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Introduction en francais

Cette introduction présente de maniére plus succincte le contenu du premier chapitre de ce manuscrit, écrit
en anglais. Celui-ci porte sur des processus aléatoires renforcés, et leur représentation comme processus
de Markov en environnement aléatoire. Plus particuliérement, on étudie la question de I'unicité d’une
telle représentation pour le VRJP (processus de saut renforcé par sommets). De plus, on s’intéresse au
lien entre I’environnement aléatoire correspondant au VRJP et un probléme de mouvements Brownien
en interaction.

On appelle « chaine de Markov en environnement aléatoire », ou « mélange de chaines de Markov »,
un processus aléatoire dont la loi est la moyenne de lois de chaines de Markov, définies par une matrice
de transition aléatoire. Un tel processus n’est pas nécessairement markovien, cependant il vérifie une
propriété d’échangeabilité : la probabilité d’emprunter une certaine trajectoire ne dépend pas de 'ordre
dans lequel cette trajectoire visite différents états. Une classe de théorémes, dits de « de Finetti »,
permet, d’obtenir des résultats réciproques : un processus vérifiant une certaine version de la condition
d’échangeabilité peut s’écrire comme mélange de processus de Markov.

Certains processus non markoviens, présentant par exemple un comportement de renforcement, sont
néanmoins échangeables et sont donc des processus de Markov en environnement aléatoire. C’est no-
tamment le cas de 'urne de Polya, un processus renforcé trés simple, qui s’écrit comme un mélange de
suites i.i.d. de variables de Bernoulli. Une contrepartie naturelle & I'urne de Pélya est la marche aléatoire
renforcée par arétes, ou ERRW. Ce processus, introduit par Diaconis, est défini comme une modification
de la marche simple sur un graphe pondéré, a laquelle on ajoute le renforcement suivant : le poids d’une
aréte augmente chaque fois qu’elle est traversée par le processus. Grace a un théoréme de type de Finetti
dia & Diaconis et Freedman, cette marche renforcée peut aussi étre écrite comme un mélange de chaines
de Markov. La loi de 'environnement aléatoire associée a notamment été étudiée par Merkl et Rolles, qui
en ont déduit des résultats de récurrence et transience pour 'ERRW.

Le sujet principal de ce manuscrit est le processus de saut renforcé par sommets, ou VRJP. 1l s’agit
d’un processus aléatoire en temps continu (Xy);>0, défini sur un graphe pondéré, pour lequel le taux de
saut d’un sommet ¢ & un sommet j & un instant ¢ est

t
Wi’jlj(t), ol lj(t) =1 +/ ]l{XS:j}d&
0

et ou W; ; est le poids de I'aréte {4, j}. En d’autres termes, un sommet est d’autant plus attractif que le
processus y a déja passé du temps. Ce processus, introduit par Werner, a été étudié par Davis et Volkov,
Collevecchio, ainsi que Basdevant et Singh, sur des graphes tels que Z, les arbres réguliers, et les arbres
de Galton-Watson. Il est de plus trés lié 8 'TERRW, puisque la marche renforcée peut s’écrire comme un
mélange de versions discrétisées du VRJP.

Le VRJP ne vérifie pas initialement de condition d’échangeabilité, puisque la hausse des taux de saut
entraine des sauts de plus en plus rapprochés. En revanche, un certain changement de variable temporelle
rend le VRJP échangeable, et il est alors possible de I’écrire comme un mélange de processus de Markov.
Pour un graphe fini, Sabot et Tarrés on montré que l'’environnement aléatoire associé peut étre défini
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grace a des taux de saut de la forme
%%

LI uj—uy
b Uy U

)

ou w est un champ aléatoire défini sur le graphe. La loi de ce champ est liée & un modéle de physique
statistique étudié par Disertori, Spencer et Zirnbauer : le sigma-modéle hyperbolique supersymétrique.
Des théorémes de localisation et délocalisation pour cette loi ont permis de montrer des résultats de
récurrence et de transience pour le VRJP ainsi que pour TERRW sur les réseaux Z<.

La loi de 'environnement aléatoire associé au VRJP sur un graphe fini, démarré en un point iy, peut
étre formulée autrement : grace & un potentiel aléatoire noté [, et un opérateur de Schrédinger associé
Hpg. Ce potentiel peut aussi étre défini pour un graphe infini, grace & une bonne condition de bord. Cela a
permis & Sabot et Zeng de construire un environnement aléatoire correspondant au VRJP sur un graphe
infini. Les taux de saut aléatoires s’écrivent alors

Wi,j G(iOa .7)
2 G(ig,i)’

ou G(z,y) = G(z,y) + %w(x)d)(y), G étant la fonction de Green associée a Hyg, ¢ une fonction Hg-
harmonique, et v une variable aléatoire de loi Gamma(1/2,1) indépendante du potentiel 3. Cette nouvelle
expression de I’environnement aléatoire, ainsi que des propriétés d’ergodicité du potentiel 3, ont fourni
d’autres résultats pour le VRIP et 'ERRW sur Z<.

C’est dans ce contexte que s’inscrit la premiére problématique de ce manuscrit : celle de 'unicité
de la représentation du VRJP. En d’autres termes, existe-t-il plusieurs mesures de probabilité sur les
environnements (appelées « mesures de mélange ») telles que les processus mélangés correspondants ont
tous la loi du VRJP ? On dira alors qu’une telle mesure est une représentation du VRJP. La question se
pose, car on sait déja que 'unicité est vérifiée dés que le processus est récurrent, mais qu’il existe plusieurs
représentations distinctes sur les arbres infinis, construites & partir de conditions au bord différentes.
Pour y répondre, la premiére étape est de montrer que toute représentation du VRJP peut s’exprimer
sous une forme similaire & celle de la représentation « standard » présentée plus haut. En effet, une
représentation quelconque fait nécessairement intervenir le potentiel 5 ainsi qu’une fonction harmonique
h pour l'opérateur Hpg : les taux de saut s’écrivent alors

Wi ; Gn(io, j)

2 Gplig,i)’

ou G (io, ) = Glig, z) 4+ h(z).

La question de 'unicité pourrait donc étre résolue en identifiant toutes les fonctions harmoniques pour
l’opérateur aléatoire Hg, par exemple grace a la notion de frontiére de Martin. Cependant, la frontiére
de Martin correspondant & un environnement aléatoire n’est pas connue a priori. On étudie donc en
particulier le cas de deux types de graphes infinis : le réseau Z% et les arbres infinis. Sur Z¢, on utilise
un théoréme central limite en environnement aléatoire, et l'ergodicité du potentiel 3, pour montrer que
la frontiére de Martin correspondante est triviale dans un certain régime, ce qui prouve 'unicité de la
représentation dans ce régime. Sur les arbres infinis, on utilise des conditions de bord différentes pour
construire une famille infinie de représentations, qui sont toutes distinctes. Elles fournissent une idée de ce
qui pourrait constituer une classification de toutes les représentations sur 'arbre, en lien avec la frontiére
de celui-ci.

Cette thése aborde aussi le lien entre le potentiel § introduit dans ’étude du VRJP, et une famille
de mouvements Browniens en interaction, représentée comme la solution d’un systéme d’équations diffé-
rentielles stochastiques (EDS). On fixe un graphe pondéré dont I'ensemble des sommets est V', et on lui
associe une EDS. La solution de I’EDS est un processus & IV dimensions, ot N est le cardinal de V. Le lien
évoqué plus haut, montré par Sabot et Zeng, s’exprime de la maniére suivante : le vecteur aléatoire des
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temps d’atteinte de 0 pour cette solution est (1/25;);cv, ou 8 est le potentiel associé au VRJP sur V. De
plus, conditionnellement & ce vecteur, la famille de processus a la loi de ponts de Bessel tridimensionnels
indépendants. Dans le cas N = 1, il s’agit d’un résultat classique concernant la temps d’atteinte de 0
pour un mouvement Brownien avec dérive, car 1/2/ suit une loi inverse gaussienne. Un autre théoréme,
di & Matsumoto et Yor et dit « des dérives opposées », est une conséquence de ce dernier résultat, et
s’obtient & ’aide de la relation de Lamperti, qui fournit une changement de variable pertinent.

On montre ici une version N-dimensionnelle de la relation de Lamperti et du théoréme de Matsumoto
et Yor, en appliquant le changement de variable de Lamperti & la solution de 'EDS mentionnée plus
haut. Une difficulté vient du fait que cette transformation n’est pas un changement de temps usuel : en
effet, chaque coordonnée du processus doit étre changée de temps de fagon différente. Néanmoins, grace
a une propriété d’abélianité de 'EDS, les résultats de Lamperti et de Matsumoto-Yor admettent une
généralisation naturelle.
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2 CHAPTER 1. INTRODUCTION

Preamble

This manuscript presents my work concerning self-interacting random processes, in particular the Vertex-
Reinforced Jump Process, and its representations as a random walk in random environment. The second
and third chapter are modeled after the articles that constitute the main content of this PhD thesis.
In this first chapter, I introduce the scientific context of the thesis, some prerequisite material, and the
results that were obtained.

The first section tackles the general notion of exchangeability, and a related class of theorems named
after de Finetti. A process is said to be exchangeable if its distribution is invariant under some class of
permutations. According to de Finetti-type theorems, such a process can be written as the average of
simpler processes (like i.i.d. sequences or Markov chains) with some random parameters. This kind of
averaged process is called a mixture. We illustrate this principle through two examples of self-interacting
processes: Polya’s urn, and the Edge-Reinforced Random Walk (ERRW). These present a form of rein-
forcing behavior, but still satisfy an exchangeability property, which means they can be represented as a
mixture of Markov chains.

The second section presents another random process with reinforcement: the Vertex-Reinforced Jump
Process (VRJP). It is defined as a continuous-time jump process on a graph, where the jump rate to a
neighboring vertex is proportional to the time already spent by the process at this vertex. The VRJP
is closely related to the ERRW. Tt is also exchangeable in some sense, so that it is a mixture of Markov
processes, i.e. a Markov jump process with random jump rates. These can be expressed in a convenient
way using a random potential § on the graph, and an associated Schrédinger operator Hg.

The third section presents the first part of my results, which concern the uniqueness of the repre-
sentation of the VRJP as a mixture of Markov processes. In other words, is it possible to have several
distinct distributions for random jump rates, for which the averaged process is the VRJP? This question
is related to the set of Hg-harmonic functions on the graph, which we study using the notion of Martin
boundary. This yields a uniqueness theorem on the lattice Z?. On infinite trees however, we are able
to construct an infinite family of different representations. These results are stated and proved in the
second chapter of the manuscript.

The fourth and final section of this introduction presents the link between the 3 field related to the
VRJP, and hitting times of a family of Brownian motions with interacting drifts. This comes from the
fact that the marginals of 3 are the inverse of Inverse Gaussian variables. Applying a time change to this
family of Brownian motions, inspired by Lamperti’s relation, we obtain a multi-dimensional version of
Matsumoto and Yor’s opposite drift theorem. The proof of this last result is detailed in the third chapter.

1.1 Reinforcement, exchangeability and random environment

Let us first present how processes defined by self-reinforcing behavior can be represented in a simpler
way. For models with linear reinforcement, the process often satisfies some particular symmetry property
called exchangeability. A class of theorems, named after Bruno de Finetti, can then be applied, yielding
the following result: the distribution of the process is the average of simpler distributions (be it i.i.d.
sequences or Markov processes), where the average is taken with respect to random parameters for these
simpler processes (e.g. a random distribution for ii.d. variables, or a random transition matrix for
Markov chains). These random parameters will sometimes be referred to as a random environment.

We illustrate this principle through the examples of two self-reinforcing processes: Pdlya’s urn, and
the Edge-Reinforced Random Walk.
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1.1.1 Polya’s urn and de Finetti’s theorem
Poélya’s urn

Let us begin by presenting a classic model involving linear reinforcement: Poélya’s urn. Consider an urn
containing a black balls and b white balls. At every step of the process, draw a ball uniformly at random
in the urn, then put it back along with an extra ball of the same color. This way, the probability of
drawing a ball of this color at the next step increases, hence why we talk of reinforcement.

Remark 1.1.1. Depending on the initial quantities a and b, this effect can be more or less pronounced:
if @ and b are low, the first draws can quickly increase the proportion of balls of one color, and we talk
about strong reinforcement; conversely, for high a and b we have weak reinforcement.

We will now describe this model in more detail. Let (X,),>1 be the canonical process in {0, vy
which represents successive draws in an urn: for n > 1, X,, = 1 means that the kth draw was a black
ball. Let P, 5 be the probability distribution on {0, 1}N* under which X has the distribution of the draws
in Polya’s urn. In other words, for n > 0 and (21, ..., 2,) € {0,1}",

a+ o

Pa,b [Xn—i-l = 1|)(1 =T1, 0 Xy = xn} = a+tb+n

Indeed, before the (n+1)th draw the urn contains a+b+n balls, and if the first n draws were successively
T1, ..., Ty, then the number of black balls that have been added to the urnis > ;.

It is immediately apparent that under P, ;, the process X interacts heavily with its past, and therefore
is not a sequence of independent variables. However, it satisfies another interesting property, which will
relate it to families of i.i.d. variables: exchangeability.

Exchangeability and de Finetti’s theorem

Let us define the exchangeability property for random sequences.

Definition 1.1.1. Let (Y,,),en be a sequence of random variables. Then Y is an exchangeable sequence
if for alln > 1, for all s € &, (Y1,...,Yy) and (Y1), ..., Ys(n)) have the same distribution.

An infinite sequence of i.i.d. random variables is obviously exchangeable, but the converse is not true:
as stated previously, the sequence of draws in Polya’s urn is not independent, but it is exchangeable.
Indeed, for n > 1 and (21, ...,z,) € {0,1}", we have

(a(a +1)(a—1+30, xi)) (b(b F D (b—1+n—3", xi))

P, X1 = e Xy = =
a,b[ 1 Tly.eey Ap mn} (a+b)(a—|—b+1)...(a+b+n—1)

)

which depends only on > 1 | z;.
However, an exchangeable sequence of Bernoulli random variables can still be represented using i.i.d.
variables, thanks to the following theorem (from [DF29]).

Theorem 1.1.1 (de Finetti’s theorem). Let (Yy)ren+ be an exchangeable sequence of random variables
taking their values in {0,1}.
Then there is a probability distribution p on [0,1] such that for alln > 1 and y1, ...,y € {0,1},

P[Y: =y, Yo = Y] = /p22‘=1 vi(1 _p)n—ZE;l Yi u(dp)

= /an [Xl = Y1, 7Xn = yn],u(dp),
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where P, denotes the Bernoulli distribution with parameter p, and (X,)nen is the canonical process in

{0, 1}V,

We can understand the theorem this way: if a sequence of Bernoulli variables is exchangeable, then
its distribution is the same as if we had first taken a random parameter p according to some probability
distribution p, and then drawn a sequence of i.i.d. Bernoulli variables with parameter p. Such a sequence
is called a mixture of i.i.d. Bernoulli variables. Note that conversely, a mixture of any i.i.d. variables is
exchangeable.

Remark 1.1.2. The random parameter can also be recovered using the law of large numbers. Indeed
thanks to Theorem 1.1.1, if (Y;)gen+ is an exchangeable sequence of {0, 1}-valued random variables, the
empirical mean

converges a.s. to a random variable Y o, with distribution p. Moreover, conditionally on Yoo, Y1,Y5, ...
are i.i.d. Bernoulli variables with parameter Y ...

Writing the distribution of a random sequence as a mixture of i.i.d. variables evokes the framework
of Bayesian statistics. Let us give more details about the difference between frequentist and Bayesian
statistics. When trying to estimate the parameters of some experiment, the frequentist approach consists
in making a hypothesis on the value of the parameters, and then interpreting a sample (i.e. a sequence
of results of i.i.d. experiments) in order to accept the hypothesis or reject it with some margin of error.
The Bayesian approach relies on considering the parameters as random variables, following some a priori
distribution, so that the sample is no longer the realization of an i.i.d. sequence, but of an exchangeable
one. Conditioning on this sample gives another a posteriori distribution for the parameters. It is a
refinement of the prior distribution, indicating what the parameters may be with higher probability.
This type of reasoning will be applied later, in order to identify the mixing measure associated with an
exchangeable process.

There exist generalizations of de Finetti’s theorem: for instance, Hewitt and Savage ([HS55]) showed
that the theorem still holds if the random variables in the exchangeable sequence take their values in a
compact space. There are also versions of the theorem that rely on a weaker type of exchangeability,
and characterize mixture of Markov processes, rather than mixture of i.i.d. sequences. This allows the
representation of self-interacting processes as random walks in random environment, as we will see in the
following section. Before this, let us go back to Pélya’s urn.

Consequences for Pélya’s urn

Recall that (X,,),en- denotes the canonical process in {0,1}", and that P, is the distribution of the
sequence draws in Polya’s urn. We already know that under P, 5, the sequence (X,,),en+ is exchangeable.
Therefore, according to de Finetti’s theorem, there exists a random variable ¢ such that under Pg s,
conditionally on 6, (X,,),en+ is a sequence of i.i.d. Bernoulli variables with parameter 6. Note that the
proportion of black balls in the urn converges to 6.

The distribution of § under P, p, ¢.e. the mixing measure i, 5, can be determined by computing its
moments, since for n > 1,

n

/[ ]p" Ha,p(dp) = IP’%;,[W e1,n], X; = 1] = H
0,1

i=1

a+i1—1
a+b+i—1
Ia+b—1)T'(a+n)

I'(a+b+n)'(a)
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This is the nth moment of the Beta distribution with parameters (a,b), which is the distribution on R
with density

Lioay(p) . _
[0,1] a—1¢1 _ \b—1
P Blan) (1—p)" dp,
where I (a)0(b)
B(a,b :/ p“_ll—pb_ldpzia .

Therefore, pq,p is the Beta(a, b) distribution.

Remark 1.1.3. Using the language of Bayesian statistics, we can consider p, ; as the prior distribution
for the random parameter of the i.i.d. Bernoulli variables. For n > 1 and a sample (x1,...,z,) €
{0,1}", we obtain the a posteriori distribution of the random parameter by conditioning on the event
{X1 =21,...., X, = 2, }: let us define s, = 3! | x;, then for all A € o((Xi)p>n+1),

J PN A p (1= p)" " pa,p(dp)
Pa,b[Xl = T1y--ey Xn = l‘n]

= H?:l(a + b:r,ii 1) /PE)N[A] 1[071] (p) p(l+3n,—1(1 . p)b"l‘n—sn_ldp
Eo(ati— DI (b+k—1)

B(a,b)
= / PZ(?N [A]/La.ysmb-&-n—sn (dp),

]Pa,b [A|X1 =T, 7,Xn = LL’n} =

where the a posteriori distribution pig4s, p+n—s, Of the random parameter is the Beta distribution with
parameters (a + $,,b+n — s,). Note that this is the mixing measure of a Pélya urn starting with a + s,
black balls and b+ n — s,, white balls, which is indeed the state of the current urn after these first n steps.

A more general model for Pélya’s urn consists in having m > 2 colors for the balls. The exchangeability
property is still verified, and the process of successive draws is a mixture of i.i.d. variables, following some
random probability distribution on [1,m]. This random distribution can be considered as an element of
the simplex S,,, = {(pl, s Pm) € R, kazl Pr = 1}, and follows a Dirichlet distribution with parameters
(a1, ...,am), where aq, ..., a,, are the initial amounts of balls of each color. The Dirichlet distribution on
S, is a multivariate generalization of the Beta distribution, in fact Beta(a,b) is the first marginal of the
Dirichlet distribution on Sy with parameters (a, b).

Let us summarize this section: the process of draws in Pélya’s urn is self-interacting, but since it is
exchangeable, we can represent it as a mixture of i.i.d. sequences. The associated random parameter can
be recovered (as an asymptotic object) from each realization of the experiment, thanks to Remark 1.1.2.
We will encounter this type of representation for different self-interacting processes with reinforcement,
which still verify some kind of exchangeability property. Thanks to de Finetti-type theorems, we are able
to express them as a mixture of simpler processes, and are interested in the associated mixing measure.

1.1.2 De Finetti’s theorem for Markov chains, and random walks in random
environment

As seen in the previous section, de Finetti’s theorem characterizes mixtures of i.i.d. sequences with
the exchangeability property. What about mixtures of other types of processes? Another version of de
Finetti’s theorem, proved by Diaconis and Freedman ([DF80]), gives a characterization of mixtures of
Markov chains in the case they are recurrent, involving a weaker exchangeability condition.

On a countable state space E, we say a process Y is partially exchangeable if the probability of Y
taking a certain path depends only on its starting point, and on the number of transitions from ¢ to
j, for all 4,7 € E. Then Diaconis and Freedman proved that if a process Y is recurrent and partially
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exchangeable, then it is a mixture of recurrent Markov chains on E. In other words, there exists a
distribution p on the set of |E| x |E| transition matrices, such that the distribution of Y is the same
as taking a random transition matrix according to pu, and then running a Markov chain on E using this
(now fixed) transition matrix.

We will be interested in a slightly different version of this theorem, due to Rolles (JRol03]), which
characterizes mixtures of reversible Markov chains on finite state spaces. Let us present this theorem in
the framework of random walks on graphs.

Random walks on weighted graphs

We begin with a few definitions and notations. Let G = (V, E) be a finite connected non-directed graph.
For i,j € V, we write i ~ j if ¢ and j are neighbors, i.e. if {i,j} € E. We will only be interested in nearest-
neighbor processes on G, i.e. random sequences (Y, )nen € VN such that for all n € N, PlY, ~ Y, 1] =1
We denote by (X,,),>0 the canonical process in VN,

Let us endow the edges of G with positive weights (ac)ccp. For all i,j € V, we denote a;; = ay; jy if

{i,j} € E, and a;; = 0 otherwise. Let now ]PiRW(a) be the distribution of the simple random walk on
(G, a) started at i, defined as follows: IP’ZRW(Q) [Xo =1ip] =1, and foralln e Nand i € V,

ax,, i

]P)SRW(a)
ijxn aX,,j

i [Xnt1 =i Xo,..X,] =
In other words, the simple random walk on (G, a) is a reversible Markov chain, in which the transition
probability from any vertex to one of its neighbors is proportional to the weight of the corresponding
edge.

The weights (ac)eer are also referred to as "conductances". This comes from a formalism which
consists in identifying weighted graphs with electrical networks, and formulating probabilistic problems
regarding reversible random walks, using the language of currents, potentials, and energy. See [LP17] for
more details on this formalism. Note that the transition matrix for the simple random walk on (G, a) does
not change if we multiply all a. by a constant A > 0. Therefore, the weights will usually be normalized
by imposing a., = 1 for some fixed edge eo.

Partial exchangeability and de Finetti’s theorem for reversible Markov chains

Let us now present the de Finetti-type theorem which characterizes mixtures of recurrent reversible
random walks, using a weaker version of exchangeability that is described below.

For L € N and o = (09,01, ...,01) € VET! we will say that o is a path in G if for all 0 < k < L — 1,
the successive vertices o} and oy41 are neighbors in G. We denote by |o| = L the length of o. Finally,
for any path o and for all e € E, we define the number N¢(o) of non-directed crossings of e by o:

lo|—1
Nec(a-) = Z ﬂ{dk,0k+1}:€'
k=0

Let us then introduce the following equivalence between paths: if o and 7 are two paths in G, we have
0 ~pe T if and only if oy = 79 and for all e € E, N¢(o) = N&(7). Note that if o ~,. 7, we have necessarily
|o| = || = L, and o1, = 71,. We can now define a variant of the notion of partial exchangeability.

Definition 1.1.2. Let (Y},)nen be a nearest-neighbor random process on G. Then'Y is partially exchange-
able in a reversible sense if, for all paths o, 7 in G such that o ~,. T, we have

]P)[YO = 0o, "'7)/\0'| = J|O’|] - P[YO = 7o, “.7)/]7_‘ = 7—|7'|]'
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Once again, it is easy to see that mixtures of reversible random walks are themselves partially ex-
changeable in a reversible sense. The following theorem, proved by Rolles in [Rol03], states that the
converse is true, providing that the process is recurrent. It is a variant of Diaconis and Freedman’s
theorem on mixture of Markov chains ([DF80]).

Let us first fix ey € E an arbitrary edge, and denote by A% the set of edge weights on G, normalized

at eqp: €E0 = {(ae)eGE € (Rj-)E7 ey = ]‘}

Theorem 1.1.2 (de Finetti’s theorem for reversible random walks). Let (Y, )nen be a nearest-neighbor
process on a finite graph G = (V, E). We assume that (Y,,)nen s partially exchangeable in a reversible
sense, as well as recurrent, in the following sense: there are a.s. infinitely many n € N such that Y,, = Y.

Then there exists a probability distribution p on V x AR such that for any path o = (09, ...or) in G,

P[Yy = 09,....YL =01] = / ( i=00 H S ) w(di, dor)

Zywo‘k Aoy, j

— /IPERW(“) [Xo = 00, .0y X1, = 01] puldi, da).

In other words, on a finite graph, a recurrent process which is partially exchangeable in a reversible
sense is a mizture of reversible random walks.

Mixtures of random walks are also called random walks in random environment: their distribution
corresponds to drawing a random transition matrix according to the mixing measure, then "freezing"
this matrix, and running the corresponding random walk on the graph. The term "environment" refers
to the transition matrix, which determines the law of the Markov chain. In the case of Theorem 1.1.2,
we get a mixture of reversible random walks, therefore the environment can be expressed as weights on
all non-directed edge, rather than with a transition matrix.

Remark 1.1.4. In the context of the theorem, the "annealed" process, i.e. the partially exchangeable
process expressed as a mixture of random walks, is recurrent. Therefore, the "quenched" process, i.e.
the random walk associated with a certain realization of the random environment, is p-a.s. recurrent. As
a result, the annealed process almost surely visits every vertex infinitely many times. Thanks to the law
of large numbers, for all vertices i € V', the proportion of times the process jumps from i to a neighbor j
then converges to a probability transition p; ;, which reveals the realization of the environment that this
trajectory evolves in. Therefore, the mixing measure p is uniquely determined by the distribution of the
recurrent annealed process. We will later be interested in mixtures of transient Markov processes, and
whether they can admit several distinct mixing measures.

1.1.3 The Edge-Reinforced Random Walk

Let us now introduce another model using reinforcement, the Edge-Reinforced Random Walk (ERRW).
This self-interacting random walk was introduced by Diaconis in 1986, and is a natural counterpart to
Polya’s urn in the context of random walks on graphs.

Presentation of the model

Let G = (V, E) be a connected non-directed graph. The vertex set V' is not necessarily finite, but we
assume that G is locally finite, i.e. that each vertex has only a finite number of neighbors. If we let
(ae)ecr be a family of weights on the edges of the graph, then we can still define the simple random walk
on (G, a) as in the previous section.
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The ERRW on (G, a) is constructed by adding reinforcing behavior to the simple random walk: we
consider the family (a.).cp as initial weights, and for every edge e, the weight of e is increased by 1 each
time the random walk crosses e. More precisely, for e € F and n € N, we write

n—1

An(e) = Q¢ =+ Z ]l{Xk7Xk+l}:e.
k=0

Then for iy € V, the ERRW on (G, a) started at ig is the process with distribution ]P’ERRW(WO), where:
PEREW(ai0)[ Xy = jg] = 1 and for all n € Nand i € V,

, ‘ An({ X0, i})
PEREW (aio)x 1 =i Xo,...X,] = P P
Koo = il Xo, - Xa) = = = X )

As described in Remark 1.1.1 for Polya’s urn, for low values of (a.)ecr we have "strong reinforcement",
and for high values we have "weak reinforcement". Moreover, the ERRW also satisfies an exchangeability
property: it is easy to see that it is partially exchangeable in the sense of Definition 1.1.2. On finite
graphs, it can therefore be represented as a random walk in random environment.

The ERRW as a mixture of random walks on finite graphs

We now assume that G is finite, and fix (a.)ecep € (Ri)E and i € V. Using the Borel-Cantelli lemma, we
can show that the ERRW on (G, a) started at ip almost surely goes back an infinite amount of times to
ig. Therefore from Theorem 1.1.2, it is a mixture of reversible random walks. The random environment,
is defined by a distribution M®% on the set of conductances A%, where e is a fixed edge. In other
words, for any (X,,),ecn-measurable event A,

a.,i SRW (« a,i
PERRW ( ’0)[A] — /Pio ( )[A]M 0 (de).
The expression of M®% was computed by Diaconis and Coppersmith in [CD87], and is the object of the
following theorem. For edge weights (ye)ecr € (R7)¥, we denote y; = ij. Yij-

Theorem 1.1.3. Let G = (V, E) be a finite connected graph, let igc € V and ey € E be fizred. Moreover,
let (ac)ecr € (R%)F be initial weights on the graph. Then the mizing measure M® of the ERRW on
(G,a) started at ig has the following density:

) \Y4 aZO e dae
M (da) = Cla,ig) 1 €E1+1 VD H
iev O oten €

=2 1[ee

TeTg eeT

where

with T being the set of spanning trees of G, and where

217V cep ac H =% ( (a; +1— ]1i=io))
ﬁlw ! HeeEF( ae) .
At this stage, the fact that this is a probability density is a consequence of the proof that it is the

mixing measure of the ERRW. We will later mention another way of showing that this indeed defines a
probability distribution, in Remark 1.2.3.

C’(a, 10)
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The ERRW on infinite graphs

Let now G be an infinite, locally finite graph. In this case, it is not as simple to show that the ERRW is
a mixture of random walks. Even with Diaconis and Freedman’s theorem for mixtures of Markov chains,
which applies to processes on countable state spaces, the recurrence hypothesis is not necessarily verified
by the ERRW. However, even without recurrence, we will see that the result is still valid.

A first special case is when G is an infinite tree, i.e. a connected graph with no cycles. In [Pem88],
Pemantle showed that thanks to the particular structure of trees, the reinforcement behaves in a very
simple way. Indeed, for i € V, let n; € N be such that X,,, = 4, and let ny = inf{n > n;, X,, = i}
be the next instant that X comes back to i. Then the only edge weight adjacent to ¢ that has changed
between n; and ng is the weight of {i, X,,, 1}, which has been increased by 2: once when leaving 4, and
once when coming back to it, since the process can not come back through any other edge. As a result,
the edge weights incident to i evolve as Pélya’s urn (with two balls added at each step instead of one),
and are independent of what happens at other vertices. Therefore, the ERRW on the infinite tree is a
mixture of random walks in random Dirichlet environments, meaning that the mixing measure is given
by independent Dirichlet distributions at each vertex. One consequence is the following phase transition,
shown by Pemantle:

Theorem 1.1.4. Let G be a d-ary tree with d > 2, endowed with constant initial weights, all equal to
a > 0. Then there exists ag(d) > 0 such that:

e for a < ag(d), the ERRW on (G,a) is a mizture of positive recurrent Markov chains.
e for a > ag(d), the ERRW on (G,a) is a mizture of transient Markov chains.

In the more general case, Merkl and Rolles showed in [MRO7] that the ERRW is in fact a mixture
of reversible random walks on any infinite locally finite graph G. They first proved some bounds for
the mixing measure of ERRW on finite graphs. Introducing an exhausting sequence (G, )nen of finite
subgraphs of G, they then applied the previous bounds to G,. Thanks to tightness and compactness
arguments, taking the limit yields the existence of a mixing measure for the ERRW on the whole of G.
This also shows that the aforementioned bounds are still valid on G.

