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Introduction en francais

Cette these est divisée en deux parties. Les trois premiers chapitres concernent des groupes
de tresses des surfaces, tandis que les deux derniers traitent des groupes de tresses soudées et des
groupes de tresses virtuelles sans restrictions.

Les groupes de tresses des surfaces sont a la fois une généralisation a toute surface connectée
du groupe fondamental d’une surface et des groupes de tresses du plan, appelés groupes de
tresses d’Artin, et qui ont été définis par Artin en 1925 dans [Art25]. Ils ont été initialement
introduits par Zariski dans [Zar36], [Zar37] et plus tard, dans les années 1960, Fox en a donné une
définition équivalente d’un point de vue topologique. Comme pour les groupes de tresses d’Artin,
les groupes de tresses des surfaces peuvent étre décrits de plusieurs points de vue, dont I'un est le
suivant. Soit n € N*; pour toute surface connexe ¥, on se donne un ensemble de n points distincts,
P={xy,...,2,}, a I'intérieur de ¥. Une n—tresse, 3 = (B1(1),..., Bn(t))tc[0,1], est une collection de
n chemins distincts sur la surface 3, §;(t) # 8;(¢) pour tout ¢ € [0,1] et tout ¢ # j, ot chaque chemin
a pour point initial et final un point dans P, qui n’est pas forcément le méme. Nous appelons ces
n chemins les brins de la tresse. Maintenant, a homotopie pres, on peut définir une structure de
groupe sur cet ensemble de n—tresses. Dorénavant, on note le groupe de tresses de ¥ a n brins par
B, (%).

La théorie des groupes de tresses des surfaces a été largement étudiée, et il existe plusieurs
résultats connus sur leur structure et leur présentations. Les premieres présentations des groupes
de tresses des surfaces compactes sans bord ont été données par Birman [Bir69] et Scott [Sco70]. Il
existe d’autres présentations de groupes de tresses des surfaces dues a Bellingeri [Bel04], Gongalves—
Guaschi [GG04b],[GG10a], Gonzélez-Meneses [GMO1] et Lambropoulou [Lam00], entre autres.
Parmi les surfaces, les groupes de tresses de la 2-sphere, S%, et du plan projectif, RP2, sont
particulierement intéressants, car elles sont les seules surfaces dont les groupes de tresses ont des
éléments de torsion. Ce fait a été prouvé pour la 2—sphere par Fadell-Van Buskirk dans [FVB62]
et pour le plan projectif par Van Buskirk dans [VB66].

Le groupe de tresses B, (X) est aussi lié au groupe symétrique S,,, puisqu’il existe un épimor-
phisme naturel o : B,,(X) — S,, ol & chaque n—tresse 8 = (81(t), ..., Bn(t))te[0,1] On associe une
permutation o(3) € S, définie par 3;(1) = 2,(gy;) € P, pour tout i € {1,...,n}. Le noyau du
morphisme de groupes o est ce qu’on appelle le groupe de tresses pures, et on le note P,(X).

Les groupes de tresses des surfaces sont aussi liés aux espaces de configuration des surfaces.
On notera F,,(X) = {(p1,...,pn) € X" | p; #p; forall ¢,j € {1,...,n}, i # j} le n-éme espace de
configurations ordonnées de la surface . Compte tenu de 'action naturelle du groupe symétrique
Sy sur F,(X), définie par permutation des coordonnées, on peut définir le n—éme espace de
configurations non ordonnées, qui correspond a ’espace des orbites F,(X)/S,. De méme, pour
n,m € N* on peut considérer I'espace obtenu en prenant le quotient du (n + m)—éme espace de
configurations de X par 'action du sous-groupe S, xSy, de Sp1m, ¢’est-a-dire Fp 1, (X)/ Sy xSy, Fox—
Neuwirth [FN62b] ont prouvé que 71 (F;, (X)) est isomorphe a P, (X), et m (F,(X)/Sy) est isomorphe
a B,(X). De la méme fagon, les groupes 71 (F4+m (2)/(Sn x Sin)) sont isomorphes aux groupes
notés By, ., (X), qui sont des sous-groupes des groupes By, (2) appelés groupes de tresses mixtes.
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Les groupes de tresses mixtes sont utiles pour étudier la théorie des représentations des groupes
de tresses des surfaces ainsi que pour la théorie des noeuds sur les 3-variétés. Ces groupes ont été
étudiés par Sossinsky [S0s92], Manfredini [Man97], Paris—Rolfsen [PR99], Lambropoulou [Lam00],
Gongalves—Guaschi [GG04c], [GG05], [GG12] Bellingeri-Godelle-Guaschi [BGG] et Diamantis—
Lambropoulou-Przytycki [DLP16], entre autres.

Un outil important dans ’étude des groupes de tresses est la suite exacte courte de Fadell-
Neuwirth qui découle de la fibration de Fadell-Neuwirth, qui existe pour X sans bord. Toutefois,
une fois passé a la suite en homotopie, pour n,m € N*| et toute surface connexe ¥, nous avons aussi
les suivantes suites exactes courtes de Fadell-Neuwirth:

1 — PN {21, sz ) —— Po(X) LN P,(X) —— 1, pour 1<m<n, (1)

1 —— Bu(S~ {21, 20}) —— Bam(D) 2% B () —— 1, 2)

qui sont connues sous le nom de suite exacte courte de Fadell-Neuwirth des groupes de tresses pures
de surface et de suite exacte courte généralisée de Fadell-Neuwirth des groupes de tresses mixtes,
respectivement. Les applications induites Py, ym €t Gnim,n peuvent étre considérées géométriquement
comme les épimorphismes qui oublient les n —m et m derniers brins respectivement. On observe
que lorsque ¥ est la 2—sphére S? ou le plan projectif RP?, il y a quelques restrictions sur les valeurs
de n et m. On remarque que I'application p;, ,, ne s’étend pas directement aux groupes de tresses
B, (X) — B, (%), car elle n’est pas bien définie, mais g,+m, n nous permet d’étendre p,, ,,, & certains
sous-groupes de Bjym(2).

Le probléeme de scindement fait référence a la question de savoir si les suites exactes courtes
(1) et (2) se scindent, ou de maniere équivalente, si les applications P m €t Gnim,n admettent
une section, ce qui revient a demander s’il existe ou non des morphismes injectifs 5, ., €t 5p1m n,
respectivement, tel que P m © Spm = tdp,, () €t Gnm © Sn.m = tdp, (s)- Un aspect intéressant de
ce probléme est qu’il peut étre abordé algébriquement et géométriquement. L’équivalence entre
le scindement des suites exactes courtes (1), (2) et l'existence d’une section géométrique pour les
fibrations ppm : Frnem(E) = Fu(2) et ¢nimn : From (2)/(Sn x Sp) — F,(2)/ Sy, respectivement,
a été donnée par Baues [Bau77] et Whitehead [Whi78] dans le cas que 3 est un espace asphérique,
et par Gongalves-Guaschi quand ¥ = S? ou ¥ = RP2. Dans la Proposition 1.3.1 nous présentons
cette équivalence de maniere approfondie.

Le scindement de la suite exacte courte (1) dans le cas du plan, ¥ = R?, est un résultat important
dans la théorie classique des tresses. Comme conséquence, on obtient la forme normale d’Artin pour
les groupes de tresses d’Artin purs P, c’est-a-dire la décomposition P, 2 F,_1 % Fj,_o x---x Fy x
ou F,, est le groupe libre de rang n, qui est I'un des principaux outils dans I’étude de P,. Par
exemple, on utilise la forme normale d’Artin de P,, pour démontrer I'unicité des racines dans P, par
Bardakov [Bar92], pour I’étude de la suite centrale descendante et de la nilpotence résiduelle de P,
par Falk—Randell [FR85], ainsi que pour la preuve de la bi-ordonnabilité de P,,, par Kim—Rolfsen
[KRO3].

Il est donc important de savoir si le suites exactes courtes (1) et (2) se scindent ou non. Au cours
des années 1960, qui a été la période de développement de la théorie des groupes de tresses des
surfaces, de nombreux mathématiciens ont étudié ce probléme pour des surfaces outres que le plan.
Le probléme de scindement pour (1) a été étudié notamment par Fadell [Fad62], Fadell-Neuwirth
[FN62a], Fadell-Van Buskirk [FVB62], Van Buskirk [VB66] et Birman [Bir69], avec des approches
géométriques et algébriques. Dans le cas des groupes de tresses pures des surfaces, le probleme de
scindement a été résolue par Gongalves—Guaschi, dont la solution est donnée dans le Théoréme
1.3.3. Pour donner une réponse positive au probleme de scindement, il suffit de mettre en évidence
une section explicite, soit géométrique, soit algébrique. Pour obtenir une réponse négative au
probléme de scindement, 'une des principales méthodes qui a été utilisée pour prouver le Théoréme
1.3.3 est basée sur 'observation suivante : soit G un groupe, et soient K, H des sous-groupes
distingués de G tels que H soit contenu dans K. Si la suite exacte courte ] = K - G— R — 1
est scindée alors la suite exacte courte 1 — K/H — G/H — R — 1 V’est aussi. Le probléme de
scindement de lextension de G/H est parfois plus facile a étudier que celui de G. Ainsi, en montrant
que la deuxieéme extension ne se scinde pas, il suit que la premiére ne se scinde pas. Cependant,
dans le cas des groupes de tresses mixtes, le probleme de scindement n’a toujours pas de solution
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compléte. En particulier, & notre connaissance, la seule surface, & ’exception du plan R?, pour
laquelle le scindement de la suite exacte courte (2) a été étudié, est la 2—sphére S2. Dans [GGO5],
Gongalves—Guaschi, ont donné des résultats partiels pour le probléme de scindement pour S?, voir
le Théoreme 1.3.4, et plus récemment Chen—Salter ont amélioré ces résultats, voir le Théoréme
1.3.5.

Dans la premiere partie de cette these, nous étudions le probleme de scindement des groupes
de tresses mixtes du plan projectif RP2. Les groupes de tresses du plan projectif, B,,(RP?), sont
particulierement intéressants car, avec le groupe de tresses de la 2—sphere, ce sont les seuls groupes
de tresses qui contiennent des éléments de torsion. Une présentation de B, (RP?) a été donnée par
Van Buskirk dans [VB66], voir le Théoréme 2.1.1, dont ’ensemble des générateurs est constitué
des n — 1 générateurs d’Artin usuels, ainsi que des n éléments correspondant aux éléments du
groupe fondamental du plan projectif basés respectivement dans les points de P. Les éléments de
torsion de B, (RP?) ont d’abord été déterminés et caractérisés par Murasugi dans [Mur82]. Plus
tard Gongalves—Guaschi, en ont donné une caractérisation simplifiée dans [GG10Db]. Les groupes
B,,(RP?) ont été largement étudiés par Gongalves-Guaschi qui ont déterminé, & isomorphisme
pres, les sous-groupes finis maximaux de P, (RP?) ainsi que les sous-groupes finis de B, (RP?).

On précise maintenant la structure des trois premiers chapitres de la these.

Dans le Chapitre 1, nous rappelons les définitions et propriétés principales des groupes de tresses
des surfaces. Nous donnons une définition géométrique des groupes de tresses des surfaces et nous
présentons leur liens avec les espaces des configurations. De plus, dans la Section 1.2, nous donnons
une description détaillée de la fibration de Fadell-Neuwith et des suites exactes courtes qui ont
découlent

1 —— Pon(DN {2, )) —— Po(D) 227 Po(D) —— 1,

Gn+m,n

1 —— Bn(E~A{z1,...,2n}) — Bpm(E) —= B,(X) — 1,

qui constituent le sujet d’étude principal de cette partie de la these. A la fin du Chapitre 1, dans la
Section 1.3, on décrit en détail le probléme de scindement et on en présentera les résultats connus
la-dessus.

Au Chapitre 2, nous rappelons les groupes de tresses du plan projectif, B,,(RP?), en donnant
aussi des renseignements sur leur structure. Dans la Section 2.2, nous déterminerons des présenta-
tions de certains sous-groupes de By, n, (RP?) qui vont nous permettre d’obtenir une présentation
des groupes de tresses mixtes Bn,m(RPg). Nous donnons d’abord les présentations des groupes
P,(RP?), P,,(RP*\{x1,...,2,}) et B, (RP?>\{x1,...,7,}), en appliquant des techniques décrites
dans [Joh97] (page 139) pour obtenir des présentations d’extensions de groupe. Ensuite, dans le
Théoréme 2.2.7, on obtient une présentation de B, ., (RP?) en appliquant les mémes méthodes a la
suivante suite exacte courte :

1= Bp(RP2N {x1,...,20}) — Bpm(RP?) 250 B(RP?) — 1, (3)

ou l'application Gn+m, n peut étre considérée géométriquement comme I’épimorphisme qui oublie les
m derniers brins. A laide de ces présentations, nous donnons une présentation de Pabélianisé de
chacun de ces groupes. Nous terminons le Chapitre 2 par la Section 2.3, ou nous étudions les suites
centrales descendantes et dérivées du groupe B,,,(RP?\ {z1,...,2,}), en prouvant en particulier,
dans le Théoreme 2.3.2, le résultat suivant:

Théoréme 1. Soit n > 1. Alors:

e sim >3, alors

Lo(Bn(RP? ~A{1,...,20})) =[3(Bp(RP* N {z1,...,3,})).

e sim >5, alors

1 _

(B (RPN {21, 20 )) " = (B (®RP2 (o, 2 })) P
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En particulier, pour m > 3, B,,(RP?\ {x1,...,2,}) n’est pas résiduellement nilpotent et pour
m > 5, il n’est pas résiduellement résoluble.

En raison du fait suivant, le Théoreme 1 est important dans I’étude du probleme de scindement.
Soit N un sous-groupe distingué de By, ,,(RP?), qui est aussi contenu dans B, (RP?~\{x1,...,z,}).
On obtient ainsi la suivante suite exacte courte quotientée :

1 —— Bn(RP2~{z1,...,2,})/N — B, n(RP?)/N —2= B,(RP?) — 1,

ot ¢: By (RP?)/N — B,,(RP?) désigne ’homomorphisme induit par Gnim,». On observe que si
la suite exacte courte (3) se scinde alors cette suite exacte courte quotientée se scinde également.
Plus précisément, considérons le diagramme commutatif suivant des suites exactes courtes :

1 —— Bp(RP?N {z1,...,20}) —— Bum(RP?) 22% B (RP?) — 1

! S |

1 —— B, (RP>~{z1,...,2,})/N — B, n(RP?>)/N —= B, (RP?) — 1.

Supposons que ’homomorphisme Gy4m.n : Bnm(RP?) — B, (RP?) admette une section . n.-
Alors s = pr o 8p4m,n €st une section pour ¢ : Bn,m(RP2)/N — B,(RP?). 11 suit que les suites
centrales descendantes et dérivées de certains groupes fournissent un outil important dans I’étude du
probléme de scindement, puisqu’on peut étudier le quotient de B,, ., (RP?) par N, pour n’importe
quel élément N des suites centrales descendantes ou dérivées de B, (RP?\ {z1,...,2,}).

Nous terminons la premiere partie de la these au Chapitre 3, ol nous étudions le scindement
possible de (3). Dans la Section 3.1, on analyse 'existence d’une section pour 'homomorphisme

nimn Bn,m(RP2) - BH(RP2)v

pour n=1 et n =2, ou m € N*. En particulier, pour m € N*, on montre dans la Proposition 3.1.1
que I’homomorphisme G+m n : B1,m(RP?) — B1(RP?) n’admet aucune section, tandis que pour
n = 2, 'homomorphisme Ga4m.n : B2.m(RP?) — B2(RP?) en admet une pour chaque m € N*. Plus
précisément, nous prouvons que la suite exacte courte

1 — Bn(RP2N {z1,22}) — Bon(RP?) 223 By(RP?) —— 1

se scinde pour tout m € N*. Dans la Proposition 3.1.2, nous fournissons une section géométrique ex-
plicite pour lapplication gosm.2 : Form (X)/(S2xSm) — F2(X)/S2, et dans la Proposition 3.1.3, nous
mettons en évidence une section algébrique explicite pour I’homomorphisme a2 : Bg7m(RP2) —
Bs(RP?), ot les homomorphismes gy 2, §2+m,2 peuvent étre considérés géométriquement comme
les applications qui oublient respectivement les m derniers points et les m derniers brins. Pour le
cas n > 3, dans la Section 3.2 nous donnons des conditions nécessaires sur m afin que la suite exacte
courte

1 —— Bu(RP2\ {z1,...,20}) — Bpm(RP?) ™% B (RP?) —— 1 (4)

se scinde. En particulier, dans le Théoréme 3.2.4 nous montrons que m = k(n - 1), ot k > 1, pour
que (4) se scinde. De plus, en utilisant les éléments de torsion des groupes B,, ,, (RP?) et B, (RP?),
dans la Proposition 3.2.7 nous obtenons des restrictions supplémentaires sur les valeurs de m, et en
particulier, nous obtenons que m =0 mod n ou m =1 mod n. Nous terminons le Chapitre 3 par la
Section 3.3, ou, pour certaines valeurs de m, nous donnons deux constructions différentes d’une
section géométrique pour la fibration gnim,n Fpim(RP?)/(S, x Sp) — F,,(RP?)/S,. Pour ces
valeurs de m, l'existence de ces sections géométrique, donne une réponse positive au probleme de
scindement de la suite exacte courte (4). Réunissant le Théoréme 3.2.4 et les Propositions 3.2.7,
3.3.1, 3.3.2, on obtient le résultat principal concernant le probleme de scindement, qui est donné
dans le Théoreme 3.3.4 comme suit.
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Théoréme 2. Soit m >1 et n>3. Alors, la suite exacte courte
1 —— Bn(RP?\{zy,...,2,}) — Bym(RP?) ™% B (RP?) —— 1

se scinde pour m = 2n(n—-1) et pour m = kn(2n-1)(2n-2), ot k > 1. De plus, si 'homomorphisme
Gn+m.n admet une section, alors m = 0, (n +1)? mod n(n - 1).

On remarque que les cas restants qui ne sont pas couverts par le Théoreme 2 sont ouverts.

La deuxieme partie de la thése concerne les groupes de tresses soudées et les groupes de tresses
virtuelles sans restrictions. Les groupes de tresses soudées, qu’on dénote par W B,,, pour n € N* | sont
un analogue tridimensionnel des groupes de tresses d’Artin B,,. Comme pour les groupes de tresses
d’Artin, il en existe plusieurs interprétations, soit en termes du groupe de classe d’application,
soit du groupe fondamental d’espaces de configuration spécifiques ou soit des automorphismes
du groupe libre F,,. Le nom de groupes de tresses soudées a été introduit par Fenn—Rimanyi—
Rourke dans [FRRI7]; de plus, ces groupes W B,, apparaissent dans la littérature sous de nombreux
noms différents, par exemple comme automorphismes de conjugaison du groupe libre F;, grace a
Savushkina [Sav96], comme les groupes de tresses des cercles grace & Baez—Crans-Wise [BCWO07],
et comme "untwisted ring groups" dii & Brendle-Hatcher [BH13]. Une présentation de W B,, a été
donnée par Fenn—Riményi-Rourke, dans [FRR97], qu’on présente dans le Théoréme 4.1.3. Plus
tard, Brendle-Hatcher, dans [BH13], ont donné une présentation du "untwisted ring group", UR,,,
donné dans le Théoreme 4.1.6, ce qui donne une interprétation géométrique du groupe de tresses
soudées W B,,, puisque ces deux groupes sont isomorphes. Les générateurs o;, p;, donnés dans les
deux présentations ont été initialement considérés par Goldsmith dans [Gol81]. Le générateur o;
agit comme une permutation en passant le cercle i—éme par le cercle (i + 1)—éme et le générateur
pi les permute en passant le i—éme autour du (i + 1)—eéme.

Un sous-groupe important de W B,, est le groupe de tresses pures soudées W P,,, qui a également
plusieurs interprétations. Dans cette these, nous nous intéressons principalement a la définition de
W P, en tant que sous-groupe du groupe des automorphismes du groupe libre F),, constitué des
automorphismes dits de conjugaison de bases, mais aussi en tant que groupe fondamental d’un
espace de configurations spécifiques. Notez que tel que dans le cas des groupes de tresses des
surfaces, W B,, est étroitement lié au groupe symétrique .S,,, puisqu’on peut considérer I’application
¢ :WB, — S, définie par ¢(0;) = ¢(p;) = (i,i+1) € Sy, pour i = 1,...,n—1. A partir de cela,
il s’ensuit que le groupe de tresses pures soudées W P,, est en fait le noyau de 'application ¢.
Dans [Sav96], Savushkina a prouvé que W B,, peut étre vu comme le produit semi-direct de ses
sous-groupes W P, et S,, et a déterminé l'action de S,, sur W P,,, comme décrit dans le Théoreme
4.3.6. Pour étre plus précis, S, agit en permutant les indices des générateurs de W P,.

Les groupes de tresses virtuelles sans restrictions, et que dans la suite on dénotera simplement
par UV B, ont été introduites par Kauffman et Lambropoulou dans [KL04] et [KLO6], ou ils
fournissent une nouvelle méthode pour convertir des nceuds virtuels et des entrelacs en tresses
virtuelles, et ils prouvent un théoreme de Markov pour les groupes de tresses virtuelles. De plus, le
groupe UV B,, apparait dans [KMRW17] comme quotient du groupe de tresses soudées W B, et
dans [BBD15], ot Bardakov—Bellingeri-Damiani donnent une description de sa structure. Dans la
Définition 5.1.1, nous voyons que UV B,, peut étre défini en ajoutant une relation supplémentaire a
la présentation du groupe W B,,, et donc, UV B,, a la méme partie génératrice que W B,,. Encore
une fois, en considérant 'application ¢ : UV B,, — S,, définie par ¢(o;) = ¢(p;) = (4,i+1) € S, pour
i =1,...,n—1, le groupe de tresses pures virtuelles sans restrictions, que on dénote par UV P,
correspond au noyau de I'application ¢, étant un sous-groupe important de UV B,,.

Dans [BBD15], Bardakov—Bellingeri-Damiani ont étudié le groupe UV P,,, donnant une descrip-
tion de ses éléments et en donnant la présentation suivante :

UVP,=(XNij, 1<i#j<n]| A j =i, pour (k1) #(j,9), 1<4,5,k,1<n), (5)

qu’on présente dans le Théoreme 5.3.1. De cette présentation, il résulte que UV P, est isomorphe
au produit direct de n(n —1)/2 copies du groupe libre Fy. De la méme maniére que pour W B,
Bardakov—Bellingeri-Damiani a montré dans [BBD15] que UV B,, peut étre vu comme le produit
semi-direct de ses sous-groupes UV P, et S, ou S, agit en permutant le indices des générateurs de
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UV P,,, comme décrit dans le Théoreme 5.3.6. Notez que le groupe UV P, est en fait un groupe
d’Artin angle droit. On rappelle quun groupe d’Artin angle droit, aussi appelé groupe de graphes,
est un groupe qui admet une présentation finie dans laquelle les seules relations sont des relations
commutées entre les générateurs. Pour une étude générale sur les groupes d’Artin angle droit, nous
renvoyons le lecteur a l'article [Cha07] de Charney.

Nous allons maintenant présenter la structure des quatrieme et cinquieme chapitres de cette
these.

Dans le Chapitre 4, nous introduisons les groupes de tresses soudées, W B,,, en donnant plusieurs
interprétations différentes ainsi qu’en donnant une présentation. Apres avoir établi la théorie
nécessaire pour W B,,, dans la Section 4.2, nous étudions leur suites centrales descedantes et nous
montrons que, pour n >4, W B,, n’est pas résiduellement nilpotent. En d’autres termes, dans la
Proposition 4.2.1 nous montrons que, pour n > 4, I'o(WB,,) 2 I's(WB,,). De plus, pour n > 5,
nous déterminons tous les homomorphismes possibles, a conjugaison pres, de W B,, au groupe
symétrique S,,, comme nous le décrivons dans le théoréme suivant. Ici, on note 'automorphisme
extérieur de Sg par vg, et par ¢ ’lhomomorphisme W B,, — S,, défini comme ¢(o;) = ¢(p;) = s;, ol
s(i) = (i,i+1) € S, pour chaque 1 <i<n-1.

Théoréme 3. Soit n > 5 et soit h : WB,, — S, un homomorphisme quelconque. Alors, a
conjugaison pres, I'une des conditions suivantes est vérifiée :

e L’homomorphisme h est ’homomorphisme ¢.

e L’homomorphisme h est cyclique, dont I'image est d’ordre 2.
e L’homomorphisme h est abélien.

e Pour n =6, ’'homomorphisme h est vg o ¢.

On continue avec la Section 4.3, ou 'on définit les groupes de tresses pures soudées, W P,,, et on
prouve que c’est un sous-groupe caractéristique de W B,, et que le centralisateur de W P,, dans
W B,, est trivial. Notez que pour n = 2 le groupe W P, n’est pas un sous-groupe caractéristique
de W By car nous fournissons un contre-exemple dans la Remarque 4.3.9. C’est Dyer—Grossman
qui ont déterminé, dans [DG81], le groupe des automorphismes du groupe de tresses d’Artin
et en particulier ils ont prouvé que, pour n > 3, Out(B,) 2 Zs généré par l'automorphisme
€n : 0; — o', pour tout 1 <7 < n—1. Méme si les groupes de tresses soudées W B,, sont des
analogues tridimensionnels des groupes de tresses d’Artin B,,, leur groupe des automorphismes n’a
pas encore été déterminé. Ainsi, nous concluons le quatriéme chapitre avec la Section 4.4, ot nous
discutons sur le groupe des automorphismes de W B,,. En particulier, nous décrivons la difficulté
que nous avons rencontrée en appliquant I’approche de Dyer—Grossman au cas de W B,,. 1l s’agit
d’un obstacle concernant ’action du groupe libre F;,, dans W B,,. Nous aurions besoin de prouver
que F,, est un sous-groupe caractéristique de W B,,; ce fait reste une conjecture et nous prouvons
dans la Proposition 4.4.1 que, pour n > 2, F,, est un sous-groupe normal de W B,,. Enfin, pour
n > 3, nous conjecturons que l'automorphisme
o l—»piai_lpi, pour 1<i<n—-1,
" pi pi, pour 1<i<n-1.
est le seul automorphisme extérieur de W B,, et, en particulier, que Out(W B,,) = Z,. Notez que

I’automomorphisme «,, de W B,, peut étre vu comme une composition des applications 3,, Vn,
définies par :

: (6)

8, oi— o7, pour 1<i<n-1,
" pi— pi, pour 1 <i<n-1,
et
o pioipi, pour 1< <n—1,
T . (7)
pi— pi, pour 1<i<n—1,

lesquelles sont des automorphismes de UV B,,. Néanmoins, 3,, et -, ne sont pas des automorphismes
de WB,.
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Cette these se termine par le Chapitre 5, ot nous introduisons et étudions les groupes UV B,,.
Ensuite, dans la Section 5.2 nous déterminons, pour n > 5, tous les homomorphismes possibles, &
conjugaison pres, de UV B,, au groupe symétrique S,,, ce qui est décrit dans le théoréme suivant.

Théoréme 4. Soit n > 5 et soit h : UV B, — S, un homomorphisme quelconque. Alors, a
conjugaison pres, I'une des conditions suivantes est vérifiée :

e L’homomorphisme h est 'homomorphisme ¢.

e L’homomorphisme h est cyclique, dont I'image est d’ordre 2.
e L’homomorphisme h est abélien.

e Pour n =6, 'homomorphisme h est vg o ¢.

Avec des arguments similaires a ceux pour W P, nous prouvons dans la Section 5.3 que, pour n > 5,
UV P, est un sous-groupe caractéristique de UV B,, et que son centralisateur dans UV B,, est trivial.
Notez que pour n = 2, tel que dans le cas pour WP, le groupe UV P, n’est pas un sous-groupe
caractéristique de UV B, puisqu’on donne un contre-exemple dans la remarque 5.3.9. Ensuite,
dans la Section 5.4 nous nous concentrons sur les images finies de UV B,, et dans la Section 5.5 sur
ses éléments de torsion. Pour étre plus précis, avec la théorie des ensembles totalement symétriques,
introduite par Kordek—-Margalit dans [KM], pour n > 3 nous déterminons toutes les images possibles
de UV B,, dans tout groupe fini G, sous n’importe quel homomorphisme.

Théoréme 5. Soit n > 3 et ¢ : UV B,, — G un homomorphisme de groupe a un groupe fini G.
Alors, I'un des cas suivants doit se satisfaire :

o ¢(UVB,) 2 Zy, x Zs, pour quelque m € N*. Dans ce cas, 'image de UV B,, est abélienne.
nn-1) 1 /pn(n-1

e [p(UVB,)| 2275 (22,

e #(UVBy) 2 Ly, xIm(¢s, ), pour quelque m € N*. Dans ce cas, I'image de UV P, est cyclique.

A propos des éléments de torsion de UV B,,, nous avons ce qui suit. Soit ¢ :S,, — UV B,, 'application
injective définie par L((i,i + 1)) =p; € UVB,, pour 1 <i<n-1. En général, on sait que tout
élément de torsion de UV B,,, ainsi que de W B,,, appartient a la fermeture de ¢(.S,,), mais pour le
cas de UV B,, on a le résultat plus fort suivant.

Théoréme 6. Soit n > 2. Pour tout élément de torsion, d’ordre r, w dans UV B,, il existe un
élément s € S, qui dépend de w, d’ordre 7, et tel que w est conjugué & ¢(s) par un élément de
UVP,.

On continue avec la Section 5.6, ou 'on détermine I'image du groupe de tresses d’Artin B,, dans
UV B,,, sous ’homomorphisme ¢ : B,, — UV B,, défini par ¢(c;) = 04, pour 1 <i < n—-1. Nous savons
que B, a un plongement naturel dans W B,,, mais ce n’est pas ainsi dans le cas de UV B,,. Pour étre
plus précis, nous montrons dans la Proposition 5.6.3 que ¢(B,,) est isomorphe & B, /[ P,, P,], qui
est un groupe cristallographique, comme le montrent Gongalves—Guaschi-Ocampo dans [GGO17].
Avant de conclure ce dernier chapitre, nous étudions dans la Section 5.7 et la Section 5.8 le groupe
des automorphismes de UV P,, et UV B,,, respectivement, et de plus, pour n > 2, nous prouvons
dans le Corollaire 5.8.4 que les groupes UV P,, et UV B,, sont résiduellement finis et Hopfiens mais
pas co-Hopfiens. Concernant le groupe des automorphismes de UV P,, en utilisant la théorie des
groupes d’Artin angle droit, aussi appelés groupes de graphes, nous en donnons une description
complete. Sur la base de la présentation (5) de UV P,, notons que le graphe qui correspond au
groupe d’Artin angle droit UV P,,, est un graphe a n(n — 1) sommets, ou ’ensemble de sommets
est V = {\;j}icizj<n €t il y a une aréte reliant chaque paire de sommets a l’exception des paires
{Nij;N\ji}, car ce sont les seules paires de générateurs qui ne commutent pas. Par conséquent,
en utilisant le résultat de Laurence [Lau95], qui a travaillé sur la théorie des automorphismes des
groupes de graphes et étendu les travaux de Servatius [Ser89], nous obtenons un ensemble complet
de générateurs pour le groupe des automorphismes de UV P,,, comme 'on décrit dans le théoreme
suivant.
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Théoréme 7. Soit n>2et 1<i#j<n. On a que
AUt(UVPn) = (TAj,u Z;l(n_l)v Zg(ﬂ—l)/Q X n(n—l)/2>7

ou Ty, , + Aij v AijAji, tout en fixant les générateurs Ay # A;j, et S,(,-1)/2 est le groupe
symétrique de degré n(n—1)/2.

A partir de ce résultat et du fait que UV P, = F5 x --- x Fy x --- x Iy, nous pouvons en déduire que

n(n - 1)/2-fois
Aut(UVP,) Aut(Fg)n(n_l)/2 X Sn(n,l)/g,

ol Sy,(n-1)/2 agit sur Aut(Fy)"( /2 en permutant les facteurs n(n — 1)/2. Notez que ce résultat
est en accord avec un cas particulier d’'un résultat plus général prouvé par Zhang—Ventura—Wu dans
[ZVW15], lesquels ont utilisé des techniques différentes des notres. A la fin, nous présentons des
résultats partiels sur le groupe des automorphismes de UV B,,. Dans ce cas, on peut appliquer un
résultat de Rose [Ros75], qui a donné une description du groupe des automorphismes des groupes
qui possedent un sous-groupe caractéristique propre et ont un centralisateur trivial. Ainsi, on
obtient que, pour n > 5, Aut(UV B,,) 2 Naywvep,)(UVB,), comme montré dans le Corollaire
5.8.2. De plus, dans la Proposition 5.8.3, pour 3,7, défini dans (6), (7), nous prouvons que, pour
n >3, (Bn, ) S Out(UV B,,), ot {Bn,Yn) 2 Zs x Zy. Notons que dans [BP20], Bellingeri—Paris ont
prouvé, pour les groupes de tresses virtuels V B,,, que Out(V B,,) 2 Zs x Zs. Nous ne définirons pas
ici les groupes de tresses virtuels, mais nous pourrions en dire qu’ils sont une extension des groupes
de tresses classiques par le groupe symétrique. On a que W B,, est un quotient de VB, et UV B,, un
quotient de W B,,, et donc, nous espérons que le résultat de Bellingeri-Paris sur Out(V B,,) avec nos
résultats partiels sur Out(UV B,,) pourraient étre utiles pour les futurs travaux de détermination
du groupe Out(W B,,), ce qui est toujours un probléme ouvert.
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This thesis is divided into two parts. The first three chapters concern surface braid groups,
while the last two deal with welded and unrestricted virtual braid groups.

Surface braid groups are both a generalisation to any connected surface of the fundamental group
of a surface and of the braid groups of the plane, which are known as Artin braid groups and were
defined by Artin in 1925 in [Art25]. They were initially introduced by Zariski in [Zar36], [Zar37] and
later during the 1960’s, Fox gave an equivalent definition of surface braid groups from a topological
point of view. As for Artin braid groups, surface braid groups can be described from several points
of view, one of which is the following. Let n € N, for any connected surface X, we fix a set of n
distinct points, P = {z1,...,2,}, in the interior of ¥. An n-braid, 5 = (81(t),. .., Bn(t))te[0,1]; I8
a collection of n distinct paths on the surface X, where each path has as initial and final point a
point in P, which are possibly different. We call these n paths strands. Now, up to homotopy, one
can define a group structure on this set of n—braids. From now on, we will denote a connected
surface by ¥ and the n-strand surface braid group of ¥ by B, (X), and we call these groups full
braid groups of X.

The theory of surface braid groups has been widely studied, and there are several known results
about their structure and their presentations. The first presentations of braid groups of compact
surfaces without boundary were found by Birman [Bir69] and Scott [Sco70]. Moreover, there
exist further presentations of surface braid groups due to Bellingeri [Bel04], Gongalves—Guaschi
[GG04b],[GG10a], Gonzalez-Meneses [GMO01] and Lambropoulou [Lam00], among others. Among
all the surfaces, the braid groups of the 2-sphere, S? and the projective plane, RP2, are of particular
interest, since they are the only surfaces whose braid groups contain torsion elements. This fact
was proved for the 2—sphere by Fadell-Van Buskirk in [FVB62] and for the projective plane by Van
Buskirk in [VB66].

The braid group B,(X) is closely related to the symmetric group, since there is a natural
epimorphism o : B, (X) — S,, where to each n-braid 8 = (B1(t), ..., Bn(t))se[0,1] We associate a
permutation o(8) € S, defined by 8;(1) = 2,5y € P, for all i € {1,...,n}. The kernel of the
map o is the so-called pure braid group, which we denote by P, (X). In other words, P,(X) is the
subgroup of B, (%), whose n—braids contains n strands each of which connects the initial point to
the same final point.

Surface braid groups are closely related to configuration spaces of surfaces. We will denote by
Fo(2) = {(p1,---,pn) € X" | p; # p; forall 4,5 € {1,...,n}, i # j} the n'" ordered configuration
space of the surface 3. Considering the natural action of the symmetric group S,, on F,(X), defined
by permutation of coordinates, one can define the n!* unordered configuration space, which is the
orbit space F,(X)/S,. Similarly, for n,m € N, we can consider the space obtained by quotienting the
(n+m)*" configuration space of ¥ by the subgroup S, x Sy, of Syym, that is Fypm(2)/Sp x Sp,. Fox—
Neuwirth [FN62b] proved that 71 (F, (X)) is isomorphic to P,(X), and 71 (F},(X)/S,,) is isomorphic
to B,(X). Likewise, the groups m1(Fp4m(X)/(Sn x Sp)) are isomorphic to the groups that we
denote by By, (X), which are subgroups of the full braid groups Bj+m (X) known as mixed braid
groups. Mixed braid groups are in general useful for studying representation theory of surface braid

xiii
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groups and for knot theory in 3-manifolds. These groups have been studied, among others, by
Sossinsky [S0s92], Manfredini [Man97], Paris—Rolfsen [PR99], Gongalves—Guaschi [GG04c], [GGO5],
[GG12] Bellingeri-Godelle-Guaschi [BGG| and Lambropoulou [Lam00], where her approach differs
from the previously mentioned, and the value n of the above mentioned mixed braid groups denotes
that the first n strands are vertical, and it is proved that these braid groups are related to knots
in handlebodies, in knot complements and in closed, connected, oriented 3-manifolds, see also
references therein for prior works.

One important tool in the study of the braid groups is the Fadell-Neuwirth short exact sequence
that arises from the Fadell-Neuwirth fibration, which exists for ¥ with empty boundary. However,
once passed to the long exact sequence in homotopy of the fibration, for n, m € N, and any connected
surface ¥, we have the following Fadell-Neuwirth short exact sequences:

1 —— P (SN {21y am)) —— Po(D) 227 Po(D) —— 1, for L<m<n, (8)

1 —— Bu(SN{21,..,20}) — Bam(D) 228 B(5) —— 1, (9)

known as the Fadell-Neuwirth short exact sequence of surface pure braid groups and the generalised
Fadell-Neuwirth short exact sequence of mixed braid groups respectively. The induced maps py, m
and Gp+m,n can be considered geometrically as the epimorphism that forgets the last n —m and
m strands respectively. Note that when 3 is the 2—sphere S? or the projective plane RP? there
are some restrictions on the values of n and m. We remark that the map p, ,, does not extend
directly to the full braid groups By, (X) — By, (X), since it is not well-defined, but gp+m, . allows us
to extend py, m to certain subgroups of Bpim(X).

The splitting problem refers to the question of whether or not the short exact sequences (8) and
(9) split, or equivalently, whether or not the maps py, m and Gn+m,» admit a section, which is the
same as asking whether or not there exist injective maps 3, ,, and 8,,4m, n, respectively, such that
Prym © Snm = idp,, () and @ m © 8n.m =idp, (5). An interesting aspect of the splitting problem is
that it can be approached algebraically and geometrically. The equivalence between the splitting
of the short exact sequences (8), (9) and the existence of a geometric section for the fibrations
DPrm t Fram () — Fr(X) and ¢uamn : Frem (2)/(Sn x Sm) — F,(X) /Sy, respectively, is given by
Baues [Bau77] and Whitehead [Whi78] if ¥ is an aspherical space, and by Gongalves—Guaschi when
¥ =S? and ¥ = RP2. In Proposition 1.3.1 we present this equivalence in detail.

The splitting of the short exact sequence (8) in the case of the plane, ¥ = R?, is an important
result in classical braid theory. Based on this result, we have the Artin normal form for pure Artin
groups P,, that is P, @ Fj,_1 x Fj,_o x---x Fy x Fy, where F,, is the free group of rank n, and is one
of the main tools in the study of P,. The Artin normal form of P, is used, for instance, for the
uniqueness of roots in P,, by Bardakov [Bar92], for the study of the lower central series and the
residual nilpotence of P,,, by Falk-Randell [FR85], as well as for the proof of the bi-orderability of
P, by Kim-Rolfsen [KR03].

It follows that it is important to know whether there is a splitting or not. During the 1960’s,
the period of the development of the theory of surface braid groups, many mathematicians studied
this problem for surfaces besides the plane. The splitting problem for (8) was studied notably
by Fadell [Fad62], Fadell-Neuwirth [FN62a], Fadell-Van Buskirk [FVB62], Van Buskirk [VB66]
and Birman [Bir69], approaching it either geometrically or algebraically. In the case of the pure
surface braid groups the splitting problem now has a complete solution, given in Theorem 1.3.3
by Gongalves—Guaschi. To give a positive answer to the splitting problem it suffices to present
an explicit section, either geometric or algebraic. To obtain a negative answer to the splitting
problem, one of the main methods that was used to prove Theorem 1.3.3 is based on the following
observation: let G be a group, and let K, H be normal subgroups of GG such that H is contained
in K. If the short exact sequence 1 - K — G — R — 1 splits then so does the short exact
sequence 1 - K/H — G/H — R — 1. The study of the splitting problem of the second extension
is sometimes easier from the one of the first extension, and thus, showing that this second extension
does not split, implies that the first extension does not split either. However, in the case of the
mixed braid groups the splitting problem does not yet have a complete solution. In particular, to
the best of our knowledge, the only surface, besides the plane R?, for which the splitting of the
short exact sequence (9) has been studied, is the 2-sphere S?. In [GGO05], Gongalves—Guaschi, gave
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partial results for the splitting problem for S2, see Theorem 1.3.4, and more recently Chen-Salter
strengthened these results, see Theorem 1.3.5.

