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CHAPTER 1

INTRODUCTION

1.1 Context and motivation

A problem is said to be a "multi-scale” problem when it has different natural length-
scales. Composite materials for example are heterogeneous materials made of different
constituents to obtain new properties (see Figure 1.1). They are used in the industry
to make cars, planes, prothesis, or sport equipment. When an object has two sepa-
rate scales (see Figure 1.2), a micro-scale and a macro-scale, it is not easy to deduce
its macro-properties, such as its mechanical response to external loads, from its mi-
crostructure.

O 77

Figure 1.1: A composite material (from http://en.wikipedia.org/wiki/Composite_material)

The behaviour of a material, whether mechanical or thermal, is generally modeled
by a partial differential equation (PDE). When the material has a micro-structure of
size ¢, the coeflicient of the PDE A, is rapidly oscillating. Therefore, the solution of
the PDE u. is also oscillating. One way to approximate this solution is to study the
limit u, of the solution u. of the PDE when the size of the micro-structure goes to
0. This is the core of the "homogenization theory", that has been developed since the
seventies (see Section 1.2). The function u, is itself solution to a PDE with (in general)
a non-oscillating coefficient A,, called the "homogenized equation". The function u,
provides an effective behaviour of the material, and A, can be understood as a model
of a homogeneous (or slowly varying), effective material.
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Figure 1.2: A multi-scale material (from [86])

If geometrical assumptions on the material are made, A, has an explicit expression
and can be computed. It is the case when the micro-structure is periodic, or follows a
probability law that is ergodic and stationary. When this is the case, u, can be com-
puted. In the periodic case, "corrector" terms can be added to u, to approximate the os-
cillations at the micro-scale of u., giving an accurate approximation of Vu.. However,
no real material is perfectly periodic. Even in artificial materials, defaults can appear
during the manufacturing process. Without geometrical assumptions, homogenization
theory ensures the existence of the homogenized problem under mild assumptions, but
no practical way to compute it. In this case, u. has to be approached by a numerical
method.

The Finite Element Method (FEM) is the most widely used numerical method to
compute solutions of PDEs. It is however not adapted to multi-scale materials. Indeed,
to have an accurate approximation of the solution, the problem has to be solved at the
micro-scale, which can lead to high computational costs. To tackle this problem, multi-
scale numerical methods have been developed in the last decades. In particular we are
interested in the Multi-scale Finite Element Method (MsFEM, see Section 1.3). The
MSsFEM is a Galerkin method, where the basis of the approximation space is composed
of oscillating functions. Those functions are defined as solutions to local PDEs, and are
adapted to the problem of interest. As the oscillations of the solution are captured by
the basis functions of the approximation space, there is no need to have a mesh smaller
than the microstructure, hence a significant computational gain. The method consists
of two steps: an "offline step", to compute the basis of the approximation space, and
an "online step" to solve the Galerkin problem. For a periodic material, it is possible to
prove an a priori error estimate. When the material is not periodic, there is no estimate
but the method still provides accurate numerical results.

In this thesis we are in particular interested in composite plates. A composite plate
is a material that is thin along one direction and has a micro-structure. Therefore, there
are three scales in the problem: the size of the material, its thickness 7, and the size of
the micro-structure ¢ (see Figure 1.3). Plates have been studied as specific mechanical
objects for more than two centuries. The goal of a "plate theory" is to construct 2D
models that describe the behaviour of 3D plates accurately (see Section 1.4). It makes
it possible to have a better understanding of plates, and helps to reduce computational
costs. Originally, plate models were derived with the help of geometrical intuition.
Mathematicians have also studied plate models with the tools of asymptotic analysis.
This method is similar to homogenization, so this framework is particularly suited for
the study of heterogeneous plates.

Our goal in this thesis is to adapt the MSFEM to the case of plates (see Chapter 3).
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Figure 1.3: An heterogeneous plate

In order to establish error bounds for this method, we use the existing work on hetero-
geneous plates and prove an additional convergence result (see Section 1.6 and Chap-
ter 2).

Another topic studied in this thesis is shape optimization, which is the study of
methods that allows to find shapes that minimize a criterion while satisfying given
constraints (see Section 1.5). The criterion can be the weight or the compliance of the
object. The constraint can be the response to a given load. These problems are rele-
vant for example to the aircraft industry, which needs objects that are simultaneously
light and reliable. Classical computations show that the solution to a shape optimiza-
tion problem is usually a composite. Shape optimization thus has a natural link with
homogenization. The problem is often split in two subproblems: the optimization of
the macro-behaviour of the material over a set of homogenized composites, and the
definition of a real composite whose homogenized behaviour well approximates the
optimal behaviour identified in the first step.

With the MsFEM it is possible to solve efficiently multi-scale problems on plates
(and thus to simultaneously perform the above two steps). Our second goal is to use
the MSFEM to solve a problem of shape optimization on plates, where the optimization
is directly performed on a set of microstructures where the characteristic size ¢ of the
oscillations is fixed (see Section 1.6 and Chapter 4).

1.2 Classical homogenization theory

We briefly present the classical homogenization theory for a scalar diffusion equation.
Such a presentation, which is of course very classical, should be considered as a first
step toward our main object of interest, namely elastic heterogeneous plates. Most
of this section considers the case of materials with a periodic micro-structure. Some
other cases will be mentioned in Section 1.2.6. We refer to [1], [12], [58] or [63] for a
comprehensive exposition of the theory.
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1.2.1 Presentation of the problem

Let € be an open, smooth bounded domain of R™. Let f be a function of L?(f2). We
want to find u. in H*(f2) so that

—div(A.Vu,)=f on Q (1.1)
u. =0 on 0. '
For the problem to be well posed, we suppose that A. is elliptic in the sense that

Je_,cp >0, VEER"VxeQ, c_|Ef <A ()€€ < cyl€ (1.2)

We suppose that the constants c_ and c; are independent of €. For the sake of sym-
plicity, we also suppose that A. is a symmetric matrix.

If A. has oscillation at the scale ¢, it is natural to suppose that u. will also oscillate
at this scale. Homogenization is the study of the limit behaviour of u.. The simplest
case is the case of periodic oscillations. We introduce Y := (0,1)" and suppose that
there is an application A from R" to the set of elliptic matrices that is Y -periodic, is
such that

EIC_,C+ > 07 VS € anvx € Rn? C—|€|2 < A(l’)g : 5 < C+|€|2,

and such that, for any € > 0 and any z in ), A.(z) = A (g) In this case the problem
(1.1) is to find u. in H'(Q) so that

—div (A (f) Vug) =f on
{ u, =0 on 9. (13)

The weak formulation of (1.3) is: find u. in Hj (), such that for any v in H; (£2)

/QA(g)VuE'Vv:/QfU.

Using (1.2) and (1.3) we show that there exists C' > 0 independent of ¢ so that
el 10y < C,
and we thus deduce that there is some u, in H; () so that

ue — u, in HY(Q)

e—0

up to a subsequence extraction. The Figure 1.4 shows an example of such a conver-
gence.

To identify who is u,, we proceed by considering the one-dimensional case first,
because everything is explicit. Then we consider the multidimensional case.

1.2.2 The one-dimensional case

In the one-dimensional case, we set {2 = (0, 1) and the problem (1.3) reads as

_d% (A (g) %%) =f on (0,1) with u.(0)=u.(1)=0.

Integrating once, we get
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Figure 1.4: Solution of (1.3) in the one-dimensional case when A.(z) = 1.1+ sin (2”79”)
(from [86])

where, for any z in (0,1), F(z) = fox f. Then, we get

o1
us(x) = — i A(E)F<t)dt+05/o mdt. (1.4)

Because of the condition u.(1) = 0, we compute

‘o ( [ md) [0

£

To identify the limit of u., we use the following lemma, written in the multidimen-
sional context.

Lemma 1.1. Let b in L™(R") be a Y -periodic function. Then for any ¢ in L*(R™),

Xz

/n b (g) Sa)de 5<b> [ o

where < b >:= / b.
Y

We deduce that u. converges to u,, solution to

Uy = —<%>/Oz F(t)dt—l—m<%>/ol F(t)dt.

Thus, u, is the solution of the following problem:

d

I (< At >_1iu*> =f on (0,1) with wu,(0)=1u,(1)=0.

dz

It is important to note that for any A that is not a constant, < A™! >t %< A >,
therefore it would be a mistake to think that homogenizing a material is simply aver-
aging it. Also, it is worth noting that u. and u, are solutions of the same type of PDE.
This is not true for any homogenization problem, but is rather a specificity of (1.3).
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1.2.3 The two scale expansion

We now turn to the multidimensional case. The classical way of identifying the limit
problem for an oscillating problem is to suppose that the function . has the form of
an expansion in power of € (see [63]), with functions that have two "scales", 1 and e.
Such an expansion reads

us(z) = uo (x, g) + ey (.CE, g) + e%u, (x, g) +... (1.5)

where u; (i > 0), are assumed to be periodic with respect to their second variable. The
key to this formal computation is to suppose that the scales 1 and ¢ are sufficiently

separated so that the variables = and — can be viewed as independent variables, x and

€
y. The link between the variables is kept in the differentiation of the function:

9. i )] = s o ) Lo ),

1
thus V is replaced by V, + -V,
£

Using this rule, inserting (1.5) in (1.3) yields a cascade of equations linking the u;
one to each other.

The first equation implies that V, uy = 0, i.e. the limit function is not oscillating.
The second equation links u( and u;. For any x in €2, y in Y, it yields that

u(z,y) = Zwi(y)aiu(J(x)
i=1
where the w; are called correctors. They are solutions of the following PDE:

(1.6)

w; is Y -periodic,

{— div(A(Vw; +€;)) =0 on R”

where the vectors (¢;); are the canonical basis of R”. The third equation gives the limit
PDE on u, that we detail in the following.

1.24 The homogenization theorem

The two scale expansion is a formal computation that helps to guess the homogeniza-
tion theorem. We now state the rigorous theorem, whose proof can be found e.g. in

[1].

Theorem 1.2 (Homogenization theorem). Under the above assumptions on A, f and (),
the solution u. to (1.3) converges weakly in H*(S2), strongly in L*(2) to u,, which is the
unique solution in H}(Q) of

—divA,Vu, = f (1.7)

where the homogenized matrix A, is given, fori,j =1...n, by
A*ei c€j = / A(Vw, + 61’) : (VU)J + ej). (1.8)
Y

Note that the whole sequence (u.).~o converges, and not only a subsequence.
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1.2.5 The strong convergence theorem

The homogenization theorem provides a way to identify u,, an approximation of ..
However, the convergence of Vu, to Vu, is only a weak convergence. Indeed, the
function Vu. oscillates with a period of the order of € and an amplitude independent
of ¢, whereas Vu, does not oscillate.

The ansatz (1.5) gives again a good intuition of the problem. A formal differencia-
tion shows that

x
Vue(z) = Vyoue(z) + Vyuy (z, E) :
with

ui(z,y) = Z w;(y) s ().

This expression is a motivation for the name "correctors" given to the functions w;.
They "correct" the mistake made when w, is approximated by w,. The proof of this can
be found e.g. in [58]. Let

Ue = Uy + € Z w; (E) O;ly. (1.9
i=1

Theorem 1.3 (Strong convergence theorem). Suppose the above assumptions on A, f
and Q) holds. Suppose that u, € W?2>(Q) and that for any i, w; € Wh>°(Y'). Then,

e = uea |l i) < CVElVulwie ()
where C' is independent of € and wu,.

When a material has a periodic microstructure, these results give a way to compute
an approximation in H' norm of u,.:

(i) solve n PDEs on Y (1.6) to compute the correctors w;, 1 < i < n;
(ii) compute A, with (1.8) and solve the homogenized PDE (1.7);
(iii) compute u. ; with (1.9).

This method however only works in the periodic case. In the Section 1.3, we present
numerical methods that work for non-periodic materials. We conclude this section
with general results on the homogenization of non-periodic PDEs.

1.2.6 Non-periodic homogenization

More general results have been proven by Spagnolo, and Murat and Tartar [80], who
have introduced H-convergence and G-convergence. They proved that, if the coeffi-
cient A. is elliptic and bounded, up to a subsequence extraction the sequence of prob-
lems converges to an asymptotic problem of the form (1.7). This result does not give an
explicit formula for A,, nor a quantitative estimate on the approximation but proves
that A, is independent from f (there thus exists a homogenized material). Another
method called I"-convergence (see [27]), introduced by De Giorgi [30], gives results by
treating the solution of the PDE as the minimizer of an energy that converges to the
minimizer of an asymptotic energy.
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In a different direction, stochastic homogenization has been developped by Jikov,
Papanicolaou and Varadhan to tackle the problem of stochastic coefficients of the form
Ac(z,w) (see [58]).

A perturbative approach by Blanc, Le Bris, Lions and Josien (see [15], [13] or [14])
tackles the problem of a coefficient which is the sum of a periodic coefficient and of
defects. This model is deterministic and leads to more affordable computations than a
stochastic model. In addition, it allows for a more realistic modelling of materials than
the periodic setting.

1.3 Multi-Scale Finite Element Method

The homogenization theory presented in Section 1.2 provides approximations of the
function u. and quantitative results, in the case of a periodic micro-structure. With-
out such geometrical assumptions on A. (which can be restrictive in practice) there
is no such results. The only practical way of approaching u. is to rely on a numer-
ical method. In this section, we motivate and explain the Multi-Scale Finite Element
Method (MSFEM), a numerical method dedicated to multiscale problems. At this end
of the section, we will mention some other methods addressing this problem (see Se-
cion 1.3.6).

1.3.1 Motivation

The most widely used numerical method to solve PDEs is the Finite Element Method
(FEM). If we were to use it to solve (1.1) with a basis of P! functions, the theory would
give us the following error estimate (see [40]):

e = unllmo) < CHlluc m20),

where H is the size of the mesh and uy the FEM approximation. The Figure 1.5 shows
the influence of the size of the mesh H on the error of the approximation of the Poisson
problem (in blue) and a multi-scale problem (in green). It is obvious that the quality of
the approximation is much worse in the latter case.

Relative H1 error
=
o
L

._.
S)
N

—e— Laplacian
—— Sin coefficient (epsilon = 1/128)

10! 102
1/H

Figure 1.5: H'! error for the 1D heterogeneous problem (in green) and Poisson problem
(in blue) as a function of % (from [86])
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To better understand the problem it is useful to go back to the 1D case, where
everything is explicit. Differenciating the function u. given by (1.4) twice shows that
d

d—éus =A. + % where A, and B, are two bounded functions. The error estimate of

the FEM thus yields that

H

It means that in the case of multi-scale materials, a mesh of size H < ¢ is required
by the FEM in order to provide a good approximation. In the one-dimensional case,
Figure 1.6 shows that if H is not small enough, the solution . is not approximated by
the method. As ¢ is supposed to be small for multi-scale materials, it can be computa-
tionally prohibitive (especially in 2D or 3D problems) to manipulate a mesh of size H
smaller than ¢.

T
H=1/512

— H=1/64

0.251 — H=1/32 ||
— H=1/16

0.20}

.. 0.15

0.10

0.05}

000 1 1 1 1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.6: Solution of the problem (1.3) with FEM for different values of H (from [86])

1.3.2 Principle

The MSFEM has been introduced by Hou and Wu ([55], [54], see also [36]) to compute
solutions of oscillating PDEs.

The MsFEM proceeds in two steps. First, a basis of oscillating functions is com-
puted. Then, the basis is used as the approximation space in a Galerkin method to
approximate ..

The method relies on two meshes: a coarse mesh of size H and a fine mesh of size h
of each element of the coarse mesh. The size of the fine mesh /& must be small enough
to capture the oscillations of the problem. The size of the coarse mesh H should be
larger than € so that the resolution of a Galerkin problem with this mesh is not too
expensive. We hence consider the regime

h<<e<H.

The coarse mesh is used to define the basis of oscillating functions, the fine mesh is
used to compute these basis functions.
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1.3.3 Analysis of the method

Let 7 be a conformal mesh of € of typical size H. Let (1*); be the canonical basis of
the set of functions of H}({2) that are affine on every element of 73. OnT € T we
define the basis function 1’ as the solution to the following PDE (see Figure 1.7):

—divA. VY. =0 in T
(1.10)

YL=19" on OT.

GMFEM (34) — g

0K

[
@{\'ISFE“I(J.‘I) =1 d‘,{u.sFEva(lz):”

Figure 1.7: An element of the mesh K of size H, the oscillating function ! and the
affine function v (from [86])

Let V7 := Span {¢$},, and uy the Galerkin’s approximation of u. in V3. For any

vin Vi,
/A6VUH~VU:/fU.
Q Q

To analyse the method, we make the same assumptions as in Theorem 1.3, in par-
ticular we suppose that A. is periodic. Hence, the results of the previous section can
be used.

Theorem 1.2 states that ¢! converges weakly in H'(T') to some )¢ which is a so-
lution to

—divA VY. =0 in T
Pl =1" on OT.

This problem is well posed, and since A, is constant and ¢’ is affine on 7 its unique
solution is 1)’ = v". Theorem 1.3 states that

Wi 4 e i w, <E) O,
j=1

The MsFEM method works because the correctors in this expression are the same
as the correctors in the expression of u, ;:

n

Ue R Usp 1= Uy + € E w; (—) ;.
: €
J=1

In a sense, the affine elements v’ capture the effective behaviour of u. which is u,, and
the term ¢ Z?Zl W ( ) 0;1" captures the oscillations of ..

)

The complete numerical analysis can be found in e.g. [36].
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Theorem 1.4 (MsFEM error estimate). Assuming that A* = A (%) for some periodic
function A and under some regularity assumptions on u, and the correctors, it holds that

€
i — ualey < € (1 +vE+ /)

for a constant C' independent of ¢ and H.

For values of £ small enough to ensure that /¢ + \/% < H, the error can be
roughly written as

H’U,E — UHHHI(Q) < CH.

This dependence of the error with respect to the size of the mesh is similar to the FEM
in the non-oscillating case.

1.3.4 Implementation of the MsFEM

The interesting feature of the MSFEM is that the problem (1.10) only depends on A.,
but not on f. Thus, the method can be split in two steps. The first is called the "offline"
step and is the most expensive:

(i) compute the functions ¢! solutions to (1.10) (in practice using a fine mesh to
discretize it);

(ii) assemble the stiffness matrix K defined by K;; = [, A- Vil - Vol

The second step is the "online" step and is computationally much less expensive (recall
that the number of degrees of freedom, i.e. the dimension of V}, is limited):

(iii) assemble the vector B defined by B; = fQ [k

(iv) solve the problem KU = B.

1.3.5 Variants of MsFEM

Because of the boundary conditions of the problem (1.10), the oscillating basis func-
tions ¢! are linear on the boundaries of the elements of the mesh. This is why the
method we have presented in this section is called "linear MSFEM". This method is not
very accurate because the numerical solution uy is affine on the edges of the coarse
mesh, whereas the actual solution wu, is of course not.

Other choices of boundary conditions have been proposed yielding non-conformal
methods such as the "oversampling MSFEM" ([55]) and "MSFEM a la Crouzeix-Raviart"
([64], [65]). A variant of the linear MSFEM where the linear boundary conditions are
replaced by higher order polynomials is studied in [86].

1.3.6 Other numerical homogenization methods

There exist other numerical approaches for multi-scale problems. We present here the
Heterogeneous Multi-scale Method (HMM) and the Local Orthogonal Decomposition
(LOD).
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HMM

The HMM was introduced by E and Engquist in [33] and analysed in [35].

In a standard Finite Element Method with a mesh of size H and a basis of P! ele-
ments (¢;); integrals of the form [, A. V1) - V¢ are numerically computed. The value
of this integral is approximated by a quadrature formula on the points z; with the
weights wy:

/Q AV -V Y w (AVE- V) (x).
k

The core of the HMM is to replace the evaluation of A.(z) by an effective coefficient
AHMM (4,). A small patch wy, is defined around each point x;, and meshed on a fine
scale h. Then,

1
AP )T T / AV - Vuy
kl Jr,

where the function wy, is solution to

—div(A.-Vwg) =0 in wy
wr =1 on Jwy.

The solution of the FEM where A.(z}) is replaced by AZMM (1) is called upazas.

Theorem 1.5. Assume that A.(z) = A (E) where A is periodic. Let u* be the solution
€

to (1.7) and assume that u* is in H*(). Then, there is a constant C' independent of ¢ and
H such that
s — wranenell mr ) < Cle + H)

Note that w7,/ is not an approximation of the solution to (1.1). The computations
on the small scale & are only done on the small patchs wy, and can be parallelized.

LOD

The LOD was introduced by Malqvist and Peterseim in [74]. Similarly to the MsFEM,
the core of the LOD is the design of an approximation space to be used in a Galerkin
method for the equation (1.1).

Let 7y be a triangulation of €2, and let Zy be the following interpolant. For x; a
node of Tz and v, the P! function associated to this node, let for any u in H} ()

_ fQ u¢k
fQ U

Let VO := {f € H}(Q),Zu(f) = 0} be the kernel of the interpolant. Typically, a
function that oscillates around 0 on a scale smaller than H could be in this kernel. If

Ty (u)(zk) -

A, is symmetric, then the bilinear form a. : (u,v) — [ A.Vu - Vv defines a scalar
Q

product on H{ (). Thus we define V5, as the orthogonal complement of V° with
respect to a.:

Hy(Q) =V’ @ V).
We do not detail here how to construct a basis of Vi, ,. We denote by uzop the solution
of the Galerkin approximation of (1.1) on the approximation space V/% ,. Then the
following result holds (see [74]).

Theorem 1.6. If A, is in L*°(2), symmetric, bounded from above and below, then
|ue —urop|| @) < CH||flL2@

where C' is a constant independent of ¢ and H.
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1.4 Plates theory

We now turn to the main object of interest in this thesis, namely heterogeneous plates.
We denote by "plate" a 3D object that is thin along one dimension. The goal of plate
theory is to replace a 3D model by a 2D model, while keeping a precise description of
the plate.

There are two ways to find such a model. The first is axiomatic. The idea is to
make ad-hoc assumptions on the 3D displacement field and separate the in-plane and
out-of-plane coordinates. The second one is asymptotic. The idea is to take a 3D model
with a scaling parameter ¢ and study what happens when ¢ goes to 0.

In this section we give a brief introduction to the axiomatic derivation of plate
models, and review some results in the asymptotic derivation of plate models for ho-
mogeneous and heterogeneous plates. A comprehensive review can be found in [23].

In this section the computations are made for a plate in R®. Everything would re-
main true for a plate in R" for n > 2, where the plate is thin along the n-th dimension.

1.4.1 Axiomatic derivation
Kirchoff-Love plate theory

The first broadly used axiomatic derivation was made by Kirchoff, and completed by
Love in 1888 [72]. It is now known as the "Kirchoff-Love" theory. The assumptions
made in this theory are:

(i) the displacement of the plate is uniform through the thickness;

(ii) the normal line to the midsurface remains normal through the transformation
(see Figure 1.8).

Figure 1.8: Displacement of the midsurface of a plate and of a normal line to the mid-
surface (from http://en.wikipedia.org/wiki/Plate_theory)
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From those axioms, the displacement of the plate can be caracterized. Let u =
(u1,us,u3) be the displacement of the plate, x = (x1, 22, x3) a point of the plate. Let
x = (21, z2,0) a point on the midsurface, and u = (U1, Uy, u3) the displacement of the
midsurface. The assumption (i) means that

U3($1,$2, 1’3) = zL\:3(951>$2)-

To use assumption (ii) let us look at the rotation of the midsurface. Let 0; be the
rotation around the axis x; and 6, the rotation around the axis x5 (see Figure 1.9). The
displacement u can be written as

U (21, 2) + x362(21, 22)
w(x) = | Uo(1, 22) — 2301 (21, 22)
a3(9017952)

Figure  1.9: Rotation of the midsurface of a plate (from
http://en.wikipedia.org/wiki/Plate_theory)

In the regime of small deformations,
tan 91 = (9263, tan 62 = —81@3.

Also, in the regime of small deformations #; < 1 and 6, < 1, thus tan#; ~ 6, and
tan 6 ~ 6. Then:

91 ~ 62U3, 92 ~ —8111,3.

The displacement can thus be written as

(931>$2) - 53331@3($1,$2)
w(x) = | Ug(z1, x2) — x309u3(21, T2)
A3(l’179€2)

The linearized strain tensor e(u), where ¢;; = 3 (ju; + 0;u;), can also be derived
from those axioms. Because of assumption (i), 633( ) = 0, and because of assumption
(17) e13(u) = eg3(u) = e31(u) = eza(u) = 0. This derivation of the strain tensor might
be incorrect because the shear strain is neglected and the out of plane Poisson effect
as well.

Reissner-Mindlin plate theory

An extension of the Kirchoff-Love theory that addresses this problem is the Reissner-
Mindlin theory. It was proposed by Reissner in 1945 [85] and by Mindlin in 1951 [77]
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to relax the assumption (i7) of the Kirchoff-Love theory (and thus to better capture the
shear strain and the shear stress). The idea is to suppose that the normal line to the
midsurface remains straight through the transformation, but not necessarily normal
to the transformed midsurface. The axioms of Mindlin are:

(i) the transverse displacement of the plate is uniform through the thickness;
(iii) the variation of the in-plane displacement in the thickness is linear.

From those two axioms, the displacement field v can be written as

al(l’bfz) - $3¢1($1,$2)
u(zr) = Uy (1, x2) — T3¢2(w1, T2)
a3(1131@2)

The Kirchoff-Love theory is a particular case of the Reissner-Mindlin theory, where
¢1 = Ovuz and ¢y = Oouuz. The derivation of the strain tensor now shows that

eiz(u) = %(31@3 —¢1), ex(u)= %(3233 — $2).

The shear strain is not neglected in this theory. The Reissner-Mindlin plate theory is
the most widely used plate theory for homogeneous plates.

Bending-Gradient theory

The Bending-Gradient theory has been developped by Lebée and Sab in [68] and [69].
It is an extension of the work of Reissner in [85]. The approach is axiomatic, but can be
justified by formal asymptotic methods (see [70]). The Bending-Gradient theory adds
degrees of freedom in the derivation of the shear stress for laminated plates, involving
the gradient of the bending moment.

1.4.2 Asymptotic derivation of the homogeneous plate model

If the plate is heterogeneous, for example if the material is periodic in the in-plane
directions, it is more complicated to guess the relevant axioms to derive a model. In
this case, it is easier to use an asymptotic derivation [18]. The idea of an asymptotic
derivation is to start from the 3D linear elasticity problem on a domain whose thickness
is a small parameter ¢, and make this parameter go to 0. To illustrate our arguments,
we show here the calculations that lead to the model in the case of a homogeneous
plate.

The plate model

(2 [ £

)
"2

%, %) be the plate (see

Figure 1.10: The plate Q° := w x (—

€

2

Let w be the midsurface of the plate and 2° := w X (
Figure 1.10). Let A be the elasticity tensor, u¢ the displacement field, o° the stress
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tensor and ]75 be a constant external load. Then, the linear elasticity problem reads as

_divgfsz on £)F
cf=A:e(w) on F
u*=0 on 8w><(—§,
0¢-e3=0 on wx{:l:

)
}

~ 1 ~ ~
where e(u®) = 5 (Vue + (Vua)T) is the strain tensor. If the plate is clamped, the

solution is in the space

NI N [M

Ve = {U € H'()*, v=0o0ondwx <_g’§>}'

We also suppose that A is a symmetric tensor, in the sense that for any ¢, j, k,lin 1,2, 3,
Aijrt = Ajirt = Aijik = Apaij-

The weak formulation of this problem is: find u° in V¢ such that for any v in V¢,

/xmﬁydngj@v

For any € > 0, this problem is well posed (upon standard assumptions on A) and has
a unique solution. The difficulty to study the limit behaviour when ¢ — 0 is that the
solutions u° are defined on different domains 2°. It is thus convenient to rescale the
problem so that we only have one domain, 2 := Q. We define the functions «° and
f, such that for any z = (x1, 29, x3) in €2,

7 h
u(z) = | 4§ | (z1,22,ex3) and f:= f,%
cus € fs

Note the multiplying factor ¢ for the third component of ©* and f. Recall also that we
have supposed f¢ to be constant. We also assume from now on that f is independent
of . We can define a rescaled symmetric gradient e®, such that

e1n(v) e12(v) “leis(v)
66(1)) = €921 (U) 622(@) 623(’[))
e tez (v) 8_1632(’0) “Zez3(v)
This definition ensures that, for any x in €, e*(u®)(z) = e(u®)(z1, 22, £x3). Then, the

weak formulation of the rescaled problem is: find u® in V' := V! such that for any v in

V,
/QAe » /f v, (1.11)

Using a Korn inequality, we deduce that e*(u°) is bounded in (LQ(Q))3X3 (therefore
e(uf) is also bounded in (L2(£2))*”?) and that ¢ is bounded in (L*(92))”. This implies
two results:

(1) there exists a function v* in V C (H'(2))® such that u* — u* weakly in

e—0

(H'(€2))? (up to a subsequence extraction);

(2) e1s(u®) =0 ea3(uf) —,0,and e33(uf) —,0in L3(92).
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From those results, we deduce that ej3(u*) = eg3(u*) = es3(u*) = 0. Thus there
exists some 0* in (H'(w))® such that, for any & = (21, 22, 23) in Q,

uy (w1, w2) — $331@\§(331,$2)
w'(z) = | u(w1, 72) — 2300U5(w1, 72)
Q/L\g(l"l,$2)

Note that u* only depends on z; and z5 and not z3. It is exactly the form of dis-
placement derived by the Kirchoftf-Love theory. The asymptotic analysis states that
the approximation is correct (at least in the L? norm) for a plate that is infinitely thin,
but a priori not for € > 0.

We define the set of functions that are a Kirchoff-Love displacement as

Vir = {v e (H'()®, 30 € (Hi(w))” x H2(w), v=7— x3va3},

where we note that the last component of Vv; vanishes because v3 only depends on
x1 and x5 (and therefore v3 = ¥3). For any v in Vi, we have

611(6) €12 (5}\) 0 81163 812@\3 0
e(v) = | en(v) exn() 0] —x3 | duvs Oxpvs 0. (1.12)
0 0 0 0 0 0

We now proceed with the computations that lead to the 2D plate model, in the case
of an isotropic homogeneous 3D thin structure. There are multiple ways to present
those computations, and we follow here the presentation of [47]. The isotropy hy-
pothesis is classical and means that

Aijkl = Aéij(;k[ + M((Szk(sjl + 5il5jk)7

where \ and p are the Lamé coeflicients.
We define the function y*, such that for any x = (x4, 25, x3) in €,

1

x3 x3
yi(z) == e 1 (z) +/ e O (g, 1y, t)dt — /2 e s (7) +/ e_lug(xl,xg,t)dt] dxs

1
2

WI= o)

x3 x3
ys(z) == e us(z) +/ e Ohu§ (w1, 1y, t)dt —/ e tug(7) —|—/ 6_132u§(x1,x2,t)dt] dxs

D= o=
[N

—2 ¢

ys(x) == e "ug e 2u5(z)dws.

&
|
\\

N

This definition ensures that

e (u®) ern(u’) %&w%
e (u%) = | ean(u) exn(us) 3055 | = e(w, v°). (1.13)
105y 10sy5  Osu;

In addition, for any (z1, x2), the mean of (1, 2, -) vanishes. Since e (u°) is bounded

in L?(Q)%*3, the furiction y is bounded in [L? (w, H' (—3,1))] ® and is such that for

3
any (x1, z2) in w,/ y°(x1, x9,t)dt = 0 therefore it weakly converges in [L2 (w, H! (—%, %))]3
1

to some y* in [L2 (w, ! (—%, %))}3 It implies that

ef(uf) = e(us,y°) — e(u*,y*) weaklyin L*(€Q)*. (1.14)

e—0
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Let v be a function in Vg, and z a function in V. Let v° be defined by

We note that v* € V, and that with e(-, -) defined by (1.13),
e“(v°) = e(v, 2) + O(e).

In order to establish the limit problem solved by u*, we take v° as a test function in
(1.11) and we pass to the limit ¢ — 0:

/QAeE(uE):eE(UE) e QAe(u*,y*):e(v,z) and /va E_)()/f v,

thus, for any v € Vi and z € V,

/QAe(u y*) < e(v, 2) /f v. (1.15)

Because of the assumption on the isotropy of A, the left handside reads as

/QAe(u*, y*)re(v,z) = /Q/\(tr e(u*) 4+ 0sy3)(tre(v) + O3z3) + 21 (e(u”) : e(v) + Osy* - 052) .

To eliminate y* from (1.15), let v = 0 and z = z3e3. Then

/ [(Atre(u) + (A + 2u)03y3] 0323 = 0.
Q

This implies that dsy5 = — tr e(u*), because it is true for any z3 in L2 (w, H! (— %, %) )

A+ 2p
Taking now z = 0 in (1.15), we get

Vv € Vi, / A(tre(u®) + ds3y3) tre(v) + 2ue(u / f-v
0

and thus, using the above expression for 05y5, we obtain

Yv € Vkr, / A tre(u)tre(v) + 2ue(u / f-v (1.16)
Q
where
2\
= . 1.17
A+ 2u (117)

The problem (1.16) is well posed on V1, and thus completely characterizes the function
u*. We note that the whole sequence (u®).~o (and not just a subsequence) therefore
converges to ©*. In addition, we observe that the limit material is again isotropic (but
with different Lamé coefficients).
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An alternative proof with strong convergence

We now provide another proof, suggested to us by Annie Raoult, for the above results.

