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Introduction en français

Cette thèse est divisée en deux parties. Les trois premiers chapitres concernent des groupes
de tresses des surfaces, tandis que les deux derniers traitent des groupes de tresses soudées et des
groupes de tresses virtuelles sans restrictions.

Les groupes de tresses des surfaces sont à la fois une généralisation à toute surface connectée
du groupe fondamental d’une surface et des groupes de tresses du plan, appelés groupes de
tresses d’Artin, et qui ont été définis par Artin en 1925 dans [Art25]. Ils ont été initialement
introduits par Zariski dans [Zar36], [Zar37] et plus tard, dans les années 1960, Fox en a donné une
définition équivalente d’un point de vue topologique. Comme pour les groupes de tresses d’Artin,
les groupes de tresses des surfaces peuvent être décrits de plusieurs points de vue, dont l’un est le
suivant. Soit n ∈ N∗; pour toute surface connexe Σ, on se donne un ensemble de n points distincts,
P = {x1, . . . , xn}, à l’intérieur de Σ. Une n−tresse, β = (β1(t), . . . , βn(t))t∈[0,1], est une collection de
n chemins distincts sur la surface Σ, βi(t) ≠ βj(t) pour tout t ∈ [0,1] et tout i ≠ j, où chaque chemin
a pour point initial et final un point dans P , qui n’est pas forcément le même. Nous appelons ces
n chemins les brins de la tresse. Maintenant, à homotopie près, on peut définir une structure de
groupe sur cet ensemble de n−tresses. Dorénavant, on note le groupe de tresses de Σ à n brins par
Bn(Σ).

La théorie des groupes de tresses des surfaces a été largement étudiée, et il existe plusieurs
résultats connus sur leur structure et leur présentations. Les premières présentations des groupes
de tresses des surfaces compactes sans bord ont été données par Birman [Bir69] et Scott [Sco70]. Il
existe d’autres présentations de groupes de tresses des surfaces dues à Bellingeri [Bel04], Gonçalves–
Guaschi [GG04b],[GG10a], González-Meneses [GM01] et Lambropoulou [Lam00], entre autres.
Parmi les surfaces, les groupes de tresses de la 2−sphère, S2, et du plan projectif, RP 2, sont
particulièrement intéressants, car elles sont les seules surfaces dont les groupes de tresses ont des
éléments de torsion. Ce fait a été prouvé pour la 2−sphère par Fadell–Van Buskirk dans [FVB62]
et pour le plan projectif par Van Buskirk dans [VB66].

Le groupe de tresses Bn(Σ) est aussi lié au groupe symétrique Sn, puisqu’il existe un épimor-
phisme naturel σ ∶ Bn(Σ)! Sn, où à chaque n−tresse β = (β1(t), . . . , βn(t))t∈[0,1] on associe une
permutation σ(β) ∈ Sn définie par βi(1) = xσ(β)(i) ∈ P , pour tout i ∈ {1, . . . , n}. Le noyau du
morphisme de groupes σ est ce qu’on appelle le groupe de tresses pures, et on le note Pn(Σ).

Les groupes de tresses des surfaces sont aussi liés aux espaces de configuration des surfaces.
On notera Fn(Σ) = {(p1, . . . , pn) ∈ Σn ∣ pi ≠ pj for all i, j ∈ {1, . . . , n}, i ≠ j} le n−ème espace de
configurations ordonnées de la surface Σ. Compte tenu de l’action naturelle du groupe symétrique
Sn sur Fn(Σ), définie par permutation des coordonnées, on peut définir le n−ème espace de
configurations non ordonnées, qui correspond à l’espace des orbites Fn(Σ)/Sn. De même, pour
n,m ∈ N∗, on peut considérer l’espace obtenu en prenant le quotient du (n +m)−ème espace de
configurations de Σ par l’action du sous-groupe Sn×Sm de Sn+m, c’est-à-dire Fn+m(Σ)/Sn×Sm. Fox–
Neuwirth [FN62b] ont prouvé que π1(Fn(Σ)) est isomorphe à Pn(Σ), et π1(Fn(Σ)/Sn) est isomorphe
à Bn(Σ). De la même façon, les groupes π1(Fn+m(Σ)/(Sn × Sm)) sont isomorphes aux groupes
notés Bn,m(Σ), qui sont des sous-groupes des groupes Bn+m(Σ) appelés groupes de tresses mixtes.

v
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Les groupes de tresses mixtes sont utiles pour étudier la théorie des représentations des groupes
de tresses des surfaces ainsi que pour la théorie des nœuds sur les 3-variétés. Ces groupes ont été
étudiés par Sossinsky [Sos92], Manfredini [Man97], Paris–Rolfsen [PR99], Lambropoulou [Lam00],
Gonçalves–Guaschi [GG04c], [GG05], [GG12] Bellingeri–Godelle–Guaschi [BGG] et Diamantis–
Lambropoulou–Przytycki [DLP16], entre autres.

Un outil important dans l’étude des groupes de tresses est la suite exacte courte de Fadell–
Neuwirth qui découle de la fibration de Fadell–Neuwirth, qui existe pour Σ sans bord. Toutefois,
une fois passé à la suite en homotopie, pour n,m ∈ N∗, et toute surface connexe Σ, nous avons aussi
les suivantes suites exactes courtes de Fadell–Neuwirth:

1 Pn−m(Σ ∖ {x1, . . . , xm}) Pn(Σ) Pm(Σ) 1,p̄n,m pour 1 ≤m < n, (1)

1 Bm(Σ ∖ {x1, . . . , xn}) Bn,m(Σ) Bn(Σ) 1,q̄n+m,n (2)

qui sont connues sous le nom de suite exacte courte de Fadell–Neuwirth des groupes de tresses pures
de surface et de suite exacte courte généralisée de Fadell–Neuwirth des groupes de tresses mixtes,
respectivement. Les applications induites p̄n,m et q̄n+m,n peuvent être considérées géométriquement
comme les épimorphismes qui oublient les n −m et m derniers brins respectivement. On observe
que lorsque Σ est la 2−sphère S2 ou le plan projectif RP 2, il y a quelques restrictions sur les valeurs
de n et m. On remarque que l’application p̄n,m ne s’étend pas directement aux groupes de tresses
Bn(Σ)! Bm(Σ), car elle n’est pas bien définie, mais q̄n+m,n nous permet d’étendre p̄n,m à certains
sous-groupes de Bn+m(Σ).

Le problème de scindement fait référence à la question de savoir si les suites exactes courtes
(1) et (2) se scindent, ou de manière équivalente, si les applications p̄n,m et q̄n+m,n admettent
une section, ce qui revient à demander s’il existe ou non des morphismes injectifs s̄n,m et ŝn+m,n,
respectivement, tel que p̄n,m ○ s̄n,m = idPm(Σ) et q̄n,m ○ ŝn,m = idBn(Σ). Un aspect intéressant de
ce problème est qu’il peut être abordé algébriquement et géométriquement. L’équivalence entre
le scindement des suites exactes courtes (1), (2) et l’existence d’une section géométrique pour les
fibrations pn,m ∶ Fn+m(Σ)! Fn(Σ) et qn+m,n ∶ Fn+m(Σ)/(Sn × Sm)! Fn(Σ)/Sn, respectivement,
a été donnée par Baues [Bau77] et Whitehead [Whi78] dans le cas que Σ est un espace asphérique,
et par Gonçalves–Guaschi quand Σ = S2 ou Σ = RP 2. Dans la Proposition 1.3.1 nous présentons
cette équivalence de manière approfondie.

Le scindement de la suite exacte courte (1) dans le cas du plan, Σ = R2, est un résultat important
dans la théorie classique des tresses. Comme conséquence, on obtient la forme normale d’Artin pour
les groupes de tresses d’Artin purs Pn, c’est-à-dire la décomposition Pn ≅ Fn−1 ⋊Fn−2 ⋊ ⋅ ⋅ ⋅ ⋊F2 ⋊F1,
où Fn est le groupe libre de rang n, qui est l’un des principaux outils dans l’étude de Pn. Par
exemple, on utilise la forme normale d’Artin de Pn pour démontrer l’unicité des racines dans Pn, par
Bardakov [Bar92], pour l’étude de la suite centrale descendante et de la nilpotence résiduelle de Pn,
par Falk–Randell [FR85], ainsi que pour la preuve de la bi-ordonnabilité de Pn, par Kim–Rolfsen
[KR03].

Il est donc important de savoir si le suites exactes courtes (1) et (2) se scindent ou non. Au cours
des années 1960, qui a été la période de développement de la théorie des groupes de tresses des
surfaces, de nombreux mathématiciens ont étudié ce problème pour des surfaces outres que le plan.
Le problème de scindement pour (1) a été étudié notamment par Fadell [Fad62], Fadell–Neuwirth
[FN62a], Fadell–Van Buskirk [FVB62], Van Buskirk [VB66] et Birman [Bir69], avec des approches
géométriques et algébriques. Dans le cas des groupes de tresses pures des surfaces, le problème de
scindement a été résolue par Gonçalves–Guaschi, dont la solution est donnée dans le Théorème
1.3.3. Pour donner une réponse positive au problème de scindement, il suffit de mettre en évidence
une section explicite, soit géométrique, soit algébrique. Pour obtenir une réponse négative au
problème de scindement, l’une des principales méthodes qui a été utilisée pour prouver le Théorème
1.3.3 est basée sur l’observation suivante : soit G un groupe, et soient K,H des sous-groupes
distingués de G tels que H soit contenu dans K. Si la suite exacte courte 1! K ! G! R! 1
est scindée alors la suite exacte courte 1 ! K/H ! G/H ! R ! 1 l’est aussi. Le problème de
scindement de l’extension de G/H est parfois plus facile à étudier que celui de G. Ainsi, en montrant
que la deuxième extension ne se scinde pas, il suit que la première ne se scinde pas. Cependant,
dans le cas des groupes de tresses mixtes, le problème de scindement n’a toujours pas de solution
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complète. En particulier, à notre connaissance, la seule surface, à l’exception du plan R2, pour
laquelle le scindement de la suite exacte courte (2) a été étudié, est la 2−sphère S2. Dans [GG05],
Gonçalves–Guaschi, ont donné des résultats partiels pour le problème de scindement pour S2, voir
le Théorème 1.3.4, et plus récemment Chen–Salter ont amélioré ces résultats, voir le Théorème
1.3.5.

Dans la première partie de cette thèse, nous étudions le problème de scindement des groupes
de tresses mixtes du plan projectif RP 2. Les groupes de tresses du plan projectif, Bn(RP 2), sont
particulièrement intéressants car, avec le groupe de tresses de la 2−sphère, ce sont les seuls groupes
de tresses qui contiennent des éléments de torsion. Une présentation de Bn(RP 2) a été donnée par
Van Buskirk dans [VB66], voir le Théorème 2.1.1, dont l’ensemble des générateurs est constitué
des n − 1 générateurs d’Artin usuels, ainsi que des n éléments correspondant aux éléments du
groupe fondamental du plan projectif basés respectivement dans les points de P . Les éléments de
torsion de Bn(RP 2) ont d’abord été déterminés et caractérisés par Murasugi dans [Mur82]. Plus
tard Gonçalves–Guaschi, en ont donné une caractérisation simplifiée dans [GG10b]. Les groupes
Bn(RP 2) ont été largement étudiés par Gonçalves–Guaschi qui ont déterminé, à isomorphisme
près, les sous-groupes finis maximaux de Pn(RP 2) ainsi que les sous-groupes finis de Bn(RP 2).

On précise maintenant la structure des trois premiers chapitres de la thèse.
Dans le Chapitre 1, nous rappelons les définitions et propriétés principales des groupes de tresses

des surfaces. Nous donnons une définition géométrique des groupes de tresses des surfaces et nous
présentons leur liens avec les espaces des configurations. De plus, dans la Section 1.2, nous donnons
une description détaillée de la fibration de Fadell–Neuwith et des suites exactes courtes qui ont
découlent

1 Pn−m(Σ ∖ {x1, . . . , xm}) Pn(Σ) Pm(Σ) 1,p̄n,m

1 Bm(Σ ∖ {x1, . . . , xn}) Bn,m(Σ) Bn(Σ) 1,q̄n+m,n

qui constituent le sujet d’étude principal de cette partie de la thèse. A la fin du Chapitre 1, dans la
Section 1.3, on décrit en détail le problème de scindement et on en présentera les résultats connus
là-dessus.

Au Chapitre 2, nous rappelons les groupes de tresses du plan projectif, Bn(RP 2), en donnant
aussi des renseignements sur leur structure. Dans la Section 2.2, nous déterminerons des présenta-
tions de certains sous-groupes de Bn,m(RP 2) qui vont nous permettre d’obtenir une présentation
des groupes de tresses mixtes Bn,m(RP 2). Nous donnons d’abord les présentations des groupes
Pn(RP 2), Pm(RP 2∖{x1, . . . , xn}) et Bm(RP 2∖{x1, . . . , xn}), en appliquant des techniques décrites
dans [Joh97] (page 139) pour obtenir des présentations d’extensions de groupe. Ensuite, dans le
Théorème 2.2.7, on obtient une présentation de Bn,m(RP 2) en appliquant les mêmes méthodes à la
suivante suite exacte courte :

1! Bm(RP 2
∖ {x1, . . . , xn})! Bn,m(RP 2

)
q̄n+m,n
−−−−! Bn(RP 2

)! 1, (3)

où l’application q̄n+m,n peut être considérée géométriquement comme l’épimorphisme qui oublie les
m derniers brins. À l’aide de ces présentations, nous donnons une présentation de l’abélianisé de
chacun de ces groupes. Nous terminons le Chapitre 2 par la Section 2.3, où nous étudions les suites
centrales descendantes et dérivées du groupe Bm(RP 2 ∖ {x1, . . . , xn}), en prouvant en particulier,
dans le Théorème 2.3.2, le résultat suivant:

Théorème 1. Soit n ≥ 1. Alors:

• si m ≥ 3, alors

Γ2(Bm(RP 2
∖ {x1, . . . , xn})) = Γ3(Bm(RP 2

∖ {x1, . . . , xn})).

• si m ≥ 5, alors

(Bm(RP 2
∖ {x1, . . . , xn}))

(1)
= (Bm(RP 2

∖ {x1, . . . , xn}))
(2)
.
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En particulier, pour m ≥ 3, Bm(RP 2 ∖ {x1, . . . , xn}) n’est pas résiduellement nilpotent et pour
m ≥ 5, il n’est pas résiduellement résoluble.

En raison du fait suivant, le Théorème 1 est important dans l’étude du problème de scindement.
Soit N un sous-groupe distingué de Bn,m(RP 2), qui est aussi contenu dans Bm(RP 2∖{x1, . . . , xn}).
On obtient ainsi la suivante suite exacte courte quotientée :

1 Bm(RP 2 ∖ {x1, . . . , xn})/N Bn,m(RP 2)/N Bn(RP 2) 1,q

où q ∶ Bn,m(RP 2)/N ! Bn(RP 2) désigne l’homomorphisme induit par q̄n+m,n. On observe que si
la suite exacte courte (3) se scinde alors cette suite exacte courte quotientée se scinde également.
Plus précisément, considérons le diagramme commutatif suivant des suites exactes courtes :

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1

1 Bm(RP 2 ∖ {x1, . . . , xn})/N Bn,m(RP 2)/N Bn(RP 2) 1.

pr

q̄n+m,n

q

Supposons que l’homomorphisme q̄n+m,n ∶ Bn,m(RP 2) ! Bn(RP 2) admette une section s̄n+m,n.
Alors s = pr ○ s̄n+m,n est une section pour q ∶ Bn,m(RP 2)/N ! Bn(RP 2). Il suit que les suites
centrales descendantes et dérivées de certains groupes fournissent un outil important dans l’étude du
problème de scindement, puisqu’on peut étudier le quotient de Bn,m(RP 2) par N , pour n’importe
quel élément N des suites centrales descendantes ou dérivées de Bm(RP 2 ∖ {x1, . . . , xn}).

Nous terminons la première partie de la thèse au Chapitre 3, où nous étudions le scindement
possible de (3). Dans la Section 3.1, on analyse l’existence d’une section pour l’homomorphisme

q̄n+m,n ∶ Bn,m(RP 2
)! Bn(RP 2

),

pour n = 1 et n = 2, où m ∈ N∗. En particulier, pour m ∈ N∗, on montre dans la Proposition 3.1.1
que l’homomorphisme q̄1+m,n ∶ B1,m(RP 2)! B1(RP 2) n’admet aucune section, tandis que pour
n = 2, l’homomorphisme q̄2+m,n ∶ B2,m(RP 2)! B2(RP 2) en admet une pour chaque m ∈ N∗. Plus
précisément, nous prouvons que la suite exacte courte

1 Bm(RP 2 ∖ {x1, x2}) B2,m(RP 2) B2(RP 2) 1q̄2+m,2

se scinde pour tout m ∈ N∗. Dans la Proposition 3.1.2, nous fournissons une section géométrique ex-
plicite pour l’application q2+m,2 ∶ F2+m(Σ)/(S2×Sm)! F2(Σ)/S2, et dans la Proposition 3.1.3, nous
mettons en évidence une section algébrique explicite pour l’homomorphisme q̄2+m,2 ∶ B2,m(RP 2)!
B2(RP 2), où les homomorphismes q2+m,2, q̄2+m,2 peuvent être considérés géométriquement comme
les applications qui oublient respectivement les m derniers points et les m derniers brins. Pour le
cas n ≥ 3, dans la Section 3.2 nous donnons des conditions nécessaires sur m afin que la suite exacte
courte

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1q̄n+m,n (4)

se scinde. En particulier, dans le Théorème 3.2.4 nous montrons que m = k(n − 1), où k ≥ 1, pour
que (4) se scinde. De plus, en utilisant les éléments de torsion des groupes Bn,m(RP 2) et Bn(RP 2),
dans la Proposition 3.2.7 nous obtenons des restrictions supplémentaires sur les valeurs de m, et en
particulier, nous obtenons que m ≡ 0 mod n ou m ≡ 1 mod n. Nous terminons le Chapitre 3 par la
Section 3.3, où, pour certaines valeurs de m, nous donnons deux constructions différentes d’une
section géométrique pour la fibration qn+m,n ∶ Fn+m(RP 2)/(Sn × Sm) ! Fn(RP 2)/Sn. Pour ces
valeurs de m, l’existence de ces sections géométrique, donne une réponse positive au problème de
scindement de la suite exacte courte (4). Réunissant le Théorème 3.2.4 et les Propositions 3.2.7,
3.3.1, 3.3.2, on obtient le résultat principal concernant le problème de scindement, qui est donné
dans le Théorème 3.3.4 comme suit.
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Théorème 2. Soit m > 1 et n ≥ 3. Alors, la suite exacte courte

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1q̄n+m,n

se scinde pour m = 2n(n−1) et pour m = kn(2n−1)(2n−2), où k ≥ 1. De plus, si l’homomorphisme
q̄n+m,n admet une section, alors m ≡ 0, (n + 1)2 mod n(n − 1).

On remarque que les cas restants qui ne sont pas couverts par le Théorème 2 sont ouverts.

La deuxième partie de la thèse concerne les groupes de tresses soudées et les groupes de tresses
virtuelles sans restrictions. Les groupes de tresses soudées, qu’on dénote parWBn, pour n ∈ N∗, sont
un analogue tridimensionnel des groupes de tresses d’Artin Bn. Comme pour les groupes de tresses
d’Artin, il en existe plusieurs interprétations, soit en termes du groupe de classe d’application,
soit du groupe fondamental d’espaces de configuration spécifiques ou soit des automorphismes
du groupe libre Fn. Le nom de groupes de tresses soudées a été introduit par Fenn–Rimányi–
Rourke dans [FRR97]; de plus, ces groupes WBn apparaissent dans la littérature sous de nombreux
noms différents, par exemple comme automorphismes de conjugaison du groupe libre Fn grâce à
Savushkina [Sav96], comme les groupes de tresses des cercles grâce à Baez–Crans–Wise [BCW07],
et comme "untwisted ring groups" dû à Brendle–Hatcher [BH13]. Une présentation de WBn a été
donnée par Fenn–Rimányi–Rourke, dans [FRR97], qu’on présente dans le Théorème 4.1.3. Plus
tard, Brendle–Hatcher, dans [BH13], ont donné une présentation du "untwisted ring group", URn,
donné dans le Théorème 4.1.6, ce qui donne une interprétation géométrique du groupe de tresses
soudées WBn, puisque ces deux groupes sont isomorphes. Les générateurs σi, ρi, donnés dans les
deux présentations ont été initialement considérés par Goldsmith dans [Gol81]. Le générateur σi
agit comme une permutation en passant le cercle i−ème par le cercle (i + 1)−ème et le générateur
ρi les permute en passant le i−ème autour du (i + 1)−ème.

Un sous-groupe important de WBn est le groupe de tresses pures soudées WPn, qui a également
plusieurs interprétations. Dans cette thèse, nous nous intéressons principalement à la définition de
WPn en tant que sous-groupe du groupe des automorphismes du groupe libre Fn, constitué des
automorphismes dits de conjugaison de bases, mais aussi en tant que groupe fondamental d’un
espace de configurations spécifiques. Notez que tel que dans le cas des groupes de tresses des
surfaces, WBn est étroitement lié au groupe symétrique Sn, puisqu’on peut considérer l’application
φ ∶ WBn ! Sn, définie par φ(σi) = φ(ρi) = (i, i + 1) ∈ Sn, pour i = 1, . . . , n − 1. À partir de cela,
il s’ensuit que le groupe de tresses pures soudées WPn, est en fait le noyau de l’application φ.
Dans [Sav96], Savushkina a prouvé que WBn peut être vu comme le produit semi-direct de ses
sous-groupes WPn et Sn, et a déterminé l’action de Sn sur WPn, comme décrit dans le Théorème
4.3.6. Pour être plus précis, Sn agit en permutant les indices des générateurs de WPn.

Les groupes de tresses virtuelles sans restrictions, et que dans la suite on dénotera simplement
par UV Bn, ont été introduites par Kauffman et Lambropoulou dans [KL04] et [KL06], où ils
fournissent une nouvelle méthode pour convertir des nœuds virtuels et des entrelacs en tresses
virtuelles, et ils prouvent un théorème de Markov pour les groupes de tresses virtuelles. De plus, le
groupe UV Bn apparaît dans [KMRW17] comme quotient du groupe de tresses soudées WBn et
dans [BBD15], où Bardakov–Bellingeri–Damiani donnent une description de sa structure. Dans la
Définition 5.1.1, nous voyons que UV Bn peut être défini en ajoutant une relation supplémentaire à
la présentation du groupe WBn, et donc, UV Bn a la même partie génératrice que WBn. Encore
une fois, en considérant l’application φ ∶ UV Bn! Sn définie par φ(σi) = φ(ρi) = (i, i+1) ∈ Sn, pour
i = 1, . . . , n − 1, le groupe de tresses pures virtuelles sans restrictions, que on dénote par UV Pn,
correspond au noyau de l’application φ, étant un sous-groupe important de UV Bn.

Dans [BBD15], Bardakov–Bellingeri–Damiani ont étudié le groupe UV Pn, donnant une descrip-
tion de ses éléments et en donnant la présentation suivante :

UV Pn = ⟨λi,j , 1 ≤ i ≠ j ≤ n ∣ λi,jλk,l = λk,lλi,j , pour (k, l) ≠ (j, i), 1 ≤ i, j, k, l ≤ n⟩, (5)

qu’on présente dans le Théorème 5.3.1. De cette présentation, il résulte que UV Pn est isomorphe
au produit direct de n(n − 1)/2 copies du groupe libre F2. De la même manière que pour WBn,
Bardakov–Bellingeri–Damiani a montré dans [BBD15] que UV Bn peut être vu comme le produit
semi-direct de ses sous-groupes UV Pn et Sn, où Sn agit en permutant le indices des générateurs de
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UV Pn, comme décrit dans le Théorème 5.3.6. Notez que le groupe UV Pn est en fait un groupe
d’Artin angle droit. On rappelle qu’un groupe d’Artin angle droit, aussi appelé groupe de graphes,
est un groupe qui admet une présentation finie dans laquelle les seules relations sont des relations
commutées entre les générateurs. Pour une étude générale sur les groupes d’Artin angle droit, nous
renvoyons le lecteur à l’article [Cha07] de Charney.

Nous allons maintenant présenter la structure des quatrième et cinquième chapitres de cette
thèse.

Dans le Chapitre 4, nous introduisons les groupes de tresses soudées, WBn, en donnant plusieurs
interprétations différentes ainsi qu’en donnant une présentation. Après avoir établi la théorie
nécessaire pour WBn, dans la Section 4.2, nous étudions leur suites centrales descedantes et nous
montrons que, pour n ≥ 4, WBn n’est pas résiduellement nilpotent. En d’autres termes, dans la
Proposition 4.2.1 nous montrons que, pour n ≥ 4, Γ2(WBn) ≅ Γ3(WBn). De plus, pour n ≥ 5,
nous déterminons tous les homomorphismes possibles, à conjugaison près, de WBn au groupe
symétrique Sn, comme nous le décrivons dans le théorème suivant. Ici, on note l’automorphisme
extérieur de S6 par v6, et par φ l’homomorphisme WBn! Sn défini comme φ(σi) = φ(ρi) = si, où
s(i) = (i, i + 1) ∈ Sn pour chaque 1 ≤ i ≤ n − 1.

Théorème 3. Soit n ≥ 5 et soit h ∶ WBn ! Sn un homomorphisme quelconque. Alors, à
conjugaison près, l’une des conditions suivantes est vérifiée :

• L’homomorphisme h est l’homomorphisme φ.

• L’homomorphisme h est cyclique, dont l’image est d’ordre 2.

• L’homomorphisme h est abélien.

• Pour n = 6, l’homomorphisme h est v6 ○ φ.

On continue avec la Section 4.3, où l’on définit les groupes de tresses pures soudées, WPn, et on
prouve que c’est un sous-groupe caractéristique de WBn et que le centralisateur de WPn dans
WBn est trivial. Notez que pour n = 2 le groupe WP2 n’est pas un sous-groupe caractéristique
de WB2 car nous fournissons un contre-exemple dans la Remarque 4.3.9. C’est Dyer–Grossman
qui ont déterminé, dans [DG81], le groupe des automorphismes du groupe de tresses d’Artin
et en particulier ils ont prouvé que, pour n ≥ 3, Out(Bn) ≅ Z2 généré par l’automorphisme
εn ∶ σi 7! σ−1

i , pour tout 1 ≤ i ≤ n − 1. Même si les groupes de tresses soudées WBn sont des
analogues tridimensionnels des groupes de tresses d’Artin Bn, leur groupe des automorphismes n’a
pas encore été déterminé. Ainsi, nous concluons le quatrième chapitre avec la Section 4.4, où nous
discutons sur le groupe des automorphismes de WBn. En particulier, nous décrivons la difficulté
que nous avons rencontrée en appliquant l’approche de Dyer–Grossman au cas de WBn. Il s’agit
d’un obstacle concernant l’action du groupe libre Fn dans WBn. Nous aurions besoin de prouver
que Fn est un sous-groupe caractéristique de WBn; ce fait reste une conjecture et nous prouvons
dans la Proposition 4.4.1 que, pour n ≥ 2, Fn est un sous-groupe normal de WBn. Enfin, pour
n ≥ 3, nous conjecturons que l’automorphisme

αn ∶

⎧⎪⎪
⎨
⎪⎪⎩

σi 7! ρiσ
−1
i ρi, pour 1 ≤ i ≤ n − 1,

ρi 7! ρi, pour 1 ≤ i ≤ n − 1.

est le seul automorphisme extérieur de WBn et, en particulier, que Out(WBn) ≅ Z2. Notez que
l’automomorphisme αn de WBn peut être vu comme une composition des applications βn, γn,
définies par :

βn ∶

⎧⎪⎪
⎨
⎪⎪⎩

σi 7! σ−1
i , pour 1 ≤ i ≤ n − 1,

ρi 7! ρi, pour 1 ≤ i ≤ n − 1,
(6)

et

γn ∶

⎧⎪⎪
⎨
⎪⎪⎩

σi 7! ρiσiρi, pour 1 ≤ i ≤ n − 1,
ρi 7! ρi, pour 1 ≤ i ≤ n − 1,

(7)

lesquelles sont des automorphismes de UV Bn. Néanmoins, βn et γn ne sont pas des automorphismes
de WBn.
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Cette thèse se termine par le Chapitre 5, où nous introduisons et étudions les groupes UV Bn.
Ensuite, dans la Section 5.2 nous déterminons, pour n ≥ 5, tous les homomorphismes possibles, à
conjugaison près, de UV Bn au groupe symétrique Sn, ce qui est décrit dans le théorème suivant.

Théorème 4. Soit n ≥ 5 et soit h ∶ UV Bn ! Sn un homomorphisme quelconque. Alors, à
conjugaison près, l’une des conditions suivantes est vérifiée :

• L’homomorphisme h est l’homomorphisme φ.

• L’homomorphisme h est cyclique, dont l’image est d’ordre 2.

• L’homomorphisme h est abélien.

• Pour n = 6, l’homomorphisme h est v6 ○ φ.

Avec des arguments similaires à ceux pour WPn, nous prouvons dans la Section 5.3 que, pour n ≥ 5,
UV Pn est un sous-groupe caractéristique de UV Bn et que son centralisateur dans UV Bn est trivial.
Notez que pour n = 2, tel que dans le cas pour WPn, le groupe UV P2 n’est pas un sous-groupe
caractéristique de UV B2, puisqu’on donne un contre-exemple dans la remarque 5.3.9. Ensuite,
dans la Section 5.4 nous nous concentrons sur les images finies de UV Bn et dans la Section 5.5 sur
ses éléments de torsion. Pour être plus précis, avec la théorie des ensembles totalement symétriques,
introduite par Kordek–Margalit dans [KM], pour n ≥ 3 nous déterminons toutes les images possibles
de UV Bn dans tout groupe fini G, sous n’importe quel homomorphisme.

Théorème 5. Soit n ≥ 3 et φ ∶ UV Bn ! G un homomorphisme de groupe à un groupe fini G.
Alors, l’un des cas suivants doit se satisfaire :

• φ(UV Bn) ≅ Zm ×Z2, pour quelque m ∈ N∗. Dans ce cas, l’image de UV Bn est abélienne.

• ∣φ(UV Bn)∣ ≥ 2
n(n−1)

2 −1(n(n−1)
2 )!.

• φ(UV Bn) ≅ Zm × Im(φ∣Sn), pour quelque m ∈ N∗. Dans ce cas, l’image de UV Pn est cyclique.

A propos des éléments de torsion de UV Bn, nous avons ce qui suit. Soit ι ∶ Sn! UV Bn l’application
injective définie par ι((i, i + 1)) = ρi ∈ UV Bn, pour 1 ≤ i ≤ n − 1. En général, on sait que tout
élément de torsion de UV Bn, ainsi que de WBn, appartient à la fermeture de ι(Sn), mais pour le
cas de UV Bn on a le résultat plus fort suivant.

Théorème 6. Soit n ≥ 2. Pour tout élément de torsion, d’ordre r, w dans UV Bn il existe un
élément s ∈ Sn, qui dépend de w, d’ordre r, et tel que w est conjugué à ι(s) par un élément de
UV Pn.

On continue avec la Section 5.6, où l’on détermine l’image du groupe de tresses d’Artin Bn dans
UV Bn, sous l’homomorphisme ι ∶ Bn! UV Bn défini par ι(σi) = σi, pour 1 ≤ i ≤ n−1. Nous savons
que Bn a un plongement naturel dans WBn, mais ce n’est pas ainsi dans le cas de UV Bn. Pour être
plus précis, nous montrons dans la Proposition 5.6.3 que ι(Bn) est isomorphe à Bn/[Pn, Pn], qui
est un groupe cristallographique, comme le montrent Gonçalves–Guaschi–Ocampo dans [GGO17].
Avant de conclure ce dernier chapitre, nous étudions dans la Section 5.7 et la Section 5.8 le groupe
des automorphismes de UV Pn et UV Bn, respectivement, et de plus, pour n ≥ 2, nous prouvons
dans le Corollaire 5.8.4 que les groupes UV Pn et UV Bn sont résiduellement finis et Hopfiens mais
pas co-Hopfiens. Concernant le groupe des automorphismes de UV Pn, en utilisant la théorie des
groupes d’Artin angle droit, aussi appelés groupes de graphes, nous en donnons une description
complète. Sur la base de la présentation (5) de UV Pn, notons que le graphe qui correspond au
groupe d’Artin angle droit UV Pn, est un graphe à n(n − 1) sommets, où l’ensemble de sommets
est V = {λi,j}1≤i≠j≤n et il y a une arête reliant chaque paire de sommets à l’exception des paires
{λi,j , λj,i}, car ce sont les seules paires de générateurs qui ne commutent pas. Par conséquent,
en utilisant le résultat de Laurence [Lau95], qui a travaillé sur la théorie des automorphismes des
groupes de graphes et étendu les travaux de Servatius [Ser89], nous obtenons un ensemble complet
de générateurs pour le groupe des automorphismes de UV Pn, comme l’on décrit dans le théorème
suivant.
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Théorème 7. Soit n ≥ 2 et 1 ≤ i ≠ j ≤ n. On a que

Aut(UV Pn) ≅ ⟨Tλj,i , Z
n(n−1)
2 , Zn(n−1)/2

2 ⋊ Sn(n−1)/2⟩,

où Tλj,i ∶ λi,j 7! λi,jλj,i, tout en fixant les générateurs λk,l ≠ λi,j , et Sn(n−1)/2 est le groupe
symétrique de degré n(n − 1)/2.

A partir de ce résultat et du fait que UV Pn ≅ F2 × ⋅ ⋅ ⋅ × F2 × ⋅ ⋅ ⋅ × F2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n(n − 1)/2-fois

, nous pouvons en déduire que

Aut(UV Pn) ≅ Aut(F2)
n(n−1)/2

⋊ Sn(n−1)/2,

où Sn(n−1)/2 agit sur Aut(F2)
n(n−1)/2 en permutant les facteurs n(n − 1)/2. Notez que ce résultat

est en accord avec un cas particulier d’un résultat plus général prouvé par Zhang–Ventura–Wu dans
[ZVW15], lesquels ont utilisé des techniques différentes des nôtres. À la fin, nous présentons des
résultats partiels sur le groupe des automorphismes de UV Bn. Dans ce cas, on peut appliquer un
résultat de Rose [Ros75], qui a donné une description du groupe des automorphismes des groupes
qui possèdent un sous-groupe caractéristique propre et ont un centralisateur trivial. Ainsi, on
obtient que, pour n ≥ 5, Aut(UV Bn) ≅ NAut(UV Pn)(UV Bn), comme montré dans le Corollaire
5.8.2. De plus, dans la Proposition 5.8.3, pour βn, γn défini dans (6), (7), nous prouvons que, pour
n ≥ 3, ⟨βn, γn⟩ ⊆ Out(UV Bn), où ⟨βn, γn⟩ ≅ Z2 ×Z2. Notons que dans [BP20], Bellingeri–Paris ont
prouvé, pour les groupes de tresses virtuels V Bn, que Out(V Bn) ≅ Z2 ×Z2. Nous ne définirons pas
ici les groupes de tresses virtuels, mais nous pourrions en dire qu’ils sont une extension des groupes
de tresses classiques par le groupe symétrique. On a que WBn est un quotient de V Bn et UV Bn un
quotient de WBn, et donc, nous espérons que le résultat de Bellingeri–Paris sur Out(V Bn) avec nos
résultats partiels sur Out(UV Bn) pourraient être utiles pour les futurs travaux de détermination
du groupe Out(WBn), ce qui est toujours un problème ouvert.
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This thesis is divided into two parts. The first three chapters concern surface braid groups,
while the last two deal with welded and unrestricted virtual braid groups.

Surface braid groups are both a generalisation to any connected surface of the fundamental group
of a surface and of the braid groups of the plane, which are known as Artin braid groups and were
defined by Artin in 1925 in [Art25]. They were initially introduced by Zariski in [Zar36], [Zar37] and
later during the 1960’s, Fox gave an equivalent definition of surface braid groups from a topological
point of view. As for Artin braid groups, surface braid groups can be described from several points
of view, one of which is the following. Let n ∈ N, for any connected surface Σ, we fix a set of n
distinct points, P = {x1, . . . , xn}, in the interior of Σ. An n−braid, β = (β1(t), . . . , βn(t))t∈[0,1], is
a collection of n distinct paths on the surface Σ, where each path has as initial and final point a
point in P , which are possibly different. We call these n paths strands. Now, up to homotopy, one
can define a group structure on this set of n−braids. From now on, we will denote a connected
surface by Σ and the n-strand surface braid group of Σ by Bn(Σ), and we call these groups full
braid groups of Σ.

The theory of surface braid groups has been widely studied, and there are several known results
about their structure and their presentations. The first presentations of braid groups of compact
surfaces without boundary were found by Birman [Bir69] and Scott [Sco70]. Moreover, there
exist further presentations of surface braid groups due to Bellingeri [Bel04], Gonçalves–Guaschi
[GG04b],[GG10a], González-Meneses [GM01] and Lambropoulou [Lam00], among others. Among
all the surfaces, the braid groups of the 2−sphere, S2 and the projective plane, RP 2, are of particular
interest, since they are the only surfaces whose braid groups contain torsion elements. This fact
was proved for the 2−sphere by Fadell–Van Buskirk in [FVB62] and for the projective plane by Van
Buskirk in [VB66].

The braid group Bn(Σ) is closely related to the symmetric group, since there is a natural
epimorphism σ ∶ Bn(Σ)! Sn, where to each n−braid β = (β1(t), . . . , βn(t))t∈[0,1] we associate a
permutation σ(β) ∈ Sn defined by βi(1) = xσ(β)(i) ∈ P , for all i ∈ {1, . . . , n}. The kernel of the
map σ is the so-called pure braid group, which we denote by Pn(Σ). In other words, Pn(Σ) is the
subgroup of Bn(Σ), whose n−braids contains n strands each of which connects the initial point to
the same final point.

Surface braid groups are closely related to configuration spaces of surfaces. We will denote by
Fn(Σ) = {(p1, . . . , pn) ∈ Σn ∣ pi ≠ pj for all i, j ∈ {1, . . . , n}, i ≠ j} the nth ordered configuration
space of the surface Σ. Considering the natural action of the symmetric group Sn on Fn(Σ), defined
by permutation of coordinates, one can define the nth unordered configuration space, which is the
orbit space Fn(Σ)/Sn. Similarly, for n,m ∈ N, we can consider the space obtained by quotienting the
(n+m)th configuration space of Σ by the subgroup Sn×Sm of Sn+m, that is Fn+m(Σ)/Sn×Sm. Fox–
Neuwirth [FN62b] proved that π1(Fn(Σ)) is isomorphic to Pn(Σ), and π1(Fn(Σ)/Sn) is isomorphic
to Bn(Σ). Likewise, the groups π1(Fn+m(Σ)/(Sn × Sm)) are isomorphic to the groups that we
denote by Bn,m(Σ), which are subgroups of the full braid groups Bn+m(Σ) known as mixed braid
groups. Mixed braid groups are in general useful for studying representation theory of surface braid
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groups and for knot theory in 3-manifolds. These groups have been studied, among others, by
Sossinsky [Sos92], Manfredini [Man97], Paris–Rolfsen [PR99], Gonçalves–Guaschi [GG04c], [GG05],
[GG12] Bellingeri–Godelle–Guaschi [BGG] and Lambropoulou [Lam00], where her approach differs
from the previously mentioned, and the value n of the above mentioned mixed braid groups denotes
that the first n strands are vertical, and it is proved that these braid groups are related to knots
in handlebodies, in knot complements and in closed, connected, oriented 3-manifolds, see also
references therein for prior works.

One important tool in the study of the braid groups is the Fadell–Neuwirth short exact sequence
that arises from the Fadell–Neuwirth fibration, which exists for Σ with empty boundary. However,
once passed to the long exact sequence in homotopy of the fibration, for n,m ∈ N, and any connected
surface Σ, we have the following Fadell–Neuwirth short exact sequences:

1 Pn−m(Σ ∖ {x1, . . . , xm}) Pn(Σ) Pm(Σ) 1,p̄n,m for 1 ≤m < n, (8)

1 Bm(Σ ∖ {x1, . . . , xn}) Bn,m(Σ) Bn(Σ) 1,q̄n+m,n (9)

known as the Fadell–Neuwirth short exact sequence of surface pure braid groups and the generalised
Fadell–Neuwirth short exact sequence of mixed braid groups respectively. The induced maps p̄n,m
and q̄n+m,n can be considered geometrically as the epimorphism that forgets the last n −m and
m strands respectively. Note that when Σ is the 2−sphere S2 or the projective plane RP 2 there
are some restrictions on the values of n and m. We remark that the map p̄n,m does not extend
directly to the full braid groups Bn(Σ)! Bm(Σ), since it is not well-defined, but q̄n+m,n allows us
to extend p̄n,m to certain subgroups of Bn+m(Σ).

The splitting problem refers to the question of whether or not the short exact sequences (8) and
(9) split, or equivalently, whether or not the maps p̄n,m and q̄n+m,n admit a section, which is the
same as asking whether or not there exist injective maps s̄n,m and ŝn+m,n, respectively, such that
p̄n,m ○ s̄n,m = idPm(Σ) and q̄n,m ○ ŝn,m = idBn(Σ). An interesting aspect of the splitting problem is
that it can be approached algebraically and geometrically. The equivalence between the splitting
of the short exact sequences (8), (9) and the existence of a geometric section for the fibrations
pn,m ∶ Fn+m(Σ)! Fn(Σ) and qn+m,n ∶ Fn+m(Σ)/(Sn × Sm)! Fn(Σ)/Sn, respectively, is given by
Baues [Bau77] and Whitehead [Whi78] if Σ is an aspherical space, and by Gonçalves–Guaschi when
Σ = S2 and Σ = RP 2. In Proposition 1.3.1 we present this equivalence in detail.

The splitting of the short exact sequence (8) in the case of the plane, Σ = R2, is an important
result in classical braid theory. Based on this result, we have the Artin normal form for pure Artin
groups Pn, that is Pn ≅ Fn−1 ⋊Fn−2 ⋊ ⋅ ⋅ ⋅ ⋊F2 ⋊F1, where Fn is the free group of rank n, and is one
of the main tools in the study of Pn. The Artin normal form of Pn is used, for instance, for the
uniqueness of roots in Pn, by Bardakov [Bar92], for the study of the lower central series and the
residual nilpotence of Pn, by Falk–Randell [FR85], as well as for the proof of the bi-orderability of
Pn, by Kim–Rolfsen [KR03].

It follows that it is important to know whether there is a splitting or not. During the 1960’s,
the period of the development of the theory of surface braid groups, many mathematicians studied
this problem for surfaces besides the plane. The splitting problem for (8) was studied notably
by Fadell [Fad62], Fadell–Neuwirth [FN62a], Fadell–Van Buskirk [FVB62], Van Buskirk [VB66]
and Birman [Bir69], approaching it either geometrically or algebraically. In the case of the pure
surface braid groups the splitting problem now has a complete solution, given in Theorem 1.3.3
by Gonçalves–Guaschi. To give a positive answer to the splitting problem it suffices to present
an explicit section, either geometric or algebraic. To obtain a negative answer to the splitting
problem, one of the main methods that was used to prove Theorem 1.3.3 is based on the following
observation: let G be a group, and let K,H be normal subgroups of G such that H is contained
in K. If the short exact sequence 1 ! K ! G ! R ! 1 splits then so does the short exact
sequence 1!K/H ! G/H ! R! 1. The study of the splitting problem of the second extension
is sometimes easier from the one of the first extension, and thus, showing that this second extension
does not split, implies that the first extension does not split either. However, in the case of the
mixed braid groups the splitting problem does not yet have a complete solution. In particular, to
the best of our knowledge, the only surface, besides the plane R2, for which the splitting of the
short exact sequence (9) has been studied, is the 2−sphere S2. In [GG05], Gonçalves–Guaschi, gave
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partial results for the splitting problem for S2, see Theorem 1.3.4, and more recently Chen–Salter
strengthened these results, see Theorem 1.3.5.

In the first part of the thesis, we study the splitting problem of the mixed braid groups of
the projective plane RP 2. The braid groups of the projective plane, Bn(RP 2), are particularly
interesting, since along with the braid group of the 2−sphere they are the only braid groups
that contain torsion elements. A presentation of Bn(RP 2) was given by Van Buskirk in [VB66],
see Theorem 2.1.1, where the set of generators consists of the n − 1 standard Artin generators,
together with the n elements that correspond to elements of the fundamental group of the projective
plane based at the 1st, . . . , nth basepoint respectively. The torsion elements of Bn(RP 2) were
first determined and characterised by Murasugi in [Mur82], and later Gonçalves–Guaschi gave a
simplified characterisation of them in [GG10b]. The groups Bn(RP 2) were studied extensively by
Gonçalves–Guaschi who determined, up to isomorphism, the maximal finite subgroups of Pn(RP 2)
as well as the finite subgroups of Bn(RP 2).

We now present the structure of the first three chapters of the thesis.
In Chapter 1, we give an introduction to surface braid groups. We give a geometric definition of

surface braid groups and we present their connection with the configuration spaces. Moreover in
Section 1.2, we give a detailed description of the Fadell–Neuwith fibration and the resulting short
exact sequences

1 Pn−m(Σ ∖ {x1, . . . , xm}) Pn(Σ) Pm(Σ) 1,p̄n,m

1 Bm(Σ ∖ {x1, . . . , xn}) Bn,m(Σ) Bn(Σ) 1,q̄n+m,n

which constitute the main subject of study of the first part of the thesis. At the end of Chapter 1,
in Section 1.3, we describe the splitting problem in detail and we present the existing results for
this problem.

In Chapter 2, we introduce the braid groups of the projective plane, Bn(RP 2), giving also
important details about their structure. In Section 2.2, we give presentations of certain subgroups
of Bn,m(RP 2) that allow us to obtain a presentation of the mixed braid groups Bn,m(RP 2). In
particular, we first exhibit presentations of the groups Pn(RP 2), Pm(RP 2 ∖ {x1, . . . , xn}) and
Bm(RP 2 ∖ {x1, . . . , xn}), by applying standard techniques for obtaining presentations of group
extensions as described in [Joh97] (page 139). Then, in Theorem 2.2.7, we obtain a presentation of
Bn,m(RP 2) applying the same methods to the following short exact sequence:

1! Bm(RP 2
∖ {x1, . . . , xn})! Bn,m(RP 2

)
q̄n+m,n
−−−−! Bn(RP 2

)! 1, (10)

where the map q̄n+m,n can be considered geometrically as the epimorphism that forgets the last m
strands. Moreover, using these presentations, we give a presentation of the Abelianisation of each
of these groups. We conclude Chapter 2 with Section 2.3, where we study the lower central and
derived series of the group Bm(RP 2 ∖ {x1, . . . , xn}), and in particular proving, in Theorem 2.3.2,
that the group Bm(RP 2 ∖ {x1, . . . , xn}) is neither residually nilpotent , for m ≥ 3, nor residually
solvable, for m ≥ 5, as we see in the following theorem:

Theorem 1. Let n ≥ 1. Then:

• If m ≥ 3, then

Γ2(Bm(RP 2
∖ {x1, . . . , xn})) = Γ3(Bm(RP 2

∖ {x1, . . . , xn})).

• If m ≥ 5, then

(Bm(RP 2
∖ {x1, . . . , xn}))

(1)
= (Bm(RP 2

∖ {x1, . . . , xn}))
(2)
.

In particular, for m ≥ 3, Bm(RP 2 ∖ {x1, . . . , xn}) is not residually nilpotent and for m ≥ 5, it is not
residually solvable.
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Due to the following fact, Theorem 1 is important in the study of the splitting problem. Let N be
a normal subgroup of Bn,m(RP 2), which is also contained in Bm(RP 2 ∖ {x1, . . . , xn}). We thus
obtain the following quotiented short exact sequence:

1 Bm(RP 2 ∖ {x1, . . . , xn})/N Bn,m(RP 2)/N Bn(RP 2) 1,q

where q ∶ Bn,m(RP 2)/N ! Bn(RP 2) denotes the homomorphism induced by q̄n+m,n. We observe
that if the short exact sequence (10) splits then this quotiented short exact sequence also splits.
More precisely, consider the following commutative diagram of short exact sequences:

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1

1 Bm(RP 2 ∖ {x1, . . . , xn})/N Bn,m(RP 2)/N Bn(RP 2) 1.

pr

q̄n+m,n

q

Suppose that the homomorphism q̄n+m,n ∶ Bn,m(RP 2)! Bn(RP 2) admits a section s̄n+m,n. Then
s = pr ○ s̄n+m,n is a section for q ∶ Bn,m(RP 2)/N ! Bn(RP 2). It follows that knowing the lower
central and derived series of certain groups is an important tool in the study of the splitting problem,
since one could study the quotient of Bn,m(RP 2) by N , for N being an element of the lower central
or the derived series of Bm(RP 2 ∖ {x1, . . . , xn}).