In [MR*09], Merkl and Rolles also studied the ERRW on diluted versions of Z2, meaning that each
edge of the lattice Z? is replaced by a path of r successive edges. For r large enough, and for strong
enough reinforcement (7.e. for small initial weights), they showed a stronger bound on the random edge
weights given by the mixing measure, which implies the recurrence of ERRW on the diluted version of
72,

Further results of recurrence and transience on the Z? lattice were later proved by Sabot and Tarrés
in [ST15], as well as Angel, Crawford and Kozma in [ACK14], through links with some statistical physics
models. In [ST15], this was realized using the relation between the ERRW and another self-reinforcing
process on graphs: the Vertex-Reinforced Jump Process, which will be the focus of the remainder of this
manuscript.

1.2 The Vertex-Reinforced Jump Process

The Vertex-Reinforced Jump Process (VRJP) was introduced by Werner. It is defined as a jump process
on a graph, where the jumping rate to some vertex increases with the local time of the process at this
vertex. The VRJP was first studied by Davis and Volkov on Z in [DV02], who showed its recurrence. Later
phase transitions between recurrence and transience were shown on regular trees by Davis and Volkov
([DV04]) and Collevecchio ([Col09]), and on Galton-Watson trees by Basdevant and Singh ([BS10]).
Similarly to the ERRW, the particular structure of trees makes the reinforcement behavior easier to
study.
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The VRJP satisfies a form of exchangeability condition, but only after applying a certain time change.
In this exchangeable time scale, it can be written as a mixture of Markov jump processes. This section
presents the way this representation was obtained on finite graphs by Sabot and Tarreés ([ST15]), and later
extended to infinite graphs by the same authors and Zeng ([STZ17], [SZ19]). The VRJIP is also closely
related to the ERRW, as well as a statistical mechanics model, which has yielded many consequences for
the study of both processes.

1.2.1 The VRJP in different time scales

With the same notations as before, let G = (V| E) be a locally finite graph with no loops, i.e. such that
there is no edge from a vertex ¢ € V to itself. The VRJP on G will be defined as a continuous-time jump
process taking values on V, such that the attractiveness of any vertex increases as the process spends
time at this vertex. To define this more precisely, let us give some definitions and notations.

Jump processes on graphs

Let (X;);>0 be the canonical process on the space C, (R4, V) of right-continuous functions Ry — V. We
denote by (F{X)i>o the filtration of the past of X, i.e. for all ¢t > 0, F¥ = o(X,, 0 < s < t).

Let r = (7;,j)i~; be a family of positive weights on directed edges of G, i.e. we allow r; ; # r;, for
{i,j} € E. For i o¢ j, we also define r; ; = r;,; = 0. Let us fix a starting point iy € V. Then the Markov
jump process on G with jump rates r, started at ig, is a right-continuous V-valued random process with
distribution PM/P™) | where: PM7P") X, = ig] = 1, and for t > 0 and j € V,

io iD
Pi\/IJP(T)
0

(Xirar = §IF] = rx, ;dt + o(dt). (1.1)

A more rigorous way to define this jump process is through its infinitesimal generator £": if g : V x R is
bounded, for i € V' we have
LfGE) =Y rig () = £(0)).
g~

Remark 1.2.1. Since the jump rates are constant, this distribution can also be described in the following
way. While the process is at some vertex ¢, independent clocks are running for each neighbor of 7. The
clock associated with j rings at a random instant, which is an exponential variable with parameter r; ;. As
soon as the first of these clocks ring, the process jumps to the associated neighboring vertex. As a result,
the "holding time" that the process spends at i is an exponential variable with parameter r; = ij- Tig
and the probability that it jumps to j is r;‘jf . The choice of which neighbor to jump to is independent
from the waiting time at 4, and all jumps occur independently from the past of the process, so that it is
in fact a Markov process.

We will also be interested in self-interacting jump processes, defined by jump rates which evolve with
time and depend on the trajectory of X. Such a process is no longer markovian, but we still define it
through the expression of its jump rates, as in (1.1). Moreover, our focus will be on the VRJP and time-
changed versions of the VRJP, in which the jump rates depend only on the local times (IX(t))icv.+>0,
i.e. the total time that X has spent at each vertex 7 up to the instant t:

t
lzX(t):/ ILXS:idS.
0

Let then (r; ;)i~; be a family of functions r; ; : (Ry)YV — R%. The jump process which, at time ¢,
jumps from i to j with rate r; ;(I%(¢)), is defined in such a way that its distribution P/P(") satisfies

PO X g = §IFX] = rx, j (15 (1))dt + o(dt).
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This expression of P/P(") is convenient for computations, in particular to identify the distribution of
time-changed versions of X. However in this case, the jump rates are not constant, so the process can
not be rigorously represented using exponential variables. To define it more precisely, we use the fact
that under P/P(") (X, (lJX(t))jev)tZO is a Markov process on V' x RY. Its infinitesimal generator L£” is
then given by
LfG0) =D g (G0 = f(0. D) + (0.1,
jovi

fori € V and I = (I;)jev € RY, and for all bounded functions f : V x RY — R such that f(i,-) is C*°
forie V.

Finally, for such jump processes, it will also be convenient to introduce a discrete-time version, i.e.
a V-valued random process (X, )nen, registering only the successive vertices visited by X, and not the
time spent at each vertex.

With these definitions out of the way, we can now introduce the model which is our main subject of
interest.

The VRJP model and two relevant time changes

Let (We)eer € (R%)F be a family of positive weights on the edges of the graph G, and let ig € V be a
starting vertex. We define the distribution PVA/P(W:i0) of the VRJP on (G, W) started at ig, such that:
under PV EIP(W:io) - we have Xy = i almost surely, and for i,j € V and t > 0, X; jumps from i to j at
rate Wi,j(l + l;{(t))

Remark 1.2.2. As with Pélya’s urn and the ERRW, depending on the starting parameters, the rein-
forcing behavior can be more or less pronounced (see Remark 1.1.1). For lower initial weights W, the
first few jumps happen after a longer time, therefore the process stays longer at each vertex, resulting in
stronger reinforcement. Conversely, for higher W, we have weaker reinforcement.

Our aim is once again to study the representations of this self-interacting process as a mixture of
Markov processes. However, since the jump rates of the VRJP are always increasing, the process tends
to jump faster and faster as time goes on. This makes it impossible for it to be a mixture of Markov
jump processes, since the holding times would then be stationary. We will therefore need to apply a time
change to the process, in order to slow it down. Another time change will also be useful to relate the
VRJP to the ERRW.

Let us describe how these changes of variables are defined: for a continuous and increasing random
function A : R, — R,, adapted to the filtration (F/¥);>0, we define the time-changed process X4 by
X;“ = Xy-1(y) for t > 0. We want for the local times of X4 to satisfy

1+ 13X (t) = (157 (A®)) (1.2)

for i € V and ¢t > 0, where f :[0,00) — [1,00) is increasing and differentiable. This implies that at time
u >0, X4 jumps from i to j at rate

Wisf (1 ) £ (15" (w). (1.3)
Indeed, for u >0 and j € V
BRSO, = 1) = B Xy sy = 1K)

=Wy (1 + (A () (A (u)du + ofdu)

A—1(u)sd

. 1
= Wa i/ (I (U))Wdu+o(du),
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where we also get m = f (li(g:(u)) by differentiating (1.2) and summing over all 7 € V. This
proves (1.3), moreover the time change is given by:

At) = / LY+ (9)ds = 3 711+ X (1),
eV

We will be interested in two different choices of f : [0,00) — [1,00) in order to obtain satisfying
jump rates in (1.3). These time changes were introduced by Sabot and Tarrés in [ST15]. The first one is
f1:x+— /14 x, which gives the time change

A=Y 1+ ®) -1,

i€V
and under PVE/P(W:io) the time-changed process Z() = X41 jumps from 4 to j at time ¢ > 0 with rate
/ 7z
Wi, 1+ lj (t)

SRVERNTRI)

In the next paragraph, we will see that this time scale is such that Z(!) satisfies an exchangeability
condition.
The other relevant time change corresponds to f; : x — €*, i.e.

Ax(t) = log (1+ 1 (1)).

The associated time-changed process Z(2) = X2 has the following jump rates under PV 2/FP(Wio).

(2) (2)
AR ORAN0)

This process will help relate the VRJP to the ERRW, and also appears in the proof of the representation
of Z(M) as a mixture of Markov processes (Theorem 1.2.2).

Partial exchangeability in continuous time

In [Fre96], Freedman showed a continuous-time version of de Finetti’s theorem for Markov processes.
Similarly to Diaconis and Freedman’s theorem for discrete-time Markov chains, it relies on a partial
exchangeability condition, defined as follows. If (¥});>0 is a random process on a countable state space
E, it is partially exchangeable if for all A > 0, the discrete-time process (Y, )nen is partially exchangeable
in the sense of Diaconis and Freedman (rather than the sense of Definition 1.1.2). In other words, the
probability that (Y,)nen follows some given path depends only on the number of times this path goes
from ¢ to j, for all 4,5 € E. Then Freedman’s theorem is the following.

Theorem 1.2.1. Let (Y;)i>0 be a random process on a countable state space E, started at some point
ig € . We assume that Y is partially exchangeable, as well as recurrent, i.e. there are almost surely
infinitely many integers k such that Yy = ig. Moreover, we assume that Y has no point of discontinuity,
i.e. for allt >0, ift,, =t then Yy, L2 Y.

Then X is a mizture of Markov jump processes.
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Another formulation of partial exchangeability was introduced by Zeng in [Zenl6], for the type of
processes that we are interested in, i.e. jump processes on graphs with jump rates depending only on
local times. Such a process admits a density function, defined on the set of trajectories. Then the process
is partially exchangeable if and only if the density is the same for trajectories with equal transition counts
and local times. Let us describe this more precisely.

We first introduce a notation for trajectories on a graph G = (V, E): for ¢t > 0, we define a trajectory
up to time ¢ by its number of jumps, jump times and visited vertices. Therefore, for n € N, for 0 < 51 <
... < 8, < t and for g, ...,i, € V, we denote by at(?;f) the function [0,¢] — V such that for all k € [1,n],
(4,5)

for u € [sk, Sk+1), a,gf;f) (u) = i (with s =0 and s,41 =t), and at(f,’f) (t) = in. Moreover, for o = 0,,,",

we define:

t

Vi € ‘/, l;’(t) = / ]la':h
0

n—1

Vi j €V, Nij(0) =Y Ly, va, )=(id)-
k=0

We also denote by P; the set of trajectories up to time ¢:
P, = {at(f;f), neN0<s <..<s, <tandiq,.., i, € V},

as well as P = [J,~, P: the set of all trajectories.
The following propositions, showed in [Zen16], give the existence of a density of trajectories for some
jump processes on graphs, and a characterization of partial exchangeability through this density.

Proposition 1.2.1. Let Y be a jump process on G = (V, E) with jump rates depending only on local
times, i.e. for i ~ j there are functions r; ; : RK — R such that'Y" jumps at time t from i to j with rate
rii (1Y (1)).

Then the distribution of Y admits a density function F defined on trajectories P, such that for all
t > 0 and for all bounded measurable functions ® : Py — R,

E@®(X, 0<s<t) =Y > /

n>0140,...,in <s1<82<...<8, <t

@ (oli) F (o15) T1 ds-
k=1

(

Moreover, for o = oy, *) where n >0, gy .yin €V oand 0 < 51 < ... < 8 < t, we have

7,
n

F (o) =exp —/ Z Teo(u),; (17 (w))du Hmkfl,ik(l”(sk)).
0 k=1

jr~o(u)

This is easily proved for jump processes with constant jump rates, or in the case where the jump rate
r;,; (1Y (t)) does not depend on [} (). Indeed, in this case the holding time at a vertex i between two
jumps is an exponential variable with parameter Y. 7 ; (I¥(t)), which gives the exponential term in
F (o). The more general case can be obtained through a time change.

We can now give an equivalent formulation of partial exchangeability using the density of the process.
Let us first define an equivalence relation on P. For 0,7 € P, we write o ~,. 7 if and only if: there exists
t > 0 such that o,7 € Py, and for all 4,5 € V, I7(t) =17 (t) and N; ;(0) = N; (7).

Proposition 1.2.2. Let Y be as in Proposition 1.2.1 and let F be its density.
Then Y is partially exchangeable if and only if: for all o,7 € P, if 0 ~pe T, then F(o) = F(1).
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Let us return to the time-changed VRJP on a graph G = (V, E). Fix edge weights (We)ecr as well
as a starting point ig € V. Under PVE/P(Wio)  the process Z() has the following density F (see for

i,5)

instance [ST16]): for n € N, 0 < s < ... < s, <t and 4y,...,7, € V, for o = at(’n ,

Flo)=exp [ -Y Wiy (\/(1 HIZE)A+12(8) — 1) HQn Hk;o\/%'
P i€V \{in} @

Since this density depends only on 7 (¢) and N, ; (o) for i,j € V, Proposition 1.2.2 yields the fact that
under PVE/PW:io) - 7(1) ig partially exchangeable. On finite graphs, it is possible to show that the VRJP
is recurrent, and then apply Theorem 1.2.1 to show that this time-changed version of the VRJP is a
mixture of Markov processes.

However, the first proof of this representation in [ST15] did not use Theorem 1.2.1, but a more explicit
approach. We will describe this method in the next section, but let us first present a link between the
ERRW and the VRJP, through the time-changed process Z(3).

How the ERRW relates to the VRJP

In [ST15], Sabot and Tarrés showed that in some sense, the ERRW on a weighted graph is a mixture of
VRJP with random initial weights. Let us describe how.

Fix a locally finite graph (G, F), endowed with initial edge weights (a.)ecp. The first step is to
introduce a continuous-time version Y of the ERRW on (G,a), with a construction due to Davis and
Sellke. To do this, simply define a jump process with jump rate ay; j; + N{cl,,j}(t) from 7 to j at time ¢,
where N{Ci’j}(t) is the number of times that Y has jumped from i to j or from j to 7 up to time ¢. The
associated discrete-time process is then effectively the ERRW on (G, a).

Another way of defining this continuous-time ERRW is the following: to every edge e € E, assign
independent clocks that run only when the process is at one of the ends of the edge e. Each clock
rings after an exponential time, with parameter a. + NS(t), at which point Y jumps through e, and the
clock restarts, with an updated parameter. Thanks to a result by Kendall ([Ken66]), each clock can be
represented as a mixture of time-changed Poisson point processes with parameter 1, where the time change
is characterized by a random parameter W, distributed according to a Gamma(a,, 1) distribution. As a
consequence, there exist independent Gamma variables (W.).cg, such that conditionally on (W.)ecpg, YV
is a jump process with jumping rates Wi’jelﬂl}/.

In other words, Y has the same distribution as a mixture of time-changed process Z(® under
PV RIP(Wio) where (We)eer are independent and W, is a Gamma(a,, 1) variable for e € E. By observing
only the discrete-time process Y, we get the ERRW, which is therefore itself a mixture of discrete-time
versions of the VRJP with random initial weights (W,).c g, that are independent and Gamma-distributed.

1.2.2 The VRJP as a mixture of Markov jump processes on finite graphs

The representation of the VRJP (in the exchangeable time scale) as a mixture of Markov jump processes
was shown by Sabot and Tarrés in [ST15]. Their proof does not use de Finetti’s theorem for Markov jump
processes, but a more explicit method: identifying a converging functional of the process, and showing
that conditionally on its limit, Z(!) is indeed a Markov jump process. This functional, depending only
on the local times of the process, has a distribution that appears in the study of the supersymmetric
hyperbolic sigma model. This relation provided results for the recurrence and transience of the VRJP
and the ERRW, thanks to localization and delocalization results due to Disertori, Spencer and Zirnbauer
([DSZ10],[DS10]).
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The mixing measure of the VRJP on finite graphs

Let us first describe the aforementioned distribution, which will provide a mixing measure for the VRJP
in Theorem 1.2.2(iii). Let (G, W) be a finite weighted graph, and iy € V a fixed vertex. Define H;, =
{u € R, u;, = 0}. Then the following measure is a probability distribution on H,,:

, —Xiev i
i e iev
Q‘VY’ °(du) = — T P | - Z Wi ; (cosh(u; —u;) — 1) | /D(W,u) H du;
V2 {i,j}cE ieV\{io}

where D(W,u) = Y per, [ jyer Wije" ™ (using the same notations as in Theorem 1.1.3). Thanks
to the matrix-tree theorem, D(W, u) is also equal to any diagonal minor of the |V| x |V| matrix M (W, u),
where

Wi7j€ui+uj if 4 7&]
M(W,u); ;=19 _ Z W, peiT  if =
keVv

The fact that QVVV’iO is a probability distribution is a significant result. It was obtained as a consequence
of supersymmetry in [DSZ10]. It also results from the fact that QVVV’“’ is the distribution of an asymptotic

functional of the VRJP, as stated in the following theorem from [ST15].

Theorem 1.2.2. Let G = (V, E) be a finite graph endowed with initial weights (W.)ecr, and ig € V a
starting point.

(i) For all i € V, the following limit exists PV /P (Wio)_q g,

1 12 ¢
Ui = Jim 2 log ( D) _ im (zf(” (t)—liZO(Q)(t)).

liZo(l) (t) t—00

(i) Under PVRIPW:io) (7)), is distributed according to Q{//V’io.

(iii) Under PVEIPW:0) - conditionally on (Us)icy, the time-changed process Z(Y is a Markov jump
Win

process with jump rate Ter_Ui from i to j.

The proof of (i) relies on martingale arguments, using the expression of the infinitesimal generator of
the process Z(?). For (ii), the distribution of U is identified by showing that the Laplace transform of
Q{//V’i“ is solution of a Feynman-Kac equation, involving the same generator.

Finally, (iii) is proved thanks to arguments inspired by Bayesian statistics. Let Z be a mixture of
Markov jump processes with jump rates %eUﬁ_U@', where U is distributed according to Q" (du). Tt
is then possible to compute the distribution of U conditionally on the trajectory of Z up to a time ¢ > 0.
Indeed, this conditioning makes some extra terms appear, that can be interpreted as a modification of the
parameters of QVVV’“’. Using the fact that it is indeed a probability distribution, adjusting the normalizing
terms gives an explicit expression of the conditional distribution of U, and therefore the distribution of
the future of Z conditionally on its past. It turns out that Z has the same jump rates as the time-changed
process Z() under PVE/FP(Wio)

Remark 1.2.3. The representation of the VRJP with the mixing measure Q‘V,V’io and the link between
ERRW and VRJP also provide another way of computing the mixing measure of the ERRW described
in Theorem 1.1.3, and showing that it is in fact a probability measure.
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The supersymmetric hyperbolic sigma model, and the VRJP and ERRW on Z¢

The mixing measure Q&V’“ appears in the work of Disertori, Spencer and Zirnbauer (J[DSZ10], [DS10])
concerning the supersymmetric hyperbolic sigma model. This is a spin model on a weighted graph (G, W)
where the spins take their values in H22, a supermanifold extension of the hyperbolic plane, with two
added anticommuting variables. However, it can be reduced to a single random field on the graph, which
has the distribution Qg/v’lo. As a result, some estimates proved for the supersymmetric hyperbolic sigma
model yield recurrence and transience results for the VRJP and the ERRW.

Consider the d-dimensional lattice Z%, and define AS{” = 74N [-n,n]? for all n > 0, as well as E,, the
set of edges contained in Ag,,d). We endow the edges of Z?, and therefore those of all A%d), with constant
weights W.

In [DS10], Disertori and Spencer showed a localization result for the supersymmetric hyperbolic sigma

model for low weights W, which assures the exponential decay of /2 under Qx’g (dw), uniformly in
n: there exist constants W(d) > 0 and C(d), k(W,d) > 0, which are explicitly known, such that for all
0<W <W(d),neN andie A,

/EUi/2QKE}0) (du) < C«(d)eflc(l/v,d)m7

where |.| is the Euclidean norm on R?. This exponential decay allowed Sabot and Tarrés to show in
[ST15] that for all d > 2, the VRJP on (Z% W) is recurrent for strong reinforcement, i.e. constant W
low enough, in the following sense: in this context, the discrete-time version of the VRJP is a mixture
of positive recurrent reversible random walks. They also generalized Disertori and Spencer’s result to
random i.i.d. weights (W.).cp with distribution Gamma(a, 1), which yields in the same way that the
ERRW on Z?, with constant initial weights a small enough, is positive recurrent. This proof is still valid
for any graph with bounded degree. This was also independently proved by Angel, Crawford and Kozma
in [ACK14], who gave a direct proof of the exponential localization of the ERRW at strong reinforcement.

In the case where d > 3, Disertori, Spencer and Zirnbauer showed in [DSZ10] that the fluctuations
of the potential with distribution QK‘Z[?) are bounded uniformly in n € N, for W large enough. In other

words: for any m > 0, there exists W (d,m) > 0 such that for all W > W (d, m), forany n € N, i,j € A%d),

/coshm(um - uy)QK‘fg (du) < 2.
Sabot and Tarrés used these estimates in [ST15] to show that for d > 3, the VRJP is transient on Z? for
weak enough reinforcement. With Disertori, they also showed in [DST15] a version of this delocalization
result for random i.i.d. weights with Gamma distribution, implying the transience of the ERRW on Z<
at weak reinforcement.
More results for the VRJP and ERRW on Z¢ will be described later, and were obtained thanks to a
representation of the VRJP on infinite graphs.

The random S potential

Theorem 1.2.2(iii) provides a representation of the VRJP as a mixture of Markov jump processes on finite
graphs. In order to extend this result to infinite graphs, a natural approach is to proceed as with the
ERRW: take an exhausting sequence of finite subgraphs (V,,, E,,), and try to show that the environment
provided by the mixing measure QWO converges when n — oo. It is possible to obtain a weak convergence
of the random field w, but the limit loses properties (like translation invariance or ergodicity) that are

needed to obtain more results for the VRJP on infinite graphs. There exists however a random potential
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on V', which can be used to define the right random environment, and has a more convenient distribution.
Let us describe this potential.

Let G = (V, E) be a finite connected graph endowed with edge weights (W, ).cp. As before, for
i,j € V, we use the notation W; ; = Wy, ;y if {i,7} € E, and W; ; = 0 otherwise. Note that we do not
exclude the case where W; ; # 0 for some vertex i € V.

For B = (B;)icv € RV, we denote by Hg = 28 — W the |V| x |V| matrix such that for i,5 € V,

Wi, if i #j
(Hp)ij = ! o
28; =W, ifi=j.

We also consider (-,-) to be the canonical scalar product on RV, and 1 € RY to be the vector such
that 1; = 1 for all i € V. Moreover, we denote by DY = {8 € RV, Hz > 0} the event on which Hg
is positive definite. With these notations, we can introduce the random potential § which will provide
another expression of the mixing measure of the VR.JP.

Proposition 1.2.3. Let i/ be the measure on DY defined by:

V]

tas) = (2) 7 o (g ) e

Then V“’/V is a probability distribution. Its Laplace transform is

/e MBI (dB) = exp Z Wm( T+ )1+ X)) ) ].;.[/m

{i.jrer

for X € RK.
Moreover, under U&V(dﬁ):

e foricV, ﬁ is an Inverse Gaussian variable, with parameters ((iji Wi )t 1).

e (3 is 1-dependent, i.e. if U, U C V are such that dg(U,U’) > 2 (where dg is the graph distance on
G), then (B;)icu and (B;)jcu are independent.

This distribution was introduced by Sabot, Tarrés and Zeng in [STZ17]. They showed the relation
between v}/ and QVVV’“’ that we present in Proposition 1.2.4, which provides an expression of the mixing
measure of the VRJP using the S potential.

Remark 1.2.4. The matrix Hg = 28 — W can be interpreted as a random Schrédinger operator.
Indeed, if we denote by A the discrete Laplacian on the weighted graph (G, W), then Hg =V — A, where
(V)(@) = (28; —>_;; Wi ;) f(i). The operator V is the multiplication by a random potential on G, which
is not i.i.d. as in the Anderson model, but at least 1-dependent.

Let us describe in more detail the link between this random potential and the mixing measure of the
VRJP. Let ip € V be a fixed starting point, and let F;, be the density (in the sense of Proposition 1.2.1)

of the time-changed process Z(!) under PVE/P(W:io): for n e N, 0 < 51 < ... < s, < t and i1, ....in € V,
(i,s)

foroc =o0y,",

27" [Tjimo Wini
F, (o) = exp Wi, LHI7(E)(1+19(t) — 1 kbt
-3 10 -1) | s
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However, we have another expression for this density, since the time-changed VRJP is a mixture of
Markov jump processes with jump rates %e“f“i, where the mixing measure is Q{/,V’“) (du). Therefore,
we have

n—1
Wii wicw ) o w Wik iksa i
Fao) = [ e | =30 (3D Fptenm | | e [ =5 @ ().

i i€V \ ji k=0

Let us set §3; = - Wijeui—ui for 4 € V. This is the parameter of the exponential time that
g~ 2

the Markov jump process with rates %e“ﬂ‘“i spends at i before jumping away. Thanks to the two
expressions of F;,, we can identify the distribution of (Bz‘)z‘ev under QVVV’“’. Indeed, let o be a cyclical

distribution, ¢.e. such that i,, = ig. Then, we get

. _ 1
— > ey Bil (t) oWiio _ _ o o o _ -
e~ 2aev Pl QU0 (du) = exp E Wi, (I+17@)A+1(t) -1 | I ’
/H — I (\/ J ) i) NAENE0)

which is the Laplace transform of the distribution of 5. It is almost the same as for V“;V, but the term
i = 1o is missing in the last product. To obtain a more symmetrical expression, which is in fact the
Laplace transform of ¥, we add an independent Gamma (1/2,1) variable to f3;,.

Conversely, for all i9 € V the mixing measure QI‘/,V’i“ can be recovered from a random field with

distribution V“;V .

Proposition 1.2.4. For all 3 € DY/, let us denote by G = (Hg)~! the Green function associated with
the random Schridinger operator Hg. Fizig € V', and define u(io,-) € Hi, by

u(ip, 1) = log <G(i0,i0)

fori € V. Then under v{Y (d3), we have:

(i) (u(io,i))iev is (Bi)iev\{io} -measurable, and distributed according to Q&V’io.

(ii) G(io,10) is independent from (B;)ii,, and therefore from u(ig,-). Moreover, oTel is a Gamma

1
i0,10)
variable with parameter (1/2,1).
(iii) Fori eV,
Wisj gutio,i)=ulio,i) 1
i: _9J Julo, u\0,? ]11:1.7.
ﬁ Z 2 ¢ + 0 QG(ZO7 ZQ)

g

As a consequence, the random potential with distribution 14¥ can be used to construct a random

environment for the time-changed VRJP started at any point. Indeed, for g € D‘V,V we denote by PW:f:io
the distribution of the Markov jump process with jump rates

Wi, G(io,7)

Then according to Theorem 1.2.2 and Proposition 1.2.4, under PVRJP(W’iO), the time-changed process
ZW is a mixture of the Markov processes with distribution IP’ZI-/(‘]/’B”O, and the mixing measure is 14V (d3).

Remark 1.2.5. Note that having W;; # 0 for some i € V' does not change the distribution of Hg, and
therefore the distribution of the random jump rates remains unchanged.
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This representation using the [ potential will be convenient when studying the VRJP on infinite
graphs. Indeed, the potential is 1-dependent, and the distribution I/“;V behaves well with respect to
restriction, as detailed below.

For U,U’ C V, and for any vector z € RV and matrix M € RV*Y let us denote by zy = (7;)icv
the restriction of x to U, and in the same way, My y+ = (M, ;)icvu,jev’- Then for finite U C V, under
I/‘V,V (dp), the distribution of S is explicitly known: it is a perturbation of VEVU‘U, introduced by Letac in
[LW19], and involves a boundary term 7.

Proposition 1.2.5. Let G = (V, E) be a finite connected graph.

(i) Forn€ (Ry)V, let us define the measure V“;V’" on DY by

V1
2

Hz’GV dp;

W (dB) = (i) s

exp (= 30, Hat) = 50 (Ha) ™M) + (. 1))

Then V“;V’n is a probability distribution. Note that V“;V = V“;V’O.

(i1) Let U C V. Then under V“;V’n(dﬂ), Bu is distributed according to VZVU‘U’ﬁ, where

n=nu+ Wyuelye.

(iii) Moreover under V“;V’”(dﬁ), conditionally on By, the distribution of Bye is l/g/c’ﬁ, where
W =Wuye e + Woeu (H)vw) ™ Woue and ij = nue + Wyew (Hg)vw) ™ no-

In particular, this result implies that under V“}V (dp), the distribution of a restriction Sy depends only
on the weights Wy 1y inside of U, and the edges Wy e coming out of U. This will be especially useful to
extend the representation of the VRJP as a mixture of Markov processes to infinite graphs.

1.2.3 Representation on infinite graphs

The results in the upcoming section come from [SZ19], where Sabot and Zeng showed that the VRJP is
a mixture of Markov processes on infinite graphs. As with the result of Merkl and Rolles for the ERRW
(IMRO7]), the proof relies on the existence of a mixing measure on finite restrictions of the graph, and the
convergence of this mixing measure on the infinite graph. The key ingredient is the choice of a particular
boundary condition on finite restrictions, which will help both in the construction of a 8 potential on the
whole graph, and in the proof that the associated random environment converges.

Wired boundary condition

Let G = (V, E) be an infinite graph, that we assume to be locally finite and connected, as well as endowed
with edge weights W. As usual, we have W, ; = W,; > 0 for {i,j} € E, and W, ; = 0 otherwise. Let
(Vi)nen be a sequence of finite connected subsets of V', such that UneN V,=V.

For n € N, we define the restriction of (G,W) to V;, with a wired boundary condition, as follows.
Let us introduce a new vertex J,, that will be considered as a boundary point. Define then the graph
G = (Vv EM) with

Ve =V, U{s,}
and E™ = {{i,j} € E,i,j € V,} U{{i,0,}, i € 9V, },
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where for U C V, U = {i € U, 3j € V\U, {i,j} € E}. This corresponds to identifying all vertices
outside of V,, to a single vertex §,,. The edges between to vertices of V,, are conserved, and for i € V,,
the edges between i and vertices outside V,, are fused as a single edge {i,d,}. Moreover, we endow g
with appropriate weights W™ so that the weights inside of V,, are the same, and the weights coming
out of V,, are conserved:

Wz(,?) = Wi,j for Z,] € Vn7

and VNV;(’ZT)L = Z Wi)j = W{i},V;ILV,f-
I~ Vn

Then, (G, W) is called the restriction of (G, W) to V,, with a wired boundary condition.

The § potential on infinite graphs

Let us first see how this boundary condition allows for the definition of a distribution l/“;v on the whole
infinite graph. i
Fix n € N, and let 8™ = (55"))Z.€v(n> be a random potential on G, with distribution »¥""’. Then

V()
. .- . . . (n)_p(n)
according to Proposition 1.2.5(ii), the restriction ﬂg}:) has distribution I/\V/Z 7 where:

W(n) = WV Vi and ﬁ(n) = WV Vc]lvc = (W(§)> .
nyvn nyVn n 2,0n iEVn

However, for m > n, if 3™ is a random potential on G™) with distribution ug‘/(fg), then the restriction
ﬂ‘(/:l) has the same distribution as B‘(Z), since the edge weights coming out of Vj, are still given by n(").
Thanks to Kolmogorov’s extension theorem, this compatibility implies the existence of a g potential on
the whole infinite graph G.

Proposition 1.2.6. For 3 € RY, let us still denote by Hs = 23— W the Schrédinger operator associated
with (3, i.e. such that (Hgf); = 2B;fi — iji Wi if;, for f € RV. We also define

DY ={BeRY, (Hg)yy >0 for all finite U C V}.

