N

N

Toward Floating-Point Run-time Variable Precision in
CPU-based Architectures
Noureddine Ait Said

» To cite this version:

Noureddine Ait Said. Toward Floating-Point Run-time Variable Precision in CPU-based Architec-
tures. Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes [2020-..], 2021. En-
glish. NNT: 2021GRALTO077 . tel-03586720

HAL Id: tel-03586720
https://theses.hal.science/tel-03586720v1
Submitted on 24 Feb 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03586720v1
https://hal.archives-ouvertes.fr

| Communauté

= UNIVERSITE Grenoble Alpes

THESE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES

Spécialité : Nano Electronique et Nano Technologies

Arrétée ministériel : 25 mai 2016

Présentée par

Noureddine AIT SAID (doctorant)

These dirigée par Katell MORIN-ALLORY (directeur)
et codirigéee par Mounir BENABDENBI (co-directeur)

préparée au sein du Laboratoire Techniques de I'lInformatique et de la

Microélectronique pour I'Architecture des systemes intégrés (TIMA)
dans Ecole Doctorale Electronique, Electrotechnique, Automatique et
Traitement du Signal (EEATS)

Toward Floating-Point Run-time Variable
Precision in CPU-based Architectures

These soutenue publiquement le Mercredi 24 Novembre 2021,
devant le jury composé de :

M. Fréderic ROUSSEAU

Professeur des Universités, Université Grenoble Alpes, Président et Ex-
aminateur

M. Alberto BOSIO
Professeur des Universités, Université de Lyon, Rapporteur

M. Francois PECHEUX
Professeur des Universités, Sorbonne Université, Rapporteur

M. Arnaud VIRAZEL
Professeur des Universités, Université de Montpellier, Examinateur

Mme. Katell MORIN-ALLORY
Maitre de Conférences, Université Grenoble Alpes, Directrice de thése

M. Mounir BENABDENBI
Maitre de Conférences, Université Grenoble Alpes, Co-Directeur de thése

To my mother Zahra,
my father Ahssine,
my sister Hasnaa,
my brother Youssef,
my grandparents,
my friends,
and to the memory of my great-uncle, Houssa,
from whom I learned the meaning of determination and self-discipline.

Acknowledgments

Je tiens tout d’abord a remercier mes encadrants Mounir Benabdenbi et Katell
Morin-Allory de m’avoir si bien encadré et supporté pendant ces trois derniéres
années et d’avoir été toujours disponible. Mounir, je suis reconnaissant d’avoir
cru en moi des mon stage PFE et de m’avoir fait confiance. Merci aussi pour
le soutien moral et de m’avoir permis de découvrir un métier aussi noble que
I'enseignement. Katell, je te remercie également pour ton soutien continu. Grace
a nos nombreux échanges j'ai appris de beaux arts: rigueur, analyse, précision et
bien d’autres.

Vous étiez tous les deux toujours gentils et bienveillants envers moi. Avec vous
j'ai appris a prendre du recul, a étre bienveillant, et a faire confiance en moi. Sans
oublier de nombreuses qualités personnelles et connaissances culturelles que j’ai
pu aquérir a travers nos discussions. Je vous en serai éternellement reconnaissant!

Je remercie également les membres du jury: M. Alberto Bosio et M. Frangois
Pécheux qui m’ont fait ’honneur d’étre les rapporteurs de cette thése. Je remercie
aussi M. Arnaud Virazel et M. Fréderic Rousseau d’avoir accepté d’étre examina-
teurs de cette these. Merci également a ... d’avoir présidé le jury.

Mes vifs remerciements a tous mes collegues du Laboratoire TIMA: doctor-
ants, professeurs, chercheurs et administratifs. J’adresse mes remerciements a
tous les membres de I'équipe AMfoRS pour leur accueil chaleureux et pour leurs
échanges constructifs. Je leur souhaite a tous et toutes une bonne continuation.
Mes remerciements vont également a M. Laurent Fesquet et aux membres de
I"équipe CDSI pour leurs précieux conseils et leurs échanges enrichissants, surtout
dans le coté technique. Merci a M. Rodrigo Iga pour son aide technique lors de
I'implémentation ASIC. Je remercie aussi mes collegues du CIME Nanotech M.
Mohamed Ben Jrad, M. Abdelhamid Aitoumeri et M. Robin Rolland de leur sup-
port technique et leur serviabilité.

Enfin, j’adresse ma sincere gratitude a ma chére mere Zahra et mon cher pére
Ahssine qui ont ceuvré pour ma réussite, de part leur amour, leur soutien, tous
les sacrifices consentis et leurs précieux conseils, pour toute leur assistance et
leur présence dans ma vie, recoivent a travers ce travail aussi modeste soit-il,
I'expression de mes sentiments et de mon éternelle gratitude.

Mes remerciements s’adressent aussi a mes anciens chers professeurs Ous-
sama Fl Issati et Karima El Otmani, et a mes chers ami.e.s Hajar, Abdelhamid,
Soukaina, Mourad, Samih, Youssef(s), Zakariyae, Imane, Assia et toutes les autres
personnes qui par leurs paroles, leurs écrits, et leurs conseils ont guidé mes réflex-
ions et m’ont aidé a la réalisation de cette thése ainsi que toutes celles qui ont
contribué, de part leur sympathie, a son bon déroulement. Qu’elles soient toutes
assurées de ma reconnaissance et gratitude.

Merci a vous tous.

Contents

Acknowledgments L L L oo i
Tableof Contents iii
Introduction 1
1.1 Contextand Motivations, 2
1.1.1 The road to emerging computing paradigms 2

1.1.2 From Approximate Computing to Transprecision Comput-
ing: toward variable Floating-Point (FP) precision 6
1.1.3 Guiding Principles for Transprecision Computing 8
12 ThesisOutline oo L 10
State of the Art on Floating-Point Approximate Computing 13
21 Introduction 14
2.2 Approximate Computing Techniques: a Cross-layer overview . .. 14
221 Key ComparisonPoints 15
222 Metricso e 16
2.2.3 Circuit level Approximate Computing (AxC) 17

224 Compiler-and Language-level Approximate Computing (AxC) 19
2.2.5 Algorithm- and application-level Approximate Computing

(AXC) oo 21
2.2.6 Architecture level Approximate Computing (AxC) 23
22.6.1 ApproximateCaches 23
22.6.2 Approximate Networks 24
22.6.3 Approximate Memory and Storage 25
2264 FunctionalUnits. 26
§1 Integer Arithmetic Units 26
§2 Fixed-Point (FxP) Arithmetic Units. . . . 27
§3 Floating-Point (FP) Arithmetic Units . . 28
§4 Alternative number representations . .. 29

§5 Instruction Set Architecture (ISA) and

cross-layer Approximate Computing (AxC)

approaches 30

2.3 From Approximate Computing (AxC) to Transprecision Comput-
ing: Toward Variable Precision Floating-Point 31
2.3.1 The cost of Floating-Point Arithmetic 31
2.3.2 The Need for Variable and Reduced Precision Floating-Point 32
§1 Algorithm design and stability analysis: . 33
§2 Variable Type Optimization (VIO) ... 34

§3 Arbitrary Reduced Precision (ARP) . . . 34

iii

Table of Contents

§4 Variable Precision in Time (VPT):
2.3.3 Summary comparison of Transprecision Computing State
of the Art (SoA) techniques
24 Conclusion

A Non-intrusive Approach for Floating-Point Approximation

31 Introduction L

3.2 Background: The Floating-Point (FP) model
321 Definitions o o
3.2.2 Floating-Point (FP) numbers through a simple case
3.2.3 Standard formats Vs. arbitrary formats
324 Roundingandextension

3.3 Presentation of the Approach

3.4 Formalization of the Approach
3.4.1 Definitions & Notations
342 Approach formalization
3.4.3 The case of iterative operators
3.44 Selective Approximation (SA)
3.4.5 Problemstatement

35 Conclusion L e

AxQEMU: a Non-intrusive Floating-Point Approximation Simulator

41 Introduction
42 Background oo o
421 The RISC-V Instruction Set Architecture
4211 Target Instruction Set Architecture (ISA)
42.1.2 Target Application Binary Interface (ABI) .
421.3 Floating-PointinRISC-V
4214 Performance Vs. hardware-level overhead
42.2 The Quick EMUlator (QEMU) Binary Translator

4221 Overview of Quick EMUlator (QEMU)’s architec-
ture o o

4222 Quick EMUlator (QEMU)’s Intermediate Repre-
sentation 000

4223 Quick EMUlator (QEMU)’s Dynamic Binary Trans-

lation process
43 AxQuick EMUlator (QEMU): A Floating-Point Approximation-
aware Emulator L oo o
43.1 Approximate Floating-Point operations in AxQuick EMU-
lator (QEMU) e
432 Selective Approximation
43.2.1 Static Selective Approximation (SA) based on mem-
ory partitioning,00
43.22 Dynamic Selective Approximation (SA) at run-
time based Control and Status Register (CSR) op-
erations Lo oo
43.3 Key engineering decisions
434 AxQuick EMUlator (QEMU) usage example

64

68

iv

Table of Contents

43.5 Supporting other Instruction Set Architectures (ISAs) in
AxQuick EMUlator (QEMU) 71
4.4 Use Case 1: Direct Application to Fixed-Precision Applications . . . 71
441 Design Space Explorationflow. 72
§1 Simulation phase 72
§2 QoR analysisphase 72
442 Evaluation benchmarks and QoR metrics 73
443 Targetarchitecture 74
444 Resultsand Discussion 74
§1 Dynamic instructions’” breakdown 74
§2 Simulationtime 74
§3 Quality of Result (QoR) results. 75
445 Challenges & Limitations 78
§1 Challenges 78
§2 Limitations 78
45 Conclusion 79
Approximate-aware Multi-precision FPU 81
51 Imtroduction L. 82
52 Proposed Architecture o oL 83
5.3 Variable Precision in Time (VPT) Support 85
5.3.1 Custom Variable Precision in Time (VPT) Registers 85
5.3.2 Variable Precision in Time (VPT) Software Support 86
54 HW Customization 87
5.5 Synthesis and EvaluationFlow 88
55.1 Synthesis conditions 00 0oL 88
55.2 HW-level evaluationflow 88
5.6 Use Case 1: HW-level Evaluation of the Fixed-Precision Jmeint . . . 90
§1 Simulation context 90

§2 Precision-Quality of Result (QoR) trade-
offs (revisited) 91
83 Generated HW configurations 91
§4 Power / Execution time / Energy results . 91
5.7 Use Case 2: Application to Mixed-Precision applications 94

5.7.1 Background: Mixed-precision Design Space Exploration (DSE)

flow. . .. e 94
572 Problemstatement 95
573 ThePROMISEtool 96
574 Evaluation and Discussion 96
5741 Phase (1) 97
5742 Phase (2) 98
§1 Simulation 98
§2 Quality of Result (QoR) normalization . 98
§3 Phase (2)results. 98
§4 Phase (2) analysis 98
5743 Phase(3) o 100
§1 HW evaluation methodology 100
§2 Phase (3)results. 100

Table of Contents

§3 Phase (3) analysis 100
58 Conclusion L 101
6 Variable Precision in Time for Stationary Iterative Methods 104
6.1 Introduction L o 106
6.2 RelatedWorks oo 107
§1 Floating-Point (FP) Variable Type Op-
timization (Variable Type Optimization
(VIO)) . ..o o oo oo 107
§2 Non-standard/Arbitrary precision support 107
§3 Mixed-precision for Linear Algebra 107
§4 Arbitrary Reduced Precision 107
§5 Variable Precision in Time 108
6.3 Motivation 108
6.3.1 Floating-Point (FP) computation usage in Jacobi and Gauss-
Seidel 108
6.3.2 The limitation of Fixed Arbitrary Reduced Precision 109
6.4 Iterative Methods: Mathematical Foundations 110
6.4.1 Presentation of Jacobi and Gauss-Seidel iterative methods . 111
6.4.2 Convergence of Iterative Algorithms 111
6.5 Implementation of Variable Precision in Time (VPT)-enabled It-
erative Methods L Lo o oL 112
6.5.1 The original algorithm 112
6.5.2 The transformed algorithm 113
6.5.2.1 Details of Threshold Policy (1): conservative thresh-
olds 114
6.5.2.2 Details of Threshold Policy (2): relaxed thresholds
with stagnation detection 116
6.5.2.3 Comparing different threshold policies 119
6.6 Statistical Analysis 000 L 120
6.6.1 Software implementationaspects 120
6.6.2 Effects of Variable Precision in Time (VPT) on the Conver-
gence Profile and Precision Variation Profile 120
6.6.3 Effects of Variable Precision in Time (VPT) on the total
number of iterations Lo oL Lo 123
6.6.4 Effects of Variable Precision in Time (VPT) on iterations’
distribution o oo oo 124
6.7 Hardware-level Evaluation & Discussion 128
6.7.1 Hardware synthesis conditions 128
6.7.2 HW-level evaluation with one input and relaxed thresholds
(nominal scenario) Lo L oL 128
6.7.2.1 Evaluation methodology 128
6.722 Discussion00 129
6.7.3 Worst case / Best case HW-level evaluation 131
6.74 Circuitarearesults 135
6.7.5 Limitations 135
6.8 Conclusion 135

vi

Table of Contents

7 Conclusion and Perspectives 138
7.1 Thesis Contributions, 139
7.2 Future Perspectives 0., 140
7.3 Scientific Communications L. 142
Bibliography I
List of Figures XII
List of Tables XV
List of Abbreviations XVIII
A Mind Map of the State of the Art XXII
Al Mind Map: Stateofthe Art XXHI
B The RISC-V Instruction Set Architecture XXVI
B.1 Introduction XXVII
B.2 Modularity through extensions XXVII
B.2.1 Instruction Set Architecture (ISA) naming XXIX
B.2.2 General-Purpose Registers (GPRs) and Control and Sta-
tus Registers (CSRs) XXIX
B.3 Floating-PointinRISC-V XXIX
B.3.1 Floating-Point (FP) extensions XXIX
B.3.2 Floating-Point (FP) General-Purpose Registers XXX
B.3.3 Floating-Point (FP) Control and Status Register XXX
B.3.4 Floating-Point (FP) formats. XXXI
B.3.5 Floating-Point (FP) instructions XXXI
B.3.6 Floating-Point (FP) emulation when an Floating-Point Unit
(FPU)isabsent XXXII
B.4 Application Binary Interfaces XXXII
B.4.1 Definitiono 0oL XXXII
B.4.2 Supported Application Binary Interfaces (ABIs) XXXIIT
B.4.3 Instruction Set Architecture (ISA) Vs. Application Binary
Interface (ABI) XXXIII
B.4.4 Endianness, instruction encoding, and memory layout . . . XXXIII
B.4.5 Datamemorylayout XXXIV
B.5 Custom instructions for domain-specific applications XXXIV
B.6 Performance Vs. hardware-level overhead XXXV
C Contributions XXXVII
C.1 Contributions to AxQuick EMUlator (QEMU) XXXVII
D Appendix to Chapter 6 XLI

vii

Introduction

Contents
1.1 Context and Motivations 2
1.1.1 The road to emerging computing paradigms 2
1.1.2 From Approximate Computing to Transprecision Com-
puting: toward variable Floating-Point (FP) precision .. 6
1.1.3 Guiding Principles for Transprecision Computing 8
1.2 ThesisOutline 10

Chapter 1. Introduction

1.1 Context and Motivations

1.1.1 The road to emerging computing paradigms

Moore’s law: the beginning of the end In 1975, Gordon Moore, the co-founder
and former CEO of Intel made a prediction that has become considered as a “law”:

“The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year. Certainly over the short term this rate can
be expected to continue, if not to increase. Ouver the longer term, the rate of
increase is a bit more uncertain, although there is no reason to believe it will
not remain nearly constant for at least 10 years” [1]

This observation states that the number of transistors in a dense Integrated
Circuit (IC) doubles about every two years. Although it was more of an intuition-
and experience-based observation, rather than an empirically-backed formal law
of physics, this statement held since then and has long been used as research and
development road-map guideline in the semiconductor industry. Figure 1.1 de-
picts the evolution of processor trends in terms of transistor count, single-thread
performance, frequency, and other parameters during the last 40 years.

40 Years of Microprocessor Trend Data

7
10 ; ; ; ; Transistors
thousands
106 b . AA A — ()
105 _ ,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,, A amts ,,,,,,,,,,,,,,,,,,,,,,,,,, Single-Thread
; = Performance
1100 T T — S sk (SpecINT x 10%)
‘ Frequency (MHz)
103 [SO AA M,
) | | . I Typical Power
A A A R, g)
10 A oo L a4 N (Watts)
1 | Number of
10 B N DA | Logical Cores
0Ly o .
107 e e |
‘ ! ! ! !
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

Figure 1.1: Evolution of processor trends."

The various advancements in this domain have led to a democratization of
semiconductors (i.e., production cost optimization and economic growth) while

IRaw data is available at https://www.karlrupp.net/2015/06/
40-years-of-microprocessor-trend-data/

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

1.1. Context and Motivations

increasing quality e.g., computational performance, memory capacity, sensors’
precision etc. In the last decade, technologists and computer architects started
reporting that the advancements’ speed has slowed-down. However, there is no
consensus on when the pace predicted by Moore will no longer be applicable, es-
pecially with the arrival of new technologies characterized by transistor lengths
as low as 5nm.

“While scaling computing performance has never been easy, a number of fac-
tors have made scaling increasingly difficult this past decade, and have caused
power to become the principal constraint on performance.” [2]

More dense technologies have been announced recently with increased tran-
sistor density, increased speed and reduced power consumption. For example, in
May 2021, IBM announced it had produced a 2nm process node [3]. However, the
term “Xnm” is not necessarily correlated with the transistor’s length, but instead,
it has become a marketing term [4] that refers to an improved version of the node.
For instance, TSMC’s 3nm FinFET chips will reduce power consumption by 25 to
30 percent at the same frequency constraint, increase speed by 10 to 15 percent
at the same power constraint and increase transistor density by about 33 percent
compared to its previous 5nm FinFET chips [5].

This means that the slowness of Moore’s law is now being masked by inno-
vation in the process node technology domain. However, instead of only betting
on the technology factor, there is a need for more techniques to drive computer
architecture innovation.

Dennard scaling doesn’t make things simpler Figure 1.1 also exposes another
concept: the “Dennard scaling” law [6], which is another factor that impacts the
evolution of the semiconductor industry. It states that transistors’ power den-
sity stays constant while their size shrinks. This means that their power usage is
proportionate to their area, while voltage and current decrease i.e., as transistors’
length decreases, we are able to reach higher frequencies using the same amount
of power. The reduction of transistor power allowed IC manufacturers to increase
clock frequencies drastically from one generation to the next without significantly
increasing overall circuit power consumption.

However, although performance increases when frequency is increased, power
dissipation also increases, hence generating heat. And exceeding a certain fre-
quency threshold requires appropriate and complex cooling systems (which also
consume an important amount of energy), especially with other technologies such
as multi-processing having emerged. The end of this law is represented with the
frequency curve (Fig. 1.1), stagnating between 3 GHz and 4 GHz starting from
around the year 2006.

Emerging paradigms to the rescue The end of the Dennard Scaling law and the
slowness (or arguable end) of Moore’s law marked the beginning of a new quest:
increasing computing performance and energy efficiency through disruptive com-
puting paradigms targeting mainly computing and memory / storage.

On the memory side, advancements in emerging memories have led to tech-
nologies such as Phase Change Memories (PCM), Resistive Random-Access Mem-
ories (RRAM), Magneto-resistive Random-Access Memories (MRAM), ... which

Chapter 1. Introduction

saw the light in the context of modern use cases such as Internet of Things (IoT),
Machine Learning (ML), especially for edge computing applications. However,
their reliability and longevity is still fragile, which explains why CMOS-based
memories (Flash, DRAM, SRAM) are still in use in current ICs despite their en-
ergy cost.

On the computing side, a framework of emerging computing paradigms has also
emerged. This thesis falls under this framework, which encompasses new disrup-
tive techniques that have been introduced in the State of the Art. The objective is
to tackle the energy efficiency and the power wall problem caused by the end of
the Dennard Scaling law using drastically new approaches.

Figure 1.2 presents some trending emerging computing paradigms explained
below:

Normally-
In-memory Off, Sl
Computing Pz [22]
[23,24] Non-
boolean
computing
[20,21]
Neuromorphic
Computing
[]
Emerging Soft
Computing computing
Paradigms [19]
Approximat
Computing
[7-14]
Quantum
Computing
Stochastic [17,18]
computing Probabilistic
[15] Computing
[16]

Figure 1.2: Emerging computing paradigms

e Stochastic computing [15]: consists of representing continuous values by
carefully-crafted random bit streams and performing computations between
these streams using simple bit-wise operations (AND, OR, ...).

e Probabilistic Computing [16,25]: this paradigm introduces the concept of
probabilistic bits or “p-bits” to represent data using tiny magnetic memo-
ries. Knowing that magnets tend to become unstable when miniaturized,
this instability has been turned into a feature to encode the data.

1.1. Context and Motivations

In such computers, p-bits evolve from an initial state to a final state, tran-
siting through one of many possible intermediate unstable states. Which
path the computer takes depends on pure chance, with each path having a
certain probability. By accounting for the probabilities of all possible paths,
one can estimate the probability of getting to a specific final state. Proba-
bilistic Computing is a paradigm that essentially paves the way toward the
Quantum Computing paradigm, since it is used to simulate the behaviour
of quantum computers and they both start from similar mathematical foun-
dations [25].

Quantum Computing [17,18]: Quantum computing is a paradigm that re-
lies on quantum states’” properties such quantum entanglement and super-
position to perform computations. Quantum computers are known to be
able to solve complex computational problems more efficiently and substan-
tially faster. The most cited example is the RSA encryption that relies on in-
teger factorization. Recent trends in this field are shifting toward real-world
applications in biology, pharmaceutical and security domains.

Soft computing [19]: a set of approaches that take advantage from applica-
tions’ intrinsic resilience against imprecision to improve tractability, robust-
ness, efficiency and performance. This field is based on fuzzy logic, genetic
algorithms, information theory, machine learning, and probabilistic reason-
ing.

Non-boolean computing [20,21]: non-boolean computing systems leverage
the continuous analog nature of some electronic components such as nano-
magnets (as it is the case with probabilistic computing) to represent, trans-
mit and perform computations on data. For example, in [21], low-power
energy-efficient nanomagnetic systems were used to solve some quadratic
optimization problems usually found in computationally-intensive computer
vision algorithms, which shows the potential of such alternative computing
method.

Normally-off Computing [22]: yet another computing paradigm that con-
sists of aggressively powering-off power systems’ components when they
are not needed for the current operation. The need for this paradigm comes
from the limitations of traditional clock-gating techniques, especially in the
memory design domain, which are tackled by using new Non-Volatile Mem-
ories (NVMs).

Non-Von Neumann Architectures: these are architectures that make a dis-
ruptive leap between the usual Von-Neumann-based traditional computing
systems:

- In-memory Computing [23,24]: consists of bringing the memory closer
to compution units or vice versa. The objective of such paradigm is to alle-
viate the cost of memory-to-CPU transfers. Different kinds of architectures
have been explored in the literature allowing to perform all or part of the
computations closer to memory. The proposed architectures are usually en-
hanced with principles from Non-Boolean Computing, where analog com-
ponents, such as resistive memories are used to perform computations.

Chapter 1. Introduction

- Neuromorphic Computing [9]: this biologically inspired paradigm
encompasses a variety of brain-inspired computers, devices, and models
that contrast the pervasive Von Neumann computer architecture.

One may notice that there are many common research interests between these
fields, and sometimes it is not obvious to find the thin border separating them.
Thus, the difference in naming conventions is mainly due to the communities
working on these concepts.

Approximate Computing (AxC) as asolution: among all the mentioned paradigms,
we chose to explore AxC [7-14], which has recently emerged as a promising ap-
proach to energy-efficient design of digital systems. Approximate computing re-

lies on the ability of many systems and applications to tolerate some loss of qual-

ity or optimality in the computed result. This paradigm is more suitable for in-
herently error-resilient applications such as most modern computer vision algo-
rithms, neural networks, machine learning and artificial intelligence in general. A
taxonomy of existing AxC techniques across the system stack will be discussed in
section 2.2.

1.1.2 From Approximate Computing to Transprecision Comput-
ing: toward variable FP precision

The modern applications such as edge computing, IoI, and ML have driven the
evolution of AxC toward Transprecision Computing (TC). The reason for that
is the fact that these applications are very intensive computationally. And since
they are also error-resilient applications, the standard full precision (e.g., floating-
point single-precision and double-precision) supported in most CPUs is shown
to be very over-designed. This means that there is an interesting opportunity for
AxC and TC to optimize their energy-efficiency by acting on both computational
resources and memory bandwidth.

However, in the context of general-purpose CPUs, the standard precisions
should still be supported. Meaning that, there is a need for systems or archi-
tectures that are able to change their internal operating precision at run-time, on-
demand, depending upon the application’s need. TC is usually used in a general-
purpose CPU context, with a special focus on FP arithmetic, since studies [26]
have shown that approximate computing based on integer arithmetic is limited in
such contexts (more details in Paragraph §5).

In the remaining of this thesis report, Transprecision Computing (TC) will
refer to the sub-field of AxC that specifically targets software Floating-Point ap-
plications within a CPU-based architecture context.

Figure 1.3 graphically illustrates the idea behind TC through an example: Sub-
figure (a) depicts a software FP application that uses a 64-bit wide FP format and
operates at a high average computation power. The horizontal axis represents the
computation progress in terms of executed instructions. The left vertical axis mea-
sures the precision of the executed instructions, whereas the right axis measures
power consumption. The operating precision variation is represented by the red,
orange and cyan curves. The total dissipated energy F at the end of execution

1.1. Context and Motivations

is the integral of power consumption P(t) over the execution time 7" i.e., the area
under the precision variation curves:

E = / P(t)dt
T
A A A
Conventional computing A
with full precision
64 64 |
S — S —
3 g 3 g
(8] (8]
o g ¢ g
[e% [o%
(9] (0]
232 g £32 g
o 5 < s
16 16
A - .
> Ll
Computation progress Computation progress
(@) (b)
A A
Transprecision computiong
64 with reduced precision Energy effeciency gain due to VTO
s 56 = Energy effeciency gain due to TC
© 48 g
@ 40 S Remaining dissipated energy
o
[}
2 32 I
§ 24 z === Qriginal computation precision
186 Computation precision variation for VTO
g === Computation precision variation for ARP
Ll
Computation progress

()

Figure 1.3: Conventional computing to approximate computing (inspired from [27])

Without any optimization (Subfigure a), the application operates using only
entirely 64-bits Floating-Point variables. A first energy optimization step can be
reached using adequate standard format for each variable. This can be done for
example, by migrating some variables in an application’ source code to lower pre-
cision (float data type in C instead of double). This process is called Variable
Type Optimization (VTO) and it performs a first optimization pass in order to
reduce computation power as well as memory transfers (Subfigure (b)) and can
also be performed on most traditional computing systems (CPUs and GPUs). As
can be be seen in Subfigure (b), using VTO enables non-negligible energy gains.
In the next and final step, Arbitrary Reduced Precision (ARP) is used for further
power consumption reduction using variables with arbitrary reduced precisions
(Subfigure (c)). This allows a more fine-grained and aggressive bit-level opti-
mization in terms of power. Moreover, as a side effect, the total execution time 7'
also depends on the computation precision, meaning that fine-grained precision
reduction can also lead to less execution time, and hence more aggressive energy
optimization. As depicted in Subfigure (c), more gains are obtained thanks to the
bit-level precision reduction.

Chapter 1. Introduction

Through this example, we showed how the granularity of TC has evolved over
time and how it has brought more aggressive fine-grained bit-level optimization.
Up to now, these optimizations are manual and static i.e., the programmer should
decide manually on the precisions that should be used and hard code them in
source code. The future directions point toward self-adaptive precision comput-
ing and Variable Precision in Time (VPT) in order to enable applications to auto-
matically (self) adjust their precision depending on their environment at run-time
without or with little intervention from the user.

1.1.3 Guiding Principles for Transprecision Computing

This thesis is a contribution to Transprecision Computing, and more specifically,
on the computation precision aspects. Traditional TC techniques related to preci-
sion reduction suffer from many limitations that can be overcome following a set

of guiding principles:

1. The less intrusive it is, the more adopted it will be: most existing TC tech-
niques are very intrusive to source code. This means that their use leads
to the alteration of the existing software infrastructures. For example, us-
ing precision reduction in software needs to rewrite the applications’ source
code. Sometimes it also needs to implement support at the compiler level.
This means that existing SW and HW stacks such as scientific computation
libraries, Application Programming Interfaces (API), Operating Systems
(OSes), should also implement support for such techniques and they could
not be reused as they are. This constitues a huge loss, especially when it
comes to loosing the support for most scientific libraries upon which most
of the high-level libraries are based.

— There is a need for non-intrusive or at least minimally-intrusive tech-
niques that conserve the existing HW/SW technology bricks.

2. Simulation only is not sufficient: many SoA techniques were only devel-
oped for simulation purposes i.e., they are designed to simulate the impact
of reduced precision on applications” Quality of Result (QoR). This is use-
ful to drive designers’ decisions when it comes to dimensioning arithmetic
units in a high-level way. However, in a general-purpose CPU-based con-
text, such techniques are not production-ready, since they are not backed by
specialized hardware that would take advantage from the approximations
to reduce energy consumption. Moreover, such techniques introduce signif-
icant overheads due to the simulation of approximate behaviour: significant
simulation time overhead is introduced since the simulation host processes
on full-precision hardware. This brings us to the next limitation.

= There is a need for comprehensive HW/SW co-designed techniques
that allow high-level and fast simulation of approximate behaviour as well
as HW-level support to leverage the benefits of reduced precision in terms
of energy-efficiency.

3. Arbitrary precision hardware support is a must: most software SoA tech-
niques implement Mixed-Precision (Mx[I’) using standard Floating-Point

1.1. Context and Motivations

formats such as IEEE 754 [28] single-precision and double-precision formats.
Some GPUs also support the half-precision formats. However, to the best
of our knowledge, support for arbitrary reduced precision has never been
implemented in CPU-based architectures, except for higher precisions [29].
Traditional SoA techniques simulate reduced precision only in software, and
these simulation still use standard full-precision hardware, meaning that
they are only dedicated for prototyping and they are not production-ready.

— There is a need for HW-level support for arbitrary variable precision
achieve aggressive energy-efficiency savings.

. Cross-layer and context-agnostic techniques are better: even when the afore-
mentioned simulation-only techniques are used, most of them only operate
at the higher levels of the stack i.e., they enable approximations mostly in
the user-level applications, meaning that they are not supported in the low
levels of the stack such as the OS level.

= There is a need for techniques that enable approximations across all
the system layers from low-level HW to high level SW.

. Generality is preferred over application- and data-dependancy: many SoA
techniques are specific to particular applications or class of applications,
meaning that they cannot be easily generalized to other kinds of applica-
tions. Many of them are also data-dependant i.e., the impact on application
QoR depends on the inputs on which it is applied.

= There is a need for general-purpose techniques that leverage the po-
tential of TC independently of the application or input.

. Dynamic is better than static: many techniques proposed in the literature
are static i.e., reduced precision instructions should be decided off-line, at
design-/synthesis- time for hardware-based techniques or at compile-time
for software-based techniques.

— There is a need for dynamic techniques that allow programmers to
vary the computation precision dynamically. This dynamic feature can be
set either in space or in time. In space: usually referred to as MxI’ arithmetic,
the idea is to allow the programmer to instantiate variables with mixed pre-
cisions in the same source code. In time: the operands’ precision for a given
instruction I may vary during execution time. As will be shown in Chapter
6, this is particularly useful for iterative algorithms.

. Automation is yet another driver for mass adoption many proposed tech-
niques necessitate manually rewriting the source code, or manually explor-
ing the design space exploration. When a methodology is very tedious to
apply to existing applications, or when automated flows are not provided,
the mass adoption of the methodology is very unlikely. Self-adaptive tech-
niques that enable precision to vary automatically during execution might
be of interest.

— there is a need for automated or even self-adaptive techniques that
enable automatic selection of precision or that allow automatic precision
variation during execution. Instead of the programmer manually choosing

Chapter 1. Introduction

the adequate data-types for a specific application, we need algorithms that
choose automatically which precision to use at each instant of the program
execution timeline under some QoR constraint.

Obviously, building tools and solutions that satisfy all these principles is not
straightforward. In our case, we worked on first eliminating the intrusive aspect
in FP impact simulation tools (Chapters 3 and 4) i.e., tools that explore the ef-
fects of approximate computation on the outputs of a given application. We also
ensure that the technique we propose is hardware-friendly and not only useful
for software simulation, by proposing an adequate hardware Floating-Point Unit
(FPU) with support for multiple reduced arbitrary precisions (Chapter 5) for en-
ergy efficiency boost. The dynamic aspect is also enabled by design, since the
proposed hardware architecture enables precision to vary at run-time. This capa-
bility is exploited for the particular use case of iterative algorithms in Chapter 6.
We also ensured that the technique we proposed is applicable at different levels of
the software stack (OS / RTOS / bare-metal / user-level) hence facilitating usage
and combination with other SoA techniques.

1.2 Thesis Outline

This thesis is organized as follows:

Chapter 2 presents a literature review of several Approximate Computing
techniques at different levels of the system stack, starting from the circuit level, up
to the software higher level. We also present how the current trends shifted from
traditional AxC to Transprecision Computing with an emphasis on Floating-
Point reduced precision. Next, we present a typical FP algorithm optimization
flow and the different tools and libraries existing in the literature and we con-
clude with a brief comparison between existing works and the ones proposed in
this thesis.

Chapter 3 sets the background on Floating-Point arithmetic and the terminol-
ogy employed in the remaining of the manuscript. Then we present a formalized
problem statement along with the non-intrusive approach we proposed for the
introduction of F” approximations in a non intrusive way.

Chapter 4 is dedicated to the presentation of the AXQEMU simulator: a non-
intrusive simulator that implements the approach described in Chapter 3. The
technical details of the simulator will be explained as well as two main use cases:
the first one is the use of AXQEMU to instrument a well-known benchmark of ap-
proximate applications, and the second is about interfacing AXQEMU with other
techniques available in the State of the Art.

Chapter 5 features the details of the hardware implementation: a multi-precision
FPU that enables approximate Floating-Point computation and variable precision
at run-time synthesized on a 28nm FD-SOI technology. The details of its internal
blocks will be then showed. Finally, primary evaluation of hardware-level gains
for use cases from Chapter 4 will be discussed.

Chapter 6 focuses on Variable Precision in Time (VPT) i.e., the variation of

10

1.2. Thesis Outline

reduced arbitrary precision during run-time, for fine-grained energy-efficiency
optimization. In this chapter we target two iterative methods (Jacobi and Gauss-
Seidel) that solve linear systems. After explaining the mathematical foundations
of such algorithms, we propose two new versions that take advantage of the multi-
precision FPU presented in Chapter 5. A detailed statistical evaluation across
many inputs is performed to study the hardware-level gains (power, execution
time, and energy) of the proposed algorithms.

Finally, Chapter 7 paves the way to future research directions and concludes
this thesis.

11

State of the Art on Floating-Point
Approximate Computing

Contents

21 Introduction i, 14

2.2 Approximate Computing Techniques: a Cross-layer overview . 14
221 Key ComparisonPoints 15
222 Metricso 16
223 Circuitlevel AXC 17
224 Compiler- and Language-level AxC 19
225 Algorithm- and application-level AxC 21
22.6 Architecturelevel AXC L. 23

2.3 From AxC to Transprecision Computing: Toward Variable Pre-
cision Floating-Point 31
2.3.1 The cost of Floating-Point Arithmetic 31

2.3.2 The Need for Variable and Reduced Precision Floating-Point 32

2.3.3 Summary comparison of Transprecision Computing SoA
techniques L o o L 36

24 Conclusion v v i i it i e e e e e e e e e e e e e e e 38

13

Chapter 2. State of the Art on Floating-Point Approximate Computing

2.1 Introduction

As explained in the previous chapter, the slowing of Moore’s law and the end
of the Dennard scaling law have initiated a quest for new energy efficiency opti-
mization techniques instead of only betting on the technology evolution.

We saw that many new computing paradigms have emerged. Among these
emerging paradigms, we focus on Approximate Computing, which is a promis-
ing approach to energy-efficient design of digital systems. AxC relies on the ability
of many systems and applications to tolerate some loss of quality or optimality in
the computed result [7-14].

Through the last years, many works have targeted the domain of AxC at sev-
eral levels of the system stack and for several levels of granularity. This chapter
presents a cross-layer review of SoA techniques proposed in this field. Then we
show how AxC has evolved toward TC that closely relates to FP arithmetic. The
need for variable precision floating-point techniques will be illustrated by review-
ing the typical FP algorithms’ optimization techniques available in the SoA. We'll
show that these techniques are well over-designed for error-resilient applications,
hence rooting for reduced variable precision in CPU-based architectures.

Then we conclude the chapter with a summarized comparison between the
different SoA techniques and define our research contributions’ road-map.

2.2 Approximate Computing Techniques: a Cross-layer
overview

AxC can be exploited at many levels of the system stack (Figure 2.1), starting
from circuit / device level, up to the software application level, through micro-
architecture, Instruction Set Architecture (ISA), compiler, and language layers.

The development of AxC has started by introducing ad-hoc application-specific
techniques in very niche domains, experimenting with concepts such as reduced
precision, approximate logic synthesis and approximate boolean functions, ap-
proximate functional units, undervolting and underclocking. Most of these works
were only software-oriented or only hardware-oriented. These works led to in-
teresting local gains. However, when integrated within complex System on Chip
(SoC) systems, those gains were proven to be very limited. The ad-hoc and application-
specific aspect of AxC was starting to fade away since the scientific community
realized that the gains obtained by such techniques were very limited when eval-
uated at the system level [30].

Since then, a more transverse / comprehensive cross-layer approach started to
appear in the AxC community, by proposing more complex and involved method-
ologies taking advantage of the advances in HW/SW co-design. For example,
in [13,31,32], the authors have combined many traditional AxC ideas from do-
mains such as ISA extensions, micro-architecture, storage, and circuit in one SoC
architecture.

This section presents a detailed taxonomy of existing AxC techniques excerpted

14

2.2. Approximate Computing Techniques: a Cross-layer overview

from [7-14].

Application

Language

Compiler

Instruction Set Architecture

Micro-architecture

Circuit

Figure 2.1: System stack

2.2.1 Key Comparison Points

In [12], the authors have presented a taxonomy of general-purpose AxC tech-
niques according to three different criteria:

1. Correctability: this criterion evaluates to which extent an approximation
technique is able to introduce error and to which extent the introduced error
is visible at the architectural level.

For example, some AxC techniques can produce silent errors that have no
effects on program execution nor side-effects on the architectural state of
the machine (e.g., registers content, caches / memory elements’ content, ...).
However, others introduce latent errors, which do not affect the result di-
rectly but affect the architectural state of the executing machine. The latter
are dangerous since they may alter the behaviour of the machine later on
if not corrected [33]. There are other kinds of errors that might also be in-
troduced, and which should be taken into consideration when choosing an
AxC technique to apply.

2. Reproducibility: indicates to which extent an approximate execution is de-
terministic. A reproducible technique is one that yields a constant error ev-
ery time starting from the same initial state when given the same input.

3. Error Control: characterizes the granularity of the impact brought by the
AxC approach subject to study both on approximated resources and the out-
put result.

Although some fine-grained techniques have a local influence on resources
(e.g., single assembly instructions, elementary functional units, efc.), they
can lead to a massive impact on output results and energy efficiency. Hence,
it is important to keep track of error propagation throughout the execution.

To these criteria, we can add an other important one:

15

Chapter 2. State of the Art on Floating-Point Approximate Computing

4. Intrusiveness: which characterizes to which extent is the introduced tech-
nique intrusive to existing “normal” computing systems. A non-intrusive
technique can be applied transparently on at least 1 layer of the system stack.
For example, most software-oriented techniques are intrusive to software
source code but non-intrusive to the underlying hardware platform. Intru-
siveness to existing system stacks influences directly the adoption of AxC in
the industry.

It is hard to design AxC approaches that excel on all these criteria simulta-
neously. Designers should find compromises by trading-off some against others
depending on the context and the use case.

2.2.2 Metrics

Mean
Power-

Delay Energy- Absolute
Product Delay sror
(PDP) Product (MAE)
(EDP) Relative
Error (RE)
Delay
Error
HW-level AxC and QoR E
. . rror
Constraints Metrics Metrics Magnitude
/ Signif-
icance
Energy
Area Others
(SSIM, Miss Rate
Power BER,

PSNR, ...)

Figure 2.2: AxC related metrics

In order to guide the designer while choosing which AxC technique, approach, or
architecture is the most adequate to their specific application, the designer should
take many aspects into consideration:

e Quality of Result evaluation metrics: a numerical quantity that measures
how close is the result under approximation to the accurate result that would
have been obtained with accurate hardware. One can also use the term “er-
ror metric” interchangeably to refer to QoR. There are many standard error
metrics. Table 2.1 depicts some of these metrics [34].

Most of these metrics (Error Rate (ER), Mean Absolute Error (MAE), Rel-
ative Error (RE), etc.) are only useful for characterizing elementary blocks
such as approximate adders / multipliers. However, at the high application-
level, designers usually use other metrics that quantify the amount of error
introduced in the final output. Application-level metrics depend on the ap-
plication e.g., Peak Signal-to-Noise Ratio (PSNR) for signal processing appli-
cations, Structural Similarity Index Measure (SSIM) for image processing,
Top-1 / Top-5 accuracy for Convolutional Neural Networks (CNNs) and
ML classification applications. Other metrics can also be carefully-crafted to
fit the studied use case.

16

2.2. Approximate Computing Techniques: a Cross-layer overview

> o @ 1
#:Oapprox7# O,
ER =
om: ’
080l
= o ,
s L 2 Ofpprox — Oty
= o ,
Og‘;)prcx_oc()i')ig
MRE — EVi max(l,Oizr)ig)
= o ,
— m: i (@)
WCE = rr{;gx ’O;p)pmx — Oorig ,
‘Oggprox - O(Z)
WCRE = max @ °
Vi ma‘x(lj Oozig)

Table 2.1: QoR metrics (Extracted from [34]).

o HW-level parameters: introducing AxC does not only affect the QoR, but
also HW-level parameters such as average power consumption (measured in
Watt), total dissipated energy (measured in Joules), delay (nanoseconds) /
maximum frequency (MHz) and circuit area (pm?). Designers should find
trade-offs that fulfil their needs in terms of QoR while guaranteeing maximal
energy efficiency.

2.2.3 Circuit level AxC

Dynamic
Voltage
Scaling
D .
Evolvable Frg’q“;;‘::y
Hardware Scaling
Circuit-
level AxC
Dynamic
Approximate Voltage
Logic and
Synthesis Frequency
Scaling

Figure 2.3: Circuit-level AxC

In this category, AxC is applied by deriving an approximate circuit from an

17

Chapter 2. State of the Art on Floating-Point Approximate Computing

original (precise) one, by voluntarily violating its design constraints in a careful
and controlled way. This technique can be applied to different kinds of circuits
e.g., arithmetic operator, control circuit, memory, efc. Such constraint relaxation
techniques usually lead to potential incorrect behaviour after circuit fabrication.
For example, some timing constraints (e.g., hold / setup violations, maximum
frequency (slack) violation etc.) can be relaxed to allow significant performance
gains while risking run-time errors.

Among the first techniques deployed in this context are Dynamic Voltage
Scaling (DVS) and Dynamic Frequency Scaling (DFS) (which can be used jointly
for Dynamic Voltage and Frequency Scaling (DVES)). This technique consists
of relaxing the safety margins of the digital circuitry in order to optimize power,
execution time, or total energy.

Of course, this should be done carefully, since the function of the target circuit
is altered. The total power dissipated in a digital circuit is composed of two main
components: static power and dynamic power.

While the static power (leakage power) is independant of the switching activ-
ity of the circuit, DVFS mainly focuses on optimizing the dynamic part, since it
can be written as follows

2
denamic =a C(load VDD f

Where f is the operating clock frequency, Vpp is the supply voltage, Cioud
is the effective capacitance, and a represents the circuit switching activity. Dy-
namic power can be lowered by reducing either the clock frequency f (under-
clocking), or the supply voltage Vpp (undervolting), or the switching activities of
synchronous circuits by removing the clock signal when the circuit is not in use
(clock-gating) [35]. As depicted in the previous equation, the supply voltage Vpp
has more effect on power than the frequency f.

In [36], the authors have proposed a microprocessor system based on ARM
V4 with DVFES capability: the supply voltage and clock frequency can be dynam-
ically tuned so that the system can deliver high throughput when required while
significantly extending battery life during the low speed periods. In this paper,
DVS is used as a mere optimization technique rather than an AxC technique, since
the QoR at the output does not change.

Authors of [37] have proposed a similar system called Razor which incorpo-
rates an error detection and correction mechanism to recover from timing errors.
In this system, the supply voltage is automatically reduced while still ensuring
correct operation to achieve an optimal trade-off between energy savings from
voltage reduction and energy overhead from increased error detection and cor-
rection activity.

Authors of [38] have explored, for the first time, the use of DVS for interconnec-
tion networks, where the frequency and voltage of links are dynamically adjusted
to minimize power consumption with a history-based policy that judiciously ad-
justs link frequencies and voltages based on past utilization, hence realizing an
average x4.6 power savings against a moderate impact on performance.

Other works such as [39] presented an approach to find the minimum supply
voltage for an overclocked 16-bit or 32-bit ripple-carry adder with an output error
reduction reaching as much as 2.58 x compared to SoA approximate adders. In

18

2.2. Approximate Computing Techniques: a Cross-layer overview

[40] the authors explored the effects of DFS on server workloads, whereas [41]
used DFS for dynamic thermal management of Field-Programmable Gate Array
(FPGA)-based soft-core processors.

Undervolting and underclocking can also be referred to as Near-threshold
Computing (NTC) [42]. For example in [43], an open-source multi-core RISC-V
design is specifically designed with NTC capability allowing it to achieve impor-
tant speed (3.5x faster) and energy efficiency (3.2x) gains while operating with
a supply voltage of 0.6 to 1.2 V.

Another technique that has been explored in the SoA is Approximate Logic
Synthesis (ALS). It consists of developing algorithms that synthesize approxi-
mate circuits while satisfying some hardware constraints. For example [44] pro-
posed a new logic synthesis approach for minimizing a circuit’s area given an
error rate threshold. In this work, relaxing the circuit’s error rate to 1% leads to an
average of 9.43% area reduction across many benchmarks. Similarly, in [45], the
authors proposed a design space exploration methodology that trades-off QoR
against cost to implement high performance and low energy embedded systems.
These works are an attempt to address Moore’s law challenges by shifting from
the current-day deterministic design paradigm to statistical and probabilistic de-
signs. The major limitation that is common between these last two works is the
focus on error rate / frequency only. In fact, error rate should be studied along
with error magnitude in order to evaluate the criticity of the errors introduced
and to which extent they alter the behaviour of the system under study.

Other ALS-related works have proposed methodologies that tackle this prob-
lem by considering the error magnitude constraint 46,47]. The advantage of these
methods is that they do not alter the conventional logic synthesis flow. Their
main objective is to develop general algorithms for the generation of approxi-
mate Boolean functions starting from an exact one. One suitable use case of such
methodologies is the design of arithmetic units and HW-accelerated signal pro-
cessing pipelines.

Evolvable Hardware (EH) is one of the very prominent branches of circuit-
level AxC. It consists of starting from exact computing systems and transform
them by applying concepts from Evolutionary Algorithms (EAs) to generate ap-
proximate computing systems. Such concepts are inspired by biological evolution
mechanisms, such as reproduction, mutation, recombination, and selection.

In this branch, the cost-QoR trade-off problem is formulated as an optimization
problem where candidate circuit configurations play the role of individuals in
a population. The fitness function in this case is modeled as a function of the
circuit cost in terms of area / power / QoR. The algorithms automatically explore
the quality of the candidate circuit configurations and the population individuals
evolve iteratively. Currently, this branch is led by Prof. Sekanina from University
of Brno [34,48-52]

2.24 Compiler- and Language-level AxC

The AxC philosophy can also be implemented in compilers and languages, mainly
by proposing new languages, specialized compilers, or expanding existing com-
pilers with AxC-inspired features.