We complete the first part of the thesis in Chapter 3, w, where we study the possible splitting
of (10). In Section 3.1, we analyse the existence of a section for the homomorsphism

q̄n+m,n ∶ Bn,m(RP 2
)! Bn(RP 2

),

for n = 1 and n = 2, where m ∈ N. In particular, for m ∈ N we prove in Proposition 3.1.1 that
the homomorphism q̄1+m,n ∶ B1,m(RP 2) ! B1(RP 2) admits no section, while for n = 2, the
homomorphism q̄2+m,n ∶ B2,m(RP 2)! B2(RP 2) admits a section for every m ∈ N. More precisely,
we prove that the short exact sequence

1 Bm(RP 2 ∖ {x1, x2}) B2,m(RP 2) B2(RP 2) 1q̄2+m,2

splits for all values ofm ∈ N. In Proposition 3.1.2 we provide an explicit geometric section for the map
q2+m,2 ∶ F2+m(Σ)/(S2 × Sm)! F2(Σ)/S2, and in Proposition 3.1.3, we exhibit an explicit algebraic
section for the homomorphism q̄2+m,2 ∶ B2,m(RP 2)! B2(RP 2), where the homomorphisms q2+m,2
and q̄2+m,2 can be considered geometrically as the maps that forget the last m points and the last
m strands respectively. For the cases n ≥ 3, in Section 3.2 we provide necessary conditions for the
values of m, in order to have that the short exact sequence

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1q̄n+m,n (11)

splits. In particular, in Theorem 3.2.4 we prove that it is necessary that m = k(n − 1), where k ≥ 1,
for (11) to split. Moreover, making use of the torsion elements of the groups Bn,m(RP 2) and
Bn(RP 2), in Proposition 3.2.7 we obtain further restrictions on the values of m, and in particular,
we obtain that either m ≡ 0 mod n or m ≡ 1 mod n. We conclude Chapter 3 with Section 3.3,
where, for certain values of m, we provide two different constructions of a cross-section for the
fibration qn+m,n ∶ Fn+m(RP 2)/(Sn × Sm) ! Fn(RP 2)/Sn. The existence of these cross-sections,
give a positive answer to the splitting problem of the short exact sequence (11), for these values of
m. Combining these results, Theorem 3.2.4 and Propositions 3.2.7, 3.3.1, 3.3.2, we obtain the main
result concerning the splitting problem, which is given in Theorem 3.3.4 and is the following.

Theorem 2. Let m > 1 and n ≥ 3. The short exact sequence

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1q̄n+m,n

splits for m = 2n(n−1) and for m = kn(2n−1)(2n−2), where k ≥ 1. Moreover, if the homomorphism
q̄n+m,n admits a section, then m ≡ 0, (n + 1)2 mod n(n − 1).
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Note that the remaining cases that are not covered in Theorem 2 are open.

We continue with the second part of the thesis, which concerns the welded and unrestricted
virtual braid groups. The welded braid groups, which we will denote by WBn, for n ∈ N, are a
3-dimensional analogue of the Artin braid groups Bn. Like for the Artin brain groups, there are
several interpretations for the welded braid groups, such as in terms of mapping class groups, of
fundamental group of specific configuration spaces and of automorphisms of the free group Fn.
The name welded braid groups was introduced by Fenn–Rimányi–Rourke in [FRR97]. Moreover,
the groups WBn appear in the literature under many different names, for instance as conjugating
automorphisms of the free group Fn due to Savushkina [Sav96], as loop braid groups due to
Baez–Crans–Wise [BCW07] and as groups of untwisted rings due to Brendle–Hatcher [BH13]. A
presentation of WBn was given by Fenn–Rimányi–Rourke in [FRR97], given in Theorem 4.1.3.
Later Brendle–Hatcher in [BH13] gave a presentation for the untwisted ring group, URn, given
in Theorem 4.1.6, which gives a geometric interpretation of the welded braid group WBn, since
these two groups are isomorphic. The generators given in both presentations, σi, ρi, were initially
considered by Goldsmith in [Gol81]. The generator σi permutes the ith and the (i + 1)st circles
by passing the ith circle through the (i + 1)st and the generator ρi permutes them passing the ith
around the (i + 1)st.

An important subgroup of WBn is the welded pure braid group WPn, which has also several
interpretations. In this thesis we are mainly interested in the definition of WPn as the subgroup
of the automorpism group of the free group Fn, that consists of the so-called basis-conjugating
automorphisms, but also as the fundamental group of a space of specific configurations. Note
that as in the case of the surface braid groups, WBn is closely related to the symmetric group
Sn, since one can consider the map φ ∶WBn ! Sn, defined by φ(σi) = φ(ρi) = (i, i + 1) ∈ Sn, for
i = 1, . . . , n − 1. From this, it follows that the welded pure braid group WPn, is actually the kernel
of this map φ. In [Sav96], Savushkina proved that WBn can be seen as the semidirect product of
its subgroups WPn and Sn, and determined the action of Sn on WPn, as described in Theorem
4.3.6. To be more precise, Sn acts by permuting the indices of the generators of WPn.

The unrestricted virtual braids, UV Bn, were introduced by Kauffman and Lambropoulou in
[KL04] and [KL06], where they provide a new method for converting virtual knots and links to
virtual braids, and they prove a Markov Theorem for the virtual braid groups. Moreover, the group
UV Bn appears in [KMRW17] as a quotient of the welded braid group WBn and in [BBD15] where
Bardakov–Bellingeri–Damiani give a description of its structure. In Defintion 5.1.1 we see that
UV Bn, can be defined by adding one extra relation to the presentation of the groupWBn, and thus,
UV Bn has the same generating set as WBn. Once again, considering the map φ ∶ UV Bn ! Sn
defined by φ(σi) = φ(ρi) = (i, i + 1) ∈ Sn, for i = 1, . . . , n − 1, the unrestricted virtual pure braid
group, which we denote by UV Pn, is the kernel of the map φ, and is an important subgroup of
UV Bn.

In [BBD15], Bardakov–Bellingeri–Damiani studied the group UV Pn, giving a description of its
elements and moreover, giving the following presentation:

UV Pn = ⟨λi,j , 1 ≤ i ≠ j ≤ n ∣ λi,jλk,l = λk,lλi,j , for (k, l) ≠ (j, i), 1 ≤ i, j, k, l ≤ n⟩, (12)

which we present in Theorem 5.3.1. From this presentation, it follows that UV Pn is isomorphic to
the direct product of n(n−1)/2 copies of the free group F2. Similarly toWBn, Bardakov–Bellingeri–
Damiani showed in [BBD15] that UV Bn can be seen as the semidirect product of its subgroups
UV Pn and Sn, where Sn acts by permuting the indices of the generators of UV Pn, as described in
Theorem 5.3.6. Note that the group UV Pn is actually a right-angled Artin group. We recall that a
right-angled Artin group, also known as graph group, is a group which admits a finite presentation
in which the only relations are commuting relations among the generators. For a general survey on
the right-angled Artin groups we direct the reader to the article [Cha07] by Charney.

We will present now the structure of the fourth and fifth chapter of the thesis.
In Chapter 4 we introduce the welded braid groups, WBn, giving a couple of different interpreta-

tions as well as giving a presentation of them. After having established the necessary theory ofWBn,
in Section 4.2 we study their lower central series and we prove that, for n ≥ 4, WBn is not residually
nilpotent. In other words, in Propostion 4.2.1 we show that for n ≥ 4, Γ2(WBn) ≅ Γ3(WBn).
Moreover, for n ≥ 5, we determine all possible homomorphisms, up to conjugation, from WBn to
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the symmetric group Sn, as we describe in the following theorem. Note that we denote the outer
automorphism of S6 by v6, and by φ the homomorphism WBn! Sn defined by φ(σi) = φ(ρi) = si,
where s(i) = (i, i + 1) ∈ Sn, for every 1 ≤ i ≤ n − 1.

Theorem 3. Let n ≥ 5 and let h ∶WBn ! Sn be any homomorphism. Then, up to conjugation,
one of the following holds:

• The homomorphism h is the homomorphism φ.

• The homomorphism h is cyclic, whose image is of order 2.

• The homomorphism h is Abelian.

• For n = 6, the homomorphism h is v6 ○ φ.

We continue with Section 4.3, where we define the welded pure braid groups, WPn, and we prove
that it is a characteristic subgroup of WBn and that the centraliser of WPn in WBn is trivial. Note
that for n = 2 the group WP2 is not a characteristic subgroup of WB2, as we provide a counter
example in Remark 4.3.9. It was Dyer–Grossman who determined in [DG81] the automorphism
group of the Artin braid group and in particular they proved that Out(Bn) ≅ Z2, for n ≥ 3, generated
by the automorphism εn ∶ σi 7! σ−1

i , for every 1 ≤ i ≤ n − 1. Even though the welded braid groups
WBn are a 3-dimensional analogue of the Artin braid groups Bn, the automorphism group of WBn
has not been yet determined. Thus, we conclude the fourth chapter with Section 4.4, where we
discuss about the automorphism group of WBn. In particular, we describe the difficulty that we
encountered in applying the approach of Dyer–Grossman to the case of WBn, which concerns the
action of the free group Fn to WBn. Even though we would like to prove that Fn is a characteristic
subgroup of WBn, something that we conjecture as well, we prove in Proposition 4.4.1 that Fn is a
normal subgroup of WBn, for n ≥ 2. Lastly, for n ≥ 3, we conjecture that the automorphism

αn ∶

⎧⎪⎪
⎨
⎪⎪⎩

σi 7! ρiσ
−1
i ρi, for 1 ≤ i ≤ n − 1,

ρi 7! ρi, for 1 ≤ i ≤ n − 1.

is the only outer automorphism of WBn and, in particular, that Out(WBn) ≅ Z2. Note that the
automomorphism αn of WBn can be seen as a composition of the maps βn, γn, defined by:

βn ∶

⎧⎪⎪
⎨
⎪⎪⎩

σi 7! σ−1
i , for 1 ≤ i ≤ n − 1,

ρi 7! ρi, for 1 ≤ i ≤ n − 1,
(13)

and

γn ∶

⎧⎪⎪
⎨
⎪⎪⎩

σi 7! ρiσiρi, for 1 ≤ i ≤ n − 1,
ρi 7! ρi, for 1 ≤ i ≤ n − 1,

(14)

which are actually automorphisms of UV Bn. Nevertheless, βn and γn fail to be automorphisms of
WBn.

We complete this thesis with Chapter 5, where we introduce and study the unrestricted virtual
braids UV Bn. Then, in Section 5.2 we determine all possible homomorphisms, up to conjugation,
from UV Bn to the symmetric group Sn, for n ≥ 5, as we describe in the following theorem.

Theorem 4. Let n ≥ 5 and let h ∶ UV Bn! Sn be any homomorphism. Then, up to conjugation,
one of the following holds:

• The homomorphism h is the homomorphism φ.

• The homomorphism h is cyclic, whose image is of order 2.

• The homomorphism h is Abelian.

• For n = 6, the homomorphism h is v6 ○ φ.
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With similar arguments to the case of WPn, we prove in Section 5.3 that UV Pn is a characteristic
subgroup of UV Bn, for n ≥ 5, as well as that its centraliser in UV Bn is trivial. Note that for n = 2,
as in the case of WPn, the group UV P2 is not a characteristic subgroup of UV B2, as we provide a
counter example in Remark 5.3.9. Then, in Section 5.4 we focus on the finite images of UV Bn and
in Section 5.5 on its torsion elements. To be more precise, with the theory of totally symmetric
sets, introduced by Kordek–Margalit in [KM], we determine all possible images of UV Bn in any
finite group G, under any homomorphism, for n ≥ 3.

Theorem 5. Let n ≥ 3 and φ ∶ UV Bn! G be a group homomorphism to a finite group G. Then,
one of the following must hold:

• φ(UV Bn) ≅ Zm ×Z2, for some m ∈ N. In this case, the image of UV Bn is Abelian.

• ∣φ(UV Bn)∣ ≥ 2
n(n−1)

2 −1(n(n−1)
2 )!.

• φ(UV Bn) ≅ Zm × Im(φ∣Sn), for some m ∈ N. In this case, the image of UV Pn is cyclic.

About the torsion elements of UV Bn we have the following. Let ι ∶ Sn! UV Bn be the injective
map defined by ι((i, i + 1)) = ρi ∈ UV Bn, for 1 ≤ i ≤ n − 1. In general, we know that any torsion
element of UV Bn, as well as of WBn, belongs to the closure of ι(Sn), but for the case of UV Bn
we have the following stronger result.

Theorem 6. Let n ≥ 2. For any torsion element, of order r, w in UV Bn there exists an element
s ∈ Sn, that depends on w, of order r and such that w is conjugate to ι(s) by an element of UV Pn.

We continue with Section 5.6, where we determine the image of the Artin braid group Bn in
UV Bn, under the homomorphism ι ∶ Bn! UV Bn defined by ι(σi) = σi, for 1 ≤ i ≤ n − 1. We know
that Bn has a natural embedding in WBn, but this does not hold in the case of UV Bn. To be
more precise, we show in Proposition 5.6.3 that ι(Bn) is isomorphic to Bn/[Pn, Pn], which is a
crystallographic group, as shown by Gonçalves–Guaschi–Ocampo in [GGO17]. Before concluding
this last chapter, we study in Section 5.7 and Section 5.8 the automorphism group of UV Pn and
UV Bn respectively and moreover we prove in Corollary 5.8.4 that the groups UV Pn and UV Bn
are residually finite and Hopfian but not co-Hopfian, for n ≥ 2. Concerning the automorphism
group of UV Pn, using the theory of right-angled Artin groups, also known as graph groups, we
give a complete description of it. Based on the presentation (12) of UV Pn, note that the graph
that corresponds to the right-angled Artin group UV Pn, is a graph with n(n − 1) vertices, where
the vertex set is V = {λi,j}1≤i≠j≤n and there is an edge connecting every pair of vertices except for
the pairs {λi,j , λj,i}, since these are the only pairs of generators that do not commute. Therefore,
using the result by Laurence [Lau95], who worked on the theory of the automorphisms of graph
groups and extended the work of Servatius [Ser89], we obtained a complete set of generators for
the automorphism group of UV Pn, as described in the following theorem.

Theorem 7. Let n ≥ 2 and 1 ≤ i ≠ j ≤ n. It holds that

Aut(UV Pn) ≅ ⟨Tλj,i , Z
n(n−1)
2 , Zn(n−1)/2

2 ⋊ Sn(n−1)/2⟩,

where Tλj,i ∶ λi,j 7! λi,jλj,i, while fixing the generators λk,l ≠ λi,j, and Sn(n−1)/2 is the symmetric
group of degree n(n − 1)/2.

From this result and the fact that UV Pn ≅ F2 × ⋅ ⋅ ⋅ × F2 × ⋅ ⋅ ⋅ × F2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n(n − 1)/2-times

, we deduce that

Aut(UV Pn) ≅ Aut(F2)
n(n−1)/2

⋊ Sn(n−1)/2,

where Sn(n−1)/2 acts on Aut(F2)
n(n−1)/2 by permuting the n(n − 1)/2 factors. Note that this

result agrees with a particular case of a more general result proved by Zhang–Ventura–Wu in
[ZVW15], who used different techniques from ours. At the end we present partial results about the
automorphism group of UV Bn. For the case of UV Bn, one can apply the result by Rose in [Ros75],
who gave a description of the automorphism group of groups which possess a proper characteristic
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subgroup and have trivial centraliser. Thus, we obtain that Aut(UV Bn) ≅ NAut(UV Pn)(UV Bn),
for n ≥ 5, as stated in Corollary 5.8.2. Moreover, in Proposition 5.8.3, for βn, γn defined in (13),
(14), we prove that ⟨βn, γn⟩ ⊆ Out(UV Bn), for n ≥ 3, where ⟨βn, γn⟩ ≅ Z2 ×Z2. Note that in [BP20],
Bellingeri–Paris proved, for the virtual braid groups V Bn, that Out(V Bn) ≅ Z2 ×Z2. We will not
define here the virtual braid groups, but we could say that they are an extension of the classical
braid groups by the symmetric group. It holds that WBn is a quotient of V Bn and UV Bn a
quotient of WBn, and thus, we speculate that the result by Bellingeri–Paris about Out(V Bn)
together with our partial results about Out(UV Bn) could be of help for future work in determining
the group Out(WBn), which is still an open problem.



CHAPTER 1

Surface braid groups

In this chapter we outline the theory of surface braid groups, and we describe the main problem,
that we will deal with in this part of the thesis, called the splitting problem. We start by defining the
surface braid groups in two equivalent ways; from geometric and topological point of views, and we
give some basic information about these groups. In Section 1.2, we introduce the Fadell–Neuwirth
short exact sequence, which is a useful tool for the study of braid groups. We conclude the first
chapter by describing the splitting problem, and by presenting the known solutions that have been
given for certain surfaces.

1.1 Introduction to surface braid groups
Surface braid groups were first introduced by Zariski [Zar36], [Zar37], and generalise the braid

groups Bn introduced by Artin in 1925 [Art25]. During the 1960’s, Fox introduced an equivalent
topological definition for surface braid groups in terms of the fundamental group of configuration
spaces. An interesting aspect of surface braid groups is that they can be defined from several
viewpoints, such as equivalence classes of geometric braids, as the fundamental group of configuration
spaces and as trajectories of non-colliding particles. Moreover, they are closely related to mapping
class groups. For a more detailed description of these different approaches, we refer the reader to
the survey [GJP15] by Guaschi and Juan-Pineda.

In this thesis, we will interpret the surface braid groups as the fundamental group of configuration
spaces but before discussing these spaces, we will provide a geometric definition of surface braids
groups in order to get some intuition about this notion.

Definition 1.1.1. Let Σ denote a connected, compact or not, orientable or not, with or without
boundary surface. Let n ∈ N and fix P = {p1, ..., pn}, a set of n distinct points in the interior of
Σ. A geometric braid in Σ based at P is a collection of n arcs, β = {β1, ..., βn}, where the arcs
βi ∶ [0,1]! Σ × [0,1], i = 1, . . . , n, called strands or strings, satisfy the following conditions:

• For i = 1, . . . , n, βi(0) = (pi,0) and βi(1) ∈ P × {1}.

• For all t ∈ [0,1] and for all i ≠ j ∈ {1, . . . , n}, βi(t) ≠ βj(t).

• The strands β1, . . . , βn are strictly monotone with respect to the coordinate t ∈ [0,1]. In other
words, for all t ∈ [0,1], each strand meets the subset Σ × {t} in exactly one point.

Two geometric braids are considered to be equivalent if they are isotopic, while keeping the
endpoints of the strands fixed, and the equivalence classes are called n−braids. The concatenation
of two n−braids β, β̄, defined by glueing the endpoints of β to the respective initial points of β̄,
defines a group structure on the set of n−braids, which we call the n-strand braid group of Σ,

1
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denoted by Bn(Σ). The identity element of Bn(Σ) is the braid all of whose n strands are vertical
and the inverse of an n−braid β = {(β1(t), ..., βn(t))}t∈[0,1] is β−1 = {(β1(1 − t), ..., βn(1 − t))}t∈[0,1].
Since Σ is a connected surface, note that up to isomophism, this group does not depend on the
choice of the base point P = {p1, ..., pn}.

In the following figure we give an example of a 3−braid of the 2−torus.

Figure 1.1 A geometric 3−braid when Σ is the 2−torus.

Remark 1.1.2. Projecting the stands lying in Σ × [0,1] onto the surface Σ we can consider the
surface braids as collections of n paths. To be more precise, for a fixed set of n distinct points P in
the interior of Σ, an n−braid can be considered as collections of n distinct paths on the surface Σ,
where each path has as initial point a point in P and as final point again a point in P , but possibly
different from its initial one.

The n−braids which have the property that βi(1) = pi, for all i = 1, . . . , n, form a normal
subgroup of Bn(Σ), which we will denote by Pn(Σ). The groups Bn(Σ) will be called full braid
groups and the groups Pn(Σ) will be called pure braid groups.

Let Sn be the symmetric group over P = {p1, ..., pn}. There is a natural epimorphism σ ∶

Bn(Σ)! Sn, where to each n−braid β we associate a permutation σ(β) ∈ Sn defined by βi(1) =
(pσ(β)(i),1), for all i ∈ {1, . . . , n}. The kernel of the map σ is the pure braid group Pn(Σ). Thus,
we have the following short exact sequence:

1 Pn(Σ) Bn(Σ) Sn 1.σ (1)

It follows that Pn(Σ) is a normal subgroup of Bn(Σ) of index n!. As we will see in detail in Chapter
2, this short exact sequence is an important tool for obtaining a presentation of subgroups of the
full braid groups Bn(Σ).
Remark 1.1.3. It is well known that if Σ is equal to R2 or to the 2-disc then the groups Bn(Σ) and
Pn(Σ) are isomorphic to the usual Artin braid groups Bn and Pn respectively.

We continue by recalling the definition of the nth configuration space of a surface Σ.

Definition 1.1.4. The nth ordered configuration space of a surface Σ, which we denote by Fn(Σ),
is the set of n-tuples of pairwise distinct points in Σ:

Fn(Σ) = {(p1, . . . , pn) ∈ Σn ∣ pi ≠ pj for all i, j ∈ {1, . . . , n}, i ≠ j}.

Considering the natural action of the symmetric group Sn on Fn(Σ) defined by permutation of
coordinates:

Sn × Fn(Σ)! Fn(Σ) defined by (s, (p1, . . . , pn)) 7! (ps(1), . . . , ps(n)),

we obtain the nth unordered configuration space of Σ, which is the orbit space Fn(Σ)/Sn.

Remark 1.1.5. The notion of configuration space can be defined for any topological space X.
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Remark 1.1.6. The space Fn(Σ) may be equipped with the subspace topology from the inclusion of
Fn(Σ) in Σn. Moreover, Fn(Σ) is a connected 2n-dimensional open manifold.
Remark 1.1.7. The canonical projection pr ∶ Fn(Σ)! Fn(Σ)/Sn is an n!-fold covering map.

We are ready now to present a fundamental theorem that describes the braid groups from a
topological viewpoint.

Theorem 1.1.8 (Fox–Neuwirth, [FN62b]). For n ∈ N we have the following isomorphisms:

π1(Fn(Σ)) ≅ Pn(Σ) and π1(Fn(Σ)/Sn) ≅ Bn(Σ).

From these isomorphisms, we obtain an important tool for the study of the surface braid groups:
a short exact sequence involving surface braid groups, which we will describe in detail in Section
1.2.
Remark 1.1.9. Since F1(Σ) = F1(Σ)/S1 = Σ, it holds that π1(F1(Σ)) = π1(F1(Σ)/S1) = π1(Σ). In
other words, we have that:

B1(Σ) ≅ P1(Σ) ≅ π1(Σ).

At this point, we recall the classical presentation of the Artin braid groups, which coincides
with the braid groups of the plane.

Theorem 1.1.10 (Artin, [Art25]). For all n ≥ 1, the braid group Bn admits the following presen-
tation.
Generators: σ1, . . . , σn−1.

Relations:

(i) σiσj = σjσi, for ∣i − j∣ > 1, 1 ≤ i, j ≤ n − 1,

(ii) σiσi+1σi = σi+1σiσi+1, for all 1 ≤ i ≤ n − 2.

The generator σi can be seen geometrically as the braid with a single positive crossing of the ith
strand with the (i + 1)st strand, while all other strands remain vertical. We illustrate the generator
σi and its inverse σ−1

i in the following figure.

Figure 1.2 The generator σi and its inverse σ−1
i .

Concerning the pure braid groups, for 1 ≤ i < j ≤ n the braid Ai,j defined by:

Ai,j = σj−1⋯σi+1σ
2
i σ

−1
i+1⋯σ

−1
j−1,

can be represented geometrically by a braid all of whose strings are vertical, with the exception of
the jth strand, that wraps around the ith strand. Elements of this type generate the pure braid
group Pn, as we will see in the following proposition.

Proposition 1.1.11 (Hansen, [Han89]). For all n ≥ 1, the pure braid group Pn admits the following
presentation.
Generators: {Ai,j ∣ 1 ≤ i < j ≤ n}.
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Relations:

A−1
r,sAi,jAr,s =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ai,j , for 1 < r < s < j or r < s < i < j.
Ar,jAi,jA

−1
r,j , for r < i = s < j.

Ar,jAs,jAi,jA
−1
s,jA

−1
r,j , for i = r < s < j.

Ar,jAs,jA
−1
r,jA

−1
s,jAi,jAs,jAr,jA

−1
s,jA

−1
r,j , for r < i < s < j.

For surface braid groups there are several known presentations. The first presentations of braid
groups of compact surfaces without boundary were found by Birman [Bir69] and Scott [Sco70]. More-
over, there exists further presentations of surface braid groups due to Bellingeri [Bel04], Gonçalves–
Guaschi [GG04b],[GG10a], González-Meneses [GM01] and Lambropoulou [Lam00], among others.

Before concluding this section we discuss the centre and the torsion elements of the surface
braid groups.

In the cases where the surface is the plane or the disc, the 2-sphere, the real projective plane,
the annulus, the torus, the Möbius band and the Klein bottle their braid groups have non-trivial
centre. In particular, these are the only surfaces whose braid groups have non-trivial centre. For
more information regarding this subject we refer the reader to the survey [GJP15]. The braid

∆2
n = (σ1 . . . σn−1)

n
∈ Pn ⊂ Bn,

called the full twist of Bn, is a special braid, since it commutes with all of the generators σ1, . . . , σn−1 ∈
Bn. Due to the following result of Chow, the full twist generates the centre of Bn. More precisely,
the full twist is the square of the well-known Garside element ∆n of Bn, which is defined as follows:

∆n = (σ1σ2 . . . σn−1)(σ1σ2 . . . σn−2) . . . (σ1σ2)σ1.

Theorem 1.1.12 (Chow,[Cho48]). It holds that Z(Bn) = Z(Pn) = ⟨∆2
n⟩, for n ≥ 3.

Remark 1.1.13. For n = 1 we have B1 = P1 = 1 and for n = 2 we have Z(B2) = ⟨σ1⟩ ≅ Z, while
Z(P2) = ⟨∆2

2⟩.
Together with the braid groups of the 2-sphere, Bn(S2), the braid groups of the projective

plane, Bn(RP 2), are of particular interest, since they contain torsion elements. In [FN62a], Fadell–
Neuwirth state that neither the plane nor any compact surface, with the possible exceptions of
the 2−sphere and the projective plane, has braid groups with finite order elements. It was proven
in [FVB62] by Fadell–Van Buskirk that the braid groups of the sphere, S2, contain finite order
elements. Moreover, Van Buskirk in [VB66] proved that the braid groups of the projective plane
contain torsion elements. Thus, it follows that the only surface braid groups that contain torsion
elements are Bn(S2) and Bn(RP 2). For Bn(RP 2), we will describe the results in more detail in
Chapter 2.

1.2 The Fadell–Neuwirth short exact sequence
One useful tool in the study of the braid groups is the Fadell–Neuwirth short exact sequence

that arises from the Fadell–Neuwirth fibration, as we explain below. In [FN62a] by Fadell–Neuwirth,
we obtain for n,m ∈ N, where 1 ≤m < n, and for any connected surface Σ with empty boundary,
that the map

pn,m ∶ Fn(Σ)! Fm(Σ), defined by pn,m(x1, . . . , xm, xm+1, . . . , xn) = (x1, . . . , xm)

is a locally-trivial fibration. The fiber over a point (x1, . . . , xm) of the base space Fm(Σ) is
the configuration space Fn−m(Σ ∖ {x1, . . . , xm}), (the (n −m)th configuration space of Σ with m
punctures), which we interpret as a subspace of the total space Fn(Σ) via the injective map

i ∶ Fn−m(Σ ∖ {x1, . . . , xm})! Fn(Σ), defined by i(y1, . . . , yn−m) = (x1, . . . , xm, y1, . . . , yn−m).
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The map pn,m can be considered geometrically as forgetting the last n −m points. For 1 ≤m < n,
the fibration pn,m gives rise to the following long exact sequence of the homotopy groups of these
spaces:

⋯!πk(Fn−m(Σ ∖ {x1, . . . , xm}))! πk(Fn(Σ))! πk(Fm(Σ))!

πk−1(Fn−m(Σ ∖ {x1, . . . , xm}))! πk−1(Fn(Σ))! πk−1(Fm(Σ))!

⋯! π1(Fn−m(Σ ∖ {x1, . . . , xm}))! π1(Fn(Σ))! π1(Fm(Σ))! 1. (2)

Form = n−1, the long exact sequence (2) and the fact that F1(Σ∖{x1, . . . , xn−1}) = Σ∖{x1, . . . , xn−1}
has the homotopy type of a one-dimensional complex, since it is homotopy equivalent to a bouquet
of circles, give rise to the following isomorphisms:

πk(Fn(Σ)) ≅ πk(Fn−1(Σ)) ≅ ⋅ ⋅ ⋅ ≅ πk(F1(Σ)) = πk(Σ), for k ≥ 3.

Moreover, it follows that π2(Fn(Σ)) ⊂ π2(Fn−1(Σ)) ⊂ ⋅ ⋅ ⋅ ⊂ π2(F1(Σ)) = π2(Σ). With the exception
of the 2-sphere S2 and the projective plane RP 2, we know that for k ≥ 2 any connected surface Σ
has trivial higher homotopy groups πk(Σ) = 1. Thus, from the above observations it follows that

πk(Fn(Σ)) = 1, for k ≥ 2 and Σ ≠ S2,RP 2.

From this result and from Theorem 1.1.8, it follows that, for Σ different from S2 and RP 2, the
spaces Fn(Σ) and Fn(Σ)/Sn are Eilenberg–Mac Lane spaces of type K(Pn(Σ), 1) and K(Bn(Σ), 1)
respectively.

Combining this result with the Fadell–Neuwirth fibration (2) we get the following result.

Proposition 1.2.1. Let n,m ∈ N, and let Σ be any connected surface different from the 2-sphere
S2 and the projective plane RP 2. For 1 ≤m < n, there is a short exact sequence:

1 Pn−m(Σ ∖ {x1, . . . , xm}) Pn(Σ) Pm(Σ) 1.p̄n,m

Regarding the case of the 2-sphere S2 and the projective plane RP 2, it was proved that
π2(F3(S2)) = π2(F2(RP 2)) = 0, in [FVB62] and [VB66], respectively. The following theorem sums
up what we have seen so far regarding the Fadell–Neuwirth short exact sequence of surface braid
groups.

Theorem 1.2.2. Let n,m ∈ N, where 1 ≤ m < n, and let Σ be any connected surface without
boundary. When Σ = S2 we suppose that m ≥ 3 and when Σ = RP 2 we suppose that m ≥ 2. The
Fadell–Neuwirth fibration (2) induces the following short exact sequence:

1 Pn−m(Σ ∖ {x1, . . . , xm}) Pn(Σ) Pm(Σ) 1.p̄n,m (3)

Remark 1.2.3. The short exact sequence in Theorem 1.2.2 is known as the Fadell–Neuwirth short
exact sequence of surface pure braid groups.
Remark 1.2.4. The induced map p̄n,m can be considered geometrically as the epimorphism that
forgets the last n −m strands.
Remark 1.2.5. An element of Pn−m(Σ ∖ {x1, . . . , xm}) may be interpreted as an n-strand braid
whose first m strands are vertical.
Remark 1.2.6. To prove that pn,m ∶ Fn(Σ) ! Fm(Σ) is a locally-trivial fibration, one needs to
suppose that the connected surface Σ is without boundary. However, the long exact sequence (2)
exists even if Σ has boundary. As a result, the Fadell–Neuwirth short exact sequence of surface pure
braid groups exists for any connected surface. To justify this, let Σ be a surface with boundary,
and let Σ̄ = Σ∖ ∂Σ, where ∂Σ stands for the boundary of Σ. The surface Σ̄ is with empty boundary
and thus for this surface the locally-trivial fibration pn,m ∶ Fn(Σ̄)! Fm(Σ̄) exists. Therefore, for Σ̄
the long exact sequence (2) and the Fadell–Neuwirth short exact sequence are valid. On the other
hand, Σ and Σ̄ are homotopy equivalent, since the inclusion of Σ̄ in Σ is a homotopy equivalence
between these two surfaces. Moreover, this inclusion induces a homotopy equivalence between their
nth configuration spaces. It follows that the long exact sequence (2) and the Fadell–Neuwirth short
exact sequence in Theorem 1.2.2 are valid also for Σ, a connected surface with boundary, and that
Pn(Σ) are isomorphic to Pn(Σ̄).
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The Fadell–Neuwirth short exact sequence of surface pure braid groups does not extend directly
to the full braid groups. It is clear that in the case of Bn(Σ) the induced map p̄n,m, which
geometrically can be considered as the epimorphism that forgets the last n −m strands, is not
well-defined. Nevertheless, the Fadell–Neuwirth short exact sequence of surface pure braid groups
may be generalised to certain subgroups that lie between the pure braid groups Pn(Σ) and the full
braid groups Bn(Σ), as we describe below.

Let n,m ∈ N and Σ be a connected surface. We consider the space obtained by quotienting the
(n +m)th configuration space of Σ, Fn+m(Σ), by the subgroup Sn × Sm of Sn+m. Once again if the
surface Σ is without boundary we obtain a locally-trivial fibration qn+m,n ∶ Fn+m(Σ)/(Sn × Sm)!
Fn(Σ)/Sn, defined by forgetting the last m coordinates, whose fiber can be identified with the
unordered configuration space Fm(Σ ∖ {x1, . . . , xn})/Sm. We set

Bn,m(Σ) = π1(Fn+m(Σ)/(Sn × Sm)),

which are subgroups of the full braid groups Bn+m(Σ) and we call them mixed braid groups. Notice
that the mixed braid groups, Bn,m(Σ), are defined whether or not Σ has boundary. As in the pure
braid group case, we will see that we can obtain a generalised Fadell–Neuwirth short exact sequence,
which arises from long exact sequence of the fibration qn+m,n. Apart from allowing us to generalise
the Fadell–Neuwirth short exact sequence, mixed braid groups are in general very useful and
have been studied by Sossinsky [Sos92], Manfredini [Man97], Paris–Rolfsen [PR99], Lambropoulou
[Lam00], Gonçalves–Guaschi [GG04c], [GG05], [GG12] and Bellingeri–Godelle–Guaschi [BGG],
among others. In the following proposition we present a generalisation of Theorem 1.2.2.

Proposition 1.2.7. Let n,m ∈ N, and let Σ be any connected surface without boundary. When
Σ = S2 we suppose that n ≥ 3 and when Σ = RP 2 we suppose that n ≥ 2. The locally-trivial fibration
qn+m,n ∶ Fn+m(Σ)/(Sn × Sm)! Fn(Σ)/Sn induces the following short exact sequence:

1 Bm(Σ ∖ {x1, . . . , xn}) Bn,m(Σ) Bn(Σ) 1.q̄n+m,n (4)

Remark 1.2.8. The short exact sequence in Proposition 1.2.7 is known as the generalised Fadell–
Neuwirth short exact sequence of mixed braid groups.
Remark 1.2.9. The induced map q̄n+m,n can be considered geometrically as the epimorphism that
forgets the last m strands.
Remark 1.2.10. Similarly to Remark 1.2.6, and using the same argument, the generalised Fadell–
Neuwirth short exact sequence of mixed braid groups in Proposition 1.2.7 exists also for connected
surfaces with boundary.

A natural question that arises from these two short exact sequences, 3 and 4, is whether or not
they split, or in other words whether or not there is a section for the maps p̄n,m and q̄n+m,m. We
describe this problem in more detail in the following section.

1.3 The splitting problem
Let n,m ∈ N, 1 ≤ m < n, and let Σ be any connected surface. When Σ = S2 we suppose that

m ≥ 3 and when Σ = RP 2 we suppose that m ≥ 2. As we explained in the previous section, we have
the following Fadell–Neuwirth short exact sequence:

1 Pn−m(Σ ∖ {x1, . . . , xm}) Pn(Σ) Pm(Σ) 1.p̄n,m (5)

Similarly, let n,m ∈ N, and let Σ any connected surface. When Σ = S2 we suppose that n ≥ 3 and
when Σ = RP 2 we suppose that n ≥ 2. We have the followig generalised Fadell–Neuwirth short
exact sequence:

1 Bm(Σ ∖ {x1, . . . , xn}) Bn,m(Σ) Bn(Σ) 1.q̄n+m,n (6)
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Note that, even in the cases where Σ = S2 and Σ = RP 2, the homomorphisms p̄n,m and q̄n,m, given
geometrically by forgetting the last (n −m) and the last m strings respectively, are defined for all
n ∈ N.

One can naturally ask whether or not the maps p̄n,m and q̄n+m,n admit a section, which is
the same as asking, whether or not there exists an injective map s̄n,m and ŝn+m,n, respectively,
such that p̄n,m ○ s̄n,m = idPm(Σ) and q̄n,m ○ ŝn,m = idBn(Σ). If a short exact sequence admits such
a section we say that the short exact sequence splits. The question, to which we shall refer as
the splitting problem, of whether the short exact sequences (5) and (6) split, can be approached
algebraically and geometrically. For instance, to obtain a positive answer to the splitting problem, it
suffices to provide an explicit section, either on the level of configuration spaces or on the algebraic
level. A geometrical approach would be to show the existence of a geometric cross-section on the
level of configuration spaces, which in turn provides a section on the algebraic level. To be more
precise, in the following proposition we present the equivalence between the algebraic section and
the geometric section (cross-section). For Σ an aspherical space the following result is due to Baues
[Bau77] and Whitehead [Whi78], while for Σ = S2 and Σ = RP 2 we refer the reader to [GG05] and
[GG04a] respectively.

Proposition 1.3.1. Let n,m ∈ N, and let Σ be a compact, connected surface. When Σ = S2 we
suppose that m ≥ 3 and when Σ = RP 2 we suppose that m ≥ 2. The Fadell–Neuwirth fibration
pn,m ∶ Fn(Σ)! Fm(Σ), for 1 ≤m < n, admits a cross-section if and only if the short exact sequence
(5) splits. Similarly, the Fadell–Neuwirth fibration qn+m,n ∶ Fn+m(Σ)/(Sn×Sm)! Fn(Σ)/Sn, where
for Σ = S2 we suppose that n ≥ 3 and for Σ = RP 2 we suppose that n ≥ 2, admits a cross-section if
and only if the short exact sequence (6) splits.

Let Fn denote the free group of rank n. In the case where Σ = R2, n ≥ 2 and m = n− 1, the short
exact sequence (5) becomes

1 Fn−1 Pn Pn−1 1,p̄n,n−1 (7)

since P1(R2 ∖ {x1, . . . , xn−1}) = π1(F1(R2 ∖ {x1, . . . , xn−1})) = π1(R2 ∖ {x1, . . . , xn−1}) ≅ Fn−1. Con-
sidering the natural inclusion of Pn−1 into Pn, where any generator Ai,j , 1 ≤ i < j ≤ n−1, as element
in Pn−1, is mapped to Ai,j , 1 ≤ i < j ≤ n − 1, as element in Pn, we see that the map p̄n,n−1 admits
a section, and thus the short exact sequence splits. Geometrically this section can be thought as
adding a vertical strand completely unlinked from the rest strands. Therefore, Pn is isomorphic to
the semi-direct product of Fn−1 and Pn−1. By induction on n, Pn may be written as an iterated
semi-direct product of free groups, known as the Artin normal form:

Pn ≅ Fn−1 ⋊ Fn−2 ⋊ ⋅ ⋅ ⋅ ⋊ F2 ⋊ F1.

The procedure for obtaining the Artin normal form of a pure braid α ∈ Pn is known as Artin
combing, and involves writing α in the form α = αn−1⋯α1, where αi ∈ Fi, 1 ≤ i ≤ n − 1. By the
uniqueness of normal forms with respect to semi-direct products, the combed normal form of a
braid is unique. Braid combing is a procedure, defined by Artin [Art47b], to solve the word problem
in braid groups for the first time. Further details about this decomposition, based on the short
exact sequence, can be found, for instance, in [KT08] by Kassel–Turaev.

This decomposition is an important result in classical braid theory. The word problem in a
free group of finite rank is well-known and solvable, and thus the decomposition (7) provides a
finite algorithm to solve the word problem in Pn. Moreover, since Pn is of finite index in Bn, it
follows that it makes it easy to solve the word problem in Bn as well. The splitting of the short
exact sequence (5) and the resulting decomposition (7) have been frequently used to prove several
claims about Pn, using induction. For instance the result about Pn, that taking roots is unique,
by Bardakov [Bar92], the study of the lower central series and the residual nilpotence of Pn, by
Farrell–Rushon [FR00], as well as the proof of the bi-orderability of Pn, by Kim–Rolfsen [KR03],
make use of decomposition (7). Thus, the problem of deciding whether such a decomposition (7)
exists for surface braid groups, which is connected to the splitting problem, is fundamental. Indeed,
this was a central question, during the foundation and the development of the theory of braid
groups during the 1960’s, studied by Fadell [Fad62], Fadell–Neuwirth [FN62a], Fadell–Van Buskirk
[FVB62], Van Buskirk [VB66] and Birman [Bir69], among others.
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In the case of the pure braid groups, the splitting problem for the short exact sequence (5)
has been studied for other surfaces besides the plane. To begin with, Fadell–Neuwirth [FN62a]
gave several sufficient conditions for the fibration pn,m ∶ Fn(Σ)! Fm(Σ) to admit a cross-section.
For surfaces with boundary we see, in [GG04b] and [GG10a] by Gonçalves–Guaschi, that the
fibration pn,m ∶ Fn(Σ) ! Fm(Σ) always admits a cross-section, and thus the homomorphism
p̄n,m ∶ Pn(Σ)! Pm(Σ) does too. For surfaces without boundary, we have the following results. In
[FVB62], Fadell and Van Buskirk proved that for Σ = S2 and m ≥ 3 the fibration pn,m admits a cross-
section, and thus the short exact sequence (5), in this case, splits. Also, Van Buskirk [VB66] worked
on the case where Σ = RP 2 and proved that the fibration p3,2 ∶ F3(RP 2) ! F2(RP 2) admits a
cross-section, and thus the short exact sequence (5) for n = 3 and m = 2 splits, while for n ≥ 2 neither
the fibration pn,1 ∶ Fn(RP 2) ! F1(RP 2) nor the homomorphism p̄n,1 ∶ Pn(RP 2) ! P1(RP 2)
admits a section. Moreover, for Σ being the 2-torus and n ≥ 2, Birman in [Bir69] presented an
explicit cross-section pn,n−1 ∶ Fn(T2) ! Fn−1(T2), and thus it follows that the homomorphism
p̄n,1 ∶ Pn(T2)! Pn−1(T2) admits a section too, for all n ≥ 2. As a result, the short exact sequence
(5) for Σ = T2 splits for all 1 ≤ m < n. Finally, a more general result, as stated below, covering
the case where Σ is an orientable surface without boundary of genus at least two, was given by
Gonçalves–Guaschi in [GG04b].

Theorem 1.3.2 (Gonçalves–Guaschi, [GG04b]). Let Σ be a compact, connected, orientable surface
without boundary of genus g ≥ 2. Then, the short exact sequence (5) splits if and only if m = 1.

In addition, Gonçalves and Guaschi studied in [GG04a], [GG05] and [GG07] the remaining cases
and at the end they gave a complete solution to the splitting problem of the short exact sequence
(5) in [GG10a].

Theorem 1.3.3 (Gonçalves–Guaschi, [GG10a]). Let n,m ∈ N where 1 ≤ m < n, and let Σ be a
connected surface.

i. If Σ has non-empty boundary then the short exact sequence (5) admits a section for all n,m.

ii. If Σ is without boundary then the short exact sequence (5) admits a section if and only if one
of the following conditions holds:

a. Σ is the 2-sphere S2, the 2-torus T2 or the Klein bottle K2.
b. Σ is the projective plane RP 2, where n = 3 and m = 2.
c. Σ is different from the projective plane RP 2, the 2-sphere S2, the 2-torus T2, the Klein

bottle K2 and m = 1.

To give a positive answer to the splitting problem it suffices to present an explicit section, either
geometrically or algebraically. To obtain a negative answer to the splitting problem, one of the
main methods, that was used in proving Theorem 1.3.3, is to study the splitting problem of certain
quotients of the braid groups and then extend the result to the initial short exact sequence. We
will describe this technique in detail in Section 3.2.

The splitting problem for the generalised Fadell–Neuwirth short exact sequence (6) does not
have a complete solution yet. More precisely, to the best of our knowledge, the surface for which we
have an answer for the splitting problem of the generalised Fadell–Neuwirth short exact sequence
(6), besides the plane, R2, is the 2−sphere, Σ = S2. The splitting problem for Σ = S2 was studied by
Gonçalves–Guaschi in [GG05] and later by Chen–Salter in [CS20]. To be more precise we have the
following results.

Theorem 1.3.4 (Gonçalves–Guaschi, [GG05]). Let n,m ∈ N. The short exact sequence

1 Bm(S2 ∖ {x1, x2, x3}) B3,m(S2) B3(S2) 1,q̄3+m,3

splits if and only if m ≡ 0, 2 mod 3. Moreover, for n ≥ 4, if the homomorphism q̄n+m,n ∶ Bn,m(S2)!
Bn(S2) admits a section then m is congruent modulo n(n − 1)(n − 2) to one of the four values
0,−n(n − 2), (n − 1)(n − 2), (n − 1)(n − 2) − n(n − 2).
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For the cases where n = 1 and n = 2 Gonçalves and Guaschi, [GG05], obtained the following
results. The homomorphism q̄1+m,1 ∶ B1,m(S2) ! B1(S2) admits a section for every m, but the
homomorphism q̄2+m,2 ∶ B2,m(S2)! B2(S2) does not admit any section. Finally, we can also see
that the fibration q2,1 ∶ F1,1(S2)! F1(S2) admits a cross-section, since one can just consider the
antipodal map.

In [CS20], Chen–Salter give a substantial strengthening of Theorem 1.3.4, by exhibiting explicit
cross-sections, among other things.

Theorem 1.3.5 (Chen–Salter, [CS20]). Let n,m ∈ N. The following hold:

i. For any n ≥ 3 and any m ≡ 0 mod n(n − 1)(n − 2), the fibration
qn+m,n ∶ Fn,m(S2)! Fn(S2) admits a cross-section.

ii. For n = 3 and m ≥ 0 such that m ≡ 0,2 mod 3 the fibration
q3+m,3 ∶ F3,m(S2)! F3(S2) admits a cross-section.

iii. For n = 4 and m ≥ 0 such that m ≡ 0,6,16,22 mod 24 the fibration
q4+m,4 ∶ F4,m(S2)! F4(S2) admits a cross-section.

iv. For n ≥ 6, the fibration qn+m,n ∶ Fn,m(S2) ! Fn(S2) admits a cross-section if and only if
m ≡ 0 mod n(n − 1)(n − 2).
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CHAPTER 2

Braid groups of the projective plane, Bn(RP 2
)

This chapter is devoted to the study of the braid groups of the projective plane, Bn(RP 2). We
start by introducing these groups and stating important known results about their presentations,
their torsion elements and their subgroups. In Section 2.2, we give a presentation of certain subgroups
of Bn(RP 2), the goal being to obtain a presentation of the group Bn,m(RP 2) ⊂ Bn+m(RP 2). In
Section 2.3, based on these presentations, we study the lower central and derived series of the
subgroup Bm(RP 2 ∖ {x1, . . . , xn}) of Bn,m(RP 2).

