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In the first part of the thesis, turbulent spots are investigated in four different shear flow cases: plane Couette, plane Poiseuille, Couette-Poiseuille and Waleffe flow. These flow scenarios present different symmetries and boundary conditions.

Performing the simulations in large domains, the in-plane turbulent fluctuations are shown to decay algebraically away from the spot. The emergence of two distinct large-scale flow topologies dictates the spatial decay exponent. The large-scale flow structure and consequently the decay exponent are found to depend only on the symmetry of the flow and is independent of the Re. Arguments from 2D kinematics and flow symmetry are used to justify theoretically these observations. In the second part, the transition from turbulent to laminar in plane Poiseuille flow is investigated. The transitional regime is found to portray two distinct behaviours: (a) pattern formation with alternate regions of laminar and turbulent (b) spatially localised independent turbulent bands. Adopting the methodology of an impulse response with ensemble averaging, evidence for a linear instability of the turbulent flow leading to pattern formation is presented. The evolution of the pattern with Re is documented with its geometric properties as well as global observables such as the friction factor. High-order statistics of turbulent fluctuations reveal a continuous link between featureless turbulence and the transitional regime. 

Résumé

La thèse se concentre sur la transition laminaire/turbulent dans des écoulements de cisaillement canoniques délimités par des parois lorsque l'écoulement laminar est linéairement stable. La transition sous-critique dans ces écoulements cisaillés est caractérisée par l'intermittence spatio-temporelle du régime transitoire. Cela se manifeste par une localisation spatiale de la turbulence qui s'auto-organise en structures cohérentes à grande échelle telles que des bouffées turbulentes et des bandes. À cet égard, ces structures sont étudiées dans différents écoulements de cisaillement délimités par des parois, à l'aide de simulations numériques haute fidélité. Le paramètre de contrôle principal pour les simulations est le nombre de Reynolds Re.

Dans la première partie de la thèse, les bouffées turbulentes sont étudiées dans quatre cas d'écoulements différents : écoulement de Couette plan, de Poiseuille plan, de Couette-Poiseuille et de Waleffe. En effectuant des simulations dans de grands domaines, on constate que les fluctuations turbulentes en vitesse dans le plan diminuent selon une loi de puissance à partir de l'origine. L'émergence de deux topologies d'écoulement à grande échelle distinctes déterminent l'exposant de décroissance spatiale. On constate que la structure de l'écoulement à grande échelle et, par conséquent, l'exposant de décroissance dépendent uniquement de la symétrie de l'écoulement et sont indépendants de Re. Des arguments cinématiques bidimensionnels et de symétrie sont utilisés pour justifier théoriquement ces observations. vii Dans la deuxième partie, la transition turbulent/laminaire dans un écoulement de Poiseuille plan est étudiée numériquement. On constate que le régime transitoire présente deux comportements distincts : (a) la formation de motifs avec des régions alternées de laminaire et de turbulent (b) des bandes turbulentes indépendantes localisées dans l'espace. En employant une méthodologie de réponse impulsionnelle avec moyenne d'ensemble, une instabilité linéaire de l'écoulement turbulent menant à la formation d'un motif est mise en évidence. L'évolution du motif avec Re est documentée via ses propriétés géométriques ainsi que des observables globaux tels que le coefficient de friction. Les statistiques d'ordre élevé des fluctuations turbulentes révèlent un lien continu entre la turbulence développée et le régime transitoire.

Afin de mieux comprendre la formation et l'évolution du motif avec Re, un modèle dynamique réduit de l'écoulement de cisaillement est introduit, issu de la littérature. Ce modèle, introduit par P. Manneville, présente une instabilité de Turing comme une extension du modèle de Waleffe. Il est adapté avec des paramètres appropriés et étendu avec l'introduction de l'advection non linéaire et du bruit stochastique. Le modèle capture la phénoménologie du régime transitoire de l'écoulement de Poiseuille plan. Il présente la formation de motifs avec multistabilité, la sélection de la longueur d'onde par le bruit et l'excitabilité à faible Re. Ces résultats sont extrapolés à partir du modèle et validés par rapport aux observations dans les simulations DNS.

Résumé étendu

L'objectif principal de cette thèse est d'étendre la compréhension de la transition de l'écoulement laminaire à l'écoulement turbulent. Dans cette optique, les cas d'écoulements de cisaillement canoniques délimités par des parois pour un fluide incompressible newtonien sans transfert de chaleur sont étudiés. Cette étude est menée á l'aide de simulations numériques intensives des équations de Navier-Stokes, dans de grands domaines étendus, avec le solveur pseudo-spectral Channelflow 2.0. Afin de mieux comprendre le phénomène de transition, un modèle analytique issu dans la littérature a été étendu et étudié.

Chapitre 1 : Ce premier chapitre présente l'état de l'art non exhaustif de la transition vers la turbulence dans les écoulements de cisaillement délimités par des parois, tels que l'écoulement de Couette plan (pCf), l'écoulement en conduite, l'écoulement de Poiseuille plan (pPf) et l'écoulement de Taylor-Couette (TCf). Le paramètre de contrôle principal est le nombre de Reynolds Re = U L/ν, défini à partir d'une échelle de vitesse caractéristique U , d'une échelle de longueur L et de la viscosité cinématique du fluide ν. Le concept d'instabilité hydrodynamique linéaire est introduit et des preuves historiques de la nature sous-critique de l'instabilité pour les cas d'écoulements de cisaillement délimités par des parois sont présentées.

Une caractéristique du régime transitoire est l'intermittence spatio-temporelle avec localisation spatiale de la turbulence et auto-organisation en motifs spécifiques.

Dans l'écoulement en conduite, cette localisation prend la forme de bouffées et de "slugs" en expansion [START_REF] Wygnanski | On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug[END_REF]. Dans le cas des écoulements de cisaillement plans tels que pCf, pPf et TCF, la localisation se manifeste par des spots turbulents [START_REF] Lundbladh | Direct simulation of turbulent spots in plane Couette flow[END_REF][START_REF] Carlson | A flow-visualization study of transition in plane Poiseuille flow[END_REF] et des bandes turbulentes obliques allongées [START_REF] Prigent | Long-wavelength modulation of turbulent shear flows[END_REF][START_REF] Tsukahara | Dns of turbulent channel flow at very low reynolds numbers[END_REF]. Ces structures sont souvent appelées structures cohérentes à grande échelle avec leur intérieur composé de stries et de structures turbulentes à plus ix petite échelle. Les écoulements de cisaillement plans présentent également une organisation des bandes turbulentes en motif périodique. On observe que la fraction turbulente diminue continuement avec Re jusqu'á à un écoulement laminaire [START_REF] Chantry | Universal continuous transition to turbulence in a planar shear flow[END_REF]. Ces structures localisées sont entourées d'un écoulement à grande échelle qui joue un rôle dans l'organisation spatiale du régime transitoire [START_REF] Duguet | Oblique Laminar-Turbulent Interfaces in Plane Shear Flows[END_REF][START_REF] Couliou | Large-scale flows in transitional plane Couette flow: A key ingredient of the spot growth mechanism[END_REF]. Cependant, la cause de la localisation spatiale et le rôle exact de l'écoulement á grande échelle dans l'organisation spatiale restent des questions ouvertes. La gamme inférieure en Re du régime transitoire présente une dynamique stochastique des structures turbulentes, incluant nucléation et désintégration [START_REF] Avila | The Onset of Turbulence in Pipe Flow[END_REF][START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF].

Les durées de vie et de la désintégration sont distribuées de manière exponentielle [START_REF] Hof | Finite lifetime of turbulence in shear flows[END_REF][START_REF] Shi | Scale Invariance at the Onset of Turbulence in Couette Flow[END_REF], tandis que le temps caractéristique de ces événements obéit une dépendance superexponentielle en Re [START_REF] Hof | Repeller or Attractor? Selecting the Dynamical Model for the Onset of Turbulence in Pipe Flow[END_REF].

Ces observations ont été interprétées de différentes façons, conduisant à différents cadres théoriques dans le cas de la transition sous-critique vers la turbulence.

En interprétant l'état laminaire linéairement stable comme un état absorbant, il a été proposé que l'apparition de l'intermittence spatio-temporelle suit la classe d'universalité de la percolation dirigée (DP) [START_REF] Pomeau | Front motion, metastability and subcritical bifurcations in hydrodynamics[END_REF]. À plus haut Re, il a été suggéré que l'apparition de motifs dans les écoulements de cisaillement plans est due à une instabilité linéaire de l'état turbulent homogène fluctuant [START_REF] Prigent | Long-wavelength modulation of turbulent shear flows[END_REF]. Différents modèles de transition ont été suggérés via différentes techniques. L'une de ces techniques consiste en des simulations dans des domaines numériques spatialement périodiques [START_REF] Barkley | Computational Study of Turbulent Laminar Patterns in Couette Flow[END_REF], ou une sousrésolution [START_REF] Manneville | On modelling transitional turbulent flows using under-resolved direct numerical simulations: the case of plane Couette flow[END_REF] pour réduire le coût numérique tout en capturant les caractéristiques principales. L'applicabilité de l'hypothèse DP dans pCf a été documentée par simulation dans un domaine incliné limité spatialement [START_REF] Shi | Scale Invariance at the Onset of Turbulence in Couette Flow[END_REF]. La projection de Galerkin des équations de Navier-Stokes est un outil classique utilisé pour les modèles réduits afin d'obtenir des modèles locaux [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF] d'écoulements ainsi que des modèles d'écoulements 2D [START_REF] Lagha | Modeling of plane Couette flow. I. Large scale flow around turbulent spots[END_REF]. Cette technique a permis de valider l'hypothèse DP pour l'apparition de l'intermittence spatio-temporelle avec un modèle d'écoulement de Waleffe (Wf) [START_REF] Chantry | Universal continuous transition to turbulence in a planar shear flow[END_REF]. Des modèles phénoménologiques établissant des analogies entre l'hydrodynamique et d'autres systèmes ont également été proposés. C'est le cas du modèle d'écoulement en conduite de Barkley, basé sur la transition excitabilité/bistabilité [START_REF] Barkley | Simplifying the complexity of pipe flow[END_REF]. Il capture avec précision la phénoménologie de la transition dans les écoulements en conduite et caractérise l'apparition d'une turbulence soutenues comme étant issue de la DP. De même, le modèle de Waleffe local a été spatialement étendu pour suggérer que l'apparition du motif est due à une instabilité de Turing [START_REF] Manneville | Turbulent patterns in wall-bounded flows: A Turing instability? EPL[END_REF].

Dans ce contexte, les questions suivantes sont posées, auxquelles cette thèses tente d'apporter des réponses.

Partie 1 : Comment les fluctuations turbulentes se décroissent-elles du coeur d'un point dans différents écoulements de cisaillement délimités par des parois ?

La première partie concerne la nature de l'écoulement à grande échelle entourant des spots turbulents isolés dans différents écoulements de cisaillement délimités par des parois. Le Chapitre 2 présente des simulations DNS de spots turbulents isolés (en croissance) dans quatre écoulements différents de cisaillement délimités par des parois, à savoir pCf, pPf, Wf et Couette-Poiseuille (CPf). Un bref aperçu de la littérature sur la nature de l'écoulement à grande échelle entourant les spots turbulents est présenté. Il existe un désaccord dans la littérature concernant la décroissance de l'écoulement à grande échelle loin d'un spot turbulent isolé, consistant à savoir s'il décroît algébriquement ou exponentiellement. Ceci est abordé dans la partie 1 de la thèse.

La structure de l'écoulement à grande échelle dans le plan dans les cas de pCf et Wf rappelle un quadrupôle, tandis qu'il ressemble à un dipôle en pPf et CPf.

En prenant pCf comme exemple représentatif, il est montré que la décroissance des composantes de l'écoulement à grande échelle dans le plan loin du spot est de nature algébrique. L'observation de la nature algébrique de la décroissance devient plus évidente avec la taille du domaine. La plus grande taille de domaine utilisée dans ces simulations est L x ×L y ×L z = 1280h×2h×1280h (h étant la demi-largeur du canal). Bien que la nature algébrique de la décroissance des composantes de l'écoulement à grande échelle dans le plan a été observée, la composante normale à paroi et la composante de vorticité normale à paroi présentent, elles, une décroissance très rapide. Cela suggère que le champ lointain du point est essentiellement irrotationnel.

Une analyse cinématique 2D de l'écoulement à grande échelle est présentée dans le Chapitre 3 pour expliquer la décroissance algébrique observée de l'écoulement à grande échelle. Le champ de vitesse à grande échelle 2D dans le plan satisfait l'équation de continuité 2D, et une fonction de courant 2D est définie de telle sorte que la vorticité normale à la paroi est liée à la fonction de courant par une équation de Poisson. Les simulations DNS confirment que le champ lointain du spot est essentiellement irrotationnel. Le spot est considéré comme une source localisée de vorticité générant un écoulement irrotationnel de divergence nulle dans le champ lointain. Pour un tel scénario, l'équation de Poisson pour la fonction de courant et la vorticité normale à paroi est résolue avec une fonction de Green qui est développée en une solution multipolaire pour la vitesse en champ lointain. Le monopôle est absent de cette solution en raison de l'irrotationnalité du champ lointain, conduisant à exprimer la vitesse comme une somme de pôles avec décroissance algébrique, i.e. les dipôles, quadrupôles et pôles d'ordre supérieur. Cette relation démontre la nature algébrique de la décroissance des composantes de l'écoulement à grande échelle dans le plan, ainsi que les valeurs attendues des exposants de décroissance qui sont de 2 et 3 pour le dipôle et le quadrupôle respectivement.

Une analyse de Fourier dans la direction azimutale est effectuée pour vérifier avec précision les exposants de déclin du dipôle et du quadrupôle. Ce résultat valide l'analyse cinématique 2D. On observe que la structure de l'écoulement à grande échelle ainsi que l'exposant de décroissance sont indépendants de Re.

L'analyse cinématique aboutit à une représentation du champ lointain du spot comme une somme de pôles en décroissance algébrique. Ainsi, le dipôle étant le terme d'ordre principal de la série devrait dominer le champ lointain. Ceci est observé dans le cas de pPf et CPf. Cependant, le quadrupôle est observé dans le cas de pCf et Wf. L'écoulement de base laminaire et l'écoulement moyen turbulent de pCf et Wf vérifient une symétrie de rotation qui s'applique également au champ d'écoulement à grande échelle dans le plan. Cette symétrie n'est pas satisfaite par le dipôle, et celui-ci disparaît donc dans les cas d'écoulements conduisant au quadrupôle comme terme d'ordre principal de la série. Ainsi, l'écoulement à grande échelle et l'exposant de décroissance sont dictés par la symétrie de l'écoulement considéré.

Partie 2 : Comment les motifs de bandes laminaires et turbulentes alternées évoluent-ils en fonction de Re en pPf, et quelle est leur géométrie en domaine étendu ? Qu'est-ce qui provoque la formation de motifs dans pPf ? Est-ce qu'une instabilité de l'écoulement turbulent peut s'établir ?

Les réponses à ces questions sont présentées dans les Chapitres 4,5 et 6.

Le Chapitre 4 commence par une brève explication des différents protocoles pour piloter l'écoulement le long d'un canal. Dans cette thèse, pPf est engendré en imposant un gradient de pression constant selon la valeur de Re G τ souhaitée, i.e. Re est défini parla vitesse de friction de l'écoulement. L'état de l'art concernant les résultats du régime transitoire de pPf est récapitulé. Les simulations de pPf sont réalisées dans de grands domaines étendus suivant un protocole de descente adiabatique. Ceci a permis de montrer que la morphologie de l'écoulement évolue, avec la diminution de Re G τ , depuis un état turbulent homogène vers l'état laminaire. Cette visualisation du champ d'écoulement démontre la présence de deux régimesun régime de motifs et un régime de bandes turbulentes indépendantes (ITB) avec collisions de bandes, nucléation et décroissance. La vitesse d'advection des bandes (régime à motifs et ITB) est calculée et comparée aux simulations en domaines inclinés. Les résultats soulignent la nécessité de grands domaines pour capturer avec précision ces vitesses. La distribution cumulative des écarts laminaires dans le sens du courant est analysée et révèle une distribution à queue exponentielle, indiquant un régime d'intermittence spatio-temporelle, même jusqu'à la dernière valeur de Re G τ = 39. La sélection de l'angle des bandes turbulentes est discutée en mesurant l'angle d'orientation. Cela montre une augmentation progressive de l'angle pour le régime de motifs, l'angle saturant à près de 40°pour le régime ITB.

Le Chapitre 5 poursuit cette caractérisation en calculant les propriétés globales de l'écoulement, telles que la fraction turbulente T f et le facteur de friction C f . La diminution de Re G τ s'accompagne d'une décroissance continue et monotone de la fraction turbulente T f . La sensibilité de T f au seuil est abordée. Il est montré que l'adoption d'une normalisation appropriée peut donner une courbe de fraction turbulente indépendante du seuil. Un changement de tendance de T f est observé alors que le motif se désagrège. Il est intéressant de noter que le diagramme de Moody du régime transitoire présente un plateau dans le facteur de friction, pour le régime de motifs avec C f ≈ 0, 01. C f (Re G τ ) subit également un changement de tendance alors que le motif se désagrège, avec une déviation par rapport à la valeur du plateau. Afin de caractériser les fluctuations turbulentes, les distributions conjointes de probabilité de la contrainte de cisaillement locale fluctuante et de l'écoulement local de débit sont analysées. Des distributions marginales non convexes mais unimodales sont observées. Le coefficient d'asymétrie et la kurtosis des distributions sont interprétées comme des signatures de l'intermittence. Une relation linéaire entre le carré de l'asymétrie et le kurtosis est documentée pour le régime de transition. Cette relation linéaire présente une corrélation unique applicable à la fois au régime transitoire et au régime complètement turbulent.

Le Chapitre 6 explore l'instabilité linéaire de l'état turbulent au moyen de simulations DNS des équations de Navier-Stokes. Il est démontré que la formation de motifs correspond à une augmentation de l'énergie des modes à grande échelle du spectre de Fourier de l'écoulement. Pour tester l'hypothèse d'instabilité linéaire, un état turbulent représentatif dans l'état statistiquement stable est perturbé par un bruit de divergence nulle sans de structure spécifique. Le retour vers l'équilibre est analysé dans le temps. L'amplitude des modes à grande échelle correspondant au motif est mesurée sur toute la durée de la relaxation du système. Le bruit initial étant aléatoire, l'expérience est répétée, permettant ensuite d'extraire la variation temporelle des amplitudes des modes principaux. La moyenne d'ensemble de l'amplitude présente un transitoire initial non linéaire où le système s'approche de son état d'équilibre stable. Ceci est suivi d'une décroissance exponentielle avec une éventuelle saturation à une valeur finie. La saturation est observée car c'est l'évolution du système non linéaire complet est suivie. La décroissance exponentielle révèle la réponse linéaire du système. En répétant l'opération pour différents nombres d'onde et valeurs de Re G τ , il est possible d'extraire les taux de décroissance pour la relaxation exponentielle, puis de construire une relation de dispersion. Les courbes de dispersion montrent une réduction progressive du taux de décroissance, et se rapprochent de l'axe neutre avec la diminution de Re G τ . Cela fournit une preuve directe de l'apparition d'une instabilité linéaire de l'état turbulent homogène conduisant à la formation de motifs. L'hypothèse d'instabilité sous-critique est également discutée dans ce chapitre.

Partie 3 : Un modèle phénoménologique peut-il capturer la formation de motifs ainsi que son évolution en fonction de Re ?

La troisième et dernière partie de la thèse concerne l'étude d'un modèle réduit pour la dynamique. Un modèle d'EDP à deux équations 1D présentant une instabilité de Turing sous-critique, proposé par Manneville [START_REF] Manneville | Turbulent patterns in wall-bounded flows: A Turing instability? EPL[END_REF] comme une extension spatio-temporelle du modèle de Waleffe, est revisité. Il est par la suite étendu par l'introduction de l'advection non linéaire et du bruit stochastique.

Le Chapitre 7 explore la dynamique déterministe du modèle. La cinétique du modèle est revue et interprétée comme un mécanisme de déplétion activateursubstrat. Les coefficients du modèle sont ajustés pour éviter la bifurcation de Hopf existante dans le système d'équations d'origine. L'introduction du terme d'advection non linéaire ne modifie pas la stabilité linéaire des points fixes du système d'origine. L'analyse non-linéaire du modèle est réalisée en simulant les équations comme un problème de valeur initiale á l'aide du solveur spectral Dedalus.

Une exploration paramétrique de l'espace nombre d'onde-nombre de Reynolds (R) est effectuée pour reconstruire la région de stabilité ou ballon de Busse des solutions périodiques. Cela montre que la longueur d'onde des motifs stables augmente au fur et à mesure que la valeur de R est réduite. Cependant, on observe que le ballon de Busse possède un plancher, i.e. que les motifs de longueurs d'onde indéfiniment grandes ne sont pas possibles. En effectuant une descente adiabatique similaire à celle de la DNS, on observe que la les solutions périodiques conservent leur longueur d'onde jusqu'à ce qu'elles atteignent la limite de stabilité où elles se réorganisent en une nouvelle longueur d'onde. Celle-ci se maintient jusqu'à une prochaine rencontre avec la limite de stabilité. Le rebond des trajectoires à l'intérieur du ballon de Busse est observé jusqu'à ce que le bord gauche de la limite soit atteint, moment où l'on observe que les motifs font place à une série d'impulsions. Ainsi, le modèle capture des solutions périodiques ainsi que des solutions à impulsion qui, dans le contexte 1D, sont équivalentes à l'ITB. On observe que ces solutions à impulsion présentent des caractéristiques d'excitabilité.

Le Chapitre 8 explore le système stochastique avec l'introduction d'un bruit multiplicatif dans l'une des équations. Les solutions à motif ainsi que les solutions à impulsion sont conservées dans le système stochastique. En effectuant la descente adiabatique dans le système stochastique, on observe que les trajectoires des différentes conditions initiales convergent vers une seule longueur d'onde. Ce résultat indique une sélection de la longueur d'onde par bruit.

Le Chapitre 9 juxtapose les résultats du modèle avec les observations des simulations DNS. Un haut degré de similitude dans la phénoménologie de la transition vers la turbulence est observé entre le modèle et la DNS. Cependant, on observe que le système stochastique ne présente aucune scission d'impulsion ou décroissace spontanée équivalente à la dynamique stochastique des nucléations et de la décroissance de l'ITB. La transition de la solution périodique à la solution impulsive dans le modèle est explorée dans ce chapitre. La solution périodique est une orbite périodique dans l'espace de phase du modèle et la solution impulsive est une orbite homocline dans le même espace des phases. On y observe que le point fixe laminaire est un point selle. Ainsi, avec la réduction de R, on observe l'orbite périodique se rapprocher du point selle lors de la descente adiabatique. Cependant, cette approache est interrompue en raison de la présence d'un plancher dans le ballon de Busse et conduit à un saut discontinu formant une orbite homocline.

Cette transition d'une orbite périodique à une orbite homocline par collision avec une selle est appelée bifurcation homocline. La divergence logarithmique de la longueur d'onde est une signature de cette bifurcation qui est bien présente dans le modèle. Cela suggère qu'une bifurcation homocline interrompue est le mécanisme de passage du motif aux impulsions.

Une extrapolation depuis la DNS est faite avec l'hypothèse de l'applicabilité de la bifurcation homoclinique interrompue. La longueur d'onde du motif dans la simulation DNS est observée sur une échelle logarithmique pour le régime de solutions périodiques. Cela suggère que même dans le cas de pPf, la transition du modèle à l'ITB se produit par une bifurcation homoclinique interrompue. L'hypothèse est étendue à d'autres écoulements de cisaillement et un test en échelle logarithmique de la longueur d'onde dans ces écoulements de cisaillement est effectué. Un bon accord entre la forme fonctionnelle logarithmique et la longueur d'onde / T f est obtenu dans tous les cas explorés, suggérant qu'une bifurcation homocline interrompue est commune à tous les écoulements de cisaillement délimités par des parois. Cette hypothèse fournit une explication pour le passage d'un état de haut degré de cohérence spatiale (motif) à celui de structures turbulentes isolées (bouffées et ITB) avec la réduction en Re.

Les résultats de la thèse sont résumés et une conclusion pour chacune des questions est proposée dans le Chapitre 10. Le Chapitre 11 explore les directions possibles pour la poursuite de cette étude. [START_REF] Taylor | Stability of a viscous liquid contained between two rotating cylinders[END_REF]. Ω 1,2 is the angular velocity of the inner and outer cylinders respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3 Bifurcation diagram of TCf taken from [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF] . . . 1.4 A sample signal from a hot wire in a pipe flow with regions of laminar and turbulent labelled. The figure is taken from [START_REF] Rotta | Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr[END_REF] The laminar and turbulent areas are marked by "L" and "T" respectively. The figure is taken from [START_REF] Coles | Transition in circular Couette flow[END_REF] x (y + ) for Re G τ from 100 down to 39. Blue: law of the wall ¯ u + x = y + , red: logarithmic law of the wall ¯ u + x = 2.5log(y + ) + 5.5, black: DNS results from [START_REF] Kim | Turbulence statistics in fully developed channel flow at low Reynolds number[END_REF] . . . . 4.10 Streamwise advection velocity of the turbulent bands relative to the mean bulk velocity superimposed with the streamwise velocity of the bands computed in [START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF][START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF] 4.11 Isocontours of τ (x, Lz/2, t) for ( a and instability resulting in small scale motion (W ). Adapted from [START_REF] Dauchot | Phase space analysis of a dynamical model for the subcritical transition to turbulence in plane Couette flow[END_REF], the laminar base flow depicts pCf. . [START_REF] Schmitt | Turbulence from 1870 to 1920: The birth of a noun and of a concept[END_REF]. Early works in the study of fluid motion was driven by empirical relations borne out of meticulous observations such as the Hagen-Poiseuille relation for the pressure drop and Bernoulli's principle. The head loss per unit length h for the flow of water in a circular pipe is observed to portray a change from h ∝ V for velocity V < 0.1ms -1 to h ∝ V 2 for higher velocities [START_REF] Darcy | Recherches expérimentales relatives au mouvement de l'eau dans les tuyaux[END_REF]. This served as the earliest quantitative differentiation between the now recognised laminar and turbulent regimes.

Osborne Reynolds pondered on this question and wrote [START_REF] Reynolds | An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[END_REF] :

Again, although it had been definitely pointed out that eddies would explain resistance as the square of the velocity, it did not appear that any definite experimental evidence of the existence of eddies in parallel tubes had been obtained, and much less was there any evidence as to whether the birth of eddies was simultaneous with the change in the law of resistance.

1 This questioning about the observed change in the behaviour and the possible cause, led to the most famous experiment distinguishing the laminar and turbulent regimes. The experiment considered the flow of water through a circular pipe in order to ascertain the conditions of onset of what was called as sinuous motion recognised today as being turbulent. Some key takeaways from the landmark result are presented that guided further work in this field :

• The onset of turbulence is accompanied by a qualitative and quantitative change in the flow. Reynolds notes this as :

The resistance is generally proportional to the square of the velocity, and when this is not the case it takes a simpler form, and is proportional to the velocity. Again, the internal motion of water assumes one or other of two broadly distinguishable forms either the elements of the fluid follow one another along lines of motion which lead in the most direct manner to their destination, or they eddy about in sinuous paths, the most indirect possible.

• Adoption of a nondimensional control parameter to characterize the onset of turbulence. Reynolds presents a very interesting argument for the nondimensionalization.

The definite association of resistance as the square of the velocity with sensibly large tubes and high velocities, and of resistance as the velocity with capillary tubes and slow velocities, seemed to be evidence of the very general and important influence of some properties of fluids not recognised in the theory of hydrodynamics. As there is no such thing as absolute space or absolute time recognised in mechanical philosophy, to suppose that the character of motion of fluids in any way depended on absolute size or absolute velocity would be to suppose such motion outside the pale of the laws of motion. If, then, fluids, in their motions, are subject to these laws, what appears to be the dependence of the character of the motion on the absolute size of the tube and on the absolute velocity of the immersed body must in reality be a dependence on the size of the tube as compared with the size of some other object, and on the velocity of the body as compared with some other velocity.

What is the standard object and what the standard velocity which come into comparison with the size of the tube and the velocity of an immersed body, are questions to which the answers were not obvious. Answers, however, were found in the discovery of a circumstance on which sinuous motion depends.

Although he identified U m D/ν with U m as the mean bulk velocity in the pipe, D being the diameter of the pipe, it was coined as the Reynolds number Re by Arnold Sommerfeld [START_REF] Sommerfeld | Ein beitrag zur hydrodynamischen erklaerung der turbulenten fluessigkeitsbewegüngen[END_REF] • He poses the question :Did steady motion hold up to a critical value and then eddies come in ? to which the results of his experiment showcase a critical value of Re ≈ 2000 [START_REF] Reynolds | On the dynamical theory of incompressible viscous fluids and the determination of the criterion[END_REF] As noted by Reynolds, there is a qualitative and quantitative difference between laminar and turbulent flow. Turbulent flow is inherently three-dimensional and transient in nature with continuous fluctuations in space and time. Laminar flow profiles on the other hand showcase spatial variation only in one-dimensional while being steady in time. As Reynolds noted, turbulent flow portrays the formation of eddies which are not present in laminar flow. These eddies are known to be of varying sizes evolving differently in time leading to the multiscale nature of turbulent flow [START_REF] Pope | Turbulent Flows[END_REF].

The change of flow properties between laminar and turbulent flow extend beyond just friction. Turbulent flow is highly dissipative and dispersive, leading to enhanced transport properties of both mass, heat and momentum [START_REF] Pope | Turbulent Flows[END_REF]. While these are extremely beneficial in cases such as effective mixing of air and fuel in a combustion chamber, it can also be detrimental in cases such as the enhanced drag of an aircraft due to turbulence. Thus, the necessity to understand the circumstances leading to turbulent flow in different geometries are of prime importance. In this regard many canonical shear flow cases such as the pipe flow investigated by Reynolds, plane Poiseuille flow (pPf), plane Couette flow (pCf) and Taylor-Couette flow (TCf) are studied. They have been test benches to investigate the impact of different geometries and boundary conditions on the transition from laminar to turbulent. While this does not encompass all the scenarios under investigation, the thesis is focused on the transition to turbulence of a Newtonian incompressible fluid in wall-bounded shear flows. Hence, the discussions will follow along the lines of the experiment of Reynolds and will exclude flow cases with heat flow, compressible flows and non-Newtonian fluids.

Hydrodynamic instability

The conservation principles of mass and momentum put into mathematical form constitutes the governing equations for fluid flow. For a Newtonian incompressible fluid with density ρ and kinematic viscosity ν, the equations are written in terms of the velocity field u, the pressure p as :

∇ • u = 0, (1.1) ∂u ∂t + u • ∇u = - ∇p ρ + ν∇ 2 u. (1.2)
Eq 1.1 encapsulating the conservation of mass is called as the continuity equation and Eq 1.2 expresses the conservation of momentum. These are collectively called as the Navier-Stokes equations. The Reynolds number Re is defined more generally as Re = U L/ν where U is a characteristic velocity of the flow, L the characteristic length of for the flow geometry. This sets the characteristic timescale as U/L. The nondimensionalization of the Navier-Stokes equations is carried out with these definitions as :

∇ • u * = 0, (1.3) ∂u * ∂t * + u * • ∇u * = - 1 ρ ∇p * + 1 Re ∇ 2 u * , (1.4)
where * indicates variables nondimensionalised respectively by U for the velocity, L for space, U/L for time and p/ρU 2 for pressure. The operators ∇ and ∇ 2 incorporate now the nondimensionalization of space x * = x/L. All further discussions will be based on nondimensional quantities unless specified otherwise and the asterisks will be dropped. The instability that Reynolds reports about is for infinitesimal perturbations to the steady state i.e., the laminar flow and its response to this perturbation. Consider a small perturbation (u , p ) to a steady state (U 0 , p 0 )

u = U 0 + u , (1.5) p = p 0 + p . (1.6)
Substituting this into Eq 1.3, 1.4 and neglecting terms of quadratic and higher in u , the resulting relations is compactly written as :

∇ • u = 0, (1.7 
)

∂u ∂t = L(U 0 , p 0 , u , p ), (1.8) 
where L is called as the linearised Navier-Stokes operator. Classical linear stability analysis follows a normal mode analysis of Eq 1.8 [START_REF] Drazin | Hydrodynamic Stability[END_REF]. Linear instabilities are very broadly classified into two types :

• Supercritical : Canonical wall-bounded shear flows are described by 1D parallel laminar base flow i.e., in a Cartesian frame of reference where x, y, z correspond to the streamwise, wall-normal and spanwise directions respectively, U = (U x (y), 0, 0). Recasting Eq 1.8 for a 1D parallel base flow and an ansatz for the perturbation according to normal mode analysis results in the Orr-Sommerfeld equation [START_REF] Schmid | Stability and Transition in Shear Flows[END_REF]. This was solved for the flat plate boundary layer to show the onset of instability with Tollmein-Schlichting waves [START_REF] Drazin | Hydrodynamic Stability[END_REF]. The Orr-Sommerfeld equation was solved numerically to show that pPf has a linear instability at Re cl = 5772.22 [START_REF] Orszag | Accurate solution of the Orr-Sommerfeld stability equation[END_REF], where the subscript cl indicates that the characteristic velocity is the centerline velocity of the laminar base flow. The channelf half-gap is the lengthscale in the definition of Re. This corresponds to Re b = 3848.15 where the subscript "b" indicates that the characteristic velocity is U m . Early experimental evidence for pPf predicted a critical Re b = 1400 ± 50 [START_REF] Narayanan | An experimental study of reverse transition in twodimensional channel flow[END_REF]. The stability analysis of pCf demonstrated its linear stability for all Re [START_REF] Romanov | Stability of plane-parallel Couette flow[END_REF] but has been shown to transition to turbulence with a critical Re ≈ 360 [START_REF] Tillmark | Experiments on transition in plane Couette flow[END_REF]. Re for pCf is defined based on half of the difference between the velocities of the two walls and the channel half-gap. However, in the case of pipe flow, stability up to Re = 10 7 has been numerically obtained [START_REF] Meseguer | Linearized pipe flow to Reynolds number 10 7[END_REF] while Reynolds demonstrated the transition for Re > 2000. This discrepancy between the linear stability prediction and the observed transition showcases the subcritical nature of the instability in pipe flow, pPf as well as pCf. A look back at the work of Reynolds reveals the observations of bistability, necessity of finite amplitudes to cause transition as well as the abrupt nature of the subcritical transition in the case of pipe flow :

I had expected to see the eddies make their appearance as the velocity increased, at first in a slow or feeble manner, indicating that the water was but slightly unstable.

And it was a matter of surprise to me to see the sudden force with which the eddies sprang into existence, showing a highly unstable condition to have existed at the time the steady motion broke down.

The fact that the steady motion breaks down suddenly shows that the fluid is in a state of instability for disturbances of the magnitude which cause it to break down. But the fact that in some conditions it will break down for a large disturbance, while it is stable for a smaller disturbance shows that there is a certain residual stability so long as the disturbances do not exceed a given amount.

The nonlinearity of the Navier-Stokes equations prevents analytical inquiry of the of the subcritical instability in most but the simplest of cases. This difficulty between mathematical analysis and experimental observation is best summed up in the words of G.I.Taylor [START_REF] Taylor | Stability of a viscous liquid contained between two rotating cylinders[END_REF] :

It seems doubtful whether we can expect to understand fully the instability of fluid flow without obtaining a mathematical representation of the motion of a fluid in some particular case in which instability can actually be observed, so that a detailed comparison can be made between the results of analysis and those of experiment.