Then there exists a unique distribution l/“;V on D‘V/V such that: for all finite subset U of V, under

U,U M

V“f/(dﬁ), the restriction By is distributed according to I/ZV , where n = Wy yelye.

This distribution can now be used to construct a coupling of 5™ fields on each restriction G(™.

(n) p(m)
Indeed under 1} (df3), for n € N the restriction By, has the distribution V“Z """, Therefore, it can be

completed into a random potential 3™ on G(™), such that B&"L) = Py, , and B is distributed according
“;V(:;) The distribution of Bg:) can be obtained thanks to Proposition 1.2.5(iii), but we will express
it in another way.

Let H/gn) = 28" — W) be the Schrédinger operator associated with ("), and G(") = (Hé"))_l the
corresponding Green function. According to Proposition 1.2.4 with i = J,,, we then have

to v

T s
RS Ws,5 G0 ) 1
n n) n ’
b= 2 GM(6,,6,) 2G(5,,6,)
where (%) is ﬂ‘(/:)—measurable, and m is a Gamma(1/2,1) variable, independent from

‘(Z). We can therefore couple all potentials 5" by taking QG(H)l

ey = b where « is a random
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Gamma(1/2, 1) variable, independent from 3. From now on, we will denote by 14 (d3, dv) the distribution
on DY/ x R defined as:

1 _
W (dB,dy) = v (dB) © e dy.

This coupling of 3™ potentials provides a coupling of the representations of the VRJP on the finite
restrictions G(™, which is then used to prove that these representations converge when n — co.

Convergence of the representation

V,,. For all n € N, the VRJP on (G, W (™)

i) g
started at ig is a mixture of the Markov processes with distribution ]P’Z)/ b "0 where B(") is defined
from § and v as in the previous paragraph, and the mixing measure is y“jv(dﬁ, dv). Recall that the jump

Fix 79 € V a starting point, that we assume to be in mnEN

) W g .
rates defining P; A0 are, for i ~ 7,

() ~n)ss s
Wi,j G! )(ZO,J)
2 G(”)(io,i)'

To show that the representation on G(™ converges to a representation on G, we first need to prove that
the Green function G(™) converges. In order to do this, it is convenient to write G(™ as a sum over all
paths in G(™).

We denote by ij(n) the set of paths o from i to j in G, i.e. o = (00,...,01) € (V)1 where
I = |o| is the length of o, 09 =i and o7 = j, and for k € [0,1 — 1], 6} ~ 0p41. Then G can be written
in the following way: for i,j € V(™)

Wi
G (i, j) = Z R

JGPXJ.('L)

where W = Htfz‘al Wé:}ak“ and (28™), = ‘1::‘0 25[,2). This sum can be separated in two, by
distinguishing paths that stay inside Vj,, and paths that visit 6(") at some point. These last paths can
be decomposed into three parts: a first path from 4 to a neighbor z; of §,, then a path from §,, to &y,
and finally a path from another neighbor z5 of §,, to j. For i,j € V,,, this yields

n)reon Wo WO’ - (n) n 77(n) Wo'
G! )(Z,]) = Z 25) + Z Z (28) Wzl,énG( )(5na5n) S22 Z
( 7 21,2200 \ gepVn 7

(¥ 1,21 a 22,]

|
Q@
2
—~
\.N.
.
~—
+
=
3
=
~.
N—
[\
2 ‘ =
=
3
P
.
=

where G : V x V — R, and (™ : V — R, are S-measurable functions defined as follows:
o (GM)y, v, = ((Hg)v,v,) " and G (i,j) =0ifi ¢ V, or j ¢ V.

) (5, i w s s
e For i € V,,, ™ (i) = % = ¢u"(0n9) with the notations of Proposition 1.2.4 (where

u(™ (3, ) has distribution Q‘é/(iz)’é"), and (™ (i) = 1 for i ¢ V,,. Note that (Hé")q/;(n))vn =0.



22 CHAPTER 1. INTRODUCTION

Under 1Y (df, dv), Sabot and Zeng showed that G™ and ¢ converge almost surely. In particular,
if .7-'5” = o((Bi)iev, ), then for all i € V, (™ (i))pen is a (.an)—martingale. We denote by G and ¢
the respective limits of these objects, which are [-measurable. For g € D‘V/V, 1 is Hg-harmonic, i.e.
(Hp)(i) =0 for all i € V. Finally, define G : V' x V — Ry such that for i, j € V,

Gli,j) = G(i,j) + %wu)w(j»

This leads to the following theorem, which gives a representation of the time-changed VRJP as a mixture
of Markov processes on infinite graphs.

Theorem 1.2.3. For € D‘V/V, v > 0 and a starting point ig € V, let PV-P7%0 be the distribution of the

Markov jump process with jump rates
Wi ; Glio, 5)
2 G(ig,1)

from i to j.
Then under . , the time-changed process Z1) is a mizture of Markov jump processes with
distribution IPZ:’B’%“’, and the mizing measure is v\¥ (dj3, dv).

PV RJIP(W,io)

\ByYs10
0

Moreover, for all § € D‘V,V and v > 0, the Markov jump process P, is recurrent if and only if

¥(i) =0 for all t € V', and transient if and only if ¥ (i) > 0 for alli € V.

The proof relies on using the representations on restrictions G(™). Indeed, for all finite subset U C V/,
let ng be such that U C V,,,. Then for n > ng the VRJP, up to the first time it leaves U, is a mixture of
Wi G (io.4)

2 G (ig,i) "
be written as an integral involving the density of trajectories for these Markov processes. Taking n — oo,

G™ (g 0) . ..
m>neN for all 4 € V, this integral

Markov processes with jump rates The distribution of the stopped process can therefore

and using a uniform integrability argument on the family (

converges to the desired result.

Theorem 1.2.3 implies that the discrete-time version of the VRJP, which is not modified by the time
changes applied to X, is a mixture of reversible random walks on G, with the random conductance
between i and j equal to W; ;G (ip,i)G(ig, j), under the mixing measure vy} (d83,dy). Recall also that
the ERRW on (G, a), with initial weights (ae)ecr, is a mixture of discrete-time VRJP with independent
starting weights (We).cg following Gamma(a,, 1) distributions. This provides the following expression
of a mixing measure for the ERRW: it is also a mixture of reversible random walks, with the same
conductances W; ;G (4o, )G (o, j), under the distribution o{,(dW,dg, dvy), where

ae—1

W,
78 (dW, dB, dy) = / vy (dB,dv) X an) exp(—W,)dW..
ecE ¢

Remark 1.2.6. The martingale property of (") plays a central role in the proof of the convergence of
G™. Moreover, the quadratic variation of the vectorial martingale (¢(")(i)),_,, is given by G, i.e.
(1h(1),0(5))n = G (4, ). This was generalized by Disertori, Merkl and Rolles in [DMR17], where they
introduced an infinite hierarchy of martingales, thanks to symmetry arguments derived from the H?Z?
model. They expanded this family further in [DMR19], using the antisymmetric variables of the H?/?
model.

Consequences for the VRJP and ERRW on Z?

The fact that the [-potential is 1-dependent also yields ergodicity properties for the representation
described above. More precisely, let (G, W) be vertex transitive, i.e. the group A of automorphisms of G
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that leave W invariant is vertex tramsitive: for i,j € V, there exists f € A such that f(i) = f(j). Then
under 1Y (df3), the potential (8;);cv is stationary and ergodic with respect to the group .A. This is also
true of G and ¥, since they are S-measurable. This has a number of consequences for the VRJP on Z4
with constant initial weights W, which is vertex transitive.

First, on vertex transitive weighted graphs, the event {Vi € V, (i) = 0} is invariant by the group
A, and therefore has probability 0 or 1. According to Theorem 1.2.3, this implies that the Markov jump
process PW:A:0 ig either V“;V—a.s. recurrent, or V“ﬁV—a.s. transient.

Moreover, the VRJP satisfies a functional central limit theorem at weak enough reinforcement on Z<,
d > 3. In this regime, the transience of the VRJP was already known, but this is a stronger result. Let

(Zn)nen denote the discrete-time version of the VRJP, and for ¢t > 0, define Bt(m) = ﬁZA[mt]. Then there

exists W > 0 such that for W > W), under PVEIPW.0) - B(m) converges in distribution to a d-dimensional
Brownian motion with covariance matrix o2I;, where 0 < 02 < 0.

This is a consequence of a similar theorem from [DMFGW89] on random walks in random conduc-
tances, which is valid when the conductances are ergodic and satisfy an integrability condition. For A ,
the conductances are W; ;G(0,7)G(0,j), and are therefore not ergodic. However, once conditioned to
never coming back to 0, Z has the same distribution as a random walk with conductances W; j(i)1(5),
similarly conditioned, to which the theorem applies. The integrability hypothesis is verified at weak
reinforcement, thanks to estimates by Disertori, Spencer and Zirnbauer (|[DSZ10]). The random walk in
random conductances W; ;1 (i)1(j) will reappear later in this manuscript, to study Hg-harmonic func-
tions.

This proof of a functional central limit theorem is also valid for the ERRW at weak reinforcement
on Z4, d > 3, with constant initial weights (ac)ccp. Indeed, the ERRW is a mixture of (discrete-time)
VRJP with i.i.d. starting weights (W,).cp, which conserves the ergodicity of the random conductances
W, jw(i)(j). The estimates implying the integrability condition were shown in [DST15] to prove the
transience of the ERRW at this regime.

Another consequence of the ergodicity properties of 3 is the following fact: on Z? endowed with
constant initial weights (a¢)ccp, the ERRW is recurrent for any a > 0. Indeed, it is a mixture of
reversible random walks, which are transient if and only if the associated 1 is positive everywhere on Z?.
Since ) is also stationary and ergodic, it cannot satisfy the polynomial decay shown by Merkl and Rolles
in [MRO6] for the random environment of the ERRW on Z?. Therefore the process is a.s. recurrent.

A corresponding result for the VRJP was also shown by Sabot ([Sab19]) as well as Kozma and Peled
([KP19]), both using Mermin-Wagner-type arguments to show bounds on e" under the mixing measure
Q“//V’i” (du). With the same argument concerning the ergodicity of ¢, this implies the a.s. recurrence of
the VRJP on Z? with constant initial weights.

This was also proved in another way by Poudevigne in [Poul9]. His method involves a coupling of 3
potentials for different values of the initial weights W, and a martingale with respect to the varying W.
This yields a monotonicity result relative to the initial weights, which has several consequences. Firstly, if
a weighted graph (G, W) is such that the associated simple random walk is recurrent, then the VRJP on
(G, W) is recurrent as well. In particular, this is true for the VRJP on Z? endowed with constant initial
weights. Secondly, there is a unique phase transition between transience and recurrence of the VRJP on
74, for all d > 3.

Another representation on infinite trees

As with random walks in random environment, if a mixture of Markov jump processes is recurrent, the
associated jump rates can be recovered as asymptotic functionals of the trajectory. This implies the
uniqueness of the representation, i.e. of the distribution of the random jump rates. However, if the
random environment has a nonzero probability of defining a transient Markov process, there is no reason
to have uniqueness of the representation. A first counterexample appears in the case of infinite trees.
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Indeed, it is possible to construct a different representation, using another boundary condition on
finite restrictions: the free boundary condition, i.e. removing any edge with at least one end out of the
subgraph. This restriction is then a finite tree, on which the random jump rates given by Theorem 1.2.2
are independent for each edge. Therefore, the distributions of the environment for any finite subtree
are compatible. This yields a representation on the whole infinite tree, with independent random jump
rates, which was described by Chen and Zeng in [CZ16]. This result is consistent with the observations of
Basdevant and Singh in [BS10], who proved that the phase transition between recurrence and transience
of the VRJP on a regular tree was the same as for a random walk in random i.i.d. environment.

On a d-regular tree for d > 3, and with constant initial weights large enough so that the VRJP is
transient (thanks to results from [DV02], [BS10]), this representation is different from the one defined
in Theorem 1.2.3. Indeed, for any infinite self-avoiding path w starting at the root of the tree, the
sequence (1)(wp))nen almost surely does not converge to 0, since ¢ is stationary and ergodic. However
the analogous quantity converges to 0 in the representation with independent jump rates.

The existence of several distinct distributions for a random environment representing the VRJP
motivated the first part of my work, presented in the next section.

1.3 The question of uniqueness of the representation

As mentioned above, on some infinite weighted graphs (specifically infinite trees) the VRJP admits
several distinct representations as a mixture of Markov processes. This begs the following question:
in what context is there uniqueness of the representation? The following section presents results from
[Ger19], in which T tackled this issue.

A first step was to show that all random environments representing the VRJP are related to the
potential introduced in the previous section. This shifts the problem to studying Hg-harmonic functions
on the graph, using the notion of Martin boundary. On the lattice Z?, this approach leads to a uniqueness
result. On infinite trees however, we construct an infinite family of distinct representations.

1.3.1 Common form for all representations

We still consider an infinite graph G = (V, ]E?), connected and locally finite, endowed with positive weights
(We)eer. From now on, we will denote by PY/P(W:i0) the distribution of the time-changed process Z(1)
under PV EJP(Wrio) - According to Theorem 1.2.3, it is a mixture of Markov jump processes in the following
sense:

PVRIP(Wio)[] — /pygﬁmio [ (dB, dy),

Wi, G(io.j)
2 Glioi)
are interested in whether this is the only way to write PYE/P(W:i0) a5 a mixture of Markov processes.
Let us introduce more formally the notion of representations of the VRJP. We denote by j‘ﬁ; the set
of jump rates on G, i.e. the set of (r; ;)i jev € RY ™Y such that r; ; = 0 if {i,j} ¢ E. Let now R be a
probability distribution on Ji¥, and iy € V. We will say that R is a representation of the time-changed
VRJP starting at ig (as a mixture of Markov jump processes) if

where PW-#:7:%0 ig the distribution of the Markov process on G with jump rate

from i to j. We

PV RIP(Wio)[] — /Pf‘f"P(’")R(dr),

where we still denote by PM7P(") the distribution of the Markov jump process on G with jump rates

7.7 )i~j- LThe distribution of jump rates appearing in Theorem 1.2.3 will be called "standard representa-
J )i g

tion".



1.3. THE QUESTION OF UNIQUENESS OF THE REPRESENTATION 25

General representations and the [ potential

The first question concerning arbitrary representations of the VRJP is the following: can they all be
expressed in the same way as the standard representation, using the 3 potential? The answer is positive,
as described below.

For r € J{¥ and i € V, we will denote by r; = ZiNj ;5. The following theorem assures that for
any representation R of the VRJP, under R(dr) the holding time rates (r;);cv have the same distri-
bution as the analogous quantities (Bi)ieV in the standard representation. By adding an independent
Gamma(1/2,1) variable at the starting point, we therefore get a potential with distribution Y.
Theorem 1.3.1. Let R be a representation of the VRJP starting at ig. We define the following distri-
bution on JF x R: R(dr,dvy) = R(dr) ® % e Vdy.

Forr € J¥ and v > 0, we define a potential 3 € R+ on G by:
Bi = 1i + Liizigyy-

Then under R(dr,dv), B8 is distributed according to 1y} .
Moreover there exists a random Hg-harmonic function h : V — Ry, such that for all i ~ j,

- Wi j Gn(io, j)
J 2 Gplig,i)’

where for i € V, Gp(ig,1) = G’(io,i) + h(i), and G still denotes the B-measurable Green function defined
onV xV.

The expression of the jump rates using Gy, results easily from the fact that (8;);cy has distribution
y“}V. To prove this, we proceed in the same manner as with the standard representation: by expressing
the density of cyclical trajectories of the time-changed VRJP as the Laplace transform of the distribution
R.

Indeed, take n e N, 0 < 51 < ... < s, <t and iy,...,7, € V, and let ¢ = U(l )s) the trajectory defined
as in Proposition 1.2.1. Let also Fj, be the density of trajectories for the VRJP started at i9. Then we
have two ways of writing F;,(o): the explicit expression

Fulo) = e | =Wy (Ir @0+ 50) 1) | = 2" i

inj ! iEV\{in} V L+ ll

and the averaged expression using the representation R,

n—1
Fi (o) = / exp (- Zrilf(t)) 11 rivinsn Riar
k=0

icV

In order to identify the distribution of (r;);cv, we take ig = i, so that o is a cyclic trajectory. We then

only need to show that
n—1

7k71k+1
I | Tigyipgr = I |

which we obtain by observing the density of the n-fold concatenated trajectory when n — oo and ¢ — 0.

This common form for all representations of the VRJP is a first step in answering the question of
uniqueness of the representation. To go further, we have to know more about Hg-harmonic functions.
We will be able to characterize them using the notion of Martin boundary.
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Harmonic functions and Martin boundary

We will consider two cases for the VRJP on (G,W): when it is a mixture of a.s. recurrent Markov
processes, or a.s. transient ones. In the first case, as with random walks in random environment,
every vertex is visited infinitely many times and the law of large numbers yields the uniqueness of the
representation. Therefore, the standard representation is the only one, and the Hg-harmonic function h
in Theorem 1.3.1 is zero everywhere.

From now on, we assume that the VRJP on (G, W) is a.s. transient. According to Theorem 1.2.3, we
then have v}¥ (dB)-a.s. (i) > 0 for all i € V. This will allow us to define a Markov operator A¥, such
that Hg-harmonic functions and AY-harmonic functions are related.

For i,j € V and 3 € D}/, we define the following random conductances: cfjj = W, ;j¥(i)¥(j). Note
that the associated random walk is transient. These conductances first appeared in the proof of the
central limit theorem for the VRJP (from [SZ19]). Moreover, let A¥ be the discrete Laplacian associated

with the conductances ¢¥, i.e. for f € RV and i € V,

(AYF) () =D el (FG) = f(0)).

g

Then for any function ¢ : V — R, ¢ is A¥-harmonic (i.e. A¥p = 0) if and only if ¢ is Hg-harmonic. In
order to identify Hg-harmonic functions, we then simply have to study harmonic functions for a transient
random walk, which is the purpose of the notion of Martin boundary.

Let us give more details about this particular type of boundary, that can be found for instance in
[Woe00]: let (Y,)nen be a transient random walk on a locally finite graph G = (V, E). We denote by
g : V% = R, the Green function associated with the walk, i.e. g(i,j) = > nen PilYn = j]. Let us fix an

arbitrary point ¢, and introduce the kernel K : V2 — R, such that K(i,j) = 5((;];)) Then the Martin
boundary M is defined so that V =V UM is the smallest compactification of V such that K extends
continuously to V x V. As a consequence, for o € M and (z1)ren € VN, we have xj, — « if and only if
xp — oo and K (i,z) — K(i,«) forall i € V. K : V x M — Ry is then called the Martin kernel.

This notion of boundary is closely related to positive harmonic functions for the walk Y. Indeed,
for all @« € M, K(-,«) is harmonic. Conversely, the following representation theorem assures that any
positive harmonic function can be expressed in terms of the Martin boundary.

Theorem 1.3.2. Let Y be a transient random walk on G = (V, E), and let M and K be the associated
Martin boundary and Martin kernel. Let h : V. — Ry be a positive harmonic function for the random
walk Y. Then there exists a measure u" on M such that for i €'V,

h(i) = /K(i,a),uh(da).

A particular case is the one where the Martin boundary is trivial, i.e. reduced to a single point. In
this case, the only harmonic functions are constant. If we manage to show that the Martin boundary
associated with A is trivial, the Hpg-harmonic function h in Theorem 1.3.1 has to be proportional to 1,
which implies the uniqueness of the representation.

However, generally speaking we have no way of identifying the Martin boundary for a random walk
in random environment. We still obtain results in two particular cases: on the lattice Z%, where we have
a local central limit theorem, which provides precise estimates of the associated Green function; and on
the infinite tree, where the Martin boundary is deterministic, and equal to the geometric boundary of
the tree (the set of infinite rays).



1.3. THE QUESTION OF UNIQUENESS OF THE REPRESENTATION 27

1.3.2 Uniqueness of the representation on Z¢

Let us present here the result we obtained for the VRJP on the lattice Z¢ with constant initial weights
W. We take G = (Z%, E;), where E; = {{i,j} C Z%, |i — j| = 1}, and |.| is the Euclidean norm on Z.

Recall the following results on transience and recurrence of the VRJP on Z?: for d = 2, the VRJP on
(G, W) is a mixture of positive recurrent Markov processes for any constant initial weights W; for d > 3,
there exists W > 0 such that for W < W, the VR.JP is a mixture of positive recurrent Markov processes,
and for W > W, a mixture of transient Markov processes.

In the recurrent case, the uniqueness of the representation is already known. We show that for d > 3,
there exists W > W such that if W > W, the VRJP on (Zd, W) admits a unique representation as a
mixture of Markov chains. As announced in the previous section, we prove this by showing that the
Martin boundary associated with A¥ is 1}/ (df3)-almost surely trivial in this regime.

Martin boundary in random conductances

In order to identify the Martin boundary associated with some random environment, we need to control
the long-range behavior of the Green function corresponding to the quenched process. This is provided
by a local central limit theorem, which was proved by Andres, Deuschel and Slowik in [ADS16a]. This
result states that if the random conductances satisfy some ergodicity and integrability conditions, the
associated Green function has almost surely the same long-range behavior as for a standard d-dimensional
Brownian motion. Since we know that the Martin boundary for such a Brownian motion is trivial, this
yields the following result.

Proposition 1.3.1. Let d > 3 and (we)eer, € (R%)5 be random conductances on (24, Eq). We assume
that the distribution of w is stationary and ergodic with respect to translations of Z%, and that there exist
1 < p,q < oo such that Elw?] < oo and E[w_ 9] < oo for all e € Ey.

Then the walk associated with w is a.s. transient, and the corresponding Martin boundary is a.s.
trivial.

Consequences for the representations of the VRJP on Z¢

Take constant weights W large enough so that the VRJP on (Z4, W) is a.s. transient. Therefore we also
have V%—a.s. (i) > 0 for all i € Z?, and c;ljj is well-defined for all 4, j € Z%. The previous result can then
be applied to the random conductances ¢¥ under V%g (dpB). In this context, the potential /3 is stationary
and ergodic for the translations of Z<, so this also true for 1), as well as the conductances c¥. The
integrability condition of Proposition 1.3.1 is satisfied for W large enough, thanks to the delocalization
result from Disertori, Spencer and Zirnbauer ([DSZ10]). In this regime, the Martin boundary associated
with ¢¥ is then a.s. trivial, and therefore the Hg-harmonic functions are a.s. proportional to 1. Using
Theorem 1.3.1, this yields the uniqueness of the representation of the VRJP.
The following theorem summarizes the uniqueness results that we have on Z<.

Theorem 1.3.3. Let G = (Z9, E;) be endowed with constant edge weights W > 0. We consider repre-
sentations of the time-changed VRJP, with distribution PVE/PW-0) g o mizture of Markov processes.
Then:

e Ifd € {1,2}, there is a unique representation.

e Ifd >3, there are constants W and W such that for 0 < W < W or for W > W, there is a unique
representation.

We do not yet know if the representation is still unique when W < W < W.
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1.3.3 A family of representations on infinite trees

For a transient random walk on an infinite rooted tree, the Martin boundary is always the set of ends of
the tree, i.e. the set of infinite self-avoiding paths (or rays) started at the root. Therefore, the boundary
is far richer than in the case of Z%, and there should be a lot more possibilities for harmonic functions.
This is a first hint at the fact that we will find many distinct representations on infinite trees (with some
regularity assumptions).

Consider then the VRJP on an infinite tree. We already know that the process admits two distinct
representations, built using different boundary conditions: wired and free. To construct a family of
different representations, we introduce a new type of boundary condition, which is a variant of the wired
case, taking advantage of the tree structure.

A variant of the wired boundary condition

Let us first define some notations on trees. Let 7 = (T, E) be an infinite tree, and let ¢ € T be a fixed
arbitrary root. For all i € T, we denote by |i| = d(¢,4) the graph distance between ¢ and i, also called
depth of 7. Then for n € N, D™ = {i € T, |i| = n} will be called the nth generation of 7. Finally, for
1 € T, we denote by S(7) the set of children of ¢, and by 7; the subtree of descendants of i.

We endow T with weights (W, )ec g, with the same notations as usual for (W ;); jer. We will construct
new representations of the VRJP on (7, W) by using new boundary conditions on finite restrictions of 7.
As in the case of the standard representation, the distribution of the jump rates representing the VRJP
on these finite graphs will converge to a representation on the infinite tree.

Let 0 < m < n be fixed. The restriction of 7 to the first n generations, with free boundary conditions,
is (T, E™)) where

7 = | J D® and E™ = {{i,j} € E, i,j € T™}.

0<k<n

We define a new boundary condition on this restriction by adding some boundary points, one for each
branch of the tree rooted at the mth generation: for all z € D("™), we introduce a boundary point &,

and we define the boundary set B, = {d,, x € D™}. We can then define the graph G = (T, Eﬁf)),
where

T =T™UB,, and EG) = E™u ] {{i,6.}, i€ T,nD"M}.
xzeD(m)

In other words, for € D) all points in Tx\T(") are fused together into a single point J,, which
represents a boundary point for the branch 7.
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518 1 6:6 2 5903

T
(1)

As with the wired boundary condition, in order to preserve the compatibility of distributions for the
[ potential, we endow these restrictions with weights W,(,:L), where

W, if e € E™

(Wr(nn))e = Z W, ; if e = {i,0,} where i € D™ NT,.
JES(i)

This way, the weights coming out of T™) are still n(") = WT(M,(T(M)CI[(TW))C.
Remark 1.3.1. Note that for m = 0, this construction yields the wired boundary condition.

On (gﬁﬁ), W,(nn)), the representation of the VRJP can be expressed using a potential B%L) with distri-

(n) ~
bution I/ZZL) . As with the standard representation, and thanks to the choice of weights W,SZL), we can

obtain such a potential thanks to the distribution u¥/ . Indeed, under V¥V (dB), the restriction By has

o (n) ,(n)
distribution v/* "

T(n) , where W) = W) p. According to Proposition 1.2.5, this can be extended

. . (n) . . 4%

into a potential Sy’ with distribution Vs
() .

ugi;" (conditionally on By ), where W is a | By | X |Bp| weights matrix defined by

)
. This is done by taking (B,(JZ))BW distributed according to

m

i(n T(n )\~ 1157 (n
Wi = (WS g, won (28760 = W) (W) pen g, -

Contrary to the standard case, we can not couple the potentials ,37(7?) for all n > m using an independent
Gamma random variable. However, we will see that (25,(,? )) B, — W,Sqn) converges in distribution, which
will be enough.

From the potential Bfﬂf) on gfjﬂ, the random jump rates defining the representation are expressed
through the Green function G’Sf) = (257(,?) - Wr(n"))fl. For i,j € T, Gg,?) (i,j) can once again be
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written as a sum over paths between 7 and j in gfq?). As with the standard representation, we separate
this sum between paths that stay inside of 7 (which sum up to G (i,7) = (287 — W)~1) and
paths that visit at least one boundary point. Since the boundary B,, can now consist of several points, we
have to specify the first and last ones that are visited by the path. This gives the following decomposition:

GO (i) =G i)+ Y xS b)GE (0,0 )XW (5.1),
b7bleB'ln

where for i € T b € B,,, ng) (i,b) is the sum over paths that start from 4, and stop when they hit the

boundary B,, for the first time, at point b. More precisely, xg,?) :T™ x B, — R is defined such that,
for all x € D™,

(H,BX’(VV?)('a(Sz))T(n) =0,

X (i,8,) = 1 if i € T,\TS™,
X (i,6,) = 0 if i € T\(T, UT™).

Note that

> xS, 0:) = v (i) (1.4)

zeD(m)

for all i € T, where (") is the martingale introduced in the case of the wired condition. The function
Xﬁ,’; ) does not satisfy a martingale property, however we are still able to show that it converges, which
will provide the convergence of the representation associated with GSJZ’.

Convergence of the representations

We want to show that GSZ) converges when n — oo. From the construction of the standard representation,
we already know that G( and (™ converge v¥¥ (dfB)-almost surely.

If 3 € DY is such that ¢ = 0, then from (1.4), X%L) converges a.s. to 0. Otherwise, using the
expression of XS,?) (i,0,) as a sum over paths, and the tree structure, we can show that it converges as
well, to a function x, : T'x B,, — R4. Moreover X, is such that for all b € B,,, x.m (-, b) is Hz-harmonic.

Let us come back to the Martin boundary associated with the random Markov operator A¥. As
mentioned earlier, this Martin boundary is deterministic, and is the set  of ends of the tree, i.e. the set
of infinite self avoiding paths (also called rays) starting at the root ¢. For i € T', we denote by €; the set
of rays that pass through ¢, so that they go to infinity in 7;. We also introduce the family of harmonic
measures (N;p)z‘eT on (, defined as follows. Since the random walk associated with AY is transient, we
can define its limit as a Q-valued random variable, and ! is the distribution of this limit for the walk
started at i. Moreover, for A € B(2), the function i — ,u;/’ (A) is A¥-harmonic.

For a tree, the expression of the harmonic measure is explicit, and in the present case we have:
for z € D™ and i € T, Xn(i,0,) = w(z),uf’(Qz) From now on, for all i € T we will denote by
x(i,-) = ¢(i)p?, which defines a family of measures on €.

Finally, we have to show that (G%))Bm’gm converges in distribution. Writing it as a Schur comple-
ment, we have

(G g, 5, = (280)5,, — W),
where conditionally on By, (B?(“r?))Bm is distributed according to Vgi"n). Moreover, W has an expres-
sion as a sum over paths, so that for z,y € D™ with @ # y, (V T(nn))6m76y can be written using G(™ and
e
(W&"))am,sy _ ngf)(x Ay, 6$)x§ﬁ) (z ANy,dy) .

G(xz Ay,zAy)
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Here x A y denotes the closest common ancestor of = and y, i.e. the vertex ¢ € T' with the largest depth
such that x,y € T;. This expression shows that the off-diagonal terms of W,(,?) converge a.s., which is
enough to show the convergence in distribution of (Ggﬁl))Bm,Bm. Indeed, let G be the | B | X | Bl

matrix with zero diagonal coefficients, and equal to Wy(,?) outside of the diagonal. Then
(G5B, = ((2050) = OG0

where (pglf))b =( ,(,?))b — (Wéﬁ?))b,b for b € B,,. Conditionally on Bpm), p%) is distributed according to
5 (n)
ug:: , and therefore converges in distribution.

These results lead to the following theorem, which states that this construction yields a representation
of the VRJP for all m > 0. The proof is the same as for Theorem 1.2.3, using the convergences presented
above, and a uniform integrability argument.

Theorem 1.3.4. Let m > 0 be fized. For VIW—almost all B € D:,W, we define the |By,| X |Bp| matriz Con
by

. 0 ifx =2/,
(Cm)6z,6z/ =\ x(@zAz’ Q) x(zAz’ Q)

G(znx! zAa!)

otherwise.

From now on, let us write: v p (dB, dpy,) = V%V(dﬁ)z/gr’z (dpm,)-

Moreover for p,, € Dg::, we define G, = (2pm — Cm) ™", and fori,j €T,

Gm(i,5) = G, 3)+ Y Xan (6, 0)Xm (5, 0) G (b, 1),
b,b’eBy,

Finally, denote by PW:B:pm:0 the distribution of the Markov jump process where the jump rate from i to
Wi,j Gm(i0,3)

3 Gonio)” i
Then the time-changed VRJP with distribution PVE/PW:i0) 4s o migture of these Markov jump pro-

cesses under 1/7‘1‘7/37” (dB,dpm), i-e.

