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A B S T R A C T

Large (Linked) Open Data are increasingly shared as RDF graphs
today. However, such data has not yet reached its full potential in
terms of sharing and reuse. The main bottleneck here lies in the
capacity of human users to explore, discover, and grasp the content
and insights of RDF graphs, which are inherently heterogeneous and
can be both large and complex.

In the first part of this thesis, we provide new methods to meaning-
fully summarize data graphs, with a particular focus on RDF graphs.
One class of tools for this task is structural RDF graph summaries, which
allow users to grasp the different connections between RDF graph
nodes. To this end, we introduce our novel RDFQuotient tool that finds
compact yet informative RDF graph summaries that can serve as first-
sight visualizations of an RDF graph’s structure. These summaries,
based on the notion of quotient graphs, are easy to understand for
casual users; they provide an overview of the complete structure of an
RDF graph while being typically many orders of magnitude smaller.
Our summarization algorithms have a linear time complexity in the
size of the input graph. Further, we propose incremental summariza-
tion algorithms capable of bringing the smallest needed adjustments
to a summary to reflect modifications in the input graph. We also
propose novel algorithms for building the summaries in a parallel
shared-nothing architecture and instantiate them to the Apache Spark
platform.

In the second part of this thesis, we consider the problem of auto-
matically identifying the k most interesting aggregate queries that we can
evaluate on an RDF graph, given an integer k and a user-specified
interestingness function. Aggregate queries are routinely used to learn
insights from relational data warehouses, and some prior research has
addressed the problem of automatically recommending interesting ag-
gregate queries. However, the RDF setting presents several differences
from the traditional data warehouse setting:

1. In an RDF graph, we are not given but we must identify the facts,
dimensions, and measures that compose aggregate queries;

2. Relational OLAP algorithms for efficiently evaluating multiple
aggregates cannot handle the presence of multi-valued dimen-
sions for a given fact; such dimensions are quite frequently found
in RDF data facts and may have zero, one, or more values for
dimensions.

To address these challenges, we devise Spade, an extensible end-to-end
framework that enables the identification and evaluation of interesting
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aggregates based on MVDCube, our new RDF-compatible one-pass
algorithm for efficiently evaluating a lattice of aggregates, and a novel early-
stop technique (with probabilistic guarantees) that prunes uninteresting
aggregates and, as a result, reduces the aggregate evaluation cost.
Experiments using both real and synthetic graphs demonstrate the
ability of our framework to find interesting aggregates in a large search
space, the efficiency of our algorithms, and scalability as the data size
and complexity grow.
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R É S U M É

Les données ouvertes sont souvent partagés sous la forme de graphes
RDF, qui sont une incarnation du principe Linked Open Data (données
ouvertes liées). De telles données n’ont toutefois pas atteint leur entier
potentiel d’utilisation et de partage. L’obstacle pour ce faire réside
principalement au niveau de la capacité des utilisateurs à explorer,
découvrir et saisir le contenu et des graphes RDF ; cette tâche est
complexe car les graphes sont naturellement hétérogènes, et peuvent
être à la fois volumineux et complexes.

Dans la première partie de cette thèse, nous proposons de nouvelles
méthodes pour résumer de grands graphes de données, avec un accent
particulier sur les graphes RDF. Un outil particulièrement puissant
pour cette tâche est un résumé structurel d’un graphe RDF structurels ; ce
résumé informe les utilisateurs sur les différentes connexions entre les
nœuds de graphe RDF. À cette fin, nous avons proposé une nouvelle
approché pour la construction de résumés structurels de graphes RDF,
à savoir RDFQuotient ; les résumés qu’il construit peuvent servir de
première visualisation de la structure d’un graphe RDF, tout en étant
plusieurs plus compacts, souvent de plusieurs ordres de grandeur.
Nous avons identifié une famille de quatre tels résumés, utilisant
différentes relations d’équivalence entre les noeuds et/ou utilisant de
différentes manière les types éventuellement présents dans les graphes
RDF. Nous avons proposé des algorithmes capables de construire ces
résumés ; tous ces algorithmes sont très efficace puisque complexité
de calcul dépend de façon linéaire de la taille du graphe. Nous avons
aussi proposé des variantes incrémentales de nos algorithmes, qui le
font évoluer de manière efficace en appliquant juste les modifications
nécessaires afin de lui permettre de refléter des modifications dans le
graphe d’entrée. Nous avons également proposé de nouveaux algo-
rithmes pour construire les résumés dans une architecture parallèle,
et les avons instanciés sur la plate-forme Apache Spark.

Dans la deuxième partie de cette thèse, nous considérons le prob-
lème d’identifier automatiquement les requêtes d’agrégation les plus intéres-
santes qui peuvent être évaluées sur un graphe RDF, étant donnée une
fonction d’intérêt spécifiée par l’utilisateur. Les requêtes d’agrégation
sont couramment utilisées pour analyser des entrepôts de données
relationnelles, et certaines recherches antérieures ont abordé le prob-
lème de la recommandation automatique des requêtes d’agrégation
les plus intéressantes. Cependant, le problème est assez différent dans
le contexte d’un entrepôt de données RDF :

1. Dans un graphe RDF, nous devons identifier les faits, les dimen-
sions et les mesures qui composent une requête d’agrégation,
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alors que dans le cadre relationnel, ces informations sont déter-
minées par le schéma de l’entrepôt ;

2. Les algorithmes OLAP capable d’évaluer efficacement, conjoin-
tement, plusieurs requêtes d’agrégation ne s’appliquent pas en
présence de dimensions à valeurs multiples pour un fait donné ;
de telles dimensions sont assez fréquentes dans les données RDF
(où un fait peut avoir zéro, une ou plusieurs valeurs pour chaque
dimension).

Nous avons proposé Spade, un approche nouvelle, complète et extensible,
qui permet l’identification et l’évaluation de requêtes d’agrégation
intéressantes. Au coeur de l’exploration est MVDCube, notre nouvel
algorithme spécialement conçu pour RDF, capable d’évaluer efficacement
un treillis d’agrégats. Par ailleurs, nous avons proposé une nouvelle
technique d’arrêt précoce du calcul d’un aggrégat (avec des garanties prob-
abilistes) ; cette technique permet d’épargner du temps de calcul sur
des agrégats qui s’avèrent sans intérêt, et, par conséquent, réduit les
coûts associé à notre travail d’exploration de requêtes d’agrégation.

Nous avons mis en oeuvre cette approche dans le cadre d’une plate-
forme complète. Des expériences utilisant à la fois des graphes réels et
synthétiques démontrent sa à trouver des agrégats intéressants dans
un grand espace de recherche, l’efficacité de nos algorithmes (dont la
performance est meilleure que celle de PostgreSQL pour des tâches
où les systèmes sont comparables), et étudié leur évaluation lorsque
la taille et la complexité des données augmentent.
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This PhD thesis is based on my research work done under the super-
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[P5] Yanlei Diao, Paweł Guzewicz, Ioana Manolescu, and Mirjana
Mazuran. “Efficient Exploration of Interesting Aggregates in
RDF Graphs.” In: SIGMOD. Association for Computing Ma-
chinery, June 2021. doi: 10.1145/3448016.3457307. url: https:
//arxiv.org/abs/2103.17178.

Concerning the RDFQuotient project, prior to the beginning of
my thesis, the novel summaries G/W and G/TW were (informally) pre-
sented in a short “work in progress” paper [1], with procedural def-
initions (not as quotients). The preliminary work on RDF quotient
summaries [2] was also demonstrated. The study of the interplay
between summarization and RDF graph saturation was introduced
in [3] (poster), without the sufficient condition for the shortcut pro-
cedure. I joined the project in the moment of its development that is
best captured in the technical report (version 5) [4], where the formal
shortcut results were stated for the first time. Before the beginning
of the PhD program, during my master’s end-of-study research in-
ternship, I co-authored the publication [5] (a workshop paper) on
type hierarchies-based summaries; this piece of work is pertinent yet
orthogonal to RDFQuotient, and it is not included in this thesis.

Regarding Spade, before my joining of the project, the line of re-
search has been started with the Dagger system [6]. The name stands
for “Digging for interesting aggregates in RDF graphs”; hence, the
name of its successor, Spade, refers to “a better tool1 for digging for
RDF aggregates”. Dagger has later been extended using sampling to
Dagger+ [7], the work that is orthogonal to Spade.

1 Pun intended.
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1
I N T R O D U C T I O N

1.1 motivation and outline

The Semantic Web is a vision of the Web as a vast repository of
linked data sources; this vision has been launched and is still actively
promoted by the World Wide Web Consortium (W3C, in short). By
making data sources open and easy for automatic analysis by comput-
ers, the Semantic Web facilitates building data-driven applications. It
also encourages the integration of data sources within larger ones and
the development of online data repositories.

At the core of the W3C stack of standards and technologies lies the
Resource Description Framework (RDF) [8], a graph-structured format
for describing data. In an RDF graph, we describe resources (RDF
nodes) by specifying the values of the properties that they might have.
The basic unit of information in an RDF graph is thus a triple of the
form s p o, stating that the subject s (an RDF node) has a property p (a
graph edge) whose value is the object o (an RDF node).

The RDF standard itself is flexible and allows data sources to specify
the properties that a node may or should have. If an RDF happens to
have a given property, the property may take one or several distinct
values. A special property identified in the RDF standard is the resource
type; it is useful because it carries semantic information about the class
of the typed resource. In addition, nodes may have no types or multiple
types; those may be related, e.g., through a type hierarchy.

We may enrich the semantics of RDF graphs using an ontology,
which captures the semantics of an application domain via classes,
properties, and rules stating the relationship between them. Several
ontology languages have been proposed; in particular, RDF Schema
(RDFS), which is relatively simple, or OWL, which is significantly
more complex.

We can query RDF graphs with the help of the standard SPARQL
query language [9]. The elementary building block of a SPARQL
query is a graph pattern, supporting a wide range of operations, such
as selections, projections, joins (between triples having a common
subject or object), and filtering. Moreover, the latest SPARQL version
(SPARQL 1.1) also supports flexible querying through regular path
expressions, as well as group-by and aggregation primitives. The latter
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2 introduction

enables it to express aggregate queries, similar in spirit to their SQL
counterparts, even if their semantics on heterogeneous data graphs is
more involved [10], [11].

Heretofore, we have recalled the richness and flexibility of RDF
graphs that offer new research opportunities. We now move forward
to explore big graph data.

Motivating application. Computational Lead Finding (CLF) [12], [13]
is one of the target applications of our work. For journalists, a “lead”
is an idea based on which they may write an interesting article. Given
a dataset, CLF aims to automatically identify the interesting leads
from the data. Such tasks still pose immense challenges as, nowadays,
large and complex data graphs surpass human cognitive capacities
and are hard to exploit for users without automatic tools.

To address these problems, my thesis work makes contributions in
two directions, aiming at facilitating the task of human users discover-
ing the content of a graph.

rdf graph summarization : rdfquotient Our first goal then
is to get the “feel of the data”. To lower the cognitive burden on users
that have to comprehend the content of an RDF graph, many RDF
graph summarization techniques have been proposed and described,
for instance, in the recent survey [14]. Each summary is a compact
representation of (some aspects of) the given RDF graphs. Some of
these summaries mainly aim at summarizing the graph structure;
others focus on finding frequent structural patterns (subgraphs); some
target RDF graphs themselves, whereas others focus on summarizing
very large ontologies (which are described as RDF graphs themselves).
In this thesis, we study summaries of RDF graphs, which provide
small synopses of the structure of an RDF graph. We target our sum-
maries for first-time casual users willing to explore intricate RDF data
through visualization. To this end, we provide efficient summarization
algorithms and implement them in our RDFQuotient tool.

As a brief view of the type of results achieved in the thesis, Figure 1
shows a summary computed automatically, out of a large graph of
DBLP bibliographic data, by the RDFQuotient tool which we will de-
scribe. The summary visualization is orders of magnitude smaller than
that of the input graph and resembles an ER diagram. The summary
drawing gives an abstract overview of the graph that is both mean-
ingful and compact. Looking at such a summary, the user can quickly
understand the structure of the underlying RDF graph. The summary
is a directed graph itself that provides insight into the modeling of
the data. Each of its nodes represents a set of resources (subjects in the
RDF graph); for instance, N13 and N5 represent a set of nodes that
have the types Article and Book, respectively. Summary edges reflect
connections between nodes from the original graph represented by
various summary nodes. For instance, edges labeled references and
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partOf connect N13 to N5; similar edges connect to other summary
nodes, e.g., N2 (journal articles), or N16 (conference articles). We dis-
play each such summary node in a box, where the header of the table
contains the types of the input nodes that it summarized, and the table
body shows its outgoing properties that go to leaf nodes in the graph.
We observe that there are only a handful of different “logical” con-
cepts captured in DBLP such as articles/books/documents, journals,
conferences, collections of conference venues, as well as agents: this is
useful for beginning a query-driven RDF graph exploration. Further,
we can tell that the vast majority of the graph contents concentrates on
broadly-understood scientific publications, and the frequencies of the
nodes and edges (in parentheses) give us a hint about the properties
and their co-occurrence on RDF nodes. We can also examine, at first
glance, various connections (edges) between the main concepts such
as publications having their editors. We delegate a more detailed ex-
planation of how to interpret such a summary visualization, including
the numbers in parentheses in the table entries, to Chapter 3.

exploratory analytics on rdf graphs : spade The second
paradigm for information discovery in RDF graphs we study in this
thesis consists of finding interesting insights in the form of multidi-
mensional RDF aggregate queries on the graph. Specifically, we target
aggregates whose result exhibits deviation from the prior knowledge,
e.g., outliers, that makes them worthy of the user’s attention. For
instance, a data analyst or a journalist may probe the data with further
queries to learn more about the interesting aggregate. We developed a
comprehensive method for automatically and efficiently identifying
such interesting aggregates given an RDF graph. Using our method,
we can enumerate a large space of candidate multidimensional ag-
gregates, efficiently evaluate them, and rank them based on their
interestingness. We implemented this approach within Spade, an in-
novative system that advances the state of the art of Online Analytical
Processing (OLAP) systems for RDF graphs.

Furthermore, Spade redefines core data warehouse concepts to
adapt them to the specificities of the RDF data model, in that:

1. We aim at novice users who do not need to possess technical
skills;

2. We leverage a quotient summary of an RDF graph to identify an
analytical schema and determine a fact set to build aggregate
queries on;

3. To further enlarge the space of multidimensional aggregate
queries we explore, we enrich our queries by following graph
paths and deriving new properties from text values, such as
the language or keywords present in the literals (string constant
RDF nodes);
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4. We analyze the graph properties to determine the most useful
dimensions and measures, and build aggregate lattices;

5. To surpass the limitations of current SPARQL processing engines,
we design MVDCube, an efficient aggregate lattice evaluation
algorithm based on a relational data warehouse counterpart. It
is the first known correct algorithm for this task in the particular
setting of heterogeneous RDF graphs. As we will show in Chap-
ter 4, relational algorithms do not apply as they may introduce
significant errors;

6. We further speed up the Spade computation using our novel
early-stop technique for pruning unpromising aggregates;

7. Finally, we guide the search for the most interesting aggregates
based on an interestingness function score.

For example, Figure 2 shows an interesting aggregate found by
Spade in the DBLP dataset. The plot depicts the distribution of each
keyword found in the DBLP publications’ titles over the years. In this
heat map, the redder the color, the more the articles in an aggregate
group. From this visualization, we can learn that some core concepts,
such as logic, system, and theory, have been present in the DBLP
content since its earliest years (1936 in this plot). We also observe other
insights provided by the same plot. For instance:

• Systems and networks have strong visibility in recent years; and

• The Web has become a topic of interest in the 1990s.

Crucially, the insights were found automatically in a large space of
aggregates.

To conclude, both Figures 1 and 2 exemplify RDFQuotient and
Spade’s approaches to offer new insights into RDF graphs that we
are only able to find using our new automatic techniques and which
drastically enhance our understanding of the underlying data. We
stress here that these are otherwise hard to find for users due to the
complexity and abundant volumes of present-day heterogeneous RDF
graphs.

1.2 manuscript organization

The sequel of the thesis is divided into four chapters.
In Chapter 2, we first introduce basic notation used throughout

the entire manuscript. We then present the key RDF concepts rele-
vant to this work, focusing on data graph summarization. We also
discuss existing aggregate lattice evaluation algorithms. Subsequently,
we position our work w.r.t. main prior work in the areas of graph
summarization and relational data warehouses.
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Next, in Chapter 3, we show the limitations of the existing ap-
proaches and devise new RDF graph summaries to enable first-sight
structure discovery in RDF graphs. We explain the foundation of our
RDFQuotient tool for graph summarization and give a thorough study
of quotient summaries, including our four novel summaries: weak,
strong, typed weak, and typed strong. We also explore the semantics
of RDF graphs based on ontologies in the summarization context. We
exploit the ontology of an RDF graph to enrich the quotient RDF sum-
mary and speed up its computation based on our shortcut procedure
that allows us to avoid expensive graph saturation. We describe our
novel centralized and parallel algorithms, study their performance in
our experiments, and demonstrate their merit.

Building on our summarization framework, in Chapter 4, we present
our new Spade system that helps users find the most interesting ag-
gregates in an RDF graph automatically. We show that Spade benefits
from the summaries built by RDFQuotient to guide the automatic
exploration of a large and rich space of multidimensional aggregates
of an RDF graph. We provide new techniques for aggregate lattice eval-
uation, similar to the CUBE operator from relational data warehouses,
yet crucially computing the correct results on RDF (which is not the
case for existing relational tools). Finally, in our experimental evalu-
ation, we prove both the efficiency and scalability of our MVDCube
algorithm, with and without the early-stop technique.

We conclude the work that spans this thesis in Chapter 5.
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2
P R E L I M I N A R I E S

We recall here the starting points of this work: RDF graphs (Sec-
tion 2.1), graph quotients (Section 3.2), SPARQL queries (Section 2.2),
and relational data warehouses and aggregation (Section 2.3).

2.1 data graphs and the resource description frame-
work

rdf data model This work targets directed graphs with labeled
nodes and edges. In particular, we focus on data graphs described in
the Resource Description Framework (RDF) [8], the World Wide Web
Consortium (W3C) standard for representing Web data. We consider
only well-formed RDF data, as per the RDF specification [8], defined
over three pairwise disjoint sets: the set of Uniform Resource Identi-
fiers (URIs) U , the set of typed or untyped literals (constants) L, and
the set of blank nodes (unknown URIs or literals) B. Blank nodes are
an essential feature of RDF that allows us to support unknown URI
or literal tokens. They are conceptually similar to the labeled nulls
or variables used in incomplete relational databases [15], as shown
in [16].

rdf graphs An RDF graph is a finite set of triples of the form s p o,
such that s ∈ (U ∪ B), p ∈ U , and o ∈ (U ∪ B ∪ L). The triple s p o

states that the subject s has the property p, and the value of the property
is the object o. The RDF property rdf:type is used to attach types, i.e.,
classes, to an RDF node, which may have zero, one, or several types.
Note here that an RDF type attached to an RDF node using the rdf:type
property is an RDF node itself, whereas the types in typed literals
are concatenated to their raw constant string. Also, since literals do
not appear as subjects of rdf:type triples, they cannot be typed via the
rdf:type property.

As our running example, Figure 3 shows a sample RDF graph G

describing a university department including professors, graduate
students, articles they wrote, and courses they teach and/or take.
Here and in the sequel, RDF nodes shown in gray are classes (types).
Further, RDF nodes whose labels appear enclosed in quotes, e.g., “d1”,
are literals, whereas the others are URIs.

9
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Figure 3: Sample RDF graph.

GradStud rdfs:subClassOf Instructor

Pro f essor rdfs:subClassOf Instructor

takes rdfs:domain Student

takes rdfs:range Course

advises rdfs:subPropertyOf knows

Table 1: Sample ontology.

rdfs ontology We can enhance the resource descriptions com-
prised in an RDF graph by declaring ontological constraints stating
relationships among its types and properties. For instance, we may
add to the graph G in Figure 3 the ontology O consisting of the triples
listed in Table 1 to state that graduate students, respectively, professors
are instructors, that anyone who takes a course is a student, what can
be taken is a course, and that advising someone entails knowing them.

From ontological constraints and explicit triples, we may derive
implicit triples. For instance, from G and O, it follows that p1 is of type
Instructor, which is modeled by the implicit triple p1 rdf:type Instructor;
we say this triple holds in G, even though it is not explicitly part of
it. Other implicit triples obtained from this ontology based on G are:
p2 rdf:type Instructor, p2 rdf:type Student, and p1 knows p2.

Given a graph G (which may include a set of ontological constraints,
denoted O), we obtain the saturation of G by adding to G:

1. All the implicit triples derived from G and O, then

2. All the implicit triples derived from those in Step 1 and O, and
so on

until a fixed point, denoted G∞, is reached.
We add these triples based on RDF entailment rules from the RDF

standard. In this work, we consider the widely-used RDF Schema
(RDFS) entailment rules. They exploit the simple RDFS ontology lan-
guage based on the four standard properties illustrated above, which
we denote subClass, subProperty, domain and range, to add new onto-
logical constraints or facts. The saturation G∞ of a graph G comprising
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RDFS ontological constraints is finite [17], unique and can be com-
puted in polynomial time, e.g., by leveraging a database management
system [16]. Crucially, G∞ materializes the semantics of G.

terminology We call the triples from G whose property is rdf:type
type triples, those whose property is among the standard four RDFS
ones schema triples, and we call all the other data triples.

We say an RDF node is typed in G if the node is the sub-
ject of at least one type triple in G. In the graph shown in Fig-
ure 3, p1 rdf:type Pro f essor is a type triple, hence the node p1 is
typed, Pro f essor rdfs:subClassOf Instructor is a schema triple, whereas
p1 advises p2 is a data triple.

Further, we say a URI from G is a class node if:

1. It appears as the subject or the object of an rdfs:subClassOf triple,
or the object of an rdfs:domain triple or an rdfs:range triple; or

2. It appears as the object of an rdf:type triple; or

3. It appears as the subject of an rdf:type triple with the object
rdfs:Class.

We call property node a URI appearing:

1. As the subject or the object of an rdfs:subPropertyOf triple, or as
the subject of an rdfs:domain triple or an rdfs:range triple; or

2. As the subject of an rdf:type triple with object rdf:Property.

Together, the class and property nodes are the schema nodes; all non-
schema nodes are data nodes. In Figure 3, Professor and GradStudent
are class nodes. If we consider the aforementioned ontology O, takes,
advises, and knows are property nodes. Finally, the a, p, c, and d RDF
nodes are data nodes.

It is important to stress that not all nodes in an RDF graph are typed,
e.g., this is only true for p1 and p2 in Figure 3. Further, some nodes
may have several types, in particular due to saturation (e.g., p2 is of
types GradStudent and Instructor) but not only, e.g., p1 could also be
of type ForeignStudent, etc.

2.2 queries on rdf graphs

We can query RDF graphs by means of SPARQL queries as defined
in [9]. SPARQL is a declarative query language similar to SQL. A
SPARQL query contains a graph pattern that is used for data selection.
In this thesis, we focus on basic graph patterns (BGPs), i.e., sets of
triple patterns. A query processing engine matches triples of a BGP
against G. Each triple of the BGP may contain values (RDF nodes) or
variables (strings preceded with the ? character). For example, the
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query below finds all instances of the Professor class for the graph in
Figure 3.

SELECT ?instance {

?instance rdf:type Professor .

}

The result of the query is {(p1)}.
SPARQL queries may contain a prefix, which allows us to abbreviate

URIs. For instance, common abbreviations recognized by SPARQL
query processing engines, which are consistent with those we intro-
duced in Section 2.1, are:

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

Using SPARQL, we can express more sophisticated queries such
as aggregates. The following query finds the number of courses per
instructor for the graph in Figure 3.

PREFIX re: <http://running.example/>

SELECT ?instructor COUNT(?course) AS ?numberOfCourses {

?instructor re:teaches ?course .

}

GROUP BY ?course

The result of the query is {(p2, 1), (p3, 2), (p4, 1)}. Note here that the
results does not contain p1 because this RDF node does not have a
value for the property teaches.

Hereafter, when we discuss queries issued against an RDF graph G,
we refer to the semantics of SPARQL queries. As hinted in Section 2.1,
a query processing engine assumes that the semantics of G (the dataset)
is its saturation G∞ (materialized or not). For instance, consider the
graph G in Figure 3 with the ontology O stated in Table 1 and the
following query Q:

SELECT ?instance {

?instance rdf:type Instructor .

}

The result of Q(G) is empty, whereas the result of Q(G∞) returns nodes
p1 and p2. Notice how this time, through the type inference, we find
that there are two instructors. Interestingly, neither of the two queries
about instructors finds all the p RDF nodes ({p1, p2, p3, p4}): we will
explore this observation in Section 3.3.

Similarly, given that G∞ contains more data, its summary may be
different from the one of the original graph G (more on this also in
Chapter 3). Therefore, from now on, we consider SPARQL queries
issued against G as queries on G∞ (unless explicitly stated otherwise).

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
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2.3 relational data warehouses and aggregation

We recall here a set of classical notions from the relational data man-
agement literature: Online Analytical Processing, aggregate queries,
and aggregate lattices. Then, we recall one of the most efficient algo-
rithms introduced in this relational setting for efficiently evaluating
lattices of aggregate queries over large volumes of data that provides
an efficient way of computing the result of a GROUP BY CUBE query
over a multidimensional aggregate lattice. Even though this algorithm
does not apply to the heterogeneous RDF graphs we consider in this
thesis, we build upon it to devise our novel algorithm specifically for
this setting (in Chapter 4).

online analytical processing (olap) Online analytical pro-
cessing (OLAP, in short) is a major class of applications of structured
database management systems, and it has contributed to making data
management the multibillion-dollar industry it is nowadays. OLAP
systems enable businesses to derive critical insights from old and new
data characterizing the functioning of a real-life process by efficiently
evaluating aggregate queries that compute a global view from millions
of individual data points.

In a typical application, managers of a retail chain use OLAP to
synthesize and then analyze the sales of various products in various
locations, stores over different periods. In an academic setting, we
may use OLAP to analyze students’ registration to individual courses,
compare average grades across disciplines, etc.

facts , dimensions , and measures OLAP facilitates multidi-
mensional analytics and is typically backed by a relational data ware-
house (DW) [18]. Such a warehouse is a specially organized database,
which features one or more fact tables. A fact table states facts, i.e.,
raw information about a specific topic, e.g., “a client buys a product
in a given store at a given date and time”, or “a student takes a course
in a certain term in a certain year”. Each fact is uniquely identified
by a combination of dimensions, e.g., the client and the product in the
former example, or the student, the course, the year, and the professor
teaching the course that year, in the latter example.

Further, to each fact, there may be associated one or several measures,
which depends on the aggregate query asked over the data warehouse.
For instance, if the retail manager is interested in following product
sales, the number of products bought in every sale is a good measure;
instead, if we examine the financial aspect, the price at which the sale
took place is the right measure to use. In the academic example, if we
follow the attendance of a course, then each fact simply counts as 1;
instead, if we study the average grades, the grade obtained by each
student in each course is the good measure to use.
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Last but not least, an aggregate query uses an aggregate function over
the measure values corresponding to all the facts. In our example, one
can count the sales or the students; sum the numbers of sold products
or the number of student registrations across several years; average the
grades of all students who took the same course at the same time, or
even find the maximum/minimum grade given each year, etc.

multidimensional aggregate lattice Experience has shown
that the OLAP analysis needed by executives is rarely satisfied by
running one aggregate query. Instead, we need many queries to find
interesting insights into the data. Further, many aggregate queries
that are asked on a given data warehouse have things in common.
For instance, one may require the GPA of students in a course by year
when the course is given, or by year and student gender (to see if there
is a significant difference in performance by gender), or by year and
teaching assistant if we want to see whether there are strong differences
across the different lab groups, etc.

To this end, as one of its core data structures, OLAP employs a mul-
tidimensional data array called OLAP cube. The OLAP cube spans the
data on its multiple dimensions and stores, in each multidimensional
cell, a measure value. Typically, relational DWs organize the data in a
star schema or a snowflake schema (a normalized star schema) with
one or several fact tables. The performance of OLAP depends both on
the data layout and the query evaluation algorithms. The latter may
lead to expensive computation; thus, their design accounts for data
volume and data complexity (in particular, the number of dimensions).
Generally speaking, in a data warehouse where N dimensions have
been identified, and if one fixes a measure and an aggregate func-
tion, given that each subset of dimension can be used for aggregation,
there are 2N possible ways to group the facts, thus, 2N aggregates to
compute.

An important insight that has revolutionized the efficiency of OLAP
processing is the following. Let S1 be a set of one or more dimensions,
and S2 ⊃ S1 be a dimension set that is its strictly larger superset. Then:

• Any group of facts in the aggregate query determined by the
dimension set S1 is completely included in a group of facts in
the aggregate query determined by S2; this suggests reusing the
effort needed to group facts on S2 to group by S1 at a lower
computational cost;

• If the aggregate function is sum, count, min, or max, we can
compute the aggregate function results for the aggregate query
corresponding to S1, directly from the results corresponding to
S2, with no need to consult the base data (the facts themselves)
or their measure values; in the case of avg, we can reconstruct
the aggregated result based on sum and count.
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Figure 4: Multidimensional space and MMST for Example 3.