This led him to the design the flow between two counter rotating cylinders known [START_REF] Taylor | Stability of a viscous liquid contained between two rotating cylinders[END_REF]. Ω 1,2 is the angular velocity of the inner and outer cylinders respectively.

Figure 1.3: Bifurcation diagram of TCf taken from [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF] .

Despite the difficulty in analytically probing the subcritical transition scenario, linear stability analysis provides a first step towards this end. The linear operator in Eq 1.8 was found to be non-normal leading transient growth of perturbation in pPf, pCf [START_REF] Reddy | Energy growth in viscous channel flows[END_REF] as well as pipe flow (O' Sullivan and Breuer, 1994). This transient growth was conjectured to lead to transition [START_REF] Trefethen | Hydrodynamic Stability Without Eigenvalues[END_REF], however, this was debated and the transition was argued to be a fully nonlinear phenomena [START_REF] Waleffe | Transition in shear flows. Nonlinear normality versus non-normal linearity[END_REF].

Spatial localization of turbulence

In his observations of the transition in pipes, Reynolds notes that for a small range of Re near the onset, flashes appeared in the pipe causing intermittent behaviour of steady (laminar) and eddy motion (turbulent) [START_REF] Reynolds | An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[END_REF]. The intermittency eventually increased to form a fully turbulent flow. Quantifying this observation, an intermittency factor γ was defined by [START_REF] Rotta | Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr[END_REF] in the context of measurements from a sensor in pipe flow as :

γ = t T T , (1.9)
where t T is the mean duration of a signal that can be classified as representing is a striking feature of the subcritical transition to turbulence in wall-bounded shear flows such as pipe flow, pCf, pPf and TCf. This is in contrast to the coher-ent structures such as streaks and rolls identified in turbulent flows [START_REF] Pope | Turbulent Flows[END_REF].

These small-scale coherent structures constitute the turbulent region within the large-scale coherent structures. The lack of large-scale coherent structures in the fully turbulent regime has lead to the nomenclature of featureless turbulence for the fully turbulent regime. The different structures identified over the years, from [START_REF] Coles | Transition in circular Couette flow[END_REF] to the current day, in both experiments and simulations are summarized.

Figure 1.5: Visualization of the flow in TCf for R i = 5250 and R o = -15880. The laminar and turbulent areas are marked by "L" and "T" respectively. The figure is taken from [START_REF] Coles | Transition in circular Couette flow[END_REF].

Puffs and slugs : The turbulent region as recorded in the hot wire signal of fig 1.4 and the resulting inttermittency was identified to be due to a turbulent puff existing in a range 2000 < Re ≤ 2700 [START_REF] Wygnanski | On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug[END_REF]. These structures occupy the entire cross-section of the pipe and have an axial extent of ≈ 20D and travel at ≈ 0.9U m [START_REF] Mullin | Transition to Turbulence in Pipe Flow[END_REF]. Slugs on the other hand are expanding puffs that tend to occupy the entire length of the pipe leading to a fully turbulent flow. These structures portray variations only in their length along the pipe axis while encompassing the cross-section of the pipe at all times. Turbulent Spots in plane shear flows : Turbulent spots are short time transient structures formed as a nonlinear response to a localized disturbance to the flow. Spots either grow or decay depending on the amplitude of the perturbation and the Re of the flow. They have been identified and studied in pCf by [START_REF] Tillmark | Experiments on transition in plane Couette flow[END_REF]; [START_REF] Lundbladh | Direct simulation of turbulent spots in plane Couette flow[END_REF]; [START_REF] Dauchot | Finite amplitude perturbation and spots growth mechanism in plane Couette flow[END_REF]; [START_REF] Duguet | Oblique Laminar-Turbulent Interfaces in Plane Shear Flows[END_REF]; [START_REF] Couliou | Large-scale flows in transitional plane Couette flow: A key ingredient of the spot growth mechanism[END_REF]; [START_REF] Henningson | Wave growth and spreading of a turbulent spot in plane Poiseuille flow[END_REF], pPf [START_REF] Alavyoon | Turbulent spots in plane Poiseuille flow-flow visualization[END_REF][START_REF] Aida | Development of a turbulent spot into a stripe pattern in plane posieuille flow[END_REF][START_REF] Carlson | A flow-visualization study of transition in plane Poiseuille flow[END_REF][START_REF] Henningson | On turbulent spots in plane Poiseuille flow[END_REF]. In Couette-Poiseuille flow (CPf) by Klotz et al. (2017[START_REF] Klotz | Experimental measurements in plane Couette-Poiseuille flow: dynamics of the large-and small-scale flow[END_REF] Turbulent bands organized into a pattern in plane shear flows : Turbulence is documented to organize spatially to form long band-like structures that arrange alternatively to form a pattern. This has been documented in TCf by [START_REF] Coles | Transition in circular Couette flow[END_REF]; [START_REF] Andereck | Flow regimes in a circular Couette system with independently rotating cylinders[END_REF]; [START_REF] Prigent | Large-Scale Finite-Wavelength Modulation within Turbulent Shear Flows[END_REF]; [START_REF] Meseguer | Instability mechanisms and transition scenarios of spiral turbulence in Taylor-Couette flow[END_REF].

In pCf by [START_REF] Prigent | La spirale turbulente: motif de grande longueur d'onde dans les écoulements cisaillés turbulents[END_REF]; [START_REF] Barkley | Computational Study of Turbulent Laminar Patterns in Couette Flow[END_REF]; [START_REF] Duguet | Formation of turbulent patterns near the onset of transition in plane Couette flow[END_REF].

In TCf and (λ x , λ z ) ≈ (105h, 40h) in pCf [START_REF] Prigent | Large-Scale Finite-Wavelength Modulation within Turbulent Shear Flows[END_REF]. A striking feature of these bands is its obliqueness. An in-plane velocity referred to as the large-scale flow is documented to be aligned along the bands influencing its geometry [START_REF] Duguet | Oblique Laminar-Turbulent Interfaces in Plane Shear Flows[END_REF]. The precise role of the large-scale flow in the assembly of the pattern is not fully understood. While the flow field is three-dimensional, the geometry of these structures suggests that pipe flow can be treated as effectively one-dimensional while the plane shear flow cases of pCf, TCf and pPf are two-dimensional. The relatively large size of these structures necessitate large numerical domains and experimental setups to capture their unhindered dynamics. The evolution of these structures with Re is an ongoing work [START_REF] Tuckerman | Patterns in Wall-Bounded Shear Flows[END_REF] where As commented upon by [START_REF] Moxey | Distinct large-scale turbulent-laminar states in transitional pipe flow[END_REF], the instability of featureless turbulence for large lengthscale leads to the intermittent regime. However, an instability of the turbulent flow has yet to be demonstrated. The emergence of the patterned structure from fully turbulent flow in the case of TCf, inspired to investigate and explain its formation with a Ginzburg-Landau phenomenology of pattern formation due to a linear instability of the turbulent flow [START_REF] Prigent | Large-Scale Finite-Wavelength Modulation within Turbulent Shear Flows[END_REF]. The study of [START_REF] Tuckerman | Instability of uniform turbulent plane Couette flow: spectra, probability distribution functions and kω closure model[END_REF] 

Transient turbulence at onset

The puffs in pipe flow were identified to be metastable with an exponentially distributed lifetime [START_REF] Hof | Finite lifetime of turbulence in shear flows[END_REF][START_REF] Mullin | Transition to Turbulence in Pipe Flow[END_REF][START_REF] Willis | Critical Behavior in the Relaminarization of Localized Turbulence in Pipe Flow[END_REF]. This followed the findings of exponential distributions of the lifetimes of spots in pCf by Bottin et al. (1998). The mean characteristic lifetime of the puffs was documented to portray an exponential behaviour with Re, suggesting that turbulence was transient [START_REF] Hof | Finite lifetime of turbulence in shear flows[END_REF]. This came in contrast to the results of [START_REF] Willis | Critical Behavior in the Relaminarization of Localized Turbulence in Pipe Flow[END_REF]; [START_REF] Mullin | Transition to Turbulence in Pipe Flow[END_REF]; [START_REF] Faisst | Sensitive dependence on initial conditions in transition to turbulence in pipe flow[END_REF] showcasing a divergence of the mean lifetime of the puff. The disagreement in these findings is attributed to the limited length of the pipe and observation time which was succinctly described by [START_REF] Hof | Finite lifetime of turbulence in shear flows[END_REF] :

The rapid exponential increase of lifetimes explains why the transient nature of turbulence has not been observed previously: to detect the decay of turbulence in a garden hose at a flow rate as low as 1l/min(Re = 2, 400) would require a physical length of the tube of 40, 000km, about the Earth's circumference, and an observation time of almost 5 years.

These observations were improved upon with increased accuracy and larger sampling, resulting in the finding of a superexponential scaling of the mean lifetimes [START_REF] Hof | Repeller or Attractor? Selecting the Dynamical Model for the Onset of Turbulence in Pipe Flow[END_REF]. These studies were focussed on the lifetime of individual puffs and its propensity to decay. However, spatial proliferation of turbulence from a single puff leading to two puffs often called as puff splitting is a well recorded phenomenon [START_REF] Wygnanski | On transition in a pipe. Part 2. The equilibrium puff[END_REF]. This process has also been termed as self-replication or duplication. Documenting the mean lifetime for the splitting process, a cross-over between the curves of mean lifetime for decay and splitting Figure 1.10: Mean lifetime of decay and splitting τ of turbulent puffs. Plot taken from [START_REF] Avila | The Onset of Turbulence in Pipe Flow[END_REF]. The cross-over is estimated to occur at Re = 2040 ± 10.

Frameworks, analogies and models

The relatively large lengthscale of the puffs and bands showcase the necessity for large domains to accurately capture their unhindered dynamics. Similarly, the transient nature of turbulence near its onset with exponentially distributed lifetimes demands longer observation times. These situations make the spatiotemporal evolution of the transitional regime complex and challenging for experiments and simulations. The dynamics of these structures have been interpreted in different ways leading to applications of different theoretical frameworks and analogies to the transitional regime. Accordingly, varied low-order model have also been suggested. Some of these ideas and suggestions are :

Hydrodynamical approach

Microscopic approach

The study of structures formed by the spatial localization of turbulence could be called as large-scale analysis. On the other hand these structures are formed by small-scale structures in the turbulent flow such as streaks and vortices. A streak is the spanwise fluctuation of the streamwise velocity and is a key constituent of all wall-bounded shear flows [START_REF] Pope | Turbulent Flows[END_REF]. The study of these structures and the role it plays in the transition to turbulence in wall-bounded shear flows could be termed as a microscopic approach. This approach was adopted in the definition of the "Minimum flow unit"(MFU) by [START_REF] Jiménez | The minimal flow unit in near-wall turbulence[END_REF] 

Mesoscopic approach

In an analogy with the MFU, but capable of capturing the modulation of the flow in one spatial dimension i.e., along the patterns in channel flow, the concept of a tilted domain was introduced by [START_REF] Barkley | Computational Study of Turbulent Laminar Patterns in Couette Flow[END_REF].

Figure 1.12: Illustration of a tilted domain superimposed on an extended domain with patterning in pPf depicted by the isocontours of the streamwise fluctuating velocity. Dark-light indicates the increase of the amplitude of velocity. Adapted from [START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF].

The tilted domains are limited in their planar extent along one direction, but elongated in the other with the flow occurring at an angle as depicted in fig 1.12. In most simulations, an angle of 24 o has been imposed (Barkley andTuckerman, 2005, 2007;[START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF][START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in Couette flow[END_REF][START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF]. Evidence of applicability of the directed percolation hypothesis to the laminar-turbulent transition was shown in pCf with the tilted domain [START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in Couette flow[END_REF]. Pattern formation and evaluation of its advection velocity in pPf was also performed in tilted domains [START_REF] Barkley | Mean flow of turbulent-laminar patterns in plane Couette flow[END_REF][START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF]. In a re- Low-resolution model : A technique of using extended domains with reduced computational cost is to under-resolve the simulations. The impact of such underresolved simulations on the reproducibility of the large-scale structures was reported by [START_REF] Manneville | On modelling transitional turbulent flows using under-resolved direct numerical simulations: the case of plane Couette flow[END_REF]. The reproducibility of turbulent bands was demonstrated even when resolution was reduced by a factor of two in the wallnormal as well as planar directions. This was documented to reduce the estimated value of Re for onset of patterning and laminarization. This technique of modelling was utilised to showcase the growth of spots in pCf with a quadrupolar large-scale flow. This agrees with the results of the well resolved simulations carried out by [START_REF] Duguet | Oblique Laminar-Turbulent Interfaces in Plane Shear Flows[END_REF]. Pattern formation in pCf was analysed using the Ginzburg-Landau phenomenology emulating the study of [START_REF] Prigent | Large-Scale Finite-Wavelength Modulation within Turbulent Shear Flows[END_REF].

Thermodynamics : phase transition

The intermittency in pipe flow was recognised as : "intermittency implies the existence of definite interfaces separating regions of laminar and turbulent flow" (attributed to [START_REF] Coles | Interfaces and intermittency in turbulent shear flow in mecunique de la turbulence[END_REF]) [START_REF] Letellier | Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century[END_REF]. This coexistence of two regimes has led to the conjecture of the hydrodynamic transition being interpreted as a phase transition in the thermodynamic sense [START_REF] Pomeau | Front motion, metastability and subcritical bifurcations in hydrodynamics[END_REF]. The idea involved analysing the coexistence of the two phases in physical space with the laminar being an absorbing phase and the turbulent being a chaotic phase. The linear stability of the laminar state in the subcritical flows satisfies the criteria of an absorbing state. The resulting dynamics would be akin to spatiotemporal intermittency (STI) [START_REF] Kaneko | Spatiotemporal Intermittency in Coupled Map Lattices[END_REF][START_REF] Chaté | Spatio-temporal intermittency in coupled map lattices[END_REF]. Based on studies of coupled map lattice models, two possibilities are noted by [START_REF] Bottin | Statistical analysis of the transition to turbulence in plane Couette flow[END_REF] : (a) a discontinuous transition -where the order parameter (turbulent fraction) displays a discontinuity near the onset of sustained turbulence (b) a continuous transition -the order parameter varies continuously with the control parameter.

One among the many types of continuous transition is the universality class of directed percolation (DP) [START_REF] Hinrichsen | Non-equilibrium critical phenomena and phase transitions into absorbing states[END_REF].

In pCf, a discontinuous variation of the turbulent fraction was associated with STI like behaviour Bottin et al. (1998). A similar result substantiating the dis-continuous transition was presented in the simulations of [START_REF] Duguet | Formation of turbulent patterns near the onset of transition in plane Couette flow[END_REF].

However, subsequent findings in TCf [START_REF] Avila | Shear flow experiments : Characterizing the onset of turbulence as a phase transition[END_REF], Wf [START_REF] Chantry | Universal continuous transition to turbulence in a planar shear flow[END_REF] and pPF [START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers[END_REF][START_REF] Sano | A universal transition to turbulence in channel flow[END_REF]Shimizu and Manneville, 2019a;[START_REF] Takeda | Two-stage subcritical transition as directed percolation universality classes in plane Poiseuille flow[END_REF] demonstrate the continuous nature of the transition.

As in the case of the lifetime of puffs, finite size effects are attributed for the observation of a discontinuous transition.

The applicability of the universality class of DP has been shown for Couette flow in both, simulations of a long and slender tilted domain as well as experiment in a short TCf setup [START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in Couette flow[END_REF]. The choice of the numerical domain and the design of the experimental setup made the system effectively one-dimensional.

In an extended two-dimensional domain, results were obtained for a model Wf displaying scaling of (2 + 1)d DP [START_REF] Chantry | Universal continuous transition to turbulence in a planar shear flow[END_REF]. Investigating the decay from turbulence generated from a grid, DP has also been advanced in pPf Sano and Tamai ( 2016)

Modelling the transitional regime

The nonlinearity of the Navier-Stokes equations remain a major hurdle for mathematical analysis. In order to capture the unhindered dynamics in the transitional regime, large domain sizes and long observation times are necessary. This makes experiments and numerical simulations costly. Mathematical models amenable to analytical techniques or inexpensive for numerical simulations have been frequently used as tools to understand the spatiotemporal organization of the transitional regime. Some of the techniques adopted towards modelling and the analogies drawn with other processes are detailed below.

Galerkin projection :

Projecting the Navier-Stokes onto a truncated set of orthogonal basis functions that satisfy the boundary conditions is a classical method of dimension reduction.

This forms a part of the method of weighted residuals. Incompressibility is either satisfied by the basis functions or handled separately by imposing restrictions derived from the continuity equation.

Amplitude equations:

The velocity field is assumed to be represented by a finite sum of orthogonal functions Φ i (x) each associated with a different amplitude A i . The Galerkin projection is written as :

u = i A i (t)Φ i (x), (1.10) N S(u), Φ i = 0, (1.11) dA i dt = Ψ i , (1.12)
where • is the inner product and N S(u) is a compact representation of the Navier-Stokes equations. Ψ i is the resultant of the projection. This results in a set of ordinary differential equations for A i (t).

Adopting this technique, [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF] However, Eckhardt and Mersmann (1999) adopted a higher truncation order with a suitably adapted Fourier basis resulting in a system of nineteen ODEs. By virtue of reduction from the Navier-Stokes equations, its global properties such as nonnormality of the linear operator and energy conservation by the nonlinear terms are preserved. The increased number of degrees of freedom of the system was able to showcase chaotic behaviour and capture the fractal nature of the laminar turbulent basin boundary in (A, Re) space, where A is the amplitude of perturbation.

Such a fractal nature was suggested by the experiments of [START_REF] Darbyshire | Transition to turbulence in constant-massflux pipe flow[END_REF] in pipe flow and in simulations of pCf by [START_REF] Schmiegel | Fractal Stability Border in Plane Couette Flow[END_REF].

These models reveal a great deal about the possible state space organization and the temporal character of the dynamics of Navier-Stokes equations. However, to be able to suitably model the spatial behaviour of the transitional regime, the projections are slightly modified as detailed below.

Two-dimensional spatial models : The plane shear flows portray large-scale structures such as turbulent spots and bands in the transitional regime. To suitably model the two-dimensional features in the (x, z) plane of these flows, the projection incorporated is :

u = A i (x, z, t)Φ i (y), (1.13) N S(u), Φ i = 0, (1.14) ∂A i ∂t = Ψ i (x, z), (1.15) 
Adopting this strategy for the fluctuating components of the velocity and incorporating polynomial modes, the growth of turbulent spots were shown in both pCf [START_REF] Lagha | Modeling of plane Couette flow. I. Large scale flow around turbulent spots[END_REF] and pPf [START_REF] Lagha | Turbulent spots and waves in a model for plane Poiseuille flow[END_REF]. Quadrupolar largescale flow structure surrounding the spot as in [START_REF] Duguet | Oblique Laminar-Turbulent Interfaces in Plane Shear Flows[END_REF] and oblique waves at the interface were reproduced. However, no bands or patterns were reported. This model was improved upon by [START_REF] Seshasayanan | Laminar-turbulent patterning in wallbounded shear flows: a Galerkin model[END_REF] with more polynomial modes which captured pattern formation.

Similarly, [START_REF] Chantry | Turbulent-laminar patterns in shear flows without walls[END_REF] used basis functions chosen for Wf resulting in a set of seven partial differential equations and six ordinary differential equations.

Simulations of this model revealed the formation of patterns and spots analogous to pCf. The reduced cost of the simulation allowed for large domains and observation times. This was used to provide evidence of the applicability of a DP-like transition for 2D flows [START_REF] Chantry | Universal continuous transition to turbulence in a planar shear flow[END_REF].

Phenomenological models:

Excitability-Bistability : Building on the observation of the dynamics of puffs, a reaction-diffusion framework was adopted to model the transition in pipe flow by [START_REF] Barkley | Simplifying the complexity of pipe flow[END_REF]. The model consists of two partial differential equations coupled to mimic the interplay of the mean flow and turbulence intensity in the transitional regime of pipe flow. Featureless turbulence and the laminar state are modelled as fixed points. The appearance of puffs is associated with the disappearance of the turbulent fixed point and the puff being an excitable structure [START_REF] Barkley | Pipe flow as an excitable medium[END_REF] i.e., it is a transient departure from the linearly stable laminar state due to a finite amplitude perturbation. Accurate predictions about qualitative features of the motion of fronts for a puff and slug were made which were supported by observations in DNS simulations [START_REF] Barkley | The rise of fully turbulent flow[END_REF]. Incorporating noise into the system, puff splitting and decay were also reproduced. The model showcases a (1 + 1)d DP type transition for the onset of turbulence [START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF].

Turing instability: In a similar methodology, the four-equation model of [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF] was extended with the introduction of diffusion along a reintroduced spatial dimension [START_REF] Manneville | Turbulent patterns in wall-bounded flows: A Turing instability? EPL[END_REF]. It was further reduced adiabatically to two equations bearing a likeness to the Barkley model [START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF]. A Turing instability is found within the reduced model and conjectured to be the progenitor of the patterns in plane shear flows.

Predator-prey system: In pPf, for 924 ≤ Re b ≤ 1012, opposite oriented turbulent bands present dynamics with collisions, decay and nucleations of new bands.

These eventually result in the predominance of bands with a single orientation for Re b < 924. The dynamics of these bands are modelled as a predator-prey mechanism leading to the symmetry breaking at Re b = 924 [START_REF] Manneville | Transitional Channel Flow: A Minimal Stochastic Model[END_REF].

In the works of [START_REF] Shih | Ecological collapse and the emergence of travelling waves at the onset of shear turbulence[END_REF], a predator-prey model capturing the phenomenology of pipe flow is presented. An activator (turbulence)-inhibitor(zonal flow) mechanism is argued to constitute the basis for this model. In polar coordi-nates, zonal flow is the (z, θ) averaged azimuthal velocity ūθ and the activator is the Reynolds stress component u θ u r . However, the relevance of these components and their roles are debated [START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF] Conceptual models :

Several models of simple low-dimensional ODE systems have been studied to highlight concepts applicable to the hydrodynamic system. A system of two ODE equations displaying the linear growth due to non-normality was presented by [START_REF] Trefethen | Hydrodynamic Stability Without Eigenvalues[END_REF]; [START_REF] Baggett | Low-dimensional models of subcritical transition to turbulence[END_REF]. Similar ODE system of two equations demonstrating features of global stability, subcriticality, local stability and transient growth of perturbation as applicable to the transition in wallbounded shear flows was studied by [START_REF] Dauchot | Local Versus Global Concepts in Hydrodynamic Stability Theory[END_REF]. Coupled map lattices [START_REF] Kaneko | Spatiotemporal Intermittency in Coupled Map Lattices[END_REF][START_REF] Chaté | Spatio-temporal intermittency in coupled map lattices[END_REF] and the one dimensional Kuramoto-Sivashinsky equation have been studied [START_REF] Chaté | Transition to turbulence via spatio-temporal intermittency[END_REF] highlighting the spatiotemporal route to chaos and its relevance to the hydrodynamic transition. The exponential distribution of the laminar gaps being a signature of spatiotemporal intermittency was established through such models.

Structure of the thesis

With this background, the thesis is aimed at extending the understanding of the self-organization of turbulence into large-scale coherent structures in wall-bounded shear flows. In this pursuit, answers to the following questions are explored in the thesis:

1 [START_REF] Dauchot | Finite amplitude perturbation and spots growth mechanism in plane Couette flow[END_REF], pPf [START_REF] Carlson | A flow-visualization study of transition in plane Poiseuille flow[END_REF][START_REF] Henningson | On turbulent spots in plane Poiseuille flow[END_REF], CPf (Klotz et al., 2017) and Wf [START_REF] Schumacher | Evolution of turbulent spots in a parallel shear flow[END_REF]. Once triggered, spots either grow or decay depending on the amplitude of the perturbation and the Re of the flow. This propensity to either grow or decay was used to predict a critical Re for pCf [START_REF] Dauchot | Finite amplitude perturbation and spots growth mechanism in plane Couette flow[END_REF]. The anatomy of the spots reveal a streaky core in pCf [START_REF] Lundbladh | Direct simulation of turbulent spots in plane Couette flow[END_REF][START_REF] Dauchot | Finite amplitude perturbation and spots growth mechanism in plane Couette flow[END_REF], pPf [START_REF] Carlson | A flow-visualization study of transition in plane Poiseuille flow[END_REF], CPf [START_REF] Klotz | Experimental measurements in plane Couette-Poiseuille flow: dynamics of the large-and small-scale flow[END_REF] as well as Wf [START_REF] Schumacher | Evolution of turbulent spots in a parallel shear flow[END_REF][START_REF] Chantry | Turbulent-laminar patterns in shear flows without walls[END_REF] and surrounded by a large-scale flow in all cases. The proliferation of turbulence by the growth of spots occurs with streak nucleation caused by the destabilization of the interface between laminar flow and the turbulent spot [START_REF] Henningson | Wave growth and spreading of a turbulent spot in plane Poiseuille flow[END_REF][START_REF] Dauchot | Finite amplitude perturbation and spots growth mechanism in plane Couette flow[END_REF][START_REF] Couliou | Spreading of turbulence in plane Couette flow[END_REF]. The growth as well as the shape of the spot are greatly influenced by the large-scale flow (Couliou andMonchaux, 2015, 2018;[START_REF] Duguet | Oblique Laminar-Turbulent Interfaces in Plane Shear Flows[END_REF]. The far field of such large-scale flow dictate the interaction between two or more spots in the domain. The large-scale flow outside the spot was reported to decay exponentially in the case of Wf [START_REF] Schumacher | Evolution of turbulent spots in a parallel shear flow[END_REF]. A similar exponential decay for the tails of a localized equilibrium solution in pCf was found from numerical simulation supported by a normal mode linear analysis of the decay of the tails [START_REF] Gibson | Spanwise-localized solutions of planar shear flows[END_REF]. Exponential decay suggests that the spot interactions are short range. However, a more recent analytical work studying the response of a pointwise forcing to a stress free shear flow by means of linearized analysis, predicted an algebraic decay of the tails with a decay exponent of +3 [START_REF] Wang | Quadrupolar flows around spots in internal shear flows[END_REF]. The subsequent chapters will deal with the study of spots in different wall-bounded shear flows resolving this disagreement in the existing literature.

2.1 Wall-bounded shear flows The domain in all cases is the flow between two walls with wall boundary conditions dependent on the flow case. This geometry is best described in terms of the Cartesian coordinate system x, y, z representing the streamwise, wall-normal and spanwise directions respectively. In pCf both the upper and lower walls at The velocity field is decomposed into a laminar base flow U = (U L (y), 0, 0) and a perturbation u = (u x , u y , u z ) as :

U w -U w y x (a) V V τ w = 0 τ w = 0 (b) U w = 0 U w P - P + (c) U w = 0 U w = 0 P + P - (d) 
u(x, t) = U(y) + u (x, t) (2.1)
The control parameter in all the flow cases is the Re defined as Re = U h/ν where, U is the characteristic velocity scale of the flow, h is the half gap of the pCf

: U L (y) = y (2.2) pPf : U L (y) = (1 -y 2 ) (2.3) cPf : U L (y) = 3 4 (y 2 -1) + 1 2 (y + 1) (2.4) Wf : U L (y) = sin(βy) (2.5)
These non-dimensional laminar base profiles (U L , 0, 0) were incorporated in Channelflow for the simulations of pCf, pPf and CPf. The details of the implementation in Channelflow are given in Appendix A

Simulation parameters

The simulations of pCf, pPf and CPf were performed in Channelfow for different Reynolds numbers and different domain sizes. The extents of the domain are nondimensionalized by the channel half gap h and given as L x , 2, L z -streamwise, wall-normal and spanwise extents respectively. The numerical resolution adopted in these simulations are such that N x /L x , N y , N z /L z = 4,33,4 with N y = 65 for the higher Reynolds numbers. The resolution indicated incorporates the additional modes for dealiasing. The Waleffe flow was simulated with the resolution of N x /L x ,N y ,N z /L z =3.2,4,3.2. A discussion on the domain size required and the adequacy of the resolution is discussed in section 2.4. The initial condition for triggering the spots is the same as described by [START_REF] Lundbladh | Direct simulation of turbulent spots in plane Couette flow[END_REF] and tilted with an arbitrary angle to eliminate symmetry. The initial condition is an exponentially decaying function without any predefined large scale flow. The Channelflow simulations were performed under an imposed pressure gradient with the spanwise pressure gradient set to zero for all flow cases. The streamwise pressure gradient was set to zero for the case of pCf but for pPf and CPf, they were computed from the analytical relations for laminar base flow for the requisite Reynolds number. The results are presented after the passage of an initial transient to allow for the development of the large-scale flow. This time is estimated to be around T ≈ 50 for the domain of L x = L z = 1280. pCf at Re = 400 was used as a test case to validate the adequacy of domain size and resolution.

Large-scale flow topology

In line with the analysis of the large-scale flow outside the turbulent region in [START_REF] Duguet | Oblique Laminar-Turbulent Interfaces in Plane Shear Flows[END_REF], a two dimensional description is made with the wall-averaged perturbation velocity components ( Ūx , Ūy , Ūz ): In pCf, the mismatch of the velocity in the overhangs [START_REF] Duguet | Oblique Laminar-Turbulent Interfaces in Plane Shear Flows[END_REF] results in a flow directed towards the core of the spot in the x direction and due to incompressibility conditions, an outward flow appears in the z direction thereby accounting for the structure seen in the xz plane. A similar argument is made for the case of Wf [START_REF] Chantry | Turbulent-laminar patterns in shear flows without walls[END_REF]. The quadrupolar structure for the large-scale flow in pCf has been reported by [START_REF] Lagha | Modeling of plane Couette flow. I. Large scale flow around turbulent spots[END_REF]; [START_REF] Duguet | Oblique Laminar-Turbulent Interfaces in Plane Shear Flows[END_REF] and predicted in the study by [START_REF] Wang | Quadrupolar flows around spots in internal shear flows[END_REF]. However, additional vortices in the xz plane close to the spot have also been predicted by [START_REF] Wang | Quadrupolar flows around spots in internal shear flows[END_REF] which are not seen in these simulations and are not relevant for the analysis of the far field. Such a dipolar flow surrounding the spot in pPf and CPf is reported for the first time with this study and has not been previously documented. Contrary to this finding, a quadrupolar structure surrounding the spot has been documented in pPf [START_REF] Lemoult | Turbulent spots in a channel: largescale flow and self-sustainability[END_REF] (L z = 7.5h) and CPf [START_REF] Klotz | Experimental measurements in plane Couette-Poiseuille flow: dynamics of the large-and small-scale flow[END_REF] 

Ūx = ¢ u x dy , Ūy = ¢ u y dy , Ūz = ¢ u z dy. ( 2 
(L z ≈ 96h),
but the effect of confinement by the walls in the spanwise direction due to their limited extent has not been examined.

Decay of turbulent fluctuation

In order to accurately capture the velocity tails, a parametric study with the For the change of resolution N x /L x from 2 to 16 in factors of two, negligible improvement is obtained for a resolution higher than N x /L x = 4. The lowest resolution was observed to create pointwise fluctuations in the velocity tails for amplitudes < 10 -5 which reduced with increased resolution. Such fluctuations arise due to the projection of a highly localized field on a truncated Fourier basis i.e the Gibbs phenomena [START_REF] Canuto | Spectral Methods in Fluid Dynamics[END_REF]. These numerical artefacts have been observed in the simulation of Wf as well, which also utilizes a spectral discretization. The same has also confirmed with the simulations performed in another well known spectral code called SIMSON [START_REF] Duguet | Formation of turbulent patterns near the onset of transition in plane Couette flow[END_REF].

The computed decay exponent for the case of pCf is +3. This matches with the predicted decay exponent for the algebraic decay by [START_REF] Wang | Quadrupolar flows around spots in internal shear flows[END_REF]. The computed value of the exponent appears robust to increases in numerical resolution. Further analysis of the results is presented for the domain of

L x ×L y ×L z = 1280×2×1280 with a numerical resolution of N x × N y × N z = 5120 × 65 × 10240.
Chapter 3 Analysis of the far field of spots

2D kinematic hypothesis

The turbulent spot is the source of the large-scale flow field. A quadrupolar or dipolar field surrounding a source draws parallels from classical descriptions of these fields in electromagnetism. In hydrodynamics, such flow field configurations are observed with sources of mass, sources of vorticity or pointwise forces [START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF][START_REF] Kim | Microhydrodynamics: Principles and Selected Applications[END_REF]. A combination of such sources of mass and force is commonly used in the analysis of the disturbance flow field generated by a single particle / organism in the Stokes flow regime [START_REF] Kim | Microhydrodynamics: Principles and Selected Applications[END_REF]. The irrotationality of the far field of the spots, streaky nature of the core of the spot and the absence of any wall-normal vorticity in the laminar base flow motivates to consider the turbulent spot as a vortex source rather than a source of mass / force. Unlike the case of the Stokes regime where analytical solutions are possible, the current scenario is fully nonlinear. To overcome this difficulty, a kinematic analysis of the spot is made by considering it as a source of wall-normal vorticity. It is followed by validating the predictions from kinematics with the results of the numerical simulation. This methodology is adopted to motivate answers to the question "Why do we see a quadrupolar / dipolar flow around the spot ?", "Is there a link between the flow field around the spot and the algebraic decay of the velocity tails ?". In this chapter, a 2D kinematic analysis is made for the wall-averaged velocity components in the xz plane ( Ūx , Ūz ) defined as in Eq 2.6.

For the two dimensional velocity field U = ( Ūx , Ūz ), a stream function ψ can be defined such that Ūx = ∂ψ/∂z and Ūz = ∂ψ/∂x. The 2D field satisfies the 2D continuity equations and a wall-normal vorticity ω can be defined such that :

∇ ⊥ • Ū = 0 ; ∇ ⊥ × Ū = ωe y , (3.1)
where ∇ ⊥ = e x ∂ x + e z ∂ z . The vorticity is related to the stream function by the Poisson equation :

∇ 2 ⊥ ψ = -ω. (3.2)
For a given concentrated vorticity source distribution in 2D space (Fig 3 .1), the stream function at a point outside the source can be obtained by solving Eq 3.2

with the Green's function for a 2D unbounded domain [START_REF] Alekseenko | Theory of concentrated vortices: an introduction[END_REF][START_REF] Batchelor | An Introduction to Fluid Dynamics[END_REF].

