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. . . à Myriam Preissmann et Nicolas Trotignon, ma directrice et mon directeur
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6.3.3 Schläfli-prismatic graphs . . . . . . . . . . . . . . . . . . 126
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Chapter 1

Abstract

Abstract

This thesis deals with the structure of some hereditary classes of graphs. A
class of graphs is hereditary if it is closed under vertex deletion. A better
understanding of the structure of graphs contained in certain hereditary classes
sometime yields results on optimisation problems such as the coloring problem.
We focus on three hereditary classes, the first being a subclass of even-hole-
free graphs and the other two being minimal open cases for the complexity of
the coloring problem when restricted to classes defined by excluding induced
subgraphs of order 4.

First we provide a structural result for the class of graphs Ck that is the
class of graphs where every hole has length k. Using earlier results on other
related classes of graphs, we obtain a structural theorem for the graphs in Ck

when k is odd and at least 7. The theorem states that a graph in Ck with no
clique cutset and no universal vertex is either a ring or belongs to a new class
of graphs named blowup of template that we fully described.

Secondly, we study the structure of graphs in Free{C4, 4K1} (without C4

or 4K1 as induced subgraphs). We first focus on fixers. A graph H in
Free{C4, 4K1} is a fixer if any graph in Free{C4, 4K1} containing H as an
induced subgraph is an extended proper blowup of H. We prove that the icosa-
hedron is a fixer. In addition the icosahedron minus one vertex has a similar
property. It follows that graphs in Free{C4, 4K1} that contain an icosahedron

11



12 CHAPTER 1. ABSTRACT

minus one vertex have bounded clique-width and can be colored in polyno-
mial time. We provide a program that computes all fixers of small fixed order.
Next we observe that for any graph G in Free{C4, 4K1}, every subgraph of
G induced by two disjoint cliques is a half graph. We give some thoughts on
the study of the structure of graphs in Free{C4, 4K1} whose vertex sets can be
partitioned into 3 cliques.

The last class that we are interested in, is the class of antiprismatic graphs.
We prove that the coloring problem is polynomial-time solvable when restricted
to non-orientable antiprismatic graphs. The proof is largely based on the struc-
tural result provided by Chudnovsky and Seymour on the complement class:
the prismatic graphs. Using this result, we prove that every non-orientable pris-
matic graph has at most 10 pairwise disjoint triangles. This yields a O(n7.5) al-
gorithm that solves the clique cover problem in non-orientable prismatic graph.
We also give an O(n5) algorithm for solving the problem of finding a maxi-
mum number of vertex-disjoint triangles in both orientable and non-orientable
prismatic graphs.

Résumé

Cette thèse porte sur la structure des classes de graphes héréditaires. Une
classe de graphes est héréditaire si elle est fermée par suppression de sommet.
Une meilleure compréhension de la structure des graphes dans une telle classe
peut conduire à des résultats pour certains problèmes d’optimisation comme
le problème de la coloration. Dans cette thèse, nous nous concentrons sur trois
classes héréditaires de graphes. La première est une sous-classe des graphes
sans trou pair. Les deux autres sont des cas ouverts minimaux pour la com-
plexité du problème de coloration restreint aux classes de graphes définies en
excluant des sous-graphes d’ordre 4.

Tout d’abord, nous donnons un résultat structurel pour la classe de graphes
Ck. C’est la classe des graphes dont tous les trous ont longueur k. En utilisant
des résultats antérieurs sur des classes de graphes reliées, nous donnons un
théorème de structure pour les graphes dans Ck pour k impair et au moins 7.
Le théorème stipule qu’un graphe dans Ck qui ne contient ni un clique cutset
ni un sommet universel est un ring ou appartient à une nouvelle classe nommée
blowup de templates que nous décrivons complètement.
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Ensuite, nous étudions la structure des graphes dans Free{C4, 4K1}(sans
C4 ou 4K1 comme sous-graphes induits). Nous nous concentrons, tout d’abord,
sur les fixers. Un graphe H est un fixer si tout graphe dans Free{C4, 4K1} con-
tenant H comme sous-graphe induit est un blowup propre étendu de H. Nous
prouvons que l’icosaèdre est un fixer. De plus l’icosaèdre moins un sommet
possède des propriétés similaires. Il en résulte qu’un graphe dans Free{C4, 4K1}
contenant un icosaèdre moins un sommet comme sous-graphe induit, a une
clique-width bornée et donc peut être colorié en temps polynomial. Nous don-
nons un programme qui génère tous les fixers d’un petit ordre donné en entrée.
Par la suite, nous observons que dans tout graphe G dans Free{C4, 4K1}, tout
sous-graphe induit par des cliques disjointes est un half graph. Nous donnons
quelques idées pour l’étude de la structure des graphes dans Free{C4, 4K1}
dont l’ensemble des sommets peut se partitionner en 3 cliques.

La dernière classe qui nous intéresse est celle des graphes anti-prismatiques.
Nous prouvons que le problème de coloration restreint aux graphes anti-
prismatiques non-orientables peut se résoudre en temps polynomial. La preuve
s’appuie largement sur un résultat structurel de Chudnovsky et Seymour sur
la classe complémentaire : les graphes prismatiques. Grace à ce résultat nous
prouvons que tout graphe prismatique non-orientable a au plus 10 triangles
deux à deux disjoints. Cela conduit à un algorithme en O(n7.5) qui résout
le problème de la couverture par cliques dans les graphes prismatiques non-
orientables. Nous donnons aussi un algorithme en O(n5) pour résoudre le
problème du nombre maximum de triangles disjoints dans tout graphe prisma-
tique, tant orientable que non-orientable.
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Chapter 2

Introduction

2.1 The schedules, what a problem!

Consider the following scheduling problem: a certain number of courses (n)
are all characterised by a starting time and an end time. One wants to know
the minimum number of rooms needed to assign a room to each course in such
a way that two courses that overlap do not share the same room.

If the number of courses is small, it is possible to answer this question “by
hand”, but providing an answer becomes more difficult as the number of classes
increases. That is where come mathematical modelling and computer science.

Mathematical models are aimed to represent a certain kind of real situa-
tions. The study of a mathematical model leads to a general study of all kinds
of situations that can be represented by this model. Hence, all results found
on the model can naturally be used for all situations that can be represented
by this model. The models that we are interested in are called graphs.

A graph is a set of nodes named vertices that are pairwise linked or not
by edges . Graphs are usually used to represent binary interactions. The ver-
tices usually represent objects that are pairwise connected or not, depending
on whether the vertices are linked by an edge or not. Hence solving prob-
lems in graphs leads to solutions to some related problems in real situations
independently of what is represented by vertices.

In this thesis, graphs are undirected . This means that an edge does not
encode any order between its two endpoints. Except when it is specified they
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16 CHAPTER 2. INTRODUCTION

are also simple, i.e. edges are undirected and every pair of vertices is connected
by at most one edge.

Consider again the scheduling problem mentioned above. Represent every
course by a vertex. Add an edge between two vertices if the corresponding
courses overlap. The graph G that we obtain is a good representation of the
situation. Now look at the following question : what is the minimum number
of colors needed in order to color every vertex of the graph such that any two
vertices linked by an edge are of different colors? Such a coloring is called
a proper coloring . The vertex coloring problem is the problem of finding the
minimum number of colors needed to color a given graph. An answer to the
coloring problem in G, yields an answer to the scheduling problem by assigning
the same room to every courses whose representative vertices are colored with
the same color.

2.2 Computational complexity

For a given problem with a given algorithm that solves it, two theoretical
aspects are of importance: verify that the proposed algorithm does indeed
perform correctly and analyse how efficient it is. The computational complex-
ity of an algorithm is the number of basic operations required for its execution
in the worst case. For simplicity we just call it complexity of the algorithm.
The number of basic operations is obviously linked to the size of the input. In
graph theory, when the input is a graph, the size of the input depends on how
it is represented in the computer, but all classical representations are equiva-
lent up to a factor of at most O(n2), where n denotes the number of vertices
of the input graph. We say that an algorithm A is a polynomial-time algo-
rithm if the complexity of A is bounded (from above) by a polynomial in the
size of its input. Polynomial-time algorithms are obviously more efficient than
exponential-time algorithms for sufficiently large inputs. This is why poly-
nomiality became an important criterion to classify algorithms and problems.
The complexity of a problem is the complexity of the best possible algorithm
that solves it.

All problems that can be solved by a polynomial-time algorithm are said
to be polynomial . The class of all polynomial problem is the class P .

A decision problem is a problem whose answer is either “yes” or “no”. The
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class of problem NP (nondeterministic polynomial time) is the class of all
decision problems such that given any instance with “yes” answer there is a
certificate validating this fact which can be checked in polynomial time.

From the definitions it is obvious that P ⊆ NP . In 1971, Cook, Edmonds
and Levin asked the following question : is P = NP ? This problem is one
of the seven Millennium Prize Problems and it is still open. In this thesis we
work under the hypothesis P 6= NP .

The class of NP-complete problems is the class of decision problems in
NP which are “at least as hard to solve” as any problem in NP . Under
the hypothesis P 6= NP it follows that there does not exist any polynomial
algorithm that solves NP-complete problems.

The decision form of the coloring problem is NP-complete [27](even if
only three colours are allowed). Hence, under the hypothesis P 6= NP , there
is no polynomial algorithm that solves the coloring problem. But when we
add some restrictions on the input graph, the coloring problem can become
polynomial. A trivial example is when we bound the number of vertices of the
graph by a constant. An interval graph is a graph formed from a set of intervals
with a vertex for every interval and such that two vertices are adjacent if and
only if their corresponding intervals overlap (like the one in our scheduling
problem). It is classical that the coloring problem is polynomial time solvable
when restricted to interval graphs. An interesting question is to know, what
are, in general, the restrictions on the input graphs such that the coloring
problem remains NP-complete and the restrictions on the input graphs such
that the coloring problem become polynomial.

In this thesis, we look at the general structure of graphs in certain classes
of graphs that will be presented in Chapter 3. A better understanding of the
structure of graphs under certain hypotheses can yield to some complexity
results on optimisation problems in graphs. Considering the coloring problem,
if the input graph is restricted to a certain class of graphs H then, a better
understanding of the structure of graphs in H can yield to define a polynomial-
time algorithm or a proof of NP-completeness.
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2.3 More formal definitions

In this document when G is a graph, V (G) denotes the set of vertices of G and
E(G) the set of edges of G.

In a graph G, a stable set is a set of vertices that are pairwise non-adjacent.
A clique is a set of vertices that are pairwise adjacent. In a graph, we view the
empty set as a clique. The size of a maximum clique in G is denoted by ω(G).
The size of a maximum independent set in G is denoted by α(G).

A proper coloring of a graph G is a function f : V (G)→ N such that for all
uv ∈ E(G), f(u) 6= f(v). The size of a proper coloring given by f is |f(V (G)|.
For any positive integer k, a k-coloring of a graph G is a proper coloring of G
of size k.

The vertex-coloring problem in its optimisation form is the problem of,
given a graph, finding the minimum number of colors of a proper coloring. In
this thesis, we omit the term vertex in vertex coloring problem (just coloring
problem). The decision form of the coloring problem is the following :

COLORING PROBLEM

INPUT: A graph G and a positive integer k

OUTPUT: Yes if there exists a proper coloring of G that uses at most k
colors and No otherwise.

The coloring problem is NP-complete [27].
Here, the number of colors needed is part of the input. For an integer k,

the k-coloring problem is the same problem but, the number of colors is fixed.

k-COLORING PROBLEM

INPUT: A graph G

OUTPUT: Yes if there exists a proper coloring of G that uses at most k
colors and No otherwise.

When k is at least 3, the k-coloring problem is NP-complete [27].
For a graph G, the chromatic number (minimum number of colors needed

to have a proper coloring of G) is denoted by χ(G). It is easy to see that χ(G)
is at least equal to the size of the maximum clique of G (χ(G) ≥ ω(G) ). This
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is because all vertices of the cliques have to use different colors in any proper
coloring of the graph.

The order of a graph is its number of vertices. For any subset V ′ of vertices
of V (G), the subgraph of G induced by V ′ denote by G[V ′] is the graph with
V ′ as vertex set and all edges in E(G) that are incident to two vertices in V ′,
and only those edges. A graph H is an induced subgraph of a graph G if there
exists V ′ ⊆ V (G) such that G[V ′] is isomorphic to H. In this thesis, when
we say that a graph G contains a graph H, we always mean as an induced
subgraph.

The complement of the graph G, denoted by G, is the graph with the
same set of vertices as G and such that two vertices in G are adjacent if and
only if they are non-adjacent in G. When H is a class of graph, we set
H = {G : G ∈H }.

A graph is connected if every pair of distinct vertices is joined by a path. It
is anticonnected if its complement is connected. A connected component of a
graph G is a subset X of V (G) such that G[X] is connected and X is maximal
with respect to this property. An anticonnected component of a graph G is
a subset X of V (G) such that G[X] is anticonnected and X is maximal with
respect to this property.

When x is a vertex of a graph G and A is a subset of vertices of G or a
subgraph of G, we denote by NA(x) the neighbourhood of x in A, i.e.: the
set of neighbours of x that are in A. Note that x /∈ NA(x). We set NA[x] =
{x}∪NA(x), the closed neighbourhood of x in A. If X ⊆ V (G), we set NA(X) =
(∪x∈XNA(x)) \ X and NA[X] = NA(X) ∪ X. We sometimes write N instead
of NV (G) (when there is no risk of confusion). If e = uv is an edge of G, we
say that the vertices u and v are the endpoints of e and that e is incident to
u and v.

The degree of a vertex x in G is equal to |NG(x)|. A vertex x is isolated
in G if x has no neighbour in G, i.e.: if x has degree 0 in G. A vertex that is
adjacent to all other vertices of G is universal in G. We also use the adjective
universal for a set of vertices that only contains universal vertices, for example,
a universal clique W in a graph G is a clique that is complete to V (G) \W .
Two distinct vertices x and y in a graph G are twins in G if NG[x] = NG[y] (in
particular, x and y are adjacent). A graph is twinless if it contains no twins.

A setX ⊆ V (G) is complete to a set Y ⊆ V (G) if they are disjoint and every
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vertex of X is adjacent to every vertex of Y . A set X ⊆ V (G) is anticomplete
to a set Y ⊆ V (G) if they are disjoint and no vertex of X is adjacent to a
vertex of Y . We sometimes say that x is complete (resp. anticomplete) to Y
to mean that {x} is complete (resp. anticomplete) to Y .

A graph G is bipartite if V (G) can be partitioned into two stable sets V1

and V2. In addition, if V1 and V2 are complete to each other, G is a complete
bipartite graph. Observe that bipartite graphs can be colored with two colors.
For k ≥ 1, we denote by Kk,l the complete bipartite graph with one side of the
partition of size k and the other of size l.

When G and H are graphs, we denote by G+H their disjoint union. When
G is a graph and k an integer, we denote by kG the disjoint union of k copies
of G.

For k ≥ 1, we denote by Pk the path on k vertices, that is, the graph
with vertex-set {p1, . . . , pk} and edge-set {p1p2, . . . , pk−1pk}. It is sometimes
denoted by p1p2 . . . pk. If 1 ≤ i ≤ j ≤ k, we then denote by piPpj the path
pipi+1 . . . pj. Given a graph G and two vertices u and v in V (G), a uv-path is
a path with endpoints u and v that is induced in G.

For k ≥ 3, we denote by Ck the cycle on k vertices; that is, the graph with
vertex-set {p1, . . . , pk} and edge-set {p1p2, . . . , pk−1pk, pkp1}. We denote it by
p1p2 . . . pkp1. When Ck is a subgraph of a graph G (possibly not induced), an
edge with both ends in {p1, ..., pk} that is not an edge of Ck is called a chord
of Ck. A hole in a graph G is a cycle of length at least 4 without any chord
in G. Note that, unlike cycles, holes have to be induced. An antihole is the
complement graph of a hole. The length of a path or a hole is the number of
its edges. Holes, paths and cycles are even or odd depending on the parity of
their lengths.

For k ≥ 1, we denote by Kk the complete graph on k vertices that is the
graph with all possible edges.

In Figure 2.1, notations for all graphs of order 4 are presented. Note that
the graph 2P1 + P2 is also named the diamond , the graph K1,3 is also named
the claw and the graph P3 +K1 is also named the paw .



2.4. PROBLEMS RELATED TO COLORING 21

••••
P4

•

••

•

claw, K1;3

••

••
paw

•

• •

•

C4

•

• •

•

diamond

•

• •

•

K4

•

•

•

•
C3 +K1

••

••
P3 +K1

•

• •

•

2K2

•

• •

•

2P1 + P2

•

• •

•

4K1

Figure 2.1: All graphs of order 4

2.4 Problems related to coloring

In this thesis, we also consider other problems than the coloring problem. They
are described in this section.

The clique covering problem is the problem of, given a graph G, partition
V (G) into the minimum number of cliques. The decision form of the clique
covering problem is the following :

CLIQUE COVERING PROBLEM

INPUT: A graph G, a positive integer k

OUTPUT: Yes if V (G) can be partitioned into at most k disjoint cliques
and No otherwise.

In the general case, the clique covering problem is NP-complete [27]. It is
easy to see that solving the clique covering problem in a graph G is equivalent
to solving the coloring problem in G and vice versa. Like the coloring problem
the integer k can be fixed in the definition of the problem. This gives the
k-clique covering problem



22 CHAPTER 2. INTRODUCTION

k-CLIQUE COVERING PROBLEM

INPUT: A graph G

OUTPUT: Yes if V (G) can be partitioned into at most k disjoint cliques
and No otherwise.

When k is at least 3, the k-clique covering problem is NP-complete [27].
The size of the minimum clique cover is denoted by θ(G). Note that
θ(G) = χ(G).

The edge coloring problem is the problem of coloring every edge of a given
graph G such that two incident edges do not share the same color, andn the
number of colors used is minimum. The decision form of the edge coloring
problem is the following :

EDGE COLORING PROBLEM

INPUT: A graph G, a positive integer k

OUTPUT: Yes if G admits an edge coloring using at most k colors, and
No otherwise.

In the general case, the edge coloring problem is NP-complete [34], even if
k = 3.

The vertex-disjoint triangles problem is the problem of finding, in a given
graph G, the maximum number of vertex-disjoint triangles. The decision form
of the vertex-disjoint triangles problem is the following :

VERTEX-DISJOINT TRIANGLES PROBLEM

INPUT: A graph G, a positive integer k

OUTPUT: Yes if G contains at least k disjoint triangles and No otherwise.

In the general case, the vertex-disjoint triangles problem is NP-
complete [32].
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The maximum matching problem is the problem of, given a graph G, find
the maximum number of pairwise non-incident edges. The decision form of the
maximum matching problem is the following :

MAXIMUM MATCHING PROBLEM

INPUT: A graph G, a positive integer k

OUTPUT: Yes if there exist at least k pairwise disjoint edges in G and No
otherwise.

A set of edges that are pairwise non-incident are called a matching . The
maximum matching is polynomial time solvable [21].

2.5 Outline

Chapter 3 is about hereditary classes of graphs. We give some intuitions about
what leads us to work on them and survey known results. We motivate the
choice of the three classes that are studied in the rest of this thesis.

Chapter 4 is devoted to our results on the structure of graphs where every
hole has the same length.

Chapter 5 is devoted to our study on the structure of graphs in
Free{C4, 4K1}. We also give some partial results on the complexity of the
coloring problem when restricted to graphs in Free{C4, 4K1}.

Chapter 6 is devoted to the complexity of the coloring problem when re-
stricted to antiprismatiques graphs.

At the end of the document, a table of notations and an index are provided.
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Chapter 3

Hereditary classes of graphs

3.1 Hereditary classes of graphs

In modelling, vertices of a graph usually represent objects and edges represent
constraints. It is more understandable to consider the removal of an object
than to consider the removal of a single constraint. Hence, it is natural to
consider classes of graphs closed under vertex deletion. Such classes are called
hereditary classes of graphs: a class of graphs H is hereditary if for every
graph G in H , every induced subgraph of G is also in H .

We begin with an example. A graph G is an interval graph if every vertex of
G corresponds to an interval on the real line. Two vertices of G are adjacent if
and only if the corresponding intervals intersect (see Figure 3.1). Considering,
once again the example of the scheduling problem presented in Chapter 2, it
is easy to note that the corresponding graph is an interval graph. The removal
of a vertex in this graph corresponds to the removal of one course, which make
sense. But if we remove a unique edge, that means that two courses that
originally intersect do not intersect anymore without changing other things. It
does not really make sense in real life. More formally, the removal of a vertex
of an interval graph G corresponds to the removal of one interval in the set
of intervals that correspond to G. Therefore, it is obvious that every graph
obtained from G by removing some vertices is also an interval graph. Hence,
the class of interval graphs is a hereditary class of graphs. Removing an edge
from G does not make a lot of sense. It would mean that two intervals that

25
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Figure 3.1: Interval graph
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Figure 3.2: Graph that is not an interval graph

intersect at the beginning do not intersect anymore. It is possible that this
new graph does not even correspond to any set of intervals on the real line.
For example, in Figure 3.2, there is no way to move the interval corresponding
to vertex D such that this interval intersects those that correspond to B and
E but not the interval that intersects C. If we remove the edge CD, the graph
is no longer an interval graph.

A nice property for any hereditary classes of graphs is that they are char-
acterised by a set of forbidden induced subgraphs. Given a set of graphs F ,
denote by Free F the class of graphs containing no graph from F .

Property 3.1.1
A class H of graphs is hereditary if and only if there exists a set F of graphs
such that H = Free F .

Proof. By definition, if H = Free F then H is hereditary. The converse is
also obvious by defining F = {G : G /∈H }. 2

A graph G is a minimal forbidden induced subgraph for a hereditary class



3.1. HEREDITARY CLASSES OF GRAPHS 27

of graphs H if the only induced subgraph of G not in H is G itself.

Property 3.1.2
If M is the set of all minimal forbidden induced subgraphs of a hereditary class
of graphs H , then H = Free M . Moreover, M is inclusion-wise minimal with
respect to this property.

We omit the proof of property 3.1.2 that can be found, as the previous
results and definitions in [38].

In order to illustrate the two previous properties, consider again the class
of interval graphs. Let F be the set of graphs that are not interval graphs.
It is obvious that the class of interval graphs is the class Free F . But there
are some graphs G1 in F that are induced subgraphs of some other graphs
G2 ∈ F . Therefore by forbidding G1 we also forbid G2 and Free F is equal to
Free F \ {G2}. In general, we are interested in characterizations of hereditary
classes of graphs by a set of minimal forbidden induce subgraphs. Lekkerkerker
and Boland [40] proved that when G is the set of all Cn for n ≥ 4 and all graphs
in Figure 3.3, then G is the minimal set of graphs such that the class of interval
graphs is the class Free G . Now consider a subclass of interval graphs: the unit
interval graphs . A graph is a unit interval graph, if it is an interval graph
with all the corresponding intervals having the same length. Bogart and West
proved the following :

Property 3.1.3 ([5])
An interval graph G is a unit interval graph if and only if G does not contain
K1,3.

Using property 3.1.3 and the result of Lekkerkerker and Boland we can
conclude that the class of unit interval graphs is the class Free{K1,3, Cn (n ≥
4)}. This is because every graph in Figure 3.3 contains a claw. It is easy to see
that every disjoint union of paths is a unit interval graph. Since all induced
subgraphs of K1,3 and of cycles are disjoint union of paths, the set of graphs
{K1,3, Cn (n ≥ 4)} is the set of all minimal forbidden induced subgraphs for
the class of unit interval graphs.

We add some properties for a better understanding of hereditary classes of
graphs. The proofs are easy and not given.
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Figure 3.3: Forbidden induced subgraph for interval graphs

Property 3.1.4
1. If H is a hereditary class of graphs then H is also a hereditary class of

graphs.

2. If H = Free F for a set of graphs F , then H = Free F .

3. If every graph in F2 contains a graph of F1 then Free F1 ⊆ Free F2.

4. If F1 ⊆ F2 then Free F2 ⊆ Free F1.

Several problems are known to be “difficult” when considering any general
graph as an input. It is natural to ask the following question : is there a more
restricted setting in which the question is “easier” and still interesting? A
good candidate is the restriction of the graphs considered to some hereditary
family. While this very concrete condition makes these graphs relatively easy
to handle, this still leads to numerous interesting problems.

Another related question, when restricting a problem to a certain class of
graphs is to decide whether a graph is the class or not. This is the recognition
problem. About hereditary classes of graphs, when the number of minimal
forbidden induced subgraphs is finite, deciding if a graph is in the class or not
can be done in polynomial time (by applying brute force).
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3.2 Coloring problem in hereditary classes

As explained in the previous section, a hereditary class of graphs is defined by
a set M of forbidden induced subgraphs. In the following, we always consider
that M is minimal and so it does not contain two graphs such that one is an
induced subgraph of the other. An interesting issue is to determine, for every
such set of graphs M , if the coloring problem is polynomial time solvable or
NP-complete when restricted to Free M .

For a better understanding of the mechanisms that are involved in this
problem, we need the following observations. If the coloring problem is poly-
nomial time solvable in a class of graphs H then it is polynomial time solvable
for all subclasses of H . If the coloring problem is NP-complete in a class of
graphs H then it is NP-complete when extended to any classes of graphs that
contains H as a subclass. The next property follows directly from 3.1.4.

Property 3.2.1
Let F1 and F2 be two sets of graphs such that every graph in F2 contains a
graph from F1.

• If the coloring problem is polynomial time solvable in Free F2 then it is
also polynomial time solvable in Free F1.

• If the coloring problem is NP-complete in Free F1 then it is also NP-
complete in Free F2.

In 2001, Král, Kratochvil, Tuza and Woeginger [39] closed the dichotomy
of the coloring problem when restricted to Free{H}, with H being a unique
given graph. The result is the following:

Theorem 3.2.2 ([39]) The vertex coloring problem, restricted to Free{H},
is polynomial time solvable in when H is an induced subgraph of P4 or P3 +K1

and NP-complete otherwise.

The big steps of the proof are interesting to understand the mechanisms
used in the study of the complexity of the coloring problem in classes defined
by forbidden induced subgraphs. Let us now describe them.
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The polynomial part is proved in the following way. Seinsche [53] proved
that if G ∈ Free{P4} then χ(G) = ω(G). Note that graphs in Free{P4}
are also called cograph. Seinsche proved that a graph G is a cograph if and
only if every induced subgraph of G on at least two vertices is either not
connected or not anticonnected. Hence the coloring problem is polynomial time
solvable in Free{P4}. To prove that the coloring problem is polynomial time
solvable in Free{P3 + K1}, Král et al. use a structural result from Olariu [47]
on the complement. It states that every connected component of a graph in
Free{P3 +K1} either does not contain triangles, or is a complete multipartite
graph. In both cases, the clique covering problem is polynomial time solvable.
Hence, the coloring problem is polynomial time solvable in Free{P3 + K1}.
Those two results prove the first assertion of Theorem 3.2.2.

To prove the NP-complete part, Král et al. considered 3 cases :

1. H contains an induced cycle,

2. H is a forest with a vertex of degree at least three,

3. H is a disjoint union of paths.

To deal with case 1, they proved that the coloring problem is NP-complete
in Free{H} if H contains a cycle by reducing to 3-coloring problem in the
general case. To deal with case 2, they use the fact that the coloring problem
is NP-complete in claw-free graphs. We will explain this case in Section 3.4.
To deal with case 3, they proved that the clique covering problem is NP-
complete in Free{C4, diamond,K4, C5} by using some more restrictive SAT
problem (known to be NP-complete). It proves that coloring problem is NP-
complete in Free{2P2, 2K1 + P2, 4K1, C5}. We use a similar method to prove
Lemma 5.3.3 in Chapter 5. Hence, if H contains one of 2P2, 2K1 +P2, 4K1 or
C5, the coloring problem is NP-complete for Free{H}.