Given a program P, some studies [53-55] proposed tools and approaches to

19

O 0 N o U = W =

=
N = o

Chapter 2. State of the Art on Floating-Point Approximate Computing

evaluate the effect of approximations at different points of the program P. Such
studies conclude that different instructions tend to have different effects on the
result output and that it makes sense to distinguish between critical and non-
critical program points. This conclusion has later driven the development of new
AxC-aware compilers such as the Java-based Ener] AxC-aware language and com-
piler [56,57].

Ener] separates critical and non-critical program components and allows the
programmer to manually annotate each program component (variable, function,
...). This feature is very important and will be referred to as Selective Approxi-
mation (SA) in the remaining of this manuscript. Statements are then interpreted
by the compiler following a set of type rules and operational semantics that guar-
antee that precise data remains precise. For example, approximate values can-
not be directly assigned to precise variables unless promoted (or endorsed) to
a precise type. Operators such as + are overloaded for approximate operations
on approximate data. Assembly instructions generated for an exact operation get
executed on exact hardware whereas approximate instructions get executed on
approximate hardware. Table 2.2 depicts an example of AxC-aware source code
transformation using Ener]. Starting from an original source code (on the left), the
programmer can declare some variables as approximate e.g., the integer variable
adeclared in line 2. Associated instructions will be interpreted differently e.g., the
addition operation (line 4) as well as the division operation (line 9) would be exe-
cuted in an approximate way. The same goes for the variable z which is annotated
as an approximate integer variable (line 5). The assignment in line 6 is an implicit
approximate operation that will also be executed on approximate hardware.

int p = 5; int p = 5;
int a = 7;
for (int x = 0..) { for (int x = 0..) {
a += func(2);
int z;
z =p * 2;
p = 4, p += 4,
} }
a /= 9;
p += 10; p += 10;
socket.send(z) ;
write(file, z);

Table 2.2: AxC-aware code transformation using Ener]

A similar work, ACCEPT [58] was built on Ener] and dedicated to C/C++ pro-
grams instead of Java. It includes a comprehensive framework for approximation
that balances automation with programmer guidance. In ACCEPT, the SA process
has been automated in order to guide the programmer while defining which parts
of a given program would have to be approximate and which should be precise.

Rely [59] is yet another AxC-aware programming language. It enables devel-
opers to predict the quantitative reliability of an application i.e., the probability
that it produces the correct result when executed on approximate hardware. Rely
allows developers to specify the reliability requirements for each value that a func-
tion produces.

20

2.2. Approximate Computing Techniques: a Cross-layer overview

Researchers from Intel [60] went beyond simply providing ways to describe
approximate behaviours. They introduce a comprehensive open source toolkit
named iACT (Intel’s Approximate Computing Toolkit) that analyzes and studies
the scope of approximations in applications. The toolkit consists of a compiler, a
set of libraries, and a simulated hardware test bench. These contributions” main
objective is to accelerate AxC mainstream adoption.

Microsoft also contributed to this domain by introducing Uncertain<T> [61]:
a programming language abstraction for uncertain data. It presents a new type
system along with a set of operators that allows developers to explicitly expose
and reason about uncertainty.

2.2.5 Algorithm- and application-level AxC

Code
perforation

[64] Task drop-
ping/skip-
ping
. [65-68]
Algorithm
selection
[62,63] Skip-based
Others ap-
proaches
Anytime Relaxed
/ Evolu- Synchro-
tionary Software niza-
algorithms Application- tion [69]
level AxC
Bit-width
Incremental reduction
refinement & Data
algorithms type
Neural conversion
Network Memoization
approximation [70,71]
[72,73]

Figure 2.4: Algorithm- and application-level AxC

There have been also many works that targeted the application level, in the fol-
lowing we shortly decribe some of them:

e Algorithm selection [62,63]: traditional AxC techniques are often ad-hoc,
data-dependant and do not offer any guarantees on the QoR. [62] tempts to
tackle this problem using a framework called Green, that allows program-
mers to take advantage of approximation opportunities in a systematic man-
ner while providing statistical QoR guarantees. Green enables programmers
to approximate expensive functions and loops. First Green builds a model
of the studied approximation technique, e.g., loop perforation. This model
describes the variation of applications” QoR due to approximation. Based on
this model, Green generates a new program that is able to make decisions
as to whether or not run-time approximations should be performed. The
model built earlier is updated after each run, hence improving the statistical
QoR guarantees while achieving energy efficiency gains.

21

Chapter 2. State of the Art on Floating-Point Approximate Computing

e Skip-based approaches : these methodologies are based on suppressing
some parts of an application in order to reduce execution time and improve
energy efficiency at the expense of some accuracy loss. For example code
perforation [64] consists of skipping some iterations when the QoR con-
straints are relaxed. Similar techniques apply the same approach on threads
and tasks [68].

e Memoization : consists of pre-computing results of expensive function calls
and caching them for future use. If the function is called again with the
same inputs, the results are retrieved from the cache directly instead of re-
computing them. Such techniques can also be used in hardware (mainly on
FPGA platforms) in the form of look-up tables.

In [70], instruction memoization is applied to reduce the power consump-
tion and increase the performance of low-end/mobile multimedia systems
by reusing instances of an already executed operation. However, this tech-
nique is not always worth the effort due to the power consumption and area
impact of the required look-up tables. This is why the authors proposed a
fuzzy memorization technique that associates entries with similar inputs to
the same output at the expense of a small QoR loss (more than 30dB Signal-
to-Noise ratio) and achieving 12% energy saving instead of 3% using tradi-
tional memoization techniques.

Similarly [71] proposed a simplified software memoization technique ded-
icated to dynamically linked applications. The methodology has been ap-
plied on computationally expensive transcendental functions'. This tech-
nique is based on intercepting calls to the traditional transcendental func-
tions implemented in the standard C math library 1ibm. These calls are re-
placed by intermediate calls with the following behaviour: the look-up table
containing the pre-computed results is checked, if the corresponding result
is already present then it is returned, otherwise, the argument is forwarded
to the original 1ibm library function to be computed and stored back for fu-
ture use. Such techniques result in an additional execution time overhead in
the beginning because the look-up tables should be populated. However, at
the end it achieves a performance gain of up to 50% on Intel Ivy Bridge and
up to 10% on ARM Cortex-A9. The technique presented in the paper is not
approximate since the look-up table stores exact output results. However,
the authors presented a way to further increase performance gains using
AXC: returning similar outputs for inputs that are close enough.

e Approximation of functions using Artificial Neural Networks (ANNs):
in this category, ANNSs are used to approximate the behaviour of complex
software functions. The ANNs can be implemented either in software or
hardware. For example, in [72], the authors have proposed an approach
that selects and trains a HW Neural Network (NN) topology that mimics
a portion of imperative code. A learning phase is first carried out, where

!Transcendental functions are those that cannot be expressed in terms of a finite sequence of
algebraic operations (trigonometric functions, exponential functions, etc.) and hence are compu-
tationally expensive.

22

2.2. Approximate Computing Techniques: a Cross-layer overview

the compiler replaces the original code with an invocation of a tightly cou-
pled low-power accelerator called a Neural Processing Unit (NPU). The
authors have proposed a programming model that allows developers to de-
fine “approximable” code regions (i.e., regions that can tolerate errors) to be
accelerated with the NPUs. This technique provides results more quickly
and efficiently than executing the original code and leads to a speedup of
2.3x and energy savings of 3.0x on average while maintaining an accuracy
greater than 90% in all cases. Similarly, [73] pushes the previous idea fur-
ther by accelerating the neural network inference using a configurable net-
work of NPUs implemented on FPGAs that are available on off-the-shelf
programmable SoCs. For a similar accuracy loss as in [72], measurements
on a Xilinx Zynq FPGA show an average of 3.8x speedup and 2.8x energy
savings.

2.2.6 Architecture level AxC

AxC at the architecture level encompasses a set of methodologies that exploit the
inherent error-resilience ability of some applications to leverage energy efficiency,
performance and area optimization for computers” main parts: memory, storage,
cache, interconnects, Functional Units (FUs), and [SAs.

Approximate
Memory
& and
Storage
Approximate [78-84]
Networks
[85,86]
Instruction
Architecture- Set Archi-
Floating- level AxC tectures
Point [26,29,31]
arithmetic
Functional
Units
Fixed-Point
arithmetic Approximate
Caches
[74-77]
Integer Alternative
arithmetic number
represen-
tations Load value
approx-
Soft imation

coherence

Figure 2.5: Architecture-level AxC

2.2.6.1 Approximate Caches

A CPU cache is a hardware unit intended to minimize the cost of accessing data
stored in the main memory. Caches are small and fast memories that are very
close to the processor core. They store copies of frequently used data from the

23

Chapter 2. State of the Art on Floating-Point Approximate Computing

main memory. There are many levels of caches (LI, L2, ...), but they are all based
on two principles:

e Spatial locality: when an instruction is executed, it is more likely that the
nearby instructions will be executed soon. Similarly, when a data is accessed,
it is more likely that the nearby data elements will be accessed soon too.

e Temporal locality: when an instruction is executed, it is likely that it will be
executed again. This is mainly the case when dealing with loops, since the
same instructions are executed multiple times.

An approximate cache is proposed in [74], which approximates similar val-
ues and saves energy in the L2 cache of General-Purpose Graphics Processing
Units (GPGPUs). The paper is based on the observation that threads within the
same warp” tend to write values into the memory that are very close arithmeti-
cally. Hence, similar values are identified at run-time and are written only once,
which leads to data size reduction. This process is referred as data deduplication. A
dynamic energy reduction of about 52% is measured with minimal quality degra-
dation while maintaining performance across a diverse set of applications.

In [76], the authors exploited the inherently noisy or imprecise data that some
error-resilient applications operate on using two approximate cache architectures:
1) one that forgoes loading data from caches when the processor can make a rea-
sonable estimate of the value that is needed, and 2) another that selectively deter-
mines which values to store in the cache through approximate deduplication of
data. The first technique allows the processor to achieve execution time savings
by fetching an approximate value instead of going through the cache miss pro-
cess. The second one helps increase the effective capacity of the cache memory by
storing approximate values instead of precise ones. Results show a clear increase
in the effective cache capacity.

Authors of [77] worked on improving the data deduplication process by asso-
ciating the tags of multiple similar blocks with a single data array entry to reduce
the amount of data stored, hence achieving 1.55%, 2.55x and 1.41 x reductions in
circuit area, dynamic energy and leakage energy without harming performance
nor incurring high application error.

Such methodologies can also be applied to other kinds of caches such as packet
classification caches. For example, in [75], accuracy is introduced as a design
space exploration parameter in addition to time and space locality. The paper
shows nearly an order of magnitude cost savings in terms of memory capacity at
the expense of misclassifying one billionth of packets for IPv6-based caches.

2.2.6.2 Approximate Networks

Network on Chips (NoCs) did not escape from the attention of the AxC commu-
nity. For example, [85] presents an approximate NoC architecture named APPROX-
NoC: a hardware data approximation framework with an online data error con-
trol mechanism for high performance NoCs. This work also uses data dedupli-

2A collection of threads, typically 32, that are executed simultaneously.

24

2.2. Approximate Computing Techniques: a Cross-layer overview

cation for aggressive compression thereby reducing the volume of data trans-
ters across the chip. An evaluation shows up to 9% latency reduction and 60%
throughput improvement compared with State of the Art NoC data compres-
sion mechanisms, while maintaining low application error. On average, the tech-
nique achieves a QoR that is always above 99% across the studied benchmarks
even though a 10% error threshold is allowed. Another example is presented
in [86], where an optical NoC supporting the transmission of approximate data
is proposed. This time the approximation is introduced when transmitting a pro-
grammable amount of least significant bits of Floating-Point numbers with low
power optical signals. Simulations results show that approximations lead to up
to 42% laser power reduction for an image processing application with a lim-
ited degradation at the application level, compared to an interconnect involving
only robust communications. For instance, for a Mean Squared Error threshold
of 4.8 x 107, an edge detection application can still provide acceptable results in
exchange of 20% laser power saving.

2.2.6.3 Approximate Memory and Storage

Memory and storage technologies consume a lot of energy due to off-chip read-
/write operations and data retention. Several works targeting this area studied
ways for trading-off energy efficiency against the reliability of stored data.

Static Random-Access Memory (SRAM) spends significant static power on
retaining data, so they represent an opportunity for energy versus reliability trade-
offs [78-80].

Similarly, Dynamic Random-Access Memory (DRAM) structures use a huge
amount of energy on refresh cycles. One can define “approximable” or non-critical
memory regions (e.g., containing image data, CNN weights, integers’ LSB bits
etc.) that can be refreshed less frequently [81,82].

Approximations can also be applied to non-volatile Solid-State Storage (SSS).
For example, in [84], the authors proposed mechanisms that enable applications
to store data approximately and show that doing so can improve the performance,
lifetime, or density of solid-state memories.

Other disruptive ideas have been proposed in the literature. For example, [83]
presents high density non-volatile Spintronic memories with near-zero leakage.
The major challenge facing such devices is the energy consumed by read and write
operations. The storage on these devices can be optimized in a configurable way
by leveraging the capability of many applications to tolerate impreciseness in their
underlying computations and data. The memory has been integrated as a scratch-
pad in the memory hierarchy of a programmable vector processor and exposed
to software by introducing quality-aware load/store instructions within the ISA.
The ISA of the associated vector processor has been enhanced with new load/-
store instructions that provide a field for programmable quality, enabling appli-
cation software to control which instructions are to be approximated and which
ones should be executed precisely on precise hardware. The paper demonstrates
40% and 19.5% improvement in memory energy and overall application energy
respectively, for negligible (<0.5%) QoR loss across a suite of recognition and vi-
sion applications.

25

Chapter 2. State of the Art on Floating-Point Approximate Computing

2.2.6.4 Functional Units

A FU or Execution Unit (EU) is a part of the CPU dedicated to execute assembly
instructions such as computational operations (e.g., addition, subtraction, multi-
plication, etc.) or others (load, store, ...). FUs can be configuration or data regis-
ters, internal control unit or other internal units such as Arithmetic Logic Units
(ALUs), Floating-Point Units (FPUs), Load-Store Units (LSU) and Accelerated
Processing Units (APUs). Modern processors usually contain many parallel EU
that are often pipelined.

§1 Integer Arithmetic Units Throughout the years, many integer arithmetic
unit architectures have been developed. One of the most used architectures in the
industry is the Ripple-Carry Adder (RCA) depicted in Figure 2.6. It is composed
of n interconnected 1-bit full adders, where each adder i receives as an input the
carry of the previous full adder (i — 1). Although it is a small and accurate adder,
this architecture suffers from a limitation: the critical path is very long, since the
carry should be propagated from LSB bits up to MSB bits. The critical path in-
creases with the bit-width of the adder.

Critical Path
an.; by a; b; ap; by ap |b0

L L L

, . | ,
Cn-1 Ci+i Ci C2 Cy FA €o
_

I* Ffj_‘____";i—__ff___‘_—_':it_ff__t_ l N

Cout Sp.i 8 8y 8p

Figure 2.6: Architecture of an n-bit RCA. FA: a 1-bit full adder.

The latency limitation of this adder is known from the mid 1800s and a new cat-
egory of adders has since been introduced: the Carry-Lookahead Adder (CLA).
This architecture (Figure 2.7) consists of calculating single (or groups of) inter-
mediate carry bits, which reduces the wait time to calculate the final sum and
obtain the final result. The price to pay for this CLA is essentially circuit area and
complexity overheads.

To overcome these limitation and to reduce the circuit’s hardware complexity,
many approximation schemes have been proposed in the literature. For example,
in [87], authors have proposed a speculative approach where the carry chain is
broken before the propagation is finished, hence allowing to optimize execution
time. However, since the speculated results could be different than the results at
the end of propagation, there might be corrections to perform. Authors show that
the overall performance sees an increase in spite of the overhead caused by recov-
ering from speculation mistakes. A similar approach has been overtaken in [88],
where authors proposed an exponentially faster adder architecture that produces
incorrect results for a very small fraction of input combinations, along with error
detection and recovery mechanisms. Both of these works propose variable-latency
adders paving the way toward variable integer arithmetic.

26

2.2. Approximate Computing Techniques: a Cross-layer overview

Critical Path
@y 1by g a; b; ay by ﬂ'mbo

I
B L LT

Cp

|
|
|
o |
Cout Sn-1|Pn-18n-1 S | Pi| i Sr|Pig: So (Pol&o

A A A A4

Carry Lookahead Generator

Figure 2.7: Architecture of an n-bit CLA. SPG: the cell used to produce the sum, generate
(9; = a;b;) and propagate (p; = a; + b;) signals.

An alternative technique to leverage approximation for speedup and energy
efficiency is to use redundant arithmetic [89,90]. This number system allows to
start computation from MSB bits or LSB bits independently without waiting for
the carry to propagate. Using this technique, one can, for example, start com-
putation from the MSB and compute only the necessary bits depending on the
criticality of the application being executed. However, there are two downsides to
this approach: 1) conversions at FU’s IOs from/to a redundant number represen-
tation to the usual binary representation is expensive in terms of delay and area,
and 2) each bit is computed in one cycle, meaning that an exact 32-bit wide addi-
tion would take at least 32 cycles to finish in contrast to the RCA or CLA adders
which only take one to two cycles to accomplish. This implies that the redundant
number system is more suitable when multiple operations are performed in paral-
lel or when a set of instructions is executed entirely in the redundant number sys-
tem to avoid intermediate conversions from binary to redundant and vice-versa,
or for SIMD instructions.

§2 Fixed-Point (FxP) Arithmetic Units the FxP representation is a number
system that uses integer arithmetic hardware to represent fractional values often
in base 2. Each number z is represented with a sign bit, an integer part of size m
bits, and a fractional part of size n bits. The number x can be represented as an
integer number p such that

x = p x K, where K is a fixed scale factor such that K = 27"

FxP uses speed-, power-, and cost-efficient hardware integer arithmetic units.
However, FxI’ engineering is a time-consuming task, typically demanding 25% to
50% of the total hardware design time [91]. Moreover, it is a challenging task, since
the designer should keep track of the virtual decimal point and carefully decide
on the dimensions n and m: where n represents the dynamic range and m repre-
sents the precision of the representation. This decision is data- and application-
dependant and is a complicated process. For that, many works have proposed
tools and methodologies that find the best word-length w, where w = m + n,
adequate for a given application. If m is very short, the dynamic range of repre-

27

Chapter 2. State of the Art on Floating-Point Approximate Computing

sentable numbers might not be sufficient and overflows might occur during com-
putations. Otherwise, if n is very short, precision will be lost during computation.

This problem is referred to as Word-Length Optimization (WLO) and it can
be formulated as follows:

Given an application A and an input dataset D, what is the optimal
triplet (w, m, n) that minimizes the circuit cost under a given QoR con-
straint?

Many works have tried to tackle this problem in the past using genetic algo-
rithms [92], flow graphs [93], geometric programming [94] and others. How-
ever, since such applications usually contain dozens of different FxP variables,
such a problem needs a scalable approach. To that end, authors of [95] proposed
a method to improve the scalability of WLO for large image processing applica-
tions that use complex application-level metrics such as the Structural Similarity
Index Measure (SSIM) metric’. The method consists of decomposing the appli-
cation into smaller kernels, then characterize the impact of approximating each
kernel on QoR/cost while taking interactions between these kernels into account.
The approach improves the scalability while finding better solutions for image
processing pipelines against a 0.9 to 0.99 SSIM Quality of Result.

§3 FP Arithmetic Units the fixed scale factor K defined earlier for the FxP
number system makes the range of representable numbers uniform but very lim-
ited. For example, if a program manipulates numbers that have different orders of
magnitude, usingFxP representation would not be suitable. This is why a system
with more flexible range and precision is needed. The FP representation was intro-
duced to solve this problem. Moreover, hardware and software implementations
enable a faster design time, a considerable performance boost, and an enhanced
software portability and flexibility.

The underlying details of the representation will be presented in Section 3.2 as
itis at the heart of this thesis. Thereafter we only give a brief summary to facilitate
the understanding of the FP related works.

FP represents a real number z with an approximate number # which has a
sign bit s, a mantissa field (of size M bits), an exponent field (of size £ bits), and
considering some base (usually 2 or 10), such that :

T = (—1)"8" x (1 + mantissa) x base®™P"*

Since its introduction, FP representation enabled programmers to manipulate
numbers with different orders of magnitude or non-uniform precision within the
same context (e.g., the distance between galaxies, the electric charge of an electron,
...). It allows using the same bit-width without worrying about the position of the
decimal point since all the processing/computing is offloaded to a specialized FPU
hardware.

The de facto standard that has defined the basics of such number system is the
IEEE 754-2008 [28]. It defined many standard formats, such as the 32-bit single-
precision format (called float in the C language) and the 64-bit double-precision

3SSIM measure the similarity between two images: a reference one and an approximated one.

28

2.2. Approximate Computing Techniques: a Cross-layer overview

format (called double in C), and the 128-bit quadruple-precision format (called
__float128 in C). Over the years, other formats have emerged, such as the 80-bit
extended-precision from Intel (called long double in C).

Although FP has many advantages, it comes with some limitations: 1) FPUs
are very power-consuming for compute-intensive applications, 2) they add a con-
siderable area overhead, 3) the standard types are over-designed for the majority
of modern applications (e.g., computer vision, ML, CNNs), and 4) they have a
fixed bit-width that prevents the programmers from actually tuning the compu-
tations” precision at run-time.

To overcome some of these limitations, many industrials introduced their own
custom non-standard formats suitable for specific applications. For example, In-
tel has proposed an architecture called Nervana Flexpoint [96] which is suitable
for Deep Neural Network (DNN) applications. The Microsoft Brainwave project
[97] introduced a 9-bit float format for the same application class within a data-
center context. Similarly, Google introduced a 16-bit format called “bfloat” in their
Tensor Processing Unit (TPU) architecture [98]. NVIDIA also introduced its cus-
tom 19-bit format called “TF32”, implemented in dedicated tensor core accelera-
tors [99]. In academia, works such as [100,101] proposed FPUs with multiple-
precision capabilities.

Although these works have solved many problems, there is still room for sub-
stantial improvement, especially in the field of variable precision or transpreci-
sion. Further details will be discussed in Chapter 3.

§4 Alternative number representations similarly to integer arithmetic, alter-
native number systems have been proposed to address a specific limitation of ei-
ther FxP or FP.

For example, in order to define a FP format with inherent variable precision,
the Universal Number (UNUM) number system was proposed by John L. Gustafson
[102,103]. The first version Type I UNUM had a variable-width storage format
for both the exponent and mantissa and an additional bit used to determine if the
number is an exact number or if it is an interval between two consecutive exact
UNUMs. Subsequent computations on Type I UNUM numbers were performed
using interval arithmetic. The second version Type II led to a redesign of the
number system that made it incompatible with the IEEE 754 standard. Then came
the third generation (Type III) that introduced two concepts: POSITs for FP-like
operations, and VALIDs for interval arithmetic. POSIT is the most hardware-
friendly version of the UNUM system. This format came to tackle a set of chal-
lenges faced during hardware implementation of the first two types. In fact, the
feature that first motivated UNUMSs, namely the variable bit-width, became the
main bottleneck later during hardware implementation.

Given a FP format and a POSIT format with the same bit-width, POSITs per-
form equally or better than Floating-Point in terms of accuracy [104], since it en-
ables a larger dynamic range and more fractional precision. However, in terms
of hardware cost, authors of [105] have demonstrated that IEEE-754 FP operators
remain between 30% and 60% faster and smaller than their POSIT counterparts.
This is mainly due to the extra encoding and decoding steps required to unpack
variable-size POSITs. This is also due to the higher accuracy that requires wider
data-paths.

29

Chapter 2. State of the Art on Floating-Point Approximate Computing

Other number systems such as the Logarithmic Number System (LNS) can
also be used to represent real numbers in computer and digital hardware. This
system is especially practical for digital signal processing [106,107]. LNS is very
efficient in terms of area and delay for multiplication and division. However, other
operations such as addition, subtraction, and conversion are too complex, too
costly. The overall global penalties prevents the use of LNS for general-purpose
CPUs, except for a small niche of algorithms (when at least 70% operations are
multiplications or 50-60% are divisions) or in an FPGA context. Otherwise, the
impact on area and latency overhead is too important [108].

More disruptive ideas such as redundant arithmetic (as seen in Paragraph §1)
have found their way to be part of FP computation. For example, in [109], the
concept of “anytime instructions” has been introduced: enabling FP> assembly in-
structions to be executed at a programmable accuracy, accuracy specified in the
instructions’ binary opcode itself, as opposed to fixed-length Floating-Point. The
presented approach leads to an average 15% energy savings when computing a
Floating-Point addition with an acceptable relative error of less than 0.1% and up
to 39% energy savings for larger applications such as the Jacobi iterative algorithm

§5 ISA and cross-layer AxC approaches in the previous paragraphs we showed
that ad-hoc individual AxC techniques can lead to very cost- and energy-efficient
hardware and software systems when compared to standard and conventional
components.

However, when doing a holistic and comprehensive system-level evaluation
of these approaches, it results in more limited gains. For example, in [110], an
error-tolerant multiplier achieving up to 46% energy savings has been proposed.
Similarly, in [111], an approximate 16-bit adder is shown to achieve 30% energy
savings. To study the overall system-level gains, these components are integrated
in a RISC-V processor: the core has been augmented with an approximate adder
and multiplier by extending the ISA with additional instructions and proper com-
piler support. For instance, exact addition operations use the assembly instruction
“add” and are executed using the exact adder, whereas approximate additions are
processed through approximate adders using the approximate assembly instruc-
tion “a.add. When estimating the energy dissipated in the entire processor, the
authors found that it only achieves a maximum of 7.5% energy saving against an
acceptable output image degradation, hence concluding that the benefits of using
approximate integer operators only in embedded systems processors, have yet to be
proved [26].

Others have taken more drastic approaches, by combining a set of different
AxC techniques at once. One of the most prominent related works is done at the
University of Washington [31]. The authors integrated DVES with various other
AxC techniques (e.g., ISA extension, FP bit-width reduction, near-threshold com-
putation, ...) into a single SoC model in order to evaluate the order of magnitude
of the potential gains. The paper proposed an efficient and careful mapping of
AxC programs onto hardware. An ISA extension including approximate opera-
tions and storage has been developed as well as a dedicated architecture, called
Truffle, supporting that ISA extension. This architecture puts in practice the DVS
concept since two voltage levels are used: a high (nominal) voltage for precise
operations and a low voltage for approximate operations. Two processor micro-

30

2.3. From AxC to Transprecision Computing: Toward Variable Precision
Floating-Point

architecture configurations have been proposed: an in-order one and an out-of-
order one. Several applications have been evaluated demonstrating energy sav-
ings up to 43%.

The same team also worked on specialized languages and compilers (e.g., En-
er] [56], ACCEPT [112]) that translate source code into specific binary code that
is able to run on unreliable hardware. They also integrated approximate FP and
integer arithmetic Units that are used when an instruction is required to execute in
approximate mode. Other software techniques such as the skip-based approaches
presented earlier have also been implemented in software. Such cross-layer ap-
proaches are the ones that leverage AxC for aggressive energy efficiency gains.

These works and others showed to which extent applying AxC only on elemen-
tary blocks (e.g., adders, multipliers, ...) is not much effective at the system-level
unless agressive cross-layer approaches are put together [13,32].

2.3 From AxC to Transprecision Computing: Toward
Variable Precision Floating-Point

The Approximate Computing paradigm has known a clear shift in the last few
years toward more adaptive, variable, and mixed-precision computing referred to
as TC [27,113]. This paradigm targets mainly Floating-Point computations and
storage, where the goal is to design more flexible, run-time variable precision and
efficient architectures that trade accuracy against cost and resource savings.

2.3.1 The cost of Floating-Point Arithmetic

As mentioned in section 2.2.6.4, FPUs are ubiquitous in modern architectures, in-
cluding General-Purpose Processors (GPPs) and Application-Specific Instruction-
Set Processors (ASIPs), since they boost the performance of computationally in-
tensive applications. However, FPUs occupy a significant part of CPU core area,
and can be responsible for extensive power consumption and high memory band-
width usage.

From a circuit area point of view, Figure 2.8 from [114] shows the area distri-
bution of an entire RISC-V core called Ariane [115], including an FPU containing
both standard formats (FP64, FP32) and transprecision reduced formats (FP16
and FP8) FMA. The FPU occupies a little more than 30% of the entire core with
cache memories excluded.

Figure 2.9 presents the area distribution among the different components of
a standard FPU*, which clearly shows that the Fused Multiplication-Addition
(FMA) blocks and the division/square root block take up to 81.4% of the total cell

4The RV64FD RISC-V standard extension architecture from [101,114] open-sourced at [116],
synthesized for a 28nm FD-SOI technology, with a target frequency of 200MHz and automatic
clock-gating enabled.

31

Chapter 2. State of the Art on Floating-Point Approximate Computing

area of the FPU. The rest is occupied by the control logic and conversion/compar-
ison blocks.

7 A0 AR OGN K aeFpeP o0 o0
RO R0 ‘I)Q@?‘? FR %™ o (0 o

<

7% 5% 4% 3% 3% 6% 3% | 4% 4% 4% 11% 10% 33%
53 40 29 24 23 47 19 {33 29 32 79 75 247 KGE
} FPU } Core 441

Figure 2.8: Area distribution of the entire Ariane RISC-V core, excluding cache memories
(in kGE, 1 GE (gate equivalent) ~ 0.199 pm?) [114]

Others (arbiters, control, ...)
6.3%
Comparison
1.6%
Conversion
10.7%

FP64 FMA
46.6%

DIV/ISQRT 7389.8592

21.0%

FP32 FMA
13.8%

Figure 2.9: Cell area distribution of a standard RISC-V RV64FD FPU

From an energy efficiency point of view, the energy consumption associated
with FP arithmetic and memory operations are known to be greater than their
integer counterpart [117], making FPU optimization a priority. Figure 2.10 (ex-
tracted from [114]) depicts the contribution of each core element, including the
LSU, FPU, ALU, caches efc. into the overall energy consumption of each RISC-V
instruction (left axis). For example, 26% (yellow horizontal bars) of the energy
dissipated during a double-precision FMA operation (i.e., the RISC-V instruction
fmadd.d) is consumed by the FPU. One can see also the great impact of other com-
ponents such as instruction and data caches on the overall energy consumption
(static and dynamic).

The need for wide dynamic range, as well as the software portability and flex-
ibility ensured by FP have motivated the selection of Floating-Point over other
number systems. However, there is a serious need for aggressive optimization of
FP memory and computation usage.

2.3.2 The Need for Variable and Reduced Precision Floating-Point

In order to spot the limitations of existing works in the literature, especially in
terms of reduced variable precision, we first present the typical FI’ algorithm im-
plementation flow as shown in Figure 5.9. It is a five-step process.

32

2.3. From AxC to Transprecision Computing: Toward Variable Precision
Floating-Point

fid

mul

@ Rest of the Core

fmadd.d @ Instruction Cache

@ Data Cache

@ Load/Store Unit

@ GP Register File

B FP Register File
Integer ALU
Transprecision FPU

fmadd.s

fmadd.b

vfmac.s

Instruction [RISC-V Mnemonic]

vfmac.b

0 10 20 30 40 50 60 70
Average Energy per Data ltem [pJ]

Figure 2.10: Energy dissipated by RISC-V instructions in the RISC-V Ariane core [114].

Coare-grained Variable

Algor%t'hm desi@ Na1‘ve 1mp lemen‘ta}tlon Type Optimization
& stability analysis ~— with high-precision ~ — (VTO)
[118-120] EP types only [121-125]
}

Fine-grained Arbitrary
Reduced Precision
(ARP)
[125-128]

Dynamic optimization with
Variable Precision in Time (VPT) -~
[129]

Figure 2.11: Typical FP application implementation flow.

§1 Algorithm design and stability analysis: this consists of constructing the
mathematical foundations of the algorithm and verify its numerical stability i.e.,
how it behaves vis-a-vis different inputs and edge cases. For example, some for-
mulas can sometimes be accurate for some point in some intervals whereas they
can be subject to rounding errors and cancellations in other intervals.

To this end, many tools have been proposed. For example Herbie [118] de-
tects inaccurate expressions and finds more accurate replacements for each input
interval. For instance, consider the following line:

1

VI + Vo — Jrrls NG

The expression in the left side is inaccurate when = > 1; it is hence replaced by
the equivalent but more accurate expression for all z values in the right side. These
rewrites are usually done manually by FP’ experts. Herbie came to automate this
process based on a search heuristic that estimates and localizes rounding error us-
ing sampled points, then applies a set of of rules stored in a database to generate
improvements. It then takes series expansions, and combines improvements for
different input intervals. Accuracy is improved overall while imposing a median
performance (execution time) overhead of 40%. Herbgrind [119] is a tool based
on Herbie and the famous dynamic binary instrumentation and profiling tool Val-
grind [130]. Herbgrind analyzes binaries to find inaccurate FP’ expressions and

33

Chapter 2. State of the Art on Floating-Point Approximate Computing

point out their places in the source code. It can also identify and characterize the
inputs that produce unstable results. FpDebug [120] is another dynamic binary
instrumentation tool based on Valgrind that supports the programmer in finding
accuracy problems. FpDebug uses the concept of shadow computation: every FP
computation is performed in higher precision in the background and compared to
the actual result computed by the program. This helps to track errors” evolution
and to detect catastrophic cancellation problems [131,132].

§2 Variable Type Optimization (VTO) the next step is often a naive imple-
mentation, where all variables are declared in high precision formats e.g., us-
ing double or long double type variables in C/C++. Next, the process of VIO
[121-125] is overtaken. For a given constraint, its objective is to migrate as many
variables as possible from high precisions to lower ones. For example, by carefully
changing some double variables to float or long double variables to double, ei-
ther manually or automatically, one can still satisfy a given QoR constraint on the
output.

In this area, tools such as PROMISE [121] have been proposed. PROMISE is
a tool that optimizes the numerical types in a program by taking into account
the requested QoR constraint on the computed results. It is based on a technique
called Discrete Stochastic Arithmetic (DSA) [133] that enables the estimation of
round-off errors. This technique is coupled with a search heuristic called Delta
Debugging [134], which enables a fast exploration of all the possible combina-
tions of variable types in a source code. Many similar tools exist, such as Preci-
monious [123] which is also based on Delta Debugging. It is a dynamic program
analysis tool that assists developers in tuning the precision of FI’ programs lead-
ing to speedup improvements as high as 41%. In [124], the authors augmented
Precimonious with a new approach called Blame Analysis. The latter is a form
of shadow computation, where FP instructions are performed in different levels
of precision to determine the most optimized data type that enables a minimum
level of QoR. This technique leads to up to 40% execution time gain and up to
38x faster analysis time compared to Precimonious. Within the same context, we
can find CRAFT [122], which migrates 64-bit double-precision operations to 32-
bit single-precision by modifying the applications’” binary executable instead of
modifying their source code. Precision tuning is performed following a search
algorithm that identifies code regions that can be migrated to lower precision and
carefully replaces the double-precision FP instructions with their single-precision
equivalent. Despite a 10x execution time overhead spent on analysis compared
to other SoA works, the tool produces modified programs that run twice as fast
in average.

§3 Arbitrary Reduced Precision (ARP) the VTO step is a limited coarse-grained
optimization process since it does not enable to optimize data bit-width and preci-
sion down to the bit level. To overcome this limitation, ARP can be used [135]. Its
goal is to perform a fine-grained bit-width optimization. It consists of reducing the
exponent and/or mantissa bit-widths to either narrower standard bit-widths such
as the 16-bit binary16 format [28], or custom reduced arbitrary formats such Intel
Nervana’s Flexpoint format [96], Microsoft Brainwave’s 9-bit floats [97], Google

34

2.3. From AxC to Transprecision Computing: Toward Variable Precision
Floating-Point

TPU’s 16-bit BFloats [98], and NVIDIA’s 19-bit format [99], or even craft new cus-
tom arbitrary formats.

To this end, tools such as fpPrecisionTuning [125] share the same goal as VTO
but with a different approach: a distributed algorithm analyzes the variables and
transforms Floating-Point signal processing programs to their arbitrary preci-
sion Fixed-Point equivalent, hence enabling arbitrary bit-width reduction. This
leads to about 82% and 66% average reduction in hardware resources when im-
plemented on FPGA when compared to the standard double-precision and single-
precision versions with no quality degradation, respectively.

Other SoA tools and libraries mainly focused on the software simulation of
the impact of such approximate behaviour on applications” QoR. However, these
tools / libraries do not provide hardware architectures that take advantage from
their results, so they still run on full-precision hardware since the programs are
only simulated in software. Among these works, we find the GNU MPFR (Mul-
tiple Precision Floating-Point Reliable) library [126] and GNU Multiple Preci-
sion Arithmetic (GMP) library [136]. These are C libraries for multiple-precision
Floating-Point computations. They provide special data types with configurable
precision as well as computational functions and they are more suitable to sim-
ulate extremely high precisions e.g., hundreds of mantissa bits. Other libraries
such as FlexFloat [128] also provide both specific C data types for arbitrary pre-
cision simulation and elementary functions. However, it only provides arbitrary
reduced precisions and does not support arbitrary higher ones. Similarly, FloatX
[127] is an improved C++ version that leverages modern programming language
ideas such as templates, operator overloading, efc. to simplify its integration in ex-
isting applications and minimize manual source code modification. Both FlexFloat
and FloatX are more efficient than MPFR and GMP for reduced precisions in terms
of simulation time. The common point for all these libraries is that they all need
manual rewriting of the source code in order to simulate the effects of FP approx-
imations on software applications” Quality of Result.

In [29], a variable precision framework that accelerates scientific computing
applications has been introduced. Specifically, the authors presented a Floating-
Point RISC-V coprocessor able to reach up to 512 bits of precision based on the
UNUM format (Paragraph §4) along with an extension of the RISC-V ISA and a
corresponding programming model that enables the acceleration of applications
written with the GMP library. A speed up of up to 18x has been observed while
keeping computational errors within the same order of magnitude as with GMP.
The advantage of this work is that it addresses many of the limitations mentioned
earlier, especially by providing hardware acceleration for variable precision. How-
ever, this accelerator is only dedicated to higher precisions (64 to 512 bits) and
does not support reduced ones.

§4 Variable Precision in Time (VPT): VPT is a further fine-grained FP cost
optimization technique that started to emerge for CPU-based architectures. It al-
lows precision to vary arbitrarily not only statically in source code (spacial vari-
ation), but also at run-time (temporal variation). For example, let’s assume a
Floating-Point double (64-bit double-precision format) variable x that is declared
inside a loop. If VTO is applied, the variable + would be demoted to float for
example (32-bit single-precision format). If we further optimize using ARP, we

35

Chapter 2. State of the Art on Floating-Point Approximate Computing

could reduce its size to, let’s say 20 bits, but this size would be fixed during the
whole execution time. VPT can further optimize computations, by choosing lower
precisions depending on the computed results during execution time. We can
imagine starting with a very short format e.g., 10 bits, then increase it to 12, then
15, and so on and so forth until reaching 20 bits, hence achieving more aggressive
optimization. If the application is error-resilient and computational errors are tol-
erated, AXC can be leveraged to further reduce the precision and hence improve
the energy efficiency.

To this end, authors of VPREC [129] have proposed an automatic tool that
evaluates the effect of precision variation for each computational operation (e.g.,
addition, multiplication, ...) over time, which is particularly useful in iterative
schemes. The proposed tool emulates standard FI” operations in lower precision.
It has been applied for a large High-Performance Computing (HPC) application,
achieving 28% to 67% reduction in communication volume. However, as we will
see in Chapter 6, this methodology has also its limitations. The most relevant one
here is the fact that it is only intended for software simulation and there is no
proper hardware to support such behaviour.

2.3.3 Summary comparison of Transprecision Computing SoA
techniques

Table 2.3 presents a short comparison between the different Transprecision Com-
puting SoA tools presented previously. The comparison is based on six criterias
hereafter discussed.

Localization all the presented tools, except VPREC, inject the Floating-Point ap-
proximations in the source code or in the executable binary i.e., only the spatial
dimension is explored. This means that, no assembly instruction can change its
precision at run-time. VPREC on the other hand enables exploring the temporal
dimension i.e., an instruction can vary its precision in time. In order to also explore
the spatial aspects with VPREC, the latter should be used after having performed
VTO with another tool such as Promise for example.

Support for mixed-precision and arbitrary precision all the presented tools
have support for mixed-precision i.e., they allow to have mixed single- and double-
precision operations and variables in one program. Arbitrary precision signifies
fine-grained bit-level precision variation. VPREC and Promise are the only tools
based on Discrete Stochastic Arithmetic (DSA). DSA is a technique that consists
on injecting small rounding error variations at the level of instructions in order to
evaluate the overall resiliency of applications.

Support for automatic search automatic tools are able to provide search algo-
rithms to find the best suitable variable types’ configuration that optimizes cost.
Whereas non-automatic tools require rewriting the application and either imple-
menting specific search methods or relying on experts” knowledge to decide which
variables can be migrated to low precisions.

36

2.3. From AxC to Transprecision Computing: Toward Variable Precision
Floating-Point

Granularity in terms of granularity, we distinguish between coarse-grained and
fine-grained tools, which is directly related to the support for arbitrary precision.
The first five ones are coarse-grained due to the fact that they only allow applica-
tions to use standard FP precisions (32 / 64 / 80 / 128 bits). The remaining tools
are fine-grained since they enable the user to control the precision at the bit level.

Intrusiveness the presented tools are very intrusive to source code or to the bi-
nary executable. However, this intrusiveness is masked for the ones that are auto-
matic, since the tools handle the transformation process instead of the program-
mer. Although, from our experience, some manual tweaking is always needed to
get the tools and the scripts working, but this is a purely technical limitation.

Mixed Arbitrary Round.
Tool Localization Automatic Granularity
prec. prec. Error
Precimonious [123] Spatial v Coarse
Blame Analysis [124] Spatial v v Coarse
Promise [121] Spatial v v Coarse
CRAFT [122] Spatial v v Coarse
fpPrecisionTuning Spatial v v Coarse
[125]
MPFR / GMP [126, Spatial v vl Fine!
136]
FlexFloat [128] Spatial v vl Fine!
FloatX [127] Spatial v vl Fine!
VPREC [129,137] Temporal v vl v v Fine!

! Behaviour supported in simulation only.

Table 2.3: Comparison of State of the Art tools (Inspired from [129])

From the previous comparative study we conclude that the most State of the
Art technique is VPREC [129] . This work will constitute the SoA baseline against
which our contributions will be compared, especially in Chapter 6. Although
VPREC was proposed and used for the High-Performance Computing context
and for scientific computing applications, our work builds on top of the exist-
ing Variable Precision in Time concept. Our work aims to alleviate some of its
limitations but in the context of TC applied to embedded and application-class
General-Purpose Processors for error-resilient applications.

37

Chapter 2. State of the Art on Floating-Point Approximate Computing

2.4 Conclusion

In this chapter, we saw an overview of the existing SoA tools and techniques
in the AxC topic in general. Then we saw how the field evolved to Transprecision
Computing with a focus on Floating-Point computation and storage. After that,
a summary of existing tools related to FI” program optimization techniques was
presented.

Through this brief overview, we conclude that there is still room for improve-
ments. In this manuscript, we will focus on the following improvements :

e Proposing both a hardware-friendly FP’ approximation approach and a tool
that enables non-intrusive simulation of applications” QoR using reduced
arbitrary precision (Chapters 3 and 4)

e Providing a hardware floating-point unit that takes advantage from the pro-
posed approach and tool to achieve significant energy efficiency gains (Chap-
ter 5).

e As a direct application of the whole developed features, proposing an it-
erative algorithm scheme that enables precision to vary in time in a self-
adaptive way without programmer intervention (Chapter 6).

38

A Non-intrusive Approach for
Floating-Point Approximation

Contents
31 Introduction 41
3.2 Background: The Floating-Point (FP) model 42
32.1 Definitions o oo oL 42
3.2.2 FP numbers through a simplecase 44
3.2.3 Standard formats Vs. arbitrary formats 45
3.24 Rounding and extension 46
3.3 Presentation of the Approach 48
3.4 Formalization of the Approach 51
3.4.1 Definitions & Notations 51
34.2 Approach formalization 52
3.4.3 The case of iterative operators 54
3.44 Selective Approximation (SA) 54
3.45 Problemstatement 55
35 Conclusionttt 55

40

3.1. Introduction

3.1 Introduction

Approximate Computing and Transprecision Computing applications are by
definition error-resilient. Many SoA works have proposed leveraging this aspect
for energy efficiency, performance, and complexity/area optimization. However,
most existing techniques are very hard to use because of many limitations high-
lighted in the SoA (Section 2.3.3).

First, existing tools are mostly static, i.e., they allow approximations at design-
time or compilation-time only and they are fixed during execution time. Once the
software application is compiled to binary code, it is no longer possible to adjust
these approximations. For example, Precimonious [123] takes a software applica-
tion source code as an input in C/C++ and generates a source code with an op-
timized number of high-precision variables with respect to a given input dataset.
This means that these approximations are injected at design time (during the de-
velopment). Once the generated source code is compiled, the approximations will
be static and fixed during all executions, regardless of the variations in inputs.

Second, other tools allow approximations to be dynamic, i.e., the precision
can vary at run-time. For instance, the FlexFloat [128] (and its C++ successor
FloatX [127]) library allows programmers to use approximate Arbitrary Reduced
Precision FP formats instead of the standard float, double, and long double for-
matsin C/C++. These libraries offer two versions of custom data structures: some
with static/fixed precision and others with dynamic precision. The ones with
static precision are more efficient to simulate. The dynamic ones take slightly
more space in memory and more execution time to be simulated, but the simu-
lation cost is affordable. However, these tools are only made for approximation
impact simulation, i.e., they only help understand the effects of precision reduc-
tion on the applications” QoR by simulation on top of exact FPU hardware. The
reason is that they don’t provide an appropriate hardware implementation that
can take advantage of its conclusions and actually evaluate energy efficiency.

In summary, most of the existing approaches go against the guiding principles
explained earlier in Section 1.1.3: 1) most of them are intrusive to source code, 2)
the ones supporting arbitrary reduced precision are only adequate for simulation
purposes with no adequate underlying hardware at hand, 3) they are application-
specific and data-dependant, and 4) they are static.

In this chapter, we propose a new approach that overcomes some of the SoA
limitations. The main idea of the approach is that, instead of operating at the
design stage by rewriting/transforming the source code or even the binary exe-
cutable, the approximations are introduced at run-time. With such an approach,
the methodology can be implemented either for software simulation (in this case,
we talk about interpretation, C.f., Chapter 4) or hardware (in this case, we talk
about execution, C.f., Chapter 5).

Before going through the details of the approach, we will first overview the
Floating-Point model and underline the required features necessary to a clear
understanding of the approach (Section 3.2). Then a description of the approach
will be presented in Section 3.3. After that, we will discuss a formalization of the
proposed method in the form of a Finite-State Machine model in Section 3.4.

41

Chapter 3. A Non-intrusive Approach for Floating-Point Approximation

3.2 Background: The Floating-Point (FP) model

This section will present the basics of the Floating-Point representation, start-
ing first from the standard IEEE 754-2008 [28] formats and generalizing to arbi-
trary precision arithmetic. Finally, we will end this section with a presentation of
the terminology used in this manuscript and the problem statement.

3.2.1 Definitions

Floating-Point arithmetic is a way to represent real numbers with a finite number
of bits approximately. It has been introduced to provide flexibility between range
and precision, especially when numbers of different magnitudes are used in the
same system. That is why it has found its way to mainstream General-Purpose
Processors.

A binary Floating-Point number z can be written in the form:

—1)* x (1.m) x 2¢°% if x is normal.
{(_) X() (31)

(=1)7 > (0.

m) x 217% if z is subnormal.

where :

e sis the sign bit,
e ¢ is the exponent. Its bit-width is denoted E.