ψ = - 1 2π ¢ ln |r -r | ω(r , θ ) dS(r , θ ), (3.3) 
where (r, θ) is the radial and angular position of the point of observation, (r , θ ) is the radial position of the vortex source in the source distribution, dS is an infinitesimal area element. 

ln |r -r | = 1 2 ln r 2 + r 2 -2 r r cos(θ -θ ) (3.4) = 1 2 ln r 2 1 + r 2 r 2 -2 r r cos(θ -θ ) (3.5) = ln(r) + 1 2 ln 1 + r 2 r 2 -2 r r cos(θ -θ ) (3.6)
For the far field i.e r r the second term in Eq 3.6 can be expanded as a

Taylor series for 1:

ln (1 + ) = - 2 2 + 3 3 + • • • (3.7) = r 2 r 2 -2 r r cos(θ -θ ) - r 2 r 2 -2 r r cos(θ -θ ) 2 + • • • (3.8)
Gathering the terms with the same powers of r /r, the infinite sum known as the multipolar solution can be written in polar coordinates as :

ψ(r, θ) = - ln(r) 2π ¢ ω dS + 1 2π ∞ k=1 1 r k ¢ (r ) k cos (k(θ -θ )) ω dS. (3.9)
The first term is called as the monopole and the subsequent terms of the series with k = 1, 2 • • • are respectively called as dipole, quadrupole, octupole etc. While the spot has a 3D structure and the above analysis is valid for an unbounded 2D domain, it is hypothesized that the effective 2D velocity field Ūx , Ūz of the simulations can be obtained by the stream function relation of Eq 3.9. The resemblance between the classical dipole and quadrupole generated by point vortices and the flow structure seen in the simulations gives support to this hypothesis. However, the validity of the hypothesis will be based on the close match between simulated data and the analytical predictions.

This hypothesis treats the spot as a concentrated source of vorticity distribution generating a flow in the far field. The irrotationality of the far field of the spot implies that the source does not have a net vorticity. From Eq 3.9, this is interpreted as the absence of the monopole. Thus, the velocity field surrounding the spot is given by the stream function relation

ψ(r, θ) = ∞ k=1 1 r k ¢ (r ) k cos (k(θ -θ )) ω dS.
(3.10)

Results and validation

In polar coordinates, the velocity field is related to the stream function as :

Ūr = 1 r ∂ψ ∂θ ; Ūθ = - ∂ψ ∂r (3.11)
The velocity field for the k th pole is given by :

Ūr = -k r k+1 ¢ (r ) k sin (k(θ -θ )) ω dS (3.12) Ūθ = k r k+1 ¢ (r ) k cos (k(θ -θ )) ω dS (3.13)
Translating it into the Cartesian frame of reference using the relation :

e r = cos θ e x + sin θ e z , (3.14) 
e θ =sin θ e x + cos θ e z .

(3.15)

The velocity field is given by :

Ūx = -k r k+1 ¢ (r ) k sin ((k + 1)θ -kθ )) ω dS, (3.16) Ūz = k r k+1 ¢ (r ) k cos ((k + 1)θ -kθ )) ω dS.
(3.17)

This relation clearly demarcates the algebraic nature of the decay of velocity in the individual poles and also fixes the decay exponents to be expected. The analytical form of the velocity components hints at the methodology to decouple the contribution of the individual poles to the velocity field. A Fourier analysis for a fixed radius in the azimuthal direction will yield a spectrum whose modal amplitudes are an indication of the strength of the individual poles. Thus, the strength of the dipole (k = 1) will be captured by the amplitude of the mode m = 2 i.e m = k + 1. Similarly for the quadrupole (k = 2, m = 3) and the higher order poles. The relative energy of the pole k can be defined as :

fk (r) = |A k (r)| 2 m=k+1 ∞ k=1 |A k (r)| 2 , (3.18)
wherein the amplitudes A k (r) is given by the Fourier transform The quadrupole is seen to dominate with f 2 > 0.9 for both pCf and Wf where as the dipole contains nearly all the energy with f 1 > 0.9 for pPf and CPf. This quantifies the visual picture seen previously. From Eq 3.16, 3.17, the dipole is expected to decay with a decay exponent of +2 whereas the quadrupole must decay with the decay exponent of +3. It is evident from the analysis of pCf in the domain of L x = L z = 320 that the velocity tail does decay algebraically with a decay exponent of +3.

A k (r) = ¢ 2π 0 Ūx (r, θ) e i2πθ k dθ (3.19)
A more robust methodology to compute the decay exponent rather than curve fitting the velocity tails along any arbitrary direction, is to consider the decay of the pole strength gathered from the Fourier analysis. The decay exponent is computed from these amplitudes as :

α = - ln(A k (r)/A k (r 1 )) ln(r/r 1 ) (3.20)
where r is sampled evenly in (75, 600) and • indicates its average value. The decay exponent for pCf and Wf can be approximated as +3 with an error of 1%.

Similarly, for the case of pPf and CPf the exponents are computed as +2 within an error margin of 5%. The flow structure and consequently, the decay exponent are independent of the Reynolds number of the simulation. The higher errors seen for cases with higher Re is due to the faster growth rate of spots leading to finite size effects for analysis at finite times. The computed decay exponents are tabulated below for all the four shear flow cases. While a 2D analysis gives a good agreement between theory and simulations, the flow field is inherently 3D. Tracking the relative energy of the poles as a function of the y coordinate, it is seen from fig 3.4, that for pCf and Wf, f 2 > 0.9 in all the planes with negligible energy in the dipole. Thus, the quadrupole remains the dominant structure in every plane. For the case of pPf and CPf, the dipole remains the dominant pole with f 1 > 0.8. The dipolar character for CPf is seen to be more prominent for -0.5 ≤ y ≤ 0.5 with f 1 > 0.8 while it slightly reduces near the walls. However, the dipole still remains the dominant pole with f 2 < 0.2.
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This indicates that the CPf cannot be considered as just a superposition of pPf and pCf.

Flow symmetry

The agreement between 2D kinematics and the simulations validates its application. From kinematics, the velocity field is given as the summation of an infinite series of poles each decaying algebraically in space with a higher decay exponent than the previous pole in the series. Thus, the decay in the far field will have the exponent of the leading order term of the series. With the absence of the monopole, the leading order term is the dipole. The observation of the quadrupole in the case of pCf and Wf implies that the dipole also vanishes. The laminar base flow as well as the turbulent mean flow of both pCf and Wf satisfies rotational symmetry :

S : [U x , U y , U z ](x, y, z) - → [-U x , -U y , U z ](-x, -y, z). (3.21)
This is applicable to the 2D y-averaged field of ( Ūx , Ūz ) as well and can be written as :

S 2 : [U x , U z ](x, z) - → [-U x , U z ](-x, z). (3.22)
The dipolar structure does not posses this symmetry and thus cancels out in flow conditions that remain invariant under S 2 . The next term in the series is the quadrupole which satisfies S 2 and becomes the leading order term. Thus, flow cases wherein rotational symmetry is seen i.e pCf,Wf exhibit a quadrupolar flow structure. Whereas, in the case of pPf and CPf, the applied pressure gradient breaks this symmetry and the dipole remains as the leading order term and is evidenced by the dipolar flow structure.

Effect of confinement

The domain under consideration is very wide compared to the extents in the wallnormal direction. Such confined domains are typically used to study the motion of bacteria suspended in quiescent fluid in the regime of Stokes flow (Re 1). The analytical approach to study the disturbance flow field of a single organism in such flow cases is with force and source singularities of the Stokes flow [START_REF] Kim | Microhydrodynamics: Principles and Selected Applications[END_REF][START_REF] Spagnolie | Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations[END_REF]. In such scenarios, application of the 2D formulation rather than 3D is found to agree well with the experimental results, which is argued to be due to a screening effect of confinement by the walls [START_REF] Diamant | Hydrodynamic interaction in confined geometries[END_REF][START_REF] Brotto | Hydrodynamics of confined active fluids[END_REF][START_REF] Jeanneret | Confinement enhances the diversity of microbial flow fields[END_REF]. A similar screening effect by the walls can also explain the applicability of the 2D formulation in the current scenario despite the vast difference in the flow regimes.

Alternative approach The far field of the spot was analyzed using kinematics and the consideration that the spot is a concentrated vortex source. Alternatively, the spot could also be considered as source of mass and force. These approaches of modelling the spot are in line with the analysis of the disturbance field generated by a single particle or organism in the Stokes flow regime [START_REF] Kim | Microhydrodynamics: Principles and Selected Applications[END_REF].

In all such cases, the sources / forces are considered in combinations such that no net force / torque is exerted on the fluid nor is incompressibility violated. The resulting velocity field is written as a multipole expansion similar to that explored herein. For a 2D multipole solution excluding the monopole, the terms in hierarchy with increasing propensity for decay are the source dipole (∼ r -2 ), the force dipole (∼ r -3 ) and the subsequent higher order poles. The flow field generated by the dipoles are shown in fig 3.5. The force dipole is generated by a 3 force system with the forces acting on a plane parallel to the walls and is adapted from [START_REF] Jeanneret | Confinement enhances the diversity of microbial flow fields[END_REF]. The source dipole consists of a mass source & sink and is adapted from [START_REF] Spagnolie | Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations[END_REF]. Though the source dipole in [START_REF] Spagnolie | Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations[END_REF] has been derived for 3D, the planar velocity field depicted in fig 3.5a is the same for the source dipole with the combination of a source and sink in the 2D case as well [START_REF] White | Fluid Mechanics[END_REF]. These flow fields bear a remarkable similarity to the large scale flow generated by the turbulent spot. In 2D, the source dipole decays as ∼ r -2 [START_REF] Brotto | Hydrodynamics of confined active fluids[END_REF] while the force dipole decays as ∼ r -3 [START_REF] Jeanneret | Confinement enhances the diversity of microbial flow fields[END_REF]. In analogy with the Stokes flow regime, the turbulent spot in pPf and CPf could be considered as a source dipole.

The mass source and sink in the dipole can be thought of as creation of mass at the downstream interface and destruction of mass in the upstream interface.

Modelling this way implies that the spot in both pPf and CPf advect downstream relative to the mean streamwise flow. The short observation times of the simulations carried out restricts accurate measurement of any relative velocity of the spot with respect to the mean bulk velocity. Longer time simulations lead to spot growth and metamorphosis into bands or featureless turbulence depending on Re [START_REF] Tsukahara | Transition to/from turbulence in subcritical flows between two infinite parallel plates[END_REF]Klotz et al., 2017). The turbulent bands in pPf are observed to advect relative to the mean streamwise bulk velocity [START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF].

In the case of CPf, spots have been documented to advect in the direction of the moving wall with U ≈ 0.095U W (Klotz and Wesfreid, 2017) .

Similarly, the spot in the case of pCf and Wf can be thought of as a force dipole.

The Traditionally, the flow through the channel has been driven either by a fixed pressure gradient or by maintaining a constant streamwise flow rate. A slightly less encountered situation is the flow driven with constant power input [START_REF] Hasegawa | Numerical simulation of turbulent duct flows with constant power input[END_REF]. The protocol of an imposed bulk flow enforces a constant U b defined as :

U b = 2 h ¢ Lx 0 ¢ h -h ¢ Lz 0 u x dx dy dz, (4.1)
and the fixed pressure gradient imposes a mean shear stress. This can be seen from the Navier-Stokes equations (in Einstein notation):

∂u i ∂t + ∂u i u j ∂x j = - 1 ρ ∂p ∂x i + ν ∂ 2 u i ∂x 2 j (4.2)
where ν is the kinematic viscosity of the fluid and ρ is its density. Consider the decomposition of the velocity and pressure field into a mean (ū, p) and a fluctuating part (u , p ) :

u = ū + u (4.3) p = p + p (4.4)
Incorporating the decomposition into the Navier-Stokes equations and time averaging:

∂ ūi ūj ∂x j + ∂u i u j ∂x j = - 1 ρ ∂ p ∂x i + ν ∂ 2 ūi ∂x 2 j (4.5)
The time derivative vanishes with the assumption of a statistically steady state.

Rearranging the terms results in: Consider the volume integral of Eq 4.6 :

1 ρ ∂ p ∂x i = ∂ ∂x j ν ∂ ūi ∂x j Mean shear stress -u i u j
¦ 1 ρ ∂ p ∂x i dV = ¦ ∂ ∂x j ν ∂ ūi ∂x j -u i u j -ūi ūj dV (4.7)
where dV is a volume element. Considering the streamwise component (constant pressure gradient Π is imposed) and applying the Gauss divergence theorem:

1 ρ ΠL x L y L z = ν ∂ ūx ∂x j • ndS - u x u j • ndS - ūx ūj • ndS (4.8)
where dS is the infinitesimal area element and n is the unit normal vector of the surface. Expanding the surface integral of the mean shear stress term onto the six surfaces i.e., top (n y ), bottom (-n y ), right (n x ), left (-n x ), front (-n z ) and back (n z ) :

∂ ūx ∂x j • ndS = ¤ ∂ ūx ∂x j top dx dz - ¤ ∂ ūx ∂x j bottom dx dz + ¤ ∂ ūx ∂x j right dy dz - ¤ ∂ ūx ∂x j lef t dy dz - ¤ ∂ ūx ∂x j f ront dx dy + ¤ ∂ ūx ∂x j back dx dy (4.9)
The imposed periodic boundary conditions imply that the surface integrals evaluated on the right and left surfaces negate each other. Similarly for the front and back surfaces. At the top and bottom walls, both u i and ūi are zero due to the no-slip boundary condition. Thus, the mean shear stress term will contain only ∂ ūx /∂y evaluated at the two walls:

∂ ūx ∂x j • ndS = ¤ ∂ ūx ∂y top dxdz - ¤ ∂ ūx ∂y bottom dxdz (4.10)
Following the methodology of evaluating the surface integral as in Eq 4.9, the Reynolds stress term as well as the advective term reduce to zero. This occurs by virtue of the no-slip boundary condition at the walls and the imposed periodicity in the streamwise and spanwise directions. Thus, Eq 4.8 reduces to: 

Π = µ L x L y L z ¤ ∂ ūx ∂y top - ∂ ūx
u τ = τ w ρ , (4.12)
where τ w is the average shear stress at the walls (y = ±h) of the channel.

Representing the average in the xz plane as • , the average shear stress at the walls is written as :

τ w = 1 2 ( τ | -h + τ | h ). (4.13)
For an imposed pressure gradient in the streamwise direction driving the flow and a zero pressure gradient imposed in the spanwise direction, the shear stress at the walls is written as : 

τ | ±h = µ ∂u x ∂y ±h , ( 4 

Motivation

The study on the transitional regime of pPf revolves around the following questions :

How do patterns of alternating laminar and turbulent bands evolve with Re in pPf and what is its geometry in extended domains ? What causes pattern formation in pPf ? Can an instability be established ?

pPf has a linear instability at Re cl = 5772.20 [START_REF] Orszag | Accurate solution of the Orr-Sommerfeld stability equation[END_REF]) however, transition to turbulence is observed for much lower values of Re cl . Triggering turbulence with finite amplitude disturbances, early studies have documented the occurrence of spots in pPf that could be sustained for Re cl > 1000 [START_REF] Carlson | A flow-visualization study of transition in plane Poiseuille flow[END_REF][START_REF] Alavyoon | Turbulent spots in plane Poiseuille flow-flow visualization[END_REF]. Charting the route from the fully turbulent regime to the laminar regime, skin friction coefficient C f was measured in early experiments [START_REF] Dean | Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow[END_REF][START_REF] Patel | Some observations on skin friction and velocity profiles in fully developed pipe and channel flows[END_REF]. These measurements demarcated the different properties of the laminar, transitional and fully turbulent regimes. A selforganization of turbulence into spatially localized regions forming alternate bands of turbulent and quiescent regions was documented for Re τ ≤ 80 [START_REF] Tsukahara | Dns of turbulent channel flow at very low reynolds numbers[END_REF]. The larger elongated near wall structures necessitated larger domain size of L x × L y × L z = 51.2 × 2 × 22.5) (nondimensionalized by the channel halfgap)

for accurate resolution of the transitional regime [START_REF] Tsukahara | Dns of turbulent channel flow at very low reynolds numbers[END_REF].

This spatial organization is similar to the patterns found in pCf with oblique bands [START_REF] Prigent | La spirale turbulente: motif de grande longueur d'onde dans les écoulements cisaillés turbulents[END_REF] et al., 2014). This pattern was called turbulent-laminar pattern and was observed for values of Re cl as low as Re cl = 1400. Isolated bands existing transiently with the laminar regime being the asymptotic state were found for 800 ≤ Re cl ≤ 1100.

These isolated bands portray branching or nucleation of new turbulent bands [START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF][START_REF] Tsukahara | Transition to/from turbulence in subcritical flows between two infinite parallel plates[END_REF]. These independent turbulent bands were observed to be sustained up to Re cl = 660 in simulations with domains of L x × L y × L z = 200 × 2 × 160 (nondimensionalized by the channel half-gap) [START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers[END_REF]. The band growth along its oblique direction and splitting was found to sustain turbulence for Re cl > 1000. However, even for values as low as Re cl = 660, an "indefinite" growth of the bands along its oblique direction was documented. The imposed boundary conditions and the finite size of the domain leads to the band interacting with itself followed by fracture and decay.

Studying the decay of turbulence generated by a grid at the entrance of the chan- In the backdrop of these studies, the subsequent chapters will be devoted towards answering the questions raised at the beginning of the section. In the following chapters the morphology of the transitional regime is presented, the geometric properties of the patterns are described in terms of the band angles, conditional statistics of shear stress and bulk flow are computed and evidence for a mechanism leading to pattern formation is shown.

Simulation parameters

Similar to the previous chapters, the simulations of pPf were carried out in Chan-nelflow2.0 for a Newtonian incompressible fluid with the laminar base flow set according to Eq 2.3. The velocity field u is analyzed with the same decomposition :

u(x, t) = U(y) + u (x, t) (4.15) 
where U = (U L (y), 0, 0) is the laminar base flow and u = (u x , u y , u z ) is the perturbation. A constant pressure gradient Π x < 0 is imposed in the streamwise direction according to the desired Reynolds number while a zero pressure gradient is imposed in the spanwise direction. As in the previous chapter, all velocity fields are nondimensionalised by U cl i.e laminar centerline velocity while all length scales are nondimensionalised by the channel half gap h and time is indicated in units of h/U cl . Unlike the previous chapters, the control parameter will be the Reynolds number defined with the friction velocity i.e Re τ . This Reynolds number will be denoted as Re G τ with G indicating global (imposed), to distinguish it from other definitions to be introduced further on. As a convention all notations with primed quantities are defined in the same way as their unprimed counterparts but involving only the perturbation velocity field.

All spatial averages over the discrete grid (x, z) will be denoted by • while the wall-average will be indicated as • y . The time averages computed as the discrete mean of the snapshots of flow taken at equal time intervals are given by •. Thus, the space space-time averages are given by ¯

• . Two different domains While not being able to capture any possible critical behaviour near the global stability threshold, simulations down to Re G τ = 39 cover nearly the entire transition regime of pPf. It was decided that this would be sufficient to answer the questions posed in section 1.5.

L x = 2L z =
The initial condition for triggering turbulence is a random distribution of multiple seeds (∼ 250 in number) within the domain and are similar to that described by [START_REF] Lundbladh | Direct simulation of turbulent spots in plane Couette flow[END_REF]. The time required to reach a statistically steady regime for Re G τ = 100 is estimated to be T ≈ 1500 which increases for lower Re G τ , with T ≈ 7000 for Re G τ = 40. The analysis is presented for data gathered by excluding such transients with a maximum simulation time up to T = 2 × 10 4 .

Morphology of the transitional regime

An overview of the different states seen during the adiabatic descent is shown in 1 The nomenclature of ITBs is adopted in line with the introduction of the terminology in [START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers[END_REF] and is the same as localized turbulent bands (LTBs) in (Shimizu and Manneville, 2019a) x (y + ) for Re G τ from 100 down to 39. Blue: law of the wall ¯ u + x = y + , red: logarithmic law of the wall ¯ u + x = 2.5log(y + ) + 5.5, black: DNS results from [START_REF] Kim | Turbulence statistics in fully developed channel flow at low Reynolds number[END_REF] 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Advection velocity of turbulent bands

The patterning regime appears to be frozen (for observation times 5 × 10 3 )of without any changes in its large scale ordering, even though the fluctuations inside the turbulent bands persist. This results in a relatively static state with the pattern advecting downstream as more or less a single block. It is observed that this advection velocity closely matches the mean streamwise bulk velocity ¯ u x and the pattern appears nearly immobile in a reference frame moving at ¯ u x . The advection velocity of the pattern U tb is extracted from space-time variation of τ (x, z, t) were noted for each of the bands and the velocity computed as ∆x/∆t.

Comparing the velocity of patterns and ITB computed in large domains with that of tilted domains, an agreement between the two is observed where pattern velocity is close to the bulk velocity at Re G τ ≈ 65. For Re G τ > 65 the tilted domain appears to overestimate the velocity with a maximum deviation of 50% of the current evaluation, while for Re G τ < 65 the velocity is under estimated by a factor of eight at maximum deviation. These results suggest that while the tilted domain captures the trend of the velocity of patterns and ITB with Re G τ , its magnitude is captured only with extended domains.

Similar to turbulent puffs in pipe flow, the ITB travel faster than the bulk velocity [START_REF] Hof | Turbulence Regeneration in Pipe Flow at Moderate Reynolds Numbers[END_REF]. However, unlike pipe flow or simulations in the tilted domain, the dynamics of the ITB in extended domains are fully 2D. Their collisions, nucleations and splitting occur in the xz plane. The dominance of one orientation over the other for Re G τ < 42 is associated with a symmetry breaking bifurcation and has been modelled based on a predator-prey relationship resulting in a transition to bands with a single orientation (Shimizu and Manneville, 2019a). The resulting bands are found to grow in length along their oblique direction forming long bands similar to those reported in [START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers[END_REF][START_REF] Tao | Extended localized structures and the onset of turbulence in channel flow[END_REF]. 

(a) (b) (c) (d) (e) (f) (g) (h)

Spatiotemporal intermittency

Spatiotemporal intermittency (STI) can be defined in a loose sense as given in [START_REF] Chaté | Spatiotemporal Intermittency[END_REF]:

It has to be understood, not in the rather well-defined meaning it has been given in the context of the "universal routes to chaos", but rather in the looser sense sometimes used in fluid turbulence when, e.g. the irregular passage of turbulent plugs in a pipe flow is represented by a telegraphic signal. Spatiotemporal intermittency thus refers to situations in which both snapshots of this observable in the system and its local time series are akin to telegraphic signals. Defined this way, intermittency assumes the existence of two local states in the system (related, e.g., to the two-hump pdf of some local variable).

In a more rigorous way, it is seen as the presence of two attracting states in phase space manifesting as competing domains in physical space. Borrowing the definition from [START_REF] Manneville | Spatiotemporal Intermittency[END_REF]:

When one of the two competing regimes is chaotic ("turbulent") and the other regular ("laminar"), the system can fluctuate in both space and time giving rise to a specific turbulent regime called spatiotemporal intermittency (STI).

A key criteria to this definition is the absorbing nature of the regular state [START_REF] Chaté | Spatiotemporal Intermittency[END_REF] :

The crucial additional property required is that the regular/laminar state be absorbing, i.e. that the irregular/turbulent state does not appear spontaneously in the middle of a regular region, and that the interplay between the two local states is governed by a local recession/invasion process at the borders.

The onset of STI follows a critical behaviour characterized by algebraic scaling of the cumulative distribution of laminar gaps. However, away from the thresh-old (in the STI regime) the scaling would be exponential [START_REF] Chaté | Transition to turbulence via spatio-temporal intermittency[END_REF]. In the case of laminar to turbulent transition, it has been conjectured that the onset of STI would fall into the universality class of directed percolation [START_REF] Pomeau | Front motion, metastability and subcritical bifurcations in hydrodynamics[END_REF]. This has been demonstrated for Couette flow with experiments as well as simulations in long narrow tilted domain of L x × L z = 1920 × 10 and simulation times of the order of O(10 5 ) [START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in Couette flow[END_REF] The scaling of the streamwise laminar gaps serves as a good starting point to analyze the closeness of the system to a critical point. The streamwise laminar gaps are evaluated as peak-to-peak distance l of τ (x, z) along the streamwise direction at all spanwise coordinates for the steady state of the system. This is similar to the definition set in [START_REF] Chantry | Universal continuous transition to turbulence in a planar shear flow[END_REF] for the streamwise laminar gap in Wf. The cumulative distribution of these gaps is computed by gathering the peak-to-peak data and organizing them in an increasing order as (l 1 , l 2 , l 3 , • • • l N ) i.e l i < l i+1 for all i = 1, 2, 3, • • • N -1 and evaluating: The average size of the laminar gap λ is extracted from this distribution by fitting an exponential function to the tail of the distribution and taking the reciprocal of the absolute value of the exponent. While λ is observed to increase with decreasing Re G τ , it is to be noted that λ is computed from the tail of the distribution and does not correspond to the actual mean laminar gap. This deviation arises because P is not fully exponential and only has an exponential tail. The mean streamwise band gap ¯ l x 1,2 is computed by segregating the bands and computing the peak-to-peak distance at every spanwise coordinate and averaging.

P (l i > l x ) = 1 - i N ∀ i = 1, 2, 3 • • • N -1, ( 4 

Turbulent band orientation

θ F (t) = tan -1 (λ z /λ x ), ( 
The subscripts 1, 2 indicate the mean distance between acute and obtuse angled bands respectively. A similar methodology is adopted to compute the mean spanwise band gap ¯ l z 1,2 .

Both ¯ l x 1,2 and ¯ l z 1,2 are observed to increase proportionately for 60 ≤ Re 

Summary

The results presented in this chapter have been in an effort to quantify features of the transitional regime of pPf in large domains. While finite-size effects will always play a role, the large domains considered here are thought to sufficiently capture the unhindered dynamics of the system. The multiple methodologies detailed and the juxtaposition of the results with published data showcase the necessity for large domains and long times simulations. The results presented are summarized as :

• Representative bifurcation diagram for pPf : • Patterns travel slower than the bulk velocity for 65 ≤ Re G τ ≤ 90 and faster than the bulk velocity for 50 ≤ Re G τ ≤ 60. The ITBs retain this acceleration and continue to travel faster than the bulk velocity.

• The ITBs are accompanied by DAHs portraying low turbulent fluctuations and appearing to sustain the entire bands as its tail.

• The streamwise laminar gaps are exponentially distributed indicating that the entire range of 39 ≤ Re G τ ≤ 100 is spatiotemporally intermittent and possible critical behaviour occurs necessarily for Re G τ < 39.

• The turbulent bands in the pattern display a mean angle of θ = 25 o ± 2.5 o for 90 ≤ Re G τ ≤ 60 which increases with reducing Re G τ and saturates around θ ≈ 40 o for Re G τ = 39.

Chapter 5

Global variables and high-order statistics

Turbulent fraction

The results of the previous chapters have showcased the spatiotemporal intermittency of the transitional regime. For the range 39 ≤ Re G τ ≤ 100, increase of Re G τ reduces the intermittency as turbulence occupies more of the domain. A measure of this intermittency and an indicator of the amount of turbulence in space is the turbulent fraction T f . It was first defined by [START_REF] Rotta | Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr[END_REF] as an intermittency factor (γ in the original notation) in the context of measurements from a sensor in pipe flow as :

T f = t T T , (5.1) 
where t T is the mean duration of a signal that can be classified as representing turbulence and T is the total time of the signal. T f has subsequently been defined as the fraction of space that is classified as being turbulent at a given time instant.

Its definition is such that T f = 0 indicates fully laminar flow and T f = 1 indicates featureless turbulence. It is considered as an order parameter for the laminar to turbulent transition. The discontinuous / continuous behaviour of T f (Re) signifies a continuous or discontinuous transition (Bottin et al., 1998;[START_REF] Bottin | Statistical analysis of the transition to turbulence in plane Couette flow[END_REF]. In demonstrating the directed percolation transition scenario in Wf as well as Couette flow in tilted domain, T f (Re) played the role of an algebraically scaling order parameter [START_REF] Chantry | Universal continuous transition to turbulence in a planar shear flow[END_REF][START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in Couette flow[END_REF].

The decay of the streamwise component of the turbulent fluctuations occur over longer length and time scales compared to the cross-stream velocity components.

Incorporating it into any definitions of T f leads to overestimation of turbulent regions. Disregarding it, different definitions of T f has been adopted in different studies by basing it on turbulent production in the mid-plane of pCf [START_REF] Duguet | Formation of turbulent patterns near the onset of transition in plane Couette flow[END_REF], magnitude of the transverse velocity in pipe flow [START_REF] Moxey | Distinct large-scale turbulent-laminar states in transitional pipe flow[END_REF] and u y + (x, 0, z) in pPf [START_REF] Takeda | Two-stage subcritical transition as directed percolation universality classes in plane Poiseuille flow[END_REF]. For all such definitions, the classification of a turbulent region is dependent on the specification of a cut-off value of the chosen parameter. In this study, the kinetic energy in the wall-normal direction E v defined as :

E v (x, z, t) = u y 2 y , (5.2)
is chosen as the observable for evaluating T f . To study the impact of thresholding, T f is computed with different cut-off values E c (n) defined as : (Shimizu and Manneville, 2019a) for varying degrees of filtering. This sensitivity to the cut-off value creates difficulties in using T f for predicting a critical value to the onset of featureless turbulence.

E c (n) = ¯ E v + n σ(E v ) (5.
Since Re G τ = 100 is recognizable as featureless turbulence, the turbulent fraction is normalized such that T f (100) = 1 resulting in the plot of fig 5.1b. The collapse of the different curves onto a single curve for n < 1 and the close proximity of the curves for n ≥ 1.0 suggests that the cut-off value merely rescales the absolute values and has no impact on the trend of T f (Re G τ ). The normalized T f decreases monotonically and continuously as Re G τ is reduced. The monotonicity of the decay is observed to have two different behaviours. The change in the trend coincides with the fracture of the pattern at Re G τ ≈ 50 and the formation of ITB. Such a change in the trend of turbulent fraction is also documented in (Shimizu and Manneville, 2019a;[START_REF] Takeda | Two-stage subcritical transition as directed percolation universality classes in plane Poiseuille flow[END_REF] wherein the turbulent fraction is computed with different methodologies.

Friction factor

The friction experienced by the fluid differs greatly between the regimes of laminar flow and turbulent flow thereby serving as an indicator of the two regimes. This difference has been traditionally used to identify the transition from one regime to the other [START_REF] Letellier | Intermittency as a transition to turbulence in pipes: A long tradition from Reynolds to the 21st century[END_REF]. A non-dimensional measure of this friction is the skin friction coefficient and is given by the Fanning friction factor defined as :

C f = 2|Π x | ρ ¯ u x 2 h L x = 2 ¯ τ ρ ¯ u x 2 = 2Re G τ 2 Re 2 b (5.4)
where Π x is the imposed pressure gradient with all the terms in Eq 5.4 expressed in their dimensional forms. For laminar flow in the channel,

C f = 6 Re b .
(5.5)

It is to be noted that the length scale in the definition of Re b is the channel half-gap h resulting in the factor 6 in the numerator. Most text books and early studies on channel flow use the full channel height 2h as the length scale yielding a factor of 12. For turbulent flow in smooth pipes, the relation between friction factor and Re was given by Blasius [START_REF] Blasius | Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens: insbesondere aus den Laboratorien der technischen Hochschulen, Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens[END_REF] as :

C f = 0.3164 (Re b ) 1/4 . (5.6)
This relation has been verified to be valid up to Re b ≈ 10 5 [START_REF] Nikuradse | Strömungsgesetze in rauhen Rohren (Laws of flow in rough pipes). VDI-Forschungsheft[END_REF].

In the case of channel flow, empirical relations for the friction factor has been obtained based on experiments [START_REF] Dean | Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow[END_REF] : [START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers[END_REF]Shimizu and Manneville, 2019a) and highlights the necessity of large domains to observe the plateau of C f . Such a plateau is reminiscent of the Maxwell's plateau for first-order equilibrium phase transition in thermodynamics. In the context of an analogy with the first-order transitions these results suggest that C f and Re b could be the right conjugate variables to probe the analogy further.

C f = 0.073 (2Re b ) 1/4 . ( 5 
The plot of fig 5.3 serves as a bifurcation diagram in a dynamical systems sense with a turbulent branch, laminar branch and the computed mean values indicating a connecting branch. C f ≈ 0.01 is also the value at which the deviation from the fully turbulent regime occurs in pipe flow as well [START_REF] Avila | On the nature of laminar-turbulence intermittency in shear flows[END_REF], highlighting a unique constant and an interesting similarity between the two wall bounded shear flows.

Probability distribution of turbulent fluctuations

While the discussion in the previous sections was based on the mean field properties of the system, the nature of the fluctuations is ascertained by the local flow properties. The values of the velocity components at the grid points are used to define a local flow rate and shear stress in dimensional form as :

u b (x, z, t) = u x y , (5.8) τ (x, z, t) = τ | -h + τ | h 2 (5.9) τ | ±h = µ du x dy ±h (5.10)
These definitions of local flow rate and shear stress are used to define a local Re τ (x, z, t) and Re b (x, z, t) similar to their global counterparts as : While the results are presented for Re b and Re τ , the same trend is observed from the distributions of E v as well as E cf .

Re b (x, z, t) = u b (x, z, t)h ν (5.11) Re τ (x, z, t) = u τ (x, z, t)h ν (5.12) u τ (x, z, t) = τ (x, z, t) ρ (5.

Moments of the distributions

The changes in the marginal distributions discussed is quantified with the computation of the moments of these distributions. For any observable A = A(x, z, t), the spatio-temporal average m, the variance σ 2 and the k th standardized higher-order moment for k ≥ 3 are defined as :

m = ¯ A (5.14) σ 2 = ¯ (A -m) 2
(5.15)

m k = ¯ (A -m) k /σ k ∀k ≥ 3
(5.16)

The third order moment (m 3 ) is called the skewness and as the name suggests, indicates a measure of the skewness / asymmetry of the distribution. The fourth order moment m 4 is called kurtosis and gives an indication of the "tailedness" of the distribution (WESTFALL, 2014). These higher order moments are tracked for The intuitive understanding of Eq 5.17 as detailed herein suggests that the departure from Gaussianity for Re G τ = 100 is an indication of the penetration of STI with some degree of coexistence up to these values of Re G τ . However, the applicability of Eq 5.17 to the transitional regime as well as very high Re turbulent flows and across flow geometries (pipe, boundary layer and channel), hints at an underlying universality to the nature of turbulence. Chapter 6 Laminar-Turbulent pattern formation

Onset of Patterning

In chapter 4, featureless turbulence was observed to give rise to a pattern of alternating laminar and turbulent zones for Re G τ < 100. The pattern was visually discernible at Re G τ = 90 (fig 4.4) while the skewness of the marginal distributions of Re τ suggests the onset of patterning to be higher. In this chapter, the origin of the laminar and turbulent pattern will be explored in detail.

In order to identify the value of Re G τ at which patterns emerge from featureless turbulence, simulations were performed for 90 < Re G τ ≤ 110 (step-size of unity) in the domain L x = 2L z = 250 with the resolution N x /L x = 4.096 (same as in chapter 4). The initial condition for all the simulations is a random distribution of 250 seeds directly comparable to those in [START_REF] Lundbladh | Direct simulation of turbulent spots in plane Couette flow[END_REF].