In the first part of the thesis, we study the splitting problem of the mixed braid groups of
the projective plane RP2. The braid groups of the projective plane, B, (RP?), are particularly
interesting, since along with the braid group of the 2—sphere they are the only braid groups
that contain torsion elements. A presentation of B, (RP?) was given by Van Buskirk in [VB66],
see Theorem 2.1.1, where the set of generators consists of the n — 1 standard Artin generators,
together with the n elements that correspond to elements of the fundamental group of the projective
plane based at the 1%¢,... n'* basepoint respectively. The torsion elements of B, (RP?) were
first determined and characterised by Murasugi in [Mur82], and later Gongalves—Guaschi gave a
simplified characterisation of them in [GG10b]. The groups B, (RP?) were studied extensively by
Gongalves-Guaschi who determined, up to isomorphism, the maximal finite subgroups of P, (RP?)
as well as the finite subgroups of B,,(RP?).

We now present the structure of the first three chapters of the thesis.

In Chapter 1, we give an introduction to surface braid groups. We give a geometric definition of
surface braid groups and we present their connection with the configuration spaces. Moreover in
Section 1.2, we give a detailed description of the Fadell-Neuwith fibration and the resulting short
exact sequences

Pn,m

1— PN {21,y }) —— Po(X) —= Pp(X) — 1,

1 —— Bu(S~ {21, 20}) —— Bam(D) 228 B (2) —— 1,

which constitute the main subject of study of the first part of the thesis. At the end of Chapter 1,
in Section 1.3, we describe the splitting problem in detail and we present the existing results for
this problem.

In Chapter 2, we introduce the braid groups of the projective plane, B, (RP?), giving also
important details about their structure. In Section 2.2, we give presentations of certain subgroups
of B, m(RP?) that allow us to obtain a presentation of the mixed braid groups B, ,,(RP?). In
particular, we first exhibit presentations of the groups P,(RP?), P,,(RP? \ {x1,...,2,}) and
B, (RP?>\ {z1,...,2,}), by applying standard techniques for obtaining presentations of group
extensions as described in [Joh97] (page 139). Then, in Theorem 2.2.7, we obtain a presentation of
Bn,m(RPQ) applying the same methods to the following short exact sequence:

1= B (RP2 {x1,....20}) — Bpm(RP?) 250 B(RP?) — 1, (10)

where the map ¢p+m,» can be considered geometrically as the epimorphism that forgets the last m
strands. Moreover, using these presentations, we give a presentation of the Abelianisation of each
of these groups. We conclude Chapter 2 with Section 2.3, where we study the lower central and
derived series of the group B,,(RP%\ {z1,...,2,}), and in particular proving, in Theorem 2.3.2,
that the group B,,(RP?\ {z1,...,2,}) is neither residually nilpotent , for m > 3, nor residually
solvable, for m > 5, as we see in the following theorem:

Theorem 1. Let n>1. Then:
o Ifm >3, then

Lo(Bm(RP? N A{a1,...,20})) =3(Bp (RPN {z1,...,3,})).

o If m=>5, then

1 _

(B (RPN {21, 20 )) " = (B (RPN {2y, 20 })) P

In particular, for m >3, B, (RP?>\{xy,...,x,}) is not residually nilpotent and for m > 5, it is not
residually solvable.
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Due to the following fact, Theorem 1 is important in the study of the splitting problem. Let N be
a normal subgroup of B, ,,(RP?), which is also contained in B,,(RP%\ {z1,...,2,}). We thus
obtain the following quotiented short exact sequence:

1 — B (RP?2~{z1,...,2,})/N — B, m(RP?)/N —= B,(RP?) — 1,

where g : By, ;n(RP?)/N — B, (RP?) denotes the homomorphism induced by G,4m . We observe
that if the short exact sequence (10) splits then this quotiented short exact sequence also splits.
More precisely, consider the following commutative diagram of short exact sequences:

1 — Bu(RP?\ {z1,...,20)) —— Bpm(RP?) 2% B (RP?) — 1

! I H

1 —— Bn(RP?2~{z1,...,2,})/N — B, m(RP?)/N — B, (RP?) — 1.

Suppose that the homomorphism Gy4im n : By (RP?) — B,,(RP?) admits a section 5,4 ,. Then
8= DProsnim.mn is a section for ¢ : By, m(RP?)/N — B, (RP?). It follows that knowing the lower
central and derived series of certain groups is an important tool in the study of the splitting problem,
since one could study the quotient of B,, ,,(RP?) by N, for N being an element of the lower central
or the derived series of B,,(RP?\ {z1,...,2,}).

We complete the first part of the thesis in Chapter 3, w, where we study the possible splitting
of (10). In Section 3.1, we analyse the existence of a section for the homomorsphism

Gnsmn : Bnm(RP?) — B, (RP?),

for n =1 and n = 2, where m € N. In particular, for m € N we prove in Proposition 3.1.1 that
the homomorphism ¢i4m . @ B1.m(RP?) — Bi(RP?) admits no section, while for n = 2, the
homomorphism o, ¢ B2 (RP?) — By(RP?) admits a section for every m € N. More precisely,
we prove that the short exact sequence

1 — Bn(RP2N {z1,22}) — Bon(RP?) 223 By(RP?) — 5 1

splits for all values of m € N. In Proposition 3.1.2 we provide an explicit geometric section for the map
G2+m,2 * Form(X)/(S2 x Sp) — F2(X)/S2, and in Proposition 3.1.3, we exhibit an explicit algebraic
section for the homomorphism Gaiym, 2 : B27m(RP2) — Bo(RP?), where the homomorphisms G2+m,2
and @a4+m,2 can be considered geometrically as the maps that forget the last m points and the last
m strands respectively. For the cases n > 3, in Section 3.2 we provide necessary conditions for the
values of m, in order to have that the short exact sequence

1 — Bu(RP2\ {1,...,20}) — Bpm(RP?) 2% B (RP?) —— 1 (11)

splits. In particular, in Theorem 3.2.4 we prove that it is necessary that m = k(n —1), where k > 1,
for (11) to split. Moreover, making use of the torsion elements of the groups B, ,,(RP?) and
Bn(RPz), in Proposition 3.2.7 we obtain further restrictions on the values of m, and in particular,
we obtain that either m = 0 mod n or m = 1 mod n. We conclude Chapter 3 with Section 3.3,
where, for certain values of m, we provide two different constructions of a cross-section for the
fibration gyim.n @ Fram(RP?)/(Sn x Sm) — F,(RP?)/S,,. The existence of these cross-sections,
give a positive answer to the splitting problem of the short exact sequence (11), for these values of
m. Combining these results, Theorem 3.2.4 and Propositions 3.2.7, 3.3.1, 3.3.2, we obtain the main
result concerning the splitting problem, which is given in Theorem 3.3.4 and is the following.

Theorem 2. Let m > 1 and n > 3. The short exact sequence
1 —— Bn(RP2~{a1,...,2,}) — Bom(RP?) 228 B (RP?) —— 1

splits for m = 2n(n-1) and for m = kn(2n-1)(2n-2), where k > 1. Moreover, if the homomorphism
Gnim.n admits a section, then m =0, (n+1)% mod n(n - 1).
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Note that the remaining cases that are not covered in Theorem 2 are open.

We continue with the second part of the thesis, which concerns the welded and unrestricted
virtual braid groups. The welded braid groups, which we will denote by W B,,, for n € N, are a
3-dimensional analogue of the Artin braid groups B,,. Like for the Artin brain groups, there are
several interpretations for the welded braid groups, such as in terms of mapping class groups, of
fundamental group of specific configuration spaces and of automorphisms of the free group F,.
The name welded braid groups was introduced by Fenn—Rimanyi-Rourke in [FRR97]. Moreover,
the groups W B,, appear in the literature under many different names, for instance as conjugating
automorphisms of the free group F, due to Savushkina [Sav96], as loop braid groups due to
Baez—Crans—Wise [BCWO07] and as groups of untwisted rings due to Brendle-Hatcher [BH13]. A
presentation of WB,, was given by Fenn—-Rimanyi-Rourke in [FRR97], given in Theorem 4.1.3.
Later Brendle-Hatcher in [BH13] gave a presentation for the untwisted ring group, UR,,, given
in Theorem 4.1.6, which gives a geometric interpretation of the welded braid group W B, since
these two groups are isomorphic. The generators given in both presentations, o;, p;, were initially
considered by Goldsmith in [Gol81]. The generator o; permutes the i** and the (i + 1) circles
by passing the i'? circle through the (i +1)*! and the generator p; permutes them passing the i‘"
around the (i +1)%.

An important subgroup of W B,, is the welded pure braid group W P,, which has also several
interpretations. In this thesis we are mainly interested in the definition of W P, as the subgroup
of the automorpism group of the free group F),, that consists of the so-called basis-conjugating
automorphisms, but also as the fundamental group of a space of specific configurations. Note
that as in the case of the surface braid groups, W B, is closely related to the symmetric group
Sy, since one can consider the map ¢ : WB,, — S, defined by ¢(c;) = ¢(p;) = (i,i+ 1) € Sy, for
i1=1,...,n—1. From this, it follows that the welded pure braid group W P,, is actually the kernel
of this map ¢. In [Sav96], Savushkina proved that W B,, can be seen as the semidirect product of
its subgroups WP, and S,, and determined the action of S,, on W P,, as described in Theorem
4.3.6. To be more precise, S, acts by permuting the indices of the generators of W P,.

The unrestricted virtual braids, UV B,,, were introduced by Kauffman and Lambropoulou in
[KL04] and [KLO6], where they provide a new method for converting virtual knots and links to
virtual braids, and they prove a Markov Theorem for the virtual braid groups. Moreover, the group
UV B,, appears in [KMRW17] as a quotient of the welded braid group W B,, and in [BBD15] where
Bardakov—Bellingeri-Damiani give a description of its structure. In Defintion 5.1.1 we see that
UV B,,, can be defined by adding one extra relation to the presentation of the group W B,,, and thus,
UV B,, has the same generating set as W B,,. Once again, considering the map ¢ : UV B, — S,
defined by ¢(o;) = ¢(p;) = (i, +1) € Sy, for i = 1,...,n — 1, the unrestricted virtual pure braid
group, which we denote by UV P,, is the kernel of the map ¢, and is an important subgroup of
UVB,.

In [BBD15], Bardakov—Bellingeri-Damiani studied the group UV P, giving a description of its
elements and moreover, giving the following presentation:

UVP, = <)\i,j7 1<i#j5<n | /\i,j)\k,l = )\k,l)\i,ja for (k,l) ¥ (j,’i), 1<4,5,k,1< ’I’L), (12)

which we present in Theorem 5.3.1. From this presentation, it follows that UV P, is isomorphic to
the direct product of n(n—-1)/2 copies of the free group Fy. Similarly to W B,,, Bardakov—Bellingeri—
Damiani showed in [BBD15] that UV B,, can be seen as the semidirect product of its subgroups
UV P, and S,,, where S,, acts by permuting the indices of the generators of UV P,, as described in
Theorem 5.3.6. Note that the group UV P, is actually a right-angled Artin group. We recall that a
right-angled Artin group, also known as graph group, is a group which admits a finite presentation
in which the only relations are commuting relations among the generators. For a general survey on
the right-angled Artin groups we direct the reader to the article [Cha07] by Charney.

We will present now the structure of the fourth and fifth chapter of the thesis.

In Chapter 4 we introduce the welded braid groups, W B,,, giving a couple of different interpreta-
tions as well as giving a presentation of them. After having established the necessary theory of W B,
in Section 4.2 we study their lower central series and we prove that, for n >4, W B,, is not residually
nilpotent. In other words, in Propostion 4.2.1 we show that for n > 4, T'o(WB,,) =2 I's(WB,,).
Moreover, for n > 5, we determine all possible homomorphisms, up to conjugation, from W B, to
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the symmetric group S,,, as we describe in the following theorem. Note that we denote the outer
automorphism of Sg by vg, and by ¢ the homomorphism W B,, — S,, defined by ¢(o;) = ¢(p;) = 4,
where s(i) = (i,7+1) € Sy, for every 1 <i<n-1.

Theorem 3. Letn>5 and let h: WB,, — S,, be any homomorphism. Then, up to conjugation,
one of the following holds:

o The homomorphism h is the homomorphism ¢.

e The homomorphism h is cyclic, whose image is of order 2.
e The homomorphism h is Abelian.

e For n =06, the homomorphism h is vg o ¢.

We continue with Section 4.3, where we define the welded pure braid groups, W P,,, and we prove
that it is a characteristic subgroup of W B,, and that the centraliser of W P,, in W B,, is trivial. Note
that for n = 2 the group W P, is not a characteristic subgroup of W Bs, as we provide a counter
example in Remark 4.3.9. It was Dyer—Grossman who determined in [DG81] the automorphism
group of the Artin braid group and in particular they proved that Out(B,,) = Zs, for n > 3, generated
by the automorphism €, : 0; — o; ', for every 1 <i<n—1. Even though the welded braid groups
W B,, are a 3-dimensional analogue of the Artin braid groups B, the automorphism group of W B,
has not been yet determined. Thus, we conclude the fourth chapter with Section 4.4, where we
discuss about the automorphism group of W B,,. In particular, we describe the difficulty that we
encountered in applying the approach of Dyer—Grossman to the case of W B,,, which concerns the
action of the free group F;, to W B,,. Even though we would like to prove that F,, is a characteristic
subgroup of W B,,, something that we conjecture as well, we prove in Proposition 4.4.1 that Fj, is a
normal subgroup of W B,,, for n > 2. Lastly, for n > 3, we conjecture that the automorphism

O’il—>p1'0'i_1pi, for1<i<n-1,
Qp * .
pir— p;, for 1<i<n-1.

is the only outer automorphism of W B,, and, in particular, that Out(W B,,) 2 Zs. Note that the
automomorphism «,, of WB,, can be seen as a composition of the maps f3,,, v», defined by:

-1 .

ojr—o0;, for1<i<n-1,

Bniy 7 _ (13)
pi— pi, for 1<i<n-1,

and

; oipi, for 1<i<n-1

|00 pioips, for L<i<n—1, (14)
pi— pi, for 1<i<n-1,

which are actually automorphisms of UV B,,. Nevertheless, 5,, and +, fail to be automorphisms of
WB,.

We complete this thesis with Chapter 5, where we introduce and study the unrestricted virtual
braids UV B,,. Then, in Section 5.2 we determine all possible homomorphisms, up to conjugation,
from UV B,, to the symmetric group S, for n > 5, as we describe in the following theorem.

Theorem 4. Let n>5 and let h: UV B,, — S, be any homomorphism. Then, up to conjugation,
one of the following holds:

e The homomorphism h is the homomorphism ¢.
e The homomorphism h is cyclic, whose image is of order 2.
e The homomorphism h is Abelian.

e Forn =06, the homomorphism h is vg o ¢.
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With similar arguments to the case of W P,,, we prove in Section 5.3 that UV P, is a characteristic
subgroup of UV B,,, for n > 5, as well as that its centraliser in UV B,, is trivial. Note that for n = 2,
as in the case of W P,, the group UV P, is not a characteristic subgroup of UV Bs, as we provide a
counter example in Remark 5.3.9. Then, in Section 5.4 we focus on the finite images of UV B,, and
in Section 5.5 on its torsion elements. To be more precise, with the theory of totally symmetric
sets, introduced by Kordek—Margalit in [KM], we determine all possible images of UV B,, in any
finite group G, under any homomorphism, for n > 3.

Theorem 5. Letn>3 and ¢: UV B, — G be a group homomorphism to a finite group G. Then,
one of the following must hold:

o &(UVB,) 2Ly, xZs, for some m € N. In this case, the image of UV B,, is Abelian.
221 ) (a1

o |p(UVB,)| > 2% 5 (2,

e ¢(UVB,) 2 Zy xIm(dyg, ), for some m e N. In this case, the image of UV P, is cyclic.

About the torsion elements of UV B,, we have the following. Let ¢: S,, — UV B,, be the injective
map defined by L((i,i+ 1)) =p; e UVB,, for 1 <i<n-1. In general, we know that any torsion
element of UV B,,, as well as of W B,,, belongs to the closure of ¢(.S,,), but for the case of UV B,
we have the following stronger result.

Theorem 6. Let n > 2. For any torsion element, of order r, w in UV B,, there exists an element
s €Sy, that depends on w, of order r and such that w is conjugate to t(s) by an element of UV P,.

We continue with Section 5.6, where we determine the image of the Artin braid group B, in
UV B,,, under the homomorphism ¢ : B,, — UV B,, defined by ¢(0;) = 0, for 1 < <n—-1. We know
that B, has a natural embedding in W B,,, but this does not hold in the case of UV B,,. To be
more precise, we show in Proposition 5.6.3 that ¢«(B,,) is isomorphic to By, /[P,, P,], which is a
crystallographic group, as shown by Gongalves—Guaschi-Ocampo in [GGO17]. Before concluding
this last chapter, we study in Section 5.7 and Section 5.8 the automorphism group of UV P,, and
UV B, respectively and moreover we prove in Corollary 5.8.4 that the groups UV P,, and UV B,,
are residually finite and Hopfian but not co-Hopfian, for n > 2. Concerning the automorphism
group of UV P,, using the theory of right-angled Artin groups, also known as graph groups, we
give a complete description of it. Based on the presentation (12) of UV P,, note that the graph
that corresponds to the right-angled Artin group UV P,, is a graph with n(n — 1) vertices, where
the vertex set is V' = {\; j }1<izj<n and there is an edge connecting every pair of vertices except for
the pairs {\; j, A, ;}, since these are the only pairs of generators that do not commute. Therefore,
using the result by Laurence [Lau95], who worked on the theory of the automorphisms of graph
groups and extended the work of Servatius [Ser89], we obtained a complete set of generators for
the automorphism group of UV P,,, as described in the following theorem.

Theorem 7. Letn>2 and 1 <1+ j<n. It holds that

AUt(UVPn) = (TA_j,ia Z;(n_l)v Z;L(n_l)/g X n(n—l)/Q)»

where T, : Nij = NijAjq, while fizing the generators Ak # i j, and Sy(n-1y/2 5 the symmetric
group of degree n(n—1)/2.

From this result and the fact that UV P, =~ F5 x ---x Fy x --- x 5, we deduce that

n(n —1)/2-times
Aut(UV P,) = Aut(Fy)" "™ % S, 0 10,

where S, (,-1)/2 acts on Aut(Fy)"=D/2 by permuting the n(n - 1)/2 factors. Note that this
result agrees with a particular case of a more general result proved by Zhang—Ventura—Wu in
[ZVW15], who used different techniques from ours. At the end we present partial results about the
automorphism group of UV B,,. For the case of UV B,,, one can apply the result by Rose in [Ros75],
who gave a description of the automorphism group of groups which possess a proper characteristic



XX Introduction in english

subgroup and have trivial centraliser. Thus, we obtain that Aut(UV B,) 2 Ny wvp,)(UV By),
for n > 5, as stated in Corollary 5.8.2. Moreover, in Proposition 5.8.3, for 3,7, defined in (13),
(14), we prove that (B, 7n) € Out(UV B,,), for n > 3, where (8,,vn) % Zs x Zs. Note that in [BP20],
Bellingeri-—Paris proved, for the virtual braid groups V By, that Out(V B,,) 2 Zs x Z3. We will not
define here the virtual braid groups, but we could say that they are an extension of the classical
braid groups by the symmetric group. It holds that WB,, is a quotient of VB, and UV B,, a
quotient of WB,,, and thus, we speculate that the result by Bellingeri—Paris about Out(V B,,)
together with our partial results about Out(UV B,,) could be of help for future work in determining
the group Out(W B,,), which is still an open problem.



CHAPTER 1

Surface braid groups

In this chapter we outline the theory of surface braid groups, and we describe the main problem,
that we will deal with in this part of the thesis, called the splitting problem. We start by defining the
surface braid groups in two equivalent ways; from geometric and topological point of views, and we
give some basic information about these groups. In Section 1.2, we introduce the Fadell-Neuwirth
short exact sequence, which is a useful tool for the study of braid groups. We conclude the first
chapter by describing the splitting problem, and by presenting the known solutions that have been
given for certain surfaces.

1.1 Introduction to surface braid groups

Surface braid groups were first introduced by Zariski [Zar36], [Zar37], and generalise the braid
groups B,, introduced by Artin in 1925 [Art25]. During the 1960’s, Fox introduced an equivalent
topological definition for surface braid groups in terms of the fundamental group of configuration
spaces. An interesting aspect of surface braid groups is that they can be defined from several
viewpoints, such as equivalence classes of geometric braids, as the fundamental group of configuration
spaces and as trajectories of non-colliding particles. Moreover, they are closely related to mapping
class groups. For a more detailed description of these different approaches, we refer the reader to
the survey [GJP15] by Guaschi and Juan-Pineda.

In this thesis, we will interpret the surface braid groups as the fundamental group of configuration
spaces but before discussing these spaces, we will provide a geometric definition of surface braids
groups in order to get some intuition about this notion.

Definition 1.1.1. Let ¥ denote a connected, compact or not, orientable or not, with or without
boundary surface. Let n € N and fix P = {p1,...,pn}, & set of n distinct points in the interior of
3. A geometric braid in ¥ based at P is a collection of n arcs, 8 = {f1,..., Bn}, where the arcs
B;:[0,1] = £ x[0,1],i=1,...,n, called strands or strings, satisfy the following conditions:

e Fori=1,...,n, 8;(0) = (p;,0) and B;(1) € P x {1}.
o Forallte[0,1] and for all i # j € {1,...,n}, Bi(t) = B;(1).

e The strands 81, ..., 3, are strictly monotone with respect to the coordinate ¢ € [0,1]. In other
words, for all ¢ € [0,1], each strand meets the subset ¥ x {¢} in exactly one point.

Two geometric braids are considered to be equivalent if they are isotopic, while keeping the
endpoints of the strands fixed, and the equivalence classes are called n—braids. The concatenation
of two n-braids f, 3, defined by glueing the endpoints of 3 to the respective initial points of [,
defines a group structure on the set of n—braids, which we call the n-strand braid group of X,
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denoted by B,,(2). The identity element of B,,(X) is the braid all of whose n strands are vertical
and the inverse of an n—braid 8 = {(B1(t), ..., Bn(t)) }tefo,17 is B = {(Br(1 =), ..., B (1= 1)) }te[0,1]-
Since X is a connected surface, note that up to isomophism, this group does not depend on the
choice of the base point P = {p1,...,pn}-

In the following figure we give an example of a 3—braid of the 2-torus.

Txf0o} [ T >

P D2
— |

B1 B3

sy ([,

P1

Figure 1.1 A geometric 3—braid when ¥ is the 2—torus.

Remark 1.1.2. Projecting the stands lying in ¥ x [0,1] onto the surface ¥ we can consider the
surface braids as collections of n paths. To be more precise, for a fixed set of n distinct points P in
the interior of ¥, an n—braid can be considered as collections of n distinct paths on the surface X,
where each path has as initial point a point in P and as final point again a point in P, but possibly
different from its initial one.

The n-braids which have the property that 8;(1) = p;, for all ¢ = 1,...,n, form a normal
subgroup of B, (X), which we will denote by P,(X). The groups B, (X) will be called full braid
groups and the groups P, (X) will be called pure braid groups.

Let S, be the symmetric group over P = {p1,...,p,}. There is a natural epimorphism o :
B,(X) — S,, where to each n-braid 8 we associate a permutation o(3) € S,, defined by 5;(1) =
(Po(s) (i), 1), for all i € {1,...,n}. The kernel of the map ¢ is the pure braid group P,(X). Thus,
we have the following short exact sequence:

1— P(¥) — B,(2X) 2> S, —— 1. (1)

Tt follows that P, (X) is a normal subgroup of B, (X) of index n!. As we will see in detail in Chapter
2, this short exact sequence is an important tool for obtaining a presentation of subgroups of the
full braid groups B, (X).

Remark 1.1.3. Tt is well known that if 3 is equal to R? or to the 2-disc then the groups B, (X) and
P, (X) are isomorphic to the usual Artin braid groups B,, and P, respectively.

We continue by recalling the definition of the n'* configuration space of a surface X.

Definition 1.1.4. The n*" ordered configuration space of a surface ¥, which we denote by F, (%),
is the set of n-tuples of pairwise distinct points in X:

Fo(2)={(p1,...,pn) €X" | p; #pj for all i,j e {1,...,n}, i #j}.

Considering the natural action of the symmetric group S, on F,(X) defined by permutation of
coordinates:

Sp x Fn(z) - Fn(z) defined by (Sa (]917 cee vpn)) = (ps(l)w .- aps(n))a

we obtain the n** unordered configuration space of ¥, which is the orbit space F},(X)/S,.

Remark 1.1.5. The notion of configuration space can be defined for any topological space X.
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Remark 1.1.6. The space F,,(3) may be equipped with the subspace topology from the inclusion of
F,(X) in ™. Moreover, F,,(X) is a connected 2n-dimensional open manifold.

Remark 1.1.7. The canonical projection pr: F,(X) — F,(X)/S, is an n!-fold covering map.
We are ready now to present a fundamental theorem that describes the braid groups from a
topological viewpoint.
Theorem 1.1.8 (Fox—Neuwirth, [FN62b]). For n € N we have the following isomorphisms:
m(Fn (X)) 2 P (2) and m (F(X)/Sn) 2 Bo(X).

From these isomorphisms, we obtain an important tool for the study of the surface braid groups:
a short exact sequence involving surface braid groups, which we will describe in detail in Section
1.2.
Remark 1.1.9. Since Fl(Z) = Fl(Z)/Sl = Z, it holds that 7T1(F1(Z)) = Wl(Fl(Z)/Sl) = 7'('1(2). In
other words, we have that:
Bl(E) = Pl(Z) = 71'1(2).

At this point, we recall the classical presentation of the Artin braid groups, which coincides
with the braid groups of the plane.

Theorem 1.1.10 (Artin, [Art25)). For all n > 1, the braid group By, admits the following presen-
tation.
Generators: o1,...,0,-1.

Relations:
(i) 005 =004, for li-j|>1,1<i,j<n-1,
(ZZ) 0;0i+10; = 0i+10;0+1, fOT‘ all1<i<n—-2.

The generator o; can be seen geometrically as the braid with a single positive crossing of the i*"
strand with the (i + 1)%! strand, while all other strands remain vertical. We illustrate the generator
o; and its inverse ;! in the following figure.

1 1—1 ) i+1 1+2 n 1 1—1 7 1+1 1+2 n

/| N
4 A\

Figure 1.2 The generator o; and its inverse o;!.

Concerning the pure braid groups, for 1 <4 < j <n the braid A; ; defined by:

Aij = 0j10107 07 0,

can be represented geometrically by a braid all of whose strings are vertical, with the exception of
the jth strand, that wraps around the i** strand. Elements of this type generate the pure braid
group P, as we will see in the following proposition.

Proposition 1.1.11 (Hansen, [Han89]). For alln > 1, the pure braid group P, admits the following
presentation.
Generators: {A;; | 1<i<j<n}.
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Relations:

A j, forl<r<s<jorr<s<i<j.

-1 . .

-1 _ A AGAL, forr<i=s<j.

Ar,sAi,jAT,S - -1 4-1 . .

ArvjA3>in7jAs,jAr,ja fori=r<s<j.

-1 4-1 -1 4-1 . .

ArjAs jAL A A jAs jArjAS AL, forr<i<s <

For surface braid groups there are several known presentations. The first presentations of braid
groups of compact surfaces without boundary were found by Birman [Bir69] and Scott [Sco70]. More-
over, there exists further presentations of surface braid groups due to Bellingeri [Bel04], Gongalves—
Guaschi [GG04b],[GG10a], Gonzalez-Meneses [GMO01] and Lambropoulou [Lam00], among others.

Before concluding this section we discuss the centre and the torsion elements of the surface
braid groups.

In the cases where the surface is the plane or the disc, the 2-sphere, the real projective plane,
the annulus, the torus, the Mébius band and the Klein bottle their braid groups have non-trivial
centre. In particular, these are the only surfaces whose braid groups have non-trivial centre. For
more information regarding this subject we refer the reader to the survey [GJP15]. The braid

A?L = (0’1 ...O'n_l)n € Pn CBn,

called the full twist of By, is a special braid, since it commutes with all of the generators o1,...,0,_1 €
B,,. Due to the following result of Chow, the full twist generates the centre of B,,. More precisely,
the full twist is the square of the well-known Garside element A,, of B,,, which is defined as follows:

A, =(0109...04-1)(0102...04-2)...(0102)07.
Theorem 1.1.12 (Chow,[Cho48]). It holds that Z(B,) = Z(P,) = (A2), for n > 3.

Remark 1.1.13. For n =1 we have By = P, =1 and for n = 2 we have Z(Bs) = (01) 2 Z, while
Z(Py) = (A3).

Together with the braid groups of the 2-sphere, B, (S?), the braid groups of the projective
plane, B, (RP?), are of particular interest, since they contain torsion elements. In [FN62a], Fadell-
Neuwirth state that neither the plane nor any compact surface, with the possible exceptions of
the 2—sphere and the projective plane, has braid groups with finite order elements. It was proven
in [FVB62] by Fadell-Van Buskirk that the braid groups of the sphere, S?, contain finite order
elements. Moreover, Van Buskirk in [VB66] proved that the braid groups of the projective plane
contain torsion elements. Thus, it follows that the only surface braid groups that contain torsion
elements are B, (S?) and B,(RP?). For B, (RP?), we will describe the results in more detail in
Chapter 2.

1.2 The Fadell-Neuwirth short exact sequence

One useful tool in the study of the braid groups is the Fadell-Neuwirth short exact sequence
that arises from the Fadell-Neuwirth fibration, as we explain below. In [FN62a] by Fadell-Neuwirth,
we obtain for n,m € N, where 1 < m < n, and for any connected surface ¥ with empty boundary,
that the map

Pnym * FIL(Z) . F?n(z)v defined by pn,m(xlv ey Ty Tty - - - 73771) = (.131, s 7$m)
is a locally-trivial fibration. The fiber over a point (x1,...,%,) of the base space F,,(X) is
the configuration space Fp_,, (2~ {z1,...,2m}), (the (n—m)*" configuration space of ¥ with m

punctures), which we interpret as a subspace of the total space F,,(X) via the injective map

i Fpem (SN {21, 2 }) — Fo(X), defined by i(y1,. s Yn-m) = (@1, -+, Ty Yl - -+ s Ynem ) -
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The map pn,m can be considered geometrically as forgetting the last n —m points. For 1 <m <n,
the fibration p, ,, gives rise to the following long exact sequence of the homotopy groups of these
spaces:

o T (Frem (BN {1, 2 b)) — e (Fn (X)) = me(Fn (X)) —
Tt (Frnem (XN {21, o, 2m ) = Tt (Fr (X)) — mp1 (Frn (X)) —
= (Fpem (BN {21,z })) = m(Fr(X)) = m (Fr(X)) — 1 (2)

For m = n—-1, the long exact sequence (2) and the fact that Fy(X~{x1,...,zp-1}) = 2{z1,...,Tp1}
has the homotopy type of a one-dimensional complex, since it is homotopy equivalent to a bouquet
of circles, give rise to the following isomorphisms:

71'k(F‘n(E)) = 71-k(}?n—l(z)) Zeee = 71-k(F‘l(E)) = Wk(z)’ for k> 3.

Moreover, it follows that mo(F, (X)) c ma(Fr-1(X)) c--- c ma(F1 (X)) = m2(X). With the exception
of the 2-sphere S? and the projective plane RP?, we know that for k > 2 any connected surface 3
has trivial higher homotopy groups 7, (2) = 1. Thus, from the above observations it follows that

me(Fp (X)) =1, for k>2 and ¥ # S* RP?.

From this result and from Theorem 1.1.8, it follows that, for ¥ different from S? and RP?, the
spaces Fy,(X) and F,(X)/S,, are Eilenberg-Mac Lane spaces of type K(P,(X),1) and K(B,(X),1)
respectively.

Combining this result with the Fadell-Neuwirth fibration (2) we get the following result.

Proposition 1.2.1. Let n,m €N, and let ¥ be any connected surface different from the 2-sphere
S? and the projective plane RP?. For 1 <m <n, there is a short exact sequence:

1 —— Pon(EN {21y oy am)) —— Po(2) 227 P (8) —— 1.

Regarding the case of the 2-sphere S? and the projective plane RP?, it was proved that
72 (F3(S?)) = m(F2(RP?)) = 0, in [FVB62] and [VB66], respectively. The following theorem sums
up what we have seen so far regarding the Fadell-Neuwirth short exact sequence of surface braid
groups.

Theorem 1.2.2. Let n,m € N, where 1 < m <n, and let ¥ be any connected surface without
boundary. When ¥ = S* we suppose that m > 3 and when ¥ = RP? we suppose that m > 2. The
Fadell-Neuwirth fibration (2) induces the following short exact sequence:

1 —— P (BN a1, e am)) —— Po() 227 P (8) —— 1. (3)

Remark 1.2.3. The short exact sequence in Theorem 1.2.2 is known as the Fadell-Neuwirth short
exact sequence of surface pure braid groups.

Remark 1.2.4. The induced map Py, can be considered geometrically as the epimorphism that
forgets the last n —m strands.

Remark 1.2.5. An element of P,_,,(X ~ {z1,...,2,,}) may be interpreted as an n-strand braid
whose first m strands are vertical.

Remark 1.2.6. To prove that p, m @ Fn(X) — Fn(X) is a locally-trivial fibration, one needs to
suppose that the connected surface ¥ is without boundary. However, the long exact sequence (2)
exists even if X has boundary. As a result, the Fadell-Neuwirth short exact sequence of surface pure
braid groups exists for any connected surface. To justify this, let 3 be a surface with boundary,
and let ¥ = ¥\ 9%, where 0% stands for the boundary of ¥. The surface ¥ is with empty boundary
and thus for this surface the locally-trivial fibration py, m, : Fn(f}) — Fm(i) exists. Therefore, for ¥
the long exact sequence (2) and the Fadell-Neuwirth short exact sequence are valid. On the other
hand, ¥ and ¥ are homotopy equivalent, since the inclusion of ¥ in ¥ is a homotopy equivalence
between these two surfaces. Moreover, this inclusion induces a homotopy equivalence between their
nt" configuration spaces. It follows that the long exact sequence (2) and the Fadell-Neuwirth short
exact sequence in Theorem 1.2.2 are valid also for X, a connected surface with boundary, and that
P, (%) are isomorphic to P, (%).
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The Fadell-Neuwirth short exact sequence of surface pure braid groups does not extend directly
to the full braid groups. It is clear that in the case of B, (X) the induced map py, ,, which
geometrically can be considered as the epimorphism that forgets the last n —m strands, is not
well-defined. Nevertheless, the Fadell-Neuwirth short exact sequence of surface pure braid groups
may be generalised to certain subgroups that lie between the pure braid groups P, (X) and the full
braid groups B, (X), as we describe below.

Let n,m e N and ¥ be a connected surface. We consider the space obtained by quotienting the
(n+m)*" configuration space of ¥, F,4,,(X), by the subgroup S, x S, of Sy+m. Once again if the
surface ¥ is without boundary we obtain a locally-trivial fibration ¢nim.n : Frem (2)/(Sn % Sm) —
F,(X)/Sn, defined by forgetting the last m coordinates, whose fiber can be identified with the
unordered configuration space Fy, (XN {x1,...,2n})/Sm. We set

Bn,m(z) = 771(Fn+m(2)/(sn X Sm))v

which are subgroups of the full braid groups Bj,+m () and we call them mixed braid groups. Notice
that the mixed braid groups, By, (%), are defined whether or not ¥ has boundary. As in the pure
braid group case, we will see that we can obtain a generalised Fadell-Neuwirth short exact sequence,
which arises from long exact sequence of the fibration gp4m, . Apart from allowing us to generalise
the Fadell-Neuwirth short exact sequence, mixed braid groups are in general very useful and
have been studied by Sossinsky [S0s92], Manfredini [Man97], Paris-Rolfsen [PR99], Lambropoulou
[Lam00], Gongalves—Guaschi [GG04c], [GGO5], [GG12] and Bellingeri-Godelle-Guaschi [BGG],
among others. In the following proposition we present a generalisation of Theorem 1.2.2.

Proposition 1.2.7. Let n,m € N, and let ¥ be any connected surface without boundary. When
¥ = S? we suppose that n >3 and when ¥ = RP? we suppose that n > 2. The locally-trivial fibration
Gnamon * Frnam(2)[(Sn x Sm) — Fn(X) /Sy induces the following short exact sequence:

1 —— Bp(S~{z1,...,20}) — Bum(Z) 2% B(2) — 1. (4)

Remark 1.2.8. The short exact sequence in Proposition 1.2.7 is known as the generalised Fadell-
Neuwirth short exact sequence of mixed braid groups.

Remark 1.2.9. The induced map Gpn+m,n can be considered geometrically as the epimorphism that
forgets the last m strands.

Remark 1.2.10. Similarly to Remark 1.2.6, and using the same argument, the generalised Fadell-
Neuwirth short exact sequence of mixed braid groups in Proposition 1.2.7 exists also for connected
surfaces with boundary.

A natural question that arises from these two short exact sequences, 3 and 4, is whether or not
they split, or in other words whether or not there is a section for the maps p,, » and gpim,m. We
describe this problem in more detail in the following section.

1.3 The splitting problem
Let n,meN, 1 <m <n, and let ¥ be any connected surface. When ¥ = S? we suppose that

m >3 and when ¥ = RP? we suppose that m > 2. As we explained in the previous section, we have
the following Fadell-Neuwirth short exact sequence:

1 —— Pon(D {2,y )) —— Po(D) 227 (D) —— 1 (5)

Similarly, let n,m € N, and let ¥ any connected surface. When ¥ = S? we suppose that n >3 and
when 3 = RP? we suppose that n > 2. We have the followig generalised Fadell-Neuwirth short
exact sequence:

1 —— Bo(S~{1,...,20}) — B (D) 28 B(2) —— 1. (6)
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Note that, even in the cases where ¥ =S? and ¥ = RP?, the homomorphisms p,, ,, and Gn,m, given
geometrically by forgetting the last (n —m) and the last m strings respectively, are defined for all
neN.

One can naturally ask whether or not the maps p, », and ¢n+m,» admit a section, which is
the same as asking, whether or not there exists an injective map s, ,, and 3,4 n, respectively,
such that Py m © 5p,m = idpm(z) and ¢n,m © 8n.m = idBn(E). If a short exact sequence admits such
a section we say that the short exact sequence splits. The question, to which we shall refer as
the splitting problem, of whether the short exact sequences (5) and (6) split, can be approached
algebraically and geometrically. For instance, to obtain a positive answer to the splitting problem, it
suffices to provide an explicit section, either on the level of configuration spaces or on the algebraic
level. A geometrical approach would be to show the existence of a geometric cross-section on the
level of configuration spaces, which in turn provides a section on the algebraic level. To be more
precise, in the following proposition we present the equivalence between the algebraic section and
the geometric section (cross-section). For ¥ an aspherical space the following result is due to Baues
[Bau77] and Whitehead [Whi78], while for 3 = §? and ¥ = RP? we refer the reader to [GG05] and
[GGO04a] respectively.

Proposition 1.3.1. Let n,m € N, and let ¥ be a compact, connected surface. When ¥ = S? we
suppose that m > 3 and when ¥ = RP? we suppose that m > 2. The Fadell-Neuwirth fibration
Dnm  Fn(E) = Fin(X), for 1 <m < n, admits a cross-section if and only if the short exact sequence
(5) splits. Similarly, the Fadell-Newwirth fibration gnm.n * Frnom(X)/(Sn xSm) — Fn(X)/Sn, where
for ¥ =S? we suppose that n >3 and for ¥ = RP? we suppose that n > 2, admits a cross-section if
and only if the short exact sequence (6) splits.

Let F,, denote the free group of rank n. In the case where ¥ = R?, n > 2 and m = n— 1, the short
exact sequence (5) becomes

DPn,n-1
\

1 ? LI'n-1 ” Pn 7 I'n-1 ” 17 (7)

since P (R2\{z1,...,2,1}) =1 (FL(R2~{z1,..., 20 1})) = mi (R2 N {@q, ..., 20 1}) = Fy,_q. Con-
sidering the natural inclusion of P,_; into P,, where any generator A; ;, 1 <i< j <n-1, as element
in P,_1, is mapped to A4; j, 1 <i<j<n-1, as element in P, we see that the map p,, ,-1 admits
a section, and thus the short exact sequence splits. Geometrically this section can be thought as
adding a vertical strand completely unlinked from the rest strands. Therefore, P, is isomorphic to
the semi-direct product of F,,_; and P,_;. By induction on n, P, may be written as an iterated
semi-direct product of free groups, known as the Artin normal form:

PnEFn_len_QN“'NFQNFl.