J 18

PYRIP(Wiio)[] = /]}DZ.V(‘]’@”"“"U [ s, (dB, dpn,).

Increasing values of m correspond to richer and richer boundary conditions in the construction of
these representations. In fact, when m — oo, we can show that the distribution of the random jump
rates converge weakly, using a tightness argument. The limit is in fact the representation built using free
boundary conditions, with independent jump rates for every edge.

Moreover, we prove that these representations can all be different. On a d-regular tree with d > 3,
endowed with constant weights W large enough so that the VRJP is a.s. transient, the distributions of
jump rates associated with G, are all distinct for different values of m. The proof relies on observing
the behavior of the quenched process at infinity, more precisely by comparing the associated harmonic
measures.

Remark 1.3.2. We can rewrite the expression of G,, to involve an integral on the Martin boundary Q:
fori,jeT,

Gonlis1) = Gl + | (i d)x(G ). 7)

where §,,(w,7) = G(8,,6,) if w € Q, and 7 € Q,, for z,y € D). Moreover, we can construct more
distinct representations by choosing other boundary conditions based on simple partitions of the Martin
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boundary 2. This begs the following question: can all representations of the VRJP on an infinite tree be
obtained through the choice of such a boundary condition (or as a limit of such representations)? Some
monotonicity arguments, proved by Poudevigne in [Poul9], could help in addressing this issue. We plan
to investigate this in future work.

1.4 The [ potential and interacting Brownian motions

The distribution 1}/ that appears in the study of the VRJP also relates to the Brownian motion. Indeed,
the § field can be viewed as a multi-variate version of the Inverse Gaussian distribution, which was
introduced as the distribution of the first time a drifted Brownian motion hits a certain level. In [SZ17],
Sabot and Zeng showed that (3 is in fact the vector of hitting times for a family of interacting Brownian
motions.

Another result related to the hitting time of the Brownian motion is Matsumoto and Yor’s opposite
drift theorem. They showed that a Brownian motion with negative drift can be represented as a mixture
of Brownian motions with the opposite drift and an added corrective term. Using Sabot and Zeng’s result
for the 3 field, we can obtain a multi-dimensional version of this theorem as well.

1.4.1 Hitting times of interacting Brownian motions

Let us first present the following classical result concerning the hitting time of a drifted Brownian motion.
Let # > 0 and 1 > 0 be fixed, and let B be a standard 1-dimensional Brownian motion. We define the
drifted Brownian motion X by

X(t) =0+ B(t) —nt

for t > 0, and denote by T° the first hitting time of 0 by X(¢). Then the distribution of 79 has the
following density for ¢ € R:

6 1 (0 —nt)?
WGXP <_2(tn)> IL{tZ(]}' (15)

Moreover, the distribution of (X(t))0<t<T0 conditionally on TV is that of a 3-dimensional Bessel bridge

from 6 to 0 on [0, 7]

For n = 0, i.e. if X is a Brownian motion with no drift, then (1.5) gives the distribution of %,
where ~ is a Gamma random variable with parameter (3,62). If n > 0, (1.5) is the density of the Inverse
Gaussian distribution with parameter (%, 62). This motivated the proof of a multi-dimensional version of
this result in [SZ17]. For a finite graph G = (V, F) endowed with weights (We)ecp, a family (X;);cv of
Brownian motions with interacting drifts have the following hitting times of 0: T = 2%%, where (8;)icv
is the potential introduced in the study of the VR.JP.

Let us present the aforementioned theorem. Let G = (V| E) be a finite connected graph, endowed
with conductances (We)eep € (R%)®. For i,j € V, we employ the usual notation: W;; = Wy, ;y if
{i,j} € E, and W, ; = 0 otherwise. Note that it is possible to have W;; > 0. For 8 € RY, we still define
the |V| x |V| matrix Hg = 25 — W, where  denotes the diagonal matrix with coefficients (8;);cv, as
well as the set ’D‘V/V = {B e RY, Hpg > 0}. The following proposition introduces a generalization of the

W . .
measure vy, " introduced in 1.2.5.

Proposition 1.4.1. For all § € (R%)Y and n € (R;)Y, the measure V‘I;V’g’" defined by

V1/2 )
Aas) = (2) e (= 0.0) - S0 1))+ 0.0)) T

V/IHs|
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is a probability distribution on D‘V/V. Moreover, for all © € V', the random variable ﬁ has Inverse

%

. . . . . 91. 2
Gaussian distribution with parameter (71“_‘_2#1 Wiie; 07).

For t € (R1)Y, we also define the matrix K; = Id — tW, where t denotes the diagonal matrix with

coefficients (¢;);cv. Note that if ¢ € (Ri)v, we have K; = tH%, where % = (21) . Finally, for
i)iev

te(Ry)V and T € (E)V, we define the vector t AT = (t; AT;)icv-

The main result from [SZ17] is presented below. It states that a family of interacting Brownian
motions, introduced as the solution of a system of stochastic differential equations, can be represented as
a mixture of independent, Bessel bridges. Their hitting times of 0 are determined by the 8 potential.

Theorem 1.4.1. Let € (R})Y and n € (Ry)Y be fized, and let (B;(t))icvi>0 be a standard |V|-
dimensional Brownian motion.

(i) The following stochastic differential equation (SDE) has a unique pathwise solution:

Xi(t) = 6 + / 1o dBi(s) — / 1,20 (W) (s) + m)ids (B O7(x))

fori €V and t >0, where for i € V, T? is the first hitting time of 0 by X;, and for t >0,

P(t) = K, oo (X (1) + (¢ AT)n).

(ii) If (X;)iev is solution of (E‘I;V’G’"(X)), the vector (ﬁ) - is distributed according to V“;V’e’". More-
i/
over, conditionally on (T);cv, the interrupted trajectories (X;(t))o<;<7o are distributed as inde-

pendent 3-dimensional Bessel bridges.

The idea of the proof is to show that a mixture of Bessel bridges with such hitting times does in fact
satisfy the SDE (E‘V/V’G’"(X)). This is proved by identifying the Radon-Nikodym derivative (relative to
a standard Brownian motion) of the mixture of Bessel bridges. It is an integral with respect to V‘KV’Q’",
and the computation yields an exponential martingale. Applying Girsanov’s theorem gives the desired
outcome.

Remark 1.4.1. The function 1 (t) appearing in (E‘I;V’QW(X)) is related to the martingale (") involved
in the standard representation. Indeed, taking ¢ — oo, 1(t) becomes (Hg) 'n, which corresponds to
¥(") in the case where V =V}, and n = (™, using the notations from the construction of the standard
representation.

1.4.2 Opposite drift theorem and Lamperti’s relation

The classical result on the hitting time of a Brownian motion is a particular case of a more general result
concerning Bessel processes. For p > 0, if X is a Bessel process with index —pu started at 1, the first
hitting time of 0 by X is 7)) = ﬁ, where 7, is a Gamma(p, 1) variable. Moreover, conditionally on T},
(Xt)OStST[) is a Bessel bridge with index p. The case pu = % corresponds to the initial result concerning
the Brownian motion (with no drift), since the modulus of a Brownian motion is a Bessel process with
index —%, and since a 3-dimensional Bessel process has index %

In [YMO1], Matsumoto and Yor showed a theorem relating Brownian motion with opposite drifts
w and —p, which is a consequence of the previous result on Bessel processes. Indeed, there exists a
correspondence between a Bessel process with index g and a Brownian motion with drift p, thanks to a

certain time change. This is called Lamperti’s relation, and is stated below.



34 CHAPTER 1. INTRODUCTION

Proposition 1.4.2. Let (p(u))y>0 be a drifted Brownian motion with drift p € R. For u > 0, define

T(u) = / exp(2p(v))dv.
0
Then there exists a Bessel process (X (t))i>0 with index p, starting from 1, such that for u >0,
e’ = X (T(u)).

Matsumoto and Yor’s theorem results from applying the time change from Lamperti’s relation to a
Bessel process with index —u on one hand, and a Bessel bridge with index p on the other hand.

Let us present a particular version of the opposite drift theorem, in the case where p = %, and the
Bessel process with index —% is replaced by a Brownian motion with a negative drift —7. In other words,
it is obtained by applying Lamperti’s time change to the initial result concerning drifted Brownian motion
and 3-dimensional Bessel bridges.

Theorem 1.4.2. Let 0 > 0 and n > 0 be fized, and let B be a standard 1-dimensional Brownian motion.
We define the process p as the solution of the following SDE:

1 u
plu) = log(6) + B(u) — Su - / 0P dy
0

for u > 0.
Let us define T(u) = [ €2’ dv. Then:

(i) We have
T(u) =2 T

U—r 00

where T is distributed according to

0 1(0 —nt)?
\/Wexp (_Q(tn)) Lii>0ydt.

(ii) Conditionally on T°, there exists a standard 1-dimensional Brownian motion B such that for u > 0,

. 0 _ T(u
p(u) =log(8) + B(u) + %u + log <TT31()> :

Our aim is to prove a multi-dimensional version of this result thanks to Theorem 1.4.1, by using the
time change from Lamperti’s relation on solutions of (E‘V/V’G’" (X)).

1.4.3 A multi-dimensional version of the opposite drift theorem
The result proved in [GSZ20] is the following,.

Theorem 1.4.3. Let G = (V,E) be a finite connected graph endowed with weights (We)ecp. We fix
ne (Ry)Y and 6 € (RY)Y.

Let B be a |V |-dimensional standard Brownian motion, then the following system of SDEs has a
unique pathwise solution, defined on R, :

pit) =tog(69) + B + [ (=5 = e (WO 4 T(0)0) +1), ) o

. (BY1(p))
T; (u) = / 62Pi (U)d’l),
0
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fori € V and u > 0, where e?(") denotes the vector (e?*(");cy,, and
17 (w -1 -1
W = WKL =W (Id=Tww) .

Let (p,T) be the solution of (E‘V,V’G’”(p)). Then
(i) For alli €V, we have

U—r 00

T; (u) :/ 2P gy L2, 0,
0

where (ﬁ)iev is distributed according to V“;V’e’".
(ii) Moreover, conditionally on T°, there exists a standard |V |-dimensional Brownian motion B such
that for i € V and u > 0,

2 T

7

pi(u) = log(0:) + Bi(u) + L+ 1og (TZO_TZ(U)> :

In particular, the processes (p;, T;)icv are independent conditionally on T°.

As mentioned before, we obtain this result by applying Lamperti’s time-change to solutions of
(E‘V/V’e’"(X)), denoted by (X;(s))icv,s>0, so that p;(v) = log (X;(T;(v))) for i € V and v > 0. The
main difficulty of the proof is to show that these (p;);cv are indeed solutions of (E“;V’e’”(p)). Since the
time change increases at a different speed on each coordinate i € V, the interaction term (W)(s) in
(Ey""(X)) does not immediately correspond to W) (e?) + T(u)n) in (Ey""(p)). We have two ways
of overcoming this issue.

The first proof mirrors that of TheoremW1.4.1. Consider a mixture of independent Bessel bridges

between 0 and Tio7 where Ti0 = ﬁ under Vv’e’”(dﬁ). Apply to them Lamperti’s time change and use

Girsanov’s theorem to compute their Radon-Nikodym derivative relative to the Brownian motion. Then
integrate this with respect to V“;V’g’" to obtain the Radon-Nikodym derivative of the annealed process,
and use Girsanov’s theorem again to identify the corresponding SDE.

The second proof uses a form of strong Markov property satisfied by solutions (X;);cy of (E‘KV’O’”(X)),
showed in |SZ17]. Tt states that for any multi-stopping time (7});cy with respect to (X;);cv, the

shifted process (X;(T; + t))ith>O is solution of a similar SDE. This new equation has the same form as

(E“;V’G’"(X)), with modified parameters which depend on the trajectory of X; up to time T}, for alli € V.
We apply this Markov property to the time change (T;(u));cy for all w > 0. This allows us to identify
the infinitesimal generator of (p, T') at time u, which is in fact the generator associated with (E“;V’e’"(p)).

Remark 1.4.2. In the case where V' is a single point and F is empty, Theorem 1.4.3 gives the result of
Theorem 1.4.2. For n = 0, this becomes the original Matsumoto-Yor opposite-drift theorem: a Brownian
motion with drift f% is written as a mixture of Brownian motions with the opposite drift %, and a
corrective term involving an exponential functional of the trajectory.

The multi-dimensional opposite-drift theorem that we proved is limited to the case of drifts —1

and 1,
since it results from Theorem 1.4.1, which concerns Bessel processes with index —% and 3 (i.e. Bzrownia2n
motion and 3-dimensional Bessel bridges). We could try and obtain a similar result for other values of the
drift. This necessitates the use of a random potential analogous to [, whose marginals would relate to the
hitting times of Bessel processes with other indices, i.e. generalized Inverse Gaussian variables. The case
of index % might be solvable, thanks to recent developments by Bauerschmidt, Crawford, Helmuth and
Swan in [BCHS19], and by Crawford in [Cral9]. These articles concern other sigma models, in particular
H24, which is related to random spanning forests, and could provide a generalization of the § potential

corresponding to index %
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Abstract

This chapter is modeled after [Ger19], and written to be as self-contained as possible. In it, we show
that all possible representations of the VRJP as a mixture of Markov processes can be expressed in a
similar form as in the standard representation, using the random field 8 and harmonic functions for an
associated operator Hg. This allows for the proof that the VRJP on Z9 (with certain initial conditions)
has a unique representation, by showing that an associated Martin boundary is trivial. Moreover, on
infinite trees, we construct a family of representations, that are all different when the VRJP is transient
and the tree is d-regular (with d > 3).

In Section 2.1, we present past results on the VRJP and the 3 potential, as well as the main results
of this chapter. Section 2.2 exposes some useful technical results concerning the [ field, as well as basic
definitions and properties of the Martin boundary. In Section 2.3, we prove how all representations of the
VRJP have a common form, i.e. Theorem 2.1.3. We use these results in Section 2.4 to study the case of
the graph Z¢, and show Theorem 2.1.4 using a local limit theorem in random environment. In Sections
2.5 and 2.6, we study the [ field on trees with our new boundary condition, and show the convergence
of the associated Green function. We use this in Section 2.7, to show that this construction provides
representations of the VRJP (Theorem 2.1.6), and that they are different in the case of a regular tree
(Proposition 2.1.8).

2.1 Statement of the results

2.1.1 Previous results

Let G = (V,E) be a finite connected non-directed graph, endowed with conductances (W,)ccp. We
describe (We)eep with a matrix (W; ;); jev, where

Wij; = ’ .
0 otherwise.

In [ST15], Sabot and Tarrés proved that the time-changed VRJP on G with respect to W could be
represented as a mixture of Markov processes, i.e. as a random walk in random environment. With
Zeng, they showed in [STZ17] that this environment could be related to a random Schrédinger operator
Hg, constructed from a random potential 8 = (8;)icv, in the following way.

For 8 € RY, we will denote by Hg = 23 — W the |V| x |V| symmetrical matrix such that (Hg); ;
2B;1;—; — W, ; for i, j € V. Let us define the set D}Y = {8 € RV, Hg > 0}, where Hs > 0 means that the
matrix Hg is positive definite. Note that if 3 € DY, then 3; > 0 for all i € V. The following proposition
describes the probability distribution of the random potential that will be used to represent the VRJP.

Proposition 2.1.1. [Theorem 1 in [STZ17], Lemma 4 in [SZ19]]

(i) Let G = (V,E) be a finite connected graph, endowed with conductances W, and let n € RY. We
define by I/‘I;V’" the measure on (DY ,B(DY)) such that

v
Pl

(a9 = (i) 7 AL He D () ) 1y Liev 451

V/det(Hg)

en vy’ 18 a prooaov? sirioution. S LapiLace transjorm 1is
Then vy " i bability distribution. Tts Laplace t '

/e*<>\7ﬂ>yy’n(dﬁ) — o~ Ziev I(VIHX =1 =30, 5 Wi i (/(14A:) (14A5) —1) H - :_ =

eV
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for X € RK. When n =0, we will write V“}V = V\I;V’O.

(ii) Let us denote by dg the graph distance in G. Under V“;V’"(dﬁ), if Vi,Vo C 'V are such that
dg(V1,V2) > 2, then (8;)iev, and (B;)jev, are independent. We will say that the potential with
distribution I/“}V is 1-dependent.

Let C,.(R4,V) be the space of right-continuous functions from Ry to V. This will be the space of
trajectories of the random processes we will study in this paper. These processes will be described by
probability distributions on C,. (R, V).

We will use slightly different notations from the introductory chapter : let us denote by (Z;) the
canonical process in C.(R4,V), where Z;(w) = w(t) for w € C.(R4,V). Moreover for ig € V, let
PV#JP(0) denote the distribution of the time-changed VRJP on (G, W), in the exchangeable time scale
described in the introduction. The following theorem describes how to represent this process as a mixture
of Markov processes, using a random environment that can be constructed from the /3 field under 1/“’}/ (dp).

Theorem 2.1.1. [Theorem 2 in [ST15], Theorem 3 in [STZ17]] Let G = (V, E) be a finite graph, endowed
with conductances W. We fiz a vertez io € V. For 3 € DY/, we denote by G = (Hg) ™! the Green function
associated with 3, and by Pg’io the distribution of the Markov jump process started at x € V, with jump
rate from i to j given by %WH g((izjl;

Then for all ig € V, the time-changed VRJP on (G, W), started at ig, is a mizture of these Markov
Jump processes under the distribution V‘I}V(dﬂ). In other words,

PV = [B2RE (d).
An interesting property of the distribution V‘I;V is its behavior with respect to restriction. For g € RV
and V1,V, C V, let us denote By, = (8i)iev,, and Wy, v, = (W, j)icvi,jevs-

Proposition 2.1.2. [Lemma 4 in [SZ19]] Let us fix U C V, and set 1); = ZjeUC Wi fori e U, i.e.
i) = Wy,uelye. Then under vi¥ (df3), Bu is distributed according to Vlv]VU‘U’ﬁ.

Hence under 1}/ (df), the distribution of By depends only on the weights of edges inside U, and
coming out of U. This is useful to define the § field on infinite graphs.

Let now G = (V, E) be an infinite connected non-directed graph, that is locally finite, i.e. each vertex
v € V has finite degree. We endow G with conductances W. To study the associated VRJP, we want to
define an analogue of the (8 field on G. In [SZ19], Sabot and Zeng did this by using a wired boundary
condition, defined as follows.

Let (V)nen be an increasing sequence of finite connected subsets of V', such that

Uvnzv.

neN
For n € N, we introduce a new vertex 8, and define a new graph G = (V™ E(M), where

Vv =V, U {6}
and E™ = {{i,j} € E,i,j € V,} U{{i,6,},i € V;y and 3j ¢ Vi ~ j}.

The graph G is called the restriction of G to V;,, with wired boundary condition. We endow this graph
with the conductances W) defined by Wi(,?) =W, ifi,j €V, and WZ(Z: = ij;jevn Wi j.

For all n € N, let (61-("))1.6‘7(") be a random potential on the graph G(™ distributed according to DAL

Vin) *
w () 7n(n)

Then from Proposition 2.1.2, we know that the restriction B‘(/:) is distributed according to vy, ,
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where W = Wy, 1, and n(™ = W\(/:?{(sn} = Wy, velye. In fact, for a fixed n € N and any n’ > n, the
/ (n) _p(m)
restrictions B‘(}i ) have the same distribution Z/‘IX 7. By Kolmogorov extension theorem, this allows

the construction of a distribution 1}/ for infinite V.
For B € RY, let us still denote by Hg = 23 — W the Schrédinger operator associated with (8;)icv,
i.e. forall f e RV and i€V, (Hgf); = 2B:f;i — > i Wi fj. We also define

Dy ={B RV, (Hs)y,u > 0 for all finite subset U of V}.

Proposition 2.1.3. [Proposition 1 in [SZ19]] Let G = (V, E) be an infinite locally finite graph, endowed
with conductances W. There exists a unique probability distribution 1/“}‘/ on D‘V,V such that under I/‘I;V(dﬂ),

for all finite subset U C 'V, By ~ VEVU’U’" where n = Wy yelye. Its Laplace transform is

—{(xB) W — e~ Zing Wi i (VIFXi/142,-1) !
/e vy (dB) =e j I |
iev VIt+ A

for \ € RK with finite support.

The wired boundary condition is not only useful to define V“;V on infinite graphs, but also to link this
distribution to representations of the VRJP, by applying Theorem 2.1.1 to the graph G(™. Indeed from
Proposition 2.1.3, for any n € N, under V‘I}V(dﬂ) we have By, ~ V“X(n)’”(n). Hence, from Proposition 2.1.2,
we can extend Sy, into a potential 3(") ~ z/gl(:;) such that B‘(}Z) = Py, . We denote H[(gn) =280 — W)
and G") = (H/g"))*l. From Theorem 2.1.1, we know that G(") gives a representation of the VRJP on
g,

Definition 2.1.1. (i) For f € DY, let us define G : V xV = Ry by (G™)y., v, = (Hp)v,.v,) ",
and G (i,j) =0 if i ¢ Vi, or j ¢ V,.

(ii) For 3 € DY, let () e RK” be defined by
(Hgy™)y, =0
=1
Note that 1/1%,:) = (C?’%Z),Vn)n(”).

It is possible, using a decomposition of the Green function as a sum over paths (see [SZ19|, or
Proposition 2.2.3), to write

G™(i,5) = G™ (i, ) + ™ ()G (6,, 8,)0 ™ ()

for i, € V,,. Under 1}/ (df3), G (6,,d,) is independent of By, , and 1/2G ™) (6,,,4,) is always distributed
according to a Gamma(1/2,1) distribution (see Proposition 2.2.1 (ii)). The following theorem describes
how taking n — oo in this previous expression gives a representation of the VRJP on infinite graphs.

Theorem 2.1.2. [Theorem 1 in [SZ19]]

(i) Under v}Y (dB), for i,j € V, the increasing sequence G™ (i,J) converges almost surely to a finite
random variable G(i, 7).

(ii) Let F, be the o-field generated by By, . Then under vi¥ (dB), for alli € V, 9™ (i) is a nonnegative
(Fn)-martingale which converges almost surely to an integrable random variable (7). Moreover, 9

is Hg-harmonic on V', i.e. Hgip(i) = 2B;(i) — >, Wi 9(j) =0 fori e V.
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(iii) From now on, we will denote v{V (dB,dvy) = v}/ (dB) ® ]l{”%e*Vd’y, where L\/%O}e*”d'y 5 a
Gamma(1/2,1) distribution.
Let now ig € V be fized. For 3 € DY and v > 0, we define

Gi,j) = G(i,j) + %wm(j»

and denote by P27+ the distribution of the Markov jump process started at x € V, where the jump

rate from i to j is %Ww g((z‘;z;

Then the time-changed VRJP on (G, W), started at ig, is a mizture of these Markov jump processes
under vV (df3, dv), i.e.

PV RIP(i0)[] = /Pfo“io[-}V\V/V(dﬁvdV)'

(iv) For v¥¥ -almost all 3 and all iy € V, we have:

— The Markov process with law P37 s recurrent if and only if (i) =0 for all i € V.
— The Markov process with law P27 is transient if and only if 1(i) > 0 for alli € V.

Note that for ig € V fixed, in this representation of the VRJP started at iy, the § field cannot be

expressed as a function of the random jump rates %g((zzz)) that define the environment. However,

we can define the 3 field rooted at iy, where §; is the rate of the exponential holding time at i for the
associated Markov process.

Proposition 2.1.4. Foralli €V, € DY,V and v > 0, we define

=~ Wi, Glio,j) 1
/B’L - Z 2 G(Zo,l) - ﬂl ﬂ{z:zo}m~

Jri

Then under vi¥ (dB,dv), 1/2G (io,i0) has distribution Gamma(1/2,1) and is independent from 5. More-

over the Laplace transform of B is

—(\B) W o T Wi (VTN /142, -1) R
/e vy (df,dy) = e &i~i I |
L VTN

for X € RK with finite support.

2.1.2 A common form for all representations

We still consider G = (V, E) to be an infinite connected graph, locally finite and endowed with con-
ductances (W; ;); jev. Thanks to Theorem 2.1.2, we already know that the time-changed VRJP with
distribution PY/P00) can be written as a mixture of Markov jump processes, using the distribution V“}V.
We will refer to this as the standard representation. We are now interested in other possible random
environments, that would represent the VRJP in the same sense, and whether they can be expressed in
a form similar to the standard representation.

We will denote by J the set of jump rates on G, i.e. the set of (r; ;)i jcv € RKXV such that r; ; =0

if {i,j} ¢ E.
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Definition 2.1.2. Let R(dr) be a probability distribution on jVE. For ig € V fized, we will say that
R(dr) is the distribution of a random environment representing the time-changed VR.JP started at iq if

PVRIP(0)[] = /Pfo [IR(dr),

where for r € jVE, P" is the distribution of the Markov jump process with jump rate from i to j given by
rij- We will also say that R(dr) defines a representation of PV RJP(io)

The following result tells us that in fact, any representation of the VRJP can be expressed in a similar
form as the standard representation, using a 3 field as well as Hg-harmonic functions.
ForieV and r € ‘7‘53, we define r; = ZjNi Tij.

Theorem 2.1.3. Let ig € V be fized, and let R(dr) be the distribution of a random environment repre-
senting the time-changed VRJP with law PYVE/P00) - We write R(dr,dy) = R(dr) ® Il{”Tj”e’”’dfy.

Forr € JE and v > 0, we define 8 € (Ry)Y by Bi =7 + Lg—igyy for i € V. Then under R(dr,dy),
B~ Z/“;V, and there exists a random Hg-harmonic function h : V — R, such that for all i ~ j,

re— Wl,] G(Z07])
“J 2 Gig,3)’

where G(ig,1) = é(io, i)+ h(i) forieV, and G is the function of 3 defined in Theorem 2.1.2.

In order to try and classify all representations of the VRJP, we now need to identify Hg-harmonic
functions, and to determine which ones can appear in the expression of a representation, as in Theorem
2.1.3. Two interesting cases arise, depending on (G, W): when the VRJP is almost surely recurrent, or
almost surely transient.

In the first case, we can use the law of large numbers to show that the representation of the VRJP as
a mixture of Markov processes is unique.

Proposition 2.1.5. If (G, W) is such that the VRJP is almost surely recurrent, then the representation
of the time-changed VRJP started at ig as a mizture of Markov processes is unique, i.e. if R(dr) and
R'(dr) define representations of PYE/P00) “then R(dr) = R (dr).

Note that in this case, according to Theorem 2.1.2 (iv), under 1{¥ (d8), we have a.s. (i) = 0 for

all 4 € V, and the jump rates in the standard representation are given by @gg"z; Therefore, the
05

Hg-harmonic function associated with the representation (by Theorem 2.1.3) is h = 0.
In the second case, i.e. when the VRJP is almost surely transient, we can introduce a random
conductance model, associated with .

Proposition 2.1.6. If (G,W) is such that the VRJP is almost surely transient, then under v{/ (df3):
(i) We have a.s. (i) > 0 for all i € V, where v is defined in Theorem 2.1.2.

(ii)) We define the random conductances c;’/jj = Wi ¥()¥(j) for all i,5 € V. Then the associated
reversible random walk is a.s. transient.

Y

(iii) Let AY be the discrete Laplacian associated with the random conductances ¢; ;- Then a function

¢ : V — R is A¥-harmonic if and only if i — (i) (i) is Hg-harmonic.



2.1. STATEMENT OF THE RESULTS 43

Remark 2.1.1. This allows a more convenient expression of representation in the transient case. Indeed,
if R(dr) defines a representation of PV /P (i) Theorem 2.1.3 allows us to construct a j field distributed
according to V“}V, and to express the jump rates r; ; using 3 and a Hg-harmonic function h. According to
Proposition 2.1.6 (iii), we have h = 1, where ¢ is a A¥-harmonic function, i.e. harmonic for a transient
random walk.

The notion of Martin boundary is a useful tool to represent harmonic functions with respect to a
transient random walk on a graph G = (V, E). Indeed, V admits a boundary M so that V U M is
compact for a certain topology, and there is a kernel K : V' x M so that any positive harmonic function
h can be written as

) = [ K (o) (do)

for z € V, where pu" is a positive measure on (M,B(M)). M is called the Martin boundary of V
with respect to the random walk, and K is the Martin kernel, which is defined using the Green kernel
associated with the random walk. For more details on Martin boundaries, see Section 2.2.3.

In order to study representations of the VRJP in the transient case, we want to describe A¥-harmonic
functions, according to Remark 2.1.1. We will therefore need to identify the Martin boundary MY
associated with A¥. This will be possible when G is Z?, or an infinite tree.

2.1.3 Main results
2.1.3.1 Representations of the VRIP on Z¢

Let us consider the case where G is the lattice Z¢, i.e. G = (V, E) with
V =2%and E = E; := {{z,y},|z —y| = 1}

where |z| is the Euclidean norm of x. Let us endow G with constant initial conductances W. Since this
model is invariant by isometries of Z?, we will only consider the VRJP started at 0.

We can identify several situations in which the representation is unique. For d = 2, or if W is
small enough, the VRJP is almost surely recurrent (see [Sabl19], and Corollary 1 in [ST15]), so that the
representation of PVA/P(0) is unique according to Proposition 2.1.5. For d > 3 and W large enough,
the VRJP is almost surely transient (see Corollary 3 in [ST15]), hence we can introduce AY defined
in Proposition 2.1.6. Since (G, W) is vertex transitive, from Proposition 3 of [SZ19], under 1Y (dB), v
is stationary and ergodic. This allows us to apply a local limit theorem for random walks in random
conductances (from [ADS16a]), and show that the Martin boundary MY associated with AY is almost
surely trivial for W large enough. These cases are regrouped in the following result.

Theorem 2.1.4. Let G be the Z% lattice, endowed with constant edge weights, i.e. Wi =W >0 for all
i~ j. We consider representations of PVE/PO) 45 o mizture of Markov processes.
Then:

e If d € {1,2}, there is a unique representation of PV/F0)
e Ifd >3, there are constants W and W such that for 0 < W < W or for W > W, there is a unique
representation of PVE/P0)
2.1.3.2 A family of representations on infinite trees

Let us now consider the case where the graph is an infinite tree 7 = (7T, E), that we assume to be locally
finite, and endow with conductances W. In [CZ16], Chen and Zeng described a representation of the
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time-changed VRJP with a different expression than the standard representation. Indeed, if (77,)nen is
an increasing and exhausting sequence of finite connected subsets of 7', the subgraphs 7™ = (Va, En)
of G are finite trees (where E, = {{i,j} € E,i,j € V,}). These are called restrictions of G with free
boundary conditions.

Moreover, on finite trees, Theorem 2.1.1 gives a representation of the VRJP where jump rates are
independent. Therefore, a representation of the VRJP on 7 can be obtained from representations on
7 using independent jump rates.

Theorem 2.1.5. [Theorem 3 in [CZ16]] Let ¢ be an arbitrary root for T. For alli € T\{¢}, we denote by
© the parent of i. Let also (A;)ier\{¢) be independent random variables where A; is an inverse Gaussian
random variable with parameter (Wh’ 1), i.e.

W (s—1)?
I[D[Az S dS] = 1s>0 el e_Wf»i 251 ds.
=\ 2ms3

PV RIP(6

Then the process with law ) on T is a mizture of Markov jump processes, in which the jump rate
1 W

from 7 to i is 1WA, and the jump rate from i to iis 5, for alli € T\{¢}.