2.1 The group Bn(RP 2
)

Along with the braid groups of the 2−sphere, Bn(S2), the braid groups of the projective plane,
Bn(RP 2), possess a special place among the braid groups of surfaces due to the fact that they have
a non-trivial centre and contain torsion elements. Note that throughout this thesis we consider
the projective plane as the quotient space of the closed 2−disc, D2, obtained by identifying the
antipodal points on the boundary circle of D2, as in Figure 2.1. To begin, we give a presentation of
these groups due to Van Buskirk.

Theorem 2.1.1 (Van Buskirk, [VB66]). Let n ∈ N. The following constitutes a presentation of
Bn(RP 2).

Generators: σ1, . . . , σn−1, ρ1, . . . , ρn.

Relations:

(i) σiσj = σjσi, for ∣i − j∣ > 1,

(ii) σiσi+1σi = σi+1σiσi+1, for 1 ≤ i ≤ n − 2,

(iii) σiρj = ρjσi, for j ≠ i, i + 1,

(iv) ρi = σiρi+1σi, for 1 ≤ i ≤ n − 1,

(v) σ2
i = ρ

−1
i+1ρ

−1
i ρi+1ρi, for 1 ≤ i ≤ n − 1,

(vi) ρ2
1 = σ1σ2 . . . σn−2σ

2
n−1σn−2 . . . σ2σ1.

The generators σ1, . . . , σn−1 are the standard Artin generators, and each of the generators
ρ1, . . . , ρn corresponds geometrically to an element of the fundamental group of the projective plane
based at the 1st, 2nd, . . . , nth point, respectively, as we see in Figure 2.1. From this presentation, we
observe that B1(RP 2) = ⟨ρ1 ∣ ρ2

1 = 1⟩ ≅ Z2, and from [VB66] (page 87), we know that B2(RP 2) is

11
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isomorphic to the dicyclic group of order 16 and in particular B2(RP 2) = ⟨σ1, ρ1 ∣ (σ1ρ
−1
1 )4 = ρ2

1 = σ
2
1⟩.

If n ≥ 3, the group Bn(RP 2) is infinite.

Figure 2.1 The generators σi and ρk, and their inverses, of Bn(RP 2).

Regarding the pure braid group of the projective plane, Pn(RP 2), a presentation was given in
[GG05], by Gonçalves–Guaschi, but we will give a different one in Section 2.2.

As we already mentioned, the centre of the braid groups of RP 2 is non-trivial. More precisely,
we have the following theorem by Murasugi.

Proposition 2.1.2 (Murasugi, [Mur82]). For n ≥ 2, the full twist

∆2
n = (σ1 . . . σn−1)

n
∈ Pn(RP 2

) ⊂ Bn(RP 2
),

generates the centre of Bn(RP 2).

The full twist, as well as generating the centre of Bn(RP 2), is also the unique torsion element of
order 2 in Bn(RP 2), as we will see in the following proposition. The torsion elements of Bn(RP 2)
were first determined by Murasugi in [Mur82]. Later Gonçalves–Guaschi, with methods different to
those of Murasugi, obtained the following result.

Proposition 2.1.3. (Gonçalves–Guaschi, [GG04a]) For n ≥ 2 the following hold:

• The group Bn(RP 2) contains a torsion element of order k if and only if k divides either 4n
or 4(n − 1).

• The (non-trivial) torsion elements of Pn(RP 2) are of order precisely 2 and 4.

• The full twist ∆2
n is the unique element of Bn(RP 2) of order 2.

Moreover, a concrete example of torsion elements in Bn(RP 2) of order 4n and 4(n − 1) was
given in [GG04a]. To be more precise, for n ≥ 2, the elements

an = σ
−1
n−1 . . . σ

−1
1 ⋅ ρ1 and bn = σ−1

n−2 . . . σ
−1
1 ⋅ ρ1 (1)

are of order 4n and 4(n − 1), respectively.
The characterisation of the finite-order elements of Bn(RP 2) was given by Murasugi in [Mur82].

Later, in [GG10b] a simplified characterisation was given.

Proposition 2.1.4 (Gonçalves–Guaschi, [GG10b]). Let n ≥ 2 and let x be an element in Bn(RP 2).
The element x is of finite order if and only if there exists i ∈ {1,2} and 0 ≤ r ≤ n + 1 − i such that x
is a power of a conjugate of the following element:

Ai(n, r,2r/l, p/l) = (ρrσr−1 . . . σ1)
2r/l

(σr+1 . . . σn−1σ
i−1
r+1)

p/l,

where p = (n + 1 − i) − r and l = gcd(p,2r). Moreover, the order of the element Ai(n, r,2r/l, p/l) is
2l.

From this explicit description of the torsion elements in Bn(RP 2) we can obtain the elements
an = σ

−1
n−1 . . . σ

−1
1 ⋅ ρ1 and bn = σ−1

n−2 . . . σ
−1
1 ⋅ ρ1 from A1(n,n,1,0) and A2(n,n − 1,1,0), respectively.

To be more precise, using relation ρi = σiρi+1σi, that holds in Bn(RP 2), we have that A1(n,n, 1, 0) =
(ρnσn−1 . . . σ1) = σ

−1
n−1 . . . σ

−1
1 ⋅ ρ1 and A2(n,n − 1,1,0) = (ρn−1σn−2 . . . σ1) = σ

−1
n−2 . . . σ

−1
1 ⋅ ρ1.

Before concluding this section, we will present the classification of the finite subgroups of
Bn(RP 2) and of Pn(RP 2).
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Proposition 2.1.5 (Gonçalves–Guaschi, [GG10b]). The maximal finite subgroups, up to isomor-
phism, of Pn(RP 2) are the following:

• The group Z2 if n = 1;

• The quaternion group of order 8, Q8 if n = 2,3;

• The group Z4 if n ≥ 4.

Theorem 2.1.6 (Gonçalves–Guaschi, [GG12]). Let n ≥ 2. The finite subgroups of the braid groups
Bn(RP 2) are isomorphic to the subgroups of the following groups:

• The dicyclic group of order 8n, Dic8n = ⟨x, y ∣ x2n = y2, yxy−1 = x−1⟩;

• The dicyclic group of order 8(n − 1),
Dic8(n−1) = ⟨x, y ∣ x2(n−1) = y2, yxy−1 = x−1⟩ if n ≥ 3;

• The binary octahedral group of order 48, O∗ if n ≡ 0,1 mod 3;

• The binary icosahedral group of order 120, I∗ if n ≡ 0,1,6,10 mod 15.

Further information about the binary polyhedral groups O∗ and I∗ could be found in [AM04].
Note that the centre of Dic8n, Dic8(n − 1), O∗ and I∗ is isomorphic to the cyclic group of order 2,
Z2. Moreover, their quotient by their centre is either the dihedral group, the symmetric group of
degree 4, S4 or the alternating group of degree 5, A5. To be more precise, it holds that:

Dic8n/Z2
≅Dih4n, Dic8(n−1)/Z2

≅Dih4(n−1), O
∗
/Z2

≅ S4, and I∗/Z2
≅ A5.

In [GG12] (Proposition 15), Gonçalves–Guaschi gave explicit algebraic realisations of the groups
Dic8n and Dic8(n−1) as subgroups of Bn(RP 2), for all n ≥ 2. To be more precise, we have the
following proposition.

Proposition 2.1.7 ([GG12], Gonçalves–Guaschi). Let n ≥ 2. Then the following statements hold:

1. ⟨an,∆n⟩ ≅Dic8n, where an is defined in (1).

2. ⟨bn,∆na
−1
n ⟩ ≅Dic8(n−1), where bn is defined in (1).

2.2 Presentation of Bn,m(RP 2
) and of certain subgroups

Let m ∈ N and n ≥ 2. In order to study the splitting problem of the short exact sequence

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1,q̄n+m,n (2)

we require a presentation of the groups Bn,m(RP 2). We recall that the map q̄n+m,n can be considered
geometrically as the map that forgets the last m strands and that the groups Bn,m(RP 2), defined
by Bn,m(RP 2) = π1(Fn+m(RP 2)/(Sn × Sm)), are called mixed braid groups, which are subgroups
of the full braid groups Bn+m(RP 2).

In order to obtain a presentation of Bn,m(RP 2), we will use the short exact sequence (2) and
standard results about presentations of group extensions. Thus, we first need a presentation of the
groups Bm(RP 2 ∖ {x1, . . . , xn}), which we can obtain making use of the short exact sequence

1! Pm(RP 2
∖ {x1, . . . , xn})! Bm(RP 2

∖ {x1, . . . , xn})! Sm! 1,

and for making use of this short exact sequence, we first have to determine the groups Pm(RP 2 ∖
{x1, . . . , xn}). Note that there is already one presentation of the group Pn(RP 2) in [GG07], but
we give a different one here, where our generators ρi differ from those in [GG07].

We start with the following proposition that provides a presentation of the pure braid groups
Pn(RP 2). Note that, for D2 a topological disc, the inclusion of D2 into the projective plane, RP 2,
induces a non-injective homomorphism ι ∶ Bn! Bn(RP 2).
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Proposition 2.2.1. The following constitutes a presentation of Pn(RP 2), for n ∈ N.

Generators: Bi,j , for 1 ≤ i < j ≤ n and ρk, for 1 ≤ k ≤ n.

Relations:

(i) The Artin relations between the generators Bi,j coming from those of Pn. For 1 ≤ i < j ≤ n
and 1 ≤ r < s ≤ n,

Br,sBi,jB
−1
r,s =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Bi,j , for i < r < s < j or r < s < i < j.
B−1
i,jB

−1
r,jBi,jBr,jBi,j , for r < i = s < j.

B−1
s,jBi,jBs,j , for i = r < s < j.

B−1
s,jB

−1
r,jBs,jBr,jBi,jB

−1
r,jB

−1
s,jBr,jBs,j , for r < i < s < j.

(ii) ρi(B1,i . . .Bi−1,i) = (Bi,i+1 . . .Bi,n)ρ
−1
i , for 1 ≤ i ≤ n, called surface relations.

(iii) ρiρjρ−1
i = (

j−1
∏
l=i+1

Bl,j)
−1
Bi,j(

j−1
∏
l=i+1

Bl,j)ρj , for 1 ≤ i < j ≤ n.

(iv) For 1 ≤ i < j ≤ n, 1 ≤ k ≤ n and k ≠ j,

ρkBi,jρ
−1
k =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Bi,j , for j < k or k < i.

ρ−1
j (

j−1
∏
l=k+1

Bl,j)
−1
B−1
i,j(

j−1
∏
l=k+1

Bl,j)ρj for k = i.

Aj,kBi,jA
−1
j,k for i < k < j,

where Aj,k ∶= ρ−1
j (

j−1
∏
l=k+1

Bl,j)
−1
B−1
k,j(

j−1
∏
l=k+1

Bl,j)ρj.

Remark 2.2.2. The generator Bi,j is given by Bi,j = σ
−1
i ⋯σ−1

j−2σ
2
j−1σj−2⋯σi and it can be seen

geometrically as a braid all of whose strands are vertical, with the exception of the ith strand,
that wraps around the jth strand. Equivalently, Bi,j can be given by Bi,j = σj−1⋯σi+1σ

2
i σ

−1
i+1⋯σ

−1
j−1

and it can be seen geometrically as a braid all of whose strands are vertical, with the exception
of the jth strand, that wraps around the ith strand. Note that in the following figure, as well as
in all those that follow, we will illustrate the generator Bi,j and its inverse using the geometric
illustration of the generator σi given in Figure 2.1.

Figure 2.2 Equivalent illustrations of the generators Bi,j and B−1
i,j of Pn(RP 2).

Remark 2.2.3. The products (
j−1
∏
l=i+1

Bl,j)
−1
Bi,j(

j−1
∏
l=i+1

Bl,j), (
j−1
∏
l=i+1

Bl,j)
−1
B−1
i,j(

j−1
∏
l=i+1

Bl,j) and (

j

∏
l=i+1

Bi,l),

(

j

∏
l=i+1

Bi,l)
−1, for i ≤ j, that appear frequently in the presentation of Pn(RP 2), can be seen geomet-

rically as in the following figures.
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Figure 2.3 The products (

j

∏
l=i+1

Bi,l), (
j

∏
l=i+1

Bi,l)
−1, for i ≤ j.

Figure 2.4 The product (

j−1
∏
l=i+1

Bl,j)
−1
Bi,j(

j−1
∏
l=i+1

Bl,j), for i ≤ j.

Figure 2.5 The product (

j−1
∏
l=i+1

Bl,j)
−1
B−1
i,j(

j−1
∏
l=i+1

Bl,j), for i ≤ j.

Proof. We will prove the claim by applying induction on n ∈ N and using standard results
concerning the presentation of an extension.

For n = 1 the given presentation yields P1(RP 2) = ⟨ρ1 ∣ ρ2
1 = 1⟩ ≅ Z2, which holds, since

P1(RP 2) = π1(RP 2) ≅ Z2. Moreover, for n = 2 we obtain that P2(RP 2) = ⟨ρ1, ρ2 ∣ ρ2
1 = ρ2

2 =

(ρ1ρ2)
2⟩ ≅ Q8, the quaternion group of order 8, which is indeed the case since Van Buskirk, [VB66],

proved that P2(RP 2) is isomorphic Q8.
Suppose that, for some n ≥ 2, the group Pn(RP 2) has the given presentation.
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We consider the corresponding Fadell–Neuwirth short exact sequence, where the map p̄n+1,n
can be considered geometrically as the epimorphism that forgets the last strand:

1 −! π1(RP 2
∖ {x1, . . . , xn}) −! Pn+1(RP 2

)
p̄n+1,n
−! Pn(RP 2

) −! 1.

For reasons of symmetry we take the free group ker(p̄n+1,n) ≅ π1(RP 2 ∖ {x1, . . . , xn}) to have the
following presentation with n + 1 generators and a single relation:

⟨ρn+1,B1,n+1,B2,n+1, . . . ,Bn,n+1 ∣ ρn+1(B1,n+1B2,n+1⋯Bn,n+1)ρn+1 = 1⟩.

In order to obtain a presentation of Pn+1(RP 2), we will apply standard techniques for obtaining
presentations of group extensions as described in [Joh97] (page 139).

Based on these techniques, the required generating set of Pn+1(RP 2) is obtained by taking
the union of the generators of π1(RP 2 ∖ {x1, . . . , xn}) together with coset representatives of the
generators of Pn(RP 2), namely the generators ρk, for 1 ≤ k ≤ n and Bi,j , for 1 ≤ i < j ≤ n. Thus the
resulting generating set of Pn+1(RP 2) is

⟨Bi,j , ρk ∣ for 1 ≤ i < j ≤ n + 1, 1 ≤ k ≤ n + 1⟩.

The relations that we obtain for the presentation of Pn+1(RP 2) arise from the following three
classes of relations.

The first class consists of the relations of ker(p̄n+1,n), which in this case, it is the following single
relation: ρn+1(B1,n+1B2,n+1⋯Bn,n+1)ρn+1 = 1.

The second class of relations is obtained by rewriting the relations of Pn(RP 2) in terms of the
corresponding coset representatives in Pn+1(RP 2), and then expressing the resulting elements as a
word in the generators of ker(p̄n+1,n). In this way, one may see that all of the relations of Pn(RP 2)
are lifted directly to relations of Pn+1(RP 2), except for the relation

ρi(B1,i⋯Bi−1,i) = (Bi,i+1⋯Bi,n)ρ
−1
i , for 1 ≤ i ≤ n,

which may be rewritten as ρi(B1,i⋯Bi−1,i)ρi(Bi,i+1⋯Bi,n)
−1 = 1, for 1 ≤ i ≤ n. For the same values

of i we have:

ρi(B1,i⋯Bi−1,i)ρi(Bi,i+1⋯Bi,n)
−1

= (
n

∏
l=i+1

Bl,n+1)
−1
Bi,n+1(

n

∏
l=i+1

Bl,n+1),

see Figure 2.6. It follows that ρi(B1,i⋯Bi−1,i)ρi = (
n

∏
l=i+1

Bl,n+1)
−1
Bi,n+1(

n

∏
l=i+1

Bl,n+1)(Bi,i+1⋯Bi,n),

for 1 ≤ i ≤ n. Moreover, (
n

∏
l=i+1

Bl,n+1)
−1
Bi,n+1(

n

∏
l=i+1

Bl,n+1)(Bi,i+1⋯Bi,n) = (Bi,i+1⋯Bi,n)Bi,n+1, see

Figure 2.7. Thus, ρi(B1,i⋯Bi−1,i)ρi = (Bi,i+1⋯Bi,n)Bi,n+1 and finally we get that ρi(B1,i⋯Bi−1,i) =
(Bi,i+1⋯Bi,n)Bi,n+1ρ

−1
i , for 1 ≤ i ≤ n. Combining this relation with the single relation of the

presentation of ker(p̄n+1,n), we obtain the following relation:

ρi(B1,i⋯Bi−1,i) = (Bi,i+1⋯Bi,nBi,n+1)ρ
−1
i , for 1 ≤ i ≤ n + 1.

This is relation (ii) of the given presentation of Pn+1(RP 2).

The third class of relations is obtained by rewriting the conjugates of the generators of ker(p̄n+1,n)
by the coset representatives of the generators of Pn(RP 2) in Pn+1(RP 2) in terms of the generators
of ker(p̄n+1,n). Thus, we obtain:
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(a) The Artin relations for Bi,j . For all 1 ≤ i < j ≤ n and 1 ≤ l ≤ n :

Bi,jBl,n+1B
−1
i,j =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Bl,n+1, for l < i or j < l.
B−1
l,n+1B

−1
i,n+1Bl,n+1Bi,n+1Bl,n+1, for l = j.

B−1
j,n+1Bl,n+1Bj,n+1, for l = i.

B−1
j,n+1B

−1
i,n+1Bj,n+1Bi,n+1Bl,n+1B

−1
i,n+1B

−1
j,n+1Bi,n+1Bj,n+1, for i < l < j.

We can obtain these relations geometrically or using the presentation of Pn given in Proposition
1.1.11, but with conjugation on the right. One can consider the generators Bi,j to be words in
Pn and using the homomorphism Pn! Pn(RP 2) induced by an inclusion D2 ⊆ RP 2 , these
same relations also hold in Pn(RP 2).

(b) For all 1 ≤ i < j ≤ n:
Bi,jρn+1B

−1
i,j = ρn+1.

(c) For all 1 ≤ k ≤ n:

ρkρn+1ρ
−1
k = (

n

∏
l=k+1

Bl,n+1)
−1
Bk,n+1(

n

∏
l=k+1

Bl,n+1)ρn+1.

(d) For all 1 ≤ k ≤ n, 1 ≤ l ≤ n ∶

ρkBl,n+1ρ
−1
k =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Bl,n+1, for k < l.

ρ−1
n+1(

n

∏
j=l+1

Bj,n+1)
−1
B−1
l,n+1(

n

∏
j=l+1

Bj,n+1)ρn+1 for k = l.

An+1,kBl,n+1A
−1
n+1,k for l < k,

where An+1,k ∶= ρ
−1
n+1(

n

∏
j=k+1

Bj,n+1)
−1
B−1
k,n+1(

n

∏
j=k+1

Bj,n+1)ρn+1.

Relations (b), (c), (d) are obtained geometrically, as one can see, for the general case, Figures 2.8,
2.9, 2.10, respectively.

We can now clearly see that relation (i) of the presentation of Pn+1(RP 2) is obtained from the
lifted relation (i) of Pn(RP 2), together with relation (a) from the third class of relations. Relation
(ii), namely the surface relations, of the presentation of Pn+1(RP 2) has already been obtained by
combining a relation from the second class with the single relation from the first class of relations.
Relation (iii) is obtained from the lifted relation (iii) of Pn(RP 2), together with relation (c) from
the third class of relations. Finally, relation (iv) of the presentation of Pn+1(RP 2) can be obtained
from the lifted relation (iv) of Pn(RP 2), together with the relations (b) and (d) of the third class.

To sum up, the set of generators and the set of relations, that we have obtained, coincide with
the given presentation for Pn+1(RP 2) and it follows by induction that the given presentation is
valid for Pn(RP 2), for every n ∈ N.

Figure 2.6 Relation (iia).
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Figure 2.7 Relation (iib).

Figure 2.8 Relation (iii).

Figure 2.9 Relation (iv) for k = i.

Figure 2.10 Relation (iv) for i < k < j.
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Next, we give a presentation of the group Pm(RP 2 ∖ {x1, . . . , xn}).

Proposition 2.2.4. For n,m ≥ 1, the following constitutes a presentation of Pm(RP 2∖{x1, . . . , xn}).

Generators: Bi,j , for 1 ≤ i < j, n + 1 ≤ j ≤ n +m and ρk, for n + 1 ≤ k ≤ n +m.

Relations:

(i) For 1 ≤ i < j and 1 ≤ k < l, where n + 1 ≤ j < l ≤ n +m,

Bi,jBk,lB
−1
i,j =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Bk,l, for k < i or j < k.
B−1
k,lB

−1
i,lBk,lBi,lBk,l, for i < k = j < l.

B−1
j,lBk,lBj,l, for k = i < j < l.

B−1
j,lB

−1
i,lBj,lBi,lBk,lB

−1
i,lB

−1
j,lBi,lBj,l, for i < k < j < l.

(ii) For n + 1 ≤ k ≤ n +m,
ρk(B1,k⋯Bk−1,k) = (Bk,k+1⋯Bk,n+m)ρ−1

k , called surface relations.

(iii) For n + 1 ≤ k < l ≤ n +m,

ρkρlρ
−1
k = (

l−1
∏
i=k+1

Bi,l)
−1
Bk,l(

l−1
∏
i=k+1

Bi,l)ρl.

(iv) For 1 ≤ i < j, n + 1 < j ≤ n +m, n + 1 ≤ k ≤ n +m and k ≠ j,

ρkBi,jρ
−1
k =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Bi,j , for j < k or k < i.

ρ−1
j (

j−1
∏
l=k+1

Bl,j)
−1
B−1
i,j(

j−1
∏
l=k+1

Bl,j)ρj for k = i.

Aj,kBi,jA
−1
j,k for i < k < j,

where Aj,k ∶= ρ−1
j (

j−1
∏
l=k+1

Bl,j)
−1
B−1
k,j(

j−1
∏
l=k+1

Bl,j)ρj.

Proof. We proceed using the same techniques as in the proof of 2.2.1; applying induction on m,
where m ∈ N and using standard results concerning the presentation of group extensions [Joh97]
(page 139).

Let n ≥ 1. For m = 1 we have that

P1(RP 2
∖ {x1, . . . , xn}) = π1(RP 2

∖ {x1, . . . , xn})

= ⟨ρn+1,B1,n+1,B2,n+1, . . . ,Bn,n+1 ∣ ρn+1(B1,n+1B2,n+1⋯Bn,n+1)ρn+1 = 1⟩.

This presentation of P1(RP 2∖{x1, . . . , xn}) coincides with that given in the statement and therefore
the presentation is valid for m = 1.

Suppose that m ≥ 2, and that for some m the group Pm(RP 2 ∖ {x1, . . . , xn}) has the given
presentation. We will obtain a presentation of Pm+1(RP 2 ∖ {x1, . . . , xn}), based on the following
short exact sequence:

1! P1(RP 2
∖{x1, . . . , xn+m}) −! Pm+1(RP 2

∖{x1, . . . , xn})
p̄m+1,m
−−−−! Pm(RP 2

∖{x1, . . . , xn})! 1,

where p̄m+1,m can be considered geometrically as the epimorphism that forgets the last strand.
Based on standard techniques for obtaining presentations of group extensions, the required

generating set of Pm+1(RP 2 ∖ {x1, . . . , xn}) is obtained by taking the union of the generators of
ker(p̄m+1,m), namely of the group P1(RP 2 ∖ {x1, . . . , xn+m}) =

⟨ρn+m+1,B1,n+m+1, . . . ,Bn+m,n+m+1 ∣ ρn+m+1(B1,n+m+1⋯Bn+m,n+m+1)ρn+m+1 = 1⟩, together with
coset representatives of the generators of Pm(RP 2 ∖ {x1, . . . , xn}), namely the generators ρk for
n + 1 ≤ k ≤ n +m and Bi,j , for 1 ≤ i < j, n + 1 ≤ j ≤ n +m. Thus the resulting generating set of
Pm+1(RP 2 ∖ {x1, . . . , xn}) is

⟨Bi,j , ρk ∣ for 1 ≤ i < j ≤ n +m + 1, 1 ≤ k ≤ n +m + 1⟩.
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The relations that we attain for the presentation of Pm+1(RP 2 ∖ {x1, . . . , xn}) arise from the
following three classes of relations.

The first class consists of the relations of ker(p̄m+1,m), which in this case, it is the following
single relation: ρn+m+1(B1,n+m+1⋯Bn+m,n+m+1)ρn+m+1 = 1.

The second class of relations is obtained by rewriting the relations of Pm(RP 2 ∖{x1, . . . , xn}) in
terms of the corresponding coset representatives in Pm+1(RP 2 ∖ {x1, . . . , xn}), and then expressing
the resulting elements as a word in the generators of ker(p̄m+1,m). In this way, one may see
that all of the relations of Pm(RP 2 ∖ {x1, . . . , xn}) are lifted directly to relations of Pn+1(RP 2),
except for the surface relations, ρk(B1,k⋯Bk−1,k) = (Bk,k+1⋯Bk,n+m)ρ−1

k , for n + 1 ≤ k ≤ n +m.
Expressing the relation ρk(B1,k⋯Bk−1,k)ρk(Bk,k+1⋯Bk,n+m)−1 = 1, for n + 1 ≤ k ≤ n +m as a
word in the generators of ker(p̄m+1,m), we obtain that ρk(B1,k⋯Bk−1,k)ρk(Bk,k+1⋯Bk,n+m)−1 =

(
n+m
∏
l=k+1

Bl,n+m+1)
−1
Bk,n+m+1(

n+m
∏
l=k+1

Bl,n+m+1), for n + 1 ≤ k ≤ n +m. It follows ρk(B1,k⋯Bk−1,k)ρk =

(
n+m
∏
l=k+1

Bl,n+m+1)
−1
Bk,n+m+1(

n+m
∏
l=k+1

Bl,n+m+1)(Bk,k+1⋯Bk,n+m), for n + 1 ≤ i ≤ n +m. It holds that

(
n+m
∏
l=k+1

Bl,n+m+1)
−1
Bk,n+m+1(

n+m
∏
l=k+1

Bl,n+m+1)(Bk,k+1⋯Bk,n+m) = (Bk,k+1⋯Bk,n+m)Bk,n+m+1, a rela-

tion which is obtained geometrically. Thus, ρk(B1,k⋯Bk−1,k)ρk = (Bk,k+1⋯Bk,n+m)Bk,n+m+1 and
finally we get that ρk(B1,k⋯Bk−1,k) = (Bk,k+1⋯Bk,n+m)Bk,n+m+1ρ

−1
k , for n + 1 ≤ k ≤ n +m. Com-

bining this relation with the single relation of the presentation of ker(p̄m+1,m), we obtain the
relation:

ρk(B1,k⋯Bk−1,k) = (Bk,k+1⋯Bk,n+m+1)ρ
−1
k , for 1 ≤ k ≤ n +m + 1.

This is relation (ii) of the given presentation of Pm+1(RP 2 ∖ {x1, . . . , xn}).

The third class of relations is obtained by rewriting the conjugates of the generators of
ker(p̄m+1,m) by the coset representatives of the generators of Pm(RP 2∖{x1, . . . , xn}) in Pm+1(RP 2∖
{x1, . . . , xn}), in terms of the generators of ker(p̄m+1,m). Thus, we obtain:

(a) The Artin relations for Bi,j . For all 1 ≤ i ≤ j, n + 1 ≤ j ≤ n +m and 1 ≤ l ≤ n +m :

Bi,jBl,n+m+1B
−1
i,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bl,n+m+1, for l < i or j < l.
B−1
l,n+m+1B

−1
i,n+m+1Bl,n+m+1Bi,n+m+1Bl,n+m+1, for l = j.

B−1
j,n+m+1Bl,n+m+1Bj,n+m+1, for l = i.

B−1
j,n+m+1B

−1
i,n+m+1Bj,n+m+1Bi,n+m+1Bl,n+m+1⋅

⋅B−1
i,n+m+1B

−1
j,n+m+1Bi,n+m+1Bj,n+m+1, for i < l < j.

(b) For all 1 ≤ i < j, n + 1 ≤ j ≤ n +m :
Bi,jρn+m+1B

−1
i,j = ρn+m+1.

(c) For all n + 1 ≤ k ≤ n +m :

ρkρn+m+1ρ
−1
k = (

n+m
∏
l=k+1

Bl,n+m+1)
−1
Bk,n+m+1(

n+m
∏
l=k+1

Bl,n+m+1)ρn+m+1.

(d) For all n + 1 ≤ k ≤ n +m, 1 ≤ l ≤ n +m ∶

ρkBl,n+m+1ρ
−1
k =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Bl,n+m+1, for k < l.

ρ−1
n+m+1(

n+m
∏
s=k+1

Bs,n+m+1)
−1
B−1
l,n+m+1(

n+m
∏
s=k+1

Bs,n+m+1)ρn+m+1 for k = l.

An+m+1,kBl,n+m+1A
−1
n+m+1,k for l < k,
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where An+m+1,k ∶= ρ
−1
n+m+1(

n+m
∏
s=k+1

Bs,n+m+1)
−1
B−1
k,n+m+1(

n+m
∏
s=k+1

Bs,n+m+1)ρn+m+1.

Once again, relations (a), (b), (c), (d) are obtained geometrically.
We can now clearly see that relation (i) of the presentation of Pm+1(RP 2 ∖ {x1, . . . , xn}) is

obtained from the lifted relation (i) of Pm(RP 2 ∖ {x1, . . . , xn}), together with relation (a) from
the third class of relations. Relation (ii), namely the surface relations, of the presentation of
Pm+1(RP 2 ∖ {x1, . . . , xn}) has already been obtained as we already saw, by combining a relation
from the second class with the single relation from the first class of relations. Relation (iii) is
obtained from the lifted relation (iii) of Pm(RP 2 ∖ {x1, . . . , xn}), together with relation (c) from
the third class of relations. Finally, relation (iv) of the presentation of Pm+1(RP 2 ∖ {x1, . . . , xn})
can be obtained from the lifted relation (iv) of Pm(RP 2 ∖ {x1, . . . , xn}), together with the relations
(b) and (d) of the third class.

To sum up, the set of generators and the set of relations, that we have obtained, coincide with
the given presentation applied to Pm+1(RP 2 ∖ {x1, . . . , xn}) and it follows by induction that the
given presentation is valid for Pm(RP 2 ∖ {x1, . . . , xn}), for every m ∈ N.

In order to give a presentation for Bn,m(RP 2), we first determine a presentation of the group
Bm(RP 2 ∖ {x1, . . . , xn}).

Proposition 2.2.5. For n,m ≥ 1, the following constitutes a presentation of Bm(RP 2∖{x1, . . . , xn}).

Generators: Bi,j , for 1 ≤ i ≤ n, n + 1 ≤ j ≤ n + m, ρk, for n + 1 ≤ k ≤ n + m, and σl, for
1 ≤ l ≤m − 1.

Relations:

(i) For 1 ≤ i, k ≤ n and n + 1 ≤ j < l ≤ n +m,

Bi,jBk,lB
−1
i,j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Bk,l, for k < i.
B−1
j,lBk,lBj,l, for k = i.

B−1
j,lB

−1
i,lBj,lBi,lBk,lB

−1
i,lB

−1
j,lBi,lBj,l, for i < k.

Moreover, for k = j,

Bi,jBk,lB
−1
i,j =(σl−1−n⋯σj+1−nσ−2

j−nσ
−1
j+1−n⋯σ

−1
l−1−n)B

−1
i,l (σl−1−n⋯σj+1−nσ2

j−nσ
−1
j+1−n⋯σ

−1
l−1−n)

Bi,l(σl−1−n⋯σj+1−nσ2
j−nσ

−1
j+1−n⋯σ

−1
l−1−n).

(ii) For n + 1 ≤ k ≤ n +m,

ρk(
n

∏
i=1
Bi,k)(σk−1−n⋯σ2σ

2
1σ2⋯σk−1−n) = (σk−n⋯σm−2σ

2
m−1σm−2⋯σk−n)ρ−1

k .

(iii) For n + 1 ≤ k < j ≤ n +m,
ρkρjρ

−1
k = (σ−1

j−1−n⋯σ
−1
k+1−nσ

2
k−nσk+1−n⋯σj−1−n)ρj ,

ρ−1
k ρjρk = ρj(σj−1−n⋯σk+1−nσ2

k−nσ
−1
k+1−n⋯σ

−1
j−1−n).

(iv) For 1 ≤ i ≤ n, n + 1 ≤ j ≤ n +m, n + 1 ≤ k ≤ n +m and k ≠ j

ρkBi,jρ
−1
k =

⎧⎪⎪
⎨
⎪⎪⎩

Bi,j , for j < k.
T −1
k,jBi,jTk,j , for n + 1 ≤ k < j,

where Tk,j ∶= ρ−1
j (σ−1

j−1−n⋯σ
−1
k+1−nσ

2
k−nσk+1−n⋯σj−1−n)ρj.

(v) For 1 ≤ r, s ≤m − 1,
σrσs = σsσr, for ∣r − s∣ > 1,
σrσr+1σr = σr+1σrσr+1.
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(vi) For 1 ≤ i ≤ n, n + 1 ≤ j ≤ n +m, 1 ≤ r ≤m − 1,

σrBi,jσ
−1
r =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Bi,j , for r ≠ j − n − 1, j − n.
σ2
j−n−1Bi,j−1σ

−2
j−n−1, for r = j − n − 1, n + 2 ≤ j ≤ n +m.

Bi,j+1, for r = j − n, n + 1 ≤ j ≤ n +m − 1.

(vii) For 1 ≤ r ≤m − 1, n + 1 ≤ k ≤ n +m,

σrρkσ
−1
r =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ρk, for r ≠ k − n, k − 1 − n.
σ2
k−nρk+1, for r = k − n.
ρk−1σ

−2
k−1−n, for r = k − 1 − n.

Remark 2.2.6. In the above relations, for n + 1 ≤ i < j ≤ n +m the element Bi,j , which does not
appear in the list of generators, should be rewritten as:

Bi,j = σj−1−n⋯σi+1−nσ2
i−nσ

−1
i+1−n⋯σ

−1
j−1−n,

and in particular Bn+r,n+r+1 = σ
2
r , for 1 ≤ r ≤m− 1. Moreover, for n+ 1 ≤ k < j ≤ n+m it holds that

j−1
∏
i=k

Bi,j = σj−1−n⋯σk+1−nσ2
k−nσk+1−n⋯σj−1−n.

Proof. Once again, we will proceed by applying standard results concerning the presentation of an
extension, [Joh97] (page 139), based on the following short exact sequence:

1! Pm(RP 2
∖ {x1, . . . , xn})! Bm(RP 2

∖ {x1, . . . , xn})! Sm! 1.

We have already a presentation of Pm(RP 2 ∖ {x1, . . . , xn}), from Proposition 2.2.4, and of the
symmetric group given as follows:

Sm = ⟨σ, . . . , σm−1 ∣ σiσi+1σi = σi+1σiσi+1, for 1 ≤ i ≤ n−2, σ2
i = 1, σiσj = σjσi, for 1 ≤ i ≠ j ≤ n−1⟩.

So, the generators of Pm(RP 2 ∖ {x1, . . . , xn}) together with coset representatives of the generators
of Sm, form a generating set of Bm(RP 2 ∖ {x1, . . . , xn}). It follows that this generating set is that
given in the statement, with σl, for 1 ≤ l ≤m−1, being the coset representatives of the generators of
the symmetric group. Observe that, from Remark 2.2.2, Bi,j = σj−1⋯σi+1σ

2
i σ

−1
i+1⋯σ

−1
j−1, and so, for

n + 1 ≤ i < j ≤ n +m we can rewrite the generator Bi,j as Bi,j = σj−1−n⋯σi+1−nσ2
i−nσ

−1
i+1−n⋯σ

−1
j−1−n,

as we see in Remark 2.2.6. Thus, one may delete these elements from the set and one obtains the
required set of generators.

We now determine the three classes of relations. The first class is obtained by taking the
relations of Pm(RP 2 ∖ {x1, . . . , xn}) given in Proposition 2.2.4:

• For 1 ≤ i, k ≤ n and n + 1 ≤ j < l ≤ n +m,

Bi,jBk,lB
−1
i,j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Bk,l, for k < i.
B−1
j,lBk,lBj,l, for k = i.

B−1
j,lB

−1
i,lBj,lBi,lBk,lB

−1
i,lB

−1
j,lBi,lBj,l, for i < k.

For k = j, which means that n + 1 ≤ k, then:

Bi,jBk,lB
−1
i,j =(σl−1−n⋯σj+1−nσ−2

j−nσ
−1
j+1−n⋯σ

−1
l−1−n)B

−1
i,l (σl−1−n⋯σj+1−nσ2

j−nσ
−1
j+1−n⋯σ

−1
l−1−n)Bi,l

(σl−1−n⋯σj+1−nσ2
j−nσ

−1
j+1−n⋯σ

−1
l−1−n).

• For n + 1 ≤ k < j ≤ n +m,

ρkρjρ
−1
k = (

j−1
∏
i=k+1

Bi,j)
−1
Bk,j(

j−1
∏
i=k+1

Bi,j)ρj = Σ−1
k,j(σj−1−n⋯σk+1−nσ2

k−nσ
−1
k+1−n⋯σ

−1
j−1−n)Σk,jρj

= (σ−1
j−1−n⋯σ

−1
k+1−nσ

2
k−nσk+1−n⋯σj−1−n)ρj , (3)

where Σk,j ∶= σj−1−n⋯σk+2−nσ2
k+1−nσk+2−n⋯σj−1−n.



2.2. Presentation of Bn,m(RP 2) and of certain subgroups 23

• For 1 ≤ i ≤ n, n + 1 ≤ j, k ≤ n +m, k ≠ j,

ρkBi,jρ
−1
k =

⎧⎪⎪
⎨
⎪⎪⎩

Bi,j , for j < k.
T −1
k,jBi,jTk,j , for n + 1 ≤ k < j,

where Tk,j ∶= ρ−1
j (σ−1

j−1−n⋯σ
−1
k+1−nσ

2
k−nσk+1−n⋯σj−1−n)ρj .

If i = k, which means that n + 1 ≤ i, then the relation

ρkBk,jρ
−1
k = ρ−1

j (

j−1
∏
l=k+1

Bl,j)
−1
B−1
k,j(

j−1
∏
l=k+1

Bl,j)ρj

becomes as follows:

ρk(σj−1−n⋯σk+1−nσ2
k−nσ

−1
k+1−n⋯σ

−1
j−1−n)ρ

−1
k =ρ−1

j (σ−1
j−1−n⋯σ

−1
k+2−nσ

−2
k+1−nσ

−1
k+2−n⋯σ

−1
j−1−n)

(σj−1−n⋯σk+1−nσ−2
k−nσ

−1
k+1−n⋯σ

−1
j−1−n)

(σj−1−n⋯σk+2−nσ2
k+1−nσk+2−n⋯σj−1−n)ρj .

Thus,

ρk(σj−1−n⋯σk+1−nσ2
k−nσ

−1
k+1−n⋯σ

−1
j−1−n)ρ

−1
k = ρ−1

j (σ−1
j−1−n⋯σ

−1
k+1−nσ

−2
k−nσk+1−n⋯σj−1−n)ρj .

Using relation (3) it follows that

ρk(σj−1−n⋯σk+1−nσ2
k−nσ

−1
k+1−n⋯σ

−1
j−1−n)ρ

−1
k = ρ−1

j (ρjρkρ
−1
j ρ

−1
k )ρj ,

and we conclude the following:

ρ−1
k ρjρk = ρj(σj−1−n⋯σk+1−nσ2

k−nσ
−1
k+1−n⋯σ

−1
j−1−n).

This relation is a right conjugation of ρj by ρk, while relation (3) is a left conjugation.

• For n + 1 ≤ k ≤ n +m, the surface relations ρk(B1,k⋯Bk−1,k) = (Bk,k+1⋯Bk,n+m)ρ−1
k become

ρk(
n

∏
i=1
Bi,k)(

k−1
∏
j=n+1

Bj,k) = (
n+m
∏
l=k+1

Bk,l)ρ
−1
k , and finally we obtain the following:

ρk(
n

∏
i=1
Bi,k)(σk−1−n⋯σ2σ

2
1σ2⋯σk−1−n) = (σk−n⋯σm−2σ

2
m−1σm−2⋯σk−n)ρ−1

k .

The second class of relations is obtained by rewriting the relations of Sm in terms of the coset
representatives and expressing the corresponding elements as a word in Pm(RP 2 ∖ {x1, . . . , xn}).
Doing so, we have the following relations:

(a) σrσs = σsσr, for ∣r − s∣ > 1,

(b) σrσr+1σr = σr+1σrσr+1,

(c) σ2
r = Bn+r,n+r+1, for 1 ≤ r ≤m − 1, which appears in Remark 2.2.6.

The third class of relations is obtained by rewriting the conjugates of the generators of Pm(RP 2∖
{x1, . . . , xn}), by the coset representatives, in terms of the generators of Pm(RP 2 ∖ {x1, . . . , xn}).
We obtain the following relations:

• For 1 ≤ r ≤m − 1 and 1 ≤ i ≤ n, n + 1 ≤ j ≤ n +m,

σrBi,jσ
−1
r =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Bi,j , for r ≠ j − n − 1, j − n.
Bi,j+1, for r = j − n and n + 1 ≤ j ≤ n +m − 1.
σ2
j−n−1Bi,j−1σ

−2
j−n−1, for r = j − n − 1 and n + 2 ≤ j ≤ n +m.

(4)
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• For 1 ≤ r ≤m − 1, n + 1 ≤ k ≤ n +m,

σrρkσ
−1
r =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

ρk, for r ≠ k − n, k − 1 − n.
σ2
k−nρk+1, for r = k − n.
ρk−1σ

−2
k−1−n, for r = k − 1 − n.

The relations of the third class are obtained geometrically
The resulting relations are those given in the statement and this completes the proof.

Finally, we are ready to give a presentation of the group Bn,m(RP 2).

Theorem 2.2.7. For n ≥ 2 and m ≥ 1, the following constitutes a presentation of Bn,m(RP 2).

Generators: Bi,j , for 1 ≤ i ≤ n and n + 1 ≤ j ≤ n +m,
ρk, for n + 1 ≤ k ≤ n +m,
σl, for 1 ≤ l ≤m − 1,
τs, for 1 ≤ s ≤ n − 1 and
qt, for 1 ≤ t ≤ n.

Relations:

(I) The relations (i)-(vii) of Proposition 2.2.5.

(II) For 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n,
τiτj = τiτj , for ∣i − j∣ > 1,
τiτi+1τi = τi+1τiτi+1,
τiqj = qjτi, for j ≠ i, i + 1,
qi = τiqi+1τi,
τ2
i = q

−1
i+1q

−1
i qi+1qi,

q2
1 = (τ1τ2⋯τn−2τn−1)(Bn,n+1Bn,n+2⋯Bn,n+m−1Bn,n+m)(τn−1τn−2⋯τ2τ1).

(III) (a) For 1 ≤ l ≤m − 1, 1 ≤ s ≤ n − 1 and 1 ≤ t ≤ n,
σlτs = τsσl,
σlqt = qtσl.

(b) For n + 1 ≤ k ≤ n +m, 1 ≤ s ≤ n − 1 and 1 ≤ t ≤ n,
ρkτs = τsρk,
qtρkq

−1
t = Et,kρk,

where Et,k ∶= N−1
t,kBt,kNt,k and Nt,k ∶= (

n

∏
l=t+1

Bl,k)(σk−1−n⋯σ2
1⋯σk−1−n).

(c) For 1 ≤ s ≤ n − 1 and 1 ≤ i ≤ n < j ≤ n +m,

τsBi,jτ
−1
s =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Bi,j , for s ≠ i − 1, i.
B−1
i,jBi−1,jBi,j , for s = i − 1.

Bi+1,j , for s = i.

(d) For 1 ≤ t ≤ n and 1 ≤ i ≤ n < k ≤ n +m,

qtBi,kq
−1
t =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Bi,k, for t < i.
(Nt,kρk)

−1B−1
i,k(Nt,kρk), for t = i.

(ρ−1
k Et,kρk)

−1Bi,k(ρ
−1
k Et,kρk), for i < t.

Proof. Once more we will apply the same methods concerning the presentation of an extension,
[Joh97] (page 139) based on the following short exact sequence:

1! Bm(RP 2
∖ {x1, . . . , xn})! Bn,m(RP 2

)
q̄n+m,n
−−−−! Bn(RP 2

)! 1,
where the map q̄n+m,n can be considered geometrically as the epimorphism that forgets the last
m strands. Let q1, . . . , qn and τ1, . . . , τn−1 be the standard generators of Bn(RP 2) as described in
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Theorem 2.1.1. We keep the same notation and for simplicity we denote the corresponding coset
representatives in Bn,m(RP 2) by q1, . . . , qn and τ1, . . . , τn−1. The union of these elements together
with the generators of Bm(RP 2 ∖ {x1, . . . , xn}) of Proposition 2.2.5 gives us the set of generators
of Bn,m(RP 2).

As before we will obtain three classes of relations in Bn,m(RP 2). The first class of relations is
the set of relations of ker(q̄n+m,n), meaning of Bm(RP 2 ∖ {x1, . . . , xn}), which are relations (I) of
the statement.

The second class of relations is obtained by rewriting the relations of Bn(RP 2) in terms of the
chosen coset representatives in Bn,m(RP 2) and expressing the corresponding elements as a word in
Bm(RP 2 ∖ {x1, . . . , xn}). Therefore we get the following:
for 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n and ∣i − j∣ > 1 we have τiτj = τiτj , τiτi+1τi = τi+1τiτi+1, and for
j ≠ i, i + 1 we have τiqj = qjτi. Moreover, we obtain qi = τiqi+1τi and τ2

i = q
−1
i+1q

−1
i qi+1qi. The relation

q2
1(τ1⋯τn−2τ

2
n−1τn−2⋯τ1)

−1 = 1 of Bn(RP 2) can be expressed as a word in Bm(RP 2 ∖ {x1, . . . , xn})
as follows:

q2
1(τ1⋯τn−2τ

2
n−1τn−2⋯τ1)

−1
= (

n+m
∏
j=n+1

(B−1
n,j⋯B

−1
2,j)B1,j(B2,j⋯Bn,j)). (5)

We will come back to this relation later, as we will use some relations that we will see in the third
class of relations, in order to simplify it.

The third class of relations is derived from conjugating the generators of Bm(RP 2∖{x1, . . . , xn})
by the coset representatives q1, . . . , qn and τ1, . . . , τn−1.

• By conjugating the generators σl, for 1 ≤ l ≤m − 1 and by using the standard Artin relations
in Bn,m(RP 2), we obtain the following relations:
for all 1 ≤ l ≤m−1 and 1 ≤ s ≤ n−1, we have σlτs = τsσl. Moreover, we have σlqt = qtσl, for all
1 ≤ l ≤m − 1 and 1 ≤ t ≤ n. These relations correspond to relations (III)(a) of the statement.

• By conjugating the generators ρk, for n + 1 ≤ k ≤ n +m, we have the following:
for n + 1 ≤ k ≤ n +m, 1 ≤ s ≤ n − 1 and 1 ≤ t ≤ n,
ρkτs = τsρk and
qtρkq

−1
t = ((

n

∏
l=t+1

Bl,k)(σk−1⋯σ
2
1⋯σk−1))

−1
Bt,k((

n

∏
l=t+1

Bl,k)(σk−1⋯σ
2
1⋯σk−1))ρk,

where the term
n

∏
l=t+1

Bl,k corresponds to the first n points and the term (σk−1−n⋯σ2
1⋯σk−1−n)

corresponds to the following k − n points. These relations correspond to relations (III)(b) of
the statement.

• By conjugating the generators Bi,j , for 1 ≤ i ≤ n and n + 1 ≤ j ≤ n +m the following relations
arise:
for 1 ≤ s ≤ n − 1 and 1 ≤ i ≤ n < j ≤ n +m,

τsBi,jτ
−1
s =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Bi,j , for s ≠ i − 1, i.
B−1
i,jBi−1,jBi,j , for s = i − 1.