Using (1.11) and the Korn inequality, we see that e® (su‘s ) is bounded in (L2(Q))*"".

This implies that there exists a function # in (L%(2))*”” sur that ¢°(u?) oK weakly
e—

in (L%(9))*® (up to a subsequence extraction).
For v € V, it implies that

/ Aef(uf) : % (v) — [ (AK)330503.

Q e=0 Jo

Thus, because of (1.11) fQ(AIi)3303U3 = 0. It is true for any vz in L? (u), HY (—%, %)),
thus (Ak)s3 = 0. For v € V, such that v = (v, v, 0) it also implies that

/QAee(uE) cee*(v) = | (AK)a3030q.

e—0 Q

Thus, because of (1.11) it stands that fQ(An)agagva =0,and fora = 1,2, (AK)a3 = 0.
Now, for v € Vg,

/QAee(ue) ce(v) = | (AR)ageas(v).

e—0 Q

Thus, because of (1.11) it stands that

/Q (AR)ageas(v) = /Q o (1.18)

For an isotropic material, we have (Ak)33 = Akaa + (A + 2)K33, hence k33 =

A
mlﬁaa. Thus

(Ali)ag = Aéag(HTT + I<633) + Qﬂliag
= N0aphrr + 2/Kag,
220

A2p
eqp(u*). Thus, (1.18) can be writen as

where \* = . As u° weakly converges in (H'(€))® to u*, for o, 8 = 1,2 Kag =

Vv € Vkr, / A tre(u”) tre(v) + 2ue(u”) : e(v) = / f-o,
Q Q
which is exactly (1.16).
We now prove a result of strong convergence. For a matrix £, we define the norm

1€]]a = [ AE = € Note that (1.11) implies that ||e°(u®)[| 4 = [, f - u°. We have already
shown that forz = 1, 2, 3, k;3 = 0, then

Iilla = [ (ARJagias = [ (ARJaseant) = [ £-u
Q Q Q
The function u° weakly converges in (L2(€2))” to u*, then

el = [ £eu =, [ 5w =l

We showed that e°(u°) o weakly in (L2(€2))>*° and that ||e* ()| = |K|la. Tt
e e—
implies that [|e*(u®) — &[[a — 0. It thus stands that [|e®(u®) — &l|(72(q)y2xs — 0. For
e—0 e—0
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a, = 1,2 it implies that e,(u°) = Hap = eap(u*) in L*(Q). Hence, we showed
e—
that

u® — u*  strongly in (HI(Q)))S.
e—0

Note that we showed a result on the strong convergence of e(u°), but not on the strong
convergence e (u°).

The membrane/bending distinction

We now revisit the asymptotic process (of passing to the limit of a very thin plate)
under some symmetry assumptions that are weaker than the above isotropic assump-
tion. These symmetry assumptions enable us to split the problem in two independent
problems, which are commonly called in the literature membrane and bending.

More precisely, let us define

11

& = {U € L*(Q), s.t. for almost any 2’ € w, (—5, 5

) > 23— v(', x3) is even}

1
O .= {U € L*(Q), s.t. for almost any ' € w, ( ) > a3 v(2!, x3) is odd} )

23

We point out that
L*(Q)P =(E*x0)d (0* x &).

This orthogonal decomposition has the following consequences: it holds that

VL =Vt @ V5, (1.19)
where
Vit = HY}(w)? x {0} CE*x O
and
—.%3(91?}\3
VE, =S ve (H'(Q), 30 € H2(w), v = | —a30503 | $ €O x E.
U3

From now on, we make the following additional assumptions on the tensor-valued
field A: forall 1 < o, 8,7,0 < 2,

Aapys, Aapss, Aasps, Assss € €,

1.20
Ansss, Aapes € O. ( )

Remark 1.7. In the case when the plate is composed only of isotropic phases, the as-
sumption (1.20) amounts to assuming that the material is symmetric with respect to its
medium plane.

Remark 1.8. In the case when the plate is homogeneous, (1.20) simply means that some
of the components of A vanish: [et la, tu ecris Ays33 = Anpos = 0.

In view of (1.19), the function u* can be decomposed as u* = up + v}, with uj in
VB, and u}, in V! . It holds that

—x30, U} uy
up = | —w309U3 and uy, = | U5
uj 0
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Recalling that the function f is constant, it can also be decomposed as f = fz + fum

0 f1
with fs=| 0 | and fo = | fo
3 0

For the sake of simplicity, we go back to the isotropic case, but a similar result holds
for the more general case of (1.20). The equation (1.16) can then be decoupled using
(1.12) into two equations, the membrane equation

//\* tre(uy,) tre(va) + 2ue(wyy,) @ e(vam) = /fM S UM, (1.21)

and the bending equation

1 ~ ~
D MNATADs + 2uV2uy : V3 = / 55 (1.22)

for any v, in V! and U3 in H2(w). Note that the equations are posed on w.

Error estimates

The derivation of plate models provides a way to characterize v*, which is the limit of
u® when the thickness ¢ of the plate goes to 0. However the convergence of u° to u* is
only a weak convergence in H! and no quantitative estimation of error is given.

In [32], Destuynder gives an error estimate for the approximation of 6 = Ae®(u°)
by its weak limit o* = Ae(u*, y*) (see (1.14)) under assumption (1.20) (we recall that,
in this section, A is homogeneous). It actually turns out that, in this particular homo-
geneous case, the convergence of 0° to o* is strong.

Theorem 1.9. Under some regularity assumptions on f, there is a constant C' indepen-
dent of ¢ such that for any «, 5 in {1, 2},

loas — obsllze) < C\e
logs — 023||L2((,%,%),H—1(w)) < Cye
HO';; - U§3HL2((_%7%>7H72((‘,)) < C\/g
In [28], Dauge and Gruais give stronger results and show (with an arbitrarely small

error) that the function «° can be approximated arbitrarely close by an expansion in
power of ¢ similar to the expansion (1.5) of the homogenization theory.

Theorem 1.10. Under some regularity assumptions on f,

N N
us_E :€ZUZ+X§ :gzwz
=0 i=1

< CeN+s
Hl(Q)3

The functions wu;, ¢ > 0 are solutions to PDEs posed on () and the functions y
and w', i > 0 are functions that correct the error made on the boundary and whose
definition is out of the scope of this introduction. Of course, the leading order term is
u® = u* solution to (1.16).

In Chapter 2 we get a result somehow similar to Theorem 1.9 in the case of hetero-
geneous plates (see also Section 1.6). It will not be a generalization in the sense that,
in the heterogeneous case we will consider there, 0° does not strongly converge to o*.
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1.4.3 Asymptotic derivation of the heterogeneous plate model

If the plate is heterogenous, it is easier to use an asymptotic derivation to obtain a
plate model than an axiomatic derivation, for which a good intuition may be difficult
to have. The elasticity tensor A° of the rescaled problem (posed on €2) now depends
on ¢. For the problem to be well posed, we suppose that A® is elliptic in the sense that

Je_,cp >0, VEESR¥P, Vo eQ, c [ <A (x)E: € <cylé’ (1.23)

We suppose that the constants c_ and c; are independent of . We also suppose that
A is a symmetric tensor, in the sense that for any 4, 7, k,lin 1,2, 3,

ik = Ao = ALk = Agij- (1.24)

We describe here the derivation of the plate model in two cases: when the hetero-
geneities are "in-plane" and periodic [18] and when the heterogeneities are "out-of-
plane" [47].

In-plane heterogeneities

In this section are presented results that can be found in [18] and whose proofs will
be recalled in Chapter 2. The first author of [18] has performed the same work for a
diffusion equation in [17].

The case of "in-plane" heterogeneities corresponds to the Figure 1.3. We introduce

22
R? to the set of elliptic tensor that is periodic (of period Y) with regards to its two first
variables, such that for any = = (x1, z3, x3),

11
Y :=(0,1)%):=Y x (—— —) and suppose that there exists an application A from

and
Je_,cp >0, VEESRY™ Vo eR?Y  c [€? < An)¢: € < cy €l (1.25)

Remark 1.11. The assumption that the size of the heterogeneities and the thickness of
the plate are both of the same order of magnitude (and equal to ) can be relaxed. In [17]
and [18], the authors have studied the case of a plate of thickness ;1 with heterogeneities
of size ¢, in three different regimes: © < €, ¢ < 1 and e = Ay for some A > 0.

The derivation of the plate model in the last case is similar to the derivation when
A = 1 that we are going to describe here. The other two cases (¢ > p and ¢ < ) can
then be obtained by taking respectively A — oo or A — 0 in the plate model.

Remark 1.12. In [61] and [62] the authors have studied the case of a plate which is
homogeneous but whose thickness has variations. In their study, the plate is defined by

0 = {o € R, (21, m) € w,fm| < Sh (5 2) ]
2 ga’ ga

for some periodic function h and some real positive number a. They present three limit
models for variations of the thickness slower than (a < 1), on the order of (a = 1), and
faster than (a > 1) the mean value of the thickness ¢.
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The weak formulation of the problem is: find «° in V' such that for any v in V,

/QA <%, %) ef(uf) : ef(v) = /Qf -, (1.26)

Using a Korn inequality, we deduce that ¢*(u?) is bounded in (L2(£2))**’ (therefore

e(u?) is also bounded in (LQ(Q))SX?’) and that u° is bounded in (Lz(Q))g. This implies
that there exists a function u* in (H* (Q))3 such that u® -~ u* weakly in (H* (Q))3 up
to the extraction of a subsequence. )

The procedure to identify the limit problem is similar to the classical periodic ho-
mogenization case (see Section 1.2). The function u° is supposed to have the form of
an expansion in power of ¢, with functions that have two scales, 1 and €. Such an
expansion reads

Ty X Ty @
uf(x) = u’ (x,—l,—2> + eu? <x,—1,—2) +... (1.27)
e € €' €

where the u; functions are assumed to be periodic with respect to their last two vari-
ables. The key to this formal computation is to suppose that the scales 1 and ¢ are suf-

Ty T
ficiently separated so that the variables x = (x1, 25, x3) and —1, —2> can be viewed
€

as independent variables. Inserting (1.27) in (1.26) yields a cascade 01§ equations linking
the u; one to each other.

Similarly to the classical homogenization case, the procedure leads to introduce
functions called "correctors". Let

3
W) = {v € (Hlloc (]R2 X (—1, 1))) Vz € (—1, 1) , v(+, 2) is Y-periodic and /v = O}.
2’2 22 S

For o, fin {1, 2}, let wﬁf be the unique solution in W()) to

—div A(e(w?\f) +e,®ez) =0 (1.28)
Ae(wS) + eq @ e5) - e5 = 0 on Y& '
where Y+ :=Y x {j:%} are the top and bottom faces of the cell V.
For av, B in {1, 2}, let w3’ be the unique solution in W(Y) to
— div A(e(wy’) — z3e4 @ e5) =0 (1.29)
Ae(wd?) — z5eq ® €5) - €3 = 0 on Y. .

We recall that the spaces V&, and Va4 useful in the theorem below, have been de-
fined in (1.19). For the sake of simplicity, f is supposed to be a constant. The functions

fs and f\ are defined as fz = fses and fo = fier + foeo.

Theorem 1.13. Under the above assumptions on A® (including (1.20)), f and (2, the
solution u° to (1.26) converges weakly in (H*(Q))’ to some function u* which belongs
to Vi 1. The function u* can be decomposed as u* = ), + uy, and the functions w), and
uj are the unique solutions (respectively in Vit and V&) to

Vo € VL /AM(UM:G(@S) Z/f/vrcb

and

Vo e VB, /Agvz (), © V26 :/f3-¢.
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The homogenized tensor A%, and Aj are defined as follows: for o, 3,0, 7 in {1,2}
Aea®epie, e, :z/A(e (wﬁf) +6a®65> (e (wiy) +es @er)
Yy

Afea®ep s ® e, = / Ae (W) = psea®es) : (e (Wg) — yes @ ).
y

By construction, A%, and Ay are symmetric and coercive.
Note that the whole sequence (u.). converges, and not only a subsequence.

Remark 1.14. In contrast to the classical periodic homogenization, the limit problem in
the bending case does not have the same form as the original problem.

Remark 1.15. If A is a constant isotropic tensor, it is possible to compute the solutions
of (1.28) and (1.29) analyticaly. For v, 5 in {1, 2}, we have

* 5 s L[ 5 1Y N
5N apts and wy = 3 (333 — —) T(Sa/ge&
where \* is given by (1.17). Then, Theorem 1.13 yields (1.21) and (1.22), that we previously
obtained by a different computation. Hence, even if the material is homogeneous and
isotropic, the correctors do not vanish. This implies that e“ps(u°ps) — eps(u*) does not
strongly converge to 0 and hence that the Kirchoff-Love theory, which computes u*, does
not provide an accurate approximation of the heterogeneous stress.

Remark 1.16. In the case of Remark 1.15, note that for o,  in {1, 2},

e(w’) = —ase(wl).

ap

Then,
e (w5?) cas () + ¢ (w5”) Bas (w)y = € (w57 eas (1) — wse (w4 ) Ous ()

=e <wf<§) €ap (UF)

*
= —7 div U*Gg X es.

This computation is wrong in general and allows for many simplifications in the homo-
geneous isotrope case.

Out-of-plane heterogeneities

In this section are presented results that can be found in [47]. The authors of [47] have
performed the same work for a diffusion equation in [46].

The case of "out-of-plane" heterogeneities corresponds to the case of a stratified ma-
terial. We suppose that the tensor A® only depends on x3. The computations are similar
to the computations presented in Section 1.4.2 for the homogeneous case, with an ad-
ditional difficulty. In the homogeneous case, the convergence of e°(u®) to e(u*, y*)
implied the convergence of Ae®(u®) to Ae(u*,y*). When the tensor A° depends on ¢,
this result does not hold.

The bounds on A¢ ensure that

0° = A% (uf) — o* weakly in L*(Q)**.
e—0
The link between o* and e(u*, y*) is not obvious, because the convergence of A¢ and
e®(uF) are weak. In [78], Murat and Tartar proved that under additional assumptions,
the product of two weakly converging sequences converges to the product of the limits.
We recall this result:
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Theorem 1.17 (Compensated compactness). Let ) be an open set of R%. Let

X(Q):={ue L*>(Q)?, divue L*(Q)}
Y(Q):= {veL* ()’ rotve L*(Q)*}

equiped with the norms

lullX) = llullZ2ie + [l divull7zq),
[0l ) = lvll72(qye + [ T0t v]|72 gpa-
Let (up)nen and (v,)nen be two sequences such that
Un)nen is bounded in X (Q) and w, — u weaklyin L*($ d,
y
n—o0
Un)nen is bounded in Y () and v, — v weaklyin L*(Q)%.
y

n—o0
Then it holds that
UV, — uv  inD'(Q)

n—oo

In [25], Courilleau and Mossino proved a variant of this result suited for dimension
reduction. This result is next used in [47] to prove that

O_* — A*e(u*’y*)’

where A* is analytically defined. As in the "in-plane” case, it is then possible to define
a membrane problem which is a second order PDE, and a bending problem which is a
fourth order PDE.

1.4.4 Numerical methods for homogeneous plates

We now return to the homogeneous plate case, and discuss its discretization. The
goal is to find a numerical method to approximate the solution of (1.11). There is a
rich literature on Finite Element Methods for thin plates. The most widely encoutered
problem is "numerical locking" which generally occurs when the convergence of the
FEM depends on the small parameter <. For a review of the problem and of the solutions
that have been considered, we refer the reader to [21], [19] or [20]. In this introduction,
we choose to focus on the work [84] of Paumier and Raoult, which will be relevant in
Chapter 3.

The goal of the article is to approximate the solution of (1.11) by functions that
have a polynomial dependency in 3, i.e. of the form u® ~ wug + w3u; + T3us + . ..
where the functions w; are independent of x3. Let W be a subspace of V' which will be
the approximation space. The Galerkin approximation of (1.11) in W is the solution
to: find w® in W such that for any v in W,

/Q Ae(wf) : € (v) = /Q o (1.30)

Following the same arguments as in Section 1.4.2, we know that there exists a function
w* in H'(Q)? such that (up to a subsequence extraction)
w® — w* weakly in H'(Q)>.
e—0
The reduced model is said to be consistent if ©* and w* coincide. The case where W

contains functions that are polynomial in x5 is particularly interesting for us. For any
vector space H C H}(w), let
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k
Pe(H) := {w Q= R Vo = (21,29, 23) € Qw(z) = ngwj(xl,xg),wj € H}

Jj=0

and
Pon(H) :=Pp(H) X Pp(H) x P, (H).

Theorem 1.18. Assume that W = P, ,(H}(w)). Then l[(u* — w*) = 0 for any linear
form [ in the dual space of Vi, if and only if m > 1 andn > 2.

Note that even though Vi C Py o(Hj(w)), the space Py o(Hj(w)) is "too small"
(in this sense of consistency) to be a good reduced model of a plate. Solving (1.11)
with a standard FEM implies the computation of three functions defined on a three
dimensional domain. On the other hand, solving (1.30) with W = P; 5(H} (w)) implies
the computations of seven functions defined on a two dimensionnal domain, which is
less expensive from a computational point of view. The next step of the discretization
procedure is then classical: it consists of meshing the two-dimensional domain w and
introducing approximation spaces (e.g. finite element spaces) of H; (w).

1.5 Shape optimization

A part of the work performed during this thesis is concerned with shape optimization
of thin heterogeneous structures (see Chapter 4). In this section, we present here a
short introduction to shape optimization methods, largely inspired by the work of Al-
laire in [1] and [5]. We explain the broad principles of shape optimization, and describe
some numerical methods.

1.5.1 Principles of shape optimization
A problem of shape optimization is generally defined by three specifications:

(i) a mechanical model: we choose here to limit ourselves to linear elasticity;

(ii) a set of admissible shapes: for example, it could be the set of connected shapes
of a prescribed volume;

(iii) an objective function which has a vocation to be optimized: for example, the
compliance of an object.

Let U be the set of admissible shapes, u(£2) a physical value (for example, the dis-
placement field of the object under some load), and J be the objective function. The
problem of shape optimization is defined as

glelg} J(u(2)). (1.31)

The choice of U allows to classify shape optimization problems into three cate-
gories:

(i) parametric shape optimization. The shapesin !/ are defined by a few parameters.

(ii) geometrical optimization. The admissible shapes are obtained by moving the
boundary of an initial shape. The topology of the shape does not change, in
particular the number of holes remains constant.

(iii) topology optimization. It is the most general type of shape optimization.



1.5. SHAPE OPTIMIZATION 27

1.5.2 An example of shape optimization

In order to understand the link between shape optimization and composite materials,
we describe here a classical example of shape optimization (see [5]).

Let Q := (0,1)? and y be an indicator function defined on 2. Let A, and Az be two
constant elasticity tensors representing two materials with different propreties. Let A,
be the elasticity tensor representing the inclusion of the material o into the material
B, such that for any x in €2,

Ax(r) = Aax () + Ap(1 = x(2)).

Let I be the right boundary of the square €2,i.e. I" := {1} x (0, 1). A constant force
is applied on this part on the boundary, so that the displacement field u, is solution to
the following problem:

—div(Aye(uy)) =0 in{
Ae(uy) -n=e onl (1.32)
Ae(uy) - n=0 ondQ\T

The shape optimization problem consists in minimizing the compliance of the ob-

ject
J(X) = /UX-€2
r

over the function , where u, is solution to (1.32). More precisely, the proportion of
material o and 3 are supposed to be fixed, so the set of admissible shapes is defined by

U- {X € 1(0, {0, 1}),/QX _ 9}

for some 6 in (0, 1). The problem is therefore a problem of repartition of the material
« in the material (. It can be written as

min{J(x),x € U}.

The precise analysis of this problem is out of the scope of this introduction and is
detailed in [5]. We only provide here an intuition of the problem.

The load applied on the material is horizontal, therefore the principal direction
of the stress will also be horizontal. Then, the best repartition of a and /3 will be an
alternation of horizontal inclusions of a and S. It is possible to show that, for any
size of inclusions, a smaller size of inclusions lowers the objective function. Hence,
the optimal material is not composed of a finite number of inclusions and cannot be
represented by an indicator function, but is a composite material in the sense of a
mixing of & and [ in proportion § and 1 — 6.

We can draw two observations from this example. First, shape optimization prob-
lems are often ill-posed, in the sense that they do not have a minimizer in /. Many
techniques have been developed to ensure that the solution of a shape optimization
problem exists (see [51], [6] or [90]). Second, composite materials naturally appear in
shape optimization problems.

1.5.3 Numerical methods for shape optimization

We briefly present four widely used methods for shape optimization: the level-set
method, the SIMP method, the homogenization method and multiscale methods.
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Level-set method

The level-set method has been introduced by Osher in [82]. We refer the reader to [81]
for a complete overview, and to [4] for a description of the numerical implementation
of the method.

In the level-set method, the shape is represented by a function v defined on a do-
main ). The interior of the shape corresponds to the set {z € Q, ¢¥(x) < 0}, its
exterior to the set {z € 2, ¥(z) > 0}, and its boundary to the set {z € Q, ¥(x) = 0}.

The optimization uses a gradient-descent method. The computation of the deriva-
tive of the cost function with respect to 1 gives a vector field defined on 2. The bound-
ary of the shape is moved accordingly to this vector field.

SIMP method

The Solid Isotropic Material with Penalization (SIMP) method was introduced by Bend-
soe in [9]. We refer the reader to [11] for a complete overview.

The shape that is optimized is made of a material represented by a constant elastic-
ity tensor A. The core of the method is to introduce a function 6 in L>(£2, (0, 1)).
For an integer p > 0, the elasticity tensor 6 A represent a material that lies be-
tween the "real" material (¢ = 1) and void (# = 0). The problem (1.32) is replaced
by — div #? Ae(uy) = 0 with appropriate boundary conditions.

The cost function is optimized with respect to . In order to have a "real" material
as a result, the values of # that are neither 0 nor 1 are penalized. One possibility to
penalize those values is to progressively increase the value of p during the optimization
process.

Homogenization method

Homogenization methods for shape optimization have been introduced in [73], [79]
and [60]. We refer the reader to [1] for a complete overview.

The homogenization method tackles the problem of optimizing shapes that have a
microstructure. The cost of a computation involving a multi-scale material is avoided
by replacing this material by its homogenized limit (see Section 1.2). The optimization
is thus performed on a set of homogenized materials.

Once the optimal homogenized material is found, the difficulty is to build a "real"
multi-scale material, which correspond to the homogenized material. This problem
has been studied in [83], [3] and [43]. We also refer to [48] or [88].

Multi-scale methods

Multi-scale methods also tackle the optimization of shapes with a microstructure. To
simplify the problem, instead of using homogenization theory, the set of admissible
shapes is reduced to a set of shapes with a parametrized microstructure. We refer to
[10], [94], [29] or [42] for examples. The micro-structure is either the same all over the
structure [71] or varies on large length scales [59].

1.6 Main contributions

We collect here the main contributions of this thesis.
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1.6.1 Two scale expansion of the displacement field
Presentation of the difficulty

Homogenization and plate theory describe what happens in the case of in-plane het-
erogeneities when the size of the microstructure and the thickness of the plate € goes
to 0. The displacement field of the plate u® can be approximated by the homogenized
displacement u*. As often the case in homogenization, the convergence of u° to u* is
a weak convergence in H'. As a consequence,

(i) e®(u*) does not approximate the oscillations of e (u°);

(ii) the shear stressis neglected: e;(u*) = €53(u*) = e53(u*) = 0, whereas 55 (u®), €55(u°)
and e54(u®) are a priori not small.

This problem is already present in the classical homogenization theory recalled in
Section 1.2. It is adressed by considering a relevant two-scale expansion (see (1.9) and
Theorem 1.3).

There is however a major difference between plate homogenization and classical
homogenization. In the case of bending, that is when f € O? x &, the oscillatory
problem is a vectorial second order elliptic equation on a three dimensional domain,
namely

—div® (A%e*(u®)) = f on €

whereas the homogenized equation is a scalar fourth order elliptic equation on a 2D
domain:

V? (AgV?UW) = f on w.
The nature of the homogenized equation is thus different from the nature of the oscil-
latory problem. Furthermore, in general the limit displacement u* belongs to a space,
the so-called Kirchoff-Love space Vi, that is not dense in (H*(£2))” for the H' norm.
In contrast to the standard proof establishing the H' convergence (see Theorem 1.3),

we cannot take u® as a test function in the variational formulation of the homogenized
problem. This is why new ideas are required to handle that case.

Our approach to the difficulty

For x = (x1, z2, x3) in 2, let

) uy 2 [wif]l T, T

wiy(z) = us | (x1,22) +¢ [wﬁf]Q (—,—,xg,) eap (W) (21, x2)

0 S\l
and
~ af
. —ZE381U3 2 [wB ]1 T, Ty
g (@) = | —2a0e@; | (rrw2) 4 3 [ (w3 (??x?,) (1, T2).

(s a8=1 \e[wa’]s

Note that the correctors for the first two coordinates of the displacement are multiplied
by &, whereas it is multiplied by £ in the third coordinate . It ensures that

e (ufy) = (e <w%f> (%, %, :1:3> +eq ® 6/3) eqp(u”) + O(e) (1.33)
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and

ef(ug') = (e @gﬁ) (%, %,l’g) — T36q ® €5> Oaplis + O(e). (1.34)

The definition of u%’l and ui\,} are deduced from the two scale formal expansion (1.27).
Note that the formal expansion shows that there is some additional terms in Vi that
are multiplied by e. They are neglected here, because for any v in Vi, e*(ev) = O(e).
Our goal is to show that u%’l + uj\j is a good approximation of u°.

A central ingredient of our proof is to define a homogenized-like limit problem
written as a variational formulation, and for which the test function can be chosen in
the whole space (H*(£2))’ and not only on Vi

We briefly explain this here. The homogenization theorem shows that

o1 ol 0
o = A% (u°) v o*= 05 o5 O weakly in (L*(9))
0 0 O

3x3

The first step of our argument consists in showing that when the stress o is prop-
erly rescaled, it converges to a non-trivial limit:

15 £ -1 _¢ * * *

011 012 € 073 X X X

€ .__ € 5 -1 _¢ * L * * *
-1 _e¢ -1 ¢ —2 ¢ * * *

€ 70331 € 039 & "033 Y3 X5 X

By construction, the oscillatory problem (1.26) yields that

Yvev, /QZE:e(v):/Qf-v.

Using the above weak limit, we obtain that

eV, [siew= [ ro

and therefore / X re(v) = / ¥* : e(v) for any v in V and any € > 0. Furthermore,
Q

Q
if visin VKL,

/E*:e(v):/ V205 0 V2 and /f-v:/fgvg.
Q w Q w

This limit problem does not define >*, but is an important step in our computations.
It allows us to show that

r1 T
[~y —u) [z (D2 0) dusi: -,
Q Q € £

where

Zop = A(e <wg5) —x36a®65) —/YA (e (wlagﬁ) —I36a®€5).

T, @
The remainder of the proof consists in showing that Z,z (—1, = m3> which is a
€. €

divergence-free, Y -periodic function is small, in a relevant sense. We refer to Chapter 2
for more details. -
For the theorems below, we recall that for any z in {2, A*(z) = A —1, —2> where

e’ €
Ais Y-periodic and satisfy assumptions (1.20), (1.2), and (1.24).
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Theorem 1.19 (Membrane case). Assume that f = fie1+ faoes is a constant. Let us also
assume thatuw* € W>*(w)? and that, for a, B in {1,2} we have wS; € WH>(R? x
11

(—5, 5))3. Then, there exists a constant C' > 0 independent of ¢ and w such that

1 *
e (0 — ) miayees <OVl () moyoes

) (1.36)
+Ce (|W|§||V2u*”L°°(W)3X3X3 + ||f||L2(Q)3) .

We did not manage to give a full proof for such a two-scale strong convergence
theorem in the bending case. We nevertheless managed to obtain such a result, to the
price of making a conjecture which we are not able to prove, but which, we strongly
believe it, should be true. We give evidence in Chapter 2, based both on theoretical and
numerical arguments, why such a conjecture should hold true. This conjecture can be
stated as follows:

(CB) Foralll < a,p <2,

Yop = €a®eg: / Ale(wy) — zaey ® €5)0y5u). (1.37)
Y

Theorem 1.20 (Bending case). Assume conjecture (CB). Assume that f = fse3 is a

constant. Let us also assume that u* € W?3*(w)? and that, for o, 3 in {1,2} we have

wgﬁ € Whoo(R? x (—l l))3. Then, there exists a constant C' > 0 independent of ¢ and

272
w such that
le® (u — ug") Il z2@s <CVElw]?[le(u)]| oy
+Ce ([l 9% [ pponans + |5 |12y )
The function X* is defined in (1.35).

Remark 1.21. Fore < |w 2, the rate of convergence of the approximation is \/. This

11
rate is determined by the correction of the error made on the boundary Ow X —5 5)

11
because u®' is not in V (because it does not vanish on Ow X <—§, 5))
Remark 1.22. The explicit dependence in |w| in the right hand side of the theorems above
is interesting for the numerical analysis in Chapter 3.

It is important to prove the approximation results for the rescaled gradient e°(u°)
and not only for e(u®). Indeed, we have ||e®(u®)|| 12(q)sx3 = ||e(u®)||L2(ae)3xs and there-
fore the bounds of Theorem 1.19 and Theorem 1.20 directly translate as bounds on the
strain in the original plate problem. For ¢ < 1, it would be weaker to prove a result

on [le(u)|| (722

1.6.2 MSsFEM for plates

This section summarizes the results presented in Chapter 3. Our goal is to propose a
method similar to the MSFEM presented in Section 1.3 in the case of thin materials.
The specificity of the plate problem is that it is a three dimensional PDE whose
solution is close to the solution of a two dimensional PDE, in a sense explained in
Section 1.4. This specificity is captured in the mesh that we use in this method. Despite
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being the mesh of the 3D domain (2, the number of elements scales as H 2, where H
is their typical size.

Let us assume that w is a polyhedral, connected and bounded open subset of R?
and let 7. be a conforming discretization of w. Let us now define

11
QH:{TX <—§,§>,T < %H}

Then, T obviously defines a conforming discretization of € (see Figure 1.11).

Swo \
Seeceas
s

Figure 1.11: Coarse mesh 7 built on the basis of a coarse mesh of w

Similarly to the MSFEM method presented in Section 1.3, the basis functions of
our approach for plates are solutions to local PDEs, and are harmonic for the operator
div® A%e®. The choice of the boundary conditions is dictated by the results of plate
homogenization (see Section 1.4.3).

« In the membrane case, let V;}* be the space of functions of H}(w)? with values
in R? that are affine on every element of 7., and let (¢;); be its canonical base.

For any ¢;, let ¢; := (%Z) )

« In the bending case, let V5 be the space of scalar valued functions of HZ(w) that
are cubic on every element of 7.7, and let (¢;); be its canonical base. For any ¢;,

let v, := (_x‘;vlgbi),where V¢ = <glzz>
i 2®i

11
Onany T € TH of the form T = 7 x (—5, 3 ) we define the oscillatory
basis function 1/ associated to the single-scale basis function 1); as the solution to the
following problem:

((— div® A%e*(¢5) = 0in T,
. 11
1
A%e"(¢5) -e3 =0on T X {ié} :
\
Let V5 := Span{¢$ } and u5; be the Galerkin’s approximation of «° in V.

The results of plate homogenization (see Section 1.4.3) and Theorems 1.19 and 1.20
imply that, for x = (z1, x5, x3) in €, in the membrane case

Ty T2

e* (Y5 )(x) ~ (6 <wf\éf> <?7 — xs) +e,® 6,3) eap(®i) (21, 22)
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and in the bending case

(05 (w) = (e (g’ ) (22, 25) = wsea © e ) Oupilwr, 22).

g ¢

This is similar to the values of es(uf\’j) (see (1.33)) and es(ueg’l) (see (1.34)), and a central
ingredient to the proof of the following results.

For the theorems below, we recall that for any x in Q, A*(z) = A ﬂ, ﬁ) where
e’ €
A is Y -periodic and satisfies assumptions (1.20), (1.2), and (1.24).

Theorem 1.23 (Membrane case). Assume that we are in the membrane case, namely
that f € £2 x O. Assume thatu* € (W2 (w))® and that for any a, 3 in {1,2}, we
have wif e (WL=(R3))’. Then

3

et = i lazpes < © (H +VE+ /5 ) Wbl

where C' is a constant independent of ¢ and H.

Theorem 1.24 (Bending case). Assume conjecture (CB). Assume that we are in the bend-
ing case, namely that f € O? x £. Assume that ui € W**(w) and that for any a, 3
in {1,2}, we have wy’ € (W'(RR?)). Then

9
e = wilsopes < € (12 + o+ ) 2 ) o

where C' is a constant independent of ¢ and H.

