Namely, if
a TMS z of even degree 2k is such that

rankMk (z) = rankMk−1(z), (7)

then the TMS z admits a representing measure. As the above
condition is only sufficient, a TMS admitting a representing
measure does not necessarily fulfill it, but one can always
search for an extension of it which does. An extension of a
TMS y of degree d is defined as any TMS z of degree 2k
with 2k > d , such that zα = yα for all α ∈ A. An extension
z is called flat if it satisfies Eq. (7). If z verifies the sufficient
conditions above, then it has a representing measure, and so
does y as a restriction of z. Then it is possible to formulate
a necessary and sufficient condition for the existence of a
representing measure as follows.

Theorem. A state ρ is separable if and only if its coor-
dinates Xμ1μ2...μN are mapped to a TMS (yα )α∈A such that
there exists a flat extension (zβ )|β|�2k with 2k > d and whose
corresponding kth-order moment and localizing matrices are
positive semidefinite.

This necessary and sufficient condition can be translated
into an algorithm looking for flat extensions of the TMS y
associated with a quantum state ρ. One runs the algorithm
with the input of the state ρ (which means fixing yα for all
α ∈ A), starting from the lowest possible extension order k.
If the corresponding SDP is “infeasible,” then the conditions
of the theorem are not satisfied and the TMS admits no
representing measure dμ, which means that the quantum state
whose coordinates are given by yα is entangled. If, on the
contrary, the SDP problem is “feasible,” then the TMS ad-
mits a representing measure, and the corresponding quantum
state is separable. The algorithm also extends to the case of
nonsymmetric states (see [36] for further detail).

III. UNORDERED MEASUREMENTS

A. Goal

Let us now consider the question raised in Sec. I. Our goal
is to identify the smallest set of measurements that should
be performed on an unknown spin state to detect that it is
entangled. This is possible in a real experiment when many
identical copies of the same state are available, so that a
different measurement can be performed on each copy. We
first discuss the case of symmetric two-qubit states, which,
as we see in detail, already presents some complexity. In this
case the positive-partial-transpose criterion [42,43] applied
to a partially known density matrix would also provide a
way of detecting entanglement via SDP. Nevertheless, we
use our TMS approach, since it allows for a straightforward
generalization to an arbitrary number of qubits, and moreover,
it applies SDP to the matrix of moments, whose entries are
directly given by measurement results.

B. Symmetries and measurements

For a symmetric two-qubit state ρ, Eq. (2) with N = 2
gives

Xμ1μ2 = tr
(
ρσμ1 ⊗ σμ2

)
(8)
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with 0 � μi � 3 and (σ0, σ1, σ2, σ3) ≡ (1, σx, σy, σz ). In this
case the tensor Xμ1μ2 reduces to a 4 × 4 real symmetric
matrix. Its 10 entries Xμ1μ2 with μ1 � μ2 can be seen as the
result of the measurement of the joint operator σμ1 ⊗ σμ2 . We
now ask which are the possible measurements that we can
perform and how many there are; the observables considered
are the simplest, i.e., Pauli spin operators. Let us denote these
inequivalent measurement operators

M = {Mx, My, Mz, Mxx, Mxy, Mxz, Myy, Myz, Mzz} (9)

(we omit the identity operator corresponding to X00 = 1,
and we always order sets of measurements in degree-
lexicographic order). For instance, Mx is the measurement of 1
on the first qubit and of σx on the second one (or the reverse),
while Mxx is the measurement of the joint operator σx ⊗ σx.
Since the tensor Xμ1μ2 is such that

3∑
i=1

Xii = X00, (10)

only two of the three diagonal entries are independent, and
measuring two of three of the observables Mxx, Myy, and
Mzz yields the third value. Thus, carrying a tomography to
its end for a single spin-1 state consists in measuring eight
observables in total.

Our aim is to find the probability that a state is detected
as entangled if only the result of measurements of a certain
subset of these eight observables is known. Let us first observe
that these probabilities should not depend on the choice of the
reference frame for the axes along which the measurement
is performed. As a consequence, the results for equivalent
measurements in different directions should be the same. We
therefore consider only sets which are nonequivalent under
permutation of the axes, that is, sets that are unchanged under
transpositions {Pxy, Pxz, Pyz}, which exchange two axes, and
cyclic permutations Pyzx and Pzxy.

We consider all possible nonequivalent sets of k
measurements, with 1 � k � 8, disregarding the order of
measurements within a set. For sets of length k = 1 we can
easily see that the nonequivalent measurements are only
three: Mx, Mxx, and Mxy. Indeed, the local measurements
Mx, My, and Mz are equivalent, as well as the two-qubit
“diagonal” measurements Mxx, Myy, and Mzz [giving the
diagonal entries of matrix (Xμν )1�μ,ν�3] and, also, the
two-qubit “off-diagonal” measurements Mxy, Mxz, and Myz

(giving its off-diagonal entries). For k = 2, there are 28
possible pairs, among which only 9 are inequivalent, namely,
{Mx, My}, {Mx, Mxx}, {Mx, Mxy}, {Mx, Myy}, {Mx, Myz},
{Mxx, Mxy}, {Mxx, Myy}, {Mxx, Myz}, {Mxy, Mxz}. We
denote by mk the number of nonequivalent sets of k
measurements, and we list them in Table I. The corresponding
complete lists of measurements for all k are given in
Appendix A.

For each k, our question reduces to finding out which set of
measurements, among the mk possible ones, yields the highest
entanglement detection probability. Note that performing k
measurements is not exactly equivalent to having k fixed
moments. Indeed, since moments are related by Eq. (10),
measuring Mxx and Myy fixes the three moments X11, X22, and

TABLE I. First row of data: Number mk of nonequivalent un-
ordered sets of measurements for 1 � k � 8. Second row of data:
Number mk of nonequivalent ordered sequences of measurements for
1 � k � 8.

k

1 2 3 4 5 6 7 8

mk (unordered) 3 9 19 26 23 14 5 1
m′

k (ordered; Mxx fixed) 1 5 26 128 524 1604 3228 3228

X33. Any measurement set of length k containing both Mxx

and Myy will in fact correspond to a TMS with k + 1 moments
fixed. We therefore always discard Mzz from the measurement
sets.

C. Set probabilities

In terms of the TMS algorithm, performing a measurement
means obtaining a value of a tensor entry Xμ1μ2...μN or, equiv-
alently, of a moment yα . Performing k measurements means
that the k moments yα corresponding to these measurements
are fixed, as well as all moments obtained via relation (3).

For a given number k of measurements, we indicate a
specific set of measurements among the mk possible ones as
{M}I . For instance, if k = 3, we could have I = {x, y, zz},
which corresponds to the set of measurements {Mx, My, Mzz}.

If we consider a fixed k and a fixed subset {M}I of the set
of observables M, we denote the sample space of outcomes
of the AK-TMS algorithm applied to the moments (yα )α∈A of
an entangled state as 	I . It contains two possible outcomes,
to which a probability can be assigned: detecting the state as
entangled (if the associated SDP is infeasible, i.e., if the state
is entangled), with probability P(E , {M}I ); or not detecting it
as entangled (if the SDP is feasible, i.e., if the state with such
moments fixed is still compatible with a separable state), with
probability P(Ē , {M}I ). To shorten the notation we may de-
note P(E , {M}I ) as p(k)

I , which entails P(Ē , {M}I ) = 1 − p(k)
I .

These probabilities can be estimated by running the TMS
algorithm for each k and each I , testing all the mk possible
sets of measurements. Note that p(k)

I always increases, in the
sense that p(k′ )

J � p(k)
I for J ⊂ I . Indeed, the probability of not

detecting entanglement with more and more measurements
decreases with the number of measurements. In other words,
fixing more moments yα reduces the probability of finding a
measure μ with such moments. Once all eight measurements
are done the state is fixed uniquely, so that for entangled
states p(8)

I = 1. To estimate the values for the probabilities
p(k)

I , we sample states from the set of symmetric two-qubit
states. We generated 5 × 104 random states drawn from the
Hilbert-Schmidt ensemble of matrices ρ = GG†

tr(GG† ) , with G a
complex matrix with independent Gaussian entries (follow-
ing [44]). Among them were 1843 separable states that we
discarded, implying the normalization condition p(8)

I = 1 for
full tomography. For each measurement set {M}I and each
entangled state in our sample the TMS algorithm was run
with the corresponding moments fixed; the results for the
probabilities p(k)

I are reported in Figs. 1 and 2.
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FIG. 1. Probabilities p(k)
I of detecting entanglement in a sym-

metric state of two qubits with measurement set I of cardinality
k, 1 � k � 4, as a function of the label i of set I (1 � i � mk). The
associated error bars represent the difference between the maximum
and the minimum of the fluctuations observed for 1000 different
samples of size 4 × 104 randomly extracted from the initial sample
considered. The set of measurements {M}I corresponding to each
label is listed in Appendix A.

FIG. 2. Probabilities p(k)
I for 5 � k � 7; same as Fig. 1.

Some probabilities appear to be equal. This is, for instance,
the case for probabilities labeled 16 and 18 for k = 3. This is a
consequence of an additional symmetry due to the linear equa-
tions that measurement results must satisfy. In the case where
k = 3, labels 16 and 18 correspond to {Mxx, Mxy, Myy} and
{Mxx, Mxz, Myy}, respectively. Since, as we have mentioned,
knowing the result of any two diagonal measurements gives
the third one because of Eq. (10), the information acquired by
measuring the observables corresponding to labels 16 and 18
is equivalent, and therefore the probabilities must be equal.

The optimal choice of measurements {M}Iopt at fixed k cor-
responds to the sets giving the highest probability of detecting
entanglement. For k = 1 the highest value of p(1)

I corresponds
to measurement 2, {Mxx}. For k = 2 it corresponds to 7,
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{Mxx, Myy}. For k = 3 the highest values correspond to two
measurements: 16, {Mxx, Mxy, Myy}, and 18, {Mxx, Mxz, Myy}.
For k = 4 it corresponds to 23, {Mxx, Mxy, Mxz, Myy}, 24,
{Mxx, Mxy, Mxz, Myz}, and 25, {Mxx, Mxz, Myy, Myz}. Again,
the degeneracy of the optimal set reflects the equivalence
of the corresponding sets once (10) is taken into account.
For k � 2, the sets {M}Iopt in fact correspond to cases where
measuring two observables fixes three moments.

D. Quantumness

For a fixed set of measurements MI one can ask whether
the rate of detected entangled states depends on how quantum
a state is. For an arbitrary state ρ, quantumness may be defined
in several different ways; we follow here the definition given
in [45], based on spin-coherent states. These are a general-
ization of the usual coherent states of the harmonic oscillator
used in quantum optics to spins; they correspond to spin states
which minimize a particular uncertainty relation, and they
move as classical phase space points under a Hamiltonian
linear in the angular momentum operators [46,47]. As any
spin-1/2 pure state |φ〉 has this property, an arbitrary N-qubit
spin-coherent state can be defined as |φ〉⊗N with |φ〉 a one-
qubit state.

Quantumness is then defined as the Hilbert-Schmidt dis-
tance to the convex set C of classical spin states [48], that is,
the ensemble of all density matrices which can be expressed
as a mixture of spin-coherent states with positive weights (or
in other words the set C is the convex hull of spin-coherent
states). Namely, the quantumness Q(ρ) is given by

Q(ρ) = min
ρc∈C

‖ρ − ρc‖, (11)

where ‖O‖ =
√

Tr(O†O) is the Hilbert-Schmidt norm. For all
ρ the property Q(ρ) � 0 holds, with equality for classical
states ρ ∈ C. Results are reported in Fig. 3, up to k = 4 for
the optimal sets of measurements {M}Iopt given above. We can
observe that the rate of detected entangled states increases
with the quantumness of the states; in other words, the more
quantum a state is, the faster it is detected as entangled.

IV. ORDERED MEASUREMENTS

A. The setting

In the previous section we assumed that k observables are
measured among the eight possible ones and that the TMS
algorithm is subsequently run. Of course, we can imagine a
different experimental protocol where we would perform a
measurement, run the TMS algorithm with a single moment
fixed, and then, only in the case where the state is not detected
as entangled, perform a second measurement and run the TMS
algorithm again with two moments fixed, and so on, until
entanglement is detected or full tomography is achieved. In
this setting, we need to distinguish the k! different ordered
arrangements of each k-element subset of M.

In the following, we call an ordered sequence of mea-
surements a path, and we denote itγ . To distinguish it from
a set, we denote it as a tuple with parentheses, such as
(Mx, My, Mxz ). A path of length k can be alternatively seen
as a list of k sets of increasing size given by the restriction

FIG. 3. Percentage of detected entangled states for the optimal
sets of measurements {M}I for k = 1 to 4 (solid lines from bottom
to top), as a function of the quantumness for symmetric states of two
qubits. The shaded area in the background represents the distribution
of the quantumness Q (bin width, 0.015) of the total number of states
(multiplied by a factor of 2 × 10−2); the first bin contains entangled
states with Q between 10−4 and 10−2. The distribution shows that
there are very few states for the highest values of quantumness, which
explains the large statistical errors at maximum quantumness.

of the path to the first k′ observables with 1 � k′ � k. For
instance, for k = 3 the path (Mx, Mxz, My) can be seen as the
list {Mx}, {Mx, Mxz}, {Mx, My, Mxz} (as usual we write sets
in lexicographical order since the order within a set does not
matter).

Considering all 8! paths of length 8 would require an
exceedingly long computational time. For this reason, we
slightly simplify the problem by fixing the first measurement
to perform. The most reasonable choice, looking at the results
in Fig. 1, is to fix it as a diagonal observable Mxx, Myy, or

FIG. 4. Two-dimensional sketch of the sets involved. S, separa-
ble states; E, entangled states. We consider an arbitrary state in region
E. Fixing one moment means restricting the set of compatible states
to a hyperplane (one of the three lines in the sketch). Hyperplanes
which cross the set of separable states contain both entangled and
separable states, thus measuring the observable M1 or M2 alone is
not enough to detect entanglement. Fixing both, on the other hand,
restricts the set of compatible states to a region (a point in the sketch)
outside S, i.e., observables {M1, M2} together detect a fraction of
states as entangled (E). The third line instead does not cross the
set of separable states, meaning that measuring M3 suffices to detect
entanglement (which we denote EM3 ).
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Mzz, since for k = 1 it detects the largest fraction of entangled
states. Up to relabeling of the axes, we can take Mxx as the first
element since, as before, we only keep nonequivalent paths.
To find these paths, we define a canonical representation of a
path γ of length k by considering its equivalent list of k sets
of length k′. For each of these sets we choose the first one
in lexicographical order among the ones that are obtained by
relabeling of the axes. The list of k sets obtained in this way is
the canonical representation of γ . Two paths are equivalent if
they have the same canonical representation. We report the
number m′

k of nonequivalent paths of length k in Table I,
where, e.g., for k = 2 the nonequivalent sequences will be
(Mxx, Mx ), (Mxx, My), (Mxx, Mxy), (Mxx, Myy), and (Mxx, Myz ).

B. Path probabilities

We now show how to retrieve the results for this more
general case from the p(k)

I obtained in the previous sec-
tion. The probability of detecting a state as entangled af-
ter the first measurement, say M1, is P(E , {M1}), given in
the previous section. The probability of detecting a state as
entangled after the second measurement, say M2, is then
P(E , {M1, M2}|Ē , {M1}), which is the probability of detecting
entanglement with the second measurement given that it was
not detected with the first one. This quantity now depends on
which measurement is performed first. This is illustrated in
Fig. 4. Using the theorem of total probability, we have

P(E , {M1, M2}) = P(E , {M1})P(E , {M1, M2}|E , {M1})

+ P(Ē , {M1})P(E , {M1, M2}|Ē , {M1}).

(12)

Since P(Ē , {M1}) = 1 − P(E , {M1}) and P(E , {M1, M2}|
E , M1) = 1 we get

P(E , {M1, M2}|Ē , {M1}) = P(E , {M1, M2}) − P(E , {M1})

1 − P(E , {M1})
.

(13)

Thus, the conditional probability we are looking for can be
expressed solely in terms of the p(k)

I from the previous section.
Then let γ = (M1, . . . , M8) be a path of length k = 8. We

define

q(k)(γ ) = P(E , {M1, . . . , Mk}|Ē , {M1, . . . , Mk−1}) (14)

as the probability of detecting entanglement at step k in γ

given that no entanglement was detected up to step k − 1.
By a reasoning similar to the one leading to Eq. (13), we can
express q(k)(γ ) in terms of the p(k)(γ ) ≡ P(E , {M1, . . . , Mk}),
as

q(k)(γ ) = p(k)(γ ) − p(k−1)(γ )

1 − p(k−1)(γ )
. (15)

In particular, since p(0) = 0 (as nothing is measured, and
hence detected as entangled, at level 0), we have q(1) = p(1).
Inverting (15) one obtains p(k)(γ ) in terms of q(k)(γ ) as
p(k)(γ ) = ∑k

j=1 q( j)(γ )
∏k

n= j+1 (1 − q(n)(γ )).
A third natural probability to consider is related to our

measurement algorithm, where we perform TMS calcula-
tions at step k only if the state was compatible with a

FIG. 5. Distribution (with bin width 0.07) of lengths d (γ ) of
measurement sequences γ of symmetric states of two qubits resulting
in detection of entanglement between the minimum value of 3.07 and
the maximum one of 5.61.

separable state. We define r (k)(γ ) as the probability of
stopping exactly at the kth level when measurements are
taken along path γ . It can be written as the joint prob-
ability P(E , {M1, . . . , Mk} ∩ Ē , {M1, . . . , Mk−1}). Using the
identity P(A ∩ B) = P(A|B)P(B), r (k)(γ ) can be expressed as
q(k)(γ )(1 − p(k−1)(γ )). It can be rewritten in terms of q(k)(γ )
or p(k)(γ ) as

r (k)(γ ) = q(k)(γ )
k−1∏
j=1

(1 − q( j)(γ )) = p(k)(γ ) − p(k−1)(γ ).

(16)

C. The best path

Using (15) and (16) and the numerical results in the
previous section, we can obtain a numerical estimate of the
q(k)(γ ) and the r (k)(γ ) for all possible paths. The optimal
path γbest is the one that detects as quickly as possible (on
average) whether the state is entangled. To identify γbest

among all possible ones we define the average depth at which
our algorithm stops as

d (γ ) =
8∑

k=1

kr (k)(γ ) . (17)

Expressing Eq. (17) in words, d (γ ) gives the number of
measurements that one needs to perform, on average, to detect
a state as entangled, following the path γ . Each path will be
characterized by this number, and in particular, the shortest
path will be given by

γbest = arg min
γ∈S

d (γ ) . (18)

The distribution of d (γ ) over all 3228 paths of length 8
for symmetric states of two qubits is reported in Fig. 5.
The minimum value found for d (γ ) is d = 3.07, while the
maximum value is 5.61. The minimum value is degener-
ate and corresponds to three optimal paths. Although these
three paths do not have the same canonical representation
they lead to the same value because of condition (10).
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FIG. 6. Probabilities p(k)(γbest ) (blue diamonds), q(k)(γbest ) (or-
ange triangles), and r (k)(γbest ) (green circles). Error bars represent
the statistical errors derived from those of the p(k)

I ; see Fig. 1.

If one considered that knowing two diagonal moments is
equivalent to knowing them all and included in the sym-
metrization the third diagonal moment once the first two
are measured, there would be a unique optimal path. We
report here one of the three equivalent optimal paths, γbest =
(Mxx, Myy, Mxz, Myz, Mxy, Mx, My, Mz ); choosing this path,
one only needs to perform (on average) three measurements
to detect a state as entangled. These three measurements give
access to the two diagonal moments [and thus all of them
via (10)] and one of the off-diagonal ones. The probabilities
relative to this best path are shown in Fig. 6.

Rewriting d (γ ) in terms of p(k)(γ ) we get

d (γ ) = 8p(8)(γ ) − p(7)(γ ) − p(6)(γ ) − . . . − p(1)(γ ). (19)

It turns out that choosing measurements according to γbest

coincides (within the error bars) with choosing for each
k, 1 � k � 8, the best set of measurements, i.e., the one with
the highest probability of detecting entanglement at a given
level (highest p(k)

I among the mk possibilities for each k).
This is not obvious, and it is not always the case: a counter-
example is given by a binary tree of depth 4 in which the
random probabilities satisfy the same constraint as in our case,
i.e., p(k−1)(γ ) � p(k)(γ ), and the four paths have probabil-
ities (0.57, 0.62, 0.76), (0.57, 0.62, 0.95), (0.57, 0.68, 0.77),
(0.57, 0.68, 0.78). It is easily verified that the best path,
with d (γ ) = 1.8, is the second one, which at depth 2 does
not have the highest p(2)(γ ), so the minimal d (γ ) does not
always correspond to the path with the highest p(k)(γ ) at
each step.

In practice, joint measurements such as Mxx might be more
challenging to implement than two single measurements Mx,
as qubits need first a unitary operation to entangle them and
then two local measurements. In such a case, one might
modify (17) with another factor for each path that takes such
additional costs into account. Also, we base our analysis
on average values of measurement outcomes which we took
as known with arbitrary precision. This is, of course, an
idealization. In practice, only a finite number of measurements
can be performed, leading to statistical error bars for each
moment. These can, in principle, be taken into account in

TABLE II. Number mk of nonequivalent unordered sets of mea-
surements of two qubits for 1 � k � 15.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
mk 3 10 30 69 132 205 254 254 205 132 69 30 10 3 1

the TMS algorithm, but they increase the computational time.
Both of these points are beyond the scope of the present paper.

V. NONSYMMETRIC CASE

So far we have restricted ourselves to symmetric states
of two qubits. Let us now consider the generic case of ar-
bitrary two-qubit nonsymmetric states. In this case we can
still exploit the TMS algorithm, with the following differences
[36]. The bipartite state acts on the tensor product H1 ⊗ H2

of Hilbert spaces and each of them now has its own set of
variables x, y, and z; we label these variables (xi, yi, zi), with
i = 1, 2. The compact set K is now the product of two Bloch
spheres. The set M of possible measurements is

M = {
Mx1 , My1 , Mz1 , Mx2 , Mx1x2 , My1x2 , Mz1x2 , My2 ,

Mx1y2 , My1y2 , Mz1y2 , Mz2 , Mx1z2 , My1z2 , Mz1z2

}
. (20)

For example, Mx1 is the measurement of σx ⊗ 1 and Mx1x2 is
the measurement of the joint operator σx ⊗ σx. Up to relabel-
ing the variables for each qubit, some sets of measurement
operators are equivalent. The number mk of nonequivalent
sets of measurements is obtained by applying the 36 possible
permutations on the (xi, yi, zi). This number is reported in
Table II for 1 � k � 15.

The number mk increases rapidly with k, and so does
the size of the moment matrices considered in the TMS
algorithm: indeed, because of condition (7), the algorithm
always searches at least for the first extension; in both cases
(symmetric and nonsymmetric) the smallest extension
corresponds to the moment matrix of order 2. In the
symmetric case it is a 10 × 10 matrix, while in the
nonsymmetric case it already becomes a 28 × 28 matrix
which contains all the monomials up to degree 4 for the set
of six variables xi, yi, zi, with i = 1, 2, i.e., 210 moments,
versus 35 in the symmetric case. For the previous reasons
computational times become an issue in the nonsymmetric
case. Nevertheless, we could estimate probabilities up to
k = 5, running the TMS algorithm over a database of 50 000
nonsymmetric two-qubit random states. What we observe
is that no state is detected as entangled with only one
measurement, a tiny fraction(∼1%) is detected as entangled
by the combination of two measurements {Mx1x2 , My1y2},
and the largest fraction of states detected as entangled for
3 � k � 5 is given, respectively, by the set of measurements
{Mx1x2 , My1y2 , Mz1z2} (∼10%), {Mx1x2 , Mx1y2 , My1x2 , Mz1z2}
(∼12%), {Mx1x2 , Mx1y2 , My1x2 , My1y2 , Mz1z2} (∼23%). This is a
big difference compared to the symmetric case, in which we
could detect ∼15% of the states as entangled with a single
measurement, ∼40% already with two measurements, and
almost all states with five measurements.
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VI. HIGHER SPIN- j

Going back to the case of symmetric states, we can also
get an idea of how complexity changes for higher spin sizes;
indeed, the size of the set M in the symmetric case cor-
responds to the sum of the number of monomials in three
variables up to degree d = 2 j + 1, where j is the spin size.
These numbers form the sequence of triangular numbers Tn =∑n

i=1 i = n(n+1)
2 ; we can then write that mk for any spin- j is

mk =
(∑2 j+1

n=1 Tn − 1

k

)
, (21)

where we subtract 1 since the first element of M is always
the identity. However, in this case, we can still have some
information looking at the expression for the tensor repre-
sentation of a separable state in (4). Indeed, for an even
number of qubits (integer spins) we can look at the diagonal
tensor entries, which are defined as the entries of the form
Xμ1...μ jμ1...μ j with 0 � μi � 3. These correspond to terms of
the form

∑
j ω j (nμ1 ...nμ j )

2 j ; it follows that for a separable
state these entries are positive, since the nμi are real and
ω j � 0. Therefore measuring a negative value for any of
the corresponding measurement operators means detecting
entanglement; we indicate the operators corresponding to the
diagonal entries of the tensor Xμ1μ2...μN with {D}I . We can
then restrict our investigation for an integer spin- j to these
4 j observables, which are further reduced by symmetry to
( j + 3

3 ). We report in Fig. 7 the number of entangled states
that are not detected by any of the observables {D}I for spin
size 1 � j � 5 (for each j we used a sample of 106 random
states from which we again removed the separable ones). The
number of undetected entangled states decreases with the spin
size j and already at j = 4 all the states in the sample are
detected; we can also observe that restricting the analysis
to these observables already gives significant information
for spin-1 and spin-2 and almost-complete information for
spin-3. Moreover, we can also compare these observables to
see which is the most efficient measurement to perform as
we did for the spin-1 case; to estimate the corresponding
p(1)

I , we again only consider sets which are nonequivalent
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FIG. 7. Percentage of entangled states not detected by any of the
negative outcomes of the measurements {D}I corresponding to the
diagonal entries of the tensor Xμ1μ2 ...μN as a function of the spin
size j.