This has lead to the introduction of a so-called multidimensional
aggregate lattice that compactly represents the 2N aggregates that can
be obtained from N independent dimensions, and also captures how
each of them can be computed based on the results of the other. The
node at the bottom of the lattice (usually not shown) corresponds to
the empty set of dimensions: data is not aggregated at all (this node
corresponds to the raw set of facts). At the top of the lattice, data is
aggregated by all the N dimensions. At each intermediary level, we
have nodes whose parents in the lattice have one more dimension, and
whose children have one dimension less.

classical one-pass lattice computation For efficiency, in
relational DWs, nodes in a multidimensional lattice are often com-
puted from one of their parents to reuse computation and limit the
number of passes over the data. In some works, the reusing of the
other aggregates’ results is sometimes referred to as “summarizabil-
ity” [19], [20]. Among the existing algorithms [21], ArrayCube [22]
computes the whole lattice in a single pass over the data. Given a set
of N dimensions, a measure, and an aggregate function, it relies on an
array representation of data and evaluates 2N nodes through a Minimum
Memory Spanning Tree, as we recall below.

array representation of data The distinct values of each
dimension are ordered, leading to a set of cells, each corresponding to a
unique combination of indices of values along the N dimensions (axes).
In Example 3, assuming nationality ∈ {A, B, F, L, N}, gender ∈ {F, M}
and company/area ∈ {A, D, M, N} (we denote initials of the respective
values in Figure 4), the multidimensional space has 40 cells, e.g., in cell
0, nationality=A, gender=F and company/area=A; in cell 1, nationality=B,
gender=F and company/area=A. Each cell of the N-dimensional array
contains the value of the aggregated measure over all facts in that cell;
in Example 3, this is the count of CEOs. Further, cells are grouped in
partitions: each partition is a contiguous part of the array, containing
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Figure 5: Relational aggregation.

the cells corresponding to a predefined number of distinct values
along each dimension, e.g., if this is 2, the 40-cell array has 6 partitions.
Figure 4(a) shows the array. Note that an initial pass over the data is
required to bring it from the relational to the array representation.

minimum memory spanning tree (mmst) The dimensions
in Example 3 determine the lattice in Figure 4(b). To evaluate all
nodes, ArrayCube chooses, for each non-root node A, a parent node
in the lattice to compute the aggregate in A from, hence forming a
spanning tree covering all the nodes in the lattice. The memory needed
to evaluate all the aggregates in one pass over the data depends on
the ordering of dimensions, their numbers of distinct values, and the
partition size. ArrayCube chooses the tree that minimizes the overall
memory needed; this is called the Minimum Memory Spanning Tree,
or MMST in short.

lattice computation The algorithm proceeds as follows. The
MMST is instantiated, allocating to each node the required memory.
Partitions are loaded from the array representation of data, one at a
time, into the root of the MMST. The content of each cell in the root
is propagated to the children and used to incrementally update the
aggregated measures of all the nodes in the MMST. Once a partition is
evaluated, each node checks if it is time to store its memory content to disk.
For instance, after scanning partition P1 in Figure 4(a), the subarray
with nationality ∈ {A, B} and company/area ∈ {A, D} is exhausted. Thus,
the counts of CEOs with either of the two nationalities, and A or
D company area are computed. Now, A6 (Figure 4(b)) can store its
result to disk and reuse the memory in the subsequent computation.
Similarly, once processed, the two subarrays of P2, nationality ∈ {A,
B}, and company/area ∈ {M, N}; nationality ∈ {A, B}, are exhausted, and
both A6 and A5 can store their results to disk. A6 stores its result
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to disk after every partition, whereas A5 does this after every two
partitions.





3
R D F G R A P H S U M M A R I Z AT I O N

In this chapter, we introduce RDF graph summarization techniques.
We begin by describing the motivation for summarizing RDF graphs,
accompanied by an example visualization of one of our novel sum-
maries. We then explain in detail our new approach and validate it
with experiments.

3.1 motivation

RDF graphs enable describing large and heterogeneous datasets. Yet,
their inherent structural heterogeneity makes it hard for the casual
users to get acquainted with a graph’s structure. To address this
problem, many RDF summarization techniques have been proposed in
the literature [14], some of which draw upon graph summarization
techniques [23] proposed independently of RDF. Each of them builds,
out of a given RDF graph, a compact structure that conveys the
essential information of the graph, all that while being much more
compact.

As stated in [14], RDF summarization techniques fall into four
classes:

1. Structural methods are built considering first and foremost the
graph structure, respectively, the paths and subgraphs present
in the graph;

2. Pattern mining methods apply mining techniques to discover
patterns in the data and use the patterns as a summary (synthe-
sis) of the graph;

3. Statistical methods aim at extracting from the graph a set of
quantitative measures or statistics; finally

4. Hybrid methods combine elements from more than one of the
previous classes.

For what concerns summary applications, these range from (RDF)
graph indexing, through query cardinality estimation, to helping users
formulate graph queries, graph visualization, and exploration.

19
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A large and useful class of structural graph summaries are based on
defining an equivalence relation among graph nodes, and creating one
summary node for each equivalence class (a set of nodes equivalent to
each other in the original graph). Then, for every edge labeled p which
goes from s to o in the graph, the summary has an edge labeled p from
the summary node corresponding to the equivalence class of s, to the
node corresponding to the equivalence class of p. Such summaries,
also called quotient summaries, have many good properties, mainly due
to the existence of a graph homomorphism from the original graph
into its summary. Quotient summaries proposed for general graphs
include [24], [25], [26], [27], [28], [29].

Summarizing RDF graphs raises two new questions w.r.t. to prior
(non-RDF) graph summarization setting:

1. How to take into account the types that may be attached to the
nodes (knowing that a node may have no type, or one type,
or several)? On the one hand, types bring an opportunity to
define node equivalence, since, intuitively, two nodes having the
same type(s) are likely similar in sole way. On the other hand,
they cannot be solely relied upon, because many RDF graphs
lack types for many (or all) of their nodes; prior RDF summary
quotients [30], [31], [32] answer this question in different ways;

2. How should a summary reflect the implicit triples that may hold
in the graph due to the presence of an ontology? The prior poster
paper [3] is the only work to have addressed this so far.

In this work, we make several theoretical and practical contributions
to the area of quotient RDF graph summarization. Specifically:

1. We rely on the formal RDF quotient summarization framework [3],
taking into account RDF-specific concepts such as ontologies.

2. We introduce two novel equivalence relations between RDF nodes,
which rely on the transitive co-occurrence of properties on graph
nodes. Based on them, we define two novel summaries called weak
and strong, respectively, as well as two variants thereof that give
priorities to types (for those nodes that have type information);
we call these summaries typed weak and typed strong, respectively.
The interest of these new equivalence relations is that they lead
to summaries that are much more compact (that contain fewer
nodes and edges) than quotient summaries previously studied
in the literature [24], [25], [26], [27], [28], [29], [30], [31], [32]. This
compactness comes at the price of some loss of accuracy. Nev-
ertheless, they do preserve a significant amount of information
from the input graph. In particular, for domain-specific graphs,
describing applications from a specific area, our summaries are
very convenient data discovery tools: a simple summary visual-
ization helps understand the graph structure. This is why this
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work’s main target are domain-specific graphs. For encyclopedic
graphs, such as DBPedia or YAGO, our quotients are very likely
to be more compact than some studied in prior work, but still
too large for human comprehension; non-quotient summaries,
e.g., based on pattern mining [14], are more appropriate for such
graphs.

3. In this thesis, we recall the results obtained in the scope of the
RDFQuotient project to show that for a large set of RDF equiv-
alence relations, one can build their corresponding quotient
summary of an RDF graph including its implicit triples, without
materializing them. Based on our framework, we elaborate the
sufficient condition for an RDF equivalence relation that en-
ables building this through our so-called shortcut method; its
advantage is to reduce very significantly the summarization time.
We state that our weak and strong summaries satisfy this condition,
whereas the typed weak and typed strong ones do not. We include
(without proofs) a set of similar results also on previously stud-
ied equivalence relations.

4. Our next contribution is a set of novel algorithms for computing
our summaries. We propose three kinds of algorithms: global
ones, which are a straight-forward memory-efficient but time-
consuming implementation; novel incremental ones, which are
able to reflect addition of triples to the graph, without re-
traversing the rest of the graph; and finally novel parallel algo-
rithms dedicated to computational clusters. All our centralized
algorithms have amortized linear complexity in the size of the graph.
We have implemented these algorithms and summary visual-
izations in the RDFQuotient system, available online in open
source [33]. Our parallel algorithms are implemented on top of
the Spark framework.

5. Finally, we demonstrate experimentally: the compactness of our
summaries, the good performance of our summarization algo-
rithms, and the performance benefits of the shortcut method.
Moreover, our experiments confirm that we can benefit from
parallelism to speed up execution and surpass the limits of
memory-constrained environments in the case of large graphs
whose memory needs grow otherwise linearly with the size of
the graph.

sample summary visualization Below, we show an exam-
ple where our summarization techniques compress an RDF graph
structure by many orders of magnitude while still supporting an
informative visualization.

Figure 6 shows the summary of a WatDiv [34] benchmark graph
of approximately 11 millions of triples. This visualization reflects the
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complete structure of the graph, using only 8 nodes and 24 edges, com-
parable to a simple entity-relationship (ER) diagram. This summary
reads as follows.

1. Non-leaf graph nodes belong to one of the eight disjoint entities,
each represented by a summary node (box in Figure 6) labeled
N1 to N8. The number of graph nodes in each entity appears in
parenthesis after the label Ni of their representative, e.g., 25, 000
for N8.

2. Each entity represents either graph nodes with types or without
types. In the first case, the most general types of the graph
nodes, according to which they have been grouped in the entity,
are given in bold underneath the entity label; these coincide
with the original graph node types when an ontology is not
present. For instance, all the 25000 graph nodes represented by
N8 are (implicitly) of type ProductCategory due to the ontology
at hand; their distribution according to their original typing is
also shown, e.g., 807 are of type ProductCategory0. An entity
that does not show types represents untyped graph nodes which
have been grouped according to the relationships they have with
others, using a novel transitive relation of co-occurrence of their
properties, which we introduce in this thesis. For instance, N4

represents both the web pages of the products of N8 and these of
the persons of N7, because these web pages can be home pages
for both: there are homepage edges from both N8 to N4 and from
N7 to N4.

3. Graph nodes from an entity may have outgoing properties whose
values are leaf nodes in the graph; the set of all such properties
appears in the corresponding summary node box, one property
per line. For each property, e.g., nationality for N7, the summary
node specifies how many graph nodes represented by this entity
have it (19, 924 in this case), and how many distinct leaf nodes
are target of these edges (25 in this case).

4. Graph nodes from an entity may have outgoing properties whose
values are non-leaf nodes in the graph. For each graph edge n1

a−→
n2, where n1, n2 are non-leaf graph nodes and a is the property
(edge label), an a-labeled edge in the summary goes from the
representative of n1 to that of n2. Next to a, that summary edge
is also labeled with the number of graph edges to which it
corresponds.

5. Properties from a small, fixed vocabulary are considered metadata
(as opposed to data) and therefore are not used to split graph
nodes in entities, e.g., rdfs:comment and rdfs:label in Figure 6.

More such visualization summaries can be found online [33]; an
example leading from an RDF graph to its summary and then such
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a visualization is worked out in this thesis. Most of the material pre-
sented here is new. The exceptions are: Theorem 2 appeared without
proof in the poster [3]; our algorithms were outlined in the demonstra-
tion [35].

In the sequel of this chapter, in Section 3.2, we begin by outlining the
background of the quotient RDF graph summarization. In Section 3.3
we introduce the novel notions of property cliques, based on which we
define our summaries. In Section 3.4, and respectively, Section 3.5 we
extend this to graphs comprising type triples, respectively, ontologies.
In Section 3.6 we discuss summary visualization. In Section 3.7 we
describe our summarization algorithms. In Section 3.8 we present our
experiments. Finally, in Sections 3.10 and 3.11, we survey related work
on non-quotient graph summarization and conclude, respectively.

3.2 background : quotient rdf graph summarization

We recall here quotient RDF summaries as defined in prior work,
outline existing work in this area, and discuss their limitations.

3.2.1 Quotient graphs

Given an RDF graph G and an equivalence relation1 ≡ over the RDF
nodes of G, the quotient of G by ≡, denoted G/≡, is the graph having:

• An RDF node for each equivalence class of ≡ (thus, for each set
of equivalent G nodes); and

• For each edge n1
a−→ n2 in G, an edge n≡1

a−→ n≡2 , where n1, n2 are
the quotient summary nodes corresponding to the ≡ equivalence
classes of n1, n2, respectively (also called representatives of n1 and
n2, respectively).

We call representation function a function that maps each graph node n
to its representative (n≡).

Quotients have several desirable properties from a summarization
perspective:

size guarantees : By definition, G/≡ is guaranteed to have at most
as many nodes and edges as G. Some non-quotient summaries,
e.g., Dataguides [36], cannot guarantee this.

property completeness : Every property (edge label) from G is
present on some summary edges. This gives first-time users
of the dataset a chance to decide, based on their interest and
envisioned application, if it is worth further investigation. In
some applications, e.g., when data journalists explore open data,

1 An equivalence relation ≡ is a binary relation that is reflexive, i.e., x ≡ x, symmetric,
i.e., x ≡ y ⇒ y ≡ x, and transitive, i.e., x ≡ y and y ≡ z implies x ≡ z for any x, y, z.
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Figure 7: 1fb summary of the RDF graph in Figure 3.

Figure 8: 1fw summary of the RDF graph in Figure 3.

Figure 9: ioa summary of the RDF graph in Figure 3.

or physicians look for a rare diagnosis, it is important not to
miss a “weak signal”, encoded in RDF as a set of triples using
infrequent properties.

structural homomorphism : It is easy to see that the function
f associating to each G node its representative in G/≡ is a ho-
momorphism from G into its summary: any subgraph of G is
“projected” by f into a subgraph of its quotient.

3.2.2 Prior work

Quotient graph summaries include, e.g., [25], [26], [28], [37], [38], [29],
[39]; RDF quotient summaries are described in [30], [31], [32].

bisimulation Bisimilarity is behind most equivalence relations
used in these works. Two RDF nodes n1, n2 are forward bisimilar [24]
(denoted ≡fw) iff:
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• For every G edge n1
a−→ m1, G also comprises an edge n2

a−→ m2,
such that m1 and m2 are also (forward) bisimilar, and

• A similar statement holds, replacing n1, m1 with n2, m2 and
vice-versa.

Although forward bisimilarity focuses on outgoing edges only, two RDF
nodes can also be bisimilar w.r.t. their incoming edges, i.e., backward
bisimilar (denoted ≡bw). Backward similarity of two RDF nodes n1, n2

is recursively defined similarly as above when considering G edges
m1

a−→ n1 and m2
a−→ n2. Finally, two RDF nodes can be bisimilar

based on both their incoming and outgoing edges, i.e., forward and
backward bisimilar (denoted ≡fb), when they are both forward bisimilar
and backward bisimilar. We denote the bisimulation based summaries
G/fw (forward), G/bw (backward), and G/fb (forward and backward, or
“full bisimilarity”), respectively. They have been studied, in particular
for indexing and query processing, in [30], [32], [31]. Computation of
bisimulation summaries can also be parallelized [40].

bounded bisimilarity Bisimulation summaries tend to be large,
because bisimilarity is rare in heterogeneous graphs. For instance, in
Figure 3, none of p1, p2, . . . p5 is bisimilar to the other, due to slight
differences in their properties; similarly, the courses c1, c2, and c3 are
not bisimilar, because c3 lacks a description, c2 is the only one target
of a takes triple, etc. Our experiments in Section 3.8 confirm this on
many graphs.

To mitigate this problem, k-bisimilarity was introduced in [27]. For
an integer k, nodes are k-forward (and/or backward) bisimilar iff
they are bisimilar within their k-bound neighborhoods. One drawback of
k-bisimilarity is that it requires users to guess the k value leading to
the best compromise between compactness (favored by a low k, e.g., if
k = 0, all the graph nodes are equivalent, and the summary consists
of a single node) and structural information in the summary (a high
k). RDF quotients based on k-bisimilarity are studied in [30], [32].

It turns out that even 1-bisimilarity is rare in heterogeneous graphs.
For instance, Figure 7 shows the 1fb summary of the sample graph
in Figure 32. Here and throughout this thesis, summary nodes are
shown in rectangles and are labeled N1, N2, etc.; for brevity, we abridge
property names to use w for wrote, a for advises, te for teaches, ta for takes
and cd for coursedescr. Nodes N3, N4 and N8 represent, respectively, p1,
p2, p3; the three courses are represented by N1 and N6. This summary
is almost as complex as the input graph. Figure 8 shows the 1fw

summary of our sample G: it is smaller (only 5 nodes and 10 edges,
whereas the 1fb one has 8 nodes and 12 edges). However, as our

2 The summaries shown in the Figures 7, 8 and 9 ignore the type triples of G for
readability and because they were not used for summarization in the referenced
works.
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experiments show, 1fw summaries are still too large to be useful for
visualization.

leaf and root collapse We may encounter an issue when sum-
marizing only according to the properties outgoing an RDF node, e.g.,
≡fw. Namely, such summaries consider equivalent (thus, collapse) all
RDF nodes lacking outgoing edges, that is, all the leaves of G. Such leaf
nodes may have very little to do with each other. For instance, on the
WatDiv graph summarized in Figure 6, all the values of award, num-
berOfPages, keywords, email, faxNumber would be summarized together,
even though they are very different. We call this situation leaf collapse
through summarization. Symmetrically, a summary whose relation only
depends on nodes’ incoming properties, e.g., ≡bw, automatically sum-
marizes together all nodes with no incoming edges, although again
they may represent very different things; we call this root collapse. We
argue that a good summary should not systematically collapse leaves
(respectively, roots), but do so only when they really are similar to
each other.

In [32], each RDF equivalence relation (thus, any RDF quotient)
considers all the leaf nodes, both URIs and literals, as equivalent and
represents them by a single summary node denoted [0]. For instance,
the equivalence called ∼b in [32] leads to a b summary that is obtained
from fb by collapsing all leaves together. Thus, all those summaries
automatically suffer from the leaf collapse issue.

The ≡1fw equivalence, denoted ∼a in [32], is also very similar to
grouping nodes into “characteristic sets” [41], [42]. This equivalence
summarizes together all articles and course descriptions (N2 in Fig-
ure 8). To avoid too many characteristic sets (or, equivalently, to reduce
the number of summary nodes), we may apply a cardinality-based
heuristic method proposed in [42], which merges them into at most
r sets, for a user-specified threshold r. However, this burdens the
user with choosing such a threshold. As our experiments show, some
graphs are much more complex than others, thus it is not easy to set r,
especially for users not yet acquainted with the data, such as the ones
we target.

The ≡1fb equivalence, denoted ∼ioa in [32], leads to the ioa sum-
mary shown in Figure 9. This may significantly reduce the number of
summary nodes, since only one of them is a leaf. However, as reported
in [32] and verified in our experiments, even after this reduction in
the number of nodes, those bisimilarity-based summaries are still too
large for visualization.

type-driven summarization The remaining equivalence rela-
tions used in the literature to summarize RDF graphs are (also) based
on RDF types.
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In [32], two nodes are ∼t-equivalent if they have exactly the same
types. This collapses all untyped nodes into a single summary node,
e.g., all but p1 and p2 in Figure 3, and five out of the eight nodes in
Figure 6 (N2, N3, N4, N5, and N6), even though they are unrelated.

The ∼ioat equivalence, also introduced in [32], considers two nodes
equivalent iff they are ≡1fb-equivalent and they have exactly the same
types. Thus, a ioat summary has at least as many nodes and edges
as the ioa one; our experiments confirm it is too large to be used for
first-sight visualization.

3.2.3 Limitations of the prior work

To conclude, the equivalence relations used in prior RDF quotient
summaries are based on:

1. Bisimilarity (possibly bounded to a maximum distance k), which
leads to complex summaries with very high numbers of nodes
and edges, unsuited for first-sight discovery.

2. Uni-directional bisimilarity (i.e., ≡fw, ≡bw and their bounded
variants), which suffer from leaf or root collapse;

3. Types alone: this collapses all untyped nodes, even when their
data properties have nothing to do with each other;

4. Bisimilarity and having the same types; this leads to summaries
at least as large as those based on bisimilarity alone.

Leaf collapse is also present in all the equivalences of [32].
Another limitation of prior work is not considering how summa-

rization interacts with saturation, and instead simply assuming that G
is already saturated. When this is not the case, obtaining the summary
of G∞ requires first computing this saturation, which may be costly in
terms of run time and storage space.

To go beyond these limitations, in the sequel, we introduce our
novel equivalence relations, leading to compact and informative quotient
summaries of RDF graphs, whether they are fully typed, have no types
at all, or are anywhere in between. Further, we provide novel, advanced
techniques for summarizing a graph’s saturation without saturating it; this
can lead to speedups of orders of magnitude.

3.2.4 Notation

The notation we use in this chapter is compiled in Table 2.

3.3 data graph summarization

We first consider graphs made of data triples only. We define the
novel notion of property cliques in Section 3.3.1; building on them,
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G RDF graph (Section 2.1)

G∞ the result of saturating G (Section 2.1)

type rdf:type (Section 2.1)

subClass rdfs:subClassOf (Section 2.1)

subProperty rdfs:subPropertyOf (Section 2.1)

domain rdfs:domain (Section 2.1)

range rdfs:range (Section 2.1)

≡fw forward bisimilarity [24]

≡bw backward bisimilarity [24]

≡fb forward and backward bisimilarity [26]

≡1fw 1-forward bisimilarity [27]

≡1bw 1-backward bisimilarity [27]

≡1fb 1-forward and backward bisimilarity [27]

∼b b equivalence (or ≡fb equivalence with leaf col-
lapse) [32]

∼a a equivalence (or ≡1fw equivalence with leaf col-
lapse) [32]

∼ioa input-output equivalence (or ≡1fb with leaf col-
lapse) [32]

∼t typed equivalence [32]

∼ioat input-output and typed equivalence (or ≡1fb and
typed with leaf collapse) [32]

≡S strong equivalence (Definition 2)

≡W weak equivalence (Definition 3)

≡TS typed strong equivalence (Section 3.4.2)

≡TW typed weak equivalence (Section 3.4.2)

G/fb forward and backward bisimilarity summary of G [26]

G/1fw 1-forward bisimilarity summary of G [24]

G/t typed summary of G [32]

G/ioat input-output and typed summary of G [32]

G/S strong summary of G (Definition 5)

G/W weak summary of G (Definition 4)

G/TS typed strong summary of G (Section 3.4.2)

G/TW typed weak summary of G (Definition 6)

l strong homomorphism (Definition 7)

Table 2: Summary of the notation used in Chapter 3.

we devise new graph node equivalence relations and corresponding
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graph summaries in Section 3.3.2. Summarization will be generalized
to handle also type triples in Section 3.4.

3.3.1 Data property cliques

Let us consider the ways in which data properties (edge labels) are
organized in a graph. The simplest relation is co-occurrence, when a
node is the source (or target) of two edges carrying the two labels.
However, as illustrated in Figure 3, two properties, such as wrote and
advises, may co-occur on one node, whereas another one may have
wrote and teaches. The main intuition behind this work is to consider
all these properties (wrote, advises, teaches) related, as they directly or
transitively co-occur on some nodes. Formally:

Definition 1 (Property relations and cliques) Let p1, p2 be two data
properties in G:

1. p1, p2 ∈ G are source-related iff either:

• A data node in G is the subject of both p1 and p2, or

• G holds a data node that is the subject of p1 and of a data property
p3, with p3 and p2 being source-related.

2. p1, p2 ∈ G are target-related iff either:

• A data node in G is the object of both p1 and p2, or

• G holds a data node that is the object of p1 and of a data property
p3, with p3 and p2 being target-related.

A maximal set of data properties in G which are pairwise source-related
(respectively, target-related) is called a source (respectively, target) property
clique.

In the graph in Figure 3, properties advises and teaches are source-
related due to p4 (Condition 1 in the definition). Similarly, advises and
wrote are source-related due to p1; consequently, teaches and wrote are
source-related (Condition 2). Further, the graduate student p2 teaches
a course and takes another, thus teaches, advises, wrote and takes are all
part of the same source clique. Table 3 shows the target and source
cliques of all data nodes from Figure 3.

It is easy to see that the set of non-empty source (or target) property
cliques is a partition over the data properties of G. Further, if a node n ∈ G

is a source of some data properties, they are all in the same source
clique; similarly, all the properties of which n is a target are in the
same target clique.

3.3.2 Strong and weak node equivalences

Building on property cliques, we define two node equivalence relations
among the data nodes of a graph G:
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Source clique and nodes having this source clique

SC1 {advises, takes, teaches, wrote}: p1, p2, p3, p4, p5

SC2 {coursedescr}: c1, c2, c3

SC3 ∅: a1, a2

Target clique and nodes having this target clique

TC1 {advises}: p2, p5

TC2 {teaches, takes}: c1, c2, c3

TC3 {coursedescr}: d1, d2

TC4 {wrote}: a1, a2

TC5 ∅: p1, p3, p4

Table 3: Source and target cliques of G nodes (Figure 3).

Definition 2 (Strong equivalence) Two data nodes n1, n2 of G are
strongly equivalent, denoted n1 ≡S n2, iff they have the same source
and target cliques.

Strongly equivalent nodes have the same structure of incoming and
outgoing edges. In Figure 3, nodes p1, p3 and p4 are strongly equivalent
to each other. Among these, note that p1 and p3 may seem very
dissimilar: p1 has the properties {wrote, advises}, whereas p3 has only
{teaches}. These nodes are strongly equivalent due to the node p4

which has a common outgoing property with p1, and one with p3.
Similarly, p2, p5 are strongly equivalent, and so are c1, c2 and c3, etc.
The transitivity built in strong equivalence through the use of cliques
allows to recognize all these publication nodes as equivalent, and avoid
separating them (as ≡fb and ≡fw do, recall Figures 7, 8 in Section 3.2).
Thus, clique-based equivalence avoids the pitfall of leading to too
many nodes for a readable visualization.

A second, weaker notion of node equivalence requests only that
equivalent nodes share the same incoming or outgoing structure, i.e.,
they share the same source clique or the same target clique. Formally:

Definition 3 (Weak equivalence) Two data nodes n1, n2 are weakly
equivalent, denoted n1 ≡W n2, iff: (i) they have the same non-empty source
or non-empty target clique, or (ii) they both have empty source and empty
target cliques, or (iii) they are both weakly equivalent to another node of G.

It is easy to see that ≡S and ≡W are equivalence relations and that
strong equivalence implies weak equivalence, noted ≡S⇒≡W.

In Figure 3, p1, . . . , p5 are weakly equivalent to each other due to
their common source clique SC1; a1, a2 are weakly equivalent due to
their common target clique, etc.
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Figure 10: Weak summary of the RDF graph in Figure 3 (type triples ex-
cluded).

From the definitions above and the equivalence notions recalled
in Section 3.2, it follows that ≡1fb is more restrictive than ≡S

(≡1fb⇒≡S⇒≡W). However, ≡S and ≡W, which reflect outgoing and
incoming properties, are in general incomparable with ≡1fw and ≡1bw,
which reflect only outgoing, respectively, incoming properties. The
transitive aspect of property cliques is a radical departure from previ-
ously considered equivalence relations (Chapter 2). It gives ≡S and
≡W the flexibility to accept as equivalent structurally heterogeneous
nodes, leading to summaries which are both meaningful and compact.

property nodes equivalence We make an important addition
to the clique-based equivalences introduced above. A property node
(Section 2.1), that is, a node (subject or object) labeled by a URI which
also appears as a property of a data node, is only strongly and weakly
equivalent to itself. Property nodes are pretty rare, but they do occur
in some RDF graphs; an example would be the subject of a triple such
as takes rdfs:isDefinedBy studentOfficerX, where takes appears as a
data property in Figure 3. A triple comprising a property node can
be seen as a form of metadata, which helps interpret/understand the
graph’s data triples. Thus, we consider that a property node is only
equivalent to itself.

3.3.3 Weak and strong summarization

weak summarization The first summary we define is based on
the weak equivalence:

Definition 4 (Weak summary) The weak summary of a data graph G,
denoted G/W, is its quotient graph w.r.t. the weak equivalence relation ≡W.

The weak summary of the graph in Figure 3 is depicted in Figure 10.
N1 represents all the people (p1 to p5), N2 represents the courses, N3

the articles and N4 the course descriptions. Note the self-loop from
N1 to itself; it denotes that some nodes represented by N1 advise some
nodes represented by N1. This summary has only 4 nodes and 5 edges;
it is smaller (at most half as many edges) and much easier to grasp
than the 1fb, 1fw and ioa ones, shown in Chapter 2. At the same time,
it conveys the essential information that some nodes advise, write, also
they teach and take something that has course descriptions.
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Figure 11: Strong summary of the RDF graph in Figure 3 (type triples ex-
cluded).

Generally speaking, node Ni in the weak summary G/W of a graph G

represents all the G nodes whose outgoing (respectively, incoming) properties
are a subset of the outgoing (respectively, incoming) properties of Ni.

The weak summary has the following important property:

Proposition 1 (Unique data properties [4]) Each G data property ap-
pears exactly once in G/W.