Bi+1,j , for s = i.
(6)

For 1 ≤ t ≤ n and 1 ≤ i ≤ n < k ≤ n +m,

qtBi,kq
−1
t =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Bi,k, for t < i.
ρ−1
k N

−1
t,kB

−1
i,kNt,kρk, for t = i.

(ρ−1
k N

−1
t,kBt,kNt,kρk)

−1Bi,k(ρ
−1
k N

−1
t,kBt,kNt,kρk). for i < t.

These relations correspond to relations (III)(c) and (III)(d) of the statement.

The relations of the third class are obtained geometrically.
We come back to relation (5). From relations (6), for any n + 1 ≤ j ≤ n +m we obtain

(B−1
n,j⋯B

−1
2,j)B1,j(B2,j⋯Bn,j)(τ1τ2⋯τn−2τn−1) = (τ1τ2⋯τn−2τn−1)Bn,j ,
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and thus we get the following: (∏
n+m
j=n+1(B

−1
n,j⋯B

−1
2,j)B1,j(B2,j⋯Bn,j))(τ1τ2⋯τn−2τn−1) =

(τ1τ2⋯τn−2τn−1)(Bn,n+1Bn,n+2⋯Bn,n+m−1Bn,n+m). Thus, relation (5) becomes

q2
1 = (

n+m
∏
j=n+1

(B−1
n,j⋯B

−1
2,j)B1,j(B2,j⋯Bn,j))(τ1τ2⋯τn−2τ

2
n−1τn−2⋯τ2τ1)

= (τ1τ2⋯τn−2τn−1)(Bn,n+1Bn,n+2⋯Bn,n+m−1Bn,n+m)(τn−1τn−2⋯τ2τ1),

which is the last relation of relations (II) of the statement.
As a result, we have obtained a generating set and a complete set of relations, which coincide

with those given in the statement, and this completes the proof.

Remark 2.2.8. Theorem 2.2.7, which gives a presentation of Bn,m(RP 2), holds for n ≥ 2 and m ≥ 1,
since the short exat sequence

1! Bm(RP 2
∖ {x1, . . . , xn})! Bn,m(RP 2

)
q̄n+m,n
−−−−! Bn(RP 2

)! 1,

that we use in the proof, holds for n ≥ 2. For n =m = 1, we have B1,1(RP 2) = P2(RP 2), which is
isomorphic to the quaternion group of order 8, see [VB66]. To obtain a presentation of Bn,m(RP 2)
for n = 1 and m ≥ 2, one can use the short exact sequence,

1! B1(RP 2
∖ {x1, . . . , xm})! B1,m(RP 2

)
qm−! Bm(RP 2

)! 1,

where qm can be considered geometrically as forgetting the first strand. And once more one can
apply standard techniques for obtaining presentations of group extensions as described in [Joh97]
(page 139), which we have explicitely described in the proofs of Propositions 2.2.1, 2.2.4, 2.2.5 and
Theorem 2.2.7.

From Propositions 2.2.1, 2.2.4, 2.2.5 and Theorem 2.2.7 we are able to obtain a presentation of
the Abelianisation of Pn(RP 2), Pm(RP 2 ∖{x1, . . . , xn}), Bm(RP 2 ∖{x1, . . . , xn}) and Bn,m(RP 2),
respectively. In the following Corollaries, we denote by Γ2(G), for G a group, the commutator
subgroup of G.

Corollary 2.2.9. For n ≥ 1, the following constitutes a presentation of Pn(RP 2)/Γ2(Pn(RP 2)).

Generators: ρk, for 1 ≤ k ≤ n.
Relations:

(i) ρ2
k = 1, for 1 ≤ k ≤ n.

Hence, Pn(RP 2)/Γ2(Pn(RP 2)) ≅ Zn2 , which is generated by ρ1, . . . , ρn.

Corollary 2.2.10. For n,m ≥ 1, the following constitutes a presentation of

Pm(RP 2
∖ {x1, . . . , xn})/Γ2(Pm(RP 2

∖ {x1, . . . , xn})).

Generators: ρk, for 1 ≤ k ≤m.
Relations:

(i) ρ2
k = 1, for 1 ≤ k ≤m.

Hence Pn(RP 2)/Γ2(Pn(RP 2)) ≅ Zm2 , which is generated by ρ1, . . . , ρm.

Corollary 2.2.11. For n,m ≥ 1, the following constitutes a presentation of

Bm(RP 2
∖ {x1, . . . , xn})/Γ2(Bm(RP 2

∖ {x1, . . . , xn})).

Generators: ρ, σ, β1, . . . , βn.

Relations:

(i) σ2 = 1,
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(ii) ρ2
∏
n
i=1 βi = 1,

(iii) βiβj = βjβi, for 1 ≤ i, j ≤ n,

(iv) σβi = βiσ, and ρβi = βiρ, for 1 ≤ i ≤ n,

(v) σρ = ρσ.

In particular is holds that

Bm(RP 2
∖ {x1, . . . , xn})/Γ2(Bm(RP 2

∖ {x1, . . . , xn})) ≅ Zn ×Z2,

where ρ, β1, . . . , βn−1 generate the Zn-component and σ the Z2-component.

Note that the Artin generators, σ1, . . . , σm−1, are pairwise conjugate and thus are sent to the same
element in Bm(RP 2 ∖ {x1, . . . , xn})/Γ2(Bm(RP 2 ∖ {x1, . . . , xn})). We observe that the elements
ρ, σ, β1, . . . , βn−1 form a generating set for Bm(RP 2 ∖ {x1, . . . , xn})/Γ2(Bm(RP 2 ∖ {x1, . . . , xn})),
since we can obtain the element βn from relation (ii).

Corollary 2.2.12. For n ≥ 2 and m ≥ 1, the following constitutes a presentation of
Bn,m(RP 2)/Γ2(Bn,m(RP 2)).

Generators: ρ, σ, τ , q.

Relations:

(i) ρ2 = 1, σ2 = 1, τ2 = 1, q2 = 1,

(ii) ρσ = σρ, ρτ = τρ, ρq = qρ,

(iii) στ = τσ, σq = qσ,

(iv) τq = qτ .

Hence, Bn,m(RP 2)/Γ2(Bn,m(RP 2)) ≅ Z4
2, which is generated by ρ, σ, τ and q.

2.3 Lower central and derived series of the group
Bm(RP 2

∖ {x1, . . . , xn})

As we will see in Chapter 3, to study the splitting problem, it is helpful to know the lower
central and derived series of certain subgroups of the surface braid groups. Before stating the
result about the lower central and derived series of the group Bm(RP 2 ∖ {x1, . . . , xn}), we recall
the definition of these notions.

Definition 2.3.1. Let i ∈ N.
The lower central series of a group G is defined as the descending normal series

Γ1(G) = G ⊇ Γ2(G) ⊇ ⋅ ⋅ ⋅ ⊇ Γn(G) ⊇ . . . ,

where Γi(G) = [Γi−1(G),G] is the subgroup of G generated by the commutators [x, y] = xyx−1y−1,
for x ∈ Γi−1(G) and y ∈ G.

The derived series of a group G is defined as the descending normal series

G(0)
= G ⊇ G(1)

⊇ ⋅ ⋅ ⋅ ⊇ G(n)
⊇ . . . ,

where G(i) = [G(i−1),G(i−1)] is the subgroup of G generated by the commutators [x, y], for
x, y ∈ G(i−1). Note that Γ2(G) = G(1).
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Let X be some property of groups. We recall that a group G is residually X if for every
non-trivial element g ∈ G there is a homomorphism h from G to a group with property X such that
h(g) ≠ 1.

Let m = 1 and n ≥ 1. It holds that B1(RP 2 ∖ {x1, . . . , xn}) = π1(RP 2 ∖ {x1, . . . , xn}) = Fn,
where Fn denotes the free group on n generators. So the lower central and derived series of
B1(RP 2 ∖ {x1, . . . , xn}) are those of free groups of finite rank.

The following theorem presents the lower central and derived series of Bm(RP 2 ∖ {x1, . . . , xn})
for n ≥ 2 and for most values of m.

Theorem 2.3.2. Let n ≥ 1. Then:

• If m ≥ 3, then

Γ2(Bm(RP 2
∖ {x1, . . . , xn})) = Γ3(Bm(RP 2

∖ {x1, . . . , xn})).

• If m ≥ 5, then

(Bm(RP 2
∖ {x1, . . . , xn}))

(1)
= (Bm(RP 2

∖ {x1, . . . , xn}))
(2)
.

In particular, for m ≥ 3, Bm(RP 2 ∖ {x1, . . . , xn}) is not residually nilpotent and for m ≥ 5, it is not
residually solvable.

Proof. Let n ≥ 1. We will prove that Γ2(Bm(RP 2 ∖ {x1, . . . , xn})) = Γ3(Bm(RP 2 ∖ {x1, . . . , xn})),
for m ≥ 3. Let m ≥ 3 and let Γ2 ∶= Γ2(Bm(RP 2 ∖ {x1, . . . , xn})) and
Γ3 ∶= Γ3(Bm(RP 2 ∖ {x1, . . . , xn})). We have the following short exact sequences:

1 Γ2 Bm(RP 2 ∖ {x1, . . . , xn}) Bm(RP 2 ∖ {x1, . . . , xn})/Γ2 1

1 Γ2/Γ3 Bm(RP 2 ∖ {x1, . . . , xn})/Γ3 Bm(RP 2 ∖ {x1, . . . , xn})/Γ2 1.

pr∣Γ2 pr

ab

p

The map ab is the quotient map that sends Bm(RP 2 ∖ {x1, . . . , xn}) to its Abelianisation
Bm(RP 2 ∖ {x1, . . . , xn})/Γ2. The map pr is the canonical projection from Bm(RP 2 ∖ {x1, . . . , xn})
to Bm(RP 2 ∖ {x1, . . . , xn})/Γ3 and the map pr∣Γ2 is the restriction of pr to Γ2. We have that
the map ab factors throught Bm(RP 2 ∖ {x1, . . . , xn})/Γ3 and thus, the map p is such that ab =
p ○ pr. We will obtain relations in Bm(RP 2 ∖ {x1, . . . , xn})/Γ3 by projecting the relations of
Bm(RP 2 ∖ {x1, . . . , xn}) given in Proposition 2.2.5. Moreover, from Corollary 2.2.11, we know
that Bm(RP 2 ∖ {x1, . . . , xn})/Γ2 is isomorphic to Zn × Z2. In particular, under the map ab, the
generators σ1, . . . , σm−1 are sent to σ̄1 ∈ Bm(RP 2 ∖ {x1, . . . , xn})/Γ2, where σ̄1 = σ1Γ2. It follows
that

pr(σi) = ti ⋅ σ1Γ3 ∈ Bm(RP 2
∖ {x1, . . . , xn})/Γ3,

for 1 ≤ i ≤m − 1, where ti ∈ ker(p) = Γ2/Γ3 and t1 may be taken to be 1.
For simplicity, we will denote σ1Γ3 by σ̃1. Projecting now relation (v) of Proposition 2.2.5,

σrσr+1σr = σr+1σrσr+1, intoBm(RP 2∖{x1, . . . , xn})/Γ3 we obtain trσ̃1tr+1σ̃1trσ̃1 = tr+1σ̃1trσ̃1tr+1σ̃1,
and since ti ∈ Γ2/Γ3, where Γ2/Γ3 is a central subgroup of Bm(RP 2 ∖ {x1, . . . , xn})/Γ3, it follows
that

tr = tr+1,

for 1 ≤ r ≤m − 1, meaning that 1 = t1 = ⋅ ⋅ ⋅ = tm−1. We conclude that

pr(σ1) = ⋅ ⋅ ⋅ = pr(σm−1) = σ̃1.

Similarly, since every generator ρn+1, . . . , ρn+m is projected to the same element ρ̄n+1 in the
Abelianisation Bm(RP 2 ∖ {x1, . . . , xn})/Γ2, where ρ̄n+1 = ρn+1Γ2, it follows that

pr(ρi) = si ⋅ ρn+1Γ3 ∈ Bm(RP 2
∖ {x1, . . . , xn})/Γ3,

for n + 1 ≤ i ≤ n +m, where si ∈ ker(p) = Γ2/Γ3 and sn+1 may be taken to be 1.
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We will denote ρn+1Γ3 by ρ̃n+1. Projecting relation (iii) of Proposition 2.2.5,

ρkρjρ
−1
k = (σ−1

j−1−n . . . σ
−1
k+1−nσ

2
k−nσk+1−n . . . σj−1−n)ρj ,

for n + 1 ≤ k < j ≤ n +m, under pr, gives skρ̃n+1sj ρ̃n+1ρ̃
−1
n+1s

−1
k = σ̃2

1sj ρ̃n+1, and since si ∈ Γ2/Γ3, for
n + 1 ≤ i ≤ n +m, where Γ2/Γ3 is central in Bm(RP 2 ∖ {x1, . . . , xn})/Γ3, it follows that σ̃2

1 = 1.
Since m ≥ 3, the relation σ1ρn+3σ

−1
1 = ρn+3 ((vii) of Proposition 2.2.5) exists in Bm(RP 2 ∖

{x1, . . . , xn}), and projecting it into Bm(RP 2 ∖ {x1, . . . , xn})/Γ3, it follows that σ̃1sn+3ρ̃n+1σ̃
−1
1 =

sn+3ρ̃n+1. Since sn+3 ∈ Γ2/Γ3 we obtain

σ̃1ρ̃n+1 = ρ̃n+1σ̃1.

Furthermore, the projection of the relation σk−nρkσ−1
k−n = Bk,k+1ρk+1 ((vii) of Proposition 2.2.5), for

n+ 1 ≤ k ≤ n+m− 1, yields σ̃1skρ̃n+1σ̃
−1
1 = 1 ⋅ sk+1ρ̃n+1. We know that σ̃1ρ̃n+1 = ρ̃n+1σ̃1, sn+3 ∈ Γ2/Γ3

and that skρ̃n+1 = sk+1ρ̃n+1. Thus, 1 = sn+1 = ⋅ ⋅ ⋅ = sn+m−1 = sn+m, and it follows that

pr(ρn+1) = ⋅ ⋅ ⋅ = pr(ρn+m) = ρ̃n+1.

From Corollary 2.2.11, we have that ab(Bi,j) = B̄i,n+1 ∈ Bm(RP 2 ∖ {x1, . . . , xn})/Γ2, 1 ≤ i ≤ n
and n + 1 ≤ j ≤ n + m, where B̄i,n+1 = Bi,n+1Γ2. Note that in Corollary 2.2.11 the element
ab(Bi,j) = B̄i,n+1 is denoted by βi. Thus, pr(Bi,j) = ai,j ⋅Bi,n+1Γ3 ∈ Bm(RP 2 ∖ {x1, . . . , xn}), for
1 ≤ i ≤ n, n + 1 ≤ j ≤ n +m, where ai,j ∈ ker(p) = Γ2/Γ3 and ai,n+1 may be taken to be 1.

We will denote Bi,n+1Γ3 by B̃i,n+1. Since m ≥ 3, the relation σ1Bi,n+3σ
−1
1 = Bi,n+3 ((vi)

of Proposition 2.2.5), for 1 ≤ i ≤ n, exists in Bm(RP 2 ∖ {x1, . . . , xn}), and projecting it into
Bm(RP 2 ∖ {x1, . . . , xn})/Γ3, it follows that σ̃1ai,n+3B̃i,n+1σ̃

−1
1 = ai,n+3B̃i,n+1. Since ai,n+3 ∈ Γ2/Γ3

we obtain
σ̃1B̃i,n+1 = B̃i,n+1σ̃1,

for 1 ≤ i ≤ n. Moreover, pr(σj−nBi,jσ−1
j−n) = pr(Bi,j+1), for 1 ≤ i ≤ n, n + 1 ≤ j ≤ n +m − 1, yields

σ̃1ai,jB̃i,n+1σ̃
−1
1 = ai,j+1B̃i,n+1. We know that σ̃1B̃i,n+1 = B̃i,n+1σ̃1 and that ai,j ∈ Γ2/Γ3, and thus

1 = ai,n+1 = ⋅ ⋅ ⋅ = ai,n+m−1 = ai,n+m, and

pr(Bi,j) = B̃i,n+1,

for 1 ≤ i ≤ n, n + 1 ≤ j ≤ n +m.
We conclude that the projection of the generating set of Bm(RP 2 ∖ {x1, . . . , xn}) gives rise to

the following generating set for Bm(RP 2 ∖ {x1, . . . , xn})/Γ3:

{σ̃1, ρ̃n+1, B̃1,n+1, . . . , B̃n,n+1},

subjected to the relations σ̃2
1 = 1, σ̃1ρ̃n+1 = ρ̃n+1σ̃1 and σ̃1B̃i,n+1 = B̃1,n+1σ̃1, for 1 ≤ i ≤ n.

In order to determine further relations among these generators we will project now some
other relations of Bm(RP 2 ∖ {x1, . . . , xn}) into Bm(RP 2 ∖ {x1, . . . , xn})/Γ3. Projecting rela-
tion (iv) of Proposition 2.2.5 we obtain ρ̃n+1B̃i,n+1ρ̃

−1
n+1 = B̃i,n+1, for 1 ≤ i ≤ n, which implies

that, ρ̃n+1B̃i,n+1 = B̃i,n+1ρ̃n+1, for 1 ≤ i ≤ n. Similarly, projecting relation (i) of Proposition
2.2.5 we obtain B̃i,n+1B̃k,n+1 = B̃k,n+1B̃i,n+1, for 1 ≤ i, k ≤ n. Finally, the projection of rela-

tion ρk
n

∏
i=1
Bi,k(σk−1−n . . . σ2

1 . . . σk−1−n) = (σk−n . . . σ2
m−1 . . . σk−n)ρ

−1
k ((ii) of Proposition 2.2.5), for

n + 1 ≤ k ≤ n +m, yields
ρ̃2
n+1

n

∏
i=1
B̃i,n+1 = 1.

Summing up, we have shown that the generators

{σ̃1, ρ̃n+1, B̃1,n+1, . . . , B̃n,n+1},

of Bm(RP 2 ∖ {x1, . . . , xn})/Γ3, commute pairwise. That means that the quotient group Bm(RP 2 ∖
{x1, . . . , xn})/Γ3 is an Abelian group. By the universal property of the Abelianisation, it follows
that Γ2 is a subgroup of Γ3, since any homomorphism of Bm(RP 2 ∖ {x1, . . . , xn}) onto an Abelian
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group factors through Bm(RP 2 ∖ {x1, . . . , xn})/Γ2, which gives Γ2 ⊆ Γ3. But by the definition of
the lower central series, we know that Γ3 ⊆ Γ2, and therefore we conclude that Γ3 = Γ2. As a result,
Γ2(Bm(RP 2 ∖ {x1, . . . , xn})) = Γ3(Bm(RP 2 ∖ {x1, . . . , xn})), for m ≥ 3.

We now prove the second statement using similar arguments. Let m ≥ 5. For simplicity, we
will denote the group Bm(RP 2 ∖ {x1, . . . , xn}) by G. Recall that for a group G, Γ2(G) = G(1). We
consider the following diagram of short exact sequences:

1 G(1) G G/G(1) 1

1 G(1)/G(2) G/G(2) G/G(1) 1.

pr∣
G(1) pr

ab

p

The map ab is the quotient map that sends G to its Abelianisation G/G(1). The map pr is the
canonical projection from G to G/G(2) and the map pr∣G(1) is the restriction of pr to G(1). We
have that the map ab factors throught G/G(2) and thus, the map p is such that ab = p ○ pr. Using
the same argument as before, we have:

pr(σi) = ti ⋅ σ1G
(2)

∈ G/G(2),

for 1 ≤ i ≤m − 1, where ti ∈ ker(p) = G(1)/G(2) and t1 may be taken to be 1.
Let σ1G

(2) be denoted by σ̄1. For m ≥ 5, the projection, by pr, of the relation σrσs = σsσr
((v) of Proposition 2.2.5), for ∣r − s∣ > 1 implies that σ̄1tkσ̄1 = tkσ̄1σ̄1, for 3 ≤ k ≤ m − 1, and so
σ̄1 commutes with tk for 3 ≤ k ≤ m − 1. Moreover, for 4 ≤ l ≤ m − 1, the projection of the same
relation yields tlσ̄1t2σ̄1 = t2σ̄1tlσ̄1. Since σ̄1 commutes with tl and G(1)/G(2) is an Abelian group,
it follows that σ̄1t2 = t2σ̄1. Hence tk commutes with σ̄1, for 2 ≤ k ≤ m − 1 and m ≥ 5. Now,
projecting the relation σrσr+1σr = σr+1σrσr+1 ((v) of Proposition 2.2.5) into G/G(2) it follows that
trσ̄1tr+1σ̄1trσ̄1 = tr+1σ̄1trσ̄1tr+1σ̄1, and so for 2 ≤ i ≤m−1 we have t2 = ⋅ ⋅ ⋅ = tm−1, since tk commutes
with σ̄1, for 2 ≤ k ≤m− 1. If r = 1, the projection of the same relation yields σ̄1t2σ̄1σ̄1 = t2σ̄1σ̄1t2σ̄1,
thus t1 = t2 = 1 and t1 = ⋅ ⋅ ⋅ = tm−1 = 1. We conclude that

pr(σ1) = ⋅ ⋅ ⋅ = pr(σm−1) = σ̄1.

Once again, as in the previous case we have

pr(ρi) = si ⋅ ρn+1G
(2)

∈ G/G(2),

for n + 1 ≤ i ≤ n +m, where si ∈ ker(p) = G(1)/G(2) and sn+1 may be taken to be 1.
We will denote ρn+1G

(2) by ρ̄n+1. The proof that σ̄2
1 = 1 differs here, since we can no longer

use the argument of central elements. Projecting relation (iii) of Proposition 2.2.5, ρkρjρ−1
k =

(σ−1
j−1−n . . . σ

−1
k+1−nσ

2
k−nσk+1−n . . . σj−1−n)ρj , into G/G(2), for k = n + 1 and j = n + 2, we obtain

ρ̄n+1sn+2ρ̄n+1ρ̄
−1
n+1ρ̄

−1
n+1s

−1
n+2 = σ̄2

1 . Thus, ρ̄n+1sn+2ρ̄
−1
n+1s

−1
n+2 = σ̄2

1 . We continue with the projection
into G/G(2) of the relation σ2ρn+1σ

−1
2 = ρn+1 ((vii) of Proposition 2.2.5), which implies that

σ̄1ρ̄n+1σ̄
−1
1 = ρ̄n+1, and thus ρ̄n+1 commutes with σ̄1. Furthermore, the projection of the relation

σ1ρn+1σ
−1
1 = σ2

1ρn+2 ((vii) of Proposition 2.2.5) into G/G(2), gives rise to σ̄1ρ̄n+1σ̄
−1
1 = σ̄2

1sn+2ρ̄n+1.
Since ρ̄n+1 commutes with σ̄1, σ̄2

1sn+2 = 1, which yields sn+2 = σ̄
−2
1 . Combining this result with the

relation ρ̄n+1sn+2ρ̄
−1
n+1s

−1
n+2 = σ̄

2
1 , we conclude that σ̄2

1 = 1, but also that σn+2 = 1.
We now prove that the generators ρn+1, . . . , ρn+m all have the same image in G/G(2) under pr.

Since m ≥ 5, the relation σlρkσ−1
l = ρk ((vii) of Proposition 2.2.5), which holds for l ≠ k −n, k −n− 1

and n + 1 ≤ k ≤ n + m exists in G. We fix n + 1 ≤ k ≤ n + m − 1. Thus, there exists some
1 ≤ l ≤ m − 1, such that σlρkσ−1

l = ρk. So, projecting this relation into G/G(2) it follows that
σ̄1skρ̄n+1σ̄

−1
1 = skρ̄n+1. Thus, σ̄1 commutes with skρ̄n+1, for n + 1 ≤ k ≤ n +m − 1. Furthermore,

the projection of the relation σk−nρkσ−1
k−n = σ2

k−nρk+1 ((vii) of Proposition 2.2.5) in G/G(2), for
n + 1 ≤ k ≤ n +m − 1, implies that σ̄1skρ̄n+1σ̄

−1
1 = 1 ⋅ sk+1ρ̄n+1. Since σ̄1 commutes with skρ̄n+1, we

obtain skρ̄n+1 = sk+1ρ̄n+1 for n + 1 ≤ k ≤ n +m − 1 and therefore sk = sk+1 for n + 1 ≤ k ≤ n +m − 1.
Hence, pr(ρn+1) = ⋅ ⋅ ⋅ = pr(ρn+m) = ρ̄n+1, and σ̄1ρ̄n+1 = ρ̄n+1σ̄1.

As before, we have pr(Bi,j) = ai,j ⋅Bi,n+1G
(2) ∈ G/G(2), for 1 ≤ i ≤ n, n + 1 ≤ j ≤ n +m, where

ai,j ∈ ker(p) = G(1)/G(2) and ai,n+1 may be taken to be 1. We will denote Bi,n+1G
(2) by B̄i,n+1.
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Since m ≥ 5, the relation σrBi,jσ−1
r = Bi,j ((vi) of Proposition 2.2.5), for r ≠ j − n − 1, j − n, where

n+1 ≤ j ≤ n+m, 1 ≤ r ≤m−1 and 1 ≤ i ≤ n, exists in G. We fix n+1 ≤ j ≤ n+m−1. Thus, there exists
some 1 ≤ l ≤m−1, such that σlBi,jσ−1

l = Bi,j . So, projecting this relation into G/G(2) it follows that
σ̄1ai,jB̄i,n+1σ̄

−1
1 = ai,jB̄i,n+1. Hence, σ̄1 commutes with ai,jB̄i,n+1 for 1 ≤ i ≤ n, n+ 1 ≤ j ≤ n+m− 1.

Furthermore, the projection of the relation σj−nBi,jσ−1
j−n = Bi,j+1 ((vi) of Proposition 2.2.5) in

G/G(2), for 1 ≤ i ≤ n and n + 1 ≤ j ≤ n + m − 1, yields σ̄1ai,jB̄i,n+1σ̄
−1
1 = ai,j+1B̄i,n+1. Hence,

ai,j = ai,j+1, for 1 ≤ i ≤ n and n + 1 ≤ j ≤ n + m − 1. As a result, pr(Bi,j) = B̄i,n+1, for or
1 ≤ i ≤ n, n + 1 ≤ j ≤ n +m, and moreover σ̄1B̄i,n+1 = B̄i,n+1σ̄1, for 1 ≤ i ≤ n.

We conclude that the projection of the generating set of Bm(RP 2 ∖ {x1, . . . , xn}) given in
Proposition 2.2.5 gives rise to the following generating set for G/G(2):

{σ̄1, ρ̄n+1, B̄1,n+1, . . . , B̄n,n+1}.

Once again, projecting relations (i) and (iv) of Proposition 2.2.5, that hold in G into G/G(2),
we obtain B̄i,n+1B̄k,n+1 = B̄k,n+1B̄i,n+1, for 1 ≤ i, k ≤ n and ρ̄n+1B̄i,n+1 = B̄i,n+1ρ̄n+1, for 1 ≤ i ≤ n,
respectively.

Finally, the projection of relation (ii) of Proposition 2.2.5,

ρk
n

∏
i=1
Bi,k(σk−1−n . . . σ2

1 . . . σk−1−n) = (σk−n . . . σ2
m−1 . . . σk−n)ρ

−1
k ,

in G/G(2), for n + 1 ≤ k ≤ n +m, implies that ρ̄2
n+1

n

∏
i=1
B̄i,n+1 = 1.

We observe that the generators {σ̄1, ρ̄n+1, B̄1,n+1, . . . , B̄n,n+1} of G/G(2) commute pairwise. That
means that this quotient group is an Abelian group. Applying the same argument as before, we
conclude that G(1) ⊆ G(2). By the definition of the derived series, we know that G(2) ⊆ G(1), and
therefore we conclude that G(2) = G(1), which completes the proof.

Remark 2.3.3. Let n ≥ 1. We saw that Theorem 2.3.2 holds for m ≥ 3, as for the lower central
series, and for m ≥ 5, as for the derived series. To determine the lower central and derived series of
Bm(RP 2 ∖ {x1, . . . , xn} for the values m = 2 and m = 2,3,4, respectively, one cannot use the same
arguments as we did for proving Theorem 2.3.2, since couple of relations of Bm(RP 2 ∖ {x1, . . . , xn}
that we used during the proof do not hold for such small values of m, and so these cases become
harder to treat.
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CHAPTER 3

The splitting of the Fadell–Neuwirth short exact sequence for Bn(RP 2
)

In this Chapter we study the splitting problem of the short exact sequence

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1,q̄n+m,n

for n ≥ 2 and m ∈ N. Note that even though this short exact sequence exists for n ≥ 2, the
homomorphism q̄n+m,n exists for all values of n,m ∈ N. In Section 3.1 we prove that if n = 1 the
homomorphism q̄n+m,n does not admit a section for any value of m, but if n = 2 it admits a section
for every value of m. In Section 3.2, we present necessary conditions for this short exact sequence to
split, by shifting the problem to a quotiented short exact sequence. We conclude the third chapter
by constructing, for certain values of m, a geometric section for the Fadell–Neuwirth fibration
qn+m,n ∶ Fn+m(RP 2)/(Sn × Sm) ! Fn(RP 2)/Sn, which implies that, for these values of m, the
homomorphism q̄n+m,n admits a section.

3.1 The problem of the existence of a section for the cases
n = 1, 2

Let m ∈ N. In this section we will prove the non-existence of an algebraic section for the
homomorphism B1,m(RP 2)

q̄1+m,1
−−−−! B1(RP 2), where the map q̄1+m,1 can be considered geometrically

as the maps that forget the last m strands. Moreover, we will prove that the short exact sequence

1 Bm(RP 2 ∖ {x1, x2}) B2,m(RP 2) B2(RP 2) 1q̄2+m,2

splits for all values of m ∈ N. We will provide an explicit geometric section for the map q2+m,2 ∶
F2+m(Σ)/(S2 × Sm) ! F2(Σ)/S2 as well as an explicit algebraic section for the homomorphism
B2,m(RP 2)

q̄2+m,2
−−−−! B2(RP 2), where the maps q2+m,2 and q̄2+m,2 can be considered geometrically

as the maps that forget the last m points and the last m strands respectively.

Proposition 3.1.1. Let m ∈ N. The homomorphism q̄1+m,1 ∶ B1,m(RP 2)! B1(RP 2) admits no
section.

Proof. Let m ∈ N. We have B1(RP 2) = ⟨ρ1 ∣ ρ2
1 = 1⟩ ≅ Z2. Under a possible section s ∶ B1(RP 2)!

B1,m(RP 2), the only non-trivial element of B1(RP 2), ρ1, is of order two and thus it has to be
mapped to the full twist ∆2

1+m in B1,m(RP 2), since ∆2
1+m is the unique element of order two in

B1,m(RP 2) ⊂ B1+m(RP 2), see Proposition 2.1.3. The full twist ∆2
1+m = (σ1⋯σm)1+m is mapped by

q̄1+m,1 to the trivial element of B1(RP 2). Thus, we obtain (q̄1+m,1 ○ s)(ρ1) = q̄1+m,1(∆2
1+m) = 1 ≠ ρ1

and as a result, such a section s ∶ B1(RP 2)! B1,m(RP 2) cannot exist.

33
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Proposition 3.1.2. Let m ∈ N. The map q2+m,2 ∶ F2+m(Σ)/(S2 × Sm) ! F2(Σ)/S2 admits a
geometric section, for every m ∈ N.

Figure 3.1

Proof. Let x, y be two distinct unordered points in RP 2. We consider the quotient map from the
sphere onto the projective plane, which is a two-sheeted covering map. These two points, x, y, are
lifted to two pairs of distinct antipodal points on the sphere S2. Consider the elements x̃,−x̃ ∈ S2

and ỹ,−ỹ ∈ S2 whose projection under the quotient map into RP 2 is x and y respectively. For any
two distinct non-antipodal points on S2, there is a unique plane which passes through these two
points and the centre of the sphere. This plane intersects the sphere in a great circle. Whichever
choice of two non-antipodal points we make among the points x̃,−x̃, ỹ,−ỹ ∈ S2, the plane Π that
passes through these two points and the centre of the sphere intersects the sphere in a great circle
C, which clearly contains the points x̃,−x̃, ỹ,−ỹ. Consider now the unique unit vectors A⃗,−A⃗, that
are orthogonal to the plane Π. These two vectors intersect the sphere in two antipodal points
A,−A ∈ S2. Consider the geodesics Ax̃,A(−x̃),Aỹ,A(−ỹ), and −Ax̃,−A(−x̃),−Aỹ,−A(−ỹ). On
each of these geodesics, take n equally-spaced distinct new points on S2. We observe that these
8n new distinct points on S2 are projected to 4n new distinct points on RP 2, since the 4n equally
spaced distinct new points on Ax̃,A(−x̃),Aỹ,A(−ỹ) are antipodal to the 4n equally spaced distinct
new points on −Ax̃,−A(−x̃),−Aỹ,−A(−ỹ). Thus based on this construction, from two distinct
unordered points x, y in RP 2 we obtain 4n distinct unordered points in RP 2, different from x
and y. We will denote these 4n distinct unordered new points in RP 2 by N . This is an explicit
cross-section s4n ∶ F2(RP 2)/S2! F2+4n(RP 2)/(S2 × S4n), for n ∈ N.

Moreover, if we project the points A,−A from S2 into RP 2 we obtain one new point on RP 2,
which we denote by A for simplicity, different from x, y and from the other points of N on RP 2.
This yields an explicit cross-section s4n+1 ∶ F2(RP 2)/S2! F2+(4n+1)(RP 2)/(S2 × S4n+1), for n ∈ N.

We recall that the points x̃,−x̃, ỹ,−ỹ lie on the great circle C on S2. These four points give
rise to four geodesics; x̃ỹ, ỹ(−x̃),−x̃(−ỹ),−ỹx̃ on C. Taking the midpoints of each of these four
geodesics, we observe that the midpoint of the geodesic x̃ỹ is the antipodal point of the midpoint of
the geodesic −x̃(−ỹ) and the midpoint of the geodesic ỹ(−x̃) is the antipodal point of the midpoint
of the geodesic −ỹx̃. We denote these four midpoints by M1,−M1,M2,−M2, as we see in Figure 3.1.
As a result, projecting M1,−M1,M2,−M2 from S2 into RP 2 we obtain two new distinct unordered
points, which we denote by M1 and M2 for simplicity. Note that M1 and M2 are different from x, y
and from any other new point that we have already constructed. Thus the points of N that we have
already explicitly constructed together with these two new distinct unordered points M1 and M2,
provide an explicit cross-section s4n+2 ∶ F2(RP 2)/S2! F2+(4n+2)(RP 2)/(S2 × S4n+2), for n ∈ N.

Finally, if we consider the N points together with the two unordered distinct points, M1,M2
and the point A on RP 2, we obtain 4n + 3 new unordered distinct points different from x, y on the
projective plane. This leads to an explicit cross-section s4n+3 ∶ F2(RP 2)/S2! F2+(4n+3)(RP 2)/(S2×
S4n+3), for n ∈ N.

Summing up, there exists a cross-section, sm ∶ F2(RP 2)/S2 ! F2+m(RP 2)/(S2 × Sm), for the
fibration q2+m,2 ∶ F2+m(RP 2)/(S2 × Sm)! F2(RP 2)/S2, for any m ≡ 0,1,2,3 mod 4 and thus for
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any m ∈ N. We underline that the new points that we have obtained are independent from any
choice of the representatives on S2 of x, y and that this construction depends continuously on x
and y.

As well as the existence of a cross-section sm ∶ F2(RP 2)/S2 ! F2+m(RP 2)/(S2 × Sm), for
any m ∈ N we can also provide an explicit algebraic section s̄m ∶ B2(RP 2)! B2,m(RP 2) for the
homomorphism q̄2+m,2 ∶ B2,m(RP 2)! B2(RP 2), as we describe in the following proposition.

Proposition 3.1.3. Let m ∈ N. The homomorphism q̄2+m,2 ∶ B2,m(RP 2) ! B2(RP 2) admits a
section, for every m ∈ N.

Proof. Let m ∈ N. We will define explicitly an algebraic section s̄m ∶ B2(RP 2)! B2,m(RP 2) for
the homomorphism q̄2+m,2 ∶ B2,m(RP 2)! B2(RP 2). We will do so by considering two different
cases, when m = 2k and when m = 2k + 1, where k ∈ N. In Section 2.1 we mentioned that Van
Buskirk, ([VB66] page 87), proved that B2(RP 2) is isomorphic to the dicyclic group of order 16 and
in particular that B2(RP 2) = ⟨σ1, ρ1 ∣ (σ1ρ

−1
1 )4 = ρ2

1 = σ
2
1⟩. To be compatible with our upcoming

presentation, we give the following presentation of the group B2(RP 2):

B2(RP 2
) = ⟨a2, ∆2 ∣ a8

2 = 1, ∆2
2 = a

4
2, ∆2a2∆−1

2 = a−1
2 ⟩ ≅Dic16,

where a2 = σ
−1
1 ρ1 and ∆2 = σ1. Note that the isomorphism follows from Proposition 2.1.7. Before

examining the two different cases, we will prove a general statement which we will use later. Let

Dic8(2+2k) = ⟨x, y ∣ x4(2k+2)
= 1, y2

= x2(2k+2), yxy−1
= x−1

⟩,

then
Dic16 ≅ ⟨xk+1, xky ∣ x8(k+1)

= 1, (xky)2
= x4(k+1), (xky)xk+1

(xky)−1
= x−(k+1)

⟩. (1)

To begin with, note that from the given presentation of Dic8(2+2k) it follows that

xk+1 is of order 8. (2)

Moreover, using the relation yxy−1 = x−1 we have

(xky)2
= xkyxky−1y2

= xkx−ky2
= y2.

From the given presentation of Dic8(2+2k) we also have

x4(k+1)
= y2.

Thus,
(xky)2

= x4(k+1). (3)

Lastly, from the relation yxy−1 = x−1, we deduce that

(xky)xk+1
(xky)−1

= x−(k+1). (4)

From relations (2), (3) and (4) we conclude that ⟨xk+1, xky⟩ is isomorphic to a quotient of the
dicyclic group of order 16. But

Dic8(2+2k) = ⟨x⟩ ⊔ ⟨x⟩y,

where xk+1 ∈ ⟨x⟩ while xky ∈ ⟨x⟩y. Thus, ⟨xk+1⟩∩{xky} = ∅, which implies that ⟨xk+1, xky⟩ contains
at least 16 distinct elements, and so

⟨xk+1, xky⟩ ≅Dic16.

(a) First, let m = 2k, for k ∈ N. From Proposition 2.1.6, for n ≥ 2, the group Bn(RP 2), contains
the dicyclic group of order 8n as a subgroup,

Dic8n = ⟨x, y ∣ x2n
= y2, yxy−1

= x−1
⟩.
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Thus, Dic8(2+2k) is a subgroup of B2+2k(RP 2). From Proposition 2.1.7 we have

Dic8(2+2k) = ⟨a2+2k, ∆2+2k ∣ a
4(2k+2)
2+2k = 1, ∆2

2+2k = a
2(2k+2)
2+2k , ∆2+2ka2+2k∆−1

2+2k = a
−1
2+2k⟩,

where a2+2k = σ−1
1+2k⋯σ

−1
1 ρ1 and ∆2+2k = (σ1σ2⋯σ1+2k)(σ1σ2⋯σ2k)⋯(σ1σ2)σ1. We consider

the subgroup of Dic8(2+2k) generated by the elements ak+1
2+2k and ak2+2k∆2+2k and it follows

from (1) that ⟨ak+1
2+2k, a

k
2+2k∆2+2k⟩ ≅Dic16. Therefore, the homomorphism

i1 ∶ B2(RP 2
)! B2+2k(RP 2

)

defined by
i1(a2) = a

k+1
2+2k and i1(∆2) = a

k
2+2k∆2+2k

is an injective homomorphism of B2(RP 2) in B2+2k(RP 2). Note that the elements ak+1
2+2k

and ak2+2k∆2+2k have the correct permutation type, but no transposition corresponds to the
first and second strand. In order to obtain an embedding of B2(RP 2) in B2,2k(RP 2), we
need to conjugate ak+1

2+2k and ak2+2k∆2+2k by a suitable element. Thus, we conjugate ak+1
2+2k and

ak2+2k∆2+2k by (σ2σ3⋯σk+1). We set

c ∶= (σ2σ3⋯σk+1).

Note that the projection of the elements c and c−1 in the symmetric group S2+2k is the
permutation given by (k + 1)-cycles

(2 (k + 2) (k + 1) . . .5 4 3) and ((k + 2) 2 3 . . . (k − 1) k (k + 1)) respectively.

Moreover, the projection of element a2+2k in S2+2k is the permutation given by (2k + 2)-cycle
(1 2 . . . (2k + 1) (2k + 2)). Thus, the projection of element ak+1

2+2k in S2+2k is the permutation
that corresponds to the following product of (k + 1) transpositions:

(1 (k + 2))(2 (k + 3))⋯(k (2k + 1))((k + 1) (2k + 2)).

It follows that c ⋅ak+1
2+2k ⋅ c

−1 ∈ B2,2k(RP 2), since its projection in S2+2k is the permutation given
by the following product of (k + 1) transpositions:

(1 2)(3 (k + 3))⋯(p (k + p))⋯((k + 1) (2k + 1))((k + 2) (2k + 2)), for 3 ≤ p ≤ k + 2.

We have a similar result for the element c ⋅ ak2+2k∆2+2k ⋅ c
−1. For simplicity, we will focus only

on the 1st and 2nd points, regarding the permutation that corresponds to the projection of the
element c ⋅ ak2+2k∆2+2k ⋅ c

−1 in S2+2k. We have the following:

1 c
−−! 1 ak2+2k−−−! k + 1 ∆2+2k−−−! k + 2 c−1

−−! 2 and 2 c
−−! k + 2 ak2+2k−−−! 2k + 2 ∆2+2k−−−! 1 c−1

−−! 1.

Thus, the projection of the element c ⋅ ak2+2k∆2+2k ⋅ c
−1 in S2+2k is a permutation that contains

the transposition (1 2). Therefore, c ⋅ ak2+2k∆2+2k ⋅ c
−1 ∈ B2,2k(RP 2). As a result, we conclude

that the homomorphism
ī1 ∶ B2(RP 2

)! B2,2k(RP 2
)

defined by
ī1(a2) = c ⋅ a

k+1
2+2k ⋅ c

−1 and ī1(∆2) = c ⋅ a
k
2+2k∆2+2k ⋅ c

−1

is an embedding of B2(RP 2) in B2,2k(RP 2), since B2(RP 2) is generated by a2 and ∆2. To
prove that q̄2+2k,2 ○ ī1 = idB2(RP 2), which means that the homomorphism ī1 is indeed a section
for q̄2+2k,2 ∶ B2,2k(RP 2)! B2(RP 2), it suffices to make the following observation, which is
also illustrated in Figures 3.2 and 3.3, in the case k = 3.
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Figure 3.2 The image of a2 = σ
−1
1 ρ1 under the map ī1 ∶ B2(RP 2)! B2,2k(RP 2), for k = 3. Note

that with the blue dash we illustrate the element ρ1.

Figure 3.3 The image of ∆2 = σ1 under the map ī1 ∶ B2(RP 2)! B2,2k(RP 2), for k = 3. Note that
with the blue dash we illustrate the element ρ1.

Note that in the braid c, the 1st and the 2nd strands have no crossing between them, and that
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the 2nd strand ends at the (k + 2)th point, while the 1st strand ends at the 1st point. Then, in
the braid ak+1

2+2k there is a negative crossing, σ−1
k+1, between the 1st strand and the (k + 2)th,

as the 1st strand ends at the (k + 2)th point and the (k + 2)th strand ends at the 1st point
under ρ1. Finally, the braid c−1 has no crossing between the 1st and the (k + 2)th strands
and the (k + 2)th strand ends at the 2nd point. Thus, the braid, c ⋅ ak+1

2+2k ⋅ c
−1, concerning the

first and the second strands, consists precisely of a crossing σ−1
1 and then ρ1. This implies

that the homomorphism q̄2+2k,2, that can be considered geometrically as forgetting the last 2k
strands, maps the element c ⋅ ak+1

2+2k ⋅ c
−1 to σ−1

1 ρ1. Therefore, (q̄2+2k,2 ○ ī1)(a2) = a2 ∈ B2(RP 2).
Similarly, in the braid c, the 1st and the 2nd strands have no crossing between them, and the
2nd strand ends at the (k + 2)th point, while the first stand ends at the first point. Then, in
the braid ak2+2k there is no crossing between the 1st strand and the (k + 2)th, where the 1st
strand ends at the (k + 1)th point and the (k + 2)th strand ends at the (2k + 2)th point. The
braid ∆2+2k contains only one positive crossing σk+1 between the (k + 1)th strand and the
(2k + 2)th, as the (k + 1)th strand ends at the (k + 2)th point and the (2k + 2)th ends at the
1st point. Finally, the braid c−1 has no crossing between the 1st and the (k + 2)th strands and
the (k + 2)th strand ends at the 2nd point. Thus, the braid, c ⋅ ak2+2k∆2+2k ⋅ c

−1, concerning
the first and the second strands, consists precisely of a crossing σ1. This implies that the
homomorphism q̄2+2k,2, that can be considered geometrically as forgetting the last 2k strands,
maps the element c ⋅ ak2+2k∆2+2k ⋅ c

−1 to σ1. Therefore, (q̄2+2k,2 ○ ī1)(∆2) = ∆2 ∈ B2(RP 2).
Summing up, the homomorphism ī1 is a section for the homomorphism q̄2+2k,2.

(b) Now let m = 2k + 1, for k ∈ N. From Proposition 2.1.6, for n ≥ 3, the group Bn(RP 2), contains
the dicyclic group of order 8(n − 1) as a subgroup,

Dic8(n−1) = ⟨x, y ∣ x2(n−1)
= y2, yxy−1

= x−1
⟩.

Thus, Dic8(2+2k) is a subgroup of B2+(2k+1)(RP 2), where from Proposition 2.1.7,

Dic8(2+2k) = ⟨b,∆a−1
∣ b4(2k+2)

= 1, (∆a−1
)
2
= b2(2k+2), (∆a−1

)b(∆a−1
)
−1

= b−1
⟩,

and where b ∶= b2+(2k+1) = σ−1
2k+1⋯σ

−1
1 ρ1, a ∶= a2+(2k+1) = σ−1

2k+2⋯σ
−1
1 ρ1 and ∆ ∶= ∆2+(2k+1) =

(σ1σ2⋯σ2k+2)(σ1σ2⋯σ2k+1)⋯(σ1σ2)σ1. We consider the subgroup of Dic8(2+2k) generated by
the elements bk+1 and bk∆a−1 and it follows from (1) that ⟨bk+1, bk∆a−1⟩ ≅Dic16. Therefore,
the homomorphism

i2 ∶ B2(RP 2
)! B2+(2k+1)(RP 2

)

defined by
i2(a2) = b

k+1 and i2(∆2) = b
k∆a−1

is an injective homomorphism of B2(RP 2) in B2+(2k+1)(RP 2). In order to obtain an embedding
of B2(RP 2) in B2,(2k+1)(RP 2), we need to conjugate bk+1 and bk∆a−1 by a suitable element.
Thus, as in the case (a), we conjugate bk+1 and bk∆a−1 by c ∶= (σ2σ3⋯σk+1). Moreover, note
that the braid b = σ−1

2k+1⋯σ
−1
1 ρ1 ∈ B2+(2k+1)(RP 2) differs from the braid a2+2k = σ

−1
2k+1⋯σ

−1
1 ρ1 ∈

B2+2k(RP 2) by just one extra vertical strand that corresponds to the (2 + (2k + 1))th point.
That means that the element bk+1 and the element ak+1

2+2k have the same braiding concerning
the first (2 + 2k) points. Therefore, as we saw in case (a), the projection of element a2+2k in
S2+2k is the permutation given by the (2k + 2)-cycle (1 2 . . . (2k + 1) (2k + 2)), and the same
holds for the projection of the element b in S2+(2k+1). Moreover, as we saw in case (a), the
projection of the element ak+1

2+2k in S2+2k is the permutation given by the following product of
(k + 1)-transpositions:

(1 (k + 2))(2 (k + 3))⋯(k (2k + 1))((k + 1) (2k + 2)),

and therefore, the element bk+1 corresponds to the same permutation under the projection in
S2+(2k+1).
It follows that c ⋅ bk+1 ⋅ c−1 ∈ B2,(2k+1)(RP 2), since its projection in S2+(2k+1) is the permutation
given by the following product of (k + 1)-transpositions:

(1 2)(3 (k + 3))⋯(p (k + p))⋯((k + 1) (2k + 1))((k + 2) (2k + 2)), for 3 ≤ p ≤ k + 2.
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We have a similar result for the element c ⋅ bk∆a−1 ⋅ c−1. For simplicity, we will focus only on
the 1st and 2nd points, regarding the permutation that corresponds to the projection of the
element c ⋅ bk∆a−1 ⋅ c−1 in S2+(2k+1). We have the following:

1 c
−−! 1 bk

−−! k + 1 ∆
−−! k + 3 a−1

−−! k + 2 c−1

−−! 2

and

2 c
−−! k + 2 bk

−−! 2k + 2 ∆
−−! 2 a−1

−−! 1 c−1

−−! 1.