Since we are in case 3, H is a disjoint union of paths. If H has more
than three connected components then 4K1 ⊆i H. If H have exactly three
connected components then either 2K1 + P2 ⊆i H, or H = 3K1 (and the
problem is polynomial). If H has two connected components, then either
2P2 ⊆i H or H ⊆i P3 +K1 (and the problem is polynomial). Lastly, if H is a
path then either H ⊆i P4 (and the problem is polynomial) or P5 ⊆i H and so
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2P2 ⊆i H. That concludes the proof.

An interesting point about Theorem 3.2.2 is that the graphs H such that
coloring is polynomial in Free{H} have at most four vertices. Lozin and Maly-
shev [41] studied the complexity of the coloring problem when restricted to
the classes defined by forbidden induced subgraphs of order 4. Observe that
when P4 or P3 + K1 are forbidden, the coloring problem is polynomial by
Theorem 3.2.2.

Lozin and Malyshev started by the following observation : in [8], the classes
of graphs defined by forbidden induced subgraphs of order 4 are completely
characterised in terms of bounded or unbounded clique-width. The clique-
width is a parameter that describes the structural complexity of a graph. It
will be explained in Chapter 5. In [51], the following result is proved :

Theorem 3.2.3 ([51]) The vertex coloring problem is polynomial time solv-
able in classes of graphs with bounded clique-width.

Lozin and Malyshev focused their work on the seven minimal classes of
graphs with unbounded clique-width that are defined by forbidden induced
subgraphs of order 4. They found the complexity of the coloring problem
in some of them by using structural results and bounds on χ. They end-
up with three minimal classes where the complexity of the coloring problem
is still unknown: Free{K1,3, 2P1 + P2}, Free{K1,3, 4K1} and Free{C4, 4K1}.
Furthermore, they proved the following (the proof is not difficult) :

Lemma 3.2.4 ([41]) If a graph G ∈ Free{K1,3, 2P1 + P2} contains a 4K1,
then G is edgeless.

By this result, the vertex coloring problem in Free{K1,3, 2P1+P2} is polyno-
mially equivalent to the same problem in Free{K1,3, 2P1 +P2, 4K1}. Therefore,
it is considered that there are three minimal open cases for the complexity of
the coloring problem when restricted to classes of graphs defined by forbidden
induced subgraphs of order 4:

• H1 = Free{K1,3, 4K1},

• H2 = Free{K1,3, 2P1 + P2, 4K1},
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• H3 = Free{C4, 4K1}.

There also exist other hereditary graphs classes that are interesting
considering the complexity of the vertex coloring problem. In this section
we focused on the classes where the set of forbidden induced subgraphs
is finite and small. But a non-finite number of graphs can be excluded
and still the complexity of the coloring problem being unknown. A nice
example could be the subclasses of even-hole-free graphs presented in Sec-
tion 3.3. For more details about the complexity of the coloring problem
and its relative problems when restricted to hereditary classes of graphs,
a reader can look at the survey of Golovach, Johnson, Paulusma and Song [29].

A way to study the coloring problem in a class of graphs is to study the
specific structure of graphs in this class. For example, Král et al. used the
structural result of Olariu to prove Theorem 3.2.2. A usual way is to decompose
a graph into subgraphs in the expectation that the problem can be solved in
all such subgraphs. The decomposition is interesting if the answer is preserved
when the original graph is rebuilt. For example, an obvious way to decompose
a graph is to consider all its connected components. It is easy to see that
once we have an optimal coloring of all connected components of a graph, we
directly obtain an optimal coloring of the entire graph.

Another way to decompose a graph is to look at the cutsets. A cutset in a
graph G is a set S of vertices such that G \S is disconnected. In the graphs in
Figure 3.4, two cutsets are evidenced. A clique cutset in a graph G is a cutset
S such that G[S] is a clique. Clique cutsets are convenient for coloring because
of the following tool :

Let G be a graph with a clique cutset S. Denote by V1 and V2 the two
anticomplete sets of vertices such that V1, V2 and S is a partition of V (G).
Start with an optimal proper coloring of G[V1 ∪ S], and an optimal proper
coloring of G[V2 ∪ S]. Since S is a clique, in any optimal coloring of any
subgraphs of G containing S, all vertices of S have their own color. Hence, it
is possible to relabel the colors of the optimal coloring of G[V1 ∪ S] in order
that the colors of vertices of S coincide in the optimal colorings of G[V1 ∪ S]
and G[V2 ∪ S]. In that way, we obtain a proper optimal coloring of G. See
Figure 3.5.

This tool is particular to clique cutsets and does not work for any other
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Figure 3.4: Cutsets

cutset. Sometimes, there is no way to relabel the vertices of the cutset in order
that they correspond. As an example, a star cutset is a cutset that contains
a vertex adjacent to all other vertices of the cutset. The blue cutset of Figure
3.4 is a star cutset that will not preserve the coloring. See Figure 3.6.

3.3 Even-hole-free graphs

As presented in Section 2.3, for any graph G, χ(G) ≥ ω(G). An obvious related
question is to characterise graphs such that χ(G) = ω(G). The hereditary class
of graphs associated with this property is the one such that χ(G′) = ω(G′) for
every induced subgraph G′ of G. This is the famous class of perfect graphs.

By Theorem 3.1.1, there exists a minimal set of graphs F such that the
class of perfect graphs is the class Free F . Berge conjectured that F is made
of every odd hole and every odd antihole. Later, it became customary to call
Berge graphs the graphs that do not contain an odd hole or an odd antihole.
Chudnovsky, Robertson, Seymour and Thomas proved the famous Strong Per-
fect Graph Theorem [10]. It states that a graph is perfect if and only if it is
a Berge graph. The proof of this result first conjectured by Berge, relies on
the understanding of the structure of such graphs through a decomposition
theorem. This theorem states that every Berge graph is either basic, or has a
2-join, a complement 2-join, a homogeneous pair or a balanced skew partition.

An algorithm to color perfect graphs in polynomial time using the ellipsoid
method [31] was presented by Grötschel, Lovász, and Schrijver in 1980s. The
decomposition theorem mentioned above, stated by Chudnovsky, Robertson,



34 CHAPTER 3. HEREDITARY CLASSES OF GRAPHS

Optimal coloring of the subgraphs

Relabeling of the colours of a subgraphs

Optimal coloring of the graphs

Figure 3.5: Clique cutset

Figure 3.6: Star cutset
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Seymour and Thomas does not help, so far, to devise a combinatorial algorithm
to color perfect graphs. This is mostly because of the balanced skew partition
because all other conclusions are well behaved regarding coloring. Indeed,
Chudnovky, Trotignon, Trunck and Vušković [14] found an O(n7) algorithm to
color perfect graphs with no balanced skew-partition. This algorithm relies on
a more precise decomposition theorem. An even more precise decomposition
theorem for Berge graphs is given by Trotignon in [54] but the balanced skew
partition is still there. All these observations lead us to think that a better
understanding of Berge graphs in general is needed.

The class of even-hole-free graphs is the class of graphs that does not contain
even-hole. Noting that forbidding C4 implies forbidding any antihole of order
at least 6, the relationship between Berge graphs and even-hole-free graphs
is obvious. Hence, even-hole-free graphs are the graphs without even-hole or
even-antihole except 2K2. Hence, one can think that a better understanding of
even-hole-free graphs would yield to a better understanding of Berge graphs.

A decomposition theorem for even-hole-free graphs is proved by Da Silva
and Vušković [18]. It states that a connected even-hole-free graph is either
some basic graph or it has a 2-join or a star cutest. It yields to a recognition
algorithm in O(n19) by bypassing the problem of the star-cutset.

The star cutset prevents to use the decomposition theorem to find a polyno-
mial time algorithm to color even-hole-free graphs as evidenced by Vušković in
her survey published in 2010 [55]. The complexity of the coloring problem for
even-hole-free graphs is still unknown and we think that a better understanding
of their structure can help to find an answer to this question.

Another interesting point about the class of even-hole-free graphs is that it
contains the class of β-perfect graphs. A graph G is β-perfect if for any induced
subgraph G′ of G, β(G′) = χ(G′) with β(G) = max{δ(G′) + 1 : G′ ⊆i G}.
Markossian and Gasparian [44] proved that the coloring problem is polynomial
time solvable when restricted to β-perfect graphs. Since for an even integer k,
β(Ck) = 3 and χ(Ck) = 2, it follows that a β-perfect graph is an even-hole-free
graph.

In Chapter 4, we present a decomposition theorem for a subclass of even-
hole-free graphs, namely the class of graphs with every hole having the same
length that is odd. We believe that this result could yield a better understand-
ing of even-hole-free graphs.



36 CHAPTER 3. HEREDITARY CLASSES OF GRAPHS

3.4 Claw-free graphs

The class of claw-free graphs is the class Free{K1,3}. It is an interesting
generalisation of the class of line graphs where the line graph of a graph
G = (V (G), E(G)) is the graph with edges of G as vertices (V (L(G)) = E(G))
and such that two vertices are adjacent if and only if the two corresponding
edges in G are incident to a same vertex. The line graph of G is denoted by
L(G). Beineke [2] characterised the class of line graphs by nine minimal forbid-
den induced sugraphs. Observe that the smallest forbidden induced sugraph
for the class of line graphs is the claw. Hence, the class of line graphs is a
subclass of the class of claw-free graphs.

Line graphs are interesting because solving problems related to edges in a
graph G is equivalent to solve the vertex version of the problem in the line
graph L(G). For example, given a graph G, solving the maximum stable set
problem in L(G) is equivalent to solve the maximum matching problem in
G. The maximum matching of a graph can be computed in polynomial time
thanks to Edmond’s algorithm [21]. Hence the maximum stable set problem
can be solved in polynomial time for line graphs. Sbihi [52] and Minty [46]
generalised this result for claw-free graphs.

Solving the coloring problem for a line graph L(G) is equivalent to solving
the edge coloring problem in G. Holyer [34] proved that the edge coloring
problem is NP-complete. Hence the coloring problem is NP-complete for line
graphs. Since the class of line graphs is a subclass of claw-free graphs, by prop-
erty 3.2.1, the coloring problem is NP-complete for claw-free graphs. When
we restrict the coloring problem to some subclasses of claw-free graphs it may
become polynomial-time solvable. For example, Hsu presented in [36], an al-
gorithm that finds a minimum proper coloring for claw-free perfect graphs in
O(n4).

Chudnovsky and Seymour published a series of seven papers about claw-
free graphs. They started this study after their work about perfect graphs (see
Section 3.3). The idea was to construct a decomposition theorem for claw-free
graphs using the same tools used to decompose perfect graphs. The first five
papers show this decomposition theorem for claw-free graphs. The details are
particularly complicated and we will not discuss them here. A survey of those
results can be found in [11].
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One of the classes presented is the class of antiprismatic graphs. The class
of antiprismatic graphs is exactly the class Free{K1,3, P2 + 2K1, 4K1}. As pre-
sented in Section 3.2, it is one of the classes where graphs of order four are
forbidden as an induced subgraphs and where the complexity of the color-
ing problem is still unknown. Among all basic subclasses of claw-free graphs,
Chudnovsky and Seymour dedicated the first two papers of the series to de-
scribe the structure of antiprismatic graphs [12, 13].

Furthermore, all the minimal forbidden induced subgraphs for line graphs
that are not the claw contain a diamond. Also, it is easy to see that if a graph
does not contain a paw, then its line graph is in Free{K1,3, diamond}. By
Lemma 3.2.4, graphs in Free{K1,3, diamond} that contains a 4K1 are edgeless.
Therefore if a graph G does not contain a paw then either L(G) is antiprismatic
or it is edgeless.

In Chapter 6 we use those results to study the complexity of the coloring
problem for antiprismatic graphs.
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Chapter 4

When all holes have the same
length

4.1 Introduction

In chapter 3, we presented two important hereditary classes of graphs: the per-
fect graphs and the even-hole free graphs. They both exclude holes depending
on the parity of their length. Until now, the class of perfect graphs and the
class of even-hole free graphs do not have a structural theorem precise enough
to be used for providing a coloring algorithm (or an NP-completeness proof in
the case of even-hole free graphs). It could be interesting to restrict once again
these classes by excluding some additional holes. A radical approach consists
in excluding all holes. This is the class of chordal graphs that will be presented
in section 4.2. Chordal graphs have a structure well known that easily yields
a polynomial-time algorithm for coloring.

The next approach consists in excluding all holes except the ones with a
certain length. For an integer k ≥ 4, we denote by Ck, the class of graphs
where every hole has length k. Note that when k is odd, Ck is a subclass of
even-hole-free graphs and when k is even and at least 6, Ck is a subclass of
perfect graphs. In this chapter, for every integer ` ≥ 3, we give the following
structural description of the class of graphs whose holes all have length 2`+ 1
(definitions will be given later).

39
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Theorem 4.1.1 Let ` ≥ 3 be an integer. If G is a graph in C2`+1 then one of
the following holds:

1. G is a ring of length 2`+ 1;

2. G is a proper blowup of a twinless odd `-template;

3. G has a universal vertex or

4. G has a clique cutset.

Some subclasses of Ck have been already studied and results have been
obtained. In [49], the class of Free{4K1, C4, C6, C7} graphs is studied. It is
a subclass of C5. In this paper Penev gives a complete structural descrip-
tion of graphs in Free{4K1, C4, C6, C7} without simplicial vertices. She also
proves that the coloring problem is polynomial time solvable for graphs in
Free{4K1, C4, C6} without simplicial vertex. In [7], the class of rings of length
k is defined for every integer k ≥ 4 (see Section 4.2.2 for the definition), and it
is used as a basic class for several decomposition theorems. Rings of length k
form a subclass of Ck. In [43], a polynomial time algorithm that colors every
ring is given. In [35], it is proved that for every fixed integer k, there exist
rings of length k of arbitrarily large rankwidth.

In this chapter, we will use the notion of hypergraph; that is, a structure
similar to graphs except that the edges (called hyperedges) may contain an
arbitrary positive number of vertices. While all the graphs that we use are
simple, in hypergraphs, we allow hyperedges that contain a single vertex and
multiple hyperedges (that is, there can be different hyperedges on the same set
of vertices). Observe that we do not allow an empty hyperedge.

Lemma 4.1.3 gives a recognition algorithm with complexity O(n19) for the
class Ck. It uses the following result from Berger, Seymour and Spirkl [4].

Theorem 4.1.2 ([4]) There exists an algorithm that, given a graph G and
u, v ∈ V (G), decides whether there exists a path from u to v that is not a
shortest path in time O(|V (G)|16).

Lemma 4.1.3 There is an algorithm to recognise Ck with a running time
O(n19).
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Proof. The following algorithm is called algorithm A.

• INPUT : a graph G = (V,E)

• For all P3 abc contained in G :

1. Set G′ = G[(V \NG[b]) ∪ {a, c}]
2. If a shortest ac-path from in G′ has length different from k− 2 then

return “No” and Stop.

3. If non-shortest ac-path in G′ exists then return “No” and Stop.

• Return “Yes”.

Algorithm A runs in polynomial time. Enumerating all P3’s can trivially
be done in time O(n3). Finding a shortest path can be done with breadth
first search algorithm in time O(|V (G)|2) (precisely in time (|V (G)|+ |E(G)|)).
Finding a non-shortest path can be done in timeO(|V (G)|16) by Theorem 4.1.2.
The complexity of algorithm A is O(|V (G)|19)

Regarding the correctness, we prove that the algorithm returns “No” if
and only if G is not in Ck. If the algorithm returns “No”, then there exists
an ac-path in G′ of length different from k − 2. Therefore, abcPa is a hole
of length different from k. Suppose now that the input graph G has a hole
H of length different from k. Let abc be a P3 in H. Denote by P the path
induced by V (H) \ {b}. The path P has length different from k − 2 and is
contained in G′ = G[(V \NG(b))∪{a, c}]. If P is a shortest ac-path, algorithm
A outputs “No” at step 2. If P is not a shortest path then there is at least
one non-shortest ac-path and the algorithm A outputs “No” at step 3. In both
cases, the algorithm answer “No”. 2

We believe that Theorem 4.1.1 could give a recognition algorithm with
running time faster that O(n19).

4.1.1 Outline

In section 4.2, we present several known classes of graphs and their properties
that are used in this chapter.

In section 4.3, a new structure called template is defined and fully described.
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Section 4.4 is about the operation of blowup on templates.
Sections 4.5 and 4.6 contain the proof of the main Theorem (Theo-

rem 4.1.1).
This chapter is a joint work with Jake Horsfield, Myriam Preissmann, Ni

Luh Dewi Sintiari, Nicolas Trotignon and Kristina Vušković. It will be sub-
mitted with Linda Cook and Paul Seymour who did simultaneously a similar
work. The final joint paper will include a part on the even case.

4.2 A survey of some classes of graphs

4.2.1 Classes of perfect graphs

A graph is chordal if it is hole-free. A graph is a split graph if it is in
Free{C4, C5, 2K2}. A graph is a quasi-threshold graph if it is Free{P4, C4}
(quasi-threshold graphs are sometimes called trivially perfect graphs , see [30]).
A graph is a threshold graph if it is in Free{P4, C4, 2K2} (threshold graphs are
sometimes called graphs with Dilworth number 1 ). A graph is a half graph if
it is in Free{3K1, C4, C5}. Observe that this is not the class of half graphs
defined by Erdős but they have some similarity ([22]).

Observe that these six classes are all classes of perfect graphs. The classes
of split graphs and threshold graphs are self-complementary while the classes of
chordal graphs, quasi-threshold and half graphs are not. In Figure 4.1, a Venn
diagram of seven graph classes is represented (chordal and quasi− threshold
mean complements of chordal and quasi-threshold graphs respectively). In
every set, a typical example of the class is represented. The diagram provides
several alternative definitions of the classes we work on (for instance, a split
graph is a chordal graph whose complement is chordal, and so on). All the
informations given by Figure 4.1 are easily recovered from the definitions of
the corresponding classes.

Theorem 4.2.1 ([20]) A graph G is chordal if and only if every non-complete
induced subgraph of G has a clique cutset.

Theorem 4.2.2 ([24]) A graph G is a split graph if and only if V (G) can be
partitioned into a (possibly empty) clique and a (possibly empty) stable set.
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Cograph

Threshold

Split

Quasi-threshold Quasi− threshold

Figure 4.1: Venn diagram of seven classes of graphs
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The line graph of a hypergraph H is the graph G whose vertex-set is E(H)
and where two hyperedges of H are adjacent vertices of G whenever their
intersection is non-empty. Recall that in this paper, hypergraphs may have
multiple hyperedges (that are distinct hyperedges with the same vertices in
them). A hypergraph is laminar is for every pair X, Y of hyperedges, either
X ⊆ Y or Y ⊆ X or X ∩ Y = ∅.

Theorem 4.2.3 ([57]) For all graphs G the following statements are equiva-
lent.

1. G is a quasi-threshold graph.

2. Every induced subgraph of G is disconnected or has a universal vertex.

3. G is the line graph of a laminar hypergraph.

Theorem 4.2.4 ([15]) For all graphs G the following statements are equiva-
lent.

1. G is a threshold graph.

2. Every induced subgraph of G has an isolated vertex or a universal vertex.

3. For all vertices u and v of G, NG(u) ⊆ NG(v) or NG(v) ⊆ NG(u)

It is convenient to sort the vertices of a threshold graph. Formally, an or-
dering v1, . . . , vk such that NG(vi) ⊆ NG[vj] for all integers i and j satisfying
1 ≤ i ≤ j ≤ k is called a domination ordering . There is another convenient
ordering of the vertices of a threshold graph. By characterization (2) in The-
orem 4.2.4, every threshold graph can be obtained by the following inductive
process: start with a vertex u1, assume for some k ≥ 1 that vertices u1, . . . , uk
are already constructed, and then add a vertex uk+1 that is either complete or
anticomplete to {u1, . . . , uk}. The order u1, . . . , un is then called an elimina-
tion ordering of the threshold graph (and it is not a domination ordering in
general).

An example is represented in Figure 4.2. On the top, a threshold graph J
on {v1, . . . , v10} is represented for which (v1, . . . , v10) is a domination ordering.
Vertices are circles with a number in them that gives the place of the vertex
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10 9 4 2 1 3 5 6 7 8

10 9 4 2 1 3 5 6 7 8

v10 v9 v8 v7 v6 v5 v4 v3 v2 v1

Figure 4.2: A threshold graph and its complement

in the elimination ordering. On the bottom, the complement J ′ of J is repre-
sented. It is also a threshold graph but the domination ordering is reversed (it
is (v10, . . . , v1)), while the elimination ordering remains the same.

4.2.2 Classes defined by excluding Truemper configura-
tions

Truemper configurations are graphs that play a role in many decomposition
theorems, see [56]. They are the long prisms, thetas, pyramids and wheels.
Let us define them.

A long prism is a graph made of three vertex-disjoint paths P1 = a1 . . . b1,
P2 = a2 . . . b2, P3 = a3 . . . b3 of length at least 1, such that a1a2a3 and b1b2b3

are triangles and no edges exist between the paths except those of the two
triangles. In chapter 6, we call prism, the graph that is a long prism with all
paths of length 1.

A pyramid is a graph made of three paths P1 = a . . . b1, P2 = a . . . b2,
P3 = a . . . b3 of length at least 1, two of which have length at least 2, vertex-
disjoint except at a, and such that b1b2b3 is a triangle and no edges exist
between the paths except those of the triangle and the three edges incident to
a. The vertex a is called the apex of the pyramid.

A theta is a graph made of three internally vertex-disjoint paths P1 = a . . . b,
P2 = a . . . b, P3 = a . . . b of length at least 2 and such that no edges exist
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between the paths except the three edges incident to a and the three edges
incident to b.

Observe that the lengths of the paths used in the three definitions above
are designed so that the union of any two of the paths induce a hole. A long
prism, pyramid or theta is balanced if the three paths in the definition are of
the same length. It is unbalanced otherwise.

Figure 4.3: Pyramid, long prism, theta and wheel (dashed lines represent
paths)

A wheel W = (H, c) is a graph formed by a hole H (called the rim) together
with a vertex c (called the center) that has at least three neighbors in the hole.

A wheel is a universal wheel if the center is adjacent to all vertices of the
rim. A wheel is a twin wheel if the center is adjacent to exactly three vertices
of the rim and they induce a P3. A wheel is proper if it is neither a twin wheel
nor a universal wheel.

Truemper configurations are of interest here because of the following easy
observation.

Lemma 4.2.5 Every unbalanced long prism, every unbalanced pyramid, every
unbalanced theta and every proper wheel contains holes of different lengths.

Every pyramid contains an odd hole. Every long prism and every theta
contains an even hole.

Proof. In a long prism, pyramid or theta, the union of any two paths used in
the definition induces a hole. Paths of different lengths are then easily used to
provide holes of different lengths. In a proper wheel, the rim and a shortest
hole are holes of different lengths.

In a pyramid, paths of the same parity, that exist since there are three
paths, induce an odd hole. In thetas and long prisms, they induce an even
hole. 2
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The following variant is more useful for our study.

Lemma 4.2.6 If ` ≥ 2 is an integer and G ∈ C2`+1, then every Truemper
configuration of G is a twin wheel, a universal wheel or a pyramid whose three
paths all have length `.

Proof. Clear from Lemma 4.2.5. 2

A graph G is universally signable if G is in
Free{long prism, pyramid,theta, wheel}.

Theorem 4.2.7 ([16]) A graph G is universally signable if and only if every
induced subgraph of G is a hole, a complete graph or has a clique cutset.

A graph G is a ring if its vertex-set can be partitioned into k ≥ 4 sets
K1, . . . , Kk such that (with subscripts understood to be taken modulo k):

1. K1, . . . , Kk are cliques;

2. for all i ∈ {1, . . . , k}, Ki is anticomplete to V (G) \ (Ki−1 ∪Ki ∪Ki+1);

3. for all i ∈ {1, . . . , k}, some vertex of Ki is complete to Ki−1 ∪Ki+1;

4. for all i ∈ {1, . . . , k} and all x, x′ ∈ Ki, either NG(x) ⊆ G(x′) or NG(x′) ⊆
G(x) .

The integer k in the definition above is the length of the ring. Observe
that when k ≥ 4, the hole Ck is a ring of length k. Observe also that, by
Theorem 5.3.1, for any integer 1 ≤ i ≤ k, the graph G[Ki ∪ Ki+1] is a half
graph. We refer to the cliques K1, . . . , Kk as the cliques of the ring G.

The following is a corollary of Theorem 1.6 from [7].

Theorem 4.2.8 If G is in Free{long prism, theta, pyramid, proper wheel, C4, C5},
then one of the following holds.

1. G is a ring of length at least 6;

2. G has a clique cutset;

3. G has a universal vertex.
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4.3 Odd templates

Here we define and study the main basic class of Theorem 4.1.1.

4.3.1 Modules in threshold graphs

Let G be a graph. A module of G is a set X ⊆ V (G) such that every vertex in
V (G) \X is either complete or anticomplete to X. Observe that all subsets of
V (G) of cardinality 0, 1 or |V (G)| are modules of G. We will use the notion of
module only in the context of threshold graphs. The reader can check that sets
of vertices that are intervals for both elimination and domination orderings are
modules. We omit the proof since we do not need this formally. We now state
three lemmas.

Lemma 4.3.1 Let J be a threshold graph and X ⊆ V (J) such that |X| ≥ 2.
Then J̄ is a threshold graph, X is a module of J if and only if it is a module
of J̄ , and exactly one of J [X] and J̄ [X] is anticonnected.

Proof. Being a threshold graph and module are properties that are closed
under taking the complement. By Theorem 4.2.4, exactly one of J [X] or J̄ [X]
contains an isolated vertex, and the other one contains a universal vertex.
Hence, since |X| ≥ 2, exactly one of J [X] or J̄ [X] is connected and the other
one is anticonnected. 2

Lemma 4.3.2 Let J be a threshold graph. If X is an anticonnected module of
J that contains at least two vertices, then N(X) is a clique that is complete to
X. Moreover, NJ(X) ⊆ N(N(X)).

Proof. Since X is a module, N(X) is complete to X. Suppose that N(X)
is not a clique and let u and v be two non-adjacent vertices in N(X). Since
|X| ≥ 2 and X is anticonnected, X contains two non-adjacent vertices u′, v′

that together with u and v form a C4 in J . This contradicts J being a threshold
graph.

Suppose that NJ(X) ⊆ N(N(X)) does not hold. So, there exists u ∈ N(X)
and v ∈ X with NJ(u) ⊆ NJ(v). Since u ∈ N(X), u is complete X, so v is
complete to X \ {v}. This contradicts X being anticonnected. 2
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Lemma 4.3.3 Let J be a threshold graph and X ⊆ V (J) a module of J . If
X contains some isolated vertices of J , then either X contains only isolated
vertices of J , or X contains all non-isolated vertices of J .

Proof. Let S be the set of all isolated vertices of J and T = V (J) \ S. By
assumption, X contains a vertex of S. If X contains only vertices of S, then
the conclusion holds, so suppose that X contains at least one vertex of T .
Suppose for a contradiction that X does not contain all of T . Since J [T ] is
connected (because it is a threshold graph with no isolated vertices and hence
by Theorem 4.2.4 it contains a universal vertex), there exists an edge uv of
J with u ∈ T ∩ X and v ∈ T \ X. Since X contains isolated vertices, this
contradicts X being a module. 2

4.3.2 Templates

For an integer ` ≥ 2, an odd `-template is any graph G that can be built
according to the following process.

1. Choose a threshold graph J on vertex set {1, . . . , k}, k ≥ 3.

2. Choose a laminar hypergraph H on vertex set {1, . . . , k} such that :

(a) every hyperedge X of H is a module of J of cardinality at least 2
and

(b) at least one hyperedge W of H contains all vertices of H.

3. For each i ∈ {1, . . . , k}, G contains two vertices vi and v′i that are linked
by a path of G of length `− 1. The k paths built at this step are vertex
disjoint and are called the principal paths of the odd template.