The power in H in the estimation is related to the regularities of the functions uj
and u, and to the order of the PDEs of which they are solutions, hence the difference
H (in Theorem 1.23) vs H? (in Theorem 1.24).

1.6.3 Shape optimization for heterogeneous plates

This section summarizes the results presented in Chapter 4. Our goal is to present a

shape optimization method that uses the MsFEM functions presented in Chapter 3.
The main idea is to modify equation (1.26) by replacing the periodic tensor A° by

a tensor A%? defined for a function ¢ : w + w that is a C'-diffeomorphism and for

x = (21, T2, x3) in Q by
A€’¢($) = A <M’x3) .

The same assumptions are made on A as for (1.26). The function ¢ modulate locally
the size of the oscillations of the elasticity tensor. The equation writes as

YoeV, / A (M,.Ig) e (us?) : ef(v) = / f-v. (1.39)
Q Q

3

In order to have bounds on the size of the oscillations of A%?, the choice of ¢ is
limited to the set

U :={¢:w — w,C'-diffeomorphism, c_ < ||V o) < 4}
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€ €
Then, the characteristic size of oscillations of A%? are between — and —. The objec-
Cy C_
tive function is the compliance, defined by

Fo) = [ 1w
Q
Therefore, the optimization problem reads as
inf { F*(¢), ¢ € U, u®? solution of (1.39)}. (1.40)

The "naive" way of solving (1.40) would be to solve (1.39) at each iteration of the
minimization. It is impossible in practice because solving (1.39) is costly from a com-
putational point of view because of the difference in scale between |w|f11f1 and ¢, as
explained in Chapter 3. This is the reason why we introduced the Multiscale Finite
Element Method (MsFEM). However, it is not directly appropriate here because the
basis functions of the MSFEM are solutions to PDEs that depends on A®? thus on ¢.
In means that the "offline" phase of the MSFEM, that is expensive, would be done at
each step of the optimization.

Our strategy is to choose a family (¢;)1<;<n, C U for some large NV, and compute
the corresponding MsFEM basis. Then, a reduced order model method, the proper
orthogonal decomposition, is used to compute a reduced subspace of approximation
that will be used at each step of the minimization procedure. The obtained subspace
has a dimension which is much smaller than the dimension of the vector space spanned
by the reunion of the MSFEM basis for (¢;)1<;<n,. Then, a gradient descent method is
used to solve the resulting problem which approximates of (1.40).

On numerical examples made in two dimensions, we show that

(1) the solution of the Galerkin approximation problem of (1.39) where the approx-
imation space is computed with our reduced order model method is a good ap-
proximation of the solution of (1.39);

(2) the compliance F* is noticeably reduced (by a factor of 40% on some examples)
when the approximation of problem (1.40) is solved.



CHAPTER 2

LCONVERGEN CE OF A TWO-SCALE EXPANSION FOR
ELASTIC HETEROGENEOUS PLATES

This chapter corresponds to a manuscript in preparation [AL1], co-authored with
V. Ehrlacher, A. Lebée and F. Legoll.

The aim of this article is to prove strong convergence results on the difference
between the solution to highly oscillatory problems posed in thin domains and its
two-scale expansion. We consider the linear diffusion equation and the linear elastic-
ity problem. While such results can be fully proved in the diffusion case, the linear
elasticity case in its full generality raises challenging difficulties. Under some classical
assumptions on the symmetries of the elasticity tensor, the problem can be split under
two independent problems, namely the membrane problem the bending problem. The
membrane case is actually quite similar to the diffusion case. However, in the bend-
ing case, the scheme of the proof used in the membrane and diffusion cases cannot be
adapted straightforwardly. We show here how to obtain strong convergence results in
the bending case, using different arguments, up to the price of a conjecture. We give
theoretical and numerical arguments supporting our belief that this conjecture should
hold true.

2.1 Introduction

In this article, we consider highly oscillatory problems posed in thin domains of R%.
These problems typically read as

—div(A°Va') = f in Q°, (2.1)

where the matrix .A° (which is — uniformly in € — bounded from below and from above,
to ensure ellipticity of the problem and thus its well-posedness) varies at the small
characteristic length-scale . We concurrently consider two types of PDEs: (i) the
diffusion equation (2.1), where A° is a R9*¢ matrix and ¢ is scalar-valued and (ii) the
linear elasticity problem, which can again be written in the form (2.1) where A° is a
now a fourth-order tensor and u° is vector-valued.

The domain )¢ is thin, in the sense that its width ¢ in the d-direction is small. A
typical example is when

OF=wx(—¢/2,¢/2), (2.2)



36 CHAPTER 2. TWO-SCALE EXPANSION FOR ELASTIC HETEROGENEOUS PLATES

where w is a bounded open subset of R%~1. Note that the width of the domain ¢
is here equal to the characteristic length-scale of .A°. Other choices could have been
made, as discussed in Remark 2.1 below. For simplicity, we have assumed in (2.1) that
the right-hand side f does not depend on €. More general cases are considered below.
Of course, Problem (2.1) should be complemented by appropriate boundary conditions,
that are also made precise below.

The question we consider here is to identify the limit of ©* when ¢ go to zero. In
the case when the domain (2 on which the equation is posed actually does not depend
on ¢, this is a very classical question of homogenization theory (see e.g. the classical
textbooks [12, 58], [1, Chapter 1] and also [39, 63]). For a simple diffusive equation
such as (2.1), and assuming for instance homogeneous Dirichlet boundary conditions
on 0F2 and periodicity of the matrix A® (that is A° = Ay (-/€) for a fixed periodic ma-
trix Ape), it is well-known that u¢ € H}(2) converges to some u* € H (), solution
to a homogenized problem of the same form with a diffusion coefficient 4* which is
constant. The value of A* can easily be computed using the so-called corrector func-
tions, which are solutions of some auxiliary problems posed over the unit periodic cell.
The convergence of ©° to u* is strong in L*(f2) and weak in H'((). It is furthermore
possible to introduce a two-scale expansion 1=, explicitly built using the homoge-
nized solution %* and the corrector functions, so that the difference u® — u*! strongly
converges to 0 in H'(Q2) when ¢ — 0. Similar results have been obtained for many
different equations (besides the simple diffusion equation (2.1)), and in particular for
linear elasticity problems, of specific interest in this work.

In this article, we consider the situation where the domain 2° on which the oscil-
latory problem is posed actually depends on ¢ and is given by (2.2). In other words,
we study problems posed on plates composed of an heterogeneous medium, where
the typical size of the heterogeneities is of the same order as the (small) thickness
of the plate (see Figure 2.1). For such problems, the homogenized limit of (2.1)-(2.2)
has been identified (both for the diffusion equation and the linear elasticity problem)
in various cases, including the stratified case [46, 47, 76] (that is when A° only de-
pends on x; € (—¢/2,¢/2)), and the case of periodic heterogeneities in the trans-
verse, in-plane directions [17, 18] (that is when A° is eZ% !-periodic with respect to
(1,...,24-1) € w), to name but a few. We also refer to [75, 91, 53] for recent homog-
enization results on plates with more general heterogeneities. Results have also been
obtained for nonlinear problems: we refer e.g. to [52, 92] for nonlinear elasticity mod-
els. In all these works, the weak convergence of u° to the solution u* to a homogenized
problem has been established.

Following the general path of homogenization theory, the next step is to obtain a
strong convergence (say in H'), that is to build a relevant two-scale expansion u*! and
to prove that the difference u* — u*' strongly converges to 0 in H' when ¢ — 0 (of
course, since the domain €2° on which the oscillatory equation is posed depends itself
on ¢, the domain on which the H' norm is considered should be carefully chosen).
Surprisingly, this question has been addressed for very few cases, at least up to our
knowledge. In that direction, strong convergence results have been obtained for ho-
mogeneous plates in [24, 32, 28]. In this article, we focus on the case where the plate has
periodic heterogeneities in its in-plane directions, which is a setting similar to the one
considered in [17, 18] and for which weak convergence results have been established.

At first sight, it may be thought that such strong convergence results may easily
be obtained by extending standard arguments used in the classical case (i.e. when the
domain on which the equation is posed does not depend on ¢). This is indeed the case
for the diffusion (scalar-valued) equation. However, the analysis that we present here



2.1. INTRODUCTION 37

Figure 2.1: The plate and its microstructure for d = 3.

shows that this is not always the case for the linear elasticity (vector-valued) problem,
and that additional difficulties may arise.

As the title of this article suggests, we are mainly interested in the linear elastic-
ity problem. However, to proceed in a pedagogical manner, we first consider the case
of the diffusion equation in Section 2.2. In that first case, strong convergence results
(such as Theorem 2.5, our main result in that case) can indeed be obtained by using
standard arguments. The situation turns out to be different in the case of linear elastic-
ity, which we address in Section 2.3. We assume there that the mechanical composition
of the heterogeneous material is symmetric with respect to its medium plane, which
corresponds to assuming that the components of the elasticity tensor are either odd
or even functions with respect to =, (see (2.49) below). This assumption is classical in
the literature, and is in particular satisfied by isotropic materials. Under this assump-
tion, we distinguish two situations, depending on the symmetries of the loading (i.e.
the function f in the right-hand side of the PDE) imposed on the plate: the membrane
case and the bending case. The membrane case can again be analyzed using similar
arguments as for diffusion problems (our main result in that case is Theorem 2.21).
However, in the bending case, the standard proof does not go through. The analysis
of this bending case turns out to actually require specific arguments, inspired by some
ideas present in [32] to handle homogeneous plates, but the adaptation of which to
the heterogeneous case is far from immediate. Actually, we were not able to obtain a
complete proof of the desired result in this case, and had to rely on a conjecture stated
in Section 2.3.5 (see (2.74)) to prove Theorem 2.25, our main result in the bending case.
Theoretical and numerical evidence are gathered in Section 2.3.6 to support our strong
belief that the conjecture should hold true.

Obtaining a strong convergence result as discussed above is of course interesting
from the theoretical viewpoint, since it provides an accurate description of the solu-
tion to the oscillatory problem in its natural energy norm. It is also helpful for proving
numerical analysis results. In particular, this type of results is a key ingredient to
prove error bounds for the Multiscale Finite Element Method (MsFEM). This numer-
ical approach, which is dedicated to approximating the solution to highly oscillatory
problems of the type (2.1) (for a small, but not asymptotically small, scale ), proceeds
by performing a variational approximation of (2.1) using pre-computed basis func-
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tions that are adapted to the problem (we refer to [36] and references therein). They
are indeed solutions to local problems defined using the same differential operator as
the problem of interest. Using these problem-specific basis functions, the MsFEM ap-
proach yields an accurate approximation of the oscillatory solution using only a limited
number of degrees of freedom, in contrast to standard Finite Element approaches. In
addition, the MSFEM approach is applicable in general situations, and is not limited
to the case when the highly oscillatory coefficient of the equation is periodic. In our
companion article [AL2], we introduce several variants of the MsFEM approach for the
case of elastic heterogeneous plates, and establish error bounds for these. The strong
convergence results shown here are pivotal for their numerical analysis.

2.2 The diffusion case

11
Let w C R%"! be a open bounded and smooth domain and 2 := w x (—57 5) For a

small parameter ¢ > 0, we introduce )° := w X —3 5) The domain €2 is called a

"plate” because ¢ is small compared to the characteristic size of w (see Figure 2.2). We
also denote by n (respectively n°) the outward normal unit vector to 02 (respectively

0.
ofF———I-

Figure 2.2: Schematic representation of the plate €2°.

Let (e;)1<i<q be the canonical basis of RY. For any 7 = (;)1<;<a € R% we set
= (-ri>1§i§d71 € Rd_l. For any M = (Mij)lgi,jgd € RdXd, we set M/ =
(M;j)i<ij<d—1 € R@-1x(d=1) " The set of d X d symmetric matrices is denoted by
R%*4 and ¢_,c, > 0 are some fixed positive constants. We also define the periodic
cells

11
Y :=(0,1)"" and Y:=Y x (—5, 5) :

11
For any f : R%™! x (—57 5) — RP, we denote by

+1/2
w(f)a)i= [ a0 dog
~1/2
the mean of f over its last variable.
Throughout the article, we use the Einstein summation convention. Latin letters
are used for indices running between 1 and d and greek letters for indices running
between 1 and d — 1.

2.2.1 Definition of the plate problem

The notations we introduce now are specific to the diffusion case (i.e. to the current
Section 2.2). We refer to Section 2.3.1 for similar notations for the elasticity case. We
denote by M C R%*? the set of symmetric matrices M such that

VEERY, |ME]<cylé] and £TME>c [¢*
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11
Let A : RT! x (—5, 5) — M be a matrix-valued field such that, for any z; €

11
(—5, 5), the function 2/ € Rt s A(a’, x,) is Y -periodic. For any z € 2, we set

Af(z) = A (—i ,xd) : (2.3)
In addition, we define A by
, Tg 7 xq
i Q° “(x) = A° — ) =Al—-—.
e, A (x) <a:,€> (5’5)

We set - e
Ve = {U € H' (), v=0o0ndw x (—5, 5)}
A function in V¢ thus vanishes on the lateral boundary of €)° (see Figure 2.2).
For any ¢ > 0, let f* € L2(Q), ¢ € H'(w) and hS. € L?(w). We consider the
following diffusion problem: find u* € V' such that

— div(ATVT) = fF 4+ div(A°V¢) in O,
€ } (2.4)

A*Vu® -n® =ehi — A°Vg"-n° onw X {:|:§
In (2.4), ]75 is the load imposed in €2°. The function ¢° is inserted as a possible extension
of a non-trivial Dirichlet boundary condition (so that u* + ¢° does not necessarily
vanish on 0w x (—¢/2,£/2)). A motivation for considering this general case is the fact
that we use these strong convergence results in our companion contribution [AL2] for
the numerical analysis of MSFEM approaches, where such general Dirichlet boundary
conditions appear. Note that ¢ does not depend on z,4. The function h% plays the role
of a Neumann boundary condition on the top and bottom faces of the plate €2°.

Remark 2.1. As is obvious on (2.4), the thickness (denoted 1) in this remark) of the plate
is equal to the characteristic length-scale € of variations of A° in the in-plane directions.
As pointed out above, different regimes for n vs € have been considered in the literature
(e.g. sending 1 to 0 before or after sending € to 0). We refer e.g. to [17, 46, 45] for such
studies.

Since our goal is to study the asymptotic behaviour of u° when ¢ goes to 0, it is
convenient to rescale the problem and recast (2.4) as a problem set on 2, a domain
independent of €. This is of course a standard step when studying plate problems.

Figure 2.3: Rescaling of the domain

For any u € D'(RY) and any T' € (D'(R%))?, we set

d—1
V'u = Oque, = E O Ul €.
a=1
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We next introduced scaled operators as

d—1

1 1
Veu := dqu ey + —0gueg = Z Oqll € + —O4u ey
€ — €
and
1 L 1
dive T := 0, Ty, + —0,Ty = Z 0T + —04T}.
€ g €

We introduce

V= {UEHI(Q), v =0o0ndw X (—%,%)} (2.5)

It can be easily checked that problem (2.4) is equivalent to finding u® € V such that
—dive(A°Vu©) = f© + dive(A°Vg°) in Q,

1 (2.6)
AVeu® - n=¢eh® — A°V°¢°-n onw X :|:§ )

where A° is given by (2.3) and where
u®(x) = U (2, e xq) and Fo(x) = f(a! e xy). (2.7)

Note that, since ¢g° does not depend on x4, the same function appears in (2.4) and (2.6).

The variational formulation of (2.6) reads as follows: find u* € V' such that
YoeV, a(u®,v) =0°(v) (2.8)
where, for all u,v € V,
a(u,v) = / A*Veu - Vv (2.9)
Q

and

b°(v) ::/Qf‘fv—/QA‘fV‘fga-V’fw/whiv(-,%) +/whiv (—%) (2.10)

The coercivity of the bilinear form a® (with a constant which is uniform with respect
to €) is an easy consequence of the following Poincaré inequality and of the fact that
IVl 2 < [[VEul| 2(q) for any w € V. Using the Lax-Milgram theorem, we deduce
that there exists a unique solution to (2.8).

Lemma 2.2. Let V be defined by (2.5). There exists a constant C(€2) > 0 such that

VueV, |ullrzq) < C(Q)[[Vullrzq)-

2.2.2 Homogenization result: weak convergence

We first establish a priori bounds on u°. Taking v = v° in (2.8), using the fact that ¢g°
is independent of =, (so that V¢g = Vg) for the second term and a trace inequality for
the last term, we get

- IVEE [0y < I 2o 1|2+ e g™ m ) I Vel o @+ CllRE 2o 11 | ).
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Using Lemma 2.2 and next the fact that || Vu®||12(q) < || Vou®||12(q), we deduce that
[ Voul|lZe () < ClF 2@ VUl ez i) + callg® i VUl 2y + ClIAL | 2 [ VU® |20
< Clf 2@ lIVoullz ) + cellg™ @I VUl iz@) + CllL [ L2 | VoU®] 2 (),

and hence
IVeu | r2) < C ([ l2@) + 197wy + 1032wy + 1P [ e2y) s (2:10)
for some constant ' independent of €. Using again Lemma 2.2, this implies that
w0y < C (1 p2@) + 1197wy + 1R N r2@) + 1A 122 (2.12)

for some constant ' independent of ¢.

From now on in Section 2.2, we assume that there exist f € L?(Q2), g € H'(w) and
hy € L?(w) such that, for all € > 0,

ff=1, @< =g and hy = hy. (2.13)
Remark 2.3. Note that, in Theorem 2.4 below, it would be sufficient to assume that the

sequence (f¥).-q (respectively (h5.).~o) weakly converges to f (respectively h..) in L*(Q)
(respectively in L*(w)).

Under the assumption (2.13), we infer from (2.12) that there exists u* € V such
that, up to the extraction of a subsequence,

u® — u* weakly in H*(Q).

e—0

The bound (2.11) will also be useful below.

We now recall the well-known homogenization result of [17]. To that aim, we
introduce the corrector functions associated to the problem. Let

W) = v e HL, (R x —1,1 Vz € —l,l ,v(-,z)isY—periodicand/v:() .
2’2 22 S

Forall 1 < a <d-—1,let w* € W()) be the unique solution to the problem
Yo e W(Y), / A(Vw® +ey) - Vo = 0. (2.14)
Yy

Then, the function w* € W())) is equivalently the unique solution in W(}) to

{— div A(Vu® +¢,) =0 in Y,

2.15
AVw® +e,)-ea=0 onYT Ul 219

1
where J* : =Y x {iﬁ} is the top (resp. bottom) face of ). We are now in position

to state the homogenization theorem for the plate problem, which was proved in [17].

Theorem 2.4 (from [17]). Under the above assumptions, the sequence (u°).~q solution
to (2.8) weakly converges to u* in H'(S)) as € goes to 0, where the function u* does not
depend on x4, belongs to H}(w) and is the unique solution to

Vo € Hy(w), /A*v’u*-v'¢ = / (m(f)+ht+h7)p— / AN'g-V'¢ (2.16)
where A* := (A} 5)1<a,5<a—1 is the homogenized matrix defined by
Ay = /)}A(Vw“ ea) - (Vo +e5).

By construction, A* is symmetric and coercive.

For the sake of completeness, we provide a proof of this result in Appendix 2.C,
using the method of the oscillating test function.
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2.2.3 Strong convergence of the two-scale expansion

For any function u of H'(2), we define the norm

lullmsey = /a2 + 1V5ul220) (2.17)
This is indeed the relevant energy norm for (2.8). In addition, for any u° defined
on 2 and any u° defined on ()¢ that are related one to each other by (2.7), we have
[u |2 0) = 10 (o).

The aim of this section is to prove that the classical two-scale expansion, built upon
the homogenized solution and the correctors, yields an approximation of u* which is
converging in the H!(€)) norm as € goes to 0. More precisely, we are now in position
to state our main result for the diffusion problem.

Theorem 2.5. Let us assume that f does not depend on x4 (thus f € L*(w)), g €
W22(w), u* € W2 (w) and that, forany1 < a < d—1, we havew® € W1 (R4~1 x

(—%, %) ). Then, introducing the two-scale expansion

st =t 4 e w® (;, ) Oa(u* + g),
€
it holds that

e __ us,ll

-2 .
ey SOVE (372 V(0" + g)lee

+OVEW B IV + )1+ VEI )

[

for some constant C' > 0 independent of ¢ and of the domain w.

Tracking the dependency of the constant in the above right-hand side with re-
spect to w is important for our applications to MsFEM approaches considered in [AL2],
where we write the above estimate for problems posed on local elements (and where
|w| is thus directly related to the size of the coarse mesh).

The rest of this section is devoted to the proof of this result, which requires some
preliminary lemmas stated below. Lemma 2.6 states a Poincaré estimate and a trace
result for the norm || - || 1 (q) defined in (2.17).

Lemma 2.6. There exist two constants C; > 0 and Cy > 0 independent of € and w such
that

Yu eV, |lullp < Cimax (5, |w|ﬁ) 1V=ul] 20 (2.18)

()

Proof of Lemma 2.6. For any smooth bounded domain w C R%"!, we denote by

and

Yu eV, < Cymax (5, ywyﬁ) 1Veul| 2. (2.19)

L2(w)

V(Q) = {v € H'(), v =0o0n d& X (—% %)}

where Q 1= & x —1,1 .
2°2
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11

Let® := (0,1)% ' and O := &
etw = (0,1)* ! an wx(22

) Using the Poincaré inequality, there

exists some constant C'p(Q) such that
Vue V@), [ulag < Co@PITulg, (220

We next proceed by scaling. Let us introduce wr := (0, K)?¥ ! and Q = wg X

11 ~
(—5,5) for some K > 0. For any u € V(2), the function ug : wg > = —

/
u (%, xd) belongs to V(€2x ). A simple computation shows that
kel = K lul )

||V,UK||%2(QK) = Kd_gHV/UHQLz 8

e~ duc 3o = K e auly
Recalling (2.20), we thus get that

”UK”L? Qx) < c(Q) (KQHV/UKHB(QK) + 52”5 18duKHL2(QK))
< C(Q) max(K?, %) [|Vour |20y

Since K = |wK|ﬁ, we get

~ L e
”UKHL2(QK) < C(9) max (‘WK’d’lﬂf) A4 UKHLQ(QK)

which proves (2.18) in the case w = wg. In the case of a more general, shape regular
domain w, the proof can be performed using the same argument. The inequality (2.19)
is proved following the same lines. This concludes the proof of Lemma 2.6. O]

We now proceed with a form a Poincaré-Wirtinger inequality.

Lemma 2.7. Leth € L*(w) andv € V. Then, for any z € [—1, 1], we have

/(v(wZ) —m(v)) h| < ellhll 2 [Vl L2

Proof of Lemma 2.7. Let v € V and let (v,,)nen be a regularization of v such that, for
all n € N, we have v,, € C*°(2) and v, v strongly in H'(Q).
n—-+0o

For all n € N, the function v,, belongs to C*°(12), and thus, for any z € [—%, %] , we
have

4
[0(-, 2) — m(u,)] = / (0n(-+2) — a-,£)) dt

+
:/ /8dvn, )dsdt

8dvn( ,S)

ds.
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It follows that

[vn (-, 2) = m(va) 172 = / [0a (-, 2) = m(va)|”

+% 1
§52/ / —0qun(+, 8)| ds
wlJ_1 |€
2
1 2
Sg ‘_advn
c ()

< 2| VEun|72()-

For any z € [—%, %}, we now write

[ = me) 1] < Wl ot 2) =m0z
and bound from above the right-hand side using that

||U('7Z) - m(v)HLQ(w) < an(»'z) - m(vn)HLQ(w) + ||U(,Z) - Un('v Z)HLQ(w)
+ [ m(v) = m(vn) |l 2()
< e[V L2) + Cllv = vnlla@) + |v = vnll220)

where we use the above inequality for v,, for the first term, and the trace inequality
for the second term. Passing to the limit n — oo yields the result and concludes the
proof of Lemma 2.7. [

Lemma 2.8 is an adaptation of a technical result, already present in [58, p. 27], to
the case of plates.

11\ \\*
Lemma 2.8. Let V' be defined by (2.5). Let Z € (leoc (Rd_1 X (—5, 5))) be a
vector field such that

11
(i) for almost all z € (—5, 5), the function Z (-, z) is Y -periodic;

(ii) /yzzo,-

11
(iii) divZ =0 in D’ (Rd_l X (—§,§)>;

(iv) Z -eq=00onR" x {=1/2} and on R4 x {+1/2}.

Then, there exists some C' such that

[#() v

Remark 2.9. We recall that for any function in Hai, (D) := {Z € L*(D)%,divZ € L*(D)}
(for any smooth domain D C R?) has a well-defined normal trace on 0D (see Ap-
pendix 2.A for details). Assumption (iv) in Lemma 2.8 thus makes sense.

Vo € W (w), Yo €V, < 05|W|%||vg0||Loo(w)”vE’U||L2(Q).

The proof of Lemma 2.8 requires the following lemma (see [58, p. 6]). We recall
that L2,.(R?) = {f € L} .(R?), [ is (0,1)%periodic}.

per loc



2.2. THE DIFFUSION CASE 45

Lemma 2.10. Let p € {q € (L2, (R"))? divqg = 0inR?}. Then there exists J €

per

(H} (Rd))dXd which is skew symmetric and such that

per
VvVl <j <d, Dj —/ p; = 0;Jij, / Jij = 0.
(0,1)4 (0,1)4

Proof of Lemma 2.8. Let 7 be the periodic extension of Z in the ¢4 direction. We then
have Z € (L2, (R?)% Let us prove that divZ = 0 in D'(R?). Let ) € D(R?).

There exists a compact set X C R?! and an integer m € N* such that Suppv) C
K x [-m —1/2;m + 1/2]. We compute

(div Z, ¢>D/(Rd),D(Rd) = —/ Z-V
KX (—m—1/2;m+1/2)

— Z /K 7 -V

x (k—1/2;k+1/2)

k=—m
k—=—m Kx(-1/2;1/2)

Using Assumptions (iv) and that (- + keg) = 0 on 0K x R, we compute that

/ va(—erd)I—/ w(—i-ked)dle
Kx(—=1/2;1/2) Kx(—1/2;1/2)

Using Assumption (iii), we deduce that / Z -VY(- + keg) = 0. We thus
B Kx(—1/2;1/2)
obtain that div Z = 0 in D'(R%).
We are thus in position to use Lemma 2.10 for Z. Since / 7 = 0, we know that

y
there exists a skew symmetric matrix-valued field J € (H}, (R? ))dXd such that Z; =
81‘ Jz]

Let ¢ € W'*°(w). Denoting J.; = (Jij),.,o, € R% we compute, for any z, in

(=3:3),
2 ()], = [2(om)
“ay(m)
— ediv® [J.j (E.xd)] o
— e div® [J.j <ga:d) gp} e, (gmd> Ve
= eB;(-,2a) — B, (- 2a)
where B; (-, z4) := div® [J; (3, 24) ¢] and B;(,x4) := J; (%, 24) - Vo¢. Note that

divé(B)

= div® (aa [Jaj <g, xd) (,0] e;j + %ad [de <g, $d) 90] ej)

o (20) ] - 0 s () )+ e ()] + S ()

=0 [because J is skew symmetric|. (2.21)
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We now write that, for any v in V/,

/ng(;,-) -stze/é-vsv—s/B-V%.
Q € Q Q
We bound the first term of (2.22). By definition B is in L2(2) and div®(B) is also

in L?(2), in view of (2.21). We thus note that B has a well defined normal trace
Using (2.21) and an integration by part, we obtain

/QE-stzé/wE(-,%) -edv(-,%> —g/ujé(-,—%)-edv(,—%). (2.23)

It holds that, for any z, in (—%, %)
1

(2.22)

B = B <é,xd> e+J (é,xa) Veo.

Since ¢ € W1 (w), it holds that Vep = Vy = (V'p,0) € L>®(w). Besides, since
J e (H;er(Rd))dXd, we have

J (5 ——) Vep=J ( ;) Vep=J (g %) Vo € L*(w).

Assumption (iv) implies that

We hence deduce from (2.23) that

/Qg.vg J< 1)%[ ( ;)_(_%)H
/w/t_mg@de t)e J(x 1) V(z') dt da’
IVl oo w)

-1
'(23)
g 2 L2(w)

1 1
S C‘WPHVEUHLQ(Q) J <,§)

< |IV=|| 20

IVl oo w)

L2(Y)
1
< Clwl2[[Voull 2@ 1 1 o) [V el oo ) (2.24)
We now bound the second term of (2.22):
1/2 o
/B -Veo| = // J (—,xd) Veu(z!, xq) - Vop(2') da'dxy
Q wJ—1/2 €
A )
< [Vl @I Vool 2@ e Ml
1
< Clwl2 IVl Lo @ Vvl 2@l 2 ) (2.25)

Collecting (2.22), (2.24) and (2.25), we have shown that

: i .

0 Z (=) - V| < CelwfH Vol eI V0 |2y
Q
This concludes the proof of Lemma 2.8.
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We are now in position to prove Theorem 2.5.

Proof of Theorem 2.5. The proof falls in four steps. In the first step, we correct for the
boundary mismatch between u° and its approximation u*!. In Steps 2 and 3, we show
that our approximation is accurate in the suitable norm inside the domain. In Step 4,
we collect all the estimates to reach the conclusion.

Step 1. Let 7. € D(w) such that 0 < 7. < 1, and such that 7.(2’) = 1 for any

2’ € w such that dist(z’,0w) > e. Since w is smooth, we can choose 7. such that

e|VT||Lo@w) < C with C > 0 independent of w and e. We define w, := {x E

w such that dist(z/, 0w) > e} and €, := w. x (—3, 3). Note that |2\ Q.| < Ce |w|d d
We introduce the function v*! defined for x € Q by

x/

v () = ut(2)) + er () w® (;, :vd) Do (u* (") + g(2")).

By definition of 7., we have v € V and v*! = 5! in Q..
We begin with an estimation of [|u®! — v®!| 51 (q). We compute that Veus! —
Vevo! = E5 — ES + eE5, where

By = (1=m)Vu® (Z.) dalu* +g).
Ef = eVerw® (é, ) Ou(u* + g),
Es=(1-71)w® (E’ ) VeOs(u* + g).

We bound the above three terms in L?(Q2) norm, using that w® € Wh>,0 < 7. <1
and that €||V7.||1=() < C. Note that by definition 9;7. = 0 therefore V7, = V..
Likewise, V0, (u* + g) = VO, (u* + g). We thus have

I1B5ley < C sup [0 3= V(0" + )l

< Clw] (IV*u* o ) + 11V g1l ) -
1T 72 ) <€ sup [ [ oo IV (1" + g) oo |2\ ]

<a<d-1
a2 .
< Celwl = (IVU* L) + IVl Zo0 () »
IE5 1122 0) < CIQ\ Q| sup [V |2 [V (@ + 9) | 2o
1<a<d—1

a

;2 *
< Celw| =T (VU e + 1Vl e w) -
We thus obtain

||vave,1 _

< C (el VU By + 2l V20 ey ) - (226)

Step 2. We now bound 7° := u® — v®!. Thanks to the coercivity of A, we write
LWW%QSAW?AWW.

We next split the right-hand side as

/va—a ASVETE /va—a Asva u —u® /VE_E A‘EV‘E &l /Ug’l), (2.27)
Q
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and bound the second term of (2.27) using (2.26):
| AT =) < I = |9 =0
< (VA5 [V g
el V2l ) IV = 0|20y,
For the first term of (2.27), we write
/QVEEE CATVE(uF —utt) = /QAsve(uE +g) - VU° — /QAEVE(uE’l +g) - VT©.
We recast those terms as
/QAEV‘f(uE +g) - VU© = /Q Uy Aleq + Vw")] Oa(u* 4 g) - VFT° + R} (2.28)
and
/ AVE (P + g) - VET© = / A2 (ea + Vo <E )) Ou(w* +g) - VET° + RS. (2.29)
Q Q

where R and R; are remainder terms precisely defined by (2.28) and (2.29). We thus
have

/ Vere - Aeve<u5 _ ue,l)
Q
_ / U Alea + Vu)dy — Ao + Vw“))] Oult* + g) - VU + RS + RS
Q Ly
We now consider the first term of the above equation and introduce
Zy = / Aleq + V) — A(ey + V).
Yy
Because of the definition of w® solution to (2.14), Z, satisfies the assumptions of

Lemma 2.8. The function d,(u* + g) belongs to W!*(w) and u® — v*! belongs to
V. We are thus in position to use Lemma 2.8. For any 1 < o < d — 1, it holds that

/QZ“ <E ) Oo(u* + g) - VT°

At this point, we have shown that

1 * e—¢
< Celw|2 | V2(u* + g)| oo ) I VT || 2()-

_ -2 N 1 _
195 220y < € (VeI 525 |V ey + el IV ) IV gy +HI R+ .
(2.30)

Step 3. We now show estimates on R{ and 15, defined by (2.28) and (2.29). The bound
on R5 stems from the definition of u®!:

|R| =

/QA8 [Va(ua’l +g) — (ea + Vu® (g, )) Op(u* + g)] - Vo©

/QA8 [awa <;, ) VO, (u* + g)} - VET*

3

< Cel|[V(u* + 9)| 2@ | VT 12
l * E—E
< Celw| 2|V (u* + 9)|l () | VT r2(0)-
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Let us now bound R5. We use the variational formulation (2.8) and the fact that u® —v!

belongs to V' in order to write

/A‘fvg(u5+g)-v55‘5:/ﬁa+/ hy %,
Q Q r+

1 -
where 't = w x {i§} Since the function v : Y 2 y — y4 belongs to the space

W ()), it is an admissible test function for (2.14). Thus, we obtain that / Ales +
Yy
Vw®)-eq=0forall 1 <a <d— 1. We thus write

/Q Uy Alea+ Vwa)] Do(u™ + g) - VT° = /QA*V/(U* +g)- VT
= /WA*V'(U* +g)- V' m@).