In some cases, this representation is different from the standard representation.

Proposition 2.1.7. Let T = (T, E) be an infinite d-regular tree with d > 3, i.e. such that each vertex
in T has exactly d neighbors. We endow T with constant conductances W. Then for W large enough,
the distribution of the random environment described in Theorem 2.1.5 is different from the distribution
of the standard representation.

We now know two ways of constructing a representation of the VRJP on 7T, that are associated with
different boundary conditions on restrictions to finite graphs, and can have distinct distributions. This
leads us to introduce new boundary conditions in order to construct a family of different representations
of the VRJP, following the same method as for the standard representation.

Let us start by giving a few notations on trees. For all z,y € T, we denote by d(z,y) the graph
distance between 2 and y, and by [z, y] the unique shortest path between 2 and y:

[l'ay} - (:L' - [xay]o, [xay]lv sy [x7y]d(x,y)—17y = [xay]d(ﬂc,y)) .

Note that any path o from z to y necessarily crosses all vertices [z, y], for 0 < k < d(x,y).

Let us fix an arbitrary root ¢ in 7. Then, for all x € T, we denote by |z| = d(¢, x) the depth of the
vertex x € T. If x # ¢, we also denote by & = [¢, x]|;|—1 the parent of z. Finally, for any = € T, we
define the set S(z) = {y € T,z = §} of x’s children, and the set T,, = {y € T, 3k > 0, [0, y]r = x} of its
descendants.

For x,y € T, we denote by x A y the "closest common ancestor" of x and y, i.e. * Ay = [¢,7]n, ,
where N, , = max{k > 0, [¢, z]x = [¢,y]x}. Note that we also have z Ay = [z, y]x,, where ko is such that
2, ko] = min| [z, el 0 < k < d(z, )}

For n € N, we denote by D) = {2z € T,|z| = n} the tree’s nth generation. Let us then define
T = Uyepen D®), as well as B = {{i,j} € E,i,j € T }. We also denote ™ = T, N T™ for
x € T and n > |z|. The restriction of the tree to the first n generations, with free boundary conditions,
is the graph (7™, E(™), that we endow with the induced conductances W™ = Wopen) 1n-

Finally, we define the set € of ends of T, i.e. the set of infinite self-avoiding paths (or rays) in T
starting at ¢. For z € T, we denote by 2, the subset of Q corresponding to the branch T, i.e. the
set of rays in 7 that cross . Note that the Martin boundary associated with a transient walk on a
tree is always (2, which depends only on the geometry of the tree. This will be convenient to express
AY-harmonic functions, where AY is the random Laplace operator introduced in Proposition 2.1.6.
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In the construction of the standard representation, the wired boundary condition was defined by
adding a single boundary point § to a finite graph, where § could be interpreted as a point at infinity
for the graph. We will now introduce a variant of this boundary condition, by adding multiple boundary
points, each being a point at infinity for a different branch of the tree.

Let us first fix a generation m > 0, and to each vertex € D) we associate a boundary point 4,
that will be the point at infinity for T,. We denote by B,,, = {0,z € D(m)} the boundary set associated
to this generation. For all n > m, let us then define the graph

m m

g = (T,Sl”), E,S?)) , where T\™) = 7™ U B,

and B = E™ U U {{y,éx},y €T, N D(”)} .
xzeD(m)

Oz, Oy Ozs

T
(1)

This graph is the restriction of T to T(™) with a variant of the wired boundary condition. Note that
(n)
m

we get the standard wired boundary condition by taking m = 0. We endow G
i y(n"), defined for e € E(™ by

(VV(”)) Wi =w, ifec E™
™ /e > jesiy Wiy ife={i, 0}, where i € T,; N D),

with the conductances

As with the wired boundary condition, these weights are defined so that for n > m, the weights coming
out of T(™ are given by Wi (reoyeLipeye = n(™). This will allow for the compatibility of /3’,(,?) fields

defined on gf;f) for n > m. Note that these weights do not depend on m, i.e. do not depend on the

choice of the boundary condition.

W<n),1’](n)

From Proposition 2.1.3, under v} (df), for all n > m we have Bpum) ~ Vo Hence, from

n)
7 ()
Proposition 2.1.2; we can extend Sp) into a potential 57(,?) ~ V;V"" on G such that (6,(7?))1«(”) = Brm).

(n)
m
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Let us then denote by Gg,?) = (257(,?) — WT(,L"))*I the Green function associated with 57(,?). From Theorem
2.1.1, we know how to represent the time-changed VRJP on Q,(#) using Gg,?). In order to obtain a result
on the infinite tree 7, we will see that GSZ) converges when n — oo.

For 8 € DIV, we still define Hg = 28 — W and take V,, = T for all n € N in Definition 2.1.1,
we get G = ((Hg)ro 7om) " and P = G which converge vW-as. to G and 1 respectively,
according to Theorem 2.1.2.

Definition 2.1.3. Forn >m >0, let v\ € RJTFM)XB*" be defined by

(HgxS (- 62)) oy = 0,

X (i,6,) = 1 if i € TA\T,
X (i,8,) = 0 if i € T\(T, UT™).

for x € D™ Note that (ng)(.7 6$))T(n) = (GA(n))T(n)’T(n)WT(n)y(T(n))c]lTI\Tm(n).

Remark 2.1.2. For n > m, Xfﬁ) is Bpm)-measurable, and for = € D™ and y e T,

Z Xgrrzl) (y,b) = Z ng?)(yafsz) = CATY(n)(?Jv')VVT<n>,(T(n))cIl(TW)c
bEBy, e D(m)

= G (y, )™ =™ (y).
Tt is possible to decompose G\ as a sum over paths in G\, which gives, for i, € T,

z,x’€D(m)

Once again, we will study the limit of this expression when n — oo, to obtain a representation of the
VRJP on (7, W). However under v} (df3), contrary to ¢(™, X£,’Z)(~7 J.) is not a martingale when m # 0.

Moreover, the term (GS;:))B,,L,B," is not independent of Brm) for m # 0. Therefore, we cannot use the
same argument as in the proof of Theorem 2.1.2.

As with 1, we expect Xﬁ,ﬁ” (+,0z) to converge to a Hg-harmonic function on T, for all € D™ and Y-
almost all 5. When ) > 0, we can once again introduce the operator A¥ in order to study Hg-harmonic
functions (see Proposition 2.1.6). We can characterise A¥-harmonic functions with the corresponding
Martin boundary M¥ and the Martin kernel K¥. Since the graph is a tree, the Martin boundary is equal
to the set € of ends of T, which is deterministic. Note that the boundary condition used to define 97(,?)
corresponds to the identification of €2, to a single point 8, for all z € D("™). We will see that the limit of
ngf) (-,6,) can be expressed with the family of harmonic measures associated with AY, defined as follows.

For a transient random walk (Xj)gen on a graph G = (V, E), it is possible to define the limit X,
of the trajectory as a M-valued random variable, where M is the Martin boundary associated with the
random walk. Then the family of harmonic measures is defined as (p;)zev, where u, is the distribution
of X, when the walk starts at z. For all z € V, p, is a probability measure on M, and for A € B(M),
2+ 1;(A) is harmonic for the random walk.

In our case, we denote by (u¥).er the harmonic measures associated with A¥. For 3 € DIV such
that ¢ = 0, we adopt the convention that u? is the null measure on € for all z € 7. We will now see how
under v} (df), for all z € D™, ng)(-, d,) converges to a Hg-harmonic function related to the harmonic
measures (11))yer, and how this gives us a representation of the VRJP on (7, W) for each m > 0.

Theorem 2.1.6. (i) For allm >0, fory € T and x € D) we have vW _almost surely Xg,tf)(y,éx) —
V(Y)Y (). For all y € T, we define the measure x(y,-) = ¢(y)uy (-) on Q.
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(ii) Let m >0 be fized. For v}¥ -almost all B, we define the |By,| X |Bp| matriz C,, by

. 0 ife =1,
(Cm)ﬁmﬁm/ = N x(zrz’ Q) x(zAz’ Q)

G(xAz' xAx')

otherwise.

From now on, let us write: vy p (dB, dpy,) = u%v(dﬁ)ug: (dpm)-

For v)Y -almost all 3 and for p,, € Dg:, we define Gy = (2pm — C) ™', as well as g, : Q> — R
a locally constant function, such that for x,2’ € D™ and w € Q,, T € Qu, we have G, (w,T) =

G (0s,021). Finally, for v -almost all 8 and for p,, € Dgz, fori,5 € T, we define

Gonlis) = Glied) + | (i d)x(G ). 7)

and denote by Pgmm’io the distribution of the Markov jump process started at x € V, where the

jump rate from i to j is %W” g"’(égz))

Then the process with law PVEIP00) js o mizture of these Markov jump processes, under the mizing
measure V%/Bm(dﬁ,dpm), i.e.

PVRJP(iU)[.] _ /Pi,ﬂmyio[,}y,zl{/Bm (dB, dpm)-

(i4i) The distribution under V:,‘i‘me (dB, dpm) of the jump rates (%Wi,j g’"((iooz; )inj converges weakly to the

distribution of jump rates in the representation described in Theorem 2.1.5.

Let us now consider the case where 7T is a d-regular tree, with d > 3, endowed with constant con-
ductances, i.e. W, =W > 0 for all e € E. Then (7, W) is vertex transitive, and from Proposition 3 of
[SZ19], we know that under v} (dB), 1 is stationary and ergodic. Therefore, depending on d and W, we
either have P[Vi € T, (i) = 0] = 1, or P[Vi € T,4(i) > 0] = 1.

In the first case, from Theorem 2.1.2 (iv), this means that the VRJP is a.s. recurrent, and therefore
admits a unique representation (see Proposition 2.1.5). Note that in Theorem 2.1.6, we have a.s. G, = G
for all m € N, so that all the corresponding representations are indeed equal. The following proposition
describes the second case, i.e. when the VRJP is a.s. transient. According to a result from [DV04], this
is true for large enough initial weights W.

Proposition 2.1.8. Let T be a d-reqular tree, with d > 3, endowed with constant conductances W large
enough so that the VRJP on (T,W) is a.s. transient. Then the representations of the VRJP given in
Theorem 2.1.6 are different for distinct values of m, i.e. if m # m’', the distributions of jump rates

(%Wl -G’"(io’j)>iwj under VTWme (dB,dpm) and (%WZ w) under V%Bm, (dB, dpm/) are different

053 "G (50,1 I G, (ioy0)
for allig € T.

i~

2.1.4 Open questions

A first question concerns the case of Z¢ with constant conductances W: is it possible to show that the
Martin boundary associated with AY is a.s. trivial for any W such that the VRJP is transient? In this
case, it would prove the uniqueness of the representation of the VRJP on Z? for any constant initial
conductances W.

Another question concerns a possible classification of all representations on trees using partitions of the
Martin boundary. We have constructed a family of representations from different boundary conditions on
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the tree, corresponding to some finite partitions of the Martin boundary €2, more precisely the partition
Q= Uyepom e for m € N. Tt should be possible to define more representations using the same method,
with boundary conditions associated with other finite partitions of €2, where each set in the partition can
be written as a finite union of sets §2,. To generalise this, we can ask if it is possible to determine which
partitions give us a valid representation, and whether all representations can be written in this form, or
as a limit of such representations, as in Theorem 2.1.6 (iii).

2.2 Technical prerequisite

2.2.1 The random potential § on finite graphs

Let G = (V, E) be a finite connected non-directed graph, endowed with conductances (We).cg. Let us

give some useful properties on the distribution l/‘IﬁV .

Proposition 2.2.1. [Proposition 2, Theorem 3 in [STZ17]] For 3 € DY, let G = (Hp)~ ' be the Green
function associated with 3. We define F': V xV — R by

F(Z7]) =

Then under V“;V(d,é’), for all iy € V, we have the following properties:

(i) (F(i,90))icv 5 (Bi)iev\{io} -measurable.

(i1) If we denote v = Wloio)’ then v is a Gamma random variable with parameter (1/2,1). Moreover,

~v is independent of (B;)ii,, and therefore independent of (F(i,10))icv -

This proposition explains the presence of v in the expression on G in Theorem 2.1.2. Moreover, it
allows us to prove Proposition 2.1.4, describing the distribution of the [ field.

Proof of Proposition 2.1.4. Let G = (V, E) be an infinite connected non-directed graph, and (V;,)nen an
increasing exhausting sequence of finite connected subsets of V. For n € N, let (") = (V(”),E(”)) be
the restriction of G to V,, with wired boundary condition, endowed with conductances W ("), defined as
in section 2.1.1. Moreover, for n € N, we still define G™ and (") as in Definition 2.1.1.

The proof of Theorem 2.1.2 (iii) uses the fact that under 7Y (df3, d), there exists a coupling of random

fields (8))nen, such that for all n € N: 00 ~ " 5 800 = gy s and G = (280 — W)~ where
for i,j € V()

A 1
G (i, ) = G0, 5) + 5™ (D)™ ().
Y
We can then apply Proposition 2.2.1 to ™ at ig: since G(™) = (26" — W(”))_l, we have

(n) _ 3n) 1
) — B P
B B+ (=00} 5GM) (49, 49

for all 7 € ‘7(”), where
740 P
B(n) _ Z Wi,j G( )(ZOa])
‘ 2 GM(ig, i)’

g~
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According to Proposition 2.2.1, 1/2G( (ig, o) is a random Gamma(1/2, 1) variable, which is independent
of (ﬂ'(n))ie‘7<")\{io}' Moreover, for i # ig, Bz(n) = Bi("), and

B W G (i, 5 W
(n) _ i 0:7) _ ij
ﬁio - Z 2 G(")(io,io) Z 9

J~io

(n) (j» i0)7

J~io

so that B(”) is (Bi(n))iev(m\{io}—measurable, and therefore independent of G(™) (40, 10).
Taking the limit when n — oo, we deduce that 1/2G(io,i0) is a random Gamma(1/2,1) variable,
independent from the £ field, where for i € V,

’ _; 2 G(i1) =i~ Limio) 2G(io, o)

Since the Laplace transform of a Gamma(1/2,1) variable is, for ¢ > 0,

eftyﬂ{7>0} e Vd~y = 1

77_7 Y T+t

and given the Laplce transform of 1}/ in Proposition 2.1.3, we now know that the Laplace transform of
3 is, for X\ € RK with finite support,

]E[e_u’@] — 1 e Zing Wig(VI+li/141 -1

1
I .
VIt N S VIHD
O

On finite graphs, the distribution ¥, and more generally 1" for n € RY, behaves well with respect
to restriction, as shown in the next proposition, which is a generalization of Proposition 2.1.2.

Proposition 2.2.2. [Lemma 4 in [SZ19]] Let us fit U C V and n € (Ry)V. Then, under V“;Vm(dﬁ), we
have:

U, UM

1) By s distributed according to i , where
(i) B g U

N =nu +Wyuelye.

(i1) Conditionally on By, Pu- is distributed according to ug/c’ﬁ, where
W =Wy ue + Woyeu(Hp)ow) Woue and i) = nue + Woe o (Hg)vw) ™ 'nu-

Proposition 2.1.2 is a direct consequence of (i), in the case where n = 0. Moreover, (ii) is useful to

extend a potential By ~ V[VJVUvU»’?

of By conditionally on Sy .

where /) = Wy pelye into a potential 8y ~ ¥, using the distribution

2.2.2 Green function and sums over paths

Let us still consider a finite connected non-directed graph G = (V, E) endowed with conductances W.
For g € D‘V/V, it will be useful to express the Green function G = Hgl as a sum over paths in G. We first
introduce some notations for sets of paths.
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Definition 2.2.1. (i) Fori,j € V, we denote by ’PV the set of paths o from i to j in'V, i.e. the set
of finite sequences o = (0y,...0;) in V, where oy =i, 0y = j and o, ~ o1 for 0 <k <Il—1. We
denote by |o| =1 the length of the path o.

(ii) For U C V, 1 € U and j ¢ U, we denote by 53]- the set of paths o € PZV] such that oy, € U for
0<k<lo|—1.

(i) For U CV and i,j € V, we denote by P}, 'v,; the set of paths o € PZVJ such that o, € U for some
k€ [0, |o]].-

(iv) Fori,j €V and o € ”Plvj, we define the following notations:
lo]—1 lo|—1
H Woyonis (268)0 H 285, and (28)7 H 2B, -
We get the following expressions, in terms of sums over paths, for G and related quantities.
Proposition 2.2.3. [Proposition 6 in [STZ17]] Let 3 € DY . Then:
(i) Fori,j eV,

W,
Gli,j)= Y
S @Ds

In particular, for U C V we denote GV = ((Hg)u,u)™t, then fori,j € U, we obtain

o W,
G (l7j>_U§U (2/8)0

7

(ii) Fori,j eV,

(iii) For U CV andi,j € U°,

W, W, Ws
2 @ 2 | 2 ean S| X

v p——
o€PYy 21,22€U Jepgﬁ .

In particular, if U = {z}, this becomes

> (;g;g = F(i,2)G(2,2)F(j, ) = F(i,2)G(z,]).

Remark 2.2.1. If G = (V, E) is now an infinite graph, let (V,)n,en be an increasing sequence of finite
connected subsets of V' such that V = U,enV,. For § € D{’,V and n > 0, we define G = GV» =
((Hg)v,.v,)~ ! as in Definition 2.1.1. Then from Proposition 2.2.3 (i), we get

G = Y e

28)s
o, )




2.2. TECHNICAL PREREQUISITE 51

for n > 0 and 4,5 € V,,. From Theorem 2.1.2 (i), under v}¥ (dB) the increasing sequence (G (i, j))nen
converges almost surely to é(l,j) Hence, we get

A %
G(i,j) = =
pogs

(2%

fori,j e V. ) A
Let us also define F( (4, j) = gz:;g;g; and F(i,j) = %, for all ¢, € V and n > max(i],|j]).
Then, from Proposition 2.2.3 (ii) we have

. %% - W
F (i, j) = o Fig) = =,
067);\{1} (28)g m=ee ;\{j} (28)<

where the convergence is true 1Y -almost surely.

2.2.3 Martin boundary and harmonic functions

Let us give more details about the theory of Martin boundaries. The following results can be found in
[Woe00].

Let G = (V, E) be an infinite graph, we consider an irreducible random walk (X,,),en on G, whose
transition matrix is P, where P;; = 0 if {i,j} ¢ E (i.e. we assume that (X,,) is a nearest-neighbor
random walk). Moreover, we assume that (X,,) is transient.

Let us denote by P, the distribution of the random walk started at x € V', and by ¢ the associated
Green function, i.e.

g(z,y) = Z P, [Xy = y].

neN

We also denote

—P G _ - 9@y)
flz,y) =P,[3 EN,Xn—y]—g(%y).

For all y € V, g(-,y) is harmonic at any z € V\{y}, i.e. for x # y, g(x,y) = > ., Pr-9(2,y). This
is still true for f(-,y). The Martin Kernel, defined below using f, as well as the Martin boundary, will
allow us to represent all positive harmonic functions for the random walk.

Definition 2.2.2. Let us fiz a reference point ¢ € V.

i) The Martin kernel is the function K : V? — R defined by
+

K(z,y) = flxy) _ g9(zy)

f@,y)  g(e,y)

(ii) The Martin compactification is the smallest compactification 1% of V, which is unique up to a
homeomorphism, so that K(-,-) extends continuously to V x V. The Martin boundary is defined as

M=V\V.

Theorem 2.2.1. Let us denote by H™ the set of positive harmonic functions on V. Then for all h € HT,
there is a Borel measure " on M such that for all z € V,

h(z) = /M K(z,a)u"(do).
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Remark 2.2.2. If, for all € V and for all sequences (y,),>1 going to infinity, we have K(z,y,) — 1,
then the Martin boundary is trivial, i.e. reduced to a single point. According to Theorem 2.2.1, in this
case, all positive harmonic functions are constant.

Since (X,,) is transient, we almost surely have X,, — oo, in the sense that for all finite subset U C V,
{n € N, X,, € U} is almost surely finite. Thanks to the Martin boundary, we can now describe this
convergence more precisely.

Theorem 2.2.2. For all x € V, (X,,) converges Py-a.s. to a M-valued random variable X.. The
distribution of X, under P, denoted by ., verifies

a(B) = /B K, 0)pig(dar)

forall BC M and z € V.

The space (M, B(M), (ptz)zev ) is called Poisson boundary. Moreover, we call harmonic measures, or
exiting measures, the family (u;)zev.

In the case where 7 = (T, E) is an infinite tree, the Martin compactification will coincide with another,
which does not depend on the random walk defined by P, but simply on the geometry of the tree 7.

Definition 2.2.3. Let us fiz an arbitrary root ¢ for T.

(i) We call infinite ray in T an infinite self-avoiding path starting at ¢, i.e. a sequence w = (Wk)keN
of distinct vertices in T, such that wy ~ wii1 for k € N and wg = ¢. The set of infinite rays, also
called the set of ends of T, is denoted by 2.

(it) If w,& € Q, we denote N, ¢ = max{k € N,wy = &}. We can also define, if x € T, N, , = max{k <
2|, wi = [¢, 2]k }. We then set OF ={¢€ € QO N, ¢ >k}U{z € T,N,, > k}.

(iii) We define the end topology on T U Q, which is discrete on T, and such that (OF)cn is a basis of
neighborhoods at w € §) .

Proposition 2.2.4. The end topology on T U Q) does not depend on the choice of ¢, and is induced by
the following metric:
0 ifr=y
d(z,y) =
(z,9) {e‘Nﬂw otherwise,
for x,y € TUQ. Moreover T US) is compact, and called the end compactification.

Theorem 2.2.3. (i) Let (X,,) be a nearest-neighbor random walk on T, that we assume to be transient.
Then the Martin compactification coincides with the end compactification, and we can identify M
to Q, and set T =T US).

(ii) The Martin kernel on T x T is locally constant, with
K(r,w) = K(z,z Aw), where x Aw = wn,, ,
forxe T ,we .

We also have an expression of harmonic measures pu, on the tree. For x € T, we denote by 2, the set
of ends for the subtree T, i.e. Q, = {w € Q,3k € N,w;, = x}. Moreover, we denote by U, = T, \{x}.
Then:
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Proposition 2.2.5. Forxz # ¢ and i €T,
1-— f($,f)

Remark 2.2.3. From Carathéodory’s extension theorem, this entirely describes the expression of ji4.
From Theorem 2.2.2, we can then describe all harmonic measures using f.

1i(Q2) = Lgiev,y (1= f(i,2))) + f(i,2)

2.3 Distributions of arbitrary representations

2.3.1 A common expression for jump rates: Proof of Theorem 2.1.3

Let G = (V, E) be a locally finite connected graph, endowed with conductances (W; ;); jev such that
Wi, =W;;>0if {i,j} € E, and W, ; = 0 otherwise. We still denote by PV//F(0) the law of the VRJP
on (G,W), in the exchangeable time scale, started at io € V. Let us first show that the distribution of
the 3 field (see Proposition 2.1.4) appears in all representations of the VRJP.

Recall that for all r € Ji¥ and i € V, we define r; = ij' Tij-

Proposition 2.3.1. Let ig € V be fized, and let R(dr) be the distribution of a random environment
representing PV EIP0) in the sense of Definition 2.1.2.

Then under R(dr), (r;)icv has the same distribution as the field B rooted at iy, i.e. its Laplace
transform is

1
AN R(dr) = e 2ing Wii (VIFXi/14;-1)
/e (dr) =e 21;;[0 T
for \ € RK with finite support.

Proof. Let ig € V be fixed, let R(dr) be the distribution of a random environment representing PV /P (o)
i.€.

PV RIP(i0)[] = /Pjo [IR(dr),

where IP" is the distribution of the Markov jump process with jump rate from 4 to j given by r; ;.
Let us prove that under R(dr), (r;);ev has the same distribution as the f§ field from the standard
representation.

Lemma 2.3.1. There exists a random field (u;);cy € RY such that R-almost surely, Tij = @e“f“i
forin~j.

Remark 2.3.1. Since the random field (u;);cy is defined up to an additive constant, we can set u;, =0
a.s. without loss of generality.

Proof of Lemma 2.3.1. For r € J¥, let us define t; ; = 2—r; ; for all i ~ j. Then to prove this lemma,
2,7
it is enough to show that for any cycle o = (0y, ..., 0y,), we have R-a.s. t, := Z;é top,on, = 1. Since G

is connected, we only need to prove this for cycles o such that og = ip.

Recall that we denote by (Z;);>0 the canonical process on C,.(Ry, V). Let PM/¥ he the distribution
of the Markov jump process with jump rates %V% i. Then, according to Theorem 3 from [ST16], for all
T > 0 the law of (Z;);<r under PVE/PG0) ig absolutely continuous with respect to its law under IP’%JP,
and its Radon-Nikodym derivative is

e 2ing Wi i (VIHLiA/1+1;-1) 1
e Yiev %Wili 1 +l77

i£ig
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where W, = ij- Wi i, and [; = fOT 1yz,—idt is the local time at 7.

Let o be a cycle such that og = 0, = ig. We denote by o™ the nth concatenation of o, and for 7" > 0
and 7 a path in G, by {(Z;)i<r ~ 7} the event where the discrete trajectory of (Z;);>r follows the path
7. Then we have, for n > 1 and T > 0,

e~ i Wi (VIFT/141—1) 1
e~ 2iev Wil V1+1;

PVRIPGO[(Zy)1<r ~ 0] = /ﬂ{(zt)tSTN“"} LG

iio

However, since the random environment (r; ;);~; gives a representation of the VRJP as a mixture of
Markov processes, we also have

PVRJP(io)[(Zt)tST ~o" = /P;O[(Zt)th ~ " |R(dr)

_Zi v rili (H‘U\*l >n
€ < k=0 Tok,ont1
:/ /1{(zt)tgwan} Lw.i, (yylol-11 w7 (dz) | R(dr)
e Ziev 3 Wil (szo §W0k,0k+1>

— > iev il
€ eV n .
= /]1{(Zt)t§rp~a"} m(ta) R(dT)P%IP(dZ)

i€V 2

Let us fix € > 0, and define the event A, . = {{, > 1 +¢}. Then we get
PV Zisr ~ 0" 2 [ Uppmany [ Eane”Se 14 RANBYT (d2).

Let M > 0 be such that under R(dr), P[4, N By > P[A, .]/2, where By = {Vi € V,r; < M}. Note
that 7=}, l;, so that

BYRIPE(Z)1<r ~ 0™] 2 / L(rermam) / La,.nmye M (L4 2) " Rdr)BY T (d2)
—MT

e
>
-2

(1+¢)"P[A, JPM

TP (Ze)e<r ~ 0™

On the other hand, we also have

PVRIP(o) (7 m_ [ e~ Ling Wi i (VIFlin/1+1;-1) 1 PMIP (g
[(Zt)i<r ~ 0" = {(z)r<m~om} = ey WL o T, (dz)
1F£10

S eM/TPZ[\fJP[(Zt)tST ~ O’n],

where M’ = max{3W,,,0 < k < |o|}. Since PM/P[(Z;);<r ~ 0"] > 0 for all T > 0 and n € N, we get

—MT

¢ 5 (14¢)"PlAse] < eM'T

Taking n — oo for fixed T' > 0 shows that P[A, .] = 0. As a result, we have almost surely ¢, < 1.
For £ > 0, we now set A _ = {t, < 1—¢}. Using the same notations as before, and the fact that a.s.
ty <1, we get

]P)VRJP(io)[(Zt)tST ~ U’n] < /]l{(zt)thNU"} /eMlT (llA@,sC + ]lAQ,’E(l — E)n) R(d’l‘)sz[']P(dz)

< MT (PlAL ]+ PAL (1 — &)™) PMIP(Z)1<p ~ ™.
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On the other hand, on the event {(Z;);<r ~ o™}, we have [; <T for all i € {0,0 <k < |o|} and [; =0
for all other 7 € V. As a result, for such trajectories,

e~ i Wi (VI4lin/141;-1) 1 - B*M”T
e~ Ziev 3Wili Fio 1+~ (1+7) lol=2”

where M" = Ei7j€{ak} Wi j, so that,

_ o~ M''T
PYRIPGWI(Z,)icr ~ 0] > ————=PMP(Z))1<r ~ o"].
(1+1)%
As before, this yields
M'T rc / e MT
e (]P)[Ao,s ] + IP[AU,EK]' - g)n) > S lol—1
(14+T7) =
for all T > 0 and n € N. Taking first n — oo, then T — 0, we get that under R(dr), P[A] ] = 1.
Therefore, we can conclude that R-almost surely, t, = 1. L]

In order to identify the distribution of (r;);cy under R(dr), we obtain their Laplace transform as the
density of cyclic trajectories of (Z;);>o under PV RJP(io) with respect to IP’%”P. Indeed, given a cyclic
trajectory (z;)i>0 in G, started at iy, we denote by o the associated cyclic path in G, and (I;);ey the local
times, so that T'= .\, l;, and I; > 0 if and only if i € {0},0 < k < |o|}. Then the Radon-Nikodym
derivative at (z;);>0 of PV RJP(i0) with respect to IP’%“P is almost surely

e 2ing Wii (VIHlin/14+1;-1) 1
e Yiev sWili it 1+ li7
but also
e~ 2icv rili
R(dr)

e Xiev Wil

since t, = 1 R-almost surely. Therefore, for all finite connected subset U of V| and almost all (I;);ey €
(R1)Y x {0}V\Y, we have

— s Wi (VIFTA /T4 —1) L[ sy rils - Siey rils
e il;[()m—/e ev i R(dr) = Ele™ &viev it

Since these are continuous functions of (I;);cv, this equality is true for all (;);ev € RK with finite
support. As a result, under R(dr), (r;);ev has the same Laplace transform as the field j, associated with
the standard representation of the VRJP started at ig (see Proposition 2.1.4), and therefore the same
distribution. O

Proof of Theorem 2.1.3. Let ig € V be fixed, and R(dr) be the distribution of a random environment
representing PV 2#/P(0) - Thanks to Proposition 2.3.1, we know the distribution of (r;);cy under R(dr).