4. The set of vertices of G is V (G) = A ∪ A′ ∪B ∪B′ ∪ I where:

(a) I is the set of all internal vertices of the principal paths,

(b) A = {v1, . . . , vk},
(c) A′ = {v′1, . . . , v′k},
(d) B = {vX : X hyperedge of H such that J [X] is anticonnected},
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(e) B′ = {v′X : X hyperedge of H such that J̄ [X] is anticonnected}.

Note that by Lemma 4.3.1, for every hyperedge X of H, either vX ∈ B
or v′X ∈ B′ (and not both).

5. The set of edges of G is defined as follows.

(a) for every vi, vj ∈ A, vivj ∈ E(G) if and only if ij ∈ E(J),

(b) for every v′i, v
′
j ∈ A′, v′iv′j ∈ E(G) if and only if ij /∈ E(J),

(c) for every vX , vY ∈ B, vXvY ∈ E(G) if and only if X ∩ Y 6= ∅,
(d) for every v′X , v

′
Y ∈ B′, v′Xv′Y ∈ E(G) if and only if X ∩ Y 6= ∅,

(e) for every vi ∈ A, vX ∈ B, vivX ∈ E(G) if and only if i ∈ NJ [X],

(f) for every v′i ∈ A′, v′X ∈ B′, v′iv′X ∈ E(G) if and only if i ∈ NJ̄ [X],

(g) for every v ∈ I, v is incident to exactly two edges (those in its
principal path).

The following notation is convenient.

Notation: For every vertex x ∈ B such that x = vX where X is a hyperedge
of H, we set Hx = {vi : i ∈ X}. Similarly, for every vertex x ∈ B′ such that
x = v′X where X is a hyperedge of H, we set H ′x = {v′i : i ∈ X}.

We now list some properties of templates that follow directly from the
definition.

1. G[A] is a threshold graph isomorphic to J and G[A′] is a threshold graph
isomorphic to J̄ (and hence to the complement of G[A]).

2. For all x ∈ B, Hx is a module of G[A] and G[Hx] is anticonnected. Also
for all x ∈ B′, H ′x is a module of G[A′] and G[H ′x] is anticonnected.

3. G[B] is isomorphic to the line graph of the hypergraph HB on vertex
set A and hyperedge set {Hx : x ∈ B}. Also G[B′] is isomorphic to the
line graph of the hypergraph HB′ on vertex set A′ and hyperedge set
{H ′x : x ∈ B′}. Hence G[B] and G[B′] are a quasi-threshold graphs by
Theorem 4.2.3.
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4. There is an edge between vi ∈ A and x ∈ B if and only if vi ∈ NA[Hx], and
there is an edge between v′i ∈ A′ and x ∈ B′ if and only if v′i ∈ NA′ [H

′
x].

Lemma 4.3.4 There exist vertices w and w′ that are universal vertices in
respectively G[A∪B] and G[A′ ∪B′], and such that either w ∈ A and w′ ∈ B′,
or w ∈ B and w′ ∈ A′.

Proof. By Theorem 4.2.4, G[A] contains a vertex u that is either universal or
isolated. If u is universal, then for every x ∈ B, u ∈ N(Hx) (u cannot be in Hx

since G[Hx] is anticonnected by property (2) of templates). So, u is adjacent
to x by property (4) of templates. Hence, u is a universal vertex of G[A ∪B].

Otherwise, u is an isolated vertex of G[A]. So, G[A] is anticonnected.
Hence, the vertex w corresponding to the hyperedge W from condition (2b)
of templates is in B. By property (4) of templates, w is a universal vertex of
G[A ∪B].

The proof for G[A′ ∪B′] is similar. So, w and w′ exist, and by the way we
construct them, we see that either w ∈ A and w′ ∈ B′, or w ∈ B and w′ ∈ A′.2

Let w and w′ be as in Lemma 4.3.4. The 7-tuple (A,B,A′, B′, I, w, w′) is
then called an `-partition of G.

Let us give a simple example. Consider an integer ` ≥ 2 and a threshold
graph J on three vertices {1, 2, 3} with no edges. So, G[A] has no edges, G[A′]
is a triangle on three vertices v′1, v

′
2, v
′
3, and for i = 1, 2, 3, there is a path of

length `−1 from vi to v′i. ConsiderH the hypergraph on {1, 2, 3} with a unique
hyperedge that is {1, 2, 3}. We now see that G is a balanced pyramid with apex
w and triangle v′1v

′
2v
′
3. Under these circumstances, the sets A = {v1, v2, v3},

B = {w}, A′ = {v′1, v′2, v′3}, B′ = ∅, I = V (G) \ (A ∪ B ∪ A′ ∪ B′), w and v′3
form an `-partition of G.

It is worth noting that the `-partition above is not unique. Here is another
one. Call u the neighbor of v′3 in the path from v3 to v′3 with interior in I
(possibly, u = v3). Set A1 = {w, v1, v2}, B1 = ∅, A′1 = {u, v′1, v′2}, B′1 = {v′3}
and I1 = V (G) \ (A1 ∪ B1 ∪ A′1 ∪ B′1). It can be checked that A1, B1, A′1, B′1,
I1, w and v′3 form another `-partition of G. See Figure 4.4. Some edges are
dashed in several ways, this will be explained later, so far, they are just edges
of G.
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Figure 4.4: Two 3-partitions of a pyramid whose paths all have length 3

Lemma 4.3.5 For all integers ` ≥ 2, every pyramid Π such that Π ∈ C2`+1 is
an odd `-template.

Proof. Since Π ∈ C2`+1, its three paths have length `. The explanations above
show it is an odd `-template. 2

We now give a more complicated example represented in Figure 4.5. The
threshold graph J has 10 vertices. Each vertex of G[A] and G[A′] is repre-
sented with a number in a circle that represents the elimination ordering of the
threshold graph it belongs to. The hypergraphH has the following hyperedges:
X1 = {1, 2}, X2 = {1, 2, 3}, X3 = {9, 10}, X4 = {5, 6, 7}, X5 = {5, 6, 7, 8},
X6 = {4, 5, 6, 7, 8} and X7 = {1, . . . , 10}. The vertex of B ∪ B′ corresponding
to a hyperedge Xi is denoted by xi.

4.3.3 Structure of odd templates

Throughout this subsection, ` ≥ 2 is an integer and (A,B,A′, B′, I, w, w′) is
an `-partition of an odd `-template G.

Lemma 4.3.6 If x ∈ B (resp. x ∈ B′), then Hx (resp. H ′x) is the unique an-
ticomponent of G[NA(x)] (resp. G[NA′(x)]) that contains at least two vertices.
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10 9 4 2 1 3 5 6 7 8
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Figure 4.5: An odd 4-template
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Proof. Since G is in Free{C4} and NA(x) contains at least two non-adjacent
vertices, G[NA(x)] contains a unique anticomponent X of size at least 2. Since
by property (2) of templates, Hx is an anticonnected module of G[A], it is also
an anticonnected module of G[NA(x)]. Since every vertex of NA(x) is either in
Hx or complete to Hx, Hx must be an anticomponent of G[NA(x)], and since
it contains at least two vertices, it is equal to X. 2

Lemma 4.3.7 If x, y ∈ B (resp. ∈ B′) are such that xy /∈ E(G), then Hx∪{x}
(resp. H ′x ∪ {x}) is anticomplete to Hy ∪ {y} (resp. H ′y ∪ {y}).

Proof. Suppose x, y ∈ B and xy /∈ E(G). Then by condition (5c) of templates,
Hx and Hy are disjoint.

Suppose there is at least one edge from Hx to Hy. Since they are both
modules of G[A], it follows that Hx is complete to Hy, so Hy ⊆ N(Hx). Hence,
by Lemma 4.3.2, Hy is a clique. Since Hy contains at least two vertices, this
contradicts Hy being anticonnected. So, Hx is anticomplete to Hy. Hence, by
property (4) of templates, x is anticomplete to Hy and y is anticomplete to
Hx. So, Hx ∪ {x} is anticomplete to Hy ∪ {y} because xy /∈ E(G) holds from
our assumption.

The proof for x, y ∈ B′ is similar. 2

Lemma 4.3.8 Every vertex of G has degree at least 2 and every vertex of
B ∪B′ has degree at least 3.

Proof. Vertices in I are all in the interior of some path, so they have degree at
least 2.

Vertex w has degree at least 2 since |A| ≥ 3. A vertex v ∈ A\{w} therefore
has degree at least 2 (one neighbor in I, and w). So every vertex of A has degree
at least 2. The proof for A′ is similar.

Let x be a vertex of B. If x = w, then x has degree at least 3 (because
|A| ≥ 3), so we may assume x 6= w. By, property (2) of templates, |Hx| ≥ 2
and w /∈ Hx because Hx is anticonnected. So x has degree at least 3 as claimed
(at least two neighbors in Hx, and w). The proof for x ∈ B′ is similar. 2

The following shows that odd templates can be considered as a generaliza-
tion of balanced pyramids (we do not need it and include it because we believe
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it helps understanding the structure of the class we work on).

Lemma 4.3.9 For every integer ` ≥ 2, every odd `-template G contains a
pyramid.

Proof. Consider three vertices vi, vj and vh in A and the corresponding ver-
tices v′i, v

′
j and v′h in A′. Exactly one of G[{vi, vj, vh}] and G′[{v′i, v′j, v′h}] is

connected (because they have three vertices and one is isomorphic to the com-
plement of the other). So, up to symmetry, we may assume that G[{vi, vj, vh}]
is disconnected (and therefore contains at most one edge).

Note that w is distinct from vi, vj and vh sinceG[{vi, vj, vh}] is disconnected.
We see that w and the three principal paths linking {vi, vj, vh} to {v′i, v′j, v′h}
form a pyramid (if G[{vi, vj, vh}] contains one edge e, then the triangle is
formed by e and w, and otherwise it is v′iv

′
jv
′
h). 2

From the definition of odd `-templates, every vertex x ∈ B corresponds to
a set Hx ⊆ A. These sets form a hypergraph HB on the vertex-set A (that is
isomophic to a sub-hypergraph of H). Let us build an extention HA of HB by
adding more hyperedges: for every vertex v ∈ A, we add the hyperedge

Hv = NA[v] ∩ {u ∈ A : NA(u) ⊆ NA(v)}.

Note that v ∈ Hv.

Lemma 4.3.10 HA is a laminar hypergraph and G[A ∪ B] is isomorphic to
its line graph (in particular, G[A∪B] is a quasi-threshold graph and therefore
a chordal graph). A similar statements holds for G[A′ ∪B′].

Proof. By construction, every vertex of A ∪ B corresponds to a hyperedge of
HA. We have to check that the ends of every edge of G[A ∪ B] correspond
to hyperedges of HA that are included one in the other, and that the ends of
every non-edge correspond to a pair of disjoint hyperedges. This will prove
that G[A ∪ B] is isomorphic to the line graph of HA and that HA is laminar.
Let us check all the cases.

For x, y ∈ B, since HB is laminar and G[B] is isomorphic to its line graph,
we have nothing to prove.

Let u, v ∈ A. By Theorem 4.2.4, we may assume up to symmetry that
NA(v) ⊆ NA(u). If uv ∈ E(G), then clearly Hv ⊆ Hu. Suppose uv /∈ E(G),
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and let t be a vertex of A such that NA(t) ⊆ NA(v). So, NA(t) ⊆ NA(u). If
tv ∈ E(G), then uv ∈ E(G), a contradiction. So, tv /∈ E(G) and Hv = {v}.
Since v /∈ N [u], we have that Hu ∩Hv = ∅.

Consider finally vertices u ∈ A and x ∈ B. Suppose first that ux ∈ E(G).
By property (4) of templates, we have that u ∈ NA[Hx]. If u ∈ Hx, then
Hu ⊆ Hx by Lemma 4.3.2 (specifically, we use N(Hx) ⊆ NA(NA(Hx)) to
conclude that NA(Hx) ∩Hu = ∅, and then since Hu ⊆ NA[Hx] it follows that
Hu ⊆ Hx). If u ∈ NA(Hx), then by Lemma 4.3.2 (again also using that
N(Hx) ⊆ NA(NA(Hx))), Hx ⊆ Hu. So, an edge indeed yields an inclusion of
the corresponding hyperedges.

Suppose now that ux /∈ E(G). So, u /∈ N [Hx]. Since u is not in Hx and
has no neighbor in Hx, it follows that Hu is disjoint from Hx.

So HA is a laminar hypergraph and G[A∪B] is isomorphic to its line graph.
It follows from Theorem 4.2.3 that G[A ∪ B] is a quasi-threshold graph and
therefore a chordal graph. 2

Lemma 4.3.11 Every hole of G is formed by two principal paths of G and a
single vertex of A ∪ B ∪ A′ ∪ B′ that does not belong to these principal paths
(it therefore has length 2`+ 1).

Proof. By Lemma 4.3.10, a hole C of G cannot contain only vertices of A∪B,
and similarly, it cannot contain only vertices of A′ ∪ B′. So it must contain
vertices of some principal path, and also of a second principal path. In fact, C
must go through exactly two principal paths, since G[A] is isomorphic to the
complement of G[A′], if three paths are involved, there would be a vertex of C
with three neighbors in C, a contradiction.

Since G[A] is isomorphic to the complement of G[A′], up to a symmetry, for
some nonadjacent vertices u, v ∈ A, the hole C is made of a path P = u . . . v
with interior in I∪A′ (whose length is 2`−1) and a path Q = u . . . v of G[A∪B].
By Lemma 4.3.10, Q has length at most 2 (because a quasi-threshold graph is
in Free{P4}), and since uv /∈ E(G), it has length 2. So, C has length 2`+ 1 as
claimed. 2
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4.3.4 Connecting vertices of a template

This subsection is about connecting vertices in A ∪B to vertices in A′ ∪B′.

Lemma 4.3.12 If x ∈ B and y ∈ B′, then there exists in G two paths P and
Q of length ` + 1 from x to y such that P (resp. Q) contains a principal path
P0 (resp. Q0), and P0 6= Q0.

Proof. We set X = {i ∈ {1, . . . , k} : vi ∈ Hx} and Y = {i ∈ {1, . . . , k} : v′i ∈
H ′y}. So, X and Y are hyperedges of H and since H is laminar, either X ⊆ Y ,
Y ⊆ X or X ∩ Y = ∅.

If X ⊆ Y , then let i, j be distinct members of X (and therefore of Y ). The
paths xviPiv

′
iy and xvjPjv

′
jy are the paths we are looking for. The proof is

similar when Y ⊆ X.
If X ∩ Y = ∅, then let i, j, q, r be distinct integers such that i, j ∈ X and

q, r ∈ Y . Since G[A] is isomorphic to the complement of G[A′], we may assume
up to symmetry that vivq ∈ E(G). So, v′iv

′
q /∈ E(G). Since H ′y is a module of

G[A′], v′iv
′
r /∈ E(G). It follows that vivr ∈ E(G). So, vr, vq ∈ NA(Hx). Hence,

by property (4) of templates, xvr, xvq ∈ E(G). It follows that xvqPqv
′
qy and

xvrPrv
′
ry are the two paths we are looking for. 2

Lemma 4.3.13 If x ∈ A ∪ B and y ∈ A′ ∪ B′, then there exists in G a path
P of length `− 1, ` or `+ 1 from x to y that contains a principal path.

More specifically:

• If x ∈ A and y ∈ A′, then P has length `− 1 or `.

• If x ∈ A and y ∈ B′, or if x ∈ B and y ∈ A′, then P has length ` or
`+ 1.

• If x ∈ B and y ∈ B′, then P has length `+ 1.

Proof. Suppose first that x ∈ A, say x = vi. If y ∈ A′, then set y = v′j. If
i = j, then Pi has length ` − 1. If i 6= j, then one of vivjPjv

′
j or viPiv

′
iv
′
j is a

path of length `. If y ∈ B′, then one of viPiv
′
iy or viPiv

′
iw
′y is the path we are

looking for. The proof is similar when y ∈ A′.
We may therefore assume that x ∈ B and y ∈ B′. So one of the two paths

obtained in Lemma 4.3.12 can be chosen. 2
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4.3.5 Odd pretemplates

Checking that a graph is an odd `-template is tedious. We now introduce a
simpler notion that is in some sense equivalent. For every integer ` ≥ 3, an
odd `-pretemplate is a graph G whose vertex-set can be partitioned into five
sets A, B, A′, B′ and I with the following properties.

1. N(B) ⊆ A and N(A ∪B) ⊆ I.

2. N(B′) ⊆ A′ and N(A′ ∪B′) ⊆ I.

3. |A| = |A′| = k ≥ 3, A = {v1, . . . , vk} and A′ = {v′1, . . . , v′k}.

4. For every i ∈ {1, . . . , k}, there exists a unique path Pi from vi to v′i whose
interior is in I.

5. Every vertex in I has degree 2 and lies on a path from vi to v′i for some
i ∈ {1, . . . , k}.

6. All paths P1, . . . , Pk have length `− 1.

7. G[A ∪B] and G[A′ ∪B′] are both connected graphs.

8. Every vertex of B is in the interior of a path of G[A∪B] with both ends
in A.

9. Every vertex of B′ is in the interior of a path of G[A′ ∪ B′] with both
ends in A′.

We then say that (A,B,A′, B′, I) is an `-pretemplate partition of G. Note
that templates are defined for all integers ` ≥ 2, while pretemplates are defined
only when ` ≥ 3. In fact we do not need odd 2-templates, we defined them for
possible later use.

It is easy to check that when ` ≥ 3, the five first elements of every `-
partition of G is an `-pretemplate partition. The condition on the connectivity
of G[A ∪ B] and G[A′ ∪ B′] follows Lemma 4.3.4. The condition (8) follows
from the fact that for every x ∈ B, Hx contains two non-adjacent vertices, so
a vertex x ∈ B lies on a path of length 2 with ends in A and condition (9)
holds similarly. Conversely, we prove the following lemma (it is important to
note that ` ≥ 3).
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Lemma 4.3.14 Let ` ≥ 3 be an integer. If G ∈ C2`+1 is an odd `-
pretemplate, then G is an odd `-template. Moreover, for every odd `-
pretemplate partition (A,B,A′, B′, I) of G, there exist w and w′ in V (G) such
that (A,B,A′, B′, I, w, w′) is an `-partition of G.

Proof. Let (A,B,A′, B′, I) be an `-pretemplate partition of G. We first study
the structure of G[A] and G[A′].

(1) For all distinct i, j ∈ {1, . . . , k}, vivj ∈ E(G) if and only if v′iv
′
j /∈ E(G).

In particular, G[A] is isomorphic to the complement of G[A′].

If vivj, v
′
iv
′
j ∈ E(G), then Pi and Pj form a hole of even length, a contradiction.

If vivj, v
′
iv
′
j /∈ E(G), then Pi, Pj, a path from vi to vj in G[A ∪ B] and a path

from v′i to v′j in G[A′∪B′] form a hole of length at least 2`+2, a contradiction.
This proves (1).

(2) Every path of G[A ∪B] with both ends in A is of length at most 2.

Let P = vi . . . vj be a path of G[A∪B] with both ends in A. If P has length at
least 3, then by (1), paths P , Pi and Pj form a hole of length at least 2` + 2,
a contradiction. This proves (2).

(3) G[A] is a threshold graph.

G[A] is obviously Free{C4}. Since the complement of C4 is 2K2 and since
G[A′] is also Free{C4}, it follows by (1) that G[A] is Free{2K2}. By (2), G[A]
is Free{P4}. So G[A] is in Free{P4, C4, 2K2} and is therefore a threshold graph.
This proves (3).

We now study the structure of G[B] and its relation with G[A].

(4) For every vertex x ∈ B, G[NA(x)] has a unique anticonnected component
of size at least 2.

By the definition of odd pretemplates, x is in the interior of a path P = vi . . . vj
of G[A ∪ B] with both ends in A. By (2), P has length 2, so x is adjacent to
vi and vj. Hence G[NA(x)] has an anticonnected component of size at least 2.
It is unique, for otherwise G[A] contains a C4. This proves (4).

For all x ∈ B, we define Hx to be the anticonnected component of G[NA(x)]
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of size at least 2 whose existence follows from (4).

(5) For every x in B, Hx is a module of G[A].

Otherwise, since Hx is anticonnected and is not a module, there exists vh ∈
A \Hx and non-adjacent vi, vj ∈ Hx such that vivh ∈ E(G) and vjvh /∈ E(G).
Note that xvh /∈ E(G) because otherwise, vh would be in Hx. Hence, vi, x, Pj

and Ph form a hole of length 2`+ 2, a contradiction. This proves (5).

(6) If xy is an edge of G[B], then Hx ⊆ Hy or Hy ⊆ Hx.

Up to symmetry, we may assume that NA(x) ⊆ NA(y), for otherwise vertices
vi ∈ NA(x) \NA(y) and vj ∈ NA(y) \NA(x) either form a C4 with x and y or
a hole of length 2`+ 2 with Pi and Pj.

By (4), G[NA(y)] has only one anticonnected component of size at least 2,
namely Hy. Since Hx is anticonnected, has size at least 2 and is included in
NA(y), it must be included in Hy. This proves (6).

(7) If x and y are non-adjacent vertices of B, then Hx and Hy are disjoint.

On the contrary, suppose that x and y are nonadjacent vertices of B but there
exists a vertex v ∈ Hx ∩Hy. Since Hx is anticonnected and of size at least 2,
there exists vi ∈ Hx non-adjacent to v. Note that viy /∈ E(G), for otherwise
x, y, vi and v form a C4. Similarly, there exists a vertex vj ∈ Hy that is
non-adjacent to v and to x. If vivj ∈ E(G), then {x, y, v, vi, vj} induces a C5,
a contradiction. Otherwise, Pi, Pj, x, y and v form a hole of length 2` + 3, a
contradiction. This proves (7).

We are now ready to define the hypergraph H. For every x ∈ B, we defined
a setHx ⊆ A. We may define similarly a setH ′x ⊆ A′ for every x ∈ B′. From (6)
and (7), the sets Hx for x ∈ B form a laminar hypergraph HB (with vertex set
A). Symetrically, the sets H ′x for x ∈ B′ form a laminar hypergraph HB′ (with
vertex set A′). Let H be the hypergraph whose vertex set is {1, . . . , k} and
such that H ⊆ {1, . . . , k} is a hyperedge of H if and only if H = {i : vi ∈ Hx}
for some x ∈ B or H = {i : v′i ∈ H ′x} for some x ∈ B′.

(8) The hypergraph H is laminar.

If H is not laminar, then there exist X, Y ∈ E(H) such that X \Y , Y \X and
X ∩ Y are all non-empty. Since HB and HB′ are both laminar, there exists
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x ∈ B such that Hx = {vi : i ∈ X} and y ∈ B′ such that H ′y = {v′i : i ∈ Y }.
We set Hy = {vi : i ∈ Y }. Note that Hx \ Hy, Hy \ Hx and Hx ∩ Hy

are all non-empty. Also, because of the properties of H ′y and by (1), G[Hy] is
connected (because G[H ′y] is anticonnected) and Hy is a module of G[A].

Since G[Hx] is anticonnected, there exist non-adjacent vertices u ∈ Hx \Hy

and v ∈ Hx ∩ Hy. Since G[Hy] is connected, there exists a path from v to
t ∈ Hy \Hx and we may assume that vt is an edge. Since Hy is a module of
G[A], ut /∈ E(G). So, t is adjacent to v and non-adjacent to u. This contradicts
Hx being a module of G[A]. This proves (8).

We may now finish the proof of Lemma 4.3.14. We show how G can be
built by the process described in the definition of odd templates. We start
by setting V (J) = {1, . . . , k}, and by making i adjacent to j in J if and
only if vivj ∈ E(G). By (3), J is a threshold graph as required. Clearly
condition (4) of odd `-templates holds, the paths linking A to A′ are as in
condition (3) of odd `-templates and condition (5g) of odd `-templates holds.
By (1), conditions (5a) and (5b) of odd `-templates hold. We then consider
the hypergraph H defined above. It is laminar by (8). By (5), condition (2a)
of templates is satisfied.

By definition of Hx, for every x in B, NA(x) ⊆ NA[Hx]. Suppose that
there exists u ∈ NA[Hx] \ NA(x). Since by (5) Hx is a module, it follows
from Lemma 4.3.2 that u is complete to Hx, so x and u together with two
non-adjacent vertices from Hx induce a C4, a contradiction. Hence, NA(x) =
NA[Hx] and condition (5e) of odd templates is satisfied.

By (6) and (7), condition (5c) of templates is satisfied.

By symmetry and by (1), conditions (5d) and (5f) of templates are satisfied.
Therefore condition (5) of templates is satisfied.

To conclude the proof, let us check condition (2b) of templates. By (1), (3)
and Theorem 4.2.4, up to symmetry, we may assume that G[A] contains an
isolated vertex vi. Since G[A ∪ B] is connected and |A| ≥ 3 by the definition
of odd pretemplates, there exists a path P in G[A ∪ B] from vi to a vertex
u ∈ A \ {vi}. By (2) and since vi has no neighbor in A, we have that P = uyvi
where y ∈ B. So, Hy contains vi. We may therefore consider the hyperedge W
of H that contains i and that is inclusion wise maximal w.r.t. this property. If
there exists j ∈ {1, . . . , k} \W , since vjvi /∈ E(G), we deduce as above that H
has a hyperedge Z that contains i and j. Because of j, Z ⊆ W is impossible;
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because of i, W ∩ Z = ∅ is impossible; and because of the maximality of W ,
W ( Z is impossible. Hence, W and Z contradict H being laminar. This
proves that W = {1, . . . , k}, as claimed in condition (2b) of templates.

Hence, G[A ∪ B] has universal vertex w. Also, G[A′ ∪ B′] has a universal
vertex w′ (we may apply Lemma 4.3.4 since we now know that G is an odd
`-template). So, (A,B,A′, B′, I, w, w′) is an `-partition of G. 2

4.3.6 Twins and proper partitions

Given a twinless `-template G, there exist several `-partitions of G. Some of
them are more convenient than others. Before to describe proper partitions,
we note that only vertices in B ∪B′ can have a twin.

Lemma 4.3.15 Let (A,B,A′, B′, I, w, w′) be an `-partition of an odd `-
template G. Two vertices x and y of G are twins if and only if x, y ∈ B
and Hx = Hy, or x, y ∈ B′ and H ′x = H ′y.

Proof. If x, y ∈ B and Hx = Hy, or x, y ∈ B′ and H ′x = H ′y, then x and y are
obviously twins.

We claim that for all x ∈ A ∪ I ∪ A′, there exist two vertices a, b ∈ NG(x)
such that N [a] ∩ N [b] = {x}. If x ∈ I choose a and b to be the only two
neighbors of x. If x ∈ A, then set a = w when x 6= w, and choose for a any
vertex of A \ {x} when x = w. Choose for b the neighbor of x in I. In both
cases, by condition (e7) of templates, NG[a]∩NG[b] = {x}. The proof is similar
when x ∈ A′. So, x has no twin in G. 2

An `-partition (A,B,A′, B′, I, w, w′) of an odd `-template G is proper if
one of G[A] or G[A′] contains at least two isolated vertices.

Lemma 4.3.16 For all integers ` ≥ 3, every twinless odd `-template G admits
a proper `-partition.

Proof. Let (A,B,A′, B′, I, w, w′) be an `-partition of G such that the number
M of isolated vertices of G[A] is maximum. We suppose that v1, . . . , vk is a
domination ordering of G[A].

By Theorem 4.2.4 and since we may swap A,B,w and A′, B′, w′, by the
maximality of M , v1 is an isolated vertex of G[A]. It follows that w ∈ B. By
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definition of templates, v′1 is a universal vertex of G[A′ ∪ B′]. Suppose for a
contradiction that v2 is not isolated in G[A]. So, M = 1.

Let Hx be any hyperedge of HB containing v1. By Lemma 4.3.3, since Hx

contains a non-isolated vertex of G[A], it contains all of them. So, Hx = A.
Hence, N [x] = N [w], so x = w since G is twinless. This proves that N(v1) =
{w, v+

1 } where v+
1 is the neighbor of v1 in I. Let v′+1 be the neighbor of v′1 in

I. We now describe a new partition of the vertices of G. We set:

• A1 = {w, v2, . . . , vk},

• B1 = B \ {w},

• A′1 = {v′+1 , v′2, . . . , v′k},

• B′1 = B′ ∪ {v′1} and

• I1 = {v1} ∪ I \ {v′+1 }.