We exploit this to efficiently build weak graph summaries (Sec-
tion 3.7).

We remark that the weak summary G/W of a graph G has the minimal
size (in the number of edges) among all the quotient summaries of G:
every property labeling a G edge appears exactly once in G/W, while, by
definition, it appears at least once in any quotient summary (Section 3.2).
Our experiments show that |G/W| is typically 3 to 6 orders of magnitude
smaller than |G|.

strong summarization Next, we introduce the summary based
on the strong equivalence:

Definition 5 (Strong summary) The strong summary of the graph G,
denoted G/S, is its quotient graph w.r.t. the strong equivalence relation ≡S.

The strong summary of the graph of Figure 3 is shown in Figure 11.
Similarly to the weak summary (Figure 10), the strong one groups all
courses together, and all articles together. However, it separates the
person node in two: those represented by N1 advise those represented
by N2. This is because the target clique of p1, p3 and p4 is empty,
whereas the target clique of p2 and p5 is {advises} (Table 3). Due to
this finer granularity, in G/S, several edges may have the same label,
e.g., there are two teaches and two wrote edges in Figure 11, whereas
in G/W, as stated in Proposition 1, this is not possible. Our experiments
(Section 3.8) show that, even though G/S is often somehow larger than
G/W, it still remains many orders of magnitude smaller than the original
graph.

By definition of ≡S, equivalent nodes have the same source clique
and the same target clique. This leads directly to the next result, ex-
ploited by our algorithms for building strong summaries (Section 3.7):

Proposition 2 (Strong summary nodes and G cliques) G/S has exactly
one node for each source clique and target clique of the same G data node.
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Proof If two G/S distinct nodes had the same source and the same target
clique, they would be strongly equivalent. This cannot be the case in a quotient
summary obtained through ≡S, since by definition, such a summary has one
node for each ≡S equivalence class. Thus, any two distinct G/S have distinct
source cliques and/or distinct target cliques.

Now, let m be a G/S node, and Sm = f−1
S (m) be the set of all G nodes

represented by m. By the definition of a quotient summary, m must be the
target (respectively, the source) of an edge carrying each of the labels on the
edges entering (respectively, going out of) any node n ∈ Sm. Thus, m is
source of all the properties in the source clique shared by the nodes in Sm, and
is target of all the properties in the target clique shared by the nodes in Sm.
Thus, m has the source and target clique of any node from Sm; this concludes
our proof.

from the strong to the weak summary Because strong
equivalence implies weak equivalence, it follows that (G/S)/W = G/W.
For instance, the nodes N1 and N2 in Figure 11 have the same source
clique, thus the weak summary of the graph in Figure 11 is exactly the
one in Figure 10. Hence, one can get both G/W and G/S by building G/S
and then weakly summarizing it to also get G/W. This is (much) faster
than re-summarizing G, mainly because G/S is much smaller than G.
Another consequence is that G/W, intuitively, compresses more (is more
imprecise) than G/S

3; we demonstrate this also through experiments
(Table 7 in Section 3.8).

property node representation Since property nodes repre-
sent a form of metadata about the data graph, we decide that in all
our quotient summaries they are always represented by themselves,
i.e., a node labeled with the same URI.

generic properties Some special properties frequently used
in RDF deserve a special treatment. First, the standard owl:sameAs
property is used to denote that two URIs should be considered as
being “the same”; in particular, the incoming/outgoing edges of one
should also be considered as belonging to the other. To reflect this
special semantics, we extend our notion of clique to treat the prop-
erties incoming/outgoing two nodes connected by owl:sameAs (directly or
indirectly) as if they occurred on the same node. This ensures that any
two nodes connected by owl:sameAs have the same source and target
clique, thus they are weakly and strongly equivalent. Second, some
generic properties such as rdfs:label are sometimes used to annotate
RDF nodes with very different meaning. Building cliques based on
the co-occurrence of such generic properties may consider too many

3 One example among many: the W summary of a BSBM 1M graph has just one node,
whereas the S summary has 5 and is quite informative (https://rdfquotient.inria.
fr/files/2019/11/bsbm1m_s_split_and_fold_leaves.png).

https://rdfquotient.inria.fr/files/2019/11/bsbm1m_s_split_and_fold_leaves.png
https://rdfquotient.inria.fr/files/2019/11/bsbm1m_s_split_and_fold_leaves.png
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nodes equivalent. To avoid this, we build our cliques ignoring the
triples whose properties are generic, construct G/W or G/S accordingly,
then, for each triple of the form n1 rdfs:label t (where t is some text),
we add an edge N1 rdfs:label N2 to the weak or strong summary,
where N1 is the representative of n1, and N2 is a new summary node,
representing t.

3.4 typed data graph summarization

We now discuss the summarization of graphs with data and type
triples. Types represent domain knowledge that the data producers
found meaningful to describe it. However, some or all nodes of a
graph may lack types.

Only a few RDF graph summarization works explicitly considered
type triples. The equivalence relation ∼t introduced in [32] follows an
approach we call type-only: nodes are equivalent if they have exactly
the same types. This approach groups together all untyped nodes,
which is problematic in graphs such as the one summarized in Figure 6.
The same approach is taken in [43] which further assumes that all
non-leaf nodes are typed, a hypothesis not borne out in practice (see
again Figure 6). A different approach we term data-and-type is taken
in [32]: for two nodes to be equivalent, they should both be equivalent
according to a relation that only reflects their data properties, and
have the same types. For instance, ∼ioat is based both on having
the same input and output properties (∼ioa), and the same types
(∼t). As explained in Chapter 2, this splits graph nodes into many
equivalence classes (summary nodes), which is not desirable for first-
sight visualization.

A better approach introduced in [32] to reflect types in a quotient
summary built from an equivalence relation ≡ is as follows: first, sum-
marize G ignoring type triples, and second, for each triple n rdf:type c
in G, add to G/≡ a triple N rdf:type c, where N represents n in G/≡. We
call this quotient summarization approach data-then-type. It does not
suffer from the disadvantages of type-only nor data-and-type. Instead,
it allows to identify meaningful node groups even in graphs where
some or all the nodes lack types.

Below, we start by formalizing the special treatment we argue should
be given to class and property nodes in any RDF quotient summary.
Based on this, we extend the data-then-type approach to our clique-
based equivalence relations (Section 3.4.1), then present another novel
approach which we call type-then-data. It gives priority to types when
available, while still avoiding the pitfalls of type-only and data-and-
type summarization (Section 3.4.2).

class node equivalence and representation To ensure
quotient summaries preserve the application knowledge encoded
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Figure 12: Weak summary of the graph in Figure 3.

Figure 13: Strong summary of the graph in Figure 3.

within the classes, properties and ontology of a graph, we decide that
in any equivalence relation ≡, any class node is only equivalent to
itself, and any class node is represented by itself, and similarly for
property nodes. Hence, a typed data graph has the same class nodes,
and the same property nodes (Section 3.3), as its summary.

3.4.1 Data-then-type summarization

We extend the W, respectively, S summaries to type triples, by stating
that they follow the data-then-type approach.

Figure 12 illustrates this for G/W; note that N1 is attached both
Professor and GradStudent types. Generally, a typed node Ni in a
typed weak summary represents all the G nodes whose incoming/outgoing
properties are included in those of Ni, some of which may also have some of
the types of Ni; the G nodes represented by an untyped node Nj are the
same as in a weak summary.

Figure 13 shows the strong summary of our sample graph when
type triples are considered. Note that the Professor type is attached
to N1, the representative of p1, p3 and p4 (those who advise someone),
whereas GradStudent is attached to N5, representing the advisees (p2

and p5).

3.4.2 Type-then-data summarization

This approach is novel. In contrast with data-then-types, it considers
that node types are more important when deciding whether nodes
are equivalent. However, it still relies on data properties to summarize
untyped nodes. Thus, from an equivalence relation ≡ (based on data
properties alone), we derive a novel typed equivalence relation where two
nodes are equivalent if:

• Both are typed, and they have the same set of types; or
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Figure 14: Typed weak summary of the graph in Figure 3.

• Both are untyped, and they are equivalent according to ≡.

For weak summarization, this approach leads to:

Definition 6 (Typed weak summary) Let ≡TW (typed weak equiva-
lence) be an equivalence relation that holds between two data nodes n1, n2

iff:

• n1, n2 have no types in G and n1 ≡W n2; or

• n1, n2 have the same non-empty set of types in G.

The typed weak summary G/TW of a graph G is denoted G/TW.

Figure 14 shows the typed weak summary of our sample RDF graph.
Unlike G/W (Figure 10), G/TW represents p1 by N1, separately from p3,
because p3 is of type Person, whereas p3 is untyped.

In a similar manner, we define typed strong equivalence, denoted
≡TS, as in Definition 6 by replacing ≡W with ≡S, and denoting by
G/TS the typed strong summary of a graph G. In our example, G/TS
coincides with G/TW.

from the typed strong to typed weak summary It is easy
to see that if n1 ≡TS n2, then also n1 ≡TW n2; thus (G/TS)/TW = G/TW.
This also allows building G/TS and G/TW for almost the cost of building
G/TS alone, as this summary is small and thus summarized quickly.

summary equality We now analyze when two of our summaries
may coincide for a given graph G, i.e., they are the same up to their
data node labels N1, N2, etc. To formalize this, we define:

Definition 7 (Strong isomorphism l) A strong isomorphism between
two RDF graphs G1, G2, noted G1 l G2, is an isomorphism which is the
identity for the class and property nodes.

We remark that for visualization purposes, strongly isomorphic sum-
maries can be seen as identical as they describe exactly the same
structure.
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3.5 summarization of graphs with rdfs ontologies

We now turn to the general case of an RDF graph with an RDFS
ontology.

First, observe that any summary of an RDF graph has the same
RDFS ontology as this graph. This is because:

1. Every property node is only represented by itself (Section 3.3.2),

2. Every class node is represented by itself (Section 3.3.3), and

3. By definition of an RDF quotient, any ontology triple, which
only connects two class or property nodes, is “copied” in the
summary. We view ontology preservation as a desirable feature,
since the ontology has crucial information about the meaning of
the data4.

Second, we identify two ways in which an ontology can impact
summarization:

through type generalization Type-then-data summarization
(Section 3.4.2) groups nodes by their sets of types. If the ontology
features triples of the form c1 rdfs:subClassOf c2, it can be argued
that c2 can be used instead of c1 to summarize a resource having
the type c1. We study this in Section 3.5.1.

through implicit triples As we explained in Chapter 2, the
semantics of an RDF graph G includes its explicit triples, but
also its implicit triples which are not in G, but hold in G∞ due to
ontological constraints (such as the triples p2 rdf:type Instructor,
p2 rdf:type Student, and p1 knows p2 in Section 2.1). An
interesting question, then, is to determine the interplay between
saturation and summarization: how is the summary of G∞ related
to that of G, first, in general (for any quotient summary), and
then, for the four summaries we introduced? The reminder of
this section is devoted to this topic.

3.5.1 Type-then-data summarization using most general types

The most commonly used feature of RDFS ontologies is the subClass
relationship, stating that any resource of a type c1 is also of the type
c2; “subtype” and “supertype” are commonly used to denote c1 and c2

in such settings. The subgraph consisting of the subClass triples of a
graph is typically acyclic5; we assume below that this is the case, thus

4 Even though we consider the ontology very important, our goal is to bring the much
more numerous data and type (non-ontology) triples to a visually comprehensible size
through summarization. When present, the ontology may help visualize the data; the
ontology itself may be summarized, etc.

5 If a loop existed, all the types involved in the loop would be equivalent for all practical
purposes and could be replaced with any among them.
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the types present in G can be organized in a directed acyclic graph
(DAG). Even though class nodes are very often much fewer than data
nodes, they can still be too numerous for a small visualization to
include or reflect all of them. For instance, there are more than 500
product types labeled ProductType1, ProductType2, etc., in a BSBM
benchmark graph of 100M triples, a WatDiv benchmark graph of
10M triple comprises 14 product category types, or the real-life DBLP
dataset includes a dozen types of scientific publications. Applying
type-then-data summarization to such a graph would lead to a high
number of nodes, one for each type; this appears shortsighted, given
that in these examples, a natural common supertype can be found,
e.g., ProductType, ProductCategory, and Publication, respectively.

To obtain compact type-then-data summaries even in the presence
of such ontologies, we adopt the following practical solution:

• For each typed data node x ∈ G, let τ(x) be the set of all types
associated with x in G, and τ(x) the set comprising the most
general supertypes of the types in τ(x), which can be easily com-
puted based on the subClass triples. We exclude a few “standard”
root types, such as rdf:resource or owl:Thing, from the supertype
hierarchy, as these would not bring useful information to sum-
mary users.

• Then, type-then-data summarization based on most general
types uses τ(x) instead of τ(x). This is how we obtained the
graph in Figure 6: there, N1 represents all the nodes whose most
general type set comprises exactly http://db.uwaterloo.ca/

~galuc/wsdbm/Genre, and similarly for N8 and the type http:

//db.uwaterloo.ca/~galuc/wsdbm/ProductCategory.

This technique can be applied to both typed weak and typed strong
summarization.

In our previous work [5], we defined a variant of type generaliza-
tion based on type-then-data summarization; its algorithm adopts a
bottom-up approach of traversing the type hierarchy until we find the
lowest branching point, i.e., such an RDF type that has more than one
supertype.

3.5.2 Interactions between summarization and saturation

In [3], the relationship between summarization and saturation has
been studied, and this analysis has been furthered in the paper [44]
that belongs to this thesis. We start by recalling the main results of [3]
as follows.

First, does saturation commute with summarization? In other words,
is (G∞)/≡ strongly isomorphic (Definition 7) to (G/≡)

∞? Figure 15
shows that this is not always the case; sp denotes the standard prop-
erty RDFS rdfs:subPropertyOf (Section 2.1). For a given graph G, the

http://db.uwaterloo.ca/~galuc/wsdbm/Genre
http://db.uwaterloo.ca/~galuc/wsdbm/Genre
http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory
http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory


40 rdf graph summarization

G G/W (G/W)
∞

G∞ (G∞)/W

r1

x

y1

a
b1

r2

y2

z
b2
c

b
b1

b2

sp
sp

a
b1

b2
c

b
b1

b2

sp
sp

a
b1

b

b2
c

b
b1

b2

sp
sp

b

r1

x

y1

a
b1

b

r2

y2

z
b2
c

b
b1

b2

sp
sp

b

b
b1

a

b2

c

b1 b b2sp sp

saturation

summarization saturation

saturation

Figure 15: Saturation and summarization example.

figure shows its weak summary G/W and its saturation (G/W)
∞, as well

as G∞ and its summary (G∞)/W. Here, saturation leads to b edges out-
going both r1 and r2 which makes them equivalent in G∞. In contrast,
summarization before saturation represents them separately; saturating
the summary cannot unify them as in (G∞)/W (recall from Section 2.1
that saturation can only add edges in a graph).

Even though (G∞)/≡ and (G/≡)
∞ are not strongly isomorphic in

general, we establish that they always relate as follows (see the diagram
in Figure 16):

Theorem 1 (Summarization homomorphism [3]) Let G be an RDF
graph, G/≡ its summary and f the corresponding representation function
from G nodes to G/≡ nodes. Then, f defines a homomorphism from G∞ to
(G/≡)

∞.

Since (G/≡)
∞ is homomorphic to G∞, would their summaries coin-

cide, i.e., be strongly isomorphic? It turns out that this may hold or
not depending on the RDF equivalence relation under consideration.
When it holds, we call shortcut the following three-step transforma-
tion aiming at obtaining a summary strongly isomorphic to (G∞)/≡,
instead of (G∞)/≡ itself: first summarize G; then saturate its summary;
finally, summarize it again in order to build ((G/≡)

∞)/≡:
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(G∞)/≡

G∞

f1

((G/≡)∞)/≡l by Theorem 2

(G/≡)∞

f2

f homomorph. by Theorem 1

G G/≡f repr. fn. of summarizing G

∞ ∞

Theorem 2

Theorem 1

Figure 16: Illustration for Theorem 1 and Theorem 2.

Definition 8 (Shortcut [3]) We say the shortcut holds for a given RDF
node equivalence relation ≡ iff for any G, (G∞)/≡ and ((G/≡)

∞)/≡ are
strongly isomorphic.

Note that, from a practical viewpoint, hence for visualization, if the
shortcut holds for ≡, then (G∞)/≡ and ((G/≡)

∞)/≡ are equivalent as
they differ just in their data node IDs (e.g., N1, N2, etc., in Figure 6),
which carry no particular meaning.

Next, we establish one of our main contributions: a sufficient condition
under which for any quotient summary based on an equivalence
relation ≡ as discussed above (where class and property nodes are
preserved by summarization), the shortcut holds. In particular, as
we will demonstrate (Section 3.8), the existence of the shortcut can
lead to computing (G∞)/≡ substantially faster by actually computing
((G/≡)

∞)/≡.

Theorem 2 (Sufficient shortcut condition [3]) Let G/≡ be a summary
of G through ≡ and f the corresponding representation function from G nodes
to G/≡ nodes (see Figure 16).

If ≡ satisfies: for any RDF graph G and any pair (n1, n2) of G nodes,
n1 ≡ n2 in G∞ iff f (n1) ≡ f (n2) in (G/≡)

∞, then the shortcut holds for ≡.

Figure 16 depicts the relationships between an RDF graph G, its
saturation G∞ and summarization (G∞)/≡ thereof, and the RDF graphs
that appear at each step of the shortcut computation. The intuition
for the sufficient condition is the following. On any path in Figure 16,
saturation adds edges to its input graph, whereas summarization
“fuses” nodes into common representatives. On the regular path from
G to (G∞)/≡, edges are added in the first step, and nodes are fused
in the second. On the shortcut (green) path, edges are added in the
second step, whereas nodes are fused in the first and third steps. The
two paths starting from G can reach l results only if G nodes fused
on the shortcut path are also fused (when summarizing G∞) on the
standard path. In particular, the first summarization along the shortcut
path should not make wrong node fusions, that is, fusions not made when
considering the full G∞: such a “hasty” fusion can never be corrected later
on along the shortcut path, as neither summarization nor saturation split
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C1 : {a, b1} C2 : {b2, c}{b}
C+

2C+
1 C∞

Figure 17: Two source cliques from the graph in Figure 15, their saturations,
and their enclosing clique C∞ in G∞.

nodes. Thus, an erroneous fusion made in the first summarization
step irreversibly prevents the end of the shortcut path from being l
to (G/≡)

∞.
When the condition is met, summarizing G, then saturating its

summary, then summarizing the graph thus obtained leads to (G∞)/≡
(the same up to data node labels) without the need to saturate G. The
shortcut can be faster than saturating G then summarizing the result,
because the shortcut avoids the cost to find, store, and summarize the
implicit triples derived from G; it only deals with the implicit triples
derived from G/≡, which (depending on ≡) may be much smaller than
G.

3.5.3 Shortcut results

As briefly described in the publication list following the abstract, the
formal results in this section appear in our publication [44], the article
of reference for RDFQuotient-related work. The implementation of the
algorithms, including the shortcut procedure has been started during
my master’s end-of-study research internship and has been finalized
during my PhD program. However, these theorems and lemmas have
been established for the first time in the technical report [4] before my
joining of the project. We state the formal claims here for completeness,
whereas we skip the mathematical proofs and details that can be found
in [44] (or [4]).

In order to establish shortcut results for our summaries, we start by
investigating how property cliques are impacted by saturation.

In G∞, every G node has all the data properties it had in G; therefore,
two data properties belonging to a G clique are also in the same clique
of G∞. Further, if the schema of G comprises subProperty constraints, a
node may have a data property in G∞ that it did not have in G. As a
consequence, each G∞ clique includes one or several cliques from G,
which may “fuse” by acquiring more properties due to saturation with
subProperty constraints. An example is given in Figure 17, where C+

1
and C+

2 are the saturations of the source cliques C1, C2, whereas C∞ =

{a, b1, b, b2, c} is a source clique of the graph G∞ (also in Figure 15).
Based on Theorem 2 and the above observations, we show:

Theorem 3 (W shortcut [44]) The shortcut holds for ≡W.
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For instance, on the graph in Figure 15, it is easy to check that
applying summarization on (G/W)

∞ (as prescribed by the shortcut)
leads exactly to a graph strongly isomorphic to (G∞)/W.

Showing Theorem 3 is rather involved; we do it in several steps. We
first show a technical lemma below that describes the relationships
between a clique C of G, its saturated version C+, and the cliques of
G∞:

Lemma 1 (Saturation vs. property cliques [44]) Let C, C1, C2 be non-
empty source (or target) cliques of G.

1. There exists exactly one source (respectively, target) clique C∞ of G∞

such that C ⊆ C∞.

2. If C+
1 ∩ C+

2 6= ∅, then all the properties in C1 and C2 are in the same
G∞ clique C∞.

3. Any non-empty source (or target) clique C∞ is a union of the form
C+

1 ∪ · · · ∪ C+
k for some k ≥ 1, where each Ci is a non-empty source

(respectively, target) clique of G, and for any Ci, Cj where 1 ≤ i, j ≤ k
with i 6= j, there exist some cliques D1 = Ci, . . . , Dn = Cj in the set
{C1, . . . , Ck} such that:

D+
1 ∩ D+

2 6= ∅, . . . , D+
n−1 ∩ D+

n 6= ∅

4. Let p1, p2 be two data properties in G, whose source (or target) cliques
are C1 and C2. Properties p1, p2 are in the same source (respectively,
target) clique C∞ of G∞ if and only if there exist k non-empty source
(respectively, target) cliques of G, k ≥ 0, denoted D1, . . . , Dk such that:

C+
1 ∩ D+

1 6= ∅,
D+

1 ∩ D+
2 6= ∅, . . . , D+

k−1 ∩ D+
k 6= ∅, D+

k ∩ C+
2 6= ∅.

Based on Lemma 1, we show:

Lemma 2 (Property relatedness in W summaries [44]) Data properties
are target-related (respectively, source-related) in (G/W)

∞ iff they are target-
related (respectively, source-related) in G∞.

Now, recall from Lemma 1 that:

SC∞
W = (SC1

W)
+ ∪ (SC2

W)
+ ∪ . . . ∪ (SCm

W )
+ and

TC∞
W = (TC1

W)
+ ∪ (TC2

W)
+ ∪ . . . ∪ (TCn

W )
+

for some G/W source cliques SC1
W, . . . , SCm

W and target cliques TC1
W,

. . . , TCn
W .

Lemma 2 ensures that the data properties in (SC1
W)

+ ∪ . . . ∪ (SCm
W )

+

are related in G∞, and those of (TC1
W)

+ ∪ . . . ∪ (TCn
W )

+ are related in
G∞.
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Moreover, nW was created in G/W from a set of weakly-equivalent G
nodes having as source clique one among SC1

W, . . . , SCm
W and as target

clique one among TC1
W, . . . , TCn

W . In G∞, these nodes connect the data
properties of SC∞

W with those of TC∞
W .

Finally, Theorem 3 follows directly from the above discussion, Theo-
rem 1, and the proposition below:

Proposition 3 (Same cliques-W [44]) G∞ and (G/W)
∞ have identical

source clique sets, and identical target cliques sets. Further, a node n ∈ G∞

has exactly the same source and target clique as fW(n) in (G/W)
∞.

Theorem 4 (S shortcut [44]) The shortcut holds for ≡S.

We prove this based on counterparts of statements established for
G/W. First, we show Lemma 3:

Lemma 3 (Property relatedness in S summaries [44]) Data properties
are target-related (respectively, source-related) in (G/S)

∞ iff they are target-
related (respectively, source-related) in G∞.

Then, from Theorem 1 and the above Lemma 3, we obtain the next
proposition:

Proposition 4 (Same cliques-S [44]) G∞ and (G/S)
∞ have identical

source clique sets, and identical target clique sets. Further, a node n ∈ (G/S)
∞

has exactly the same source and target clique as fS(n) in (G/S)
∞.

Theorem 4 follows directly from Proposition 4.
Finally, we have:

Theorem 5 (No shortcut for ≡TW [44]) The shortcut does not hold for
≡TW.

We prove this by exhibiting in Figure 18 a counter-example. In G and
G/TW, all data nodes are untyped; only after saturation a node gains the
type C. Thus, in G/TW, one (untyped) node represents all data property
subjects; this is exactly a “hasty fusion” as discussed below Theorem 2.
In (G/TW)

∞, this node gains a type, and in ((G/TW)
∞)/TW, it is represented

by a single node. In contrast, in G∞, r1 is typed and r2 isn’t, leading
to two distinct nodes in (G∞)/TW. This is not strongly isomorphic with
(G/TW)

∞ which, in this example, is strongly isomorphic to ((G/TW)
∞)/TW.

Thus, the shortcut does not hold for ≡TW.

Theorem 6 (No shortcut for ≡TS [44]) The shortcut does not hold for
≡TS.

The graph in Figure 18 is also a shortcut counter-example for TS.
Based on Theorem 2, we have also established:

Theorem 7 (Bisimilarity shortcut [44]) The shortcut holds for the for-
ward (≡fw), backward (≡bw), and forward-and-backward (≡fb) bisimilarity
equivalence relations (recalled in Section 3.2).
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Figure 18: Shortcut counter-example.
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Figure 19: Relations between quotient summaries.

3.5.4 Relationships between summaries

From the definition of the weak and strong equivalences, it is easy
to show that (G/S)/W = G/W, i.e., one could compute G/W by first sum-
marizing G into G/S, and then applying weak summarization on this
(typically much smaller) graph; similarly, (G/TS)/TW = G/TW. It is also the
case that (G/W)/S = G/W, i.e., strong summarization cannot compress
a weak summary further, and similarly (G/TW)/TS = G/TW. Figure 19
summarizes the main relationships between G, G∞, our summaries and
bisimilarity-based ones.

3.6 from summaries to visualizations

We now describe how to go from a quotient summary to a graphical
visualization such as the one illustrated in the Introduction.
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Figure 20: Visualization resulting from leaf and type inlining on the sample
strong summary from Figure 13.

3.6.1 Leaf and type inlining

For structurally simple graphs like our sample G shown in Figure 3,
quotient summaries have very few nodes and edges, and any node-link
visualization method can be used. We explain here how we obtained
our visualizations, illustrated in our online gallery [33].

To further simplify summaries, we apply leaf and type inlining, as
follows. We remove type edges; instead, each type attached to a node
in the summary is shown in the box corresponding to the node, after
the node ID. Similarly, for each edge n a−→ m where m is a leaf, we
include a as an “attribute” of n, and do not render m (we say it has
been “inlined” within n). A sizable part of an RDF graph’s nodes are
leaves; as we will show, inlining them into their parent nodes greatly
simplifies the visualization.

Figure 20 illustrates inlining for the S summary (Figure 13) of our
sample graph. This summary is extremely compact, yet rich with
information; professors, students, and courses are visible at a glance.
Articles have been inlined within their authors as they were leaves in
G/S. This simplification can also be seen as a small loss of information:
Figure 20 does not immediately suggest that Professors may have
written articles together with GradStudents. However, only leaf nodes
are folded and after a first glance, users may pursue exploration by
other means (e.g., queries to check for such joint articles). Thus, we
consider that inlining is overall beneficial, and systematically apply it on
summaries before visualization.

If type-then-data summarization is used based on the most general
types (Section 3.5.1), the most general types are shown at the top of
each typed summary node (immediately under the node ID), then the
actual types of the graph nodes represented by the summary node are
shown one per line, under the most general types. N1, N7, and N8 in
Figure 6 illustrate this.

3.6.2 Summary statistics

If users are (also) interested in a quantitative view of an RDF graph,
our summaries can also plot a set of statistics. Below, we describe and
illustrate them based on Figure 6. For each summary node Ni, we
display:
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• The number of G nodes represented by Ni, in parenthesis after
“Ni” in the corresponding box, e.g., “N8 (25000)”;

• For each type c such that x rdf:type c for some x rep-
resented by Ni, the number of G nodes represented by Ni
which are of type c, e.g., http://db.uwaterloo.ca/~galuc/

wsdbm/ProductCategory0:807;

• For each data property p such that x p y for some x repre-
sented by Ni and all the objects of p triples whose subjects are
represented by Ni are leaves in G, the number of such p triples,
and the number of distinct targets of such triples. For instance,
within N8, “bookedition (847 → 6)” denotes that there are 847
bookedition triples whose subjects are represented by N8, and
they reach a total of 6 distinct objects (which are leaf nodes).

For each summary edge Ni
a−→ Nj where a is a data property, we

display the number of x a y triples in G such that x is represented by
Ni and y is represented by Nj. The label “hasGenre (58787)” on the
edge from N8 to N1 is an example of such an edge statistic.

All these statistics can be gathered by our summary construction
algorithms (Section 3.7), at no extra computational cost.

3.6.3 Visualizing very large summaries

For a very complex (e.g., encyclopedic) dataset, even the graph ob-
tained from inlining may have too many nodes and edges for an
effective visualization. If it has several connected components (one
per domain), each of them can be viewed separately. Otherwise, the
inlined graph can be split into several, possibly overlapping subgraphs,
using any graph decomposition strategy (for instance, minimize the
number of times the representatives of two nodes connected in G ap-
pear in different summary subgraphs, etc.). Information discovery in
such graphs requires more computational and cognitive effort.