The procedure for obtaining the Artin normal form of a pure braid a € P, is known as Artin
combing, and involves writing « in the form o = a,_1---a1, where «; € F;, 1 <i<n-1. By the
uniqueness of normal forms with respect to semi-direct products, the combed normal form of a
braid is unique. Braid combing is a procedure, defined by Artin [Art47b], to solve the word problem
in braid groups for the first time. Further details about this decomposition, based on the short
exact sequence, can be found, for instance, in [KT08] by Kassel-Turaev.

This decomposition is an important result in classical braid theory. The word problem in a
free group of finite rank is well-known and solvable, and thus the decomposition (7) provides a
finite algorithm to solve the word problem in P,. Moreover, since P, is of finite index in B,, it
follows that it makes it easy to solve the word problem in B,, as well. The splitting of the short
exact sequence (5) and the resulting decomposition (7) have been frequently used to prove several
claims about P, using induction. For instance the result about P,, that taking roots is unique,
by Bardakov [Bar92], the study of the lower central series and the residual nilpotence of P,, by
Farrell-Rushon [FR00], as well as the proof of the bi-orderability of P,, by Kim—Rolfsen [KR03],
make use of decomposition (7). Thus, the problem of deciding whether such a decomposition (7)
exists for surface braid groups, which is connected to the splitting problem, is fundamental. Indeed,
this was a central question, during the foundation and the development of the theory of braid
groups during the 1960’s, studied by Fadell [Fad62], Fadell-Neuwirth [FN62a], Fadell-Van Buskirk
[FVB62], Van Buskirk [VB66] and Birman [Bir69], among others.
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In the case of the pure braid groups, the splitting problem for the short exact sequence (5)
has been studied for other surfaces besides the plane. To begin with, Fadell-Neuwirth [FN62a]
gave several sufficient conditions for the fibration py, m, : F,(X) — F,,,(¥) to admit a cross-section.
For surfaces with boundary we see, in [GG04b] and [GG10a] by Gongalves—Guaschi, that the
fibration pym : Fn(X) — F,(X) always admits a cross-section, and thus the homomorphism
Dnm * Pn(E) = P (X) does too. For surfaces without boundary, we have the following results. In
[FVB62], Fadell and Van Buskirk proved that for ¥ = S? and m > 3 the fibration p,, ,, admits a cross-
section, and thus the short exact sequence (5), in this case, splits. Also, Van Buskirk [VB66] worked
on the case where ¥ = RP? and proved that the fibration ps3 o : F3(RP?) — F»(RP?) admits a
cross-section, and thus the short exact sequence (5) for n = 3 and m = 2 splits, while for n > 2 neither
the fibration p,1 : F,,(RP?) — F;(RP?) nor the homomorphism p,; : P,(RP?) — P;(RP?)
admits a section. Moreover, for ¥ being the 2-torus and n > 2, Birman in [Bir69] presented an
explicit cross-section pp p-1 : F,(T?) — F,_1(T?), and thus it follows that the homomorphism
D1t P,(T?) — P,_1(T?) admits a section too, for all n >2. As a result, the short exact sequence
(5) for X = T? splits for all 1 < m < n. Finally, a more general result, as stated below, covering
the case where X is an orientable surface without boundary of genus at least two, was given by
Gongalves—Guaschi in [GGO04b].

Theorem 1.3.2 (Gongalves—Guaschi, [GG04b]). Let ¥ be a compact, connected, orientable surface
without boundary of genus g > 2. Then, the short exact sequence (5) splits if and only if m = 1.

In addition, Gongalves and Guaschi studied in [GG04a], [GG05] and [GGOT7] the remaining cases
and at the end they gave a complete solution to the splitting problem of the short exact sequence
(5) in [GG10a).

Theorem 1.3.3 (Gongalves—Guaschi, [GG10a]). Let n,m € N where 1 < m < n, and let 3 be a
connected surface.

i. If ¥ has non-empty boundary then the short exact sequence (5) admits a section for all n,m.

it. If ¥ is without boundary then the short exact sequence (5) admits a section if and only if one
of the following conditions holds:

a. ¥ is the 2-sphere S, the 2-torus T2 or the Klein bottle K2.
b. ¥ is the projective plane RP?, where n =3 and m = 2.

c. X is different from the projective plane RP?, the 2-sphere S?, the 2-torus T2, the Klein
bottle K2 and m = 1.

To give a positive answer to the splitting problem it suffices to present an explicit section, either
geometrically or algebraically. To obtain a negative answer to the splitting problem, one of the
main methods, that was used in proving Theorem 1.3.3, is to study the splitting problem of certain
quotients of the braid groups and then extend the result to the initial short exact sequence. We
will describe this technique in detail in Section 3.2.

The splitting problem for the generalised Fadell-Neuwirth short exact sequence (6) does not
have a complete solution yet. More precisely, to the best of our knowledge, the surface for which we
have an answer for the splitting problem of the generalised Fadell-Neuwirth short exact sequence
(6), besides the plane, R?, is the 2—sphere, ¥ = S2. The splitting problem for ¥ = §? was studied by
Gongalves—Guaschi in [GG05] and later by Chen—Salter in [CS20]. To be more precise we have the
following results.

Theorem 1.3.4 (Gongalves—Guaschi, [GG05]). Let n,m € N. The short exact sequence
1 —— Bo(S2™ {a1,72,25}) — By pm(S?) 273 By(S?) —— 1,
splits if and only if m = 0,2 mod 3. Moreover, for n >4, if the homomorphism Gn+mn * Bn,m (S?) —

B,,(S?) admits a section then m is congruent modulo n(n —1)(n —2) to one of the four values
0,-n(n-2),(n-1)(n-2),(n-1)(n-2) —n(n-2).
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For the cases where n = 1 and n = 2 Gongalves and Guaschi, [GGO05], obtained the following
results. The homomorphism ¢1.4m 1 : BLm(SQ) — B1(S?) admits a section for every m, but the
homomorphism Gaim, 2 : Bg,m(S2) — B5(S?) does not admit any section. Finally, we can also see
that the fibration g2 1 : F11(S?) — F1(S?) admits a cross-section, since one can just consider the
antipodal map.

In [CS20], Chen—Salter give a substantial strengthening of Theorem 1.3.4, by exhibiting explicit
cross-sections, among other things.

Theorem 1.3.5 (Chen—Salter, [CS20]). Let n,m e N. The following hold:

i. For any n >3 and any m =0 mod n(n—-1)(n—-2), the fibration
Gnsmn t Fnm(S?) — F.(S?) admits a cross-section.

1. For n=3 and m >0 such that m =0,2 mod 3 the fibration
Q3m.3 : F3.m(S?) — F3(S?) admits a cross-section.

7. For n=4 and m >0 such that m =0,6,16,22 mod 24 the fibration
Qaima: Fum(S?) — Fu(S?) admits a cross-section.

. For n > 6, the fibration qnimn : Fom(S?) — Fu.(S?) admits a cross-section if and only if
m =0 mod n(n-1)(n-2).
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CHAPTER 2

Braid groups of the projective plane, B,(RP?)

This chapter is devoted to the study of the braid groups of the projective plane, B,,(RP?). We
start by introducing these groups and stating important known results about their presentations,
their torsion elements and their subgroups. In Section 2.2, we give a presentation of certain subgroups
of B,(RP?), the goal being to obtain a presentation of the group By, ,,(RP?) ¢ By (RP?). In
Section 2.3, based on these presentations, we study the lower central and derived series of the
subgroup By, (RP? \{x1,...,2,}) of By (RP?).

2.1 The group B,(RP?)

Along with the braid groups of the 2—sphere, B,,(S?), the braid groups of the projective plane,
B,,(RP?), possess a special place among the braid groups of surfaces due to the fact that they have
a non-trivial centre and contain torsion elements. Note that throughout this thesis we consider
the projective plane as the quotient space of the closed 2-disc, D?, obtained by identifying the
antipodal points on the boundary circle of D?, as in Figure 2.1. To begin, we give a presentation of
these groups due to Van Buskirk.

Theorem 2.1.1 (Van Buskirk, [VB66]). Let n € N. The following constitutes a presentation of
B, (RP?).

Generators: 01,...,0,-1,P1,---Pn-

Relations:
(i) 005 =050;, for |i—j|>1,
(ii) 0i0i410; = 014100441, for 1<i<n -2,
(iii) oipj = pjos, for j#i,i+1,
(iv) pi = 0ipi104, for 1<i<n-1,
(v) 0} = pilipitpisipi, for 1<i<n—1,

N 2
(vi) pf =0102...0n-20;_10n-2...0207.

The generators o1,...,0,-1 are the standard Artin generators, and each of the generators
P1,- -, pn corresponds geometrically to an element of the fundamental group of the projective plane
based at the 1%¢,27¢ . n'" point, respectively, as we see in Figure 2.1. From this presentation, we

observe that By (RP?) = (p; | p? = 1) = Z,, and from [VB66] (page 87), we know that By(RP?) is

11
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isomorphic to the dicyclic group of order 16 and in particular By(RP?) = (0, p1 | (01p71)* = p? = 03).
If n > 3, the group B, (RP?) is infinite.

Figure 2.1 The generators o; and py, and their inverses, of B, (RP?).

Regarding the pure braid group of the projective plane, P, (RP?), a presentation was given in
[GGO5], by Gongalves—Guaschi, but we will give a different one in Section 2.2.

As we already mentioned, the centre of the braid groups of RP? is non-trivial. More precisely,
we have the following theorem by Murasugi.

Proposition 2.1.2 (Murasugi, [Mur82]). For n > 2, the full twist
A% =(0y...001)" € P,(RP?) c B, (RP?),
generates the centre of B, (RP?).

The full twist, as well as generating the centre of B, (RP?), is also the unique torsion element of
order 2 in B, (RP?), as we will see in the following proposition. The torsion elements of B,,(RP?)
were first determined by Murasugi in [Mur82]. Later Gongalves—Guaschi, with methods different to
those of Murasugi, obtained the following result.

Proposition 2.1.3. (Gongalves—Guaschi, [GG04a]) For n > 2 the following hold:

e The group B, (RP?) contains a torsion element of order k if and only if k divides either 4n
or 4(n-1).

e The (non-trivial) torsion elements of P, (RP?) are of order precisely 2 and 4.
e The full twist A2 is the unique element of B, (RP?) of order 2.

Moreover, a concrete example of torsion elements in B,,(RP?) of order 4n and 4(n - 1) was
given in [GG04a]. To be more precise, for n > 2, the elements

an=0,"...o1 -prand b, =0t .. 00" ;1 (1)

are of order 4n and 4(n — 1), respectively.
The characterisation of the finite-order elements of B,,(RP?) was given by Murasugi in [Mur82].
Later, in [GG10b] a simplified characterisation was given.

Proposition 2.1.4 (Gongalves-Guaschi, [GG10b]). Let n > 2 and let x be an element in B, (RP?).
The element x is of finite order if and only if there exists i € {1,2} and 0<r <n+1-1i such that x
is a power of a conjugate of the following element:

Ai(n7 T, 27"/l7p/l) = (pTUT—l (R 01)2T/Z(UT+1 s O'n_lO':’:_%_ )p/l’

where p=(n+1-14)—r and l = ged(p,2r). Moreover, the order of the element A;(n,r,2r/l,p/l) is
21.

From this explicit description of the torsion elements in B, (RP?) we can obtain the elements
an=0, 1 ...07 - pyand b, =0, 5 ... 07 - p1 from A;(n,n,1,0) and As(n,n—-1,1,0), respectively.
To be more precise, using relation p; = o;p;;10;, that holds in B, (RP?), we have that A;(n,n,1,0) =
(pnon-1...01)=0,t, .. o7t p1 and Aa(n,n-1,1,0) = (pp-10n-2...01) =0, 5 ... p1.

Before concluding this section, we will present the classification of the finite subgroups of

B,,(RP?) and of P,(RP?).
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Proposition 2.1.5 (Gongalves—Guaschi, [GG10b]). The mazimal finite subgroups, up to isomor-
phism, of P,(RP?) are the following:

e The group Zs if n=1;
o The quaternion group of order 8, Qg if n=2,3;
o The group Z4 if n > 4.

Theorem 2.1.6 (Gongalves—Guaschi, [GG12]). Let n > 2. The finite subgroups of the braid groups
B, (RP?) are isomorphic to the subgroups of the following groups:

e The dicyclic group of order 8n, Dics,, = (z,y | z*" =92, yoy ' =271);

e The dicyclic group of order 8(n—1),
Dicg(n-1y = (w,y | 2®D =42, yay™ =a7!) if n 2 3;

o The binary octahedral group of order 48, O* if n=0,1 mod 3;
e The binary icosahedral group of order 120, I* if n=0,1,6,10 mod 15.

Further information about the binary polyhedral groups O* and I* could be found in [AMO04].
Note that the centre of Dicg,, Dics(n—1), O* and I is isomorphic to the cyclic group of order 2,
Zo. Moreover, their quotient by their centre is either the dihedral group, the symmetric group of
degree 4, S, or the alternating group of degree 5, A;. To be more precise, it holds that:

Dicsn|Z? = Dihay, Dicg(y-1y/Z” = Dihy(n-1y, O*|Z* = Sy, and I*[Z* = As.

In [GG12] (Proposition 15), Gongalves—Guaschi gave explicit algebraic realisations of the groups
Dicsy, and Dicg(,,-1) as subgroups of B, (RP?), for all n > 2. To be more precise, we have the
following proposition.

Proposition 2.1.7 ([GG12], Gongalves—Guaschi). Let n > 2. Then the following statements hold:
1. {an, An) 2 Dicsy, where a, is defined in (1).
2. (bn, Apay') = Dicg(n-1y, where by is defined in (1).

2.2 Presentation of B, ,,(RP?) and of certain subgroups

Let m € N and n > 2. In order to study the splitting problem of the short exact sequence
1 —— Bp(RP2N {z1,...,20}) — Bpm(RP?) ™% B (RP?) —— 1, 2)

we require a presentation of the groups Bn,m(RPz). We recall that the map gp+m,n can be considered
geometrically as the map that forgets the last m strands and that the groups B, ., (RP?), defined
by B (RP?) = 1 (Fpim (RP?)/(Sy, x Si)), are called mixed braid groups, which are subgroups
of the full braid groups By .m (RP?).

In order to obtain a presentation of B, ,,(RP?), we will use the short exact sequence (2) and
standard results about presentations of group extensions. Thus, we first need a presentation of the
groups B, (RP%\ {z1,...,7,}), which we can obtain making use of the short exact sequence

1— Pm(RP2 Az, xn)) — Bm(IRP2 Az, .0 ) — S — 1

and for making use of this short exact sequence, we first have to determine the groups P,,(RP? \
{x1,...,2,}). Note that there is already one presentation of the group P,(RP?) in [GG07], but
we give a different one here, where our generators p; differ from those in [GGOT].

We start with the following proposition that provides a presentation of the pure braid groups
P,(RP?). Note that, for D? a topological disc, the inclusion of D? into the projective plane, RP?
induces a non-injective homomorphism ¢ : B,, — B,,(RP?).
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Proposition 2.2.1. The following constitutes a presentation of P, (RP?), for n e N.
Generators: B; j, for 1<i<j<n and pg, for 1<k<n.
Relations:

(i) The Artin relations between the generators B; ; coming from those of P,. For 1<i<j<n
and 1<r<s<n,

B; ;, fori<r<s<jorr<s<i<j.
,1 ,1 . .
B. B .B-!- Bi,jBr,jBi,jBr,jBi,jv forr<i=s<j.
s+, rs T B_lB B . .
s, Di,jBs.j fori=r<s<j.

Bs_,:;‘B;j'Bs,jBr,jBi,jB;j‘B‘;:;Br,jB&j7 fOT r<i<s< j
(1) pi(B1i...Bic1i) = (Bijis1--- Bi’n)pi‘l, for 1 <i<mn, called surface relations.
e 1 j_l -1 ]_1 . .
(i) pip;p;~ = ( I1 BlJ) Bi,j( I1 Bl,j)pj, forl1<i<j<m.
I=i+1 1=i+1

(tv) For1<i<j<mn,1<k<n andk#j,

B; ;, forj<k ork<i.
o E= S = ‘
PrBijpy = Pj ( H Bl,j) Bi,j( H Blyj)pj for k=1.
l=k+1 l=k+1
Aj,kBi,jA;}f fori<k<j,
L Jj-1 -1 ) j-1
where Aj i, = p} ( I1 Bl,j) B,;j( I1 Bl7j)pj.
I=k+1 I=k+1

Remark 2.2.2. The generator B;; is given by By ; = 0;'-07%0% 10, 9--0; and it can be seen

geometrically as a braid all of whose strands are vertical, with the exception of the i*" strand,
that wraps around the ;' strand. Equivalently, B; ; can be given by B; ; = O’j,l"'0'7;+10'i20'; +11"'0';»_11
and it can be seen geometrically as a braid all of whose strands are vertical, with the exception
of the j*" strand, that wraps around the " strand. Note that in the following figure, as well as
in all those that follow, we will illustrate the generator B; ; and its inverse using the geometric

illustration of the generator o; given in Figure 2.1.

Figure 2.2 Equivalent illustrations of the generators B; ; and B; } of P,(RP?).

i1 i1 i1 i1 j
Remark 2.2.3. The products( H BlJ)_le-( H Bl,j),( H Blﬁj)_lB;}( H Bl’j)and( H Bi’l),
I1=i+1 I1=i+1 I1=i+1 I1=i+1 I=i+1

J _
( H Bz‘,l) 1, for i < j, that appear frequently in the presentation of P,(RP?), can be seen geomet-
l=i+1
rically as in the following figures.
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J
I Bi.

I=i+1

( i By )_le( Hf:_,lﬂ BLJ‘)

I=i+1

j-1 j-1
Figure 2.4 The product ( [| Bi,) " Bi;( [] Bij), fori<j.

l=i+1 I=i+1

e

. 1 .
(T2 Buy) Bi(THZL, Biy)

I=2+1

R
Figure 2.5 The product ( [] Biy)™ Bi:( [ Buy), for i <j.

l=i+1 l=i+1

Proof. We will prove the claim by applying induction on n € N and using standard results
concerning the presentation of an extension.

For n = 1 the given presentation yields P (RP?) = (p; | p? = 1) = Z,, which holds, since
P (RP?) = 1 (RP?) = Zy. Moreover, for n = 2 we obtain that Py(RP?) = (p1,p2 | p? = p3 =
(p1p2)?) = Qs, the quaternion group of order 8, which is indeed the case since Van Buskirk, [VB66],

proved that P,(RP?) is isomorphic Qs.
Suppose that, for some n > 2, the group P,(RP?) has the given presentation.
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We consider the corresponding Fadell-Neuwirth short exact sequence, where the map pp1,n
can be considered geometrically as the epimorphism that forgets the last strand:

1— m(RP2N {a1,...,20}) — Poi (RP2) P25 P (RP?) — 1.

For reasons of symmetry we take the free group ker(ppn.1.,) 2 71 (RP?\ {z1,...,7,}) to have the
following presentation with n + 1 generators and a single relation:

(Pn+1, B1n+1s B2nsts - -3 Bunst | pre1(Bins1B2ne1--Bpn+1) st = 1).

In order to obtain a presentation of P,,;(RP?), we will apply standard techniques for obtaining
presentations of group extensions as described in [Joh97] (page 139).

Based on these techniques, the required generating set of P,.1(RP?) is obtained by taking
the union of the generators of 71 (RP? \ {x1,...,2,}) together with coset representatives of the
generators of P,,(RP?), namely the generators py, for 1 < k <n and B j, for 1 <i<j<n. Thus the
resulting generating set of P, (RP?) is

(Bij,pr | for1<i<j<mn+1, 1<k<n+1).

The relations that we obtain for the presentation of P,,1(RP?) arise from the following three
classes of relations.

The first class consists of the relations of ker(pp+1,,), which in this case, it is the following single
relation: ppn.1(B1ni1B2ns1Bnni1)pnsr = 1.

The second class of relations is obtained by rewriting the relations of P,(RP?) in terms of the
corresponding coset representatives in P,,1(RP?), and then expressing the resulting elements as a
word in the generators of ker(p,+1,,). In this way, one may see that all of the relations of P,(RP?)
are lifted directly to relations of P, (RP?), except for the relation

pi(B1iBi-14) = (Biiv1--Bin)p; ', for 1<i<n,

which may be rewritten as pi(Blﬂ;u-B,-_Li)p,-(Biyi“-uBi’")‘l =1, for 1 <7< n. For the same values
of i we have:

n 1 n
pi(B1i+Bi1.)pi(Biiv1-Bin) ™" =( I1 Bl,n+1) Bl’,n+1( I1 Bl,n+1),

l=i+1 l=i+1

n -1 n
see Figure 2.6. It follows that pi(Bl,i"'Bi—l,i)pi = ( H Bl,n+1) Bi,n+1( H Bl,n+1)(Bi,i+1"'Bi,n)7

I=i+1 I=i+1
I1 Bl,n+1)(Bi,i+1"'Bi,n) = (Bi,is1-"Bin)Bin+1, see
l=i+1
Figure 2.7. Thl,lS7 pi(Bl,i"'B'L'—l,i)pi = (BZ‘77;+1"'B,'7")B¢7"+1 and ﬁnally we get that pi(Bl,i"'Bi—l,i) =

(BMH---Bi,n)Bi,an;l, for 1 <4 < n. Combining this relation with the single relation of the
presentation of ker(pp+1,n), we obtain the following relation:

n -1
for 1 <4 < n. Moreover, ( H Bl,n+1) Bi’n+1(
l=i+1

pi(BiiBi1) = (Biis1BinBins1)p; ", for 1<i<n+1.
This is relation (i) of the given presentation of P,.1(RP?).
The third class of relations is obtained by rewriting the conjugates of the generators of ker(pp+1,n)

by the coset representatives of the generators of P,,(RP?) in P,,1(RP?) in terms of the generators
of ker(Pn+1,.,). Thus, we obtain:
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(a) The Artin relations for B; j. Forall 1<i<j<n and 1<l<n:

Bin+1, for [ <ior j<I.
-1 -1 =4
1) B Bins Bins1Bins1Binsa, for I = j.
B; jBinB;j =4 7 ,
Bj,n+1Bl,n+lBj,n+17 for [ = 3.
-1 -1 -1 -1 . .
Bj,n+1Bi,n+1Bj,n+lBi,n+lBl,n+1Bz'yn+1Bj7n+1Bi,n+1Bj,n+la fori<i< VE

We can obtain these relations geometrically or using the presentation of P, given in Proposition
1.1.11, but with conjugation on the right. One can consider the generators B; ; to be words in
P,, and using the homomorphism P, — P, (RP?) induced by an inclusion D? ¢ RP? | these
same relations also hold in P, (RP?).

(b) Forall 1<i<j<n:
Bi jpna1Bi) = pn1-

(c) Forall 1<k <n:

pkpnup;l = ( l=11:711 Bl,n+1 )_1Bk,n+1 (l=1:11 Bl,n+1 )Pn+1~

(d) Forall1<k<n, 1<l<n:

Bin+1, for k < 1.
1 - o -
PkBl,n+1p;1 = Pn+1( H B‘,n+1) Bl,n+1( H B',n+1)pn+1 for k=1.
g=l+1 j=l+1
Api1 kB AL for 1 < k,

n -1 n

where Ayi1 k= P;L}rl( I1 Bj,n+1) B;;}ml( I1 Bj,n+1)pn+1~
J=k+1 j=k+1

Relations (b), (c), (d) are obtained geometrically, as one can see, for the general case, Figures 2.8,

2.9, 2.10, respectively.

We can now clearly see that relation (i) of the presentation of P, ,;(RP?) is obtained from the
lifted relation (i) of P,(RP?), together with relation (a) from the third class of relations. Relation
(i1), namely the surface relations, of the presentation of P,.;(RP?) has already been obtained by
combining a relation from the second class with the single relation from the first class of relations.
Relation (i7) is obtained from the lifted relation (iii) of P, (RP?), together with relation (c) from
the third class of relations. Finally, relation (iv) of the presentation of P,,;(RP?) can be obtained
from the lifted relation (iv) of P, (RP?), together with the relations (b) and (d) of the third class.

To sum up, the set of generators and the set of relations, that we have obtained, coincide with
the given presentation for P,,;(RP?) and it follows by induction that the given presentation is
valid for P,(RP?), for every n € N. O

(k3

pi(BriBic1:)pi(Biier-Bin) ™ ( Iﬂl Bl\rwl) B”,H( Iﬁl Bl_n,+1)

I=i+1 I=1+1

Figure 2.6 Relation (iia).
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(Bi,iJrl"'B'l,,n)B'i.'n,Jrl

(11 Buwst) Buner( T Bier)(Buir-Bu)

l=i+1 I=t+1

Figure 2.7 Relation (iib).

112

-1
PiP;p;
H BIJ Bij H B!J
I=i+1 l=i+1
Figure 2.8 Relation (7).
PBijpi!

71 HBIJ w HB"J

I=i+1 l=1+1

Figure 2.9 Relation (iv) for k = i.

prBijpi! Aj rBij A,

Figure 2.10 Relation (iv) for i < k < j.
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Next, we give a presentation of the group P, (RP?\ {z1,...,7,}).

Proposition 2.2.4. Forn,m > 1, the following constitutes a presentation of Py, (RP?>\{z1,...,2,}).
Generators: B; j, for1<i<j,n+1<j<n+m and pg, forn+1<k<n+m.

Relations:

(i) For1<i<jand1<k<l, wheren+1<j<li<n+m,

Bi., fork<iorj<k.
Bi BBl = BB BiBi By, fori<k=j<l.
J Pk P 5 B;}Bk,lB',l, fork=i<j<l.

B;’%B;%BJJB“Bk?lBi_’llB;}Bi’lBjJ, fori<k<j<l.
(i) For n+1<k<n+m,
pk(B1kBi-1,k) = (Bk,k+1-~~Bk,n+m)p;1, called surface relations.

(i) For n+1<k<l<n+m,

PRI =( ﬁ Bi,l)_lBk,l( lﬁ Bi,z)pz-

i=k+1 i=k+1

(iv) For1<i<j,n+1<j<n+m,n+1<k<n+m andk#j,

B, ;, forj <k ork<i.
= S = ‘
PrBijpe = p; ( I1 Bl,j) Bm'( I1 Bz,j)Pj Jor k =i.
I=k+1 l=k+1
Aj,k/Bi,jA;,]ig fO’]" 1<k< j,

-1 -1 j-1
where A; ), = p;l( I1 Bl’j) B,;lj( I1 Bl’j)pj.
I=k+1 I=k+1
Proof. We proceed using the same techniques as in the proof of 2.2.1; applying induction on m,
where m € N and using standard results concerning the presentation of group extensions [Joh97]
(page 139).
Let n > 1. For m =1 we have that

Py(RP*{xy,...,x,}) =1 (RP? N {z1,...,2,})
= <pn+17 Bl,n+1; B2,n+1a ey Bn,n+1 | pn+1(B1,7),+1BQ,n+1"'Bn,n+1)pn+1 = 1)

This presentation of Py (RP?~{x1,...,7,}) coincides with that given in the statement and therefore
the presentation is valid for m = 1.

Suppose that m > 2, and that for some m the group P,,(RP?\ {z1,...,2,}) has the given
presentation. We will obtain a presentation of Py,,; (RP?\ {z1,...,7,}), based on the following
short exact sequence:

1= PLRP2{z1, ..., Znim}) — Prst (RP2~ Az, o an)) 220 B (RP2N (a2 )}) — 1,

where pr,+1,m can be considered geometrically as the epimorphism that forgets the last strand.
Based on standard techniques for obtaining presentations of group extensions, the required
generating set of P,.1(RP?\ {z1,...,2,}) is obtained by taking the union of the generators of
ker(Pm+1,m ), namely of the group Py (RP?\ {z1,...,Znim}) =
(pn+m+la Bl,n+m+17 teey Bn+m7n+m+1 | pn+m+1(B17n+m+1"'Bn+m7n+m+1)pn+m+l = 1); together with
coset representatives of the generators of P,,(RP?\ {x1,...,7,}), namely the generators py for
n+l<k<n+mand B;;, for 1<i<j, n+1<j<n+m. Thus the resulting generating set of
Pm+1(RP2 N {:L'la . 7xn}) is

(Bij, pp |for1<i<j<n+m+1, 1<k<n+m+1).
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The relations that we attain for the presentation of P,y (RP? N {z1,...,2,}) arise from the
following three classes of relations.

The first class consists of the relations of ker(pm,+1,m ), which in this case, it is the following
Single relation: pn+m+1(Bl,n+m+1"'Bn+m,n+m+1)pn+m+1 =1

The second class of relations is obtained by rewriting the relations of P,,(RP?~\ {z1,...,2,}) in
terms of the corresponding coset representatives in Py, (RP? \ {x1,...,2,}), and then expressing
the resulting elements as a word in the generators of ker(pp+1,m). In this way, one may see
that all of the relations of P,,(RP?\ {x1,...,2,}) are lifted directly to relations of P, ,;(RP?),
except for the surface relations, p(B1 k- -Bk-1k) = (Bk,k+1"'Bk,n+m)p;1, forn+1<k<n+m.
Expressing the relation pk(BlykmBk_l,k)pk(Bk,my'-mam)‘l =1, forn+1<k<n+masa
word in the generators of ker(Pm+1.m), we obtain that py(Bi g Bi-1k)pk(Bk ki1 Bnsm) ' =

n+m n+m

-1

( H Bl,n+m+1) Bk‘,n+m+1( H Bl,n+m+1)7 for n+1<k<n+m. It follows pk(Bl,k"'kal,k)pk =
l=k l=k
n+;11 7L+:rzl

-1
( T1 Bineme1) Brmemer( [T Binemer)(BiksasBinim), for n+1<i <n+m. Tt holds that
I=k+1 I=k+1
n+m n+m

-1

( H Bl,n+m+1) Bk,n+m+1( H Bl,n+m+1)(Bk,k+1"'Bk,n+m) = (Bk,k+1"'Bk,n+m)Bk,n+m+1; a rela-
I=k+1 l=k+1

tion which is obtained geometrically. Thus, px(B1 kBi-1,k)Pk = (B k+1°* B n+m ) Bk n+m+1 and

finally we get that pk(Bl,k"'Bk—l,k) = (Bk,;ﬁ.l'~'Bk7n+m)Bk,n+m+1p;1, forn+1<k<n+m. Com-

bining this relation with the single relation of the presentation of ker(pm+1,m), we obtain the

relation:

pi(B1 i Bi-1,6) = (B g1 Brnems1 )pi s for 1<k <n+m+1.

This is relation (ii) of the given presentation of P, 1(RP?\ {z1,...,2,}).

The third class of relations is obtained by rewriting the conjugates of the generators of
ker(Pm+1,m) by the coset representatives of the generators of P, (RP?>~{x1,...,2,}) in Py (RP?\
{z1,...,2,}), in terms of the generators of ker(py+1,m). Thus, we obtain:

(a) The Artin relations for B; ;. Forall 1<i<j, n+1<j<n+mand 1<I<n+m:

B pim+1, forl <ior j <l

-1 -1 .
Bl7n+7”+1Bi,n+m+1Bl,n+m+1Bi,n+m+lBl,n+m+1» for I = j.

-1 _ -1 o

Bi,jBl,n+m+1Bi7j = Bj7n+m+1Bl,n+m+1Bj7n+m+l7 for [ =1.
-1 -1

Bj_’n+m+1Bi,n+m+1Bj,n+m+1Bi,n+m+1Bl,n+7n+1'

.B1

-1 . .
z,n+m+1Bj,n+m+lBi7"+m+1Bj7n+m+17 fori<l< J-
(b) Forall1<i<j, n+l1<j<n+m:
-1
Bz‘,jﬂn+m+lBi,j = Pn+m+1-

(c) Foralln+1<k<n+m:
n+m n+m

-1
-1
PkPr+m+1P :( H Bl,n+m+1) Bk,n+m+1( H Bl,n+m+1)pn+m+1~
I=k+1 I=k+1

(d) Foralln+1<k<n+m, 1<l<n+m:

By pim+1, for k <.
n+m — n+m

1
-1 -1 -1
pkBl,n+m+1pk = pn+m+1( H BS:”‘*‘m"‘l) Bl,n+m+1( H Bs,n+m+1)pn+m+1 for k=1.
s=k+1 s=k+1

-1
An+m+l,kBl,n+m+lAn+m+17k for I < k,
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n+m -1 n+m
-1 -1
where An+m+1,k = Pn+m+1( | | Bs,n+m+1) Bk,n+m+1( | | Bs,n+m+1)pn+m+1-
s=k+1 s=k+1

Once again, relations (a), (b), (c), (d) are obtained geometrically.

We can now clearly see that relation (i) of the presentation of Py, 1 (RP? \ {x1,...,7,}) is
obtained from the lifted relation (i) of P,,(RP?~ {x1,...,2,}), together with relation (a) from
the third class of relations. Relation (i7), namely the surface relations, of the presentation of
P 1 (RP?>\ {z1,...,2,}) has already been obtained as we already saw, by combining a relation
from the second class with the single relation from the first class of relations. Relation (iii) is
obtained from the lifted relation (iii) of P,,(RP?\ {z1,...,7,}), together with relation (c) from
the third class of relations. Finally, relation (iv) of the presentation of P, 1 (RP2\ {z1,...,2,})
can be obtained from the lifted relation (iv) of P, (RP?\ {x1,...,7,}), together with the relations
(b) and (d) of the third class.

To sum up, the set of generators and the set of relations, that we have obtained, coincide with
the given presentation applied to Py,,1(RP?\ {z1,...,2,}) and it follows by induction that the
given presentation is valid for P, (RP?\ {zy,...,2,}), for every m € N. O

In order to give a presentation for B,, ,,(RP?), we first determine a presentation of the group
B (RP?\ {z1,...,2,}).

Proposition 2.2.5. Forn,m > 1, the following constitutes a presentation of B, (RP*\{z1,...,x,}).

Generators: B;j, for 1 <i<n, n+1<j<n+m, pp, forn+1 <k <n+m, and oy, for
1<l<m-1.

Relations:

(i) For1<i,k<nandn+1<j<l<n+m,

By, for k <.

-1 -1 )

Bi jBi,B;j =\ Bj i Bi,iBj for k=i.

-1p-1 “1p-1 )
BB BjiBiyBr.B;  Bj BiuBj, fori<k.
Moreover, for k= j,
1 2 -1 -1 -1 2 -1 -1
Bi,jBk,le‘,j :(Ul—l—n"'Uj+1—n0'j—n0j+1—n"'0'1—1—n)Bi,l (Ul—l—n'"0j+1—n‘7j—n0j+1—n"'Ul—1—n)

2 -1 -1
Bi1(01-1-n""041-n0 0 j 1100121 2, ) -

(i) Forn+1<k<n+m,

n
2 2 -1
Pk(H Bz’,k)(Uk—l—n"'020102"'ka—1—n) = (Uk—n"'Um—zam_lﬂm—2'”0k—n)Pk :
i=1
(iii) Forn+1<k<j<n+m,
-1 _( -1 -1 2
PEPjPy = (Uj—l—n"'Uk+1—n0k—n‘7k+lfn'"Ujflfn)Pj»
-1 = oo 2 -1 gL
Pr PiPk _pJ(UJ—l—n Ok+1-n0)_nOki1-n Gj—l—n)'

(iv) For1<i<m,n+1<j<n+m,n+1<k<n+mandk+j

Bi,jv fO?"j <k.

Bijppt =
PEDi, 5Pk {T];;Bi,kaJv forn+1<k<j,

-l -1 -1 2 . .
where Tk’j T pj (O—j—l—n“'Jk-%—l—no'k—nak*l*n.“o—Jflfn)pJ '

(v) For1<r;s<m-1,
0,05 = 050y, for |r—s|>1,
OrO0r4+10yr = O0r41070p41-
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(vi) For1<i<m, n+1<j<n+m, 1<r<m-1,

B, ;, forr+j-n-1,7-n.
-1 _ 2 -2 _ s .
orBi o, =407_-1Bij-10;5, 4, forr=j-n-1, n+2<j<n+m.

B; 1, forr=j-n,n+1<j<n+m-1.
(vii) For 1<r<m-1,n+1<k<n+m,

Pk forr+k-nk-1-n.

-1_J 2
OrPkO, = OjpPh+ls forr=k-n.

-2
Pr-10321_,, Jforr=k-1-n.

Remark 2.2.6. In the above relations, for n+1 < i < j <n+m the element B; ;, which does not

appear in the list of generators, should be rewritten as:

33

_ . 2 -1 1
Bi,j =0j-1-n"""0i+1-n0;_n0ix1-n"" Uj—]_—n7

and in particular By y pir+1 = o2, for 1 <r <m-1. Moreover, for n+1 <k < j <n+m it holds that
j-1

H Bi,j = Uj—l—n"'O—k+1—n02_n0—k+1—n'"Uj—l—n~

i=k

Proof. Once again, we will proceed by applying standard results concerning the presentation of an
extension, [Joh97] (page 139), based on the following short exact sequence:

1— P, (RP*~{z1,...,2,}) — Bp(RP*~ {x1,...,2,}) = Sy — 1.

We have already a presentation of P,,(RP?\ {x1,...,2,}), from Proposition 2.2.4, and of the
symmetric group given as follows:

. 2 . .
S ={0,...,0m-1 | 0:04410; = 044100441, for 1 <i<n-2, 07 =1, 0,0; =0j0;, for 1 <i#j<n-1).

So, the generators of P, (RP?\ {z1,...,7,}) together with coset representatives of the generators
of S,,, form a generating set of B,,(RP%\ {x1,...,2,}). It follows that this generating set is that
given in the statement, with o, for 1 <1 <m—1, being the coset representatives of the generators of
the symmetric group. Observe that, from Remark 2.2.2, B; ; = Uj_1~~~ai+1oi20;r11-~~0J_»_11, and so, for
n+1<i<j<n+m we can rewrite the generator B; ; as B; j = Uj—lfn'"Ui+1—n‘7i2—n‘71+1—n‘"U;—l—n»
as we see in Remark 2.2.6. Thus, one may delete these elements from the set and one obtains the
required set of generators.

We now determine the three classes of relations. The first class is obtained by taking the
relations of P,,(RP?\ {z1,...,2,}) given in Proposition 2.2.4:

e Forl<ik<nmandn+1<j<l<n+m,

Bk,l; for k <.
Bi,jBk,lBi_,; = B}}Bk,lBj,l, for k =1.
B;lB;llBjJBiJBk)lB;}B;}Bi,lBj)l, for i < k.
For k = j, which means that n + 1 < k, then:
Bi,jBk,lBi_,} :(Ul—l—n"'O'j+1—n0';—2n0';:1_n'"Ul__ll_n)Bi_,ll(Ul—l—n"'Uj+1—n0'32‘_n0';:1_n'"Ul__ll_n)Bi,l
(O—lflfn"'Uj+17n0-j2'—n0-;+11—n'"Ul_fllfn)'

e Forn+1<k<j<n+m,

j-1 1 j-1
-1 -1 2 -1 -1
PkPjPk =( [ Bi,j) Bk,j( [1 Bw)pj =235 (0m1on Okt 10O Ok 1070210 ) Sk i 0
i=k+1 i=k+1
= -1 .o -1 2 cee(T . 3
- (Uj—l—n Ok+1-nOk-nTk+1-n O'],l,n)p], ( )

. 2
where Yy ;=0 10" Oki2-n0% 1_nOk+2-n"""0j-1-n-
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e Forl<i<m, n+l1<jk<n+m, k=+j,

Bi,jv for j <k.