All conditions of the definition of a pretemplate are easily checked to
be satisfied by (A1, B1, A

′
1, B

′
1, I1). By Lemma 4.3.11, every hole in G

has length 2` + 1. We may therefore apply Lemma 4.3.14 to prove that
(A1, B1, A

′
1, B

′
1, I1, w, v

′
1) is an `-partition of G. So, (A′1, B

′
1, A1, B1, I1, v

′
1, w)

contradicts that maximality of M since G[A′1] has two isolated vertices, namely
v′+1 and v′k (note that since M = 1, it follows by Theorem 4.2.4 that G[A\{v1}]
has a universal vertex ; in particular vk is a universal vertex of G[A\{v1}] and
hence v′k is an isolated vertex of G[A′1]). 2

Lemma 4.3.17 Every proper `-partition (A,B,A′, B′, I, w, w′) of a twinless
odd `-template satisfies one of the following:

• w ∈ B, w is the unique universal vertex of G[A ∪ B], G[A] contains at
least two isolated vertices, Hw = A, w′ ∈ A′ and A′ \ {w′} contains at
least one universal vertex of G[A′].

• w ∈ A, A \ {w} contains at least one universal vertex of G[A], w′ ∈ B′,
w′ is the unique universal vertex of G[A′ ∪ B′], G[A′] contains at least
two isolated vertices and H ′w′ = A′.
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Proof. Since (A,B,A′, B′, I, w, w′) is a proper `-partition, up to symmetry, we
may assume that G[A] contains two isolated vertices. So, w ∈ B. By definition
of `-partitions, it follows that w′ ∈ A′. Since G is twinless and G[A] contains
isolated vertices, w is the unique universal vertex of G[A∪B]. By Lemma 4.3.6,
Hw = A. Also A′ \ {w′} contains at least one universal vertex of G[A′] since
G[A] contains two isolated vertices. 2

We do not use the following lemma formally, but it illustrates a key property
of proper partitions. In non-proper partitions, there may exist vertices in A
that have degree 2 and have one neighbor in A and one in I. These are hard to
think of, because they yield edges with both ends in A that can be “blown up”
into a general half graph as we will see in the next section. The next lemma
states that this situation does not occur with proper partitions.

Lemma 4.3.18 Suppose ` ≥ 3 and G is an odd `-template with a proper `-
partition (A,B,A′, B′, I, w, w′). If a vertex v in A ∪ B ∪ A′ ∪ B′ has degree 2
(in G), then v ∈ A ∪ A′ and v is adjacent to a vertex of B ∪ B′ and has its
other neighbor in I.

Proof. Up to symmetry, suppose that G[A] contains at least two isolated
vertices. So, w ∈ B. Consider a vertex v ∈ A ∪ B ∪ A′ ∪ B′ that is of degree
2 in G. By Lemma 4.3.8, v /∈ B ∪ B′. Since G[A′] has two universal vertices,
every vertex in A′ has degree at least 3, so v ∈ A, and v is adjacent to w ∈ B
and to some vertex in I as claimed. 2

4.4 Blowup

Our goal in this section is to see how a bigger graph can be obtained from a
template G by turning every vertex into a non empty clique. This will be called
blowing up G. In the blowup operation, non-adjacent vertices yield cliques that
are anticomplete to each other. Adjacent vertices u and v yield cliques that
are complete to each other in some situations (when uv is a so-called solid
edge of the template), but in some other situations, they may yield pairs of
cliques that induce a more general half graph, like when a ring is obtained from
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“blowing up” a chordless cycle. This happens when uv is a so-called flat or
optional edge of the template. We now define all this formally.

Throughout all this section, ` ≥ 3 is an integer, G is a an odd `-template
with a fixed an `-partition (A,B,A′, B′, I, w, w′).

4.4.1 Flat, optional and solid edges

An edge of G is flat if at least one of its end is in I. An edge of G is optional
if one end is a vertex x ∈ B (resp. x ∈ B′) and the other end is a vertex
u ∈ Hx that is an isolated vertex of G[Hx] (resp. a vertex u ∈ H ′x that is an
isolated vertex of G[H ′x]). An edge that is neither flat nor optional is solid. See
Figure 4.5 where solid edges are represented by solid lines, flat edges by doted
lines and optional edges by dashed lines.

Observe that the status of an edge depends on the `-partition of the odd
`-template. See Figure 4.4, where the same template is represented with two
different `-partitions. Recall that throughout this section, the `-partition is
fixed, and so is the status of the edges.

Lemma 4.4.1 If ux is an optional edge of G with u ∈ A and x ∈ B, then
NA(Hx) = NA(u). Moreover, if y ∈ B \ {x} and yu ∈ E(G), then Hx ⊆ Hy or
Hy ⊆ Hx (in particular, xy ∈ E(G)).

Proof. Since Hx is a module of G[A] and u is isolated in Hx, we have NA(Hx) =
NA(u). If the second conclusion fails, then since HB is laminar, Hy ∩Hx = ∅.
So xy /∈ E(G). Since yu ∈ E(G) and u /∈ Hy, we have u ∈ NA(Hy), so u is
complete to Hy since Hy is a module. So Hy ⊆ NA(u) = NA(Hx), which is a
clique by Lemma 4.3.2. This contradicts Hy being anticonnected. 2

A clique of G is solid if all its edges are solid.

Lemma 4.4.2 If ux is an optional edge of G such that u ∈ A and x ∈ B,
then NA∪B(u) is a solid clique of G.

Proof. By Lemma 4.4.1, NA(Hx) = NA(u). By Lemma 4.3.2, NA(Hx) = NA(u)
is a clique. It is solid because edges with both ends in A are solid. Hence NA(u)
is a solid clique.
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By Lemma 4.4.1 all vertices from NB(u) are adjacent since they correspond
to hyperedges of HB that are included in each other. Therefore, NB(u) is a
clique and it is solid because edges with both ends in B are solid. Hence NB(u)
is a solid clique.

It remains to prove that NA(u) is complete to NB(u) and that all edges
between these two sets are solid. So let y ∈ B and v ∈ A be two neighbors
of u. Note that v /∈ Hx and possibly y = x. If u ∈ Hy, then vy is an edge
because v ∈ NA(u) (and so v ∈ NA[Hy]), and it is a solid edge because v is
not an isolated vertex of Hy. If u /∈ Hy, then by Lemma 4.4.1, Hy ⊆ Hx. So,
u ∈ NA(Hy) since uy ∈ E(G), and this contradicts u being isolated in Hx. 2

Lemma 4.4.3 Let C be a cycle of G of length at least 4 with no solid chord.
If C is not a hole then there exist three consecutive vertices x, y, u in C such
that:

- u ∈ A, x, y ∈ B, {u} ⊆ Hy ⊆ Hx and u is an isolated vertex of Hx, or

- u ∈ A′, x, y ∈ B′, {u} ⊆ H ′y ⊆ H ′x and u is an isolated vertex of H ′x. In
particular ux is an optional edge of G and a chord of C.

Proof. We may assume that C has a chord e for otherwise it is a hole. This
chord cannot be a flat edge of G because a flat edge contains a vertex of I, so
a vertex of degree 2, and it therefore cannot be a chord of any cycle. Hence,
e is an optional edge of G. So, up to symmetry, we may assume that e = ux
with u ∈ A and x ∈ B. By definition of optional edges, u is an isolated vertex
of G[Hx].

Let u′ and y be the two neighbors of u along C. If u′, y ∈ A ∪ B, then by
Lemma 4.4.2, u′y is a solid chord of C, a contradiction. So, up to symmetry,
y ∈ A ∪B and u′ ∈ I.

Suppose first that y ∈ A. Since uy ∈ E(G) and u is isolated in Hx, we
have that y ∈ NA(Hx). If follows that xy ∈ E(G), and moreover, xy is a solid
edge since y /∈ Hx. Since x and y are both in C and C has no solid chord, C
visits consecutively u′, u, y and x. Let x′ be the neighbor of x in C \ y. If
x′ ∈ B then Hx ∩Hx′ 6= ∅, and since y is complete to Hx, y has a neighbor in
Hx′ . It follows that yx′ is an edge of G, the edge yx′ is solid, and is therefore
a solid chord of C, a contradiction. Hence x′ ∈ A, and so since xx′ is an edge,
x′ ∈ NA[Hx]. If x′ ∈ Hx, then yx′ is a solid chord of C, and if x′ ∈ N(Hx),
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then (since Hx is a module of G[A]) x′u is a solid chord of C, in each case a
contradiction.

Suppose now that y ∈ B. If Hy ⊆ Hx, then xy is an edge that is solid
and hence is an edge of C, so the conclusion of the lemma holds. So we may
assume by Lemma 4.4.1 that Hx ⊆ Hy. In particular, xy is an edge, and since
it is solid, u, y and x are consecutive along C. Let v be the neighbor of x in
C \ y. If v ∈ B, then Hv ∩Hx 6= ∅, so Hv ∩Hy 6= ∅, showing that yv is a solid
chord of G, a contradiction. Hence, v ∈ A. We have uv /∈ E(G) for otherwise
uv would be a solid chord of G. Hence, v ∈ Hx since vx ∈ E(G) and Hx is a
module of G[A]. So, v ∈ Hy (and hence vy ∈ E(G)) and v is an isolated vertex
of Hy, for otherwise vy would be a solid chord of G.

Now, we have three consecutive vertices y, x, v in C such that: v ∈ A,
y, x ∈ B, {v} ⊆ Hx ⊆ Hy and v is an isolated vertex of Hy. So, the conclusion
of the lemma is satisfied again with these three vertices. 2

4.4.2 Blowups and holes

Let G be a twinless odd `-template with an `-partition (A,B,A′, B′, I, w, w′)
A blowup of G is any graph G∗ that satisfies the following:

1. For every vertex u of G there is a clique Ku in G∗ on ku ≥ 1 vertices
u1, . . . , uku such that uku = u ; for distinct vertices u, v of G, Ku∩Kv = ∅
and V (G∗) = ∪u∈V (G)Ku, so V (G) ⊆ V (G∗).

2. For all vertices u ∈ V (G) and all integers 1 ≤ i ≤ j ≤ ku, in G∗

N [ui] ⊆ N [uj] (in particular, for all u, v ∈ V (G), G∗[Ku ∪Kv] is a half
graph).

3. If u and v are non-adjacent vertices of G, then Ku is anticomplete to Kv

(in particular uv /∈ E(G∗)).

4. If uv is a solid edge of G, then Ku is complete to Kv (in particular
uv ∈ E(G∗)).

5. If uv is a flat edge of G, then u is complete to Kv and v is complete to
Ku (in particular uv ∈ E(G∗)).
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6. If ux is an optional edge of G with u ∈ A and x ∈ B (resp. u ∈ A′ and
x ∈ B′), then u is complete to Kx (in particular uv ∈ E(G∗)).

7. If ux and uy are optional edges of G with u ∈ A, x, y ∈ B and Hy ( Hx

(resp. u ∈ A′, x, y ∈ B′ and H ′y ( H ′x), then every vertex of Ku with a
neighbor in Ky is complete to Kx.

8. w (resp. w′) is a universal vertex of G∗[∪u∈A∪BKu] (resp.
G∗[∪u∈A′∪B′Ku]).

Observe that G = G∗[V (G)] follows clearly from the definition, so G is an
induced subgraph of G∗. For every vertex u of G, the clique Ku is called a
blown up clique, more specifically the clique blown up from u.

Note that to define the blowup of a graph, it is first needed to fix an `-
partition of it. Also, it should be stressed that the blowup is defined only for
twinless graphs. Hence, in condition (7) of the definition, since G is twinless,
when x 6= y, Hy ( Hx is equivalent to Hy ⊆ Hx because Hx = Hy would imply
that x and y are twins.

Lemma 4.4.4 A hole C in a blowup of a twinless odd `-template contains at
most one vertex in each blown up clique.

Proof. Since a hole is triangle-free, C intersects any clique in at most two
vertices. So suppose for a contradiction that some blown up clique Kv contains
two vertices x and y of C. Let x′ be the neighbor of x in C \ y and y′ be the
neighbor of y in C \x. Since by condition (2) of the definition of the blowup we
have that in G∗, N [x] ⊆ N [y] or N [y] ⊆ N [x], one of xyx′ or xyy′ is a triangle
of C, a contradiction. 2

Lemma 4.4.5 In a blowup G∗ of a twinless odd `-template G, every hole has
length 2`+ 1.

Proof. Let C∗ be a hole in G∗. By Lemma 4.4.4, it contains at most one
vertex in each blown up clique. Let C be the subgraph of G that is induced
by all vertices v such that some vertex of C∗ is in Kv. By Lemma 4.4.4,
|V (C∗)| = |V (C)|. By the definition of blowup (specifically conditions (3)
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and (4)), C∗ is isomorphic to some graph obtained from C by removing optional
or flat edges of G. Hence, C is a cycle of G with no solid chord. If C is a hole
of G, then since it has the same length as C∗, by Lemma 4.3.11, C∗ has
length 2` + 1. Hence, we may assume that C has chords, so by Lemma 4.4.3,
without loss of generality, C contains three consecutive vertices x, y, u such
that: u ∈ A, x, y ∈ B, {u} ( Hy ( Hx and u is an isolated vertex of Hx.
Note that it follows that both ux and uy are optional edges of G. Because of
C∗, the vertex ui of Ku ∩ V (C∗) has a neighbor in Ky. So, by condition (7) of
blowups, ui is complete to Kx. Hence, C∗ has a chord, a contradiction. 2

4.4.3 Preblowup

Checking that a graph is the blowup of a template is tedious. Here we provide
a simpler notion and prove it is in some sense equivalent.

A preblowup of an odd `-template G with an `-partition
(A,B,A′, B′, I, w, w′) is any graph G∗ obtained from G as follows. Ev-
ery vertex u of A ∪ A′ ∪ I is replaced by a clique Ku on ku ≥ 1 vertices such
that u ∈ Ku. We denote by A∗ the set ∪u∈AKu and use a similar notation A′∗

and I∗. The set B (resp. B′) is replaced by a set B∗ (resp. B′∗) of vertices
such that B ⊆ B∗ (resp. B′ ⊆ B′∗). So, V (G∗) = A∗ ∪ B∗ ∪ A′∗ ∪ B′∗ ∪ I∗.
The sets A∗, B∗, A′∗, B′∗, I∗ are disjoint. Vertices of G are adjacent in G∗

if and only if they are adjacent in G, so G is an induced subgraph of G∗.
Finally, we require that the following conditions hold (throughout N refers to
the neighborhood in G∗):

1. For all u ∈ A, N(Ku) ⊆ A∗ ∪B∗ ∪Ku+ where u+ is the neighbor of u in
I and:

(a) For every u∗ ∈ Ku, NA(u∗) = NA[u].

(b) Every vertex of Ku has a neighbor in Ku+ .

2. N(B∗) ⊆ A∗ and:

(a) If w ∈ B, then there exists w∗ ∈ B∗ that is complete to A∗.
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(b) If u∗ ∈ B∗, then there exist non-adjacent a, b ∈ A such that u∗ has
neighbors in both Ka and Kb.

9. For all u ∈ I, N(Ku) ⊆ Ka ∪Kb where a and b are the neighbors of u in
G, and:

(a) Every vertex u∗ ∈ Ku has at least one neighbor in each of Ka and
Kb.

Conditions analogous to (1) and (2) hold for A′ and B′.

Recall that to blowup (resp. preblowup) a template, one needs to first fix an
`-partition. If this partition is proper, the blowup (resp. preblowup) is proper .
Recall that by Lemma 4.3.16, a proper `-partition (A,B,A′, B′, I, w, w′) exists
for every twinless odd `-template G (but this remark will be used only in the
next section, so far we just assume the `-partition we work with is proper).

When G∗ is a preblowup of a template G, the domination score of G w.r.t.
G∗ is (where N refers to the neighborhood in G∗):

s(G,G∗) =
∑

x∈A∪A′∪I

|{x∗ ∈ Kx : N [x∗] ⊆ N [x]}|

Observe that the blowup is defined only for twinless templates while the
preblowup is defined for any template. It is straightforward to check that a
blowup is a particular preblowup. The following is a converse of this statement.

Lemma 4.4.6 Let ` ≥ 3 and let G∗ be a proper preblowup of an odd `-template
with k ≥ 3 principal paths. If G∗ ∈ C2`+1, then G∗ is a proper blowup of a
twinless odd `-template G with k principal paths (in particular, G is an induced
subgraph of G∗).

Proof. Among all the induced subgraphs of G∗ that are odd `-templates and
for which G∗ is a proper preblowup, we suppose that G is one that maxi-
mizes s(G,G∗). We denote by (A,B,A′, B′, I, w, w′) the proper `-partition of
G that is used for its preblowup and by (A∗, B∗, A′∗, B′∗, I∗) the corresponding
partition of the vertices of G∗.

(1) There exist vertices w∗ and w′∗ that are complete to respectively A∗ \ {w∗}
and A′∗ \ {w′∗}, and such that either w∗ ∈ B∗ and w′∗ ∈ A′∗, or w∗ ∈ A∗ and
w′∗ ∈ B′∗.
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If w ∈ A, then from the definition of w (see Lemma 4.3.4), the definition of A∗

and condition (1a), it follows that w∗ = w is complete to A∗ \ {w∗}. If w ∈ B,
by condition (2a) there exists w∗ ∈ B∗ that is complete to A∗.

The statement about w′∗ holds by symmetry. The last statement comes
from the fact that by Lemma 4.3.4 exactly one of w,w′ is in A ∪ A′, and the
other one is in B ∪B′. This proves (1).

(2) For every principal path Pu = u . . . u′ of G and u∗ ∈ Ku, there exists in
G∗ a path Pu∗ of length ` − 1 from u∗ to some u′∗ ∈ Ku′ whose interior is
in ∪x∈I∩V (Pu)Kx. Moreover, the interior of Pu∗ is anticomplete to V (G∗) \
∪v∈V (Pu)Kv.

The existence of a path from u∗ to some u′∗ ∈ Ku′ whose interior is in
∪x∈I∩V (P )Kx follows from conditions (1), (9), (9a), and (1b) of preblowups.
Its length is `− 1 by condition (3) of templates. The statement about its inte-
rior follows from conditions (1), (2) and (9) of preblowups. This proves (2).

(3) For all u, v ∈ A such that uv /∈ E(G), Ku is anticomplete to Kv. A similar
statement holds for A′.

Suppose that there exists u∗ ∈ Ku and v∗ ∈ Kv such that u∗v∗ ∈ E(G∗).
By condition (1a) of preblowups, u 6= u∗ and v 6= v∗. Let Pu = u . . . u′ and
Pv = v . . . v′ be principals paths. Denote by u+ the neighbor of u in Pu and
by v+ the neighbor of v in Pv. By property (1) of a template, u′v′ ∈ E(G).
Hence uPuu

′v′Pvvv
∗u∗u is a cycle C. By conditions (1) and (1a) of preblowup,

the only possible chords in C are u+u∗ and v+v∗. Without loss of generality,
we may assume that u∗u+ ∈ E(G∗) for otherwise C is a hole of length 2`+ 2,
a contradiction.

Let Pv∗ be a path of length ` − 1 from v∗ to v′∗ as defined in (2). Since
v′∗ ∈ Kv′ and by (1a) applied to A′, v′∗u′ ∈ E(G∗) and v∗Pv∗v

′∗u′Puu
+u∗v∗ is

a hole of length 2`, a contradiction.

The result for A′ holds symmetrically. This proves (3).

(4) For all u, v ∈ A such that uv ∈ E(G), Ku is complete to Kv. A similar
statement holds for A′.

Suppose that there exists u∗ ∈ Ku and v∗ ∈ Kv such that u∗v∗ /∈ E(G∗). Let
Pu∗ = u∗ . . . u′∗ and Pv∗ = v∗ . . . v′∗ be defined as in (2). Observe that u′∗ ∈ Ku′
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and v′∗ ∈ Kv′ . Furthermore u′v′ /∈ E(G) by property (1) of templates. Hence,
by (3), u′∗v′∗ /∈ E(G∗).

We claim that there exists a vertex a ∈ (A∪B) \ {u, v} that is adjacent to
both u∗ and v∗. If w∗ 6= u, v, then by (1) and condition (1b), we may choose
a = w∗. Otherwise, up to symmetry, w∗ = u. Since the `-partition of G is
proper, by Lemma 4.3.17, A contains a universal vertex x distinct from w∗ = u.
If x 6= v, we set a = x. If x = v, then both u and v are universal vertices of
G[A] and we may choose for a any vertex of A \ {u, v}. This proves our claim.

Now, au∗Pu∗u
′∗w′∗v′∗Pv∗v

∗a is a hole of length 2`+ 2, a contradiction. The
result for A′ holds symmetrically. This proves (4).

(5) For all u ∈ I and u1, u2 ∈ Ku, either N [u1] ⊆ N [u2] or N [u2] ⊆ N [u1].

Otherwise, there exists x∗1 ∈ N [u1] \N [u2] and x∗2 ∈ N [u2] \N [u1]. Note that
x∗1x

∗
2 /∈ E(G∗) for otherwise, {x∗1, x∗2, u1, u2} induces a C4. It follows that x∗1

and x∗2 belong respectively to distinct cliques Kx1 and Kx2 , where x1 and x2 are
the two neighbors of u along some principal path P = v . . . v′ of G. Because
of x∗1, x∗2 and condition (9a) of preblowups, there exists a path P ∗ of length `
from some v∗ ∈ Kv to some v′∗ ∈ Kv′ whose interior is in ∪x∈I∩V (P )Kx.

Let q 6= v be a vertex of A and Q = q . . . q′ be a principal path of G, and
suppose up to symmetry that qv /∈ E(G). Now, by conditions (9) and (1a)
of preblowups and (1), P ∗, Q and w∗ form a hole of length 2` + 2. This
proves (5).

(6) For all u ∈ I and u∗ ∈ Ku, N [u∗] ⊆ N [u].

Otherwise, by (5), there exists a vertex u∗ ∈ Ku such that N [u] ( N [u∗].
Hence (V (G \ {u})∪{u∗} induces a subgraph G0 of G∗ and it is easy to verify
that G∗ is a preblowup of G0. This contradicts to the maximality of s(G,G∗).
This proves (6).

By (5), for every u ∈ I, the clique Ku can be linearly ordered by the
inclusion of the neighborhoods as u1, . . . , uku with u = uku by (6) (so, for
1 ≤ 1 ≤ j ≤ ku, N [ui] ⊆ N [uj]). From condition (9) of the preblowup it also
follows that, in G∗, u is complete to the cliques associated to its two neighbors
in G.

(7) For every u ∈ A and u1, u2 ∈ Ku, either N [u1] ⊆ N [u2] or N [u2] ⊆ N [u1].
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A similar statement holds for A′.

Otherwise, there exist x1 ∈ N [u1] \ N [u2] and x2 ∈ N [u2] \ N [u1]. Note that
x1x2 /∈ E(G∗) for otherwise, {x1, x2, u1, u2} induces a C4.

Observe first that by (3) and (4), NA∗ [u1] = NA∗ [u2]. Hence by (1) of
preblowup, x1, x2 ∈ B∗ ∪ Ku+ where u+ is the neighbor of u in the principal
path that contains u. Without loss of generality and since Ku+ is a clique,
x1 ∈ B∗.

By condition (2b), there exist non-adjacent a, b ∈ A such that x1 has neigh-
bors a∗ ∈ Ka and b∗ ∈ Kb, and by (3) a∗b∗ /∈ E(G∗). Note that a∗, b∗ 6= u2

because u2x1 /∈ E(G∗). If u2 is complete to {a∗, b∗}, then {u2, a
∗, x1, b

∗} in-
duces a C4, a contradiction. So, up to symmetry u2a

∗ /∈ E(G). So, a∗ /∈ Ku

and by (4) and (3), a∗u1 /∈ E(G∗). Observe that x2a
∗ /∈ E(G∗) for otherwise

{a∗, x1, u1, u2, x2} induces a C5.

Suppose that x2 ∈ B∗. As above, we can show that x2 has a neighbor c∗ ∈
A∗ that is anticomplete to {u1, u2, x1}. Note that a∗c∗ /∈ E(G∗) for otherwise
{x1, a

∗, c∗, x2, u2, u1} induces a C6. Let Pa∗ = a∗ . . . a′∗ and Pc∗ = c∗ . . . c′∗ be
defined as in (2).

By (3) and (4) and since a∗c∗ /∈ E(G∗), a′∗c′∗ ∈ E(G∗). So, by condi-
tions (1), (2) and (9), u1x1a

∗Pa∗a
′∗c′∗Pc∗c

∗x2u2u1 is a hole of length 2` + 4, a
contradiction.

So x2 ∈ Ku+ . Hence by condition (9a) of preblowups, there exists a path
Q of length ` − 2 from x2 to some u′∗ ∈ Ku′ . Now x2Qu

′∗a′∗Pa∗a
∗x1u1u2x2 is

a hole of length 2`+ 2, a contradiction.

The result for A′ holds symmetrically. This proves (7).

(8) For all u ∈ A and u∗ ∈ Ku, N [u∗] ⊆ N [u]. A similar statement holds for
A′.

Otherwise, there exists a vertex u∗ ∈ Ku such that N [u] ( N [u∗]. Hence,
(V (G)\{u})∪{u∗} induces a subgraph G0 of G∗ and it is easy to verify that G∗

is a preblowup of G0 (that is a template by Lemma 4.3.14 and whose partition
is proper by (3) and (4)). This contradicts the maximality of s(G,G∗). The
result for A′ holds symmetrically. This proves (8).

By (7), for every u ∈ A ∪ A′, the clique Ku can be linearly ordered by
the inclusion of the neighborhoods as u1, . . . , uku , and by (8) uku = u (so, for
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1 ≤ 1 ≤ j ≤ ku, N [ui] ⊆ N [uj]).

(9) If xy is an edge of G[B∗], then either NA∗(x) ⊆ NA∗(y) or NA∗(y) ⊆
NA∗(x).

Otherwise, there exists u∗ ∈ NA∗(x) \ NA∗(y) and v∗ ∈ NA∗(y) \ NA∗(x).
Note that u∗v∗ /∈ E(G) for otherwise {u∗, x, y, v∗} induces a C4. So, for some
u, v ∈ A, we have u∗ ∈ Ku and v∗ ∈ Kv. Hence, by (4), uv /∈ E(G). Let Pu∗ =
u∗ . . . u′∗ and Pv∗ = v∗ . . . v′∗ be defined as in (2). So, xu∗Pu∗u

′∗v′∗Pv∗v
∗yx form

a hole of length 2`+ 2, a contradiction. This proves (9).

(10) For every x ∈ B∗, there exist non-adjacent u, v ∈ A such that xu, xv ∈
E(G∗).

This follows from condition (2b) of preblowups and from (8). This proves (10).

Two vertices x, y in B∗ are equivalent if NA(x) = NA(y).

(11) If x and y are equivalent vertices of B∗, then xy ∈ E(G∗).

If xy /∈ E(G∗), then x, y and two of their neighbors provided by (10) induce a
C4. This proves (11).

Vertices of B∗ are partitioned into equivalence classes. By (11), each equiv-
alence class is a clique X, and by (9), vertices of X can be linearly ordered
according to the inclusion of neighborhoods in A∗. In each such a clique X we
choose a vertex x maximal for the order and call B1 the set of these maximal
vertices. For every x ∈ B1, we denote by Kx the clique of B∗ of all vertices
equivalent to x. Observe that if w∗ ∈ B, then w∗ is a maximal vertex of its
clique. Hence, we can set w∗ ∈ B1.