Thus, the projection of the element c ⋅ bk∆a−1 ⋅ c−1 in S2+(2k+1) is a permutation that contains
the transposition (1 2). Therefore, c ⋅ bk∆a−1 ⋅ c−1 ∈ B2,2k+1(RP 2). As a result, we conclude
that the homomorphism

ī2 ∶ B2(RP 2
)! B2,2k+1(RP 2

),

defined by ī2(a2) = c ⋅ b
k+1 ⋅ c−1 and ī2(∆2) = c ⋅ b

k∆a−1 ⋅ c−1 is an embedding of B2(RP 2) in
B2,2k+1(RP 2), since B2(RP 2) is generated by a2 and ∆2. To prove that

q̄2+(2k+1),2 ○ ī2 = idB2(RP 2),

which means that the homomorphism ī2 is indeed a section for

q̄2+(2k+1),2 ∶ B2,2k+1(RP 2
)! B2(RP 2

),

it suffices to make the following observation, which is also illustrated in Figures 3.4 and 3.5, in
the case k = 3.

Figure 3.4 The image of a2 = σ
−1ρ1 under the map ī2 ∶ B2(RP 2)! B2,2k+1(RP 2), for k = 3. Note

that with the blue dash we illustrate the element ρ1.
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Figure 3.5 The image of ∆2 = σ1 under the map ī2 ∶ B2(RP 2)! B2,2k+1(RP 2), for k = 3. Note that
the first three blue dashes illustrate the element ρ1, while the last one illustrates the element ρ−1

1 .

Note that in the braid c, the 1st and the 2nd strands have no crossing between them, and that
the 2nd strand ends at the (k + 2)th point, while the 1st strand ends at the 1st point. Then, in
the braid bk+1 there is a negative crossing, σ−1

k+1, between the 1st strand and the (k + 2)th, as
the 1st strand ends at the (k+2)th point and the (k+2)th strand ends at the 1st point under ρ1.
Finally, the braid c−1 has no crossing between the 1st and the (k+2)th strands and the (k+2)th
strand ends at the 2nd point. Thus, the braid, c ⋅ bk+1 ⋅ c−1, concerning the first and the second
strands, consists precisely of a crossing σ−1

1 and then ρ1. This implies that the homomorphism
q̄2+(2k+1),2, that can be considered geometrically as forgetting the last (2k + 1) strands, maps
the element c ⋅ bk+1 ⋅ c−1 to σ−1

1 ρ1. Therefore, (q̄2+(2k+1),2 ○ ī2)(a2) = a2 ∈ B2(RP 2). Similarly,
in the braid c, the 1st and the 2nd strands have no crossing between them, and the 2nd strand
ends at the (k + 2)th point, while the 1st stand ends at the 1st point. Then, in the braid bk
there is no crossing between the 1st strand and the (k + 2)th, where the 1st strand ends at the
(k + 1)th point and the (k + 2)th strand ends at the (2k + 2)th point. The braid ∆ contains
only one positive crossing σk+1 between the (k+1)th strand and the (2k+2)th, as the (k+1)th
strand ends at the (k + 3)th point and the (2k + 2)th ends at the 2nd point. Then, the braid
a−1 has no crossing between the 2nd and the (k + 3)th strands, where the 2nd strand ends at
the 1st point and the (k + 3)th and the (k + 2)th point. Finally, the braid c−1 has no crossing
between the 1st and the (k + 2)th strands and the (k + 2)th strand ends at the 2nd point.
Thus, the braid, c ⋅ bk∆a−1 ⋅ c−1, concerning the first and the second strands, consists precisely
of a crossing σ1. This implies that the homomorphism q̄2+(2k+1),2, that can be considered
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geometrically as forgetting the last (2k + 1) strands, maps the element c ⋅ bk∆a−1 ⋅ c−1 to σ1.
Therefore, (q̄2+(2k+1),2 ○ ī2)(∆2) = ∆2 ∈ B2(RP 2). Summing up, the homomorphism ī2 is a
section for the homomorphism q̄2+(2k+1),2.

We conclude that, for every m ∈ N, we have an explicit algebraic section

s̄ ∶ B2(RP 2
)! B2,m(RP 2

)

for the homomorphism q̄2+m,2 ∶ B2,m(RP 2)! B2(RP 2) defined as follows:

s̄ =

⎧⎪⎪
⎨
⎪⎪⎩

ī1, for m = 2k,
ī2, for m = 2k + 1.

3.2 The splitting problem for the cases n ≥ 3
Let m ∈ N and n ≥ 3. We consider the following short exact sequence:

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1.q̄n+m,n (5)

In this Section we study the splitting problem of the short exact sequence (5), for n ≥ 3 and m ∈ N.
In particular, we first consider the case m = 1, where we prove that this short exact sequence does
not split for any value of n ≥ 3, and later the consider the case m > 1.
Proposition 3.2.1. For n ≥ 3, the short exact sequence

1 B1(RP 2 ∖ {x1, . . . , xn}) Bn,1(RP 2) Bn(RP 2) 1q̄n+1,n

does not split.
Proof. Let n ≥ 3. We have the following commutative diagram of short exact sequences:

1 Pn+1(RP 2) Bn,1(RP 2) Sn 1

1 Pn(RP 2) Bn(RP 2) Sn 1.

q̄n+1,n∣
Pn+1(RP2) q̄n+1,n

The horizontal short exact sequences are those described in (1). Suppose on the contrary that
for n ≥ 3, the homomorphism q̄n+1,n ∶ Bn,1(RP 2)! Bn(RP 2) admits an algebraic section s̄n+1,n ∶
Bn(RP 2)! Bn,1(RP 2). Recall that the homomorphism q̄n+1,n can be considered geometrically as
forgetting the last strand. Therefore, from the commutative diagram it follows that there exists an
algebraic section s̄n+1,n∣Pn(RP 2) for the homomorphism q̄n+1,n∣Pn+1(RP 2), as well. But from Theorem
1.3.3, we know that for n ≥ 3 and m = 1 the homomorphism Pn+1(RP 2)! Pn(RP 2) does not admit
an algebraic section. We thus reach a contradiction, and this concludes the proof.

We consider now the case m > 1. For n ≥ 3 and m > 1 we will provide a necessary condition, in
order to have that the short exact sequence (5) splits. Let N be a normal subgroup of Bn,m(RP 2),
which is contained also in Bm(RP 2 ∖ {x1, . . . , xn}). The obtained quotiented short exact sequence
is the following:

1 Bm(RP 2 ∖ {x1, . . . , xn})/N Bn,m(RP 2)/N Bn(RP 2) 1,q (6)

where q ∶ Bn,m(RP 2)/N ! Bn(RP 2) denotes the induced homomorphism. We observe that if the
short exact sequence (5) splits then this quotiented short exact sequence has to split as well. To be
more precise, consider the following diagram of short exact sequences:

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1

1 Bm(RP 2 ∖ {x1, . . . , xn})/N Bn,m(RP 2)/N Bn(RP 2) 1.

pr

q̄n+m,n

q

(7)
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Suppose that the homomorphism q̄n+m,n ∶ Bn,m(RP 2) ! Bn(RP 2) admits a section s̄n+m,n ∶

Bn(RP 2)! Bn,m(RP 2). Then q ∶ Bn,m(RP 2)/N ! Bn(RP 2) admits a section s = pr ○ s̄n+m,n ∶
Bn(RP 2)! Bn,m(RP 2)/N . Based on this observation, we see that it is helpful to know the lower
central and derived series of the braid groups appearing in these group extensions, since possible
choices of the group N could be elements of either the lower central series of Bm(RP 2∖{x1, . . . , xn})
or of the derived series of Bm(RP 2 ∖ {x1, . . . , xn}). The choice that we make for N , in order to
study the splitting of the quotiented short exact sequence (6) is Γ2(Bm(RP 2 ∖ {x1, . . . , xn})).
We know that the subgroups of the lower central series of a group are characteristic subgroups.
Thus, Γ2(Bm(RP 2 ∖ {x1, . . . , xn})) is a characteristic subgroup of Bm(RP 2 ∖ {x1, . . . , xn}), and
since Bm(RP 2 ∖ {x1, . . . , xn}) is a normal subgroup of Bn,m(RP 2), it follows that Γ2(Bm(RP 2 ∖
{x1, . . . , xn})) is a normal subgroup of Bn,m(RP 2). For Γ ∶= Γ2(Bm(RP 2 ∖ {x1, . . . , xn})), which
is a normal subgroup of Bn,m(RP 2) contained in Bm(RP 2 ∖ {x1, . . . , xn}), we get the following
short exact sequence:

1 Bm(RP 2 ∖ {x1, . . . , xn})/Γ Bn,m(RP 2)/Γ Bn(RP 2) 1.q (8)

In order to study the short exact sequence (8) we need to know a presentation of the quotients
Bm(RP 2∖{x1, . . . , xn})/Γ and Bn,m(RP 2)/Γ. We already have a presentation of the Abelian group
Bm(RP 2 ∖ {x1, . . . , xn})/Γ, given by Corollary 2.2.11. We recall that Bm(RP 2 ∖ {x1, . . . , xn})/Γ ≅

Zn ×Z2, where ρ, β1, . . . , βn−1 generate the Zn-component and σ the Z2-component. Regarding a
possible presentation of Bn,m(RP 2)/Γ, one can obtain one using the presentation of Bm(RP 2 ∖
{x1, . . . , xn})/Γ, given by Corollary 2.2.11, the given presentation of Bn(RP 2) in Theorem 2.1.1,
and applying standard techniques for obtaining a presentation of group extensions as described in
[Joh97] (page 139) and presented in detail in Propositions 2.2.1, 2.2.4, 2.2.5 and Theorem 2.2.7.

However, for N = Γ the group Bm(RP 2 ∖ {x1, . . . , xn})/Γ is the Abelianisation of Bm(RP 2 ∖
{x1, . . . , xn}). Thus, from commutative diagram of short exact sequences (7), a presentation of
Bn,m(RP 2)/Γ may also be obtained straightforwardly by considering as set of generators the union
of the generators of Bm(RP 2 ∖ {x1, . . . , xn})/Γ and the coset representatives of the generators of
Bn(RP 2), and as set of relations the relations of Bn,m(RP 2), given in Theorem 2.2.7, projected
into Bn,m(RP 2)/Γ. Thus, we obtain the following proposition.

Proposition 3.2.2. For n ≥ 2, m ≥ 1, the following constitutes a presentation of Bn,m(RP 2)/Γ,
where Γ = Γ2(Bm(RP 2 ∖ {x1, . . . , xn})).

Generators: ρ, σ, β1, . . . , βn, τ1, . . . , τn−1, q1, . . . , qn.

Relations:

(I) The relations (i)-(vi) from Corollary 2.2.11,

(II) For 1 ≤ i, k ≤ n − 1, 1 ≤ j ≤ n,
τiτk = τkτi, for ∣i − k∣ > 1,
τiτi+1τi = τi+1τiτi+1,
τiqj = qjτi, for j ≠ i, i + 1,
qi = τiqi+1τi,
τ2
i = q

−1
i+1q

−1
i qi+1qi,

q2
1 = (τ1τ2 . . . τn−2τn−1)β

m
n (τn−1τn−2 . . . τ2τ1).

(III) (a) For 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n,
στi = τiσ,
σqj = qjσ.

(b) For 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n,
ρτi = τiρ,
qjρ = βjρqj.

(c) For 1 ≤ i ≤ n − 1, 1 ≤ k ≤ n,
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τiβkτ
−1
i =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

βk, for i ≠ k − 1, k.
βk−1, for i = k − 1.
βk+1, for i = k.

(d) For 1 ≤ j, k ≤ n,

qjβkq
−1
j =

⎧⎪⎪
⎨
⎪⎪⎩

βk, for j ≠ k.
β−1
k , for j = k.

Remark 3.2.3. In Proposition 3.2.2 we denote by τi and qj the coset representatives of the generators
σi and ρj of Bn(RP 2), given by Theorem 2.1.1, for 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n.

Now, suppose that there exists a section s̄n+m,m ∶ Bn(RP 2) ! Bn,m(RP 2) for the map
q̄n+m,m ∶ Bn,m(RP 2) ! Bn(RP 2). As we already saw, it follows that there exists a section
s ∶ Bn(RP 2)! Bn,m(RP 2)/Γ for q ∶ Bn,m(RP 2)/Γ! Bn(RP 2). From Corollary 2.2.11, the set
{β1, . . . , βn−1, ρ, σ} forms a generating set of ker(q), which is the group Bm(RP 2∖{x1, . . . , xn})/Γ ≅

Zn ×Z2. This allows us to consider the image of the generating set of Bn(RP 2), under the section
s, as follows:

s(τi) = τi ⋅ β
ki,1
1 β

ki,2
2 ⋯β

ki,n−1
n−1 ρliσmi , for 1 ≤ i ≤ n − 1, (9)

s(qj) = qj ⋅ β
k̄j,1
1 β

k̄j,2
2 ⋯β

k̄j,n−1
n−1 ρl̄jσm̄j , for 1 ≤ j ≤ n, (10)

where ki,1, ki,2, . . . , ki,n−1, li, k̄j,1, k̄j,2, k̄j,n−1, l̄j ∈ Z and mi, m̄j ∈ {0,1}. Note that these integers are
unique for every s(τi) and s(qj), where 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n. Under the assumption that there
exists a section s ∶ Bn(RP 2) ! Bn,m(RP 2)/Γ, the images under s of the relations in Bn(RP 2)
are also relations in Bn,m(RP 2)/Γ. In this way, we will obtain further information regarding
the exponents in the formulas (9), (10) and possible restrictions for the value of m, under the
assumption that the short exact sequence (5) splits.

Based on the presentation of Bn(RP 2) for n ≥ 3 given by Theorem 2.1.1, we have the following
six relations, which hold in Bn,m(RP 2)/Γ:

• R1. s(τiqj) = s(qjτi), for j ≠ i, i + 1, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n.

• R2. s(qi) = s(τiqi+1τi), for 1 ≤ i ≤ n − 1.

• R3. s(τiτi+1τi) = s(τi+1τiτi+1), for 1 ≤ i ≤ n − 1.

• R4. s(τ2
i ) = s(q

−1
i+1q

−1
i qi+1qi), for 1 ≤ i ≤ n − 1.

• R5. s(τiτj) = s(τjτi), for ∣i − j∣ > 1 and 1 ≤ i, j ≤ n − 1.

• R6. s(q2
1) = s(τ1τ2⋯τn−2τ

2
n−1τn−2⋯τ2τ1).

In order to prove the theorem that follows, we will make use of the following relations in
Bn,m(RP 2)/Γ that appear in Proposition 3.2.2:

1. σ2 = 1, relation (i) of Corollary 2.2.11,

2. βn = β−1
1 ⋯β−1

i ⋯β−1
n−1ρ

−2, relation (ii) of Corollary 2.2.11,

3. βj , σ, ρ commute pairwise, relations (iii), (iv), (v) of Corollary 2.2.11,

4. τi commutes with σ, ρ, relations (III)(a), (III)(b) of Proposition 3.2.2,

5. βiτi = τiβi+1 and βi+1τi = τiβi, relation (III)(c) of Proposition 3.2.2,

6. qi = τiqi+1τi and τiqj = qjτi, for j ≠ i, i + 1, relation (II) of Proposition 3.2.2,
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7. qj commutes with σ, relation (III)(a) of Proposition 3.2.2,

8. βjqj = qjβ−1
j and βiqj = qjβi, for j ≠ i, relation (III)(d) of Proposition 3.2.2,

9. ρqj = qjβjρ, which is deduced from qjρ = βjρqj and βjqj = qjβ
−1
j given by (III)(d) and

(III)(b) of Proposition 3.2.2 respectively. Thus, using also the fact that ρ commutes with
βi, it holds that ρkqj = ρk−1(ρqj) = ρk−1(qjβjρ) = ρk−2(ρqj)(βjρ) = ρk−2(qjβjρ)(βjρ) =

ρk−2(qjβ
2
j ρ

2) = ⋯ = ρ(qjβ
k−1
j ρk−1) = qjβ

k
j ρ

k, which means that

ρkqj = qjβ
k
j ρ

k, for k ∈ Z,

where 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n.

Theorem 3.2.4. Let m ≥ 1 and n ≥ 3. If the following short exact sequence

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1q̄n+m,n (11)

splits, then m = k(n − 1), where k ≥ 1.

Proof. Based on the above discussion and on the assumption that the short exact sequence (11)
splits, we will examine the relations R1.-R6., which hold in Bn,m(RP 2)/Γ, from which we will
deduce that m is a multiple of (n − 1).

We start with the relation R1. where s(τiqj) = s(qjτi), for j ≠ i, i+ 1, 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ n.
We focus on the case where i = n − 1 and 1 ≤ j ≤ n − 2. Using the formulas (9), (10) and the above
relations, 1.-9., we have the following:

s(τn−1qj) = τn−1β
kn−1,1
1 ⋯β

kn−1,j
j ⋯β

kn−1,n−1
n−1 ρln−1σmn−1qjβ

k̄j,1
1 ⋯β

k̄j,j
j ⋯β

k̄j,n−1
n−1 ρl̄jσm̄j

= τn−1qjβ
kn−1,1
1 ⋯β

−kn−1,j
j ⋯β

kn−1,n−1
n−1 βln−1

j ρln−1σmn−1β
k̄j,1
1 ⋯β

k̄j,j
j ⋯β

k̄j,n−1
n−1 ρl̄jσm̄j

= τn−1qjβ
kn−1,1+k̄j,1
1 ⋯β

−kn−1,j+ln−1+k̄j,j
j ⋯β

kn−1,n−1+k̄j,n−1
n−1 ρln−1+l̄jσmn−1+m̄j

and

s(qjτn−1) = qjβ
k̄j,1
1 ⋯β

k̄j,j
j ⋯β

k̄j,n−1
n−1 ρl̄jσm̄jτn−1β

kn−1,1
1 ⋯β

kn−1,j
j ⋯β

kn−1,n−1
n−1 ρln−1σmn−1

= qjτn−1β
k̄j,1
1 ⋯β

k̄j,j
j ⋯β

k̄j,n−2
n−2 βk̄j,n−1

n ρl̄jσm̄jβ
kn−1,1
1 ⋯β

kn−1,j
j ⋯β

kn−1,n−1
n−1 ρln−1σmn−1

= qjτn−1β
k̄j,1
1 ⋯β

k̄j,j
j ⋯β

k̄j,n−2
n−2 (β

−k̄j,n−1
1 ⋯β

−k̄j,n−1
j ⋯β

−k̄j,n−1
n−1 ρ−2k̄j,n−1)ρl̄jσm̄j

β
kn−1,1
1 ⋯β

kn−1,j
j ⋯β

kn−1,n−1
n−1 ρln−1σmn−1

= qjτn−1β
k̄j,1−k̄j,n−1+kn−1,1
1 ⋯β

k̄j,j−k̄j,n−1+kn−1,j
j ⋯β

k̄j,n−2−k̄j,n−1+kn−1,n−2
n−2 β

−k̄j,n−1+kn−1,n−1
n−1

ρl̄j−2k̄j,n−1+ln−1σm̄j+mn−1 .

Comparing the coefficients of the elements ρ and βj of Bn,m(RP 2)/Γ in these two equations, we
obtain the following:

k̄j,n−1 = 0, for 1 ≤ j ≤ n − 2. (12)

ln−1 = 2kn−1,j , for 1 ≤ j ≤ n − 2. (13)

In the case where j = n and 1 ≤ i < n − 1 we have the following:

s(τiqn) = τiβ
ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 ⋯β

ki,n−1
n−1 ρliσmiqnβ

k̄n,1
1 ⋯β

k̄n,i
i β

k̄n,i+1
i+1 ⋯β

k̄n,n−1
n−1 ρl̄nσm̄n

= τiqnβ
ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 ⋯β

ki,n−1
n−1 βlin ρ

liσmiβ
k̄n,1
1 ⋯β

k̄n,i
i β

k̄n,i+1
i+1 ⋯β

k̄n,n−1
n−1 ρl̄nσm̄n

= τiqnβ
ki,1−li+k̄n,1
1 ⋯β

ki,i−li+k̄n,i
i β

ki,i+1−li+k̄n,i+1
i+1 ⋯β

ki,n−1−li+k̄n,n−1
n−1 ρli−2li+l̄nσmi+m̄n
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and

s(qnτi) = qnβ
k̄n,1
1 ⋯β

k̄n,i
i β

k̄n,i+1
i+1 ⋯β

k̄n,n−1
n−1 ρl̄nσm̄nτiβ

ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 ⋯β

ki,n−1
n−1 ρliσmi

= qnτiβ
k̄n,1
1 ⋯β

k̄n,i
i+1 β

k̄n,i+1
i ⋯β

k̄n,n−1
n−1 ρl̄nσm̄nβ

ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 ⋯β

ki,n−1
n−1 ρliσmi

= qnτiβ
k̄n,1+ki,1
1 ⋯β

k̄n,i+1+ki,i
i β

k̄n,i+ki,i+1
i+1 ⋯β

k̄n,n−1+ki,n−1
n−1 ρl̄n+liσm̄n+mi .

Comparing the coefficients of the element β1 of Bn,m(RP 2)/Γ in these two equations, we obtain
the following:

li = 0, for 1 ≤ i ≤ n − 2. (14)

We continue with R2. for which s(qi) = s(τiqi+1τi), for 1 ≤ i ≤ n − 1. We will discuss the case
i = n − 1 separately. So, for 1 ≤ i ≤ n − 2 we have from (14) that li = 0, and once again, based on the
formulas (9), (10) and the previously mentioned relations, 1.-9., we have the following:
s(qi) = qiβ

k̄i,1
1 ⋯β

k̄i,i
i β

k̄i,i+1
i+1 ⋯β

k̄i,n−1
n−1 ρl̄iσm̄i

and

s(τiqi+1τi) = τiβ
ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 ⋯β

ki,n−1
n−1 σmiqi+1β

k̄i+1,1
1 ⋯β

k̄i+1,i
i β

k̄i+1,i+1
i+1 ⋯β

k̄i+1,n−1
n−1 ρl̄i+1σm̄i+1

τiβ
ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 ⋯β

ki,n−1
n−1 σmi

= τiqi+1β
ki,1
1 ⋯β

ki,i
i β

−ki,i+1
i+1 ⋯β

ki,n−1
n−1 σmiτiβ

k̄i+1,1
1 ⋯β

k̄i+1,i
i+1 β

k̄i+1,i+1
i ⋯β

k̄i+1,n−1
n−1 ρl̄i+1σm̄i+1

β
ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 ⋯β

ki,n−1
n−1 σmi

= τiqi+1τiβ
ki,1
1 ⋯β

ki,i
i+1 β

−ki,i+1
i ⋯β

ki,n−1
n−1 σmiβ

k̄i+1,1
1 ⋯β

k̄i+1,i
i+1 β

k̄i+1,i+1
i ⋯β

k̄i+1,n−1
n−1 ρl̄i+1σm̄i+1

β
ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 ⋯β

ki,n−1
n−1 σmi

= τiqi+1τiβ
2ki,1+k̄i+1,1
1 ⋯β

−ki,i+1+k̄i+1,i+1+ki,i
i β

ki,i+k̄i+1,i+ki,i+1
i+1 ⋯β

2ki,n−1+k̄i+1,n−1
n−1 ρl̄i+1σ2mi+m̄i+1

= τiqi+1τiβ
2ki,1+k̄i+1,1
1 ⋯β

−ki,i+1+k̄i+1,i+1+ki,i
i β

ki,i+k̄i+1,i+ki,i+1
i+1 ⋯β

2ki,n−1+k̄i+1,n−1
n−1 ρl̄i+1σm̄i+1 .

Comparing the coefficients of the elements σ and ρ of Bn,m(RP 2)/Γ in these two equations, we
obtain the following:

m̄i = m̄i+1, for 1 ≤ i ≤ n − 2. (15)

l̄i = l̄i+1, for 1 ≤ i ≤ n − 2. (16)

In the case where i = n − 1 we have the following:
s(qn−1) = qn−1β

k̄n−1,1
1 ⋯β

k̄n−1,i
i ⋯β

k̄n−1,n−1
n−1 ρl̄n−1σm̄n−1

and

s(τn−1qnτn−1) = τn−1β
kn−1,1
1 ⋯β

kn−1,n−1
n−1 ρln−1σmn−1qnβ

k̄n,1
1 ⋯β

k̄n,n−1
n−1 ρl̄nσm̄n

τn−1β
kn−1,1
1 ⋯β

kn−1,n−1
n−1 ρln−1σmn−1 .

We know that the element σ commutes with the other elements that appear in the second equation.
This implies that the coefficient of σ in the second equation is m̄n, since σ2 = 1. Thus, comparing
the coefficients of the element σ of Bn,m(RP 2)/Γ in these two equations, we obtain the following:

m̄n = m̄n−1. (17)

We continue with relation R3. where s(τiτi+1τi) = s(τi+1τiτi+1), for 1 ≤ i ≤ n−1. We will discuss
the case i = n − 2 separately. So, for 1 ≤ i < n − 2 we have from (14) that li = 0, and once again,
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based on the formulas (9), (10) and the previously mentioned relations, 1.-9., we have the following:

s(τiτi+1τi) = τiβ
ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 β

ki,i+2
i+2 ⋯β

ki,n−1
n−1 σmiτi+1β

ki+1,1
1 ⋯β

ki+1,i
i β

ki+1,i+1
i+1 β

ki+1,i+2
i+2 ⋯β

ki+1,n−1
n−1 σmi+1

τiβ
ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 β

ki,i+2
i+2 ⋯β

ki,n−1
n−1 σmi

= τiτi+1β
ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+2 β

ki,i+2
i+1 β

ki,i
i ⋯β

ki,n−1
n−1 σmiτiβ

ki+1,1
1 ⋯β

ki+1,i
i+1

β
ki+1,i+1
i β

ki+1,i+2
i+2 ⋯β

ki+1,n−1
n−1 β

ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 β

ki,i+2
i+2 ⋯β

ki,n−1
n−1 σmi+mi+1

= τiτi+1τiβ
ki,1
1 ⋯β

ki,i
i+1 β

ki,i+1
i+2 β

ki,i+2
i ⋯β

ki,n−1
n−1 σmiβ

ki+1,1
1 ⋯β

ki+1,i
i+1 β

ki+1,i+1
i β

ki+1,i+2
i+2 ⋯β

ki+1,n−1
n−1

β
ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 β

ki,i+2
i+2 ⋯β

ki,n−1
n−1 σmi+mi+1

= τiτi+1τiβ
2ki,1+ki+1,1
1 ⋯β

2ki,i−1+ki+1,i−1
i−1 β

ki,i+2+ki+1,i+1+ki,i
i β

ki,i+ki+1,i+ki,i+1
i+1

β
ki,i+1+ki+1,i+2+ki,i+2
i+2 β

2ki,i+3+ki+1,i+3
i+3 ⋯β

2ki,n−1+ki+1,n−1
n−1 σmi+1

and

s(τi+1τiτi+1) = τi+1β
ki+1,1
1 ⋯β

ki+1,i
i β

ki+1,i+1
i+1 β

ki+1,i+2
i+2 ⋯β

ki+1,n−1
n−1 σmi+1τiβ

ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1

β
ki,i+2
i+2 ⋯β

ki,n−1
n−1 σmiτi+1β

ki+1,1
1 ⋯β

ki+1,i
i β

ki+1,i+1
i+1 β

ki+1,i+2
i+2 ⋯β

ki+1,n−1
n−1 σmi+1

= τi+1τiβ
ki+1,1
1 ⋯β

ki+1,i
i+1 β

ki+1,i+1
i β

ki+1,i+2
i+2 ⋯β

ki+1,n−1
n−1 σmi+1τi+1β

ki,1
1 ⋯β

ki,i
i

β
ki,i+1
i+2 β

ki,i+2
i+1 ⋯β

ki,n−1
n−1 β

ki+1,1
1 ⋯β

ki+1,i
i β

ki+1,i+1
i+1 β

ki+1,i+2
i+2 ⋯β

ki+1,n−1
n−1 σmi+1+mi

= τi+1τiτi+1β
ki+1,1
1 ⋯β

ki+1,i
i+2 β

ki+1,i+1
i β

ki+1,i+2
i+1 ⋯β

ki+1,n−1
n−1 σmi+1β

ki,1
1 ⋯β

ki,i
i

β
ki,i+1
i+2 β

ki,i+2
i+1 ⋯β

ki,n−1
n−1 β

ki+1,1
1 ⋯β

ki+1,i
i β

ki+1,i+1
i+1 β

ki+1,i+2
i+2 ⋯β

ki+1,n−1
n−1 σmi+1+mi

= τi+1τiτi+1β
2ki+1,1+ki,1
1 ⋯β

2ki+1,i−1+ki,i−1
i−1 β

ki+1,i+1+ki,i+ki+1,i
i β

ki+1,i+2+ki,i+2+ki+1,i+1
i+1

β
ki+1,i+ki,i+1+ki+1,i+2
i+2 β

2ki+1,i+3+ki,i+3
i+3 ⋯β

2ki+1,n−1+ki,n−1
n−1 σmi .

Comparing the coefficients of the element βi of Bn,m(RP 2)/Γ in these two equations, it follows that
ki+1,i = ki,i+2, for 1 ≤ i < n − 2. Using this relation and comparing the coefficients of the element
βi+1 of Bn,m(RP 2)/Γ in these two equations, it follows that ki,i + ki,i+1 = ki+1,i+2 + ki+1,i+1, for
1 ≤ i < n − 2. Moreover, comparing the coefficients of σ we obtain mi =mi+1, for 1 ≤ i < n − 2. Thus,
we have the following:

mi =mi+1, for 1 ≤ i < n − 2. (18)

ki,i + ki,i+1 = ki+1,i+2 + ki+1,i+1, for 1 ≤ i < n − 2. (19)

In the case where i = n − 2 we have the following:

s(τn−2τn−1τn−2) =τn−2β
kn−2,1
1 ⋯β

kn−2,n−2
n−2 β

kn−2,n−1
n−1 σmn−2τn−1β

kn−1,1
1 ⋯β

kn−1,n−2
n−2 β

kn−1,n−1
n−1 ρln−1σmn−1

τn−2β
kn−2,1
1 ⋯β

kn−2,n−2
n−2 β

kn−2,n−1
n−1 σmn−2

and

s(τn−1τn−2τn−1) =τn−1β
kn−1,1
1 ⋯β

kn−1,n−2
n−2 β

kn−1,n−1
n−1 ρln−1σmn−1τn−2β

kn−2,1
1 ⋯β

kn−2,n−2
n−2 β

kn−2,n−1
n−1 σmn−2

τn−1β
kn−1,1
1 ⋯β

kn−1,n−2
n−2 β

kn−1,n−1
n−1 ρln−1σmn−1 .

As σ commutes with the other elements that appear in these two equations, it follows that the
coefficient of σ in the first equation is mn−1 and in second equation is mn−2, since σ2 = 1. Thus, we
obtain the following:

mn−1 =mn−2. (20)

We continue with the relation R4. where s(τ2
i ) = s(q−1

i+1q
−1
i qi+1qi), for 1 ≤ i ≤ n − 1. From

(15) and (17), we have that m̄1 = m̄2 = ⋅ ⋅ ⋅ = m̄n−1 = m̄n =∶ M̄ and from (18) and (20) that
m1 =m2 = ⋅ ⋅ ⋅ =mn−2 =mn−1 ∶=M . From the mentioned relations, 1.-9., it holds that ρkqj = qjβkj ρk,
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and thus we obtain ρkq−1
j = q−jβkj ρ

k and ρ−kq−1
j = q−jβ−kj ρ−k, for k ∈ Z, and 1 ≤ j ≤ n. Moreover,

using (14) and (16), we obtain the following, for 1 ≤ i < n − 1:

s(τ2
i ) = τiβ

ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 ⋯β

ki,n−1
n−1 σMτiβ

ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 ⋯β

ki,n−1
n−1 σM

= τ2
i β

ki,1
1 ⋯β

ki,i
i+1 β

ki,i+1
i ⋯β

ki,n−1
n−1 σMβ

ki,1
1 ⋯β

ki,i
i β

ki,i+1
i+1 ⋯β

ki,n−1
n−1 σM

= τ2
i β

2ki,1
1 ⋯β

2ki,i−1
i−1 β

ki,i+1+ki,i
i β

ki,i+ki,i+1
i+1 β

2ki,i+2
i+2 ⋯β

2ki,n−1
n−1

and

s(q−1
i+1q

−1
i qi+1qi) = β

−k̄i+1,1
1 ⋯β

−k̄i+1,i
i β

−k̄i+1,i+1
i+1 ⋯β

−k̄i+1,n−1
n−1 ρ−l̄iσ−M̄q−1

i+1

β
−k̄i,1
1 ⋯β

−k̄i,i
i β

−k̄i,i+1
i+1 ⋯β

−k̄i,n−1
n−1 ρ−l̄iσ−M̄q−1

i

qi+1β
k̄i+1,1
1 ⋯β

k̄i+1,i
i β

k̄i+1,i+1
i+1 ⋯β

k̄i+1,n−1
n−1 ρl̄iσM̄

qiβ
k̄i,1
1 ⋯β

k̄i,i
i β

k̄i,i+1
i+1 ⋯β

k̄i,n−1
n−1 ρl̄iσM̄

= q−1
i+1β

−k̄i+1,1
1 ⋯β

−k̄i+1,i
i β

k̄i+1,i+1
i+1 β

−k̄i+1,i+2
i+2 ⋯β

−k̄i+1,n−1
n−1 β−l̄ii+1ρ

−l̄iσ−M̄

q−1
i β

−k̄i,1
1 ⋯β

−k̄i,i−1
i−1 β

k̄i,i
i β

−k̄i,i+1
i+1 ⋯β

−k̄i,n−1
n−1 β−l̄ii ρ−l̄iσ−M̄

qi+1qiβ
k̄i+1,1
1 ⋯β

k̄i+1,i−1
i−1 β

−k̄i+1,i
i β

k̄i+1,i+1
i+1 ⋯β

k̄i+1,n−1
n−1 β l̄ii ρ

l̄iσM̄

β
k̄i,1
1 ⋯β

k̄i,i
i β

k̄i,i+1
i+1 ⋯β

k̄i,n−1
n−1 ρl̄iσM̄

= q−1
i+1q

−1
i qi+1qiβ

−k̄i+1,1
1 ⋯β

−k̄i+1,i
i β

−k̄i+1,i+1
i+1 β

−k̄i+1,i+2
i+2 ⋯β

−k̄i+1,n−1
n−1 β l̄ii+1β

l̄i
i β

−l̄i
i+1β

−l̄i
i ρ−l̄iσ−M̄

β
−k̄i,1
1 ⋯β

−k̄i,i−1
i−1 β

−k̄i,i
i β

k̄i,i+1
i+1 β

−k̄i,i+2
i+2 ⋯β

−k̄i,n−1
n−1 β l̄ii β

−l̄i
i+1β

−l̄i
i ρ−l̄iσ−M̄

β
k̄i+1,1
1 ⋯β

k̄i+1,i−1
i−1 β

−k̄i+1,i
i β

k̄i+1,i+1
i+1 ⋯β

k̄i+1,n−1
n−1 β l̄ii ρ

l̄iσM̄

β
k̄i,1
1 ⋯β

k̄i,i
i β

k̄i,i+1
i+1 ⋯β

k̄i,n−1
n−1 ρl̄iσM̄

= q−1
i+1q

−1
i qi+1qiβ

0
1⋯β

0
i−1β

−2k̄i+1,i+l̄i
i β

2k̄i,i+1−l̄i
i+1 β0

i+2⋯β
0
n−1ρ

0.

Comparing the coefficients of β1, . . . , βi−1, βi+2, . . . βn−1 and of βi+1 of Bn,m(RP 2)/Γ in these two
equations, we obtain the following:

ki,s = 0, for s = 1,2, . . . , n − 1, s ≠ i, i + 1, 1 ≤ i ≤ n − 2. (21)

ki,i + ki,i+1 = −l̄i + 2k̄i,i+1, 1 ≤ i ≤ n − 2. (22)
From now onwards we suppose that n ≥ 4, so that the relation that we will use exists. In the

last but one relation R5., where s(τiτj) = s(τjτi), for ∣i − j∣ > 1 and 1 ≤ i, j ≤ n − 1, we will focus on
the case where i = n − 1 and 1 ≤ j ≤ n − 3. Thus, for these values, using (14) and (18), we have the
following:

s(τn−1τj) = τn−1β
kn−1,1
1 ⋯β

kn−1,j
j β

kn−1,j+1
j+1 ⋯β

kn−1,n−1
n−1 ρln−1σMτjβ

kj,1
1 ⋯β

kj,j
j β

kj,j+1
j+1 ⋯β

kj,n−1
n−1 σM

= τn−1τjβ
kn−1,1
1 ⋯β

kn−1,j
j+1 β

kn−1,j+1
j ⋯β

kn−1,n−1
n−1 ρln−1σMβ

kj,1
1 ⋯β

kj,j
j β

kj,j+1
j+1 ⋯β

kj,n−1
n−1 σM

= τn−1τjβ
kn−1,1+kj,1
1 ⋯β

kn−1,j+1+kj,j
j β

kn−1,j+kj,j+1
j+1 ⋯β

kn−1,n−1+kj,n−1
n−1 ρln−1

and

s(τjτn−1) = τjβ
kj,1
1 ⋯β

kj,j
j β

kj,j+1
j+1 ⋯β

kj,n−1
n−1 σMτn−1β

kn−1,1
1 ⋯β

kn−1,j
j β

kn−1,j+1
j+1 ⋯β

kn−1,n−1
n−1 ρln−1σM

= τjτn−1β
kj,1
1 ⋯β

kj,j
j β

kj,j+1
j+1 ⋯β

kj,n−2
n−2 βkj,n−1

n σMβ
kn−1,1
1 ⋯β

kn−1,j
j β

kn−1,j+1
j+1 ⋯β

kn−1,n−1
n−1 ρln−1σM

= τjτn−1β
kj,1+kn−1,1−kj,n−1
1 ⋯β

kj,j+kn−1,j−kj,n−1
j β

kj,j+1+kn−1,j+1−kj,n−1
j+1 ⋯β

kj,n−2+kn−1,n−2−kj,n−1
n−2

β
kn−1,n−1−kj,n−1
n−1 ρln−1−2kj,n−1 .

Comparing the coefficients of the element ρ of Bn,m(RP 2)/Γ in these two equations, it follows that
kj,n−1 = 0, for 1 ≤ j ≤ n − 3. Using this result and comparing the coefficients of βi in these two
equations, we obtain the following:

kn−1,j = kn−1,j+1, for 1 ≤ j ≤ n − 3. (23)
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We now analyse the results that we obtained so far. From (18), (20) we obtain m1 = m2 =

⋅ ⋅ ⋅ = mn−2 = mn−1 =∶M . From (14) we get l1 = l2 = ⋅ ⋅ ⋅ = ln−2 = 0. From (13) we get ln−1 = 2kn−1,j ,
for 1 ≤ j ≤ n − 2. From (16) it follows that l̄1 = l̄2 = ⋅ ⋅ ⋅ = l̄n−2 = l̄n−1 =∶ l̄. From (21) we get
ki,s = 0, for 1 ≤ i ≤ n − 2 and s = 1,2, . . . , n − 1, s ≠ i, i + 1. That means that for 1 ≤ i ≤ n − 2 and
s = 1,2, . . . , n − 1, the coefficients ki,s are zero except for ki,i and ki,i+1. Finally, from (23) we have
kn−1,1 = kn−1,2 = ⋅ ⋅ ⋅ = kn−1,n−3 = kn−1,n−2 ∶= π. Gathering together all these results, the image of the
elements τi, for 1 ≤ i ≤ n − 1, under the section s is follows:

s(τi) = τiβ
ki,i
i β

ki,i+1
i+1 σM , for 1 ≤ i ≤ n − 2

and

s(τn−1) = τn−1β
π
1 β

π
2⋯β

π
n−2β

kn−1,n−1
n−1 ρln−1σM .

Finally, we examine the relation R6., where s(q2
1) = s(τ1τ2⋯τn−2τ

2
n−1τn−2⋯τ2τ1).

s(τ1τ2⋯τn−2τ
2
n−1τn−2⋯τ2τ1) = s(τ1τ2⋯τn−2τn−1)s(τn−1τn−2⋯τ2τ1)

We will compute s(τ1τ2⋯τn−2τn−1) and s(τn−1τn−2⋯τ2τ1) separately.

s(τ1τ2⋯τn−2τn−1) = τ1β
k1,1
1 β

k1,2
2 σMτ2β

k2,2
2 β

k2,3
3 σM⋯τiβ

ki,i
i β

ki,i+1
i+1 σM⋯τn−2β

kn−2,n−2
n−2 β

kn−2,n−1
n−1 σM

τn−1β
π
1 β

π
2⋯β

π
n−2β

kn−1,n−1
n−1 ρln−1σM

= τ1β
k1,1
1 β

k1,2
2 τ2β

k2,2
2 β

k2,3
3 ⋯τiβ

ki,i
i β

ki,i+1
i+1 ⋯τn−2β

kn−2,n−2
n−2 β

kn−2,n−1
n−1

τn−1β
π
1 β

π
2⋯β

π
n−2β

kn−1,n−1
n−1 ρln−1σ(n−1)M

= τ1τ2β
k1,1
1 β

k1,2+k2,3
3 β

k2,2
2 ⋯τiβ

ki,i
i β

ki,i+1
i+1 ⋯τn−2β

kn−2,n−2
n−2 β

kn−2,n−1
n−1

τn−1β
π
1 β

π
2⋯β

π
n−2β

kn−1,n−1
n−1 ρln−1σ(n−1)M

= τ1τ2⋯τiβ
k1,1
1 β

k1,2+k2,3+⋯+ki,i+1
i+1 (β

k2,2
2 ⋯β

ki,i
i )

τi+1β
ki+1,i+1
i+1 β

ki+1,i+2
i+2 ⋯τn−2β

kn−2,n−2
n−2 β

kn−2,n−1
n−1

τn−1β
π
1 β

π
2⋯β

π
n−2β

kn−1,n−1
n−1 ρln−1σ(n−1)M

= τ1τ2⋯τi⋯τn−2β
k1,1
1 β

k1,2+k2,3+⋯+ki,i+1+⋯+kn−2,n−1
n−1 (β

k2,2
2 ⋯β

ki,i
i ⋯β

kn−2,n−2
n−2 )

τn−1β
π
1 β

π
2⋯β

π
n−2β

kn−1,n−1
n−1 ρln−1σ(n−1)M

= τ1τ2⋯τi⋯τn−2τn−1β
k1,1
1 βk1,2+k2,3+⋯+ki,i+1+⋯+kn−2,n−1

n

(β
k2,2
2 ⋯β

ki,i
i ⋯β

kn−2,n−2
n−2 β

kn−1,n−1
n−1 )βπ1 β

π
2⋯β

π
n−2ρ

ln−1σ(n−1)M .

Setting λ ∶= k1,2 + k2,3 +⋯ + ki,i+1 +⋯ + kn−2,n−1, we have:

s(τ1τ2⋯τn−2τn−1) = τ1τ2⋯τi⋯τn−2τn−1

β
k1,1+π
1 βλnβ

k2,2+π
2 ⋯β

ki,i+π
i ⋯β

kn−2,n−2+π
n−2 β

kn−1,n−1
n−1 ρln−1σ(n−1)M

= τ1τ2⋯τn−2τn−1

β
k1,1+π−λ
1 β

k2,2+π−λ
2 ⋯β

ki,i+π−λ
i ⋯β

kn−2,n−2+π−λ
n−2 β

kn−1,n−1−λ
n−1 ρln−1−2λσ(n−1)M .
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We continue by computing s(τn−1τn−2⋯τ2τ1).

s(τn−1τn−2⋯τ2τ1) = τn−1β
π
1 β

π
2⋯β

π
n−2β

kn−1,n−1
n−1 ρln−1σMτn−2β

kn−2,n−2
n−2 β

kn−2,n−1
n−1 σM⋯τiβ

ki,i
i β

ki,i+1
i+1 σM⋯

τ2β
k2,2
2 β

k2,3
3 σMτ1β

k1,1
1 β

k1,2
2 σM

= τn−1β
π
1 β

π
2⋯β

π
n−2β

kn−1,n−1
n−1 τn−2β

kn−2,n−2
n−2 β

kn−2,n−1
n−1 ⋯τiβ

ki,i
i β

ki,i+1
i+1 ⋯

τ2β
k2,2
2 β

k2,3
3 τ1β

k1,1
1 β

k1,2
2 ρln−1σ(n−1)M

= τn−1τn−2β
π
1 β

π
2⋯β

π+kn−2,n−1
n−1 β

kn−1,n−1+kn−2,n−2
n−2 ⋯τiβ

ki,i
i β

ki,i+1
i+1 ⋯

τ2β
k2,2
2 β

k2,3
3 τ1β

k1,1
1 β

k1,2
2 ρln−1σ(n−1)M

= τn−1τn−2⋯τiβ
π
1 β

π
2⋯β

ki,i+1+π
i+1 ⋯β

π+kn−2,n−1
n−1 β

kn−1,n−1+kn−2,n−2+⋯+ki,i
i ⋯

τ2β
k2,2
2 β

k2,3
3 τ1β

k1,1
1 β

k1,2
2 ρln−1σ(n−1)M

= τn−1τn−2⋯τi⋯τ2β
π
1 β

π+k2,3
3 ⋯β

π+ki,i+1
i+1 ⋯β

π+kn−2,n−1
n−1 β

kn−1,n−1+kn−2,n−2+⋯+ki,i⋯+k2,2
2

τ1β
k1,1
1 β

k1,2
2 ρln−1σ(n−1)M

= τn−1τn−2⋯τi⋯τ2τ1

β
π+k1,2
2 β

π+k2,3
3 ⋯β

π+ki,i+1
i+1 ⋯β

π+kn−2,n−1
n−1 β

kn−1,n−1+kn−2,n−2+⋯+ki,i⋯+k2,2+k1,1
1

ρln−1σ(n−1)M .

Setting ω ∶= k1,1 + k2,2 +⋯ + ki,i +⋯ + kn−2,n−2 + kn−1,n−1, we have:

s(τn−1τn−2⋯τ2τ1) = τn−1τn−2⋯τi⋯τ2τ1

βω1 β
π+k1,2
2 β

π+k2,3
3 ⋯β

π+ki−1,i
i ⋯β

π+kn−3,n−2
n−2 β

π+kn−2,n−1
n−1 ρln−1σ(n−1)M .