3.7 summarization algorithms

We now present summarization algorithms that, given as input a
graph G, construct G/W, G/S, G/TW, and G/TS. We devise two types of
algorithms: centralized and parallel ones. Further, all our centralized
algorithms have an amortized linear complexity in the size of G: they can
be built in just one (incremental) or two passes (global) over the data.
Our incremental algorithms, capable of reflecting additions to G into
its previously computed summaries, are the most involved.

http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory0:807
http://db.uwaterloo.ca/~galuc/wsdbm/ProductCategory0:807
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3.7.1 Global data graph summarization

We begin by presenting algorithms that summarize only the data triples
through two graph traversals. The first pass allows us to learn the
equivalence relation and create the summary nodes. Our equivalence
relations are defined based on the triples of a given graph G, thus when
summarization starts, we do not know whether any two nodes are
equivalent; the full equivalence relation is known only after inspecting
all G triples. In the second one, we determine the representative of
each G node and, as a consequence, add triples to the summary.

Our global W summarization algorithm (Algorithm 1) exploits Propo-
sition 1, which guarantees that any data property occurs only once
in the summary. To each data property p encountered, it associates a
summary node (integer) sp which will be the (unique) source of p in
the summary, and similarly a node tp target of p; these are initially
unknown, and evolve as G is traversed. Further, the algorithm uses
two maps op and ip that associate, with each data node n, the set of
its outgoing, respectively, incoming data properties. These are filled
during the first traversal of G (Step 1.). Steps 2. to 2.5 ensure that for
each node n having outgoing properties and possibly incoming ones,
sp for all the outgoing ones are equal, and are also equal to tp for all
the incoming ones. This is performed using a function f use which,
given a set of summary nodes, picks one that will replace all of them.
In our implementation, summary nodes are assigned integer IDs, and
f use is simply min; we just need f use to be distributive over ∪, i.e.,
f use(A, (B ∪ C)) = f use( f use(A, B), f use(A, C)). Symmetrically, Step
3. ensures that the incoming properties of nodes lacking outgoing
properties (thus, absent from op) also have the same target. In Step
4., we represent s and o based on the source/target of the property p

connecting them. The f use operations in 2. and 3. have ensured that,
while traversing G triples in 4., any data node n is always represented
by the same summary node fW(n).

Our global S summarization algorithm (Algorithm 2) uses two maps
sc and tc which store for each data node n, its source clique sc(n),
and its target clique tc(n), and for each data property p, its source
clique srcp and target clique trgp. Further, for each (source clique,
target clique) pair encountered during summarization, we store the
(unique) corresponding summary node. Steps 1.-1.2. build the source
and property cliques present in G and associate them to every subject
and object node (in sc and tc), as well as to any data property (in srcp
and trgp). For instance, on the sample graph in Figure 3, these steps
build the cliques in Table 3. Steps 2-2.2. represent the nodes and edges
of G.

The correctness of algorithms global-W and global-S follows quite
easily from their descriptions and the summary definitions.
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Algorithm 1: Global W summarization of a graph

global-W(G)

1. For each s p o ∈ G :
1.1. Add p to op(s) and to ip(o).
2. For each node n ∈ op:
2.1. Let X ← f use{sp | p ∈ op(n)}.
2.2. If X is undefined:
2.2.1. Let X ←nextNode().
2.3. Let Y ← f use{tp | p ∈ ip(n)}.
2.4. If Y is undefined:
2.4.1. Let Y ←nextNode().
2.5. Let Z ← f use(X, Y).
2.6. For each p ∈ ip(n):
2.6.1. Let sp ← Z.
2.7. For each p ∈ op(n):
2.7.1. Let tp ← Z.
3. Repeat 2 to 2.7 swapping ip with op and tp with sp.
4. For each s p o ∈ G:
4.1. Let fW(s)← sp, fW(o)← tp.
4.2. Add fW(s) p fW(o) to G/W.

Algorithm 2: Global S summarization of a graph

global-S(G)

1. For each s p o ∈ G:
1.1. Check if srcp, trgp, sc(s) and tc(o) are known; those not

known are initialized with {p}.
1.2. If sc(s) 6= srcp, fuse them into a new clique

src′p = sc(s) ∪ srcp; similarly, if tc(o) 6= trgp, fuse them into
trg′p = tc(o) ∪ trgp.

2. For each s p o ∈ G:
2.1. fS(s)← the (unique) summary node corresponding to
the cliques (sc(s), tc(s)); similarly, fS(o)← the node
corresponding to (sc(o), tc(o)) (create the nodes if needed).

2.2 Add fS(s) p fS(o) to G/S.

3.7.2 Incremental data graph summarization

These algorithms are particularly suited for incremental summary main-
tenance: if new triples ∆+

G are added to G, it suffices to summarize
only ∆+

G , based on G/≡ and its representation function f≡, in order to
obtain (G∪ ∆+

G )/≡. Incremental algorithms are considerably more com-
plex, since various decisions (assigning sources/targets to properties
in W, source/target cliques in S, node representatives in both) must
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Algorithm 3: Incremental W summarization of one triple

increm-W(s p o)

1. Check if sp and op are known: either both are known (if a
triple with property p has already been traversed), or none;

2. Check if fW(s) and fW(o) are known; none, one, or both may
be, depending on whether s, respectively, o have been
previously encountered;

3. Fuse sp with fW(s) (if one is unknown, assign it the value of
the other), and op with fW(o);

4. Update fW(s) and fW(o), if needed;
5. Add the edge fW(s) p fW(o) to G/W.

be repeatedly revisited to reflect newly acquired information about G
triples, as we shall see.

Each incremental summarization algorithm consists of an incremental
update method, called for every data triple, which adjusts the summary’s
data structures, so that at any point, the summary reflects exactly the
graph triples visited until then.

Incremental weak summarization (increm-W) is outlined in Algo-
rithm 3. For example (see the figure below), let’s assume the algorithm
traverses the graph G in Figure 3 starting with: p1 advises p2, then
p1 wrote a1, then p4 teaches c2. Then:

• When we summarize this third triple, we do not know yet that
p1 is equivalent to p4, because no common source of teaches and
advises (e.g., p3 or p4) has been seen so far. Thus, p4 is found not
equivalent to any node visited so far, and represented separately
from p1.

• Now, assume the fourth triple traversed is p4 advises p5: at
this point, we know that advises, wrote and teaches are in the
same source clique, thus p1 ≡W p4, and their representatives
(highlighted in yellow) must be fused in the summary (Step 3.).

• More generally, it can be shown that the relation ≡W only grows
as more triples are visited; in other words: if in a subset G′ of G’s
triples, two nodes n1, n2 are weakly equivalent, then this holds
in any G′′ with G′ ⊆ G′′ ⊆ G.

p1

p2 a1

a w

p4

c2

te ⇒ a w te

p1

p2 a1

a w

p4

c2 p5

te a ⇒ a w te

Figure 21: Incremental weak summary node fusion after the addition of a
new triple.
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Algorithm 4: Incremental S summarization of one triple

increm-S(s p o)

1. Check if we already know a source clique srcp (respectively,
target clique trgp).Either both are known (if a p triple has
already been traversed), or none. Those not known are
initialized with {p};

2. Check if sc(s) (respectively, tc(o)) are known; those unknown
are initialized with {p};

3. If sc(s) 6= srcp, fuse them into new clique src′p = sc(s) ∪ srcp,
using Union-Find; similarly, if tc(o) 6= trgp, fuse them into
trg′p = tc(o) ∪ trgp, and:

3.1 Replace sc(s) and srcp with src′p throughout the summary
(respectively, replace tc(o) and trgp with trg′p);

3.2 The above may entail summary node fusions; in this case,
update fS (use Union-Find) and the summary edges to reflect
it;

4. If before seeing s p o s had been already represented and it
had an empty source clique, then s needs to split, i.e., be
represented separately from the nodes to which it was ≡S

previously; call split-source(s). (Symmetric discussion for o,
call split-target(o)).

5. Update fS(s) and fS(o), if needed;
6. Add the edge fS(s) p fS(o) to G/S.

Summary node fusion dominates the algorithm’s complexity. Let N1,
N2 be two sets of G nodes, represented at a certain point by the distinct
summary nodes m1, m2. When fusing them into a single m, we must
also record that all the nodes in N1 ∪ N2 are now represented by m.
A naïve implementation leads to O(N2) complexity, where N is the
number of data nodes, since each new node may lead to a fusion
whose cost is O(N); in the worst case N could be proportional to |G|
(the number of triples in G) leading to an overall complexity of O(|G|2)
for the incremental weak summarization.

Instead, we rely on a Union-Find [45] (a.k.a. Disjoint Sets) data
structure, with the path compression and union by size optimizations,
which guarantee an overall quasi-linear worst-case complexity of our
incremental weak summarization algorithm. The exact complexity is
O(Nα(N)) where α(N), the inverse Ackermann’s function, is smaller
than 5 for any machine-representable input N. Assimilating this to
linear-time, the algorithm’s complexity class is in O(|G|), which is also
optimal because of a trivial lower bound of Ω(|G|)) as summarization
must fully traverse G.

Incremental strong summarization (increm-S) is outlined in Algo-
rithm 4 through the incremental update of the S summary due to the
traversal of the triple s p o. Conceptually, the algorithm is symmetric
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Procedure 5: Splitting summary node s on source

split-source(s)

1. Collect all G edges adjacent to s into trans f er set.
2. For each s p o ∈ trans f er, decrement by 1 the counter for

fS(s) p fS(o) in the summary.
3. Update fS(s).
4. For each s p o ∈ trans f er, if such edge already exists in the
summary, then increment its counter by 1, otherwise add
fS(s) p fS(o) to the summary with counter equal to 1.

for the source (s) and target (o) of the edge, we only discuss the source
side below:

• Steps 1. and 2. start by determining the source clique of s, based
on its previously known source clique (if any) and the previously
known target clique of p (if any).

• After Step 2., s’s source (and target) clique, reflecting also the
newly seen triple s p o, are completely known. Determining them
may have involved fusing some previously separate cliques.

• For instance, on the graph in Figure 3, assume we first tra-
verse the triple p1 advises p2, then p4 teaches c2; so far we have
the source cliques {advises}, {teaches} and ∅. If the next tra-
versed triple is p4 advises p5, we fuse the source cliques (Step
3.1) {advises} and {teaches} into {advises, teaches}. This requires
fusing the summary node whose (source, target) cliques were
({advises}, ∅) with the one that had ({teaches}, ∅) (Step 3.2).

non-monotonicity of strong equivalence The last intri-
cacy of incremental strong summarization is due to the fact that unlike
≡W, the relation ≡S may grow and shrink during summarization. For
instance, assume incremental strong summarization of the graph in
Figure 3 starts with p1 wrote a1, p2 wrote a2, p2 takes c2 (see the fig-
ure below). After these, we know p1 ≡S p2; their source clique is
{wrote, takes} and their target clique is ∅. Assume the next triple tra-
versed is p3 advises p2: at this point, p1 is not ≡S to p2 any more, because
p2’s target clique is now {advises} instead of the empty ∅. Thus, p2

splits from p1, that is, it needs to be represented by a new summary
node (shown in yellow below), distinct from the representative of p1.

Further, note that the representative of p1 and p2 (at left above)
had one takes edge (highlighted in red) which was solely due to p2’s
outgoing takes edge. By definition of a quotient summary (Section 3.2),
that edge moves from the old to the new representative of p2 (the
yellow node). If, above at left, p1 had also had an outgoing edge
labeled takes, at right, both nodes in the top row would have had
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p1

a1

w

p2

a2 c2

w ta ⇒ w ta

p1

a1

w

p2

a2 c2

p3

w ta

a
⇒ w w ta

a

Figure 22: Incremental strong summary node split after the addition of a
new triple.

an outgoing takes edge. It can be shown that splits only occur in such
cases, i.e., o whose target clique becomes non-empty (respectively, s
whose source clique becomes non-empty, and the node was previously
represented together with other nodes; if it was represented alone, we
just update the respective clique of its representative).

The procedure split-source(s) (Procedure 5) represents s separately,
to reflect that it no longer has an empty target clique, and, for each
outgoing edge of s, adds a corresponding edge to the new representa-
tive of s and checks if, as a consequence, an edge needs to be removed
from its previous representative. We establish:

Proposition 5 (Algorithm correctness) Applying algorithm increm-W
(respectively, increm-S) successively on each triple of G, in any order, builds
G/W (respectively, G/S).

Proof All our algorithms (global or incremental) start by identifying the
class and property nodes: this is done retrieving all the subjects and objects
from schema triples, and also all the objects of type triples. As previously
stated, triple stores routinely support such retrieval efficiently. Our algorithms
start by representing these special schema nodes exactly by themselves, and
copying in the summary all the schema triples. This exploits the observation
made in Section 3.5 (G and G/≡ have the same schema triples).

Below, we show the correctness of incremental W and S summarization
on data triples. The proof of Proposition 6 (below) extends this also to type
triples.

The correctness of incremental W summarization on data triples follows
from the fact that the increm-W algorithm preserves a set of invariants. Let
Gk be the first k triples of G, in the order in which they are traversed by the
algorithm. For any 1 ≤ k ≤ |G|, after applying increm-W on k data triples,
the following invariants are preserved:

1. The source and target srcp and trgp of any property p present in these
k triples are known.

2. For any summarized triple s p o, we have fW(s) = srcp and fW(o) =
trgp; further, the summary contains the edge fW(s) p fW(o).

The preservation of these invariants is shown by considering all the cases
which may occur for a given summarized triple s p o: the subject s may have
already been seen (in which case this triple may lead to a fusion), or not
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(in which case we create the new representative of s), and similarly for o. For
p there are also two cases (depending on whether we had already encountered
it or not, we may create srcp and trgp, or just fuse them with preexisting
representatives of s and o). There are 8 cases overall. The replacements and
fusions detailed in Algorithm 3 guarantee these invariants.

For simplicity of presentation, the increm-W algorithm considers the pos-
sible fusions due to s and o separately. However, in reality, given that they
may impact the same node(s) (e.g., if fW(s) = fW(o)), all the replacements are
first computed, then reconciled into a list of summary node substitutions,
applied in all the data structures. For instance, suppose we need to replace
summary node 3 with 1 because of a fusion on the subject side, and also
summary node 5 with 3 because of a fusion on the object side. In this case,
the algorithm will replace 5 and 3 directly with 1. If the replacements were
applied sequentially, e.g., first 3 with 1, the second replacement would leave
3 (not 1) instead of 5, which would be an error.

Similarly, the correctness of incremental S summarization on data triples
follows from the fact that the increm-S algorithm preserves the following
invariants after having been called on k successive data triples, with 1 ≤ k ≤
|G|:

1. The source and target clique sc(p) and tc(p) of any property p present
in these k triples are known, and they contain p.

2. For any summarized triple s p o, we have fS(s) = sc(p) and fS(o) =
tc(p); further, the summary contains the edge fS(s) p fS(o).

3. For any source clique sc and target clique tc of a node n appearing in
the summarized triple, the summary contains exactly one node.

4. For any summary node m, the count m] is exactly the cardinality of
the set {n ∈ G | fS(n) = m}.

5. For any summary edge m
p−→ m′, the count e] is exactly the cardinality

of the set {n p−→ n′ edge of G ‖ fS(n) = m and fS(n′) = m′}.

6. For any (subject, property) combination occurring in the summarized
triples, the count (sp)] is exactly the number of times this occurred in
the triples. Similarly, for any (property, object) combination appearing
in the summarized triples, the count (po)] is exactly the number of
times it appeared.

Like for increm-W, there are eight cases depending on whether s, p and o

have been previously seen. Further, in the four cases where s has been seen,
we may need to split s’s representative, or not, and similarly for o; thus, the
six original cases where at least one of them had been seen lead to 12 cases (to
which we add the remaining two, where neither s nor o had been seen), for a
total of 14 cases.

Items 4, 5 and 6 are ensured during: the addition of an edge to the summary
(this sets e] to 1 or increases it); the assignment of representatives to nodes
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(this sets m] to 1 or increments it); the edge repartition during split (this
subtracts from one edge e] exactly the count that it adds to another new edge);
and node replacements (which, when replacing u with v, either carry u] into
v], if v did not exist in the summary previously, or add u] to v] if it did).
Together, 4, 5 and 6 ensure the correctness of the split procedure (explained
in Section 3.7.2).

The previous items are ensured by the creation of summary nodes (at most
one exists at any time for a given source and target clique), fusing cliques
(this guarantees each property is in the right clique, and remove cliques input
to the fusion), and replacing / fusing summary nodes, as well as from the
correctness of the split procedure.

Splitting requires inspecting the data edges attached to the node, in
order to add edges to its new representative (such as p2 ta c2 above).
We make an assumption, denoted (?), that the average number of
edges incoming/outgoing a data node is small (and basically constant)
compared to the size of G; this assumption holds for the graphs we
have experimented with. Under the (?) assumption, using the above
data structures (including Union-Find), the complexity of incremental
strong summarization is amortized constant per added triple.

All our algorithms require O(|G|) space to store the summary, the
representation function, and their other data structures. Encoding all
graph and summary nodes as integers, however, reduces the actual
memory needs significantly.

3.7.3 Global and incremental typed graph summarization

We now explain how to extend our incremental data triple summa-
rization algorithms to type triples.

To extend W, respectively, S summarization to type triples in “data-
then-type” fashion (Section 3.4.1), we run W, respectively, S summa-
rization first, over the data triples only, as described in the preceding
two sections. This assigns their (final) representatives to all data nodes.
Then, for each s rdf:type c triple, we simply add to the summary
the edge fW(s) rdf:type c (respectively, fS(s) rdf:type c); recall from
Section 3.4 that any class node C is represented by itself.

For “type-then-data” summarization (Section 3.4.2), we first traverse
the type triples only, compute all the class sets, and assign to each
typed data node a representative based on its class set. Then, we run
a type-aware variant of a W (respectively, S) algorithm, either global or
incremental. The differences are:

1. In TW summarization, a data property p may lack an untyped
source (and/or target), if p has only typed subjects (respectively,
objects), e.g., a property e in the two-triples graph n1 rdf:type c,
n1 e a1. Similarly, in TS summarization, a property like e will
lack a source clique, if it does not have an untyped source.
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Whenever a clique-based representative for a property’s source
and target is missing, the algorithms will instead use the type-
based representative, e.g., the representative of n1 in n1 e a1 will
be the one for the type set {C}.

2. Summarizing the data triple s p o does not fuse nor split the
representative of s (respectively, o), if s (respectively, o) is typed;
the representatives of typed nodes never change.

We establish:

Proposition 6 (Algoritm correctness) Applying global-W (respectively,
global-S) on G, or applying increm-W (respectively, increm-S) on each triple
of G, extended as described above for data-then-type or type-then-data sum-
marization leads, respectively, to G/W, G/S, G/TW, and G/TS.

Proof First, recall that TW and TS summarization start with the type triples,
which means all typed nodes are detected and represented according to their
class sets, before the data triples are summarized. This entails that among the
cases which occur for W and S summarization (8, respectively, 14, see discus-
sion in the proof of Proposition 5), those in which the subject, respectively,
the object was already represented are further divided in two, depending on
whether the subject, respectively, object was a typed node.

This shows that incremental TW summarization handles a superset
of the cases handled by the W one, and similarly for TS and TS. Thus,
increm-TW, respectively, increm-TS preserve all the invariants of increm-W,
respectively, increm-S6, with some additions, which we highlight in italics
below.

additions of TW summarization w.r .t. weak summariza-
tion

1. The source and target srcp and trgp of any property p present with an
untyped source, respectively, an untyped target in the summarized
triples are known.

2. For any summarized triple s p o, we have fW(s) = srcp if s is untyped
and fW(o) = trgp if o is untyped; further, the summary contains the
edge fW(s) p fW(o).

additions of TS summarization w.r .t. strong summariza-
tion

1. The source and target clique sc(p) and tc(p) of any property p present
in these k triples with an untyped source, respectively, with an
untyped target are known, and they contain p.

6 Note that in the particular case of triples connecting untyped nodes, the algorithms
coincide.
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Figure 23: Sample RDF graph partitioned.

2. For any summarized triple s p o, we have fS(s) = sc(p) if s is
untyped, and fS(o) = tc(p) if o is untyped; further, the summary
contains the edge fS(s) p fS(o).

Further, they also preserve:

1. The summary contains one node for each set of classes belonging to
some resource in the input.

2. For any node n with a non empty class set, fTW(n) (respectively, fTS(n))
is the node corresponding to the class set of n.

These invariants are ensured by the way in which we collect all class
sets during the initial traversal of type triples (common to the TW and TS

algorithms). Further, during the TW and TS summarization, as said in Sec-
tion 3.7.3, the representatives of typed nodes never fuse, and never split.

The 6 invariants from the proof of Prop. 5 ensure the correct summarization
of data triples when s and o are untyped. Together with the two above, they
also ensure the correct summarization of triples having a typed s and/or o.

These algorithms need to work with the data and type triples sepa-
rately. Fortunately, most popular RDF store allow such direct access.
The space needed to also represent type triples remains linear in |G|.

3.7.4 Parallel summarization

Lastly, we move to our novel parallel algorithms. A first idea is to sim-
ply partition G among the available nodes (machines), summarize each
slice of the graph on its node, and then summarize again the union
of these partial summaries to get the summary of G. Unfortunately,
this may be incorrect. Assume that G is the graph in Figure 3, and
that it has been partitioned into two machines, G1 and G2, as shown in
Figure 23 with orange and blue regions, respectively. Notice that all
teaches triples are in G2. Summarizing the two subgraphs separately,
we obtain (G1)/W that has a wrote edge, and (G2)/W that has a teaches
edge. However, the information that wrote and teaches had common
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sources in G is lost: using only (G1)/W and (G2)/W, one cannot compute
G/W. A similar reasoning holds for G/S, G/TW and G/TS.

Therefore, we devised new parallel algorithms for building our
summaries (Sections 3.7.5, 3.7.6); they all assume a distributed storage
and a MapReduce-like framework. Then, in Section 3.7.7, we show
how to tailor our algorithms to the Spark framework used in our
implementation. We assume the graph contains |G| triples and that
we have M machines at our disposal. All the algorithms perform two
preprocessing steps:

1. Build the sets of class and property nodes of G, which must be
preserved by summarization;

2. Dictionary-encode the RDF URIs and literals into integers, to
manipulate less voluminous data. (This is quite standard in RDF
data management works.)

3.7.5 Parallel data graph summarization

parallel computation of the strong summary We com-
pute the strong summary through a sequence of parallel processing
jobs as follows.

S1. We distribute all (data and type) triples of input graph equally
among all the machines, e.g., using round robin approach, so
that each mi, 1 ≤ i ≤ M holds at most

⌈
|G|
M

⌉
triples.

S2. In a Map job, each machine mi for a given data triple t = s p o

emits two pairs: (s, (source, p, o)) and (o, (target, p, s)), where
source and target are two constant tokens (labels). The data and
type triples initially distributed to each machine m1, . . . , mM are kept
(persisted) on that machine throughout the computation. All other
partial results produced are discarded after they are processed,
unless otherwise specified.

S3. In the corresponding Reduce job, for each resource r ∈ G, all
the data triples whose subject or object is r are on the same
machine mi. For each such r, mi can infer the relationships (same
source clique, same target clique) that hold between the data
properties of G appearing on incoming and outgoing edges of r.
Formally, a property relation information (or PRI, in short) between
two properties a, b of G states that they are in the same source
clique, or that they are in the same target clique. For instance,
if mi hosts the blue triples from Figure 23, where a = teaches
and b = takes, the triples p2 teaches c1 and p2 takes c2 lead to
a PRI of the form (teaches, takes, source). We also emit PRIs
for each property with itself, in order to prepare the necessary
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information so that all cliques are correctly computed in the
steps below (even those consisting of a single data property).

The PRIs resulting from all the data triples hosted on mi are
de-duplicated locally at mi.

S4. Each machine broadcasts its PRIs to all other machines while also
keeping its own PRIs. Observe that for k properties having, for
instance, the same source, k(k−1)

2 PRIs can be produced. However,
it suffices to broadcast k − 1 among them (the others will be
inferred by transitivity in Step (S6)).

S5. Based on this broadcast, each machine has the necessary infor-
mation to compute the source and target cliques of G locally, and
actually computes them7.

At the end of this stage, the cliques are known and will persist
on each machine until the end of the algorithm, but we still need to
compute:

• All the (source clique, target clique) pairs which actually
occur in G nodes,

• The representation function, and

• The summary edges.

S6. The representation function can now be locally computed on
each machine as follows:

• For a given pair of source and target cliques (SC, TC), let
NTC

SC be a URI uniquely determined by SC and TC, such
that a different URI is assigned to each distinct clique pairs:
NTC

SC will be the URI of the G/S node corresponding these
source and target cliques.

• For each resource r stored on mi, the machine identifies the
source clique SCr and target clique TCr of r, and creates
(or retrieves, if already created) the URI NTCr

SCr
of the node

representing r in G/S.

S7. Finally, we need to build the edges of G/S.

a) To summarize data triples, for each resource r whose repre-
sentative Nr is known by mi, and each triple (hosted on mi)
of the form r p o, mi emits (o, (p, Nr)). This triple arrives on
the machine mj which hosts o and thus already knows No.
The machine outputs the G/S triple Nr p No.

7 In practice: this can be implemented, e.g., using Union-Find; and this is redundant as
only one of them could have done it and broadcast the result.
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b) To summarize type triples, for each resource r represented
by Nr such that the type triple r rdf:type c is on mi, the
machine outputs the summary triple Nr rdf:type c 8 .

The above process may generate the same summary triple
more than once (and at most M times). Thus, a final duplicate-
elimination step may be needed.

algorithm correctness The following observations ensure the
correctness of the above algorithm’s stages.

• Steps (S1) to (S4) ensure that each machine has the complete
information concerning data properties being source-related or
target-related. Thus, each machine correctly computes the source
and target cliques.

• Step (S3) ensures that each machine can correctly identify the
source and target clique of the resources r which end up on that
machine.

• The split of the triples in Step (S1) and the broadcast of source
and target clique ensure that the last steps (computation of
representation function and of the summary triples) yield the
expected results.

parallel computation of the weak summary The algo-
rithm for weak summarization starts with the steps (S1)-(S3) as above,
then continues as shown below. In a nutshell, this algorithm exploits
the observation that by definition of the weak summary, each data
property occurs only once.

W4. Instead of PRIs, the machines emit Unification Decisions. A unifi-
cation decision between two data properties a, b, is of one of the
following forms:

• a,b have the same source node in G/W;

• a,b have the same target node in G/W;

• The source of a is the same as the target of b.

For instance, in the blue region of Figure 23, two triples
p2 takes c2, c2 coursedescr d1 lead to the UD “the target of takes
is the same as the source of coursedescr”; similarly, p4 teaches c2,
p4 advises p5 lead to the UD “the source of teaches is the same
as the source of advises”, etc. In the above, just like for the PRIs,
a and b can be the same or they can be different.

W5. Each machine broadcasts its unique set of UDs while also keep-
ing its own. The number of UDs is bound by the number of

8 There is no need to flip the triple and send it to another map job because the object
of a type triple is already known to be a class node thus represented by itself.
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properties pairs in G. Not all of the combinations are sent; a
transitive closure is applied in Step (W6).

W6. Each machine has the necessary information to compute the
nodes and edges of G/W as follows:

• Assume that for two sets IP, OP of incoming, respectively,
outgoing data properties, we are able to compute a unique
URI WOP

IP , which is different for each distinct pair of sets.

• Build G/W with an edge for each distinct data property p
in G; the source of this edge for property is W{p}

∅ , while its
target is W∅

{p}. All edges are initially disconnected, that is,
there are initially 2× P nodes in G/W.

• Apply each UD on the graph thus obtained, gradually
fusing the nodes which are the source(s) and target(s) of
the various data properties. This entails replacing each W
node with one reflecting all its incoming and outgoing data
properties known so far.

At the end of this process, each node has G/W. We still need to
compute the representation function.

W7. On each machine holding a triple r1 p r2, we identify the W nodes
Wp, Wp in G/W which contain p in their outgoing, respectively,
incoming property set. We output the G/W triple Wp p Wp.

W8. The type summary triples are built exactly as in Step (S7b).

3.7.6 Parallel typed graph summarization

We now present the changes needed by the above algorithms to com-
pute the typed counterparts of weak and strong summaries. The
changes are needed in order to reflect the different treatment of the
type triples. In particular, we introduce a new constant token type

to be sent in Step (S2). We emit pairs corresponding to type triples
only in the forward direction, e.g., we send (s, (type, p, o)) but not
(o, (type, p, s)). We do not emit pairs with tokens source nor target
for type triples, as typed nodes do contribute to property cliques (recall
Chapter 2). The type triples are then cached (kept) at each machine,
and not used until the Step (S6) in the strong summarization algorithm,
respectively, (W6) in the weak one.

To determine the representative of a typed node, each machine that
received some type triples groups them by the subject and creates a
temporary class set IDs based on the types it knows for each subject.
Then, a step similar to (S7a) is needed to disseminate information
about each such typed nodes, say n at machine m. Any machine m′

which has received some triples of whom n is a subject/object, but
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has no type triples about n, needs to know it is typed, thus omit it
from the clique computation.