So, for every u ∈ B1, the clique Ku can be linearly ordered by the inclusion
of the neighborhod in A∗ as u1, . . . , uku with u = uku (so, for 1 ≤ 1 ≤ j ≤ ku,
NA∗(ui) ⊆ NA∗(uj)).

Statements similar to (9), (10), (11) hold for B′∗ and we define B′1 as well.

We set G1 = G∗[A∪B1∪A′∪B′1∪ I] and claim that (A,B1, A
′, B′1, I) is an

`-pretemplate partition of G1. Since G1[A∪I∪A′] is exactly G[A∪I∪A′], condi-
tions (3), (4), (5) and (6) hold. Adding the fact that NG1(B1) ⊆ A∗∩V (G1) =
A by condition (2) of preblowup, condition (1) for a pretemplate holds and
symmetrically also condition (2). Now condition (7) holds because w∗ and w′∗

are complete to respectively A ∪ B1 and A′ ∪ B′1. By (10), the last two con-
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ditions for a pretemplate are fulfilled by (A,B1, A
′, B′1, I). Hence, by Lemma

4.3.14, G1 is a an odd `-template. It is twinless by Lemma 4.3.15. We also
notice that by construction w∗ and w′∗ belong to G1. Furthermore, by (1), w∗

(respectively w′∗) is complete to A \ {w∗} (respectively A′ \ {w′∗}). From the
definition of a template it is easy to conclude that w∗ (respectively w′∗) is uni-
versal in G1[A∪B1] (respectively G1[A′∪B′1]). Hence (A,B1, A

′, B′1, I, w
∗, w′∗)

is a proper `-partition of G1.
We now prove that G∗ is a proper blowup of G1.
By the definition of a preblowup and by (11), for all u ∈ V (G1), Ku is a

clique and V (G∗) = ∪u∈V (G1)Ku

(12) If u, v ∈ V (G1) and uv /∈ E(G1), then Ku is anticomplete to Kv.

Suppose u, v ∈ V (G1) and uv /∈ E(G1). If u ∈ I or v ∈ I, the conclusion
follows directly from condition (9) of preblowups. So we may assume up to
symmetry that u ∈ A ∪ B1. By conditions (1) and (2) of preblowups, we may
assume v ∈ A ∪ B1. If u, v ∈ A, then the result follows from (3), so we may
assume that v ∈ B1.

Now suppose for a contradiction that there exist u∗ ∈ Ku and v∗ ∈ Kv

such that u∗v∗ ∈ E(G1). By the choice of vertices in B1, for all v∗ ∈ Kv,
N [v∗] ⊆ N [v]. So u∗v ∈ E(G1). For the same reason or by (8), for all u∗ ∈ Ku,
N [u∗] ⊆ N [u]. Hence uv ∈ E(G1), a contradiction. This proves (12).

(13) If uv is a solid edge of G1 then Ku is complete to Kv.

Otherwise, let u∗ ∈ Ku and v∗ ∈ Kv such that u∗v∗ /∈ E(G). Since uv is a
solid edge, up to symmetry, u, v ∈ A or u, v ∈ B1 or u ∈ A, v ∈ B1 and in this
last case u is not an isolated vertex of G[Hv].

By (4) the case where u and v are in A cannot happen. Assume then that
v ∈ B1. By Lemma 4.3.6, there exist a, b ∈ Hv (and hence in A) that are not
adjacent. Assume that u is also in B1. Since u and v are adjacent, by (9) we
may assume without loss of generality that Hv ⊆ Hu and so a and b belong
to Hu too. Then, by the definition of Ku and Kv, we get a C4 induced by
{u∗, v∗, a, b}, a contradiction. So u should be in A, and to avoid a C4 induced
by {u∗, v∗, a, b}, u∗ should be non-adjacent to at least one of a and b, say a.
In particular, a 6= u. Then, by (4), ua /∈ E(G1). So u does not belong to
N(Hv) and since uv is an edge of G1, we get that u ∈ Hv. Since uv is solid,
u has at least one neighbor in Hv, and it is not adjacent to a ∈ Hv. Hence,
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as Hv is anticonnected, there exist non-adjacent vertices c, d ∈ Hv such that
uc /∈ E(G1) and ud ∈ E(G1). Now u∗Pu∗u

′∗c′Pccv
∗du∗ is a hole of length 2`+2,

a contradiction again.

This proves (13).

(14) For all u ∈ V (G1) and 1 ≤ i ≤ j ≤ ku, N [ui] ⊆ N [uj].

The result follows from how vertices are ordered after the proof of (5) (vertices
in I), (7) (vertices in A or A′) and (11) (vertices in B1 or B′1). This proves (14).

(15) If uv is a flat edge of G1, then u is complete to Kv and v is complete to
Ku.

By definition of a flat edge, either u and v are in I or one is in I and the other
is in A or in A′. The result follows from (6) , (8), and conditions (1b) (applied
to A or A′) and (9a) of the preblowup. This proves (15).

(16) If ux is an optional edge of G1 with u ∈ A and x ∈ B1 (resp. u ∈ A′ and
x ∈ B′1), then u is complete to Kx.

The result follows from the definition of Kx when x ∈ B1. This proves (16).

(17) If ux and uy are optional edges with u ∈ A, x, y ∈ B1 and Hy ( Hx (resp.
u ∈ A′, x, y ∈ B′1 and H ′y ( H ′x), then every vertex of Ku with a neighbor in
Ky is complete to Kx.

Otherwise, let u∗ be a vertex in Ku that has a neighbor y∗ in Ky and a non-
neighbor x∗ in Kx. Since Hx and Hy are not disjoint, xy is a solid edge of G1

and by (13), x∗y∗ ∈ E(G1).

Since x and y are not equivalent, there exists a vertex a such that a ∈
NA(y) \ NA(x) or a ∈ NA(x) \ NA(y). In the first case, by definition of a
template, a ∈ A \ NA[Hx]. Then since Hy ( Hx and Hx is a module of
A we get that a is anticomplete to Hx and hence to Hy. So a /∈ NA(y), a
contradiction; we may then conclude that a ∈ NA(x) \NA(y)

By definition of the cliques in B, x∗a ∈ E(G∗) and y∗a /∈ E(G∗). Therefore,
to avoid a C4 induced by {x∗, y∗, u∗, a}, it should be that u∗a /∈ E(G∗).

Now aPaa
′u′∗Pu∗u

∗y∗x∗a is a hole of length 2` + 2 a contradiction. This
proves (17).
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(18) w∗ (resp. w′∗) is a universal vertex of G∗[∪u∈A∪B1Ku] (resp.
G∗[∪u∈A′∪B′1Ku]).

By (1), w∗ is complete to A∗ \{w∗} and so to ∪u∈AKu \{w∗}. Furthermore,
from the definition of G1 we know that w∗ is complete to B1\{w∗}. If w∗ ∈ B1,
since all edges between vertices in B1 are solid, by (13), w∗ is complete to
B∗ \ {w∗}. Similarly, if w∗ ∈ A, by (13) and (16), we get that w∗ is complete
to B∗. In both cases w∗ is a universal vertex of G∗[∪u∈A∪BKu]. The proof for
w′∗ is symmetric. This proves (18).

From all the claims above, G∗ satisfies all conditions to be a proper blowup
of G1. 2

4.5 Graphs in C2`+1 that contain a pyramid

The goal of this section is to prove the the following.

Lemma 4.5.1 Let ` ≥ 3 be an integer. If G is a graph in C2`+1 and G contains
a pyramid, then one of the following holds:

1. G is a proper blowup of a twinless odd `-template;

2. G has a universal vertex;

3. G has a clique cutset.

The rest of this section is devoted to the proof of Lemma 4.5.1. So from
here on ` ≥ 3 is an integer and G is graph in C2`+1 that contains a pyramid Π.
By Lemma 4.2.6, the three paths of Π have length `. By Lemma 4.3.5, Π is an
odd `-template. Hence, we may define an integer k and a sequence F0, F1, F2

of induced subgraphs of G as follows.

• k is the maximum integer such that G contains an odd `-template with
k principal paths. Observe that by Lemma 4.3.15, G in fact contains a
twinless template with k principal paths, because twins can be eliminated
from templates by deleting hyperedges with equal vertex-set while there
are some.
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• In G, pick a proper blowup F1 of a twinless odd `-template F0 with k
principal paths. Note that F0 exists and the proper `-partition needed
for the proper blowup exists by Lemma 4.3.16.

• Suppose that F0 and F1 are chosen subject to the maximality of the
vertex-set of F1 (in the sense of inclusion). Note that possibly F0 is not
a maximal template in the sense of inclusion, it can be that a smaller
template leads to a bigger blowup (but F0 has k principal paths).

• F2 is obtained from F1 by adding all vertices of G \F1 that are complete
to F1.

Lemma 4.5.2 V (F2) \ V (F1) is a (possibly empty) clique that is complete to
F1.

Proof. Otherwise, G contains a C4. 2

We now introduce some notation. We denote by (A,B,A′, B′, I, w, w′) the
proper `-partition that is used to blowup F0. When u is a vertex of F0, we
denote by Ku the clique of F1 that is blown up from u. We set A∗ = ∪u∈AKu.
We use a similar notation B∗, A′∗, B′∗ and I∗.

4.5.1 Technical lemmas

We now prove lemmas that sum up several structural properties of G.

Lemma 4.5.3 If u ∈ A∪A′∪I∪{w,w′} and v ∈ NV (F0)(u), then u is complete
to Kv.

Proof. We prove this lemma using the conditions from the definition of
blowups. If u ∈ {w,w′}, then the result follows form condition (8). If
u ∈ A ∪ A′, then the conclusion follows from conditions (4), (5) and (6).
If u ∈ I, then the conclusion follows from condition (5). 2

Very often, Lemma 4.5.3 will be used in the following way. Suppose there
exists a principal path P = u . . . u′ of F0. Suppose there exists a vertex x
of P and x∗ ∈ Kx. Then by Lemma 4.5.3 and condition (3) of blowups,
{x∗}∪(V (P )\{x}) induces a path of F1. If y 6= x is a vertex of P and y∗ ∈ Ky,
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then {x∗, y∗} ∪ (V (P ) \ {x, y}) might fail to induce a path of F1, because it is
possible that xy ∈ E(G) while x∗y∗ /∈ E(G). But under the assumption that
x∗y∗ ∈ E(G) or xy /∈ E(G), we do have that {x∗, y∗}∪ (V (P ) \ {x, y}) induces
a path of F1. Several variant of this situation will appear soon and we will
simply justify them by refering to Lemma 4.5.3.

When u is a vertex in A, we denote by Pu the unique principal path of F0

that contains u. Its end in A′ is then denoted by u′. We denote by u+ the
neighbor of u in Pu. We denote by u++ the neighbor of u+ in Pu \u. Note that
u+ ∈ I and u++ ∈ I ∪ A′ (u++ ∈ A′ if and only if ` = 3).

For any distinct u, v ∈ A, from the definition of templates, exactly one of
V (Pu) ∪ V (Pv) ∪ {w} or V (Pu) ∪ V (Pv) ∪ {w′} induces a hole that is denoted
by Cu,v. Such a hole is called a principal hole.

Note that there are two kinds of principal holes: those that contain w, and
those that contain w′. Recall that by Lemma 4.3.11, every hole of a template
contains two principal paths plus an extra vertex, but it may fail to be a
principal hole (because it may fail to contain w or w′). Though we do not use
this information formally, it is worth noting that by Lemma 4.5.3, when C is a
principal hole, ∪v∈V (C)Kv induces a ring. But when C is a non-principal hole,
it may happen that ∪v∈V (C)Kv does not induce a ring (because there might be
in C an optional edge uv with u ∈ A and v ∈ B, and after the blowup process,
there might be no vertex in Kv that is complete to Ku).

Lemma 4.5.4 If u ∈ V (F0) and u∗ ∈ Ku, then u∗ has two neighbors in V (F0)\
Ku that are not adjacent.

Proof. If u ∈ I, then let P be the principal path that contains u. By
Lemma 4.5.3, u∗ is adjacent to the two neighbors of u in P .

If u ∈ A ∪ A′, say u ∈ A up to symmetry, then we claim that u has a
neighbor z in A ∪ B. This is clear if u is not isolated in A and otherwise we
set z = w. By Lemma 4.5.3, z and u+ are non-adjacent neighbors of u∗.

If u ∈ B, then by the definition of a template, Hu contains two non adjacent
vertices a and b that are neighbors of u. By Lemma 4.5.3, a and b are both
adjacent to u∗. 2

Lemma 4.5.5 If uv is an edge of F0[A∪A′∪I ∪{w,w′}], then some principal
hole of F0 goes through uv.
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Proof. If at least one of u, v is in I then uv is an edge of a principal path
and we know that this principal path belongs to a principal hole. Else, since
A ∪ {w} is anticomplete to A′ ∪ {w′}, up to symmetry both u and v are in A
or u = w ∈ B and v ∈ A.

If u, v ∈ A then Cu,v is a principal hole containing uv.
If u = w ∈ B and v ∈ A : since w is in B, G[A] has no universal vertex and

there exists a ∈ A which is not adjacent to v. Now w,Pv, Pa form a principal
hole containing the edge uv. 2

Lemma 4.5.6 If K is a clique of F0, K∗ = ∪v∈KKv and D is a connected
induced subgraph of G \ F2 such that NV (F1)(D) ⊆ K∗, then NV (F1)(D) is a
clique.

Proof. For suppose not. This means that there exists u∗, v∗ ∈ K∗ and xu, xv ∈
D such that u∗v∗ /∈ E(G) and xuu

∗, xvv
∗ ∈ E(G) (possibly xu = xv). Since

D is connected, there exists a path P in D from xu to xv. Suppose that u∗,
xu, v∗, xv and P are chosen subject to the minimality of P . It follows that
u∗xuPxvv

∗ is a path, and recall that by assumption its interior is anticomplete
to F1 \K∗.

Since u∗v∗ /∈ E(G), u∗ and v∗ are in different blown-up cliques. Denote
by Ku and Kv the blown-up cliques such that u∗ ∈ Ku and v∗ ∈ Kv. By
hypothesis, uv ∈ K and so uv ∈ E(G). Since u∗v∗ /∈ E(G), by condition (4)
of blowups, uv is not a solid edge of G.

If uv is a flat edge of F0, then by Lemma 4.5.5 a principal hole C goes
through uv. Note that apart from u and v, no vertex of C is in K since K is a
clique. By Lemma 4.5.3, in G, ({u∗, v∗}) ∪ V (C)) \ {u, v} induces a path Q of
length 2`. So P and Q form a hole of length at least 2`+ 2, a contradiction.

If uv is an optional edge of F0, say with u ∈ A and v ∈ B, then u ∈
Hv, and there exists a in Hv such that au /∈ E(F0). Therefore, Pu, Pa and
v form a hole C∗. By condition (6) of blowups (if va is optional), or by
condition (4) (if va is solid), a is complete to Kv. By Lemma 4.5.3 it follows
that ({u∗, v∗}) ∪ V (C∗)) \ {u, v} induces a path Q of length 2`. So P and Q
form a hole of length at least 2`+ 2, a contradiction again. 2

When C is a hole of G, a vertex v of V (G) \ V (C) is minor w.r.t. C if
NV (C)(v) is included in a 3-vertex path of C. A vertex of V (G) \ V (C) that is
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not minor w.r.t. C is major w.r.t. C.

Lemma 4.5.7 If x ∈ V (G) \ V (F2) and C is a principal hole of F0, then x is
minor w.r.t. C.

Proof. Suppose up to symmetry that w ∈ V (C) and suppose C = Cu,v. If x is
major w.r.t. C, then C and x form a theta or a wheel that is not a twin-wheel.
So by Lemma 4.2.6, x and C form a universal wheel. Let Pt = t . . . t′ be a
principal path where t 6= u, v. If t is complete to {u, v}, then xt ∈ E(G) for
otherwise {t, u, v, x} induces a C4. Hence x has at least 4 neighbors in Cu,t,
so by Lemma 4.2.6, x is complete to Pt. If t is not complete to {u, v}, say
tu /∈ E(G), then x again has at least 4 neighbors in Cu,t because w ∈ V (Cu,t),
so again x is complete to Pt.

We proved that x is complete to all principal paths, so to I ∪ A ∪ A′. Let
y ∈ B∪B′. By definition of a template y has two neighbors a and b, both in A
or both in A′, that are non-adjacent. Therefore a, b, v and x form a C4, unless
x is adjacent to y. This proves that x is complete to B ∪B′, and so to V (F0).

Let z be a vertex of F0 and z∗ ∈ Kz. By Lemma 4.5.4, there exists a, b ∈
V (F0) such that z∗a, z∗b ∈ E(G) and ab /∈ E(G), so since there is no C4 in G
it should be that xz∗ ∈ E(G). This proves that x is complete to F1. Hence,
x ∈ V (F2), a contradiction. 2

Lemma 4.5.8 Let a and b be two non-adjacent vertices of some principal hole
C of F0. If some vertex x of V (G) \ V (F2) has neighbors in both Ka and Kb,
then a and b have a common neighbor c in C, x is adjacent to c, and x is
anticomplete to every Kd such that d ∈ V (C) \ {a, b, c}.

Proof. Let a∗ ∈ Ka and b∗ ∈ Kb be two neighbors of x. Since ab /∈ E(G), by
Lemma 4.5.3, {a∗, b∗}∪V (C) \ {a, b} induces a hole C∗. Since x is adjacent to
a∗ and b∗, by Lemma 4.2.6, x has another neighbor c in C∗ (and in fact in C
since c 6= a∗, b∗). If c is not adjacent to a∗ and b∗, then x is major w.r.t. C∗, so
by Lemma 4.2.6, C∗ and x form a universal wheel. It follows that x is major
w.r.t. C, a contradiction to Lemma 4.5.7.

We proved that a and b have a common neighbor c in C and that x is
adjacent to c. Suppose for a contradiction that x has a neighbor d∗ ∈ Kd

where d ∈ V (C) \ {a, b, c}. By the same argument as above, since x has
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neighbors in Kd and Kc, c and d must have a common neighbor in C, and this
common neighbor must be a or b, say a up to symmetry. So, x has neighbors
in Kd and Kb while b and d have no common neighbors in C, so we may reach
a contradiction as above. 2

4.5.2 Connecting vertices of F1

We here explain how lemmas of Subsection 4.3.4 are extended from F0 to F1.

Lemma 4.5.9 If u∗ ∈ A∗ ∪ B∗ and v∗ ∈ A′∗ ∪ B′∗, then there exists in F1 a
path P ∗ of length `− 1, ` or `+ 1 from u∗ to v∗ that contains the interior of a
principal path.

More specifically:

• If u∗ ∈ A∗ and v∗ ∈ A′∗, then P ∗ has length `− 1 or `.

• If u∗ ∈ A∗ and v∗ ∈ B′∗, or if u∗ ∈ B∗ and v∗ ∈ A′∗, then P ∗ has length
` or `+ 1.

• If u∗ ∈ B∗ and v∗ ∈ B′∗, then P ∗ has length `+ 1.

Proof. Let u and v be such that u∗ ∈ Ku and v∗ ∈ Kv. Let P be a path in F0

like in Lemma 4.3.13 from u to v (so P contains the interior of some principal
path Q). By Lemma 4.5.3, {u∗, v∗}∪V (P ) \ {u, v} induces a path of the same
length as P that contains the interior of Q. 2

Lemma 4.5.10 If u∗ ∈ B∗ and v∗ ∈ B′∗, then there exist in G two paths P ∗

and Q∗ from u∗ to v∗ both of length at most ` + 1 such that P ∗ (resp. Q∗)
contains the interior of a principal path P (resp. Q), and P 6= Q.

Proof. Let u and v be such that u∗ ∈ Ku and v∗ ∈ Kv. Let P = u . . . v
and Q = u . . . v be as in the conclusion of Lemma 4.3.12. By Lemma 4.5.3,
{u∗, v∗} ∪ V (P ) \ {u, v} and {u∗, v∗} ∪ V (Q) \ {u, v} are the desired paths. 2

Lemma 4.5.11 If some vertex x of G is adjacent to the ends of a path P of
length at most `+ 1 of G \ x, then x is complete to V (P ).
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Proof. Otherwise, a shortest cycle in G[V (P ) ∪ {x}] has length at least 4 and
at most `+ 3. Since ` ≥ 3 implies `+ 3 < 2`+ 1, this is a contradiction. 2

4.5.3 Attaching a vertex to F1

In this subsection, we show that for all vertices x of G \ F2, NV (F1)(x) is a
clique (see Lemma 4.5.15). In Figure 4.6, several situations where NV (F1)(x)
is not a clique are represented and we explain informally how they lead to
a contradiction. The first figure is an odd 3-template F0 with its vertices
w and w′, and here F1 = F0. Then, vertex x1 can be included in Ky1 , a
contradiction to the maximality of F1 (see Lemma 4.5.12). The vertex x2

cannot be included in an existing blown up clique, but it can be added to F0

to yield a bigger template (see Lemma 4.5.12). The vertex x3 can be added
to Ku6 (see Lemma 4.5.13). The vertex x4 can be added to Ku1 , but at the
expense of modifying the template (see Lemma 4.5.13). The vertex x5 can be
added to Ki3 (see Lemma 4.5.14).

The vertex x6 is kind of pathological because it cannot be added to any
blown-up clique, and does not increase the template. The idea for this one is
to observe that {x6} ∪ V (F0) \ {y1, u

+
6 } induces a template and that y1 can be

incorporated in the set Ku6 and Kx6 = Ku+
6
∪ {x6} (see Lemma 4.5.15). Note

that in this case, we increase the size of the blowup while decreasing the size
of the template.

In each case, we prove that adding x yields a preblowup of F0, so that the
maximality of F1 is contradicted.

Lemma 4.5.12 If x ∈ G\F2 has no neighbor in I∗, then NV (F1)(x) is a clique.

Proof. Suppose for a contradiction that NV (F1)(x) is not a clique.

(1) We may assume that NV (F1)(x) ⊆ A∗ ∪B∗.
If x has neighbors in both A∗ ∪B∗ and A′∗ ∪B′∗, then consider a path P as in
Lemma 4.5.9 from a neighbor of x in A∗∪B∗ to a neighbor of x in A′∗∪B′∗. By
Lemma 4.5.11, x is complete to V (P ). This is a contradiction since x has no
neighbor in I∗. Hence x does not have neighbors in both A∗∪B∗ and A′∗∪B′∗,
and our claim follows up to symmetry. This proves (1).
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Figure 4.6: Vertices attaching to an odd 3-template
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(2) There exist non-adjacent a, b ∈ A such that x has neighbors in both Ka and
Kb.

By Lemma 4.5.6, since NV (F1)(x) is not a clique, there should exist two
non-adjacent vertices a, b ∈ V (F0) such that x has a neighbor a∗ ∈ Ka and a
neighbor b∗ ∈ Kb. By (1), a, b ∈ A ∪B.

If a, b ∈ A, then our conclusion holds, so we may assume that b ∈ B.
If a ∈ A, then since ab /∈ E(G), Hb is anticomplete to a. Let P ∗a be the path

induced by {a∗}∪ (V (Pa) \ {a}). Let v ∈ Hb. We may assume that xv /∈ E(G)
for otherwise our claim holds (with a and v). Note that since ab, av /∈ E(G),
by (3) of blowup, a∗b∗, a∗v /∈ E(G). Now, the paths P ∗a , Pv, a

∗xb∗v form a hole
of length 2`+ 2, a contradiction. Hence, we may assume a ∈ B.

Since ab /∈ E(G), by Lemma 4.3.7, {a} ∪ Ha is anticomplete to {b} ∪ Hb.
We may assume that x is anticomplete to Ha ∪Hb for otherwise we may apply
the proofs above. Hence, for u ∈ Ha and v ∈ Hb, the two paths Pu and Pv

together with the path ua∗xb∗v form a hole of length 2`+ 3. This proves (2).

Now the sets Ku for all u ∈ A∪A′ ∪ I, B∗ ∪{x} and B′∗ form a preblowup
of F0. All conditions are easily checked. In particular x satisfies condition (2)
by (1) and (2b) by (2)). So, by Lemma 4.4.6, G[V (F1)∪{x}] is a proper blowup
of some `-template with k principal paths. This contradicts the maximality of
F1. 2

Lemma 4.5.13 If there exist x ∈ V (G) \ V (F2) and u ∈ A such that x has
neighbors in both Ku and Ku+ and is anticomplete to Ku++, then NV (F1)(x) is
a clique.

Proof. Suppose for a contradiction that NV (F1)(x) is a not clique.

(1) x is anticomplete to A′∗ ∪B′∗ ∪ (I∗ \Ku+).

If x has a neighbor t∗ in some Kt such that t ∈ (A′ ∪ I) \ {u+}, then note
that t 6= u++ by assumption. Let C be a principal hole that contains t and u.
There is a contradiction to Lemma 4.5.8 because by (3) of blowup u, u+ and
t cannot be consecutive along C.

It remains to prove that x is anticomplete to B′∗. Otherwise, x has a
neighbor t ∈ B′∗. Consider a path P from t to the neighbor of x in Ku as in
Lemma 4.5.9 and let Q be the principal path whose interior is contained in P .
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By Lemma 4.5.11, x is complete to V (P ). This is a contradiction because if
Q = Pu then x is anticomplete to Ku++ , and if Q 6= Pu then we already proved
that x is anticomplete to (A′∗ ∪ I∗) \Ku+ . This proves (1).

From here on, u∗ and u+∗ are neighbors of x in respectively Ku and Ku+ .
Note that x has a neighbor y∗ ∈ Ky for some y ∈ A ∪ B \ {u}, for otherwise,
by (1), NV (F1)(x) ⊆ Ku ∪ Ku+ and by Lemma 4.5.6, NV (F1)(x) is a clique, a
contradiction.

(2) If w ∈ B, then x has a neighbor w∗ ∈ B∗ that is complete to A∗.

We may assume that x is non-adjacent to w, for otherwise by condition (8) of
blowups, we may choose w∗ = w. In particular y∗ 6= w.

We claim that we may assume that y∗ has a non-neighbor v∗ such that
v∗ ∈ Kv, v ∈ A and v 6= u.

If y∗ ∈ B∗, this is because we may assume that y∗ has a non-neighbor
v∗ ∈ A∗ (so v ∈ Kv for some v ∈ A) for otherwise we choose w∗ = y∗ from
the start. It remains to check that u 6= v. This is because if u = v, then there
exists a path Q of length 1, 2 or 3 from x to v∗ with interior in Ku+ (through
xv∗, u+, u+∗ or u+u+∗). Hence, xQv∗wy∗x is a hole of length 4, 5 or 6, a
contradiction.

If y∗ ∈ A∗, then u∗y∗ ∈ E(G) for otherwise, {x, y∗, w, u∗} induces a C4. By
condition (3) of blowups, uy ∈ E(G). It follows that none of u and y is isolated
in G[A], so the existence of v∗ follows from Lemma 4.3.17 that guarantees the
existence of isolated vertices in G[A] since w ∈ B by assumption.

So, our claim is proved. Note that xv∗ /∈ E(G) for otherwise {x, y∗, w, v∗}
induces a C4. Now either xy∗wv∗v+Pvv

′w′u′Puu
++u+∗x is a hole of length 2`+3

(in case u′v′ /∈ E(G)) or xy∗wv∗v+Pvv
′u′Puu

++u+∗x is a hole of length 2` + 2
(in case u′v′ ∈ E(G)). In both cases we get a contradiction. This proves (2).

(3) NA(x) \ {u} = NA(u).

If there exists v ∈ NA(x) \NA[u], then vPvv
′u′Puu

++u+∗xv is a hole of length
2`, a contradiction.

Conversely, suppose there exists v ∈ NA(u) \ NA(x). We claim that there
exists a path Q of length 2 from x to some z ∈ NA(u) with interior in (A∗ ∪
B∗) \ (Ku ∪Kz).

If w ∈ B, then we may choose z = v and Q = xw∗z by (2).
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Otherwise, w ∈ A. So, by Lemma 4.3.17, G[A] contains at least two uni-
versal vertices. So, let t ∈ A \ {u, v} be adjacent to u and v (if u and v are
the universal vertices of G[A], t can be any vertex of A \ {u, v} and otherwise
choose t to be a universal vertex).

