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The gravitational force governs the evolution of structures in the Universe, from the smallest scales, those of moons and planets, to galaxies, clusters, and to the evolution of the Universe itself. Its importance to describe the surrounding Universe is no longer to be demonstrated: the successes of general relativity have been accumulating for more than a century now. However, it was not until the first direct detection of gravitational waves in 2015 by LIGO/Virgo that gravity, in the form of gravitational waves, became a direct observational tool to scrutinize the Universe in its darkest and most inaccessible corners, such as the neighbourhood of black holes and the first moments of the Big Bang. The perspectives offered by these new types of observations are comparable to those brought by the cosmic microwave background at the turn of the millennium, thus marking the beginning of precision cosmology.

This PhD work is part of the exciting research topic of gravitational wave studies within the LIGO/Virgo/KAGRA collaboration -the network of ground-based gravitational wave detectors currently in place -and the LISA collaboration, the constellation of three satellites, separated by 2.5 million of kilometres, designed to detect low frequency gravitational waves in space. The main subject of this thesis is the study of primordial cosmologyi.e. the first instants of the Universemainly through the prism of gravitational wave detectors. This manuscript has three independent parts.

The first part of this thesis deals with cosmic strings, one-dimensional topological defects that could be formed during phase transitions in the primordial Universe. If formed, these relics of the early universe would be markers of the upheavals of our early universe. We study the evolution of the cosmic string network, in particular the density of loops and their gravitational wave emission, we make predictions for the future LISA mission, and finally constrain cosmic strings using the results of LIGO/Virgo/KAGRA.

In a second part, we study the formation of primordial black holes at the end of inflation, a period of accelerated expansion in the early Universe. During this so-called preheating phase, which precedes the formation of standard model particles, the inflaton oscillates around the minimum of its potential possibly generating a metric instability at the origin of the formation of a large number of primordial black holes. This part of the thesis is therefore devoted to the study of this instability and to quantifying the production of primordial black holes using the excursion-set formalism.

The third part is dedicated to first order phase transitions, in particular during the electroweak transition in extensions of the standard model. During the transition, a large amount of energy is transmitted to the ambient medium in the form of kinetic energy which can lead to turbulence. We therefore propose a model for this freely decaying turbulence and the resulting gravitational wave spectrum.

Court résumé de la thèse

La force gravitationnelle régit l'évolution des structures dans l'Univers, depuis les plus petites échelles, celles des lunes et des planètes, jusqu'aux galaxies, aux clusters et jusqu'à l'évolution de l'Univers lui-même. Son importance pour décrire l'Univers qui nous entoure n'est plus à démontrer : les succès de la relativité générale s'accumulent depuis maintenant plus d'un siècle. Cependant, il a fallu attendre les premières détections directes d'ondes gravitationnelles en 2015 par LIGO/Virgo pour que la gravité, sous la forme d'ondes gravitationnelles, devienne un outil direct d'observation pour scruter l'Univers dans ses recoins les plus sombres et inaccessibles, tels l'environnement proche des trous noirs et les premiers instants de l'Univers. Les perspectives qu'offrent ces nouveaux types d'observations sont comparables à ce que l'étude du fond diffus cosmologique a pu apporter au tournant du millénaire, marquant de ce fait le début de la cosmologie moderne de précision. Ce travail de doctorat s'inscrit dans ce sujet de recherche particulièrement stimulant qu'est l'étude des ondes gravitationnelles au sein de la collaboration LIGO/Virgo/KAGRA -le réseau de détecteurs terrestres d'ondes gravitationnelles actuellement en place -et de la collaboration LISA, la constellation de trois satellites séparés de 2,5 millions de kilomètres destinée à détecter des ondes gravitationnelles de basse fréquence dans l'espace.

Résumé de la thèse

La gravitation régit l'évolution des structures dans l'Univers, depuis les plus petites échelles, celles des lunes et des planètes, jusqu'aux galaxies, aux clusters et jusqu'à l'évolution de l'Univers luimême. Son importance pour décrire l'Univers qui nous entoure n'est plus à démontrer : les succès de la relativité générale s'accumulent depuis maintenant plus d'un siècle. Cependant, il a fallu attendre les premières détections directes d'ondes gravitationnelles en 2015 par LIGO/Virgo pour que la gravité, sous la forme d'ondes gravitationnelles, devienne un outil direct d'observation. Cet outil nous est très précieux pour scruter l'Univers dans ses recoins les plus sombres et inaccessibles, comme l'environnement proche des trous noirs et les premiers instants de l'Univers. Les perspectives qu'offrent ces nouveaux types d'observations sont comparables à ce que l'étude du fond diffus cosmologique a pu apporter au tournant du millénaire, marquant de ce fait le début de la cosmologie moderne de précision. Ce travail de doctorat s'inscrit dans ce sujet de recherche particulièrement stimulant qu'est l'étude des ondes gravitationnelles d'un point de vue théorique et également au sein de la collaboration LIGO/Virgo/KAGRA -le réseau de détecteurs terrestres d'ondes gravitationnelles actuellement en place -et de la collaboration LISA, la constellation de trois satellites séparés de 2,5 millions de kilomètres destinée à détecter des ondes gravitationnelles de basse fréquence dans l'espace.

Le sujet principal de cette thèse est l'étude de la cosmologie primordiale -c'est-à-dire les premiers instants de l'Univers -principalement par le prisme des détecteurs d'ondes gravitationnelles. Si nos observations en ondes lumineuses ne peuvent provenir de plus loin et de plus tôt que la surface de dernière diffusion, les ondes gravitationnelles produites très tôt dans l'Univers pourraient s'être propagées librement jusqu'à aujourd'hui. L'apport des ondes gravitationnelles dans le domaine de la cosmologie primordiale s'annonce donc considérable pour les prochaines années. Le travail contenu dans cette thèse a mené à la publication de huit articles, dont sept sont reproduits dans le présent manuscrit. Celui-ci comporte trois parties indépendantes, chacune dédiée à un phénomène de nature différente qui aurait pu se produire durant les premiers instants de l'Univers et dont l'observation nous permettrait d'en apprendre plus sur la physique à de très hautes énergies.

La première mais aussi la plus longue partie de cette thèse porte sur les cordes cosmiques, des défauts topologiques unidimensionnels susceptibles de s'être formés lors de transitions de phases dans l'Univers primordial. En effet, alors que l'Univers primordial vieillit et s'étend, celui-ci se refroidit. Il peut alors subir des transitions de phases durant lesquelles certaines symétries se brisent. Ce sont les propriétés topologiques de ces brisures de symétries qui déterminent si des cordes cosmiques peuvent se former. Les caractéristiques de ces cordes cosmiques seraient alors déterminées par la physique en vigueur à de très hautes énergies, énergies qui nous sont inaccessibles en laboratoire ou dans les accélérateurs de particules. Ainsi, si des cordes cosmiques étaient formées, ces reliques des premiers instants de l'Univers seraient des marqueurs des bouleversements qu'il a connus. C'est dans cette perspective que nous étudions dans cette partie l'évolution du réseau de cordes cosmiques, leur émission d'ondes gravitationnelles et la dépendance de ce signal aux différentes propriétés des cordes. Nous y étudions aussi d'autres signatures comme le fond diffus de rayons γ et l'abondance de matière noire.

Cette partie commence par une courte introduction aux cordes cosmiques au chapitre 1 dans laquelle nous rappelons le mécanisme à l'origine de leur formation. Nous y exposons leurs principales propriétés ainsi que leurs conséquences observationnelles, aussi bien gravitationnelles que non-gravitationnelles. Puis dans le chapitre 2, rédigé en collaboration au sein du groupe de travail "Cosmologie" de LISA, nous passons en revue différents modèles présents dans la littérature pour quantifier la densité de boucles de cordes cosmiques ainsi que deux méthodes différentes pour calculer leurs contributions au fond stochastique d'ondes gravitationnelles. Ce faisant, nous montrons que la future mission LISA sera capable de confirmer ou de contraindre l'existence des cordes cosmiques à des échelles d'énergies cinq ordres de grandeurs plus basses que les meilleures contraintes actuelles provenant des analyses de réseaux de pulsars millisecondes.

Au chapitre 3, nous nous intéressons à la fonction de production qui décrit l'interaction entre le réseau de cordes infinies, c'est-à-dire plus grandes que le rayon de Hubble, et les boucles qui contribuent au fond stochastique d'ondes gravitationnelles. En particulier, nous étudions la fonction de production de Polchinski et Rocha qui a la particularité de tenir compte de la structure fractale des cordes. Par conséquent, ce modèle prédit que des boucles peuvent être produites à toutes les échelles avec une certaine loi de puissance. La densité de boucle qui en résulte avait déjà été étudiée dans un régime particulier, que nous avons entrepris d'étendre et que nous comparons avec les résultats numériques d'autres groupes de recherche. L'impact de ce modèle sur le fond stochastique d'ondes gravitationnelles est étudié en détail dans le chapitre 4. En plus de fournir des formules analytiques pour le spectre d'ondes gravitationnelles pouvant être utilisées pour accélérer l'analyse des données de fond stochastique, nous y évaluons de manière systématique la sensibilité des différentes gammes de détecteurs d'ondes gravitationnelles selon leur fréquence.

Le chapitre 5, qui a été rédigé au sein de la collaboration LIGO/Virgo/KAGRA, est dédié à l'analyse des données issues du troisième cycle d'observations. Nous utilisons ces données pour contraindre l'échelle d'énergie des cordes cosmiques en considérant différents scénarios pour l'évolution du réseau de boucles. Pour ce faire, nous cherchons dans ces données à la fois des signaux de nature stochastique et des bouffées très courtes d'ondes gravitationnelles. Parmi les nouveautés de cette analyse, nous introduisons les modèles décrits aux chapitres 3 et 4. Nous avons aussi ajouté les formes d'ondes associées aux collisions de kinks, une source jusqu'alors négligée mais qui peut prédominer sur les cordes avec une dimension fractale élevée.

Les premiers chapitres supposent que l'épaisseur des cordes est infiniment petite par rapport à leur taille, et que la dynamique des cordes suit l'action de Nambu-Goto telle qu'introduite au chapitre 1. Cependant, les divergences entre la description Nambu-Goto des cordes cosmiques qui prédit des boucles à longue durée de vie et les simulations numériques de théorie des champs dans lesquelles les boucles se désintègrent rapidement en particules font l'objet d'un long débat dans la communauté des cordes cosmiques. Le chapitre 6 est une tentative pour combler l'écart qui existe entre ces deux descriptions au moyen d'un modèle hybride. Notre hypothèse principale suppose que les boucles isolées évoluent selon les équations de Nambu-Goto jusqu'à atteindre une taille critique en dessous de laquelle elles disparaissent rapidement en émettant des particules. Ce point de vue est motivé par une série de simulations numériques conduites par l'un de nos collaborateurs : Tanmay Vachaspati. Nous résolvons analytiquement ce modèle simplifié et prédisons que l'effet principal de l'émission de particules est de réduire le spectre d'ondes gravitationnelles à haute fréquence. Pour autant, cet effet n'est pas suffisamment fort pour remettre en question les contraintes exprimées par les détecteurs actuels d'ondes gravitationnelles. À partir d'hypothèses simples sur la désintégration de ces particules en rayons γ, nous sommes en mesure d'estimer la contribution des cordes cosmiques au fond diffus de rayons γ et de montrer qu'elle reste quelques ordres de grandeur sous la barre fixée par l'expérience Fermi-LAT.

Enfin, nous évoquons dans le chapitre 7 le cas des cordes cosmiques porteuses de courant et de la formation de configurations stables de boucles, les vortons. La stabilité des vortons est due au v moment angulaire porté par le courant qui prévient l'effondrement final de la boucle. Aux yeux d'un observateur distant, ces vortons ressembleraient à des particules ponctuelles avec une masse et un spin, et pourraient donc constituer une partie de la matière noire de notre Univers. En modélisant l'évolution des cordes avec une équation de continuité, nous sommes en mesure de déterminer leur abondance à tout temps et en particulier aujourd'hui, en fonction des échelles d'énergie de la corde et du courant. Finalement, nous montrons qu'ils constituent, sous certaines conditions bien particulières, un candidat viable et original pour expliquer la présence de matière noire dans l'Univers.

Dans la seconde partie, nous nous intéressons à la formation de trous noirs primordiaux à la fin de l'inflation, une période d'expansion accélérée qui est supposée s'être produite dans l'Univers primordial. Durant cette phase dite de preheating, qui précède la formation des particules du modèle standard, l'inflaton oscillant autour du minimum de son potentiel aurait pu engendrer une instabilité de la métrique à l'origine de la formation d'une grande quantité de trous noirs primordiaux.

Le chapitre 8 est une très brève introduction au vaste domaine qu'est l'étude des trous noirs primordiaux. Nous commençons par donner quelques ordres de grandeurs pour apprécier la masse des trous noirs primordiaux ainsi que leur durée de vie. En effet, nous savons depuis les travaux pionniers de Hawking et Bekenstein que les trous noirs ont une température et une luminosité et donc qu'ils perdent de l'énergie sous forme de rayonnement. Nous passons ensuite en revue les différentes méthodes utilisées pour contraindre leur abondance. Enfin, nous utilisons l'analyse perturbative multi-échelles pour acquérir une compréhension de la bande d'instabilité de l'équation de Mathieu correspondant à l'instabilité de preheating.

Le coeur de cette partie est le chapitre 9 dédié aux différentes techniques utilisées pour calculer la distribution de masse initiale des trous noirs primordiaux dans le contexte de l'instabilité de preheating. Après un bref rappel concernant la physique de l'instabilité de preheating, nous nous attardons sur les formalismes de Press et Schechter ainsi que d'excursion-set. Nous montrons que ce dernier formalisme est le plus à même de prendre en compte le problème dit de cloud-incloud, c'est-à-dire le problème de compter plusieurs fois des structures qui seraient incluses dans de plus grands trous noirs. Nous mettons en lumière que ce problème est analogue au système d'une particule soumise à une équation de Langevin avec une barrière mobile. En particulier, nous mettons en évidence que ce système satisfait à un ensemble d'équations intégrales de Volterra dont un choix particulier permet de résoudre très efficacement ce problème. Enfin, nous montrons que si l'inflaton est très faiblement couplé aux particules du Modèle Standard, ce mécanisme produit très efficacement des trous noirs primordiaux dont la masse varie entre dix grammes et une masse solaire.

La troisième et dernière partie est dédiée aux transitions de phase du premier ordre, en particulier durant la transition électro-faible dans des extensions du modèle standard. Durant la transition de phase, une grande quantité d'énergie est transmise au milieu ambiant sous forme d'énergie cinétique et peut générer de la turbulence. Si la transition de phase électro-faible est du premier ordre, le signal en ondes gravitationnelles ainsi créé devrait être localisé dans la bande de fréquences de LISA, ce qui en fait un sujet d'étude d'importance pour préparer le lancement de cette mission. Dans le chapitre 10, nous commençons par rappeler comment calculer le fond stochastique d'ondes gravitationnelles généré par un fluide parfait relativiste dont le mouvement est purement rotationnel. Ce calcul suppose de connaître les caractéristiques spatiales et temporelles du champ de vitesse au cours de la phase de turbulence libre. C'est pourquoi nous construisons un modèle pour décrire cette période de turbulence libre qui suit la transition de phase. En particulier, nous nous intéressons aux corrélations temporelles du champ de vitesse ainsi qu'aux lois d'évolution de l'énergie cinétique et de l'échelle intégrale du fluide. Le modèle que nous construisons s'appuie sur différents travaux analytiques préexistants et nous les validons avec des simulations de mécanique des fluides massivement parallèles que nous lançons sur des supercalculateurs. Par la suite, nous mettons en avant l'importance de la condition de Mercer qui doit, en principe, être satisfaite par toute fonction de corrélation à deux points. En pratique, la fonction de corrélation à deux temps est souvent définie directement sur la base de considérations phénoménologiques, et non à partir d'un processus stochastique. Ainsi, la condition de Mercer est un indice supplémentaire qui nous guide dans la détermination de la fonction de corrélation. Les fonctions qui satisfont à la condition de Mercer sont appelées noyaux et nous passons en revue les exemples de noyaux les plus communément employés : les noyaux séparables, stationnaires et localement stationnaires. Dans le cas de la turbulence libre, nous proposons d'utiliser le noyau non-stationnaire de Gibbs qui est en bon accord avec nos simulations numériques. Ce choix nous garantit la positivité des spectres de vitesse et du fond stochastique d'ondes gravitationnelles. Enfin, nous calculons le signal en ondes gravitationnelles en utilisant un algorithme d'échantillonnage préférentiel adapté au calcul d'intégrales à plusieurs dimensions. Les résultats de ce chapitre sont encore préliminaires, mais ils soulignent l'impact que les incertitudes sur la formation de la phase turbulente ont sur le spectre d'ondes gravitationnelles. 

Introduction

Mais ce n'est pas tout : Lorentz, dans l'Ouvrage cité, a jugé nécessaire de compléter son hypothèse en supposant que toutes les forces, quelle qu'en soit l'origine soient affectées, par une translation, de la même manière que les forces électromagnétiques, et que, par conséquent, l'effet produit sur leurs composantes par la transformation de Lorentz est encore défini par les équations [START_REF] Einstein | Zur Allgemeinen Relativitätstheorie[END_REF]. Il importait d'examiner cette hypothèse de plus près et en particulier de rechercher quelles modifications elle nous obligerait à apporter aux lois de la gravitation. J'ai d'abord été conduit à supposer que la propagation de la gravitation n'est pas instantannée, mais se fait à la vitesse de la lumière. (...) Quand nous parlerons donc de la position ou de la vitesse du corps attirant, il s'agira de cette position ou de cette vitesse à l'instant où l'onde gravifique est partie de ce corps; quand nous parlerons de la position ou de la vitesse du corps attiré, il s'agira de cette position ou de cette vitesse à l'instant où ce corps attiré a été atteint par l'onde gravifique émanée de l'autre corps. (...) Il n'est donc pas, à première vue, absurde de supposer que les observation astronomiques ne sont pas assez précises pour déceler une divergence aussi petite que celle que nous imaginons. Mais c'est ce qu'une discussion approfondie permettra seule de décider. Henri Poincaré, "Sur la Dynamique de l'électron", 1905 [START_REF] Henri | Sur la Dynamique de l'électron[END_REF] A (very) brief history of gravitational waves

In his famous paper of 1905 [START_REF] Einstein | On the electrodynamics of moving bodies[END_REF], Albert Einstein shattered the traditional notions of space and time with his theory of special relativity. The theory is based on two assumptions 1. All laws of physics must be the same for all observers moving at constant speed relative to each other. This first premise may be seen as Galilean relativity (or invariance).

2. The speed of light must be the same for all inertial observers, regardless of their relative motion. This second premise is motivated by the experiments conducted by Michelson and Morley [START_REF] Abraham | On the Relative Motion of the Earth and the Luminiferous Ether[END_REF] which had failed to measure a significant difference between the speed of light in the direction of movement of the earth and the speed in other directions.

Among other fundamental results, Albert Einstein used his theory of special relativity to derive the transformation law for the passage from one inertial reference frame to another: the Lorentz transformation. Hendrik Lorentz and Henri Poincaré had already found them by looking at the transformation laws leaving Maxwell's equation of electromagnetism invariant. However, Albert 1
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Einstein was the first to give a physical significance to these laws, breaking the notions of absolute time and space. Soon after this pioneering article, the scientific community questioned whether the laws of gravity should also follow the principles of special relativity. We can find this questioning in a note from Henri Poincaré in 1905 [START_REF] Henri | Sur la Dynamique de l'électron[END_REF] (see quotation at the beginning of the chapter) including the first mention of a "gravific wave", a prototype of a gravitational wave. Then in 1915, Albert Einstein published his manuscript on General Relativity (GR) [START_REF] Einstein | Zur Allgemeinen Relativitätstheorie[END_REF], a consistent description of both gravity and special relativity. He quickly postulated the existence of gravitational waves (GW) [START_REF] Einstein | Approximative Integration of the Field Equations of Gravitation[END_REF][START_REF] Einstein | Über Gravitationswellen[END_REF] based on his theory of general relativity, and this date is most often considered to be the beginning for the history of gravitational waves.

Gravitational waves are perturbations of the metric satisfying a wave equation, i.e. they are ripples of space-time curvature propagating unimpeded at the speed of light. Even though they arise naturally from the perturbation of Einstein's equations, the reality of gravitational waves was debated for a long time. Indeed, the plane gravitational waves solution found by Einstein were first classified into three types: longitudinal-longitudinal; longitudinal-transverse; transverse-transverse. In 1922, Arthur Eddington showed [START_REF] Stanley | The propagation of gravitational waves[END_REF] that the first two have no fixed velocity, or rather that it depends on the choice of coordinates. Although Eddington found that the transverse-transverse waves propagate at the speed of light in all systems of coordinates, his result raised suspicion as to the objective existence of gravitational waves. Albert Einstein himself had serious doubts on the subject. In 1936, he submitted a paper to Physical Review, together with Nathan Rosen, in which they claimed that gravitational waves cannot exist in a full theory of general relativity because any such solution would have singularities. The article was reviewed by Howard Robertson who reported that the singularities in question were simply the harmless coordinate singularities of the employed cylindrical coordinates (see for instance Ref. [START_REF] Cervantes-Cota | A Brief History of Gravitational Waves[END_REF]). The issue was only settled in the mid 1950s, thanks to the work of Felix Pirani who rephrased gravitational radiation in terms of the manifestly observable Riemann curvature tensor [START_REF] Pirani | Invariant formulation of gravitational radiation theory[END_REF]. Finally, in a famous thought experiment presented during the first "GR" conference at Chapel Hill in 1957 known as the sticky bead argument, Richard Feynman noted that if one takes a rod with beads then the effect of a passing gravitational wave would be to move the beads along the rod; friction would then produce heat, implying that the passing wave had done work.

After the Chapel Hill conference, Joseph Weber was the first person to realize that it is not utterly hopeless to detect gravitational waves (see Chapter 10 of Ref. [START_REF] Thorne | Black holes and time warps: Einstein's outrageous legacy[END_REF] for an historical review about the conception of the GW detectors written by Kip Thorne). He designed and built the first gravitational wave detectors known as Weber bars [START_REF] Weber | Detection and Generation of Gravitational Waves[END_REF]: a cylindrical aluminium bar, about two meters long, a half meter in diameter and a ton in weight. The principle is the following: the bar has a natural mode of vibration which can respond resonantly to the oscillating tidal force applied by a passing gravitational wave. To use such a bar, one has to adjust its size so that its natural frequency matches the frequency of the incoming GW. In 1969, Joseph Weber published results announcing the first detection of gravitational waves [START_REF] Weber | Evidence for discovery of gravitational radiation[END_REF]. Although his claims were received with scepticism by his peers, many groups of scientists built their own gravitational wave detectors to repeat and improve on Weber's measurements.

The first experimental confirmation of the existence of GW came after the measurement of the orbital period decay in the PSR B1913+16 by Hulse and Taylor in 1974 [START_REF] Hulse | Discovery of a pulsar in a binary system[END_REF][START_REF] Taylor | Measurements of general relativistic effects in the binary pulsar PSR 1913+16[END_REF]. Not only does this observation confirm the existence of gravitational radiation, it is also a remarkable quantitative test of general relativity. This announcement sparked renewed interest in the field, and Hulse and Taylor received the Nobel prize in 1993 for this discovery.

In the 1970s, several groups of researchers independently devised a new type of GW detector based on interferometry 1 . These laser interferometric GW detectors are very similar to the one used by Michelson and Morley in 1887 to search for the motion of Earth through ether, and soon became a serious alternative to Weber bars. Indeed, interferometers present a number of advantages over Weber bars:

• The bar responds only to a narrow frequency band, therefore decoding the full GW signal would require many bars each with different natural frequencies. On the contrary, interferometers respond, in principle, to all frequencies. Thus, they have a wider frequency range.

• Increasing the length of the interferometer arms increases the sensitivity of the detector by roughly the same amount. By contrast, the Weber bar cannot be lengthened much, since its natural frequency depends on its dimensions.

• Because an interferometer can be a thousand times larger than a Weber bar, it is more immune to the quantum noise produced by the measurement process which fundamentally limits the sensitivity of Weber bars.

In parallel to the development of ground-based interferometers, the idea of using millisecond pulsars as low-frequency GW detectors germinated in the late 1970s [START_REF] Sazhin | Opportunities for detecting ultralong gravitational waves[END_REF][START_REF] Steven | Pulsar timing measurements and the search for gravitational waves[END_REF]. Much like a lighthouse, a pulsar is a highly magnetized rotating compact star emitting beams of electromagnetic radiation out of its magnetic poles. We observe a pulse whenever the beam is directed toward the Earth. Millisecond pulsars are amazingly stable rotators and it is possible -after a precise measurement of the pulsar's spin, astrometric and orbital parameters -to predict the pulse timeof-arrival to a very high accuracy. The passage of a gravitational wave would cause the time of arrival of the pulses to vary by a few tens of nanoseconds. The Pulsar Timing Array (PTA) experiments usually monitor a collection of tens of pulsars to account for the dispersion effects in the atmosphere and in the space between the observer and the pulsar. At present, there are three active PTA projects: the Parkes Pulsar Timing Array (PPTA) in Australia, the European Pulsar Timing array (EPTA) using the four largest radio telescopes in Europe and the North American Nanohertz Observatory for Gravitational Waves (NANOGRAV) in North America. These three projects have begun collaborating under the title International Pulsar Timing Array (IPTA), releasing their first data in 2016 [START_REF] Verbiest | The International Pulsar Timing Array: First Data Release[END_REF].

Finally, in 2015, nearly forty years after the first prototypes of an interferometric detector, the first direct detection of a GW by the LIGO/Virgo collaboration [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF] ended this century long quest for GWs and opened the era of gravitational wave astronomy.

The first successes of GW astronomy

In 2017, the Nobel prize went to Rainer Weiss, Barry C. Barish and Kip Thorne to reward their research and the first direct detection of GWs. Four years later, the latest catalogue of gravitationalwave detections by LIGO/Virgo listed a total of 50 events [START_REF] Abbott | GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run[END_REF], from the first detection of a binary black hole merger in 2015 to the end of the first half of the third observing run O3a (the masses of all the detected compact objects are summarized in Fig. 1). We have moved from the quest for CONTENTS Figure 1: Masses of compact objects detected through gravitational waves [START_REF] Abbott | GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run[END_REF]. The figure shows black holes (blue), neutron stars (orange), and compact objects of uncertain nature (gray). Each compact binary merger corresponds to three compact objects: the two coalescing objects and the final merger remnant. (Credit: LIGO Virgo Collaboration/Frank Elavsky, Aaron Geller / Northwestern).

GWs to the era of gravitational astronomy, using GW to test the limits of GR and understand the most inaccessible regions of our Universe.

Perhaps the most exceptional GW event of this list is GW170817 [START_REF] Abbott | GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral[END_REF] 2 . It is the first observation of GWs from the inspiraling of two neutron stars, and the electromagnetic counterpart was observed in multiple wavelength bands and localized in the galaxy NGC 4993. In particular, 1.74 ± 0.05 seconds after the GW event, the γ-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor and by the SPectro-meter on board INTEGRAL Anti-Coincidence Shield 3 . This unique multi-messenger observation in both GWs and electromagnetic waves has a number of implications for fundamental physics, cosmology and astrophysics [START_REF] Abbott | Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A[END_REF][START_REF] Poggiani | Multi-messenger Observations of a Binary Neutron Star Merger[END_REF].

Among the implications for fundamental physics, the temporal offset of 1.74 ± 0.05 s between the GW and the GRB allows one to constrain the speed of GWs, c GW , relative to the speed of light c EM . The luminosity distance to the source of about 26 Mpc can be accessed through the analysis of the GW signal amplitude. An estimate of the upper bound on the speed difference ∆c = c GW -c EM can be set by assuming that the GW and GRB were emitted simultaneously. To obtain a lower bound on ∆c, one can assume that the two signals were emitted at times differing by more than 1.74 ± 0.05 s with the faster EM signal making up some of the difference. As a conservative bound relative to the few second delays, the authors of Ref. [START_REF] Abbott | GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral[END_REF] assume that the GRB signal was emitted 10 seconds after the GW signal. The resulting constraint on the speed difference is

-3 × 10 -15 ≤ ∆c c EM ≤ +7 × 10 -16 . (1) 
This observation has also been used to derive tests for violations of Lorentz invariance, on the polarizations of the GW and of the equivalence principle, finding no deviations from GR and thus constraining tightly models of modified gravity.

Regarding cosmology, the joint observation of GW and EM waves offered a unique and independent measurement of the Hubble constant H 0 . If we restrict to the local Universe, the Hubble constant relates the luminosity distance an object d L with its redshift z (see Ref. [START_REF] Hogg | Distance measures in cosmology[END_REF] for a discussion on distances in cosmology)

d L (z 1) = cz H 0 . (2) 
Different approaches exist to estimate the Hubble constant. One estimate comes from the measurement of the peaks of the CMB temperature power spectrum, which correspond to the acoustic scale at recombination. The latest Planck result assuming the Λ-CDM model is [START_REF] Aghanim | Planck 2018 Results. VI. Cosmological Parameters[END_REF] H 0 = 67.37 ± 0.54 km.s -1 Mpc -1 .

Other methods using Baryon-acoustic oscillations combined with physics of the big bang nucleosynthesis give similar values for H 0 = 67.66 ± 0.42km.s -1 Mpc -1 . This is, however, lower than the value obtained by independent measurements at low redshifts, such as the ones of the SH0ES collaboration. This latter measurement involves the complex calibration of a distance ladder : a succession of standard rulers to determine distances on a hierarchy of scales. The first ruler is the CONTENTS measurement of parallax, which can be used at the scale of our galaxy. A second ruler comes from Cepheid variables, a type of star that pulsates. A direct relationship between a Cepheid variable's luminosity and pulsation period allows one to use them as a ruler for scaling galactic and extragalactic distances. Finally, type 1a supernovae are used to measure distances in distant galaxies. Type 1a supernovae have a characteristic light curve after the explosion and it is used to determine their absolute luminosity and hence their distance. This succession of cosmic rulers has been calibrated with increasing accuracy over the past thirty years [START_REF] Riess | Using SN-Ia light curve shapes to measure the Hubble constant[END_REF], and the latest measurement of the Hubble constant by the SH0ES collaboration is [START_REF] Riess | Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM[END_REF] H 0 = 73.2 ± 1.3 km.s -1 Mpc -1 .

This 4σ discrepancy between low and high redshift measurements of the Hubble constant is known as the Hubble tension and is one of the major lead for physics beyond the Λ-CDM model (see Ref. [START_REF] Verde | Tensions between the Early and the Late Universe[END_REF] for a complete review on the Hubble tension). In this context, the gravitational-wave signal of GW170817 gives a direct measurement of the luminosity distance of the source, which, along with the redshift measurement of NGC 4993, can be used to infer cosmological parameters independently of the cosmic distance ladder. From this observation, the LIGO/Virgo collaboration estimated that [START_REF] Abbott | GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral[END_REF] H 0 = 70 +12 -8 km.s -1 Mpc -1 .

(
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This first measurement paves the way for a new independent and precise determination of the Hubble constant, possibly helping in resolving the Hubble tension. So far we have discussed the detection of individual GW signals, but it may not be the only GW signals that we can hope to detect. A stochastic background of gravitational waves (SGWB) is the superposition of unresolved GW signals, either coming from uncorrelated and unresolved astrophysical mergers, or from cosmological sources in causally disconnected patches in the sky. Some examples of cosmological sources from the early Universe are inflation, phase transitions, primordial black holes and cosmic strings. Each of those sources has different properties and leads to different spectra: standard slow-roll inflation for example leads to a stochastic background which is unobservable [START_REF] Caprini | Cosmological Backgrounds of Gravitational Waves[END_REF]. The contribution from cosmic strings and first order phase transition will be the subject of this thesis. Stochastic backgrounds are currently looked for in ground-based detectors [START_REF] Abbott | An Upper Limit on the Stochastic Gravitational-Wave Background of Cosmological Origin[END_REF][START_REF] Abbott | Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run[END_REF][START_REF] Abbott | Search for the Isotropic Stochastic Background Using Data from Advanced LIGO's Second Observing Run[END_REF][START_REF] Abbott | Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run[END_REF] and PTA experiments [START_REF] Arzoumanian | The NANOGrav 11-Year Data Set: Pulsar-Timing Constraints on the Stochastic Gravitational-Wave Background[END_REF]. The latest upper limits on the energy fraction in gravitational waves Ω GW are4 Ω LIGO/Virgo GW (25 Hz) 5.8 × 10 -9 , Ω NANOGRAV GW (1 yr -1 ) ∼ 1.4 -2.7 × 10 -15 .

(6)

These upper limits already constrain models for the populations of compact objects and of cosmology in the early Universe (see Chapter 5 for cosmic strings). Last year, the NANOGRAV collaboration found strong evidence for a stochastic process across the monitored pulsars, but did not claim a GW detection [START_REF] Arzoumanian | The NANOGrav 12.5 Yr Data Set: Search for an Isotropic Stochastic Gravitational-Wave Background[END_REF]. Soon after the publication of this article, different interpretations of this signal were proposed (for instance [START_REF] Blasi | Has NANOGrav Found First Evidence for Cosmic Strings?[END_REF][START_REF] Ellis | Cosmic String Interpretation of NANOGrav Pulsar Timing Data[END_REF][START_REF] Vaskonen | Did NANOGrav see a signal from primordial black hole formation?[END_REF][START_REF] De Luca | NANOGrav Data Hints at Primordial Black Holes as Dark Matter[END_REF][START_REF] De Luca | NANOGrav Data Hints at Primordial Black Holes as Dark Matter[END_REF][START_REF] Nakai | Gravitational Waves and Dark Radiation from Dark Phase Transition: Connecting NANOGrav Pulsar Timing Data and Hubble Tension[END_REF][START_REF] Addazi | NANOGrav results and Dark First Order Phase Transitions[END_REF][START_REF] Addazi | NANOGrav results and Dark First Order Phase Transitions[END_REF][START_REF] Buchmuller | From NANOGrav to LIGO with Metastable Cosmic Strings[END_REF][START_REF] Kohri | Solar-Mass Primordial Black Holes Explain NANOGrav Hint of Gravitational Waves[END_REF] only in the week following the announcement). This clearly shows the excitement in the community, and we can hope that the accumulation of new data will soon make it possible to highlight the true origin of this signal. Upper bound number events Figure 2: (Left panel) Projection of the maximum number of events detected per year for groundbased detectors (except O2 which is fixed to 9 months) and in 4 years for LISA given the upper bounds from the O1 and O2 runs. (Right panel) Fraction of multi-band events, defined as those LISA detections merging within 10 years and being detected by a ground-based detector. Solid lines represent a constant merger rate with redshift, while the shaded areas delineate the difference resulting from a redshift evolution tracking the star formation rate. The figure is taken from Ref. [START_REF] María | Jumping the Gap: Searching for LIGO's Biggest Black Holes[END_REF].

The (near) future of gravitational wave astronomy

The next leap in GW astronomy may come from future improvements on the network of groundbased detectors. Between the third and the fourth observing run, the LIGO and Virgo detectors will be upgraded and KAGRA, the Japanese interferometer, will be added. In Ref. [START_REF] Abbott | Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA[END_REF], the new LIGO/Virgo/KAGRA collaboration estimated that the number of binary black holes (BBH) detected in O3 would be 17 +22 -11 5 , compared to 79 +89 -44 for O4. But perhaps the most impressive gain concerns the sky localization which is expected to be of 280 +30 -23 deg 2 for O3, dropping to 41 +7 -6 for O4 when the four detectors will be operating. Better determination of the sky localization offers the possibility to detect more multi-messenger events such as GW170817 and to infer the redshift of the GW source using galaxy catalogues.

In the not-so-distant future, we can hope that the data accumulated by the PTA experiments will be able to discriminate the origin of the stochastic signal found in NANOGRAV [START_REF] Arzoumanian | The NANOGrav 12.5 Yr Data Set: Search for an Isotropic Stochastic Gravitational-Wave Background[END_REF]. By the end of the 2020s and the beginning of the 2030s, the two radio-telescopes constituting the square kilometre array (SKA) in South Africa and in Australia will start acquiring data and will greatly increase the sensitivity of PTA experiments in the nanohertz frequency band [START_REF] Janssen | Gravitational Wave Astronomy with the SKA[END_REF]. They will either contribute to detecting GWs, or confirm a detection if a first signal already has been identified.

By the mid 2030s, the Laser Interferometer Space Antenna (LISA) -a constellation of three spacecrafts separated by more than a million kilometres -will be able to detect GW signals with frequencies about 0.1 mHz to 1 Hz. The frequency band of LISA is ideally positioned for the study of various cosmological sources [START_REF] Binetruy | Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources[END_REF] (see in Chapter 2 a discussion on cosmic strings and CONTENTS Chapter 10 for first order phase transitions at the electroweak scale) and to observe the inspiraling of supermassive black holes among other astrophysical sources [START_REF] Amaro-Seoane | eLISA/NGO: Astrophysics and Cosmology in the Gravitational-Wave Millihertz Regime[END_REF].

The Einstein Telescope (ET), a proposed European ground-based gravitational-wave detector of third-generation, is an evolution of second-generation detectors such as Advanced LIGO, Advanced Virgo, and KAGRA which could be operating in the mid 2030s. The arm length of the detector will be increased to 10 km, compared to 3 km for Virgo and 4 km for LIGO and it will be built a few hundred meters underground. ET's potential is discussed in great details in Ref. [START_REF] Maggiore | Science Case for the Einstein Telescope[END_REF]. An American equivalent of ET, Cosmic Explorer (CE), has been proposed in the US [START_REF] Reitze | Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO[END_REF]. Fig. 2, taken from Ref. [START_REF] María | Jumping the Gap: Searching for LIGO's Biggest Black Holes[END_REF], shows the number of events expected per year in the next generations of detectors including the different stages of LIGO (O2, aLIGO, A+ and Voyager), LISA, ET and CE. It illustrates that we are still at the dawn of GW astronomy. By the next 10 to 15 years, we will go from O [START_REF] Thorne | Black holes and time warps: Einstein's outrageous legacy[END_REF] events detected per year to over O(1000) per year. Moreover, a substantial fraction of the inspirals observed by LISA will eventually merge in the frequency band of groundbased detectors, making it possible to track the evolution of individual binaries for years until they merge.

Thesis outline

The main subject of this thesis is the study of primordial cosmology mainly through the prism of gravitational wave detectors. Throughout we work with standard Λ-CDM cosmology, in a flat Universe, assuming General Relativity. Part of this PhD work has been conducted within the Virgo collaboration -Chapter 5 is dedicated on the analysis of the O3 data to constrain cosmic stringsand within the LISA cosmology working group -in Chapter 2, we estimate the capability of LISA to detect GW from cosmic strings. The manuscript is divided into three independent parts, each focusing on a different type of phenomenon in the early Universe.

The first part of this thesis deals with cosmic strings, one-dimensional topological defects that may be formed during phase transitions in the primordial Universe. If formed, these relics would be markers of the upheavals of our early universe. After a short introduction on cosmic strings, we study the evolution of the cosmic string network, in particular the number density of loops. We estimate their gravitational wave emission, make predictions for the future LISA mission, and finally constrain cosmic strings using the results of LIGO/Virgo/KAGRA. In a second part, we study the formation of primordial black holes at the end of inflation, the period of accelerated expansion of the Universe. During this so-called preheating phase, which precedes the formation of standard model particles, the inflaton oscillates around the minimum of its potential possibly generating a metric instability at the origin of the formation of many primordial black holes. This part is therefore devoted to the study of this instability and to quantifying the production of primordial black holes using the excursion-set formalism.

The third part is dedicated to first order phase transitions, in particular during the electroweak transition in extensions of the standard model. During the transition, a large amount of energy is transmitted to the ambient medium in the form of kinetic energy thus generating turbulence. We therefore propose a model for this freely decaying turbulence and the resulting gravitational wave spectrum.

Publications resulting from this thesis

The present thesis lead to the publication of seven articles and the prepublication of one article which has been accepted in PRL. In chronological order:

• [START_REF] Auclair | Cosmic String Loop Production Functions[END_REF] Except for Ref. [START_REF] Arca | The missing link in gravitational-wave astronomy: discoveries waiting in the decihertz range[END_REF], the chapters 2, 3, 4, 5, 6, 7 and 9 of this thesis are based on the above publications. The material presented in Chapter 10 is the result of an ongoing collaboration with Chiara Caprini, Daniel Cutting, Mark Hindmarsh, Kari Rummukainen, Danièle Steer and David Weir. It has not yet been submitted for publication.

Part I

Cosmic strings

Chapter 1

Introduction to cosmic strings

The aim of this section is to give a very generic overview of cosmic strings and their observational consequences, and place my work into context. Many more details, with corresponding calculations, can be found in the subsequent chapters to which I will refer in this introduction. Fig. 1.1 summarizes the specific subjects which I will treat later in this thesis.

Topological defects

Cosmic strings are a class of stable topological defect solutions of field theories [START_REF] Nielsen | Vortex-Line Models for Dual Strings[END_REF] which may form in spontaneous symmetry breaking phase transitions in the early Universe [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF][START_REF] Jeannerot | How Generic Is Cosmic String Formation in Supersymmetric Grand Unified Theories[END_REF]. In a cosmological setting they may lead to interesting observational effects since they concentrate large energy densities. In principle, different types of topological defects can form after a symmetrybreaking phase transition: for example, if the vacuum manifold is disconnected, domain-walls may form at the intersection of different vacua. Indeed, the type of topological defect that forms depends on the topology of the vacuum manifold M, characterized by its homotopy groups [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF][START_REF] Kibble | Evolution of a System of Cosmic Strings[END_REF]. Domainwalls form when Π 0 (M) is non-trivial, strings when Π 1 (M) is non-zero whilst a non-vanishing Π 2 (M) gives point-like monopoles. These defects are stable solutions of the field theory. Textures may form if the homotopy group Π 3 (M) is non-trivial, but they are unstable and collapse on themselves.

Since this part of the manuscript is devoted to cosmic strings, let me expand on the fundamental group Π 1 of a topological space M. A topological space M is simply connected if it is path-connected and any closed path in M can be contracted to a point. Equivalently for any p : [0, 1] → M and q : [0, 1] → M two closed paths with the same initial and final point (p(0) = q(0) = p(1) = q(1)), there exists a homotopy

F : [0, 1] × [0, 1] → M
such that F (x, 0) = p(x) and F (x, 1) = q(x).

More generally, if such a homotopy exists, p and q are said to be homotopic, and this relation is an equivalence relation. The fundamental group of a topological space can be seen an indicator of the failure for the space to be simply connected. It classes of loops up to homotopy, and the concatenation of loops p • q : [0, 1] → M (p • q)(t) p(2t) 0 ≤ t ≤ 1/2 q(2t -1) 1/2 ≤ t ≤ 1 .

The elements of the fundamental group classify the different types of admissible string solutions.

The simplest example for the formation of cosmic strings is the breaking of an U (1) symmetry, taking a complex scalar field φ and a quartic Mexican hat potential with a degenerate circle of minima |φ| = η [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF], as shown on Fig. 1.2. In this case, the vacuum manifold M = S 1 is a circle, the fundamental group is Π 1 (M) = Z, and the admissible string solutions are labelled by an integer winding number.

Topology only tells us about the existence of cosmic strings, not their detailed properties, which in the case of the Abelian-Higgs model will depend on the Higgs and gauge couplings (type I, type II strings) [START_REF] Shellard | Cosmic String Interactions[END_REF][START_REF] Verbiest | High Speed Collision and Reconnection of Abelian Higgs Strings in the Deep Type-II Regime[END_REF][START_REF] Salmi | Kinematic Constraints on Formation of Bound States of Cosmic Strings: Field Theoretical Approach[END_REF][START_REF] Bevis | Evolution and Stability of Cosmic String Loops with Y-Junctions[END_REF]. Furthermore, if the field forming the string is coupled to other fields, it is possible for the latter to condense on the string and give rise to currents [START_REF] Hindmarsh | Cosmic Strings[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF], see Chapter 7.

Observational consequences

Alternatively, line-like "cosmic super-strings" can be cosmologically stretched fundamental strings of String Theory, formed for instance at the end of brane inflation [START_REF] Dvali | Formation and Evolution of Cosmic D-Strings[END_REF][START_REF] Copeland | Cosmic f and d Strings[END_REF]. The energy per unit length of a string µ, is of order η 2 , where η is a characteristic energy scale: for topological strings Gµ = 10 -6 η 10 16 GeV 2 (1.1) with η the energy scale of the phase transition. Generically the string tension is also of order µ, and strings are relativistic objects: the combination of a high energy scale and a relativistic speed clearly indicates that strings are a natural source of GWs. We will discuss the production of GW from strings in details in the following Chapters 2 and 5.

There are other ways one can hope to detect the presence of cosmic strings in the Universe that do not directly involve the observation of the GWs they generate. Multiple potential observational signatures of cosmic string networks have been discussed in the literature, including anisotropies in Cosmic Microwave Background (CMB) [START_REF] Ade | Planck 2013 Results. XXV. Searches for Cosmic Strings and Other Topological Defects[END_REF][START_REF] Charnock | CMB Constraints on Cosmic Strings and Superstrings[END_REF][START_REF] Lizarraga | New CMB Constraints for Abelian Higgs Cosmic Strings[END_REF][START_REF] Ringeval | Cosmic Strings and Their Induced Non-Gaussianities in the Cosmic Microwave Background[END_REF], lensing events [START_REF] Vilenkin | Cosmic Strings as Gravitational Lenses[END_REF][START_REF] Jolyon | Cosmic String Loop Microlensing[END_REF], and cosmic rays from the decay of strings into particle radiation [START_REF] Robert | On the Decay of Cosmic String Loops[END_REF][START_REF] Srednicki | Nongravitational Decay of Cosmic Strings[END_REF][START_REF] Bhattacharjee | Grand Unified Theories, Topological Defects and Ultrahigh-Energy Cosmic Rays[END_REF][START_REF] Damour | Cosmic Strings and the String Dilaton[END_REF][START_REF] Wichoski | High-Energy Neutrinos, Photons and Cosmic Ray Fluxes from VHS Cosmic Strings[END_REF][START_REF] Peloso | Moduli from Cosmic Strings[END_REF][START_REF] Sabancilar | Cosmological Constraints on Strongly Coupled Moduli from Cosmic Strings[END_REF][START_REF] Vachaspati | Cosmic Rays from Cosmic Strings with Condensates[END_REF][START_REF] Long | Cosmic Strings in Hidden Sectors: 1. Radiation of Standard Model Particles[END_REF] (see [START_REF] Hindmarsh | Cosmic Strings[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF][START_REF] Sakellariadou | Cosmic Strings[END_REF][START_REF] Vachaspati | Cosmic Strings[END_REF] for a review). Currently, CMB data from the Planck Satellite [START_REF] Ade | Planck 2013 Results. XXV. Searches for Cosmic Strings and Other Topological Defects[END_REF] imply Gµ < 10 -7 for Nambu-Goto, Abelian-Higgs, and semi-local strings.

The most stringent bounds, however, come from searches for the SGWB, with pulsar timing arrays (PTA) constraining Gµ for Nambu-Goto strings to be Gµ 10 -11 [START_REF] Jose | New Limits on Cosmic Strings from Gravitational Wave Observation[END_REF][START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF], and LIGO-Virgo observations constraining it to as low as Gµ < 2×10 -14 , depending on the string network model [START_REF] Abbott | Search for the Isotropic Stochastic Background Using Data from Advanced LIGO's Second Observing Run[END_REF][START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF][START_REF] Abbott | Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run[END_REF] which is one of the main subjects of this thesis.

Nambu-Goto action

Since the characteristic width δ ∼ 1/η of a cosmic string is generally much smaller than the horizon, in this manuscript I mainly assume that strings can be described by the Nambu-Goto (NG) action, which is the leading-order approximation for strings without current when the curvature scale of the strings is much larger than their thickness [START_REF] Hindmarsh | Cosmic Strings[END_REF]. Let τ be a time-like and σ a space-like coordinate along the string and X µ (τ, σ) the coordinates of the centre of the string. The induced metric on the world-sheet is

γ ab = g µν ∂ a X µ ∂ b X ν (1.2)
where ∂ a,b denote derivatives with respect to (τ, σ) and g µν is the background metric evaluated at the position of the string. The Nambu-Goto action which minimizes the area of the world-sheet is then

S = -µ dτ dσ -det γ (1.3)
We refer to such string as NG strings.

The string energy-momentum tensor follows from Eq. (1.3)

T µν (x σ ) -det g ≡ -2 δS δg µν = µ dτ dσ -det γγ ab ∂ a X µ ∂ b X ν δ (4) (X σ (τ, σ) -x σ ) (1.4)
using the relation δ(det γ) = det(γ)γ ab δγ ab . To find the equations of motion, we vary the action with respect to X µ (τ, σ), leading to δS = µ 2 dτ dσdet γγ ab δγ ab δX µ δX µ + δγ ab δ∂ c X µ δ∂ c X µ , (1.5) with
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δγ ab δX µ = δg λν δX µ ∂ a X λ ∂ b X ν = -2Γ µλν ∂ a X λ ∂ b X ν , (1.6) δγ ab δ∂ c X µ = g µν (γ c b ∂ a X ν + γ c a ∂ b X ν ). (1.7) 
Finally the equation of motions becomes

1 √ -det γ ∂ c -det γγ ac g µν ∂ a X ν + γ ab Γ µλν ∂ a X λ ∂ b X ν = 0. (1.8)

Cosmic strings in flat space-time

In this section, we study the solutions of the Nambu-Goto action in a flat space-time g µν = η µν to gain an understanding of their properties. Since the Nambu-Goto action is, by construction, reparametrization invariant, we fix a specific gauge and choose the conformal gauge:

γ 01 = γ 00 + γ 11 = 0, (1.9) 
or equivalently

Ẋµ • X µ = 0 (1.10) Ẋ2 + X 2 = 0.
(1.11)

Here • = ∂/∂τ and = ∂/∂σ . The gauge is called conformal because the metric is conformally flat

γ ab = -det γη ab , γ ab = 1 √ -det γ η ab . (1.
12)

The equations of motion simplify significantly to the wave equation

1 √ -det γ ∂ a ∂ a X µ = Ẍµ -X µ = 0. (1.13)
However, the conformal gauge does not fix the gauge entirely, and one usually removes the residual freedom by setting τ = t = X 0 , which is a solution of Eq. (1.13) with µ = 0. The equations of motion and the gauge conditions give the following system of differential equations for the threedimensional vector

X µ = (t, X) Ẋ • X = 0 (1.14) Ẋ2 + X 2 = 1 (1.15) Ẍ -X = 0. (1.16)
The solution of the wave equation of Eq. (1.16) is a superposition of left and a right movers

X(t, σ) = 1 2 [a(t -σ) + b(t + σ)], (1.17) 
where the gauge conditions (1.14) and (1.15) constrain a and b to be trajectories on a unit sphere, also called the Kibble sphere

a 2 = b 2 = 1. (1.18)
With the equations of motion, the energy-momentum tensor in flat space-time is rewritten as

T µν (t, x) = µ dσ Ẋµ Ẋν -X µ X ν δ (3) (X(t, σ) -x). (1.19)
From this expression, one can directly that calculate the energy contained in the string

E = d 3 x T 0 0 = µ dσ . (1.20) 
Hence for Nambu-Goto strings, the tension µ is equal to the energy per unit length. A closed loop of strings is characterized by σ ∈ [0, [ where is the invariant length, defined by

≡ E µ . (1.21)
In the centre of mass frame, the periodicity of the loop X(t, σ + ) = X(t, σ) implies that a and b are also periodic and that the loop oscillates with a period

T = 2 , (1.22) 
indeed one has X(t + /2, σ + /2) = X(t, σ). This oscillation of the loop is one of the mechanisms through which cosmic string loops emit GW. For a straight and static string along the z-axis

T ν µ = µδ(x)δ(y)diag(1, 0, 0, 1) (1.23)
Using this as the right-hand side of the linearized Einstein's equations, the metric around the string is [START_REF] Vilenkin | Gravitational Radiation from Cosmic Strings[END_REF] 

ds 2 = dt 2 -dz 2 -dr 2 -r 2 dθ (1.24)
with the angle varying in the range 0 ≤ θ < 2π(1 -4Gµ). The space-time around the metric is therefore flat and a particle at rest will not experience a gravitational attraction. However, the string introduces a deficit angle ∆ = 8πGµ (1.25) and can cause gravitational lensing, as illustrated in Fig. 1.3. 

Scaling of the cosmic string network

With the NG equations of motion, one can study the evolution of a string network, from formation until the present time. While the basic picture is simple -a string network is stretched by the cosmological expansion, and the motion of strings leads to multiple interactions and collisions between them -in practice, this is a complicated problem which has been studied in depth in the literature [START_REF] Albrecht | Evolution of Cosmic String Networks[END_REF][START_REF] Austin | Evolution of Cosmic String Configurations[END_REF][START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF][START_REF] Copeland | The Evolution of a Network of Cosmic String Loops[END_REF][START_REF] Kibble | Evolution of a System of Cosmic Strings[END_REF][START_REF] Martins | Quantitative String Evolution[END_REF][START_REF] Martins | Extending the Velocity-Dependent One-Scale String Evolution Model[END_REF][START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF][START_REF] Vanchurin | Scaling of Cosmic String Loops[END_REF]. One often assumes (based on numerical simulations of field theory strings [START_REF] Shellard | Cosmic String Interactions[END_REF][START_REF] Verbiest | High Speed Collision and Reconnection of Abelian Higgs Strings in the Deep Type-II Regime[END_REF]) that when strings collide, they always intercommute, i.e., that they always "exchange partners" and reconnect after a collision. Perhaps the most important conclusion of these studies is that the cosmic string network reaches an attractor scaling solution in which its energy density remains a fixed fraction of the background energy density, and all typical loop lengths are proportional to cosmic time (equivalently they scale with the Hubble radius). We will discuss in more detail in Chapter 2 the Velocity dependent One Scale model (VOS) and the results of numerical simulations [START_REF] Allen | Cosmic-String Evolution: A Numerical Simulation[END_REF][START_REF] Bennett | High Resolution Simulations of Cosmic String Evolution. 1. Network Evolution[END_REF][START_REF] Jose | The Number of Cosmic String Loops[END_REF][START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF] that support the existence of the scaling solution. Most often, we use the scaling variables when studying the properties of the cosmic string network. 

γ ≡ t

Gravitational wave bursts

Closed loops are formed when a string self-intersects or two curved strings collide. Loops smaller than the horizon decouple from the cosmological evolution and oscillate under their own tension, slowly decaying into GWs. Indeed, in flat space-time, as seen above, loops oscillate with period /2. A smooth loop generically develops cusps, namely points where the string momentarily moves at the speed of light [START_REF] Turok | Grand Unified Strings and Galaxy Formation[END_REF] as in Fig. 1.5. In a flat space-time, using Eq. (1.17) Moreover, the intersections of strings generates discontinuities on their tangent vector known as kinks, see Fig. 1.6. All loops will contain kinks -either as a result of the intercommutation that produced them, or as historical remnants of past intersections. Cusps and kinks generate gravitational wave bursts [START_REF] Damour | Gravitational Wave Bursts from Cosmic Strings[END_REF][START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF], and these play a significant role in the stochastic background of GW emitted by string networks. (One should note that a complementary strategy to the detection of the stochastic background is therefore to search for such individual transient signals, see [START_REF] Aasi | Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors[END_REF][START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF] and Chapter 5.) It has also been shown that the collision of kinks produces isotropic bursts of GW [START_REF] Binetruy | Gravitational Wave Bursts from Cosmic Superstrings with Y-Junctions[END_REF][START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF], see Fig. 1.7. Even though kink-kink collisions produce bursts of GW with relatively low amplitude compared to cusps and kinks; they may dominate the GW emission on very wiggly strings since the number of collisions grows quadratically with the number of kinks on the string. This is why this effect has been added in the third observing run of the LIGO/Virgo/KAGRA collaboration [START_REF] Abbott | Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run[END_REF], as detailed in Chapter 5.

Ẋ2 (t, σ) = 1 4 [a (t -σ) + b (t + σ)] 2 . ( 1 
Figure 1.7: Kink-kink collisions emit gravitational waves isotropically. Even though the amplitude of the emitted GW is relatively low, the number of events on a loop grows quadratically with the number of kinks. These collisions may dominate on very wiggly strings.

Loop production function and loop number density

Although loop production is observed and measured in Nambu-Goto cosmic string simulations [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF][START_REF] Vanchurin | Scaling of Cosmic String Loops[END_REF][START_REF] Martins | Fractal Properties and Small-Scale Structure of Cosmic String Networks[END_REF], it is still a matter of debate whether loops form in the same quantity in field theory simulations [START_REF] Vincent | Numerical Simulations of String Networks in the Abelian Higgs Model[END_REF][START_REF] Moore | Evolution of Abelian-Higgs String Networks[END_REF][START_REF] Hindmarsh | Abelian Higgs Cosmic Strings: Small Scale Structure and Loops[END_REF][START_REF] Hindmarsh | Scaling from Gauge and Scalar Radiation in Abelian Higgs String Networks[END_REF]. Nambu-Goto simulations from two independent groups have shown that, on large scales (see discussion below), where these simulations can be trusted, the loop distribution is a power-law, namely [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF][START_REF] Jose | The Number of Cosmic String Loops[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF]]

t 4 n(γ, t) ∝ γ p . (1.27)
where n is the number density distribution of loops of size [ , + d ] at cosmic time t, and the time-independence of the combination t 4 n is precisely the scaling regime.

Let us also notice that, due to the huge disparity of scales in the problem (ranging from, for instance, the distance between kinks formed by string intercommutations, to the horizon size), numerical simulations of cosmic string networks cannot incorporate all physical effects. In Nambu-Goto simulations, in particular, effects from GW emission and backreaction onto the string dynamics are ignored1 . This is why Eq. (1.27) can only be trusted for loops large enough that these effects remain negligible. GW's emission means that loops loose energy and hence become smaller, with an average emitted GW power P gw = ΓGµ 2 where Γ is a numerical constant estimated to be Γ = O(50) [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Allen | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF]. Hence, loops decoupled from the Hubble flow shrink at an average rate given by γ d ≡ ΓGµ.

(1.28)

One therefore expects Eq. (1.27) to hold for loops of length d = γ d t (numeric-wise, this is a quite small number already for Gµ < 10 -7 ). Emitted GWs will also backreact onto the string thereby affecting its dynamics. The consequences of this process for the network and the loops are still unknown and being studied [START_REF] Wachter | Gravitational Backreaction on Piecewise Linear Cosmic String Loops[END_REF][START_REF] Jose | Gravitational Back-Reaction near Cosmic String Kinks and Cusps[END_REF][START_REF] Chernoff | Gravitational Backreaction on a Cosmic String: Formalism[END_REF]. However, one expects that loop production should be cut-off below some length scale c ≡ γ c t, with presumably γ c ≤ γ d , which I discuss in Chapters 3 and 4.

As was realized very early on, to include these physical effects one needs to combine results of simulations with analytical modelling [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. A powerful framework for this is to use a Boltzmann approach to estimate the loop distribution on cosmological time and length scales [START_REF] Copeland | The Evolution of a Network of Cosmic String Loops[END_REF][START_REF] Rocha | Scaling Solution for Small Cosmic String Loops[END_REF][START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF][START_REF] Vanchurin | Towards a Kinetic Theory of Strings[END_REF][START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF][START_REF] Vanchurin | Kinetic Theory and Hydrodynamics of Cosmic Strings[END_REF][START_REF] Schubring | Transport Equation for Nambu-Goto Strings[END_REF]]

∂ ∂t a 3 n + ∂ ∂ t d dt a 3 n = a 3 P (1.29)
in which P is the loop production function (LPF) and d /dt is the rate at which the loop shrinks. 2As we will discuss in Chapter 3, radically different assumptions about the loop production function can lead to similar powers p on large scales. Indeed, on one hand, motivated by the one-scale model of cosmic string evolution [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF], an often studied case is one in which [START_REF] Caldwell | Cosmological Constraints on Cosmic String Gravitational Radiation[END_REF][START_REF] Damour | Gravitational Wave Bursts from Cosmic Strings[END_REF][START_REF] Depies | Stochastic Gravitational Wave Background from Light Cosmic Strings[END_REF][START_REF] Regimbau | The Stochastic Background from Cosmic (Super)Strings: Popcorn and (Gaussian) Continuous Regimes[END_REF][START_REF] Binetruy | Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources[END_REF][START_REF] Kuroyanagi | Forecast Constraints on Cosmic String Parameters from Gravitational Wave Direct Detection Experiments[END_REF][START_REF] Aasi | Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors[END_REF][START_REF] Henrot-Versille | Improved Constraint on the Primordial Gravitational-Wave Density Using Recent Cosmological Data and Its Impact on Cosmic String Models[END_REF][START_REF] Sousa | Probing Cosmic Superstrings with Gravitational Waves[END_REF]]

P(γ, t) ∝ δ D (γ -α), (1.30) 
namely all stable loops are formed with size = αt at time t (for constant α) and one can show that in the radiation era p = -5/2 while in the matter era p = -2 (see Section 3.2.2). On the other hand, all cosmic string simulations show that a lot of small-scale structure, namely kinks generated from string intercommutation, build up on the strings (see Refs. [START_REF] Bennett | Cosmic-String Evolution[END_REF][START_REF] Bennett | High Resolution Simulations of Cosmic String Evolution. 1. Network Evolution[END_REF][START_REF] Allen | Cosmic-String Evolution: A Numerical Simulation[END_REF][START_REF] Albrecht | Evolution of Cosmic String Networks[END_REF][START_REF] Sakellariadou | Cosmic-String Evolution in Flat Space-Time[END_REF][START_REF] Copeland | Kinks and Small-Scale Structure on Cosmic Strings[END_REF][START_REF] Austin | Evolution of Cosmic String Configurations[END_REF] for a discussion of small-scale structure on strings). As a result, one expects loops to be formed on a wide range of scales at any given time. The most recent analytical work along these lines is by Polchinski-Rocha and collaborators [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Dubath | Cosmic String Loops, Large and Small[END_REF][START_REF] Rocha | Scaling Solution for Small Cosmic String Loops[END_REF], who proposed a model of loop production from long strings. It is given by

t 5 P(γ > γ c , t) ∝ γ 2χ-3 , (1.31) 
here the parameter χ will be referred to as the Polchinski-Rocha (PR) exponent 3 . This is clearly very different from a Dirac distribution as a loop production function and the consequences of a power-law loop production function on the loop number density and the SGWB are analysed in Chapters 3 and 4.

Field-theory strings and particle emission

At a more fundamental level, as discussed above, cosmic strings are not NG but topological solutions of field theories. Their dynamics can therefore also be studied by solving the field theory equations of motions. In studies of large scale field theory string networks [START_REF] Vincent | Numerical Simulations of String Networks in the Abelian Higgs Model[END_REF][START_REF] Hindmarsh | Abelian Higgs Cosmic Strings: Small Scale Structure and Loops[END_REF][START_REF] Lizarraga | New CMB Constraints for Abelian Higgs Cosmic Strings[END_REF][START_REF] Hindmarsh | Scaling from Gauge and Scalar Radiation in Abelian Higgs String Networks[END_REF], loops are observed to decay directly into particles and gauge boson radiation on a short time scale of order of the loop length. Hence, field theory string network simulations predict very different observational consequences -in particular no SGWB from loops. Since field theory and Nambu-Goto strings in principle describe the same physics, and hence lead to the same observational consequences, this is an unhappy situation. Based on high resolution field theory simulations, a possible answer to this long-standing conundrum was proposed in Ref. [START_REF] Matsunami | Decay of Cosmic String Loops Due to Particle Radiation[END_REF]. In particular, for a loop of length containing kinks, a new characteristic length scale k associated to the collision of kinks was identified, and it was shown that if k gravitational wave emission is the dominant decay mode, whereas for smaller loops k particle radiation is the primary channel for energy loss. If a loop contains cusps, then one expects that particle radiation is the dominant channel for energy loss below another length-scale c [START_REF] Blanco-Pillado | The Form of Cosmic String Cusps[END_REF][START_REF] Olum | Field Theory Simulation of Abelian Higgs Cosmic String Cusps[END_REF]. The observational consequences of this description of particle emission are addressed in Chapter 6. It should be noted that in a recent article [START_REF] Hindmarsh | Loop decay in Abelian-Higgs string networks[END_REF], Hindmarsh and collaborators have attributed the long lifespan of the loops in Ref. [START_REF] Matsunami | Decay of Cosmic String Loops Due to Particle Radiation[END_REF] to their particular choice of initial conditions. They argue that the way loops are formed in their simulations is not representative of the actual formation of loops by the infinite string network.

Current-carrying strings

Most studies of cosmic strings suppose they are structureless, with equal energy per unit length and tension, and therefore they are expected to be well described by a worldsheet action, i.e. the Nambu-Goto action. This is no longer the case if, as first realized by Witten [START_REF] Witten | Cosmic Superstrings[END_REF][START_REF] Lazarides | Superheavy Superconducting Cosmic Strings from Superstring Models[END_REF], particles couple to the string-forming Higgs field can condense in the string core and subsequently propagate along the worldsheet. The resulting strings thus behave like current carrying wires and are endowed with a much richer structure [START_REF] Carter | Dilatonic formulation for conducting cosmic string models[END_REF][START_REF] Carter | Essentials of Classical Brane Dynamics[END_REF].

One of the simplest examples of current-carrying strings is that of a U(1) R ×U(1) Q gauge theory with an unbroken gauge symmetry Q (which could be for instance electromagnetism) and a broken symmetry R [START_REF] Witten | Cosmic Superstrings[END_REF]. This model generalizes the prototypical Abelian-Higgs model of cosmic strings behind much of the existing work on cosmic strings. At a temperature T ini , and a cosmic time t ini , the Higgs field φ with Q = 0 and R = 1 acquires a non-zero vacuum expectation value | φ | = 0, thereby breaking the first component U(1) R of the total invariance group; this leads to the formation of vortex lines. The field φ vanishes at the core of the string and its phase varies by an integer times 2π along any closed path around the vortex: this is the standard Kibble mechanism. If the theory contains fermions obtaining their masses from the U(1) Q broken symmetry, those form zero modes in the string core where the symmetry is restored, thereby forming a superconducting current.

The model also comprises a second scalar field σ with Q = 1 and R = 0, the coupling potential between φ and σ being chosen such that σ = 0 in vacuum (where | φ | = 0). Under certain conditions, it is energetically favourable to have σ = 0 at the core of the string where φ = 0. At a temperature T cur < T ini , and cosmic time t cur > t ini , the charged scalar field σ thus condenses on the string and acts as a bosonic charge carrier making the string current-carrying (and in fact actually superconducting). The presence of currents flowing along the strings affects the dynamics of the network, and in Chapter 7 I will particularly focus on vortons [START_REF] Davis | Cosmic Vortons[END_REF][START_REF] Carter | Cosmic Rings as a Chump Dark Matter Candidate?[END_REF][START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF][START_REF] Martins | Vorton Formation[END_REF][START_REF] Martins | Limits on Cosmic Chiral Vortons[END_REF][START_REF] Carter | Old and New Processes of Vorton Formation[END_REF][START_REF] Davis | Dynamics and Properties of Chiral Cosmic Strings in Minkowski Space[END_REF][START_REF] Steer | Selfintersections and Gravitational Properties of Chiral Cosmic Strings in Minkowski Space[END_REF], namely closed loops of string which are stabilized by the angular momentum carried by the current. Vortons do not radiate classically, and here I make the assumption that they are classically stable as well (see for instance [START_REF] Lemperiere | Vorton Existence and Stability[END_REF][START_REF] Battye | Vorton Construction and Dynamics[END_REF][START_REF] Garaud | Stable Cosmic Vortons[END_REF] for numerical studies of their stability). On cosmological scales, they appear as point particles having different quantized charges and angular momenta.

Plan for the part on cosmic strings

The structure of this part of the manuscript is given in Fig. 1.1. To summarize:

• The infinite string network consists of all the cosmic strings larger than the Hubble horizon.

They are stretched by the expansion of the Universe and lose energy by producing loops. The size and abundance of the produced loops is encoded in the loop production function (LPF)

• The loop number density is determined using the Boltzmann equation (1.29). It depends crucially on the loop production function P and on ˙ the rate at which the loop shrinks.

The influence of the loop production function on the loop number density is the subject of Chapter 3.

• The emission of GW is the standard channel by which cosmic string loop lose energy. This emission can be detected either in the form of individual bursts from cusps, kinks and kinkkink collisions, or through the uncorrelated sum of those signals: a stochastic background of GW. In Chapter 2, I review the different methods to calculate the SGWB and assess the capability of LISA, the Laser Interferometer Space Antenna to detect a stochastic signal from cosmic strings. Then in Chapter 4, I study the impact of the loop production function on the SGWB from cosmic strings at different frequencies while providing analytical templates for these spectra. And in Chapter 5, I will present the results from the third data observing run by the LIGO/Virgo/KAGRA collaboration on the GW signals of cosmic strings, both in the form of bursts and of a SGWB.

• Numerical simulations of field theory string have shown that loops emit particles, thus shortening their lifetime. This energy loss channel modifies significantly the loop number density and the signal in terms of GW. Additionally, this emission of particle may impact other observables such as the Diffuse γ-ray background. This is the subject of Chapter 6.

• Finally, particles coupled to the string-forming Higgs field can condense in the string core and act as charge carriers. One consequence is that closed loop do not shrink indefinitely but are stabilized by the angular momentum of the current. These vortons appear as point-like particles and may be a viable candidate for part of the dark-matter content of the Universe. In Chapter 7, I calculate the abundance of vortons today based on the string tension and the energy-scale of the charge carrier.

Chapter 2

Probing the gravitational wave background from cosmic strings with LISA

This chapter is a reproduction of Ref. [START_REF] Auclair | Probing the Gravitational Wave Background from Cosmic Strings with LISA[END_REF] which was written in collaboration with the LISA cosmology working group. A significant part of this work, which took a year and a half to complete, involved writing my own code to calculate the stochastic background based on two independent methods (one of which is very useful for bursts constraints, see Chapter 5) which are discussed in sections 2.2.1 and 2.2.2. Other codes already existed and did not always agree amongst each other nor to a sufficient precision. Finding the details and correcting all the codes took a certain time. Thanks to this, I have my own well-tested code which I have also used in the subsequent chapters of this thesis. I have contributed to all the sections of this chapter except for sections 2.6.2 on the agnostic model, 2.5.4 on non-standard cosmologies and 2.6.3 on the gravitational wave bispectrum from long strings.

Abstract

Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the properties of the string network. In this paper we analyse the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions Gµ O 10 -17 , improving by about 6 orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially 3 orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISA's frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.

Introduction

The direct detection of gravitational waves (GWs) by the LIGO and Virgo network [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF][START_REF] Abbott | GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence[END_REF][START_REF] Abbott | GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2[END_REF][START_REF] Abbott | GW170608: Observation of a 19-Solar-Mass Binary Black Hole Coalescence[END_REF][START_REF] Abbott | GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence[END_REF] marks the dawn of a new era in astronomy, opening a unique window with which to observe the Universe. GWs carry invaluable information about the sources that created themwhich could be of astrophysical or cosmological origin -since they propagate unimpeded through space. Gravitational waves therefore constitute one of the most promising new messengers with which we can probe aspects of the Universe so far undetermined by other means.

One of the main targets of GW experiments is the detection of a stochastic gravitational wave background (SGWB) of cosmological origin. The most famous example of such a SGWB is the quasi-scale invariant background from inflation, due to quantum fluctuations [START_REF] Grishchuk | Amplification of Gravitational Waves in an Istropic Universe[END_REF][START_REF] Starobinsky | Spectrum of Relict Gravitational Radiation and the Early State of the Universe[END_REF][START_REF] Rubakov | Graviton Creation in the Inflationary Universe and the Grand Unification Scale[END_REF][START_REF] Fabbri | The Effect of Primordially Produced Gravitons upon the Anisotropy of the Cosmological Microwave Background Radiation[END_REF]. This background is expected to be too small to be detectable by currently planned GW observatories. However, if axion-type species are present during inflation, potentially observable GWs can also be produced with a significant blue-tilt (see e.g. [START_REF] Anber | N-Flationary Magnetic Fields[END_REF][START_REF] Sorbo | Parity Violation in the Cosmic Microwave Background from a Pseudoscalar Inflaton[END_REF][START_REF] Pajer | A Review of Axion Inflation in the Era of Planck[END_REF][START_REF] Adshead | Gauge Fields and Inflation: Chiral Gravitational Waves, Fluctuations, and the Lyth Bound[END_REF][START_REF] Adshead | Perturbations in Chromo-Natural Inflation[END_REF][START_REF] Maleknejad | Axion Inflation with an SU(2) Gauge Field: Detectable Chiral Gravity Waves[END_REF][START_REF] Dimastrogiovanni | Primordial Gravitational Waves from Axion-Gauge Fields Dynamics[END_REF][START_REF] Namba | Scale-Dependent Gravitational Waves from a Rolling Axion[END_REF][START_REF] Ferreira | On the Validity of the Perturbative Description of Axions during Inflation[END_REF][START_REF] Peloso | Rolling Axions during Inflation: Perturbativity and Signatures[END_REF][START_REF] Domcke | Primordial Gravitational Waves for Universality Classes of Pseudoscalar Inflation[END_REF][START_REF] Caldwell | Axion Gauge Field Inflation and Gravitational Leptogenesis: A Lower Bound on b Modes from the Matter-Antimatter Asymmetry of the Universe[END_REF], or [START_REF] Bartolo | Science with the Space-Based Interferometer LISA. IV: Probing Inflation with Gravitational Waves[END_REF] for a general discussion on GWs from inflation). Furthermore, post-inflationary, early-universe phenomena can also generate GWs with a large amplitude, e.g. a kination-dominated phase [START_REF] Giovannini | Gravitational Waves Constraints on Postinflationary Phases Stiffer than Radiation[END_REF][START_REF] Giovannini | Production and Detection of Relic Gravitons in Quintessential Inflationary Models[END_REF][START_REF] Latham | Relating Gravitational Wave Constraints from Primordial Nucleosynthesis, Pulsar Timing, Laser Interferometers, and the CMB: Implications for the Early Universe[END_REF][START_REF] Daniel | Inconsistency of an Inflationary Sector Coupled Only to Einstein Gravity[END_REF][START_REF] Daniel | Ability of LIGO and LISA to Probe the Equation of State of the Early Universe[END_REF], particle production during preheating [START_REF] Easther | Stochastic Gravitational Wave Production after Inflation[END_REF][START_REF] Garcia | A Stochastic Background of Gravitational Waves from Hybrid Preheating[END_REF][START_REF] Garcia-Bellido | A Gravitational Wave Background from Reheating after Hybrid Inflation[END_REF][START_REF] Francois | Theory and Numerics of Gravitational Waves from Preheating after Inflation[END_REF][START_REF] Dufaux | Gravity Waves from Tachyonic Preheating after Hybrid Inflation[END_REF][START_REF] Dufaux | Gravitational Waves from Abelian Gauge Fields and Cosmic Strings at Preheating[END_REF][START_REF] Daniel | Gravitational Wave Production from Preheating: Parameter Dependence[END_REF][START_REF] Adshead | Gravitational Waves from Gauge Preheating[END_REF], oscillon dynamics [START_REF] Zhou | Gravitational Waves from Oscillon Preheating[END_REF][START_REF] Antusch | Gravitational Waves from Oscillons after Inflation[END_REF][START_REF] Antusch | What Can We Learn from the Stochastic Gravitational Wave Background Produced by Oscillons?[END_REF][START_REF] Liu | Gravitational Waves from Oscillons with Cuspy Potentials[END_REF][START_REF] Amin | Gravitational Waves from Asymmetric Oscillon Dynamics?[END_REF], strong first order phase transitions [START_REF] Kamionkowski | Gravitational Radiation from First Order Phase Transitions[END_REF][START_REF] Caprini | Gravitational Wave Generation from Bubble Collisions in First-Order Phase Transitions: An Analytic Approach[END_REF][START_REF] Huber | Gravitational Wave Production by Collisions: More Bubbles[END_REF][START_REF] Hindmarsh | Gravitational Waves from the Sound of a First Order Phase Transition[END_REF][START_REF] Hindmarsh | Numerical Simulations of Acoustically Generated Gravitational Waves at a First Order Phase Transition[END_REF][START_REF] Caprini | Science with the Space-Based Interferometer eLISA. II: Gravitational Waves from Cosmological Phase Transitions[END_REF][START_REF] Cutting | Gravitational Waves from Vacuum First-Order Phase Transitions: From the Envelope to the Lattice[END_REF], or cosmic defect networks [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Sakellariadou | Gravitational Waves Emitted from Infinite Strings[END_REF][START_REF] Damour | Gravitational Wave Bursts from Cosmic Strings[END_REF][START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF][START_REF] Damour | Gravitational Radiation from Cosmic (Super)Strings: Bursts, Stochastic Background, and Observational Windows[END_REF][START_REF] Daniel | Exact Scale-Invariant Background of Gravitational Waves from Cosmic Defects[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF]. For a comprehensive review of SGWB signals of cosmological origin, see [START_REF] Caprini | Cosmological Backgrounds of Gravitational Waves[END_REF]. In this paper, we focus on precisely one such cosmological source: cosmic strings. We investigate, in particular, the ability of the Laser Interferometer Space Antenna (LISA) [START_REF] Audley | Laser Interferometer Space Antenna[END_REF] -which will be the first GW observatory in space -to probe the SGWB emitted by a network of cosmic strings.

Cosmic strings are stable topological defect solutions of field theories [START_REF] Nielsen | Vortex-Line Models for Dual Strings[END_REF] which may have formed in symmetry breaking phase transitions in the early Universe [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF][START_REF] Jeannerot | How Generic Is Cosmic String Formation in Supersymmetric Grand Unified Theories[END_REF]. Alternatively, they can be cosmologically stretched fundamental strings of String Theory, formed for instance at the end of brane inflation [START_REF] Dvali | Formation and Evolution of Cosmic D-Strings[END_REF][START_REF] Copeland | Cosmic f and d Strings[END_REF]. The energy per unit length of a string µ, is of order η 2 , where η is a characteristic energy scale (for topological strings, the energy scale of the phase transition). In the simplest cases, the string tension is also of order µ, and strings are relativistic objects that typically move at a considerable fraction of the speed of light. The combination of a high energy scale and a relativistic speed clearly indicates that strings should be considered a natural source of GWs.

A network of strings formed in the early Universe emits GWs throughout the history of the Universe, generating a SGWB from the superposition of many uncorrelated sources. In this paper, we forecast the constraints that LISA may put on the dimensionless combination Gµ (where G = 1/M 2 pl is Newton's constant, and M pl = 1.22 × 10 19 GeV the Planck mass), which is related to the energy scale η through

Gµ ∼ 10 -6 η 10 16 GeV 2 , (2.1) 
and which parametrizes the gravitational interactions of the string.

There are other ways one can hope to detect the presence of cosmic strings in the Universe that do not directly involve the observation of the GWs they generate. In fact, several potential observational signatures of cosmic string networks have been discussed in the literature, including anisotropies in Cosmic Microwave Background (CMB) [START_REF] Ade | Planck 2013 Results. XXV. Searches for Cosmic Strings and Other Topological Defects[END_REF][START_REF] Charnock | CMB Constraints on Cosmic Strings and Superstrings[END_REF][START_REF] Lizarraga | New CMB Constraints for Abelian Higgs Cosmic Strings[END_REF][START_REF] Ringeval | Cosmic Strings and Their Induced Non-Gaussianities in the Cosmic Microwave Background[END_REF], lensing events [START_REF] Vilenkin | Cosmic Strings as Gravitational Lenses[END_REF][START_REF] Jolyon | Cosmic String Loop Microlensing[END_REF], and cosmic rays from the decay of strings into particle radiation [START_REF] Robert | On the Decay of Cosmic String Loops[END_REF][START_REF] Srednicki | Nongravitational Decay of Cosmic Strings[END_REF][START_REF] Bhattacharjee | Grand Unified Theories, Topological Defects and Ultrahigh-Energy Cosmic Rays[END_REF][START_REF] Damour | Cosmic Strings and the String Dilaton[END_REF][START_REF] Wichoski | High-Energy Neutrinos, Photons and Cosmic Ray Fluxes from VHS Cosmic Strings[END_REF][START_REF] Peloso | Moduli from Cosmic Strings[END_REF][START_REF] Sabancilar | Cosmological Constraints on Strongly Coupled Moduli from Cosmic Strings[END_REF][START_REF] Vachaspati | Cosmic Rays from Cosmic Strings with Condensates[END_REF][START_REF] Long | Cosmic Strings in Hidden Sectors: 1. Radiation of Standard Model Particles[END_REF] (see [START_REF] Hindmarsh | Cosmic Strings[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF][START_REF] Sakellariadou | Cosmic Strings[END_REF][START_REF] Vachaspati | Cosmic Strings[END_REF] for a review). Currently, CMB data from the Planck Satellite [START_REF] Ade | Planck 2013 Results. XXV. Searches for Cosmic Strings and Other Topological Defects[END_REF] imply Gµ < 10 -7 for Nambu-Goto, Abelian-Higgs, and semi-local strings. The most stringent bounds, however, come from searches for the SGWB, with pulsar timing arrays (PTA) constraining Gµ for Nambu-Goto strings to be Gµ 10 -11 [START_REF] Jose | New Limits on Cosmic Strings from Gravitational Wave Observation[END_REF][START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF], and LIGO-Virgo observations constraining it to as low as Gµ < 2 × 10 -14 , depending on the string network model [START_REF] Abbott | Search for the Isotropic Stochastic Background Using Data from Advanced LIGO's Second Observing Run[END_REF][START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF]. In this paper we show that LISA will be sensitive to string tensions with Gµ 10 -17 for Nambu-Goto strings, improving current upper bounds by ∼ 10 orders of magnitude relative to CMB constraints, by ∼ 6 orders of magnitude relative to current PTA constraints, and even by ∼3-4 orders of magnitude relative to future constraints from next generation of PTA experiments.