€ = €pe1 ... €Ep_92€p_1

The exponent e is biased, , i.e., the value stored is equal to the actual exponent
plus a positive number called the bias b. The practical reason behind that is
simplifying the comparison of exponents in hardware by representing them
in an always positive form. The exponent bias b depends on the bit-width of
the exponent:

b=2F"1-1

Let £ denote the (actual) unbiased exponenti.e., £ = e — b.
e m is the mantissa' (or fraction). Its bit-width, denoted M, is called the pre-
cision of the representation.

m = Mmoo m .. Mpr—oMpr—1

The dot in the expressions (1.m) and (0.m) represents the decimal point. The
leading bit in these expressions is called the hidden bit and is denoted h. It
is equal to 1 in normal FP numbers and equal to 0 in subnormal numbers.

IPlease note that in our case, the mantissa does not include the hidden bit.

42

3.2. Background: The Floating-Point (FP) model

Significand
e
. B
Sign bit Exponente Hidden bit Mantissa m
! v = |
S| epeq1 --- EE-2€E-1 | h mg mq mp ... mpj-2 MpM-1
D RREhi E bits--------- L M bits=-------=-mmmmmmmmieee oo >
<€«— MSB bits -------mmmomeme e LSB bits ——>

Figure 3.1: Floating-Point number representation layout.

Definition 3.2.1. The hidden bit £ is a bit that specifies the nature of the FP num-
ber being handled. When the exponent and the hidden bit are both equal to zero,
the number is called a subnormal or denormal number; otherwise, it is called a
normal number.

Figure 3.1 depicts the layout of FP numbers in memory. Typical hardware im-
plementations contain an additional bit called the “hidden bit” h defined as fol-
lows:

The significand includes the hidden bit # and the fraction m

significand = h.mgmy ... mp_omp_1

To avoid storing the hidden bit in memory and use its space to gain more pre-
cision, the Floating-Point standard uses the exponent and the mantissa to deduce
the value of the hidden bit; when the exponent e is equal to zero and the mantissa
m is non-zero, the hidden bit is set to zero. Otherwise, it is set to 1.

Definition 3.2.2. A Floating-Point format is defined by the pair (£, M), where £
is the bit-width of its exponent and M is the bit-width of its mantissa field.

For each format (E, M), a set of parameters can be derived:

The largest unbiased exponent value: &,,,, = 2571 — 1

The smallest unbiased exponent value: &, = 1 — Epan

The largest representable normal number: 4, = (2 — 27)).28maz

The smallest representable normal number: x,,;, = 25min

The smallest representable denormal number: 2&min—™

Table 3.1 summarizes how to interpret an FP number depending on the value
of the exponent e and the mantissa m according to Equation 3.1. For example,
if e equals zero and the mantissa is non-zero, the represented number would be
denormal, and the hidden bit & is set to zero. In this case, the number would be
equal to (—1)* x 2% x (0.m). As a second example, when the exponent is equal
to 28 — 1, i.e., 111...1 in binary, the number would represent either +oo if the
fraction is equal to zero, or a NaN (Not a Number) if the fraction is non-zero.

We will use the notation (E, M) in the remainder of this thesis to describe the
formats supported within a given FI” system.

43

Chapter 3. A Non-intrusive Approach for Floating-Point Approximation

Exponent e H fraction = 000 ... 0 ‘ fraction # 000 ... 0 H Equation
000 ... 0 H zero ‘ subnormal number H (—1)* x 217% x 0.m
0<e<2F-1 H normal number H (—1)* x 2°70 x 1.m
111...1 H (—1)* x ‘ NaN (Not a Number) H —

Table 3.1: Interpretation of FP numbers

0 1234567891011121314 """"
(a) Numbers distribution in the (3, 2) example FP system.

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 5 6 7 & 9 10 11 12 13 14 15
(b) Numbers distribution in the (3, 3) example FP system.

Figure 3.2: Effect of precision on numbers’ distribution

3.2.2 FP numbers through a simple case

In this paragraph, we show through a simple case how the different parameters
(exponent bit-width, mantissa bit-width) influence numbers’ distribution.

Consider a binary FP system with the FP format (£, M) = (3,2). Table 3.2
depicts the encoding of all the representable numbers in this format and their
type and corresponding decimal values. Since the FP system is symmetric, we
only represent the positive numbers.

This format’s bias would be b = 23! — 1 = 3, the largest unbiased exponent
value &,,,, is equal to 3, and the smallest &,,;,, is equal to —2. The smallest normal
value would be z,,;, = 2mi» which is equal to 0.25 in this case. The largest nor-
mal value would be 2., = (2 — 27M).28me which is equal to 14.0. Supporting
subnormal numbers adds three additional numbers between 0 and z,,;,,.

When including the symmetric negative space, one can see that there are two
representations for oo and 2 x (2 — 1) (in this case 6) representations for NaN,
which is obviously a waste of encoding space. Some custom FP systems in the
State of The Art eliminate redundant NaN representations to encode more values
or convey specific information.

Figure 3.2 represents the distribution of the finite numbers (+o00 and NaNs not
included) that are representable in two example FP formats. Subfigure 3.2a de-
picts the numbers representable in the (3, 2) FP format. Subfigure 3.2b depicts the
numbers representable in the (3, 3) FP format. Normal numbers are represented
in blue, whereas subnormal numbers are plotted in

As you can see, the numbers 4.5, 5.5, 9, 11, 13, 15 (and others) cannot be repre-
sented in the (3, 2) format. However, the (3, 3) format can represent them exactly.
Increasing precision from M to M + 1 fills the gap between two consecutive FP
numbers with an additional number, increasing the distribution density. More-

44

3.2. Background: The Floating-Point (FP) model

over, the numbers that are represented in a format (£, M;) are also representable
in formats with higher precisions (E, M,), where My > M;.

Exponent e | mantissam | Type | Decimal value
000 | 00 | zero | 00000
000 | o1 | subnormal | +0.0625
000 | 10 | subnormal | +0.1250
00 | 11 | subnormal| +01875
000 | 00 | normal | 02500
001 |
000 | 11 | normal | 04375
00 | 00 | normal | 05000
00 |
00 | 11 | normal | +08750
o | 00 | normal | +10000
o |
ot | 11 | normal | 17500
10 | 00 | normal | 20000
00 |
10 | 11| normal | %3500
100 | 00 | normal | 440000
01|
100 | 11 | normal | £7.0000
110 | 00 | normal | 80000
1o |
110 | 11 | rnormal || +140000
w0 | +00
mo | oa NaN
w10 NaN
mo o NaN

Table 3.2: Example: the (3,2) example FP system.
3.2.3 Standard formats Vs. arbitrary formats

The IEEE 754-2008 [28] proposes many standard formats starting from the 16-bit
binary16 format up to 256-bit format binary256. Table 3.3 presents some IEEE
standard formats and other specific arbitrary formats proposed in the SoA with
their characteristics.

45

Chapter 3. A Non-intrusive Approach for Floating-Point Approximation

As you can see, the bit-widths £/ and M can be adjusted arbitrarily depending
on the target application and the need in terms of dynamic range and desired
precision, especially when some loss of precision is tolerated.

Type Name 5 Total bit-width Exponent bias Number of decimal digits
1+E+M b=2F"1_1 logyo(2M+1)
Standard IEEE formats [28]
Half-precision binaryl6 5 10 16 15 ~3.3
Single-precision binary32 8 23 32 127 ~7.2
Double-precision binary64 11 52 64 1023 ~15.9
Quad-precision binary128 15 112 128 16383 ~34.0
Octuple-precision binary266 19 237 256 262143 ~71.6
Other formats [97,99,100]
8-bit smallFloat X£8 5 2 8 15 ~0.9
Minifloats - 4 3 8 7 ~1.2
Brain Floating Point bfloati6 8 7 16 127 ~2.4
Tensor Float 32 TF32 8 10 19 127 ~3.3
x86 extended precision - 15 64 80 16383 ~19.2

Table 3.3: Floating-Point standard formats

These formats’ precisions are fixed since they are implemented in hardware,
and their associated software is also fixed. In contrast our technique aims to sup-
port multiple precisions in a flexible way as will be described later. Ultimately,
software applications should be able to select the operating precision at run-time
depending on the application’s needs in terms of accuracy.

3.24 Rounding and extension

As our approach is based on FP format reduction and extension (to be detailed in
the next subsection), we first introduce how the standards define these operations.
In addition, when multiple FP formats are often used in the same application,
conversions from a format to another are then needed.

Rounding

Definition 3.2.3. We call rounding the operation of converting a number from a
source format to a destination format with less precision.

For example, in base 10, rounding the elementary charge g., which is equal to
1.602176634 x 10~ to 3 digits after the decimal point with result in either 1.602 x
107" (round down or truncate) or 1.603x 10~ (round up). Many other rounding
modes can be imagined depending on the fourth digit after the decimal point.

The IEEE 754-2008 [28] defines the following four rounding modes :

e Round towards +oco (or round up): rounds the source number to the closest
number representable in the destination format that is larger or equal.

46

3.2. Background: The Floating-Point (FP) model

e Round towards —oco (or round down): rounds the source number to the
closest number representable in the destination format that is smaller or
equal.

e Round towards 0 (or truncate): rounds the source number to the closest
number representable in the destination format that has equal or smaller
absolute value.

e Round to nearest (or unbiased rounding): rounds the source number to
the closest number representable in the destination format. If the destination
number is exactly halfway between two numbers, a tie-breaking rule should
be applied. By default, a tie-to-even rule is applied, which chooses the one
with a pair mantissa.

Table 3.4 depicts some rounding examples in base 10, where numbers are rounded
from 2 digits after the decimal point to 1 digit.

Round towards +o0o | Round towards —oco | Round towards 0 | Round to nearest

1.52 1.6 1.5 1.5 1.5
-1.52 -1.5 -1.6 -1.5 -1.5
3.15 32 3.1 3.1 32

Table 3.4: Rounding examples

Many other rounding modes can be found in the SoA, for example, rounding
away from zero, faithful rounding, stochastic rounding [126,133,136], etc.

Extension We define an extension as the opposite operation of rounding: con-
verting from a source format to a destination format with different mantissa bit-
width M and different exponent bit-width £. In this case, the mantissa is padded
with trailing zeroes. As for the exponent, it should first be unbiased by computing

&= Csrc — bsrc

and then re-biased by computing the final destination exponent

€dest = E+ bdest

Where £ is the unbiased exponent of the represented number, ey, (resp. b.)
is the exponent represented in the source format (resp. the bias of the source
format). Similarly, eqs; (resp. bast) is the exponent represented in the destination
format (resp. the bias of the destination format). The result represented in the
destination format will then have the same sign bit, the destination exponent eqest,
and the zero-padded mantissa.

Other conversions In addition to conversions from a Floating-Point format to
another, the IEEE standard and many Instruction Set Architectures also define
FP to integer and integer to FP conversions. These are invoked when an FP vari-
able is cast to an integer variable. Another case where these conversions intervene

47

® N G W N =

Chapter 3. A Non-intrusive Approach for Floating-Point Approximation

is when an integer variable is part of an FI” operation. In this case, the integer vari-
able is first cast to an FP format before performing the operation. These conver-
sions can be introduced when needed either by the programmer or automatically
by the compiler.

3.3 Presentation of the Approach

Our approach overcomes some challenges facing existing Transprecision Com-
puting techniques by operating a the interpretation/execution stage rather than
at the design stage. To illustrate our methodology, we will start from the sim-
ple example source code depicted on the left side of Table 3.5 and compare our
technique with a classic tool. Here we chose the GNU MPER library [126] .

Intrusiveness of existing techniques MPFR and other libraries such as FlexFloat
[128] and FloatX [127] allow designers to express variable precision behaviour.
MPER in particular is popular in the domain of scientific computing where hun-
dreds of bits of precision are needed to compute extremely accurate results. Nonethe-
less, it can also be used in the context of AxC where errors are tolerated to simulate
ARP.

// Declare wvariables
mpfr_t a, b, c, d;
mpfr_t temp; // temporary intermediate wvariable

// Declare variables
float a = 2.69;
double b = 3.65364294;
float ¢ = 6.2451;

O N U ke W N =

double 4d ; // Set mantissa bit-widths
mpfr_init2 (a, 15);

// Perform FMA operation mpfr_init2 (b, 42);

d=a*b+c; mpfr_init2 (c, 20);
mpfr_init2 (d, 50);

mpfr_init2 (temp, 47);

==
= o

// Initialize variables

—_
N

13|| mpfr_set_d (a, 2.69, MPFR_RNDN) ;
14 || mpfr_set_d (b, 3.65364294, MPFR_RNDN) ;
15|| mpfr_set_d (c, 6.2451, MPFR_RNDN) ;

==
N o

// Perform operations
mpfr_mul (temp, a, b, MPFR_RNDN) ;
mpfr_add (4, d, temp, MPFR_RNDN);

Ju
®

[
o

Table 3.5: Code transformation using the GNU MPFR [126] library.

Table 3.5 shows a manually-transformed source code using MPFR on the right
side. The transformation process consists of declaring the variablesa, b, candd
with a special data type mpfr_t provided by the library. For complex algorithms,
there is always a need for temporary variables to store intermediate computation
results. The programmer should also assign a precision to each variable based

48

3.3. Presentation of the Approach

on the needed output accuracy. After that, each variable should be assigned an
initial value with some rounding mode (here, we use the round-to-nearest mode
specified by the macro MPFR_RNDN). Finally, each complex FP operation should be
divided into multiple elementary operations organized such that the dependen-
cies and the order of the original operations is satisfied.

This example illustrates to which extent existing techniques can be very te-
dious and complex for larger applications if done manually. This task should be
performed each time the original application’s source code is modified. It also
involves the choice of the appropriate precision for each individual variable. Al-
though this process can be automated to some extent, from our experience, man-
ual tweaking is always needed to get the scripts and the final application working,
which is not obvious when dealing with auto-generated source code. As shown
in Section 2.3.3, some tools propose automation tools and search heuristics that
help designers find the adequate precision for each variable. Nonetheless, these
techniques do not scale well for applications with dozens of variables nor more
complex algorithms or libraries.

Approximation at the execution / interpretation level from this perspective,
we conclude that an approach that rather operates at the execution stage would
offload many tasks that, otherwise, should have been performed manually by the
programmer.

Figure 3.3 illustrates our proposed methodology. We present the general flow
on the right side, and on the left side, we provide an example of an application to
an FMA operation.

Our flow consists of compiling the original source code normally using a typ-
ical C/C++ compiler. This generates a binary executable with standard assembly
instructions. In the example presented here, the FMA statement results in the
RISC-V assembly instruction fmadd .d which takes as inputs the registers RS1, RS2,
RS3 and as an output the register RD. In standard precision, this instruction would
normally be interpreted at run-time by computing RS1 x RS2 + RS3 and storing
the result in the output register RD. This is the exact interpretation of the assembly
instruction. In our case, we also define a new execution / interpretation” mode:
the approximate mode.

In the approximate mode, the computation is executed with a reduced preci-
sion to optimize power consumption. To do that, the inputs should first be re-
duced, by rounding the inputs RS1, RS2, RS3 down to the target reduced precision
(using the function Reduce ()). Then performing the reduced-precision computa-
tion. Finally, the results should be extended (using the function Extend()) from
the intermediate reduced precision to the original standard precision of the in-
puts.

Support for multiple precisions or approximation modes we can further im-
prove the proposed approach to support multiple reduced precisions at run-time

Interpretation and execution are used interchangeably here to reflect the fact that our method-
ology can be used either for simulation (interpretation) or a real-world hardware FPU implemen-
tation (execution).

49

Chapter 3. A Non-intrusive Approach for Floating-Point Approximation

‘ d=a*Db+c; ‘

@ Compilation

‘ fmadd.d RD, RS1, RS2, RS3, RND MODE ‘

Software
Application

Binary executable

// Double Precision
RD <= RS1 * RS2 + RS3 rRS1 <= Reduce(RS1);
rRS2 <= Reduce(RS2);

rRS3 <= Reduce(RS3); \ 4 Y
// Reduced Precision .
rRD <= rRS1 * rRS2 + rRS3; Exac_t Approxn’_ﬂate
RD <= Extend(rRD); Execution Execution

Figure 3.3: The proposed approach.

or Variable Precision in Time (VPT). This is achieved by enabling the exact in-
terpretation mode and multiple approximation modes instead of only one, as il-
lustrated in Figure 3.4. For each approximation mode ¢, we associate a reduced
precision M;. This will enable programmers to modify the computations’ preci-
sion at run-time.

‘ d=a*b+c; ‘

Compilation

fmadd.d RD, RS1, RS2, RS3, RND_ MODE

Y EETERO B R rRS1 <= Reduce (RS1, Mj); rRS1 <- Reduce (RS1, M) ; rRS1 <- Reduce (RS1, My);

RD <= RS1 * RS2 + RS3
rRS2 <= Reduce (RS2, M;); rRS2 <= Reduce (RS2, M,); rRS2 <= Reduce (RS2, My);
rRS3 <= Reduce(RS3, M;); rRS3 <= Reduce(RS3, M,); rRS3 <= Reduce (RS3, My);
// Reduced Precision M; // Reduced Precision M; e // Reduced Precision M;
rRD <= rRS1 * rRS2 + rRS3; rRD <= rRS1 * rRS2 + rRS3; rRD <= rRS1 * rRS2 + rRS3;
RD <= Extend(rRD); RD <= Extend(rRD); RD <= Extend(rRD);

Figure 3.4: The proposed approach with support for multiple precisions.

Choosing the interpretation / execution mode the execution modeis to be spec-
ified by the programmer and can be changed at run-time. Programmers can spec-
ify which functions can be approximated and in which mode they are supposed
to be executed. This process is called Selective Approximation (SA) and it will
be detailed in Section 3.4.4.

Software Vs. Hardware implementation in our methodology, all the approxi-
mations are introduced at the interpretation level at run-time. In this thesis, we

50

3.4. Formalization of the Approach

implemented the approach for two purposes :

e For impact simulation: in this case, the approach is implemented in soft-
ware using the QEMU functional simulator. This will enable programmers
to evaluate the impact of reduced precision on applications” QoR while being
non-intrusive or at least minimally intrusive to source code. We will discuss
details of this implementation in Chapter 4.

e For energy efficiency optimization: in this case, the approach is implemented
in hardware as a multi-precision FPU. This will enable the evaluation of en-
ergy and execution time savings brought by the FP reduced precision ap-
proximations. We will discuss details of this implementation in Chapter 5.

In the following section, we will present a formalization of the approach de-
scribed earlier in the form of an FPU FSM model.

3.4 Formalization of the Approach

This section introduces some definitions and a formalization of an Floating-
Point Unit in the form of an FSM model. We also give insights into the selective
approximation and the problem statement.

3.4.1 Definitions & Notations

Consider a Floating-Point Unit, let A be the set of its registers and R be the set of
available rounding modes.

Let Xsp = {L1, Lo, ...} be the set of Standard Precision formats supported (e.g.,
binary64, binary32), and X4rp = {l1, (s, ...} be a set of non-standard Arbitrary
Reduced Precision FP formats. In the following, we denote L a format in Xsp, [a
format in X4rp and ¢ a format in Xqp U X4pp. We can also use L, [, and /¢ to refer
to the total bit-width of the format e.g., an L-bit format is a format whose total
bit-width (1 + E + M) is equal to L.

We augment the FPU with an additional set of Control and Status Registers
(CSRs) denoted Axgrp = {PREC.,,PRECy,, ...} that will be dedicated to preci-
sion selection; each operation that is originally supposed to be executed on a for-
mat L; will instead be executed on a precision selected by the register PREC;,. A
function Select_Prec that maps high precision formats L; to their corresponding
reduced precision formats /; pointed to by the CSRs PREC,, is defined as follows:

Select_Prec : Xsp — Xagp

Let I, denote the set of FP numbers that can be represented in the ¢ format.

Let F be the set of FP instructions available for a given ISA. This set is parti-
tioned in two sets F,pr0r and Fepact, Where F., 40 represents the non-computational
FP instructions (comparison, conversion, loads/stores, and sign injection), whereas

51

Chapter 3. A Non-intrusive Approach for Floating-Point Approximation

Fapproz TEpresents the FP computational instructions: addition, subtraction, mul-
tiplication, fused multiplication-addition, square root, and division®.
We define the precision reduction function

Reducefvl Fp, — T

that reduces an L-bit number to an [-bit one using rounding mode R € R. We
also define the reverse function

Extendr; : Fp — Fp,

that extends an [-bit number to produce an L-bit one. While Reduce}; is a many-
to-one function, Extendy, ; is a one-to-one function.

Let F_instf' rd,rsy,...,rs, be a FP instruction, where F_inst is in F, and op-
erates on n + 1 registers rd, rsy, ..., rs,, of (-bit values, using the rounding mode
R. With each F_inst} we associate an arithmetic operator

F_oplt: (F)" — Ty

which performs the computation in the ¢ format using the rounding mode R.

To introduce Selective Approximation (SA), as a means to apply approxima-
tions to a specific set of instructions, let B be the Boolean domain and enable_approx
€ B an enable signal that indicates whether the instruction should be approxi-
mated at run-time.

3.4.2 Approach formalization

The FPU can be modeled by an FSM {Z,I',,,d} with no output, where Z =
F X R x Xsp x A" x B is the input of the FSM, representing an instruction
instance characterized by its name, its rounding mode, its original FP format, its
destination and source registers, and an approximation enable signal. I is the set
of states®, ~ is the initial state where all the registers are set to zero, and ¢ the
state-transition function, which is defined as follows:

0. IxT — T
(F_instlrd,rsy,...,rs,, enable_approx),y +— 7'
such that Vr € A:

((r), if r # rd;

Extendy, (F_ole(f}l, e f)n)), ifr=rd
v (r) = and Finst € Fopprox

and enable_approx == 1,
\F_opf(vl, ey Un), otherwise.

3Please note that in contrast to our definition, the IEEE 2008-754 Standard’s [28] compu-
tational instructions also include comparisons. We follow the same definition as the RISC-V
ISA [138]

4 A state is defined by the content of the FPU registers r; € AU Aarp.

52

3.4. Formalization of the Approach

where,
y(r), ' (1) refer to the content of the register r before and after the transition.
l = Select_Prec(L) the selected target reduced precision [corresponding to L
v; =(rs;) € Fr high-precision values.
U = Reducef:l(’y(rsi)) € IF; reduced precision values.

Precision selection: before starting the process, the appropriate reduced preci-
sion [to execute the operation should be selected. We distinguish two schemes:

e A simplified scheme would associate to each standard precision format L;
a unique reduced format /;. In this case, the hardware architecture would
contain as many reduced precision formats as standard precision formats.

e A more elaborate scheme would allow to have more reduced precision for-
mats than standard ones. In this case, the target reduced format /; that will
approximate the operation is encoded in the register PREC,,. The latter be-
ing a typical CSR register that can be programmed at run-time, i.e., in this
case, the computation precision would be programmable at run-time.

Precision reduction: in this step, we perform a cast using a rounding mode R’
equal to or different from R, depending on how it is implemented. In most ISAs, R
is encoded either in the instruction binary code (fixed) itself or in an FPU control
status register (dynamic). Hence, an implementation can either define a fixed
reduction rounding mode R’ or support dynamic rounding.

We chose to leave the choice to the implementation because rounding hard-
ware logic is generally expensive in an FPU. In addition, double rounding, (i.e.,
casting numbers to the reduced format plus rounding the final result) may dras-
tically affect the QoR. When the original format L and the selected target reduced
format [have similar exponent bit-widths, the Reducef:l function is simplified to a
rounding operator instead of a complete conversion operator. Otherwise, a com-
plete cast operator should be implemented, which may be expensive in terms of
circuit area.

Computation in ARP: the assembly-level approximation is introduced by per-
forming the computation using the ARP operator F_op}?, which operates on ARP
[-bit operands, with a bit-width shorter than L. This is why inputs should first be
reduced from L to [before performing the computation and then extended back
from [to L after the computation.

Extension: once the computation F_op/® has been performed, the result should
be converted back to the original format using the Extendy,; function, which con-
verts the result from [back to the L format. This operation is intended to guaran-
tee consistency with the non-computational FP instructions F.,,.:, which are not
approximated. The final result is then stored in the destination register rd.

53

Chapter 3. A Non-intrusive Approach for Floating-Point Approximation

3.4.3 The case of iterative operators

Some FPUs implement iterative operators F_op}, particularly for division and
square root calculations [139] [101], to allow circuit area optimization. For such
implementations, the reduction and extension stages are unnecessary since the
precision of their computations can be set at run-time. This means that the reduc-
tion and extension blocks are only necessary for Fused Multiplication-Addition
(FMA) operations from an implementation point of view. More details will be
provided along with the hardware architecture in Chapter 5.

3.4.4 Selective Approximation (SA)

A programmer needs to apply approximations to specific parts of an application
and exclude others. For instance, in a software application, the functions that com-
pute error metrics should be executed exactly to avoid compromising the results
with approximations. Hence, the developer should be able to tag such functions
or instructions.

From an implementation point of view, the signal enable_approx was added
to support SA. This signal can be inferred using three different schemes:

1. The first one is static in space, by defining non-approximable memory re-
gions where all instructions are executed exactly and approximable mem-
ory regions where all instructions are executed approximately.

The enable signal can then be inferred from the Program Counter (PC) ad-
dress of the current executing FP assembly instruction F_inst}. If the PC
address belongs to the non-approximable memory region, then it is set to
zero; otherwise, it is set to one.

2. The second one is also static in space, by encoding the enable signal in the FP’
assembly instruction’s binary code itself using non-reserved ISA opcodes.
Again, however, this will necessitate support from the compiler.

3. The third scheme is dynamic in time by mapping the enable signal to another
custom CSR that is added to the FPU and then assign it using CSR read-
/write assembly instructions.

As shown in Section 2.3.3, hardware-level support for Arbitrary Reduced Pre-
cision (ARP) and Variable Precision in Time (VPT) is mandatory if one needs
to go beyond impact simulation towards achieving real-world energy efficiency.
This means that intrusiveness in hardware cannot be avoided. However, guaran-
teeing non-intrusiveness or at least minimal intrusiveness to source code without
the need for a specialized compiler is possible in the first and the third schemes.
The third adds one feature; the ability for applications to change their operating
precision at run-time. A practical use case (iterative algorithms) will be demon-
strated in Chapter 6.

54

3.5. Conclusion

3.4.5 Problem statement

The choice of the “approximable” instructions/memory regions and the choice of
the intermediate reduced precisions’ set X4zp can be formulated as the following
optimization problem:

Given an application that takes as an input a dataset I, providing a nu-
merical output result O executed on top of an FPU supporting a set
of standard precisions Xsp, our objective is to construct an optimal
FPU configuration, i.e., a set of supported reduced precisions Xarp
that minimizes power consumption, execution time, and overall en-
ergy consumption, subject to a Quality of Result (QoR) constraint on
the output O, while being non- or minimally-intrusive to source code.

To solve this problem, we propose a two-step process:

1. Software design space exploration in simulation using the QEMU-based sim-
ulator. This will allow us to select a set of candidate FPU bit-width configu-
rations (X4rp) satisfying the QoR constraint target.

This is achieved through the software implementation and is detailed in
Chapter 4.

2. Hardware-level design space exploration: for each candidate FPU config-
uration, an estimation of the overall execution time and energy savings is
made to select the best final configurations among the X4zp set.

This is achieved through the hardware implementation and is detailed in
Chapter 5.

This process will be presented in more detail in the remainder of this thesis.

3.5 Conclusion

This chapter introduced the proposed approach that leverages FP approxima-
tions for energy efficiency in error-tolerant applications. We presented a back-
ground on the Floating-Point model, the basic idea and finally the theoretical
formalization of the proposed methodology in the form of a FSM. This model
will constitute the specification of our future implementations either in SW (for
simulation) or in HW (for execution).

In the next two Chapters (4 and 5) we will present two complementary imple-
mentations: 1) a software-level one that allows the simulation of FP approxima-
tions” impact on the QoR of applications, and 2) a hardware-level implementation
in the form of a multi-precision FPU that allows cultivating important energy sav-
ings. Finally, in chapter 6, we will present a use case that shows how the proposed
approach enables Variable Precision in Time.

55

AxQEMU: a Non-intrusive
Floating-Point Approximation

Simulator
Contents
41 Introduction.............. 58
42 Background i i 59
421 The RISC-V Instruction Set Architecture 59
422 The QEMU Binary Translator 62
4.3 AxQEMU: A Floating-Point Approximation-aware Emulator . . 66
43.1 Approximate Floating-Point operations in AxQEMU . . . 66
43.2 Selective Approximation 67
43.3 Key engineering decisions 69
434 AxQEMU usageexample 69
43.5 Supporting other ISAsin AxQEMU 71
4.4 Use Case 1: Direct Application to Fixed-Precision Applications 71
441 Design Space Explorationflow. 72
442 Evaluation benchmarks and QoR metrics 73
443 Targetarchitecture 74
444 Resultsand Discussion. 74
445 Challenges & Limitations 78
45 Conclusiont 79

57

Chapter 4. AxQEMU: a Non-intrusive Floating-Point Approximation Simulator

4.1 Introduction

Floating-Point Units FPUs are ubiquitous in modern hardware architectures,
including General-Purpose Processors GPPs and Application-Specific Instruction-
Set Processors ASIPs, where they boost the performance of computationally in-
tensive applications. Unfortunately, FPUs are responsible for a significant propor-
tion of power consumption and memory bandwidth. Furthermore, the energy
consumption associated with FI” arithmetic is known to be higher than that of its
integer counterpart [117], making FPU optimization a priority.

One of the techniques used to optimize FPUs is bit-width reduction, where
exponent and/or mantissa lengths are reduced to either standard bit-widths (de-
fined in the IEEE 754 standard [28]), or custom arbitrary bit-widths. Over the
years, many techniques/tools/libraries have been proposed to explore the impact
of using arbitrary precision FP arithmetic [126-128,140] in computational kernels
targeting many platforms (GPPs, GPUs, FPGAs, etc.).

In chapter 3 we presented a new methodology that leverages Floating-Point
approximations for energy efficiency. The methodology consists on injecting ap-
proximations at the low level by changing the interpretation of FP assembly in-
structions at run-time during execution. This means that the approach is non-
intrusive to the software application source code nor the binary executable.

In this chapter, we leverage this technique for rapid Design Space Exploration
(DSE) of Arbitrary Reduced Precision FPUs in a CPU-based architecture context.
The objective is to help designers select the most optimized FPU configuration (ex-
ponent and mantissa bit-widths) satisfying a Quality of Result (QoR) threshold
set for the application and input dataset provided by the designer, without the
need to transform / rewrite / modify the source code.

The approach led to the development of a software implementation which we
called AXQEMU (Approximate QEMU). The simulator is built on top of the well-
known functional simulator QEMU [141], which performs dynamic binary trans-
lation of assembly instructions.

AxQEMU can be used alone with software applications and it can also be used
in conjunction with other optimization tools from the SoA.

First, Section 4.2 will introduce our main target ISA RISC-V and more specifi-
cally the aspects related to FP. Then, in 4.2.2, we will present the (vanilla) QEMU
[141] binary translator and its internal architecture. Moreover, in Section 4.3 we
will present how approximations have been integrated inside QEMU to produce
AxQEMU as well a brief presentation of its capabilities. Finally, in Section 4.4 we
present a use case illustrating how AxQEMU can be used for DSE.

The next Chapter will present the hardware-level aspects of the proposed method-
ology and a more complex use case that demonstrates how AXQEMU can be used
in conjunction with other SoA tools for fine-grained Variable Type Optimization
(VTO).

58

4.2. Background

4.2 Background

To implement a proof of concept of the approach proposed in the previous
chapter, a functional ISA simulator (e.g., gem5, orlk, Spike, efc.) can be used.
Here, we targeted the free and open-source QEMU multi-ISA dynamic binary
translator [141] .

421 The RISC-V Instruction Set Architecture

In this section, we briefly present some key aspects about the RISC-V ISA. An
extended description with more details can be found in Appendix B.

RISC-V (pronounced “risk-five”) is an ISA that was originally designed to sup-
port computer architecture research and education. It is now also becoming a
standard free and open architecture for industry implementations [138,142,143].

N 4

RISC-V"°

We chose RISC-V in our implementations for many reasons, of which we cite
the following;:

o A completely open ISA that is freely available to academia and industry.

o A real ISA suitable for direct native hardware implementation, not just sim-
ulation or binary translation.

e Support for the revised 2008 IEEE-754 floating-point standard [28].

e Well supported and actively maintained HW/SW tools thanks to the open-
source HW/SW community.

e Availability of many open-source SoC and processors’ implementations such
as Rocket Chip [144], Pulpino [145], Pulpissimo [146], Ariane / CVA6 [115,
147] , Ibex [148], lowRISC Chip [149], and many others.

Although all the ideas explained in this manuscript, such as Arbitrary Re-
duced Precision and Variable Precision in Time, were only implemented on
RISC-V for pragmatic and practical reasons, they are also applicable to other ar-
chitectures.

59

Chapter 4. AxQEMU: a Non-intrusive Floating-Point Approximation Simulator

4.2.1.1 Target ISA

An ISA defines which instructions and registers are available in hardware. It is a
sort of contract that bonds HW to SW and defines which/how assembly instruc-
tions are generated from high-level source code, which registers can be used, how
special cases or interrupts are handled, etc.

RISC-V is a modular ISA that enables designers to support one or many fea-
tures depending on the target application. Since we target General-Purpose Pro-
cessors, we will use by default the architecture RV64IMAFDC in all our hardware
and software experiments unless otherwise stated. This architecture is also re-
ferred to as RV64GC, where the “G” stands for general-purpose. [138]

When only the FPU of the architecture is concerned, the name RV64FD will
refer to the standard baseline FP’U architecture with support for the standard FP
precisions binary32 and binary64.

4.2.1.2 Target Application Binary Interface (ABI)

An ABI is an interface that defines how different software modules communicate
with each other. It can be assimilated to a protocol that defines how arguments are
passed to functions, where functions’ return values are stored, and how memory
is organized.

The ISA architecture and the ABI should both be specified to the RISC-V GCC
cross-compiler using the following arguments, respectively [150]:

e -march=<ISA> selects the architecture to target. This controls which instruc-
tions and registers are available for the compiler usage.

e -mabi=<ABI> selects the ABI to target. This controls the calling convention
(which arguments are passed in which registers) and data layout in mem-
ory.

For all our applications and experiments, we only deal with float and double
variables. So we use the 1p64d ABI along with the RV64IMAFDC ISA.

4.2.1.3 Floating-Point in RISC-V

In this section, we will present the ISA aspects related to FI> arithmetic in RISC-V.
Namely, we will briefly present which registers and instructions are added to the
base ISA when the FP extensions are handled.

FP extensions Until now, RISC-V supports three FP extensions F, D, and Q as
depicted in table B.1. Since RISC-V is designed with extensibility and scalability
in mind, other non-standard extensions in the State of the Art also support H, an
extension dedicated for 16-bit half-precision FP arithmetic [100,101,114].

FP General-Purpose Registers When a Floating-Point extension is supported,
a total of 32 GPRs are added (£, f4, ..., f3;). Their bit-width, denoted FLEN, is the
widest FP format bit-width supported in the system.

60

4.2. Background

For instance, the typical RV64IMAFD architecture supporting 32-bit single-precision
and 64-bit double-precision contains 32 base integer registers x¢, x4, . . . , x3; which
are 64-bit wide (since XLEN equals 64, C.f., Section B.2.2). It also contains an addi-
tional 32 registers fo, f4, . .., £3; which are 64-bit wide, since FLEN = max(32,64) =
64.

In addition to the GPRs, a CSR named fcsr is also added by FP extensions.
Table B.3 depicts its layout.

FP formats To indicate the FP format of each assembly instruction, a field called
fmt is embedded in the binary code of the instruction. This field is 2-bit wide,
meaning that RISC-V is technically able to support up to four FP formats. These
formats are listed in table 4.1 [138, Section 11.6].

FP format | Full name Format mnemonic | fmt field | Corresponding extensions
binary32 | 32-bit single-precision S 00 F,D,Q
binary64 | 64-bit double-precision D 01 D,Q

binary16 | 16-bit half-precision H 10 -1

binary128 | 128-bit quad-precision Q 11 Q

! Non-standard extension in the SoA [100,101,114].
Table 4.1: Format field encoding.

FP instructions There are five types of instructions that are added when sup-
porting an FP extension:

e [oad instructions: FLW, FLD, FLQ
e Store instructions: FSW, FSD, FSQ

° Computationalinstructions: FADD.x, FSUB.x, FMUL.x, FDIV.x, FMADD.x,
FMSUB.x, FNMADD.x, FNMSUB.x, FSQRT.x, FMIN-MAX.xwherex € {S, D,
Qr.

In our case, all computational instructions are approximable except FMIN-MAX
since they are the most energy consuming operators.

e Conversion and Move instructions: FCVT.int.fmt, FCVT.fmt.int, FCVT.S.D,
FCVT.D.S, FMV.X.W, FMV.W.X...efc.
Instructions that move or convert numbers from a source FP’ format to an-
other, or from FP to integer formats and vice versa.

e Comparison instructions: FCMP.x where x € {S, D, Q}.

o Classify instructions: examine the value of a FP register and return a 10-
bit mask defining the type of the number, e.g., normal/denormal, finite/in-
finite/NaN, positive/negative, zero/non-zero.

All these instructions and their specifications are described in detail in the of-
ficial RISC-V user-level specification [138].

61

Chapter 4. AxQEMU: a Non-intrusive Floating-Point Approximation Simulator

FP emulation when an FPU is absent Even when an ISA does not support hardware-
level IEEE 2008-754 Floating-Point arithmetic, programmers can still use data
types such as float, double, and long double and FP computations. However,

at that moment, it is necessary to include an FP emulation library that emulates

FP operations in software using integer arithmetic. In the case of RISC-V, emula-
tion is performed using SoftFloat [151], a library written by J. Hauser, one of the
co-authors of the RISC-V privileged specification [142].

For example, consider the RV64IMAFD architecture. The architecture name means
thatan FPU is available in the system with support for both binary32 and binary64
standard FP formats. Meaning that software instructions involving operations
on float and double variables will be performed in hardware. However, long
double variables will be associated with the binary128 IEEE standard format.
Since the RV64IMAFD does not support this type in hardware, operations on such
variables will be emulated in software based on the SoftFloat library shipped with
the standard C library and the GCC Toolchain.

4.2.1.4 Performance Vs. hardware-level overhead

Computer architects should decide which extensions to support depending on the
intended application domain. This choice brings significant performance boosts,
but it affects both the software toolchain and the processors” hardware. For exam-
ple, if the M extension is supported in a given RISC-V processor, it means that its
underlying micro-architecture contains a hardware integer multiplier and divider.
Otherwise, multiplication operations will be emulated using the base integer I in-
structions. This is technically feasible since multiplications can be emulated with
a series of additions, although they are inefficient in terms of performance (exe-
cution time and throughput). On the other hand, supporting extensions means
adding hardware components to the processor (ALUs, FUs, decoder logic, etc.),
leading to more circuit area. Hence, computer designers should find trade-offs
that are adequate depending on the target application.

4.2.2 The QEMU Binary Translator

QEMU is a fast and portable emulator, developed by the French programmer Fab-
rice Bellard back in 2005. When a software application is compiled for a given ar-
chitecture, the resulting binary executable cannot be executed on other architec-
tures. For example, RISC-V binary code cannot run on ARM processors. QEMU
solves this problem by emulating some ISAs on top of others, using the concept
of Dynamic Binary Translation (DBT) [141,152]. DBT in particular, and more
generally QEMU, are useful for the following use cases, among others:

e Enabling binary executable portability

For instance, this is useful when the source code of the application is not
available, cross-compilation is not possible, or a lack of software libraries or
low-level drivers in the target architecture.

e Enabling early virtual prototyping and hardware/software codesign

62

4.2. Background

This enables computer/platform/SoC architects, hardware designers, toolchain
engineers, and application engineers to rapidly co-develop new processor
architectures in parallel without waiting for the actual processor to be man-
ufactured.

e Enabling Design Space Exploration (DSE) of new ideas

Such tools can help computer architects make architecture design decisions
based on performance estimations. For example, in our case, the develop-
ment of the final hardware architecture of the multi-precision FPU (Chapter
5) was guided by feedback from the AXQEMU software virtual prototype.

One of the most recent industrial contexts where DBT showed its usefulness
was the transition of Apple from Intel x86-64-based processors to their own ARM-
based Apple silicon in 2020. To speed up the transition, Apple announced Rosetta
2, atool that permits many applications compiled exclusively for execution on x86-
64-based processors to be translated for execution on Apple silicon while waiting
to port their native source code [153].

However, there is a price to pay in terms of performance when using such
tools instead of native execution. Typically, execution with QEMU is about 5 to
20x slower than native code execution [152]. However, given its benefits, this
execution time overhead is still acceptable compared to other SoA simulators.

4.2.2.1 Overview of QEMU'’s architecture

In QEMU, we distinguish two kinds of machines:

1. the guest (or target) machine: the processor emulated, for which an appli-
cation has been compiled, and

2. the host machine: the processor executing QEMU itself, which simulates
the execution of the target code, even if the two processors have different
architectures

Figure 4.1 depicts QEMU'’s operation principle [152]. Efficient emulation is
achieved thanks to the Tiny Code Generator (TCG), a sort of run-time compiler
embedded in QEMU. This generator dynamically translates blocks of target in-
structions known as Translation Blocks (TBs) to TCG operations (TCGops) or
micro-operations (micro-ops), which constitute the machine-independent Inter-
mediate Representation (IR). Subsequently, the TCGops will be translated into
host instructions.

A TB is a set of consecutive elementary (RISC-V) assembly instructions from
the guest binary executable. Any jump/call assembly instruction or system call
marks the end of a TB.

When a TB is translated into its corresponding host code, the translated block
is cached for later use in a Translation Cache. Thus, for example, in the case of
a loop, the TB is translated only once but executed multiple times. This caching
capability is one of several optimization procedures that increase the performance
of this simulator when compared to others. When the next TB is fetched, QEMU
first checks if its first PC address has already been seen (left part, Fig. 4.1). If

63

Chapter 4. AxQEMU: a Non-intrusive Floating-Point Approximation Simulator

this is the case, it means that its corresponding translation already exists in the
Translation Cache. Hence it is fetched and executed. Otherwise, the TB should
go through the translation process and the caching process.

Execute

micro-ops
buffer

Instruction

—>[TB Cache Entry|

Translation Cache
(host binary code)

Target binary

code (.elf)
Micro-operations

built-in

Figure 4.1: The architecture of the QEMU binary translator [152].

4.2.22 QEMU'’s Intermediate Representation

In QEMU, DBT is enabled by introducing a unified machine-independent IR layer
(Fig. 4.2). This IR is an intermediate form of binary code that is used as an inter-
face between the guest machine architecture and the host machine architecture:

2 fld fab, 8(sp) mov_i64 tmp2, sp
3 fld fa4, 16(sp) movi_i64 tmp3, $0x10
fadd.d dyn, fab, fab, fa4 add_i64 tmp2, tmp2, tmp3

fsd fab, 24(sp)
1d al, 24(sp)
jal ra, 1232 movi_i32 tmpO0, $0x7

gemu_ld_i64 fa4, tmp2

® N o G

call set_rounding mode, $0x2, $0, env, tmpO
call fadd_d, $0x1, $1, fab, env, fab, fad

Table 4.2: Example: code translation from RISC-V assembly instructions to QEMU IR

Table 4.2 provides an example of code translation of the RISC-V binary assem-
bly instructions f1d and fadd.d (left) to the QEMU Intermediate Representation
(right).

4.2.2.3 QEMU’s Dynamic Binary Translation process

Figure 4.3 depicts the DBT process in more detail:

Step (1) For each newly fetched assembly instruction, the TCG find the correspond-
ing TB. If the TB has already been translated, it is retrieved from the trans-
lation cache and is executed in Step (6). Otherwise, the TB gets translated in

Step (2).

64

4.2. Background

Guest Architecture Host Architecture

(in) (in)
Intermediate

tel tel
a rmkﬁ Representation 40 rm

SPARC— 1N " —SPARC

R4 </
RISC RISC-V°

Figure 4.2: The QEMU Intermediate Representation.

Step (2) The assembly instruction is converted to QEMU’s IR. In this step, a mapping
between the guest machine ISA and the IR is performed. It associates to each
assembly instruction one or more TCG micro-ops. Each translated block is
prefixed with a prologue and suffixed with an epilogue IR code.

For example, in Table 4.2, the RISC-V assembly instruction fadd.d which
performs addition of two FP numbers is translated into three TCG-ops: a)
first movi_i32 which performs a 32-bit move immediate instruction, then b)
a call to a C helper function named set_rounding_mode () which configures
the rounding mode of the following FP operation. And finally, c) a call to
another C helper function named fadd_d that will perform the FI’ addition
operation.

Step (3) The IR of the translated block is then translated to host machine binary code.
Thus, each TCG-op can be translated into either a single (or a set of) host
assembly instructions or a C helper function that will eventually be compiled
to produce several host instructions.

Considering the same example, the movi_i32 TCG-op can be translated into
a single x86-64 assembly instruction, whereas the two other function calls
will eventually be compiled into many assembly instructions.

Step (4) The resulting host binary code from the previous step is then cached in a
translation cache for future use leading to significant performance gains in
QEMU.

Step (5) After the execution of each translated block, QEMU uses the PC and infor-
mation related to the CPU state to find the next TB. Since this process is
costly, a direct jump that points to the next TB is appended to the TB. This
leads to a zero run-time overhead during transitions from one TB to the next.
This process is called Direct Block Chaining [141].

65

Chapter 4. AxQEMU: a Non-intrusive Floating-Point Approximation Simulator

®

Find the ®| YES \| Execute the

> ? >
Translation Block I Cached? l Translation Block
NO A

@) ®

Block chaining

Guest Binary —> Intermediate Representation

_/—\

. prologue ... T
movi_i64 tmp3, $0x10

TCG-op

Caching @
or Helper

_/—\
_/—\

. prologue ... T
call helper function() Translate IR to @
e "' Host machine code

- J

Figure 4.3: QEMU’s Dynamic Binary Translation process

4.3 AxOQEMU: A Floating-Point Approximation-aware
Emulator

In this section we will present some implementation details regarding the AXQEMU
emulator. The tool has been open-sourced and is accessible at the link below.

https://github.com/noureddine-as/axqgemu

The most up-to-date branch is v5.0-variable-prec-in-time. More technical
details about the modifications made to the original QEMU project are presented
in Appendix C.1. In total, 26 files have been modified, with more than 3846 inser-
tions and 114 deletions.

4.3.1 Approximate Floating-Point operations in AXQEMU

The behavior of Floating-Point instructions is originally emulated in software us-
ing the SoftFloat [151] library mentioned earlier inside QEMU. It is a reference C
library used in many industrial systems to emulate FP operations. Please note that
we are talking about the implementation of FP arithmetic inside QEMU without
regard to the RISC-V application itself.

In other words, the RISC-V software application itself is compiled for the RV64IMAFDC
ISA and the 1p64d ABI. This means that all FP C/C++ statements will generate in-
structions from the F and D extensions, e.g., FADD.x, FSUB.x, FMUL.x ..., where
x € {S, D}. If the application is run on top of a hardware CPU, these instructions
will be executed inside the FP°U. However, when these instructions are emulated
with QEMU and AxQEMU, their behavior is simulated in software, using the
SoftFloat library through calls from the C helper functions helper_fadd_x().

TCG intermediate operations can be translated into either a single host instruc-
tion or a C helper function (Fig. 4.4) that will eventually be compiled to produce

2A full list of modifications (diff file) is available in this link.

66

https://github.com/noureddine-as/axqemu
https://github.com/noureddine-as/axqemu/blob/v5.0-variable-prec-in-time/contributions.txt

4.3. AxXQEMU: A Floating-Point Approximation-aware Emulator

(" AXQEMU Emulator)
e 2
Dynamic Binary Insn. Translation
Application 2l TCGIR Guest
Source Code call helper_ fadd d <...> Registers
' E 4 C Helpers)
Compile . 'luint64_t helper fadd d() {

! : if (enable_approx)

: approx_fadd d(Egq, My):;
! else

nE standard fadd d() ;

Y
Guest Code (RISC-V)

fadd.d fa5, fa5, fa4 juint32_t helper_fadd s () {
if (enable_approx)

approx_fadd s (Eg, Mg¢);

I
1
! else
: standard fadd s();
1

Host Code (x86) -
fadd st0, stO
. J

\- J

4(_____________.._______________-

Figure 4.4: AxQEMU overview

several host instructions. Furthermore, when translating FP instructions, the cor-
responding TCGops can either be executed directly on the host hardware’s FPU or
emulated using C helper functions exploiting a backend FP software emulation
library [126-128,151] . In other words, each guest FP computational assembly
instruction is associated with a custom C function which simulates the reduced
precision behavior in the back-end.