-1
peBijpk =11 .
Tk,jBivakJW forn+1<k< 7
NN | -1 2
where Ty j = pj (0571 041 Ok -n Okt 1on""0j-1-n) P} -

If 7 = k, which means that n + 1 <, then the relation

Busoit = o (TT Bu) B TT Bus)es
PkBk,jPr = Pj (H lJ) k,j( [1 ls])pj
l=k+1 I=k+1

becomes as follows:

2 -1 -1 -1 _ -1, -1 -1 -2 -1 -1
Pk(Uj—l—n"‘0k+1—n0k—n0k+1—n“‘Uj—l—n)Pk =p; (Uj—l—n“'0k+2—n0k+1—n0k+2—n‘"Uj—1—n)
-2 -1 -1
(Uj—1—n"'0k+1—n0k_n0k+1_n“'Uj—l—n)

2
(0j-1-n"*"Oks2-n0jes1—nOhk+2-n"""0j-1-n ) Pj-
Thus,

2 -1 -1 -1 _ -1, -1 -1 -2
pk(Uj—l—’ﬂ'"Uk+1—nak—nak+1—n'"Uj—l—n)pk =P; (Jj—l—n'"Uk+1—nak—nak+1—n"'Uj_l—n)pj'

Using relation (3) it follows that
Pr(0j 1o Thi1-n Ok nOkt1n 05 )P = P (Pipkp; Px)pss
and we conclude the following:
Pk PiPk = P3(T5-1-0" " Oks1-n 0 Oha1p 051 )-
This relation is a right conjugation of p; by pg, while relation (3) is a left conjugation.

o For n+1<k<n+m, the surface relations pg(B1 g B-1.k) = (Bkk+1-Br.nim)py. become

n k-1 n+m
pk(H Bz’,k)( H Bjyk) = ( H BkJ)p;l, and finally we obtain the following:
i=1 j=n+1 l=k+1

n
Pk(H Bi,k)(o'k—l—n'"020502“'07@—1—71) = (Ohon " Om-202 1 Om—2"Ck—n)Pp -
=1

The second class of relations is obtained by rewriting the relations of .S, in terms of the coset
representatives and expressing the corresponding elements as a word in Py, (RP?\ {z1,...,2,}).
Doing so, we have the following relations:

(a) 0,05 =00, for |r—s|>1,
(b) OrO0r4+10yr = Or41070941,
(¢) 02 = Bpirnirs1, for 1 <r <m-1, which appears in Remark 2.2.6.

The third class of relations is obtained by rewriting the conjugates of the generators of P, (RP?\
{x1,...,7,}), by the coset representatives, in terms of the generators of P,,(RP?\ {z1,...,2,}).
We obtain the following relations:

e Forl<r<m-land1<i<n, n+1<j<n+m,

B, ;, forr+j-n-1,5-n.
0.Bi ot = B; ji1, forr=j-nandn+1<j<n+m-1. (4)

U?_n_1Bi,j—la;'_2n_1a forr=j-n-landn+2<j<n+m.
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e Forl1<r<m-1,n+1<k<n+m,

Pk forr+k-n,k—1-n.
-1
OrpPrO, = oﬁ_np;ﬁl, forr=k-n.

Pr-10%52_,, forr=k-1-n.

The relations of the third class are obtained geometrically
The resulting relations are those given in the statement and this completes the proof. O]

Finally, we are ready to give a presentation of the group B, ., (RP?).

Theorem 2.2.7. For n>2 and m > 1, the following constitutes a presentation of By, ,,(RP?).

Generators: B; j, for1<i<n andn+1<j<n+m,
Pr, form+1<k<n+m,

oy, for 1<l<m—-1,

Ts, for 1<s<n-1 and

G, for 1<t<n.

Relations:
(I) The relations (i)-(vii) of Proposition 2.2.5.

(II) For 1<i<mn-1,1<j<n,

7Ty =TTy, for |i—j| > 1,

TiTis1Ti = Tie1TiTit1,

Tiqj = q;Ti, for j #Fi,0+1,

q; = Tiqi+1Ti,

7= e i,

qi = (1172 Tn-2Tn-1) (Bn,ns1 Brns2 B nem-1Bnnam ) (Ta-1 T2 TaT1).
(II1) (a) For1<l<m-1,1<s<n-1and1<t<n,

O1Ts = TsOl,

019t = 4¢01-
(b) Forn+1<k<n+m,1<s<n-1andl<t<n,
PkTs = TsPk,

@ped; = Eripr,

n
. -1 . 2
where By, := N; 1By xNyi and N ._( [T Bl,k)(Jk_l_n---01~-~ak_1_n).
I=t+1

(c) For1<s<m-landl<i<n<j<n+m,

B, ;, for s+i-1,i.
TsBiJ‘Ts_l = B;}Bi—l,jBi,ja fors=i-1.
Bi+1,ja fOT S =1.
(d) For1<t<mandl<i<n<k<n+m,
Bi’]€7 fO?"t<i.
4 Bikg;' = (Newpe) " Bk (Nekpr), fort=i.

(0% Bt ko) ' Bik(pp Evppr), fori<t.
Proof. Once more we will apply the same methods concerning the presentation of an extension,
[Joh97] (page 139) based on the following short exact sequence:
1 = Bp(RP2N {a1,...,20}) — Bpm(RP?) 220 B (RP?) — 1,

where the map Gn+m,n can be considered geometrically as the epimorphism that forgets the last
m strands. Let ¢1,...,q, and 71,...,7,-1 be the standard generators of Bn(RPQ) as described in
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Theorem 2.1.1. We keep the same notation and for simplicity we denote the corresponding coset
representatives in Bn,m(RPQ) by q1,...,q, and 71,...,7,-1. The union of these elements together
with the generators of B,,(RP?\ {z1,...,2,}) of Proposition 2.2.5 gives us the set of generators
of By, (RP?).

As before we will obtain three classes of relations in By, ,,(RP?). The first class of relations is
the set of relations of ker(Gnim.n), meaning of B,,(RP%\ {x1,...,,}), which are relations (I) of
the statement.

The second class of relations is obtained by rewriting the relations of B,,(RP?) in terms of the
chosen coset representatives in B,, , (RP?) and expressing the corresponding elements as a word in
B (RP?\ {z1,...,2,}). Therefore we get the following:
for 1 <i<n-1,1<j<nandli-j|>1 wehave 7,7; = TyTj, TiTis1Ti = Ti+17iTi+1, and for
J #14,9+1 we have 7;q; = ¢;7;. Moreover, we obtain ¢; = 7;¢;+17; and 77;2 = qi_flqi_lqﬂlqi. The relation

@G (11 TpoT2 1 Tn-2-11) " =1 of B,(RP?) can be expressed as a word in B,,,(RP*~ {zy,...,2,})
as follows:
n+m
¢1(r1 o g am) " = ([T (BolBa})Brj(BaBuy))- (5)
j=n+1

We will come back to this relation later, as we will use some relations that we will see in the third
class of relations, in order to simplify it.

The third class of relations is derived from conjugating the generators of B,,(RP2\{z1,...,z,})
by the coset representatives q1,...,q, and 7y,..., Tn-1.

¢ By conjugating the generators oy, for 1 <1 <m -1 and by using the standard Artin relations
in B, ,»(RP?), we obtain the following relations:
forall1<l<m-1and1<s<n-1, we have o;7s = 750;. Moreover, we have 0;q; = q;07, for all
1<l<m-1and 1<t<n. These relations correspond to relations (I17)(a) of the statement.

o By conjugating the generators py, for n+ 1<k <n+m, we have the following:
forn+1<k<n+m,1<s<n-land 1<t<n,
PETs = TsPr, and

n -1 n
Qprg; " = (( [1 Bl,k)(o'k—l“'a'%"'o'k—l)) Bt,k(( [1 Bl,k)(ak—l"'U%"’O'k—l))Pka

I=t+1 I=t+1
n

where the term H B, 1, corresponds to the first n points and the term (ak_l_n---a%--ok_l_n)
I=t+1
corresponds to the following k — n points. These relations correspond to relations (I171)(b) of

the statement.

o By conjugating the generators B; j, for 1 <i<n and n+1<j<n+m the following relations
arise:
forl1<s<m-land1<i<n<j<n+m,

B; j, for s i —1,3.
TsBi,st—l = B;}Bi—l,jBi,jﬁ for s=17-1. (6)
B4, for s = .
Forl1<t<nand1l<i<n<k<n+m,
Bk, for t < i.
thich[l = pgth_,liBi_,llcNt,kpkv for t = 1.

(P& NiwBekNewpr) ™ Bin (o' Nip BewNewpr). fori<t.
These relations correspond to relations (I17)(c) and (I1I)(d) of the statement.

The relations of the third class are obtained geometrically.
We come back to relation (5). From relations (6), for any n+ 1< j <n+m we obtain

(Bpl+B33)Brj(Ba B ;) (T17aTn-aTn1) = (M 72 Tn-2Tn-1) Bn j,
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and thus we get the following: (H"”n (B;}j"'Bg,‘lj)Bl)j(B27_j"'Bn,j))(7—17'2"'7'1'7,—27—71—1) =

j=n+1
(1172 Tn-2Tn-1) (Bn.n+1Bn n+2--Bn n+m-1Bn n+m ). Thus, relation (5) becomes
n+m

a :( [I (B;,lj'"BQ_,lj)BLj(BQ»J""BYLJ))(T17-2"'Tn—QTWQL—lTn—Q"'TQTl)

Jj=n+1

= (TITQ"'Tn—2Tn—1 ) (Bn,n+1Bn,n+2"'Bn,n+m—an,n+m)(Tn—lTn—Z"'TQTI)a

which is the last relation of relations (/1) of the statement.
As a result, we have obtained a generating set and a complete set of relations, which coincide
with those given in the statement, and this completes the proof. O]

Remark 2.2.8. Theorem 2.2.7, which gives a presentation of B,, ,, (RP?), holds for n > 2 and m > 1,
since the short exat sequence

1 = Bp(RP2N {a1,...,20}) — Bpm(RP?) 20 B (RP?) — 1,

that we use in the proof, holds for n > 2. For n =m =1, we have By 1(RP?) = Py(RP?), which is
isomorphic to the quaternion group of order 8, see [VB66]. To obtain a presentation of B, ., (RP?)
for n =1 and m > 2, one can use the short exact sequence,

1— B (RP>~{z1,...,2}) — Bim(RP?) 2% B, (RP?) — 1,

where ¢, can be considered geometrically as forgetting the first strand. And once more one can
apply standard techniques for obtaining presentations of group extensions as described in [Joh97]
(page 139), which we have explicitely described in the proofs of Propositions 2.2.1, 2.2.4, 2.2.5 and
Theorem 2.2.7.

From Propositions 2.2.1, 2.2.4, 2.2.5 and Theorem 2.2.7 we are able to obtain a presentation of
the Abelianisation of P,(RP?), P,,(RP?*\{z1,...,2,}), Bn(RP*\{x1,...,2,}) and B, ., (RP?),
respectively. In the following Corollaries, we denote by I's(G), for G a group, the commutator
subgroup of G.

Corollary 2.2.9. For n > 1, the following constitutes a presentation of Pn(RPQ)/FQ(Pn(RPQ)).

Generators: py, for 1 <k <n.
Relations:

(i) pi=1, for 1<k<n.
Hence, P, (RP?)/Ty(P,(RP?)) = Z%, which is generated by p1,...,pn.
Corollary 2.2.10. For n,m > 1, the following constitutes a presentation of
Pp(RP?A{a1,...,20}) /T2 Py (RPN {21, ..., 2,})).

Generators: py, for 1 <k<m.
Relations:

(i) pi=1, for1<k<m.
Hence P,(RP?)/To(P,(RP?)) 2 Z3', which is generated by py,...,Pm-
Corollary 2.2.11. For n,m > 1, the following constitutes a presentation of
By (RP* N {21,...,2,}) [T2(Bpn(RP* N {21, .. ., xn}))

Generators: p, o, B1,...,Bn-

Relations:

(i) 0? =1,
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(i) 0TI i = 1,
(“Z) Blﬂ] = ﬂjﬂh fOT’ 1< Za] <n,

(iv) opBi = Bio, and pB; = Bip, for 1<i<n,

(v) op=po.

In particular is holds that
B(RP* Ay, ..., 2, }) [To(Bn (RPN {xy,...,2,})) 2 Z" x Zy,
where p, B1,...,Bn-1 generate the Z™-component and o the Zs-component.

Note that the Artin generators, o1, ...,0,_1, are pairwise conjugate and thus are sent to the same
element in B, (RP? \ {z1,...,2,,})/T2(Bm(RP?*\ {z1,...,2,})). We observe that the elements
P, 0, B, .., Bno1 form a generating set for B,,(RP?\ {z1,...,2,})/T2(Bn(RP?>~ {z1,...,2,})),
since we can obtain the element (3, from relation (ii).

Corollary 2.2.12. Forn>2 and m > 1, the following constitutes a presentation of
By (RP?)[T'o( B m (RP?)).

Generators: p, o, T, q.

Relations:
(i) p>=1,0%=1,72=1,¢*=1,
(i) po =ap, pr="Tp, pq=qp,
(iii) ot =710, 0q = qO,
(iv) Tq=qr.

Hence, By, (RP?)[Ts( By, (RP?)) 2 Z3, which is generated by p, o, T and q.

2.3 Lower central and derived series of the group
Bo(RP2 {21, .. a0))
As we will see in Chapter 3, to study the splitting problem, it is helpful to know the lower
central and derived series of certain subgroups of the surface braid groups. Before stating the

result about the lower central and derived series of the group B,,(RP? \ {z1,...,2,}), we recall
the definition of these notions.

Definition 2.3.1. Let ¢ ¢ N.
The lower central series of a group G is defined as the descending normal series

I''(G)=G2Ty(G)2---2T,(G)2...,

where T;(G) = [[;-1(G), G] is the subgroup of G generated by the commutators [z,y] = zyz 'y},
for x eI';_1(G) and y € G.
The derived series of a group G is defined as the descending normal series

GO =GgaGWa...06M™2. .,

where G(i) = [GU-D GG-D] is the subgroup of G generated by the commutators [z,y], for
z,y € G Note that I'y(G) = GM.
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Let X be some property of groups. We recall that a group G is residually X if for every
non-trivial element g € G there is a homomorphism h from G to a group with property X such that
h(g) 1.

Let m = 1 and n > 1. It holds that B;(RP?\ {z1,...,2,}) = m(RP?> ~ {z1,...,2,}) = F,,
where F,, denotes the free group on n generators. So the lower central and derived series of
B1(RP?\ {x1,...,2,}) are those of free groups of finite rank.

The following theorem presents the lower central and derived series of B, (RP%\ {x1,...,2,})
for n > 2 and for most values of m.

Theorem 2.3.2. Let n>1. Then:
e If m >3, then

Do(Bn(RP* N {21,...,2,})) =[3(Bpn(RP* N {z1,...,2,})).

o Ifm>5, then

(Bm(RP?N {z1,.., 2, 1)) = (Bu(RP? {20 })) .

In particular, for m >3, B, (RP?>\{xy,...,x,}) is not residually nilpotent and for m > 5, it is not
residually solvable.

Proof. Let n > 1. We will prove that I's( By, (RP*\ {21, ...,2,})) = [3(Bp(RP?\ {z1,...,2,})),
for m >3. Let m >3 and let Ty := I'y(B,,(RP?\ {21,...,2,})) and
I3 :=T3(Bn(RP?~ {x1,...,2,})). We have the following short exact sequences:

1 > Ty > By (RPN {xq,...,2,)) —2— B (RP2 N {21,...,2,})/Ts — 1

lprlré J/pr H

1 —— Ty/Ts — B (RP?2~{z1,...,2,})/Ts —— B (RP?>~{z1,...,2,})/Ty — 1.

The map ab is the quotient map that sends B,,,(RP?\ {x1,...,2,}) to its Abelianisation

B, (RP?~\{xy,...,2,})/T2. The map pr is the canonical projection from B,,(RP?~ {z1,...,z,})
to B (RP?\ {x1,...,7,})/T3 and the map pr|r, is the restriction of pr to I's. We have that
the map ab factors throught B,,(RP? \ {z1,...,7,})/T's and thus, the map p is such that ab =
popr. We will obtain relations in B,,(RP? \ {z1,...,2,})/T's by projecting the relations of

B (RP2\{zy,...,2,}) given in Proposition 2.2.5. Moreover, from Corollary 2.2.11, we know
that B,,(RP?\ {z1,...,7,})/Ts is isomorphic to Z" x Zy. In particular, under the map ab, the
generators o1, ...,0,_1 are sent to o1 € B, (RP?\ {z1,...,2,})/T2, where &1 = o1'5. It follows
that

pT(O’i) = ti ~01F3 € Bm(RP2 AN {171, .. .,llfn})/rg,

for 1 <i<m—1, where t; € ker(p) =T'3/T's and ¢; may be taken to be 1.

For simplicity, we will denote o1I's by &1. Projecting now relation (v) of Proposition 2.2.5,
OprOpy10p = Opy10rO0pyl, into Bm(RPQ\{Il, N ,xn})/Fg we obtain tra'ltr+1(}1t7~51 = tr+16'1trc~fltr+15'1,
and since t; € I'y/T'3, where I'5/T'3 is a central subgroup of B,,(RP?\ {x1,...,2,})/I's, it follows
that

tr = tT+17
for 1 <r <m -1, meaning that 1 =%, =--- =t,,_1. We conclude that
pr(oy) = =pr(om-1) = 1.
Similarly, since every generator p,i1,...,Pn+m 1S projected to the same element p,.1 in the

Abelianisation B,,(RP?\ {x1,...,2,})/T2, where p,41 = ppi1@2, it follows that
pr(pi) = si- pn1l's € Br(RP? N {zq, ...z, })/Ts,

for n+1<i<n+m, where s; € ker(p) =T'2/T'3 and s, may be taken to be 1.
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We will denote p,+1T's by pn+1. Projecting relation (iii) of Proposition 2.2.5,
-1 -1 -1 2
PPl = (0571 - Okt n Ok nOhtlon - - Oj-1-n)Pj

forn+1<k<j<n+m, under pr, gives skﬁmlsjﬁmlﬁ;hs;l = &%sjﬁml, and since s; € I'y/T'3, for
n+1<i<n+m, where I'y/T3 is central in B,,(RP?\ {x1,...,7,})/Ts, it follows that 5% = 1.

Since m > 3, the relation 01,4307 = sz ((vii) of Proposition 2.2.5) exists in B, (RP? \
{x1,...,2,}), and projecting it into B,,(RP*~ {x1,...,2,})/T3, it follows that &;5,,35,+167" =
Sn+3Pn+1- Since sp43 € o/’ we obtain

C1Pn+1 = Prn+101.
Furthermore, the projection of the relation O'k,npkO',;En = By, k+1pk+1 ((vii) of Proposition 2.2.5), for

n+l<k<n+m-1, yields &1sk,o~n+16{1 =1-8k41Pn+1. We know that 610,11 = Pn+101, Sn+s € L2/T3
and that sgpn+1 = Sk+1Pn+1- LThus, 1 =841 =+ = Spem—1 = Sn+m, and it follows that

pr(pns1) = = pr(Pnsm) = Pns1-

From Corollary 2.2.11, we have that ab(B; ;) = Bin+1 € Bn(RP?2 N {zy,...,2,})/To, 1 <i<n
and n+1 < j < n+m, where Bim“ = B; n+1l'2. Note that in Corollary 2.2.11 the element
ab(BM) = Bi,n+1 is denoted by ,31 Thus, pT(BiJ) =5 Bivn_‘_lrg € Bm(]RP2 AN {5617 e ,l’n}), for
1<i<n, n+1<j<n+m, where a; ; € ker(p) = FQ/Fg and a; »+1 may be taken to be 1.

We will denote B; n+1I's by BZ ns1- Since m > 3, the relation 01B; 307" = Binss ((vi)

of Proposition 2.2.5), for 1 < i < n, exists in Bm(RP2 s {a:l,.. ,Tn}), and projecting it into
B (RP? N {x1,...,2,})/T3, it follows that G1a;, nesBi 4107 = a;, n+3Bl n+1- Since a;pe3 € T'o/T'3
we obtain

&1B;ns1 = Bins161,
for 1 < i <n. Moreover, pr(aj nBUcfjl ) = pr(B”H), for1<i<n, n+1<j<n+m-1, yields

g1a; sz n+1011 =aq, j+1BZ n+1- We know that UlBl nel = BleUl and that a; ; € T'2/T's, and thus
1= Ajn+1 = = i n+m-1 = Aj nt+m, and

pr(Bi;) = Bins1,

for1<i<n, n+1<j<n+m.
We conclude that the projection of the generating set of B,,(RP%\ {z1,...,2,}) gives rise to
the following generating set for B,,(RP?\ {z1,...,z,})/T3:

{5—13 ﬁn+17 Bl,n+1a ey Bn,n+1}7

subjected to the relations &f =1, G1Pn+1 = Pn+101 and 51§i,n+1 = Bl,n+1&1, for1<i<n.

In order to determine further relations among these generators we will project now some
other relations of B,,(RP? \ {z1,...,2,}) into Bm(RP2 s A{z1,...,2,})/T3. Projecting rela-
tion (iv) of Proposmon 2.2.5 we obtain p,LJrlBZ n+1pn+1 = Bl n+1, for 1 <4 < n, which implies
that, pmlBl i1 = Bi +1Pn+1, for 1 <4 < n. Similarly, projecting relation (i) of Proposition
2.2.5 We obtain Bl n+1Bk n+l = Bk ,LJrlBz n+1, for 1 < i,k < n. Finally, the projection of rela-

tion pkH Bik(0k-1-n--- 0% 0k1-n) = (Ohop - 021 - ..Uk,n)pgl ((41) of Proposition 2.2.5), for
i=1
n+1<k<n+m, yields

n
ﬁ7L+1H Biﬂ“'l =1

i=1

Summing up, we have shown that the generators

{61, Pn+1,Bin+1s- - Bnons1}s

of By(RP?\ {x1,...,2,})/T's, commute pairwise. That means that the quotient group B,,(RP? \
{z1,...,2,})/T3 is an Abelian group. By the universal property of the Abelianisation, it follows
that I's is a subgroup of I's, since any homomorphism of B,, (RP2 ~A{x1,...,2,}) onto an Abelian
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group factors through B,,(RP?\ {x1,...,7,})/T2, which gives I'y € I'3. But by the definition of
the lower central series, we know that I's € I's, and therefore we conclude that I's =T'5. As a result,
Lo(Brm(RPENA{x1,...,7,})) = T3(Bm(RP?~ {z1,...,2,})), for m > 3.

We now prove the second statement using similar arguments. Let m > 5. For simplicity, we
will denote the group By, (RP?~ {z1,...,2,}) by G. Recall that for a group G, I'y(G) = G, We
consider the following diagram of short exact sequences:

1 — GW G —2 5 G/ —— 1

lpﬂc(l) lﬁlﬂ“ H

1 — GW/G® — q/6® L5 g/ —— 1.

The map ab is the quotient map that sends G to its Abelianisation G/ G®™ . The map pr is the
canonical projection from G to G/G(Q) and the map pr|zq) is the restriction of pr to G, We
have that the map ab factors throught G/G(Q) and thus, the map p is such that ab =popr. Using
the same argument as before, we have:

pr(o:) =t;-1G® e GIGP,

for 1<i<m -1, where t; € ker(p) = G /G and t; may be taken to be 1.

Let 01G® be denoted by ;. For m > 5, the projection, by pr, of the relation o,04 = 050,
((v) of Proposition 2.2.5), for |r — s| > 1 implies that o1¢,01 = tyo101, for 3 <k < m -1, and so
01 commutes with ¢ for 3 < k < m - 1. Moreover, for 4 <[ < m -1, the projection of the same
relation yields t;51t26, = to14;51. Since &1 commutes with ; and G /G®) is an Abelian group,
it follows that oits = too;. Hence t; commutes with o1, for 2 < k < m -1 and m > 5. Now,
projecting the relation 00,410, = 04100441 ((v) of Proposition 2.2.5) into G/G(Q) it follows that

t 01t 4101t.01 = try101t,.01t-4101, and so for 2 < i < m—1 we have t5 = --- = t,,,_1, since t;, commutes
with oy, for 2<k <m-1. If r = 1, the projection of the same relation yields G1to0101 = toG101t207,
thus t;1 =t =1 and t1 =--- =t,,-1 = 1. We conclude that

pr(o1) =--=pr(om-1) =01.

Once again, as in the previous case we have
pr(pi) = si- pnin G € GIG®,

for n+1<i<n+m, where s; € ker(p) = G(l)/G(Z) and s,.1 may be taken to be 1.

We will denote pmlG(Z) by pn+1- The proof that 6% = 1 differs here, since we can no longer
use the argument of central elements. Projecting relation (iiz) of Proposition 2.2.5, pkpjpgl =
(U]T_ll_n...agil_naz_na;ﬁl_n...Uj_l_n)pj, into G/G(Q), for k =n+1 and j = n + 2, we obtain
Pris15ns2Pnil Py Priisity = G2, Thus, pni1SnsefniqSaie = 0. We continue with the projection
into G/G®) of the relation oopni105' = pns1 ((vii) of Proposition 2.2.5), which implies that
01Pn+107 L= b1, and thus pp,.; commutes with ;. Furthermore, the projection of the relation
O1Pns107" = 02 ppyo ((vid) of Proposition 2.2.5) into G/G(Q)7 gives rise to 71 pp4107" = 02 8n42Pni1-
Since pnp+1 commutes with 71, 5’%8n+2 =1, which yields s,40 = 5{2. Combining this result with the
relation ﬁn+18n+2ﬁ;£18;}rz = 6%, we conclude that 6% =1, but also that g,,.9 = 1.

We now prove that the generators pn+1,. .., Pn+im all have the same image in G/G(2) under pr.
Since m > 5, the relation oypro;* = pi ((vii) of Proposition 2.2.5), which holds for I # k—n,k-n-1
and n+1 <k <n+mexistsin G. We fix n+1 <k <n+m-1. Thus, there exists some
1 <l <m-1, such that lekal’l = pr. So, projecting this relation into G/G(Q) it follows that
5lskﬁn+16[1 = SkPn+1- Thus, g1 commutes with sgp,.1, for n+1 <k <n+m—-1. Furthermore,
the projection of the relation Uk_npko,in = O'z,_npk+1 ((vit) of Proposition 2.2.5) in G/G(z), for
n+1<k<n+m-1, implies that 515;.3/37”161_1 =1:8g11Ppn+1- Since o1 commutes with sgp,+1, we
obtain sgpn+1 = Sk+1Pn+1 for n+ 1<k <n+m—1 and therefore si = sp41 forn+1<k<n+m-1.
Hence, pr(pn+1) =+ = pr(pPn+m) = Pr+1, a0d 01Pp+1 = Pp+101.

As before, we have pr(B; ;) = a; ;- B“HlG(Q) eG/GP for 1<i<n, n+1<j<n+m, where
a;; € ker(p) = G(l)/G(Z) and a; 41 may be taken to be 1. We will denote BZ-,mlG(Q) by Bi,n+1~
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Since m > 5, the relation 0,.B; jo,.' = B; ; ((vi) of Proposition 2.2.5), for 7 # j —n -1, j — n, where
n+l<j<n+m,1<r<m-land1<i<n,existsin G. We fix n+1 < j <n+m-1. Thus, there exists
some 1 <[ <m-—1, such that olBi,jol_l = B; ;. So, projecting this relation into G/G(Q) it follows that
61ai)jBi7n+16I1 = ai,jéi,ml. Hence, 61 commutes with ai)jBiml for1<i<m, n+1<j<n+m-1.
Furthermore, the projection of the relation o, B; o5, = Bjjs1 ((vi) of Proposition 2.2.5) in
G/G(Q)7 forl<i<nandn+1<j<n+m-1, yields 51a¢’j3i,n+161_1 = ai,j+1Bi,n+1- Hence,
a;; = ajj41, for 1 <i<mand n+1<j<n+m-1. As a result, pr(B;;) = BMH, for or
1<i<n, n+1<j<n+m,and moreover 51B; i1 = Bipnt101, for 1 <i <n.

We conclude that the projection of the generating set of B,,(RP%\ {z1,...,7,}) given in
Proposition 2.2.5 gives rise to the following generating set for G/G(Q):

{5'1, ﬁn+1; Bl,n+1a RN} Bn,n+1}-

Once again, projecting relations (i) and (iv) of Proposition 2.2.5, that hold in G into G/G?),
we obtain Bi,n+IBk,n+1 = Bk,n+IBi,n+1; for 1< i, k <n and ﬁn+IBi,n+1 = Bi,n+1/6n+1a for 1 <i< n,
respectively.

Finally, the projection of relation (i7) of Proposition 2.2.5,

n
Pkn B; k(0k-1-n - - Uf ceiOke1-n) = (Oken - .. an_l ... Jk_n)pgl,
i=1

in G/G(z), for n+1 <k <n+m, implies that /3721+1H Bi,n+1 =1.
i=1
We observe that the generators {71, pp+1, B1,n+1, R Bmml} of G/G(Q) commute pairwise. That
means that this quotient group is an Abelian group. Applying the same argument as before, we
conclude that G ¢ G®). By the definition of the derived series, we know that G ¢ G| and
therefore we conclude that G® = GM), which completes the proof. O

Remark 2.3.3. Let n > 1. We saw that Theorem 2.3.2 holds for m > 3, as for the lower central
series, and for m > 5, as for the derived series. To determine the lower central and derived series of
B (RP?\ {z1,...,2,} for the values m = 2 and m = 2,3, 4, respectively, one cannot use the same
arguments as we did for proving Theorem 2.3.2, since couple of relations of B,,(RP?\ {z1,...,2,}
that we used during the proof do not hold for such small values of m, and so these cases become
harder to treat.
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CHAPTER 3

The splitting of the Fadell-Neuwirth short exact sequence for B, (RP?)

In this Chapter we study the splitting problem of the short exact sequence
1 — Bu(RP2{z1,...,20}) — Bpm(RP?) 28 B (RP?) —— 1,

for n > 2 and m € N. Note that even though this short exact sequence exists for n > 2, the
homomorphism Gp+m,n exists for all values of n,m € N. In Section 3.1 we prove that if n =1 the
homomorphism Gy+m,» does not admit a section for any value of m, but if n = 2 it admits a section
for every value of m. In Section 3.2, we present necessary conditions for this short exact sequence to
split, by shifting the problem to a quotiented short exact sequence. We conclude the third chapter
by constructing, for certain values of m, a geometric section for the Fadell-Neuwirth fibration
Gnsmn * Fnem(RP?)[(Sy x Sp) — F,(RP?)/S,,, which implies that, for these values of m, the
homomorphism Gp4m,» admits a section.

3.1 The problem of the existence of a section for the cases
n=1,2

Let m € N. In this section we will prove the non-existence of an algebraic section for the
homomorphism Bl’m(RPQ) RN By (RPZ), where the map gi4y,,1 can be considered geometrically
as the maps that forget the last m strands. Moreover, we will prove that the short exact sequence

q2+m,2

1 —— B (RP?~{z1,22}) — B, (RP?) —=5 By(RP?) —— 1
splits for all values of m € N. We will provide an explicit geometric section for the map ¢aim.2 :
Foim(2)/(S2 x Sp) — Fo(X)/S2 as well as an explicit algebraic section for the homomorphism

Bg,m(RPQ) Lim2, By(RP?), where the maps g2+m,2 and Ga+m,2 can be considered geometrically
as the maps that forget the last m points and the last m strands respectively.

Proposition 3.1.1. Let m € N. The homomorphism qism.1 : B1m(RP?) — B1(RP?) admits no
section.

Proof. Let m ¢ N. We have B;(RP?) = (p; | p? = 1) = Z5. Under a possible section s : By (RP?) —
B1,m(RP?), the only non-trivial element of B;(RP?), p;, is of order two and thus it has to be

mapped to the full twist A?,  in By, (RP?), since A%, is the unique element of order two in

B1,m(RP?) ¢ Byiy,,(RP?), see Proposition 2.1.3. The full twist A%, ,, = (01-+-0,,,)'*™ is mapped by
@1+m.1 to the trivial element of By (RP?). Thus, we obtain (qism.10°5)(p1) = Grem.1(A%,,,) =1 % p1
and as a result, such a section s : B (RP?) — By, (RP?) cannot exist. O

33
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Proposition 3.1.2. Let m € N. The map ¢oim,2 * Form(X)/(S2 x Si) — F2(X)/S2 admits a
geometric section, for every m € N.

M,
-y

=

M,

_A
Figure 3.1

Proof. Let z,y be two distinct unordered points in RP?. We consider the quotient map from the
sphere onto the projective plane, which is a two-sheeted covering map. These two points, x,y, are
lifted to two pairs of distinct antipodal points on the sphere S?. Consider the elements &, - € S?
and 7, - € S® whose projection under the quotient map into RP? is = and y respectively. For any
two distinct non-antipodal points on S?, there is a unique plane which passes through these two
points and the centre of the sphere. This plane intersects the sphere in a great circle. Whichever
choice of two non-antipodal points we make among the points #, %, §, -4 € S, the plane II that
passes through these two points and the centre of the sphere intersects the sphere in a great circle
C, which clearly contains the points &, -, §, —j. Consider now the unique unit vectors A, —A, that
are orthogonal to the plane II. These two vectors intersect the sphere in two antipodal points
A,-A € S%. Consider the geodesics A%, A(-%), A, A(-7), and -AZ,-A(-2),-Aj,-A(-g). On
each of these geodesics, take n equally-spaced distinct new points on S2. We observe that these
8n new distinct points on S? are projected to 4n new distinct points on RP2, since the 4n equally
spaced distinct new points on A%, A(-z), Ay, A(-g) are antipodal to the 4n equally spaced distinct
new points on —Az,-A(-%),-Ag,-A(-7). Thus based on this construction, from two distinct
unordered points z,y in RP? we obtain 4n distinct unordered points in RP?, different from z
and y. We will denote these 4n distinct unordered new points in RP? by N. This is an explicit
cross-section sy, : Fo(RP?)/Sy — Fayy, (RP?)/(S2 x S4y,), for n e N.

Moreover, if we project the points A, —A from S? into RP? we obtain one new point on RP?,
which we denote by A for simplicity, different from z,y and from the other points of N on RP2.
This yields an explicit cross-section s4p11 : Fo(RP?)/Sq — F2+(4n+1)(RP2)/(52 X Syn+1), for n e N.

We recall that the points &, -, ¢, —¢ lie on the great circle C' on S?. These four points give
rise to four geodesics; &7y, §(-%),-Z(-%),-¢Z on C. Taking the midpoints of each of these four
geodesics, we observe that the midpoint of the geodesic 7 is the antipodal point of the midpoint of
the geodesic —Z(-¢) and the midpoint of the geodesic §(-) is the antipodal point of the midpoint
of the geodesic —§Z. We denote these four midpoints by My, —M;y, Ma,—Ms, as we see in Figure 3.1.
As a result, projecting My, —M;, My, —M, from S? into RP? we obtain two new distinct unordered
points, which we denote by M; and M, for simplicity. Note that M; and Ms are different from x,y
and from any other new point that we have already constructed. Thus the points of IV that we have
already explicitly constructed together with these two new distinct unordered points M; and M,
provide an explicit cross-section s4,o @ Fo(RP?)/Sy — F2+(4n+2)(RP2)/(52 X Syns2), for n e N.

Finally, if we consider the N points together with the two unordered distinct points, My, Mo
and the point A on RP?, we obtain 4n + 3 new unordered distinct points different from z,y on the
projective plane. This leads to an explicit cross-section s4p3 : F2(RP?)/S2 — Foy(an43)(RP?)/(S2x
San+s), for n e N.

Summing up, there exists a cross-section, s,, : Fo(RP?)/Sy — Faypm(RP?)/(S2 x Sy,), for the
fibration gasm 2 : Fosm (RP?)/(S2 x Sp) — Fo(RP?)/Ss, for any m =0,1,2,3 mod 4 and thus for
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any m € N. We underline that the new points that we have obtained are independent from any
choice of the representatives on S? of z,y and that this construction depends continuously on z
and y. O

As well as the existence of a cross-section s, : Fo(RP?)/Sy — Foym(RP?)/(Sy x S,,), for
any m € N we can also provide an explicit algebraic section 5, : Bo(RP?) — Ba ,,(RP?) for the
homomorphism Gasm 2 : Ba,m (RP?) — Ba(RP?), as we describe in the following proposition.

Proposition 3.1.3. Let m € N. The homomorphism qasm 2 * Bg)m(sz) — By(RP?) admits a
section, for every m € N.

Proof. Let m ¢ N. We will define explicitly an algebraic section 3, : Bo(RP?) — Ba ,,,(RP?) for
the homomorphism Gasm 2 : B2.m(RP?) — Ba(RP?). We will do so by considering two different
cases, when m = 2k and when m = 2k + 1, where k£ € N. In Section 2.1 we mentioned that Van
Buskirk, ([VB66] page 87), proved that By(IRP?) is isomorphic to the dicyclic group of order 16 and
in particular that By(RP?) = (o1, p1 | (o1p7)* = p? = 62). To be compatible with our upcoming
presentation, we give the following presentation of the group By (RP?):

B2(RP2) = (ag, AQ | ag = 1, A% = a%, A2a2A51 = a;l) = D?;C]_G,
where ag = 0] 1 p1 and As = o1. Note that the isomorphism follows from Proposition 2.1.7. Before
examining the two different cases, we will prove a general statement which we will use later. Let

4(2k+2) _ 4 Y2 = 2(2k+2)

Dicg(arory = {2,y | 2 ,yzy =7,

then
DiC16 o (m’“l,xky | xS(k+1) - 1’ (mky)Q _ x4(k+1)’ (mky)xk+1(;vky)_l — :L'_(k+1)>. (1)

To begin with, note that from the given presentation of Dicg(a oy it follows that

2**1 s of order 8. (2)
Moreover, using the relation yzy™' = 27! we have
(xky)Q _ xkyxky—lyQ _ l‘kx_kyQ _ y2.
From the given presentation of Dicg(z,or) we also have
x4(k+1) _ y2.
Thus,
(.’Iky)Q _ Z4(k+1). (3)
Lastly, from the relation yxy~' = 27!, we deduce that
(xky);v’”l(xky)_l :$_(k+1). (4)

From relations (2), (3) and (4) we conclude that (z**! z¥y) is isomorphic to a quotient of the
dicyclic group of order 16. But

Dicg(a42r) = () U{z)y,

where 2¥*1 € (z) while 2y € (x)y. Thus, (z**1)n{z*y} = @, which implies that (z**! 2*y) contains
at least 16 distinct elements, and so

(a1 2*y) = Dicyg.

(a) First, let m = 2k, for k € N. From Proposition 2.1.6, for n > 2, the group B, (RP?), contains
the dicyclic group of order 8n as a subgroup,

Dicsy, = (w,y | 2" = 2, yay ' =a71).
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Thus, Dicga42r) is a subgroup of Bs o (RP?). From Proposition 2.1.7 we have

A2Kk+2) _ g A2 2(2k+2)

» -1 -1
Dicg(a4ok) = (212K, Dosok | gy 4ok = oiop s Dosor@2i2kAdop = Goyok)s

where a242k = UIiQk"'O'Ilpl and A2+2k = (0-10—2'“0-1+2k)(0-10—2“'0—216)'“(0-10—2)0—1' We consider
the subgroup of Dicg(a42k) generated by the elements aggk and a’2“+2kA2+2k and it follows
from (1) that (agi%k,a§+2kA2+2k> ~ Dicyg. Therefore, the homomorphism

i1 : Bo(RP?) — By, (RP?)

defined by

i1(as) = asiy and i1 (A2) = b5, Aok
is an injective homomorphism of By(RP?) in Ba,orx(RP?). Note that the elements abtl,
and a]; Lo D242k have the correct permutation type, but no transposition corresponds to the
first and second strand. In order to obtain an embedding of By(RP?) in Bg o (RP?), we
need to conjugate agi%k and ag +or D242k Dy a suitable element. Thus, we conjugate aggk and
a§+2kA2+2k by (020'3"'0'k+1). We set

C:= (020’3"°O'k+1).

Note that the projection of the elements ¢ and ¢! in the symmetric group Sasor is the
permutation given by (k + 1)-cycles

(2 (k+2) (k+1)...543) and ((k+2) 23...(k-1) Kk (k‘+1)) respectively.

Moreover, the projection of element as,o in Sayop is the permutation given by (2k + 2)-cycle
(12... (2k+1) (2k+ 2)) Thus, the projection of element a1, in So,9; is the permutation
that corresponds to the following product of (k + 1) transpositions:

(1 (k+2))(2 (k+3))(k 2k +1))((k+1) (2k +2)).

It follows that c-alggk -c7! € By o, (RP?), since its projection in Sa, o, is the permutation given
by the following product of (k + 1) transpositions:

(12)(3 (k+3))(p (k+p))((k+1) (2k+1))((k+2) (2k+2)), for 3<p<k+2.

We have a similar result for the element c-aéc o Doiok -¢~!. For simplicity, we will focus only
on the 1% and 2"¢ points, regarding the permutation that corresponds to the projection of the
element c- a§+2kA2+2k ¢ in Sy,9r. We have the following:

k -1 k -1
1S 2220 o 2202 19 © L0 and 2 S k42 D22k gp g B2k g

1.

Thus, the projection of the element c‘a§+2kA2+2k ¢! in So,9p is a permutation that contains
the transposition (1 2). Therefore, c- a’2“+2kA2+2k ¢t e By op(RP?). As a result, we conclude
that the homomorphism

i1 : Bo(RP?) — By o (RP?)
defined by
i1(ag) =c a3, -7t and i1 (Ag) = ¢ ab o Aniop - ¢t
is an embedding of By(RP?) in Bs 5 (RP?), since By(RP?) is generated by az and Ay, To
prove that ga,2k 2 0 i1 = idp,®rp2), Which means that the homomorphism ; is indeed a section

for Gayoko : Baor(RP?) — Ba(RP?), it suffices to make the following observation, which is
also illustrated in Figures 3.2 and 3.3, in the case k = 3.
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ay € Bo(RP?) c-ag-cl e Byg(RP?) as € By(RP?)