Using the variational formulation (2.16) of the homogenized problem, the fact that
m(v°) belongs to Hi (w) (and is thus an admissible test function for (2.16)) and the fact
that f does not depend on z, yields that

/WA*V/(U* +9)-V'm@) = /

w

(f + he) m(v) = / (f + he )7
Thus

R§:/Q [/})A(eﬁwa)} aa(uwg)-vaae—/ﬂmva(uwg)-vawé

— / hv - / hot.
w r+
Using Lemma 2.7, we get
|R1| < ellha|l 2 IV | 22(0)-
Asa consequence,
1
R+ |B2) < Oz (w3 V2" + )iy + I llra ) V72

Thus, we deduce from (2.30) that

. =2 N 1 N
V% 2y < € (VR V" + i) + el IV + )l + ellsll o)
(2.31)
Step 4. Using (2.26) and (2.31), it holds that

IV (u = w22 < V(U — v |2 + [IVE (05 = 1) |2

d—2 N 1 N
< € (VR BV (0" + g) [z + el IVAW" + Dl + ellbsll o ) -

To conclude the proof, we use the Poincaré inequality stated in Lemma 2.6, which
yields that

d-2 N 1 N
e = sy < CVE (Il E5 V(6 + g) ey + CVEWIIVAW + ) i) + Vel i) -

This concludes the proof of Theorem 2.5. ]
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2.3 The elasticity case

We now turn to the linear elasticity problem.

2.3.1 Definition of the plate problem

We use here the same notations as introduced at the beginning of Section 2.2. We
furthermore introduce some notations specific to the elasticity case considered in this
Section 2.3. We denote by M the set of tensors M € R4*4*4xd gych that

Vy e R™Y, Myl <cylyl and y' My >c Jy|?

where we recall that R%*? is the set of symmetric matrices of size d x d, and which
have the following symmetries:

V1<id,j,k, 1 <d, M= Mjip = M = M.

For A,B € R%? we denote by A : B = A;; B;;. Let us point out here that, in
particular, for any 1 < i,j < dand any A € R4 A: (¢; ® ;) = el Ae;.

Let A : R41 x (—%, %) — M be such that, for any x4 € (—%, %) the function

x' — A(2',x4) is Y -periodic. For all z € , we set

/
Af(z) =A (£7md> .
€
In addition, we define A° by

€ € A€ / _
Vee ), A(x):=A (x,—g) A(—,—).
We denote by

Ve = {v € (HI(QE))d, v =0ondw X (—%,g)}

Let f< € (L2(¥))", & € (HY(Q))" and 5, € (L2 (w))".

For any u € (HI(Q))d, let e(u) denote the symmetric gradient of u, ie. e(u) :=
% (Vu + VUT). The plate linear elasticity problem reads as follows: find u* € V¢ such
that
—div(A%(u®)) = f° + div(A%(g°)) in Q°,
€ } (2.32)

Afe(W) - nf = 1. — Ae(F) -n° onw x {i§

Similarly as in the plate diffusion problem (2.4), ]?‘E in (2.32) is the load imposed in €)°.
The function ¢° is inserted as a possible extension of a non-trivial Dirichlet boundary
condition (so that u® + ¢° does not necessarily vanish on dw x (—¢/2,¢/2)). The
function %i plays the role of a Neumann boundary condition (i.e. a traction boundary
condition for this elasticity problem) on the top and bottom faces of the plate €2°.

As already pointed out in Section 2.2, we consider the case of non-homogeneous
Dirichlet boundary conditions and we track below the dependency of our estimates
with respect to the size of w since we have in mind the application of these results to
the numerical analysis of MSFEM approaches (see [AL2]), where these two points are
needed.
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To simplify the analysis, it is classical to change the scale of the problem in the d-
direction (as we did for the diffusion problem), in order to work with problems posed
on a domain {2 independent of ¢ (recall Figure 2.3).

For any u € (D' (Rd))d and T € (D' (Rd))dXd, we define the operators e and div®
by
1 1
egﬂ(u) = eqp(u), e4(u) = gead(u) and e5,(u) = gedd(u)
and

1 1 1
diVs(T)a = agTag + gé)dTad and diVa(T)d = gagleg + gaded

forany 1 < o, <d—1.
We denote by

V= {UE (HI(Q))d, v =0o0ndw X (—%,%)} (2.33)

It can then be easily seen that problem (2.32) is equivalent to finding u* € V such that

—dive (A% (uf)) = f©+ dive(A%e(¢°)) inQ,

A%ef(uf) -n = <5€2<(Z?)Id) — A%(g°)n onw x {i%}, (2.34)
with
o Ul () = U (2 e xq), uG(z) = eu§(2!, e xa),
« fal@) = fa@ e aa), fi(x) = e fi(a! e wa),
» b (a) = B (o), hyla') = e ('),
* 9o(2) = ga(2' e xa), ga(x) = € ga (o', € xq),
where, in the third line, we have written A as a short-hand for A..
The variational formulation of (2.34) reads as:
Find u® € V such that Vo € V,  a°(u®,v) = b°(v), (2.35)
where
a®(u®,v) == /QAEGE(UE) et (v)
and

b (v) ::/Qfg-v—/QAEeE(ge):es(v)—l—/whim (%) +/wh€~v (-%)

We are going to use the following Korn inequality (see [22]), a proof of which is given
in Appendix 2.B (see Lemma 2.29): there exists C'(2) such that

Vu S ‘/, ||u||(H1(Q))d S C(Q) ||€(U)||(L2(Q))dxd. (2.36)

Using this inequality and the Lax-Milgram theorem, one easily obtains that there exists
a unique solution to (2.35).
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We now establish a priori bounds on «°. Taking v = ° in (2.35) and using a trace
inequality, we get
e ()t < Nz 19 gy
+ C—&-”es(ge)H(L?(Q))dXd||€E<u5)||(L2(Q))dXd + CHhiH(m(w))dHU€|’(H1(Q))‘1'
Using (2.36) and next the fact that ||e(u®)||(2(q))axa < ||€°(u®)]|(r2(q))axe, we deduce
that
c_||ee(u5)||?L2(Q))dxd < CHfEH(L?(Q))d||€E<u8)||(L2(Q))dXd
+ C+||ea(9£)||(L2(Q))dXd||ea(u£)||(L2(Q))dxd + OHhiH(Lz(w))d||€£(UE)||(L2(Q))dXd

and thus
e @ gaapyxa < C (15 gz + 1€ (9 paqppora + 1S pagpe) — 237)

for some constant C' > 0 independent of €. Using again (2.36), we infer that

HUEH(Hl(Q))d <C <Hf€“(L2(Q))d + HGE(QE)H(H(Q))OW + Hhiu(m(w))d) (2.38)
for some constant C' > 0 independent of ¢.

To obtain bounds independent of ¢ > 0 on <||u5H(H1(Q))d)€>O and (Hea(ua) H(L2(Q))d><d)€>os

we need to assume that the sequences <||f€H(L2(Q))d> , <H€€(ga) H(LQ(Q))dxd) and
€ e>0

<||hj[H(L2(w))d)E>0 are bounded.

From now on in this Section 2.3, we assume that there exist f € (L*(Q2))? and
hy € (L*(w))? such that, for all € > 0,

fef=f and RS =hy. (2.39)
We postpone the precise assumption we make on the sequence (¢°).~( to Section 2.3.2.
Provided that the sequence <||6€ all (LQ(Q))dxd> - is bounded, we infer from (2.38)

that, up to the extraction of a subsequence, there exists u* € (H 1(9))d such that

u® — u* weakly in (HI(Q))d.

e—0

The bound (2.37) is also useful in the sequel.

2.3.2 Homogenization and dimension reduction: weak conver-
gence

The aim of this section is to recall the result of [18], where the homogenized limit
of (2.35) has been identified. We introduce the set

= foe (. s (1)

11
Vz e (——, —) , v(+, 2) is Y-periodic and / v = O} .
2’2 S
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Let w* € W()) be the solution to the problem
Yo e W(Y), / Ale(w™) + eq @ ep) s e(v) =0 (2.40)
Yy

for any 1 < a, 3 < d — 1. The function w®” is equivalently the unique solution in
W(Y) to
—div A(e(w™) + eq @ e5) =0
Ale(w™) + eq @ eg) - €4 = 0 on Y*
1
where Yt := Y x {:i:§}
Let W € W(J) be the solution to the problem

Vo € W), / A((W) — e @ e5) : e(v) = 0 (2.41)
Yy

for any 1 < a, 3 < d — 1. The function W is equivalently the unique solution in
W(Y) to
—div A(e(W*) — 2464 @ €5) =0
Ale(WP) — z4eq @ eg) - eq = 0 on Y*.

We define the set of the Kirchoff-Love displacements as follows:
Vicr, = {v e (H'(Q)"™" x H2(w), Fo € (HA W)™ x HAw), va = Ba — 240aba, va = ad} ,

where HZ(w) is the closure of D(2) in H*(w). For any v € Vi, we use the notation

7 to denote the corresponding element of (H1(w))" ™ x H2(w).
Let us also denote by

d

Grer, = {g € (H'()"" x H2(w), 35 € (H'@))"" % HAW), g = G — 2adalias 90 =} -

For all g € Gy, we denote by § the corresponding element of (H'(w))*™" x H2(w).
It then holds that Vi, C G and that, forany g € G 1, the sequence (Hee(g) I (LQ(Q))dxd)
e>0
is bounded. Observe indeed that

Vg € Gk, V1<i<d, e€5,(g)=0,

and therefore e°(g) = e(g) for any g € Gk . We thus make from now on the assump-
tion that the function ¢° appearing in the linear form b° of (2.35) is such that

there exists g € G, such that, for all € > 0, we have ¢° = g. (2.42)

We recall the following result from [18] (a proof of Theorem 2.11, using the method
of the oscillating test function, is recalled in Appendix 2.C for the sake of complete-
ness).

Theorem 2.11 (from [18]). Under the above assumptions, the sequence (u°).~q solution
to (2.35) weakly converges to u* in (H'(2))", where the function u* belongs to Vi, and
is the unique solution to

Vo € VicL, / KPu : P — / ((f)+ha)- G- / m(zaf) Dadi / K*Pg: P
w w w w (243)
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where the homogenized tensor is given by
N Ky, Ki
W= (i 1)
where each subtensor is defined as follows: for all1 < «, B,7v,0 < d — 1,
(Ko 1= [ Alelu™) + c0 0 09) () ¢, @ ),
(Koo = / (™) 4 e @ e5) : ((V7) e, © ),
K3))apys = — Tt ® €5) : (e(W”‘S) — Tty @ e5), (2.44)

((K12) )aﬁw? —(K )v&xﬁa

and where
2

Gl — 12 (w; <Rgd—1)><(d—1)>

P .
e(@)
B ( G )

By construction, K* is symmetric and coercive.

-~

In the definition of P, let us recall that v = (U

Ud) and that ¢/(v')isa (d—1) x (d—1)

symmetric matrix, with [e’(@\’)} )= = e,4(0). In addition, V2 ;7 isa (d—1) x (d—1)

symmetric matrix, with [Vi,lﬁd] = Oupla-
ap

2.3.3 Strong convergence result of a two-scale expansion in the
membrane and bending case

The aim of this section is to state some strong convergence results similar to Theo-
rem 2.5 in the elasticity case. Let us mention here that, in the case of homogeneous
plates, expansions at an arbitrary order in € were studied in [28].

We first present some preliminary lemmas in Section 2.3.3. Then, in Section 2.3.3,
we present the symmetry assumptions on the elasticity tensor A needed to state our
results and present in details the membrane and bending case. We finally state our main
results in Section 2.3.4 for the membrane case and in Section 2.3.5 for the bending case.

We stress here the following point: while the proof of the strong convergence result
in the membrane case follows similar lines as the one in the diffusion case, the proof
in the bending case is much more involved and requires a different strategy of proof.
We will discuss this in more details at the beginning of Section 2.3.5.

Preliminary lemmas

The aim of this section is to prove some auxiliary lemmas which are useful in the
sequel.

Lemma 2.12. LetV be defined by (2.33). Let Z = (Z;;)1<i<a € (L}, (R x (-3, %)))dXd
be a matrix field such that

(i) for almost all z € ( z, %) Z(-, z) is Y -periodic;
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(ii) [, Z=0;

(iii) div Z = 0 in (D' (R x (=1, 1))

(iv) Z -eq=00onR¥ x {—1/2} and on R4~ x {+1/2};

(v) Z is symmetric in the sense that, forall1 < i,j < d, Z;; = Zj;.
Then, there exists some C such that

[r#) e

Vi € Whe(w), Yv eV,

1 5
< Celw|2 [Vl oo w)lle (v) || L2 -

Proof of Lemma 2.12.

Remark 2.13. The jury found an error in the proof. The correct proof will be published
in [AL1].

The result is a direct consequence of Lemma 2.8. Let v := (v;)1<i<q € V. Using the
symmetry of Z, and denoting by Z; the it" column of Z for 1 < i < d, it holds that

fpz ()
:/Qgpzij (z) e

1

Then, applying Lemma 2.8 and using Korn inequality, we obtain the obtain the exis-
tence of a constant C' > 0 such that

/ngZa (é,~> :vaa—i-é/ggoZd (é,-) : Vg

1
< Celul [Vl o

1
> IVvallzee) + EHV%dHLQ(ﬂ)]
L g
< Celw|2[|Vel| Loyl (0) | 2 () -
The concludes the proof of Lemma 2.12. [
We also need the following lemma.

Lemma 2.14. Let h € (L*(w))? andv € V. Then, for any z € [—3, 5], we have

(/mwm@—m@»dem@wmwmm

The proof of Lemma 2.14 is an easy adaptation of the proof of Lemma 2.7 and we
therefore skip it.

1
Lemma 2.15 states some estimates on the L2 norm of the trace on ' = w x {ié}

of a function v € L*(Q) such that dyv € L?().



56 CHAPTER 2. TWO-SCALE EXPANSION FOR ELASTIC HETEROGENEOUS PLATES

Lemma 2.15. Letv € L*(QQ) such that O,v € L*()). Then we have
[Vl 20y < V2 (I0ll220) + [10av]lr2(e)) - (2.45)

Proof. Tt holds that, for almost all (', z) € (—%, %) X w, we have

1 3
(x 12) v(e',2) + dqu(2’,t) dt.

This implies that, for almost all z € (—%, %),

(++3)
v|a, =
2

<2 /|vx z]2dx—|—

</|vx 2)|? da’ +// |0qv(2’, 1) dtdx’)
<2 (/ lv(a’, 2)|? dx'—I—/ |8dv|2>.
w Q

Integrating the above inequality over z in (—3, 5) yields that

2

da’

L 2
*s5

dqu(a’,t)dt| da'

| /\

loliZasy < 2 (ol + 1002 )

and thus the claimed result. OJ

Lastly, we need the following inequalities of Poincaré type.

Lemma 2.16. Let V be defined by (2.33) and z = i%. Then, there exists two constants
Cy > 0 and C5 > 0 independent of ¢ and w such that, for anyu in'V,

ullz20) < C1max (1, Mﬁ) max (\w\ﬁ,gﬂwy—ﬁ> lef(u)llr2(y,  (246)
and
lu(-, 2)]| 2y < Co max (1, |w|ri1) max (\w\ﬁ,gﬂwrﬁ) e (w) | oy (2.47)

Proof of Lemma 2.16. Let @ := (0,1)4 ' and Q := & x (—3%,3). Using the Korn in-

equality, we obtain that there exists some constant C K(ﬁ) such that

YueV(Q), ullrg < Cx(@)lle()]q): (2.48)

V(@) = {v c (Hl(ﬁ))d, v=0ond x {:I:%}}

To prove (2.46), we proceed by scaling. Introduce wy := (0, K)¥ ! and Qx 1= wg x
( 35 2) for K > 0. For any u € V(Q) we define the function ux so that, for z in Q,

x x
Ug.o(r) = K u, (Ewd) , Uk q(T) = uq (?,ﬂﬂd) :

where
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The function ug belongs to V() := {v € (H' (Q%))", v =0onwgk X {:I:%}}
Simple computations lead to
lusclaga = K4 (K200 W2y + a2y )
legs (wr) 1 Feip) = Kd_5||€aﬁ(u)||p a
lega(ur)lz20,0) = K e lleaa(w)lI7, )
lega(ur)llz20,) = K7 e lleaa(w)ll, -
Recalling (2.48), we get that
ur |72 (o) < K% max (1, K?) ||u||22 _
< Cx(Q) K3 max (1, K?) || ()],
< O (€) max (1, K?) max (K2, 2 54K ) e (ur) 12200
< C(Q) max (1, K2) max (K2, e K72) [Je* (ux) 320,

where we have used that, for any 0 € R, max(1,6?,6*) = max(1,6*). Using the fact
that K = |wg| T, we finally obtain that

~ 1 1 __1 c
lousellz2 oy < Coe(@) max (1, ol 77 ) maix (Jol 77, 20|77 ) [l () 20

which proves the inequality (2.46) in the case when w = wg. In the case of a more
general, shape regular domain w, the proof can be performed using the same argument.
The inequality (2.47) is proved following the same lines. O]

Use of symmetries

In all what follows, we make additional symmetry assumptions on the problem. These

symmetry assumptions enable us to split the problem into two independent problems,

which are commonly called in the literature as the membrane case and the bending case.
More precisely, let us define

1
E = {v € L*(Q) s.t., for almost any 2’ € w, ( > S xg v xy) is even}

272

1
3 2) S g v, xy) is odd}

O := {v € L*(Q) s.t., for almost any 2’ € w, <
Let us point out that
(L) = (£ x 0) @ (0T x &).
This orthogonal decomposition has the following consequence: it holds that

Vi =Vt @ VB,

where

V= (H} ()P x {0} c &1 x O

and

VB, = {U € (Hl(Q))d—l x Hy(w), Jg € HY(w), v = —240404, Va :@d} c O1xg
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Similarly, we have
gK L — g'[A(AL S%) g[B{ L

where

Gxy, = (H'(w)"™ x {0} €7 x O

and
Gicr, = {U < (Hl(Q>)d_1 x H*(w), 304 € H*(w), va = —240a04, Va = @\d} C O 1xE.

From now on, we make the following additional assumptions on the tensor-valued

field A: forall 1 < o, 3,7, < d—1,

Apyss Aapdd, Aadsd € €,

2.49)
Avddd, Aapod € O. (

This is a classical assumption for plate problems (see e.g. [18, Section 7]).

Remark 2.17. In the case when the plate is composed only of isotropic materials, the
assumption (2.49) amounts to assuming that the material is symmetric with respect to its
medium plane {x € Q, x4 = 0}.

We also distinguish two different sets of assumptions on the data of the problem,
namely f, g, h~ and h™:

« Membrane case:

feETIXO0, g€ G, hy = h forall 1 <a <d-land hj = —hy; (250)

« Bending case:

We then have the following proposition, which states the symmetry properties of
the solution u° to the variational problem (2.35) in the membrane or bending case.

Lemma 2.18. Let us assume that A satisfies assumptions (2.49). Then, in the membrane
case, ut € £91 x O, whereas in the bending case, u® € 01 x €.

Proof. The result is an immediate consequence of the fact that the spaces VN (£91x O)
and V N (0% x &) are orthogonal for the bilinear forms defined on V' by

VxV>3(uv)— / uv, (u,v)— —/es(u) cef(v) and  (u,v) — uv.
Q Q r+
For v € 0971 x &, we can check that e,5(v) € O, eaq(v) € € and egq(v) € O. For u €
E471 x O, we have e,5(u) € €, eqq(u) € O, and eqq(u) € €. Using assumptions (2.49),
we obtain that, for any v in V' N (£47! x O) and any v in V N (041 x &),

/Q Aef(u) : e5(v) = 0.

Thus, the spaces V N (€77 x O) and V N (04! x &) are orthogonal for the scalar
product defined by a°. The final result is obtained using the form of the variational
problem (2.35). [
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Let us mention that the assumptions made on the symmetry of A imply the follow-
ing symmetry properties on the corrector functions.

Lemma 2.19. Let us assume that A satisfies assumptions (2.49). Then, forall1 < a, f <
d—1,w* € £ x O and WP € O%! x €. In addition, foralll < o, 3,7,6 < d—1,
it holds that

(K73)asys =0
where the tensor K7, is defined in Theorem 2.11.
The proof of Lemma 2.19 follows similar lines as the proof of Lemma 2.18 and we
omit it here for the sake of brevity.
We finally have a last lemma which characterizes the symmetry properties of the

solution u* to the homogenized problem (2.43).

Lemma 2.20. Consider first the membrane case, when f € £971x 0, g € G4, hl = h,
foralll <a <d—1andh} = —h;. Thenu* = (a*,0) whereu* € (H}(w))*"! is the
unique solution to

¥ € (H /Kne ¢( ):/(m(f) Y+ /Klle ) (D).
N (2.52)
We thus have that u* € V! .

Consider next the bending case, when f € Ot x £, g € G&,, ht = —h, for all
1 <a<d-1andh; = h;. Thenu* = (—x4V'U},0;) whereu; € H(w) is the
unique solution to

Vg € HY (w /K§2V2 'VQUd—/( (fa)+hy +h Ud /m zqf")-V'vg— /K22V2gd V2u,.

(2.53)
We thus have that u* € V&, .

Forany u € (H'())?, we define the norm ||u|| 71 (q)a as follows (compare with (2.17)):

Hu”fqg(g)d = HUH(2L2(Q))d + ||eE(U)H%L2(Q))d><d'

This is indeed the relevant energy norm for (2.35).

2.3.4 The membrane case

In this section, we assume that we are in the membrane case, i.e. that f € £97! x O,
g€ GM ht =h,foralll < a <d-1andh} = —h,. The aim of this section
is to prove the following strong convergence result, which is our main result in the
membrane case.

Theorem 2.21. Assume that we are in the membrane case (2.50). Forany1 <~y < d—1,
let

uSt =l + e ws” <5 )eag(u*—l—g)

and
uG' = et ws’ (E, ) eap(t* + g).
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We also assume that u*, g € (W?>(w))? and that, forany 1 < o, 8 < d — 1, we have

w? € [Wl’oo (Rdil X (—%, %))}d Then, there exists a constant C' > 0 independent of
¢ and w such that

uf = v Y| gy < C (1 + max (1, ywyﬁ> max (ywyﬁ,gﬂwrﬁ))
d=2 1
x (VeI e + g)ll ) + elwlF IV (" + @)l + & (1A% ) + 1Fll200) ) -

The proof of this result follows similar lines as the proof of Theorem 2.5. For the
sake of completeness, we detail the proof below.

Proof of Theorem 2.21. The proof falls in four steps. In the first step, we correct for the
boundary mismatch between u° and its approximation u*'. In Steps 2 and 3, we show
that the approximation is close to u° inside the domain (2. The desired conclusion is
obtained in Step 4.

Step 1. Let 7. € D(w) such that 0 < 7. < 1, and, for any 2’ € w, 7.(2') = 1if
dist(Ow, 2’) > €. Since w is smooth, we can choose 7. such that ||V 7.||pe(,) < C
with C' > 0 independent of w and . We define we = {2/ € w, dist(Ow,z’) > €} and

Q. :=w. x (—3,1). Note that [Q \ (] <C’€|w|d i
Foralll1 <~ <d—1,let

vt =l + ercwd” (g >ea5(u*+g),

v = e2raws? (g, ) eap(tu” + g).

Then, it holds that v*! € V. In addition, we have that e*(u*! — v®') = ES + Ff + E5
where

Bf = (1= m)e(w™) (.-) easlu” + 9),
Ei = EVTE (%9 waﬁ (g, ) ea,@(U* + 9)7

ES = e(1 — m)w® (g ) ® V(eas(u” + g)).

We bound the above terms in the L?(2) norm, using the fact that w®’ € [Wl’oo (Rdil X (—%, %))}d,
u*,g € (W?°(w))% 0 < 7. <1ande||V7| () < C. We thus obtain that

1E5 |72y < C* sup w7V (u* + 9)lI72(q)
1<, f<d—1
< C|w| [IV*(u* + 9)llZoe ()
1B 720 < C sup w7 [V (" + )10 12\ |

Saaﬂgd_
a2
< Celw| IV (U + g)l[7 ),
1EG 1720 < ClIQN\ Q| sup [V |1 [V (6" + 9) |0 e
1<a,B<d—1

<a,f<d—

R ——
< Celw| =1 [V (u" + g)[|7oe )

This implies that

e (v = u) 22y < C (el IV + )y + 2l V20 + ) E(s)) -
(2.54)
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£

Step 2. Let us now bound 7° := u® — v®!. On the one hand, using the coercivity of A°,

we have
e () < [ A€ () ()
On the other hand, it holds that

/Q Aot (T°) « &5 (T°) = / A (1 — utl) : e (TF) + /Q A (us! — v7l) © e (7).

Q

Using (2.54), we obtain the bound

/Aaea(ua,l . Us,l) . €E<F€)
Q

_d=2 " % e
< € (VW [TV (" + g)llie + el IV + ) 1o ) 1660 0.

In addition, it holds that

[ acte -y = [ aete gy em) - [ et g,

Q

Let us now define

RS = /QAEea(u8 +g): ef(T°) — /Q /y A (eq ® e + e(w™)) eqp(u* + g) : €°(v°),

(2.55)
and
R; = / Acef (us+g) 68(65)—/ A® <ea ® eg + e(w™) (i, )) eap(U*+g) = €°(°).
Q Q €
(2.56)
It then holds that

/ Afef(uf —utt) 1 ef(v°) = RS + RS
Q

+/Q [/J}A(ea@i)eg +e(w®)) = A7 (€0 ® e+ e(w™) (g)ﬂ eas(U*+g) ¢ ¢ (7).

We now bound the first term of the above equality. In Step 3, we show that R] + R; =
O(e) because of the assumptions made on the data.
Introduce

Zog = / Alea ® e + e(w™)) — A (eq ® e + e(w™)) .
Y
Because of the definition of w®® solution to (2.40), Z,5 satisfies the assumptions of

Lemma 2.12. The function e,s(u* + g) belongs to W' (w) and u® — v*! belongs to
V. We are thus in position to use Lemma 2.12. For any 1 < o, 8 < d — 1, it holds that

1 * o
< Celw|2 ||V (u* + g)|| oo ) | € (%) 2 (-

/ Zap (;’ ) eap(U” +g) - € (V%)
Q S
This yields that

- 1 d—2 _—
e 320 < € (el VAW + 9l + VEWIE2 [V (0" + gl ) (T a2
+ |RI| + |R5]. (2.57)
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Step 3. We now show estimates on R and Rj, defined by (2.55) and (2.56). The bound
on R comes from the definition of u*'. We hence write

LA [t + o) = (co@ e+ e (2.7)) cost + )] - )

- /gAg [g [waﬁ (E ) @ V(eap(t” + 9)) + V(cap(u” + 9)) @ w™’ (2 )H )
< Ce|| V2 (u* + 9)l 2 lle” (%) | 20y
< Celw|2 | V2 (u* + 9)|| ooy 1€ ()| 12

We now bound Rj. Using the variational formulation (2.35) and the fact that v* =
uf — ool belongs to V', we obtain

/K;AEE(u +g /f v Aihi

For all 1 < i < d, the function v; : R4 x (—%, %) 3 y — yqe; belongs to the space
W (Y). The function v; can thus be used as an admissible test function in (2.40). We

therefore obtain that, forall 1 < o, < d—1, / Aleqa ®es+ e(waﬁ)) -eq = 0. Thus,

| R =

Yy
using the fact that u* € V4 and that g € GA%, we obtain that

/Q[/J)A(eaééeg—i—e(waﬁ))} eap(u* +g) - /Klle u* +g) - €(T%)
/Klle u* + g) - €' (m(77)).

Using the variational formulation (2.52) of the homogenized problem, the fact that
m(7°) belongs to (H}(w))? (thus m((v°)’) is an admissible test function for (2.52)), the
fact that h) = —h, and the fact that f; € O, we obtain that

/ Khe(u* +g) - ¢(m(@)) = / (m(f) + () + (7)) - m((T))

:/fummﬂ ém++h) m(v°)

/f '/w++h) m(@).  (259)
AS a Consequence,

m- [ [ / A<ea®eﬁ+e<waﬂ>>} cosl +9)- ¢(7) = [ A +g)- ()

/f 7 — m(@ ))‘/m++h> (5)—[;h+%f—zihm?

Using Lemma 2.14, we get

[ 1wt - [ 1

In addition, using again Lemma 2.14 and the Cauchy-Schwarz inequality, we get
1/2
@ -u@)| < [ |56 @60 - )
—-1/2 |[Jw
1/2
<c [ 1Al @) o

1/2
< ellfllz2 lle* (@)l 2o

< e[| 2 l€° (@) | 22 -

dz
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Thus,
1R2] < & (1P |2 + 1A zae) + I1fllz2@) 1€ (@) 2.
This yields that

1 N - -
|[R2|+|R2| < Ce (Iw|2HV2(u + Oz + 177 ez + 1A 22w + Hf||L2<m) (@) 2.

We thus deduce from (2.57) that

. d=2 . 1 .
@) 0y < € (VeI V(0" + )11y + el IV (0" + g) e

2 (I8 e + 10 o + 1l 2@)) ) @59)

Step 4. Using (2.54) and (2.59), we write

le*(u — w2y < lle(u — v )| L2y + (0™ = u™) L2

d=2 N 1 *
< O(VEW[ =V + g)l e + 2wl V3" + g)lli(o)
& (1Al + 1 fllz2c@)) ).

To conclude the proof, we use the Poincaré inequality stated in Lemma 2.16, which
yields that

uf = u | ey < C (1 + max (1, |w|ﬁ) max (|w|ﬁ,52\wrrh))
da=2 1
x (VI #75 lle(u + g)llioeqe + £l IV2 (W + 9) e + & (10 120y + 1 2200) ) -

The concludes the proof of Theorem 2.21. O

2.3.5 The bending case

Stating a similar strong convergence result in the bending case appears to be a much
more intricate task than in the membrane case. We want to stress here the fact that
the arguments used for the proof of Theorem 2.5 and Theorem 2.21 cannot be applied
here. Indeed, notice that in the proof of Theorem 2.21, and more precisely in (2.58), we
used m((7°)’) as a test function in the variational formulation (2.52). However, in the
bending case, it is not clear how to construct from v° an admissible test function for
problem (2.53) which would enable to proceed with the same arguments and obtain a
similar two-scale strong convergence result.

We did not manage to obtain a complete proof for such a two-scale strong conver-
gence result in the bending case. We have however managed to obtain such a result
(see Theorem 2.25), by using a completely different proof strategy inspired by some
arguments of [32], at the price of making a conjecture detailed below (see (2.74)). In
Section 2.3.6, we provide evidence, based both on theoretical and numerical arguments,
for why such a conjecture should hold true. We also mention that the complete adap-
tation to the heterogeneous case of the arguments of [32], which were developed for
homogeneous plates, is far from being trivial.

To state the conjecture and our main result for the bending case (namely Theo-
rem 2.25), we first need to state some intermediate results.
Let ¢ > 0 and let us define

o = A% (u + g). (2.60)
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Using (2.39) and assumption (2.42) (which implies that e°(g) = e(g)), we infer from (2.37)
that there exists a constant C' > 0 independent of ¢ such that

0%l (z2(@)yaxa < C <||f|| 2@+ [e(@)]l p2qyixa + HhiH(L?(w))d) : (2.61)

g .

Theorem 2.11 actually provides information (in terms of «*) about the limit of / o
Q
e(v) as € goes to 0 only when v € Vi . To state the strong convergence theorem, we

need to identify the limit of / 0 : €°(v) for any v € V. To this aim, we introduce the
Q
following quantities, forany 1 < o, < d — 1:

1 1

Then, for all v € V, we have / o e (v) = /ZE : e(v). The main idea of the

Q Q
following lemmas is to show that there exists some >* regular enough such that

Yo eV, /926:6(1}):/92*:6(1})

and to relate some components of ¥* with u*.