Figure 4.4 shows an application source code that has been compiled for a RISC-
V target machine. Each assembly instruction from the executable binary will be
fed to the TCG to generate its corresponding intermediate representation (TC-
Gop). For example the RISC-V FP addition instruction (fadd.d fa5, fab, fa4),
which should perform the operation fa5 = fa4 + fa5, is mapped to the C func-
tionhelper_fadd_d()’, which operates on the values contained in emulated guest
registers fab and fa4. In AXQEMU the helper functions were modified to imple-
ment the behavior explained in Section 3.4.

4.3.2 Selective Approximation

In Section 3.4.4 we have proposed two schemes to support SA. The first one
consists on defining two or many memory regions with different approximation
modes at compile time. The second enables support for dynamic variable preci-

7z

3The “d” in helper_fadd_d refers to double-precision, whereas the “s” in helper_fadd_s

refers to single-precision.

67

O ® N G e W N =

=
S

Chapter 4. AxQEMU: a Non-intrusive Floating-Point Approximation Simulator

sion at run-time and allows the precision to change at run-time within the same
memory region or even the same function. In this section, we discuss the imple-
mentation aspects of both schemes.

4.3.2.1 Static SA based on memory partitioning

This scheme allows developers to specify functions that should be executed pre-
cisely to facilitate integration with existing flows. In our case, SA is supported by
splitting the (instruction) memory address space across two regions:

1. Non-Approximable address space: a memory region where approxima-
tions are deactivated (i.e., enable_approx = 0), and

2. Approximable address space: where approximations are enabled using ARP
(i.e., enable_approx = 1).

To implement this split, the non-approximable functions requiring precise ex-
ecution are annotated using a C macro. For instance, Listing 2 depicts a func-
tion compute_QoR, destined to compute some QoR metric using a numerical result
result and a reference value ref. It has been annotated with the PRECISE macro
defined in lines [1-2]. This macro tells the linker to place the annotated function
in a specific memory section, the “.precise” section. Functions that belong to
this memory region will be executed precisely, whereas functions stored in other
regions, such as compute_fft () in the example below, are by default executed
approximately.

#define PRECISE __attribute__((__section__(".precise”))) |

__attribute__((noinline))

double PRECISE compute_QoR(float result, double ref){
// Function body here
}

void compute_fft(float input[], float coefficients[], double output[]1){
// Function body here
}

Listing 1: Example of a C macro for function annotation

At run-time, the address of each assembly instruction instance is fetched from
the Program Counter register (PC). If an assembly function belongs to the non-
approximable address space (i.e., the . precise memory section) then enable_approx
is set to zero, and the instruction is emulated using the standard SoftFloat [151]
FP emulation library. Otherwise, enable_approx is asserted, and the instruction is
emulated using an ARP library [126-128], taking the FPU configuration specified
by the user into account.

In the previous example and the remaining of this chapter, we only consider
two execution modes: precise and approximate. Itis also possible to develop other
scenarios where we have many memory regions: PRECISE, APPROX_1, APPROX_2
...etc. Where each region has a different FP precision.

68

4.3. AxXQEMU: A Floating-Point Approximation-aware Emulator

As for all similar techniques, the source code must be modified and re-compiled
when using SA. However, when using our approach, the implementation is much
simpler and light-weight than other current techniques and minimally-intrusive.

This scheme can also be extended to data memory, where approximable data
regions are mapped to approximate/unreliable cost-effective approximate mem-
ories or storage devices (C.f., Section 2.2.6.3). However, this aspect is out of the
scope of this thesis.

4.3.2.2 Dynamic SA at run-time based CSR operations

This scheme allows developers to modify operating precision at run-time. This is
achieved by augmenting the FPU with a set of CSRs that control computations’
precision. These CSRs can be modified using the usual CSR Read / Write assem-
bly instructions provided by RISC-V. In addition, this scheme allows more fine-
grained precision tuning by overriding the default operating precision defined
within the first scheme.

This scheme will be further explained later in Chapter 5 when we introduce the
multi-precision VPT-FPU. In the remaining parts of this chapter, we will only use
the first scheme to define approximable and precise instruction memory regions.
Moreover, for simplicity, all instructions belonging to the approximable region
will be executed using the same fixed reduced precision.

4.3.3 Key engineering decisions

For implementation, since SoftFloat (the library used within QEMU to simulate
FP behavior) only supports standard precisions, we replaced it with the FlexFloat
[128] library. This library was chosen for approximation emulation, since it demon-
strates an increase in speed of up to 2.8x compared to other mixed-precision li-
braries according to [128]. The library provides functions for casting from full-
precision types to reduced-precision (reduction stage) types and vice versa (ex-
tension stage) and functions to perform arithmetic operations in reduced preci-
sion.

The reduction rounding mode R’ is dynamic and is the same as the rounding
mode R of the approximated instruction. The RISC-V ISA [138] was chosen for
its design simplicity. We implemented the approach for all the computational in-
structions of single-precision (F) and double-precision (D) extensions of the ISA
except the fmin-max.x instruction, hence a total of 9 instructions per extension.

The C helpers were modified to accept two additional arguments: the expo-
nent and the mantissa bit-widths, which define the precision of the internal com-
putations. These arguments have been exposed so that the user can define them
at launch time. This facilitates the use of the simulator when dealing with search
algorithms to explore several FPU configurations.

434 AxQEMU usage example

Listing 4.1 depicts an excerpt of AXQEMU’s arguments along with their descrip-
tion. For the full listing, please refer to Appendix C.1. The arguments expbitsf,
fracbitsf, expbitsd, fracbitsd refer to Ey, My, Eq, My, respectively.

69

Chapter 4. AxQEMU: a Non-intrusive Floating-Point Approximation Simulator

Listing 4.1: Excerpt of AxQEMU'’s arquments

$ gemu-riscv64 --help
usage: qemu-riscv64 [options] program [arguments...]
Linux CPU emulator (compiled for riscv64 emulation)

Options and associated environment variables:

Argument Description
-expbitsd <EXP_BITS_d> The FPU exponent bit-width

for the D extension. Default is 11
-fracbitsd <FRAC_BITS_d> The FPU fraction bit-width

for the D extension. Default is 52
-expbitsf <EXP_BITS_f> The FPU exponent bit-width

for the F extension. Default is 8
-fracbitsf <FRAC_BITS_f> The FPU fraction bit-width

for the F extension. Default is 23
-non_approx_region_start <@ADDR> The Start address of a non-approximable
(.precise) region.
-non_approx_region_size <SIZE> The Size (in Bytes) of a non-approximable
(.precise) region.

Ax(QEMU) supports two execution modes: user emulation mode and full sys-
tem emulation mode. On the one hand, the application should be cross-compiled
for a RISC-V Linux-based execution environment in the user emulation mode. Itis
launched as a Linux process with full access to the host machine’s file system. On
the other hand, the application is cross-compiled in full system emulation mode
for a bare-metal-like execution environment with no OS. In the latter case, the ap-
plication is emulated on top of a virtual device that simulates a real-world RISC-V
platform*, including some peripherals, network interfaces, and others.

Usage example Listing 4.2 shows an example where a C application source code
application.c is cross-compiled using the riscv64-linux-gcc GCC compiler
and run on top of AXQEMU in User Emulation mode. In this example, float
operations are approximated on (6, 10) format, whereas double operations are
approximated on (9, 40) format.

Listing 4.2: Compiling an application and emulation in User Emulation mode.

$ # Cross-Compilation using RISC-V Linux GCC (Glibc Standard Library)
$ riscv64-linux-gcc -march=rv64imafd -mabi=1p64d -static application.c \
-0 application.elf

$ # Simulation using AxQEMU

$ gemu-riscv64 --expbitsd 9 --fracbitsd 40 \
--expbitsf 6 --fracbitsf 10 \
-non_approx_region_start 0x1d238 \
-non_approx_region_size 0x428 \

*Supported RISC-V board models are available here: https://qemu.readthedocs.io/en/
latest/system/target-riscv.html

70

https://qemu.readthedocs.io/en/latest/system/target-riscv.html
https://qemu.readthedocs.io/en/latest/system/target-riscv.html

4.4. Use Case 1: Direct Application to Fixed-Precision Applications

application.elf

Listing C.2 (Appendix C) presents the same example but in full system emu-
lation mode.

4.3.5 Supporting other ISAs in AXQEMU

For now, the variable precision in the AXQEMU tool only supports the RISC-V ISA.
However, the methodology can also be ported to other ISAs. To support static SA
in other Instruction Set Architectures, the following steps should be performed :

1. Locate the Floating-Point arithmetic C helpers corresponding to the new
target architecture:

These C helper functions map FP assembly instructions to functions from
SoftFloat.
2. Replace these calls with the logic described in Section 4.3.1:

Instead of directly executing the FP’ operation in standard precision, check if
the PC address of the current assembly instruction belongs to the approxi-
mate region. If this is the case, set enable_approx to 1 and execute the oper-
ation using the corresponding function from FlexFloat instead of SoftFloat.
The function from FlexFloat should be called with arguments specifying the
chosen reduced format. Once executed, extend back the result to the original
format and return the result.

Otherwise, if the instruction belongs to the non-approximable address space,
then execute the original function provided by the SoftFloat library.

Extending the support to dynamic SA in other Instruction Set Architectures
requires the following steps in addition to the previous ones:

1. Locate the FPU registers in the new architecture’s CPU model inside QEMU.

2. Extend the FPU with two CSR registers, one that will hold the precision of
float operations, and the other holds the precision of double operations.

3. Map these CSR registers to non-used addresses.

At run-time, the content of these registers can be updated using CSR Read-
/Write instructions, hence overriding the current precision.

4. Override precision selection inside the C helper functions by fetching it from
the new CSRs registers.

4.4 Use Case 1: Direct Application to Fixed-Precision
Applications

In Chapter 3 we presented a methodology that leverages FP approximations
for energy efficiency of approximate applications that tolerate some loss in their

71

Chapter 4. AxQEMU: a Non-intrusive Floating-Point Approximation Simulator

QoR. Then, in the previous sections of this chapter, we presented in detail a soft-
ware implementation of this methodology in the form of a simulation tool called
AxQEMU that enables designers to explore the impact of FP approximations on
applications” QoR.

This section presents a first use case where AxQEMU is directly applied to a
set of benchmark applications from state-of-the-art.

4.4.1 Design Space Exploration flow

This section presents the DSE flow used to evaluate the impact of FP precision on
the output QoR of applications.

Executable Inout Dataset FPU configuration
binary nput batase (Es, My, Eg, Mg)
p v v |
float | S | Exponent | Mantissa |
<« E—>€<———M——>
& 7 AxQEMU
) d double | S| Exponent | Mantissa |
<«—Eq—><——M;—>

\ FPU /

ﬁ ________ QoR = f(Precision)

Raw data outputs
(.csv, .jpeg ...) .
QoR metric

Figure 4.5: Design Space Exploration methodology

Let A be an application, and D its input dataset. Let us denote C' = {cy, ¢y, ...}
the set of candidate hardware configurations (Ey, My, Ey4, M) to be studied. Our
objective is to find the most optimized FPU bit-width configuration ¢; € C that
satisfies a target QoR specified by the user for the couple (A, D). The DSE process
is depicted in Figure 4.5. It includes two steps :

§1 Simulation phase the application A is executed for each configuration ¢; €
C, using the QEMU-based variable precision simulator we developed. The raw
output results are stored for further analysis in the next phase. This phase can be
more or less time-consuming depending on the size of the dataset, the execution
time of the application itself, and the number of FPU configurations to be studied.

§2 QoR analysis phase the user chooses a reference configuration ¢,y accord-
ing to A and D (typically the highest bit-width available in C). Its results will
serve as the application output golden reference. The user can define a custom

72

4.4. Use Case 1: Direct Application to Fixed-Precision Applications

error evaluation metric’ or use standard ones, e.g., Mean Squared Error (MSE),
Mean Relative Error (MRE), Structural Similarity Index Measure (SSIM), efc.
An analysis tool iterates over the numeric results issued for each FPU configura-
tion. The final result of this process (Figures 4.6, 4.7, 4.8, 4.9) is a heat-map rep-
resenting the computed error values for each application A, using its associated
metric for each FPU configuration w.r.t the reference configuration c,.;.

The applications presented in this section are all written using one precision
(fixed-precision or unmixed-precision) to simplify the analysis and demonstrate
the capability of the tool, i.e., all variables and FP operations are performed in
the double-precision (double) format. Meaning that for these applications, we
are targeting the optimization of the 64-bit data path (11, 52) in particular. The
32-bit data path (8, 23) is fixed during these experiments. More complex mixed-
precision applications (containing both float and double variables) will be pre-
sented in the next chapter with an emphasis on the hardware-level aspects.

4.4.2 Evaluation benchmarks and QoR metrics

Application (A) Input dataset (D) Error Metric
Black-Scholes [154] 100,000 options (FP numbers) MRE
FBench [155] 4x4 FP numbers matrix RMSE

FFT [154] 2048 integer numbers RMSE
Jmeint [154] 100,000 pairs of FP” 3D triangle coordinates Miss rate

Table 4.3: The list of studied applications and their corresponding error metrics

We applied the proposed DSE methodology to several applications from the
literature [154,155]. Table 4.3 depicts the evaluation benchmarks selected based
on their extensive use of FP arithmetic, along with their corresponding input
datasets and error metrics.

For each couple (A, D) and each ¢; € C, a set of N raw data output results
R = {ro,r1,...,rn_1} is obtained after execution. The MRE, RMSE, and Miss
Rate metrics are computed for each configuration ¢; on the output results using
the following definitions [34, 154].

MRE(e) = L3,)]

max (1,7"k (cref)

RMSE(c) = /% cn (eleres) — riele)’
Miss Rate(c;) = + >, cp OnesCount (ri(crer) ® ri(cs))

°The terms “Quality of Result” and “error metric” are equivalent and can be are used here
interchangeably.

73

Chapter 4. AxQEMU: a Non-intrusive Floating-Point Approximation Simulator

Where & represents binary XOR. OnesCount() counts the number of elements
that are equal to one i.e., how many elements were misclassified with respect to
the reference configuration c,..

4.4.3 Target architecture

For this case study, our target ISA is RISC-V [138], with the standard RV64IMAFDC
instruction extensions i.e. 64-bit, I (integer), M (mul/div), A (atomic), F (single-
precision FP), D (double-precision FI’), and C (compressed) standard instruction
extensions. To simplify the study, all the variables are initially expressed in double
precision (but the tool also supports single-precision), and all applications have
been compiled statically with the standard RISC-V GCC cross-compiler, using the
(-03) optimization level and the 1p64d ABI. The Newlib standard C library im-
plementation is used by default for these experiments.

4.4.4 Results and Discussion

Instruction types Black-Scholes FBench ~ FFT Jmeint

FP arith. insns. 12.74% 15.68% 13.67% 10.71%
FP mem. insns. 25.74% 26.20% 22.66% 21.37%
Other FP insns. 8.34% 10.80% 7.72% 8.77%
Integer mem. insns. 13.35% 10.38% 11.67% 19.73%
Integer arith. insns. 9.50% 545% 11.83% 9.94%
Others insns. 30.33% 31.50% 32.45% 29.49

Table 4.4: Dynamic instruction execution breakdown per benchmark

§1 Dynamic instructions’ breakdown To measure FPU usage accurately, we
augmented the simulator with the ability to report an accurate dynamic instruc-
tion execution histogram. Table 4.4 shows the breakdown of all executed instruc-
tion instances for each application and its dataset, with the reference FI’U config-
uration (8, 23, 11, 52).

Table 4.4 also shows that among all executed instructions, the FP-related oper-
ations count as a fraction equal to 46.82%, 52.60%, 44.05%, and 40.85% for Black-
Scholes, FBench, FFT, and Jmeint, respectively. The majority of these FP-related
operations are memory operations (loads and stores). This is due to the large
input datasets that are loaded at startup. The second most significant part is arith-
metic FP instructions. The remaining FP instructions include FP-to-integer/integer-
to-FI’ conversions, comparisons, sign injections, etc.

§2 Simulationtime A complete, exhaustive simulation has been performed on
an x86-64 Intel(R) Xeon(R) E-2176M CPU machine with 16 GB RAM running a

74

4.4. Use Case 1: Direct Application to Fixed-Precision Applications

Simulation time Black-Scholes FBench FFT Jmeint
Starndard Precision 4m22.2s 2.6s 24.0s 0m21.3s
Arbitrary Reduced Precision 8m23.9s 31.6s 26.9s 3m42.0s

Table 4.5: Total simulation time per benchmark.

Linux operating system. Table 4.5 depicts the total simulation time of all config-
urations when performed in Arbitrary Reduced Precision and in standard full
precision (SP). The overhead added by the variable precision simulation is non-

negligible.

Conclusion: Thanks to the inherent QEMU optimizations (e.g. instruction simpli-
fication, TB caching, and chaining), the simulation time overhead is still affordable.
More computationally intensive benchmarks can also be coupled with search algo-
rithms to explore specific configurations and reduce this simulation overhead.

52- 0 0 0 0 0 0 0 0
16- 0 0 0 0 0 0 0 0 3000
15- 1 1 1 1 1 1 1 1
14- 2 2 2 2 2 2 2 2
@ 13- 4 4 4 4 4 4 4 4 2400
512- 7 7 7 7 7 7 7 7 -
F11- 17 17 17 17 17 17 17 17)
510- 31 31 31 31 31 31 31 31 1800 T
©
@ 9- 59 60 60 60 60 60 60 60 o
'(‘E; 8- 124 124 124 124 124 124 124 124 1200 =
s 7- 241 243 243 243 243 243 243 243
6- 510 508 508 508 508 508 508 508
5 - 600
1635 1635
3393 3393 o

4 5 6 7 8 9 10 11
Exponent bit-widths

Figure 4.6: Resulting QoR corresponding to each FPU configuration for Black-Scholes
(MRE)

§3 QoRresults Since we only consider double-precision formats in this exper-
iment, the optimization only concerns E,; (the exponent bit-width) and M, (the
mantissa bit-width) of the double-precision datapath. The simulations cover all
arbitrary FPU configurations (4 < E; < 11 and 3 < M, < 52), corresponding
to a total of 400 simulations for each (A, D) couple. The QoR has been computed
for all the studied configurations, and the results are summarized as heatmaps in
Figures 4.6, 4.7, 4.8, and 4.9). The reference configuration used is (8,23, 11, 52).
Figure 4.6 and 4.8 show that QoR varies with mantissa bit-width and does not
depend on the exponent bit-width. Meaning that a 4-bit (resp. 6-bit) exponent

75

Chapter 4. AxQEMU: a Non-intrusive Floating-Point Approximation Simulator

Mantissa bit-widths

52 - 0 0 0 0 0 0 0 0

21 - 0 0 0 0 0 0 0 0 300000
20 - 3 3 3 3 3 3 3 3

19 - 4 2 2 2 2 2 2 2

18- 15 8 8 8 8 8 8 8 240000
17 - 2 2 2 2 2 2 2 2

16- 17 17 17 17 17 17 17 17

15- 49 101 101 101 101 101 101 101 ¥
14- 101 101 101 101 101 101 101 101 180000 S
13- 146 118 118 118 118 118 118 118 <
12 - 453 453 453 453 453 453 453 453 w
11- 427 519 519 519 519 519 519 519 £
10- 2724 2724 2724 2724 2724 2724 2724 2724 120000

9- 4163 4163 4163 4163 4163 4163 4163 4163
8- 4410 4410 4410 4410 4410 4410 4410 4410
7- 28819 28819 28819 28819 28819 28819 28819 28819
6- 18554 18554 18554 18554 18554 18554 18554 18554 60000

5- 311383 311383 311383 311383 311383 311383 311383

4 - 40970 40970 40970 40970 40970 40970 40970 40970

3- 284328 284328 284328 284328 284328 284328 284328 0
\ L

4 5 6 7 8 9 10 11
Exponent bit-widths

Figure 4.7: Resulting QoR corresponding to each FPU configuration for FBench (RMSE)

Mantissa bit-widths

52 - 0 0 0 0 0 0
22 - 0 0 0 0 0 0
21 - 1 1 1 1 1 1
- : i i ; i i 150000
19 - 7 7 7 7 7 7

18 - 5 5 5 5 5 5

17- 22 22 22 22 22 22 120000
16- 31 31 31 31 31 31 N
15- 66 66 66 66 66 66 R
14- 124 124 124 124 124 124 —
13- 202 202 202 202 202 202 90000 x
12- 641 641 641 641 641 641 u
11- 1247 1247 1247 1247 1247 1247 s
10- 1675 1675 1675 1675 1675 1675 60000 =
9- 4089 4089 4089 4089 4089 4089

8- 11745 11745 11745 11745 11745 11745

7- 18387 18387 18387 18387 18387 18387

6- 32177 32177 32177 32177 32177 32177 - 30000

5 76038 76038

109451 109451 109451

el 173708 173708 173708

6 7 8 9 10 11
Exponent bit-widths

Figure 4.8: Resulting QoR corresponding to each FPU configuration for FFT (RMSE)

76

4.4. Use Case 1: Direct Application to Fixed-Precision Applications

52- 0 0 0 0 0 0 0 0

22- 0 0 0 0 0 0 0 0

21- 1 0 0 0 0 0 0 0 15000

20- 1 0 0 0 0 0 0 0

19- 3 0 0 0 0 0 0 0

18- 4 0 0 0 0 0 0 0 12000
217- 7 1 1 1 1 1 1 1 -
516- 9 1 1 1 1 1 1 1 R
s 15- 23 3 3 3 3 3 3 3 =
&S 14- 42 5 5 5 5 5 5 5 9000 X
2 13- 93 9 7 7 7 7 7 7 9
©®12- 158 15 14 14 14 14 14 14 S
£ 11- 284 31 29 29 29 29 29 29 "
c 10- 484 64 60 60 60 60 60 60 6000
S 9- 802 128 124 124 124 124 124 124 2

8- 1334 217 210 210 210 210 210 210
7- 2281 467 453 453 453 453 453 453
6 - 906 879 879 879 879 879 879 - 3000
5 BGEIYAN 1822 1781 1781 1781 1781 1781 1781
4 BUIEN 3485 3426 3426 3426 3426 3426 3426
el 16322 6841 6770 6770 6770 6770 6770 6770
4 5 6 7 8 9 10 11

Exponent bit-widths

Figure 4.9: Resulting QoR corresponding to each FPU configuration for Jmeint (Miss
Rate)

is sufficient to cover the dynamic range of all internal FP computations for Black-
Scholes (resp. FFT).

Conclusion: the QoR does not depend on the exponent bit-width E, for all these
applications except Jmeint.
We also observe that the QoR is maximal, and its value does not change after

a given mantissa bit-width threshold: 16, 21, 22, and 22 for Black-Scholes, FBench,
FFT, and Jmeint, respectively. This means that executing Black-Scholes using a
16-bit mantissa provides the same QoR as the standard 52-bit double-precision
FPU mantissa. However, this threshold is not guaranteed for all possible datasets.
Hence, a pertinent and representative dataset should be chosen by the designer.

Conclusion: the double data type is over-designed for all these applications.
For some over-reduced configurations, the output results are invalid, i.e., NaN,
inf, etc. Hence the corresponding QoR is then not relevant, and these configura-
tions are discarded (blank boxes in Fig 4.6 and 4.7).

Conclusion: overflows /underflows are more likely to be noticed when the chosen FP for-

mat’s bit-width is very small for some applications, leading to potential corrupted results.

FBench (Fig. 4.7) demonstrates that extending the FPU bit-width does not
always increase the output accuracy. Individual intermediate computations can
lead to errors due to catastrophic cancellation, insufficient precision, rounding er-
rors [119,120] The resulting errors either accumulate or cancel out depending
on the application. So in some cases, even when the bit-width is reduced, individ-
ual intermediate instructions are less precise. Still, the errors cancel out overall,
and thus the output result accidentally becomes closer to the accurate reference
value. These phenomena do not appear when dealing with more conservative
standard formats (32-bit Vs. 64-bit) because of the big gap between the two, which

77

Chapter 4. AxQEMU: a Non-intrusive Floating-Point Approximation Simulator

renders the phenomenon unlikely to be observed.

Conclusion: at a fine-grained level, a reduced precision can still lead to higher QoR at the
output, due to FP phenomena such as error cancellation.

For FFT, as shown in Fig. 4.8, the QoR highly depend on the dynamic range of
the dataset since FFT consists of several intermediate multiplication-accumulations.
Configurations with £; = 4 and E; = 5 give invalid results (NaNs, Inf), and hence
they have been discarded.

Table 4.6 also shows the most optimized configurations total FPU bit-width
(1 + E4 + M,) for each benchmark without QoR loss based on the performed
analysis. Of course, lowering the QoR constraint will lead to more optimization
and further hardware overhead reduction. Table 4.7 depicts the optimized con-
figurations for a set of arbitrary QoR thresholds.

Black-Scholes FBench FFT Jmeint

Optimized FPU bit-width 21 bits 26 bits 29 bits 24 bits

Table 4.6: Optimized FPU bit-widths per benchmark (No QoR loss).

Black-Scholes FBench FFT Jmeint

Error Metric RMSE RMSE RMSE Miss Rate
Error Threshold 0.0005 0.005 0.5 0.05%
Optimized FPU bit-width 15 bits 19bits 20 bits 17 bits

Table 4.7: Optimized FPU bit-widths per benchmark.

4.4.5 Challenges & Limitations

§1 Challenges Approximating individual assembly instructions comes with a
tew drawbacks. Since approximation is applied locally, error propagation is not
controlled globally because the algorithmic structure of the original program is
practically lost. However, our approach considers the final production-ready ex-
ecutable binary as well as compiler optimizations. This feature is unique in that it
reflects the expected production-stage behavior.

§2 Limitations The approach described in Chapter 3 and implemented in this
chapter is agnostic to the language (C, Fortran, efc.), to the context (bare-metal,
OS/RTOS etc.), and to the FP analysis tools used upstream. It is therefore very
powerful when compared to existing strategies. However, for a given FP program
using complex functions, the results will depend on the underlying standard C

78

4.5. Conclusion

library implementation. Indeed, the QoR variation behavior vis-a-vis the preci-
sion reduction might differ slightly between two implementations. For instance,
transcendental functions are implemented in different ways across distinct C stan-
dard library implementations (e.g. Newlib, Glibc, MUSL, etc.). Their internal use
of elementary FP operations (e.g., addition, multiplication) will differ, which ex-
plains the non-identical numerical results. The proposed methodology is thus C
library-dependant when complex functions are invoked.

Another limitation of this approach is its data-dependency. As for all other
existing SoA techniques, our strategy provides no guarantees that the application
will produce an equivalent QoR for all possible input datasets. Hence, designers
should carefully select representative data inputs to cover all intended application
behaviors.

4,5 Conclusion

In this section, we presented AxQEMU, a tool that simulates the impact of FP
approximations inserted at the assembly interpretation level on the output of ap-
plications. The proposed tool inherits many qualities from the well-known QEMU
functional simulator. A use case demonstrating how it can be applied to unmixed-
precision applications was presented.

In the next chapter, we will present the hardware implementation of the ap-
proach presented in Chapter 3: a multi-precision FPU that supports precise and
multi-precision operation in hardware. AXQEMU will be there employed in a sec-
ond use case with this time multiple precisions and for applications with mixed-
precision (float and double). This will enable the selection of a set of optimal FPU
configurations, for a given application and dataset couple. Then, a final step will
be performed to evaluate the hardware savings and costs brought by the different
options.

79

Approximate-aware Multi-precision
FPU

Contents
51 Introduction............, 82
5.2 Proposed Architecture 0o o o 83
53 VPT Support00 85
53.1 Custom VPT Registers 85
532 VPT SoftwareSupport 86
54 HW Customization 87
5.5 Synthesis and EvaluationFlow 88
55.1 Synthesis conditions0 0L 88
552 HW-level evaluationflow 88

5.6 Use Case 1: HW-level Evaluation of the Fixed-Precision Jmeint 90
5.7 Use Case 2: Application to Mixed-Precision applications 94

5.7.1 Background: Mixed-precision DSE flow 94
5.7.2 Problem statement 95
573 ThePROMISEtool 96
5.74 Evaluation and Discussion 96
58 Conclusion ittt 101

81

Chapter 5. Approximate-aware Multi-precision FPU

5.1 Introduction

Approximate Computing and specifically Transprecision Computing appli-
cations may necessitate different Floating-Point computation precision require-
ments. Traditional full-precision is shown to be over-designed through many SoA
works. This idea was also confirmed in Chapter 4 using the proposed AxQEMU
approximate-aware FI” simulation tool.

The previous chapters presented a new methodology that leverages FI’ ap-
proximations at the interpretation/execution level, ensuring non-intrusive or min-
imally intrusive integration with existing SoA tools (Chapter 3). In addition,
Chapter 4 presented a software implementation in the form of a simulator called
AxQEMU that allows studying the effects of precision variation on application-
level Quality of Result.

However, this tool only serves as an impact simulation tool. Therefore, it is still
mandatory to provide a hardware implementation that matches the SW model
simulated using AXQEMU to achieve energy efficiency. For example, for a given
application, an input dataset, and a QoR constraint, AXQEMU can conclude that
a reduced FP format, say (11,36) for instance, is sufficient. However, to achieve
an actual energy saving, the final hardware processor that will execute the ap-
plication should support the reduced format (11, 36) inside its FPU, which is not
possible in traditional CPU cores.

Therefore, there is a need for a hardware FPU architecture that supports the
reduced precision FP formats simulated by AxQEMU following the behavior de-
scribed and formalized in Chapter 3. In this context, we talk about Arbitrary Re-
duced Precision (Arbitrary Reduced Precision) support at synthesis time, mean-
ing that the hardware has a reduced precision (fixed at run-time). A more ad-
vanced aspect is the Variable Precision in Time (VPT), which supports many
reduced hardware formats and allows the software to switch precisions as appli-
cations continue their execution.

This chapter presents a hardware FPU architecture, called VPT-FPU, that sup-
ports both ARP and software-controlled VPT. The proposed architecture imple-
ments the specification given in Chapter 3. The design is inspired by ARM'’s
“big.LITTLE” CPU architectures, which combine high-performance CPU cores
for computationally-heavy applications and power-efficient CPU cores for appli-
cations with lower performance needs. Similarly, the VPT-FPU architecture com-
bines both the usual energy-demanding standard-precision (e.g., binary32, binary64)
computational blocks dedicated for precise computation as well as reduced pre-
cision FP formats that enable power, execution time, and energy consumption op-
timization.

In this chapter, the proposed architecture is presented in detail (Section 5.2),
then VPT support within the proposed architecture is discussed (Section 5.3).
Moreover, we show that the architecture is globally parametric and how sup-
ported reduced FP formats can be configured at synthesis time (Section 5.4). Then,
we explain how the power consumption of a given application is evaluated when
executed on top of a given VPT-FPU architecture (Section 5.5). Finally, two use
cases will be presented; The first (Section 5.6) consists of a HW-level evaluation of
the Jmeint application presented earlier in Chapter 4. The second use case (Section
5.7) illustrates the full SW and HW FP optimization process explained previously

82

5.2. Proposed Architecture

in Section 2.3.2, including the use of our ARP technique along with SoA tools such
as Promise [121] and the AXQEMU simulator to find the most optimized FPU ar-
chitecture configuration that reduces power consumption while still satisfying a
QoR requirement.

5.2 Proposed Architecture

We propose a hardware FPPU architecture VPT-FPU enabling configurable run-
time precision and a lightweight software library that facilitates integration in an
existing CPU core.

64 Non-computational Operations @ 564
7> F2F/F2I/12F Conversion, comparision, “f"
; classification, sign injection '
T e _564
> Multi-precision DIV/SQRT —>
4! [| ©'64
o 64-bit (binary64) FMA —>
Clock > ,, : I32
Reset > > 32-bit (binary32) FMA —>
Operands > » Result
Operation-} :"'I:::,l"@: D Status
RND mode »{| 32! 32

L —,4.—) float > (Eq, Mq) > float —v—zL)
target_precision » b '

A 32! | E 132
1 > float > (Ej, Mj) > float —>
----------- R LLEEE Vo ' :
VPT Registers E 64 P] ‘64
| VPT_STATUS | \|[~—> double>(Ejs, Misq) > double "_'7"
|| vPT_FLOAT PREC |i[|gq! ! = ; 64
‘ e = double > (Ep, Mp) > double - sy
| ver_pousLe_prec |i|[@ L

{Operation, target_precision}

Figure 5.1: Hardware architecture of the Approximate Aware FPU

VPT-FPU contains two types of datapaths: a) precise datapaths, which contain
standard-precision arithmetic operators, and b) approximate datapaths, which
contain reduced arbitrary precision operators. The proposed architecture is de-
picted in Figure 5.1, which is composed of :

@ Non-computational operations datapath: performs non computational oper-
ations such as FP-to-integer and integer-to-FI’ conversion, comparison, input
classification etc. In practice, the cost of these instructions is negligible when
compared to computational instructions, so we chose to not optimize them.

Multi-precision DIV/SQRT datapath [156] : a block that computes division

83

Chapter 5. Approximate-aware Multi-precision FPU

and square root operations using an iterative algorithm implemented in hard-
ware [157] . The precision of this block is adjustable at run-time.

(C) Precise Fused Multiply Add (FMA) datapath: contains the precise FMA op-
erators that perform addition, subtraction, multiplication, and multiplication-
accumulation in binary32 and binary64 formats.

@ Approximate FMA datapaths: contains two sets of reduced arbitrary precision

datapaths and . Approximated float computations are executed in ,

whereas approximated double-precision computations are executed in .

For each supported non-standard FP format (E,, M,), 1 < p < P, an approx-

imate block is integrated either inside or at the RTL level at synthesis

time. This means that the set of supported precisions is fixed, once synthesized.
Each of these approximate blocks contains:

e A reduction block that converts the inputs from the original format (binary32
or binary64) to the target reduced format (E,, M,,).

e An FMA computational operator in (£, M) format.

e An extension block that converts the result from (E,, M,) back to the original
format.

The blocks @, , and @ constitute the original standard RV64FD FPU. The

block (B) containing DIV /SQRT operators do not need to be duplicated or sur-
rounded by reduction and extension blocks since their precision can be adjusted
via a precision selection input signal that varies at run-time. This is why only FMA
blocks are duplicated.

Computation of the status register In addition to the numerical result com-
puted, an FPU also returns a 5-bit status register explained in detail in Appendix
B.3.3. Since the FPU is modified to consider approximations, the five flags are
redefined as follows:

e Inexact bit (NX)

If the operation is executed on the exact datapath (C), this flag is set when the
final result cannot be represented precisely in the target full-precision format.

Otherwise, if the instruction is executed on the approximate datapath @, the
inexact bit is set if at least one of the reduction operations yields an inexact
reduced operand v;, or if the result of F_op® is inexact. The extension phase
does not affect this flag.

e Invalid bit (NV)

If the operation is executed on the exact datapath (C), this flag signals an invalid
FP operation (e.g., multiplying oo and zero).

Otherwise, if the instruction is executed on the approximate datapath @, this
flag is set if F_op® performed an invalid FP operation. The reduction and ex-
tension stages do not affect this flag.

84

5.3. VPT Support

e Division by zero (DZ)

If the operation is executed on the exact datapath @, this flag indicates an op-
eration involving a division by zero.

Otherwise, if the instruction is executed on the approximate datapath @, it is
set to the same value as the DZ flag resulting from F_ole.

e Underflow (UF)

If the operation is executed on the exact datapath @, this flag indicates if the
computed result is too small to be represented in the target full-precision for-
mat.

Otherwise, if the instruction is executed on the approximate datapath @, it is
set if at least one of the reduced operands v; or the result of F'_op* is too small
to be represented in the [format.

e Overflow (OF)

If the operation is executed on the exact datapath (C), this flag indicates if the
computed result cannot be represented as a finite value in the target full-precision
format.

Otherwise, if the instruction is executed on the approximate datapath @, it
is set if at least one of the reduction blocks or the F_op;® operator yielded an
overflow.

5.3 VPT Support

5.3.1 Custom VPT Registers

Register Name | Address | Description

VPT_STATUS 0x800 Stores the actual status of the VPT. When it is set to zero the VPT
is deactivated, otherwise it is enabled.

VPT_FLOAT_PREC 0x801 | Stores the actual precision of float operations, as a one-hot en-
coded value'. If the VPT_FLOAT_PREC is all zeros then the precision
is default (23-bit mantissa).

VPT_DOUBLE_PREC | 0x802 | Stores the actual precision of double operations, as a one-hot en-
coded value. If the VPT_DOUBLE_PREC is all zeros then the precision
is default (52-bit mantissa).

Table 5.1: VPT registers

To support VPT operation, three custom Control and Status Registers (CSR)
have been added to the FPU: the VPT_STATUS register, which is used to enable/dis-
able the VPT feature, and the two registers VPT_FLOAT_PREC and VPT_DOUBLE_PREC,

!When operating in M bits, the M bit is set to 1, others are set to 0.

85

Chapter 5. Approximate-aware Multi-precision FPU

which respectively configure the precision settings for float and double opera-
tions.

5.3.2 VPT Software Support

The added registers are memory-mapped when the FPU is integrated into a CPU
core. This enables lightweight software support since read/write (R/W) oper-
ations can then be performed using the usual CSR assembly instructions, i.e.,
no special compiler modification is needed. The additional CSRs belong to the
custom R/W user-level address space [138] , which means that no particular
machine- or supervisor-level privileges are needed to perform R/W operations.

A small set of Hardware Abstraction Layer (HAL) functions has been devel-
oped to enable the programmer to select float and double operations” precision
via software. Of course, at the SW level, the programmer can only select a preci-
sion among the ones supported in hardware (E,, M,), 1 < p < P. If the selected
precision is not available in hardware, the VPT-FPU defaults to standard preci-
sion without raising exceptions. The proposed HAL functions are wrappers for
the CSR read/write assembly instructions. For a seamless integration in existing
applications, the functions are bundled as a header-only library.

Listing 2 depicts a few HAL examples. For instance, vpt_set_prec_float
(resp. vpt_set_prec_double), sets the precision of float (resp. double) opera-
tions i.e., by configuring the content of the register VPT_FLOAT_PREC (resp. VPT_DOUBLE_PREC)
to 1 << M, where M is the target arbitrary reduced precision.

void vpt_enable(void); /* enable VPT */
void vpt_disable(void); /* disable VPT */
uint64_t vpt_set_prec_float(uint8_t M);
uint64_t vpt_set_prec_double(uint8_t M);

Listing 2: VPT-related HAL function prototypes

Listing 3 depicts an implementation example of the vpt_set_prec_float ()
function. This function uses the csrrw RISC-V assembly instruction which reads
the original value of a given register and sets its content to the new value. These
HAL functions are all marked as inline, meaning that, at compile-time, their
source code will be directly embedded inside the caller function, so there is no
extra call penalty.

inline uint64_t vpt_set_prec_float(uint8_t M){
uint64_t returned_value = 0;
asm__ volatile ("csrrw %0, 0x801, %1" /* CSR Read/Write to VPT_FLOAT_PREC */
¢ "=r" (returned_value) /# output: register \J0 */
: "r" (0x01 << M) /* input: register \J1 */
: /* clobbers: none */)
return returned_value; // Return old register value

Listing 3: Implementation of the vpt_set_prec_float () function.

86

5.4. HW Customization

5.4 HW Customization

The architecture was implemented mainly in SystemVerilog. The source files
contain packages that provide a set of configuration parameters. These packages
are generated automatically from a set of Python scripts to automate the HW De-
sign Space Exploration of many architectural parameters.

Figure 5.2 depicts the internal architecture of the approximate blocks inside

the , and paths and how the internal reduced format (E,, M,) as well as
the pipelines are configured.

double > (Ep, Mp) > double

Configurable pipelines

double > (Ep, Mp)

RSy —»
RS, —>» double > (Ep, Mp) —> Format (Ep, Mp) FMA —> (Ep, Mp) > double | —> RD
RS3 —>» —> Status

double > (Ep, Mp)

T~

‘ Configurable Exponent and Matissa bit-widths ‘

Figure 5.2: Architecture customization at synthesis time.

The implementation allows the configuration of two HW parameters at syn-
thesis time, which cannot vary afterward:

e Customizing the set of supported reduced FP formats’: the python script au-
tomates the generation of the proper package parameters that allow EDA tools
to generate multiple-precision hardware.

This step allows to find a trade-off between power consumption and area oc-
cupation: supporting more formats leads to higher flexibility and finer-grained
QoR control, but supporting more formats than needed leads to an increasing
area overhead.

e Customizing the pipeline registers of supported reduced formats: the python
script also defines how many registers should be inserted inside the reduced
precision blocks. The inserted register blocks are then automatically distributed
and retimed® using EDA tools such as Synopsys Design Compiler.

This step optimizes execution time: more registers inside the custom precision
blocks lead to higher maximum frequency (shorter critical path) but more cy-
cles to execute the assembly instruction.

The Python automation scripts and the architecture’s flexibility helped us quickly
find interesting trade-offs for all these parameters.

2Denoted as X4 rp in Section 3.4.
3Register retiming is a technique used by EDA tools to redistribute registers inside an imple-
mentation to minimize critical path, improve performance, reduce area/power consumption.

87

Chapter 5. Approximate-aware Multi-precision FPU

5.5 Synthesis and Evaluation Flow

In this section, the synthesis conditions of the hardware implementation will
tirst be introduced. Then we will explain how the area, power, execution time,
and overall energy consumption are evaluated for a given software application
and hardware architecture.

5.5.1 Synthesis conditions

The implementation was synthesized as an ASIC, on a 28-nm FD-SOI technology
node, in the typical corner (Regular V;, 1.00V, 25°C, No Body Biasing) for a 200-
MHz frequency target.

Synthesis has been performed on Synopsys Design Compiler® with automatic
clock-gating enabled and default effort levels. If the number of registers inside the

reduced precision paths and is more than three, the automatic register
re-timing of Synopsys Design Compiler® is applied.*

Post-synthesis gate-level simulations were performed using Synopsys VCS®,
and power consumption was estimated by considering both static power and dy-
namic switching activity associated with the application studied using Synopsys
PrimeTime®.

5.5.2 HW-level evaluation flow

Evaluation at the hardware level is performed for a given SW application and a
hardware configuration as depicted in Figures 5.3 and 5.4. This flow combines
output from the AXQEMU SW simulator tool and hardware Electronic Design
Automation (EDA) tools. It consists of three steps:

Test vector generation (Fig. 5.3): by simulating the execution of the SW appli-
cation on top of AxXQEMU with the corresponding architecture parameters (sup-
ported reduced FP format). After the simulation, AXOEMU generates a test vector
containing the execution trace of the application. This execution trace reports FI’
operations’ inputs and expected outputs in addition to the usual numerical out-
puts of the application. This test vector is a binary file that will be used later as
a stimulus to the gate-level netlist to evaluate the power consumption through
nodes activity.

Gate-level netlist generation (Fig. 5.3): a gate-level netlist is generated using
the RTL description provided in SystemVerilog plus the configuration packages
generated using the Python HW configuration script. The RTL is fed to Synopsys
Design Compiler® with other TCL automation scripts to generate the final gate-
level netlist described in Verilog. The circuit area is evaluated at this level.

*All experiments presented in this manuscript have 3 or less internal registers.

88

5.5. Synthesis and Evaluation Flow

HW RTL HW Architecture SW application
source code parameters source code

~ % Python HW ~ » RIsCv-vGcC
. Configuration Script . Compiler

\4

10011

Configured oo i¥
RTL 11010
[
Application Binary
(RISC-V)
N
© 7 Design Compiler] —>» . © 7 SW SImulation with AXxQEMU]

| | |
J l ¢ l

Area . Application Test
NG Outputs Vectors

Figure 5.3: Test vector and gate-level netlist generation.

Parallel post-synthesis simulations (Fig. 5.4): in this step, the Synopsys VCS®
tool is used to apply the test vectors generated from AxQEMU to generate activity
files (SAIF file types). However, since the test vectors can sometimes be huge
(several to hundreds of megabytes, i.e, millions of instructions) and might take
hours to days to finish, we first split the test vectors into /N smaller mini test vectors
containing ~ 100K to ~ 500K instructions. Each piece is then initialized with a
CPU architectural state (initial FPU register values, precision configuration, ...)
and then launched separately in a parallel VCS process. This way, we can launch
N smaller simulations that take around 1 hour or a few dozens of minutes instead
of days.

Post-synthesis power/energy estimation (Fig. 5.4): After the parallel post-
synthesis simulations are executed, each intermediate activity file is fed to a Syn-
opsys PrimeTime® instance, along with the gate-level netlist to estimate the aver-
age power consumption for the N small test vectors.

Similarly to VCS®, PrimeTime® simulations are also parallelized. At the end,
the results of the N test vectors are combined using another Python script to com-
pute the total execution time, the average power consumption of the VPT-FPU
hardware configuration, and the overall energy consumption of the application
when executed on top of the studied HW architecture.

Please note that the post-synthesis simulations only focus on evaluating the
power consumption and execution time spent by the VPT-FPU, i.e., the amount
of energy spent on FP computations. Other microprocessor and system param-
eters such as cache memory latency, memory bus contention, branch prediction,
external peripherals, efc. are beyond the scope of this thesis.

89

Chapter 5. Approximate-aware Multi-precision FPU

Test
Vectors

i iSpIit and parallelize simulations i
Init. Archi. State Init. Archi. State Init. Archi. State
Test Vector Test Vector Test Vector
1 2 - N

l !

Netlist ——>[¥ vecs]—)[“r vcs » r vCs
Activity file Activity file Activity file
SAIF 1 SAIF 2 . SAIF N

—)[" PrimeTime]—)[(J g PrimeTime] 7 PrimeTime

PiTh + P2 T + + Pn" TN

L

T Total Execution Time

P Average Power Consumption
E Total Energy Consumption

Figure 5.4: Parallel post-synthesis simulations and estimation of execution time, power,
and energy consumption.

5.6 Use Case1: HW-level Evaluation of the Fixed-Precision
Jmeint

In the previous chapter (Section 4.4), we demonstrated how AXQEMU could
be used to evaluate the impact of FI” approximations on applications” QoR by di-
rectly applying AXQEMU to a set of benchmark applications. In other words, this
previous section explored precision Vs. application-level QoR trade-offs.

In contrast, this section will explore another effect of precision reduction which
is power consumption reduction and energy efficiency optimization, i.e., precision
Vs. power consumption trade-offs [135] .

For conciseness, here we only present results regarding the Jmeint application
among the AxBench benchmark [154] . This application belongs to the 3D gaming
domain. It detects the intersection of two triangles in space and takes 100,000
random pairs of 3D triangle coordinates as an input.

§1 Simulation context All the variables of this fixed-precision application are
declared as doubles, and the QoR metric is the intersection detection miss rate.
The source code was instrumented with Selective Approximation (SA) macros,
as explained in Section 4.3.2. After compilation, the generated binary executable

90

5.6. Use Case 1: HW-level Evaluation of the Fixed-Precision Jmeint

has been simulated with AXQEMU, as presented in Section 4.4.

§2 Precision-QoR trade-offs (revisited) These results show that the QoR is
maximal and constant for M, > 22, E; = 4 as well as for M; > 18, E; > 5. There-
fore, from a software perspective, the float type is over-designed for this appli-
cation. If the hardware running the application supports other formats, such as
the IEEE half-precision 16-bit format [28] which has a 5-bit exponent and a 10-bit
mantissa, and the user tolerates a miss rate of 6.4% then significant energy savings
and reductions in memory footprint can be reached. Using ARP, it is possible to
trade accuracy against hardware overheads in a more fine-grained way.

§3 Generated HW configurations From the raw output results used in the first
study (Figure 4.9), we selected a set of precisions/HW configurations each lead-
ing to a different QoR. We generated the corresponding test vectors for power-
accuracy trade-offs following the evaluation flow described in Section 5.5.