Since the characteristic width δ ∼ 1/η of a cosmic string is generally much smaller than the horizon, in this paper we mainly assume that strings can be described by the Nambu-Goto (NG) action, which is the leading-order approximation when the curvature scale of the strings is much larger than their thickness. We refer to such string as NG strings. Furthermore, we mainly focus on string networks without junctions; comments on cosmic superstring networks with junctions will be made in Section 2.6.2. With the NG action, one can study the evolution of a string network, from formation until the present time. While the basic picture is simple -a string network is stretched by the cosmological expansion, and the motion of strings leads to multiple interactions and collisions between them -in practice, this is a complicated problem which has been studied in depth in the literature. Perhaps the most important conclusion of these studies is that the cosmic string network reaches an attractor scaling solution in which its energy density remains a fixed fraction of the background energy density. One often assumes that when strings collide, they always intercommute, i.e., that they always "exchange partners" and reconnect after a collision1 . As a result, closed loops are formed when a string self-intersects or two curved strings collide. Loops smaller than the horizon decouple from the cosmological evolution and oscillate under their own tension, slowly decaying into GWs. Indeed, in flat space-time, one can show that loops have oscillating trajectories which are periodic in time. The relativistic nature of these strings typically leads to the formation of cusps, namely points where the string momentarily moves at the speed of light [START_REF] Turok | Grand Unified Strings and Galaxy Formation[END_REF]. Moreover, the intersections of strings will generate discontinuities on their tangent vector known as kinks. All loops will contain kinks -either as a result of the intercommutation that produced them, or as historical remnants of past intersections. Cusps and kinks generate gravitational wave bursts [START_REF] Damour | Gravitational Wave Bursts from Cosmic Strings[END_REF][START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF], and these play a significant role in the SGWB emitted by string networks. (One should note that a complementary strategy to the detection of the stochastic background is therefore to search for such individual transient signals, see [START_REF] Aasi | Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors[END_REF][START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF].)

Other than sub-horizon string loops, the network also contains long strings that that stretch across a Hubble volume. These are either infinite or in the form of super-horizon loops, and are also expected to emit GWs. However, the dominant contribution is generically that produced by the superposition of radiation from many sub-horizon loops along each line of sight. Studying this SGWB and the possibility of observing it with the LISA constellation [START_REF] Audley | Laser Interferometer Space Antenna[END_REF] is the main focus of this paper. We argue that, even though the next round of pulsar timing observations could improve the constraint on the cosmic string tension Gµ in the near future, this will not continue for long. Future tightening of these constraints will necessarily come from GW detectors operating in an intermediate frequency band. This is precisely due to the fact that the GW background expected from strings at lower energy scales will peak at these intermediate frequencies, which are out of reach of PTA experiments. We therefore conclude that LISA is the ideal instrument with which to search for cosmic strings in the future or, at the very least, to further improve constraints on cosmic string scenarios.

The paper is organized as follows. In Section 2.2, we briefly review the basic methods and relevant formulae with which to calculate the energy density spectrum of the SGWB emitted by sub-horizon loops in an evolving network of cosmic strings. In Section 2.3, we present different approaches developed in the literature to determine the loop number density, which is a fundamental quantity in the determination the SGWB from any string network. In Section 2.4, we review the emission of GWs by individual strings, in particular the so-called 'loop power spectrum' and the GW waveforms from bursts. These different results are put together in Section 2.5, where we characterize the spectral shape of the SGWB from a cosmic string network. We discuss different (potentially observable) features that can be imprinted in the SGWB spectrum, such as the details of radiationto-matter transition, the number of relativistic degrees of freedom active during expansion, and the equation of state in the early Universe. In Section 2.6, we analyse in detail the ability of LISA to measure the spectrum of the SGWB from a network of cosmic strings, and in particular we determine the parameter space that is compatible with a detection. Finally, in Section 2.7, we present an overview of our results and state our conclusions.

The calculation of the SGWB from Cosmic Strings

Several studies in the literature have calculated the SGWB generated by an evolving cosmic string network (see, e.g., [START_REF] Vilenkin | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Hogan | Gravitational Interactions of Cosmic Strings[END_REF][START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Accetta | The Stochastic Gravitational Wave Spectrum Resulting from Cosmic String Evolution[END_REF][START_REF] Bennett | Constraints on the Gravity Wave Background Generated by Cosmic Strings[END_REF][START_REF] Caldwell | Cosmological Constraints on Cosmic String Gravitational Radiation[END_REF][START_REF] Siemens | Gravitational Wave Stochastic Background from Cosmic (Super)Strings[END_REF][START_REF] Depies | Stochastic Gravitational Wave Background from Light Cosmic Strings[END_REF][START_REF] Olmez | Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings[END_REF][START_REF] Sanidas | Constraints on Cosmic String Tension Imposed by the Limit on the Stochastic Gravitational Wave Background from the European Pulsar Timing Array[END_REF][START_REF] Sotirios | Projected Constraints on the Cosmic (Super)String Tension with Future Gravitational Wave Detection Experiments[END_REF][START_REF] Binetruy | Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources[END_REF][START_REF] Kuroyanagi | Forecast Constraints on Cosmic String Parameters from Gravitational Wave Direct Detection Experiments[END_REF][START_REF] Kuroyanagi | Forecast Constraints on Cosmic Strings from Future CMB, Pulsar Timing and Gravitational Wave Direct Detection Experiments[END_REF][START_REF] Sousa | Stochastic Gravitational Wave Background Generated by Cosmic String Networks: Velocity-Dependent One-Scale Model versus Scale-Invariant Evolution[END_REF][START_REF] Jose | The Number of Cosmic String Loops[END_REF][START_REF] Sousa | Stochastic Gravitational Wave Background Generated by Cosmic String Networks: The Small-Loop Regime[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF][START_REF] Jose | New Limits on Cosmic Strings from Gravitational Wave Observation[END_REF][START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF][START_REF] Cui | Probing the Pre-BBN Universe with Gravitational Waves from Cosmic Strings[END_REF][START_REF] Jenkins | Anisotropies in the Stochastic Gravitational-Wave Background: Formalism and the Cosmic String Case[END_REF]). This is often quantified in terms of the fraction of the critical density in GWs per logarithmic interval of frequency,

Ω GW (t 0 , f ) = 8πG 3H 2 0 f dρ gw df , (2.2) 
where H 0 is the Hubble parameter, and dρ gw /df is the energy density in gravitational waves per unit frequency f , observed today (at t = t 0 ). The basic idea is that, given a GW frequency today, one must add up the GW emission from all the loops throughout the entire history of the Universe that contribute to that frequency. To do so, two different and complementary approaches have been developed in the literature, and the aim of this section is to introduce both of them. (These two approaches are also discussed in more detail in Section 2.4.) Before doing so, we introduce the basic ingredients common to the two approaches. The first is the number density n( , t) of non-self-intersecting, sub-horizon, cosmic string loops of invariant length at cosmic time t. These are the loops which, through their oscillations, contribute to the SGWB. When the network is scaling -as it is in the radiation and matter erasn( , t) can be estimated through different numerical and analytical techniques (see Section 2.3). Scaling, however, cannot be maintained during the radiation-to-matter transition, but analytical estimates can nonetheless be extended to this regime.

The second ingredient is the loop power spectrum, namely the power P gw (f, ) emitted in GWs of frequency f by a cosmic string loop of length . It is clear that individual loops of a given length will radiate in different ways according to their shape. Hence, either one can assume an average (or typical) gravitational loop power spectrum P gw (f, ) determined numerically from simulations; or one can focus on particular events on the strings (cusps and kinks) for which P gw (f, ) can be determined analytically.

Method I

Let us write the power P gw (f, ) in units of Gµ 2 and as

P gw (f, ) = Gµ 2 P (f ), (2.3) 
where we have introduced a function P (f ) which in principle takes a different form for each individual loop, depending on its shape. The first method to calculate Ω GW (t 0 , f ) assumes the existence of an averaged function, P (f ), computed from an ensemble of loops of length obtained from simulations. Then the energy density in GWs observed at a particular frequency f today is obtained by adding the amount of energy produced at each moment of cosmic evolution for loops of all sizes. On taking into account the redshift of frequencies from the moment of emission until today, one finds

dρ gw df = Gµ 2 t0 0 dt a(t) a 0 3 ∞ 0 d n( , t) P a 0 a(t) f , (2.4) 
where a(t) is the scale factor which takes the value a 0 today. In order to compute Ω GW (t 0 , f ) from Eqs. (2.2) and (2.4), one must specify the cosmological model, the number density of loops n( , t), and an average power spectrum P (f ). This approach has been followed in e.g. [START_REF] Vilenkin | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Hogan | Gravitational Interactions of Cosmic Strings[END_REF][START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Accetta | The Stochastic Gravitational Wave Spectrum Resulting from Cosmic String Evolution[END_REF][START_REF] Bennett | Constraints on the Gravity Wave Background Generated by Cosmic Strings[END_REF][START_REF] Caldwell | Cosmological Constraints on Cosmic String Gravitational Radiation[END_REF][START_REF] Sanidas | Constraints on Cosmic String Tension Imposed by the Limit on the Stochastic Gravitational Wave Background from the European Pulsar Timing Array[END_REF][START_REF] Sotirios | Projected Constraints on the Cosmic (Super)String Tension with Future Gravitational Wave Detection Experiments[END_REF][START_REF] Binetruy | Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources[END_REF][START_REF] Sousa | Stochastic Gravitational Wave Background Generated by Cosmic String Networks: Velocity-Dependent One-Scale Model versus Scale-Invariant Evolution[END_REF][START_REF] Jose | The Number of Cosmic String Loops[END_REF][START_REF] Sousa | Stochastic Gravitational Wave Background Generated by Cosmic String Networks: The Small-Loop Regime[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF][START_REF] Jose | New Limits on Cosmic Strings from Gravitational Wave Observation[END_REF][START_REF] Cui | Probing the Pre-BBN Universe with Gravitational Waves from Cosmic Strings[END_REF].

Method II

At high frequencies f 1, P gw (f, ) can be estimated analytically. Indeed, whatever the shape of the loop, one can show that the gravitational waveform sourced by a loop is dominated at high frequency by cusps, kinks, and kink-kink collisions. (See appendix 2.A for an overview of the Nambu-Goto equations and the precise definitions of cusps and kinks). The form of P gw (f, ) for these 3 types of events is discussed in Section 2.4.

Cusps, kinks, and kink-kink collisions emit short bursts of GWs. The contribution to the SGWB from the superposition of the unresolved signals from these three types of events is given by

dρ gw df = f 2 ∞ 0 dz ∞ 0 d h 2 (f, z, ) ∂ 2 R(z, ) ∂z∂ , (2.5) 
where z is the redshift, h(f, z, ) is the amplitude of the Fourier transform of the trace of the metric perturbation generated by each event, and ∂ 2 R(z, ) ∂z∂ denotes the event rate per unit loop length and per unit redshift. This rate is directly proportional to n( , t), and therefore one must know the number density of loops. This approach has been considered in Refs. [START_REF] Siemens | Gravitational Wave Stochastic Background from Cosmic (Super)Strings[END_REF][START_REF] Olmez | Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings[END_REF][START_REF] Kuroyanagi | Forecast Constraints on Cosmic String Parameters from Gravitational Wave Direct Detection Experiments[END_REF][START_REF] Kuroyanagi | Forecast Constraints on Cosmic Strings from Future CMB, Pulsar Timing and Gravitational Wave Direct Detection Experiments[END_REF][START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF][START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF][START_REF] Jenkins | Anisotropies in the Stochastic Gravitational-Wave Background: Formalism and the Cosmic String Case[END_REF].

Cosmology

Finally, one must provide the details of the expansion history of the Universe. Unless specified otherwise, we assume a standard flat Λ-CDM model. The Hubble rate reads

H(z) = H 0 H(z), (2.6) 
where

H(z) = Ω Λ + Ω mat (1 + z) 3 + Ω rad G(z)(1 + z) 4 , (2.7) 
and we use Planck-2018 fiducial parameters [START_REF] Aghanim | Planck 2018 Results. VI. Cosmological Parameters[END_REF],

H 0 = 100h km/s/Mpc , h = 0.678 , Ω mat = 0.308 , (2.8) 
Ω rad = 9.1476 × 10 -5 ,

Ω Λ = 1 -Ω mat -Ω rad .
The function G(z), which takes into account the effective number of degrees of freedom g * (z) and the effective number of entropic degrees of freedom g S (z), is given by [START_REF] Binetruy | Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources[END_REF] 

G(z) = g * (z)g 4/3 S (0) g * (0)g 4/3 S (z)
.

(2.9)

Unless explicitly stated otherwise, we use the Standard Model numbers of degrees of freedom as given by microMEGAS [START_REF] Bélanger | micrOMEGAs5.0 : Freeze-In[END_REF]. We also make use of the following functions to describe proper distance

ϕ r (z) = z 0 dz H(z ) dz (2.10)
and proper volume

ϕ v (z) = 4πϕ 2 r (z) (1 + z) 3 H(z) . (2.11) 
We describe the imprint of the expansion history on the SGWB from cosmic string loops in Section 2.5.3. There we also discuss the effect of possible departures from this picture, including the impact of increasing the effective number of degrees of freedom in the early Universe as well as the impact of an equation-of-state different from that during radiation domination.

The following sections describe in detail the different ingredients which enter into the calculation of the spectrum of gravitational waves.

String network modelling

We have mentioned earlier that one of the most important aspects of a cosmic string network is its ability to reach a scaling solution. Analytical modelling as well as early cosmic strings simulations demonstrated the approach of the long string network to this attractor regime [START_REF] Bennett | Evidence for a Scaling Solution in Cosmic String Evolution[END_REF][START_REF] Albrecht | Evolution of Cosmic String Networks[END_REF][START_REF] Allen | Cosmic-String Evolution: A Numerical Simulation[END_REF]. Loops, however, reach scaling over a longer time scale and therefore larger simulations are need to attain this regime. It is only more recently that Nambu-Goto simulations performed by two independent groups [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF][START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF] have shown the existence of a population of scaling loops.

As outlined in Section 2.2, in order to calculate the spectrum of GWs expected today, a crucial input is the loop number density n( , t) at all times t, since GWs are generated throughout the history of the cosmic string network. In order to extrapolate results from simulations, which run only over a finite time interval, to any moment in the history of the network, the scaling of loops is crucial since it implies that n( , t) = t -4 N (γ) , (2.12)

where γ = /t is the ratio of the size of the loop to roughly the horizon scale.

In order to obtain n( , t), one approach is to determine the loop production function P( , t) d , namely the number density of non-self-intersecting loops of lengths between and + d produced per unit time, per unit volume, which in scaling satisfies P( , t) = t -5 P(γ) .

(2.13)

The number density of non-self-intersecting loops is then obtained by solving the Boltzmann equation for loops: loops are diluted with the expansion of the Universe, lose energy through GWs, and are sourced by loops being chopped off the infinite string network as described by P( , t) d . 2 The loop number density can thus be computed by integrating the loop production function

n( , t) = t ti dt P( , t ) a(t ) a(t) 3 , (2.14) 
where the effect of the expansion is explicitly seen through the dependence of the scale factor a(t), and (which is given below) contains information on the evolution of the length of the loop due to its gravitational decay from the time of formation t to the observation time t. More explicitly, assuming that, on average, the total power emitted by a loop is given by ΓGµ 2 , where Γ is a dimensionless constant (independent of the size and shape of a loop), then = + ΓGµ (tt) .

(2.15)

(Namely, a loop with length at time t has length at time t > t .) As we discuss in more detail in later sections, the value of Γ is given by the sum of the GW power radiated at all frequencies, and therefore generally one would expect it to depend on the shape of the loop. However, following the estimates from simple loops [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Burden | Gravitational Radiation from a Particular Class of Cosmic Strings[END_REF][START_REF] Garfinkle | Radiation from Kinky, Cuspless Cosmic Loops[END_REF] as well as the results obtained from recent simulations [START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF], in this paper we take Γ = 50.

The scaling loop number density for a power law cosmology parametrized by a(t) ∼ t ν can be obtained by combining Eqs. (2.12)- (2.15). Changing variables from t to γ = /t one finds [START_REF] Jose | The Number of Cosmic String Loops[END_REF] N (γ) = 1

(γ + ΓGµ)

3(1-ν)+1 ∞ γ (γ + ΓGµ) 3(1-ν) P(γ ) dγ , (2.16) 
which can be easily computed once P(γ) is given. 3 Finally, we now relate P( , t) -the loop production function for non-self-intersecting loopsto the long string network with energy density ρ ∞ . If we assume that the production of loops is the dominant energy loss mechanism of the long string network, then [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF] dρ

∞ dt = -2H(1 + v2 )ρ ∞ -µ ∞ 0 P( , t) d , (2.17) 
where H = ȧ/a is the Hubble parameter and v = 0|v 2 |0 is the root-mean-squared (RMS) velocity of the long strings. The first term in this equation describes the dilution of the long string 2 In principle loops could also collide with each other (to create larger, possibly self-intersecting, loops), leading to a more involved Boltzmann equation, see [START_REF] Copeland | The Evolution of a Network of Cosmic String Loops[END_REF]. Loops could also rejoin the infinite string network, see [START_REF] Bennett | The Evolution of Cosmic Strings[END_REF][START_REF] Bennett | Evolution of Cosmic Strings. 2[END_REF]. However, in Ref. [START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF], this effect was shown not to be significant for non-self-intersecting loops, and we will neglect it here.

3 In Eq. (2.14) we have assumed that t t i , meaning that the contribution from the loop distribution at the initial time t i can be neglected, and this is also the reason for the infinite upper limit in (2.16). Note that the Boltzmann equation may not always allow a scaling solution (see the analysis of [START_REF] Auclair | Cosmic String Loop Production Functions[END_REF], valid for all t ≥ t i ).

energy density in an expanding Universe, while the second, proportional to the loop production function, takes into account the energy lost into loops. Loop production is essential to achieve the linear scaling of long strings, see e.g. [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF].

In remainder of this section, we review three expressions for the loop number density n( , t) which have been proposed in the literature for Nambu-Goto strings. Then, in Section 2.3.4, we discuss the case of Abelian-Higgs string networks.

Model I: analytic approach

In the case of NG strings, the first expression for n( , t) we consider is based on an analytic approach, which was initially developed by Kibble in Ref. [START_REF] Kibble | Evolution of a System of Cosmic Strings[END_REF] and later extended in Refs. [START_REF] Caldwell | Cosmological Constraints on Cosmic String Gravitational Radiation[END_REF][START_REF] Depies | Stochastic Gravitational Wave Background from Light Cosmic Strings[END_REF][START_REF] Sanidas | Constraints on Cosmic String Tension Imposed by the Limit on the Stochastic Gravitational Wave Background from the European Pulsar Timing Array[END_REF][START_REF] Sousa | Stochastic Gravitational Wave Background Generated by Cosmic String Networks: Velocity-Dependent One-Scale Model versus Scale-Invariant Evolution[END_REF]. Here, the basic idea is that the loops produced by the long string network are described by a single free parameter (essentially the size of loops at formation), while Eq. (2.17) is used to determine the normalization of the loop production function.

As a first step in the determination of n( , t), it is therefore necessary to have an analytical handle on the evolution of the long string energy density ρ ∞ , and hence also of the RMS velocity v appearing in Eq. (2.17). To do so, following [START_REF] Sousa | Stochastic Gravitational Wave Background Generated by Cosmic String Networks: Velocity-Dependent One-Scale Model versus Scale-Invariant Evolution[END_REF], we use the successful Velocity-dependent One-Scale (VOS) model [START_REF] Martins | Quantitative String Evolution[END_REF][START_REF] Martins | Extending the Velocity-Dependent One-Scale String Evolution Model[END_REF] since this not only describes the scaling evolution of the long string network, but also its non-scaling evolution through the radiation-matter transition. 4The VOS model is a quantitative thermodynamical description of the cosmological evolution of the network, in terms of two variables: In terms of the characteristic length L ≡ (µ/ρ ∞ ) 1/2which measures the average distance between long strings -and v, the VOS equations of motion are [START_REF] Martins | Quantitative String Evolution[END_REF][START_REF] Martins | Extending the Velocity-Dependent One-Scale String Evolution Model[END_REF] 

dv dt = 1 -v2 k(v) L -2H v , (2.18) 
dL dt = 1 + v2 HL + c c 2 v , (2.19) 
where the constant phenomenological parameter c c quantifies the efficiency of the loop-chopping mechanism. Indeed, since Eq. (2. [START_REF] Abbott | GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run[END_REF]) is simply Eq. (2.17) rewritten in terms of L, it follows that

c c v ρ ∞ L = µ ∞ 0 P( , t) d . (2.20) 
In Eq. (2.18), the function k(v) phenomenologically accounts for the effects of small-scale structure (namely, multiple kinks) on long strings, and we use the ansatz proposed in [START_REF] Martins | Extending the Velocity-Dependent One-Scale String Evolution Model[END_REF] k 

(v) = 2 √ 2 π 1 -v2 1 + 2 √ 2v 3 1 -8v 6 1 + 8v
L t = k(v)(k(v) + c c ) 4ν(1 -ν) ≡ ξ s with v = k(v) k(v) + c c 1 -ν ν ≡ vs , (2.22) 
where the subscript s stands for "scaling", are attractor solutions of these equations for a ∝ t ν and 0 < ν < 1. More generally, Eqs. (2.18)-(2.19) can be solved throughout any cosmological era, including the radiation-to-matter and matter-to-dark-energy transitions, and hence one can trace the evolution of cosmic string networks in a realistic cosmological background [START_REF] Sousa | Stochastic Gravitational Wave Background Generated by Cosmic String Networks: Velocity-Dependent One-Scale Model versus Scale-Invariant Evolution[END_REF]. We note that although the VOS model only treats small-scale structure phenomenologically through k(v), Eqs. (2.18,2.19) were shown to provide an accurate description of the long string network evolution in both Nambu-Goto [START_REF] Martins | A Unified Model for Vortex String Network Evolution[END_REF] and Abelian-Higgs [START_REF] Moore | On the Evolution of Abelian-Higgs String Networks[END_REF] simulations. 5 In the NG case, taking c c = 0.23 ± 0.04 fits both radiation and matter era simulations [START_REF] Martins | Extending the Velocity-Dependent One-Scale String Evolution Model[END_REF]. (Note that c c is the only free parameter in the VOS model.)

The second step is to relate the loop production function to the long string network as described by the VOS model. Let us define ξ ≡ L(t) t and, as before, γ ≡ t . Then, in terms of these variables, it follows from Eq. (2.17) (or alternatively Eqs. (2.19) and (2.20)) that the loop production function satisfies

∞ 0 γP(γ) dγ = 2 ξ 2 1 -ν(1 + v2 ) = c c v ξ 3 . (2.23)
We now make the following assumption, characteristic of this model I: throughout cosmic history, all loops are assumed to be created with a length that is a fixed fraction of the characteristic length of the long string network, namely = α L L, with α L < 1. Thus

P(γ) = Cδ D (γ -α L ξ) , (2.24) 
where from Eq. (2.23)

C = c c α L v ξ 4 (2.25) 
with v and ξ = L/t being the solutions of the VOS equations (2.18)- (2.19). In fact, for reasons we now explain, we will consider a slightly modified form of P(γ), see (2.26) below. Indeed, note that the value of C given in (2.25) is in fact an upper limit, since Eq. (2.23) does not capture the fact that some of the energy from the long string network goes into redshifting of the peculiar velocities of loops: we account for this by introducing a reduction of the energy of loops by a factor of f r ∼ √ 2 [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. Furthermore, the assumption that all loops are created with exactly the same size is not expected to capture the true distribution of loop lengths at formation. The effect of relaxing this assumption was studied in Ref. [START_REF] Sanidas | Constraints on Cosmic String Tension Imposed by the Limit on the Stochastic Gravitational Wave Background from the European Pulsar Timing Array[END_REF], where it was found that considering a distribution of lengths generally leads to a decrease of the amplitude of the SGWB. To account for this effect, we introduce a second factor, F, which in Ref. [START_REF] Jose | The Number of Cosmic String Loops[END_REF] was estimated to be O(0.1) for Nambu-Goto strings. Taking these correction factors into account, we rewrite the loop production function in (2.24) as

P(γ) = F f r Cδ(γ -α L ξ) ≡ A δ D (γ -α L ξ) . (2.26)
We stress that this expression is valid throughout cosmic history, even when the cosmic string network is not in a linear scaling regime (in this case γ and C will be time-dependent). 6 Note also that since the length of a loop decreases with time due to gravitational radiation, see (2.15), the maximum size of loops in this model is /t = α L ξ.

The third and final step is to substitute Eq. (2.26) into Eq. (2.14) in order to obtain the loop number density n( , t) for all times, including during the radiation-to-matter and matter-to-darkenergy transitions. Note that this in general requires solving the VOS equations (2.19) and (2.20). However, deep in the radiation era (ν = 1/2), the long string network is scaling and described by the VOS solutions (2.22), namely ξ r = 0.271 and v r = 0.662, hence it follows that the loop distribution is given by

n r (γ) = A r α (α + ΓGµ) 3/2 (γ + ΓGµ) 5/2 , (2.27) 
with A r = 0.54 (we fix

F = 0.1, f r = √ 2)
, and where we have defined α = α L ξ r . As noted above, this expression is only valid for x ≤ α. In a matter-only universe (ν = 2/3), the VOS scaling solutions (2.22) give ξ m = 0.625 and v m = 0.583 and the loop distribution is

n m (γ) = A m α m α m + ΓGµ (γ + ΓGµ) 2 , (2.28) 
where α m = α L ξ m , A m = 0.039 and x ≤ α m . In Section 2.5.2, we use this analytical approach to estimate the effect of the radiation-to-matter transition on the GW spectrum in the LISA frequency band. In order to ease comparison with other loop distributions -to which we now turn -our results will be expressed in terms of α = α L ξ r (and not the more natural parameter of this model, namely α L ). Furthermore, we also explore the effect of changing the loop size at formation, through α, in Section 2.6.2.

Model II: simulation-inferred model of Blanco-Pillado, Olum, Shlaer (BOS)

The second loop number density distribution n( , t) we consider was discussed in Refs. [START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF][START_REF] Jose | The Number of Cosmic String Loops[END_REF].

There the authors performed NG simulations of cosmic string networks in the radiation and matter eras, and obtained the loop production functions for non-self-intersecting loops directly from these simulations. We now review these results and present the corresponding loop number density distributions in different cosmological eras.

Radiation era

In the radiation era, the results of Ref. [START_REF] Jose | The Number of Cosmic String Loops[END_REF] together with Eq. (2.16), lead to the following scaling number density of loops n r (γ) = 0.18

(γ + ΓGµ) 5/2 , (2.29) 
with a cutoff at the maximum size of a loop, x ≡ /t = 0.1. It then follows from (2.12) that the number density of loops in physical units reads n r ( , t) = 0.18

t 3/2 ( + ΓGµt) 5/2 , (2.30) 
with ≤ 0.1t. In Ref. [START_REF] Jose | The Number of Cosmic String Loops[END_REF], the form of the loop production function was found numerically. It is not exactly a δ D -function, as assumed in Model I, however, in Ref. [START_REF] Jose | The Number of Cosmic String Loops[END_REF] the precise form of the loop production function was argued not to be important, since for any function that respects the equation of energy balance given by Eq. (2.23), the final form of the number density is universal. Hence, one may argue that the most important piece of information from the simulation is the normalization factor of the loop number density in (2.29). Comparing Eq. (2.29) with Eq. (2.27) shows the same power-law behaviour in the denominator, and furthermore fixing α = 0.1 (the maximum size of loops in these radiation-era numerical simulations), the normalization of Eq. (2.27) yields 0.17 in the numerator, which is in good agreement with Eq. (2.29).

Matter era

The scaling distribution of loops from the radiation era survive past radiation-matter equality. The resulting number density of loops can be written in terms of the radiation density, Ω rad , and redshift z as

n r,m ( , t) = 0.18 2H 0 √ Ω rad 3/2 ( + ΓGµt) 5/2 (1 + z) 3 , (2.31) 
where t(z). This matches the previous expression (2.30) deep in the radiation era, and has the correct redshifting behaviour in the matter era. Finally, loops are also produced once the network reaches scaling in the matter era. Following the results in Ref. [START_REF] Jose | The Number of Cosmic String Loops[END_REF], the corresponding loop distribution is given by n m ( , t) = 0.27 -0.45( /t) 0.31 t 2 ( + ΓGµt) 2 (2.32) for /t < 0.18. However, as we shall see in Section 2.5, for the values of the string tension Gµ 10 -10 of relevance to LISA, the contribution of this population of loops to the SGWB is in fact negligible relative to (2.30) and (2.31).

To summarize, in order to calculate the SGWB generated by cosmic string loops described by model II, Eqs. (2.29-2.32) contain all the necessary information on the number density of loops at all times, from the formation of the cosmic string network until now.

Model III: simulation-inferred model of Lorenz, Ringeval, Sakellariadou (LRS)

The final loop distribution we consider is that developed in Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] and based on a different NG string simulation to model II, namely [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF]. Furthermore, as opposed to Ref. [START_REF] Jose | The Number of Cosmic String Loops[END_REF], the loop production function is not the quantity inferred from the simulation: rather, the authors [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF] extract directly the distribution of non-self-intersecting scaling loops from their simulation. On scales γ ΓGµ they find 7

N (γ) = C 0 γ p for γ ΓGµ , (2.33) 
where the values of the two constants C 0 and p in the radiation and matter eras are p = 2.60 +0.21 -0.15 r , p = 2.41 +0.08 -0.07 m ,

C 0 = 0.21 -0.12 +0.13 r , C 0 = 0.09 -0.03 +0.03 m .

(2.35)

Compared with Eq. (2.29), the radiation era solution has a similar amplitude but the power p appears somewhat greater that 5/2, with the indicated error bars. The power in the matter era differs from the one of Model II.

In order to extend the loop distribution (2.33) down to smaller scales, the authors of [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] solve the Boltzmann equation described in sec. 2.3, using a loop production function which itself is theoretically derived. Indeed, following the analytical work of Polchinski, Rocha and collaborators [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Polchinski | Cosmic String Structure at the Gravitational Radiation Scale[END_REF][START_REF] Dubath | Cosmic String Loops, Large and Small[END_REF], it is modelled by a power law P(γ) ∝ γ 2χ-3 for γ > γ c . Here γ c

ΓGµ is a scale characteristic of gravitational backreaction, and was estimated in Ref. [START_REF] Polchinski | Cosmic String Structure at the Gravitational Radiation Scale[END_REF] to be given by γ c ≡ 20(Gµ) 1+2χ .

(2.36)

The scaling loop distribution N (γ) ∀γ is then obtained 8 by substituting P(γ) ∝ γ 2χ-3 into equation (2.16), and finally the constant χ is fixed by comparing the resulting distribution on scales γ ΓGµ to the numerically obtained distribution Eq. (2.33). One finds [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] 

These values, together with Eq. (2.35), fix all the parameters in the loop distribution ∀γ.

The resulting distribution is given in Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF]. In our analysis below, we have worked with the exact distribution given in that reference, but it is useful to present its approximate analytic form in the different regimes of loop length assuming scaling:

• For loops with length scale large compared to γ d ≡ ΓGµ:

N (x γ d ) C (γ + γ d ) 3-2χ , (2.38) 
• For loops with length scale smaller than γ d , but larger than γ c :

N (γ c < γ γ d ) C(3ν -2χ -1) 2 -2χ 1 γ d 1 γ 2(1-χ) , (2.39) 
• For loops with length scale smaller than γ c , the distribution is flat:

N (γ γ c γ d ) C(3ν -2χ -1) 2 -2χ 1 γ 2(1-χ) c 1 γ d .
(2.40)

7 NG simulations do not include gravitational radiation, for which the characteristic scale is ΓGµ 8 As shown in Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF], the form of the loop production function on smaller scales than γc is essentially unimportant to the final loop distribution. 9 In Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF], it is assumed that χ < (3ν -1)/2; see Ref. [START_REF] Auclair | Cosmic String Loop Production Functions[END_REF] for an analysis in the case χ ≥ (3ν -1)/2.

In the above,

C = C 0 (1 -ν) 2-p . (2.41)
Relative to the BOS distribution, notice that the distribution in Eq. (2.40) contains many more small loops (due to the inverse power of γ c which is itself very small). In fact, these small loops dominate the stochastic GW spectrum at high frequencies, as was already discussed in Ref. [START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF], and hence can lead to very different constraints on Gµ to that of the BOS model in the high frequency regime. Indeed, the energy density in these small loops is very large, so the question of energy balance between the long string network and the loop distribution -at least as described by Eq. (2.17) (with caveats mentioned in footnote 3) -remains to be fully understood.

Abelian-Higgs field theory simulations

So far we have focused on Nambu-Goto strings which are infinitely thin. However, as mentioned in the introduction, cosmic strings are solitonic solutions of classical field theory models [START_REF] Nielsen | Vortex-Line Models for Dual Strings[END_REF] which means that, in principle, they can decay not only by releasing energy into gravitational waves but also directly into excitations of their elementary constituents. For this reason, a number of authors have simulated cosmic strings in different field theories. In this short section we review this work and the implications it may have for the loop-distribution n( , t).

In Ref. [START_REF] Davis | DO AXIONS NEED INFLATION?[END_REF] global (axionic) strings were studied and it was shown that decay into elementary constituents indeed takes place, in this case due to the coupling with the massless Goldstone mode present in the vacuum of the theory. For local strings with no long-range interactions (and which, in the infinitely thin limit, are expected to be described by the NG action), the excitations in the vacuum are massive, and hence the expectation is that this radiation will be suppressed for long wavelength modes of the strings. This expectation is supported by simulations of individual oscillating strings [START_REF] Martins | A Unified Model for Vortex String Network Evolution[END_REF] and standing waves [START_REF] Olum | Radiation from Cosmic String Standing Waves[END_REF], which observe that massive particle radiation originates in high curvature regions of the string, e.g., in cusp-like regions where the string doubles back on itself [START_REF] Olum | Field Theory Simulation of Abelian Higgs Cosmic String Cusps[END_REF]. These simulations also support the fact that, except for the short bursts of energy, the strings evolve according to the Nambu-Goto equations of motion. Furthermore, recent simulations of individual loops in the Abelian-Higgs model [START_REF] Matsunami | Decay of Cosmic String Loops Due to Particle Radiation[END_REF] report that, for loops smaller than a critical length scale, the lifetimes of loops scale with the square of their lengths. Extrapolating their results to large loops, these authors conclude that for loops larger than the critical length scale, GW emission is expected to dominate over particle emission [START_REF] Matsunami | Decay of Cosmic String Loops Due to Particle Radiation[END_REF].

In contrast, large-scale field theory (FT) simulations of the whole network of strings [START_REF] Vincent | Numerical Simulations of String Networks in the Abelian Higgs Model[END_REF][START_REF] Hindmarsh | Abelian Higgs Cosmic Strings: Small Scale Structure and Loops[END_REF][START_REF] Daverio | Energy-Momentum Correlations for Abelian Higgs Cosmic Strings[END_REF][START_REF] Hindmarsh | Scaling from Gauge and Scalar Radiation in Abelian Higgs String Networks[END_REF] observe that the network of infinite strings reaches a scaling regime, thanks to energy loss into classical radiation of the scalar and gauge fields of the Abelian-Higgs model. These largescale simulations of cosmic string networks are therefore in disagreement with the above massive radiation arguments: they show the presence of extensive massive radiation being emitted, and so loops formed in these simulations decay within a Hubble time. This intriguing discrepancy has been under debate for the last ∼ 20 years, but the origin of this radiation is not currently understood.

The similarities and differences between FT and NG simulations of string networks can then be summarized as follows: the infinite strings are rather similar in curvature radius and length density, but loops decay into field modes in the FT simulations. In FT simulations the strings' energy density goes into massive modes of the fields, which are not part of the string network any more. As a consequence, the string loops decay within a Hubble time, and hence do not contribute as a source of GWs all through cosmic history. In the Nambu-Goto picture, this channel does not exist, and instead the energy of the infinite strings goes into loops, which then decay into gravitational radiation.

Our analysis in this paper is based on the NG classical evolution of strings. Hence, we assume, as supported by NG simulations, that loops are formed throughout cosmic history, and they decay into GWs, as we describe in Section 2.4. Our conclusions about the ability of LISA to measure a GW background from cosmic strings is therefore based on this fundamental assumption.

Gravitational wave emission from strings

As outlined in Section 2.2, a crucial input into the calculation of the SGWB from cosmic strings is the loop power spectrum P gw (f, ) (see Method I of Section 2.2.1). Alternatively (for method II, Section 2.2.2), one requires both h(f, z, ) and ∂ 2 R(z, ) ∂z∂l . Our purpose in this section is to determine these crucial quantities. We also discuss the possibility of detecting individual burst events from loops, as well the contribution of long strings to the SGWB.

GW loop power spectrum

The power lost into gravitational radiation by an isolated loop of length can be calculated using the standard formulae in the weak gravity regime [START_REF] Weinberg | Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity[END_REF]. As a first approximation, we assume that the loop evolves in flat space, meaning that its evolution is periodic and radiation is only emitted at discrete frequencies, ω n = 2πn/T , where T = l/2 is the period of the loop, and n = 1, 2, . . .. Then the power emitted at frequency ω n per solid angle is given by [START_REF] Burden | Gravitational Radiation from a Particular Class of Cosmic Strings[END_REF][START_REF] Allen | Gravitational Radiation from Cosmic Strings[END_REF] dP

n dΩ = 8πGµ 2 n 2 |A + | 2 + |A × | 2 , (2.42) 
where A +,× are the amplitudes of the two gravitational wave polarizations. In a coordinate system in which Ω = ẑ, they are given by

A + = I + x I - x -I + y I - y , (2.43a) 
A × = I + x I - y + I + y I - x (2.43b)
where the I ± 's are functions of the mode number n, and are related to the Fourier transform of the stress-energy tensor of the string. (The ± refer to the fact that the solutions of the NG equations in flat space are a superposition of left and right-moving waves, see appendix 2.A, where we also give the explicit expressions of I ± in terms of these solutions.) These I ± functions therefore encode the information about the geometric shape of the loop over its entire oscillation. Integration of Eq. (2.42) over the sphere around the loop yields the power, P n , emitted in each mode for a particular loop.

If the loop contains cusps, kinks, and kink-kink collisions, then one can show generically that for large n, P n scales as n -4/3 , n -5/3 , and n -2 respectively [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Binetruy | Gravitational Wave Bursts from Cosmic Superstrings with Y-Junctions[END_REF]. It is important to stress that the gravitational radiation from loops is quite anisotropic: for cusps, most of the radiation at high frequencies is localized within a small solid angle surrounding the cusp direction; for kinks, the radiation is emitted in a narrow strip on the celestial sphere around the loop (see Section 2.4.2 below). The procedure outlined above has been used to calculate the power spectrum of certain simple analytic solutions of loops with a small number of harmonics [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Burden | Gravitational Radiation from a Particular Class of Cosmic Strings[END_REF][START_REF] Garfinkle | Radiation from Kinky, Cuspless Cosmic Loops[END_REF]. The results are in general agreement with the analytic estimates from cusps and kinks given above. However, in order to calculate the stochastic gravitational wave spectrum from the whole network of loops, we need to estimate an averaged loop power spectrum, since different loops of different shapes (but same ) may have quite distinct power spectra. One approach is to consider realistic loops obtained from a simulation. Furthermore, one could aim to go beyond the first approximation mentioned above (namely that the loop evolves in flat space), and consider how the shape of a loop changes due to the emission of gravitational radiation: that is, gravitational backreaction may be important to determine an accurate average power spectrum of loops.

The effect of gravitational backreaction on the average loop power spectrum was first considered in Ref. [START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF]. Starting from a representative group of ∼ 1000 non-self-intersecting loops from a population of scaling loops in a large scale simulation, a simple toy model for backreaction was applied (the loops were smoothed at different scales), and finally the average power spectrum of the full family of loops was computed. The resulting spectrum -which we denote as the BOS spectrum -was found to be quite smooth, with a long tail well-described by n -4/3 , namely the high frequency region was dominated by cusps present on the smooth loops. Furthermore, the distribution of results for the total power, Γ = ∞ n=1 P n , for those loops was found to be highly peaked at Γ ≈ 50. It is clear, however, that there is still some uncertainty in the accuracy of this power spectrum, since the smoothing procedure used in Ref. [START_REF] Jose | Cosmic String Loop Shapes[END_REF] only shares some of the key ingredients found in the results of recent studies of the gravitational backreaction [START_REF] Wachter | Gravitational Backreaction on Piecewise Linear Cosmic String Loops[END_REF][START_REF] Jose | Gravitational Back-Reaction near Cosmic String Kinks and Cusps[END_REF][START_REF] Chernoff | Gravitational Backreaction on a Cosmic String: Formalism[END_REF][START_REF] Jose | Gravitational Backreaction Simulations of Simple Cosmic String Loops[END_REF]. These latter results indicate that some parts of the power spectrum could be affected differently by more realistic backreaction.

In the following, we also consider the simple averaged loop power spectra that are determined exclusively from the frequency dependence of specific events (cusp, kinks and kink-kink collisions), namely

P n = Γ ζ(q) n -q , (2.44) 
where ζ(q) is the Riemann zeta function, introduced as a normalization factor to enforce the total power of the loop to be equal to Γ = n P n . The parameter q takes the values 4/3, 5/3, or 2 depending on whether the emission is dominated by cusps, kinks or kink-kink collision respectively. 10The sensitivity of the final SGWB to the value of q will give us an indication of the robustness of our results relative to the uncertainty on P n . In terms of this average power spectrum P n , Method I of Section 2.2.1 yields the stochastic gravitational wave background as [START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF] Ω

GW (ln f ) = 8πG 2 µ 2 f 3H 2 0 ∞ n=1 C n (f )P n , (2.45) 
where

C n (f ) = 2n f 2 ∞ 0 dz H(z)(1 + z) 6 n 2n (1 + z)f , t(z) , (2.46) 
which depends on the loop distribution through n 2n (1+z)f , t(z) , and on the assumed cosmological background through H(z) and t(z). As seen in Section 2.3, the number density of loops depends on the total power Γ, and hence for consistency it is important to ensure that the average loop power spectrum is properly normalized.

GW waveforms from bursts

As described in Section 2.2.2, an alternative method to compute the SGWB from strings is to consider the incoherent superposition of many bursts from cusps, kinks and kink-kink collisions. The logarithmic Fourier transform of the corresponding waveforms from these individual events was calculated in Ref. [START_REF] Damour | Gravitational Wave Bursts from Cosmic Strings[END_REF][START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF][START_REF] Binetruy | Gravitational Wave Bursts from Cosmic Superstrings with Y-Junctions[END_REF]:

h( , z, f ) = A q ( , z)f -q , ( 2.47) 
where

A q ( , z) = g (q) 1 GµH 0 2-q (1 + z) q-1 ϕ r (z) . (2.48)
Here is the length of the loop at redshift z at which this particular event takes place, ϕ r (z) is a measure of the proper distance from the observer to the source (cf. (2.10) in Section 2.2.3), and as before q = 4/3, 5/3 and 2, for cusps, kinks and kink-kink collisions, respectively. The numerical constant g (q)

1 accounts for the fact that not all cusps and kinks are identical (different cusps/kinks will have different geometry/sharpness), and this modulates the strength of the GW burst.

As mentioned above, cusps and kinks radiate non-isotropically meaning that the above waveform is only valid for directions near the cusp or kink direction, and it should be cutoff on angles larger than [START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF][START_REF] Damour | Gravitational Wave Bursts from Cosmic Strings[END_REF] 

θ cutoff ( , z, f ) = 1 g 2 f (1 + z) 1/3 , (2.49) 
where

g 2 = √ 3 
4 . On taking into account the geometry of this beaming effect, the fraction ∆( , z, f ) of observable bursts from cusps, kinks and kink-kink collisions is given by [START_REF] Olmez | Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings[END_REF] ∆( , z, f ) = θ cutoff ( , z, f ) 2

3(2-q) Θ(1 -θ cutoff ( , z, f )) . (2.50)
The rate of bursts, which is required for the calculation of the SGWB with method II (see Eq.(2.5)), is then given by [212]

∂ 2 R(z, ) ∂z∂ = 2ϕ v (z) H -3 0 n( , t(z)) (1 + z) ∆( , z, f ) , (2.51) 
where ϕ v (z) given in Eq. (2.11). Finally, we can collect these results together, and insert Eqs. (2.47) and (2.51) into Eq. (2.5) to find that the SGWB from Method II for a given type of burst to be given by

Ω GW (ln f ) = g (q) 1 2 g -2+q 2 2 5-3q 2N q (Gµ) 2 (2πf ) 3 3H 3 0 ∞ 0 dγ ∞ zmin(γ,f ) dz (f t(z)) -2-q (1 + z) 4+q γ 1-q H 0 H(z) N (γ) ,
(2.52) where N q is the average number of bursts per oscillation in a loop, and z min (γ, f ) is the solution to θ cutoff ( , z min , f ) = 1.

Determining the average number of cusps and kinks for the loop network is a very non-trivial task and the subject of ongoing work, and given this uncertainty it is common to take N c = N k = O(1). However, one can also consider a situation in which there will be contributions from all these types of events [START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF][START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF][START_REF] Jenkins | Anisotropies in the Stochastic Gravitational-Wave Background: Formalism and the Cosmic String Case[END_REF], namely N c number of cusps, N k kinks and N kk number of kink-kink collisions (with N kk = N 2 k /4, on assuming that there are equal numbers of left-and right-going kinks). We then impose that the sum of all these events to the averaged total power of the loop, Γ, is equal to the value used in the expression for the loop number density 11 . The resulting constraint between the set of parameters g (q) 1 , g 2 , N c , N k and Γ is given in appendix 2.A. Before presenting the results of the SGWB for the three loop distributions of Section 2.5, we finish this section by commenting on two important issues: the separation of strong infrequent bursts from the SGWB; and the potential contribution (which we have not discussed until now) of GWs being emitted by the long string network.

Strong infrequent bursts

The superposition of GW bursts from many cusps and/or kinks, as calculated in Section 2.4.2, leads to a Gaussian stochastic background of GWs [START_REF] Caprini | Cosmological Backgrounds of Gravitational Waves[END_REF]. However, strong infrequent bursts observed with a time interval greater than the period of GWs ∼ 1/f (∼ 10 2 -10 3 s for LISA) exhibit a non-Gaussian discontinuous signal, often referred to as "popcorn-like" [START_REF] Regimbau | The Stochastic Background from Cosmic (Super)Strings: Popcorn and (Gaussian) Continuous Regimes[END_REF]. Typically, these are bursts from low redshift, z 1. If a burst occurs in our neighbourhood and the amplitude is strong enough, then the signal can be identified individually by the burst detection pipeline.

The non-Gaussian background from infrequent bursts is typically expected to be above the Gaussian background when strings have large tension and small initial loop size (e.g., Gµ ∼ 10 -6 and α ∼ 10 -11 for LISA [START_REF] Regimbau | The Stochastic Background from Cosmic (Super)Strings: Popcorn and (Gaussian) Continuous Regimes[END_REF]). Infrequent bursts are negligible for strings satisfying the current pulsar timing limit Gµ < 10 -11 . We should therefore supplement, in principle, the expression for the SGWB calculation with a correction that suppresses the contribution from infrequent bursts. However, in practice, we have found that for large initial loop sizes, removing the rare burst has practically no effect on the present-day SGWB spectrum (see also [START_REF] Siemens | Gravitational Wave Stochastic Background from Cosmic (Super)Strings[END_REF][START_REF] Olmez | Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings[END_REF][START_REF] Binetruy | Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF]), at least when the number of cusps and kinks per loop oscillation period is O(1).

An interesting possibility is that the number of infrequent strong bursts could be greatly enhanced if we consider clustering of loops inside the dark-matter halo of our galaxy. This would mean that the loop number density could be enhanced by several orders of magnitude at the Sun's position greatly improving the detectability of single-burst events in LISA for Gµ < 10 -11 [START_REF] Chernoff | Detection of Low Tension Cosmic Superstrings[END_REF]. It has also been shown recently using numerical relativity simulations that, for certain configurations, very small loops can emit GW bursts by collapsing to form black holes [START_REF] Helfer | Cosmic String Loop Collapse in Full General Relativity[END_REF]. These are interesting proposals, but we do not discuss them further here, as they go beyond the scope of this paper, where we focus on the SGWB from a string network.

Gravitational wave emission from long strings

So far we have exclusively focused on the GW signal emitted from sub-horizon string loops. However, long strings (infinite and super-horizon loops) also emit GWs. One contribution to this signal is characterized by GWs emitted around the horizon scale at each time t, sourced by the anisotropic stress of the network [START_REF] Krauss | Gravitational Waves from Global Phase Transitions[END_REF][START_REF] Jones-Smith | A Nearly Scale Invariant Spectrum of Gravitational Radiation from Global Phase Transitions[END_REF][START_REF] Fenu | Gravitational Waves from Self-Ordering Scalar Fields[END_REF][START_REF] Daniel | Exact Scale-Invariant Background of Gravitational Waves from Cosmic Defects[END_REF]. This background is actually expected to be emitted by any network of cosmic defects in scaling, independently of the topology and origin of the defects [START_REF] Daniel | Exact Scale-Invariant Background of Gravitational Waves from Cosmic Defects[END_REF], and hence represents an irreducible background generated by any type of viable defect network that has reached scaling. However, in the case of NG cosmic string networks, this background represents a sub-dominant signal compared to the GW background emitted from the loops. In the case of field-theory strings (for which simulations to date indicate the absence of "stable" loops), it is instead the only GW signal (and hence the dominant one) emitted by the network.

The GW energy density spectrum of this secondary background produced by long strings is predicted to be exactly scale-invariant for the modes emitted during radiation domination [START_REF] Daniel | Exact Scale-Invariant Background of Gravitational Waves from Cosmic Defects[END_REF]. At the level of the power spectrum, this background mimics therefore the spectral shape of the dominant signal from the loop decay (see discussion in Section 2.5.1), except with a much smaller amplitude. Even though the shape of the power spectrum of this irreducible GW background is well understood theoretically, its ultimate amplitude depends on the fine details of the so called unequal-time-correlator of the network's energy-momentum tensor. Unfortunately, this correlator can only be obtained accurately from sufficiently fine lattice simulations of defect networks. It is therefore difficult to assess at this point whether this background can be detectable with LISA. In the case of global defects, the scale-invariant GW power spectrum has been estimated in Ref. [START_REF] Jones-Smith | A Nearly Scale Invariant Spectrum of Gravitational Radiation from Global Phase Transitions[END_REF][START_REF] Fenu | Gravitational Waves from Self-Ordering Scalar Fields[END_REF]. The amplitude of the spectral plateau has been calibrated in lattice field theory simulations for global strings12 as [START_REF] Daniel | Exact Scale-Invariant Background of Gravitational Waves from Cosmic Defects[END_REF] h 2 Ω GW 4 × 10 4 h 2 Ω rad (Gµ) 2 .

(2.53)

Even though the numerical prefactor is much larger than unity, the quadratic scaling proportional to (Gµ) 2 suppresses significantly this background (see e.g. [START_REF] Buchmüller | The Gravitational Wave Spectrum from Cosmological B-L Breaking[END_REF] for a comparison of this signal and that emitted from the decay of string loops). This amplitude is clearly subdominant when compared to the amplitude of the dominant GW signal from the loops, which scales as (Gµ) 1/2 (see Eq. (2.56) and the discussion in Section 2.5.1). A proper assessment of the ability of LISA to detect the power spectrum of this stochastic background requires further results not available yet; namely, lattice simulations of cosmic networks with a larger dynamical range. One can also consider the contribution to the GW spectrum coming from the accumulation of small-scale structure on long strings. These kinks are the product of the multiple intercommutations that infinite strings suffer over the course of their cosmological evolution, and were noticed early on in numerical simulation of cosmic networks [START_REF] Bennett | Evidence for a Scaling Solution in Cosmic String Evolution[END_REF][START_REF] Sakellariadou | Cosmic-String Evolution in Flat Space-Time[END_REF]. The emission of GW from individual infinite strings modulated by kinks has been calculated in Refs. [START_REF] Sakellariadou | Gravitational Waves Emitted from Infinite Strings[END_REF][START_REF] Hindmarsh | Gravitational Radiation from Kinky Infinite Strings[END_REF]. Using these results, one can also compute the spectrum produced by these kinks on a network assuming the simple model in which their characteristic scale is given by αt. At high frequencies one can then estimate that the radiation-era plateau of this contribution should be [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF] 

h 2 Ω GW 128π 2 3ξ 2 α h 2 Ω rad (Gµ) 2 , (2.54) 
which for α ≈ 0.1 and ξ r = 0.271 shows a rough agreement with the value obtained from field theory simulations. On the other hand, recently, Ref. [START_REF] Matsui | Gravitational Wave Background from Kink-Kink Collisions on Infinite Cosmic Strings[END_REF] has calculated the GW spectrum produced by kink-kink collisions on long strings, and found that the amplitude is larger than in previous estimates. This is because the characteristic scale α turns out to be much smaller than 0.1 according to their semi-analytic estimation of the kink number distribution. As all these backgrounds are clearly sub-dominant against the SGWB from loops, we will not consider them in the following analysis of the paper (except for a brief discussion of the bispectrum in Section 2.6.3).

Spectrum of the SGWB from cosmic string loops

As discussed above, a string network evolves towards a scaling solution in which its energy density is simply proportional to the total background energy density Ω ∞ ∝ Gµ Ω tot . The string network constantly produces loops which then emit GWs, and follow the background expansion instead of simply redshifting (which would correspond to Ω ∞ ∝ a -2 for static infinite strings). This continuous emission and tracking with expansion makes cosmic strings a perfect source for probing the expansion history of the Universe. In fact, in this section we show that all features visible in a stochastic GW frequency spectrum can be traced to a corresponding characteristic period in the evolution of the Universe.

We start our analysis by determining the basic shape of the SGWB spectrum over many decades in frequency, once a given loop number density distribution is chosen. We then study the impact of loops created relatively recently, that is, during the radiation-to-matter transition. Finally, we characterize the impact of extra degrees of freedom and other possible modifications of the equation of state in the very early Universe.

Basic spectral shape

The expressions given in Eqs. (2.45) and (2.52) can be used to compute the SGWB. In the following, we set Γ = 50 and we use Method I (Eq. (2.45)) to generate several SGWB spectra for different values of Gµ. To illustrate our main points, we first take the loop number density from Model II and the loop power spectrum denoted by BOS in Section 2.4.1: the results are shown in Fig. 2.1. In Fig. 2.2 on the other hand, we use the loop number density from Model III and a monochromatic spectrum of cusps only (q = 4/3). The difference between these results for the same value of Gµ comes almost entirely from the different loop number density of small loops in these models, as discussed in Section 2.3.3.

These figures plot the SGWB for a set of representative values of Gµ together with the current sensitivity curves for EPTA pulsar timing collaboration [START_REF] Kramer | The European Pulsar Timing Array and the Large European Array for Pulsars[END_REF], as well as the projected curves for the SKA [START_REF] Janssen | Gravitational Wave Astronomy with the SKA[END_REF] and LISA [START_REF] Audley | Laser Interferometer Space Antenna[END_REF] collaborations. In particular, we show the spectrum of Gµ = 10 -10 as being the order of the bound on the string tension coming from current observations of pulsar timing arrays (PTAs). This bound should be improved in the next few years. However, as the limit on Ω GW becomes stronger and one probes lower values of the tension, one can see that the peak of the SGWB moves towards high frequencies and outside of the PTA frequency bands. This makes future bounds less strong than one would have thought because the PTA frequency band will then be at the steep section of the SGWB curve. Eventually, the SKA collaboration will become more competitive, potentially setting a bound of Gµ = 2 × 10 -13 , three orders of magnitude stronger than current PTA constraints.

An important point to make here is that if any of these observations detect a SGWB, one will probably have to wait for LISA before one can elucidate the origin of such background. It is therefore interesting to see that if Gµ is in the range of values accessible by PTA experiments, the higher-frequency part of the SGWB signal will be well within LISA's sensitivity curve. The spectrum for Gµ = 10 -13 in Fig. 2.1 shows how such a curve might appear in LISA.

Looking at the curves for Gµ = 10 -15 and 10 -17 in Fig. 2.1, it is clear that for lower string tensions, PTA-type experiments become irrelevant for detecting a background and at this level LISA becomes the right instrument to probe these light strings [START_REF] Jose | New Limits on Cosmic Strings from Gravitational Wave Observation[END_REF]. The "bump" of the SGWB will pass directly through the LISA sensitivity band, as shown for Gµ = 10 -15 , and Gµ = 10 The dash-dotted dark orange curve is the (projected) SKA sensitivity, and the dark red curve just below is for Gµ = 10 -13 . The dotted black curve is the LISA PLS; the red curve whose peak passes through it, and the light red curve just below, are for Gµ = 10 -15 and 10 -17 respectively. The P n are inferred from simulation [START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF], and the loop number density is from Model II. 1, but with P n ∝ n -4/3 and using the loop number density from Model III [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF]. the order of the lower bound on tension that LISA will set.

The high frequency regime

As we can see from the SGWB curves shown in Fig. 2.1, the spectrum becomes flat at very high frequencies. This can be understood analytically using a scaling number density of loops as well as a simplified cosmological background that describes the evolution of the Universe deep in the radiation era. The combination of these two facts allows us to find an expression (following Method I) for the spectrum of the form

Ω plateau GW (ln f ) I = 64πG 2 µ 2 Ω rad 3 ∞ n=1 P n dγ N r (γ) . (2.55)
This shows that indeed the SGWB is flat in this regime, but also that it only depends on two properties of the network of strings: the averaged total power emitted by a loop, and the total number of loops. Applying this to Model II, we find

Ω plateau GW (ln f ) I ≈ 8.04Ω rad Gµ Γ . (2.56)
This is a relevant result as it tells us that the value of the high-frequency plateau only depends on Gµ and the total Γ. In particular, it does not depend on the exact form of the loop's power spectrum, nor on if the GW emission is dominated by cusps or kinks, but rather depends only on the total radiation emitted by the loops. Similarly, we can perform the same kind of computation using Method II. Starting with Eq. (2.52), and taking the cosmological background to be in the radiation era, we find13 a good agreement for the plateau with the expression found in Eq. (2.56). This is expected, given that the plateau only depends on quantities that must be identical in both methods. However, given the different nature of the calculations performed in both methods, this is a good consistency check.

Radiation-to-matter transition

Numerical simulations studying the strings scaling have typically been performed in fixed backgrounds: pure radiation domination and pure matter domination [START_REF] Jose | The Number of Cosmic String Loops[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF][START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF][START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF]. The usual simplified approach would be to just switch between the two loop distributions at radiation-matter equality; however, in reality we expect the network to smoothly evolve between the two regimes. In fact, the string network evolves rather slowly and, as pointed out in [START_REF] Sousa | Stochastic Gravitational Wave Background Generated by Cosmic String Networks: Velocity-Dependent One-Scale Model versus Scale-Invariant Evolution[END_REF], does not reach scaling regime with matter background up until the current accelerated expansion starts. This may have a significant impact on the number density of loops in the matter era.

We can study the impact of more careful modelling of the transition using the analytical model discussed in Section 2.3.1. In Fig. 2.3 we compare results coming from the full evolution of the loop density, Eq. (2.16), with the simplified spectrum obtained performing an instantaneous switch between the scaling results in matter domination (Eq. (2.28)), and radiation domination (Eq. (2.27)). Fig. 2.3 shows examples of spectra for several values of Gµ and α = 0.1 using both prescriptions. As we can see, the inclusion of a smooth radiation-to-matter transition only modifies the spectrum significantly at very low frequencies f 10 -10 Hz, outside of the LISA band. The reason is that it is only at these very low frequencies that the signal is dominated by loops created in the matter era [START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF].

Even though the peak in the spectrum always appears due to matter domination, for low Gµ 10 -11 it is only created by redshifting of GWs and the loop density in the matter background, while the loops dominantly contributing are formed much earlier, deep in the radiation era. With this we can safely conclude that for large loops α = 0.1 suggested by recent simulations, the modelling of the radiation-to-matter transition is irrelevant in the LISA sensitivity window. In Section 2.6.2 we discuss how this situation may change if we assumed smaller loop sizes.

Variation of the relativistic degrees of freedom

Another feature in the expansion rate of the Universe that would leave a clear signature in the stochastic GW spectrum of a cosmic string network is a modification in the number of relativistic degrees of freedom [START_REF] Bennett | The Evolution of Cosmic Strings[END_REF]. Whenever the temperature of the plasma forming our radiation background drops below the mass of a certain particle, that species will annihilate, injecting energy into the plasma and temporarily reducing its rate of cooling. This effect is automatically included in our calculation by solving the Friedman equation, Eq. (2.7), which includes the impact of changes in the number of degrees of freedom on the expansion rate through Eq. (2.9).

We show the impact of including this variation in Fig. 2.4, which shows both the result obtained using the Standard Model number of degrees of freedom and just a constant value. As we can see, the modification of number of degrees of freedom produces smooth variations in the spectrum at the frequency corresponding to the temperature of the modification. The most prominent of these variations in the spectrum correspond to electron-positron annihilation at T ≈ 200 KeV where the lines first separate, the QCD phase transition at f ≈ 10 -2 Hz (T ≈ 100 GeV), and the electroweak Figure 2.4: Examples of spectra with Gµ = 10 -11 assuming a constant number of degrees of freedom (black solid line) and standard cosmology with SM particle content (blue dashed line). The gray area indicates LISA sensitivity. scale at f 10 2 Hz. This means LISA could probe the QCD equation of state and other SM processes through their impact on the stochastic background from cosmic strings [START_REF] Hajkarim | Effects of the QCD Equation of State and Lepton Asymmetry on Primordial Gravitational Waves[END_REF].

Crucially, this effect would also potentially allow us to observe extra degrees of freedom (DOF) from beyond the standard model [START_REF] Cui | Probing the Pre-BBN Universe with Gravitational Waves from Cosmic Strings[END_REF][START_REF] Caldwell | Using a Primordial Gravitational Wave Background to Illuminate New Physics[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF][START_REF] Battye | Gravitational Waves from Cosmic Strings[END_REF]. Had the number of DOF increased by a factor of ∆g * , that would have created another smooth step, changing the value of the plateau at the corresponding frequency by

Ω GW Ω SM GW ≈ g SM * g SM * + ∆g * 1/3 , (2.57) 
where g SM * and g SM * S are the number of degrees of freedom and the number of entropy degrees of freedom, both calculated in the standard model.

We can numerically check that the frequency corresponding to a modification of the expansion rate occurring at a temperature T ∆ is given by [START_REF] Cui | Probing the Pre-BBN Universe with Gravitational Waves from Cosmic Strings[END_REF] f ∆ = (8.67 × 10 -3 Hz)

T ∆ GeV 0.1 × 50 × 10 -11 α Γ Gµ 1/2 g SM * (T ∆ ) g SM * (T 0 ) 8 6 g SM * S (T 0 ) g SM * S (T ∆ ) 7 6 
.

(2.58)

Using this estimate, we can see that LISA frequency band corresponds to probing temperatures of the order of a few GeV. It is important to point out this could lead to a significant improvement over the current probes of the expansion rate, which can reach only to the BBN temperature of a few MeV, which is still 3 orders of magnitude lower than the potential of a cosmic string signal at LISA. In Fig. 2.5, we show examples of a cosmic string stochastic background in standard cosmology with Gµ = 10 -11 and several modifications with ∆g * = 100 new degrees of freedom dropping out of equilibrium at the range of temperatures of interest in LISA.

Probing the cosmological equation of state at early times

The reasoning used in the last subsection also clearly applies to more dramatic modifications of cosmology in which the expansion at early times is dominated by something other than primordial radiation. A typical example here would be an early period of matter domination [START_REF] Moroi | Wino Cold Dark Matter from Anomaly Mediated SUSY Breaking[END_REF] after which the matter decays and the Universe resumes the standard radiation dominated expansion. Another example, so-called kination [START_REF] Joyce | Turning around the Sphaleron Bound: Electroweak Baryogenesis in an Alternative Postinflationary Cosmology[END_REF][START_REF] Giovannini | Gravitational Waves Constraints on Postinflationary Phases Stiffer than Radiation[END_REF][START_REF] Giovannini | Production and Detection of Relic Gravitons in Quintessential Inflationary Models[END_REF][START_REF] Salati | Quintessence and the Relic Density of Neutralinos[END_REF][START_REF] Daniel | Inflationary Cosmology Connecting Dark Energy and Dark Matter[END_REF][START_REF] Poulin | Cosmological Implications of Ultralight Axionlike Fields[END_REF][START_REF] Bettoni | Gravitational Waves from Global Cosmic Strings in Quintessential Inflation[END_REF][START_REF] Daniel | Inconsistency of an Inflationary Sector Coupled Only to Einstein Gravity[END_REF][START_REF] Bernal | Primordial Gravitational Waves in Nonstandard Cosmologies[END_REF][START_REF] Daniel | Ability of LIGO and LISA to Probe the Equation of State of the Early Universe[END_REF], is a period of domination of a new constituent of energy that redshifts faster than radiation and eventually becomes subdominant, avoiding any conflict with late time experiments. Observation of the plateau of GW spectrum from a cosmic string network would indeed verify radiation domination up to T ∆ from Eq. (2.58). If any non-standard behaviour is observed, it can be traced back to the underlying modification. Simply expanding Eq. (2.45) at high frequencies, we can check that the impact of modified redshifting in a background H 2 ∝ a -β would simply lead to

Ω GW (f > f ∆ ) ∝ f (8-2β)/(2-β) β ≥ 10 3 , f -1 β < 10 3 , (2.59) 
behaviour above T ∆ . An early period of matter domination corresponds to β = 3. However, for expansion in the early Universe with any β < 10 3 , the emission from the string network is in fact subdominant to the tail of the distribution produced at later times. This leads to some degeneracy, and in fact if the network simply achieved scaling only at that time after their production [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF], or if scaling was delayed due to the network having been diluted by inflation [START_REF] Guedes | Signature of Inflation in the Stochastic Gravitational Wave Background Generated by Cosmic String Networks[END_REF], it would also amount to the lower case in Eq. (2.59). For scenarios with a new energy constituent redshifting faster than radiation (that is, β > 4), the spectrum rises after T ∆ , which generically gives better observational prospects. 14 We show examples of the resulting spectra with the range of T ∆ of interest for LISA in various modified cosmologies in Fig 2 .6. It would significantly modify predictions of any other process relying on the standard expansion rate, for instance modifying predictions for dark matter relics [] and electroweak Baryogenesis both in terms of its possible GW signal [] and yield of baryons [].

Probing the SGWB from a string network with LISA

The Laser Interferometer Space Antenna (LISA) [START_REF] Audley | Laser Interferometer Space Antenna[END_REF], approved by the European Space Agency (ESA) in 2017, will be the first GW observatory in space. The final configuration adopted by the collaboration has been fixed to six links, 2.5 million km-length arms, and 4 years nominal duration, possibly extensible to 10 years. LISA will have the ability to search for GWs around the currently unexplored millihertz regime.

To characterize the detectability of a SGWB with a spectrum described by a single power law (fully characterized by an amplitude and slope), Ref. [START_REF] Thrane | Sensitivity Curves for Searches for Gravitational-Wave Backgrounds[END_REF] introduced a very useful concept: the power law sensitivity curve (PLS) of a detector. This is a method that exploits the fact that the sensitivity of a detector increases when integrating a SGWB signal over frequency, in addition to integrating over time. The PLS curve is a spectral representation that graphically quantifies, for a given signal-to-noise ratio, the ability of a detector to measure a SGWB with a power law (PL) spectrum. Searches by current GW experiments (by LIGO/VIRGO and PTAs) on power spectra of the form Ω GW (f ) = Af n have not succeeded in a detection, and hence they only provide upper bounds on the amplitude A for different fixed values of the spectral index n [START_REF] Abbott | Search for the Isotropic Stochastic Background Using Data from Advanced LIGO's Second Observing Run[END_REF][START_REF] Lentati | European Pulsar Timing Array Limits on an Isotropic Stochastic Gravitational-Wave Background[END_REF][START_REF] Arzoumanian | The NANOGrav 11-Year Data Set: Pulsar-Timing Constraints on the Stochastic Gravitational-Wave Background[END_REF].

Recently, the LISA collaboration has presented a new technique for a systematic reconstruction of a SGWB signal without assuming a power-law spectrum [START_REF] Caprini | Reconstructing the Spectral Shape of a Stochastic Gravitational Wave Background with LISA[END_REF]. The idea is to first separate the entire LISA band into smaller frequency bins, and then to reconstruct a given arbitrary signal within each bin, where it can be well-approximated in terms of a power law. The method can reconstruct, in this way, signals with arbitrary spectral shapes, taking into due account instrumental noise at each frequency bin. Such analysis would be particularly appropriate for our case, as the spectral shape of the SGWB from cosmic string loops is not a simple plateau (and hence not a simple power law) for the lowest Gµ values that LISA can probe. Furthermore, the spectrum can also exhibit scale-dependent features within the LISA frequency band, such as whenever there are changes in the number of relativistic degrees of freedom and/or the early Universe equation-of-state.

As this multi-band analysis technique has only very recently become available (∼ 1 -2 weeks before the completion of this draft), in the present paper we will simply continue using as a criterion for detection that the spectrum of the SGWB from the string loops must be equal or above the PLS curve. We will use the LISA PLS as introduced by Ref. [START_REF] Thrane | Sensitivity Curves for Searches for Gravitational-Wave Backgrounds[END_REF], but using the most updated LISA sensitivity curves based on the final configuration of LISA and new knowledge on its noise (see Ref. [260] for all relevant LISA documents up to date, and in particular Ref. [261] for a direct download of the Science Requirements Document). The details of the updated LISA PLS curve used in this work can be found in Ref. [START_REF] Caprini | Reconstructing the Spectral Shape of a Stochastic Gravitational Wave Background with LISA[END_REF]. Whenever we claim detection of a given spectrum of the SGWB from cosmic string loops, if the spectrum is a power-law within the LISA sensitivity band, this can be interpreted as a detection of a SGWB after 3 years of collecting data (which corresponds to 4 years of LISA operation), with a signal-to-noise (S/N) ratio ≥ 10. If the shape is more complicated than a simple power law, a more elaborated analysis following Ref. [START_REF] Caprini | Reconstructing the Spectral Shape of a Stochastic Gravitational Wave Background with LISA[END_REF] is required to assess the S/N for a given detection, see also [START_REF] Karnesis | A Template-Free Approach for Detecting a Gravitational Wave Stochastic Background with LISA[END_REF]. In the present work, we simply quantify the parameter space compatible with a detection, but do not quantify the S/N associated to such detection, neither we reconstruct such parameter space with appropriate statistical techniques. We leave these aspects for future work.

Projected constraints on the string tension

The LISA PLS band is well-positioned to set strong constraints on the string tension, due to how the "bump" in the SGWB shifts as Gµ decreases. This effect can be seen e.g. in Fig. 2.1, where we show how the SGWB curve for a network shifts through the LISA band for varying tension.

This shows us that it is the trailing edge of the SGWB bump which will be the last part of that curve to pass through the LISA sensitivity band. By varying the string tension, it is possible to find the lowest Gµ for which this intersection still takes place. While the exact bound depends on our choice of model and P n , in the regime LISA will probe, all three models predict a string tension bound of O 10 -17 . This is shown in Fig. 2.7, where we chose P n ∝ n -4/3 for purposes of comparison, as this is the chromatic index of pure cusps, which are expected to dominate at high frequencies. Other choices include P n ∝ n -5/3 (for kinks), P n ∝ n -2 (for kink-kink collisions), or an averaged spectrum of loops taken from simulation (cf. Fig. 2.1). However, these changes have at most O(1) effects on the bounds set by LISA.

By comparing Eq. (2.27) to Eq. (2.29), we see that with our choice of α and A r , these two expressions converge when α ΓGµ. As this is the case here, the curves for Model I and Model II in Fig. 2.7 are effectively identical. ΓGµ. We therefore see that we expect that LISA could only constrain string tensions higher than Gµ ≈ 10 -17 .

While we are primarily concerned with setting bounds on string tension, it is worth noting here that for string tensions larger than the lower bounds, particularly those of an order of magnitude or larger, LISA will probe the high-frequency side of the SGWB bump. The particular shape of this region depends on how the degrees of freedom change across the Universe's history. This is additionally important because while the three models all predict roughly equal bounds for the LISA window at this particular tension, Models I and II disagree with Model III at high frequencies. E.g., when Gµ = 10 -17 , the plateau for Models I and II happens at h 2 Ω GW ≈ 6.04 × 10 -14 , while Model III's plateau is at h 2 Ω GW ≈ 9.98 × 10 -9 . Thus, if strings with a tension much greater than O 10 -17 exist, these discrepant regions will pass through the LISA band.

Agnostic approach to loop size and intercommutation probability

In previous sections, we discussed the results obtained from the largest and more recent Nambu-Goto simulations. In this section, we take a different approach: an "agnostic" approach that extends our analysis further by studying the capability of LISA to probe scenarios characterized by different loop sizes α parametrically using Model I. This not only allows us to fully characterize the parameter space available for exploration with LISA, but also to understand LISA's ability to detect string models that deviate from the standard Nambu-Goto scenario. Throughout this section, we will take the normalizing parameter introduced in Section 2.3.1, F = 1 and f r = √ 2.

Loop size

Although the typical shape of the SGWB generated by cosmic string networks is roughly independent of α, the amplitude of the radiation-era plateau and the height, broadness and location of the peak of the spectrum are determined by the size of the loops that are created (as well as by cosmic string tension). In reality, the amplitude of the spectra generally decreases with decreasing α and, therefore, one would expect LISA to be less sensitive in general to scenarios in which loops are created with a smaller size. In fact, one finds, using Eq. (2.2), Eq. (2.4) and Eq. (2.27), that the amplitude of the radiation era plateau is given by

Ω plateau GW h 2 = 128 9 πA r Ω rad h 2 Gµ ( + 1) 3/2 -1 1.02 × 10 -2 Gµ ( + 1) 3/2 -1 , (2.60) 
where = α/(ΓGµ).

To analyse the capability of LISA to probe scenarios with different loop sizes, we consider two different regimes. Let us first consider the case in which the physical length of loops is, at the time of production, significantly larger than the gravitational backreaction scale, with 1 (which we shall refer to as large loops, for simplicity). In this case (particularly in the frequency range probed by LISA) the dominant contribution to the SGWB comes, in general, from loops created in the radiation era. As a result, we have roughly Ω GW ∝ α 1/2 for α ΓGµ and fixed Gµ (as Eq. (2.27) shows). Indeed, we see by using Eq. (2.60), that for 1 the amplitude of the radiation era plateau 15 is given by

Ω plateau GW h 2 1.02 × 10 -2 Gµα Γ . (2.61)
This effect is seen in Fig. 2.8, where the SGWB spectra generated by cosmic string networks with Gµ = 10 -10 and different values of α are plotted. Note however that one does not have a mere overall decrease of the amplitude of the spectrum as α decreases. As this figure illustrates, the broadness of the peak of the spectra also decreases as a result of the decrease of the size of loops, since for smaller α loops survive (and emit gravitational waves) for a shorter period of time. We also note that although the relation in Eq. (2.61) is exact for the radiation-era plateau while α ΓGµ, the decrease in the height of the peak starts to slow down as we decrease α. This happens due to the fact that, as α decreases and the lifetime of loops is shortened, the number of loops created in the radiation era that decay during the matter era also diminishes. Thus, for sufficiently small α, the dominant contribution to the peak of the spectrum are loops produced in the matter era (during which n( , t) is roughly independent of α for α ΓGµ, as Eq. (2.28) shows). As a result, the relative height of the peak of the spectrum in relation to the radiation-era flat region increases as loop size decreases. This also means that, as α is lowered, the effect of the radiation-to-matter transition on the shape and amplitude of the spectra becomes increasingly relevant. As a matter of fact, assuming that cosmic string networks remain in a linear scaling regime after the onset of the radiation-matter transition leads to a significant underestimation of the size and number density of loops produced during the matter era [START_REF] Sousa | Stochastic Gravitational Wave Background Generated by Cosmic String Networks: Velocity-Dependent One-Scale Model versus Scale-Invariant Evolution[END_REF]. On the other hand, as we have seen in Section 2.5.2, for α = 10 -1 the effect of this assumption of linear scaling is only observed at frequencies that are outside of the LISA sensitivity window. As we consider smaller loops the effect of the radiation-tomatter transition becomes relevant for the LISA mission. For this reason, we take this effect into consideration in this agnostic forecast of the LISA projected constraints.

Another effect that we have to take into consideration when analysing the sensitivity of LISA to scenarios with different loop sizes is the change of the location of the peak of the spectrum with Figure 2.8: The stochastic gravitational wave background generated by cosmic string networks with Gµ = 10 -10 and different values of the loop-size parameter α. The shaded area represents the LISA sensitivity window. In these plots, we consider only the fundamental mode of emission and we did not include the change in the effective number of degrees of freedom.

the variation of Gµ. The peak frequency scales approximately as [START_REF] Sanidas | Constraints on Cosmic String Tension Imposed by the Limit on the Stochastic Gravitational Wave Background from the European Pulsar Timing Array[END_REF] 16 

f peak ∼ 1 α 2 + α ΓGµ 10/9 , (2.62) 
which gives f peak ∝ α 1/9 (ΓGµ)

-10/9

(2.63) in the large loop regime. For fixed Gµ, the dependence on α is weak and the peak appears at approximately the same frequency as shown in Fig. 2.8 (wherein one can also see that the slight shift towards higher frequencies predicted in Eq. (2.62) is present). However, the frequency in which the peak appears depends more strongly on cosmic string tension and, as a result, the peak of the spectrum, which has a significantly higher amplitude, is expected to shift towards higher frequencies -and into the LISA window -as Gµ is lowered. This effect may be seen in Fig. 2.9, where we plot the SGWB spectra generated by cosmic string networks with two different values of loop-size parameter α for different values of Gµ.

In the small loop regime -in which the physical length of loops is significantly smaller than the gravitational backreaction scale, with α ΓGµ -the shape of the SGWB spectrum is not affected by varying α or Gµ. As matter of fact, in this regime, loops survive significantly less than a Hubble time and may, therefore, be regarded as decaying effectively immediately (on cosmological timescales) once they are formed [START_REF] Sousa | Stochastic Gravitational Wave Background Generated by Cosmic String Networks: The Small-Loop Regime[END_REF]. Thus, a decrease in the size of loops in this regime merely results in a linear shift of the spectrum towards higher frequencies, without any impact on its overall shape. For the same reason, decreasing the value of cosmic string tension merely causes a decrease Figure 2.9: The stochastic gravitational wave background generated by cosmic string networks with α = 10 -1 (solid lines) and α = 10 -5 (dash-dotted lines) for different values of Gµ. The shaded area represents the LISA sensitivity window. In these plots, we consider only the fundamental mode of emission and we did not include the change in the effective number of degrees of freedom.

of the amplitude of the spectrum: Ω GW ∝ Gµ, for fixed α. In fact, using Eq. (2.60), one finds that for 1 the amplitude of the radiation era plateau is, in this case,

Ω plateau gw h 2 = 64 3 πA r h 2 Ω rad Gµ 1.52 × 10 -2 Gµ . (2.64) 
This does not depend on the size of loops α and on Γ and it may, therefore, be regarded as the "minimal" amplitude of the radiation era plateau for fixed Gµ. This is illustrated in Fig. 2.10, where the spectra generated by small cosmic string loops is plotted for different values of α and Gµ.

The combination of all these different effects makes it non-trivial to extend the forecasts computed for a single value of α to significantly different loop sizes. For instance, as Fig. 2.9 shows, LISA may probe cosmic string networks with α = 10 -1 up to tensions just above Gµ = 10 -18 . In the case of networks with α = 10 -5 , however, the maximum tension that LISA will be able to detect is below Gµ = 10 -16 , which is significantly lower than one would naively expect from Eq. (2.61). Moreover, Fig. 2.10 demonstrates that there is a range of α in the small loop regime for which the peak of the spectrum -which is quite prominent in this regime -coincides with the LISA window (for some values of Gµ) and, therefore, such scenarios may be more strongly constrained with LISA than other scenarios in which α is larger. To take these effects into account, we have performed a numerical computation of the (α, Gµ) parameter space available for exploration with LISA. The results are plotted in Fig. 2.11, and they show us the capability of LISA to probe different cosmic string scenarios characterized by the production of loops with different sizes. Here, we follow the approach introduced in Ref. [START_REF] Sanidas | Constraints on Cosmic String Tension Imposed by the Limit on the Stochastic Gravitational Wave Background from the European Pulsar Timing Array[END_REF] and present constraints for n * = 1 (dashed line) and n * = 10 5 (dash-dotted line), where n * represents the maximum mode of emission included in the simple gravitational wave power spectrum from loops with q = 4/3. These curves represent the lowest possible values of the string tension that LISA will be able to probe for each value of α, in Figure 2.10: The stochastic gravitational wave background generated by cosmic string networks with Gµ = 10 -10 (solid lines) and Gµ = 10 -12 (dash-dotted lines) for different values of the loop-size parameter α in the small-loop regime. The shaded area represents the LISA sensitivity window. In these plots, we consider only the fundamental mode of emission and we did not include the change in the effective number of degrees of freedom. these two scenarios.