3.7.7 Apache Spark implementation specifics

A Spark cluster has a set of worker nodes and a driver, which coordinates
the run of an application and communicates with cluster manager
(e.g., YARN scheduler). A Spark executor is a process working on a
piece of data in a worker node. Each Spark application consists of jobs
that are divided into stages, each divided into tasks.

basic spark terminology Spark relies on Resilient Distributed
Datasets (RDDs), which are fault-tolerant and immutable collections
of data distributed among the cluster nodes. Spark also supports
broadcast variables, i.e., collections of the data that are first gathered at
the driver and then are broadcast (copies shipped over network) to all
the cluster nodes. These collections are immutable and can only be
used for local lookups.

adapting our algorithms to spark We adapt our paral-
lel algorithms to Spark’s RDD-based computation model as follows.
Each step of an algorithm consumes an RDD and builds another
one. First of all, we load the input graph into an RDD called graph.
Then, we preprocess it in order to create the RDDs: dictionary,
reverseDictionary, nonDataNodesBlocklist and encodedTriples.
dictionary maps G nodes to their integer encodings, reverse-

Dictionary is its reverse map and encodedTriples are the iG triples
encoded into integers. We collect the class and property nodes in
schema-Nodes RDD; this (very small) collection is broadcast to all
nodes.

Then, we create an RDD called nodesGrouped that is a map from
G nodes to the set of their incoming and outgoing edges. Next, in
the weak algorithm we create a unificationDecisions RDD that is a
collection of unification decisions; in the strong algorithm we create a
respective propertyRelationInformation RDD. For those two RDDs
we exclude (prefilter) class and property nodes, and in case of typed
summaries we exclude typed nodes too.

The RDDs unificationDecisions and propertyRelation-

Information are gathered at the driver, which computes the
source and target cliques of G. The driver then broadcasts the source
and target clique IDs of each property to all the nodes. This allows
to create the summary nodes and to create the summary edges. The
algorithms that build G/S, G/TW and G/TS also use an RDD called
representationFunction, which stores a mapping between the input
graph node and its summary representative. This map is filled by
each algorithm, and then used on each machine to emit, for each
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triple of the form n p m that it stores, the corresponding summary
triple nrep p mrep, where nrep, mrep are the representatives of n and m,
respectively. The weak summarization algorithm does not need this
map; as explained in Section 3.7.5 (Step (W6) and below), it can create
the summary triple representing n p m directly based on p.

Finally, in all the algorithms we need to decode the properties (edge
labels). We do it by joining the encoded summary triples with the
reverseDictionary in order to replace each encoded property with
its full value from G.

3.8 centralized summarization experiments

computational environment We ran all experiments on an
Intel Xeon CPU E5-2640 v4 @ 2.40GHz, 40 cores (2 sockets with 10
physical cores each, hyper-threading enabled), running CentOS 7
with 90GB for JVM (OpenJDK 1.8) and 30GB of shared buffers for
PostgreSQL 9.6 (with 640 MB working memory).

systems We implemented the centralized algorithms in Java 1.8
(14.5k lines of code) and made them available online as the RDF-
Quotient tool [33]. RDFQuotient relies on OntoSQL 1.0.12, an ef-
ficient RDF storage and query answering platform on top of an
RDBMS [46], [47], [48] (PostgreSQL in our case). OntoSQL stores
RDF triples in an integer-encoded triple table, indexed by s, p, and o.

3.8.1 Centralized algorithms compared

For a broader view, we now position our work with respect to some
best-known quotient summarization proposals. Concerning the cen-
tralized algorithms, in RDFQuotient, we implemented:

• Our global and incremental algorithms for building G/W, G/S, G/TW,
G/TS summaries (a total of eight).

• An algorithm which computes the fb (forward and backward
bisimilarity or “full bisimilarity”) summary of an RDF graph,
used in many prior works, e.g., [26]. The b summary introduced
in [32] is obtained from fb by collapsing all leaves together.

• Algorithms to build the k-bounded bisimilarity summaries for
k = 1, denoted 1fw, 1bw, and 1fb [27]. We do not use higher k
values because, as we will show, even at this smallest k, bisimi-
larity summaries are too large for visualization; higher k would
only increase the number of nodes and edges. The a summary
in [32] and also the characteristic sets of [42]) correspond to
the 1fw summary with all leaves collapsed. Similarly, the ioa

summary of [32] is obtained from 1fb by collapsing all leaves.
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Real datasets |G| |G∞| u% #p #c

DBLP 88,153,334 88,153,334 87 26 14

DBpedia Person 7,889,268 7,889,268 63 9 1

Foodista 1,019,799 1,019,799 75 13 5

Nobel Prizes 87,549 119,457 71 45 26

Springer LOD 145,136 213,017 77 26 11

Synthetic datasets |G| |G∞| u% #p #c

BSBM [49] 1M 1,000,708 1,009,138 68 38 159

BSBM 10M 10,538,484 10,628,484 66 38 593

BSBM 100M 104,115,556 105,315,556 61 38 2019

BSBM 138M 138,742,476 140,342,476 61 38 2,421

LUBM [50] 1M 1,001,658 1,227,984 34 18 45

LUBM 10M 10,728,460 13,147,069 34 18 45

LUBM 100M 106,778,632 130,843,944 34 18 45

Table 4: Datasets used in experiments.

• The best algorithms from [32] building the t and ioat sum-
maries, but without the leaf collapse.

As explained in Chapter 2, the leaf collapse introduces a loss of
information, and for this reason, we do not adopt it.

3.8.2 Datasets

We have experimented with real and synthetic graphs of up to 36.5GB.
Table 4 shows for each graph its number of triples |G|, the number of
triples in its saturation |G∞|, the percentage of untyped nodes in the
graph u%, and the number of distinct data properties #p and classes
#c. Each graph has at least 30% untyped nodes; these form a strong
majority in all but the LUBM graphs. Note that in BSBM graphs, the
number of classes grows with the data size.

3.8.3 Summary size

Table 5 reports the node and edge counts, denoted (n|e), for the
compared summaries, both directly, and after applying inlining (Sec-
tion 3.6, denoted with the in superscript). We report only the data
edges in the summaries, and omit schema triples, or metadata triples,
e.g., C dc:publisher a1 states that a1 published class C, etc. These
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omitted triples are the same for all summaries9. Numbers are missing
(-|-) when algorithms ran out of memory or longer than 3 hours.
fb summarization failed to complete within 3 hours, on all but

the smallest graphs (Springer, Nobel Prizes and BSBM 1M). This is
partially due to our simple, single-computer implementation, but
computing fb is also intrinsically hard, as it requires many iterations.
More efficient methods to build the fb summary are parallel [51];
existing algorithms to build the t and ioat summaries are based
on MapReduce [32]. Here, we study the size, precision, as well as
qualitative properties (see Section 3.2) of prior-work summaries, based
on simple (if not the most efficient) centralized implementations. The
fb results we obtained confirm the observation in Section 3.2 that such
summaries are much too complex to be used for a first visualization.

Among the other summaries, before inlining, as theoretically expected
(Proposition 1), G/W always has the fewest edges; G/S is close. In con-
trast, summaries that group nodes (also) by the types, such as G/TS,
G/t and G/ioat are much larger. This is particularly visible for larger
BSBM datasets: as the schema complexity grows, these summaries
have tens of thousands of edges. G/ioat remains too complex even
for the simpler-schema graphs (excluding BSBM), with hundreds or
thousands of edges, whereas G/W and G/S only have a few dozen edges.
G/1fw is always smaller than G/ioat (this can be shown theoretically
based on their definitions), but it remains much larger (by a factor
of 2 in the case of Springer, up to 122 in the case of Foodista) than
G/S. Among the graphs other than BSBM, G/t has less edges than G/S
on the DBpedia Person graph, and less nodes on the Springer graph;
on all the others, G/t is several times larger than G/S. Further, G/t has
the qualitative drawback of considering all untyped nodes equivalent;
none of our summaries has this problem.

After inlining, Gin
/W and Gin

/S are reduced to very few (1 to 21) nodes
and 2 to 36 edges. In contrast, Gin

/t has significantly more edges than
Gin

/S (up to 11× for BSBM10 or DBLP); it is smaller than Gin
/S (by a

small margin) only on DBPedia Person and Nobel. The summaries
Gin

/1fw, Gin
/ioat still remain very large, thus, not useful for first-sight

visualization.

3.8.4 Summarization time

The times to build our summaries using the global and the incremental
algorithms are plotted as a function of |G| in Figure 24; both axes
are in log scale. For each summary type, the summarization time is
roughly linear in the size of G, confirming the expectations stated in
Section 3.7. Increm-W is the fastest overall; it traverses G only once,
thus it is faster than global-W which performs several passes. S, TW

9 In details, for the graphs in Table 5, we omitted: 1, 008; 4, 028; 13, 352; 16, 020; 19; 1; 5;
246; 246; 246; 171; respectively; 108 triples.
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Figure 24: Summarization time (s) vs. graph size |G|.

and TS, in this order, are more expensive, and finally incremental S
which, as we explained, is quite complex. Since increm-S is rather
expensive per-triple, it is more efficient to first summarize a graph
using global-S, and call increm-S only to maintain it later. This is
significantly faster: for instance, global-S on BSBM138M takes only
11.85 minutes, whereas increm-S takes 34.5. Increm-TS is often faster
than increm-S because typed nodes do not lead to splits during TS

summarization.

shortcut speedup Table 6 shows the time to build (G∞)/≡ in two
ways:

• Direct, i.e., saturate G then summarize, denoted dt≡, and

• Shortcut (Section 3.5.3), summarize G, then saturate the summary
and summarize again, denoted st≡.

It also shows the shortcut speedup x≡ for ≡∈ {W, S} defined as (dt≡−
st≡)/dt≡. The speedup ranges between 39% and 94%in all cases, a
direct consequence of ≡W and ≡S compression. Indeed, dt≡ includes
the time to summarize G∞, whereas st≡ includes the time to summarize
(G/≡)

∞; the smaller this is, the higher x≡.

3.8.5 Summary precision

We now attempt to quantify the loss of precision of our structural
summaries. A simple measure is the fraction of summary subgraphs
having no isomorphic counterpart in the data; intuitively, summary
users may believe G exhibits such structures, but this is not true. For
instance, node N1 in Figure 10 has, among others, two outgoing edges
labeled a and ta, whereas such a node does not exist in the original
graph (Figure 3). We define the precision loss at l, or PLl as the
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Dataset dtW (s) stW (s) xW (%) dtS (s) stS (s) xS (%)

BSBM1M 6.56 2.12 0.68 9.52 4.37 0.54

BSBM10M 73.96 19.34 0.74 123.73 52.84 0.67

BSBM100M 797.50 218.83 0.73 1451.40 884.35 0.39

BSBM138M 1393.69 257.19 0.82 3627.19 2049.22 0.44

LUBM1M 24.53 1.99 0.92 27.47 3.76 0.86

LUBM10M 302.24 18.13 0.94 354.81 47.09 0.87

LUBM100M 3472.07 214.28 0.94 4247.83 974.20 0.77

Nobel 3.32 0.46 0.86 3.55 0.70 0.80

Springer 4.07 0.42 0.90 4.52 0.96 0.79

Table 6: Shortcut experiments.

fraction of connected l-edges subgraphs of the summary G/≡ without
a counterpart in G. Table 7 shows PL2 scores for our datasets. By
definition, fb, 1fb and ioat have PL2 = 0 for any graph, since they
reflect completely node neighborhoods at distance 1. In contrast, G/W
has the highest precision loss; G/TS is the most precise, much better
than G/t which blindly collapses untyped nodes. 1fw is quite imprecise
in some cases, since it ignores incoming edges.

3.8.6 Experimental conclusions

Our four summaries can be built efficiently in linear time. They
strongly reduce graph sizes and, through inlining, they lead to com-
pact, understandable graphs which fit human comprehension capacity
at first sight. If all non-leaf G nodes are typed, G/TS (or, equivalently,
G/TW), with type generalization, are the most informative and most pre-
cise, given that type information specified by humans carries precious
information about the graphs. Otherwise, G/S strikes the best balance
between concision and informative content, whereas G/W loses more
precision. The shortcut speeds up W and S summarization of G∞ by 39%
to 94%.Thus, we find the strong summary the safest and most interesting
choice: it can be built efficiently and is most likely to lead to informative yet
understandable RDF graph summaries. More generally, the data publisher
can build them all (first build G/S and G/TS, then G/W from G/S and G/TW
from G/TS) and select the one(s) to share with potential data users.

3.9 parallel summarization experiments

We implemented the parallel algorithms designed for the Spark frame-
work in Scala 2.11; recall the implementation details discussed in
Section 3.7.7.
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Dataset G/W G/S G/TS G/1fw G/t

BSBM1 0.56 0.26 0.01 0.46 0.46

BSBM10 0.56 0.45 0.01 0.46 0.46

BSBM100 0.56 0.48 0.01 0.46 0.46

BSBM138 0.56 0.49 0.01 0.46 0.46

DBLP 0.23 0.09 0.03 0.32 0.37

DB. Person 0.09 0.08 0.09 0.28 0.31

Foodista 0.15 0.15 0.00 0.25 0.32

LUBM1 0.50 0.25 0.00 0.15 0.03

LUBM10 0.50 0.25 0.00 0.15 0.03

LUBM100 0.50 0.25 0.00 0.15 0.03

Nobel 0.27 0.04 0.01 0.59 0.49

Springer 0.01 0.01 0.01 0.59 0.59

Table 7: Precision loss experiments.

computational environment Our experiments have been car-
ried on the computational infrastructure described in Section 3.8. For
our parallel experiments we used a cluster of 6 such machines. All
machines in this cluster are connected to a switch using 10 Gigabit
Ethernet. We used Spark 2.3.0 with Hadoop’s YARN scheduler 2.9.0.
We give to Spark and YARN 100GB of RAM and 36 cores at each
machine. We leave a fraction of the memory (remaining 24GB) and 4
CPU cores for the operating system.

experiments overview We now study our parallel algorithms
for computing G/W, G/S, G/TW, and G/TS summaries. We used the BSBM
benchmark graphs of 1M, 10M, respectively, 100M triples. In these
graphs, 61% to 68% of the nodes were untyped, whereas the others
have at least one type. On the one hand, this justifies the need for
summaries (such as G/W and G/S) which do not require all nodes to be
typed; on the other hand, there is also a sizable share of typed nodes,
which makes the computation of G/TW and G/TW significantly different,
on these graphs, than that of G/W and G/S. As we have seen in Table 5,
the RDFQuotient summaries of the BSBM graphs are quite small; thus,
the information (PRIs and UDs) broadcast by our algorithms is also
quite compact.

3.9.1 Configuration

We recall here that M denotes the number of machines (Spark workers).
Spark parameters relevant for our performance analysis were set as
follows:
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• The number of cores per machine CM: we picked CM = 36 (all
available cluster resources). We pick all the available resources
in order to maximize the performance.

• The number of cores per executor CE. Following Spark guide-
lines, unless otherwise specified, we pick CE = 4.

• The available memory per machine RM: we set it to 100GB.

• The amount of memory per executor RE ≥ 2.78GB. There can
be at most CM executors per machine, so they will use at least
RM
CM

, in general RE = RM ·CE
CM

. We set the lower bound for RE as a
minimal memory of the YARN container, within the memory
limit for executor we need to hold out around 1GB for a memory
overhead (memory for JVM in YARN).

• The number of executors per machine EM, typically 9.

• The total number of executors E is computed as EM ·M.

• The number of partitions P = αE. Following existing recommen-
dations10, we set α = 4.

3.9.2 Speedup through parallelism

We fix the following parameter values M = 5, CE = 4, EM = 9,
RE = 11GB, P = 180 and we vary E, the number of executors, by
using more or less machines.

Figure 25 shows the run time (in minutes) of the parallel algorithms
with respect to the number of executors, on a BSBM graph of 10M
triples. The time here includes loading, preprocessing, summarization
and saving the output file containing the graph summary. We can see
that parallelization helps decrease the run time: there is a big gain
from 9 to 18 executors, and smaller gains as the parallelism increases
(in our setting, benefits basically disappear/amortize going from 36 to
45 executors).

Figure 26 zooms to show only the summarization time (in seconds)
for the same set of computations. We see that the algorithm is overall
efficient, i.e., summarization itself is quite fast (seconds as opposed
to minutes for the overall computation). We investigated and found
large parts of the run time in Figure 26 are spent:

1. Encoding the RDF triples into triples of integers; this is by far
the dominant-cost operation. To do this, we need to identify the
(duplicate-free) set of node labels from G, operation which we

10 http://spark.apache.org/docs/latest/tuning.html#

level-of-parallelism, https://stackoverflow.com/questions/31359219/

relationship-between-rdd-partitions-and-nodes

http://spark.apache.org/docs/latest/tuning.html#level-of-parallelism
http://spark.apache.org/docs/latest/tuning.html#level-of-parallelism
https://stackoverflow.com/questions/31359219/relationship-between-rdd-partitions-and-nodes
https://stackoverflow.com/questions/31359219/relationship-between-rdd-partitions-and-nodes
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Figure 25: Total run time in the parallel setting for various number of execu-
tors.

0

5

10

15

20

25

W S TW TS

Su
m

m
ar

y 
co

m
pu

ta
tio

n 
tim

e 
[s

]

Summary type

BSBM 10M

45
36
27
18
9

Figure 26: Summarization time in the parallel setting for various number of
executors.

implemented using Spark’s distinct() function, which elimi-
nates duplicates from an RDD that is (as usual) spread across the
nodes. It involves communication between nodes, thus its high
latency. We note, however, that our initial implementation, which
lacked the encoding and worked directly with URIs and literals
from G, was way slower (and encountered memory issues). Thus,
we believe the encoding cost is worth paying;

2. The precomputation of the RDF class and property nodes from a
given graph G. This is also implemented by each machine adding
its schema nodes to an RDD and then calling distinct().
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Coming back to Figure 26, we see that despite the need for a global
synchronization step, parallelism (increasing the number of execu-
tors) clearly shortens the summarization time. A few data points are
counter-intuitive, e.g., using 45 executors takes slightly more than
using 36 for weak summarization, or using 36 takes more than using
27 for strong summarization. We believe these points are due to the
(random) way in which the data is distributed among the executors,
which in turn determines when the broadcast operation (Steps (S4)
and (W5)) is finished. Even though this distribution is simply made
in round-robin fashion, we find that overall parallelism clearly helps,
which can be seen, e.g., by comparing the times for the lowest paral-
lelism degrees (9, 18) and the highest (36, 45); this holds even more
when put back in the perspective of the overall time (Figure 25).

3.9.3 Scalability study

Our next experiment studies the impact of the RDF graph size on
the summarization time. We have repeated the above experiments for
BSBM graphs of 1M and 100M triples, leading to time measures for
1M, 10M, and 100M triples, that we analyze together to determine how
the algorithms scale. Figure 27 shows the total run time (in minutes),
whereas Figure 28 depicts only the time to compute the summary.
Note the logarithmic scale of the y axis in both graphs.

The total time (Figure 27), which is dominated by the data prepro-
cessing and, thus, I/O-bound, grows linearly with the data size.

The summarization time alone (Figure 28) grows almost linearly
with the data size for weak, typed weak and typed strong summariza-
tion, whereas the growth of the summarization time is super-linear
for the strong summary. We have not been able to determine precisely
the cause. Recalling also Figure 26, we believe there is some variability
in Spark in-memory execution performance, that we were not able
to control precisely. However, considering (also) the fact that summa-
rization itself takes a relatively small part of the total time, we can
conclude that overall our parallel algorithms scale up well (basically
linearly) with the data size.

3.9.4 Experimental conclusions

We studied the performance of our novel parallel algorithms for build-
ing the weak, strong, typed weak, and typed strong summaries. First,
we analyzed the total execution time. We observe that computation
through Spark can come with a significant overhead with respect
to centralized implementation. This is in part due to network and
synchronization costs inherent to the MapReduce-like systems. Since
Spark is not designed as a graph-oriented store, we must perform
the expensive data preprocessing such as integer encoding. Never-
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Figure 28: Summarization time in the parallel setting for datasets of different
size.

theless, we showed that our summarization algorithms benefit from
parallelism. In particular, we summarization time alone is small and
lets us both scale up with the dataset size and scale out the run time
linearly as the number of executors grows. In our experiments, we ob-
served the best performance for the weak summary with high number
of executor nodes (36 or 45). We recommend to use the centralized
algorithms whenever the memory constraints of a centralized settings
permit that. However, in the settings where the graph size exceeds the
memory available for a single machine, our parallel algorithms are the
only means to carry out large summarization.
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3.10 non-quotient rdf graph summarization

As discussed in the introduction and in Section 3.2, summarization
is a well-studied notion for general graphs [23] and RDF ones in
particular [14]. Many non-quotient RDF graph summaries exist, see,
e.g., [14]. Our work pertains to the family of quotient summaries
of RDF graphs, and most directly compares to bisimilarity-based
quotients, as well as the more RDF-specific ones.

[39] builds answer-preserving summaries for reachability and graph
pattern queries. However, these summaries do not preserve query
structure (i.e., joins), which quotient summaries do preserve.

Other graph summaries compress graphs with bounded “error”
(number of edges to be added as “corrections” after decompression,
to retrieve the original graph) [52], [53]. Nodes and edges are sum-
marized according to their frequencies and/or based on ontology
patterns in [54], [55]. Summaries where nodes are grouped by graph
clustering [56], user-defined aggregation rules [57], mining [58], and
identification of frequent subtrees [59] do not reflect the complete
structure, and/or require user input. With different objectives, these
summaries may omit part of the graph structure, or be much too large
for visualization.

Work on fitting XML data into relational stores [60], [61] also aimed
at finding “homogeneous” node groups; “inlining” there meant storing
in the relation of node n, its properties which occur at most once. Our
inlining (Section 3.6) pushes leaf nodes within their parents, regardless
of their number of occurrences.

Quality metrics for RDF graph summaries have been proposed
in [62]. Along these metrics, our summaries score high for preserving
all classes and properties from G; the price they pay for compactness
is to sometimes show instances that do not exist in G (as our precision
loss experiments show).

3.11 conclusion

This chapter has described my thesis research on quotient summariza-
tion of RDF graphs, that is, graph summaries derived from a notion
of equivalence among RDF graph nodes. We made the following
contributions:

1. We presented four novel RDF graph summaries: weak, strong,
typed weak, and typed strong, which are often small and easy-
to-comprehend, in the style of ER diagrams;

2. We showed RDFQuotient, a framework built upon our novel
efficient and scalable (amortized linear-time) algorithms for com-
puting our summaries either from scratch, or incrementally,
reflecting additions to the graph;
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3. We provided new parallel algorithms that surpass limitations of
memory-constrained environments, and we implemented them
in the Spark framework; they enable further scaleout of our
RDFQuotient summarization methods;

4. We experimented with datasets of size different by orders of
magnitude; we assessed the performance and showed benefits of
the global, incremental, and parallel algorithms (while varying
the degree of parallelism);

5. We presented the first formal study of the interplay between
RDF graph saturation in the presence of an RDFS ontology, and
summarization. We formulated a sufficient condition for a highly
efficient shortcut method to build the quotient summary of a
graph without saturating it;

6. We stated formal results establishing the shortcut conditions for
some of our summaries and others from the literature;

7. We demonstrated experimental validations of our claims based
on our RDFQuotient tool available online.

Moreover, we showed how our new summaries compare with prior
work. Even though more complex summaries, such as 1fb and ioat,
are better suited for indexing, they do not serve a purpose of a first
interface to show to users. In contrast, our summaries and, among
them, the strong summary, which we generally find the best, has the
advantages of being:

• Compact and easy to understand for domain-specific graphs,

• Efficiently computed in linear-time, and

• Benefiting from the original shortcut procedure we introduced.

In addition, none of our summaries has the drawback of collapsing all
leaves, all roots, or all untyped nodes.

RDFQuotient has been used or built upon in several research works.
Among the ones we know in our team:

1. It has been used to prune empty-answers RDF queries in [63].

2. It is currently being used in the PhD thesis of Nelly Barret to
help abstract heterogeneous data graphs [64], created out of
different types of data.

3. My own thesis work has built upon it to help identify interesting
aggregates in an RDF graph, as we describe in the next chapter.





4
D I S C O V E R I N G I N T E R E S T I N G A G G R E G AT E S I N R D F
G R A P H S

In this chapter, we study the problem of discovering interesting ag-
gregates in RDF graphs, automatically. We start by formulating our
research problem. We then outline the existing aggregation techniques
based on the CUBE operator known from relational data warehouses.
We show and explain reasons why the existing algorithms are not
suitable for RDF graphs as they incur errors in the results once run
on RDF graphs. Next, we introduce our novel RDF graph aggregation
techniques that are correct and efficient. We describe in detail a new
end-to-end system that finds the interesting aggregates in RDF graphs.
We demonstrate how we can further speedup the aggregate evaluation
using new early-stop techniques. Finally, we validate the performance
of our algorithms and our system as a whole with experiments.

4.1 motivation

RDF graphs are increasingly being published and shared as part of
the Linked Open Data (LOD) movement. Given the size, heterogeneity,
and complexity of these graphs, their information content is hard to
grasp, in particular for non-expert users. In this chapter, we explore
automatic insight extraction from RDF graphs [6], [7], [65]. Given a
graph and an integer k, we seek to automatically identify the k most in-
teresting insights in the graph. An insight is an RDF analytical (aggregate)
query that results in aggregated measures over the data, grouped by a
set of dimensions [10], [11]. The query can be expressed in a language
such as SPARQL 1.1, the W3C’s standard RDF query language [9], and
evaluated by any RDF query engine. The interestingness of an insight
is assessed based on a statistical measure of the query result.

Recall from Chapter 1 our motivating application, the Computa-
tional Lead Finding. Having addressed graph data summarization
needs in Chapter 3, we now provide a solution for the targeted
journalist-oriented lead-finding scenario. Below, we outline our ap-
proach to RDF insight extraction using examples from statistical lead
discovery.

Running examples. Consider an RDF graph comprising politicians,
CEOs, and connections between them. We can extract such a graph, for
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instance, from the WikiData open-source RDF repository. Figure 29(a)
shows an example RDF graph where CEOs are linked with politicians,
e.g., Isabel dos Santos, a wealthy Angolan CEO (at the heart of the
Luanda Leaks scandal), is the daughter of a former president of
Angola. Starting from the graph, we aim to automatically identify a
small set of aggregate queries that are statistically interesting. Here,
interestingness is a statistical measure that indicates deviation from
the prior knowledge of the journalists. For example, the interesting
aggregate results may deviate from a uniform distribution of values
over different aggregate groups, or a normal distribution over numeric
dimensions such as age.

Table 8 shows three example aggregates, whose dimensions and
measures are either properties in the RDF graph or properties that
we derive to enrich the scope of the analysis. In Example 1, CEOs,
politicalConnections, countryOfOrigin, and netWorth are either types or
properties in the RDF graph in Figure 29(a). Example 2 analyzes the
CEOs along the number of managed companies, which is not a property
in the graph: we derive it by counting the properties of each CEO. This
enables us to discover, e.g., that the average age of Angolan CEOs
that manage two companies is low compared to other nationalities.
Example 3 analyzes CEOs by areas of companies; we derive this from
the graph by following a path from the CEOs to the companies they
manage, then to their areas. Similar path examples include compa-
ny/headquarters, politicalConnection/role; longer paths produce a larger
number of novel angles for the analysis.

Among all possible aggregate queries that we can generate, the
above three examples are selected because their results show signifi-
cant deviation from uniform values (having outliers). For Examples 1
and 2, Figure 29(b) shows, respectively, a histogram that exhibits an
outlier in sum(netWorth) for Angola, and a heat map where the dark
color reflects a low value of avg(age) of CEOs, both due to Dos Santos.
We can show to the user such interesting insights as:

• Histograms (if one-dimensional),

• Heat maps (if two-dimensional), or

• Tables (for high-dimensional aggregates).

Our goal to discover the k most interesting aggregates from an RDF
graph poses two unique challenges:

Challenge C1 - Aggregate identification. Automatic extraction of
interesting aggregates is one among many existing techniques for
data exploration and visualization recommendation. Yet, most prior
works assume a fixed relational schema [66], [67]. In contrast, in RDF
graphs, facts, dimensions, and measures are not specified but must be
identified therein. To address this challenge, given an RDF graph, we
provide a variety of strategies to create new dimensions and measures,

https://www.wikidata.org/wiki/Q456034
https://www.icij.org/investigations/luanda-leaks/
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Example 1 Sum of the net worth of CEOs with political con-
nections grouped by country of origin.

Example 2 Average age of CEOs grouped by nationality and
number of managed companies.

Example 3 Number of CEOs grouped by nationality, gender,
and area of the companies they manage.

Table 8: Examples of interesting aggregates.

which enable us to examine a rich space of candidate aggregates and
to discover the most interesting ones. We further develop a modular
framework for aggregate identification, which can be extended or
customized as needs arise.

Challenge C2 - Efficient and correct aggregate evaluation. Since
we define interestingness on an aggregate result, we must evaluate can-
didate aggregates to determine if they are among the k most interesting
ones. A key feature of our work is that we look for multidimensional
aggregates (MDAs), such as Examples 2 and 3. A set of N dimen-
sions, among which we enumerate candidate aggregates, leads to a
lattice [68] of 2N nodes, each of which is an MDA (see Figure 29(c)).
We may have many such lattices to consider at once, and efficiently
evaluating them all poses a salient challenge.