Note that the distribution of a Gamma(1/2,1) variable is ﬂi}%’} e Vdv, and that its Laplace transform

is given by
e—t’y ]1{'Y>0} e Vdvy = 1

VY VI+t

for ¢ > 0. From now on, we denote R(dr,dy) = R(dr)® ]I“Tﬁ;”e*”fd% which is a distribution on Ji¥ x R.
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For r € J¥ and v > 0, we now define (8;)icv by B = ri + L{;—;,yy for i € V. Then under R(dr,dy),
the Laplace transform of j is, for A\ € R_Y_ with finite support,

1 1
—(\.B) {r>0} — _/ — oy AT / “Xigy >0} 4
e R(dr e Tdy= | e #iev R(dr e "o e Tdy

= ée_ i Wi (VI /14 —1 H
N 11 S

i.e. B is distributed according to 1v}¥ (see Proposition 2.1.3). We can then define R(dr,dy)-a.s. G :
VxV — Ry and ¢ : V — R, thanks to Theorem 2.1.2. Moreover, by analogy with the standard
representation, let G(ig,-) : V' — R4 be defined by:

G(ig,i) = —e"
(2077’) 276 )
where (u;);ey was introduced in Lemma 2.3.1. This way, under R(dr,dv), for all i # j € V the jump
rate r; ; can be written as
- Wi, G(io, J)
T T Gligyd) |

Let us set (i) = G(ig,i) — G(io,4) for all i € V. Then Hgh = 0. Indeed, for i # io, we have

Q/Bi ZOv Z WZ ]G Z07 - 27‘71 107 Z 2TZ _7 ZOa Oa

gri jri

and for i = i,

Tig + 7 reo

Jj~to J~10
therefore for i € V, HgG(io, i) = Loy = HpG (i, ).
Let us finally show that h(i) > 0 for all i € V. We define 7;7 = inf{k > 1, Z, = i}, where (Z})pen is
the discrete version of (Z;)¢>o. Then for all ¢ # g,

Pilr} <ool= > Pi(Zo,.r; Zo) = (00, 00))]
oeBY o)
lo|-1 lo|— 1
= Z H rak’”k-*-l _ Z H Wo o141 Glio, 0k+1)
Uepv\{zo} k=0 UGPV\{lo} k—0 2Bo; G(Zo,O’k)

_ G(ig, io) Z Wo _ G(ig,i0) G(io,1)
G(zOﬂ’) efv\{io} (26); G(lo,l) G(Zo,ZQ)
ivig

)

from Proposition 2.2.3. Therefore, we have G(ig,i) < G(zo’lo)(}'(zo,i). Moreover, thanks to the Markov
20,%0



2.3. DISTRIBUTIONS OF ARBITRARY REPRESENTATIONS 57

property we have

Py | 7' < o9 Z P! [Z FIPS[rit < o0] = rig.; Glio, o) Q(ZO’ 7)
ok iz Tio G(io, J) G(ZO,ZO)
Wi é(io, J) G (io, j)
_ Z 25, 0.7 b= — 2, Z Wio. G’
j~ig 0 (2077/0) io G(lmlo) o 7,0, ZO)
2610 - 20,20)
2&0 Z0720)
therefore we have G(ig,i9) > é(io,io), as well as G(ig,7) > G(zo, ) for all i € V.
As a result, G(ip,) can be written, for all ¢ € V, as
G(iOa Z) = G’(i07 Z) + h(Z),
where h : V' — R, is a non-negative Hg-harmonic function. O

2.3.2 The recurrent and transient cases: Proofs of Propositions 2.1.5 and 2.1.6

Proof of Proposition 2.1.5. We assume that (G, W) is such that the VRJP is almost surely recurrent.

Let (r;,;j)i~; be fixed jump rates on V, such that the associated Markov chain is recurrent. We denote
by P; its distribution when started at ig. Note that under P} , the time spent at a vertex i before jumping
is an exponential variable with parameter r;, and the probability to then jump to a specific neighbor j is
Ti,j

Let us then define the following functions of the trajectory (Z;): for i € V and n > 1, we define 5t£—n)
as the time spent by (Z;) at the vertex 4 during its nth visit to ¢, and vl(n) the neighbor of i towards
which the process jumps after its nth visit to . Under P} , since the process is recurrent, these random

variables are well-defined for all ¢ € V and n > 1. Moreover, the sequences (6t§n))n21 and (vz(n))nzl are
independent, so thanks to the law of large numbers, we have almost surely

_ a® 1 St
= li 21Ot = — and p; ; == lim il ) 7“7’]7
n—oo n T n— 00 n T
for all 4,5 € V.
Let now R(dr) be the distribution of a random environment representing the VRJIP on (G, W), i.e
PVRIPGo)[] = f]I” JR(dr). Since the VRJP is a.s. recurrent, then under R(dr), P} is a.s. the

dlstrlbutlon of a recurrent Markov chain. Moreover, under PVE/P(0) 5t and Di; are a.s. well-defined

for all 3,5 € V, and <%1> _is distributed according to R. Since these functions of the trajectory do
i) inj

not depend on the chosen representation, the distribution R is uniquely determined. O

Proof of Proposition 2.1.6. Let (G, W) be such that the VRJP is almost surely transient. Since, according
to Theorem 2.1.2 (iii), we have PV/PG0)[] = fIPiBO’A”iO []1yY (dB, dv), then under v{¥ (d3, dv), the Markov
process with distribution Piﬁo’%io is a.s. transient. From Theorem 2.1.2 (iv), this means that under
vV (dB), we have a.s. (i) > 0 for all 4 € V, which proves (7).

Let us now c0n51der the random conductance model with conductances c = W; j¥(i)1(j). We denote

by 7ri = ZJM ;.; the corresponding invariant measure, where 7r P(i )ZJM Wi 1 (j) = 2B;1(i)? since
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1 is Hg-harmonic. Let PY be the distribution of the associated random walk, whose transition probability
from i to j is
P .
pv = G Wigv)
R TR0
fori,5 € V. Moreover let us denote by ¢g¥ the Green kernel associated with P¥, defined for i,j € V as
9%(1,7) = > pen P [Xk = j], where (X)ren denotes the canonical process on VN Then we have

lo|—1
i,7) :Z Z P?[(Xo,.. Xp)=o0]= Z H “;’;le J’;+1)
keENoePY, |o|=k oePY,; k=0 on¥
Y(5) W V) on Are
= :72 G s s
00 2 @ ul )

where under Z/V W (dg), G(i,7) is a.s. finite for all 4,5 € V, from Theorem 2.1.2 (i). As a result, we have
almost surely g¥(i,4) < oo, therefore the random walk ]P’w is transient almost surely, proving (7).

Let AV = (pgjj —1—j1)i,jev be the discrete Laplacian associated with PY¥. We will say that a function
@ :V — Ris A¥-harmonic if (AY¢)(i) = (ij’ p%g@(j)) — (i) = 0 for all ¢ € V. Therefore, a function

¢ is A¥-harmonic if and only if for any i € V,

2B8:0(i)p(i) — > Wi 1b(j)
jri
i.e. if and only if ¢ is Hg-harmonic, which concludes the proof of (%ii). O

2.4 Representations of the VRJIP on Z%: Proof of Theorem 2.1.4

Let us now consider the case where G = (V, E) is the Z% lattice, endowed with constant edge weights, i.e.
W; ;=W >0forall i ~j. For z € R, we will denote by |z| its Euclidean norm. We fix ig = 0.

2.4.1 Recurrence and transience of the VRJP on Z¢

For d = 2, the VRJP on (G, W) is a.s. recurrent for all W > 0, according to Theorem 2 in [Sab19]. There-
fore, the representation of PY/P0) 35 a mixture of Markov jump processes is unique (see Proposition
2.1.5). If d > 3, Corollary 1 in [ST15] tells us that for small enough W, the VRJP is a.s. recurrent, in
which case the representation of PVE/FP(0) is once again unique. Let us now show that for large enough
W, even though the VRJP is almost surely transient, the representation is still unique.

From Corollary 3 in [ST15], we know that for W large enough, the VRJP is a.s. transient. From now
on, we consider such W. Then thanks to Proposition 2.1.6, under 1}/ (d) we have a.s. (i) > 0 for all
i € V. Moreover, we can define the Markov operator A% and, for h: V — R, his Hg-harmonic if and
only if h/1 is A¥-harmonic. In light of Remark 2.1.1, in order to show that the representation of the
VRJP is unique, we need to show that the only positive A¥-harmonic functions are constants, i.e. that
the Martin boundary MY associated with AY is almost surely trivial. To do this, we will need a local
limit theorem in random environment, found in [ADS16a].

2.4.2 Local limit theorem for random walk in random conductances

Let us consider the random conductances model on G = (Z4, E,;), with d > 2. Let P be a distribution
on the set of conductances (R%)¥¢, such that under P(dw), we have a.s. 0 < w; ; < oo for all i ~ j. For



2.4. REPRESENTATIONS OF THE VRJP ON Z¢ 59

w € (]Rj_)Ed, let P* be the distribution of the continuous-time constant speed random walk associated
with w. This is the Markov jump process with jump rate from i to j given by “%Z, where 7% = ij Wi -

w
i

This way under P“, the holding time of (Z;);>0 at each point is an exponential variable of parameter 1,
which justifies the term "constant speed". Finally, we denote by ¢“ the heat kernel, i.e. the transition
density of the walk with respect to 7*: for z,y € Z% and t > 0,
Pr(Z =y
¢t zy) = ————.
m
y
The following theorem from [ADS16a] is a local limit theorem for ¢*, under ergodicity and integrability
assumptions.

Theorem 2.4.1. [Theorem 1.11 in [ADS16a]] Let us assume that P(dw) is stationary and ergodic with
respect to translations of 7%, and that there exist p,q € (1,00] satisfying 1/p + 1/q < 2/d such that
Elwy ;] < 0o and Elw; {] < oo for all i~ j.

Then for 0 < Ty <15 and K > 0, we have P-a.s.

lim sup sup |n?g“(n’t,0, [nz]) — aky(z)| =0,
N0 2| <K te[Th,T]

where |nx| = (|nz1], ..., [nz4d]), a = 1/E[n§] and k; is the Gaussian heat kernel with some deterministic
covariance matriz X2, i.e.
1 zt(x2)"ls
kt(x) = e 2t
(27t)? det(X2?)

Remark 2.4.1. If P(dw) is also stationary with respect to all isometries of Z?, then the limiting Brownian

motion must be as well, therefore its deterministic covariance matrix has the form 2 = o021, where
2

o° > 0.

This also provides a local limit theorem for the Green kernel ¢g“, defined for w € (Ri)Ed and z,y € Z%
by

g“(z,y) = / q”(t,z,y)dt.
0

This result was also mentioned in [ADS16a], we give here the details for the proof of a slightly stronger
result!, that insures the uniform convergence for  in an annulus.

Theorem 2.4.2 (Variant of Theorem 1.14 in [ADS16a]). For d > 3, under the assumptions of Theorem
2.4.1, we have P-a.s.

lim  sup [n?2g¥(0, [nz]) — agpa(0,z)] = 0,

N0 1<z <2
where gy is the Green kernel associated with the Brownian motion with covariance matriz X2, i.e.

aman0,0) = [ ot = 5 e ()

Proof. This result is obtained by integrating in Theorem 2.4.1. Moreover, we will need the following
bounds on ¢, which are true almost surely.

Firstly, Theorem 1.6 in [ADS16b] gives a short-range bound, which also applies to k;: P-a.s. there
are constants C, ¢y, ce > 0 such that for ¢ > Cn|z|,

ca(nlx))?
g¢“(t,0, [nw]) < eyt~ e

T would like to thank Sebastian Andres for his help regarding the details of this proof.
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and for all ¢ > 0,
colel?

ki(x) < et~ Y2e 75

Now, for a long-range bound: using Corollaries 11 and 12 from [Dav93], there exists P-a.s. a constant
c3 > 0 such that for all ¢t < 2Cn and |z| > 1, we have

1
¢°(t,0, |nz]) < ———=e""l"l.

\/ ’/TBJ //Tlfnxj

Note that the integrability assumption implies that E[pf] < oo, where p¥ = >, .
|z <2,

1

Wil

. Therefore, for

1 w w 1 (3}
o S Plne) S Z py7aswe11as7r—w§ Z Py

s
Lna) ly|<2n O yl<2n

and thanks to the ergodic theorem, P-a.s. there exist ¢4 > 0 and Ny < 1 such that for n > Ny,
Dlyl<an Py < cs(2n)?E[py]. For such n and for 1 < |x| < 2 and ¢ < 2Cn, we get

g“(t,0, [nz]) < esndeeanlel,

Using these bounds, we now know that for n > Ny and 1 < |z| < 2, we have P-a.s.

n"2g* (0, [nx|) — agpar (0, 2)| =

nd /000 q* (n?t,0, |nx|)dt — a/oo kt(x)dt‘

0

2C/n Ty

< nd/ q* (n*t,0, Lnxj)dtJrnd/
0 2

T
q* (n?t,0, |nz])dt + a/ ke(z)dt
C/n 0

oo oo

¢ (n?t,0, |nx|)dt + a/ ke(x)dt

T

Ts
—l—/ In%q® (n?t,0, |nxz|) — ak(z)|dt + nd/

Th T>

T1 o0
< C'nPllemem 4 (14 a) / et~ M2/ tdt 4 (1 + a)/ eyt~ 2eme2/t g
0 T

+ (T, —T1) sup  sup |n%g”(n’t,0, |nz]) — aky(z)|.
|I‘S2 tG[Tl,TQ]

Let € > 0. Since t — ¢t~ %2/t is integrable on (0, 00), we can fix Ty, T5 > 0 independently of 2 such
that
/T1 /2 —cs/t X a4/ eyt €
cit™ Y e dt—l—/ ct™YEFem Nt < ——— .
o T ' 2(1+a)
Then
sup |n?72g*(0, [nx]) — agpam(0,2)] < (Ty — Th) sup  sup |nq”(n’t,0, [nx]) — ak(z)|

1<|z|<2 || <2 te[T1,Ts]

T C/nZd—le—an + %7

so that from Theorem 2.4.1, there exists N > Ny independent of = such that for n > N,

sup [n7%g*(0, [nx|) — agpn (0, z)| <,
1<[e|<2

which is true P-almost surely. ]
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Remark 2.4.2. Let us fix conductances w € (R% )%, We denote by (Zn)nen the discrete version of
(Zi)i>0. Then, for z,y € Z4,

< PrlZi =y 1 =
g“(x,y) Z/ —————dt = E7 / Lyz,=yydt
o e e o {Ze=v}
1 . I & .
Y n=0 Y n=0
where >°°° | P¥[Z, = ] is the Green kernel associated with (Z,),ey under P¥. Indeed, since under P¥

the holding time of Z at each point is an exponential variable of parameter 1, the expected time spent
by (Zi)i>0 at y is exactly the expected number of visits of y by (Z,,)nen-

2.4.3 Martin boundary associated with AY

We return to the VRJP on Z? d > 3, with constant initial conductances W large enough so that the
VRJP is almost surely transient. From Proposition 2.1.6, under I/“;V(dﬂ), we then have a.s. (i) > 0 for
all i € V. Moreover, the random conductance model associated with conductances c:fj = W, ;u()v())
defines almost surely a transient random walk. We still denote by AY the discrete Laplacian, and define
¥ = ZjNi c;?{’j = 2B:4(1)?, as well as g% the corresponding Green kernel:

K3

() = 3B =) = Wo5,0.5),
k=0

We want to identify the Martin boundary MY associated with A%, by studying the behavior at infinity

of the Martin kernel K%, defined by
»
g% (z,y)
KY (2, y) =
(@) 9%(0,y)

for all z,y € Z%. In order to do this, we will use Theorem 2.4.2.

Proposition 2.4.1. There exists W > 0 such that for W > W, under u&v(dﬂ), the Martin boundary
MY is almost surely trivial.

Proof. Note that under V&V (dp), the distribution of the random conductances cfj is stationary and ergodic
with respect to all isometries of Z?, thanks to Proposition 3 of [SZ19]. Moreover, for W large enough,
the integrability assumption of Theorem 2.4.2 will be verified.

Lemma 2.4.1. Consider the graph G = (V = 74, E = E,), with d > 3, with constant initial conductances
W. Then for all p > 1, there exists W, > 0 such that for W > W, for all i ~ j, under v{¥ (d3) we have

E[(y(0)¢(7))"] < o0 and E[((i)¢(4)) "] < oc.

Proof. The proof is the same as for Lemma 9 (i) in [SZ19], and uses Theorem 1 of [DSZ10], which gives
a control on moments of arbitrarily large order. O

Let WL> 0 be such that for W > W', the VRJP on (Z4, W) is almost surely transient. Moreover,
we define W = max(W?*, Wy, 1). From now on, we assume that W > W, so that thanks to Lemma 2.4.1,
under 1Y (df), for all i ~ j we have

P \d+1 P \—(d+1
E[(c!;)*"] < 0o and E[(c},) ] < o0,
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Therefore, according to Theorem 2.4.2 and Remarks 2.4.1 and 2.4.2, there exists o2 > 0 such that
1Y -almost surely,
sup |nd_2(7ripnzj)_1gw(0, nz]) —agem(0,z)] —— 0,
1§|Z|S2 n— 00

where a = I/E[ﬂg’] and gpas is the Green kernel associated with a Brownian motion with covariance

matrix 21y, i.e.
P(d/2 — 1) ‘Z|27d
2rd/2 52 :
Using this result, we have 1}/ -almost surely: ¢%(0,9n) ~n—oo aw{fngBM(O,yn), for any sequence

(Yn)n>1 such that |y,| — oco. Indeed, for such a sequence (y,,), let us define m,, = ||y, || and z, = yy, /M.
Then, since 1 < |z,| < 2 for all n > 1, we have

gBM(0,2) =

00w ||l N Oz
ary, 9510, Yn) my %agpu (0, zn)
w2l )7 (0, [maza]) — agsa (0, 2)

agsm (0, zn)

Suplg\z\SQ |mg72(ﬂfman)7lgw(Ov Lmnzj) - agBM(()?Z)‘

ainfi<|.j<2 95Mm(0, 2) n—00

1/“7 -almost surely.

Moreover, for x € Z? fixed, let 1" be the translated function defined by % (y) = ¢(y — x). Then ¢®

and v have the same distribution under 1V (dj), therefore we have 1V -a.s., for all (y,),>1 such that

[Yn| — oo, .
w(xvyn) = gw (0,40 — ) ~nosoo aﬂ';)ngBM(ann — ),
wl‘

Yn—T
true. Since Z¢ is denumerable, (), 74 Ay is still v}/ -almost sure. Therefore, we have v{¥-a.s. that for all

x € Z4, for all (y,)n>1 such that |y,| — oo,

9

since |y, — x| — oo and 7 = 77;/’”. Let us denote by A, the v}/ -almost sure event where this is

ary, 980 (0 Yn = ) _ |y — x>~

KY(z,yn) ~ = 1.
y Yn n— 00 aw;[,ngBM<0’yn) |yn|2_d n—00
As a result, from Remark 2.2.2, the Martin boundary associated with AY is 1}/ -a.s. trivial. O

Let R(dr) be the distribution of an environment representing PVEIPO) on 74 endowed with constant
initial conductances W > W.
For r € J% and v > 0, we define 3 by 3; = i +1i—0y7. According to Theorem 2.1.3, under R(dr, d)

we then have  ~ V“fV. We define G and 1 as functions of 3, as in Theorem 2.1.2, and we can write
P = Wi,j G(Ovj)
J 2 G(0,1)’

where G(0,7) = G(0,7) + h(i) for all i € Z%, with h a Hg-harmonic function. Since W is large enough
so that under 11V (dB), 1(i) > 0 for all i € Z¢ almost surely, the operator A¥ is well-defined, and h/1
is A¥-harmonic. However, according to Proposition 2.4.1 the Martin boundary associated with AY is
y“}V—a.s. trivial, therefore positive A¥-harmonic functions are almost surely constant. As a result, there
is a nonnegative random variable g such that for all i € Z%, we have R-a.s.

G(0,1) = G(0,1) + i (i),
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In particular, g = (G(0,0) — G(0,0))/1(0), so g can be written as a function of (8, m% and there-

fore has a function of ((r;);cz¢,7). Since according to Proposition 2.3.1, under R(dr, d~y) the distribution

of ((r3)ieza,7) does not depend on the chosen representation R, this shows that the distribution of the

jump rates r; ; = Wg” gEgZ)) is uniquely determined, i.e. that the representation is unique.

Remark 2.4.3. Note that we can identify the distribution of ¢ using the standard representation.
This shows that under R(dr),dy, we have g = ¥(0)/24/, where 4/ is a Gamma(1/2,1) random variable
independent from (5;);cza-

2.5 The potential 5,(7?) on trees

Let T" be an infinite tree, that is locally finite. We still fix an arbitrary root ¢. In this section, we define
a (3 field on the restrictions of 7" with the boundary conditions introduced in Section 2.1.3.2. This way,
we can apply Theorem 2.1.1 to these finite restrictions.

2.5.1 Construction of ﬂﬁ,’?) on g,(,?)

(n)

(n)
" where

From Proposition 2.1.3, under v} (d3), for all n € N we have By ~ qu,[fn) i

W(n) = WT(n)’T(n) and n(n) = WT(n)’(T(n))cIL(T(n))c.

As usual, for B € DIV, we define Hg = 23 — W. For n € N, let us take V;, = T(™ in Definition 2.1.1, so
that we get G = GT™ = ((Hg)pw) pen) ™t and (™) = Gy,
Let us fix n > m > 0. To represent the VRJP on (Q,(q?),W&")) using Theorem 2.1.1, we need to

- (n)
introduce a potential ﬂﬁ?) on T,(nn) = T("yB,,, distributed according to I/WT) . According to Proposition

g
fr(n) ()
2.2.2, this is true if and only if: the restriction (57(,?))T<n> is distributed according to I/;ZZT) Mhmand
()
conditionally on (ﬁﬁff ))T<n), the restriction (67(,? )) B,, is distributed according to Vgi:l , with the following

notations :

W = (W) o ros 18 = (W) poo g, 18,

m

and WM = (W), 5, + (Wr(nn))Bm,T(")((Hé}n))T("LT(n))_1(Wr(nn))T(n),Bm7

where we define by Hén) = 265,?) — ~7(nn) the Schrodinger operator associated with 55,?). Given the
definition of W4, note that we have W, = (W &n))T(n)’T(n) = W), Moreover, for i € T("),

(ﬁgg))i = Z(Wv(nn))i,b =liepm Z Wi = W{z‘},D<n+1)]1D(n+1) = 772(”)-
beB JES(1)

Therefore, let us define (6,(71’))T(n> = Brem. Hence, under v}¥ (dB) we have (ﬁﬁg))T(n) ~ VW(M,T](")’

T
(n) . (n) () a(m) ) , - )
where z/:,‘i[fn) = u;[f;?) "It remains to extend (ﬁr(,?))T(n) into a field B over all of 7. To do this,

for ' € (R%)B, we define (%)), = f'. Then under v (dB)v' " (d3'), the field B constructed

() m

~ T (n) ~
this way on Tp," is distributed according to l/z:f’) , from Proposition 2.2.2. Note that (W,(nn))Bm,Bm =0

and
(H ) po g = 2085w = (W) = 2B — W = (Hg)pmy 5
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therefore we have

W = (W) B 5o + (WS 5, 0 (HE ) 200) (WS ) 5,
= (W) g, 20 G W) pon 5,

For n > m, let us denote by G'n) = (H,(g"))*1 = (285 — W)~ the Green function associated with
ﬁ,(#) on g,(#). Then, from Theorem 2.1.1, we know that the law of the time-changed VRJP on ( 1(7?)7 W,S,n))7

()
started at ip € T, is a mixture of Markov jump processes under V%V(dﬂ)ygvg (dpB’), where the jump
L)y GO (io,g)
2V G o
that (Gg,ff)(i,j))i,jeqﬂ converges in distribution when n — oo.

rate from ¢ to j is . In order to obtain a result on the infinite tree 7, we will show

2.5.2 Expression of G (i,7) as a sum over paths

To show the convergence of Gsff), it will be useful to express it as a sum over paths in 7. We will use
notations and results presented in Section 2.2.2.

AR n . ..
Let 3 € DY and B € Dg/: , and @(n‘) be defined as previously. For 4,5 € T, let us fix some ng > m

such that 4,5 € T("0). For n > ng, by applying Proposition 2.2.3 (i) to 7(7?) in the graph g,(,’}), we get

W("))
G = Y D
27;(7}) (2ﬁ7(7?))a

™
(2%

oc€EP,

. T . .
This sum over paths can be decomposed as follows: a path o € P; 7" can either cross some vertex in
. . T
By, in which case 0 € P, .,
(n)

T _ o1 Ty T T
we have P; " =P, UP; 3 . where P, NP, 5. =0, s0

. . . (n)
or never cross any vertex in B,,, in which case o € PiTj . As a result,
;

il )
n)/- - m )o m )o
G (i,5) = § % + E %

n 2/8771 g =~ Q/Bm o
e GO S (280
i7(n) i7(n) i7(n)
=Y e S| X o |ewen | ¥ R
(26%) @)s | " @) |
UEP»T(»M m )o b,b'€B,, Uefrin) m )o Ueirin) m )o
ij i, b’

T (Wi)e W,

from Proposition 2.2.3. Note that for any o € P since (Wy(f))Tm)’T(n) = W) 1o

IO M P
and (,6’7(5))71@,) = Brm. As a result,

(W}r{l))a Wo’ A(n) o
Wo)o _ _ g
ae%;m 26%)5 2 (28)o (i)
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Moreover, note that for z € D™ and y € T,

77(n) ir) . -
RLE TR ol [ SR RES J D SRR LI I DI

(n)
—7(n) (2ﬁm )U z2r0g olePyT(z”) (267” )Ul ze€T,ND(M) z'€S(z)

= Gy Wi ooy Ly, oo = 50 (4 82),

from Definition 2.1.3. As a result, we have

GO (i) =G5 + Y X, b)GE (0,0 )XW (5.1).
b,b’E€B,,

We will show that under V:,W (dp), this expression converges almost surely when n — oo. From Theorem
2.1.2 (i), we already know that G™ (i,4) converges to é(i,j), let us now study the respective limits of
Xm an ( m )Branm

2.6 Convergence of G

The goal of this section is to prove the convergence of quf) and (G%))Bmgm. We will first describe the
Martin boundary associated with A¥, and the harmonic measures (uj’)ieT.

2.6.1 Process associated with AY and Martin boundary

First, note that for 8 € DY, we have either (i) > 0 for all i € T, or ¢ = 0. In the first case, we can
do as in Proposition 2.1.6: the random walk associated with the conductances (c;ljj)iwj is transient for
vV -almost all 3, since the associated Green function g = g% is given by

¥(j)

g (i,5) = W%ﬁ(@j),

for i,7 € T. Moreover, we define the Markov operator AY by

. Wi (), , . -
AYR)(i) = —I 2 h(5) | = h(i) =0
@ = | Xm0 | ~ho
for h: T — R and i € T, and a function h is A¥-harmonic if and only if 1h is Hs-harmonic.

Let us fix g € D}{V such that ¢(i) > 0 for all ¢ € T, and such that the random walk associated with

(C;/jj)iwj is transient. This allows us to apply results regarding the Martin boundary of a tree. From
Theorem 2.2.3, the Martin boundary MY associated with A¥ is the set € of ends of T. Note that it does
not depend on 3. We also get the Martin kernel K = K¥: for z € T and w € Q,

K(z,w) = K(z,z Aw) = flezhw)  d(@F(,zAw) |

[z Aw)  Y(2)F(d,x Aw)

where f(i,7) = ZS;% = i(d; F(i, §) for i, j € T. Moreover, we denote by (M?)ieT the associated family of
harmonic measures on 2. From Proposition 2.2.5, we have, for i,z € T,

1- f(x’ f)
1- f(x,f)f(f,x)

1 () = Liery (1 — f(i,2)) + f(i,2)
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Note that we have only defined (,U;}b)yET for B € DY such that 1) > 0 and the walk in conductances
c¥ is transient. In remaining cases, we adopt the convention that ,u;’f is the null measure on €2 for all
yeT.

2.6.2 Convergence of ng): Proof of Theorem 2.1.6 (i)

From Theorem 2.1.2, we know that v’ -almost surely, for all 4,5 € T, G™ (i,7) converges to G(i,j) and
(™ (i) converges to 1(i). Let 8 € DI¥ be such that these convergences hold. Let us show that for such

B, forallm e N, z € D™ and for all i € T, ng)(i, d) converges to w(i)u?(Qx), and we will have shown
that this convergence holds v}¥ -almost surely.

If 3 is such that ¢ = 0, we know that for all i € T, x € D™, 0 < XS:Z)(Z', 62) < (™ (i) from Remark
2.1.2, so Xslf)(i, 0z) — 0 = ¢(i)u? (€2,). We now suppose that 3 is such that (i) > 0 for all i € T.
n [ee]

Let us fix i € T and 2 € D™, Recall that for n > max(|i|,m),

, A (s o\ (n Ws n
X o)=Y GGyt = Y > @ |

yeT,ND™ yeTNDM \ ;epr(m)
Y

Let us decompose the paths o € PE;M, in order to write X,(ff) (i,0,) as a function of F™ and 4™, We
will distinguish two cases.

First, if i ¢ U, = T,\{x}, then for all y € T,, N D™ any path from i to y in T(") necessarily visits z,
i.e. ng(m = ZT{(Z)}y Therefore, from Proposition 2.2.3 (iii), G (i,y) = F™ (i, )G (z,y). In order
to decompose G(™ (z,y), let us introduce the quantity ¢, (o), defined as the number of times the path o
crosses the directed edge (x, &), i.e.

3

co(0) = #{k € [0, o] = 1], (0%, oh41) = (2, )}

Then we have

CeN O'E'P;;n)
¢y (0)=C

Ifoe P{if” is such that ¢, (o) = C > 1, then it has to visit & at least once. As a result, o can be written

. 7\ (5
as the concatenation of a path o1 € P, M

2L

with a path o} € ’PETZ(;) such that ¢, (o) = C — 1. Since

- . . . . =T
I ¢ U,, the path o} has to visit z, so it can be written as the concatenation of a path o9 € Pso Mt

with a path o3 € ng;” such that ¢;(03) = C — 1. Therefore, for all C' > 1,

W, W,, W,, W,
2 (26)s 2 (28)e, 2 (28)0, 2 (28)0s

ert? BTN eI S
¢y (0)=C cp(03)=C—1
= W,
= F (2, 5)F"™ (F, ) Z s
P,
@,y
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Moreover, note that the paths o € 7757(;) such that ¢, (o) = 0 are those that stay in the subtree Ta(;"), i.e.

(n)
the set 7’;’@, . By induction, we get:

e = Y (0w Db ) T e
CeN et Y

Since G (z,y) < oo, we have F")(z, )" (£, z) < 1, which gives

X6 = > FM,2)G™ (@, y)n("

yeT,NDM)
A~ 1 W
= FM (i, 0)—— . 3 3 o |y,
’ n oy n) (s Yy
1— F®)(z, 7)) (%, z) verurpm \ (26)4
In order to express this last sum, recall that
p(z)= 3 Gz, gl
yeD™)
W W, | .
=2 > + "
) T (2)s ' (28)o
Y AEREW sePls

where we have separated the paths that go from x to y by visiting &, and those that stay in T;n), since

n n (n)
PT’;) _ g"f{f)} , Y ’Pg}y . From Proposition 2.2.3 (iii), we have

WU r(n N\ A(n) (s
> g S P nE @)
oePT( 7

z,{Z},y

(n)
Moreover, if y € D(")\ng7 then PZ;TZ'/ is empty. As a result, we get

Y| X g | e e - e @),

T,AD(m) (n)
ve ae”PEfy

which finally gives
P (x) — F (@, 7)) (F)
1 — F0) (2, 7)F™) (%, x)
In the second case, i.e. if i € U,, then for y € T, N D there are paths from i to y in 7™ that do not

.. . . s ) () ulm (n) _ (n)
visit 2. More precisely, we have the following partition: P; =~ = P; (e} UP;, - where Uz’ = U, NT"™.
As a result, we have

ng) (ia 51) = F(n)(%x)

: ) () — B (&, 8 () W,
(3, 5,) = B (i, ) ) 2 +  ON
X (0 0a) = E ) ) (o P (7, ) 2 Z) @8), | ™

O'GU'PL;

yET,NDM)
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In the same way we did above, we can show that

sz n n)(. (n) n
3 > g | =00 - FOG @),
yeT,ND) U,’;,U(") 7

In conclusion, we have established the following:

NG _ (n) B ()™ iy M (@) = PO (, 2)y () (F)
(7’ O ) ]1{1€U }('(/} ( ) F (Z,ZC)’(/J (:B)) +F (Z7x) 1_ F(”)(l‘,i_‘)ﬁ(”)(f7 l‘)
1- f(n) (17, f)

— [0 (z, ) f)(&, x)) ’

— () (n{zeu L= £ i)+ £ )

where
P () -
mOTREA

for all 4,7 € T. As a result, we finally have

f (i) =

0.02) = 600 (Lpsewy (= 162 + 160 = L) — vt @),

We can now define, for all ¢ € T, the measure x(i,-) = z/;(z)ug’ Note that x(i,-) is absolutely
F(i,iAw)
F(p,inw)”
A e B(Q),i— u?(A)is A¥-harmonic, so x(-, A) : i — (i)u’ (A) is Hgz-harmonic.

continuous with respect to x(¢, ), and its Radon-Nikodym derivative is w

Moreover, for all

2.6.3 Convergence of (G,(g))BWBm

(n
Let us show that under vy (dﬁ)u};vm (dp’), the distribution of (GS,?))BWBm converges weakly when

n — 0.
We can write (G,(ff))BWBm as the inverse of a Schur complement. Indeed,

-1

(GO B, B, = (H(n))Bm,Bm ((H(n))Bm,B,,L (W&”))Bm,wm((Hén))www)_1(W&"))T<n>,3m)

b4 -1 rr(n —
= (@805, ~ W) = ()T

y ()
where H(") =2( ("))Bm — W,(nn). We apply the following change of variables: for 8 € DIV, g’ € D]‘;V;"
and b € B,,, let us define (p%‘))b =( 5,?))1, — %( v,(,?))b,b. Then Hé") = Qp%l) — Cv'ﬁr?), where if b, b’ € B,,,

4O AVST Y oy
C(n) , = ( m )b7b 1
(ConJos {0 b=,

5(n)
Under vy, (dﬂ)yB (dﬁ ), the vector pg,?) is then distributed according to yg”" conditionally on Sr. Let

)"

us show that the matrix C’,(n) converges v4¥ -almost surely, to prove that py,” converges in distribution.
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Let us fix 3 € DY, aswellas x # y € D™ and i ~ 8y, j ~ dy. A path from i to j in T necessarily

crosses T Ay, since ¢ € T, and j € T,,. Therefore, Pf;n) = P;T{(:)/\y} j» 80
(CENsos, = D, (W5, iG (0, )W),
N IRINES
- W, .