If x has a neighbor t∗ in Kt, then we choose Q = xt∗v. So, suppose x is
anticomplete to Kt (in particular, y 6= t). If x has a neighbor v∗ in Kv, then we
choose Q = xv∗t. So, suppose x is anticomplete to Kv (in particular, y 6= v).
Now, by the way we chose v and t, one of v or t is a universal vertex of G[A]
and therefore a universal vertex of G[A∗ ∪ B∗]. So, we may choose Q = xy∗v
or Q = xy∗t.

So, our claim is proved. Hence z′PzzQxu
+∗u++Puu

′w′z′ is a hole of length
2`+ 2, a contradiction. This proves (3).

(4) x is complete to Ku.

Suppose there exists r ∈ Ku such that rx /∈ E(G). We claim that x and r have
a common neighbor z in (A∗ ∪B∗) \Ku.

If w ∈ B, then rw∗ ∈ E(G) by (2) so we may choose z = w∗. If w ∈ A,
then by Lemma 4.3.17, some vertex z ∈ A \ {u} is a universal vertex of G[A],
and by (3), z is adjacent to x. So, z exists as claimed.

If xu+ ∈ E(G) then {r, z, u+, x} induces a C4, a contradiction. Hence
xu+ /∈ E(G). Now by condition (5) of blowups, either {x, z, r, u+∗} induces a
C4 or {x, z, r, u+, u+∗} induces a C5. This proves (4).

Now, the sets Kv for all v ∈ (A \ u) ∪ I ∪A′, Ku ∪ {x}, B∗ and B′∗ form a
preblowup of F0. All conditions are easy to check. In particular, Ku ∪{x} is a
clique by (4), conditions (1), (2) and (9) follows from (1), condition (1a) from
(3), condition (2a) from (2) and condition (1b) from our assumptions.

Hence, by Lemma 4.4.6 G[V (F1)∪{x}] is a proper blowup of some twinless
odd `-template with k principal paths that is an induced subgraph of G a
contradiction to the maximality of F1. 2

Lemma 4.5.14 If x ∈ V (G) \ V (F2) has no neighbor in B∗ ∪ B′∗, then
NV (F1)(x) is a clique.

Proof. Suppose for a contradiction that NV (F1)(x) is not a clique. By
Lemma 4.5.12, x has neighbors in I∗. So x has a neighbor in a clique blown
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up from an internal vertex of some principal path Pv = v . . . v′. Let a (resp.
b) be the vertex of Pv closest to v (resp. to v′) along Pv and such that x has a
neighbor in Ka (resp. Kb).

Suppose first that a = b (so a ∈ I). Then x has a neighbor in some Ky

with y ∈ V (F0) \ {a}, and since by assumption x has no neighbor in B∗ ∪B′∗,
y ∈ A ∪A′ ∪ I. So, y and a are non-adjacent members of some principal hole.
By Lemma 4.5.8, x has a neighbor in some clique Kd where d is adjacent to
a = b, a contradiction to a = b.

Suppose now that ab ∈ E(G). If both a and b are internal vertices of Pv,
then as in the previous paragraph, by Lemma 4.5.8, NV (F1)(x) ⊆ Ka ∪Kb. So,
by Lemma 4.5.6, NV (F1)(x) is clique, a contradiction. It follows that at least
one of a or b is an end of Pv. Up to symmetry, we may assume that a = v and
b = v+. Note that x is then anticomplete to Kv++ . Hence, by Lemma 4.5.13,
NV (F1)(x) is a clique, a contradiction.

Hence, a 6= b and ab /∈ E(G). So, by Lemma 4.5.8, a and b have a common
neighbor u in Pv. So, a, u and b are consecutive along Pv (in particular, u ∈ I).

(1) x is complete to Ku.

Otherwise, let u∗ ∈ Ku be a non-adjacent to x. There exists a path Qa of
length 2 or 3 from u∗ to x with interior in Ka (either xa∗u∗, or xa∗au∗ for some
a∗ in Ka). There exists a similar path Qb. So, Qa and Qb form a hole of length
4, 5 or 6, a contradiction. This proves (1).

(2) x is anticomplete to V (F1) \ (Ka ∪Ku ∪Kb).

This follows from Lemma 4.5.8 and from the fact that x is anticomplete to
B∗ ∪B′∗. This proves (2).

(3) x has neighbors in each of Ka, Kb.

This follows from the definition of a and b. This proves (3).

Now the sets Kv for all v ∈ (A ∪A′ ∪ I) \ {u}, Ku ∪ {x}, B∗ and B′∗ form
a preblowup of F0. All conditions are easily checked, in particular Ku ∪ {x} is
a clique by (1), it satisfies condition (9) by (2) and condition (9a) by (3).

Hence, by Lemma (4.4.6) G[V (F1)∪{x}] is a proper blowup of some twinless
odd `-template with k principal paths that is an induced subgraph of G. This
contradicts the maximality of F1. 2
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Lemma 4.5.15 For all vertices x of G \ F2, NV (F1)(x) is a clique.

Proof. Suppose for a contradiction that NV (F1)(x) is not a clique.

(1) There exists a principal path Pu = u . . . u′ of F0 such that x is anticomplete
to I∗ \ ∪v∈V (Pu)Kv.

Otherwise, there exists two principal paths P and Q of F0, a in the interior
of P and b in the interior of Q such that x has neighbors in both Ka and Kb.
Note that P and Q are in some principal hole C of F0. By Lemma 4.5.8, a
and b have a common neighbor c in C. This contradicts a and b being in the
interior of distinct principal paths. This proves (1).

(2) We may assume that x has no neighbor in B′∗ and has a neighbor y∗ ∈ Ky

where y ∈ B.

Suppose that x has a neighbor u∗ ∈ B∗ and a neighbor v∗ ∈ B′∗. Let P and Q
be like in Lemma 4.5.10. By Lemma 4.5.11, x is complete to both V (P ) and
V (Q). In particular, x has neighbors in the interior of two distinct principal
paths, a contradiction to (1). So, up to symmetry, we may assume that x has
no neighbor in B′∗. Hence, by Lemma 4.5.14, x has neighbors in B∗. This
proves (2).

(3) x is adjacent to u, u+ and has a neighbor in Ku++. Moreover, x is anti-
complete to (A∗ ∪ I∗ ∪ A′∗ ∪B′∗) \ (Ku ∪Ku+ ∪Ku++).

By Lemma 4.5.12, x has at least one neighbor in I∗ and by (1), such a neighbor
is in a clique blown up from an internal vertex of Pu. So, let v be the vertex
of Pu closest to u′ along Pu such that x has a neighbor v∗ ∈ Kv. So v 6= u and
v ∈ A′ ∪ I. We set Q = y∗uPuv if y∗u ∈ E(G) and Q = y∗wuPuv otherwise.
Let Q∗ be the path induced by {v∗} ∪ (V (Q) \ {v}) and observe that Q∗ has
length at most `+ 1. By Lemma 4.5.11, x is complete to Q∗. If v /∈ {u+, u++},
then x has neighbors in at least 4 cliques blown up from vertices of Pu and this
contradicts Lemma 4.5.8. If v = u+, x is adjacent to u (since x is complete
to Q∗) and anticomplete to Ku++ , so by Lemma 4.5.13, NV (F1)(x) is a clique,
a contradiction. So, v = u++, meaning that x is adjacent to u and u+, and is
anticomplete to I∗ \ (Ku+ ∪Ku++) by (1).

If x has neighbors in some Ka for a ∈ A \ {u} then x and Cu,a contradict
Lemma 4.5.8. Hence x is anticomplete to A∗ \ {Ku}.
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By (2), x is anticomplete to B′∗. It remains to check that x is anticomplete
to A′∗\Ku++ . So, suppose x has a neighbor z∗ in some Kz where z ∈ A′\{u++}.
Then a principal hole that contains z and u contradicts Lemma 4.5.8. This
proves (3).

Let u++∗ be a neighbor of x in Ku++ and P ∗u be the path induced by
(V (Pu) \ {u++}) ∪ {u++∗}.

(4) For every z ∈ B such that x is adjacent to some z∗ in Kz we have NA(z) =
NA[u] (in particular NA(y) = NA[u]).

Suppose there exists v ∈ NA(z) \ NA[u]. By condition (4) or (6) of blowups,
vz∗ ∈ E(G). So, by (3), xz∗vPvv

′u′P ∗uu
++∗x is a hole of length 2`, a contra-

diction. This proves that NA(z) ⊆ NA[u]. In particular, u has at least one
neighbor in Hz, so by condition (5e) of templates, uz ∈ E(G).

Suppose there exists v ∈ NA(u) \ NA(z) (so z and v are not universal
vertices of G[A ∪ B]). By condition (3) of blowups, vz∗ /∈ E(G). By (3),
xv /∈ E(G). Hence xd ∈ E(G) for every universal vertex d of G[A ∪ B], for
otherwise xz∗dvPvv

′w′u′P ∗uu
++∗x is a hole of length 2`+ 2.

Now, by (3) and Lemma 4.3.17, w ∈ B. So, there exists an isolated vertex
c ∈ A. Again by (3), xc /∈ E(G) and xwcPcc

′u′P ∗uu
++∗x is a hole of length 2`,

a contradiction. This proves (4).

(5) NF1(x) ⊆ Ku++ ∪Ku+ ∪Ku ∪Ky

By (3) NF1(x) ⊆ Ku++∪Ku+∪Ku∪B∗. Suppose there exists z∗ ∈ Kz such that
xz∗ ∈ E(G) and z ∈ B \ {y}. By (4), NA(z) = NA[u] and NA(y) = NA[u]. So,
by Lemma 4.3.15, y and z are twins of F0, a contradiction. This proves (5).

(6) y 6= w.

If y = w, then w ∈ B. So by Lemma 4.3.17, there exist isolated vertices in
G[A]. But by (4), NA(w) = NA[u] so u is a universal vertex of G[A], so G[A]
has a universal vertex and an isolated vertex, a contradiction. This proves (6).

(7) NKy(x) is complete to NA[u].

By (4), NA(y) = NA[u]. The result follows from conditions (4) and (6) of
blowups. This proves (7).
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(8) x is complete to Ku+.

By (3), ux ∈ E(G). Suppose for a contradiction that there exists u+∗ ∈ Ku+

non-adjacent to x. By condition (5) of blowups, u+∗u, u+∗u++ ∈ E(G). Hence
xu++ /∈ E(G) for otherwise {x, u++, u+∗, u} induces a C4. But now, either
{x, u++∗, u+∗, u} induces a C4 (if u+∗u++∗ ∈ E(G)) or {x, u++∗, u++, u+∗, u}
induces a C5 (if u+∗u++∗ /∈ E(G)), a contradiction. This proves (8).

(9) Ku ∪Ky is a clique.

Since by (4) NA(y) = NA[u], u cannot be an isolated vertex of Hy. Hence, uy
is a solid edge. So, by condition (4) of blowups, Ku is complete Ky. This
proves (9).

We define B0 = B∗ \NKy(x).
Now the sets Kv for all v ∈ (A∪I∪A′)\{u, u+}, Ku∪NKy(x), Ku+∪{x}, B0

and B′∗ form a preblowup of F0. All conditions are easy to check. In particular,
Ku∪NKy(x) is a clique by (9), Ku+ ∪{x} is a clique by (8), conditions (1), (2)
and (9) follows from (5), condition (1a) from (7), condition (1b) holds because
x is complete to NKy(x), condition (9a) follows from (3) and condition (2a)
holds because (6) implies that if w ∈ B then w ∈ B0.

Hence, by Lemma 4.4.6, G[V (F1)∪{x}] is a proper blowup of some twinless
odd `-template with k principal paths that is an induced subgraph of G, a
contradiction to the maximality of F1. 2

4.5.4 Attaching a component

In this subsection, we show that every connected component D of G\F2, N(D)
is a clique (see Lemma 4.5.16).

Lemma 4.5.16 If D is a connected component of G \ F2, then N(D) is a
clique.

Proof. Suppose that N(D) is not a clique. By Lemma 4.5.2, NV (F1)(D) is not
a clique. So, there exist a and b in D such that NV (F1)(a) ∪ NV (F1)(b) is not
a clique, and a path P from a to b in D. We choose a and b subject to the
minimality of the length of P . By Lemma 4.5.15, a 6= b (so P has length at
least 1).



92 CHAPTER 4. WHEN ALL HOLES HAVE THE SAME LENGTH

We set S∗a = NV (F1)(a) and S∗b = NV (F1)(b). By Lemma 4.5.15, S∗a and S∗b
are both cliques. Note that possibly S∗a ∩S∗b 6= ∅. We denote by int(P ) the set
of the internal vertices of P . We set S∗◦ = NV (F1)(int(P )).

We set Sa = {t ∈ V (F0) : S∗a ∩ Kt 6= ∅}. We define Sb and S◦ similarly.
Note that Sa is possibly not included in S∗a, and the same remark holds for Sb

and S◦.

(1) There exist non-adjacent x∗a ∈ S∗a and x∗b ∈ S∗b . Moreover, for all such x∗a
and x∗b , x∗aaPbx

∗
b is a path.

The existence of x∗a and x∗b follows from the definition of a and b, and x∗aaPbx
∗
b

is a path because of the minimality of P . This proves (1).

(2) S∗a ∪ S∗◦ and S∗b ∪ S∗◦ are cliques (in particular, S∗◦ is a (possibly empty)
clique of F1 that is complete to both S∗a \ S∗◦ and S∗b \ S∗◦).

If S∗a ∪ S∗◦ is not a clique, then let x∗y∗ be a non-edge in S∗a ∪ S∗◦ . Since S∗a is a
clique by Lemma 4.5.15, we may assume y∗ ∈ S∗◦ . By definition of S∗◦ , y

∗ has
a neighbor in int(P ), and then x∗, y∗ and some subpath of P contradict the
minimality of P .

The proof is similar for S∗b ∪ S∗◦ . This proves (2).

Note that while S∗a ∪ S∗b is not a clique by assumption, it might be that
Sa∪Sb is a clique (for instance when Sa = {u}, Sb = {v} and uv is an optional
edge of F0).

(3) Sa ∪ S◦ and Sb ∪ S◦ are cliques of F0 (in particular, Sa and Sb are (non-
empty) cliques of F0 and S◦ is a (possibly empty) clique of F0 that is complete
to both Sa \ S◦ and Sb \ S◦).

If Sa∪S◦ is not a clique, then let xy be a non-edge of Sa∪S◦. Since x ∈ Sa∪S◦,
there exists x∗ ∈ Kx ∩ (S∗a ∪ S∗◦) and y∗ ∈ Ky ∩ (S∗a ∪ S∗◦). By condition (3)
of blowups, since xy /∈ E(G), Kx is anticomplete to Ky. So, x∗y∗ /∈ E(G), a
contradiction to (2).

The proof is similar for Sb ∪ S◦. This proves (3).

(4) If a hole C of F1 contains two non adjacent vertices x ∈ S∗a and y ∈ S∗b ,
then P and C form a pyramid ΠC,x,y. More specifically, C contains a vertex z
such that either:
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• S∗a∩V (C) = {x, z}, S∗b ∩V (C) = {y} ; the apex of ΠC,x,y is y, its triangle
is axz, and its three paths, all of length `, are the path from x to y in
C \ z, the path from y to z in C \ x, and the path from a to y obtained
by adding the edge by to P ; or

• S∗b ∩V (C) = {y, z}, S∗a∩V (C) = {x} ; the apex of ΠC,x,y is x, its triangle
is byz, and its three paths, all of length `, are the path between y and x
in C \ z, the path from z to x in C \ y, and the path from b to x obtained
by adding the edge ax to P .

Note that since S∗a is a clique, S∗a ∩ V (C) contains x and at most one other
vertex which should be adjacent to x. The same holds for S∗b and y.

Let us assume that S∗◦ ∩ V (C) 6= ∅. Then by (2), there exists a unique
vertex t ∈ S∗◦ ∩ V (C), S∗a ∩ V (C) ⊆ {x, t} and S∗b ∩ V (C) ⊆ {y, t}. Hence C
and P form a proper wheel centered at t, a contradiction to Lemma 4.2.6. So,
S∗◦ ∩ V (C) = ∅.

If a and b have a common neighbor t in C, then x and y are the two
neighbors of t in C and so, C and P form a proper wheel centered at t, again
a contradiction to Lemma 4.2.6. So the neighborhoods of a and b in C are
disjoint.

From this, we obtain that C and P form a theta, a long prism or a pyramid.
So, by Lemma 4.2.6, C and P form a pyramid whose three paths have length
`. This can happen only if we are in one of the two cases described in (4).
This proves (4).

(5) Sa ∩ I = Sb ∩ I = ∅.
Otherwise, up to symmetry, Sa ∩ I 6= ∅. So, there exists a principal path
Pu = u . . . u′ of F0 whose interior intersects Sa. By (3), Sa is a clique, so
1 ≤ |Sa| ≤ 2 and Sa ⊆ V (Pu). We now break into three cases.

Case 1: Sb ⊆ V (Pu).
By (1) there exist vertices xa and xb of Pu such that there exist non adjacent

vertices x∗a ∈ S∗a ∩Kxa and x∗b ∈ S∗b ∩Kxb
.

We first show that there exist such xa and xb that are not adjacent. Other-
wise, and since Sa, Sb ⊆ V (Pu), we have that Sa ∪ Sb = {xa, xb}. By replacing
xa and xb by x∗a and x∗b in any principal hole C containing Pu we obtain a path
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PC of length 2` and V (PC) ∪ V (P ) induces a hole of length at least 2` + 3, a
contradiction. So we may assume that xa and xb are not adjacent.

Let C be any principal hole of F0 that contains Pu. By Lemma 4.5.3,
{x∗a, x∗b} ∪ (V (C) \ {xa, xb}) induces a hole C∗. Let us apply (4) to C∗, x∗a and
x∗b . We obtain that the shortest path in C∗ between x∗a and x∗b has length `.
However x∗a and x∗b both belong to the path of length ` − 1, contained in C∗,
which is obtained from Pu by replacing xa by x∗a and xb by x∗b , a contradiction.

Case 2: Sb contains a vertex of some principal path Pv distinct from Pu.
Up to symmetry, since Sb is a clique (by (3)), we assume that b is anticom-

plete to Kv′ .
Let y be the vertex of Pu closest to u′ such that a has a neighbor y∗ ∈

Ky. Let z be the vertex of Pv closest to v such that b has a neighbor z∗ ∈
Kz. Possibly y = u′ and z = v, but y 6= u since a has a neighbor in I∗ by
assumption, and z 6= v′ since b is anticomplete to Kv′ . In particular, yz /∈ E(G)
and by condition (3) of blowups, y∗z∗ /∈ E(G).

Let C be the principal hole of F0 that contains Pu and Pv. By Lemma 4.5.3,
{y∗, z∗}∪ (V (C)\{y, z}) induces a hole C∗. Applying (4) to C∗, y∗ and z∗, we
obtain that P has length `−1 and that y∗ and z∗ are at distance ` on C∗. Hence
y∗ and z∗ have no common neighbor in F0 and S◦ = ∅ by (3). We denote by P ∗u
the path obtained from Pu by replacing y by y∗ and by P ∗v the path obtained
from Pv by replacing z by z∗. Let P ∗ be the path vP ∗v z

∗bPay∗P ∗uu
′ (in case

z = v one should replace vP ∗v z
∗ by z∗, and in case y = u′ one should replace

y∗P ∗uu
′ by y∗). The length of P ∗ is at least `+ 1.

Consider now any principal path Pr for r ∈ A \ {u, v}. Depending on
the adjacencies of r with u and v, one of rvP ∗u′r′Prr or rwvP ∗u′r′Prr or
rvP ∗u′w′r′Prr or rwvP ∗u′w′r′Prr (with possibly u′ replaced by y∗ when u′ = y)
is a cycle of length at least 2` + 2 with at most one chord that must be br
(observe that ar′ cannot be an edge since Sa ⊆ V (Pu)). The only possibility
which avoids a hole of forbidden length is if z = v, y = u′ and br, u′r′, vr are
edges of G. This proves that v is complete to A \ {u, v} and u′ is complete to
A′ \ {u′, v′}.

Hence, G[A] has at most one isolated vertex (namely u), and G[A′] has at
most one isolated vertex (namely v′). This contradicts (A,B,A′, B′, I, w, w′)
being a proper `-partition of F0.

Case 3: we are neither in Case 1 nor in Case 2.
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Since we are not in Case 1, Sb contains a vertex of F0 \ Pu, and since we
are not in Case 2, this vertex must be in B ∪B′. Up to symmetry, we assume
that Sb ∩B 6= ∅. Since Sb is a clique (by (3)), Sb ∩ (B′ ∪A′ ∪ I) = ∅. Since we
are not in Case 2, Sb ∩ (A \ {u}) = ∅. Hence, Sb ⊆ B ∪ {u} and there exists
x ∈ B ∩ Sb. Let x∗ ∈ Kx ∩ S∗b .

Let ua be the vertex of Sa which is the closest to u in Pu and let u′a be the
vertex of Sa which is the closest to u′ in Pu. Notice that, since Sa is a clique
(by (3)), either ua = u′a or uau

′
a is an edge. So it may be that ua = u or u′a = u′

but since Sa ∩ I 6= ∅ we know that ua 6= u′ and u′a 6= u. Let now u∗a ∈ Kua ∩S∗a
and u′∗a ∈ Ku′a ∩ S∗a. We denote by P ∗u the path obtained from Pu by replacing
ua by u∗a and, in case ua 6= u′a, by replacing u′a by u′∗a . Notice that if u∗a 6= u′∗a
then u∗au

′∗
a ∈ E(G) since S∗a is a clique.

Suppose that u′a = u+, where u+ is the neighbor of u in Pu. Since Hx

contains at least two vertices there exists v ∈ Hx \ {u}. By (3) and the fact
that P contains at least one edge, depending on the adjacency of u and v, one
of aPbx∗vPvv

′u′P ∗uu
′∗
a a or aPbx∗vPvv

′w′u′P ∗uu
′∗
a a is a hole of length at least

2` + 2, a contradiction. Hence from now on, we may assume that ua 6= u
(hence a is not adjacent to u) and that if ua = u+ then u′a 6= ua. Now by (3)
we get that S◦ = ∅.

Suppose that x is adjacent to u in F0. Depending on whether b is adjacent
to u not, one of u∗aaPbuP

∗
uu
∗
a or u∗aaPbx

∗uP ∗uu
∗
a is a hole, implying that P has

length at least `. Let us choose any vertex v ∈ Hx distinct from u (since Hx has
cardinality at least 2, such a vertex do exist). Then aPbx∗vPvv

′(w′)u′Puu
′∗
a a is

a hole of length at least 2`+ 2, a contradiction. Hence, from here on, we may
assume that no vertex in B ∩ Sb is adjacent to u.

So x is not adjacent to u in F0. Hence x∗ 6= w, u 6= w and w /∈ Sb.
Then to avoid a C4 bx

∗wub, b is not adjacent to u and u∗aaPbx
∗wuP ∗uu

∗
a is a

hole implying that P has length at least ` − 1. So, for any v ∈ Hx, the hole
x∗bPau′∗a P

∗
uu
′v′Pvvx

∗ (in case u′a = u′ one should replace u′∗a P
∗u′ by u′∗a ) has

length at least 2`+ 2, a contradiction.

This proves (5).

(6) We may assume that Sa ⊆ A ∪B and Sb ⊆ A′ ∪B′.

Otherwise, by (5) and since Sa and Sb are cliques (by (3)), we may assume
that Sa, Sb ⊆ A ∪B.
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We claim that there exist non-adjacent vertices x∗ ∈ S∗a and y∗ ∈ S∗b , and a
path Q∗ from x∗ to y∗ of length at least 2`− 1 that forms a hole together with
P . This is a contradiction because it implies that P has length at most 0. So,
to conclude the proof, it remains to prove the existence of Q∗.

By (1), there exist non-adjacent x∗a ∈ S∗a and x∗b ∈ S∗b . Let xa and xb be
the vertices of F0 such that x∗a ∈ Kxa and x∗b ∈ Kxb

. Note that possibly xaxb
is an edge, but this happens only if xaxb is an optional edge of F0 (since x∗ax

∗
b

is not an edge). We break into three cases.

Case 1: xa, xb ∈ A.
Then xaxb /∈ E(G) (otherwise it would be a solid edge of F0), so from the

definition of templates, there exists a path Q of length 2` − 1 from xa to xb
whose interior is in I∪A′. By Lemma 4.5.3, {x∗a, x∗b}∪(V (Q)\{xa, xb}) induces
the path Q∗ that we are looking for. Note that Q∗ and P form a hole by (2)
and our assumption that Sa, Sb ⊆ A ∪B.

Case 2: xa ∈ A and xb ∈ B.
Whether xaxb is an optional edge or a non-edge, an immediate consequence

of the definition of a template is that there exists a vertex z ∈ Hxb
that is non-

adjacent to xa. We may furthermore assume that z /∈ Sb since else we are in
the same situation as in Case 1. By definition of a template, there exists a path
Q0 of length 2`− 1 between x and z whose interior is in I ∪A′. Then xbzQ0xa
is a path of length 2` and by replacing in this path xa and xb by respectively
x∗a and x∗b , we obtain by Lemma 4.5.3 a path Q∗ of the same length. Note that
Q∗ and P form a hole by (2) and our assumption that Sa, Sb ⊆ A ∪ B, z /∈ Sb

and z /∈ Sa since Sa is a clique.

Case 3: xa, xb ∈ B.
Then xaxb /∈ E(G) (otherwise it would be a solid edge of F0). Hence, by

Lemma 4.3.7, Hxa ∪ {xa} is anticomplete to Hxb
∪ {xb}. So, let ua ∈ Hxa and

ub ∈ Hxb
, there exists then a path Q0 = ua . . . ub of length 2`− 1 with interior

in I ∪ A′. By Lemma 4.5.3, Q∗ = x∗auaQ0ubx
∗
b is also a path, it is of length

2`+ 1. We may assume that ua /∈ Sa and ub /∈ Sb since else we are in the same
situation as in Case 2. Now, by (2), Q∗ and P form a hole of length at least
2`+ 4.

This proves (6).

(7) S◦ = ∅.
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By (6) and (3), if S◦ 6= ∅, then ` = 3, and there exists a principal path
Pu = u . . . u′ of F0 such that Sa = {u}, Sb = {u′} and S◦ = {c} where c is the
unique internal vertex of Pu. Let u∗ ∈ Ku ∩ S∗a, c∗ ∈ S∗◦ and u′∗ ∈ Ku′ ∩ S∗b .
Observe that, from the rules of the blowup, each of u∗c∗, u′∗c∗ may be an edge
or a non-edge of G. By definition, c∗ has a neighbor in int(P ).

We claim that c∗u∗, c∗u′∗ ∈ E(G). If c∗ = c this follows from condition (5)
of blowups, so suppose c∗ 6= c. Then P , c, c∗, u∗ and u′∗ form a theta or a
non-twin wheel W centered at c∗. So, by Lemma 4.2.6, W is a universal wheel
and again c∗u∗, c∗u′∗ ∈ E(G).

Let Pv = v . . . v′ be a principal path distinct from Pu and suppose up to
symmetry that uv ∈ E(G). Now, Pv, P , u∗, u′∗ w′ and c∗ form a proper wheel
centered at c∗, a contradiction to Lemma 4.2.6. This proves (7).

(8) P has length `−1, or P has length `−2 and we may assume that Sa∩A = ∅.

By (1) and (6), consider x ∈ Sa∩(A∪B) and y ∈ Sb∩(A′∪B′). Let x∗ ∈ Kx∩S∗a
and y∗ ∈ Ky ∩ S∗b .

If x ∈ A and y ∈ A′, then let C be a principal hole that contains x and
y. By Lemma 4.5.3, {x∗, y∗} ∪ (V (P ) \ {x, y}) induces a hole C∗. We may
apply (4) to C∗, x∗ and y∗. It follows that P has length ` − 1. By symmetry
we may therefore assume from here on that Sa ∩ A = ∅.