To analyse these results, let us start by considering the small-loop regime. LISA cannot probe the SGWB generated by cosmic string loops to arbitrarily small α. This is a mere consequence of the fact that LISA shall only probe a finite frequency window and of the fact that, as we have seen, lowering α in the small-loop regime moves the spectrum towards higher frequencies. As a matter of fact, the minimum frequency emitted by a cosmic string network is that of loops created at the present time, f min ∼ 2/(αt 0 ), and therefore the minimum loop-size parameter that can be probed with LISA is given by α min = 6.8 × 10 -18 , (2.65) independently of Gµ. As a result, scenarios in which the networks produce tiny loops will be beyond the reach of LISA. 17 In any case, this shows us that, in principle, LISA shall be able to probe cosmic string scenarios spanning about 17 orders of magnitude in loop size. 18 In the small-loop regime, the amplitude of the peak of the spectrum -located at f peak = 2 × 10 -17 /α (Hz) -is given by [START_REF] Sousa | Stochastic Gravitational Wave Background Generated by Cosmic String Networks: The Small-Loop Regime[END_REF] 19 

Ω peak GW h 2 60Ω plateau GW h 2 9.1 × 10 -1 Gµ . (2.66)
One then finds that LISA will not be able to probe small-loop models for Gµ < 1.3 × 10 -13 . This is, thus, the most stringent bound that LISA may put on the cosmic string tension in scenarios in Figure 2.11: Projected constraints on Gµ of the LISA mission for cosmic string scenarios characterized by different loop-size parameter α for n * = 1 (dashed line) and n * = 10 5 , with q = 4/3 (dash-dotted line). The shaded area corresponds to the region of the (α, Gµ) parameter space that will be fully available for exploration with LISA. The dotted line corresponds to scenarios for which α = ΓGµ, so that the region above this line corresponds to cosmic string models in which loops are small, while the region bellow corresponds to the large loop regime.

which loops are created with small size. This value corresponds to the case in which α ∼ 10 -15 and n * = 1, as Fig. 2.11 shows, for which the peak of the spectrum coincides with the maximum sensitivity of the LISA window (cf. Fig. 2.10).

In the large-loop regime, as we have seen, the amplitude of the spectra is highly dependent on the size of loops and, for this reason, so is the strength of the constraints that LISA may put on cosmic string tension. The amplitude of the radiation era plateau of spectrum for small loops in Eq. (2.64) may be regarded as the "minimal" amplitude of this plateau. Thus, one may use it to derive the value of cosmic string tension above which all cosmic string scenarios in which loop production is significant (with α > 10 -16 ) are excluded:

Gµ < 8.0 × 10 -12 .
(2.67)

This provides us with the safest (yet most conservative) model-independent LISA bound on cosmic string tension, which corresponds to the value of the plateau observed at the mid-α range in Fig. 2.11. Note however that LISA shall be able to establish significantly more stringent constraints for the largest possible α. Indeed, LISA may go seven orders of magnitude beyond the bound in Eq. (2.67) for α = 10 -1 :

Gµ(α = 10 -1 ) < 3.4 × 10 -18 .
(2.68)

As we have seen in Section 2.6.1, this corresponds approximately to the case of Nambu-Goto strings, apart from a factor of ∼ 0.1 (since in that case only about 10% of the energy lost by the network goes into gravitational radiation). Apart from this factor, these results are in agreement with those presented in Section 2.6.1.

Intercommutation probability

In this paper, we have assumed that the intercommutation probability P is equal to 1. In effect, this amounts to stating that when two strings collide, they exchange partners every time. Indeed, in the Abelian-Higgs model (in the BPS and "type II" regime), the collision of two straight strings with velocities ±v and relative orientation given by an angle θ essentially always (that is, in nearly all of the (θ, v) parameter space) leads to the strings exchanging partners during the collision (see Ref. [START_REF] Shellard | Cosmic String Interactions[END_REF][START_REF] Verbiest | High Speed Collision and Reconnection of Abelian Higgs Strings in the Deep Type-II Regime[END_REF]). Setting P = 1 is then equivalent to this statement. For other field theory strings, such as Abelian-Higgs strings in the type I regime, the collision may lead to other outcomes, such as the formation of a junction [START_REF] Salmi | Kinematic Constraints on Formation of Bound States of Cosmic Strings: Field Theoretical Approach[END_REF][START_REF] Bevis | Evolution and Stability of Cosmic String Loops with Y-Junctions[END_REF]. We do not consider these more complicated cases here.

Recent development in String Theory suggest that fundamental strings (or F-strings) and 1dimensional Dirichlet branes (or D-strings) may be stretched to macroscopic sizes and play the cosmological role of cosmic superstrings. The copious production of these cosmic superstrings is, in fact, predicted to occur at the end of several brane-inflationary scenarios (see, e.g., Refs. [START_REF] Dvali | D-Brane Inflation[END_REF][START_REF] Nicholas | The Production, Spectrum and Evolution of Cosmic Strings in Brane Inflation[END_REF][START_REF] Copeland | Cosmic f and d Strings[END_REF]).

Cosmic superstrings may have an intercommutation probability P significantly smaller than unity, as a result of their quantum nature: in fact it has been shown [START_REF] Mark | Collisions of Cosmic F and D-Strings[END_REF] that 10 -3 P 1 in collisions between F-strings and 10 -1 P 1 for D-string collisions. When a FF-or DD-string collision occurs, the strings may then -unlike ordinary strings -pass through each other without intercommutation. For this reason, cosmic superstring networks are expected to lose energy less efficiently. Their energy density, and consequently the amplitude of the SGWB they generate, may therefore be expected to be larger than that of ordinary strings. Hence, the constraints derived on Gµ in this paper are conservative: with P < 1, the bounds on Gµ will be tighter (see, e.g., Ref. [START_REF] Aasi | Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors[END_REF] for a discussion of this effect at LIGO frequencies). In general, one expects the loopchopping parameter of these networks to be such that

c c (P ) = c c (1)P γ , (2.69) 
where c c (1) = c c = 0.23 is the loop-chopping parameter of ordinary strings (which have P = 1). Although one may naively expect, within the one-scale framework, γ = 1 [START_REF] Nicholas | The Production, Spectrum and Evolution of Cosmic Strings in Brane Inflation[END_REF], numerical simulations indicate that this effect is less dramatic due to an accumulation of small-scale structure on cosmic strings with reduced intercommutation probability. It has been observed that γ = 1/2 in Nambu-Goto simulations in Minkowski space [START_REF] Sakellariadou | A Note on the Evolution of Cosmic String/Superstring Networks[END_REF] and γ = 1/3 in both radiation-and matter-era simulations [START_REF] Avgoustidis | Effect of Reconnection Probability on Cosmic (Super)String Network Density[END_REF]. Since the exact value of γ is still a matter for debate, here we restrict ourselves to a (mostly) qualitative discussion of the effects of P .

Weakly interacting networks, with c c 1, scale in the radiation era according to ξ = √ 2c c and v2 ≈ 1/2 [START_REF] Avelino | Scaling Laws for Weakly Interacting Cosmic (Super)String and p-Brane Networks[END_REF]. Therefore, one may, in general, expect the amplitude of the radiation era plateau of the SGWB to scale as [START_REF] Sousa | Probing Cosmic Superstrings with Gravitational Waves[END_REF] Ω

plateau GW ∝ c -2 c ∝ P -2γ . (2.70)
Note however that, in this case, the length of the loops created is not known. There is some evidence that the reduction of the intercommuting probability is more efficient in suppressing the production of large loops than of small loops [START_REF] Avgoustidis | Effect of Reconnection Probability on Cosmic (Super)String Network Density[END_REF], which seems to indicate that smaller α (∼ ΓGµ) may be favoured for these networks. However, the precise number density of loops has not been determined using numerical simulations yet. Nevertheless, one may obtain, using Eqs. (2.67,2.70), a conservative α-independent constraint on the cosmic string tension of networks with P 1. This bound -corresponding to the lowest Gµ for which the SGWB is within the reach of LISA for all values of α -is presented in Table 2.1 for P = 10 -1 , 10 -2 , 10 -3 .

Conservative

Stringent P γ = 1/2 γ = 1/3 γ = 1/2 γ = 1/3 10 -1 8.0 × 10 -13 1.7 × 10 -12 3.4 × 10 -19 5.6 × 10 -19
10 -2 8.0 × 10 -14 3.7 × 10 -13 2.9 × 10 -20 1.2 × 10 -19 10 -3 8.0 × 10 -15 8.0 × 10 -14 8.5 × 10 -21 2.9 × 10 -20 Table 2.1: Projected constraints of the LISA mission for cosmic string scenarios with reduced intercommutation probability P . Here, "Conservative" refer to the safe (α-independent) bounds obtained using the minimal amplitude of the radiation-era plateau, while the constraints labeled as "Stringent" correspond to those of scenarios with the largest possible α.

Naturally, as with ordinary strings, LISA will impose tighter constraints for scenarios in which α is large. The most stringent constraint on Gµ will necessarily be those of scenarios characterized by the largest possible α, with α max ∼ 0.3P γ (corresponding to the characteristic length of the network which may, in this case, be significantly smaller than the horizon). These constraints are also recorded in Table 2.1 for the same values of P . These two constraints are then indicative of the ability of LISA to detect cosmic string scenarios with a reduced intercommutation probability.

However, we note that there are relevant aspects of cosmic superstring dynamics that were not taken into account when deriving these constraints. In particular, when superstrings of different types collide, they are expected to bind together to create a third type of string, which has a higher tension than its two constituents. This is expected to lead to networks with junctions and a hierarchy of tensions [START_REF] Copeland | Cosmic f and d Strings[END_REF]. The creation of junctions is expected to have an impact on the large scale dynamics of cosmic string networks [START_REF] Copeland | Collisions of Strings with Y Junctions[END_REF][START_REF] Copeland | Constraints on String Networks with Junctions[END_REF][START_REF] Copeland | On the Collision of Cosmic Superstrings[END_REF][START_REF] Avgoustidis | Velocity-Dependent Models for Non-Abelian/Entangled String Networks[END_REF][START_REF] Rajantie | Numerical Experiments with p Fand q d-Strings: The Formation of (p,q) Bound States[END_REF][START_REF] Sakellariadou | Dynamics of F/D Networks: The Role of Bound States[END_REF][START_REF] Avgoustidis | The Effect of Kinematic Constraints on Multi-Tension String Network Evolution[END_REF][START_REF] Avgoustidis | Zipping and Unzipping in String Networks: Dynamics of y-Junctions[END_REF] and therefore to affect the shape and amplitude of the SGWB generated by cosmic superstrings [START_REF] Pourtsidou | Scaling Configurations of Cosmic Superstring Networks and Their Cosmological Implications[END_REF][START_REF] Sousa | Probing Cosmic Superstrings with Gravitational Waves[END_REF]. Moreover, there are several other important aspects regarding the gravitational wave emission by cosmic superstrings that need to be clarified -most notably the number and strength of the cusps [START_REF] Elghozi | Cusps and Pseudocusps in Strings with Y-Junctions[END_REF] as well as the possible coupling of superstrings to other fields -before a detailed study of the parameter space available to LISA can be performed.

Gravitational wave bispectrum from long strings

The GW signal due to the gravitational decay of loops that we have analysed in this paper cannot be resolved beyond its stochastic nature, and it is expected to be Gaussian. 20 The irreducible emission of GWs from a defect network (described in Section 2.3.4) is however expected to be highly non-Gaussian. This is simply due to the fact that the source of the GWs is bilinear in the amplitude (modulo derivatives) of the fields of which the cosmic strings are made. This implies that any correlator of an odd number of tensor perturbations will be characterized by the correlation of an even product of fields, which is non-vanishing even if the fields were Gaussian. We therefore expect that any non-Gaussianity in the continuous stochastic background sourced by a cosmic string network is due to the irreducible GW emission, even if this signal is sub-dominant in terms of amplitude of power spectra.

The capability of LISA to detect 3-point correlations of SGWB has been recently analysed in detail in Ref. [START_REF] Bartolo | Probing Non-Gaussian Stochastic Gravitational Wave Backgrounds with LISA[END_REF]. At present, the 3-point GW function of this background can be estimated analytically only in a simplified case, namely in the large-N limit of a global phase transition due to the spontaneous symmetry breaking of O(N ) into O(N -1). The GW background due to the dynamics of such global defects has been estimated in the limit N 1 (see Section 2.4.4 and in particular Eq. (2.53)). The 3-point function (in the equilateral configuration) has been presented in Ref. [START_REF] Adshead | 3-Pt Statistics of Cosmological Stochastic Gravitational Waves[END_REF]. Order of magnitude calculations in the large-N limit leads to a GW bispectrum peaked in the equilateral configuration as [START_REF] Adshead | 3-Pt Statistics of Cosmological Stochastic Gravitational Waves[END_REF] 

k 6 B(k, k, k) ∼ C NL (k 3/2 P h (k)) 2 with C NL ∼ 3.6 √ N , (2.71) 
where P h is the total power spectrum (summing over the two polarizations) and N 1 is the number of components of the symmetry-breaking field. This is of course a very rough estimate for global strings, for which N = 2, and we certainly do not know how this relation is modified in the case of Abelian-Higgs strings. However, Eq. (2.71) suggests very clearly that, in general, that we should expect a large departure from Gaussianity for the irreducible GW background from any defect network.

Let us note that even though Ref. [START_REF] Bartolo | Probing Non-Gaussian Stochastic Gravitational Wave Backgrounds with LISA[END_REF] has provided a formalism to characterize a potential detection by LISA of the bispectrum of a SGWB, Refs. [START_REF] Bartolo | The Primordial Black Hole Dark Matter -LISA Serendipity[END_REF][START_REF] Bartolo | Testing Primordial Black Holes as Dark Matter through LISA[END_REF] have recently pointed out that propagation effects of GWs across a perturbed universe like ours -from the generation point to the LISA detector -will suppress the bispectrum to unobservable levels. This suppression is expected to be present for any non-Gaussian SGWB, as long as the signal consists of GWs that have travelled across cosmological scales. If this claim is finally sustained, it will essentially imply that independently of the level of (intrinsic) non-Gaussianity of a given SGWB, the 3-point function of GWs will never be measured by direct detection detectors21 .

Discussion and conclusion

In this paper we have analysed the ability of LISA to detect and characterize a SGWB produced by a network of cosmic strings. Our key finding is that LISA will be able to probe cosmic string with tensions Gµ O(10 -17 ), under a "standard" set of assumptions: namely, that the string dynamics are accurately described by the Nambu-Goto action, that colliding strings always intercommute, and that the average loop size at formation (in units of cosmic time t) is α ≈ 0.1. This presents an improvement of ∼ 6 orders of magnitude over current constraints from pulsar timing arrays (PTA), and potentially in ∼ 3 orders of magnitude over estimated future constraints from next generation of PTA experiments 22 . We have also explored scenarios in which the latter two assumptions are relaxed. Decreasing the loop size at formation α generically leads to weaker constraints on the string tension. Decreasing the intercommutation probability P leads to a range of possible constraints, due to the uncertainty about α in these scenarios; however, for larger values of α, networks with a small intercommutation probability are very strongly constrained, with LISA being able to reach tensions as small as Gµ ≈ 10 -20 .

In addition, we have shown the difference in shape of the GW spectra accessible to LISA, between model II and model III. In particular, we observe that the high-frequency plateau for model II is visible in the LISA band, whereas this is never the case for model III. Therefore, LISA could be actually used to discriminate between these two models 23 . Furthermore, we have discussed how a detection of the string SGWB (for a given model) could be used to probe fundamental physics, such as changes in the number of relativistic degrees of freedom, or the inclusion of transient epochs prior of radiation domination, characterized by a non-standard equation of state. Such studies are of particular interest in LISA, because its detection window is well-positioned to measure the segment of the string SGWB which contains information about these processes (in the event that Gµ is at least an order of magnitude above the lower bound). Thus, a detection of cosmic strings is of use and interest to the cosmology and particle physics communities at large.

Note that in our assessment of detection we have assumed an ideal case in which the stream data to be measured by LISA is perfectly cleaned from all resolvable sources, glitches, and any impurities in general. In particular, we assume that the presence of the foreground of galactic binaries can be subtracted exploiting its yearly modulation [START_REF] Adams | Detecting a Stochastic Gravitational Wave Background in the Presence of a Galactic Foreground and Instrument Noise[END_REF]. We consider the only signal on top of LISA's intrinsic noise to be that of the homogeneous and isotropic stochastic GW background from the sub-horizon loops of a string network. Future work will quantify the ability of LISA to reconstruct the spectral shape of the SGWB for the lowest tensions that can be probed, as well as possible spectral features due to changes in the number of degrees of freedom. For this we plan to use the recent technique for systematic reconstruction SGWB signals without assuming any specific spectral template [START_REF] Caprini | Reconstructing the Spectral Shape of a Stochastic Gravitational Wave Background with LISA[END_REF].

Finally, we remark that we have not discussed the GW signal from Abelian-Higgs simulations, nor considered how the dynamics of cosmic superstring networks would alter LISA's detection prospects. Most importantly, no simulation to date has included the real effect of back-reaction on the string network 24 (i.e., gravitational self-interaction), and therefore the best that can be done is to model back-reaction with some ansatz. Our results are therefore predicated on such ansatz representing good approximations to how true back-reaction would affect the SGWB from a string network.

2.A Nambu-Goto dynamics

The dynamics of relativistic zero-thickness strings can be obtained from the Nambu-Goto action (see for example [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF] and references therein),

S NG = -µ d 2 ξ √ -γ, (2.72) 
where µ parametrizes the tension of the string, and the integral describes the area of the string worldsheet, whose induced metric is given by γ.

The equations of motion from this action can be solved in flat space in the gauge where the most generic solution can be shown to be of the form

X µ (σ, t) = 1 2 X µ -(σ -) + X µ + (σ + ) , (2.73) 
where σ and t are spacelike and timelike coordinates, respectively, on the worldsheet, and we have introduced σ ± = t ± σ. Furthermore we fix the gauge to X 0 ± = σ ± , and the spatial part of these functions are normalized so that |X ± | = 1.

2.A.1 Loop dynamics

Using the solutions found earlier, one can describe the evolution of a loop in its rest frame with the periodic functions X ± (σ ± ) = X ± (σ ± + ). This implies that

0 X ± (σ ± ) dσ ± = 0 , (2.74)
where is the length of the loop. This, together with the unit normalization, means that the functions X ± (σ ± ) would trace out a loop on the Kibble-Turok sphere whose centre of mass is at the centre of the sphere. These trajectories will therefore generically cross at points where

X -(σ c -) = X + (σ c + ) . (2.75)
These special points in the string evolution are called cusps, and it is easy to check that they represent instants during the string's periodic motion when the string doubles back onto itself, dX/dσ = 0, and therefore moves at the speed of light, | dX/dt | = 1. On the other hand, string intersections can lead to intercommutations, which lead to kinks on both the previously-existing string and the newly-formed loop. Kinks are discontinuities of either of X ± (σ ± ).

The consequences for GW emission of these two type of features are discussed in 2.A.2.

2.A.2 Gravitational wave power from cusps and kinks

Solving the linearized Einstein equation for a single Nambu-Goto cosmic string loop, one can write the GW strain in the local wave zone as a mode sum [START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF] hµν

(t, x) ≈ 4Gµ r n exp - 4πin l (t -r) I (µ n,+ I ν) n,-, (2.76) 
where r ≡ |x| is the distance to the source, and is the invariant loop length. The motion of the loop worldsheet is parametrized by the functions X µ ± (σ ± ) and contributes to the GW signal through the integrals

I µ n,± ≡ 1 0 dσ ± exp - 2πin X µ ± k µ ∂ ± X µ ± , (2.77) 
where k µ = (1, x/r) is a null wavevector and ∂ ± = ∂/∂σ ± . 25 The n = ±1 frequencies correspond to the fundamental mode of the loop (set by the period of loop oscillation T = /2),

f 1 ≈ d h × 10 -18 Hz, (2.78) 
which for many loops is far below the LISA frequency window of 10 -4 -10 -2 Hz (unless there were loops of size many orders of magnitude smaller than the present-day Hubble length d H ). We are 25 In the calculation of the GW loop power spectrum, we define the analogous function in a coordinate system whose z axis is in the vb Ω direction. In this case we can write

I ± n = 1 0 dσ ± exp -2πin (σ ± -Xz(σ ± )) X ± (σ ± ).
therefore typically concerned with much higher frequencies f f 1 , i.e. very high-order harmonics of the loop, |n| 1. In this limit, the integrals in Eq. (2.77) are generically exponentially suppressed for large n, and there is little contribution to the GW signal at high frequencies.

There are two important exceptions where the integrals in Eq. (2.77) are not exponentially suppressed, and have a much weaker power-law decay with frequency: (i) when there is a saddle point in the phase, k µ ∂ ± X µ ± = 0; (ii) when the function ∂ ± X µ ± is discontinuous. In order to obtain a GW strain that is not exponentially suppressed, one or the other of these conditions must hold for both sets of integrals I µ n,+ and I µ n,-. This gives rise to three possibilities [START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF][START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF]:

1. Both sets of integrals have a saddle point in the phase, i.e. there are points X µ * ± such that k µ ∂ ± X µ * ± = 0. These points are then necessarily the same, X µ * + = X µ * -. Physically, we interpret this as an event where part of the loop moves at the speed of light, forming a sharp, transient feature; this is what we referred to as a cusp earlier. The cusp emits a GW burst, which is beamed along the spatial direction corresponding to X µ * ± , with an opening angle

θ b = [1/(g 2 f )] 1/3 ≈ [2/( √ 3n)] 1/3 .
2. One of the sets of integrals has a saddle point, while the other has a discontinuity in the integrand, which is interpreted as a discontinuity in the shape of the loop; this is what we called a kink before. In this case, the power-law scaling for hµν occurs not just centred on a single direction (as for a cusp), but around a one-dimensional, "fan-like" set of directions.

We interpret this as the kink propagating around the loop, beaming GWs as it does so, with the beam opening angle being given again by

θ b = [1/(g 2 f )] 1/3 ≈ [2/( √ 3n)] 1/3 .
3. Both sets of integrals have a discontinuity at the same point on the worldsheet. This case corresponds to two kinks, one left-moving and one right-moving, meeting each other. We call this a kink-kink collision. In this case, there is no saddle point condition to determine a preferred direction, so the GW emission is isotropic rather than beamed.

In each of these three cases, one can calculate the asymptotic |n| 1, f f 1 GW waveform, and take the Fourier transform of this to get the strain spectrum h(f ). This gives

hc (f, r) = g c 1 Gµ 2/3 rf 4/3 , hk (f, r) = g k 1 Gµ 1/3 rf 5/3 , hkk (f, r) = g kk 1 Gµ rf 2 , (2.79) 
for the cusp, kink, and kink-kink collision cases, respectively, taking care to account for the beaming angle in the cusp and kink cases.

Using these expressions, one can obtain the total power emitted for these events by performing the following integral:

P = 1 T ∞ 0 df πf 2 2G S 2 d 2 r r 2 h2 i (f, r) . (2.80)
For example, in the case of cusps, one can estimate the power to be

P = 3π 2 g 2 1 2 1/3 g 2/3 2 Gµ 2 , (2.81) 
so we can say that a typical loop with N c cusps will have a power of order of

Γ = N c 3π 2 g 2 1 2 1/3 g 2/3 2 . (2.82)
This expression allows us to relate the parameters of the cusp waveform g 1 and g 2 to the total power emitted from this loop when the loop is assumed to emit only in the form of cusps. This relation is important in order to make a consistent calculation of the total SGWB and compare Methods I and II.

Chapter 3

Cosmic string loop production functions

This chapter is a reproduction of Ref. [START_REF] Auclair | Cosmic String Loop Production Functions[END_REF] in collaboration with Christophe Ringeval, Mairi Sakellariadou and Danièle Steer. Our aim in this paper was to study the loop production function (LPF) of Polchinski and collaborators Refs. [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Polchinski | Cosmic String Loops and Gravitational Radiation[END_REF][START_REF] Polchinski | Cosmic String Structure at the Gravitational Radiation Scale[END_REF]. Relative to the delta-function LPF which is the simplest to study analytically, this LPF takes into account the small-scale structure on strings and gravitational radiation, effects which cannot be considered in numerical simulations. This LPF has a power-law shape allowing loops to be formed at different scales. The resulting loop distribution, obtained by solving the Boltzmann equation, had already been studied in Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] but in a particular regime of parameter space which we wanted here to extend in order to compare it with numerical results of other groups for large loops. I contributed to all the sections of this paper.

Abstract

Numerical simulations of Nambu-Goto cosmic strings in an expanding universe show that the loop distribution relaxes to a universal configuration, the so-called scaling regime, which is of power law shape on large scales. Precise estimations of the power law exponent are, however, still matter of debate while numerical simulations do not incorporate all the radiation and backreaction effects expected to affect the network dynamics at small scales. By using a Boltzmann approach, we show that the steepness of the loop production function with respect to loops size is associated with drastic changes in the cosmological loop distribution. For a scale factor varying as a(t) ∝ t ν , we find that sub-critical loop production functions, having a Polchinski-Rocha exponent χ < (3ν -1)/2, yield scaling loop distributions which are mostly insensitive to infrared (IR) and ultra-violet (UV) assumptions about the cosmic string network. For those, cosmological predictions are expected to be relatively robust, in accordance with previous results. On the contrary, critical and super-critical loop production functions, having χ ≥ (3ν -1)/2, are shown to be IR-physics dependent and this generically prevents the loop distribution to relax towards scaling. In the latter situation, we discuss the additional regularizations needed for convergence and show that, although a scaling regime can still be reached, the shape of the cosmological loop distribution is modified compared to the naive expectation. Finally, we discuss the implications of our findings.

Introduction

The advent of gravitational wave astronomy provides an unprecedented opportunity to search for topological defects, and in particular cosmic strings [START_REF] Kirzhnits | Macroscopic Consequences of the Weinberg Model[END_REF][START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF][START_REF] Witten | Cosmic Superstrings[END_REF][START_REF] Dvali | Brane Inflation[END_REF]. In an expanding and decelerating universe, a cosmic string network relaxes towards an attractor configuration exhibiting universal properties -known as a scaling solution -and it subsequently remains self-similar with the Hubble radius [START_REF] Hindmarsh | Cosmic Strings[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF][START_REF] Durrer | Cosmic Structure Formation with Topological Defects[END_REF][START_REF] Polchinski | Introduction to Cosmic F-and D-Strings[END_REF][START_REF] Davis | Brane Inflation and Defect Formation[END_REF][START_REF] Copeland | Cosmic Strings and Superstrings[END_REF][START_REF] Sakellariadou | Cosmic Strings and Cosmic Superstrings[END_REF][START_REF] Ringeval | Cosmic Strings and Their Induced Non-Gaussianities in the Cosmic Microwave Background[END_REF][START_REF] Vachaspati | Cosmic Strings[END_REF]. Hence, if cosmic strings were formed in phase transitions early in the history of the universe, scaling implies that they should be present all over the sky with a surface density growing with redshift z. Strings induce anisotropies in the Cosmic Microwave Background (CMB) and they have been searched for in the Planck data [START_REF] Ade | Planck 2013 Results. XXV. Searches for Cosmic Strings and Other Topological Defects[END_REF][START_REF] Lazanu | Constraints on the Nambu-Goto Cosmic String Contribution to the CMB Power Spectrum in Light of New Temperature and Polarisation Data[END_REF][START_REF] Lizarraga | New CMB Constraints for Abelian Higgs Cosmic Strings[END_REF][START_REF] Mcewen | Wavelet-Bayesian Inference of Cosmic Strings Embedded in the Cosmic Microwave Background[END_REF][START_REF] Vafaei Sadr | Multi-Scale Pipeline for the Search of String-Induced CMB Anisotropies[END_REF][START_REF] Ciuca | Inferring Cosmic String Tension through the Neural Network Prediction of String Locations in CMB Maps[END_REF]. The current CMB constraints give an upper bound for the string energy per unit length µ of Gµ < O 10 -7 , where G is the Newton's constant. However, CMB photons come from the highest observable redshift set by their last scattering surface, namely z lss 1088. For gravitons, z is only bounded by our understanding of the Friedmann-Lemaître model, or more probably by the redshift at which cosmic inflation ended. For this reason, the stochastic gravitational wave background (SGWB) is an observable particularly sensitive to cosmic strings and could provide the opportunity for a first detection.

Current constraints on Gµ from the SGWB are already much stronger than those from the CMB, of order Gµ < O 10 -11 [START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF][START_REF] Jose | New Limits on Cosmic Strings from Gravitational Wave Observation[END_REF][START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF] (the actual value depends on some yet unknown microphysical parameters). However, as opposed to the CMB constraints, bounds from GW crucially depend on the loop distribution. Indeed, through their production by the string network, oscillating closed cosmic string loops constitute the main source of the SGWB. Although loop production is observed and measured in Nambu-Goto cosmic string simulations [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF][START_REF] Vanchurin | Scaling of Cosmic String Loops[END_REF][START_REF] Martins | Fractal Properties and Small-Scale Structure of Cosmic String Networks[END_REF], it is still a matter of debate if it plays the same role in a field theoretical model [START_REF] Vincent | Numerical Simulations of String Networks in the Abelian Higgs Model[END_REF][START_REF] Moore | Evolution of Abelian-Higgs String Networks[END_REF][START_REF] Hindmarsh | Abelian Higgs Cosmic Strings: Small Scale Structure and Loops[END_REF][START_REF] Hindmarsh | Scaling from Gauge and Scalar Radiation in Abelian Higgs String Networks[END_REF]. Clearly the detailed shape of the scaling loop distribution function is important to determine the properties of the SGWB at different frequencies. Nambu-Goto simulations from two independent groups have shown that, on large scales (see discussion below), where these simulations can be trusted, it is a power-law, namely

t 4 n(γ, t) ∝ γ p . (3.1)
Here we have defined γ( , t

) ≡ t , n(γ, t) ≡ dn d , (3.2) 
where n( , t) is the number density distribution of loops of size at cosmic time t, and the timeindependence of the combination t 4 n is precisely the scaling regime. The simulations of Ref. [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF] give p = -2.60 -0.21 +0.15 rad , p = -2.41 -0.08 +0.07 mat .

Analysis of the simulations of Refs. [START_REF] Jose | The Number of Cosmic String Loops[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF] favours slightly different values, namely p = -5/2 in the radiation and p = -2 in the matter era. It is, however, important to stress that the approach taken in the numerical simulations of Refs. [START_REF] Jose | The Number of Cosmic String Loops[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF] is quite different to that of Ref. [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF]. In the latter reference, the shape of the scaling loop distribution t 4 n(γ) is estimated from simulations whereas in the former references this is the shape of the scaling loop production function which is inferred from numerical results. Let us also notice that, due to the huge disparity of scales in the problem (ranging from, for instance, the distance between kinks formed by string intercommutations, to the horizon size), numerical simulations of cosmic string networks cannot incorporate all physical effects. In Nambu-Goto simulations, in particular, effects from GW emission and backreaction onto the string dynamics are ignored1 . This is why Eq. (3.1) can only be trusted for loops large enough that these effects remain negligible. GW emission means that loops loose energy and hence become smaller, with an average emitted GW power P gw = ΓGµ2 where Γ is a numerical constant estimated to be Γ = O(50) [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Allen | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF]. Hence, loops decoupled from the Hubble flow shrink at an average rate given by γ d ≡ ΓGµ.

(3.4)

One therefore expects Eq. (3.1) to hold for loops of length d = γ d t (numeric-wise, this is a quite small number already for Gµ < 10 -7 ). Emitted GWs will also backreact onto the string thereby affecting its dynamics. The consequences of this process for the network and the loops are still unknown and being studied [START_REF] Wachter | Gravitational Backreaction on Piecewise Linear Cosmic String Loops[END_REF]. However, one expects that loop production should be cut-off below some length scale c ≡ γ c t, with presumably γ c ≤ γ d , which we discuss below.

As was realized very early on. [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF], in practise, to include these physical effects one needs to combine results of simulations with analytical modelling. A powerful framework for this is to use a Boltzmann approach to estimate the loop distribution on cosmological time and length scales [START_REF] Copeland | The Evolution of a Network of Cosmic String Loops[END_REF][START_REF] Rocha | Scaling Solution for Small Cosmic String Loops[END_REF][START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF][START_REF] Vanchurin | Towards a Kinetic Theory of Strings[END_REF][START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF][START_REF] Vanchurin | Kinetic Theory and Hydrodynamics of Cosmic Strings[END_REF][START_REF] Schubring | Transport Equation for Nambu-Goto Strings[END_REF]. At this stage it is remarkable to notice that radically different assumptions about the loop production function can lead to similar powers p on large scales (where the results should be fitted against simulations). Indeed, on one hand, motivated by the one-scale model of cosmic string evolution [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF], an often studied case is one in which [START_REF] Caldwell | Cosmological Constraints on Cosmic String Gravitational Radiation[END_REF][START_REF] Damour | Gravitational Wave Bursts from Cosmic Strings[END_REF][START_REF] Depies | Stochastic Gravitational Wave Background from Light Cosmic Strings[END_REF][START_REF] Regimbau | The Stochastic Background from Cosmic (Super)Strings: Popcorn and (Gaussian) Continuous Regimes[END_REF][START_REF] Binetruy | Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources[END_REF][START_REF] Kuroyanagi | Forecast Constraints on Cosmic String Parameters from Gravitational Wave Direct Detection Experiments[END_REF][START_REF] Aasi | Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors[END_REF][START_REF] Henrot-Versille | Improved Constraint on the Primordial Gravitational-Wave Density Using Recent Cosmological Data and Its Impact on Cosmic String Models[END_REF][START_REF] Sousa | Probing Cosmic Superstrings with Gravitational Waves[END_REF]]

P(γ, t) ∝ δ D (γ -α), (3.5) 
namely all stable loops are formed with size = αt at time t (for constant α). It is then straightforward to extract the loop density distribution [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF] (see Section 3.2.2) and show that in the radiation era p = -5/2 while in the matter era p = -2. On the other hand, all cosmic string simulations show that a lot of small-scale structure, namely kinks generated from string intercommutation, build up on the strings (see Refs. [START_REF] Bennett | Cosmic-String Evolution[END_REF][START_REF] Bennett | High Resolution Simulations of Cosmic String Evolution. 1. Network Evolution[END_REF][START_REF] Allen | Cosmic-String Evolution: A Numerical Simulation[END_REF][START_REF] Albrecht | Evolution of Cosmic String Networks[END_REF][START_REF] Sakellariadou | Cosmic-String Evolution in Flat Space-Time[END_REF][START_REF] Copeland | Kinks and Small-Scale Structure on Cosmic Strings[END_REF][START_REF] Austin | Evolution of Cosmic String Configurations[END_REF] for a discussion of small-scale structure on strings). As a result, one expects loops to be formed on a wide range of scales at any given time.

The most recent analytical work along these lines is by Polchinski-Rocha and collaborators [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Dubath | Cosmic String Loops, Large and Small[END_REF][START_REF] Rocha | Scaling Solution for Small Cosmic String Loops[END_REF], who proposed a model of loop production from long strings. It is given by

t 5 P(γ > γ c , t) ∝ γ 2χ-3 , (3.6) 
where the parameter χ will be referred to as the Polchinski-Rocha (PR) exponent 2 . This is clearly very different from a Dirac distribution as a loop production function. In Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF], the authors have included backreaction effects to the PR model and extended Eq. (3.6) to the domains γ < γ c , but, motivated by the numerical results of Ref. [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF], have considered only the cases χ < χ crit where

χ crit = 3ν -1 2 . (3.7)
Here, we have assumed that the scale factor behaves as a ∝ t ν so that χ crit = 0.25 and χ crit = 0.5 for the radiation and matter era, respectively. Under the condition χ < χ crit , Refs. [START_REF] Rocha | Scaling Solution for Small Cosmic String Loops[END_REF][START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] have shown that the loop distribution behaves as a power law on large scales, with the power p in Eq. (3.1) given by p = 2χ -3. 

for the radiation and matter era, respectively. We also note that χ has been estimated from the twopoint correlators of tangent vectors along the long strings using an average over multiple Abelian Higgs simulations in Ref. [START_REF] Hindmarsh | Abelian Higgs Cosmic Strings: Small Scale Structure and Loops[END_REF] where it was found that χ r = 0.22 and χ m = 0.35. At this stage it is intriguing to notice that the powers p = -5/2 in the radiation era, and p = -2 in the matter era, correspond precisely to χ = χ crit where the analysis of Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] breaks down. One of the aims of this paper is precisely to extend the analysis of Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] to the "critical case" χ = χ crit and to the "super-critical case" χ > χ crit . Before doing so, however, it is important to comment that while the two loop production functions of Eqs. (3.5) and (3.6) lead to similar loop distributions on large scales, they lead to very important differences for small loops, namely for γ < γ d . Until recently, these differences on small scales were of no great concern for observable predictions. For instance, predictions for the CMB power spectrum and induced non-Gaussianities are essentially blind to cosmic string loops 3 (see Ref. [START_REF] Ringeval | Cosmic Strings and Their Induced Non-Gaussianities in the Cosmic Microwave Background[END_REF] for a review). However, the situation is not the same for gravitational waves. The Polchinski-Rocha (PR) loop production function induces a larger population of small loops. Small loops oscillate faster, and being more numerous, they can potentially dominate the GW emission within some frequency range.

In this paper, we show that the value of χ = χ crit is a separatrix between two different behaviours. For values χ < χ crit , we recover the results presented in Refs. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF][START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF] and confirm the weak dependence of the scaling loop distribution on the details of the backreaction cut-off at small scales. We will refer to this property as being ultra-violet (UV) insensitive. We also show that the predicted loop number density is not affected by assumptions made for the distribution of the largest loops, and this property will be referred to as infrared (IR) insensitive. On the contrary, values of χ ≥ χ crit , including the equality, exhibit a very strong sensitivity to the IR. In fact, under the simplest assumptions, we show that the loop distribution cannot even reach a scaling regime and diverges in time. Scaling solutions can still be reached provided additional assumptions are made to regularize the IR behaviour, the validity of which still remains to be assessed in the cosmological context. For all these possible regularized scaling solutions, we show that the loop distribution shape is modified compared to the naive expectation.

The paper is organized as follows. In the next section, we recap the hypothesis and solutions of the Boltzmann equation presented in Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF]. We then show in Section 3.2.4 that the solutions can be readily extended to the super-critical cases χ > χ crit and that the loop distribution never reaches scaling in that case. In Section 3.2.5, we solve the Boltzmann equation for the critical value χ = χ crit and show again that the loop distribution diverges with time. In Section 3.3, we discuss the extra-assumptions needed in the IR to produce a scaling loop distribution with χ ≥ χ crit . For those, we derive the new scaling loop distributions and critically compare the results in all three cases, sub-critical, critical and super-critical. We finally conclude by briefly discussing the implications of our findings.

Cosmic string loop evolution

3 The tri-spectrum depends however on χ due to its sensitivity to tangent vector correlators [START_REF] Hindmarsh | The CMB Temperature Bispectrum Induced by Cosmic Strings[END_REF][START_REF] Hindmarsh | The CMB Temperature Trispectrum of Cosmic Strings[END_REF].

Boltzmann equation and loop production function

The number density n( , t) of cosmic string loops of size at cosmic time t is assumed to follow a conservation equation d dt

a 3 dn d = a 3 P( , t), (3.10) 
where P( , t) is a loop production function (LPF) giving the number density distribution of loops of size produced per unit of time at t and a(t) is the scale factor 4 . For an individual loop, gravitational wave emission induces energy loss through 

d dt = -γ d . ( 3 
t ∂(a 3 n) ∂t -(γ + γ d ) ∂(a 3 n) ∂γ = a 3 tP(γ, t). (3.12)
Its general solution can be obtained by changing variables to (t, v) where v = t(γ + γ d ). Then Eq. (3.12) becomes

∂[a 3 n(t, v)] ∂t v = a 3 P(t, v). (3.13) 
Assuming the infinite (super-horizon) string network is in scaling, the t-dependence of the LPF is of the form

t 5 P(γ, t) = S(γ) = S v t -γ d , (3.14) 
and it is straightforward to integrate Eq.(3.13) from some initial time t ini and find its general solution. In terms of the variables (γ, t) it reads

n(γ, t) -n ini (γ, t) = t tini a(t ) a(t) 3 S (γ + γ d )t t -γ d dt t 5 , (3.15) 
where

n ini (γ, t) = a(t ini ) a(t) 3 N ini [(γ + γ d )t -γ d t ini ] , (3.16) 
with N ini ( ) the initial loop distribution at t = t ini . Notice that the time dependence appears because n ini (γ, t) is evaluated at t = t ini and physically encodes the fact that, at time t, a loop of length γt corresponds to an initial loop of size = γt + γ d (tt ini ). Hence, once the loop production function S(γ) is specified over its entire domain of definition, the loop distribution is uniquely given by Eq. (3.15). As mentioned in the Introduction, physically very different LPF can give similar loop distributions for large loops. We now discuss the LPF.

Dirac distribution for the loop production function

In order to compare with results in the literature, let us solve explicitly the Boltzmann equation with a delta function LPF, motivated by the one-scale model, given in Eq. (3.5), namely t 5 P(γ, t) = cδ(γα). From Eq. (3.15),

t 4 n(γ < α, t) -t 4 n ini (γ, t) = c     a t γ + γ d α + γ d a(t)     3 (α + γ d ) 3 (γ + γ d ) 4 Θ γ + γ d - t ini t (α + γ d ) .
(3.17)

The left-hand side of Eq. (3.17) contains n ini , which is determined from the initial loop distribution N ini through Eq. (3.16). This term is usually a transient for initial loop distribution converging fast enough to zero at large . However, if (as in numerical simulations) N ini is assumed to be the Vachaspati-Vilenkin (VV) distribution [START_REF] Vachaspati | Formation and Evolution of Cosmic Strings[END_REF] one has t 4 ini N ini ( ) ∝ (t ini / ) 5/2 and because the argument of N ini in Eq. (3.16) grows with t we see that, in the particular case of the radiation era (ν = 1/2), the whole term becomes time-independent and "scales". In a realistic situation, the VV distribution is valid up to some size, typically the initial horizon size < d h (t ini ), where d h (t) = t/(1ν) with ν = 1/2 or 2/3 in the radiation or matter era, respectively. Above d h (t ini ), loops are of super-horizon length and should actually be considered as long (dubbed "infinite") strings from a dynamical point of view. Once the argument of N ini (through n ini ) in Eq. (3.17) becomes larger than this cut-off, the corresponding term in the left-hand side of Eq. (3.17) disappears.

Neglecting therefore the effects from initial distribution n ini (γ, t), we find the loop distribution in the radiation era:

t 4 n(γ, t) = c (α + γ d ) 3/2 (γ + γ d ) 5/2 Θ(α -γ) . (3.18) 
This expression corresponds to a scaling solution with a p = -5/2 power-law for γ γ d , as stated in the Introduction. For loops formed during matter era one has

t 4 n(γ, t) = c (α + γ d ) (γ + γ d ) 2 Θ(α -γ) , (3.19) 
and this corresponds to a scaling solution with a p = -2 power-law for γ γ d . Notice that, in both cases, the distributions are flat for values of γ < γ d .

Polchinski-Rocha loop production function

In the remainder of this paper we focus on the PR loop production function, which exhibits a power-law dependence in γ. For large loops, it is given by

t 5 P(γ ≥ γ c , t) = c γ 2χ-3 .
(3.20)

The "backreaction scale" γ c was calculated in Ref. [START_REF] Polchinski | Cosmic String Structure at the Gravitational Radiation Scale[END_REF] and is given by 5

γ c ≡ Υ(Gµ) 1+2χ , (3.21) 
5

The dependence on Gµ is to be expected given that this scale is fixed by gravitational physics. where the constant c c is chosen such that P is continuous at γ = γ c . According to Ref. [START_REF] Polchinski | Cosmic String Structure at the Gravitational Radiation Scale[END_REF], minimal gravitational backreaction effects correspond to χ c = 1 and we take this value as a motivated lower bound. The larger the value of χ c , the sharper the cut is.

γ c χ c =10 χ c =1 χ c =3
where Υ = O(20). This suggests that the very small scales on a string network can potentially be strongly dependent on the value of χ. On scales γ < γ c , the actual shape of the LPF is unknown, but, surely, loop production has to be cut-off. A phenomenologically motivated expression has been proposed in Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF], namely 

t 5 P(γ < γ c , t) = c c γ 2χc-3 , (3.22 
S(γ) = c γ 2χ-3 Θ(γ -γ c ) + c c γ 2χc-3 Θ(γ c -γ) . (3.24)
Before giving explicit solutions of the Boltzmann equation for the PR based LPF, let us remark that the original PR model applies to loops produced by long (dubbed "infinite") strings, whereas in numerical simulations loops are also created from other loops and can potentially reconnect. Hence, the fit to numerical simulations can be viewed as a renormalization procedure that allows us to extend the properties of loops chopped off from long strings to those produced by other loops. In particular, the fit completely fixes the normalization constant c in the loop distribution. Unless specified otherwise, we have used the values reported in Ref. [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF]. Simulations show that the largest loops created in a cosmological network are as large as the largest correlation length scale, which is a fraction of the Hubble radius. This typical correlation length allows us to define

γ ∞ = µ ρ ∞ t 2 1/2 , (3.25) 
where ρ ∞ is the energy density of super-horizon sized (infinite) strings in scaling [START_REF] Bennett | Cosmic-String Evolution[END_REF][START_REF] Bennett | High Resolution Simulations of Cosmic String Evolution. 1. Network Evolution[END_REF][START_REF] Allen | Cosmic-String Evolution: A Numerical Simulation[END_REF][START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF]. One gets γ ∞ 0.32 in the radiation era and γ ∞ 0.56 in the matter era. The PR model with values of c consistent with those of simulations predicts a fractional number of loops having γ ≥ γ ∞ . However, and as sketched in Fig. 3.1, the IR behaviour of P(γ, t) (at large γ) could a priori be different than for γ < γ ∞ and we will explore this possibility in Section 3.3.

Non-critical loop production function

In this section, we present the solution of the Boltzmann equation obtained for the non-critical cases, i.e., χ = χ crit . As shown in Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF], substituting Eq. (3.24) into Eq. (3.15) gives the unique solution. In the domain γ ≥ γ c it reads

t 4 n(γ ≥ γ c , t) = t 4 n ini (γ, t) + c (γ + γ d ) 2χ-3 f γ d γ + γ d - t t ini - f γ d γ + γ d t ini t , (3.26) 
and, in the domain γ < γ c ,

t 4 n(γ < γ c , t) = t 4 n ini (γ, t) + c (γ + γ d ) 3ν-4 (γ c + γ d ) -f γ d γ c + γ d - c (γ + γ d ) 2χ-3 t t ini - f γ d γ + γ d t ini t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - γ + γ d γ c + γ d c f c γ d γ c + γ d . (3.27)
In these equations, we have defined

f(x) ≡ 2 F 1 (3 -2χ, ; + 1; x) , f c (x) ≡ 2 F 1 (3 -2χ c , c ; c + 1; x) . (3.28)
with 2 F 1 (a, b; c; x) being the Gauss hypergeometric function, and

≡ 3ν -2χ -1, c ≡ 3ν -2χ c -1. (3.29)
The above solution is valid provided one waits long enough for some transient domains to disappear 6 . For completeness, the full solution including the transients is presented in the Appendix 3.A. Let us stress that these equations become singular for = 0, which corresponds to χ = χ crit , and that case must be treated separately, see Section 3.2.5.

The behaviour of the solution given by Eqs. (3.27) and (3.26) depends on whether χ < χ crit , which we refer to as the sub-critical case, or whether χ > χ crit , the super-critical one.

Sub-critical loop production function

As discussed in Section 3.2.2, the first term in the right-hand side of Eq. (3.26), which is determined from the initial loop distribution, vanishes if one waits long enough. For all positive values of , namely χ < χ crit , the last term in Eq. (3.26) is also a transient that asymptotically vanishes for t t ini . At vanishing argument, the hypergeometric function converges to unity and the time dependence of this term indeed scales as (t/t ini ) -.

Hence, the Boltzmann equation for > 0 predicts a scaling loop distribution for γ ≥ γ c given by

t 4 n(γ ≥ γ c , t) = c (γ + γ d ) 2χ-3 f γ d γ + γ d . (3.30) 
For γ γ d the hypergeometric function tends to 1, and we recover the power-law distribution given in Eq. (3.8); it matches numerical simulations where gravitational effects are absent:

t 4 n(γ γ d , t) c γ 2χ-3 . (3.31)
Furthermore we can now predict the effects associated with gravitational wave emission. Taking the limit γ γ d (but still γ > γ c ), one gets7 

t 4 n(γ c < γ γ d , t) c 2 -2χ γ 2χ-2 γ d . (3.33) 
Notice that since we are in the regime χ < χ crit we necessarily have χ < 1. The only effect of gravitational wave emission onto the scaling loop distribution is to reduce the power law exponent by one unit in the domain γ c < γ γ d [START_REF] Rocha | Scaling Solution for Small Cosmic String Loops[END_REF]. To see what are the effects of gravitational wave backreaction on the loop distribution, let us consider Eq. (3.27). As before, the first and third terms in the right-hand side of Eq. (3.27) are transient and only the second term and the fourth one survive. They are explicitly time-independent showing that this part of the loop distribution also reaches scaling. Using the expansion (3.32), the matching condition (3.23), and taking the limit γ γ c gives

t 4 n(γ γ c , t) = c 1 2 -2χ + 1 2χ c -2 γ 2χ-2 c γ d + O γ 2χ-3 d c 2 -2χ γ 2χ-2 c γ d , (3.34) 
where in the last step we have taken the limit for χ c χ and γ c γ d . This expression makes clear that the details of the backreaction process, namely the values of χ c , have only a weak effect on the final loop distribution [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF]. Therefore, in the domain γ < γ c , the scaling loop distribution is flat.

The exact form for the scaling loop distribution is plotted in Fig. 3.2 for both the radiation and matter era, see also Eqs. (3.67) to (3.69). Notice that the value of γ c is χ-dependent, and thus, even at constant Gµ, γ c changes between radiation and matter.

Super-critical loop production function

As discussed in the Introduction, we now consider shallower loop production functions having < 0, i.e. super-critical values of χ > χ crit . All solutions derived in Section 3.2.4 are regular in this limit, and we can straightforwardly use Eqs. (3.26) and (3.27).

In the domain γ ≥ γ c , neglecting the first term in the right-hand side of Eq. (3.26) for the aforementioned reasons, we see that the third term (which was a transient for > 0) is now becoming a growing function of time as it scales as (t/t ini ) -. Therefore, for t t ini , and for all values of γ ≥ γ c , the hypergeometric function that multiplies (t/t ini ) -in Eq. (3.26) approaches unity and one gets

t 4 n(γ ≥ γ c , t) - c (γ + γ d ) 2χ-3 -f γ d γ + γ d + t t ini - , (3.35) 
which is not scaling! Another feature of this solution is that, taking the limit γ c ≤ γ γ d , one has

t 4 n(γ c ≤ γ γ d , t) - c γ 2χ-3 d -2 -2χ γ γ d 2χ-2 + t t ini - .
(3.36)

The solution only exhibits the γ 2χ-2 power-law transiently. As soon as the growing term (t/t ini ) - takes over, the loop distribution becomes flat and incessantly grows with time. Notice that because < 0, positiveness of the loop distribution still implies that c > 0 because it is now dominated by the terms (t/t ini ) -. Equation (3.23) implies c c > 0 as well.

The solution in the domain γ < γ c presents the same pathology, namely, the fourth term of Eq. (3.27), which is a transient for > 0, now becomes dominant and one gets for γ γ c

t 4 n(γ γ c , t) - c γ 2χ-3 d -2 -2χ + 2χ c -2 γ c γ d 2χ-2 + t t ini - , (3.37) 
which is flat and smoothly connects to the solution (3.36) at γ = γ c . In Fig. 3.3, we have plotted the exact solutions at various successive redshifts showing the nonscaling behaviour of the super-critical cases, χ > χ crit . The time divergence ends up washing out the change in slope of the loop distribution between γ c and γ d . But scaling is lost, and we have an incessantly growing number density of loops at all scales.

Because Eq. (3.35) is actually valid in the regime probed by numerical simulations, this behaviour not being observed, we conclude that deeply super-critical loop production functions are unlikely to be physical. Of course, one cannot exclude the possibility that < 0 but very close to zero (hence χ close to its critical value χ c ), since the time-dependence of Eq. (3.35) would hardly remain visible in time-limited numerical simulations while being relevant on cosmological time-scales. We now turn to the critical case itself, = 0.

Critical loop production function

None of the solutions of Section 3.2.4 are valid for = 0. Hence, we return to the general solution (3.15) where, using Eq. (3.20) with χ = χ crit given in Eq. (3.7), one has

S(γ) = c γ 3ν-4 Θ(γ -γ c ) + c c γ 2χc-3 Θ(γ c -γ) . (3.38)
Here we have used the equality 2χ crit -3 = 3ν -4. As before, the initial condition at t = t ini and continuity of the solution at γ = γ c , which is enforced by Eq. (3.38), completely fix the solution of Eq. (3.15). We still find a complete integral (see Ref. [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]) that is presented, in full, in the Appendix 3.A.2. Below, we report only the parts relevant for our discussion. In the domain γ ≥ γ c , one has The network is assumed to be formed at z ini = 10 18 and c = 0.03. At redshift z = 10 17 , the loop distribution is not yet fully relaxed from the initial conditions. For later redshifts, z < 10 15 , the non-scaling logarithmic divergence becomes clearly visible for all loops larger than the gravitational wave emission scale, γ ≥ γ d . The smaller ones, having γ < γ d , remain in a transient scaling for most of the cosmological evolution, until the nonscaling behaviour takes over (see text). and in the domain γ < γ c , the solution reads

t 4 n(γ ≥ γ c , t) = t 4 n ini (γ, t) + c(γ + γ d ) 3ν-4 g γ d γ + γ d -g γ d γ + γ d t ini t , (3.39 
z = z = z = z = z = µ < 0, GU=10 -7 γ d γ c rad
t 4 n(γ < γ c , t) = t 4 n ini (γ, t) + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - γ + γ d γ c + γ d c f c γ d γ c + γ d + c(γ + γ d ) 3ν-4 g γ d γ c + γ d -g γ d γ + γ d t ini t .
(3.40)

The function g(x) is ν-dependent. In the radiation era, for ν = 1/2, it reads

g rad (x) ≡ ln 1 - √ 1 -x 1 + √ 1 -x + 2 3 4 -3x (1 -x) 3/2 , (3.41)
while in the matter era, for ν = 2/3,

g mat (x) ≡ 1 1 -x ln 1 -x x . (3.42)
As before, neglecting the terms associated with N ini , and taking the limit t t ini , Eq. (3.39) can be further expanded for γ γ d as

t 4 n(γ γ d , t) c γ 3ν-4 ln t t ini , (3.43) 
for both the radiation and matter eras. As a result, the critical case χ = χ crit suffers from the same problems as the super-critical ones: the loop number distribution never reaches a scaling regime. For = 0, the power-law exponent is 3ν -4 = 2χ crit -3 and smoothly connects to its sub-and super-critical values. Let us notice however that the time divergence is logarithmic, and therefore, could very well remain undetected in numerical simulations while being quite relevant on cosmological time-scales. The limit γ c ≤ γ γ d gives

t 4 n(γ c ≤ γ γ d , t) c γ 3ν-4 d 1 3 -3ν γ γ d 3ν-3 + ln t t ini , (3.44) 
which, up to the logarithmic divergence, is in all points similar to Eq. (3.36). As for the supercritical case, in the future infinity limit t/t ini → ∞, the dependence in γ disappears, the loop distribution becomes flat, grows, and never reaches scaling. However, because the divergence is only logarithmic in time, even on cosmological time scales, the first term can remain dominant. In this situation, we are in presence of a very long transient scaling in the domain γ γ d . Finally, for the small loops γ γ c , and assuming γ c γ d , we can expand Eq. (3.40) at large times t t ini . We get 3.1: Asymptotic contributions to the loop number density assuming no infrared regularization. At late times, the critical and super-critical cases are non-scaling and the loop number density diverges. For the critical case, notice however that a transient scaling can take place in the domains γ < γ d for most of the cosmological evolution (see text).

t 4 n(γ γ c , t) c c 2χ c -2 γ 2χc-2 c γ d + cγ 3ν-4 d 1 3 -3ν γ c γ d 3ν-3 + ln t t ini = c γ 3ν-4 d 1 3 -3ν + 1 2χ c -2 γ c γ d 3ν-3 + ln t t ini , (3.45) Type γ < γ c γ c < γ < γ d γ > γ d Sub-critical > 0 c 2 -2χ γ 2χ-2 c γ -1 d c 2 -2χ γ 2χ-2 γ -1 d c γ 2χ-3 Critical = 0 c γ 3ν-4 d ln t t ini c γ 3ν-4 d ln t t ini c γ 3ν-4 ln t t ini Super-critical < 0 - c γ 2χ-3 d t t ini - - c γ 2χ-3 d t t ini - - c γ 2χ-3 t t ini - Table
where the last step is obtained from Eq. (3.23), which ensures the continuity of the loop production function. Again, this is in all point similar to the super-critical case of Eq. (3.37) and smoothly connects to the domain γ ≥ γ c . The logarithmic divergence will ultimately make the small loop number density grow, although the presence of the first term will strongly delay this process and one should expect a very long transient scaling.

Figure 3.4 shows the loop number density distribution in the radiation era as derived from the exact expression, Eqs. (3.73) to (3.75), for Gµ = 10 -7 , and at various redshifts. Here again, N ini = 0 has been assumed to clearly show the effects coming from the production function. The network is arbitrarily assumed to be formed at z ini = 10 18 and relaxation from the initial conditions takes place down to redshift z = 10 17 . For redshifts z ≤ 10 15 , the domain γ ≥ γ d clearly exhibits the logarithmic divergence. The loops having γ < γ d remain, however, in the transient scaling for essentially all the cosmological evolution.

Discussion

Critical and super-critical loop production functions, having χ ≥ χ crit = (3ν -1)/2, yield a nonscaling and growing population of cosmic string loops. This results from the combination of various non-trivial effects acting together. For χ ≥ χ crit , the loop production functions are shallower with respect to loop sizes than the sub-critical ones. Therefore, they produce, on site, relatively larger loops compared to the smaller ones. These larger loops will contribute to the final population of loops of given size since they incessantly shrink by gravitational wave emission. Similarly, at all times, loops of given size disappear by the same effect. The detailed balance of loops disappearing, being created on site, and being populated by shrunk larger loops is obviously χ-dependent and the overall result is precisely given by the solution of the Boltzmann equation (3.12). Taking shallower loop production functions clearly enhances the feeding by larger loops, at all scales. The critical value χ crit is the precise power-law exponent above which such an effect produces a non-stationary solution. We summarize our results in Table 3.1.

In striking contrast with the sub-critical case, we see that the critical and super-critical loop production functions induce non-scaling loop distributions. This is quite dramatic in the supercritical case as the number density of loops grows, on all scales, as (t/t ini ) -, with < 0. The situation for the critical case χ = χ crit is, somehow, less catastrophic, as the divergence is only logarithmic in time. In particular, for most of the cosmologically relevant situations, we find that the loop number density remains in a transient scaling regime at small scales, for all γ γ d . The number density of larger loops, having γ ≥ γ d , is however logarithmically growing with time and never scales.

Possible infrared regularizations

In view of the previous discussion, a way to regularize (super-) critical loop production functions is to change their shape in some domains. As discussed in the Introduction, the PR model does not necessarily apply to super-horizon loops, the ones having γ > γ ∞ , and these seem to be precisely responsible for the time divergence. A possible regularization is therefore making a hard cut in the IR, namely postulating that the loop production function is exactly vanishing above some new IR scale, say γ > γ ∞ . Other regulator shapes are considered in Section 3.3.3.

We now consider the same PR loop production function as in Section 3.2 for γ ≤ γ ∞ but we now require that t 4 P(γ > γ ∞ , t) = 0 at all times. As a result, there is a new domain of solution for Eq. (3.12) in which one trivially finds

n(γ ≥ γ ∞ , t) = n ini (γ, t). (3.46) 
The calculations are slightly longer than in Section 3.2 but do not present new difficulties. They are detailed in the Appendix 3.B. The introduction of a new scale at γ ∞ introduces various new transient domains in which the loop distribution t 4 n grows for a while before becoming stationary. Ignoring these domains, the main changes can be summarized as follows.

The asymptotic solutions are given by those of the previous section provided we make the formal replacement

t t ini -→ γ ∞ + γ d γ + γ d . (3.47)
This expression makes clear that all terms that were explicitly depending on t/t ini are regularized to γ-dependent terms. As a result, the IR-regularized critical loop distribution reaches scaling, but it does no longer exhibit the same shape on large scales. In the following, we explicitly derive the induced distortions for the critical and super-critical case and discuss the impact of forcing an unneeded IR-regularization to the sub-critical loop production functions.

Critical loop production function

For critical loop production function χ = χ crit , after the disappearance of the transient domains (see Appendix 3.B), the loop distribution in the domain γ ≥ γ c (and γ < γ ∞ ) reads

t 4 n(γ c ≤ γ < γ ∞ , t) = t 4 n ini (γ, t) + c(γ + γ d ) 3ν-4 g γ d γ + γ d -g γ d γ ∞ + γ d , (3.48) 
and in the domain γ < γ c , one gets

t 4 n(γ < γ c , t) = t 4 n ini (γ, t) + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - γ + γ d γ c + γ d c f c γ d γ c + γ d + c(γ + γ d ) 3ν-4 g γ d γ c + γ d -g γ d γ ∞ + γ d .
The logarithmic growth in time has disappeared, and the solutions are now scaling. Taking Eq. (3.48) in the limit γ γ d and neglecting all terms associated with the initial conditions, one gets

t 4 n(γ γ d , t) c γ 3ν-4 ln γ ∞ γ .
(3.49)

The limit γ c < γ γ d consistently gives

t 4 n(γ c < γ γ d , t) = c γ 3ν-4 d 1 3 -3ν γ γ d 3ν-3 + ln γ d γ ∞ , (3.50) 
and the distribution is back to the scaling power law γ 3ν-3 . Finally, small loops with γ γ c γ d also scale with a flat distribution as

t 4 n(γ γ c , t) = c γ 3ν-4 d 1 3 -3ν + 1 2χ c -2 γ c γ d 3ν-3 + ln γ d γ ∞ . (3.51) 
In conclusion, the IR-regularization we have used solves the logarithmic time divergence of the loop distribution which now reaches scaling on all length scales. For γ γ d , Eqs. (3.50) and (3.51) compared to Eqs. (3.44) and (3.45) show that the regularization is neat, the dependence of the loop distribution with respect to γ is not affected. However, for γ > γ d , the power law behaviour now receives a logarithmic correction. We therefore conclude that the critical loop production function, even regularized, exhibits an IR sensitivity.

Non-critical loop production function

The calculation follows in all points the one of Section 3.3.1 and applies to both sub-and supercritical cases, > 0 and < 0. The full solution is presented in the Appendix 3.B, and we focus below on the asymptotic behaviour only. For the purely IR domain, γ > γ ∞ , the solution is still given by Eq. (3.46), our IR-regulator assuming an exactly vanishing production function there. Again neglecting all transients, the solution in the domain

γ c ≤ γ < γ ∞ reads t 4 n(γ c ≤ γ < γ ∞ , t) = t 4 n ini (γ, t) + c (γ + γ d ) 2χ-3 f γ d γ + γ d - c (γ + γ d ) 3ν-4 (γ ∞ + γ d ) -f γ d γ ∞ + γ d , (3.52) 
while for γ < γ c one obtains

t 4 n(γ + ≤ γ < γ c , t) = t 4 n ini (γ, t) + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - γ + γ d γ c + γ d c f c γ d γ c + γ d + c (γ + γ d ) 3ν-4 (γ c + γ d ) -f γ d γ c + γ d - c (γ + γ d ) 3ν-4 (γ d + γ ∞ ) -f γ d γ ∞ + γ d . (3.53)
Here again, the IR cut in the loop production functions can be viewed as the same formal replacement as (3.47). Let us now discuss separately the physical consequences for the sub-and super-critical loop production functions, and we start by the simplest case which is the sub-critical one.

Sub-critical case

Even if sub-critical loop production functions produce a scaling loop distribution without any regularization, one may wonder whether forcing the (unnecessary, for scaling!) cut at γ > γ ∞ can significantly change the shape of the scaling loop distribution. At late times, and for sub-critical production functions, > 0, we can take the limit γ γ d of (3.52)

t 4 n(γ d γ < γ ∞ , t) c γ 2χ-3 1 - γ γ ∞ . (3.54) 
Compared to Eq. (3.31), we see that the correction term (γ/γ ∞ ) induced by the IR-regularization has an effect only for γ γ ∞ and becomes rapidly negligible as soon as γ < γ ∞ . For loops having γ γ d , we get

t 4 n(γ c ≤ γ γ d , t ≥ t c ) c 2 -2χ γ 2χ-2 γ d , (3.55) 
the correction (γ d /γ ∞ ) can always be safely ignored. Finally, for loops smaller than the GW backreaction length, γ γ c , we recover Eq. (3.34). The IR-correction added corresponds to the fourth term of Eq. (3.53) and remains again always negligible for > 0.

We therefore conclude that sub-critical loop production functions yield scaling loop distributions that are immune to the IR behaviour of the network.

Super-critical case

For super-critical values of χ > χ crit , we have < 0 and most of the arguments applying for > 0 are now reversed. For instance, the limit

γ d γ < γ ∞ becomes t 4 n(γ d γ < γ ∞ , t) - c γ 2χ-3 γ ∞ γ - -1 - c γ - ∞ γ 3ν-4 . (3.56)
The time divergence of the loop distribution is solved but the power-law exponent has been changed from 2χ -3 to 3ν -4, see Eq. (3.35). For smaller loops, we get

t 4 n(γ c ≤ γ γ d , t) - c γ 2χ-3 d -2 -2χ γ γ d 2χ-2 + γ ∞ γ d - . (3.57) 
Since γ ∞ /γ d 1, the IR cut is adversely introducing a new length scale! Thus, let us define γ ir by

γ ir ≡ - (2 -2χ)γ - ∞ 1 2-2χ γ 3-3ν 2-2χ d .
(3.58)

For γ > γ ir , Eq. (3.57) shows that the loop distribution is flat, the dependence in γ remains negligible compared to the constant term introduced by the regularization. On the contrary, for γ < γ ir , we recover a power-law behaviour as γ 2χ-2 . This new IR scale is relevant only if γ ir > γ c , which is model-and regularization-dependent. Nonetheless, if we assume the dependency in Gµ for γ d given in Eq. (3.4), γ ir ∝ (Gµ)

3-3ν 2-2χ , (3.59) 
and using Eq. (3.21)

γ ir γ c ∝ (Gµ) 4χ 2 -2χ+1-3ν 2-2χ . (3.60)
This defines a particular value for χ, namely

χ IR ≡ 1 + √ 12ν -3 4 , (3.61) 
whose numerical value in the radiation era is χ IR 0.683 and χ IR 0.809 for the matter era. For all values χ crit < χ < χ IR , the exponent of Eq. (3.60) is negative. For Gµ small enough, we generically have γ ir > γ c . As a result, the regularized loop distribution is now scaling but exhibits a new plateau for γ ir < γ < γ d , which smoothly connects to the γ 2χ-2 behaviour in the domain γ c ≤ γ < γ ir . For larger values of χ > χ IR (and deeper negative values of ), only the plateau exists in the whole domain γ c ≤ γ < γ d , the amplitude of the constant term (γ ∞ /γ d ) -is so large that it erases any features that could be associated with the scale of gravitational wave emission. This situation is actually reminiscent with the time-divergent behaviour discussed in Section 3.2.4.

Finally, for the very small loops, γ γ c , with γ c γ d , the loop distribution reads

t 4 n(γ γ c , t ≥ t c ) c 1 2 -2χ + 1 2χ c -2 γ 2χ-2 c γ d - c γ - ∞ γ 3ν-4 d + O γ 2χ-3 d . (3.62)
It is scaling with a plateau behaviour. The amplitude of the plateau is either given by the first term, the one varying as

γ 2χ-2 c /γ d , or the second term which is proportional to γ - ∞ γ 3ν-4 d
. That depends on their relative amplitude. Neglecting the terms in χ c , which are sub-dominant, the ratio R of the first to second term in the right-hand side of Eq. (3.62) simplifies to

R = γ ir γ c 2-2χ . (3.63)
Consistently with the behaviour in the γ > γ c domains, for χ crit < χ < χ IR , one always has R 1 and the regularization effects are small. Only for χ > χ IR , the plateau at γ < γ c is dominated by the regulator and continuously matches the one at γ > γ c .

We conclude that IR-regularization of super-critical loop production functions solves their timedivergence, but this has the consequence of significantly modifying the shape of the actual scaling distribution. The results are therefore strongly IR-sensitive.

Influence of a power-law IR-regularization

Considering the strong dependence of the loop number density on the parameter γ ∞ , one might ask whether the shape of the IR-cutoff has an additional influence on the results. To perform this analysis, we introduce an additional source term c ∞ γ 2χ ∞ -3 Θ(γγ ∞ ) to the collision term of the Boltzmann equation (3.20) and, neglecting all possible transients, compute its contribution, say t 4 n ∞ , to the asymptotic loop number density. For this source term to be a well-behaved IRregulator, it has to fulfil two conditions. First ∞ > 0 otherwise we expect this term to present the same time-divergent behaviour as the critical and super-critical distributions. Then, we should have

c ∞ = cγ 2(χ-χ ∞ ) ∞
for the loop production function to be continuous in γ ∞ . Then the contribution of such a power-law cutoff is

t 4 n ∞ (γ < γ ∞ ) = c ∞ ∞ (γ + γ d ) 3ν-4 (γ ∞ + γ d ) ∞ f ∞ γ d γ ∞ + γ d - c ∞ ∞ (γ + γ d ) 2χ ∞ -3 t ini t ∞ f ∞ γ d γ + γ d t ini t , (3.64) 
where

f ∞ (x) ≡ 2 F 1 (3 -2χ ∞ , ∞ ; ∞ + 1; x) . (3.65) 
The condition ∞ > 0 ensures that all time-dependent contributions are suppressed at late-times. Under the assumption that γ d γ ∞ , the contribution to the scaling loop number density coming from the power-law cutoff is

t 4 n ∞ (γ < γ ∞ ) = c ∞ (γ + γ d ) 3ν-4 ∞ γ ∞ ∞ = c (γ + γ d ) 3ν-4 ∞ γ ∞ . (3.66)
This additional part generically contributes and can modify the shape of the loop distribution, as for instance it would modify the value of γ ir for the super-critical case in Eq. (3.58). However, for large enough values of ∞ , namely for ∞ | |, it can safely be neglected with respect to the one computed earlier. As a result, the IR-regularization effects we have found in the previous section are relatively generic in the sense that they are not simply induced by the choice of an infinitely sharp cut in the LPF but rather by suppressing the production of large loops.

Conclusions

The aim of this paper has been to carry out an exhaustive study of the effect of the loop production function on the cosmological distribution of loops. As explained in the Introduction, numerical simulations of Nambu-Goto cosmic string networks are not currently able to capture some important physical effects at very small scales, for instance GW emission and its backreaction effects. Hence, determining the loop distribution, by construction, requires an interplay between numerical results (valid for larger loops where the extra physics should be negligible) and analytical modelling.

Type γ < γ c γ c < γ < γ ir γ ir < γ < γ d γ > γ d Sub-critical c 2 -2χ γ 2χ-2 c γ -1 d c 2 -2χ γ 2χ-2 γ -1 d - c γ 2χ-3 IR Critical c 3 -3ν γ 3ν-3 c γ -1 d c 3 -3ν γ 3ν-3 γ -1 d - cγ 3ν-4 ln γ ∞ γ IR Super-critical with χ < χ IR c 2 -2χ γ 2χ-2 c γ -1 d c 2 -2χ γ 2χ-2 γ -1 d - c γ - ∞ γ 3ν-4 d - c γ - ∞ γ 3ν-4 IR Super-critical with χ > χ IR - c γ - ∞ γ 3ν-4 d - c γ - ∞ γ 3ν-4 d - c γ - ∞ γ 3ν-4 d - c γ - ∞ γ 3ν-4
Table 3.2: Asymptotic contributions to the loop number density assuming a "strong" enough infrared cutoff. With this assumption, both critical and super-critical loop number densities scale with time but their shape is modified compared to the unregularized ones (see Table 3.1). The analytical tool used to solve for the loop distribution is the Boltzmann equation (3.20). On the one hand, we have shown that very different LPF, namely, a Dirac distribution motivated by the one-scale model, and a sub-critical Polchinski-Rocha power-law distribution (χ < χ crit ) taking into account the small-scale structure built up on the strings, can give rise to a scaling, power-law, distribution on large scales, albeit with different power-law exponents. On the other hand, we have found that the actual value of the power-law exponent, i.e., the value of χ with respect to χ crit = (3ν -1)/2, produces very different behaviours. Critical and super-critical LPFs (χ ≥ χ crit ) lead to time-divergent loop distributions, which do not scale. The critical case however exhibits only a logarithmic growth for large loops, γ ≥ γ d , and a very long transient scaling for the smaller ones, γ < γ d , that can last longer than the age of the universe.

The divergent behaviour of the critical and super-critical cases has been traced back to a relative over-production of large loops with respect to small loops, and we have shown that it can be regularized by arbitrarily assuming that the PR loop production function vanishes above some length scale γ ∞ . We find, however, that although such an IR regularization fixes the time divergence, it is also changing the shape of the loop distribution. For this reason, we conclude that both the critical and super-critical LPF are genuinely IR-sensitive. For the critical case, we find that the large loop distribution acquires a new logarithmic dependence in γ (again for γ ≥ γ d ). On the small scales γ < γ d , the predictions are all very different and depend on both the PR exponent χ and on the IR regulator. The results of our study are summarized in Tables 3.1 and 3.2, where we give the asymptotic contributions to the loop number density on all scales γ depending on the value of the parameter ≡ 3ν -2χ -1 (it vanishes for χ = χ crit ). Let us notice that for extreme values of Gµ, and times close to the transition from the radiation to the matter era, these results may not apply and one should rely on the complete solutions given in the appendices.

It is interesting to observe from the last row of Table 3.2, that in the super-critical case only and assuming an IR cutoff, the obtained distribution for large γ ≥ γ d is essentially identical to that obtained from assuming a Dirac distribution for the LPF. In particular, for large γ there is a -5/2 power-law in the radiation era and -2 power-law in the matter era, which are the values for the exponents that we have obtained in Section 3.2.2. At the same time, both distributions are completely different on smaller scales. This is illustrated in Fig. 3.5.

In this paper, following Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF], we have also introduced a small distance scale γ c below which gravitational backreaction is expected to be important. Generically, for γ c γ d , and for all values of χ, the amplitude of the loop distribution at small γ < γ c is enhanced relative to the Dirac distribution LPF, and, as discussed in Ref. [START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF], this leads to observational consequences on the SGWB. Another interesting feature we have not discussed in the main text concern the various transient domains associated with the IR regularization. They are excited soon after the network is created, but also during the transition from the radiation to matter era. As such, they may also lead to interesting phenomenological consequences, in particular regarding a gravitational wave signature.

3.A Complete solutions

In this appendix, we give the explicit expressions of the solution of the Boltzmann equation (3.12). Details of the calculation can be found in Refs. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF][START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF] and we here simply report the results.

3.A.1 Non-critical loop production function

For the piecewise PR loop production function given in Eqs. (3.20) and (3.22), assuming χ = χ crit , one gets

t 4 n(γ ≥ γ c , t) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c (γ + γ d ) 2χ-3 f γ d γ + γ d - c (γ + γ d ) 2χ-3 t t ini - f γ d γ + γ d t ini t , (3.67) 
t 4 n(γ τ ≤ γ < γ c , t) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - γ + γ d γ c + γ d c f c γ d γ c + γ d + c (γ + γ d ) 3ν-4 (γ c + γ d ) -f γ d γ c + γ d - c (γ + γ d ) 2χ-3 t t ini - f γ d γ + γ d t ini t , (3.68) 
t 4 n(0 < γ < γ τ , t) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - c c c (γ + γ d ) 2χc-3 t t ini -c f c γ d γ + γ d t ini t . (3.69) 
where we recap that

f(x) ≡ 2 F 1 (3 -2χ, ; + 1; x) , f c (x) ≡ 2 F 1 (3 -2χ c , c ; c + 1; x) . (3.70) 
and

≡ 3ν -2χ -1, c ≡ 3ν -2χ c -1. (3.71)
There is a transient domain for loops having γ smaller than

γ τ (t) ≡ (γ c + γ d ) t ini t -γ d , (3.72) 
which describes a virgin population of loops that started their evolution with a γ < γ c and which have never been contaminated by shrunk loops produced at γ > γ c . This population of loops cannot exist forever and the domain disappears for times t ≥ t τ where γ τ (t τ ) = 0.

3.A.2 Critical loop production function

In the critical case, the piecewise loop production function is given by Eq. (3.20) in the domain γ ≥ γ c with χ = χ crit , and Eq. (3.22) for γ < γ c which is unchanged. The solution reads

t 4 n(γ ≥ γ c , t) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c(γ + γ d ) 3ν-4 g γ d γ + γ d -g γ d γ + γ d t ini t , (3.73) 
t 4 n(γ τ ≤ γ < γ c , t) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - γ + γ d γ c + γ d c f c γ d γ c + γ d + c(γ + γ d ) 3ν-4 g γ d γ c + γ d -g γ d γ + γ d t ini t , (3.74) 
t 4 n(0 < γ < γ τ , t) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - c c c (γ + γ d ) 2χc-3 t t ini -c f c γ d γ + γ d t ini t , (3.75) 
where we recap that the first integral g(x) is given by

g rad (x) ≡ ln 1 - √ 1 -x 1 + √ 1 -x + 2 3 4 -3x (1 -x) 3/2 , g mat (x) ≡ 1 1 -x ln 1 -x x , (3.76) 
in the radiation and matter era, respectively. Notice that the small scales transient, Eq. (3.75), is identical to Eq. (3.69). To ease comparison with the non-critical case, let us stress that for χ = χ crit , one has = 0 and 2χ c -3 = 3ν -4 such that the critical functional shape is smoothly interpolating between the sub-and super-critical solutions presented in Section 3.A.1.

3.B Sharp infrared regularization

The sharp IR-regularization consists in cutting the loop production function above some length scale γ ∞ . Therefore, it is a piecewise function over three domains: for γ < γ c it is given by Eq. (3.22), for γ c ≤ γ < γ ∞ by Eq. (3.20) and for γ ≥ γ ∞ it is vanishing. The new length scale γ ∞ introduces a new, time-dependent, length scale defined by

γ + (t) ≡ (γ d + γ ∞ ) t ini t -γ d . (3.77)
Physically its meaning is the following: if we consider a loop which was created at time t ini with the maximal possible size γ ∞ t ini , then at time t its length is + = γ + t. Therefore, at time t, loops having γ < γ + (t) are not affected by the IR cutoff and the non-regularized solutions are still valid.

| | | | t < t c ← γ τ γ c ← γ + γ ∞ γ | | | t > t c γ c ← γ + γ ∞ γ Figure 3
.6: Schematic representation of the different domains of γ for t < t c and for t > t c . The black regions are causally disconnected from the cutoff at γ ∞ such that the solutions are exactly the same as the non-regularized ones. On the contrary, this is not the case in the red dotted regions and one has to use the modified expression for t 4 n(γ ≥ γ + , t) (see text).

On the contrary, the loop distribution for γ > γ + (t) has to be re-derived by solving the Boltzmann equation and satisfying the two continuity conditions at γ = γ c and γ = γ ∞ . In doing so, we must distinguish the cases for which γ + (t) > γ c from those having γ + (t) < γ c . To this end, we define

t = t c through γ + (t c ) = γ c from which t c ≡ γ ∞ + γ d γ d + γ c t ini . (3.78) 
If we compare Eqs. (3.72) and (3.77), we have γ τ (t ini ) = γ c and γ

+ (t ini ) = γ ∞ ; the domains never collide: γ + (t) -γ τ (t) = (γ ∞ -γ c )(t ini /t) > 0.
At last, the domain γ < γ + (t) disappears completely for t > t + where

t + ≡ 1 + γ ∞ γ d t ini , (3.79) 
which is defined by γ + (t + ) = 0. The different transient domains thus defined are summarized in Fig. 3.6. In practice, the solution is affected by the IR cutoff only within the red dashed zones appearing in this figure, but for completeness, we give, and repeat, the solutions in all contiguous domains.