= >, sl D W5 )is,
INLRUINE) (n) (28)s
ety TEP e nut

= D (Ws il e Ay)W)s, ;B0 Gow Ay)G™ (@ Ay, z Ay)
i~ Gy, J 0y

1 - . - R

- _ (n)ys .G (i, 2 A WY GOz A

Sy (S ) | 06

_ XM @Ay, )X (z Ay, 8y)
GO (z Ay, z Ay)

)

and (6'7(,7,1))51,51 = 0. Since X(") converges V%V—almost surely, the matrix 6'7(:) also converges to a matrix
Cyn, where for z, 2’ € D™,

( m)5w75m/ =

X(@AY, Qo)X (@AY, Q) s ’
s G’(w/\y,z/\y) if # x
0 if v = a'.

i (n) % (n)
Under VIW(dﬂ)yg/’" (dp"), and conditionally on S, pgﬁ) is distributed according to ug:: , which v¥-

m

almost surely converges weakly to I/g:: by Lévy’s theorem.
. ir(n)
Therefore, the distribution of (GS,?))BWBM = (2p5,7) . Cf,:l))’l under I/TW(dﬁ)l/EVT;” (dpB’) converges
weakly to the distribution of G, := (2p,, — Cp,) " under VTW(dﬁ)yg’" (dpm) =: V%’Bm(dﬁ,dpm).

m

2.7 Representations of the VRJP on infinite trees

2.7.1 Representation of the VRJP using G,,: Proof of Theorem 2.1.6 (ii)

Recall that for 0 < m < n and i,j € T,

G, 5) = GG, )+ D xG DG 6,05 (4,6,
b,b'eEB,,

() -
where under VYW(dB)UEfT (dp'), G = (26,(#) - Wy(nn))_1 provides a representation on the VRIP on G,

from Theorem 2.1.1. We have shown that when n — oo, Y\ converges almost surely, and (G'2)) 5, 5

converges in distribution. As a result for all i,j € T, the distribution of ng) (,7) converges weakly to
the distribution of G, (7, j) under u%‘me (dB, dpy,), where

Gm(i,) =G5+ D x(i, )X, Q)G (8, 8y).-

z,x’€D(m)
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The second term in G, (i, j) can be rewritten as an integral on Q2. Indeed, let us define g,, : 2 - R
in the following way: for w,7 € Q, if 2,y € D™ are such that w € Q, and 7 € Q v, we set g (w,T) =
G (03,0y). With these new notations, we can now write, for ¢,j € T,

Gm(ivj) = é(za]) + Xm(iv ')Gmt (Xm(j, ))
= Gl0.3) + [ Xl ) dr) (7).
Q
For 8 € Dy, pm € Dg’;, and all ig,4,j € T, we denote rf;”’”’io = %% To prove Theorem
2.1.6 (ii), we have to see that the process with distribution PV EJP(i0) i a mixture of Markov processes
]P’?O’p’"’l0 under vy (df,dp,,). The proof is the same than that of Theorem 2.1.2 (iii) (see [SZ19]). Tt
consists in studying trajectories of the time-changed VRJP, stopped when they leave a finite subgraph

included in 7. They can be considered as trajectories of the time-changed VRJP on g,‘,?), and repre-

sented using GS,Z‘) thanks to Theorem 2.1.1. Taking the limit in distribution when n — oo then gives the
(n) (50 4

result. Note that the proof needs an argument of uniform integrability on the family (%(“’?) for
m (20,2 n>m

all 7,7 € T, which is given by Proposition 7 and Corollary 2 from [SZ19].

2.7.2 Convergence to another representation: Proof of Theorem 2.1.6 (iii)

Let us show that the representations of the VRJP built with G,, converge in distribution when m — oo

to the representation described in Theorem 2.1.5. To show this, we use a tightness argument, based on

the following lemma regarding the distribution 1}/ .

Lemma 2.7.1. Let G = (V, E) be a finite graph, endowed with conductances W. We denote G = (Hg) ™!

or B S D . Then for all n S R B under Uy dﬁ 5 n,G’I’] has the same distribution as (7],1[ 5 where Y 18
2y
a Gamma random variable with pammeter (1/27 1)

Proof. Let n € RY be fixed. We will compute the Laplace transform of (n, Gn): for X € R,

E[e#\(n,Gn)} :/ —X(n,(Hg)""'n W (dB)
_ VA1) /e—%<mn,<Ha>*1mn>e<mn,n>V‘v/v(dﬁ)

_ VAL / PV (g = VA

since V‘IiV,\/ﬁn is a probability measure. Let us now compute, for v ~ Gamma(1/2,1), the Laplace

transform of %: for A e Ry,

A 1 _2x 2
T2y | = Fu = 5(5+220) — V2 -5 (v= f)
E [e 2 } Tyu>0 \/76 du = o W dv=-c¢e />0 \/We 2’ dv,

by taking v = 1/2u. Since ]lv>0\/76 - dv is the density of an Inverse Gaussian distribution

with parameter (1,1/v/2)), we finally get E[e*%] — ¢ V2X Therefore, for all A > 0,

E {,mcm} —/2Am? _ { M]

which proves the result. ]
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For m > 0 and 8 € DIV, let us define, for i € T and m > 0, the vector ,u ) € RB» by (i (m))(é ) =
,uzp(Qz) for all z € D(™). Then7 for p,, € ng' and i,7 € T,

/ X )X dr ) (0, 7) = (0)6(5) / (0o (A7) G (8, 617)
02 Q. X

z,x’€D(m)

= W) () ("™, Gty ™).
We denote, for m >0 and i,5 € T,
oM — 4<N(m) +/~L§m) G (i (m) +N(m))>
so that we have
Gonli. §) = Gli. ) + V(DY) A, Cmit™)
ANpeoo. 7/) { dj ] m m m
=G(i,j) + % (4‘11(',3‘) —a{™ —af )> :

Therefore, we can write (G, (%,7))ijer = ® ((é’(i,j))i,jeT, (¥(1))ierT, (agg))i7j€T>, where @ is a contin-
uous function.

We will denote by 7y (df,dp) the distribution of a coupling of distributions v} (df,dpy,) for all
m > 0.
Lemma 2.7.2. Let us set Z,, = ((G(z’,j))map7 (¥(1))ier, (GE?))umT) for m >0, which takes its values
in RT* x RT x RT". Then under 73 (df, dp), (Zm)m>o is tight.

Proof. For € > 0, let K. be a compact subset of R such that 0 € K. and

1
P { € KE} >1—¢
2y
when v ~ Gamma(1/2,1). Let us now fix m > 0. Recall that G,, = (2p, — Cn)~', where C,, is
a [-measurable matrix of conductances on B,,, and conditionally on B, pmy is distributed according to
I/g::. Therefore for 4, j € T, from Lemma 2.7.1, (f; (m) 4 ,u ™ G ( (m) ¢ _(m)>> has conditionally on
(¥ ()41 ()2
2y

{v # 0}, al(?) has the same distribution as %, and conditionally on {1 = 0}, al(»j?) = 0. As a result, for
all € > 0,

the same distribution as , where v ~ Gamma(1,1/2). This implies that conditionally on

P[QQGK} Pl = 0] + P[4y 2 0] P {26K]>1a

2,

Let now (dfcm)) be an enumeration of (a(m)) . Then for ¢ > 0,
kEN i,jET
PkeNN()GKTW%}Zl—EZTWAazl—a
keN

where K, = [Iren K2-n-1. is a compact subset of RN. Moreover, the B-measurable random variable
((G‘(i,j))i,jeT, (¢(i))i€T) takes its values in RT” x RT, where T is countable. As a result, for all € > 0,
there is a compact subset K. C R7* x R such that

P[((GG.3)iger: (0()ier) € KL| > 1~
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We can now conclude that for all € > 0,
P[ (GG irer, W(@)ier, (@ iger) € Kepp x Kljo| > 1,
where KE/Q X K;/Q is compact, and does not depend on m. O

As a result, there is an extraction (my)ren such that (Z,,, )ren converges in distribution under
vV (dB,dp). Since Gy, = ®(Z,,,) where ® is continuous, (G, (i,7)): jer also converges in distribution
(mk)"b)i,jeT. Let us show that the limit distri-

,J
bution of the environment does not depend on the extraction, which will mean that ((TZ(T)’d))z‘,jeT)meN

converges in distribution, since it is tight.

under under 7} (dB, dp), as do the random jump rates (r

Lemma 2.7.3. For m > 1 and for all n > m, under the distribution vy (dB)VB " (dﬂ) the random

(¢>L)) ™) (1)
Gil”(¢>,i) ieT(m\{p} G(n)( )

(Ws, 1) for i € T™\{g}.

variables ( are independent inverse Gaussian variables, where has parameter

() (4 "
Proof. Let us fix 1 <m < n. Fori € T(m)\{¢}, we denote g; = gf’“gi% Since |i| < m, any path in gﬁ,ﬂ

from ¢ to 4 crosses 4, so from Proposition 2.2.3 (ii) and (iii),

G (i) (Wi)o
o j~i cepTi @ 1T T

For i € TU™\{@}, let us denote by T the connected component of i in 5" \{t}, i.e. Ty = MU {6z, €
D™ N T;}, endowed with the restriction of W ™) This way, we get

7(n) -
gi =Ws, ZT E(Z);Z =i, ()7 7)) G,

0'673111'%

0 g; is (Bm )7, -measurable.
To prove that (9i)ieTom (¢} are independent, it will be enough to see that for i € TN\{¢}, gi is
independent of g, ), and that for = € T(m=1) the restrictions (97, )ies(x) are independent.

—1 ~ -
Writing ((Hé"))fﬂ) (,1) as a Schur complement, we see that, if we set U; = T;\{i},

Ws, W{,i

i,

n n N O
280 = Lgresy WaaWaa (H§)o.0) 630 s

gi =

From Proposition 2.2.2, conditionally on (ﬁg))ﬁi, the distribution of ( ,(,Tf))l is given by

{i _ 1 (gl ity —
\[ = >{Oz} BRI W a(alp),
det( H
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so by a change of variables, the distribution of g; conditionally on ( T(’?))Ui is

o W{i( 1)2
LT 5 (9
]lgi>0 2 36 293 7 dgi,
Tg;

i.e. gi ~I1G(W5,,1). Since this distribution does not depend on ( ﬁ,zf))ﬁi, g is independent of ( 7(7?))01'

For all j € Ui(m), T; C U;, s0 g is (Bﬁﬁ))ﬁi—measurable. Therefore, g; is independent of g, ).
Moreover, for x € T~ the sets (Ti)ies(x) are all at distance 2 from one another in G\, Since
(n)

B is 1-dependent, the restrictions (ﬁﬂ )ies(z) are independent. For j € T;, we have Tj c Ty, so gj is

ng)—measurable. Therefore the restrictions (QTi)ieS(w) are independent, which concludes the proof. [

i

()
For m > 1, the distribution of G\ under v (dﬂ)ug’" (dp’) converges weakly to the distribution of

Gy under vy (df, dpy,). If we denote ggm) = % for i € T\ {¢}, and take the limit in Lemma
2.7.3, we get that under Vq‘f[me (dB,dpp,), (gfm))iET(m)\{¢} are independent, and gim) ~ IG(W+ 1) for
i € T™\{¢}. Recall that the random environment associated with G,, is given by the following jump

2,17

rates:
ybopm® %M and 77m % = %M,
2 Go(6,7) 2 Gunl(g,i)

for all i € T\{¢}, and r[’™? =0 if i £ j.

Let now (my)ren be an extraction such that under 73 (d3,dp), (r
() (00),
J

Bspmy, @
2%
¢ =0 for i % j. Moreover, let us

)i,jeT converges in distri-

bution to a limit environment (r; i,jer- Then, we have r

(2]
set gE‘X’) = %rﬁo)’d’ for i € T\{¢}. Note that for all m € N, if k is such that m; > m, we have
T Tm%) 50 for all i € T\ {¢},
rﬂ,pmk,qb _ W?,i () and rﬂ,pmkxﬁ _ i
i 5 i i Qg(mk)'

Taking k — oo, we get that (gl(mk))iewm)\w} converges in distribution to (ggoo))ieT(m)\w}, which implies
that (ggoo))ieT(m\{(i,} are independent. Since this is true for all m > 0, (ggoo))ieT\{(b} are independent.

Moreover, for all i € T\{¢}, g\° ~ IG(Ws,,1) and
W-e. W-.
e 2 Wit go0 g e - Ve
) 2 ) 291

The random environment given by these jump rates is in fact the one described in Theorem 2.1.5,

hence its distribution does not depend on the extraction (my)ren. Since the sequence of jump rates
((riﬁf’”@)i,jeqﬂ)mzl is tight, this implies that under 7} (df3, dp), it converges in distribution to the random
environment given in Theorem 2.1.5.

2.7.3 Distinct representations on a regular tree: Proofs of Propositions 2.1.7 and
2.1.8

Let us start by proving that on regular trees where the VRJP is transient, the standard representation
and the one given in Theorem 2.1.5 are different.
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Proof of Proposition 2.1.7. Let T = (T, E) be a d-regular tree, where d > 3. It was shown in [DV04]
that there exists a W > 0 such that for W > W, the VRJP on T endowed with constant conductances
W is almost surely transient. Note that the VRJP is defined in a slightly different manner in [DV04],
but it can be related to the definition used here, thanks to a time rescaling described in Appendix B of
[STZ17]. From now on, we take W > W.

We consider jump rates (75 ;)i~; on the tree 7. Let ¢ be an arbitrary root for 7, and let (iy)r>0 be an
infinite self-avoiding path (or ray) in 7, such that for k > 0, |ix| = k. Let us define S,, = [];_; %Tik_l,ik-
We will compare the distribution of .S,, under two distribution of jump rates.

Let Rina(dr) be the distribution of jump rates in the representation described in Theorem 2.1.5.
Under Rinq(dr), we know that S,, has the distribution of H?:l A, , where A;, are independent inverse
Gaussian variables with parameter (W, 1). Note that E[4;] = 1, so by Jensen’s inequality, E[log(A1)] < 0.

By the law of large numbers, we then have a.s. that Y, _; log(4;) —— —oo0, so that S, ——— 0.
n—roo n—oo

Let now R (dr) be the distribution of jump rates in the standard representation of the VRJP started
at ¢ = ig. Under Ry (dr), Theorem 2.1.2 tells us that S,, has the same distribution as

ﬁ Glio,ix)  Glioyin)  Glioyin) + 359(i0)¥(in)
G(io,ik—1)  G(io,0) G (70, %0)

under 1}Y (dB3,dy), where according to Proposition 2.1.6, ¥(i) > 0 a.s. for all i € T. Moreover, since the
distribution of ¢ under ¥ (d3) is stationary for the group of transformations of 7 (see Proposition 3 in
[SZ19]), ¥ (i,) has the same distribution as (i) for all n € N, and cannot tend to 0 a.s. when n — oc.
Therefore, neither can S,, under Ry (dr), which proves that Ry and R;,q4 are different. O

We will now prove Proposition 2.1.8, i.e. that on a d-regular tree with d > 3, for constant W large
enough so that the VRJP is transient, the representations in the family given by Theorem 2.1.6 are all
different. In order to do this, we will compare the distribution of the random harmonic measures for each
representation.

The following Proposition gives an expression for the measure of sets Q, for x € T. We will see how
this expression behaves differently whether or not |z| > m.

Proposition 2.7.1. Let m € N be fized. We also fix 3 € DIV and p,, € Dg::. We denote by uf;’pm’¢ the
exiting measure of the transient Markov process Pi’”””’¢ defined in Theorem 2.1.6. Then for x € T,

_ fQXQI X(d)a dw)gm(w, T)X((ZS, dT)
oz X (8, dw) g (w, T)x (¢, dT)

‘ug»Pm@(Qx)

Proof. We denote p = ug’p”L’¢. Let g be the Green function associated with the discrete Markov chain

associated with P2Pm:¢ je. with jump rates rf}pm"b = %% Let us denote, for i,j € T,

fli,g) = % Then from Proposition 2.2.5, we get the following expression for x # ¢:

1— f(z, &)
- f(x,f)f(f,x)

M(Qw) = f(¢’ ‘T)]_

For 4,7 € T, we have

lo| -1 T-,B,Pm’@ﬁ G«7

0 . Ok k41 n 7. Wa
9. ) =Y PP =41= > [] F; _Gm((jsz) 2 (28)7"

keN UGP;TJ, k=0

~—
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where §3; = > rPPm? are the rates of the corresponding holding times. Note that B = B; —

Jri g

Tgi—g) 2Gm1(¢,¢) for i € T. In particular, if a path o never crosses ¢, then (25)0 = (20),-.
Let us denote G(i,j) = ZJGPT W and F(i,7) = GGd) then

G(5,9)°
o Gm(@0) 5 Gn(6,9) Gird) _ Gm(®.) 7
g(l,j) (¢7 ) ( )Qﬂjv and f(Z J) m((b,i) G( ) - Gm(¢>,1) F( ,])

The expression for the measure becomes

Gl 7) G(,2) [ 1 -GS F(w, &)

é(¢7 $) Gm((bv .’E) - Gm((ba f)ﬁ(xvf)
Gm(8,0) \ G 2 '

Let us compute the following terms: firstly,
G(x,z) — F(z,5)G(f,z) = Gz, z) — F(x, £)G(E, ) F(x, F)

Wo Wo _
S eh, LA @ Z

oeP?l,

F

28),

q
—

Indeed, paths from z to 2 that do not cross & have to stay in the connected component of = in T\{Z},
which is T}, i.e. ’Pz \PL {5ha Pg;. Moreover, ¢ ¢ T, so for o € PxTx, (28)s = (28)s- As a result,

Secondly,
Gm(¢’ ‘r) - Gm(¢a f)ﬁ(x7f) - é(¢7x) - é(d)a E)F(xvf)
+ [ 30 (xandr) - Fla o))

Note that if o € PT\{Z} then oy, € T}, for k < |o| — 1, so (28); = (28);. Therefore, F(x, ) = F(x, ).

_ pT
Moreover, since P¢,m =Py (5},.0 We have

Recall also that the density of x(z,-) with respect to x(¢,-) is 7 — FE; 227) As a result,
Gon () = Gon(,)F(0.3) = | (6. )i w.7) (o) = Fla, (5. )
5 Flz,oz AT . _F@EinT
= [ X0 ddgn (6 ar) ( EERT iy ZEIRT
Q2 F(p,zNT) F(¢,TAT)
For 7 ¢ Q,, x AT =& A 7 and paths from x to & A 7 cross &. Therefore,

Flz,z A7) P )F(x,f/\f)iﬁ(x,f/\ﬂ F(z,%)F (i, & FAT)
Foanm)  F(gEnT) F(¢,& A7) '
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For € Q,, z AT=xzand T AT =1, so

f:?(:v,x AT) F(x’f)}?(f,f ) _ C:;(x,x) B F(xvf)(:;(f, )
F(g,xAT) F(p,iAT)  G(o, ) G(¢, )
_ Ga,x) — F(a,0)G(%,2)F(&,7)  GT(x,2)
N G(6,x) - Ggr)
As a result, we have
.
Cion(,) — G (6, 5 F(2, ) = GG(;@) [ 3ot an)

For = # ¢, we finally get

G(¢,2)
Q)= ——F——
M) = 0 6 n)

_ G(,9) I
- G(6,9) /QQ X(0; dw)gm (@, T)x(, dT)

/ X(, dw) gm0, )X (6, d7)
QAXQp

since F(JE, @) = ﬁ(% ¢). Moreover, by summing over z € S(¢), we have the same expression for ;(y) =
w(Q):
G(¢.9) V
L=p) = ——— "= ——  dw) G (w, dr).
) GM@@&@@K;M¢WW(WﬂM¢T)

As a result, for all z € T,
 Jawa, X(6,dw)gin(w, T)X(0, d7)

p(lds) = fQ2 X(¢, dw)Gm (w, 7)x (0, d7)

O

Proof of Proposition 2.1.8. Let T be a d-regular tree, with d > 3, endowed with constant conductances
W such that P[Vi € T,¢(i) > 0] = 1. Note that (7,W) is vertex transitive, so it is enough to show
the proposition for ig = ¢. The following lemma is a consequence of the symmetries of (7,W), and
guarantees that almost surely, the exiting measure gives weight to the whole boundary Q.

Lemma 2.7.4. Almost surely under v}¥ (dB), for all x # ¢, x(¢, Q) > 0.

Proof. For all z # ¢, we define ¥, = ¥(x) — F(x,£)(E). Then x(p,Q) = F(¢7m)_X7T and

Plx(¢, Q) > 0] =P[x, > 0].
Note that

V@) - FO @@ = Y | Y g |
yeTImD(n) " Tg(;n) ( )G’

z,y

is fr,-measurable. Therefore, taking the limit when n — oo shows that X, is also 7, -measurable. As a
result, given a fixed m < 1, the random variables (Xz),cpen are independent, since V“;V is 1-dependent,
and have the same distribution, since u‘v}/ is invariant under the group of automorphisms of 7T .

Moreover, we have 1(¢) =3, c pom) F((ﬁ,y)m, s0

P[h(¢) = 0] = P[vy € D™, %, = 0] = P[xs = 0]\D<"‘)|
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for any € D™, Since P[t)(¢) = 0] = 0, we get P[x, = 0] = 0 for all z € D™ and all m > 1, which
implies that almost surely, for all z # ¢, x(4,Q) >0
O

Let us fix m > m/, and denote p(™) = ,ug”’"“‘ls and p(m) = ug’pm"(b. Let € D(™) be fixed, note that

x # ¢. We define the following events:

(m) Qﬂﬁ) (¢’ QI) m’ M(ml)(Qw) X((ban)
) _ [ () x } A — _ .
! {u(””(ﬂf) x(¢, Q%) and Az () x(e, Q)

Let us first show that the event A(m) is r%Pm-¢-measurable. Note that the exiting measure u(m) is
measurable with respect to the corresponding environment 7%#=:¢. Moreover, for i £ b, Bi= B =
x(¢,82)

ZJNZ rf]pm @ ig pPpm®_measurable. Therefore, we just have to show that (600 is B\ {y)-measurable.

Since x(¢, Q) = Cl(cf), x) ZyeS(x) Wiy Xy, We have

x(¢, Q) G(¢,x) Yyes@ WaeuXy >yes(z) WayXy

== — = F(z,2) —,
X((b’ Qf) G(¢v :L’) Zzes(f) Wf,zXz ZZES(E) W57ZXZ

which is fy,-measurable and therefore [7\(4)-measurable. We can conclude that Agm) is rBPm-b_
measurable, and in the same way, A;m,) is 78:Pm’*_measurable. We are now going to show that under
u%VB ,(dB, dpm+) we have P[A(m )] = 1, while under v}y (df3, dpy,) we have ]P’[Agcm)] = 0. This will prove
that the distributions of 7%#m¢ under 1/7‘/}7/37” (dB, dpy,) and rP»n"® under V%/Bm/ (dB, dpm) are different.

Since |z| = m > m/, we have |¥| > m/, so there exists z € D) such that & € T, i.e. Qy C Q..
Then for all 7 € Qs, [, X(¢, dw)gm (W, T) = Y pep, Xm (6, D) G (b,0,). As a result,

M(m’)(Qx) B sz (ZbEBm/ Xom (6, b) Gt (b, 5Z)> X(¢,dr) x(9, %)

u(m,)(QE) - fQ; (ZbeBm, Xm’(¢>b)ém’ (b, 5;;)) X(¢,dr) X(¢, 25

)

~—

S0 ]P’[A;ml)} = 1under vy (dB,dpm).
We will finally show that v} -almost surely, ]P’[Agcm)|ﬁ] = 0. Since |z| = m, we have

1™ () = Xon (6, 5 Z G (02, 0)Xm (0, 1),

beB,,

and p(™(Qz) = Z Xom (@, Oy Z G (6, 0)Xim (0, D).

yES(F) bE B,

Let us denote, for y € D™, uy =3, 5 Gin(8y, b)Xm (6, b). Then

Az {Mm)(g ) = X(6, QE)} > ( ) v ¢ = {u € ker(fs)},

z yeS(z)

where fg 1 (vy)yepem = X e xgiﬁjgvy v, is a linear form conditionally on j3, which has almost

surely rank 1 according to Lemma 2.7.4, so that ker(fz) is a hyperplane of RIP“™1. Let us show that
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conditionally on f, the distribution of (uy),cpem is absolutely continuous with respect to the Lebesgue
measure on RIP™™ 1 and therefore P[A;m)m] = P[u € ker(f3)|8] = 0.
Recall that G,,, = (2pm — Cv’m)*l, where conditionally on 3, p,, is distributed according to I/g::7 which

is absolutely continuous with respect to the Lebesgue measure on RIBm| = RIP™ 1. Let us define

RlD(m)l N RID(m)‘
Pm (uy)yeD(m):Gme(¢a')

For all p,, such that 2p,, — C,, > 0, @ is differentiable, and its differential is

d (I)(U) = _QGmdiag(U)éme(¢v ) = _2Gmdiag(v)u>

Pm

which is invertible, with (d, ®)~!(w) = (—M . Note that this is well-defined since u, > 0

2uy )yED(m)
for all y € D) thanks to Lemma 2.7.4. As a result, ® is a local diffeomorphism. Therefore, the
distribution of u = ®(p,,), conditionally on 3, admits a density with respect to the Lebesgue measure
on RI?"™ 1. We deduce that almost surely, P[AY™|8] = Plu € ker(f3)|8] = 0, and therefore P[A{™] = 0,
which concludes the proof. O]
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Abstract

This chapter is once again self-contained, and presents results from [GSZ20]. They concern a multi-
dimensional version of the Matsumoto-Yor opposite-drift theorem, obtained in the case where the drift is
%. The proof relies on applying the time change from Lamperti’s relation, to a result from [SZ17], which
relates the 8 potential to a family of Brownian motions with interacting drifts.

Section 3.1 presents prerequisite material as well as the main result of this chapter. In Section 3.2,
we study the Lamperti time change on Bessel bridges. Finally, in Section 3.3, we present two ways of
applying a multi-dimensional version of this time change to the interacting Brownian motions of Theorem
3.1.2, to obtain Theorem 3.1.4.

3.1 Statement of the results

3.1.1 A first classical result

Let us first recall a well-known result regarding hitting times of the drifted Brownian motion (see [Wil74]
and [Val91]).

Proposition 3.1.1. Let 6 > 0 and n > 0 be fized, and let B be a standard 1-dimensional Brownian
motion. We define the drifted Brownian motion X by

X({t)=0+B(t)—nt
fort >0, and denote by T° the first hitting time of 0 by X (t). Then the distribution of T° is given by

0 (_1 (6 —nt)?
V2rt3 2 t

Moreover, conditionally on TO, (X(t))0<t<T0 has the same distribution as a 3-dimensional Bessel bridge
from 6 to 0 on [0,T°].

Note that for n = 0, i.e. if X is a Brownian motion with no drift, then (3.1) is the distribution of

%, where v is a Gamma random variable with parameter (1,6%). If n > 0, (3.1) is the Inverse Gaussian

distribution with parameter (%, 6?).

We will now present two related results. One is the Matsumoto-Yor opposite-drift theorem from
[YMO1], obtained from Proposition 3.1.1 thanks to a time change appearing in Lamperti’s relation. The
second one is a multivariate version of Proposition 3.1.1 from [SZ17], where the hitting times of a family
of interacting Brownian motions are given by the [ potential introduced in [STZ17] to study the VRJP.

3.1.2 Opposite drift theorem and Lamperti’s relation

Let us present a version of the Matsumoto-Yor opposite drift theorem from [YMO1], in the specific case
where the drift g is %, and with an added term depending on 7.

Theorem 3.1.1. [Theorem 2.2 and Proposition 3.1 in [YMO1]] Let 0 > 0 and n > 0 be fized, and let B
be a standard 1-dimensional Brownian motion. We define the process p as the solution of the following

SDE : ) "
p(u) =log(0) + B(u) — JU~ / ne? ™ dy
0
for u>0.
Let us define T(u) = [ €’ dv. Then :
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(i) We have

where T is distributed according to

9 1(0 —nt)?
Wexp (—2(;7)) Tgi>0ydt.

(ii) Conditionally on T°, there exists a standard 1-dimensional Brownian motion B such that foru >0,

A 1 T° — T(u
p(u) = Tog(6) + B(u) + 2u+log [ =)
2 70
One proof of Theorem 3.1.1 relies on applying a time change to Proposition 3.1.1. The relevant time
change is the one that appears in Lamperti’s relation, presented below (see [RY13] p.452) :

Proposition 3.1.2. [Lamperti’s relation] Let (p(u))y>0 be a drifted Brownian motion with drift p € R.
For u > 0, define

T(u) = / exp(2p(u))dv.
0
Then there exists a Bessel process (X (t))i>o with index u, starting from 1, such that for v > 0,
"W (u) = X (T(u)).

Let us sketch the proof of Theorem 3.1.1 using this time change. We use the same notations as in
Proposition 3.1.1: let 6 > 0, 7 > 0, let B be a Brownian motion and define X (t) = 0+ B(t)+nt. We define

Ut) = fot ﬁds, and T = U~!. Then T is the analogue of the time change featured in Lamperti’s

relation, where X plays the role of a Bessel process with index —% (with an added drift n). We define
p(u) = log(X (T (u))), so that e”(™) = X(T(u)), and p has the distribution described in Theorem 3.1.1,
i-e. a Brownian motion with drift —%, and an extra term when n > 0. Moreover, when u — oo, we have
T(u) — T, where T is the first hitting time of 0 by X. Conditionally on 7°, X has the distribution of
a 3-dimensional Bessel bridge, i.e. a Bessel bridge with index %, and p has the distribution described in

Theorem 3.1.1 (ii).