Figure 3.2 The image of as = 07'p; under the map 7, : By(RP?) — BQ’Qk(RPZ), for k = 3. Note
that with the blue dash we illustrate the element p;.

A, € By(RP?) Ag € Bo(RP?)

c-a3lg-ct e By g(RP?)

Figure 3.3 The image of Ay = oy under the map i; : Bo(RP?) — Bg o (RP?), for k = 3. Note that
with the blue dash we illustrate the element p;.

Note that in the braid ¢, the 1°¢ and the 2" strands have no crossing between them, and that
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the 2"¢ strand ends at the (k +2)*" point, while the 15 strand ends at the 1%¢ point. Then, in
the braid a4*3, there is a negative crossing, o;!,, between the 15" strand and the (k +2)%",
as the 1%t strand ends at the (k + 2)*" point and the (k + 2)*" strand ends at the 1% point
under p;. Finally, the braid ¢ ! has no crossing between the 1% and the (k + 2)*" strands
and the (k +2)" strand ends at the 2"? point. Thus, the braid, c-a5?}, - ¢, concerning the
first and the second strands, consists precisely of a crossing 07! and then p;. This implies
that the homomorphism gs.2r,2, that can be considered geometrically as forgetting the last 2k
strands, maps the element c~a’2“j:%k ¢ to o7 py. Therefore, (Garar2 ©i1)(az) = az € Bo(RP?).
Similarly, in the braid ¢, the 1°¢ and the 2"? strands have no crossing between them, and the
274 strand ends at the (k +2)" point, while the first stand ends at the first point. Then, in
the braid af,,, there is no crossing between the 1°¢ strand and the (k +2)'", where the 1°¢
strand ends at the (k + 1) point and the (k +2)" strand ends at the (2k +2)*" point. The
braid Ag,or contains only one positive crossing oy, between the (k + l)th strand and the
(2k +2)*" ) as the (k + 1) strand ends at the (k +2)*" point and the (2k +2)*" ends at the
1%t point. Finally, the braid ¢! has no crossing between the 1% and the (k + 2)*" strands and
the (k+2)™ strand ends at the 2"¢ point. Thus, the braid, c¢-a%, ., Asior - ¢!, concerning
the first and the second strands, consists precisely of a crossing o;. This implies that the
homomorphism ga125 2, that can be considered geometrically as forgetting the last 2k strands,
maps the element c~a’2€+2kA2+2k ¢ to 01. Therefore, (gasor2 ©41)(A2) = Ay € Bo(RP?).
Summing up, the homomorphism i, is a section for the homomorphism G2+2k,2-

Now let m = 2k + 1, for k € N. From Proposition 2.1.6, for n > 3, the group B, (RP?), contains
the dicyclic group of order 8(n —1) as a subgroup,

Dics(n-1y = (,y | 27 =2, yay™ = 27").
Thus, Dicga4ar) is a subgroup of B2+(2k+1)(RP2), where from Proposition 2.1.7,
Dicg(aaary = (b, Aa” [0 =1, (Aa™)? = 0?5 (A" )b(Aa) ! =b71),

and where b := by, (2p41) = Oopi1 01 tp1, a = A2+ (2k+1) = Oonso-0r p1 and A = Agi(2k+1) =
(0102--02142)(0102-0ak41) - (0102)01. We consider the subgroup of Dicg(a.2r) generated by
the elements v**! and b*Aa~! and it follows from (1) that (b**1, 0¥ Aa~t) = Dicys. Therefore,
the homomorphism

io : Bo(RP?) — Boy 241y (RP?)

defined by
ig(ag) = bk+1 and iQ(Ag) = bkAa"l

is an injective homomorphism of By(RP?) in Bay(2k+1) (RP?). In order to obtain an embedding
of Bo(RP?) in By (21+1)(RP?), we need to conjugate b*** and b*Aa™" by a suitable element.
Thus, as in the case (a), we conjugate b**' and b*Aa~! by c¢:= (0203--0141). Moreover, note
that the braid b = oy}, =07 p1 € B2+(2k+1)(RP2) differs from the braid asio = 05}, 07 p1 €
Bs,or(RP?) by just one extra vertical strand that corresponds to the (2 + (2k +1))*" point.
That means that the element b**! and the element agigk have the same braiding concerning
the first (2 + 2k) points. Therefore, as we saw in case (a), the projection of element ag,of in
Sayar, is the permutation given by the (2k +2)-cycle (1 2... (2k+1) (2k+2)), and the same
holds for the projection of the element b in S5, (2x+1). Moreover, as we saw in case (a), the
projection of the element alggk in S,k is the permutation given by the following product of
(k + 1)-transpositions:

(1 (k+2))(2 (k+3))(k 2k +1))((k+1) (2k +2)),
and therefore, the element b**! corresponds to the same permutation under the projection in

SQ+(2k+1)-

It follows that ¢-b**1.c¢ ! e B2’(2k+1)(RP2), since its projection in So, (2141) is the permutation
given by the following product of (k + 1)-transpositions:

(12)(3 (k+3))(p (k+p))((k+1) (2k+1))((k+2) (2k+2)), for 3<p<k+2.
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We have a similar result for the element ¢-b*Aa™! - ¢! For simplicity, we will focus only on
the 1% and 2" points, regarding the permutation that corresponds to the projection of the
element ¢-b*Aa™t- ¢! in So4(2k+1)- We have the following:

k -1 -1
11 Y k1 2 k43 k42 0

and

c b* A a! ¢!
2— k+2—2k+2—2—1—1.

Thus, the projection of the element ¢-b*Aa™!- ¢! in So4(2k+1) is a permutation that contains
the transposition (1 2). Therefore, c¢-b*Aa™' - ¢ € By ok+1(RP?). As a result, we conclude
that the homomorphism

iz Bo(RP?) — Byops1 (RP?),

defined by iz(az) = ¢-b¥*1- ¢! and ia(As) = ¢-b*Aa! - ¢! is an embedding of By(RP?) in
BQ72]€+1(RP2)7 since By(RP?) is generated by as and Ay. To prove that

Qo+ (2k+1),2 © iz = idp,(®P2),
which means that the homomorphism 45 is indeed a section for
Tor(2k41),2 * B2,2ks1 (RP?) — Bo(RP?),

it suffices to make the following observation, which is also illustrated in Figures 3.4 and 3.5, in
the case k = 3.

= AN Y|

as € Bz(RPZ) c- b4 ‘(17l € BQ 7(RPZ) ag € BZ(RPZ)

Figure 3.4 The image of as = 0™1p; under the map iy : By(RP?) — Ba ak+1(RP?), for k = 3. Note
that with the blue dash we illustrate the element p;.
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12

Ay € Bo(RP?) A € By(RP?)

A

c-bBPAa ¢ le B;;(]RPQ)

Figure 3.5 The image of Ay = o1 under the map iy : Bo(RP?) — BQ72]€+1(RP2), for k£ = 3. Note that
the first three blue dashes illustrate the element p;, while the last one illustrates the element py!.

Note that in the braid ¢, the 1% and the 2"¢ strands have no crossing between them, and that
the 2"¢ strand ends at the (k +2)*" point, while the 15 strand ends at the 1% point. Then, in
the braid b**! there is a negative crossing, o;1,, between the 1% strand and the (k +2)'", as
the 1%¢ strand ends at the (k+2)*" point and the (k+2)* strand ends at the 1% point under p;.
Finally, the braid ¢! has no crossing between the 15 and the (k+2)*" strands and the (k+2)*"
strand ends at the 2" point. Thus, the braid, ¢-b**! - ¢!, concerning the first and the second
strands, consists precisely of a crossing o7 and then p;. This implies that the homomorphism
Q2+(2k+1),2, that can be considered geometrically as forgetting the last (2k + 1) strands, maps
b**1. ¢! to o7l py. Therefore, (G2+(2k+1),2 © i2)(az) = as € Bo(RP?). Similarly,
in the braid ¢, the 15 and the 2" strands have no crossing between them, and the 2" strand
ends at the (k +2)*" point, while the 1°¢ stand ends at the 15! point. Then, in the braid b*
there is no crossing between the 1%¢ strand and the (k +2)*", where the 1%¢ strand ends at the
(k+ 1) point and the (k +2)'" strand ends at the (2k +2)!* point. The braid A contains
only one positive crossing o1 between the (k+1)%" strand and the (2k +2)", as the (k+1)®"
strand ends at the (k + 3)*" point and the (2k + 2)*" ends at the 2"¢ point. Then, the braid
a~! has no crossing between the 2" and the (k + 3)" strands, where the 2"¢ strand ends at
the 1°¢ point and the (k +3)*"* and the (k +2)** point. Finally, the braid ¢~ has no crossing
between the 1°¢ and the (k + 2)'" strands and the (k + 2)'" strand ends at the 2" point.
Thus, the braid, ¢-b*Aa' - ¢!, concerning the first and the second strands, consists precisely
of a crossing o1. This implies that the homomorphism Gy (24+1),2, that can be considered

the element c-
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geometrically as forgetting the last (2k + 1) strands, maps the element c-b*Aa™!- c’l_to 1.
Therefore, (Go(2k+1),2 ©12)(A2) = Ay € By(RP?). Summing up, the homomorphism iy is a
section for the homomorphism s, (2k+1),2-

We conclude that, for every m € N, we have an explicit algebraic section
5: Bo(RP?) — By, (RP?)
for the homomorphism a4 2 : B27m(RP2) — By(RP?) defined as follows:

_ {il, for m = 2k,
S =

19, form=2k+1.

O
3.2 The splitting problem for the cases n > 3
Let m € N and n > 3. We consider the following short exact sequence:

1 —— Bp(RP2~ {z1,...,20}) — Bpm(RP?) ™% B (RP?) —— 1. (5)

In this Section we study the splitting problem of the short exact sequence (5), for n >3 and m € N.
In particular, we first consider the case m = 1, where we prove that this short exact sequence does
not split for any value of n > 3, and later the consider the case m > 1.

Proposition 3.2.1. For n > 3, the short exact sequence
1 —— By(RP2\ {z1,...,20}) — Bn1(RP?) Z2% B (RP?) —— 1

does not split.

Proof. Let n > 3. We have the following commutative diagram of short exact sequences:

1 —— Py (RP?) —— B, (RP?) —— S, — 1

lQ'n,+1,n\Pn+1(RP2) l(jn+1.n ‘

1 —— P,(RP?) —— B,(RP?) —— S,, —— 1.

The horizontal short exact sequences are those described in (1). Suppose on the contrary that
for n > 3, the homomorphism G415, : By,1 (RP?) — B, (RP?) admits an algebraic section Sp+ln
B, (RP?) — B, 1(RP?). Recall that the homomorphism Gy+1,, can be considered geometrically as
forgetting the last strand. Therefore, from the commutative diagram it follows that there exists an
algebraic section 5,11 ,|p, rp2) for the homomorphism Gn+1,x|p,,, (rp2), as well. But from Theorem
1.3.3, we know that for n > 3 and m = 1 the homomorphism P, ,; (RP?) — P, (RP?) does not admit
an algebraic section. We thus reach a contradiction, and this concludes the proof. O

We consider now the case m > 1. For n > 3 and m > 1 we will provide a necessary condition, in
order to have that the short exact sequence (5) splits. Let N be a normal subgroup of B,, ., (RP?),
which is contained also in Bm(RP2 ~Az1,...,2,}). The obtained quotiented short exact sequence
is the following:

1 — Bm(]RP2 N {xl,,xn})/N O Bnm(RPQ)/N i> BN(RPQ) e 17 (6)

where ¢ : By, m(RP?)/N — B,(RP?) denotes the induced homomorphism. We observe that if the
short exact sequence (5) splits then this quotiented short exact sequence has to split as well. To be
more precise, consider the following diagram of short exact sequences:

1 — Bu(RP2\{zy,...,20}) —— Bpm(RP?) 2% B (RP?) —— 1

l b | "

1 —— Bn(RP2~{z1,...,2,})/N — B, nm(RP?)/N —= B,(RP?) — 1.
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Suppose that the homomorphism Gy m n * Bnym(RPZ) — B,(RP?) admits a section Sp+mon *
B, (RP?) — By, ;m(RP?). Then q: By, ,m(RP?)/N — B,(RP?) admits a section s = pro S,.m.n
B, (RP?) — B, m(RP?)/N. Based on this observation, we see that it is helpful to know the lower
central and derived series of the braid groups appearing in these group extensions, since possible
choices of the group N could be elements of either the lower central series of B, (RP*~{zy,...,z,})
or of the derived series of B,,(RP?\ {z1,...,2,}). The choice that we make for N, in order to
study the splitting of the quotiented short exact sequence (6) is T'o(By, (RP? N {z1,...,2,})).
We know that the subgroups of the lower central series of a group are characteristic subgroups.
Thus, Ta(B,,(RP?\ {x1,...,2,})) is a characteristic subgroup of B,,(RP?\ {z1,...,7,}), and
since By, (RP?\ {x1,...,2,}) is a normal subgroup of B,, ,, (RP?), it follows that Ts(B,,(RP? \
{x1,...,2,})) is a normal subgroup of By, ,,,(RP?). For I := ['y(B,,(RP?\ {z1,...,2,})), which
is a normal subgroup of B, ,,(RP?) contained in B,,(RP?\ {z1,...,2,}), we get the following
short exact sequence:

1 —— Bn(RP?2~{z1,...,2,})/T —— Bpm(RP?)/T —= B,(RP?) —— 1.  (8)

In order to study the short exact sequence (8) we need to know a presentation of the quotients
B (RP2\{x1,...,2,})/T and B,, ,,,(RP?)/T. We already have a presentation of the Abelian group
By, (RPN {z1,...,2,})/T, given by Corollary 2.2.11. We recall that B,,(RP%\ {z1,...,z,})/T =
7" x Lo, where p, B1,...,n-1 generate the Z™-component and o the Zs-component. Regarding a
possible presentation of Bn’m(IRPQ)/l"7 one can obtain one using the presentation of B,,(RP? \
{x1,...,2,})/T, given by Corollary 2.2.11, the given presentation of B, (RP?) in Theorem 2.1.1,
and applying standard techniques for obtaining a presentation of group extensions as described in
[Joh97] (page 139) and presented in detail in Propositions 2.2.1, 2.2.4, 2.2.5 and Theorem 2.2.7.

However, for N =T the group B,,(RP%?\ {z1,...,z,})/T" is the Abelianisation of B,,(RP?
{z1,...,2,}). Thus, from commutative diagram of short exact sequences (7), a presentation of
Bn,m(RPz) /T may also be obtained straightforwardly by considering as set of generators the union
of the generators of B,,(RP%~ {x1,...,2,})/T" and the coset representatives of the generators of
B, (RP?), and as set of relations the relations of By, ,,(RP?), given in Theorem 2.2.7, projected
into B, m(RP?)/T. Thus, we obtain the following proposition.

Proposition 3.2.2. Forn >2, m > 1, the following constitutes a presentation of Bn’m(RPQ)/F,
where I' = Ty (B (RP? \ {z1,...,2,})).

Generators: p, o, b1,y Bn, Ty s Tn-1, q1s---,qn-

Relations:
(I) The relations (i)-(vi) from Corollary 2.2.11,

(II) For 1<i,k<n-1, 1<j<n,
TiTk = TpTi, for |i—k|>1,
TiTi+1Ti = Tiel1 TiTi+1,
Tiqj = q;Ti, for j#i,1+1,
qi = Tiqi+1Ti,
2_ -1 -1, .
71‘2 =9;114;  9i+19:,
qi1 = (7'17'2 . ..Tn_QTn_l)ﬂZL(Tn_lTn_2 .. .TQTl).

(III) (a) For 1<i<n-1, 1<j<n

oT; = T;0,
U(]jZQjO'.
(b) For 1<i<n-1, 1<j<n,
PT; = Tip,
ajp = Bjpg;-

(c) For 1<i<n-1, 1<k<n,



3.2. The splitting problem for the cases n > 3 43

Bk, fori+k-1k.
TzﬂkTi_l: Br-1, fori=k-1.

Bk+1) fOTiZk.
(d) For 1<jk<n,
a1 B, forj#k.
4145 {,3,;1, for j = k.

Remark 3.2.3. In Proposition 3.2.2 we denote by 7; and ¢; the coset representatives of the generators
o; and p; of B,(RP?), given by Theorem 2.1.1, for I<i<n-1land 1<j<n.

Now, suppose that there exists a section Sp4mm : Bn(RP?) — B, ,,(RP?) for the map
Tn+mom * Bmm(RPQ) — B,(RP?). As we already saw, it follows that there exists a section
s: By (RP?) — B, m(RP?)/T for q: B, m(RP?)/T — B, (RP?). From Corollary 2.2.11, the set
{B1,-..,Bn-1,p,0} forms a generating set of ker(q), which is the group B,,(RP?>~{z1,...,2,})/T =
7™ x Zy. This allows us to consider the image of the generating set of B,,(RP?), under the section
s, as follows:

s(ri)=m- Bf“Bgi‘z---ﬁﬁ?’lpliami, for1<i<n-1, (9)
N\ — . 75]',1 Ej,z Ej,n—l l_j m; f 1 . 10
s(q;) =q; - By By B,L1 T po™, for 1< j <, (10)
where ki71, k@g, ey ki,n—la li, Efj@, ]gjg, ‘[;:j,n—lal_j € Z and m;, ﬁlj € {O7 1} Note that these integers are

unique for every s(r;) and s(g;), where 1 <i<n-1and 1< j <n. Under the assumption that there
exists a section s : B, (RP?) — B, ,,(RP?)/T, the images under s of the relations in B, (RP?)
are also relations in B, ,,(RP?)/T. In this way, we will obtain further information regarding
the exponents in the formulas (9), (10) and possible restrictions for the value of m, under the
assumption that the short exact sequence (5) splits.

Based on the presentation of B,,(RP?) for n > 3 given by Theorem 2.1.1, we have the following
six relations, which hold in B, ,,(RP?)/T:

o R1. s(1q;) =s(gjm), for j#i,i+1, 1<i<n-1, 1<j<n.
e R2. s(q;) = s(7iqis17), for 1 <i<n—1.

e R3. s(mmis17i) = $(Tis17TiTiv1), for 1 <i<n—1.

o R4. s(7?) =s(q; a7 giv1qi), for 1<i<n—1.

o R5. s(77j) =s(rym), for |i-j|>1 and 1<4,5<n-1.

e R6. 5(¢}) =s(T1To " TnoT? | TnoTaT1)-

In order to prove the theorem that follows, we will make use of the following relations in
B,.m(RP?)/T that appear in Proposition 3.2.2:

1. 0% =1, relation (i) of Corollary 2.2.11,

2. By =B BBt p72, relation (i4) of Corollary 2.2.11,

3. Bj,0,p commute pairwise, relations (izi), (iv), (v) of Corollary 2.2.11,

4. 7; commutes with o, p, relations (I11)(a), (II1T)(b) of Proposition 3.2.2,
5. BiTi = TiBir1 and Bip17; = 754, relation (IIT)(c) of Proposition 3.2.2,

6. ¢i = Ti¢is17; and g = q;7;, for j #i,i+ 1, relation (IT) of Proposition 3.2.2,
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7. g; commutes with o, relation (I1I)(a) of Proposition 3.2.2,
8. Bjq; = qujTl and B;q; = ¢; i, for j # ¢, relation (I1I)(d) of Proposition 3.2.2,

9. pg; = q;B;p, which is deduced from g¢;p = B;pg; and B;q; = q]ﬂ;l given by (I17)(d) and
(I1I)(b) of Proposition 3.2.2 respectively. Thus, using also the fact that p commutes with
By, it holds that o =kp’“’2(qu) = /;k;j(%ﬁjp) = " 2(pg;)(Bip) = p**(4;85p)(Bjp) =
p ‘Z(qjﬁjzpz) == p(q;5; “Lpkmly = q; 87 p”, which means that

p*q; = ;B p", for ke Z,

where 1<i<n-1land 1<j<n.

Theorem 3.2.4. Let m>1 and n > 3. If the following short exact sequence
1 —— Bp(RP?~{a1,...,20}) —— Bom(RP?) 258 B (RP?) — 5 1 (11)

splits, then m = k(n—1), where k > 1.

Proof. Based on the above discussion and on the assumption that the short exact sequence (11)
splits, we will examine the relations R1.-R6., which hold in B, ,,(RP?)/T, from which we will
deduce that m is a multiple of (n—1).

We start with the relation R1. where s(7;q;) = s(g;7;), for j #4,i+1, 1<i<n-land 1<j<n.
We focus on the case where i =n—1 and 1< j <n-2. Using the formulas (9), (10) and the above
relations, 1.-9., we have the following:

k- kn-1,j En-1,n-1 ln_ e kj; kjna 1 _my
S(Tn—l%‘):Tn—lﬂl Ll"’ﬁj 17]"'671 11 lp to™ gy 51J1"ﬂj11“'6n1_1 IPJO'm’

_ kn-1,1 —kn-1,5 kn-1,n-1 gln-1 ln-1 —Mn_1 akj1 ki kj n-1 I
= T B o ot plncgnc it ghaa it ol gm
kpo1,1+k;j 1 ﬁ—kn-1,j+ln-1+l_€j,j ﬂkn Lone1+Kj no1 - 1+1; P

:Tn—l(Ijﬂl ’ cee J ces n—1 p

and

k;, kjj  akjn-1 - ko1 gkn-tn-1 ln- -
S((Jan—l) :leglj'l"’/@jJJ"'ﬁnjl 1,OJO'm77'n 161 b /BJ IJ"'/Bn_ll' lp" 1gMn-1
_ Qj'rn—lﬂfj’l“'ﬂ;?j’j”'ﬂ Jon— 2ﬁk] n— 1pl Um]ﬂln 1,1 ”ﬂfnfl,j.”BSnil,nflpln,la_mn,l
/_€‘1 E"’v _k —k', - —k’ —2]{: .
= QB g (g g Bt ) gl g

/Bfn—l,l n_ﬂfn—l,j .”/BSnil.n—lpln_la_mn_l

g1=kjn-1+kn_1, 1, kjj=kjn-1+kn-1,; kjn-2-kjn-1+kn-1,n-2 p=kjn-1+kn-1,n-1
=qjTn- 151 ﬁ] "'571_2 ﬁn_l

lj*2k7’ n1t+ln_1 M +Mp-1

pi 2k 1 o

Comparing the coefficients of the elements p and 8; of By, ,,(RP?)/T in these two equations, we
obtain the following;:

Tfj,n—1 =0, forl1<j<mn-2. (12)
ln-1=2kp-1,5, for 1<j<n-2. (13)

In the case where j =n and 1 <i<n -1 we have the following:

i Qi i, in-1 l; n, n,i n,i nn-1 1,
S(TZCIn) = 7—151 't ﬁ ﬂHlH B _ ! Um1Qnﬂ . ﬁ Bﬁl e ﬂ 1,0 g
= TiQnﬁl ﬂ /BHlH" B 16 P o ﬂl . 6 /BZ+1 gt ﬁ lp o™

_ kia=li+kn,1 kzﬁ,i—lﬁ'kn,zﬂ ki is1=litkn, iv1 kim-1=litkn,n-1 1;~20;+1, _m;+n
= TiGn B Bisi ~Bply P o
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and

S(QnTi)anﬂf an lewl 5 nnlpno_mn,rﬂ ﬁ11ﬁ1+117+1 ﬁ in— 1p o™

—anzﬁlnl 5z+1 /Bin,iJrl.“/@ n,n— lpnamnﬁ zl ﬁil/gz_:ll+l'/8 i,n— 1p 0,

kpn,1+ki 1 kn,iv1+ki i gkn,itki i1 Knn-1+kin-1 In+l; _mn,+m;
B Bivt =Byl p- 0 :

= aniﬂl

Comparing the coefficients of the element 31 of B,, ,,,(RP?)/T in these two equations, we obtain
the following:

[;=0, for 1<i<n-2. (14)

We continue with R2. for which s(¢;) = s(7:¢i+17:), for 1 <i <n—1. We will discuss the case
i =n—1 separately. So, for 1 <i<n -2 we have from (14) that [; = 0, and once again, based on the
formulas (9), (10) and the previously mentioned relations, 1.-9., we have the following:

S(Qz) Qzﬁlll 61162_:11+1 ﬁ i,m— lp O'

and

S(Tigin ) = TBL B B B g BB B gl g
T B B gl g
= T B B Bk g g @R gRens R gRins plia i
Bt g gl gt gm:
= Tiqin Bt gl gk gt 1gmigf“lﬂ...ﬁﬁ“@fﬂl»m...5§i+f=v»—1pfi+1gfni+1

ﬂll 1 ﬂ Lzﬂz;]:ul an; la_mi

_ ki1+kivi1 ~ki i1 +kist,ir1thi okiitkiet, itk ir1 2k; o1 +Kist ne1 Do 2mi+imisn
= TiQHlTiBl e Biii =By prtoT
_ 2k; 1+kis1,1 —kiis1tkist,ie1 ki pkiitkie, itk i1 2k o1 +Kist,ne1 lie1 st
= TiGi+1Ti Py B, B B plitto i

Comparing the coefficients of the elements o and p of Bmm(RPQ) /T in these two equations, we
obtain the following;:

miZ’ﬁ’Li_‘_l, for1<i<n-2. (15)

=l for 1<i<n—-2. (16)

~
<
|

In the case where i = n — 1 we have the following:
S(Qn—l) = Qn—l/Bl

Mn-1

n-1, 1"'ﬁzk" 1,i "5:7:11 - 1,0l"’10

and

S(T’nfquLT’nfl) = Tnilﬂfn_l’l...ﬁ::‘ilﬁn_lplnflamn—l qnﬂfn,l.nﬂkn n— lp 0_

Mp-1

kn—l,l Bkn—l.n—l ln,1

Tn-15 n-1 g

We know that the element ¢ commutes with the other elements that appear in the second equation.
This implies that the coefficient of ¢ in the second equation is m,,, since o2 = 1. Thus, comparing
the coefficients of the element o of B,, ,,(RP?)/T in these two equations, we obtain the following:

Ty = 1. (17)

We continue with relation R3. where s(7;7;117;) = s(Ti417Ti+1), for 1 <4 <m—1. We will discuss
the case i = n — 2 separately. So, for 1 <i <n -2 we have from (14) that [; = 0, and once again,
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based on the formulas (9), (10) and the previously mentioned relations, 1.-9., we have the following:

s(7iTis1mi) = Tlﬁfz 5 i, z5l;f+1ﬁl+z27+2___ﬁsqz_,;—lamiTHlﬁfnlJ___ﬂfiﬂ,iﬂfﬁl,iuﬂfj;l,iﬂ_“ﬂfLi:ll,n—lo_miﬂ
K ome .
74/317/1 ﬂ 11ﬁzjf+151;21+2"'5n211 lo_ml

— Ti'ri+1/31“ ﬂ 1, zﬂl;2z+1 Z_:17,+2 iz,z___ﬁ’nf:?ll lo_ml,riﬂll+1,1“./8ilil,l

kiv1,i+1 pkit1,iv2 kiv1,n-1 ivi gkiivl gkiiv2 Kin-1 _mi+mis1
B; Bita =Bl 5 5 5”1 BH—Q Bl o
i1, ivitl gki,iv2 kin-1 _m; gki+1,1 kiv1,i gkiv1,ie1 gkiv1,it2 Kit1,n-1
= 7'171+17'1B1 Bz+1 ﬁz+2 51‘ By o Bl Bi " B; Biso By
i pkiit1 pkiive | pkin-1 _mi+mis
6 B /8%+1 Bz+2 ﬁn—l g
_ kii+kiv1 2k i—1+kiv1,i-1 ki iv2tkiv1,iv1+Ki i pkiitkiv1 itk iv1
= TiTi+lTiﬁ1 "'61‘,1 Bl‘ ﬂi+1
/Bk'i,i+1+ki+1,i+2+ki,i+2 /BQki,i+3+ki+l,i+3...52ki,n—l+ki+l,n—l Mis1
i+2 i+3 n—1 g

and

S(Tie1TiTia1) = Ty By 11 BE BEG I BERL IR L BRI gy gL g gl
B e By O By B BT B g i g
= Taa Ty Bl B i Rt g gL g
Bt Bl it gt gl gl ghiiee  ghitnt g,

_ TZ_+17_Z_7_Z_+1B11'+1,1__ﬁfj;,iﬂful,ul /Bf_:-{l,i+2_“/8fli_+1l,n—lO_mi+lﬁfi,1“.ﬁfi,i

6ki,i+1 kri,uz___ﬁ in— 15 13 L+1,'i/8ki+1,i+l ki+1,i+2___ﬂki+l,71—1a_mi+1+mi
i+2 i+1 1 i i+1 i+2 n-1

2kit1, 1+kb 1 2kiv1,i-1+kiio1 pkiv1iv1 R itRiv1 i ghivt ivetEi ir2tKigt i1
= 7'1+17'171+1ﬂ "61-_1 ﬂl 51'4.1
lBki+1,i+ki,i+1+ki+1,z’+2ﬂ2ki+1,i+3+ki,i+3.../szi+1,n—1+ki,n—l o™
i+2 i+3 n-1

Comparing the coefficients of the element 3; of B, ., (RP?)/T in these two equations, it follows that
kiv1,i = ki i42, for 1 <7 <n —2. Using this relation and comparing the coefficients of the element
Bis1 of Bmm(RPQ)/F in these two equations, it follows that k; ; + ki ix1 = Kis1442 + Kir1,i41, for
1 <i<n-2. Moreover, comparing the coefficients of o we obtain m; = m;,1, for 1 <7 <n —2. Thus,
we have the following;:

m; =M, for 1 <i<n—2. (18)
kii+ ki1 = kw1602 + Kiv1,i41, for 1<i<n -2, (19)
In the case where i = n — 2 we have the following:

S(Tn—ZTn—lTn—Q) :Tn—QBf"iZ’l .. '/6::7152’"72 ﬂ’r’jrj—lz,nfl O,mn—2

kn72,1“./Bknf2,n72ﬂkn72,nfl M2

kn—l.l kn—l,n—Z kn—l,n—l l_l Mnp-1
Tn-151 ~Bpls Bni pro

Tn-2/1 n—2 n-1 0
and
kn— kn-1,n-2 pkn-1,n- Kn— kn-2,n-2 pkn-2,n-
S(Tn—lTn—QTn—l) :Tn—lﬂln 1,1”./8“7121,71 Zﬂnill,n 1pln_10'mn_17_n_2ﬂ1n 2,1...6ni22m 2/6717112,71 lo_mn_Q

Tn—lﬂfnilvl'../87]{;&51,’"72/82?11,"71 pl"_lo'm”_l.
As o commutes with the other elements that appear in these two equations, it follows that the
coefficient of ¢ in the first equation is m,,_; and in second equation is m,,_s, since o = 1. Thus, we
obtain the following:

Mp—-1 = Mp_9. (20)

We continue with the relation R4. where s(77) = s(quqZ gi+1¢i), for 1 <i <n-1. From
(15) and (17), we have that my = mg = -+ = my-1 = m,, = M and from (18) and (20) that
mip=mg=-=Mp_o=myu_1:=M. From the mentioned relations, 1.-9., it holds that p qj = q]ﬂ]’?p ,
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and thus we obtain pkqul = q’jﬁ]’?pk and p’kqul = q’jﬂ;kp’k, for k € Z, and 1 < j <n. Moreover,
using (14) and (16), we obtain the following, for 1 <7 <n - 1:

S(T2) = Ty By it B Bl gt M gl gl gl ghinot M
= TRBY B B By g M B g g gt M
R s g
and

-k ~kiv1,i p=kir1,i -k f
S(quqz Qz+1%) ﬁ RS Bl Hl'?ﬁﬂfﬂ Hl"'ﬁn Z1+1n 1P qz+1

~ki, ~ki i o—ki kzn -M -1
grRer. gk gk gk ol oM

Ei+1,1 E:i+1,'i E‘?H»l,i%»l ki+1,n—1 l:, M
Gi+154 "'51' B B o

i, ii ki in- M
GiBy B B

-1 pkit11 ~ki+1,i kz‘+1,z‘+1 —kis1,i42 —kis1,n-1
= 4i+1P1 =B ﬂi+1 Biva ’”ﬂn 1 5”1/0 ‘o

—1 —k; ~kii- i a—Ki,i —k7 - -M

By By 15 Bit B 1ﬂ g

k; kiv1,i-1 p—Ki+1,i pkis1,: i+1,m—
qi+1qi61 +1,1.”ﬁi 11 lﬁi +1 /8“—11 +1"',8 +1 IB ,0 CT
ﬁlll B Z’L/Blil’t"'l ..ﬂ i, n— 1p O_
kiv11 ~kis1,i p=ki+1,i+1 p—Kir1,ie2 Kiv1,n-1
_qz+1qz qz+1q161 =B, Bin Bivo Bt 5z+15 Bﬁ-lﬁ P g
_k\ _kv”,._ —kn,- E _]}.y,’ _]}31 19l n=li p=l; ~1; —M
By B T B B B By ilﬂi+llﬁi pto
ﬁfiJrl,l“.ﬁZszil yi— lﬁ;%i+l’i/6§ﬁ117i+l"'/8 i+l,n— 16 p 0_
I, M

Blzl ﬁ 7,1/81-:11+1 an; 1p o

0 —2k; 1,i+fi 27@7’,,1‘ 1-1i 50 0 0
B B 2 Bno1p

-M

= G a; i qi B
Comparing the coefficients of 51,. .., Bi—1, Bi+2, ... Bn-1 and of Bi1q of By, (RP?)/T in these two
equations, we obtain the following:

kis=0,fors=1,2,...,n-1, s#4,i+1, 1<i<n-2. (21)

ki,i + ki,i+1 = —E + 2];1"141, 1<i<n-2. (22)

From now onwards we suppose that n >4, so that the relation that we will use exists. In the
last but one relation R5., where s(7;7;) = s(7;7;), for |i —j| > 1 and 1 <4,5 <n -1, we will focus on

the case where i =n -1 and 1< j <n-3. Thus, for these values, using (14) and (18), we have the
following:

kn-1,1 .._576”—1,1' kn—l,j+1.../3kn—l,ﬂ,—l 1

M ki ki pkigen akied M
S(Tn—lTj) = Tn-108) j j+1 n-1 prto Tjﬁlhl"'ﬁjm g

j+1 n-1

kn-1,1 kn-1,j pkn-1,j+1 kn-1,n-1 l,_1 _M gkj1 kj.i nkjg+1 kjn-1 _M
= Tp-17T55 '”ﬂj+1 B B pr o By ﬁj i1 BT o
knfl,l"'kj,l kn—l,j+1+kj,j kvL—l,j+k3j,j+1 knfl,nfl'*'kj,'n.fl ln-1
Tn-1 jﬁl /Bg 7+1 "'671—1 p

and

P N Y PN P R Y
8(TjTn-1) = T8y B Byl T By T o e By BT B T B

kj, kj.i nkj.j n-2 gk n— n-1,j gkn-1j kn-1n-1 lp_qy M
:Tan_lﬁl“---ﬁ.“ jilﬂl...ﬁﬂ 25 -1 M 51 11..5, 1.4 j+11]+1...5n_1l 1pn10

J
_ kj,1+kn—1,1—/€j,n—1 kj,j+kn—1,j—kj,n—1 kj,j+1+kn—1,j+1—kj,n—l kj,n—2+kn—1,n—2—kj,n—1
= Tan71ﬁ1 ﬁj ﬂj+l '“Bn—2
lBkn—l,n—l_k]’,n—l ln_1*2k]‘1n_1
n-1 p .

Comparing the coefficients of the element p of By, ,,(RP?)/T in these two equations, it follows that
kjn-1 =0, for 1 <j <n-3. Using this result and comparing the coefficients of 8; in these two
equations, we obtain the following:

kn—l,j = kn—l,j+17 for 1 S] <n-3. (23)
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We now analyse the results that we obtained so far. From (18), (20) we obtain m; = mg =
“=Mp_g =My 1 = M. From (14) we get Iy =l =--- =1, 5 = 0. From (13) we get l,,_1 = 2k, 1 j,

for 1 < j < n—2. From (16) it follows that I; = ly = --- = I, = l,_; = . From (21) we get
kis=0,for1<i<n-2and s=1,2,...,n-1,5#,¢+1. That means that for 1 <i<n -2 and
s=1,2,...,n-1, the coefficients k; ; are zero except for k; ; and k; ;41. Finally, from (23) we have
kn-11=Fkn12=""-=kn-1,n-3 = kn-1,n-2 := m. Gathering together all these results, the image of the

elements 7;, for 1 <4 <n -1, under the section s is follows:

s(m) =7:3; “ﬁljl”laM, for1<i<n-2

and

S(Tnfl) = Tnflﬂirﬂg" 2ﬂ " 1 " 1 bn- IUM'

Finally, we examine the relation R6., where s(q?) = s(71 7o Ty_2T2_ | Tn_2"-"T2T1)-
2 _
s(T1T2  TnooTp_1Tn-2-T2T1) = 8(T1 T2 Tn-2Tn-1)8(Tn-1Tn_2"T2T1)

We will compute s(717aTn-2Tn-1) and s(T,_17Tn_2'--T271) separately.

5(7_17_2”'7_”_27_”_1):7_1511 1ﬂk12 M Bgz 261€23 1ﬂ Lzﬁﬁflwl T 2ﬂ n— 2n 2 nn12 n—lO_M
B BB B o

_ Tlﬁfl,lﬁéh,zT Bgz,z k2 3., 1/8 i, 161;11“ T 2,8 n— 2 n— 2677:7_1712,1#1

Tno1 BT B3 B 25 " ln-1 5 (n=1)M
-mﬁ’““ﬁg”*’““ﬁ’““- Zﬁ “/32;;“ TamaBy " By
T BT BB o Byt ple g (M
=T1To " T; fl*lﬁfjiz+k2’3+'”+ki*”1 (552255“”)
Tt By B T a By B
Ta1 BT BE B o801 p *o—““)M

= Ty T Ty Ty 25761 1521,12”62,3+"'+/€i,i+1+"'+7€n 2,n-1 (ﬂk2 2 B ki, L‘.'ﬂ’rljﬂ,fZ,nfz)

n-1,n- _ -1)M
T 1 BT BB o By plr g ()

k k1 o+ko g4tk i1+ +kn-o no
=TT Ti* *Tn-2Tn— 1ﬁ 1, lﬁnl,Q 2,3 i+l n-2,n-1

k2, ki kn-2,n-2 pkn-1,n- I -1)M
(5222...@ '“ﬁn—; 28 1 1)3152 TP 15(n-1)M

Setting A= ki o+ koz+-+k; 41+ +kp_opn_1, we have:

S(T1To " TpooTp-1) = T1T2" T “Tn-2Tn-1

k1,1+m o)\ kz 247 pkitT kn-2,n-2+T gkn-1 n-1 | (n 1M
ﬁ Bn ﬁz "'Bn_z Bn—l P fn-
=T172°"Tn-2Tn-1

k11+m=X\ pka o+m—X ki i+tm=X kn-—2 n-2+7T=X gkn_1,n-1=-X [, ;-2\ (n l)M
1 2 B “Bpls B P
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We continue by computing s(7,-17n-2'T271).