In this relatively simple fixed-precision use case, we only consider a VPT-FPU
containing the standard blocks @, (B), (C) and the approximate 64-bit data
path. Moreover, the generated HW architectures only contain one reduced format
(11, M,) inside the data path. To simplify the study, the exponent bit-width

is fixed at 11 (similar to binary64’s exponent bit-width), and only the precision
My varies.

§4 Power / Execution time / Energy results Figures 5.5, 5.6, 5.7, 5.8 represent
the variation of Jmeint’s average power consumption, execution time, total energy
consumption, and cell area, respectively, as a function of precision.

The bottom horizontal axis shows the different HW architectures” precision.
The vertical axis depicts the power, execution time, energy, and area values nor-
malized by the baseline RV64IMAFD FPU architecture (denoted RV64FD here). The
percentages written in blue represent the Quality of Result expressed as the miss
rate achieved by each architecture extracted from Figure 4.9. These figures allow
us to have two aspects under sight: the precision Vs. QoR aspect and the precision
Vs. HW-level parameters aspect.

91

Chapter 5. Approximate-aware Multi-precision FPU

1.1-
1.0-
A
~0.9-
o
'8
§o.s~
%071
— 0,
gos- 77%
? 054 0.
S04+ 0.014%
503 | 0-21%
2 3% I
2 0. 2!
3 8 2
]] [}
© o =}
s s s

0%
A
41%
Power
[Internal Power
0% Leakage Power
y e I Switching Power
001%
2 P e
13
= = o

Figure 5.5: Jmeint power consumption per architecture and precision.

o o o -
~ o] o o
1] |]

o
(=)}
]

o o o
N w =
1] 1

Execution Time (Normalized by RV64FD)
X ?

o
o
L
04

Md

0.21%

3.4%

08

Md

0%

0%

0.001%
0.014%

20

II I
T
=

Md =12
Md
RV64FD

Figure 5.6: Jmeint execution time per architecture and precision.

92

5.6. Use Case 1: HW-level Evaluation of the Fixed-Precision Jmeint

1.1+
0%
LOTx A
E;(IQ—
w
0.8
>
x()?
20 70%
Bo6- | 89%
N
Tos-
E
1.
204+
> 0%
20.34 0.001%Y.
g 05 0.014%
w 0.2
3\{4.%0-21A)
0.1-
0.0 =~ = S S e
< foe) ~ (=} o (]
o o ~ —~ ™~ w
I I I I I >
© © © © ° =
= = = = = a

Figure 5.7: Jmeint energy consumption per architecture and precision.

Total Cell Area (Normalized by RV64FD)
e o o o o o o o = ¥
N w » v [o)] ~ [e4] [(e] o =

o
=

o
o

< O N O O
—

d
Md =
d=
RV64FD

M
M
M
M

Figure 5.8: Area for each studied architecture.

93

Chapter 5. Approximate-aware Multi-precision FPU

Optimization with no QoR loss All the 100,000 Jmeint’s inputs are correctly
classified using the arbitrary reduced FP format (11, 20) while achieving 41% less
average power consumption, 50% less execution time and 70% less FPP compu-

tation energy. However, including this reduced format’s hardware in the

data path requires an additional area overhead of +8.5% compared to the base-
line RV64IMAFD architecture.
Please note that the execution time gain is explained by the reduction of the

number of registers inside the approximate blocks @ of the FPU. This means that,
approximated operations are executed in less cycles compared to full-precision
ones, whereas the target frequency of the circuit is always fixed at 200MHz for
fair comparison.

Optimization for a relaxed QoR threshold When QoR loss is tolerated, which
is the case of such inherently approximate applications, the energy efficiency can
further be optimized while paying less area overhead. If a QoR miss rate of 3.4% is
allowed, one can achieve 77% less average power, ~51% less execution time, and
up to 89% less total energy. The advantage, in this case, is that only a +3.4% area
overhead is added when compared to the baseline reference architecture.

5.7 Use Case 2: Application to Mixed-Precision appli-
cations

This section will demonstrate the following assumptions through the study of
three applications from the State of the Art:

o AXQEMU supports existing SoA tools and mixed-precision applications, i.e.,
ones that contain both float and double variables.

e Arbitrary Reduced Precision (ARP) can be used in conjunction with other SoA
techniques such as Variable Type Optimization (VTO) to further refine FP op-
timization. For this cooperation use case, a detailed HW-level analysis is done
to evaluate how efficient is the symbiosis in terms of precision Vs. power/exe-
cution time/energy analysis.

5.7.1 Background: Mixed-precision DSE flow

This section presents the context and some definitions that will be used in the
following use cases.

As explained in Section 2.3.2, a typical SW FP algorithm implementation sce-
nario consists on multiple steps. The first three are well explored in the State of
the Art:

1. Algorithm design and numerical stability analysis [118-120] : establishing
the mathematical foundations of the algorithm and their stability w.r.t the in-
puts. The main goal is to avoid instabilities such as round-off errors.

94

5.7. Use Case 2: Application to Mixed-Precision applications

2. Naive implementation with high-precision FP formats only: a software im-
plementation using all high precision formats.

3. Coare-grained Variable Type Optimization (VTO) [121-125] : the process
of migrating as much variables as possible from high-precision to lower preci-
sions (e.g., changing double variables to float) in a given application source
code while satisfying a QoR constraint. The process output is a (software) type
configuration defined as follows.

Definition 5.7.1. A type configuration is a version of the original application, pos-
sibly with mixed-precision, where some variables are declared as floats and others
as doubles.

Although VTO is necessary to optimize the memory footprint and energy con-
sumption of a program, it is a coarse-grained optimization process. As a result, it
usually produces solutions (type configurations) that are over-designed for many
application classes. In our approach, we have therefore included a fourth step to
minimize hardware FPU implementation through a fine-grained optimization:

4. Fine-grained optimization using fixed Arbitrary Reduced Precision (ARP)
[125-128]: this approach takes advantage of non-standard reduced operators.

Algorithm design Naive implementation
& stability analysis ~— with high-precision
[118-120] FP types only
}
Fine-grained Arbitrary Coare-grained Variable
Reduced Precision Type Optimization
(ARP) - (VTO)
[125-128] [121-125]

Figure 5.9: Typical FP application implementation flow.

In the remaining of this chapter, we will use the following definitions:

Definition 5.7.2. An FPU configuration is a 4-uple (E, My, E4, M), where E;
(resp. Ey) is the exponent bit-width for the single-precision (resp. double-precision)
operator, and M; (resp. M) is the mantissa bit-width of the single-precision
(resp. double-precision) computational operator.

For example, an FPU that supports binary32 and binary64 is represented as
(8,23,11,52).

5.7.2 Problem statement

Given an application that takes as an input a dataset /, and providing a numer-
ical output result O, our objective is to identify the optimal FPU configuration
(Ey, My, Eq, My) in terms of power consumption, execution time, and overall en-
ergy consumption, subject to a Quality of Result (QoR) constraint on the output
O.

This goal can be reached in three phases:

95

Chapter 5. Approximate-aware Multi-precision FPU

Phase (1) Starting from an application source code, steps 1 to 3 (Section: 5.7.1) were per-
formed using SoA tools to generate a set of valid type configurations for each
QoR level constraint.

Phase (2) Software design space exploration: for a given type configuration, the design
space is rapidly explored to select a set of FPU bit-width configurations satisfy-
ing the QoR constraint target.

Phase (3) FPU hardware assessments: for each configuration, an estimation of the overall
energy savings was made to select the best final configuration.

For this experiment, we selected the tool described in [121] which is briefly
introduced in Section 5.7.3. First, the software type configurations described in
[121] (Phase (1)) were instrumented with AXQEMU to select a set of candidate
hardware FPU configurations according to each QoR constraint (Phase (2)). Then
these candidates will be evaluated in hardware to select the best final optimized
architecture (Phase (3)).

These phases can be automated using specific search algorithms. However, in
this manuscript, for the sake of clarity, all simulations were performed exhaus-
tively.

5.7.3 The PROMISE tool

PROMISE [121] ° was selected as the primary tool for VTO (Phase (1)). Given an
application and an input dataset, it applies a delta debugging algorithm [134]
to find a configuration that minimizes the number of high-precision (double-
precision) variables while nevertheless satisfying a given QoR constraint. Inter-
nally, PROMISE uses the CADNA library [158] , which implements Discrete
Stochastic Arithmetic (DSA) [133] , a technique that estimates round-off error
propagation and detects numerical instabilities in a program.

5.7.4 Evaluation and Discussion

The approach was evaluated using three applications from [121] : arclength,
rectangle, and squareroot. For each application, an optimized type configu-
ration is generated by PROMISE for various QoR thresholds (Phase (1), Section
5.7.2).

Benchmark QoR Metric In the remainder of this section, we use the same QoR
metric as in [121] i.e., the number of significant digits S computed as follows:

Result(8723711752) — Result(EﬁMf’Ed,Md)

S=-1lo
510 Result (g 231152

Where Result, By, M;,Eq,M,) 1S the numerical output computed when simulat-
ing the application with the (Ey, My, E4, My) FPU configuration on AXQEMU,
and Result(s2311,52) is the golden reference result obtained using the standard

Shttp://promise.lip6.fr

96

http://promise.lip6.fr

5.7. Use Case 2: Application to Mixed-Precision applications

(8,23,11, 52) configuration. The numerical results for these applications are non-
Zero.

5.7.4.1 Phase (1)

Table 5.2 lists the benchmarks studied alongside the type configurations gener-
ated. The 3™ (resp. 4'") column depicts the number of double (resp. float)
variables required for each type configuration.

Every {type configuration, benchmark} pair achieves a maximum QoR (shaded
cells in the 5% column) when executed exclusively in full precise mode using the
standard configuration (8,23, 11, 52). In other words, if one is limited to standard
FP types, only the conservative QoR thresholds that are highlighted can be ob-
tained.

The last column depicts, for each {application, type configuration, QoR thresh-
old} tuple, a set of candidate FPU configurations that also satisfy the given QoR
constraint. Candidate FPU configurations (the 6" column) were selected based
on a design space exploration process which is explained in the next paragraph.

Type I QoR Candidate FPU
Configurations Application | #Doubles | # Floats Threshold Configurations
10 (8,3,11,44)
8 (8,3,11, 36)
arclength 8 1
6 (8,3,11,32)
4 (8,3,11,28)
10 (8,3,11, 36)
V10 rectangle 4 3 8-6 (8,3,11, 28)
4 (8,3,11,16)
10 (8,3,11,32)
8 (8,3,11,28)
squareroot 6 2
6 (8,3,11,20)
4 (8,3,11,8)
6 (8,22,11, 32)
arclength 7 2
4 (8,13, 11, 28)
8-6 (8,3,11,28)
Vé rectangle 3 4
4 (8,3,11, 16)
6 (8,15, 11, 4)
squareroot 0 8
4 (8,7,11,4)
va arclength 2 7 4 (8,22,11, 28)
rectangle 0 7 4 (8,16,11,4), (8,13,11,4)

Table 5.2: Benchmark summary

97

Chapter 5. Approximate-aware Multi-precision FPU

5.7.4.2 Phase (2)

An exhaustive DSE was performed for each type configuration and each applica-
tion. Let us denote C' = {co, c1, ...} a set of FPU configurations to be studied. Our
objective was to determine the most optimized FPU configuration ¢; € C satisfy-
ing the target QoR threshold. The DSE is a two-step process:

§1 Simulation Firstthe source code corresponding to a type configuration (e.g.
the V10 configuration of arclength) is compiled. Then, the binary is executed
using AXQEMU for each FPU configuration ¢; € C. The raw QoR values (i.e., the
number of significant digits) for all ¢; are stored in an array M for processing in
the next step. This simulation step can be more or less time-consuming depending
on the size of the input dataset, the execution time for the application itself, and
the number of FPU configurations to be studied.

§2 QoR normalization Once all the simulations have been performed and the
QoR array M constructed, a processing algorithm is applied to filter out anoma-
lous local optimums caused mainly by error cancellation. Indeed, reducing the
operator-level precision may lead to errors in the output of an operation. However,
sometimes, when multiple operations are combined, the errors may cancel each
other out, leading to an accidental increase in overall QoR rather than a decreased
QoR. To keep results consistent, we considered the worst-case error detected (i.e.,
the lowest QoR) among all the configurations that have an equal or greater man-
tissa bit-width. Thus, for each ¢; = (Ey;, My, Eq;, My;) we considered the mini-
mum QoR value between the raw original value obtained for ¢; and the QoR val-
ues determined for any higher-precision configuration ¢; = (Ey;, My;, Eg;, My;)
that satisfies My > My; or My; > My,.

§3 Phase (2) results Phase (2) (from Section 5.7.2) consists on performing a
series of simulations using AXQEMU for each benchmark and each type config-
uration (V10, V6, V4). Figure 5.10 shows the variation of the QoR against float
mantissa bit-width M, and double mantissa bit-width M,. Thus, Phase @) pro-
vides a set of candidate FP’U configurations that produce intermediate QoR levels.

§4 Phase (2) analysis Figure 5.10 summarizes the effects of operator-level pre-
cision (M; and M) on application-level results. For the same application, the
impact of bit-width sizing on overall accuracy differs between type configura-
tions. The gradient of variation of the QoR reveals some information about the
sensitivity of each type configuration to low-level precision. For example, for
rectangle, the output accuracy of the V10 type configuration is independent of
the float mantissa bit-width (/). Indeed, this type configuration considers only
one float variable, the impact of which on the QoR is negligible.

Design engineers could use Figure 5.10 to guide their selection of the best op-
tions for application implementation. Starting from a type configuration (V10, for
example), the QoR threshold (and hence the consumed energy) can be selected by
varying the underlying operator-level precision rather than changing the variable
types. This allows more fine-grained control of the accuracy vs. energy compari-
son.

98

5.7. Use Case 2: Application to Mixed-Precision applications

0])
1 é’,‘ OF
g. "‘A 6{.‘(\ V’ -
= ‘V.' O VAT
a4 A N\ /XRPET AN
o L
26 N AERES
o X5
Q s S:
a |
w0 10
12 1

L3>
SRS
ST 75T
" SO\Y vr‘;’!x"’llll "’
& 2 Y\ ARG, &
s W O Y
= 4 X DS RS A A =
a = X a6
L 6 o ©
> o >
o = L
g 10 - < 10
@ a
wn 12 0 12

Mapii36a0 1917 (@ Mapi:i36a0 1017\
Nlissa a8 270d Mlissa g 4852 2321(,\06‘«\

b) rectangle C) squareroot
g q

Figure 5.10: QoR results for arclength, rectangle, and squareroot.

The last column of Table 5.2 shows the selected candidate FPU configurations.
The most appropriate one can be selected based on a qualitative comparison of the
bit-widths. However, a detailed hardware-level evaluation is necessary to deter-
mine which bit-width minimizes the overall energy consumption quantitatively.

In the previous section, we applied AXQEMU to some benchmarks to study
the effects of FP approximations on application-level accuracy. In this section, we
present a hardware-level evaluation of the selected candidates, which aimed to

estimate the HW savings in terms of energy consumption thanks to ARP (Phase

).

The methodology was applied to many applications, but for the sake of conci-
sion, we only present the arclength study here.

99

Chapter 5. Approximate-aware Multi-precision FPU

5.7.4.3 Phase (3)

§1 HW evaluation methodology The approximate-aware hardware FPU pre-
sented in the previous sections was implemented in SystemVerilog to perform the
HW-level evaluation. The HW design is globally parametric so that the four pa-
rameters of the FPU configuration (Ey, My, E4, M) are variable at design time, as
explained in Section 5.2.

Normalized Energy
© o © o o © o =
w H (6] ()] ~ o] Vo] o
1 1 1 1 1 1 1 J

o
N
1

Figure 5.11: Energy vs. QoR trade-offs

§2 Phase (3) results Figure 5.11 shows the estimated energy consumed by the
FPU, for each arclength type configuration (V10, V6, V4). To evaluate and com-
pare the savings provided by VTO alone (Phase (1), represented in orange) vs.
VTO + ARP (Phase (2), represented in blue), they are compared to a reference
implementation Ref (represented in green). The latter is a conservative imple-
mentation (i.e., a naive one, where all variables are in double-precision). The en-
ergy values are normalized by the Ref type configuration when executed on the
RVB4IMAFD (denoted RV64FD) standard architecture (8,23,11,52). The numbers
on top of the bar plots indicate the number of significant digits S associated with
each {type configuration, FPU configuration} pair.

For a fair comparison, the metric evaluation functions executed in full pre-
cision were not considered. Therefore, the results presented only relate to the
computational part i.e., the amount of energy spent on FP computations.

§3 Phase (3) analysis Figure 5.11 shows that the type configurations gener-
ated by PROMISE only provided 0.9%, 4.8%, and 7.7% savings on FI> computa-

100

5.8. Conclusion

tion energy compared to the Ref conservative implementation when producing
results with 10, 6, and 4 significant digits, respectively. Therefore, even when the
accuracy is drastically reduced to just 4 digits, the energy-saving does not exceed
7.7%. In contrast, by using ARP, it becomes possible to save 19.4%, 49.5%, and
60.7% energy with the pairs {V10, (8, 3,11, 44)}, {V6, (8,22, 11, 32)}, {V4, (8, 22,
11, 28)}, respectively, without degrading QoR.

For some QoR constraints, VTO tools may not be able to identify an appro-
priate optimized type configuration. This was the case for all the applications
presented in Case Study 2. For example, no optimized type configuration can sat-
isfy an 8-digit QoR constraint, and the designer will therefore have to select an
over-designed configuration that produces a higher QoR, such as V10. This effect
is due to the coarse granularity of the standard types. However, with ARP, fine-
tuning can be performed until a near-threshold, or in other words “good enough”,
configuration is found satisfying the constraint defined.

When quality constraints are relaxed, more interesting savings are possible by
considering both software (type configurations) and hardware (FPU configura-
tions). For example, if only 4 digits are required, the pairs {V10, (8,3,11,28)},
{Ve, (8,13,11,28)}, and {V4, (8,22,11,28)} are all good candidates. These com-
binations provide equivalent energy savings: 60.7%. Other criteria, such as the
circuit area or the memory footprint, can be considered to guide the choice of the
tinal FPU configuration. According to our synthesis results, the best compromise
for this application would be the (8, 3, 11, 28) configuration, since it has the low-
est circuit area overhead, which is estimated to be +27% higher than the standard
RV64IMAFD architecture.

5.8 Conclusion

In this chapter, we presented a hardware FPU architecture, called VPT-FPU,
that supports ARP and VPT with multiple reduced-precision FP formats in hard-
ware. This VPT-FPU architecture combines the usual standard-precision compu-
tational blocks as well as reduced precision FP formats that enable power, execu-
tion time, and energy consumption optimization.

The proposed HW architecture and its software support aspects were pre-
sented in detail. We also presented the power/execution time/energy consump-
tion evaluation flow based on EDA tools. Finally, we presented two use cases that
illustrate the SW and HW FP optimization process explained previously in Sec-
tion 2.3.2 including the use of our ARP technique along with SoA tools such as
Promise [121] and the AXQEMU simulator to find the most optimized FPU ar-
chitecture configuration that reduces power consumption while still satisfying a
QoR requirement.

The uses cases presented in this chapter conclude that traditional VTO is suit-
able for primary coarse-grained memory optimization, whereas our technique en-
hance (Arbitrary Reduced Precision) FP computational energy optimization.

In this chapter, we only took into consideration the ARP aspect and we consid-

101

Chapter 5. Approximate-aware Multi-precision FPU

ered precision fixed at run-time. In contrast, the next chapter will explore the VPT
aspects, where hardware supports multiple reduced-precision FP formats and the
software varies its precision at run-time automatically. We will focus in particular
on Iterative Methods (e.g., Jacobi, Gauss-Seidel, ...) as a use case since these are
inherently approximate applications.

102

Variable Precision in Time for
Stationary Iterative Methods

Contents

6.1 Introduction 106
6.2 RelatedWorks0 ... 107
63 Motivation e 108
6.3.1 FP computation usage in Jacobi and Gauss-Seidel 108
6.3.2 The limitation of Fixed Arbitrary Reduced Precision . . . 109
6.4 Iterative Methods: Mathematical Foundations 110
6.4.1 Presentation of Jacobi and Gauss-Seidel iterative methods 111
6.4.2 Convergence of Iterative Algorithms 111
6.5 Implementation of VPT-enabled Iterative Methods 112
6.5.1 The original algorithm 112
6.5.2 The transformed algorithm 113
6.6 Statistical Analysis o i i e 120
6.6.1 Software implementationaspects 120

6.6.2 Effects of VPT on the Convergence Profile and Precision
Variation Profile 120
6.6.3 Effects of VPT on the total number of iterations 123
6.6.4 Effects of VPT on iterations’ distribution 124
6.7 Hardware-level Evaluation & Discussion 128
6.7.1 Hardware synthesis conditions 128

6.7.2 HW-level evaluation with one input and relaxed thresh-

olds (nominal scenario) 128

104

6.7.3 Worst case / Best case HW-level evaluation 131

6.74 Circuitarearesults, 135
6.7.5 Limitations e 135
6.8 ConclusSion v v i i i it e e e e e e e e e e e e e e 135

105

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

6.1 Introduction

To achieve power efficiency, Chapter 5 presented a hardware implementation
called VPT-FPU, which is configurable at design/synthesis time and can host one
or many reduced precision FP formats. We demonstrated that the computation
precision can be selected either statically at compilation time through memory
partitioning or at run-time through a lightweight HAL library. However, the use
cases presented in Chapter 5 only demonstrated static precision selection. In con-
trast, this chapter presents a practical use case where the VPT capability of the
VPT-FPU hardware architecture allows the application to automatically tune the
computation precision through the low-level HAL functions.

This chapter presents a new method that enables self-adaptive precision au-
tomatically at run-time. A theoretical and statistical study is performed in this
chapter to demonstrate the drastic energy reduction in the case of iterative algo-
rithms. These algorithms are the cornerstone of Computer Vision (CV) applica-
tions which are widely used in the context of Artificial Intelligence. Reducing
the power consumption of such applications is crucial to meet the current inter-
national trends.

In this work [159,160], we focus on applying VPT to stationary iterative algo-
rithms such as Jacobi and Gauss-Seidel. For such applications, the requirements
in terms of precision vary at run-time. This means that standard FP’ formats are
over-designed for these workloads. Moreover, it is shown that even fixed reduced
precision formats are over-designed for some parts of these applications. Hence,
there is a need for FPU architectures that enable fine-grained VPT.

The concept of VPT is demonstrated by proposing for each iterative algorithm
(Jacobi and Gauss-Seidel) two transformed iterative algorithms that self-adapt
their computation precision automatically. These algorithms do not need inter-
vention from the user or the programmer. The first is a conservative version and
the second is a relaxed (approximate) version. Programmers can choose one of
them depending on their application; the first provides more robust guarantees
while achieving interesting energy gains, while the second has relaxed guaran-
tees but with a higher power-efficiency. The software implementation of these
algorithms is discussed and a set of statistical studies is performed to evaluate the
effectiveness of the two approaches across many inputs.

This chapter is organized as follows:

e Application of VPT to iterative methods (Section 6.4) and proposition of two
modified VPT-enabled algorithms with self-adaptive run-time precision (Sec-
tion 6.5);

e An in-depth statistical verification study of the VPT’s impact on Jacobi algo-
rithm’s behavior (Section 6.6); and

e ASIC implementation of a set of multi-precision hardware configurations of the
proposed VPT-FPU on a 28nm FD-SOI technology node and a post-synthesis
evaluation of the proposed VPT algorithms” power consumption, execution time,
and overall dissipated energy (Section 6.7).

Before diving into the details, some related works are presented in Section 6.2,
and the motivations behind this work are introduced in Section 6.3.

106

6.2. Related Works

6.2 Related Works

The proposed approach takes advantage of non-standard arbitrary reduced
operators [135,161] to achieve significant gains in terms of execution time, power
consumption, and overall energy consumption. The following are some related
works from the literature.

§1 FP Variable Type Optimization (VTO) For a given triplet {application, in-
put dataset, QoR constraint}, tools such as [121,123,124] perform coarse-grained
VTO using the delta-debugging search heuristic [134]. The authors’ objective is
to minimize the number of high-precision variables and maximize the number of
low-precision variables. For some of these tools [123,124], the objective is to opti-
mize for speed, whereas for others, such as Promise [121], the goal is to maximize
the number of float variables.

§2 Non-standard/Arbitrary precision support The mentioned tools support
standard IEEE 754 [28] formats only, except Precimonious [123], which also sup-
ports Intel’s 80-bit format implemented as long double in C. The authors of fp-
PrecisionTuning [125] proposed an arbitrary precision impact simulation method-
ology based on an automatic source code transformation tool. Libraries such as
FlexFloat and FloatX [127,128] enable developers to simulate the impact of re-
duced precision on application-level Quality of Result. These tools support arbi-
trary precision only in simulation to help designers decide which precision is ade-
quate for their application. However, they do not provide hardware-level support
to leverage these decisions for power, execution time, or energy savings.

§3 Mixed-precision for Linear Algebra There are two categories of linear sys-
tem solvers: direct solvers (e.g., Gaussian Elimination, Cholesky decomposition)
and iterative solvers. Carson and Higham [162,163] have proposed a general al-
gorithm for solving linear systems based on iterative refinement [164] with three
standard FP precisions. However, this method only uses standard precisions that
traditional processors support. Moreover, the technique is mixed-precision in
spacebutnotin time, i.e., contains mixed-precision instructions. Still, each instruc-
tion keeps its precision for all iterations. [165] have built on the previous work and
proposed a solution with five different precisions. In contrast, [166] introduced
new FP data types supported in NVIDIA GPUs. Finally, others [167] proposed an
adaptive scheme to reduce communication overhead by selectively storing parts
of the system preconditioner in different precision formats (half, single, or dou-
ble). In this chapter, we focus specifically on classical stationary iterative solvers
such as Jacobi, Gauss-Seidel, Richardson, Successive Over-Relaxation, [168,169]
etc.

§4 Arbitrary Reduced Precision In this thesis we proposed a simulator (AxQEMU)
(source code available at [170]) that simulates the impact of arbitrary reduced FP
precision on applications in a non-intrusive way without modifying the source
code. This approach is complementary to VTO since the tools mentioned before
can be used as a starting point. Furthermore, using AxQEMU allows primary

107

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

memory footprint optimization and enables fine-grained accuracy/energy trade-
offs (Chapter 5).

§5 Variable Precision in Time VPREC [129] is a software back-end compo-
nent that enables non-intrusive run-time variable precision simulation in the Ver-
ificarlo [137] software toolchain. This tool simulates run-time variable precision,
specifically for iterative algorithms. However, VPREC is designed for impact sim-
ulation only in software and does not provide a hardware implementation for
power reduction, whereas this work targets both software and hardware-level
implementations. Moreover, VPREC evaluates the needed reduced precision for
each iteration through off-line and data-dependent studies performed after the ex-
ecution. In contrast, we propose a technique to automatically select the adequate
precision for each iteration online at run-time in this work.

6.3 Motivation

This section presents the reasons that motivated this work. First, the fact that
Floating-Point computations constitute an essential part of iterative workloads is
demonstrated. Second, we show to which extent the standard FI” double-precision
is over-designed for such applications using the AxQEMU Arbitrary Reduced
Precision simulator [135,161].

In the rest of this chapter, let P be the maximum number of precisions sup-
ported by the VPT-FPU (Section 5.2, Figure 5.1) and p an integer index such that
1 < p < P. Then, let (Ey, M;),...,(Ep, Mp) denote the list of reduced precision
FP formats supported in hardware.

6.3.1 FP computation usage in Jacobi and Gauss-Seidel

B FP arith. insns.
4 B FP mem. insns.

B Other FP insns.
Integer mem. insns.

#Insns

#Cycles per Insn 1 M Integer arith. insns.

Others insns.

#Insns

#Cycles per Insn

Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il

1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10

Figure 6.1: Dynamic instructions breakdown and number of cycles per instruction for
Jacobi and Gauss-Seidel. Both applied to the same random input with a tolerance threshold
TOL = 10~ ",

108

6.3. Motivation

The first motivation behind this work is the fact that iterative algorithms such
as Jacobi and Gauss-Seidel spend a lot of time performing Floating-Point (FP)
computations. To evaluate the execution time associated with such computational
operations, a cycle-accurate simulation is performed.

To do that, a cycle-accurate processor model (called CVA6 [171]) running at
200MHz is used. The Jacobi and Gauss-Seidel algorithms have been executed
on top of this model with a randomly generated input. Figure 6.1 depicts dy-
namic assembly instructions” breakdown for both Jacobi and Gauss-Seidel, i.e.,
how many instances of assembly instructions have been issued through the pro-
cessor pipeline during the execution of the application.

As depicted in Figure 6.1, for a 10™'2 tolerance threshold, 10.2% (resp. 16.2%)
of the total assembly instructions executed are FP arithmetic instructions, and
19.8% (resp. 31.5%) are FP memory instructions for Jacobi (resp. Gauss-Seidel).
The remaining portions concern instructions manipulating integers (arithmetic
and memory) as well as other instructions such as branch and control flow in-
structions, system instructions that manipulate CSRs, etc.

Although executed FP arithmetic and memory instructions are limited to 10.2%
(resp. 16.2%) and 19.8% (resp. 31.5%), they constitute 19.5% (resp. 28.8%) and
23.0% (resp. 26.4%) in terms of how many cycles are actually spent on each in-
struction for Jacobi (resp. Gauss-Seidel).

These statistics might vary slightly from one input to another and depend on
the SoC parameters (cache parameters, memory bus / interconnect,) How-
ever, it is safe to say that targeting FP computation optimization for these ap-
plications is a good decision. Moreover, when the approach is combined with
classic SOA techniques, designers can also benefit from low memory overhead in
addition to the computation gains afforded by our technique.

6.3.2 The limitation of Fixed Arbitrary Reduced Precision

The second motivation behind this work is the fact that even fixed ARP is over-
designed for iterative algorithms. Figure 6.2 shows the impact of precision varia-
tion on the Convergence Profile (variation of the computed solution’s accuracy at
eachiteration C.f., definition 6.4.1) of Jacobi when operating on different Arbitrary
Reduced Precisions. The reference application is simulated using the AXQEMU
simulator [135,161] for multiple precisions (4, §, ..., 48, 52). Each of the colored
lines shows the evolution of the error metric when the application is executed
with ARP. For each simulation, the precision is defined at launch time and stays
constant at run-time.

This example demonstrates that it is unnecessary to compute all iterations with
double-precision. For instance, for Jacobi to reach a target 10~ error threshold,
the designer only needs an FP format with a 32-bit mantissa, i.e., the FP format
(11, 32), which has a total bit-width of 44 bits. Similarly, for Gauss-Seidel, a 28-
bit mantissa, i.e., a total bit-width of 40 bits is sufficient to reach a target error
threshold of 10~.

For Jacobi, even though the (11, 32) format will dissipate less power than the
original binary64 format, there is still room for significant improvement. For in-
stance, the (11, 32) format is still over-designed for iterations 0 to 457. A similar
case could be made for Gauss-Seidel.

109

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

As a conclusion, the standard FP’ formats are over-designed for these applica-
tions and ARP optimizes the energy consumption compared to the original refer-
ence precision. However, there is still room for improvement using an Arbitrary
Reduced Precision if it is variable at run-time. This would allow precision to be
varied during the execution depending on the error threshold needed. In this
chapter, the VPT-FPU presented in Chapter 5, is used with two modified self-
adaptive algorithms that automatically vary the computation precision without
user intervention.

107" \
1072
1074 .

105+
1076 L
10—7 -
10~8}+
1079 L

10_10 Tolerance Threshold l(lfl“

10—11 L \
10-12}+ \ |

10—13 L \\ 4
10-14 ~

10—15 L 4
10—16 Lo i i H ; FE—

0 200 400 600 800 1000

Residual Error (smaller is better)

Iterations
— 4 bits 12 bits 20 bits 22 bits 24 bits 32 bits — 40 bits — 48 bits
— 8 bits 16 bits 21 bits 23 bits 28 bits — 36 bits — 44 bits — 52 bits

Figure 6.2: The variation of solution accuracy when Jacobi is executed for each fixed Ar-
bitrary Reduced Precision.

6.4 Iterative Methods: Mathematical Foundations

The Jacobi and Gauss-Seidel iterative algorithms are used as case studies to
evaluate the gains and the limitations of the proposed VPT-FPU. The original
algorithms are presented as well as two VPT-enabled versions that benefit from
the run-time variable precision capability.

110

6.4. Iterative Methods: Mathematical Foundations

6.4.1 Presentation of Jacobi and Gauss-Seidel iterative methods

Stationary iterative methods are algorithms that determine the solution of a square
n x n system of linear equations, in the form :

AZ=b (6.1)

Given the n x n real coefficient matrix A and the right-hand side n-vector b,
an iterative algorithm aims to find the unknown vector 7 satisfying equation 6.1.
This equation can be transformed to a fixed-point iteration [168]. The system is
solved by computing, at each iteration (k + 1), the (k + 1) approximation of the
vector 7 **+1) as a function of the previous result 7*). This chapter focuses on two
main iterative algorithms to solve this problem based on the fixed-point method:

e The Jacobi method (published in 1845), whose formula can be written as fol-
lows:

o =L (b= uaa”) i=12.0n (62)

(k+1)

where z;""" is the i'" element of the vector #*+1).

e The Gauss-Seidel method (published in 1874), which uses a slightly different
equation:

k+1 i—1 s " g
7t = (bz’ = Yy = S i)> (63)

These methods and others are well documented in the literature [131,168].

6.4.2 Convergence of Iterative Algorithms

To solve this problem iteratively, the convergence of the system should first be
mathematically ensured. In the remaining of this chapter, we assume A to be
strictly diagonally dominant: the elements of matrix A satisfy the following con-
dition |a;;| > >, |a;;|. For both Jacobi and Gauss-Seidel, this is a sufficient (but
not necessary) condition to ensure the convergence for any initial guess vector
#(© [168, Theorem 4.5, p. 111].

The iterative algorithm reaches convergence when the computed approxima-
tion Z* is very close to the exact solution of the system #*, i.e., the forward error
¢®) defined below is small enough

gk) — (k) _ zx (6.4)

However, the exact solution 7 is unknown. This is why the error of the com-
puted solution is estimated in an indirect way using a convergence metric. The latter
is a scalar that represents the evolution of the solution accuracy at each iteration
k. The idea is to compute the convergence metric at the end of each iteration and

111

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

stop the iterative process when progress is no longer being made, i.e., when the
computed metric is below a given user-defined threshold denoted TOL. The result
of this comparison is called the stopping criterion.

For the sake of simplicity, the distance between two consecutive results is
chosen as metric. It is defined as follows:

[E0+0 = O = /30 (@D —)2 (65)

where ||.|| refers to the Euclidean norm. The metric is computed at the end of
each iteration. Other metrics (e.g., residual error ||b — A7]|,) can also be used.

At the end of each iteration, the stopping criterion is evaluated to 1) identify
when the forward error €*) is small enough to stop iterations [169, p. 63], 2) detect
when the error is no longer decreasing or decreasing too slowly, and 3) limit the
maximum amount of time spent iterating.

The following definitions are provided for the remaining of this chapter:

Definition 6.4.1. The Convergence Profile (CP) is the curve representing the vari-
ation of the convergence metric (e.g., ||7*+) — #®)||) through iterations k. An
average CP is an average curve computed across many inputs.

Definition 6.4.2. The Precision Variation Profile (PVP) is the curve representing
the variation of operating precision (),) through iterations k. An average PVP is
an average curve computed across many inputs.

6.5 Implementation of VPT-enabled Iterative Meth-
ods

This part presents the implementation details of iterative algorithms.

6.5.1 The original algorithm

The following algorithm (Algo. 1) depicts a typical implementation of an iterative
method with only standard precision, (i.e., single-precision/double-precision) with
no custom variable precision involved.

The original algorithm contains a main loop (lines 2-6), where the elements
2F of the solution vector #*+1) are computed in line 3, using either Equation
6.2 for Jacobi, or Equation 6.3 for Gauss-Seidel. Then, the convergence metric is
computed according to Equation 6.5 (line 4). After that, the stopping criterion
evaluation is performed by checking if the computed metric is lower than the tol-
erance threshold TOL or if the number of iterations £ has reached its limit MAX_ITER.
If the stopping criterion is satisfied, the algorithm stops and returns the last com-
puted result. Otherwise, the algorithm continues until reaching convergence in
the next iterations or potentially reaching the maximum iterations limit MAX_ITER.

112

6.5. Implementation of VPT-enabled Iterative Methods

Algorithm 1: general structure of iterative methods

Inputs : A : a diagonally dominant matrix of size n x n,
b: the right-hand side vector of size n x 1,
7 . an initial guess vector of size n x 1,
MAX_ITER : maximum number of iterations,
TOL : original global error threshold.

Output: Z **1): the solution of the linear system.

1 k<0

2 repeat

3 Compute 7 (#+1) > Implements equation 6.2 or 6.3

4 metric(* 1) = compute_metric(#®, #k+1)) » Compute convergence metric
(Eq. 6.5)

5 E—k+1 > Continue until convergence is reached

until metric*+1) < TOL or k > MAX_ITER;
return 7 (*+1)

NS

6.5.2 The transformed algorithm

To take advantage of the VPT-FPU presented in Section 5.2 of Chapter 5, Jacobi and
Gauss-Seidel algorithms should be manually transformed. Algorithm 2 depicts
the general structure of an iterative method with VPT enabled. The regions added
to the original baseline implementation (depicted in Algo. 1) are colored in blue.

Our transformation methodology consists of starting the process with the low-
est possible precision and increasing it gradually until convergence. In this exam-
ple, both the original and the VPT-enabled algorithms are applied to the same in-
put matrix A and vector b for comparison. These inputs are generated randomly
with a randomization seed equal to zero. The steps of the transformation process
are:

1. Define alist of available precisions supported in hardware {)/,, ..., Mp} (in-
put of Algo. 2).

2. Define a list of intermediate tolerance thresholds TOL, (input of Algo. 2).

Since the objective is to increase precision gradually, the intermediate thresh-
olds {TOL,, TOL,, TOL,, ...} should be defined for each one of the intermediate
precisions { My, My, M;...}.

3. Enable VPT at the beginning of the algorithm (line 2 of Algo. 2).

4. Iterate over the supported precisions to gradually improve the accuracy of the
solution.

The outer loop (lines 3-11) iterates over the available precisions M,. At the be-
ginning of each outer loop iteration, the precision is set to M/, with the function
vpt_set_precision(M,) which configures the internal registers of the FPU to
use the precision M,,.

Inside the inner loop iteration (lines 6-10), the vector Z **1) as well as the metric
are computed using the intermediate precision M,,:

113

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

a) If the intermediate tolerance threshold TOL,, corresponding to the preci-
sion M, is reached, the algorithm exits the inner loop and moves on to the next
higher precision M, ;.

b) If the maximum number of iterations MAX_ITER is reached, the algorithm
exits both loops and returns the last computed #*+1) vector.

c) Otherwise, the inner loop continues with the same precision M, until
convergence or until MAX_ITER is reached, and the outer loop continues until
scanning all available precisions or until reaching MAX_ITER.

This process is illustrated through the example depicted in Figure 6.3. It shows
the evolution of the Convergence Profile (left axis), with iterations (horizontal
axis) for the double-precision reference original algorithm (continuous blue line)
and the VPT-enabled algorithm (continuous red line) of Jacobi.

In this example, a set of 13 supported precisions {4,8,...,52} is considered
(right axis) to which 13 tolerance thresholds {27%,27%, ..., 27%?} are associated. The
tigure also shows how the computation precision M, of the VPT-enabled algo-
rithm increases at run-time (orange dashed line, right axis). The intermediate
thresholds TOL, are marked in green.

As shown in Figure 6.3, the precision is increased from M, to M, ; when the
convergence metric reaches the intermediate threshold TOL,. Through this ex-
ample, it is shown that the VPT-enabled algorithm follows the same trend and
provides the same accuracy at the input while operating with much lower and
auto-adaptive precision.

The presented methodology does not alter the convergence of the algorithm,
and programmers can apply it to other applications, (e.g., Successive Over-Relaxation
(SOR), Richardson method, efc. [168]) as long as its convergence is guaranteed
mathematically. In strict logic, we verify that the input couple (A,b) remains
strictly diagonally dominant for each reduced precision. The variation of the Con-
vergence Profile for Gauss-Seidel is depicted in Figure D.1 of Appendix D.

The choice of intermediate thresholds is critical: the smaller they are, the harder
they can be reached. On one hand, choosing thresholds that are easy to reach
will lead to premature precision increment; hence more iterations will be spent
on higher precisions, and power consumption will be increased. On the other
hand, if the thresholds are very difficult to reach for a given precision, it can cause
convergence stagnation. In this chapter, two threshold policies are proposed for
choosing these thresholds.The first one provides conservative thresholds and is
explained in Paragraph 6.5.2.1. The second generates smaller thresholds and han-
dles stagnation cases. The latter is detailed in Paragraph 6.5.2.2.

6.5.2.1 Details of Threshold Policy (1): conservative thresholds

An intermediate threshold should be computed for each precision M,,. With this
threshold policy, the computed thresholds are more conservative, i.e., they are suf-
ficiently high, which makes them more reachable with a given precision. They are
mathematically computed according to the smallest distance between two consec-
utive points in a given FP format.

In the case where the distance metric is used for convergence, an upper bound
can be computed in the precision M, by assuming that the distances between

114

6.5. Implementation of VPT-enabled Iterative Methods

94 : 52
98 48
9—12 44
9—16 40
= 5-20 36
U:fg 2
San » g
(] H
g 270 28 &
&0
< g 24 &
g 9—=361..
3 20
2740 L
: 16
—44 ..
2 , 12
2*48 L..:
9—52 | TOL12
]] i i] i] f]]] i] 4
10 81 155 226 306 384 457 529 602 682 753 825 89
Iterations
— Reference ||x(k+1) — x(k)H — VPT I|$(k+1) — x(k)H VPT precision

Figure 6.3: The Convergence Profile of the original and the VPT-enabled Jacobi applied
to one randomly generated input.

Algorithm 2: VPT-enabled iterative methods

Inputs : A : a diagonally dominant matrix of size n x n,
b: the right-hand side vector of size n x 1,
Z©) . an initial guess vector of size n x 1,
MAX_ITER : maximum number of iterations,
TOL : original error threshold.
My ... Mp : available precisions,
TOL; ...TOLp : intermediate error thresholds.
Output: 7 *1): the solution of the linear system.

1 k< 0,p<0

2 vpt_enable() > Enable VPT
3 repeat

4 p—p+1 > Increase precision index
5 vpt_set_precision(M,) > Set precision to M,
6 repeat

7 Compute & (#+1) > Implements equation 6.2 or 6.3
8 metric*+t1) = compute_metric (& *), #(*+1) > Compute convergence

metric (Eq. 6.5)

9 k+k+1 > Continue until convergence is reached.
10 | untilmetric**1) < 10L, or k > MAX_ITER;

11 until p == P or k > MAX_ITER;
12 return 7 (A1)

115

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

all elements of #**1 and #* i.e., xgkﬂ) - a:l(k) are as low as some small positive
Floating-Point value u.
x§k+1) — xgk) <u <= Zé_l(xgkﬂ) — xgk))Q < nu? (6.6)

= \/ S P <uvn (67)

This assumption provides an upper bound on the tolerance threshold equal to
u+/n, as explained in Equation 6.6 stated before.

This upper bound has to be computed and rounded to the precision M,. For
example, if u is set to €),,, then TOL, = round(y/n €y, M,), where round(X, M,,) is
a function that rounds the result of a FP number X to)M, mantissa bits following
one of the standard FP rounding modes, typically the round-to-nearest rounding
mode.

As the convergence metric is computed in low precision, the designer should
also take the rounding errors associated with the metric computation into consid-
eration [169, Section 4.2.5, p. 56], since the metric computation involves n multi-
plications, (n — 1) additions, plus a final square root operation (see Equation 6.5).
All these computations will contribute to the final computed TOL, values.

To compute an estimation of the thresholds, a proof assistant called Gappa
[172] is used to compute the thresholds for all possible precisions M, € {1,2, ..., 52}.
Listing 4 of the Appendix (D) shows the Gappa script used to compute the thresh-
olds. In this case, it is applied to a precision M, equal to 40 bits. Furthermore, this
script is run offline only once for each precision. This means that it does not add
an overhead to the iterative application itself at run-time.

Example: Consider n = 50, M, = 40, and u = €4 = 2740 If the threshold
is computed ideally, the result would be TOL, = 270 x V50 = 6.43109...10712,
which is similar to Gappa’s result. However, for M, = 4, the ideal result would be
TOL, = 0.44194 ..., whereas using Gappa, it provides the result 0.5. The latter is
more conservative and takes rounding error into account.

6.5.2.2 Details of Threshold Policy (2): relaxed thresholds with stagnation de-
tection

This threshold policy is more “relaxed” in the sense that the chosen intermediate
thresholds are as low as possible to maximize the number of iterations spent on
lower precisions.

Definition of convergence stagnation Choosing very low thresholds is riskier
since there are no guarantees that the convergence metric can actually go as low
as the specified intermediate TOL, thresholds, i.e., there is a chance that the con-
vergence metric will stagnate at a specific value or oscillate around it. Hence, it is
important to consider this effect when choosing to lower down the selected con-
vergence thresholds. This process will be referred to as “stagnation detection”.
The stagnation behavior has been observed only for a small subset of the tested
inputs, yet it is important to consider when the thresholds are selected.

116

6.5. Implementation of VPT-enabled Iterative Methods

101} e 152
10-2F) 4 _Stagua‘_tion of _the convergence proﬁle e 1 :] 48
p— P [
z 1070 e {44
5 107F !
BT | 140
L 1076 136
B2 1077k 132 2
Q 10—8 L %
g 10 1%
= E =
2, 124
8 10—10 L ol
8 10—11 L : :" 120
&0
§ 1012 " ! < 7116
2 1073 F S LS : : : .
8 10-14 : v Stagnation of ithe precision 12
L k. . : : ; .
10-15 F E
10710 ; i ; ; ; ; ; ; i .
0 100 200 300 400 500 600 700 800 900 1000
Iterations
-0 1 2

Figure 6.4: Convergence profiles (left axis, continuous lines) and their corresponding
precision variation profiles (right axis, dotted lines) for three inputs (Matrix IDs 0, 1, and
2). The Convergence Profile here is in terms of the distance metric (||7*+) — z®)||).

Example of Convergence stagnation Figure 6.4 depicts the Convergence Profile
and the Precision Variation Profile for three separate inputs 0, 1, and 2 (each one
has a randomly generated matrix A and vector 5) In this case, TOL,, is set to €y, for
each precision M, and a discrete subset of precisions i.e., M, € {4,8,12,...,48,52}
is chosen so that the total bit-width (1+ 11+ M) of the reduced VPT-FPU formats
are multiples of 4 bits.

As shown in Fig. 6.4, input matrices 0 and 1 converge normally without prob-
lems. However, the distance metric associated with input matrix 2 oscillates be-
tween two values 0.14312744140625 (which is equal to 27%126°) and 0.13732910156250
(which is equal to 2751%%2) while operating in 8-bit precision. The residual error
7 (ie., [|b® — AZ®)|]) also stagnates at the value 0.0000889301300049. For an
8-bit mantissa, the expected convergence threshold is normally 2%, which seems
to be difficult to reach for input matrix 2. Hence the importance of being able to
detect such stagnation cases.

Figure D.2 (Appendix D) shows the same phenomenon for the residual error
metric.

The proposed convergence stagnation detection mechanism: To avoid the stag-
nation of the Convergence Profile, a condition to the stopping criterion should be
added to detect this stagnation or oscillation phenomenon [169, Section 4.2.4, p.
56]. For that, we define the Stagnation Maximum Iterations (denoted SMI) as
the maximum number of iterations for which stagnation can be tolerated. If the
convergence metric stagnates at a fixed level or oscillates, the precision should be
increased if higher precision is available. Otherwise, if there is no higher available

117

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

precision,

A comprehensive VPT-enabled iterative algorithm is proposed (Algo. 3) to
account for the convergence stagnation effect. In addition to the standard ver-
sion of the algorithm (black-colored statements) and the original VPT statements
(colored in blue), additional instructions (colored in red) have been added to im-

then the algorithm is stopped.

plement stagnation detection.