3.B.1 Non-critical loop production function

We distinguish the two cases, t ≤ t c and t > t c . During the relaxation period t ≤ t c , the solution reads

t 4 n(γ ≥ γ ∞ , t < t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t , (3.80) 
t 4 n(γ + ≤ γ < γ ∞ , t < t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c (γ + γ d ) 2χ-3 f γ d γ + γ d - c (γ + γ d ) 3ν-4 (γ ∞ + γ d ) -f γ d γ ∞ + γ d , (3.81) 
t 4 n(γ c ≤ γ < γ + , t < t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c (γ + γ d ) 2χ-3 f γ d γ + γ d - c (γ + γ d ) 2χ-3 t t ini - f γ d γ + γ d t ini t , (3.82) 
t 4 n(γ τ ≤ γ < γ c , t < t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - γ + γ d γ c + γ d c f c γ d γ c + γ d + c (γ + γ d ) 3ν-4 (γ c + γ d ) -f γ d γ c + γ d - c (γ + γ d ) 2χ-3 t t ini - f γ d γ + γ d t ini t , (3.83) 
t 4 n(0 < γ < γ τ , t < t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - c c c (γ + γ d ) 2χc-3 t t ini -c f c γ d γ + γ d t ini t . (3.84) 
For later times, t ≥ t c , we get the solution

t 4 n(γ ≥ γ ∞ , t ≥ t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t , (3.85) 
t 4 n(γ c ≤ γ < γ ∞ , t ≥ t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c (γ + γ d ) 2χ-3 f γ d γ + γ d - c (γ + γ d ) 3ν-4 (γ ∞ + γ d ) -f γ d γ ∞ + γ d , (3.86) 
t 4 n(γ + ≤ γ < γ c , t ≥ t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - γ + γ d γ c + γ d c f c γ d γ c + γ d + c (γ + γ d ) 3ν-4 (γ c + γ d ) -f γ d γ c + γ d - c (γ + γ d ) 3ν-4 (γ d + γ ∞ ) -f γ d γ ∞ + γ d , (3.87) 
t 4 n(γ τ ≤ γ < γ + , t ≥ t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - γ + γ d γ c + γ d c f c γ d γ c + γ d + c (γ + γ d ) 3ν-4 (γ c + γ d ) -f γ d γ c + γ d - c (γ + γ d ) 2χ-3 t t ini - f γ d γ + γ d t ini t , (3.88) 
t 4 n(0 < γ < γ τ , t ≥ t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - c c c (γ + γ d ) 2χc-3 t t ini -c f c γ d γ + γ d t ini t . (3.89) 
Neglecting all transients and initial condition effects, these equations show that the IR cut can be viewed as the formal replacement written in Eq. (3.47).

3.B.2 Critical loop production function

For the critical case χ = χ crit and the sharp IR cut at γ ∞ , one gets during the relaxation times

t < t c t 4 n(γ ≥ γ ∞ , t < t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t , (3.90) 
t 4 n(γ + ≤ γ < γ ∞ , t < t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c(γ + γ d ) 3ν-4 g γ d γ + γ d -g γ d γ ∞ + γ d , (3.91) 
t 4 n(γ c ≤ γ < γ + , t < t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c(γ + γ d ) 3ν-4 g γ d γ + γ d -g γ d γ + γ d t ini t , (3.92) 
t 4 n(γ τ ≤ γ < γ c , t < t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - γ + γ d γ c + γ d c f c γ d γ c + γ d + c(γ + γ d ) 3ν-4 g γ d γ c + γ d -g γ d γ + γ d t ini t , (3.93) 
t 4 n(0 < γ < γ τ , t < t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - c c c (γ + γ d ) 2χc-3 t t ini -c f c γ d γ + γ d t ini t . (3.94)
Finally, for times t ≥ t c , γ + (t) becomes smaller than γ c and the complete critical IR-regularized loop distribution reads

t 4 n(γ ≥ γ ∞ , t ≥ t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t , (3.95) 
t 4 n(γ c ≤ γ < γ ∞ , t ≥ t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c(γ + γ d ) 3ν-4 g γ d γ + γ d -g γ d γ ∞ + γ d , (3.96) 
t 4 n(γ + ≤ γ < γ c , t ≥ t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - γ + γ d γ c + γ d c f c γ d γ c + γ d + c(γ + γ d ) 3ν-4 g γ d γ c + γ d -g γ d γ ∞ + γ d , (3.97) 
t 4 n(γ τ ≤ γ < γ + , t ≥ t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - γ + γ d γ c + γ d c f c γ d γ c + γ d + c(γ + γ d ) 3ν-4 g γ d γ c + γ d -g γ d γ + γ d t ini t , (3.98) 
t 4 n(0 < γ < γ τ , t ≥ t c ) = t t ini 4 a ini a 3 t 4 ini N ini γ + γ d 1 - t ini t t + c c c (γ + γ d ) 2χc-3 f c γ d γ + γ d - c c c (γ + γ d ) 2χc-3 t t ini -c f c γ d γ + γ d t ini t . (3.99) 
Chapter 4

Impact of the small-scale structure on the Stochastic Background of Gravitational Waves from cosmic strings

This chapter is a reproduction of Ref. [START_REF] Auclair | Impact of the Small-Scale Structure on the Stochastic Background of Gravitational Waves from Cosmic Strings[END_REF] of which I am the sole author. This paper is the direct continuation of Chapter 3 and my aim was to study the stochastic background of GW with the loop distributions of the previous chapter. The power-law loop production function (LPF) of Polchinski and collaborators has been known to enhance the number of very small loop in the form of an extra population of small loops. The question addressed in this chapter is whether this enhancement modifies the shape of the GW background and the bounds on the string tension Gµ. I calculate analytical templates for the evaluation of the stochastic background of GW adapted to these loop number densities and use them to identify four classes of stochastic background signals.

Abstract

Numerical simulations and analytical models suggest that infinite cosmic strings produce cosmic string loops of all sizes with a given power-law. Precise estimations of the power-law exponent are still matter of debate while numerical simulations do not incorporate all the radiation and back-reaction effects expected to affect the network at small scales. Previously it has been shown, using a Boltzmann approach, that depending on the steepness of the loop production function and the gravitational back-reaction scale, a so-called EPSL can be generated in the loop number density. We propose a framework to study the influence of this extra population of small loops on the SGWB. We show that this extra population can have a significant signature at frequencies higher than H0(ΓGµ) -1 where Γ is of order 50 and H0 is the Hubble constant. We propose a complete classification of the GW power spectra expected from cosmic strings into four classes, including the model of Blanco-Pillado, Olum and Shlaer and the model of Lorenz, Ringeval and Sakellariadou. Finally, we show that given the uncertainties on the Polchinski-Rocha exponents, two hybrid classes of GW power spectrum can be considered giving very different predictions for the SGWB.

Introduction

The first direct observation of Gravitational Waves (GW) coming from the merger of two black holes [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF] was both a wonderful check of the theory of General Relativity and the onset of GW astronomy. Since GW propagate freely throughout the Universe, they are not limited by the last scattering surface, and give us an unprecedented opportunity to look for topological defects, and in particular cosmic strings.

Cosmic strings are one-dimensional topological defects that may have formed during a symmetrybreaking phase transition in the early Universe [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF][START_REF] Hindmarsh | Cosmic Strings[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF][START_REF] Vachaspati | Cosmic Strings[END_REF]. Nambu-Goto strings are a powerful one-dimensional approximation to study these solitonic solutions on cosmological scales. The evolution of a Nambu-Goto string network in an expanding background has been studied both analytically [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF][START_REF] Vachaspati | Formation and Evolution of Cosmic Strings[END_REF][START_REF] Kibble | Evolution of a System of Cosmic Strings[END_REF][START_REF] Allen | Small-Scale Structure on a Cosmic-String Network[END_REF][START_REF] Allen | Kinky Structure on Strings[END_REF][START_REF] Austin | Evolution of Cosmic String Configurations[END_REF][START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Polchinski | Cosmic String Loops and Gravitational Radiation[END_REF][START_REF] Polchinski | Cosmic String Structure at the Gravitational Radiation Scale[END_REF][START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF][START_REF] Jose | The Number of Cosmic String Loops[END_REF][START_REF] Martins | Models for Small-Scale Structure of Cosmic Strings: Mathematical Formalism[END_REF][START_REF] Vieira | Models for Small-Scale Structure on Cosmic Strings: II. Scaling and Its Stability[END_REF][START_REF] Auclair | Cosmic String Loop Production Functions[END_REF] and through numerical simulations [START_REF] Bennett | High Resolution Simulations of Cosmic String Evolution. 1. Network Evolution[END_REF][START_REF] Albrecht | Evolution of Cosmic String Networks[END_REF][START_REF] Bennett | High Resolution Simulations of Cosmic String Evolution. 1. Network Evolution[END_REF][START_REF] Allen | Cosmic-String Evolution: A Numerical Simulation[END_REF][START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF][START_REF] Martins | Fractal Properties and Small-Scale Structure of Cosmic String Networks[END_REF][START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF] in the last decades, and is still subject of intense research.

A general result is that the network relaxes to an attractor solution known as the scaling solution and remains self-similar with the Hubble radius. If cosmic strings were formed, scaling means they survive during the whole history of the Universe and are present all over the sky. Strings can induce anisotropies on the Cosmic Microwave Background and have been searched for in the Planck data. The current CMB constraints give an upper bound for the string tension µ of Gµ < 1.5 × 10 -7 for Nambu-Goto strings and Gµ < 2 × 10 -7 for Abelian-Higgs strings, where G is Newton's constant [START_REF] Jeong | Search for Cosmic Strings in CMB Anisotropies[END_REF][START_REF] Ringeval | Cosmic Strings and Their Induced Non-Gaussianities in the Cosmic Microwave Background[END_REF][START_REF] Ade | Planck 2013 Results. XXV. Searches for Cosmic Strings and Other Topological Defects[END_REF][START_REF] Lizarraga | New CMB Constraints for Abelian Higgs Cosmic Strings[END_REF].

These bounds are calculated assuming a given scenario for the evolution of the loop number density throughout the history of the Universe (see below), and can depend a lot on those assumptions. Furthermore, each closed cosmic string loop radiates GW and the superposition of them produces a Stochastic Background of Gravitational Waves (SGWB) [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Hindmarsh | Gravitational Radiation from Kinky Infinite Strings[END_REF][START_REF] Allen | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF][START_REF] Siemens | Gravitational Radiation and the Small-Scale Structure of Cosmic Strings[END_REF][START_REF] Siemens | Gravitational Wave Bursts from Cosmic (Super)Strings: Quantitative Analysis and Constraints[END_REF] which could be detected by gravitational wave detectors. This background has been looked for in LIGO/Virgo for O1 and O2 and gives already a tighter upper bound for Gµ which is, however, very dependent on the cosmic string model used, ranging from Gµ < 1.1 × 10 -6 to Gµ < 2.1 × 10 -14 [START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF][START_REF] Abbott | Search for the Isotropic Stochastic Background Using Data from Advanced LIGO's Second Observing Run[END_REF]. In Section 4.4.3 we will explain the origin of the orders of magnitude difference between these two constraints. The most stringent and stable constraint today comes from pulsar timing experiment giving Gµ 10 -10 [START_REF] Sanidas | Constraints on Cosmic String Tension Imposed by the Limit on the Stochastic Gravitational Wave Background from the European Pulsar Timing Array[END_REF].

Building a model for the evolution of the cosmic string network is challenging, and involves both analytical modelling and numerical simulations. Nambu-Goto simulations are necessary to determine the large-scale behaviour of the loop number density, but are unable to provide a description of the smallest scales as they do not include gravitational radiation nor the back-reaction that dominates on these scales [START_REF] Jose | Gravitational Back-Reaction near Cosmic String Kinks and Cusps[END_REF][START_REF] Jose | Gravitational Backreaction Simulations of Simple Cosmic String Loops[END_REF][START_REF] Chernoff | Gravitational Backreaction on a Cosmic String: Formalism[END_REF]. One of the difficulties is the proliferation of kinks -which are discontinuities in the tangent vector of the string. Kinks are formed every time two strings intersect each other, are removed by outgoing loops and are smoothed by gravitational back-reaction. If the scaling of the large scales is today well-supported by numerical simulations, the build-up of a population of kinks has raised some doubts on the scaling properties of the small-scales [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Austin | Evolution of Cosmic String Configurations[END_REF][START_REF] Copeland | Kinks and Small-Scale Structure on Cosmic Strings[END_REF][START_REF] Allen | Small-Scale Structure on a Cosmic-String Network[END_REF][START_REF] Allen | Kinky Structure on Strings[END_REF][START_REF] Vieira | Models for Small-Scale Structure on Cosmic Strings: II. Scaling and Its Stability[END_REF][START_REF] Martins | Models for Small-Scale Structure of Cosmic Strings: Mathematical Formalism[END_REF][START_REF] Siemens | On the Size of the Smallest Scales in Cosmic String Networks[END_REF][START_REF] Martins | Fractal Properties and Small-Scale Structure of Cosmic String Networks[END_REF] and this situation cannot be settled with simulations available today. A first attempt to model analytically the number of kinks using the one-scale model was performed in Refs. [START_REF] Allen | Small-Scale Structure on a Cosmic-String Network[END_REF][START_REF] Allen | Kinky Structure on Strings[END_REF], and showed that kinks accumulate until the number of kinks reaches a scaling regime introducing another scale to the system [START_REF] Copeland | Kinks and Small-Scale Structure on Cosmic Strings[END_REF]. Models were later introduced to take into account this small-scale structure, these include the three-scale model [START_REF] Austin | Evolution of Cosmic String Configurations[END_REF], a renormalized velocity-dependent one-scale model [START_REF] Vieira | Models for Small-Scale Structure on Cosmic Strings: II. Scaling and Its Stability[END_REF][START_REF] Martins | Models for Small-Scale Structure of Cosmic Strings: Mathematical Formalism[END_REF] and the Polchinski-Rocha model based on fractal dimensions [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Dubath | Cosmic String Loops, Large and Small[END_REF][START_REF] Siemens | Gravitational Radiation and the Small-Scale Structure of Cosmic Strings[END_REF][START_REF] Polchinski | Cosmic String Loops and Gravitational Radiation[END_REF] which we will use in the following. It introduces a positive exponent χ defined later in the equation (4.1), and one of its particular prediction is that the gravitational back-reaction scale is not ΓGµt as in Refs. [START_REF] Siemens | Gravitational Radiation and the Small-Scale Structure of Cosmic Strings[END_REF][START_REF] Siemens | On the Size of the Smallest Scales in Cosmic String Networks[END_REF], but rather the smaller scale Υ(Gµ) 1+2χ t where Υ is of order 20.

The goal of this article is to provide a unified framework which can continuously describe, with a limited set of parameters, different cosmic string loop models from the literature and give predictions for the SGWB. It is built using the analytical model of Polchinski and Rocha [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Polchinski | Cosmic String Loops and Gravitational Radiation[END_REF][START_REF] Polchinski | Cosmic String Structure at the Gravitational Radiation Scale[END_REF] and later developments [START_REF] Auclair | Cosmic String Loop Production Functions[END_REF][START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF], and therefore includes the parameter χ. With this framework, we aim at gaining a deeper understanding of the SGWB and why constraints on the string tension from LIGO/Virgo are so model-dependent. We also expect to use this framework to give model-independent constraints on the string tension.

Using our unified framework, we can furthermore focus on two particular models, the BOS [103] and the LRS [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] models. The BOS model is based on the simulations conducted in Refs. [START_REF] Jose | The Number of Cosmic String Loops[END_REF][START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF] and makes the assumption that the production of loops with sizes smaller than the gravitational radiation scale tΓGµ, where Γ ≈ 50, is suppressed. On the other hand, the LRS model is based on the simulations conducted in Ref. [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF] and based on the analytical studies of Refs. [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Polchinski | Cosmic String Loops and Gravitational Radiation[END_REF] which assume that small loops are produced down to the gravitational back-reaction scale, which is smaller than the gravitational radiation scale by several orders of magnitude. As a result the two models give very different predictions for the loop number density. Relative to the first one, the second gives rise to an Extra Population of Small Loops (EPSL). The smaller back-reaction scale à la Polchinski-Rocha can be introduced in the BOS model producing also an additional population of small loops [START_REF] Auclair | Cosmic String Loop Production Functions[END_REF]. It is therefore interesting to understand its effect on the SGWB.

This paper is set up as follows. Section 4.2 describes the theoretical framework used to unify several cosmic string models found in the literature. In particular, we show that the loop number density is naturally composed of two distinct population, a SLND which is very similar to the prediction of the one-scale model, and an EPSL. Section 4.3 shows how to calculate analytically an estimate to the SGWB from cosmic strings and discusses the validity of the approximations made. Section 4.4 then combines the results to obtain the dependence of several types of GW experiments to the uncertainties on the cosmic string parameters. Finally, Section 4.5 presents our conclusions.

Theoretical framework 4.2.1 The network of infinite strings

A standard way to model the evolution of cosmic strings is to study infinite strings and closed loops as two distinct populations in interaction. These infinite strings of cosmological sizes are stretched by the expansion of the universe characterized by the scale factor a(t) which evolves as t ν where ν = 1/2 in the radiation-dominated era and ν = 2/3 in the matter-dominated era. At the same time, they lose energy by forming loops. Closed loops are formed when two infinite strings intersect each other or when one self-intersects. In principle these loops can rejoin the infinite strings or fragment into smaller loops. At the end of the fragmentation, one is left with smaller non-self intersecting long-lived loops. It is this population of long-lived non self-intersecting loops that dominates the SGWB and that we model.

In this article, we assume the inter-commutation probability to be equal to one, although some types of cosmic strings may have it strictly smaller than one [START_REF] Vilenkin | String-Dominated Universe[END_REF]. Based on analytical models [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF] and numerical simulations [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF][START_REF] Jose | The Number of Cosmic String Loops[END_REF][START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF] we expect the network of infinite strings to scale in radiationdominated or in matter-dominated era. Scaling is an attractor solution of the network in which all the relevant length scales are proportional to the horizon size d h which itself is proportional to the cosmic time t. During scaling the energy density contained in cosmic strings evolves as ρ ∞ ∝ t -2 .

The loop production function P( , t) is the number of long-lived non self-intersecting loops of invariant length per unit volume per unit time formed at cosmic time t. In scaling, t 5 P( , t) is expected to be only a function of the scaling variable γ = /t. There exist different calculations in the literature concerning the shape of this loop production function. In the one-scale model introduced in Ref. [START_REF] Kibble | Evolution of a System of Cosmic Strings[END_REF], all loops are assumed to be formed with the same size, meaning the loop production function is a Dirac-delta distribution. This typical size is then inferred from numerical simulations. In the work of [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Polchinski | Cosmic String Loops and Gravitational Radiation[END_REF], it has been argued that the loop production function is a power-law, something which was found in the simulations of [START_REF] Martins | Fractal Properties and Small-Scale Structure of Cosmic String Networks[END_REF] and is compatible with the simulations of [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF]. In such a case the loop production function is parameterized by a parameter χ and a multiplicative constant c

t 5 P( , t) = cγ 2χ-3 for γ c < γ (4.1)
where the analytical study of the small-scale structure of [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF] suggested the introduction of a gravitational back-reaction scale γ c below which the production of loops by the network is suppressed

γ c = Υ(Gµ) 1+2χ (4.2)
where Υ is of order 20. This loop production function was developed in an attempt to take into account the small-scale structure of the network. The exponent χ controls the rate at which the fractal dimension d f of the infinite strings approaches to 1 on the smallest scales [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF] 

d f -1 ∝ χ( /t) 2χ (2χ + 1)(2χ + 2) (4.3)
It was shown in Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] that the precise shape of the loop production function below γ c has only a small impact on the LND. It has been used in Refs. [START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF][START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] to calculate the loop number density and leads to a significant EPSL with respect to the one-scale scenario. To fit the numerical simulations of [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF], their analysis assumed the network to be sub-critical meaning χ < χ crit where

χ crit = 3ν -1 2 = 1/4 in radiation era 1/2 in matter era (4.4)
They were able to infer the slope of the loop production function from the loop number density and obtained χ r = 0.2 and χ m = 0.295 [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF]. Critical χ = χ crit and super-critical χ > χ crit networks were finally studied in Chapter 3. This super-critical regime is supported by the Nambu-Goto simulations of [START_REF] Jose | The Number of Cosmic String Loops[END_REF] in which they measured the loop production function and obtained χ r = 0.5 and χ m = 0.655. It is therefore important to include super-critical regimes in our framework for future applications.

Loop number density

Once the loop production function is known, it can be injected into the Boltzmann equation for the LND n( , t)

d dt a 3 n = a 3 P( , t), (4.5) 
where the effect of the expansion of the universe is taken into account by introducing the scale factor a. The loops radiate GW with a rate we assume to be constant and given by Refs. [START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF][START_REF] Allen | Gravitational Radiation from Cosmic Strings[END_REF] 

d dt = -ΓGµ ≡ -γ d (4.6)
where Γ is of order 50 [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF]. This Boltzmann equation can be solved if one assumes either radiation or matter domination and that the network of infinite strings is scaling so that the loop production function scales and is given by equation (4.1). The complete set of solutions can be found in Chapter 3. The loop number density no longer necessarily scales, unless one assumes that the loop production function is cutoff for γ ≥ γ ∞ , where γ ∞ is expected to be of the order of the Hubble horizon. The authors suggest the inclusion of a sharp infrared cutoff to regularize those new solutions and showed that the precise shape of the cutoff only has a small effect on the loop distribution. We neglect it in the remainder of this paper. Even in these critical and super-critical regimes, one can observe a large population of small loops in the LND up to a new value of χ = χ IR

χ IR = 1 + √ 12ν -3 4 = ≈ 0.68 in radiation era ≈ 0.8 in matter era > χ crit (4.7)
introducing an additional knee in the LND at

γ IR = -γ ∞ 2 -2χ 1/(2-2χ) γ (3-3ν)/(2-2χ) d (4.8)
in which is given by1 ≡ 3ν -2χ -1 (4.9)

The fact that critical and super-critical models present an extra population of small loops motivates us to study the impact of this population on the SGWB

Normalization of the loop production function

Currently, there is a debate on how to normalize the loop production function, that is the constant c in (2.1) based on measurements from numerical simulations. In this section, we will review two different approaches followed in the community. The first approach -explicitly stated in Refs. [START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF][START_REF] Jose | Energy-Conservation Constraints on Cosmic String Loop Production and Distribution Functions[END_REF], and implicitly used in the one-scale model [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF] -is to use an energy conservation equation to put an upper bound on the energy lost by the network of infinite strings into loops. Assuming that the energy density of the infinite string network ρ ∞ is lost through the expansion of the Universe, redshifting and by the formation of non-self-intersecting loops [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF] dρ

∞ dt = -2H(1 + v 2 ∞ )ρ ∞ -µ P( , t) d (4. 10 
)
where H is the Hubble parameter and v 2 ∞ is the average velocity of the infinite strings and has been measured to be 0.45 (resp. 0.40,0.35) in a flat space-time (resp. radiation dominated, matterdominated) [START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF]. On assuming that the scale factor a ∝ t ν and inserting 

ρ ∞ (t) = cµt -2 2[1 -ν(1 + v 2 ∞ )] γ∞ γc γ 2χ-2 dγ (4.11)
is the well-known attractor scaling solution ρ ∞ ∝ µt -2 . This can be compared to the values found for each era in numerical simulations and used to give an upper bound for the parameter c once χ, γ c and γ ∞ are fixed. The corresponding allowed parameter space for (c, χ) is denoted as "one-scale energy balance" in Fig. 4.1. It should be noted that numerical simulations do not include any gravitational radiation nor back-reaction, meaning that there the only equivalent to a lower cutoff in the integral of equation (4.11) is determined by the smallest length-scale set at the initialization of the simulation. If χ ≤ 1/2, the integral is dominated by this non-physical lower bound, and one expect t 2 ρ ∞ to diverge if the simulation is long enough [START_REF] Jose | Energy-Conservation Constraints on Cosmic String Loop Production and Distribution Functions[END_REF].

Another approach advocated in Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] is to consider only the large scale LND determined in simulations as trustworthy. It can be parameterized as a power-law on large-scales γ > γ d and fitted to the analytical predictions [START_REF] Auclair | Cosmic String Loop Production Functions[END_REF] t 4 n = Aγ -p .

(4.12)

In the numerical simulations of [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF], they obtain a value of A which is compatible with other numerical simulations. As shown in Section 4.2.4, the value of A is related to the parameters of the loop production function (c, χ). Hence a given value of A determines a curve in the (c, χ) which is the red line of Fig. 4.1.

While there seems to be a general agreement for the parameter A, there is a strong tension on the parameter p. Even though the uncertainty interval given for p in Ref. [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF] does not exclude the degenerate value 5/2 in the radiation era, their best fit systematically points to a higher value than 5/2 and the authors have used the best fit value p = 2.6 since then, thus selecting the green region of parameter space denoted in Fig. 4.1.

One can see that these two interpretations of two different numerical simulations do not agree on the values for the different parameters. It should be noted that the loop production function has been measured directly in Ref. [START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF] giving values for (c, χ) compatible with the energy-balance argument. The group of Ringeval and al. is currently working to improve the measurement of the loop production function in their own simulations to see whether an agreement can be met and results of [START_REF] Jose | Direct Determination of Cosmic String Loop Density from Simulations[END_REF] can be reproduced or not.

For the remainder of this paper, for a given value for χ, we will determine the normalization factor c as to fit the parameter A of the large scale LND. This assumption allows us to study both models on the same footing and is more likely to remain valid once an agreement will be found.

Decomposition of the contributions in the different eras

The aim of this study is to determine whether the EPSL described in Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] and Chapter 3 are observable features of the SGWB. To this end, we propose a natural decomposition of the loop number density into two parts, as Fig. 4.2 illustrates. The first contribution, which we called the SLND, is of the form

t 4 n(γ) = C(γ + γ d ) -p Θ(γ ∞ -γ) (4.13)
where γ ∞ is a cutoff on the sizes of the loops. It is, for instance, the result of a Dirac loop production t 5 P = cδ(γ ∞γ) [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. In this particular case C = c(γ ∞ + γ d ) 3-3ν and p = 4 -3ν. It also describes 10 -26 10 -22 10 -18 10 -14 10 -10 10 -6 10 -2 γ 10 4 where is given in equation (4.9) and c is fixed by the normalization of the loop production function, as discussed in Section 4.2.3. These approximations break down near χ crit and one should add regularization terms coming directly from the analytical expression of Chapter 3. For clarity, we omit these terms here and put the details in Appendix 4.C. On top of the SLND, we superimpose an EPSL described as a piece-wise function, motivated by the work of Chapter 3 2

t 4 n(γ) =            cγ -1 d 2 -2χ γ 2χ-2 c if γ < γ c cγ -1 d 2 -2χ γ 2χ-2 if γ c < γ < γ d 0 if γ d < γ (4.14)
This definition comes directly from the fact that we assumed a sharp cutoff at the back-reaction scale γ c . The analytic formulae would be a little more complicated with a power-law cutoff, but the result would not be qualitatively modified.

In the following, the analysis focuses on the impact of these two populations either in radiationdominated era, or in matter-dominated era. One should note that large loops produced during the radiation era can survive long enough to be an important source of GW in the matter era. They are a non-scaling population of loops and some models (see [START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF]) predict they dominate during the matter-dominated era. Their contribution to the SGWB is calculated in Appendix 4.E.3 and taken into account in our analysis. On the contrary loops of size smaller than γ d during radiation era, which is the case of the EPSL, do not survive long enough in the matter era to be a significant contribution to the SGWB.

The Stochastic Background of Gravitational Waves

Emission of gravitational waves

Cosmic string loops oscillate and emit GW. The incoherent sum of their gravitational radiation forms a SGWB which was first calculated in Ref. [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF]. The oscillation of the loops is not the only channel of gravitational radiation and burst-like events, from cusps, kinks and kink-kink collisions are also sources of gravitational radiation whose wave-forms were calculated in Refs. [START_REF] Damour | Gravitational Wave Bursts from Cosmic Strings[END_REF][START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF][START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF].

There exists two main methods to calculate the SGWB. The first consists in introducing an effective decomposition into harmonics P m , m ∈ N where the lowest modes are dominated by the oscillatory movement of the loop with typical frequency 2/ , where is the invariant length of the loop, and the higher modes are dominated by burst-like events [START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF]. Typically, P m ∝ m -q with q = 4/3 (respectively 5/3, 2) for cusps (respectively kinks and kink-kink collisions). The energy density carried by the GW per unit logarithmic interval of frequency is given by Ref. [START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF] 

ρ gw (t, f ) = Gµ 2 ∞ m=1 C m (f )P m (4.15) C m (f ) = 2m f 2 z * 0 dz H(z)(1 + z) 6 n 2m (1 + z)f , t(z) (4.16)
in which H(z) is the Hubble parameter, t(z) is the cosmic time, and f is the frequency of the wave in the detector. Details on the cosmological parameters used in this paper are summarized in Appendix 4.A. The redshift at which cosmic strings where formed is denoted by z * , and it depends on the energy scale of the phase transition determined by the string tension. Considering the phase transition happened during the radiation era and that the temperature today is T 0 , the redshift z * is given by 1 + z * ∝ 10 39/2 GeV T 0 Gµ (4.17) which we will fix to be infinity in the following.

The other method to calculate the SGWB consists in considering the sum of all burst-like events which are typically not isotropic [START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF][START_REF] Siemens | Gravitational Wave Bursts from Cosmic (Super)Strings: Quantitative Analysis and Constraints[END_REF][START_REF] Olmez | Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings[END_REF]. This approach allows one to remove events resolved inside a detector from the SGWB, as they are not part of the background any more. A detailed discussion of the differences of the two approaches can be found in Chapter 3.

In this paper we will use the first method. To keep the following analysis simple, we make the simplifying assumption that cosmic string loops emit only in their fundamental mode. The modes m > 1 are only a small modification of its qualitative properties [START_REF] Sanidas | Constraints on Cosmic String Tension Imposed by the Limit on the Stochastic Gravitational Wave Background from the European Pulsar Timing Array[END_REF][START_REF] Sousa | Full Analytical Approximation to the Stochastic Gravitational Wave Background Generated by Cosmic String Networks[END_REF] and we discuss briefly their impact Section 4.3.3. Introducing Q = 16π/(3Γ), the fraction of the critical density given by the energy of GW is

Ω GW (ln f ) = Q f H 2 0 γ 2 d ∞ 0 dz H(z)(1 + z) 6 n 2 (1 + z)f , t(z) . (4.18)

Asymptotic description of the stochastic background of GW

With the assumptions made in this framework, one can calculate the energy density power spectrum for each contribution individually, namely the contribution from SLND on one side and the contribution from the EPSL on the other side. Consider for instance the SGWB produced by the SLND in the radiation era.

In the radiation era, we can make the following approximations for the Hubble parameter and the cosmic time

H(z) = (1 + z) 2 H r (4.19) t(z) = 1 2(1 + z) 2 H r (4.20)
where H r = H 0 √ Ω rad . This allows us to simplify equation (4.18) into

Ω GW (ln f ) = 64QH r Ω rad f γ 2 d ∞ zeq dz t 4 n 4(1 + z)H r f . (4.21) 
Inserting the SLND contribution from equation (4.13) and noticing that p > 1

Ω GW (ln f ) = 4QCΩ rad (p -1) γ 3-p d 1 + 4H r (1 + z eq ) f γ d 1-p -1 + γ ∞ γ d 1-p (4.22)
We can make several remarks on this particular result that can be extended to the other contributions. The power spectrum has of two characteristic frequency scales. In particular f = 4H r (1 + z eq )γ -1 ∞ is a low frequency cutoff for the energy density. This frequency is so low with respect to the frequency range of the GW detectors that we omit it in the following. The frequency f = 4H r (1 + z eq )γ -1 d is a knee in the SGWB. These two scales are well separated and the power spectrum can be approximated by power-laws far from these frequencies.

We performed the same calculations for the other contributions, the SLND and EPSL during the radiation and the matter era in the Appendices 4.D and 4.E and summed up the asymptotic behaviour in Tables 4.1, 4.2 and 4.3. We can make the general remarks:

• a typical frequency scale at which the power spectrum presents a knee, roughly H 0 γ -1 d for the SLND and H 0 γ -1 c for the EPSL. Those two frequencies are very well separated.

• at low and high frequencies, the power spectrum behaves as a power law

• the width of the knees can be estimated from the complete calculations but is essentially small compared to the separation between H 0 γ -1 d and H 0 γ -1

c
for Gµ 1

• the power spectrum is cutoff at low frequencies, roughly H 0 γ -1 ∞ for the SLND and

H 0 γ -1 d for the EPSL Frequency range f H 0 γ -1 d H 0 γ -1 d f Radiation era Q r γ 2 d f 4(1 + z eq )H r 2-2χr Q r γ 2χr d Matter era Q m 2(2 -χ m ) γ 2 d f 3H m 2-2χm 3H m Q m γ 2χm-1 d f -1
Decaying into matter era 2Q rm (1 + z eq ) 2χr (4χ r + 1) 

γ 2 d f 3 1 + z eq H m 2-2χr 3Q rm H m (1 -3χ r ) γ 2χr-1 d f -1
= 4c r Ω rad Q (1 -χ r )(1 -4χ r ) , Q m = 27c m Ω mat Q 8(1 -2χ m ) and Q rm = 27c r Ω mat Q 8(1 -4χ r ) 1 + z eq . Frequency range f H 0 γ -1 d H 0 γ -1 d f Radiation era Qr γ 2 d f 4(1 + z eq )H r 3/2 Qr γ 1/2 d

Matter era

Qm

H m γ 2 d f 3H m Qm f -1
Decaying into matter era Qrm γ 

2 d f 3 1 + z eq H m 3/2 12H m Qrm 1 + z eq γ -1/2 d f -1
= 16c r γ -r ∞ Ω rad Q 3(4χ r -1) , Qm = 3c m Ω mat γ -m ∞ Q 8(2χ m -1) and Qrm = 27c r Ω mat γ -m ∞ Q 8(4χ r -1)
.

From these tables, one recovers that the loops produced during the radiation-dominated era give a plateau at high frequencies while all the other contributions decay as f -1 meaning that at high enough frequencies, the SGWB is a plateau where the dominant contribution comes from the radiation era. On the contrary, the low frequency region is usually dominated by GW produced during the matter-dominated era. Indeed, the contributions from radiation era and from the loops produced in radiation era and decaying into matter era have similar shapes in the low frequency range, but as Ω mat Ω rad , the latter contribution dominates. Another feature one can see is that in the sub-critical case (Table 4.1), the slopes of the SGWB from the large loop population is dependent on the values of χ r and χ m where the r index denotes radiation-domination and m matter-domination. Whereas in the super-critical regime Table 4.2, the frequency dependence of the spectrum is completely frozen.

For the EPSL, the spectrum presents a knee at the frequency scale

H 0 γ -1 c
and is completely suppressed on frequencies below H 0 γ -1 d . Therefore, any impact on the SGWB happens on frequencies higher than H 0 γ -1 d . In this frequency range, the dominant contribution coming for SLND is the radiation-domination one. 

Frequency range

f H 0 γ -1 c H 0 γ -1 c f Radiation era χ r < 1/2 Qr (1 -2χ r )(1 -χ r ) γ d f 4(1 + z eq )H r 1-2χr 2 Qr (1 -2χ r ) γ d γ 2χr-1 c Radiation era χ r = 1/2 2 Qr γ d ln γ d f 4H r (1 + z eq ) 2 Qr 1 + ln γ d γ c γ d Radiation era χ r > 1/2 Qr (2χ r -1)(1 -χ r ) γ 2χr d Qr (2χ r -1)(1 -χ r ) γ 2χr d Matter era Qm 3 -2χ m γ d f 3H m 1-2χm 3H m Qm γ d γ 2χm-2 c f -1

Beyond the fundamental mode

In Subsection 4.3.2 we have made the assumption that a loop emits GW in its fundamental mode, but this is not generally the case, especially if cusps or kinks are present on the loop [START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF][START_REF] Siemens | Gravitational Wave Bursts from Cosmic (Super)Strings: Quantitative Analysis and Constraints[END_REF].

If cusps or kinks are present, the higher modes of the spectral power P m are not zero but behave as m -q where q = 4/3 for cusps, 5/3 for kinks and 2 for kink-kink collisions. Even though there have been attempts to calculate the spectral power for all values of m [START_REF] Allen | Gravitational Radiation from Cosmic Strings[END_REF], some even taking into account the gravitational back-reaction [START_REF] Jose | Gravitational Back-Reaction near Cosmic String Kinks and Cusps[END_REF], we will make the following Ansatz for P m

P m = Γ m -q ζ(q) (4. 23 
)
where ζ is the Riemann zeta function to ensure the normalization of P m . Starting from equation (4.15) during the radiation era and injecting this spectral power P m gives

Ω GW (ln f ) = 16QH r Ω rad f γ 2 d ∞ 1 m -q ζ(q) m ∞ zeq dz t 4 n 4(1 + z)mH r f . (4.24)
For the SLND from equation (4.13)

Ω GW (ln f ) = 4QCΩ rad (p -1) γ 2 d ∞ 1 m -q ζ(q) 4H r m(1 + z eq ) f + γ d 1-p -(γ ∞ + γ d ) 1-p . (4.25) 
At high frequency and under the assumption that γ ∞ γ d , the spectral power is factorized and one recovers the result assuming only the fundamental mode

Ω GW (ln f ) = 4QCΩ rad (p -1) γ 3-p d . (4.26) 
At low frequency the picture is slightly different and produced by the EPSL during the matter era. Outside those regions, the population of small loops can be neglected.

Ω GW (ln f ) = 4QCΩ rad (p -1) γ 2 d 4H r (1 + z eq ) f 1-p ζ(p + q -1) ζ(q) . ( 4 
Even though we have only included the effects of the spectral power P m on this single case, a simple calculation shows that this result can be generalized to the other types of loops distribution we discussed so far. At high frequencies, the SGWB of GW is insensitive to the decomposition into harmonics, while at low frequencies it is multiplied by a factor

ζ(p + q -1)
ζ(q) . (4.28)

Results

The aim of this section is to characterize the shape of the SGWB, as a function of the loop production function exponents χ r and χ m . In particular, we assess the influence of the EPSL on the SGWB and divide the parameter space (χ r , χ m ) into four classes with specific features.

Influence of the Extra Population of Small Loops on the SGWB

We can split the parameter space (χ r , χ m ) in different regions depending on whether the EPSL from radiation or matter era has a significant imprint on the SGWB. Loops from the radiation era produce a plateau at high frequency in the SGWB. The extra population of small loops introduces new features in the spectrum if its plateau is higher than the plateau of SLND, meaning

3(2χ r -1/2) 2(1 -2χ r ) Υ γ ∞ 2χr-1 Γ γ ∞ (Gµ) 4χ 2 r -1/2 > 1. (4.29)
This is shown as the blue region of Fig. 4.3. In this figure we have used the regularized formulae of Appendix 4.C around χ crit . We provide an analytical expansion in terms of 1/ ln(Gµ) in Appendix 4.F for the position of the blue region. It should be noted that the EPSL produced during radiation era can be dominant at high frequencies even if the network is super-critical. This sets a new scale for χ r , between χ crit and χ IR .

For loops produced during matter era, we assume that the extra population of small loops is visible if its peak at frequency 3H m γ -1 c with amplitude

27Qc m Ω mat 8(3 -2χ m )(2 -2χ m ) γ d γ 2χm-1 c (4.30)
is bigger than all the other contributions at this frequency. This is represented as the red region in Fig. 4.3. Contrary to the loops produced during the radiation era, only a subset of the sub-critical models during matter era produce detectable features for the SGWB. From Fig. 4.3, one can see that the BOS model can be safely replaced by an effective Dirac distribution loop production function for two reasons. First, the network is super-critical during both matter and radiation era meaning the SLND is universal with slope -5/2 during the radiation era and -2 during matter era [START_REF] Auclair | Cosmic String Loop Production Functions[END_REF]. Secondly, Fig. 4.3 shows that the extra population of small loops has a negligible impact on the SGWB.

Hybrid models

Fig. 4.3 can be used to build a classification of the various SGWB in the parameter space (χ r , χ m ). Including the separation between sub-critical and super-critical regimes, there are nine different classes of spectra one can expect. For simplicity let us neglect the separation between sub-critical and super-critical and present four classes having distinctive features in terms of the SGWB.

The two first classes are represented by the well-known BOS model in Fig. 4.4a and the LRS model in Fig. 4.4b whose properties have been summed up on the figure. As we showed in the previous section, the BOS model can effectively neglect entirely the EPSL. On the contrary, it EPSL is a dominant source of GW in both the radiation and the matter era for the LRS model.

We can add to this list two new hybrid classes of models. In Fig. 4.4c, the EPSL of the radiation era can be neglected but not during the matter era, leading to peak around the frequency 3H m γ -1 c . As we explain in the following section, this peak leads to interesting features when we consider the detection by GW detectors. Fig. 4.4d shows the opposite class in which the EPSL of the matter era can be neglected but not in the radiation era, producing a small valley in the SGWB.

As we attempted to make apparent in Fig. 4.4, each of those classes have different shapes on which one can read the parameters of the cosmic string network, apart from models like the BOS models, for which the shape of the SGWB does not depend on (χ r , χ m ). 

Constraints on the string tension from GW experiments

We have not yet been able to detect any SGWB in the European Pulsar Timing Array [START_REF] Sanidas | Constraints on Cosmic String Tension Imposed by the Limit on the Stochastic Gravitational Wave Background from the European Pulsar Timing Array[END_REF] nor in the first two LIGO/Virgo runs [START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF][START_REF] Abbott | Search for the Isotropic Stochastic Background Using Data from Advanced LIGO's Second Observing Run[END_REF], giving only upper bounds on the cosmic string tension. New data analysis techniques are being devised for the next generation of GW detectors such as LISA [START_REF] Caprini | Reconstructing the Spectral Shape of a Stochastic Gravitational Wave Background with LISA[END_REF]. If ongoing and future GW experiments could potentially detect the SGWB coming from cosmic strings, it is a challenging data analysis problem to characterize the observed spectrum and distinguish between the variety of expected astrophysical and cosmological sources.

In this section, we do not pretend to tackle any of the technical difficulties of the detection of a SGWB. In particular, we will assume that we are able to separate the astrophysical foreground from the cosmological source of GW. The theoretical GW detector is modelled as having a given sensitivity curve, function of the frequency. We will make the assumption that the bandwidth of the detector is infinitely thin around a typical frequency and a given sensitivity Ω GW . This is of course a brutal assumption, however we expect that progress in the data analysis techniques can be effectively taken into account by changing the sensitivity of the instrument. As we possess analytic expressions for the stochastic background of gravitational waves within our framework, we can easily explore the parameter space (Gµ, χ r , χ m ). The result are summarized in Fig. 4.5.

As was shown in previous sections, the extra population of small loops modifies the GW spectrum at frequencies higher than 3H m γ -1 d , hence we expect it to have an impact on high frequency instruments such as LIGO/Virgo. It turns out the effect of the EPSL is quite dramatic for groundbased telescopes as illustrated in Fig. 4.5a. Not only does the constraint on Gµ spans over nearly 10 orders of magnitude on the parameter space, it also presents a folding for small values of χ m 0.3 and χ r 0.3. The folding is illustrated by a slice at constant χ m in Fig. 4.5b. This peculiar feature means that the constraint on Gµ for these models is not an upper bound on Gµ but rather that a set of intervals for Gµ being excluded. This can be understood by looking at Fig. 4.4c. The peak at f = 3H m γ -1 d caused by the EPSL produced during matter era enters within the bandwidth of the detectors for a given set of Gµ excluding another interval for Gµ.

On the contrary, experiments at lower frequencies, are not affected by the extra population of small loops and are only sensitive to the slopes of the SLND. As the shape of the SLND is universal for super-critical models we expect the detection surface to be flat in the upper-right corner for low frequency experiments. For sub-critical networks however, the shape of the spectrum is modified, and we expect the detection surface to be dependent on the values of χ r and χ m as can be seen in Figs. [START_REF] Einstein | Zur Allgemeinen Relativitätstheorie[END_REF].5c and 4.5d.

Conclusion

Our framework allowed us to produce analytic formulae for the SGWB for cosmic strings including its small-scale structure. In particular, the introduction of a back-reaction scale γ c γ d produces an EPSL which can have an important effect on the SGWB for the LRS model [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF]. We proposed a parametrization, using variables χ r and χ m , of the uncertainty on the dynamics of the infinite string network [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF][START_REF] Auclair | Cosmic String Loop Production Functions[END_REF]. We showed that the predictions of BOS [START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF] are stable if one introduces this back-reaction scale, and that the extra population of loops is subdominant in terms of GW production in this particular model. We are also in agreement with LRS [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF].

We showed the small-scale structure of cosmic strings can have a significant impact on the SGWB even outside the super-critical regime and calculated the region of the parameter space where its effect cannot be neglected. We classified the GW power spectra coming from cosmic strings into four different classes, for which we have shown two new and called hybrid models. The values of the parameters χ r and χ m for these two hybrid models are not supported by any numerical simulation, however the uncertainty on χ r and χ m motivates us to consider them.

We have also estimated systematically the constraints on the string tension Gµ of different types of GW detectors and showed that low-frequency experiments will provide more stable and model-independent bounds while ground-based detectors will be very sensitive to the details of the small-scale structure of the cosmic string network.

4.A Cosmological parameters

We assumed the Λ-CDM cosmology with the parameters in Table 4.4. For the sake of simplicity, we neglected the impact of the late-time acceleration of the Universe. We also neglected the changes in the relativistic degrees of freedom, something which would decrease slightly the high frequency plateau. The Hubble parameter is

H(z) = H 0 Ω rad (1 + z) 4 + Ω mat (1 + z) 3 (4.31)
and the cosmic time is given by 

t(z) = ∞ z dz H(z )(1 + z ) (4.32) Parameter Value h 0.678 H 0 100hkm.s -1 Mpc -1 Ω rad 9.1476 × 10 -5 Ω mat 0.308 H r H 0 √ Ω rad H m H 0 √ Ω mat

4.B Note on the decomposition of the loop number density

In the sub-critical regime, the scaling LND is given by

t 4 n(γ c ≤ γ) = c (γ + γ d ) 2χ-3 f γ d γ + γ d (4.33)
In this equation the function f is defined by

f (x) ≡ 2 F 1 (3 -2χ, ; + 1; x) ∼ 1 Γ(3ν -2χ)Γ(2χ -2) Γ(3ν -3) x -+ 2 -2χ (1 -x) 2χ-2 (4.34)
where we have expanded the hypergeometric function around unity using Gamma functions [START_REF] Solomonovich | Table of integrals, series, and products[END_REF].

Taking the limit

γ c ≤ γ γ d t 4 n(γ c ≤ γ γ d ) ∼ Γ(3ν -2χ)Γ(2χ -2) Γ(3ν -3) c γ 2χ-3 d + cγ -1 d 2 -2χ γ 2χ-2 (4.35)
where the Gamma function factor is 1 for χ = χ crit , of order unity for 0.1 < χ and eventually diverges for χ = 0. A similar approach in the super-critical regime < 0 leads to Eq. (3.57)

t 4 n(γ c ≤ γ γ d ) cγ -1 d 2 -2χ γ 2χ-2 - cγ - ∞ γ -4+3ν d (4.36)
The scale γ IR giving a knee in the LND is precisely set by the competition between these two contributions. It should be noted that the EPSL can be described uniformly in the three regimes sub-critical, critical and super-critical. This property makes it easier for us to conduct our analysis and makes this decomposition very natural.

4.C Regularization around χ crit for the standard loop number density

The decomposition for the SLND of Section 4.2.4 fails around χ crit and needs regularization terms to remain consistent. Introducing γ d , we suggest the following scheme

• for sub-critical regimes, C = c 1 - γ d γ ∞ • for super-critical regimes, C = - c γ - ∞ -γ - d leading to the limit when → 0 C = c ln γ d γ ∞ (4.37)
This regularization scheme gives a good approximation around χ crit at the expanse of underestimating the LND for large γ. We can use this approximation to calculate the stochastic background for which we give the asymptotic behaviour in Table 4.5.

Frequency range

f H 0 γ -1 d H 0 γ -1 d f Radiation era Q r γ 2 d f 4(1 + z eq )H r 3/2 Q r √ γ d Matter era Q m H m γ 2 d f 27H m Q m f -1
Decaying into matter era

Q rm 4 γ 2 d f 3 1 + z eq H m 3/2 3H m Q rm 1 + z eq γ -1/2 d f -1 Table 4.5: SLND -critical case. For simplicity Q r = 8c r Ω rad 3 ln γ∞ γ d , Q m = 3c m Ω mat 8 ln γ∞ γ d , Q rm = 27c r Ω mat 4 ln γ∞ γ d .

4.D Contributions in the radiation era

In the radiation era, we can make the following approximations:

H(z) = (1 + z) 2 H r (4.38) t(z) = 1 2(1 + z) 2 H r (4.39)
where H r = H 0 √ Ω rad . In this case,

Ω GW (ln f ) = 64QH r Ω rad f γ 2 d ∞ zeq dz t 4 n 4(1 + z)H r f . (4.40)

4.D.1 Standard loop distribution

If we consider in the radiation era a loop distribution function

t 4 n(γ) = C(γ + γ d ) -p Θ(γ ∞ -γ), (4.41) 
we can evaluate analytically Ω GW . In particular there is a typical frequency

f b = 4(1 + z eq )H r γ -1 d
which corresponds to a knee in the power spectrum which can be used to rewrite the GW power spectrum.

Ω GW (ln f ) = 4QCΩ rad (p -1) γ 3-p d 1 + 4H r (1 + z eq ) f γ d 1-p -1 + γ ∞ γ d 1-p (4.42) 

4.D.2 Extra population of small loops

We perform the same analysis but with the distribution defined in equation (4.14). Due to the piece-wise nature of the LND, we have to distinguish two cases. In this case, f a = 4(1 + z eq )H r γ -1

d and f b = 4(1 + z eq )H r γ -1 c Ω GW (ln f < ln f b ) = 4Qc r Ω rad (1 -2χ r )(2 -2χ r ) γ d γ 2χr-1 c f b f 2χr-1 - γ d γ c 2χr-1 (4.43) Ω GW (ln f > ln f b ) = 4Qc r Ω rad (1 -2χ r )(2 -2χ r ) γ d γ 2χr-1 c (2 -2χ r ) - f b f (1 -2χ r ) - γ d γ c 2χr-1 (4.44) 
One can remark several things

• when χ r < 1/2 the value of the plateau at high frequencies is given by the scale γ c

• when χ r > 1/2 the plateau is given by the scale γ d in a way very similar to the SLND In the special case where χ r = 1/2, the cutoff is of primordial importance

Ω GW (ln f < ln f b ) = 4Qc r Ω rad γ d ln f f a (4.45) Ω GW (ln f > ln f b ) = 4Qc r Ω rad γ d 1 - f b f + ln γ d γ c (4.46)

4.E Contributions during matter era

In the matter era, we can make the following approximations:

H(z) = (1 + z) 3/2 H m (4.47) t(z) = 2 3(1 + z) 3/2 H m (4.48)
where

H m = H 0 √ Ω mat . In this case, Ω GW (f ) = 81QH m Ω mat 16f γ 2 d zeq 0 dz (1 + z) -3/2 t 4 n 3 √ 1 + zH m f (4.49)
We expect two types of sources in the matter era, scaling loops formed during the matter era and remnants from the radiation era which decay with time.

4.E.1 Scaling loops during matter era -Standard loop distribution

Assuming a scaling large-loop distribution

t 4 n(γ) = C(γ + γ d ) -p Θ(γ ∞ -γ) (4.50) 
Changing variables from z to

x = 3 √ 1 + zH m f γ d we obtain Ω GW (f ) = 3 5 QCH 2 m Ω mat 8f 2 γ 1-p d 3 √ 1+zeqHm f γ d 3Hm f γ d dx (1 + x) -p x -2 Θ γ ∞ γ d -x (4.51)

Approximate solution

One can introduce the typical frequency

f c = (p + 1) 1/p 3H m γ d (4.52)
and use it to interpolate the GW power spectrum between the two solvable regimes of low and high frequency

Ω GW (ln f ) = 81QCH m Ω mat 8f γ 2-p d f f c + f p (4.

53)

Exact solution

There exists a well-defined exact primitive to this integral we can use to obtain an exact solution even around the peak.

- 2 F 1 p, 1 + p; 2 + p; - 1 x (1 + p)x p+1 (4.54)
Indeed, even though the Gauss hypergeometric function has a radius of convergence of 1, it turns out it converges for 1 x < 0.

This primitive can be used but is not very practical. However, we can use it to perform a simple comparison. We know that the region where the approximation will be the worse is around f c , we can calculate the precision of this approximation there.

In the case of the approximate solution

Ω GW (f c ) = 3 4 QCH m Ω mat f c 2 p+3 γ 2-p d (4.55)
While for the exact solution, if

f = f c Ω GW (f c ) = 3 4 QCH m Ω mat 8f c γ 2-p d       2 F 1 p, 1 + p; 2 + p; -(p + 1) 1/p - 2 F 1 p, 1 + p; 2 + p; - (p + 1) 1/p 1 + z eq 1 + z eq p+1       (4.56)
Then the ratio between the exact value divided by the approximate one in the limit z eq → ∞ is

2 p 2 F 1 p, 1 + p; 2 + p; -(p + 1) 1/p = p=2 0.82 (4.57) 
We see that the approximate solution overestimate the value of the peak.

4.E.2 Scaling loops during matter era -extra population of small loops

Assuming the EPSL distribution. Five cases happen depending on the frequencies:

f 1 = 3H m γ d , f 2 = 3H m 1 + z eq γ d (4.58) f 3 = 3H m γ c , f 4 = 3H m 1 + z eq γ c (4.59) 
Ω GW (f < f 1 ) = 0. The other results come straightforwardly

Ω GW (f 1 < f < f 2 ) = 81Qc m H m Ω mat 8(3 -2χ m )(2 -2χ m )f γ d γ 2χm-2 c f 3 f 2χm-2 1 - f 1 f 3-2χm (4.60)
we can check the continuity in f 1 . The next region gives

Ω GW (f 2 < f < f 3 ) = 81Qc m H m Ω mat 8(3 -2χ m )(2 -2χ m )f γ d γ 2χm-2 c f 3 f 2χm-2 1 - f 3 f 4 3-2χm (4.61)
One can check easily the continuity in f 2 and f 3 .

Ω GW (f 3 < f < f 4 ) = 81Qc m H m Ω mat 8(3 -2χ m )(2 -2χ m )f γ d γ 2χm-2 c f 3 f (3 -2χ m ) f f 3 + (2χ m -2) - f f 4 3-2χm (4.62) = 81Qc m H m Ω mat 8(2 -2χ m )f γ d γ 2χm-2 c (){1 - f 3 f 1 3 -2χ m (2 -2χ m ) + f f 4 3-2χm } (4.63)
here are again two formulae for the continuity in f 3 and f 4 . The last region gives

Ω GW (f 4 < f ) = 81Qc m H m Ω mat 8(2 -2χ m )f γ d γ 2χm-2 c 1 - f 3 f 4 (4.64)

4.E.3 Decaying loops from radiation era

For loops created during radiation era, the relaxation term in matter era is

t 4 n(γ) = C t t eq 4 1 + z 1 + z eq 3 t eq t p (γ + γ d ) -p Θ γ ∞ + γ d -(γ + γ d ) t t eq (4.65) = c 1 + z eq 1 + z 3-3p/2 (γ + γ d ) -p Θ γ ∞ + γ d -(γ + γ d ) 1 + z eq 1 + z 3/2 (4.66) 
Loops smaller than γ d decay very rapidly. Changing variables from z to

x = 3 √ 1 + zH m f γ d Ω GW (f ) = 81QCH m Ω mat 8f (1 + z eq ) 3/2(2-p) γ 2-p d f γ d 3H m 3p-7
x 3p-8 (1 + x) -p dx (4.67)

Approximate solution

Using the same idea as in the previous section, we introduce a new frequency f d that separates the different regimes.

f d = 3H m γ d 2p -7 3p -7 (1 + z eq ) -1/2 -(1 + z eq ) 3/2(2-p) (1 + z eq ) -(p+1)/2 -(1 + z eq ) 3/2(2-p) 1/p (4.68)
One can use to find an interpolating formula for the GW power spectrum

Ω GW (ln f ) = 81QCH m Ω mat 8f γ 2-p d f f + f d p (1 + z eq ) -1/2 -(1 + z eq ) 3/2(2-p) 3p -7 (4.69)
This expression starts to be much more complicated because we need to keep track of the two boundary terms of the integral. Different behaviour appear:

• p < 7/3 ≈ 2.33, a very soft slope, all the integrals are dominated by the lower bound • 7/3 < p < 7/2 = 3.5, the large f bound is dominated by the lower bound and the low f is dominated by the higher bound.

• 7/2 < p, a very steep slope, all the integrals are dominated by the higher bound

In practice, we will only consider p ∈ [START_REF] Einstein | On the electrodynamics of moving bodies[END_REF][START_REF] Abraham | On the Relative Motion of the Earth and the Luminiferous Ether[END_REF] There is also a well-defined primitive for this integral

x -7+3p 2 F 1 (p, -7 + 3p; -6 + 3p; -x) -7 + 3p (4.70)
but it is not very practical to use.

4.F Analytic estimation for the boundary in χ r

The question is to find for which values of χ r does the EPSL leave a signature in the SGWB. This boils down to finding the value for χ r at which the two contributions are equal. Gµ being an infinitesimal quantity, one can perform an expansion as:

χ r (Gµ) = χ + A ln(Gµ) + B ln 2 (Gµ) (4.71) 
.

Where

χ = √ 3ν -1/2 = 1 2 √ 2 . One obtains A = 1 8χ ln (1 -2χ ) (2χ + 1 -3ν)(3 -3ν) Γ γ ∞ 3ν-2 Υ γ ∞ 1-2χ (4.72) B = -A 4χ 2A + 1 2χ + 1 -3ν + 1 2 -2χ + 1 1 -2χ + ln Υ γ ∞ (4.73)
Chapter 5

Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run

This chapter is a reproduction of [START_REF] Abbott | Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run[END_REF] written by the LIGO/Virgo/KAGRA collaboration. The aim of this work was to use the data from the third observing run (O3) to put constraints on cosmic strings. I was asked to be part of the paper writing team, together with five other colleagues, and of the analysis team. Therefore, I contributed fully to writing the paper. Regarding calculations, I was responsible for the burst analysis, and I cross-checked all the results from the stochastic analysis. The code I developed for the LISA collaboration was very useful in this context, and was the basis of the new analysis (it underwent review within the collaboration). Relative to previous publications by the LVK collaboration on cosmic strings, the novelties in this paper were:

• The addition of a new class of models dubbed Models C, developed in the Chapters 3 and 4.

• The addition of the waveforms for kink-kink collisions, something relevant for very wiggly strings.

• The update of certain numerical factors in the waveforms for cusps, kinks and kink-kink collisions.

Abstract

We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 data set. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension, Gµ, as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models. Additionally, we develop and test a third model which interpolates between these two models. Our results improve upon the previous LIGO-Virgo constraints on Gµ by one to two orders of magnitude depending on the model which is tested. In particular, for the one-loop distribution model, we set the most competitive constraints to date, Gµ 4×10 -15 . In the case of cosmic strings formed at the end of inflation in the context of Grand Unified Theories, these results challenge simple inflationary models.

Introduction

The Advanced LIGO [START_REF] Aasi | Advanced LIGO[END_REF] and Advanced Virgo [START_REF]Advanced Virgo: A Second-Generation Interferometric Gravitational Wave Detector[END_REF] detectors have opened a new channel to observe the Universe through the detection of gravitational waves. In their first three observing runs (O1, O2, and the first half of O3) the LIGO Scientific Collaboration and the Virgo Collaboration have reported the detection of 50 candidate gravitational-wave events from compact binary coalescences [START_REF] Abbott | GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run[END_REF]. These detections have yielded important information on the population properties of these compact binary sources [START_REF] Abbott | Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog[END_REF]. In the future, ground-based detectors may discover new sources of gravitational waves [START_REF] Riles | Gravitational Waves: Sources, Detectors and Searches[END_REF], some of which could probe the physics of the early Universe. Cosmic strings [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF] belong to this category of sources. The third observing run (O3) started on April 1, 2019, and ended on March 27, 2020, and we use the data from the LIGO-Hanford (H1), LIGO-Livingston (L1) and Virgo (V1) interferometers to place constraints on cosmic strings. These constraints are reported in this letter.

Cosmic strings are line-like topological defects -analogues of vortices in different condensed matter systems -which are formed from spontaneous symmetry breaking phase transitions (with the additional condition that the vacuum manifold has non-contractible closed curves [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF][START_REF] Hindmarsh | Cosmic Strings[END_REF][START_REF] Vachaspati | Cosmic Strings[END_REF]). In cosmology, such phase transitions may have occurred at grand unification [START_REF] Jeannerot | How Generic Is Cosmic String Formation in Supersymmetric Grand Unified Theories[END_REF], corresponding to an energy scale of about 10 16 GeV, and more generally at lower energy scales. Thus cosmic strings, through their different observational predictions, offer a tool to probe particle physics beyond the Standard Model at energy scales much above the ones reached by accelerators. In particular, the production of gravitational waves by cosmic strings [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Sakellariadou | Gravitational Waves Emitted from Infinite Strings[END_REF] is one of the most promising observational signatures that can be accessed by ground-based detectors.

The width of the string, of the order of the energy scale of the transition, is generally negligible compared to the cosmological scales over which it extends. This limit is well described by the Nambu-Goto action. Nambu-Goto strings [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF] are parametrized by a dimensionless quantity: the string tension Gµ related to the energy scale η at which cosmic strings are formed, Gµ ∼ (η/M Pl ) 2 , where G stands for Newton's constant, M Pl is the Planck mass, µ denotes the string linear mass density1 , and we set the speed of light c = 1. In an expanding background, such as a radiation or dominated era, a cosmic string network relaxes towards a scaling solution -a self-similar, attractor solution in which all typical loop lengths are proportional to cosmic time, or equivalently they scale with the Hubble radius. Super-horizon (also called infinite) strings reach this scaling solution [START_REF] Bennett | Evidence for a Scaling Solution in Cosmic String Evolution[END_REF][START_REF] Allen | Cosmic-String Evolution: A Numerical Simulation[END_REF][START_REF] Sakellariadou | Cosmic-String Evolution in Flat Space-Time[END_REF] being stretched by the expansion of the Universe and by losing energy through the formation of sub-horizon (loop) strings, which consequently lead to a cascade of smaller loops eventually decaying through emission of gravitational waves [START_REF] Vilenkin | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Hogan | Gravitational Interactions of Cosmic Strings[END_REF][START_REF] Sakellariadou | Gravitational Waves Emitted from Infinite Strings[END_REF]. In this chapter we focus on the gravitational waves emitted by the network of loops. The length distribution of loops will therefore be crucial in determining the gravitational-wave signatures from cosmic strings. We consider different models for the loop distribution, each of which has been studied in the literature, and whose differences arise from different modelling of the production and cascade of loops from the infinite string network.

Cosmic string loops oscillate periodically in time, emitting gravitational waves with power [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF] P gw = Γ d Gµ2 and decay in a lifetime /γ d , where Γ d is a numerical factor (Γ d ∼ 50 [START_REF] Allen | Gravitational Radiation from Cosmic Strings[END_REF]), is the invariant loop length and γ d = Γ d Gµ is the gravitational-wave length scale measured in units of time 2 . The high-frequency (f 1, where f denotes frequency) gravitational-wave spectrum of an oscillating loop is dominated by bursts emitted by string features called cusps and kinks [START_REF] Damour | Gravitational Wave Bursts from Cosmic Strings[END_REF][START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF][START_REF] Damour | Gravitational Radiation from Cosmic (Super)Strings: Bursts, Stochastic Background, and Observational Windows[END_REF]. Cusps 3 are points on the string that briefly travel at the speed of light; they are generic features for smooth loops. Kinks are discontinuities in the tangent vector of the string that propagate at the speed of light. They appear in pairs as the result of collisions between two cosmic strings and are chopped off when a loop forms, hence a loop can contain any integer number of kinks. Numerical simulations of Nambu-Goto strings have shown that kinks accumulate over the cosmological evolution [START_REF] Bennett | Evidence for a Scaling Solution in Cosmic String Evolution[END_REF][START_REF] Allen | Cosmic-String Evolution: A Numerical Simulation[END_REF][START_REF] Sakellariadou | Cosmic-String Evolution in Flat Space-Time[END_REF], while the number of cusps per loop is yet undetermined.

Cusps are short-lived and produce beamed gravitational waves in the forward direction of the cusp, while left-moving (right-moving) kinks propagate around the string, creating gravitational waves with a fan-like emission (like a lighthouse) in the directions generated by right-moving (leftmoving) waves. Additionally, the collision of two kinks is expected to radiate gravitational waves isotropically. In this chapter, we report on searches for gravitational waves produced by cusps, kinks and kink-kink collisions, using O3 LIGO-Virgo data. In addition to distinct individual bursts, the incoherent superposition of weaker gravitational-wave bursts from cosmic strings produced over the history of the Universe would create a stochastic gravitational-wave background [START_REF] Siemens | Gravitational Wave Stochastic Background from Cosmic (Super)Strings[END_REF][START_REF] Damour | Gravitational Radiation from Cosmic (Super)Strings: Bursts, Stochastic Background, and Observational Windows[END_REF].

Cosmic strings emit gravitational waves with a wide range of frequencies that can be searched by other means, including the cosmic microwave background [START_REF] Pagano | New Constraints on Primordial Gravitational Waves from Planck 2015[END_REF], Big Bang nucleosynthesis [START_REF] Cyburt | New BBN Limits on Physics beyond the Standard Model from 4 He[END_REF] and pulsar timing arrays [START_REF] Paul | Gravitational-Wave Cosmology across 29 Decades in Frequency[END_REF][START_REF]The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries[END_REF][START_REF] Arzoumanian | The NANOGrav 12.5 Yr Data Set: Search for an Isotropic Stochastic Gravitational-Wave Background[END_REF], see also e.g., [START_REF] Ellis | Cosmic String Interpretation of NANOGrav Pulsar Timing Data[END_REF][START_REF] Blasi | Has NANOGrav Found First Evidence for Cosmic Strings?[END_REF][START_REF] Buchmuller | From NANOGrav to LIGO with Metastable Cosmic Strings[END_REF].

The gravitational-wave emission from cosmic string loops is introduced in Section 5.2. We consider two simulation-based models [START_REF] Jose | The Number of Cosmic String Loops[END_REF][START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] (labelled A and B) for the distribution of cosmic string loops. In addition, we develop a third model (labelled C) which interpolates between the other two models. From these, we derive gravitational-wave burst rates and the dimensionless energy density spectra in Section 5.2. Individual gravitational-wave bursts are searched in O3 data with a dedicated analysis presented in Section 5.3. The incoherent superposition of bursts from cusps, kinks and kink-kink collisions, produces a stationary and nearly Gaussian stochastic background of gravitational waves. We search O3 data for this background and the results, detailed in [START_REF] Abbott | Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run[END_REF], are summarized in Section 5.4. Both the burst and stochastic background searches yield no detection. Combining their sensitivities, we constrain two cosmic string parameters in Section 5.5: the string tension Gµ and the number of kinks per loop. We provide a table listing the meanings of symbols used in this study in Appendix 5.A.

Gravitational waves from cosmic string loops

Gravitational waves are produced by cusps, kinks and kink-kink collisions on cosmic string loops. The strain waveforms are linearly polarized and have been calculated in [START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF][START_REF] Damour | Gravitational Radiation from Cosmic (Super)Strings: Bursts, Stochastic Background, and Observational Windows[END_REF][START_REF] Damour | Gravitational Wave Bursts from Cosmic Strings[END_REF]. For a loop of length at redshift z, they are power-law functions in the frequency domain for the strain [START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF]:

h i ( , z, f ) = A i ( , z)f -qi , (5.1) 
where i = {c, k, kk} identifies the cusp, kink, and kink-kink collision cases. The power-law indices are q c = 4/3, q k = 5/3, and q kk = 2 and the signal amplitude A i is given by [106]

A i ( , z) = g 1,i Gµ 2-qi (1 + z) qi-1 r(z) , (5.2) 
where r(z) is the comoving distance to the loop. In the following we adopt the cosmological model used in [START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF]; it is encoded in three functions ϕ r (z), ϕ V (z), and ϕ t (z) (see Appendix A of [START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF]). The proper distance, the proper volume element and the proper time are given by r(z) = ϕ r (z)/H 0 , dV (z) = ϕ V (z)/H 3 0 dz, and t(z) = ϕ t (z)/H 0 respectively, where H 0 = 67.9 km s -1 Mpc -1 [START_REF] Ade | Planck 2015 Results. XIII. Cosmological Parameters[END_REF] is the present value of the Hubble constant. The prefactor g 1,i takes three different numerical values [START_REF] Jenkins | Anisotropies in the Stochastic Gravitational-Wave Background: Formalism and the Cosmic String Case[END_REF]:

g 1,c = 8/Γ 2 (1/3) × (2/3) 2/3 ≈ 0.85, g 1,k = 2 √ 2/π/Γ(1/3) × (2/3) 2/3 ≈ 0.
29, and g 1,kk = 1/π 2 ≈ 0.10, where Γ is the Gamma function [START_REF] Solomonovich | Table of integrals, series, and products[END_REF].

Cusps and kinks emit gravitational waves in highly concentrated beams. Cusps are transient and produce a beam along a single direction, while kinks propagate around the loop, beaming over a fan-like range of directions. The beam opening angle is

θ m = (g 2 f (1 + z) ) -1/3 , (5.3) 
where g 2 = √ 3/4 [START_REF] Jenkins | Anisotropies in the Stochastic Gravitational-Wave Background: Formalism and the Cosmic String Case[END_REF] is a numerical factor. To guarantee self-consistency (validity of the waveform), we require that θ m < 1rad, which is equivalent to setting a lower limit on the frequency for a fixed loop length. For kink-kink collisions the gravitational-wave emission is isotropic [START_REF] Binetruy | Gravitational Wave Bursts from Cosmic Superstrings with Y-Junctions[END_REF].

The burst rate of type i, per unit loop size and per unit volume, can be decomposed into four factors:

∂ 2 R i ∂ V 2 = 2 N i × ∂ 2 N ∂ ∂V × ∆ i × (1 + z) -1 . (5.4) 
The first factor accounts for an average of N i gravitational-wave burst events of type i produced per loop oscillation time periodicity /2. The second factor stands for the number of loops per unit loop size and per unit volume at cosmic time t

n( , t) = ∂ 2 N ∂ ∂V . ( 5.5) 
The third factor, ∆ i , reflects that only a fraction of burst events can be effectively detected due to the beamed emission of gravitational waves with respect to the 4π solid angle. The gravitationalwave emission within a cone for cusps, a fan-like range of directions for kinks and all directions for kink-kink collisions can be conveniently absorbed into a single beaming fraction expression: ∆ i = (θ m /2) 3 (2-qi) . Finally the last factor shows that the burst emission rate is red-shifted by (1 + z) -1 .
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The burst rate at redshift z is then obtained by integrating over all loop sizes,

dR i dz = f ϕ V (z) H 3 0 (1 + z) max min d 2N i n( , t)∆ i . (5.6)
Introducing the dimensionless loop size parameter γ ≡ /t, Eq. (5.6) reads:

dR i dz = φ V (z) H 3 0 (1 + z) × γmax(z) γmin(z,f ) dγ 2N i γ n(γ, z)∆ i (γ, z, f ). (5.7)
The upper bound of the integral, γ max (z), is derived by requiring the loop size to be smaller than the horizon size, i.e., γ max = 2 and 3 for radiation and matter dominated universes, respectively [START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF].

The lower bound, γ min , corresponds to the fundamental frequency of a loop, i.e., 2/ , leading to

γ min (z, f ) = 2/[f (1 + z)ϕ t (z)/H 0 ].
We consider two analytical models, labelled A [START_REF] Jose | The Number of Cosmic String Loops[END_REF] and B [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF], to describe the distribution of cosmic string loops, n(γ, z), in a scaling regime, within a Friedmann-Lemaître-Robertson-Walker metric. These models were respectively dubbed M=2 and M=3 in [START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF]. In model A the number of long-lived non-self-intersecting loops of invariant length per unit volume per unit time formed at cosmic time t, is directly inferred from Nambu-Goto simulations of cosmic string networks in the radiation and matter eras. Model B is based on a different Nambu-Goto string simulation [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF]. In this model the distribution of non-self-intersecting scaling loops is the extracted quantity. Within model B, loops are formed at all sizes following a power-law specified by a parameter taking different values in the radiation and matter eras, while the scaling loop distribution is cut-off on small scales by the gravitational back-reaction scale. There is a qualitative difference between these two models, since in the latter, tiny loops are produced in a much larger amount than in the former. In addition, we will use a new model, based on [START_REF] Auclair | Cosmic String Loop Production Functions[END_REF] and labelled C, which extends and encompasses both models A and B. Similarly to model B, model C assumes that the scaling loop distribution is a power-law, but leaves its slope unspecified. Given the wide parameter space opened by model C, we will select two samples: models C-1 and C-2. Model C-1 (respectively C-2) reproduces qualitatively the loop production function of model A (resp. B) in the radiation era and the loop production of model B (resp. A) in the matter era. We expect the addition of these two models to showcase intermediate situations in between the two simulation-inferred models A and B. The loop distribution functions n(γ, z) for the three models are given in the Appendix 4 .

For models A, B and C, the contributions from cusps, kinks and kink-kink collisions to the gravitational-wave emission must be considered altogether. Indeed, the dimensionless decay constant Γ d of a cosmic string, driving the loop size evolution, can be decomposed into three contributions:

Γ d ≡ P gw Gµ 2 = i P gw,i Gµ 2 = N c 3π 2 g 2 1,c (2δ) 1/3 g 2/3 2 + N k 3π 2 g 2 1,k (2δ) 2/3 g 1/3 2 + N kk 2π 2 g 2 1,kk , (5.8) 
4 See Appendix for more descriptions on the cosmic string loop distributions, and the burst analysis pipeline where δ = max(1, 1/(2g 2 )), since the gravitational-wave frequency cannot be smaller than the fundamental frequency of the loop, 2/ , while the condition θ m < 1 for cusps and kinks imposes f > 1/( g 2 ). Parameters N c , N k are respectively the average number of cusps and kinks per oscillation. The number of kink-kink collisions per oscillation N kk is N kk ≈ N 2 k /4 in the limit of large N k . While this equation is only an approximation when N k is order unity, the kink-kink contribution is very small in this case and the error would hardly affect our results. On the other hand, it is clear that the kink-kink collision quickly dominates the gravitational-wave production when the number of kinks increases, as it was also shown in Ref. [START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF]. In this analysis we fix N c to be 1; we comment later on the effects of increasing the number of cusps. The only free parameter is the number of kinks N k ; we consider N k = 1, . . . , 200, with the upper limit being motivated by numerical simulations of string loops that favour Γ d ∼ 50 [START_REF] Allen | Gravitational Radiation from Cosmic Strings[END_REF].

The incoherent superposition of bursts from loops with all possible sizes through the history of the Universe produces a stochastic gravitational wave background [START_REF] Christensen | Stochastic Gravitational Wave Backgrounds[END_REF]. The normalized energy density of which is defined as

Ω GW (f ) = f ρ c dρ GW df , (5.9) 
where ρ c = 3H 2 0 c 2 /(8πG). The spectrum of the stochastic gravitational wave background is [START_REF] Olmez | Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings[END_REF] Ω

GW (f ) = 4π 2 3H 2 0 f 3 i dz d h 2 i × ∂ 2 R i ∂z∂ .
(5.10)

The integration range is restricted by two requirements. First, the size of a loop is limited to a fraction of the Hubble radius, or equivalently of the cosmic time < αt(z). Second, the frequency has to be larger than the low-frequency cutoff f (1 + z) > δ. In Fig. 5.1 we show examples of gravitational-wave spectra calculated with Eq. (5.10). The two plots at the top are derived from model A and B with N k 1. The dominant contribution comes from kink-kink collisions. The lower plots show gravitational-wave spectra taking N k = 1 (left) and N k = 100 (right) and are derived from model C with a given set of parameters (see Appendix), i.e., χ rad = 0.45, χ mat = 0.295, c rad = 0.15, and c mat = 0.019; the subscripts refer to matter and radiation eras, respectively. When N k is large, the dominant contribution to the spectrum depends on the frequency band, which is a unique feature in this model. In this study, we ignore the suppression of the gravitational waves from cusps due to the primordial black hole production as pointed out in [START_REF] Jenkins | Primordial Black Holes from Cusp Collapse on Cosmic Strings[END_REF]. Including such an effect leads to lower spectrum amplitudes when N k is small and consequently reduces the sensitivity to cosmic string signals. In Fig. 5.1 we also show the 2σ power-law integrated (PI) curves [START_REF] Thrane | Sensitivity Curves for Searches for Gravitational-Wave Backgrounds[END_REF] indicating the integrated sensitivity of the O3 search [START_REF] Abbott | Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run[END_REF], along with projections for 2 years of the Advanced LIGO-Virgo network at design sensitivity, and the envisioned upgrade of Advanced LIGO, A+ [START_REF] Abbott | Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA[END_REF], sensitivity after 2 years, assuming a 50% duty cycle.

Burst Search

The O3 data set is analysed with a dedicated burst search algorithm previously used to produce LIGO-Virgo results [START_REF] Abbott | All-Sky Search for Short Gravitational-Wave Bursts in the Second Advanced LIGO and Advanced Virgo Run[END_REF][START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF][START_REF] Aasi | Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors[END_REF]. The burst analysis pipeline, as well as its O3 configuration, is described in the Appendix. The search can be summarized into three analysis steps. First, we carry out a matched-filter search using the cosmic string waveform in Eq. (5.1). Then, resulting candidates are filtered to retain only those detected in more than one detector within a time window accounting for the difference in the gravitational-wave arrival time between detectors. Finally, c rad = 0.15, c mat = 0.019; the subscripts refer to the radiation and matter eras, respectively. We also show the energy density spectra of the three different components and 2-σ power-law integrated (PI) curves [START_REF] Thrane | Sensitivity Curves for Searches for Gravitational-Wave Backgrounds[END_REF] for the O3 isotropic stochastic search [START_REF] Abbott | Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run[END_REF], and projections for the HLV network at design sensitivity, and the A+ detectors [START_REF] Abbott | Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA[END_REF]. double-and triple-coincident events are ranked using an approximated likelihood ratio Λ(x), where x is a set of parameters used to discriminate true cosmic string signals from noise [START_REF] Cannon | A Bayesian Coincidence Test for Noise Rejection in a Gravitational-Wave Burst Search[END_REF]. The burst search is performed separately for cusps, kinks and kink-kink collision waveforms, integrating T obs = 273.5 days of data when at least two detectors are operating simultaneously.

The left panel of Fig. 5.2 presents the cumulative distribution of coincident O3 burst events as a function of the likelihood ratio Λ for the cusp, kink and kink-kink collision searches. To estimate the background noise associated with each search, time shifts are applied to each detector strain data such that no real gravitational-wave event can be found in coincidence. For this study, we use 300 time-shifts, totalling T bkg = 225 years of data containing only noise coincident events, the distribution of which is represented in the left panel of Fig. 5.2 with a ±1σ shaded band. The candidate events, obtained with no time shift, are all compatible with the noise distribution within ±2σ. The cusp, kink and kink-kink collision waveforms are very similar, resulting in the loudest events being the same for the three searches. The ten loudest events were carefully scrutinized. They all originate from a well-known category of transient noise affecting all detectors, that are broadband and very short-duration noise events of unknown instrumental origin [START_REF] Abbott | Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational Wave Signal GW150914[END_REF][START_REF] Cabero | Blip Glitches in Advanced LIGO Data[END_REF].

From the non-detection result, we measure our search sensitivity to cosmic string signals by performing the burst search analysis over O3 data with injections of simulated cusp, kink and kinkcollision waveforms. The amplitudes of injected signals comfortably cover the range where none to almost all the signals are detected. Other parameters (sky location, polarization angle, highfrequency cutoff) are randomly distributed. To recover injected signals, we use the loudest-event method described in [START_REF] Brady | Upper Limits on Gravitational-Wave Signals Based on Loudest Events[END_REF], where the detection threshold is set to the level of the highest-ranked event found in the search: log 10 (Λ) 15.0, 15.1, and 15.1 for cusps, kinks, and kink-kink collisions, respectively. The resulting efficiencies ε i (A i ) as a function of the signal amplitude are presented in the right panel of Fig. 5.2. Cusp events directed at Earth with A c > 2 × 10 -20 s -1/3 would have produced a result more significant than any of the ones obtained by our search, with ∼ 90% confidence. In terms of loop proper lengths, this corresponds, for example, to loops larger than 1.7 × 10 6 (Gµ/10 -10 ) -3/2 light years at redshift 100. The expected detection burst rate is calculated from the detection efficiency:

R i = dR i dA i ε i (A i ) dA i . (5.11) 
The detectable burst rate dRi dAi is obtained from Eq. (5.7), which can be expressed in terms of amplitude using Eq. (5.2) and calculated for the lowest value of the high-frequency cutoff f * which can be most abundantly observed (see Appendix for details).

We assume that the occurrence of a detectable burst of gravitational waves follows a Poisson distribution with mean given by the estimated detection rate. For a set of parameters (Gµ, N k ), models which predict a detection rate larger than 2.996/T obs are excluded at 95%, i.e., we exclude models that predict a > 95% confidence level detection.

Stochastic Search

A search for a stochastic gravitational wave background [START_REF] Christensen | Stochastic Gravitational Wave Backgrounds[END_REF] is carried out using the LIGO and Virgo O3 data [START_REF] Abbott | Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run[END_REF] in which a correlated background in different interferometer pairs is sought. These results are combined with those from the previous two observing runs, O1 and O2 [START_REF] Abbott | Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run[END_REF][START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF][START_REF] Abbott | Search for the Isotropic Stochastic Background Using Data from Advanced LIGO's Second Observing Run[END_REF]. The results reported in [START_REF] Abbott | Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run[END_REF] assume the normalized energy density of the stochastic background, Eq. (5.9), to be a power-law α of the frequency:

Ω GW (f ) = Ω ref f f ref α , (5.12) 
where f ref denotes a reference frequency, fixed to 25 Hz, a convenient choice in the sensitive part of the frequency band. The search reported in Ref. [START_REF] Abbott | Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run[END_REF] does not detect a stochastic background, and so sets upper limits depending on the value of α. The stochastic background from cosmic strings in the LIGO-Virgo frequency band is predicted to be approximately flat, setting the upper bound Ω GW ≤ 5.8 × 10 -9 at the 95% credible level for a flat α = 0 background and using a log-uniform prior in Ω GW ; the 20-76.6 Hz band is responsible for 99% of this sensitivity.