S(Tn—lTn—Q"'7—27—1) = Tn—lﬂfﬁg'" 25 " 1 " 1 o 10M7_n Zﬂ "y 2 " 2B:i127n ! zﬂ N 1ﬁ1.i11+1
7‘2552’2&:};2’30]\/{7 511,1ﬂ 12 M
:Tn_lﬁfﬂg”' 2/8 7z1n1n26n2n2 ki2n1. ZB 1Lﬂl:11+1”'

ka2 kzs ki1 k12 1,
7'2/8 1 62 prt

k2 2 k23 k11 pk12 1,_
7'2ﬁ T191 62 prt

= Tn—lTn—Z"'Tiﬁ?ﬁg“' i+1

o=

Bki,i+1+7"“

2

M

M

_ Tn—lTn—Q/B{rB;"'ﬁijniz’nil ﬁsv_wl,n—l‘*kn—Zn—z . zﬁ i, 1/8 Qi+l

o=

i+1

.57T+kn—2,n—1 Bkn—l,n—l+kn—2,n—2+"'+k‘i,i“'
n-1

T2ﬂ§2’2 6§2,3T16f1,1 6k1,2 ln,lo_(n—l)M

7T+k23
=Tn-1Tn-2"""Ti"" 7—251

Tlﬂkl 15k1 2 (n 1)M

=Tn-1Tn-2"""Ti""T2T1
2 i+1
pln—l O,(’I'L—l)M

B

+1

,87T+k1'2ﬂ§+k2’3"'Bﬂ+ki’i+1 '“BW‘*'ICan,nfl

n-1

Tk, il B

9

T+k
n-1

n-2,n-1 5’%—1 n-1tkn_2 n_o++ki itka 2
2

Bkvkl,wl +kn_o n_o++kiitke otk
1

Setting w = k11 + koo + -+ kii+ - +knon-o+kn1n-1, we have:

S(Tn—lTn—Q"'TQTl) = Tn-1Tn-2"""T; "T2T1

/81 ‘IT+k?1 2/871'-#]62,3“./671'-!-]%,1,1'“

3 %

And now we are able to compute s(7172--T5—2

2
S(T1To  Tn-2Tpy_1 Tn—2"""T2T1)

T172° " Tp-2Tn-1

1
O_(n—l)M

2

ﬂl 7\'+k‘1 2/37|'+k2’3“

3
=T172""Tp-2Tn-1

1 2

k1,1+71'—/\6k)22+ﬂ'—>\

k1,1+7r—)\ﬁk2,2+7r—>\

Tn-1Tp-2"""Ti*"T2T1

Setting

A ﬂl 7T+k1 Qﬂ‘n'+kgyg“.BTI'-Pk‘i_l,i...571'4—]{:”_3)”_2571’4—]6”_2)”_1

3 7 n—2 n—

_ 51 7r+k1 2ﬁ§+k213.”/371'+ki—1,1;“./3W+kn,—3,n—2/3W+kn—2,n—1

n—-1

% n—2

1

-2

Tn-1Tn-2'"Ti""

B

7T+k)i,1,i

T+k T+k
/81 b 263 2’3"’[31‘

(3

n

./Bz+k1L73,n72/87r+kn 2,n-1 (n 1)M

1 P

2
T Tn-2°""TaT1 ).

S(T1T2 Tn-2Tn-1)S(Tn-1Tp-2:"T2T1)

ki,i"’ﬂ'_)\ kn—2,n—2+77_>\ k'n—l,'n—l_A lpn—1-2X
Bz ...ﬂn72 anl p
T2T1
T+kio1,i Tt+kn-3,n-2 oT+kn-2 n-1 (n 1M
Bi “Ba Bt Pl
kiwi-l-ﬂ'—)\

kn-2,n-2 +7T_>\5kn—1 n—1—A

n-2 n-1

n-1

p2ln,1—2/\02(n—1)M

2lp_1-2X
prmt,

T+kn-3,n-2 QT +kn-2.n-1 21, 1-2\ _2(n-1)M
By B piln gD,
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we have:

2
S(T1To " Tpo2Tjy_1Tn-2"""TaT1) = T1T2 Tn-2Tn-1

k1,1+71'—/\ k)2y2+ﬂ'—>\ ki,i+7‘r—A kn,2,n72+ﬂ'—>\ knfl,nfl—k
1 2 et =B Bna

Tn—1Tn-2"TiToT1 A
=T172° Tn-2Tn-1Tn-1

k111+71'—)\ k212+ﬂ'—>\ k,j},‘,+7'{'—>\ k’n_Q)n_Q“"ﬂ'—)\ kn-1.n-1—-X\
1 B =B B Bt

Tn—2"'7—i"'7—27_1A
=T172 Tn-2Tn-1Tn-1Tn-2"""T;

k1,1+7l'*)\ k2=2+71‘*)\ k}i’i+ﬂ'*)\ kn,3’n,3+ﬂ‘*)\ kn,27n72+7r—)\ Ko _ 1=
1 B B =B, Bna Bt

Ti—1-ToT1 A
=T172 Tn-2Tn-1Tn-1Tn-2"""T;" T2

k1,1+m=X qkg o+m— >\ ki—1,i—1+m=X kn-3,n-3+T=X pkp_2 n_2+m—X\
1 3 51 “'677,—2 Bn—l

kn—l,n—l_A
B 1A
=T172 Tpn-2Tn-1Tn-1Tn-2"""T; "T2T1

k1,1+71'—/\ ]€2y2+ﬂ'—>\ ki,11¢,1+ﬂ'—k k?n,3,7173+71'—)\ kn,2y7L,2+Tl'—)\
By Bs B =B Bna

Bkn—l,nfl_AA
n

2
=T1T2 " Tn-2Typ 1Tn-2"""T2T1
kl 1+27\' )\+k}1 2 k?212+27T—A+]€2,3 ki,11171+27l'—)\+k¢,1¢
/81 53 ﬂz
kn73,n73+27T_A+kn73,n72 kn—2,mn-2+2T=A+kn_2n-1 gkpn-1.n-1-\ 2ln_1-2X
/Bn72 Ianl /Bn p
=T1T2 " Tn-2Ty 1Tn 2 T2T1
w— n—l,n—1+>\ k‘1'1+27!‘*>\+k2172*kn_17n_1+>\
By By
ﬂki—l,7',—1+27r_>\+ki—1,i_kn—l,n—1+>\
ﬁkn—&n—S+2ﬂ_>\+kn—3,n—2_kn—1,n—1+>\ kn-2,n-2+2m=A+kpn-2 n-1-kn-1,n-1+A
n—2 n—-1

p2zn_1-2A—2kn_1,n_1+2>\

2
=TI Tn-2Ty_1Tn-2"""T2T1

w_kn—l,n—l+>\/3k1,1+2Tr+k1,2_kn—1,n—l ...ﬂki—l,i—l+27T+ki—1,i_kn—1,n—l.__
1 2 i
/Bkn—?),n—3+27r+kn—3,n—2 kn-1,n- 15 n— 2 n—2+27+kn_2 n-1-kn-1,n-1
n-2
p2ln—1_2kn—1,n—1.

Now:
s(¢) = @B R o™ g B B o™
= By BB Bl g --ﬂ’“" pla™
151 S "Bfél’i”'ﬁiﬁ’nilpm
= (T1T2'--Tn_QT,ZL_lTn_Q'--Tzﬁ)ﬁ”lnﬂi §E1’2"'ﬂffel’i”‘ﬂiéll'"fl 2
= (T2 T2 Th 1 Tn-2T271 ) BT +l52k1 ’ "5%1’ "521311’"_1,02Z~
We recall that ¢F = (7172 Tn-2Tn-1)B™ (Tn-1Tn_2--T2T1 ), given in Proposition 3.2.2, (IT). The last
but one equality comes from relation
Qf = (TlTQ'”Tn—QTn—l)/B:LYL(Tn—lTn—Q'"7'271) = (7-17-2"'7-n—27-n—1)(Tn—lTn—Z"'TQTl)ﬂin

that holds in B,, ., (RP?)/T". Comparing the coefficients of the element 31 of By, ,,(RP?)/T in these
two equations, we obtain the following:

m+l=w+A=kn 151 (24)
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From (24) we have that m + l=w+ - kp-1,n-1. From the definitions of w and A we obtain:

m+l=(ki1+koo+-+knono+knin-1)+ (kia+keg+-+ki++kn2n-1)—kn-1n-1
=(k11+kao+-+kii++kpono)+(kio+kas+-+kii1++knon1)

= (k‘l,l + k1,2) + (k2,2 + kz,g) +ee (k‘” + ki,i+1) +oeeet (kn72,n72 + kn—Q,n—l)-

In addition, from (19) we have k; ; + ki i+1 = Ki+1,541 + Kiv1,i+2, for 1 <i<n—2. Therefore we obtain
the following:
kl,l + kl,z =koo+kays

koo +kos=ksz+ksa

kn—4,n—4 + kn—4,n—3 = kn—B,n—S + kn—B,n—2
kn—3,n—3 + kn—3,n—2 = kn—Z,n—Q + kn—Q,n—lv

which implies that:
kig+kio=koo+koz=-=ky3n3+kn3no=knono+knoni. (25)

We conclude that -
m+l= (77/—2)(1471’1'*-/{1’2). (26)

Moreover, from (22) we have k; ; + k; 41 = —l; + 215147”1, for 1 <i<n—2. Letting 4 = n — 2, and using
(16) we get: o
kn—2,n—2 + kn—?,n—l =-l+ 2kn—2,n—1-

However, from (12) we know that ];’n_z’n_l =0, which in turn gives that

kn—Q,n—Q + kn—Q,n—l =l (27)

In conclusion, from (25), (26) and (27) it follows that m = (n—1)(ky 1 + k1,2) for n > 4, and
therefore that m = k(n—1) for k > 1, since m is a natural number. The conclusion is valid in the case
when n > 4 since we have used the relation R5., s(7;7;) = s(7;7;) for [i—j|>1and 1<4,j<n-1,
which only holds when n > 4.

Nevertheless, we can obtain the same result for n = 3. Indeed, using the results of relations
(13), (14), (20), which also hold in the case n = 3, we obtain ly = 2ks1, I3 = 0 and that m; =

ms := M, respectively. Thus, s(7y) = Tlﬂfl’l 51’201\4 and s(12) = Tgﬁfz'lﬁgwp%zvlaM. It holds that
s(m1) and s(72) have the same structure as the equations s(7;) = Tiﬁf“ﬂfjf”(jM and s(7,-1) =

Tn-1B7 BF - g_Qﬂsfil’"’lplﬂ'-loM, since m = ko1 for n = 3. Therefore, we can indeed apply (24),
which follows from relation R6, s(¢?) = s(T1T2-Tn_oT2 | Tn_2-T2T1), that also holds for n = 3.
Thus, we obtain from (24) that m +1 = ky 1 + ky 2, which is (26), and from (27), it follows that
m =2(k1 1 +k1,2), which is the result in the case n = 3. As a result we obtain that if the short exact
sequence (5) splits then m =k(n-1), for n>3 and k > 1. O

Remark 3.2.5. Note that Theorem 3.2.4 also holds for m = 1. However, in Proposition 3.2.1 we treat
the case m = 1 seperately, proving that for m = 1 and n > 3 the homomorphism g : B, 1 (RP?) —
B,,(RP?) does not admit a section. Even thought we could ignore Proposition 3.2.1, since we could
obtain the same result from Theorem 3.2.4 for m = 1, we present it, as in that proof we illustrate
the relation of the splitting of the mixed braids with the splitting of the pure braids.

Remark 3.2.6. Concerning the quotiented short exact sequence that we used to prove Theorem
3.2.4, except for quotienting by 'y (B, (RP?\ {x1,...,2,})), we have tried other quotiens as well,
for example quotienting by T'y( P (RP? \ {x1,...,7,})), but they did not impove the result of
Theorem 3.2.4. Moreover, note that from Theorem 2.3.2, we have Fg(Bm(}RP2 A, ,xn})) =
Fg(Bm(RP2 sz, ,xn})), which shows that it would be of no use to try any quotient by
Lp(Bm(RP2N{zy,...,2,})), for k> 3.

We can obtain further restrictions for the value of m, examining the torsion elements of the
group B, (RP?) and B,, ,,(RP?).
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Proposition 3.2.7. Let m > 1 and n > 3. If the following short exact sequence
1 —— Bp(RP?~{a1,...,20}) —— Bom(RP?) 2% B (RP?) — 5 1

splits, then either m =0 mod n or m =1 mod n.

Proof. From Proposition 2.1.3, we know that the group B, (RP?) contains a torsion element of
order k if and only if k divides 4n or 4(n - 1). Similarly, the group B,,,m(RP?) contains a torsion
element of order [ if and only if [ divides 4(n+m) or 4(n -1+ m).

Suppose that the homomorphism G,4m ., admits a section 8, nim @ Bn(RP?) — By, (RP?),
where Bn,m(RP2) ¢ Bpim(RP?). Since, Sn.n+m 15 @ section, it follows that any torsion element
from B, (RP?) is mapped under Sp,n+m tO & torsion element in Bmm(RPQ) of the same order.
Since Bn(RPQ) contains a torsion element of order 4n, it follows that its image under 5, j4m, is
a torsion element of order 4n in B,, ,,(RP?). Therefore, 4n divides 4(n +m) or 4(n—1+m) by
Proposition 2.1.3. Thus,

dn | (4n+4m) or 4n | [4(n-1) +4m].

Asaresult dn+4dm=p-4n or 4(n—-1) +4m =p-4n, for p,p € Z. It follows that m=(p—-1)-n or
m=(p-1)-n+1, or equivalently that either m =0 mod n or m =1 mod n. O

Remark 3.2.8. Arguing with the same manner for the torsion element of order 4(n—-1) in B, (RP?),
it follows that (n—1) divides (n+m) or [(n—1)+m]. In other words, it follows that m =l(n-1)+n
orm=1I(n- 1), for some [,l € Z, but in fact from Theorem 3.2.4, we know that m = k(n-1), which
is a stronger result.

Remark 3.2.9. From Theorem 3.2.4 we have m =0 mod (n — 1) and from Proposition 3.2.7 we have
m = 0,1 mod n. Combining these two results, if the short exact sequence

1 —— Bu(RP?2~ {21,...,20}) — Bpm(RP?) 2% B (RP?) —— 1

splits, then it follows that
m=0,(n-1)* mod n(n-1).

3.3 Construction of a geometric section for the case n >3

In the previous section, for n > 3 and m > 1, we saw that if the homomorphism ¢p4m,n :
By.m(RP?) — B, (RP?) admits a section 5,1, : Bn(RP?) — By, m(RP?), then m = k(n - 1), for
k € N. Moreover, from Proposition 1.3.1, the existence of such a section 5,y is equivalent to the
existence of a cross-section for the Fadell-Neuwirth fibration ¢pim.n @ Fnem (RP?)/(S, x Sp) —
F,,(RP?%)/S,,. In this section, we will present two different constructions of a geometric cross-section
Sm t Fr(RP%)/S, — Fpim(RP?)/(S, x S,,) for this fibration and for certain values of m.

In [CS20], Chen—Salter constructed geometric cross-sections using Mébius transformations in
the case of the 2—sphere, S?, for some of the cases given by Gongcalves-Guaschi in Theorem 1.3.4.
We will carry out a similar construction for the case of the projective plane, RP2, as we describe in
the proof of the following proposition.

Proposition 3.3.1. Let n >3 and m > 1. The fibration
Gnsmn  From (RP?)[(Sn % Sm) — Fo(RP?)/S,
admits a cross-section for m = kn(2n —1)(2n - 2), where k > 1.
Proof. Let n > 3. We consider the two-sheeted covering map p : S*> — RP2. Let {y1,...,Yn}
be an element of F},(RP?)/S,. Using p, lep‘l({yi}) ={x1,22,...,Tan}, which is an element in
i

A, (S?), where by A, (S?) we denote the set of n pairs of antipodal points, which is a subset of
F5,(S?)/Sa,. So, {x1,22,...,29,} consists of n pairs of antipodal points of S?. We can transform
the problem of the construction of a cross-section on the configuration space of the projective
plane to the construction of a cross-section on the configuration space of the 2—sphere, as we will
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see in what follows. We will generalise a particular construction, using M&bius transformations,
of a cross-section on the configuration space of the 2-sphere, given by Chen—Salter in [CS20]
(Remark 3.6), which induces the cabling map B,,(S?) — By,.m(S?), given in Theorem B of [CS20].

Considering the element {z1,xs,..., T2, } € Ap(S?) ¢ F2,(S?)/Sa,, we will construct new distinct
points on S? around each point x;, for i = 1,...,2n.
Let (zp,zq,z,) be an ordered triple of distinct points of the set of points {z1,z2,...,22,} €

A, (S?). We consider the unique Mébius transformation of the Riemann sphere, defined by
My, e, (x) = (e=2p)(@e=2r) g1 e §2, which sends (zp,xq,2r) to (0,1,00). We recall that the

(z—z7)(Bg-p)’
Mobius transformations are automorphisms of the Riemann sphere. For every x; € {x1,22,..., T}
we define the following map:

(z —x;)(w) —w)

Ry, (x) = H My, 2, (7) = .
jEke{1,....2n} {3} ’ jEke{1,....2n}\{i} (x —xp) () — i)
For every x; € {x1,23,...,%2,}, the map R,, :S? — S? is a rational map and in particular it is

a product of (2n —1)(2n — 2) rational fractions, and thus by fundamental Theorem of Algebra, the
map R, is of degree (2n—1)(2n —2). It follows that the preimage of any regular value of R, is a
set of (2n —1)(2n - 2) distinct points. Moreover, by the definition of R,,, it follows that z; is the
only zero of Ry,.

Note that by the definition of My, +, o, (z) we have My o 2. () = M_y, o, o, (-2), for every
z € S?. For simplicity, in what follows we will denote by i/, the index k for which zj = —x;.
Moreover, note that for any pair of j, k, where j, k # ', and for any factor M, ;, », (z) included
in the product Il My, ;.2 () the factor My, o, o, () is included as well, since the

jEke{l,....2n}\{i}
source of x;, x, is a set of exactly n—1 pairs of antipodal points. Furthermore, for j =i’ (respectively
for k =i"), for any factor My, 4, «, (x), where k € {1,...,2n} ~ {i,i"} (vespectively My, o, o, (2),
where j € {1,...,2n} \ {4,7'}), included in the product I1 Mz, ;.2 (), the factor
jeke(1,...,2n 3\ {4}
Mz, 2, -z, (x) (vespectively My, o, o, (x)), is included as well. Similarly, note that for any pair of
J» k, where j, k # i, and for any factor M_4, 4, 2, (=) included in I1 M_z, 2, 2. (~2), the
jEke{l,....2n}\{i'}
factor M_4, 4, —x, (=) is included as well, since the source of x;, 2y is a set of exactly n—1 pairs of
antipodal points. Furthermore, for j = ¢ (respectively for k = 7), for any factor M_,, 5, 2, (-), where
kEe{l,...,2n} ~{i,i'} (respectively M_y, 4+, o+, (—2), where j € {1,...,2n} \ {i,7'}), included in the
product 1 M_¢, 2,2, (—2), the factor M_, o+, o, (-7) (respectively M s, o, o, (-)),
jeke(1,...,2n 3\ {i}

is included as well. Therefore,

Rzl(x) = H Mwi,zj,wk (x) H Mwi,—wi,wk(w) H Mwi7wj7_$i(m)

jEke{1,...,2n}{4,i"} ke{l,...,.2n}\{i,i'} je{1,...,2n)n{i,i'}
and
R, (-2) -
= I1 Mgy 25,2, (-2) [I M-, 10, () [1 My, ;0 (~2).
jEke{1,..,2n )N {ii} ke{1,....2n}\{i,i"} je{l,....2n}\{i,i"}

Thus, from My, o, o, (2) = M_s, ¢, -, (~2), we obtain:
R.,(z) = R_,,(~x), for every z € S%. (28)

Near each point x; € {z1,z2,...,2Z2,}, we will now construct (2n —1)(2n - 2) new distinct
unordered points. To do so, we consider a small regular value ¢; of R, close to zero and we consider
its preimage. The preimage, R;!(e;), will be a set of (2n - 1)(2n - 2) distinct points, and by
continuity close to x; and different from it. One needs to verify that the (2n - 1)(2n —2) new
distinct points close to the point z; are also distinct from the (2n —1)(2n — 2) new distinct points
close to any other point x;, for j # 4. In other words, we have to chose each regular value in such a
way that R;!(e;)n R;}(ej) =g, for every i # j € {1,...,2n}. In order to achieve this, we have to
refine the choice of the regular value of every R,,, as we describe in what follows.
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To begin with, we denote the spherical metric by d: S? xS? — R*, which is the distance function
on the sphere based on the central angle between two points, and we set

1
3 i#je{l,....2n

m: min }d(mi7xj).
Moreover, we can define a map f: {z1,22,...,22,} — R*, that assigns a positive small number r;
to every element x; € {x1,x2,...,Za,}, which is a regular value of the map R,,, such that any z

with 0 < |z| < r; is a regular value of R, and moreover
Ry (D(0,79)) i={w €S | Ry, () € D(0,7:)} € D(wi,m),

where D(z,a) = {y € S? | d(z,y) < a}. The inclusion R;'(D(0,r;)) ¢ D(x;,m) follows by continuity
of R,, and by the fact that z; is the only zero of R,,. Note that we can always find such a
regular value r; of R,,, since the critical values of R,, are finite. To be more precise, one could
consider the distance, p;, from zero to the critical value ¢; of R,,, for every 1 <i <[, where [ e N
is the number of critical values of R,,. Then, by considering the minimum of these distances,
p:=min(py,...,pr) € R*, all points, except for zero, with distance from zero less that p are regular
values of R,,. Finally, we set r to be the smallest value among r;, where 1 < i < 2n, that is

r=min(ry,...,re,) € R (29)

Therefore, for every point z; € {x1,232,...,22,} we have defined a rational map R,, and a small
positive number r, which is a regular value of R,, and moreover

RNr) = {1, .. ,(éanl)(anz)} c D(z;,m), for every i e {1,...,2n},
where ({,..., §<i2n_1)(2n_2) are pairwise distinct. This implies that
R;g(r) n R;;(r) =@, forevery i # j € {1,...,2n}.
In addition, from (28), we have that

Rj;,; (r)= {_Ci, R _C(iQn—l)(Qn—2)} = _R;f,l(r) = {da - '7Cé2n—1)(2n—2)}'

In other words, the (2n—1)(2n—2) new distinct points around z; are antipodal to the (2n—1)(2n-2)
new distinct points around —z;. Now, set

ST = U R;}(T)a
1<i<2n
which is the set of the 2n(2n - 1)(2n - 2) new distinct points of S? that we constructed, based on
the points of the set {x1,22,...,22,} € A,(S?). Note that S, € An(2n-1)(2n-2) (S?).

Note that if r’,7" € R* satisfy 0 < r’ < r”" < r, then by construction, S,» N S,» =@. So if k € N,
in the same way, we may obtain k((?n(Zn -1(2n- 2))) new points on S?, taking for example
SpuS1,uU---uS1,, where once again the k(2n —1)(2n - 2) new points close to x; will be antipodal
to the k(2n - 1)(2n - 2) new points close to —z;.

Projecting now the set of points S, U S%T U---u S%T into RP?, by the covering map p, around
each point y1,...,y, of RP? we obtain k((2n —1)(2n - 2)) new distinct unordered points. In total,
we have constructed kn((2n - 1)(2n - 2)) new distinct unordered points, that depend continuously
on the element {yi,...,yn} € F,(RP?)/S,. This yields a cross-section s,, : F,(RP?)/S, —
From(RP?)/(S,, x Sy) of the fibration gnim.n @ Frem (RP?)/(Sn x Sy) — F,(RP?)/S,,, for m =
kn(2n-1)(2n -2), where k > 1. O

We continue by presenting another construction of a cross-section, which covers smaller values
of m.

Proposition 3.3.2. Let n >3 and m > 1. For m =2n(n—-1) the fibration
qn+m,n * Fn+’rn(RP2)/(S’n X Sm) - Fn(RPZ)/Sn

admits a cross-section.
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Proof. Let n > 3. As in the proof of Proposition 3.3.1, we consider the two-sheeted covering
map p : S? — RP?. Let {y1,...,9,} be an element of F,(RP?)/S,. Using p, Up*({yi}) =
i=1

{x1,29,...,29,}, which is an element in A, (S?), where by A, (S?) we denote the set of n pairs
of antipodal points, which is a subset of Fb,, (S?)/S2,. So, {x1,22,...,2,} consists of n pairs of
antipodal points of S?. We denote the distance function on the sphere based on the central angle
between two points by d:S? x S? — R?. Clearly, we have 0 < d(z;, ;) <, with d(x;,z;) = 0 and
d(z;,—x;) =, for any z;,2; € S®. We define the following positive numbers m and M,,:

1
m:= gmind(a:i,mj), for every 1<i# j<2n.
1¥)

and
Mg, == max d(z;,z;) <m, for 1 <i<2n,
:Ei,#—.’tj
which is the largest distance between the point z; and the points in the set {z1,...,22,} \ {-2;}.

We consider the closed discs D(z;,m) = {y € S* | d(z;,y) < m}, for all 1 <i < 2n. Clearly,
by definition of m these discs are pairwise disjoint. Our aim is to construct 2n — 2 new distinct
unordered points inside each closed disc D(z;,m). Without loss of generality, we will describe this
construction for the point z;, the construction will be the same for the other points. We want to
move all of the points of the set {x1,... 22, }\{-21} to pairwise distinct points inside the closed disc
D(z1,m). The distance from z; to any point of the set {x1,...x2,} \ {~z1} is at most M,,, and so
{x1,.. .22}~ {~21} € Py, where P, = {z€S? | d(z1,2) < M., }. Let Cp, = {2 €S? | d(21,2) = My, }.
Moving now this circle C,, and shrinking the space P; toward the point z, along the longitudes
with respect to the axis that passes through the centre of the sphere and =1, we move the points of
the set {x1,...,Ton} \ {~21} to pairwise distinct points inside the closed disc D(z1,m). To do so,
we shrink the circle C,, until it coincides with the boundary of the closed disc D(z1,m). In other
words, at the end of the process, the angle M,, becomes m. In this way, we have constructed 2n -2
new distinct unordered points close to the point z;. For n = 3 we illustrate an example of how we
obtain 4 new distinct unordered points close to z1, and in particular inside D(x;,m). In Figure
3.6a we see that Py is the subset of S? that lies above the circle Cy,, including C,,. Shrinking the
space P; towards the point z1, along the vertical axis that passes through the centre of the sphere
and x1, until Cy, to coincide with the boundary of the closed disc D(z1,m), we obtain Figure
3.6b that represents D(x;,m), where we have constructed 4 new distinct unordered points. We
denote the points at which the points z3, x4, x5, ¢ will end up after the shrinking by z3, x4, T5, g
respectively.

Figure 3.6

We apply the same method for every point of {zs,...,22,} and thus we obtain 2n(2n — 2)
new distinct unordered points on the sphere. Note that these 2n(2n - 2) new points are distinct,
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since we constructed (2n - 2) distinct points inside 2n pairwise disjoint closed discs. Moreover,
choosing the same shrinking process for z; and —z;, the (2n — 2) new points that we obtain
inside the closed disc D(x;,m) are the antipodal points of the (2n —2) new points that we obtain
inside the closed disc D(-z;,m). Thus, by projecting these 2n(2n — 2) new distinct points into
RP?, via the covering map p, we obtain 2n(n — 1) new distinct unordered points, that depend
continuously on the element {yi,...,y,} € F,(RP?)/S,. We conclude that there exists a cross-
section sy, : F,(RP?)/S,, — Fyum(RP?)/(S, x Sy,) for the fibration ¢uim.n @ Fnem(RP?)/(S, x
Sm) — F,(RP?)/S,, for m =2n(n-1). O

Remark 3.3.3. From Proposition 1.3.1 and Proposition 3.2.4 we know that if the fibration g+, » :
Frim(RP?)/(S,, x Spn) — F,(RP?)/S, admits a cross-section, then m = k(n —1), for k> 1. In
Propositions 3.3.1 and 3.3.2, we have shown that we have a cross-section s,, for gnim,n, for
m =2n(n—-1) and m = kn(2n - 1)(2n — 2), where k > 1. These results are compatible since in both
cases the value of m is a multiple of (n - 1).

We conclude this section by presenting the main result of this part of the thesis.

Theorem 3.3.4. Let m>1 and n>3. The short eract sequence
1 —— Bp(RP?~{a1,...,20}) —— Bom(RP?) 258 B (RP?) —— 1

splits for m = 2n(n-1) and for m = kn(2n—-1)(2n-2), where k > 1. Moreover, if the homomorphism
Gnam.n admits a section, then m =0, (n-1)% mod n(n - 1).

Proof. This result follows from Propositions 1.3.1, 3.3.1, 3.3.2 and Remark 3.2.9. O

Remark 3.3.5. For n = 3, based on Theorem 3.3.4, the smallest value of m, for which the homo-
morphism G343 : B3 m(RP?) — B3(RP?) could possibly admit a section is m = 6, and moreover,
m =12 is the smallest known value for which the homomorphism 3., 3 : Bs,m(RP?) — B3(RP?)
admits a section.

Remark 3.3.6. To the best of our knowledge the remaining cases that are not covered by Theorem
3.3.4 are open.



CHAPTER 4

The welded braid groups W B,

The chapter on welded braid groups is structured as follows. In Section 4.1 we give a couple of
different interpretations of the welded braid groups W B,, as well as a presentation of them. We
continue in Section 4.2, where we prove that the subgroups of their lower central series coincide, for
n > 4. Moreover, we determine all possible homomorphisms from W B,, to the symmetric group .S,.
A discussion about an important subgroup of W B,,, the welded pure braid group W P,, follows in
Section 4.3, where we also provide a proof that W P, is a characteristic subgroup of W B,, with a
trivial centralizer. Furthermore, we show that, the free group F,,, seen as a subgroup of WB,,, is a
normal one. Lastly, in Section 4.4 we discuss about the automorphism group of W B,,.

4.1 Introduction

Let n € N. The welded braid groups W B,, appear in the literature under many different names;
conjugating automorphisms of the free group F,, due to Savushkina, [Sav96], loop braid groups
due to Baez—Crans—Wise, [BCWO07] and groups of untwisted rings due to Brendle-Hatcher, [BH13].
The name of welded braid groups, which we will be using and denoting by W B,,, was introduced
by Fenn—-Rimdnyi-Rourke, [FRR97].

The groups W B,, are actually a 3—dimensional analogue of the Artin braid groups B,, and there
are several interpretations of it; in terms of mapping class groups, fundamental group of specific
configuration spaces and automorphisms of the free group F,,. We refer the reader to [Dam17] by
Damiani for a complete presentation of the equivalent definitions of the welded braid groups.

In this thesis we will work on the welded braid groups as automorphisms of the free group F,,,
but also as the fundamental group of the spaces of specific configurations, as we describe in the
following definitions.

Definition 4.1.1. Let n € N and let F), denote the free group of rank n with generators {z1,...,x,}
and let Aut(F,) denote its automorphism group. The group W B, is the subgroup of Aut(F),) that
consists of the so-called conjugating automorphisms, a : z; — Wi‘lxﬂ(i)Wi, where 7 is a permutation
and W; is a word in F,,. To be more precise, let o; € Aut(F,), i=1,...,n—1 be given by

T > Tis
) -1
O 2 ATl — Ty TiTisl (1)
Tjrxy, jJELLF]

and let p; € Aut(Fy,), i=1,...,n—1 be given by

o7
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Ti = Titl
Pi s\ Tivl 7> T (2)
Tj>xy, JELIF]
The welded braid group W B,, is the one generated by both sets of elements o; and p;, i =1,...,n.

Remark 4.1.2. The elements o;, i = 1,...,n — 1 generate the braid subgroup of Aut(F),), which is
isomorphic to the Artin braid group B,,. Moreover, the elements p;, i =1,...,n -1 generate the
permutation subgroup of Aut(F,) which is a copy of the symmetric group S,.

The following theorem gives a presentation of W B,,, due to Fenn—Rimédnyi-Rourke, [FRRI7].

Theorem 4.1.3 (Fenn-Riményi-Rourke, [FRRI7]). Let n € N. The welded braid group W B,,
admits the following presentation:

(015, 0n-1,P15--+,pn-1 | R),
where R is the set of the following relations:
1. 0j0i110; = 0j110;0541, fori=1,...,n—2,
ii. 0,05 =0j05, for|i—j|>1, where 1<i,j<n-1,
0. pipir1Pi = Pir1PiPic1, fori=1,...,n -2,
w. pipj = pjpi, for li—j|>1, where1<i,j<n-1,
. p?zl, fori=1,...,n-1,
vi. oipj = p;ioi, for|i—j|>1, where 1<i,j<n-1,
Vil Oi11PiPir1 = PiPir10i, fori=1,...,n -2,
V. Piy1030441 = 0044104, fori=1,....,n—2.

Remark 4.1.4. In Theorem 4.1.3 we see that relations (i)-(i¢) are braid group relations, relations
(i4i)-(v) are permutation group relations and relations (vi) — (viéi) are mixed relations.

We define now the untwisted ring group, U R,,, which gives a geometric interpretation of the
welded braid group W B,,, as we will see in the following proposition that these two groups are
isomorphic. The following definition appears in [Gol81], by Goldsmith, under the name of motion
groups.

Definition 4.1.5. Let n € N and let UR,, be the space of all configurations of n disjoint pairwise
unlinked unordered Euclidean circles in R? lying in planes parallel to a fixed one. The untwisted
ring group UR,, is its fundamental group.

Due to Brendle-Hatcher, [BH13], we have the following presentation of UR,,.

Theorem 4.1.6 (Brendle-Hatcher, [BH13]). Let n € N. The untwisted ring group UR,, admits the
following presentation:

<0-17~"a0'n—17p17"'7pn—1 | R))

where R is the set of the following relations:
1. 0;0410; = 0410041, fori=1,...,n—2,
ii. 0,05 =0j0;, forli—j|>1, where 1<i,j<n-1,
iii. pipir1Pi = Pir1PiPir1, fori=1,...,n—2,
w. pipj =pjpi, for|i—j|>1, where 1<i,j<n-1,
v. pi=1, fori=1,...,n-1,

vi. o;p; = p;os, for|i—j|>1, where 1<i,j<n-1,
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VL. OiPi+1Pi = Pi+1Pi0i+1, fOT 7= ].,. co,n = 2,
v, Pi0i+1045 = 04+10iPi+1, fO?” 1= 1, N ,n—2.

Note that the generators o, p;, were initially considered by Goldsmith in [Gol81]. The generator
o; permutes the i'" and the (i +1)*¢ circles by passing the i'? circle through the (i +1)** and the
generator p; permutes them passing the i*" around the (i + 1)*!, as depicted in the following figure.

e

i+ 1
Figure 4.1 The generators o; and p;.

Due to Damiani, [Dam17], we have the following proposition, where we see that the groups
W B,, and UR,, are actually equivalent formulations of the same group. This result follows as a
consequence of a result that was established for more general groups in [Gol81] by Goldsmith.

Proposition 4.1.7 (Damiani, [Daml17]). For n €N, there is a natural isomorphism between the
untwisted ring group UR,, and the welded braid group W B,,.

In this chapter from now onwards, we will use as presentation of W B,, the one given in Theorem
4.1.6.

4.2 Homomorphisms from W B, to the symmetric group 5,
The lower central series of a group G is defined as the descending series
I'(G)=G2T3(G)2---2T,2...,

where I';(G) = [I';_1(G), G]; the subgroup of G generated by all commutators [z,y] = zyz 'y ?,
for zeT;_1(G) and y € G.

Proposition 4.2.1. Let n € N. For the welded braid group W B,, we have the following results:
o Forn >2 the Abelianisation of W B,, is isomorphic to Z x Zs.
e Forn=3,T9(WB3)/T3s(WB3)2Zsy and for n>4, To(WB,) 2T3(WB,).

Proof. Based on the presentation that we gave in Theorem 4.1.6 we have that the Abelianisation
of W B, is isomorphic to Z x Zs; the copy of the group Z is generated by the elements o;, the
generators of the Artin braid group B, and the copy of the group Zs is generated by the elements
pi, the generators of symmetric group S, .

Let n > 3. We have the following short exact sequence:

1—=T(WB,)/T3s(WB,) —»T1(WB,)/Ts(WB,) LN r(WB,)/T2(WB,) — 1.
Let I'1/T'g :=T1(WB3)/T'2(W Bs) and T'1/I's := I'1 (W B3)/T's(W Bs). For n =3, the group I'1/I's :=
' (WBs3)/T'3(W Bj3) is generated by the set
{o1=0113, 02 = 021’3, p1 = p1l's3, p2 = p2l'a}.

Since 09 = 01090105 07! = 01[09,01] and pa = pipep1pztprt = pilpe, p1], it follows that oy, 09
project into the same element inside I'y/T'y; 01y = 015 and similarly, p1, p2 project into the same
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element inside I'1 /T'2; p1I'y = pol'y. Thus, 61 = 01I's, 63 = t-011'3 for t € ker(p) = 'y /T’ and similarly
p1=p1Ls, pa = s-p1T'3 for s e ker(p) = T'y/T'5. Projecting now relation 010901 = 090105 into I'y/T'3
it follows that o1tg101 = tg101to1, and since t € 'y /T3, where I'y/T'3 is a central subgroup of 'y /T's,
it follows that ¢ = 1. As a result, 61 = g2. Also, projecting relation pypap1 = pap1p2 into I's/T'3 and
using the same arguments it follows that p; = pa. We conclude that T’y /T'3 is generated by these two
elements {71, p1 }. Now, the element [, p1 ] generates I'a/T'3. We observe that [, p1]* = [71, 5] = 1
inside I'y/T'3. The first equality follows from the fact that [&1, p1]? = [01, p1]p1[01, p1]p7* = [01, p7]
and that [&y,p1] € ['2/T'3 is central in T';/T'3. The last equality holds because p? = 1 and therefore
(p1)? = 1. Thus, the group I'y/T'3 is cyclic of order 2, which means T'y(W B3)/T'3(W Bs) = Z,.

For n >4, let T'1/T9 :=T1(WB,)/T2(WB,) and T'1 /T3 :=T1(WB,,)/Ts(WB,). We have the
following situation: all generators o; = 0;I's, for i = 1,...,n -1, in I';/T'3 are sent to the same
element in 'y /T'y; the Abelianisation of W B,,, since the elements o; € WB,,, for 1 <i<n -1, are
pairwise conjugate and similarly for the generators p; = p;I's, for 1 < j <n —1. Therefore, without
loss of generality, we can assume that for any a; € T'1/T'3, 1 < < n -1, there exists t; € I'y/T'3
such that &; = t;61; where t; = 1, and similarly for 1 < j < n there exists s; € I's/T's such that
p; = s;jp1; where s1 = 1. Projecting relation 0;0;410; = 0,410,041, for 1 <i <n -2, into I'1 /T3
we get t;01t;4101t;01 = t;1101t;01t;4101. We know that the elements ¢;,¢;,1 € I'y/T's are central in
I'1 /T3, and therefore the last relation gives that ¢; = ¢;41 = 1, since ¢; = 1. As a result we have
that 61 =+ = g,-1 =2 7 € ['1/T's. With a similar argument we obtain p; = -+ = p,_1 =t p e I'1/T3.
We deduce that the group I'y/T'3 has two generators, 7,p, where (p)? = 1, since p? = 1 € WB,,.
Moreover, projecting relation o;p; = p;o;, |i —j| > 1 into I'1/T's, we obtain that 6p = p&, which
means that the two generators of I'; /T's commute. Therefore, the group I';/T's is an Abelian group
with two generator, &, p, satisfying (p)? = 1. By the universal property of the Abelianisation it
follows that I's has to be a subgroup of I's, since any projection of W B,, into an Abelian group has
to factor through I';/T's, and therefore I's € I's. But, by the definition of the lower central series we
know that I's € I'y and therefore we conclude that I'y = I's. O

For further results about the commutator subgroups of the welded braid groups W B,,, we
refer the reader to [BGN19], by Bardakov—Gongopadhyay—Neshchadim, where among others, they
proved that, for m > 5, the commutator subgroups, [W B,,, W B,,], are perfect, which means that
[(WB,,WB,] = [[WB,,WB,],[WB,,WB,]|.

We recall the following definitions, which we will use in the following theorem.

e Let G, H be two groups. For every x € H we have the group homomorphism h, : H — H,
defined by h,(y) = zyx~'. Two group homomorphisms k1, he : G — H are said to be conjugate
if there exists an element x € H such that hy = h, o hy, which means that ho(g) = 2hi(g)z7!,
for every g € G.

e A group homomorphism h : G — H is said to be Abelian if its image h(G) is an Abelian
subgroup of H.

e A group homomorphism h: G — H is said to be cyclic if its image h(G) is a cyclic subgroup
of H.

Before stating the main theorem of this section we recall a known fact about the homomorphisms
of the symmetric group.

It is well known that the symmetric group Sg has an outer automorphism, which we will denote
by v, unlike all other symmetric groups. Due to Artin, [Art47a] and Lin, [Lin], the following known
result can be deduced.

Proposition 4.2.2. Let n,m € Z with n > m, such that n >5, m > 2. For any homomorphism
h: S, — Sy, one of the following holds.

1. The homomorphism h is Abelian and therefore cyclic.
2. For n =m the homomorphism h is, up to conjugation, the identity.
3. For n=m =6 the homomorphism h is, up to conjugation, ve.

We define now some maps that we will use in the proof of the following theorem.
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1. Let a be the homomorphism S,, — W B,, defined by «a(s;) = p;, for 1 <i<n-1.

2. Let ¢ be the homomorphism W B,, — S,, defined by ¢(o;) = ¢(p;) = s;, where s(i) = (i,i+1) €
Sh, for every 1 <i<n—1.

Theorem 4.2.3. Letn>5 and let h: W B, — S, be any homomorphism. Then, up to conjugation,
one of the following holds:

e The homomorphism h is the homomorphism ¢.

e The homomorphism h is cyclic, whose image is of order 2.
e The homomorphism h is Abelian.

e Forn =06, the homomorphism h is vg o ¢.

Proof. For n > 5, let h : WB,, — S,, be any homomorphism. From Proposition 4.2.2, the
composition map hoa : .S, — S, is, up to conjugation, either Abelian or the identity homomorphism,
and only in the case n = 6 we could also have that h o a is the homomorphism vg. We will examine
this case separately.

Suppose that h o « is the identity homomorphism. We have that (ho «)(s;) = h(a(s;)) =
h(p;) = s;, for 1 <i <mn—1. Tt follows that h(p;) = s;, for 1 <i <n—1. Moreover, from relation
picj =a;pi, [i—7j]>1, we get that h(o1) = h(p;to1p;) = s; h(o1)s; for 3 <i<n -1, which means
that s;h(o1) = h(o1)s;, for 3 <i <n—1. For the same values of 4, since h(o;) commutes with s;, we
get that h(o1) belongs to the centraliser of (ss, ..., s,-1) inside S,; but this centraliser is {1, s;}.
As a result we have either that h(oy) =1 or that h(oy) = s;. We shall check each case separately.