And now we are able to compute s(τ1τ2⋯τn−2τ
2
n−1τn−2⋯τ2τ1).

s(τ1τ2⋯τn−2τ
2
n−1τn−2⋯τ2τ1) = s(τ1τ2⋯τn−2τn−1)s(τn−1τn−2⋯τ2τ1)

= τ1τ2⋯τn−2τn−1

β
k1,1+π−λ
1 β

k2,2+π−λ
2 ⋯β

ki,i+π−λ
i ⋯β

kn−2,n−2+π−λ
n−2 β

kn−1,n−1−λ
n−1 ρln−1−2λ

σ(n−1)Mτn−1τn−2⋯τi⋯τ2τ1

βω1 β
π+k1,2
2 β

π+k2,3
3 ⋯β

π+ki−1,i
i ⋯β

π+kn−3,n−2
n−2 β

π+kn−2,n−1
n−1 ρln−1σ(n−1)M

= τ1τ2⋯τn−2τn−1

β
k1,1+π−λ
1 β

k2,2+π−λ
2 ⋯β

ki,i+π−λ
i ⋯β

kn−2,n−2+π−λ
n−2 β

kn−1,n−1−λ
n−1

τn−1τn−2⋯τi⋯τ2τ1

βω1 β
π+k1,2
2 β

π+k2,3
3 ⋯β

π+ki−1,i
i ⋯β

π+kn−3,n−2
n−2 β

π+kn−2,n−1
n−1 ρ2ln−1−2λσ2(n−1)M .

Setting

A ∶= βω1 β
π+k1,2
2 β

π+k2,3
3 ⋯β

π+ki−1,i
i ⋯β

π+kn−3,n−2
n−2 β

π+kn−2,n−1
n−1 ρ2ln−1−2λσ2(n−1)M

= βω1 β
π+k1,2
2 β

π+k2,3
3 ⋯β

π+ki−1,i
i ⋯β

π+kn−3,n−2
n−2 β

π+kn−2,n−1
n−1 ρ2ln−1−2λ,
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we have:

s(τ1τ2⋯τn−2τ
2
n−1τn−2⋯τ2τ1) = τ1τ2⋯τn−2τn−1

β
k1,1+π−λ
1 β

k2,2+π−λ
2 ⋯β

ki,i+π−λ
i ⋯β

kn−2,n−2+π−λ
n−2 β

kn−1,n−1−λ
n−1

τn−1τn−2⋯τi⋯τ2τ1A

= τ1τ2⋯τn−2τn−1τn−1

β
k1,1+π−λ
1 β

k2,2+π−λ
2 ⋯β

ki,i+π−λ
i ⋯β

kn−2,n−2+π−λ
n−2 βkn−1,n−1−λ

n

τn−2⋯τi⋯τ2τ1A

= τ1τ2⋯τn−2τn−1τn−1τn−2⋯τi

β
k1,1+π−λ
1 β

k2,2+π−λ
2 ⋯β

ki,i+π−λ
i+1 ⋯β

kn−3,n−3+π−λ
n−2 β

kn−2,n−2+π−λ
n−1 βkn−1,n−1−λ

n

τi−1⋯τ2τ1A

= τ1τ2⋯τn−2τn−1τn−1τn−2⋯τi⋯τ2

β
k1,1+π−λ
1 β

k2,2+π−λ
3 ⋯β

ki−1,i−1+π−λ
i ⋯β

kn−3,n−3+π−λ
n−2 β

kn−2,n−2+π−λ
n−1

βkn−1,n−1−λ
n τ1A

= τ1τ2⋯τn−2τn−1τn−1τn−2⋯τi⋯τ2τ1

β
k1,1+π−λ
2 β

k2,2+π−λ
3 ⋯β

ki−1,i−1+π−λ
i ⋯β

kn−3,n−3+π−λ
n−2 β

kn−2,n−2+π−λ
n−1

βkn−1,n−1−λ
n A

= τ1τ2⋯τn−2τ
2
n−1τn−2⋯τ2τ1

βω1 β
k1,1+2π−λ+k1,2
2 β

k2,2+2π−λ+k2,3
3 ⋯β

ki−1,i−1+2π−λ+ki−1,i
i ⋯

β
kn−3,n−3+2π−λ+kn−3,n−2
n−2 β

kn−2,n−2+2π−λ+kn−2,n−1
n−1 βkn−1,n−1−λ

n ρ2ln−1−2λ

= τ1τ2⋯τn−2τ
2
n−1τn−2⋯τ2τ1

β
ω−kn−1,n−1+λ
1 β

k1,1+2π−λ+k1,2−kn−1,n−1+λ
2

⋯β
ki−1,i−1+2π−λ+ki−1,i−kn−1,n−1+λ
i ⋯

β
kn−3,n−3+2π−λ+kn−3,n−2−kn−1,n−1+λ
n−2 β

kn−2,n−2+2π−λ+kn−2,n−1−kn−1,n−1+λ
n−1

ρ2ln−1−2λ−2kn−1,n−1+2λ

= τ1τ2⋯τn−2τ
2
n−1τn−2⋯τ2τ1

β
ω−kn−1,n−1+λ
1 β

k1,1+2π+k1,2−kn−1,n−1
2 ⋯β

ki−1,i−1+2π+ki−1,i−kn−1,n−1
i ⋯

β
kn−3,n−3+2π+kn−3,n−2−kn−1,n−1
n−2 β

kn−2,n−2+2π+kn−2,n−1−kn−1,n−1
n−1

ρ2ln−1−2kn−1,n−1 .

Now:

s(q2
1) = q1β

k̄1,1
1 ⋯β

k̄1,n−1
n−1 ρl̄σm̄1q1β

k̄1,1
1 ⋯β

k̄1,n−1
n−1 ρl̄σm̄1

= q1q1β
−k̄1,1
1 β

k̄1,2
2 ⋯β

k̄1,n−1
n−1 β l̄1ρ

l̄σm̄1β
k̄1,1
1 ⋯β

k̄1,n−1
n−1 ρl̄σm̄1

= q2
1β

l̄
1β

2k̄1,2
2 ⋯β

2k̄1,i
i ⋯β

2k̄1,n−1
n−1 ρ2l̄

= (τ1τ2⋯τn−2τ
2
n−1τn−2⋯τ2τ1)β

m
1 β

l̄
1β

2k̄1,2
2 ⋯β

2k̄1,i
i ⋯β

2k̄1,n−1
n−1 ρ2l̄

= (τ1τ2⋯τn−2τ
2
n−1τn−2⋯τ2τ1)β

m+l̄
1 β

2k̄1,2
2 ⋯β

2k̄1,i
i ⋯β

2k̄1,n−1
n−1 ρ2l̄.

We recall that q2
1 = (τ1τ2⋯τn−2τn−1)β

m
n (τn−1τn−2⋯τ2τ1), given in Proposition 3.2.2, (II). The last

but one equality comes from relation

q2
1 = (τ1τ2⋯τn−2τn−1)β

m
n (τn−1τn−2⋯τ2τ1) = (τ1τ2⋯τn−2τn−1)(τn−1τn−2⋯τ2τ1)β

m
1

that holds in Bn,m(RP 2)/Γ. Comparing the coefficients of the element β1 of Bn,m(RP 2)/Γ in these
two equations, we obtain the following:

m + l̄ = ω + λ − kn−1,n−1. (24)
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From (24) we have that m + l̄ = ω + λ − kn−1,n−1. From the definitions of ω and λ we obtain:

m + l̄ = (k1,1 + k2,2 +⋯ + kn−2,n−2 + kn−1,n−1) + (k1,2 + k2,3 +⋯ + ki,i+1 +⋯ + kn−2,n−1) − kn−1,n−1

= (k1,1 + k2,2 +⋯ + ki,i +⋯ + kn−2,n−2) + (k1,2 + k2,3 +⋯ + ki,i+1 +⋯ + kn−2,n−1)

= (k1,1 + k1,2) + (k2,2 + k2,3) +⋯ + (ki,i + ki,i+1) +⋯ + (kn−2,n−2 + kn−2,n−1).

In addition, from (19) we have ki,i + ki,i+1 = ki+1,i+1 + ki+1,i+2, for 1 ≤ i < n− 2. Therefore we obtain
the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1,1 + k1,2 = k2,2 + k2,3

k2,2 + k2,3 = k3,3 + k3,4

⋮

kn−4,n−4 + kn−4,n−3 = kn−3,n−3 + kn−3,n−2

kn−3,n−3 + kn−3,n−2 = kn−2,n−2 + kn−2,n−1,

which implies that:

k1,1 + k1,2 = k2,2 + k2,3 = ⋯ = kn−3,n−3 + kn−3,n−2 = kn−2,n−2 + kn−2,n−1. (25)

We conclude that
m + l̄ = (n − 2)(k1,1 + k1,2). (26)

Moreover, from (22) we have ki,i + ki,i+1 = −l̄i + 2k̄i,i+1, for 1 ≤ i ≤ n − 2. Letting i = n − 2, and using
(16) we get:

kn−2,n−2 + kn−2,n−1 = −l̄ + 2k̄n−2,n−1.

However, from (12) we know that k̄n−2,n−1 = 0, which in turn gives that

kn−2,n−2 + kn−2,n−1 = −l̄. (27)

In conclusion, from (25), (26) and (27) it follows that m = (n − 1)(k1,1 + k1,2) for n ≥ 4, and
therefore that m = k(n−1) for k ≥ 1, since m is a natural number. The conclusion is valid in the case
when n ≥ 4 since we have used the relation R5., s(τiτj) = s(τjτi) for ∣i − j∣ > 1 and 1 ≤ i, j ≤ n − 1,
which only holds when n ≥ 4.

Nevertheless, we can obtain the same result for n = 3. Indeed, using the results of relations
(13), (14), (20), which also hold in the case n = 3, we obtain l2 = 2k2,1, l1 = 0 and that m1 =

m2 ∶=M , respectively. Thus, s(τ1) = τ1βk1,1
1 β

k1,2
2 σM and s(τ2) = τ2βk2,1

1 β
k2,2
2 ρ2k2,1σM . It holds that

s(τ1) and s(τ2) have the same structure as the equations s(τi) = τiβki,ii β
ki,i+1
i+1 σM and s(τn−1) =

τn−1β
π
1 β

π
2⋯β

π
n−2β

kn−1,n−1
n−1 ρln−1σM , since π = k2,1 for n = 3. Therefore, we can indeed apply (24),

which follows from relation R6, s(q2
1) = s(τ1τ2⋯τn−2τ

2
n−1τn−2⋯τ2τ1), that also holds for n = 3.

Thus, we obtain from (24) that m + l̄ = k1,1 + k1,2, which is (26), and from (27), it follows that
m = 2(k1,1 + k1,2), which is the result in the case n = 3. As a result we obtain that if the short exact
sequence (5) splits then m = k(n − 1), for n ≥ 3 and k ≥ 1.

Remark 3.2.5. Note that Theorem 3.2.4 also holds for m = 1. However, in Proposition 3.2.1 we treat
the case m = 1 seperately, proving that for m = 1 and n ≥ 3 the homomorphism q̄ ∶ Bn,1(RP 2)!
Bn(RP 2) does not admit a section. Even thought we could ignore Proposition 3.2.1, since we could
obtain the same result from Theorem 3.2.4 for m = 1, we present it, as in that proof we illustrate
the relation of the splitting of the mixed braids with the splitting of the pure braids.
Remark 3.2.6. Concerning the quotiented short exact sequence that we used to prove Theorem
3.2.4, except for quotienting by Γ2(Bm(RP 2 ∖ {x1, . . . , xn})), we have tried other quotiens as well,
for example quotienting by Γ2(Pm(RP 2 ∖ {x1, . . . , xn})), but they did not impove the result of
Theorem 3.2.4. Moreover, note that from Theorem 2.3.2, we have Γ2(Bm(RP 2 ∖ {x1, . . . , xn})) =

Γ3(Bm(RP 2 ∖ {x1, . . . , xn})), which shows that it would be of no use to try any quotient by
Γk(Bm(RP 2 ∖ {x1, . . . , xn})), for k ≥ 3.

We can obtain further restrictions for the value of m, examining the torsion elements of the
group Bn(RP 2) and Bn,m(RP 2).
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Proposition 3.2.7. Let m > 1 and n ≥ 3. If the following short exact sequence

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1q̄n+m,n

splits, then either m ≡ 0 mod n or m ≡ 1 mod n.

Proof. From Proposition 2.1.3, we know that the group Bn(RP 2) contains a torsion element of
order k if and only if k divides 4n or 4(n − 1). Similarly, the group Bn+m(RP 2) contains a torsion
element of order l if and only if l divides 4(n +m) or 4(n − 1 +m).

Suppose that the homomorphism q̄n+m,n admits a section s̄n,n+m ∶ Bn(RP 2) ! Bn,m(RP 2),
where Bn,m(RP 2) ⊂ Bn+m(RP 2). Since, s̄n,n+m is a section, it follows that any torsion element
from Bn(RP 2) is mapped under s̄n,n+m to a torsion element in Bn,m(RP 2) of the same order.
Since Bn(RP 2) contains a torsion element of order 4n, it follows that its image under s̄n,n+m is
a torsion element of order 4n in Bn,m(RP 2). Therefore, 4n divides 4(n +m) or 4(n − 1 +m) by
Proposition 2.1.3. Thus,

4n ∣ (4n + 4m) or 4n ∣ [4(n − 1) + 4m].

As a result 4n + 4m = p ⋅ 4n or 4(n − 1) + 4m = p̄ ⋅ 4n, for p, p̄ ∈ Z. It follows that m = (p − 1) ⋅ n or
m = (p̄ − 1) ⋅ n + 1, or equivalently that either m ≡ 0 mod n or m ≡ 1 mod n.

Remark 3.2.8. Arguing with the same manner for the torsion element of order 4(n−1) in Bn(RP 2),
it follows that (n−1) divides (n+m) or [(n−1)+m]. In other words, it follows that m = l(n−1)+n
or m = l̄(n− 1), for some l, l̄ ∈ Z, but in fact from Theorem 3.2.4, we know that m = k(n− 1), which
is a stronger result.
Remark 3.2.9. From Theorem 3.2.4 we have m ≡ 0 mod (n − 1) and from Proposition 3.2.7 we have
m ≡ 0,1 mod n. Combining these two results, if the short exact sequence

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1q̄n+m,n

splits, then it follows that
m ≡ 0, (n − 1)2 mod n(n − 1).

3.3 Construction of a geometric section for the case n ≥ 3
In the previous section, for n ≥ 3 and m > 1, we saw that if the homomorphism q̄n+m,n ∶

Bn,m(RP 2)! Bn(RP 2) admits a section s̄n+m,n ∶ Bn(RP 2)! Bn,m(RP 2), then m = k(n− 1), for
k ∈ N. Moreover, from Proposition 1.3.1, the existence of such a section s̄n+m,n is equivalent to the
existence of a cross-section for the Fadell–Neuwirth fibration qn+m,n ∶ Fn+m(RP 2)/(Sn × Sm)!
Fn(RP 2)/Sn. In this section, we will present two different constructions of a geometric cross-section
sm ∶ Fn(RP 2)/Sn! Fn+m(RP 2)/(Sn × Sm) for this fibration and for certain values of m.

In [CS20], Chen–Salter constructed geometric cross-sections using Möbius transformations in
the case of the 2−sphere, S2, for some of the cases given by Gonçalves–Guaschi in Theorem 1.3.4.
We will carry out a similar construction for the case of the projective plane, RP 2, as we describe in
the proof of the following proposition.

Proposition 3.3.1. Let n ≥ 3 and m > 1. The fibration

qn+m,n ∶ Fn+m(RP 2
)/(Sn × Sm)! Fn(RP 2

)/Sn

admits a cross-section for m = kn(2n − 1)(2n − 2), where k ≥ 1.

Proof. Let n ≥ 3. We consider the two-sheeted covering map p ∶ S2 ! RP 2. Let {y1, . . . , yn}

be an element of Fn(RP 2)/Sn. Using p,
n

⋃
i=1
p−1({yi}) = {x1, x2, . . . , x2n}, which is an element in

An(S2), where by An(S2) we denote the set of n pairs of antipodal points, which is a subset of
F2n(S2)/S2n. So, {x1, x2, . . . , x2n} consists of n pairs of antipodal points of S2. We can transform
the problem of the construction of a cross-section on the configuration space of the projective
plane to the construction of a cross-section on the configuration space of the 2−sphere, as we will
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see in what follows. We will generalise a particular construction, using Möbius transformations,
of a cross-section on the configuration space of the 2−sphere, given by Chen–Salter in [CS20]
(Remark 3.6), which induces the cabling map Bn(S2)! Bn,m(S2), given in Theorem B of [CS20].
Considering the element {x1, x2, . . . , x2n} ∈ An(S2) ⊂ F2n(S2)/S2n, we will construct new distinct
points on S2 around each point xi, for i = 1, . . . ,2n.

Let (xp, xq, xr) be an ordered triple of distinct points of the set of points {x1, x2, . . . , x2n} ∈

An(S2). We consider the unique Möbius transformation of the Riemann sphere, defined by
Mxp,xq,xr(x) =

(x−xp)(xq−xr)
(x−xr)(xq−xp) , for x ∈ S2, which sends (xp, xq, xr) to (0,1,∞). We recall that the

Möbius transformations are automorphisms of the Riemann sphere. For every xi ∈ {x1, x2, . . . , x2n}
we define the following map:

Rxi(x) ∶= ∏
j≠k∈{1,...,2n}∖{i}

Mxi,xj ,xk(x) = ∏
j≠k∈{1,...,2n}∖{i}

(x − xi)(xj − xk)

(x − xk)(xj − xi)
.

For every xi ∈ {x1, x2, . . . , x2n}, the map Rxi ∶ S2! S2 is a rational map and in particular it is
a product of (2n − 1)(2n − 2) rational fractions, and thus by fundamental Theorem of Algebra, the
map Rxi is of degree (2n − 1)(2n − 2). It follows that the preimage of any regular value of Rxi is a
set of (2n − 1)(2n − 2) distinct points. Moreover, by the definition of Rxi , it follows that xi is the
only zero of Rxi .

Note that by the definition of Mxp,xq,xr(x) we have Mxp,xq,xr(x) =M−xp,−xq,−xr(−x), for every
x ∈ S2. For simplicity, in what follows we will denote by i′, the index k for which xk = −xi.
Moreover, note that for any pair of j, k, where j, k ≠ i′, and for any factor Mxi,xj ,xk(x) included
in the product ∏

j≠k∈{1,...,2n}∖{i}
Mxi,xj ,xk(x) the factor Mxi,−xj ,−xk(x) is included as well, since the

source of xj , xk is a set of exactly n−1 pairs of antipodal points. Furthermore, for j = i′ (respectively
for k = i′), for any factor Mxi,−xi,xk(x), where k ∈ {1, . . . ,2n} ∖ {i, i′} (respectively Mxi,xj ,−xi(x),
where j ∈ {1, . . . ,2n} ∖ {i, i′}), included in the product ∏

j≠k∈{1,...,2n}∖{i}
Mxi,xj ,xk(x), the factor

Mxi,−xi,−xk(x) (respectively Mxi,−xj ,−xi(x)), is included as well. Similarly, note that for any pair of
j, k, where j, k ≠ i, and for any factorM−xi,xj ,xk(−x) included in ∏

j≠k∈{1,...,2n}∖{i′}
M−xi,xj ,xk(−x), the

factor M−xi,−xj ,−xk(−x) is included as well, since the source of xj , xk is a set of exactly n−1 pairs of
antipodal points. Furthermore, for j = i (respectively for k = i), for any factorM−xi,xi,xk(−x), where
k ∈ {1, . . . ,2n} ∖ {i, i′} (respectively M−xi,xj ,xi(−x), where j ∈ {1, . . . ,2n} ∖ {i, i′}), included in the
product ∏

j≠k∈{1,...,2n}∖{i}
M−xi,xj ,xk(−x), the factor M−xi,xi,−xk(−x) (respectively M−xi,−xj ,xi(−x)),

is included as well. Therefore,

Rxi(x) = ∏
j≠k∈{1,...,2n}∖{i,i′}

Mxi,xj ,xk(x) ∏
k∈{1,...,2n}∖{i,i′}

Mxi,−xi,xk(x) ∏
j∈{1,...,2n}∖{i,i′}

Mxi,xj ,−xi(x)

and

R−xi(−x) =

= ∏
j≠k∈{1,...,2n}∖{i,i′}

M−xi,xj ,xk(−x) ∏
k∈{1,...,2n}∖{i,i′}

M−xi,xi,xk(−x) ∏
j∈{1,...,2n}∖{i,i′}

M−xi,xj ,xi(−x).

Thus, from Mxp,xq,xr(x) =M−xp,−xq,−xr(−x), we obtain:

Rxi(x) = R−xi(−x), for every x ∈ S2. (28)

Near each point xi ∈ {x1, x2, . . . , x2n}, we will now construct (2n − 1)(2n − 2) new distinct
unordered points. To do so, we consider a small regular value εi of Rxi close to zero and we consider
its preimage. The preimage, R−1

xi (εi), will be a set of (2n − 1)(2n − 2) distinct points, and by
continuity close to xi and different from it. One needs to verify that the (2n − 1)(2n − 2) new
distinct points close to the point xi are also distinct from the (2n − 1)(2n − 2) new distinct points
close to any other point xj , for j ≠ i. In other words, we have to chose each regular value in such a
way that R−1

xi (εi) ∩R
−1
xj (εj) = ∅, for every i ≠ j ∈ {1, . . . ,2n}. In order to achieve this, we have to

refine the choice of the regular value of every Rxi , as we describe in what follows.
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To begin with, we denote the spherical metric by d ∶ S2×S2! R+, which is the distance function
on the sphere based on the central angle between two points, and we set

m ∶=
1
3

min
i≠j∈{1,...,2n}

d(xi, xj).

Moreover, we can define a map f ∶ {x1, x2, . . . , x2n}! R+, that assigns a positive small number ri
to every element xi ∈ {x1, x2, . . . , x2n}, which is a regular value of the map Rxi , such that any x
with 0 < ∣x∣ ≤ ri is a regular value of Rxi and moreover

R−1
xi (D̄(0, ri)) ∶= {x ∈ S2

∣ Rxi(x) ∈ D̄(0, ri)} ⊂ D̄(xi,m),

where D̄(z, a) = {y ∈ S2 ∣ d(z, y) ≤ a}. The inclusion R−1
xi (D̄(0, ri)) ⊂ D̄(xi,m) follows by continuity

of Rxi and by the fact that xi is the only zero of Rxi . Note that we can always find such a
regular value ri of Rxi , since the critical values of Rxi are finite. To be more precise, one could
consider the distance, pi, from zero to the critical value ci of Rxi , for every 1 ≤ i ≤ l, where l ∈ N
is the number of critical values of Rxi . Then, by considering the minimum of these distances,
p ∶= min(p1, . . . , pl) ∈ R+, all points, except for zero, with distance from zero less that p are regular
values of Rxi . Finally, we set r to be the smallest value among ri, where 1 ≤ i ≤ 2n, that is

r ∶= min(r1, . . . , r2n) ∈ R+. (29)

Therefore, for every point xi ∈ {x1, x2, . . . , x2n} we have defined a rational map Rxi and a small
positive number r, which is a regular value of Rxi and moreover

R−1
xi (r) = {ζi1, . . . , ζ

i
(2n−1)(2n−2)} ⊂ D̄(xi,m), for every i ∈ {1, . . . ,2n},

where ζi1, . . . , ζi(2n−1)(2n−2) are pairwise distinct. This implies that

R−1
xi (r) ∩R

−1
xj (r) = ∅, for every i ≠ j ∈ {1, . . . ,2n}.

In addition, from (28), we have that

R−1
−xi(r) = {−ζi1, . . . ,−ζ

i
(2n−1)(2n−2)} = −R

−1
xi (r) = {ζi1, . . . , ζ

i
(2n−1)(2n−2)}.

In other words, the (2n−1)(2n−2) new distinct points around xi are antipodal to the (2n−1)(2n−2)
new distinct points around −xi. Now, set

Sr ∶= ⋃
1≤i≤2n

R−1
xi (r),

which is the set of the 2n(2n − 1)(2n − 2) new distinct points of S2 that we constructed, based on
the points of the set {x1, x2, . . . , x2n} ∈ An(S2). Note that Sr ∈ An(2n−1)(2n−2)(S2).

Note that if r′, r′′ ∈ R+ satisfy 0 < r′ < r′′ < r, then by construction, Sr′ ∩ Sr′′ = ∅. So if k ∈ N,
in the same way, we may obtain k((2n(2n − 1)(2n − 2))) new points on S2, taking for example
Sr ∪S 1

2 r
∪ ⋅ ⋅ ⋅ ∪S 1

k r
, where once again the k(2n− 1)(2n− 2) new points close to xi will be antipodal

to the k(2n − 1)(2n − 2) new points close to −xi.
Projecting now the set of points Sr ∪ S 1

2 r
∪ ⋅ ⋅ ⋅ ∪ S 1

k r
into RP 2, by the covering map p, around

each point y1, . . . , yn of RP 2 we obtain k((2n − 1)(2n − 2)) new distinct unordered points. In total,
we have constructed kn((2n − 1)(2n − 2)) new distinct unordered points, that depend continuously
on the element {y1, . . . , yn} ∈ Fn(RP 2)/Sn. This yields a cross-section sm ∶ Fn(RP 2)/Sn !
Fn+m(RP 2)/(Sn × Sm) of the fibration qn+m,n ∶ Fn+m(RP 2)/(Sn × Sm) ! Fn(RP 2)/Sn, for m =

kn(2n − 1)(2n − 2), where k ≥ 1.

We continue by presenting another construction of a cross-section, which covers smaller values
of m.

Proposition 3.3.2. Let n ≥ 3 and m > 1. For m = 2n(n − 1) the fibration

qn+m,n ∶ Fn+m(RP 2
)/(Sn × Sm)! Fn(RP 2

)/Sn

admits a cross-section.
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Proof. Let n ≥ 3. As in the proof of Proposition 3.3.1, we consider the two-sheeted covering
map p ∶ S2 ! RP 2. Let {y1, . . . , yn} be an element of Fn(RP 2)/Sn. Using p,

n

⋃
i=1
p−1({yi}) =

{x1, x2, . . . , x2n}, which is an element in An(S2), where by An(S2) we denote the set of n pairs
of antipodal points, which is a subset of F2n(S2)/S2n. So, {x1, x2, . . . , x2n} consists of n pairs of
antipodal points of S2. We denote the distance function on the sphere based on the central angle
between two points by d ∶ S2 × S2 ! R2. Clearly, we have 0 ≤ d(xi, xj) ≤ π, with d(xi, xi) = 0 and
d(xi,−xi) = π, for any xi, xj ∈ S2. We define the following positive numbers m and Mxi :

m ∶=
1
3

min
i≠j

d(xi, xj), for every 1 ≤ i ≠ j ≤ 2n.

and
Mxi ∶= max

xi≠−xj
d(xi, xj) < π, for 1 ≤ i ≤ 2n,

which is the largest distance between the point xi and the points in the set {x1, . . . , x2n} ∖ {−xi}.
We consider the closed discs D̄(xi,m) = {y ∈ S2 ∣ d(xi, y) ≤ m}, for all 1 ≤ i ≤ 2n. Clearly,

by definition of m these discs are pairwise disjoint. Our aim is to construct 2n − 2 new distinct
unordered points inside each closed disc D̄(xi,m). Without loss of generality, we will describe this
construction for the point x1, the construction will be the same for the other points. We want to
move all of the points of the set {x1, . . . x2n}∖{−x1} to pairwise distinct points inside the closed disc
D̄(x1,m). The distance from x1 to any point of the set {x1, . . . x2n}∖{−x1} is at most Mx1 , and so
{x1, . . . x2n}∖ {−x1} ⊂ P1, where P1 = {z ∈ S2 ∣ d(x1, z) ≤Mx1}. Let Cx1 = {z ∈ S2 ∣ d(x1, z) =Mx1}.
Moving now this circle Cx1 and shrinking the space P1 toward the point x1, along the longitudes
with respect to the axis that passes through the centre of the sphere and x1, we move the points of
the set {x1, . . . , x2n} ∖ {−x1} to pairwise distinct points inside the closed disc D̄(x1,m). To do so,
we shrink the circle Cx1 until it coincides with the boundary of the closed disc D̄(x1,m). In other
words, at the end of the process, the angle Mx1 becomes m. In this way, we have constructed 2n− 2
new distinct unordered points close to the point x1. For n = 3 we illustrate an example of how we
obtain 4 new distinct unordered points close to x1, and in particular inside D̄(x1,m). In Figure
3.6a we see that P1 is the subset of S2 that lies above the circle Cx1 , including Cx1 . Shrinking the
space P1 towards the point x1, along the vertical axis that passes through the centre of the sphere
and x1, until Cx1 to coincide with the boundary of the closed disc D̄(x1,m), we obtain Figure
3.6b that represents D̄(x1,m), where we have constructed 4 new distinct unordered points. We
denote the points at which the points x3, x4, x5, x6 will end up after the shrinking by x̄3, x̄4, x̄5, x̄6
respectively.

(a)

(b)

Figure 3.6

We apply the same method for every point of {x2, . . . , x2n} and thus we obtain 2n(2n − 2)
new distinct unordered points on the sphere. Note that these 2n(2n − 2) new points are distinct,
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since we constructed (2n − 2) distinct points inside 2n pairwise disjoint closed discs. Moreover,
choosing the same shrinking process for xi and −xi, the (2n − 2) new points that we obtain
inside the closed disc D̄(xi,m) are the antipodal points of the (2n − 2) new points that we obtain
inside the closed disc D̄(−xi,m). Thus, by projecting these 2n(2n − 2) new distinct points into
RP 2, via the covering map p, we obtain 2n(n − 1) new distinct unordered points, that depend
continuously on the element {y1, . . . , yn} ∈ Fn(RP 2)/Sn. We conclude that there exists a cross-
section sm ∶ Fn(RP 2)/Sn ! Fn+m(RP 2)/(Sn × Sm) for the fibration qn+m,n ∶ Fn+m(RP 2)/(Sn ×
Sm)! Fn(RP 2)/Sn, for m = 2n(n − 1).

Remark 3.3.3. From Proposition 1.3.1 and Proposition 3.2.4 we know that if the fibration qn+m,n ∶
Fn+m(RP 2)/(Sn × Sm) ! Fn(RP 2)/Sn admits a cross-section, then m = k(n − 1), for k ≥ 1. In
Propositions 3.3.1 and 3.3.2, we have shown that we have a cross-section sm for qn+m,n, for
m = 2n(n − 1) and m = kn(2n − 1)(2n − 2), where k ≥ 1. These results are compatible since in both
cases the value of m is a multiple of (n − 1).

We conclude this section by presenting the main result of this part of the thesis.

Theorem 3.3.4. Let m > 1 and n ≥ 3. The short exact sequence

1 Bm(RP 2 ∖ {x1, . . . , xn}) Bn,m(RP 2) Bn(RP 2) 1q̄n+m,n

splits for m = 2n(n−1) and for m = kn(2n−1)(2n−2), where k ≥ 1. Moreover, if the homomorphism
q̄n+m,n admits a section, then m ≡ 0, (n − 1)2 mod n(n − 1).

Proof. This result follows from Propositions 1.3.1, 3.3.1, 3.3.2 and Remark 3.2.9.

Remark 3.3.5. For n = 3, based on Theorem 3.3.4, the smallest value of m, for which the homo-
morphism q̄3+m,3 ∶ B3,m(RP 2)! B3(RP 2) could possibly admit a section is m = 6, and moreover,
m = 12 is the smallest known value for which the homomorphism q̄3+m,3 ∶ B3,m(RP 2)! B3(RP 2)
admits a section.
Remark 3.3.6. To the best of our knowledge the remaining cases that are not covered by Theorem
3.3.4 are open.



CHAPTER 4

The welded braid groups WBn

The chapter on welded braid groups is structured as follows. In Section 4.1 we give a couple of
different interpretations of the welded braid groups WBn as well as a presentation of them. We
continue in Section 4.2, where we prove that the subgroups of their lower central series coincide, for
n ≥ 4. Moreover, we determine all possible homomorphisms from WBn to the symmetric group Sn.
A discussion about an important subgroup of WBn, the welded pure braid group WPn, follows in
Section 4.3, where we also provide a proof that WPn is a characteristic subgroup of WBn with a
trivial centralizer. Furthermore, we show that, the free group Fn, seen as a subgroup of WBn, is a
normal one. Lastly, in Section 4.4 we discuss about the automorphism group of WBn.

4.1 Introduction
Let n ∈ N. The welded braid groups WBn appear in the literature under many different names;

conjugating automorphisms of the free group Fn due to Savushkina, [Sav96], loop braid groups
due to Baez–Crans–Wise, [BCW07] and groups of untwisted rings due to Brendle–Hatcher, [BH13].
The name of welded braid groups, which we will be using and denoting by WBn, was introduced
by Fenn–Rimányi–Rourke, [FRR97].

The groups WBn are actually a 3−dimensional analogue of the Artin braid groups Bn and there
are several interpretations of it; in terms of mapping class groups, fundamental group of specific
configuration spaces and automorphisms of the free group Fn. We refer the reader to [Dam17] by
Damiani for a complete presentation of the equivalent definitions of the welded braid groups.

In this thesis we will work on the welded braid groups as automorphisms of the free group Fn,
but also as the fundamental group of the spaces of specific configurations, as we describe in the
following definitions.

Definition 4.1.1. Let n ∈ N and let Fn denote the free group of rank n with generators {x1, . . . , xn}
and let Aut(Fn) denote its automorphism group. The group WBn is the subgroup of Aut(Fn) that
consists of the so-called conjugating automorphisms, a ∶ xi 7!W −1

i xπ(i)Wi, where π is a permutation
and Wi is a word in Fn. To be more precise, let σi ∈ Aut(Fn), i = 1, . . . , n − 1 be given by

σi ∶

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

xi 7! xi+1

xi+1 7! x−1
i+1xixi+1

xj 7! xj , j ≠ i, i + 1
(1)

and let ρi ∈ Aut(Fn), i = 1, . . . , n − 1 be given by
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ρi ∶

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

xi 7! xi+1

xi+1 7! xi

xj 7! xj , j ≠ i, i + 1
(2)

The welded braid group WBn is the one generated by both sets of elements σi and ρi, i = 1, . . . , n.

Remark 4.1.2. The elements σi, i = 1, . . . , n − 1 generate the braid subgroup of Aut(Fn), which is
isomorphic to the Artin braid group Bn. Moreover, the elements ρi, i = 1, . . . , n − 1 generate the
permutation subgroup of Aut(Fn) which is a copy of the symmetric group Sn.

The following theorem gives a presentation of WBn, due to Fenn–Rimányi–Rourke, [FRR97].

Theorem 4.1.3 (Fenn–Rimányi–Rourke, [FRR97]). Let n ∈ N. The welded braid group WBn
admits the following presentation:

⟨σ1, . . . , σn−1, ρ1, . . . , ρn−1 ∣ R⟩,

where R is the set of the following relations:

i. σiσi+1σi = σi+1σiσi+1, for i = 1, . . . , n − 2,

ii. σiσj = σjσi, for ∣i − j∣ > 1, where 1 ≤ i, j ≤ n − 1,

iii. ρiρi+1ρi = ρi+1ρiρi+1, for i = 1, . . . , n − 2,

iv. ρiρj = ρjρi, for ∣i − j∣ > 1, where 1 ≤ i, j ≤ n − 1,

v. ρ2
i = 1, for i = 1, . . . , n − 1,

vi. σiρj = ρjσi, for ∣i − j∣ > 1, where 1 ≤ i, j ≤ n − 1,

vii. σi+1ρiρi+1 = ρiρi+1σi, for i = 1, . . . , n − 2,

viii. ρi+1σiσi+1 = σiσi+1ρi, for i = 1, . . . , n − 2.

Remark 4.1.4. In Theorem 4.1.3 we see that relations (i)-(ii) are braid group relations, relations
(iii)-(v) are permutation group relations and relations (vi) − (viii) are mixed relations.

We define now the untwisted ring group, URn, which gives a geometric interpretation of the
welded braid group WBn, as we will see in the following proposition that these two groups are
isomorphic. The following definition appears in [Gol81], by Goldsmith, under the name of motion
groups.

Definition 4.1.5. Let n ∈ N and let URn be the space of all configurations of n disjoint pairwise
unlinked unordered Euclidean circles in R3 lying in planes parallel to a fixed one. The untwisted
ring group URn is its fundamental group.

Due to Brendle–Hatcher, [BH13], we have the following presentation of URn.

Theorem 4.1.6 (Brendle–Hatcher, [BH13]). Let n ∈ N. The untwisted ring group URn admits the
following presentation:

⟨σ1, . . . , σn−1, ρ1, . . . , ρn−1 ∣ R⟩,

where R is the set of the following relations:

i. σiσi+1σi = σi+1σiσi+1, for i = 1, . . . , n − 2,

ii. σiσj = σjσi, for ∣i − j∣ > 1, where 1 ≤ i, j ≤ n − 1,

iii. ρiρi+1ρi = ρi+1ρiρi+1, for i = 1, . . . , n − 2,

iv. ρiρj = ρjρi, for ∣i − j∣ > 1, where 1 ≤ i, j ≤ n − 1,

v. ρ2
i = 1, for i = 1, . . . , n − 1,

vi. σiρj = ρjσi, for ∣i − j∣ > 1, where 1 ≤ i, j ≤ n − 1,
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vii. σiρi+1ρi = ρi+1ρiσi+1, for i = 1, . . . , n − 2,

viii. ρiσi+1σi = σi+1σiρi+1, for i = 1, . . . , n − 2.

Note that the generators σi, ρi, were initially considered by Goldsmith in [Gol81]. The generator
σi permutes the ith and the (i + 1)st circles by passing the ith circle through the (i + 1)st and the
generator ρi permutes them passing the ith around the (i + 1)st, as depicted in the following figure.

Figure 4.1 The generators σi and ρi.

Due to Damiani, [Dam17], we have the following proposition, where we see that the groups
WBn and URn are actually equivalent formulations of the same group. This result follows as a
consequence of a result that was established for more general groups in [Gol81] by Goldsmith.

Proposition 4.1.7 (Damiani, [Dam17]). For n ∈ N, there is a natural isomorphism between the
untwisted ring group URn and the welded braid group WBn.

In this chapter from now onwards, we will use as presentation of WBn the one given in Theorem
4.1.6.

4.2 Homomorphisms from WBn to the symmetric group Sn

The lower central series of a group G is defined as the descending series

Γ1(G) = G ⊇ Γ2(G) ⊇ ⋅ ⋅ ⋅ ⊇ Γn ⊇ . . . ,

where Γi(G) = [Γi−1(G),G]; the subgroup of G generated by all commutators [x, y] = xyx−1y−1,
for x ∈ Γi−1(G) and y ∈ G.

Proposition 4.2.1. Let n ∈ N. For the welded braid group WBn we have the following results:

• For n ≥ 2 the Abelianisation of WBn is isomorphic to Z ×Z2.

• For n = 3, Γ2(WB3)/Γ3(WB3) ≅ Z2 and for n ≥ 4, Γ2(WBn) ≅ Γ3(WBn).

Proof. Based on the presentation that we gave in Theorem 4.1.6 we have that the Abelianisation
of WBn is isomorphic to Z × Z2; the copy of the group Z is generated by the elements σi, the
generators of the Artin braid group Bn and the copy of the group Z2 is generated by the elements
ρi, the generators of symmetric group Sn.

Let n ≥ 3. We have the following short exact sequence:

1! Γ2(WBn)/Γ3(WBn)! Γ1(WBn)/Γ3(WBn)
p
−! Γ1(WBn)/Γ2(WBn)! 1.

Let Γ1/Γ2 ∶= Γ1(WB3)/Γ2(WB3) and Γ1/Γ3 ∶= Γ1(WB3)/Γ3(WB3). For n = 3, the group Γ1/Γ3 ∶=
Γ1(WB3)/Γ3(WB3) is generated by the set

{σ̄1 = σ1Γ3, σ̄2 = σ2Γ3, ρ̄1 = ρ1Γ3, ρ̄2 = ρ2Γ3}.

Since σ2 = σ1σ2σ1σ
−1
2 σ−1

1 = σ1[σ2, σ1] and ρ2 = ρ1ρ2ρ1ρ
−1
2 ρ−1

1 = ρ1[ρ2, ρ1], it follows that σ1, σ2
project into the same element inside Γ1/Γ2; σ1Γ2 = σ1Γ2 and similarly, ρ1, ρ2 project into the same
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element inside Γ1/Γ2; ρ1Γ2 = ρ2Γ2. Thus, σ̄1 = σ1Γ3, σ̄2 = t ⋅σ1Γ3 for t ∈ ker(p) = Γ2/Γ3 and similarly
ρ̄1 = ρ1Γ3, ρ̄2 = s ⋅ ρ1Γ3 for s ∈ ker(p) = Γ2/Γ3. Projecting now relation σ1σ2σ1 = σ2σ1σ2 into Γ1/Γ3
it follows that σ̄1tσ̄1σ̄1 = tσ̄1σ̄1tσ̄1, and since t ∈ Γ2/Γ3, where Γ2/Γ3 is a central subgroup of Γ1/Γ3,
it follows that t = 1. As a result, σ̄1 = σ̄2. Also, projecting relation ρ1ρ2ρ1 = ρ2ρ1ρ2 into Γ2/Γ3 and
using the same arguments it follows that ρ̄1 = ρ̄2. We conclude that Γ1/Γ3 is generated by these two
elements {σ̄1, ρ̄1}. Now, the element [σ̄1, ρ̄1] generates Γ2/Γ3. We observe that [σ̄1, ρ̄1]

2 = [σ̄1, ρ̄
2
1] = 1

inside Γ2/Γ3. The first equality follows from the fact that [σ̄1, ρ̄1]
2 = [σ̄1, ρ̄1]ρ̄1[σ̄1, ρ̄1]ρ̄

−1
1 = [σ̄1, ρ̄

2
1]

and that [σ̄1, ρ̄1] ∈ Γ2/Γ3 is central in Γ1/Γ3. The last equality holds because ρ2
1 = 1 and therefore

(ρ̄1)
2 = 1. Thus, the group Γ2/Γ3 is cyclic of order 2, which means Γ2(WB3)/Γ3(WB3) ≅ Z2.
For n ≥ 4, let Γ1/Γ2 ∶= Γ1(WBn)/Γ2(WBn) and Γ1/Γ3 ∶= Γ1(WBn)/Γ3(WBn). We have the

following situation: all generators σ̄i = σiΓ3, for i = 1, . . . , n − 1, in Γ1/Γ3 are sent to the same
element in Γ1/Γ2; the Abelianisation of WBn, since the elements σi ∈WBn, for 1 ≤ i ≤ n − 1, are
pairwise conjugate and similarly for the generators ρ̄j = ρjΓ3, for 1 ≤ j ≤ n − 1. Therefore, without
loss of generality, we can assume that for any σ̄i ∈ Γ1/Γ3, 1 ≤ i ≤ n − 1, there exists ti ∈ Γ2/Γ3
such that σ̄i = tiσ̄1; where t1 = 1, and similarly for 1 ≤ j ≤ n there exists sj ∈ Γ2/Γ3 such that
ρ̄j = sj ρ̄1; where s1 = 1. Projecting relation σiσi+1σi = σi+1σiσi+1, for 1 ≤ i ≤ n − 2, into Γ1/Γ3
we get tiσ̄1ti+1σ̄1tiσ̄1 = ti+1σ̄1tiσ̄1ti+1σ̄1. We know that the elements ti, ti+1 ∈ Γ2/Γ3 are central in
Γ1/Γ3, and therefore the last relation gives that ti = ti+1 = 1, since t1 = 1. As a result we have
that σ̄1 = ⋅ ⋅ ⋅ = σ̄n−1 =∶ σ̄ ∈ Γ1/Γ3. With a similar argument we obtain ρ̄1 = ⋅ ⋅ ⋅ = ρ̄n−1 =∶ ρ̄ ∈ Γ1/Γ3.
We deduce that the group Γ1/Γ3 has two generators, σ̄, ρ̄, where (ρ̄)2 = 1, since ρ2

i = 1 ∈ WBn.
Moreover, projecting relation σiρj = ρjσi, ∣i − j∣ > 1 into Γ1/Γ3, we obtain that σ̄ρ̄ = ρ̄σ̄, which
means that the two generators of Γ1/Γ3 commute. Therefore, the group Γ1/Γ3 is an Abelian group
with two generator, σ̄, ρ̄, satisfying (ρ̄)2 = 1. By the universal property of the Abelianisation it
follows that Γ2 has to be a subgroup of Γ3, since any projection of WBn into an Abelian group has
to factor through Γ1/Γ2, and therefore Γ2 ⊆ Γ3. But, by the definition of the lower central series we
know that Γ3 ⊆ Γ2 and therefore we conclude that Γ2 = Γ3.

For further results about the commutator subgroups of the welded braid groups WBn, we
refer the reader to [BGN19], by Bardakov–Gongopadhyay–Neshchadim, where among others, they
proved that, for m ≥ 5, the commutator subgroups, [WBn,WBn], are perfect, which means that
[WBn,WBn] = [[WBn,WBn], [WBn,WBn]].

We recall the following definitions, which we will use in the following theorem.

• Let G,H be two groups. For every x ∈ H we have the group homomorphism hx ∶ H ! H,
defined by hx(y) = xyx−1. Two group homomorphisms h1, h2 ∶ G!H are said to be conjugate
if there exists an element x ∈H such that h2 = hx ○ h1, which means that h2(g) = xh1(g)x

−1,
for every g ∈ G.

• A group homomorphism h ∶ G ! H is said to be Abelian if its image h(G) is an Abelian
subgroup of H.

• A group homomorphism h ∶ G!H is said to be cyclic if its image h(G) is a cyclic subgroup
of H.

Before stating the main theorem of this section we recall a known fact about the homomorphisms
of the symmetric group.

It is well known that the symmetric group S6 has an outer automorphism, which we will denote
by v6, unlike all other symmetric groups. Due to Artin, [Art47a] and Lin, [Lin], the following known
result can be deduced.

Proposition 4.2.2. Let n,m ∈ Z with n ≥ m, such that n ≥ 5, m ≥ 2. For any homomorphism
h ∶ Sn! Sm one of the following holds.

1. The homomorphism h is Abelian and therefore cyclic.

2. For n =m the homomorphism h is, up to conjugation, the identity.

3. For n =m = 6 the homomorphism h is, up to conjugation, v6.

We define now some maps that we will use in the proof of the following theorem.
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1. Let α be the homomorphism Sn!WBn defined by α(si) = ρi, for 1 ≤ i ≤ n − 1.

2. Let φ be the homomorphism WBn! Sn defined by φ(σi) = φ(ρi) = si, where s(i) = (i, i+1) ∈
Sn, for every 1 ≤ i ≤ n − 1.

Theorem 4.2.3. Let n ≥ 5 and let h ∶WBn! Sn be any homomorphism. Then, up to conjugation,
one of the following holds:

• The homomorphism h is the homomorphism φ.

• The homomorphism h is cyclic, whose image is of order 2.

• The homomorphism h is Abelian.

• For n = 6, the homomorphism h is v6 ○ φ.

Proof. For n ≥ 5, let h ∶ WBn ! Sn be any homomorphism. From Proposition 4.2.2, the
composition map h○α ∶ Sn! Sn is, up to conjugation, either Abelian or the identity homomorphism,
and only in the case n = 6 we could also have that h ○ α is the homomorphism v6. We will examine
this case separately.

Suppose that h ○ α is the identity homomorphism. We have that (h ○ α)(si) = h(α(si)) =

h(ρi) = si, for 1 ≤ i ≤ n − 1. It follows that h(ρi) = si, for 1 ≤ i ≤ n − 1. Moreover, from relation
ρiσj = σjρi, ∣i − j∣ > 1, we get that h(σ1) = h(ρ

−1
i σ1ρi) = s

−1
i h(σ1)si for 3 ≤ i ≤ n − 1, which means

that sih(σ1) = h(σ1)si, for 3 ≤ i ≤ n− 1. For the same values of i, since h(σ1) commutes with si, we
get that h(σ1) belongs to the centraliser of ⟨s3, . . . , sn−1⟩ inside Sn; but this centraliser is {1, s1}.
As a result we have either that h(σ1) = 1 or that h(σ1) = s1. We shall check each case separately.

Suppose that h(σ1) = 1. In this case, because of relation σi = (σ1 . . . σn−1)
i−1σ1(σ1 . . . σn−1)

1−i,
we have that h(σi) = 1, 1 ≤ i ≤ n − 1. Therefore, we get h(ρi) = si and h(σi) = 1, for 1 ≤ i ≤ n − 1.
Now, from relation ρiσi+1σi = σi+1σiρi+1, for 1 ≤ i ≤ n − 2, it follows that h(ρi)h(σi+1)h(σi) =

h(σi+1)h(σi)h(ρi+1), which gives that h(ρi) = h(ρi+1) = si = si+1, for 1 ≤ i ≤ n − 2. Thus, the image
of the homomorphism h in Sn is cyclic of order 2. Thus, h(WBn) ≅ Z2.