FIG. 8. Comparison of the nonequivalent diagonal observables
{D}I for spin- j, 2 � j � 5: probabilities p(1)

I as a function of the
label i of set I . The highest values are reached, respectively, for Dxxyy,
Dxxyyzz, Dxxxxxxyy, and Dxxxxyyyy (where the last term corresponds to the
measurement of 1×2 ⊗ σ⊗4

x ⊗ σ⊗4
y ; see Appendix B for the full list).

under permutation of the axes, performing the transformations
{Pxy, Pxz, Pyz, Pyzx, Pzxy} described in Sec. III B. The results
are shown in Fig. 8. The question arises whether similarly
efficient measurements can be found for half-integer spin- j. It
was recently shown in [49] how the positive-partial-transpose
separability criterion for symmetric states of multiqubit sys-
tems can be formulated in terms of matrix inequalities based
on the tensor representation in Eq. (2). It is possible to
construct a matrix T from the tensor representation of the
state and show that it is similar to the partial transpose of the
density matrix written in the computational basis. In the case
of spin-3/2 this matrix is an 8 × 8 Hermitian matrix given

1 2 3 4 5 6

k

0

10

20

30

40

50

60

%
 o

f 
st

at
es

 d
et

ec
te

d
 a

s 
en

ta
n

g
le

d

FIG. 9. Entanglement detection probabilities based on the
negativity of the

(6
k

)
subsets of the set {X011 − X113, X011 +

X113, X022 − X223, X022 + X223, X033 − X333, X033 + X333} for k =
1, . . . , 6, where the tensor Xμ1μ2μ3 represents a spin-3/2.
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by Tμi,νi′ = ∑3
τ=0 Xτμνσ

τ
i,i′ , where σ τ

i,i′ are the Pauli-matrix
components, and its positivity is a necessary and sufficient
classicality criterion; as a consequence, the positivity of the
diagonal entries is a necessary condition for a separable state.
We can again restrict our investigation to the corresponding
observables {D}I , but this time it implies the measurement of
sets of two observables. Indeed, in terms of the tensor entries
Xμ1μ2μ3 , the diagonal entries in T are X000 ± X003, X011 ±
X113, X022 ± X223, X033 ± X333, so we need to compare pairs
of outcomes. Recalling that X000 = 1, we can neglect the first
entry, since the condition −1 � X003 � 1 is always satisfied.
The results of such investigation for the other six pairs and
for their combinations [all the (6

k) sets, with 2 � k � 6] are
reported in Fig. 9. As before, we can gain already relevant
information from this restricted analysis.

VII. CONCLUSIONS

In summary, we have studied the statistics of lengths of
measurement sequences for multiqubit systems that allow one
to detect entanglement without any prior information about
the state, for both unordered sets of measurements and ordered
ones (i.e., measurement paths). For symmetric states of two
qubits, we have identified the best measurement path that re-
sults, on average over all randomly chosen entangled states, in
a proof of entanglement with 3.07 measurements (compared
to the 8 measurements needed for full tomography in this
case). For larger numbers N of qubits in symmetric states,
we found that measurements based on the diagonal matrix
elements of the moment matrix of the state become very
efficient in detecting entanglement. Their number increases
like N3, and already at N = 8 qubits the number of states not
detected as entangled has decreased to about 10−6 or smaller.
For nonsymmetric states, substantially larger numbers of mea-
surements are needed to detect entanglement with certainty:
at least two measurements are needed for two-qubit states,
resulting in only about a 1% detection probability, however.
With five measurements the probability increases to about
23%. The work is based on the truncated moment sequence
algorithm that naturally allows one to deal with missing data.
It is very flexible and can be easily adapted to experimentally
relevant ensembles of states and other side conditions, such
as sets of measurements that can be implemented or more
elaborate cost functions.
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APPENDIX A: UNORDERED MEASUREMENT SETS

We list here all the mk unique sets of k measurements for
1 � k � 8.

k = 1

1 Mx

2 Mxx

3 Mxy

(Continued).

k = 1

k = 2
1 {Mx, My}
2 {Mx, Mxx}
3 {Mx, Mxy}
4 {Mx, Myy}
5 {Mx, Myz}
6 {Mxx, Mxy}
7 {Mxx, Myy}
8 {Mxx, Myz}
9 {Mxy, Mxz}
k = 3
1 {Mx, My, Mz}
2 {Mx, My, Mxx}
3 {Mx, My, Mxy}
4 {Mx, My, Mxz}
5 {Mx, Mz, Myy}
6 {Mx, Mxx, Mxy}
7 {Mx, Mxx, Myy}
8 {Mx, Mxx, Myz}
9 {Mx, Mxy, Mxz}
10 {Mx, Mxy, Myy}
11 {Mx, Mxy, Myz}
12 {Mx, Mxz, Myy}
13 {Mx, Myy, Myz}
14 {Mz, Mxx, Myy}
15 {Mxx, Mxy, Mxz}
16 {Mxx, Mxy, Myy}
17 {Mxx, Mxy, Myz}
18 {Mxx, Mxz, Myy}
19 {Mxy, Mxz, Myz}
k = 4
1 {Mx, My, Mz, Mxx}
2 {Mx, My, Mz, Mxy}
3 {Mx, My, Mxx, Mxy}
4 {Mx, My, Mxx, Mxz}
5 {Mx, My, Mxx, Myy}
6 {Mx, My, Mxx, Myz}
7 {Mx, Mz, Mxx, Myy}
8 {Mx, My, Mxy, Mxz}
9 {Mx, Mz, Mxz, Myy}
10 {Mx, My, Mxz, Myz}
11 {Mx, Mz, Mxy, Myy}
12 {Mx, Mxx, Mxy, Mxz}
13 {Mx, Mxx, Mxy, Myy}
14 {Mx, Mxx, Mxy, Myz}
15 {Mx, Mxx, Mxz, Myy}
16 {Mx, Mxx, Myy, Myz}
17 {Mx, Mxy, Mxz, Myy}
18 {Mx, Mxy, Mxz, Myz}
19 {Mx, Mxy, Myy, Myz}
20 {Mz, Mxx, Myy, Myz}
21 {Mx, Mxz, Myy, Myz}
22 {Mz, Mxx, Mxz, Myy}
23 {Mxx, Mxy, Mxz, Myy}
24 {Mxx, Mxy, Mxz, Myz}
25 {Mxx, Mxz, Myy, Myz}
k = 5
1 {Mx, My, Mz, Mxx, Mxy}
2 {Mx, My, Mz, Mxx, Myy}
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(Continued).

k = 5

3 {Mx, My, Mz, Mxx, Myz}
4 {Mx, My, Mz, Mxy, Mxz}
5 {Mx, My, Mxx, Mxy, Mxz}
6 {Mx, My, Mxx, Mxy, Myy}
7 {Mx, My, Mxx, Mxy, Myz}
8 {Mx, Mz, Mxx, Mxz, Myy}
9 {Mx, My, Mxx, Mxz, Myy}
10 {Mx, My, Mxx, Mxz, Myz}
11 {Mx, Mz, Mxx, Mxy, Myy}
12 {Mx, Mz, Mxx, Myy, Myz}
13 {Mx, My, Mxy, Mxz, Myz}
14 {Mx, Mz, Mxy, Mxz, Myy}
15 {Mx, Mz, Mxy, Myy, Myz}
16 {Mx, Mxx, Mxy, Mxz, Myy}
17 {Mx, Mxx, Mxy, Mxz, Myz}
18 {Mx, Mxx, Mxy, Myy, Myz}
19 {Mx, Mxx, Mxz, Myy, Myz}
20 {Mx, Mxy, Mxz, Myy, Myz}
21 {Mz, Mxx, Mxz, Myy, Myz}
22 {Mz, Mxx, Mxy, Myy, Myz}
23 {Mxx, Mxy, Mxz, Myy, Myz}
k = 6
1 {Mx, My, Mz, Mxx, Mxy, Mxz}
2 {Mx, My, Mz, Mxx, Mxy, Myy}
3 {Mx, My, Mz, Mxx, Mxy, Myz}
4 {Mx, My, Mz, Mxx, Mxz, Myy}
5 {Mx, My, Mz, Mxy, Mxz, Myz}
6 {Mx, My, Mxx, Mxy, Mxz, Myy}
7 {Mx, My, Mxx, Mxy, Mxz, Myz}
8 {Mx, Mz, Mxx, Mxy, Mxz, Myy}
9 {Mx, Mz, Mxx, Mxz, Myy, Myz}
10 {Mx, My, Mxx, Mxz, Myy, Myz}
11 {Mx, Mz, Mxx, Mxy, Myy, Myz}
12 {Mx, Mz, Mxy, Mxz, Myy, Myz}
13 {Mx, Mxx, Mxy, Mxz, Myy, Myz}
14 {Mz, Mxx, Mxy, Mxz, Myy, Myz}
k = 7
1 {Mx, My, Mz, Mxx, Mxy, Mxz, Myy}
2 {Mx, My, Mz, Mxx, Mxy, Mxz, Myz}
3 {Mx, My, Mz, Mxx, Mxz, Myy, Myz}
4 {Mx, My, Mxx, Mxy, Mxz, Myy, Myz}
5 {Mx, Mz, Mxx, Mxy, Mxz, Myy, Myz}
k = 8
1 {Mx, My, Mz, Mxx, Mxy, Mxz, Myy, Myz}

APPENDIX B: NONEQUIVALENT DIAGONAL
OBSERVABLES

We list here all the nonequivalent observables DI for spin-
j, 2 � j � 5.

j = 2

1 Dxx

2 Dxxxx

3 Dxxyy

j = 3
1 Dxx

2 Dxxxx

3 Dxxyy

4 Dxxxxxx

5 Dxxxxyy

6 Dxxyyzz

j = 4
1 Dxx

2 Dxxxx

3 Dxxyy

4 Dxxxxxx

5 Dxxxxyy

6 Dxxyyzz

7 Dxxxxxxxx

8 Dxxxxxxyy

9 Dxxxxyyyy

10 Dxxxxyyzz

j = 5
1 Dxx

2 Dxxxx

3 Dxxyy

4 Dxxxxxx

5 Dxxxxyy

6 Dxxyyzz

7 Dxxxxxxxx

8 Dxxxxxxyy

9 Dxxxxyyyy

10 Dxxxxyyzz

11 Dxxxxxxxxxx

12 Dxxxxxxxxyy
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We consider the problem of separability of quantum channels via the Choi matrix representation given by
the Choi-Jamiołkowski isomorphism. We explore three classes of separability across different cuts between
systems and ancillae, and we provide a solution based on the mapping of the coordinates of the Choi state (in
a fixed basis) to a truncated moment sequence (tms) y. This results in an algorithm which gives a separability
certificate using semidefinite programming. The computational complexity and the performance of it depend on
the number of variables n in the tms and on the size of the moment matrix Mt (y) of order t . We exploit the
algorithm to numerically investigate separability of families of two-qubit and single-qutrit channels; in the latter
case we can provide an answer for examples explored earlier through the criterion based on the negativity N , a
criterion which remains inconclusive for Choi matrices with N = 0.

DOI: 10.1103/PhysRevA.102.052406

I. INTRODUCTION

Entanglement properties of quantum states have been at the
center of many investigations in recent years. Meanwhile, first
small-scale quantum processors have become available, and
the problem of verifying that such devices work in a properly
“quantum” way has become center stage. In that context,
it is of high relevance to understand the way entanglement
evolves under physical operations acting on quantum states
[1–6]. Many contributions to tomography and benchmarking
of quantum devices or, more generally, quantum channels
can be found in the literature, e.g., recent approaches in
the framework of resource and device-independent theories
[7,8], schemes which aim at reducing the resources required
for entanglement verification [9], methods based on quantum
process tomography [10,11], approaches that detect insepara-
bility based on witness operators [12] or separability based on
theorems exploiting local operations and classical communi-
cation [13,14]. An uncontroversial requirement for a proper
quantum operation is that the device is able to create entan-
glement, a resource on which quantum technology largely
relies. In particular it is well known that a quantum computer
that generates only limited amounts of entanglement can be
simulated efficiently classically [15]. On the other hand the
properties of devices which break entanglement turned out to
be useful for proving relevant conjectures [16] for obtaining
results for the problem of additivity of capacity [17,18] and for
their connection with different types of quantum correlations
[19]. The problem of deciding whether a quantum state is
entangled or not has been solved in the sense of its reduction
to matrix extensions and semidefinite programming [20], an
approach that was later understood more generally within
the theory of truncated moment sequences [21]. However,
no corresponding algorithm that gives a definite outcome
for quantum channels was known, i.e., an algorithm that
takes as input an arbitrary quantum channel and outputs a

definite answer whether the quantum channel can generate
entanglement for some initial separable state. Although one
might argue that with modern technology it is quite easy to
entangle, e.g., two qubits and verify their entanglement, the
entanglement is typically lost on relatively short timescales.
The way entanglement is created and possibly destroyed again
by the full channel, including storage and decoherence pro-
cesses over longer times, depends on the input state. When
trying to verify entanglement creation one would, thus, have to
search for suitable input states. In such a situation it would be
much more convenient to asses the possibility of entanglement
creation directly on the level of the quantum channel. In the
present paper we present such an algorithm for the channel
separability problem. It generalizes to quantum channels the
hierarchy of Refs. [20,21]. The resulting algorithm provides
definiteness in the answer to the question whether a quantum
channel is entangling or separable, even in cases where more
straightforward separability criteria based on positive but not
completely positive maps fail as we will demonstrate with
explicit examples in Sec. IV C.

The mathematical object associated with a physical oper-
ation is a quantum channel, which acts on the joint state of
a system A and its environment to produce an output state.
The environment can be seen as an ancilla system A′ with
which the system A is possibly entangled. The system A
itself may be bipartite and made of two subsystems A and B
which may or may not be entangled with one another or with
their respective ancillae A′ and B′. Since a channel acts on
both the system and its ancilla, the output state may be entan-
gled in different ways, which leads to different definitions of
separability of quantum channels [22–26]. These definitions
depend on whether the total state of the system and ancilla
is separable for instance across the cut A − A′ or across the
cut A − B. The algorithm that we present in Sec. III D allows
one to investigate all different notions of separability with
only small modifications needed in the input to go from one

2469-9926/2020/102(5)/052406(11) 052406-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6514-1347
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.052406&domain=pdf&date_stamp=2020-11-06
https://doi.org/10.1103/PhysRevA.102.052406


N. MILAZZO, D. BRAUN, AND O. GIRAUD PHYSICAL REVIEW A 102, 052406 (2020)

definition to the other, thus, giving a unifying framework for
the separability problem in the case of quantum channels.

The Choi-Jamiołkowsi isomorphism relates completely
positive trace-preserving maps with density matrices or equiv-
alently completely positive maps with positive operators.
Characterizing separability for channels can be investigated
in the light of results obtained for quantum states. Many
theoretical results have been obtained for states in terms of
separability criteria [27]. One of the most well-known neces-
sary conditions for separability is the positive partial transpose
(PPT) criterion, which states that if a state ρ is separable then
ρPT � 0 with ρPT the partial transpose with respect to one of
the subsystems [28,29].

As was shown recently [30], the separability problem for
states can be recast as a “truncated moment” problem, a prob-
lem well studied in recent years in the mathematical literature.
The truncated moment problem consists of finding conditions
under which a given sequence of numbers corresponds to
moments of a probability distribution. The moment problem
corresponds to the case where an infinite sequence is given,
whereas in the truncated moment problem only the lowest
moments are fixed and the aim is to find a measure matching
these moments. Of relevance for the separability problem as
we will see is the K-truncated moment problem where the
measure is additionally required to have the set K as support.
In Ref. [30] we showed that asking whether a quantum state
is separable along an arbitrary partition of Hilbert space can
be cast in the form of a K-truncated moment problem, and we
applied this approach to symmetric multiqubit states.

In the present paper our goal is to apply this formalism
to the more general situation of the separability of quan-
tum channels. Even though the problem of separability of
channels can be related to the one of states through the
Choi-Jamiołkowsi isomorphism, it is still relevant to explicitly
formulate the mapping with the moment problem since it
allows us to provide theorems that give necessary and suffi-
cient conditions for a channel to be separable or entanglement
breaking; moreover, the resulting necessary and sufficient
criterion is also practically usable thanks to a quite simple
algorithm that implements the theorems numerically. The pa-
per is organized as follows. In Sec. II we recall some useful
definitions about quantum channels and the various notions of
separability. In Sec. III we explain in detail how the truncated
moment problem maps to these separability problems, and we
provide a theoretical solution in the form of a set of theorems
(Sec. III C) and a numerical solution in terms of an algorithm
(Sec. III D). In Sec. IV we consider various examples of appli-
cation of this algorithm, which allow detection of separability
in quantum channels. Finally we conclude in Sec. V.

II. DEFINITIONS

We start by recalling some elementary definitions.

A. Quantum channels

Let ρ be a quantum state acting on a tensor product H =
H (1) ⊗ · · · ⊗ H (d ) of Hilbert spaces H (i) of finite dimension.
Any physical transformation can be described by a completely
positive map, that is, a map � such that � ⊗ 1 is positive on
all states acting on an extended Hilbert space H ⊗ H ′ (where

H ′ is the Hilbert space of an ancillary system of arbitrary size).
A quantum channel � is, therefore, defined as a completely
positive trace-preserving linear map, which maps ρ to a state
ρ ′ = �(ρ) acting on some Hilbert space (that for simplicity
we consider here equal to H so that �:L(H ) → L(H ), where
L(H ) is the set of linear operators on H).

Let N be the dimension of the Hilbert space H . A density
matrix can be expanded as ρ = ∑

i, j ρi j |i〉 〈 j|, with |i〉 as
the vectors of the canonical basis of H . To any linear map
� mapping ρ to ρ ′ one can associate a superoperator M
of size N2 such that ρ ′

i j = Mi j,klρkl (with summation over
repeated indices), and a dynamical matrix D� defined [31] by
a reshuffling of entries of M, namely, (D�)i j,kl = Mik, jl [27].
Alternatively one can define the Choi matrix,

C� =
∑
i, j

�(|i〉 〈 j|) ⊗ |i〉 〈 j| , (1)

[32], which coincides with D� when written in the canonical
basis. The Choi matrix C� is Hermitian. The map � is positive
if and only if the corresponding Choi matrix C� is block
positive (that is, positive on product states in H ⊗ H) [33].
According to Choi’s theorem [32], � is completely positive
if and only if its Choi matrix is positive semidefinite. Fi-
nally, � is trace preserving if and only if the N2 conditions∑

i(C�)i j,il = δ jl are fulfilled. These conditions imply that
tr C� = N .

As a consequence, if � is a quantum channel, then 1
N C�

can be seen as a density matrix acting on H ⊗ H . Any com-
pletely positive trace-preserving map can be associated with
a density matrix in that way. The Choi-Jamiołkowsi isomor-
phism is a bijection between a quantum channel � and its
Choi matrix C� [27,33]. We will also make use of the fact that
a quantum channel can be written in Kraus form as

�(ρ) =
∑

l

ElρE†
l ,

∑
l

E†
l El = 1. (2)

The Kraus operators El are not unique, but a canonical form
can be found by diagonalizing the Choi matrix and reshuffling
its eigenvectors into square matrices in which case a set of at
most N2 Kraus operators suffices [27].

B. Separability of channels

A bipartite quantum state ρ acting on a Hilbert space HA ⊗
HB is separable if it admits a decomposition,

ρ =
∑

i

wiρ
(A)
i ⊗ ρ

(B)
i , (3)

with wi � 0 and ρ
(A)
i , ρ

(B)
i acting on HA, HB respectively.

More generally, a positive semidefinite matrix M is said to
be separable if it can be written as

M =
∑

k

Pk ⊗ Qk, (4)

with Pk and Qk positive semidefinite matrices.
Various kinds of channel separability have been introduced

in the literature. Consider the Hilbert space H = HA ⊗ HB

describing a system partitioned into two subsystems A and
B and let �:L(HA ⊗ HB) → L(HA ⊗ HB) be a completely
positive map. As a criterion for complete positivity one must
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consider the extended Hilbert state H ⊗ H ′ with H ′ = H
where here and in the following the prime is used to denote
the ancilla system. The corresponding Choi matrix C� can
be seen as a density matrix acting on Hilbert space H =
HA ⊗ HB ⊗ HA′ ⊗ HB′ . Following Eq. (1) it can be expressed
as C� = ∑

i jrs �(|ir〉 〈 js|) ⊗ |ir〉 〈 js|.

1. Separable channels

� is called separable (SEP) if it takes the form �(ρ) =∑
l (Al ⊗ Bl )ρ(Al ⊗ Bl )† [22]. In other words, the Kraus oper-

ators for the channel � in (2) can be factored as El = Al ⊗ Bl .
Such channels map separable states to separable states. In
terms of these Kraus operators, the Choi matrix of a separable
map � is given by

C� =
∑
i, j,r,s

∑
l

Al |i〉〈 j|A†
l ⊗ Bl |r〉〈s|B†

l ⊗ |i〉〈 j| ⊗ |r〉〈s|. (5)

Swapping HA′ and HB we can interpret C� as an operator in
H = HA ⊗ HA′ ⊗ HB ⊗ HB′ and reexpress it as

C� =
∑

l

∑
i, j

Al |i〉〈 j|A†
l ⊗ |i〉〈 j| ⊗

∑
r,s

Bl |r〉〈s|B†
l ⊗ |r〉〈s|.

(6)
It is clear that

∑
i, j Al |i〉〈 j|A†

l ⊗ |i〉〈 j| is positive semidefinite
for all l’s because it is the Choi matrix of the completely
positive map ρ �→ AlρA†

l ; and the same holds for B. There-
fore, C� can be written as a sum

∑
l M (l )

A ⊗ M (l )
B with M (l )

A
and M (l )

B positive semidefinite: It is, thus, a separable matrix
across the (A − A′) − (B − B′) cut. It was shown in Ref. [6]
that the converse is true, namely, C� is separable across the
(A − A′) − (B − B′) cut if and only if � is a separable map.
We will use this characterization of separable channels in
Sec. III C.

We will call � fully separable (FS) if the corresponding C�

is separable across all possible cuts.

2. Entanglement-breaking channels

� is called entanglement breaking (EB) [23] if (� ⊗ 1)(ρ)
is a separable state across the H − H ′ cut whatever the initial
state ρ ∈ L(H). It does not address the separability of the
bipartite system H into A and B but rather the separability
between the system and its environment (it can, therefore,
be defined for one-qubit channels). Various necessary and
sufficient conditions for entanglement breaking have been
obtained in Ref. [23]. One necessary and sufficient criterion
is that there exist a Kraus form where all Kraus operators
have rank 1. In terms of the Choi matrix, a necessary and
sufficient condition for EB is that C� be separable across
the (A − B) − (A′ − B′) cut. Physically these channels cor-
respond to the case in which the output state is prepared
according to the measurement outcomes made by the sender
and sent via a classical channel to the receiver. We point out
the difference between separable and entanglement-breaking
channels in Fig. 1.

Channels which become entanglement breaking after a
sufficient number of compositions with themselves are called
eventually entanglement-breaking channels [25,26].

FIG. 1. Difference between separable (left) and entanglement-
breaking (right) channels for a bipartite system AB with ancillae
A′B′. The chains represent entanglement. A separable channel pre-
serves separability between (A − A′) and (B − B′), whereas an
entanglement-breaking channel destroys entanglement between A
and all the ancillae and B and all the ancillae, giving separability
between (A − B) and (A′ − B′).

3. Entanglement annihilating channels

� is called entanglement annihilating [34] if it destroys any
entanglement within the system H (but it does not necessarily
destroy entanglement between H and H ′). A necessary and
sufficient condition for entanglement annihilating channels in
terms of the Choi matrix is that C� � 0 and that its partial
trace over A and B is proportional to the identity matrix (see
Corollary 1 of Ref. [24]). Such a condition on partial trace is
not implementable in truncated moment sequence (tms) form,
so we will not address this type of separability.

III. TRUNCATED MOMENT SEQUENCES

In the present section, we introduce the mathematical
framework of truncated moment sequences (Sec. III A) and
then apply it to quantum states (Sec. III B) and channels
(Sec. III C). In general, to some nonnegative measure μ on Rn

one can associate its moments, which are the average values
of the monomials xα1

1 · · · xαn
n . The moment yα of order α =

(α1, . . . , αn) ∈ Zn
+ is defined as yα = ∫

xαdμ(x), where xα

denotes the monomial xα1
1 · · · xαn

n . If we are given a finite set y
of real numbers, i.e., a truncated sequence, a natural question
is to ask whether these numbers are the moments of a certain
probability distribution. If the measure μ is constrained to be
supported by a semialgebraic set K , the moment yα is given as

yα =
∫

K
xαdμ(x). (7)

The tms problem deals with the characterization of the trun-
cated sequences y = (yα )α∈Zn+ that are sequences of moments
of a measure μ. Solutions to this problem have been put
forward in the mathematical literature. As we will see, the
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separability problem can be expressed exactly in the form of
Eq. (7). The reader interested in the mathematical results for
the solution of the moment problem should continue with the
next section; otherwise, jumping to Secs. III B and III C will
directly give its connection with the physical problem of sepa-
rability of quantum states and quantum channels, respectively.

A. The tms problem

In order to be as self-contained and pedagogical as pos-
sible for a physics-oriented audience, we start by reviewing
and explaining some results from the mathematical literature
[35–41]. We follow the nice presentation from Ref. [42]. We
then recall the theorems obtained in Ref. [30] for quantum
states and formulate them in the case of quantum channels.

A tms y = (yα )|α|�2d of degree 2d is a finite set of real
numbers indexed by n-tuples α = (α1, . . . , αn) of integers
αi � 0 such that |α| = ∑

i αi � 2d (here we only consider
tms of even degree: indeed, although the definition would
extend trivially to odd-degree tms, even-degree tms are the
only ones involved in the theorems below, so this slightly
simplifies notations). We denote by S2d the set of n-tuples
α = (α1, . . . , αn) with |α| � 2d so that y is a vector in RS2d .
The number of such n tuples is

2d∑
k=0

(
k + n − 1

n − 1

)
=

(
n + 2d

2d

)
. (8)

A moment sequence corresponds to a situation where all yα

are known to arbitrary order, which we denote by y ∈ RS∞ .
The truncated moment problem (tms problem) is the prob-

lem of finding whether there exists a representing measure for
a given sequence y, that is, a positive measure dμ such that
yα = ∫

xαdμ(x) for all α with |α| � 2d . Here the notation xα

stands for
∏n

i=1 xαi
i .

The K-tms problem addresses the case where the measure
dμ is additionally required to be supported by a semialgebraic
set K , that is, a set defined by polynomial inequalities. We
will use the notation K = {x ∈ Rn|g1(x) � 0, . . . , gm(x) � 0}
with g j (x) multivariate polynomials. The sequence y has a
representing measure for the K-tms problem if for all α’s with
|α| � 2d , Eq. (7) holds.

Necessary and sufficient conditions for the solution of the
tms problem can be obtained in terms of moment matrices.
Given a tms (yα )|α|�2d , its moment matrix of order t is the
matrix Mt (y) indexed by α, β with |α|, |β| � t and defined as
Mt (y)αβ = yα+β . The entries of the matrix involve indices of
y up to order 2t and since the highest index of y is 2d (by
definition of the tms) such a matrix is defined only if t � d .
The size of Mt (y) is given by the number of moments up
to order t , that is,

(n+t
t

)
. In the case of an infinite moment

sequence, the matrix M(y) is infinite.
Necessary and sufficient conditions for the solution of the

K-tms problem additionally involve the localizing matrices
associated with polynomials g j specifying K , which are de-
fined as follows. Any polynomial g of n variables x1, . . . , xn

can be decomposed over monomials as g = ∑
|α|�deg(g) gαxα ,

where deg(g) is the degree of the multivariate polynomial g. It
can, thus, be seen as a vector in RSdeg(g) . For a tms (yα )|α|�2d

and a polynomial g, we define a shifted sequence g � y by

setting (g � y)α = ∑
γ gγ yα+γ . The localizing matrix of order

t associated with g is defined as the moment matrix of order
t of the shifted sequence, that is, Mt (g � y). Explicitly, its
components read Mt (g � y)αβ = ∑

γ gγ yα+β+γ . The highest
index of y involved here is 2t + deg(g) so that the matrix is
defined only for 2t + deg(g) � 2d , that is, t � d − deg(g)/2.
The m polynomials defining K give rise to m-localizing matri-
ces Mt (g j � y). In order that all of them be defined, the order t
has to be such that t � d − d0 with

d0 = max
1� j�m

{1, 
deg(g j )/2�}, (9)

that is, the degree of y has to be greater than or equal to 2(t +
d0).