To address the challenge, first, we revisit a classical framework
for lattice-based MDA computation in relational data warehouses (DWs).
Efficient algorithms, such as ArrayCube [22], compute an aggregate
in the lattice from the result of one of its parents, and compute all
aggregates in the lattice in a single pass over the data. However, a
crucial observation we make in this work is that the classical one-pass
approach to lattice computation is incorrect for RDF data, due to a
phenomenon called multi-valued dimensions, that is, an RDF node (fact)
may have multiple values along a given dimension. To tackle the issue
while still retaining the benefits of one-pass algorithms, we provide
a theoretical analysis of how the classical approach produces errors.
Furthermore, we develop a new RDF-compatible one-pass algorithm
that:

1. Correctly and efficiently handles lattice-based MDA computation
where the aggregates use multi-valued dimensions;

2. For each node in the lattice (with a given set of dimensions),
simultaneously handles many aggregates that differ in the mea-
sure (among many possible ones) and the aggregate function in
use;

3. Saves computation cost by sharing measures across all lattices
that analyze the same set of facts.



4.2 problem statement and notation 81

Second, to further improve efficiency, we develop a new technique
to stop the evaluation of an MDA as soon as we can determine (with
high probability) that it will not be among the top k. Our technique
builds on the work in [69], which provides confidence-interval (CI)
bounds on an approximate aggregate result. Our problem is harder
because we want to approximate the interestingness score computed over
the aggregate result, which amounts to estimating the result of a nested
aggregate query, whereas the prior work does not support such nested
queries. Using advanced statistical tools, we construct CIs for the
interestingness function including variance, skewness, and kurtosis over
estimated results of candidate aggregates, enabling early pruning of
uninteresting aggregates.

In summary, the contributions we make in this work include:

1. We formalize our problem of finding the top-k most interesting
aggregates in an RDF graph (Section 4.2);

2. Spade, a new RDF-oriented end-to-end framework that automati-
cally identifies, enumerates, and efficiently evaluates RDF MDAs
to determine the most interesting ones (Section 4.3);

3. MVDCube, the first correct and efficient algorithm for one-pass
lattice-based computation of RDF MDAs (Section 4.4);

4. A novel early-stop technique that stops the evaluation of MDAs
that, with a high probability, will not be in the top-k list (Sec-
tion 4.5);

5. We further detail the system architecture and provide an insight
into the Spade implementation choices (Section 4.6);

6. Experimental results (Section 4.7) validating:

• The ability of Spade to extract insights from a large space
of candidate aggregates;

• The frequent, and potentially high errors that existing algo-
rithms introduce on real-life, heterogeneous RDF graphs;

• The efficiency of our one-pass algorithm, which is faster
than PostgreSQL’s GROUP BY CUBE implementation by
20% to 80%;

• The extra speedup of 10% to 43% achieved by our early-stop
technique, and

• The scalability of Spade as the size and complexity of the
graphs increase.

4.2 problem statement and notation

We consider well-formed RDF graphs that we saturate prior to our
analysis (recall Chapter 2).
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A candidate fact set (CFS) is a set of RDF nodes that we build an
interesting aggregate on; we call a member of the set a candidate fact
(CF).

An attribute is either a (direct) property (P) of a CF in the original
RDF data, or a derived property (DP), which we create from the data
and attach to a CF to enrich the analysis. For instance, one may attach
to each CEO the number of companies they manage (the full set of
derivation strategies is discussed in Section 4.3). An attribute can be
used as a dimension, to group CFs by value, or as a measure, to be
aggregated within each group of CFs.

We employ an aggregate function, f , that ranges over the common
set Ω = {count, min, max, sum, avg}.

A multidimensional aggregate (MDA), A = 〈CFS,D, M, f 〉, is de-
termined by: a CFS, a set D = {D1, D2, . . . , DN} of dimensions (which
are attributes), a measure M (also an attribute), and an aggregate
function f . The semantics of A is that of a SPARQL 1.1 aggregate
query [9] (recall Section 2.2 in preliminaries), which also agrees with
that of the RDF analytical queries introduced in [11], [10]. The result
of A on an RDF graph G, denoted A(G), is the set of tuples, one per
each distinct combination of dimension values (aggregate group) in
the data:

A(G) = {(d1, d2, . . . , dN , f {mj | ∃CFi ∈ CFS, CFi.D1 = d1,

CFi.D2 = d2, . . . , CFi.DN = dN , CFi.M = mj})}

where CFi has (at least) the values d1, d2, . . . , dN along the dimensions
D1, D2, . . . , DN , and mj iterates over the set of values of the measure
M on CFi. Finally, f {·} is the result of running the aggregate function
f over the measure values from a given set.

Our semantics, unlike that of relational DWs, does account for
heterogeneity in RDF data:

1. Some CFs may miss dimensions and/or measures, and thus they
do not contribute to the result. For the graph in Figure 29, the
result for Example 1 is {(Angola, $2.8B)}, due to n1, whereas n2

does not contribute to the result as it lacks the countryOfOrigin
dimension;

2. A CF may contribute to multiple groups in A (if it has multiple
values for a dimension), and/or multiple times to the aggregated
value (if it has several values for the measure). The result for
Example 2 is {(Nigeria, 1, 65), (France, 1, 65), (Lebanon, 1, 65),
(Brazil, 1, 65)}, all obtained from n2 given its four distinct values
of nationality. Although n1 has both dimensions, it does not
contribute to the result as it misses the age measure.

An interestingness function, h, is applied over the result of an
aggregate A. Let W be the number of tuples in A(G) and, for each
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tuple ti ∈ A(G), let ti.v be the aggregated value computed by f . Then
h takes the set {t1.v, t2.v, . . . , tW .v} and returns a score, i.e., a positive
real number, reflecting a measure of interestingness of A. The user
chooses the function to be used during the analysis.

Finally, the problem we address is stated as follows:

Problem 1 Given an RDF graph G, a positive integer k, and an interest-
ingness function h of choice, find the aggregates A1(G), . . . , Ak(G) whose
interestingness on G is the highest.

4.3 overview of the approach

In this section, we describe the system design of Spade, a new RDF-
oriented end-to-end framework that automatically identifies, enumerates,
and efficiently evaluates MDAs to determine the most interesting ones.
Figure 30 shows Spade’s analytics pipeline; it comprises an offline
phase, where an RDF graph is loaded and preprocessed, and an online
phase, where user-specific analysis is performed.

offline processing Upon loading an RDF graph, we first build
a structural summary thereof, using the open-source RDFQuotient
tool [44]. The summary captures all the properties occurring in the
graph and proposes a set of RDF node groups such that the RDF nodes
in each group are considered equivalent. Spade uses the summary to
expedite several steps of the analysis, e.g., the enumeration of RDF
types and properties, as described below.

Next, we perform Offline Attribute Analysis with three main pur-
poses:

1. To gather a set of statistics for each property in the graph,

2. To determine if derivations should be generated for a given
property, and

3. To decide if preaggregated values of some properties should be
computed and stored in the database.

Derived properties are the key to a rich search space and to effec-
tively addressing challenge C1. With this aim, we compute statistics
including the type of property values (e.g., String, Integer, Date) and,
if they are multi-valued, their number of distinct values, the lowest
and highest values, etc. Based on these results, Derived Property
Enumeration generates:

1. Property counts for multi-valued properties, e.g., how many com-
panies a CEO manages;

2. Keywords occurring in property values, e.g., if a company’s descrip-
tion is “Sonangol oversees petroleum production”, we attach to
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the company the multi-valued attribute kwInDescription with the
values “Petroleum” and “Production”;

3. The language of a text property, e.g., a company may gain the
attribute langOfDescription with the value “English”;

4. Paths, e.g., a CEO politically connected to a “President” gains
the attribute politicalConnection/role with the value “President”.

Finally, each derived property is also analyzed and stored along with
its statistics in the database.

In addition, for each multi-valued attribute, we create a table in the
database storing its values, preaggregated on the RDF nodes that have
it. More specifically, for each RDF node, we compute and store the
aggregated value for each (attribute, aggregate function) pair, e.g., the
sum of a1, the count of a1, the minimum of a2. This allows Spade to
account for facts with multiple measure values and improve Aggregate
Evaluation during Online Processing.

online processing The analysis of RDF graphs suits the specific
needs of users and proceeds in the following steps. Step 1 is Candidate
Fact Set Selection. To address challenge C1, Spade identifies CFSs in
three ways:

1. Type-based: for each type T in the graph, the set of RDF nodes of
type T;

2. Property-based: for a (user-specified) set of properties, all the RDF
nodes having those outgoing properties;
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3. Summary-based: each set of RDF nodes identified as equivalent
by the RDFQuotient summary; RDF nodes in the same equiva-
lence class tend to have many common properties, making them
interesting candidates to be analyzed together.

Step 2 is Online Attribute Analysis. In this step, for each CFS, we
first enumerate all direct and derived properties. Then, we enrich the
offline-analysis results by adding CFS-dependent statistics, e.g., the
support of an attribute among all the facts in the CFS, the number
of CFs that have such an attribute more than once, and the number
of distinct values. Spade exploits the gathered statistics in different
steps, e.g., to guide the choice of dimensions, measures, and aggregate
functions and to improve Aggregate Evaluation.

Step 3 is Aggregate Enumeration. Spade uses the pool of analyzed
attributes to generate candidate MDAs. To address challenge C1, we
generate a rich space of candidate aggregates while applying rule-
based pruning to avoid meaningless candidates.

1. Identifying dimensions and measures from (derived) properties: We
first enumerate all the (derived) properties and consider them
for dimensions or measures, subject to the following rules:

• Dimensions and measures must be frequent, i.e., having a
support greater than a defined threshold;

• Dimensions should not have too many distinct values when
compared to the number of facts to examine (e.g., we do not
consider counting the number of CEOs by their birthday as
there are too many distinct values for the birthday).

2. Identifying the dimension set of each lattice: We compute the Maxi-
mal Frequent Sets of attributes [70] in the CFS. Each of the found
sets is the root of one lattice. We further filter them so that each
lattice:

• Has at most N attributes, and

• Does not contain attributes that are derived one from the
other, e.g., nationality and numOfNationalities are not allowed
as dimensions of the same lattice.

Although we aim to offer a general approach, we also note that
the readability of MDAs by human users is maximized at levels
of relatively low dimensionality, i.e., N ∈ {1, 2, 3, 4}.

3. Identifying the measures in each lattice: Once a lattice acquires di-
mensions Di, we assign it a measure setMi that comprises all
the analyzed attributes of the CFS except those in Di, and those
that are derived from a dimension in Di, e.g., numOfNationali-
ties cannot be a measure in an aggregate whose dimension is
nationality.
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Several lattices may be found for a CFS, e.g., for CEOs, we have
three: {countryOfOrigin}, {nationality, numOfCompanies}, and {national-
ity, gender, company/area} (Examples 1-3). They might partially overlap
in dimensions and/or measures; e.g., Examples 2 and 3 share national-
ity. Spade ensures that the results of evaluated MDAs are reused (not
recomputed) in the other lattices where they appear.

Step 4 is Aggregate Evaluation. This step triggers the actual evalu-
ation of the enumerated MDAs. To address challenge C2, we combine:

• Our novel early-stop technique to quickly prune the unpromising
MDAs, and

• Our MVDCube algorithm to efficiently compute the remaining
MDAs in a single pass. The final results are produced in an
incremental fashion and handled by the Aggregate Result Man-
ager (ARM). The ARM stores them and incrementally updates
statistics such as minimum and maximum values, as we explain
in Section 4.4. These are used to determine the interestingness
of the computed MDAs (by applying h) in one pass over their
results.

Step 5 finally performs Top-k Computation. Once the evaluation is
complete, the ARM retrieves all the evaluated MDAs, computes their
interestingness score by applying h, and returns the k best aggregates.
Spade natively supports three interestingness functions, from which
the user can choose to suit their preferences:

• Variance,

• Skewness, and

• Kurtosis,

where variance can detect deviation from uniform aggregate values,
whereas the latter two can detect deviation from a normal distribution
of aggregated values over numeric dimensions.

For example, Figure 29(b) shows a histogram that exhibits a peak
(outlier) in sum(netWorth) for Angola, due to Dos Santos, and a heat
map where the dark color reflects a particularly low value of avg(age)
of CEOs, again due to Dos Santos. The two aggregates are interesting
because of their high variance scores. More sophisticated interesting-
ness functions for insight detection can be applied on the Step 4 results
via the ARM; we discuss early-stop extensions in Section 4.5.2.

4.4 lattice-based computation

Recall from Chapter 2, ArrayCube, a classical optimized method of
computing all aggregates in a lattice. In this section, we explain its
limitations and the errors it makes in our setting. Finally, we present
our new algorithm to compute lattices of RDF aggregates correctly
and efficiently.



4.4 lattice-based computation 87

4.4.1 Incorrectness in the RDF setting

Results computed by ArrayCube may be incorrect in the presence of
multi-valued dimensions. Consider our running examples that show
CEOs with various nationalities and at most one gender who manage
companies in several areas. In a relational DW, each such CEO would
be stored as a tuple in the fact table, and their multiple nationalities
(respectively, company areas) would be modeled as a dimension table
associating them with each of their nationalities (company areas).
We could then find the result for Example 3 with a query q that
joins all the relations, groups the data by the dimensions, and finally
aggregates the measure. To evaluate all MDAs in the lattice determined
by the dimensions in Example 3, ArrayCube would use the MMST in
Figure 4(b) and compute the aggregate A1 by means of q, using its
result to compute the rest of the lattice.

Figure 5 shows the result of A1 when applied to the two CEOs
in Figure 29. The tuples t1 to t3 are derived from Dos Santos (the
RDF node n1), whereas t4 to t11 are due to Carlos Ghosn (the RDF
node n2). Since n2 lacks gender information, the tuples t4 to t11 have
gender=null. We need to keep them to compute the rest of the lattice
correctly. Since n2 has valid values for nationality and company/area, we
must count this CEO when computing aggregates over one or both
of these dimensions, e.g., A4 in Figure 5. We obtain the result of A2

by aggregating A1’s result to project away the nationality dimension.
For instance, the tuples t4, t6, t8, and t10, which are all associated with
n2, collapse into the tuple t4 in A2 where now this CEO counts as
four. Then, A2 is further aggregated by projecting away company/area
to compute A3 and separately gender to compute A4. The cardinality
“bug” introduced in A2 propagates down the lattice. In A4’s result, we
find five CEOs managing Manufacturer companies, whereas there are
only two. A similar error occurs in A3 where we count three female
CEOs (which is wrong) because the tuples t1 to t3 of A2 are aggregated
into the same tuple and are, thus, counted three times (although they
all represent n1). Since A3 will not be further aggregated, we can
remove the tuple having gender=null.

The above example shows that multiple values for a dimension may
lead to errors when an aggregate is computed from one of its parents. To
correctly compute the whole lattice from the root aggregate, naïve
solutions may:

1. Require that each CEO fact be represented by at most one tuple,
e.g., in our example, by ignoring all but one of Ghosn’s nation-
alities (company areas); this would clearly miss an interesting
part of the data;

2. Compute each of the 2N aggregates in the lattice separately,
missing the benefits of efficient one-pass algorithms; this would
entail a high run time overhead.
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However, computing each lattice aggregate from the base data is
very inefficient.

Interestingly, if we alter the query q to count distinct CEOs in each
group (in lieu of count(∗)), no errors occur in the result of Example 3.
By design, ArrayCube cannot compute aggregates including distinct:
instead, it computes all aggregates from the result of the lattice root,
where information about individual facts is no longer present. Other
one-pass algorithms for lattice-based aggregate computation, such as
PostgreSQL’s GROUP BY CUBE implementation [71] (PGCube), do
support the counting of distinct values and can thus be used to obtain
the correct result for Example 3. Thus, one could get correct result
for Example 3 by asking count(distinct CEO) rather than count(∗).
However, in the presence of multi-valued dimensions, computing
aggregates from the result of one of their parents in the lattice may
still lead to wrong results, as illustrated in the following variations of
Example 3.

Variation 1. Consider the aggregate “sum of the net worth of CEOs
by nationality, gender, and area of the companies they manage”. We first
augment the data in the root aggregate A1 with the sum of netWorth
(NW). The tuples t1 to t3 contain the NW of Dos Santos: $2.8 billion.
The tuples t4 to t11 contain the NW of Ghosn: $120 million. We then
compute the sum of NW by company/area. The tuples t2, t5, t7, t9, and
t11 (all having company/area=M) sum up into one tuple, and result in the
sums of $2.8B of Dos Santos (from t2), and 4× $120M of Ghosn (from
the other tuples), whereas both CEOs should have contributed exactly
once. Moreover, we cannot solve this issue with the sum(distinct NW)
aggregate. If both CEOs had the same NW, a sum(distinct) would sum
NW once, instead of (correctly) summing it twice (once per each of
them).

Similarly, the following variation illustrates another scenario leading
to wrong results.

Variation 2. Consider the aggregate “average age of CEOs by nation-
ality, gender, and area of the companies they manage”. We obtain it as
sum(age)/count(age), i.e., the sum in Variation 1 is divided by 5. In-
stead, the correct value is sum of ages of Dos Santos and Ghosn
divided by 2. As in Variation 1, we cannot solve this issue by using
avg(distinct age).

As our experiments show (Section 4.7.3), the number of incorrectly
computed aggregates, and the magnitude of the error itself, can be
quite significant. This is because of the flexible RDF model, which
allows multi-valued dimensions. Conversely, in a relational DW, once
a fact table is joined with dimension tables, ArrayCube assumes that
each fact has exactly one value for a dimension (for instance, due to a
functional dependency). Below, we formally characterize the situations
when ArrayCube introduces errors on RDF data.
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analysis of arraycube errors on rdf Consider an RDF
graph G and a lattice of N dimensions (2N nodes) on G. Whether
a lattice node can be computed correctly from one of its parents,
depends on the presence of multi-valued dimensions in the lattice:

Lemma 4 Let G be an RDF graph. Let P = 〈CFS,DP, M, f 〉, C =

〈CFS,DC, M, f 〉 be two aggregates in a lattice on G such that P is
a parent of C, DP = DC ∪ {D} where D is a dimension, f ∈
{count(∗), count(M), sum(M), avg(M)}, and there exists a fact n ∈ CFS
with more than one value along the dimension D. Then, computing C(G)
from the result of P(G) may lead to wrong results.

Proof Let the fact n ∈ CFS have the values n.D = {a, b} and, for each
Dj ∈ DP, Dj 6= D, n.Dj = dj and dj is not null. By definition of P,
there exist tuples t1, t2 ∈ P(G) such that t1 = (d1, . . . , a, . . . , dN , v1) and
t2 = (d1, . . . , b, . . . , dN , v2), to both of which n contributes. Hence, there
exists a tuple t3 ∈ C(G) such that t3 = (d1, . . . , dN , v3), in which the
dimension D does not appear.

When computing C(G) from P(G), the aggregated value v3 is obtained
from t1.v1 and t2.v2 based on the function f . For instance, if f is count(∗),
the fact n will be counted twice, instead of just once. If f is sum(M), the M
value(s) of n will be summed twice, which falsifies the result (except for the
particular case where their sum is 0). Computing the avg may similarly lead
to wrong results.

How does Lemma 4 impact the one-pass lattice-based computation
for a given graph G? We show the following result:

Theorem 8 Given an RDF graph G and a lattice on G, letMD ⊆ D be the
set of all the dimensions for which some fact(s) n ∈ CFS have more than one
value, and let K > 0 be the size ofMD. Then:

1. A one-pass algorithm cannot compute correctly all the lattice aggre-
gates.

2. The maximum number of MDAs (lattice nodes) that can be computed
correctly (depending on the choice of the MMST) is 2N−K.

Proof We prove 1. and 2.:
1. Among the N · 2N−1 lattice edges, K · 2N−1 are labeled with a dimension

fromMD, meaning that the dimension is projected away when computation
follows this edge. As Lemma 4 shows, if the MMST contains one such edge,
the result of the child node of that edge may contain errors. However, no
spanning tree, thus, no MMST, can avoid all edges labeled with a dimension
inMD. This is because to go from the root, whose dimensions are D, to a
node lacking one dimension D ∈ MD, by the construction of the lattice, the
MMST must traverse an edge labeled D.

2. The lattice nodes that can be computed correctly in one pass (starting
from the root’s result) are exactly those having all the MD dimensions: a
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Figure 31: Aggregate evaluation using MVDCube and early-stop.

node lacking one such dimension would be obtained by aggregating a parent’s
result along that dimension, and thus, by Lemma 4, be wrongly computed.
The lattice has 2N−K such nodes. Fewer nodes may be computed correctly if
the MMST picks a “wrong” edge, even if it could have avoided doing so.

4.4.2 MVDCube algorithm

We now present Multi-Valued Data Cube (MVDCube), our new one-
pass MDA evaluation method. Going beyond existing algorithms [22],
MVDCube:

1. Produces correct results even in the presence of missing or multi-
valued dimensions and/or measures,

2. Computes several aggregate functions over a large set of measures in
the same lattice, and

3. Saves computation cost by sharing measures across all lattices
from a given CFS.

Before we move forward, we clarify that our RDF database uses
the following storage: a CFS is represented by a single-column table
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storing the identifiers (IDs) of the facts; for each attribute a, a table ta

stores (s, o) pairs for each (s, a, o) triple in the RDF graph.
Figure 31 depicts the main features of MVDCube. Our MVDCube

evaluation method proceeds in the following steps, with the pseudo-
code of its core functions shown in Algorithm 6.

building mmsts Given a CFS and a set of lattices (identified in
Step 3 of Spade’s pipeline), each with the dimensions Di and the
measuresMi, we construct one MMST per lattice as in [22].

data translation For each lattice, we process the root node by
sending a join query to the database to obtain all the CFs that have a
value for at least one of the dimensions in Di. We then translate the
join result to lay the data in a partitioned array representation of cells. A
partition is a set of pairs (cell index, CF). We assign each RDF node
a cell index based on its dimensions’ values; in the case of multiple
values for a dimension, we assign indexes of all corresponding cells.
We add the special value null in the domain of each dimension to
account for missing values. Therefore, each cell is associated with the
set of RDF nodes that correspond to the combination of dimension values
that this cell represents. Like ArrayCube, we take an initial pass over the
data to bring it into the array representation, where the (conceptual)
multidimensional array is stored as a serialized one-dimensional array.
If the data does not fit into the available memory, we partition it,
store to disk, and later read back, one partition at a time; otherwise,
MVDCube accesses the array directly from the main memory, in a
single pass, in subsequent steps.

measure loading The measure loading step is performed in
parallel to Data Translation. For each measure M in Mi, we query
the database to retrieve, for each CF, the preaggregated values of M
(which were computed and stored offline). We load the values ordered
by the IDs of the CFs, and share them among all MMSTs in a given
CFS. As they are stored at the granularity of a CF, they can be used to
compute aggregate results for all cells, as we describe below.

lattice computation We then carry out the Lattice Compu-
tation step in one pass over the data using the MMST. MVDCube
associates an MMST node with a (large) set of aggregates; we de-
note such a node as Ai = 〈CFS,Dj〉. Each node then represents all the
MDAs that have dimensions Dj (but might differ in their measure and
aggregate function). Suppose that we want to compute the lattice with
D={gender, company/area, nationality},M={age, netWorth} and that age
is associated with avg, and netWorth is associated with sum. Node A2

in Figure 31 represents the two MDAs:

1. Average age of CEOs, and
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2. Sum of netWorth of CEOs, both grouped by gender and compa-
ny/area.

In the MMST, we allocate, for each node, the needed memory. We
load partitions successively into the root. In Figure 31, we assume
that each partition contains 3 distinct values of each dimension, hence
27 cells. For compactness, we encode each set of RDF nodes in a cell
using a Roaring Bitmap [72] (also adopted in Spark because of the
strong compression and lookup performance). In Figure 31, each cell
stores a set of CEOs (a subset of the facts n1 and n2). The bitmaps follow
the same ordering of the CFs applied during Measure Loading. The cell of
index 3 in A1 contains a bitmap of size 2, BM3 = 10, representing that
n1 is in the set, whereas n2 is not.

(a) Projection and bitmap propagation. We scan the bitmaps in the cells
of the root node and immediately propagate them to the child nodes
in the MMST as dimensions are projected away (line 4 in Algorithm 6).
We union (OR) the bitmap in each cell in a child node with each
bitmap received from the parent (line 9): this models the contribution
of all facts in a parent node to the corresponding cell in the child node. In
particular, as we project away a multi-valued dimension from a parent
node to a child node, if a fact has multiple values of the dimension, it
belongs to different cells in the parent node, but will be consolidated
in the same cell in the child node.

Red arrows in Figure 31 show propagations. For example, the
bitmap of cell 2 in node A4, BM2, is initially empty (i.e., 00). Then it is
updated to 01 when BM8 from A2 is propagated, and later to 11 when
BM2 from A2 is also propagated.

Once a partition is evaluated, we apply the ArrayCube check (Sec-
tion 2.3) in the nodes to learn if it is time to write results to disk
(line 10). If so, we first propagate their memory content to their child
nodes (line 11), and then we compute the values of the aggregated
measures and store them (line 12).

(b) Measure computation (denoted as ⊗). When a node is ready to
write to disk, we scan its memory one cell at a time. For each cell:

• We identify the preaggregated measures of each RDF node in
the cell’s bitmap, and

• We apply the relevant aggregate functions to them.

Note that measure computation is very fast as both the bitmaps and the
preaggregated measures are ordered by the fact ID, and can aggregate
different measures simultaneously.

Revisit A4 in Figure 31. Once P1 and P2 are evaluated, A4 is ready
to write current results to disk. We scan the three cell bitmaps, and
for each bitmap:

• Identify the age and the net worth of each CEO in the bitmap by
accessing the preaggregated measures,
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• Aggregate the respective measures by applying avg on the age
and sum on the net worth.

For example, for BM2, we identify the ages (respectively, net worth)
of n1: 47 ($2.8B) and n2: 66 ($120M) because they are both present
in the bitmap, then compute their average (respectively, sum). The
Aggregate Result Manager (line 19) receives the computed measures,
and the values of the dimensions obtained from the cell index. For
BM2, the ARM will receive 57.5 and 2.92B, and company/area=M. Finally,
we empty A4’s memory in the MMST and reuse it to evaluate the
aggregate on the next partition of data (line 13).

Algorithm 6: MVDCube(root, partitions)

1 Function Main(root, partitions):
2 foreach P ∈ partitions do
3 root.loadPartition(P);
4 root.updateSubtree();
5 root.computeAndStoreAggregatedMeasures();

6 Function updateSubtree():
7 foreach child ∈ children do
8 foreach pair (partition, offset) ∈ memory do
9 child.updateBitmap(partition, offset);

10 if timeToStoreToDisk() then
11 child.updateSubtree();
12 child.computeAndStoreAggregatedMeasures();
13 child.emptyMemory();

14 Function computeAndStoreAggregatedMeasures():
15 foreach pair (partition, offset) ∈ memory do
16 currentBitmap = getBitmap(partition, offset);
17 foreach pair (measure, aggFunction) do
18 aggregatedMeasure = currentBitmap ⊗

preAggregatedMeasure(measure, aggFunction);
19 resultManager.add(partition, offset, aggregatedMea-

sure);

memory usage Our memory analysis builds on the corresponding
ArrayCube study [22]. Assuming N dimensions with d distinct values
each and c distinct values per partition, the MMST uses at most
MT = cN + (d + 1 + c)N−1 array cells to compute one aggregated
measure. In MVDCube, the memory for an MMST is also upper
bounded by MT cells. However, cells have a variable size as each of
them contains a Roaring Bitmap (RB). For this reason, we provide a
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worst-case estimation of MVDCube’s memory needs for the MMST
and the preaggregated measures:

• The size of an RB used to store Z integers in the interval [0, u)
is bound in [72] to MRB = 2 · Z + 9 · (u/65535 + 1) + 8, that is,
beyond a fixed overhead for u, the universe size, RBs never use
more than 2 bytes per integer. In the worst case, we could have
|CFS| facts in each cell, occupying a total of MT ·MRB bytes.

• For m measures, MVDCube needs |CFS| ·
m
∑

i=1
|SMi | float num-

bers in the worst case, where Mi refers to each measure and
SMi is the set of aggregate functions assigned to the measure.
As an optimization, we detect, offline, the numeric properties
having at most one value for all their RDF nodes, e.g., the age of
CEOs. To save memory, we allocate a single float number for all
preaggregated results (min, max, and sum) for such properties.

4.5 early-stop aggregate pruning

To reduce the effort required to compute lattices of aggregates, we
have developed a novel technique called early-stop (ES).

4.5.1 Early-stop principle

Given an aggregate A = 〈CFS,D, M, f 〉 and an interestingness func-
tion h, finding, how interesting A is, amounts to evaluating a query of
the form:

SELECT h(aggregated) FROM

(SELECT D1, D2, . . . DN , f (M) AS aggregated

FROM CFSD,M GROUP BY D1, D2, . . . , DN) AS inner;
where CFSD,M is CFS joined with dimensions D and the (preaggre-
gated) measure M. Note that we only need to present the result of the
inner query to the user, if A ends up in the top-k. This leads to the
following idea: we could reduce the effort to compute some aggregates
if we can determine (with high probability) that they will not be among the k
most interesting ones.