Lemma 2.22. There exists a symmetric matrix-valued field >* := (E?j)gmgd such
that, forall1 < o, 8 < d — 1, we have

11 11
S 2@, Swer((—3g) @) ad sier((—55) w)

and such that, up to the extraction of a subsequence,

Zzﬁ - Zaﬁ weakly in L*(€2), (2.63)

>,H 1 ) (2.64)
),H 2( > (2.65)

) ())) it holds that

N | —

¥4 v ¥* , weakly in L ( ( =,

)

l\l)lr—A
N —

Yo — v %, weakly in L? ((

Furthermore, for any v := (v;)1<i<a € (C°° ([—%,

/925 ce(v) = Z (Xas €ap(v))12(0)

1<a,f<d—1

l\')IH

D B eatDia(( ) ()

1<a<d-1

+ <Ez(ld7 edd(U)>L2((—%,%),H*Q(w)),LQ((—%,%),Hg(w))' (2.66)

In addition, there exists a constant C' > 0 independent of ¢ and w such that

Z HE*5HL2 + Z ”E d”L2 ,%7%)71{—1(@)+HEQdHLz((,%é)’H_Q(w))

1<a,f<d—1 1<a<d—1

< O (If i + el gzqyers + 11 lzzne) -
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Proof. We know from (2.61) that the sequence (¢°)_., is bounded in (L*(2))**“. Thus,
forall 1 < a, 8 < d — 1, there exists Yis € L?(92) such that, up to the extraction of a

subsequence,
aﬁ - Zaﬁ weakly in L*(€2).

Now, let us prove that the sequence (X5,,)_. , is bounded in L? ((—3, 1) , H ' (w)) for
any 1 < a < d — 1. Using (2.35), it holds that, for all v = (v;)1<j<4 € V such that

vg =0,
/Ezdﬁdva:/fava—i-/ hiva—/aiﬁeag(v). (2.67)
Q 0 r+ Q

Let now w = (wa)1<a<a—1 € (L* ((—3.3) ,Hé(w)))d_l. Foralll <o <d-—1,letus
define v on () by

11 ?
V(' 2) € w x (——, —> , o2 2) ::/ we (2!, t) dt (2.68)
22 iy
and set v} = 0. It then holds that v* = (v});<;<q belongs to V, and that it can be used
as a test function in (2.67). We then obtain that

/ c  Wa = /fav +/ hfvg’—/gagﬁeag(vw). (2.69)

Using the fact ||v}||2() < [|wal|r2(0) and that [[0sv}) || 12(q) < [|0swall12(0) together
with Lemma 2.15, we obtain that there exists a constant C' > (0 independent of ¢ and
w such that

/ 3 Wa

< Wallzz@loa 2@ + hallzzellvg 2w + g 2w lvg 2=

1 g w w
t50 > lotalle (10a08 e + 19502 | r2(ey)

1<a,B<d—1
< | fallez@ v z2@) + V2 (1S 2y + 1ha llz2w)) (102 |22y + 10002 220

1 y "
+ 5 Z ||0-(E)zﬁHL2(Q) (Haavﬁ HLQ(Q) + ”8/8’004 ”LQ(Q)>
1<a,A<d—1
< fallzelwallzz@ + 22 (10 2w + 1 l2w)) lwallz2@)
1
T > lotsliz@ (10awsll 2 + 10swal @)

1<a,B<d—1

< C (Il wziane + €09 gaqayyoes + W wzone) 10l oy 1) gy

11
272
This implies that there exists a constant C' > 0 independent of € and w such that
Z 125 d“LQ((—%é) H=1(w)) <C (Hf” 2@y + [le(g )H(p(g))dxd + ||hiH(L2(w))d> .
1<a<d-1

Hence, for all 1 < o < d — 1, there exists X7 ; € L? ((—
to the extraction of a subsequence,

11
e _ . VK : 2 - = -1
ad 7 ¥r, weakly in L < ( 5 2) JH (w))

%, %) 7H—l(w)) such that, up

and

S ISkl gy < € (1 Nz + 1@l agapyoes + 1 ez -

1<a<d-1
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We next turn to ¥5,. For all v := (v;)1<i<q € V such that v, = 0forall 1 < a <
d — 1, we have, using (2.35),

/szadvd:/fdvd+/ hjvd—l—/ hdvd—/Ezdaavd. (2.70)
Q Q r+ - Q

Let now wy € L? ((—3,3) , H3(w)). We define v on Q by

11 z
V' z)ewx (—=, =), vy, 2) ::/ wq(2',t) dt (2.71)
22 iy
and set v = Oforalll < a < d—-1 Foralll < a < d — 1, we have d,v4 €
L?((=3,3),H}(w)). Then, it holds that v" := (v}")1<;<q € V and can thus be used
as a function test in (2.70). Following similar arguments as above, we obtain

€
‘ / YqWd
Q

< [ fallz@llvg Il L2y + 105 2@ 1o | 2oy + g ez g | 2o

t 2 IRl gy Wt s 2y )

1<a<d—1

< € (Il + 1e(o) gz + 10 ezzone) Tl pag(—s.5) sz

for some constant C' > () independent of w and &. Thus, there exists ¥, € L? ((—%, %) ,H™2 (w))
such that, up to the extraction of a subsequence,

. 11

Yoy — X5, weakly in L2 (<__7 _) 7]__,—2(&0)
e—0 279

and

HZ:ldHL?((—%,%),Hﬂ(w)) <C (HfH(L?(Q))d + ”e(g>H(L2(Q))dXd + HhiH(L?(w))d) .

On the one hand, we thus obtain that, for all v € (C°° ([—%, l} , D(w)))d,

/QZE ce(v) — Z (X% €as(v)) 20

1<a,B<d—1

D (B CadOia((g 4) o) (-4

1<a<d-1

) H3 ) (2.72)

On the other hand, since (C°° ( [—%, %} , D(w)))d C V, we have, in view of (2.35), that

/QEE:e(v):/QJE:ee(v):/gf-ij/Hh*-v—i—/Fh-v. (2.73)

In view of (2.73), we see that the left hand side of (2.72) is actually independent of ¢.
We thus deduce (2.66). This concludes the proof of Lemma 2.22. O

We now state the conjecture on which we build the proof of the strong convergence
of the two-scale expansion. This conjecture reads as follows:

Foralll <o, <d-—1,

(CB) Sis = (ea ®ep) : {[/ A(e(W) = waey @ e5) | Dy5(u + ga).

(2.74)
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We postpone to Section 2.3.6 the discussion about the theoretical and numerical evi-
dence supporting (2.74). Let us only mention here that one consequence of this con-
jecture (together with the fact that v} and g; do not depend on z; and of (2.44)) is the
identity

V1 S a, ﬁ S d— 1, m (—ﬁd E;B) = (K§2)a676 07(5(%2 + gd)- (275)

While we are not able to prove (2.74), it turns out that we can rigorously prove (2.75), as
shown in Section 2.3.6 (see Lemma 2.26). Furthermore, we also discuss in Section 2.3.6
some numerical evidence supporting (2.74).

Under some stronger regularity assumptions on A, f and g and under Conjec-
ture (CB), the following lemma states that 3* is actually more regular than stated in
Lemma 2.22.

Lemma 2.23. Assume Conjecture (CB) and that

(A1 Ae (C= (R x (=5,4)))"

(A2) fo€ L*((—3,3) ,H (w)) foralll <a <d—1and f; € L*(Q);
(A3) ga € H'(w);

(A4) ht € H'(w) foralll < a < d—1and hi € [*(w).

Then, it holds that, forall1 < o, < d — 1,

zgﬁef}(( ; ;) H2(w )), zgdefﬂ(( ;;) H(w )) and %, € L2 (Q).

Proof. We start by proving that v} € H*(w). Using Lemma 2.20, it holds that
V% K3,V = m(fy) + hE + div (m(zaf')) — V?: K5, V?g,in D' (w).
The assumptions (A2), (A3) and (A4) on f, g and h* imply that
V2 K3,V € L (w)

and we furthermore have v’ € HZ(w). Thus, by standard elliptic regularity, we obtain
that v} € H*(w). In addition, we have also assumed that g; € H*(w). Using now
Conjecture (CB), we deduce that ¥} ; € L? ((=3,3) H*(w)) foralll <o, B < d—1.

We next prove that 3%, € L*((—1,1) H'(w)) forall 1 < a < d — 1. Pass-

ing to the limit ¢ — 0 in (2.69) and using (2.64) and (2.63), it holds that, for all

€ (L ((~5.3) Hyw))"

/EZdwa:/faUéU+/ h:t w—/Eaﬁeaﬂ( )
Q Q +

= / favy + / hE v + / 0p2, [since v* vanishes on dw x (—1/2,1/2)]
Q

1/2
:/Qwa(x',z) (/Z (fald',) + 055k 4(x ,))> dx’dz—l—/ﬂwa(x’,z) hi(z') dx' dz,

where v" is defined by (2.68) (and thus vanishes on I'™). This implies that

1/2
Egd(x',z):h;r(:c')—i—/ (fa(a;/,.)JraﬁE;ﬁ(x’,.)) in D'(9). (2.76)
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Since ¥}, € L ((-1,1),H*w)) forall1 < o, < d — 1 and in view of the

272
regularity (A4) on h*, we infer from (2.76) that X%, € L? ((—% 5) HY(w )) for all
1<a<d-1.

Let us finally prove that ¥, € L?(Q2). Let wy € L? ((—3, 5) , H¢(w)) and consider
v" defined by (2.71). Passing to the limit ¢ — 0 in (2.70) and using (2.65) and (2.64), we
obtain that

[ Siwa= [ gavs [ wgoye [ ngep - [ S0
Q Q I+ - Q
1/2
- / wq(z', 2) / (fa(a',) + 0aZky(a,0)) | da’dz + / wq(x', 2) b (2) da’ dz,
Q z Q

which implies that

1/2
Sha(a' z) = hi(2)) + / (fa(@',+) + 0aX5y(a’,))  inD'(Q).

Since X%, € L* ((—3,%) , H(w)) forall 1 < o < d — 1, we deduce that 3%, € L*(Q).

202
This concludes the proof of Lemma 2.23. [

A consequence of Lemmas 2.22 and 2.23 is the following result.

Lemma 2.24. Under the same assumptions as in Lemma 2.23, it holds that

YveV, /9(25—2*)26(1)):0.

We emphasize that this result holds without taking the limit ¢ — 0. This is critical,
since we will use that equality later on for functions v that depend on €.

Proof. Let ¢ > 0 and v € V. Since the space (COO ([—%, %} D(w)))d is dense in

V, there exists a regularization of v, namely ¢,, € (C°° ([ 1 %} ,D(w)))d such that
le*(v — én)|l(z2()yaxa < 1/n for any n € N*,
Then, using Lemma 2.22, it holds that

/Qza:e(v):/gza;e(¢n)+/ngze(v—¢n)

= Z <Z;57 eaﬁ(¢n)>L2(Q)

1<a,<d—1

t 2 el ()14 e)

1<a<d-1

Using now Lemma 2.23 (and hence the fact that all components of ©* belong to L*((2)),
we get

/Qze;e(v):/Qz*;e(gbn)Jr/QZE:e(v—aﬁn)
= [=iew+ [wieo-0t [ iew-a) @)
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Moreover, it holds that

/Qza Le(v — én)

1
S E ||0'5||(L2(Q))d><d

[ eto-am

and likewise

= et —0)

Thus, letting n go to +o0 in (2.77), we obtain that

/Qze;e@):/gz*;e(v).

This concludes the proof of Lemma 2.24. O

* 1 *
< ||E H(LQ(Q))ddeeE(v — ¢n)’|(L2(Q))dxd < ﬁ HE ||(L2(Q))d><d.

We are now in position to state and prove our main result.

Theorem 2.25. Assume that we are in the bending case (2.51) and that (CB) holds to-
gether with assumptions (A1)-(A4). Assume in addition that f, = 0 foralll < a < d—1
and that f, does not depend on x4. Forall1l <~ <d — 1, let

w4 e W (g, ) Do (U5 + ga) = —wadyuly + £ W (g’ ) O (W5 + ga)
and _
u = w4 2 WP (2, ) G (s + 9a)

We also assume that u}j, gg € W3°°(w) and that, forany 1 < a, 8 < d — 1, we have

Web e (Whee (R x (-1, %)))d Then, there exists a constant C' > ( independent of
€ and w such that

£

Ju* = |y g < € maix (1, o] 7 ) masx (Jul 77, 2] 77
1>

X (\/E\w\% V2 (uy + gd)HLoo(w) + e|w|'/? |V (uy + gd)HLOO(w) + 5HE*||L2(Q)> .

Proof. The proof falls in four steps.

Step 1: Let 7. € D(w) be such that 0 < 7. < 1, and such that 7.(2') = 1 for any
2’ € w such that dist(z/,0w) > e. Since w is a regular domain, 7. can be chosen

so that £||V7.|| =) < C for some positive constant C' independent of ¢ and w. We
define w. := {2’ € w such that dist(z, dw) > €} and Q. := w. x (—3, 3). Note that

T 202
Q\ Q] < Celw| T
Foralll1 <~ <d-—1,let

vt =l er. WP (; ) Oap (g + 9a) ,
vt =g+ 2 W (E’ ) O (ug + ga) -

It then holds that v*! € V. We then compute that e (u®' — v5') = E5 + E + ES
where

B = (1—r.)e (W) <E ) Bup (5 + 94)
Ef :=eVr. @ WP <E’ ) Oup (U + ga) ,

B = e(1=m)W (2] © V (Das (15 + 90))
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Using the fact that W% ¢ (Wl’oo (Rd_l X (—%, %)))d, that u3, g; € W3 (w), that
0<7.<land¢||Vr|L~ < C, we obtain that

|51l 0) < CION Q| _max (VW] V2 (uf + 60) [}

1<a,f<d—1
d—2 « 2
< Celw| 51 || V2 (u} —l—gd)HLw(w),
2 « 2 * 2
1B5 72 < € _max  |[WP|, _ [10as (wh + ga) | oo 19\ el

1<a,8<d~1
< Celol 2 [10as (uf + 9) 2
||E§||i2(m < Ce? nax HW”‘/BH; V2 (uf + gd)Hiw«u)
< Ol V2 (uh + g0)|[} i
This implies that
e =0y < € (£ 9 0+ bl 05 90 )
(2.78)

Step 2: Let 7° := u® — v51. On the one hand, using the coercivity of A, we have
T ey < [ A% s (). (279)
On the other hand, it holds that
/Q (@) : () = Ty + T, (2.30)
where
T, = /QAEeE(uE —utt)  ef(@°) and Ty := /QA‘fe‘f(u‘271 — o) et (TF).
Using (2.78), we obtain that

d—2 _
To] < C (el 2 [V (65 + g0 ey + VERITT |92 (5 + 0 ey ) 165 @) -
(2.81)
We now turn to bounding 7). We write

T, = / A%e*(uf 4 g) = e°(T°) — / A%ef(utt + g) : 5 (T°).
Q Q

Let &% := (i;) be defined by

1<i,j<d
i’;ﬁ =37 forany1 <a,8<d-1 and S =34 =0 forany 1 < i < d.

Moreover, let us introduce

R; = /Qfl‘ge‘g(u‘E +g):e(v°) — /Qi* 2 €5 (7°) (2.82)
and
Ryim [ A (wig): 0)= [ A (—aaea s e (W) (2,1)) Ouatiran) (7).

(2.83)
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It then holds that
T\ = R + RS + RS (2.84)

with
RS = /Q [i* — A° (—xdea ®es +e (W) (E, )) Oap(uy + ga)| = € (7).

In Step 3, we will show that R] + R = O(e) because of the assumptions made on the
data. We thus presently estimate [25.

Forall1 < a, 5 < d — 1, let us define
Zap = [e7 R es: /YA (—xdea ®eg+e (Waﬁ))] e Re;—A (—a:dea ®eg+e (Waﬂ)) .
In view of Conjecture (CB), we have that
Ry = [ Zus (20o) Gustii+ a0 ()

By the definition of W and its parity properties, it holds that 7,4 satisfies the as-
sumptions of Lemma 2.12. In addition, the function d,5(u} + g4) belongs to W1 (w)
and uf — v5! belongs to V. Thus, we obtain that, forall 1 < o, < d — 1,

< Celw|"? || V3w + gd)HLoo(w) e (@) 12 -
(2.85)

7= | [ 200 () duatui 900 )

Step 3: We now show estimates on 17 and 5 respectively defined by (2.82) and (2.83).
The bound on R5 comes from the definition of u*!. We compute

[R5l =

/QA6 [eg(ug’1 +9) — (—xdea ®eg+ e (W) (é, )) O (Ul + gd)} : e (%)

/QAs 5 W7 (20) @ V @asluy + 90) + V (Dasls + 9) © W7 (2,-)| | £ (@)
< Ce || V3 (uf + gd)HLz(w) 1€ (@) | £2(q)
< Celw|"? || V3w + gd)HLw(w) e (@) | 12(q) -

Let us now bound Rj. To this aim, we use the same notation as in Lemmas 2.22, 2.23
and 2.24. Since the function 7° belongs to V, using Lemma 2.24, we obtain that

/QAeeg(uE—kg):es(Ee) :/zﬁ : (%) :/Qz*;e(@ff).

Q

Moreover, we easily deduce of the definition of S* that

/QE* : e (7°) _/Qi* : (7°)

[ Stacad®)+ [ Siaeutr)

Q Q

6/ Xod eid(6€)+€2/ X34 €aa(V%)
Q Q

< Cel|Z |2 le® (%) | 2y -
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As a consequence, we obtain that
R =| [ (5 - o +9) )
Q
| [(E-) e
Q
[ (&)@
Q

< Cel|Z| 2 lle® () | 2y -

We thus deduce that
B85+ B3] < O ([l [ V(g + 00)] ooy + 12 20 ) 1€z

Collecting (2.79), (2.80), (2.81), (2.84), (2.85) and the above bound, we obtain

d—2 *
e ()l 2y < € (VE D [V2(05 + g0) | oy

el 2 [ 0+ 0| o) + I iy ) - (2:86)

Step 4: Collecting (2.86) and (2.78), we obtain that
Hee(us - UE’I)HB(Q)
< Jlefu = 0| gy + Nl (@ = v 2

< € (VAT |92+ 00 ey el [ 905+ )+ 15 )

To conclude the proof, we make use of the Poincaré inequality stated in Lemma 2.16
to finally obtain

< C'max (1, |w|ﬁ> max <|w|ﬁ,€2]w]7d%1)
d—2
X (\/g|w|iz<d_1> V2l + g0) | oo + L0 |V (0 + 0| e oy + g||z*||L2(Q)> :

This concludes the proof of Theorem 2.25. [

2.3.6 Evidence supporting Conjecture (CB)

The aim of this section is to present theoretical and numerical evidence supporting
Conjecture (CB).

Theoretical evidence

We have pointed out above that Conjecture (CB) implies the identity (2.75) for the
quantity m (xd X ﬁ). It turns out that we are able to directly prove (2.75), as shown in
Lemma 2.26 below. We also recall that, using the symmetries of the bending case, 27 5
is known to be an odd function with respect to the d'" variable, and thus

VpeN, m (x?ip Z;B) =0.
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Lemma 2.26. Assume that we are in the bending case, that (A1)-(A4) are satisfied, and
that WP e [Whe (R x (-1, %))}d Assume in addition that f, = 0 forall 1 <
a < d — 1 and that f; does not depend on 4. Then, it holds that

m (245%5) = m (g;d ca®es: { /Y A(e(W™) — zqe, 65)} 0.5 (uly + gd)) .

To prove this result, we follow a strategy inspired by the proof of homogenization
using the celebrated div-curl lemma.

Proof. Since uw; and g4 do not depend on x4, we first observe that the above right-hand
side reads as

m (xd o ®ep: {/Y A(e(W) — 240, @ 66)} o (g + gd)>

= Oy5(ug + ga) / (taca ®eg: Ale(W?) = z4e, @ e5)) -
Yy

Let p be a d x d matrix such that p;; = pg; = 0 forany 1 <4 < dandlet W € W(Y)

be the unique solution to the corrector problem

Yo e W(Y), /yA(e(W) — x4p) : e(v) = 0.

The matrix p is a linear combination of the matrices e, ® eg (for 1 < o, 8 < d — 1),
and W is likewise a linear combination of the correctors W ? solution to (2.41).
Forally € Y and = € (), we define

T(y)=A(y) (eW)(y) —yap) and T°(z)=T (g/,xd) )

For any symmetric matrix M € R%9, Jet

c M’ 671Mad
5 <M) T <51Mad 52Mdd') )

Note that for any symmetric matrix M € R%*¢ and any function v € H'((), it holds
that
M :ef(v) =& (M) : e(v). (2.87)

We recall (see (2.60)) that 0° = A%e®(u® + g). The matrix 3¢ defined by (2.62) satisfies
Y = ¢°(0°) and we denote by S° := £°(7%).

For all z € (), we define v(z) := z'pz/2. We then of course have V?v = p.
Introduce v° := (v{)1<;<q defined by

a:,/

v (z) =W, (?,xd) —2q0uv(z) foralll <a<d-—1,
/

vi(z) = 2 W (% xd) + u(2).

By construction, we have



74 CHAPTER 2. TWO-SCALE EXPANSION FOR ELASTIC HETEROGENEOUS PLATES

Then, by definition, it holds that

:L,/

o ef(v°) = A% (u° 4 g) : le(W) (;,xd> — xdp] =T :e(u"+g). (2.88)

The sequel of the proof falls in two steps, and follows the lines of the classical proof
of homogenization using the div-curl lemma. In Step 1, we identify the limit of the
left-most term in the above relation (2.88). This is not simple, since both terms only
weakly converge. But we are going to use that (up to some scaling) the second factor
e(v°) is a symmetrized gradient, while the first factor o° is divergence-free (thanks
to the equation satisfied by u*). In Step 2, we identify the limit of the right-most term
in the above relation (2.88), using again the fact that it is a product of a symmetrized
gradient by a divergence-free factor (thanks to the corrector equation). The fact that
the two limits are equal then yields the claimed result.

Step 1: Let ¢ € D(w). Using (2.87), we write

/QUE:eE(UEW:/QZE : e(vf)qﬁ:—/QZEng-vE—/QdivEf-v%.

The boundary term in the above integration by part vanishes because ¢ vanishes on w
and because of the Neumann boundary conditions satisfied by 3¢ on I'*. The function
¢ being independent of x4, this leads to

/ o et (V) = — / 05 0atvy — ! / 05400V — / divX®-vg.  (2.89)
Q Q Q Q

We are going to successively pass to the limit ¢ — 0 in the three terms of the right-
hand side of (2.89). Using the equation satisfied by «* and the assumption that f, =0
for any 1 < a < d — 1, we obtain for the third term that

_ /Q div 3 - v — /Q Fovo— / fud. (2.90)

For the first term of (2.89), we know that, forall 1 < o, < d — 1, (agﬁ
converges in L*(Q) to X} ; and that (v5).-¢ strongly converges in L*(12)
This implies that

)-v0 weakly
to —xq0pv.

_ /Q 05s0n005 — /Q S 00 b adpv.

Using next an integration by part, we deduce that

e—0

lim — [ 050,005 = —/ P02 52405 — / PX5 5T a0apV
Q Q Q
= — / m (24023 5) Ov¢ + / m (—z42%) : po. (2.91)

We eventually turn to the second term of (2.89). By definition of v} and X, it holds

that
:LJ
e / 0 Daty = —=! / 0% Dat — € / 0% Oa W (—wd)
Q Q Q €

= —/ YadOadV — 5/ 0ad0a®Wa (£,$d> : (2.92)
Q 0 15
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Since the function Wy is in L*°()), we obtain that

!
e / 0 O Wy (x—,xd) 0 (2.93)
Q £ e—0

In addition, the sequence (X%,,)_. , weakly convergesin L? ((—3, 1), H ' (w)) to %,
This yields that

liy = | YaaOa®¥ = = (Baa 0a®V) ra((~1,4).1-1w)).L2((~1.4) ) )

e—0 Q

a)» 0aV®) pry oy - (2:99)

Collecting (2.89), (2.90), (2.91), (2.92), (2.93) and (2.94), we have thus shown that, in the
sense of distributions,

m (o : e (v%)) ;}) m(—zg>X*) :p—m (E;d — :Udangﬁ) OuV +m (0,25, + fa) V.
(2.95)

Let us now prove that m (3%, — xdaﬁagﬁ) Oqv and m (0, X7, + fq) v actually vanish.
Since we know that div ¢ + f = 0 in D’(Q2), and that ¥° = ¥*in D'(12), we obtain
e—

that div¥* + f = 0. Then,

— (M (0aX5q + fa) V¢>D’(w),D(w) = (m (0427%) , V¢>D/(w),p(w) [since 9;25; + fa = 0]
0

because of the Neumann boundary conditions satisfied by ¥* on I'* (which is remi-
niscent of that satisfied by X¢). Similarly, since f, = Oforall 1 < o < d — 1, we
write

- <1’I1 (E;d - Idaa2;5) 7aﬁy¢>D/(w)’fD(w) - <m (EZd + xdadz:d) 7aay¢>D’(w),D(w)

= - <Hl (ad (‘szzwﬂ) ) a041/925>D’((4}),D(w)
=0.

We thus deduce from (2.95) that, for any ¢ € D(w),

e—0

/906 e (0°)p — (m (=2aX7) 1 P, D) () Do) - (2.96)

Step 2: We now study the convergence of 7¢ : e*(u® 4 g). Considering again some
¢ € D(w) (a function which, in particular, is independent of z,), we have

/ T ef(u* 4 g)p = / T ef(u* +g)p + /(T6 —T*):ef(u +g)p, (2.97)
Q Q Q

where T*(z,4) = / T(y',xq)dy for all z4 € (—1/2,1/2). We note that, because of
Y

the definition of the corrector W, we have T*¢; = 0 and edTT * = (0. We know that u°
weakly converges to u* in (H'(2)), hence e,5(u + g) weakly converges in L*(2) to
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eap(U* + g) = —240,5(u} + ga), the last relation stemming from the fact that v* and
g belong to V. We hence obtain, for the first term of (2.97), that

/T*' (W +g)p = /T*' (u*+9g)o

(T*) : (—24aV?(w + 94)) /m —z4(T*)) : V2(uy + ga)o. (2.98)

e—0 Q

We now prove that the second term of (2.97) tends to 0 as € goes to 0. By definition of
W, we know that

« div(T —T*) =0,
* fy(T —=T) =0,

11
« for any y, in (—5, 5), the function ¢ — (7' — T™)(y/, y4) is Y -periodic,

« (T-T%) eaq=00nY x {£3}.

As a consequence, using Lemma 2.12, we obtain that

/(Te —T*) s ef(u + g)gb‘ < Ce||VR| ol (v + 9) |22 = 0.  (2.99)

0 &€

Collecting (2.97), (2.98) and (2.99), we deduce that

/ T : e (u® +g)o — /m (—2q(T*)) : V(u + ga) o (2.100)
Q € w

Conclusion: Collecting (2.88), (2.96) and (2.100), we infer that
m (—24%") : p=m (—zq(T*)') : V*(ug + ga),

which yields the claimed result, since the matrix p is arbitrary (among d X d matrices
such that p;; = pg; = 0). This concludes the proof of Lemma 2.26. O

In view of this result, it is tempting to try to prove that, for all p € N*,

m( Zp+12* ) =m ( xzpﬂea ®eg: [/y Ae(W?) — Tty & 66)} avéug) '

Since a result would fully prove Conjecture (CB). Unfortunately, this appears to be a
delicate task, which we did not yet achieve.
Numerical evidence

We now present some numerical evidence for Conjecture (CB). More precisely, we
consider here the case when g = 0, and we show numerical results consistent with the
fact that, under the assumptions of Theorem 2.25,

Hes(us) _ €E(UE’1)||(L2(Q))dXd 5:>0 0. (2101)

If (2.101) holds true, then the proof of the conjecture (in the case g = 0) is straightfor-
ward. Indeed, we have

0,5 — Ases(us) — Aaea(ue,l) _|_A565(u5 _ us,l)



2.A. Hy;, SPACE 77

with

A%ef (uth) — {/ A(e(W — 2460 ® 65))] Ouptl weakly in L?(€)?*¢
Y

e—0

and A%e®(uf — ust) e 0 strongly in L?()?*¢. We therefore have
e—

E—r v
which is exactly our conjecture (2.74).

We now present numerical tests illustrating (2.101), which have been performed
using FreeFem++ [49]. We consider a problem in dimension d = 2, for which w =
(0,1). The periodic elasticity tensor is defined by

V1<i,5,k1<2, Vye), A (y) == XNv) 00 + 1(y) (6ix651 + dudjn),

where () ()
VLY Y
Ay) = d ="
W =G50 ™ W= 55
with
E(y) = 4.5sin(21y) + 5.5 and v = 0.3.
As mentioned above, we consider the case g = 0, and set f = —ey and hq. = 0.

The reference variational formulation (2.35) is discretized using a P; finite ele-
ment method with a triangular mesh where the typical diameter of each element is
of the order of h = 1/400. We can only consider values of ¢ of the order of (or larger
than) A, otherwise the reference problem is not accurately solved. The corrector equa-
tion (2.41) is solved on a triangular mesh whose typical size is H. The homogenized
equation (2.43), which is posed on the one-dimensional domain w, is solved by a finite
difference scheme on a grid of size H. Of course, these two discretizations introduce
some error related to the choice of H.

The obtained results are shown on Figure 2.4. We indeed observe that ||e®(u®) —
e (ush)|| (£2(q))?x¢ decreases when € decreases, until some plateau seems to be reached.
When H takes smaller values, this plateau seems to be reached for smaller values of ¢
(and corresponds to a smaller value of the error), a behavior which is consistent with
the fact that this plateau is reminiscent of a discretisation error related to H.

2.A Hyg, space

We recall here some results about the Hy;, space. Let 2 C R? be a bounded regular
subdomain of RY. We define the space

Hai(Q) == {v € (L*())!, dive € L*(Q)},

which is a Hilbert space for the scalar product
Yo, w € Haiw(2), (v,w) = / vew -+ /(divv) (divw).
Q Q

The space (Cm(ﬁ))d is dense in Hg;,(€2). Let us consider the normal trace application

Y

[ c=@)" - H'2(00)
T : { v — (U . I/)lag
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Hl-eps error

1072 7

6x1072 10-1 2x1071 3x10714x10"1
epsilon

Figure 2.4: ||e®(u®) — e*(u®?!) l(2())2xe as a function of ¢, for different values of H.

where v denotes the unit exterior normal vector to 2. The application v, can be
uniquely extended as a continuous application from Hg;, (2) to H~/2(9%2), and the
following Stokes formula holds:

Yo € Hyo(Q), Yw € HY(Q), / U-Vw—l—/ w dive = (7, (), %(w)) g-1/2(50) 11/2(50)
0 Q

where 7 denotes the trace application from H*(Q) to H/?(99).

2.B Korn inequalities

For the sake of completeness, we provide here a proof of the Korn inequality we have
stated in (2.36). We start by recalling a well-known result:

Lemma 2.27 (Korn’s inequality in H*, see [22]). Let Q C R? be a bounded regular
domain. Then, there exists a constant C'(Q)) > 0 such that, for any u € (H'(2))%, we
have

||u||%H1(Q))d < C(Q) (H“H%m(g))d + He(U)H%m(Q))dXd) :

In the specific case of functions which vanish at the boundary, we have the follow-
ing result.

Lemma 2.28 (Korn’s inequality in H}, see [22]). Let Q C R? be a regular domain. For
anyu € (H}(Q))?, we have

HVUH(LQ(Q))dXd < \/§ H@(U)H(LQ(Q))dxd.
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In this work, we need a slightly modified version of Lemma 2.28, since we work in
V and not in (H{(Q2))<.

Lemma 2.29. Let V be given by (2.33). Then, there exists a constant C' such that
Yu eV, ||U||(H1(Q))d < CHB(U)H(Lz(Q))dxd. (2.102)

Proof. We argue by contradiction and assume that (2.102) does not hold. Then, for all
n € N*, there exists u,, € V such that

1
|| (1 )ye = 1, le(un) || (2(q)yixa < EHunH(Hl(Q))d' (2.103)

Since u,, is bounded in (H'(f2))?, there exists v € (H'(2))? such that, up to the
extraction of a subsequence, u,, —Lu weakly in (H'(Q))%. Thus, u,, o strongly
n—+o0 n—+00

in (L%(Q))¢ and e(u,) = e(u) weakly in (L2(€2))?*9. The estimate (2.103) yields
n—-+0oo
that ||e(un) || (z2(q))ixa - 0, which implies that e(u) = 0 and thus that u is a rigid
n—-+00

displacement. In addition, v € V, and therefore v = 0. Using Lemma 2.27, we also
deduce from (2.103) that

1 1

2
HunH(m(Q))dZ Q) n?

Passing to the limit n — oo and using the fact that u, strongly converges to v in
(L?(£2))%, we obtain that HuH?LQ(Q))d > 1/C(£2), which provides a contradiction with
the fact that u = 0. ]

2.C Proofs of the homogenization results

In this section, for the sake of completeness, we provide a proof of Theorem 2.4, resp.
Theorem 2.11. Note that these results were proved in [17], resp. [18]. We will use
below the following well-known lemma.