The three theorems below give necessary and sufficient
conditions for a tms (or a full moment sequence) to have a
representing measure, supported on K or not. In all cases, the
representing measure is r atomic, meaning that it is a sum of r
δ functions with positive weights, dμ(x) = ∑

j ω jδ(x − x j ).
The central criterion is the existence of extensions. An exten-
sion of a tms y of degree 2d is a tms of degree 2d ′ with d ′ > d
whose restriction to indices of order 2d or less coincides with
y. We denote it again by y. One can define the moment matrix
of order t of such an extension for all t � d ′, and we then say
that for t ′ > t, Mt ′ (y) is an extension of Mt (y). An extension
Mt ′ (y) is said to be a flat extension of Mt (y) if it satisfies the
condition that its rank is equal to the rank of Mt (y), that is,

rk Mt ′ (y) = rk Mt (y). (10)

In particular, if (10) holds then Mt ′ (y) � 0 ⇔ Mt (y) � 0
(see Appendix B). Theorem 1 below deals with the moment
problem, Theorem 2 with the tms problem, and Theorem 3
with the K-tms problem.

Theorem 1. ( Ref. [35]; see Theorem 1.2 of Ref. [42]) Let
y ∈ RS∞ . If M(y) � 0 and rk M(y) = r is finite, then y has a
unique representing measure, which is r atomic.

Theorem 2. (Ref. [35]; see Theorem 1.3 and Corollary 1.4
of Ref. [42]) Let y ∈ RS2t . If Mt (y) � 0 and Mt (y) is a flat
extension of Mt−1(y), then y can be extended to y ∈ RS2t+2 in
such a way that Mt+1(y) is a flat extension of Mt (y).

From induction and using Theorem 1, one concludes that
the tms in RS2t can be, in fact, extended to y ∈ RS∞ and
has a unique representing measure, which is r atomic with
r = rk Mt (y). Moreover one can show (see Ref. [42] for de-
tail) that the r atoms xi which support the measure can be
obtained from the kernel of Mt (y), that is, the set of poly-
nomials p = ∑

α pαxα such that
∑

β Mt (y)αβ pβ = 0. More
specifically, the set of xi is the variety V[ker Mt (y)] = {x ∈
Cn; f (x) = 0 ∀ f ∈ ker Mt (y)}, that is, the set of common
roots of polynomials in the kernel of Mt (y). In words, what
the above results say is that in order to find a representing
measure for y ∈ RS2d one has to start from the moment matrix
Mt=d (y) (which is the smallest moment matrix containing all
the data) and look for extensions of higher and higher order,
until for some order t one has rk Mt (y) = rk Mt−1(y). If such
an extension exists then the representing measure exists and is
supported by the common roots of polynomials of ker Mt (y).

Theorem 3. (Ref. [35]; see Theorem 1.6 of Ref. [42]) Let
y ∈ RS2t and r = rk Mt (y). Then y has a r atomic representing
measure supported on K if and only if Mt (y) � 0 and there
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exists a flat extension Mt+d0 (y) with Mt (g j � y) � 0 for 1 �
j � m and d0 defined in (9).

This theorem can be decrypted as follows. Starting from
the moment matrix of order d and looking for higher-
order extensions of order t , if there exists an extension
Mt+d0 (y) with rk Mt+d0 (y) = rk Mt (y) = r then all its subma-
trices Mt+1(y), Mt+2(y), . . . are also flat extensions of Mt (y).
From Theorems 1 and 2 one readily concludes that there exists
a unique r-atomic representing measure; the atoms are given
by the variety associated with the kernel of the first extension
where the flatness condition is achieved. However these atoms
may not be located on K . The conditions Mt (g j � y) � 0 on
the localizing matrices precisely enforce that additional con-
dition (see Appendix A for an insight into the proof). As
mentioned above, these matrices are only defined if the degree
of y is greater than 2(t + d0), which is why, in order to fulfill
these conditions, one has to find extensions in y ∈ RS2(t+d0 ) .
Therefore, although an extension to Mt+1(y) is enough to
guarantee the existence of a r-atomic representing measure,
an extension to Mt+d0 (y) is required so that it is supported by
K . As a consequence, achieving the flatness condition requires
to go quickly to matrices of high order, which has an impact
in terms of computational complexity.

B. Tms for quantum states

Let us now apply these theorems to quantum states, follow-
ing Ref. [30]. Consider a quantum state ρ acting on the tensor
product H = H (1) ⊗ · · · ⊗ H (p) of Hilbert spaces H (i) with
dim L(H (i) ) = κi + 1. Let S(i)

μi
(0 � μi � κi ) be a set of Her-

mitian matrices forming an orthogonal basis for L(H (i) ), and
Sμ1μ2···μp = S(1)

μ1
⊗ · · · ⊗ S(p)

μp an orthogonal basis of L(H ). We
expand ρ as

ρ = Xμ1μ2···μpSμ1μ2···μp (11)

(with implicit summation over repeated indices), where
Xμ1μ2···μp = tr(ρSμ1μ2···μp ) are the (real) coordinates of the
state. Here each index μi runs from 0 to κi, and we will
use latin letters ai for indices running from 1 to κi. It will
prove convenient to take S(i)

0 as the identity matrix of size
the dimension of H (i). Actually, as detailed in Ref. [30], the
matrices Sμ1μ2···μp need not be an orthogonal basis: It suffices
that they be a tight frame (a mathematical structure bearing
some analogy with orthogonal bases), which proves useful,
for example, in the case of symmetric states where some
redundancy of the matrices in the expansion (11) is handy.

One can associate with ρ a tms y = (yα )|α|�p of de-
gree p in the following way. A density matrix acting on
Hilbert space H (i) can be expanded as

∑κi
μi=0 x(i)

μi
S(i)

μi
. We

associate to H (i) a set of κi variables x(i)
ai

, 1 � ai � κi. Let
x = (x1, x2, . . . , xn) be the vector of all these variables. In the
general case (x1, x2, . . . , xn) := (x(1)

1 , x(1)
2 , . . . , x(p)

κp ) and n =∑
i κi, and each xk corresponds to a certain x(i)

ai
, whereas if we

consider symmetric states (i.e., mixtures of pure states invari-
ant under permutation of the H (i)) only one set of variables,
say x(1)

a1
, should be considered, and then n is the common value

κ1 = κ2 = · · · .
An arbitrary monomial of these variables xk can be written

as xα ≡ ∏n
k=1 xαk

k , where αk counts the number of variables

xk in the monomial. We then define a tms by yα = Xμ1μ2···μp ,
where α is the index such that xα = ∏p

i=1 x(i)
μi

. Since X has p
indices we have |α| � p so that yα is a tms of degree p. In
fact, in order to define a moment matrix, an even-degree tms
is required. Thus, we set p = 2d if p is even or p = 2d − 1
if p is odd. Thus, Xμ1μ2···μp is mapped to a tms (yα )α�2d (and
in the case where p is odd the moments of order exactly 2d
remain unspecified).

As an example, let us consider the case of a state of
two spins 1. We expand it as ρ = Xμ1μ2 Sμ1μ2 , where in-
dices μi run from 0 to 8 (since a spin-1 density matrix is
a 3 × 3 Hermitian matrix and can be described by nine real
numbers). We then introduce the vector of variables x =
(x1, x2, . . . , x16), where x1, . . . , x8 are associated with the first
spin and x9, . . . , x16 with the second. Entries Xμ1μ2 define
a tms yα of degree 2 where each α is a vector of integers
of length 16 with all entries equal to 0 if μ1 = μ2 = 0, a
single nonzero entry αμ1 = 1 if μ1 �= 0 and μ2 = 0, a single
entry αμ2+8 = 1 if μ2 �= 0 and μ1 = 0, and two entries equal
to 1 if both μ1 and μ2 are nonzero. Each of these α’s is
associated with a monomial, for instance, X3;8 corresponds to
α = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) or to x3x16.

As shown in Ref. [30], the problem of finding whether ρ is
separable across the multipartition H (1) ⊗ · · · ⊗ H (p) is equiv-
alent to a K-tms problem. Indeed, projecting the separability
condition on the basis Sμ1μ2···μp , coordinates of a separable
state can be written as

Xμ1μ2···μp =
∫

K
x(1)
μ1

x(2)
μ2

· · · x(p)
μp

dμ(x), (12)

with x(i)
0 = 1, ; x = (x(1), x(2), . . . , x(p) ) ∈ Rn (n =∑

i κi ), x(i) = (x(i)
a )1�a�ti ∈ Rκi , and dμ(x) = ∑

j ω jδ(x −
z j ) a measure supported on a semialgebraic set K ⊂ Rn

defined by the positivity of the density matrices on each
local Hilbert space (that is, the measure is an atomic measure
with atoms z j ∈ K). This tms problem is equivalent to asking
whether there exists a positive measure dμ with support K
for a tms whose moments are the yα given as explained above
by the coordinates Xμ1μ2···μp of the state ρ. In this language,
Eq. (12) precisely takes the form (7). As a consequence,
separability of ρ can be addressed in the following way:
Given a state ρ, we can map its coordinates Xμ1μ2...μp to
a tms (yα )α�2d and look for extensions (yα )α�2t , starting
from t = d . State ρ is separable if and only if there exists a
flat extension (yα )α�2(t+d0 ) of (yα )α�2t with Mt (y) � 0 and
Mt (g j � y) � 0 for j = 1, . . . , m.

C. Tms for quantum channels

We will now reformulate the theorem above to give
a necessary and sufficient criterion for the separability of
quantum channels. Let �:L(HA ⊗ HB) → L(HA ⊗ HB) be a
completely positive map and C� its corresponding Choi ma-
trix acting on H = HA ⊗ HB ⊗ HA′ ⊗ HB′ ; an orthogonal basis
of H is then given by matrices SμAμBμA′μB′ = S(A)

μA
⊗ S(B)

μB
⊗

S(A′ )
μA′ ⊗ S(B′ )

μB′ , where S(•)
μ are Hermitian matrices forming an

orthogonal basis of the set of bounded linear operators on
H•. Let us translate the above tms theorems as necessary and
sufficient conditions on the Choi matrix to be separable.
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The compact K is defined according to the decomposition
we are interested in. In the EB case, one wants to decompose
the Choi matrix as

∑
k Pk ⊗ Qk , where Pk and Qk are posi-

tive operators acting on HA ⊗ HB and HA′ ⊗ HB′ , respectively.
Expanding the Pk over a basis of operators SAB

λ (these SAB
λ

could be taken as the S(A)
μA

⊗ S(B)
μB

) and Qk over a basis SA′B′
λ′ and

expressing the condition that they must be positive, we obtain
a definition of the compact K as the set of real expansion
coefficients cλ, dλ′ such that

∑
λ

cλSAB
λ � 0, (13)

∑
λ′

dλ′SA′B′
λ′ � 0. (14)

These positivity conditions can be rewritten as inequalities on
the coefficients of the corresponding characteristic polynomi-
als using the Descartes sign rule (see Sec. III D below). In
the SEP case, the Choi matrix now has to be decomposed as∑

k Pk ⊗ Qk with Pk and Qk acting on HA ⊗ HA′ and HB ⊗ HB′ ,
respectively. The same reasoning applies for the positivity
conditions as in the EB case.

Given a channel �, we expand the corresponding Choi
matrix as

(1) for EB, C� = ∑
λ,λ′ Xλλ′SAB

λ ⊗ SA′B′
λ′ (with SAB

λ a basis
of operators for the system and SA′B′

λ′ for the ancilla)
(2) for SEP, C� = ∑

λ,λ′ X̃λλ′SAA′
λ ⊗ SBB′

λ′ (with SAA′
λ a basis

of operators for the Hilbert space HA ⊗ HA′ , and SBB′
λ′ for the

Hilbert space HB ⊗ HB′ ).
We can then map either the coordinates Xλλ′ or the co-

ordinates X̃λλ′ to a tms (yα )α�2 (indeed, since we look for
separability across a bipartition, the degree of the tms is 2).
The necessary and sufficient conditions for channels are then
given as follows:

Theorem 4.
(i) The channel � is EB if and only if, considering

extensions (yβ )β�2t of (yβ )β�2, there exists a flat exten-
sion (yβ )β�2(t+d0 ) of (yβ )β�2t (possibly with t = 1) with
Mt (y) � 0 and Mt (g j � y) � 0 for j = 1, . . . , m where the
g j’s are polynomials of variables cλ and dλ′ defined by
the conditions

∑
λ cλSAB

λ � 0,
∑

λ′ dλ′SA′B′
λ′ � 0, and d0 =

max1� j�m{1, 
deg(g j )/2�}.
(ii) The channel � is SEP if and only if, considering

extensions (yβ )β�2t of (yβ )β�2, there exists a flat exten-
sion (yβ )β�2(t+d0 ) of (yβ )β�2t (possibly with t = 1), with
Mt (y) � 0 and Mt (g j � y) � 0 for j = 1, . . . , m where the
g j’s are polynomials of variables cλ and dλ′ defined by
the conditions

∑
λ cλSAA′

λ � 0,
∑

λ′ dλ′SBB′
λ′ � 0, and d0 =

max1� j�m{1, 
deg(g j )/2�}.
In the case of fully separable channels, the Choi matrix

must be separable across any cut. We expand the matrix
C� as C� = XμAμBμA′μB′ S(A)

μA
⊗ S(B)

μB
⊗ S(A′ )

μA′ ⊗ S(B′ )
μB′ . The coeffi-

cients XμAμBμA′μB′ are now mapped to a tms of order 4, and the
set K is given by positivity conditions on each Hilbert space.
The channel � is fully separable if and only if, looking for
extensions of that tms, we find a flat extension (with positivity
conditions on the moment and localizing matrices).

D. The algorithm

Theorem 4 can be translated into an algorithm that char-
acterizes separable or entangling channels with respect to
a chosen partition. The algorithm is based on semidefinite
programming (SDP). The inputs to the algorithm are the
following. The first input is the Choi matrix of the specific
channel that one wants to test; it acts on the system-ancilla
Hilbert space H = HA ⊗ HB ⊗ HA′ ⊗ HB′ , and its coordinates
(in a basis depending on the partition chosen) provide a tms
yα . The second input is the set of polynomials g j defining
the compact K via polynomial inequalities [as in Eqs. (13)
and (14)], which allows one to define the localizing matrices.
Keeping the second input fixed, we can change the Choi
matrix by swapping Hilbert spaces so as to explore different
separability problems (SEP, EB, or FS) as defined in Sec. II B.
The SDP algorithm minimizes a linear function of the mo-
ments yα under the constraints that the moment matrix and
the localizing matrices are positive semidefinite.

Let W be a matrix as in (13) and (14). It depends on the set
of variables associated with each Hilbert space, for instance,
the variables cλ in Eq. (13). To derive an explicit expression
for the g j , we express the coefficients of the characteristic
polynomial p(z) = ∑n

k=0(−1)n−kakzk of W through the recur-
sive Faddeev-LeVerrier algorithm, i.e., for 1 � m � n,

an−m = − 1

m

m∑
k=1

(−1)kan−m+k tr(W k ), (15)

with an = 1 and a0 = det(W ). From Descartes sign rule, pos-
itivity of W is equivalent to having ak � 0 for all k’s. Let
us consider, for example, the case of two-qubit channels for
which i, j go from 0 to 1 in Eq. (6) and C� is a 16 × 16
matrix and look for its separability as a tensor product of two
4 × 4 matrices. The characteristic polynomial for each factor
is then of degree 4 [n = 4 in Eq. (15)], and the inequalities
for positivity are given by Newton’s identities (also known as
Girard-Newton formulas). Besides a4 = 1 and a3 = tr W = 1
(since W is a density matrix), we get the conditions,

a2 = 1
2 (1 − trW 2) � 0,

a1 = 1
6 (2 tr W 3 − 3 tr W 2 + 1) � 0,

a0 = 1
24 (−6 tr W 4 + 8 tr W 3 + 3(tr W 2)2 − 6 tr W 2 + 1) � 0,

(16)

which yield polynomial inequalities on the cλ.
The tms yα associated with C� is obtained from its coordi-

nates in a certain basis. In the case of states (see Sec. III B),
specifying the coordinates of the density matrix was equiva-
lent to fixing some moments of the measure dμ(x) as being
the expectation values of some physical observables, given by
tr(ρS(1)

μ1
⊗ · · · ⊗ S(p)

μp ). In the case of channels instead, the ob-
servables are relative to the enlarged space system ancilla, so
in order to perform physical measurements on the system only
one needs to express the values tr(C�S(A)

μA
⊗ S(B)

μB
⊗ S(A′ )

μA′ ⊗
S(B′ )

μB′ ) in terms of the entries of the superoperator M specifying
the channel as ρ ′

i j = Mi j,klρkl . This gives a direct relation
with the input-output representation, i.e., the quantum channel
� is seen as a dynamical process: If ρ is the initial (input)
state before the process, then �(ρ) is the final (output) state
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after the process occurs. We can go from one representation
to the other considering that M and C� are related by the
reshuffling operation in the computational basis; for a generic
basis this will, in general, result in a linear combination of
physical measurements on the system. The number of physical
measurements needed to fix one entry of the moment matrix
relative to C� can be used, for instance, as a cost function to
decide between efficiency of entanglement detection and ex-
perimental convenience. The system-ancilla approach is what
is used in the so-called ancilla-assisted process tomography
(see, e.g., Ref. [43]), whereas the input-output one is the
standard quantum process tomography (see, e.g., Ref. [44]).

The SDP algorithm then consists of minimizing a function∑
α Rαyα with Rα an arbitrary polynomial under the constraint

that Mt (y) and the localizing matrices Mt (g j � y) are positive
semidefinite and look for an extension such that the flatness
condition is fulfilled. The algorithm is implemented using
GLOPTIPOLY [45] and the MOSEK optimization toolbox [46].
Note that if the rank condition is not met the SDP can still
yield a solution to the minimization problem [47], but it does
not tell us anything a priori on the representing measure
problem. To describe all the ingredients in the algorithm, to
study its complexity and its efficiency, we will apply it in
the next section to different examples: the spin-1 channels
mentioned already above, and specific two-qubit channels,
which are relevant in many experimental settings.

IV. EXAMPLES

In the general case, the number of moments involved, and,
thus, the size of the moment matrices, scales very fast with
the extension order t so that numerically the SDP soon be-
comes intractable. More specifically, whereas full separability
of two-qubit channels is a problem that is still tractable nu-
merically, already the SEP and EB cases turn out to be too
complex if we consider arbitrary qubit channels. Indeed, in
that case the variables involved are (xμ)1�μ�15 for the system
and (x′

μ)1�μ�15 for the ancilla. The number of decision vari-
ables in the SDP is the number of free entries of the extension
of the moment matrix we are looking for; in the order-t exten-
sion Mt (y), it is the number of monomials from 30 variables
up to degree 2t , given by

(30+2t
2t

)
[see Eq. (8)]. Moreover, the

polynomials defining the compact K for a two-qubit Hilbert
space (of dimension 4) are the ones given in Eq. (17), that is,
their degree is 4, and, thus, d0 = 2. Since the smallest moment
matrix containing all given moments is M1(y), the smallest
extension we have to consider in Theorem 4 is M3(y). The
size of this matrix is

(33
3

) = 5456, and the number of decision
variables is

(36
6

)
� 106. Therefore, the size of the SDP grows

very quickly, and, thus, the number of semidefinite constraints
requires too much time and memory.

Nevertheless, the algorithm can still be applied to families
of channels for which the number of variables involved is
smaller than in the general case. In the following we present
different examples of such families. We highlight their com-
plexities and computational cost, and explain in more detail
the role of the different factors mentioned above. We finally
outline some numerical results on their entangling or separa-
ble properties.

A. Fully symmetric Choi matrix

We start with a simple example which allows us to
highlight the connection between the TMS algorithm for
channels and for states. We consider quantum channels �

such that the Choi matrix C� has components only on the
symmetric subspace. In other words, we impose that the four-
qubit state associated with the two-qubit channel � via the
Choi-Jamiołkowski isomorphism be fully symmetric under
permutation of the qubits (in the sense that it is a mixture
of fully symmetric pure states). In that case, the Choi ma-
trix only has components on the subspace spanned by Dicke
states |D(m)

j 〉, which are the symmetrized tensor products of 2 j
qubits with j = 2 (four qubits) and − j � m � j. This means
that

(1 − P)C�(1 − P) = (1 − P)C�P = PC�(1 − P) = 0,

(17)
where P = ∑2

m=−2 |D(m)
4 〉〈D(m)

4 | is the projection operator
onto the symmetric subspace. The constraints in Eq. (17) fix
conditions on the superoperator M of which C� is a reshuf-
fling. For j = 2, only (2 j + 1)2 real independent parameters
remain.

Such a restriction has a clear physical interpretation in
the case of one-qubit channels. Indeed, the Choi matrix of a
nonunital one-qubit channel can be put in the form

1

2

⎛
⎜⎜⎜⎝

1 + λ3 + t3 0 t1 + it2 λ1 + λ2

0 1 − λ3 + t3 λ1 − λ2 t1 + it2

t1 − it2 λ1 − λ2 1 − λ3 − t3 0

λ1 + λ2 t1 − it2 0 1 + λ3 − t3

⎞
⎟⎟⎟⎠,

(18)
in the canonical basis [27]. Imposing that the matrix is asso-
ciated with a symmetric state is equivalent to imposing that it
has no component over the singlet state; this leads to the con-
ditions t1 = t2 = t3 = 0 (i.e., the channel is unital) and λ1 −
λ2 + λ3 = 1, which correspond to a face of the tetrahedron of
admissible values of the λi corresponding to unital channels,
given by the Fujiwara-Algoet conditions 1 ± λ3 � |λ1 ± λ2|
[48]. Such points on a face of the tetrahedron correspond to
channels whose Kraus rank is 3, which are characterized by
the fact that they are the only indivisible channels (that is,
they cannot be written as the composition of two nonunitary
channels) [49,50].

In the two-qubit channel case there is no such clear geo-
metrical picture of the fully symmetric Choi matrix. However,
since the Choi state is a fully symmetric state of N = 4 qubits,
if it is separable with respect to an arbitrary partition, then it
is fully separable, and it can be written as a convex sum of
N projectors on pure symmetric states (see, e.g., Ref. [51]).
This means that in this case we only need to consider the
fully separable case, which coincides with exploring the case
of spin-2 states (since those states can be seen as symmetric
states of four qubits). The tms algorithm for states was ex-
ploited in Ref. [21] to investigate multipartite entanglement of
such states. The problem can be formulated as in Eq. (7) with a
tms of degree 4 [thus, the smallest moment matrix to consider
in Theorem 4 is M2(y)] and a vector of variables (x1, x2, x3)
(as explained in Sec. III B since the state is fully symmetric
we only need the three variables associated with a single
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qubit). The semialgebraic set K is the Bloch sphere so that
d0 = 1. Thus, the first flatness condition in Theorem 4 reads
rk M3(y) = rk M2(y) with M2(y) and M3(y) of sizes 10 × 10
and 20 × 20, respectively. The algorithm usually stops at the
first extension, and it takes at about 1 s to give a certificate
of separability or entanglement of the channel (the time here
reported refers to running the algorithm on a standard com-
puter with a 64-bit Windows operating system, 4-GB RAM
and Intel Core i7 CPU 2.00–2.60 GHz). We refer to the results
obtained for states in Refs. [21,30] for more detail on the
implementation in that case.

B. Two-qubit planar channels

We now consider the case where the two-qubit channel
is a linear combination of tensor products of single-qubit
planar channels. Such one-qubit channels φpl send the (three-
dimensional) Bloch ball into a (two-dimensional) ellipse.
Note that, according to the so-called “no-pancake theorem”
a planar channel cannot map the Bloch ball to a disk touch-
ing the sphere unless it reduces to a point or a line (see
Refs.[49,52] ).

Any one-qubit channel can be described by a 4 × 4 matrix
of the form

M =

⎛
⎜⎜⎜⎝

1 0 0 0

t1 λ1 0 0

t2 0 λ2 0

t3 0 0 λ3

⎞
⎟⎟⎟⎠, (19)

where λ = (λ1, λ2, λ3) with λi � 0 is the distortion vector
and t = (t1, t2, t3) is the translation vector. Geometrically, the
channel maps the Bloch vector r to Mr + t , that is, the sphere
becomes an ellipsoid whose half-axes are given by the λi and
centered at t .

Planar channels are those where one of the λi is zero.
Geometrically, this means that they map the Bloch ball to a
disk. In Ref. [53] this type of channel was investigated, but
with focus on their entanglement-annihilating properties. In
what follows, we consider planar channels φpl with λ2 = 0.
We investigate whether linear combinations, such as

� = aφ
(1)
pl ⊗ φ

(1)
pl + bφ(2)

pl ⊗ φ
(2)
pl , (20)

with a, b ∈ R result in separable channels. We consider the
case in which both φ

(1)
pl and φ

(2)
pl are unital, one unital, the

other nonunital, and both nonunital. Note that states (20) are
not symmetric states, in general, as they are symmetrizations
of mixed states but not mixtures of symmetric pure states. The
condition of complete positivity in the case of a unital planar
channel (t = 0) is given by |λ1| � 1 − |λ3| with |λ1|, |λ3| the
half-axes of the ellipse. In the case of nonunital channels the
conditions for complete positivity can be found in Theorem
IV.1 of Ref. [49]. Here for simplicity we consider the case
where λ2 = 0 and t = (0, 0, t3). In such a case these condi-
tions simplify to

1 + λ1 + λ3 � 0, 1 + λ1 − λ3 � 0

1 − λ1 − λ3 � 0, 1 − λ1 + λ3 � 0,

t2
3 � 1 − λ2

1 + λ2
3 − 2|λ3|. (21)

The Choi matrix C� is then properly normalized (b = 1
16 − a)

in order to obtain a valid quantum state with trace 1, giv-
ing the Choi state on which we apply our algorithm. The
basis over which C� is expanded is chosen as the tensor
product σμ1 ⊗ σμ2 ⊗ σμ3 ⊗ σμ4 with 0 � μi � 2 and {σμi} =
{1, σx, σz}, σx, σz being the usual Pauli matrices (this is also
reasonable from the experimental point of view since Pauli
physical measurements are often used for multiqubit chan-
nels). The Choi states associated with states (20) turn out to
be equal to their partial transpose with respect to any qubit.
Invariance under partial transposition with respect to the first
qubit in 2 × N systems was shown in Ref. [54] to entail
separability. Therefore, the four-qubit Choi state is separable
across any bipartition into sets of one and three qubits.

Separability for the bipartitions into two sets of two qubits,
required from the definition of EB and SEP channels, corre-
sponds to the situation of Theorem 4 and can be explored with
our algorithm as follows. In contrast to the symmetric case ad-
dressed in Subsec. IV A, there are now different variables xi in
Eq. (12) for the system A and the ancilla A′ (and equivalently
for B and B′)

Let us first consider the question of full separability. In
that case, since each system qubit and ancilla qubit, respec-
tively, is described by two variables (xA

μ)1�μ�2, (xB
μ)1�μ�2

and (xA′
μ )1�μ�2, (xB′

μ )1�μ�2, the vector of variables has length
8. The moments yα are given by entries of the Choi matrix,
the tms has degree 4, so that formula (8) applies with n = 8
and 2d = 4. The semialgebraic set is given by the choice of
basis matrices for the Choi matrix. Since we expanded it over
Pauli matrices, the constraint for each set of variable is the
one for qubits, i.e., the vector of variables is restricted to the
Bloch ball. The compact K is, therefore, the product of four
unit disks.