The literature [69], [73] introduced conservative and large-sample
confidence intervals as means of estimating the result of a query such
as inner but not the result of the full nested query, i.e., the interest-
ingness score that we aim to obtain. Recent work on visualization
recommendation [67] shows how to stop the evaluation of low-utility
one-dimensional aggregates early on relational data. In doing so, it
relies on a worst-case (conservative) confidence-interval-based pruning.
In contrast, we extend the line of research on aggregate pruning by
constructing a large-sample confidence interval around the interesting-
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ness score estimator. We provide our novel approach and formalize its
probabilistic guarantees below.

To enable early-stop pruning, we estimate the interestingness of
the aggregate A using an estimator Ĥr, and bound this approximate
score within our large-sample confidence interval. (We derive the
formula for the interval in Section 4.5.2.) We draw from each aggregate
group a sample containing the same number of facts. For the sake
of efficiency, our sampling procedure proceeds in batches of a given
size. After scanning a batch, we update the estimate of the aggregate’s
interestingness based on the (preaggregated) measure values of the
facts in the batch. To prune some aggregates, if we find that the upper-
bound on the estimate of A’s interestingness is lower than the current lower-
bound of the k-th best aggregate, we can give up evaluating A, and thus
obtain the top-k aggregates more quickly. The central part of Figure 31
illustrates this with five aggregates and k = 3: the fifth aggregate
can be stopped after the current batch, whereas the estimation of
the fourth aggregate will continue in the next batch. This procedure
terminates once the sample is exhausted or no aggregates have been
pruned in a given number of batches.

4.5.2 Estimating the interestingness score

notation recall A simple random sample of size r is a vector
(v1, . . . , vr)ᵀ of values drawn uniformly without replacement from a
population V of size R; the sample is modeled by a set of independent,
identically distributed (i.i.d.) random variables X1, . . . , Xr.

An estimator is a random variable equal to a linear or nonlinear
combination of X1, . . . , Xr (typically modeling a simple random sam-
ple). Evaluating the estimator on a vector (v1, . . . , vr)ᵀ of concrete
values taken by these random variables yields an estimation.

Let S be a statistic of V, Ŝr be an estimator of the true value of S
based on a sample of size r, and (1− α) be a confidence level for 0 ≤
α ≤ 1. Then, a (1− α)-confidence interval (CI) is a random interval
such that for each 1 ≤ r ≤ R, P(Ŝr − εr ≤ S ≤ Ŝr + ε̄r) = 1− α. One
interval is derived deterministically from one sample; the probability is
taken over all such intervals. We denote Lr = Ŝr − εr and Ur = Ŝr + ε̄r,
respectively, the lower and the upper bounds at (1− α) confidence
level on Ŝr. As in [69], the large-sample confidence interval contains the
true value with the probability approximately equal to 1− α.

constructing the estimator We begin by developing formu-
las for the point estimator Ĥr of the query’s result when the aggregate
function ( f ) in use is count, sum, or avg and the interestingness func-
tion (h) is variance, skewness, or kurtosis. We first detail this for avg, and
variance and then discuss extensions to other functions.
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Let g1, g2, . . . , gG be the aggregate groups of A and µ =

(µ1, µ2, . . . , µG)
ᵀ be the true result of A, that is, the vector contain-

ing, for each group, the average of the preaggregated values of M

for facts from that group. Further, for each group gi, let Ȳi =
1
r

r
∑

j=1
Xj

be the sample mean estimator, where the variable Xj has mean µi
and variance σ2

i and models the (preaggregated) measure value of
the j-th fact of the sample of size r, drawn from the facts in gi. Note
that, from the Central Limit Theorem (Theorem 5.5.14 in [74]), each
Ȳi ∼ N (µi,

σ2
i
r ) as r → ∞, where N (µi, σ2

i ) is the normal distribution
centered in µi with standard error σi.

We estimate Ĥr(µ) with Ĥr(Ȳ), where Ȳ = (Ȳ1, Ȳ2, . . . , ȲG)
ᵀ is the

vector of all the group estimators. We thus obtain the (unbiased)
estimator of the variance of a vector y = (y1, y2, . . . , yG)

ᵀ:

Ĥr(y) =
1

G− 1

G

∑
i=1

(
yi −

1
G

G

∑
j=1

yj

)2

(1)

deriving ci bounds We aim at providing a large-sample confi-
dence interval around Ĥr(Ȳ). Our formal result is as follows:

Theorem 9 Let Ĥr be the estimator of variance. There exists an error εr > 0
such that Ĥr(µ) ∈ [Ĥr(Ȳ)− εr, Ĥr(Ȳ) + εr] with the probability approxi-
mately equal to 1− α.

Proof We prove Theorem 9 constructively, thus exhibiting a concrete
formula for εr. To derive the confidence interval, first, we approximate
Ĥr(Ȳ) around µ using the first two terms of its Taylor series expansion:
Ĥr(Ȳ) ≈ Ĥr(µ) +∇Ĥr(µ) · (Ȳ − µ). Then, we apply the Multivariate
Delta Method (Theorem 5.5.28 in [74]) to state that

√
r
[

Ĥr(Ȳ)− Ĥr(µ)
]

D−→ N (0, τ2) (2)

where D−→ denotes convergence in distribution, τ2 =
G
∑

s=1

G
∑

t=1
σs,t

∂Ĥr(µ)
∂ys

∂Ĥr(µ)
∂yt

,

σs,t = Cov(Ȳs, Ȳt) for 1 ≤ s, t ≤ G. In other words, the difference between
the correct value of interestingness, Ĥr(µ), and that on the estimator, Ĥr(Ȳ),
converges in distribution to a 0-centered normal distribution.

To apply this theorem, we must show that (1) Ĥr has continuous first
partial derivatives and that (2) τ2 > 0. Condition (1) can be easily
shown by applying basic calculus on Eq. 1. For (2), we assume that
Ȳ1, Ȳ2, . . . , ȲG are independent random variables. Hence, for 1 ≤ s, t ≤ G,
if s 6= t, then Cov(Ȳs, Ȳt) = 0, else Cov(Ȳs, Ȳt) = Var(Ȳs) = σ2

s
r , and

τ2 =
G
∑

s=1

σ2
s
r

(
2

G−1

(
µs − 1

G

G
∑

i=1
µi

))2

is positive.

We now move toward a formula for the confidence interval based on the
samples in the groups. We derive it by “standardizing” the distribution of
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the difference obtained in Eq. 2, and taking quantiles of the standard normal
distribution, N (0, 1), as the interval’s ends.

Let τ̂2 =
G
∑

s=1

σ̂2
s
r

(
2

G−1

(
Ȳs − 1

G

G
∑

i=1
Ȳi

))2

, where σ̂2
s are (unbiased) esti-

mators of variances in all the G groups. From the Strong Law of Large
Numbers (Theorem 5.5.9 in [74]), we have that lim

r→∞
τ̂2 = τ2 almost

surely. Then, applying Slutsky’s theorem (Theorem 5.5.17 in [74]), we

get
√

r
[

Ĥr(Ȳ)− Ĥr(µ)
]

/
√

τ̂2 D−→ N (0, 1). In turn, for large r, we

obtain: P
(∣∣∣Ĥr(Ȳ)− Ĥr(µ)

∣∣∣ ≤ εr

)
= P

(√
r|Ĥr(Ȳ)−Ĥr(µ)|√

τ̂2
≤ εr

√
r√

τ̂2

)
≈

2Φ
(

εr
√

r√
τ̂2

)
− 1, where Φ denotes the cumulative distribution function of a

normally distributed variable.
Let zp be the p+1

2 quantile of Φ. Solving zp = εr
√

r√
τ̂2

for εr, gives us

εr =

√
z2

p τ̂2

r . Finally, choosing zp = z1−α we obtain the approximation at the
desired confidence level:

P

(∣∣∣Ĥr(Ȳ)− Ĥr(µ)
∣∣∣ ≤ √ z2

1−α τ̂2

r

)
≈ (1− α)

4.5.3 Other interestingness functions

To derive confidence intervals for skewness and kurtosis, we follow
similar derivations by replacing the definition of Ĥr (Eq. 1) with their
respective formulas. We derive the CIs based on the Delta Method –
both cases exhibit continuous first partial derivatives.

skewness and kurtosis as interestingness functions In

case of skewness, Îr(y) =

 1
G

G
∑

i=1

(
yi − 1

G

G
∑

j=1
yj

)3
 · [Ĥr(y)

] 2
3
. First,

we derive ∂ Îr(y)
∂ys

:

∂ Îr(y)
∂ys

=
∂

∂ys


 1

G

G

∑
i=1

(
yi −

1
G

G

∑
j=1

yj

)3
 · [Ĥr(y)

] 2
3


=

 ∂

∂ys

 1
G

G

∑
i=1

(
yi −

1
G

G

∑
j=1

yj

)3
 · [Ĥr(y)

] 2
3

+

 1
G

G

∑
i=1

(
yi −

1
G

G

∑
j=1

yj

)3
 ·{ ∂

∂ys

[
Ĥr(y)

] 2
3
}
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Second, we derive the sub-expressions

∂

∂ys

 1
G

G

∑
i=1

(
yi −

1
G

G

∑
j=1

yj

)3
 =

=
3
G

[
y2

s −
1
G

(
G

∑
i=1

(
y2

i −
2yi

G

G

∑
j=1

yj

)
+ 2ys

G

∑
j=1

yj

)]

and
∂

∂ys

[
Ĥr(y)

] 2
3
=

2
3

[
Ĥr(y)

]− 1
3 · ∂Ĥr(y)

∂ys

Then, coming back to the original equation, we have that

∂ Îr(y)
∂ys

=

=
3
G

[
y2

s −
1
G

(
G

∑
i=1

(
y2

i −
2yi

G

G

∑
j=1

yj

)
+ 2ys

G

∑
j=1

yj

)]
·
[

Ĥr(y)
] 2

3

+
2
3

 1
G

G

∑
i=1

(
yi −

1
G

G

∑
j=1

yj

)3
 · [Ĥr(y)

]− 1
3 · ∂Ĥr(y)

∂ys

Therefore, ∂ Îr(y)
∂ys

, as a combination of:

1. Ĥr(y), which is itself a combination of elementary (thus contin-
uous) functions,

2. ∂Ĥr(y)
∂ys

, which we showed previously to be continuous, and

3. Other elementary (thus continuous) functions

is also continuous.

In case of kurtosis, Ĵr(y) =

 1
G

G
∑

i=1

(
yi − 1

G

G
∑

j=1
yj

)4
 ·

[
G−1

G Ĥr(y)
]−2
− 3. First, we derive ∂ Ĵr(y)

∂ys
:

∂ Ĵr(y)
∂ys

=

=
∂

∂ys


 1

G

G

∑
i=1

(
yi −

1
G

G

∑
j=1

yj

)4
 · [G− 1

G
Ĥr(y)

]−2

− 3


=

 ∂

∂ys

 1
G

G

∑
i=1

(
yi −

1
G

G

∑
j=1

yj

)4
 ·

[
G− 1

G
Ĥr(y)

]−2

+

 1
G

G

∑
i=1

(
yi −

1
G

G

∑
j=1

yj

)4
 ·{ ∂

∂ys

[
G− 1

G
Ĥr(y)

]−2
}
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Second, we derive the sub-expressions

∂

∂ys

 1
G

G

∑
i=1

(
yi −

1
G

G

∑
j=1

yj

)4
 =

=
4
G

y3
s −

1
G

 G

∑
i=1

y3
i −

3y2
i

G

G

∑
j=1

yj +
3yi

G2

(
G

∑
j=1

yj

)2


+3y2
s

G

∑
j=1

yj +
3ys

G

(
G

∑
j=1

yj

)2


and

∂

∂ys

[
G− 1

G
Ĥr(y)

]−2

=
2(G− 1)

G[Ĥr(y)]3
· G− 1

G
∂Ĥr(y)

∂ys

=
2(G− 1)2

G2[Ĥr(y)]3
· ∂Ĥr(y)

∂ys

Then, coming back to the original equation, we have that

∂ Ĵr(y)
∂ys

=
4
G

y3
s −

1
G

 G

∑
i=1

y3
i −

3y2
i

G

G

∑
j=1

yj +
3yi

G2

(
G

∑
j=1

yj

)2


+3y2
s

G

∑
j=1

yj +
3ys

G

(
G

∑
j=1

yj

)2
 · [G− 1

G
Ĥr(y)

]−2

+
2(G− 1)2

G2[Ĥr(y)]3

 1
G

G

∑
i=1

(
yi −

1
G

G

∑
j=1

yj

)4
 · ∂Ĥr(y)

∂ys

Therefore, ∂ Ĵr(y)
∂ys

, as a combination of:

1. Ĥr(y), which is itself a combination of elementary (thus contin-
uous) functions,

2. ∂Ĥr(y)
∂ys

, which we showed previously to be continuous, and

3. Other elementary (thus continuous) functions

is also continuous.
In general, one can derive similar formulas for any interestingness

function that meets conditions (1) and (2) examined in the proof.

other aggregate functions For sum, we estimate the group
sizes while sampling and compute the estimate as a product of the avg
and count estimates. For min and max, we use the sample min and the
sample max, respectively, as point estimates; we apply Popoviciu’s and
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Szőkefalvi-Nagy’s inequalities [75] for the upper and lower bounds,
respectively.

To obtain the sum estimate, we compute the product of the size
of the i-th aggregate group ci and the sample mean. We estimate ci
while sampling during Data Translation: the count in the root node
of the lattice is always correct, whereas in the other lattice nodes,
depending on the presence of multi-valued dimensions, it may be
overestimated. Recall from Section 4.5.2 the sample mean estimator

Ȳi =
1
r

r
∑

j=1
Xj, and that Ȳi ∼ N (µi,

σ2
i
r ) as r → ∞. We now construct a

new estimator Si =
ci
r

r
∑

j=1
Xj = ciȲi. As a consequence, we have that

Si ∼ N (cµi,
c2

i σ2
i

r ) as r → ∞. This leads to the correct sum estimate
thanks to the estimator mean equal to ciµi. While deriving the CI
bounds in the proof, we account for the different variance of the
estimator by applying Var(Ss) =

c2
s σ2

s
r to obtain τ2.

Finally, the CI bounds are scaled by the constant factor of c2
s for each

aggregate group w.r.t. the case of the average estimate: the impact of
the scaling is hidden within τ̂2, the estimator of τ2. We thus obtain
the formula for our sum-estimate confidence interval:

P

(∣∣∣Ĥr(S)− Ĥr(cµ)
∣∣∣ ≤ √ z2

1−α τ̂2

r

)
≈ (1− α)

where S = (S1, S2, . . . , SG)
ᵀ and c = (c1, c2, . . . , cG)

ᵀ (the correct aggre-
gate group sizes).

Point estimates for min, and max are sample min, respectively,
max: the function applied over the sample, i.e., Ẑr(x) = min

r
(x) or

Ẑr(x) = max
r

(x). We then bound Ĥr(y), the variance of y = Ẑr(x),

with Popoviciu’s inequality for the upper bound: Ĥr(y) ≤ 1
4 (Ẑr(x)−

b)2, where b is the lower bound on min (respectively the upper bound
on max).

Analogically, we apply Szőkefalvi-Nagy’s inequality for the lower

bound: Ĥr(y) ≤ (Ẑr(x)−b)2

2r . We obtain the global statistics for b for each
attribute during Online Attribute Analysis step (Section 4.3).

4.5.4 Plugging early-stop into MVDCube

We integrate early-stop into MVDCube to speed up Aggregate Eval-
uation, and thus address challenge C2. The evaluation of an MMST
begins with the Data Translation step, run in parallel with Measure
Loading (recall Section 4.4.2). We exploit the data translation to create
a stratified sample of facts for the early-stop pruning. Given the MMST,
each address in the multidimensional space in the root corresponds to
a unique group of facts. We allocate empty reservoirs R1, R2, . . . , RG,
one per aggregate group, each with a capacity equal to the sample
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size: this way we ensure stratification. While reading each tuple, we
determine its group, hence also the reservoir, and either put the fact
in or not with some probability. If the reservoir is full, we discard one
of the previously inserted facts. This strategy is known as reservoir
sampling and guarantees a choice of a simple random sample [76].
Figure 31 shows an on-going sampling process with four reservoirs
R1 to R4, each of size 3; should R1 accept a new fact, it will overwrite
one of its three facts to avoid an overflow.

The sample thus obtained is used by early-stop as follows. Once
the translation is finished, we propagate the facts sampled from the
MMST’s root down the tree using Roaring Bitmaps as in MVDCube
(see bitmap operations in Figure 31): each node in the MMST receives
its own sample. Then, we perform the early-stop pruning based on
these samples. All the aggregates that have not been pruned (deemed
sufficiently interesting) by early-stop are subsequently evaluated by
MVDCube.

4.6 implementation details

We now provide the implementation details of the Spade system. We
describe the external tools and the internal architecture we optimized
for run-time efficiency and moderate memory consumption. We show
how to leverage a PostgreSQL database to store RDF data and to
perform some operations on them. Spade leverages two existing tools
developed in the team, namely OntoSQL [48] and RDFQuotient (Chap-
ter 3) which also builds on OntoSQL: both these tools are backed by
PostgreSQL. We discuss the offline and online processing in Spade
and their internal implementation. Then, we come back to explain ex-
ternal components; we elaborate on the functioning of the Aggregate
Result Manager (ARM, recall Section 4.3) and its various backends:
raw-CSV-files output, PostgreSQL, Redis, and BerkeleyDB storage.
Finally, we comment on the Top-k Computation step.

4.6.1 Offline processing

Recall the phases and steps of our approach we laid out in Section 4.3.
We commence the offline processing by loading an RDF graph using
OntoSQL into a PostgreSQL relational database. OntoSQL adopts
the common practice of encoding space-consuming URIs and literals
into compact integers, together with a dictionary table that allows
going from one to the other. Recall from Section 4.4.2 that, for a given
RDF node n, OntoSQL stores all triples of the form x rdf:type n in
a single-column table tn holding the subjects x; for each property p
other than rdf:type, a table tp stores (s, o) pairs for each s p o triple
in the RDF graph. We also saturate the graph upon loading. This



102 discovering interesting aggregates in rdf graphs

property-oriented layout benefits Spade, unlike RDFQuotient where
the single triples table layout was sufficient (compare with Section 3.8).

Further in the offline phase, once the RDF graph is loaded, we com-
pute its typed strong summary (Section 3.4.2) using our RDFQuotient
tool and store it in the database. To speed up successive processing,
each table in the database is also indexed, with one index per permu-
tation of columns (our tables have one, two, or three columns, either
only s, s and o or s, p, and o) and subsequently clustered using the
first index.

offline attribute analysis Next, we perform the Offline At-
tribute Analysis. OntoSQL stores integer encodings of the graph labels
in a dictionary table, which works like a hash map from the integer
key to the string value. At this point, we extend the dictionary table
by adding a “clean value” column. The clean-value column cells are
equal to the value column cells for URIs, but, for each literal value, we
only keep the content between the quotation marks. We use the value
for the property data profiling, whereas we use the clean value in the
output aggregates.

property enumeration Subsequently, we query the summary
to find all the direct properties (the properties present in the input
graph). For each direct property, we analyze it with the help of the
data profiler and SQL queries. In the offline phase, we don’t know
the CFS yet. Therefore, for each direct property, we collect and set
its non-CFS-specific statistics, i.e., statistics on the values that these
properties have in the graph independently of a chosen CFS (the usage
of the statistics will be explained gradually below):

1. A boolean isNumeric flag (we exploit here the data type discov-
ered by the data profiler);

2. The minimum and maximum value (null for non-numeric at-
tributes);

3. A boolean hasOnlyLiteralValues flag;

4. The mean value length (the average length of the clean-value
string);

5. The number of distinct subjects (used to find the almost-one
value below);

6. The almost-one ratio: the number of nodes having more than one
value of the attribute divided by the number of distinct subjects.

We then store the statistics, for each analyzed direct property, in a
dedicated metadata table.
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property derivation After that, for each direct property, we try
to derive new properties from it. We begin the derivation at level 0. We
choose the derivation depth (the number of levels) as a parameter in
the configuration. Spade natively supports four derivation mechanisms
(recall Section 4.3); we can enable or disable them individually. For the
path-derived properties, we enumerate all the paths in the summary.
We can set the path derivation length to a value greater than one to
explore longer paths (multiple hops). In our experiments, we default
to paths of length 1 and the derivation depth of 1 as these settings,
empirically, proved to lead to the most meaningful results. We only
allow count derivation on the properties that are not at-most-one,
i.e., their almost-one ratio is not zero. The values of count derived
properties are numeric so, to spare fruitless encoding, we store the
integers directly in the o column. We restrict keyword extraction and
language detection derivations to the properties that only have literal
values: we don’t apply them on URIs or numeric values. Finally, as for
direct properties, we analyze each derived property, as well. By the
end of this process, we analyze all the attributes (both the direct and
the derived ones), and the metadata table contains their statistics.

attribute preaggregation Based on the statistics gathered as
explained above, we can enumerate all the possible aggregate functions
that we can apply on an attribute; we store this information in the
AnalyzedAttribute object. At this stage, we are ready to preaggregate
all the attributes based on their assigned aggregate functions: count,
sum, min, or max; we don’t store the average as it is non-distributive.
It remains algebraic, though, and we can and do reconstruct it based
on the sum and count totals.

RDF measures chosen during the (online) Aggregate Enumeration
step may have multiple values (even though it was rare in our experi-
ments). By preaggregating their values, we can store, for each fact and
each aggregate function, one measure value: we exploit this during
the (online) Measure Loading step. If the attribute has multi-valued
subjects (i.e., it is not at-most-one), is numeric, and we run with early-
stop enabled, apart from the regular preaggregated measure values,
we also have to store the raw-values list. The reason for this is due
to the lower and upper bounds in early-stop that use variance and,
therefore, need to compute it over the collection of raw values.

We terminate the offline phase by indexing and clustering all the
newly created tables that haven’t been so optimized during the graph
loading and summarization.

4.6.2 Online processing

Given the offline preprocessing, we begin an online phase with the
Candidate Fact Set Selection step. Depending on the choice of the
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selection mechanism (see Section 4.3), we either can leverage the
typed strong summary of the graph to find types or summary nodes
or ask a query against the main triple table in the database to find
the set of nodes with the properties given by the user. In each case,
if a table containing all candidate facts does not exist, we create it;
in the type-based selection, we exploit the OntoSQL layout, which
provides us a single-column table per each type. Once we select the
candidate fact set (CFS), we add a subjectID column with an index:
this ID is consecutive (unlike the encoding) and helps us perform Data
Translation and Measure Loading, where we benefit from the reduced
range of fact IDs (keys in hash maps or raw Java array indexes).

online attribute analysis Upon the beginning of the online
run, we fetch the attribute statistics we computed offline. Based on
the fixed CFS, in the Online Attribute Analysis step, we compute the
CFS-specific attribute statistics:

• The number of subjects in the CFS;

• The number of distinct subjects in the CFS;

• The number of distinct objects in the CFS;

• The distinct objects to subjects ratio;

• The support of an attribute: the number of distinct subjects in
the CFS divided by the size of the CFS;

• The almost-one ratio for the CFS (as it might differ from the
almost-one ratio for the whole attribute because some subjects
may not be in the CFS).

aggregate lattices construction In the Aggregate Enu-
meration step, we apply a user-specified threshold on the support
(Section 4.3): in our case, we deem a dimension to be frequent if its
support is greater than 0.6. Also, we typically set thresholds for the
good dimensions to have at least 2 and at most 100 distinct values
(objects), and whose ratio of the distinct objects to subjects is at most
0.4. The good measure is numeric or not almost-one. To enumerate
multidimensional aggregate lattices, we draw a sample of facts in
a CFS. We run a frequent itemset mining algorithm to find sets of
dimensions co-occurring on the facts in the CFS to form the lattices.
The mining uses the state-of-the-art DFIN algorithm [77].

data translation We begin the Data Translation step by com-
puting a join between the CFS and all the dimensions of the aggregate
lattice’s root. As we described in Section 4.4.2, we need to compute the
left joins since we need to preserve nulls. During the translation into
the partitioned array representation of cells, we perform the reservoir
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sampling to gather the sample for early-stop (if enabled) as explained
in Section 4.5.4. One reservoir corresponds to one aggregate group
of the aggregate lattice root. Since we examine each tuple from the
dimensions join once, the sampling overhead is minimal.

measure loading In parallel to Data Translation, we run the
Measure Loading step. Here, we load the preaggregated measure
tables into raw Java arrays: we create one array per measure-aggregate
function combination. To load the measure values specific to the CFS,
we join each measure table with the CFS table1 : we use the subjectIDs
of facts as indexes in the raw Java arrays. All the loaded measure
arrays are shared between lattices of the same CFS. As an additional
optimization, we use attribute statistics to decide which arrays need to
be loaded depending on the measure-aggregate function combination.
For instance, if we have to load the count preaggregated measure,
but we have the sum preaggregated measure, and the measure is at-
most-one, we can reconstruct count from sum. Therefore, we only load
count if we can’t reconstruct it from sum. As discussed in the offline
phase, we may need to load the raw-value list (as a “preaggregated”
array) if we need it for early-stop.

early-stop The moment the longer of the two parallel steps
(threads) terminate, we start the Aggregate Evaluation step. Before the
MVDCube evaluation, if we enable early-stop, we run an aggregate
pruning procedure. In our experiments, Data Translation typically
takes much less time than Measure Loading; thus, the early-stop
sampling is cost-free. Nevertheless, the pruning itself is a blocking
operation, as it depends on the sampling performed in the Data Trans-
lation thread and the measure values loaded in the other thread. It
must wait for both threads to terminate; therefore, we have to im-
plement it frugally. For early-stop to benefit the Spade run time, the
pruning overhead must be lower than the time cost for the regular
aggregate evaluation with the MVDCube algorithm. We show in our
experiments that this is frequently the case.

early-stop pruning We implement our pruning procedure from
Section 4.5.4. We share reservoir samples among all the aggregates in
an aggregate lattice, i.e., we share:

• We propagate the samples across the lattice from a parent node
to children nodes using bitmaps, similarly as the MVDCube
algorithm (compare with Algorithm 6);

1 Due to our bad experience with the PostgreSQL optimizer, for these queries, we
manually disable the hash-join, which helped us speed up the simple CFS-measure
joins.
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• Within the lattice node, each batch of facts drawn from the
reservoir sample between aggregates with the same dimension
set but different measures.

Additionally, between avg and sum we share the measure values
for the respective facts in the sample. The sample propagation hap-
pens once, whereas the batch draws induce new rounds of pruning.
We prune aggregates based on the pruning criterion detailed in Sec-
tion 4.5.1. We terminate the pruning if the sample (usually of the
size of 30 facts for us) is exhausted or there have been no aggregates
pruned in the specified number of rounds (2 for us). All operations
performed during the early-stop pruning are sped up via raw Java
arrays to store the sample facts and efficient lookups to the loaded
measure arrays. We minimize the object creation in this critical part of
the Spade pipeline.

mvdcube We back the implementation of our MVDCube evalua-
tion algorithm with PostgreSQL, from where we examine the result
of the join in Data Translation. We perform the following algorithmic
steps in Java, using efficient RoaringBitmaps to propagate the facts
from a parent to children nodes in an aggregate lattice. From Sec-
tion 4.4.2, recall that during the lattice computation, we fetch data
partitions from the disk (in our implementation, they are stored in a
PostgreSQL database). However, if we have enough memory to store
all the data, we set the partition sizes equal to the number of distinct
values of their respective dimensions; this way, we only fetch one
partition.

aggregate result manager While evaluating an aggregate
lattice, we need to store partially computed aggregate results. For
this task, we employ the Aggregate Result Manager (ARM). We have
experimented with four backends for the ARM module:

1. Raw-CSV-file storage;

2. PostgreSQL;

3. Redis; and

4. BerkleyDB.

Each backend stores aggregate results at the granularity of aggre-
gate groups. We may write the results to disk into raw CSV files.
Although this is the most straightforward choice, it suffers from I/O
overheads (even using buffered writers), but - most importantly - from
OS limitations: there is a limit on the number of open files that the
OS can handle2 . PostgreSQL is another obvious choice that solves the

2 The limit can be raised, but overall this approach scales poorly, and we avoid it for
datasets with a large number of aggregates.
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too-many-open-files problem. However, compared to the in-memory
databases such as Redis or BerkeleyDB, we found the latter two to
perform better. Finally, we chose Redis early as our default backend
mainly for its ease of use and good performance. However, to fully
justify this choice, the decisive argument for it has to do with another
feature of the ARM: the incremental update of the interestingness
score. Redis is natively a key-value store, which can handle complex
objects (called hashes in Redis terminology). Moreover, Redis offers a
Lua programming language scripting API. On the course of Aggre-
gate Evaluation, we store aggregate results group by group. We take
advantage of the API to keep track of the incremental ARM statistics
over the aggregate result; we update, on-the-fly, the sum, count, min,
and max aggregated values to later use them to compute the variance
score (and normalize it), as we explain below.

top-k computation We can compute the interestingness score
based on the ARM statistics; this can lead to noticeable performance
improvements if there are many aggregate groups. For instance, to
compute the variance interestingness score (recall Eq. 1), we need to
know the mean value of the aggregated measure across all groups: it
requires one linear pass over all the groups, and then we still need to
do another linear pass to find the sum of the squared distances from
the mean and divide it by the number of groups (decreased by 1)3 .

interestingness score Finally, in RDF graphs, we encounter
very diverse measures with different value distributions. To make
interestingness scores comparable across all aggregates, we normalize
their scores (a single number per aggregate) by scaling their aggre-
gated values (as many as there are aggregate groups). We apply the
normalization for the variance score. On the contrary, the skewness
and kurtosis are statistical moments: they are themselves defined to
inspect the aspects of the data distribution such as skew (for skewness)
or “tailedness” (for kurtosis). For these reasons, we don’t normalize
them.