11
Lemma 2.30. Let B a function in L} <]Rd1 X (—5, 5)) such that, for any z €
11

11
(—5, 5), the function B(-, z) is Y -periodic. Then, for any z € (—5, 5) and any
w C R~
. 1
B (;z) v m/yB(y/,z)dy’ weakly in L*(w).

2.C.1 Proof of Theorem 2.4

To identify the homogenized problem, we use the oscillating test function method. Let
/

¢ € D(w) and v(z) := (') + e w® (%, xd) 0a¢(2). By definition, v € V and it is
thus an admissible test function in (2.8). We note that Vv = V¢ + Vw“ <;, > O0a® +
€

ew” (L, ) V0,¢. Using this function v as test function in (2.8), we get
€

&E(uf, ) +r°(uf, ¢) = d°(¢) + s°(9), (2.104)
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Cs(us7¢) — /QAEVEUE . (Vwa <g’ > + ea) 0n®,
re(us, @) = 6/Qwo‘ (L, ) A*Veu® - Vo,0,

€

(0) =10~ [ 4V Vur (2-) 0u0,

5 (¢) = 5/waa (g ) Dph — 5/9@0”‘ (g ) ATVEG - Vb + e/ri haw By,

The following limits are immediate in view of (2.11) (which states that || V=u?||2(q) is
bounded) and of the fact that V¢g = Vg (because g does not depend on z,):

re(uf, @) e 0 and s°(¢) d 0.

Let us now identify the limit of ¢*(u®, ¢). Using the Rellich theorem, it holds that, up
to the extraction of a subsequence, ().~ converges strongly in L?(2) to u*. Besides,
since || V=u®|| 12(q) is bounded, we have that ||e~*94u®|| 12(o) is bounded, and therefore
dqu* = 0. Since u* € V, we thus get that u* € HJ(w). Using an integration by parts,
and the fact that ¢ € D(w), we obtain that

E(uf, ) = /QAEVEuE . (Vw“ (é, > + ea> On®

= /stus - A° <Vwo‘ (g, ) + ea> N0 [since A is symmetric]

e o (s () e o [ e ) )
__ / Ul A° (Vwa (L, ) + ea) 9.V  [by definition of w®].
o 5

Thanks to Lemma 2.30 and the strong convergence of (u?).-q to u* in L?(2), we deduce
that
(b, 9) = & (ur, @) = —/u* [/ Ay, ) (Vw® (v, -) + ea)dy’] -0, V.
Q Y

e—0

Using that u*, ¢ € H}(w) yields that

c(u*, o) = — / u* [/yA (Vw* + ea)] -0,V [u* and ¢ ind. of z4]

:/w{/yA(Vw“%—ea)] Dott* - V6

= / AN'ur - V'o.
The last equality stems from the fact that
Abg = /yA(Vwo‘—i-ea) ceg = LA(Vwa+ea) (Vo +ep) .

We next turn to the term d°(¢). Using again Lemma 2.30 and similar arguments as
above, it holds that

i (0) = [ () +ho= [ | [ 4w+ o vo
= [+ o~ [ 495,
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The coercivity of A* can be obtained by standard arguments. This proves that the
homogenized problem is well-posed, and hence u* is uniquely defined. The whole
sequence u° (and not only a subsequence) therefore converges to w*. This concludes
the proof of Theorem 2.4.

2.C.2 Proof of Theorem 2.11

We begin by showing that u* belongs to Vi . We recall (2.37), which states that
[le*(u)[(12(q)y2xa is bounded. This implies that |e™?0qug|12(0) < C. The function
u® converges to u* weakly in (H 1(9))d, therefore J,u} = 0.

From the bound on |[e° ()| 2(q)axa, we also get that [|0qug, + Oaugl|r2() < Ce.
Using again that u® converges to u* weakly in (H(€2))?, we deduce that Ol + 0 uy =
0. Since dquj; = 0, there exists some u* in (H Y(w))? such that u* = @ — 240, 0} and
uy = .

The function u° belongs to V' and converges to u* weakly in (H 1(9))d. We thus
obtain that m(u®) € H{(w)? and m(u®) = m(u*) = u* weakly in (H'(w))". We

E—
11

hence have @* € H(w)*. Since 4V}, = u* — u*, we have Vi = 0 on 0w x (—3, 1)

and V@, € (H}(w))?. We have shown previously that 45 € H}(w), and thus v’ €
Hg (w). We hence have that u* € Vi . As for any element of Vi, we can associate to
u* a function ©* € (H} (W) x HZ(w), and this element turns out to be ©* = u*.

To identify the homogenized limit of (2.35), we make use of the oscillating test
function method. Let ¢ € (D(w))?. By defining ¢ as ¢, = ¢ — 140,04 and ¢dg = Py,
we get that ¢ € V. Let us define, forall 1 <y < d —1,

vy i= by e [0 (5] eas(@) + W27 (2,) Buasd]
Vg = g + €2 [wfjﬁ (é, ) eag((/ﬁ\) + Wdaﬁ (é, ) 8ag$d} )

By definition, v belongs to V' and is thus an admissible test function in (2.35). We note
that

e (v) = |eqa ® eg + e(w™) <E’ )} ea5($)+ [—xdea ® eg + e(WP) <E’ )} 8ag$d+£R€,
where ||| 2 (q)axa < C. Using v as a test function in (2.35), we get

(U5, 0) +r°(u”, ¢) = d° () + 5°(9), (2.105)

where

~

E(, ¢) = /Q Afef () - <[ea®e[g—|—e(wa5) (gﬂ eas(®) + [—wdea®66+e(Wa5) (gﬂ aaﬁad),
re(uf, @) == s/QAEee(uE) t R°,

& (6) ::/Qf~¢+/whi-¢<',%)

—/Q A%ef(g) - ([ea ® eg + e(w™) <é, ﬂ eap(®) + [—:vdea ® eg + e(W) (é, )] 8a5$d>
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and

The following limits are immediate in view of (2.37):
r(u",9) — 0 and s°(¢p) — 0.
e—0 e—0
We now identify the limit of ¢*(u®, ¢). Using the Rellich theorem, (u).~o converges

strongly to u* in (L2(Q))d. Since A is symmetric in the sense that A;;;; = Akij, we
compute

& (u, @)
= /QAEeE(us) ; ([ea ® eg + e(w™?) (g, )} eag(gg) + [—xdea ® eg + (W) (ga )} aa6$d>

~

= /Qea(uf) : A° <[ea ® eg + e(w™?) <g, )} eap(®) + [—xdea ® eg + e(W) (g, )] 0a5$d> :

Using an integration by parts and the fact that ¢ € (D(w))4, we obtain

“(uf, 9)
:_/Qus dive [ A ([ea ® eg + e(w™) (E )] eas(d) + [—xdea © eg + (W) (g )] aaﬁ(gd)]
g (o0 () 0 )] )

2°2
~

o [ uwteaa ([enw e ew?) (20) ] as(@ + [aaea @+ W) (2.:)] 000)

~

— /F uteq - A° ([ea ® es + e(w*?) (E’ )] eap(P) + [—xdea ® eg + e(WeP) <g, )} 8a5<$d> )

Since ¢ € (D(w))%, it holds that

~

/M(_l“f)” A7 ([ea® st ew?) (220) ] eanl®) + [=raca ® s+ W) (2.) ] 2ush)

=0.
Besides, since forall 1 < a, 5 < d — 1 we have
Ale(w™®) + e ® eg) - eq = Ale(W) — 2464 ® eg) - eq = 0 on Y=,

we obtain that

~

eq-A° ([ea ® eg + e(w™?) (;, )] eap(®) + [—xdea ® ep + e(WeP) <E’ )] 8@3@) —0onI™*
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where we recall that I't = w x {i%} We thus obtain that

(u,0)

- —/Qu6 - div® [Aa ([ea ® eg+ e(w™?) <E’ )] ea@(qg) + [—xdea ®eg+ e(WeP) <E’ )] 5@3@)]
[ (et (5] e [ e (2] 7

where we have used the definitions of w®* and W4,
Using Lemma 2.30 and the fact that u® converges strongly to u* in (LQ(Q))d, we
deduce that

(us, ) — & (u*, o)

e—0

with

— (i, B) = /Qu* . [{//A(-,xd) (ea ® €5 + e(w™) (',$d))} Veas(0)
+ {/Y Al 2q) (—2aeq ® €5 + (W) (-, wd))} Vaaﬁﬁgd] :

We have shown that u* = u* — x,Vu} with ©* independent of z4. Using that ¢ is also
independent of z,, we deduce that

~

—ctw,0) = [(@ =i [{ [ 460 (e0 en+ ew) (00) | Veus(d)
#{ [ Alta) (s 65+ V) 20) f V00

= [@) [0)ans 5605(D) + ()oss 00
— Oyug [(/fél)aﬂwa Oseas(9) + (K3s)asns 8680439561}

[ @) [ (1 )oos Dscas(D) + (ki )oas 00 @106)
with
(Kiesns = [ T{Aletwap) + e0 2 5) s
(idamns = | S {AC(War) ~ aca 0 c5) s
(k32)apys == /yef{A(e(Waﬂ) — Tg€a ® 66)}% €5,
(idesns = [ ET{Aleliap) + 00 8 €5)}nacs

and likewise when + is replaced by d.
Using (2.40), we now see (using that w5 € W())) that

mewZLAMMM+%®%%%®%=%Mww
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and (using that W. 5 € W())) that

(K72)apys = _/ydi<€(waB) +ea®es) ey ®es = — (ki )apys-
Similarly, we deduce from (2.41) (using that W,s € W())) that
(K3)apys = —/y»”CdA(e(Waﬁ) — Tita ®ep) 1 €5 @ €5 = —(K3y)apas-

Using that A is symmetric (i.e. A;j = Agij), we also write that

<mew:/VMﬂmw—%a®%w«m%m+%@mm

Yy
= / A(e(Wys) — zge, @ e5) @ €4 @ €3
Yy
- (kﬁ)véaﬁ'
We also claim that, for any 1 < o, 5,0 < d — 1, we have
(K11 )apas = (Ki2)apas = 0. (2.107)

Indeed, since X : R? 3 2 +— x4 e; is an admissible test function in (2.40), we can write

0= /J)A(e(waﬂ) +e,®eg) :e(X)

1
:§/A(€(waﬁ)+€a®€ﬁ)3(€6®€d+6d®€6)
v

= / Ale(w™) + ey ® eg) 1 eq @ es [A is symmetric: A, = Ajik]
y

- /yedT{A(e(waﬂ) +eq ® 65)}65
= (k1) apds-

Likewise, since X is also an admissible test function in (2.41), we can write

0= /yA(e(W“ﬁ) — ZTgeq D eg) 1 e(X)

1

=3 / Ale(W) — 2460 R eg) @ (€5 @ eq+ eq @ e5)
y

= / A(e(WO‘fB) — Tagea ®€5) 1 eq ® €5 [A is symmetric: A = Ajik]
y

— / edT{A(e(Wag) — Loy ® 65)}65
y

= (k12)apds-

This hence proves (2.107).
We thus infer from (2.106) that

=0 0) = [ @) (851 Ocan(D) + (K505 O50us

+ avu/\*d [(Kl*Q)aﬂvd 85604/3(5) + (K§2)a575 856045511} :
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Using the symmetry properties of K7, and K7, (i.e. (K};)agys = (K71 )~0ap), We recast
the above as

= 00) = [ @), [(K5) 508 O56an(®) + (K s0s B500so]
+ Oyug [((KTQ)T)W[% D5€ap(9) + (K3)ys0 85(%5@] - (2.108)

We next note that, by simple tensor algebra,

= (@), (K7} : €a ® e5)ys Oseas(d)
= (") (K7))16ap Os€ap(9)-

~

(W) - (K7y @ ea @ eg)V'eap(9)

We thus deduce from (2.108) that

— (U, ) = /(@*)' : [(Kﬁ Lea ® e5)V'eas(9) + (Kip o ® 65)7%5@}
+ V' - [((KTQ)T L ea ® e5)Veas() + (Kiy t €q ® €B)V/5a6$d} :

Using an integration by parts and the symmetry of the matrix K7, : e, ® eg, we
compute

~

¢ (u*, ¢) = / asl®) [(KT) t cates) : V(@) | +0u30u | (Kiy : cates) : V(@)
+ eas(B) [((K)T e @ eg) Vi, T5| + 0upda |(Kay : ca ® €5) : Vi),

Note that the boundary term in the integration by parts vanishes because gg € (D(w))™

We thus deduce that
(o) = [ (Kiy: @) s V@) + (Kiy: Vi) V'@
+ (KR ¢/(@)) Vi + (K : V3ida) 1 VA1
= [ (K@) @)+ (Kip: Viada) (@)
+ (KR ¢(@)) Vi + (Kt Vida) : Vi1

:/K*Pu* : Po.

Recalling (2.105), we have now identified the limit when ¢ — 0 of the two terms on
the left-hand side and of s°(¢) on the right-hand side. We are thus left with identifying

the limit of |

Use again Lemma 2.30 for the first two terms and similar computations as above, we
obtain that

ling (0) = [ () +hs) & [ mizafa) 060 [ K*Pg:Po.

e—0

We have thus shown that, for any ¢ € (D(w))*, we have

[P spo= [+ o- [ miaf) 00— [ K79 P
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This result holds for any v in Vi . Indeed, for any v in Vi,
2 N 1 2 27 2~ 2
||'P¢ - P’UH(L2(W))(2d—2)><(d—1) = He (¢ ) —-¢ (U )H(LQ(w))(d‘l)X(d_l) + HV ¢d -V /UdH(LQ(w))<d_1)X(d_l)

2 2

<

+ Hégd —@d‘

T
¥ v H(Hl(w))d—l H2w)

The density of (D(w))* ™" in (H'(w))* " for the H! norm and of D(w) in H2(w) for
the H? norm allows us to conclude.

)x(d—1)

We eventually show that K™ is coercive. Let o and 7 be in R . Then

T T

K <"> ; (") _ /y Ale(wy) + 0 + (W) = 247) : (e(wy) + 0 + (W) — 27)
[where w” := 05w and W7 = 7,5 W]
= /yAg € [where { := e(w”) + 0+ e(W") — 247]
> c_[¢]%.

This shows that K™* is non-negative. We now show that £ = 0 implies that 0 = 7 = 0.
Let x — v(x4) be in D()). Then

/yugzo

= / (0 — xq47) [because of the Y -periodicity of w” and W]

= | v
Y
:U/U—T/xdv.
Y y

Successively taking v = 1 and v = x4, we get 0 = 7 = (. This thus shows that
K™ is coercive. As a consequence, the homogenized problem is well-posed, and thus
the homogenized limit v* is uniquely defined. This hence shows that the whole se-
quence u° (and not only a subsequence) converges to u*. This conclude the proof of
Theorem 2.11.



CHAPTER 3

LMULTISCALE FINITE ELEMENT METHODS FOR
ELASTIC HETEROGENEOUS PLATES

This chapter corresponds to a manuscript in preparation [AL2], co-authored with
V. Ehrlacher, A. Lebée and F. Legoll.

3.1 Introduction

In this article, we consider elasticity problems posed on heterogeneous plates. These
problems typically read as

—div (A%e(@)) = f* in O,

where e(u®) is the symmetric gradient of the displacement u°, and where the elasticity
tensor A° varies at the small characteristic length-scale . The domain ¢ is thin, in
the sense that its width ¢ in the d-direction is small. A typical example is when

- € €
O = w x (—5, 5) , (3.1)
where w is a bounded open subset of R?~! (see Figure 3.2 below). The dependency of
the right-hand side ]75 with respect to ¢, as well as the choice of appropriate boundary
conditions, will be made precise below. Since A° varies at the small scale ¢, standard fi-
nite element methods for plates cannot be used. They would indeed lead to prohibitive
computational costs. Our aim in this article is to introduce and analyse multiscale nu-
merical approaches, in the vein of the Multiscale Finite Element Method (MsFEM), to
address this type of problems.

The principle of the MSFEM approach, originally introduced in [55] (see [36] for a
comprehensive review), is to discretize the domain occupied by the heterogeneous ma-
terial using a coarse mesh, where the typical size of each element, denoted H, can be
chosen independently of the typical size ¢ of the heterogeneities. The method relies on
the idea of using specific basis functions, which are not as generic as the standard finite
element functions (like IP; finite element functions for instance), but are on the con-
trary well-adapted to the heterogeneities of the material. More precisely, the method
proceeds in two steps. In an offline phase, some basis functions are computed as so-
lutions to local problems defined on each element of the coarse mesh. The differential
operator which is used is very similar (if not identical) to the differential operator of
the global problem. It is thus expect that these basis functions appropriately encode
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the oscillations of the exact solution. These basis functions are computed in paral-
lel and independently from one another. They do not depend on the right-hand side
of the problem. They are expensive to compute (because one has to use a fine mesh
on each coarse element to resolve the oscillations of .A%), but this computation is lo-
cal, and only performed once. These basis functions generate a discretization space
of limited dimension, which is well-adapted to the problem at hand. Next, in an on-
line phase, a global Galerkin approximation of the problem of interest is performed,
on the discretization space introduced in the offline stage. Since the dimension of the
discretization space is limited, the online phase is inexpensive.

Several variants of the method have been proposed, to address problems posed on
domains €2 with oscillatory coefficients. These variants differ in the choice of bound-
ary conditions for the local problems defining the oscillatory basis functions. We refer
to [55, 56] for the initial variant with linear boundary conditions, to [55, 38] for the
so-called oversampling variant where local problems are posed on a enlarged element,
to [56] for a variant with oscillatory boundary conditions, to [64] for Crouzeix-Raviart
type boundary conditions, to name but a few. MsFEM approaches have also been in-
troduced for problems with slowly-varying coefficients posed on multiscale domains,
such as perforated domains (see e.g. [65, 66]).

Our aim in this work is to introduce and analyze a MsFEM-type approach for prob-
lems posed on heterogeneous plates whose thickness is comparable to the typical size
of the heterogeneities, i.e. in the case when the domain on which the problem is posed
is of the form €2° given by (3.1). We focus on a linear elasticity problem (rather than a
more simple scalar-valued diffusion equation) because our work [AL1] has shown that
this former model raises specific difficulties in the regime ¢ < 1, in contrast to the
latter problem. In what follows, we are going to introduce a method where the dimen-
sion of the discretization space is proportional to the number of nodes of a coarse mesh
of the d — 1 dimensional domain w. More precisely, in the method we present here,
only a few multiscale basis functions are defined on each extruded element of the form
7 % (—1/2,1/2), where 7 C w is an element of the coarse mesh of w (see Figure 3.1).
The computational cost is thus very limited.

.
~~o \
Seceas
9

Figure 3.1: Extruded (coarse) mesh for the plate

In the case when the coefficient .A° satisfies some geometric assumptions (such as
periodicity), homogenization theory for plates can of course be used. The asymptotic
behavior of homogeneous plates has been studied in [24, 32, 28, 45] (for this homoge-
neous case, we also wish to mention [84], where the authors have studied the minimal
order of polynomial functions to be used in a Galerkin approximation, so that the nu-
merical solution remains asymptotically consistent with the asymptotic behavior of
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the exact solution). In the case of heterogeneous plates, the weak convergence of the
solution u° to the solution of an associated homogenized problem has been proved
when the plate is stratified [46, 47, 76] or has periodic heterogeneities [17, 18]. We
also refer to [75, 91, 53] for recent homogenization results on heterogeneous plates
with more general heterogeneities. However, as always for homogenization, explicit
expressions of the homogenized problem can only be obtained under some geometric
assumptions (such as periodicity) on the oscillatory coefficient. The MsFEM approach
is built in order to address problems beyond this type of assumptions: no geometric
assumption is required on the coefficient .A° to put the approach in practice.

Our aim in this article is twofold. First, we numerically compare the performance
of several MsFEM variants for elastic heterogeneous plates (some of these variants be-
ing inspired by the work [84] on homogeneous plates), for problems with oscillatory
coefficients that are not necessarily periodic (see Section 3.4.1 for a description of our
test cases). Second, we establish bounds quantifying the error in terms of the coarse
mesh size [ and the typical scale ¢ of the heterogeneities. This numerical analysis (as
any numerical analysis of MSFEM approaches known to date) is performed under the
assumption that heterogeneities are periodic. We cannot emphasize enough the fact
that the approach can in practice be applied to more general cases (as we do in Sec-
tion 3.4), and that its performances are robust. The numerical analysis is based on a
triangle inequality, where we bound the error by the sum of two terms, first the differ-
ence between the exact solution and its two-scale expansion and second the difference
between the two-scale expansion and the numerical solution. Homogenization results
quantifying the first term are hence pivotal. In the case of elastic heterogeneous plates,
we have established such results in our companion work [AL1], and we are going to
use them in the numerical analysis presented here.

The article is organized as follows. In Section 3.2, we present the problem and
the main theoretical results that we need. We next present the MsFEM approach in
Section 3.3 and establish two error estimates, one for the so-called membrane case
(Theorem 3.11) and the other one for the so-called bending case (Theorem 3.12). The
proofs of these results are postponed until Appendix 3.A. Extensive numerical results
comparing the different MSFEM variants are presented in Section 3.4.

3.2 Presentation of the problem and former results

11
Letw C R% 1 bea open, bounded and smooth domain. We set 2 := w X (—5, 5),
choose a small parameter € > 0 and set ) := w X <_§’ %) The domain €)° is called

a “plate” because ¢ is small compared to the characteristic size of w (see Figure 3.2). We
also denote by n (respectively n°) the outward normal unit vector to Jf2 (respectively

00F).
= v j
T— g )
Figure 3.2: Domain (¢ occupied by the plate
Let (e;)1<i<q be the canonical basis of R%. For any z = (7;)1<i<a € R?, we

set 7' = (¥;)1<i<a-1 € RN Forany M = (My;)1<ij<a € R, we set M/ :=
(Mijhizijcan € RV,
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The set of d x d symmetric matrices is denoted by R¥*? and ¢_, ¢, > 0 are some
fixed positive constants. We denote by M the set of tensors M € R?*4*4%d guch that

VECRM Mg <cl¢l and €7ME > c [¢],
and which have the following symmetries:
V1<i,j k1 <d, Mijiy = Mgy = Mijie = Mi;.

d
For A, B € R™? weset A: B = Z A;; B;;. In particular, we point out that, for any
ij=1

1<i,j<dandany A € R™% A: (e; ® ¢;) = el Ae;.

We also define the periodic cells in dimension d — 1 and d by

11
Y := (0, 1)le1 and Y=Y x <—§, 5) .

11
For any f : R % (—5, 5) — RP, we denote by

+1/2
m(f)(a') = / F(a ) dag

—-1/2

the mean of f over its last variable. For any vector-valued function u, let e(u) denote
1
the symmetric gradient of u, namely e(u) := 3 (Vu+ Vu').

Throughout the article, we use the Einstein summation convention. Latin letters
are used for indices running between 1 and d and greek letters for indices running
between 1 and d — 1.

3.2.1 Definition of the plate problem
The original problem

11
Let A° : w X —5 5) — M be a tensor-valued field such that, for any z; €
11
(—5, 5), the function 2/ € w — A%(2',2,) is thought to be heterogeneous and

have a characteristic scale of variation of the order of . For instance, one could think
/

x
(but the method carries over to more general cases) that A°(x) = A | —, x4 | for some
3

fixed function A which is Z¢~! periodic with respect to its first argument. In addition,
we define the tensor A on ) by

Ve e QF, A(z) = A° <w’, %) .

We introduce
Ve = {v € (HI(QE))d, v =0o0ndw X (—%, %)} :

A function in V¢ thus vanishes on the lateral boundary of €2° (see Figure 3.2).
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For any ¢ > 0, let f* € (L)%, & € (W2=(Q))" and b € (L%(w))". We
consider the following linear elasticity problem, posed on the plate Q°: find u* € V*©
such that _

—div(A%e(u®)) = f° +div(A%e(g°)) in 0,
Ae(W) - n® = e — Ae(FF) - n° onw x {j:g} : 32)
In (3.2), fe is the load imposed in €)°. The function ¢° is inserted as a possible extension
of a non-trivial Dirichlet boundary condition (so that u* + ¢° does not necessarily
vanish on dw x (—¢/2,£/2)). The function k. plays the role of a Neumann boundary
condition (i.e. a traction boundary condition for this elasticity problem) on the top and
bottom faces of the plate €2°.

The rescaled problem

To simplify the analysis, it is classical to change the scale of the problem in the d-
direction, in order to work with problems posed on a domain {2 independent of ¢ (see
Figure 3.3). We thus introduce

V.= {v € (Hl(Q))d, v=10o0ndw x (—%,%)} (3.3)

e — I

Figure 3.3: Rescaling of the domain

dxd

For any u € (D’ (Rd))d and T € (D'(R%))"™"", we define the operator ¢ by

1 1
e‘;ﬂ(u) = eqp(u), e q(u) == Eead(u) and esq(u) == gedd(u),

and the operator div® by
: 1 . 1 1
leE (T)a = 85Ta5 + —8dTad and leE(T)d = —a/gng -+ —QQded,
€ £ €

forany 1 <o, <d—1.

It can then be easily checked that problem (3.2) is equivalent to finding u* € V
such that

—dive (A% (u®)) = f© + dive(A%e®(¢%)) in Q,
ey 34
A%ef(u®) -n = (;22}}%[)%) — A% (¢°) - n onw x {j:%} : (34)
with, forany 1 < a <d -1,

ul (x) =0 (2 e xq), uG(x) = eug (2, e xy),

fo(z) = fo(o/, e za), S(x) =7 fi(a! e xy),
he(al) = h(a'),  R5(a’) = e L ha(a)),
92(1’) :gg(xlagxd)> g
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where, in the third line, we have written h as a short-hand for /.. Note the rescaling
factor € on the d-th components of the various vectors.

We assume that, after this rescaling, the functions f¢, A% and g¢° are all independent
of . We thus have, for any £ > 0, that

13 d 1> [e.e] d & d
Fore (@), Foge (PN, K =he e (I20)"
The variational formulation of (3.4) reads as
Find v® € V such that, forany v € V, a"(u®,v) = b°(v) (3.5)

where

a®(u®,v) == /QAeee(ue) et (v)

b (v) ::/Qf-v—/ﬂAgeE(g):ee(v)wL/Fi ha v,

where I'* = w x {#£1/2}. Using the Lax-Milgram theorem and the Korn inequality
(see e.g. [22]), we obtain that there exists a unique solution to (3.5).

and

Taking v = u° in (3.5), we get (we refer to [AL1, Section 3.1] for details) that

||68(U8)||(L2(Q))dxd <C (Hf”(m(gz))d + “6&(9)”@2(9))‘“‘1 + ”hiH(L?(w))d) (3.6)
and hence

[l 1 yye < € (Hf”(L?(Q))d + 1" ()l z2(ayyzxa + ||h:t”(L2(w))d> (3.7)

for some constant C' independent of . Provided that the sequence <||e‘€ oln LQ(Q))dXd)
e>0

is bounded (in Section 3.2.2 below, we will make an assumption (3.8) on g that directly
implies this bound), we infer from (3.7) that, up to the extraction of a subsequence,
there exists u* € (H(Q2))" such that

u® — u* weakly in (HI(Q))d.

e—0

The bound (3.6) is also useful in the sequel.

3.2.2 Decomposition of the problem
Kirchoff-Love displacements
To describe u*, we define the set of the Kirchoff-Love displacements as follows:

d

Vi = {’U € (Hl(Q))d_l X Hg(w), Ju e (Hé(w)) - X Hg(w) s.t. v, = i)\a — xdﬁa@d, Vg = i}\d} ,

where HZ(w) is the closure of D(Q2) in H?(w). For any v € Vg, we now use the
notation 0 to denote the corresponding element of (H; (W)™ x H(w).

Let us also denote by

d

Grew = {g € (H'(Q)" x B2 (), 3 € (H'()"" 5 H() 82 90 = Go — 2aiia, 90 =G}
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For any ¢ € Gy, we denote by § the corresponding element of (H'(w))* " x H2(w).
Itholds that Vi C Gk andthat, forany g € Gx 1, the sequence <||e€(g) ||(L2(Q))d><d)
e>0
is bounded. We assume throughout this article that the function g which appears in
the linear form 0° of (3.5) belongs to G 1.
9 € GkrL. (3.8)

We recall the following result from [18] (see also [AL1, Theorem 3.1)).

Proposition 3.1. Under the above assumptions, the homogenized limit u* of Problem (3.5)
belongs to V..

To better understand elements in Vi, we note that any v € Vi is the sum of two
contributions, first the function
v (2
(xly .Td) — ( (0 ) )

which is a lateral displacement independent of 4, and second the function
—2qV'0g(2")
o wg) s [TV
( d) ( Ud( x )

which is a vertical displacement coupled with a rotation of the normal vector to wx {0}.

Symmetries of the problem

In the above section, we have introduced the Kirchoff-Love displacements, and ex-
plained how they could be “split” in two independent parts. We now explain that,
under some symmetry assumptions on the elasticity tensor, we can decompose the
problem into two simpler and independent problems.
Let us define the spaces

& :={v e L*() st, for almost any 2’ € w, the function z, — v(z',z,) is even}

O :={v € L*(Q) s.t., for almost any 2’ € w, the function x4 — v(z’, 24) is odd} .
We suppose hereafter that the elasticity tensor A® satisfies

agor Aapadr Anapa € €,
Abaas Aapoa € O-

This assumption is classical in the literature for plate problems (see e.g. [18, Section 7]).
It is for instance satisfied by any material that is isotropic and admits x; = 0 as a plane
of symmetry.

In the sequel, we split the plate problem into two problems, the membrane problem
and the bending problem, using the fact that

(L*(Q) = (&' x 0) @ (097 x €).
We write the same decomposition for the Kirchoft-Love space:

Vi =Vt @ VB,

(3.9)

where
V= (H} ()P x {0} c &7 x O
and

Ve, = o€ (@) x ), 361 € W) vn =~ =2} € O,

The membrane and the bending problems are defined as follows.
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Proposition-Definition 3.2. If f,g € £7' x O and h} = h, h] = —h, then the
solution v to (3.5) belongs to £~ x O, its homogenized limit u* belongs to V3% and the
problem is said to be a membrane problem.

Iff,g € O x € and h} = —h_, h] = h, then the solution u® to (3.5) belongs
to 01 x &, its homogenized limit u* belongs to V2, and the problem is said to be a
bending problem.

The proof derives directly from a computation of (3.5) taking into account the sym-
metries and can be found e.g. in [AL1, Section 3.3.2].
Rescaled norm and Poincaré inequality

We started our analysis by rescaling the problem, going from an equation posed on

QF =wx (—%, %) to an equation posed on {2 = w X (—%, %) In the same spirit, we

replace the H'! norm by a norm that gives a different ponderation to the d-th derivative
and d-th coordinate, and which is the natural energy norm for (3.5).

Definition 3.3. For any function u € (H'(2))4, let
el @y = lulltzaaye + e @IEzayyaxa-

The following Poincaré inequality is useful below, where we keep explicit the de-
pendence of the constant with respect to w and ¢ (see [AL1, Lemma 3.5]).

Lemma 3.4. Let V be defined by (3.3). There exists some constant C' > (0 independent of
€ and w such that

VueV,  ullgaaye < Cmax (1, w|7T ) max (w]7T, 2wl 77T ) flef (u)l| gz
(3.10)

3.2.3 Former results

We now recall the homogenization theorems established in [18] and the strong con-
vergence results shown in [AL1] in the periodic case, that is when the elasticity tensor
Af in (3.4) is given by

Af(x) = A (g,xd> (3.11)

for some fixed function A which is Z%~! periodic with respect to its first argument, i.e.
such that the function 2/ € R*! — A(2’, ) is Y -periodic for any x4 € (—1/2,1/2).

Definition of the correctors

We first define two families of correctors functions, which all belong to the space

- foe (. s+ (1)

11
Vz € (——, —) , v(+, 2) is Y -periodic and / v = O} :
2’2 S

Lemma 3.5 (Membrane correctors). Let wf\,’? € W()) be the solution to the problem

Yo e W(Y), /J)A(e(wif) +eq,®@eg)e(v) =0 (3.12)
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foranyl < o, 8 < d—1. The function wf{f is equivalently the unique solution in WW(Y)
to

—div A(e(wﬁ) + e, ®eg) =0,
Ale(w) +ea @ es) - ea=0 on Y,
where Y+ =Y x {:I:%} In addition, we have

wiﬁ € &1 x O.

Lemma 3.6 (Bending correctors). Let wgﬂ € W(Y) be the solution to the problem
Yo e W(Y), / Ale(wy?) — x40 ® eg) : e(v) =0 (3.13)
y

foranyl < a, 8 < d—1. The function wgﬂ is equivalently the unique solution in W()))
to

—div Ae(wd’) — z4eq @ eg) = 0,
Ale(wd?) — z4e0 @ eg) - €4 =0 on Y*,

where again VE =Y x {j:%} In addition, we have

wgﬂ e O x &,

Homogenization theorems

We now recall the homogenized limit of (3.5), considering first the membrane case (for
which the homogenized problem is again a second order PDE) and second the bending
case (for which the homogenized problem turns out to be a fourth order PDE). We recall
from Proposition 3.1 that u* € V.. There thus exists some 0* € (H(w))" ™" x H2(w)

* Tk X * __ ok
such that u}, = u}, — z40,u; and v} = uj.