In the present study, we perform a Bayesian analysis taking into account the precise shape of the background (see Fig. 5.1) instead of a power-law and use it to derive upper limits on the cosmic string parameters. We first calculate the log-likelihood function assuming a Gaussian distributed noise, which up to a constant is

ln L( ĈIJ a |Gµ, N k ) = - 1 2 IJ,a ( ĈIJ a -Ω (M ) GW (f a ; Gµ, N k )) 2 σ 2 IJ (f a )
.

(5.13)

Here ĈIJ a ≡ ĈIJ (f a ), and IJ are detector pairs L1-H1, L1-V1, and H1-V1. ĈIJ (f a ) and σ 2 (f a ) are, respectively, a cross-correlation estimator for the IJ detector pair and its variance at frequency f a as detailed in [START_REF] Mandic | Parameter Estimation in Searches for the Stochastic Gravitational-Wave Background[END_REF]. Following the same approach as in the O1 stochastic analysis we use the frequency bins ranging from 20 to 86 Hz [START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF]; higher frequencies do not contribute to the sensitivity. The gravitational-wave energy density, Ω (M ) GW (f a ; Gµ, N k ), is predicted by the cosmic string model M = {A, B, C} and computed with Eq. (5.10) at frequency f a .

For our Bayesian analysis, we specify priors for the parameters in the cosmic string model, i.e., p(Gµ|I Gµ ) and p(N k |I N k ). The variables I Gµ and I N k denote the information on the distributions of Gµ and N k , which are determined by theory predictions. For p(Gµ|I Gµ ), we choose a log-uniform prior for 10 -18 ≤ Gµ ≤ 10 -6 . Here the upper bound is set by the cosmic microwave background measurements [START_REF] Ade | Planck 2013 Results. XXV. Searches for Cosmic Strings and Other Topological Defects[END_REF][START_REF] Lizarraga | New CMB Constraints for Abelian Higgs Cosmic Strings[END_REF][START_REF] Henrot-Versille | Improved Constraint on the Primordial Gravitational-Wave Density Using Recent Cosmological Data and Its Impact on Cosmic String Models[END_REF][START_REF] Lazanu | Constraints on the Nambu-Goto Cosmic String Contribution to the CMB Power Spectrum in Light of New Temperature and Polarisation Data[END_REF]. The lower bound is arbitrary, chosen for consistency with the study in Ref. [START_REF] Auclair | Probing the Gravitational Wave Background from Cosmic Strings with LISA[END_REF]; we note, however, that our results remain almost unchanged if we choose a smaller value for the lower bound on Gµ. For p(N k |I N k ), we aim at constraining Gµ for each choice of N k . Therefore the prior p(N k |I N k ) is taken to be a δ-function for each value of N k . The number of kinks per loop oscillation N k being fixed, the posterior for the parameter Gµ is calculated according to Bayes' theorem:

p(Gµ|N k ) ∝ L( ĈIJ a |Gµ, N k )p(Gµ|I Gµ )p(N k |I N k ). (5.14)
We calculate 95% credible intervals for Gµ.

Constraints

We show in Fig. 5.3 the region of the Gµ and N k parameter space excluded at the 95% confidence level by the burst and stochastic searches; the number of cusps N c being fixed to 1. For the stochastic search (Section 5.4) we present constraints from the combined O1+O2+O3 data; for the burst search (Section 5.3) we derive constraints from the non-detection result using O3 data. We consider three models for the Nambu-Goto cosmic string loop distributions, dubbed A, B and C. For the latter we choose two sets of benchmark numbers: for model C-1 we set (χ r , χ m ) = (0.45, 0.295) and for model C-2 (χ r , χ m ) = (0.2, 0.45) (see the Appendix). Using model A, the derived gravitational-wave power spectrum is much weaker than in the other models, leading to weaker constraints. Model C-2 mimics the loop production function of model A in the matter era and of model B in the radiation era. In the frequency band of LIGO-Virgo, the stochastic background is dominated by the contribution from loops in the radiation era, hence models B and C-2 give similar results. Conversely, the gravitational-wave power spectrum obtained from model C-1, which mimics the loop production function of model A in the radiation era and of model B in the matter era, presents more subtle features. Larger values of Gµ do not necessarily produce larger signal amplitudes, creating structures in the constraint plot. For an analytical understanding of these findings, we refer the reader to [START_REF] Auclair | Impact of the Small-Scale Structure on the Stochastic Background of Gravitational Waves from Cosmic Strings[END_REF]. For a better understanding of the loop visibility domain in terms of redshift, we refer to the Fig. 2 of [START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF].

The stochastic analysis leads to the following constraints on Gµ. For model A, we rule out the range Gµ (9.6×10 -9 -10 -6 ), depending on the number of kinks per oscillation N k . For model B, we rule out: Gµ (4.0 -6.3) × 10 -15 . For model C-1, we rule out Gµ (2.1 -4.5) × 10 -15 , aside from a small region where N k 180. Finally, for model C-2, we rule out: Gµ (4.2 -7.0) × 10 -15 .

The burst search upper limits are not as stringent as the ones derived from the stochastic search. In particular, the constraints on the string tension for model A are too weak to be represented in the figure. The only case where the burst analysis leads to tighter constraints, is for model C-1 and for N k > 70. Note that the stochastic result combines the data of O1, O2 and O3 while the burst search only includes O3 data. We also report limits from other experiments: pulsar timing arrays (PTA) [START_REF] Paul | Gravitational-Wave Cosmology across 29 Decades in Frequency[END_REF][START_REF]The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries[END_REF], cosmic microwave background (CMB) [START_REF] Pagano | New Constraints on Primordial Gravitational Waves from Planck 2015[END_REF] and Big Bang nucleosynthesis [START_REF] Cyburt | New BBN Limits on Physics beyond the Standard Model from 4 He[END_REF]. The notch in the SWGB constraint for Model C-1 is explained in Appendix 5.D.

In the present analysis, the average number of cusps per oscillation on a loop has been set to 1. It has been shown that the number of cusps per period of string oscillation scales with the number of harmonics on the loop [START_REF] Pazouli | The Cusp Properties of High Harmonic Loops[END_REF]. Note that with many cusps on the string, the decay constant Γ d is enhanced and the lifetime of the loop is hence greatly reduced. Consequently, a high number of cusps on the loops gives qualitatively the same result as increasing the number of kinks: for model A, the constraints are weakened, whereas for models B and C the bounds are insensitive to N c ; this has been confirmed by our numerical study.

One can also compare these results with limits obtained from pulsar timing array measurements, and indirect limits from Big Bang nucleosynthesis and cosmic microwave background data [START_REF] Paul | Gravitational-Wave Cosmology across 29 Decades in Frequency[END_REF]. Note that in our analysis we do not investigate non-standard thermal history; see however, e.g. [START_REF] Cui | Cosmic Archaeology with Gravitational Waves from Cosmic Strings[END_REF][START_REF] Gouttenoire | Beyond the Standard Models with Cosmic Strings[END_REF]. Repeating the analysis done in Ref. [START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF] with N k up to 200, we find that for model A, the strongest limit comes from pulsar timing measurements, excluding string tensions Gµ 10 -10 . For model B, C-1 and C-2 the strongest upper limits are derived from this search. The next observing run, O4, will give us a new opportunity to detect signals from cosmic strings.

Conclusions

Using data from the third observing run of Advanced LIGO and Virgo, we have performed a burst and a stochastic gravitational wave background search to constrain the tension of Nambu-Goto strings, as a function of the number of kinks per oscillation, for four loop distributions. We have tested models A and B already considered in the O1 and O2 analyses [START_REF] Abbott | Search for the Isotropic Stochastic Background Using Data from Advanced LIGO's Second Observing Run[END_REF]. The current constraints on Gµ are stronger by two and one orders of magnitude for models A and B, respectively, when fixing N k = 1. In addition, we have used two variants of a new model, dubbed model C, that interpolates between models A and B. For the first time, we have studied the effect of kink-kink interactions, which is relevant for large numbers of kinks, and investigated the effect of a large number of cusps, as both effects are favoured by cosmic string simulations. In the context of cosmic strings formed at the end of an inflationary era, these results raise questions about the validity of simple inflationary models (occurred between 10 16 -10 11 GeV) in the context of Grand Unified Theories [START_REF] Jeannerot | How Generic Is Cosmic String Formation in Supersymmetric Grand Unified Theories[END_REF], unless one invokes extra fields in order to avoid cosmic string formation [START_REF] Urrestilla | D Term Inflation without Cosmic Strings[END_REF].

Given the current experimental results, it would seem important to intensify numerical and theoretical studies on cosmic strings. From a numerical point of view, the number of kinks and cusps should be determined. Concerning phenomenological aspects, new models, like model C that interpolates between model A and B, should be further explored as well as models including particle physics leading to cosmic string formation in the early Universe. On the experimental side, the sensitivity of Advanced LIGO and Virgo detectors will continue to improve [START_REF] Abbott | Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA[END_REF] and a fourth interferometer, KAGRA [START_REF] Aso | Interferometer Design of the KAGRA Gravitational Wave Detector[END_REF], will join the network.

5.A Table of quantities appearing in the chapter

The main quantities used in this analysis and their meaning are listed in Table 5 

5.B Loop distributions

For model A, the loop distribution is given by the sum of

t 4 n rad = 0.18 × 2 √ H 0 Ω 3/4 rad (γ + γ d ) 5/2 t 3/2 (1 + z) 3 Θ (0.18t -) t < t eq Θ [0.18t eq -+ γ d (t -t eq )] t > t eq
(5.15)

for loops produced during the radiation era, and

t 4 n mat = 0.27 -0.45γ 0.31 (γ + γ d ) 2 Θ(0.18 -γ)Θ [ + γ d (t -t eq ) -0.18t eq ] (5.16) 
for loops produced during the matter era. Note that t eq is the time of the radiation to matter transition and that γ d = Γ d Gµ.

Models B and C rely on the assumption that loops are produced at all sizes with a given power-law. The loop production P is parametrized by two additional parameters (c, χ)

t 5 P = c t 2χ-3 , (5.17) 
and is cutoff on scales smaller than the gravitational backreaction scale γ c ≈ 20(Gµ) 1+2χ . The parameter χ controls the tilt of the loop production function, low values of χ favour the production of very small loops whereas high values of χ can be approximated by a Dirac delta loop production function on the large scales, i.e., to the one-scale model. For model B, the loop distribution is the sum of

t 4 n rad =                0.08 (γ + γ d ) 3-2χr γ d < γ 0.08(1/2 -2χ r ) (2 -2χ r )γ d γ 2-2χr γ c < γ < γ d 0.08(1/2 -2χ r ) (2 -2χ r )γ d γ 2-2χr c γ < γ c (5.18)
for loops produced during the radiation era,

t 4 n mat =                0.015 (γ + γ d ) 3-2χm γ d < γ 0.015(1 -2χ m ) (2 -2χ m )γ d γ 2-2χm γ c < γ < γ d 0.015(1 -2χ m ) (2 -2χ m )γ d γ 2-2χm c γ < γ c (5.19)
for loops produced during the matter era, and

t 4 n rad-mat = t t eq 3 1 + z 1 + z eq 3 t 4 eq n (3) rad γt + γ d (t -t eq )
t eq (5.20)

for loops produced during the radiation era and decaying during the matter era. The subscripts rad and mat refer to the radiation-and matter-dominated eras, respectively, and γ c is the gravitational back-reaction scale.

For model C, the loop distribution can be approximated in the radiation era as

t 4 n rad = c rad 1/2 -2χ r                  (γ + γ d ) 2χr-3 - γ 2χr-1/2 ∞ (γ + γ d ) 5/2 γ d < γ γ 2χr-2 (2 -2χ r )γ d - γ 2χr-1/2 ∞ (γ + γ d ) 5/2 γ c < γ < γ d γ 2χr-2 c (2 -2χ r )γ d - γ 2χr-1/2 ∞ (γ + γ d ) 5/2 γ < γ c (5.21)
and in the matter era as

t 4 n mat = c mat 1 -2χ m                (γ + γ d ) 2χm-3 - γ 2χm-1 ∞ (γ + γ d ) 2 γ d < γ γ 2χm-2 (2 -2χ m )γ d - γ 2χm-1 ∞ (γ + γ d ) 2 γ c < γ < γ d γ 2χm-2 c (2 -2χ m )γ d - γ 2χm-1 ∞ (γ + γ d ) 2 γ < γ c (5.22)
where γ ∞ is the size of the largest loops in scaling units.

5.C The burst analysis pipeline

The cosmic string burst search pipeline is divided into three main analysis steps. First, the cosmic string gravitational waveform is searched in LIGO and Virgo data using match-filtering techniques.

A bank of waveform templates is chosen to match the expected signal in the frequency domain:

τ i,j (f ) = Af -qi Θ(f j -f )Θ(f -f l ).
(5.23)

The spectral index q i is taken from Eq. (5.1) for cusps, kinks or kink-kink collisions. The waveform frequency f is limited in range using the Heaviside function Θ. The low-frequency cut-off f l , resulting from the size of the feature producing the gravitational waves, takes values well below the sensitive band of the LIGO and Virgo detectors. We take f l = 16 Hz. The high-frequency cutoff f j is a consequence of the gravitational-wave emission being observable only within a (frequencydependent) viewing angle θ m , given in Eq. (5.3). The angle between the line of sight and the gravitational-wave direction, θ, must be smaller than θ m /2, yielding f < [2g 2 (1 + z)θ 3 ] -1 . This high-frequency cutoff is unknown and is considered as a free parameter, taking discrete values indexed by j. When searching for gravitational waves produced by cusps and kinks, we use 31 templates with high-frequency cutoff values distributed between 30 Hz and 4096 Hz and spaced in such a way that we guarantee less than 0.1 % loss in the signal-to-noise ratio due to template mismatch. The cutoffs f j are sparser at higher frequencies, with 17 templates below 100 Hz. For kink-kink collisions, the gravitational-wave radiation is isotropic and a single template covering the entire frequency band is used. The standard matched filter output for template τ i,j on the gravitational wave data h det is

ρ i,j,det (t) = 4 Re ∞ 0 τ * i,j (f )h det (f ) S n (f ) exp 2 √ -1πf t df . (5.24) 
Here, S n (f ) is the single-sided noise power spectral density of the detector. It is estimated locally over a few minutes of detector data. The normalization parameter A in each template is determined by [START_REF] Siemens | Gravitational Wave Bursts from Cosmic (Super)Strings: Quantitative Analysis and Constraints[END_REF] 4 Re

∞ 0 τ * i,j (f )τ i,j (f ) S n (f ) exp 2 √ -1πf t df = 1.
(5.25)

The O3 LIGO-Virgo dataset is analysed in five consecutive chunks of data to account for the detectors' noise evolution over the entire run. This is because the statistic we use to rank events better separates the signal from noise when the characteristics of the noise are relatively unchanged. The chunk boundaries are defined by sudden changes of sensitivity of one detector and by commissioning interventions, including the 1-month commissioning break in October 2019. The signal-to-noise ratio time-series ρ i,j,det (t) is computed for each detector, accumulating a total of 245 days, 252 days and 250 days for the L1, H1 and V1 detectors respectively. The signal-to-noise ratio time-series are required to be above 3.75 and are clustered among templates. If multiple templates trigger within a 0.1 second window, we cluster the event as a single trigger, the parameters of which are derived from the highest signal-to-noise ratio template in the cluster.

After the match-filtering step, a time coincidence is performed pair-wise between the triggers of each detector using a time window wide enough to account for the maximum light-travel time between detectors and calibration time uncertainties of 8ms. A resulting set of double-and triplecoincident events is obtained when at least two detectors are taking data in nominal conditions, yielding a total observation time of T obs = 273.5 days.

Finally, to discriminate astrophysical signals from background noise, we apply the multivariate method described in [START_REF] Cannon | A Bayesian Coincidence Test for Noise Rejection in a Gravitational-Wave Burst Search[END_REF], which uses a set of simulated cosmic string events and typical noise events to statistically infer the probability for a coincident event to be signal or noise. Hence, a likelihood ratio, Λ, is constructed with parameters characterizing the event [START_REF] Aasi | Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors[END_REF]. For the O3 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 10 2 10 4 10 6 10 8 10 10 analysis, we introduce for the first time the event duration as a new discriminating variable. The event duration is defined as the duration for which ρ i,j,det (t) remains above threshold considering all templates j and using a tolerance of 100 ms. Using this parameter, coupled to the signal-to-noise ratio, allows us to reject a large population of long-duration and low signal-to-noise ratio transient noise events contributing to the search background.

5.D Feature in SGWB constraint for Model C-1

The stochastic gravitational-wave constraint for model C-1 has a special feature, shown in Fig. 5.3. The appearance of this notch, when N k > 70, is induced by the unique behaviour of the gravitationalwave spectrum in this model. In Fig. 5.4 we compare the corresponding spectrum for different choices of Gµ with N k fixed to be 90. The cosmic string network produces a stochastic background in a wide frequency range, while LIGO/Virgo is only sensitive to a very narrow frequency window labelled by the grey band. As Gµ increases, the stochastic power spectrum within the LIGO/Virgo window does not change monotonically. This leads to a non-exclusion in a small range of Gµ when N k > 70. The exact location of the notch is determined through a detailed Bayesian analysis presented in the main text.

Chapter 6

Particle emission and gravitational radiation from cosmic strings: observational constraints

This chapter is a reproduction of Ref. [START_REF] Auclair | Particle Emission and Gravitational Radiation from Cosmic Strings: Observational Constraints[END_REF] written in collaboration with Danièle Steer and Tanmay Vachaspati. The discrepancies between the Nambu-Goto (NG) description of cosmic strings -which predicts long-lived loops -and the numerical simulations of field theory strings -in which loop decay rapidly into particles-has been a matter of debate for a long time in the community. Our aim for this work was to bridge the gap between these two descriptions using a Boltzmann approach and modifying the evolution laws for isolated loops. Our main assumption is that isolated loops on large scales behave according to the NG equations of motion, but decay rapidly below a certain scale due to particle emission from cusps and kink-kink collisions. This point of view was motivated by a series of numerical simulations in Ref. [START_REF] Matsunami | Decay of Cosmic String Loops Due to Particle Radiation[END_REF] of which Tanmay Vachaspati was an author. This paper takes advantage of the experience with manipulating the Boltzmann equation I gained when working on Chapter 3. This is also the first chapter of my PhD interested in different signatures than the GW signatures. I have contributed to all the sections of this chapter.

Abstract

We account for particle emission and gravitational radiation from cosmic string loops to determine their effect on the loop distribution and observational signatures of strings. The effect of particle emission is that the number density of loops no longer scales. This results in a high frequency cutoff on the stochastic gravitational wave background, but we show that the expected cutoff is outside the range of current and planned detectors. Particle emission from string loops also produces a diffuse gamma ray background that is sensitive to the presence of kinks and cusps on the loops. However, both for kinks and cusps, and with mild assumptions about particle physics interactions, current diffuse gamma-ray background observations do not constrain Gµ.

Introduction

Most often the dynamics of local cosmic strings formed in a phase transition in the early universe (see [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF][START_REF] Vachaspati | Cosmic Strings[END_REF][START_REF] Hindmarsh | Cosmic Strings[END_REF] for reviews) is described by the Nambu-Goto (NG) action. This approximation is valid when the microscopic width of the string

w ∼ µ -1/2 ∼ 1/η (6.1)
(with µ the string tension and η the energy scale of the phase transition), is very small relative to its characteristic macroscopic size -a situation which is well satisfied in the early universe. Closed loops of NG strings loose energy slowly by radiating gravitational waves, and as a result NG string networks contain numerous loops whose decay generate a stochastic gravitational wave background (SGWB) ranging over a wide range of frequencies [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. Depending on the details of the particular cosmic string model, the corresponding constraints on the dimensionless string tension Gµ from the SGWB are Gµ 10 -7 at LIGO-Virgo frequencies [START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF], Gµ 10 -11 at Pulsar frequencies [START_REF] Jose | New Limits on Cosmic Strings from Gravitational Wave Observation[END_REF], whereas at LISA frequencies one expects to reach Gµ 10 -17 (see Chapter 2). On the other hand, at a more fundamental level, cosmic strings are topological solutions of field theories. Their dynamics can therefore also be studied by solving the field theory equations of motions. In studies of large scale field theory string networks [START_REF] Vincent | Numerical Simulations of String Networks in the Abelian Higgs Model[END_REF][START_REF] Hindmarsh | Abelian Higgs Cosmic Strings: Small Scale Structure and Loops[END_REF][START_REF] Lizarraga | New CMB Constraints for Abelian Higgs Cosmic Strings[END_REF][START_REF] Hindmarsh | Scaling from Gauge and Scalar Radiation in Abelian Higgs String Networks[END_REF], loops are observed to decay directly into particles and gauge boson radiation on a short time scale of order of the loop length. Hence, field theory string network simulations predict very different observational consequences -in particular no SGWB from loops.

Since field theory and Nambu-Goto strings in principle describe the same physics, and hence lead to the same observational consequences, this is an unhappy situation. Based on high resolution field theory simulations, a possible answer to this long-standing conundrum was proposed in Ref. [START_REF] Matsunami | Decay of Cosmic String Loops Due to Particle Radiation[END_REF]. In particular, for a loop of length containing kinks, a new characteristic length scale 0 = k was identified, and it was shown that if k gravitational wave emission is the dominant decay mode, whereas for smaller loops k particle radiation is the primary channel for energy loss. That is,

d dt =    -γ d , k -γ d k , k , (6.2) 
where γ d ≡ ΓGµ with Γ ∼ 50 the standard constant describing gravitational radiation from cosmic string loops [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Burden | Gravitational Radiation from a Particular Class of Cosmic Strings[END_REF][START_REF] Garfinkle | Radiation from Kinky, Cuspless Cosmic Loops[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF]. Notice that Nambu-Goto strings correspond to k → 0; and if particle radiation is dominant for all loops, k → ∞. In practise k is neither of these two limiting values, and in Ref. [START_REF] Matsunami | Decay of Cosmic String Loops Due to Particle Radiation[END_REF] was estimated (for a given class of loops with kinks) to be given by

k ∼ β k w ΓGµ (6.3)
where w is the width of the string, Eq. (6.1), and the constant β k ∼ O(1). Note that the simulations of [START_REF] Matsunami | Decay of Cosmic String Loops Due to Particle Radiation[END_REF] consider the oscillations of loops with kinks over their entire lifetime. The results show episodic emission, with the net result of all the dynamics being the 1/ behaviour of Eq. (6.2).

If a loop contains cusps, then one expects the above to be modified to [START_REF] Blanco-Pillado | The Form of Cosmic String Cusps[END_REF][START_REF] Olum | Field Theory Simulation of Abelian Higgs Cosmic String Cusps[END_REF] 

d dt =    -γ d , c -γ d c , c (6.4) 
where

c ∼ β c w (ΓGµ) 2 (6.5)
with β c ∼ O(1). We note that this 1/ √ dependence is less certain since, to the best of our knowledge, no field theory simulations of loops with cusps over their entire lifetime exist. 1 The aim of this paper is to determine the observational effects -and corresponding constraints on Gµ -of a finite, fixed, value of k or c . A first immediate consequence of the presence of the fixed scale is that the distribution of loops n( , t), with n( , t) d the number density of loops with length between and + d at time t, will no longer be scaling. That is, contrary to the situation for NG strings, the loop distribution will depend explicitly on t as well as the dimensionless variable γ = /t. We determine this non-scaling loop distribution N (γ, t) in Section 6.2, taking into account exactly (and for the first time) the back-reaction of particle emission on the loop distribution.

We then study the consequence of the non-scaling distribution of non-self intersecting loops on the stochastic GW background, determining the fraction of the critical density in GWs per logarithmic interval of frequency,

Ω GW (t 0 , f ) = 8πG 3H 2 0 f dρ gw df , (6.6) 
where H 0 is the Hubble parameter, and the dρ gw /df factor is the energy density in gravitational waves per unit frequency f observed today (at t = t 0 ). A scaling distribution of NG loops gives a spectrum which is flat at high frequencies [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]; we will show below that a consequence of the nonscaling of the loop distribution is the introduction of a characteristic frequency f * , with Ω GW (f > f * ) → 0. The precise value of f * depends on k or c , as well as Gµ. For cusps and kinks with c and k given respectively by Eqs. (6.2) and (6.4), the characteristic frequency f * is outside the LIGO and LISA band provided Gµ 10 -17 , and so in this case the new cutoff will only be relevant for very light strings but for which the amplitude of the signal is below the observational thresholds of planned gravitational wave detectors. In Section 6.5 we turn to particle physics signatures. At lower string tensions Gµ, the gravitational signatures of strings weaken, while the particle physics ones are expected to increase. Following [START_REF] Bhattacharjee | Cosmic Strings and Ultrahigh-Energy Cosmic Rays[END_REF], we focus on so-called "top down" models for production of ultra-high energy cosmic rays in which heavy particles, namely the quanta of massive gauge and Higgs field of the underlying (local) field theory trapped inside the string, decay to give ultra-high energy protons and gamma rays. We focus on the diffuse gamma ray flux which at GeV scales is constrained by Fermi-LAT [START_REF] Abdo | The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived from First-Year Fermi Large Area Telescope Data[END_REF]. However, taking into account back-reaction of the emitted particles on the loop distribution we find that current gamma ray observations do not lead to significant constraints. (Early studies on the production of cosmic rays assumed NG strings and particle emission rates 1 Ref. [START_REF] Olum | Field Theory Simulation of Abelian Higgs Cosmic String Cusps[END_REF] studies a single cusp on a field-theory string, and gives the energy emitted per cusp, from which one deduces the 1/ √ behaviour. It shows that the shape of the string is modified after the cusp event, and argues that further smaller cusps will be formed in future loop oscillations. What we assume above is that the net result is an 1/ √ l dependence.

that were based on dynamics without taking back-reaction into account. See Refs. [START_REF] Bhattacharjee | Cosmic Strings and Ultrahigh-Energy Cosmic Rays[END_REF][START_REF] Macgibbon | High-Energy Neutrino Flux from Ordinary Cosmic Strings[END_REF][START_REF] Macgibbon | Gamma-Ray Signatures from Ordinary Cosmic Strings[END_REF][START_REF] Brandenberger | Gamma-Ray Bursts from Ordinary Cosmic Strings[END_REF][START_REF] Cui | Non-Thermal Dark Matter from Cosmic Strings[END_REF] and [START_REF] Bhattacharjee | Cosmic Strings and Ultrahigh-Energy Cosmic Rays[END_REF] for a review. Other work has focused on strings with condensates, e.g. [START_REF] Santana Mota | Big-Bang Nucleosynthesis and Gamma-Ray Constraints on Cosmic Strings with a Large Higgs Condensate[END_REF][START_REF] Vachaspati | Cosmic Rays from Cosmic Strings with Condensates[END_REF][START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF], or strings coupled to other fields such as Kaluza-Klein or dilaton fields [START_REF] Dufaux | Cosmic Super-Strings and Kaluza-Klein Modes[END_REF][START_REF] Damour | Cosmic Strings and the String Dilaton[END_REF].) This paper is organized as follows. In Section 6.2 we determine the effect of an -dependent energy loss d dt = -γ d J ( ), (6.7)

on the loop distribution n( , t). The function J ( ) will initially be left arbitrary. Specific cases corresponding to (i) NG loops with J = 1; (ii) loops with kinks, see Eq. (6.2), and (iii) loops with cusps, see Eq. ( 6.4) are studied in subsections 6.3.1-6.3.3. Given the loop distribution, we then use it to calculate the SGWB in Section 6.4, and the predicted diffuse gamma ray flux in 6.5. We conclude in Section 6.6 by discussing the resulting experimental constraints on Gµ.

The loop distribution

All observational consequences of string loops depend on n(t, ) d , the number density of non selfintersecting loops with length between and + d at time t. In this section we calculate n(t, ) given (6.7), that is we take into account the back-reaction of the emitted particles on the loop distribution. As noted in the introduction, the existence of the fixed scale k or c means that the loop distribution will no longer scale, that it will no longer be a function of the dimensionless variable γ ≡ /t.

Boltzmann equation and general solution

The loop distribution satisfies a Boltzmann equation which, taking into account the -dependence of ˙ (that is the flux of loops in -space), is given by Ref.

[96]

∂ ∂t a 3 n + ∂ ∂ t d dt a 3 n = a 3 P (6.8)
where a(t) is the cosmic scale-factor, and the loop production function (LPF) P(t, ) is the rate at which loops of length are formed at time t by being chopped of the infinite string network. On substituting (6.7) into Eq. (6.8) and multiplying each side of the equation by J ( ), one obtains

1 γ d ∂ ∂t g(t, ) -J ( ) ∂ ∂ t g(t, ) = a 3 J ( )P(t, ), (6.9) 
where g(t, ) ≡ γ d J ( )a 3 (t)n(t, ). (6.10)

In order to solve (6.9), we first change variables from (t, ) to

τ ≡ γ d t , ξ ≡ d J ( ) . (6.11) 
Notice from (6.7) and (6.11) that for a loop formed at time t i with length i , its length at time t satisfies ξ( ) + γ d t = ξ( i ) + γ d t i . (6.12)

In terms of these variables Eq. (6.9) reduces to a wave equation with a source term

∂ ∂τ ξ g(τ, ξ) - ∂ ∂ξ τ g(τ, ξ) = S(τ, ξ), (6.13) 
where S(τ, ξ) = a 3 (τ )J (ξ)P(τ, ξ).

We now introduce the light-cone variables 2u ≡ τξ , 2v ≡ τ + ξ, (6.14) so that the evolution equation simply becomes

∂ ∂u v g(u, v) = S(u, v), (6.15) 
which is straightforward to integrate. In the following we neglect any initial loop distribution at initial time t ini (since this is rapidly diluted by the expansion of the universe), so that the general solution of (6.15), and hence the original Boltzmann equation Eq. (6.8), is

g(u, v) = u -v du S(u , v). (6.16) 
Finally one can convert back to the original variables n( , t) using (6.10) to find

n(t, ) = 1 γ d J ( )a 3 (t) u(t, ) -v(t, ) du a 3 u , v(t, ) J (u , v(t, ))P(u , v(t, )) (6.17) 
where v(t, ) is obtained from Eqs. (6.11) and (6.14). Notice that J appears in two places: as an overall factor in the denominator, as well as in the integrand.

Solution for a δ-function loop production function

We now assume that all loops are chopped off the infinite string network with length αt at time t. This assumption, which has often been used in the literature, will lead to analytic expressions. The value α ∼ 0.1 is suggested by the NG simulations of [START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF][START_REF] Jose | The Number of Cosmic String Loops[END_REF], particularly in the radiation era. However, one should note that other simulations [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF] are consistent with power-law loop productions functions [START_REF] Auclair | Cosmic String Loop Production Functions[END_REF][START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF], which have also been predicted analytically [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Polchinski | Cosmic String Structure at the Gravitational Radiation Scale[END_REF][START_REF] Dubath | Cosmic String Loops, Large and Small[END_REF]]. These will be considered elsewhere. Since αt ( k , c ) for α ∼ 0.1, we expect that particle radiation from infinite strings will not affect the (horizon-size) production of loops from the scaling infinite string network, and hence we consider a loop production function of the form

P(t, ) = Ct -5 δ t -α (6.18)
where the constant C, which takes different values in the radiation and matter eras, will be specified below. Substituting into (6.16), assuming a ∝ t ν , (with ν = 1/2 in the radiation era, and ν = 2/3 in the matter era) gives

g(u, v) = C u -v du J [ (u , v)]t(u , v) -5 a[t(u , v)] 3 δ (u , v) t(u , v) -α .
In order to evaluate this integral, in which v = v(t, ) is fixed, let us denote the argument of the δ-function by

y ≡ (u , v) t(u , v) -α.
For the given v, the argument vanishes (y = 0) for some u (v), that we will denote u (v) and which therefore satisfies (u , v) = αt(u , v). (

Let us rewrite this more simply as = αt where ≡ (u , v) = (v) and t ≡ t(u , v) = t (v). Now, from the v equation in (6.14), one has 2v = γ d t (v) + ξ( (v)). Furthermore -since our final goal is to write the loop distribution in terms of (t, ) (rather than v) -we note from the same equation that v is related to (t, ) by 2v = γ d t + ξ( ). Thus t (t, ), which will be required below, is the solution of

γ d t + ξ(αt ) = γ d t + ξ( ), (6.20) 
which physically is simply relating the length of the loop αt at its formation time t , with its length at time t, see Eq. (6.12). The final step needed to evaluate the integral in Eq. (6.2.2) is the Jacobian of the transformation from u to y which, on using (6.14), is given by

∂ ∂u v (y(u , v)) = - γ d J ( (u , v))t(u , v) + (u , v) γ d t(u , v) 2 .
Evaluating this at u = u and using = αt gives

∂ ∂u v (y(u , v)) = - γ d J [αt (t, )] + α γ d t (t, ) . 
Having now expressed all the relevant quantities in terms of (t, ), one can combine the above results and use the definition of g in terms of n(t, ) in Eq. (6.10) to find

t 4 n = C 1 J ( ) J (αt ) α + γ d J (αt ) t t -4 a(t ) a(t) 3 . (6.21)
This equation, which is exact, is the central result of this section and gives the loop distribution for any form of energy loss d /dt = -γ d J ( ), provided the loop production function is a δ-function. It generalizes and extends other approximate results which may be found in the literature.

For loops that are formed in a given era (either radiation or matter domination) and decay in the same era, the above solution reduces to

t 4 n = C 1 J ( ) J (αt ) α + γ d J (αt ) t t 3ν-4 . (6.22)
In the matter era, however, there also exists a population of loops which were formed in the radiation era, where C = c rad , and decay in the matter era. Indeed, this population generally dominates over loops formed in the matter era. From (6.21) one can find a general expression for the distribution at any redshift z, provided the loops were formed in the radiation era (ν = 1/2): it is given by

t 4 n(t, ) = c rad 1 J ( ) J (αt ) α + γ d J (αt ) t t -5/2
(1 + z(t)) 3 2 Ω rad H 0 t 3/2 (6.23) This reduces to (6.21) in the radiation era, and has the correct scaling in the matter era.

In the following we use standard Planck cosmology with Hubble constant H 0 = 100hkm/s/Mpc, h = 0.678, Ω mat = 0.308, Ω rad = 9.1476 × 10 -5 and Ω Λ = 1 -Ω mat -Ω rad [START_REF] Aghanim | Planck 2018 Results. VI. Cosmological Parameters[END_REF]. We model the varying number of effective degrees of freedom in the radiation era through 4 where G(z) is directly related to the effective number of degrees of freedom g * (z) and the effective number of entropic degrees of freedom g S (z) by Ref. [START_REF] Binetruy | Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources[END_REF] G(z) = g * (z)g 

H(z) = H 0 H(z) with H(z) = Ω Λ + Ω mat (1 + z) 3 + Ω R G(z)(1 + z)
G(z) =      1 
for z < 10 9 , 0.83 for 10 9 < z < 2 × 10 12 . 0.39 for z > 2 × 10 12 .

(6.25)

Loop distributions for particle radiation from cusps and kinks

Given a specific form of J ( ), the loop distribution n( , t) is given by (6.21), where t (t, ) is obtained by solving (6.20). The existence or not of an analytical solution depends on the form of J ( ). In this section we consider three cases:

1. Nambu-Goto loops: here ˙ = -γ d so that J = 1;

Loops with kinks:

The asymptotic behaviour of J ( ) is given in Eq. (6.2). This can be captured, for instance, by J 1 = 1 + k / or alternatively by

J k = 1 + k 2 . ( 6.26) 
This second form gives a simpler analytic expression for t , and we work with it below.

(We have checked that the differences in predictions arising from the choice of J 1 or J k are negligible.)

3. Loops with cusps: Following Eq. ( 6.4), we take

J c = 1 + c 3/2 1/3 , (6.27) 
which has the correct asymptotic behaviour and also leads to analytical expressions. An alternative and seemingly simpler, form J = 1 + c / does not give analytical expressions for n(t, ).

We now determine the corresponding loop distribution in scaling units, namely in terms of the variables

γ ≡ t , γ k (t) ≡ k t , γ c (t) ≡ c t , (6.28) 
and determine N (t, γ) ≡ t 4 n(t, γ). (6.29)

NG strings

A first check is that the above formalism yields the well-known, standard, loop distribution for NG strings (J = 1). Eq. ( 6.11) yields ξ = , and from Eq. ( 6.20) it follows that

t t = γ + γ d α + γ d .
Hence, from Eq. (6.22)

N N G (t, γ) = C (α + γ d ) 3(1-ν) (γ + γ d ) 4-3ν , (6.30)
which is the standard scaling NG loop distribution for a delta-function loop production function [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. In the radiation/matter eras, and on the scales α γ d observed in simulations, comparison with the numerical results of [START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF][START_REF] Jose | The Number of Cosmic String Loops[END_REF][START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF] sets the value of C to respectively c rad α 3/2 0.18 (radiation era) c mat α 0.27 (matter era)

The scaling distribution Eq. (6.30) is shown in the black (solid) curve in Fig 6 .1, where we have taken α = 0.1, γ d = 10 -6 and ν = 1/2 (radiation era).

Loops with kinks

From Eq. (6.11), with J k given Eq. (6.26), we now have ξ( ) = 2 + 2 k . Thus, from Eq. (6.20), t satisfies a quadratic equation with solution

t t = -γ γ d α + γ2 -γ 2 k 1 -γ d α 2 α 1 -γ d α (6.31)
where γ k (t) is given in (6.28) and

γ(t, γ) ≡ γ d + γ 2 k (t) + γ 2 (6.32)
Since α ∼ 0.1 and γ d ≡ ΓGµ 10 -6 (from cosmic microwave background constraints on cosmic strings [START_REF] Ade | Planck 2013 Results. XXV. Searches for Cosmic Strings and Other Topological Defects[END_REF]) in our analytical expressions below we ignore terms in γ d /α so that (αt /t) 2 = γ2 -γ 2 k (t). (This approximation was not used in our numerical calculations.) Thus, from Eq. (6.21) we find, assuming α γ d ,

N (t, γ) = Cα 3(1-ν) γ2 (t, γ) 1 + γ 2 k (t)/γ 2 1/2 γ2 (t, γ) -γ 2 k (t) 3ν-5 2
where γ ≤ α, (6.33) This distribution, in the radiation era, is plotted in Fig. 6.1 for illustrative values of γ k (t), with γ d = 10 -6 , α = 0.1.

The important qualitative and quantitative features to notice are the following:

• The existence of the fixed scale k gives rise to a non-scaling distribution: N is explicitly t-dependent.

• When γ k → 0, namely when t → ∞, Eq. (6.33) reduces to the standard scaling NG loop distribution given in Eq. (6.30) (in the limit α γ d ).

• For γ γ k (t), the loop distribution is scaling since γ ∼ γ + γ d , so that

N (t, γ) Cα 3(1-ν) (γ + γ d ) 3ν-4 . (6.34)
This behaviour is clear in Fig. 6.1 where for γ γ k (t) the various curves coincide with the NG curve. Hence, for loops of these lengths, gravitational radiation is important but particle radiation plays no role. Furthermore

-when γ d γ γ k , the distribution is flat, see Fig 6.1 dashed-red curve. -when γ (γ d , γ k ) N drops off as γ 3ν-4
, as for NG loops, a dependence which is simply due to the expansion of the universe.

• For γ γ k (t), the distribution no-longer scales because of particle radiation. Indeed, γ ∼ γ k (t) + γ d so that .35) This linear dependence on γ for γ γ k is visible in Fig. 6.1. Notice that when γ d γ k , there is no plateau in the distribution, which goes from the linear behaviour Eq.(6.35) to the scaling behaviour Eq. (6.34), at a value of γ obtained by equating these two equations, namely

N Cα 3(1-ν) γ 3ν-5 2 d γ γ k (t) (2γ k (t) + γ d ) 3ν-5 2 (γ k (t) + γ d ). ( 6 
γ * k (t) 2γ k γ d .
This is clearly visible in the green-dotted curve in Fig. 6.1.

When γ k (t) γ d , an excellent approximation to the distribution is

N (γ, t) Cα 3(1-ν) 1 J (γ, t) (γ + γ d ) 3ν-4 . (6.36)
where, for the kinks considered here,

J (γ, t) = 1 + γ k (t) γ 2 .
On the other hand, when γ k (t) ≥ γ d the distribution changes behaviour, and for γ k (t) γ d its amplitude is significantly suppressed due to particle emission. Indeed, when γ = γ * k (t), which is at the maximum of N (see green curve, For t t k , particle emission is dominant, γ k (t) ≥ γ d , and the distribution is suppressed. Using k given by Eq. (6.3),

t k = β k t pl Γ 2 (Gµ) 5/2
β k t eq 2.5 × 10 -24 Gµ

5/2
or in terms of redshift z k z eq Gµ 2.5 × 10 -24

5/4 1 √ β k (6.38)
where z eq Ω mat /Ω rad ∼ 3367. The LH panel of Fig. 6.2 shows the loop distribution for different redshifts for k given in Eq. ( 6.3) and β k = 1. The effect of the suppression of the loop distribution at z z k on the SGWB will be discussed in Section 6.4.

Loops with cusps

For loops with cusps, where J = J c given in Eq. (6.27), the analysis is very similar. We only give the salient features. As for kinks (see Eq. 6.37), one can define a characteristic time through

γ d = γ c (t), namely t c ≡ c γ d , (6.39) 
and again, as for kinks, when t t c the effects of particle radiation are more important and the loop distribution is suppressed. For c given in Eq. (6.5), we have For the relevant range, namely Gµ < 10 -6 , we have z c < z k and hence the observational consequences of cusps, both on the SGWB and the diffuse Gamma-ray background, are expected to be more significant than those of kinks -since, as discussed above, the loop distribution is suppressed when z < (z c , z k ), see Fig. 6.2.

t c = β c t pl Γ 3 (Gµ)
The explicit γ-dependence of the distribution is the following. First, substituting J c in the definition of ξ(γ) and t * , Eqs.(6.11) and (6.20) respectively, we find

ξ( ) = 3/2 + 3/2 c 2/3 , αt t 3/2 = γ d + γ 3/2 + γ 3/2 c 2/3 3/2 -γ 3/2 c for α γ d .
It then follows from Eq. ( 6.22) that the resulting distribution again scales for γ γ c where it is given by Eq. (6.34); and for γ γ d , N ∝ √ γ. When γ c γ d , we find

N ∝ γ 3ν-4 (γ γ * c ) √ γ (γ γ * c ) where γ * c (γ d √ γ c ) 2/3 .

The Stochastic Gravitational Wave Background

The stochastic GW background Ω GW (t 0 , f ) given in (6.6) is obtained by adding up the GW emission from all the loops throughout the whole history of the Universe which have contributed to frequency f . Following the approach developed in Refs. [START_REF] Caldwell | Cosmological Constraints on Cosmic String Gravitational Radiation[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF]]

Ω GW (ln f ) = 8πG 2 µ 2 f 3H 2 0 ∞ j=1 C j (f )P j , (6.42) 
where

C j (f ) = 2j f 2 z friction 0 dz H(z)(1 + z) 6 n 2j (1 + z)f , t(z) , (6.43) 
and z friction is the redshift below which friction effects on the string dynamics become negligible [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF] z friction z eq (4.4 × 10 The C j depend on the loop distribution n( , t) through n(2j/((1 + z)f ), t(z)), whilst the P j are the "average loop gravitational wave power-spectrum", namely the power emitted in gravitational waves in the jth harmonic of the loop. By definition of Γ, these must be normalized to

Γ = ∞ j=1 P j .
For loops with kinks, P j ∝ j -5/3 , whereas for loops with cusps P j ∝ j -4/3 [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Binetruy | Gravitational Wave Bursts from Cosmic Superstrings with Y-Junctions[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. As explained above, the effect of γ k and γ c on the loop distribution is particularly important at large redshifts z > (z c , z k ), and hence in the radiation era. Therefore, we expect the effect of particle radiation to be visible in the high-frequency part of the spectrum. This is indeed observed in Fig. 6.3, where the LH panel is for kinks with k given in Eq. ( 6.3) and P j ∝ j -5/3 ; whereas the RH panel is for cusps with c given in Eq. (6.5) and P j ∝ j -4/3 . As a result of the non-scaling loop distribution, the spectrum is no longer flat at high frequencies and, as expected, the effect is more significant for cusps than for kinks since z c < z k .

We can estimate the frequency above which the spectrum decays as follows. In the radiation era

H(z) = (1 + z) 2 Ω rad H 0 (6.45) t(z) = 1 2(1 + z) 2 1 √ Ω rad H 0 (6.46)
At high frequency, the lowest harmonic j = 1 is expected to dominate [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF], so we set P j = Γδ j,1 . The spectra are cutoff at high frequency, as indicated by the black vertical lines. Gµ ranges from 10 -17 (lower curve), through 10 -15 , 10 -13 ,10 -11 , 10 -9 and 10 -7 (upper curve). Also plotted are the power-law integrated sensitivity curves from SKA (pink dashed) [START_REF] Janssen | Gravitational Wave Astronomy with the SKA[END_REF], LISA (yellow dashed) [START_REF] Caprini | Reconstructing the Spectral Shape of a Stochastic Gravitational Wave Background with LISA[END_REF], adv-LIGO (grey dashed) [START_REF] Abbott | Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run[END_REF] and Einstein Telescope (blue dashed) [START_REF] Punturo | The Einstein Telescope: A Third-Generation Gravitational Wave Observatory[END_REF][START_REF] Hild | Sensitivity Studies for Third-Generation Gravitational Wave Observatories[END_REF].

Then using (6.45) and (6.46), Eq. (6.42) simplifies to

Ω GW (ln f ) = 2 4 16π(ΓGµ) 2 3Γ H 0 f Ω 3/2 rad z friction zeq dz N 2 (1 + z)f , t(z) ∝ H 0 f z c,k zeq dz N 2 (1 + z)f , t(z) + z friction z c,k dz N 2 (1 + z)f , t(z) . H 0 f z c,k zeq dz N 2 (1 + z)f , t(z) . (6.47)
Here, in going from the second to the third equality, we have used the fact that (i) for Gµ 10 -18 , which is relevant range for current and future GW detectors, z eq < (z c , z k ) z friction (see Eqs. (6.38), (6.41) and (6.44)), and (ii) that the loop distribution above z (c,k) is subdominant, see e.g. discussion above equation (6.37) in Section 6.3.2. Using Eq.( 6.46) as well as the approximation for the loop distribution for z < z k given in Eq. ( 6.36), it follows that for kinks

[Ω GW (ln f )] k ∝ x k xeq 1 + k xf 2 8H 0 √ Ω rad 2 -1/2 (γ d + x) -5/2 dx (6.48)
where we have changed variable from z to

x = 4 f (1 + z)H 0 Ω rad so that x eq = 4 f (1 + z eq )H 0 Ω rad , x k = 4 f (1 + z k )H 0 Ω rad .
In order to understand the frequency dependence of Ω GW , let us initially focus on the standard NG case, namely k = 0. (Here, the same change of variable starting from the first line of Eq. (6.47) again yields Eq. (6.48) but with upper bound replaced by x friction = 4(1 + z friction )H 0 √ Ω rad /f ). Then Eq. (6.48) gives

[Ω GW (ln f )] N G ∝ 1 feq f + 1 3/2 - 1 f friction f + 1 3/2 ,
where

f eq = 4H 0 √ Ω rad (1 + z eq ) γ d ∼ 10 -18 Gµ s -1 , f friction = 4H 0 √ Ω rad (1 + z friction ) γ d ∼ 10 10 s -1 ,
and where in the last equality we have used Eq. (6.44). At frequencies f for which f friction f f eq it follows that [Ω GW (ln f )] N G → constant meaning that the spectrum is flat, which is the well-known result for NG strings [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF].

For k = 0, the argument is altered because of the frequency dependence of the term in square brackets in Eq. (6.48). A further characteristic frequency now enters: this is can be obtained by combining the typical scales of the two terms in Eq. (6.48). Namely, on one hand, from the first term (in square brackets) we have k f 2 ∼ 8H 0 √ Ω rad x -1 ; and on the other hand from the second (standard NG) term we have x ∼ γ d . Combining these yields the characteristic frequency

f k ∼ 8H 0 √ Ω rad k γ d 1/2 . (6.49)
For f k > f > f eq the spectrum is still flat, as in the NG case. However, for f > f k it decays since the first term in square brackets in Eq. ( 6.48) dominates. With k given in Eq. ( 6.3),

f k ∝ (Gµ) 1/4 β -1/2 k
, and this behaviour is clearly shown in Fig. 6.3 where f k is shown with a vertical black line for each value of Gµ, and we have assumed

β k = 1.
For cusps the analysis proceeds identically with

f c = 8H 0 √ Ω rad c γ d 1/2 . (6.50)
Now, on using c defined in Eq. ( 6.5), we have

f c ∝ (Gµ) 3/4 β -1/2 c
. The spectrum of SGWB in this case is shown in the RH panel of Fig. 6.3 where f c is shown with a vertical black line for each value of Gµ, and we have taken β c = 1.

As the figure shows, with β c = 1 and in the range of Gµ of interest for GW detectors, the decay of Ω GW for f > f c is outside the observational window of the LIGO, LISA (and future ET) detectors. In order to have f c ∼ f LIGO , one would require large values of β c which are not expected.

Emission of particles

The loops we consider radiate not only GW but also particles. Indeed, for loops with kinks, from Eq. (6.2)

˙ particle = -γ d k (6.51)
The emitted particles are heavy and in the dark particle physics sector corresponding to the fields that make up the string. We assume that there is some interaction of the dark sector with the standard model sector. Then the emitted particle radiation will eventually decay, and a significant fraction of the energy f eff ∼ 1 will cascade down into γ-rays. Hence, the string network will be constrained by the Diffuse Gamma-Ray bound measured at GeV scales by Fermi-LAT [START_REF] Abdo | The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived from First-Year Fermi Large Area Telescope Data[END_REF]. This bound is

ω obs DGRB 5.8 × 10 -7 eVcm -3 , (6.52)
where ω DGRB is the total electromagnetic energy injected since the universe became transparent to GeV γ-rays at t γ 10 15 s, see e.g. [START_REF] Santana Mota | Big-Bang Nucleosynthesis and Gamma-Ray Constraints on Cosmic Strings with a Large Higgs Condensate[END_REF]. The rate per unit volume at which string loops lose energy into particles can be obtained by integrating (6.51) over the loop distribution n( , t) = t -4 N (γ, t), namely

Φ H (t) = µγ d k αt 0 n( , t) d = µt -3 γ d γ k α 0 N (γ , t) γ dγ (6.53)
The Diffuse Gamma Ray Background (DGRB) contribution is then given by (see e.g. [START_REF] Santana Mota | Big-Bang Nucleosynthesis and Gamma-Ray Constraints on Cosmic Strings with a Large Higgs Condensate[END_REF])

ω DGRB = f eff t0 tγ Φ H (t) (1 + z) 4 dt = f eff µγ d t0 tγ γ k (t) t 3 (1 + z(t)) 4 α 0 N (γ , t) γ dγ dt = Γ(8.4 × 10 39 )f eff Gµ c 4 2 t0 tγ γ k (t) t 3 (1 + z(t)) 4 α 0 N (γ , t) γ dγ dt eVcm -3 (6.54)
where in the last line we have explicitly put in factors of c converted to physical units of eV/cm 3 . For cusps, one finds

ω DGRB = Γ(8.4 × 10 39 )f eff Gµ c 4 2 t0 tγ γ c (t) t 3 (1 + z(t)) 4 α 0 N (γ , t)
√ γ dγ dt eVcm -3 (6.55)

In the matter dominated era, the loop distribution is dominated by those loops produced in the radiation era but decay in the matter era: its general expression is given in Eq. ( 6.23), and can be deduced straightforwardly from the results of subsections 6.3.2 and 6.3.3 for kinks and cusps respectively. We have calculated (6.54) and (6.55) numerically, and the results are shown in Fig. 6.4 for kinks [LH panel] and cusps [RH panel], together with the Fermi-LAT bound. It is clear from this figure that particle radiation from loops containing kinks and/or cusps, with k and c given in (6.3) and (6.5), are not constrained by the Fermi-LAT data.

The general shape of the spectra in Fig. 6.4 can be understood from the results of Section 6.2. Let us focus on the case of cusps (for kinks the analysis is similar). First, we can determine the range of Gµ for which the characteristic time t c defined in Eq. ( 6.39) falls within the range of integration of (6.55), namely

t γ ≤ t c ≤ t 0 ⇐⇒ 10 -19 Gµ 10 -18
(we have assumed β c = 1 and, from Eq. (6.40), t = t c implies Gµ ∼ 4.6 × 10 -18 (t eq /t) 2/7 ). This range of Gµ defines the position of the maximum of the DGRB in the RH panel of Fig. 6.4. For lower Gµ, all times in the integration range are smaller than t c . As we have discussed in Section 6.3.3, in this case the loop distributions are suppressed due to particle radiation: there are fewer loops, and hence fewer particles are emitted leading to a decrease in the DGRB. This is shown in Fig. 6.4, and using the results of Section 6.3.3, one can show that for Gµ 10 -19 ).

10 -19 , Φ H (t) ∝ µ 2/3 -1/6 c (1+z) 3 t -4/3 leading to ω DGRB ∝ µ 2/3 -1/6 c ∝ (Gµ) 13/12 (Gµ
On the other hand, for Gµ 10 -18 , all times in the integration range are larger than t c . There is no suppression of the loop distribution, since GR dominates over particle emission (see Section 6.2). But precisely because GR dominates, fewer particles are emitted, and hence we also have a decrease in the DGRB. We now find that Φ

H (t) ∝ γ -1 d µ √ c (1 + z) 3 t -2 so that ω DGRB ∝ c ∝ (Gµ) -5/4
which is the slope seen in Fig. 6.4. For kinks the discussion is very similar, and the slopes are given in the caption of the figure. However, each kink event emits fewer particles, leading to a lower overall DGRB. horizontal line is the experimental constraint from Fermi-LAT, while the (orange) line is the exact numerical calculation for kinks (LH panel) and cusps (RH panel). On either side of the maxima, the slope and amplitude can be estimated using the results of previous sections. Kinks: for low Gµ the slope is 9/8 (dashed-green line), and for high Gµ it depends on µ -2 log(µ) (dashed-red line). Cusps: For low Gµ the slope is 13/12 (dashed-green line), and for high Gµ it is -5/4 (dashed-red line). The slightly different amplitude between the numerical calculation and the analytical one is because the latter assumes a matter dominated universe, and hence neglects effects of late time acceleration.

Conclusion

Cosmic string loops emit both particle and gravitational radiation. Particle emission is more important for small loops, while gravitational emission dominates for large loops. In this work, we have accounted for both types of radiation in the number density of loops and calculated the expected stochastic gravitational wave background and the diffuse gamma ray background from strings. Our results show that the number density of loops gets cutoff at small lengths due to particle radiation. The strength of the cutoff depends on the detailed particle emission mechanism from strings -if only kinks are prevalent on strings, small loops are suppressed but not as much as in the case when cusps are prevalent (see Fig. 6.2). The cutoff in loop sizes implies that the stochastic gravitational wave background will get cut off at high frequencies (see Fig. 6.3). The high frequency cutoff does not affect current gravitational wave detection efforts but may become important for future experiments.

Particle emission from strings can provide an important alternate observational signature in the form of cosmic rays. Assuming that the particles emitted from strings decay into standard model Higgs particles that then eventually cascade into gamma rays, we can calculate the gamma ray background from strings. This background is below current constraints in the case of both kinks and cusps.

It is important to evaluate more carefully the prevalence of kinks versus cusps on cosmological string loops. In Ref. [START_REF] Matsunami | Decay of Cosmic String Loops Due to Particle Radiation[END_REF], particle radiation from a loop of a specific shape was studied where the shape was dictated by general expectations for the behaviour of the cosmological string network. That particular loop only contained kinks. It would be of interest to study other loop shapes that are likely to be produced from the network and that contain cusps and to assess if the 1/ √ dependence in (6.4) (and assumed throughout this paper) is an accurate characterization of such loops over their lifetimes. In practice one might expect that if kinks are smoothed out by particle emission, then cusps (perhaps minicusps) must be produced, and if cusps (or minicusps) annihilate then kinks must be produced. Hence, in reality the situation might be a combination of both cases. Finally, it would also be interesting to study other loop production functions, particularly those of [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Polchinski | Cosmic String Structure at the Gravitational Radiation Scale[END_REF][START_REF] Dubath | Cosmic String Loops, Large and Small[END_REF] which predict a larger number of small loops relative to the situation studied in Section 6.2.2; hence one might expect a larger gamma ray background from strings in this case 2 .

Chapter 7

Irreducible cosmic production of relic vortons

This chapter is a reproduction of Ref. [START_REF] Auclair | Irreducible cosmic production of relic vortons[END_REF] written in collaboration with Patrick Peter, Christophe Ringeval and Danièle Steer. The aim of this paper was to quantify the abundance of vortons, stable configuration of loops, in networks of current-carrying cosmic strings. These vortons can be candidates for Dark Matter and their predicted abundance can therefore be constrained by observations since Ω mat 0.3. In Ref. [START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF], Patrick Peter and Christophe Ringeval had used a Boltzmann equation to calculate the accumulation of vortons from an initial distribution of cosmic string loops. In this paper, we build upon the solution Eq. (6.21) found in Chapter 6 for the continuity equation, but in this chapter loops have a charge in addition to a length. With this framework, we were able to calculate the abundance of vortons formed from the loop production function, something which is new and had not been calculated before. I contributed to all the sections of this chapter.

Abstract

The existence of a scaling network of current-carrying cosmic strings in our Universe is expected to continuously create loops endowed with a conserved current during the cosmological expansion. These loops radiate gravitational waves and may stabilize into centrifugally supported configurations. We show that this process generates an irreducible population of vortons which has not been considered so far. In particular, we expect vortons to be massively present today even if no loops are created at the time of string formation. We determine their cosmological distribution, and estimate their relic abundance today as a function of both the string tension and the current energy scale. This allows us to rule out new domains of this parameter space. At the same time, given some conditions on the string current, vortons are shown to provide a viable and original dark matter candidate, possibly for all values of the string tension. Their mass, spin and charge spectrum being broad, vortons would have an unusual phenomenology in dark matter searches.

Introduction

Cosmic strings are expected to be formed in most extensions of the standard particle physics model as stable line-like topological defects formed during high temperature, T ini say, symmetry breaking 155 phase transitions in the early Universe [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF]. This occurs whenever a symmetry G is broken down to a smaller one H provided the first homotopy group of the quotient group G/H (vacuum manifold) is non-trivial, producing similarly non-trivial topological solutions for the symmetry-breaking Higgs field. The scaling evolution of cosmic string networks (see e.g. Ref. [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF] and references therein) means that they are present throughout the evolution of the Universe, possibly giving rise to numerous observational signatures, such as line-like discontinuities in temperature in the Cosmic Microwave Background (CMB), or bursts of gravitational waves [START_REF] Damour | Gravitational Wave Bursts from Cusps and Kinks on Cosmic Strings[END_REF][START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF][START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF]. These very much sought-for signatures in turn lead to strong constraints on the string tension Gµ.

Most studies of cosmic strings suppose they are structureless, with equal energy per unit length and tension, and therefore they are expected to be well described by a no-scale 2-dimensional worldsheet action, i.e. the Nambu-Goto action. This is no longer the case if, as first realized by Witten [START_REF] Witten | Cosmic Superstrings[END_REF][START_REF] Lazarides | Superheavy Superconducting Cosmic Strings from Superstring Models[END_REF], particles coupled to the string-forming Higgs field can condense in the string core and subsequently propagate along the worldsheet. The resulting strings thus behave like current carrying wires and are endowed with a much richer structure [START_REF] Carter | Dilatonic formulation for conducting cosmic string models[END_REF][START_REF] Carter | Essentials of Classical Brane Dynamics[END_REF].

One of the simplest examples of current-carrying strings is that of a U(1) R ×U(1) Q gauge theory with an unbroken gauge symmetry Q (which might be electromagnetism, but not necessarily) and a broken symmetry R [START_REF] Witten | Cosmic Superstrings[END_REF]. This model generalizes the prototypical Abelian-Higgs model of cosmic strings behind much of the existing work on cosmic strings. At a temperature T ini , and a cosmic time t ini , the Higgs field φ with Q = 0 and R = 1 acquires a non-zero vacuum expectation value | φ | = 0, thereby breaking the first component U(1) R of the total invariance group; this leads to the formation of vortex lines. The field φ vanishes at the core of the string and its phase varies by an integer times 2π along any closed path around the vortex: this is the standard Kibble mechanism. If the theory contains fermions obtaining their masses from the U(1) Q broken symmetry, those form zero modes in the string core where the symmetry is restored, thereby forming a superconducting current.

The model also comprises a second scalar field σ with Q = 1 and R = 0, the coupling potential between φ and σ being chosen such that σ = 0 in vacuum (where | φ | = 0). Under certain conditions, it is energetically favourable to have σ = 0 at the core of the string where φ = 0. At a temperature T cur < T ini , and cosmic time t cur > t ini , the charged scalar field σ thus condenses on the string and acts as a bosonic charge carrier making the string current-carrying (and in fact actually superconducting). In the present paper, we assume that the current sets in long after the string formation scale. In the language of Refs. [START_REF] Kibble | Phase Transitions in the Early Universe[END_REF][START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF], this means we assume the current is formed long after the friction damping regime has finished, i.e. during the radiation era. In practice, it means that we consider T ini (and t ini ) to be the end of the friction dominated regime.

Cosmic strings can also be produced [START_REF] Nicholas | Brane Interaction as the Origin of Inflation[END_REF][START_REF] Sarangi | Cosmic String Production towards the End of Brane Inflation[END_REF] in superstring theory, also forming, under specific conditions, a network similar to a Nambu-Goto network [START_REF] Urrestilla | Evolution of Cosmic Superstring Networks: A Numerical Simulation[END_REF]. Whether these so-called cosmic superstrings can carry a current deserves more investigation since they have been shown to not be able to hold fermionic zero modes so that only bosonic condensates can source such a current [START_REF] Polchinski | Cosmic Superstrings Revisited[END_REF]. It should, however, be mentioned that because cosmic superstrings live in a higher dimensional manifold, their motion in the extra dimensions projected into the ordinary 3 dimensional space should be describable by means of a phenomenological non-trivial equation of state [START_REF] Carter | Covariant Mechanics of Simple and Conducting Strings and Membranes[END_REF][START_REF] Carter | Supersonic String Models for Witten Vortices[END_REF] mimicking that of a current-carrying string; this can be interpreted as moduli field condensates.

The presence of currents flowing along the strings affects the dynamics of the network, and in this paper we particularly focus on vortons [START_REF] Davis | Cosmic Vortons[END_REF][START_REF] Carter | Cosmic Rings as a Chump Dark Matter Candidate?[END_REF][START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF][START_REF] Martins | Vorton Formation[END_REF][START_REF] Martins | Limits on Cosmic Chiral Vortons[END_REF][START_REF] Carter | Old and New Processes of Vorton Formation[END_REF][START_REF] Davis | Dynamics and Properties of Chiral Cosmic Strings in Minkowski Space[END_REF][START_REF] Steer | Selfintersections and Gravitational Properties of Chiral Cosmic Strings in Minkowski Space[END_REF], namely closed loops of string which are stabilized by the angular momentum carried by the current. Vortons do not radiate classically, and here we make the assumption that they are classically stable as well (see for instance [START_REF] Lemperiere | Vorton Existence and Stability[END_REF][START_REF] Battye | Vorton Construction and Dynamics[END_REF][START_REF] Garaud | Stable Cosmic Vortons[END_REF] for numerical studies of their stability). On cosmological scales, they appear as point particles having different quantized charges and angular momenta.

In this work, we extend the derivation of the vorton abundance of Ref. [START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF] by not only considering vortons produced from pre-existing loops at t ini , but also those vortons that may form from the loops chopped off the network at all subsequent times. In particular, we extend the work of Ref. [START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF], in which a Boltzmann equation governing the vorton density has been derived and integrated for any loop production function (LPF), but not explicitly solved to get cosmological constraints. Let us notice that some of these new produced vortons, when created from the network, may be highly boosted. However, extrapolating the mean equation of state obtained for Nambu-Goto cosmic string loops, their momentum gets redshifted away and, on average, they behave as non-relativistic matter [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF]. For this reason, the produced vortons are, as those originally considered in Ref. [START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF], potential dark matter and cosmic rays candidates [START_REF] Carter | Cosmic Rings as a Chump Dark Matter Candidate?[END_REF][START_REF] Bonazzola | Can High-Energy Cosmic Rays Be Vortons?[END_REF].

The total abundance of vortons today is expected to depend on t cur as well as t ini , and hence on the underlying particle physics model. Determining their density parameter today, say Ω tot , and using the current constraints on Ω dm h 2 0.12 will allow us to place constraints on the physics at work in the early Universe [START_REF] Aghanim | Planck 2018 Results. VI. Cosmological Parameters[END_REF].

The formation and build-up of a population of vortons can be studied using a Boltzmann Eq. [START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF]. In this paper, we extend this work by applying the framework introduced in Chapter 6 to estimate quantitatively the density of vortons today. In Section 7.2 below, we review the necessary physics underlying vorton properties, then in Section 7.3, we evaluate the distribution of loops and vortons, in order to be able to calculate, in Section 7.4, the actual vorton distribution and, finally, their relic abundance in Section 7.5. We end this work by some concluding remarks.

Assumptions on the physics of vortons

As discussed in the introduction, we focus in this paper on cosmic strings that emerged at a temperature T ini and later became current carrying at a temperature T cur .

For non-conducting strings, the boost invariance along the string implies that the string tension T and its energy per unit length µ are equal and, in order of magnitude, given by µ = T = m 2 φ , where m φ ∝ | φ | is the mass of the string-forming Higgs field φ. As soon as a current flows along the string, the worldsheet Lorentz invariance is broken and so is the degeneracy between the stressenergy tensor eigenvalues µ and T [START_REF] Carter | Duality Relation between Charged Elastic Strings and Superconducting Cosmic Strings[END_REF][START_REF] Carter | Basic Brane Theory[END_REF][START_REF] Carter | Essentials of Classical Brane Dynamics[END_REF], the tension being reduced and the energy per unit length increased by the current in such a way that

T < m 2 φ < µ. (7.1)
The equation of state of current-carrying strings [START_REF] Babul | Bosonic Superconducting Cosmic Strings. 1. Classical Field Theory Solutions[END_REF][START_REF] Peter | Superconducting Cosmic String: Equation of State for Space -like and Time -like Current in the Neutral Limit[END_REF][START_REF] Carter | Supersonic String Models for Witten Vortices[END_REF][START_REF] Carter | Dynamics and Integrability Property of the Chiral String Model[END_REF][START_REF] Ringeval | Equation of State of Cosmic Strings with Fermionic Current-Carriers[END_REF][START_REF] Ringeval | Fermionic Massive Modes along Cosmic Strings[END_REF] provides us with a saturation condition

µ -T ≤ m 2 σ =⇒ 0 < µ -T m 2 φ ≤ m 2 σ m 2 φ , (7.2) 
according to which there exists a maximal spacelike current, above which it becomes energetically favoured for the condensate to flow out of the string. For a timelike current [START_REF] Peter | Superconducting Cosmic String: Equation of State for Space -like and Time -like Current in the Neutral Limit[END_REF][START_REF] Peter | Equation of State of Cosmic Strings in the Presence of Charged Particles[END_REF], i.e. a charge, there exists a phase frequency threshold allowing, in principle, for arbitrary large values of the charge. However, vacuum polarization effectively reduces the integrated charge [START_REF] Peter | Influence of the Electric Coupling Strength in Current Carrying Cosmic Strings[END_REF] so that saturation holds for all possible situations.

Denoting by λ the Compton wavelength of the current carrier (λ m -1 σ ), we define the parameter R by R ≡ λ √ µ . (7.3) Because µ m 2 φ , this quantity is approximately the ratio between the Compton wavelengths of the current carrier and the one of the string forming Higgs field, or, equivalently, R m φ /m σ which we assume to be greater than unity. Given (7.2), it is safe to assume that, at least for R 1, the string tension and the energy per unit length are numerically so similar that distinguishing between them is irrelevant in the forthcoming cosmological context; we will thus denote them both by the notation µ.

A current-carrying closed string loop is characterized by two classically conserved integral quantum numbers N and Z, generally non-zero, which prevent the loop from disappearing completely [START_REF] Carter | Mechanics of Cosmic Rings[END_REF]. As the loop loses energy through friction or radiation, it reaches a classically stable state called a vorton [START_REF] Davis | Cosmic Vortons[END_REF]. However, this state can decay through quantum tunnelling if the size of the loop is comparable with the Compton wavelength of the current carrier, λ. Hence, a vorton can only be stable if the current flowing along the string loop can prevent its collapse and if its proper length is much larger than λ.

Although the values of N and Z are initially randomly distributed, it is expected that the majority of closed loops are of nearly chiral [START_REF] Davis | N=1 Supersymmetric Cosmic Strings[END_REF][START_REF] Martins | Limits on Cosmic Chiral Vortons[END_REF][START_REF] Carter | Dynamics and Integrability Property of the Chiral String Model[END_REF][START_REF] Carter | Symplectic Structure for Elastic and Chiral Conducting Cosmic String Models[END_REF] type with almost identical quantum numbers [START_REF] Carter | Mechanics of Cosmic Rings[END_REF]. Besides, the loop rotation velocity v vort = T /µ 1 is roughly approximated by that of light and |Z| ≈ N. (7.4) In the rest of the paper, we focus on such nearly chiral vortons. Using of the central limit theorem, we estimate that the value of N at the formation of a loop is given by

N = λ . (7.5)
In (7.5) and in the rest of this paper, a subscript on a quantity denotes the value it had at the time of formation of the corresponding loop. Since the charge N is conserved, we can, in what follows, omit the index and simply write N = N .

To estimate the size of the vortons 0 , we first have to note that they have been shown to approach circularity [START_REF] Lemperiere | Vorton Existence and Stability[END_REF]. Moreover, large vortons would also tend to circularize through either gravitational or gauge field radiation, on time scales much smaller than the Hubble time. It thus seems reasonable to consider mostly circular loops, therefore described by one parameter only, namely their radius r 0 = 0 /2π. Vortons are also characterized by their angular momentum quantum number J = N Z ≈ N 2 . Equivalently, it is also given in terms of the energy per unit length and tension by [START_REF] Carter | Cosmic Rings as a Chump Dark Matter Candidate?[END_REF] 

J = 2πr 2 0 √ T µ, i.e. J 2 = µT 4 0 /(4π 2 ). Hence, for chiral vortons with R 1 0 = 2π µ N = 2π λµ ≈ λµ , (7.6) 
provided 0 > λ. The length 0 (N ) being itself a function of the charge N , this is equivalent to imposing that N > R. Therefore, R gives also the minimal possible charge of a vorton. Following the same procedure as in Chapter 6, we model the physics of the vortons using an arbitrary function J which describes how the current-carrying loops lose energy d dt = -ΓGµJ ( , N ), (7.7) dN dt = 0, (7.8) in which Γ ≈ 50 is a numerical factor for the emission of gravitational waves (GW) [START_REF] Allen | Gravitational Radiation from Cosmic Strings[END_REF]. In order to model string networks with vortons, we impose the following properties on J :

• J ( 0 , N ) ≈ 1, meaning that on scales much larger than the vorton size, the effect of the current is mostly negligible so that the dynamics of the current-carrying string is well approximated by that of a Nambu-Goto string; gravitational wave radiation is the dominant energy-loss mechanism, and we neglect other such mechanisms.

• J ( 0 , N ) ≈ 0 if 0 > λ, meaning that the angular momentum carried by the current prevents the loop from shrinking, provided the loop is large enough to prevent quantum tunnelling.

We will consider a smooth form of J , regulated by a parameter σ, in particular

J ( , N ) = 1 2 1 + tanh -0 (N ) σ . (7.9)
We call vortons all the loops with sizes ≤ 0 (N ) and N > R. In the limit σ → 0, J ( , N ) reduces to Θ[ -0 (N )], and the vortons accumulate around 0 (N ).

Let us mention that our approach, and results, differ from the vorton abundances derived in Refs. [START_REF] Martins | Limits on Cosmic Chiral Vortons[END_REF][START_REF] Martins | Vorton Formation[END_REF]. These latter references were concerned with the extreme limit in which the current carrier condensation and string forming times are similar (R 1 in our notation). For this reason, they were not concerned with the emission of gravitational waves. Indeed, in the limit R → 1, strong currents have been shown to dampen the loop oscillations and this allows for a population of vortons to be rapidly created (soon after the string forming phase transition). The vortons considered in Refs. [START_REF] Martins | Limits on Cosmic Chiral Vortons[END_REF][START_REF] Martins | Vorton Formation[END_REF] are of this kind only. Let us recall that the current-carrier particles are trapped on the string worldsheet by means of a binding potential. As such, when there are strong currents, there is always the possibility that they tunnel out [START_REF] Peter | Superconducting Cosmic String: Equation of State for Space -like and Time -like Current in the Neutral Limit[END_REF]. Such an instability could drastically affect the current, and hence the mechanism by which the vortons considered in Refs. [START_REF] Martins | Limits on Cosmic Chiral Vortons[END_REF][START_REF] Martins | Vorton Formation[END_REF] are formed. On the contrary, the vortons we are considering here carry weak currents and our results are only valid in the domains for which R > 1. The damping mechanism by which the weak current-carrying loops become vortons is the emission of gravitational waves (as in Ref. [START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF]).

Having recalled the basic properties of vortons and their dynamics, we now turn to the expected distributions of loops of various kinds, including those ending up as vortons.

Distribution of loops and vortons

In the following sections, we extend a statistical method originally based on the Boltzmann Eq. [START_REF] Copeland | The Evolution of a Network of Cosmic String Loops[END_REF][START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF][START_REF] Rocha | Scaling Solution for Small Cosmic String Loops[END_REF][START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF] to study current carrying strings. Our aim is to find the number density of vortons, marginalized over their charge N , with length at time t > t cur , given some initial loop distribution at time t ini and some assumptions about the loop production function (see Fig. At the later time t cur the strings become current-carrying, and vortons can form. At all times, loop can be produced from long strings and larger loops with a given loop production function.

Continuity equation for the flow of loops in phase space

Let ∂ 2 ∂N ( , t, N ) 2 / N be the number density of loops with length and charge N at time t. In an expanding universe with scale factor a(t), and taking into account the fact that loops lose length at a rate which depends on their length as expressed through Eq. (7.7), the continuity equation for the number density of loops is given by [START_REF] Copeland | The Evolution of a Network of Cosmic String Loops[END_REF][START_REF] Auclair | Particle Emission and Gravitational Radiation from Cosmic Strings: Observational Constraints[END_REF]]

∂ ∂t a 3 ∂ 2 N ∂ ∂N -ΓGµ ∂ ∂ a 3 J ( , N ) ∂ 2 N ∂ ∂N = a 3 P( , t, N ). ( 7 

.10)

Here P( , t, N ) is the charged loop production function (LPF), namely the rate at which loops of length and charge N are formed at time t by being chopped off the string network, and we will specify it below. Note that this equation is exactly equivalent to that of Ref. [START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF], as we explain in details in Appendix 7.A. The solution to Eq. ( 7.10) can be obtained in integral form following a similar procedure to that explained in Chapter 6, though one must take into account the new independent variable N . Upon multiplying by J ( , N ), Eq. (7.10) becomes ∂g ∂t -ΓGµJ ( , N ) ∂g ∂ = a 3 (t)J ( , N )P( , t, N ), (7.11) where we have defined

g( , t, N ) ≡ a 3 J ( , N ) ∂ 2 N ∂ ∂N . (7.
12)

The change of variables (){ , t, N } → (){ξ, τ, N }, with ξ ≡ d J ( , N ) and τ ≡ ΓGµt, (7.13) enables Eq. ( 7.11) to be written in the simpler form

∂g(ξ, τ, N ) ∂τ - ∂g(ξ, τ, N ) ∂ξ = a 3 (τ ) ΓGµ J (ξ, N )P(ξ, τ, N ). (7.14)
Upon using light cone type coordinates

u ≡ 1 2 (τ -ξ) and v ≡ 1 2 (τ + ξ), (7.15) 
it follows that Eq. (7.10) reduces to .16) which can be integrated between t cur and t, or in terms of the variable u

∂g(u, v, N ) ∂u = a 3 (u, v) ΓGµ J (u, v, N )P(u, v, N ), ( 7 
= -v + τ = -v + ΓGµt, between u cur = -v + τ cur = -v + ΓGµt cur to u, g(u, v, N ) -g(-v + ΓGµt cur , v, N ) = u -v+ΓGµtcur a 3 (u , v) ΓGµ J (u , v, N )P(u , v, N ) du , (7.17) 
the integral in Eq. ( 7.17) being calculated with v constant. Rewritten in terms of ∂ 2 N ∂ ∂N using Eq. ( 7.12) finally gives

a 3 (t)J ( , N ) ∂ 2 N ∂ ∂N = a 3 (t cur )J ( cur , N ) ∂ 2 N ∂ ∂N ( cur , t cur , N ) + u -v+ΓGµtcur a 3 (u , v) ΓGµ J (u , v, N )P(u , v, N ) du . (7.18)
Here cur is the size of the loops at condensation and is a function cur ( , t, N ). It is found using the variable v = τ + ξ of Eq. ( 7.15) which is a constant along the flow, namely cur is a solution of

ξ( cur , N ) = ξ( , N ) + ΓGµ(t -t cur ). (7.19)
The solution of the continuity Eq. (7.10) is therefore given by Eq. (7.18). On the right-hand-side, we recognize two terms. The first are the loops left over from the pre-existing loop distribution at the time of condensation, t = t cur . The second term contains those loops which are produced from the string network at time t > t cur . As we will see in more detail in Section 7.4, each of these distributions contain three kinds of loops [START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF]:

1. Doomed loops: these loops have an initial size which is too small to support a current, and hence they decay through gravitational radiation never becoming vortons. They are characterized by quantum numbers N < R.

2.

Proto-vortons: these are loops which are initially large enough to be stabilized by a current (thus N > R), but have not yet reached the vorton size 0 .

3. Vortons: these are all those proto-vortons which have decayed by gravitational radiation to become vortons. Hence, vortons have N > R, and in the limit σ → 0, they accumulate with length 0 (N ).

Our aim in the following is to extract these different distributions. Each will contain two contributions: those formed from the initial distribution i.e. coming from the first term in Eq. (7.18), and those produced at later times from being chopped off the string network, i.e. coming from the second term in Eq. (7.18). In the case of vortons, we call these two families "relaxed vortons" and "produced vortons", respectively. In Section 7.5, we will use these to determine their relic density and put constraints on Gµ and R.

The loop distribution at condensation

A first step is to specify the loop distribution at t cur . The strings are assumed to form at a temperature T ini corresponding to a time t ini in the early Universe. At all times t ini < t < t cur , that is before condensation, they behave as standard Nambu-Goto strings, see Fig. 7.1. Hence, the loop distribution is the canonical one, i.e. contains a population of loops formed at t ini and another population of scaling loops created from the long strings and larger loops [START_REF] Auclair | Cosmic String Loop Production Functions[END_REF].

The main simplifying assumption of our work is to assume a Dirac distribution for the loop production function, namely

P( , t) = Ct -5 δ t -α , (7.20) 
with C = 1 and α = 0.1 as to match the Kibble, or one scale, model [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF]. Hence, all the produced loops that are chopped off the network are assumed to be of the same size, given by the fraction α of t, which is, up to a constant of order unity, the horizon size. This assumption allows us to analytically solve for the produced vorton distribution later on. However, we stress that more realistic loop production functions, such as the Polchinski-Rocha one [START_REF] Polchinski | Analytic Study of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Dubath | Cosmic String Loops, Large and Small[END_REF][START_REF] Rocha | Scaling Solution for Small Cosmic String Loops[END_REF][START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF][START_REF] Auclair | Impact of the Small-Scale Structure on the Stochastic Background of Gravitational Waves from Cosmic Strings[END_REF], produce smaller loops while matching in amplitude with the Dirac LPF for /t = α [START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF][START_REF] Auclair | Cosmic String Loop Production Functions[END_REF]. Therefore, when gravitational wave emission from loops is accounted for (which is the case here), the resulting scaling loop distributions end up being quite similar over the length scales > γ d t.

They may, however, differ significantly on smaller length scales, namely for γ c t < < γ d t, where γ c stands for the length scale at which gravitational backreaction damps the LPF [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF]. For Nambu-Goto strings, this length scale is expected to verify γ c γ d [START_REF] Siemens | On the Size of the Smallest Scales in Cosmic String Networks[END_REF][START_REF] Polchinski | Cosmic String Structure at the Gravitational Radiation Scale[END_REF]. Therefore, our results derived here from a Dirac LPF should provide a robust lower bound for all the others LPF, and may also be directly applicable to the Polchinski-Rocha ones but only in the limit in which γ c γ d .