Suppose that h(o;) = 1. In this case, because of relation o; = (01 ...0,-1) to1(01 ... 00 1),
we have that h(o;) =1, 1<i<n-1. Therefore, we get h(p;) =s; and h(o;) =1, for 1 <i<n-1.
Now, from relation p;o;410; = 04110:pi41, for 1 < i < n— 2, it follows that h(p;)h(ci1)h(o;) =
h(oiz1)h(os)h(piv1), which gives that h(p;) = h(pi+1) = 8i = Si41, for 1 <i<n—2. Thus, the image
of the homomorphism h in S, is cyclic of order 2. Thus, h(WB,,) = Zs.

Suppose that h(o1) = s1. By induction we can show that h(o;) = s;, for 1 <i<n-1. Fori =1 the
hypothesis holds. Suppose that for some i > 2 we have h(o;) = s;. From relation p;y10:05+1 = 0ipi+1pi
it follows that h(O'“_l) = h(pl)_lh(pﬂ_l)_1h(01)h(p1+1)h(pl) Thus, h(0'1'+1) = S{ls;}lsisﬂlsi = Sit+1,
which completes the induction. As a result we have that h(p;) = s; and h(o;) =s;, for 1 <i<n-1.
This implies that h is, up to conjugation, the homomorphism ¢.

We will consider now the case where the homomorphism Ao« : S, — S, is Abelian and
therefore cyclic, since the generators of S,, satisfy relation s;s;118; = S;418;Si+1, for 1 <i<n—1.
We have that for all 1 <i<n -1, (hoa)(s;) =w, for an element w € S,,, with w? = 1. Therefore,
(hoa)(s;) = h(a(s;)) = h(p;) = w, which gives that h(p;) = w, where w? =1, 1 <i<n-1. Relation
Tipis1Pi = Pis1PiTis1, under h, becomes h(o;)w? = w?h(os,1), and therefore, h(o;) = h(oi41), for
1 <i<n-1. Thus, we have that h(o1) =--- = h(op-1) = 7 € S,,. Moreover, from relation p;o; = g;p;,
for |i—j|>1and 1<i,j <n-1, we get h(p;)h(o;) = h(o;)h(p;), which implies that wr = Tw. As
a result we have that the image of the homomorphism h is the Abelian group generated by the
elements w and 7, with w? = 1. We conclude that in this case the homomorphism A is Abelian.

Lastly, suppose that n = 6 and that the homomorphism ho« : Sg — Sg is, up to conjugation, the
homomorphism vg; hoa = vg. The map vg!ohoa becomes the identity homomorphism S — Sg and
it follows that (vglohoa)(s;) = (vg'oh)(p;i) = 84, for 1 <i < 5. Using relation p;o; = ojpi, |i—7j]> 1
we get that, for i € {3,4,5}, (vg' o h)(01) = (v5' o h)(p;loips) = 57 (vg! o h)(o1)s;, and we obtain
si(vgtoh)(o1) = (vgtoh)(o1)s;. In other words, we have that (vg'oh) (o) belongs to the centraliser
of (s3, 84, 85) in Sg, but the centraliser of (s3, s4, 85) in S is {1, 51 }. Therefore, either (vg'oh)(aq) =1
or (vgloh)(ay) = s1. Following the same arguments as before, we conclude that in the case where
(vgtoh)(o1) =1, it follows that (vgloh)(o;) =1 and that (vg'oh)(p;) = (vgr oh)(pis1) = Si = Sis1,
for 1 <i<n-2. Thus, (v5' oh) is a cyclic homomorphism, and as a result h is again a cyclic
homomorphism, whose image is of order 2. In the case where (vg! o h)(oy) = s1, it follows that
(vg! o h)(0;) = 54, and as a result (vg' o h) = ¢, since we already have that (vg' o h)(p;) = s, for
1< <5. All together we get that the homomorphism h can be vg o ¢.
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Remark 4.2.4. For n = 3,4, to determine all possible homomorphisms from W B,, to S,, seems to be
trickier. Note that for n = 2 it holds that W By = (01, p1 | p7 = 1), which is isomorphic to the free
product Z * Zo, and thus the image of any homomorphism A : W By — S5 is either the trivial group
or Ss.

Remark 4.2.5. The only possible surjective homomorphisms from WB,, to S,, , for n > 5, are the
homomorphism ¢ and, in the case of n = 6, also the homomorphism vg o ¢.

4.3 The welded pure braid groups W FE,

Let n € N. The welded pure braid group WPF,, as a subgroup of the welded braid group
W B,, has also several interpretations. We now present two definitions of W P,,. One that involves
automorphisms of the free group F,, and another in terms of the fundamental group of the space of
specific configurations.

Definition 4.3.1. Let n € N and let F;, denote the free group of rank n with generators {z1,...,z,}
and let Aut(F),) denote its automorphism group. The welded pure braid group W P, is the subgroup
of WB,, ¢ Aut(F,,), which is generated by the automorphisms of the form

-1
TR ©
Tk — Tk, for k+14, 7.

Thus, WP, is the subgroup of Aut(F,), which consists of the so-called basis-conjugating automor-
phisms, a: x; — Wi_lxiWi, where W is a word in F,,.

Definition 4.3.2. Let n € N and let PUR,, be the space of all configurations of n disjoint pairwise
unlinked ordered Euclidean circles in R? lying in planes parallel to a fixed one. The pure untwisted
ring group PUR,, is its fundamental group.

In the previous section, we saw that W B, ¥ UR,,. Similarly we have WP, ~ PUR,,, which
means that W P, and PUR,, are actually equivalent formulations of the same group. For a complete
proof of the equivalence of these formulations of W P,,, as automorphisms of the free group and as
the fundamental group of the space of certain configurations, we refer the reader to [Dam17].

A presentation of WP, is known due to Humphries, [Hum85] and McCool, [McC86], who
determined the generating set and the defining relations respectively, but also due to Brendle—
Hatcher, [BH13], who used a different approach. To be more precise, Humphries and McCool
considered W P,, as in Definition 4.3.1, while Brendle-Hatcher as in Definition 4.3.2.

Theorem 4.3.3. Let n € N. The welded pure braid group W P,, admits the following presentation:
(€ij, for, 1<i#j<n|R),
where R is the set of the following relations:
1. € j€x, = €k €05,
2. € k€jk = €5 kCik,
3. € j(€in€jn) = (€ik€ k)€ -

Based on the presentation of W P,, given in Theorem 4.3.3, where the relations are commutation
relations we obtain the following result about the Abelianisation of WP, .

Corollary 4.3.4. For n > 2 the Abelianisation of W P, is isomorphic to Z™("™1).

In terms of elements of the fundamental group of space of configurations, the element ¢; ;
represents the movement of the i*" circle passing through the j** circle and going back to its
position, as shown in the following figure:
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Figure 4.2 The element ¢; ;.

Remark 4.3.5. With a geometric approach, based on Figure 4.1 and Figure 4.2, one can see that
the generator ¢; ;.1 is actually equal to p;o; ! and the generator €i+1,; equal to o} Lp;. Thus we have

€iiv1 = pm{l and €;41,; = a{lpi, for1<i<n-1.

Considering the map ¢ : W B,, — Sy, defined by ¢(o;) = ¢(p;) = (4,i+1) € S, fori=1,... ,n—1,
it follows that the welded pure braid group W P, is actually the kernel of this map ¢. In [Sav96],
Savushkina proved that W B,, can be seen as the semidirect product of its subgroups W FP,, and S,
and determined the action of S,, on W P,,, as described in the following theorem.

Theorem 4.3.6 (Savushkina, [Sav96]). Let n € N. The group W B,, is isomorphic to the semidirect
product W P, x S,,, where the action of the symmetric group on W P, is defined as follows:

® €55k = Sk€i,j,

® € jSi = Si€itl,5,

® €ijSj = Sj€ij+1,

® €i+15i = Si€i+1,4-
Remark 4.3.7. Note that the action of the symmetric group S, on W P,,, in Theorem 4.3.6, can be
written more compactly as

S€ij5 = €x(i).s()s

for any elemement s € S, and ¢; ; € WP,.

We are ready now to show that the group W P, is actually a characteristic subgroup of W B,,,
for n > 5, and that its centraliser in W B,, is trivial.

Proposition 4.3.8. For n >5 the group W P, is a characteristic subgroup of W B,,.

Proof. In order to prove that the group WP, is a characteristic subgroup of W B,,, we have
to show that for any automorphism of W B,, the subgroup W P,, stays invariant, that is for any
f € Aut(WB,,) then f(WP,)=WP,.

Let f be any automorphism of the group W B,, and h be any surjective homomorphisms from
W B,, to the symmetric group .S,,. We consider the following composition map:

hof:WB, L WB, > S,.

From Remark 4.2.5 we know that the only possible surjective homomorphisms from W B,, to
S, are the homomorphism ¢ and, in the case of n = 6, also the homomorphism vg o ¢. These
homomorphisms have as kernel the group WP,. Therefore, it follows that ker(h) = WP, and
ker(ho f) = WP,, as both of them are epimorphisms from WB,, to S,,.

We have ker(ho f) = f~1(WP,), since f is an automorphism and ker(h) = W P,. Moreover, we
have ker(ho f) = WP, It follows that f~Y(WP,) = WP,, for any f € Aut(W B,,), which completes
the proof. O

Remark 4.3.9. For n =2 the group W P, is not a characteristic subgroup of W By. This is the case
because the automorphism « : W By — W B, defined by

1
a: 01— 01 pP1, (4)
pP1 — P1,
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does not send the element €; 2 € WP, to an element in W FP,. In particular, €2 = plail, from
Remark 4.3.5, and thus a(e12) = 01 ¢ WPs.

In [Sav96], Savushkina proved that W P, has trivial centre, and moreover we show that the
centraliser of W P,, in W B,, is also trivial.

Theorem 4.3.10 (Savushkina, [Sav96]). Let n e N. The group WP, has trivial centre.
Proposition 4.3.11. Let n € N. The centraliser of W P,, in W B,, is trivial.

Proof. Let n € N. We want to calculate the centraliser
Cwp,(WP,)={geWB, | gp=pg, for every pe WP,}.

We know that WB,, = WP, xS, which means that any g € W B, can be expressed as g =
w(e; ;)w(sk), for w(e; ;) and w(sg) a word in WP, and S, respectively.

Let g € Cywp, (W P,) be a non-trivial element, where g = ES, for E, S fixed words in W P,, and S,
respectively. It holds that gp = pg for every element p € W P,,. Therefore,

€pi-ES=ES ¢€,, forevery k#1e{l,...,n}.

From Remark 4.3.7, and in particular based on the action of the symmetric group on the
generator €,; € WP,, we obtain

- ES=E-esu),su)S, forevery k#le{l,...,n}.

Thus,
€rt = E-egny,s0) -E'eWP,, forevery k#le{l,...,n}. (5)

From relation (5), if €x; = €s(x),s(1), for every k #1 € {1,...,n}, it follows that the element
E commutes with every generator €;; € WF,, and then we obtain a contradiction, since WP,
has a trivial centre, Theorem 4.3.10. Therefore, it holds that there exists k,1 € {1,...,n} such
that ex # esy,s0) and exy = E- €s(r),s() - E~1. Tt follows that for such k,[ there exists a pair
(r,t) €{1,...,n}, such that (S(k),S(l)) = (r,t) and €x; = E - €., - E™'. This means that under the
Abelianisation map the two distinct generators of the group WPF,, €,; and €, would coincide.
But, as stated in Corollary 4.3.4, the Abelianisation of W P, is isomorphic to the free Abelian group
of rank n(n - 1) generated by the elements ¢; ;, for 1 <4, j <n. Therefore, relation (5) can not hold.

Now, suppose that g = .S; meaning that F is a trivial word in W P,,. It has to hold that

x-S =5 epy, forevery k,le{l,...,n}. (6)

But relation (6) implies that the word S in the symmetric group fixes all the elements of the
set {1,...,n}. This is possible only when S is the trivial element, which leads once more to a
contradiction, since g is a non-trivial element in Cy g, (W P,). Since the centre of WP, is trivial
we do not need to check the case where g = E.

We conclude that a non-trivial element ¢ in Cy g, (WP,) does not exist, and therefore the
centraliser Cy g, (WP,) is trivial. O

4.4 About the automorphism group of W B,

In [DG81], Dyer—Grossman proved that the group of the outer automorphisms of the Artin
braid group, B, is isomorphic to Z,. We recall that for a group G, the outer automorphisms group
of G is defined by the following quotient: Out(G) = Aut(G)/Inn(G), where Inn(G) is the group
of the inner automorphisms of G. More precisely, for the Artin braid group we have Out(B,,) = Zo,
for n > 3, generated by the automorphism e,, defined as follows:

en:al-r—mr;l, for every 1<i<n-1.

The automorphism group of the welded braid group, Aut(W B,,), has not been determined yet.
Even though the welded braid group, W B,,, is precisely a generalisation of the Artin braid group
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B,, in the three dimensional space, the method which Dyer-Grossman used in their proof can not
be applied directly for the group W B,,. The main problem that we encountered concerns the free
group, F,,. To be more precise, it is needed, at some part of their proof, to show that the free
group, F),_1, is a characteristic subgroup of a quotient of B,,. Thus, we wanted to prove that F,, is
a characteristic subgroup of W B,,, but the techniques that they use are not applicable in the case
of the welded braid group. This is the case because the action of F,,, as a subgroup of WB,,, to
W B,, has more freedom in comparison to the case of the Artin braid group, B,. As we will see
in the following proposition, we are able to show that F,, is actually a normal subgroup of WB,,.
Nevertheless, we speculate, a stronger result, that the free group F,, is a characteristic subgroup of
W B,,, which seems harder to obtain.

Proposition 4.4.1. Let n >2. The free group of rank n, F,, is a normal subgroup of W B,,.

Proof. Identifying the free group F, as the group of inner automorphisms inside Aut(F,) we
have F,, ¢ WP, c WB, c Aut(F,). More precisely, we have that for any § € F,, it holds that
B(x;) = wx;w™t, for every x; € F,, and for w € F,, a fixed element in F},.

Let v € WB, c Aut(F,). We consider the composition y3y! : F,, — F,,. For any z; € F,, we
have that y8y ™" (z;) = v8(y " (#:)) = v(wy ™ (z)w™) = y(w)yy™ () y(w™) = y(w)z; (y(w)) ™" €
F, c Aut(F,), for v(w) a fixed element in F,,. As a result, 73y € F}, c Aut(F,), which implies
that § € F), is invariant under conjugation by any element of W B,,. We conclude that the group
F,, is a normal subgroup of W B,,. O

The conjecture that we have regarding the outer automorphism group of W B,, is that it is not
trivial, and more precisely, we conjecture that, for n > 3, the group Out(W B,,) is generated by the
automorphism «,, which is of order two defined as follows:

o pioytpi, for 1<i<n—1, )
Oy, +
" Npi— pi, for 1<i<n-1.

Therefore, we conjecture that Out(W B,,) = Zs, for n > 3.
The automorpism «,,, defined in (7), can be seen as the composition of two other maps; the
map S, and 7,, defined as follows:

P (8)

G'i’—>0'i_1, forl1<i<n-1,
pi— pi, for 1<i<n-1,

and

(9)

0 — pioip;, for 1<i<n—-1,
Tn

pi — pi, for 1<i<n-1.

These two maps, although their composition is an automorphism of the welded braid group, they
are not automorphisms of the group W B,,. Actually, they are not even homomorphisms, since
relation RS, p;0;110; = 0;410;pi+1, for i =1,... ., n—2,in WB,,, is not preserved neither under the
map [, nor under the map ,. These two maps send the group W B,, to a different group, which
we will denote by WB,. The group WB, differs from the group W B,, only in the last relation RS,
Pi0i+10; = 01410:Pi+1, for ¢ = 1,... ,n — 2, which becomes 0;0;41p; = pi+10:0441, for i =1,...,n—2.
Based on this observation, we provide a motivation to explore the group which contains both
relations R8 and R8. This group appears to be an already known group, the unrestricted virtual
braid group, which we explore in the following chapter.
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CHAPTER b

The unrestricted virtual braid groups UV B,,

In this chapter we explore the unrestricted virtual braid groups UV B,,. We begin by defining the
group UV B,, and providing several references about the unrestricted virtual braid group. In Section
5.2 we determine all possible homomorphisms, up to conjugation, from UV B,, to the symmetric
group Sy, for n > 5. We continue with Section 5.3 where we introduce an important subgroup of
UV B, the group UV P,,, and we show that it is a characteristic subgroup as well as that it has
a trivial centraliser in UV B,,. The Section 5.4 is devoted to the study of all possible images of
UV B,, in any finite group G, under any group homomorphism. In this study, the theory of totally
symmetric sets plays a main role and so we introduce these sets and we present several results
which involve them. In Section 5.5, we give a characterisation of the torsion element in UV B,,,
and in particular we show that any torsion element in UV B,, is a conjugate of an element of the
symmetric group S,. In Section 5.6 we prove that the Artin braid group B,, embeds in UV B,, as
the crystallographic group B, /[Pn, P.]. At the last but one Section 5.7, we provide the necessary
theory about the right-angled Artin groups, which we use for giving a complete description of the
automorphism group of the group UV P,,. We complete this chapter with Section 5.8, where we
give partial results about the automorphism group of UV B,, and prove that the groups UV B,, and
UV P,, are Hopfian but not co-Hopfian.

5.1 Introduction

The group of unrestricted virtual braids, which we will denote throughout this text by UV B,,,
was introduced by Kauffman and Lambropoulou in [KL04] and [KLO06], where, respectively, they
provide a new method for converting virtual knots and links to virtual braids and they prove a
Markov Theorem for the virtual braid groups. The group UV B,, also appears in [KMRW17] as a
quotient of the welded braid group W B,, and in [BBD15] where Bardakov-Bellingeri-Damiani give
a description of the structure of this group. Therefore, it is worth studying the group of unrestricted
virtual braids, UV B,,, for being a quotient of the welded braid group W B,, as well as for its own
sake.

The unrestricted virtual braid group is defined as follows.

Definition 5.1.1. Let n € N. The group of unrestricted virtual braids UV B,, is defined by the
group presentation

<Ula~--70n—17p17~--7pn—1 | R),

where R is the set of the following relations:
1. 0;0i+10; = 044100541, for i = 1, ey — 2,

2. 0405 =0j0;, for |i—j| > 1, where 1<4,j<n-1,

67
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3. PiPi+1Pi = Pir1pPipis1, fori=1,...,n-2,
4. pipj = p;pi, for |i —j| > 1, where 1 <4,j<n-1,
5. p?=1,fori=1,....,n-1,

6. 0;p; = pjoy, for i - j| > 1, where 1<4,j<n-1,

T. Oipir1Pi = Pis1PiTis1, fori=1,...,n -2,
8. pi0it10; = 0410ipi1, fori=1,...,n-2,
9. pis10i0441 = 050441p;, fori=1,...,n - 2.

Remark 5.1.2. We see that, in order to define the group UV B,,, the only extra relation that we
added to the group W B,, is relation 9.

Remark 5.1.3. Let n > 2. Based on the presentation of UV B,,, Definition 5.1.1, it follows that the
Abelianisation of UV B,, is isomorphic to Z x Zs, where Z is generated by [o1] and Zs is generated

by [p1].

5.2 Homomorphisms from UV B,, to the symmetric group S,

Before presenting all possible homomorphisms from UV B,, to the symmetric group S,,, we recall
the map ¢.

e Let ¢ be the homomorphism UV B,, — S,, defined by &(0;) = ¢(p;) = s;, where s; = (i,i+1) €
S, for every 1 <i<n-1.

We recall that with vg we denote the outer automorphism of the symmetric group Sg.

Theorem 5.2.1. Letn>5 andlet h: UV B, — S,, be any homomorphism. Then, up to conjugation,
one of the following holds:

e The homomorphism h is the homomorphism ¢.
e The homomorphism h is cyclic, whose image is of order 2.
e The homomorphism h is Abelian.

e For n =6, the homomorphism h is vg o ¢.

Proof. To prove this theorem we follow the same arguments as in Theorem 4.2.3; the equivalent
theorem for the group W B,,. The same arguments hold here as well, since the relations that are
used are valid also in this group, and the new relation, p;.10;0;11 = 0;0;:+1p;, that holds in UV B,,,
does not provide further results. O]

Remark 5.2.2. For n = 3,4, to determine all possible homomorphisms from UV B,, to S,, seems to
be trickier. Note that for n =2 it holds that UV By = (01, p1 | p3 = 1) = W By, which is isomorphic
to Z * Zo, and thus the image of any homomorphism h: UV By — S is either the trivial group or
So.

Remark 5.2.3. The only possible surjective homomorphisms from UV B,, to S,, , for n > 5, are the
homomorphism ¢ and, in the case of n =6, also the homomorphism vg o ¢.
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5.3 The unrestricted virtual pure braid groups UV P,

Let ¢ : UV B,, — S, be the map defined by ¢(o;) = ¢(p;) = (4,i+1) € S, fori=1,...,n-1.
The unrestricted virtual pure braid group, which we denote by UV P, is the kernel of the map ¢.
In [BBD15], Bardakov—Bellingeri-Damiani defined the following elements of UV P,:
)\i,i+1 :piO';I, for i = ].,...,TL—].,
Ai+1,i ZJ;Ipi, for ¢ = 1,...,7L—1,
/\i,j =pPj-1Pj-2 - - -Pi+1)\i,i+1pi+1 <o Pj-2Pj-1, for 1 <1< j -1<n- 1,
Aji = PG-1Pj=2 - -+ Pis1 Nix1,iPis1 - - - Pj—2Pj-1, for 1<i<j—-1<n~-1.
Moreover, they gave a presentation of UV P,,, which is presented in the following theorem.
Theorem 5.3.1 (Bardakov—Bellingeri-Damiani, [BBD15]). Let n € N. The group UV P, admits
the following presentation:

Generators: Ay j, for 1<i#j<n.
Relations: The generators commute pairwise except for the couples A; j, Aj ;.

To give a better insight into UV P,, we present the following remarks.

Remark 5.3.2. The generators \; ;, for 1 <i# j <n of UV B, are actually the same elements as
the generators ¢; j, for, 1 <i# j <n in Theorem 4.3.3. In other words, one can define a map that
sends each A; ; to €; ;.

Remark 5.3.3. The group
UVP,=(X\ij, 1<i#j<n| N j =g, for (k1) = (j,7), 1<i,5,k,1<n),
can be equivalently seen as the direct product of the following n(n —1)/2 factors:
UVP, = (A2, Aa1) % x (Nijhji) X x (An_1ms Ann1 ), for 1<i#j<n.
Thus, UV P, is isomorphic to the direct product of n(n —1)/2 copies of the free group of rank 2:
UVP,z2Fyx---xFyx---x Fy, for n>2.

n(n —1)/2-times

Remark 5.3.4. The group UV P, has trivial centre, Z(UV P,) = e, since it is isomorphic to the
direct product of free groups. For the same reason it follows that UV P, is torsion free as well.

Based on the presentation of UV P,,, given in Theorem 5.3.1, where the relations are commutation
relations we obtain the following result about the Abelianisation of UV P,.

Corollary 5.3.5. Forn > 2, the Abelianisation of UV P, is isomorphic to Z""™1)

The question that was posed in [KL06] about the non-trivial structure of UV B,, was answered
by Bardakov—Bellingeri-Damiani in [BBD15], where they gave a decomposition of UV B,, into its
subgroup UV P,, and the symmetric group S,,, as presented in the following theorem.

Theorem 5.3.6 (Bardakov—Bellingeri-Damiani, [BBD15)). The group UV B,, is isomorphic to the
semi-direct product UV P, x S,,, where S, acts by permuting the indices of the generators of UV P,,.

More precisely, for all \; ; e UV P,,, where 1 < ¢ # j <n, and for any s € S,, we have the following
conjugating rule:
()X je() ™ = Aaiy.si)»

where ¢ is the injective map ¢ : S, — UV B,, defined by L((i, i+ 1)) = p;; it is the natural section for
the map ¢ that we defined in the beginning of this section. Moreover, the action of the symmetric
group S,, on the generating set of UV P, is transitive, see [[BBD15], Corollary 2.6].

Note that Theorem 5.3.6 is an equivalent result to Theorem 4.3.6, where we have a decomposition
of WB,, into WP, xS,.
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Remark 5.3.7. Having that UV B, 2 UV P, xS, it follows that the centre of UV B,, is trivial,
Z(UV B,,) = e. This is indeed the case because the centre of the symmetric group and the centre of
UV P, are trivial, see Remark 5.3.4.

We now continue with proving that the group UV P, is actually a characteristic subgroup of
UV B, for n > 5, and that its centraliser in UV B,, is trivial.

Proposition 5.3.8. For n>5, the group UV P, is a characteristic subgroup of UV B,,.

Proof. In order to prove that the group UV P, is a characteristic subgroup of UV B,,, we have to
show that for any automorphism of UV B,, the subgroup UV P, stays invariant. That is for any
f € Aut(UV B,,) then f(UVP,)=UVP,.

Let f be any automorphism of the group UV B,, and h be any surjective homomorphisms from
UV B,, to the symmetric group S,. We consider the following composition map:

ho f:UVB, L uvB, 2> s,.

From Remark 5.2.3 we know that the only possible surjective homomorphisms from UV B,
to S, are the homomorphism ¢ and, in the case of n = 6, also the homomorphism vg o ¢; which
homomorphisms have clearly as kernel the group UV P,,. Therefore, it follows that ker(h) = UV P,
and ker(ho f) = UV P,, as both of them are epimorphisms from UV B, to S,,.

We have that ker(ho f) = f"Y(UVP,), since f is an automorphism and ker(h) = UV P,.
Moreover, we have that ker(ho f) = UVP,. It follows that f~1(UVP,) = UVP,, for any f €
Aut(UV B,,), which completes the proof. O

Remark 5.3.9. For n =2 the group UV P, is not a characteristic subgroup of UV By. This is the
case because the automorphism « : UV By — UV By, defined by

-1
0101 p1,
(6
pP1 — P1,

does not send the element A\ 2 € UV P, to an element in UV P,. In particular, A2 = pla{l, from
Remark 1, and thus a(A12) =01 ¢ WPs.

Proposition 5.3.10. Let n € N. The centraliser of UV P,, in UV B,, is trivial.

Proof. The proof is the same as in the proof of Proposition 4.3.11, where we prove that the
centraliser of WP, in W B,, is trivial. O

5.4 Finite image of UV B,

The main tool that we will use in order to determine all possible images of UV B,,, under a
group homomorphism, in any finite group G is the theory of totally symmetric sets, which was
introduced by Kordek and Margalit in [KM].

We start by introducing the notion of totally symmetric sets and presenting several results
about them.

Definition 5.4.1 (Kordek—Margalit, [KM]). A subset X of a group G is called a totally symmetric
set of G if it satisfies the following two conditions:

e The elements of the set X = {x1,...,2,} commute pairwise.
¢ Each permutation of X can be achieved via conjugation by an element of G.

We will present now a couple of facts about the totally symmetric sets, presented in [KM] and
[CKLP20].

Lemma 5.4.2 (Kordek—Margalit, [KM]). Let X be a totally symmetric set, of a group G, which
has size k. For any homomorphism h: G — H it holds that h(X) is either a singleton or a totally
symmetric set of size k. In other words, |f(X)| is either 1 or |X]|.
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Proposition 5.4.3 (Chudnovsky, Kordek, Li, Partin, [CKLP20]). Suppose that X is a totally
symmetric set of a group G, with size | X| =k, whose elements have finite order. Then it follows
that |G| > 2871k,

Remark 5.4.4. Note that all elements of a totally symmetric set, X, are conjugate to each other,
and thus every element of X has the same order. In particular, if one element of X has finite order
p, then every other element of X has also order p.

Remark 5.4.5. Proposition 5.4.3 can be restated in an equivalent way and that is the following:
Let h: G — H be a group homomorphsim from G to a finite group H. Suppose that X is a totally
symmetric set of G with size | X|, then |h(G)| > 2X7! | X1,

From Lemma 5.4.2 we know that either |h(X)| = |X| or |h(X)| = 1. Thus, the equivalence
between these two statements comes from the fact that, for any finitely generated Abelian group S,
then S is a torsion group if and only if the group S is a finite group.

We are ready now to define some totally symmetric sets of UV B,,, for n > 3. Based on the
presentation of UV P, given in Theorem 5.3.1, we define the following totally symmetric sets.

Lemma 5.4.6. Let n > 3. The following n sets, whose cardinality is n(n—1)/2 are totally symmetric
sets of UV B,,.

A= {)\i’l,...,/\i,n,Bi,Ci}, for1<i<n,
where B;, C; are the following families of generators:

i+1 2
Bi = U{Njrticksici1 and Ci= U {Asthi<t<i2-
j=n

s=1—-1

Proof. Let n > 3. The sets A; do not contain any pair of elements of the form {Ax;, A;x}, and
therefore the elements inside each A; commute pairwise, by Theorem 5.3.1. Moreover, by Theorem
5.3.6, UV B,, can be seen as a semi-direct product, UV P,, x S,,, where the symmetric group S,, acts
by conjugation on the elements of UV P, permuting the set of the elements A; ;. Thus, it follows
that indeed the elements ); ; are pairwise conjugate in UV B,,. As a result we get that indeed the
sets A; are totally symmetric sets. Moreover, the size of every totally symmetric set A; is:

|Ai|:(n—l)+(n—2)+-~+(n—(n—2))+(n—(n—1)):n(n—l)/Q.
O

At this point we will provide an example in order to make clearer the construction of these
totally symmetric sets in UV B,,. For n =5 we have the following five totally symmetric sets in
UVB5Z

Ay ={ A2, A1,3, A 1,4, A5, A5.2, A5.3, A5 4, Aa 2, Aa 3, Ag o ), [Ad| = 10.

Az ={X21, 223, A2,4,A2.5,A5,1, A5,3, A5.4, Aa,1, Aa 3, Ag.1 ), |Az| = 10.
Az = {31,232, 23,4, A3,5, A5,1, A5.2, A5 45, Aa 15, Aa 2, Ao 1}, [A3] = 10.
Ay = {1, M2, M3, A5, 5,15 25,2, A5 3, A3.1, A3 2, A2}, [A4l = 10.
As = {51, 25,2, A5,3, A5.4, Aa 1, Aa 2, Aa 3, A3.1, N30, Ao 1 ), |As] = 10.

Remark 5.4.7. We observe that for any 1 <4,j <n where ¢ # j we have that A; # A;, since A; ; € 4;
but A; ; ¢ A;, and also that A; n A; #+ @. Moreover, the set Uj_; A4; is equal to the generating set of
UVPn That is U?:l Al = {)\7;7]‘}151‘;”'5”.

We shall now state and prove the main theorem of this section.

Theorem 5.4.8. Letn >3 and ¢ : UV B,, — G be a group homomorphism to a finite group G.
Then, one of the following must hold:

o O(UVBy) 22y xZLa, for some meN. In this case, the image of UV By, is Abelian.
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n(n-1) 1/ n(n-1
o |B(UVB,)| 22" -1 (n)y),
e ¢9(UVB,) 2 Zpy xIm(dys, ), for some m e N. In this case, the image of UV P, is cyclic.

Proof. Suppose that ¢ is Abelian. That means that the image of UV B,, is an Abelian subgroup
of G. In this case we have the following situation: relation ¢;0;410; = 04100441, for 1 <i<n -2,
that holds in UV B,, implies ¢(0;)¢(0is1)d(0:) = ¢(0i01)P(03)d(0411). Since ¢p(UV B,,) is an
Abelian subgroup of G it follows that ¢(0;)?¢(0i11) = ¢(0:)p(0441)?, and therefore that ¢(o;) =
@(0is1), for any 1 < i <n-2. Therefore, there exists an element g in G such that ¢(o;) =g € UV B,,
for all values 1 <¢ <n-1. Similarly, we have relation p;p;+10; = pi+1pipiz1 mM UV B, for 1 <i<n-2.
Applying the same argument it follows that ¢(p;) = ¢(pis1). Moreover, relation p? =1 € UV B,
gives that ¢(p;)? =1, for any 1 <i<n—-1. As a result we conclude that ¢(o;) generates a finite
subgroup, Z,,, inside G, and ¢(p;) generates the subgroup Z, inside G. All together, we get that

H(UVB) & Ly % .

Suppose that ¢ is not Abelian. Moreover, suppose that at least one of the images of the totally
symmetric sets A;, defined in Lemma 5.4.6, under the homomorphism ¢, is not a singleton. From
Lemma 5.4.2 we have that either |¢(A;)| = n(n - 1)/2 or |¢(4;)| = 1, and therefore, for some
ke{l,...,n}, we have a totally symmetric set Ay, for which |¢(Ag)| =n(n-1)/2. From Proposition
5.4.3 we obtain that

$(UV By)| > 2”"3'”‘1(%)1-

For the last possible case we consider that ¢ is not Abelian and also that |¢p(A;)| = 1, for
all 1 < ¢ < n. The fact that |¢(A4;)| = 1 implies that ¢(A4;) = g; € G, for every 1 < i < n. From
Remark 5.4.7 we have A; n A; # @ for every pair ¢,5. Now, without loss of generality, we set
i = 1 and therefore, from the fact that A; n A; # @, for all 2 < j <n and that ¢(A;) = g1 € G,
we conclude that ¢(A;) = g1 € G, for all 2 < j < n. This means that every generator of UV P,
is mapped to the same element g1 € G, since Uj_; A; = {\i j }1<izj<n, from Remark 5.4.7. Note
that g could be possibly be the trivial element. From Theorem 5.3.6 we have that UV B, is
isomorphic to the semi-direct product UV P, » S,, and that for any generator s € .5, it holds that
5Xij5™1 = Ag(i),s5(j)- Under the homomorphism ¢ we obtain ¢(s)d(Xi;)(¢(s))™" = ¢(As(i,s(;)) and
therefore ¢(s)d(Nij) = ¢(As(i),s(j))¢(s). Finally we get ¢(s)g1 = g196(s). We conclude that the
image of any generator s of the symmetric group, ¢(s), commutes with g;. In other words, the
image of UV P, is cyclic, where every generator of UV P, is mapped to the same element which
commutes with the image of the symmetric group. Thus, ¢(UV B,,) & Z, x Im(¢ys,, ), for some
m €N, and in particular, p(UV B,,) = Im(¢g, ) in the case when g = 1. O

5.5 Torsion elements of UV B,

In this section we characterise the torsion elements of UV B,,. Let ¢ be the injective map
v: S, — UV B, defined by ¢((i,i+1)) = p; e UV B,.

Proposition 5.5.1. Let n > 2. Any torsion element w in UV B,, belongs to the normal closure of

t(Sn)-

Proof. Let g be a torsion element in UV B,,. The image of g in the quotient of UV B,, by the
normal closure of ¢(.S,,) is the identity since this quotient is isomorphic to UV P,, which is torsionless.
Therefore g belongs to the normal closure of +(S,,). O

Note that this proposition is true also for W B,, since W P,, is torsionless. In the case of UV B,,
we have however a stronger result, as described in the following theorem.

Theorem 5.5.2. Let n > 2. For any torsion element w, of order r, in UV B,, there exists an
element s € S, that depends on w, of order r and such that w is conjugate to t(s) by an element of
UVP,.
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Before moving on to the proof of the Theorem 5.5.2; we fix some notation and we make some
observations about the action of the symmetric group S,, on the group UV P,,, which we will use
in the proof. Let s € S, and let GG; denote the cyclic group generated by the element s. From
Theorem 5.3.6 we have that an element s € S,, acts on UV P, = (\;; | 1 <i#j <n) by permuting
the indices of the elements )\, ;. For simplicity, we write the element s\; js™* as s()\; ;) (and more
generally sgs™! as s(g) for g e UV P,) and we set As(i,j) to be the element Ay o;)- We will also
identify a permutation s with the element ¢(s) in UV B,.

Let G act on the set {\;; | 1 <i# j <n}. We can express the orbit of the element \; ; as
follows:

s(J

G- >\i,j = {)\SL(Z-J), 0<e< k@j -1, k‘iJ € N>0},

where k; ; > 1 is the cardinality of the orbit of the element A; ;. We observe that the cardinality of
the orbit Gs-\; ; coincides with the cardinality of the orbit G,-A; ;. We define O; ; to be the union of
the orbits G- \; ; and G- A; j. By abuse of notation, we call the sets O; ; orbits. Notice that orbits
Gs-\ij and G, - A, j possibly coincide: in this case G- A;j = {\ij, Aji}, Gs- i ={ N\, \ij} and
0i; ={Xij, A} (and therefore k; ; = k;; = 2). Notice that if G-\ j = {\i;} and G5-\j; = {\;;}
we have still that O; ; = {\; ;,A;;} but in this case k; ; = k;; = 1. Therefore the cardinality of O; ;
is 2k; ; if G5+ \;j and G, - \; ; are distinct and 2 otherwise. In the following we set (O; ;) to be the
group generated by the set O, ;.
We present the following two lemmas, which we will use in the proof of Theorem 5.5.2.

Lemma 5.5.3. Let we UV By. If w? =1, then w is a conjugate to s1 by an element of UV Ps.

Proof. Recall that UV By = UV P, x Sz, where UV P; is the group freely generated by {A1 2,21}
and where s, € S permutes Aj 2 and Ay 1. Therefore, if w € UV By, w can be written as w = g1 251,
where 91,2 € FLQ = <)\172,>\271>.

Suppose that w? = 1. If g1,2 = 1 the statement is trivially verified. Otherwise, since w? =1
implies that g1 25(g1,2) = 1, the word gy 2 cannot be written in a reduced form as a word starting
and ending with a non trivial power of the same generator: more precisely we can suppose w.l.o.g.
that g1 2 can be written as g; 2 = )‘?2)‘3?1”'/\:6151 )\g’,’l + 1, for €1,€9,..., € non zero integers, and we
can rewrite g1 25(g12) = 1 as follows:

g125(91.2) = (ATAZ A2 A1) - (A AT AgT At ) = 1€ Fia.

+1 +1

Since g1 95(g1.2) =1 in the free group F} o we have that ¢;_; = —€; for j =0,...,t — 1. Therefore
3 ) ) J J 9 9 )
_ V€1 \€2 €t/2 \ ~€t/2 —€9 \ —€1
91,2 = )‘1,2)‘2,1"')‘2,1 )‘1,2 "'/\1,2 )‘2,1 :
Now, we can indeed express w = g1 25 as a conjugation of s by an element in UV P;.
_ _ \€1 €2 . \Ct/2y /2 y—€xy—€1
w=4g1,28= /\1,2/\2,1 >‘2,1 /\1,2 /\1,2 >‘2,1 s
SO L2 g\ e yma
= )‘1,2)‘2,1 )‘2,1 s >‘2,1 )‘2,1 )‘1,2
_ ()€1 \€2 €t/2 €1 €2 €2\~ 1
= ()‘1,2/\2,1"'/\2,1 )'5'(/\1,2/\2,1"')‘2,1 )
-1
=AM s-AT,
where A; € F1 5.

‘We conclude that:
U.):Al 'S'AIl, where A1 EUVPQ.

O

Lemma 5.5.4. Letn>2 and s€S,,. Let O1,...,0;,...,0,_, the disjoint orbits of the action of
Gs on the pairs {\; j,\ji}. Let 1 <i<ls and ~y; € (O;) such that ;s has finite order in UV B,,.
Then ;s is conjugate to s by an element of UV P,.
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Proof. Let s € S,. It is enough to prove the statement for the orbit of the pair {A; 2,A21}. We
set O1 = {Ag(1,2), Asi(2,1) ) Let y1 be a non trivial element of (O1) such that ;s is of finite order
in UVB,.