Theorem 3.7 (Homogenized limit, the membrane case). Assume that we are in the
membrane case in the sense of Definition 3.2. Under the above assumptions, the homog-
enized limit u* does not depend on x4, is such that u}; = 0 and u* = (u*,0) where u* is
the unique solution in (Hg(w))?* to

Vo € (Hw)", / A (@) : () = / (n(f") + 1) -6 — / Aiilg): ()
’ ? ’ (3.14)
where

(A )asor = /y A(e(uSf) + ea ® e5) - (e(wly) +e0 Dey).

Theorem 3.8 (Homogenized limit, the bending case). Assume that we are in the bend-
ing case in the sense of Definition 3.2. Under the above assumptions, we have u* =
(—zgV'Wh, u5) where U is the unique solution in HZ (w) to

Vo € Hi(w), /Agvm V3 = /(m(fd)+h§;)¢—/ m(a:df’)-vlgb—/ AR Vg : V3¢
w w w w (315)
where

(AZ*S’)aBJT = / A(e(wgﬁ) —Yda ® 3[3) : (€<w?§7) — Ya€r @ €r).
Yy
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Strong convergence theorem

To perform the numerical analysis of the MSFEM approach we introduce below, we
need a stronger result, namely an estimate in the H I norm of the difference between
u® and its corresponding two-scale expansion. This strong convergence result is stated
in the following theorem for the membrane case (see [AL1, Theorem 3.10]).

Theorem 3.9 (Strong convergence result, the membrane case). Assume that we are in
the membrane case. Let

upt =t eer i () con(@ )
uGt = c%eq - wls (E, > eap(U + g).
Assume that w* € (W>®(w))? and that w}, € [W'> (R x (-1, %))]d for any
1<a<d-—1. Then
[ — w1y < C (1 + max (17 ]w[ﬁ> max <]w[ﬁ,e2|w|_ﬁ>>
(VRN et + )iy + oIV + )y 2 (Wi + o)
for some C' > 0 independent of ¢ and w.

In the bending case, the situation is slightly more delicate. We introduce
o = A% (u° + g). (3.16)

Using assumption (3.8) (which implies that e*(g) = e(g)), we infer from (3.6) that
0° is bounded in (L?(02))?¥*?. We next introduce the matrix 3¢ defined by, for any
1 S «, 6 S d - 1;
£ £ £ 1 £ 3 £

Za,@ = O‘Oéﬁ’ ad = go-Oéd al’ld dd = E_QUdd (3.17)
It can be shown (see [AL1, Lemma 3.11]) that 3¢ 5, 3¢ ; and X3, are bounded in (re-
spectively) L*(Q), L* ((—=3,3) ,H*(w)) and L? ((—3,3) , H %*(w)), and therefore
weakly converge (up to a subsequence extraction) to some X7 5, 3% ; and 3. In the se-
quel, we make the following assumption, which is comprehensively discussed in [AL1]:

Foralll < o, <d-—1,
(CB) «

af — (ea ® 65) : |:/YA (e(wg‘s) — z4e, ® 65) aqd(uz + gd) (318)

This assumption in particular implies that the whole d x d matrix ¥* belongs to
(L?(2))%*4. We are now in position to state a strong convergence result in the bending
case (see [AL1, Theorem 3.14]).

Theorem 3.10 (Strong convergence result, the bending case). Assume that we are in
the bending case. Let

Ut = — w0+ e ey W <g, ) Oap (g + ga),

uit =+ eteywy <E’ ) Oap (g + 9a)-
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Assume that w;, gg € W3 (w) and that wy’ € [Whee (R x (=12, %))}d for any
1 < a < d-— 1. Wealso assume that A, f, g and hy are sufficiently regular, and that

Assumption (CB) holds. Then

£

Hu - ualHHl(Q)d < C'max (17 |W|ﬁ> max (‘w‘ﬁ’g’w’_ﬁ)
€

X (@M% 192 (w + 90) | o )+l 1V (W + 90) || ) + €||2*HL2(Q))

for some C' > 0 independent of ¢ and w.

3.3 Definition and numerical analysis of the MsFEM

The MSFEM approach has been introduced by Hou and Wu in [55] as a discretization
method for oscillatory elliptic PDEs. Instead of using for example a FEM discretization
approach with generic (say P') basis functions (see Figure 3.4), the idea of MSFEM is to
introduce oscillatory basis functions which are well adapted to the problem of interest
(see Figure 3.5).

The oscillating functions are solutions to local PDEs posed on the elements of the
coarse mesh. They are precomputed during an offline phase (by using in practice a
fine mesh of each coarse element). These basis functions only depend on the elasticity
tensor A°, and not on the right-hand side f or the boundary conditions imposed on
the problem of interest. During the online phase, a Galerkin approximation of the
global problem is introduced, where the discretization space is the one spanned by the
precomputed oscillating basis functions. Whenever the functions f, g and h. change,
the offline phase does not have to be repeated, hence a computational gain in a multi-
query context.

12

-0.2

_0.2 . . . . . . . 220 -15 -10 -05 00 05 10 15
220 -15 -10 -05 00 0.5 10 15 2.0

Figure 3.5: An oscillating basis function

Figure 3.4: A P! element in 1D :
in 1D

3.3.1 Definition of the method

Let us assume that w is a polyhedral, connected and bounded open subset of R%~! and
let 7. be a conforming discretization of w. Let us now define

11
QH:{TX(—§,§>, TETWH}

2.0
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.
S=o \
Seceas
9

Figure 3.6: Coarse mesh T’ of ) obtained by extrusion of a coarse mesh 7 of w.

Then, 7 obviously defines a conforming discretization of € (see Figure 3.6).
To define the multiscale basis functions, we consider either the membrane or the
bending case:

« inthe membrane case, let V;}! be the space of functions which belong to (H{ (w))?~?

and which are piecewise affine on each element of 7.7. We denote (¢;); the

canonical basis of V. For any ¢;, let ¢; := <%) We observe that 1; € Vit .

« in the bending case, let V4 be the space of functions which belong to HZ(w) and
which are piecewise cubic on each element of 7. We denote (¢;); the canonical

basis of V5. For any ¢, let 1; := ( mfﬁlv @). We observe that ¢; € VE, .
1
Onanyelement7T = 7x | — 33 of the coarse mesh 7}{{ of 2, we define the oscil-

latory basis function v/ associated to the single-scale basis function 1/; as the solution
to the following problem:

(—div® A%*(¢5) =0 inT,
R 11
¢i - ¢2 on 87— X (_57 5) ) (319)
1
A%ef(¢f) -eq =0 onT X {ii} :
\

We then introduce the MSFEM discretization space as V}; := Span{¢;} and let u3
be the Galerkin’s approximation of u° in V. It is the unique solution in V}; to the
following variational formulation, which is the Galerkin approximation of (3.5):

Find uy; € V such that, for any v € V7,  a°(ufy,v) = b°(v).

3.3.2 Error estimates

As pointed out above, the MSFEM approach can be put in action for a large variety of
heterogeneous materials. Its numerical analysis is however, to date, restricted to the
periodic case (3.11). We have the following error estimate:
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Theorem 3.11 (Membrane case). Assume that we are in the membrane case. Under the
assumptions of Theorem 3.9, we have

where C' is a constant independent of ¢ and H.

Theorem 3.12 (Bending case). Assume that we are in the bending case. Under the as-
sumptions of Theorem 3.10 and the additional assumption that v}, € H*(w), we have

o = il < € (B2 + B+ ) Bl

where C' is a constant independent of ¢ and H.

The proofs of Theorems 3.11 and 3.12 are based on Theorems 3.9 and 3.10. They
are postponed until Appendix 3.A.

3.4 Numerical results

The numerical tests of the MSFEM has two goals. First, we wish to check that our
MSsFEM approach provides accurate results. Second, we wish to check if the assump-
tions on the regularity of A° can be relaxed. Indeed, real materials are not smooth, and
we would like our method to be able to tackle them. The numerical tests reported on
below have been performed using FreeFEM++ [49].

3.4.1 Presentation of the test case

The numerical tests have been performed in dimension d = 2, with w = (0,1) and

Q= (0,1) x (—1,1). The periodic cells are thus Y := (0,1) and Y = (0,1) x (-3, 3).
We consider four periodic isotropic elasticity tensors and two non periodic ones. For

0 < ¢ < 3, we define A, , on Y by: for any y in ),

Aperq(y) = Eperg

0ij Okt + (0indj + 5¢z5jk)) e;Qe;Rer®e.

(v) ((1+u)(1 — ) 2(1 + v)

Each of these four elasticity tensors has a constant Poisson coefficient v = 0.3 (which
is e.g. close to the value of the Poisson coefficient of stainless steel). The different
tensors are then characterized by their Young modulus. The four cases are

« a homogeneous tensor with Eero(y) := 1;

« a smooth periodic tensor with E,,1(y) := 4.5 cos(2my;) + 5.5 (see Figure 3.7);
note that this is a lamellar case;

« a discontinuous periodic tensor with Eyer2(y) := 101y, (y1) + 1y, (y1) where

Y, = [O, }J U [4, } and Y; = [}1, %] (see Figure 3.8); note that this is again a

lamellar case;

« a second discontinuous and periodic tensor given by Ey. 3(y) := 101y, (y) +
1y, (y) where Y5 := [1,3] x [1,2] and Yy := Y\ V) (see Figure 3.9); in contrast

to Eper2, this case is not a lamellar case.
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Figure 3.7: Plot of y — Eper,l(y)

100
75
50
25
00

Figure 3.8: Plot of y — Eper2(Y)

Figure 3.9: Plot of y — Fper3(Y)
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In addition, we consider two non periodic tensors which are given by

v 0::0 _|_;
(IT+v)1—=2v) " " 21+v)

Ay(y) = Ey(y) ( (001 + 5il5jk)) e, Ve Qe e

with two possible choices for the Young modulus, namely E5 and Es5. The non periodic
case F, (resp. Ej3) is obtained as a modification of the discontinuous and periodic case
FEpers (resp. Eper3). In each periodic cell of the material, we draw a random number
0 ~ U ([—0.2,0.2]) (independently from one cell to another) and define F; in that cell

as El(y) == Eper,i<y1 - 6)7 y2)

The elasticity tensor A of (3.4) is then given by A°(x) = A(2'/e, x4), where A is
either of the six above choices.

The elasticity tensors Ape o and Ay satisfy the assumptions of Theorems 3.9
and 3.10. The other tensors do not. We show below that, in the latter case, our MsFEM
approach provides qualitative results similar to those of the former case, although of
lower accuracy.

We choose two simple loads for the tests:
o fo:x— e €& x O for the membrane case;

o f1:x+— ey € O x & for the bending case.

3.4.2 Meshes and alternative MsFEM variants

The coarse mesh has been described in Section 3.3.1. In 2D, the coarse mesh is simple.
We choose some H > 0, and

Tol = {Tz’ =7 X (—%,%) , Tii=(1H, (i + 1)H)}.

Every element of the coarse mesh is next meshed with a fine triangular mesh of typical
size h < H.

In order to get some intuition on the MsFEM approach introduced in Section 3.3.1,
we momentarily consider the following test case. The plate is assumed to be of thick-
ness € = 1, to occupy the domain €2 = f = w X (—%, %) with w = (0,10), to be
modelled by the homogeneous elasticity tensor Ay o and to be submitted to the load
fo (thus corresponding to a membrane test case). We mesh w = (0, 10) by 11 coarse
elements of identical size, which yields the mesh 7! of 2. An appropriate fine mesh
of each coarse element is introduced.

On Figure 3.10 (resp. Figure 3.11), we plot the reference solution (resp. the MsFEM

solution) for that problem, in the sense that we represent the action of 2 > z
[

T+ 5 zlug (x) on the mesh to highlight qualitatively the differences between the
2

two solutions. Significant qualitative errors can be observed, which are due to the fact
that, in the membrane case, the exact displacement in the d-direction is small (of the
order of €2 in the LQ(Q) norm, see Theorem 3.9) but does not vanish. In contrast, in
the numerical solution, it identically vanishes on the edges of each coarse element.
Such a mismatch thus introduces numerical errors close to the boundaries of each
coarse element. In order to address this problem, we consider two alternative MSFEM
variants, an enriched variant and a non-conform variant.
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Figure 3.10: Reference solution.
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Figure 3.11: Numerical solution with the MSFEM approach of Section 3.3.1.

Enriched MsFEM variant

The first idea is to keep the MSFEM basis functions defined by (3.19) and to enrich the
discretization space with new basis functions. This strategy is inspired by [84], where
the authors approximate the coordinates of the displacement vector (for an elasticity

problem posed in an isotropic and homogeneous plate) by functions of the form w(x) =
N

Z(:Ud)i w'(2"), where the functions w’ are independent of 24 and chosen in relevant
fzurolctional spaces. The article [84] states that, if one wants the approximation to be
consistent (in a sense defined in the article), then the degree of the polynomial function
in x4 has to be N = 1 for the d — 1 first coordinates of the displacement vector and
N = 2 for the d-th coordinate. Due to the symmetries of the membrane case, this
implies that the d — 1 first coordinates of the displacement should be approximated by
functions independent of x4, while the d-th coordinate should be approximated by a
function which is linear in x,4.

The motivation of the MSFEM approach is of course to address heterogeneous
problem, but we want the method to also be adequate for homogeneous cases. In
the isotropic and homogeneous case, the solution to (3.19) is not independent of =,
because of the Neumann conditions on 7 X { j:%} However, if we only look close
enough to the boundary of each element, the function appears to be almost indepen-
dent of x4 because of the Dirichlet conditions on 97 x (—%, %) This motivates us to
add basis functions (in the MSsFEM discretization space) whose d-th coordinate is linear
with respect to x4 close to the boundary of the coarse elements.

For the same reason, in the bending case, we should add functions whose d-th

coordinate is quadratic in x4 close to the boundary.

We thus introduce a so-called enriched MsFEM variant, where the discretization
space is spanned by basis functions defined by (3.19) and by the additional basis func-
tions {15 }; we define now as follows, in the two-dimensional case.

Additional basis function (Enriched MsFEM, membrane case): The function ¢

is supported in T; U T} 1, where we recall that T; = 7; x (—3,3) and 7; = (jH, (j +

| e
CEEE

=

t
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1)H) for any j. It satisfies the following local problems:

(—div® A% (¢5) =0 in T;, (—div® A% (¢5) =0 in Ti4y,
Vi (iH, z) = 0, V(i + 1) H, 22) = z2 62,
¢f((2+ 1)Ha x?) = I €y, and ¢z8((z+2)H7 1'2) = 07
1 1
A%ef(Y5) - ea =0 onT; X {iﬁ} A%t () - ep =0 on T4 ¥ {ii} :
(3.20)
Additional basis function (Enriched MsFEM, bending case)
((—div® A%*(¢5) =0 in T}, ((—div® A%"(¢;) = 0 in Ti4q,
1/15(ZH7 IQ) 207 1/}28((@+ ]')HWTQ) :.Tg €2,
VE((i + 1) H, x3) = 23 eq, and Y;((1+2)H, z2) =0,
1 1
Aaea(w;?)'GQZO onrT; X {:i:§} Ageg(w;s)'€2:0 on 7,41 X {:‘:5}
\ \

(3.21)
The numerical analysis we made for the MsFEM method introduced in Section 3.3.1
uses the fact that the boundary conditions imposed in (3.19) are Kirchoff-Love dis-
placements. We are thus in position to use Theorems 3.9 and 3.10, where we recall
that the function g (which stands for possible non-homogeneous Dirichlet boundary
conditions) belongs to G, (see assumption (3.8)). The situation is different for the ad-
ditional basis functions defined by (3.20) and (3.21). In particular, there is no function
in Vg whose d-th coordinate has a trace on 07 x (—%, %) which is a linear function
of z;. We thus cannot use Theorems 3.9 and 3.10 to identify the homogenized limit
of (3.20) and (3.21). The numerical analysis of this enriched MSFEM variant is thus
challenging. At least, since we are enlarging the discretization space (in comparison
to that of the MsFEM method introduced in Section 3.3.1) and since the approxima-
tion remains conform, the estimates of Theorems 3.11 and 3.12 are still valid, although
maybe not sharp.

To get some intuition on that enriched MSFEM variant, we again perform the test
(for a homogeneous plate) described at the beginning of Section 3.4.2. The result for
the enriched MsFEM variant is shown on Figure 3.12 (we recall that the reference so-
lution is shown on Figure 3.10 and that the numerical solution obtained by the MsFEM
approach is shown on Figure 3.11). We observe that adding those basis functions al-
lows (at least in the membrane considered here) to significantly reduce the error at the
boundaries of the coarse elements (compare e.g. Figures 3.12 and 3.11).
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Figure 3.12: Numerical solution with the enriched MsFEM approach of Section 3.4.2.
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Non-conform MsFEM variant

The second idea is to change the definition of the MsFEM basis functions, and hence to
not consider at all the functions defined by (3.19). The boundary errors arise because
of the homogeneous Dirichlet boundary condition on the d-th component of ;. It
is therefore natural to consider a problem similar to (3.19), but where the boundary
condition is somewhat relaxed. More precisely, the d-th component of 7/} remains free
on 0T X ( — %, %), and the Dirichlet boundary condition is repllaced by a homogeneous
Neumann boundary condition. The resulting basis functions do not belong to H*(f2),
hence yielding a non conforming approach that we call the non-conform MsFEM variant
in the sequel.

In dimension d = 2, and for the membrane case, the basis functions ¢; are sup-
ported in 7; U T}, and are solutions to the following local problem on 7;:

( —div® A%*(¢)5) = 0 in T},
(5 =9 oT; X L1
;€1 = @; €1 onoT; 2,2 ,
11 3.22
A%ef(¢Y7) : (2 ®eg) = 0 on J7; X (—5’ 5) , (3.22)
1
Ae®(1)5) -ea =0 on; X {iﬁ}
\
and, on 7},
(= dive A% (Y5) =0 in Ty,
e 11
Y5 -ep = ¢ - ep on Oy X (_57 5) :
“ef (Y5 11 (3.23)
A (Y7) : (e2®e3) = 0 on I7iyy X ~55)
1
A%e(Y7) -ea =0 onTiq X {ii} .
\

Recall that the functions ¢; form a basis for the space V! of functions which belong
to (H}(w))?¢"! and which are piecewise affine on each element of 7.

We have not found a meaningful equivalent of these basis functions for the bending
case.

We again perform the test (for a homogeneous plate) described at the beginning of
Section 3.4.2. The result for the non-conform MsFEM variant is shown on Figure 3.13
(we recall that the reference solution is shown on Figure 3.10, that the numerical solu-
tion obtained by the MSsFEM approach is shown on Figure 3.11 and that the numerical
solution obtained by the enriched MsFEM approach is shown on Figure 3.12). We ob-
serve that this non-conform variant yields a numerical solution with small errors at
the boundaries of the coarse elements.

3.4.3 Numerical results

There are three regimes for MSFEM approaches, depending on the relative values of ¢
and H. When H > ¢, we can recast Theorem 3.11 for the membrane case as

l® = gl zr20) < CHluil 20
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R

Figure 3.13: Numerical solution with the non-conform MsFEM approach of Sec-
tion 3.4.2.

and Theorem 3.12 for the bending case as
lu® = gyl 2oy < CH?|[ug]l .

When H =~ ¢, MSFEM approaches often show a plateau in the convergence plot. The
last regime is when H < ¢, a regime we do not consider since it leads in practice to
prohibitively expensive computations.

Convergence of the error when  varies

We begin our numerical investigations by fixing the value of € and varying the coarse
mesh size /1. The values of /I we consider range from values much larger than ¢ to
values slightly smaller than €. We successively discuss the behavior of the error for
the various elastic materials described in Section 3.4.1.

Homogeneous and smooth periodic cases. Figures 3.14 and 3.15 show the H!
relative error in the homogeneous case and in the smooth periodic case. Those are the
cases where the hypothesis of Theorems 3.11 and 3.12 are met.

In the regime H >> ¢, we observe for the MsFEM approach that the error varies
with respect to H as predicted by our theoretical estimate, i.e. essentially in a linear
manner. This is also the case for the two variants we have next introduced, which give
results very close to the MsFEM. We also note that the threshold value of H (below
which the behavior changes) is larger in the bending case than in the membrane case.

When H is close to ¢, the error of the MSFEM method does not decrease anymore
when H decreases. A plateau seems to be reached. The enriched variant performs
much better than the original approach. In the membrane case, it yields an error
which remains linear in terms of H, even in the regime H ~ ¢. This could mean
that the boundary error identified on Figure 3.11 has been successfully corrected. In
the bending case, the behavior of the enriched MsFEM (although better than the Ms-
FEM approach) is not as good as in the membrane case. It is unclear to us whether
there could be other simple ways to enrich the MSFEM in the bending case in order
to remove the plateau. Except for the very specific case of a homogeneous plate, the
non-conform MsFEM method performs similarly to the MsFEM.

Discontinuous periodic cases and non periodic cases. Figures3.16 and 3.17 show
the H al relative error in the periodic discontinuous cases, and in the non periodic cases.
Those cases do not meet the hypothesis of Theorems 3.11 and 3.12, but they may be
more realistic from an engineering point of view. The behavior of MsFEM and its vari-
ants is essentially the same in these cases as in the previous cases. In particular, in
the membrane case, the enriched variant outperforms the two other approaches. In
the bending case, this is not the case, and the enriched variant performances are very
close to those of MsFEM.
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Figure 3.14: H! relative error in log-log scale, for ¢ = 1/40, h = 1/768, f = f,
(membrane case), A° = Apero(-/¢, ) (left) and A° = Aper1(- /¢, -) (right)
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Figure 3.15: HE1 relative error in log-log scale, for ¢ = 1/40, h = 1/768, f = fi
(bending case), A® = Apero(-/¢, -) (left) and A® = Aper1(-/¢, -) (right)

H1 relative error of the rescaled gradiant
H1 relative error of the rescaled gradiant

1071 10-1
— ]
—e— MsFEM —e— MsFEM
enrichedMsFEM enrichedMsFEM
—#— non conform MsFEM —— non conform MsFEM
—— H =epsilon —— H = epsilon
1071 107!
H H

Figure 3.16: H! relative error in log-log scale, for ¢ = 1/40, h = 1/768, f = f,
(membrane case), A* = Apero(-/¢, ) (left) and A® = Ay(- /¢, -) (right)
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Figure 3.17: H! relative error in log-log scale, for ¢ = 1/40, h = 1/768, f = f,
(bending case), A* = Aper3(-/¢, -) (left) and A® = As(- /¢, -) (right)

Robustness of the error when ¢ varies

In this section, we fix the coarse mesh size, and we investigate the behavior of the ap-
proaches when ¢ varies. Results are shown on Figures 3.18, 3.19, 3.20 and 3.21. Our first
observation is that the error does not blow up when € goes to 0 (in sharp contrast with
what would happen for a standard Finite Element approach). Our second observation
is that the enriched variant performances are always similar (if not better) than those
of the two other variants. These superior performances are observed irrespectively
of the material (should it be periodic or not, smooth or not) and of the loading type
(membrane or bending).
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Figure 3.18: H! relative error in log scale, for H = 1/32,h = 1/768, f = f, (membrane
case), A° = Apero(-/e, ) (left) and A° = A, 1 (- /e, -) (right)

3.5 Conclusion

In this article, we have introduced several MsFEM approaches to approximate the so-
lution of elasticity problems posed on thin plates. We have also established error esti-
mates for one of these approaches. The performances of these approaches have been
investigated on several two-dimensional test cases. We have observed that, in the prac-
tically relevant regime when ¢ < 1 and ¢ < H, the rate of convergence of the error
estimate is sharp. The enriched variant, motivated by heuristic observations of some
shortcomings for the original MsFEM approach, appears to be a competitive method,
which performs very well in the bending case, and extremely well in the membrane
case. The performances of all the approaches seem to be very robust with respect to
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the possible lack of periodicity of the microstructure, and possible discontinuities in
the coefficients.

3.A Proof of the error estimates

We collect here the proofs of Theorems 3.11 and 3.12.

3.A.1 Membrane case

Before giving the proof of Theorem 3.11, we prove the following lemma.

Lemma 3.13. Let ¢ be defined by (3.19). Then, for any T € TH, we have 1) — Y, in
e—

HY(T).

Proof. Using Theorem 3.7, we know that v; - ¥ in H'(T) where 1} is the solution
e—
to

—div A e(y;) =0 inT,
Y =1; onOT.

The problem is well posed and has a unique solution which is ;. [
Proof of Theorem 3.11. The proof falls in three steps.

Step 1. Let H := ’T‘d%l We have assumed that u* € W% (w). It is thus possible to
approximate u* using elements of P! (w) (see e.g. [89]):

I(i)ien, |u* — aillmrwy < CH||u"|| g2

where C' is independent of € and H. The functions v* and 1); are in Vg, thus it is
equivalent to write

" — cihill mr o) < CHI[u"|| m2(w)- (3.24)
Let (¢f); be the set of functions defined by (3.19). Because of Lemma 3.13 and Theo-

rem 3.10 we know that

Vi = Pi + eWap < ,-> eap (Vi) + 05,

3

and thus
Y€y =i - €5 + EWap (E, > ey ap(;) + 65 - e,
Y5 - eq = €2 Wap (g, ) - eq eap(i) + 05 - eq,

with

d—2 a1
10:ll 2 ry < CVEH = |le(vi) || 2(r) + CeH 2 ||V 12(r)-
In the sequel we assume that v He < 1, thus
d—2
10l (1) < CVeH = |le(s) || 2y

Let uj; be the Galerkin approximation of u® in V. Let v° = «;9;. By definition,
v® € V}j. Then, using Céa’s lemma, we have

v — ufllmr ) < Cllu® — 0|l m1@)
g CHUE — ua’l\ HL(Q) + C’|\u€71 — U‘EHH;(Q)- (3.25)
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The first term is bounded with Theorem 3.10:
HuE — ue’lHHsl(Q) S C\/EHVU*HLQ(W). (3.26)

Step 2. We now bound the second term of (3.25). Let ©° := «;05. By definition of u®!
and ¢,

uSl — 0 = uF — oyt + EWap (E, > (€ap(u*) — aieas(1;)) — ©F
and
¢ (s — of) = (ea ® €5+ (Wag) (g )) (as(*) — cieas(th))
+ EWas (g ) e(eas () — Qieas (1)) — € (6°).

The functions (¢){); are defined as solutions to a PDE posed on each element of the
mesh. We will then use the results of the asymptotic analysis on each element:

e (u = 09) 7o) = > e (@ = 0) 320y, (3.27)
TeTH

First, we split this term in three parts that we will tackle separately:
0! =l < | o) (27)) Cantu) = oncustin)
et = o)y < (e @ €5+ elamng) (2. ) (ean(u®) = aveas()] ,

e fues (20) eleastut) — aveas@)] , .+ 1O iz 328)

The first term of (3.28) is bounded because of (3.24) and of the regularity of the correc-

tors, which are supposed to be in W1> (Rdil X (—%, %))

H <e°‘ ® ep + e(Wap) (E’ )) (cas () — aseas(@)|

L*(T)

< Ollef(u) = e’ (i) 2y
< CH*||u*||m2(r)- (3:29)
We also use the regularity of the correctors to bound the second term of (3.28):
g Hwag (i, > e(eqp(u”) — aieaﬁ(%))HQ < Ce?||VPu*r — aiV2z/JiH%2(T)
€ L2(T)
= C&*||V2u* || 22y, (3.30)

where the last equality comes from the fact that the 1); are affine.
We have to be careful with the remaining term. Indeed it is possible to bound
separately the 67, but «; are dependent of H. We note that on each 7', v° is solution to

(—div® A%¢*(v°) =0 in T,

11
f = 1% 0 a9 |
v ;1); on TX( 22)

1
A%e*(v°) - eq =0 onT X {ii} :

\

Because of Theorem 3.10, we know that

w' .
€ _ by, — af _ . by
v az¢z € (Ewaﬁ . ed) <€7 ) €a6(0m/12)
-2
< OVe|T |22 || aie (i) [[w.os ()

10%| 21y =

HX(T)
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The 1); are affine functions, therefore ||c;e(v;) |10 () = ﬁ”oﬁe(@h)ﬂ 2(-)- Then

__1
10N 2y < CVElT|" 72 e (i) |2y

Yet |7| = H* ! then |7| 72 = % thus

c &
10l 2y < C\/E||Oéz€(¢z')||L2(f)

We use (3.24) to recast this term as

loie(hi) |2y < lloie(¥s) — €' (W)l L2y + 1€/ (") || 22(ry
< OH + [|u*]| mrr)
< ||[u*||g1(ry for H small enough,

18y = Oy 57 1o (331)

Collecting (3.27), (3.26), (3.28), (3.29), (3.30) and (3.31),

e (et =) ey < € (H2+ 24+ =) D e

TeTH

2, 2 ¢ (|2
<C(H 4+ —) ol

and thus

because we supposed that u* € W% (w) C H?(w). We use the Poincaré inequality of
Lemma 3.4 to write

|u™! = v°|| ) < C <H+5+’/H> ||| 72 (w0 (3.32)

Step 3. Using (3.25), (3.32) and Theorem 3.9, we have shown that

Hus,l_u%,HHl <C(H+\/—+”H) Hu ||H2

This concludes the proof of Theorem 3.11. [

3.A.2 Bending case

Before giving the proof of Theorem 3.12, we prove the following lemma.

Lemma 3.14. For any T € T, we have ¢¢ - Wi in HY(T).
E—

Proof. Using Theorem 3.8, we know that 5 = Y in HY(T'), where 1} is the solution
e—
to

V2ARV?(¢F)y =0 in T,
(¥ )a = (¥i)q on O,
V(! )a = V(1;)q on Or.

The problem is well posed and has a unique solution which is (¢;)g. ]
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Proof of Theorem 3.12. The proof falls in three steps.

Step 1. Let H := \T|ﬁ We have assumed that u}; € W% (w). It is thus possible to
approximate u using elements of P?(w) (see e.g. [89]):

How)iens Juh — ci(s)all m2w) < CH?||u*]| o),
where C is independent of ¢ and H. The functions u* and ¢; are in V&, thus it implies
that
1 * *
le*(u" — i) r2(w) = EHVQ(% — i(d)a) 72y < OH?|[w*|| ()

and that

||U* — O‘zqsz”HEl(Q) S OH2||U*||H4(W). (333)
Let (¢7); be the set of functions defined by (3.19). Because of Lemma 3.14 and Theo-

rem 3.10 we know that

VS ey = U; - e + EWE (g ) g ap(ti) + 65 - e,

P eq =1 eq+ 62w§ﬁ <g, > “eq eap(i) + 05 - eq,

with
d—2 d—1
10:ll 2y < CVEH 7 |le(hi) |2y + CeH 7 || V24| 2(ry.
In the sequel we assume that vV He < 1, thus

d—2
10:| 2oy < CVEH 2 |le(Ws) || 2y

Let uj; be the Galerkin approximation of u® in V};. Let v° = «;%;. By definition,
v°® € Vj;. Then, using Céa’s lemma, we have

v — ugllmr ) < Cllu® — 0|1 @)
S CHUE — us’l\ HL(Q) + CHuE’l — /UEHHgl(Q). (3.34)

The first term is bounded with Theorem 3.10:

Hu€ — ue’lylel(Q) S C\/EHVU‘*HLQ(W)' (3.35)

Step 2. We now bound the second term of (3.34). Let ©° := «;05. By definition of u®!
and v¢,

e (u! =) = (—waca ® 5+ e(w?) (2,-) ) (Gas(uf) = das(t)a)
2w’ (1) e@an(u) = idas (1)) — €5(67).