The simulations were performed until a statistically steady state was obtained (T ≈ 1500) and continued up to T = 4000 to gather necessary data. The traditional method for identifying the energy content at different scales of the flow is through the Fourier power spectrum. The integral of the power spectrum over a set of wavenumbers represent the total energy in those scales. However, the power spectrum is frequently represented with a logarithmic scale which distorts the perception of the energy content at these scales. This is compensated by premultiplying the power spectrum by the wavenumber such that the integral in the logarithmic scale represents the total energy [START_REF] Pope | Turbulent Flows[END_REF][START_REF] Jimenez | The largest scales of turbulent wall flows[END_REF]. This instantaneous energy is given by :

P t = ¢ kx 2 kx 1 ¢ kz 2 kz 1 E(k x , k z , t)dk x dk z = ¢ kx 2 kx 1 ¢ kz 2 kz 1 k x k z E(k x , k z , t)d ln k x d ln k z , (6.1)
where P t is the total instantaneous energy in the scales τ , energy of magnitude similar to that of the smaller scales, but localized to (k x , k z ) ≈ (0.2, 0.4) is observed at Re G τ = 106. As the value of Re G τ is further reduced, the energy in the large scales continuously increases with the pattern becoming visually perceptible at Re G τ = 90 and corresponding to the energy in the large scales. A similar strategy of identifying the onset of patterning with the appearance of energy in the large scales of the power spectrum was adopted in pCf [START_REF] Tuckerman | Statistical analysis of the transition to turbulent-laminar banded patterns in plane Couette flow[END_REF][START_REF] Tuckerman | Patterns and dynamics in transitional plane Couette flow[END_REF]. The amplitude of the large scale flow A LSF is computed as :

(k x1 , k z 1 ) -(k x2 , k z 2 ), E(k x , k z , t)
A LSF = ¢ kx 2 kx 1 ¢ kz 2 kz 1 k x k z Ē(k x , k z )d ln k x d ln k z , (6.2)
where Ē is the time-averaged power spectrum of u x y with the integral bounds 0 < k x ≤ 0.5 and 0 < k z ≤ 0.8. The emergence of the patterns in TCf was described in the framework of Ginzburg-Landau pattern formation, suggesting a supercritical instability of the turbulent flow [START_REF] Prigent | Large-Scale Finite-Wavelength Modulation within Turbulent Shear Flows[END_REF]. In a similar spirit, the question Can a linear instability of the turbulent flow be the cause of pattern formation in pPf ?

(d) Re G τ = 104 (e) Re G τ = 102 (f) Re G τ = 100 (g) Re G τ = 98 (h) Re G τ = 96 (i) Re G τ = 95 (j) Re G τ = 94 (k) Re G τ = 92 (l) Re G τ = 90
is explored in this section. The simplest way to test the stability of an equilibrium state is to perturb it thereby driving it away from equilibrium and observing its evolution for the same control parameter. If the system was in a stable equilibrium, then it will relax to its original state else it will evolve into a new stable state. This simple approach which involves subjecting the system to a temporal impulse is adopted herein. In such a study, the statistically steady featureless turbulent state at a specific Re G τ is perturbed by noise and the relaxation of the system back to its original state is investigated. It is to be stressed that the perturbation is only at T = 0 and this does not fall into the category of a continuously driven / forced system. Similarly, this methodology does not constitute a stability analysis of the mean flow which was found to be unsuccessful [START_REF] Tuckerman | Instability of uniform turbulent plane Couette flow: spectra, probability distribution functions and kω closure model[END_REF]. The approach of an impulse response was used to extract eigenmodes of small amplitude perturbations at Re G τ = 180, suggesting the possibility of a linear operator that could capture the stability of the mean flow [START_REF] Iyer | Identifying eigenmodes of averaged small-amplitude perturbations to turbulent channel flow[END_REF]. This methodology necessitated ensemble averaging over simulations with multiple realizations of noise. An impulse response study was carried out to showcase the streak instability in boundary layer flow with a localized perturbation [START_REF] Schlatter | On streak breakdown in bypass transition[END_REF].

The governing equation for fluid flow is the Navier-Stokes equations which can be written compactly as:

∂u ∂t = N (u) (6.3)
where N is a nonlinear operator encoding the Navier-Stokes equations. Consider a perturbation u p to the turbulent state at a given instant in time u t :

u = u t + u p (6.4)
Classical linear stability analysis involves evaluating the linear response to a small perturbation of a steady state. Turbulent flow on the other hand is not a steady state and continuously varies in time. Assuming a linearization around the turbulent state at a given time instant, its linear response can be written as : The energy distribution for featureless turbulence is highlighted as "Turbulent". The modal window used in the impulse response study is demarcated as "Pattern" along with the diagonal of the window used in the computation of the decay rate.

∂u p ∂t = L t (u t , u p ), ( 
The impulse response of the featureless turbulent regime is studied by perturbing it with a finite amplitude, divergence-free noise and studying the relaxation of the system for Re G τ = 120, 110, 105, 102, 100, 98, 96, 94. The divergencefree condition ensures that no numerical artefacts are introduced into the simulations while the domain size and resolutions remain unchanged. The observable τ (x, z, t) (turbulent fluctuations of the wall shear stress) is used to present the results. The time evolution of the system subsequent to the perturbation is studied by recording the changes in the Fourier spectral amplitudes A f of the larger scales in a small window of ∆k x → 0.075 ≤ k x ≤ 0.22 and ∆k z → 0.2 ≤ k z ≤ 0.5. The Fourier decomposition done to gather the amplitudes is analogous to the normal mode analysis of the linear operator. The wavenumbers along the diagonal of this window is assumed to capture the onset of the expected modulation. For the domain size and resolution used, this diagonal is given by k x = 0.075, 0.1, 0.12, 0.15, 0.17, 0.2, 0.22 and k z = 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 and k = k 2

x + k 2 z = 0.21, 0.27, 0.33, 0.38, 0.44, 0.5, 0.55. The monitoring window is restricted up to k = 0.55 as further lower scales fall within the ambit of turbulence and not of the expected modulation.

Ensemble averaging over 40 different realizations of noise for each value of Re G τ was performed. The resulting average amplitude is denoted by A f (k x , k z , t, Re G τ ) e . The larger domain necessitates a higher total resolution and the limited computational resources restrict the averaging over even larger samples. The necessity for ensemble averaging is witnessed from fig 6.4a where A f (t) from individual simulations portray large variations smoothed out by ensemble averaging. The amplitude decays with a nonlinear transient for T < 500 followed by a smooth exponential decay representative of the linear response of the system with an eventual saturation at a finite value. Since the spectrum of the full nonlinear system is considered, saturation occurs at a finite value unlike a linearised system which would showcase a decay to zero. By subtracting the saturation value A s , the exponential decay can 

Subcritical bifurcation

The computation of the decay rates demonstrates that at the linear level, the amplitudes of the large-scale modes are damped for Re G τ > 95. However, fig 6.1a incorporating the full nonlinear system, portrays the presence of energy at these scales for 95 ≤ Re G τ ≤ 110. This difference between the linear analysis with the full nonlinear system suggests the possibility of existence of patterned nonlinear solution for atleast 95 ≤ Re G τ ≤ 110. These observations hint that the linear instability is possibly subcritical in nature. However, the continuous growth of the amplitude of the large-scale modes observed from fig 6.1 makes the situation more complicated to decipher. Three possible scenarios are hypothesized to account for the results as shown in fig 6.7. They are based on the assumptions of turbulence being a coupling between a deterministic system and noise. Such a coupling is traditionally employed in low-order modelling of transition to turbulence [START_REF] Manneville | Modeling the Direct Transition to Turbulence[END_REF][START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF]. The noise-free deterministic system can be thought to possess a subcritical instability of the featureless turbulent state at some R c as sketched in fig 6 .7 (black line). It is to be noted that the base state in these sketches is the turbulent state. The introduction of the endogeneous noise due to turbulence is schematically superimposed on the same figure. Three possible scenarios are conjectured.

• Scenario A : The solution emerging from the saddle-node at Re SN has a stable upper branch and an unstable lower branch. The amplitude of noise due to turbulence is "low" as depicted schematically in fig 6.7a. There is bistability for Re τ < Re SN . At Re σ the nonlinear threshold set by the separatrix i.e., the lower branch is below the noise level and the system transitions to the the patterned state (upper branch) and the modulations are observable.

• Scenario B : This scenario depicted in fig 6.7b is similar to scenario A, however, the noise amplitude is so high that the upper branch solution is completely masked until Re σ . The modulated state is observable only for In chapter 6, the emergence of patterns from the featureless turbulent state was shown to be due to a linear instability of the turbulent base flow. Evidence suggestive of the instability being subcritical was also presented. However, the mechanism by which the instability occurs is unknown. A similar challenge is presented by the crossover from patterns to independent turbulent band (ITB). This difficulty of identifying the mechanism masks a clear route to further probe the transitional regime, leaving open questions such as, What causes the wavelength selection in the patterns ?, Why are there two orientations ?, Is there a unique wavelength and angle selection for a particular Re ?, What is the relevant physics to understand the spatial localization of turbulence ?, What is the organization of the phase space that causes such a phenomenology ? and many more. Answering these questions using high-fidelity simulations or experiments without a clear route or theoretical basis is akin to probing in the dark.

A strategy frequently employed in such situations is to study a low-order model of the system possessing similar characteristics and extrapolate the findings onto the original system. While the Navier-Stokes equations govern the dynamics in an infinite dimensional phase space, a low order model would ideally portray similar dynamics in a phase space whose dimensionality is more tractable. The simplest of such models would be based on a single scalar variable encoding all the different scales of turbulent flow. An example of such a simple model capturing some semblance of the bifurcation diagram of fig 7.1 was illustrated by [START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF] based on the ideas of metastability put forward by [START_REF] Pomeau | Front motion, metastability and subcritical bifurcations in hydrodynamics[END_REF].

∂q ∂t + U ∂q ∂x = q r -(r + δ)(q -1) 2 -dV /dq +D ∂ 2 q ∂x 2 , (7.1)
where q(x) is the amplitude of turbulence, U represents a constant mean advection, D is the diffusion coefficient, r is the control parameter, δ is a constant modelling parameter and V is a potential describing the dynamics of the system. This equation has a trivial solution q(x) = q 0 = 0 that is stable for all values of r and corresponds to the laminar state. Two solutions, one stable and one unstable are born out of a saddle-node bifurcation at a higher value of r. The stable solution q(x) = q + corresponds to the turbulent state and the unstable solution q(x) = q - forms the separatrix between the basins of attraction of the laminar and turbulent states. This equation presents a picture of bistability at higher values of r and does not capture any large scale features of the transitional regime such as puffs or patterns. The bifurcation diagram for this equation is taken from [START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF] and is shown in fig 7.2.

Alternatively, the single variable equation such as the damped Kuramoto-Sivashinsky equation for one dimensional physical space was used to highlight the spatiotemporal route to chaos in an analogy for the transition to turbulence [START_REF] Chaté | Transition to turbulence via spatio-temporal intermittency[END_REF]. However, with such a single variable, the trivial solution corresponding to the laminar state itself becomes linearly unstable. Coupling this equation with a second variable resulted in keeping the stable laminar state while capturing the spatiotemporal chaotic behaviour [START_REF] Becherer | Probing a subcritical instability with an amplitude expansion: An exploration of how far one can get[END_REF]. The coupled equations are : (7.4) where u(x), v(x) are scalar fields such that u(x) = 0, v(x) = 0 corresponds to the laminar state, R is the control parameter, , a, b are model parameters and D is the diffusivity. The model recovered exponentially varying lifetimes of perturbations, super exponentially varying mean lifetimes and transient spatiotemporal chaos [START_REF] Thomson | Low-Dimensional Models of the Transition to Turbulence[END_REF].

∂u ∂t = - ∂ 4 u ∂x 4 -2 ∂ 2 u ∂x 2 -(1 -)(1 -f (v))u + u ∂u ∂x , (7.2) f (v) = av -bv 2 , (7.3) ∂v ∂t = D ∂ 2 v ∂x -v + Ru 2 ,
These examples highlight the necessity to have at least two scalar variables to capture the elements of the transitional regime. The model proposed by [START_REF] Barkley | Simplifying the complexity of pipe flow[END_REF] achieves this by coupling a slightly modified version of Eq 7.1 with a second scalar equation for a variable u encoding the behaviour of the centerline velocity of the flow. This coupling recognises that turbulence draws energy from the laminar base flow to sustain itself. In the case of pPf as well as pipe flow, this results in the blunting of the streamwise velocity profile of the mean flow compared to the parabolic laminar flow profile. This variation is captured by the scalar u.

The equations for q and u are respectively :

∂q ∂t + (u -ζ) ∂q ∂x = f (q, u) + D ∂ 2 q ∂x 2 + σηq, (7.5) ∂u ∂t + u ∂u ∂x = g(q, u), (7.6)
where η is white noise drawn from a Gaussian distribution, σ is the amplitude of noise and f (q, u) and g(q, u) are given by: f (q, u) = q r + u -U 0 -(r + δ)(q -1) 2 , (7.7) While pPf unlike pipe flow portrays dynamics in 2D physical space, a 1D description as seen along the streamwise direction would serve as a starting point for modelling. Such a 1D description is very similar to studies of pCf and pPf carried out in tilted domains [START_REF] Barkley | Computational Study of Turbulent Laminar Patterns in Couette Flow[END_REF][START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in Couette flow[END_REF][START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF]. In the paradigm of the tilted domain, the bands in pPf display splitting and decay with their statistics similar to that of pipe flow [START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF]. This occurs for the ITB regime represented in fig 7.1 suggesting the applicability of the Barkley model to pPf. However, the only exception to this is the presence of a linear instability of the featureless turbulent base flow as shown in chapter 6 with a subsequent patterning regime which has no counterpart in the Barkley model. An extension of the pipe model with two "pipe" layers having opposite directions of flow and coupled to each other was put forward as a model for pCf [START_REF] Barkley | Modeling the transition to turbulence in shear flows[END_REF]. While the presence of patterns appearing due to an instability as well as spatially localized structures for different values of the control parameter were reported, a detailed evaluation of the model was not presented.

g(q, u) = 1 (U 0 -u) + 2 ( Ū -u)q , ( 7 
In contrast to the phenomenological models detailed above, a reduction from the Navier-Stokes equations using Galerkin projection resulting in a system of four ordinary differential equations was presented by [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF]. They were further reduced to two equations by [START_REF] Manneville | Turbulent patterns in wall-bounded flows: A Turing instability? EPL[END_REF] and converted to a reactiondiffusion system. The fixed point corresponding to the turbulent state in the model portrayed a linear instability of the Turing type. The presence of a subcritical Hopf bifurcation resulting in a linear instability of the turbulent fixed point and the subcriticality of the Turing instability were recognized as major drawbacks of the model [START_REF] Manneville | Turbulent patterns in wall-bounded flows: A Turing instability? EPL[END_REF]. In light of the new evidence suggestive of a possible subcritical linear instability presented in chapter 6, the drawback discussed appears more like a validation. The direct deduction of the Waleffe model from the Navier-Stokes equations and the presence of a pattern forming subcritical linear instability of the turbulent state provides a motivation to consider this model as a suitable candidate for pPf and will be explored in detail.

Self-sustaining process

A fundamental aspect of the featureless turbulent regime is its self-sustenance, the mechanism for which was isolated and documented in [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF].

The regeneration mechanism was extracted in pCf simulated with a domain size comparable to the limiting size for sustained turbulence i.e a minimal flow unit (MFU). The same mechanism was later shown to be valid for Wf within a similar MFU underscoring its more generic nature [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF]. This process sketched in fig 7 .3 (taken from [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF]) involves streamwise vortices in the flow that draw fluid from low velocity regions into high velocity regions leading to spanwise fluctuations of the streamwise velocity called as streaks. This leads to momentum transport from the mean flow. The streaks undergo a breakdown due to inflectional instability. This breakdown regenerates the streamwise vortices through nonlinear processes thereby sustaining turbulence.

Figure 7.3: Schematic of the self-sustaining process adapted from [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF] The velocity field is a priori infinite-dimensional, however the SSP provides a basis for capturing the necessary dynamics for sustained turbulence in a low dimensional model. Taking the Wf simulated in an MFU, a set of eight basis functions was constructed based on the leading order modes characterizing each of the processes of the SSP [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF].

u = Mean flow M (t)Ψ 1 (x) + streaks U (t)Ψ 2 (x) + streamwise vortices V (t)Ψ 3 (x) + A(t)Ψ 4 (x) + B(t)Ψ 5 (x) + C(t)Ψ 6 (x) + D(t)Ψ 7 (x) + E(t)Ψ 8 (x)
streak breakdown , (7.9)

where the amplitude M corresponds to the mean flow, U is associated with the streaks, V corresponding to the streamwise vorticity and A, B, C, D, E are the amplitudes of the streak instability modes. Ψ i for i = 1, 2, 3 capture the spatial variation of the velocity profile associated with the mean flow, streaks and the streamwise vortices respectively. Ψ i for i = 4, 5, 6, 7, 8 are the leading eigenmodes of the streak instability. The modes Ψ i for i = 1, 2, 3, • • • 8 form the basis for dimension reduction. They are orthogonal, divergence-free and satisfy the boundary conditions. These correspond to the eight modes given in Eq 8 and Eq 9 of [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF]. The low order model equations are obtained by substituting the relation of Eq 7.9 into the non-dimensional Navier-Stokes equations :

∂u ∂t + u • ∇u = -∇p + 1 R ∇ 2 u + F e x (7.10)
where F = sin(βy) with β = π/2 is the forcing driving the sinusoidal base flow and e x is the unit vector in the x direction and R is the Reynolds number. The Galerkin projection onto the individual modes is written as :

¢ Ψ i • ∂u ∂t + u • ∇u + ∇p - 1 R ∇ 2 u -F e x dV = 0 (7.11)
where dV is an infinitesimal volume element of the domain. The pressure term is written as : 

¢ ∇p • Ψ i dV = ¢ ∇ • pΨ i dV - ¢ p∇ • Ψ i dV (7.12) ∇ • Ψ i = 0
da i dt + κ 2 i R a i = N i (7.13)
where a i are the amplitudes M, U, V, A, B, C, D, E for i = 1, 2, 3, • • • 8. N i is the corresponding nonlinear function of amplitudes resulting from the projection of the advection term of the Navier-Stokes equations and κ 2 i /R results from the viscous term with κ i being the effective wavenumber of the mode Ψ i . The model was further reduced with the relation between the modes of the streak instability as B ∝ A, C ∝ E, D ∝ E and considering that A = E = W/ √ 2 resulting in the following four equation model [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF] : (7.17) where W corresponds to the effective amplitude of the small scale disturbance generated by the streak breakdown, κ w is its effective wavenumber and Figure 7.4: Schematic representation of the structures captured by Eq 7.14-7.17 : Mean flow (M )(red), streamwise vortices (V ), streaks (U ) and instability resulting in small scale motion (W ). Adapted from [START_REF] Dauchot | Phase space analysis of a dynamical model for the subcritical transition to turbulence in plane Couette flow[END_REF], the laminar base flow depicts pCf.

dM dt + κ 2 m R M = σ M W 2 -σ U U V + κ 2 m R (7.14) dU dt + κ 2 u R U = -σ W W 2 + σ U M V (7.15) dV dt + κ 2 v R V = σ V W 2 (7.16) dW dt + κ 2 w R W = σ W U W -σ M M W -σ V V W
σ M , σ U , σ V , σ W are
This model was analysed by [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF] for specific values of the parameters and shown to contain a stable trivial state (M, U, V, W ) = (1, 0, 0, 0) for all values of R corresponding to the laminar state. Two unstable states are born in a saddlenode bifurcation at R SN = 104.94 out of which one remains unstable for all R while the second becomes stable with a subcritical Hopf bifurcation at R Hf = 138.06.

This stable solution is associated with the turbulent state. The appearance of non-trivial solutions in addition to the stable laminar fixed point captures the subcritical nature of the transition to turbulence in Wf, which by extension is similar to other plane shear flow cases such as pPf and pCf.

Turing instability

The Waleffe model was reduced from four equations to two by noticing the similarity between (M, W ) and (u, q) of the Barkley model [START_REF] Manneville | Turbulent patterns in wall-bounded flows: A Turing instability? EPL[END_REF]. The reduction was done by assuming that dU/dt and dV /dt are negligible compared to the other terms in Eq 7.15 & Eq 7.16 respectively. Spatial variations was reintroduced by assuming diffusion of these variables along a physical space x : (7.19) where 

∂M ∂t + α M M = D M ∂ 2 M ∂x 2 + σ M W 2 + σ U σ V σ W α U α V W 4 - σ 2 U σ 2 V α U α 2 V M W 4 + α M , (7.18) ∂W ∂t + α W W = D W ∂ 2 W ∂x 2 -σ M M W - σ 2 W α U + σ 2 V α V W 3 + σ U σ V σ W α U α V M W 3 ,
α i = κ 2 i /R for i = M, U, V, W
(R) = L -1 ¡ [(1 -M ) 2 + U 2 + V 2 + W 2 ] dx.
Comparing 

Turing mechanism : Physical interpretation

The Turing mechanism is an archetype of pattern forming reaction-diffusion system [START_REF] Turing | The Chemical Basis of Morphogenesis[END_REF]. It is a diffusion-driven instability wherein reacting species diffusing with different rates can lead to pattern formation under the right conditions. The multiscale nature of the featureless turbulent regime with its energy cascade can be thought of as involving a large number of species and reactions.

The multitude of eddies within this flow can be associated with different eddy diffusivities thereby forming a reaction-diffusion system.

The model equations of Eq 7.18 and Eq 7.19 can be thought of as the condensation of the multispecies reaction set into the most relevant species and their reactions. The mean flow can be regarded as the interaction of the laminar base flow with the largest eddy. The largest eddy extracts energy from the base flow along the size of the system causing the most transport of momentum leading to a very high diffusivity compared to the small scale.

Activator-substrate depletion model

In addition to the difference in the diffusivity, a Turing-like instability is possible only if the nonlinearity in the kinetics portray characteristics of short range activation and long range inhibition [START_REF] Meinhardt | Turing's theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition[END_REF][START_REF] Borgogno | Mathematical models of vegetation pattern formation in ecohydrology[END_REF]. This is verified for the Waleffe model which portrays a pattern forming instability as detailed in the previous section. The Waleffe model can be typecast and explained as an activator-substrate depletion model [START_REF] Gierer | A theory of biological pattern formation[END_REF]. This is observed by expressing Eq 7.18 and Eq 7.19 in a more suitable form as : (7.21) where the function f (M, W ) and g(M, W ) are expressed as :

∂M ∂t = f (M, W ) + D M ∂ 2 M ∂x 2 , (7.20) ∂W ∂t = g(M, W ) + D W ∂ 2 W ∂x 2 ,
f (M, W ) = -α M (M -M 0 ) -β M (M -M )W 4 + σ M W 2 , (7.22) g(M, W ) = -α W W + β W (M -M )W 3 -γ W W 3 -σ M M W. (7.23)
The coefficients in the relation f (M, W ) and g(M, W ) are :

M 0 = 1 , α M = λ M R , β M = σ 2 U σ 2 V λ U λ 2 V R 3 , M = λ V σ W σ U σ V 1 R α W = λ W R , β W = σ U σ V σ W λ U λ V R 2 , γ W = σ 2 V λ V R (7.24)
The dynamics (kinetics) of the Waleffe model are captured in Eq 7.22 and Eq 7.23. Rewriting in this form highlights the high degree of similarity with the Barkley model of Eq 7.7 and Eq 7.8. It is to be noted that the notation of f, g associated with (q, u) are reversed and associated with (M, W ). In Eq 7. In this situation patterning occurs only if the substrate diffuses faster than the activator [START_REF] Gierer | A theory of biological pattern formation[END_REF]. [START_REF] Jimenez | The largest scales of turbulent wall flows[END_REF]. This further causes changes to the diffusivity experienced by these flow structures. Extrapolating from the reaction-diffusion mechanism, the instability of the featureless turbulent base flow is hypothesized to be due to the interaction of the different flow structures evolving at different spatiotemporal scales under enhanced viscosity.

Considering the reduced Waleffe model of Eq 7.22 and Eq 7.23 as the test bench to explore this hypothesis, a detailed analysis of the model is presented in the subsequent sections.

Model investigated

The two-equation model of Eq 7.20 and Eq 7.21 are extended by the inclusion of nonlinear advection terms M ∂M/∂x and M ∂W/∂x respectively. Similar to the case of diffusion, nonlinear interaction at the scale of MFU is already captured by the Waleffe model. The additional term introduced represents the advection by the mean flow and is assumed to sufficiently capture the nonlinear interactions beyond the scale of the MFU. The resulting system of equations are :

∂M ∂t + M ∂M ∂x = f (M, W ) + D M ∂ 2 M ∂x 2 (7.26) ∂W ∂t + M ∂W ∂x = g(M, W ) + D W ∂ 2 W ∂x 2 (7.27)
The functions f (M, W ) and g(M, W ) are given by :

f (M, W ) = α M (M 0 -M ) -β M (M -M )W 4 + σ M W 2 (7.28) g(M, W ) = -α W W + β W (M -M )W 3 -γ W W 3 -σ M M W (7.29)
The parameter values defined in [START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF]) (κ 2 i = λ i ) are adopted but rescaled with multiplicative factors [f 1 , f 2 , f 3 , f 4 , f 5 , f 6 ] to be able to suitably tune the model. The coefficients in f, g are given by:

M 0 = 1 , α M = f 1 λ M R , β M = f 2 σ 2 U σ 2 V λ U λ 2 V R 3 , M = f 3 λ V σ W σ U σ V 1 R α W = f 4 λ W R , β W = f 5 σ U σ V σ W λ U λ V R 2 , γ W = f 6 σ 2 V λ V R (7.30) λ M = 2.47 , λ U = 5.2 , λ V = 7.67 , λ W = 7.13 σ M = 0.31 , σ U = 1.29 , σ V = 0.22 , σ W = 0.68 (7.31) 
The system of equations Eq 7.26 and Eq 7.27 will be referred to as "the model " in all subsequent sections. It is analyzed in detail and the results are presented for

[f 1 , f 2 , f 3 , f 4 , f 5 , f 6 ] = [5, 5, 0.2, 0.2, 0.2, 5
], D M = 10 and D W = 0.2.

Linear Stability

The relations without considering space in Eq 7.26 and Eq 7.27 forms the core of the model dictating its dynamics and is given by :

dM dt = f (M, W ) (7.32) dW dt = g(M, W ) (7.33)
The steady states of the system denoted as (M s , W s ) are obtained as solutions of f (M, W ) = 0 and g(M, W ) = 0. The solution to f (M, W ) = 0 is called as the f -nullcline and that of g(M, W ) = 0 is called as the g-nullcline. The nullclines demarcate the change in the direction of the phase space velocity vectors dM/dt and dW/dt respectively i.e on the f -nullcline (dM/dt = 0), the phase plane veloc- Step 1 : Temporal stability analysis

The core dynamics (kinetics) of the model is represented by the system of equations :

dM dt = f (M, W ) (7.34) dW dt = g(M, W ) (7.35)
The temporal stability of a steady state is ascertained by the sign of the eigenvalues of the Jacobian matrix of Eq 7.34 and Eq 7.35 evaluated at that steady state:

J =   ∂f ∂M ∂f ∂W ∂g ∂M ∂g ∂W   = f M f W g M g W (7.36)
The eigenvalues λ are given by :

det (J -λI) = f M -λ f W g M g W -λ = 0 (7.37) λ 2 -(f M + g W )λ + (f M g W -g W f M ) = 0 (7.38)
A steady state is considered stable only if both the roots of the quadratic equation 7.38 evaluated at the steady state have a negative real part i.e Re(λ 1,2 ) < 0. For a quadratic equation as in Eq 7.38, this translates to :

f M + g W < 0 (7.39) f M g W -g M f W > 0 (7.40)
Thus, for a steady state to be stable, the Jacobian evaluated at that state must Step 2 : Model with reaction and diffusion without advection

The Turing instability is a diffusion-driven mechanism leading to homogeneity breaking and the growth of a modulation. Space is introduced to the system of Eq 7.34 and Eq 7.35 with the diffusion term as :

∂M ∂t = f (M, W ) + D M ∂ 2 M ∂x 2 (7.41) ∂W ∂t = g(M, W ) + D W ∂ 2 W ∂x 2 (7.42)
To analyze the linear stability of this system subjected to spatial modulations that could either grow or decay in time, consider a small perturbation ( M , W )

introduced to the steady state (M s , W s ). While a generic procedure applicable to all the steady states is presented, the Turing instability is sought for the turbulent fixed point.

M = M s + M (7.43) W = W s + W (7.44)
Linearising the system of Eq 7.41 and Eq 7.42 around the steady state under the small amplitude perturbation approximation :

∂ M ∂t = ∂f ∂M M + ∂f ∂W W + D M ∂ 2 M ∂x 2 (7.45) ∂ W ∂t = ∂g ∂M M + ∂g ∂W W + D W ∂ 2 W ∂x 2 (7.46)
The perturbations ( M , W ) are assumed to have the form :

M = M e σt+ikx (7.47) W = Ŵ e σt+ikx (7.48)
where σ, k are real with σ indicating the growth rate of the perturbation and k the wavenumber of the perturbation. A linear instability is indicated by a positive growth rate. Substituting these relations into Eq 7.45 and Eq 7.46 converts it into an eigenvalue problem :

σ M Ŵ = ∂f ∂M -k 2 ∂f ∂W ∂g ∂M ∂g ∂W -dk 2 M Ŵ (7.49)
The growth rates depend on the sign of the real parts of the eigenvalue of the Jacobian of this system denoted as J D and evaluated at the steady state :

J D = f M -D M k 2 f W g M g W -D W k 2 (7.50)
The characteristic equation of the system with the eigenvalues σ is given by :

(f M -D M k 2 -σ)(g W -D W k 2 -σ) -g M f W = 0 (7.51) σ 2 + σ (D M + D W )k 2 -trJ + h(k) = 0 (7.52)
where :

trJ = f M + g W (7.53) h(k) = (f M g W -g M f W ) + D M D W k 4 -k 2 (D M g W + D W f M ) (7.54)
For the quadratic Eq 7.52 to have atleast one root with a positive real part, either of the following two conditions must be satisfied. It is to be stressed that conditions for an instability are sought unlike the previous step.

(D M + D W )k 2 -trJ < 0 (7.55) h(k) < 0 (7.56)
Since the turbulent fixed point is temporally stable, trJ < 0 (trace of the Jacobian matrix as in Eq 7.39). The instability is desired for a finite wavelength perturbation which implies k > 0. With D M > 0 and D W > 0, the condition of Eq 7.55 is never satisfied. Thus, h(k) < 0 for the instability to occur. The temporal stability of the turbulent fixed point also implies that f M g Wg W f M > 0 (determinant of Jacobian as in Eq 7.40). Considering the form of h(k) given in Eq 7.54 in conjunction with the signs of the different terms as discussed, a necessary condition for an instability to occur is :

D W f M + D M g W > 0 (7.57)
This however does not guarantee h(k) < 0 as the value of h(k) will depend on k. The necessary condition to have an instability is for h min < 0 in addition to the constraint of Eq 7.57. The minima of h(k) is obtained by setting dh/dk = 0 :

dh dk = -2k(D W f M + D M g W ) + 4D M D W k 3 = 0 (7.58) k 2 = D W f M + D M g W 2D M D W (7.59)
Eq 7.59 gives the relation for the critical wavenumber of the instability denoted as k c . Substituting this back into the relation of h(k) < 0 and rearranging :

(D W f M + D M g W ) 2 -4D M D W (f M g W -g M f W ) > 0 (7.60)
Thus, the turbulent fixed point can experience a Turing instability provided :

f M + g W < 0 (7.61) f M g W -g M f W > 0 (7.62) D W f M + D M g W > 0 (7.63) (D W f M + D M g W ) 2 -4D M D W (f M g W -g M f W ) > 0 (7.64)
The constraints of Eq 7.61 and Eq 7.63 can be combined to obtain (1 -

D W /D M )g W > 0. Since D W /D M < 1, g W > 0.
From Eq 7.61, this implies that f M < 0. Thus, f M and g W are of opposite signs, which translates to g M and f W having opposite signs due to Eq 7.62. These interdependent conditions can be summarized as : Setting the diffusivity D M = 10 and D W = 0.2 the conditions of Eq 7.63 and Eq 7.64 are traced as functions of R in fig 7 .12. The laminar state violates Eq 7.63

and thus is stable to spatial modulations. It is stressed that the conditions laid out in Eq 7.61-7.64 are for an instability to occur. The turbulent fixed point on the other hand satisfies Eq 7.63 as well as Eq 7.64 upto R = 415.31 and violates Eq 7.64 for R > 415.31. Thus, the Turing instability point is found to be Step 3 : Full system with reaction-diffusion and advection

The introduction of nonlinear advection into Eq 7.41 and Eq 7.42 results in the full system :

dM dt + M ∂M ∂x = f (M, W ) = D M ∂ 2 M ∂x 2 (7.65) dW dt + M ∂W ∂x = g(M, W ) + D W ∂ 2 W ∂x 2 (7.66)
The linearized equations for the perturbation M , W around a steady state

(M s , W s ) are : ∂ M ∂t + M s ∂ M ∂x = f M M + f W W + D M ∂ 2 M ∂x 2 (7.67) ∂ W ∂t + M s ∂ W ∂x = g M M + g W W + D W ∂ 2 W ∂x 2 (7.68)
The additional terms arising out of nonlinear advection such as M ∂M s /∂x and M ∂W s /∂x do not appear due to the spatially homogeneous nature of the steady states. The linear stability analysis follows the same procedure as detailed previously with advection changing the Jacobian matrix of the system as :

J C = f M -k 2 D M -ikM s f w g M g W -k 2 D W -ikM s (7.69)
The characteristic equation for the growth rate is given by :

σ 2 + σ k 2 (D M + D W ) -trJ + φ 1 (k) + h(k) + φ 2 (k) = 0 (7.70)
where :

φ 1 (k) = 2ikM s (7.71) φ 2 (k) = ik 3 M s (D M + D W ) -ikM s (f M + g W ) -M 2 s k 2 (7.72)
The advection term in the equations transforms the eigenvalues from real to complex. Linear instability of the turbulent fixed point of this system is evaluated This dispersion relation computed is identical to that evaluated for the system without advection. This equality arises by considering the form of J C :

for the same values of [f 1 , f 2 , f 3 , f 4 , f 5 , f 6 ] = [
J C = J D -ikM s I, (7.73) 
where I is the identity matrix. Considering the diagonalization of J D with the eigenvector matrices P and P -1 resulting in the diagonal eigenvalue matrix D :

J D = P DP -1 (7.74)
subtracting ikM s I from this matrix equation results in :

J D -ikM s I = P DP -1 -ikM s I. (7.75)
Recognizing that P P -1 = I, I 2 = I and that multiplication with an identity matrix is commutable, the matrix relation is rewritten as :

J C = P DP -1 -ikM s P IP -1 (7.76) J C = P (D -ikM s I)P -1 (7.77)
This relation demonstrates that the real part of the eigenvalues of both J C and J D are identical. The ansatz of the perturbation is

M = M e σt+ikx (7.78) W = Ŵ e σt+ikx (7.79) Considering that σ = σ r + iσ i : M = M e σrt+i(kx+σ i t) (7.80) W = Ŵ e σrt+i(kx+σ i t) (7.81)
Comparing these to the standard form for a travelling wave e i(kx-ωt) , ω = -σ i .