From an implementation point of view, an additional integer variable should
be added to keep stagnation iterations count, as well as one subtraction instruction
and one comparison to check if two consecutive iterations have similar or very
close distance metric (|| **1) —#®||) values (line 11). This overhead is negligible
compared to the cost of the main iteration computations, which is confirmed by

the energy consumption study.

Algorithm 3: VPT-enabled iterative algorithm with stagnation detection

Inputs : A : a diagonally dominant matrix of size n x n,

b: the right-hand side vector of size n x 1,

() : an initial guess vector of size n x 1,
MAX_ITER : maximum number of iterations,
TOL : original error threshold.

M, ... Mp : available precisions,

TOL; ...TOLp : intermediate error thresholds.
SMI : stagnation maximum iterations.

Output: 7 *+1): the solution of the linear system.
1 k< 0,p+0

2 vpt_enable() > Enable VPT
3 repeat
4 p<p+1 > Increase precision index
5 stag_counter < 0 > Initialize stagnation counter
6 vpt_set_precision(M,) > Set precision to M,
7 repeat
8 Compute 7 (F1) > Implements equation 6.2 or 6.3
9 metric(**1) = compute_metric(z®), 7 (k+1)) > Compute convergence
metric (Eq. 6.5)
10 k—k+1 > Continue until convergence is reached
11 if metric*+t!) — metric(®)| < DBL_MIN! then
12 ‘ stag_counter < stag_counter + 1 > Increase stagnation counter
13 end
14 else
15 ‘ stag_counter <0 > Reset stagnation counter
16 end
17 | until metric**1) < 70, or k > MAX_ITER or stag_counter == SMI ;

18 until p == P or k > MAX_ITER;
19 return 7 (++1)

The value of the macro DBL_MIN is the minimum normalized positive Floating-Point number
that is representable in double-precision format. It is provided by the header float.h from the

standard C library.

118

6.5. Implementation of VPT-enabled Iterative Methods

6.5.2.3 Comparing different threshold policies

The different kinds of intermediate thresholds resulting from each threshold pol-
icy are studied and compared to understand how conservative or relaxed they are.
Figure 6.5 depicts a comparative study of these thresholds.

For each precision M, € {1,2,...,52} three versions of intermediate thresh-
olds TOL, are computed:

o Relaxed thresholds: by considering ¢, for each M, € {1,2,...,52}.

e Theoretical conservative thresholds: computed using the formula /7 €y, and
rounded to the nearest.

e Conservative thresholds computed with Gappa: these are generated using the
Gappa proof assistant as explained in Section 6.5.2.1 to take rounding errors into
account.

Figure 6.5 shows no meaningful difference between the two conservative thresh-
old versions, except for very low precisions (M, < 6). Thus, in practice, using one
or the other does not change the results since it only affects the threshold associ-
ated with the precision M,, = 4.

101 F

1072

—_

2
ot
T

—

I
o)
T

Intermediate thresholds

10711 -

10—14 -

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Precisions

. Conservative thresholds - /nez,

o Conservative thresholds - Gappa
« Relaxed thresholds ey, (277)

Figure 6.5: Thresholds comparison

119

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

6.6 Statistical Analysis

Section 6.5.2, demonstrated the effect of VPT by applying it to a single ran-
domly generated input. In this section, the behavior of VPT and its gains will be

-

evaluated across a set of 1000 randomly generated input (A, b).

The first objective of this section is to statistically study the effects of VPT on
the generated 1000-input set. The second is to study and compare the influence of
each convergence threshold policy (conservative thresholds Vs. relaxed thresh-
olds) on the Convergence Profile, the Precision Variation Profile, the total num-
ber of iterations, the distribution of iterations across the intermediate precisions.

To perform the statistical study, each input is generated using a randomization
seed ranging from 0 to 999. This section only studies the Jacobi iterative method,
but the conclusions were also verified for Gauss-Seidel. These concepts can then
be applied to similar iterative methods such as Newton-Raphson, Richardson, and
others.

6.6.1 Software implementation aspects

In the following sections, an open-source Jacobi implementation [| written in C
is considered. It takes as an input a randomly generated 50x50 diagonally domi-
nant matrix A, with pseudo-random values between 0 and 1. The default target
tolerance threshold is set to 107! unless otherwise is specified. Gauss-Seidel is
also implemented following the same structure of the original Jacobi application.

The software applications have been cross-compiled for the Proxy Kernel exe-
cution environment (a lightweight bare-metal-like OS dedicated to RISC-V-based
systems) [173], using the RISC-V GCC compiler in a similar fashion to the cycle-
accurate study performed earlier in Section 6.3.1.

6.6.2 Effects of VPT on the Convergence Profile and Precision
Variation Profile

Considering the two threshold policies and their respective parameters presented
in Section 6.5.2, five different use cases are established to be evaluated and com-
pared:

1. Standard baseline results.

In this case, the original algorithm (Algo. 1) double-precision implementation
is applied to the randomly generated 1000-input set. Figure 6.6 depicts the aver-
age Convergence Profile (continuous blue line). The area highlighted in light-
blue covers the range of possible convergence profiles obtained for the 1000 in-
puts. This case is represented by the blue line (Figures 6.6, 6.7 and 6.8).

2. VPT-enabled results, with threshold policy (1), using \/n¢,;, conservative
thresholds.

In this case, the VPT-enabled algorithm (Algo. 1) is implemented. Here, the
thresholds are computed as round(y/n €, M,) as explained in Paragraph 6.5.2.1.

The corresponding Convergence Profile is depicted in Figure 6.7, which over-
laps with the original standard baseline Convergence Profile. This means that

120

6.6. Statistical Analysis

100 E T T T T T T T

= 107'F N :
g 1072 r \

) N

I 1073 \
= 107*E N
\;E 10_5 2 \

8 \

= 107%F

& 1077F RN

= N

D% 10—8 r N\

o 107°%F

= 10710} N

) 3 NG

2101 S

<]

é 10—12 L \\

8 10—13 ' \\

S 10-Mp » .

g 10—15§ Y
2 10-16f I

» 0 100 200 300 400 500 600 700 800 900 1000
Iterations

— Double-precision reference

Figure 6.6: The average Convergence Profile of the reference double-precision Jacobi.

in this case, the convergence speed does not change compared to the reference
even though lower precisions are used. This case is represented by the orange
line (Fig. 6.7, 6.8).

. VPT-enabled results, with threshold policy (1), using conservative thresh-
olds generated with Gappa.

In this case, the VPT-enabled algorithm (Algo. 1) is implemented. Here the
thresholds computed using the Gappa proof assistant are used (Paragraph 6.5.2.1).
Please note that these thresholds are similar to the latter case except for low pre-
cisions 1 < M,, < 5. This case is represented by the green line (Fig. 6.7, 6.8).

. VPT-enabled, with threshold policy (2), along with ¢;;, thresholds and the
Stagnation Maximum Iterations set to 2 (SMI = 2).

In this case, the VPT-enabled algorithm (Algo. 2) is implemented. The con-
vergence thresholds used here are more relaxed, and the stagnation detection
mechanism presented in Paragraph 6.5.2.2 is activated. For this experiment,
stagnation is tolerated for at most two consecutive iterations before increment-
ing the precision. This case is represented by the red line (Fig. 6.7, 6.8).

. VPT-enabled, with threshold policy (2), along with ¢;; thresholds and the
Stagnation Maximum Iterations set to 4 (SMI = 4).

This case is represented by the purple line (Fig. 6.7, 6.8).

121

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

100 F
1072}
1073k
1074
1079

Average Convergence Profile ||zt — z(®)||)

0 100 200 300 400 500 600 700 800 900 1000

Iterations
— Double-precision reference — Relaxed thresholds €y, - SMI = 2
— Conservative thresholds - \/n ¢ M, — Relaxed thresholds €y, - SMI =4

— Conservative thresholds - Gappa

Figure 6.7: Comparison of average Convergence Profiles for each use case.

W
[a]

w
(=)

[\]
oo
Precision variation profile

w
[\

[\]
=~

[\
o

—
(=)

—_
N

0 100 200 300 400 500 600 700 800 900 1000
Iterations

— Double-precision reference — Relaxed thresholds €y, - SMI = 2
— Conservative thresholds - y/n € M, — Relaxed thresholds € M, - SMI =14

— Conservative thresholds - Gappa

Figure 6.8: Comparison of average Precision Variation Profiles for each use case.

122

6.6. Statistical Analysis

Figure 6.7 depicts the average CPs for each one of the five use cases. The conser-
vative thresholds (overlapping orange and green) produce a Convergence Profile
similar to the standard baseline (blue). The relaxed thresholds (overlapping red
and purple) also result in similar convergence profiles on average, although its
speed slows down compared to the baseline starting from iteration 700.

Figure 6.8 shows the Precision Variation Profile for the five cases. For the
baseline reference, the operating precision is fixed at 52 bits, i.e., double-precision
format for all iterations. Both conservative threshold sets (y/n €y, and Gappa)
produce a similar overlapping Precision Variation Profile (green and orange).
Relaxed thresholds also produce similar overlapping profiles (red and purple)
indifferent to the value of SMI.

6.6.3 Effects of VPT on the total number of iterations

In this paragraph, the effect of VPT on the total number of iterations is studied
by analyzing each one of the five use cases stated previously. Figure 6.9 and 6.10
show the distribution of the total number of iterations (vertical axis) for each use
case (horizontal axis), for two target thresholds 10~* and 107'2, respectively. To
get these data, each version of Jacobi has been executed on the 1000 inputs. The
tigure represents the medians (red lines in the middle of the box plot) and the
means (black dot). The blue crosses (+) represent non-significant outliers.

For higher target thresholds, and specifically 10~* in this case (Fig. 6.9), there
is a clear effect on iterations” number distribution: using the relaxed thresholds
induces less time to converge. Itis also clear that an SMI value of 4 achieves slightly
less number of iterations compared to an SMI of 2. On the other hand, threshold
policy (1) (conservative thresholds) shows no noticeable effect on the number of
iterations.

When the target tolerance threshold is set to 10~'* (Fig. 6.10), no significant
effect is observed. However, the relaxed thresholds lead to slightly higher iteration
numbers on average compared to the double-precision reference.

There seems to be an effect on the outliers (+). Although this is not statistically
significant, a worst-case and best-case HW-level comparison will be performed to
evaluate to which extent this increase affects the power, energy, and execution
time savings.

Figures 6.11 and 6.12 present the distribution of the overheads brought by each
threshold policy with respect to the total number of iterations for the whole 1000-
input set for a 107 and 10~'? tolerance threshold, respectively. Positive percent-
age values signify an increase in the number of iterations, whereas negative ones
mean that there was a reduction in the number of iterations. Furthermore, the
conservative policies do not alter the number of iterations much compared to the
double-precision reference: they achieve a bit less than +1.5%. However, the re-
laxed policies have a slightly important but scattered effect on iterations” count.
For example, for a threshold of 10~ (Fig. 6.11), relaxed policies achieve a —17%
to —1% reduction in the number of iterations for more than 75% of inputs. At 102
(Fig. 6.12), nearly half of the input dataset achieves a variation between —1% and
+2.5%.

123

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

#Total Iterations - Target threshold 1.00e-04
260 F

240 - -

220 -

200

180

#Total Iterations

160 |

140

Threshold Policies

7 Conservative thresholds - /ne M, @ Relaxed thresholds eyz, - SMI = 4

[0 Conservative thresholds - Gappa B Double-precision reference
0 Relaxed thresholds epz, - SMI = 2

Figure 6.9: Total number of iterations for TOL = 10~*

6.6.4 Effects of VPT on iterations’ distribution

Studying the effects on the total number of iterations alone is insufficient to un-
derstand the consequences of applying VPT to such algorithms fully. Hence the
necessity of also studying the distribution of iterations across the intermediate
precisions. The reason for that is that, even though two use cases have the same
total number of iterations, some cases will tend to over-use lower precisions more
than the higher ones or vice-versa, hence leading to potentially different pow-
er/energy consumption.

Figures 6.13 and 6.14 illustrate a study similar to the one performed in the last
section, this time by considering the distribution of the number of iterations per
each precision for the 1000 inputs.

Figure 6.13 depicts the study when the target threshold is set to 10, As you
can see, threshold policy (2) (relaxed thresholds) tends to maximize iterations
at the lower precisions, whereas threshold policy (1) (conservative thresholds)
tend to maximize iterations at the higher precisions. Thus, if the two policies have
the same total number of iterations, it is more likely that most of these iterations
will be skewed towards lower precisions for threshold policy (2) and skewed to
higher precisions for threshold policy (1). This will translate into an important
difference in terms of power consumption.

Figure 6.14 provides a similar study with a target threshold of 10~'? to examine

124

6.6. Statistical Analysis

#Total Iterations - Target threshold 1.00e-12

+ o+
900 g +
800
a2 |
2
=
e
= 700 |
5
= ° ° ° o
600
500

Threshold Policies

Figure 6.10: Total number of iterations for TOL = 1012

the previous trend in the long term. The figure shows that the earlier conclusion
holds since threshold policy (1) seems to minimize iterations at lower precisions
and maximize them at higher ones. For example, at M, = 44, most cases already
finished their execution when operating with threshold policy (2), whereas they
have around 45 iterations left when working with threshold policy (1). Moreover,
those 45 iterations are executed in higher precision, which means that there will
be significant overhead in terms of energy compared to threshold policy (1).

125

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

TOL = 1.00e-04 TOL = 1.00e-12
[+ +
+20% | 4 +20%
: +
+15% | o +15%
+10% | +10% -
3 [3
: :
< F <
5 +5% | 5 +5%
S : S
2 I T 2
S 10% y— o= S 0%t %%EE—.—
S T s
= [HP &
—5%' L J —5% e
—10% | ~10%
—15% | ~15%

Threshold Policies Threshold Policies

Figure 6.11: Total number of iterations” Figure 6.12: Total number of iterations’
overhead w.r.t each policy for TOL = 10~ overhead w.r.t each policy for TOL = 102

#lterations per precisions - Target threshold 1.00e-04

+
120 w
1: ++
++
100 r 4
o
S
g sop Hﬂ |
& [T lele
- efeloie] | ol
o 60t ++
=i
.S
=
2 40 F+
ki ++
207 g %‘%
0 @ *‘*H
4 8 12 16 20
Precisions

Figure 6.13: Iterations’ distribution per precision for TOL = 10~*

126

6.6. Statistical Analysis

#lterations per Precision

#lterations per precisions - Target threshold 1.00e-12

120+ .
4

+

¥ t+ ++ ++ *I ++

++H +
+

+
+
+H
+H
+
+
T

100r ++ ++ T +

60| r+ H H H %
40 -
20 Q
oes #
21 é 1‘2 1‘6 2|0 2‘4 2|8 3|2 3|6 4|0 4‘4

Precisions

Figure 6.14: Iterations’ distribution per precision for TOL = 102

127

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

Conclusion The conservative thresholds provide a similar Convergence Profile
to the baseline reference, whereas the relaxed thresholds tend to be slightly slower
at the end of convergence. However, the relaxed thresholds tend to use less pre-
cision, which will translate to lower power consumption.

In the next section, a hardware-level power, execution time, and total compu-
tational energy evaluation will be performed for a single (typical) input and then
on two cases among the 1000 random inputs.

6.7 Hardware-level Evaluation & Discussion

After assessing the effectiveness of the proposed approach from a statistical
and software point of view, this section presents a hardware-level evaluation of
the power, execution time, and energy savings related to computations occurring
inside the FPU.

6.7.1 Hardware synthesis conditions

The VPT-FPU presented in Chapter 5 was implemented in SystemVerilog, based
on an open-source parametrized FPU [101]. The hardware design is globally para-
metric so that the list of supported formats {(E;, M), ..., (Ep, Mp)} in hardware
are configurable at synthesis time.

The following results were obtained in the same synthesis conditions and fol-
lowing the same HW evaluation flow explained previously in Section 5.5.

6.7.2 HW-level evaluation with one input and relaxed thresholds
(nominal scenario)

This section will quantitatively evaluate the hardware savings and overheads in-
troduced by VPT in terms of execution time, average power consumption, and

overall energy. Here, only one randomly generated matrix A and vector b is con-
sidered (the same one presented in Section 6.5.2).

6.7.2.1 Evaluation methodology

Table 6.1 depicts the evaluation results for each error threshold TOL € {107%,107,1078,
1071°, 1072}, Experiments are performed for each {SW configuration, HW con-
figuration} pair, defined as follows:

Definition 6.7.1. A SW configuration specifies which algorithm is implemented
and what variable types are used in the source code implementation.

Definition 6.7.2. A HW configuration specifies the set of supported reduced Floating-
Point formats {(Ey, Mo), (E1, My), ..., (Ep, Mp)} and to which approximate data-

path they belong or , as explained in Section 5.2 and depicted in Figure
5.1.

128

6.7. Hardware-level Evaluation & Discussion

For each tolerance threshold, post-synthesis results are provided for three dif-
terent SW configurations of each iterative algorithm:

1. Ref double: an implementation of the original algorithm (Algo. 1) in double-
precision format. FP computations are executed in binary64 (11, 52) format

within the (C) data-path.

2. VPT double: an implementation of the VPT-enabled algorithm (Algo. 2) in
double-precision format. FP computations are executed within the data-

path of the VPT-FPU, which is populated with the supported precisions (4, 8,
12, ...). All corresponding exponents are 11-bit.

3. VPT float: an implementation of the VPT-enabled algorithm (Algo. 2) in
single-precision format. FP computations are executed within the data-

path of the VPT-FPU, which is populated with the supported precisions (3, 7,
11, ...). All corresponding exponents are 8-bit. This SW configuration takes
advantage of both VPT and the classic VTO technique.

Seven different HW configurations: VPT_A, VPT_B, ... VPT_G are provided
(Table 6.1).

Baseline results The baseline performance results are obtained by executing the
reference SW configuration Ref double on the reference RV64FD hardware FPU. This
experiment is repeated for each tolerance threshold. All upcoming results will be
normalized w.r.t this one.

VPT results For each tolerance threshold and each {SW configuration, HW con-
figuration} pair, a gate-level simulation is performed. The absolute values of exe-
cution times, average power, and the dissipated energy spent on FP computations
are reported in Table 6.1 for Jacobi and Gauss-Seidel. The results were obtained
by applying the algorithm on a single input matrix A and vector b auto-generated
with a randomization seed equal to zero. Column-wise normalized values (%)
are reported by dividing the estimated values by the reference ones for each tar-
get error threshold, i.e., there is a reference for each target threshold column.

6.7.2.2 Discussion

VPT double Vs. Ref double Table 6.1 shows that the VPT-enabled implemen-
tations always achieve better performance with no accuracy loss compared to
the reference. For example, the VPT double SW configuration of Jacobi achieves
power consumption savings ranging from 59.71% up to 74.31%, execution time
savings ranging from 39.17% up to 59.77%, and energy savings between 77.21%
and 87.89%. Meanwhile, the same SW configuration for Gauss-Seidel application
achieves power consumption savings ranging from 50.83% up to 78.18%, execu-

tion time savings ranging from 31.70% up to 51.70%, and energy savings between
66.40% and 89.46%.

129

0ct

Target error thresholds H 1074 H 1076 H 10-8 H 10710 H 10712
VPT SW Configurations H VPT float ‘ VPT double H VPT float ‘ VPT double H VPT double H VPT double H VPT double
M, Dp (E, =11) - 4,8,12,16 - 4,8,12,16,20 || 4,8,12,16,20,24,28 | 4,8,12,16,20,24,28,32,36 || 4,8,12,16, 20, 24, 28, 32, 36, 40
Pprecisions Dr (E, =8) 3,7,11,15 - 3,7,11,15,19 - - - _
VPT-FPU Config. name H VPT_A ‘ VPT_B H VPT_C ‘ VPT_D H VPT_E H VPT_F H VPT_G
Area overhead H 1.19x ‘ 1.27x H 1.30x ‘ 1.39x H 1.78x H 2.30x H 2.63x
Jacobi Results
Switching 2.44E-04 3.01E-04 2.95E-04 4.24E-04 4.61E-04 4.36E-04 4.77E-04
Average Internal 4.97E-04 6.14E-04 5.83E-04 8.03E-04 8.74E-04 8.72E-04 9.39E-04
Power Leakage 2.90E-05 3.10E-05 3.20E-05 3.40E-05 4.30E-05 5.60E-05 6.40E-05
W
W) Total 7.70E-04 9.46E-04 9.10E-04 1.26E-03 1.38E-03 1.36E-03 1.48E-03
Total power savings (%) H 79.09% 74.31% H 75.3% 65.77% H 62.55% H 62.9% H 59.71%
Execution time (ps) 5.96E+09 | 5.35E+09 1.00E+10 1.00E+10 1.56E+10 1.32E+10 1.65E+10
Execution time savings (%) 47.49% 52.85% 45.72% 45.72% 39.17% 59.77% 58.70%
Energy (pl) 4.59E+06 | 5.06E+06 9.12E+06 1.26E+07 2.15E+07 1.80E+07 2.45E+07
Energy savings (%) 89.02% 87.89% 86.59% 81.46% 77.21% 85.07% 83.35%
Gauss-Seidel Results
Switching 2.11E-04 2.20E-04 2.83E-04 3.26E-04 3.74E-04 4.50E-04 5.89E-04
A Internal 4.40E-04 4.93E-04 5.57E-04 6.59E-04 7.47E-04 8.81E-04 1.09E-03
verage
Power Leakage 2.90E-05 3.10E-05 3.20E-05 3.40E-05 4.30E-05 5.60E-05 6.40E-05
w
W) Total 6.80E-04 7.44E-04 8.72E-04 1.02E-03 1.16E-03 1.39E-03 1.74E-03
Total power savings (%) H 80.06% 78.18% H 74.97% 70.75% H 66.92% H 60.79% H 50.83%
Execution time (ps) 1.68E+08 | 1.68E+08 2.54E+08 2.83E408 4.10E+08 5.38E+08 7.12E+08
Execution time savings (%) 51.61% 51.70% 51.19% 45.76% 41.00% 38.03% 31.70%
Energy (pJ) 1.14E4+05 | 1.25E+05 2.22E405 2.88E+05 4.77E4+05 7.46E+05 1.24E+06
Energy savings (%) 90.35% 89.46% 87.78% 84.15% 80.49% 75.72% 66.40%

Table 6.1: Post-synthesis and gate-level simulation results for Jacobi and Gauss-Seidel applied to 1 input with relaxed thresholds (eyy,).

SPOUISIA 2AT}EIS)] ATRUOT}R)G I0J SWIT], UT UOISIAI] 3[qerreA ‘9 1o3deyD)

6.7. Hardware-level Evaluation & Discussion

VPT float Vs. Ref double Analyzing the two first columns (10~* and 107°)
reveals the importance of traditional Variable Type Optimization (VTO) tech-
niques in Floating-Point. For example, in the case of Jacobi, when TOL equals
107, the VPT double SW configuration saves 74.31% of the original total power
and 87.89% of the energy consumed by the Ref double configuration. However, if
VPT is applied along with VTO, i.e., if FP variables are migrated from double to
float in the VPT-enabled algorithm, the power savings are further optimized up
t0 79.09%, and the energy savings up to 89.02%. Similarly, at 10~ error threshold,
optimizing variable types increases energy savings brought by VPT from 81.46%
up to 86.59%. This observation also holds for Gauss-Seidel.

Conclusion To sum up, starting from an already optimized standard software
version (using VTO) instead of a double-precision, one can achieve high power
and energy savings. Using the VPT approach allows to refine and enhance VTO
savings one step further. Even though the additional VTO gains shown may seem
limited to a few percentage points in terms of computations, starting from an al-
ready optimized version (using VTO) guarantees subsequent memory footprint
savings too. However, this is only feasible for 10~* and 10~° target error thresholds
which are reachable using single-precision.

6.7.3 Worst case / Best case HW-level evaluation

With everything said in Section 6.6 in mind, it is important to perform an empir-
ical HW-level evaluation. Only edge cases where VPT affects either negatively or
positively the energy consumption of the algorithm are considered since it would
take months to perform the HW-level study for all the 1000 inputs. Moreover, for
the sake of concision, only the conservative thresholds generated with Gappa in
the case of threshold policy (1) are considered. And for threshold policy (2), only
the case where SMI is set to 4 is evaluated.

The edge cases have been chosen from the 1000-input dataset based on the soft-
ware simulation presented in Section 6.6. They correspond to the input couples

-

(A, b) that produce the lowest and the biggest iterations” overhead for each thresh-
old in Figures 6.11 and 6.12. Table 6.2 lists the nomenclature that will be used in

-

the remaining of this chapter. For example, BC-04 refers to the input couple (A, b)
that represents the best case for a 10~ tolerance threshold.

To ensure a fair comparison from a hardware standing point, the following
experiments are all run on top of a VPT-FPU hardware configuration that will
be referred to as VPT_H. This configuration supports the following precisions

{4,8, ...,48} within the data-path (with an exponent bit-width maintained

at 11). Post-synthesis power simulations are performed with the same synthesis
conditions as explained in Section 5.5.

131

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

Threshold Policy

1.00E-04

1.00E-12

Best Case

Worst Case

Best Case

Worst Case

Conservative thresholds - Gappa

BC-04

WC-04

BC-12

WC-12

Relaxed thresholds - SMI = 4

BR-04

WR-04

BR-12

WR-12

Table 6.2: Worst cases” and best cases’ nomenclature per tolerance threshold and threshold
generation policy - Jacobi.

Baseline HW-level results for all edge cases Table 6.4 shows the baseline av-
erage power, execution time, and energy consumption results for the standard
double-precision version of Jacobi applied to each of the selected cases and exe-
cuted on top of the reference baseline RV64FD architecture. This data will consti-
tute the baseline against which all the following studies will be compared.

Overhead of VPT-FPU when operating in full precision Table 6.5 depicts HW
results when executing the application on the precise part of the VPT-FPU for
each selected edge case. This evaluates the overhead brought by the static energy
dissipated in the approximate part of the VPT-FPU circuitry when execution mode
is fully precise.

As shown in the table, execution time is not affected. Only power increases due
to static power (leakage) dissipated in the non-active approximate parts, leading
to a 3.72% (input BC-12) up to 3.85% (input WR-12) energy increase, which is
negligible compared to the savings exposed in the following sections.

Gains using the conservative thresholds Table 6.3 depicts the HW-level gains
for the conservative threshold policy (1). In addition, the table presents the results
of the best case and worst case inputs at 10~ and 10~'? target thresholds.

As depicted in the table, there is not much difference between best-case and
worst-case scenarios in terms of computational energy, i.e., 84.06% (best case for
10~*) Vs. 83.43% (worst case for 10™*) then 63.13% (best case for 1071?) Vs. 62.33%
(worst case for 10~'2). This can be explained by the fact that using VPT threshold
policy (1) does not affect the number of iterations executed.

Upon a closer look to Figures 6.11 and 6.12, we conclude that this is due to the
negligible effect on the number of iterations when using conservative threshold
policies.

132

el

Target Error Thresholds 1.00E-04 1.00E-12

Input BC-04 WC-04 BR-04 WR-04 BC-12 WC-12 BR-12 WR-12

VPT SW Configs Type Double Double Double Double Double Double Double Double
Switching 1.428E-03 1.433E-03 1.431E-03 1.434E-03 1.426E-03 1.426E-03 1.433E-03 1.420E-03
Average Power (W) Internal 2.219E-03 2.226E-03 2.222E-03 2.227E-03 2.213E-03 2.214E-03 2.225E-03 2.206E-03
Leakage 2.600E-05 2.600E-05 2.600E-05 2.600E-05 2.600E-05 2.600E-05 2.600E-05 2.600E-05
Total 3.673E-03 3.685E-03 3.679E-03 3.687E-03 3.665E-03 3.666E-03 3.684E-03 3.652E-03
Execution Time (ps) 1.099E+10 1.180E+10 1.007E+10 1.157E+10 4.033E+10 3.206E+10 3.547E+10 4.056E+10
Energy (p]) 4.038E+07 4.350E+07 3.703E+07 4.266E+07 1.478E+08 1.175E+08 1.306E+08 1.481E+08

Table 6.4: Power, execution time, and energy consumption of the standard double-precision version of Jacobi executed on the RV64FD reference FPLI

Target Error Thresholds 1.00E-04 1.00E-12

Input BC-04 WC-04 BR-04 WR-04 BC-12 WC-12 BR-12 WR-12

VPT SW Configs Type Double Double Double Double Double Double Double Double
Switching 1.399E-03 1.403E-03 1.401E-03 1.404E-03 1.395E-03 1.396E-03 1.403E-03 1.390E-03
Internal 2.331E-03 2.338E-03 2.335E-03 2.339E-03 2.325E-03 2.326E-03 2.337E-03 2.318E-03

Average Power (W)

Leakage 8.300E-05 8.300E-05 8.300E-05 8.300E-05 8.300E-05 8.300E-05 8.300E-05 8.300E-05
Total 3.813E-03 3.824E-03 3.819E-03 3.826E-03 3.803E-03 3.805E-03 3.823E-03 3.791E-03

Total power overhead 3.81% 3.77% 3.81% 3.77% 3.77% 3.79% 3.77% 3.81%
Execution Time (ps) 1.099E+10 1.180E+10 1.007E+10 1.157E+10 4.033E+10 3.206E+10 3.547E+10 4.056E+10

Execution time overhead 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 %
Energy (p]) 4.192E+07 4.514E+07 3.845E+07 4.428E+07 1.533E+08 1.220E+08 1.356E+08 1.538E+08

Energy overhead 3.81% 3.77% 3.83% 3.80 % 3.72% 3.83% 3.83% 3.85%

Table 6.5: Power, execution time, and energy consumption overheads of the standard double-precision version of Jacobi executed on the VPT_H
configuration of the VPT-FPU

UOISSNOSI(] 29 UOT}eNn[eAq [9AS[-9IeMPIeH /9

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

Target Error Thresholds 1.00E-04 1.00E-12
Input Best case (BC-04) Worst case (WC-04) Best case (BC-12) Worst case (WC-12)
VPT SW Configs Type VPT double VPT double VPT double VPT double
Switching 3.410E-04 3.510E-04 7.140E-04 7.230E-04
Internal 7.890E-04 8.050E-04 1.312E-03 1.325E-03
Average Power (W)

Leakage 8.100E-05 8.100E-05 8.200E-05 8.200E-05
Total 1.211E-03 1.237E-03 2.108E-03 2.130E-03

Total power savings 67.03 % 66.43 % 42.48 % 41.90 %
Execution Time (ps) 5.315E+09 5.828E+09 2.586E+10 2.079E+10

Execution time savings 51.64 % 50.61 % 35.88 % 35.15 %
Energy (p]) 6.436E+06 7.209E+06 5.449E+07 4.426E+07

Energy savings 84.06 % 83.43% 63.13 % 62.33 %

Table 6.3: Power, execution time, and energy consumption gains of VP T-enabled version
of Jacobi (with theoretical conservative thresholds) executed on the VPT_H configuration
of the VPT-FPU

Target Error Thresholds 1.00E-04 1.00E-12
Input Best case (BR-04) Worst case (WR-04) Best case (BR-12) Worst case (WR-12)
VPT SW Configs Type VPT double VPT double VPT double VPT double
Switching 2.900E-04 2.940E-04 6.420E-04 6.480E-04
Internal 7.080E-04 7.130E-04 1.207E-03 1.215E-03
Average Power (W)

Leakage 8.100E-05 8.100E-05 8.200E-05 8.200E-05
Total 1.079E-03 1.088E-03 1.931E-03 1.945E-03

Total power savings 70.67 % 70.49 % 47.58 % 46.74 %
Execution Time (ps) 4.048E+09 6.687E+09 2.099E+10 2.803E+10

Execution time savings 59.80 % 42.20 % 40.82 % 30.89 %
Energy (p]) 4.368E+06 7.275E+06 4.052E+07 5.450E+07

Energy savings 88.20 % 82.95 % 68.97 % 63.20 %

Table 6.6: Power, execution time, and energy consumption gains of VP T-enabled version
of Jacobi (with relaxed thresholds and SMI = 4) executed on the VPT_H configuration of
the VPT-FPU

Gains using the relaxed thresholds Results for this experiment are depicted in
Table 6.6. For a target threshold of 107#, this threshold policy achieves energy sav-
ings between 82.95% (worst case) up to 88.20% (best case), mainly due to 42.20%
up to 59.80% savings in terms of execution time. Similarly, for a target of 10~'?, the
energy gain stands between 63.20% (worst case) and 68.97% (best case). These
percentages are slightly more interesting than in threshold policy (1), especially
in the best case.

Please remember that, in this situation, the VPT relaxed threshold policy (2)
has a more substantial impact on the number of iterations, as shown in Figures
6.11 and 6.12. For example, input BR-12 sees a decrease in the number of itera-
tions from 612 to 578 (—5.5% variation), translating to a 68.97% energy gain. On
the other hand, WR-12 sees an increase from 700 to 763 iterations (49.0% increase)
which translates to 63.20% total energy gain, which is still an important achieve-
ment despite the extra iterations” overhead.

134

6.8. Conclusion

6.7.4 Circuit area results

Table 6.1 reports the total cell area overhead for each HW configuration w.r.t the
baseline standard RV64FD FPU.

The area overhead depends on the additional supported reduced precision
formats. Overheads can range from 1.19x (using the VPT_A architecture) up to
2.63x (using the VPT_G architecture).

When VTO is also applied along with VPT, (i.e., when the VPT float SW con-
figuration is considered), this technique can attenuate the area overhead. For ex-
ample, overhead can be reduced from 1.27x (obtained for VPT_B) down to 1.19x
(obtained for VPT_A) for a 10~ threshold.

These ratios also depend on the number of intermediate pipeline registers in-
serted in each approximate datapath, configurable at design time. The area over-
head is the only significant disadvantage of the proposed architecture.

6.7.5 Limitations

These results demonstrate that the VPT-enabled software implementation is a
one-size-fits-all solution, i.e., using the same software implementation along with
our proposed VPT-FPU, the designer can drastically reduce consumed resources
by using only the needed precision instead of an over-designed solution such as
standard FPUs. The price to pay is in terms of circuit area overhead. Designers
can also use standard VTO techniques jointly to enhance the energy savings of our
technique and reduce its area overhead.

To choose between the two threshold policies for a given problem, the user/de-
signer should use representative datasets and especially evaluate the memory-
related aspects, especially for threshold policy (2). Furthermore, the memory-
related aspects should be studied further to evaluate whether the cost of the po-
tential added iterations (hence more load and store operations) is lower than the
gain associated with computation optimization.

The proposed methodology is application-dependent, i.e., the designer should
transform the algorithm manually, ensure convergence after modification, and se-
lect adequate intermediate tolerance thresholds depending on the convergence
metric used in the application.

6.8 Conclusion

This chapter proposes a new method based on the VPT-FPU architecture, pre-
sented in Chapter 5, that enables designers to dynamically tune FP computations’
precision automatically at run-time called Variable Precision in Time (VPT). In
spite of the circuit area overhead, the proposed approach simplifies the integra-
tion of variable precision in existing software workloads at any level of the soft-
ware stack (OS, RTOS, or application-level): it only requires light-weight software
support and solely relies on traditional assembly instructions, without the need
for a specialized compiler or custom instructions.

135

Chapter 6. Variable Precision in Time for Stationary Iterative Methods

The technique was applied here on the Jacobi and the Gauss-Seidel iterative
methods taking full advantage of the suggested VPT-FPU. For each algorithm
two threshold policies were proposed: a conservative policy (1) and a relaxed
policy (2).

The last two sections presented a statistical study that explored the effects of
each VPT threshold policy on many aspects of the application: impact on the total
number of iterations, impact on the iterations” distribution across different pre-
cisions, impact on HW-level estimations such as execution time, power and the
overall energy consumption.

The implementations demonstrate up to 70.67% power consumption saving,
up to 59.80% execution time saving, and up to 88.20% total energy saving w.r.t the
reference double-precision implementation, with no QoR loss.

To conclude, the threshold policy (1) is a conservative approach that brings
some predictability and safety along with all the run-time variable precision ben-
efits. On the other hand, threshold policy (2) is a relaxed approach that further
optimizes power and energy consumption. However, it tends to alter the total
number of iterations, sometimes favorably and sometimes negatively. However,
even when the total number of iterations is increased, there is still a very interest-
ing energy gain. Thus, threshold policy (1) is the safest solution, and threshold
policy (2) represents a bit risky but an optimized solution.

136

Conclusion and Perspectives

138

7.1. Thesis Contributions

7.1 Thesis Contributions

The landscape of modern software applications is dominated by compution-
ally intensive and data-centric applications such as Machine Learning (ML), Neu-
ral Networks (NNs), Computer Vision (CV), ...etc. Such applications are known
for their built-in resilience against errors. In other words, even when part of their
intermediate computations is performed only approximately, the final result can
still be considered acceptable.

As these modern applications feature an inherent ability to tolerate precision
loss, new computing paradigms have emerged: Approximate Computing (AxC)
and Transprecision Computing (TC). The idea behind these paradigms is to
trade-off precision against some kind of improvement. Potential improvements
include reducing power consumption, execution time, circuit area, boosting per-
formance, throughput, and energy efficiency.

AxC and TC can be applied to computations as well as memory/storage. In
this thesis we chose to only focus on the computational part, and particularly
on Floating-Point computations. This choice was motivated by the fact that full-
precision Floating-Point Units (FPUs) can be a source of extensive hardware over-
head in CPU-based architectures. In addition, for this class of applications, the
standard IEEE Floating-Point (FP) formats were shown to be often over-designed.
Hence, hardware FPU architectures need reduced and variable precision capabili-
ties to trade-off energy efficiency or performance against accuracy when the latter
is not needed.

Several tools and techniques that allow the Design Space Exploration of such
trade-offs have been proposed in the context of TC. The objective is to help design-
ers to find the most optimized FPU architecture adequate for a given application.

However, existing techniques require developers to rewrite part or all of their
software stacks (applications, libraries, operating systems, ...), which is often in-
feasible, complex or at least a very time-consuming development effort. In ad-
dition to their intrusiveness, most TC tools are only designed for simulation, and
they do not provide corresponding hardware architectures that achieve real-world
energy gains. Furthermore, most of these works target static precision reduction,
i.e., precision is fixed during the execution.

This thesis proposes many contributions that alleviate some State of the Art
limitations:

e A minimally-intrusive approach that leverages FP approximations for power,
execution time, and overall energy consumption reduction.

The approach, described in Chapter 3, introduces approximations at the assem-
bly instruction execution/interpretation level. This allows approximating vir-
tually all kinds of executable binaries (bare-metal applications, single-/multi-
threaded user applications, OS/RTOS, etc.) without the need for a special-
ized compiler or custom instructions. The methodology supports Arbitrary
Reduced Precision (ARP) (i.e., non-standard reduced-precision FP formats)
as well as Variable Precision in Time (VPT) (i.e., the ability for applications to
tune their operating precision at run-time).

e A software implementation based on the well known QEMU dynamic binary
translator -called AxXQEMU- was developed.

139

Chapter 7. Conclusion and Perspectives

It simulates the impact of such approximations on high-level applications” Qual-
ity of Result (QoR). The tool was presented in Chapter 4.

e A hardware multi-precision FPU, referred to as VPT-FPU, was designed to sup-
port VPT in hardware.

This was achieved mainly by instantiating multiple ARP in hardware, hence
achieving real-world energy efficiency gains. The architecture was synthesized
on a 28nm FD-SOI ASIC technology node (C.f., Chapter 5).

e Self-adaptive precision was demonstrated through the particular case of Itera-
tive Methods (Chapter 6)

In this contribution we proposed a joint HW/SW approach that leverages the
VPT-FPU architecture for aggressive energy savings when applied to stationary
iterative methods. In our case, we targeted particularly Jacobi and Gauss-Seidel
algorithms. For each algorithm, two modified versions are proposed : a conser-
vative version and a relaxed one. Both algorithms are analyzed and compared
statistically to understand the effects of VPT on iterative applications. The im-
plementations demonstrated up to 70.67% power consumption saving, up to
59.80% execution time saving, and up to 88.20% total energy saving w.r.t the
reference double-precision implementation, and with no accuracy loss.

In this thesis, the proposed approaches and their implementations were eval-
uated jointly in software and hardware against a set of error-resilient benchmarks
with a particular emphasis on iterative methods. The experiments show how fine-
grained energy/accuracy trade-offs can be made thanks to ARP and VPT, leading
to drastic computational energy savings.

7.2 Future Perspectives

The contributions brought by this thesis allowed to solve several limitations in
the State of the Art and paved the way towards self-adaptive reduced variable FP°
precision in CPU-based architectures. However, there are many areas than can be
improved:

In the shortterm many technical and implementation aspects could be improved.
For instance, it should be interesting to have a comprehensive system-level evalu-
ation of the energy gains brought by our architecture since in this work only the
FPU is considered. For that the HW-level evaluation flow should take also into
consideration memory and system parameters (e.g., processor parameters, cache
parameters, interconnect, ...)

Furthermore, the accuracy of the HW-level estimations could be refined by per-
forming a physical implementation (Place and Route). Of course, more realistic
evaluations can be obtained by fabricating the circuit.

140

7.2. Future Perspectives

The area of the current VPT-FPU circuit can be optimized by combining some
common blocks such as the reduction/extension/rounding blocks. Further op-
timization could be achieved by supporting only reduced precision in hardware
and precise computations in software (using SoftFloat). However, this process
will have to be automated, since it is more intrusive to source code and might
need some development efforts by the programmer. This would allow the VPT-
FPU to get rid of the single-precision and double-precision FMAs.

On the SW simulation side, enabling AXQEMU to simulate applications writ-
ten in other languages (e.g., Python, Java, ...) would allow a more seamless in-
tegration with a wide set of SoA applications especially in the ML/NNs/CV do-
mains.

In the long term We recommended to continue exploring new emerging FP’
computation paradigms such as redundant arithmetic [90] for ajustable precision.
This seems an interesting solution to implement hardware variable precisions op-
erators in the FPU with potentially less area overhead. It is also important to ex-
tend the proposed methodology to memory optimization. This would bring a
further fine-grained improvement of memory footprint.

In this thesis, all implementations targeted the RISC-V ISA. However, it is pos-
sible to port these works to other architectures such as ARM, MIPS, etc.. Exploring
the effect of VPT on vector and multi-core architectures would be of interest for
modern computationally intensive applications.

Another aspect that could be improved is the automation of the Design Space
Exploration flow presented in Chapter 4. This can be done by developing search
algorithms capable of selecting the most adequate FPU architecture for a given
{application, input dataset} pair. For instance, the traditional delta debugging
algorithm [134] can be adapted to achieve that.

It would be of great interest also to generalize VPT to other algorithms. For
example, the Gradient Descent algorithm is yet another iterative method that is
often used in ML /NN training. This would be interesting for resource-constrained
computing platforms that perform online NN (re-)training and data processing
on the edge.

To generalize VPT to other classes of applications, the programmer needs to
define when precision is tuned and which precision to select. The tools we de-
veloped allow the programmer to do that manually. However, automating this
task could be achieved using ML to predict the needed precision. It is worth men-
tioning that the use of ML for TC seems to be the new trend in this area [174]. A
typical use case is the following: for a given application, a Neural Network could
be trained offline using many inputs and several precisions to be able to predict
which precision is needed to achieve a given QoR. At run-time, the trained ML
algorithm could be used to periodically update the computation precision.

Finally, the ideas brought by this thesis can be transposed to other computing
architectures such as GPUs and FPGAs. With the current advanced topics such as
adaptive and reconfigurable computing, the issues related to circuit area can be
resolved. For example, an FPGA-based system containing an FPU could recon-
figure its precision, at runtime, depending on the needs of the application being
executed.

141

Chapter 7. Conclusion and Perspectives

7.3 Scientific Communications

Peer-reviewed International Journals

1. [160] N. Ait Said, M. Benabdenbi, and K. Morin-Allory, “Self-adaptive Run-
time Variable Floating-Point Precision for Iterative Algorithms: a Joint HW/SW
Approach.”

To appear soon in the MDPI Electronics Journal. Special Session on Approximate
Computing: Design, Acceleration, Validation and Testing of Circuits, Architectures
and Algorithms in Future Systems.

2. [135] N. Ait Said, M. Benabdenbi, and K. Morin-Allory, “Arbitrary Reduced
Precision for Fine-grained Accuracy and Energy Trade-offs.”
In Microelectronics Reliability, 2021, 120, 114099.
DOI: https://doi.org/10.1016/j.microrel.2021.114099.

Peer-reviewed International Conferences
1. [159] N. Ait Said, M. Benabdenbi, and K. Morin-Allory, “FPU Reduced Vari-
able Precision in Time: Application to the Jacobi Iterative Method.”

In 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) 2021, pp.
170-175,

DOI: https://www.doi.org/10.1109/ISVLSI51109.2021.00040.
Finalist for the Best Paper Award.

2. [161] N. Ait Said, M. Benabdenbi, and K. Morin-Allory, “FPU Bit-Width Opti-
mization for Approximate Computing: A Non-Intrusive Approach.”
In 2020 15'" Design Technology of Integrated Systems in Nanoscale Era (DTIS), 2020.
DOI: https://www.doi.org/10.1109/10.1109/DTIS48698.2020.9080931

142

https://doi.org/10.1016/j.microrel.2021.114099
https://www.doi.org/10.1109/ISVLSI51109.2021.00040
https://www.doi.org/10.1109/10.1109/DTIS48698.2020.9080931

Bibliography

Moore, Gordon E., “Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38,
number 8, April 19, 1965, pp.114 ff.” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33-35, 2006.

Horowitz, Mark, “1.1 Computing’s energy problem (and what we can do about it),” in 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 10-14.

“IBM unveils 2-nanometer chip technology for faster computing,” May 2021. [Online]. Available: https:
/ /www.reuters.com/technology/ibm-unveils-2-nanometer-chip-technology-faster-computing-2021-05-06/

“TSMC’s 7nm, 5nm, and 3nm “are just numbers... it doesn’t matter what the number is”.” [Online]. Available:
https:/ /www.pcgamesn.com/amd/tsmc-7nm-5nm-and-3nm-are-just-numbers

Writer, Staff, “TSMC details its future 5nm and 3nm manufacturing processes—here’s what
it means for Apple silicon” [Online]. Available: https://www.macworld.com/article/234529/
tsmc-details-its-future-5nm-and-3nm-manufacturing-processesheres-what-it-means-for-apple-silicon.html

Dennard, R.H. and Gaensslen, F.H. and Yu, Hwa-Nien and Rideout, V.L. and Bassous, E. and LeBlanc, A.R., “Design
of ion-implanted MOSFET’s with very small physical dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5,
pp- 256-268, 1974.

Han, Jie and Orshansky, Michael, “Approximate computing: An emerging paradigm for energy-efficient design,”
in 2013 18th IEEE European Test Symposium (ETS). 1EEE, 2013, pp. 1-6.

Q. Xu and T. Mytkowicz and N. S. Kim, “Approximate Computing: A Survey,” IEEE Design Test, vol. 33, no. 1, pp.
8-22, Feb. 2016.

Schuman, Catherine D and Potok, Thomas E and Patton, Robert M and Birdwell,] Douglas and Dean, Mark E and
Rose, Garrett S and Plank, James S, “A survey of neuromorphic computing and neural networks in hardware,” arXiv
preprint arXiv:1705.06963, 2017.

Mittal, Sparsh, “A Survey of Techniques for Approximate Computing,” ACM Comput. Surv., vol. 48, no. 4, Mar.
2016. [Online]. Available: https://doi.org/10.1145/2893356

Venkataramani, Swagath and Chakradhar, Srimat T and Roy, Kaushik and Raghunathan, Anand, “Approximate
computing and the quest for computing efficiency,” in 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC). IEEE, 2015, pp. 1-6.

Moreau, T. and Miguel, J. San and Wyse, M. and Bornholt, J. and Alaghi, A. and Ceze, L. and Jerger, N. Enright
and Sampson, A., “A Taxonomy of General Purpose Approximate Computing Techniques,” IEEE Embedded Systems
Letters, vol. 10, no. 1, pp. 2-5, Mar. 2018.