Suppose that h(σ1) = s1. By induction we can show that h(σi) = si, for 1 ≤ i ≤ n−1. For i = 1 the
hypothesis holds. Suppose that for some i ≥ 2 we have h(σi) = si. From relation ρi+1ρiσi+1 = σiρi+1ρi
it follows that h(σi+1) = h(ρi)

−1h(ρi+1)
−1h(σi)h(ρi+1)h(ρi). Thus, h(σi+1) = s

−1
i s

−1
i+1sisi+1si = si+1,

which completes the induction. As a result we have that h(ρi) = si and h(σi) = si, for 1 ≤ i ≤ n − 1.
This implies that h is, up to conjugation, the homomorphism φ.

We will consider now the case where the homomorphism h ○ α ∶ Sn ! Sn is Abelian and
therefore cyclic, since the generators of Sn satisfy relation sisi+1si = si+1sisi+1, for 1 ≤ i ≤ n − 1.
We have that for all 1 ≤ i ≤ n − 1, (h ○ α)(si) = w, for an element w ∈ Sn, with w2 = 1. Therefore,
(h ○α)(si) = h(α(si)) = h(ρi) = w, which gives that h(ρi) = w, where w2 = 1, 1 ≤ i ≤ n− 1. Relation
σiρi+1ρi = ρi+1ρiσi+1, under h, becomes h(σi)w2 = w2h(σi+1), and therefore, h(σi) = h(σi+1), for
1 ≤ i ≤ n−1. Thus, we have that h(σ1) = ⋅ ⋅ ⋅ = h(σn−1) =∶ τ ∈ Sn. Moreover, from relation ρiσj = σjρi,
for ∣i − j∣ > 1 and 1 ≤ i, j ≤ n − 1, we get h(ρi)h(σj) = h(σj)h(ρi), which implies that wτ = τw. As
a result we have that the image of the homomorphism h is the Abelian group generated by the
elements w and τ , with w2 = 1. We conclude that in this case the homomorphism h is Abelian.

Lastly, suppose that n = 6 and that the homomorphism h○α ∶ S6! S6 is, up to conjugation, the
homomorphism v6; h○α = v6. The map v−1

6 ○h○α becomes the identity homomorphism S6! S6 and
it follows that (v−1

6 ○h○α)(si) = (v−1
6 ○h)(ρi) = si, for 1 ≤ i ≤ 5. Using relation ρiσj = σjρi, ∣i− j∣ > 1

we get that, for i ∈ {3,4,5}, (v−1
6 ○ h)(σ1) = (v−1

6 ○ h)(ρ−1
i σ1ρi) = s

−1
i (v−1

6 ○ h)(σ1)si, and we obtain
si(v

−1
6 ○h)(σ1) = (v−1

6 ○h)(σ1)si. In other words, we have that (v−1
6 ○h)(σ1) belongs to the centraliser

of ⟨s3, s4, s5⟩ in S6, but the centraliser of ⟨s3, s4, s5⟩ in S6 is {1, s1}. Therefore, either (v−1
6 ○h)(σ1) = 1

or (v−1
6 ○ h)(σ1) = s1. Following the same arguments as before, we conclude that in the case where

(v−1
6 ○h)(σ1) = 1, it follows that (v−1

6 ○h)(σi) = 1 and that (v−1
6 ○h)(ρi) = (v−1

6 ○h)(ρi+1) = si = si+1,
for 1 ≤ i ≤ n − 2. Thus, (v−1

6 ○ h) is a cyclic homomorphism, and as a result h is again a cyclic
homomorphism, whose image is of order 2. In the case where (v−1

6 ○ h)(σ1) = s1, it follows that
(v−1

6 ○ h)(σi) = si, and as a result (v−1
6 ○ h) = φ, since we already have that (v−1

6 ○ h)(ρi) = si, for
1 ≤ i ≤ 5. All together we get that the homomorphism h can be v6 ○ φ.
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Remark 4.2.4. For n = 3, 4, to determine all possible homomorphisms from WBn to Sn seems to be
trickier. Note that for n = 2 it holds that WB2 = ⟨σ1, ρ1 ∣ ρ2

1 = 1⟩, which is isomorphic to the free
product Z ∗Z2, and thus the image of any homomorphism h ∶WB2! S2 is either the trivial group
or S2.
Remark 4.2.5. The only possible surjective homomorphisms from WBn to Sn , for n ≥ 5, are the
homomorphism φ and, in the case of n = 6, also the homomorphism v6 ○ φ.

4.3 The welded pure braid groups WPn

Let n ∈ N. The welded pure braid group WPn, as a subgroup of the welded braid group
WBn has also several interpretations. We now present two definitions of WPn. One that involves
automorphisms of the free group Fn and another in terms of the fundamental group of the space of
specific configurations.

Definition 4.3.1. Let n ∈ N and let Fn denote the free group of rank n with generators {x1, . . . , xn}
and let Aut(Fn) denote its automorphism group. The welded pure braid groupWPn is the subgroup
of WBn ⊂ Aut(Fn), which is generated by the automorphisms of the form

εi,j ∶

⎧⎪⎪
⎨
⎪⎪⎩

xi 7! x−1
j xixj ,

xk 7! xk, for k ≠ i, j.
(3)

Thus, WPn is the subgroup of Aut(Fn), which consists of the so-called basis-conjugating automor-
phisms, a ∶ xi 7!W −1

i xiWi, where W is a word in Fn.

Definition 4.3.2. Let n ∈ N and let PURn be the space of all configurations of n disjoint pairwise
unlinked ordered Euclidean circles in R3 lying in planes parallel to a fixed one. The pure untwisted
ring group PURn is its fundamental group.

In the previous section, we saw that WBn ≅ URn. Similarly we have WPn ≅ PURn, which
means thatWPn and PURn are actually equivalent formulations of the same group. For a complete
proof of the equivalence of these formulations of WPn, as automorphisms of the free group and as
the fundamental group of the space of certain configurations, we refer the reader to [Dam17].

A presentation of WPn is known due to Humphries, [Hum85] and McCool, [McC86], who
determined the generating set and the defining relations respectively, but also due to Brendle–
Hatcher, [BH13], who used a different approach. To be more precise, Humphries and McCool
considered WPn as in Definition 4.3.1, while Brendle–Hatcher as in Definition 4.3.2.

Theorem 4.3.3. Let n ∈ N. The welded pure braid group WPn admits the following presentation:

⟨εi,j , for, 1 ≤ i ≠ j ≤ n ∣ R⟩,

where R is the set of the following relations:

1. εi,jεk,l = εk,lεi,j,

2. εi,kεj,k = εj,kεi,k,

3. εi,j(εi,kεj,k) = (εi,kεj,k)εi,j.

Based on the presentation of WPn, given in Theorem 4.3.3, where the relations are commutation
relations we obtain the following result about the Abelianisation of WPn.

Corollary 4.3.4. For n ≥ 2 the Abelianisation of WPn is isomorphic to Zn(n−1).

In terms of elements of the fundamental group of space of configurations, the element εi,j
represents the movement of the ith circle passing through the jth circle and going back to its
position, as shown in the following figure:



4.3. The welded pure braid groups WPn 63

Figure 4.2 The element εi,j .

Remark 4.3.5. With a geometric approach, based on Figure 4.1 and Figure 4.2, one can see that
the generator εi,i+1 is actually equal to ρiσ−1

i and the generator εi+1,i equal to σ−1
i ρi. Thus we have

εi,i+1 = ρiσ
−1
i and εi+1,i = σ

−1
i ρi, for 1 ≤ i ≤ n − 1.

Considering the map φ ∶WBn! Sn, defined by φ(σi) = φ(ρi) = (i, i+1) ∈ Sn, for i = 1, . . . , n−1,
it follows that the welded pure braid group WPn, is actually the kernel of this map φ. In [Sav96],
Savushkina proved that WBn can be seen as the semidirect product of its subgroups WPn and Sn,
and determined the action of Sn on WPn, as described in the following theorem.

Theorem 4.3.6 (Savushkina, [Sav96]). Let n ∈ N. The group WBn is isomorphic to the semidirect
product WPn ⋊ Sn, where the action of the symmetric group on WPn is defined as follows:

• εi,jsk = skεi,j ,

• εi,jsi = siεi+1,j ,

• εi,jsj = sjεi,j+1,

• εi,i+1si = siεi+1,i.

Remark 4.3.7. Note that the action of the symmetric group Sn on WPn, in Theorem 4.3.6, can be
written more compactly as

sεi,js
−1

= εs(i),s(j),

for any elemement s ∈ Sn and εi,j ∈WPn.
We are ready now to show that the group WPn is actually a characteristic subgroup of WBn,

for n ≥ 5, and that its centraliser in WBn is trivial.

Proposition 4.3.8. For n ≥ 5 the group WPn is a characteristic subgroup of WBn.

Proof. In order to prove that the group WPn is a characteristic subgroup of WBn, we have
to show that for any automorphism of WBn the subgroup WPn stays invariant, that is for any
f ∈ Aut(WBn) then f(WPn) =WPn.

Let f be any automorphism of the group WBn and h be any surjective homomorphisms from
WBn to the symmetric group Sn. We consider the following composition map:

h ○ f ∶WBn
f
−!WBn

h
ÐÐ↠ Sn.

From Remark 4.2.5 we know that the only possible surjective homomorphisms from WBn to
Sn are the homomorphism φ and, in the case of n = 6, also the homomorphism v6 ○ φ. These
homomorphisms have as kernel the group WPn. Therefore, it follows that ker(h) = WPn and
ker(h ○ f) =WPn, as both of them are epimorphisms from WBn to Sn.

We have ker(h ○ f) = f−1(WPn), since f is an automorphism and ker(h) =WPn. Moreover, we
have ker(h ○ f) =WPn. It follows that f−1(WPn) =WPn, for any f ∈ Aut(WBn), which completes
the proof.

Remark 4.3.9. For n = 2 the group WP2 is not a characteristic subgroup of WB2. This is the case
because the automorphism α ∶WB2!WB2, defined by

α ∶

⎧⎪⎪
⎨
⎪⎪⎩

σ1 7! σ−1
1 ρ1,

ρ1 7! ρ1,
(4)
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does not send the element ε1,2 ∈ WP2 to an element in WP2. In particular, ε1,2 = ρ1σ
−1
1 , from

Remark 4.3.5, and thus α(ε1,2) = σ1 ∉WP2.
In [Sav96], Savushkina proved that WPn has trivial centre, and moreover we show that the

centraliser of WPn in WBn is also trivial.

Theorem 4.3.10 (Savushkina, [Sav96]). Let n ∈ N. The group WPn has trivial centre.

Proposition 4.3.11. Let n ∈ N. The centraliser of WPn in WBn is trivial.

Proof. Let n ∈ N. We want to calculate the centraliser

CWBn(WPn) = {g ∈WBn ∣ gp = pg, for every p ∈WPn}.

We know that WBn = WPn ⋊ Sn, which means that any g ∈ WBn can be expressed as g =

w(εi,j)w(sk), for w(εi,j) and w(sk) a word in WPn and Sn respectively.
Let g ∈ CWBn(WPn) be a non-trivial element, where g = ES, for E,S fixed words inWPn and Sn

respectively. It holds that gp = pg for every element p ∈WPn. Therefore,

εk,l ⋅ES = ES ⋅ εk,l, for every k ≠ l ∈ {1, . . . , n}.

From Remark 4.3.7, and in particular based on the action of the symmetric group on the
generator εk,l ∈WPn, we obtain

εk,l ⋅ES = E ⋅ εS(k),S(l)S, for every k ≠ l ∈ {1, . . . , n}.

Thus,
εk,l = E ⋅ εS(k),S(l) ⋅E

−1
∈WPn, for every k ≠ l ∈ {1, . . . , n}. (5)

From relation (5), if εk,l = εS(k),S(l), for every k ≠ l ∈ {1, . . . , n}, it follows that the element
E commutes with every generator εk,l ∈ WPn, and then we obtain a contradiction, since WPn
has a trivial centre, Theorem 4.3.10. Therefore, it holds that there exists k, l ∈ {1, . . . , n} such
that εk,l ≠ εS(k),S(l) and εk,l = E ⋅ εS(k),S(l) ⋅ E−1. It follows that for such k, l there exists a pair
(r, t) ∈ {1, . . . , n}, such that (S(k), S(l)) = (r, t) and εk,l = E ⋅ εr,t ⋅E

−1. This means that under the
Abelianisation map the two distinct generators of the group WPn, εk,l and εr,t, would coincide.
But, as stated in Corollary 4.3.4, the Abelianisation of WPn is isomorphic to the free Abelian group
of rank n(n− 1) generated by the elements εi,j , for 1 ≤ i, j ≤ n. Therefore, relation (5) can not hold.

Now, suppose that g = S; meaning that E is a trivial word in WPn. It has to hold that

εk,l ⋅ S = S ⋅ εk,l, for every k, l ∈ {1, . . . , n}. (6)

But relation (6) implies that the word S in the symmetric group fixes all the elements of the
set {1, . . . , n}. This is possible only when S is the trivial element, which leads once more to a
contradiction, since g is a non-trivial element in CWBn(WPn). Since the centre of WPn is trivial
we do not need to check the case where g = E.

We conclude that a non-trivial element g in CWBn(WPn) does not exist, and therefore the
centraliser CWBn(WPn) is trivial.

4.4 About the automorphism group of WBn

In [DG81], Dyer–Grossman proved that the group of the outer automorphisms of the Artin
braid group, Bn, is isomorphic to Z2. We recall that for a group G, the outer automorphisms group
of G is defined by the following quotient: Out(G) = Aut(G)/Inn(G), where Inn(G) is the group
of the inner automorphisms of G. More precisely, for the Artin braid group we have Out(Bn) ≅ Z2,
for n ≥ 3, generated by the automorphism εn, defined as follows:

εn ∶ σi 7! σ−1
i , for every 1 ≤ i ≤ n − 1.

The automorphism group of the welded braid group, Aut(WBn), has not been determined yet.
Even though the welded braid group, WBn, is precisely a generalisation of the Artin braid group
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Bn in the three dimensional space, the method which Dyer–Grossman used in their proof can not
be applied directly for the group WBn. The main problem that we encountered concerns the free
group, Fn. To be more precise, it is needed, at some part of their proof, to show that the free
group, Fn−1, is a characteristic subgroup of a quotient of Bn. Thus, we wanted to prove that Fn is
a characteristic subgroup of WBn, but the techniques that they use are not applicable in the case
of the welded braid group. This is the case because the action of Fn, as a subgroup of WBn, to
WBn has more freedom in comparison to the case of the Artin braid group, Bn. As we will see
in the following proposition, we are able to show that Fn is actually a normal subgroup of WBn.
Nevertheless, we speculate, a stronger result, that the free group Fn is a characteristic subgroup of
WBn, which seems harder to obtain.

Proposition 4.4.1. Let n ≥ 2. The free group of rank n, Fn, is a normal subgroup of WBn.

Proof. Identifying the free group Fn as the group of inner automorphisms inside Aut(Fn) we
have Fn ⊆ WPn ⊂ WBn ⊂ Aut(Fn). More precisely, we have that for any β ∈ Fn it holds that
β(xi) = wxiw

−1, for every xi ∈ Fn and for w ∈ Fn a fixed element in Fn.
Let γ ∈WBn ⊂ Aut(Fn). We consider the composition γβγ−1 ∶ Fn ! Fn. For any xi ∈ Fn we

have that γβγ−1(xi) = γβ(γ
−1(xi)) = γ(wγ

−1(xi)w
−1) = γ(w)γγ−1(xi)γ(w

−1) = γ(w)xi(γ(w))−1 ∈
Fn ⊂ Aut(Fn), for γ(w) a fixed element in Fn. As a result, γβγ−1 ∈ Fn ⊂ Aut(Fn), which implies
that β ∈ Fn is invariant under conjugation by any element of WBn. We conclude that the group
Fn is a normal subgroup of WBn.

The conjecture that we have regarding the outer automorphism group of WBn is that it is not
trivial, and more precisely, we conjecture that, for n ≥ 3, the group Out(WBn) is generated by the
automorphism αn, which is of order two defined as follows:

αn ∶

⎧⎪⎪
⎨
⎪⎪⎩

σi 7! ρiσ
−1
i ρi, for 1 ≤ i ≤ n − 1,

ρi 7! ρi, for 1 ≤ i ≤ n − 1.
(7)

Therefore, we conjecture that Out(WBn) ≅ Z2, for n ≥ 3.
The automorpism αn, defined in (7), can be seen as the composition of two other maps; the

map βn and γn, defined as follows:

βn ∶

⎧⎪⎪
⎨
⎪⎪⎩

σi 7! σ−1
i , for 1 ≤ i ≤ n − 1,

ρi 7! ρi, for 1 ≤ i ≤ n − 1,
(8)

and

γn ∶

⎧⎪⎪
⎨
⎪⎪⎩

σi 7! ρiσiρi, for 1 ≤ i ≤ n − 1,
ρi 7! ρi, for 1 ≤ i ≤ n − 1.

(9)

These two maps, although their composition is an automorphism of the welded braid group, they
are not automorphisms of the group WBn. Actually, they are not even homomorphisms, since
relation R8, ρiσi+1σi = σi+1σiρi+1, for i = 1, . . . , n − 2, in WBn, is not preserved neither under the
map βn nor under the map γn. These two maps send the group WBn to a different group, which
we will denote by W̃Bn. The group W̃Bn differs from the group WBn only in the last relation R8,
ρiσi+1σi = σi+1σiρi+1, for i = 1, . . . , n − 2, which becomes σiσi+1ρi = ρi+1σiσi+1, for i = 1, . . . , n − 2.
Based on this observation, we provide a motivation to explore the group which contains both
relations R8 and R̃8. This group appears to be an already known group, the unrestricted virtual
braid group, which we explore in the following chapter.
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CHAPTER 5

The unrestricted virtual braid groups UV Bn

In this chapter we explore the unrestricted virtual braid groups UV Bn. We begin by defining the
group UV Bn and providing several references about the unrestricted virtual braid group. In Section
5.2 we determine all possible homomorphisms, up to conjugation, from UV Bn to the symmetric
group Sn, for n ≥ 5. We continue with Section 5.3 where we introduce an important subgroup of
UV Bn, the group UV Pn, and we show that it is a characteristic subgroup as well as that it has
a trivial centraliser in UV Bn. The Section 5.4 is devoted to the study of all possible images of
UV Bn in any finite group G, under any group homomorphism. In this study, the theory of totally
symmetric sets plays a main role and so we introduce these sets and we present several results
which involve them. In Section 5.5, we give a characterisation of the torsion element in UV Bn,
and in particular we show that any torsion element in UV Bn is a conjugate of an element of the
symmetric group Sn. In Section 5.6 we prove that the Artin braid group Bn embeds in UV Bn as
the crystallographic group Bn/[Pn, Pn]. At the last but one Section 5.7, we provide the necessary
theory about the right-angled Artin groups, which we use for giving a complete description of the
automorphism group of the group UV Pn. We complete this chapter with Section 5.8, where we
give partial results about the automorphism group of UV Bn and prove that the groups UV Bn and
UV Pn are Hopfian but not co-Hopfian.

5.1 Introduction
The group of unrestricted virtual braids, which we will denote throughout this text by UV Bn,

was introduced by Kauffman and Lambropoulou in [KL04] and [KL06], where, respectively, they
provide a new method for converting virtual knots and links to virtual braids and they prove a
Markov Theorem for the virtual braid groups. The group UV Bn also appears in [KMRW17] as a
quotient of the welded braid group WBn and in [BBD15] where Bardakov–Bellingeri–Damiani give
a description of the structure of this group. Therefore, it is worth studying the group of unrestricted
virtual braids, UV Bn, for being a quotient of the welded braid group WBn as well as for its own
sake.

The unrestricted virtual braid group is defined as follows.

Definition 5.1.1. Let n ∈ N. The group of unrestricted virtual braids UV Bn is defined by the
group presentation

⟨σ1, . . . , σn−1, ρ1, . . . , ρn−1 ∣ R⟩,

where R is the set of the following relations:

1. σiσi+1σi = σi+1σiσi+1, for i = 1, . . . , n − 2,

2. σiσj = σjσi, for ∣i − j∣ > 1, where 1 ≤ i, j ≤ n − 1,

67
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3. ρiρi+1ρi = ρi+1ρiρi+1, for i = 1, . . . , n − 2,

4. ρiρj = ρjρi, for ∣i − j∣ > 1, where 1 ≤ i, j ≤ n − 1,

5. ρ2
i = 1, for i = 1, . . . , n − 1,

6. σiρj = ρjσi, for ∣i − j∣ > 1, where 1 ≤ i, j ≤ n − 1,

7. σiρi+1ρi = ρi+1ρiσi+1, for i = 1, . . . , n − 2,

8. ρiσi+1σi = σi+1σiρi+1, for i = 1, . . . , n − 2,

9. ρi+1σiσi+1 = σiσi+1ρi, for i = 1, . . . , n − 2.

Remark 5.1.2. We see that, in order to define the group UV Bn, the only extra relation that we
added to the group WBn is relation 9.

Remark 5.1.3. Let n ≥ 2. Based on the presentation of UV Bn, Definition 5.1.1, it follows that the
Abelianisation of UV Bn is isomorphic to Z ×Z2, where Z is generated by [σ1] and Z2 is generated
by [ρ1].

5.2 Homomorphisms from UV Bn to the symmetric group Sn

Before presenting all possible homomorphisms from UV Bn to the symmetric group Sn, we recall
the map φ.

• Let φ be the homomorphism UV Bn! Sn defined by φ(σi) = φ(ρi) = si, where si = (i, i+ 1) ∈
Sn, for every 1 ≤ i ≤ n − 1.

We recall that with v6 we denote the outer automorphism of the symmetric group S6.

Theorem 5.2.1. Let n ≥ 5 and let h ∶ UV Bn! Sn be any homomorphism. Then, up to conjugation,
one of the following holds:

• The homomorphism h is the homomorphism φ.

• The homomorphism h is cyclic, whose image is of order 2.

• The homomorphism h is Abelian.

• For n = 6, the homomorphism h is v6 ○ φ.

Proof. To prove this theorem we follow the same arguments as in Theorem 4.2.3; the equivalent
theorem for the group WBn. The same arguments hold here as well, since the relations that are
used are valid also in this group, and the new relation, ρi+1σiσi+1 = σiσi+1ρi, that holds in UV Bn,
does not provide further results.

Remark 5.2.2. For n = 3,4, to determine all possible homomorphisms from UV Bn to Sn seems to
be trickier. Note that for n = 2 it holds that UV B2 = ⟨σ1, ρ1 ∣ ρ2

1 = 1⟩ =WB2, which is isomorphic
to Z ∗Z2, and thus the image of any homomorphism h ∶ UV B2! S2 is either the trivial group or
S2.

Remark 5.2.3. The only possible surjective homomorphisms from UV Bn to Sn , for n ≥ 5, are the
homomorphism φ and, in the case of n = 6, also the homomorphism v6 ○ φ.
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5.3 The unrestricted virtual pure braid groups UV Pn

Let φ ∶ UV Bn ! Sn be the map defined by φ(σi) = φ(ρi) = (i, i + 1) ∈ Sn, for i = 1, . . . , n − 1.
The unrestricted virtual pure braid group, which we denote by UV Pn, is the kernel of the map φ.

In [BBD15], Bardakov–Bellingeri–Damiani defined the following elements of UV Pn:

λi,i+1 = ρiσ
−1
i , for i = 1, . . . , n − 1,

λi+1,i = σ
−1
i ρi, for i = 1, . . . , n − 1,

λi,j = ρj−1ρj−2 . . . ρi+1λi,i+1ρi+1 . . . ρj−2ρj−1, for 1 ≤ i < j − 1 ≤ n − 1,
λj,i = ρj−1ρj−2 . . . ρi+1λi+1,iρi+1 . . . ρj−2ρj−1, for 1 ≤ i < j − 1 ≤ n − 1.

(1)

Moreover, they gave a presentation of UV Pn, which is presented in the following theorem.

Theorem 5.3.1 (Bardakov–Bellingeri–Damiani, [BBD15]). Let n ∈ N. The group UV Pn admits
the following presentation:
Generators: λi,j, for 1 ≤ i ≠ j ≤ n.
Relations: The generators commute pairwise except for the couples λi,j , λj,i.

To give a better insight into UV Pn we present the following remarks.
Remark 5.3.2. The generators λi,j , for 1 ≤ i ≠ j ≤ n of UV Bn are actually the same elements as
the generators εi,j , for, 1 ≤ i ≠ j ≤ n in Theorem 4.3.3. In other words, one can define a map that
sends each λi,j to εi,j .
Remark 5.3.3. The group

UV Pn = ⟨λi,j , 1 ≤ i ≠ j ≤ n ∣ λi,jλk,l = λk,lλi,j , for (k, l) ≠ (j, i), 1 ≤ i, j, k, l ≤ n⟩,

can be equivalently seen as the direct product of the following n(n − 1)/2 factors:

UV Pn = ⟨λ1,2, λ2,1⟩ × ⋅ ⋅ ⋅ × ⟨λi,jλj,i⟩ × ⋅ ⋅ ⋅ × ⟨λn−1,n, λn,n−1⟩, for 1 ≤ i ≠ j ≤ n.

Thus, UV Pn is isomorphic to the direct product of n(n − 1)/2 copies of the free group of rank 2:

UV Pn ≅ F2 × ⋅ ⋅ ⋅ × F2 × ⋅ ⋅ ⋅ × F2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n(n − 1)/2-times

, for n ≥ 2.

Remark 5.3.4. The group UV Pn has trivial centre, Z(UV Pn) = e, since it is isomorphic to the
direct product of free groups. For the same reason it follows that UV Pn is torsion free as well.

Based on the presentation of UV Pn, given in Theorem 5.3.1, where the relations are commutation
relations we obtain the following result about the Abelianisation of UV Pn.

Corollary 5.3.5. For n ≥ 2, the Abelianisation of UV Pn is isomorphic to Zn(n−1).

The question that was posed in [KL06] about the non-trivial structure of UV Bn was answered
by Bardakov–Bellingeri–Damiani in [BBD15], where they gave a decomposition of UV Bn into its
subgroup UV Pn and the symmetric group Sn, as presented in the following theorem.

Theorem 5.3.6 (Bardakov–Bellingeri–Damiani, [BBD15]). The group UV Bn is isomorphic to the
semi-direct product UV Pn ⋊ Sn, where Sn acts by permuting the indices of the generators of UV Pn.

More precisely, for all λi,j ∈ UV Pn, where 1 ≤ i ≠ j ≤ n, and for any s ∈ Sn we have the following
conjugating rule:

ι(s)λi,jι(s)
−1

= λs(i),s(j),

where ι is the injective map ι ∶ Sn! UV Bn defined by ι((i, i + 1)) = ρi; it is the natural section for
the map φ that we defined in the beginning of this section. Moreover, the action of the symmetric
group Sn on the generating set of UV Pn is transitive, see [[BBD15], Corollary 2.6].

Note that Theorem 5.3.6 is an equivalent result to Theorem 4.3.6, where we have a decomposition
of WBn into WPn ⋊ Sn.
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Remark 5.3.7. Having that UV Bn ≅ UV Pn ⋊ Sn it follows that the centre of UV Bn is trivial,
Z(UV Bn) = e. This is indeed the case because the centre of the symmetric group and the centre of
UV Pn are trivial, see Remark 5.3.4.

We now continue with proving that the group UV Pn is actually a characteristic subgroup of
UV Bn, for n ≥ 5, and that its centraliser in UV Bn is trivial.

Proposition 5.3.8. For n ≥ 5, the group UV Pn is a characteristic subgroup of UV Bn.

Proof. In order to prove that the group UV Pn is a characteristic subgroup of UV Bn, we have to
show that for any automorphism of UV Bn the subgroup UV Pn stays invariant. That is for any
f ∈ Aut(UV Bn) then f(UV Pn) = UV Pn.

Let f be any automorphism of the group UV Bn and h be any surjective homomorphisms from
UV Bn to the symmetric group Sn. We consider the following composition map:

h ○ f ∶ UV Bn
f
−! UV Bn

h
ÐÐ↠ Sn.

From Remark 5.2.3 we know that the only possible surjective homomorphisms from UV Bn
to Sn are the homomorphism φ and, in the case of n = 6, also the homomorphism v6 ○ φ; which
homomorphisms have clearly as kernel the group UV Pn. Therefore, it follows that ker(h) = UV Pn
and ker(h ○ f) = UV Pn, as both of them are epimorphisms from UV Bn to Sn.

We have that ker(h ○ f) = f−1(UV Pn), since f is an automorphism and ker(h) = UV Pn.
Moreover, we have that ker(h ○ f) = UV Pn. It follows that f−1(UV Pn) = UV Pn, for any f ∈

Aut(UV Bn), which completes the proof.

Remark 5.3.9. For n = 2 the group UV P2 is not a characteristic subgroup of UV B2. This is the
case because the automorphism α ∶ UV B2! UV B2, defined by

α ∶

⎧⎪⎪
⎨
⎪⎪⎩

σ1 7! σ−1
1 ρ1,

ρ1 7! ρ1,

does not send the element λ1,2 ∈ UV P2 to an element in UV P2. In particular, λ1,2 = ρ1σ
−1
1 , from

Remark 1, and thus α(λ1,2) = σ1 ∉WP2.

Proposition 5.3.10. Let n ∈ N. The centraliser of UV Pn in UV Bn is trivial.

Proof. The proof is the same as in the proof of Proposition 4.3.11, where we prove that the
centraliser of WPn in WBn is trivial.

5.4 Finite image of UV Bn

The main tool that we will use in order to determine all possible images of UV Bn, under a
group homomorphism, in any finite group G is the theory of totally symmetric sets, which was
introduced by Kordek and Margalit in [KM].

We start by introducing the notion of totally symmetric sets and presenting several results
about them.

Definition 5.4.1 (Kordek–Margalit, [KM]). A subset X of a group G is called a totally symmetric
set of G if it satisfies the following two conditions:

• The elements of the set X = {x1, . . . , xn} commute pairwise.

• Each permutation of X can be achieved via conjugation by an element of G.

We will present now a couple of facts about the totally symmetric sets, presented in [KM] and
[CKLP20].

Lemma 5.4.2 (Kordek–Margalit, [KM]). Let X be a totally symmetric set, of a group G, which
has size k. For any homomorphism h ∶ G!H it holds that h(X) is either a singleton or a totally
symmetric set of size k. In other words, ∣f(X)∣ is either 1 or ∣X ∣.
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Proposition 5.4.3 (Chudnovsky, Kordek, Li, Partin, [CKLP20]). Suppose that X is a totally
symmetric set of a group G, with size ∣X ∣ = k, whose elements have finite order. Then it follows
that ∣G∣ ≥ 2k−1k!.

Remark 5.4.4. Note that all elements of a totally symmetric set, X, are conjugate to each other,
and thus every element of X has the same order. In particular, if one element of X has finite order
p, then every other element of X has also order p.
Remark 5.4.5. Proposition 5.4.3 can be restated in an equivalent way and that is the following:
Let h ∶ G!H be a group homomorphsim from G to a finite group H. Suppose that X is a totally
symmetric set of G with size ∣X ∣, then ∣h(G)∣ ≥ 2∣X ∣−1∣X ∣!.

From Lemma 5.4.2 we know that either ∣h(X)∣ = ∣X ∣ or ∣h(X)∣ = 1. Thus, the equivalence
between these two statements comes from the fact that, for any finitely generated Abelian group S,
then S is a torsion group if and only if the group S is a finite group.

We are ready now to define some totally symmetric sets of UV Bn, for n ≥ 3. Based on the
presentation of UV Pn given in Theorem 5.3.1, we define the following totally symmetric sets.

Lemma 5.4.6. Let n ≥ 3. The following n sets, whose cardinality is n(n−1)/2 are totally symmetric
sets of UV Bn.

Ai ∶= {λi,1, . . . , λi,n,Bi,Ci}, for 1 ≤ i ≤ n,

where Bi, Ci are the following families of generators:
Bi =

i+1
⋃
j=n

{λj,k}1≤k≠i≤j−1 and Ci =
2
⋃

s=i−1
{λs,t}1≤t≤i−2.

Proof. Let n ≥ 3. The sets Ai do not contain any pair of elements of the form {λk,l, λl,k}, and
therefore the elements inside each Ai commute pairwise, by Theorem 5.3.1. Moreover, by Theorem
5.3.6, UV Bn can be seen as a semi-direct product, UV Pn ⋊Sn, where the symmetric group Sn acts
by conjugation on the elements of UV Pn permuting the set of the elements λi,j . Thus, it follows
that indeed the elements λi,j are pairwise conjugate in UV Bn. As a result we get that indeed the
sets Ai are totally symmetric sets. Moreover, the size of every totally symmetric set Ai is:

∣Ai∣ = (n − 1) + (n − 2) + ⋅ ⋅ ⋅ + (n − (n − 2)) + (n − (n − 1)) = n(n − 1)/2.

At this point we will provide an example in order to make clearer the construction of these
totally symmetric sets in UV Bn. For n = 5 we have the following five totally symmetric sets in
UV B5:

A1 = {λ1,2, λ1,3, λ1,4, λ1,5, λ5,2, λ5,3, λ5,4, λ4,2, λ4,3, λ3,2}, ∣A1∣ = 10.

A2 = {λ2,1, λ2,3, λ2,4, λ2,5, λ5,1, λ5,3, λ5,4, λ4,1, λ4,3, λ3,1}, ∣A2∣ = 10.

A3 = {λ3,1, λ3,2, λ3,4, λ3,5, λ5,1, λ5,2, λ5,4, λ4,1, λ4,2, λ2,1}, ∣A3∣ = 10.

A4 = {λ4,1, λ4,2, λ4,3, λ4,5, λ5,1, λ5,2, λ5,3, λ3,1, λ3,2, λ2,1}, ∣A4∣ = 10.

A5 = {λ5,1, λ5,2, λ5,3, λ5,4, λ4,1, λ4,2, λ4,3, λ3,1, λ3,2, λ2,1}, ∣A5∣ = 10.

Remark 5.4.7. We observe that for any 1 ≤ i, j ≤ n where i ≠ j we have that Ai ≠ Aj , since λi,j ∈ Ai
but λi,j ∉ Aj , and also that Ai ∩Aj ≠ ∅. Moreover, the set ⋃ni=1Ai is equal to the generating set of
UV Pn. That is ⋃ni=1Ai = {λi,j}1≤i≠j≤n.

We shall now state and prove the main theorem of this section.

Theorem 5.4.8. Let n ≥ 3 and φ ∶ UV Bn ! G be a group homomorphism to a finite group G.
Then, one of the following must hold:

• φ(UV Bn) ≅ Zm ×Z2, for some m ∈ N. In this case, the image of UV Bn is Abelian.
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• ∣φ(UV Bn)∣ ≥ 2
n(n−1)

2 −1(n(n−1)
2 )!.

• φ(UV Bn) ≅ Zm × Im(φ∣Sn), for some m ∈ N. In this case, the image of UV Pn is cyclic.

Proof. Suppose that φ is Abelian. That means that the image of UV Bn is an Abelian subgroup
of G. In this case we have the following situation: relation σiσi+1σi = σi+1σiσi+1, for 1 ≤ i ≤ n − 2,
that holds in UV Bn implies φ(σi)φ(σi+1)φ(σi) = φ(σi+1)φ(σi)φ(σi+1). Since φ(UV Bn) is an
Abelian subgroup of G it follows that φ(σi)2φ(σi+1) = φ(σi)φ(σi+1)

2, and therefore that φ(σi) =
φ(σi+1), for any 1 ≤ i ≤ n−2. Therefore, there exists an element g in G such that φ(σi) = g ∈ UV Bn,
for all values 1 ≤ i ≤ n−1. Similarly, we have relation ρiρi+1ρi = ρi+1ρiρi+1 in UV Bn, for 1 ≤ i ≤ n−2.
Applying the same argument it follows that φ(ρi) = φ(ρi+1). Moreover, relation ρ2

i = 1 ∈ UV Bn
gives that φ(ρi)2 = 1, for any 1 ≤ i ≤ n − 1. As a result we conclude that φ(σi) generates a finite
subgroup, Zm, inside G, and φ(ρi) generates the subgroup Z2 inside G. All together, we get that

φ(UV Bn) ≅ Zm ×Z2.

Suppose that φ is not Abelian. Moreover, suppose that at least one of the images of the totally
symmetric sets Ai, defined in Lemma 5.4.6, under the homomorphism φ, is not a singleton. From
Lemma 5.4.2 we have that either ∣φ(Ai)∣ = n(n − 1)/2 or ∣φ(Ai)∣ = 1, and therefore, for some
k ∈ {1, . . . , n}, we have a totally symmetric set Ak for which ∣φ(Ak)∣ = n(n−1)/2. From Proposition
5.4.3 we obtain that

∣φ(UV Bn)∣ ≥ 2
n(n−1)

2 −1(
n(n − 1)

2
)!.

For the last possible case we consider that φ is not Abelian and also that ∣φ(Ai)∣ = 1, for
all 1 ≤ i ≤ n. The fact that ∣φ(Ai)∣ = 1 implies that φ(Ai) = gi ∈ G, for every 1 ≤ i ≤ n. From
Remark 5.4.7 we have Ai ∩ Aj ≠ ∅ for every pair i, j. Now, without loss of generality, we set
i = 1 and therefore, from the fact that A1 ∩ Aj ≠ ∅, for all 2 ≤ j ≤ n and that φ(A1) = g1 ∈ G,
we conclude that φ(Aj) = g1 ∈ G, for all 2 ≤ j ≤ n. This means that every generator of UV Pn
is mapped to the same element g1 ∈ G, since ⋃ni=1Ai = {λi,j}1≤i≠j≤n, from Remark 5.4.7. Note
that g could be possibly be the trivial element. From Theorem 5.3.6 we have that UV Bn is
isomorphic to the semi-direct product UV Pn ⋊ Sn and that for any generator s ∈ Sn it holds that
sλi,js

−1 = λs(i),s(j). Under the homomorphism φ we obtain φ(s)φ(λi,j)(φ(s))−1 = φ(λs(i),s(j)) and
therefore φ(s)φ(λi,j) = φ(λs(i),s(j))φ(s). Finally we get φ(s)g1 = g1φ(s). We conclude that the
image of any generator s of the symmetric group, φ(s), commutes with g1. In other words, the
image of UV Pn is cyclic, where every generator of UV Pn is mapped to the same element which
commutes with the image of the symmetric group. Thus, φ(UV Bn) ≅ Zm × Im(φ∣Sn), for some
m ∈ N, and in particular, φ(UV Bn) ≅ Im(φ∣Sn) in the case when g = 1.

5.5 Torsion elements of UV Bn

In this section we characterise the torsion elements of UV Bn. Let ι be the injective map
ι ∶ Sn! UV Bn defined by ι((i, i + 1)) = ρi ∈ UV Bn.

Proposition 5.5.1. Let n ≥ 2. Any torsion element w in UV Bn belongs to the normal closure of
ι(Sn).

Proof. Let g be a torsion element in UV Bn. The image of g in the quotient of UV Bn by the
normal closure of ι(Sn) is the identity since this quotient is isomorphic to UV Pn which is torsionless.
Therefore g belongs to the normal closure of ι(Sn).

Note that this proposition is true also for WBn since WPn is torsionless. In the case of UV Bn
we have however a stronger result, as described in the following theorem.

Theorem 5.5.2. Let n ≥ 2. For any torsion element w, of order r, in UV Bn there exists an
element s ∈ Sn, that depends on w, of order r and such that w is conjugate to ι(s) by an element of
UV Pn.
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Before moving on to the proof of the Theorem 5.5.2, we fix some notation and we make some
observations about the action of the symmetric group Sn on the group UV Pn, which we will use
in the proof. Let s ∈ Sn and let Gs denote the cyclic group generated by the element s. From
Theorem 5.3.6 we have that an element s ∈ Sn acts on UV Pn = ⟨λi,j ∣ 1 ≤ i ≠ j ≤ n⟩ by permuting
the indices of the elements λi,j . For simplicity, we write the element sλi,js−1 as s(λi,j) (and more
generally sgs−1 as s(g) for g ∈ UV Pn) and we set λs(i,j) to be the element λs(i),s(j). We will also
identify a permutation s with the element ι(s) in UV Bn.

Let Gs act on the set {λi,j ∣ 1 ≤ i ≠ j ≤ n}. We can express the orbit of the element λi,j as
follows:

Gs ⋅ λi,j ∶= {λsι(i,j), 0 ≤ ι ≤ ki,j − 1, ki,j ∈ N>0},

where ki,j ≥ 1 is the cardinality of the orbit of the element λi,j . We observe that the cardinality of
the orbit Gs ⋅λi,j coincides with the cardinality of the orbit Gs ⋅λj,i. We define Oi,j to be the union of
the orbits Gs ⋅λi,j and Gs ⋅λi,j . By abuse of notation, we call the sets Oi,j orbits. Notice that orbits
Gs ⋅ λi,j and Gs ⋅ λi,j possibly coincide: in this case Gs ⋅ λi,j = {λi,j , λj,i}, Gs ⋅ λj,i = {λj,i, λi,j} and
Oi,j = {λi,j , λj,i} (and therefore ki,j = kj,i = 2). Notice that if Gs ⋅ λi,j = {λi,j} and Gs ⋅ λj,i = {λj,i}
we have still that Oi,j = {λi,j , λj,i} but in this case ki,j = kj,i = 1. Therefore the cardinality of Oi,j
is 2ki,j if Gs ⋅ λi,j and Gs ⋅ λi,j are distinct and 2 otherwise. In the following we set ⟨Oi,j⟩ to be the
group generated by the set Oi,j .

We present the following two lemmas, which we will use in the proof of Theorem 5.5.2.

Lemma 5.5.3. Let w ∈ UV B2. If w2 = 1, then w is a conjugate to s1 by an element of UV P2.

Proof. Recall that UV B2 = UV P2 ⋊ S2, where UV P2 is the group freely generated by {λ1,2, λ2,1}
and where s1 ∈ S2 permutes λ1,2 and λ2,1. Therefore, if w ∈ UV B2, w can be written as w = g1,2s1,
where g1,2 ∈ F1,2 = ⟨λ1,2, λ2,1⟩.

Suppose that w2 = 1. If g1,2 = 1 the statement is trivially verified. Otherwise, since w2 = 1
implies that g1,2s(g1,2) = 1, the word g1,2 cannot be written in a reduced form as a word starting
and ending with a non trivial power of the same generator: more precisely we can suppose w.l.o.g.
that g1,2 can be written as g1,2 = λ

ε1
1,2λ

ε2
2,1⋯λ

εt−1
1,2 λ

εt
2,1 ≠ 1, for ε1, ε2, . . . , εt non zero integers, and we

can rewrite g1,2s(g1,2) = 1 as follows:

g1,2s(g1,2) = (λε11,2λ
ε2
2,1⋯λ

εt−1
1,2 λ

εt
2,1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≠1

⋅ (λε12,1λ
ε2
1,2⋯λ

εt−1
2,1 λ

εt
1,2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≠1

= 1 ∈ F1,2.

Since g1,2s(g1,2) = 1 in the free group F1,2 we have that εt−j = −εj for j = 0, . . . , t − 1. Therefore,

g1,2 = λ
ε1
1,2λ

ε2
2,1⋯λ

εt/2
2,1 λ

−εt/2
1,2 ⋯λ−ε21,2 λ

−ε1
2,1 .

Now, we can indeed express w = g1,2s as a conjugation of s by an element in UV P2.

w = g1,2s = λ
ε1
1,2λ

ε2
2,1⋯λ

εt/2
2,1 λ

−εt/2
1,2 ⋯λ−ε21,2 λ

−ε1
2,1 ⋅ s

= λε11,2λ
ε2
2,1⋯λ

εt/2
2,1 ⋅ s ⋅ λ

−εt/2
2,1 ⋯λ−ε22,1 λ

−ε1
1,2

= (λε11,2λ
ε2
2,1⋯λ

εt/2
2,1 ) ⋅ s ⋅ (λε11,2λ

ε2
2,1⋯λ

εt/2
2,1 )

−1

= Λ1 ⋅ s ⋅Λ−1
1 ,

where Λ1 ∈ F1,2.
We conclude that:

w = Λ1 ⋅ s ⋅Λ−1
1 , where Λ1 ∈ UV P2.

Lemma 5.5.4. Let n > 2 and s ∈ Sn. Let O1, . . . ,Oi, . . . ,Ols , the disjoint orbits of the action of
Gs on the pairs {λi,j , λj,i}. Let 1 ≤ i ≤ ls and γj ∈ ⟨Oj⟩ such that γjs has finite order in UV Bn.
Then γjs is conjugate to s by an element of UV Pn.
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Proof. Let s ∈ Sn. It is enough to prove the statement for the orbit of the pair {λ1,2, λ2,1}. We
set O1 = {λsι(1,2), λsι(2,1)}. Let γ1 be a non trivial element of ⟨O1⟩ such that γ1s is of finite order
in UV Bn.

Let first suppose that Gs ⋅ λ1,2 = Gs ⋅ λ2,1; therefore ⟨O1⟩ = UV P2, the free group gener-
ated by {λ1,2, λ2,1} and s = s1 ⋅ s

′ where s′ has disjoint support from s1. Note that (γ1s)
m =

γ1s ⋅ γ1s⋯γ1s
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

m−times

= γ1sγ1s
−1s2γ1s

−2⋯sm−1γ1s
−(m−1)sm = γ1s(γ1)⋯s

m−1(γ1)s
m, and thus (γ1s)

m =

γ1s(γ1)⋯s
m−1(γ1)s

m for any integer m; if γ1 ∈ O1 then s2(γ1) = γ1 and if γ1s(γ1) is of finite order
then γ1s(γ1) = 1 since ⟨O1⟩ is the free group generated by {λ1,2, λ2,1}. Therefore if γ1s has finite or-
der in UV Bn, γ1s1 is of order 2. We can therefore apply previous lemma to γ1s1 and γ1s1 = γ

′s1γ
′−1

for some γ′ ∈ ⟨O1⟩. Then we have that γ1s = γ1s1s
′ = γ′s1γ

′−1s′ = γ′s1s
′γ′−1 = γ′sγ′−1 since s′ acts

trivially on {λ1,2, λ2,1}.
So let suppose from now on that Gs ⋅ λ1,2 /= Gs ⋅ λ2,1; We set k1 the cardinality of Gs ⋅ λ1,2;

therefore O1 has cardinality 2k1. Then γ1 = g1,2gs(1,2)⋯gsk1−1(1,2), where g1,2 ∈ F1,2 = ⟨λ1,2, λ2,1⟩
and gsp(1,2) ∈ Fsp(1,2) = ⟨λsp(1,2), λsp(2,1)⟩, for 1 ≤ p ≤ k1 − 1. Clearly, it can happen that for some
1 ≤ p ≤ k1 − 1 the factor gsp(1,2) does not exist in γ1, which means that γ1 does not contain a
subword in Fsp(1,2) = ⟨λsp(1,2), λsp(2,1)⟩, or that after possible commutations this factor becomes
trivial. The elements g1,2, gs(1,2), . . . , gsk1−1(1,2) commute pairwise, since they belong in different
factors of UV Pn. Notice that if (γ1s) is of finite order, since UV Pn is torsionless it follows that
γ1s(γ1)⋯s

k1−1(γ1) = 1 and thus that

g1,2gs(1,2)⋯gsk1−1(1,2)s(g1,2gs(1,2)⋯gsk1−1(1,2))⋯s
k1−1(g1,2gs(1,2)⋯gsk1−1(1,2)) = 1.

We deduce that the product of the elements that belong to F1,2 and to Fsp(1,2), 1 ≤ p ≤ k1 − 1 are
trivial. More precisely, the elements that belong to F1,2 are g1,2, s(gsk1−1(1,2)), . . . , sk1−1(gs(1,2))
and we have that g1,2s(gsk1−1(1,2))⋯sk1−1(gs(1,2)) = 1. As a result, we get that

g1,2 = s
k1−1(g−1

s(1,2))⋯s(g
−1
sk1−1(1,2)).