Thus, while the classical Turing instability is a stationary instability with ω = Im(σ) = 0 (imaginary part of the eigenvalues), the full system is seen to posses a homogeneity breaking instability driven by diffusion but accompanied with a phase velocity given by c = ω/k. The imaginary part of the eigenvalues is negative i.e 

Impulse response and pattern formation

The linear stability analysis of the model carried out in the previous section clearly demonstrated the Turing instability of the turbulent fixed point. The relevance of the impulse response as a valid methodology to showcase the linear instability is checked by applying it to the model (Eq 7.26 and Eq 7.27). The simulation of the model as a nonlinear initial value problem is performed by discretization of space with a truncated Fourier series and time stepping using a 4 th order Runge-Kutta method. The spectral discretization and time stepping was implemented in Python using the versatile spectral solver toolbox Dedalus [START_REF] Burns | A flexible framework for numerical simulations with spectral methods[END_REF]. A domain of size L x = 1000 was used with a resolution of N x = 4096 and periodic boundary conditions were imposed in space for all simulations. Dealiasing was implemented with the 2/3 rule and the value of N x indicated excludes the additional modes for dealiasing. Random noise was used to perturb the homogeneous turbulent state at initial time (T = 0) and simulated for R > R t . This causes the system to relax back to the homogeneous turbulent state and the decay of the Fourier modes is used to extract the growth (decay) rates. The same procedure was adopted to expose the linear instability of the turbulent base flow in chapter 6.

The simulations were performed for = (R t -R)/R t = -0.01, -0.05, -0.1 for a simulation time of T = 5000. The definition of ensures that > 0 characterizes the instability in accordance with the classical definition of the nondimensional reduced bifurcation parameter [START_REF] Cross | Pattern Formation and Dynamics in Nonequilibrium Systems[END_REF]. The decay of selected spectral modes used for the discretization is shown for = -0.01 along with the initial and final state depicted on the phase plot along with the nullclines in fig 7.16.

As the perturbation decays, the spectral modes decay exponentially (note the logarithmic y-axis) with a different slope for different modes. This slope in the lin-log plot gives the decay rate for that particular mode. The decay rates of the modes in the vicinity of k c are extracted constituting the dispersion relation. These results are superimposed with the dispersion relation obtained from Eq 7.70. The exact match between the extracted decay rates and the analytical result seen in fig 7.17 ratifies the use of an impulse response to expose linear instability. 

Busse Balloon

Reaction diffusion systems are known to present a wide range of stable patterns for parameters away from the initial instability [START_REF] Cross | Pattern Formation and Dynamics in Nonequilibrium Systems[END_REF][START_REF] Morgan | Stationary periodic patterns in the 1D Gray-Scott model[END_REF]. They are generally represented on a Rk space diagram and the region encompassing all the stable patterns is called as a Busse balloon, first computed for the Rayleigh-Bénard system [START_REF] Busse | Non-linear properties of thermal convection[END_REF]. The existence of patterns of different wavenumbers has also been recorded in the original investigation of the model in [START_REF] Manneville | Turbulent patterns in wall-bounded flows: A Turing instability? EPL[END_REF]. To identify the stable solutions, initial conditions of the form :

M = M s + A cos 2nπx L x (7.82) W = W s + A cos 2nπx L x (7.83)
were used with (M s , W s ) being the homogeneous turbulent fixed point, A is the amplitude of the introduced modulation chosen high enough to ensure pattern formation and k = 2nπ/L x being the wavenumber of the initial condition.

A parametric study in (k, R) was carried out with 1 ≤ n ≤ 47 in steps of two and 220 ≤ R ≤ 500 in steps of 20. Each individual simulation was executed for a time of T = 25 × 10 3 units. A pattern was considered in practice to be stable if the leading wavenumber of the initial condition was the same as that of the final state and unstable otherwise. The leading wavenumber is determined by the peak of the Fourier energy spectra of M . This strategy is similar to that adopted for computing the Busse balloon in the Gray-Scott model [START_REF] Morgan | Stationary periodic patterns in the 1D Gray-Scott model[END_REF]. The

Busse balloon for the model is shown in fig 7.19 with blue "X" indicating a stable pattern and a hollow red "O" indicating an unstable pattern.

Similar to the results of [START_REF] Manneville | Turbulent patterns in wall-bounded flows: A Turing instability? EPL[END_REF], stable patterns are found for R > R t up to R ≈ 460 retaining the subcriticality of the Turing instability. While small amplitude perturbations decay towards the homogeneous state, finite amplitude perturbations cause patterning. This is shown in fig 7.20 for = -0.1 with the time series of the amplitude of M, W defined as peak-to-peak and denoted A(M, t)

and A(W, t) respectively. In this case, A(M, 0) > 0.06 is seen to cause patterning as evidenced by the saturation of A(M, t) and A(W, t) while lower values of initial amplitudes decay. Stable patterns are found for 240 ≤ R ≤ 460 and 0.03 ≤ k ≤ 0.26. The Busse ballon appears to be discontinuous in the sense that it does not approach k = 0 continuously. It is found to be cutoff from low values of k with the lowest accessible value being k ≈ 0.03 at R = 260. Similar to the results of [START_REF] Manneville | Turbulent patterns in wall-bounded flows: A Turing instability? EPL[END_REF], stable patterns are indeed found for R < R SN . The existence of pattern solutions to a reaction-diffusion system for parameter values below the existence of the non-trivial fixed points has been previously documented [START_REF] Sherratt | Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments[END_REF]. Borrowing the explanation from a lecture of Sherratt (author of [START_REF] Sherratt | Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments[END_REF]) and adapting it to the current scenario, patterning below R SN can be explained in the following manner "While the mean flow does not have the energy necessary to sustain homogeneous turbulence, it has enough energy to be able to sustain a patterned state.". 

Pulse solutions

The simulations for the Busse balloon and the adiabatic decent revealed the existence of patterns for R < R SN as well as spatially localized structures. These spatially localized structures are often called as pulses and correspond to the k = 0 solution. In the phase space this is a homoclinic orbit originating from the laminar state (M, W ) = (1, 0), reaching an intermediate value in the phase space and terminating at the same point.

To reaffirm the observation of pulse solutions, synthetic initial conditions mimicking the pulse solutions but generated as a Gaussian profile in space was used in simulations. These synthetic initial conditions will be referred to as SGP. Single pulses as well as superposition of multiple pulses are seen to be stable and sus- To check the interaction between two pulses, the synthetic SGP initial condition was used at T = 0 to generate a single pulse solution at R = 300. The pulse solution stabilizes very quickly for T ≈ 500. A second SGP was superimposed on the pulse solution at T = 1600 with its peak very close to the pulse. The SGP was observed to decay very rapidly and the pulse stabilizes. A second attempt was made with the SGP superimposed at T = 2300 with the peak of the SGP further away from the initial pulse. However, this was also observed to decay.

The third attempt with the peak of the SGP still further away from the pulse was superimposed at T = 3600. This trial sustains the SGP which transforms to a second pulse and is pushed downstream leading to two pulses coexisting in the domain. These sequence of events are captured in fig 7.25a and fig 7.25b with the space-time plot of M, W respectively. This interaction between the two pulses is very similar to the interaction between two puffs observed in pipe flow [START_REF] Hof | Eliminating Turbulence in Spatially Intermittent Flows[END_REF] and captured in the Barkley model [START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF].

Pulse patterns

The interaction of multiple pulses within the domain was observed to display a very interesting phenomena. Multiple SGPs distributed randomly in the domain were observed to stabilize as pulses which "pushed" each other and reorganized to eventually form an array of equidistant pulses. This array in the periodic domain Such pulse patterns have been shown to be stable solutions arising out of the interaction of the exponentially decaying tails of individual pulses [START_REF] Elphick | Patterns of Propagating Pulses[END_REF]. No distinction regarding the specific system generating the pulse has been made by [START_REF] Elphick | Patterns of Propagating Pulses[END_REF] suggesting a very generic nature of pulse pattern formation. Since the reorganization depends on the interaction of the tails, the larger the separation between the individual pulses the weaker the interaction which translates to a longer time scale for the reorganization. This phenomena is illustrated in fig 7.27 where a superposition of five randomly distributed SGP in a domain of length L x = 500 (N x = 2048) is simulated for T = 2 × 10 4 units.

The five SGP develop into five pulses which interact leading to a more uniform distribution in space. However, the gap between two pulses in the domain is large enough to be sustained as a "hole" in the pulse pattern for the entirety of the simulation. It is observed that while pulses can be packed into the domain to form pulse patterns, there exists a limiting packing fraction dependent on the value of R. The packing fraction was observed to decrease with the decrease of the value of R. Chapter 8

Stochastic model

Model equations

In the previous chapter, the deterministic system (Eq 7.26 and Eq 7.27) was presented that could capture aspects of the transitional regime. However, it ignores the fluctuating nature of turbulence. The presence of fluctuations owing to turbulence is the source for the rich dynamics of splitting, nucleation and decay of the ITB. This regime is qualitatively closest to the puff regime of pipe flow. The transient nature of turbulence in this regime cannot be accounted for with deterministic dynamics alone. To capture this metastability and mimic turbulence, an additional noise term is incorporated into the models akin to the Langevin formulation [START_REF] Manneville | Modeling the Direct Transition to Turbulence[END_REF]. The stochastisity induced by noise has been a crucial element for modelling the transient nature of turbulence [START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF][START_REF] Shih | Ecological collapse and the emergence of travelling waves at the onset of shear turbulence[END_REF][START_REF] Pomeau | The transition to turbulence in parallel flows: A personal view[END_REF]. Analogous to these implementations, a multiplicative noise term is introduced in the equation for W resulting in the following system of stochastic equations :

∂M ∂t + M ∂M ∂x = f (M, W ) + D M ∂ 2 M ∂x 2 (8.1) ∂W ∂t + M ∂W ∂x = g(M, W ) + D W ∂ 2 W ∂x 2 + σηW (8.2)
where σ is the amplitude of the noise, η is white noise drawn from a Gaussian distribution with zero mean and a standard deviation of unity. The noise term is incorporated in the dynamics of W as it encodes for rapid small scale fluctuations.

In this choice, only endogenous fluctuations are accounted for and all exogenous disturbances are neglected. The multiplicative nature of the noise term serves two purposes :

• Higher values of W indicate larger fluctuations which will be emulated by the multiplicative term.

• The laminar state remains a non-fluctuating absorbing state. In the model the laminar state is given by (M, W ) = (1, 0). The multiplicative term preserves the absorbing nature of the laminar state.

An additive noise term as classically adopted in the Langevin-like equations will not preserve the absorbing nature of the laminar state and is not considered.

Stochastic kinetics

The impact of the noise on the stability of the steady states was studied by considering Eq 8.1 and Eq 8.2 without spatial dependence and analysing the resulting stochastic dynamics. The kinetics of the model is given by :

dM dt = f (M, W ) (8.3) dW dt = g(M, W ) + σηW (8.4)
These equations were integrated in time using the Euler-Maruyama time stepping method (details in Appendix B). Multiplicative noise ensures the absorbing nature of the laminar state and thus preserves its stability for all R. For R < R SN trajectories originating from all initial conditions tend towards the laminar state as it is the only attractor (fixed point) in phase space.

For R > R SN , the stable turbulent state as well as the unstable lower branch solution emerge as fixed points in a saddle-node bifurcation. Trajectories that approach the turbulent state were simulated for R = 320 and σ = 0.005, 0.01, 0.015 upto T = 1000 as shown in fig 8.2. For each of the simulations, the trajectories approach and fluctuate about the turbulent fixed point. As the amplitude of noise increases the fluctuations also increase and for σ = 0.015, causes the trajectory to leave the turbulent state after T ≈ 300 and approach the laminar state. The turbulent fixed point becomes a metastable state under the influence of noise.

The change from stable to metastable can be understood as follows : Assume the existence of a potential describing the dynamics of the system. The different attractors in phase space would be local / absolute minima in this potential and form a potential well as sketched in fig 8.1. In a noise-free system, the final state of the system would depend on the relative depths of the potential wells and the initial condition. However, once a trajectory "falls into" a potential well, there is no escape. The introduction of noise acts as a continuous forcing that has a finite probability to escape from the well thereby inducing metastability. In classical Brownian motion, the escape from a potential well is described by Kramer's theory [START_REF] Kramers | Brownian motion in a field of force and the diffusion model of chemical reactions[END_REF]. This is also akin to the activation energy required to initiate 

Pattern formation

In the previous chapter, the noise-free model (Eq 7.26,7.27) was observed to portray pattern formation with a Turing instability at R t = 415.36. To evaluate the impact of noise on the linear instability and pattern formation, the full system of Eq 8.1 and Eq 8.2 was simulated as a nonlinear initial value problem. The simulation was carried out using the Python spectral solver package Dedalus [START_REF] Burns | A flexible framework for numerical simulations with spectral methods[END_REF]. Euler-Maruyama time stepping was used along with a truncated 

Adiabatic descent

The progression of the pattern solutions away from R t for R < R t in the presence of noise is examined with the procedure of adiabatic descent similar to the previous chapter. A domain of L x = 1000 with a resolution of N x = 4096 and T = 2.5 × 10 4

were used for these simulations. Two strategies were adopted depending on the starting point for the descent : The trajectory of solutions remain bounded inside the Busse balloon. This suggests that the stochastic dynamics is bounded by the stability region of the deterministic system and does not alter it for noise amplitudes σ < 0.03. 

Excitability and solitary structures

The pulse solution identified in the deterministic system exists in the stochastic system as well. The adiabatic descent procedure has demonstrated the existence of these solutions. Isolated pulses corresponding to k = 0 solution can be generated with the SGP initial condition and display the same characteristics as identified in the deterministic system. The transition from a single pulse to slug for R > R SN is also unaltered in the stochastic system. However, the inclusion of noise rules out the formation of pulse patterns. The interaction between two or more pulses was akin to that observed in the noise-free system with a limiting packing fraction dependent on the value of R.

Contrary to expectation, no pulse splitting or decay could be observed with the system of Eq 8.1 and Eq 8. 

Summary

The introduction of multiplicative noise retains the absorbing nature of the laminar state while altering the turbulent fixed point into a metastable state. For noise amplitudes of σ < 0.03, the subcritical Turing instability was observed to be unaffected. Pattern with k ≈ 0.2 was observed to be selected in the stochastic system within the Busse balloon. The stochastic system was observed to be bound within the stability region of the deterministic system for σ < 0.03. The adiabatic descent procedure revealed the adherence of the trajectories close to the left boundary of the Busse balloon as well as the presence of pulse solutions. The excitable nature of the pulse solutions was unaffected with the introduction of noise. However, contrary to expectation, no pulse decay or splitting could be observed.

The findings of the model (deterministic and stochastic) are contrasted against the observations of the DNS simulations in the next chapter.

• The turbulent state undergoes a linear instability leading to pattern formation.

-The DNS results suggests that the instability is subcritical in nature and occurs at Re G τ ≈ 95 -The noise-free as well the stochastic system portrays a subcritical Turing instability at R t = 415.31

• The pattern fractures giving rise to ITB -In the DNS this is confirmed by visual inspection with the isocontours of various observables to occur at Re G τ ≈ 50. It also conforms with observations of [START_REF] Manneville | Transitional Channel Flow: A Minimal Stochastic Model[END_REF]; [START_REF] Takeda | Two-stage subcritical transition as directed percolation universality classes in plane Poiseuille flow[END_REF] -The adiabatic descent procedure carried out in both the noise-free and stochastic system revealed the crossover from pattern solution to pulse solution at R ≈ 250.

While there appears to be a good agreement between the findings of the model The one-dimensional picture is analogous to the observations made in the tilted domain simulations [START_REF] Tuckerman | Patterns and dynamics in transitional plane Couette flow[END_REF][START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in Couette flow[END_REF]. The patterned state in the tilted domain as well as extended domain do not portray any band splitting or decay and remains dormant from that perspective. The pattern in the stochastic system does not feature any holes or irregularities thereby matching with the expectation from the DNS. The ITB regime on the other hand displays band splitting, breakages and collision as well as decay. While 2D interactions observed in the extended domains do not serve as a valid comparison, the dynamics of ITBs are observed in the tilted domain as well [START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF]. In the tilted domains, band splitting appear more like puff splitting in pipe flow. However, no pulse splitting was observed in the model. This suggests that the kinetics of the model as they are cannot account for these dynamics. In order to account for pattern formation as well as the dynamics of the ITB, a modification of the kinetics is necessary.

Multistability : Busse balloon

The noise-free model predicts a family of stable pattern solutions (Busse balloon) which was observed to set the bounds for the stochastic system (σ ≤ 0.03). This The question posed at the beginning of the section is quite difficult to answer.

Even in the model, the stochastic system portrays a wavelength selection despite the multistability predicted by the noise free model. Thus, looking only at the stochastic dynamics, it would not be possible to ascertain the Busse balloon. Similarly, conjecturing about any underlying Busse balloon for the pattern in pPf is not possible. However, the model also shows that the stochastic system is bound within the stability region of the noise free model. Extrapolating from this result, fig 9.4 can be interpreted as the expression of a bound to the turbulent dynamics thereby restricting the possible streamwise packing accessible.

Pattern evolution : homoclinic bifurcation

The evolution of the pattern solution in the adiabatic descent of the model por- The equations of the noise-free model are :

∂M ∂t + M ∂M ∂x = f (M, W ) + D M ∂ 2 M ∂x 2 , (9.1) ∂W ∂t + M ∂W ∂x = g(M, W ) + D W ∂ 2 W ∂x 2 . (9.2)
For a travelling wave solution advecting at velocity c, a coordinate transforma-tion z = xct transforms the partial differential equation of the noise-free model into a set of ordinary differential equations.

(M -c) dM dz = f (M, W ) + D M d 2 M dz 2 , (9.3) (M -c) dW dz = g(M, W ) + D W d 2 W dz 2 , (9.4)
where M, W are also expressed as M (z), W (z). Considering dM/dz = U and dW/dz = V converts the second order ordinary differential system into a set of four first order ordinary differential equations :

dM dz = U (9.5) D M dU dz = (M -c)U -f (M, W ) (9.6) dW dz = V (9.7) D W dV dz = (M -c)V -g(M, W ) (9.8) (9.9)
This set of ordinary differential equations can be studied with classical techniques of dynamical system theories. The phase space of this system is fourdimensional (M, W, U, V ) with fixed points as in fig 7.8. In this phase space, the dynamics in space as well as time are coupled and depicted together. A linear stability analysis of the fixed points (same procedure as in chapter 7) reveals that all the fixed points are saddle points. This is analogous to the laminar and turbulent fixed points being saddle points in spatial dynamics as explained by Barkley [START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF]. In this four-dimensional phase space, the pattern solutions are periodic orbits. The evolution of the pattern solution with reducing values of R depicted in fig 9.5 amounts to the periodic orbit in this four-dimensional phase space approaching the laminar saddle point and colliding with it. The resulting homoclinic orbit means the loss of the pattern solution and formation of pulse solution (with k = 0). These sequence of events is a well-known bifurcation of periodic orbits called homoclinic bifurcation [START_REF] Strogatz | Nonlinear Dynamics And Chaos: With Applications To Physics[END_REF][START_REF] Gaspard | Measurement of the instability rate of a far-from-equilibrium steady state at an infinite period bifurcation[END_REF]. A signature of the homoclinic bifurcation is the logarithmic divergence of the wave- Thus, the cross-over guided by a logarithmic scaling is unmistakable. An analogous system to the model explored here is the Klausmeier model of desertification [START_REF] Klausmeier | Regular and Irregular Patterns in Semiarid Vegetation[END_REF]. While the original model was two-dimensional, the investigation of the one-dimensional version by [START_REF] Sherratt | Numerical continuation methods for studying periodic travelling wave (wavetrain) solutions of partial differential equations[END_REF] Unlike the model, the phase space of the Navier-Stokes equations is formally infinite. Thus, conjecturing about periodic orbits representing the patterned state is difficult. It is to be noted that the phase space in consideration is the spacetime coupled phase space as discussed above. However, phenomenologically, the observations for the evolution of the patterns in the model and the DNS are very similar (discussed in the previous sections). The laminar state would be a saddle in the phase space. [START_REF] Sherratt | History-dependent patterns of whole ecosystems[END_REF] An intuitive way to understood the saddle nature of the laminar state is to consider spatial dynamics with fronts (heteroclines) connecting laminar and turbulent zones for spatially localized turbulence. The existence of fronts implies that trajectories in space leave the laminar state along its unstable manifold and return to it along its stable manifold. The appearance of the ITB corresponding to spatially a localized state is akin to the pules with k = 0. In the DNS, the wavelength does not approach the singularity closely and portrays a discontinuous jump from a pattern to ITB . This jump is evidenced in other studies of pPf which have documented as cross-over from a patterned state to an ITB state over a very narrow range of Re [START_REF] Manneville | Transitional Channel Flow: A Minimal Stochastic Model[END_REF][START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers[END_REF].

In answer to the question raised, the pattern in the DNS does portray a logarithmically diverging scaling. It also portrays a jump from a pattern with a finite wavelength to ITB (k = 0) over a very short range of values of Re G τ . This suggests the possibility of a homoclinic bifurcation like scenario that results in the fracture of the pattern and the formation of spatially localized ITBs.

Other wall-bounded shear flows

The appearance of a spatiotemporally intermittent regime from featureless turbulence with the decrease of the value of Re is a common feature to all wall-bounded shear flows. As the value of Re is reduced, the quiescent regions in physical space enlarge and approach lower values of turbulent intensity (approach towards laminar) while the turbulent regions remain bounded in their spatial extents. This results in the monotonic decrease of turbulent fraction with reducing Re. In other words, the trajectory in the phase space approaches the laminar saddle and spends more time in its vicinity as the value of Re is reduced. Spatially localized independent structures, whether they are isolated bands (ITBs) or puffs in physical space, can be identified as homoclinic orbits in phase space. The transitional regime of flows such as pPf, pCf, Wf, TCf as well as pipe flow display these structures enroute to laminarization.

These observations indicate that the elements of a homoclinic bifurcation are contained in all these shear flows. The enhanced sparsity or increasing wavelength with reducing values of Re is captured indirectly by the turbulent fraction. The relation between T f and the wavelength λ is easily visualized in a 1D setting as sketched in fig 9.9. Recognizing that λ = L t + L lam , the turbulent fraction is given by:

T f = L t λ .
(9.12)

Assuming the scaling of the wavelength consistent with a homoclinic bifurcation as detailed by [START_REF] Gaspard | Measurement of the instability rate of a far-from-equilibrium steady state at an infinite period bifurcation[END_REF]: (9.13) results in the following scaling relation for the turbulent fraction :

λ = a log(R -R SL ) + b,
T f = L t a log(R -R SL ) + b (9.14)
Figure 9.9: Schematic of three turbulent patches (orange) of length L t in a periodic domain of length L. The laminar gaps have a streamwise length L lam and the wavelength is indicated as λ.

The length of the turbulent patch can be assumed to remain constant or weakly dependent on Re such that its contribution to T f in comparison to λ is negligible.

Without hypothesizing on the periodic nature of the trajectory in phase space approaching the saddle to become a homoclinic orbit, a check for the logarithmic scaling of the turbulent fraction is done for all the wall-bounded shear flows with the functional form :

1 T f = a log Re R SL -1 + b (9.15)
where the notation of a and b are retained as it is for the sake of generality but it incorporates L t from Eq 9.14. For all the fits, the x-axis of the plots is rescaled [START_REF] Takeda | Two-stage subcritical transition as directed percolation universality classes in plane Poiseuille flow[END_REF]. The data from [START_REF] Sano | A universal transition to turbulence in channel flow[END_REF] portrays a similar trend with a good agreement of the fit for all three measurements done at different channel lengths within their experiment. However, it is to be noted that the experiments of [START_REF] Sano | A universal transition to turbulence in channel flow[END_REF] (tabulated in table 9.1). However, as discussed in section 4.5, the distribution of laminar gaps display exponential behaviour contrary to the expected algebraic scaling for a critical phenomena. These findings suggest the applicability of the homoclinic bifurcation for the fracture of the pattern and the observed scaling of T f with possible critical behaviour for Re < R SL . [START_REF] Prigent | La spirale turbulente: motif de grande longueur d'onde dans les écoulements cisaillés turbulents[END_REF] The data for TCf is taken from the thesis of [START_REF] Prigent | La spirale turbulente: motif de grande longueur d'onde dans les écoulements cisaillés turbulents[END_REF] where the change of the wavelength with Re has been reported for an experimental setup with a radius ratio of η = 0.983. The axial wavelength λ z of the pattern is tracked for changing Reynolds number corresponding to the speed of rotation of the inner cylinder R i . This has been repeated for different Reynolds numbers based on the speed of rotation of the outer cylinder R o and the pattern is tracked from its onset up to its eventual fracture. This data is directly fit with Eq 9.13 and is shown in fig 9 .11.

Taylor-Couette flow

The fitting parameters and the estimated values of R SL are tabulated in table 9.1. This flow case presents a situation that is very similar to pPf with a logarithmically scaling wavelength and the fracture of the pattern corresponding to the vicinity of R SL . The logarithmic singularity is never reached as the pattern breaks leading to the dynamics of independent bands. TCf is predicted to display critical behaviour near the onset of sustained turbulence for values of R i (fixed R o ) corresponding to the regime of the independent bands [START_REF] Avila | Second-Order Phase Transition in Counter-Rotating Taylor-Couette Flow Experiment[END_REF].

The axially constrained experiments of [START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in Couette flow[END_REF] and simulations in tilted domains of [START_REF] Shi | Scale Invariance at the Onset of Turbulence in Couette Flow[END_REF] and [START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in Couette flow[END_REF] showcase algebraic scaling of T f consistent with a (1 + 1)d DP. However, the reported T f is only in the vicinity of the critical value and thus cannot be used for checking the applicability of the logarithmic scaling.

Plane Couette flow

The only data available in the literature on extended domains of pCf tracing the entire transitional regime is the experiments by [START_REF] Prigent | La spirale turbulente: motif de grande longueur d'onde dans les écoulements cisaillés turbulents[END_REF] and DNS simulations by [START_REF] Duguet | Formation of turbulent patterns near the onset of transition in plane Couette flow[END_REF]. However, both the statistics in both these studies are affected by finite-size effects [START_REF] Chantry | Universal continuous transition to turbulence in a planar shear flow[END_REF]. Despite these restrictions, the available T f data from the simulations by [START_REF] Duguet | Formation of turbulent patterns near the onset of transition in plane Couette flow[END_REF] is used as a test case to check the scaling of Eq 9.15.

The estimated value of R SL and the fitting parameters are tabulated in table 9.1.

A decent agreement between the fit and the data is observed with a prediction of the pattern fracturing close to Re ≈ 340. However, no clear conclusions can be drawn due to the lack of sufficient data. The fracture of the pattern and formation of the independent bands in pCf remains an open question. 

Pipe flow

The data for pipe flow is gathered from the simulations by [START_REF] Moxey | Distinct large-scale turbulent-laminar states in transitional pipe flow[END_REF]. Data from the simulations by [START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF] of a model of pipe flow is also checked for the logarithmic scaling. From fig 9.13 the fit for the simulations of pipe flow closely match the data for the entire spatiotemporal regime reported in that study. For the case of the model of pipe flow, the fitting is seen to be applicable only to a portion of the parameter space 0.84 ≤ r ≤ 0.9. The range of Re over which the logarithmic scaling is applicable varies from the parameter value at which laminar holes appear with the coexistence of both slugs and puffs [START_REF] Avila | On the nature of laminar-turbulence intermittency in shear flows[END_REF] to the transition point Re 1 ≈ 2300 as described by [START_REF] Moxey | Distinct large-scale turbulent-laminar states in transitional pipe flow[END_REF]. For Re below Re 1 the regime is that of long time transient puffs and is associated with the turbulent fraction behaving like an extensive property. For Re 1 ≤ Re ≤ Re 2 the turbulent fraction behaves like an intensive property with puff splitting tending to fill the entire domain with alternating patches of laminar and turbulence. The appearance of slugs at Re 2 ≈ 2600 corresponds to featureless turbulence as the asymptotic state resulting in T f = 1 as observed in fig 9 .13a. This observation displays a qualitative agreement with the phenomenology of the homoclinic bifurcation leading to the formation of independent structures. However, it is noted that the T f values are very close to unity leading to low values of a in Eq 9.15.

The logarithmic scaling is found to be valid for 2300 ≤ Re < 2600, which is much higher than the expected critical value for the onset of sustained turbulence Re g ≈ 2040 [START_REF] Avila | The Onset of Turbulence in Pipe Flow[END_REF]. Similarly to the other shear flow cases, the logarithmic scaling suggests that a homoclinic bifurcation precedes any critical phenomena (decreasing Re) and gives rise to spatially localized structures. The contamination and extinction processes (splitting and decay) of these structures form the basis for the directed percolation hypothesis. This is more readily observable in the case of the Barkley model where the logarithmic scaling is applicable for 0.84 ≤ r ≤ 0.9 while the (1+1) DP scaling is valid in the vicinity of r = 0.7396.

The regime of flow depicting the logarithmic scaling precedes the regime of critical behaviour.

In the case of the Barkley model with noise, the parameter range of applicability of the fit is the regime of the metastable puffs [START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF]. It is to be noted that the turbulent fraction curve is obtained for the simulation of the model with noise.

As detailed therein, puffs are homoclinic orbits in the phase space as shown in leading to an increase in the threshold for excitation. This increase causes the puff trajectories to approach the laminar state ((q, u) = (0, U 0 )) more closely before exciting a new puff / tracing the trajectory of the downstream puff. This leads to the laminar gaps between the puffs to increase as r decreases. These sequence of events are very similar to the homoclinic bifurcation scenario wherein the trajectories approach the saddle with changing parameter. Thus, the predicted R SL can be thought of the parameter value wherein a true homoclinic orbit is formed. This is interpreted as the much more pronounced recovery of the parabolic profile of velocity prior to exciting a new puff / tracing the trajectory of the downstream puff. A summary of the parameters of the fits for the different flows and the studies thereof is shown in table 9.1. The case for a homoclinic bifurcation scenario as a common phenomenon applicable to all wall-bounded shear flows is made here based solely on phenomenological arguments and a logarithmic fit of the turbulent fraction. Thus, it can be conjectured that the spatiotemporal regime undergoes a homoclinic bifurcation in some state space describing the system. This leads to the birth of spatially localized structures and a different regime. The homoclinic bifurcation as discussed here has no bearing on any critical behaviour (DP-like or not) near the onset of transition.

It is acknowledged that this explanation lacks the required rigour to give a definitive statement on the applicability of the homoclinic bifurcation scenario. The fits on the turbulent fraction are valid over a limited number of decades of . In particular the hypothesis of a homoclinic bifurcation requires the existence of spatially periodic solutions, which in turn demands spatial coherence on lengthscales of the order of the wavelength. Such a hypothesis might be difficult to fulfill in the presence of turbulent fluctuations as the wavelength diverges in the proposed homoclinic scenario. However, it is hoped that these observations and hypothesis germinate new inquiry into this topic.

Part IV

Conclusion

Chapter 10

Conclusion

The thesis was aimed at answering the questions raised in section 1.5. The detailed answers presented in the thesis are summarized in this section :

How does turbulent fluctuations decay away from the core of a spot in different wall-bounded shear flows ? .

In the quest to answer this, four different wall-bounded shear flows : pCf, pPf, Table 10.1: Summary of the large-scale flow structure portrayed by the flow and the computed decay exponent of the velocity tail.

These results suggest that the exponential decay reported in Ref [START_REF] Gibson | Spanwise-localized solutions of planar shear flows[END_REF][START_REF] Schumacher | Evolution of turbulent spots in a parallel shear flow[END_REF] arise due to finite size effects and confirms the predictions of an algebraic decay with an exponent of +3 for pCf [START_REF] Wang | Quadrupolar flows around spots in internal shear flows[END_REF]. The 2D kinematic analysis for the large-scale flow in the far field, coupled with the centrosymmetry or lack thereof provides a justification for the observations of table 10.1.

How do patterns of alternating laminar and turbulent bands evolve with Re in pPf and what is its geometry in extended domains ? What causes pattern formation in pPf ? Can an instability be established ? The crossing of the neutral axis at Re G τ ≈ 95 with (k x , k z ) ≈ (0.17, 0.4) marks the onset of a finite wavelength linear instability of the featureless turbulent base flow.

Observations suggestive of the possibility of the instability being subcritical were documented.

Turbulent band orientation: In the large domains simulated herein, the mean angle of the turbulent bands were documented to be θ ≈ 25 o for 60 ≤ Re G τ ≤ 90 validating the applicability of an imposed angle of θ = 24 o in simulations of tilted domains [START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF][START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF][START_REF] Lemoult | Directed percolation phase transition to sustained turbulence in Couette flow[END_REF][START_REF] Barkley | Mean flow of turbulent-laminar patterns in plane Couette flow[END_REF]. However, the mean angle of the bands increased for Re G τ < 60 with θ → 40 for Re G τ → 39 in agreement with [START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF][START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers[END_REF]. These results suggest a unique selection of the mean band angles with the Re.

Pattern advection velocity: The pattern was observed to travel slower than the bulk velocity for Re G τ > 65 and faster for Re G τ < 65. This acceleration continued into the ITB regime with the bands travelling faster than the bulk velocity.

A comparison of these results with those computed from the titled domain [START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF][START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF] reveals a general agreement of the trend but an underestimation of the magnitude in the tilted domain. These results suggest that while the tilted domain captures the trend of the velocity of patterns and ITB with Re G τ , its magnitude is captured only with extended domains.

Turbulent fraction : The computed T f was observed to decay monotonically and continuously with decreasing Re G τ . Two distinct trends in the decay were identified, one for 50 ≤ Re G τ ≤ 90 i.e the patterning regime and another for 39 ≤ Re G τ < 50 i.e the ITB regime. A similar monotonically decaying T f portraying two different behaviours with the change coinciding with the fracture of the patterns has been reported by [START_REF] Manneville | Transitional Channel Flow: A Minimal Stochastic Model[END_REF][START_REF] Takeda | Two-stage subcritical transition as directed percolation universality classes in plane Poiseuille flow[END_REF].

Friction factor : The friction factor C f was observed to portray a plateau at a value of C f ≈ 0.01 for the patterning regime (50 ≤ Re G τ ≤ 90). As the pattern fractured and gave rise to ITB, the value of C f also veered away from the plateau, approaching the laminar value. The identification of the plateau is in agreement with that reported in previous studies [START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers[END_REF][START_REF] Manneville | Transitional Channel Flow: A Minimal Stochastic Model[END_REF]. This forms a unique constant characterizing the pattering regime of pPf.

It is interesting to note that the departure from the featureless turbulent regime in pipe flow also occurs with C f ≈ 0.01 [START_REF] Avila | On the nature of laminar-turbulence intermittency in shear flows[END_REF]. The plateau bears a striking resemblance to Maxwell's plateau for conjugate variables in a first-order equilibrium thermodynamic phase transition. In the context of an analogy with first-order phase transition, these results suggest that C f and Re could be the right conjugate variables to probe the analogy further.

Probability distributions of turbulent fluctuations : The turbulent fluctuations were analyzed by defining a local shear stress and streamwise bulk flow within the domain. These definitions were used to construct a local Re τ (x, z, t) and Re b (x, z, t). The marginal distributions of Re τ and Re b display a higher spread for Re τ than in Re b at all Re G τ . These distributions are also observed to be skewed with a long tail apparant even at Re G τ = 100. Despite flow visualizations suggesting the existence of two distinct regions i.e., a bimodal distribution, the joint probability distribution of Re τ and Re b portrayed a unimodal character. The extended domain allows for more fluctuations which are captured by the spread of the distributions and its long tails. This broad distribution leads to masking of the bimodality with instances of fluctuations in between the expected peaks.