Since all polynomials defining K are of degree 2, we have
d0 = 1, and, thus, the first rank condition reads rk M3(y) =
rk M2(y) where the moment matrices have size

(n+t
t

)
, i.e.,

respectively 165 and 45. A first hint on the computational
complexity of the SDPs we need to solve is given by the
number of decision variables of the optimization, which in
our case corresponds to the number of monomials from eight
variables up to degree 6, the latter being the degree of the
extension of the tms needed to construct M3(y). Moreover,
SDP are usually solved with the interior point method; each
iteration in the primal-dual interior point algorithm requires
the solution of a linear system, which is the most expensive
operation with O(N3) complexity, solvable using Gaussian
elimination. Here N is the number of linear constraints in
the SDP, and efficiency drops with the growing number of
semidefinite terms involved in these linear constraints, which
in the case here considered are ∼103. This, in general, has a
big impact on the time and memory requested for a single
run of the algorithm [46]. Nevertheless, we could run our
algorithm in that case, which allowed us to test for separability
of channels of the form (20). The algorithm still performs very
well (on a machine with same characteristics as described
above in Sec. IV A); for all the examples tested a certificate
of separability was found either at the first relaxation order
rk M3 = rk M2 (with a time of ∼10s for a single run) or at the
second relaxation order rk M4 = rk M3 (with a running time
of ∼6 min).
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We tested ∼103 cases, which were chosen
uniformly at random in the range of parameters
(λ(1)

1 , λ
(1)
3 , λ

(2)
1 , λ

(2)
3 , t (1)

3 , t (2)
3 , and a) allowed by the

complete-positivity conditions of the quantum channels
considered [see Eq. (22) and above it]. All the Choi states
tested result fully separable for all the three cases listed above
(where channels φpli can be unital or not); as a consequence,
all these states are both EB and SEP. Based on the available
numerical evidence we conjecture that all states of the form
(20) are fully separable.

C. Qutrit channels

We now study the case of qutrit channels. More specif-
ically, we apply our algorithm to a family of channels
presented in Ref. [55] where EB properties of qutrit gates
were studied through the negativity N (ρ) = 1

2 (‖ρTH ‖1 − 1)
with ‖ρTH ‖1 the trace norm of the partial transpose with re-
spect to the system qutrit. The negativity N (ρ) cannot detect
PPT-entangled states; in other words there exist entangled
states with N (ρ) = 0. For such states, our algorithm is able
to give a certificate of separability as we illustrate below.
Note that, even though in this case the system is not bipartite,
the definition of entanglement breaking still applies since it
involves the presence of an ancilla, as explored for one-qubit
channels in Ref. [52]; on the other hand, the definition of SEP
separability cannot be applied to this example.

As a basis for qutrit density operators, we use Gell-Mann

matrices {λi}8
i=1 together with λ0 =

√
2
31. In this basis, an

arbitrary qutrit density matrix can be written as

ρ = 1

3

(
1 +

8∑
i=1

ζiλi

)
, (22)

with ζi = 3
2 tr(ρλi ).

The channel we consider is a damping qutrit channel, i.e.,
a channel that can be written as an affine transformation on
the generalized (qutrit) Bloch vector as �D: ζ → ζ′ = �ζ,
where � = diag(�1, . . . , �8) is the damping matrix. The
�i cannot take any arbitrary value because �D has to be
completely positive, thus, leading to the constraints |�i| �
1. More specifically, we consider the family of damping
channels given in Ref. [55] and parametrized by �i �=3,8 =
x, �i=3 = y, �i=8 = y2. The Choi state corresponding to �D

can be written by transforming the propagator to the canonical
basis, then reshuffling and normalizing (it corresponds to a
maximally mixed state for x = y = 0 and to a maximally
entangled state of two qutrits for x = y = 1). The region of
parameters for which C�D is positive semidefinite together
with the values of the corresponding negativity is shown in
Fig. 2.

Any two-qutrit state can be expanded over the basis formed
by tensor products of Gell-Mann matrices [56]. This setting is
analogous to the one described in Sec. III B for two spin-1
states. The vector of variables is x = (x1, x2, . . . , x16), where
x1, . . . , x8 are the coordinates αi associated with the system
qutrit, and x9, . . . , x16 are associated with the ancilla qutrit.
Since there are two subsystems, and the tms has degree 2.
The characteristic polynomial for a qutrit density matrix has
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FIG. 2. Region of x and y parameters for which C�D of the
damping qutrit channel is positive semidefinite; the color function
corresponds to the negativity values in the range of [0,1] with steps
for the contour lines of 0.02. The central plateau corresponds to the
region of zero negativity where the PPT criterion remains incon-
clusive. Gray points correspond to states found separable by our
algorithm, signifying entanglement breaking channels; red points
correspond to states where the algorithm needs to go to a higher ex-
tension order and remains inconclusive with our numerical resources.
The white point marks the maximally mixed state.

degree 3, therefore, the semialgebraic set is given by the con-
ditions tr ρ2 � 1 and det ρ � 0 with ρ as the density operator
in Eq. (22). It follows that the corresponding polynomials of
the variable xi have maximal degree 3, and, thus, d0 = 2. This
gives the rank shift in Theorem 4: At the first iteration of the
algorithm the flatness condition reads rk M3(y) = rk M1(y).
These moment matrices have size 969 and 17, respectively.
The number of decision variables in the SDP corresponds
to the number of monomials from 16 variables up to degree
6 (∼7 × 104) and the number of semidefinite constraints is
given by

(n+t
t

) + m
(n+t−1

t−1

) + m
(n+t−2

t−2

)
, that is, the size of the

moment matrix of the first extension (t = 3) and the size of the
localizing matrices multiplied by the number m of inequalities
in the semialgebraic set for each set of variables.

The tms algorithm can be exploited to investigate, in
particular, the Choi states with zero negativity for which
the PPT criterion alone is inconclusive. The results for
some pairs of parameters with (x = 0, y ∈ [−1, 1]) and
(x ∈ [− 2

25 , 2
25 ], y = − 1

2 ) are explored and they are shown in
Fig. 2. The points highlighted in gray are the points tested
with the algorithm which give a certificate of separability,
including the white point which corresponds to a Choi state
equal to the maximally mixed state of two qutrits. In the
latter cases the SDP is feasible and the flatness condition
rk M3(y) = rk M1(y) is satisfied, meaning that the correspond-
ing �D’s are EB; on the other hand, the algorithm remains
inconclusive for the red points at the first iteration, leading to
the necessity for higher-order extensions, which are beyond
our computational resources. We did not detect PPT entan-
gled states among the tests performed; the algorithm confirms
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entanglement for negativity greater than zero for all the states
tested. A single run of the algorithm in this case takes about
5h and between 150 and 300 GB of RAM.

V. CONCLUSIONS

In this paper we have discussed an algorithm that deter-
ministically detects whether a quantum channel is separable
or not, or whether it is entanglement breaking or not. Such an
algorithm finds its motivation in important questions relative
to modern quantum technology as the verification of devices
which should work in a properly quantum way, often leading
to the necessity of detecting whether a quantum channel is
able to generate entanglement or not also over a certain time
(as explained in the Introduction). We were able to explore
in a unifying framework three classes of separability across
different cuts between systems and ancillae (SEP, EB, or FS);
indeed, with only a small modification in the input we can
switch between these different classes. This algorithm is the
numerical counterpart of a theorem that provides a neces-
sary and sufficient separability criterion based on a mapping
between coordinates of the Choi matrix of the channel, ex-
pressed in a given basis and a truncated moment sequence.
Low-order moments are fixed by measurements performed
on the channel, and the separability problem is equivalent
to finding whether these moments are those of a measure
supported on a certain compact set.

In the case of fully symmetric Choi matrices for qubit
channels where the aim is to find a decomposition over the
Bloch sphere, the number of variables in the tms is n = 3 so
that the size of a moment matrix of order t is

(n+t
t

) ∼ t3/6.
On the other hand, in the simplest case of detection of EB
or SEP in a generic two-qubit channel, there are n = 30 vari-
ables involved, and, thus, the size of the moment matrix is(n+t

t

) = 5456 for t = 3. Moreover, the number of independent
entries in Mt (y) is given by

(n+2t
2t

) ∼ 2 × 106 for t = 3. Nev-
ertheless, we can consider families of channels for which the
number of free parameters in each subsystem is smaller than
in the general case. Then, the number of variables involved in
the mapping to tms is reduced and the matrices in the SDP
become amenable to numerical investigation. As we showed
here, this is the case for planar channels (where one dimension
is suppressed) or qutrit channels (which live in the symmetric
space of two qubits). Our algorithm is then able to decide
whether the channel is EB or SEP. For instance, in the case of
qutrit channels we were able to provide a certificate of separa-
bility in cases where the negativity of the Choi matrix vanishes
and, thus, is unable to yield a conclusion. Since calculations
are costly, this approach could be used as a numerical tool to
explore possible conjectures or produce counterexamples.

APPENDIX A: SKETCH OF THE PROOF OF THEOREM 3

Suppose rk Mt (y) = r with Mt (y) � 0 and there exists a
flat extension Mt+d0 (y) with Mt (g j � y) � 0 for 1 � j � m.
Then Mt+1(y) is also a flat extension of Mt (y), and we then
know from Theorem 2 that y admits a (unique) r-atomic rep-
resenting measure supported by xk ∈ V[ker Mt (y)]. All what
remains to show is that positivity of the localizing matrices

enforces that the x j belong to K , that is, g j (xk ) � 0 for 1 �
j � m and 1 � k � r.

This can be performed as follows. First, observe that since
Mt (y) is of rank r, one can find a nonsingular r × r principal
submatrix of Mt (y). If B is the set of labels α of the rows of
that matrix, then the image of Mt (y) is spanned by the xα, α ∈
B, and by definition these xα are on the order less than or
equal to t . Since the whole vector space of polynomials can
be decomposed as a direct sum of the image and the kernel of
Mt (y), an arbitrary polynomial p can be decomposed as p =
q + p̃ with q = ∑

α∈B qαxα ∈ Im Mt (y) and p̃ ∈ ker Mt (y).
Now let pk be interpolating polynomials of the xk′ , which

are the atoms supporting the representing measure of y. That
is, pk (xk′ ) = δkk′ for 1 � k, k′ � r. One can decompose them
as above as pk = qk + p̃k with p̃k ∈ ker Mt (y) and qk of
degree less than t . By definition, the xk′ are roots of all poly-
nomials in ker Mt (y), and, thus, one has p̃k (xk′ ) = 0, which
implies qk (xk′ ) = δkk′ for 1 � k, k′ � r.

Now, for y = ∫
xαdμ(x) and for arbitrary polynomials rep-

resented by vectors p, q ∈ RSt ,

qT Mt (y)p = qαMαβ pβ

= qαyα+β pβ

=
∫

qαxα+β pβdμ(x)

=
∫

p(x)q(x)dμ(x) (A1)

(with Einstein summation convention) and

qT Mt (g ∗ y)p = qαgγ yα+β+γ pβ

=
∫

qαgγ pβxα+β+γ dμ(x)

=
∫

p(x)q(x)g(x)dμ(x). (A2)

Thus, Mt (g j � y) � 0 and dμ(x) = ∑
i ωiδ(x − xi )dx entail

∀ k, j,

0 � qT
k Mt (g j � y)qk

=
∫

qk (x)2g j (x)dμ(x)

=
r∑

i=1

ωi

∫
dx qk (x)2g j (x)δ(x − xi )

=
r∑

i=1

ωiqk (xi )
2g j (xi )

= ωkg j (xk ), (A3)

since qk (xi ) = δki. As all ωk > 0 this implies that g j (xk ) � 0
and, thus, xk ∈ K , which completes the proof.

APPENDIX B: RANK PROPERTY OF EXTENSIONS

Let us show that the rank condition rk Mt ′ (y) = rk Mt (y)
implies the fact that positivity of Mt (y) and Mt ′ (y) are equiva-
lent.

Since Mt (y) is a principal submatrix of Mt ′ (y) one
direction is obvious. To show the converse, suppose
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Mt (y) � 0 and rk Mt (y) = r = rk Mt ′ (y). Then, as in Ap-
pendix A, there exists a nonsingular r × r principal sub-
matrix of Mt (y) indexed by labels α ∈ B with |α| � t .
This r × r submatrix is also a nonsingular principal sub-

matrix of Mt ′ (y). Since Mt ′ (y) has rank r, the correspond-
ing r monomials xα are, therefore, a basis of Im Mt ′ (y).
Since the submatrix is positive because Mt (y) is, then so
is Mt ′ (y).
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[34] L. Moravčíková and M. Ziman, J. Phys. A: Math. Theor. 43,

275306 (2010).
[35] R. Curto and L. Fialkow, Mem. Amer. Math. Soc 568 (1996).
[36] R. Curto and L. Fialkow, Trans. Amer. Math. Soc. 352, 2825

(2000).
[37] R. E. Curto and L. A. Fialkow, J. Operator Theory 54, 189

(2005).
[38] M. Laurent, in Emerging Applications of Algebraic Geometry

(Springer, Berlin, 2009), pp. 157–270.
[39] J. W. Helton and J. Nie, Found. Comput. Math. 12, 851 (2012).
[40] J. Nie, Found. Comput. Math. 14, 1243 (2014).
[41] J. Nie and X. Zhang, SIAM J. Optim. 26, 1236 (2016).
[42] M. Laurent, Proc. Am. Math. Soc 133, 2965 (2005).
[43] J. B. Altepeter, D. Branning, E. Jeffrey, T. C. Wei, P. G. Kwiat,

R. T. Thew, J. L. O’Brien, M. A. Nielsen, and A. G. White,
Phys. Rev. Lett. 90, 193601 (2003).

[44] C. Zu, W.-B. Wang, L. He, W.-G. Zhang, C.-Y. Dai, F. Wang,
and L.-M. Duan, Nature (London) 514, 72 (2014).

[45] D. Henrion, J.-B. Lasserre, and J. Löfberg, Optim. Methods
Softw. 24, 761 (2009).

[46] M. ApS, The MOSEK Optimization Toolbox for MATLAB Manual,
Version 8.1 (2018), http://docs.mosek.com/8.1/toolbox/index.
html.

[47] D. Henrion and J.-B. Lasserre, Positive Polynomials in Control
(Springer, Berlin, 2005), pp. 293–310.

[48] A. Fujiwara and P. Algoet, Phys. Rev. A 59, 3290 (1999).
[49] D. Braun, O. Giraud, I. Nechita, C. Pellegrini, and M. Žnidarič,
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We investigate quantum entanglement in an analog black hole realized in the flow of a Bose-Einstein con-
densate. The system is described by a three-mode Gaussian state and we construct the corresponding covariance
matrix at zero and finite temperature. We study associated bipartite and tripartite entanglement measures and
discuss their experimental observation. We identify a simple optical setup equivalent to the analog Bose-Einstein
black hole which suggests a different way of determining the Hawking temperature and gray-body factor of the
system.
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I. INTRODUCTION

Analog gravity aims at providing platforms making it
possible to conduct laboratory studies of phenomena at the in-
terface between general relativity and quantum physics, such
as Hawking radiation [1] and black hole superradiance [2],
for which in the gravitational context direct observation is
not possible or no complete theory exists. It has also been
suggested that analog models can bring some insight on the
information loss paradox [3,4]. The concept has now broad-
ened so as to include experimental tests of physical effects of
relevance in cosmological scenarii, such as dynamical Casimir
effect, Kibble-Zurek mechanism, Zakharov oscillations, Hub-
ble friction, etc.; see, e.g., [5] and references therein.

In order to reach meaningful results based on the study
of an analog model, it is important to precisely character-
ize the experimental system supporting the analysis and to
correctly circumscribe the phenomenon under scrutiny. The
present work aims at following this line of research in the
case of an analog of event horizon realized in a Bose-Einstein
condensed (BEC) ultracold atomic vapor. The use of a BEC
as an analog model has been first suggested by Garay et al.
[6], followed by many others. This motivated Steinhauer and
his group to develop and then ameliorate an experimental
setup making it possible to realize an acoustic horizon in a
quasi one-dimensional BEC [7–11]. Particular attention has
been devoted to the study of the analogous Hawking radiation,
which corresponds to the emission of a pair of quasiparticles
consisting of a “Hawking quantum” and a “Partner.” Con-
comitantly, the theoretical study of this system by means of
a Bogoliubov decomposition has been first suggested in [12],
then gradually refined [13–15] until a point where a detailed
comparison with experiments has been possible [16]. There
is now compelling evidence that analog Hawking radiation
has been observed in different systems [10,11,17,18] but the
crucial question of the quantum nature of the phenomenon has
been debated: is the phenomenon mostly triggered by noise

or does it correspond to spontaneous quantum emission as
in Hawking’s original scenario? A natural test of the latter
consists in demonstrating entanglement of the Hawking pair.
Indeed, experimental observation of correlated pairs of exci-
tations does not suffice to demonstrate the quantum nature of
the Hawking process, since the phenomenon also exists, e.g.,
in the nonquantum setting of water waves [19]. Also, as can be
inferred from the quantitative results presented in Ref. [16], in
BEC systems the corresponding signal is robust with respect
to temperature: its observation therefore does not rule out the
possibility that the analog Hawking radiation is mostly trig-
gered by thermal and not quantum fluctuations. By contrast,
the presence of entanglement between the Hawking quantum
and its Partner demonstrates the presence of quantum effects.
Additionally, a quantitative measure of entanglement is nec-
essary for evaluating the respective impacts of quantum and
thermal effects. However, it has not always been checked
whether the measures used up to now in the literature provide
good quantitative estimates of entanglement in the system.
An important goal of the present work is to identify which,
among different measures of entanglement, enable a quantita-
tive, monotone, experimentally relevant determination of the
degree of bipartite entanglement in a finite-temperature BEC
analog of black hole.

Several theoretical works have addressed the issue of en-
tanglement in analog gravity systems. Most of them [20–27]
discuss qualitative measures such as the Peres-Horodecki or
Cauchy-Schwarz criteria, which indicate if a state is entangled
or not but—as shown below—do not provide good estimates
of its degree of entanglement. In the present work we follow
Refs. [28–31] and focus on quantitative measures. It is im-
portant to take into account the specificities of BEC physics
in order to conduct the corresponding theoretical analysis. In
particular, dispersive effects and the lack of Lorentz invariance
complexify the standard Hawking quantum-Partner picture by
introducing new propagation channels; accordingly the sys-
tem is described by a three-mode Gaussian state. Its detailed
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description makes it possible to quantify its bipartite and also
tripartite entanglement. We advocate for the use of a measure
of entanglement based on the Gaussian contangle, and we
show that this is an experimentally accessible quantity which
can provide a signature of the quantum nature of Hawking
radiation. We also show how entanglement can be localized
in our system in an effective two-mode state, which makes it
possible to propose a simple and appealing equivalent opti-
cal model. This description suggests an alternative definition
of the analog Hawking temperature and of the associated
gray-body factor, in closer agreement with the gravitational
paradigm. Another interesting outcome of this construction
is the understanding that genuine tripartite entanglement may
occur between the three modes, although two of them are not
entangled.

The paper is organized as follows. In Sec. II we present
the theoretical description of an acoustic black hole realized
in an ultracold atomic vapor. In Sec. III we review the basics
of Bogoliubov transformations and apply it to our situation.
The description of Gaussian states appearing in the scatter-
ing processes involved in black hole analogs is discussed in
Sec. IV. Section V is dedicated to the investigation of two-
mode and three-mode entanglement in the Gaussian states we
are considering here. The case of a finite-temperature setting
is examined in Sec. VI, where we also provide a proof of
principle of the measurability of the quantities we use for
assessing the degree of entanglement. Concluding remarks
are presented in Sec. VII. Some technical points are given
in the Appendixes. In Appendix A we recall some properties
of Bogoliubov transformations. In Appendix B we give some
useful explicit expressions of the elements of the covariance
matrix. In Appendix C we recall the low frequency behavior
of the coefficients describing the scattering of linear waves
by the acoustic horizon. Appendix D details the construction
making it possible to localize entanglement in our system.
In Appendix E we establish a formula making it possible to
compute the Gaussian contangle at finite temperature.

II. ANALOG BLACK HOLE IN BECS

We consider a stationary flow of a one-dimensional (1D)
BEC which is upstream subsonic and downstream supersonic.
This “transonic” configuration mimics a black hole since
acoustic excitations generated in the downstream supersonic
region are dragged by the flow, and not detected in the up-
stream region.

A. The background flow

The complex quantum field �̂ describing the bosonic gas
is decomposed into a classical part � (describing the station-
ary flow of the condensate) supplemented by small quantum
fluctuations (described by an operator ψ̂) according to

�̂(x, t ) = exp(−iμt/h̄)[�(x) + ψ̂ (x, t )], (1)

where μ is the chemical potential [32]. The function � is solu-
tion of a classical Gross-Pitaevskii equation, with the addition
of an external potential U (x) used to implement the transonic

flow:

μ�(x) = − h̄2

2m
�xx + [g|�|2 + U (x)]�, (2)

where g > 0 is a nonlinear coefficient accounting for re-
pulsion between the atoms in a mean-field approach. The
operator ψ̂ describes the quantum fluctuations on top of the
background �.

The experimental implementation of the 1D configura-
tion (2) is obtained by a tight transverse confinement of a
guided BEC. In the large density limit the transverse degrees
of freedom cannot be discarded and the 1D reduction fails.
Also, the so-called Bogoliubov decomposition (1) implies
a long-range coherence (off-diagonal long-range order; see,
e.g., [32]) which, in one dimension, is destroyed by phase
fluctuations. Nonetheless a description of the system relying
on Eqs. (1) and (2) can be ascribed a domain of applicability
in the so-called 1D mean field regime [33]. For a Bose gas
with s-wave scattering length a transversely confined by a har-
monic trap of angular frequency ω⊥, this regime corresponds
to the range of densities

ma2ω⊥
h̄

� ntypa � 1, (3)

where ntyp is a typical order of magnitude of the linear density
n(x) = |�(x)|2. For 87Rb or 23Na atoms, the domain of valid-
ity (3) ranges over four orders of magnitude in density1 and in
this case g = 2h̄ω⊥a [34].

Several configurations realizing an analog black hole have
be proposed in the past [13–15,35–38]. The approach we use
in this work is valid in a general setting, but for the sake of
illustration we will present numerical results for the so-called
“waterfall configuration” [15] which has been experimentally
realized in [9,10] and which has been shown to lead to a
significant violation of the Cauchy-Schwarz criterion in [26].
In this configuration U (x) = −U0�(x), where U0 > 0 and �

is the Heaviside step function. The corresponding solution of
Eq. (2) is a plane wave flow of density nd and velocity Vd > 0
in the downstream region (x > 0) and half a dark soliton in
the upstream region (x < 0) with asymptotic density nu and
velocity Vu > 0, meaning that

�(x > 0) = √
nd exp (imVd x/h̄) exp(i βd ),

�(x → −∞) = √
nu exp (imVu x/h̄) exp(i βu),

(4)

where βu and βd are constant phase factors. This setting is
illustrated in Fig. 1 (see details in [15]).

In the following we will loosely state that the horizon is
located at x = 0. However, it is important to note that, in
any dispersive analog model, the location of the horizon is
ill-defined, as it depends on frequency. A commonly accepted
way to circumvent this difficulty is to take the zero-frequency
value: the analog horizon is then the point where the velocity
of the flow v(x) = h̄

m Im(�∗�x )/n(x) is equal to the local
sound velocity c(x). This definition makes sense because it
has been shown that the characteristics of analog Hawking

1A more detailed discussion of the domain of applicability of the
Bogoliubov decomposition (1) can be found, e.g., in [26].
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FIG. 1. Waterfall configuration. The flow is directed from left to
right. The downstream classical field �(x > 0) is exactly a plane
wave of density nd and velocity Vd . �(x < 0) is the half profile of
a dark soliton which is asymptotically a plane wave of density nu

and velocity Vu; see Eqs. (4). The far upstream flow is subsonic,
with a velocity 0 < Vu < cu, and the downstream flow is supersonic
with a velocity Vd > cd > 0, where cα = (gnα/m)1/2 is the speed of
sound in region α = u (upstream) or d (downstream). The shaded
region x > 0 corresponds to the interior of the analog black hole;
the gradient of gray around x � 0 depicts the (ill-defined; see text)
position of the horizon. The coordinate x is plotted in units of the
upper healing length ξu = h̄/(mcu ).

radiation are governed by long wave-length physics; see, e.g.,
[39–41]. However, in the BEC context, the definition of a
local sound velocity c(x) is only legitimate in regions where
the density varies over a length scale large compared to the
healing length. This is not the case around x � 0 for the
waterfall configuration and this forbids a rigorous definition
of an horizon. Nevertheless, the system still emits a spon-
taneous analog Hawking radiation, because the feature that
triggers this process is the mismatch between the left subsonic
asymptotic flow and the right supersonic one (this is at the
heart of the Bogoliubov transform discussed in Sec. III). One
may wonder, however, if the concept of Hawking temperature
is still meaningful in the absence of a proper location of the
horizon, since, strictly speaking, the widely used semiclassical
result (C5) which defines the Hawking temperature as the
analog surface gravity is not valid here.2 The solution lies in
the study of the low-frequency behavior of the spectrum of the
analog Hawking radiation which is thermal-like. This makes it
possible to determine an effective Hawking temperature; see,
e.g., [13–15]. We will come to this point in more detail in
Secs. IV D and V C.

B. Elementary excitations

Since the far upstream and downstream background flows
are uniform, the elementary excitations which form a basis
set for the quantum operator ψ̂ are plane waves in these two
regions, with dispersion relations of Bogoliubov type (see,
e.g., [32]):

(ω − q Vα )2 = ω2
B,α (q), α = u or d, (5)

2Note that this issue is also encountered in profiles smoother than
that of the waterfall; see, e.g., [13].

where Vu and Vd are the upstream and downstream velocities,
and ωB,α is the Bogoliubov dispersion relation

ωB,α (q) = cαq
√

1 + ξ 2
αq2/4, (6)

cα = (gnα/m)1/2 being the speed of sound and ξα = h̄/(mcα )
the “healing length,” in the far upstream region if α = u and in
the downstream region if α = d . The left-hand side of Eq. (5)
includes a Doppler shift caused by the velocity Vα of the
background.

It will be useful in the following to define the quantities

mα = Vα

cα

, α = u or d, (7)

known as the upstream (α = u) and downstream (α = d)
Mach numbers. It was shown in [15] that the waterfall con-
figuration, which we use below to exemplify our results, is
uniquely characterized once the value of mu, say, is fixed.
In particular the parameters of the flow are related by the
following relations:

Vd

Vu
= nu

nd
= 1

m2
u

= md =
(

ξd

ξu

)2

=
(

cu

cd

)2

. (8)

The flow being upstream subsonic (Vu < cu, i.e., mu < 1) and
downstream supersonic (Vd > cd , i.e., md > 1), the graphs of
the corresponding dispersion relations are of different types,
as illustrated in Fig. 2. In the upstream region the spectrum
has two branches which we label as 0|in and 0|out. In the
downstream supersonic region there are four branches: 1|in,
1|out, 2|in and 2|out, the last two branches being limited
to ω ∈ [0,
], where 
 is the frequency at which these two
branches coalesce, and whose value is given by


 = q∗Vd − ωB,d (q∗) with

q∗ξd =
(

−2 + m2
d

2
+ md

2

√
8 + m2

d

) 1
2

. (9)

For future convenience (see Sec. VI) we define functions
q0|in(ω), q1|in(ω) and q2|in(ω) as the reciprocal of the Bogoli-
ubov dispersion relation (5) along some of these branches;
q0|in(ω) and q1|in(ω) are defined for ω > 0 and q2|in(ω) only
for ω ∈ [0,
]. A number of previous works [15,16,20,26,37]
followed the convention introduced in [14], in which indices
u, d1, and d2 are employed instead of the indices 0, 1, and 2
we use here. We changed convention in order to simplify the
manipulation of the matrix notation introduced below.