Let first suppose that Gs- A2 = G- Ag1; therefore (O1) = UV P,, the free group gener-
ated by {A12,X21} and s = s1 - s where s’ has disjoint support from s;. Note that (y15)™ =

Vi85 yisv1s = ysys Ls2yrs 2™y sTMT DM =y 5(y) 8™ (71)s™, and thus (y1s)™ =
—_—
m—times

v18(y1)-++s v1)s™ for any integer m; if v, € Oy then s%(71) =71 and if yy5(7y;) is of finite order
then y15(71) =1 since (Oq) is the free group generated by {12, A2.1}. Therefore if v s has finite or-
der in UV B,,, 151 is of order 2. We can therefore apply previous lemma, to v181 and y181 =+ s1y 7t
for some ' € (O1). Then we have that yys = y1518" = v'51771s’ = v's15"7 "L = 4'sy'~1 since s’ acts

trivially on {A1,2,A2,1}-

m—l(

So let suppose from now on that G- Ai2 # Gs - A2,1; We set kq the cardinality of G - A1 2;
therefore Oq has cardinality 2k;. Then v, = 91,295(1,2) " Isk1-1(1,2)» where g1 2 € Fi 2 = ()\172,)\271)
and gsr(1,2) € For(1,2) = (Asp(1,2) Asp(2,1)), for 1 <p < ky — 1. Clearly, it can happen that for some
1 < p < kp -1 the factor ge(1,2) does not exist in 1, which means that v; does not contain a
subword in Fgp(1,2) = (Asp(1,2); Asp(2,1)), OF that after possible commutations this factor becomes
trivial. The elements g1,2,9s(1,2)s- -+, gsk1-1(1,2) commute pairwise, since they belong in different
factors of UV P,. Notice that if (y1s) is of finite order, since UV P, is torsionless it follows that
y15(71)-+s8171(41) = 1 and thus that

91,295(1,2)'"931«1—1(1,2)5(91,293(1,2)"'951«1—1(1,2))"'Skl_l(91,295(1,2)"'gsk1—1(1,2)) =1L

We deduce that the product of the elements that belong to Fy 2 and to Fip(q1,2), 1 <p<kp—1 are
trivial. More precisely, the elements that belong to Fi 2 are g 2, s(gskrl(m)), Lo (95(172))
and we have that 91725(gsk1—1(172>)"'Sk1_1(95(1}2)) =1. As a result, we get that

-1
912 = 5" (g50,2))5(9501 1,2 )
The element 71 = g1,295(1,2) " gsk1-1(1,2) gets the following form:

Y= 8k171(g;(lljg))"'S(g;kll—l(l’g)) . gs(172)“'gsk1*1(1,2)'

We are ready to prove that ;s is a conjugation of s by an element of UV P,,. We have that
mes=st (95(1 2)) (931—1(1,2))'95(1,2)"'9%1*1(1,2) oS

Based on this expression of v, - s we consider the pairs s*1~ t( 9erqa, 2)) gst(1,2), for 1<t <ky - 1.
We will prove that the element s~ t( t(1 2))gst(1 2) + 8 can be written as a conjugation of s by an
element of UV P, for any 1<t<ks -

We set E; = H C(g;}(l 2)) for 1 <t < k1 — 1. Notice that E; = 1 and that Ey =

ki-1
& (932(1,2))'
For ¢t =1 we have that

Ck}l (t 1)

(gs(l 2))95(1 2) S = S (95(1 2)) )1_1(95(1’2)) since s - 8 (gs(l 2)) = gs(172),
For 2<t <ki -1, By = sM (D (g7 9t (1, 2)) k1_2(9§t1(1,2))5k1_1(gs_tlu,z)) = leiz;l_(t_l) Sc(gs_tl(m))-
The elements sk1~(t~ 1)(g ‘a, 2)) skl_Q( st1(1,2))’ skl_l(g;}(l’z)) commute pairwise since they be-

long to Fy(1,2),- -, Fst-2(1,2), Fst-1(1,2), respectively. We have that

sk~ (gst(l 2))95t(z,3) s=s" (gst(l 2))EtEt 9st (i) " S

= gk~ t(gst(l,Q))Et’S’Skl 1(Et1)5k171(98‘(i1j))

The element Skl_l(Et_l) is (Skl_t(gst(172))"'Skl_g(gst(l’z))Sk1_2(gst(1’2))) = H];;,;f_t sc(gst(l’z)). In
skl_l(Et_l) the elements skl_t(gst(w)), ey sk1_3(gst(172)), gh1-2 (gst(m)) commute pairwise, since
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they belong to Fi,..., Fy-s(1,2), Fs-2(1,2), respectively. Moreover, the element skl’l(gst(m»))
belongs in Fgi-1(1,2y and thus it commutes with skl‘l(Et). As a result, continuing the above
equalities,we obtain that

sM” (gsf(l 2))95‘(1 2) s=s"" t( ) E; gst(l 2)" 8
s (g5 <12))Et s s (Ey)s™ ( 9st(1,2))
"7 (g3 f(u))skl D (gi1.2)) 5" 2 (9002))s" o)) -
S (g0 2) 8 P (95 0,2)) 8™ (gst(l 2)s"  (95:1.2))
st *(9 t(1, 2)) e 1)(95,(1 2)) (gsf(l 2)) (gsf(l 2))
( - t(gst(l 2))8 st 1)(gst(1 gy )8 (gs_t(m))s - (9;(1,2)))71

=" (g )) Er- s+ B M T (g 12y)-

We conclude that indeed skl‘t(g;}(m))gst(l,g) - s can be written as a conjugation of s by an
element of UV P, for any 1 <t <k —1. More precisely, we have that

gk1- (gsf(l 2))93’5(1 2) s=sF (gst(1 2))Et S- E sk (gst(lg)), forany 1 <t<ky-1.

Based on this result we will show now that v;8=A;-s- AIl, where A1 e UV P,,. We recall that
n-s=st (gs(l 2)) (9;’31-1(1,2)) "9s(1,2) " Ysk1-1(1,2) "S-

We will proceed as follows: at every step we will be considering the pair s*1 7 (g;}(u)), gst(1,2), for
1<t <k —1. Starting with the pair skl_l(g;(lw)),gs(m) we simply move at the right hand side of
s the element g(; 2), which becomes skl‘l(gs(l,g)). We can indeed move the element g (i 2y, since
it commutes with all the elements on its right, as none of them belong to Fy(; 2). We continue with
the pair s* (g 2(1, 2)) 9s2(1,2), Wwhere we add and substract the element E; besides s* (9;21(172)).
Then, we move on the right hand side of s first the element g,2(1 2y, which becomes sk~ 1(952(1’2))
and then the element E;!, which becomes s¥171(E;!). We can indeed make these moves, since
at every moment that we move an element on the right, till we arrive on the right hand side of
s, the element that we move does not meet any other element that belongs in the same factor of
UV P, and therefore they indeed commute. We continue doing the same at every step with all the
pairs till we do the same with the last pair 8(9;31_1(172)), gsk1-1(1,2)- Finally, we observe that on the
left hand side and the right hand side of s, we have the same elements with opposite signs, and
with eligible permutations we achive also the right ordering of elements and we indeed get that
y18=A1-s- A7t where Ay e UV P,. We present now the formulation of this method.

5= 87 (g5 )8 T (G5 2y ) s (91 (19)) - 9s(12) 7 Gt (1) Geki 1 (1,2) 8
= Skl_l(gs_(ll)g))"'Skl_t(g;tl(l’g))"'5(9;131—1(172)) "9s2(4,5) " "Yst(i,5) " Gsk1-1(1,2) " S* Skl_l(gs(l,Z))
kl 1(95(1 2)) _t(g;l(l 2))EtE{ISkl_t(g;}H(Lz))---8(9;1611-1(172)) . gst(i,j)"'gsk1—1(1,2) - S
s (B )s (gsf 11,2) 8" 7 (9s01.2))
s (g5 t2)) s (05, 2))Et5krt(9sft1+1(1,2))"'5(9;161171(1,2)) "gst+1(1,2) skt (1,2) © 5
(B7

sTHE) S T (g )5 T (9s002))

st gs(l 2)) (get(l 2)) (9 k1-1(1, 2))Ek1 1Ek1 1°9sk1-1(1,2) ° S

(
S (Ely)s™ (gsk 2i.0)) s (B )8 T (gaeigy) 5" (95002))
kl 1(gs(l 2)) (gst(l 2)) (gekl (1, 2))Ek1 18
SH(ER )" T (e 2) s THET) S T (g0 ) 5™ T (9501,2))-
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At each step we can move the product E;' on the right hand side of s, since E;! € Fy1,2) x - x
Fiyi-2(1 2)xFye-1(1 2) and all the elements that it meets belong in the factors Fi 2, Fyt (1,2, - - -5 Fori-1(1,2),
and therefore they indeed commute. Now, replacing the values of Ej,_; and E; we obtain the
following:

n-s= Skl_l(9;(11,2))"'Skl_t(gs_fl(u))Et"'s(g;’vlrl(m))Ekl-l "
ST (Br1)s" T (9o a,2)) s T BT )S T (gs0 0y )5 T (9500,2))

ki-1( -1 kiot( -1 ot 1 1 ot 1
=5t (9;(1,2))---5 . (gs_t(m))( 1—! )30(9;(1,2)))"'3(9;k1—1(1,2))( H2 86(9;(1,2)))'5'
c=k1—(t-1 c=
kinl ki1
2 (1 ) g T laean)
c=2 C=k1*(t*1)
M7 (gor (1.0 ) 5" T (9501,2))
ki-1( ~1 kiot( -1 k= 1 1 k= 1
=57 (ot )™ (9&(1,2))( 1—{ )30(9;(1,2)))"'3(93_&1—1(172))( HQ 56(9;(1,2)))'5'
c=k1—-(t-1 c=
T ka1 e ki-1 R T
( [ s (9512)) )" 7 (a1 0.2))( [T s (95(1.2))5" (gt iy )+ (9501.2))
c= c=kq—
ki1 ki1
- skl—l(g;(lm)) ( I]j tsc(gs_tl(l,2))) ( [ Sc(g;tl(l,Q))) .
c=K1— c=
Rt c ot c k1-1
( L S (gst(l,z)))“'( lk—[ tS (st(1,2)))"'5 ! (93(1,2))
c= c=kq—
ki1 ki1
-5 1_1(9§€L2))"'( [ ts 93212)))"'( Il 30(9;%13)))‘5'
c=k1— c=
ki-1( -1 Fact 1 Pt 1 - 1
(S 1~ (g;(1,2))...( I]j 36(9;(1,2)))"‘( I_Il 36(9;(1,2)))) =N\ SAI .
c=ki1-t c=

Therefore, 71 -5 = Ay - s+ A7', where Ay € (O1) = (Agi(1,2) Ase(2,1) Jo<ick, -1, an element in UV P,.
With the same techniques we obtain that v;-s = A;-s-A;", where A; belongs in (O;), for every

1<i<lis. O
Based on this discussion, we proceed to the proof of Theorem 5.5.2.

Proof of Theorem 5.5.2. Let w e UV B,, be a torsion element of order . We know that UV B,,
is isomorphic to UV P,, x S,, and that UV P, = Fy o x - x F; j x -+ x Fy_q , where F; ; = (X j, Aji)-
We set w = us, where uw € UV P, and s € S,,. Based on the above discussion, the pairs of generators
{Ni j,A\ji} are partitioned into the pairwise disjoint orbits O1,...,0;,...,0;,, for 1 <i <, where
the number of orbits depends on s.

We recall that the elements \; ;, for 1 <4 # j < n, except for the couples A; j,;;, commute
pairwise. Therefore, we can see that, by the definition of O;, for 1 <7 < I, the elements inside
an orbit O; may not commute, but elements from different orbits commute pairwise, as elements
of UV P,,, which means that the orbits commute pairwise, as subsets of UV P,,. Based on this
partition, we can rewrite the element w = us in an equivalent way, which is simply a reordering of
the elements A; ; in u. We have that u is an element in UV P,,. We want to reorder the elements in
u based on the orbit in which they belong. That is

where ~; is a word generated by the elements of O; and their inverses. It is possible that for
some indices 7; = 1, which means that u does not contain any element from O;, after possible
cancellations.
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By hypothesis w" = (us)” = 1, and then

us - us-us = usus ts2us 25" tus () g = 1.
| —
r—times

Therefore usus ' s?us 25" us™ "1 = 4 s(u)--s""'(u) = 1 in UVP, and s” = 1. Since

Yis(vi)+s" " () = 1,

for any 1 <4 <l;. Previous lemmas allows to conclude that the element ;s is a conjugation of
s €Sy, by an element of UV P, for any 1< <.

We will prove that this result suffices to complete the proof. Since w =wus, with w = y1--v;-1,,
where the elements v; commute pairwise, it follows that

-1

s

=1 Yot A Ay - s - A;lmAl’j

= Ay AgeAg - S.Ail...Ai—l...Al—:
=A-s-Ah

To obtain the above equalities, we just apply the equalities ;s = A; - s- A7, starting with 7;, and
finishing with ~;, which hold for every 1 <i <[, and using the fact that A; belongs in (O;), and
thus +; commutes with every A;, for i # j, 1 <i,j <ls. Therefore, we have that w = AsA™!, where
A € UV P, and this completes the proof. O

5.6 Crystallographic Subgroup of UV B,

The Artin braid group B, has a natural embedding in the welded braid group W B,, in contrast
to UV B,,. We will give a proof that the Artin braid group on n strands, B,, under the group
homomorphism ¢ that sends the generator o; of B, to the generator o; of UV B,, does not
have a natural embedding in UV B,,. More precisely, we show that the image of B,, under the
homomorphism ¢, into UV B, is isomorphic to the crystallographic group B, /[Py, P,]. The fact
that the crystallographic group is a subgroup of UV B,, may give some information about the
distribution of the torsion elements in UV B,, and about its subgroups.

We denote by ¢ the canonical map from B, to UV B,,:

t: B, — UV B, defined by t(0;) =0; e UVB,, for 1<i<n-1.

We obtain the following short exact sequences:

1 —— ker(L|P ) > Pn Pn} Im(L|p ) 1’
1 — ker(s) > B, —— Im(1) — 1.

Moreover, we have that P, = ker(w), where 7 : B,, — Sy, 7(0;) =8; = (4,i+1) €Sy, for 1 <i<n-1.
Similarly, we know that UV P,, = ker(w), where 7 : UV B,, — S,,, 7w(0;) = 7(p;) = s, for the same
values of i. The same follows for the groups Im(L’Pn ),Im(¢) c UV B,,. That is Im(L|Pn) = ker(fr|lmm ).
As a result we obtain the following commutative diagram, where each column and each row is a
short exact sequence:
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|, |

1 —— ker(e |P ) — P, ; Im(L|

l , |

1 — ker(1) > Bp > Im(t) — 1.

T l |Im<,,>
S,

n

1

By diagram chasing we obtain ker(¢) ¢ ker(L|P ). But it also holds that ker(L|P ) € ker(¢), and
therefore we conclude that

p)—1

ker(c) = ker(L|P"). (2)

We now state a result by Bardakov—Bellingeri—-Damiani, who proved that Im(L| , )2 P/ Pu, Pul,

which we will use to prove our claim. We recall that the pure braid group P, is the kernel of the
homomorphism from B,, to the symmetric group .5,, sending every generator o; to the permutation
(ii+1) € S,. As we described in Proposition 1.1.11, P, is generated by the set {A;; | 1<i<j<n},

where A; j = 0 101070707k, for 1<i<j<n.

Proposition 5.6.1 (Bardakov-Bellingeri-Damiani, [BBD15]). Let n €N and let v: P, —» UV P,
be the canonical map of the pure braid group P, in UV P,. Then «(P,) is isomorphic to the
Abelianisation of Py,

Remark 5.6.2. Note that this result is based on the fact that the generators A;; € P, can be
rewritten in UV P, as follows, ([BBD15], p. 7):

-1 -1 .
t(Aiiv1) = Aiiv1Nis1, fori=1,...n-1

and

( ZJ) >‘J 1])‘; 2,5 z+1]()‘z] ]2))\2+1] .>\j*27j)\j*1»j’ f0r2£i+1<j£n'

So, since Im(L| P ) 2 P, /[Py, P,], the short exact sequence of the upper row, from our commu-
tative diagram, implies that ker(:|, ) = [Pn, Pn]- Now, combining this fact with relation (2) we
conclude the following result.

L|Pn

Proposition 5.6.3. Let n > 2 and let v : B,, — UV B,, be the canonical map, t(oy) = ok, for
1<k<n—-1. Then, the image of the Artin braid group inside UV B,, is isomorphic to the group
B, /[Pn, P,]. That is «(By) % By /[Pn, Pn].

In [GGO17], Gongalves—Guaschi-Ocampo have shown that the group B, /[Py, P,] is actually a
crystallographic group. Thus, we deduce the following corollary.

Corollary 5.6.4. Let n > 2. The unrestricted virtual braid group, UV B,,, contains a crystallo-
graphic group as a subgroup, and that is the group By [[Pn, Pp]-

We now state some results concerning the crystallographic group B,/[P,, P,]. For further
results about the group B, /[Py, P,], we direct the reader to [GGO17].

Proposition 5.6.5 (Gongalves—Guaschi-Ocampo, [GGO17]). For n > 2 we have the following
short exact sequence:

1 —— z"»D2 5 B[P, P,] —— 8, —> 1,

where T is the homomorphism induced by w: B, — S,,.
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Theorem 5.6.6 (Gongalves—Guaschi—-Ocampo, [GGO17]). For n > 3 the crystallographic group
B,./[ Py, P,] has only odd order torsion elements.

Corollary 5.6.7 (Gongalves—-Guaschi-Ocampo, [GGO17]). Let n > 3, the torsion elements of
B, /[ P., P,] are equal to the torsion elements of S,. Moreover, for any element s in S, of odd
order r, there exists an element b € By, [[Pn, Pn], of order v such that #(b) = s.

Thus, combining Corollary 5.6.7 with Theorem 5.5.2 we obtain the following result.

Corollary 5.6.8. Let n > 3. For any element s € Sy, of odd order r, there exists an element
b € B,/[Pn,Pn], of order v such that b is conjugated to 1(s) by an element of UV P, where
B, /[Pn, P.] is considered as subgroup of UV By,

5.7 The automorphism group of UV P,

In this section we determine the automorphism group of UV P,,. First, we introduce the notion
of right-angled Artin groups, which will be our main tool for this section. A right-angled Artin
group, also known as graph group, is a group which admits a finite presentation in which the only
relations are commuting relations among the generators.

Every right-angled Artin group defines a graph whose vertices are the generators of the group
and for every two generators that commute there is an edge connecting these two vertices. The
converse also holds. For every graph I', with V' its vertex set, there is a right-angled Artin group,
graph group, associated to I', Rr, defined as follows:

Rp =(v1,...,v, €V | vju; = vju;, if v;,v; are joined by an edge in I').

From this association we can see that the right-angled Artin group that corresponds to the complete
graph on n vertices is the free Abelian group Z and that the graph on n vertices with no edges
corresponds to the free group F;, of rank n. For a general survey on the right-angled Artin groups
we direct the reader to the article [Cha07] by Charney.

We can see that the group UV P, is a right-angled Artin group, since it admits the following
presentation, as stated in Theorem 5.3.1:

UVPn = <)\i,j7 1<4 ;tj <n | /\i,j>\k,l = )\k,l)\’i,j7 for (k‘,l) * (j,Z)7 1< i,j,k,l < n)

From this presentation, the graph, I', which corresponds to the right-angled Artin group UV P,,
is a graph with n(n — 1) vertices, where the vertex set is V' = {)\; j }1<izj<n and there is an edge
connecting every pair of vertices except for the pairs {); ;,\;;}, since these are only pairs of
generators that do not commute.

We continue now with providing the theory around the automorphisms of graph groups. Ex-
tending the work of Servatius [Ser89], a complete set of generators for the automorphism group
of a graph group was found by Laurence [Lau95]. Before giving the main result we present some
notions that will be needed.

Let I" be a graph with V" being its vertex set.

o The link of a vertex v € V, lk(v), is the set of all vertices that are connected to v with an
edge.

o The star of a vertex v € V, st(v), is the union lk(v) u{v}.

o For any w # v, w,v € V, we say that v dominates w, w < v, if lk(w) € st(v).

The theorem that follows is due to Laurence [Lau95], who proved the conjecture that had been
stated, and in certain special cases proved, by Servatius [Ser89].

Theorem 5.7.1 (Laurence, [Lau95]). Let T be a finite graph defining a graph group Rr. Then the
following automorphisms generate the automorphism group of Ry, Aut(Rr):

e Inversions, I, :v — v™', which inverts a generator veV and fix the rest.
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e Dominated Transvections, T, : w — wv, for w,v €V such that v dominates w, w < v, and fix
the rest.

o Graph Automorphisms, G: Any bijection of the graph to itself that preserves the relation
vertices-edges.

e Locally Inner Automorphisms: L,y :y — vyv™t, for all y € Y, where Y is a connected
component of T —st(v) and |Y|> 1.

Remark 5.7.2. The condition |Y| > 1, in the Locally Inner Automorphisms, is placed in order to
eliminate redundancy. This is so because in the case where |Y] = 1, the automorphism L, y can be
obtained by composition of dominated transvections (since the single vertex y € Y is dominated by
v) and inversions.

Based on the graph that corresponds to the group UV P,,, we shall make the following remarks.

Remark 5.7.3. The only domination relations that occur in the graph that corresponds to UV P,
are
)‘iJ < )\jﬂ' and )\jﬂ' < Ai7j'

This is the case because lk(X; ;) =V N~ {Xij,Aji} € st(Nj;) =V ~{\;;}, and similarly lk(\;;) =
Vs {NiAijt € st(Nij) =V~ {\;i}. As aresult, A\, ; and \;; dominate each other. It would
not have been possible that ); ; is dominated by another generator A\ ; # A;;, since lk(\;;) =
Vs {Ais Ayt & st (Aeg) = Vs {d)-
Remark 5.7.4. We observe that for every vertex A; ; € V the subgraph I' \ st(A; ;) is just the vertex
/\jﬂ', since St()vi’j) =V~ {)\jﬂ'}.

We are now ready to determine the group Aut(UV P,), for n > 2.

Theorem 5.7.5. Let n>2 and 1 <1+ j<n. It holds that
AUt(UVPn) = (Tkj,m Zg(n_l)v Z;(n_l)/z e n(n—l)/?);

where Ty, , stands for the Dominated Transvection, and Sy, (,-1)/2 is the symmetric group of degree
n(n-1)/2.

Proof. Let n>2,1<4+# j<nand I be the graph associated to the right-angled Artin group UV P,.
We recall that the graph I', which corresponds to UV P,, is a graph with n(n—1) vertices, where the
vertex set is V' = {\; j }1<i+j<n and there is an edge connecting every pair of vertices except for the
pairs {\; j,A;j;}. From Theorem 5.7.1 we see that the automorphism group of UV P, is generated
by the following four families of automorphisms; the Inversions, the Dominated Transvections, the
Graph Automorphisms and the Locally Inner Automorphisms.

From Remark 5.7.2 and Remark 5.7.4 we conclude that in the case of UV P,, we do not have
any Locally Inner Automorphism.

From Remark 5.7.3 it follows that any Dominated Transvection in UV P, is generated by T,
and Ty ., and they are defined as follows:

g,

T, ; + Aji = AjiAij, while fixing the rest generators

and
T, Nij— AijAji, while fixing the rest generators.

It remains to determine the Inversions and the Graph Automorphisms of UV P,,. Clearly, the
Inversions in UV P,, are Iy, ,, where
I, .t Aij — Ay, while fixing the rest generators.

-1
i.j 4,5

We know that the size of the set the of generators of UV P,, {\i ;}1<izj<n, is n(n —1). Moreover
the Inversion Automorphisms have order two. Therefore, for I := {I )\i,j}lgi#jgn, it follows that

n(n-1
(Iy =72,
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Finally, we will describe all possible Graph Automorphisms of the graph I'. We recall that a
Graph Automorphism is a symmetry of the graph, that is a bijection to itself while preserving the
edge-vertex connectivity. In our case, we see that there are only two possible symmetries of our
graph. One that exchanges the generators \; ; and JA; ;, while fixing the rest generators and another
that exchanges the pair of generators {)\; j, A;;} with another pair of generators {Ay;, A}, while
fixing the rest generators. We denote these two Graph Automorphisms as follows:

E;j: Xij < Aji, while fixing the rest generators

and
PijriiNij < Mgty Pijri i Aji < Ak, while fixing the rest generators,

where A; ; < A;; means that this map exchanges the generators A; ; and A;;. These two Graph
Automorphisms are defined in such a way that it follows that E; ; = E;; and Py = Prsy. In T
all vertices are pairwise connected with an edge except for the pairs {A; ;,A;;}, and the vertices
Aij and Aj; are connected with the exact same vertices. Therefore, if we want to preserve the
edge-vertex connectivity we have to permute the vertex set in such a way that each vertex is
connected with the same vertices before and after the permutation. Therefore, it is clear that only
these two type of maps, E; ; and P;; i, preserve the edge-vertex connectivity, and thus they are
indeed the only symmetries of the graph.

For E := {E; ;} and P := {P;; 11} we have that |E| = n(n - 1)/2, since E; ; = E;; and that
|P| =n(n—-1)/2, since Pjj i = Ppi;. The elements E; j € E and P;j j; € P do not commute, since
(Eijo Pijr)(Nij) =iy and (Pijro B j)(Nijj) = Ak, where A\ # A ;. More precisely, we have
that P acts on F2 by permuting the elements F; ; inside E. To be more precise, P;; x10 F; j o Pyj i =
EkJ, since Pij,kl o E,;J' ] ij,kl(Ai,j) = >‘i7j and Pide o E@j o ij,kl(/\k,l) = /\Uf' We conclude that
(F) = Zg(nfl)p and that (P) = S,(,,-1)/2. All together we obtain

-1)/2
(B, Py =7y 5 n(n-1)/2>
where the symmetric group S,,(,,-1)/2 acts on Z;(n_l) /2 by permuting the components of the product.

Moreover, it holds that E; ;T . E; ; =Ty, ;, and thus we keep only the Dominated Transvection
Ty, , in the generating set of Aut(UV P,) and this completes the proof. O

Having a concrete set of generators of the automorphism group of UV P,, we can analyse this
result a bit further. We recall that, from Remark 5.3.3, the group UV P, is isomorphic to the direct
product of n(n —1)/2 copies of the free group of rank 2:

UVPn = <)\172,>\2,1> XX (Ai,j)\j,i) X oo X (An—l,naAn,n—l% fOI‘ 1 < 7 ij < n,

UVP,2Fyx---xFyx---x Fy, for n>2.

n(n —1)/2-times

Based on this isomorhism, we can make some observations about the generators of the automorphism
group of UV P, given in Theorem 5.7.5. For 1 <i # j <n the group Aut(UV P,) is generated by
the following four automorphisms:

T, Aij — AijAji, while fixing the rest generators,
Iy, Aijj— )\i‘;, while fixing the rest generators,
E; ;X j < Aj;, while fixing the rest generators,

P)ij,kl : )\i,j d )\k,lv Pij,kl : /\j,i — )‘ZJC? while ﬁxing the rest generators.

With the exception of the automorphisms P;jy;, it follows that all these automorphisms do
not permute the Fy-factors of UV P,, but they rather take an element from a factor and send it to
the same factor. In other words, each Fy-factors of UV P, stay invariant under the automorphisms
T, I, ; and E; ;. Moreover, the image of a generator J\; ;j, under these automorphisms, belongs
to the set generated by the elements {\; j\;;, )\i‘j, Aji}. These are the three automorphisms that
generate the group Aut(F>), as we will see shortly. On the contrary, the automorphism P;;
permutes the n(n - 1)/2 Fy-factors of UV P,.
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It is well known, and proved by Nielsen in [Nie24], that Aut(F3), for Fy = (x1,x2), is generated
by the following three automorphisms:
aq - X1 = T2,
Qg t X1 — x{l, To > Ta,
Q3 21— T1T2, Tg — T2.

It turns out that Aut(UV P,) is the semi-direct product of Aut(F5)"" /2 and the symmetric
group Sy (n-1)/2, which acts on Aut(Fy)*("=D/2 by permuting the n(n —1)/2 factors of Aut(F).
And so we obtain the following corollary.

Corollary 5.7.6. Forn >2 it holds that
Aut(UV Py) = Aut(Fo)™ " D2 % S, 0 1ya,

where Sy (n-1)/2 acts on Aut(Fy)* D12 by permuting the n(n—-1)/2 factors.

This result agrees with a particular case of a more general result proved by Zhang—Ventura—Wu
in [ZVW15], where they obtained the same result using different techniques. We state their result
below and we see that for m =1 and ny = n(n —1)/2 their result coincides with Corollary 5.7.6.

Proposition 5.7.7 (Zhang—Ventura-Wu, [ZVW15]). Let G = G]* x--- x G be a product group,
where m > 1, n; > 1, G; ¢ Gy, for i + j, and each G; is a free group or a surface group. If G
is a hyperbolic type then, for every ¢ € Aut(G), there exists automorphisms ¢; ; € Aut(G;) and
permutations o; € Sy, such that

¢ =0 0"'°Um°(HIJI¢i,j) :H(O’iOIJI(bi,j).
i=1j=1 i=1 J=1

5.8 About the automorphism group of UV B,

After having obtained several results about the group UV P,, and after having determined the
group Aut(UV P,), we shall now present partial results about the automorphism group of UV B,,.
In [Ros75], Rose gave a description of the automorphism group of groups which possess a proper
characteristic subgroup that have trivial centraliser.

Proposition 5.8.1 (Rose, [Ros75]). Let G be a group with a characteristic subgroup H such
that Co(H) = e. Then G is naturally embedded in Aut(H) by means of conjugation of H by the
elements of G. Moreover, there is a natural isomorphism between Aut(G) and the normaliser of G
in Aut(H). That is Aut(G) = Nay(a)(G).

We proved that UV P, is a characteristic subgroup of UV B,,, Proposition 5.3.8, and that

Cuvg, (UVPE,) = e, Proposition 5.3.10. Therefore, applying Proposition 5.8.1 for G = UV B,, and
H =UVP,, we obtain the following corollary.

Corollary 5.8.2. Forn >5 it holds that
Aut(UVBn) = NAut(UVPn) (UVBn)

In Section 4.4, we defined two maps, 8, and 7,, which fail to be automorphisms of W B,,, but
they are actually automorphisms of the group UV B,,. More precisely, the maps (5, and -, are
defined as follows:

8, : Ji»—>ai’1, forl1<i<n-1,
pi— pi, for 1<i<n-1,

and
o= pioip;, for 1<i<n -1,
T pir pi, for 1<i<n -1,

where 3, v, € Aut(UV B,,).
In particular, note that 3, and =, are of order two and moreover (3, oy, = v, o B,. Thus,
(Bn,vn) generates a subgroup of Aut(UV B,,) isomorphic to Zs x Zs. Furthermore, as we will see in

the following proposition, the automorpsims 3, v, and f3, o 7, are actually elements of the outer
automorphisms group of UV B,,, Out(UV B,,), where Out(UV B,,) = Aut(UV By,)[Inn(UV By,).
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Proposition 5.8.3. Let n > 3. It holds that
(Bnsyn) € Out(UV B,,),

where (B, Yn) 2 Zo x Lo.

Proof. Let n > 3. We will show that the automorphisms f3,, v, and 3, o<, are not inner
automorphisms. Note that any inner automorphism of a group G acts trivially on the Abelianisation
of G. That is if h: G — G is an inner automorphism then the induced automorphism h : G* — G
is the trivial one. From Remark 5.1.3, we have that the Abelianisation of UV B,, is isomorphic
to Z x Zs, where Z is generated by the image of o1, [01] and Zs is generated by the image of p1,
[p1]. The automorphisms §,, and S, o7, act non-trivially on the Abelianisation of UV B,,, since
Bn(o1) = o7t and (B o vn)(01) = proyipy, for 1<i<n-1.

By contradiction we will prove that -, is not an inner automorphism. First, notice that from the
set of relations (1) we have that v, (Ag,1) = A g, for every Ay € UV P, where k #l and k,l=1,...,n.
Suppose that -, is an inner automorphism. It follows that there exists some non-trivial element
g € UV B, such that v, (u) =i,4(u) = gug™*, for every u € UV B,,. In particular, it has to hold that
Y (A1) = gGAk1g™t = Mg, for every k,l=1,...,n, where k # [. Using the same arguments as we
did in the proof of Proposition 5.3.10, we will show that the relation A;; = gAk1gt, for every
k,l=1,...,n, k#1 and for a fixed non-trivial element g € UV B,,, can not hold.

We know that UV B,, = UV P, xS, and thus, g = AS, for A, S fixed words in UV P, and S,
respectively. Therefore, it has to hold that

Aig - AS =AS -\, for every k,l e {1,...,n} kLl

From Theorem 5.3.6, and in particular based on the action of the symmetric group on every
generator A\, ; € UV P,, we obtain

Ak AS = A Agy,s)S, for every k,le{l,...,n}, k#l.

Thus,
Ak =N Asry.sqy A €UV P, for every k,le{1,...,n},k#1. (3)

Suppose that either S(k) # [ or S(I) # k. Then, from relation (3), we see that under the
Abelianisation map these distinct generators, A and Agy, sy, of UV P, would coincide. But
this leads to a contradiction since we know from Corollary 5.3.5 that the Abelianisation of UV P,
is isomorphic to the free Abelian group of rank n(n — 1) generated by the images of the elements
Aij, for 1 <i# j <n. Therefore, it has to hold that S(k) =1 and S(I) = k for every k,l e {1,...,n},
k # 1, where S is a fixed element in S,,. But once again, this leads to a contradiction because a
permutation on n elements cannot permute all possible couples (I, k), for 1 <1+ k <n.

Now, suppose that g =S, meaning that A is a trivial word in UV P,,. Then, it has to hold that

M-S =8Ny, forevery k,le{l,...,n},k#1L. (4)

But relation (4) implies that the word S in the symmetric group fixes all the elements of the
set {1,...,n}. This is possible only when S is the trivial element, which leads once more to a
contradiction, since g is a non-trivial element. Since the centre of UV P, is trivial, Remark 5.3.4,
we do not need to check the case where g = A.

Thus, we conclude that =, is not an inner automorphism and this completes the proof. O

We speculate that this result about the outer automorhism group of UV B,,, Out(UV B,,), could
be of help in determining the group Out(W B,,), since UV B,, is a quotient of WB,, by an extra
relation.

Finally, we complete this section by proving that the groups UV B,, and UV P,, are residually
finite and Hopfian, but not co-Hopfian.

We recall that a group G is called Hopfian if every surjective homomorphism G — G is also an
injective homomorphism and it is called co-Hopfian if every injective homomorphism G — G is also
a surjective homomorphism.
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Corollary 5.8.4. Let n>2. The groups UV B,, and UV P,, are residually finite and Hopfian, but
not co-Hopfian.

Proof. By Theorem 5.3.6, we have that UV B,, x UV P, x S,,. We already know that the group
UV P, is a right-angled Artin group and it is known that every right-angled Artin group is linear;
see [HW99]. Moreover, it is also known that a finitely generated linear group is residually finite. It
clearly follows now that UV P, is a residually finite group. Moreover, UV B,, is a residually finite
group, since it is an extension of UV P,, by S,,, which is a finite group. Finally, the groups UV B,
and UV P, are Hopfian, since they are finitely generated, residually finite goups.

In order to show that the group UV P, is not co-Hopfian, we just provide the following
homomorphism:

h:UV P, — UVP, defined by h:X;; — X jAj;, for every 1<i#j<n,

which is injective but not surjective, since the elements \; ;, for 1 <7 # j <n do not have a preimage
under h. Now, we extend the map h to a homomorphism of UV B,, 2 UV P, x S,, as follows:

h:UVB, — UV B,, defined by h: Aij = AijA; and h: sy, — sk,

for every 1<i#j<nand 1<k<n-1, where s; € S,. Similarly, this homomorphism is injective
but not surjective, since the elements JA; ;, for 1 <i # j <n do not have a preimage under h, and
therefore the group UV B,, is not co-Hopfian. O
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Résumé

Le probléme de scindement pour les groupes de tresses du plan projectif et un
quotient remarquable des groupes de tresses soudées

Cette these est divisée en deux parties. La premiere partie concerne des groupes de tresses des
surfaces, tandis que la deuxiéme traite des groupes de tresses soudées et des groupes de tresses
virtuelles sans restrictions.

Soient n,m € N* et B,, ,,(RP?) 'ensemble des (n +m)-tresses du plan projectif dont la permu-
tation associée appartient au sous-groupe S, x Sy, du groupe symétrique Sy 1.,,. Dans la premiere
partie de cette theése, nous étudions le probleme de scindement de la suivante suite exacte courte
généralisée de Fadell-Neuwirth:

1— Bp(RP?{a1,...,2,}) = Bym(RP?) L B, (RP?) — 1,

ou l'application ¢ peut étre considérée géométriquement comme 1’épimorphisme qui oublie les m
derniers brins, ainsi que I’existence d’une section de la fibration correspondante q : Fy, ., (RP?)/S,, x
S — F,(RP?)/S,,, ot on note par F;,(RP?) le n—éme espace de configurations ordonnées du plan
projectif RP2.

Nos principaux résultats sont les suivants : si n = 1 ’homomorphisme ¢ et la fibration corre-
spondante ¢ n’admettent aucune section, tandis que si n = 2, alors ¢ et ¢ admettent une section.
Pour n > 3, on montre que si g et ¢ admettent une section alors m = 0, (n - 1)? mod n(n - 1). De
plus, ’homomorphisme ¢ et la fibration ¢ admettent une section pour m = kn(2n - 1)(2n - 2), ou
k> 1, et pour m = 2n(n —1). En outre, nous prouvons que pour m > 3, B,,(RP?\ {z1,...,2,})
n’est pas résiduellement nilpotent et pour m > 5, il n’est pas résiduellement résoluble.

Soit n € N. Dans la deuxiéme partie de la these, nous étudions les groupes de tresses soudées
W B, et les groupes de tresses virtuelles sans restrictions UV B,,, ainsi que leurs sous-groupes purs,
c’est-a-dire les groupes de tresses pures soudées W P, et les groupes de tresses pures virtuelles sans
restrictions UV P,.

Nos principaux résultats sont les suivants : pour n > 5, nous donnons une description complete,
a conjugaison pres, des homomorphismes possibles de W B,, et UV B,, dans le groupe symétrique S,,.
Pour n > 3, on donne une caractérisation compléte des homomorphismes de UV B,, dans tout groupe
fini G. Pour n > 5, nous montrons que W P, et UV P, sont des sous-groupes caractéristiques de
W B, et UV B,, respectivement. De plus, nous déterminons le groupe des automorphismes de UV P,,,
et nous prouvons que Zsg x Zs est un sous-groupe du groupe des automorphismes extérieurs de UV B,,.
Enfin, nous montrons que UV B,, et UV P,, sont résiduellement finis et Hopfiens mais pas co-Hopfiens.

Mots-clés: Groupes de tresses des surfaces ; Présentation de groupe ; Suite exacte courte de
Fadell-Neuwirth ; Probléme de scindement ; Fibration ; Résiduellement nilpotent ; Résiduellement
résoluble ; Groupes de tresses soudées ; Groupes de tresses virtuelles sans restrictions ; Groupes
d’Artin angle droit ; Groupe des automorphismes ; Résiduellement fini ; Hopfien ; Co-Hopfien.



Abstract

The splitting problem for braid groups of the projective plane and a remarkable
quotient of welded braid groups

This thesis is divided into two parts. The first part concerns surface braid groups, while the
second deals with welded and unrestricted virtual braid groups.

Let n,m €N, and let B,, ,,(RP?) be the set of (n +m)-braids of the projective plane whose
associated permutation lies in the subgroup S,, x S,, of the symmetric group Sy+m. In the first
part of this work, we study the splitting problem of the following generalised Fadell-Neuwirth short
exact sequence:

1 — B (RP2\ {a1,...,2,}) — Bum(RP?) L B, (RP?) > 1,

where the map ¢ can be considered geometrically as the epimorphism that forgets the last m strands,
as well as the existence of a section of the corresponding fibration q : Fy,4m(RP?)/S,, x Sy, —
F,(RP?)/S,,, where we denote by F,(RP?) the n'* ordered configuration space of the projective
plane RP?.

Our main results are the following: if n = 1 the homomorphism ¢ and the corresponding fibration
q admits no section, while if n = 2, then ¢ and ¢ admit a section. For n > 3, we show that if § and ¢
admit a section then m = 0, (n — 1) mod n(n —1). Moreover, using geometric constructions, we
show that the homomorphism g and the fibration ¢ admit a section for m = kn(2n - 1)(2n - 2),
where k > 1, and for m = 2n(n - 1). In addition, we show that for m >3, B,,(RP?\ {z1,...,2,})
is not residually nilpotent and for m > 5, it is not residually solvable.

Let n € N. In the second part of this work, we study the welded braid groups W B,,, the
unrestricted virtual braid groups UV B,,, as well as their pure subgroups, namely the welded pure
braid groups W P, and unrestricted virtual pure braid groups UV P,,.

Our main results are as follows: for n > 5, we give a complete description, up to conjugation,
of all possible homomorphisms from W B,, and UV B,, to the symmetric group S,. For n > 3, we
give a complete characterisation of any group homomorphism from UV B,, to any finite group
G. For n > 5, we prove that WP, and UV P,, are characteristic subgroups of WB,, and UV B,
respectively. In addition, we determine the automorphism group of UV P,, and we prove that
Zo x Zs is a subgroup of the outer automorphism group of UV B,,. Lastly, we show that UV B,,
and UV P, are residually finite and Hopfian but not co-Hopfian.

Keywords: Surface braid groups; Group presentation; Fadell-Neuwirth short exact sequence;
Section problem; Fibration; Residually nilpotent; Residually solvable; Welded braid groups; Unre-
stricted virtual braid groups; Right-angled Artin groups; Automorphism group; Residually finite;
Hopfian; Co-Hopfian.
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