The skewness and tailedness of the marginal distributions are observed to increase with reducing values of Re G τ . The bounded spatial extent of the turbulent bands and the increasing sparsity implies that the occurrence of "laminar" zones i.e., low values of Re τ , will be more than the turbulent zones. However, the presence of turbulence within the bands shifts the mean value away from the peak of the distribution of Re τ . This mismatch between the representation of low and high values of Re τ results in a skewed distribution with a long tail. These features are quantified with the skewness (third order moment m 3 ) and kurtosis (fourth order moment m 4 ). It is observed that m 4 ∝ m 2 3 for 39 ≤ Re G τ ≤ 100 i.e the entire transitional regime. This relationship was first documented by [START_REF] Jovanović | Statistical analysis of the dynamic equations for higher-order moments in turbulent wall bounded flows[END_REF] [START_REF] Agrawal | Investigating channel flow using wall shear stress signals at transitional Reynolds numbers[END_REF]. The correlation seemingly applicable in both the transitional regime as well as the featureless turbulent regime suggests an underlying universality to the nature of turbulent fluctuations.

Global transition from turbulent to laminar The entire transitional regime of pPf explored in this thesis is in the range 39 ≤ Re G τ ≤ 100. The cumulative distribution of the streamwise laminar gaps falls off exponentially for the entire range of Re G τ explored. Such an exponential behaviour is a signature of spatiotemporal intermittency. The lack of an algebraic scaling of these distributions demonstrates that the system is far from any critical behaviour. Thus, the global stability threshold for the transition from laminar to turbulence will be below Re G τ = 39. This estimate is aligned with the findings of [START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers[END_REF][START_REF] Manneville | Transitional Channel Flow: A Minimal Stochastic Model[END_REF][START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF][START_REF] Takeda | Two-stage subcritical transition as directed percolation universality classes in plane Poiseuille flow[END_REF].

Can a phenomenological model capture pattern formation as well as its evolution with Re ?

The one-dimension, two-equation PDE model of [START_REF] Manneville | Turbulent patterns in wall-bounded flows: A Turing instability? EPL[END_REF] is adapted with suitable parameters and further extended with the introduction of nonlinear advection as well as stochastic multiplicative noise. A detailed investigation of the deterministic and the stochastic system was carried out. An analogy with the activator(turbulence)-substrate(mean flow) depletion mechanism is explored to account for pattern formation.

Findings of the model: The laminar and turbulent regimes were identified with stable fixed points in the model. The subcriticality of the laminar to turbulent transition was captured along with a subcritical Turing instability of the turbulent fixed point. The Hopf bifurcation in the original system investigated by (Manneville, 2012) was circumnavigated with the adaptation of the model parameters.

Exploring the deterministic nonlinear system, multistability was identified with the construction of the Busse balloon. The Busse balloon was observed to display a floor i.e., no stable pattern solutions was found with wavenumbers k < 0.03. Chapter 11

Perspectives

The journey of inquiry and research embarked on during the PhD has resulted in the work presented in this thesis. It has come about with the extraction and refinement of various ideas, experiments and long hours of debate and discussion. In this process some ideas remain less explored than others while many more remain in their nascent phase. In this chapter, I would like to present some avenues where work was initiated but underexplored and some that remained on the drawing board. These represent not only a continuation of the work presented in the thesis but also seeds that can germinate new lines of enquiry.

Linear instability and impulse response study in other shear flows

In wall-bounded shear flows such as pipe flow, pPf, pCf and TCf, the transition from featureless turbulence to laminar is accompanied by the formation of a spatiotemporal intermittent regime. The onset of intermittency from featureless turbulence is common to all wall-bounded shear flows such as pCf, pPf, TCf as well as pipe flow. In the case of TCf, this onset is suggested to be due to a supercritical linear instability of the turbulent flow [START_REF] Prigent | Large-Scale Finite-Wavelength Modulation within Turbulent Shear Flows[END_REF]. The study also suggested that the same scenario is applicable to pCf as well. In the current study of pPf, an impulse response with ensemble averaging was employed to showcase a linear instability of the turbulent flow. In the case of pipe flow, much attention has been garnered by the dynamics of puffs and the transition scenario near the global stability threshold. However, the question of how and why featureless turbulence becomes modulated to form a series of puffs remains open.

The methodology of an impulse response allows for investigation of the onset of instability from above the threshold with the construction of a dispersion relation. This makes it a very valuable tool to investigate the stability of the turbulent flow.

It would be an interesting experiment to extend this methodology to both pipe flow and pCf.

Competition between orientation of bands in the patterning regime of pPf

The organization of the turbulent zones in the patterning regime of pPf (50 ≤ Re τ ≤ 95) involves bands of opposite orientations. This has been observed in other studies of pPf both in simulations [START_REF] Takeda | Two-stage subcritical transition as directed percolation universality classes in plane Poiseuille flow[END_REF][START_REF] Manneville | Transitional Channel Flow: A Minimal Stochastic Model[END_REF] and experiments [START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF]. An example of the type of patterning observed is shown in fig 11 .1. Similar such patterns are found in the transitional regime of pCf as well [START_REF] Duguet | Formation of turbulent patterns near the onset of transition in plane Couette flow[END_REF][START_REF] Prigent | La spirale turbulente: motif de grande longueur d'onde dans les écoulements cisaillés turbulents[END_REF] This patterned state emerged from the featureless regime and was observed to be robust over atleast 10 5 time units. These states were presented as representing a new and distinct route for the transition from turbulent to laminar in pCf. Inspired by these findings, we wanted to check if such "one-sided" patterns could be found in pPf. Rather than a quasistatic process, we adopted a different 

Discontinuous first-order like phase transition

The mean friction factor C f in pPf displays a plateau for the patterning regime. This plateau is very reminiscent of Maxwell's plateau for a first-order phase transition in equilibrium thermodynamics. Despite the vast differences in the two scenarios, an analogy with first-order thermodynamic phase transition has been long considered. One of the simplest systems for studying phase transitions in equilibrium systems is the 2D Ising model for magnetization. Two types of phase transitions are identified in this model :

• For the condition of a constant external magnetic field set to zero, the fer-romagnetic to paramagnetic transition with the variation of temperature is known to be a continuous second-order phase transition. The magnetization, which is the order parameter, varies continuously with temperature.

• Consider the case where temperature is held constant at a value less than the critical temperature of the ferromagnetic to paramagnetic transition. The system portrays a first order phase transition for the variation of the external magnetic field from negative to positive or vice-versa. The magnetization displays a discontinuous jump at the critical point.

Alternatively, coupled map lattices have been used as models to underscore spatiotemporal intermittency in wall-bounded shear flows [START_REF] Kaneko | Spatiotemporal Intermittency in Coupled Map Lattices[END_REF][START_REF] Chaté | Spatio-temporal intermittency in coupled map lattices[END_REF]. Phase transition within these models have been shown to be continuous or discontinuous depending on the parameters of the model [START_REF] Chaté | Spatio-temporal intermittency in coupled map lattices[END_REF][START_REF] Chantry | Universal continuous transition to turbulence in a planar shear flow[END_REF]. This is reflected in the computed equilibrium turbulent fraction of these models. These examples highlight the drastically different scenarios possible for change of forcing in the case of Ising system or a parameter in the coupled map lattice.

In the case of pPf, either a constant bulk flow or a constant imposed pressure gradient has been the classical forcing protocols adopted. The observed plateau in C f (Re), motivates to consider an imposed C f as a forcing protocol. In this regard, a modification of the numerical code Channelflow2.0 was attempted. The relative difficulty of modifying an existing code forced me to consider building a new DNS solver. I was able to build a new parallel DNS solver using Dedalus [START_REF] Burns | A flexible framework for numerical simulations with spectral methods[END_REF] and validate it against Channelflow for the case of imposed pressure gradient as well as imposed bulk flow. However, the limitations on time forced me to abandon extending it further to implementing an imposed C f .

Modification and extension of the model

The model investigated in the thesis in chapters 7,8 and 9 has shown a high degree of similarity with the phenomenology of the transition in pPf. It has also helped in understanding the logarithmic scaling of wavelength of the pattern in the DNS simulations. Apart from the obvious limitation of the model being 1D, the only other drawback found is the absence of pulse splitting and decay in the stochastic system. Modifying the kinetics of the model to be able to capture pulse splitting and decay would be the next step. However, the dynamics of the ITB are primarily 2D [START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF][START_REF] Manneville | Transitional Channel Flow: A Minimal Stochastic Model[END_REF][START_REF] Takeda | Two-stage subcritical transition as directed percolation universality classes in plane Poiseuille flow[END_REF]. This leads to the question of a 2D model which would be a study in itself. Résumé: Dans le régime transitoire des écoulements de cisaillement délimités par des parois, la turbulence s'auto-organise spatialement en structures cohérentes à grande échelle telles que bouffées ou bandes. Ces structures sont étudiées à l'aide de la simulation numérique intensive dans différents écoulements de cisaillement, avec le nombre de Reynolds Re comme paramètre de contrôle. On observe que les bouffées localisées présentent une décroissance algébrique de leur champ de vitesse lointain, avec un exposant dicté par l'écoulement à grande échelle et indépendant de Re. La formation d'un motif turbulent en canal plan est expliquée par une instabilité linéaire de l'écoulement turbulent. Les caractéristiques géométriques ainsi que les statistiques d'ordre élevé des fluctuations turbulentes sont documentées en fonction de Re. Un modèle d'équations aux dérivées partielles en une dimension d'espace issu de la litérature, manifestant une instabilité de Turing, est simulé numériquement et analysé de façon théorique. Il capture la phénoménologie de la formation de motifs, incluant de la multistabilité, une sélection de longeur d'one affectée par le bruit, et un régime excitable pour les plus faibles valeurs de Re.

Title: Subcritical transition to turbulence in wall-bounded shear flows: Spots, pattern formation and low-order modelling Keywords: Wall-bounded shear flows, numerical simulation, pattern formation, low-order modelling, Turing instability Abstract: In the transitional regime of wallbounded shear flows, turbulence self-organises into large-scale coherent structures such as spots and bands. These structures are probed using high fidelity numerical simulations in different shear flows, with the Reynolds number Re as the main control parameter. Turbulent spots display an algebraic decay in their velocity tails, with an exponent dictated by the structure of the large-scale flow and independent of Re. Turbulent pattern formation in the transitional regime of plane channel flow is explained as a linear instability of the fully turbulent flow. The evolution of the patterns with Re is documented using their geometric properties and high-order statistics of the turbulent fluctuations. It provides one with a link between featureless turbulence and the transitional regime. A onedimensional PDE model from the literature, featuring a Turing instability, is analysed numerically and theoretically. It captures the phenomenology of pattern formation in plane channel flow, including multistability, wavelength selection by noise, and excitability at lower Re.
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  In order to gather more insight into the formation and evolution of the pattern with Re, a low-order model of the shear flow is motivated. The third part explores a low-order model presented in the literature. The 1D PDE model presented by Manneville, featuring a Turing instability as an extension of the Waleffe model, is revisited. This was adapted with suitable parameters and extended with the introduction of nonlinear advection and stochastic noise. The model accurately captures the phenomenology of the transitional regime of plane Poiseuille flow. It features pattern formation with multistability, wavelength selection by noise and excitability at low Re. These results are extrapolated from the model and validated against the observations in the DNS simulations.
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 5 Adapted from[START_REF] Manneville | Turbulent patterns in wall-bounded flows: A Turing instability? EPL[END_REF] : Bifurcation diagram for system of Eq 7.18 and Eq 7.19 for D M = 1 and D W = 0.15. The different states of the system are as indicated in the legend with q : wavenumber of tracked pattern, R t : Turing instability, R H : Hopf bifurcation and R sn : saddle-node bifurcation. . . . . . . . . . . . . 7.6 Schematic of the activator substrate depletion model leading to pattern formation. The red line indicates the level of the substrate and the green indicates the level of the activator. (a) Initial condition with no spatially homogeneous concentrations of both activator and substrate. (b) A small spatial variation in the concentration of the species due to small scale disturbance (c)-(d) Pattern formation with the progression of time due to instability and amplification of modulation. The sketch was taken from (Meinhardt, 2012). . . . . . 7.7 Phase plots of the system (a),(d),(g) -Isocontours of dM/dt (b),(e),(h) -Isocontours of dW/dt (c),(f),(i) Nullclines f (M, W ) = 0 (blue) and g(M, W ) = 0 (red) of the system superimposed with the normalized phase space velocity vectors with the color indicating its magnitude. These are shown for R = 200, 320, 450 respectively. . . . . . . . . . 7.8 Fixed points of the system. Stable fixed point: Blue filled symbol. Unstable fixed point : Hollow red symbol (a) (R, M ) projection (b) (R, W ) projection (c) (R, ∆) bifurcation diagram . . . . . . . . . . 7.9 (a),(b) Trace and determinant of the Jacobian matrix evaluated at the three steady states (L) : Laminar, (T) -Turbulent, (u) -lower branch solution as indicated in legend. . . . . . . . . . . . . . . . . 7.10 Black boxes highlight the imposed conditions. The application of these condition into the equations in green results in the relations given in orange boxes. . . . . . . . . . . . . . . . . . . . . . . . . . 7.11 Phase space of the Barkley model shown with the q, u nullclines in red and blue respectively. The fixed points corresonding to the laminar and turbulent states are indicated on the phase plot. Changes in the position of the q nullcline with increasing value of the control parameter r is depicted. . . . . . . . . . . . . . . . . . . . . . . . . 7.12 (a),(b) Trace of Eq 7.63 and Eq 7.64 for the 3 fixed points : Laminar (L), Turbulent (T) and the lower branch solution (U) for different value of R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.13 Dispersion relation σ(k) for the eigenvalue (σ 1 ) evaluated at the turbulent fixed point for different values of R as indicated in the legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.14 Dispersion relation Re(σ) for the system of equations with advection evaluated at the turbulent fixed point and different values of R as indicated in the legend. . . . . . . . . . . . . . . . . . . . . . . . . . 7.15 (a) Imaginary part of the eigenvalues evaluated at the turbulent fixed point for different values of R as seen in the legend. (b) Phase velocity for different values of R as indicated in the legend. . . . . . 7.16 Amplitude of different modes for R = 419.46 i.e = -0.01 of (a) M (b) W (c) Phase space plot of the initial (T = 0) and final condition (T = 5000) on the phase plot . . . . . . . . . . . . . . . . . . . . . 7.17 Superposition of analytical results (solid lines) of the dispersion relation with the decay rates extracted (symbols) from impulse response for = -0.01, -0.05, -0.1. (a) Decay rates extracted from variable M (b) Decay rates extracted from variable W . . . . . . . . . . . . 7.18 Snapshot of a patterned state at R = 400 (a) M (x) in blue, W (x) in red (b) Same solution depicted in the phase plane as a limit cycle along with the nullclines. . . . . . . . . . . . . . . . . . . . . . . . 7.19 Busse balloon of the model, blue crosses:stable, open circles: unstable145 7.20 Amplitudes A(M, t) (solid lines) and A(W, t) (dashed lines) for = -0.1 with A(M, 0) and A(W, 0) indicated in the legend. . . . . . . . 7.21 Wavelength selection represented as k in Vs k f diagram with k in the wavenumber of the initial condition and k f is the wavenumber of the resulting pattern. Red "+" symbols are for R = 360 and the hollow blue "O" symbols represent all other values of R. The solid red line demarcates k in = k f . . . . . . . . . . . . . . . . . . . . . . . 7.22 Trajectory of five different solutions F 1 -F 5 traced through adiabatic descent. The trajectories are color coded and indicated in the legend of the plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.23 Space-time diagrams for the solution trajectory F 5 . The left panel tracks W (x) and the right panel is the trajectory in the phase plot. The time snapshots are color-coded (dark/light : T = 0 -25 × 10 3 ) with the time indicated in the legend of the phase plot. (a)-(h) follows in order R = 420, 320, 310, 270, 260, 240, 230, 210 . . . . . . . 7.24 Snapshot of the pulse solution at R = 250 at a particular time T . Top left panel : M (x, T ). Bottom left panel : W (x, T ). Right panel : Same solution shown in (M, W ) projection parametrised by x along with the nullclines. . . . . . . . . . . . . . . . . . . . . . . . 7.25 (a) & (b) Space-time diagrams of M and W respectively at R = 300 illustrating the behaviour similar to excitability. Superposition of SGP at T = 1600 and T = 2300 merge with the existing pulse. A third attempt with the SGP added at T = 3600 slightly further in x than the prior two attempts creates and sustains a new pulse which is pushed downstream. . . . . . . . . . . . . . . . . . . . . . . . . . 7.26 (a) Space-time diagram of W (x, t) illustrating formation of a pulse pattern for R = 300 with five randomly distributed SGPs in the domain L x = 250 (b),(c),(d) Instantaneous snapshots of M (x), W (x) at T = 5, 50, 10 4 shown in (M, W ) projection parametrized by x along with the nullclines. . . . . . . . . . . . . . . . . . . . . . . . 7.27 Space-time diagram of W (x, t) illustrating pulse pattern formation for R = 300 with five randomly distributed SGP in the domain L x = 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.28 (a) Space-time diagrams of W indicating the slug nature of the pulse solution and subsequent pattern formation for R = 350 (b) Development of a turbulent into a pattern at Re G τ = 64 in DNS simulations. Figure taken from (Aida et al., 2011) . . . . . . . . . . 7.29 Bifurcation diagram of the model given with the distance to the laminar state ∆. Solid lines indicate a stable solution and dashed lines indicate an unstable solution. The Busse balloon is shown as a shaded region along with the trajectory F 5 inside the Busse balloon as a solid black line. Three different regimes emerge demarcated by the gray dash-dot line. . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.1 Schematic representation of a potential well. Black arrow represents trajectory entering the well. The orange arrows indicate instances of noise strength insufficient to cross the potential barrier. Red arrow indicates instance of noise strength sufficient to cross the barrier. . . 161 8.2 The left panels indicate the time series for M (top) and W (bottom). The solid black line in those panels indicate the turbulent fixed point value of the noise-free system for R = 320. The right panel tracks this trajectory in the phase space shown along with the nullclines f (M, W ) = 0(blue) and g(M, W ) = 0 (red) superimposed with the normalized phase space velocity vectors of the noise-free system. They are shown for R = 320 and (a) σ = 0.005 (b) σ = 0.015 (c) σ = 0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 8.3 Snapshots of (M, W ) projection parametrized by x at different times along with the nullclines for (a) = -0.1 and σ = 0.01. (b) = -0.1 and σ = 0.03 (c) = -0.01 and σ = 0.01 (d) = -0.01 and σ = 0.03.164 8.4 Trajectory of solutions F 1 and F 5 superimposed on the Busse balloon for σ = 0.01 (solid line) and σ = 0.03 (dashed line) . . . . . . . 165 8.5 Space-time evolution of W (x, t) for σ = 0.03 shown in the left panels with the same snapshots in the phase plot on the right panel as the (M, W ) projection parametrized by x. The corresponding sanpshots are color-coded (dark-light : T = 0 -25 × 10 3 ) (a) R = 370 (b) R = 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 8.6 Trajectory of solutions (solid lines) traced through adiabatic descent superimposed on the Busse balloon. . . . . . . . . . . . . . . . . . . 167 8.7 Space-time evolution of W (x, t) for σ = 0.01 shown in the left panels with the same snapshots in the phase plot on the right panel as the (M, W ) projection parametrized by x. The sanpshots are colorcoded (dark /light, with the time indicated in the legend of the phase plot.(a) R = 430 (b) R = 360 (c) R = 230. . . . . . . . . . . 8.8 Wavelength selection at R = 360 represented as k in vs k f where k in is the wavenumber of the patterned initial condition and k f is the average wavenumber of the resultant pattern. Hollow markers indicate simulations with σ = 0.01, 0.02, 0.03. the solid red line indicates k in = k f . The dashed black lines demarcate the upper and lower bounds of the Busse balloon for R = 360. . . . . . . . . . 9.1 Representative bifurcation diagram of pPf . . . . . . . . . . . . . . 9.2 Bifurcation diagram of the noise-free model given with the distance to the laminar state ∆. Solid lines indicate a stable solution and dashed lines indicate an unstable solution. The Busse balloon is shown as a shaded region along with the trajectory F 5 inside the Busse balloon as a solid black line. Three different regimes emerge demarcated by the gray dash-dot line. . . . . . . . . . . . . . . . . . 9.3 (a) Space-time diagram of E cf (x -¯ u x t, t ) at a specific spanwise coordinate for all 40 ≤ Re G τ ≤ 90. (b)-(f) W (x) at T = 2.5 × 10 4 for R = 430, 350, 260, 250 and 230 from simulations of the model with noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.4 Busse balloon : Representation of filtered streamwise laminar gaps l x as a wavenumber k x = 2π/l x for Re = 90 -50. . . . . . . . . . . 9.5 Evolution of the patterns with reducing values of R (adiabatic descent) depicted in the (M, W ) projection parametrised by x (a) Trajectory F 1 in the adiabatic descent of the noise-free model (b) Trajectory for σ = 0.01 in the adiabatic descent of the stochastic system starting from outside the Busse balloon. . . . . . . . . . . . 9.6 Evolution of the pattern wavelength during the adiabatic descent (a) Trajectories F 1 -F 5 of the noise free model. (b) Trajectories with σ = 0.01, 0.02 and 0.03 for the stochastic system. The wavelength of the left boundary of the Busse balloon is also depicted by a "X". Logarithmic scaling of this wavelength is depicted with the expected value of R SL for the divergence. . . . . . . . . . . . . . . . . . . . . 9.7 (a) Busse balloon represented in the (A, c) space. Solid black line is the locus of Hopf bifurcation in the ODE phase space. Thick grey line is locus of change in stability of patterns, Eckhaus type. Thin black line is locus of limit cycle with period= 2000, approximating the homoclinic bifurcation. hollow squares : no pattern solution, solid grey rhombus: unstable pattern, solid black triangle: stable pattern solution. (b) Time period of pattern solution with c = 2. The branch emerges from the Hopf bifurcation at A ≈ 2.78 and terminates at a homoclinic solution at A ≈ 032. Figures (a) and (b) are taken from (Sherratt, 2012). (c) Changes in patterns for cyclical variation of rainfall parameter A starting from A = 3.2 to A = 0.5 in steps of 0.1 with a simulation time of 2400 time units. The solid blue line indicates the stability boundary of the pattern solutions. Solid red lines are isolines of wavelength with values indicated on the plot in red. Thin black line with solid circle is the pattern solution. Arrows indicate direction of change of A. Figure adapted from (Sherratt, 2013) . . . . . . . . . . . . . . . . . . . . . 9.8 Mean wavelength λx , λz The logarithmic scaling for 50 ≤ Re G τ ≤ 90 is shown with a solid line and with a logarithmic axis scaled as Re G τ -Re SL in the inset. The computed value of Re SL is indicated in the legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.9 Schematic of three turbulent patches (orange) of length L t in a periodic domain of length L. The laminar gaps have a streamwise length L lam and the wavelength is indicated as λ. . . . . . . . . . . 9.10 Turbulent fraction data for pPf. The definitions of Re are according to the study from which the data is taken. : (a) Current simulation (b) Simulations by Shimizu and Manneville (2019a) (c) Simulations by Takeda and Tsukahara (2019) (d) Experiments from Sano and Tamai (2016). T f computed at three different streamwise positions in the domain is indicated by a different coloured symbol with the fits labelled C 1 , C 2 and C 3 . The y axis of the inset plot is shown in terms of 1/T f against . . . . . . . . . . . . . . . . . . . . . . . . . 9.11 Variation wavelength λ z with the R i for η = 0.983 and different R o indicated by the different colors of the symbols. The dashed lines correspond to the fit and the black line indicates the predicted value of R SL . Data taken from (Prigent, 2001) . . . . . . . . . . . . . . . 9.12 T f (Re taken from the study by Duguet et al. (2010). The fit is shown as a dashed red line with the inset showing 1/T f against . . 9.13 (a) Turbulent fraction data from Moxey and Barkley (2010). The different cut-off values used are shown with different symbols and the fits labelled as C 1 , C 2 and C 3 (b) Turbulent fraction data from model of pipe flow (Barkley, 2016) ; The definitions of Re are according to the study from which the data is gathered. For the Barkley model r is denoted as Re in the plot for convenience. . . . 9.14 Phase space of the Barkley model of pipe flow shown with the q, u nullclines shown in red and blue respectively. (a) Puff shown as a homoclinic orbit in black (b) Changes in the position of the q nullcline with increasing control parameter r. These figures were taken from (Barkley, 2016) . . . . . . . . . . . . . . . . . . . . . . 10.1 Representative bifurcation diagram for pPf . . . . . . . . . . . . . . 11.1 (a) Current pPf simulation : Isocontours of wall-shear stress perturbation from simulation at Re G τ = 80 (b) pPf experiment : Instantaneous visualisation (wall-normal view) of the flow field Re b = 1380 (Re G τ ≈ 66). dark: turbulent, light: laminar (Paranjape, 2019) (c) pCf simulations : isocontours of the fluctuating streamwise velocity in the midplane at Re = 330 (Duguet et al., 2010) (d) pCf experiment : Instantaneous visualization (wall-normal view) of the flow field at Re = 349. Light: turbulent, dark: laminar (Prigent, 2001). (e) single sided pattern in pCf : Isocontours of the wall-normal velocity in pCf at Re = 338 in a domain L x × L y × L z = 500 × 2 × 500. Image taken from ICTAM-2020+1 presentation. . . . . . . . . . . 11.2 Isocontours of fluctuating spanwise velocity u z (x, 0, z, t) (a) In the small domain L x × y × L z = 100 × 2 × 50 at time T = 4000, (b,d) In the large domain L x ×L y ×L z = 300×2×150 at T = 0 and T = 8000 respectively. (c,e) Instantaneous power spectrum of u z (x, 0, z, t) in polar coordinates at T = 0 and T = 8000 respectively. . . . . . . . 11.3 Peak energy in the acute angled bands . . . . . . . . . . . . . . . . 11.4 Instantaneous snapshots of isocontours of u z (x, 0, z, t) with band breakages and spots highlighted in yellow and black respectively.(a) At T = 3405 (b) T = 3495 (c) T = 4015 . . . . . . . . . . . . . A.1 The domain of flow / simulation depicted with the parabolic laminar base flow of pPf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of Tables 1.1 Summary of estimated critical Re for pipe flow, pCf and pPf. . . . . 2.1 Velocity scale definition for each flow case. . . . . . . . . . . . . . . 2.2 Decay exponents computed for different resolutions in the domain L x = L z = 320 for Ūx of pCf at Re = 400 and T = 80 . . . . . . . . 3.1 Algebraic decay exponents for Ūx and Ūz in pCf for different Re . . 3.2 Algebraic decay exponents for Ūx and Ūz in Wf for different Re . . 3.3 Algebraic decay exponents for Ūx and Ūz in pPf for different Re . . 3.4 Algebraic decay exponents for Ūx and Ūz in cPf for different Re . . 9.1 Fitting parameters for different turbulent fraction data sets of different shear flows. Dim : Effective dimension . . . . . . . . . . . . . 10.1 Summary of the large-scale flow structure portrayed by the flow and the computed decay exponent of the velocity tail. . . . . . . . . . . xxxix Chapter 1 Introduction Fluid flow is at the heart of nearly all systems in Nature. From the transport of nutrients in all living organisms to weather patterns formed by wind and ocean currents all involve fluid motion. The study of such motion thus forms an integral part of understanding natural systems and processes. Many engineering systems ranging from an aircraft to a nuclear reactor to the refrigerator are made possible due to the understanding gained from the study of fluid flow. Classically, fluid motion has been segregated into two regimes termed laminar and turbulent. This distinction has been historically made based on flow visualizations. Fluid flows with regular streamlines were termed as laminar motion while an irregular motion were termed turbulent. The coining of the term turbulent for the irregular flow regime is attributed to William Thomson (Lord Kelvin)
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 11 Figure 1.1: Schematic bifurcation diagram : (a) Supercritical bifurcation occurring at Re c . (b) Subcritical bifurcation with linear instability of the base state at Re c . The red lines indicate states traversed with change in Re highlighting hysteresis (c) Subcritical bifurcation where the base state remains stable for all Re. The saddle-node bifurcation is depicted at Re SN . The solid lines indicate a stable state and the dashed line indicates unstable state.

  as the Taylor-Couette flow. The linear instability is dictated by the relative velocity of the two cylinders and its radial gap. The neutral curve computed by G.I.Taylor is shown in fig 1.2 and marks the onset of a supercritical instability. However, this system is also known to portray a subcritical transition for the case of counter rotating cylinders with the outer cylinder rotating faster than the inner cylinder. The TCf system was explored in great detail owing to its amenability to analytical approaches verifiable by experiments as envisioned by Taylor. A host of flow features were discovered which are summed up in fig 1.3. The inner and outer cylinder velocities are nondimensionalised to form Re i = a(ba)Ω i /ν and Re o = b(ba)Ω o /ν where a, b are the inner and outer cylinder radii.
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 12 Figure 1.2: Bifurcation diagram of the Taylor-Couette flow taken from[START_REF] Taylor | Stability of a viscous liquid contained between two rotating cylinders[END_REF]. Ω 1,2 is the angular velocity of the inner and outer cylinders respectively.

  turbulence and T is the total time of the signal. The sensor signals suggested alternating spatially localized laminar and turbulent regions. A snapshot from (Rotta, 1956) identifying these regions is shown in fig 1.4. The factor γ is a measure of the degree to which the flow is turbulent, thereby capturing one of the earliest instances of what is today called as the turbulent fraction.

Figure 1

 1 Figure 1.4: A sample signal from a hot wire in a pipe flow with regions of laminar and turbulent labelled. The figure is taken from[START_REF] Rotta | Experimenteller Beitrag zur Entstehung turbulenter Strömung im Rohr[END_REF].

Figure 1

 1 Figure 1.6: Puffs and slugs in pipe flow (a) Experimental : Flow visualization of a puff in pipe flow at Re = 1800 (Willis et al., 2008). Flow from left to right. (b) Simulation :Instantaneous visualization of the isocontours of the transverse fluctuations in the meridian plane of the pipe for Re = 2200[START_REF] Barkley | The rise of fully turbulent flow[END_REF]. Gray: laminar (c) Simulation: Space-time diagram in a moving frame travelling at the average velocity of the slug font speed. The horizontal axis is the axis of pipe (flow from left to right) and the vertical axis represents time. A slug is depicted with isocontours of the transverse fluctuating velocity in the meridian plane of the pipe at Re = 5000[START_REF] Song | Speed and structure of turbulent fronts in pipe flow[END_REF]. Black:laminar.
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 17 Figure 1.7: Spots in pCf (a)Experiment :Instantaneous flow visualization of the mid-plane of the channel detailed in (Dauchot and Daviaud, 1995) (Photo courtesy of Olivier Dauchot) (b) Simulation :Isocontours of fluctuating streamwise velocity in a plane slightly off-center for Re = 360 (Couliou and Monchaux, 2018).

  pPf by Tsukahara et al. (2005); Tuckerman et al. (2014) and in Wf by Chantry et al. (2016). The patterns documented in simulations and experiments of different shear flows are shown in fig 1.8. They are typically large-scale, necessitating extended domains in both experimental and numerical studies. The typical scale of these structures are given in terms of the half-gap between the walls h. The typical wavelength of the patterns near their onset are (λ x , λ z ) ≈ (100h, 30h) in

Figure 1

 1 Figure 1.8: Laminar turbulent patterns : TCf -(a)Experiment : Flow visualization at R o = -850 and R i = 630 with mirrors to capture the blind side of the cylinder. Bright regions : turbulent, dark regions laminar (Prigent, 2001) (b) Simulation :Isocontours of the angular momentum. Dark blue :turbulence (Meseguer et al., 2009) ; pCf : (c) Experiment :Flow visualization of the wallnormal view of the channel at Re = 358 (Prigent, 2001). Dark regions:laminar, bright regions:turbulent (d) Simulation :Isocontours of the streamwise fluctuating velocity in the mid-plane at Re = 330 (Duguet et al., 2010) ; pPf : (e) Experiment :Flow visualization of the wall-normal view at Re = 1380 (Paranjape, 2019). Dark :turbulent, flow from left to right (f) Simulation :Isocontours of the wallnormal velocity in the mid-plane at Re = 1604 (Shimizu and Manneville, 2019a). Dark:turbulent, flow from left to right.

  Figure 1.9: Representative bifurcation diagram for wall-bounded shear flows such as pipe flow, pCf and pPf.

  attempted to probe the instability of the turbulent mean flow. The k-Ω closure model was used along with the Reynolds averaged Navier-Stokes equations for the mean flow. However, a linear instability could not be established for the range of values of Re where the patterns are observed. Despite these studies, the mechanism for the origin of these structures, the obliqueness of the turbulent bands, selection of the angle and the role of largescale flow in the spatial organization remain open.

  fig 1.10.

  introduced in the study of turbulence. The MFU constrains the dynamics to the smallest domains that sustain turbulence. In these domains, the spatial complexity is reduced and the problem becomes temporal in character. Within the paradigm of the MFU, a self-sustaining process (SSP) for turbulence was identified in pCf by[START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF]. The SSP depicted in fig 1.11, features streamwise vortices that lift up low velocity fluid from the near the wall into regions of high velocity, creating the streaks. The streak undergoes an inflectional instability leading to its breakdown which regenerate the streamwise vortices by a nonlinear mechanism thereby sustaining turbulence.

Figure 1 .

 1 Figure 1.11: Schematic representation of the self-sustaining process.

  cent study using the tilted domain, statistics of the turbulent bands in pPf similar to fig 1.10 were documented, predicting sustained turbulence in average to occur at Re cl = 965[START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF].Charting the route from temporal (MFU) to spatiotemporal (extended domain), the different states observable with the change of domain size was documented by[START_REF] Philip | From temporal to spatiotemporal dynamics in transitional plane Couette flow[END_REF]. The results shown in pCf for domains with an aspect ratio between 0.36 and 0.48) is depicted in fig 1.13.

Figure 1 .

 1 Figure 1.13: Isocontours of the mean r.m.s (root mean squared) of the velocity fluctuations depicted with Re in the abscissa and the size L of the domain measured along its diagonal as the ordinate. The hatched area (in white) indicates parameter space with laminar holes acting as intermediate states prior to observing recognizable patterns. Plot adapted from (Philip and Manneville, 2011).

  incorporated divergence-free basis functions modelled after the components of the SSP synthesised in Wf. They capture the spatial variation of the velocity profile associated with the mean flow, streaks, the streamwise vortices and the leading eigenmodes of the streak instability. A set of eight ordinary differential equations (ODEs) were obtained which was further reduced to four based on relationships between the streak instability modes. These amplitude equations were shown to capture the global subcriticality and multistability. It mimics the laminar and turbulent attractors by means of fixed points.