Let y′∗ be a vertex in S∗b which is the closest to x∗ in F1. By Lemma 4.5.9,
there exists a path Q in F1 from x∗ to y′∗ of length ` or ` + 1. From our
assumption on y′∗ we get that Q and P form a hole (since S◦ = ∅ by (7)).
Therefore, if Q has length `, then P has length `− 1 and if Q has length `+ 1,
then P has length `− 2. This proves (8).

We may now conclude the proof.

If P has length ` − 1, then we set A0 = A ∪ {a}, A′0 = A′ ∪ {b} and
I0 = I ∪ int(P ). We claim that (A0, B,A

′
0, B

′, I0) is an `-pretemplate partition
of G[A0 ∪ B ∪ A′0 ∪ B′ ∪ I0]. All conditions are easily checked to hold (in
particular conditions (1), (2) and (7) are satisfied because by (6), a (resp. b)
has a neighbor in G[A ∪ B] (resp. G[A′ ∪ B′]), condition (5) holds by (7) and
conditions (8) and (9) hold because they hold in F0). Then, by Lemma 4.3.14,
G contains an odd `-template with k + 1 principal paths, a contradiction to
the maximality of k.
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By (8), P has length ` − 2 and we may assume that Sa ∩ A = ∅ and
Sa ∩ B 6= ∅ (recall that by (6), Sa ⊆ A ∪ B and Sb ⊆ A′ ∪ B′). Let us choose
x ∈ Sa ∩ B such that Hx is maximal (note that x is unique because Sa ∩ B
is a clique and F0 is twinless). Let x∗ ∈ Kx ∩ S∗a. We set A0 = A ∪ {x∗},
B0 = B \ Sa, A

′
0 = A′ ∪ {b} and I0 = I ∪ int(P ) ∪ {a}. Note that the path

x∗aPb has length `− 1 and has interior in I0. We break into two cases.

Case 1: b has a neighbor in A′ ∪B′∗.
We claim that in that case (A0, B0, A

′
0, B

′∗, I0) is an `-pretemplate partition
of G[A0 ∪ B0 ∪ A′0 ∪ B′∗ ∪ I0]. All conditions are easily checked to hold (in
particular condition (7) is satisfied for A0 ∪ B0 because if x = w, then x∗

is complete to (A0 ∪ B0) \ {x∗}, and otherwise, by the maximality of Hx,
w ∈ A0 ∪ B0, condition (7) is satisfied for A′0 ∪ B′∗ because b has a neighbor
in A′ ∪ B′∗ and by the rules of the blowup, conditions (1), (2), (8) and (9)
hold because they hold in F0 and by the rules of the blowup). Then, by
Lemma 4.3.14, G contains an odd `-template with k + 1 principal paths, a
contradiction to the maximality of k.

Case 2: b has no neighbor in A′ ∪B′∗.
Then, by (6) there exists x′∗ ∈ Kx′ ∩ S∗b for some x′ ∈ A′.
Let A′1 = (A′0 ∪ {x′∗}) \ {x′}. If w′ ∈ B′ we set B′1 = {w′} and else we

set B′1 = ∅. We claim that (A0, B0, A
′
1, B

′
1, I0) is an `-pretemplate partition of

G[A0 ∪B0 ∪ A′1 ∪B′1 ∪ I0].
Most conditions are easily checked to hold as in the previous case. Notice

that conditions (7) and (9) hold because x′∗ is by definition adjacent to b and
by the rules of the blowup, G[A′1 \ {b}] is isomorphic to G[A′0 \ {b}] and x′∗ is
adjacent to w′. Then, by Lemma 4.3.14, G contains an odd `-template with
k + 1 principal paths, a contradiction to the maximality of k. 2

4.5.5 End of the proof

We may now conclude the proof of Lemma 4.5.1. If G \ F1 is empty, then
conclusion (1) holds. If G \F1 is non-empty and G \F2 is empty, then conclu-
sion (2) holds. Otherwise, we consider a connected component D of G\F2 and
apply Lemma 4.5.16. We then see that G has a clique cutset, so conclusion (3)
holds.
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4.6 Proof of Theorem 4.1.1

Theorem 4.6.1 Let ` ≥ 3 be an integer. If G is a graph in C2`+1 then one of
the following holds:

1. G is a ring of length 2`+ 1;

2. G is a proper blowup of a twinless odd `-template;

3. G has a universal vertex or

4. G has a clique cutset.

Proof. By Lemma 4.2.6, G contains no long prism no theta and no proper
wheel. Also, clearly G contains no C4 and no C5. Hence, by Theorem 4.2.8, we
may assume that G contains a pyramid for otherwise one of the conclusions (1),
(3) or (4) holds. The result then follows from Lemma 4.5.1. 2

4.7 Further work

In this chapter, we presented the structure of graphs in Ck when k is odd. One
of the basic classes is new and fully described. Theorem 4.1.1 could be used as
a decomposition theorem.

As said in the section 4.1, the final work with Linda Cook, Jake Horsfield,
Myriam Preissmann, Paul Seymour, Ni Luh Dewi Sintiari, Nicolas Trotignon
and Kristina Vušković will include a similar result for Ck when k is even and
at least 8. We are also working on an algorithm that would recognize graphs
in Ck with a running time smaller than the one presented in section 4.1.

We wonder if the result on the structure of graphs in Ck when k is odd
could be generalized to have a structural theorem for even-hole free graphs in
Free{C5, proper wheel} by relaxing the constraints on the length of the princi-
pal paths.
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Chapter 5

The class Free{C4, 4K1}

5.1 Introduction

In this chapter, we focus on the class Free{C4, 4K1}. It is one of the three
minimal open cases identified by Lozin and Malyshev [41] (see Chapter 3)
where the complexity of the coloring problem is still unknown.

An interesting fact about Free{C4, 4K1} is that, for every graph G in the
class, the only possible holes in G are C5, C6 and C7. This is because, every
hole of length at least 8 contains a 4K1. Furthermore, G does not contain
antiholes of length at least 6 because every such antihole contains a C4. Hence
the class of graphs Free{C4, 4K1, C6} is a subclass of even-hole-free graphs and
the class of graphs Free{C4, 4K1, C5, C7} is a subclass of perfect graphs.

In [26], Fraser et al. proved that graphs in Free{C4, 4K1, C5} that contain
a C7 have bounded clique-width. Hence, by Theorem 3.2.3, the coloring prob-
lem is polynomial time solvable when restricted to graphs in Free{C4, 4K1, C5}
that contain a C7. Since graphs in Free{C4, 4K1, C5, C7} are perfect and
since perfect graphs can be colored in polynomial time (see Section 3.3), it
follows that the coloring problem is polynomial time solvable for graphs in
Free{C4, 4K1, C5}. Later the same authors ([25]) proved that the coloring
problem is polynomial time solvable for graphs in Free{C4, 4K1, C6} that con-
tain a C7. They also proved that the coloring problem is polynomial time
solvable for graphs in Free{C4, 4K1, C6, C5 − twin}. A C5 − twin is displayed
on Figure 5.1.

101
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Figure 5.1: C5 − twin

In this chapter, we present partial results and some thoughts about two
subclasses of Free{C4, 4K1}. The first is the class of graphs in Free{C4, 4K1}
that contain an icosahedron minus one vertex (see Figure 5.3).The second is
the class of graphs in Free{C4, 4K1} whose vertex set can be partitioned into
3 cliques. Both of these subclasses contain C5 and C6.

5.2 When the graph contains an icosahedron

Given a graph H, a perfect blowup of H is any graph obtained from H by
replacing each vertex v ∈ V (H) by a clique Kv with the following property:
v ∈ Kv and for all u, v ∈ V (H), Ku and Kv are complete to each other if
uv ∈ E(H), and anticomplete otherwise. In other words, a graph G is a
perfect blowup of a graph H, if it contains H and if there exists a partition of
V (G) into |V (H)| cliques such that, if we take one vertex in each clique, the
subgraph of G induced by those vertices is isomorphic to H. In this chapter,
the notion of perfect blowup is similar but not the same as the notion of blowup
in chapter 4. Indeed, in this case, two blown-up cliques are either complete
or anticomplete to each other (depending on the adjacency between the two
initial vertices).

A graph G is an extended perfect blowup of a graph H if there exists V ′ ⊆
V (G) such that G[V ′] is a perfect blowup of H and V (G) \ V ′ is a clique
complete to V ′ (called a universal clique). It is easy to see that if H is in
Free{C4, 4K1} then any extended perfect blowup of H is also in Free{C4, 4K1}.

For a set of graphs H, a graph H is a H-fixer if H is twinless and every
graph in FreeH containing H is an extended perfect blowup of H. In this
section we are interested in {C4, 4K1}-fixers.

The clique-width of a graph G , denoted by cw(G) is the minimum number
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Figure 5.2: cw(K4) = 2

of labels necessary to build G using the four following operations:

1. Create a vertex u labelled with integer `.

2. Make the disjoint union of two already built graphs.

3. Add edges between all vertices with label i and all vertices with label j
(i 6= j).

4. Relabel all vertices of label i with label j.

For example, it is possible to build the graph Kn using 2 labels (see Fig-
ure 5.2. Create a first vertex with label 1. While there are less than n vertices,
create a new vertex with label 2, add an edge between vertices labeled 1 and
vertices with label 2 and relabel all vertices of label 2 with label 1. This method
gives cw(Kn) = 2.

Several problems that are NP-Complete in general can be solved in polyno-
mial time when restricted to graphs with bounded clique width. As explained
in Chapter 3, the following result is proved in [51].

Theorem 5.2.1 ([51]) The coloring problem is polynomial time solvable in
classes of graphs with bounded clique-width.

Among other results, it is proved in [8] that the class Free{C4, 4K1} has un-
bounded clique-width. But some subclasses might have bounded clique-width.
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A fact evidenced in [19] is that for any graph G, cw(G) ≥ cw(H) for every
graph H contained in G. The following lemma is a corollary from Proposition 1
in [9] and was proved in [17].

Lemma 5.2.2 For every graph H with at least one edge and every graph G
that is an extended perfect blowup of H, cw(G) = cw(H).

Proof. By definition of extended perfect blowup, there exists V ′ ⊆ V (G) such
that G[V ′] is a perfect blowup of H and V (G) \ V ′ is a universal clique. Set
G′ = G[V ′]. Note that cw(G′) is at least 2 because H has at least one edge.
Observe that cw(G) = cw(G′). This is because it is always possible to add a
universal vertex to a graph of clique width at least 2 without using an additional
label.

Proposition 1 in [9] states that the clique-width of a graph is the maximum
of the clique-width of its prime subgraphs (graphs that only have trivial mod-
ules, i.e. modules of cardinality at most 1 or equal to the entire graph). It is
easy to see that any prime graph either is a twinless graph or has at most 3
vertices. By the definition of a perfect blowup, the only subgraphs of G′ with
more than 3 vertices that are prime are induced by taking at most one vertex
from each blown up clique. Since all graphs of order 3 have clique width at
most 2, it follows that all prime subgraphs of G of clique-width at least 3 are
induced subgraphs of H. Hence the maximum of the clique-width of all prime
subgraphs of G′ is lower or equal to cw(H) and so cw(G′) ≤ cw(H). Since H
is contained in G, cw(H) ≤ cw(G) and so cw(G) = cw(G′) = cw(H). 2

By Lemma 5.2.2 any graph G in Free{C4, 4K1} containing a {C4, 4K1}-fixer
H, has cw(G) = cw(H). By Lemma 5.2.1, it follows that the coloring problem
is polynomial-time solvable for graphs in Free{C4, 4K1} containing a given
{C4, 4K1}-fixer.

The icosahedron (see Figure 5.3) is the skeleton graph of the platonic solid
of the same name. It is vertex-transitive and edge-transitive. The neighbour-
hood of each of its vertices is exactly a C5. The icosahedron is a graph in
Free{C4, 4K1}. We denote by ICO− the graph obtained from the icosahedron
by deleting one vertex (recall that all vertices of an icosahedron are equivalent).
We now prove that the icosahedron is a {C4, 4K1}-fixer and that ICO− is a
{C4, 4K1, icosahedron}-fixer.
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Figure 5.3: Icosahedron and ICO−

Lemma 5.2.3 The icosahedron is a {C4, 4K1}-fixer.

Proof. Let G be a graph in Free{C4, 4K1} that contains an icosahedron H.
We prove that G is an extended proper blowup of the icosahedron.

Vertices of H are denoted by {x, v1, v2, v3, v4, v5, u1, u2, u3, u4, u5, y} as dis-
played in Figure 5.3. Denote by H∗ a blowup of H contained in G, with a
maximum number of vertices. The blown-up cliques in H∗ are denoted by
{X, V1, V2, V3, V4, U5, U1, U2, U3, U4, U5, Y } such that, for all i ∈ {1, 2, 3, 4, 5}
we have that x ∈ X, ui ∈ Ui, vi ∈ Vi and y ∈ Y . Denote by W the set of
vertices in V (G) \ V (H∗) that are complete to H.

Observe first that G[W ] is a clique for otherwise two nonadjacent vertices
of G[W ] with any two nonadjacent vertices of H induce a C4, a contradiction.
Furthermore, G[W ] is complete to H∗ because every vertex a in H∗ has two
nonadjacent neighbours b and c in H. Hence, if there is a vertex w ∈ W
nonadjacent to a, then {a, b, w, c} induces a C4, a contradiction.

If V (G) = V (H∗) ∪W then G is an extended perfect blowup of the icosa-
hedron and we are done, so let w be a vertex in V (G) \ (V (H∗) ∪W ).

Since w /∈ W , w has at least one non-neighbour in H. Furthermore, w
has at least one neighbour in H for otherwise {w, u1, u3, x} induces a 4K1, a
contradiction. Since the icosahedron is connected, there is an edge e in H such
that w is adjacent to one end of e and not adjacent to the other end of e.
Since H is vertex-transitive and edge-transitive, we may assume without loss
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of generality that e = v1x and that wv1 ∈ E(G) and wx /∈ E(G).
It follows that w has at least one neighbour among u3 and u5, for otherwise

{w, x, u3, u5} induces a 4K1. By symmetry, choose wu5 ∈ E(G).
The conclusion follows from the next sequence of facts.

• w is anticomplete to V3 and to V4 for otherwise it induces a C4 with x,
v1 and a vertex in V3 ∪ V4.

• w is complete to U1 and to V5 for otherwise it induces a C4 with v1, u5

and a vertex in U1 ∪ V5.

• w is anticomplete to V2 for otherwise it induces a C4 with x, any vertex
of V5 and a vertex in V2.

• w is anticomplete to U3 for otherwise it induces a C4 with v1, any vertex
of V2 and a vertex in U3.

• w is anticomplete to U4 for otherwise it induces a C4 with any vertex of
V4, any vertex of V5 and a vertex in U4.

• w is complete to Y for otherwise it induces a 4K1 with any vertex of V2,
any vertex of V4 and a vertex in Y .

• w is complete to U2 for otherwise it induces a C4 with v1, any vertex of
Y and a vertex in U2.

• w is complete to U5 for otherwise it induces a C4 with any vertex of V5,
any vertex of Y and a vertex in U5.

• w is complete to V1 for otherwise it induces a C4 with any vertex of U2,
any vertex of V5 and a vertex in V1.

• w is anticomplete to X for otherwise it induces a C4 with any vertex of
U2, any vertex of V2 and a vertex in X.

By all the previous observations w is a twin of u1 and so, H∗ ∪ {w} is a
blowup of the icosahedron, a contradiction to the maximality of V (H∗). 2
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Lemma 5.2.4 ICO− is a {C4, 4K1, icosahedron}-fixer.

Proof. Let G be a graph in Free{C4, 4K1, icosahedron} that contains an ICO−

denoted by H. We prove that G is an extended perfect blowup of ICO− and
we are done.

Since G contains an ICO− then G contains a blowup of ICO− denoted
H∗. Choose H∗ subject to the maximality of its vertex set. Denote by
{X,U1, U2, U3, U4, U5, V1, V2, V3, V4, V5} the blown up cliques of H∗. Let W
be the set of vertices of G that are complete to H∗.

Let w be a vertex in V (G) \ (V (H∗) ∪W ). It exists for otherwise V (G) =
V (H∗) ∪W and we are done.

Let H be an ICO− induced in H∗. Choose H such that NH(w) is maximal.
Therefore, if w is nonadjacent to a certain vertex in H, w is anticomplete to the
corresponding blown up clique. Denote by {x, v1, v2, v3, v4, v5, u1, u2, u3, u4, u5}
the vertices of H as displayed in Figure 5.3. Denote by U the C5 induced by
{u1, u2, u3, u4, u5}.

In all this prof, subscripts have to be considered modulo 5.

(1) w has at least two adjacent neighbours in U .

We first show that w has at least two neighbours in U . For otherwise, without
loss of generality, w is anticomplete to {u1, u2, u3, u4} and w is anticomplete to
{U1, U2, U3, U4} by choice of H. Therefore w is complete to X for otherwise,
{u1, u3, w} with a non-neighbour of w in X induces a 4K1. Furthermore, if w
as a non-neighbour a in Vi for any i ∈ {2, 4, 5} then {ui−1, ui+2, a, w} induces
a 4K1. Hence w is complete to {V2, V4, V5}. If w as a non-neighbour a in Vi
for any i ∈ {1, 3} then {ui−1, ui+1, a, w} induces a C4. Hence w is complete to
{V1, V3}. Finally, w is anticomplete to U5 for otherwise {u1, v1, w} with a non-
neighbour of w in U5 induces a C4. Now w is a twin of x and H∗ with w induces
a blowup of ICO−, a contradiction with the maximality of H∗. Therefore w
has at least two neighbours in U .

Since U is a C5, if w has at least three neighbours in U then two of them
are adjacent. If w has exactly two neighbours that are nonadjacent, then there
exists i ∈ {1, 2, 3, 4, 5} such that ui−1 and ui+1 are the neighbours of w in
U . Now {ui−1, ui, ui+1, w} induces a C4. Hence w has at least two adjacent
neighbours in U . This proves (1).
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(2) w has at least two adjacent non-neighbours in U .

Suppose that w is not complete to U and set i ∈ {1, 2, 3, 4, 5} such that
wui /∈ E(G). It follows that w has a non-neighbour among {ui−1, ui+1} for
otherwise {ui−1, ui, ui+1, w} induces a C4. Hence, if w is not complete to U ,
the claim is proved.

Suppose that w is complete to U . Since G contains no icosahedron, w has at
least one neighbour in {v1, v2, v3, v4, v5, x}. If wx /∈ E(G) then, by symmetry,
v1w ∈ E(G). It follows that wv2 ∈ E(G) for otherwise {w, v1, v2, u3} induces
a C4. Therefore v3w ∈ E(G) for otherwise {v2, v3, u4, w} induces a C4. But
now, {w, v1, x, v3} induces a C4, a contradiction. So wx ∈ E(G). For all
i ∈ {1, 2, 3, 4, 5} w is adjacent to all a ∈ Vi, for otherwise, {w, ui, a, x} induces
a C4.

Hence w is complete to X since otherwise for any x∗ ∈ X nonadjacent to
w, {w, v1, x

∗, v3} induces a C4. Now for all i ∈ {1, 2, 3, 4, 5}, w is adjacent to
all b ∈ Ui, for otherwise, {w, ui+1, vi−1, a} induces a C4. Hence, w is complete
to H∗, a contradiction to the choice of w not in W . This proves (2).

By (2) and without loss of generality, set wu1, wu2 /∈ E(G) and by the choice
of H, w is anticomplete to U1 and U2. By (1) and by symmetry, u3w, u4w ∈
E(G). Now w is anticomplete to V1 for otherwise {w, v1, u2, u3} induces a C4.

Suppose that wx ∈ E(G). The contradiction follows from the next sequence
of implications :

• w is complete to V2 and to V3 for otherwise it induces a C4 with x, u3

and a vertex in V2 ∪ V3.

• w is complete to V4 for otherwise it induces a C4 with u4, x and a vertex
in V4.

• w is anticomplete to V5 for otherwise it induces a C4 with v1, v2 and a
vertex in V5.

• w is anticomplete to U5 for otherwise it induces a C4 with v5, x and a
vertex in U5.

• w is complete to X for otherwise it induces a C4 with v2, v4 and a vertex
in X.
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• w is complete to U3 for otherwise it induces a C4 with v2, u4 and a vertex
in U3.

• w is complete to U4 for otherwise it induces a C4 with v4, u3 and a vertex
in U4.

Now w is a twin of v3, a contradiction to the maximality of H∗. Therefore
wx /∈ E(G) and by the choice of H, w is anticomplete to X.

• w is complete to U4 and U5 for otherwise it induces a 4K1 with x, u2 and
a vertex in U4 ∪ U5.

• w is complete to U3 for otherwise it induces a 4K1 with x, u1 and a vertex
in U3.

If w is adjacent to both v2 and v5 then {x, v2, v5, w} induces a C4. Without
loss of generality, wv2 /∈ E(G) and by the choice of H, w is anticomplete to V2.

• w is complete to V4 for otherwise it induces a 4K1 with u1, v2 and a
vertex in V4.

• w is complete to V3 for otherwise it induces a C4 with u3, v4 and a vertex
in V3.

• w is anticomplete to V5 for otherwise it induces a C4 with x, v3 and a
vertex in V5.

By all the previous observations w is a twin of u4 and so, H∗ ∪ {w} is
an induced subgraph of a blowup of the icosahedron, a contradiction to the
maximality of V (H∗). 2

The following is a corollary of Lemma 5.2.4.

Corollary 5.2.5 Graphs in Free{C4, 4K1} containing ICO− have clique-width
bounded by 12.

In addition the coloring problem is polynomial time solvable when restricted
to graphs in Free{C4, 4K1} containing ICO−.
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Proof. If the graph contains an icosahedron, the result follows from
Lemma 5.2.3 and Lemma 5.2.2.

If the graph does not contain an icosahedron, the result follows from
Lemma 5.2.4 and Lemma 5.2.2.

The second part of the lemma follows from Theorem 5.2.1. 2

Fixers of small order are interesting because any graph in the class con-
taining a fixer has a rigid structure. The program in Appendix A searches
for {C4, 4K1}-fixers. It generates all graphs of G of order n in Free{C4, 4K1}
and tries to attach an additional vertex v with the following constraints : the
resulting graph is in Free{C4, 4K1}, v is not complete to G and v has no twin
in G. After running the program in appendix A for all graphs of order at most
12, we were able to assert the following facts : There exists 16 {C4, 4K1}-fixers
of order at most 12 for Free{C4; 4K1} and they all have 12 vertices.

5.3 Partitioning into cliques

In this section, we say that a graph is k-CP (k clique partitionable) for a fixed
positive integer k, if its vertex set can be partitioned into k cliques i.e. if the
graph admits a k-clique cover. In [28], Gaspers and Huang proved that graphs
in Free{2P2, K4} are 4-colorable. It implies that graphs in Free{C4, 4K1} are
4-CP. In this section, we focus on 3-CP graphs in Free{C4}. Those graphs are
trivially in Free{C4, 4K1}.

Recall that a graph is a half graph if it is in Free{3K1, C4, C5}. For any two
disjoints cliques K1 and K2 contained in a graph G ∈ Free{C4, 4K1}, it is easy
to see that G[K1 ∪K2] belongs to Free{3K1, C5} (because C5 is not 2-CP). If,
in addition, G is also a graph in Free{C4} then G[K1 ∪K2] is a half graph. It
follows directly that any 2-CP graph in Free{C4} is a half graph.

Recall also that in any graph G an ordering on the vertices v1, . . . , vk such
that NG(vi) ⊆ NG[vj] for all integers i and j satisfying 1 ≤ i ≤ j ≤ k is called
a domination ordering (see Chapter 4 Section 4.2).

Theorem 5.3.1 (Folklore) A graph G is a half graph if and only if V (G)
can be partitioned into two (possibly empty) cliques K1 and K2 such that, for
i ∈ {1, 2} vertices in Ki admits a domination ordering (i.e. for any couple of
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vertices x and y in K1 (resp. in K2), either NG[x] ⊆ NG[y] or NG[y] ⊆ NG[x]).

Proof. If G is a half graph, then the complement of G contains (as a subgraph,
not necessarily induced) no cycle of odd length because a shortest such cycle
cannot have length 3 (it would yield a 3K1 in G), cannot have length 5 (it
would yield a C5 in G) and cannot have length at least 7 (it would yield a
C4 in G). It follows that the complement of G is a bipartite graph (because
a graph is bipartite if and only if it does not contain an odd cycle [1]), so
V (G) can be partitioned into two cliques as claimed. The condition on the
neighbourhoods then follows from the fact that G contains no C4.

The converse statement is clear. 2

There are several ways to see that the coloring problem is in P when re-
stricted to half graphs. One way is to see that they are perfect (because com-
plement of bipartite graphs). Another way is to see that half graphs are graphs
with Dilworth number 2 and so, by [3] they are interval graphs. Since any 2-CP
graph in Free{C4} is a half graph, it follows that these graphs can be colored
in polynomial time. But it is interesting to note that, using clique-width op-
erations, it is possible to build any half graph with 3 labels. In addition, the
two cliques always remain with two distinct labels.

Lemma 5.3.2 Half graphs have clique-width at most 3.

Proof. We prove by induction on the number of vertices the following property:
Any half graph G with cliques partition K1, K2 can be built with clique-width
operations using 3 labels such that all vertices of K1 end with label 1 and all
vertices with label K2 end with label 2.

It is easy to see that a simple edge is a half graph that satisfies the property.
Let G be a half graph with clique partition K1, K2. By definition of half

graphs, there exists a vertex v that is either in K1 and complete to K2 or in
K2 and anticomplete to K1.

The graph G[V \ {v}] is a half graph with clique partition K1 \ {v} and
K2 \ {v}. By the induction hypothesis, it is possible to build G[V \ {v}] with
clique-width operations using 3 labels (1,2 and 3) such that all vertices in
K1 \ {v} end with label 1 and all vertices in K2 \ {v} end with label 2. Build
v with label 3. If v ∈ K1 then v is complete to K2. Add an edge between all
vertices with label 3 and all vertices with labels 1 and 2. Relabel all vertices
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of label 3 with label 1. If v ∈ K2 then v is anticomplete to K1. Add an
edge between all vertices with label 3 and all vertices with label 2. Relabel
all vertices of label 3 with label 2. In both cases G is build with clique-width
operations using 3 labels such that all vertices of K1 end with label 1 and all
vertices with label K2 end with label 2. 2

Recall that a graph in Free{C4, 4K1} is 4-CP ([28]). Hence, graphs in
Free{C4, 4K1} are graphs whose vertex set is made of at most 4 cliques,
each pair of cliques inducing a half graph. It could be nice to generalise
Lemma 5.3.2 in order to bound the clique-width in some particular subclasses
of Free{C4, 4K1}. But take three cliques A, B and C in any graph G in
Free{C4, 4K1}. We have that G[A∪B] is a half graph so as G[A∪C]. But it is
possible that the dominating order (induced by Theorem 5.3.1) on the vertices
in A is not the same depending on which half graph is considered. Hence it is
possible that there is no vertex that is either complete or anti-complete to the
other cliques as used in the proof of Lemma 5.3.2.

On another hand, let G be a graph in Free{C4, 4K1} that can be
decomposed into k cliques K1, . . . , Kk (k ∈ N) such that, for each Ki

(i ≤ k) there is at most one j ≤ k such that Ki is neither complete nor
anticomplete to Kj (in that case, by some previous observation, G[Ki ∪ Kj]
form a half graph). By Lemma 5.3.2, all such graphs have clique-width
bounded by k ( k being the number of cliques). This is because one can
build, using 3 labels, all couples of cliques Ki and Kj such that G[Ki ∪ Kj]
is a half graph and with all vertices of Ki ending with label i and all
vertices of Kj ending with label j (see proof of Lemma 5.3.2). At this point we
just have to make complete the cliques that are complete and the graph is built.