Let V = [v1, . . . , vn] be a set of values. We call V ′ = [v′1, . . . , v′n] the
set of normalized values if we obtain it through one of the following
transformations.

• Through the feature scaling: v′i =
vi−vmin

vmax−vmin
;

• Through division by sum: v′i =
vi

n
∑

j=1
vj

; or

• Through division by mean: v′i =
vi

1
n

n
∑

j=1
vj

.

3 This optimization has an exclusively practical interest as we only optimize the
constant, and the variance score remains O(n) anyways. Yet, from our experience,
applying it is worthwhile.
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Dataset #triples #CFSs #P #A #DP #A

woD kw lang count path wD

Airline [78] 56M 1 30 5,923 0 0 0 0 5,923

CEOs [79] 85k 237 61 159 1 1 37 462 27,860

DBLP [80] 33M 1 21 1 5 3 8 19 961

Foodista [81] 1M 5 13 0 1 1 6 38 14

NASA [82] 99k 10 37 19 3 15 3 87 1,449

Nobel [83] 87k 15 39 58 3 3 18 87 30,658

Table 9: Real datasets used for testing.

Figure 32: Examples of interesting aggregates found by Spade.

For instance, the normalized variance score remains indifferent to the
units of values and the cardinality of the set itself. Variance remains
the same even if the mean has been shifted (by some constant) in
the process of normalization. At the same time, we need to preserve
the shape of the distribution of the values because we can only then
truly capture the variance. Normalization by dividing the values by
their mean fulfills these requirements, and that’s why we chose to use
it. (The normalization through division by sum leads to a variance
score that is n2 times lower than the score obtained using values dived
by mean.) Also the score obtained from values normalized using the

division by mean is equal to 1
v̄2 Var(V), where v̄ = 1

n

n
∑

i=1
vi. Values

normalized using sum or mean of the values are well-defined only for
the sum different from 0: most measure values are positive numbers,
though.

4.7 experimental evaluation

computational environment We ran all experiments on an
Intel Xeon CPU E5-2640 v4 @ 2.40GHz, 40 cores (2 sockets with 10
physical cores each, hyper-threading enabled), running CentOS 7
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with 90GB for JVM (OpenJDK 1.8) and 30GB of shared buffers for
PostgreSQL 12 (with 640 MB working memory).

systems We implemented Spade in Java 1.8 (18k lines of code);
it relies on OntoSQL 1.0.12, an efficient RDF storage and query an-
swering platform on top of an RDBMS [46], [47], [48] (PostgreSQL
in our case). We compare the performance of our aggregate evalua-
tion method against the best-effort baseline, which uses PostgreSQL’s
GROUP BY CUBE implementation, since 2016 based on an efficient
one-pass computation of all aggregates in a lattice [84], that supports
additional features such as count(distinct), which were not available
in ArrayCube [22]. We denote this by PGCube. As discussed in Sec-
tion 4.4.1, PGCube may fail to compute correct results in the presence
of multi-valued dimensions. However, the support for counting of
distinct values may help PGCube correct some wrong results. Thus,
we consider two variants:

1. PGCube computing counts using count(∗), denoted PGCube∗,
and

2. PGCube computing counts using count(distinct), denoted
PGCubed.

In both cases, our Java code is at a disadvantage against a C/C++ engine.

real-world graphs Our experiments involve a set of real-
application RDF graphs, for which Table 9 shows: the number of
triples, the number of CFSs, the number of (direct) properties and
derived properties (#P and #DP, respectively) in the graph, and the
number of aggregates without and with derivations (#AwoD and #AwD,
respectively). The graph sizes in this work are similar to the real-world
dataset sizes used in comparable relational works, e.g., 20k tuples
in [66], and up to 60M tuples in [67]. Airline was originally a relational
dataset on flight delays used in prior work [67]; we converted it into
RDF (each tuple becomes a CF with a fixed set of properties), whereas
the others are natively RDF. We discuss differences between this and
the other graphs shortly.

4.7.1 Analysis of example results

We begin by showing, in Figure 32, example interesting aggregates
found by Spade when using variance as an interestingness score:

1. “Minimum net worth of CEOs by gender and occupation”:

• There are two outliers, male philanthropists and male share-
holders: their minimum net worth is much higher than
others’;
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Figure 33: Interestingness of MDAs due to derivations.

• The net worth value is known for all but one occupation
for male CEOs, but only in a half of them for female CEOs
(e.g., there are no female philanthropists);

• The minimum net worth of female CEOs is nearly the same
across occupations.

2. “Number of launches by launch site and nationality” in the NASA
graph:

• Very high values for USSR spacecrafts launched from Ple-
setsk and Bajkonur;

• The two most used USA launch sites are Cape Canaveral
and Vandenberg Base.

3. “Average mass of spacecrafts by discipline”:

• Here, 4 disciplines, i.e., Human crew, Microgravity, Life
sciences and Repair stand out with the average spacecraft
mass significantly higher than others’.

Nonetheless, many candidate MDAs are uninteresting: Figure 34
shows the aggregate “minimum number of occupations of CEOs by gender
and number of companies” in the CEOs dataset, where all aggregated
values are uniformly equal to 1; or “average number of launched vehicles
by launch site” in the NASA dataset, where most values are equal
to 1, and only 8 out of 35 bars are slightly higher but still less than
1.05. These aggregates don’t exhibit any significant outliers and were
therefore ranked low by Spade.

This confirms the need for using early-stop to prune such MDAs.
It could have been in principle envisioned to compare the inter-

estingness of the aggregates found by our system with that of some
manually chosen aggregates. However, doing so is hampered by the
lack of feasible selection methods available to human users. For this
reason, the starting point of this work is precisely the observation that
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Figure 34: Example uninteresting aggregates found by Spade.

it is very hard to select aggregates manually. There are several reasons
for this:

1. The sheer size of the graph impedes human understanding,
and it is hard to induce human users to attempt solving such
a computationally expensive task at all. Even if they did try
to solve it, typically, such users would use a simple SPARQL
engine that can evaluate aggregates, and hence they would have
to formulate the queries themselves, which requires expertise in
writing such complex aggregate queries.

2. Even if we reduce a graph to a modest size, e.g., through sum-
marization [85], [14] or sampling, the reduced graph may not
reflect:
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a) all possible combinations of facts, dimensions, and mea-
sures in the original data;

b) the graph values, e.g., the frequent values and value distri-
butions; or (c) any derived properties.

Even under strong (unrealistic) assumptions, e.g., 2a and 2b are
both known for a simple, regular RDF graph, users would still
not know which aggregates are interesting (e.g., deviating from
a uniform distribution) before enumerating and evaluating them
all at least partially.

3. Supporting interactions with the system leads users inevitably to
inject some information about their preferences in the aggregate
selection process. For example, in the NASA dataset, the users
may prefer to investigate launches grouped by the launch site
rather than the discipline of the spacecraft staff. In contrast,
Spade is a fully automated approach to discovering statistically
interesting aggregates, with no user input required. It defines
and enumerates a large set of candidate aggregates by applying
heuristics to generate potentially interesting dimensions and
measures and evaluates them efficiently.

As examples in Figure 32 show, our highly-ranked results returned
from the six real datasets reveal interesting insights. Due to the auto-
matic nature of Spade, in some datasets, there may be a small fraction
of aggregates that, despite being statistically sound, are unlikely to
be chosen by the user. For example, the aggregate minimum net worth
of CEOs by nationality/image uses a derived property, nationality/image,
which is statistically similar to other meaningful dimensions, e.g.,
nationality/label, but the user is unlikely to choose it. This indicates that
a “human-in-the-loop” approach can further improve the effectiveness
of our automated approach. While for the above example, the user
can simply add nationality/image to a stop list for dimensions, a full
design of “human-in-the-loop” data exploration will be a focus of our
future research.

4.7.2 Benefits of derived properties

We begin our evaluation by validating the benefits of Derived Property
Enumeration (Section 4.3). This step is crucial to address challenge
C1. We show that it allows us to increase the pool of attributes and to
generate a large and rich space of interesting aggregates.

Experiment 1. We compare the results of our analytical strategy
when:

1. Only RDF graph properties were used for the analysis (woD),
and

2. Derived properties were also considered (wD).
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Figure 35: Run times (on log scale) of MVDCube and PGCube.

As Table 9 shows, the Airline dataset (originally relational) leads to no
derivations: tuples are not linked to each other, and thus no paths can
be derived; it lacks multi-valued attributes, thus no count derivation
applies; the data is mostly numeric, so keyword or language attributes
are not derived. The other (native RDF) graphs differ drastically:
they feature several CFSs, multi-valued properties, links among RDF
nodes leading to many path derivations (Table 9 shows counts of
path derivations of length 1, as they are the most numerous); textual
attributes are also quite frequent. Figure 33 further shows, for each
graph, the interestingness of its MDAs (measured with variance) in
woD and wD settings (left and right lines, respectively); a horizontal
tick in a line depicts an MDA.

Our first main observation, denoted as remark (R1), is that

• Derivations increase the total number of enumerated MDAs: for in-
stance, on Foodista, no MDA exists without derivations, whereas
we find several by deriving the recipe language, the count of in-
gredients, etc.; on DBLP, only year is a good dimension, whereas
through derivations we obtain, e.g., keyword(title);

• Derivations increase the interestingness of the best aggregates.

Henceforth, we enable derivations in our experimental analysis.

4.7.3 Analysis of MVDCube against PGCube

Our next set of experiments focuses on Aggregate Evaluation, the last
step of our online pipeline, where most computation takes place. Since
PGCube is not able to prune unpromising aggregates, for fairness, in
this section, early-stop is disabled.

Experiment 2. We compare MVDCube with PGCube in run time and
quality (correctness). Recall that PGCube’s results may be erroneous
(Section 4.4.1). We use the six real graphs with derivations.

Regarding the run time, Figure 35 shows MVDCube against
PGCube∗ and PGCubed on our real datasets. We observe that MVD-
Cube achieves a time gain of 20% to 80% over PGCube∗ and of 30% to 83%
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Dataset PGCube∗ PGCubed

#wrong aggs #wrong aggs

Airline 0 0

CEOs 4,723 3,998

DBLP 102 87

Foodista 2 0

NASA 378 312

Nobel 4,154 3,821

Table 10: PGCube∗ and PGCubed

errors on real-graph aggregates.
Figure 36: Distribution

of PGCubed errors.

Figure 37: Run times of the steps in Spade’s online pipeline.

over PGCubed on most datasets (R2). Specifically, MVDCube outperforms
PGCube when there are many (more than 15) aggregates to evaluate (R3).
This is because MVDCube:

1. Shares measures across all the aggregates from the same CFS,
and

2. Computes each aggregate only once, even if it appears in several
lattices.

In contrast, PGCube evaluates each lattice in a separate query, each
of which joins the facts with the measures. Except for the Foodista
dataset, which has a small number of aggregates and both methods
run under a second, MVDCube shows significant gains on CEOs,
NASA and Nobel Prizes graphs, where many MDAs are evaluated,
MVDCube gains 40% over PGCube. Similarly, Airline leads to almost
6k MDAs, the dataset is rather large (6M facts), and the repeated joins
are expensive: PGCube∗ takes 5 times MVDCube’s time.

Regarding the errors, Table 10 shows, for each graph, the number
of aggregates with incorrect results (#wrong aggs) for PGCube∗ and
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PGCubed. We observe that PGCube∗ and PGCubed produce errors in,
respectively, 14% and 12% of all computed aggregates (R4). PGCubed,
PGCube’s best effort to generate correct results, still produces errors
in 9% to 21% of the computed aggregates across different datasets. As
shown in Section 4.4.1, errors are related to multi-valued attributes
in the data. Indeed, CEOs, NASA, and Nobel Prizes datasets have
the greatest number of multi-valued attributes and the highest error,
ranging from 12% to 21%.

Experiment 3. We now quantify the error in those aggregates that are
computed wrongly by PGCubed. Given an aggregate A, we denote
mA

j the value of the aggregated measure of the j-th group in A, as
computed by MVDCube. We denote by pA

j the value that PGCubed

computes for the same group. As pA
j can only be higher than or equal to

the correct value mA
j , ideally, this ratio should be 1. When an aggregate

is shared by two lattices, it can be computed from either lattice, leading
to different error ratios. When this happens, we record the maximum
error, to measure the “worst-case risk” incurred by evaluating the
lattice through PGCube. Each aggregate thus leads to a set of error
ratios, one per group. Figure 36 shows their distribution, for count and
sum aggregates, for the four datasets from Table 10 where errors were
detected. We note that errors can easily exceed one order of magnitude (R5):
in 3 out of 4 cases, PGCubed produces at least 1 tuple whose value
is more than 30 times the true value. In CEOs, one group records an
error ratio greater than 103; it comes from a three-dimensional lattice
where all dimensions were multi-valued. Such incorrect values would
severely falsify the selection of the k most interesting aggregates.

4.7.4 Impact of early-stop on MVDCube

Experiment 4. We next study the effectiveness of our early-stop tech-
nique (ES). For our real graphs, Table 11 shows:

1. The evaluation time taken by MVDCube alone,

2. The time with ES enabled, as described in Section 4.5.4,

3. The time gain due to ES,

4. The fraction of aggregates pruned, and

5. The accuracy of ES.

Following [67], if Tw/o
k and Tw

k are the sets of the top-k aggregates
returned by MVDCube without and with ES, the accuracy is com-
puted as the fraction of true positives in Tw

k : |Tw/o
k ∩ Tw

k |/|T
w/o
k |. We

show this for k ∈ {3, 5, 10}, in keeping with comparable works in
a relational DW setting [67] and using a sample size of 60 with 2
batches, a configuration we found empirically to work well. Table 11
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leads to two observations. First, ES can bring significant evaluation time
gains, from 10% to 43% in our experiments; and it aggressively prunes
uninteresting aggregates, frequently as much as 70% (R6). ES is espe-
cially beneficial on graphs with more than 100 aggregates, except for
DBLP, where translating the data into an array representation is much
more expensive than evaluation, and thus, the saved evaluation effort
appears small. In some cases, the impact of ES was negative (and
very small), due to a sampling overhead. Second, MVDCube with ES
is often quite accurate (R7): 100% accuracy is attained in the majority
of cases, except for Nobel Prizes, where, e.g., the true top-10 contains
aggregates with interestingness score greater than 10.49, whereas ES
returns those greater than 9.45.

4.7.5 Scalability study

We finally analyze the scalability of our approach and compare it
with PGCube, when varying different data characteristics. To be able
to fully control them, we designed a synthetic benchmark (a set of
graphs) with fixed numbers of facts |CFS|, N dimensions and M
measures. All property values are numeric. We ensure that a single
CFS is found and that each dimension Di, 1 ≤ i ≤ N, takes at most
100 values (so that they are considered good dimensions, recall Step
2 in Section 4.3). We denote each graph by |D1| : |D2| : . . . : |DN |, the
maximum number of distinct values along each dimension. To obtain
realistic distributions of the facts in this multidimensional space, we
randomly assign dimension values as in [86], controlled by a sparsity
parameter s ∈ [0, 1]. To ensure PGCube correctness, each fact has only
one value for each dimension.

Experiment 5. We analyze the performance of the entire online
pipeline of Spade on benchmark datasets. We use 12 configurations,
each having |CFS|=1M, 3 dimensions, and 3, 5, or 10 measures. We
also use two different combinations of distinct values for dimensions,
100:100:100 (uniform) and 100:5:2 (decreasing), and two different spar-
sity coefficients, 0.1 and 0.5. In Figure 37, each bar represents one
configuration (“u” or “d” for value distribution | sparsity coefficient
| number of measures) and reports the total execution time of Spade
using MVDCube without early-stop. Each segment of a bar covers one
computation step (recall Figure 30). In the pipeline order of steps, we
observe that:

1. Candidate Fact Set Selection is too fast to be visible; although
there is only one CFS here, in all our experiments with real graphs,
it was 5-10 ms.

2. Online Attribute Analysis’s time is noticeable, between 15%
and 37% of the total time, and increases with the number of
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measures: Spade must analyze them before deciding that they
are not suitable dimensions.

3. Aggregate Evaluation dominates the processing time; it increases
with the number of distinct groups and the number of measures
as each measure leads to a different aggregate.

4. The time to select the best aggregates (evaluate their interesting-
ness and pick the top-k) is also noticeable and grows as expected
with the number of aggregates.

5. Sparsity has a moderate impact.

From these results, we conclude that for a fixed CFS, Aggregate Evalu-
ation dominates Spade’s execution, increasing with the number of distinct
groups and the number of measures; Online Attribute Analysis has the
second-highest cost, growing with the number of attributes (R8).

Experiment 6. We now study the impact of |CFS|, N, and M on
the performance of Spade. As a base configuration, we fixed the
synthetic graph with |CFS| = 5M, 3 dimensions, and 15 measures
(generated as above). For each dimension, we set the uniform value
distribution (as above) and sparsity 0.1, as Experiment 5 proved this
configuration to be the most difficult. Figures 38a, 38b, 38c show
the total execution time of Spade’s online pipeline when we vary
|CFS| ∈ {1M, 2.5M, 5M, 7.5M, 10M}, M ∈ {5, 10, 15, 20, 25, 30}, and
N ∈ {1, 2, 3, 4}, respectively; the Aggregate Evaluation step was exe-
cuted through PGCube∗, MVDCube, and MVDCube with early-stop
as evaluation modules. We chose PGCube∗ as on these graphs it is
correct, and it is faster than PGCubed. The figures show that MVDCube
scales linearly when |CFS| and M grow, and its run time increases more
with N; the latter is expected given the high number of lattices that are
enabled by more dimensions. Further, Spade using MVDCube is consis-
tently faster than using PGCube∗ by up to 2.9×; it also scales better as
|CFS|, N and M grow, and MVDCube with early-stop is consistently the
fastest (R9). Note that in Figure 38b, MVDCube with early-stop took
slightly longer for M=10 than for M=15: in these cases, the random
samples drawn by early-stop (Section 4.5) were less helpful for M=10
than for M=15.

4.7.6 Experimental conclusions

Our experimental results established, first, the need for a novel frame-
work for finding interesting aggregates in RDF graphs: in heteroge-
neous graphs lacking well-defined facts, dimensions, and measures,
Property Derivation increases significantly the space of interesting
aggregates (R1). Due to multi-valued dimensions, relational aggregate
evaluation algorithms often introduce errors (R4), which can be very
significant (R5). On real-world graphs, our algorithm, MVDCube, not
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(a) Varying the number of facts |CFS|.

(b) Varying the number of measures M.

(c) Varying the number of dimensions N.

Figure 38: Scalability of Spade in the number of facts, measures, and dimen-
sions.
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only produces correct results but is also faster (by 20% to 80%) than
the best comparable (PostgreSQL) baseline (R2), (R3). Our novel early-
stop technique reduces MVDCube’s run time by 10% to 43% in many
cases (R6), while remaining accurate (R7). In the entire online pipeline
of Spade, the most time-consuming steps are Aggregate Evaluation,
followed by Online Attribute Analysis (R8). MVDCube consistently
outperforms PGCube while scaling in the number of facts, measures,
and dimensions; early-stop further improves the performance (R9).

4.8 related work

graph exploration By providing visually meaningful, user-
friendly, interactive interfaces, RDF graph visualization [87] allows
casual users to access the data in RDF graphs. Based on the graph
structure, content, and/or semantics, RDF summarization [14] com-
putes a synopsis (summary) of the data, encapsulating the essential
information of the graph from a given perspective. Example-based
graph exploration, such as in [88], helps users discover data based
on examples they specify. Our work is complementary to these ap-
proaches.

insight extraction from multidimensional data An-
other common technique for data exploration is insight extraction
from multidimensional data. Research conducted in [66] and [89] pro-
vides automatic extraction of the top-k insights from multidimensional
relational data. An insight is an observation derived from aggregation
in multiple steps; it is considered interesting when it is remarkably
different from others, or it exhibits a rising or falling trend. Multi-
structural databases [90] distribute data across a set of dimensions,
compare two sets of data along given dimensions, and separate the
data into cohesive groups. A smart drill-down operator [91] is pro-
posed for interactively exploring a relational table to discover groups
of tuples that are frequent, specific, and diverse. Works in this area
assume a fixed relational schema; more recently, they consider graphs
as in [92], but, unlike Spade, they require them to have a very regular
and simple structure.

visualization recommendation SeeDB [67] identifies, in re-
lational data, the one-dimensional aggregates that exhibit the largest
deviation between a target dataset and a reference dataset. A study
in [93] lays out a recommendation scheme for top-k aggregate visual-
izations from relational data using a multi-objective utility function
to prune as many low-utility views as possible. Recent work [94]
shows how to automatically discover the utility function to match
the user intentions. DeepEye [95] finds and ranks visualizations by
combining a binary classifier, supervised learning, and expert rules.
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QAGView [96], [97] provides summaries of high-valued aggregate
query answers that ensure properties including coverage, diversity,
and relevance, customized based on user preferences. LensXPlain [98]
helps users understand answers to aggregate queries by providing the
top-k explanations.

In contrast to these works, Spade applies on a schemaless RDF
graph, and hence must automatically derive those dimensions and
measures that are good candidates to produce some insights.

cube computation The cube computation lies at the heart of
multidimensional data analysis and has been intensely studied [21].
To limit the number of scans of the data and to share computation
as much as possible, many algorithms compute the aggregates in the
lattice from one of their parents [86], [22], [99]. ArrayCube [22] is
a widely accepted algorithm in this category proposing a one-pass
solution that simultaneously aggregates along multiple dimensions.
Analytical queries have been studied for property graphs in [100]. This
ad-hoc OLAP system, similarly to Spade, provides ways of composing
aggregates consisting of facts, dimensions, and measures. Conceptual
data warehouse designs [101] may account for the double-counting
problem in non-strict attribute hierarchies upon a roll-up operation,
similar to aggregation of aggregate lattices with multi-valued dimen-
sions discussed in Section 4.4.

4.9 conclusion

summary Discovering interesting insights from RDF graphs re-
quires automatic, expressive, and efficient methods. We presented
Spade, an extensible framework that enumerates a large and rich
space of insights in the form of RDF aggregate queries and produces
top-k results that maximize a given interestingness function. To the
best of our knowledge, Spade is the first system that explores complex
RDF data without a clear schema, with many ways to choose facts,
dimensions, and measures.

To efficiently explore the large space of candidates aggregates, Spade
introduces:

1. MVDCube, an efficient algorithm for evaluating many aggre-
gates in a single pass over the data, 20% to 80% faster than the
best comparable method implemented in PostgreSQL, and

2. A novel probabilistic technique that prunes uninteresting aggre-
gates early.

Moreover, Spade scales well with the data size and the number of
measures.
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future work We plan to study more insight extraction methods
to support numeric trends [66], time series, and geo-referenced data.

Another research direction is “human-in-the-loop” data exploration
that allows the user to work synergistically with the system to broaden
the set of insights discovered from large graphs.

Finally, we envision exploring slicing and dicing operations applied
on an aggregate lattice similar to sibling groups proposed in [66]. If
an RDF graph contains ontology, we could exploit it to find more
candidate fact sets based on the type hierarchies. As in relational
data warehouses, we may explore different data granularity levels
for aggregates with drill down and roll up. We could use the RDF
subclasses and superclasses to enable the respective operations in the
RDF setting.



5
C O N C L U S I O N A N D P E R S P E C T I V E S

5.1 thesis conclusion

In this thesis, we provided novel data exploration techniques for RDF
graphs. We first showed how we could get non-expert users acquainted
with the data through visualizations. We provided RDFQuotient, a
tool that enables first-sight structure discovery on RDF graphs. Our
compact, meaningful, and informative summary drawings, which
we obtain by applying leaf inlining that makes them similar to ER
diagrams, provide an overview of the dataset. With this starting point,
we further described our new approach for discovering insights in RDF
data. As we learned from the RDF graph summarization, performing
large-scale processing is hard and requires automatic, expressive, and
efficient techniques. To this end, we devised our Spade system, an
end-to-end framework that finds the top-k most interesting aggregates
in an RDF graph.

RDFQuotient and Spade are new-generation tools for data analysis
in the realm of Web data. They leverage the flexible standard of RDF
and enable analytics over large, complex, and heterogeneous graphs.
We ensure compliance with RDF by taking into account the seman-
tics of the data; this is why our algorithms for summarization and
aggregation yield correct results. These new state-of-the-art frame-
works are also designed for efficient data processing: our experiments
(Sections 3.8, 3.9, 4.7) prove their good performance and scalability.

summary of contributions We can divide the main contribu-
tions we make in this thesis as follows.

In the area of the RDF graph summarization:

1. We developed new quotient RDF graph summaries: weak, strong,
typed weak, and typed strong;

2. When we summarize an RDF graph, we showed how to account
for the graph’s semantics, including its ontology (if present). We
further described efficient methods for combining the graph sum-
marization with the saturation: our shortcut procedure speeds
up such semantically correct computation.

123
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3. Within our RDFQuotient tool, we implemented our novel sum-
marization algorithms for the centralized setting, in global (two-
pass) and incremental (single-pass) variants;

4. We provided new parallel algorithms for memory-constrained
environments dedicated for MapReduce-like frameworks that
we implemented on the Spark platform; and

5. In the centralized setting, we explained how to build our four
summaries efficiently in linear time, while in the parallel setting,
we showed that the summarization time scales out linearly as
the number of executors grows.

In the area of the data exploration and insight discovery in RDF
graphs:

1. We described and implemented our Spade system that explores a
large space of candidate RDF aggregates to choose those among
them whose interestingness score is the highest;

2. We designed Spade, our new system that discovers facts, di-
mensions, and measures in complex RDF data without a clear
schema;

3. We provided MVDCube, our novel efficient algorithm for evalu-
ating RDF aggregate lattices in one pass over the data;

4. We presented early-stop, our new probabilistic technique for
pruning uninteresting aggregates that allows us to reduce the
aggregate evaluation effort; and

5. Through experimental study, we demonstrated the scalability of
Spade in the number of facts, measures, and dimensions, as well
as benefits of early-stop run on top of MVDCube.

5.2 future work perspectives

We envision extending our RDFQuotient and Spade line of research
by adding interactions with the users. In our recent and ongoing col-
laboration with Matteo Lissandrini and the Daisy team from Aalborg
University, Denmark, we target “human-in-the-loop” data exploration.
The starting point of this work is a limitation shared by all fully
automated tools meant to help RDF graph data exploration, includ-
ing RDFQuotient and Spade. Despite universal answers, which our
systems provide to their respective problems, they do not take user
preferences into account. With this modified objective, we are currently
designing a new framework.

Our goal is to reverse-engineer a SPARQL aggregate query on an
RDF graph based on a user input table. We begin by presenting an
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empty table to the user; then, we ask them to fill in some initial values
for the cells and/or headers. Next, we propose some hints to the user
to guide further exploration and find the target query. We require our
future system to allow interactivity and leave as much flexibility to
the user as possible.
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style was inspired by Robert Bringhurst’s seminal book on typography
“The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

https://bitbucket.org/amiede/classicthesis/


Titre : ExpRalytics: analyse expressive et efficace de graphes RDF

Mots clés : RDF, requêtes exploratoires, Web Sémantique, analyse des données

Résumé : Les données ouvertes sont souvent par-
tagés sous la forme de graphes RDF, qui sont une
incarnation du principe Linked Open Data (données
ouvertes liées). De telles données n’ont toutefois pas
atteint leur entier potentiel d’utilisation et de par-
tage. L’obstacle pour ce faire réside principalement
au niveau de la capacité des utilisateurs à explorer,
découvrir et saisir le contenu et des graphes RDF;
cette tâche est complexe car les graphes sont natu-
rellement hétérogènes, et peuvent être à la fois volu-
mineux et complexes.

Nous proposons de nouvelles méthodes pour
résumer de grands graphes de données, avec un
accent particulier sur les graphes RDF. À cette fin,
nous avons proposé une nouvelle approché pour la
construction de résumés structurels de graphes RDF,
à savoir RDFQuotient.
Nous considérons aussi le problème d’identifier au-
tomatiquement les requêtes d’agrégation les plus
intéressantes qui peuvent être évaluées sur un
graphe RDF.
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gly shared as RDF graphs today. However, such data
does not yet reach its full potential in terms of sharing
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We provide new methods to meaningfully summarize
data graphs, with a particular focus on RDF graphs.
One class of tools for this task are structural RDF
graph summaries, which allow users to grasp the dif-
ferent connections between RDF graph nodes. To this
end, we introduce our novel RDFQuotient tool that
finds compact yet informative RDF graph summaries

that can serve as first-sight visualizations of an RDF
graph’s structure.
We also consider the problem of automatically iden-
tifying the k most interesting aggregate queries that
can be evaluated on an RDF graph, given an integer k
and a user-specified interestingness function. Aggre-
gate queries are routinely used to learn insights from
relational data warehouses, and some prior research
has addressed the problem of automatically recom-
mending interesting aggregate queries.
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