Remark 3.1.1. In [YMO1], the opposite drift theorem is stated in a different form, where 7 = 0 and the
drift u can be different from % Tts proof still relies on applying Lamperti’s relation, but this time to a
result concerning hitting times of Bessel processes with any index —pu (see [Law18] and [PY81]).

The aim of this article is now to obtain a multi-dimensional version of Theorem 3.1.1, by applying
the time change from Lamperti’s relation to Theorem 3.1.2, which gives a generalization of Proposition
3.1.1 to a multi-dimensional Brownian motion with interacting drifts.

3.1.3 Brownian motions with interacting drifts and the random 3 potential

Let G = (V, E) be a finite connected graph, endowed with conductances (We)ecr € (R%)E. Fori,j € V,
we denote by Wi ; = Wy, jy if {i,j} € E, and W;; = 0 otherwise. Note that it is possible to have
Wi > 0. For B € RY, we define the matrix Hg =23 — W, where 3 denotes the diagonal matrix with
coefficients (53;)icv .
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Proposition 3.1.3 (Theorem 4 in [STZ17], Theorem 2.2 in [LW19]). For all 6 € (R%)Y andn € (R})Y,
wW.,0,n
the measure vy, defined by

- iz ) )
A8 = Lo (2) oo (=5 (0.H0) = o (H) ) + (1.0

VI Hg
is a probability distribution. Moreover, for all i € V', the random variable ﬁ has Inverse Gaussian
2

0i
Mit2 0 Wig05? 07)-

> HieV 0; B

distribution with parameter (

For t € (R,)Y, we also denote by K; the matrix K; = Id — tW, where ¢ still denotes the diagonal
matrix with coefficients (¢;);cv. Note that if t € (Ri)v, we have K; = tHle’ where £ = ( L ) )
9%

2t 2t;
Finally, for ¢t € (R1)Y and T € (R;)Y, we define the vector t AT = (t; AT})icy -

Theorem 3.1.2. [Lemma 1 and Theorem 1 in [SZ17]] Let § € (R%)Y and n € (Ry.)Y be fized, and let
(Bi(t))iev.t>0 be a standard |V|-dimensional Brownian motion.

(i) The following stochastic differential equation (SDE) has a unique pathwise solution :
t

t
Xi(t) =0+ [ LocrodBils) = [ ocqa((W)(o) +n)ids (B ()
0 0
fori €V and t > 0, where for i € V, T? is the first hitting time of 0 by X;, and for t > 0,
V() = Ko (X () + (EAT")n).

W,0,n

(ii) If (X;)icv is solution of (E“;V’G’"(X)), the vector ( L ) . has distribution vy,"”", and condition-
ic

270

i

ally on (T))iev, the paths (X;(t))o<;<7o are independent 3-dimensional Bessel bridges.

7

To obtain an analogue of the opposite drift theorem as in Section 3.1.2, we want to apply the time

change from Lamperti’s relation to solutions (X;);cy of (E&V’O’U(X)). A problem will arise in the inter-

action term, since the time change will be different on every coordinate of X. To solve this, we will use a
form of strong Markov property verified by solutions of (E‘V,V ’9’"(X )), which is a consequence of Theorem
3.1.2(ii). This Markov property will be true with respect to multi-stopping times, defined as follows.

Definition 3.1.1. Let X be a solution of (E‘I;V’Q’U(X)). A random vector T = (T});cv € EV will be
called a multi-stopping time with respect to X, if : for all t € RK, the event Niev{T; < t;} is F;*-
measurable, where
Fi¥ = o ((Xi(s)o<s<ti i € V).
In this case, we denote by F3* the o-algebra of events anterior to T, i.e.
Fr ={AeFiVt e RV, An{T; <t;} € FX}
Let us now formulate the strong Markov property for solutions of (E‘KV O (x)).

Theorem 3.1.3. [Theorem 2 (iv) in [SZ17]] Let X be a solution of (E“;V’o’n(X)), and T = (T;)icv be a
multi-stopping time with respect to X.
Define the shifted process Y by
Yi(t) = Xi(T; + 1)
fori eV andt > 0. Moreover, we denote
W =w (KTATOY1 af](T) =n+ W ((T A TO)’?)a and X(T) = (Xi(T}))iev-
Then on the event N;cy {T; < 0o}, conditionally on T and ]-'7)5, the process Y has the same distribution
. w(T) X(T) f](T)
as the solution of (Ey/ T(X)).
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3.1.4 Main results : A multi-dimensional version of the opposite drift theorem

Let (X;);ev be a solution of (E‘V,V’O’T’(X)). As in the usual case of Lamperti’s relation, let us introduce

the functional that will define the time change. For i € V' and t > 0, we set

¢ ]ls<T0
Uit) = | =S5 s
®) o Xi(s)?

We first have to show that this time change goes to infinity.

Lemma 3.1.1. Let i € V be fized. Then

lim U(t) = +o0,

t—T?
s0 that U; : [0,T°) — [0, +00) is a bijection.

For all i € V, we then define T; = (Ui 70;)~". Therefore, for all u > 0, Tj(u) < T} and
limy, 00 T3 (u) = T7.
We can now show that the time-changed solution (Xi o Ti)iev can be written as

Xi(Ti(w)) = e
for u > 0, where (p;);cy is solution of a new system of stochastic differential equations :

Theorem 3.1.4. (i) For i € V and u > 0, let us define p;(u) = log (X;(Ti(u))). Then (p,T) is
solution of the following system of SDEs :

pite) =og(0) + Bu(o) + [ (=5 = e (WO 4 (@) + ) ),

. ' (EY " (p))
E(U) = / ezpi(u)du,
0

forieV and v > 0, where (Bi)iev is a |V|-dimensional standard Brownian motion, ¢’) denotes
the vector (eP(");cy, and

W = WKL =W (1d - T(uw) ™

(i) The equation (Ey’o’"(p)) admits a unique pathwise solution u — (p(u), T (u)), which is a.s. well
defined on all of R, .

As a consequence of Theorems 3.1.2(ii) and 3.1.4, we can relate the solutions of (E“;V’G’"(p)) to time-

changed Bessel bridges and the distribution V&V’e’". This is stated in Theorem 3.1.5 below, which is the

multi-dimensional version of Theorem 3.1.1.

Theorem 3.1.5. Let B be a |V|-dimensional standard Brownian motion, and let (p,T) be solution of

(BV""(p))-
(i) For alli €V, we have
T;(u) = / e20i(V) gy 5 T?,
0

U—r 00

where (ﬁ) 18 distributed according to V‘V/V’e’".

eV
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(ii) Conditionally on T°, there exists a standard |V|-dimensional Brownian motion B such that for
1€V and u >0,

- 0T (u
pi(u) = log(6s) + Bi(u) + %u + log (TT()> ~

T9

7

In particular, the processes (p;, T;)icv are independent conditionally on T°.

3.1.5 An open question

The Gamma and Inverse Gaussian distributions, as well as the distribution of the inverse of a Gamma
or Inverse Gaussian variable, all fall into the family of the so-called generalized Inverse Gaussian distri-
butions.

A random variable is said to have generalized Inverse Gaussian distribution with parameter (q,a,b)
where ¢ € R and a,b > 0, and denoted GIG(q, a,b) if it has the following density:

a\ /2 1 1
— 7tq_16_5(at+b/t)]lt 0- (3.2)
<b> 2K,(Vab) g

In particular, we have the following special cases (where zero parameter is understood as in [Nor94]):
0 12 6° 1 162
IG(—,0°)=GIG (-5, +, =], G =,0%) =GIG( —=,0,
<77 ) > ( 2 ) 2 ) 2 ) amma 2 ) 2 9 3 2
1 7% 6?

X~GIG (-2, &, 2 ) & 1/X aic (L2 17
2'272 2272 )"

Define the last visit of 0 of our drifted Brownian motion to be T =sup{t > 0: B; +60 —nt =0}. By a
time inversion argument, i.e. setting

and

~ —tB t>0
B, = 1/t ’
0 t=0
the Gaussian process B is also a Brownian motion and we deduce that % is the first visit time to 0 of
B, + n — 0t, hence T! is GIG(%, %, %) distributed, moreover, by Strong Markov property of Brownian
motion, we deduce that 7' — 70 is Gamma(%, 62) distributed, and it is independent of T°.
More generally, we have the following identity in distribution, which is known as the Matsumoto-Yor
property [WW07, MYO03]:

Proposition 3.1.4. Let T = (T°,T") be a random vector, then there is equivalence between the following
statements:

(Z) (%’Tl B TO) ~ GIG(%7 %, 77722) & Gamma(%792)
(ii) (7 — 70, T") ~ Gamma(L,n?) @ GIG(3, 2, ).

It is natural to ask whether such an identity holds true in the case of the distribution in Proposi-
tion 3.1.3, and whether one is able to define the process in the time inversion.
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3.2 Time change on Bessel bridges

3.2.1 Limit of the time change : Proof of Lemma 3.1.1

Let X = (X;)iev be a solution of (E}*"(X)). According to Theorem 3.1.2, conditionally on (T0);cv,
the trajectories (X;(t))o<;<ro are independent 3-dimensional Bessel bridges. As a result, in order to
prove Lemma 3.1.1, it is _en_odgh to show the same result for a 3-dimensional Bessel bridge.

Let us then fix # > 0 and 79 > 0, and let X be a 3-dimensional Bessel bridge from 6 to 0 between 0

and T°. We want to show that
t ds a.s.

o) = 0 X(8)% =10 oo

We will do so by applying the time change from Lamperti’s relation.
Since X is a 3-dimensional Bessel bridge, there exists a standard Brownian motion B such that

oy X0

dX(t)ZdB(t)+X(t) m

dt,

therefore by Ito’s lemma, for ¢ < 79,

_ dB(t) dt dt 1 dt
dlog(X(t)) = X(t) + X(t)?2 TO—t 2X(t)?

=dM(t) + %dU(t) +dlog (T° —t),

where M(t) = fot ?(%) is a martingale, and (M), = U(t). Therefore, there exists a standard Brownian

motion B such that M(t) = B(U(t)). Finally, for t > 0, we have

0 _
log(X (t)) = log(8) + B(U(t)) + %U(t) + log (TTOt) : (3.3)
o XM _ 0 swep+ive

70—t T
However, since X is a 3-dimensional Bessel bridge, there also exists a 3-dimensional Bessel process Y

such that for ¢t > 0,
0 t
X(t)=T"-t)Y (0( G

(see [RY13] p.467). Therefore, when t — TV, we have a.s. 7{(0—(2 — +00. Since u — B(u) + 1u cannot
explode in finite time, we have necessarily

Ut) 22 0.
t—T9

3.2.2 Time change on the conditional process : Proof of Theorem 3.1.5

Let (B;);cv be a |V|-dimensional standard Brownian motion. According to Theorem 3.1.4, there exists a
|V |-dimensional standard Brownian motion (B;);cy such that, if (X;);cy is the solution of (E‘V/V’o’”(X))
with the Brownian motion B, and if T; is the inverse function of U; : ¢ fot ﬁ for all i € V, then

(p,T) is the solution of (E&V’g’"(p)) with the Brownian motion B, where p;(u) = log (Xi(T;(u))) for
u > 0.
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Therefore, according to Lemma 3.1.1, we have a.s. for all 1 € V' :

lim Tj(u) = T)
S T =T
where T is the hitting time of 0 by X;. Moreover, we can apply Theorem 3.1.2 (ii) to X : the vector
1 o Jiatr : W.0,n
=55 is distributed according to v
(2T.0>i€v ) 1%

i

, and conditionally on (T});cv, the trajectories (X;(£))g<s<ro

are independent 3-dimensional Bessel bridges from 6; to 0 respectively. Since p;(u) = log (X;(T;(u))) for
u > 0, conditionally on (Tio)ieV, the processes (p;, T;)icy are independent, and their distribution is given
by applying the time change from Lamperti’s relation to a 3-dimensional Bessel bridge. This time-change
was already realized in the proof of Lemma 3.1.1 (see (3.3)), and the result is as follows : conditionally

on (T?)iev, for all i € V, there exists a standard Brownian motion B; such that for u > 0.

7 ;gi(“))

7

pi(u) = log(8) + Bi(w) + Su -+ log (

Ti(u):/o 20 (W) gy,

3.3 Multi-dimensional time change : Proof of Theorem 3.1.4

Let us first assume that Theorem 3.1.4 (i) is proven, and show (ii), i.e. that (E“f/’e’"(p)) has a.s. a
unique pathwise solution defined on all of R,.. Let B be a |V|-dimensional Brownian motion. Thanks to
Theorem 3.1.4 (i), we know that (E‘I;V’e’”(p)) admits a solution that is well defined on R;. Let us now
show that this solution is necessarily unique.

Let (p*, T*) be another solution of (E&V’e’"(p)) with the Brownian motion B. Let also K be a compact

subset of RV x {t € RY, K; > 0} containing (log(6;),0);cv. Then the function
K—RY xRV

1
(0,1) > ( Lo (WK (e 4 tm) ) )
2 i i€V

is bounded and Lipschitz. Therefore, up to the stopping time Ux = inf{u > 0, (p(u),T(u)) ¢ K}, we
have (p(u), T(u)) = (p*(u), T*(u)) from Theorem 2.1, p.375 of [RY13]. Since this is true for all compact
subset K of RV x {t € RY, K, > 0}, we have a:s. (p,T) = (p*,T*). This concludes the proof of Theorem
3.1.4 (ii).

Theorem 3.1.4 (i) remains to be proven. Let B be a standard |V |-dimensional Brownian motion, and
let (X;)icv be a solution of (E‘KV’B’”(X)). For i € V, recall that T; is the inverse function of

[0, TP = [0, +00]
U; : ; tds
" 0 Xi(s)?

and p;(u) = log (X;(T;(u))) for u > 0.

In order to show that (p,T) is solution of (E“;V’g’"(p)), we want to apply the same time change as
in Lamperti’s relation. However, in the equation (E“;V’O’U(X)), the term 4 (t) represents an interaction
between the coordinates X;(t) at the same time ¢ > 0, which correspond to different times U;(¢) when
writing X;(t) = e+ (Vi)

We present here two different ways of overcoming this problem. The first proof relies on identifying the
infinitesimal generator of the process (p;, T;)icv, using the strong Markov property presented in Theorem
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3.1.3. The second one uses Theorem 3.1.2 (ii), so that we can write X as a mixture of independent Bessel
bridges, to which we can apply the time change separately, and then identify the law of the annealed
process using Girsanov’s theorem.

3.3.1 First proof of (i) : using the strong Markov property of Theorem 3.1.3

Firstly, let u > 0 be fixed, and f:RY x RV — R be a compactly-supported C? function. To identify the
infinitesimal generator of (p,T"), let us compute

o B ((0). TO)FLD) — f(p(w), T(w))

v—ut v—u

Note that (T;(u));ey is a multi-stopping time in the sense of Definition 3.1.1 and that FPD = fz)“((u)-
Let us then define

W =W (Krw) ' K =1d = W™, and 7 = 5+ W(T(u)n).

Thanks to Theorem 3.1.3, conditionally on f%((u), the shifted process
Y =Yt (Xi(Th(u) +1)),.

is solution of the following equation :

AYi(t) = 1ycpodBi(t) = Lycgo (WK (V0 + (£ AT +7) at,
Yi(0) = Xi(Ty(w),

K2

fori € V, ¢t >0, where B is a |V |-dimensional standard Brownian motion independent from .7-"7)5(“), and

T? is the first hitting time of 0 by ;.
Let us now fix v > u, and define the interrupted process

Z=27""t (Xi((Ti(u) +1) A Ti(”))>iev'

For all i € V and ¢ > 0, we then have Z;(t) = Y; (t A Ti(v)>, where T}(v) = T;(v) — T;(u). Therefore, Z

is solution of

K2

dZi(t) = 1,y () dBi(t) — L,y (WW)(JF?F‘))*1 (Y () + (t A To)ﬁ(“)) + ﬁ(“)) dt,

for i € V and ¢ > 0. Moreover, since TAl(v) < TZ.O < oo a.s. for all i € V, there exists a.s. T° large enough

so that Z;(t) = Y;(T;(v)) = X;(T;(v)) for all i € V and t > 7.
According to Ito’s lemma, for all ¢ > 0 we have
dB;(t) dt

dlog(Zi(t)) =1« () 20N ltSTi(v)W

Ay (WOURE) T (Y0 + (A TO) +70) =
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where we can also replace t ATO with t, since Tl(v) < 170, Moreover, we denote by M; the following

martingale for i € V : M;(t f(f df(() for ¢ > 0.

Let us now denote
O(t) = (log(Zi(t)), (Ti(u) +t) AT;(v)),.,, € RV x RY

for t > 0. Then, applying Ito’s lemma to t — f(®(t)), we get

tAT: (v) . tAT; (v) 2 P
rem) - e =Y [ L@eane X [ j 5 e,
ey i iev i i
t/\Tv)af 1 ) s 1 " (e ds
+;/ S @00 (5 = 2o (WOURE) (o) 4 s 47) ) 50
tAT; (v) af
+ D(s))ds.
oy

Taking t > T, we get t AT;(v) = T;(v) for all i € V, and

f(@(1)) = [(2(0)) = f(p(v), T(v)) = f(p(u), T(u)),

since p;(w) = log (X;(T;(w))) for w € Ry and i € V. For all i € V, we can now use the following time
change in the corresponding integrals above : s = T;(w) — T;(u) = T;(w), i.e. w = U;(T;(u) + s). Note
that

d 1 1

for 0 < s < Tj(v), £Ui(Ti(u) +s) = X (To() 1 9)2 = 752

d .
and for u < w < v, d—Ti(w) = X(T;(w))? = e2ri(w),
w

As a result, we obtain :

F(p(),T(v)) — f(p(u), T(u))
_ " of Py v 18%f
=3 ([ g oo Tasition + 555 ot T

- ) (WO(R ) (KT ) + )i ) + i) ) du

Here, the vector X (T;(w)) = (XJ'(Ti(w)))jev is different from ") = (X;(T};(w)))
need to take v — w and identify the generator.
Note that since B is independent from fj)f(u), we have

jev This is why we

/T OF o dBis)
0 apz

E[/ gp{(() T(w))dNE (7 ‘;p, }_E
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for all © € V, and therefore

E[/(p(v). T(v)) = £ (p(u), T(w) | FT] = E

Z (/uv ;gpjg(p(w),T(w))dw

i€V

o o (L9 (PR 0 1) 50)

+ / % (p<w>,T<w>>62“(W)dw> oy

By continuity and dominated convergence, we can then conclude that

E | f(p(v), T())|FL | — fp(u), T(u))
i, { P ‘v_u} P -y (28/)2(p(u),T(u))

eV

of
Ipi

+ (p(u), T(u)) ( — % _ ePi(u) (W(u)ep(u) + ﬁ(u))z) + 87 (p(u)7 T(u))er"(u)> 7

which is in fact L£f(u), where £ is the infinitesimal generator associated with the system of SDEs
(EXO(0)).

3.3.2 Second proof of (i) : using the mixing measure and Girsanov’s theorem

This proof follows the same structure as that of Theorem 3.1.2 : starting from the distribution of the
process as a mixture of simpler quenched processes, and computing the integral in order to identify the
annealed distribution, using Girsanov’s theorem.

Let us denote by X = (X;(t))icv>0 the canonical process in C(R,,RY), and by P the distribution
on C(Ry,RY) under which X is solution of (E‘KV’O’"(X)). According to Theorem 3.1.2 (ii), the vector

(Bi)iey = (ﬁ) has distribution V‘KV’O’". Moreover, conditionally on (T7);cv, the marginal processes X;

for i € V are independent 3-dimensional Bessel bridges from 6; to 0 on [0,77]. In other words, we can

write
Pl = [ (®P§i[-}> ),

=%
where for i € V, IP’f is the distribution on C(R;,R) under which the canonical process X; is a 3-
dimensional Bessel bridge from 6; to 0 on [0, 77].
We can now apply the time change independently on each marginal X; for all ¢ € V. According to
the computations done in the proof of Lemma 3.1.1 (see (3.3)), we know that under IF’fi, there exists a
Brownian motion Bz such that

pil) = log(6:) + Bifu) + su +log (T_T()>

for u > 0, where T = 55 and T;(u) = Jo e dv, i.e.

. 1 u
pi(u) =log(0;) + B;(u) + U + log <1 - 2&/ eri(”)dv> .
0
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For each ¢ € V, let us now define a martingale L; by

vl 23;e2ri(v) A
Li(u) = —= . dB;
() /0 < 2 1= 26; [ €201 (5)ds (v)

for u > 0, so that p;(u) = B;(u) — (By, L;),. We can then introduce a probability distribution P; such
that for all u > 0,
dP;
E [

dPP:

k3

fi] = E(Li)(u),

where F! = o (Bi(v),O <wv< u), and E(L;)(u) = eLi=3(LiLiu is the exponential martingale associ-

ated with L;. Then by Girsanov’s theorem, p; is a standard Brownian motion under ]f”z Note that ]f”z
does not depend on ;.

From now on, let us write ¢;(u) =1—205; fu e2ridy = w for w > 0 and ¢ € V. The following

lemma gives an expression of £(L;).
Lemma 3.3.1. Fori €V and u > 0, define
Biei ) 1
Ei(u) = exp (—ez‘gﬁi‘f'M—QPi( )+ u ) 6i(u)*/2/6;.
Then E(L;) = E;.

Proof. 1t suffices to show that dE((“ dL;(u) for all w > 0, which will imply that E; = £(L;), since

E;(0) = 1 almost surely. Note that p;(u) = B;(u) + su + log(¢i(u)), so that

i) = exp (<636, + Bi0s()FB O — L) - ) oulu)

By Ito’s lemma, for u > 0 we have
dE;(u) = (2@@- (w)e?Biw+e _ > E;(w)dB;(u)

(b (u "(u 62Bi(u)+u_7 ¢;(u) wdu
N <5z (61(u) + ¢(w)) (MU))E( \du.

Since ¢)(u) = —2B;e201 () = —28;¢; (u)2e2BiW+u | we get

dEZ(u) _ 1 2Bi€2pqz(u) 3 2, 1 \2 _4B;(u)+2u 1 b 2B, (u)+u
_ (_2 T q%(u)) de(U) + (2@ ¢z(u) e + g + /Bz¢z(u)e

+Bi¢i(u)623i(u)+u _ 2ﬁl2¢z (u)2e4B,~(u)+2u _ é _ 2Bi¢i(u)62]§i(u)+u) du
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Fix u > 0, then for any event A, € F£ =0 (p(v),0 < v < u), we have

P[Au]=/<®w[ ) vor= [ [ T1 (B tab) o)

i€V Au eV

:iAqumP

where P = Riev P; and for u > 0,

:/<HEmrQﬁme

eV

We now have to compute D(u), and express it as an exponential martingale, in order to apply Girsanov’s
theorem once again, and identify the distribution of p under P.
For u > 0, we have

2 ﬁi€2pi(u) 1 1 1
= o (Zv (99 25+ 370~ 8”)> Moy o077,

[Licy 0:dBi
VI Hg|

In order to compute this integral, we will 1ntr0duce a change of variables, and obtain an integral against
W) gl f(w)

the distribution vy,

of p up to time wu.

Let us introduce the following notations : for u > 0,

nHM(i)Wexp( 30,8~ 50, ()0 + (1.0 )

, where W(®)_ () and 7(*) are new parameters depending on the trajectory

w 1 for i
B; = ) oricV
H® =25 _

K® =T(w)H™ =1d — T(u)W.
From there, we define the new following parameters :

W = Ww(K®W) ™ =W + W(HW) W
7 = WT(u)n+n
éf“) =i for eV

as well as these associated quantities :

Tow) = = —Tyw) = 2 tor s e v

23; 2p;
sw 1 Bi
B 7271'() qbl()forzév

AW = 95w _ @
K =Tw)H™ =1d — T(u)W ™.
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Using these new notations, we can already write

) fie ™ _ => 65 = <9("> (A0 41 0) gt (3.4)
eV

eV l

2pi(u

for w > 0. Moreover,we will need the following technical lemma in order to express D(u) as an integral
(w) Gl (u)
against I/‘V/V 9

Lemma 3.3.2 (Lemma 2 in [SZ17]). For u > 0, we have :
(i) Kijop = (W) ¢ (w)
(ii) 7 = T(u)~ (H™)~!
(idi) (), (H) 7 qM) = (g, Hy ') — (n, (H™) ).
Using Lemma 3.3.2 (i), we get that for v > 0,
Hy = 28K jop = 28K K™ = 28T () H™ K™,

where 23, T (u) = 1 —

= ¢;(u) for i € V. Therefore, we have

H ¢i(u)3/2\/ |Hg| = H ¢i(u)2 \/ Iﬁ(“)lm» (3.5)

ﬂ(u)

iev eV
where ~
ag 1 1
dg; )\ di(w)?
(1-g)

Moreover, for all © > 0 we have :
11H5>0 = 11H(u)>0]11€1(u)>0~ (36)
Combining equations (3.4), (3.5) and (3.6), as well as Lemma 3.3.2 (iii), we finally obtain :

Vi/2
2 L= ] 0 1 ~(u rr(u)y—1=(u ~(u) plu
D(u) = ( / Lo (ﬂ> exp (2<0(">,H<">0<“>> = S (H) ) + (0, 6 >>)

6™ dp™
HzGV 7 H /Bz dﬁz 1H(u)>0 eXp( <9 W@ > H \/»

VI HW| iev dpi eV

15 T ] 1 - ~(u) plu 5
exp (=5 0, W) = S, (1)) - (.0

HzEV eXp (Qp’t( ) o 7u)

VIE® ey 6

L 1 ] 1 - ~(u) plu
= L uw~qexp (—2<9(u)7W(u)9(u)> - 5(% (H(u)) 177> - <77( )79( )>>

1

[licy exp (—gpi(w) = §u)
. exp (56.W6) + )Qf

since the integral between brackets becomes

/VVWW)’g(u)’ﬁ(u) (dﬁ(u)) -1
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Let us now show that D is the exponential martingale associated with a certain F/£-martingale. By

Tto’s lemma, for u > 0 we have

- W) o, 1
dD(u) = Z <_(W(u)ep(u))iepi(u) _ ﬁz( )epz(u) _ 2) D(u)dp;(u)
2%

1 - 1\?
2 (@ p(w)y. piw) _ ) gpi(u) _ L
+5 << (WHert)) e? ;e 2)

eV

4 (_(Wm)ep(u))iepi(u) — W(We2ei() _ ﬁl(“)em(U))> D(u)du

1 ~ 1
(=507 N = L0, 0,(1)
(u)
1o, ey _ VI LK™
(Oun™, ) 3 2 K] D(u)du.

Since H® =28 — W = 1/T(u) — W, we have
0u(H™) ™" = (H") 1T (w) 710, (T (w) T (u) " (H™) 7,
so that, using Lemma 3.3.2 (ii), we get

(0, 0u(H™) ™) = (T (w) " (H™) ", 22T ()~ (H™) " )
= (W), 2P W)y = Z(ﬁi(u))262pi(u).
i€V

Moreover, W) = W + W (H®)~'W therefore

<ep(U)’ 6u(W(“))e”(“)> — <ep(u)’ W(H(“))‘1T(u)_162”(“)T(u)_1 (H(u))—lwep(u)>
— <e/>(u)’ W(u)e2p(u)v~[/(u)ep(u)> — Z(W(")e”(“))fezm(“),
eV

and ) = WIT (u)n + n, so

(8,7, Py = (3, (W )T (u)n + W, (T (u))n, e?™)
= <W(u)620(u)W(u)T(u)n + W(U)EQp(u)n’ ep(u)>
= (W) eptw)) = §~ (Ww)ep(u)) 20w
K]
eV

Finally, we have

8u|K(“)| — Tr(|K(“)|(K(“))*13uK(“)) - f|K(u)‘Tr(W(K(u))fle%(u))

_ f|K(U)| Z Wi(g)QQPi(U)'
eV



94 CHAPTER 3. A MULTI-DIMENSIONAL OPPOSITE-DRIFT THEOREM

Therefore, we get :

5 (7 (e om0

eV

4+ Z ( W (W ep(n))2e20i(w) 4 (55())2¢2p0(u) 4 = L (W<u)€p(u)) (W 21 ()
1€V 4 ‘
+ (W ep()epit0) 4 0 epi () _ (7 (9 gp()) erie) _ yr() 2piw) _ ﬁ@em(u)

7

_Z< ( W@ (ep(“)+T( n ) 17) ePi(w) ) dpi(u) = dL(u),

eV

—(WWerw)2e2eiw) _ (7(W)2e200(w) _ o (W<u)€p<u)) () 2pi(u) _ 1+ + W e 2pl<u>> du

where for i € V and u > 0,

Li(u) = /Ou (—; - (W(u) (ep(“) + T(u)n) + n)i epi(“)> dp;i(u).

Therefore, D is the exponential martingale associated with L.
Recall that for « > 0 and any event A, € F£ = o (p(v),0 <v < u), we have

- /A D(d?

72| =D

i.e. P is such that

B {dIP’

for all u > 0. Moreover, P = Ricv P;, therefore p is a |V|-dimensional standard Brownian motion under

P. According to Girsanov’s theorem, the process B(u) = p(u) — (p, L), is a standard Brownian motion
under P. In other words, under P, the process p verifies the following SDE : for all i € V and u > 0,

dpi(w) = dBi(w) — sdu — (W)™ + T(w)n) +7) "V
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Processus renforcés, représentation comme mélange de processus de
Markov, et mouvement brownien interagissant

Résumé. Cette thése porte sur les processus aléatoires renforcés, en particulier le VRJP (pro-
cessus de saut renforcé par sommet) et ses représentations comme un processus de Markov en
environnement aléatoire.

On s’intéresse d’abord a la question de I'unicité de cette représentation. Pour cela, on montre
que toute représentation s’exprime a l'aide d’un méme champ aléatoire 5. On se rameéne alors
a étudier les fonctions harmoniques pour un opérateur de Schrédinger aléatoire associé, grace a
la notion de frontiére de Martin. On obtient des résultats dans le cas du réseau a coordonnées
entiéres, et celui des arbres infinis.

Dans un second temps, on considére le lien entre le champ [ et les temps d’atteinte d’une
famille de mouvements browniens interagissant. On utilise ce lien, ainsi qu’un changement de
variable temporelle, pour montrer une version multi-dimensionnelle du théoréme dit « des dérives
opposées ».

Mots-clés : processus renforcés, processus de Markov en environnement aléatoire, frontiére de
Martin, équations différentielles stochastiques, relation de Lamperti.

Reinforced processes, representation as a mixture of Markov processes,
and interacting Brownian motions

Abstract. This thesis concerns reinforced random processes, in particular the VRJP (vertex-
reinforced jump process) and its representations as a Markov process in random environment.

We first consider the issue of uniqueness of this representation. To this aim, we show that any
representation can be expressed using the same random field 8. We are then reduced to studying
harmonic functions for an associated random Schrddinger operator, thanks to the notion of
Martin boundary. We get results for the integer lattice as well as infinite trees.

We are then interested in the link between this g field and hitting times for a family of
interacting Brownian motions. We use this link, as well as a change of time variable, to show a
multi-dimensional version of the so-called "opposite drift" theorem.

Keywords: reinforced processes, Markov processes in random environment, Martin boundary,
stochastic differential equations, Lamperti’s relation.
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