The particular transonic configuration we consider corre-
sponds, for angular frequencies ω lower than the threshold

, to a specific scattering process of elementary excitations
onto the analog event horizon. For instance, a wave issued
from the interior region along the channel identified as 1|in
in Fig. 2 is transmitted to the exterior along the 0|out channel
and reflected back along the 1|out and 2|out channels. The
corresponding (complex) transmission and reflection ampli-
tudes are denoted as S10(ω), S11(ω), and S12(ω), respectively.
They are obtained by imposing matching conditions at x = 0,
as explained in Ref. [15]. The quantum boson operator corre-
sponding to this whole process is denoted as b̂1(ω). Similarly,
a wave incident along the 0|in channel is transmitted towards
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FIG. 2. Graphical representation of the positive frequency part of the dispersion relation (5) in the far upstream (left plot) and downstream
(right plot) regions. The downstream region (gray background) is the interior of the analog black hole, while the upstream region (white
background) is the exterior. In the upstream region, to any given ω (represented by a horizontal dashed line) correspond two channels of
propagation denoted as 0|in and 0|out. In the downstream region there are four or two channels, depending if ω is smaller or larger than 
.
The arrows indicate the direction of propagation of the corresponding waves, and the channels are labeled 1 or 2, with an additional “in”
(or “out”) indicating if the wave propagates towards (or away from) the horizon.

the interior of the black hole along channels 1|out [ampli-
tude S01(ω)] and 2|out [amplitude S02(ω)] and reflected along
0|out [amplitude S00(ω)]; the corresponding quantum mode
is associated with operator b̂0(ω).3 A third mode describes
the scattering of a wave issued from the channel 2|in onto
the outgoing channels 0|out, 1|out, and 2|out. The channels
labeled 2|in and 2|out are particular, in the sense that they
have a negative norm, i.e., a negative energy in the rest frame
of the fluid [42–45]. As a result, the mode initiated by the
incoming channel 2|in should be quantized using an operator
b̂†

2(ω), i.e., inverting the role of the creation and annihilation
operators used for the two other modes. Only in this way do
the propagating modes behave as bosons satisfying the usual
commutation relations

[b̂i(ω), b̂†
j (ω

′)] = δi, j δ(ω − ω′),

[b̂i(ω), b̂ j (ω
′)] = [b̂†

i (ω), b̂†
j (ω

′)] = 0,
(10)

for i and j ∈ {0, 1, 2}. Another consequence is that the 3 × 3
scattering matrix S(ω) whose elements are the Si j (ω) obeys a
skew-unitarity relation [14]:

S†ηS = η = SηS†, η = diag(1, 1,−1). (11)

For ω > 
 the situation is drastically different: the channels
2|in and 2|out disappear (cf. Fig. 2), as well as the operator
b̂2(ω), and the S-matrix becomes 2 × 2 and unitary.

We denote the b modes as “incoming” since they cor-
respond to scattering processes initiated by a single wave
incident along one of the three “in” channels directed to-
wards the horizon: 0|in, 1|in, and 2|in. One could equivalently
choose to work with “outgoing modes” [12] describing pro-
cesses each resulting in the emission of a single wave along
one of the three “out” channels 0|out, 1|out, and 2|out. We
denote the corresponding quantum operators as ĉ0(ω), ĉ1(ω),

3In the terminology we use, it is important to make a distinction
between the “quantum modes” and the “propagation channels”: a
mode corresponds to a whole process typically involving one or
several incoming channels and one or several outgoing channels.

and ĉ2(ω). They relate to the incoming operators via [14]⎛⎜⎝ĉ0

ĉ1

ĉ†
2

⎞⎟⎠ =

⎛⎜⎝S00 S01 S02

S10 S11 S12

S20 S21 S22

⎞⎟⎠
⎛⎜⎝b̂0

b̂1

b̂†
2

⎞⎟⎠, (12)

where for legibility we omit the ω dependence of all the terms.
The definition (12), together with the property (11), ensures
that the ĉ operators obey the same commutation relations (10)
as the b̂ operators and thus describe bosonic quasiparticles.

In the setting we consider, the analog of the Hawking
radiation spectrum is the number of excitations emitted per
unit time and per unit frequency into the subsonic region
(x < 0), that is, the expectation value of ĉ†

0(ω)ĉ0(ω) over the
state vector. From relation (12) one sees that this current is
nonzero when the state vector is the vacuum |0〉b of incoming
modes: b〈0|ĉ†

0(ω)ĉ0(ω)|0〉b = |S02(ω)|2; this is the analogous
Hawking effect [13,14,45,46]. The mode associated with op-
erator ĉ0 is thus denoted the Hawking outgoing mode. The
other outgoing modes, associated with operators ĉ1 and ĉ2,
are denoted the Companion and the Partner, respectively.

As can be seen from expression (12), the outgoing opera-
tors ĉ and ĉ† are expressed as a combination of the ingoing
annihilation and creation operators b̂ and b̂†. Therefore, it is
possible to associate a Bogoliubov transformation with our
analog system. This is the aim of the next section.

III. BOGOLIUBOV TRANSFORMATIONS

Bogoliubov transformations are linear transformations of
creation and annihilation operators that preserve the canonical
commutation rules [47]. In the context of quantum field theory
in curved spacetime, these transformations are at the heart of
the Hawking process; indeed, since they mix annihilation and
creation operators they can give rise to spontaneous emission
of particles from vacuum [48–53]. This mixing of operators
also occurs for analog black holes, as is clear from Eq. (12).
This way of viewing the emergence of the analog Hawk-
ing radiation through a Bogoliubov transformation makes a
direct connection with the gravitational case: as shown by
Hawking in 1974 [48,49], one of the parameters involved in
the Bogoliubov transformation, the so-called β-coefficient, is
directly related to the number of particles created by black
holes. In our case, we can derive such a parameter and
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compare its properties with Hawking’s β-coefficient; in par-
ticular, through this approach, we will be able to question the
thermality of the analog Hawking radiation (see Sec. IV C).
Furthermore, identifying the Bogoliubov transformation will
be an important step to understand and study the entanglement
properties of the analog Hawking radiation (see Sec. V).

The present section is divided into two parts. First, we
consider an arbitrary (but unitary) Bogoliubov transformation
and derive its properties. Then, we apply these results to the
particular case of analog black holes in BECs starting from
expression (12).

A. General setting

We start by briefly recalling some well-known facts con-
cerning unitary Bogoliubov transformations [42,47,54]. Some
useful intermediate results are given in Appendix A.

Let us consider N boson operators b̂1, . . . , b̂N satisfying
the usual commutation relations [b̂i, b̂†

j] = δi, j . Defining the
column vector

b = (b̂1, . . . , b̂N, b̂†
1, . . . , b̂†

N )T, (13)

the Bose commutation relations can be rewritten as

[bi, b j] = J̃i j, with J̃ =
(

0 1N

−1N 0

)
, (14)

where 1N is the N × N identity matrix. A (unitary) Bogoli-
ubov transformation is a linear transformation mapping the
operators b̂i onto new operators ĉi defined through

ci =
2N∑
j=1

Ti j b j, or equivalently c = T b. (15)

For unitary Bogoliubov transformations c has the form

c = (ĉ1, . . . , ĉN, ĉ†
1, . . . , ĉ†

N )T, (16)

i.e., ci+N = c†
i . In this case the matrix T admits the block

decomposition

T =
(

α∗ −β∗

−β α

)
, (17)

where α and β are N × N matrices. Operators ĉi and b̂i can
then be related by a unitary operator T such that

ĉi = T † b̂i T, (18)

whose explicit construction from matrix T is detailed in
Appendix A.

In general, the transformation T in (15) mixes creation and
annihilation operators, so that the vacua |0〉b and |0〉c, defined
by

b̂i |0〉b = 0, and ĉi |0〉c = 0, i ∈ {1, . . . , N}, (19)

differ. These vacua are related via the identity

|0〉b = T |0〉c, (20)

as is clear from the fact that b̂i T |0〉c = T ĉi|0〉c = 0.
Defining the N × N matrix X = −β∗ α−1 and using the

decomposition (A6), it is possible to write Eq. (20) under the

explicit form

|0〉b = 1

(det α)
1
2

e
1
2

∑
i, j Xi j ĉ

†
i ĉ†

j |0〉c. (21)

A simple example of a Bogoliubov transformation is the
one leading to two-mode squeezed states [55,56]. For a real
squeezing parameter r, a two-mode squeezed state is obtained
by applying the two-mode squeezing operator

T = exp[r(ĉ†
1ĉ†

2 − ĉ1ĉ2)] (22)

to the vacuum state |0〉c. The corresponding Bogoliubov trans-
formation is of the form (17) with N = 2 and α, β given by

α =
(

cosh r 0
0 cosh r

)
, β = −

(
0 sinh r

sinh r 0

)
. (23)

In this case (21) reads

|0〉b = (cosh r)−1 exp(tanh r ĉ†
1ĉ†

2) |0〉c. (24)

B. Bogoliubov transformation in a transonic BEC

In the case described in Sec. II of a transonic flow re-
alized in a BEC, b and c correspond to sets of ingoing
and outgoing modes. The associated column vectors b =
(b̂0, b̂1, b̂2, b̂†

0, b̂†
1, b̂†

2)T and c = (ĉ0, ĉ1, ĉ2, ĉ†
0, ĉ†

1, ĉ†
2)T are re-

lated by Eq. (12). One can express this relation equivalently
as c = T b, with T a Bogoliubov transformation of the form
(17) with

α =

⎛⎜⎝S∗
00 S∗

01 0
S∗

10 S∗
11 0

0 0 S22

⎞⎟⎠, β = −

⎛⎜⎝ 0 0 S∗
02

0 0 S∗
12

S20 S21 0

⎞⎟⎠, (25)

where for legibility we do not write the ω-dependence of the
scattering amplitudes. This yields

X = 1

S22

⎛⎜⎝ 0 0 S02

0 0 S12

S02 S12 0

⎞⎟⎠. (26)

From relation (11) one can show that det α = |S22|2, and thus
(21) takes the simple form

|0〉b = 1

|S22| e(X02 ĉ†
0+X12 ĉ†

1 ) ĉ†
2 |0〉c. (27)

A word of caution is in order here. The case we consider
in the present section is different from the discussion of the
previous Sec. III A because, as explained in Sec. II B, the
modes are here continuously distributed along the energy axis
[compare, for instance, the commutation relations (10) and
(14)]. A natural way to set up a framework encompassing both
situations consists in discretizing the energies with a small
mesh 
ω and to define coarse-grained operators

B̂i,p = 1√

ω

∫ ωp+1

ωp

dω b̂i(ω) (28)

and

Ĉi,p = 1√

ω

∫ ωp+1

ωp

dω ĉi(ω), (29)
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where i ∈ {0, 1, 2}, p ∈ N and ωp = p
ω. It is easy to check
that these operators obey the standard Bose commutation
rules, such as [B̂i,p, B̂†

j,q] = δi, jδp,q for instance. If 
ω is small
compared to the typical scale of variation of the elements of
the S-matrix, then the Ĉi,p and the B̂ j,p are related by a relation
analogous to (12):⎛⎜⎝Ĉ0,p

Ĉ1,p

Ĉ†
2,p

⎞⎟⎠ =

⎛⎜⎝S00 S01 S02

S10 S11 S12

S20 S21 S22

⎞⎟⎠
⎛⎜⎝B̂0,p

B̂1,p

B̂†
2,p

⎞⎟⎠, (30)

where the Si j should be evaluated at ωp. Thus the relation (27)
should be replaced by

|0〉b = 1∏∞
p=0 |S22(ωp)|

× e
∑∞

p=0 (X02(ωp) Ĉ†
0,p+X12(ωp) Ĉ†

1,p) Ĉ†
2,p |0〉c. (31)

This remark being made, in the following we favor legibility
over formal rigor: We will continue to write relations of the
type (27), instead of the more rigourous but cumbersome
Eq. (31), keeping in mind that the correction of “naive”
expressions—such as Eq. (32), (33), (38), or (97) below—is
straightforward.

From (27), if we define the Fock state basis of quasiparti-
cles of type c by

|n〉i = 1√
n!

(ĉ†
i )n|0〉c, (32)

where i is the mode number, then the explicit expansion of the
vacuum |0〉b reads

|0〉b = 1

|S22|
∞∑

n,n′=0

√(
n + n′

n

)
X n

02X
n′

12 |n〉0|n′〉1|n + n′〉2. (33)

It is convenient for future use in Secs. IV D and V C to in-
troduce a new set of operators e = (ê0, ê1, ê2, ê†

0, ê†
1, ê†

2)T. By
writing

Si j (ω) = vi j (ω)eiϕi j (ω), vi j � 0, 0 � i, j � 2, (34)

we define the operators ê0, ê1 and ê2 as

ê0 = e−iϕ02 ĉ0, ê1 = e−iϕ12 ĉ1, ê2 = eiϕ22 ĉ2 (35)

(note the + sign in front of ϕ22). This defines a local unitary
Bogoliubov transformation, as it does not mix annihilation
and creation operators. In particular |0〉e = |0〉c. Using the
notations of Sec. III A, this transformation can be cast in the
form

e = R c, (36)

where

R = diag(e−iϕ02 , e−iϕ12 , eiϕ22 , eiϕ02 , eiϕ12 , e−iϕ22 ). (37)

Then, using expression (26) and this new set of creation and
annihilation operators e, Eq. (27) becomes

|0〉b = 1

v22
ev−1

22 (v02 ê†
0+v12 ê†

1 ) ê†
2 |0〉e. (38)

IV. THREE-MODE GAUSSIAN STATES

In the context of analog gravity, the general description of
the system by means of a Gaussian state has been presented in
the monograph [46]. The importance of Gaussianity has been
implicitly or explicitly assumed in many articles, but it has
been thoroughly discussed only in Ref. [25]. In the present
work we will extend in Secs. V and VI the analysis of [25]
to build quantitative and monotone measures of bipartite and
tripartite entanglement. Since Gaussianity is a central point in
our approach, in the present section we briefly present general
properties of Gaussian states, then construct the covariance
matrix of the three-mode Gaussian pure state which describes
our system [|0〉b defined by Eq. (33)] and discuss in more
detail the covariance matrix of the reduced state ρ (0), in con-
nection with the determination of the Hawking temperature.

A. Gaussian states

In order to set up notations we start by reviewing the
formalism for Gaussian states (see [57] for a review). Gaus-
sian states are states whose Wigner function is a Gaussian.
A Gaussian state ρ can be entirely described by its first and
second moments. We define the covariance matrix σ of ρ as
the real symmetric positive-definite matrix

σi j ≡ 1
2 〈ξ̂i ξ̂ j + ξ̂ j ξ̂i〉 − 〈ξ̂i〉 〈ξ̂ j〉, (39)

where ξ̂i are components of the vector ξ =√
2 (q̂1, p̂1, . . . , q̂N, p̂N )T of quadratures relative to mode

i, defined so that [q̂i, p̂ j] = i δi, j . In the definition (39) and
in all the following the averages 〈· · · 〉 are taken over the
density matrix ρ characterizing the state of the system, which,
in the simpler case, is the projector onto the vacuum state
|0〉b. We shall discuss in Sec. VI how to generalize to a
finite-temperature configuration.

The commutation relations between the ξ̂i can be expressed
as [ξ̂i, ξ̂ j] = 2 i Ji j, ∀ i, j ∈ {1, . . . 2N} with

J = N⊕
1

Ji, Ji =
(

0 1
−1 0

)
. (40)

Entanglement properties of a quantum state are unchanged
by local unitary (LU) operations, so that the mean values of
position and momentum operators can be set to 0. An N-
mode Gaussian state is then entirely specified by its 2N × 2N
covariance matrix, which can be rewritten in terms of 2 × 2
blocks as

σ =

⎛⎜⎜⎜⎜⎝
σ1 ε12 · · · ε1N

εT
12

. . .
. . .

...
...

. . .
. . . εN−1N

εT
1N

· · · εT
N−1N σN

⎞⎟⎟⎟⎟⎠, (41)

with

εi j = 2

(〈q̂i q̂ j〉 〈q̂i p̂ j〉
〈p̂i q̂ j〉 〈p̂i p̂ j〉

)
(42)

and

σi =
( 〈

2q̂2
i

〉 〈{q̂i, p̂i}〉
〈{q̂i, p̂i}〉

〈
2 p̂2

i

〉 )
, (43)

063302-6



BIPARTITE AND TRIPARTITE ENTANGLEMENT IN A … PHYSICAL REVIEW A 104, 063302 (2021)

{., .} denoting the anticommutator. A covariance matrix σ

satisfies the inequality

σ + i J � 0, (44)

which is a consequence of the canonical commutation rela-
tions and positivity of the density matrix [58,59]. In particular,
σ is a positive matrix.

B. Transformations of Gaussian states

Partial tracing a Gaussian state is particularly simple. The
covariance matrix of the reduced state is simply obtained by
discarding the lines and columns corresponding to the modes
over which the partial trace is done (see, e.g., [60]). For
instance, the two-mode state obtained from (41) by tracing
out all modes but i and j has covariance matrix

σi j =
(

σi εi j

εT
i j σ j

)
, (45)

where the 2 × 2 blocks are the same as the ones in (41). In the
same way, the reduced density matrix ρ (i) of mode i obtained
by tracing out all the other modes is a single-mode Gaussian
state entirely specified by the covariance matrix σi.

Let us now turn to the modification of the covariance
matrix under a Bogoliubov transformation. It is important to
stress here that we change operators but keep the same quan-
tum state over which the averages 〈· · · 〉 are performed. For the
vector of creation and annihilation operators b, we denote by
ξb the corresponding vector of position and momentum oper-
ators ξb = √

2 (q̂1, p̂1, . . . , q̂N, p̂N )T with q̂ j = (b̂ j + b̂†
j )/

√
2

and p̂ j = i(b̂†
j − b̂ j )/

√
2. We thus have ξb = Ub, with

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 . . . 1√
2

0 0 . . .

− i√
2

0 0 . . . i√
2

0 0 . . .

0 1√
2

0 . . . 0 1√
2

0 . . .

0 − i√
2

0 . . . 0 i√
2

0 . . .

0 0 . . . . . . 0 0 . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(46)

a 2N × 2N unitary matrix. Similarly, ξc = Uc. The Bogoli-
ubov transformation c = T b then entails that ξc = ST ξb
with

ST = UT U †. (47)

It can be proved that the matrix ST ∈ Sp(2N,R) is real and
symplectic [59]. Since this transformation is linear, we get
from Eq. (39) that a Gaussian state with covariance matrix
σb in mode b is a Gaussian state in mode c with covariance
matrix

σc = ST σb ST
T (48)

in mode c.
As guaranteed by Williamson theorem [61], it is al-

ways possible to find a symplectic transform that brings
any covariance matrix σ to a canonical diagonal matrix
diag(ν1, ..., νN , ν1, ..., νN ), which is unique up to the ordering
of the ν j . The ν j are called the symplectic eigenvalues of σ .
They can be directly obtained from the eigenvalues of the
matrix Jσ , which are given by ±iν j [62]. In terms of the

ν j , given the uncertainty relation (44), the positivity of ρ is
equivalent to

ν j � 1, j = 1, . . . , N. (49)

C. Thermal states

The symplectic eigenvalues have an appealing physical in-
terpretation. Indeed, they can be related with the mean particle
number of a thermal state.

Recall that a generic (single-mode) thermal state is a state
whose density matrix in the Fock space spanned by vectors
|n〉 is of the form

ρ th (a) = 2

a + 1

∞∑
n=0

(
a − 1

a + 1

)n

|n〉 〈n|, (50)

with a some parameter. Denoting as n̂ the corresponding
number operator, since n̄ ≡ 〈n̂〉 = tr(ρ thn̂) = 1

2 (a − 1), the
parameter a is simply related with the mean particle number
as a = 2n̄ + 1. The state ρ th (a) is in fact a Gaussian state
with 2 × 2 covariance matrix σ th = a12. This means that a
single-mode covariance matrix in diagonal form describes a
thermal state with mean particle number n̄ = (a − 1)/2 and
symplectic eigenvalue ν = a. Another way of representing a
thermal state is to set n̄ = sinh2 r, which yields

ρ th (a) = 1

cosh2 r

∞∑
n=0

(tanh r)2n |n〉〈n|, a = cosh(2r). (51)

The purity of ρ th (a) can be readily calculated from (50) or
(51); it reads tr[ρ th (a)]2 = 1/ cosh(2r) = 1/a. The quantity
a being the inverse of the purity of a single-mode reduced
density matrix, it is referred to as the local mixedness [63].
Note that the vacuum state is a thermal state ρ th (1) with mean
occupation numbers n̄ j = 0 and local mixedness unity.

More generally [64], an N-mode Gaussian state with ar-
bitrary covariance matrix σ can be brought to a product of
thermal states

ρν = N⊗
j=1

ρ th (ν j ). (52)

Indeed, if S is the symplectic transformation that diagonal-
izes σ as diag(ν1, ν1, . . . , νN , νN ) = SσST, then it can be
realized on the Gaussian state by a unitary evolution gener-
ated by a quadratic Hamiltonian (see, e.g., [59]). Therefore
Williamson’s theorem ensures that any Gaussian state can
be decomposed into a product of thermal states whose mean
occupation number in mode j is obtained from the symplectic
eigenvalue ν j as n̄ j = (ν j − 1)/2 [59]. The condition ν j � 1
in (49) simply corresponds to the fact that the mean occu-
pation numbers have to be positive. Note that the purity of
state (52) is simply given in terms of the covariance matrix by
tr(ρν )2 = 1/

√
det σ .

D. Vacuum as a three-mode Gaussian state

The Bogoliubov transformation associated with the scat-
tering process (12) leads to a three-mode Gaussian pure state,
given by (33). The covariance matrix of the vacuum |0〉b is
the identity matrix 16. Applying (48) we thus get that the
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covariance matrix of state (33) is

σc = ST ST
T . (53)

Using the explicit expression of T derived from (25), and the
explicit expression (46) for U , we obtain the 6 × 6 matrix
given in Eq. (B1) of Appendix B. Note that using (42) and
(43) the 2 × 2 matrices σi and εi j , i ∈ {0, 1, 2}, simply read

σi = (1 + 2 〈ĉ†
i ĉi〉)12 (54)

and (for i �= 2)

εi2 =
(

2 Re〈ĉi ĉ2〉 2 Im〈ĉi ĉ2〉
2 Im〈ĉi ĉ2〉 −2 Re〈ĉi ĉ2〉

)
,

ε01 =
(

2 Re〈ĉ0 ĉ†
1〉 2 Im〈ĉ0 ĉ†

1〉
−2 Im〈ĉ0 ĉ†

1〉 2 Re〈ĉ0 ĉ†
1〉
)

. (55)

In the two-mode and three-mode cases, it is known [65,66]
that all pure Gaussian states can be brought by LLUBOs (local
linear unitary Bogoliubov transformations) to a standard form
where matrices σi are proportional to the identity and matrices
εi j are diagonal. In order to get such a standard form, we use
the set of operators ê j related with the ĉ j by e = Rc, where
R has been defined in (37). Using the results of Sec. IV B and
applying Eq. (48), the covariance matrix of state (38) in mode
e is

σe = SRST ST
T ST

R. (56)

Note that SR is a rotation operator. Indeed, one can easily
show that SR = diag{R(ϕ02), R(ϕ12), R(−ϕ22)}, where

R(φ) =
(

cos φ sin φ

− sin φ cos φ

)
. (57)

Then, one proves that the covariance matrix σe defined by (56)
is in the standard form, with σi given by (54) and

εi j = 2 |〈ĉi ĉ†
j 〉|12 = 2 vi2 v j2 12, i, j = 0, 1,

εi2 = 2 |〈ĉi ĉ2〉|σz = 2 vi2 v22 σz, i = 0, 1,
(58)

where σz is the third Pauli matrix. Following the notation
introduced in Sec. IV C for thermal states, we define real
parameters ri � 0 and ai � 1 such that

n̄i = 〈ĉ†
i ĉi〉 = sinh2(ri) = ai − 1

2
. (59)

To be completely accurate, we recall that the operators ĉi =
ĉi(ω) all depend on the energy h̄ ω of the elementary excita-
tions. Therefore, the above defined quantities ai also depend
on ω. They can be written explicitly as functions of the coef-
ficients of the scattering matrix:

a0(ω) = 1 + 2 |S02(ω)|2,
a1(ω) = 1 + 2 |S12(ω)|2,
a2(ω) = −1 + 2 |S22(ω)|2 (60)

(see Appendix B). From the solution of the scattering prob-
lem in the waterfall configuration, we calculate the scattering
amplitudes Si j (ω) following [15]. This makes it possible to
compute the three local mixednesses a0, a1, and a2 as func-
tions of the frequency. In particular we have

a0(ω) + a1(ω) = a2(ω) + 1, (61)

FIG. 3. Local mixedness ai(ω) [see Eqs. (60)] for each mode 0,
1, and 2 as functions of the dimensionless quantity h̄ ω/(gnu), for a
waterfall configuration with mu = 0.59. The frequency ωc indicates
the turning point above which a0 becomes lower than a1. The upper-
bound frequency 
 corresponds to the vanishing of the mode 2 [see
Eq. (9)].

which stems from relations (60) and (11). Figure 3 shows the
associated curves. Here, these coefficients are computed for a
waterfall configuration with downstream Mach number md =
2.9, which is the one for which the experiment of [10] has
been realized. In our case, this corresponds to an upstream
Mach number mu = 0.59.

We can identify two regimes in Fig. 3: below a frequency
denoted ωc the lowest of the three parameters is a1; above
this frequency, the minimum value becomes a0. The value
of this frequency is determined numerically and is equal to
ωc ≈ 0.56 gnu/h̄ for mu = 0.59. We observe that the ratio
ωc/
 (where 
 is the frequency (9) at which mode 2 vanishes
and also depends on mu) decreases when mu decreases. The
local mixednesses a0, a1 and a2 go to 1 when ω → 
, which
means that the populations of all modes vanish.

Using Eqs. (60) one may rewrite expressions (54) and (58)
in terms of the ai as

σi = ai 12, i = 0, 1, 2,

εi j =
√

ai − 1
√

a j − 112, i, j = 0, 1 (i �= j),

εi2 =
√

ai − 1
√

a2 + 1 σz, i = 0, 1. (62)

The 6 × 6 covariance matrix defined by Eqs. (41) and (62)
is no longer the covariance matrix associated with modes c,
but the covariance matrix associated with modes e defined by
Eq. (36); since c and e differ only by phases, the entanglement
properties are the same. When considering entanglement in
Sec. V we will therefore use the standard form (62). In the
case of a pure three-mode Gaussian state, the three local sym-
plectic invariants ai fully determine the entanglement content
of any given bipartition [66]. As we shall see in Sec. V, the
blocks of the covariance matrix σ in the form of expressions
(62) are the key ingredients to compute the amount of bipartite
and tripartite entanglement.