The element γ1 = g1,2gs(1,2)⋯gsk1−1(1,2) gets the following form:

γ1 = s
k1−1(g−1

s(1,2))⋯s(g
−1
sk1−1(1,2)) ⋅ gs(1,2)⋯gsk1−1(1,2).

We are ready to prove that γ1s is a conjugation of s by an element of UV Pn. We have that

γ1 ⋅ s = s
k1−1(g−1

s(1,2))⋯s(g
−1
sk1−1(1,2)) ⋅ gs(1,2)⋯gsk1−1(1,2) ⋅ s.

Based on this expression of γ1 ⋅ s we consider the pairs sk1−t(g−1
st(1,2)), gst(1,2), for 1 ≤ t ≤ k1 − 1.

We will prove that the element sk1−t(g−1
st(1,2))gst(1,2) ⋅ s can be written as a conjugation of s by an

element of UV Pn, for any 1 ≤ t ≤ k1 − 1.
We set Et = ∏k1−1

c=k1−(t−1) s
c(g−1

st(1,2)) for 1 ≤ t ≤ k1 − 1. Notice that E1 = 1 and that E2 =

sk1−1(g−1
s2(1,2)).

For t = 1 we have that

sk1−1(g−1
s(1,2))gs(1,2) ⋅ s = s

k1−1(g−1
s(1,2)) ⋅ s ⋅ s

k1−1(gs(1,2)), since s ⋅ sk1−1(gs(1,2)) ⋅ s
−1

= gs(1,2).

For 2 ≤ t ≤ k1 − 1, Et = sk1−(t−1)(g−1
st(1,2))⋯s

k1−2(g−1
st(1,2))s

k1−1(g−1
st(1,2)) =∏

k1−1
c=k1−(t−1) s

c(g−1
st(1,2)).

The elements sk1−(t−1)(g−1
st(1,2)), . . . , s

k1−2(g−1
st(1,2)), s

k1−1(g−1
st(1,2)) commute pairwise since they be-

long to Fs(1,2), . . . , Fst−2(1,2), Fst−1(1,2), respectively. We have that

sk1−t(g−1
st(1,2))gst(i,j) ⋅ s = s

k1−t(g−1
st(1,2))EtE

−1
t gst(i,j) ⋅ s

= sk1−t(g−1
st(1,2))Et ⋅ s ⋅ s

k1−1
(E−1

t )sk1−1(gst(i,j))

The element sk1−1(E−1
t ) is (sk1−t(gst(1,2))⋯sk1−3(gst(1,2))sk1−2(gst(1,2))) =∏

k1−2
c=k1−t s

c(gst(1,2)). In
sk1−1(E−1

t ) the elements sk1−t(gst(1,2)), . . . , sk1−3(gst(1,2)), sk1−2(gst(1,2)) commute pairwise, since
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they belong to F1,2, . . . , Fst−3(1,2), Fst−2(1,2), respectively. Moreover, the element sk1−1(gst(i,j))
belongs in Fst−1(1,2) and thus it commutes with sk1−1(Et). As a result, continuing the above
equalities,we obtain that

sk1−t(g−1
st(1,2))gst(1,2) ⋅ s = s

k1−t(g−1
st(1,2))EtE

−1
t gst(1,2) ⋅ s

= sk1−t(g−1
st(1,2))Et ⋅ s ⋅ s

k1−1
(Et)s

k1−1(gst(1,2))

= sk1−t(g−1
st(1,2))s

k1−(t−1)(g−1
st(1,2))⋯s

k1−2(g−1
st(1,2))s

k1−1(g−1
st(1,2)) ⋅ s⋅

sk1−t(gst(1,2))⋯s
k1−3(gst(1,2))s

k1−2(gst(1,2))s
k1−1(gst(1,2))

= sk1−t(g−1
st(1,2))s

k1−(t−1)(g−1
st(1,2))⋯s

k1−2(g−1
st(1,2))s

k1−1(g−1
st(1,2)) ⋅ s⋅

(sk1−t(g−1
st(1,2))s

k1−(t−1)(g−1
st(1,2))⋯s

k1−2(g−1
st(1,2))s

k1−1(g−1
st(1,2)))

−1

= sk1−t(g−1
st(1,2))Et ⋅ s ⋅E

−1
t sk1−t(gst(1,2)).

We conclude that indeed sk1−t(g−1
st(1,2))gst(1,2) ⋅ s can be written as a conjugation of s by an

element of UV Pn, for any 1 ≤ t ≤ k1 − 1. More precisely, we have that

sk1−t(g−1
st(1,2))gst(1,2) ⋅ s = s

k1−t(g−1
st(1,2))Et ⋅ s ⋅E

−1
t sk1−t(gst(1,2)), for any 1 ≤ t ≤ k1 − 1.

Based on this result we will show now that γ1s = Λ1 ⋅ s ⋅Λ−1
1 , where Λ1 ∈ UV Pn. We recall that

γ1 ⋅ s = s
k1−1(g−1

s(1,2))⋯s(g
−1
sk1−1(1,2)) ⋅ gs(1,2)⋯gsk1−1(1,2) ⋅ s.

We will proceed as follows: at every step we will be considering the pair sk1−t(g−1
st(1,2)), gst(1,2), for

1 ≤ t ≤ k1 − 1. Starting with the pair sk1−1(g−1
s(1,2)), gs(1,2) we simply move at the right hand side of

s the element gs(1,2), which becomes sk1−1(gs(1,2)). We can indeed move the element gs(1,2), since
it commutes with all the elements on its right, as none of them belong to Fs(1,2). We continue with
the pair sk1−2(g−1

s2(1,2)), gs2(1,2), where we add and substract the element E2 besides sk1−2(g−1
s2(1,2)).

Then, we move on the right hand side of s first the element gs2(1,2), which becomes sk1−1(gs2(1,2))
and then the element E−1

2 , which becomes sk1−1(E−1
2 ). We can indeed make these moves, since

at every moment that we move an element on the right, till we arrive on the right hand side of
s, the element that we move does not meet any other element that belongs in the same factor of
UV Pn, and therefore they indeed commute. We continue doing the same at every step with all the
pairs till we do the same with the last pair s(g−1

sk1−1(1,2)), gsk1−1(1,2). Finally, we observe that on the
left hand side and the right hand side of s, we have the same elements with opposite signs, and
with eligible permutations we achive also the right ordering of elements and we indeed get that
γ1s = Λ1 ⋅ s ⋅Λ−1

1 , where Λ1 ∈ UV Pn. We present now the formulation of this method.

γ1 ⋅ s = s
k1−1(g−1

s(1,2))⋯s
k1−t(g−1

st(1,2))⋯s(g
−1
sk1−1(1,2)) ⋅ gs(1,2)⋯gst(i,j)⋯gsk1−1(1,2) ⋅ s

= sk1−1(g−1
s(1,2))⋯s

k1−t(g−1
st(1,2))⋯s(g

−1
sk1−1(1,2)) ⋅ gs2(i,j)⋯gst(i,j)⋯gsk1−1(1,2) ⋅ s ⋅ s

k1−1(gs(1,2))

⋮

= sk1−1(g−1
s(1,2))⋯s

k1−t(g−1
st(1,2))EtE

−1
t sk1−t(g−1

st+1(1,2))⋯s(g
−1
sk1−1(1,2)) ⋅ gst(i,j)⋯gsk1−1(1,2) ⋅ s⋅

sk1−1(E−1
t−1)s

k1−1(gst−1(1,2))⋯s
k1−1(gs(1,2))

= sk1−1(g−1
s(1,2))⋯s

k1−t(g−1
st(1,2))Ets

k1−t(g−1
st+1(1,2))⋯s(g

−1
sk1−1(1,2)) ⋅ gst+1(1,2)⋯gsk1−1(1,2) ⋅ s⋅

sk1−1(E−1
t )sk1−1(gst(i,j))⋯s

k1−1(gs(1,2))

⋮

= sk1−1(g−1
s(1,2))⋯s

k1−t(g−1
st(1,2))Et⋯s(g

−1
sk1−1(1,2))Ek1−1E

−1
k1−1 ⋅ gsk1−1(1,2) ⋅ s⋅

sk1−1(E−1
k−2)s

k1−1(gsk−2(i,j))⋯s
k1−1(E−1

t )sk1−1(gst(i,j))⋯s
k1−1(gs(1,2))

= sk1−1(g−1
s(1,2))⋯s

k1−t(g−1
st(1,2))Et⋯s(g

−1
sk1−1(1,2))Ek1−1 ⋅ s⋅

sk1−1(E−1
k1−1)s

k1−1(gsk1−1(1,2))⋯s
k1−1(E−1

t )sk1−1(gst(i,j))⋯s
k1−1(gs(1,2)).
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At each step we can move the product E−1
t on the right hand side of s, since E−1

t ∈ Fs(1,2) ×⋯ ×

Fst−2(1,2)×Fst−1(1,2) and all the elements that it meets belong in the factors F1,2, Fst(1,2), . . . , Fsk1−1(1,2),
and therefore they indeed commute. Now, replacing the values of Ek1−1 and Et we obtain the
following:

γ1 ⋅ s = s
k1−1(g−1

s(1,2))⋯s
k1−t(g−1

st(1,2))Et⋯s(g
−1
sk1−1(1,2))Ek1−1 ⋅ s⋅

sk1−1(E−1
k1−1)s

k1−1(gsk1−1(1,2))⋯s
k1−1(E−1

t )sk1−1(gst(i,j))⋯s
k1−1(gs(1,2))

= sk1−1(g−1
s(1,2))⋯s

k1−t(g−1
st(1,2))(

k1−1
∏

c=k1−(t−1)
sc(g−1

st(1,2)))⋯s(g
−1
sk1−1(1,2))(

k1−1
∏
c=2

sc(g−1
st(1,2))) ⋅ s⋅

sk1−1
(
k1−1
∏
c=2

sc(gst(1,2)))s
k1−1(gsk1−1(1,2))⋯s

k1−1
(

k1−1
∏

c=k1−(t−1)
sc(gst(1,2)))

sk1−1(gst(i,j))⋯s
k1−1(gs(1,2))

= sk1−1(g−1
s(1,2))⋯s

k1−t(g−1
st(1,2))(

k1−1
∏

c=k1−(t−1)
sc(g−1

st(1,2)))⋯s(g
−1
sk1−1(1,2))(

k1−1
∏
c=2

sc(g−1
st(1,2))) ⋅ s⋅

(
k1−2
∏
c=1

sc(gst(1,2)))s
k1−1(gsk1−1(1,2))⋯(

k1−2
∏

c=k1−t
sc(gst(1,2)))s

k1−1(gst(i,j))⋯s
k1−1(gs(1,2))

= sk1−1(g−1
s(1,2))⋯(

k1−1
∏

c=k1−t
sc(g−1

st(1,2)))⋯(
k1−1
∏
c=1

sc(g−1
st(1,2))) ⋅ s⋅

(
k1−1
∏
c=1

sc(gst(1,2)))⋯(
k1−1
∏

c=k1−t
sc(gst(1,2)))⋯s

k1−1(gs(1,2))

= sk1−1(g−1
s(1,2))⋯(

k1−1
∏

c=k1−t
sc(g−1

st(1,2)))⋯(
k1−1
∏
c=1

sc(g−1
st(1,2))) ⋅ s⋅

⎛

⎝
sk1−1(g−1

s(1,2))⋯(
k1−1
∏

c=k1−t
sc(g−1

st(1,2)))⋯(
k1−1
∏
c=1

sc(g−1
st(1,2)))

⎞

⎠

−1

= Λ1 ⋅ s ⋅Λ−1
1 .

Therefore, γ1 ⋅ s = Λ1 ⋅ s ⋅ Λ−1
1 , where Λ1 ∈ ⟨O1⟩ = ⟨λsι(1,2), λsι(2,1)⟩0≤ι≤k1−1, an element in UV Pn.

With the same techniques we obtain that γi ⋅ s = Λi ⋅ s ⋅Λ−1
i , where Λi belongs in ⟨Oi⟩, for every

1 ≤ i ≤ ls.

Based on this discussion, we proceed to the proof of Theorem 5.5.2.

Proof of Theorem 5.5.2. Let w ∈ UV Bn be a torsion element of order r. We know that UV Bn
is isomorphic to UV Pn ⋊ Sn and that UV Pn ≅ F1,2 ×⋯ × Fi,j ×⋯ × Fn−1,n, where Fi,j = ⟨λi,j , λj,i⟩.
We set w = us, where u ∈ UV Pn and s ∈ Sn. Based on the above discussion, the pairs of generators
{λi,j , λj,i} are partitioned into the pairwise disjoint orbits O1, . . . ,Oi, . . . ,Ols , for 1 ≤ i ≤ ls, where
the number of orbits depends on s.

We recall that the elements λi,j , for 1 ≤ i ≠ j ≤ n, except for the couples λi,j , λj,i, commute
pairwise. Therefore, we can see that, by the definition of Oi, for 1 ≤ i ≤ ls, the elements inside
an orbit Oi may not commute, but elements from different orbits commute pairwise, as elements
of UV Pn, which means that the orbits commute pairwise, as subsets of UV Pn. Based on this
partition, we can rewrite the element w = us in an equivalent way, which is simply a reordering of
the elements λi,j in u. We have that u is an element in UV Pn. We want to reorder the elements in
u based on the orbit in which they belong. That is

u = γ1⋯γi⋯γls ,

where γi is a word generated by the elements of Oi and their inverses. It is possible that for
some indices γi = 1, which means that u does not contain any element from Oi, after possible
cancellations.
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By hypothesis wr = (us)r = 1, and then

us ⋅ us⋯us
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r−times

= usus−1s2us−2
⋯sr−1us−(r−1)

⋅ sr = 1.

Therefore usus−1s2us−2⋯sr−1us−(r−1) = u ⋅ s(u)⋯sr−1(u) = 1 in UV Pn and sr = 1. Since
u = γ1⋯γi⋯γls , where γi ∈ ⟨Oi⟩, for 1 ≤ i ≤ ls, it has to hold that

γis(γi)⋯s
r−1

(γi) = 1,

for any 1 ≤ i ≤ ls. Previous lemmas allows to conclude that the element γis is a conjugation of
s ∈ Sn by an element of UV Pn, for any 1 ≤ i ≤ ls.

We will prove that this result suffices to complete the proof. Since w = us, with u = γ1⋯γi⋯γls ,
where the elements γi commute pairwise, it follows that

w = us = γ1⋯γi⋯γls ⋅ s

= γ1⋯γi⋯γls−1Λls ⋅ s ⋅Λ−1
ls

⋮

= γ1⋯γi−1Λls⋯Λi ⋅ s ⋅Λ−1
i ⋯Λ−1

ls

⋮

= Λls⋯Λi⋯Λ1 ⋅ s ⋅Λ−1
1 ⋯Λ−1

i ⋯Λ−1
ls

= Λ ⋅ s ⋅Λ−1.

To obtain the above equalities, we just apply the equalities γis = Λi ⋅ s ⋅Λ−1
i , starting with γls and

finishing with γ1, which hold for every 1 ≤ i ≤ ls, and using the fact that Λi belongs in ⟨Oi⟩, and
thus γi commutes with every Λj , for i ≠ j, 1 ≤ i, j ≤ ls. Therefore, we have that w = ΛsΛ−1, where
Λ ∈ UV Pn and this completes the proof.

5.6 Crystallographic Subgroup of UV Bn

The Artin braid group Bn has a natural embedding in the welded braid group WBn in contrast
to UV Bn. We will give a proof that the Artin braid group on n strands, Bn, under the group
homomorphism ι that sends the generator σi of Bn to the generator σi of UV Bn, does not
have a natural embedding in UV Bn. More precisely, we show that the image of Bn, under the
homomorphism ι, into UV Bn, is isomorphic to the crystallographic group Bn/[Pn, Pn]. The fact
that the crystallographic group is a subgroup of UV Bn may give some information about the
distribution of the torsion elements in UV Bn and about its subgroups.

We denote by ι the canonical map from Bn to UV Bn:

ι ∶ Bn! UV Bn defined by ι(σi) = σi ∈ UV Bn, for 1 ≤ i ≤ n − 1.

We obtain the following short exact sequences:

1 ker(ι∣
Pn

) Pn Im(ι∣
Pn

) 1,

1 ker(ι) Bn Im(ι) 1.

ι∣
Pn

ι

Moreover, we have that Pn = ker(π), where π ∶ Bn! Sn, π(σi) = si = (i, i+ 1) ∈ Sn, for 1 ≤ i ≤ n− 1.
Similarly, we know that UV Pn = ker(π̄), where π̄ ∶ UV Bn ! Sn, π̄(σi) = π̄(ρi) = si, for the same
values of i. The same follows for the groups Im(ι∣

Pn
), Im(ι) ⊂ UV Bn. That is Im(ι∣

Pn
) = ker(π̄∣Im(ι)).

As a result we obtain the following commutative diagram, where each column and each row is a
short exact sequence:
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1 1

1 ker(ι∣
Pn

) Pn Im(ι∣
Pn

) 1

1 ker(ι) Bn Im(ι) 1.

Sn Sn

1 1

ι∣
Pn

π

ι

π̄∣
Im(ι)

By diagram chasing we obtain ker(ι) ⊆ ker(ι∣
Pn

). But it also holds that ker(ι∣
Pn

) ⊆ ker(ι), and
therefore we conclude that

ker(ι) = ker(ι∣
Pn

). (2)

We now state a result by Bardakov–Bellingeri–Damiani, who proved that Im(ι∣
Pn

) ≅ Pn/[Pn, Pn],
which we will use to prove our claim. We recall that the pure braid group Pn is the kernel of the
homomorphism from Bn to the symmetric group Sn sending every generator σi to the permutation
(i i+1) ∈ Sn. As we described in Proposition 1.1.11, Pn is generated by the set {Ai,j ∣ 1 ≤ i < j ≤ n},
where Ai,j = σj−1⋯σi+1σ

2
i σ

−1
i+1⋯σ

−1
j−1, for 1 ≤ i < j ≤ n.

Proposition 5.6.1 (Bardakov–Bellingeri–Damiani, [BBD15]). Let n ∈ N and let ι ∶ Pn ! UV Pn
be the canonical map of the pure braid group Pn in UV Pn. Then ι(Pn) is isomorphic to the
Abelianisation of Pn .

Remark 5.6.2. Note that this result is based on the fact that the generators Ai,j ∈ Pn can be
rewritten in UV Pn as follows, ([BBD15], p. 7):

ι(Ai,i+1) = λ
−1
i,i+1λ

−1
i+1,i, for i = 1, . . . n − 1

and
ι(Ai,j) = λ

−1
j−1,jλ

−1
j−2,j⋯λ

−1
i+1,j(λ

−1
i,jλ

−1
j,i)λi+1,j⋯λj−2,jλj−1,j , for 2 ≤ i + 1 < j ≤ n.

So, since Im(ι∣
Pn

) ≅ Pn/[Pn, Pn], the short exact sequence of the upper row, from our commu-
tative diagram, implies that ker(ι∣

Pn
) = [Pn, Pn]. Now, combining this fact with relation (2) we

conclude the following result.

Proposition 5.6.3. Let n ≥ 2 and let ι ∶ Bn ! UV Bn be the canonical map, ι(σk) = σk, for
1 ≤ k ≤ n − 1. Then, the image of the Artin braid group inside UV Bn is isomorphic to the group
Bn/[Pn, Pn]. That is ι(Bn) ≅ Bn/[Pn, Pn].

In [GGO17], Gonçalves–Guaschi–Ocampo have shown that the group Bn/[Pn, Pn] is actually a
crystallographic group. Thus, we deduce the following corollary.

Corollary 5.6.4. Let n ≥ 2. The unrestricted virtual braid group, UV Bn, contains a crystallo-
graphic group as a subgroup, and that is the group Bn/[Pn, Pn].

We now state some results concerning the crystallographic group Bn/[Pn, Pn]. For further
results about the group Bn/[Pn, Pn], we direct the reader to [GGO17].

Proposition 5.6.5 (Gonçalves–Guaschi–Ocampo, [GGO17]). For n ≥ 2 we have the following
short exact sequence:

1 Zn(n−1)/2 Bn/[Pn, Pn] Sn 1,π̂

where π̂ is the homomorphism induced by π ∶ Bn! Sn.
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Theorem 5.6.6 (Gonçalves–Guaschi–Ocampo, [GGO17]). For n ≥ 3 the crystallographic group
Bn/[Pn, Pn] has only odd order torsion elements.

Corollary 5.6.7 (Gonçalves–Guaschi–Ocampo, [GGO17]). Let n ≥ 3, the torsion elements of
Bn/[Pn, Pn] are equal to the torsion elements of Sn. Moreover, for any element s in Sn, of odd
order r, there exists an element b ∈ Bn/[Pn, Pn], of order r such that π̂(b) = s.

Thus, combining Corollary 5.6.7 with Theorem 5.5.2 we obtain the following result.

Corollary 5.6.8. Let n ≥ 3. For any element s ∈ Sn, of odd order r, there exists an element
b ∈ Bn/[Pn, Pn], of order r such that b is conjugated to ι(s) by an element of UV Pn, where
Bn/[Pn, Pn] is considered as subgroup of UV Bn,

5.7 The automorphism group of UV Pn

In this section we determine the automorphism group of UV Pn. First, we introduce the notion
of right-angled Artin groups, which will be our main tool for this section. A right-angled Artin
group, also known as graph group, is a group which admits a finite presentation in which the only
relations are commuting relations among the generators.

Every right-angled Artin group defines a graph whose vertices are the generators of the group
and for every two generators that commute there is an edge connecting these two vertices. The
converse also holds. For every graph Γ, with V its vertex set, there is a right-angled Artin group,
graph group, associated to Γ, RΓ, defined as follows:

RΓ = ⟨v1, . . . , vn ∈ V ∣ vivj = vjvi, if vi, vj are joined by an edge in Γ⟩.

From this association we can see that the right-angled Artin group that corresponds to the complete
graph on n vertices is the free Abelian group Z and that the graph on n vertices with no edges
corresponds to the free group Fn of rank n. For a general survey on the right-angled Artin groups
we direct the reader to the article [Cha07] by Charney.

We can see that the group UV Pn is a right-angled Artin group, since it admits the following
presentation, as stated in Theorem 5.3.1:

UV Pn = ⟨λi,j , 1 ≤ i ≠ j ≤ n ∣ λi,jλk,l = λk,lλi,j , for (k, l) ≠ (j, i), 1 ≤ i, j, k, l ≤ n⟩.

From this presentation, the graph, Γ, which corresponds to the right-angled Artin group UV Pn,
is a graph with n(n − 1) vertices, where the vertex set is V = {λi,j}1≤i≠j≤n and there is an edge
connecting every pair of vertices except for the pairs {λi,j , λj,i}, since these are only pairs of
generators that do not commute.

We continue now with providing the theory around the automorphisms of graph groups. Ex-
tending the work of Servatius [Ser89], a complete set of generators for the automorphism group
of a graph group was found by Laurence [Lau95]. Before giving the main result we present some
notions that will be needed.

Let Γ be a graph with V being its vertex set.

• The link of a vertex v ∈ V , lk(v), is the set of all vertices that are connected to v with an
edge.

• The star of a vertex v ∈ V , st(v), is the union lk(v) ∪ {v}.

• For any w ≠ v, w, v ∈ V , we say that v dominates w, w ≤ v, if lk(w) ⊆ st(v).

The theorem that follows is due to Laurence [Lau95], who proved the conjecture that had been
stated, and in certain special cases proved, by Servatius [Ser89].

Theorem 5.7.1 (Laurence, [Lau95]). Let Γ be a finite graph defining a graph group RΓ. Then the
following automorphisms generate the automorphism group of RΓ, Aut(RΓ):

• Inversions, Iv ∶ v! v−1, which inverts a generator v ∈ V and fix the rest.
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• Dominated Transvections, Tv ∶ w! wv, for w, v ∈ V such that v dominates w, w ≤ v, and fix
the rest.

• Graph Automorphisms, G: Any bijection of the graph to itself that preserves the relation
vertices-edges.

• Locally Inner Automorphisms: Lv,Y ∶ y ! vyv−1, for all y ∈ Y , where Y is a connected
component of Γ − st(v) and ∣Y ∣ > 1.

Remark 5.7.2. The condition ∣Y ∣ > 1, in the Locally Inner Automorphisms, is placed in order to
eliminate redundancy. This is so because in the case where ∣Y ∣ = 1, the automorphism Lv,Y can be
obtained by composition of dominated transvections (since the single vertex y ∈ Y is dominated by
v) and inversions.

Based on the graph that corresponds to the group UV Pn, we shall make the following remarks.
Remark 5.7.3. The only domination relations that occur in the graph that corresponds to UV Pn
are

λi,j ≤ λj,i and λj,i ≤ λi,j .

This is the case because lk(λi,j) = V ∖ {λi,j , λj,i} ⊆ st(λj,i) = V ∖ {λi,j}, and similarly lk(λj,i) =
V ∖ {λj,i, λi,j} ⊆ st(λi,j) = V ∖ {λj,i}. As a result, λi,j and λj,i dominate each other. It would
not have been possible that λi,j is dominated by another generator λk,l ≠ λj,i, since lk(λj,i) =

V ∖ {λj,i, λi,j} ⊈ st(λk,l) = V ∖ {λl,k}.
Remark 5.7.4. We observe that for every vertex λi,j ∈ V the subgraph Γ ∖ st(λi,j) is just the vertex
λj,i, since st(λi,j) = V ∖ {λj,i}.

We are now ready to determine the group Aut(UV Pn), for n ≥ 2.

Theorem 5.7.5. Let n ≥ 2 and 1 ≤ i ≠ j ≤ n. It holds that

Aut(UV Pn) ≅ ⟨Tλj,i , Z
n(n−1)
2 , Zn(n−1)/2

2 ⋊ Sn(n−1)/2⟩,

where Tλj,i stands for the Dominated Transvection, and Sn(n−1)/2 is the symmetric group of degree
n(n − 1)/2.

Proof. Let n ≥ 2, 1 ≤ i ≠ j ≤ n and Γ be the graph associated to the right-angled Artin group UV Pn.
We recall that the graph Γ, which corresponds to UV Pn, is a graph with n(n−1) vertices, where the
vertex set is V = {λi,j}1≤i≠j≤n and there is an edge connecting every pair of vertices except for the
pairs {λi,j , λj,i}. From Theorem 5.7.1 we see that the automorphism group of UV Pn is generated
by the following four families of automorphisms; the Inversions, the Dominated Transvections, the
Graph Automorphisms and the Locally Inner Automorphisms.

From Remark 5.7.2 and Remark 5.7.4 we conclude that in the case of UV Pn we do not have
any Locally Inner Automorphism.

From Remark 5.7.3 it follows that any Dominated Transvection in UV Pn is generated by Tλi,j
and Tλj,i , and they are defined as follows:

Tλi,j ∶ λj,i 7! λj,iλi,j , while fixing the rest generators

and
Tλj,i ∶ λi,j 7! λi,jλj,i, while fixing the rest generators.

It remains to determine the Inversions and the Graph Automorphisms of UV Pn. Clearly, the
Inversions in UV Pn, are Iλi,j , where

Iλi,j ∶ λi,j 7! λ−1
i,j , while fixing the rest generators.

We know that the size of the set the of generators of UV Pn, {λi,j}1≤i≠j≤n, is n(n − 1). Moreover
the Inversion Automorphisms have order two. Therefore, for I ∶= {Iλi,j}1≤i≠j≤n, it follows that

⟨I⟩ ≅ Zn(n−1)
2 .



5.7. The automorphism group of UV Pn 81

Finally, we will describe all possible Graph Automorphisms of the graph Γ. We recall that a
Graph Automorphism is a symmetry of the graph, that is a bijection to itself while preserving the
edge-vertex connectivity. In our case, we see that there are only two possible symmetries of our
graph. One that exchanges the generators λi,j and λj,i, while fixing the rest generators and another
that exchanges the pair of generators {λi,j , λj,i} with another pair of generators {λk,l, λl,k}, while
fixing the rest generators. We denote these two Graph Automorphisms as follows:

Ei,j ∶ λi,j ↔ λj,i, while fixing the rest generators

and
Pij,kl ∶ λi,j ↔ λk,l, Pij,kl ∶ λj,i↔ λl,k, while fixing the rest generators,

where λi,j ↔ λj,i means that this map exchanges the generators λi,j and λj,i. These two Graph
Automorphisms are defined in such a way that it follows that Ei,j = Ej,i and Pij,kl = Pkl,ij . In Γ
all vertices are pairwise connected with an edge except for the pairs {λi,j , λj,i}, and the vertices
λi,j and λj,i are connected with the exact same vertices. Therefore, if we want to preserve the
edge-vertex connectivity we have to permute the vertex set in such a way that each vertex is
connected with the same vertices before and after the permutation. Therefore, it is clear that only
these two type of maps, Ei,j and Pij,kl, preserve the edge-vertex connectivity, and thus they are
indeed the only symmetries of the graph.

For E ∶= {Ei,j} and P ∶= {Pij,kl} we have that ∣E∣ = n(n − 1)/2, since Ei,j = Ej,i and that
∣P ∣ = n(n − 1)/2, since Pij,kl = Pkl,ij . The elements Ei,j ∈ E and Pij,kl ∈ P do not commute, since
(Ei,j ○ Pij,kl)(λi,j) = λk,l and (Pij,kl ○Ei,j)(λi,j) = λl,k, where λk,l ≠ λl,k. More precisely, we have
that P acts on E by permuting the elements Ei,j inside E. To be more precise, Pij,kl ○Ei,j ○Pij,kl =
Ek,l, since Pij,kl ○ Ei,j ○ Pij,kl(λi,j) = λi,j and Pij,kl ○ Ei,j ○ Pij,kl(λk,l) = λl,k. We conclude that
⟨E⟩ ≅ Zn(n−1)/2

2 and that ⟨P ⟩ ≅ Sn(n−1)/2. All together we obtain

⟨E,P ⟩ ≅ Zn(n−1)/2
2 ⋊ Sn(n−1)/2,

where the symmetric group Sn(n−1)/2 acts on Zn(n−1)/2
2 by permuting the components of the product.

Moreover, it holds that Ei,jTλj,iEi,j = Tλi,j , and thus we keep only the Dominated Transvection
Tλj,i in the generating set of Aut(UV Pn) and this completes the proof.

Having a concrete set of generators of the automorphism group of UV Pn we can analyse this
result a bit further. We recall that, from Remark 5.3.3, the group UV Pn is isomorphic to the direct
product of n(n − 1)/2 copies of the free group of rank 2:

UV Pn = ⟨λ1,2, λ2,1⟩ × ⋅ ⋅ ⋅ × ⟨λi,jλj,i⟩ × ⋅ ⋅ ⋅ × ⟨λn−1,n, λn,n−1⟩, for 1 ≤ i ≠ j ≤ n,

UV Pn ≅ F2 × ⋅ ⋅ ⋅ × F2 × ⋅ ⋅ ⋅ × F2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n(n − 1)/2-times

, for n ≥ 2.

Based on this isomorhism, we can make some observations about the generators of the automorphism
group of UV Pn, given in Theorem 5.7.5. For 1 ≤ i ≠ j ≤ n the group Aut(UV Pn) is generated by
the following four automorphisms:

Tλj,i ∶ λi,j 7! λi,jλj,i, while fixing the rest generators,
Iλi,j ∶ λi,j 7! λ−1

i,j , while fixing the rest generators,
Ei,j ∶ λi,j ↔ λj,i, while fixing the rest generators,
Pij,kl ∶ λi,j ↔ λk,l, Pij,kl ∶ λj,i↔ λl,k, while fixing the rest generators.

With the exception of the automorphisms Pij,kl, it follows that all these automorphisms do
not permute the F2-factors of UV Pn, but they rather take an element from a factor and send it to
the same factor. In other words, each F2-factors of UV Pn stay invariant under the automorphisms
Tλj,i , Iλi,j and Ei,j . Moreover, the image of a generator λi,j , under these automorphisms, belongs
to the set generated by the elements {λi,jλj,i, λ

−1
i,j , λj,i}. These are the three automorphisms that

generate the group Aut(F2), as we will see shortly. On the contrary, the automorphism Pij,kl
permutes the n(n − 1)/2 F2-factors of UV Pn.
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It is well known, and proved by Nielsen in [Nie24], that Aut(F2), for F2 = ⟨x1, x2⟩, is generated
by the following three automorphisms:
α1 ∶ x1↔ x2,
α2 ∶ x1 7! x−1

1 , x2 7! x2,
α3 ∶ x1 7! x1x2, x2 7! x2.

It turns out that Aut(UV Pn) is the semi-direct product of Aut(F2)
n(n−1)/2 and the symmetric

group Sn(n−1)/2, which acts on Aut(F2)
n(n−1)/2 by permuting the n(n − 1)/2 factors of Aut(F2).

And so we obtain the following corollary.
Corollary 5.7.6. For n ≥ 2 it holds that

Aut(UV Pn) ≅ Aut(F2)
n(n−1)/2

⋊ Sn(n−1)/2,

where Sn(n−1)/2 acts on Aut(F2)
n(n−1)/2 by permuting the n(n − 1)/2 factors.

This result agrees with a particular case of a more general result proved by Zhang–Ventura–Wu
in [ZVW15], where they obtained the same result using different techniques. We state their result
below and we see that for m = 1 and n1 = n(n − 1)/2 their result coincides with Corollary 5.7.6.
Proposition 5.7.7 (Zhang–Ventura–Wu, [ZVW15]). Let G = Gn1

1 × ⋅ ⋅ ⋅ ×Gnmm be a product group,
where m ≥ 1, ni ≥ 1, Gi ≇ Gj, for i ≠ j, and each Gi is a free group or a surface group. If G
is a hyperbolic type then, for every φ ∈ Aut(G), there exists automorphisms φi,j ∈ Aut(Gi) and
permutations σi ∈ Sni , such that

φ = σ1 ○ ⋅ ⋅ ⋅ ○ σm ○ (
m

∏
i=1

ni

∏
j=1

φi,j) =
m

∏
i=1

(σi ○
ni

∏
j=1

φi,j).

5.8 About the automorphism group of UV Bn

After having obtained several results about the group UV Pn and after having determined the
group Aut(UV Pn), we shall now present partial results about the automorphism group of UV Bn.
In [Ros75], Rose gave a description of the automorphism group of groups which possess a proper
characteristic subgroup that have trivial centraliser.
Proposition 5.8.1 (Rose, [Ros75]). Let G be a group with a characteristic subgroup H such
that CG(H) = e. Then G is naturally embedded in Aut(H) by means of conjugation of H by the
elements of G. Moreover, there is a natural isomorphism between Aut(G) and the normaliser of G
in Aut(H). That is Aut(G) ≅ NAut(H)(G).

We proved that UV Pn is a characteristic subgroup of UV Bn, Proposition 5.3.8, and that
CUV Bn(UV Pn) = e, Proposition 5.3.10. Therefore, applying Proposition 5.8.1 for G = UV Bn and
H = UV Pn, we obtain the following corollary.
Corollary 5.8.2. For n ≥ 5 it holds that

Aut(UV Bn) ≅ NAut(UV Pn)(UV Bn).

In Section 4.4, we defined two maps, βn and γn, which fail to be automorphisms of WBn, but
they are actually automorphisms of the group UV Bn. More precisely, the maps βn and γn are
defined as follows:

βn ∶

⎧⎪⎪
⎨
⎪⎪⎩

σi 7! σ−1
i , for 1 ≤ i ≤ n − 1,

ρi 7! ρi, for 1 ≤ i ≤ n − 1,
and

γn ∶

⎧⎪⎪
⎨
⎪⎪⎩

σi 7! ρiσiρi, for 1 ≤ i ≤ n − 1,
ρi 7! ρi, for 1 ≤ i ≤ n − 1,

where βn, γn ∈ Aut(UV Bn).
In particular, note that βn and γn are of order two and moreover βn ○ γn = γn ○ βn. Thus,

⟨βn, γn⟩ generates a subgroup of Aut(UV Bn) isomorphic to Z2 ×Z2. Furthermore, as we will see in
the following proposition, the automorpsims βn, γn and βn ○ γn are actually elements of the outer
automorphisms group of UV Bn, Out(UV Bn), where Out(UV Bn) = Aut(UV Bn)/Inn(UV Bn).



5.8. About the automorphism group of UV Bn 83

Proposition 5.8.3. Let n ≥ 3. It holds that

⟨βn, γn⟩ ⊆ Out(UV Bn),

where ⟨βn, γn⟩ ≅ Z2 ×Z2.

Proof. Let n ≥ 3. We will show that the automorphisms βn, γn and βn ○ γn are not inner
automorphisms. Note that any inner automorphism of a group G acts trivially on the Abelianisation
of G. That is if h ∶ G! G is an inner automorphism then the induced automorphism h̄ ∶ Gab! Gab

is the trivial one. From Remark 5.1.3, we have that the Abelianisation of UV Bn is isomorphic
to Z ×Z2, where Z is generated by the image of σ1, [σ1] and Z2 is generated by the image of ρ1,
[ρ1]. The automorphisms βn and βn ○ γn act non-trivially on the Abelianisation of UV Bn, since
βn(σ1) = σ

−1
1 and (βn ○ γn)(σ1) = ρ1σ

−1
1 ρ1, for 1 ≤ i ≤ n − 1.

By contradiction we will prove that γn is not an inner automorphism. First, notice that from the
set of relations (1) we have that γn(λk,l) = λl,k, for every λk,l ∈ UV Pn, where k ≠ l and k, l = 1, . . . , n.
Suppose that γn is an inner automorphism. It follows that there exists some non-trivial element
g ∈ UV Bn such that γn(u) = ig(u) = gug−1, for every u ∈ UV Bn. In particular, it has to hold that
γn(λk,l) = gλk,lg

−1 = λl,k, for every k, l = 1, . . . , n, where k ≠ l. Using the same arguments as we
did in the proof of Proposition 5.3.10, we will show that the relation λl,k = gλk,lg

−1, for every
k, l = 1, . . . , n, k ≠ l and for a fixed non-trivial element g ∈ UV Bn, can not hold.

We know that UV Bn = UV Pn ⋊ Sn and thus, g = ΛS, for Λ, S fixed words in UV Pn and Sn
respectively. Therefore, it has to hold that

λl,k ⋅ΛS = ΛS ⋅ λk,l, for every k, l ∈ {1, . . . , n}, k ≠ l.

From Theorem 5.3.6, and in particular based on the action of the symmetric group on every
generator λk,l ∈ UV Pn, we obtain

λl,k ⋅ΛS = Λ ⋅ λS(k),S(l)S, for every k, l ∈ {1, . . . , n}, k ≠ l.

Thus,
λl,k = Λ ⋅ λS(k),S(l) ⋅Λ−1

∈ UV Pn, for every k, l ∈ {1, . . . , n}, k ≠ l. (3)

Suppose that either S(k) ≠ l or S(l) ≠ k. Then, from relation (3), we see that under the
Abelianisation map these distinct generators, λl,k and λS(k),S(l), of UV Pn, would coincide. But
this leads to a contradiction since we know from Corollary 5.3.5 that the Abelianisation of UV Pn
is isomorphic to the free Abelian group of rank n(n − 1) generated by the images of the elements
λi,j , for 1 ≤ i ≠ j ≤ n. Therefore, it has to hold that S(k) = l and S(l) = k for every k, l ∈ {1, . . . , n},
k ≠ l, where S is a fixed element in Sn. But once again, this leads to a contradiction because a
permutation on n elements cannot permute all possible couples (l, k), for 1 ≤ l ≠ k ≤ n.

Now, suppose that g = S, meaning that Λ is a trivial word in UV Pn. Then, it has to hold that

λl,k ⋅ S = S ⋅ λk,l, for every k, l ∈ {1, . . . , n}, k ≠ l. (4)

But relation (4) implies that the word S in the symmetric group fixes all the elements of the
set {1, . . . , n}. This is possible only when S is the trivial element, which leads once more to a
contradiction, since g is a non-trivial element. Since the centre of UV Pn is trivial, Remark 5.3.4,
we do not need to check the case where g = Λ.

Thus, we conclude that γn is not an inner automorphism and this completes the proof.

We speculate that this result about the outer automorhism group of UV Bn, Out(UV Bn), could
be of help in determining the group Out(WBn), since UV Bn is a quotient of WBn by an extra
relation.

Finally, we complete this section by proving that the groups UV Bn and UV Pn are residually
finite and Hopfian, but not co-Hopfian.

We recall that a group G is called Hopfian if every surjective homomorphism G! G is also an
injective homomorphism and it is called co-Hopfian if every injective homomorphism G! G is also
a surjective homomorphism.
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Corollary 5.8.4. Let n ≥ 2. The groups UV Bn and UV Pn are residually finite and Hopfian, but
not co-Hopfian.

Proof. By Theorem 5.3.6, we have that UV Bn ≅ UV Pn ⋊ Sn. We already know that the group
UV Pn is a right-angled Artin group and it is known that every right-angled Artin group is linear;
see [HW99]. Moreover, it is also known that a finitely generated linear group is residually finite. It
clearly follows now that UV Pn is a residually finite group. Moreover, UV Bn is a residually finite
group, since it is an extension of UV Pn by Sn, which is a finite group. Finally, the groups UV Bn
and UV Pn are Hopfian, since they are finitely generated, residually finite goups.

In order to show that the group UV Pn is not co-Hopfian, we just provide the following
homomorphism:

h ∶ UV Pn! UV Pn defined by h ∶ λi,j 7! λi,jλj,i, for every 1 ≤ i ≠ j ≤ n,

which is injective but not surjective, since the elements λi,j , for 1 ≤ i ≠ j ≤ n do not have a preimage
under h. Now, we extend the map h to a homomorphism of UV Bn ≅ UV Pn ⋊ Sn as follows:

h̄ ∶ UV Bn! UV Bn defined by h̄ ∶ λi,j 7! λi,jλj,i and h̄ ∶ sk 7! sk,

for every 1 ≤ i ≠ j ≤ n and 1 ≤ k ≤ n − 1, where sk ∈ Sn. Similarly, this homomorphism is injective
but not surjective, since the elements λi,j , for 1 ≤ i ≠ j ≤ n do not have a preimage under h̄, and
therefore the group UV Bn is not co-Hopfian.
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Résumé

Le problème de scindement pour les groupes de tresses du plan projectif et un
quotient remarquable des groupes de tresses soudées

Cette thèse est divisée en deux parties. La première partie concerne des groupes de tresses des
surfaces, tandis que la deuxième traite des groupes de tresses soudées et des groupes de tresses
virtuelles sans restrictions.

Soient n,m ∈ N∗ et Bn,m(RP 2) l’ensemble des (n +m)-tresses du plan projectif dont la permu-
tation associée appartient au sous-groupe Sn × Sm du groupe symétrique Sn+m. Dans la première
partie de cette thèse, nous étudions le problème de scindement de la suivante suite exacte courte
généralisée de Fadell–Neuwirth:

1! Bm(RP 2
∖ {x1, . . . , xn})! Bn,m(RP 2

)
q̄
−! Bn(RP 2

)! 1,

où l’application q̄ peut être considérée géométriquement comme l’épimorphisme qui oublie les m
derniers brins, ainsi que l’existence d’une section de la fibration correspondante q ∶ Fn+m(RP 2)/Sn×
Sm! Fn(RP 2)/Sn, où on note par Fn(RP 2) le n−ème espace de configurations ordonnées du plan
projectif RP 2.

Nos principaux résultats sont les suivants : si n = 1 l’homomorphisme q̄ et la fibration corre-
spondante q n’admettent aucune section, tandis que si n = 2, alors q̄ et q admettent une section.
Pour n ≥ 3, on montre que si q̄ et q admettent une section alors m ≡ 0, (n − 1)2 mod n(n − 1). De
plus, l’homomorphisme q̄ et la fibration q admettent une section pour m = kn(2n − 1)(2n − 2), où
k ≥ 1, et pour m = 2n(n − 1). En outre, nous prouvons que pour m ≥ 3, Bm(RP 2 ∖ {x1, . . . , xn})
n’est pas résiduellement nilpotent et pour m ≥ 5, il n’est pas résiduellement résoluble.

Soit n ∈ N. Dans la deuxième partie de la thèse, nous étudions les groupes de tresses soudées
WBn et les groupes de tresses virtuelles sans restrictions UV Bn, ainsi que leurs sous-groupes purs,
c’est-à-dire les groupes de tresses pures soudées WPn et les groupes de tresses pures virtuelles sans
restrictions UV Pn.

Nos principaux résultats sont les suivants : pour n ≥ 5, nous donnons une description complète,
à conjugaison près, des homomorphismes possibles de WBn et UV Bn dans le groupe symétrique Sn.
Pour n ≥ 3, on donne une caractérisation complète des homomorphismes de UV Bn dans tout groupe
fini G. Pour n ≥ 5, nous montrons que WPn et UV Pn sont des sous-groupes caractéristiques de
WBn et UV Bn respectivement. De plus, nous déterminons le groupe des automorphismes de UV Pn,
et nous prouvons que Z2×Z2 est un sous-groupe du groupe des automorphismes extérieurs de UV Bn.
Enfin, nous montrons que UV Bn et UV Pn sont résiduellement finis et Hopfiens mais pas co-Hopfiens.

Mots-clés: Groupes de tresses des surfaces ; Présentation de groupe ; Suite exacte courte de
Fadell–Neuwirth ; Problème de scindement ; Fibration ; Résiduellement nilpotent ; Résiduellement
résoluble ; Groupes de tresses soudées ; Groupes de tresses virtuelles sans restrictions ; Groupes
d’Artin angle droit ; Groupe des automorphismes ; Résiduellement fini ; Hopfien ; Co-Hopfien.



Abstract

The splitting problem for braid groups of the projective plane and a remarkable
quotient of welded braid groups

This thesis is divided into two parts. The first part concerns surface braid groups, while the
second deals with welded and unrestricted virtual braid groups.

Let n,m ∈ N, and let Bn,m(RP 2) be the set of (n +m)-braids of the projective plane whose
associated permutation lies in the subgroup Sn × Sm of the symmetric group Sn+m. In the first
part of this work, we study the splitting problem of the following generalised Fadell–Neuwirth short
exact sequence:

1! Bm(RP 2
∖ {x1, . . . , xn})! Bn,m(RP 2

)
q̄
−! Bn(RP 2

)! 1,

where the map q̄ can be considered geometrically as the epimorphism that forgets the last m strands,
as well as the existence of a section of the corresponding fibration q ∶ Fn+m(RP 2)/Sn × Sm !
Fn(RP 2)/Sn, where we denote by Fn(RP 2) the nth ordered configuration space of the projective
plane RP 2.

Our main results are the following: if n = 1 the homomorphism q̄ and the corresponding fibration
q admits no section, while if n = 2, then q̄ and q admit a section. For n ≥ 3, we show that if q̄ and q
admit a section then m ≡ 0, (n − 1)2 mod n(n − 1). Moreover, using geometric constructions, we
show that the homomorphism q̄ and the fibration q admit a section for m = kn(2n − 1)(2n − 2),
where k ≥ 1, and for m = 2n(n − 1). In addition, we show that for m ≥ 3, Bm(RP 2 ∖ {x1, . . . , xn})
is not residually nilpotent and for m ≥ 5, it is not residually solvable.

Let n ∈ N. In the second part of this work, we study the welded braid groups WBn, the
unrestricted virtual braid groups UV Bn, as well as their pure subgroups, namely the welded pure
braid groups WPn and unrestricted virtual pure braid groups UV Pn.

Our main results are as follows: for n ≥ 5, we give a complete description, up to conjugation,
of all possible homomorphisms from WBn and UV Bn to the symmetric group Sn. For n ≥ 3, we
give a complete characterisation of any group homomorphism from UV Bn to any finite group
G. For n ≥ 5, we prove that WPn and UV Pn are characteristic subgroups of WBn and UV Bn
respectively. In addition, we determine the automorphism group of UV Pn, and we prove that
Z2 × Z2 is a subgroup of the outer automorphism group of UV Bn. Lastly, we show that UV Bn
and UV Pn are residually finite and Hopfian but not co-Hopfian.

Keywords: Surface braid groups; Group presentation; Fadell–Neuwirth short exact sequence;
Section problem; Fibration; Residually nilpotent; Residually solvable; Welded braid groups; Unre-
stricted virtual braid groups; Right-angled Artin groups; Automorphism group; Residually finite;
Hopfian; Co-Hopfian.
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