•

  . How do turbulent fluctuations decay away from the core of a spot in different wall-bounded shear flows ? 2. How do patterns of alternating laminar and turbulent bands evolve with Re in pPf and what is its geometry in extended domains ? 3. What causes pattern formation in pPf ? Can an instability of the turbulent flow be established ? 4. Can a phenomenological model capture pattern formation as well as its evolution with Re ? These questions are answered by means of high-fidelity numerical simulations in extended domains using an open-source pseudo-spectral solver called Chan-nelflow2.0 (detailed in Appendix A). The structure of the thesis following these questions are split into three parts : • Part 1 : Turbulent Spots in shear flows Addressing the first question in Part 1 of the thesis, turbulent spots are simulated in large domains for 4 different wall-bounded shear flows. The structure of the large-scale flow and the decay of the velocity tails are elucidated in chapter 2. A kinematic analysis validated by numerical results is motivated to explain these results in chapter 3. • Part 2 : Transition from turbulence to laminar in pPf The second part of the thesis addresses the second and third questions. pPf is simulated in large domains for a range of Re and the geometry of the resulting patterns are characterized in chapter 4. Key features of the patterning regime are elucidated in chapter 5 and pattern formation is discussed in chapter 6 Part 3 : Phenomenological Modelling The third part addresses the last question. Drawing on the observations of the simulations of pPf, a 1-dimensional phenomenological model is proposed.The model is broken into a deterministic part capturing key features of the transition and is illustrated in chapter 7. Multiplicative noise is introduced into the system making it stochastic thereby mimicking the endogenous fluctuations of turbulence. A systematic analysis of the model is performed with its effectiveness and drawbacks highlighted in chapter 8. the thesis will detail the study conducted on the tails of turbulent spots in wall-bounded shear flows. The investigation was carried out for the case of a Newtonian incompressible fluid. A turbulent spot is defined as a transient nonlinear response of the system to a spatially localized disturbance. Spatially localized finite amplitude disturbances have been a traditional method to trigger turbulence in experiments. Turbulent spots have been observed in pCf(Dauchot 
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 21 Figure 2.1: Laminar base flow profiles for (a)pCf (b)Wf (c)CPf and (d) pPf. τ w stands for the wall shear stress ρν∂u/∂y, U w for the velocity at the wall, while the labels P + and P -indicate an applied pressure gradient.

y

  fig 2.1a. CPf has the upper wall moving with +U w with a stationary lower wall and an imposed pressure gradient such that there is no net mass flux of the laminar flow. Stationary walls at y = ±h with an imposed pressure gradient drives the flow in the case of pPf. Wf incorporates stress-free boundary conditions at y = ±h mimicking walls with free slip and is driven by a sinusoidal body force f ∝ sin(πy/2h).

  channel and ν is the kinematic viscosity of the fluid. The four flow cases are characterized by different velocity scales giving rise to different nondimensionalization and different definitions of Re as shown in Table 2.1. The corresponding nondimensionalized laminar base flow for the flow cases are as in Eq 2at y = ±h Table 2.1: Velocity scale definition for each flow case.

  .6) The flow around the turbulent spot is visualized in Fig 2.2 after a finite time. The spots are visualized with the streamwise fluctuating velocity and the far field is made visible by the normalized velocity vectors of ( Ūx , Ūz ). The spots themselves are visually distinct for the different flow cases while two well-defined flow structures can be identified around them. The flow surrounding the spot in pCf and Wf has a quadrupolar structure while that around CPf and pPf has a dipolar structure with the dipole moment aligned along the streanwise direction.

Figure 2

 2 Figure 2.2: Turbulent spots for the four different shear flows visualized by isocontours of the fluctuating velocity field at y = 0 with the associated large-scale flow ( Ūx , Ūz )depicted by their unit vectors : (a) pCf at Re = 400 and T = 300 (b) Wf at Re V = 83.5 and T = 250 (c) CPf at Re W = 700 and T = 200 (d) pPf at Re cl = 3200 at T = 200.
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 222 Figure 2.3: Decay of the velocity components along the diagonal x = z of the domain for different domain sizes (shown in legend as L x ×L z ) for pCf at Re = 400 and T = 150 (a) Streamwise component Ūx (b) Spanwise component Ūz

  Figure 3.1: Schematic of a concentrated vortex source distribution in the xz plane.

Figure 3

 3 Figure 3.2: Variation of fk for the y-averaged velocity component Ūz at radius r o = 400 depicted for pCf at Re = 400 and T = 300, Wf at Re V = 83.5 and T = 250, cPf at Re W = 700 and T = 200 and pPf at Re cl = 3200 and T = 200

  Fig 3.3 shows the decay of the Fourier amplitudes corresponding to the dominant poles of the flow cases. The algebraic decay is evident from the linear nature of the curve in the log-log plot.

Figure 3

 3 Figure 3.3: Log-Log plot of the amplitude of the dominant modes m = 2 for dipole and m = 3 for quadrupole against the radius r for both Ūx and Ūz (a) pCf at Re = 400 and T = 300 (b) Wf at Re V = 83.5 and T = 250 (b) CPf at Re W = 700 and T = 200 (d) pPf at Re cl = 3200 and T = 200

Figure 3

 3 Figure 3.4: Variation of the fraction of energy content in the dipole : f1 (blue) and quadrupole : f2 (red) as a function of the wall normal coordinate at radius of r o = 300 from the origin for different flows. pCf at Re = 400 and T = 300 ; Wf at Re V = 83.5 and T = 250 ; cPf at Re W = 700 and T = 200 ; pPf at Re cl = 3200 and T = 200

Figure 3

 3 Figure 3.5: Planar flow field generated by source and force dipoles (a) Source dipole adapted from[START_REF] Spagnolie | Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations[END_REF] consisting of a source (solid black dot) and a sink (hollow black dot) (b) Force dipole generated by a 3 force system in a plane parallel to the walls adapted from[START_REF] Jeanneret | Confinement enhances the diversity of microbial flow fields[END_REF] 

  force dipole would be the prominent term in the far field only if the source dipole vanishes. The negation of the source dipole indicates that the spot is stationary in these flows. These analogies draw parallels between the turbulent spot and singularities of the Stokes regime. It provides a different perspective to analyze the topology of the flow field generated by the turbulent spot and its implications.This analogical approach involves analysing the spot with sources of mass and force thereby accounting for the relative motion of the spots with respect to the mean flow. I would like to thank Prof Alexander Morozov (Univ. of Edinburgh) for his inputs in this regard. protocol Plane Poiseuille flow is the flow between two infinite parallel plates and is one of the canonical flow cases known to undergo subcritical transition to turbulence.

  be further simplified by considering the boundary conditions for the flow through a channel. Periodicity is imposed in the streamwise (x) and spanwise directions (z) while no-slip boundary condition is imposed at the top and bottom walls of the channel. The flow is driven by a constant streamwise pressure gradient Π and a zero imposed pressure gradient in the spanwise direction.

  ∂y bottom dx dz (4.11) where µ is the dynamic viscosity of the fluid. The relation of Eq 4.11 demonstrates the balance of the mean viscous shear stress with the imposed pressure gradient. The control parameter for the flow is the Reynolds number, however, different definitions based on different velocity scales are found in the literature. The most frequently encountered definitions are : Re cl -based on the centerline velocity of the corresponding laminar flow. Re b -based on the streamwise flow rate, Re τbased on the friction velocity. The friction velocity represented as u τ is defined as :

  .14) where µ is the dynamic viscosity of the fluid. The reference laminar flow in the definitions of the different Re is the laminar flow under the same forcing protocol and are interrelated as Re 2 τ = 3 Re b = 2Re cl A constant pressure gradient fixes the total mean shear while allowing the flow rate to vary according to the regime of the flow. The laminar regime will have a higher flow rate while turbulence will have a lower flow rate owing to the higher dissipation under the same fixed mean shear. This indicates that Re τ is imposed while Re b is a measured response of the system. Similarly, an imposed bulk flow allows for the shear stress to vary according to the regime of flow with laminar having a lower shear stress than turbulent. The imposed parameter is Re b and the measured system response is Re τ . This sets up conjugate variables (Re b , Re τ ) to study the dynamics of the system. A bifurcation diagram based on these conjugate variables is plotted in fig 4.1. For the laminar regime an analytical relation exists relating Re τ and Re b (drawn in blue in fig 4.1), while an empirical relation based on experiments is shown for the featureless turbulent regime drawn in red[START_REF] Dean | Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow[END_REF]. The choice of the forcing has been found not to cause a major difference in the resulting dynamics with only minor variations in the distribution of extreme values of the fluctuations[START_REF] Quadrio | Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow?[END_REF].

Figure 4

 4 Figure 4.1: Bifurcation diagram : the laminar regime is drawn in blue while the featureless turbulent regime is drawn in red. The protocol of imposed pressure gradient is shown in green while the imposed bulk flow is shown in black. The intersections with the laminar branch indicates the corresponding laminar flow of the choice of forcing. The featureless turbulent regime is the same for both protocols indicated by their intersections.

  , highlighting a qualitative similarity in the transitional regime of the two plane shear flows. Subsequent experiments and simulations carried out for 1540 ≤ Re b ≤ 2330 revealed patterns to exist for 1700 < Re b ≤ 2330 (Tsukahara, 2010). These patterns break and localized patches of turbulence are documented for Re b ≤ 1700 with eventual relaminarization around Re b ≈ 1540. Simulations performed in tilted domains reconfirmed these sequence of events (Tuckerman

  nel, the transition to turbulence in pPf was shown to portray characteristics of a 2D directed percolation (DP) phase transition with a critical value of Re cl = 830[START_REF] Sano | A universal transition to turbulence in channel flow[END_REF]. The growth and sustenance of turbulent bands for values of Re below the predicted critical value was reconfirmed with simulations in domains with L x × L y × L z = 500 × 2 × 400 (nondimensionalized by the channel halfgap)[START_REF] Tao | Extended localized structures and the onset of turbulence in channel flow[END_REF].New findings about range of values ofRe for existence of pattern and competition between opposing orientation of turbulent bands were obtained in simulations of large domains with L x ×L y ×L z = 500×2×250 (nondimensionalized by the channel halfgap) (Shimizu and Manneville, 2019a). A masked DP type phase transition at Re τ = 44.36 is suggested based on the algebraic scaling of the turbulent fraction over the range 45.8 ≤ Re τ ≤ 69.28 consistent with the expectation for a (2 + 1)d DP. This bifurcation diagram is shown in fig 4.2. The Reynolds number defined by Shimizu and Manneville (2019a) is based on a body force driving the flow and has been translated into Re τ based on the conversion factor given in the study.
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 42 Figure 4.2: Representative bifurcation diagram for pPf taken from(Shimizu and Manneville, 2019a). The value of the Reynolds numbers Re are given in terms of Re τ . Global stability is predicted around Re g ≈ 37. Event A corresponds to onset of transversal splitting of turbulent bands at ≈ 40. An extrapolated 2D directed percolation transition threshold is found at Re DP = 44.36. The transition from one sided turbulent bands to two sided turbulent bands occur at Re 2 = 44.9. Event B corresponds to the opening of sustained laminar gaps and formation of downstream active head at ≈ 48.9. The onset of patterning from the featureless turbulent regime occurs at Re t ≈ 88.

  250 for 55 ≤ Re G τ ≤ 120 and L x = 2L z = 500 for Re G τ < 55 have been utilized for the simulations. The local resolution of N x /L x = 4.096 was used with N y = 65 throughout the simulations, similarly to those in (Shimizu and Manneville, 2019a). The indicated resolution incorporates the additional modes for dealiasing.

Figure 4

 4 Figure 4.3: Parametric Re G τ simulated during the adiabatic descent protocol. The x-axis represents the cumulative time of the simulations.

Fig 4 .

 4 Fig 4.4 with the isocontours of τ (x, z). For Re G τ = 100, the featureless turbulent regime is observed in fig 4.4a. As Re G τ is lowered, the organization of alternating oblique regions of high and low turbulence resulting in a tightly knitted pattern is observed (90 ≤ Re G τ ≤ 70). Note that patterning is visually perceivable at Re G τ = 90 while the immediate higher simulation at Re G τ = 95 does not portray patterns that can be distinguished by the eye. When viewed in the xz plane as in fig 4.4, the bands in the pattern are symmetrically tilted with respect to the streamwise direction (x) in opposing orientations. The sparsity of the pattern is seen to increase with the reduction of Re G τ at the same time as the pattern gains more disorder (60 ≤ Re G τ ≤ 50). For Re G τ < 50 the pattern breaks and oblique independent turbulent bands (ITBs) are observed 1 .
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 44 Figure 4.4: Isocontours of τ (x, z, t). The horizontal and vertical axes are x and z respectively with the magnitude ranging from low (blue) to high (red). (a) Re G τ = 100 at T = 2500 (b)Re G τ = 95 at T = 2500 (c) Re G τ = 90 at T = 3500 (d) Re G τ = 80 at T = 3500 (e) Re G τ = 70 at T = 3500 (f) Re G τ = 60 at T = 3500 (g) Re G τ = 55 at T = 3500 (h) Re G τ = 50 at T = 3500 (i) Re G τ = 45 at T = 5000 (j) Re G τ = 42 at T = 10 4 (k) Re G τ = 39 at T = 13 × 10 3
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 45 Figure 4.5: Isocontours of u x (x, 0, z, t) at T = 9480 with the DAHs highlighted at the downstream of each band.
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 44 Figure 4.6: Representative diagram of pPf
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 49 Figure 4.9: Mean flow profile ¯ u +x (y + ) for Re G τ from 100 down to 39. Blue: law of the wall ¯ u + x = y + , red: logarithmic law of the wall ¯ u + x = 2.5log(y + ) + 5.5, black: DNS results from[START_REF] Kim | Turbulence statistics in fully developed channel flow at low Reynolds number[END_REF] 

  at a specific spanwise coordinate as shown in fig 4.11. These space-time diagrams are plotted in a reference frame moving at ¯ u x .Individual turbulent bands are visually identified from such plots and the tilt of these bands for 2500 ≤ T ≤ 4000 is measured. This is carried out by noting the coordinates (x, t) for each of the bands at T = 2000 and T = 4000 from which the velocity is computed as ∆x/∆t. The procedure is repeated over three such space-time variations at different spanwise coordinates. The variation of the mean pattern velocity with Re G τ is shown in fig 4.10 superimposed with the findings in tilted domains[START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF][START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF]. Patterns are observed to advect slightly slower than the the bulk velocity for Re G τ > 60 and accelerating as Re G τ is reduced resulting in the bands travelling faster than ¯ u x for Re G τ < 60. This process is seen in fig 4.11 where the low velocity of the pattern is witnessed by the leftward tilt of the bands for Re G τ > 60 that gradually reorients towards the right, indicating an acceleration with reduction of Re G τ .

Figure 4 .

 4 Figure 4.10: Streamwise advection velocity of the turbulent bands relative to the mean bulk velocity superimposed with the streamwise velocity of the bands computed in[START_REF] Tuckerman | Turbulent-laminar patterns in plane Poiseuille flow[END_REF][START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF] 

Figure 4

 4 Figure 4.11: Isocontours of τ (x, Lz/2, t) for (a)-(h) Re G τ =80, 70, 60, 55, 50, 45, 42, 40 

  . The confinement imposed by the narrow domain and a similar limited extent in the z direction of the experiment makes it an effective 1D system. The transition documented is shown to belong to (1 + 1)d DP, where (1 + 1)d indicates one spatial dimension and time as the second dimension. Similarly a (2 + 1)d DP type transition has been established for Wf with simulations in a large domain of L x = L z = 2560 and simulated over long times of the order of O(10 5 ) (Chantry et al., 2017).

Figure 4

 4 Figure 4.12: (a) Cumulative distribution of streamwise laminar gaps for all Re G τ as indicated in the legend (b) Mean λ(Re G τ ) evaluated from the exponential fit of P (l ≥ l x ).

  .16) where P (l ≥ l x ) is the cumulative distribution, N is the total number of laminar gap data points. The cumulative distribution shown in fig 4.12a has an exponential tail for all Re G τ simulated indicating that even at Re G τ = 39, the system is away from any critical point. The exponential behaviour of this distribution is evident from the linear nature of the curves in the semi-log axis. Recent studies have suggested a DP type transition at Re G τ = 44.36 (Shimizu and Manneville, 2019a) and Re cl = 991.8(Re Gτ ≈ 47)[START_REF] Takeda | Two-stage subcritical transition as directed percolation universality classes in plane Poiseuille flow[END_REF] based on algebraic scaling of the turbulent fraction. However, contrarily to the requisite algebraic scaling of the laminar gaps near these Re G τ , an exponentially tailed distribution is observed suggesting that any possible critical point necessarily occurs for Re G < 39.

A•

  characteristic of the transitional regime of pPf is the oblique nature of the turbulent bands. The tilt of the bands is visible when viewed in the xz plane of the domain as in fig 4.4. The angle of these bands with respect to the streamwise direction is measured by two different methodologies. • Large-scale flow : Similar to the case of pCf (Duguet and Schlatter, 2013), the y-averaged in plane (xz plane) local velocity vectors ( u x y , u z y ) align along the bands as shown in fig 4.13a, 4.13c. Since pPf involves mean advection unlike pCf, the comoving frame moving at the bulk velocity is necessary to observe the alignment of the velocity vectors. The angle of inclination of the bands can be gathered from the orientation of these velocity vectors as : θ L (x, z, t) = tan -1 u z y -Fourier analysis : The turbulent bands are showcased in fig 4.4 and fig 4.13c,4.13a with isocontours of τ (x, z, t). The dominant mode of the power spectra of τ (x, z, t) is indicative of the energy of the large scale flow and encodes the angle of inclination of the bands :

  4.18) where λ = 2π/k with k taking the values of k x and k z of the dominant mode respectively. The traditional representation of the power spectrum in the (k x , k z ) plane is transformed into polar coordinates (k, θ F ) where k = k 2 x + k 2 z and depicted in fig 4.13b, 4.13d. The angle of the turbulent bands is directly discerned from the location of the dominant mode in the polar plot. The acute angled bands in fig 4.13a correspond to the spectral peak located as θ F ≈ 30 o in fig 4.13b. Similarly, the obtuse angled bands correspond to the peak at θ ≈ 150 o . The other two peaks at θ F ≈ 210 o and θ F ≈ 330 o arise from the symmetric nature of the Fourier transform. For the case of Re G τ = 40, only obtuse angled bands are observed and the acute angled bands disappear. This is reflected by a single dominant peak for the obtuse angle θ F ≈ 140 o and its symmetric reflection at θ F ≈ 320 o in the polar spectrum depicted in fig 4.13d.

Figure 4

 4 Figure 4.13: (a,c) Isocontours of τ (x, z, t) superimposed with the normalized yaveraged local velocity vectors at Re G τ = 60, 40 (b,d) Instantaneous power spectra of τ (x, z, t) in polar coordinates at Re G τ = 60, 40.

Figure 4

 4 Figure 4.14: (a) Variation of mean(signed) angle with Re G τ computed using the Fourier spectra ( θF 1 , θF 2 ) and the local velocity( ¯ θ L 1 , ¯ θ L 2 ) (b)Variation of mean (unsigned) angle θ along with data from[START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers[END_REF][START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF] 

Figure 4

 4 Figure 4.15: Space-time averaged streamwise (blue) and spanwise (red) distance between bands of similar orientation (a) Obtuse angled bands (negative angle) (b) Acute angled bands (positive angle)

Figure 4 .

 4 Figure 4.16: Representative diagram of flow regimes for different Re G τ

  3) where n = 0.1, 0.25, 0.5, 1.0, 1.25 is a multiplicative factor and σ(E v ) is the standard deviation of the space-time variation of E v (x, z, t). T f (Re G τ ) evaluated for different cut-off values is shown in fig 5.1a.
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 515 Figure 5.1: Turbulent fraction evaluated for different thresholds values of E v (a) Measured (b) Normalized turbulent fraction

  .7) Expressing Re b with the length scale h rather than 2h used in the original relation, results in the additional factor of 2 in the denominator. The C f computed for 39 ≤ Re G τ ≤ 100 is shown in fig 5.3 against measured values of Re b from the simulations. The expected values for the laminar (blue) and featureless turbulent (red) regimes are superimposed on the measurements of C f .

Figure 5 . 3 :

 53 Figure 5.3: Friction factor C f vs Re b . The error bars indicate the fluctuations inherited from the computation of ¯ u x

  13) A phase portrait is constructed in the (Re b -Re τ ) space and joint probabilities for Re G τ = 100, 80, 60 and 40 are plotted in fig 5.4 along with their marginal distributions i.e the individual probability distributions of Re b and Re τ .

Figure 5

 5 Figure 5.4: (a 1 ) (b 1 ) (c 1 ) (d 1 ) Joint probability distribution of the quantities Re b and Re τ for Re G τ = 100, 80, 60, 40 together with their marginal distribution shown in lin-log scale for Re b in (a 2 ) (b 2 ) (c 2 ) (d 2 ) and for Re τ in (a 3 ) (b 3 ) (c 3 ) (d 3 ) with the mean value indicated by a vertical/horizontal black line.

Figure 5

 5 Figure 5.5: Marginal distribution of (a) Re τ (b) Re b for 39 ≤ Re G τ ≤ 100

Re τ ,

 τ Re b and E cf . The mean values plotted in fig 5.6a as the bifurcation diagram (Re b -Re τ ) traces the transition from the turbulent branch to the laminar branch. The patterning regime is characterized by C f ≈ const which translates to ¯ Re τ ∝ ¯ Re b and is observed for 50 ≤ ¯ Re τ ≤ 90. The plot of the standard deviation σ against Re G τ shown in fig 5.6b portrays the decrease of σ for both Re τ and Re b in line with the experimental observations of shear stress by Agrawal et al. (2020), and the increase in σ for E cf is similar to the observations by Shimizu and Manneville (2019a). From fig 5.6c the skewness and kurtosis are found to display an increasing trend with reduction in Re G τ for both Re τ and E cf . However, while a similar trend is observed for the kurtosis of Re b shown in fig 5.6d, the skewness is non-monotonic and undergoes sign changes twice in the observed interval. The skewness (m 3 ) and kurtosis (m 4 ) are observed to be correlated (fig 5.6e) as : first documented by Jovanović et al. (1993) as part of the statistical closure model for the fully turbulent regime. It was obtained by fitting experimental data from measurements in the turbulent boundary layer of different shear flows. The data gathered with respect channel flow covers a range of Re with the lowest being Re cl = 3300(Re G τ = 180) and the highest being Re b = 23 × 10 4 . It has also been recorded in the experiments of pPf for 46.8 ≤ Re G τ ≤ 84.1 (Agrawal et al., 2020).

Figure 5

 5 Figure 5.6: (a) Mean values (x m ) of Re b and Re τ . (b) Variation of the Standard deviation (σ) of Re τ (red), Re b (green), E cf (blue) (indicated in the legend) vs. Re G τ . The σ(Re b ) and σ(Re τ ) are scaled as indicated in the legend in order make them comparable. (c) Variation of Skewness (y-axis on left, filled symbols) and kurtosis (right y-axis, open symbols) vs. Re G τ for the observables Re τ (red) and E cf (blue) (d) Variation of Skewness (left y-axis on the left, filled symbol) and kurtosis (y-axis on right, open symbols) vs. Re G τ for the observable Re b (green). (e) Kurtosis vs. squared skewness for Re τ (red), Re b (green, inset), E cf (blue).

  is the instantaneous Fourier power spectral density and (k x , k z ) are the wavenumbers. The time-averaged pre-multiplied power spectra of u x y for selcted Re G τ values are shown in fig 6.2. The featureless turbulent regime at Re G τ = 110 is evidenced by the large bright spot for k x ≥ 0.3 and k z ≥ 1.2 indicating the scales of flow constituting turbulence. With the lowering of Re G

Figure 6 110 (

 6110 Figure 6.1: Amplitude of the large scale flow A LSF for (a)90 < Re G τ ≤ 110 (b) 39 ≤ Re G τ ≤ 110

Figure 6

 6 Figure 6.2: Pre-multiplied energy spectra of u x y for different value of Re G τ

  6.5)where L t is the time-dependent linear operator for the turbulent flow field. The eigenvalues of this linear operator would be akin to computing the largest finitetime Lyapunov exponents. The maximum eigenvalue of such an operator would indeed be positive by virtue of the base flow being turbulent. However, from fig 6.2 a spectral gap is observed between the energy in the small scales of the flow associated with turbulent fluctuations and the large scales of the pattern. The larger scale associated with pattern formation is damped until the onset of patterning. This amounts to windowing of the modes for which the impulse response is studied. Thus, the stability of the turbulent state to long wavelength modulations can be studied with the impulse response of the turbulent state within the window of the large scales as sketched in fig 6.3.Ideally this would need to be repeated over multiple instants of the turbulent state with multiple realizations of noise and an ensemble averaging of the eigenvalues thus computed. However, the robustness of pattern formation irrespective of the initial condition as documented in the previous chapters suggests that studying the response of a single turbulent flow snapshot gives a good indication of the stability of the turbulent state.

Figure 6

 6 Figure 6.3: Pre-multiplied energy spectrum of u b at Re G τ = 92.The energy distribution for featureless turbulence is highlighted as "Turbulent". The modal window used in the impulse response study is demarcated as "Pattern" along with the diagonal of the window used in the computation of the decay rate.

  fig 6.4b. A typical example of the variation of A f e (k, t, Re G τ ) is shown in fig 6.5 with a rapidly decaying mode, a slowly decaying mode and a growing mode, each of which eventually saturates at a finite value.
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 66 Figure 6.4: (a) Amplitude of the mode k = 0.32(k x , k z = 0.12, 0.3) for Re G τ = 120. The light grey lines indicate A f (t) for individual simulations and the thick red line is the ensemble average A f e . The yellow line indicates the saturation value A s (b) A f e -A s for the same wavenumber with the saturation level subtracted from the ensemble average

Figure 6

 6 Figure 6.6: Dispersion relation (a) σ vs k for different Re G τ (b) Displayed as σ vs Re G τ for different values of k (c) σ vs k x (d) σ vs k z

Figure 6

 6 Figure 6.7: Schematic of a possible types of subcritical instability of the turbulent state. The dashed line indicates an unstable state while the solid lines indicate stable solutions. The amplitude of endogeneous fluctuations of turbulence is indicated in a jagged red line. (a) Bistability for Re G τ ≤ Re SN (b) Bistability for Re G τ ≤ Re SN but masked by noise up to Re σ (c) Upper branch emanating from the saddle-node bifurcation is also unstable up to Re σ

  fig 6.7, R σ would be equivalent to the critical value of Re G τ ≈ 95 predicted from the impulse response study. The endogeneous noise in the turbulent state is not a tunable parameter and is an expression of the system. Hence, the presence of energy in the large-scale is conjectured as transient visits to nonlinear states that are linearly unstable for scenario A and B or transient expressions of the modulated state masked by noise as in scenario C. These visits are hypothesized to occur despite the statistical steady nature for T > 1500. The observation of skewness of the marginal distribution of Re τ for Re G τ = 100 displayed in fig 5.5 is thought be linked to the discussions presented herein.

Figure 6

 6 Figure 6.8: Isocotours of u z (x, 0, z, t) for Re G τ = 100 at (a) T = 10 (b) T = 100 (c) T = 200 (d) T = 2000
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 71 Figure 7.1: Representative bifurcation diagram for pPf indicating the different flow regimes observed

Figure 7 . 2 :

 72 Figure 7.2: Bifurcation diagram of Eq 7.1. The solid lines indicate stable solutions and the dashed lines indicate unstable solutions.The shaded regions I : Only laminar solution q 0 exists. This is indicated by a single well in the potential to the right. II : Metastability of both laminar and turbulent solution (q + ) but the laminar solution is at a lower potential. III : Metastable state but turbulent solution at a lower potential.

  .8) with model parameters ζ, 1 , 2 and the centerline velocity of the laminar and turbulent mean flow encoded by U 0 and Ū respectively. The functional form of f (q, u) and g(q, u) are tuned to represent the interplay between turbulence intensity and the mean flow. The model is very successful in capturing the phenomenology of the transition from laminar to turbulence in pipe flow. It accurately portrays the observed statistics of the decay and splitting lifetimes of the puffs and showcases that the laminar to turbulent transition falls into the category of directed percolation. The model sets a physical framework of excitability and bistability for understanding the phenomenology of the transitional regime.

  owing to the divergence-free condition of the basis functions. The use of the Gauss divergence theorem in conjunction with the imposed boundary conditions of periodicity in the streamwise and spanwise directions and free slip at the wall ensures that ¡ ∇ • pΨ i dV = 0. Thus, the pressure term drops out and the orthogonality of the basis functions results in a set of eight ordinary differential equations forming the reduced order model of the SSP.

  coefficients arising out of the combination of the wavenumbers of the basis functions. A visualization of the structures represented by each of these variables along with their amplitudes is shown in fig 7.4. These equations will be referred to as the Waleffe model. The temporal dynamics of the Waleffe model synthesizes the SSP and retains the global properties of the Navier-Stokes equations such as non-normality of the linear operator and energy conservation by the nonlinear terms.

  and D M , D W are the diffusivity of M, W respectively. The term α i itself arises from the diffusive term of the Navier-Stokes equation. However, this incorporates diffusion along the scale of the MFU within which it was derived. The introduced diffusive term re-establishes the linear diffusive interaction along spatial scales larger than the MFU. The bifurcation diagram for this system is exactly same as that of the Waleffe model with the obvious exception of the Turing instability. Several families of patterned states parametrized by their wavenumber q are shown to exist. They were tracked for values of R lower than the saddle-node bifurcation point. The bifurcation diagram of the system taken from (Manneville, 2012) is shown in fig 7.5 with ∆

  the bifurcation diagram of fig 7.5 to fig 7.1 the patterning regime is captured by the model with a family of families of solutions. Spatially localized structures representative of the ITB regime following the patterns have not been detected. However, by incorporating diffusion on all the four equations of Eq 7.14-7.17 and for the specific values of D M = D U = 1 and D V = D W = 0.004, a solitary, spatially localized structure was observed to be the only stable solution. Despite the missing link of the ITB in the reduced two equation model and the additional Hopf bifurcation, the Turing mechanism is hypothesized to be the right strategy to explain pattern formation as presented in the next section.

Figure 7

 7 Figure 7.5: Adapted from (Manneville, 2012) : Bifurcation diagram for system of Eq 7.18 and Eq 7.19 for D M = 1 and D W = 0.15. The different states of the system are as indicated in the legend with q : wavenumber of tracked pattern, R t : Turing instability, R H : Hopf bifurcation and R sn : saddle-node bifurcation.

  22 and Eq 7.23, M 0 corresponds to the laminar state representing the parabolic streamwise velocity profile and M correspond to the blunted velocity profile in the presence of turbulence, analogous to the Barkley model representation of U 0 and Ū respectively. In the Waleffe model, turbulence encoded by the species W plays the role of the activator and the mean flow encoded by the species M plays the role of the substrate. In this model, the activator is autocatalytic in nature i.e., the presence of turbulence leads to more turbulence. This autocatalytic nature is evidenced by the positive sign on the term β W (M -M )W 3 in Eq 7.23 which involves W 3 .However, the production of the activator comes at the expense of the consumed substrate which is depleted i.e the production of turbulence comes at the expense of energy withdrawal from the mean flow, leading to deviation from the laminar base flow. This is captured in the negative sign of the term β M (M -M )W 4 of Eq 7.22 involving W 4 . It causes M to reduce its value from M 0 (laminar) towards M (turbulent mean flow). The consumed substrate limits further growth of the activator as evidenced from the term β W (M -M )W 3 in Eq 7.23 for M ≤ M ≤ M 0 .

A

  schematic sketch of pattern formation in the activator-substrate depletion model is shown in fig 7.6, adapted from (Meinhardt, 2012). Initially, there are no spatial inhomogeneities in the concentrations of substrate (red) and activator (green) represented in fig 7.6a. Infinitesimal disturbances lead to spatial inhomogeneities in the concentrations of the substrate as well as the activator shown in fig 7.6b. Consider that a Turing instability occurs at the parameter value. The autocatalytic nature of the activator leads to increase of the concentrations of the activator and is accompanied by the depletion of the substrate. By virtue of diffusing faster than the activator, the substrate develops a profile that sets up regions of low concentration in the vicinity of the local peak of the activator concentration. This low level of the substrate inhibits growth of the activator in these regions. This leads to a localized peak of the activator concentration coinciding with a trough in the substrate concentration. These events happen in conjunction with similar dynamics occurring throughout the domain, leads to a modulated state as depicted in fig 7.6c. The modulations are amplified by the kinetics and diffusion leading to pattern formation shown in fig 7.6d.

Figure 7 . 6 :

 76 Figure 7.6: Schematic of the activator substrate depletion model leading to pattern formation. The red line indicates the level of the substrate and the green indicates the level of the activator. (a) Initial condition with no spatially homogeneous concentrations of both activator and substrate. (b) A small spatial variation in the concentration of the species due to small scale disturbance (c)-(d) Pattern formation with the progression of time due to instability and amplification of modulation. The sketch was taken from[START_REF] Meinhardt | Turing's theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition[END_REF].

  ity vector does not have any velocity component in the M direction and the sign of this component changes across this line. Similarly for the W component with respect to the g-nullcline (dW/dt = 0). The steady states are points of intersection of the two nullclines in the phase space. The phase portrait of the model is shown in fig 7.7 along with the nullclines given by f (M, W ) = 0 and g(M, W ) = 0 for R = 200, 320 and 450. The isocontours of the kinetics of Eq 7.32 and Eq 7.33 are found to be anti-correlated (fig 7.7) i.e when one is negative the other is positive and vice versa. The nullclines intersect at the trivial fixed point of the system (M, W ) = (1, 0) for all values of R. This fixed point corresponds to the laminar state while two additional intersections are noted for higher values of R. The linear stability of the steady states of the model is analyzed in three steps : 1. Stability of the temporal dynamics (kinetics) 2. Stability under reaction and diffusion but without advection 3. Stability of the full system inclusive of reaction, diffusion and advection.

Figure 7

 7 Figure 7.7: Phase plots of the system (a),(d),(g) -Isocontours of dM/dt (b),(e),(h) -Isocontours of dW/dt (c),(f),(i) Nullclines f (M, W ) = 0 (blue) and g(M, W ) = 0 (red) of the system superimposed with the normalized phase space velocity vectors with the color indicating its magnitude. These are shown for R = 200, 320, 450 respectively.

Figure 7

 7 Figure 7.8: Fixed points of the system. Stable fixed point: Blue filled symbol. Unstable fixed point : Hollow red symbol (a) (R, M ) projection (b) (R, W ) projection (c) (R, ∆) bifurcation diagram

Figure 7

 7 Figure 7.9: (a),(b) Trace and determinant of the Jacobian matrix evaluated at the three steady states (L) : Laminar, (T) -Turbulent, (u) -lower branch solution as indicated in legend.

Figure 7 .

 7 Figure 7.10: Black boxes highlight the imposed conditions. The application of these condition into the equations in green results in the relations given in orange boxes.

Figure 7 .

 7 Figure7.11: Phase space of the Barkley model shown with the q, u nullclines in red and blue respectively. The fixed points corresonding to the laminar and turbulent states are indicated on the phase plot. Changes in the position of the q nullcline with increasing value of the control parameter r is depicted.

R

  t = 415.31 (subscript t -Turing instability) with the turbulent fixed point unstable to infinitesimal spatial modulations for R ≤ R t . The critical wavenumber for the instability is evaluated as k c = 0.26. The dispersion relation σ(k) given by Eq 7.52 is shown in fig 7.13. The growth rates do not posses any imaginary parts making the instability stationary or a standing wave. It crosses the zero axis at R = R t with the characteristic parabolic shape for a type-I-s pattern forming instability (Cross and Greenside, 2009).

Figure 7

 7 Figure 7.12: (a),(b) Trace of Eq 7.63 and Eq 7.64 for the 3 fixed points : Laminar (L), Turbulent (T) and the lower branch solution (U) for different value of R.

Figure 7 .

 7 Figure 7.13: Dispersion relation σ(k) for the eigenvalue (σ 1 ) evaluated at the turbulent fixed point for different values of R as indicated in the legend.