As mentioned in Sec. IV B, σi is the covariance matrix
of the reduced state ρ (i) of mode i. Given its diagonal form,
one gets from Sec. IV C that ρ (i) is a thermal state with local
mixedness ai. It can also be considered as a reduced state
of a two-mode squeezed state with squeezing parameter ri
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FIG. 4. Blue continuous curve: Effective temperature T (0)
eff de-

fined in Eq. (64) plotted as a function of the frequency ω for a
waterfall configuration with mu = 0.59. The dashed red line is the
Hawking temperature T (0)

H given by (65).

[56,67,68]. In this respect, the study of the reduced state ρ (0)

is of particular interest in the context of analog gravity, since
the number of emitted quanta in the 0 mode gives access to
the Hawking radiation spectrum. In the context of general
relativity, this spectrum is exactly Planckian4 [48,49], with a
temperature which is called the “Hawking temperature.” For
the analog model we consider, dispersive effects significantly
affect this result. Indeed, if one defines an effective tempera-
ture T (0)

eff such that

n̄0(ω) = 1

exp
(
h̄ω/T (0)

eff

)− 1
, (63)

one finds from (51), (59), and (60) that T (0)
eff is frequency-

dependent:

T (0)
eff (ω) = h̄ω

2 ln{coth[r0(ω)]} = h̄ω

ln[1 + |S02(ω)|−2]
. (64)

Figure 4 represents T (0)
eff (ω) for a waterfall configuration with

mu = 0.59. We note here that the same type of results has been
obtained numerically in [13]. In the long wavelength limit
the effective temperature tends to a constant analog Hawking
temperature T (0)

H = limω→0 T (0)
eff (ω). Based on the expansion

(C1) and on the formula (C2) one gets

T (0)
H

gnu
= 2

mu(1 − mu)
3
2
(
1 + m2

u

) 3
2

(1 + mu)
1
2
(
1 + mu + m2

u

)2 . (65)

This long wavelength determination of the analog Hawking
temperature is physically sound, since the reduced density
matrix of mode 0 is indeed thermal (in the sense of Sec. IV C).
However, it has the drawback of depending of the mode
considered (here the outgoing Hawking mode). The reduced
density matrices of modes 1 and 2 are also thermal, and on
the basis of the present reasoning there is another, different
Hawking temperature for the Companion (which could be
denoted as T (1)

H ), and still another one for the Partner (T (2)
H ). In

Sec. V C we use a different reasoning and argue that T (2)
H gives

4We do not consider here possible effects of a gray-body factor.
These will be accounted for in Sec. V C.

a more satisfactory definition of the Hawking temperature,
valid for the whole system.

V. ENTANGLEMENT IN THREE-MODE
GAUSSIAN STATES

Entanglement detection and characterization has attracted
a great deal of effort in the past two decades, as it has been
identified as a key resource for quantum information process-
ing [69]. A quantum state is entangled if it is not separable,
i.e., if it cannot be written as a convex sum of product states
[70]. One of the simplest necessary separability criteria is
given by the positivity of the partial transpose (PPT), first
proposed for discrete variables [71,72] and extended to the
continuous case in [73]. A wealth of entanglement measures
were discussed in the literature, for both discrete and continu-
ous variables. For bipartite pure states, quantitative measures
of entanglement include the entanglement entropy (which can
be shown to be unique if some additional natural requirements
are imposed) [74], or the concurrence [75]. In the mixed state
case, it is possible to construct “good” entanglement measures
in many different ways, which are inequivalent in the sense
that they lead to different orderings of entangled states [69].
A possible way is to extend measures for pure states via a
convex roof construction: entanglement of a mixed state is
then defined by a minimization over all its possible pure state
decompositions. For instance, entanglement entropy general-
izes for mixed states to the entanglement of formation [76].

A striking difference between classical correlations and
quantum entanglement is that the latter is monogamous
[77,78]. This means that a particle which is maximally en-
tangled with a Partner cannot be entangled with a third party,
or in other words that any amount of entanglement shared
with a particle limits the entanglement that can be shared with
another particle. In the case of three qubits, this limitation
to bipartite entanglement was expressed in [79] through an
inequality that must be satisfied by an entanglement measure
called the concurrence, or more precisely by its square, the
tangle. This monogamy inequality was later generalized to an
arbitrary number of qubits [80], to three-qutrit systems [81]
and to continuous variables [82,83], as we now discuss.

In the case of continuous variables, to which the situation
of black hole analogs pertains, Gaussian states are the most
natural objects with which one is led to deal. From a qualita-
tive point of view, entanglement can be detected by the PPT
criterion, which is a necessary and sufficient separability con-
dition for 1 × N-mode Gaussian states [73]; the three-mode
case, which is relevant to our situation, was investigated in
[84], and will be considered in Sec. V A. From a quantitative
point of view, entanglement can be measured by the logarith-
mic negativity, which quantifies by which amount the PPT
criterion is violated [85].5 In [82] it was proposed to construct

5For continuous variables it is generally highly difficult to make use
of the convex roof construction, both analytically and numerically, as
the optimization has to take place over all pure state decompositions.
To circumvent this issue, Gaussian entanglement of formation was
defined in [86], restricting the convex roof construction to Gaussian
pure state decompositions. This quantity provides an upper bound for

063302-9



ISOARD, MILAZZO, PAVLOFF, AND GIRAUD PHYSICAL REVIEW A 104, 063302 (2021)

a specific measure of entanglement, the contangle (continuous
tangle), defined as the convex roof extension of the square
of the logarithmic negativity. In that manner, the monogamy
inequality expressed by this measure also holds for Gaussian
states. The amount by which both sides of the monogamy
inequality differ provides an estimate for multipartite entan-
glement. In the present section, we will make use of this
measure of entanglement to quantify tripartite entanglement
in our analog black hole system. For consistency purposes we
shall also quantify bipartite entanglement using the contangle.

In the domain of analog gravity, previous approaches have
already considered quantitative measures of entanglement.
Using a relation [89] between entanglement entropy and cu-
mulants of the full counting statistics, Ref. [28] expresses
the (long wave-length limit of the) entanglement entropy of
a pure two-mode Gaussian state in terms of number fluctu-
ations in a given region. Although this approach bears some
similarity with the one we discuss at the end of Sec. VI C we
cannot directly compare it with ours because for our three-
mode Gaussian state the reduced two-body state is mixed.
Reference [30] studies the dynamical Casimir effect in a BEC
and quantifies the nonseparability after a quench by means
of the entanglement of formation, which takes an exact an-
alytic expression for symmetric two-mode Gaussian states
[90]. Although we cannot directly compute this quantity,6 the
spirit of our approach is similar to theirs and to the one of
Refs. [29,31], which use the symplectic spectrum to construct
quantitative measures of entanglement in the context of ion
rings and nonlinear optics analog, respectively.

A. Bipartite entanglement

The criterion usually used to detect entanglement in bipar-
tite systems is the Peres-Horodecki (or PPT) criterion [71,72].
It is a necessary and sufficient separability condition for bipar-
tite 1 × (N − 1)-mode Gaussian states [73]. This corresponds
to all possible bipartitions occurring in three-mode states:
indeed, we will have to consider either bipartitions i| jk or,
after tracing out mode k, bipartitions i| j. This criterion states
that a state ρ is separable if and only if its partial transpose ρPT

with respect to the first mode (mode i in the above notation) is
positive. Partial transposition of an N-mode Gaussian state is
equivalent to mirror reflection in phase space for the Wigner
function [73]. The covariance matrix of ρPT is given by

σ PT = �σ �, with � = σz ⊕ 12N−2. (66)

According to the criteria (49), the necessary and sufficient
separability criterion ρPT � 0 is equivalent to

νPT
j � 1, j = 1, . . . , N, (67)

where νPT
j are the symplectic eigenvalues of σ PT.

In our case N = 3. Let us investigate bipartite entangle-
ment of two-mode states obtained by tracing out the third one.

the entanglement of formation and is more amenable to calculations.
In [87,88] it was shown that Gaussian entanglement of formation and
entanglement measured by negativity are inequivalent measures.

6In our case the reduced state of modes i and j is nonsymmetric,
since in general ai �= aj (i and j in {0, 1, 2}).

As discussed in Sec. IV B, the covariance matrix associated
with the two-mode state i, j obtained by tracing out mode k is
σi j given by (45). Its symplectic eigenvalues ν± are given by

2 ν2
± = 
i j ±

√

2

i j − 4 det σi j, (68)

with 
i j = det σi + det σ j + 2 det εi j [91]. The symplectic
eigenvalues νPT

± of σ PT
i j associated with the partial transpose are

given by

2 (νPT
± )2 = 
PT

i j ±
√(


PT
i j

)2 − 4 det σi j, (69)

with 
PT
i j = det σi + det σ j − 2 det εi j . For a two-mode state,

the PPT criterion is in fact equivalent to condition νPT
− � 1

only, since νPT
+ is always larger than 1 [64].

From (62) one readily derives the expressions for νPT
− in our

case. Note that, again, since the local mixednesses appearing
in Eq. (62) depend on the frequency ω, the lowest symplectic
eigenvalue νPT

− also depends on ω. By using the fact that ai �
1, i = 0, 1, 2 and the relation (61), one can prove easily that
νPT

− � 1 for the bipartition 0|1, independently of the frequency.
Therefore, the reduced state of modes 0|1 is always separable:
the Hawking quantum and the Companion are not entangled.
On the other hand, the eigenvalues νPT

− of the reduced covari-
ance matrices σ PT

02 and σ PT
12 are lower than 1, which implies

that the reduced state of modes 0|2 (Hawking-Partner) and
1|2 (Companion-Partner) is entangled for all frequencies ω;
see, for instance, Fig. 9(a), where the blue curve represents
1 − νPT

− (ω) computed for the reduced state of modes 0|2.
The same results are obtained with the “Cauchy-Schwarz

criterion” (see, e.g., Ref. [92]), which has been often used in
the context of analog gravity [20–22,24,26,27]. According to
this criterion modes i and j are entangled if the following
inequality is verified:

|〈ĉi ĉ j〉|2 > 〈ĉ†
i ĉi〉 〈ĉ†

j ĉ j〉, for i ∈ {0, 1}, j = 2,

〈ĉi ĉ†
j 〉|2 > 〈ĉ†

i ĉi〉 〈ĉ†
j ĉ j〉, for i �= j ∈ {0, 1}.

(70)

Using Eqs. (58) and (62), one finds 〈ĉ†
i ĉi〉 〈ĉ†

j ĉ j〉 =
sinh2 ri sinh2 r j , |〈ĉi ĉ2〉|2 = sinh2 ri cosh2 r2 (i �= 2) and
|〈ĉ0 ĉ†

1〉|2 = sinh2 r0 sinh2 r1. Therefore, when considering the
bipartition 0|1, one concludes immediately that the second
inequality of (70) is never true; one has instead the equality
|〈ĉ0 ĉ†

1〉|2 = 〈ĉ†
0 ĉ0〉 〈ĉ†

1 ĉ1〉 for all frequencies ω. Therefore, the
reduced state 0|1 is separable. For bipartitions 0|2 and 1|2,
since tanh(r2) < 1 (with r2 > 0, finite), the first inequality of
(70) is always true. The criterion of violation of the Cauchy-
Schwarz inequality thus leads to the same conclusion as the
PPT criterion for the reduced states 0|2 and 1|2: these states
are always entangled.

However, the Cauchy-Schwarz criterion does not give any
clue about the amount of entanglement shared by each bi-
partition. Indeed, as will be discussed in Sec. VI C, in an
experimental setup for which the temperature of the sys-
tem cannot be exactly equal to zero, a stronger violation of
the Cauchy-Schwarz inequality does not necessarily imply a
greater amount of entanglement.

063302-10



BIPARTITE AND TRIPARTITE ENTANGLEMENT IN A … PHYSICAL REVIEW A 104, 063302 (2021)

B. Tripartite entanglement

1. Monogamy inequality

Monogamy is a fundamental property of entanglement
correlations. It can be described by monogamy inequalities,
which in the case of a tripartite system with subsystems la-
beled by (i, j, k) takes the form

E (i| jk) − E (i| j) − E (i|k) � 0, (71)

where E (A|B) is a proper measure of bipartite entanglement
between subsystems A and B [nonnegative on separable states
and monotonic under (G)LOCC]. This inequality expresses
the fact that the total amount of entanglement that can be
shared between i and j and between i and k is upper bounded
by the amount of entanglement between i and jk taken as
a whole. The left-hand side of inequality (71) provides a
quantifier of genuine tripartite entanglement.

Not all entanglement measures satisfy a monogamy in-
equality. However, it is possible to find and construct proper
measures of entanglement which satisfy these relations, both
in the qubit case and in the continuous-variable case. In
the case of qubits, the monogamy inequality holds for en-
tanglement measured by the square of the concurrence. For
Gaussian states a measure satisfying (71) was constructed
in [82]; it is called the contangle Eτ and it corresponds to
the squared logarithmic negativity. For an arbitrary pure state
ρ = |ψ〉〈ψ | with covariance matrix σ p (p stands for pure), it
is defined as

Eτ (σ p) = (ln ‖ρPT‖1)2
, (72)

where ‖Ô‖1 = tr
√

Ô†Ô is the trace norm.
The state considered in our case is a pure three-mode

Gaussian state; thus, any bipartition i| jk is a pure state, for
which the term E (i| jk) in (71) can be computed easily (see
Sec. V B 2 below). On the contrary, the two other terms of
(71) correspond to reduced two-mode states, which are mixed.
The squared logarithmic negativity can be extended to mixed
states by taking the infimum over all convex decompositions
of ρ in terms of pure states {|ψi〉}. In order to get a quantity
more amenable to computations, the Gaussian contangle Gτ

was defined by restricting this convex-roof construction to
decompositions over pure Gaussian states only. The Gaussian
contangle can be expressed as

Gτ (σ ) = inf
σ p�σ

Eτ (σ p), (73)

where the notation σ p � σ means that the matrix σ − σ p is
positive semidefinite. It is an upper bound to the true contan-
gle Eτ obtained from unrestricted pure-state decompositions,
but for pure states both coincide.

For three qubits the residual tangle (or three-way tangle)
E (i| jk) − E (i| j) − E (i|k) provides a measure of tripartite entan-
glement. It has an explicit expression [79], which is symmetric
in the three qubits. The corresponding quantity in the contin-
uous case is no longer symmetric in the three modes. One can
however define a permutation-invariant quantity by minimiz-
ing it over all permutations of the modes [82]. This measure
of tripartite entanglement shared among Gaussian modes was

called residual contangle [66]. Its explicit expression reads

Gres
τ = G(i| j|k)

τ = min
i, j,k

(
G(i| jk)

τ − G(i| j)
τ − G(i|k)

τ

)
. (74)

2. Pure-state contangle

Let us consider first a bipartition i| jk. For a pure state, the
Gaussian contangle G(i| jk)

τ coincides with the true contangle
E (i| jk)

τ . In general, for a multimode Gaussian state |ψ〉 with
covariance matrix σ p and generic bipartition i1 . . . iN−1|iN
(N = 3 in our case), the squared logarithmic negativity can
be written as [82]

Ei1...iN−1|iN
τ (σ p) =

⎛⎝ ∑
j:νPT

j <1

ln νPT
j

⎞⎠2

, (75)

where νPT
j are the symplectic eigenvalues associated with the

partial transpose state ρPT.
It is actually possible to write Eq. (75) in terms of the local

mixedness aiN associated with mode iN . Indeed, for any co-
variance matrix σ associated with a pure multimode Gaussian
state and generic bipartition i1 . . . iN−1|iN , there exists a local
symplectic transformation S such that [93]

S σ ST = 12 (N−2) ⊕ σsq, (76)

where σsq is the covariance matrix of a two-mode squeezed
state and reads⎛⎜⎜⎜⎜⎜⎜⎜⎝

aiN 0
√

a2
iN

− 1 0

0 aiN 0 −
√

a2
iN

− 1√
a2

iN
− 1 0 aiN 0

0 −
√

a2
iN

− 1 0 aiN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (77)

In the case of a tripartite system (N = 3), a direct proof of
Eqs. (76) and (77), as well as explicit expressions of the
symplectic matrix S for each bipartition, 12|0 and 02|1 and
01|2, can be found in Appendix D.

The symplectic eigenvalues of σ PT (corresponding to taking
the partial transpose with respect to mode iN ) are then read-
ily obtained from (69), using the form (77); the symplectic
eigenvalue 1 has degeneracy 2 (N − 2), while the ones as-
sociated with (77) are e±2riN , with twofold degeneracy. They
can be related to the local mixedness aiN through the relations
aiN = cosh(2 riN ). Equation (75) then gives

Ei1...iN−1|iN
τ (σ p) = arsinh2

(√
a2

iN
− 1

) = 4 r2
iN , (78)

which only depends on the local mixedness of mode iN and
has a simple expression in terms of riN . We will perform
explicit calculations for our system in the next section.

3. Residual contangle

Equation (78) provides an explicit expression for the first
term G(i| jk)

τ in (74). For a pure three-mode Gaussian state, an
explicit expression of G(i| j)

τ and G(i|k)
τ can also be obtained.

Indeed, in this specific case, any reduced two-mode state
saturates the uncertainty relation (44) and belongs to a class of
states called Gaussian least entangled mixed states (GLEMS).
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For GLEMS, one has [66]

G(i| j)
τ = arsinh2[

√
mGLEMS(ai, a j, ak ) − 1], (79)

where mGLEMS can be explicitly calculated as a function of the
three local mixednesses, as shown in Appendix E. In our case
[see Eqs. (E24)–(E27)], we obtain

G(0|1)
τ = 0,

G( j|2)
τ = arsinh2

[
2

1 + ak

√
(a2 + 1) (a j − 1)

]
= arsinh2

(
2 |〈ĉ j ĉ2〉|
1 + 〈ĉ†

k ĉk〉

)
, (80)

with j = 0, k = 1 or j = 1, k = 0. Let us now introduce the
quantity

Gres(i)
τ = G(i| jk)

τ − G(i| j)
τ − G(i|k)

τ , (81)

such that the residual contangle is given by

Gres
τ = min

i∈{0,1,2}
[
Gres(i)

τ

]
. (82)

Using (78) and (80), Eq. (81) yields

Gres(0)
τ = arsinh2

(√
a2

0 − 1
)

− arsinh2

[
2

1 + a1

√
(a2 + 1) (a0 − 1)

]
, (83)

Gres(1)
τ = arsinh2

(√
a2

1 − 1
)

− arsinh2

[
2

1 + a0

√
(a2 + 1) (a1 − 1)

]
, (84)

and

Gres(2)
τ = arsinh2

(√
a2

2 − 1
)

− arsinh2

[
2

1 + a1

√
(a2 + 1) (a0 − 1)

]
− arsinh2

[
2

1 + a0

√
(a2 + 1) (a1 − 1)

]
. (85)

The residual contangle only depends on the three local
mixednesses a0, a1 and a2 (this is no longer true at finite
temperature; see Sec. VI B and Appendix B). The minimum
over all possible permutations of i, j, and k in Eq. (82) can
be obtained by choosing as reference mode i the one with
smallest local mixedness [66].

We can then compute the residual Gaussian contangle for
our three-mode Gaussian state using the expression of the
ai’s given in (60). The results for mu = 0.59 are shown7 in
Fig. 5. Tripartite entanglement naturally emerges from quan-
tum fluctuations around a sonic horizon and diverges when
the energy goes to zero. This divergence always comes from
the first term in Eqs. (83), (84), and (85). Indeed, this term
diverges as ln2 ω (see discussion in Sec. V B 4). On the other
hand, it may be proven that G( j|2)

τ given by expressions (80)

7These results have been previously presented in [94].

FIG. 5. Residual contangles Gres(0)
τ (blue), Gres(1)

τ (green), Gres(2)
τ

(red). The upper-bound frequency 
 corresponds to the vanishing of
the mode 2. The frequency ωc is the value above which a0 becomes
lower than a1 (see Fig. 3) and coincides with the point above which
Gres(0)

τ < Gres(1)
τ . The inset displays the difference Gres(0)

τ − Gres(1)
τ

(cyan).

for j = 0, 1 is bounded at zero energy for any mu < 1. Indeed,
for j = 0, k = 1 or j = 1, k = 0,

G( j|2)
τ =

ω→0
arsinh2

(
2 |F22 Fj2|

|Fk2|2
)

, (86)

where the explicit expressions of the constant coefficients
|Fi2|2, i ∈ {0, 1, 2} are given in Appendix C. It means in par-
ticular that the entanglement of bipartitions j|2, j ∈ {0, 1}
remains finite at zero energy, while the tripartite entanglement
becomes infinite. Then, for higher frequencies, the residual
contangle decreases rapidly to zero and vanishes at the upper-
bound frequency 
.

Moreover, we show in the inset of Fig. 5 (cyan curve)
that while at low frequency Gres(1)

τ < Gres(0)
τ the situation is

reversed for ω > ωc, i.e., when a0 < a1 (the difference is
anyway quite small). We note that this result may be different
for Mach numbers different from the value mu = 0.59 we
consider here. In particular, based on the estimate (87) below,
one can show that, when mu < 0.17, at low frequency Gres(0)

τ

becomes the contribution which minimizes (82).

4. Experimental perspectives

The waterfall model we use has proven to provide a fairly
good description of the experimental setting [16]. In this sec-
tion we use the relevance of our model to assess what is the
best choice of parameters for an experimental measure of tri-
partite entanglement. Figure 6 displays the amount of genuine
tripartite entanglement Gres

τ expected in our 1D analog black
hole as a function of frequency (horizontal axis) and upstream
Mach number mu (vertical axis). For most cases, as proved
by this two-dimensional graph, the entanglement is indeed
shared among the Hawking, the Partner, and the Companion
quanta. Therefore, the Companion plays an important role in
the distribution of entanglement within the emitted quanta.

From Fig. 6 one sees that the amount of tripartite entangle-
ment is maximal for mu = 0.14, in the sense that the integral
of Gres

τ (ω) over all frequencies is maximal for this value of
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FIG. 6. Measure of tripartite entanglement Gres
τ as a function of

the (dimensionless) energy h̄ ω/(gnu) and of the upstream Mach
number mu ∈ [0.05, 0.95] defined in Eq. (7). The pink curve corre-
sponds to the upper bound frequency 
 (9). For a fixed value mu

mode 2 exists only for a frequency ω lower than 
(mu). Beyond
this value the tripartite system {0, 1, 2} no longer exists; this is the
reason why the corresponding area is left blank. The horizontal red
line corresponds to the value mu � 0.59, corresponding to md = 2.9
as realized in the experiment of [10]. The right plot shows the integral∫

Gres
τ dω over frequencies ω ∈ [0,
] for each value of mu. The red

dot pinpoints the numerical estimate of the integral for the specific
value mu � 0.59, while the blue dot locates the maximum of the
black curve reached for mu = 0.14. The light blue horizontal line
on the left graph corresponds to this value.

upstream Mach number. This specific value of mu is indicated
by the light blue horizontal cut on the graph. It has been
determined by numerical integration of the residual contangle
(82). One can also obtain an analytic estimate of this value of
mu, as we now explain. From the low-frequency behavior (C1)
of the components of the S-matrix involved [through Eq. (60)]
in (83), (84), and (85), one obtains the following expression
for the low-frequency residual contangle:

Gres
τ (ω) �

ω→0
min

i∈{0,1,2}

[
ln2

(
4 |Fi2|2
h̄ω/gnu

)]
. (87)

The value of mu for which Gres
τ (ω) in (87) is the largest is thus

simply the value for which the minimum of |F02|, |F12| and
|F22| reaches a maximum. From the analytic expressions (C2),
(C3), and (C4) of these coefficients one obtains mu = 0.17.
Although this value has been determined using a different
criterion than the numerical estimate mu = 0.14 plotted in
Fig. 6 (the former is based on the low ω behavior and the
latter on the integrated signal) the fact that both are quite close
confirms their relevance.

C. Entanglement localization

The tripartite entanglement of our system can be con-
centrated in a two-mode state by applying a local linear
Bogoliubov transformation [95,96]; this is called entangle-
ment localization. This transformation can be obtained by
means of the symplectic transformation S given by (76). To

the mapping (76) between σ and its three-mode localized
version 12 ⊕ σsq one can associate the Bogoliubov transfor-
mation T = U †SU [see Eq. (48)]. The modes e defined
in (35) (which coincide with the modes c up to a phase)
are mapped through this Bogoliubov transformation to new
modes f . The Bogoliubov transformation from e to f =
( f̂0, f̂1, f̂2, f̂ †

0 , f̂ †
1 , f̂ †

2 )T is denoted Te→f , and thus we have
f = Te→f e. This transformation is such that the tripartite en-
tanglement e0|e1|e2 gets completely localized in a two-mode
squeezed state.

Let us consider in turn the different cases. If we consider
bipartitions i j|k = 12|0 and 02|1 for modes e, as derived
explicitly in Appendix D [see in particular Eq. (D22)], the
new operators f̂i and f̂2 correspond to a mixing of annihi-
lation and creation operators êi, ê2 and ê†

i , ê†
2. In the case of

bipartition i j|k = 01|2 of modes e, entanglement can also
be localized but without mixing annihilation and creation
operators. The corresponding Bogoliubov transformation is
given by Eq. (D25) and corresponds to a change of basis from
{ê0, ê1, ê2} to { f̂0, f̂1, f̂2} given by

f̂0 = − sin θ ê0 + cos θ ê1, (88a)

f̂1 = cos θ ê0 + sin θ ê1, (88b)

f̂2 = ê2, (88c)

where (see Appendix D 4)

cos θ = sinh r0

sinh r2
and sin θ = sinh r1

sinh r2
. (89)

The transformation leading to entanglement localization is
thus particularly simple in the case of bipartition 01|2. Insert-
ing (88) into Eq. (38) leads to

|0〉b = T |0〉 f , where T = exp[r2( f̂ †
1 f̂ †

2 − f̂1 f̂2)]. (90)

The operator T is a two-mode squeezing operator [compare
with the generic form (22)] between f̂1 and f̂2, with squeezing
parameter r2(ω) defined in (59). Note that the modes ê0 and
ê1 that are combined in (88a) and (88b) are those of positive
norm; this leads to a squeezed state between the only mode
of negative norm (mode 2) and a combination of the modes
of positive norm (modes 0 and 1), exactly as occurs in the
gravitational case [97].

To summarize, the tripartite entanglement in our system
can be unitarily localized by linearly combining modes ê0 and
ê1 as in Eqs. (88a) and (88b) to obtain mode f̂1, which forms
a two-mode squeezed state with f̂2 = ê2. Besides, using the
definition (89) and noticing that 〈ê†

1ê0〉 = |〈ĉ†
1ĉ0〉| one obtains

〈 f̂ †
0 f̂0〉 = sin2 θ 〈ĉ†

0ĉ0〉 + cos2 θ 〈ĉ†
1ĉ1〉 − 2 sin θ cos θ |〈ĉ†

1ĉ0〉|
= (sin θ |S02| − cos θ |S12|)2 = 0. (91)

This means that mode f0 is not occupied. This comes as no
surprise since the corresponding local mixedness is equal to
1 in the transformed covariance matrix given by (76), which
entails from (59) that the mean particle number is equal to 0.
One can thus schematically describe the Bogoliubov transfor-
mation (88) operating in our analog black hole by means of the
equivalent optical setup represented in Fig. 7: nondegenerate
parametric down-conversion in a nonlinear crystal creates a
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FIG. 7. Schematic representation of an optical process equivalent
to the Hawking emission in the transonic BEC system we consider.
Entanglement is localized in the two-mode squeezed state f1| f2. The
mode f0 being empty is represented by a dashed line.

two-mode squeezed state.8 One of the modes is the Partner
f̂2 = ê2. The other one, f̂1, is directed to a beamsplitter that
generates the two other outgoing channels ê1 and ê0 which
are, up to a phase, the Companion and the Hawking mode,
respectively.