Under these assumptions, the resulting distribution of cosmic string loops at time t cur is given by [START_REF] Auclair | Cosmic String Loop Production Functions[END_REF] 

dN d ( , t cur ) = C t -3/2 cur (α + ΓGµ) 3/2 ( + ΓGµt cur ) 5/2 Θ(αt cur -)Θ[ + ΓGµt cur -t ini (α + ΓGµ)] + C ini t ini 5/2 t -4 ini Θ[(α + ΓGµ)t ini --ΓGµt cur ]. (7.21)
The first term is the scaling loop distribution associated with the Dirac LPF of Eq. (7.20). The second term is the initial distribution of loops at t ini associated with the random walk model of Vachaspati-Vilenkin [START_REF] Vachaspati | Formation and Evolution of Cosmic Strings[END_REF]. Assuming the random walk to be correlated over a length scale corr , one has [START_REF] Vachaspati | Formation and Evolution of Cosmic Strings[END_REF] C ini 0.4

t ini corr 3/2 . ( 7 

.22)

A natural value for corr is obtained by assuming that it is given by the thermal process forming the strings, namely corr = 1/T ini . We will, however, discuss various other possible choices in Section 7.5. At the time of condensation t cur , the loops acquire quantum numbers N , and we assume again a Dirac distribution for the generated charge:

∂ 2 N ∂ ∂N = dN d δ N -λ . (7.23)
This is in agreement with Refs. [START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF][START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF] and motivated by the fact that, if a thermal process of temperature T cur = 1/λ is at work during current condensation, the conserved number N laid down along the string should be given by a stochastic process of root mean squared value close to /λ.

String formation at t ini and current condensation at t cur are assumed to occur in the radiation era. In the following we will use as model parameters Gµ and R. The current condensation redshift can be determined using entropy conservation:

1 + z cur = q cur q 0 1/3 T cur T cmb , (7.24) 
where q cur = q(z cur ), and q 0 = q(z = 0), denotes the number of entropic relativistic degrees of freedom at the time of current condensation, and today, respectively. In the following, we consider T cur to be given by

T cur = 1 λ = √ µ R , (7.25) 
and we take T cmb = 2.725 K. In order to solve Eq. ( 7.24) for z cur , we have used the tabulated values of q(z) associated with the thermal history in the Standard Model and computed in Ref. [START_REF] Hindmarsh | WIMP Dark Matter and the QCD Equation of State[END_REF].

Still, from entropy conservation, the redshift associated with the formation of the string network (at the temperature T ini ) is given by

1 + z ini = q ini q 0 1/3 T ini T cmb , (7.26) 
where

T ini = √ µ = RT cur . (7.27)

Cosmological distribution of vortons

From Eq. ( 7.18), we can determine the distribution dN d of relaxed vortons and produced vortons. Both of these being stable, they will contribute to the relic content of the universe.

Regarding the distributions of doomed loops and proto-vortons, these could be important for some observational effects of strings, for instance the stochastic gravitational wave background, but they cannot contribute significantly to the dark matter content of the Universe [START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF]. Their distributions are determined from Eq. (7.18) through

dN d doom ( , t) ≡ dN ∂ 2 N ∂ ∂N Θ(R -N ), (7.28) dN d proto ( , t) ≡ dN Θ(N -R) ∂ 2 N ∂ ∂N Θ[ -0 (N )], (7.29) 
and are given in Appendix 7.B. In order to determine the vorton distribution, we recall that a vorton is a loop with topological number N > R and size ≤ 0 (N ) if σ > 0. In the limit σ → 0, the charge N of the vorton is proportional to its length 0 (N ) = N/ √ µ. In order to deal correctly with the singular behaviour in the limit σ → 0, we firstly express the vorton distribution in terms of the charge N , namely calculate dN dN , then take the limit σ → 0, and finally determine dN d through a simple change of variables since = 0 = N/ √ µ.

Our starting point is therefore

dN dN vort (t, N ) ≡ Θ(N -R) d ∂ 2 N ∂ ∂N Θ[ 0 (N ) -], (7.30) 
which we calculate for both relaxed and produced vortons below.

Relaxation term

The distribution of the vortons coming from the initial conditions at the condensation is determined from (7.30), substituting the first term of Eq. ( 7.18), together with the initial distribution of loops in Eq. (7.23). This gives dN dN vort,rel = Θ(N -R)

0(N ) -∞ a(t cur ) a(t) 3 J ( cur , N ) J ( , N ) dN d ( cur , t cur )δ N - cur λ d , (7.31)
in which cur ( , t, N ), given in Eq. (7.19), is the size of the loop at condensation. In order to integrate over the Dirac delta distribution, we change integration variable from to

y = N - cur λ , (7.32) 
with corresponding Jacobian

dy d = - 1 2 √ λ cur ∂ cur ∂ t,N = - 1 2 √ λ cur J ( cur , N ) J ( , N ) , (7.33) 
where we have used Eq. (7.19). As a result, the J terms cancel, and we obtain

dN dN vort,rel = 2λN Θ(N -R) a(t cur ) a(t) 3 dN d λN 2 , t cur Θ(){ cur [ 0 (N ), t, N ] -λN 2 }. (7.34)
In the limit σ → 0, the size of a vorton is = 0 (N ) = N/ √ µ, and Eq. ( 7 This distribution scales like matter (modulo the time-dependence in the Θ-functions). This term was already derived in Ref. [START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF], and our results agree though the approach is different. We now turn to the vorton population sourced by loops chopped off from the network, namely from the second term in Eq. (7.18).

Production term

After the condensation, all the strings and loops carry a current, which implies that all new loops formed from the network will inherit the charge density carried by their mother strings. As a result, the charged loop production function is still given by Eq. (7.20), modulated by the charge density distribution, i.e.

P( , t, N

) = Ct -5 δ t -α δ N -λ Θ(t -t cur ). (7.37)
Substituting into the last term of Eq. (7.18) (see Chapter 6) gives the number density

∂ 2 N ∂ ∂N = C J ( , N ) a(t ) a(t) 3 t -4 J (αt , N ) α + ΓGµJ (αt , N ) δ N - αt λ Θ(t -t cur ). (7.38)
where t ( , t, N ) is the time of loop formation, obtained by solving ΓGµt + ξ(αt , N ) = ΓGµt + ξ( , N ), (7.39) which again follows from the fact that 2v = ΓGµt + ξ( , N ) is a conserved quantity during the lifetime of the loops. The definition in Eq. (7.30) then gives 

dN dN vort,prod = Θ(N -λ √ µ) × 0(N ) -∞ d C J ( , N ) a(t ) a(t) 3 t -4 J (αt , N ) α + ΓGµJ (αt , N ) δ N - αt λ Θ(t -t cur ).
with corresponding Jacobian

dỹ d = - α λ 1 2 √ t ∂t ∂ t,N = - α λ 1 2 √ t J (αt , N ) J ( , N )[α + ΓGµJ (αt )] . (7.42) 
Thus Eq. (7.40) gives

dN dN vort,prod = Θ(N -λ √ µ) × 2λN α C a λN 2 /α a(t) 3 λN 2 α -4 Θ(λN 2 -αt cur )Θ t ( 0 (N ), t, N ) - λN 2 α .
(7.43) In the limit σ → 0, Eq. (7.39) reduces to (α + ΓGµ)t = 0 (N ) + ΓGµt, (7.44) and, using the fact that vortons have size = 0 (N ) = N/ √ µ, it follows that the produced vorton distribution is given by which again scales as matter.

dN d vort,prod = 2λµ α C a λµ 2 /α a(t) 3 × λµ 2 α -4 Θ(λµ 2 -αt cur )Θ ΓGµt + α + ΓGµ - λµ 2 α Θ( -λ), (7.45 
In Fig. 7.2 we show the different regions of ( , t)-space which are populated by either relaxed or produced vortons, and also proto-vortons and doomed loops (see Appendix 7.B). Essentially, for vortons, these are fixed by the Θ-functions in Eq. (7.45) and Eq. (7.36). In particular, we observe that for

Gµ > αGt cur λ 3 ⇐⇒ R > αt cur λ , (7.46) 
there are no relaxed vortons produced, explaining the differences between the two panels of Fig. 7.2.

A consequence of the different Θ-functions in Eq. (7.45) is that when evaluating t , the formation time of loops, it turns out that all vortons were produced initially during radiation era. If one imposes that the loop production function of Eq. (7.37) is only valid for t < t eq , one finds that Eq. (7.45) is multiplied by the Heaviside function Θ(αt eqλµ 2 ).

Relic abundance

In the previous sections we have established that the number density of vortons produced during the radiation era contains two components, namely the relaxed vortons with length distribution given in Eq. (7.36), and the produced vortons with length distribution given in Eq. (7.45).

Analytic estimates

In order to estimate the density parameter associated with the relic vortons today, we can use the results of the previous section evaluated at present time t = t 0 . The density parameter for each population is defined by

Ω ≡ 8πGµ 3H 2 0 ∞ 0 dN d d . (7.47) 
Starting with the contribution of the relaxed vortons, from Eq. (7.36), estimated today, the dimensionless loop distribution reads

t 0 4 dN d vort,rel = 2R 2 (1 + z cur ) 3 λ t 0 t cur 4 t 4 cur dN d Θ( -λ) Θ[ t (t 0 ) -] , (7.48) 
where we have introduced the typical length [START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF] t (t 0 ) ≡

λ 2R 2 1 + 1 + 4R 2 γ d (t 0 -t cur ) λ , (7.49) 
solution of the quadratic equation appearing in the argument of the first Heaviside function in Eq. (7.36). As explicit in the above expression, this is the maximal possible length of a relaxed vorton today, larger loops belonging to the (relaxed) proto-vorton distribution, see also Fig. 7.2. In this expression, the loop distribution at t cur is given by Eq. (7.21). The vorton distribution of Eq. (7.48) obtained by taking, in Eq. (7.21), C = 0 and C ini given by Eq. (7.22) is the one originally considered and derived in Ref. [START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF]. We see that by considering C = 0, i.e. by including all the Nambu-Goto loops produced between t ini and t cur , we are adding a new population, not considered so far, to the relaxed vorton abundance.

It is actually possible to derive an analytical expression for the density parameter of these new relaxed vortons only. Let us consider a loop distribution at t cur given by Eq. (7.21) with C = 0 and C ini = 0. In other words, we take the extreme situation in which at t = t ini , there is no loop at all. All loops present at t cur are therefore created from the network between t ini and t cur . Plugging Eq. (7.48) into Eq. ( 7.47), one gets after some algebra

Ω min rel = 2R 2 C 9(1 + z cur ) 3 (H 0 t cur ) 2 (α + γ d ) 3/2 (M pl t cur ) 2 γ d × (){ x 3 max γ d + λx max / ¯ cur 2 3/2 - x 3 min γ d + λx min / ¯ cur 2 3/2 }, (7.50) 
with the dimensionless numbers

x max ≡ min t λ , ¯ cur λ , x min = max 1, 1 R ¯ ini (t cur ) λ , (7.51) 
and where we have introduced the new length scales

¯ cur ≡ √ αλt cur R , ¯ ini (t cur ) ≡ t ini (α + γ d ) -γ d t cur . (7.52) 
From the fact that we started with no loop at all at the string forming time t ini , Eq. (7.50) is necessarily a robust lower bound for the relaxed vorton abundance today. These objects will be referred to as the "irreducible relaxed vortons". Similarly, the produced vorton density distribution today is given by Eq. (7.45) evaluated at t = t 0 . The dimensionless distribution today reads rel (today) from the population of irreducible relaxed vortons, i.e. we have assumed that there is no loop at the string forming time (C ini = 0). The right panel shows the density parameter Ω prod of produced vortons derived analytically in Eq. (7.58). The thick green line shows the value Ω dm = 0.3, typical of the current dark matter density parameter. The white patches on these figures correspond to regions of the parameter space where no vortons are present: all loops there are either doomed or proto-vortons. Abundances of these two populations of vortons have not been derived before and constitute an irreducible contribution.

t 0 4 dN d vort,prod = 2C [1 + z(t )] 3 α R λ t 0 3 t 0 7 Θ -¯ cur Θ ¯ t (t 0 ) -Θ( -λ) , (7.53 
where we have made explicit the new length scale

¯ t (t 0 ) ≡ λ 2R 2 α α + γ d 1 + 1 + 4R 2 α + γ d α γ d t 0 λ , (7.54) 
which is the analogue of t (t 0 ) but for the produced vortons, see Eq. (7.49). This is the maximal possible size of a produced vorton today. Let us notice the appearance of the redshift z(t ), evaluated at some (past) -dependent cosmic time

t ≡ R 2 α 2 λ . (7.55) 
Plugging Eq. (7.53) into (7.47), one gets

Ω prod = 16πGµ 3(H 0 t 0 ) 2 C α R 2 3 t 0 λ 2 ymax ymin [1 + z(t λt )] 3 y 6 dy , (7.56) 
with

y min ≡ max 1, ¯ cur λ , y max ≡ ¯ t (t 0 ) λ . (7.57) 
Equation (7.56) shows that the knowledge of the whole thermal history of the Universe through z(t λt ) is a priori required to accurately determine Ω prod . This is expected as the "time of flight" of a proto-vorton between its creation and stabilization as a vorton depends on its size at formation. Therefore, at any given time, the population of produced vortons keeps a memory of the past history of the Universe.

The integral (7.56) can be analytically performed with some simplifying assumptions. One can consider an exact power-law expansion for the radiation and matter era together with an instantaneous transition at t eq . Taking a(t) ∝ t ν , with ν = ν rad ≡ 1/2 and ν = ν mat ≡ 2/3 in the radiation and matter era, respectively, one gets

Ω prod = 16πGµ 3(H 0 t 0 ) 2 C α R 2 3 t 0 λ 2-3νmat × R 2 α
3ν rad [min (y max , y eq )] 6ν rad -5y 6ν rad -5 min 5 -6ν rad

t eq λ 3(νmat-ν rad ) + R 2 α 3νmat y 6νmat-5 max -[max (1, y eq )] 6νmat-5 5 -6ν mat , (7.58) 
where

y eq ≡ ¯ eq λ , with ¯ eq ≡ αλt eq R . (7.59) 
Unsurprisingly, the particular cosmic time t eq imprints a new length scale ¯ eq in the distribution. We have represented in Fig. 7.3 both Ω min rel and Ω prod as a function of (Gµ, 1/R) given by the Eqs. (7.50) and (7.58). The thick green line shows the contour matching the value Ω dm = 0.3. For the irreducible relaxed vortons, the only additional parameter entering Eq. (7.50) is z cur , which has been determined using a(t) ∝ t ν rad for the radiation era together with the thermal initial conditions of Eq. (7.24) (using q cur = 104). As already discussed, these two populations of vortons are an unavoidable consequence of the loop production associated with a scaling cosmic string network and have not been considered before. For instance, taking R 10 2 , these figures show that all values of Gµ greater than 10 -15 are overclosing the Universe with vortons, even though no loops at all are present at t ini when the strings are formed. Although not very visible on the figure, there is a small region around R = 1 in which Ω min rel = 0. Indeed, if t ini = t cur and C ini = 0, there is no time at all to produce loops before the current appears. However, this region is actually ruled out as filled with vortons produced afterwards (see right panel of Fig. 7.3).

Returning to Eqs. (7.48) and (7.21), the most general situation for the relaxed vortons is to start with a mixture of loops created at the string forming time and loops created from the network between t ini and t cur , i.e. one has both C = 0 and C ini = 0. Moreover, from Eq. (7.56), the accurate expression for Ω prod requires specifying the whole thermal history of the Universe and the integral has to be performed numerically. In the next section, we numerically integrate both Ω rel and Ω prod and discuss their sensitivity to the initial conditions.

Numerical integration and initial conditions

Compared to the previous section, we now numerically integrate both Ω rel and Ω prod starting from the general initial loop distribution described in Section 7.3.2. Thermal initial conditions are taken assuming that the number of relativistic degrees of freedom is given by the Standard Model as derived in Ref. [START_REF] Hindmarsh | WIMP Dark Matter and the QCD Equation of State[END_REF]. Figures 7.4 and 7.5 show the density parameters today of all the relaxed vortons, the produced vortons and the sum of the two contributions when the string forming network at t = t ini is given by the Vachaspati-Vilenkin initial condition (see Section 7.3.2). This implies that the typical size of loops at t ini is given by thermal fluctuations of the Higgs field and corr = 1/ √ µ. The upper left-hand panel shows the density parameter of relaxed vortons coming only from loops present at the string-forming phase transition, when starting from a Vachaspati-Vilenkin distribution at t = t ini . This is the population derived in Ref. [START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF], that we recover by setting C = 0 in our equations. The upper right-hand panel shows the numerically evaluated density parameter of the irreducible relaxed vortons Ω min rel (to be compared to our analytic estimation in the left panel of Fig. 7.3). The lower left-hand panel shows the density parameter Ω rel (today) from the population of all relaxed vortons (the sum of the upper left and right panels). Thermal history effects are visible on the upper boundary towards the minimum possible values of 1/R and Gµ. The lower right-hand panel shows the density parameter Ω prod today of produced vortons derived numerically, and is indistinguishable from our analytic estimation of Eq. (7.58) (see right-hand panel of Fig. The lower right panel of Fig. 7.4, compared to the right panel of Fig. 7.3, shows that our approximated formula (7.58) is relatively accurate. The lower left panel of Fig. 7.4 exhibits a triangle-like region which is not visible on the left panel of Fig. 7.3. This region, with a high density of relaxed vortons, is precisely the one associated with the relaxed vortons created from the loops initially present at the string forming time and which were studied in Ref. [START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF]. This contribution is represented alone in the upper left panel of Fig. 7.4. In this corner of parameter space, we recover the results already presented in Ref. [START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF]: essentially all values of Gµ are ruled out, only values of Gµ = O 10 -30 and R = O 10 4 remain compatible with the cosmological bounds.

When all contributions are combined, as shown in Fig. 7.5, one can see that for all Gµ there are values of R which make the vortons either an acceptable candidate for dark matter (green line) or a subdominant component today (left of the green line). However, this figure also shows that there is an absolute lower bound for R below which vortons would overclose the universe, independently of the value of Gµ (which is also given by the green line). For instance, there are no acceptable regions for which R < 10 2 , implying that stable vortons in our Universe can only be created if the temperature of current condensation is at least two orders of magnitude lower than the one of the formation of strings. This result is the consequence of the irreducible relaxed and produced vorton contributions closing the parameter space up to the maximum admissible values of Gµ. It may have some implications on the particle physics models creating strings and currents [START_REF] Jeannerot | How Generic Is Cosmic String Formation in Supersymmetric Grand Unified Theories[END_REF][START_REF] Rocher | Constraints on Supersymmetric Grand Unified Theories from Cosmology[END_REF].

Despite the fact that Vachaspati-Vilenkin initial conditions are quite motivated from the point of view of a thermal process, loops could be created from other processes [START_REF] Rajantie | Formation of Topological Defects in Gauge Field Theories[END_REF][START_REF] Rivers | The Formation of Classical Defects after a Slow Quantum Phase Transition[END_REF]. Therefore, instead of assuming corr = 1/ √ µ, one could use the Kibble argument [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF][START_REF] Kibble | Phase Transitions in the Early Universe[END_REF] and take corr = d h t ini , where d h t ini = 2t ini denotes the distance to the would-be particle horizon at the string forming time. Doing so leads to the same overall relic abundance of vortons as in Section 7.5.1 where we were assuming C ini = 0. There are simply not enough loops initially, compared to the one produced later on, to significantly change the final density parameter.

In order to quantitatively study the dependence of Ω tot with respect to the loop distribution at t ini , we have represented in Fig. 7.6 the values of Ω tot = 0.3 in the plane (Gµ, 1/R) for various choices of corr . They range from the thermal value corr = 1/ √ µ to the causal one corr = d h t ini , and even above, a situation that could appear if loops have been formed during cosmic inflation [START_REF] Ringeval | Large Scale CMB Anomalies from Thawing Cosmic Strings[END_REF].

Everything on the right of the lines represented in this figure would lead to an overclosure of the Universe, while everything on the left is compatible with current measurements. The hatched region in this figure shows the robust bound discussed earlier, where there are only irreducible relaxed vortons and produced vortons. In all our analysis and equations, we have left the parameter α arbitrary, fixing only α = 0.1 for the figures for well motivated reasons. Changing α to smaller values, while keeping everything else fixed, increases the population of doomed loops, and thus decreases the vortons abundance. The explicit dependence in α can be read off from Eqs. (7.50) and (7.58).

Other observables

A network of cosmic strings can let imprints in various cosmological observables, such as the stochastic background of gravitational waves and the Cosmic Microwave Background (CMB). In the present case, the stabilization of vortons is expected to prevent a part of the energy to be converted into gravitational waves. We have therefore estimated the gravitational wave power spectrum generated from proto-vortons and doomed loops only. Their loop number densities are clarified in the Ap-pendix 7.B. Due to the very small size of the vortons, the lack of energy in terms of gravitational waves ends up being negligible and the predictions for the stochastic background of gravitational waves remain unchanged compared to Nambu-Goto strings with a one-scale loop production function (see Chapter 4). For the one-scale LPF, the current Laser Interferometer Gravitational-Wave Observatory (LIGO) bound on the string tension is Gµ < O 10 -11 [START_REF] Jose | New Limits on Cosmic Strings from Gravitational Wave Observation[END_REF][START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF][START_REF] Abbott | Constraints on Cosmic Strings Using Data from the First Advanced LIGO Observing Run[END_REF] but depends on some assumptions on the string microstructure. Concerning the CMB, detectable distortions induced by cosmic strings are mostly due to the long strings in scaling such that they are not sensitive to the loop distribution and provide a robust upper bound Gµ < O 10 -7 for all types of strings [START_REF] Ringeval | All Sky CMB Map from Cosmic Strings Integrated Sachs-Wolfe Effect[END_REF][START_REF] Ade | Planck 2013 Results. XXV. Searches for Cosmic Strings and Other Topological Defects[END_REF][START_REF] Lizarraga | Constraining Topological Defects with Temperature and Polarization Anisotropies[END_REF][START_REF] Lazanu | Constraints on the Nambu-Goto Cosmic String Contribution to the CMB Power Spectrum in Light of New Temperature and Polarisation Data[END_REF][START_REF] Lazanu | CMB Power Spectrum of Nambu-Goto Cosmic Strings[END_REF]. Both of these bounds therefore apply to current-carrying strings with vortons. Let us also remark that current-carrying strings may lead to other observational signatures, for instance gamma ray or radio bursts [START_REF] Cai | Radio Bursts from Superconducting Strings[END_REF][START_REF] Cai | Radio Broadcasts from Superconducting Strings[END_REF] (see also Chapter 6).

Conclusion

The main result of this work is the derivation of the relic abundance of an irreducible population of vortons not considered so far. These vortons are continuously created by the scaling string network at all times during the cosmological expansion and allow us to probe new regions of the parameter space (Gµ, 1/R), namely energy scales that spawn the entire spectrum from TeV scales to the Planck scale. In particular, vortons are a viable dark matter candidate for all possible value of Gµ (with, however, some quite tuned values of R). We have derived their number density distribution at all times, which is the quantity of interest for dark matter direct detection searches [START_REF] Bonazzola | Can High-Energy Cosmic Rays Be Vortons?[END_REF][START_REF] Arina | A Bayesian View of the Current Status of Dark Matter Direct Searches[END_REF][START_REF] Arina | Bayesian Analysis of Multiple Direct Detection Experiments[END_REF], and derived the relevant cosmological constraints, summarized in figures 7.5 and 7.6.

Throughout this work, we have, however, assumed that all the scaling loops are produced at the same size αt. A more complete analysis would take into account the fact that the loop production function is a priori more complicated. Due to the proliferation of kinks on the infinite string network and the fragmentation of large loops, we expect scaling loops to be produced at all sizes with a power-law LPF

P( , t, N ) = Ct -5 t 2χ-3 δ N -λ Θ(t -t cur )Θ( -γ c t), (7.60) 
where χ is the so-called Polchinski-Rocha exponent and γ c is the gravitational backreaction scale. Under this assumption, many more small loops are produced, and one can expect some boost to the density of vortons [START_REF] Auclair | Probing the Gravitational Wave Background from Cosmic Strings with LISA[END_REF][START_REF] Auclair | Impact of the Small-Scale Structure on the Stochastic Background of Gravitational Waves from Cosmic Strings[END_REF]. Solving for the vorton distribution by using a Polchinski-Rocha LPF is, however, mathematically challenging, and we have not taken this route in the present paper.

Let us also mention that, in the present work, we have solved a continuity equation to derive the vorton number density. This approach is strictly equivalent to the one presented in Ref. [START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF], which is based on solving a Boltzmann equation. As a matter of fact, all the results presented have been cross-checked using the two methods. For completeness, we give in Appendix 7.A a proof of the equivalence between the two formalisms and how to pass from one evolution equation to the other.

Finally, concerning the influence of the initial conditions, let us remark that in the most generic situation, one cannot exclude that the redshift z ini at which strings are formed and the redshift z cur at which the current appears are independent of the value of Gµ and R (or λ). Although such a situation would be difficult to envisage for cosmic strings interpreted as topological defects, it could be very well the case for cosmic superstrings. For instance, z ini could be very large, close to the Planck energy scales while the warped observed value of Gµ can remain very low. In this case, our assumptions of Section 7.3.2 do no longer apply and this could change the relaxed vorton contribution. However, this would not change the produced vorton abundance, these being generated by the network at all subsequent times. A complete model-independent treatment would require to consider a four-dimensional parameter space made of (Gµ, R, z ini , z cur ), which could be explored using Monte-Carlo-Markov-Chain methods, but we leave such a study for a future work.

7.A Connection between the Boltzmann and continuity equations

We clarify in this Appendix the equivalence between Eq. (2.7) of Ref. [START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF] and our Eq. (7.10) to show that the difference merely comes from the use of either lagrangian or eulerian coordinates. In Ref. [START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF], one has = ( ini , t), i.e., one follows the evolution of a given loop size that begun with an initial value ini ; somehow, the relevant variable is ini , and the flow is lagrangian. In the present work, the size of the loop is just what it is at the time one is concerned with, with no mention of the individual loop; this is the eulerian version. Going from the eulerian set { , t} to the lagrangian one { ini , t} means that for any quantity

X( , t) = X[ ( ini , t)], one has dX = ∂X ∂t dt + ∂X ∂ t d = ∂X ∂t ini dt + ∂X ∂ ini t d ini ,
with the subscript on the brackets for the partial derivatives indicating the quantity left constant for the evaluation of the derivative. Similarly expanding the differential d and identifying the partial derivatives, one finds

∂X ∂t ini = ∂X ∂t + ∂X ∂ t ∂ ∂t ini and ∂X ∂ ini t = ∂X ∂ t ∂ ∂ ini t . (7.61) 
One also notes that

j ≡ d dt = ∂ ∂ ini t d ini dt + ∂ ∂t ini = ∂ ∂t ini , (7.62) 
the final step being a consequence of the fact that in lagrangian coordinates, ini does not depend on time. Combining (7.62) and (7.61), one immediately gets that

∂X ∂t + j(PX ) t = ∂X ∂t ini . (7.63) 
We are now in position to compare Eq. (2.7) of Ref. [START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF] and our Eq. (7.10). The former indeed reads

∂ ∂t a 3 F J psd + j ∂ ∂ a 3 F J psd = a 3 PJ psd , (7.64) 
where J psd = ∂ /∂ ini accounts for phase space distortion, and we have set F ≡ ∂ 2 N ∂ ∂N for convenience. Expanding the partial derivatives of (7.64) and simplifying by J psd (assumed non vanishing), one gets

∂ ∂t a 3 F + j ∂ ∂ a 3 F + a 3 f J psd ∂J psd ∂t + j ∂J psd ∂ t = a 3 P, (7.65) 
the term in square brackets being, by virtue of (7.61) and (7.62), simply ( ∂J psd /∂t ) ini . Given the definition of J psd and swapping partial derivatives, it turns out that

∂J psd ∂t ini = ∂j ∂ t ∂ ∂ ini = J psd ∂j ∂ t ,
so that Eq. (7.65) now becomes

∂ ∂t a 3 F + j ∂ ∂ a 3 F + a 3 F ∂j ∂ = a 3 P, (7.66) 
which is, as announced, Eq. (7.10) after grouping the -derivative terms and making j explicit as in Eq. (7.7).

To conclude this appendix, we give in Table 7.1, a dictionary between the different notations used in Refs. [START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF][START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF] and the present work.

Present work Ref. [START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF] µ U

0 v R N * γ d γ d σ → 0 γ v → 0 = λ 3 µ + t (t) t (t) 
Table 7.1: Dictionary of notations between the present work and Refs. [START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF][START_REF] Peter | A Boltzmann Treatment for the Vorton Excess Problem[END_REF].

7.B Distribution of proto-vortons and doomed loops

In this Appendix, we give the distributions of proto-vortons and doomed loops, both of which contribute to the stochastic gravitational wave background. Proto-vortons and doomed loops decay through gravitational wave radiation and their collapse is not prevented by the current: indeed for both, J = 1 (in the limit σ → 0). Hence, for these distributions, and without loss of generality, we set J = 1 in this Appendix.

7.B.1 Doomed loops

Doomed loops are the loops which do not have enough current to prevent their final collapse, hence N < R. From Eqs. (7.28), (7.18) and (7.23), the relaxed doomed loop distribution, that is to say the doomed loops which are produced from the initial conditions at condensation, reads

dN d doom,rel = a(t cur ) a(t) 3 dN dN d ( cur , t cur )δ N - cur λ Θ(R -N ), (7.67) 
in which cur , the size of the loop during condensation at t cur , is given by cur ( , t) = ΓGµ(tt cur ) + .

Integrating over the charge N and replacing cur , one obtains the number density of doomed loops in relaxation dN d doom,rel = a(t cur ) a(t)

3 dN d [ΓGµ(t -t cur ) + , t cur ]Θ R - ΓGµ(t -t cur ) + λ . (7.69) 
Concerning the doomed loops produced after condensation, from Eqs. (7.28) and (7.38), their number density is given by

dN d doom,prod = C dN Θ(R -N ) a(t ) a(t) 3 t -4 1 α + ΓGµ δ N - αt λ Θ(t -t cur ), (7.70) 
in which t is the loop formation time. Assuming, as we have done throughout this paper, that loops are produced at a given size = αt at time t, the formation time satisfies

t ( , t) = + ΓGµt α + ΓGµ . (7.71) 
Finally, integrating over the charge N and replacing the formation time by the above equation, one obtains the number density of doomed loops produced after condensation:

dN d doom,prod = C   a +ΓGµt α+ΓGµ a(t)   3 (α + ΓGµ) 3 ( + ΓGµt) 4 × Θ + ΓGµt α + ΓGµ -t cur Θ R - α( + ΓGµt) λ(α + ΓGµ) . (7.72) 

7.B.2 Proto-vortons

Proto-vortons are loops which will eventually become vortons after a certain time, but which are still large enough to behave like Nambu-Goto strings. From Eq. (7.29), (7.18) and (7.23), the distribution of "relaxed proto-vortons" is given by

dN d proto,relax = dN Θ(N -R) a(t cur ) a(t) 3 dN d ( cur , t cur )δ N - cur λ Θ[ -0 (N )], (7.73) 
where 0 (N ) = N/ √ µ and, again, the size of the loop at formation is given by cur ( , t) = ΓGµ(tt cur ) + .

On carrying out the integral over the charge N in equation (7.73), the number density of protovortons produced at condensation is

dN d proto,relax = a(t cur ) a(t) 3 dN d [ΓGµ(t -t cur ) + , t cur ] × Θ - ΓGµ(t -t cur ) + λµ Θ ΓGµ(t -t cur ) + λ -R . (7.75) 
Proto-vortons can also be produced after condensation, in which case their distribution is obtained from Eqs. (7.29) and (7.38)

dN dN proto,prod = C dN a(t ) a(t) 3 t -4 Θ(N -R) α + ΓGµ δ N - αt λ Θ(t -t cur )Θ[ -0 (N )].
(7.76) Similarly, the loop formation time t is given by

t ( , t) = + ΓGµt α + ΓGµ , 0 (N ) = N √ µ . (7.77) 
The distribution of proto-vortons produced after the condensation now reads

dN dN proto,prod = C   a +ΓGµt α+ΓGµ a(t)   3 (α + ΓGµ) 3 ( + ΓGµt) 4 × Θ + ΓGµt α + ΓGµ -t cur Θ - α( + ΓGµt) λµ(α + ΓGµ) Θ α( + ΓGµt) λµ(α + ΓGµ) -R . (7.78)
Chapter 8

Introduction to primordial black holes

Since Primordial Black Holes (PBHs) were proposed almost 50 years ago [START_REF] Hawking | Gravitationally collapsed objects of very low mass[END_REF][START_REF] Carr | Black Holes in the Early Universe[END_REF][START_REF] Carr | The Primordial Black Hole Mass Spectrum[END_REF], it has been realized that they can be relevant in various aspects of cosmology, ranging from dark matter [START_REF] Chapline | Cosmological Effects of Primordial Black Holes[END_REF] and the generation of large-scale structures through Poisson fluctuations [START_REF] Meszaros | Primeval Black Holes and Galaxy Formation[END_REF][START_REF] Afshordi | Primordial Black Holes as Dark Matter: The Power Spectrum and Evaporation of Early Structures[END_REF] to the seeding of supermassive black holes in galactic nuclei [START_REF] Carr | How Large Were the First Pregalactic Objects?[END_REF][START_REF] Bean | Could Supermassive Black Holes Be Quintessential Primordial Black Holes?[END_REF]. More recently, they have attracted even more attention as it was pointed out that they may account for the black-holes observed to merge by the LIGO/Virgo collaboration [START_REF] Abbott | GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs[END_REF] through their gravitational wave emission, see e.g. Refs. [START_REF] Sasaki | Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914[END_REF][START_REF] Abbott | Properties and Astrophysical Implications of the 150 Msun Binary Black Hole Merger GW190521[END_REF]. The aim of this introduction is to give a very generic overview of PBH formation and the constraints that have been established on their abundance (for reviews, see Refs. [START_REF] Sasaki | Primordial black holes-perspectives in gravitational wave astronomy[END_REF][START_REF] Carr | Constraints on Primordial Black Holes[END_REF][START_REF] Carr | Primordial Black Holes as Dark Matter: Recent Developments[END_REF][START_REF] Green | Primordial Black Holes as a dark matter candidate[END_REF] that were the inspiration for this introduction). Then in Section 8.4, I introduce the Mathieu equation and its parametric instabilities which are crucial for the next chapter.

PBH masses and Hawking evaporation

The most commonly considered PBH formation mechanism is the collapse of large over-densities during radiation era. At the re-entry of time, the Hubble horizon d h = 2ct turns out to be the Schwarzschild radius R S = 2GM/c 2 of a black hole with mass

M ≈ γc 3 t G ≈ γ10 15 t 10 -23 s g, (8.1) 
where γ is a numerical factor smaller than 1 denoting the fraction of the Hubble horizon collapsing into the black hole. Hence, PBH masses may range from ∼ 10 -5 g if produced at the Planck time (10 -43 s) to ∼ 10 5 solar masses for those formed one second after the big bang. In Chapter 9, we study PBHs formed through a different mechanism called the preheating instability. The order of magnitude is nonetheless similar, and we show that these PBHs may have masses ranging from 10g to a solar mass.

Hawking famously discovered in Ref. [START_REF] Hawking | Particle Creation by Black Holes[END_REF] that black holes radiate particles through quantum effects with a black-body spectrum of temperature

T BH = c 3 8πGk B M , (8.2) 
the subscript BH meaning either Black Hole or Bekenstein-Hawking. Hawking radiation is therefore more important, the lower the mass of the black hole. I should mention at this point that there is a profound analogy between the properties of black holes (mass, area and surface gravity) and thermodynamics (energy, entropy and temperature) also known as black hole thermodynamics [START_REF] Bardeen | The Four laws of black hole mechanics[END_REF] but this is out of the scope of this manuscript.

The radiation of a black-hole is that of a black body and its luminosity can be approximated by the Bekenstein-Hawking luminosity

L = AσT 4 BH = c 6 15360πG 2 M 2 (8.3) 
in which A = 4πR 2 S is the area of the horizon and σ the Stefan-Boltzmann constant. The underlying assumption behind this equation is that of pure photon emission by a black hole with no charge nor spin. The lifetime of a black hole with initial mass M 0 can be estimated by integrating this equation with L = ( dM /dt )c 2 , to find

τ = 5120πG 2 c 4 M 3 0 ≈ 3 × 10 11
M 0 5 × 10 14 g 3 years.

(

A more precise analysis would take into account that the actual Hawking radiation is not exactly that of a black body and depends on the spin and the charge of the black hole [START_REF] Page | Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole[END_REF]. Additionally, black holes do not only emit photons but also neutrinos, gravitons and subsequently electrons, muons and even hadrons as the mass drops, i.e. the Hawking temperature rises [START_REF] Macgibbon | Quark and gluon jet emission from primordial black holes. 2. The Lifetime emission[END_REF]. Taking these into account, the critical mass M for which the lifetime equals the age of the Universe of 13.8Gyr is [400] M = 5.0 × 10 14 g. (8.5)

In the next sections, I will briefly review some constraints on the fraction of Dark Matter (DM) in the form of PBHs

f PBH = Ω PBH Ω dm . (8.6) 
PBHs with masses below M have all completely evaporated by the present day and cannot account for the DM content of the Universe. However, they may still be relevant for other aspects in cosmology. The constraints on PBH abundance are generally divided between evaporation constraints that apply to PBHs with masses M 10 17 g, and constraints on non-evaporating black holes.

Evaporation constraints

PBHs with masses around 10 9 -10 13 g would evaporate during or shortly after Big Bang Nucleosynthesis. The injection of high-energy neutrinos and antineutrinos [START_REF] Vainer | Cosmological implications of the process of primordial black hole evaporation[END_REF], of high-energy nucleons and anti-nucleons [START_REF] Ia | Primordial black holes and the deuterium problem[END_REF] and of photons [START_REF] Lindley | Primordial black holes and the cosmic baryon number[END_REF] have a strong impact on the abundance of light elements which allows us to place constraints on their numbers. This bound is not shown in Fig. 8.1 since it concerns PBHs that have evaporated today and therefore cannot account for the DM content of the Universe today. It is, however, important to constrain the production of PBHs during the preheating instability with masses ranging from 10g to a solar mass. PBHs with masses slightly above the critical mass M are strongly constrained by observations of the extragalactic γ-ray background (EGB) [START_REF] Page | Gamma rays from primordial black holes[END_REF]. Measurements of the diffuse EGB constrain the average number density of PBHs at the present epoch. This bound has subsequently been updated by refining the description of the PBH emission [START_REF] Macgibbon | Cosmic rays from primordial black holes[END_REF] and by taking into account new generations of detectors.

It has also been suggested that the positrons produced by PBHs of masses 10 16 -10 17 g would annihilate and contribute to the flux of the 511 KeV annihilation line radiation from the Galactic Centre (GC) [START_REF] Okele | Observational consequences of positron production by evaporating black holes[END_REF]. Measurements of this line by SPI/INTEGRAL now exclude models in which PBHs of this mass range constitute all the DM [START_REF] Derocco | Constraining Primordial Black Hole Abundance with the Galactic 511 keV Line[END_REF].

There are other evaporation constraints in this mass range. Constraints on the electron-positron flux from Voyager 1 limit the contribution if PBHs to the local DM density [START_REF] Boudaud | Voyager 1 e ± Further Constrain Primordial Black Holes as Dark Matter[END_REF]. PBHs of masses around M clustering inside our Galaxy would produce an anisotropic Galactic γ-ray background. The ratio of the anisotropic to isotropic intensity in EGRET observations between 30MeV and 120MeV has been used by Ref. [START_REF] Wright | On the density of pbh's in the galactic halo[END_REF] to claim the detection PBH clustering in our galaxy. However, more detailed analyses by Refs. [START_REF] Lehoucq | New constraints on the primordial black hole number density from Galactic gamma-ray astronomy[END_REF][START_REF] Carr | Constraints on primordial black holes from the Galactic gamma-ray background[END_REF] used these observations to constrain the PBH abundance. It should be noted that this limit is sensitive to the width of the PBH mass function.

These bounds depend crucially on whether Hawking evaporation is realized in nature. If not, such light PBHs would be stable and viable as DM.

Constraints on non-evaporating PBHs

Contrary to the bounds presented in the previous section, the constraints on non-evaporating PBHs do not rely on the assumption that Hawking evaporation is realized in nature, but on the gravitational interaction of PBHs with their environment.

Gravitational lensing is a very powerful method to constrain or detect PBHs at it is solely based on gravitational physics and does not suffer from the uncertainties that exist in the studies of the radiation of black holes and their interaction with the surrounding matter. There are different types of gravitational lensing events. Microlensing events are lensed objects in which the angular separation of the images is too small to be resolved by observations [START_REF] Paczynski | Gravitational microlensing by the galactic halo[END_REF]. The observer sees the unresolved superposition of two images which is brighter than the original source. Microlensing observations of the Large and Small Magellanic clouds by the EROS collaboration, the MACHO project and the OGLE experiment probe the fraction of DM halo in black holes in the mass range 10 -8 -1 solar mass. More recently, the high-cadence observations (one observation every two minutes) of more than tens of million stars in M31 by the Subaru Hyper Suprime-Cam (HSC) placed stringent upper limits on the abundance of PBHs with masses 10 -13 -10 -5 solar mass [START_REF] Niikura | Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations[END_REF]. Microlensing may also affect the magnification distribution of type 1a supernovae (SN1a). If the DM is concentrated in compact object, then a few of the SN1a would be significantly magnified [START_REF] Metcalf | New Constraints on Macroscopic Compact Objects as a Dark Matter Candidate from Gravitational Lensing of Type Ia Supernovae[END_REF]. These constraints are represented in Fig. 8.1. On the other side, femtolensing refers to lensing events in which the wavelength of light is comparable or larger than the Schwarzschild radius of the lens

R S ≡ 2GM c 2 = 0.3 × M 10 -13 M nm. (8.7) 
This technique probes PBHs with masses between 10 -16 -10 -13 solar masses. Due to diffraction, it was proposed that femtolensing of γ-ray bursts would induce oscillatory features in their spectrum [START_REF] Gould | Femtolensing of Gamma-Ray Bursters[END_REF]. However, it was later demonstrated that most γ-ray bursts are too large to be modelled as point-like sources [START_REF] Katz | Femtolensing by Dark Matter Revisited[END_REF] relaxing the limits from femtolensing. A slightly more controversial type of constraint come from dynamical effects: PBHs affecting or even disrupting astrophysical systems through their gravitational interactions. Indeed, it was pointed out that the passage of a PBH through a white dwarf could ignite the thermonuclear reaction at the origin of type 1a supernovae and that we can constrain the abundance of PBHs by observing the mass distribution of white dwarfs [START_REF] Graham | Dark Matter Triggers of Supernovae[END_REF]. Similarly, a high abundance of PBHs with M = 10 -14 -10 -8 M would disrupt neutron stars [START_REF] Capela | Constraints on primordial black holes as dark matter candidates from capture by neutron stars[END_REF]. Wide halo binaries in the galactic halobinaries of stars with large separations of order one parsec and very weak binding energy -are also vulnerable to disruption from the passing of PBHs. It is a challenging task to distinguish wide halo binaries from the purely coincident position in the sky of two stars, but it still places upper bounds for M ∼ 100M [START_REF] Yoo | The end of the MACHO era: limits on halo dark matter from stellar halo wide binaries[END_REF]. At higher mass scales, PBHs moving randomly in the Galactic disks would increase the variance of the stars' velocity, a mechanism called disk heating [START_REF] Lacey | Massive black holes in galactic halos ?[END_REF]. A relatively similar mechanism in nature, but on larger scales constrain the existence of massive intergalactic black holes with M > 10 15 M which would increase the peculiar velocity of galaxies. As we have measured the peculiar velocity of our galaxy with the CMB dipole anisotropy, this places a bound on the very large end of the mass spectrum [START_REF] Carr | On the cosmological density of black holes[END_REF].

Massive PBHs distributed randomly in space with Poisson fluctuations may generate primordial density perturbations and enhance the matter power spectrum at small scales: this is called the large scale structure constraint [START_REF] Meszaros | Primeval Black Holes and Galaxy Formation[END_REF]. Observations of the Lyman-α absorption lines in the spectra of distant galaxies and quasars are used to estimate the inhomogeneous distribution of baryonic matter along the line of sight and allow to probe the DM perturbations on small scales. In Fig. 8.2, this constraint is decomposed into its individual components from Clusters (Cl), Milky Way galaxies (Gal) and dwarf galaxies (dG), as they originate from different redshifts.

At early times, PBHs could have had a large luminosity due to the accretion of background gas [START_REF] Carr | Pregalactic black hole accretion and the thermal history of the universe[END_REF]. A complete analysis of the phenomenon is however very challenging and require numerical simulations, as the luminosity of the black hole backreacts on its environment thereby reducing accretion. Accretion by PBHs may have an impact in the early Universe on the power spectrum of the CMB temperature and the polarization anisotropies [START_REF] Ricotti | Effect of Primordial Black Holes on the Cosmic Microwave Background and Cosmological Parameter Estimates[END_REF]; and in the present day they would contribute to the observed number density of compact X-ray objects in galaxies [START_REF] Gaggero | Searching for Primordial Black Holes in the radio and X-ray sky[END_REF].

Finally, the detection of gravitational waves from coalescing black holes by the LIGO / Virgo / KAGRA (LVK) collaboration opens a new window to look for PBHs [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF]. Black holes and neutron stars formed by standard stellar evolution can only have masses larger than ∼ 1M , hence a compact object with a mass lower than 1M would be necessarily of primordial origin. However, no such objects were found in the different LVK searches [START_REF] Abbott | Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog[END_REF][START_REF] Abbott | GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run[END_REF]. Even if the black holes detected by the LVK are not necessarily of primordial origin, the observations place important constraints on the number of PBHs in our neighbourhood. A different type of constraint comes from the gravitational wave background produced by a population of massive PBHs [START_REF] Carr | Cosmological gravitational waves -Their origin and consequences[END_REF], or by large second-order tensor perturbations generated by the scalar perturbations which produce them [START_REF] Saito | Gravitational wave background as a probe of the primordial black hole abundance[END_REF].

Mathieu instability with the method of multiple scales

The primordial black holes studied later in Chapter 9 are produced after inflation, during a phase called the preheating instability [START_REF] Jedamzik | Collapse of Small-Scale Density Perturbations during Preheating in Single Field Inflation[END_REF][START_REF] Easther | Delayed Reheating and the Breakdown of Coherent Oscillations[END_REF]. The oscillations of the inflaton at the bottom of its potential act as a forcing term in the equation of motion for the Mukhanov-Sasaki variable, leading Constraints from lensing (blue) include the microlensing of M31 by the high-cadence Subaru HSC experiment (HSC), of the Magellanic clouds by EROS and MACHO (EM) and of the galactic bulge by OGLE (O). Microlensing of type 1a supernovae (SN) is also reported on the figure. Dynamical effects (green) include limits from the existence of wide binaries (WB), disk heating (DH) and the CMB dipole (CMB). Accretion limits include -in the early Universe -the observations of the CMB distortions (orange, PA) and -in the present day -of X-ray compact objects in the galaxy (light blue, XB). Constraints from gravitational waves (gray, GW) are also reported. Figure taken from Ref. [START_REF] Carr | Primordial Black Holes as Dark Matter: Recent Developments[END_REF].
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Figure 8.2: The limits on the PBH abundance of Fig. 8.1 for different redshifts. The large scale structure limit has been broken down into its individual components from clusters (Cl), Milky Way galaxies (Gal) and dwarf galaxies (dG). This figure is taken from Ref. [START_REF] Carr | Primordial Black Holes as Dark Matter: Recent Developments[END_REF].

to an enhancement in the production of primordial black holes. Before diving into the details of the preheating phase, let me review the key properties of the Mathieu equation (9.2) used in the next chapter. The Mathieu equation is a second-order ordinary differential equation

d 2 x dt 2 + (A + 2q cos 2t)x = 0 (8.8)
in which A and q are constant. This equation describes a parametrically forced linear oscillator whose frequency changes sinusoidally in time as in Fig. 8.3. In Section 9.2, the variable playing the role of x will be the Mukhanov-Sasaki variable, and Eq. (8.8) will be used to determine the evolution of this variable through preheating. As is well-known and as is discussed in detail below, the solutions of Eq. (8.8) are unstable if the resonant frequency √ A ∼ 1 and if the amplitude of the forcing q 1. One can understand this instability by performing an expansion for q 1 using the method of multiple scales [START_REF] Kevorkian | Multiple Scale and Singular Perturbation Methods[END_REF]. We also assume that

A = 1 + qδ, (8.9) 
where δ = O(1) as q → 0. The method of multiple scales is a technique to construct uniformly valid approximations to the solutions of perturbative problems by introducing fast scale and slow scale variables, and treating them as if they were independent. This additional degree of freedom introduced by the new variables is then used to remove secular terms in the expansion.

In the case of the Mathieu equation, the idea of the method of multiple scales is to describe the evolution over long-time scales of the order q -1 by introducing the "slow" variable η = qt. We then look for a solution of the form

x(t, q) = x(t, η, q)
where x(t, η, q) is a function of two time variables (t, η) that gives x when η = qt. The derivatives of x are written as partial derivatives of x

dx dt = ∂ x ∂t + q ∂ x ∂η , (8.11) 
d 2 x dt 2 = ∂ 2 x ∂t 2 + 2q ∂ 2 x ∂η∂t + q 2 ∂ 2 x ∂η 2 . (8.12) 
Substituting into the original Mathieu equation (8.8), we find that x satisfies

∂ 2 x ∂t 2 + 2q ∂ 2 x ∂η∂t + q 2 ∂ 2 x ∂η 2 + (1 + qδ + 2q cos 2t)x = 0. (8.13) 
Actually, x(t, η, q) only has to satisfy this equation when η = qt, but we require that Eq. (8.13) remains satisfied for all values of (t, η). In particular, this requirement implies that x satisfies Eq. (8.8).

With the method of multiple scales, we have replaced an ordinary differential equation for x by a partial differential equation for x, which may seem like an even more difficult problem. But thanks to the extra degree of freedom provided by the independence of the short and long scales, we will below require that x(t, η, q) is a periodic function of the "fast" variable t.

We perform an expansion for x for small values of the amplitude q 1

x(t, η, q) = x 0 (t, η)

+ qx 1 (t, η) + O q 2 ,
and insert it in Eq. (8.13). The leading and next-to-leading order equations in are 

∂ 2 x 0 ∂t 2 + x 0 = 0 (8.14) ∂ 2 x 1 ∂t 2 + x 1 = -2 ∂ 2 x 0 ∂t∂η -(δ + 2 cos 2t)x 0 . (8.15) 
∂ 2 x 1 ∂t 2 + x 1 = -C(η) e 3it -2i dC dη + C * (η) + δC(η) e it + c.c. (8.16) 
Whose solution for x 1 is periodic in t and does not contain secular terms in t if and only if the coefficient of the term exp(it) is zero 1 . This implies that the function C(η) satisfies the ordinary differential equation

2i dC dη + C * + δC = 0. ( 8.17) 
Finally, by separating the real and imaginary parts of C(η) = a + ib, we find that it satisfies the system d dη

a b = 1 2 0 1 -δ 1 + δ 0 a b . (8.18) 
1 Take the linear second-order ODE ÿ + y = exp(ait) with a ∈ R. The solutions of the homogeneous equation are a superposition of a sine and a cosine. A particular solution when a = ±1 is a periodic y(t) = exp(ait)/(1a 2 ), whereas when a = ±1, a particular solution y(t) = exp(it)(1 -2it)/4 always contain a secular term, and is therefore non-periodic. The purpose of the multi-scale analysis is precisely to remove this secular term from the expansion.

The eigenvalues of this matrix equation are λ = ± √ 1δ 2 /2, and the function C(η) governing the long-time evolution is proportional to exp(±λη) = exp(±µt) in which

µ = q 2 1 -δ 2 (8.19)
is also known as the Floquet coefficient. This result implies that at leading order in q 1, the solution is

• periodic if µ = 0, hence when |δ| = 1 or equivalently when A = 1 + q

• stable if µ is imaginary, hence when |δ| > 1 or equivalently when A > 1 + q

• unstable if µ is real, hence when |δ| < 1 or equivalently when A < 1 + q In Chapter 9, I am interested in the unstable solution, when A ≈ 1, in which case the coefficient µ is proportional to q µ = q 2 . (8.20)

Chapter 9

Primordial black holes from metric preheating

This chapter is a reproduction of Ref. [START_REF] Auclair | Primordial black holes from metric preheating: mass fraction in the excursion-set approach[END_REF] written in collaboration with Vincent Vennin. The aim of this article was to extend the calculation of the PBH mass function during the preheating instability in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF], of which Vincent Vennin was one of the authors. Indeed, the analysis carried out in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF] showed that the production of ultra-light PBHs from this instability is so efficient that they can quickly come to dominate the universe content, finding that the fraction of the total energy budget that is comprised inside PBHs, is larger than one. This clearly signals an inconsistency and the authors of the article had to include renormalization procedures to cope with this issue. In the present article, we show that this issue is due to the technique used to calculate the mass fraction, limited to narrow distributions; and use the excursion-set formalism to calculate the mass fraction. This work makes use of much of the experience I gained during my research internship in 2017 with Gilles Chabrier at the University of Exeter on the excursion-set formalism but applied to the formation of stars and clouds in the galaxy.

Abstract

We calculate the mass distribution of Primordial Black Holes (PBHs) produced during metric preheating. After inflation, the oscillations of the inflaton at the bottom of its potential source a parametric resonant instability for small-scale scalar perturbations, that may collapse into black holes. After reviewing pedagogically different techniques that have been developed in the literature to compute mass distributions of PBHs, we focus on the excursion-set approach. We derive a Volterra integral equation that is free of a singularity sometimes encountered, and apply it to the case of metric preheating. We find that if the energy density at which the instability stops, ρΓ, is sufficiently smaller than the one at which inflation ends, ρ end , namely if

ρ 1/4 Γ /ρ 1/4 end < 10 -5 (ρ 1/4
end /10 16 GeV) 3/2 , then PBHs dominate the universe content at the end of the oscillatory phase. This confirms the previous analysis of Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF]. By properly accounting for the "cloud-in-cloud" mechanism, we find that the mass distribution is more suppressed at low masses than previously thought, and peaks several orders of magnitude above the Hubble mass at the end of inflation. The peak mass ranges from 10 g to stellar masses, giving rise to different possible cosmological effects that we discuss.

Introduction

Since Primordial Black Holes (PBHs) were proposed almost 50 years ago [START_REF] Carr | Black Holes in the Early Universe[END_REF][START_REF] Carr | The Primordial Black Hole Mass Spectrum[END_REF], it has been realized that they can be relevant in various aspects of cosmology, ranging from dark matter [START_REF] Chapline | Cosmological Effects of Primordial Black Holes[END_REF] and the generation of large-scale structures through Poisson fluctuations [START_REF] Meszaros | Primeval Black Holes and Galaxy Formation[END_REF][START_REF] Afshordi | Primordial Black Holes as Dark Matter: The Power Spectrum and Evaporation of Early Structures[END_REF] to the seeding of supermassive black holes in galactic nuclei [START_REF] Carr | How Large Were the First Pregalactic Objects?[END_REF][START_REF] Bean | Could Supermassive Black Holes Be Quintessential Primordial Black Holes?[END_REF]. More recently, they have attracted even more attention as it was pointed out that they may account for the progenitors of the black-hole merging events detected by the LIGO/Virgo collaboration [START_REF] Abbott | GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs[END_REF] through their gravitational wave emission, see e.g. Refs. [START_REF] Sasaki | Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914[END_REF][START_REF] Abbott | Properties and Astrophysical Implications of the 150 Msun Binary Black Hole Merger GW190521[END_REF]. There are several observational bounds that constrain the abundance of PBHs in various mass ranges (for a recent review, see e.g. Ref. [START_REF] Carr | Constraints on Primordial Black Holes[END_REF]).

PBHs are expected to form when large density fluctuations re-enter the Hubble radius and collapse into black holes. Their abundance is usually computed by assuming that they are rare objects that are formed at around a single scale, and the probability that a given region of the universe ends up in a black hole can be inferred from the knowledge of the primordial curvature power spectrum at that scale. Such an approach may however fail in cases where PBHs are abundantly produced, and/or if they arise over a wide range of masses. This could notably be the case for PBHs with masses smaller than 10 9 g, which Hawking evaporate before big-bang nucleosynthesis and are therefore not limited by observational constraints.

A prototypical example of a mechanism leading to such ultra-light, yet extremely abundant, PBHs, is the parametric instability of single-field metric preheating [START_REF] Jedamzik | Collapse of Small-Scale Density Perturbations during Preheating in Single Field Inflation[END_REF][START_REF] Easther | Delayed Reheating and the Breakdown of Coherent Oscillations[END_REF] (see Ref. [START_REF] Green | Primordial Black Hole Production Due to Preheating[END_REF] for multiple-field setups). After inflation, the oscillations of the inflaton at the bottom of its potential source a parametric instability in the equation of motion of scalar perturbations, that are enhanced on small scales. In Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF], it was shown that the production of ultra-light PBHs from this instability is so efficient that they can quickly come to dominate the universe content, such that reheating no longer occurs because of the inflaton decay, but rather through PBHs evaporation.

Although these conclusions lead to a substantial change in the cosmological scenario, they were however reached by employing the usual estimate for PBH abundance, whose usage is questionable in contexts in which PBHs are abundant. The goal of this paper is to re-examine this calculation, in the light of more refined techniques that were originally proposed for large-scale structures but that can (and have) also be applied to PBHs. This will allow us to investigate generic properties of the expected mass distribution of ultra-light black holes, in regimes in which they densely populate the primordial universe.

This could have important consequences for various physical phenomena associated to those black holes. For instance, it was recently shown [START_REF] Papanikolaou | Gravitational Waves from a Universe Filled with Primordial Black Holes[END_REF] that gravitational waves induced at second order by the gravitational potential underlain by ultra-light PBHs lead to a stochastic background that might be detected in future gravitational-wave experiments, and that is even already excluded in some regimes. Since the amplitude and frequency coverage of this background strongly depend on the details of the mass distribution of PBHs, it seems important to derive robust predictions for the scenarios in which they are produced.

The rest of this paper is organized as follows. In Section 9.2, we briefly describe the mechanism of metric preheating and the production of PBHs that is associated to it. In Section 9.3, we review the different techniques that have been proposed to compute the abundance of objects formed from gravitational collapse. Our main goal is to identify those that are best suited to the problem at hand, but we also designed this section as a pedagogical introduction to the calculation of the mass fraction, trying to highlight some aspects that are often left implicit. This section may however be skipped by readers already familiar with the topic. In Section 9.4, we apply one of the methods introduced in Section 9.3, namely the excursion-set approach, to the calculation of the mass fraction of PBHs arising from metric preheating. We finally present our conclusions in Section 9.5, and the paper ends with several appendices where various technical aspects of the calculation are deferred.

Metric preheating

In this section, we briefly review the physics of metric preheating. More details can be found in Refs. [START_REF] Jedamzik | Collapse of Small-Scale Density Perturbations during Preheating in Single Field Inflation[END_REF][START_REF] Jedamzik | Generation of Gravitational Waves during Early Structure Formation between Cosmic Inflation and Reheating[END_REF][START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF][START_REF] Martin | Metric Preheating and Radiative Decay in Single-Field Inflation[END_REF]. If a homogeneous and isotropic universe, described by the Friedmann-Lemaître-Robertson-Walker metric ds 2 = -dt 2 + a 2 (t)dx 2 where a is the scale factor, is dominated by a single scalar field φ, scalar perturbations are described by a single gauge-invariant combination of fluctuations in the scalar field and in the metric components, the so-called Mukhanov-Sasaki variable [START_REF] Viatcheslav | Quantum Fluctuations and a Nonsingular Universe[END_REF][START_REF] Kodama | Cosmological Perturbation Theory[END_REF]. Its equation of motion in Fourier space is given by [START_REF] Viatcheslav | Theory of Cosmological Perturbations. Part 1. Classical Perturbations. Part 2. Quantum Theory of Perturbations. Part 3. Extensions[END_REF] 

v k + k 2 - a √ 1 a √ 1 v k = 0 . (9.1)
In this expression, a prime denotes derivative with respect to conformal time η (related to cosmic time via dt = adη), and 1 = -Ḣ/H 2 is the first slow-roll parameter, where H = ȧ/a is the Hubble parameter. If the inflaton φ oscillates at the bottom of a quadratic potential V (φ) = m 2 φ 2 /2, 1 the scale factor undergoes oscillations too (superimposed to an average matter-like behaviour), and Eq. ( 9.1) can be put in the form [START_REF] Jedamzik | Collapse of Small-Scale Density Perturbations during Preheating in Single Field Inflation[END_REF] 

d 2 dz 2 √ av k + [A k -2q cos(2z)] √ av k = 0 , (9.2) 
with

A k = 1 + k 2 m 2 a 2 , q = √ 6 2 φ end M pl a end a 3/2 . ( 9.3) 
In those expressions, a end and φ end are the values of a and φ at the onset of the oscillating phase, i.e. at the end of inflation, M pl is the reduced Planck mass, and z ≡ mt + π/4. If A k and q were constant, this equation would be of the Mathieu type, and it would feature parametric resonant instabilities when A k and q fall into the instability bands. In Ref. [START_REF] Jedamzik | Collapse of Small-Scale Density Perturbations during Preheating in Single Field Inflation[END_REF] (see also Ref. [START_REF] Martin | Metric Preheating and Radiative Decay in Single-Field Inflation[END_REF] where the perturbative decay of the inflaton is included in the analysis), the time dependence of A k and q is shown to be sufficiently slow to be considered as adiabatic, and the resonant instability takes place when A k and q cross the instability bands. At the end of inflation, the displacement of the field away from the minimum of its potential is typically of order the Planck mass, so Eq. ( 9.3) indicates that q starts out being of order one and quickly decreases afterwards. This means that one falls into the regime of "narrow resonance", q 1, in which the boundaries of the first instability band are given by 1q < A k < 1 + q, which here translates into k < a √ 3Hm. (9.4) Since the universe behaves as matter-dominated during the oscillatory phase, a √ H ∝ a 1/4 , the upper bound (9.4) increases with time, and the range of modes subject to the instability widens as time proceeds. Inside the first instability band, the Floquet index of the unstable mode is given by µ k q/2, so v k ∝ a -1/2 exp µ k dz ∝ a [START_REF] Finelli | Parametric Amplification of Gravitational Fluctuations during Reheating[END_REF][START_REF] Jedamzik | Collapse of Small-Scale Density Perturbations during Preheating in Single Field Inflation[END_REF].

Note that during the oscillatory phase, H m, so the upper bound in Eq. (9.4) corresponds to a sub-Hubble scale. As a consequence, the modes subject to the instability are (i) all super-Hubble modes and (ii) those sub-Hubble modes such that aH < k < a √ 3Hm. For super-Hubble modes, the fact that v ∝ a implies that the curvature perturbation is simply conserved, which is a well-know result [START_REF] Viatcheslav | Quantum Fluctuations and a Nonsingular Universe[END_REF][START_REF] Kodama | Cosmological Perturbation Theory[END_REF], and the dynamics of super-Hubble scales is therefore not affected by the oscillations. For sub-Hubble scales however, in a matter-dominated background, the overdensity δ = δρ/ρ (where ρ is the energy density of the background) is related to the Mukhanov-Sasaki variable via δ k ∝ [k/(aH)]2 v k /(aM pl ) (notice that, at sub-Hubble scales, there is no gauge ambiguity in the definition of the density contrast, see Section 9.3.7 for further details), so the fact v k ∝ a implies that δ k ∝ a , (9.5) and the density contrast grows inside the band aH < k < a √ 3Hm. (9.6) The scales appearing in this relation are displayed in Fig. 9.1. An instability is triggered if the physical wavelength of a mode (dotted line) is smaller than the Hubble radius (blue line) during the oscillatory phase and larger than the new scale 1/ √ 3Hm (orange line). Let us note that this implies that the instability only concerns modes that are inside the Hubble radius at the end of the oscillatory phase, which is not the case for the scales probed in the Cosmic Microwave Background (CMB).

The behaviour (9.5) signals that inside the resonance band, scalar-field inhomogeneities behave as pressure-less matter fluctuations in a pressure-less matter universe. As a consequence, an overdensity δ R over the length scale R eventually collapses into a PBH, and in Ref. [START_REF] Sergio | Black Hole Formation from Massive Scalar Field Collapse in the Einstein-de Sitter Universe[END_REF] (see also appendices A and B of Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF]), it is shown that this occurs after a time

∆t collapse = π H [t bc (R)] δ 3/2 R [t bc (R)] , (9.7) 
where t bc (R) denotes the "band-crossing" time, i.e. the time at which the scale R crosses in the instability band (9.6). Assuming that the instability ends when the Hubble scale reaches a certain value that we denote H Γ , 2 at a time t Γ , a black hole forms if t end + ∆t collapse < t Γ , which leads to a lower bound on the density contrast, namely

δ R [t bc (R)] > 3π 2 2/3 H bc (R) H Γ -1 -2/3 . (9.8) 
One then has to assess the probability that the condition (9.8) is fulfilled in a given patch of size R in the universe, in order to compute the abundance of PBHs at every scale. This problem corresponds to the calculation of the mass fraction of PBHs, which we describe in the next section.

Computation of the mass fraction

The calculation of the mass fraction of gravitationally-formed objects has received much attention over the last decades, and in this section we describe the main tools that have been developed to address it. While our goal is primarily to identify those that are best suited to the problem at hand in this work, we hope to also clarify the main assumptions that these approaches rest on, and how they are connected together. This section is therefore rather independent of the rest of this article (and is not specific to metric preheating), and while it may serve as a pedagogical introduction to calculations of the mass fraction, it can also be skipped by readers already familiar with these techniques.

In general, cosmological fluctuations can be characterized in terms of an over-density field δ(x). In practice, the precise realization of this field is not known, and one can only predict its statistical properties (for instance, if the field is Gaussian, its is fully characterized by its power spectrum). The problem can thus be divided into two parts. Given a certain realization of the density field in real space, a first question is to identify the regions where the field will collapse into a certain type of astrophysical object. Second, given the statistical properties of the field, one has to work out the probability that such objects form, and the mass distribution associated to them.

The first question is a very delicate one, and little can be learnt about it analytically without resorting to some approximations. The problem can also be tackled numerically, see Section 9.3.6 below. Most of the time, it is assumed that a region where the field collapses is one in which the mean density is larger than some threshold value δ c , that may depend on the size of that region (as well as its shape, the details of its surrounding, etc.). In practice, one coarse-grains the field δ over a spherical region of radius R about the point x,

δ R (x) ≡ a R 3 dyδ(y)W a |y -x| R , (9.9) 
and the collapse criterion is often assumed to be of the form δ R > δ c (R). In the above expression, W is a window function such that W (x) 1 if x 1 and W (x) 0 if x 1, and normalized in the sense that 4π ∞ 0 x 2 W (x)dx = 1, such that after coarse graining, a constant field remains a constant field of the same value (here x and y are comoving spatial coordinates, while R denotes a physical distance, notations are summarized in Table 9.1 for clarity).

The second question is then a well-posed one, and consists in computing the probability that the collapse criterion is satisfied, and the distribution in sizes R (or in resulting mass M ) of the regions where this is the case, knowing the statistics of the random field δ.

The Press-Schechter formalism

A first approach was developed in 1974 by William H. Press and Paul Schechter in Ref. [443] and proceeds as follows. From Eq. (9.9), the Fourier transform of the coarse-grained density perturbation is given by

δ R (k) = δ(k) 4π a kR 3 ∞ 0 W a kR u sin(u)udu W ( kR a ) , (9.10) 
which defines W , that shares similar properties to W . Indeed, when a/(kR) 1, the values of u such that W a kR u is not close to zero are much smaller than one, so one can replace sin(u) u in the integral over u, and using the normalization condition stated above, one obtains W [kR/a] 1 in that limit. In the opposite limit, when a/(kR)

1, since W 1 until u ∼ kR/a, the integral over u in Eq. (9.10) is of order kR/a, hence W [kR/a] ∝ [a/(kR)] 2 1. 3 3 The details of W between these two limits depend on those of W . For instance, if W is a Heaviside step function,

W (x) = 3 4π θ(1 -x), (9.11) 
where θ(x) = 1 if x > 0 and 0 otherwise, and where the pre-factor is set in such a way that the normalization condition is satisfied, Eq. (9.10) gives rise to

W kR a = 3 a kR 3 sin kR H - kR H cos kR a , (9.12) 

Notation Definition δ(x)

Density contrast field on a space slice δ k Fourier transform of the density contrast δ R (x) Density contrast averaged over a patch of (physical) size R, around (comoving) x

σ 2 R = S = δ 2 R (x)
Variance of δ R (x) seen as a stochastic variable, also used to label R δ c (R) [or δ c (S)]

Collapse criterion over a patch of size R (or with variance S) δ D Dirac delta distribution P δ (k)

Power spectrum of the density contrast P δ (k) = k 3 P δ (k)/(2π 2 ) Reduced power spectrum of the density contrast Table 9.1: Definitions and notations.

The power spectrum of δ, P δ , is defined as

δ(k)δ * (k ) = P δ (k)δ D (k -k ) = 2π 2 k 3 P δ (k)δ D (k -k ) , (9.13) 
where δ D is the Dirac distribution, and which also defines the reduced power spectrum P δ . The power spectrum of the coarse-grained density field, P δ R (k), is defined through a similar relation, and Eq. (9.10) implies that P δ R (k) = P δ (k) W 2 (kR/a). This allows one to express the coincident two-point function of the coarse-grained density field as

σ 2 R ≡ δ 2 R (x) = ∞ 0 P δ (k) W 2 kR a dk k . (9.14) 
If δ has Gaussian statistics, so does δ R since the two are linearly related via Eq. (9.10), hence the probability density function associated to δ R reads

P (δ R ) = e - δ 2 R 2σ 2 R 2πσ 2 R . (9.15) 
This allows one to express the probability that a given region of size R lies above the threshold,

P [δ R > δ c (R)] = ∞ δc(R) P (δ R )dδ R = 1 2 erfc δ c (R) √ 2σ R . (9.16)
An important remark is that when a given region of size R has an average density above the threshold, it ends up inside a structure, the size of which has to be equal or larger than R (for instance if δ R is much larger than δ c (R), by averaging over a slightly larger distance R > R, one may still find δ R > δ c (R ), which indicates that the size of the resulting structure is at least R ). Therefore, the above probability is the one to lie inside structures of size at least R.

which verifies the two limits given in the main text. Conversely, one can set W such that W is a Heaviside step function [i.e. W is of a similar form as Eq. (9.12)], and one then has δ R (x) = (2π) -3/2 k<a/R dk δ k e ik•x .

This naturally leads us to the notion of mass fraction β(M ), defined such as β(M )d ln M corresponds to the fraction of the universe that is comprised in structures of masses between M and M + dM . By construction, ∞ M β( M )d ln M corresponds to the fraction of the universe made of structures of sizes larger than M . Since there is a one-to-one correspondence between M and R (M = 4π ρR 3 /3 at leading order in perturbations), this is nothing but the probability computed in Eq. (9.16). By differentiating both expressions with respect to M , one obtains

β(M ) = -M ∂R ∂M ∂ ∂R P [δ R > δ c (R)] . (9.17) 
Making use of Eq. (9.16), this gives rise to

β(M )d ln M = - 1 2 δ c σ 2 R - ∂δ c ∂σ 2 R e - δ 2 c 2σ 2 R 2πσ 2 R dσ 2 R , (9.18) 
where we give the result in terms of σ 2 R for future convenience. In particular, one finds that the abundance of objects is exponentially suppressed when σ R is smaller than δ c (R).

Although rather straightforward, this approach is however plagued with the following issue. Consider a region of size R centred on a given point x, such that the criterion δ R > δ c (R) is not satisfied. According to the above considerations, that region is not part of any structure, since it is excluded from Eq. (9.16). However, it could happen that if one considers another radius R > R, the criterion δ R > δ c (R ) is satisfied, hence the region of size R is comprised inside a larger region that does collapse into a structure, which contradicts the fact that it is not part of any. This issue is often referred to as the "cloud-in-cloud problem", and leads to underestimating the number of structures. It can also be seen by considering the limit δ c (R) → 0, in which the entire universe should end up in structures. However, letting δ c = 0 in Eq. (9.16) leads to only half of the universe lying in collapsed structures. For this reason, the Press-Schechter result is often simply multiplied by 2. In the following, we will see how to go beyond this approach, and in which cases the Press-Schechter result (with or without the factor 2) provides a good approximation.

The excursion-set approach

In 1990, Peacock and Heavens proposed in Ref. [START_REF] Peacock | Alternatives to the Press-Schechter Cosmological Mass Function[END_REF] to solve the cloud-in-cloud problem of the Press-Schechter formalism using an excursion set approach. They were soon followed in 1991 by Bower, see Ref. [START_REF] Richard | The Evolution of Groups of Galaxies in the Press-Schechter Formalism[END_REF], and by Bond, Cole and Efstathiou, see Ref. [START_REF] Bond | Excursion Set Mass Functions for Hierarchical Gaussian Fluctuations[END_REF].

The idea is to view δ R as a random variable. When R is very large, recalling that W (x) 0 when x 1, only a small number of modes contribute to Eq. (9.14) (namely those for which k < a/R), hence σ R is small. In the limit R → ∞, the distribution function (9.15) thus asymptotes a Dirac distribution centred around zero. Starting from δ R = 0 at R = ∞, one can then make R decrease. To be explicit, let us consider the case where W is a Heaviside function, 4 and

δ R (x) = (2π) -3/2 k< a R dk δ k e ik•x , (9.19) 
see footnote 3. As R decreases, more and more modes contribute to the above integral. Each of these modes takes a random realization, so δ R , seen as a function of R, follows a stochastic, Langevin equation, which can be obtained as follows. Between the "times" R and R -∆R, the variation in δ R is given by

δ R-∆R (x) -δ R (x) = (2π) -3/2 a R <k< a R-∆R dk δ k e ik•x . (9.20)
Given that δ(k) vanishes, and since the two-point function of δ(k) is given by Eq. ( 9.13), one finds that δ R-∆R (x)δ R (x) = 0 and that [δ R-∆R (x)δ R (x)] 2 = P δ (a/R)∆R/R, at leading order in ∆R. This leads to the Langevin equation

dδ R (x) dR = P δ (a/R) R ξ(R) , (9.21) 
where ξ is a white Gaussian noise with vanishing mean and unit variance, i.e. ξ(R) = 0 and ξ(R)ξ(R ) = δ D (R -R ), and one should stress that R is a decreasing variable. Since Eq. (9.14) relates R and σ 2 R monotonously, the Langevin equation is sometimes written with S ≡ σ 2 R as the "time" variable, leading to the particularly simple form dδ R (x) dS = ξ(S) , (9.22) where ξ(S) is a white Gaussian noise normalized with respect to S, and where S is an increasing variable.

Starting from S = 0 (or equivalently, R = ∞), the first "time" (i.e. the largest radius R) when δ R crosses the collapse threshold δ c corresponds to the size of the largest structure surrounding x. The calculation thus boils down to solving a first-passage-time problem, for which there are various dedicated techniques in stochastic analysis. Before detailing one of them in Section 9.3.3, let us note that if, along a given realization of the Langevin process (9.22), δ R crosses δ c (R) multiple times, then there are as many substructures, but by considering the first crossing time, i.e. the largest structure, one accounts for the "cloud-in-cloud" mechanism described in Section 9.3.1. 5The distribution of first crossing times, denoted P FPT (S) hereafter, thus gives the size (hence mass) distribution of structures, according to6 β(M )d ln M = -P FPT (S)dS . (9.24) In this expression, the relationship between M = 4πR 3 /3 and S = σ 2 R is given by the link between R and σ 2 R , that is to say by Eq. (9.14), which depends on the initial statistics of the density field.

Volterra integral equations

The first-passage-time problem associated to Eq. (9.22) can be solved by means of a Volterra integral equation, that we derive in this section. We first note that in the absence of any boundary condition, .23) the solution to (the Fokker-Planck equation associated to) Eq. (9.22) is of the Gaussian form

P PS FPT (S) = 1 2 δc(S) S -δ c (S) e -δ 2 c (S) 2S √ 2πS . ( 9 
P free (δ R , S; δ R,in , S in ) = 1 2π (S -S in ) exp - (δ R -δ R,in ) 2 2 (S -S in ) , (9.25) 
which denotes the probability density that the coarse-grained density contrast takes value δ R at time S, given that at initial "time" S in , its value is δ R,in . Since it depends only on S -S in and δ Rδ R,in , hereafter it will be noted as P (δ Rδ R,in , S -S in ) for notation convenience. We also introduce P (δ R , S), the solution to Eq. The link between P and P free can be derived by noting that, at time S, P contains all realizations of P free that have not yet crossed the boundary. In order to get P (δ R ), one should therefore subtract from P free the probability that a given realization has crossed the boundary at a previous time, and then, from there, has moved to δ R . In other words,

P (δ R , S) = P free (δ R , S) - S 0 P FPT (s)P free [δ R -δ c (s), S -s] ds . (9.27) 
Our goal is to extract P FPT from the above two equations. This can be done by differentiating Eq. (9.26) with respect to S, and by using Eq. (9.27) to express P in terms of P free and P FPT only, leading to Although mathematically correct, the above expression is nonetheless flawed with a singularity that appears in the integrand of the second term, close to the upper bound of the integral, where it approaches δ c (S)δ D (0). This leads to numerical issues when trying to solve Eq. (9.29) iteratively, which can be dealt with by introducing an averaging procedure when s → S, as proposed for instance in Ref. [START_REF] Zhang | On Random Walks with a General Moving Barrier[END_REF]. However, Eq. (9.29) is only one version of an infinite set of Volterra equations [START_REF] Buonocore | On the Two-Boundary First-Crossing-Time Problem for Diffusion Processes[END_REF], and it can be generalized as follows. Let us consider the realizations of the Langevin equation which 

P
This allows one to compute P FPT (S) iteratively, by discretizing the S variable and starting from P FPT = 0 at S = 0. See Appendix 9.A for more details. In Eq. (9.32), recall that P free is given by Eq. (9.25), and the function δ c (S), as well as the link between S and R (the physical scale at which the density contrast is coarse grained), are given by the physical details of the problem under consideration.

Relation between the Press-Schechter and excursion-set formalisms

The excursion-set approach is an extension of the Press-Schechter formalism, that incorporates the cloud-in-cloud mechanism, and allows for multiple crossings of the threshold value. In this section, in order to clarify the link between the two approaches, we discuss two limiting cases where the excursion set yields a result closely related to the one obtained with the Press-Schechter formalism.

Scale-invariant threshold

When the formation threshold, δ c (R), does not depend on the scale R, the excursion-set approach greatly simplifies. Indeed, in Eq. (9.32), the kernel of the integral term vanishes in that limit, so the Volterra implicit equation becomes an explicit formula for the first-passage-time distribution, namely

P FPT (S) = δ c S P free (δ c , S) = δ c S e -δ 2 c 2S √ 2πS , (9.33) 
where, in the second equality, Eq. (9.25) has been used. One thus recovers Eq. (9.23) exactly, with an additional factor 2. This proves that the Press-Schechter formula, corrected by the factor 2 (the origin of which is left rather heuristic in the Press-Schechter approach, see the discussion at the end of Section 9.3.1), becomes exact in the case of a scale-invariant threshold.

Very red threshold

Another limit of interest is the situation in which the threshold quickly decreases as the scale R decreases. In this case, multiple crossing events become unlikely since after the threshold is crossed for the first time, its value swiftly decays away from the realization of the overdensity. One therefore expects the Press-Schechter formula (without the additional factor 2) to be recovered in this regime. More precisely, this limit can be studied by introducing the rescaled stochastic variable δR (S) ≡ δ R (S)/δ c (S), which follows a Langevin equation with a drift term, d δR /dS = -(δ c /δ c ) δR + ξ/δ c , but with a time-independent threshold since by construction δc = 1. The "very-red-threshold" limit thus corresponds to the regime in which the drift term dominates over the noise term in this rescaled Langevin equation (conversely, the limit investigated in Section 9.3.4 corresponds to when the noise dominates over the drift).

However, given that, over an infinitesimal time increment ∆S, the drift contribution scales as ∆S while the typical noise contribution scales as √ ∆S, the drift term cannot dominate for arbitrarily small time resolutions. In other words, multiple, repeated crossings are inevitable, and one can only require that they happen within a certain finite time interval, below which we do not try to resolve the distribution of first crossing times. Denoting = ∆ ln R the time resolution one requires [since the mass distribution is usually expressed in ln(M ) units, in practice, one imposes a fixed resolution on ln(M ) or equivalently on ln(R)], the very-red limit can thus be mathematically expressed by requiring that

∀R 1 , R 2 such that ln R 1 R 2 > , δ c (R 1 ) -δ c (R 2 ) S(R 2 ) -S(R 1 ). (9.34)
Notice that for practical purposes, it may be enough to satisfy this criterion at the scales R where the mass function is substantial (unless one wants to resolve the tails properly).

In order to see that Eq. (9.34) leads to the Press-Schechter formula, the integral over s ∈ [0, S] appearing in Eq. (9.32) can be split into an integral over [0, Sη] and an integral over [Sη, S], where η is the width of the region where the term P free does not lead to an exponential suppression of the integral. From Eq. (9.25), it is order (δ c ) -2 , hence it is small in the very-red-threshold limit. It is also related to the -smoothing scale in S-units [so η is of order ∂S/∂ ln R = P δ (k = a/R)]. In the first integral, the criterion (9.34) implies that P free exponentially suppresses the integrand, while the second integral is also negligible since the integrand vanishes when s → S (hence the second integral is of order η 2 ). Let us now consider the first term in Eq. (9.32) -δ c (S)P free [δ c (S), S], which matches the Press-Schechter formula (9.23) in the same limit and without the factor 2, as announced above.