The functions (¢/5); are defined as solutions to a PDE posed on each element of the
mesh. We will then use the results of the asymptotic analysis on each element:

lef (u™t — U€)||2L2(Q) = Z lef (u™t — Ua)H%Q(T)‘ (3.36)
TeTd

First, we split this term in three parts that we will tackle separatly:

e e < [ (e & e (i) (2.1) ) @uote) = i,

e fus® (%) el@ustud) — adus@a)| |, + 1Oz 637)
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The first term of (3.37) is bounded because of (3.33) and of the regularity of the correc-
tors, which are supposed to be in W' (R?~! x (—1,1)):

[(asea @ 3+ cta?) (2:)) @ustucta = aduatina,

L*(T)

< CHYuj||a(ry
(3.38)

We also use the regularity of the correctors to bound the second term of (3.37):

[l (2.°) eluatur)a = awtustina)], < CEIVP = VPl

= C&*||V2u* || 22 (3.39)

where the last equality stems from the fact that the functions 1); are cubic.
We have to be careful with the remaining term. Indeed it is possible to bound
separately the 67, but a; are dependent of //. We note that on each 7', v° is solution to

(—div® A%¢*(v°) =0 in T,
11

€ — a1l ond i
v ;1); on TX( 2,2),

1
A%ef(v°) - eq =0 onT X {iﬁ} .

\

Because of Theorem 3.10, we know that

aBys
w .
1O a2y = |07 — sty _6< <@g ! ) (_"> Oap(ithi)a
=2
< OVeElT 272 || o V2 () al lwoo (-
The functions 1; are cubic, therefore [, V2(;)a|lwioory = =1 (| V(Wi)all 22()-

2|7|2
Then

1
H@EHHI(T <C’\/§|7-] Qd*ZHOéin(wz')de(r)-
Yet |7| = H%! then |7|~ 7 = > thus

1Ny = O[5 — iV ()l 2

We use (3.33) to bound this term as

10 V2 (Wi)all 27y < V2 (Wi)a — Vull ey + V0] 2
< CH + [Jug g2(r)
< Cllugllp2(ry for H small enough,

10| 2 <O,/ wgll 2 (3.40)

Collecting (3.36), (3.35), (3.37), (3.38), (3.39) and (3.40), we deduce that

e (uet = ) ey < € (H + 2+ =) D Il

TETH

g
< C (H' + & + =) [uill,

which implies that

<C ||V2ud — @iv2<wi)d”i?(T)
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because we have supposed that u5 € W**(w) C H*(w). We use the Poincaré in-
equality of Lemma 3.4 to write

g
Hue,l _ U6||H§(Q) S C (H2 + e+ A/ ﬁ) HUQHHB(W) (3.41)

Step 3. Using (3.34), (3.35), (3.41) and Theorem 3.10, we have shown that

3

o = ilzen < © (12 4 VE+ [ ) Il

This concludes the proof of Theorem 3.12. [



CHAPTER 4

SHAPE OPTIMIZATION OF PLATES

4.1 Introduction

The aim of this chapter is to present a shape optimization method in order to optimize
the microstructure of an heterogeneous thin plate together with preliminary numerical
results.

The principle of the method is the following. Let us consider a miscrostructured
plate, composed of a mixture of linear elastic materials, the thickness of which is order
g, for some fixed value of € > (. Let d = 2 or 3 and let us assume that this plate occu-

pies a physical domain ° := w x (—¢/2,¢/2) for some bounded regular subdomain
of R41,

We denote by M the set of tensors M € R4*4*dxd gych that
Vy e R [My|<cilyl and y' My>c |y,

where R9*? denotes the set of symmetric matrices, and which have the following sym-
metries:

V1<, g, k1l <d, Mjy= Mju= M = M.

For A, B € R%%wedenoteby A : B = A;;B;;. Let us point out here that, in particular,
forany 1 <i,j < dandany A € R A:e; ®e; = e! Ae;. We also define

11
._ d-1 ._ _- =
Y :=(0,1) and )/.—Yx( 272).

Let us assume in addition that the typical size of the microstructures in the trans-
verse direction is also of order ¢. Let us denote by A® : ()* — M the application which
associates to all x € ()° the value of the linear elastic tensor .4°(z) € M of the plate
at point z.

If the plate is composed of a periodic microstructured material, as in the preceding
chapters, there exists an application A : R~ x (—%, %) — M such for any z,; €

(—%, %), the function 2’ — A(2', z4) is Y -periodic, and such that

A(x) = A (il, E) , Vo= (2 19) € =wx(—¢/2,¢/2).

g &
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The shape optimization problem we consider here consists in optimizing some
given objective functional over the set of microstructured thin plates whose linear
elastic tensor can be written under the form

AV (z) = A (M ﬁ) ,

£ S

for some fixed reference periodic tensor-valued application A, some fixed value of
e, and for some regular diffeormorphism 1) : w — w which has the vocation to be
optimized. In other words, the set of admissible microstructures we are considering
here can be seen as macroscopic deformations of a reference periodic microstructure.

In addition, let

Ve = {v € H'(Q°)%, v =0o0n dw x (—%, g)} .
We consider here a compliance optimization problem which may be written as follows.
Let f¢ € L*(Q)? and, for any regular diffeomorphism 1) : w — w, consider u%< € V©
the unique solution to the linear elastic problem

{ —div A¥e(@¥€) = f¢°  in O, (@1)

A?f},se(’d’dlﬁ) n = O on w X {j:%} 3

where e(u) denotes the symmetric gradient of a vector field u € H'(Q2)? and n denotes
the unit outward normal vector to €2°.

Our aim in this chapter is to propose some numerical methods in order to approx-
imately solve an optimization problem of the form

: €
inf 7 (), (4.2)
where U is a given set of regular diffeomorphisms from w to w, to be precised later,
and where
Gy = [ o
0
We are left at this point with two difficulties. The first difficulty lies in the char-
acterization of a set of regular diffeomorphisms ¢/ which enables to consider a large
enough set of microstructures and can lead to computable numerical scheme. Such a
question is definitely not trivial in the case when d = 3 since w is then a subset of R?.
In the preliminary study presented in this chapter, we leave this important question
aside for future research work and focus our attention on the more simple case where
d = 2, so that w is simply a subinterval of R, which we fix to be equal to (0, 1). The
precise choice of optimization set ¢/ is detailed in Section 4.2, together with the choice
of the reference periodic tensor-valued application A.

In addition, since the value of € has the vocation to be small, the cost of the numeri-
cal resolution of problem 4.1 for any 1) € U is extremely high if standard finite element
methods are used. To circumvent this bottleneck, we study and compare two alterna-
tives. The first approach consists by replacing problem 4.1 by its homogenized limit
obtained as ¢ goes to 0, and optimize the compliance of the homogenized problem. The
second alternative consists in approximating the solution of 4.1 using multiscale finite
element methods to alleviate the computational burden. However, the optimization
procedure would require in principle to recompute at each stage of the optimization
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process to recompute the MsFEM basis for each new value of ¢/ € U, which would
still lead to very costly simulations. Here again, we consider an approach in order to
reduce the computational cost where the multiscale finite element functions are cho-
sen to be approximated in a reduced approximation space, obtained by the mean of
an appropriate Proper Othogonal Decomposition (POD) method. We present the two
resulting optimization procedures in full details in Section 4.3.

Numerical results obtained on different test cases illustrate the comparison be-
tween these two approaches in Section 4.4.

4.2 Choice of optimization set for diffeomorphisms
and reference periodic tensor

As mentioned in the introduction, in this preliminary study, we restrict ourselves to
the more simple situation where d = 2 and w = (0,1). We introduce a uniform
discretization grid of the interval (0, 1) where the typical size of the subintervals is
equal to Hyig = ﬁ for some Ngig € N* and define

1 Hast . ¥ :(0,1) = (0,1), continuous, increasing and piecewise affine
" | oneach subinterval (i Hyg, (i + 1)Hgg) forall 0 < i < Ngg — 1
(4.3)
For all 0 < i < N, let us denote by z; := iHgg and by ¢; : (0,1) — R the
standard hat element function centered on the point z;, i.e. defined such that

Ve e (0,1), y(x):= { 1 T ifz € (x; — Hag, x; + Hair),

0 otherwise.

Then, it holds that the set 2/ can be equivalently characterized as

Naif
Y = {@D = > @ity (a:)osisigg C [0,1], ap =0 < a1 < -+ < angg1 < Ay = 1
1=0

The strict inequalities which appear in the definition of the set /!4 are not easy
to handle from a numerical point of view when it comes to optimizing an objective
functional over the set {/y . To this aim, for 1 > 7 > 0 we introduce the subset
UHarn C YHaiw defined by

Nai
2 Hawm . { =225 i, (aiosisvgg C 10,1], a0 =0 <ap <+ <ange—1 < angg =

%Z%ZTL V0 <i < Naig — 1

(4.4)
The set U471 g then a closed convex subset, and is the set of diffeomorphisms v
we are going to consider to define the shape optimization problem. The smaller the
value of the parameter 7, the larger the set U4 since Y aitm C YHaiwm2 for all
0 < 19 < 1n < 1. Thus, the parameter 7 has the vocation to be small in practice. The

precise values of 7 and H g chosen in our numerical tests are precised in Section 4.4.

In practice, in the numerical tests presented in Section 4.4, the reference peri-
odic tensor-valued application A is chosen so that for all (2/, z4) € R?! x (—%, %),
A(x', x4) is an isotropic linear tensor, i.e. forall 1 <, j k,1 < d,

Aijkl(xly Tq) = )\(95/, 24)0;i0k + M(JU/, Za) (001 + 0udjn),

1,}.
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where )\ and p are the values the Lamé coeflicients of the material, that are supposed
to be of the form We suppose that the is constant, thus only the Young modulus F is
a function of z € (2. It means that for any x in €2,

vE(x' x4)
1+ v)(1—2v)

E(2,xq)
2(1+v)

)\($/,l‘d) = and M(‘T/axd) =

for a fixed value of the Poisson coefficient v and a varying Young modulus function
E : R x (—%,%) — R such that for all 24 € (—%,%), R 5 2/ s E(2/,134) is
Y -periodic.

Let us denote by the function E¥ defined such that for all (2/,z4) € w x (—3,3)

BV (2 2g) = E (w(f"/>,xd) |

3

N[

The objective of Figure 4.1 is to illustrate the values of £¥° when w = (0, 1) (hence
d = 2), for different choices of 1) € U 4w for Hyq = %, where ¢ = % and
, . [ 1 if025<a —[2/] <0.75,
E(z',24) = { 10 otherwise,

where for all 2/ € R, [2/] denotes the integer part of z’.

4.3 Two optimization approaches

In this section, we present the two optimization procedures we propose, based on ho-
mogenization theory and multiscale finite element methods, for the approximative res-
olution of problem 4.2. Here, and in all the sequel, we keep the notation I/ to denote
the chosen of optimization set of diffeomorphisms of w. We remind the reader that in
practice, in the case when d = 2, the set ¢/ will be chosen as U/ Haiz:n defined in (4.4)
for some positive values of Hyis and 7.

4.3.1 Rescaled version of the plate problem

In this section, we introduce a rescaled version of problem (4.1) and problem (4.2),
defined on a domain independent of ¢ > 0, which are more convenient to handle in

the sequel. Let 2 := w X (—%, %) and let

d
V= {UEH1<Q), v =0ondw X (—%,%)} . (4.5)

For all ¢ € U, let us introduce u¥* € V and f¢ € L?(2)? defined such that for all

(2/,2q) Ewx (—3,1) andalll1 <a <d—1,

e ubE(z) = Ul (2 e xq), uf’e(x) = 5&3”5(93’, ETq);

- fi@) = Ji e wa), filw) = 7 i e wa).
For any u € D'(R%)% and T' € D’'(R4)?*¢, we define the operators ¢* and div® by

1 1
() 1= cap(®),  €5a(u) = —caa(u) and  ei(u) = —ealn)
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Figure 4.1: Plots of E¥* and ¢ for different functions 1 in /Haifr,
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and
e 1 e 1 1
div (T)a = QgTag +-0;1,4 and div (T)d = —agng + —28ded
£ £ g

forany 1 < o, <d— 1.
Then u?* is the unique solution in V' to

— dive(AYef (u¥€)) = f€in Q

1 4.6
AV ef(u¥F) - n =0 onw X {iﬁ}’ (46)
where for all (2/,z4) € w X (=1, 1),
/
AV (2 xg) = A <¢(: ),xd) . (4.7)
The variational formulation of (4.6) reads:
Find u*** € V such that Vv € V, a¥*(u?*,v) = b°(v) (4.8)
where
a’f (uhe,v) = / AVEef (uhF) - ef(v)
Q
and

b (v) = /fo v

Let us then remark that for all ¢ € U, J=(1)) = e J(1p) where J¢(¢) := Jo ube
f¢. This implies that problem (4.2) is equivalent to the optimization problem

inf J°(v). (4.9)

el

4.3.2 Homogenization approach

In this section and the rest of the chapter, we are going to assume that there exists a
function f € L?(Q2)¢ such that f¢ = f independently of ¢.

We begin by introducing the homogenized problem associated to (4.6). We define
the set of the Kirchoff-Love displacements as follows:

Vicr, = {v e (H'(Q)"™ x H2(w), Fo € (HA (@)™ x HAW), va = Ba — 240aBa, 04 = @d} ,

where HZ(w) is the closure of D(2) in H?(w). For v € Vi1, we now use the notation
7 to denote the corresponding element of (HZ (w))*' x HZ(w) entering in the above
definition. We also introduce the set

= {oe (. s+ (1)

11
Vz e (——, —) , v(+, 2) is Y -periodic and / v = O} :
2’2 8

For any g € L?(2), we also define for all 2’ € w,

Jun

mig)a)i= [* gla’ ) doa

Idf—i
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For any u in (D’ (Rd))d and any invertible matrix G € R(@1*(4=1) we define the
quantity e“(u) as follows: for all y € R,

(§ (6 )]

For any invertible matrix G € R4=D*(@=D and 1 < o, 8 < d — 1, we introduce
w*% € W()) the unique solution to the corrector problem

1

eC(u)(2, zq) == 5

Yo e W(Y), / A (%) +eq @eg) : e%(v) =0 (4.10)
y

forany 1 < o, < d — 1. We also introduce WebG ¢ W(Y) the unique solution to
the problem

Yo € W(Y), / A(C(WPE) — gyen @ es) : C(v) = 0 (4.11)
Yy

forany 1 <o, <d-—1.
We then define forall 1 < o, 8,7, < d —1,

(Kl*iG)ama = / A(eG(waﬁ’G) +e,Reg): (eG(wV‘S’G) +e, ®e5),
N
(K = [ ACC@9) + 0 ® e5): (0) = e, @ ),
%
(K3 ) ags = / A(C(WPE) — gyen @ es) : (€C(WHE) — 2o, @ e),

y
(K35 aprs = (K13 )68,

Let ¢ : w — w be a C!-diffeomorphism. Under appropriate assumptions on 1,
which we do not detail here, it can be proved that the family (u"”E )€>0 weakly con-
verges to a limit u¥"* € Vi1 which is the unique solution of the following homogenized

problem:

Yv € Vi, /K*Puw’* : Pv= / m(f) -v— / M (24 fo) Onld, (4.12)

where for all 2’ € w,

K*,V@Z}(z’) K*,V@Z}(z’)
K*(2') == S 2 o, 4.13
(z') <<Kl*éw<w)>T KT (4.13)

and where

Vi, — L (w; (Rg‘i‘””d‘”f

P o () . (4.14)
v — ~
(Vz—lvd)

We do not give the detailed proof of this convergence result here for the sake of
brievity, since the main focus of this chapter is to propose numerical methods for shape
optimization problems. Note that if 1) € U4 for some Hyg > 0, with /4 defined
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by (4.3), there always exists a unique solution u¥* € Vi to problem (4.12), even
though 1) may not satisfy all the necessary assumptions for the convergence of the
family (u¥) _oto u?¥* to hold weakly in H'(Q)? (in particular, any element ¢ € U/ aif
may not be C1).

Nevertheless, the first approach we propose in order to approximate optimization
problem (4.9) is to consider an optimization problem where the homogenized problem
(4.12) is solved instead of problem (4.6). More precisely, we consider the optimization
problem

inf J*(¢), (4.15)

Ppeu

where

T W)= [ o

In practice, in the case where d = 2, w = (0, 1), (4.12) is solved using a standard
Galerkin method where for all 1 < o < d;, Wa’* belongs to the space of P; finite
element functions and @} belongs to the space of cubic spline functions associated
to a uniform discretization grid of (0, 1) of typical mesh size denoted by Hpomog. In
addition, the corrector problems (4.10) and (4.11) are solved using a P; finite element
mesh the typical mesh size of which is denoted by H,;.

4.3.3 Multiscale finite element approach

The aim of this section is to introduce a second approach to effectively compute a
numerical approximation of a solution to (4.9) relying on the use of Multiscale Fi-
nite Element methods, simmilar to the one introduced in the preceding chapter of this
manuscript.

The principle of the MSFEM approach, originally introduced in [55] (see [36] for
a comprehensive review), is to discretize the domain occupied by the heterogeneous
material using a coarse mesh, where the typical size of each element, denoted H, can
be chosen independently of the typical size € of the heterogeneities. The method relies
on the idea of using specific basis functions, which are not as generic as the standard
finite element functions (like P; finite element functions for instance), but are on the
contrary well-adapted to the heterogeneities of the material.

More precisely, the method usually proceeds in two steps. In an offline phase, some
basis functions are computed as solutions to local problems defined on each element
of the coarse mesh. The differential operator which is used is very similar (if not iden-
tical) to the differential operator of the global problem. It is thus expect that these
basis functions appropriately encode the oscillations of the exact solution. These basis
functions are computed in parallel and independently from one another. They do not
depend on the right-hand side of the problem. They are expensive to compute (because
one has to use a fine mesh of each coarse element to resolve the oscillations of AY),
but this computation is local, and only performed once. These basis functions gener-
ate a discretization space of limited dimension, which is well-adapted to the problem
at hand. Next, in an online phase, a global Galerkin approximation of the problem of
interest is performed, on the discretization space introduced in the offline stage. Since
the dimension of the discretization space is limited, the online phase is inexpensive.

In our specific context, the MSFEM method works as follows. Let us assume that
w is a polyhedral, connected and bounded open subset of R?~! and let 7.* be a con-
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Figure 4.3: An oscillating basis function

Figure 4.2: A P! element in 1D )
in 1D

forming discretization of w. Let us now define

Then, 77 obviously defines a conforming discretization of € (see Figure 4.4).

Figure 4.4: Coarse mesh 7

To define the multiscale basis functions, we consider two different discretizations
spaces, which we call hereafter the membrane space and the bending space .
Membrane space: Let V! be the space of functions of H}(w)?~! that are piece-

wise affine on every element of 7.7, let N}y' be its dimension and let (¢, ;< N be

M
its canonical base. For any 1 < i < N#!, let oM := <¢6 ) € VEL,

Bending space: Let V5 be the space of functions of H2(w) that are piecewise
cubic on every element of 7.7, and let N5 be its dimension and let (gbf )1<j< N5 beits

—:zchQSf
o

11
Forally € U,onany T € 7}2H of the form T = 7 x (—5, 5), we define the

membrane oscillatory basis function o= for all 1 < i < N}! as the solution of the

canonical base. For any 1 < j < N5, let go? = (
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following problem

([ div AVees ((p;/},s,M) =0inT,

11
PeM M
) € = ;  on 07‘ X (-5, 5) , (416)

1
AVEes <@?’E’M> ceqg=0o0onT1 X {iﬁ} ,

\

where A% is defined in (4.7). Similarly, we define the bending oscillatory basis func-
tion go}p’E’B for all 1 < j < N5 as the solution of the following problem

— div® AVFef ((pg”g’3> =0inT,
11
veB _ B
@7 =y ondr X <—§, §> : (4.17)

1
AVEef (@?’E’B) ceg=0onT7 X {iﬁ} .

\

We then define the multiscale finite element space associated to ¢ € U as follows

Vi© = Span{i{ M, ol 1 <i < N 1< < N

and denote by u}@’a be the Galerkin’s approximation of u%* in the discretization
space V7. In practice, problems (4.16) and (4.17) are solved using a P; finite element
method associated to a triangular mesh with typical mesh size h < H.

A first version of the multiscale finite element approach for the approximation of
problem (4.9) is to consider the following alternative optimization problem

inf 75 (), (4.18)

Yel

where
T () = /Qf-uH’E.

The main advantage of such a method over the homogenized approach presented
in Section 4.3.2 is that the approximation u}lf of u¥*¢ obtained by the multiscale finite
element method is in principle more accurate than its homogenized approximation
u?¥*. Thus, there is good hope that considering (4.18) instead of (4.15) should provide
better diffeomorphisms 1) € U/ in the sense of the original optimization problem (4.9).

However, solving an optimization problem of the form (4.18) would require to com-
pute, at each step of the optimization procedure, the solution of the N7 + N5 MsFEM
problems (4.16) and (4.17) for each new value of ¢y € U, which would lead to very
heavy computational costs. Hence, we rather consider an approach where we com-
pute a global reduced multiscale finite element space obtained via the Proper Orthogonal
Decomposition of basis functions of V;f  for randomly selected values of ¢ € U.

We detail this reduced multiscale finite element method in the next section.

4.3.4 Reduced multiscale finite element approach

The reduced multiscale finite element we propose works as follows. Assume that we
randomly select M € N* elements U, which are denoted hereafter by (¢,,)1<m<s-



4.3. TWO OPTIMIZATION APPROACHES 125

In a first step, for all 1 < m < M, the multiscale basis functions ©!™** and
gog”"’a’B are computed forall 1 <i < Nj'and 1 < j < NE.

In a second step, the Proper Orthogonal decomposition of the family of functions

(szbm,s,/\/l> Cemeat e (respectively (wz?m,s,M)lngM,lngNg

resulting singular values are denoted (in decreasing order) by (aé\/‘) <R KM
tively (02g ) L<p< i) and the corresponding POD modes by (§,ﬁ"l) L<p< g (respectively
(€F) < e o) where KM := M N (respectively K™ := MNJ). Note that the POD
decompositions are computed with respect to the scalar product (-, )y on V defined

by

) is computed. The

(respec-

Yo,weV, (v,w)y = / e(v) : e(w).
0
The associated norm is denoted hereafter by || - ||y .

In a third step, an integer N, is chosen so that N, < max(K™, K?), and a reduced
multiscale finite element space Vfllﬁf is constructed as follows:

Vit =g, 8, 1<k < N,}.

The motivation for considering such a reduced space stems from the optimal approx-
imability properties of the POD decomposition. For all finite-dimensional subspace
X C V, let us denote by H}? the orthogonal projection of V' onto X. Then, it holds
that the family (fé\/‘) is a minimizer to the optimization problem

1<k<N;
NI/}A M 9
. me, M 1% Pm e, M H
min ; —1I ; .
(5k)1<k<N7~€V;mz:1 H(’D'L Span{(sk)lSkSNr}(pz v
In other words, the vectorial space spanned by the POD modes (f,?/‘)l <p<y. 1s one
of the best V,-dimensional vector space which approximates the family of functions

(gpipm’a’M> over all /V,-dimensional subspace X C V in the sense of
1<m<M,1<i<NH!

the average error

NI/_}’l M 9
€, M V  m,e,M

E E H% — Uy, H ‘

- Vv

i=1 m=1

Naturally, similar approximability properties hold for the family of functions (5 5 ) L<heN."

For all ¥ € U, we then denote by u}prrfd the Galerkin approximation of u¥* in

the discretization space ngg The reduced multiscale finite element optimization ap-
proach to problem (4.9) we suggest consists in considering the optimization problem

inf J4N (1)), (4.19)

peu

where

= [ g

Let us detail here the precise random selection procedure of the set of functions
(tm)1<m<nr that we use in practice in the case where d = 2,w = (0, 1) and U = YHaixn
for some 1, Hyig > 0.

Each function 1) € U4# is randomly dranw following the following procedure.
A family of Ny .. — 1 random independent numbers are drawn according to a uniform
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distribution law and then ordered in order to form a family of non-decreasing numbers
(ai)1<i<ny, . —1- If this family satisfies the property
1 Qi1 — Q4

VO<i<Np,—1 ->

>, 4.20
n—  Hag =1 (4.20)

with ap = 0 and ay,,, = 1, then an element ¢ is built as

Nais

Y= Z a; ;.
i=0

Otherwise, a new family of random numbers is chosen and the procedure is iterated
until the property (4.20) is satisfied.

4.4 Numerical results

In this section, we present some numerical results illustrating the different approaches
we propose. We recall that we stick here to cases where d = 2, w = (0, 1) and the set
U is chosen to be equal to U/H4if.n for some values Hgigr 5 > 0. In all the presented test
cases, we only consider loading cases where

Oifx’<%
—ey if 2’ >

)

et = {

1
2

and where the Young modulus function FE(z’, z5) is even with respect to the z vari-
able. Hence, all the numerical results presented here are obtained in purely bending
cases. As a consequence, in the multiscale finite element approach described in Sec-
tion 4.3.3 and Section 4.3.4, only bending multiscale finite element functions are com-
puted.

4.4.1 Approximability properties of the reduced multiscale fi-
nite element space

Our first set of numerical results concerns the approximability properties of the re-
duced space Vflﬁf defined in Section 4.3.4.
In this test, we fix two cases:

(a) 6:%0,H:%,Hdiﬂc:%,hzﬁ%l,nzlioanszloo;

1 1 1 1 1
(b) Ezz—O,H:E,HdiHZI—G,h:m,nzl—oanszloo.

The value of the Young modulus function £ is chosen to be equal to

E(x',29) = 4.5 cos(2ma’) + 5.5.

B

Figure 4.5 illustrates the decay rate of the singular values (ak s in two cases

)1gk§K
corresponding (a) and (b). Figure 4.5 shows that the decrease of the singular values is

almost exponential with respect to £ in both cases. For example, we see that
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Figure 4.5: Decay of the singular value o as a function of & in case (a) (left) and case

(b) (right).
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Figure 4.6: Decay of the singular value o as a function of k in case (a) for different
values of V.

Of course, these numerical results do not enable to conclude the decrease of the sin-
gular values would decay at the same rate for any smooth Young modulus function
E, but it shows the relevance of the approach in this particular situation. Figure 4.6
shows the influence of the choice of N, on the decrease of the singular values in case
(a).

These numerical results lead us to think that, at least in this particular example,
the vector-valued function u%%fd should be a reasonably good approximation of u¥*
forany v e U Hainr:n for small values of N,.. To this aim, we randomly draw an element
Y € UHarm according to the random selection procedure detailed at the end of Sec-
tion 4.3.4 so that ¢ & {t,,, 1 < m < M?}. In other words, 1) does not belong to the set
of diffeomorphisms which have been used to compute the POD modes ({;)1<k<n,. In

NG (’l[})fjmd’NT ("Z})
Te()
of N, in cases (a) and (b). We observe in these cases that this relative error is lower

than 1072 as soon as N, is greater than 10. The approximation of the solution u¥* to

as a function

Figure 4.7 are plotted the relative errors in compliance
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problem (4.6) is computed using a standard PP, finite element method associated to a
fine discretization mesh whose typical mesh size is chosen to be equal to A, = Gi in

1
case (a) and h,o; = ﬁ in case (b).

X % 107 4 X X

H

15}

&
"
9

compliance relative error
x

compliance relative error
x

,_.
15}
W

"

9

X
XX X X X x X X X %X Xx X

T T T T T T T T T T T T
0 5 10 15 20 25 2 9 6 8 10 12 14
size of the basis size of the basis

Jg (w)ijred,NT (w)

Y& as a function of NV, in case (a) (left) and (b)

Figure 4.7: Relative error

(right)

4.4.2 Optimization results

The aim of this section is to illustrate the different optimization approaches introduced
in Section 4.3. The different optimization problems were solved using standard pro-
jected gradient descent algorithms. In the tests of this section, we fix two cases: In this
test, we fix two cases:

@e=q15H=¢Hur=3h=qg.01=1M=100and N, = §;

(b) e=L1 H=

o Hyg =+, h == L M =100 and N, = 8.

1 [
16° 16° 128° n= 10°

The value of the Young modulus function E is chosen to be equal to

E(2,x9) = 4.5cos(2mx’) + 5.5.

The reference values of the compliance [7¢(1)) for any ¢ € U4 are computed
using a IP; finite element method for the resolution of problem 4.6 associated to a fine
discretization mesh, the typical mesh size of which is given by A, = é in case (a) and
Rrer = ﬁ in case (b).

We are plotting in Figures 4.8 and 4.9 different values of compliances as a function
of the iterations of different optimization procedures.

We first consider the numerical resolution of the homogenized optimization prob-
lem (4.15) starting from the initial choice ;,;; = Id (see Figures 4.10 and 4.11). The
blue dots represents the evolution of [7*(¢)) as a function of the number of iterations of
the optimization procedure. For the sake of comparison, for each value of 1) given by
this optimization procedure, we compute the reference value of the compliance [7¢(1))
in green triangles. We denote by ¢7; the optimized value of 1) obtained at the end of
this numerical procedure. In this test case, we obtain in case (a) that

T, =178 x107*  and J°(¢ ) = 1.42 x 1074,

opt opt

and in case (b) that

T (k) =1.81 x 107" and J°(¢),,) = 1.57 x 107,

opt
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Figure 4.8: Evolution in case (a) of J¢(¢) with the homogenized optimization problem
(4.15) starting from the initial choice ;,;; = Id (blue triangles, mixed up with the
green triangles until iteration 50), with the reduced multiscale optimization problem
(4.19) starting from the initial choice ¥;,;; = Id (red triangles, stopping at iteration 20),
and with the reduced multiscale optimization problem (4.19) starting from the initial
choice ¥y, = V7, (green triangles).

Let us also mention here that the reference value of the compliance for a perfectly
periodic material is equal in case (a) to

Je(Id) = 2.48 x 107%.

and in case (b) to

Je(Id) = 2.23 x 107*.

We then consider the numerical resolution of the reduced multiscale optimization
problem (4.19) starting from the initial choice ;,;y = Id (see Figure 4.12 and 4.13).
The red crosses represents the evolution of J™%"" (1)) as a function of the number of
iterations of the optimization procedure. For the sake of comparison, for each value of
1 given by this optimization procedure, we compute the reference value of the com-
pliance [7¢(1)) in red triangles. We denote by w;;%’l the optimized value of ¢ obtained
at the end of this numerical procedure. In this test case, we obtain that in case (a)

TN (redly — 165 % 1071 and Jo(Iet) = 1,71 x 1074,

opt

and in case (b)

TN () = 1,37 107 and J() = 1,53 x 107,

opt opt

We finally consider the numerical resolution of the reduced multiscale optimization
problem (4.19) starting from the initial choice ¢1,;; = 1}, (see Figures 4.14 and 4.15).
The blue dots represent the evolution of J*(¢) and the orange crosses represents the
evolution of 74N (1)) as a function of the number of iterations of the optimization
procedure. For the sake of comparison, for each value of 1) given by this optimization
procedure, we compute the reference value of the compliance [7°(¢)) in green triangles.
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Figure 4.9: Evolution in case (b) of J¢(1)) with the homogenized optimization prob-
lem (4.15) starting from the initial choice v;,;; = Id (blue triangles), with the reduced
multiscale optimization problem (4.19) starting from the initial choice ¥;,;; = Id (red
triangles, stopping at iteration 5), and with the reduced multiscale optimization prob-
lem (4.19) starting from the initial choice i, = ¢, (green triangles,mixed up with
the blue triangles until iteration 50).

We denote by wgﬁff the optimized value of 1) obtained at the end of this numerical

procedure. In this test case, we obtain in case (a) that

TGN (red2) 1 135 1074 and JE(WY?) = 1,16 x 1074,

opt opt

and in case (b) that
TN (redy — 1 90 5 107 and J°(¢50?) = 1,30 x 1074,

opt opt

We thus obtain the following compliance reduction for the three different optimiza-
tion procedures in case a:

J(d) = T (50

7= 1) =042,
T~ W)
J=(1d) -
T(d) - Tt
J=(1d) T
and in case (b):
e(1d) = T&(h*

j ( }E(de)( opt) _ 0307
T = W)
J=(1d) o
T~ W)
J=(1d) o
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Figure 4.10: Evolution in case (a) of J*(¢) (blue dots) and J¢(1)) (green triangles)
as a function of the number of iterations of the optimization procedure during the
resolution of the homogenized optimization problem (4.15) starting from the initial

choice ¥y, = Id.

On these plots, we observe that, along the iterations of the optimization procedures,
the approximated values of the compliance given by the reduced multiscale approach
JredNr (1)) are closer to the corresponding reference values 7¢(¢)) than the approx-
imation J*(¢)) obtained with a homogenized model. Hence, the proposed reduced
multiscale finite element approach seems to yield more faithful approximations of the
compliance of the actual material than a homogenized model.

In addition, we observe that the reference compliance of 7° (1#2;%2) is lower than

J E(w;;%’l) or J* (1}, ). This numerical observation leads us to think that the general
strategy which consists in first solving the homogenized optimization problem, and
use the obtained optimal diffeomorphism as a starting guess for the resolution of the
reduced multiscale optimization problem yields to actual materials the reference com-
pliance of which is significantly lower than what would have been obtained with the

only use of a homogenized model.

In Figures 4.16 and 4.17 are plotted the functions 1%, w;;%l and wg;‘iv? The val-
red,1

Vot Yot s Vo, in Fig-
ues of (1%)’(’1721’) EYovtS, (1+l/)1(jlf2u) EY¥ort ¢ and (1+1/)l(/1721/) EYort € are plotted in Fig
ures 4.18 and 4.19.
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Figure 4.11: Evolution in case (b) of J*(¢) (blue dots) and J(1)) (green triangles)
as a function of the number of iterations of the optimization procedure during the
resolution of the homogenized optimization problem (4.15) starting from the initial

choice 9,;; = Id.
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Figure 4.12: Evolution in case (a) of J™%" (1)) (red crosses) and J°(1)) (green trian-
gles) as a function of the number of iterations of the optimization procedure during
the resolution of the reduced multiscale optimization problem (4.19) starting from the
initial choice ¥;,;; = Id.
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