We note that various theoretical proposals and experi-
mental works have addressed the issue of generating and
measuring tripartite entangled states for continuous variables,
based on different setups of nonlinear optical parametric os-
cillators [96,98–100]. The analog black hole we consider here
is another such setup. It is quite peculiar in the sense that
genuine tripatite entanglement is realized although two of the
outgoing modes (0 and 1) are not entangled.

An interesting outcome of the present study is a redef-
inition of the analog Hawking temperature, associated to a
so-called gray-body factor. Redoing for the f1 and f2 modes
at the output of the parametric down conversion process the
analysis done for the Hawking mode at the end of Sec. IV D,
it is clear that these two modes have the same occupation
number

〈 f̂ †
2 f̂2〉 = 〈 f̂ †

1 f̂1〉 = sinh2 r2, (92)

and the same effective temperature

T (2)
eff (ω) = h̄ω

2 ln{coth[r2(ω)]}
= h̄ω

ln
[ |S22(ω)|2

|S22(ω)|2−1

] . (93)

The f1 mode being sent to the beamsplitter is transmitted onto
the Hawking mode with a transmission coefficient cos2 θ , and
indeed one can easily check that

〈ê†
0ê0〉 = cos2 θ 〈 f̂ †

1 f̂1〉. (94)

We saw in Sec. IV D that the Hawking mode could be
considered as a thermal state with temperature T (0)

eff (ω). Equa-
tion (94) shows that it can also be considered as a thermal

8We note here that the relevance of a nondegenerate parametric
amplifier model has already been pointed out in Ref. [25].

FIG. 8. Hawking temperature as a function of the upstream Mach
number in the waterfall configuration. The blue solid line is the result
(65), and the red solid line comes from expression (95). The dashed
line is the semiclassical expectation (C8).

state of temperature T (2)
eff (ω) affected by a gray-body factor

�(ω) = cos2 θ . Such a factor is invoked in general relativity
for explaining that the Hawking radiation is subject to an
effective potential at the horizon which affects its thermal
character [101]. The introduction of a gray-body term in
the present analysis has the advantage to ascribe a single,
global effective temperature to the analog system: T (2)

eff . In
this framework, the difference in population of the modes is
explained by the transmission coefficients cos2 θ and sin2 θ

of the beamsplitter, not by a difference in temperature. In the
long wavelength limit it yields an analog Hawking radiation
T (2)

H = limω→0 T (2)
eff (ω) which explicit expression in the wa-

terfall configuration reads (from Appendix C)

T (2)
H

gnu
= 1

2

(
1 − m4

u

) 3
2(

1 + mu + m2
u

)2 , (95)

and a gray-body factor

�0 = lim
ω→0

�(ω) = lim
ω→0

|S02|2
|S22|2 − 1

= 4 mu

(1 + mu)2
. (96)

It is satisfactory to note that the present approach yields
a result for �0 identical to the universal limit obtained in
Refs. [102–104] by means of a different technique.

Another advantage of the present definition of the Hawking
temperature over the one introduced at the end of Sec. IV D,
is that T (2)

H defined in Eq. (95) is in good agreement with
the semiclassical result (C8). This is to be contrasted with
T (0)

H , defined in Eq. (65) by studying the thermal character
of the reduced mode 0 state. The discrepancy between the
two behaviors is illustrated in Fig. 8. T (0)

H has the unpleasant
property of vanishing at mu → 0, although in this limit the
“surface gravity” is the largest. For the model sketched in
Fig. 7 instead, the disappearance of Hawking radiation when
mu → 0 is due to a vanishing gray-body factor, which is phys-
ically more satisfactory. One sees also in Fig. 8 that in the limit
mu → 1 all definitions of the Hawking temperature coalesce
to zero: in this regime �0 → 1 hence T (0)

H = T (2)
H . Also, in

this limit the density profile is smoother, the semiclassical
approach is more legitimate (cf. the discussion at the end of
Appendix C), and the surface gravity vanishes: the semiclassi-
cal estimate of the Hawking temperature thus vanishes as T (2)

H
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does. However, the behavior near mu = 1 is not exactly the
same: whereas T (2)

H /(gnu) ∼ 4
9 (1 − mu)3/2 the semiclassical

expression (C8) behaves as 2
π

√
3
(1 − mu)3/2. In this limit, the

reasoning leading to expression (95) is not at question be-
cause, as stated above, the behavior of the traditional estimate
(65) is identical to that of T (2)

H . The discrepancy between
expressions (C8) and (95) when mu → 1 rather suggests that
the semiclassical evaluation leading to Unruh expression (C8)
should be modified in the presence of a nonanalyticity of
the potential (in the waterfall configuration we consider the
second derivative is discontinuous at x = 0).

VI. FINITE TEMPERATURE

We previously considered the zero-temperature case,
where all the averages 〈· · · 〉 in Sec. IV A are taken over the
vacuum state |0〉b. In the present section we study a finite-
temperature system.

A. Finite-temperature states

Because of the existence of negative-energy modes, the
transonic flow we consider is energetically unstable and
cannot support a thermal state. However, one can define a
finite-temperature configuration [13,14,26] as follows: One
considers a uniform BEC (with density nu) initially flowing
at constant velocity Vu, at thermal equilibrium at temperature
TBEC in the frame moving along with the fluid. Then the po-
tential U (x) of Eq. (2) is slowly ramped up until the system
reaches the configuration described in Sec. II A and Fig. 1. At
the end of this adiabatic branching process one can define an
occupation number n̄i(ω, TBEC) for each of the incoming modes
b̂i. As explained, e.g., in [26], for a fixed frequency ω these
occupation numbers are given by

〈b̂†
i (ω)b̂i(ω)〉 = n̄i(ω, TBEC) = nth{ωB,α[qi|in(ω)]}, (97)

where nth (� ) = [exp(h̄�/TBEC) − 1]−1 is the thermal Bose
occupation distribution. In this expression ωB,α(qi|in ) is the
Bogoliubov dispersion relation (6), with α = u if i = 0 and
α = d if i = 1 or 2, and the functions qi|in(ω) are defined
above [just after Eq. (9)].

The regime in which the separation (1) between a classical
field and quantum fluctuations is valid and where the Bogoli-
ubov treatment of the fluctuations applies has been denoted
as the “weakly interacting quasicondensate regime” in [105].
It is valid up to a temperature TBEC � gnu [16], where g is the
coefficient of the nonlinearity in the Gross-Pitaevskii equation
(2). For typical experimental parameters gnu � 3 nK [10].
While it is difficult to precisely determinate the experimental
temperature, we note that the agreement between the exper-
imental results of [10] and the theoretical expectations [16]
suggests that the temperature of the condensate in the analog
black hole realized by Steinhauer and collaborators is possibly
lower than 3 nK.

At a finite temperature TBEC, the vacuum state |0〉b is re-
placed by a product of thermal states of b modes given by

ρab = 2⊗
i=0

ρ th
(
ab

i

)
, ab

i = 1 + 2n̄i(ω, TBEC), (98)

where n̄i is given by Eq. (97). We recall that we use the
term “thermal” to designate that state in a loose sense,
since, as explained in the beginning of this section, the
occupation numbers (97) do not correspond to an equilib-
rium distribution in the transonic configuration we consider.
The covariance matrix associated with this state is given by
σ th

b = diag(ab
0, ab

0, ab
1, ab

1, ab
2, ab

2). After the Bogoliubov trans-
formation c = T b, the covariance matrix becomes σ th

c =
ST σ th

b ST
T [see Eq. (48)]. The 2 × 2 matrices σi and εi j in

the block decomposition (41) of σ th
c are given by expressions

(54) and (55) where the averages 〈. . .〉 should be replaced by

〈. . .〉th = Tr[ρab . . .]. (99)

In particular,

σi = ai,th12, (100)

where

ai,th = 1 + 2 〈ĉ†
i ĉi〉th, i ∈ {0, 1, 2} (101)

is the corresponding local mixedness [compare to (54) and to
the first of Eqs. (62)].

We conclude this short section by noting that the optical
analog proposed in Fig. 7 remains relevant at finite temper-
ature. The difference with the zero-temperature case is just
the occupation number of the f -modes: they now acquire an
incoherent contribution. In particular the occupation 〈 f̂ †

0 f̂0〉
is no longer zero as in Eq. (91). This suggests a possible
experimental study of the effects of temperature on tripartite
entanglement: one could realize the optical setup of Fig. 7,
send a noncoherent beam along the mode f0, and evaluate the
associated effect on entanglement in the system.

B. Detection of entanglement

Contrary to the zero-temperature case, σ th
c = ST σ th

b ST
T is

associated with a mixed state with no special symmetry, and it
cannot be put in a standard form where the matrices εi j are
all diagonal [66]. In this section we thus restrict our study
to bipartite entanglement. In this case, the 4 × 4 covariance
matrix associated with the reduced two-mode state i j can
always be brought by LLUBOs to its standard form [65]. One
easily proves that matrices εi j have, mutatis mutandis, the
same form as those in the zero-temperature case, namely

εi j = 2 |〈ĉi ĉ†
j 〉th|12, i, j = 0, 1, i �= j,

εi2 = 2 |〈ĉi ĉ2〉th| σz, i = 0, 1. (102)

As a consequence, the lowest symplectic eigenvalue associ-
ated with the partial-transposed reduced two-mode state i j
takes the same form as in the zero-temperature case. Eq. (69)
still holds, and in particular

2 (νPT
− )2 = 
PT

i j −
√(


PT
i j

)2 − 4 det σi j, (103)
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FIG. 9. Evolution of the PPT measure 1 − νPT
− (blue), of the Cauchy-Schwarz parameter 
CS (red) and of the Gaussian contangle G(0|2)

τ

(green) for the bipartite system 0|2 (i.e., the analog Hawking pair) as functions of the dimensionless frequency h̄ω/(gnu) and for different
temperatures of the system, denoted by TBEC, ranging from 0 (a) to 1.8 gnu (f). All the plots are obtained for an upstream Mach number
mu = 0.59. The dashed blue curves in panels (b)–(f) correspond to the zero-temperature value of 1 − νPT

− . The gray areas indicate the range of
frequencies for which the bipartite system is entangled [see text and Eqs. (105) and (107)]. The purple dots locate the upper-bound frequency

 at which mode 2 vanishes.

with here

det σ01 = (
a0,th a1,th − 4 |〈ĉ0 ĉ†

1〉th|2
)2

,


PT
01 = a2

0,th + a2
1,th − 8 |〈ĉ0 ĉ†

1〉th|2,
det σi2 = (

ai,th a2,th − 4 |〈ĉi ĉ2〉th|2
)2

, i = 0, 1,


PT
i2 = a2

i,th + a2
2,th + 8 |〈ĉi ĉ2〉th|2, i = 0, 1. (104)

Note that the above expressions only involve moduli of mean
values, so that we could equivalently use operators êi instead
of ĉi since the transformation defined by Eqs. (36) and (37)
is diagonal. The explicit form of the quantities appearing
in Eqs. (104) is given in Eqs. (B2). At variance with the
zero-temperature case they do not depend only on the lo-
cal mixednesses. They should be experimentally accessible
through the measurement of the structure form factor and of
real space density correlations [106], meaning that the PPT
criterion can be used to experimentally detect entanglement
(cf. the discussion at the end of Sec. VI C).

The PPT criterion asserts that the bipartite state is entan-
gled iff

1 − νPT
− > 0. (105)

In the following we denote this quantity as the “PPT mea-
sure.” It is of particular interest to focus on the bipartition 0|2
since it corresponds to the Hawking-Partner pair. In this case
expression (103) leads to

νPT
− = a0,th + a2,th

2

−
√(a0,th − a2,th

2

)2

+ 4|〈ĉ0 ĉ2〉th|2. (106)

The corresponding value of the PPT measure 1 − νPT
− is rep-

resented in Fig. 9 as a function of the frequency ω of the
elementary excitations and for different temperatures ranging
from 0 to 1.5 gnu (blue curves). In each plot the dashed
blue curves display the same quantity at zero temperature for
comparison.
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It is instructive to compare the conclusions drawn from
the study of the PPT measure with those obtained using the
criterion of violation of the Cauchy-Schwarz inequality (70).
According to this criterion, the analog Hawking-Partner pair
0|2 is entangled iff


CS ≡ |〈ĉ0 ĉ2〉th|2 − (a0,th − 1) (a2,th − 1)

4
> 0. (107)

In the following we denote 
CS as the “Cauchy-Schwarz pa-
rameter.” It is represented by the red curves in Fig. 9 which
confirm the results obtained with the PPT criterion: the blue
and red curves are positive in the same region and cross zero
exactly at the same frequency. This means, as expected, that
both criteria lead to the same qualitative result for entan-
glement detection. However, as we shall see in Sec. VI C,
they lead to different quantitative estimation of the amount
of entanglement.

The analog Hawking pair is entangled in the range of
frequencies for which inequalities (105) and (107) hold. This
corresponds to the gray shaded regions bounded by two verti-
cal black dot-dashed lines in Fig. 9. The range of parameters
over which entanglement can be observed decreases when
the temperature of the Bose gas increases. In agreement with
the findings of Refs. [23,30], we observe that when TBEC

increases entanglement first disappears at low ω. It eventu-
ally completely disappears when TBEC � 1.8 gnu; cf. Fig. 9(f).
Therefore the temperature of the experimental system should
not exceed this limiting value to be able to observe entan-
glement. It is interesting to compare this value to the one
obtained in Ref. [23], which studies an analog black hole
configuration different from the waterfall we consider here (it
had been denoted as “flat profile” in Ref. [15]) with values of
the upper and lower Mach numbers not significantly different
from ours.9 The authors of Ref. [23] find a disappearance of
entanglement for TBEC � 0.195 gnu, i.e., at much lower tem-
perature than what is observed here. This is in agreement
with the findings of Ref. [26] where entanglement was shown
to be much less resilient to temperature in the flat profile
configuration than in the waterfall configuration.

In order to perform a more detailed discussion of the effects
of temperature on entanglement, we represent in Fig. 10(a) the
PPT measure 1 − νPT

− of the Hawking pair 0|2 at temperature
TBEC = 0.5 gnu for different configurations parameterized by
the upstream Mach number mu. As already seen in Fig. 9,
which corresponds to the specific case mu = 0.59, a finite
temperature reduces the range of frequencies for which en-
tanglement occurs. One observes in this new plot that the
entanglement of the Hawking pair persists for a larger frac-
tion of the available frequency domain when the parameter
mu is closer to unity. This is in agreement with the results
obtained in [22]; it was noticed that not only the temperature
TBEC destroys the entanglement of the analog Hawking pair,
but also that a strong “coupling” of mode 1 with the other
modes can affect their entanglement. This coupling is mea-
sured through the squared modulus of the scattering matrix
coefficients |S01(ω)|2 and |S21(ω)|2. One finds numerically

9They have mu = 0.75 and md = 1.5, whereas here mu = 0.59 and
md = 2.9.

FIG. 10. PPT measure 1 − νPT
− of the Hawking pair 0|2 plotted as

a function of the upstream Mach number mu and of the frequency ω,
for temperatures (a) TBEC = 0.5 gnu and (b) TBEC = 1.8 gnu. The pink
curve corresponds to the upper-bound frequency 
 (9). For a fixed
value mu, i.e., along a horizontal cut on the graph, mode 2 only exists
for a frequency ω lower than 
(mu) (see Fig. 2). The dashed black
curve corresponds to 1 − νPT

− = 0 and thus delimits the region where
the analog Hawking pair is entangled.

(and analytically in the low-ω sector [15]) that these two quan-
tities decrease when mu increases. This exactly corresponds
to the results presented in Fig. 10(a): when mu increases, the
coupling between 0-1 and 1-2 decreases, and indeed leads to
a stronger violation of PPT criterion for a larger fraction of
frequencies. However, it is important to note that this phe-
nomenon is valid only at low enough temperatures. This is
illustrated in Fig. 10(b): for a temperature as large as T =
1.8 gnu the region where the pair is entangled greatly dimin-
ishes and entanglement only survives at moderate values of
mu (at variance with the conclusion of the above discussion).
Likewise, at this temperature, even in the region where en-
tanglement is present, the PPT measure is significantly lower
than in the equivalent regions in Fig. 10(a).

It is also interesting to study the entanglement of the Hawk-
ing pair, not as a function of the absolute temperature, but
as a function of the Hawking temperature T (2)

H (95). There is
no obvious reason why entanglement between modes should
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FIG. 11. Same as Fig. 10 for TBEC = 5 T (2)
H .

disappear when the temperature of the system exceeds the
Hawking temperature. This is indeed what is observed in
Fig. 11: entanglement persists in sizable regions even when
TBEC = 5 T (2)

H .
We can conclude from the above discussion that whereas

entanglement persists for temperatures noticeably larger than
T (2)

H , it is significantly reduced when TBEC becomes larger than
the chemical potential gnu.

C. Measurement of entanglement

The violation of the Cauchy-Schwarz inequality is often
used to study the entanglement between the elementary ex-
citations in the context of analog gravity [20–22,24,26,27].
However, while this criterion tells us whether the bipartite
system is entangled or not, the Cauchy-Schwarz parameter

CS it is not a good measure of the amount of entanglement
at finite temperature.

To clarify this point, we compute the amount of en-
tanglement at finite temperature for the bipartition 0|2, as
measured by the Gaussian contangle G(0|2)

τ defined in Eq. (73).
This computation is slightly more difficult here than in the
zero-temperature case, where it is given by Eq. (80). In the
presence of temperature the reduced two-mode state 0|2 is not
a GMEMMS, a GMEMS, or a GLEMS, for which analytic
expressions hold [87]. Nevertheless, the Gaussian contangle
can be put under the form [87]

G(0|2)
τ = arsinh2

{√
min

θ
[m(θ )] − 1

}
, (108)

where m(θ ) is explicitly given by Eq. (E23). In Fig. 9 we rep-
resent by a green solid line the value of G(0|2)

τ in the range of
frequencies for which the system is entangled [the minimum
over the angle θ in Eq. (108) is obtained numerically]. The
results for G(0|2)

τ confirm that the PPT and Cauchy-Schwarz
criteria correctly determine the region where entanglement
exists.

As expected, entanglement decreases as the temperature in-
creases. In the zero-temperature case [Fig. 9(a)], both 1 − νPT

−
and 
CS vary in the same way as G(0|2)

τ . The situation at finite

FIG. 12. Evolution of 
CS given by Eq. (107) as a function of the
measure of bipartite entanglement G(0|2)

τ given by expressions (108)
and (E23), for the same set of temperatures as in Fig. 9, ranging from
TBEC = 0 (blue curve) to TBEC = 1.5 gnu (red curve), with mu = 0.59.
When possible, the corresponding temperature for each curve is
indicated on the graph (we dropped the factor gnu for readability).
Note that for TBEC > 0, the curves describe a loop.

temperature is different: while the quantities 1 − νPT
− and G(0|2)

τ

appear to behave similarly, being increasing and decreasing in
the same regions and having a maximum at the same value of
ω, this is not the case for 
CS whose maximum is shifted with
respect to the two others; see Figs. 9(b)–9(f).

In order to illustrate this phenomenon, in Fig. 12 we plotted

CS as a function of G(0|2)

τ for several temperatures. These are
parametric curves obtained from expressions (107) and (108),
ω playing the role of the parameter. Except at TBEC = 0, 
CS

is not a monotonous function of G(0|2)
τ , as demonstrated by

the closed loops with regions of negative slope observed for
each finite temperature. Another way to note the same point is
to remark that the maximal violation of Cauchy-Schwarz in-
equality (
CS maximal) is not reached when G(0|2)

τ is maximal.
This confirms that the parameter 
CS is not an entanglement
monotone.

In Fig. 13 we underline the difference between the behav-
iors of the Cauchy-Schwarz parameter and the PPT measure
by plotting 1 − νPT

− as a function of G(0|2)
τ .

The difference with Fig. 12 is striking. For each tempera-
ture, 1 − νPT

− is a monotonous increasing function of G(0|2)
τ . It

is not easily seen in the figure, but for finite TBEC the relation
between the two quantities is not one to one: for each G(0|2)

τ

there are two (close) values of 1 − νPT
− which coalesce at the

common maximum of the two quantities, marked with a point
on Fig. 13. This confirms without ambiguity that the PPT mea-
sure is still an entanglement monotone at finite temperature.
We also note that all the curves in Fig. 13 almost superimpose,
meaning that relation between the two quantities 1 − νPT

− and
G(0|2)

τ is very weakly dependent on temperature, which makes
the PPT measure an even better candidate for quantifying
entanglement.

In view of the results presented in Figs. 12 and 13, it is
of interest to also discuss the generalized Peres-Horodecki
(GPH) parameter, which has been used in [23,25] for witness-
ing entanglement in analog systems. As shown by Simon [73],
nonseparability of modes 0 and 2 can be defined as P < 0,
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FIG. 13. Evolution of 1 − νPT
− given by Eq. (106) as a function

of the measure of bipartite entanglement G(0|2)
τ given by expressions

(108) and (E23), for the same set of temperatures as in Fig. 9,
ranging from TBEC = 0 (blue curve) to TBEC = 1.5 gnu (red curve),
with mu = 0.59. When possible, the corresponding temperature for
each curve is indicated on the graph (we dropped the factor gnu for
readability). For each temperature the common maximal value of
1 − νPT

− and G(0|2)
τ is marked with a point.

where, using our conventions, the GPH parameter reads

P = det σ0 det σ2 + (1 − | det ε02|)2

− tr(σ0 J ε02 J σ2 J εT
02 J ) − det σ0 − det σ2, (109)

and the matrix J is defined in (40). This yields

P = (1 − 4|〈ĉ0 ĉ2〉th|2 + a0,tha2,th )2 − (a0,th + a2,th )2. (110)

As is clear from expressions (106), (107), and (110), negativ-
ity of P is equivalent to the positivity of 1 − νPT

− and to that
of 
CS: these three criteria are equivalent in terms of quali-
tative assessment of nonseparability. This being ascertained,
we want to check if −P is a good quantitative measure of
entanglement. To this end, we plot it as a function of G(0|2)

τ

in Fig. 14. It appears clearly that, as 
CS, −P is not an
entanglement monotone at finite temperature.

We would like to insist on the positive aspects of using
the PPT measure in future experimental studies of analog
black hole configurations: (1) as just seen, contrary to the
Cauchy-Schwarz and GPH parameters, the PPT measure is

FIG. 14. Same as Figs. 12 and 13 for the GPH parameter −P
defined in Eqs. (109) and (110).

a good quantitative measure of entanglement, whatever the
temperature of the system is; (2) from Fig. 13 it appears
that 1 − νPT

− is almost as good a measure of entanglement as
G(0|2)

τ , but it has a much simpler expression in terms of the
local mixednesses and mode correlation functions [compare
Eq. (106) with Eqs. (108) and (E23)]; and (3) the calculations
of Sec. VI B show that the computation of the lowest sym-
plectic eigenvalue requires essentially the knowledge of the
the same quantities (104) as 
CS and P [compare Eqs. (106),
(107), and (110)]. This means that the value of νPT

− is experi-
mentally accessible and can be measured, for instance, from
the density correlations along the acoustic black hole, as we
now demonstrate.

An experimental evaluation of the quantities used in
the present work for characterizing bipartite and tripartite
entanglement necessitates to experimentally determine the co-
efficients of the covariance matrix (41). For our three-mode
Gaussian state this matrix is 6 × 6, and its coefficients are all
expressed in terms of correlation functions of the c-operators
[see, e.g., Eqs. (100), (101), and (102)]. Steinhauer [106]
has devised a clever method for determining such quantities
from the knowledge of the static structure factor and the
density-density correlation function, which are both experi-
mentally accessible quantities. This technique has been used
in Refs. [9,10] and can be in principle extended for evaluating
all the relevant averages of c-operators. Note, however, that
there are potential practical difficulties: the method neces-
sitates the computation of windowed Fourier transforms of
the real space density-density correlation function and this
quantity has to be accurately determined over a large spatial
range in order to correctly perform all the necessary Fourier
transforms. Also the windows used to evaluate these Fourier
transforms have to be selected with special care, as discussed
in Refs. [16,25,26].

In order to give a proof of concept of the method, we
performed the following computation: considering a zero-
temperature system we neglected the occupation of the
Companion mode, which, from Eq. (61) yields a0 � a2. This
makes it possible, through (58) and (62), to express the sym-
plectic eigenvalue (69) as

νPT
− �

√
1 + 4|〈ĉ0ĉ2〉|2 − 2 |〈ĉ0ĉ2〉|. (111)

The corresponding value of 1 − νPT
− is reported in Fig. 15. We

determined the quantity |〈ĉ0ĉ2〉| appearing in (111) by com-
bining the results of the experimental analysis of [10] with the
theoretical value of the structure form factor. A self-contained
experimental analysis should resort to the experimentally de-
termined value of this quantity. Also, as discussed in Ref. [16],
(1) neglecting the occupation number of the Companion mode
is too crude an approximation, or at least necessitates an
independent experimental confirmation and (2) the windowed
Fourier analysis of the experimental density-density correla-
tion function deserves a careful analysis. This is the reason
why Fig. 15 does not provide an experimental signature of
bipartite entanglement in the BEC analog realized in Ref. [10],
but is rather a proof of concept, demonstrating that the theoret-
ical techniques employed in the present work provide valuable
tools for analyzing experimental data.
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FIG. 15. Zero-temperature PPT measure as a function of energy
in a waterfall configuration with mu = 0.59. The blue solid curve is
the same as in Fig. 9(a). The points with error bars are evaluated from
Eq. (111), extracting the value of |〈ĉ0ĉ2〉| from the experimental data
of Ref. [10] as discussed in the text. The dashed line represents the
result of Eq. (111) obtained by assuming that |〈ĉ0ĉ2〉| � 1

2

√
a2

0 − 1 �√
n̄0(n̄0 + 1), where n̄0(ω) is a thermal Bose occupation evaluated at

the Hawking temperature TH = 0.124 gnu determined in [10].

VII. CONCLUSION

In the present work, we have investigated entanglement
properties of modes emitted from an analog black hole real-
ized in the flow of a Bose-Einstein condensate. The ground
state of the system is seen by an external observer as a
three-mode Gaussian state. Gaussian states are entirely char-
acterized by their first and second moments. Thus, their
entanglement properties can be expressed in terms of their
covariance matrix. We have characterized bipartite and tri-
partite entanglement in the system using tools developed in
the field of continuous-variable entanglement. We identified
the best configuration for the experimental measurement of
tripartite entanglement: the Gaussian residual entanglement
Gres

τ is larger for waterfall configurations with moderate up-
stream Mach number (mu � 0.15) and at small frequencies.
An interesting result is the finiteness of bipartite entanglement
(for instance, between the Hawking and the Partner) at zero
energy, while the tripartite entanglement diverges. This point
sheds light on the importance of the Companion particle,
which is sometimes discarded when studying entanglement
in analog black holes. We also showed that, quite counter-
intuitively, while there is no bipartite entanglement between
two of the outgoing modes (tracing out the third one), there is
nevertheless genuine tripartite entanglement between the three
modes.