Later on in the present work, these considerations will be illustrated by an explicit example in which we will check numerically that when the criterion (9.34) is satisfied, the Press-Schechter result is indeed recovered, see Appendix 9.B.

Other methods

Other approaches to the cloud-in-cloud problem have been proposed, and although, in the present work, we make use of the excursion-set method, for completeness, let briefly mention those alternative techniques.

Supreme statistics

A first approach to the cloud-in-cloud problem was proposed in 1985 by Bhavsar and Barrow in Ref. [START_REF] Bhavsar | First Ranked Galaxies in Groups and Clusters[END_REF], and is called the "supreme statistics" (or "extreme-value statistics") method. The idea is to consider a region of size R , over which the averaged density contrast is above the threshold. This region is made of ∼ (R /R s ) 3 subregions of size R s , and one needs to determine the probability that one of these regions is also above the threshold. On generic grounds, considering n samples, each of size m, all drawn from the same underlying distribution, the distribution of the maxima within each sample, and therefore the most probable maximum value, can be determined using the supreme statistics (see Ref. [START_REF] Moradinezhad Dizgah | Primordial Black Holes from Broad Spectra: Abundance and Clustering[END_REF] for a recent example of application to PBHs).

Peak theory

In 1986, Bardeen, Bond, Kaiser and Szalay studied the statistics of peaks of Gaussian random fields in Ref. [START_REF] Bardeen | The Statistics of Peaks of Gaussian Random Fields[END_REF]. Assuming that structures form where the density field locally peaks, this allows one to derive the number density of objects satisfying certain conditions on the size of their peak, the volume enclosed within the peak, the deviation from sphericity of the peak, etc. Although the same exponential suppression ∝ e -δ 2 c (R)/(2σ 2 R ) as in the Press-Schechter formalism is obtained, see the discussion below Eq. (9.17), the details of the prefactor are found to be different. Ref. [START_REF] Bardeen | The Statistics of Peaks of Gaussian Random Fields[END_REF] also introduced the "peak-background split" approximation, which allows one to compute correlations between peaks belonging to two populations having two different, well-separated scales. The peaktheory and excursion-set approaches can also be combined, see e.g. Ref. [START_REF] Paranjape | Peaks Theory and the Excursion Set Approach[END_REF], and a recent comparison between these different techniques can be found in Ref. [START_REF] Gow | The Power Spectrum on Small Scales: Robust Constraints and Comparing PBH Methodologies[END_REF].

Improved Press-Schechter formalism

In 1994, an improved version of the Press-Schechter formalism was proposed by Jedamzik in Ref. [START_REF] Jedamzik | The Cloud in Cloud Problem in the Press-Schechter Formalism of Hierarchical Structure Formation[END_REF], in which the number density of isolated overdense regions (defined as overdense regions that are not comprised in larger overdense regions) is computed by making use of Bayes' theorem. The method was improved in Ref. [START_REF] Yano | Limitation of the Press-Schechter Formalism[END_REF] (see also Ref. [START_REF] Nagashima | A Solution to the Missing Link in the Press-Schechter Formalism[END_REF] for further refinements, in particular the implementation of the condition that objects form around peaks), and leads to implicit integral equations, similar to the Volterra equations presented in Section 9.3.3.

Further refinements

The methods presented above assume that structures form when the overdensity δ is above a certain threshold δ c , but more refined formation criteria have also been studied.

Critical scaling

From studying spherically symmetric collapse of a massless scalar field by numerical means, Choptuik has shown in Ref. [START_REF] Choptuik | Universality and Scaling in Gravitational Collapse of a Massless Scalar Field[END_REF] that, close to the critical threshold, the mass of the resultant black hole, raises two issues (that do not appear in the context of large-scales structures, where all modes that contribute to the overdensity field are far inside the Hubble radius).

First, far super-Hubble curvature perturbations should only lead to a local rescaling of the background metric, and can hardly determine whether an object forms inside a local Hubble patch. Second, in general relativity, there is no unique definition of the energy density (hence of the density contrast), which depends on the space-like hypersurface on which it is computed. All possible choices coincide on sub-Hubble scales (where observations are performed), but they differ on super-Hubble scales. In practice, in most gauges studied in the literature, the density contrast δ and the Bardeen potential Φ are related through a formula of the form [START_REF] Malik | Cosmological Perturbations[END_REF] 

δ k = - 2 3 k aH 2 Φ k + αΦ k + β Φk H , (9.37) 
where α and β are two constants, that possibly depend on the equation-of-state parameter w. For instance, in the Newtonian gauge, α = β = -2, in the flat gauge, α = 5 -3w and β = -2, and in the comoving gauge, α = β = 0. On sub-Hubble scales, when k aH, the first term in Eq. (9.37) dominates, and δ k does not depend on the choice of slicing as mentioned above. Since the Bardeen potential Φ is related to the curvature perturbation ζ via [START_REF] Wands | A New Approach to the Evolution of Cosmological Perturbations on Large Scales[END_REF] 

ζ k = 2 3 Φk /H + Φ k 1 + w + Φ k , (9.38) 
on super-Hubble scales, where Φk can be neglected since it is proportional to the decaying mode, one has

δ k - 2 5 k aH 2 ζ k + 3α 5 ζ k . (9.39) 
This shows that there are essentially two families of slicings for the density contrast. If α = 0, as in the Newtonian gauge or in the flat gauge (if w = 5/3) for instance, on super-Hubble scales, δ k ∝ ζ k , so for quasi scale-invariant curvature power spectra (as expected from inflation), super-Hubble modes give a substantial contribution to Eq. (9.14), leading to the problem mentioned above. If, on the contrary, α = 0, as in the comoving gauge, then δ k ∝ k 2 ζ k on super-Hubble scales, hence it is highly suppressed and far super-Hubble modes do not contribute much to the integral of Eq. (9.10). For this reason, in Ref. [START_REF] Young | Calculating the Mass Fraction of Primordial Black Holes[END_REF], it is proposed to work with the comoving density contrast, as a way to effectively remove the contribution from far super-Hubble modes.

In principle, a well-defined formation criterion should come with a prescription for which density contrast to use, and in practice, formation criteria derived from numerical investigations are indeed most often formulated in the comoving slicing, see for instance Refs. [START_REF] Harada | Cosmological Long-Wavelength Solutions and Primordial Black Hole Formation[END_REF][START_REF] Musco | Threshold for Primordial Black Holes: Dependence on the Shape of the Cosmological Perturbations[END_REF]. This is why we will adopt this choice in what follows, and in Appendix 9.B, we will investigate how the results are modified if one makes a different choice and works with the Newtonian density contrast.

Simplified Press-Schechter estimate

The above considerations lead to a simplified version of the Press-Schechter formalism that is often used to estimate the abundance of PBHs. Indeed, in the integral of Eq. (9.14), modes that lie far below the coarse-graining scale, such that k a/R, are cut away by the filter function W , while modes that lie far above the coarse-graining scale, such that k a/R, give a negligible contribution since they are suppressed by k 2 as explained in Section 9.3.7. Therefore, the only modes that give a substantial contribution to Eq. (9.14) are those such that k ∼ aR, and Eq. (9.14) can be approximated as

σ 2 R ∼ P δ k = a R . (9.40)
It is then usually assumed that the power spectrum peaks at a single scale. At the time when that scale re-enters the Hubble radius, the fraction of Hubble patches where the density contrast is larger than the critical value is given by Eq. (9.16), so it is common to use directly use Eq. (9.16) as the mass fraction, and to write (see for instance Ref. [START_REF] Harada | Threshold of Primordial Black Hole Formation[END_REF])

β(M ) ∼ erfc δ c (R) 2P δ (k) ∼ √ 2P δ √ πδ c e - δ 2 c 2P δ , (9.41) 
where R is the Hubble radius and M the Hubble mass at the time when k = aH, and where in the last expression, we have expanded the error function in the regime where PBHs are rarely produced, i.e. when δ c √ P δ . Let us note that, when comparing Eq. ( 9.41) to the full Press-Schechter formula (9.17), the same exponential suppression is obtained, but the prefactor is obviously different. However, as noted in Section 9.3.5, that prefactor was also found to differ in other approaches such as peak theory, so one may consider that the details of the prefactor are ultimately dependent on the approach one follows, and that only the exponential suppression is a robust result, in which case Eq. (9.41) may provide a useful estimate. This is why this formula is widely employed, including in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF] for the calculation of PBHs from metric preheating, in which we are interested in this work. However, it is pretty clear that this approximation breaks down for broad spectra, i.e. when a wide range of scales is involved in the formation of PBHs. As pointed out e.g. in Ref. [START_REF] Suyama | A Novel Formulation of the PBH Mass Function[END_REF], the problem is that Eq. (9.16) is not a differential quantity. So it can happen for instance that the integrated mass fraction,

Ω PBH = ∞ 0 β(M )d ln M , (9.42) 
which corresponds to the fraction of the total energy budget that is comprised inside PBHs, is found to be larger than one if Eq. (9.41) is used, which clearly signals an inconsistency. This is in fact precisely what happens in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF], where renormalization procedures had to be introduced to cope with this issue, see Appendix 9.C. In the rest of this paper, we re-examine this problem with the excursion-set formalism, in order to assess more precisely the mass distribution of PBHs produced from the preheating instability.

Primordial black holes from metric preheating

We are now in a position in which we can apply the excursion-set formalism, presented in Sections 9.3.2 and 9.3.3, to the calculation of the mass fraction of PBHs arising from the preheating instability described in Section 9.2.

Collapse criterion

As explained in Section 9.3.2, one of the two ingredients required by the excursion set approach is the critical value of the density contrast, above which PBHs form. This was derived in the case of metric preheating in Section 9.2, see Eq. (9.8). This formula provides a critical value for the density contrast evaluated at a time that depends on the scale R (namely at the band-crossing time of R). Below, we rather choose to express all relevant quantities at the same reference time. The reason is that if the time of evaluation depends on the scale R, then, when deriving Eq. (9.20), an additional term, which stands for the time evolution of the mode function, appears. This term acts as a drift term in the Langevin equation (9.22), but it can be absorbed by a change of variables. This amounts to rescaling δ with a transfer function that evolves the density contrast to a fixed time, hence is equivalent to working with fixed-time quantities anyway. In either case, one has to relate the value of the density contrast at the band-crossing time to its value at a fixed, reference time.

Two natural choices for such a reference time are (i) the time at the end of inflation and (ii) the time at the end of the instability phase. The problem with the latter choice is that, since coarse graining δ at a scale R selects modes that are larger than R, see the discussion at the beginning of Section 9.3.7, the scales that contribute to δ R at the end of the instability are either sub-or super-Hubble, hence they have a priori different behaviours (i.e. different transfer functions) between the band-crossing time of R and the end of the instability, which makes it harder to relate δ R [t bc (R)] with δ R (t Γ ). The first option is therefore more convenient, since all scales larger than R are super-Hubble between the end of inflation and the band-crossing time of R.

One thus has to study how δ evolves on super-Hubble scales during the oscillatory phase. In Section 9.3.7, we explained why the comoving density contrast had to be considered. From Eq. (9.37), it is related to the Bardeen potential via δ k = -2/3[k/(aH)] 2 Φ k , while the Bardeen potential is related to the curvature perturbation through Eq. (9.38). As shown in Section 9.2, the curvature perturbation ζ k is constant on super-Hubble scales during the oscillatory phase. As a consequence, if the equation-of-state parameter w were constant, then Eq. (9.38) seen as a differential equation for Φ k would show that, up to a quickly decaying mode, Φ k reaches a constant value, hence

δ k ∝ (aH) -2 .
However, during the oscillatory phase, w is only constant on average, and otherwise undergoes large oscillations. Indeed, at leading order in H/m, the inflaton oscillates according to φ φ end (a end /a) 3 sin(mt), which gives rise to w = cos(2mt) + O(H/m). Through Eq. (9.38), these oscillations give rise to oscillations in Φ k with frequency ∼ m, hence Φ /(HΦ) is of order m/H 1 and can a priori not be neglected in Eq. (9.38). Nonetheless, deep in the oscillatory phase, when H m, these oscillations can be averaged out, and one has

Φ k 3 5 ζ k . (9.43) 
In order to verify the validity of this statement, in Fig. 9.2, we display the numerical solution of Eq. (9.38) in the same situation as the one shown in Fig. 9.1 (namely, from the numerical solution of the Klein-Gordon equation, we extract w(t) and H(t), and solve Eq. (9.38) for Φ k (t) while assuming that ζ k is constant). We also superimpose the approximation (9.43). One can see that, after a few oscillations, it provides an excellent fit to the full numerical solution. Therefore, on average, the Bardeen potential is indeed constant, and δ k ∝ (aH) -2 . As stressed above, all scales contributing to δ R are super-Hubble between the end of inflation and the band-crossing time, hence they all evolve according to δ k ∝ (aH) -2 ∝ a in a matter-dominated era. Therefore, δ R itself evolves in the same way, and

δ R (t end ) = δ R [t bc (R)] a end a [t bc (R)] . (9.44) 
Combining this result with Eq. (9.8), and denoting by R end the value of R at the end of inflation, one obtains for the critical value of the density contrast at the end of inflation

δ c (R, t end ) = 3π 2 2/3 H end H Γ -(R end H end ) 3 -2/3
. (9.45)

Overdensity variance

The second ingredient required by the excursion-set approach is the expected variance of δ R , σ 2 R , and how it relates to R. If one sets the function W to a Heaviside function in Eq. (9.14), see footnote 3, one has

σ 2 R (t end ) = a/R 0 P δ (k, t end ) dk k . (9.46)
As explained in Section 9.4.1, in the comoving gauge, the density contrast is related to the Bardeen potential via δ k = -2/3[k/(aH)] 2 Φ k , and the link between the Bardeen potential and the curvature perturbation is given by Eq. (9.43). This gives rise to .47) In this expression, the curvature power spectrum P ζ (k, t end ) depends on the details of the inflationary phase that precedes metric preheating. Hereafter, we will assume that the inflationary potential can still be assumed as being almost quadratic at the time the scales of interest cross out the Hubble radius during inflation, where the mass of the inflaton is related to H end , and the power spectrum is obtained by solving the Mukhanov-Sasaki equation (9.1) numerically during inflation, starting from the Bunch-Davies vacuum.

σ 2 R (t end ) = 2 5 2 a/R 0 k a end H end 4 P ζ (k, t end ) dk k . ( 9 

Numerical results

As explained in Section 9.3.2, in the excursion-set approach, the mass fraction of PBHs is directly related to the first-crossing-time distribution of realizations of the Langevin equation (9.22), see Eq. (9.24). This distribution can be estimated using a Monte-Carlo sampling. In Fig. 9.3, we show a few realizations of the Langevin equation (9.22), for the density contrast δ R evaluated on comoving slices at the end of inflation. The collapse threshold obtained in Eq. (9.45) is displayed with the (quasi) horizontal black dashed line, and in the right panel, the time of first crossing is shown with the vertical black dashed line. This gives rise to the mass fraction displayed in Fig. 9.4 with the vertical black bars and where the size of the bars corresponds to a 5σ estimate of the statistical error using jackknife resampling. We report a good convergence in estimating the mass fraction for a sample of 10 6 trajectories with 1000 logarithmically spaced values of R.

This method is, however, computationally expensive, especially in the tails of the distribution where one needs to simulate a very large number of Langevin realizations to compensate for the sparse statistics. Instead, as explained in Section 9.3.3, one can solve the Volterra equation (9.32), making use of the numerical procedure outlined in Appendix 9.A. For n points values of R, this algorithm requires to invert a n points × n points lower triangular matrix, which is far more efficient than having to solve Langevin realizations. 7 In practice, we find good convergence for n points ≥ 500. The result is displayed in Fig. 9.4 with the red line, where one can check that the two methods give compatible results.

The total fraction of the universe made of PBHs, Ω PBH , is obtained by integrating the mass fraction, see Eq. (9.42). The result is shown in Fig. 9.5 as a function of ρ end , the energy density at the end of inflation, and ρ Γ , the energy density at the end of the instability phase. It is obtained from numerically solving the Volterra equation. One can see that the transition from small values of Ω PBH to values of order one is very sharp, and that there exist a region in parameter space, corresponding to the dark red region in the right panel of Fig. 9.5, where the universe is dominated by a gas of PBHs already at the end of the oscillatory phase.

Another quantity of interest is the typical mass of the resulting black holes, which is displayed across parameter space in Fig. 9.6. In the left panel, the average mass is shown, in the form of exp( ln M ), and one can see that in the region of parameter space in which PBHs are substantially produced, it spans a large range of values, from 10g to 10 33 g ∼ M , where M is the mass of the sun. In the right panel, the standard deviation of ln(M ) is displayed, in order to see how many orders of magnitude the mass fraction distribution covers (this standard deviation is also shown with the grey shaded stripe in Fig. 9.4). One can see that ∆ ln M < 2, so the mass distributions never extend over many orders of magnitude.

Analytical approximation

In this section, we try to gain further analytical insight into the numerical results presented in Section 9.4.3 by performing a few approximations. The main simplification comes from the remark that in Eq. (9.45), H end /H Γ (R end H end ) 3 except for the scales that enter the instability band close to the end of the oscillatory phase. Those undergo little amplification anyway, and are therefore mostly irrelevant for PBH production. In that limit, one can approximate Eq. (9.45) as

δ c (R, t end ) 3π 2 
H Γ H end 2/3 , (9.48) 
which crucially does not depend on R (hence on S) any more. As explained in Section 9.3.4, in that limit, the first passage-time distribution is given by Eq. ( 9.33) and one recovers the result from the Press-Schechter formalism, with an additional factor 2. Note that this simplification is rather coincidental in the present case, since when expressed at the band-crossing time, the threshold is strongly scale-dependent, but the behaviour of the comoving density contrast on super-Hubble scale is such that, when re-expressed at the end of inflation, it exactly cancels out that scale dependence (this is no longer true if other density contrasts are used, see Appendix 9.B).

We have not displayed the (two times) Press-Schechter formula (9.33) in Fig. 9.4 since it cannot be distinguished by eye from the red line (i.e. the full numerical result), confirming that this is 7 In terms of numerical performance, when producing Fig. 9.4 we found on our machine that the Volterra approach is more than 1000 times faster than the Monte-Carlo sampling of Langevin realizations. This is a generic result: if N real realizations are simulated, the average number of points per bin is of order n ∼ N real /n points , hence the statistical error is of order 1/ √ n ∼ n points /N real . Requiring that this is smaller than a target accuracy leads to N real > n points / 2 . Since each realization requires n points evaluations of the noise, the Langevin approach relies on ∼ n 2 points / 2 numerical operations. On the other hand, the Volterra method implies to invert a n points × n points triangular matrix (see Appendix 9.A), which requires ∼ n 2 points operations (using the "forward substitution" algorithm), and is thus more efficient by a factor 2 .

indeed an excellent approximation. The (two times) Press-Schechter formula is, however, shown in the left panel of Fig. 9.5 as the dashed green line, where one can check that it reproduces the excursion set result very accurately.

Then, in order to make Eq. (9.33) explicit, one needs to relate the overdensity dispersion S = σ 2 R to the mass M , which implies to first derive an approximation for Eq. (9.47). In single-field inflation, in the slow-roll approximation, one has [START_REF] Viatcheslav | Gravitational Instability of the Universe Filled with a Scalar Field[END_REF][START_REF] Viatcheslav | Quantum Theory of Gauge Invariant Cosmological Perturbations[END_REF] 

P ζ (k) H 2 (k) 8π 2 M 2 pl 1 (k) , (9.49) 
where H(k) and 1 (k) are respectively the values of the Hubble parameter and the first slowroll parameter when the scale k crosses-out the Hubble radius during inflation. As argued before, towards the end of inflation when the inflaton approaches the minimum of its potential, the potential can be approximated as being quadratic, V (φ) m 2 φ 2 /2. In such a potential, the slow-roll trajectory reads [START_REF] Martin | Encyclopaedia Inflationaris[END_REF] φ(k) M pl 2 -4(N -N end ). Given that, still at leading order in slow roll, one has H 2 V /(3M 2 pl ) and 1 (V /V ) 2 /(2M 

σ 2 R = P ζ (k end ) 50 5 - 4 3 ln H end M 4π -3 - 2 3 ln H end M 4π H end M 4π -4/3 . (9.50) 
In this expression, we have used that the link between R and M is given by M = 4πρR 3 /3 = 4πH 2 R 3 M 2 pl . By plugging Eqs. (9.48) and (9.50) into Eq. ( 9.33), one thus obtains an explicit expression for the mass fraction β(M ), that we do not reproduce here since it is not particularly insightful, but which is nonetheless straightforward.

Note that in general, the mass fraction has to be evolved from the time black holes form (which here depends on the mass) to the time at which β is given, taking into account that PBHs may dilute at a different rate than the background energy density. However, here, given that the universe behaves as matter-dominated during the instability phase, β remains constant so our result does correspond to the mass fraction at the time t Γ , when the instability stops.

The corresponding formula is displayed in Fig. 9.5 with the solid blue line, and one can check that it gives a reliable approximation to the full result. It can thus be used to assess its overall integral, i.e. Ω PBH , and the mass at which it peaks, which we now do.

By integrating Eq. (9.33) over S (and reminding that δ c does not depend on S), one has

Ω PBH = erfc δ c √ 2S max , (9.51) 
where S max is the maximal value of S, i.e. the one corresponding to the minimum value of R, or of M . It can thus be obtained by setting M = 4πM This upper bound is displayed with the dashed blue line in the right panel of Fig. 9.5, and one can see that it indeed provides an accurate estimate of the boundary between the region in parameter space in which PBHs are very abundantly produced and the region in which they remain subdominant. Up to a prefactor of order one, this also matches Eq. (4.1) of Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF]. Indeed, the bound (9.53) corresponds to requiring that the instability phase be sufficiently long that when the linear theory is extrapolated throughout the oscillatory phase, the most amplified scales, i.e. the ones around the Hubble radius at the end of inflation, reach a typical value for the density contrast, √ P δ , that is of order one when the instability stops. This conclusion seems therefore to be robust to the inclusion of cloud-in-cloud effects, and to the detailed description of the mass distribution of PBHs, which the present, more refined analysis, allows for. Our analytical approximation can also be used to estimate the typical mass at which the mass fraction peaks. From Eq. (9.33), in the limit of a scale-invariant threshold, the distribution of firstcrossing "times" peaks at S peak = δ 2 c /3. In practice, this may select a mass that is smaller than the Hubble mass at the end of inflation, which then indicates that the mass fraction is a decreasing function of the mass, and is maximal near the Hubble mass at the end of inflation, This value is displayed with the dashed green line in Fig. 9.4, where one can check that it provides indeed a reliable estimate. It is interesting to notice that the condition (9.53) for an efficient production of PBHs is (roughly) equivalent to requiring that M peak > M end . As a consequence, in the regime where PBHs are abundantly produced, the peak mass is substantially larger than the Hubble mass at the end of inflation, and hence corresponds to scales that emerge from the Hubble radius several e-folds before the end of inflation. This is because, although smaller scales spend more time within the instability band and are thus more amplified, the initial value of their power spectrum is also smaller, and the trade-off selects intermediate scales.

M end = 4πM 2 

Discussion and conclusion

In this work, we have made use of the excursion-set approach to accurately compute the mass distribution of primordial black holes that are produced during metric preheating. The parametric instability of metric preheating occurs in any inflationary model in which the inflaton oscillates around a minimum of its potential after inflation. It is therefore a rather generic, not to say inevitable, phenomenon, for which it is thus important to precisely characterize the properties of the resulting black holes. Since metric preheating leads to the amplification of a wide range of scales, the cloud-in-cloud mechanism, in which small-mass black holes are trapped inside regions later collapsing into larger-mass black holes, plays an important role. This is why one needs to go beyond the simplified, Press-Schechter inspired, common estimate to assess the mass distribution of black holes. After reviewing the different techniques that have been proposed in the literature to compute mass distributions of PBHs, and highlighting salient aspects of these methods that are most of the time only alluded to, we have studied the problem at hand with the excursion-set formalism, combining different numerical techniques (namely a direct Monte-Carlo sampling of Langevin realizations and numerical solutions of Volterra integral equations) and analytical approximations.

Assuming that the potential of the inflaton is almost quadratic in the last stages of inflation (and during the oscillatory phase), the result only depends on two parameters, namely the energy density at the end of inflation, ρ end , and the energy density at the time the inflaton decays into other degrees of freedom and the instability stops [START_REF] Martin | Metric Preheating and Radiative Decay in Single-Field Inflation[END_REF], ρ Γ .

We have found that in the region of parameter space corresponding to Eq. (9.53), PBHs are very abundantly produced, in such a way that they even dominate the energy content of the universe at the end of the oscillatory phase. For this to happen, the inflaton needs to be sufficiently weakly coupled, such that more than 5 order of magnitude separate ρ Γ , but as soon as this is the case, one is led to this rather drastic conclusion that the universe undergoes an early phase of PBH domination.

The typical masses of the black holes range from 10 grams to the mass of the sun. For masses smaller than 10 9 grams, PBHs evaporate before big-bang nucleosynthesis (BBN) and can therefore not be directly constrained. Heavier black holes would, however, survive until and after BBN, and given that the universe is radiation dominated at BBN, this excludes the region with M > 10 9 g in Fig. 9.6a. In fact, even if M > 10 9 g, it was recently shown in Ref. [START_REF] Papanikolaou | Gravitational Waves from a Universe Filled with Primordial Black Holes[END_REF] that the gravitational potential underlain by a gas of PBHs induces the production of gravitational waves at seconder order in cosmological perturbation theory, and that these gravitational waves may lead to a backreaction problem if Ω PBH > 10 -4 (10 9 g/M ) 1/4 at the time PBHs form. This excludes the value Ω PBH ∼ 1 for any M > 10g, hence the whole region described by Eq. (9.53), and located above the dashed blue line in Fig. 9.5, may be excluded too.

This region was correctly identified in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF] already, in which metric preheating was studied with the simplified, Press-Schechter inspired approach described in Section 9.3.7. A detailed comparison between our result and the ones obtained in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF] is given in Appendix 9.C. The main difference we find concerns the mass at which the mass distributions peak. While in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF], it was found to correspond to the Hubble mass at the end of inflation, see Eq. (9.54), in the present analysis we find that, in the regime where PBHs are substantially produced, the peak mass is substantially larger, see Eq. (9.55). This is a consequence of the cloud-in-cloud mechanism, which could not be taken into account in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF], and this has two main consequences. First, since heavier black holes take more time to Hawking evaporate, they survive for a longer period, hence the constraints on the parameters of the model arising from the present result are more stringent than the ones obtained in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF], which made conservative assumptions as pointed out in that reference. Second, this implies that the bulk of the PBH population comes from modes that exit the Hubble radius several e-folds before the end of inflation, at a stage where it is not clear that the potential can still be approximated as being quadratic. This means that, in practice, it may be necessary to analyse each potential individually instead of using the generic parametrization employed in this work. We have, however, provided all the relevant formulae and technical considerations for such an exploration to be carried out (the numerical code we have developed to produce the results presented in this article is also publicly available in the arXiv ancillary files).

Let us also highlight that, although a large range of scales is amplified during metric preheating, the mass distributions we have found are rather peaked, and never extend over more than a couple of orders of magnitude. This is in agreement with Ref. [START_REF] Moradinezhad Dizgah | Primordial Black Holes from Broad Spectra: Abundance and Clustering[END_REF], where the mass distribution associated to broad spectra was explored, and it was found to be quasi-monochromatic (i.e. peaked at a single mass), which corresponds to either the smallest enhanced scale or the largest enhanced scale, depending on the tilt of the spectrum. In the present case, we found that the peak mass arises at rather intermediate scales, but this is because the cloud-in-cloud mechanism plays an important role (such that the mass fraction at small masses is suppressed), while Ref. [START_REF] Moradinezhad Dizgah | Primordial Black Holes from Broad Spectra: Abundance and Clustering[END_REF] focused on regimes where the mass fraction remains small and the cloud-in-cloud phenomenon is almost absent.

Another remark of interest is that, as argued in Section 9.3.7, we have evaluated the density contrast in comoving slices in order to apply our PBH formation criterion. In Appendix 9.B, we investigate the consequences of interpreting the formation threshold in a different slicing (namely the Newtonian one). While we find that most conclusions are unchanged, the main difference is that the mass distributions are much wider when working in the Newtonian slicing. This is because, in the Newtonian gauge, the density contrast is not suppressed on super-Hubble scales, hence large-scale fluctuations substantially contribute to the coarse-grained density perturbation inside a Hubble patch. This is precisely the effect we have tried to avoid by using the comoving slicing, since large-scale fluctuations should only lead to a local rescaling of the background, and not determine the fate of overdensities inside the Hubble radius [START_REF] Young | Calculating the Mass Fraction of Primordial Black Holes[END_REF].

Let us also note that our analysis was restricted to scales that are larger than the Hubble radius at the end of inflation, and we did not explicitly compute the mass fraction at smaller scales. However, there is a small range of scales that are within the Hubble radius at the end of inflation, but that still enter from below the instability band during the oscillatory phase (see the lowest dotted line in Fig. 9.1). Although the physical status of those scales is unclear (since they remain within the Hubble radius throughout inflation, they behave as Minkowski vacuum fluctuations, and never undergo classical amplification [START_REF] Polarski | Semiclassicality and Decoherence of Cosmological Perturbations[END_REF][START_REF] Lesgourgues | Quantum to Classical Transition of Cosmological Perturbations for Nonvacuum Initial States[END_REF][START_REF] Kiefer | Why Do Cosmological Perturbations Look Classical to Us?[END_REF][START_REF] Martin | Quantum Discord of Cosmic Inflation: Can We Show That CMB Anisotropies Are of Quantum-Mechanical Origin?[END_REF]), they can nonetheless be readily incorporated in the excursion-set approach. When doing so, given that the corresponding range of scales is very narrow, and that the initial density contrast is tiny (since those scales are not excited during inflation), we find that this only adds a negligible, low-mass end to the mass distributions we have computed, so these scales can be safely discarded.

A final remark of interest is that the collapse criterion we have employed was derived in Ref. [START_REF] Sergio | Black Hole Formation from Massive Scalar Field Collapse in the Einstein-de Sitter Universe[END_REF] for a universe filled with a scalar field with quadratic potential by assuming a spherically symmetric profile for the overdensity. In the case of a universe filled with a pressure-less perfect fluid, it is well-known that PBH peaks no longer need to be rare and hence may not be close to spherically symmetric, and that corrections arising from spherical asymmetries typically lead to less abundant PBHs (see for instance Ref. [START_REF] Harada | Primordial Black Hole Formation in the Matter-Dominated Phase of the Universe[END_REF]). Although those two systems are different, as discussed in detail in Ref. [START_REF] Martin | Metric Preheating and Radiative Decay in Single-Field Inflation[END_REF], one may expect that a similar effect takes place in the setup under consideration in this work. In order to address it, one would have to generalize the calculation of Ref. [START_REF] Sergio | Black Hole Formation from Massive Scalar Field Collapse in the Einstein-de Sitter Universe[END_REF] to non-spherical geometries, which could be the topic of future work.

In summary, by properly taking into account the cloud-in-cloud mechanism, which plays an important role in the metric preheating instability in which a large range of scales is enhanced, we have derived accurate predictions for the mass distribution of primordial black holes produced during preheating. Given that those black holes may dominate the universe for a transient period afterwards, reheat the universe by Hawking evaporation, and induce a detectable stochastic gravitational wave background [START_REF] Papanikolaou | Gravitational Waves from a Universe Filled with Primordial Black Holes[END_REF], the details of these mass distributions may indeed have important cosmological consequences, some of which remain to be explored. 

+ S 0 ds δ c (S) - δ c (S) -δ c (s) S -s P free [δ c (S) -δ c (s), S -s] P FPT (s) , (9.56) 
see Eq. (9.32). Upon discretizing the time variable according to S = n∆s and s = m∆s, where n and m are integer numbers and ∆S is a numerical time step, the Volterra equation can be written as

P n FPT = X n + M n m P m FPT , (9.57) 
where the implicit summation notation is employed. In this formula, P n FPT and X n are vectors, and M n m is a lower triangular matrix, with non-zero cells only if m ≤ n, defined as Note that we chose to solve the Volterra equation that is such that the diagonal of the matrix M n m is 0. If one tries to discretize Eq. (9.31) in general, then one obtains a matrix M n m with diverging elements on the diagonal, unless the specific choice (9.32) is made, which proves its usefulness.

P n FPT = P FPT (n∆S) (9.
The solution to Eq. (9.57) is simply given by

P FPT = (Id -M ) -1 X. (9.61) 
Since Id -M is a lower triangular matrix, it can be easily inverted with the "forward-substitution" algorithm, the numerical cost of which only scales as the square of the size of the matrix (compared to cubic scaling in general).

9.B Density contrast in the Newtonian slicing

In Section 9.3.7, we motivated the choice of the comoving slicing to evaluate the density contrast on super-Hubble scales, and express our PBH formation criterion. In the present appendix, we explore the consequences of choosing a different slicing, in order to understand how much our conclusions depend on that choice. In practice, we consider the Newtonian slicing, which consists in setting α = β = -2 in Eq. (9.37), and Eq. (9.39) reduces to

δ k - 2 5 3 + k aH 2 ζ k . (9.62)
The main difference with the comoving slicing is that, for a curvature perturbation that is scale invariant on super-Hubble scales, the density contrast is not suppressed any more above the Hubble radius. This is why we discarded this choice of slicing in Section 9.3.7, since super-Hubble scales should only lead to a local rescaling of the background field values inside a Hubble patch, and thus not contribute to whether a black hole forms.

In the Newtonian slicing, on super-Hubble scales, δ k -6 5 ζ k , so δ k is conserved since ζ k is (and contrary to the comoving slicing where δ k grows like the scale factor). This means that the variance of the density contrast can equally be evaluated at the end of inflation or at the band-crossing time, namely

σ 2 R (t end ) = σ 2 R (t bc ) = 6 5 2 a/R 0 P ζ (k, t end ) dk k . (9.63)
The collapse criterion is given by Eq. (9.8), and it is strongly scale-dependent, contrary to the case of the comoving density contrast. As explained in Section 9.3.4, a good approximation in the case of very red thresholds is given by the Press-Schechter formula without the additional factor of 2. This is explained by the fact that the barrier moves faster than the average trajectories and multiple crossings are unlikely. We apply the techniques described in Appendix 9.A and present our results in Fig. 9.7. In Fig. 9.7a, one can check that indeed, the (one times) Press-Schechter formula provides a good approximation to the excursion-set result, up until Ω PBH reaches 1/2. This is because the Press-Schechter formula does not allow for more than half of the universe being collapsed. One can check that the condition (9.34) is indeed verified only when Ω PBH < 1/2. For that purpose we set ≈ 1/2 and, in Fig. 9.7a, we display max

ln(R1/R2)> S(R 2 ) -S(R 1 ) δ c (R 1 ) -δ c (R 2 ) (9.64)
with the solid yellow line. One expects the Press-Schechter formula to provide a good approximation when this quantity is below unity, which is indeed the case. Above Ω PBH = 1/2, the abundance of PBHs continues to slowly increase. This behaviour is rather different from the results obtained with the comoving density contrast in Section 9.4.3, where we found an abrupt transition from Ω PBH = 0 to Ω PBH = 1, see Fig. 9.5. Beside those differences, by comparing the right panel of Fig. 9.5 with Fig. 9.7b, one can see that the region of parameter space that substantially produces PBHs is roughly the same (in Fig. 9.7b, we have reported the dashed blue line of the right panel of Fig. 9.5 in order to guide the reader's eye). By comparing Fig. 9.6a with Fig. 9.7c, one can see that the typical masses involved are also roughly the same. However, when comparing Figs. 9.6b and 9.7d, one realizes that the mass distributions are much wider in the Newtonian case. This is because, since the density contrast is not suppressed on large scales in the Newtonian slicing, it yields a heavier large-mass tail than in the comoving slicing. 9.C Comparison with Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF] In Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF], a calculation of the PBH abundance in metric preheating was performed by making use of the simplified, commonly used estimate presented in Section 9.3.7. While this is enough to correctly identify the region in parameter space that leads to substantial PBH production, see the discussion below Eq. (9.53), which is consistent with Eq. (4.1) of Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF], this is a priori not sufficiently accurate to derive detailed predictions about the mass distribution, in particular in regimes where the cloud-in-cloud mechanism plays an important role.

In Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF], it was indeed pointed out that in cases where PBHs are abundantly produced, i.e. under the condition (9.53), the simple estimate of Section 9.3.7 predicts Ω PBH > 1, which clearly signals its breaking down. In order to deal with this issue, two solutions were proposed in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF]: either remove by hand the small-mass end of the distribution, in order to bring Ω PBH back to one, and to model the possible absorption of small black holes into larger black holes (this was dubbed "renormalization by absorption"); or stop the instability phase prematurely, at the time when Ω PBH crosses one, since the universe stops being dominated by an oscillating scalar field at that point (this was dubbed "renormalization by premature ending"). Since the later approach effectively removes larger-mass black holes from the distributions (given that heavier black holes come from larger scales, that enter the instability band later), it was assumed in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF] that these two results would bound the true mass distribution on each side, and that any conclusion that can be drawn in both approaches probably applies to the actual result.

In this appendix, we want to verify these statements, and in Fig. 9.8, we compare the mass fraction obtained in this work (solid red line) with the formulas derived in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF] when "renormalization" is performed by absorption (olive line) or by premature ending (purple line), starting from the "raw" result (orange line) that leads to the problematic Ω PBH > 1. Although, as expected, neither approach provides a good description of the full result, the order of magnitude of the overall amplitude is correctly reproduced, and the actual mass distribution is indeed approximately bounded by the results from the two renormalization procedures (although it is closer to the "renormalization by absorption" result). This therefore confirms the relevance of Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF].

The main difference in the shape of the mass distribution concerns the location of the peak mass: in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF], it was found that the mass where most PBHs form is the smallest mass that undergoes parametric amplification, i.e. the Hubble mass at the end of inflation, see Eq. (9.54), or the cutoff mass in the case of "renormalization by absorption". Here, we find that the mass distribution peaks several orders of magnitude above that mass, see the discussion following Eq. (9.55). 9.1, for a scale k that is sufficiently far outside the Hubble radius such that ζ k can be taken as constant. The blue line stands for the full numerical solution of Eq. (9.38), seen as a differential equation for Φ k (t), where w(t) and H(t) are extracted from Fig. 9.1. The red line stands for the approximation (9.43), Φ k /ζ k = 3/5, obtained as the late-time solution of Eq. (9.38) when setting w = 0 and H = 2/(3t), and towards which the full numerical result asymptotes after a few oscillations. The orange line stands for Eq. (9.38) where we neglected Φk /H with respect to Φ k . This approximation is well justified on super-Hubble scales during inflation, since w is almost constant there, but fails during the subsequent oscillatory phase where w vanishes on average but otherwise undergoes large oscillations. 9.32), using the method described in Appendix 9.A. The blue line displays the analytical approximation developed in Section 9.4.4, which provides a good fit to the full numerical. The vertical green line denotes the mass at which β peaks, as estimated from Eq. (9.55), and the grey shaded area stands for the 1σ deviation of ln(M ) according to the distribution β(M ), centred on its mean value. pl and let ρ Γ vary. The solid red curve is the full numerical result obtained in the excursion-set approach. The dashed green line corresponds to the Press-Schechter result with the additional factor 2, which becomes exact in the limit of a scale-invariant threshold, see Section 9.3.4. The dashed blue line corresponds to the analytical approximation (9.52). On the right panel, the full parameter space is explored (where ρ Γ < ρ end since the oscillatory phase occurs after inflation). The colour encodes the value of Ω PBH , and the transition from tiny values to values close to one is very abrupt. The dashed blue line stands for the analytical estimate (9.53) for the location of this transition. In the white region the abundance of PBHs is too small to be numerically resolved, hence the average mass cannot be computed. On the right panel, we show the standard deviation of ln(M ), which describes the typical width of the mass fraction distribution. pl and ρ Γ = 10 -40 M pl . As in Fig. 9.4, the red line corresponds to numerically solving the Volterra equation (9.32). The olive, orange and purple lines correspond to the results of Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF] and are taken from Fig. 4 of that reference. The orange line displays the "raw" result obtained with the estimate of Section 9.3.7, which leads to the problematic Ω PBH > 1. Then, "renormalization" is either performed by "premature ending" (purple dashed line) or by "absorption" (olive dashed line).

Part III

First order phase transitions perform the four-dimensional integration (on time and wave-vector convolution) using VEGAS: an algorithm based on importance sampling.

Introduction

Gravitational wave (GW) signals from the early universe have the potential to open a new observational window on high energy physics phenomena. In this context, first-order cosmological phase transitions (FOPTs) provide a compelling source of GWs. This was first proposed many years ago (see Refs. [START_REF] Witten | Cosmic Separation of Phases[END_REF][START_REF] Hogan | Gravitational radiation from cosmological phase transitions[END_REF][START_REF] Turner | Relic gravitational waves and extended inflation[END_REF][START_REF] Kosowsky | Gravitational radiation from colliding vacuum bubbles[END_REF][START_REF] Kosowsky | Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions[END_REF][START_REF] Kamionkowski | Gravitational Radiation from First Order Phase Transitions[END_REF]), before it became clear that the electroweak (EW) symmetry breaking proceeds as a cross-over in the Standard Model [START_REF] Kajantie | Is there a hot electroweak phase transition at m(H) larger or equal to m(W)?[END_REF]. However, it has since emerged that many scenarios beyond the Standard Model (BSM) lead to first-order phase transitions at, and beyond, the EW scale, reopening the case for the study of GW production from FOPTs (for a recent, GW-oriented review, see [START_REF] Caprini | Detecting gravitational waves from cosmological phase transitions with LISA: an update[END_REF]). This is particularly interesting in the context of the Laser Interferometer Space Antenna (LISA), which has been selected by the European Space Agency in 2017 as the large class mission L3 [START_REF] Audley | Laser Interferometer Space Antenna[END_REF]. LISA is sensitive to a frequency window around the mHz. In the context of primordial GW-sourcing processes that are localized in time, such as a FOPT, the characteristic frequency of the GWs today can be connected to the characteristic time/length scale of the source anisotropic stresses R * , via

f ∼ 16.5 • 10 -3 mHz 1 R * H * T * 100 GeV g * 100 1/6 . (10.1) 
Here a subscript * denotes the epoch at which the phase transition occurs. This shows that LISA can potentially detect the GW signal from FOPTs in the window 100 GeV -1 TeV, if the characteristic time/length scale of the anisotropic stresses is of the order R * ∼ 10 -2 to 10 -3 of the Hubble scale H * at the FOPT time. The latter can be considered as typical values for R * H * , given that R * is related to the mean bubble separation (see i.e. [START_REF] Caprini | Science with the Space-Based Interferometer eLISA. II: Gravitational Waves from Cosmological Phase Transitions[END_REF][START_REF] Caprini | Detecting gravitational waves from cosmological phase transitions with LISA: an update[END_REF] and references therein). LISA can therefore offer a new way to probe BSM physics, complementary to the Large Hadron Collider. There are several processes possibly leading to sizable anisotropic stresses in connection with a FOPT. This rich phenomenology renders FOPTs particularly appealing as primordial GW sources. Bubble percolation, with the consequent break of spherical symmetry, is the most direct one [START_REF] Turner | Relic gravitational waves and extended inflation[END_REF][START_REF] Kosowsky | Gravitational radiation from colliding vacuum bubbles[END_REF][START_REF] Kosowsky | Gravitational radiation from colliding vacuum bubbles: envelope approximation to many bubble collisions[END_REF]. The GW generation by bubble collision has been analysed both with numerical simulations [START_REF] Huber | Gravitational Wave Production by Collisions: More Bubbles[END_REF][START_REF] Cutting | Gravitational Waves from Vacuum First-Order Phase Transitions: From the Envelope to the Lattice[END_REF][START_REF] Cutting | Gravitational waves from vacuum first order phase transitions II: from thin to thick walls[END_REF][START_REF] Konstandin | Gravitational radiation from a bulk flow model[END_REF] and analytical approaches [START_REF] Caprini | Gravitational Wave Generation from Bubble Collisions in First-Order Phase Transitions: An Analytic Approach[END_REF][START_REF] Jinno | Gravitational waves from bubble collisions: An analytic derivation[END_REF][START_REF] Jinno | Gravitational waves from bubble dynamics: Beyond the Envelope[END_REF].

The first numerical simulations of the coupled system of a scalar field and a relativistic fluid have shown that sound waves, produced in the fluid by expanding bubbles, are also a promising source of GWs [START_REF] Hindmarsh | Gravitational Waves from the Sound of a First Order Phase Transition[END_REF][START_REF] Hindmarsh | Numerical Simulations of Acoustically Generated Gravitational Waves at a First Order Phase Transition[END_REF][START_REF] Hindmarsh | Shape of the acoustic gravitational wave power spectrum from a first order phase transition[END_REF][START_REF] Jinno | A hybrid simulation of gravitational wave production in first-order phase transitions[END_REF]. Refs. [START_REF] Hindmarsh | Gravitational Waves from the Sound of a First Order Phase Transition[END_REF][START_REF] Hindmarsh | Numerical Simulations of Acoustically Generated Gravitational Waves at a First Order Phase Transition[END_REF][START_REF] Hindmarsh | Shape of the acoustic gravitational wave power spectrum from a first order phase transition[END_REF] showed that they are indeed the dominant GW source, in the case of FOPTs of weak to intermediate strength, i.e. α 0.1, where α is the ratio of the trace anomaly of the energy momentum tensor and the thermal energy.

In stronger FOPTs with α ∼ 1 or larger, the characteristic time of shock formation τ sh ∼ R * /v || , where v || denotes the root mean squared (rms) velocity of the acoustic motion, can become shorter than the Hubble time τ sh H * 1 [START_REF] Caprini | Science with the Space-Based Interferometer eLISA. II: Gravitational Waves from Cosmological Phase Transitions[END_REF][START_REF] Ellis | Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source[END_REF][START_REF] Ellis | Gravitational wave energy budget in strongly supercooled phase transitions[END_REF]. Shocks can therefore develop in the fluid motion, and are expected to convert the acoustic phase into a turbulent one [START_REF] Pen | Shocks in the Early Universe[END_REF]. Vortical flows has also been seen to be generated in the numerical simulations carried out in Ref. [START_REF] Cutting | Vorticity, kinetic energy, and suppressed gravitational wave production in strong first order phase transitions[END_REF], by the non-linear interactions of relativistic compressional fluid flows surrounding the colliding bubbles of the stable phase.

In the present work, we study the GW signal generated by a hypothetical turbulent phase in the aftermath of a FOPT. The first analyses of the GW signal from turbulence have relied on analytical modelling of the turbulent flow, and semi-analytical estimates of the GW signal [START_REF] Kamionkowski | Gravitational Radiation from First Order Phase Transitions[END_REF][START_REF] Caprini | Gravitational waves from stochastic relativistic sources: Primordial turbulence and magnetic fields[END_REF][START_REF] Gogoberidze | The Spectrum of Gravitational Radiation from Primordial Turbulence[END_REF][START_REF] Kahniashvili | Gravitational Radiation from Primordial Helical Inverse Cascade MHD Turbulence[END_REF][START_REF] Kahniashvili | Gravitational Radiation from Primordial Helical MHD Turbulence[END_REF][START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF][START_REF] Caprini | Can the observed large scale magnetic fields be seeded by helical primordial fields?[END_REF]. Ref. [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF] is the most recent one adopting semi-analytical techniques, and evaluates the GW signal from all components (compressional, vortical, magnetic field) of both standard, and helical, freely-decaying magneto-hydrodynamic (MHD) turbulence. Various spectral shapes and scaling of the GW power spectrum have been found, depending on the relative amplitude of the compressional and vortical components, and on the presence of helicity. In Ref. [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF], it is also argued that the correct auto-correlation time to be used in the equations describing GW production by turbulence is the Eulerian eddy turnover time τ e ∼ (kv sw ) -1 , where v sw is a locally uniform velocity field sweeping the vortices in accordance with Kraichnan Random Sweeping Model [START_REF] Robert | Kolmogorov's Hypotheses and Eulerian Turbulence Theory[END_REF], and not the Lagrangian one τ ∼ (kv ) -1 , where v is the velocity on the scale (used e.g. in Refs. [START_REF] Gogoberidze | The Spectrum of Gravitational Radiation from Primordial Turbulence[END_REF][START_REF] Kahniashvili | Gravitational Radiation from Primordial Helical Inverse Cascade MHD Turbulence[END_REF][START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF]).

Recently, numerical simulations of both non-helical and helical MHD turbulence and the subsequent GW generation have been carried out in Refs. [START_REF] Roper | The timestep constraint in solving the gravitational wave equations sourced by hydromagnetic turbulence[END_REF][START_REF] Roper | Numerical simulations of gravitational waves from early-universe turbulence[END_REF][START_REF] Kahniashvili | Circular polarization of gravitational waves from early-Universe helical turbulence[END_REF][START_REF] Brandenburg | The scalar, vector, and tensor modes in gravitational wave turbulence simulations[END_REF]. These works introduce also an initial phase, in which the MHD turbulence develops, starting from a nearly monochromatic electromotive force, or a kinetic forcing. The spectral shape of the GW signal depends on whether magnetic and/or kinetic energy is present in the initial conditions, with a well-established power spectrum, or if it is sourced by the forcing.

In this chapter, we develop a semi-analytical model of GW generation by freely-decaying kinetic, vortical, non-helical turbulence, which is supported by the results of numerical simulations. We rely on the relativistic hydrodynamic code developed by Refs. [START_REF] Hindmarsh | Gravitational Waves from the Sound of a First Order Phase Transition[END_REF][START_REF] Hindmarsh | Numerical Simulations of Acoustically Generated Gravitational Waves at a First Order Phase Transition[END_REF][START_REF] Hindmarsh | Shape of the acoustic gravitational wave power spectrum from a first order phase transition[END_REF], but we use it to study the evolution of vortical fluid motions, excluding the dynamics of the scalar field undergoing the FOPT (see Section 10.3). We have chosen to over-simplify the turbulence model (no compressional modes, no helicity, no magnetic field, no initial forcing phase) in order to have fully under control the analytical understanding of the GW production. Increase in complexity will be tackled in future works.

The simulation is initialized in Fourier space, assuming Gaussian and vortical velocity fluctuations, following an input power spectrum (see Section 10.3 and Section 10.4.1). We therefore do not simulate the turbulence formation in our numerical simulations, but only the turbulence decay. However, as already pointed out in the analytical evaluations of [START_REF] Caprini | General Properties of the Gravitational Wave Spectrum from Phase Transitions[END_REF][START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF][START_REF] Caprini | Can the observed large scale magnetic fields be seeded by helical primordial fields?[END_REF], and found in the numerical simulations of [START_REF] Roper | The timestep constraint in solving the gravitational wave equations sourced by hydromagnetic turbulence[END_REF][START_REF] Roper | Numerical simulations of gravitational waves from early-universe turbulence[END_REF][START_REF] Kahniashvili | Circular polarization of gravitational waves from early-Universe helical turbulence[END_REF][START_REF] Brandenburg | The scalar, vector, and tensor modes in gravitational wave turbulence simulations[END_REF], we confirm here that the initial phase, in which the turbulent kinetic energy (i.e. the kinetic energy associated with the vortical motion) is sourced and grows, plays an important role in shaping the final GW signal. This is one of our main results, as we shall see. The initial phase of turbulence development is modelled here in three heuristic ways: an instantaneous generation of turbulence, a linear growth of the kinetic energy, as done in Refs. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF][START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF], imposing continuity with the free-decay phase; and C 1 growth of the kinetic energy, designed specifically to guarantee that the transition to the decay phase is smooth (see Section 10.4.5). It is difficult to connect these simplified models with the electromotive forcing of Ref. [START_REF] Brandenburg | Evolution of hydromagnetic turbulence from the electroweak phase transition[END_REF][START_REF] Roper | Numerical simulations of gravitational waves from early-universe turbulence[END_REF], however, they are of help in the analytical interpretation, as we shall see.

Correctly assessing, and implementing, how the GW source decorrelates in time is also of paramount importance for the GW signal evaluation [START_REF] Caprini | General Properties of the Gravitational Wave Spectrum from Phase Transitions[END_REF][START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF][START_REF] Caprini | Can the observed large scale magnetic fields be seeded by helical primordial fields?[END_REF]. In the present context, the decorrelation model must be suited to freely-decaying turbulence. This was attempted in Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF], which extended the exponential Kraichnan decorrelation proposed in Ref. [START_REF] Robert | Kolmogorov's Hypotheses and Eulerian Turbulence Theory[END_REF], and adopted in Refs. [START_REF] Gogoberidze | The Spectrum of Gravitational Radiation from Primordial Turbulence[END_REF][START_REF] Kahniashvili | Gravitational Radiation from Primordial Helical Inverse Cascade MHD Turbulence[END_REF] in the context of stationary turbulence, to freely-decaying turbulence (erroneously with the Lagrangian eddy turnover time instead of the Eulerian one, as previously mentioned [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF]). By doing so, [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF] ran into the question of how to define a valid correlation function for a non-stationary process.

The solution of this problem originally proposed in Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF], consisting in modelling the decorrelation directly in the anisotropic stresses with a top-hat Ansatz, rather than in the velocity field, is not satisfactory, since it effectively sets the decorrelation time of the turbulent flow to the light-crossing time τ ∼ 1/k, which does not depend on the velocity of the turbulent flow. Here, we consistently address this issue in the context of the theory of positive Kernels, and propose to model the unequal time power spectrum of the turbulent velocity field as a Gibbs Kernel (see Section 10.5). This provides a way to symmetrize the unequal time power spectrum, and it most importantly guarantees that the anisotropic stress two-point function is a valid correlation function, and therefore guarantees that it leads to a positive GW energy density power spectrum (c.f. Eq. (10.15)).

Concerning the turbulent velocity decorrelation law, we adopt here the Kraichnan sweeping hypothesis [START_REF] Robert | Kolmogorov's Hypotheses and Eulerian Turbulence Theory[END_REF], which is supported by numerical works simulating decaying isotropic turbulence [START_REF] He | On the computation of space-time correlations by large-eddy simulation[END_REF], and has been used in the context of GW generation in Ref. [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF]. The numerical simulations we perform show very good agreement with the Kraichnan Sweeping Model in the inertial range (see Section 10.4.2). Furthermore, we have performed, for the first time to our knowledge, numerical simulations allowing us to measure the unequal time correlations of the velocity field also at large scales, outside the inertial range (see Section 10.4.3). Thanks to these simulations, we can validate the decorrelation model also in the infrared tail of the velocity power spectrum. This might not be of much interest in the study of turbulent evolution, but constitutes a necessary step to calculate GW production by turbulence.

The free-decay of the turbulence can also be extracted from our simulations. We study the evolution of the kinetic energy and of the integral scale of the flow, and link it to the model of Refs. [START_REF] Olesen | On inverse cascades in astrophysics[END_REF][START_REF] Brandenburg | Classes of hydrodynamic and magnetohydrodynamic turbulent decay[END_REF] (see Section 3.2). The decay laws inferred from the simulations are broadly consistent with the findings of [START_REF] Brandenburg | Classes of hydrodynamic and magnetohydrodynamic turbulent decay[END_REF] for the case of purely kinetic, non-helical turbulence. We insert them in the analytical model of the turbulence developed to evaluate the GW production. As we shall see, the exact values of the power-law exponents of the turbulent decay do not play a relevant role in determining the final shape of the GW spectrum, as the bulk of the GW signal is sourced on a characteristic time which is smaller than the typical time it takes for the decay of the kinetic energy and the growth of the integral scale to equilibrate to well-defined power-laws.

Finally, we use the turbulent model developed so far (consisting in the equal time spectral shape, the unequal time symmetrized power spectrum, the time decorrelation at small and large scales, the growth phase of the kinetic energy, the overall free decay and turbulence duration) to evaluate the anisotropic stresses (see Section 10.6.1) and calculate the GW signal (see Section 10.6.2). This is tackled by means of a four-dimensional numerical integration code, which handles the two time integrations arising from the GW time evolution, and the two momentum integrations arising from the velocity power spectrum convolution (c.f. Eq. (10.97)).

Stochastic background of gravitational waves 10.2.1 Generation of gravitational waves

In the cosmological context GWs are described by transverse and traceless tensor perturbations h ij over the background FLRW metric describing the homogeneous and isotropic Universe:

ds 2 = a 2 (η) -dη 2 + (δ ij + 2h ij ) dx i dx j , (10.2) 
with

∂ i h ij = h ii = 0. It follows from the linearized Einstein equations that ḧij + 2H ḣij + k 2 h ij = 8πGa 2 (η)T (T T ) ij (k, η) (10.3) 
where H = ȧ/a is the comoving Hubble parameter, • = d/dη , and

T (T T ) ij
is the transverse traceless part of the perturbed fluid stress-energy tensor. We work in the radiation era, and define T (T T ) ij = (4ρ/3) Πij so that using Friedmann's equation, Eq. ( 10.3) can be rewritten as

ḧij + 2H ḣij + k 2 h ij = 4H 2 Πij (k, η). (10.4) 
Assuming that there were no changes in the relativistic degrees of freedom, H = η -1 , and

ḧij + 2 η ḣij + k 2 h ij = 4 η 2 Πij (k, η). (10.5) 
Changing variable from h ij (k, η) to η h ij (k, η), Eq (10.5) becomes the equation for a forced harmonic oscillator whose Green's function is known (see Ref. [START_REF] Caprini | Cosmological Backgrounds of Gravitational Waves[END_REF] for a review). The solution is

h ij (k, η) = 4 η ηini sin k(η -ζ) kη Πij (k, ζ) dζ ζ , (10.6) 
where η ini is the conformal time at which the source turns on. Thus,

ḣij (k, η) = 4 η ηini cos k(η -ζ) η - sin k(η -ζ) kη 2 Πij (k, ζ) dζ ζ . (10.7) 
The solution at late times, η η fin when the source has stopped operating, can be found by matching Eqs. (10.6) and (10.7) with the homogeneous solution [START_REF] Caprini | Cosmological Backgrounds of Gravitational Waves[END_REF]. For wavenumbers kη 1, we can further neglect the sine contribution in Eq (10.7), and obtain ḣij (k, η > η fin ) = 4

η fin ηini cos k(η -ζ) η Πij (k, ζ) dζ ζ . ( 10 
.8)

GW energy density power spectrum

The superposition of GW signals, coming from patches in the sky that were causally disconnected at the moment of their emission in the very early universe, can only be studied statistically. Assuming statistical homogeneity and isotropy, the two-point correlation function of the strain tensor can be written ḣ *

ij (k, η) ḣij (q, η) = (2π) 3 δ(q -k) |h| 2 (k, η). (10.9) 
The fractional GW energy density is (where ρ c denotes the critical energy density)

ρ gw ρ c = ḣ * ij (x, η) ḣij (x, η) 8πGa 2 (η)ρ c ≡ dk k dΩ gw d ln k . ( 10.10) 
The fractional GW energy density power spectrum is then .11) The GW source must also be described statistically: the anisotropic stress two-point correlation function, taken at different times, is defined by Πij (k, ζ), Πij (q, τ ) = (2π) 3 δ(kq) Π2 (k, ζ, τ ). (10.12)

dΩ gw d ln k η = k 3 |h| 2 (k, η) 2(2π) 3 Ga 2 (η)ρ c . ( 10 
From Eq (10.8), one then obtains

|h| 2 (k, η) = 8 η 2 η fin ηini cos k(τ -ζ) Π2 (k, ζ, τ ) dτ τ dζ ζ , (10.13) 
where we have used the trigonometric identities and averaged over a long time η k -1 . Accounting for the fact that the GW signal redshifts as 

k 3 η fin ηini cos k(τ -ζ) Π2 (k, ζ, τ ) dτ τ dζ ζ , (10.15) 
where g and g s denote respectively the radiation and entropy relativistic degrees of freedom. In Eq. ( 10.15) we have further used

a fin = a 2 0 H 0 Ω 0 rad g fin g 0 1/2 g s,0 g s,fin 2/3 
η fin (10.16) to transform the pre-factor a fin 4 /(2π 3 Ga 0 4 a 2 fin η 2 fin ρ c ). As can be seen from Eq. (10.15), the GW signal is determined by the unequal-time stress energy Π2 (k, ζ, τ ) of the fluid. In the case under analysis, the source of GW is provided by decaying turbulence in a relativistic fluid. In Section 10.4, we model the turbulence power spectrum, and in Section 10.6.1, we derive the connection between the turbulence power spectrum Eq. (10.86) and the anisotropic stress power spectrum: see Eq. (10.95).

As we discuss in Section 10.5, the power spectrum of any random variable must be a positive kernel (see i.e. [START_REF] Marc | Classes of Kernels for Machine Learning: A Statistics Perspective[END_REF]). Consequently, Π2 (k, ζ, τ ) defined in Eq. (10.12), must be a positive kernel, since it describes the random anisotropic stresses arising from the turbulent field. This guarantees that the GW energy density power spectrum is indeed positive, c.f. Eq. (10.15). This issue had already been raised in Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF].

Numerical simulations

We carry out a series of direct numerical simulations in order to study unequal-time correlations (UETCs) during hydrodynamical turbulence in the early Universe. For our numerical simulations we use a modified version of the relativistic hydrodynamics code previously used to study the coupled evolution of the scalar field and the fluid, and the production of gravitational waves during a thermal phase transition [START_REF] Hindmarsh | Gravitational Waves from the Sound of a First Order Phase Transition[END_REF][START_REF] Hindmarsh | Numerical Simulations of Acoustically Generated Gravitational Waves at a First Order Phase Transition[END_REF][START_REF] Hindmarsh | Shape of the acoustic gravitational wave power spectrum from a first order phase transition[END_REF][START_REF] Cutting | Vorticity, kinetic energy, and suppressed gravitational wave production in strong first order phase transitions[END_REF]. While earlier uses of the code simulated the phase transition itself with the coupled field-fluid model [START_REF] Enqvist | Nucleation and bubble growth in a first order cosmological electroweak phase transition[END_REF], here we are interested in the dynamics of the fluid after the transition has completed. We therefore "turn off" the evolution of the scalar field and are left with the evolution of a relativistic fluid. We now specify the equations of motion of the fluid and then explain how we fix the initial conditions for our simulations.

Evolution laws

The energy momentum tensor of the system is that of a perfect fluid in Minkowski space

T µν = ( + p)U µ U ν + g µν p, (10.17) 
with the internal energy density in the fluid, p the pressure, U µ = γ(1, v) the fluid four-velocity and with Lorentz factor γ = 1/ √ 1v 2 . We fix the equation of state to be that of a relativistic gas with p = /3. It has been shown that the hydrodynamic equations of motion in an expanding Universe with zero curvature are the same as the hydrodynamic equations in Minkowski space-time in conformal time, provided the dynamical quantities are replaced by scaled variables [START_REF] Brandenburg | Large scale magnetic fields from hydromagnetic turbulence in the very early universe[END_REF]. Hence, we do not need to adapt our simulation code to study hydrodynamic turbulence in an expanding background.

The dynamical quantities that we evolve are the fluid energy density E = γ with equation of motion [START_REF] Hindmarsh | Numerical Simulations of Acoustically Generated Gravitational Waves at a First Order Phase Transition[END_REF] Ė

+ ∂ i (Ev i ) + p γ + ∂ i (γv i ) = 0, (10.18) 
and the fluid momentum density Z i = γ 2 ( + p)v i , the components of which evolve according to

Żi + ∂ j (Z i v j ) + ∂ i p = 0. ( 10.19) 
Our evolution algorithm follows the approach taken in Ref. [START_REF] Wilson | Relativistic Numerical Hydrodyamics[END_REF] with a leapfrog method for updating the dynamical quantities. For this chapter we use a van Leer scheme for the advection update, whereas earlier uses of this code used an upward donor cell scheme [START_REF] Van Leer | Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection[END_REF][START_REF] Peter Anninos | Non-oscillatory central difference and artificial viscosity schemes for relativistic hydrodynamics[END_REF]. We find that using the van Leer scheme the UETCs converge faster with decreasing lattice spacing.

Initial conditions of the numerical simulation

We initialize the velocity field of our simulation in Fourier space

v(x) = k v k e ik•x , (10.20) 
where k takes discrete values in the reciprocal lattice. Each mode v k is randomly distributed and follows Gaussian statistics with mean zero and variance determined by an arbitrary velocity power spectrum serving as initial condition (see Section 10.4.1 for its specification). The velocity field is then projected onto its vortical component with the projector .22) This method allows us to initialize the simulation with an arbitrary choice of velocity power spectrum. Our motivation at the beginning of this project was to start the simulation with sound waves whose power spectrum matched the end state of Ref. [START_REF] Hindmarsh | Shape of the acoustic gravitational wave power spectrum from a first order phase transition[END_REF] This would have allowed us to study the long-term evolution of the thermal phase transition, without having to resolve the thickness of the bubbles on our lattice. We were hoping to observe, for high enough velocities, the formation of shocks and the subsequent development of turbulence. Unfortunately, this idea did not bring significant results, and we adapted this procedure to initialize a purely vortical fluid. (10.35) are the initial root mean squared turbulent velocity v 2 (τ * ) ∼ v rms, * and the initial integral scale of the turbulent spectrum ξ * in units of the lattice spacing dx. The duration of the simulation and the reference time τ 0 at which the UETCs are evaluated are given in units of the eddy turnover time at the integral scale τ ξ = ξ * /v rms, * .

P ij (k) = δ ij -ki kj . (10.21) Since x ∈ R 3 , we finally impose that v k = v * -k . ( 10 

Unequal time correlations

We are interested in studying the UETCs of the velocity field in these simulations, in order to calculate Π2 (k, τ, ζ), see Eq. (10.15). For a field in momentum space, v(k, τ ), we measure the following correlator

v(k, τ )v * (k , ζ) . (10.23) 
However, evaluating this quantity for many values of τ and ζ is very costly within a numerical simulation, in part because each pair of τ and ζ represents snapshots of the field v that must be stored concurrently in memory. Instead, we define a reference time τ 0 at which we store in memory the field v(k, τ 0 ), and then compute the UETC at regular intervals with the field on the current timestep, i.e v(k, τ 0 )v * (k , τ 0 + n∆τ ) ,

where here ∆τ is the interval between UETC outputs and n is some positive integer.

Analytical model: freely decaying turbulence

In this section we present the model of freely decaying turbulence used in the present analysis.

The model is based on the findings of Refs. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF][START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF]: in particular, we correct Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF] by accounting for the Kraichnan sweeping model to describe the time decorrelation of the velocity field, as proposed in Ref. [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF] (Section 10.4.2). We extend the results of Ref. [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF] by symmetrizing the velocity power spectrum. We adopt a new form of the decorrelation function which is validated by the numerical simulations and describes the decorrelation of the velocity field also at large scales, outside the inertial range (Section 10.4.3). The symmetrization of the velocity power spectrum is chosen to guarantee positivity of the GW energy density power spectrum (10.15). We have also tried to validate the decay laws of the turbulent kinetic energy and correlation scale with the simulation results (Section 10.4.4). With respect to [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF] and [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF], we propose several forms for the growth phase of the turbulence, which constitutes an important ingredient in order to determine the spectral shape of the GW power spectrum [START_REF] Caprini | General Properties of the Gravitational Wave Spectrum from Phase Transitions[END_REF][START_REF] Caprini | Can the observed large scale magnetic fields be seeded by helical primordial fields?[END_REF][START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF] (Section 10.4.5).

Velocity power spectrum

Under the assumption that the velocity field is divergence-free, Gaussian and statistically isotropic and homogeneous, its properties are characterized by the two-point correlation function in real space [START_REF] Caprini | Gravitational waves from stochastic relativistic sources: Primordial turbulence and magnetic fields[END_REF] b The integral dr r 4 Γ(r) is also known as the Loitsyansky integral and it is a measure of the angular momentum of the system. Therefore, we see that causality in the early universe points to Batchelor turbulence [START_REF] Davidson | Turbulence: An Introduction for Scientists and Engineers[END_REF], at least at super-horizon scales.

The power spectrum P v (k) encodes how the kinetic energy is distributed into the different length-scales v 2 (τ ) ≡ dk k P v (k, τ, τ ). (10.32) It is related to the spectral density through .33) To characterize the typical length-scale of the system, we define the integral scale ξ in terms of the longitudinal correlation function, or equivalently in terms of the power spectrum ξ(τ ) ≡ We use the integral scale to define dimensionless, time-dependent wave-numbers K(τ ) = A k ξ(τ ), with A a normalization constant defined later in Eq. (10.36).

P v (k) = k 3 π 2 P v (k). ( 10 
Concerning the shape of the velocity power spectrum, we assume that in the inertial range it is determined by the Kolmogorov K -2/3 law, and on large scales by the causal K 5 slope, motivated by Eq. (10.31). P v (k) is usually approximated by the following formula [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF][START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF][START_REF] Von Karman | Progress in the Statistical Theory of Turbulence[END_REF][START_REF] Davidson | Turbulence: An Introduction for Scientists and Engineers[END_REF]] Note that in Ref. [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF], the authors introduce a factor of 5/12 in the denominator of the velocity power spectrum, with the motivation to localize the peak of the spectrum around K = 1. We do not follow this convention here.

P v (k, τ, τ ) = B v 2 (τ ) K 5 (τ ) [1 + K 2 (

Kraichnan sweeping model

In order to model the time decorrelation of the velocity field, we adopt the Kraichnan's sweeping scenario [START_REF] Robert | Kolmogorov's Hypotheses and Eulerian Turbulence Theory[END_REF][START_REF] He | On the computation of space-time correlations by large-eddy simulation[END_REF], as put forward in Ref. [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF]. We compare the predictions of this scenario to numerical simulations of a relativistic fluid in the early Universe. We propose a form for the decorrelation function which reduces to the classical sweeping decorrelation scenario in the case of non-decaying turbulence, and in the inertial range. However, in order to perform the calculation of the GW energy density spectrum, we need to model the decorrelation also at large scales: we therefore use a form for the decorrelation function proposed in [START_REF] Kaneda | Lagrangian and Eulerian Time Correlations in Turbulence[END_REF] which appears to be valid also outside the inertial range. As shown in Section 10.4.3, we validate this form with numerical simulation as far as possible. Here we first concentrate on the time decorrelation in the inertial range, and revise the classical sweeping scenario, before extending to large scales in the next section. Kraichnan's sweeping model is based on the assumption that vortices in the inertial range are advected without deformation by a locally uniform velocity field V, which may be time-dependent [START_REF] Robert | Kolmogorov's Hypotheses and Eulerian Turbulence Theory[END_REF]: Under the assumption that the locally uniform velocity field V is statistically independent of the turbulent velocity field v at the initial time, the unequal-time correlations of this latter field can be expressed as .39) The average of the exponential can be calculated assuming that its argument is a Gaussian random variable 1 . It results that the velocity field decorrelates with a characteristic Gaussian law such as

∂v ∂t + i[k • V(t)]v = 0. ( 10 
v i (k, t + ∆t)v * i (k, t) = v i (k, t)v * i (k, t) exp -i t+∆t t k • V(s) ds . ( 10 
v i (k, t + ∆t)v * i (k, t) = v i (k, t)v * i (k, t) exp -X 2 , (10.41) 
where .42) This expression can be further simplified assuming that the locally uniform velocity has on average the same amplitude in the three space directions [START_REF] Robert | Kolmogorov's Hypotheses and Eulerian Turbulence Theory[END_REF], leading to The most common assumption for the sweeping velocity is to set it equal to the root-mean-squared velocity of the turbulent field in one direction [START_REF] Robert | Kolmogorov's Hypotheses and Eulerian Turbulence Theory[END_REF][START_REF] Wilczek | Wave-Number-Frequency Spectrum for Turbulence from a Random Sweeping Hypothesis with Mean Flow[END_REF]. Assuming statistical isotropy, this amounts to v 2 sw v 2 /3. Generalizations for freely decaying turbulence are given for instance in Refs. [START_REF] He | On the computation of space-time correlations by large-eddy simulation[END_REF][START_REF] Dong | A Study of Time Correlations in Lattice Boltzmann-Based Large-Eddy Simulation of Isotropic Turbulence[END_REF], as v 2 sw (t, ∆t) = t+∆t t V 2 (s) /∆t 2 ds [ v 2 (t) + v 2 (t + ∆t) ]/2. In the following, we will adopt a model that reduces to v 2 (t) /3 at equal time and in the inertial range, as presented in the next Section 10.4.3.

X 2 ≡ t+∆t t (k • V(s))(k • V(s )) ds ds . ( 10 
v i (k, t + ∆t)v * i (k, t) = v i (k,

Unequal-time correlations outside the inertial range

The Kraichnan sweeping model derived in the previous section only applies to the inertial range. In order to evaluate the GW generation, however, we need to model the time decorrelation of the velocity field on all scales (c.f. for example Eq (10.97)).

The decorrelation dynamics at scales larger than the integral scale in freely decaying turbulence has not received a lot of attention in the literature: numerical studies such as those performed in Refs. [START_REF] He | On the computation of space-time correlations by large-eddy simulation[END_REF][START_REF] Dong | A Study of Time Correlations in Lattice Boltzmann-Based Large-Eddy Simulation of Isotropic Turbulence[END_REF], for example, study decorrelation only in the inertial range. The largest scale analysed in Ref. [START_REF] Sanada | Random Sweeping Effect in Isotropic Numerical Turbulence[END_REF] is k = 1, corresponding to the scale of the forcing, i.e. of the peak of the energy spectrum: it appears from this analysis that the peak scale already decorrelates slower than scales in the inertial range. 1 We recall that for a Gaussian random variable, In the context of the literature dedicated to GW production by turbulence, this problem has been tackled for instance in Refs. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF][START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF], with different approaches. Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF] assumed that the large scales do not decorrelate. The only time dependence of the velocity spectrum outside the inertial range was therefore due to the free decay, and an exponential decorrelation was inserted for wavenumbers in the inertial range by means of a step function. This introduced a non-physical discontinuity (c.f. Eq. ( 57)). Furthermore, as pointed out in Ref. [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF], Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF] erroneously used the Lagrangian eddy turnover time as typical decorrelation time.

exp(X) = ∞ n=0 X n n! = ∞ k=0 X 2 k 2 k k! = exp X 2 2 
Ref. [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF] was the first to point out that the random sweeping model was the correct one to describe the time decorrelation in the context of GW dedicated studies. This leads to the Eulerian eddy turnover time τ e as typical decorrelation time [START_REF] Kaneda | Lagrangian Velocity Autocorrelation in Isotropic Turbulence[END_REF][START_REF] Kaneda | Lagrangian and Eulerian Time Correlations in Turbulence[END_REF] To model decorrelation on all scales, we can therefore use Eq. (10.45) as an extension of the sweeping velocity. Note that, as will be motivated in Section 10.5, we will choose the geometrical mean to symmetrize the velocity at unequal times (as opposed i.e. to the proposal of Ref. [START_REF] He | On the computation of space-time correlations by large-eddy simulation[END_REF]): All in all, one can therefore substitute in the exponential of Eq. (10.43) the decorrelation velocity given in Eq. (10.48). From Fig. 10.2, it appears that the decorrelation obtained using the "sweeping" velocity of Eq. (10.48) is qualitatively similar to the step function adopted in Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF], but it is continuous. Furthermore, it provides a slower decorrelation in the infrared than the classical sweeping model, which would amount to fix a constant v 2 sw v 2 /3 at initial time and at all scales.

The decorrelation model that we adopt interpolates reasonably well the results of numerical simulations, as one can appreciate from Fig. ) is motivated in Section 10.5. One of the two times is fixed to a reference time of the order of the eddy turnover time, τ e ∼ ξ/ v 2 , while the other one varies. Because of limitations in the dynamical range of the simulations, it is not possible to analyse very small values of k/k peak , but one can appreciate that the model provides a reasonably good fit for the decorrelation of scales k ≥ 0.125 k peak .

Evolution of the velocity field in decaying turbulence

Together with the time decorrelation properties of the turbulent field, we also need to model its overall time evolution. From Eq. (10.35), we see that this amounts to describe how the kinetic energy v 2 and the integral scale ξ evolve with time. For fully developed, freely decaying turbulence, v 2 and ξ are expected to evolve as power-laws, as we demonstrate in the following. We therefore start by defining the instantaneous scaling exponents In order to analyse the self-similarity properties of the turbulence that ultimately determine its time evolution, in Ref. [START_REF] Olesen | On inverse cascades in astrophysics[END_REF], Olesen starts by noting the invariance of the Navier-Stokes equations upon the rescaling x → x, t → 1-h t, v → h v, ν → 1+h ν, (10.51) where is dimensionless, and the parameter h is a priori unknown2 . In particular, the author shows that in the inertial range -far away from the energy injection scale and the Kolmogorov microscale -the power spectrum follows the scaling P v (k, t) = -2h P v k , 1-h t . (10.52) It is possible to derive, from this equation, the evolution laws for the kinetic energy and the integral scale. Taking = t -1/(1-h) , one is left with

P v (k, t) = t 2h/(1-h) φ kt 1/(1-h) , (10.53) 
in which φ(x) = P v (x, 1) is a function of only one variable. From the argument of φ, we see that t 1/(1-h) acts as a typical length-scale describing the evolution of the flow. It can therefore be assumed to be proportional, at all times, to the integral scale, so we can write [START_REF] Brandenburg | Classes of hydrodynamic and magnetohydrodynamic turbulent decay[END_REF] P v (k, t) = ξ -1-β φ(kξ).

(10.54)

The coefficient β defined in Ref. [START_REF] Brandenburg | Classes of hydrodynamic and magnetohydrodynamic turbulent decay[END_REF] is directly related to h and can be used to determine the scaling exponent for the integral scale

β ≡ -1 -2h, q = 1 1 -h = 2 β + 3 . (10.55) 
The evolution of the kinetic energy can be found upon integration In Ref. [START_REF] Olesen | On inverse cascades in astrophysics[END_REF], it is argued that the parameter h (or equivalently β) should be fixed by the initial conditions. The argument is the following: take = k -1 , the scaling relation then reads

P v (k, t) = k 2h ψ(k h-1 t), (10.58) 
in which ψ(x) = P v (1, x) is a function of only one variable. If, at time t = 0, the power spectrum is a power-law P v (k, 0) ∝ k 1+α , then α = -1 -2h thus determining the value of h. However, the argument presented above has a flaw, as noted in Ref. [START_REF] Brandenburg | Classes of hydrodynamic and magnetohydrodynamic turbulent decay[END_REF]. Indeed, if one calculates the exponent of the power spectrum at any time

d ln P v d ln k = 2h + (h -1) d ln ψ d ln k k h-1 t , (10.59) 
there is no reason for the second term to vanish when t → 0, and the initial conditions are not sufficient to fix the value of h.

Motivated by the work carried out in Ref. [START_REF] Brandenburg | Classes of hydrodynamic and magnetohydrodynamic turbulent decay[END_REF], we use direct numerical simulations to infer the value of the parameter β and the laws governing freely decaying turbulence. In Fig. 10.4, we show the evolution of the instantaneous exponents p and q in phase space. Combining Eqs (10.55) and (10.57), the scaling exponents satisfy the relationship p = 2(1q) (10.60)

represented by a dark line in Fig. 10.4. On the other hand, they also have to satisfy p = (1 + β)q (10.61)

shown for various values of β as dashed lines in Fig. 10.4. The simulation broadly converges to the intersection of Eqs (10.60) and (10.61), thus suggesting that β = 3. This result is consistent with the findings of Ref. [START_REF] Brandenburg | Classes of hydrodynamic and magnetohydrodynamic turbulent decay[END_REF] for hydrodynamic simulations. In Fig. 10.5 we display the evolution of p and q as a function of time and with the predictions for β = 3: For β = 3, p = 4 3 and q = 1 3 .

(10.62)

The simulation relaxes toward the scaling regime after ∼ 30τ * ξ , where τ * ξ = ξ * /v rms, * is the initial eddy turnover time. As already hinted by Fig. 10.4, the simulation does not reach the exact power-laws corresponding to β = 3. On the other hand, in Fig. 10.6, the power spectrum remains self-similar with β = 3 during the scaling regime. We also check in Fig. 10.7 that v 2 ξ 1+β remains constant during the scaling regime as shown in Eq. (10.56).

Turbulence sourcing

Refs. [START_REF] Caprini | General Properties of the Gravitational Wave Spectrum from Phase Transitions[END_REF][START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF][START_REF] Caprini | Can the observed large scale magnetic fields be seeded by helical primordial fields?[END_REF] have shown the importance of the time continuity of the GW sourcing process in shaping the SGWB signal. Ideally, to properly model the GW source, one would have to simulate the development of the turbulence starting from the PT dynamics. Unfortunately, the simulation code in its present form is not suited for this. However, it is important to ensure time continuity of the GW source, i.e. introduce a phase when the turbulence grows. Since we were not able to study the formation of turbulence with our numerical simulations, we model the growth phase heuristically. Starting from an initial time τ ini , we assume that turbulence is sourced on a timescale the order of the eddy turnover time τ * ξ = ξ * /v rms, * . Consequently, turbulence is fully developed at τ ini + τ * ξ -we label the corresponding Hubble scale H * -and then starts decaying (cf Fig. 10.8). We consider two heuristic models for the initial growth, occurring in the time interval τ * ξ . First, we suppose that the vortical kinetic energy grows linearly with the conformal time and then starts decaying as a power-law with the coefficients of Eq. (10.50)

v 2 (τ ) = v 2 rms, *          τ -τ ini τ * ξ if τ < τ ini + τ * ξ τ -τ ini τ * ξ -p if τ > τ ini + τ * ξ .
(10.63)

In this first model, we also assume that the integral scale remains constant during the growth phase, 0.0 0.2 0.4 0.6 0.8 1.0 q(t) (10.64) This is the approach followed by Refs. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF][START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF].