Shafique, M. and Hafiz, R. and Rehman, S. and El-Harouni, W. and Henkel,]., “Invited: Cross-layer approximate
computing: From logic to architectures,” in 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Jun.
2016, pp. 1-6.

Aponte-Moreno, A. and Moncada, A. and Restrepo-Calle, F. and Pedraza, C., “A review of approximate computing
techniques towards fault mitigation in HW/SW systems,” in 2018 IEEE 19th Latin-American Test Symposium (LATS),
Mar. 2018, pp. 1-6.

Gaines, Brian R, “Stochastic computing,” in Proceedings of the April 18-20, 1967, spring joint computer conference, 1967,
pp- 149-156.

Rejimon, Thara and Bhanja, Sanjukta, “Scalable probabilistic computing models using Bayesian networks,” in 48th
Midwest Symposium on Circuits and Systems, 2005. 1EEE, 2005, pp. 712-715.

Gruska, Jozef and others, Quantum computing. McGraw-Hill London, 1999, vol. 2005.

National Academies of Sciences, Engineering, Quantum Computing: Progress and Prospects, Dec. 2018. [Online].
Available: https://www.nap.edu/catalog/25196/quantum-computing-progress-and-prospects

https://www.reuters.com/technology/ibm-unveils-2-nanometer-chip-technology-faster-computing-2021-05-06/
https://www.reuters.com/technology/ibm-unveils-2-nanometer-chip-technology-faster-computing-2021-05-06/
https://www.pcgamesn.com/amd/tsmc-7nm-5nm-and-3nm-are-just-numbers
https://www.macworld.com/article/234529/tsmc-details-its-future-5nm-and-3nm-manufacturing-processesheres-what-it-means-for-apple-silicon.html
https://www.macworld.com/article/234529/tsmc-details-its-future-5nm-and-3nm-manufacturing-processesheres-what-it-means-for-apple-silicon.html
https://doi.org/10.1145/2893356
https://www.nap.edu/catalog/25196/quantum-computing-progress-and-prospects

Bibliography

(19]

[20]

[21]

(32]

(33]

[34]

[36]

(37]

(38]

Zadeh, Lotfi A, “Soft computing and fuzzy logic,” in Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by
Lotfi a Zadeh. World Scientific, 1996, pp. 796-804.

Sharad, Mrigank and Fan, Deliang and Aitken, Kyle and Roy, Kaushik, “Energy-efficient non-Boolean computing
with spin neurons and resistive memory,” IEEE Transactions on Nanotechnology, vol. 13, no. 1, pp. 23-34, 2013.

Bhanja, Sanjukta and Karunaratne, D. K. and Panchumarthy, Ravi and Rajaram, Srinath and Sarkar, Sudeep,
“Non-Boolean computing with nanomagnets for computer vision applications,” Nature Nanotechnology, vol. 11,
no. 2, pp. 177-183, Feb. 2016. [Online]. Available: https://www.nature.com/articles/nnano.2015.245

Nakada, Takashi and Nakamura, Hiroshi, “Normally-off computing,” in Normally-Off Computing. ~Springer, 2017,
pp- 57-63.

Verma, Naveen and Jia, Hongyang and Valavi, Hossein and Tang, Yinqi and Ozatay, Murat and Chen, Lung-Yen
and Zhang, Bonan and Deaville, Peter, “In-memory computing: Advances and prospects,” IEEE Solid-State Circuits
Magazine, vol. 11, no. 3, pp. 43-55, 2019.

Ielmini, Daniele and Wong, H-S Philip, “In-memory computing with resistive switching devices,” Nature Electronics,
vol. 1, no. 6, pp. 333-343, 2018.

GMT, Posted 31 Mar 2021 [15:00, “Waiting for Quantum Computing? Try Probabilis-
tic Computing - IEEE Spectrum.” [Online]. Available: https://spectrum.ieee.org/computing/hardware/
waiting-for-quantum-computing-try-probabilistic-computing

Ndour, Genevieve and Jost, Tiago Trevisan and Molnos, Anca and Durand, Yves and Tisserand, Arnaud,
“Evaluation of Approximate Operators Case Study: Sobel Filter Application Executed on an Approximate RISC-V
Platform,” in Proceedings of the 18th International Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation, ser. SAMOS "18. New York, NY, USA: ACM, 2018, pp. 146-149, event-place: Pythagorion, Greece.
[Online]. Available: http://doi.acm.org/10.1145/3229631.3229646

OpenPOWER Foundation, “OpenPOWER Summit Europe 2018: Transprecision Computing,” Nov. 2018. [Online].
Available: https://www.youtube.com/watch?v=]qbBIOInCC4

“IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp. 1-70, Aug. 2008.

Jost, Tiago T and Bocco, Andrea and Durand, Yves and Fabre, Christian and de Dinechin, Florent and Cohen,
Albert, “Variable Precision Floating-Point RISC-V Coprocessor Evaluation using Lightweight Software and
Compiler Support,” in CARRV 2019 - Third Workshop on Computer Architecture Research with RISC-V, Phoenix, AZ,
United States, Jun. 2019, pp. 1-6. [Online]. Available: https://hal.inria.fr/hal-02161621

“Closed Problems in Approximate Computing.” [Online]. Available: https://www.cs.cornell.edu/~asampson/
blog/closedproblems.html

Esmaeilzadeh, Hadi and Sampson, Adrian and Ceze, Luis and Burger, Doug, “Architecture support for disciplined
approximate programming,” in International Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), 2012.

Gong, Yu and Liu, Bo and Ge, Wei and Shi, Longxing, “ARA: Cross-Layer approximate computing framework
based reconfigurable architecture for CNNs,” Microelectronics Journal, vol. 87, pp. 33-44, May 2019. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0026269218307055

Wali, Imran, “Circuit and system fault tolerance techniques,” Theses, Université Montpellier, Mar. 2016. [Online].
Available: https://tel.archives-ouvertes.fr/tel-01807927

V. Mrazek and R. Hrbacek and Z. Vasicek and L. Sekanina, “EvoApprox8b: Library of approximate adders and
multipliers for circuit design and benchmarking of approximation methods,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, Mar. 2017, pp. 258-261.

Strollo, A.G.M. and Napoli, E. and De Caro, D., “New clock-gating techniques for low-power flip-flops,” in
ISLPED’00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514),
2000, pp. 114-119.

Burd, T.D. and Pering, T.A. and Stratakos, A.]. and Brodersen, R.W., “A dynamic voltage scaled microprocessor
system,” IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1571-1580, 2000.

Das, S. and Roberts, D. and Seokwoo Lee and Pant, S. and Blaauw, D. and Austin, T. and Flautner, K. and Mudge, T.,
A self-tuning DVS processor using delay-error detection and correction,” IEEE Journal of Solid-State Circuits, vol. 41,
no. 4, pp. 792-804, 2006.

Li Shang and Li-Shiuan Peh and Jha, N.K., “Dynamic voltage scaling with links for power optimization of intercon-
nection networks,” in The Ninth International Symposium on High-Performance Computer Architecture, 2003. HPCA-9
2003. Proceedings., 2003, pp. 91-102.

II

https://www.nature.com/articles/nnano.2015.245
https://spectrum.ieee.org/computing/hardware/waiting-for-quantum-computing-try-probabilistic-computing
https://spectrum.ieee.org/computing/hardware/waiting-for-quantum-computing-try-probabilistic-computing
http://doi.acm.org/10.1145/3229631.3229646
https://www.youtube.com/watch?v=JqbBIO9nCC4
https://hal.inria.fr/hal-02161621
https://www.cs.cornell.edu/~asampson/blog/closedproblems.html
https://www.cs.cornell.edu/~asampson/blog/closedproblems.html
https://www.sciencedirect.com/science/article/pii/S0026269218307055
https://tel.archives-ouvertes.fr/tel-01807927

Bibliography

(39]

(40]

[41]

(52]

(53]

[54]

Kedem, Zvi M. and Mooney, Vincent J. and Muntimadugu, Kirthi Krishna and Palem, Krishna V., “An approach
to energy-error tradeoffs in approximate ripple carry adders,” in IEEE/ACM International Symposium on Low Power
Electronics and Design, 2011, pp. 211-216.

Oi, Hitoshi, “Case study: Effectiveness of dynamic frequency scaling on server workload,” in 2014 International
Symposium on Integrated Circuits (ISIC), 2014, pp. 332-335.

Chafi, Poorya Raoofi and Moradi, Morteza and Rahmanikia, Navid and Noori, Hamid, “A platform for dynamic
thermal management of FPGA-based soft-core processors via Dynamic Frequency Scaling,” in 2015 23rd Iranian
Conference on Electrical Engineering, 2015, pp. 1093-1097.

Ulya R. Karpuzcu and Ismail Akturk and Nam Sung Kim, “Accordion: Toward soft Near-Threshold Voltage Com-
puting,” in International Symposium on High-Performance Computer Architecture (HPCA), 2014.

Gautschi, Michael and Schiavone, Pasquale Davide and Traber, Andreas and Loi, Igor and Pullini, Antonio and
Rossi, Davide and Flamand, Eric and Giirkaynak, Frank K. and Benini, Luca, “Near-Threshold RISC-V Core With
DSP Extensions for Scalable IoT Endpoint Devices,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 10, pp. 2700-2713, 2017.

Shin, Doochul and Gupta, Sandeep K., “Approximate logic synthesis for error tolerant applications,” in 2010 Design,
Automation Test in Europe Conference Exhibition (DATE 2010), 2010, pp. 957-960.

Palem, Krishna V. and Chakrapani, Lakshmi N.B. and Kedem, Zvi M. and Lingamneni, Avinash and Muntimadugu,
Kirthi Krishna, “Sustaining Moore’s Law in Embedded Computing through Probabilistic and Approximate Design:
Retrospects and Prospects,” in Proceedings of the 2009 International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, ser. CASES '09. New York, NY, USA: Association for Computing Machinery, 2009, p. 1-10.
[Online]. Available: https://doi.org/10.1145/1629395.1629397

Miao, Jin and He, Ku and Gerstlauer, Andreas and Orshansky, Michael, “Modeling and Synthesis of Quality-energy
Optimal Approximate Adders,” in IEEE-ACM International Conference on Computer-Aided Design (ICCAD), 2012.

Gupta, Vaibhav and Mohapatra, Debabrata and Park, Sang Phill and Raghunathan, Anand and Roy, Kaushik, “IM-
PACT: Imprecise Adders for Low-Power Approximate Computing,” in Proceedings of the 17th IEEE | ACM International
Symposium on Low-Power Electronics and Design, ser. ISLPED “11. IEEE Press, 2011, p. 409-414.

Sekanina, Lukas, Evolvable Components: From Theory to Hardware Implementations, ser. Natural Computing Series.
Berlin Heidelberg: Springer-Verlag, 2004. [Online]. Available: https://www.springer.com/gp/book/9783540403777

Sekanina, Luké$ and Han, Jie, “Approximate Computing with Approximate Circuits: Methodologies and Applica-
tions,” p. 85.

Mrazek, Vojtech and Hanif, Muhammad Abdullah and Vasicek, Zdenek and Sekanina, Lukas and Shafique,
Muhammad, “autoAx: An Automatic Design Space Exploration and Circuit Building Methodology utilizing
Libraries of Approximate Components,” arXiv:1902.10807 [cs], Feb. 2019, arXiv: 1902.10807. [Online]. Available:
http://arxiv.org/abs/1902.10807

Ceska, Milan and Matyas, Jiri and Mrazek, Vojtech and Sekanina, Lukas and Vasicek, Zdenek and Vojnar, Tomas,
“Approximating complex arithmetic circuits with formal error guarantees: 32-bit multipliers accomplished,” in
2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Irvine, CA: IEEE, Nov. 2017, pp.
416-423. [Online]. Available: http://ieeexplore.ieee.org/document/8203807/

Sekanina, Lukas and Mrazek, Vojtech and Vasicek, Zdenek, “Design Space Exploration for Approximate
Implementations of Arithmetic Data Path Primitives,” in 2018 25th IEEE International Conference on Electronics,
Circuits and Systems (ICECS). Bordeaux: IEEE, Dec. 2018, pp. 377-380. [Online]. Available: https://ieeexplore.
ieee.org/document/8618048/

Andreas Heinig and Vincent John Mooney and Florian Schmoll and Peter Marwedel and Krishna V. Palem and
Michael Engel, “Classification-Based Improvement of Application Robustness and Quality of Service in Probabilistic
Computer Systems,” in International Conference on Architecture of Computing Systems (ARCS), 2012.

Darshan D. Thaker and Diana Franklin and John Oliver and Susmit Biswas and Derek Lockhart and Tzvetan S.
Metodi and Frederic T. Chong, “Characterization of Error-Tolerant Applications when Protecting Control Data,” in
IEEE International Symposium on Workload Characterization (IISWC), 2006.

Anna Thomas and Karthik Pattabiraman, “LLFI: An Intermediate Code Level Fault Injector For Soft Computing
Applications,” in Workshop on Silicon Errors in Logic: System Effects (SELSE), 2013.

Sampson, Adrian and Dietl, Werner and Fortuna, Emily and Gnanapragasam, Danushen and Ceze, Luis and Gross-
man, Dan, “Ener]: approximate data types for safe and general low-power computation,” in ACM Conference on
Programming Language Design and Implementation (PLDI), 2011.

III

https://doi.org/10.1145/1629395.1629397
https://www.springer.com/gp/book/9783540403777
http://arxiv.org/abs/1902.10807
http://ieeexplore.ieee.org/document/8203807/
https://ieeexplore.ieee.org/document/8618048/
https://ieeexplore.ieee.org/document/8618048/

Bibliography

(57]

(58]

[62]

(63]

[69]

(70]

(71]

[72]

(73]

A. Sampson and W. Dietl and E. Fortuna and D. Gnanapragasam and L. Ceze and D. Grossman, “EnerJ: Approx-
imate Data Types for Safe and General Low-Power Computation — Full Proofs,” University of Washington, Tech.
Rep. UW-CSE-10-12-01, 2011.

Sampson, Adrian and Baixo, André and Ransford, Benjamin and Moreau, Thierry and Yip, Joshua and Ceze, Luis
and Oskin, Mark, “ACCEPT: A programmer-guided compiler framework for practical approximate computing,”
University of Washington Technical Report UW-CSE-15-01, vol. 1, 2015.

Michael Carbin and Sasa Misailovic and Martin C. Rinard, “Verifying Quantitative Reliability for Programs that
Execute on Unreliable Hardware,” in ACM Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA), 2013.

Mishra, Asit K and Barik, Rajkishore and Paul, Somnath, “iACT: A Software-Hardware Framework for Understand-
ing the Scope of Approximate Computing,” p. 6.

James Bornholt and Todd Mytkowicz and Kathryn S. McKinley, “Uncertain<T>: A First-Order Type for Uncertain
Data,” in International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2014.

Baek, Woongki and Chilimbi, Trishul M, “Green: A Framework for Supporting Energy-Conscious Programming
using Controlled Approximation,” p. 12.

Jason Ansel and Cy P. Chan and Yee Lok Wong and Marek Olszewski and Qin Zhao and Alan Edelman and Saman
P. Amarasinghe, “PetaBricks: a language and compiler for algorithmic choice,” in ACM Conference on Programming
Language Design and Implementation (PLDI), 2009.

Sidiroglou-Douskos, Stelios and Misailovic, Sasa and Hoffmann, Henry and Rinard, Martin C., “Managing perfor-
mance vs. accuracy trade-offs with loop perforation,” in ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), 2011.

Byna, Surendra and Meng, Jiayuan and Raghunathan, Anand and Chakradhar, Srimat and Cadambi, Srihari,
“Best-Effort Semantic Document Search on GPUs,” in Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, ser. GPGPU-3. New York, NY, USA: Association for Computing Machinery, 2010, p.
86-93. [Online]. Available: https://doi.org/10.1145/1735688.1735705

Meng, Jiayuan and Raghunathan, Anand and Chakradhar, Srimat and Byna, Surendra, “Exploiting the forgiving
nature of applications for scalable parallel execution,” in IEEE International Parallel & Distributed Processing Sympo-
sium, 2010.

Goiri, Inigo and Bianchini, Ricardo and Nagarakatte, Santosh and Nguyen, Thu D., “ApproxHadoop: Bringing
Approximations to MapReduce Frameworks,” in Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS "15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 383-397. [Online]. Available: https://doi.org/10.1145/2694344.2694351

Samadi, Mehrzad and Lee, Janghaeng and Jamshidi, D. Anoushe and Hormati, Amir and Mahlke, Scott, “SAGE:
Self-tuning Approximation for Graphics Engines,” in IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2013.

Jiayuan Meng and Chakradhar, Srimat and Raghunathan, Anand, “Best-effort parallel execution framework for
Recognition and mining applications,” in IEEE International Parallel & Distributed Processing Symposium, 2009.

Alvarez, Carlos and Corbal, Jesus and Valero, Mateo, “Fuzzy Memoization for Floating-Point Multimedia Applica-
tions,” IEEE Transactions on Computers, vol. 54, no. 7, 2005.

Suresh, Arjun and Swamy, Bharath Narasimha and Rohou, Erven and Seznec, André, “Intercepting Functions
for Memoization: A Case Study Using Transcendental Functions,” ACM Transactions on Architecture and Code
Optimization, vol. 12, no. 2, p. 23, Jul. 2015. [Online]. Available: https://hal.inria.fr/hal-01178085

Esmaeilzadeh, Hadi and Sampson, Adrian and Ceze, Luis and Burger, Doug, “Neural acceleration for general-
purpose approximate programs,” in IEEE/ACM International Symposium on Microarchitecture (MICRO), 2012.

Thierry Moreau and Mark Wyse and Jacob Nelson and Adrian Sampson and Hadi Esmaeilzadeh and Luis Ceze and
Mark Oskin, “SNNAP: Approximate Computing on Programmable SoCs via Neural Acceleration,” in International
Symposium on High-Performance Computer Architecture (HPCA), 2015.

Atoofian, Ehsan, “Approximate Cache in GPGPUs,” ACM Trans. Embed. Comput. Syst., vol. 19, no. 5, Sep. 2020.
[Online]. Available: https://doi.org/10.1145/3407904

Chang, F. and Wu-chang Feng and Kang Li, “Approximate caches for packet classification,” in IEEE INFOCOM
2004, vol. 4, 2004, pp. 2196-2207 vol.4.

IV

https://doi.org/10.1145/1735688.1735705
https://doi.org/10.1145/2694344.2694351
https://hal.inria.fr/hal-01178085
https://doi.org/10.1145/3407904

Bibliography

[76]

[77]

(78]

[79]

(80]

[81]

(82]

(83]

(84]

(85]

(86]

Jerger, Natalie Enright and Miguel, Joshua San, “Approximate Cache Architectures,” in Approximate Circuits:
Methodologies and CAD, S. Reda and M. Shafique, Eds. Cham: Springer International Publishing, 2019, pp.
399-416. [Online]. Available: https://doi.org/10.1007/978-3-319-99322-5_20

San Miguel, Joshua and Albericio, Jorge and Moshovos, Andreas and Enright Jerger, Natalie, “Doppelganger: A
Cache for Approximate Computing,” 12 2015.

Ik Joon Chang and Mohapatra, D. and Roy, K., “A Priority-Based 6T/8T Hybrid SRAM Architecture for Aggressive
Voltage Scaling in Video Applications,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 2,
pp- 101-112, 2011.

Kumar, Animesh and Rabaey, Jan and Ramchandran, Kannan, “SRAM supply voltage scaling: A reliability per-
spective,” in International Symposium on Quality Electronic Design (ISQED), 2009.

Shoushtari, Majid and BanaiyanMofrad, Abbas and Dutt, Nikil, “Exploiting Partially-Forgetful Memories for Ap-
proximate Computing,” IEEE Embedded Systems Letters, vol. 7, no. 1, pp. 19-22, Mar. 2015.

Song Liu and Karthik Pattabiraman and Thomas Moscibroda and Benjamin G. Zorn, “Flikker: Saving Refresh-
Power in Mobile Devices through Critical Data Partitioning,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2011.

Jan Lucas and Mauricio Alvarez Mesa and Michael Andersch and Ben Juurlink, “Sparkk: Quality-Scalable Approx-
imate Storage in DRAM,” in The Memory Forum, 2014.

Ranjan, Ashish and Venkataramani, Swagath and Fong, Xuanyao and Roy, Kaushik and Raghunathan, Anand,
“Approximate Storage for Energy Efficient Spintronic Memories,” in Design Automation Conference (DAC), 2015.

Sampson, Adrian and Nelson, Jacob and Strauss, Karin and Ceze, Luis, “Approximate Storage in Solid-state Mem-
ories,” in IEEE/ACM International Symposium on Microarchitecture (MICRO), 2013.

Boyapati, Rahul and Huang, Jiayi and Majumder, Pritam and Yum, Ki Hwan and Kim, Eun Jung, “APPROX-NoC:
A data approximation framework for Network-on-Chip architectures,” in 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), 2017, pp. 666—677.

Lee, Jaechul and Killian, Cédric and Beux, Sébastien Le and Chillet, Daniel, “Approximate Nanophotonic
Interconnects,” in Proceedings of the 13th IEEE/ACM International Symposium on Networks-on-Chip, ser. NOCS "19.
New York, NY, USA: Association for Computing Machinery, 2019. [Online]. Available: https://doi.org/10.1145/
3313231.3352365

Shih-Lien Lu, “Speeding up processing with approximation circuits,” Computer, vol. 37, no. 3, pp. 67-73, 2004.

Verma, Ajay K. and Brisk, Philip and Ienne, Paolo, “Variable Latency Speculative Addition: A New Paradigm for
Arithmetic Circuit Design,” in 2008 Design, Automation and Test in Europe, 2008, pp. 1250-1255.

Behrooz Parhami, Computer arithmetic - algorithms and hardware designs. Oxford University Press, 2000.

Ali Skaf and Mona Ezzadeen and Mounir Benabdenbi and Laurent Fesquet, “On-Line Adjustable Precision
Computing,” in 14th International Conference on Design & Technology of Integrated Systems In Nanoscale Era, DTIS 2019,
Mykonos, Greece, April 16-18, 2019. IEEE, 2019, pp. 1-5. [Online]. Available: https://doi.org/10.1109/DTIS.2019.
8735067

“Accelerating Fixed-Point Design for MB-OFDM UWB Systems.” [Online]. Available: https://www.design-reuse.
com/articles/9559/accelerating-fixed-point-design-for-mb-ofdm-uwb-systems.html

Arslan, T. and Horrocks, D.H., “A genetic algorithm for the design of finite word length arbitrary response cas-
caded IIR digital filters,” in First International Conference on Genetic Algorithms in Engineering Systems: Innovations and
Applications, 1995, pp. 276-281.

Cantin, M.-A. and Savaria, Y. and Prodanos, D. and Lavoie, P., “An automatic word length determination method,”
in ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.0O1CH37196), vol. 5, 2001, pp.
53-56 vol. 5.

Chan, S. C. and Tsui, K. M., “Wordlength Optimization of Linear Time-Invariant Systems With Multiple Outputs
Using Geometric Programming,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 4, pp. 845—
854, 2007.

Ha, Van-Phu and Yuki, Tomofumi and Sentieys, Olivier, “Towards Generic and Scalable Word-Length Optimiza-
tion,” in 2020 Design, Automation Test in Europe Conference Exhibition (DATE), 2020, pp. 1668-1673.

A%

https://doi.org/10.1007/978-3-319-99322-5_20
https://doi.org/10.1145/3313231.3352365
https://doi.org/10.1145/3313231.3352365
https://doi.org/10.1109/DTIS.2019.8735067
https://doi.org/10.1109/DTIS.2019.8735067
https://www.design-reuse.com/articles/9559/accelerating-fixed-point-design-for-mb-ofdm-uwb-systems.html
https://www.design-reuse.com/articles/9559/accelerating-fixed-point-design-for-mb-ofdm-uwb-systems.html

Bibliography

[96]

[97]

(98]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Koster, Urs and Webb, Tristan J. and Wang, Xin and Nassar, Marcel and Bansal, Arjun K. and Constable, William
H. and Elibol, Ouguz H. and Gray, Scott and Hall, Stewart and Hornof, Luke and Khosrowshahi, Amir and Kloss,
Carey and Pai, Ruby]. and Rao, Naveen, “Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep
Neural Networks,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, ser.
NIPS'17. Red Hook, NY, USA: Curran Associates Inc., 2017, p. 1740-1750.

Chung, Eric and Fowers, Jeremy and Ovtcharov, Kalin and Papamichael, Michael and Caulfield, Adrian and Mas-
sengill, Todd and Liu, Ming and Lo, Daniel and Alkalay, Shlomi and Haselman, Michael and Abeydeera, Maleen and
Adams, Logan and Angepat, Hari and Boehn, Christian and Chiou, Derek and Firestein, Oren and Forin, Alessan-
dro and Gatlin, Kang Su and Ghandi, Mahdi and Heil, Stephen and Holohan, Kyle and El Husseini, Ahmad and
Juhasz, Tamas and Kagi, Kara and Kovvuri, Ratna K. and Lanka, Sitaram and van Megen, Friedel and Mukhortov,
Dima and Patel, Prerak and Perez, Brandon and Rapsang, Amanda and Reinhardt, Steven and Rouhani, Bita and
Sapek, Adam and Seera, Raja and Shekar, Sangeetha and Sridharan, Balaji and Weisz, Gabriel and Woods, Lisa and
Yi Xiao, Phillip and Zhang, Dan and Zhao, Ritchie and Burger, Doug, “Serving DNNs in Real Time at Datacenter
Scale with Project Brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8-20, 2018.

Jouppi, Norman P. and Young, Cliff and Patil, Nishant and Patterson, David and Agrawal, Gaurav and Bajwa,
Raminder and Bates, Sarah and Bhatia, Suresh and Boden, Nan and Borchers, Al and Boyle, Rick and Cantin,
Pierre-luc and Chao, Clifford and Clark, Chris and Coriell, Jeremy and Daley, Mike and Dau, Matt and Dean, Jeffrey
and Gelb, Ben and Ghaemmaghami, Tara Vazir and Gottipati, Rajendra and Gulland, William and Hagmann,
Robert and Ho, C. Richard and Hogberg, Doug and Hu, John and Hundt, Robert and Hurt, Dan and Ibarz, Julian
and Jaffey, Aaron and Jaworski, Alek and Kaplan, Alexander and Khaitan, Harshit and Killebrew, Daniel and
Koch, Andy and Kumar, Naveen and Lacy, Steve and Laudon, James and Law, James and Le, Diemthu and Leary,
Chris and Liu, Zhuyuan and Lucke, Kyle and Lundin, Alan and MacKean, Gordon and Maggiore, Adriana and
Mahony, Maire and Miller, Kieran and Nagarajan, Rahul and Narayanaswami, Ravi and Ni, Ray and Nix, Kathy
and Norrie, Thomas and Omernick, Mark and Penukonda, Narayana and Phelps, Andy and Ross, Jonathan and
Ross, Matt and Salek, Amir and Samadiani, Emad and Severn, Chris and Sizikov, Gregory and Snelham, Matthew
and Souter, Jed and Steinberg, Dan and Swing, Andy and Tan, Mercedes and Thorson, Gregory and Tian, Bo and
Toma, Horia and Tuttle, Erick and Vasudevan, Vijay and Walter, Richard and Wang, Walter and Wilcox, Eric and
Yoon, Doe Hyun, “In-Datacenter Performance Analysis of a Tensor Processing Unit,” SIGARCH Comput. Archit.
News, vol. 45, no. 2, p. 1-12, Jun. 2017. [Online]. Available: https://doi.org/10.1145/3140659.3080246

Xie, Shaolin and Davidson, Scott and Magaki, Ikuo and Khazraee, Moein and Vega, Luis and Zhang, Lu and
Taylor, Michael B., “Extreme Datacenter Specialization for Planet-Scale Computing: ASIC Clouds,” SIGOPS Oper.
Syst. Rev., vol. 52, no. 1, p. 96-108, Aug. 2018. [Online]. Available: https://doi.org/10.1145/3273982.3273991

Tagliavini, Giuseppe and Mach, Stefan and Rossi, Davide and Marongiu, Andrea and Benini, Luca, “Design and
Evaluation of SmallFloat SIMD extensions to the RISC-V ISA,” in 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), 2019, pp. 654-657.

S. Mach and D. Rossi and G. Tagliavini and A. Marongiu and L. Benini, “A Transprecision Floating-Point Archi-
tecture for Energy-Efficient Embedded Computing,” in 2018 IEEE International Symposium on Circuits and Systems
(ISCAS), 2018, pp. 1-5.

Gustafson, J.L., The End of Error: Unum Computing, ser. Chapman & Hall/CRC Computational Science. Taylor &
Francis, 2015. [Online]. Available: https://books.google.fr/books?id=W2ThoAEACAA]

Gustafson and Yonemoto, “Beating Floating Point at Its Own Game: Posit Arithmetic,” Supercomput. Front. Innov.:
Int.], vol. 4, no. 2, p. 71-86, Jun. 2017. [Online]. Available: https://doi.org/10.14529 /jsfi170206

Besseling, Johan and Renstrom, Anders, “A comparative study of IEEE 754 32-bit Float and Posit 32-bit floating
point format on precision. : Using numerical methods.” p. 36, 2020.

Forget, Luc and Uguen, Yohann and de Dinechin, Florent, “Comparing posit and IEEE-754 hardware cost,” Apr.
2021, working paper or preprint. [Online]. Available: https://hal.archives-ouvertes.fr/hal-03195756

Lee, S.C. and Edgar, A.D., “Addendum to "The Focus Number System",” IEEE Transactions on Computers, vol. C-28,
no. 9, pp. 693-693, 1979.

N.G. Kingsbury, “Digital filtering using logarithmic arithmetic,” Electronics Letters, vol. 7, pp. 56-58(2), January
1971. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/el_19710039

M. Haselman and M. Beauchamp and Aaron Wood and S. Hauck and K. Underwood and K. Hemmert, “A com-
parison of floating point and logarithmic number systems for FPGAs,” 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM'05), pp. 181-190, 2005.

Brand, Marcel and Witterauf, Michael and Bosio, Alberto and Teich, Jiirgen, “Anytime Floating-Point Addition
and Multiplication-Concepts and Implementations,” in 2020 IEEE 31st International Conference on Application-specific
Systems, Architectures and Processors (ASAP), 2020, pp. 157-164.

Khaing Yin Kyaw and Wang Ling Goh and Kiat Seng Yeo, “Low-power high-speed multiplier for error-tolerant
application,” in 2010 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), 2010, pp. 1-4.

VI

https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3273982.3273991
https://books.google.fr/books?id=W2ThoAEACAAJ
https://doi.org/10.14529/jsfi170206
https://hal.archives-ouvertes.fr/hal-03195756
https://digital-library.theiet.org/content/journals/10.1049/el_19710039

Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Kahng, Andrew B. and Kang, Seokhyeong, “Accuracy-configurable Adder for Approximate Arithmetic Designs,”
in Design Automation Conference (DAC), 2012.

Sampson, Adrian and Baixo, Andre and Ransford, Benjamin and Moreau, Thierry and Yip, Joshua and Ceze, Luis
and Oskin, Mark, “ACCEPT: A Programmer-Guided Compiler Framework for Practical Approximate Computing,”
p- 14.

A. C. 1. Malossi and M. Schaffner and A. Molnos and L. Gammaitoni and G. Tagliavini and A. Emerson and A.
Tomas and D. S. Nikolopoulos and E. Flamand and N. Wehn, “The transprecision computing paradigm: Concept,
design, and applications,” in 2018 Design, Automation Test in Europe Conference Exhibition (DATE), Mar. 2018, pp.
1105-1110.

Mach, Stefan and Schuiki, Fabian and Zaruba, Florian and Benini, Luca, “FPnew: An Open-Source Multi-Format
Floating-Point Unit Architecture for Energy-Proportional Transprecision Computing,” arXiv:2007.01530 [cs], Jul.
2020, arXiv: 2007.01530. [Online]. Available: http://arxiv.org/abs/2007.01530

Zaruba, Florian and Benini, Luca, “The Cost of Application-Class Processing: Energy and Performance Analysis
of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629-2640, 2019.

“FPNEW: Parametric floating-point unit,” https://github.com/pulp-platform/fpnew, 2019.

Matoussi, Oumaima and Durand, Yves and Sentieys, Olivier and Molnos, Anca, “Error Analysis of the Square Root
Operation for the Purpose of Precision Tuning: a Case Study on K-means,” in ASAP 2019 - 30th IEEE International
Conference on Application-specific Systems, Architectures and Processors. New York, United States: IEEE, Jul. 2019.
[Online]. Available: https://hal.inria.fr/hal-02183945

Panchekha, Pavel and Sanchez-Stern, Alex and Wilcox, James R. and Tatlock, Zachary, “Automatically Improving
Accuracy for Floating Point Expressions,” SIGPLAN Not., vol. 50, no. 6, p. 1-11, Jun. 2015. [Online]. Available:
https://doi.org/10.1145/2813885.2737959

Sanchez-Stern, Alex and Panchekha, Pavel and Lerner, Sorin and Tatlock, Zachary, “Finding Root Causes of
Floating Point Error with Herbgrind,” arXiv:1705.10416 [cs], Jun. 2018, arXiv: 1705.10416. [Online]. Available:
http://arxiv.org/abs/1705.10416

Benz, Florian and Hildebrandt, Andreas and Hack, Sebastian, “ A Dynamic Program Analysis to find Floating-Point
Accuracy Problems,” p. 10.

Graillat, Stef and Jézéquel, Fabienne and Picot, Romain and Févotte, Francois and Lathuiliére, Bruno, “Auto-tuning
for floating-point precision with Discrete Stochastic Arithmetic,” Journal of computational science, 2019. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01331917

Lam, Michael O. and Hollingsworth, Jeffrey K. and de Supinski, Bronis R. and Legendre, Matthew P,
“Automatically Adapting Programs for Mixed-precision Floating-point Computation,” in Proceedings of the 27th
International ACM Conference on International Conference on Supercomputing, ser. ICS 13. New York, NY, USA: ACM,
2013, pp. 369-378. [Online]. Available: http://doi.acm.org/10.1145/2464996.2465018

Rubio-Gonzalez, Cindy and Nguyen, Cuong and Nguyen, Hong Diep and Demmel, James and Kahan, William
and Sen, Koushik and Bailey, David H. and Iancu, Costin and Hough, David, “Precimonious: Tuning Assistant for
Floating-point Precision,” in International Conference for High Performance Computing, Networking, Storage and Analysis
(5C), 2013.

Rubio-Gonzalez, Cindy and Hough, David and Nguyen, Cuong and Mehne, Benjamin and Sen, Koushik
and Demmel, James and Kahan, William and Iancu, Costin and Lavrijsen, Wim and Bailey, David
H., “Floating-point precision tuning using blame analysis,” in Proceedings of the 38th International Conference
on Software Engineering - ICSE '16. Austin, Texas: ACM Press, 2016, pp. 1074-1085. [Online]. Available:
http://dl.acm.org/citation.cfm?doid =2884781.2884850

Ho, N. and Manogaran, E. and Wong, W. and Anoosheh, A., “Efficient floating point precision tuning for approxi-
mate computing,” in 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Jan. 2017, pp. 63-68.

Fousse, Laurent and Hanrot, Guillaume and Lefévre, Vincent and Pélissier, Patrick and Zimmermann, Paul,
“MPFR: A Multiple-precision Binary Floating-point Library with Correct Rounding,” ACM Trans. Math. Softw.,
vol. 33, no. 2, Jun. 2007. [Online]. Available: http://doi.acm.org/10.1145/1236463.1236468

Flegar, Goran and Scheidegger, Florian and Novakovi¢, Vedran and Mariani, Giovani and Tomds, Andrés
E. and Malossi, A. Cristiano I. and Quintana-Orti, Enrique S., “FloatX: A C++ Library for Customized
Floating-Point Arithmetic,” ACM Trans. Math. Softw., vol. 45, no. 4, pp. 40:1-40:23, Dec. 2019. [Online]. Available:
http://doi.acm.org/10.1145/3368086

Tagliavini, G. and Marongiu, A. and Benini, L., “FlexFloat: A Software Library for Transprecision Computing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1-1, 2018.

VII

http://arxiv.org/abs/2007.01530
https://github.com/pulp-platform/fpnew
https://hal.inria.fr/hal-02183945
https://doi.org/10.1145/2813885.2737959
http://arxiv.org/abs/1705.10416
https://hal.archives-ouvertes.fr/hal-01331917
http://doi.acm.org/10.1145/2464996.2465018
http://dl.acm.org/citation.cfm?doid=2884781.2884850
http://doi.acm.org/10.1145/1236463.1236468
http://doi.acm.org/10.1145/3368086

Bibliography

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

Chatelain, Yohan and Petit, Eric and de Oliveira Castro, Pablo and Lartigue, Ghislain and Defour, David, “ Automatic
Exploration of Reduced Floating-Point Representations in Iterative Methods,” in Euro-Par 2019: Parallel Processing,
R. Yahyapour, Ed. Cham: Springer International Publishing, 2019, pp. 481-494.

Nethercote, Nicholas and Seward, Julian, “Valgrind: a framework for heavyweight dynamic binary instru-
mentation.” in PLDI, J. Ferrante and K. S. McKinley, Eds. ACM, 2007, pp. 89-100. [Online]. Available:
http://dblp.uni-trier.de/db/conf/pldi/pldi2007.html#NethercoteS07

Higham, Nicholas J., Accuracy and stability of numerical algorithms, 2nd ed. Philadelphia: Society for Industrial and
Applied Mathematics, 2002.

Cheney, E. and Kincaid, David, Numerical Mathematics and Computing. Cengage Learning, Aug. 2007, google-Books-
ID: ZUfVZELIrMEC.

Vignes, Jean, “Discrete Stochastic Arithmetic for Validating Results of Numerical Software,” vol. 37, no. 1, pp.
377-390. [Online]. Available: https://doi.org/10.1023/B:NUMA.0000049483.75679.ce

A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,” IEEE Transactions on Software En-
gineering, vol. 28, no. 2, pp. 183200, 2002.

Noureddine Ait Said and Mounir Benabdenbi and Katell Morin-Allory, “Arbitrary Reduced Precision for
Fine-grained Accuracy and Energy Trade-offs,” Microelectronics Reliability, vol. 120, p. 114099, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0026271421000652

Granlund, Torbjrn and Gmp Development Team, GNU MP 6.0 Multiple Precision Arithmetic Library. London, GBR:
Samurai Media Limited, 2015.

Christophe Denis and Pablo de Oliveira Castro and Eric Petit, “Verificarlo: Checking Floating Point Accuracy
through Monte Carlo Arithmetic,” in 23nd IEEE Symposium on Computer Arithmetic, ARITH 2016, Silicon Valley, CA,
USA, July 10-13, 2016, 2016, pp. 55-62. [Online]. Available: http://dx.doi.org/10.1109/ARITH.2016.31

Waterman, Andrew and Asanovié, Krste, “The RISC-V Instruction Set Manual, Volume I: User-Level ISA,
Document Version 2019121,” 2019. [Online]. Available: https://riscv.org/specifications

Yamin Li and Wanming Chu, “Implementation of single precision floating point square root on FPGAs,” in Proceed-
ings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines Cat. No.97TB100186), 1997,
pp- 226-232.

Lefévre, Vincent, “Sipe: a Mini-Library for Very Low Precision Computations with Correct Rounding,” Sep. 2013,
working paper or preprint. [Online]. Available: https://hal.inria.fr/hal-00864580

Bellard, Fabrice, “QEMU, a Fast and Portable Dynamic Translator,” in Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ser. ATEC '05. USA: USENIX Association, 2005, p. 41.

Waterman, Andrew and Asanovié¢, Krste and John Hauser, “The RISC-V Instruction Set Manual, Volume II:
Privileged Architecture,” 2019. [Online]. Available: https://riscv.org/specifications

“RISC-V Foundation official website,” https://riscv.org/, 2019.

“Rocket Chip Generator,” Aug. 2021, original-date: 2014-09-12T07:04:30Z. [Online]. Available: https://github.
com/chipsalliance/rocket-chip

“Pulpino,” Aug. 2021, original-date: 2016-02-18T18:15:49Z. [Online]. Available: https://github.com/
pulp-platform/pulpino

“PULPissimo,” Aug. 2021, original-date: 2018-02-09T10:24:02Z. [Online]. Available: https://github.com/
pulp-platform/pulpissimo

“CVA6 RISC-V CPU,” Aug. 2021, original-date: 2018-01-23T18:36:12Z. [Online]. Available: https://github.com/
openhwgroup/cva6

“Ibex RISC-V Core,” Aug. 2021, original-date: 2017-08-08T12:16:36Z. [Online]. Available: https://github.com/
lowRISC /ibex

“lowRISC/lowrisc-chip: The root repo for lowRISC project and FPGA demos.” [Online]. Available: https:
//github.com/lowRISC/lowrisc-chip

“All Aboard, Part 1: The -march, -mabi, and -mtune arguments to RISC-V Compilers - SiFive.” [Online]. Available:
https://www.sifive.com/blog/all-aboard-part-1-compiler-args

John R. Hauser, “SoftFloat release 3,” https://github.com/ucb-bar/berkeley-softfloat-3, 2019.

VIII

http://dblp.uni-trier.de/db/conf/pldi/pldi2007.html#NethercoteS07
https://doi.org/10.1023/B:NUMA.0000049483.75679.ce
https://www.sciencedirect.com/science/article/pii/S0026271421000652
http://dx.doi.org/10.1109/ARITH.2016.31
https://riscv.org/specifications
https://hal.inria.fr/hal-00864580
https://riscv.org/specifications
https://riscv.org/
https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpissimo
https://github.com/pulp-platform/pulpissimo
https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cva6
https://github.com/lowRISC/ibex
https://github.com/lowRISC/ibex
https://github.com/lowRISC/lowrisc-chip
https://github.com/lowRISC/lowrisc-chip
https://www.sifive.com/blog/all-aboard-part-1-compiler-args
https://github.com/ucb-bar/berkeley-softfloat-3

Bibliography

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

Fournel, Nicolas and Pétrot, Frédéric, “Using Binary Translation in Event Driven Simulation for Fast and Flexible
MPSoC Simulation,” 10 2009, pp. 71-80.

Warren, Tom, “Apple is switching Macs to its own processors starting later this year,” Jun. 2020. [Online].
Available: https://www.theverge.com/2020/6/22/21295475/apple-mac-processors-arm-silicon-chips-wwdc-2020

Yazdanbakhsh, A. and Mahajan, D. and Esmaeilzadeh, H. and Lotfi-Kamran, P., “AxBench: A Multiplatform Bench-
mark Suite for Approximate Computing,” IEEE Design Test, vol. 34, no. 2, pp. 60-68, Apr. 2017.

John Walker, “FBENCH: Floating Point Benchmark,” https://www.fourmilab.ch/fbench/fbench.html.

Li, L. and Gautschi, M. and Benini, L., “Approximate DIV and SQRT instructions for the RISC-V ISA: An efficiency
vs. accuracy analysis,” in 2017 27th International Symposium on Power and Timing Modeling, Optimization and Simulation
(PATMOS), Sep. 2017, pp. 1-8.

K. Jun and E. E. Swartzlander, “Modified non-restoring division algorithm with improved delay profile and error
correction,” in 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILO-
MAR), 2012, pp. 1460-1464.

Fabienne Jézéquel and Jean Marie Chesneaux, “CADNA: a library for estimating round-off error propagation,”
Comput. Phys. Commun., vol. 178, no. 12, pp. 933-955, 2008. [Online]. Available: https://doi.org/10.1016/j.cpc.2008.
02.003

N. Ait Said, M. Benabdenbi, and K. Morin-Allory, “FPU Reduced Variable Precision in Time: Application to the
Jacobi Iterative Method,” in 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (ISVLSI-2021), Tampa,
USA, Jul. 2021, pp. 170-175.

——, “Self-adaptive Run-time Variable Floating-Point Precision for Iterative Algorithms : a Joint HW/SW Ap-
proach,” in MDPI Electronics Journal. Special Session on Approximate Computing: Design, Acceleration, Validation and
Testing of Circuits, Architectures and Algorithms in Future Systems, 2021.

N. Ait Said and M. Benabdenbi and K. Morin-Allory, “FPU Bit-Width Optimization for Approximate Computing:
A Non-Intrusive Approach,” in 2020 15th Design Technology of Integrated Systems in Nanoscale Era (DTIS), 2020, pp.
1-6.

E. Carson and N. J. Higham, “A New Analysis of Iterative Refinement and Its Application to Accurate Solution of
II-Conditioned Sparse Linear Systems,” SIAM Journal on Scientific Computing, vol. 39, no. 6, pp. A2834-A2856, Jan.
2017. [Online]. Available: https://epubs.siam.org/doi/abs/10.1137/17M1122918

——, “Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions,” SIAM Journal on
Scientific Computing, vol. 40, no. 2, pp. A817-A847, Jan. 2018. [Online]. Available: https://epubs.siam.org/doi/10.
1137/17M1140819

C. B. Moler, “Iterative Refinement in Floating Point,” J. ACM, vol. 14, no. 2, p. 316-321, Apr. 1967. [Online].
Available: https://doi.org/10.1145/321386.321394

P. Amestoy, A. Buttari, N. Higham, J.-Y. L'Excellent, T. Mary, and B. Vieuble, “Five-Precision GMRES-based
iterative refinement,” Apr. 2021, working paper or preprint. [Online]. Available: https://hal.archives-ouvertes.fr/
hal-03190686

P. Blanchard, N. J. Higham, F. Lopez, T. Mary, and S. Pranesh, “Mixed Precision Block Fused Multiply-Add:
Error Analysis and Application to GPU Tensor Cores,” SIAM Journal on Scientific Computing, vol. 42, no. 3, pp.
C124-C141, Jan. 2020. [Online]. Available: https://epubs.siam.org/doi/10.1137/19M1289546

H. Anzt, J. Dongarra, G. Flegar, N. J. Higham, and E. S. Quintana-Orti, “Adaptive precision in block-Jacobi
preconditioning for iterative sparse linear system solvers: Adaptive precision in block-Jacobi preconditioning for
iterative solvers,” Concurrency and Computation: Practice and Experience, vol. 31, no. 6, p. 4460, Mar. 2019. [Online].
Available: http://doi.wiley.com/10.1002/cpe.4460

Saad, Yousef, Iterative Methods for Sparse Linear Systems, ser. Other Titles in Applied Mathematics. Society for
Industrial and Applied Mathematics, Jan. 2003. [Online]. Available: https://epubs.siam.org/doi/book/10.1137/1.
9780898718003

S., G. W. and Barrett, Richard and Berry, Michael and Chan, Tony F. and Demmel, James and Donato, June and
Dongarra, Jack and Eijkhout, Victor and Pozo, Roldan and Romine, Charles and van der Vorst, Henk, “Templates
for the Solution of Linear Systems: Building Blocks for Iterative Methods.” Mathematics of Computation, vol. 64, no.
211, p. 1349, Jul. 1995. [Online]. Available: https://www.jstor.org/stable/2153507?origin=crossref

N. Ait Said, “AxQEMU: a Floating-Point Approximation-aware Emulator,” https://github.com/noureddine-as/
axqemu, Aug. 2021, original-date: 2019-09-17T13:30:55Z. [Online]. Available: https://github.com/noureddine-as/
axqemu

IX

https://www.theverge.com/2020/6/22/21295475/apple-mac-processors-arm-silicon-chips-wwdc-2020
https://www.fourmilab.ch/fbench/fbench.html
https://doi.org/10.1016/j.cpc.2008.02.003
https://doi.org/10.1016/j.cpc.2008.02.003
https://epubs.siam.org/doi/abs/10.1137/17M1122918
https://epubs.siam.org/doi/10.1137/17M1140819
https://epubs.siam.org/doi/10.1137/17M1140819
https://doi.org/10.1145/321386.321394
https://hal.archives-ouvertes.fr/hal-03190686
https://hal.archives-ouvertes.fr/hal-03190686
https://epubs.siam.org/doi/10.1137/19M1289546
http://doi.wiley.com/10.1002/cpe.4460
https://epubs.siam.org/doi/book/10.1137/1.9780898718003
https://epubs.siam.org/doi/book/10.1137/1.9780898718003
https://www.jstor.org/stable/2153507?origin=crossref
https://github.com/noureddine-as/axqemu
https://github.com/noureddine-as/axqemu
https://github.com/noureddine-as/axqemu
https://github.com/noureddine-as/axqemu

Bibliography

[171] “The Open-source Repository of CORE-V CVA6 CPU: an Application class 6-stage RISC-V CPU capable of
booting Linux,” https://github.com/openhwgroup/cva6, Jun. 2021, accessed 2021-06-13. [Online]. Available:
https://github.com/openhwgroup/cva6

[172] FE. de Dinechin and C. Lauter and G. Melquiond, “Certifying the Floating-Point Implementation of an Elementary
Function Using Gappa,” IEEE Transactions on Computers, vol. 60, no. 2, pp. 242-253, 2011.