Our detailed investigation of the distribution of entangle-
ment in the system in Sec. V enabled us to propose a table top
optical setup modeling the physical process we study. This,
in turn, suggested an alternative manner to define the analog
Hawking temperature and the associated gray-body factor, in
better agreement with the gravitational paradigm.

In Sec. VI we studied the effect of temperature on bipartite
entanglement and obtained several results. The Cauchy-
Schwarz and the GPH criteria which have been studied in
previous studies of analog systems merely give a qualitative
assessment of whether the system is entangled or not. In this
paper, we go beyond this qualitative approach by evaluating

the amount of entanglement in the Hawking pair using the
Gaussian contangle. We assess the capability of several pa-
rameters to correctly quantify the amount of entanglement
between the Hawking pair by comparing them with our mea-
sure of entanglement. Our results should be relevant in future
experiments: as a main message, we advise to use the PPT
measure 1 − νPT

− instead of the Cauchy-Schwarz or the gen-
eralized Peres-Horodecki parameters as a good quantifier of
entanglement. We have also observed that the connection be-
tween the PPT measure and the contangle is weakly affected
by thermal effects, which strengthens even more its relevance
in the context of analog black holes in BEC.

Extensions of the present work include the investigation of
zero-norm modes, which were shown in [16] to play an im-
portant role in the correct quantum description of Bogoliubov
excitations. The study of the influence of thermal effects on
the amount of tripartite entanglement also constitutes a natural
continuation of the present study.

During the completion of this work, we became aware of
the preprint [107] which studies tripartite entanglement in an
analog system thanks to the residual contangle, as done in the
present paper. The model in [107] corresponds to a “sublumi-
nal” dispersion relation, whereas in the BEC case we consider,
the dispersion is rather “superluminal.” Also, the authors of
the recent preprint [108] use a quantum description of an
analog black hole similar to the one we present in Sec. V C and
define the Hawking temperature from the squeezing parameter
of the associated parametric amplifier, as done in Eq. (93).
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APPENDIX A: BOGOLIUBOV TRANSFORMATIONS

In this Appendix we detail some intermediate steps useful
for establishing the results presented in Sec. III A.

The form (13) and (16) of vectors b and c implies that the
2N × 2N matrix T defining the unitary Bogoliubov trans-
formation (15) has a block structure given by (17). In order
that the ĉi defined in Eq. (15) satisfy bosonic commutation
relations, the matrix T must verify

T J̃T T = J̃, (A1)

where J̃ is defined in Eq. (14). Equation (A1) means that
T belongs to the symplectic group Sp(2N,C). As a conse-
quence, one has

T −1 = −J̃T T J̃ =
(

αT β†

βT α†

)
. (A2)
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Condition (A1) can be reexpressed in terms of the two N × N
matrices α and β as

α α† − β β† = 1N, α βT − β αT = 0,

α† α − βT β∗ = 1N, αT β∗ − β† α = 0. (A3)

The matrix T being symplectic, it can be written as

T = exp(̃JQ), (A4)

with Q a 2N × 2N symmetric matrix.

The unitary operator T relating operators ĉi and b̂i accord-
ing to (18) is defined as

T = exp
(

1
2 bT Q b

)
, (A5)

as can be shown by using the Baker-Campbell-Hausdorff
formula [42]. Note that using Eqs. (15) and (A4) one has
bT Q b = cT (T −1)T Q T −1 c = cT Q c. This indicates that T
has the same expression in term of the c’s and in term of the
b’s.

It is possible to show [47,54,109] that T can be uniquely decomposed into the product

T = (det α)−1/2 exp

[
1

2

N∑
i, j=1

Xi j ĉ†
i ĉ†

j

]
exp

[
N∑

i, j=1

Yi j ĉ†
i ĉ j

]
exp

[
1

2

N∑
i, j=1

Zi j ĉi ĉ j

]
, (A6)

where X , Y , Z are N × N matrices defined by

X = −β∗ α−1, e−Y T = α, Z = α−1 β. (A7)

The interest of the decomposition (A6) lies in the fact that all annihilation operators have been put to the right. Therefore, when
applied to the vacuum |0〉c, T only acts through matrix X . This directly yields Eq. (21).

APPENDIX B: EXPLICIT EXPRESSION OF THE COVARIANCE MATRIX

In this Appendix we give a useful formula for the covariance matrix, present explicit expressions necessary for evaluating its
finite-temperature form, and discuss their zero-temperature limit.

The decomposition (34) makes it possible to write the covariance matrix σc of Eq. (53) under the form

σc=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 2 v2
02 0 2v02v12 cos(φ01) −2v02v12 sin(φ01) 2v22v02 cos(φ02) 2v22v02 sin(φ02)

0 1 + 2 v2
02 2v02v12 sin(φ01) 2v02v12 cos(φ01) 2v22v02 sin(φ02) −2v22v02 cos(φ02)

2v02v12 cos(φ01) 2v02v12 sin(φ01) 1 + 2 v2
12 0 2v22v12 cos(φ12) 2v22v12 sin(φ12)

−2v02v12 sin(φ01) 2v02v12 cos(φ01) 0 1 + 2 v2
12 2v22v12 sin(φ12) −2v22v12 cos(φ12)

2v22v02 cos(φ02) 2v22v02 sin(φ02) 2v22v12 cos(φ12) 2v22v12 sin(φ12) −1 + 2 v2
22 0

2v22v02 sin(φ02) −2v22v02 cos(φ02) 2v22v12 sin(φ12) −2v22v12 cos(φ12) 0 −1 + 2 v2
22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(B1)

where vi j and ϕi j are defined in Eq. (34) and φi j = ϕi2 − ϕ j2.
Also, for explicitly computing the finite-temperature entanglement properties studied in Sec. VI B [see Eqs. (104) and (107)]

one uses the formulas:

〈ĉ0ĉ†
1〉th =S00S∗

10(1 + n̄0) + S01S∗
11(1 + n̄1) + S02S∗

12n̄2,

〈ĉ†
i ĉi〉th =|Si0|2n̄0 + |Si1|2n̄1 + |Si2|2(1 + n̄2), i = 0, 1,

〈ĉiĉ2〉th =Si0S∗
20(1 + n̄0) + Si1S∗

21(1 + n̄1) + Si2S∗
22n̄2, i = 0, 1,

〈ĉ†
2ĉ2〉th =|S20|2(1 + n̄0) + |S21|2(1 + n̄1) + |S22|2n̄2,

(B2)

where the quantities n̄0 n̄1 and n̄2 are defined in Eq. (97), and, as in Eq. (B1), we do not write the explicit ω dependences for
legibility.

At zero temperature the above equations reduce to

〈ĉ0ĉ†
1〉 =S00S∗

10 + S01S∗
11 = S∗

12S02,

〈ĉ†
i ĉi〉 =|Si2|2, i = 0, 1,

〈ĉiĉ2〉 =Si0S∗
20 + Si1S∗

21 = Si2S∗
22, i = 0, 1,

〈ĉ†
2ĉ2〉 =|S20|2 + |S21|2 = −1 + |S22|2,

(B3)

where use has been made of property (11). Using Eqs. (B3)
and expressions (60), one may show that the finite-
temperature components (100) and (102) of the covariance
matrix reduce at TBEC = 0 to the form (62) as they should.
However, at finite temperature, Eq. (B2) holds instead of (B3),
implying that, contrarily to the zero-temperature case, the
covariance matrix, its symplectic eigenvalues, and thus the
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entanglement properties of the system, do not depend only on
the local mixednesses.

APPENDIX C: LONG WAVELENGTH LIMIT OF
THE SCATTERING AMPLITUDES

In the long wavelength limit, the Si2 coefficients of the S-
matrix (12) behave as

Si2(ω) = Fi2

√
gnu

h̄ω
+ O(ω1/2), i ∈ {0, 1, 2}, (C1)

where the Fi2 are dimensionless constant coefficients. For the
waterfall configuration we consider here, analytic expressions
of their moduli have been determined in [15]:

|F02|2 = 2
mu(1 − mu)

3
2
(
1 + m2

u

) 3
2

(1 + mu)
1
2
(
1 + mu + m2

u

)2 , (C2)

|F12|2 = 1

2

(1 − mu)
7
2
(
1 + m2

u

) 3
2

(1 + mu)
1
2
(
1 + mu + m2

u

)2 , (C3)

and

|F22|2 = 1

2

(
1 − m4

u

) 3
2(

1 + mu + m2
u

)2 , (C4)

where mu is the upstream Mach number.
From the low-frequency behavior of the scattering co-

efficients it is possible in to evaluate the analog Hawking
temperature of the waterfall configuration; see Eqs. (65) and
(95). An alternative way to evaluate the Hawking temperature
is to use the semiclassical analog surface gravity expression
[1,110]

TH = h̄

2π

(
dv

dx
− dc

dx

)
xH

, (C5)

where v(x) is the velocity of the flow, c(x) = √
gn(x)/m is

the local sound velocity and xH is the position of the horizon,
defined as the point at which

v(xH ) = c(xH ). (C6)

However, as argued in Sec. II A the definition (C5) is not
expected to apply in the case we consider because, strictly
speaking, the local sound velocity is ill-defined for the water-
fall profile around x = 0. A blindfolded use of Eqs. (C6) and
(C5) leads to

xH

ξu
= − 1√

1 − m2
u

arcosh

√
1 − m2

u

1 − m2/3
u

(C7)

and

TH

gnu
= 3

2π

(
1 − m2/3

u

)√
1 − m4/3

u . (C8)

This expression is compared with alternative definitions of the
Hawking temperature in Fig. 8. Note that when mu increases,
xH goes deeper in a region of smooth density profile where
the concept of local sound velocity becomes relevant: xH �
−ξu when mu → 1. In this regime expression (C5) and the
corresponding result (C8) are mathematically sound.

APPENDIX D: ENTANGLEMENT LOCALIZATION
IN A TRIPARTITE SYSTEM

In this Appendix we present the specifics of the process
of entanglement localization discussed in Sec. V C. Let σ be a
covariance matrix associated with a pure three-mode Gaussian
state. We want to determine the explicit form of the symplectic
matrix S which transforms σ according to

S σ ST = 12 ⊕ σsq, (D1)

where σsq is the covariance matrix of a two-mode squeezed
state [see Eq. (77)].

1. General form of the symplectic matrix

Consider a bipartition i j|k. The covariance matrix asso-
ciated with the subsystem k is denoted as σk and the one
associated with subsystem i j reads

σi j =
(

σi εi j

εT
i j σ j

)
. (D2)

The whole covariance matrix associated with the tripartite
system is then

σ =

⎛⎜⎝σi εi j εik

εT
i j σ j ε jk

εT
ik εT

jk σk

⎞⎟⎠. (D3)

Consider the case where the covariance matrix is in its stan-
dard form (62), i.e., σk = ak 12 and either

σi j =

⎛⎜⎜⎜⎝
ai 0 c 0

0 ai 0 −c

c 0 a j 0

0 −c 0 a j

⎞⎟⎟⎟⎠, c =
√

ai − 1
√

a j + 1

(D4)
for bipartitions i j|k = 02|1 and 12|0 (for which εi2 = cσz) or

σi j =

⎛⎜⎜⎜⎝
ai 0 c 0

0 ai 0 c

c 0 a j 0

0 c 0 a j

⎞⎟⎟⎟⎠, c =
√

ai − 1
√

a j − 1 (D5)

for the bipartition 01|2 (for which ε01 = c12). The difference
in the sign in front of c between (D4) and (D5) is actually
of great importance and leads to two different types of sym-
plectic transformations in Eq. (D1). Note that we also impose
ai < a j in (D4); in fact, the order of the local mixednesses
does not matter in (D5), as shall be clear at the end of this
section.

The symplectic eigenvalues σk = ak 1 are νk = ak . Using
Williamson theorem, we can bring σi j to a diagonal matrix

(σi j )
′ = Si j σi j (Si j )

T = diag{νi, νi, ν j, ν j}, (D6)

where we ordered the symplectic eigenvalues such that νi <

ν j . Easy calculations lead to

Si j =

⎛⎜⎜⎜⎝
a 0 b 0

0 a 0 ηb

ηb 0 −a 0

0 b 0 −a

⎞⎟⎟⎟⎠, (D7)
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with

a = −
√

a j ν j − ai νi

ν2
j − ν2

i

, b =
√

ai ν j − a j νi

ν2
j − ν2

i

, (D8)

and η = −1 for bipartitions i j|k = 02|1 and 12|0, and η = 1
for bipartition 01|2. The coefficients a and b satisfy the iden-
tity

a2 + ηb2 = ai + ηa j

νi + ην j
= 1. (D9)

The last equality is valid only if Si j is a symplectic matrix.
Expressions (D7) and (D8) are valid for any covariance

matrix σi j of the form (D4) and (D5). In our case, we can
further simplify these expressions using the purity constraint
of the three-mode Gaussian state under consideration. Indeed,
one can easily prove that for any reduced two-mode states
i j of a pure three-mode Gaussian state, 
i j = det σi j + 1 =
det σk + 1 [66]. Therefore, considering the reduced state jk,
Eq. (68) immediately gives νi = 1 and ν j = √

det σi j = ak ,
which imply from the last equality of (D9) that ai + ηa j =
νi + ην j = 1 + ηak . This expression is true for the case (D4)
iff ai < a j , because η = −1. For (D5), the order is not impor-
tant because η = 1. Thus, (D8) simplifies to

a = −
√

(a j − η) (ak + η)

a2
k − 1

,

b =
√

(ai − 1) (ak + η)

a2
k − 1

. (D10)

2. Standard form

The symplectic matrix defined by

S = Si j ⊕ Sk, (D11)

with Sk = ak12, transforms the covariance matrix (D3) to

σ ′ = S σST =
(

σ ′
i j K

KT σ ′
k

)
, (D12)

with K some matrix and

σ ′
i j =

⎛⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 ak 0

0 0 0 ak

⎞⎟⎟⎟⎠, σ ′
k =

(
ak 0

0 ak

)
. (D13)

Following [93], we first notice that

−(J σ )2 = 16, (D14)

where we recall that J is given by Eq. (40). The previous
expression is not difficult to prove: the Williamson theorem
ensures the existence of a symplectic matrix O mapping the
covariance matrix σ to the identity (for a pure state all the
symplectic eigenvalues are equal to one); thus, one obtains
−(J σ )2 = −JOOT JOOT = 16. Note that one also has
−(J σ ′)2 = 16. Then, inserting expression (D12) in Eq. (D14)
and using the fact that σ ′

i j and σ ′
k are diagonal, it is easy to

prove the following conditions for the matrix K:

(σ ′
i j )

2 − Ji j K Jk KT = 14,

(σ ′
k )2 − Jk KT Ji j K = 12,

−σ ′
i j K + Ji j K Jk σ ′

k = 0,

(D15)

where Jk is defined in Eq. (40) and Ji j = Ji ⊕ Jj . The last
condition in (D15) implies that a given coefficient Kmn �= 0 iff
(σ ′

i j )mm = (σ ′
k )nn, i.e., if and only if the symplectic eigenvalue

on the row m of the subsystem i j matches with the one on
the column n of the subsystem k. Therefore, one can rewrite
expression (D12) in the form

σ ′ =
(
12 0

0 σ̃

)
, with σ̃ =

(
ak 12 K̃

K̃T ak 12

)
, (D16)

where we introduced a new 2×2 matrix K̃. Then, noticing that
−(Ji j σ̃ )2 = 14, one obtains

K̃ Jk K̃T = (1 − a2
k ) Jk,

Jk K̃ Jk = K̃. (D17)

The above conditions lead to

K̃ =
(

a
√

λ2 − a2

−√
λ2 − a2 −a

)
, (D18)

where λ =
√

a2
k − 1. Then, given that σ is in its standard form

[meaning that εik and ε jk are diagonal matrices; see Eq. (D3)]
and remembering that Si j is given by expression (D7), one
can see easily that K̃ must be diagonal; therefore, a = λ. As a
result, one finds that

σ̃ =
⎛⎝ ak 12

√
a2

k − 1 σz√
a2

k − 1 σz ak 12

⎞⎠, (D19)

which exactly corresponds to the covariance matrix of
a squeezed state with squeezing parameter rk > 0, with
cosh(2 rk ) = ak [see Eq. (77)]. This statement ends the proof:
the symplectic matrix S given by expression (D11), with Si j

explicitly written in Eqs. (D7) and (D8) and Sk = 12, indeed
lead to the transformation (D1).

3. Bipartitions 02|1 and 12|0
For bipartitions i j|k = 02|1 and 12|0 of modes e, the sym-

plectic transformation (D11) involves the matrix Si j (with j =
2) given by Eq. (D7) with η = −1. Using the identity (D9), we
introduce a parameter γ , such that a = cosh γ and b = sinh γ ,
where a and b are the coefficients of the Si j matrix. In this
case, one finds

Si2 =

⎛⎜⎜⎜⎝
− cosh γ 0 sinh γ 0

0 − cosh γ 0 − sinh γ

− sinh γ 0 cosh γ 0

0 sinh γ 0 cosh γ

⎞⎟⎟⎟⎠, (D20)

with cosh γ = cosh r2/ cosh rk , sinh γ = sinh ri/ cosh rk ,
computed from expressions (D10).
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To this symplectic transformation SσST at the level of the
covariance matrix corresponds a Bogoliubov transformation

f = Te→f e, with Te→f = U † S U (D21)

[see Eqs. (46) and (48)]. Using the explicit expression of the
symplectic matrix (D20), one finds

f̂i = − cosh γ êi + sinh γ ê†
j ,

f̂ j = − sinh γ ê†
i + cosh γ ê j,

f̂k = êk . (D22)

Therefore, entanglement can be localized in the subsystem
f2| fk with k = 0 or 1 only through a Bogoliubov transforma-
tion which mixes annihilation and creation operators.

4. Bipartition 01|2
For the bipartition i j|k = 01|2 the matrix S01 is given by

Eq. (D7) with η = 1. One finds

S01 =

⎛⎜⎜⎜⎝
− sin θ 0 cos θ 0

0 − sin θ 0 cos θ

cos θ 0 sin θ 0

0 cos θ 0 sin θ

⎞⎟⎟⎟⎠, (D23)

with cos θ = sinh r0/ sinh r2, sin θ = sinh r1/ sinh r2, using
again the identity (D9) and expressions (D10). The associated
Bogoliubov transformation

Te→f = U † (S01 ⊕ S2)U (D24)

leads to the new set of operators

f̂0 = − sin θ ê0 + cos θ ê1,

f̂1 = cos θ ê0 + sin θ ê1,

f̂2 = ê2,

(D25)

where, as in the previous subsection, f0 and f1 are new com-
binations of modes e0 and e1, and f2 = e2. Here there is no
mixing of annihilation and creation operators, and the matrix
S01 ⊕ S2 is unitary.

APPENDIX E: COMPUTATION OF THE
FINITE-TEMPERATURE GAUSSIAN CONTANGLE

In this Appendix we explain how to obtain expression
(E23) used in Eq. (108) for evaluating the Gaussian contangle
at finite temperature. We could not find a derivation of this
formula in the literature, and since the explicit form given in
[87] appears to contains some missprints, we find it useful to
give the whole proof, following the same path as in [87]. For a
general (mixed or pure) two-mode Gaussian state, a measure
of bipartite entanglement is given by the Gaussian contangle
Gτ (σ ) defined in Eq. (73). It has been proven in [87] that
finding the infinimum over pure Gaussian states amounts to
minimize

m(x0, x1, x3) = 1 + x2
1

det �
, (E1)

with det � = x2
0 − x2

1 − x2
3, where x0, x1, and x3 must belong

to the following cones:

x0 = a + b

2
−
√

(x1 − c+)2 +
(

x3 − a − b

2

)2

,

x0 = a + b

2 d
+
√(

x1 + c−
d

)2
+
(

x3 + a − b

2 d

)2

,

(E2)

where a, b, c+, and c− are the coefficients of the covariance
matrix σ written in the standard form and associated with a
given two-mode Gaussian state:

σ =

⎛⎜⎜⎜⎝
a 0 c+ 0

0 a 0 c−
c+ 0 b 0

0 c− 0 b

⎞⎟⎟⎟⎠. (E3)

In Eqs. (E2), d = a b − c2
−. The minimum of expression (E1)

is located at the intersection of both cones (E2) [87]. There-
fore, in the following, we aim at finding this intersection,
which corresponds to an ellipse. To find the equation of this
ellipse, we first make a change of coordinates (Lorentz boost):

x′
0 = γ (x0 − v x3),

x′
3 = γ (x3 − v x0), (E4)

x′
1 = x1,

with

v = a − b

a + b

d + 1

d − 1
(<1 for d > 1),

γ = (a + b) (d − 1)

2
√

(a d − b) (b d − a)
. (E5)

We find after simplifications:

(x′
0 − α1)2 − (x′

1 − β1)2 − (x′
3 − γ1)2 = 0,

(x′
0 − α2)2 − (x′

1 − β2)2 − (x′
3 − γ2)2 = 0,

(E6)

with

α1 = γ (a − b)

2

(
a + b

a − b
− v

)
, β1 = c+,

α2 = γ (a − b)

2 d

(
a + b

a − b
+ v

)
, β2 = −c−

d
,

(E7)

and

γ1 = γ2 = −γ (a − b)

d − 1
. (E8)

Note that α1 and α2 simplify to

α1 = 2 a b d − a2 − b2

2
√

(a d − b) (b d − a)
,

α2 = d (a2 + b2) − 2 a b

2 d
√

(a d − b) (b d − a)
. (E9)

Let us now make another change of variables:

x′′
0 = x′

0 − L+,

x′′
1 = x′

1 − H+, (E10)

x′′
3 = x′

3 − γ1 = x′
3 − γ2,
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with

L+ = α1 + α2

2
= a b (d2 − 1)

2 d
√

(a d − b) (b d − a)
,

H+ = β1 + β2

2
= c+ d − c−

2 d
. (E11)

This leads to

(x′′
0 − L−)2 − (x′′

1 − H−)2 − x′′
3

2 = 0,

(x′′
0 + L−)2 − (x′′

1 + H−)2 − x′′
3

2 = 0,
(E12)

with

L− = α1 − α2

2
=

√
(a d − b) (b d − a)

2 d
,

H− = β1 − β2

2
= c+ d + c−

2 d
. (E13)

Looking at Eqs. (E12), one sees that the changes of coordi-
nates (E4) and (E10) make it possible to eliminate one variable
(x′′

3 ) and to symmetrize the equations. Note that both cone tops
belong to the plane x′′

3 = 0.
The intersection of the cones (E12) is now simple to find.

By combining Eqs. (E12), one can first eliminate x′′
3 to find the

relation between x′′
0 and x′′

1 :

x′′
0 = H−

L−
x′′

1 . (E14)

Inserting this relation in one of Eqs. (E12) yields(
1 − H2

−
L2−

)
x′′

1
2 + x′′

3
2 = L2

− − H2
−, (E15)

which exactly corresponds to the equation of an ellipse. Let
us define the angle θ such that

x′′
0 = H− cos θ,

x′′
1 = L− cos θ,

x′′
3 =

√
L2− − H2− sin θ. (E16)

At this stage, we have everything needed to express Eq. (E1)
only in terms of the parameter θ and coefficients of the covari-
ance matrix. Since the Lorentz boost preserves the relations
between both cones, one can find the minimum of the function

m in the basis (x′
0, x′

1, x′
3), that is to say

m = 1 + x′
1

2

x′
0

2 − x′
1

2 − x′
3

2 . (E17)

Using Eqs. (E10), (E11), (E13), and (E16), one finds

x′
0 = H− cos θ + L+,

x′
1 = L− cos θ + H+

= 1

2 d
[c+ d − c− +

√
(a d − b) (b d − a) cos θ ],

x′
3 =

√
L2− − H2− sin θ + γ1. (E18)

This gives

x′
0

2 − x′
1

2 − x′
3

2

= α1 α2 − β1 β2 − γ 2
1 − 2(L− H+ − H− L+) cos θ

− 2 γ1

√
L2− − H2− sin θ. (E19)

After some simplifications, the first right-hand side term of
Eq. (E19) reads

α1 α2 − β1 β2 − γ 2
1 = a2 + b2 + 2 c− c+

2 d
. (E20)

Expanding the coefficient of − cos θ in the second right-hand
side term of Eq. (E19) leads to

2(L− H+ − H− L+)

= α1 β2 − β1 α2

= {
2 a b c3

− + (a2 + b2) c+ c2
− + c−[a2(1 − 2 b2) + b2]

− a b c+(a2 + b2 − 2)
}

×[2 d
√

(a d − b) (b d − a)]−1. (E21)

The coefficient of − sin θ in the last right-hand side term of
Eq. (E19) reads

2 γ1

√
L2− − H2−

= −a2 − b2

2 d

√
1 − (c+ d + c−)2

(a d − b) (b d − a)
. (E22)

The last step consists of inserting expressions (E20), (E21),
and (E22) in Eq. (E19); then Eq. (E19) in expression (E17).
This leads to the final result

m(θ ) = 1 + 1

2 d
[
√

(a d − b) (b d − a) cos θ + c+ d − c−]2

×
{

(a2 + b2 + 2 c− c+) − cos θ
2 a b c3

− + (a2 + b2) c+ c2
− + c−[a2(1 − 2 b2) + b2] − a b c+(a2 + b2 − 2)√

(a d − b) (b d − a)

+(a2 − b2) sin θ

√
1 − (c+ d + c−)2

(a d − b) (b d − a)

}−1

. (E23)

The explicit expressions of a, b, c+, c−, and d = a b −
c2
− used for evaluating G(0|2)

τ in Eq. (108) are a = a2,th,
b = a0,th, c+ = 2 |〈ĉ0 ĉ2〉th|, c− = −c+, and d = a0,th a2,th −
4 |〈ĉ0 ĉ2〉th|2.
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Let us finally consider the case of a pure state (i.e., the
zero-temperature case) and compute the explicit expressions
of the Gaussian contangles G( j|2)

τ given by (79). We need to
evaluate

G( j|2)
τ = arsinh2

{√
min

θ
[m(θ )] − 1

}
, (E24)

where m(θ ) is given by Eq. (E23) and j = 0, 1. First, by
noticing that any reduced two-mode state of a pure three-
mode Gaussian state belongs to the class of GLEMS [66],
expression (E23) simplifies to [87]

mGLEMS(θ ) = 1 + (A cos θ + B)2

2 d[(g2 − 1) cos θ + g2 + 1]
, (E25)

where g = √
det σ , with σ given by (E3), A = c+ d + c− and

B = c+ d − c−. Using our notations and the explicit expres-

sion of the covariance matrix written in the standard form
(62), for a given bipartition j|2, one has a = a2, b = a j , c+ =
−c− = √

a j − 1
√

a2 + 1, d = g = ak; we recall that j = 0 or
1 and that the remaining (third) mode (1 or 0) is denoted as k.
One proves in this case that the minimum over θ in expression
(E25) is reached when θ = θ�, with [87]

cos θ� = −1 + 2

1 + ak
. (E26)

Inserting this expression in Eq. (E25) leads to

mGLEMS(θ�) =
(−1 + 2 a j + ak

1 + ak

)2

. (E27)

Using this result in Eq. (E24) and remembering that aj + ak =
a2 + 1 yields immediately expressions (80).
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