  5, 5, 0.2, 0.2, 0.2, 5] with D M = 10 and D W = 0.2. The dispersion relation given by Re(σ 1 ) i.e., the real part of the root of the above equation evaluated at the turbulent fixed point is shown in fig 7.14.

ω > 0

 0 and varies linearly with k as depicted in fig 7.15a. This translates to a constant phase velocity c as shown in fig 7.15b.

Figure 7 .Figure 7

 77 Figure 7.14: Dispersion relation Re(σ) for the system of equations with advection evaluated at the turbulent fixed point and different values of R as indicated in the legend.
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 77 Figure 7.16: Amplitude of different modes for R = 419.46 i.e = -0.01 of (a) M (b) W (c) Phase space plot of the initial (T = 0) and final condition (T = 5000) on the phase plot

Figure 7

 7 Figure 7.18: Snapshot of a patterned state at R = 400 (a) M (x) in blue, W (x) in red (b) Same solution depicted in the phase plane as a limit cycle along with the nullclines.

Figure 7 .

 7 Figure 7.19: Busse balloon of the model, blue crosses:stable, open circles: unstable

Figure 7 .

 7 Figure 7.21: Wavelength selection represented as k in Vs k f diagram with k in the wavenumber of the initial condition and k f is the wavenumber of the resulting pattern. Red "+" symbols are for R = 360 and the hollow blue "O" symbols represent all other values of R. The solid red line demarcates k in = k f .

  Figure 7.23: Space-time diagrams for the solution trajectory F 5 . The left panel tracks W (x) and the right panel is the trajectory in the phase plot. The time snapshots are color-coded (dark/light : T = 0 -25 × 10 3 ) with the time indicated in the legend of the phase plot. (a)-(h) follows in order R = 420, 320, 310, 270, 260, 240, 230, 210

  tained for very long times T ≥ 5 × 10 4 , suggesting these are indeed stable solutions and the model exhibits an excitable like behaviour for R < R SN . The amplitude of the SGP necessary to trigger a pulse was observed to increase for reducing values of R. An example of a single pulse sustained in a domain of L x = 500 simulated with N x = 2048 for R = 250 is shown in fig 7.24.

Figure 7 .Figure 7

 77 Figure 7.24: Snapshot of the pulse solution at R = 250 at a particular time T . Top left panel : M (x, T ). Bottom left panel : W (x, T ). Right panel : Same solution shown in (M, W ) projection parametrised by x along with the nullclines.

  of the simulation is indistinguishable from a pattern solution. The only hint as to the nature of these pulse patterns is their origin from superposition of individual pulses. An example of this reorganization is shown in fig 7.26 with the space-time diagram of W (x, t) for R = 300 along with the phase plots of the state at different time instants. The simulation was initiated with five randomly distributed SGP in a domain of L x = 250 (N x = 2048). The formation of a pulse pattern is observed within a short time of T ≈ 2000.

  Figure 7.26: (a) Space-time diagram of W (x, t) illustrating formation of a pulse pattern for R = 300 with five randomly distributed SGPs in the domain L x = 250 (b),(c),(d) Instantaneous snapshots of M (x), W (x) at T = 5, 50, 10 4 shown in (M, W ) projection parametrized by x along with the nullclines.

Figure 7 .Figure 7

 77 Figure 7.27: Space-time diagram of W (x, t) illustrating pulse pattern formation for R = 300 with five randomly distributed SGP in the domain L x = 500

a

  chemical reaction governed by Arrhenius equation. The residence time in a well is dependent on the amplitude of the noise and the potential barrier between the different minima (dependent on R).

Figure 8 . 1 :

 81 Figure 8.1: Schematic representation of a potential well. Black arrow represents trajectory entering the well. The orange arrows indicate instances of noise strength insufficient to cross the potential barrier. Red arrow indicates instance of noise strength sufficient to cross the barrier.

Figure 8

 8 Figure 8.2: The left panels indicate the time series for M (top) and W (bottom). The solid black line in those panels indicate the turbulent fixed point value of the noise-free system for R = 320. The right panel tracks this trajectory in the phase space shown along with the nullclines f (M, W ) = 0(blue) and g(M, W ) = 0 (red) superimposed with the normalized phase space velocity vectors of the noise-free system. They are shown for R = 320 and (a) σ = 0.005 (b) σ = 0.015 (c) σ = 0.02

Fourier

  fig 8.3b for T = 4998 (yellow) albeit being distorted. Simulations at = -0.01 resulted in pattern formation for both amplitudes of noise with a more distorted state for σ = 0.03 as shown in fig 8.3c and fig 8.3d. These results showcase the existence of the Turing instability and pattern formation in the presence of noise as well. The subcritical nature of the pattern formation implies that in addition to the amplitude of the perturbations in the initial condition, the amplitude of noise also plays a role in pattern formation.

Figure 8

 8 Figure 8.3: Snapshots of (M, W ) projection parametrized by x at different times along with the nullclines for (a) = -0.1 and σ = 0.01. (b) = -0.1 and σ = 0.03 (c) = -0.01 and σ = 0.01 (d) = -0.01 and σ = 0.03.

1.

  Figure 8.4: Trajectory of solutions F 1 and F 5 superimposed on the Busse balloon for σ = 0.01 (solid line) and σ = 0.03 (dashed line)

Figure 8

 8 Figure 8.5: Space-time evolution of W (x, t) for σ = 0.03 shown in the left panels with the same snapshots in the phase plot on the right panel as the (M, W ) projection parametrized by x. The corresponding sanpshots are color-coded (darklight : T = 0 -25 × 10 3 ) (a) R = 370 (b) R = 250

Figure 8

 8 Figure 8.7: Space-time evolution of W (x, t) for σ = 0.01 shown in the left panels with the same snapshots in the phase plot on the right panel as the (M, W ) projection parametrized by x. The sanpshots are color-coded (dark /light, with the time indicated in the legend of the phase plot.(a) R = 430 (b) R = 360 (c) R = 230.

Figure 8 . 8 :

 88 Figure 8.8: Wavelength selection at R = 360 represented as k in vs k f where k in is the wavenumber of the patterned initial condition and k f is the average wavenumber of the resultant pattern. Hollow markers indicate simulations with σ = 0.01, 0.02, 0.03. the solid red line indicates k in = k f . The dashed black lines demarcate the upper and lower bounds of the Busse balloon for R = 360.

  2. A parametric search in the noise strength and R was conducted with 0.01 ≤ σ ≤ 0.1 (intervals of σ = 0.01), 220 ≤ R ≤ 300 (intervals of R = 10) and observations times of upto T ≈ 5000 for SGP initial condition. The increased noise amplitudes was observed to create larger fluctuations in the shape of the pulse, but no splitting or decay could be detected. Further increase of noise amplitude σ ≥ 0.15 was observed to be numerically more demanding necessitating a smaller time step. Spurious results dominated by noise is observed for these values of the noise amplitude.

  and the results of the DNS at a global level, it also has limitations. The most obvious is the one-dimensional nature of the model which cannot predict or reveal anything about the oblique nature of the turbulent bands. A suitable onedimensional comparison would be to consider the phenomenology as observed along the streamwise direction in the extended system. A comparison for the different states observed is shown in fig 9.3. The isocontours of E cf observed in a frame of reference moving at ¯ u x for a specific spanwise coordinate and different Re are presented along with W (x) from the adiabatic descent in the stochastic system.

Figure 9 . 1 :

 91 Figure 9.1: Representative bifurcation diagram of pPf

  Figure 9.4: Busse balloon : Representation of filtered streamwise laminar gaps l x as a wavenumber k x = 2π/l x for Re = 90 -50.

  trayed a trend such that k → 0 as R → 240. This was observed in the noise-free model as well as the stochastic system. Despite the constancy of wavelength for intervals of R, the overall trend was such that k → 0 as R → 200. The evolution of the pattern solution for reducing values of R is shown in fig 9.5. It is observed that in both cases, the periodic loop in the phase space (M, W ) approaches the laminar point (M, W ) = (1, 0) and connects with it for values of R where the pulse solutions are documented. For the stochastic system, the turbulent state is depicted at R = 500 is also depicted in addition to the pattern solutions to highlight changes undergone by the system.

Figure 9

 9 Figure 9.5: Evolution of the patterns with reducing values of R (adiabatic descent) depicted in the (M, W ) projection parametrised by x (a) Trajectory F 1 in the adiabatic descent of the noise-free model (b) Trajectory for σ = 0.01 in the adiabatic descent of the stochastic system starting from outside the Busse balloon.

  fig 9.6a. Similarly, the changes in wavelength for the trajectories of σ = 0.01, 0.02 and 0.03 of the stochastic system deliberated in section 8.4.2 are portrayed in fig 9.6b.

Figure 9

 9 Figure 9.6: Evolution of the pattern wavelength during the adiabatic descent (a) Trajectories F 1 -F 5 of the noise free model. (b) Trajectories with σ = 0.01, 0.02 and 0.03 for the stochastic system. The wavelength of the left boundary of the Busse balloon is also depicted by a "X". Logarithmic scaling of this wavelength is depicted with the expected value of R SL for the divergence.

  fig 9.7a. On the contrary, fig 9.7c is obtained by solving the PDE system as an initial value problem in a domain of fixed length with periodic boundary conditions and changing A without an imposed constraint of a constant c. This results in the constancy of wavelength (changing values of c) over specific range of A and an approach towards the homoclininc solution in a stepped manner.

Figure 9

 9 Figure 9.7: (a) Busse balloon represented in the (A, c) space. Solid black line is the locus of Hopf bifurcation in the ODE phase space. Thick grey line is locus of change in stability of patterns, Eckhaus type. Thin black line is locus of limit cycle with period= 2000, approximating the homoclinic bifurcation. hollow squares : no pattern solution, solid grey rhombus: unstable pattern, solid black triangle: stable pattern solution. (b) Time period of pattern solution with c = 2. The branch emerges from the Hopf bifurcation at A ≈ 2.78 and terminates at a homoclinic solution at A ≈ 032. Figures (a) and (b) are taken from (Sherratt, 2012). (c) Changes in patterns for cyclical variation of rainfall parameter A starting from A = 3.2 to A = 0.5 in steps of 0.1 with a simulation time of 2400 time units. The solid blue line indicates the stability boundary of the pattern solutions. Solid red lines are isolines of wavelength with values indicated on the plot in red. Thin black line with solid circle is the pattern solution. Arrows indicate direction of change of A. Figure adapted from[START_REF] Sherratt | History-dependent patterns of whole ecosystems[END_REF] 

  For the 2D pattern observed in fig 4.4, the wavelength of the pattern is measured analogous to the measurement of the angles in section 4.6 with the Fourier spectrum. The resulting mean wavelength λx , λz is depicted against Re G τ in fig 9.8. The patterning regime is visually discernible for 50 ≤ Re G τ ≤ 90. The evaluated wavelength is observed to display a logarithmic scaling for the patterning regime with a predicted divergence at Re SL = 46.71 (evaluated as mean of the x, z estimations).
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 98 Figure 9.8: Mean wavelength λx , λz The logarithmic scaling for 50 ≤ Re G τ ≤ 90 is shown with a solid line and with a logarithmic axis scaled as Re G τ -Re SL in the inset. The computed value of Re SL is indicated in the legend.

Figure 9

 9 Figure 9.10: Turbulent fraction data for pPf. The definitions of Re are according to the study from which the data is taken. : (a) Current simulation (b) Simulations by Shimizu and Manneville (2019a) (c) Simulations by Takeda and Tsukahara (2019) (d) Experiments from Sano and Tamai (2016). T f computed at three different streamwise positions in the domain is indicated by a different coloured symbol with the fits labelled C 1 , C 2 and C 3 . The y axis of the inset plot is shown in terms of 1/T f against

  study decaying turbulence generated by a grid at the entrance in contrast to the adiabatic descent of the numerical simulations. The estimated value of R SL for the current study is Re G τ = 48.58, for the simulations by Shimizu and Manneville (2019a) is Re = 1038.6(Re G τ = 45.6) and by Takeda and Tsukahara (2019) is Re = 975.91(Re G τ ≈ 46.6). The average value estimated for the experiments by Sano and Tamai (2016) is Re = 832.7(Re G τ ≈ 42.5). These values are tabulated along with the other parameters of the fit in table 9.1. The fit of T f reiterates the logarithmic scaling of wavelength shown in fig 9.8 and reaffirms it with data from other simulations and experiment. The deviation of the turbulent fraction from the scaling of Eq 9.15 in all the cases occurs as the pattern fractures and ITBs with DAHs appear. In all the cases, the actual singularity of the logarithmic scaling is never observed as the stochastic dynamics of ITBs change the flow behaviour and thereby the turbulent fraction curve. The fracture of the pattern prior to R SL appears to be due to the loss of spatial coherence for λ > 100h, which is the interaction length of ITBs as documented by Gomé et al. (2020). The diverging trend does not indicate the onset of turbulent motion Re g , however an algebraic scaling for Tf, indicative of a (2 + 1)d DP has been suggested in all three cases by Shimizu and Manneville (2019a) (Re DP ≈ 984), Sano and Tamai (2016) (Re DP ≈ 830) and Takeda and Tsukahara (2019) (Re DP ≈ 991.8) with appropriately computed critical exponent. These values are very close to the estimated values of R SL ≈ 1038, 833 and 975 for these studies respectively
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 9 Figure 9.11: Variation wavelength λ z with the R i for η = 0.983 and different R o indicated by the different colors of the symbols. The dashed lines correspond to the fit and the black line indicates the predicted value of R SL . Data taken from[START_REF] Prigent | La spirale turbulente: motif de grande longueur d'onde dans les écoulements cisaillés turbulents[END_REF] 

Figure 9 .

 9 Figure 9.12: T f (Re taken from the study by Duguet et al. (2010). The fit is shown as a dashed red line with the inset showing 1/T f against

Figure 9

 9 Figure 9.13: (a) Turbulent fraction data from Moxey and Barkley (2010). The different cut-off values used are shown with different symbols and the fits labelled as C 1 , C 2 and C 3 (b) Turbulent fraction data from model of pipe flow (Barkley, 2016) ; The definitions of Re are according to the study from which the data is gathered. For the Barkley model r is denoted as Re in the plot for convenience.

  fig 9.14a. Multiple puffs are separated by a refractory distance which is governed by a nonlinear threshold set by the unstable branch of the q-nullcline (red line in fig 9.14b). The decrease of the control parameter causes the q-nullclines to shift to the right(fig 9.14b shows the translation of the nullclines for increasing values of r)

Figure 9

 9 Figure 9.14: Phase space of the Barkley model of pipe flow shown with the q, u nullclines shown in red and blue respectively. (a) Puff shown as a homoclinic orbit in black (b)Changes in the position of the q nullcline with increasing control parameter r. These figures were taken from[START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF] 

  Wf and CPf were simulated in large numerical domains. The turbulent spot was observed to excite a large-scale flow with two distinct topologies possessing an algebraically decaying velocity tail. These results are summarized in table 10.1 Large scale flow topology Shear flow case Decay exponent Quadrupole pCf

  Charting the route from turbulence to laminar in pPf in large domains with numerical simulation, the bifurcation diagram of fig 10.1 is constructed based on the results obtained. The phenomenology of the transition with the reduction of Re G τ captured in fig 10.1 matches the findings reported by(Shimizu and Manneville, 2019a;[START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF][START_REF] Tsukahara | Transition to/from turbulence in subcritical flows between two infinite parallel plates[END_REF].
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 10 Figure 10.1: Representative bifurcation diagram for pPf

  as part of the statistical closure model for the fully turbulent regime. It was obtained by fitting experimental data from measurements in the turbulent boundary layer of different shear flows. The data gathered with respect channel flow covers a range of Re with the lowest being Re cl = 3300(Re G τ = 180) and the highest being Re b = 23 × 10 4 . It has also been recorded in the experiments of pPf for 46.8 ≤ Re G τ ≤ 84.1 (

  Performing an adiabatic descent analogous to the DNS, multiple pattern solutions were tracked. The evolution of the patterns were observed to qualitatively match the results of the DNS, including the cross-over from patterns to localized structures. The different pattern solutions traced different trajectories within the Busse balloon but were identical qualitatively. The results of the adiabatic descent were replicated with the stochastic system confirming the similarity with the DNS sim-ulations. The stochastic system portrayed a wavelength selection by noise, leading to different pattern initial conditions shadowing each others trajectory during the adiabatic descent.The localised structures were identified as pulse solutions with the model displaying characteristics of excitability for R < 310.2. The excitable nature was confirmed by triggering individual pulses in both the deterministic and stochastic system. These represent transient departures from the laminar state. Dynamics similar to puff repulsion[START_REF] Hof | Eliminating Turbulence in Spatially Intermittent Flows[END_REF] and slug formation in pipe flow are documented in both the deterministic and stochastic system.The trajectory of the pattern solution during the adiabatic descent (both deterministic and stochastic simulations) is observed to be guided by the left boundary of the Busse balloon (deterministic system) as it approaches the pulse solutions (wavenumber k = 0). This amounts to the periodic orbit (pattern solution) approaching the laminar point (a saddle in spatial dynamics) and terminating by collision with the saddle to form a homoclinic solution (pulse). The left boundary of the Busse balloon displays a logarithmically diverging wavelength consistent with the homoclinic bifurcation.Extrapolation from the model: Two key questions are raised by the findings in the model :Is there evidence of multistability in the DNS ?While a formal answer is difficult, the filtered laminar gap distribution is recast as a representative "Busse balloon". From a 1D perspective, it represents demarcates the most probable streamwise packing of the pattern. It bears a striking resemblance to the Busse balloon of the model with clear indication of higher values of k being inaccessible for lower values of Re G τ . This recasting also displays a floor in the sense that a finite value of k is documented for the patterning regime prior to a jump leading to the formation of the localized structure i.e., ITB.Does the wavelength of the pattern in the DNS portray a logarithmic scaling ?The computed pattern wavelength in the DNS agrees perfectly with a logarithmic scaling. The divergence is extrapolated to occur at Re G τ ≈ 46 consistent with the observation of the fracture of the pattern and the formation of the ITB. It is suggestive that the pattern terminates at a homoclinic bifurcation leading to the formation of the ITB. Similar to the model, the cross-over from pattern with finite wavelength to the ITB occurs over a very narrow range of Re G τ indicative of the discontinuous jump observed in the model.Extending this analysis to other shear flows cases, a test for the logarithmic scaling of the inverse of the turbulent fraction was conducted. This was carried out with published data on pCf, pPf, TCf and pipe flow. All the cases tested displayed logarithmic scaling of turbulent fraction with the extrapolated divergence occurring at different Re for each flow. This is suggestive of the intermittent regime born from featureless turbulence undergoing a homoclinic bifurcation in some state space leading to the birth of spatially localized structures. The regime of flow depicting the logarithmic scaling precedes the regime of critical behaviour. A hypothesis of the universality of the homoclinic bifurcation in the wall-bounded shear flow cases of pCf, pPf, TCf and pipe flow is put forward. It is hoped that this will germinate new inquiry of the transitional regime in these flows.

  fig 11.1
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 11 Figure 11.1: (a) Current pPf simulation : Isocontours of wall-shear stress perturbation from simulation at Re G τ = 80 (b) pPf experiment : Instantaneous visualisation (wall-normal view) of the flow field Re b = 1380 (Re G τ ≈ 66). dark: turbulent, light: laminar (Paranjape, 2019) (c) pCf simulations : isocontours of the fluctuating streamwise velocity in the midplane at Re = 330 (Duguet et al., 2010) (d) pCf experiment : Instantaneous visualization (wall-normal view) of the flow field at Re = 349. Light: turbulent, dark: laminar (Prigent, 2001). (e) single sided pattern in pCf : Isocontours of the wall-normal velocity in pCf at Re = 338 in a domain L x × L y × L z = 500 × 2 × 500. Image taken from ICTAM-2020+1 presentation.

  route. A simulation was conducted at Re G τ = 80 in a domain of L x × L y × L z = 100 × 2 × 50 and observed to contain turbulent bands with a single orientation as shown in fig 11.2a. This velocity field was then tiled by repeating it in the x and z directions thrice, thereby constructing a large domain of L x × L y × L z = 300 × 2 × 150. The resulting pattern in the large domain is a one-sided pattern as seen in fig 11.2b. A simulation with the tiled velocity field as the initial condition at Re G τ = 80 was performed. The one-sided pattern was observed to retain its spatial organization up to T ≈ 4000. However, continuing the simulation further in time resulted in the fracture and reorganization of the one-sided pattern to form the familiar pattern with opposing orientations of oblique turbulent bands shown in fig 11.2d. The power spectrum is used to distinguish the orientation of the bands as in chapter 4. Plotting the power spectrum in polar coordinates, the energy content in the bands of a particular orientation is made visible as in fig 11.2c,11.2e. At T = 0 energy concentration in the oblique bands is visible at θ ≈ 150 o . As the acute angled bands form, the energy content in the bands with θ ≈ 30 is more prominent compared to T = 0 as observed from fig 11.2e. The energy content in the acute angle bands, measured by the peak in the power spectrum E p for 0 o ≤ θ ≤ 90 o is indicative of the formation of acute angled bands as seen in fig 11.3. This simulation displays the metastable nature of one-sided patterns in pPf.

Figure 11

 11 Figure 11.2: Isocontours of fluctuating spanwise velocity u z (x, 0, z, t) (a) In the small domain L x × y × L z = 100 × 2 × 50 at time T = 4000, (b,d) In the large domain L x × L y × L z = 300 × 2 × 150 at T = 0 and T = 8000 respectively. (c,e) Instantaneous power spectrum of u z (x, 0, z, t) in polar coordinates at T = 0 and T = 8000 respectively.
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 1111 Figure 11.3: Peak energy in the acute angled bands

  (np.asarray(m['g']))np.min(np.asarray(m['g'])) → wamp=np.max(np.asarray(w['g']))np.min(np.asarray(w['g'])) → fp.write(f'\n {solver.iteration:d}, {solver.sim_time:0.2f}, {mamp:0(f'Exception raised for R={R}, triggering end of main loop.') (f'\nIterations: {solver.iteration}') fp.write(f'\nSim end time: {solver.sim_time}') fp.write(f'\nRun time: {np.round((end_time-start_time)/3600,2)} hrs') → fp.close() Titre: Transition sous-critique vers la turbulence dans les écoulements cisaillés délimités par des parois : Spots, formation de motif et modélisation d'ordre inférieur Mots clés: Écoulements cisaillés délimités par des parois, simulation numérique, formation de structures cellulaires , modélisation, instabilité de Turing.

  

  

  

  

  

  The bifurcation occurs at a critical Re c and the scalar am-Re > Re c as in fig 1.1b. For Re > Re c , the system transitions to the upper branch and traces it for Re approaching Re SN where the base state is reached. However, increasing Re for Re < Re c , the base state is traced up to Re c before encountering the upper branch. The bistability for a range of parameters coupled with the linear stability of the base state implies that finite-amplitude perturbations will cause a transition from the

	leads to bistability for a range of Re. Two subcategories are identified, one
	for which the base state undergoes a linear instability, the other one for which
	the base state does not portray an instability. These scenarios are sketched
	in fig 1.1 with the amplitude of the bifurcated state.
	In the simplest case, the solution appearing in the saddle-node bifurcation is
	stable and is called the upper branch solution. The unstable solution is called
	as the lower branch solution. Subcritical bifurcations portray hysteresis as
	depicted by the red arrows in fig 1.1. Let us assume that the base state loses
	its stability for
	plitude of the bifurcated state grows continuously with Re. A schematic of
	this type of bifurcation is shown in fig 1.1a. The ordinate in this figures is
	the amplitude of the bifurcated state and corresponds to the amplitude of
	the dominant eigenmode of the linear stability analysis. A key feature of
	this type of bifurcation is the presence only a single stable state at any given
	parameter value.
	• Subcritical : The non-trivial saturated state coexists with the stable base
	state in the neighbourhood of Re c . The non-trivial saturated state appears
	in a saddle-node bifurcation for Re < Re c , hence the name subcritical. This

base state to the upper branch solution. This occurs by virtue of the local stability of the base state to infinitesimally small perturbations (linearly stable) while being globally bistable i.e., another solution exists for the same parameter values.

  Re c is the Re for onset of turbulence. A summary of the estimated values of the Re 1,2 depicted in fig 1.9 for the different flows are listed in table 1.1.

	Re 2 Re 1 Re c Reference
	Pipe 2600 2300 2040	(Moxey and Barkley, 2010; Avila et al., 2011)
	pCf 400	-	325 (Duguet et al., 2010)
	pPf 1820 1012 700	(Shimizu and Manneville, 2019a; Takeda and Tsukahara, 2019)
	Table 1.1: Summary of estimated critical Re for pipe flow, pCf and pPf.

Table 3 .

 3 1: Algebraic decay exponents for Ūx and Ūz in pCf for different Re

		Wf	
	Re V	α ( Ūx )	α ( Ūz )
	83.5 +2.99 ± 0.01 +2.97 ± 0.02 104.5 +3.01 ± 0.01 +2.93 ± 0.05 125.5 +3.01 ± 0.01 +2.91 ± 0.08
	Table 3.2: Algebraic decay exponents
	for Ūx and Ūz in Wf for different Re

  The changes in A LSF with Re G τ for the range 90 < Re G τ ≤ 110 is shown in fig 6.1a. The increase in A LSF is observed to continue for Re G τ < 90 as illustrated in fig 6.1b, albeit a bit slower leading to an apparent saturation with the fracture of the pattern at Re G

τ ≈ 50.

  [START_REF] Barkley | Theoretical perspective on the route to turbulence in a pipe[END_REF] 

	Reference		Flow case	Dim Type	a	Re SL	b	R 2 of fit
	Current study Shimizu and Manneville (2019a)	pPf	2D	DNS	-0.307 -1.97	48.58 1038.6	0.098 2.64	0.99 0.99
	Takeda	and						
	Tsukahara (2019)					-1.195 975.91	0.898	0.99
	Sano and Tamai (2016) Prigent (2001) Duguet et al. (2010)	Exp TCf 2D Exp pCf 2D DNS -0.49 -2.69 -1.9 -2.03 -20.42 567.84 132.65 831.21 -5.26 833.1 -3.06 833.74 -3.61 -20.37 508.87 139.93 389.6 148.56 -20.89 340.67 0.29	0.94 0.99 0.978 0.96 0.98 0.96 0.98
	Moxey and Barkley (2010) Barkley (2016)	Pipe Model	1D DNS	-0.069 2340.25 -0.048 2339.7 -0.029 2339.9 -0.47 0.82	0.85 0.89 0.934 -0.069	0.993 0.99 0.99 0.99
	Table 9.1: Fitting parameters for different turbulent fraction data sets of different
	shear flows. Dim : Effective dimension			
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Chapter 9

Juxtaposition of model with DNS

The analysis of the model described in chapters 7 and 8 is an attempt at capturing the phenomenology of the transition to turbulence in pPf with a 1D approximation.

In this chapter a comparison of the results from the analysis of the model with the observations from DNS simulations will be carried out. A synthesis of the main results will be presented and learnings from the model will be extrapolated onto the DNS. All references to the noise-free model will be with respect to Eq 7.27 and Eq 7.26 while the stochastic system is referenced as Eq 8.1 and Eq 8.2. References to the Busse balloon will be with respect to the noise-free system as depicted in fig 7.19.

Phenomenological comparison

A synthesis of the results of the DNS simulations and the analysis of the model is presented using the bifurcation diagrams of the two studies. An inspection of fig 9.1 and fig 9.2 showcases a high degree of similarity with :

• A stable laminar solution for all Re G τ (R)

• A turbulent solution arises as an attractor for Re ≥ Re g where Re g is the global stability threshold.

-In the DNS this occurs for Re G τ ≈ 37 [START_REF] Manneville | Transitional Channel Flow: A Minimal Stochastic Model[END_REF][START_REF] Takeda | Two-stage subcritical transition as directed percolation universality classes in plane Poiseuille flow[END_REF][START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF][START_REF] Xiong | Turbulent bands in plane-Poiseuille flow at moderate Reynolds numbers[END_REF] -For the noise-free as well as the stochastic system R g ≈ 200 Appendix A

Channelflow

The simulations in this thesis were performed using a parallel open source pseudospectral solver called Channelflow2.0 (Gibson, 2014;Gibson et al., 2021). It is a Navier-Stokes equations solver, written in C++ and parallelized with MPI. In addition to being equipped with multiple time steppers, it can also perform bisections to find edge states and track them by numerical continuation. It is a widely used tool in the research community [START_REF] Gibson | Equilibrium and traveling-wave solutions of plane Couette flow[END_REF][START_REF] Kreilos | Turbulence transition in Shear Flows and Dynamical Systems Theory[END_REF][START_REF] Gomé | Statistical transition to turbulence in plane channel flow[END_REF][START_REF] Paranjape | Onset of turbulence in plane Poiseuille flow[END_REF]. and is freely available at https://www.channelflow.ch/.

The velocity field is decomposed into a laminar part and a fluctuating component and the domain for the flow is a channel described in the Cartesian coordinate system x, y, z as shown in 

where Π(t) accounts for the laminar part and p is the fluctuating pressure.

The governing equation under this decomposition is written as : .4) This forms the general equation that is encoded in Channelflow. The non-linear terms are encoded with multiple forms as :

While these forms are identical from a continuous sense, discrete computations results in different performances for each of these forms. The rotational form results in the fastest computations and is used in the simulations. In addition to the periodic and no-slip boundary conditions, an additional constraint with reference to the pressure gradient must be imposed. Either a fixed pressure gradient can be imposed or the pressure gradient can be made to adapt at every time step such that simulation at fixed bulk velocity is carried out. By accounting for the base flow in both the x and z directions, Channelflow can simulate flows oblique to the

x direction. The governing equations can be written compactly as : .10) where :

The discretization of the velocity field and pressure field is done with a truncated Fourier representation on a grid of N x , N z points as (shown for the velocity field):

û kx,kz (y) e 2πi(xkx/Lx+zkz/Lz) (A.14)

The discretized equations are written as :

where δ -kronecker's delta. Channelflow has multiple options of time steppers that are implemented following the standard procedures detailed in Ref [START_REF] Peyret | Spectral Methods for Incompressible Viscous Flow[END_REF]. The time discretized equations can be written in a compact manner for the current time step / sub-step for every Fourier mode and by dropping the subscript indicating the mode :

where λ incorporates the prefactor due to the spatial discretization and the time discretization used while R encapsulates all the other terms. Adopting the influence matrix method [START_REF] Kleiser | Treatment of Incompressibility and Boundary Conditions in 3-D Numerical Spectral Simulations of Plane Channel Flows[END_REF] the solution is obtained by solving the set of equations as individual scalar Helmholtz equations [START_REF] Canuto | Spectral Methods in Fluid Dynamics[END_REF] for every velocity component and Fourier mode at every time step / sub-step, written with the generic notation u as :

wherein f is a condensed representation of known terms, P is ∂Π/∂x or ∂Π/∂z depending on the equation being solved. The term P appears only when solving the k x = k z = 0 mode. Thus, this ODE set can be solved for all other modes using the Chebyshev-tau discretization in the y direction. This results in converting the ODE into a large set of algebraic equations which are solved non-iteratively [START_REF] Canuto | Spectral Methods in Fluid Dynamics[END_REF]. For the case of k x = k z = 0 mode, two scenarios arise based on the constraint for the pressure gradient term :

1. Imposed pressure gradient

Imposed mass flux

In the case of an imposed pressure gradient, the only unknown in these equations is u and is solved by discretization using the Chebyshev tau method. In the case of imposed bulk flow, the pressure gradient term needs to be computed to satisfy the constraint. For the sake of clarity, the procedure is detailed for the x component of the velocity. The same procedure is adopted for the z component as well. A decomposition of the velocity field u is considered :

With Π x = ∂Π/∂x and using the rescaling u b = (Π x /ν)u c in the above set of equations results in :

The rescaling converts the equations such that the only unknowns are u a and u c . These form self-consistent equations which are solved with the Chebyshev tau method to get u a and u c . For an imposed streamwise bulk flow (U b ):

where • y implies the y-averaged value. The computed value of Π x is used to solve the original equations A.24 and A.25. A similar procedure is adopted for the z component with the imposed spanwise bulk flow to compute Π z .

Thus, Channelflow solves for the deviation from the laminar base flow using a Fourier-Chebyshev-Fourier discretization on a grid of N x , N y , N z . To counteract spurious dealiasing errors, the 2/3 rule is used for x, z discretization [START_REF] Canuto | Spectral Methods in Fluid Dynamics[END_REF]. The N x , N y , N z values mentioned throughout the thesis referring to Channelflow are inclusive of the additional modes for dealizasing.

In order to non-dimensionalize, the characteristic length scale for the flow in a channel is taken as the channel half-gap h and set to unity. Thus, all spatial dimensions are non-dimensionalized with this length scale giving the non-dimensionalized domain as (L x , 2, L z ). The density of the fluid is set to unity and the laminar base flow is defined such that the characteristic velocity scale U is also unity. All velocity definitions are non-dimensionalized based on the characteristic velocity scale defined for a particular flow case. This sets the timescale as T = L/U .

Simulation time mentioned throughout the thesis is reported based on this nondimensionalization. These conditions set the viscosity as ν = 1/Re to be used in the simulations. Re in turn is defined based on the characteristic velocity scale of the flow and allows flexibility in defining different velocity scales according to the flow condition. Only non-dimensional parameters will be used in the thesis further-on unless specified.

Appendix B Dedalus solver

Simulations of the model equations were performed with the Python spectral solver package Dedalus [START_REF] Burns | A flexible framework for numerical simulations with spectral methods[END_REF]. It is an opensource package available at https://dedalus-project.org/. A GUI has been constructed for the tuning, analysis and simulation of the model. The entire code is available at :

https://github.com/PavanVKashyap/Turing-Model-of-pPf.git

The script utilizes a truncated Fourier basis for the spatial discretization along with a 1 st order backward Euler time stepping. Similarly, the time stepping for the stochastic system follows the Euler-Maruyama time stepping. It is to be noted that this scheme is in accordance with the Itô formalism of stochastic integration and not that of Stratonovich. The Euler-Maruyama time stepping is illustrated here for the case of the model equations without considering space:

where σ is the amplitude of noise (constant for a simulation) and η is Gaussian white noise with zeros mean and unit standard deviation. This noise can be written as time derivative of the Wiener process W t :

The discrete time integral for the system with the Euler-Maruyama time stepping with a time step of ∆t is given as :

where N (0, √ ∆t) is a random number drawn from a Gaussian distribution with zero mean and a standard deviation of the square root of the time step. This illustrates the Euler-Maruyama time stepping for the stochastic integration in the Itô formalism. Similarly, when considering space, the noise term is updated every time step with a noise field drawn from a Gaussian distribution with zero mean and standard deviation equal to the square root of the time step. An example of the code illustrating this is shown below.

• Lines 1 -12 : Import necessary python libraries • Lines 16 -24 : Function for computing the turbulent fixed point. This is done if the simulation is to be started from the homogeneous fixed point.

• Lines 27 -36 : Fix the simulation parameters • Lines 40 -81 : Computes the coefficients of the model according to the

• Lines 83 -119 : Set up the initial value problem with the Fourier basis for the space descritization. The equations of the model are written along with the coefficients according to the syntax of Dedalus. The time stepping is set as the 1 st order backward Euler.

• Lines 121 -145 : The initial condition is set. The homogeneous turbulent fixed point is evaluated for the desired value of R and a small perturbation is introduced to this homogeneous state.

• Lines 147-151 : The saving of the states (M, W ) at the desired time intervals