[173] “RISC-V Proxy Kernel.” https://github.com/riscv/riscv-pk, 2019.

[174] A. Borghesi, G. Tagliavini, M. Lombardi, L. Benini, and M. Milano, “Combining learning and optimization
for transprecision computing,” in Proceedings of the 17th ACM International Conference on Computing Frontiers, ser.
CF '20. New York, NY, USA: Association for Computing Machinery, 2020, p. 10-18. [Online]. Available:
https://doi.org/10.1145/3387902.3392615

[175] “Risc-v psabi documentation.” [Online]. Available: https://github.com/riscv/riscv-elf-psabi-doc

https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cva6
https://github.com/riscv/riscv-pk
https://doi.org/10.1145/3387902.3392615
https://github.com/riscv/riscv-elf-psabi-doc

1.1
1.2
1.3

2.1
2.2
23
24
2.5
2.6
2.7

2.8

29
2.10

211

3.1
3.2
3.3
34

4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8

4.9

List of Figures

Evolution of processor trends. 2
Emerging computing paradigms 4
Conventional computing to approximate computing (inspired from

[27]) o 7
Systemstack 15
AxCrelatedmetrics o o o 16
Circuit-level AXC o 17
Algorithm- and application-level AXC 21
Architecture-level AXC o oo oo 23
Architecture of an n-bit RCA. FA: a 1-bit fulladder. 26
Architecture of an n-bit CLA. SPG: the cell used to produce the

sum, generate (g; = a;b;) and propagate (p; = a; + b;) signals. . .. 27
Area distribution of the entire Ariane RISC-V core, excluding cache

memories (in kGE, 1 GE (gate equivalent) ~ 0.199 um?) [114] . . . 32
Cell area distribution of a standard RISC-V RV64FD FPU 32
Energy dissipated by RISC-V instructions in the RISC-V Ariane core

[T14]. . . o 33
Typical FP application implementation flow. 33
Floating-Point number representation layout. 43
Effect of precision on numbers’ distribution 44
The proposed approach. 50
The proposed approach with support for multiple precisions. . . . 50
The architecture of the QEMU binary translator [152]. 64
The QEMU Intermediate Representation. 65
QEMU’s Dynamic Binary Translation process 66
AXQEMU overview i i e e e e e e e 67
Design Space Exploration methodology 72
Resulting QoR corresponding to each FPU configuration for Black-

Scholes (MRE) L 75
Resulting QoR corresponding to each FPU configuration for FBench

(RMSE) 76
Resulting QoR corresponding to each FPU configuration for FFT

(RMSE) 76
Resulting QoR corresponding to each FPU configuration for Jmeint

(MissRate) 77

List of Figures

51
52
53
54

55
5.6
5.7
5.8
59
5.10
511

6.1

6.2
6.3

6.4

6.5
6.6

6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

C1

D.1
D.2

Hardware architecture of the Approximate Aware FPU 83
Architecture customization at synthesis time. 87
Test vector and gate-level netlist generation. 89
Parallel post-synthesis simulations and estimation of execution time,
power, and energy consumption. L L 90
Jmeint power consumption per architecture and precision. 92
Jmeint execution time per architecture and precision. 92
Jmeint energy consumption per architecture and precision. 93
Area for each studied architecture.0 0L 93
Typical FP application implementation flow. 95
QoR results for arclength, rectangle, and squareroot. 99
Energy vs. QoR trade-offs 100
Dynamic instructions breakdown and number of cycles per instruc-

tion for Jacobi and Gauss-Seidel. Both applied to the same random

input with a tolerance threshold TOL = 1072, 108
The variation of solution accuracy when Jacobi is executed for each
fixed Arbitrary Reduced Precision. 110
The Convergence Profile of the original and the VPT-enabled Ja-
cobi applied to one randomly generated input. 115

Convergence profiles (left axis, continuous lines) and their corre-
sponding precision variation profiles (right axis, dotted lines) for
three inputs (Matrix IDs 0, 1, and 2). The Convergence Profile here

is in terms of the distance metric (||Z*+) —z®|[). 117
Thresholds comparison 119
The average Convergence Profile of the reference double-precision

Jacobi.. 121
Comparison of average Convergence Profiles for each use case. . . 122
Comparison of average Precision Variation Profiles for each use case.122
Total number of iterations for TOL =10"* 124
Total number of iterations for TOL = 1072 125

Total number of iterations” overhead w.r.t each policy for TOL = 1074126
Total number of iterations’ overhead w.r.t each policy for TOL = 102126

Iterations’ distribution per precision for TOL =10~ 126
Iterations’ distribution per precision for TOL = 107'2 127
Contributions to AXQEMU. XXXVII
The convergence profile of the VPT-enabled Gauss-Seidel. XLI
Convergence profiles (left axis, continuous lines) and their corre-

sponding precision variation profiles (right axis, dotted lines) for
three inputs (Matrix IDs 0, 1, and 2). The convergence profile here
is in terms of the residual error metric (|[p*+t) — AZ*®+D(|). XLII

XIII

21
2.2
2.3

3.1
3.2
3.3
34
3.5

4.1
4.2

4.3
4.4
4.5

4.6
4.7

51
52

6.1

6.2

6.4

6.5

6.3

6.6

B.1

List of Tables

QoR metrics (Extracted from [34]). 17
AxC-aware code transformation using Ener] 20
Comparison of State of the Art tools (Inspired from [129]) 37
Interpretation of FPnumbers 44
Example: the (3,2) example FP system. 45
Floating-Point standard formats 46
Roundingexamples oL 47
Code transformation using the GNU MPEFR [126] library. 48
Format field encoding. 61
Example: code translation from RISC-V assembly instructions to

QEMUIR. 64
The list of studied applications and their corresponding error metrics 73
Dynamic instruction execution breakdown per benchmark 74
Total simulation time per benchmark. 75
Optimized FPU bit-widths per benchmark (No QoR loss). 78
Optimized FPU bit-widths per benchmark. 78
VPTregisters. 85
Benchmark summary 97

Post-synthesis and gate-level simulation results for Jacobi and Gauss-

Seidel applied to 1 input with relaxed thresholds (e;,). 130
Worst cases” and best cases” nomenclature per tolerance threshold
and threshold generation policy -Jacobi. 132

Power, execution time, and energy consumption of the standard
double-precision version of Jacobi executed on the RV64FD reference

FPU . . . e 133
Power, execution time, and energy consumption overheads of the
standard double-precision version of Jacobi executed on the VPT_H
configuration of the VPT-FPU 133
Power, execution time, and energy consumption gains of VPT-enabled
version of Jacobi (with theoretical conservative thresholds) exe-
cuted on the VPT_H configuration of the VPT-FPU 134
Power, execution time, and energy consumption gains of VPT-enabled
version of Jacobi (with relaxed thresholds and SMI = 4) executed

on the VPT_H configuration of the VPT-FPU 134

Frequently used RISC-V extensions and their descriptions. XXVIII

XV

List of Tables

B.2
B.3
B.4
B.5
B.6

Rounding mode encoding [138]. XXX
Floating-point control and status register fcsr [138]. XXX
Accrued exception flag encoding and description. XXXI
Format field encoding. XXXI
Memory size and layout for some commonly-used FP C/C++ data

types. e XXXIV

XVI

Abbreviations

ABI Application Binary Interface............................ 60, 66, 74, XXXII ff.
Al Artificial Intelligenceo o i 106
ALS Approximate Logic Synthesis............... ... 19
ALU Arithmetic LogicUnit............... oL 25,32, 62, XXXIV
ANN Artificial Neural Network. oo 22
API Application Programming Interface, 8
APU Accelerated Processing Unit.........................oooiiiil 25

ARP Arbitrary Reduced Precision?7, 34 1., 41, 48, 51, 53f., 581., 68, 74, 82, 91, 941,
99 ff., 104, 107 ff., 139 f., XXVII

ASIP Application-Specific Instruction-Set Processor 31,58
AxC Approximate Computing . 1, 6, 10, 13-25, 27, 29 ff., 33, 35, 37, 41, 48, 82, 139

CLA Carry-Lookahead Adder i 26
CNN Convolutional Neural Networkooooiiiii ... 16, 25, 29
CP Convergence Profile..................... 104,109, 112,114, 117,120, 122, 128
CSR Control and Status Register................. 51,53f.,61, 69,71, 109, XXIXf.
CV Computer Vision.............oooiiiiiiiiiiiiiii i 106, 139, 141
DBT Dynamic Binary Translationooo oot 62 ff.
DFS Dynamic Frequency Scaling ...t 18
DNN Deep Neural Network 29
DRAM Dynamic Random-Access Memory ..., 25
DSE Design Space Exploration.............. 57f.,63,72f.,81,86,94,97,139, 141
DVFS Dynamic Voltage and Frequency Scaling........................... 18, 30
DVS Dynamic Voltage Scaling. ...t 18, 30
EA Evolutionary Algorithm 19

List of Abbreviations

EDA Electronic Design Automation 88,101
EH Evolvable Hardware 19
EU Execution Unit...... ... i e e 25
FMA Fused Multiplication-Addition............................ 31f., 49,53, 140
FP Floating-Point.................... 1, 6 1f., 10, 14, 24, 28-38, 40-48, 51-55, 57 1.,

60 ff., 65-69, 71-75, 77 ff., 82 ff., 87-90, 93£., 97, 99 ff., 104, 106-109, 114, 116, 118,
128 f., 135, 139 ff., XXIX-XXXIV

FPGA Field-Programmable Gate Array 18, 22, 29, 35, 58, 141

FPU Floating-Point Unit 10, 25, 28f., 31f., 41, 49, 51-55, 58, 60-63, 66, 69,
71f%.,74¢., 77 ff., 81-86, 88-92, 94-102, 106, 108 ff., 112f., 117, 1281, 131£., 134f,,
139 ff., XXIX, XXXII

FSM Finite-State Machine............ ... 41,51f.,55
FU Functional Unit............ 23,25, 62, XXIX, XXXIV
FxP Fixed-Point. 27 ff., 35
GPGPU General-Purpose Graphics Processing Unit.......................... 24
GPP General-Purpose Processor...................... 31,37,42,58, 60, XXVIII £.
GPR General-Purpose Registerl 60 f., XXIXf.
GPU Graphics Processing Unit.....................ooooiiiia. 58, 141
HAL Hardware Abstraction Layer.........................ooiiiiiat. 86, 106
HPC High-Performance Computing......................oooooae. 36 f., XXVIII
IC Integrated Circuit........... 2f.
IoT Internetof Things i 3,6
IR Intermediate Representation oL 63 ff.

ISA Instruction Set Architecture .. 14, 23, 25, 30, 35,47, 51, 53 f., 57-62, 64, 66, 69,
71,74, 141, XXVI-XXX, XXXII ff.

LNS Logarithmic Number System 29
LSU Load-Store Unit. ... 25, 32
ML Machine Learning ... 3,6,16,29, 139, 141
MRE Mean Relative Erroro 72
MSE Mean Squared Error ... 72
MXP Mixed-Precisiono.oiuii i 8f.

List of Abbreviations

NN Neural Network e 22,139, 141
NoC Network on Chip........ ..o 24
NPU Neural Processing Unit. ..., 22
NTC Near-threshold Computing.........................o. i, 19
NVMs Non-Volatile Memories.oouiiiiiiiii i 5
OS Operating System..............oooi i 8f.,70
PC Program Counter...............oooiiiiiiiiiiiiiiiiiiii 54,63, 65,71
PVP Precision Variation Profile........................... 104, 112,117,120, 123

QEMU Quick EMUlator . 10, 57f., 60, 62-72, 74 ff., 78 ., 82, 88, 90, 94, 96, 98, 101,
107 ff., 139, 141, XXXVII, XXXIX

QoR Quality of Result. 8f.,, 16, 181, 21f£., 24f., 28, 34£., 38, 41, 51, 55, 58, 71 1., 75,
77 ff., 82,87,90f.,93-98, 100 ., 107, 139, 141

RCA Ripple-Carry Adder..............ooiiiiii i 26
SA Selective Approximation 20, 40, 50, 52, 54, 57, 67 ff., 71, 90
SIMD Single Instruction, Multiple Data...................................... 26

SoA State of the Art. .4, 8ff., 13f.,, 16, 18ff., 22, 24,26, 28, 30, 32, 34-38, 41, 45, 47,
58, 60, 63, 79, 82,94 1., 101, 109, 139 ff., XXIX

SoC SystemonChip....................ooooiiaL 14, 22, 30, 59, 62, 109, XXVII
SRAM Static Random-Access Memory. ..., 25
SSIM Structural Similarity Index Measure.......................... ... 28,72
SSS Solid-State Storage 25
TB Translation Blocko 63 ff.
TC Transprecision Computing 1,6-10,13f., 31, 33, 35ff., 41, 48, 82, 139, 141
TCG Tiny Code Generatorot 63-67
TPU Tensor Processing Unit................ ..., 29
UNUM Universal Number ... i 29, 35

VPT Variable Precision in Time .. 7, 10, 35, 37,49, 54 f., 59, 81 ff., 85f., 89, 91, 101,
104, 106, 108 ff., 112-124, 126, 128-132, 134 ff., 139 ff., XXVII

VTO Variable Type Optimization...... 7,341f., 58,94 1., 100f., 107,129, 131, 135
WLO Word-Length Optimization......................ooooiiiiae 28

XX

Mind Map of the State of the Art

This is the state of the art summarized on a mind map.

XXII

A.1. Mind Map: State of the Art

A.1 Mind Map: State of the Art

This is the state of the art summarized on a mind map.

XXIII

Computing Paradigms

[[([/ |] |]

(omputlngj (Compu(lngj (Sok Cnmpu(lngj (Quanmm Compu(lngj Non-boolean In Memory Computing Neuromorphic Normally off Computing
Computing Computing Computing

yramicvatager)| (i aynivess) (svohaerdwar) (Foncinaunks 709) =
(DVFS)

Integer and Fixed-Point tolic A f Kernels
FUs execution

Processing Elements.

Programming language
constructs / libraries

Software / Algorithm

Incremental
Algorithm

() () (o)

(i) (s (s (s

Fuzzy Memoization

Standard IEEE-754
Formats

FP error analysis and
correction

Register Data Lifetime Bit error rate (BER) Peak signal i Mean / Normalizaed
(s arater)) (o) ekt Erent e

-Errnr Magnitude

KIT Germany + ITU NVIDIA + HARVARD +
akistan 1M

| [[]

Uncertain<T>: afirst- AxBench IACT: A Software-Hardware Evoapproxsb: [[vonpprnxl.lh) TensorFlow QEMU (SoftFloat) Approximate Support for Higher
oorder type for uncertain Benchmark Framework for Library of {q Integer Units used Arbitrary Precisions in
data Understanding the Scope of approximate adders Layers in CPU-based Hardware

Approximate Computing

and multipliers for
circuit design

The RISC-V Instruction Set
Architecture

This appendix presents the RISC-V Instruction Set Archi-
tecture in detail.

XXVI

B.1. Introduction

B.1 Introduction

RISC-V (pronounced “risk-five”) is an ISA that was originally designed to sup-
port computer architecture research and education. It is now also becoming a
standard free and open architecture for industry implementations [138,142,143].

N 4

RISC-V/"

We chose RISC-V in our implementations for many reasons, of which we cite
the following:

o A completely open ISA that is freely available to academia and industry.

o A real ISA suitable for direct native hardware implementation, not just simula-
tion or binary translation.

e Support for the revised 2008 IEEE-754 floating-point standard [28].
e An ISA that simplifies experiments with new architecture designs.

e Well supported and actively maintained HW /SW tools thanks to the open-source
HW/SW community.

e Availability of many open-source SoC and processors’ implementations such as
Rocket Chip [144], Pulpino [145], Pulpissimo [146], Ariane / CVA6 [115,147],
Ibex [148], lowRISC Chip [149], and many others.

Although all the ideas explained in this manuscript, such as Arbitrary Re-
duced Precision and Variable Precision in Time, were only implemented on
RISC-V for pragmatic and practical reasons, they are also applicable to other ar-
chitectures.

B.2 Modularity through extensions

the RISC-V ISA is a modular architecture since it enables designers to support
several features in a modular and parametrized way. There are two levels of spec-
ifications that describe the different components of the standard: the user-level
specification [138] and the priviliged specification [142]. These specifications can
be implemented partly or entirely by designers and microprocessor implementers
depending on the target applications.

XXVII

Appendix B. The RISC-V Instruction Set Architecture

RISC-V defines a set of basic assembly instructions called the base Integer in-
struction set (I). The base integer ISA is very similar to the early RISC processors;
it contains basic computational assembly instructions such as addition, subtrac-
tion, basic bit manipulation, and others. Thus, all RISC-V systems should support
this base. However, the base is carefully restricted to a minimal set of instructions
sufficient to provide a reasonable target for compilers, assemblers, linkers, and
operating systems, providing a convenient ISA and software toolchain “skeleton”
around which more customized processor ISAs can be built.

Base Description
RV321 32-bit Base Integer instruction set.
RV32E A lighter version of RV32I designed for embedded systems.
RV641 64-bit Base Integer instruction set
RV128I 128-bit Base Integer instruction set

Standard extensions

M Integer multiplication and division
A Atomic instructions
F Single-precision Floating-Point (FLEN = 32)
D Double-precision Floating-Point (FLEN = 64)
Q Quad-precision Floating-Point (FLEN = 128)
C Compressed instructions
Counters Performance counters
L Decimal Floating-Point
B Bit manipulation
] Dynamically translated languages
T Transactional memory
P Packed-SIMD instructions
Vv Vector operations
Zicsr Control and Status Register Instructions
Ztso Total store ordering

Table B.1: Frequently used RISC-V extensions and their descriptions.

The standard also defines other sets of instructions bundled as extentions. Ta-
ble B.1 presents some of the frequently used standard extensions. The standard
[138,142] defines these extensions, instructions, corresponding encoding, behav-
ior, and potential side effects.

This design modularity was inherited from the current agile software trends,
where modularity is key to rapid prototyping and product delivery. This aspect
made the ISA suitable for many uses, from massively parallel data-centric High-

XXVIIL

B.3. Floating-Point in RISC-V

Performance Computing, through General-Purpose Processors, to mobile / em-
bedded edge computing.

B.2.1 ISA naming

an ISA configuration is referred to by a string that starts with the base and contains
the letters of its supported extensions. For example, the architecture RV64IMAFD is
based on the RV641I and supports the extensions M, A, F, and D. The number 64 in
RV64I stands for the bit-width of the internal general-purpose and CSR registers
of the CPU. As a second example, the architecture RV32IMAFC contains 32-bit wide
registers and supports the standard extensions M, A, F, and compressed 16-bit
instructions (C).

Since we target General-Purpose Processors, we will use by default the archi-
tecture RV64IMAFD in all our hardware and software experiments unless otherwise
stated. This architecture is also referred to as RV64G, where the “G” stands for
general-purpose. [138]

B.2.2 GPRs and CSRs

the base integer instructions are supported through a set of 32 General-Purpose
Registers (GPRs) named x¢, %1, ...,%s;. These registers are used to handle the
data fed into and produced by the internal processor’s FUs. The width of these
registers depends on the base integer instruction set and is denoted XLEN € {32, 64, 128}.

Supporting other extensions can affect the number of GPR (and CSR) registers
sometimes. For example, the RV32E base integer instruction set (E for embedded)
only provides the registers xo, x4, . . ., X15, Wwhereas supporting the single-precision
FP extension (F) adds 32 more registers f,, £, . . ., £3; dedicated for Floating-Point
computations within the FPU.

B.3 Floating-Point in RISC-V

In this section, we will present the ISA aspects related to FP arithmetic in RISC-
V. Namely, we will briefly present which registers and instructions are added to
the base ISA when the FI’ extensions are handled.

B.3.1 FP extensions

Until now, RISC-V supports three FP” extensions F, D, and Q as depicted in table
B.1. Since RISC-V is designed with extensibility and scalability in mind, other non-
standard extensions in the State of the Art also support H, an extension dedicated
for 16-bit half-precision FP arithmetic [100,101,114].

XXIX

Appendix B. The RISC-V Instruction Set Architecture

B.3.2 FP General-Purpose Registers

When a Floating-Point extension is supported, a total of 32 GPRs, named f, f4, ..., f3;
are added. Their width FLEN is the total bit-width of the widest F’ format sup-
ported in the system.

For instance, the typical RV64IMAFD architecture supporting 32-bit single-precision
and 64-bit double-precision contains 32 base integer registers x¢, x4, . . . , x3; which
are 64-bit wide, since XLEN equals 64. It also contains an additional 32 registers
fo, %4, ..., f3; which are 64-bit wide, since FLEN = max(32,64) = 64.

The FP formats whose bit-width is less than FLEN are encapsulated through a
mechanism called NaN boxing [138]. In the previous example, this mechanism
extends the narrower formats with leading binary ones to fit them in the 64-bit
registers.

B.3.3 FP Control and Status Register

Rounding Mode | Mnemonic Meaning
000 RNE Round to Nearest, ties to Even
001 RTZ Round towards Zero
010 RDN Round Down (towards —oc)
011 RUP Round Up (towards +o0)
100 RMM Round to Nearest, ties to Max Magnitude
101 Reserved for future use.
110 Reserved for future use.
111 DYN In instruction’s rm field, selects dynamic rounding mode;
In Rounding Mode register, reserved.

Table B.2: Rounding mode encoding [138].

31 87 5 4 3 2 1 0
Reserved Rounding Mode (frm) | Accrued Exceptions (fflags)
NV | DZ | OF | UF NX
24 3 1 1 1 1 1

Table B.3: Floating-point control and status register £csr [138].

In addition to the GPRs, a CSR named fcsr is also added by FP extensions.
Table B.3 depicts its layout.

Bits 31-8 are reserved for other standard extensions.

Bits 7-5 define the default rounding mode frm. Table B.2 depicts five supported
rounding modes and their corresponding frm values. These are compatible with
the IEEE 2008-754 standard’s rounding modes, as explained in subsection 3.2.4.

XXX

B.3. Floating-Point in RISC-V

RISC-V implements two flavors of the round-to-nearest rounding mode. There
is a 6 rounding mode called dynamic rounding mode (DYN). If this mode is
used at run-time, the rounding mode of executed FP instructions is encoded in
the instruction’s binary code itself. Otherwise, the rounding mode encoded in
the frm field is used.

The remaining bits constitute the exception flags that arise after each executed
FP instruction. A description of each flag is depicted in Table B.4 [138].

Flag | Flag Meaning Flag Description

NV | Invalid Operation | Signals an invalid FP operation (e.g., multiplying co and zero).

DZ | Divide by Zero Indicates an operation involving a division by zero.

OF | Overflow Indicates if the result cannot be represented as a finite value in the current FP format.
UF | Underflow Indicates if the result is too small to be represented in the current FP format.

NX | Inexact Set if the result cannot be represented precisely in the current FP format.

Table B.4: Accrued exception flag encoding and description.

B.3.4 FP formats

To indicate the FP format of each assembly instruction, a field called fmt is em-
bedded in the binary code of the instruction. This field is 2-bit wide, meaning
that RISC-V is technically able to support up to four FP formats. These formats
are listed in table B.5 [138, Section 11.6].

FP format | Full name Format mnemonic | fmt field | Supported in which extensions
binary32 | 32-bit single-precision S 00 F,D,Q

binary64 | 64-bit double-precision D 01 D, Q

binary16 | 16-bit half-precision H 10 -

binary128 | 128-bit quad-precision Q 11 Q

! Non-standard extension in the SoA [100,101,114].
Table B.5: Format field encoding.

B.3.5 FP instructions

There are five types of instructions that are added when supporting an FI> exten-
sion:

e [Load instructions: FLW, FLD, FLQ
e Store instructions: FSW, FSD, FSQ

e Computational instructions: FADD.x, FSUB.x, FMUL.x, FDIV.x, FMADD.x, FMSUB.x,
FNMADD.x, FNMSUB.x, FSQRT.x, FMIN-MAX.x wherex € {S, D, Q}.

In our case, all computational instructions are approximable except FMIN-MAX.

XXXI

Appendix B. The RISC-V Instruction Set Architecture

e Conversion and Move instructions: instructions that move or convert numbers
from a source FP format to another, or from FP to integer formats and vice versa.

e Comparison instructions: FCMP.x where x € {S, D, Q}.

e Classify instructions: examine the value of a FP’ register and return a 10-bit mask
defining the type of the number, e.g., normal/denormal, finite/infinite/NaN,
positive/negative, zero/non-zero.

All these instructions and their specifications are described in detail in the of-
ficial RISC-V user-level specification [138].

B.3.6 FP emulation when an FPU is absent

Even when an ISA does not support hardware-level IEEE 2008-754 Floating-Point
arithmetic, programmers can still use data types such as float, double,and long
double and FP computations. However, at that moment, it is necessary to include
an FP emulation library that emulates FP’ operations in software using integer
arithmetic. In the case of RISC-V, emulation is performed using SoftFloat [151], a
library written by J. Hauser, one of the co-authors of the RISC-V privileged speci-
fication [142].

For example, consider the RV64IMAFD architecture. The architecture name means
thatan FPU is available in the system with support for both binary32 and binary64
standard FP formats. Meaning that software instructions involving operations
on float and double variables will be performed in hardware. However, long
double variables will be associated with the binary128 IEEE standard format.
Since the RV64IMAFD does not support this type in hardware, operations on such
variables will be emulated in software based on the SoftFloat library shipped with
the standard C library and the GCC Toolchain.

B.4 Application Binary Interfaces

B.4.1 Definition

The choice of the architecture also affects the whole toolchain; any modification
on the micro-architectural level should be reflected in the parameters passed to
the compiler/linker/profiler to guarantee HW/SW compatibility [150].

The technical term that refers to this aspect is ABI. It is an interface that defines
how high-level software communicates with the lower levels of the stack. For
example, an ABI can be assimilated to a protocol or a contract bonding HW to
SW by defining how binary code is generated from C code, how arguments are
passed to functions, where functions’ return values are stored, and how memory
is organized.

The ISA architecture and the ABI should both be specified to the GCC compiler
using the following arguments, respectively [150]:

XXXII

B.4. Application Binary Interfaces

e -march=<ISA>selects the architecture to target. This controls which instructions
and registers are available for the compiler to use.

e -mabi=<ABI>selects the ABIto target. This controls the calling convention (which
arguments are passed in which registers) and data layout in memory:.

B.4.2 Supported ABIs

RISC-V supports a total of 8 ABIs. For RV64-based architectures, we can cite the
following:

e 1p64 : in this case, no FP arguments are passed in registers.

e 1p64f : 32-bit FP arguments (i.e., float arguments) are passed in 32-bit reg-
isters. This ABI requires support for the F extension which provides the FP
registers.

e 1p64d : 64-bit and shorter FP arguments (i.e., double and float arguments)
are passed in 64-bit FI’ registers. This ABI requires support for the D extension
which provides the FP registers.

e 1p64q: 128-bit and shorter FP arguments (i.e., long double, double and float
arguments) are passed in 128-bit FP registers. This ABI requires support for the
Q extension which provides the FP registers.

B.4.3 ISA Vs. ABI

please note that the ISA is decoupled from the ABI. In fact, the ISA determines
which instructions are supported in hardware and which registers are provided,
whereas the ABI defines how functions get their input arguments and deliver their
outputs.

For example, it is legal to have a system with the architecture RV64IMAFD, where
Floating-Point arguments are passed through integer registers x, — x3; instead of
the dedicated FP ones f, — f3;. Of course, that would require additional move
operations to transport FP operands from integer registers to FI’ to perform com-
putations, which may affect efficiency negatively, but it is legal.

All these ABIs require support for the RV64I base integer instruction set. There
are many other ABIs such as 1p64q, ilp32, ilp32f, ilp32d, and ilp32e. For
more details, please refer to [150,175].

For all our applications and experiments, we only deal with float and double
variables. So we use the LP64D ABI along with the RV64IMAFD ISA.

B.4.4 Endianness, instruction encoding, and memory layout

RISC-V is little-endian, i.e., the RISC-V instruction set decodes starting at the lowest-
addressed byte of the instruction. However, the specification leaves open the pos-
sibility of non-standard big-endian or bi-endian systems being implemented as
extensions [138].

The base instruction set has a fixed length of 32-bit naturally aligned instruc-
tions. However, when the C extension is supported, the system can also support

XXXHI

Appendix B. The RISC-V Instruction Set Architecture

variable-length instructions where each instruction could be any number of 16-
bit parcels in length [138]. This enables compact code size when dealing with
memory-constrained devices.

Type Size (Bytes) | Alignment (Bytes)
float 4 4
double 8 8
long double 16 16
float _Complex 8 4
double _Complex 16 8
long double _Complex 32 16

Table B.6: Memory size and layout for some commonly-used FP C/C++ data types.

B.4.5 Data memory layout

Data size and memory layout depend on the ABI. Table B.6 depicts the memory
layout of the frequently used C/C++ Floating-Point data types in 1p64-based
ABIs, and 1p64d in particular [175].

B.5 Custom instructions for domain-specific applica-
tions

RISC-V has been designed to support extensive customization and specializa-
tion. As one gets further from the base ISA, the extensions become more and more
domain-specific. For example, the B extension is dedicated to the acceleration of
bit manipulation operations mostly used in security applications. Similarly, the
J (still work in progress and not yet standardized) will be intended to acceler-
ate languages that are implemented via dynamic translation, including Java and
Javascript. Such languages can benefit from additional ISA support for dynamic
checks and garbage collection [138].

With RISC-V being an open-source specification, computer designers are free
to create and support their own custom instructions while reusing the HW/SW
stack already put in place by the community. For example, authors of [26,29]
have designed and implemented ISA extensions that support approximate integer
arithmetic and variable high-precision FP computations (C.f., subsection §5)

XXXIV

B.6. Performance Vs. hardware-level overhead

B.6 Performance Vs. hardware-level overhead

Computer architects should decide which extensions to support depending
on the intended application domain. This choice brings significant performance
boosts, but it affects both the software toolchain and the processors” hardware.
For example, if the M extension is supported in a given RISC-V processor, it means
that its underlying micro-architecture contains a hardware integer multiplier and
divider. Otherwise, multiplication operations will be emulated using the base
integer I instructions. This is technically feasible since multiplications can be em-
ulated with a series of additions, although they are inefficient in terms of perfor-
mance (execution time and throughput). On the other hand, supporting exten-
sions means adding hardware components to the processor (ALUs, FUs, decoder
logic, etc.), leading to more circuit area.

XXXV

Contributions

C.1 Contributions to AxQEMU

AxQEMU has been open-sourced and is accessible at the link below. The most
up-to-date branch is v5.0-variable-prec-in-time

https://github.com/noureddine-as/axqemu

Figure C.1 depicts a diff statistics between the original QEMU tool (the master
branch of the same repository) and the v5.0-variable-prec-in-time branch.
This result can be obtained by executing the following command:

git diff --stat master ':(exclude).gitignore' ':(exclude)*.MD' \
': (exclude)contributions.txt' \
": (exclude)*_BCKP' \
": (exclude) *.png'

Makefile.target
accel/tcg/translator.c
configure
fpu/axspike.c
fpu/flexfloat.c
fpu/flexfloat_gvsoc.c
hw/riscv/sifive_e.c

t.c
hw/riscv/sifive_u.c
include/fpu/axspike.h
include/fpu/flexfloat.h
include/fpu/flexfloat_config.h
include/hw/riscv/sifive_e.h
include/hw/riscv/sifive_u.h
include/gemu-common.h
linux-user/main.c
qemu-options.hx
scripts/analyze-inclusions
target/riscv/cpu_bits.h
target/riscv/csr.c 174
target/riscv/fpu_helper.c 676
target/riscv/helper.h 42
target/riscv/insn_trans/trans_rvd.inc.c | 60
target/riscv/insn_trans/trans_rvf.inc.c | 54
target/riscv/translate.c | 2
vl.c | 76
26 files changed, 3846 insertions(+), 114 deletions(-)

Figure C.1: Contributions to AxQEMUL

XXXVII

https://github.com/noureddine-as/axqemu

Appendix C. Contributions

Listing C.1: Full list of AxQEMU'’s arguments

$ gemu-riscv64 --help
usage: gemu-riscv64 [options] program [arguments...]
Linux CPU emulator (compiled for riscv64 emulation)

Options and associated environment variables:

Argument Env-variable Description
-h print this help
-help
-g port QEMU_GDB wait gdb connection to 'port'
-L path QEMU_LD_PREFIX set the elf
interpreter prefix to 'path'
-s size QEMU_STACK_SIZE set the stack size to 'size' bytes
-cpu model QEMU_CPU select CPU (-cpu help for list)
-E var=value QEMU_SET_ENV sets targets environment
variable (see below)
-U var QEMU_UNSET_ENV unsets targets environment variable (see below)
-0 argv0 QEMU_ARGVO forces target process
argv[0] to be 'argvO'
-r uname QEMU_UNAME set gemu uname release string to 'uname'
-B address QEMU_GUEST_BASE set guest_base address to 'address'
-R size QEMU_RESERVED_VA reserve 'size'
bytes for guest virtual address space
-d item[,...] QEMU_LOG enable logging of

specified items (use '-d help' for a
list of items)

-dfilter rangel[,...] QEMU_DFILTER filter logging based on address range
-D logfile QEMU_LOG_FILENAME write logs to '

logfile' (default stderr)
-p pagesize QEMU_PAGESIZE set the host

page size to 'pagesize'
-singlestep QEMU_SINGLESTEP run in singlestep mode
-strace QEMU_STRACE log system calls
-seed QEMU_RAND_SEED Seed for pseudo-random number generator
-trace QEMU_TRACE [[enable=]<

pattern>] [,events=<file>] [,file=<file>]
-version QEMU_VERSION display version information

and exit
-expbitsd <EXP_BITS_d> The FPU exponent bit-width

for the D extension. Default is 11
-fracbitsd <FRAC_BITS_d> The FPU fraction bit-width

for the D extension. Default is 52
-expbitsf <EXP_BITS_f> The FPU exponent bit-width

for the F extension. Default is 8
-fracbitsf <FRAC_BITS_f> The FPU fraction bit-width

for the F extension. Default is 23
-non_approx_region_start <GADDR> The Start address of a non-approximable

(.precise) region.
-non_approx_region_size <SIZE> The Size (in Bytes) of a non-approximable

(.precise) region.

XXXVIII

C.1. Contributions to AXQEMU

Listing C.1 below depicts the full list of AXQEMU’s arguments along with their
description.
Example of AXQEMU usage in full system emulation mode.

Listing C.2: Compiling an application and emulation in Full System Emulation mode.

$ # Cross-Compilation using RISC-V Bare-metal GCC (Newlib Standard Library)
$ riscv64-unknown-elf-gcc -march=rv64imafd -mabi=1p64d -static \
application.c -o application.elf
$ # Simulation using AxQEMU
$ gemu-system-riscv64 --expbitsd 9 --fracbitsd 40 \
--expbitsf 6 --fracbitsf 10 \
-non_approx_region_start 0x1d238 \
-non_approx_region_size 0x428 \
application.elf

XXXIX

Error

10—10
10—11
10—12

10—13

Appendix to Chapter 6

\ //
\ e 136
l/
\\ Pt ! 132
\'\ /
N - Jo8
AN 2 24
A,
, ——-\k\ 120
/
/
/ ‘Tolerance Thréshold N{l)
e N 112
/,’/ \\\\\
//-__ { \\\\\ 18
/
./ N 4
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iterations
— Reference |[z(F+1) —2(®)|| — VPT |jz(k+D) — z(*)|| - VPT precision

Figure D.1: The convergence profile of the VPT-enabled Gauss-Seidel.

XLI

Precision

Appendix D. Appendix to Chapter 6

0 i : :(“ : N L’:] : : :1 rﬁﬁﬁ» : g 52

10 E' | \ v DtdglldLlUIl OT tll(,‘ conver ‘t’)Ull (&4 [)1 o11ie” : [:
= 10—1._ — = - et ..;"ﬁﬁ:ﬁl 148
fd—t 10—2 ._ .lﬁ.ﬁ.ﬁﬁl 4 44
%3 10—3 r _ﬁﬁﬁ;;.. 140
104 . .
107 R 136
o070 i 10 2
= 106 r S 132 S
o 1077F £ {28 &
Qg 108 r :-ﬁ,.,.,'. \ 424 5::

-9
o 1077F S 120
2 10710k i
5 : S]
%D 10—11 r : 16

_12f N]
% 107" 4 I Ty oStagnationi of the precision TR 12
S 1071 gmmte - H “ : - H -_-.\Yf*-_-u.i.. 18

10—15 i A 4
0 100 200 300 400 500 600 700 800 900 1000
Iterations
-0 1 = 2

Figure D.2: Convergence profiles (left axis, continuous lines) and their corresponding
precision variation profiles (right axis, dotted lines) for three inputs (Matrix IDs 0, 1,

and 2). The convergence profile here is in terms of the residual error metric (||b*+D —

Create a FP format with E = 11 (same as binary64) and M_p = 4O
Choose Round to Nearest, tie to even (ne)
@rnd = float<40, -1022, ne>;

Declare a wvariable u, which is cast from a real wvalue U
u = rnd(U);

Compute expression with 40 bits of precision
square rnd= u * u;

Unrolled summation of squares, loops don't exist in Gappa
nsquare_1 rnd= square;

nsquare_2 rnd= nsquare_1 + square;

nsquare_3 rnd= nsquare_2 + square;

nsquare_49 rnd= nsquare_48 + square;
nsquare_50 rnd= nsquare_49 + square;

sqroot rnd= sqrt(nsquare);
norm?2 = rnd(sqroot) ;

{

Hypotheses ------cccoccmmmmm oo

Given that n = 50, and U <s <n [0, 2°-40]
n=5 /N Udin [0, 1b-40]

->

The property to be proven ---------------—-------
rnd(norm2) in 7

1

Output of Gappa ---------------o oo

Results:
€V Aat+AN A0 mA~lrmAavrmdY =~ N 40949 10NN10000R 74 T2 NA21N0071N7C100°2°2~ 19

Toward Floating-Point Run-time Variable
Precision in CPU-based Architectures

Résumeé

De nos jours, les unités de calcul a virgule flottante (FPU) a précision standard
consomment une partie importante des ressources énergétiques dans les architec-
tures a base de processeurs. Beaucoup d’applications modernes ont une capacité
inhérente a tolérer une perte de précision entrainant peu ou pas d’impact sur les
résultats en sortie. Pour de telles applications, les formats de virgule flottante (FP)
standardisés IEEE sont souvent surdimensionnés. Cette caractéristique a permis
a un nouveau paradigme de conception d’émerger ces dernieres années: le Calcul
en Transprécision (TC).

Cette thése propose plusieurs contributions qui pallient certaines limitations de I'état
de lart. Tout d’abord, nous proposons une approche minimalement intrusive qui
exploite les approximations des calculs en FP pour la réduction de puissance, du
temps d’exécution et de I'énergie consommée. Cette approche introduit des ap-
proximations au niveau de I'exécution/interprétation des instructions. Cela permet
de traiter tous les types de binaires exécutables (applications bare-metal, applica-
tions utilisateur single-/multi-threads, OS/RTOS, etc.). La méthodologie prend en
charge la précision réduite arbitraire (ARP) (formats de FP a précision réduite non
standard) ainsi que la précision variable dans le temps (possibilité pour les appli-
cations d’ajuster leur précision opérationnelle au moment de I'exécution). Par la
suite, une implémentation logicielle a été développée. Elle simule I'impact de ces
calculs approchés sur la qualité du résultat (QoR) des applications. Enfin, une FPU
matérielle multiprécision a été concue en technologie FD-SOI ASIC de 28 nm et qui
permet d’obtenir des gains d’efficacité énergétique importants.

La méthodologie proposée et ses implémentations ont été évaluées conjointement
en logiciel et en matériel sur un ensemble d’applications de référence, avec un focus
sur des méthodes itératives. Les expériences montrent comment des ajustements
trés fins de la précision peuvent étre réalisés grace a 'ARP et a la VPT, sans perte
de qualité du résultat, pour générer des économies importantes en termes d’énergie
consommée lors du calcul. Avec un niveau de perte de qualité acceptable sur les
résultats en sortie, I'efficacité énergétique est encore accrue.

MOtS'CléS = Calcul approché, Calcul en Transprecision, optimisation de la
largeur des bits, Précision Réduite Arbitraire (ARP), Précision Variable dans le
Temps (VPT), RISC-V

Abstract

Full-precision Floating-Point Units (FPUs) can be a source of extensive hardware
overhead in general-purpose and application-specific processors nowadays. As
several modern applications feature an inherent ability to tolerate precision loss,
a new computing paradigm has emerged: Transprecision Computing (TC). For such
applications, the standard IEEE Floating-Point (FP) formats are over-designed.
This thesis proposes contributions that alleviate some State-of-the-Art limitations.
First, we propose a minimally-intrusive approach that introduces approximations at
the instruction execution/interpretation level, allowing the approximation of virtually
all kinds of executable binaries (bare-metal applications, single-/multi-threaded user
applications, OS/RTOS, etc.). The methodology supports Arbitrary Reduced Pre-
cision (ARP) (i.e., non-standard reduced-precision FP formats) as well as Variable
Precision in Time (i.e., the ability for applications to tune their operating precision
at run-time). Subsequently, a software simulator called AXQEMU was developed to
simulate the impact of such approximations on applications’ Quality of Result (QoR).
Finally, a 28nm FD-SOI ASIC multi-precision FPU was designed to support ARP and
VPT in hardware hence achieving real-world energy efficiency gains.

The proposed methodology and its implementations were evaluated against a set
of error-resilient benchmarks with a particular emphasis on iterative methods. The
experiments show how fine-grained energy/accuracy trade-offs can be made thanks
to ARP and VPT, leading to drastic computational energy savings compared to tra-
ditional techniques while preserving the application’s QoR. With an acceptable level
of quality loss on the output results, energy efficiency is further increased.

Keywords + Approximate Computing (AC), Transprecision Computing (TC),
bit-width optimization, Arbitrary Reduced Precision (ARP), Varible Precision in Time
(VPT), RISC-V

	Acknowledgments
	Table of Contents
	Introduction
	Context and Motivations
	The road to emerging computing paradigms
	From Approximate Computing to Transprecision Computing: toward variable FP precision
	Guiding Principles for Transprecision Computing

	Thesis Outline

	State of the Art on Floating-Point Approximate Computing
	Introduction
	Approximate Computing Techniques: a Cross-layer overview
	Key Comparison Points
	Metrics
	Circuit level AxC
	Compiler- and Language-level AxC
	Algorithm- and application-level AxC
	Architecture level AxC
	Approximate Caches
	Approximate Networks
	Approximate Memory and Storage
	Functional Unitmagentas
	Integer Arithmetic Units
	FxP Arithmetic Units
	FP Arithmetic Units
	Alternative number representations
	ISA and cross-layer AxC approaches

	From AxC to Transprecision Computing: Toward Variable Precision Floating-Point
	The cost of Floating-Point Arithmetic
	The Need for Variable and Reduced Precision Floating-Point
	Algorithm design and stability analysis:
	Variable Type Optimization (VTO)
	Arbitrary Reduced Precision (ARP)
	Variable Precision in Time (VPT):

	Summary comparison of Transprecision Computing SoA techniques

	Conclusion

	A Non-intrusive Approach for Floating-Point Approximation
	Introduction
	Background: The Floating-Point (FP) model
	Definitions
	FP numbers through a simple case
	Standard formats Vs. arbitrary formats
	Rounding and extension

	Presentation of the Approach
	Formalization of the Approach
	Definitions & Notations
	Approach formalization
	The case of iterative operators
	Selective Approximation (SA)
	Problem statement

	Conclusion

	AxQEMU: a Non-intrusive Floating-Point Approximation Simulator
	Introduction
	Background
	The RISC-V Instruction Set Architecture
	Target ISA
	Target ABI
	Floating-Point in RISC-V
	Performance Vs. hardware-level overhead

	The QEMU Binary Translator
	Overview of QEMU's architecture
	QEMU's Intermediate Representation
	QEMU's Dynamic Binary Translation process

	AxQEMU: A Floating-Point Approximation-aware Emulator
	Approximate Floating-Point operations in AxQEMU
	Selective Approximation
	Static SA based on memory partitioning
	Dynamic SA at run-time based CSR operations

	Key engineering decisions
	AxQEMU usage example
	Supporting other ISAs in AxQEMU

	Use Case 1: Direct Application to Fixed-Precision Applications
	Design Space Exploration flow
	Simulation phase
	QoR analysis phase

	Evaluation benchmarks and QoR metrics
	Target architecture
	Results and Discussion
	Dynamic instructions' breakdown
	Simulation time
	QoR results

	Challenges & Limitations
	Challenges
	Limitations

	Conclusion

	Approximate-aware Multi-precision FPU
	Introduction
	Proposed Architecture
	VPT Support
	Custom VPT Registers
	VPT Software Support

	HW Customization
	Synthesis and Evaluation Flow
	Synthesis conditions
	HW-level evaluation flow

	Use Case 1: HW-level Evaluation of the Fixed-Precision Jmeint
	Simulation context
	Precision-QoR trade-offs (revisited)
	Generated HW configurations
	Power / Execution time / Energy results

	Use Case 2: Application to Mixed-Precision applications
	Background: Mixed-precision DSE flow
	Problem statement
	The PROMISE tool
	Evaluation and Discussion
	Phase (1)
	Phase (2)
	Simulation
	QoR normalization
	Phase (2) results
	Phase (2) analysis

	Phase (3)
	HW evaluation methodology
	Phase (3) results
	Phase (3) analysis

	Conclusion

	Variable Precision in Time for Stationary Iterative Methods
	Introduction
	Related Works
	FP Variable Type Optimization (VTO)
	Non-standard/Arbitrary precision support
	Mixed-precision for Linear Algebra
	Arbitrary Reduced Precision
	Variable Precision in Time

	Motivation
	FP computation usage in Jacobi and Gauss-Seidel
	The limitation of Fixed Arbitrary Reduced Precision

	Iterative Methods: Mathematical Foundations
	Presentation of Jacobi and Gauss-Seidel iterative methods
	Convergence of Iterative Algorithms

	Implementation of VPT-enabled Iterative Methods
	The original algorithm
	The transformed algorithm
	Details of Threshold Policy (1): conservative thresholds
	Details of Threshold Policy (2): relaxed thresholds with stagnation detection
	Comparing different threshold policies

	Statistical Analysis
	Software implementation aspects
	Effects of VPT on the Convergence Profile and Precision Variation Profile
	Effects of VPT on the total number of iterations
	Effects of VPT on iterations' distribution

	Hardware-level Evaluation & Discussion
	Hardware synthesis conditions
	HW-level evaluation with one input and relaxed thresholds (nominal scenario)
	Evaluation methodology
	Discussion

	Worst case / Best case HW-level evaluation
	Circuit area results
	Limitations

	Conclusion

	Conclusion and Perspectives
	Thesis Contributions
	Future Perspectives
	Scientific Communications

	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Mind Map of the State of the Art
	Mind Map: State of the Art

	The RISC-V Instruction Set Architecture
	Introduction
	Modularity through extensions
	ISA naming
	GPRs and CSRs

	Floating-Point in RISC-V
	FP extensions
	FP General-Purpose Registermagentas
	FP Control and Status Register
	FP formats
	FP instructions
	FP emulation when an FPU is absent

	Application Binary Interfacemagentas
	Definition
	Supported ABIs
	ISA Vs. ABI
	Endianness, instruction encoding, and memory layout
	Data memory layout

	Custom instructions for domain-specific applications
	Performance Vs. hardware-level overhead

	Contributions
	Contributions to AxQEMU

	Appendix to Chapter 6