Our second model for the growth phase is motivated by the work of Ref. [START_REF] Caprini | General Properties of the Gravitational Wave Spectrum from Phase Transitions[END_REF]. In this article, the authors propose different forms for the growth phase of the GW source, with increasing regularity: discontinuous, C 0 or C 1 . They show that the smoothness of the growth phase has an important impact on the GW spectrum at high frequencies. To test this, let us first define the smooth step function

SStep(x) =      0 x < 0 3x 2 -2x 3 0 < x < 1 1 1 < x (10.65)
which is both continuous and differentiable at 0 and 1: SStep (0) = SStep (1) = 0. To connect with the decay phase, we define the smooth power law SPL(x, p) = (1p)x p + px p-1 (10.66) so that SPL (1, p) = 0 and SPL(1, p) = 1 3 . With these functions, the vortical kinetic energy and the integral scale

ξ(τ ) = ξ *      1 if τ < τ ini + τ * ξ SPL τ -τ ini τ * ξ , q if τ > τ ini + τ * ξ .
(10.68)

are C 1 at the times τ ini and τ ini + τ * ξ . In both scenarios for the turbulence growth, we assume that the UETCs of Section 10.4.4 hold uniformly during both the growth and the free decay phases, i.e. we assume that the velocity field during the growth phase and during the free decay are correlated assuming the model described in Section 10.3.3. If we refer to Fig. 10.8, all four regions contribute to the GW power spectrum. Additionally, we also evaluate the SGWB signal in the case of a scenario of instantaneous generation, in which we neglected the growth phase, as in the discontinuous case of Ref. [START_REF] Caprini | General Properties of the Gravitational Wave Spectrum from Phase Transitions[END_REF].

Mercer condition and consequences

As we have discussed in Section 10.4.4, the kinetic energy and the integral scale are evolving, while the turbulent source decorrelates. GW are therefore generated by a non-stationary, random process, of which we need to model the correlation function. In this section, we would like to take a step back and review some key properties of two-point correlators (see Ref. [START_REF] Marc | Classes of Kernels for Machine Learning: A Statistics Perspective[END_REF]). Consider an arbitrary stochastic process φ(t). In our case we are interested in functions defined on one dimensioni.e. time -but the discussion can be generalized in higher dimensions. We define the kernel of φ through the two-point correlation K(t 1 , t 2 ) ≡ φ(t 1 )φ(t 2 ) . (10.69)

In practice, the kernel K is often defined directly, thus implicitly determining the stochastic function φ. This is, for example, what we do in Section 10.4.2: we build the kernel explicitly based on our direct numerical simulations and hints from analytical models. It is therefore important to review the key properties of kernels to ensure that we indeed build a viable one. First, a kernel should be symmetric and satisfy the Cauchy-Schwartz inequality This condition is called the Mercer condition. It is a necessary and sufficient condition that any symmetric function K(t 1 , t 2 ) should satisfy in order to be a kernel [START_REF] Mercer | Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations[END_REF]. One can easily show that the linear combination of two kernels and that the multiplication of two kernels yields a kernel This type of kernel had already been proposed in the context of turbulence during first order phase transition in Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF] where it is referred to as the coherent approximation.

K(
K(t 1 , t 2 ) = a 1 K 1 (
Another example of kernels most often used in the literature are stationary kernels such that K(t 1 , t 2 ) = K(t 1t 2 ). It has been proven in 1955 that stationary functions are kernels if and only if there exist a positive finite function F such that [START_REF] Bochner | Harmonic analysis and the theory of probability[END_REF] K(t 1t 2 ) = cos[ω(t 1t 2 )]F (ω) dω . (10.78) This result is very powerful and provides a demonstration that kernels can be constructed using a Dirac distribution K(t 1 , t 2 ) = δ(t 1t 2 ). (10.79)

A kernel of this form is referred to as incoherent in Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF]. Stationary kernels also include the Gaussian kernel K(t 1 , t 2 ) = exp -(t 1t 2 ) 2 . (10.80)

It is important to note that a top-hat function Θ(t 1t 2 ) is not a positive kernel, since it is the Fourier transform of a sinus cardinal function. Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF] has used the top-hat function to model time decorrelation of the turbulent anisotropic stresses, but the only reason why the SGWB thereby obtained is positive, is that the authors have manually restricted the function in its regime of positivity (x ≤ π).

Freely decaying turbulence is, by definition, non-stationary and one may ask if there aren't similar techniques to build well-defined non-stationary kernels for the velocity field. Let us mention that a simple departure from the stationary kernels discussed above is provided by locally stationary kernels [START_REF] Silverman | Locally stationary random processes[END_REF] 

K(t 1 , t 2 ) = K 1 t 1 + t 2 2 K 2 (t 1 -t 2 ), (10.81) 
where K 1 is a non-negative function and K 2 a positive stationary kernel. Although locally stationary kernels are very useful, the UETC of Eq. (10.86) is not of this, form since the sweeping velocity depends explicitly on time. We therefore need to go beyond local stationarity, and we do so by introducing process-convolution kernels [START_REF] Higdon | Non-stationary spatial modeling[END_REF]. This specific class of non-stationary kernels is defined as such in which the unequal-time sweeping velocity is chosen as the harmonic average of the equal-time sweeping velocity as in Eq. (10.48).

K(

Results

In this section, we evaluate the stochastic background of GWs. We start with reviewing the computation of the unequal time anisotropic stress power spectrum in terms of a purely vortical velocity power spectrum. Equipped with Eq. ( 10.86), we can avoid modelling the source decorrelation in the anisotropic stresses, as done in Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF]. Furthermore, we have developed a numerical method to perform an exact evaluation of the SGWB, without resorting to approximating the angular dependence in Eq. (10.97) (as done in Ref. [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF]). This approach is possible because we use a method of sampling importance to numerically calculate the 4-dimensional integral of Eq. (10.97).

The unequal time anisotropic stress power spectrum

We start with the spatial, off-diagonal part of the energy momentum tensor of the cosmic fluid T m (x, η) = ( + p)u (x, η)u (x, η). (10.87) In order to simplify the computation, we neglect the spatial dependence of the fluid enthalpy density ( + p) and set the Lorentz factor γ = 1. We are therefore implicitly assuming that turbulence is non-relativistic. The transverse trace-less projector is In which q = kp. This calculation has already been done multiple times in the literature [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF][START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF] with slightly different results. We would like to point out to the reader that the two terms in the contractions of the tensor indices in Eq. (10.91) are not identical as claimed in Ref. [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF]. More specifically 2Λ mrs ( k)(δ rp pr )(δ msqm qs

Λ ij m ( k) = P i ( k)P jm ( k) - 1 2 P ij ( k)P m ( k), (10.88 
) = 1 + 2 ( k • p) 2 + ( k • q) 2 + ( k • p) 2 .( k • q) 2 (10.92)
2Λ mrs ( k)(δ sp ps )(δ mrqm qr

) = 1 + ( k • p) 2 .( k • q) 2 . (10.93) 
Eq (10.92) is identical to the Eqs (A6) and (A12) of [START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF], but contrary to their claim, the second term, i.e. Eq (10.93), differs. Taking this into account, the stress-energy two point correlation yields [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF] Πij (k, ζ), Πij (k , τ ) = π 4 δ(kk ) d 3 p p 3 q 3 P v (p, τ, ζ)P v (q, τ, ζ)

× 1 + ( k • p) 2 + ( k • q) 2 + ( k • p) 2 .
( k • q) 2 . (10.94)

We can now extract the kernel of the anisotropic stress defined in Eq. (10.12) and obtain Π2 (k, ζ, τ ) = π 4 (2π) 3 d 3 p p 3 q 3 P v (p, τ, ζ)P v (q, τ, ζ) 1 + ( k • p) 2 1 + ( k • q) 2 .

(10.95)

The two dot products are often replaced by the coefficients [START_REF] Caprini | Gravitational waves from stochastic relativistic sources: Primordial turbulence and magnetic fields[END_REF] recalling that q = kp. Rigorously, the computation of the GW background involves performing a four-dimensional integration for each mode k (the integration over the azimuthal angle is trivial). Contrary to previous estimates, we calculate the stochastic background using Eq. (10.97) without any further approximation. We perform this four-dimensional integral using the VEGAS algorithm [START_REF] Lepage | A new algorithm for adaptive multidimensional integration[END_REF], an iterative and adaptive Monte Carlo scheme. We give more details on the implementation in Appendix 10. In our numerical integration, we have assumed that the turbulence is long-lasting, taking the limit η fin to infinity. Since the turbulent source decays in time over a time-scale of the order of the eddy turnover time, this assumption does not influence our result. We have numerically checked that the integration has converged to a fixed result after O(10) eddy turnover times (for typical values of the parameters in the game, v rms and ξH, it is expected to last about 300τ * ξcf Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF]). We collect in Figs 10.10 and 10.11 the GW power spectra for different values of the initial root mean squared velocity v rms, * and integral scale ξ * . As explained in Section 10.4.5, we test three different scenarios for the generation of turbulence: an instantaneous generation, a C 0 growth phase and a C 1 growth phase.

β = k • p, γ = k • q = k • k -p ( 
For an instantaneous generation of turbulence (see Fig. 10.10), the GW spectrum peaks at a frequency set by the initial integral scale ξ -1 * and presents a k -7/3 slope in the ultraviolet. As the initial velocity v rms, * and the initial integral scale ξ * decrease, the peaks broadens in the infrared and a k 1 region develops. Far in the infrared, the spectrum follows a k 3 slope.

The addition of a growth phase leads to a decrease of GW power and a steeper slope at high frequencies, as predicted by the analytical work of Ref. [START_REF] Caprini | General Properties of the Gravitational Wave Spectrum from Phase Transitions[END_REF] (see Fig. 10.11). The suppression of the high frequencies shifts the peak to the infrared as the initial velocity decreases, thus the k 1 region of the instantaneous growth phase never develops. It should be noted that, contrary to the findings of Ref. [START_REF] Caprini | General Properties of the Gravitational Wave Spectrum from Phase Transitions[END_REF], the C 0 and C 1 growth phases yield almost identical GW spectrum, as illustrated by Fig. 10.9. This is the reason why we only show the results from the latter. This may be due to the fact that the authors of Ref. [START_REF] Caprini | General Properties of the Gravitational Wave Spectrum from Phase Transitions[END_REF] were studying short-lasting sources in which they also imposed regularity condition at the end of the source.

At first, it may seem counter-intuitive that the addition of a growth phase decreases the energy in GWs, especially after our discussion on Mercer's condition in Section 10.5. We illustrate this using Fig. 10.8: Mercer's condition of Eq. (10.73) applies to intervals of the form I × I, hence the contributions from the regions 1 and 2 are positive. However, the contributions from the regions 3 and 4 can very well be negative, thus lowering the energy in terms of gravitational waves. This effect depends crucially on the correlations between the growth and the free decay phase, and we leave the study of the growth of turbulence from various initial conditions to a future work.

Finally, we tested the dependence of our results on the duration of the phase transition by varying η fin in our integration algorithm. We found that the GW spectrum develops during the first eddy turnover times ξ * /v rms, * and remains constant when η fin goes to infinity. The generation of GWs is very localized in time and the decay of turbulence cuts it off after a few eddy turnover times.

Discussion

In this chapter, we studied the GW signal generated by a hypothetical turbulent phase in the aftermath of a FOPT. We have developed a semi-analytical model for the generation of a Stochastic Background of GWs by freely-decaying kinetic, vortical, non-helical turbulence. To do so, we relied on the relativistic hydrodynamic code developed by Refs. [START_REF] Hindmarsh | Gravitational Waves from the Sound of a First Order Phase Transition[END_REF][START_REF] Hindmarsh | Numerical Simulations of Acoustically Generated Gravitational Waves at a First Order Phase Transition[END_REF][START_REF] Hindmarsh | Shape of the acoustic gravitational wave power spectrum from a first order phase transition[END_REF], and used it to study the evolution of vortical fluid motions. We modified this code to give it a velocity power spectrum as input. The velocity field was initialized in Fourier space, assuming Gaussian and vortical velocity fluctuations, following the given power spectrum.

We adopted the Kraichnan sweeping hypothesis to model the turbulent velocity decorrelation. We consistently addressed issues related to the modelling of decorrelation in the context of the theory of positive Kernels, and proposed to model the unequal time power spectrum of the turbulent velocity field as a Gibbs Kernel. This provides a way to symmetrize the unequal time power spectrum, and it most importantly guarantees that the velocity two-point function is a valid correlation function, and therefore guarantees that it leads to a positive GW energy density power spectrum. The numerical simulations we performed showed very good agreement with the Kraichnan Sweeping Model in the inertial range. Furthermore, we have performed numerical simulations allowing us to measure the unequal time correlations of the velocity field also at large scales, outside the inertial range. Thanks to these simulations, we were able to validate the decorrelation model also in the infrared tail of the velocity power spectrum.

We have also used our simulations to extract the free-decay laws of the turbulence. We studied the evolution of the kinetic energy and of the integral scale of the flow. The decay laws inferred from the simulations were broadly consistent with the findings of [START_REF] Brandenburg | Classes of hydrodynamic and magnetohydrodynamic turbulent decay[END_REF] for the case of purely kinetic, nonhelical turbulence. Therefore, we inserted them in the analytical model of the turbulence developed to evaluate the GW production. The exact values of the power-law exponents of the turbulent decay do not play a relevant role in determining the final shape of the GW spectrum, as the bulk of the GW signal is sourced on a characteristic time which is smaller than the typical time it takes for the decay of the kinetic energy and the growth of the integral scale to equilibrate to well-defined power-laws.

One of our main results is the confirmation that the initial phase, in which the turbulent kinetic energy (i.e. kinetic energy associated with the vortical motion) is sourced and grows, plays an important role in shaping the final GW signal. The initial phase of turbulence development is modelled here in three heuristic ways: an instantaneous generation of turbulence; a linear growth of the kinetic energy, as done in Refs. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF][START_REF] Niksa | Gravitational Waves produced by Compressible MHD Turbulence from Cosmological Phase Transitions[END_REF], imposing continuity with the free-decay phase; and a C 1 growth of the kinetic energy, designed specifically to guarantee that the transition to the decay phase is smooth. More than the regularity of the growth phase, we have shown that correctly assessing, and implementing, how the GW source decorrelates between the growth and the free-decay phases is also of paramount importance for the GW signal evaluation Finally, we have used the turbulent model developed so far (consisting in the equal time spec-k p q kp α = cos θ Figure 10.12: Coordinate system consisting of (q, α).

tral shape, the unequal time symmetrized power spectrum, the time decorrelation at small and large scales, the growth phase of the kinetic energy, the overall free decay and turbulence duration) to evaluate the anisotropic stresses (see Section 10.6.1) and calculate the GW signal (see Section 10.6.2). This was tackled by means of a four-dimensional numerical integration code, which handles the two time integrations arising from the GW time evolution, and the two momentum integrations arising from the velocity power spectrum convolution. We leave a detailed analysis of the SGWB signal scaling with the parameters v rms, * and ξ * to a future analysis.

10.A Tools for the numerical GW power spectrum calculation

We describe here the changes of variable we perform, to tackle numerically the integral of Eq. (10.97).

To make the symmetries of the integral apparent, we make the following change of variables q = pk/2 so that

1 + ( k • p) 2 1 + ( k • k -p) 2 = 4 k 2 /4 + q 2 (1 + ( k • q) 2 /2) 2 -(qk k • q) 2 |k/2 -q| 2 |k/2 + q| 2 .
(10.99)

Expressed in terms of spherical coordinates (q, θ, φ), the integrand is invariant by rotations over φ and the volume element is d 3 q = q 2 dq dθ sin(θ) dφ = dφ dq sin(θ) dθ (10.100)

Finally, we change variables from (q, θ) to Part IV

M ≡ k 2 k 2 + q 2 , α ≡ k • q. ( 10 

Conclusion

Summary and outlook

The main theme of this thesis has been that of constraining early universe cosmology with gravitational waves. The last years have been particularly rich in discoveries in GW physics, following the first direct detection of GWs by the LIGO-Virgo collaboration in 2015. The catalogue GWTC2 resulting from the third observing run of LIGO-Virgo, now contains about 50 observations of compact binary mergers, and PTA observatories such as NANOGRAV have promising data on the SGWB. The next five years will also be of paramount importance for refining our understanding of the science potential of the future LISA mission. In this context, in this thesis we have focused on three possible sources of primordial gravitational waves, each with rather different properties. In Part I, we considered cosmic strings. These are line-like topological defects, which may be formed in phase transitions in the early universe, and are long-lived sources meaning that they may be present in the universe until today. In Part II, we focused on PBHs, which may be formed at the end of inflation, whereas in Part III we discussed GWs formed from turbulence which may be produced in the aftermath of short-lived first order PTs. Our work has tackled theoretical studies of these sources, as well as predictions for LISA, and also constraints from LIGO-Virgo.

Concerning cosmic strings, in Chapter 2, we presented work on the potential of the future LISA mission to constrain these sources. Written in collaboration with members of the LISA Cosmology Working Group, one of the main conclusions of this work is that, with the expected LISA sensitivity, it will be possible constrain strings (or even detect) with tension Gµ 10 -17 . Physically, this corresponds to strings formed at energy scales O 10 10 GeV. The SGWB signal from cosmic string networks is highly model dependent. However, we have found that the signal predictions at LISA frequencies are very similar for the two main cosmic string loop models considered in the literature. The situation is rather different at LIGO/Virgo frequencies: here the SGWB predicted from cosmic strings is more model dependent as discussed in detail in Chapter 5, based on a paper written with the LIGO/Virgo collaboration. In this paper we used the O3-data to constrain cosmic strings at LIGO/Virgo frequencies, for different loop models.

In chapters 3, 4 and 7 we attempted to understand in more detail the loop models, or more exactly the length distribution of cosmic loops. In general, loops can decay through different channels, including gravitational radiation, and hence understanding their distribution is crucial in order to make motivated observational predictions from cosmic strings. Indeed, we have focused on several observables: the SGWB (chapters 2, 4, 5 and 6); GW bursts from cusps and kinks on loops (Chapter 5); and also a diffuse gamma-ray background from cosmic strings (Chapter 6); as well as "vortons" as dark matter (Chapter 7). The loop distribution can be obtained by solving a Boltzmann equation (see Eq. (6.8)), which has two important ingredients: ˙ , namely the rate at which a loop looses energy; and P( , t), the loop production function (LPF), namely the rate at 259 which loops of length are chopped off the infinite string network at time t.

In Chapter 3 we considered different LPFs proposed in the literature, assuming (as done also in Chapter 4) that gravitational radiation is the dominant form of energy loss from loops. These LPFs give the same loop distribution on large scales, where they also agree with different numerical simulations. However, on those scales for which gravitational radiation and gravitational backreaction become important, their predictions differ dramatically. Furthermore, at small scales there are no simulations to compare with. The work presented in Chapter 3 extends results on the loop distribution obtained from the LPF of Polchinski and Rocha.

In Chapter 4, I applied the new models of Chapter 3 to make complete predictions for SGWBs from cosmic strings. These models are part of those constrained by LIGO-Virgo in Chapter 5.

In Chapter 6, we considered the possibility that cosmic strings can also lose energy through other forms of radiation (particle, as well as gravitational). Indeed, during cusps, and kink-kink collisions, parts of the loop may annihilate thus emitting energy in the form of the fundamental fields making up the loop. Motivated by recent work presented in Ref. [START_REF] Matsunami | Decay of Cosmic String Loops Due to Particle Radiation[END_REF], we modelled these other forms of radiation though a modified expression for ˙ (see Eq. (6.7)). Feeding this into the Boltzmann equation, and then solving it, determines their effect on the loop distribution, which we calculated for the first time in Chapter 6 4 . We then calculated the γ-ray background emitted by the cosmic string network, and compared it with observations from Fermi-LAT [START_REF] Abdo | The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived from First-Year Fermi Large Area Telescope Data[END_REF].

Finally, in Chapter 7, we considered the possibility that strings may carry a current. This can occur if, for example, the fields forming the string couple to other fields, and fermion zero-modes propagate along the string. The angular momentum due to the current can stabilize a collapsing loop, and form a stationary object called a vorton which can act as dark matter. In this chapter we calculated for the first time the population of vortons formed from a current-carrying string network. We used the same approach as in Chapter 6, i.e. we solved a Boltzmann equation accounting for a modified ˙ to model the stabilization of the loops.

In Part II of this thesis we turned our attention to PBHs. Here we have not focused on the possible GW signatures from PBH, but rather we have analysed the production of PBHs during the preheating instability at the end of inflation. So far in the literature, e.g. in Ref. [START_REF] Martin | Primordial Black Holes from the Preheating Instability in Single-Field Inflation[END_REF], estimates of the initial mass function considered that the distribution of PBHs was monochromatic, thus leading to an unphysical scenario in which Ω PBH > 1. In Chapter 9 we applied the excursion-set formalism to calculate the initial mass function. The advantage of this formalism is that it takes into account a hierarchy of structures, i.e. small black holes are likely to be formed in dense regions of space which will eventually collapse into a larger black hole, so that only the largest collapsed structures are accounted for in Ω PBH . We also presented efficient numerical methods to calculate the distribution of first crossing using one, among an infinite set of, Volterra integral equations. Accounting for the cloud-in-cloud problem with the excursion-set formalism, we found that the abundance of light PBHs is suppressed and that the peak of the initial mass function is shifted to higher masses than previously expected.

Finally, in Part III, we presented some work in progress on the SGWB from freely decaying turbulence following a first order phase transition. The frequency band of the future LISA mission is ideally positioned to probe deviations of the standard model at the electro-weak scale, if they occur in the form of a first order PT associated with the electro-weak symmetry breaking. We have built a semi-analytical model for purely vortical hydrodynamical turbulence, validating our hypothesis on its unequal-time correlations and long-term evolution with massively parallel numerical simulations. We have also reviewed Mercer's condition, a property that has to be satisfied by any two-point correlator, and showed how to construct stationary, locally stationary kernels as well as some examples of non-stationary kernels. In particular, we introduced the Gibbs kernel, a Gaussian nonstationary kernel. We have shown that the understanding of the initial growth phase of turbulence is of primordial importance to give precise estimates of the SGWB for LISA. We plan to complete our findings by providing analytical fits and scaling laws for the SGWB spectrum, as well as validating them with the predictions on the GW signal from numerical simulations.
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 11 Figure 1.1: Structure for this part of the manuscript.

Figure 1 . 2 :

 12 Figure 1.2: Left hand side, Mexican hat potential with a S 1 vacuum manifold. Right hand side, the field configuration for a vortex string. The size of the arrow indicates the expectation value of the order parameter. At the centre of the vortex, the field is necessarily at the top of the Mexican hat potential.

Figure 1 . 3 :

 13 Figure 1.3: Gravitational lensing by a cosmic string. The metric around the string is a cone with a deficit angle ∆ = 8πGµ. The observer sees two images S 1 and S 2 of the same source.

Figure 1 . 4 :

 14 Figure 1.4: Two cosmic string exchange partners when they collide. If a cosmic string intersects itself, it produces a loop.

Figure 1 . 5 :

 15 Figure 1.5: Cusps may form periodically on the string and travel instantly at the speed of light in the NG limit. The emission of gravitational waves is concentrated in a localized beam.

Figure 1 . 6 :

 16 Figure 1.6: Kinks travel along the string at the speed of light. They emit gravitational waves in a localized beam whose direction changes during the propagation of the kink.
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 26 If the two curves intersect on the Kibble sphere a (ζ a ) = b (ζ b ), then Ẋ2 = 1 and this happens periodically whenever 2σ = -ζ a + ζ b + n and 2t = ζ a + ζ b + n for n ∈ Z.
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  r = 0.200 +0.07 -0.10 , χ m = 0.295 +0.03 -0.04 .

Figure 2 . 1 :

 21 Figure 2.1: Cosmic string SGWB curves (all in red) near various relevant values of Gµ. The dashed orange curve is the EPTA sensitivity, and the darkest red curve just below is for Gµ = 10 -10 .The dash-dotted dark orange curve is the (projected) SKA sensitivity, and the dark red curve just below is for Gµ = 10 -13 . The dotted black curve is the LISA PLS; the red curve whose peak passes through it, and the light red curve just below, are for Gµ = 10 -15 and 10 -17 respectively. The P n are inferred from simulation[START_REF] Jose | Stochastic Gravitational Wave Background from Smoothed Cosmic String Loops[END_REF], and the loop number density is from Model II.

  n -43 using Model III
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 22 Figure 2.2: Idem as Fig. 2.1, but with P n ∝ n -4/3 and using the loop number density from Model III [123].

Figure 2 . 3 :

 23 Figure 2.3: Examples of spectra for several values of Gµ and α = 10 -1 using both the full VOS solution (with VOS superscript) and assuming the network is always in scaling through Eqs. (2.27,2.28) (with scaling superscript). The gray area indicates LISA sensitivity.
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 25 Figure 2.5: Examples of spectra with Gµ = 10 -11 in standard cosmology (black solid line) and several spectra in cosmological evolution with ∆g * = 100 new degrees of freedom annihilating at at the range of temperatures of interest in LISA. The gray area indicates LISA sensitivity.
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 26 Figure 2.6: Examples of spectra with Gµ = 10 -11 in standard cosmology (black solid line) and several spectra in cosmological evolution with a period of early matter domination as well as kination ending in the range of temperatures of interest in LISA. The black dashed line indicates LISA sensitivity.
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 27 Figure 2.7: A comparison of the LISA sensitivity curve to the SGWB predicted by all three models using Gµ = 10 -17 , P n ∝ n -4/3 . Models I and II are effectively identical in this regime, due to αΓGµ. We therefore see that we expect that LISA could only constrain string tensions higher than Gµ ≈ 10 -17 .
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 8 From Eqs.(3.3) and (3.8), the Nambu-Goto simulations of Ref.[START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF] therefore give χ r = 0.200 +0.07 -0.10 , χ m = 0.295 +0.03 -0.04 ,
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 11 Combining Eqs. (3.10) and(3.11), and working in terms of the variables (γ, t) and n ≡ dn/d given in Eq. (3.2), one obtains the two-dimensional Boltzmann equation

Figure 3 . 1 :

 31 Figure 3.1: Sketch of possible loop production function shapes under the gravitational backreaction length scale γ c ≡ c /t (logarithmic units), namely P(γ ≤ γ c , t) = c c γ 2χc-3where the constant c c is chosen such that P is continuous at γ = γ c . According to Ref.[START_REF] Polchinski | Cosmic String Structure at the Gravitational Radiation Scale[END_REF], minimal gravitational backreaction effects correspond to χ c = 1 and we take this value as a motivated lower bound. The larger the value of χ c , the sharper the cut is.

) with χ c > 1 .. ( 3 . 23 )

 1323 Continuity of the loop production function at γ = γ c imposes c c = c γ 2(χ-χc) c The scaling function S(γ) is completely determined by Eqs. (3.20) and (3.22) and reads
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 32 Figure 3.2: Scaling loop distribution in the radiation and matter era for > 0, which corresponds to χ < (3ν -1)/2. The values for γ d and γ c are illustrative only.

Figure 3 . 3 :

 33 Figure 3.3: Growing loop distribution generated by a super-critical loop production function having χ = 0.45 during the radiation era. The string tension has been set to Gµ = 10 -7 and the initial conditions are arbitrarily set at z ini = 10 18 with N ini ( ) = 0 and c = 0.14. At redshift z = 10 7 , the change of shape associated with gravitational wave backreaction becomes washed out by the number loops which diverges with time.

Figure 3 . 4 :

 34 Figure 3.4: Loop number density distribution at various redshifts for a critical loop production function having χ r = χ crit = 0.25. The network is assumed to be formed at z ini = 10 18 and c = 0.03. At redshift z = 10 17 , the loop distribution is not yet fully relaxed from the initial conditions. For later redshifts, z < 10 15 , the non-scaling logarithmic divergence becomes clearly visible for all loops larger than the gravitational wave emission scale, γ ≥ γ d . The smaller ones, having γ < γ d , remain in a transient scaling for most of the cosmological evolution, until the nonscaling behaviour takes over (see text).
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 35 Figure 3.5: Difference between loop distributions in the radiation era generated by a Dirac distribution LPF (green lower curve) and a super-critical, IR-regularized, Polchinski-Rocha one (purple top curve). Given a super-critical power-law loop production function, one can reproduce the large scale behaviour of the loop distribution with a Dirac distribution for the loop production function (see Section 3.2.2). Doing so, one loses the small-scale behaviour of the loop distribution. For illustration purposes, we have chosen Gµ = 10 -7 , c 0.25 and γ ∞ = 0.1 for the super-critical LPF and c 5.7 for the Dirac distribution.
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 41 Figure 4.1: Normalization of the loop production function.The boundary of the blue region is given by the "one-scale energy balance". The green region is given by measurements in Ref.[START_REF] Ringeval | Cosmological Evolution of Cosmic String Loops[END_REF]. The red line shows the set of parameters giving order unity loops per Hubble radius, see Section 4.2.4. The blue dot corresponds to the parameters of the BOS model, and the orange dot to those of the LRS model.
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 42 Figure 4.2: The decomposition of the LND into two populations, the SLND and the EPSL for χ = 0.2 and Gµ = 10 -13 in the radiation era. The infrared cutoff is set to γ ∞ = 0.1.

Figure 4 . 3 :

 43 Figure 4.3: Impact of the extra population of small loops onto the SGWB in the parameter space χ r , χ m for Gµ = 10 -13 . In the blue region, the high frequency plateau for Ω GW is dominated by the extra population of small loops produced during radiation era. In the red region, the spectrum presents a peak around H 0 γ (m) c -1

( a )

 a Gµ = 10 -13 , χr = 0.5, χm = 0.655.10 -15 10 -12 10 -9 10 -6 10 -Gµ = 10 -13 , χr = 0.2, χm = 0.295.10 -15 10 -12 10 -9 10 -6 10 -Gµ = 10 -13 , χr = 0.45, χm = 0.295.10 -15 10 -12 10 -9 10 -6 10 -Gµ = 10 -13 , χr = 0.2, χm = 0.45.
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 44 Figure 4.4: Four different classes of SGWB.

  LIGO/Virgo, sensitivity of ΩGW = 10 -7 taken at f = 20 Hz. LIGO/Virgo constraints on Gµ at χm = 0.295.The orange region is excluded giving non-convex constraints on Gµ for a given model. PTA, sensitivity of ΩGW = 10 -12 taken at f = 2 × 10 -9 Hz. LISA, sensitivity of ΩGW = 10 -13 taken at f = 10 -2 Hz.
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 45 Figure 4.5: Detection surface for the three types of GW detectors in the (χ r , χ m ) parameter space. The color scale gives the upper bound on Gµ. Note that the detection surface is folded for LIGO/Virgo explaining why constraints on Gµ jump several orders of magnitude in the lower left corner. Fig. 4.5b is a slice at constant χ m .
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 51 Figure 5.1: Predictions of the gravitational-wave energy density spectra using different models for the loop distribution function n(γ, z) and for two values of the number of kinks per loop oscillation N k , 1 and 100. The string tension Gµ is fixed to 10 -8 . Top-left: model A, N k = 100. Top-right: model B, N k = 100. Bottom-left: model C-1, N k = 1. Bottom-right: model C-1, N k = 100. For model C-1, we use the following model parameters (see Appendix): χ rad = 0.45, χ mat = 0.295,c rad = 0.15, c mat = 0.019; the subscripts refer to the radiation and matter eras, respectively. We also show the energy density spectra of the three different components and 2-σ power-law integrated (PI) curves[START_REF] Thrane | Sensitivity Curves for Searches for Gravitational-Wave Backgrounds[END_REF] for the O3 isotropic stochastic search[START_REF] Abbott | Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO's and Advanced Virgo's Third Observing Run[END_REF], and projections for the HLV network at design sensitivity, and the A+ detectors[START_REF] Abbott | Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA[END_REF].
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 52 Figure 5.2: Left panel: cumulative distribution of cosmic string burst candidate events produced by cusps (top), kinks (middle) and kink-kink collisions (bottom). The expected distributions from background noise are represented by ±1σ shaded areas. Right panel: the detection efficiency is measured using simulated signals, as a function of the signal amplitude for cusps, kinks and kinkkink collisions. Note that the horizontal axis measures different amplitude quantities, A i , for the three types of signals, parametrized by the waveform frequency power law q i .
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 53 Figure 5.3: Exclusion regions at 95% C.L. on the cosmic string parameter space, (N k , Gµ), derived from the stochastc search (pink), the burst search (turquoise) and both searches. Four models are considered to describe the distribution of cosmic string loops: model A (top-left), model B (topright), model C-1 (bottom-left) and model C-2 (bottom-right). Note that the stochastic result combines the data of O1, O2 and O3 while the burst search only includes O3 data. We also report limits from other experiments: pulsar timing arrays (PTA)[START_REF] Paul | Gravitational-Wave Cosmology across 29 Decades in Frequency[END_REF][START_REF]The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries[END_REF], cosmic microwave background (CMB)[START_REF] Pagano | New Constraints on Primordial Gravitational Waves from Planck 2015[END_REF] and Big Bang nucleosynthesis[START_REF] Cyburt | New BBN Limits on Physics beyond the Standard Model from 4 He[END_REF]. The notch in the SWGB constraint for Model C-1 is explained in Appendix 5.D.
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 54 Figure 5.4: The gravitational-wave spectra for model C-1 for different choices of Gµ where N k is fixed to be 90. The gray band corresponds to the frequency range (20 -86) Hz used in the analysis.

  by a piecewise constant function whose value changes at the QCD phase transition (T = 200MeV), and at electron-positron annihilation (T = 200KeV):
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 61 Figure 6.1: Loop distribution for kinks in the radiation era, with α = 0.1 and γ d = 10 -6 , and at several different epochs. Black solid line: γ k = 0 (t → ∞), the NG loop distribution. Red dash line: γ k (t) = 10 -5 γ d (corresponding to t = 10 5 t k ). Blue dot-dash line γ k (t) = γ d (corresponding to t = t k ). Green dotted line γ k (t) = 10 4 γ d (corresponding t = 10 -4 t k ).

  Fig 6.1), N scales as γ -(4-3ν)/2 k which decreases with increasing γ k . The equality γ d = γ k (t) defines a characteristic time t k by
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 63 Figure 6.3: SGWB including the backreaction of particle emission on the loop distribution. LH panel: kinks on loops, RH panel: cusps on loop. The spectra are cutoff at high frequency, as indicated by the black vertical lines. Gµ ranges from 10 -17 (lower curve), through 10 -15 , 10 -13 ,10 -11 , 10 -9 and 10 -7 (upper curve). Also plotted are the power-law integrated sensitivity curves from SKA (pink dashed)[START_REF] Janssen | Gravitational Wave Astronomy with the SKA[END_REF], LISA (yellow dashed)[START_REF] Caprini | Reconstructing the Spectral Shape of a Stochastic Gravitational Wave Background with LISA[END_REF], adv-LIGO (grey dashed)[START_REF] Abbott | Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run[END_REF] and Einstein Telescope (blue dashed)[START_REF] Punturo | The Einstein Telescope: A Third-Generation Gravitational Wave Observatory[END_REF][START_REF] Hild | Sensitivity Studies for Third-Generation Gravitational Wave Observatories[END_REF].
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 1010364 Figure 6.4: Contribution of cosmic strings to the Diffuse Gamma-Ray Background. The (blue) horizontal line is the experimental constraint from Fermi-LAT, while the (orange) line is the exact numerical calculation for kinks (LH panel) and cusps (RH panel). On either side of the maxima, the slope and amplitude can be estimated using the results of previous sections. Kinks: for low Gµ the slope is 9/8 (dashed-green line), and for high Gµ it depends on µ -2 log(µ) (dashed-red line). Cusps: For low Gµ the slope is 13/12 (dashed-green line), and for high Gµ it is -5/4 (dashed-red line). The slightly different amplitude between the numerical calculation and the analytical one is because the latter assumes a matter dominated universe, and hence neglects effects of late time acceleration.
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 71 Figure 7.1: At time t ini and temperature T ini a network of strings forms with an initial distribution.At the later time t cur the strings become current-carrying, and vortons can form. At all times, loop can be produced from long strings and larger loops with a given loop production function.

(7. 40 )

 40 We again integrate the Dirac delta distribution by means of the change of variable ỹ = N -αt λ ,
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 66672 Figure 7.2: Diagram ( , t) for the different types loops/vortons. The left panel is for Gµ = 10 -16 and the right panel for Gµ = 10 -19 . The dark-dashed vertical line is the time of condensation, when strings become superconducting. The diagonal dark line represents = αt (with α = 0.1) the size at which loops are produced. The orange horizontal line shows the value of λ.
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 1973 Figure 7.3: The left panel shows the density parameter Ω minrel (today) from the population of irreducible relaxed vortons, i.e. we have assumed that there is no loop at the string forming time (C ini = 0). The right panel shows the density parameter Ω prod of produced vortons derived analytically in Eq.(7.58). The thick green line shows the value Ω dm = 0.3, typical of the current dark matter density parameter. The white patches on these figures correspond to regions of the parameter space where no vortons are present: all loops there are either doomed or proto-vortons. Abundances of these two populations of vortons have not been derived before and constitute an irreducible contribution.

  Figure 7.4: The upper left-hand panel shows the density parameter of relaxed vortons coming only from loops present at the string-forming phase transition, when starting from a Vachaspati-Vilenkin distribution at t = t ini . This is the population derived in Ref.[START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF], that we recover by setting C = 0 in our equations. The upper right-hand panel shows the numerically evaluated density parameter of the irreducible relaxed vortons Ω min rel (to be compared to our analytic estimation in the left panel of Fig.7.3). The lower left-hand panel shows the density parameter Ω rel (today) from the population of all relaxed vortons (the sum of the upper left and right panels). Thermal history effects are visible on the upper boundary towards the minimum possible values of 1/R and Gµ. The lower right-hand panel shows the density parameter Ω prod today of produced vortons derived numerically, and is indistinguishable from our analytic estimation of Eq. (7.58) (see right-hand panel of Fig.7.3). The thick green line corresponds to all density parameter values in the range [0.2, 0.4].
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 75 Figure 7.4: The upper left-hand panel shows the density parameter of relaxed vortons coming only from loops present at the string-forming phase transition, when starting from a Vachaspati-Vilenkin distribution at t = t ini . This is the population derived in Ref.[START_REF] Robert | Cosmic Vortons and Particle Physics Constraints[END_REF], that we recover by setting C = 0 in our equations. The upper right-hand panel shows the numerically evaluated density parameter of the irreducible relaxed vortons Ω min rel (to be compared to our analytic estimation in the left panel of Fig.7.3). The lower left-hand panel shows the density parameter Ω rel (today) from the population of all relaxed vortons (the sum of the upper left and right panels). Thermal history effects are visible on the upper boundary towards the minimum possible values of 1/R and Gµ. The lower right-hand panel shows the density parameter Ω prod today of produced vortons derived numerically, and is indistinguishable from our analytic estimation of Eq. (7.58) (see right-hand panel of Fig.7.3). The thick green line corresponds to all density parameter values in the range [0.2, 0.4].
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 81 Figure 8.1: Constraints on f (M ) for a monochromatic mass function. Evaporation constraints (red) excludes PBHs slightly above the critical mass M = 5 × 10 14 . Its enveloppe is determined by bounds from the diffuse Extra Galactic Background (EGB), Voyager positron flux (V) and the 511KeV annihilation line in the Galactic Centre (GC). Constraints on the Galactic γ-ray background have not been included in the figure as it is very sensitive to the width of the PBH mass function.Constraints from lensing (blue) include the microlensing of M31 by the high-cadence Subaru HSC experiment (HSC), of the Magellanic clouds by EROS and MACHO (EM) and of the galactic bulge by OGLE (O). Microlensing of type 1a supernovae (SN) is also reported on the figure. Dynamical effects (green) include limits from the existence of wide binaries (WB), disk heating (DH) and the CMB dipole (CMB). Accretion limits include -in the early Universe -the observations of the CMB distortions (orange, PA) and -in the present day -of X-ray compact objects in the galaxy (light blue, XB). Constraints from gravitational waves (gray, GW) are also reported. Figure taken from Ref.[START_REF] Carr | Primordial Black Holes as Dark Matter: Recent Developments[END_REF].
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 83 Figure 8.3: This parametrically forced linear oscillator is described by the Mathieu equation (8.8) in the limit of small angles.
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 84 Figure 8.4: Stability diagram for the Mathieu equation (8.8). The periodic solutions µ = 0 (black solid lines) delimit the different instability bands starting at A = 1, 4 and 9; each with a different color. In the empty/white regions, the solutions are stable. The multi-scale analysis of Section 8.4 concerns the bottom of the orange region at A ∼ 1. The rest of the diagram has been determined numerically.
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 91 Figure 9.1: Evolution of the physical scales appearing in Eq. (9.6), with time parametrised by the number of e-fold N = ln a (counted from the end of inflation). The blue line represents the Hubble radius 1/H, the orange line the new length scale 1/ √ 3Hm and the dotted lines the physical wavelengths of modes of interest, which may enter the instability band after inflation, during the oscillatory phase. Here the Klein-Gordon equation for the inflaton field has been solved for the quadratic potential V (φ) = m 2 φ 2 /2, where m = 10 -6 M pl .

0 P

 0 (9.22) when an absorbing boundary at δ R = δ c (S) is enforced, starting from δ R = 0 at S = 0. It represents realizations of the Langevin equation (9.22) that, at time S, have not yet crossed out the absorbing boundary. Finally, P FPT (S) denotes the probability density associated to the time of first crossing of the boundary δ c (R), starting from δ R = 0 at S = 0. At a given "time" S, any realization of the Langevin equation has either crossed out the absorbing boundary at a previous time s < S, or still contributes to the distribution P , so one can write 1 = S FPT (s)ds + δc(S) -∞ P (δ R , S)dδ R . (9.26)

  FPT (S) =δ c (S)P free [δ c (S), S] + δ c (S)S 0 dsP FPT (s)P free [δ c (S)δ c (s), Ss] free (δ R , S) + δc(S) -∞ dδ R P FPT (S)P free [δ Rδ c (S)free [δ Rδ c (s), Ss] . (9.28)This expression contains 5 terms. The third term can be computed explicitly by making use of Eq. (9.25), and so can the fifth term (where only the integral over s remains). The fourth term features P free [δ Rδ c , 0], which is nothing but δ D [δ Rδ c , 0], and the integral over δ R can also be easily performed. These give rise toP FPT (S) = δ c (S) S -2δc (S) P free [δ c (S), S] + S 0 ds 2δ c (S) -δ c (S)δ c (s) Ss P free [δ c (S)δ c (s), Ss] P FPT (s) .

  , at time S, lie at the position δ R = δ c (S). At time S, those realizations have necessarily already crossed the boundary, so one can write P free [δ c (S), S] = S 0 dsP free [δ c (S)δ c (s), Ss] P FPT (s). (9.30) Multiplying both hands of this equation by a generic function K(S), and plugging the result into Eq. (9.29), one obtains P FPT (S) = δ c (S) S -2δ c (S) + K(S) P free [δ c (S), S] + S 0 ds 2δ c (S) -δ c (S)δ c (s) Ss -K(S) P free [δ c (S)δ c (s), Ss] P FPT (s) .

(9. 31 )

 31 Let us stress that this relation is valid for any function K(S). In particular, by setting K(S) = δ c (S), one gets rid of the above-mentioned singularity, leading toP FPT (S) = δ c (S) S δ c (S) P free [δ c (S), S] + S 0 ds δ c (S) -δ c (S)δ c (s) Ss P free [δ c (S)δ c(s), Ss] P FPT (s) .

9 .

 9 A Numerical solution of the Volterra equation In Section 9.3.3 we have shown that the first-crossing-time distribution associated to the Langevin equation (9.22) satisfies a family of Volterra integral equation, one of them being of the form P FPT (S) = δ c (S) S δ c (S) P free [δ c (S), S]

58 )

 58 X n = δ c (n∆s) n∆s δ c (n∆s) P free [δ c (n∆s), n∆s] (9.59) M n m = δ c (n∆s) -δ c (n∆s)δ c (m∆s) (nm)∆s P free [δ c (n∆s)δ c (m∆s), (nm)∆s] . (9.60)
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 92 Figure 9.2: Bardeen potential Φ k rescaled by the curvature perturbation ζ k during the last efolds of inflation and the first e-folds of the oscillatory phase, in the same situation as the one displayed in Fig.9.1, for a scale k that is sufficiently far outside the Hubble radius such that ζ k can be taken as constant. The blue line stands for the full numerical solution of Eq. (9.38), seen as a differential equation for Φ k (t), where w(t) and H(t) are extracted from Fig.9.1. The red line stands for the approximation (9.43), Φ k /ζ k = 3/5, obtained as the late-time solution of Eq. (9.38) when setting w = 0 and H = 2/(3t), and towards which the full numerical result asymptotes after a few oscillations. The orange line stands for Eq. (9.38) where we neglected Φk /H with respect to Φ k . This approximation is well justified on super-Hubble scales during inflation, since w is almost constant there, but fails during the subsequent oscillatory phase where w vanishes on average but otherwise undergoes large oscillations.
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 93 Figure 9.3: Example of Langevin trajectories for the density contrast evaluated on comoving slices at the end of inflation, and coarse-grained at the scale R, for H end = 10 -8 M pl and H Γ = 10 -25 M pl . The (quasi) horizontal black dashed line shows the collapse criterion (9.45). In the right panel, we isolate one realization and the vertical dashed line denotes the first crossing "time" (i.e. scale) of the critical threshold.
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 94 Figure 9.4: Mass fraction β of primordial black holes for H end = 10 -8 M pl and H Γ = 10 -25 M pl , as a function of the mass M in grams. The vertical black bars stand for the distribution of first crossing times obtained from 10 6 simulated realizations of the Langevin equation (9.22), binned into 1000 logarithmically spaced values of R. The size of the bars correspond to 5σ estimates of the statistical error by jackknife resampling. The red line corresponds to numerically solving the Volterra equation (9.32), using the method described in Appendix 9.A. The blue line displays the analytical approximation developed in Section 9.4.4, which provides a good fit to the full numerical. The vertical green line denotes the mass at which β peaks, as estimated from Eq. (9.55), and the grey shaded area stands for the 1σ deviation of ln(M ) according to the distribution β(M ), centred on its mean value.
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 95 Figure 9.5: Total fraction of the universe comprised in PBHs, Ω PBH , as a function of ρ end , the energy density at the end of inflation, and ρ Γ , the energy density at the end of the instability phase. On the left panel, we fix ρ end = 10 -12 M 4 pl and let ρ Γ vary. The solid red curve is the full numerical result obtained in the excursion-set approach. The dashed green line corresponds to the Press-Schechter result with the additional factor 2, which becomes exact in the limit of a scale-invariant threshold, see Section 9.3.4. The dashed blue line corresponds to the analytical approximation (9.52). On the right panel, the full parameter space is explored (where ρ Γ < ρ end since the oscillatory phase occurs after inflation). The colour encodes the value of Ω PBH , and the transition from tiny values to values close to one is very abrupt. The dashed blue line stands for the analytical estimate(9.53) for the location of this transition.

  M ) in g (a) Mean PBH mass.
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 2 b) Dispersion of the PBH masses.
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 96 Figure 9.6: Typical masses of the PBHs produced in metric preheating. The left panel shows the average mass, computed from the mass fraction distribution. In the white region the abundance of PBHs is too small to be numerically resolved, hence the average mass cannot be computed. On the right panel, we show the standard deviation of ln(M ), which describes the typical width of the mass fraction distribution.

  Evolution of ΩPBH at ρ end = 10 -12 M 4 pl . ΩPBH as a function of ρ end and ρΓ.
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 2 d) Dispersion of the PBH masses.
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 9798 Figure 9.7: PBH mass fraction if the formation criterion is interpreted in the Newtonian slicing.

= 2π v 2 dr r 3 Γ 6 + O k 4 . ( 10 . 30 )v 2 k 2 ∞ 0 dr r 4 Γ

 3641030204 ij (r, τ, ζ) = v i (x, τ )v j (x + r, ζ) v 2≡ Σ(r, τ, ζ)(δ ijri rj ) + Γ(r, τ, ζ)r i rj .(10.25)The functions Σ and Γ represent respectively the transverse and longitudinal correlation functions.Since the velocity field is divergence-free, ∂b ij /∂r i = 0 and the correlation functions are related throughΓ (r) = 2 r [Σ(r) -Γ(r)]. (10.26)The properties of statistical homogeneity, isotropy and that ∇ • v = 0 imply that in Fourier spacev i (k, τ )v * j (q, ζ) ≡ (2π) 3 δ ij -ki kj δ(kq)P v (k, τ, ζ). (10.27)This equation defines for the velocity spectral density P v . It can be expressed in terms of the correlation functions Γ and Σ by matching the Fourier transform of Eq. (10.27) and the trace of Eq. (10.25):P v (k, τ, ζ) = v 2 d 3 r e ik•r Σ(r, τ, ζ) + 1 2 Γ(r, τ, ζ) . (10.28)One can rewrite the spectral density in terms of spherical coordinates using Eq. (10.26)P v (k, τ, ζ) = 4π v 2 r 2 dr Σ(r(r) + 3r 2 Γ(r) sin(kr) kr .(10.29)We can understand the large scale behaviour of the spectral density by performing an expansion in k 1, to findP v (k, τ, ζ) = 2π v 2 dr r 3 Γ (r) + 3r 2 Γ(r) 1 -(kr) 2It is legitimate to assume that the correlation function (10.25) has a compact support and vanishes outside the horizon, by causality. As a consequence, the leading order of Eq. (10.30) is r 3 Γ ∞ 0 = 0, and the spectral density on large scales is given byP v (k → 0) = 2π 3 (r) + O k 4 . (10.31) 

  r, τ, τ ) = π 4 v 2 k -1 P v (k, τ, τ ) d ln k ,(10.34)

. 37 )

 37 Since V is locally uniform, the evolution of modes with different wavenumbers k is decoupled. The turbulent velocity field can be explicitly integrated: from Eq. (10.37) we findv(k, t + ∆t) = v(k, t) exp -i t+∆t t k • V(s) ds . (10.38) 
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 101 Figure 10.1: Extension of the sweeping velocity at scales larger than the integral scale, following the model given in Eq.(10.45). It interpolates smoothly between v 2 /3 in the inertial range as in Eq. (10.44) and 2 v 2 /15 on large scales. These limits are shown with the black dashed lines.

  q, τ, τ ) d ln q ,(10.45) in which the function h(x) is given by function h(x) of Refs.[START_REF] Kaneda | Lagrangian Velocity Autocorrelation in Isotropic Turbulence[END_REF][START_REF] Kaneda | Lagrangian and Eulerian Time Correlations in Turbulence[END_REF] has a factor of 2 difference due to our definition of the power spectrum in Eq.(10.32). As shown in Fig.10.1, v sw (k, τ ) provides a continuous interpolation from large to small scales, reducing to v 2 (τ ) /3 in the inertial range, and going to 2 v 2 (τ ) /15 on large scales. Although we solve the integral (10.45) numerically, we give below an analytical fit to the sweeping velocity, and compare with the numerical result in Fig.10.1

10

 10 

  .3. There, we plot the unequal time correlationR(k, τ, ζ) ≡ P v (k, τ, ζ) P v (k, τ, τ ) P v (k, ζ, ζ) v 2 sw (k, τ, τ ) + v 2 sw (k, ζ, ζ) 2v sw (k, τ, τ )v sw (k, ζ, ζ)(10.49) as a function of v sweep (k, τ, ζ) k |τ -ζ| for different values of the wave-number k, both larger and smaller than the wave-number corresponding to the peak of the spectrum at the initial time of the simulation, k peak 0.75/ξ(τ ini ). The second term in the definition of R(k, τ, ζ

v 2 (

 2 t) = P v (k, t) d ln k = ξ -1-β φ(kξ) d ln k ∝ ξ -1-β ,(10.56)meaning that the quantity v 2 ξ 1+β is a constant along the evolution, and
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 104 Figure 10.4: Trajectory of the instantaneous exponents (p, q) in simulation (A). Time is represented by the color scheme: early times are shown with darker colors and late times with brighter colors. The dark solid line represents Eq. (10.60). The colored dashed lines show Eq. (10.61) for various choices of β.
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 10521064107 Figure 10.5: Evolution of the instantaneous kinetic energy and integral scale exponents (p, q) as a function of time in simulation (A). The dash-dotted lines show the values expected for p and q if β = 3.
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 33108 Figure 10.8: Two time diagram for the evolution of turbulence in terms of τ and ζ. The injection of kinetic energy starts at τ ini and turbulence develops on a timescale given by the eddy turnover time τ * ξ in region 1. In region 2, the turbulence is freely decaying. In principle, the growth and free decay phases are correlated: regions 3 and 4 also contribute to the production of GWs.
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 109 Figure 10.9: Gravitational wave power spectrum in a scenario of an instantaneous generation (dotted lines), a C 0 growth phase (dashed lines) and a C 1 growth phase. The left panel shows H * ξ * = 10 -3 and v rms, * = 0.1, the middle panel H * ξ * = 10 -2 and v rms, * = 0.2 and the right panel H * ξ * = 10 -1 and v rms, * = 0.6.

  A. More precisely, we factor out the relativistic degrees of freedom and calculate d Ωgw d ln k defined as dΩ gw d ln k η0

2 H 100 Figure 10 . 10 :

 21001010 Figure 10.10: Gravitational wave power spectrum for decaying turbulence in a scenario of instantaneous generation. Each panel displays a different value for the initial integral scale H * ξ * , and v rms, * = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7. Dark dashed lines have been added to show a k 1 slope in the intermediate range and a k -7/3 in the ultraviolet.

2 H 100 Figure 10 . 11 :

 21001011 Figure 10.11: Gravitational wave power spectrum for decaying turbulence in a scenario of a C 1 growth phase. Each panel displays a different value for the initial integral scale H * ξ * , and v rms, * = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7.

. 101 ) 2 √ 1 -

 10121 Note the symmetry α → -α. The volume element is nowd 3 q = dφ k dM M M 3/2 dα (10.102)with M ∈]0, 1] and α ∈ [0, 1].
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Table 4 .

 4 1: SLND -sub-critical case. For clarity, we have introduced Q r

Table 4 . 2
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: SLND -super-critical case. For clarity, Qr

Table 4 .

 4 3: EPSL. For clarity, Qr = 2c r Ω rad Q and Qm = 27c m Ω mat Q 16(1χ m ).

Table 4 . 4
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: Cosmological parameters from Ref.

[START_REF] Ade | Planck 2015 Results. XIII. Cosmological Parameters[END_REF]

.

Table 5 .

 5 .1. 1: Table of quantities appearing in the chapter.

	G	Gravitational constant
	z	redshift
	µ	string tension
	N c	average number of cusps per loop oscillation
	N k	number of kinks
	Γ d	dimensionless decay constant of cosmic strings
	g 1 , g 2	dimensionless prefactors for the GW amplitude and beaming angle
		cosmic string loop length
	γ ≡ /t θ m	loop size parameter beaming angle for GW emission
	P gw	power of GW emission of cosmic strings
	R i	GW burst rate
	n( , t)	number density of cosmic string loops with length at t
	Ω GW (f )	present fractional GW energy density spectrum
	likelihood used in the Bayesian analysis p(parameters|I) probability density distribution of "parameters" given prior information "I" L

  . Since δ c (S) is a decreasing function of S in the regime of interest, the term P free [δ c (S), S] ∼ e -δ 2 c (S)/S does not lead to exponential suppression only for large enough values of S such that S

	that δ c /S hence Eq. (9.32) reduces to P FPT (S) 1/ √ S. Since Eq. (9.34) states that 1/	√	∆S	δ 2 c (S), which implies |δ c |, this entails that δ c /S |δ c |,

  2 pl ), this allows one to approximate the power spectrum (9.49) as P ζ 3H 2 end /(24π 2 M 2 pl )[1 -2 ln(k/a end H end )] 2 . Since we have made use of the slow-roll approximation, which breaks down when inflation ends, this formula is in fact accurate only for scales that emerge sufficiently early before the end of inflation, k a end H end , and in this regime, Eq. (9.47) gives rise to

  2 pl /H end in Eq.(9.50), giving rise to S max = P ζ (k end )/10. Making also use of Eq.(9.48), one obtains This formula is displayed in the left panel of Fig.9.5 with the dashed blue line, and is found to provide a good fit to the full numerical result. Furthermore, it allows one to identify the region of parameter space in which the universe is dominated by PBHs at the end of the instability phase, Ω PBH > 1/2, which reduces to

	ρ ρ 1/4 1/4 Γ end	< 8 × 10 -6	1/4 end 10 16 GeV ρ	3/2	.			(9.53)
	Ω PBH = erfc	5 P ζ (k end )	3π 2	H Γ H end	2/3	.	(9.52)

Table 10 .

 10 1: List of the simulations used in this work. The input values for the initial power spectrum

	Lattice size 4096 3	v rms, * 0.1	ξ * / dx 32	Duration 71	τ 0 for UETCs -	Label (A)
	2048 3	0.1	79	4.5	0.36	(B)
	2048 3	0.1	8.5	92	4.6	(C)

  τ )] 17/6 .(10.35)The coefficients A and B are chosen to ensure that the definitions of the kinetic energy and the integral scale of Eqs (10.32) and (10.34) are consistent:

	A =	55Γ(1/3) 12 √ πΓ(17/6)	≈ 4.02, B =	8Γ(17/6) 3 √ πΓ(1/3)	≈ 0.97.	(10.36)

  t)v * i (k, t) exp -(k ∆t v sw (t, ∆t)) 2 ,(10.43)where v sw (t) is the sweeping velocity and takes the form[START_REF] He | On the computation of space-time correlations by large-eddy simulation[END_REF][START_REF] Dong | A Study of Time Correlations in Lattice Boltzmann-Based Large-Eddy Simulation of Isotropic Turbulence[END_REF] 

	v 2 sw (t, ∆t) =	1 3∆t 2	t	t+∆t	V (s)V (s ) ds ds .	(10.44)

  t 1 , t 2 ) = K(t 2 , t 1 ) (10.70)K(t 1 , t 2 ) ≤ K(t 1 , t 1 ), K(t 2 , t 2 ).(10.71)However, these conditions are not sufficient. Indeed, for any well-behaved function f , one can define a stochastic variableX = dt f (t)φ(t),(10.72)whose variance must be positiveX 2 = dt 1 dt 2 f (t 1 )f (t 2 ) φ(t 1 )φ(t 2 ) = dt 1 dt 2 f (t 1 )f (t 2 )K(t 1 , t 2 ) ≥ 0. (10.73) 

  t 1 , t 2 ) + a 2 K(t 1 , t 2 ) (10.74)K(t 1 , t 2 ) = K 1 (t 1 , t 2 ) × K 2 (t 1 , t 2 ).(10.75)Maybe the simplest example of a positive kernel is the separable kernelK(t 1 , t 2 ) = g(t 1 )g(t 2 ) (10.76)since it factorizes the Mercer condition into a squareh 2 = dt 1 dt 2 f (t 1 )f (t 2 )K(t 1 , t 2 ) = dt f (t)g(t)

	2	
	≥ 0.	(10.77)

  t 1 , t 2 ) = g(t 1 , u)g(t 2 , u) du(10.82) where g(t, u) is a two-valued function. It is easy to show that it satisfies the Mercer condition of Eq (10.73)dt 1 dt 2 f (t 1 )f (t 2 )K(t 1 , t 2 ) = dt 1 dt 2 f (t 1 )f (t 2 ) g(t 1 , u)g(t 2 , u) du (10.83)Note that we have designed this kernel so that K(t, t) = 1. In terms of our unequal-time velocity power spectrum, this yieldsP v (k, τ, η) = P v (k, τ, τ )P v (k, η, η) × 2v sw (k, τ, τ )v sw (k, η, η) v 2 sw (k, τ, τ ) + v 2 sw (k, η, η) exp -k 2 (τη) 2

	in which Σ is a variance dependent on time. The kernel then reads
	K(t 1 , t 2 ) =		1 √ π[Σ(t 1 )Σ(t 2 )] 1/4 exp -2	(t 1 -u) 2 2Σ(t 1 )	-	(t 2 -u) 2 2Σ(t 2 )	du
	=	√	2	[Σ(t 1 )Σ(t 2 )] 1/4 [Σ(t 1 ) + Σ(t 2 )]	exp -	(t 1 -t 2 ) 2 2[Σ(t 1 ) + Σ(t 2 )]	.	(10.85)
									4	v 2 sw (k, τ, η)	(10.86)
								2
			= du	dt f (t)g(t, u)		≥ 0.
	Using this technique, it is possible to build a non-stationary Gaussian kernel of the type of
	Eq. (10.86) using							
	g(t, u) =	1 [2πΣ(t)] 1/4 exp -	(t -u) 2 2Σ(t)	(10.84)

  10.96) 10.[START_REF] Einstein | Über Gravitationswellen[END_REF].2 The Gravitational wave spectrumWe obtain the stochastic GW spectrum combining Eqs (10.15) and (10.95)× d 3 p p 3 q 3 1 + ( k • p) 2 1 + ( k • q) 2 cos k(ζ 2ζ 1 )P v (p, ζ 1 , ζ 2 )P v (q, ζ 1 , ζ 2 )

	10 -3 10 -12	10 -2	10 -1	10 0	10 1
			k ξ *		
		dΩ gw d ln k η0	=	π 4 k 3 3π 5 Ω 0 rad	g 0 g fin	g s,fin g s,0	4/3
							dζ 1 ζ 1	dζ 2 ζ 2	. (10.97)

Le sujet principal de cette thèse est l'étude de la cosmologie primordiale -c'est-à-dire les premiers instants de l'Univers -principalement par le prisme des détecteurs d'ondes gravitationnelles. Ce manuscrit comporte trois parties indépendantes.La première partie de cette thèse porte sur les cordes cosmiques, des défauts topologiques unidimensionnels susceptibles d'être formés lors de transitions de phase dans l'Univers primordial. Si elles étaient formées, ces reliques des premiers instants de l'Univers seraient des marqueurs des bouleversements qu'a connus notre Univers à ses débuts. C'est dans cette perspective que nous étudions l'évolution du réseau de cordes cosmiques, en particulier celle de la densité de boucles et leur émission d'ondes gravitationnelles. Nous formulons des prédictions pour la future mission LISA et mettons des contraintes sur les cordes cosmiques à partir des résultats de LIGO/Virgo/KAGRA.Dans une seconde partie, nous étudions la formation de trous noirs primordiaux à la fin de l'inflation, une période d'expansion accélérée dans l'Univers primordial. Durant cette phase dite de preheating, qui précède la formation des particules du modèle standard, l'inflaton oscillant autour du minimum de son potentiel aurait pu engendrer une instabilité de la métrique à l'origine de la formation d'une grande quantité de trous noirs primordiaux. Cette deuxième partie de la thèse est donc consacrée à l'étude de cette instabilité et à quantifier la production de trous noirs en utilisant le formalisme d'excursion-set.La troisième et dernière partie est, quant à elle, dédiée aux transitions de phase du premier ordre, en particulier durant la transition électro-faible dans des extensions du modèle standard. Durant la transition, une grande quantité d'énergie est transmise au milieu ambiant sous forme d'énergie cinétique et peut générer de la turbulence. Nous proposons dans cette partie, une modélisation de cette turbulence libre et du spectre d'ondes gravitationnelles qui en résulte.Mots clefs : ondes gravitationnelles, cosmologie primordiale, cordes cosmiques, trous noirs primordiaux, transitions de phase du premier ordre, preheating

It is not known for sure who invented the interferometer method to detect gravitational waves, possibly because the method had several precursors. See Refs.[START_REF] Thorne | Black holes and time warps: Einstein's outrageous legacy[END_REF][START_REF] Cervantes-Cota | A Brief History of Gravitational Waves[END_REF] for a discussion on the subject.

The nomenclature for confirmed GW events was initially GWYYMMDD with YY the year, MM the month and DD the day of the detection. In the last catalogue GWTC-2, the events get the UTC time of their detection added to their name. This way, they can have unique names even for two events detected on the same day, as happened three times in O3a.

The network of detectors found another binary neutron star merger in 2019, GW190425, but unfortunately could not find the associated electromagnetic counterpart[START_REF] Abbott | GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4M[END_REF].

The actual limit depends on the shape of the power spectrum and on the prior. See Ref.[START_REF] Caprini | Reconstructing the Spectral Shape of a Stochastic Gravitational Wave Background with LISA[END_REF] for a method to reconstruct the spectral shape of a SGWB. For these limits, we assume a flat spectrum for Ω GW (f ) and a log-uniform prior.

[START_REF] Abbott | GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4M[END_REF] were eventually detected in during O3a, the first half of O3. The difference with the prediction can be explained by to the more conservative signal-to-noise threshold used to perform these predictions.

See, however, Ref.[START_REF] Quashnock | Gravitational Selfinteractions of Cosmic Strings[END_REF] and more recently Ref.[START_REF] Helfer | Cosmic String Loop Collapse in Full General Relativity[END_REF] for an isolated loop.

The explanations for this continuity equation and the link with a Boltzmann equation can be found in Section 7.A

This corresponds to an intercommutation probability P = 1, which we mainly assume throughout this paper. We comment briefly on P < 1, characteristic of cosmic superstrings, in Section

2.6.2.

Here we reformulate the results presented in the original papers, in an attempt to unify our notation across the present paper.

Several other analytical models, using more than one length scale, have been developed in an attempt to provide a description of a cosmic string network including small scales[START_REF] Quashnock | Effects of Gravitational Back Reaction on Small Scale Structure of Cosmic Strings[END_REF][START_REF] Kibble | Evolution of Small Scale Structure on Cosmic Strings[END_REF][START_REF] Austin | Evolution of Cosmic String Configurations[END_REF][START_REF] Martins | Models for Small-Scale Structure of Cosmic Strings: Mathematical Formalism[END_REF]. These models can describe, in particular, the effects of gravitational radiation and gravitational backreaction. They generally contain a larger number of phenomenological parameters, and clearly the one describing the strength of gravitational backreaction cannot be calibrated with simulations (since simulations do not include gravitational backreaction). For an impact of the effect of gravitational backreaction on cosmic string dynamics, see Ref.[START_REF] Copeland | Cosmological Parameter Dependence in Local String Theories of Structure Formation[END_REF].

Note that in the radiation era, the choice = α L L is equivalent to assuming that = αt, with α = α L ξr (where ξr is given in Eq. (2.22) with ν = 1/2). In Ref.[START_REF] Jose | Large Parallel Cosmic String Simulations: New Results on Loop Production[END_REF] the length of the loops produced in radiation and matter era simulations is estimated to be, respectively, r = 0.1t 0.33Lr and m = 0.18t 0.35Lm. These values are well-described by a single value of α L (more so than by a single value of /t).

This power spectrum should be understood as a discrete set of numbers that represent the power at each mode. We take this spectrum as it is, but we should bear in mind that this may not be a good approximation at low harmonics, where the structure of the entire loop becomes important.

In the more interesting case of Abelian-Higgs lattice field theory simulations, there is unfortunately no quantification of the amplitude of this background.

Note that in order to make this comparison, one should express the result in terms of the total power emitted Γ. We give in appendix 2.A the calculation of Γ in terms of the parameters Nq, g 1 , g 2 .

Note, however, that the current Planck data puts a constraint on the total energy density of gravitational waves[START_REF] Henrot-Versille | Improved Constraint on the Primordial Gravitational-Wave Density Using Recent Cosmological Data and Its Impact on Cosmic String Models[END_REF] Ω GW h 2 d(ln f ) < 3.8 × 10 -6 . Consequently, any deviations from radiation domination with β > 4 should have had a limited duration to avoid overproduction of GWs.

Note that this has the same dependence on Γ and Gµ as Eq. (2.56) and, by setting α = 0.1 and F = 0.1, one approximately recovers the result therein.

Although this relation was fitted using a framework based on the one-scale model (in which cosmic strings are assumed to be in the linear scaling regime throughout their evolution), we have verified that it still provides a reasonably good approximation, with only small deviations, within the framework we use here.

These scenarios are not particularly well physically motivated, since one generally expects smoothing to occur on scales smaller than the gravitational backreaction scale. Nevertheless, several works have reported the existence of such tiny loops[START_REF] Vincent | Correlations in Cosmic String Networks[END_REF][START_REF] Vincent | Numerical Simulations of String Networks in the Abelian Higgs Model[END_REF].

Note however that, for tensions compatible with current CMB bounds, the SGWB spectrum "leaves" the LISA window for larger values of α, around α ∼ 10 -16 (cf. Fig.2.11).

Here, we have included the effect of the redshifting of the peculiar velocities of loops that was not taken into account in the analytical approximation for the SGWB spectrum generated by small loops in Ref.[START_REF] Sousa | Stochastic Gravitational Wave Background Generated by Cosmic String Networks: The Small-Loop Regime[END_REF].

In reality, on top of the continuous stochastic Gaussian background from cosmic strings, there can be individual bursts emitted by nearby strings or a "popcorn" discontinuous noise[START_REF] Regimbau | The Stochastic Background from Cosmic (Super)Strings: Popcorn and (Gaussian) Continuous Regimes[END_REF]; recall the discussion in Section 2.4.3. These signals due to bursts represent, in a sense, a temporal deviation from Gaussianity, that can be measured from the two-point function. However, they do not correspond to the type of non-Gaussianity that we are referring to in this subsection, as they do not form a continuous stochastic background.

Note that measurements of a 3-point function of perturbations in the CMB evade this problem.

The reason for this is that the spectrum of the SGWB from cosmic strings, shifts towards larger frequencies for small tensions, and hence "leaves behind" the frequency window accessible to PTA experiments, no matter how precise these may become. See Figs. 2.1 and 2.2.

For a critical discussion about the details behind each model, we refer the reader to the recent references[START_REF] Auclair | Cosmic String Loop Production Functions[END_REF] and[START_REF] Jose | Energy-Conservation Constraints on Cosmic String Loop Production and Distribution Functions[END_REF][START_REF] Jose | Direct Determination of Cosmic String Loop Density from Simulations[END_REF].

See however Refs.[START_REF] Quashnock | Gravitational Selfinteractions of Cosmic Strings[END_REF][START_REF] Wachter | Gravitational Backreaction on Piecewise Linear Cosmic String Loops[END_REF][START_REF] Jose | Gravitational Back-Reaction near Cosmic String Kinks and Cusps[END_REF][START_REF] Chernoff | Gravitational Backreaction on a Cosmic String: Formalism[END_REF][START_REF] Jose | Gravitational Backreaction Simulations of Simple Cosmic String Loops[END_REF][START_REF] Helfer | Cosmic String Loop Collapse in Full General Relativity[END_REF] for work along this direction.

See, however, Ref.[START_REF] Quashnock | Gravitational Selfinteractions of Cosmic Strings[END_REF] and more recently Ref.[START_REF] Helfer | Cosmic String Loop Collapse in Full General Relativity[END_REF] for an isolated loop.

The PR exponent is related to the two-point correlation function of tangent vectors along cosmic strings.

This equation can be generalized to include collision terms describing loop fragmentation as well as loop collisions, see Ref.[START_REF] Copeland | The Evolution of a Network of Cosmic String Loops[END_REF].

In the matter era, the hypergeometric function simplifies to a polynomial expression, see Eq. (55) in Ref.[START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF].

To derive this expression, we have expanded the hypergeometric function around unity[START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF] f(x) ∼ 1 Γ(3ν -2χ)Γ(2χ -2) Γ(3ν -3) x -+ 2 -2χ (1x) 2χ-2 . (3.32) 

This parameter is noted µ in Refs.[START_REF] Auclair | Cosmic String Loop Production Functions[END_REF][START_REF] Lorenz | Cosmic String Loop Distribution on All Length Scales and at Any Redshift[END_REF][START_REF] Ringeval | Stochastic Gravitational Waves from Cosmic String Loops in Scaling[END_REF]. We change the notation to avoid confusion with the string tension.

Based only on the asymptotic description provided in Table

3.2 this decomposition might seem artificial and one could be concerned that loops smaller than γ d are counted twice. In fact, it is just the opposite and this decomposition is well motivated when we refer to the full solutions. See Appendix 4.B for more details.

Cosmic superstrings[START_REF] Polchinski | Cosmic Superstrings Revisited[END_REF], the analogues of cosmic strings arising from string theory, are characterized also by the intercommutation probability which can take values between 10 -3 and 1 for fundamental superstrings (Fstrings) and between 10 -1 and 1 for D-branes extended in one macroscopic dimension (D-strings). In our present study we concentrate on field theoretical objects[START_REF] Sakellariadou | Cosmic Strings and Cosmic Superstrings[END_REF], and in particular Nambu-Goto strings with intercommutation probability of order one.

Super-horizon cosmic strings also emit gravitational waves, due to their small-scale structure resulting from string intercommutations[204, 244, 

[START_REF] Matsui | Improved Calculation of the Gravitational Wave Spectrum from Kinks on Infinite Cosmic Strings[END_REF]].[START_REF] Abraham | On the Relative Motion of the Earth and the Luminiferous Ether[END_REF] We also include the so-called pseudocusps[START_REF] Stott | Gravitational Wave Bursts from Cosmic String Cusps and Pseudocusps[END_REF], defined as cuspy features moving with a velocity close to the speed of light.

As the amplitude of the oscillations get damped, the leading order in a Taylor expansion of the function V (φ) around its minimum quickly dominates, which yields a quadratic potential unless there is an exact cancellation at that order.

This could correspond for instance to the time when H drops below Γ, the decay rate of the inflaton into other degrees of freedom, in the context of perturbative reheating[START_REF] Albrecht | Reheating an Inflationary Universe[END_REF][START_REF] Abbott | Particle Production in the New Inflationary Cosmology[END_REF][START_REF] Kofman | Towards the Theory of Reheating after Inflation[END_REF] (hence the notation).

In the case where W is taken as a smooth function of the wavenumber, the random noise appearing in the Langevin equation(9.22) becomes coloured, which makes the analysis more involved[START_REF] Musso | The Importance of Stepping up in the Excursion Set Approach[END_REF][START_REF] Nikakhtar | The Excursion Set Approach: Stratonovich Approximation and Cholesky Decomposition[END_REF].

The distribution of substructures can also be worked out by solving the "two-barrier problem"[START_REF] Lacey | Merger Rates in Hierarchical Models of Galaxy Formation[END_REF], i.e. by deriving the probability that, after upcrossing the threshold δc(R 1 ) at R = R 1 , a second upcrossing of δc(R 2 ) occurs at R 2 .

By comparing Eqs. (9.18) and (9.24), one can see that the distribution of first crossing times that would be associated to the Press-Schechter result is given by

h should not be confused with the function h(x) in Eq.(10.46). We have decided to use the same notation as Ref.[START_REF] Olesen | On inverse cascades in astrophysics[END_REF] for clarity.

Note that this function can only be used if p < 1

Previous work did not take into account the fact that particle radiation could affect the loop distribution.

Remerciements

Part II

Primordial Black Holes

M , is proportional to (δδ c ) γ where γ 0.37 is a universal exponent. This has been generalized to radiation fluids in Refs. [START_REF] Evans | Observation of Critical Phenomena and Selfsimilarity in the Gravitational Collapse of Radiation Fluid[END_REF][START_REF] Koike | Critical Behavior in Gravitational Collapse of Radiation Fluid: A Renormalization Group (Linear Perturbation) Analysis[END_REF], and reviews of critical phenomena in gravitational collapse can be found in Refs. [START_REF] Gundlach | Critical Phenomena in Gravitational Collapse[END_REF][START_REF] Gundlach | Critical Phenomena in Gravitational Collapse[END_REF]. The relation

where K is a constant and m H is the mass contained within a Hubble volume at the time the black holes form, has been applied to the calculation of the PBH mass fraction in Ref. [START_REF] Niemeyer | Near-Critical Gravitational Collapse and the Initial Mass Function of Primordial Black Holes[END_REF]. It was then numerically analysed in the context of PBHs in Refs. [START_REF] Musco | Primordial Black Hole Formation in the Radiative Era: Investigation of the Critical Nature of the Collapse[END_REF][START_REF] Musco | Primordial Black Hole Formation in the Early Universe: Critical Behaviour and Self-Similarity[END_REF], and further investigations on its applicability can be found in Ref. [START_REF] Christian | Primordial Black Holes with an Accurate QCD Equation of State[END_REF].

Compaction function

Recent numerical works by Musco, see Ref. [START_REF] Musco | Threshold for Primordial Black Holes: Dependence on the Shape of the Cosmological Perturbations[END_REF] and subsequent publications, suggest that a more accurate criterion for PBH formation follows from the analysis of the compaction function

where r is the distance away from the overdensity peak, m(r, t)-m(r, t) is the excess mass contained inside a sphere of radius r, and R(r, t) is the areal radius. The scale of the fluctuations relevant for the formation of PBHs is the one that maximizes the compaction function. In other words, a PBH forms at the scale r m where C(r) is maximal, provided C(r m ) is larger than some threshold C c (which is roughly equivalent to requiring that the overdensity averaged over a sphere of radius r m overcomes the threshold value δ c , see Ref. [START_REF] Young | The Primordial Black Hole Formation Criterion Re-Examined: Parameterisation, Timing, and the Choice of Window Function[END_REF]). Critical collapse can be implemented with the criterion based on the compaction function (see Appendix A of Ref. [START_REF] Young | Application of Peaks Theory to the Abundance of Primordial Black Holes[END_REF]), simply by replacing δ by C(r m ), and δ c by C c in Eq. (9.35), and by using different values of the constants K and C c (γ is still the same).

Compaction-function based criteria have also been employed within the peak-theory approach in Ref. [START_REF] Young | Application of Peaks Theory to the Abundance of Primordial Black Holes[END_REF] (see also Refs. [START_REF] Suyama | A Novel Formulation of the PBH Mass Function[END_REF][START_REF] Germani | Nonlinear Statistics of Primordial Black Holes from Gaussian Curvature Perturbations[END_REF]). They cannot be directly implemented in the excursion set program since, here, the size of the structure is not determined by the first C-crossing of the threshold, but rather by the "time" (i.e. scale) at which C is maximal (and by the value of that maximum through the critical-scaling relation). See also Ref. [START_REF] Young | The Primordial Black Hole Formation Criterion Re-Examined: Parameterisation, Timing, and the Choice of Window Function[END_REF] for a comparison between these different criteria.

Application to primordial black holes

The methods introduced above were originally developed in the context of large-scale structures in general (except for the refinements presented in Section 9.3.6), and their application to the calculation of the mass distributions of PBHs requires some further considerations.

Removing the super-horizon modes

Primordial black holes are expected to form when a large curvature fluctuation re-enters the Hubble radius after inflation, and collapses into a black hole. The relevant smoothing scale R is therefore the Hubble radius at the time the black hole forms. In the coarse-graining procedure (9.9), given the properties of the function W detailed at the beginning of Section 9.3.1, most modes k that contribute to Eq. (9.14) are such that k < a/R, hence they are super Hubble at the time of formation. This Chapter 10

Generation of gravitational waves from freely decaying turbulence

This chapter is based on an ongoing work with Daniel Cutting, David Weir, Mark Hindmarsh and Kari Rummukainen of the University of Helsinki and my supervisors Chiara Caprini and Danièle Steer. Our collaboration began in November 2018 with an initial visit in Helsinki. Initially, the goal was to study both the formation and the decay of turbulence after a first order phase transition using the numerical simulation code developed by the group in Finland [START_REF] Hindmarsh | Numerical Simulations of Acoustically Generated Gravitational Waves at a First Order Phase Transition[END_REF]. The project received support from the HPC-Europa3 Transnational Access program, which provided computational resources as well as funding for a one-month visit in May 2019, and by the International Emerging Actions program awarded by the CNRS in February 2020 to fund visits between France and Finland. During the project, we realized that the code was not adapted to study the formation of turbulence and the project refocused on the subsequent phase of free decay. This project is taking a long time to complete as it is at the intersection of many areas of expertise: gravitational waves, turbulence, and massively parallel numerical simulations. Additionally, the Covid pandemic unfortunately put an end to our regular visits between France and Finland which slowed down the completion of the project. I have contributed to all the aspects of this work, including adapting the code of the group at the University of Helsinki to our problem and running the large scale numerical simulations.

Abstract

We calculate the stochastic background of gravitational waves (SGWB) produced by a phase of freely decaying turbulence in the early Universe. Turbulence may be sourced by a first order phase transition at the electroweak scale, in scenarios beyond the Standard Model. In this case, the gravitational wave signal that turbulence generates may fall in the frequency band of the space-based interferometer LISA. We start by reviewing the computation of the SGWB from purely vortical motions in a relativistic fluid to calculate the GW spectrum. We then construct a model for freely decaying turbulence and compare it with direct numerical simulations. In particular, we validate numerically the unequal-time correlations (UETCs) of the velocity field and the evolution laws of the kinetic energy and the integral scale. We stress that any two point correlator must satisfy the Mercer condition, and we propose to use the Gibbs kernel for the turbulent UETC: this interpolates well the result of the numerical simulations, and guarantees positivity of the velocity, anisotropic stresses and gravitational wave energy density power spectra. In order to calculate the SGWB spectrum, we directly 10.43) (or, more appropriately, Eq. (10.86)). Blue: assuming a constant decorrelation velocity equal to v sw v 2 /3 at initial time and at all scales; orange, the step function used in Ref. [START_REF] Caprini | The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition[END_REF], where the decorrelation is inserted only at K > K peak 3 ; green: the model proposed here, obtained from Eqs. (10.45) and (10.48).