A way to divide the class of Free{C4, 4K1} into two interesting subclasses is
to consider those that are 3-CP and those that are not 3-CP. In [35], Hoàng and
Trotignon presented a construction of graphs (ring on 3 sets, see Section 4.2.2)
in Free{C4, 4K1} that are 3-CP and have unbounded clique-width.

As a corollary of next Lemma 5.3.3, the coloring problem restricted to
graphs that can be partitioned into 3 cliques is NP-complete. Recall that
the class of 3-CP graphs in Free{C4} is the complement class of 3-colourable
graphs without 2K2. To prove Lemma 5.3.3, we use the arguments used
by Král et al. to prove that the clique covering problem is NP-complete to
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Free{C4, diamond,K4, C5} in [39]. One can note that Lemma 5.3.3 also fol-
lows from a result on List Colouring shown in [6].

Lemma 5.3.3 The clique covering problem is NP-Complete when restricted
to 3-colorable graphs.

Proof. We use a variant of the satisfiability problem: each clause contains at
most three variables and each variable is in exactly three clauses, once positive
and twice negated. The NP-completeness of this problem is proved in [23].

Let Is be an instance of the variant of the satisfiability problem described
before, with a set of boolean variables denoted by X and a set of clauses
denoted by C.

From Is we built an instance Ic of the clique covering in 3-colorable graphs
and show that Is has a “Yes” answer if and only if Ic has a “Yes” answer.
An instance of Ic is composed by an integer k and a 3-colorable graph G (see
Section 2.4). Set k = |X|+ 3|C| and built G as follow.

For each variable x ∈ X, build a graph Gx with vertex set {vx, x+, x−1 , x
−
2 }

and edge set {vxx+, vxx
−
1 , vxx

−
2 , x

−
1 x
−
2 }. For all variables x ∈ X, vertices vx are

called flags.
For each clause c build Gc that is a copy of C7 with every variable x in c

corresponding to a vertex in Gc labelled c(x). We call such vertices ports in
Gc. Two distinct ports are nonadjacent. If the clause c contains two literals,
Gc has only two ports (at distance at least 2). Vertices that are not ports are
called normal.

vxx+

x−1

x−2

Gx

c(x) •

c(z)

•
•

c(y)

•

Gc

Figure 5.4: Gx and Gc

We now obtain G in the following way: for every variable x appearing
positively in a clause c and negated in the two clauses d1 and d2, identify c(x)
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and x+ into one vertex, d1(x) and x−1 into one vertex and d2(x) and x−2 into
one vertex.

Observe that there is a proper coloring of G that uses 3 colors. For every
variable x color vx with 1, x−2 with color 2 and both x−1 and x+ with color 3.
Observe that all normal vertices are of degree 2. Therefore, it is always possible
to complete this coloring using colors 1, 2 and 3. Hence G is 3-colorable.

Recall that a clique cover of a graph is a partition of its vertex set into
cliques. Given a set of disjoint cliques K, we say that a port c(x) is checked
by K if there is a clique in K containing both vx and c(x).

Suppose that Is has a “Yes” answer and let A be a True/False assignment
on the variables in X that satisfied the formula. For every x ∈ X let Kx be
the clique {vx, x+} if A(x) =True and the clique {vx, x−1 , x−2 } otherwise. Set
K = {Kx : x ∈ X} and observe that |K| = |X|. For every clause c ∈ C, let
Mc be a set of cliques that covers the vertices of Gc that are not included
in any clique of K. Observe that cliques in Mc contains at most 2 vertices.
Denote by M the disjoint union of all Mc for c ∈ C. Since A satisfied the
formula, every clause has at least one port checked by K. Hence, for every
clause c ∈ C, |Mc| ≤ 3 and so |M| ≤ 3|C|. Now K ∪M is a clique cover of G
of size at most |X|+ 3|C|. Hence Ic has a “Yes” answer.

Suppose now that Ic has a “Yes” answer and let Φ be a set of |X| + 3|C|
cliques that covers G. Define A, a True/False assignment on the variables in
X such that A(x) =True if and only if {vx, x+} ∈ Φ. Observe that a clause
c ∈ C is satisfied by A if at least one of the ports of Gc is checked by Φ. Hence,
the formula of Is is satisfied if and only if, for all clauses c ∈ C, Gc have at
least one port checked by Φ.

Denote by K1 the set of cliques in Φ that contains a flag and denote by
Kc

2 the cliques in Φ containing normal vertices of Gc for every clause c ∈ C.
Set K2 =

⋃
c∈C

Kc
2. By construction of G and since Φ is a partition of V (G),

K1 and K2 are disjoint and |K1| = |X|. By construction, for c1 and c2, two
distinct clauses in C, Kc1

2 and Kc2
2 are disjoint. Because for each clausesc ∈ C,

Gc has a least 3 nonadjacent normal vertices, it follows that |Kc
2| ≥ 3 and

so |K2| ≥ 3|C|. Hence Φ = K1 ∪ K2 and |Kc
2| = 3 for all c ∈ C. Since all

cliques of size at least 3 in G contains a flag, K2 contains only cliques of size
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2. Since, for all c ∈ C, Gc is a C7 that is covered by at most 3 cliques of size 2
from K2, it follows that at least one vertex in Gc is covered by a clique in K1.
Such a vertex has to be a port and is checked in K1. Therefore A satisfies the
formula and Is has a “Yes” answer.

We proved that Is have a “Yes” answer if and only Ic have a “Yes” answer.
Since passing from Is to Ic can be done in polynomial time, it follows that the
clique covering problem is NP-Complete when restricted to 3-colorable graphs.

2

As a corollary of Lemma 5.3.3, the coloring problem is NP-complete when
restricted to the complement of 3-colourable graphs. Furthermore coloring
Free{C4} graphs is also NP-complete by Theorem 3.2.2. We wonder if the
intersection of these two problems, that is coloring 3-CP graphs in Free{C4},
could yield to a polynomial result.

ICO−2

C+
6

C5 +K1
C7

Π5

F13

Figure 5.5: Graphs of lemma 5.3.4
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A nice way to understand 3-CP graphs in Free{C4}, is to find the minimal
set of graphs H ∗ such that 3-CP graphs in Free{C4} are exactly the graphs
in Free H ∗. Observe that the icosahedron is not 3-CP. The following is a
consequence of a result of Maffray and Morel [42] (notations correspond to the
graphs displayed on Figures 5.5 ):

Lemma 5.3.4 The class of 3-CP graphs in Free{C4} is exactly the class
Free{C4, 4K1, Ico

−2, C+
6 , C5 +K1, C7,Π5, F13}.

We observed that all {C4, 4K1}-fixers returned by the program in Ap-
pendix A (see end of Section 5.2) contain at least one of the obstructions
from Lemma 5.3.4. Hence, all {C4, 4K1}-fixers of order 12 are not 3-CP.

5.4 Further works

In this chapter we present some approaches in the study of graphs in
Free{C4, 4K1}.

The next step could be the study of the structure of 3-CP graphs in
Free{C4} that contain a C5 using Lemma 5.3.4. Note that Ico−2, C+

6 , C5 +K1,
Π5 and F13 all contain a C5. The goal is to answer the question : does this
additional constraint lead to a polynomial result for coloring this subclass of
Free{C4, 4K1}?

Another approach is to use the program in Appendix A in two directions.
The first direction consists of running the program with graphs of order 13
excluding the ones that contains {C4, 4K1}-fixers of order 12. The second
direction consists of going backward and looking for graphs of order 11 in
Free{C4, 4K1} such that, it is not possible to attach a vertex to them with-
out creating a twin, a universal vertex or a {C4, 4K1}-fixer of order 12. It
should output at least the icosahedron minus one vertex. These two approaches
might give insight to possibly answer the questions : Are there finitely many
{C4, 4K1}-fixers and how general are they?



Chapter 6

Coloring antiprismatic graphs

6.1 Introduction

A triangle in a graph is a set of three pairwise adjacent vertices. A graph
G is prismatic if for every triangle T of G, every vertex of G not in T has a
unique neighbour in T . In other words, the class of prismatic graphs is the class
Free{C3+K1, diamond,K4}. A graph is antiprismatic if its complement is pris-
matic. It is straightforward to check that antiprismatic graphs are precisely
Free{K1,3, 2P1 + P2, 4K1} graphs. Observe that if {s1, s2, s3} and {t1, t2, t3}
are two vertex-disjoint triangles in a prismatic graph G, then there is a perfect
matching in G between {s1, s2, s3} and {t1, t2, t3}, so that {s1, s2, s3, t1, t2, t3}
induces the complement of a C6, which is sometimes called prism, see Fig-
ure 6.1. This is where the name prismatic comes from. Recall that the prism
is a long prism with all paths of length 1 (cf Section 4.2.2).

As presented in Chapter 3, the complexity of coloring antiprismatic graphs
is still unknown. It is exactly one of the three minimal open cases for the
complexity of the coloring problem presented by Lozin et al. [41]. Recall that
the clique cover problem is the problem of finding, in an input graph G, a
minimum number of cliques that partition V (G). It is equivalent to the coloring
problem for the complement. It is therefore NP-complete in the general case.
Our work is about the coloring problem for antiprismatic graphs. However,
it is more convenient to view it as a study of the clique cover problem for
prismatic graphs. Hence, from here on, we focus on the prismatic graphs and

117
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s1

s2

s3

t1

t2

t3

Figure 6.1: The prism

the clique cover problem.

Chudnovsky and Seymour gave a full structural description of prismatic
graphs (and therefore of their complement). They showed that the class can
be divided into two subclasses, to be defined later: the orientable prismatic
graphs, and the non-orientable prismatic graphs. They described the structure
of the two subclasses: orientable in [12] and non-orientable in [13]. Javadi and
Hajebi [37] discovered a flaw in [13], that they could fix at the expense of
adding a basic class in the structural description.

Our main result is that there exists an O(n7.5)-time algorithm to solve
the clique cover problem in non-orientable prismatic graphs. Our proof is
based on the existence, in any non-orientable prismatic graph G with more
than 27 vertices, of a set of at most 5 vertices that intersects all triangles of
G (see Theorem 6.4.1). This follows directly from the structural description,
but needs careful verification. For the orientable case, we could not settle the
complexity of the clique cover problem, but we prove that a related problem
can be solved in polynomial time: the vertex-disjoint triangles problem. (It
consists in finding a maximum number of disjoint triangles in an input graph).
This problem is known to be NP-hard in the general case [32].

Our algorithm for the clique cover problem in the non-orientable case relies
on the existence of a hitting set of the triangles of bounded size. Hajebi [33]
observed that the existence of such a set can be proved with a short argument
that relies on several lemmas of [13]. This argument gives a hitting set of size
at most 15. The way we use hitting sets then provides an algorithm for the
clique cover problem of complexity O(n17.5).



6.2. PRISMATIC GRAPHS 119

Outline

In Section 6.2 we give the definitions specific to this chapter such as several
results about prismatic graphs.

In Section 6.3, we give the structural description of non-orientable prismatic
graphs from [13] and show that it implies the existence of a set of bounded
number of vertices that intersects all triangles. Since our proof mostly relies on
the structural description of Chudnovsky and Seymour, we have to give many
long definitions extracted from their work.

In Section 6.4, we show that this yields a polynomial time algorithm for
the clique cover problem in non-orientable prismatic graphs.

In Section 6.5, we prove that the vertex-disjoint triangles problem can be
solved in polynomial time for all prismatic graphs. Our proof does not rely on
the structural description from [12].

In Section 6.6, we describe Hajebi’s approach.

Section 6.7 is devoted to concluding remarks.

6.2 Prismatic graphs

Recall that a clique cover of G is a set of disjoint cliques of G that partitions
V (G). A triangle in a graph G is covered by a set S of vertices if at least one
vertex of the triangle is in S. A set S ⊆ V (G) is a hitting set of the triangles
of G if every triangle in G is covered by S. We often write hitting set instead
of hitting set of the triangles.

Orientable and non-orientable prismatic graphs

Let T = {a, b, c} be a triangle in a graph G. There are two cyclic permutations
of T , and we use the notation a→ b→ c→ a to denote the cyclic permutation
mapping a to b, b to c and c to a. Thus a → b → c → a and b → c → a → b
mean the same permutation.

A prismatic graph G is orientable if there is a choice of a cyclic permutation
O(T ) for every triangle T of G, such that if S = {s1, s2, s3} and T = {t1, t2, t3}
are disjoint triangles and siti is an edge for 1 ≤ i ≤ 3, then O(S) is s1 →
s2 → s3 → s1 if and only if O(T ) is t1 → t2 → t3 → t1. In that case, the set
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of permutations containing O(T ) for every triangle T of G is called a correct
orientation of G.

A graph G is non-orientable if there exists no correct orientation of G.
Orientable and non-orientable prismatic graphs have very different struc-

tures. By Theorem 6.4.1, a non-orientable prismatic graph contains at most 9
disjoint triangles. It might seem surprising that having a tenth triangle in a
prismatic graph implies the existence of an orientation. This is because hav-
ing a large number of disjoint triangles in a prismatic graph entails so many
constraints that the only way to satisfy them all is in an orientable prismatic
graph.

There is a nice characterisation of orientable prismatic graphs. The rotator
and the twister are the graphs represented on Figure 6.2. In the rotator there
exists one triangle that intersects all triangles, we call it the center of the
rotator.

•

•

c

•

a

•

b

•

•

•

•

•

•

•

•

•

•

•

•

Figure 6.2: The rotator with center {a, b, c} and the twister

Theorem 6.2.1 (6.1 in [13]) A prismatic graph is orientable if and only if
it is Free{rotator, twister}.

The structure of non-orientable prismatic graphs presented in [13] can be
seen as a description of how the rotator and the twister can be completed in
order to obtain all non-orientable prismatic graphs.
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6.3 Non-orientable prismatic graphs

Our goal in this section is to prove the following.

Lemma 6.3.1 Every prismatic non-orientable graph contains a hitting set of
the triangles of cardinality smaller or equal to 10.

The core of a graph G is the union of all triangles of G. Clearly, in a
prismatic graph, deleting an edge between two vertices that are not in the
core yields a prismatic graph. It follows that vertices not in the core are less
structured than vertices in the core. Therefore, to prove Lemma 6.3.1, we may
restrict our attention to the cores of the graphs in the class.

A prismatic graph G with core W is rigid if

• there do not exist distinct u, v ∈ V (G)\W adjacent to precisely the same
vertices in W , and

• every two non-adjacent vertices of G have a common neighbour in W .

Replicating a vertex v in a graph G means replacing v by a stable set S
that is complete to N(v) and anticomplete to V (G) \ (N(v) ∪ {v}). We need
the following.

Theorem 6.3.2 (2.2 from [13]) Every non-orientable prismatic graph can
be obtained from a rigid non-orientable prismatic graph by replicating vertices
not in the core, and then deleting edges between vertices not in the core.

It follows from this result that to prove Lemma 6.3.1, it is enough to prove
it for rigid non-orientable prismatic graphs.

Theorem 4.1 in [13] states that the class of rigid non-orientable prismatic
graphs is included in the union of 13 classes. Javadi and Hajebi [37] discovered
that one class is missing in Theorem 4.1, the so-called class F0. We describe
these 14 classes whose union is called the menagerie.

In the definition of the menagerie, two operations are sometimes needed,
the so-called multiplication and exponentiation.

The rest of the section is therefore organized as follows. The first two sub-
sections describe the multiplication and exponentiation together with a proof
that applying them under some specific hypotheses preserves the existence of a
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hitting set. The next 14 subsections each presents one class of the menagerie,
together with a proof of the existence of a small hitting set. These subsections
with Theorem 6.3.2 therefore form the proof of Lemma 6.3.1.

Before we start, we state the following lemma which is a direct consequence
of the definition of prismatic graphs.

Lemma 6.3.3 If v be a vertex of a prismatic graph G then NG(v) is a hitting
set of G.

6.3.1 Multiplication

Let H be a prismatic graph and X be a subset of vertices of H. For each
vertex x ∈ X, let Ax be a set of vertices not in V (H) such that for all distinct
x, x′ ∈ X, Ax ∩ Ax′ = ∅. Let A = ∪x∈XAx and let ϕ be a map from A to the
set of integers such that for all x ∈ X, ϕ is injective on Ax.

Let now G be the graph defined as follows:

• V (G) = (V (H) \X) ∪ A.

Let v and v′ be two distinct vertices of G.

• If there is an x ∈ X such that both v and v′ are in Ax then v and v′ are
not adjacent. Ax is a stable set of G.

• If v and v′ are in V (H) \X then vv′ ∈ E(G) if and only if vv′ ∈ E(H).

• If v ∈ V (H) \ X and v′ ∈ Ax for some x ∈ X then vv′ ∈ E(G) if and
only if vx ∈ E(H).

• If v ∈ Ax and v′ ∈ Ax′ where x, x′ ∈ X are distinct and adjacent in H,
then vv′ ∈ E(G) if and only if ϕ(v) = ϕ(v′).

• If v ∈ Ax and v′ ∈ Ax′ where x, x′ ∈ X are distinct and nonadjacent in
H, then vv′ /∈ E(G) if and only if ϕ(v) = ϕ(v′).

The graph G is obtained from H by multiplying X. For x ∈ X, the set Ax

is the set of new vertices corresponding to x and ϕ is the corresponding integer
map. As noted in [13], the multiplication does not preserve being prismatic in
general, but it is used only in situations where it does.
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Lemma 6.3.4 If H[X] is an induced subgraph of C4 and non-adjacent vertices
of X have no common neighbours in V (H)\X then any hitting set of H disjoint
from X is also a hitting set of G.

Proof. Let SH be a hitting set of SH . We prove that every triangle {u, v, w}
in G is covered by SH . If {u, v, w} ⊆ V (H), then it is covered by SH , so we
may assume that |{u, v, w} ∩ A| > 0.

Case I: |{u, v, w} ∩ A| = 1

Suppose up to symmetry that there exists x ∈ X such that u ∈ Ax and
v, w ∈ V (H) \ X. Then {x, v, w} is a triangle in H and it has to be covered
by SH . Since X ∩ SH = ∅, v or w belongs to SH . Hence, SH covers {u, v, w}.

Case II: |{u, v, w} ∩ A| = 2

Since for every x ∈ X, Ax is a stable set, we may assume up to symmetry
that there exist distinct x, x′ ∈ X such that u ∈ Ax, v ∈ Ax′ and w ∈ V (H)\X.
Since w is a common neighbour of u and v in G, w is a common neighbour of
x and x′ in H. From our assumptions, it follows that x and x′ are adjacent in
H. Hence {x, x′, w} is a triangle in H and it has to be covered by SH . Since
X ∩ SH = ∅, w ∈ SH , we have SH covers {u, v, w}.

Case III: |{u, v, w} ∩ A| = 3

Since for every x ∈ X, Ax is a stable set, there exist then distinct x, y, z ∈ X
such that u ∈ Ax, v ∈ Ay and w ∈ Az. Because of the hypothesis on X,
H[{x, y, z}] induces a P3. Without loss of generality, suppose xz 6∈ E[H].

Since x and y are adjacent in H, in order to have u and v also adjacent in
G, we have ϕ(u) = ϕ(v). Similarly, ϕ(v) = ϕ(w). Hence ϕ(u) = ϕ(w).

But since x and z are not adjacent, in order to have u and v adjacent in G,
we need ϕ(u) 6= ϕ(w), a contradiction. 2

6.3.2 Exponentiation

A triangle T = {a, b, c} of a graph G is a leaf triangle at c if every triangle of
G distinct from T contains neither a nor b.

Let T = {a, b, c} be a leaf triangle at c of a prismatic graph H. We define a
partition of the neighbours of c, distinct from a and b, into three disjoint sets:
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D1, D2, and D3 as follows (see Figure 6.3). Let v 6= a, b be a vertex adjacent
to c in H, then :

• v ∈ D1 if v belongs to a triangle that does not contain c.

• v ∈ D2 if v /∈ D1 and v belongs to a triangle (then this triangle is unique
and contains c).

• v ∈ D3 if v does not belong to any triangle.

a b

c

•

•

•

•

• •

• •

D1

D2 D3

Figure 6.3: Neighbourhood of c

Let A, B and C be three pairwise disjoint sets of vertices.
The graph G is defined as follows:

• V (G) = (V (H) \ {a, b}) ∪ A ∪B ∪ C

with the following adjacencies:

• Vertices in V (H)\{a, b} are adjacent in G if and only if there are adjacent
in H.
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• A, B and C are stable sets.

• Every vertex in A has at most one neighbour in B and vice versa.

• Every vertex in V (H) \ {a, b} adjacent (resp. non-adjacent) to a in H is
complete (resp. anticomplete) to A in G.

• Every vertex in V (H) \ {a, b} adjacent (resp. non-adjacent) to b in H is
complete (resp. anticomplete) to B in G.

• C is complete to D1∪D3 and anticomplete to V (H) \ ({a, b}∪D1∪D3).

• Every vertex in C is adjacent to exactly one end of every edge between
A and B and adjacent to every vertex in A ∪ B with no neighbour in
A ∪B.

The graph G is obtained from H by exponentiating the leaf triangle {a, b, c}.
Before proving that exponentiation preserves hitting sets, note that every

prismatic graph H with a leaf triangle T = {a, b, c} at c has a hitting set SH

that contains c but neither a nor b.

Lemma 6.3.5 If G is prismatic and SH is a hitting set of H containing c but
neither a nor b, then SH is also a hitting set of G.

Proof. Let {u, v, w} be a triangle in G. We show that one of u, v or w belongs
to SH . Since u, v, w ∈ V (G), none of them is a or b.

Case I: |{u, v, w} ∩ (V (H) \ {a, b})| = 3
This case is trivial because then {u, v, w} is a triangle in H and has to be

covered by SH .

Case II: |{u, v, w} ∩ (V (H) \ {a, b})| = 2
Without loss of generality suppose u /∈ V (H) and v, w ∈ V (H).
If u belongs to A, that means that {a, v, w} is a triangle in H. By our

hypothesis this triangle should be T and c ∈ {u, v, w}. So SH covers {u, v, w}.
The case where u belongs to B is similar.

If u belongs to C, then v and w have to belong to D1 ∪D3 by definition of
the neighbourhood of C. Then {c, v, w} is a triangle in G. So {u, v, w, c} is a
diamond in G, a contradiction to G being prismatic.
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Case III: |({u, v, w} ∩ V (H) \ {a, b})| = 1
Without loss of generality suppose w ∈ V (H) \ {a ∪ b}. Note that A, B

and C are stable sets so {u, v, w} contains at most one vertex of each.
Suppose that one of u, v is in C (so the other one is in A ∪ B). Up to

symmetry, we may assume that u belongs to A and v belongs to C. Then
aw ∈ E(H) and cw ∈ E(H). This means that {a, w, c} is a triangle in H.
This contradicts {a, b, c} being a leaf triangle at c.

Suppose that none of u, v belong to C. Up to symmetry, suppose u ∈ A and
v ∈ B. So, {a, b, w} is a triangle of H and this triangle can only be {a, b, c}.
So w = c ∈ SH .

Case IV: |({u, v, w} ∩H \ {a, b})| = 0
This case cannot happen because A, B and C are stable sets and every

vertex of C has a unique neighbour in any edge of G[A ∪B]. 2

6.3.3 Schläfli-prismatic graphs

We have to define the Schläfli graph, and it is more convenient to work in the
complement. The complement of the Schläfli graph has 27 vertices rij, s

i
j, t

i
j,

1 ≤ i, j ≤ 3 with adjacencies as follows. For 1 ≤ i, i′, j, j′ ≤ 3:

• If i 6= i′ and j 6= j′, then rij is adjacent to ri
′

j′ , s
i
j is adjacent to si

′

j′ and tij
is adjacent to ti

′

j′ .

• If j = i′, then rij is adjacent to si
′

j′ , s
i
j is adjacent to ti

′

j′ and tij is adjacent

to ri
′

j′ .

There are no other edges.

This graph will be denoted by Σ throughout the rest of the paper. We will
often rely on the fact that Σ is vertex-transitive.

We introduce more notation. We set R = {rij : 1 ≤ i, j ≤ 3}, S = {sij :
1 ≤ i, j ≤ 3} and T = {tij : 1 ≤ i, j ≤ 3} and call tile each of the sets R, S,
T . We call line i of R the set {rij : 1 ≤ j ≤ 3} and column j of R the set
{rij : 1 ≤ i ≤ 3}. We use a similar notation for S and T .
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By definition an edge between u and v in a same tile exists if and only if u
and v are in different lines and columns. Edges between tiles are conveniently
described as follows: for every i = 1, 2, 3, column i of R is complete to line i
of S, column i of S is complete to line i of T and column i of T is complete to
line i of R. There are no other edges.

A triangle in Σ is internal if it is included in a tile, and external otherwise.
The observations above show that an internal triangle is made of three vertices
that are in three different lines, and also in three different columns of the
tile. An external triangle {u, v, w} satisfies {u, v, w} = {rij, s

j
k, t

k
i } for some

1 ≤ i, j, k ≤ 3.
This shows that there exist 6 internal triangles in each tile and 27 external

triangles, that gives 45 triangles in total. Each vertex lies in two internal
triangles and three external triangles. Every edge is contained in exactly one
triangle. See Figure 6.4.

r1
1

r2
1

r3
1

r1
2

r2
2

r3
2

r1
3

r2
3

r3
3

s1
1

s2
1

s3
1

s1
2

s2
2

s3
2

s1
3

s2
3

s3
3

t11

t21

t31

t12

t22

t32

t13

t23

t33

Figure 6.4: Σ, the complement of the Schläfli graph. (Only the 10 edges and
the 5 triangles that contain r3

3 are represented.)

We call Schläfli-prismatic graph every induced subgraph of Σ. It is easy to
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see that they are prismatic.

Lemma 6.3.6 A smallest hitting set of Σ has cardinality 10.

Proof. Every vertex v in Σ has degree 10, so by Lemma 6.3.3, NΣ(v) is a
hitting set of Σ of size 10.

Suppose for a contradiction that W is a hitting set of Σ and |W | = 9. Since
Σ contains 45 triangles and every vertex of Σ is contained in exactly 5 triangles
(2 internal and 3 external), no two vertices of W hit the same triangle. Since
every edge of Σ is contained in a triangle, it follows that W is a stable set.

For each tile X, a maximum stable set in Σ has cardinality 3 and is a line
or a column. It follows that for X ∈ {R, S, T}, W ∩X is a line or a column of
X.

By the pigeon hole principle, W contains either two lines or two columns
(of different tiles). This contradicts the fact that W is a stable set, because
between two lines (or two columns) of different tiles, there exists at least one
edge.

2

6.3.4 Fuzzily Schläfli-prismatic graphs

Let {a, b, c} be a leaf triangle at c in a Schläfli-prismatic graph H. If a prismatic
graph G can be obtained from H by multiplying {a, b}, and A, B are the two
sets of new vertices corresponding to a, b respectively, the graph G is a fuzzily
Schläfli-prismatic graphs. Note that this operation is not iterated.

Lemma 6.3.7 Every fuzzily Schläfli-prismatic graph has a hitting set of car-
dinality smaller or equal to 5.

Proof. Let G, H and {a, b, c} as in the definition.
Since a belongs to exactly one triangle of H and to exactly 5 triangles in

Σ, we have |NH(a)| ≤ |NΣ(a)| − 4 = 6.
By Lemma 6.3.3, NH(a) is a hitting set of H.
Since b ∈ NH(a) and since the unique triangle containing b is {a, b, c}

which is already covered by c, we have that NH(a) \ {b} is a hitting set of H
of cardinality at most 5.
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By Lemma 6.3.4 it is also a hitting set of G. 2

6.3.5 Graphs of parallel-square type

Let X be the edge-set of some C4 of the complete bipartite graph K3,3, and let
z be the edge of K3,3 disjoint from all edges in X. Thus X induces a C4 of the
line graph H of K3,3. Any graph G obtained from H by multiplying X, and
possibly deleting z, is prismatic and is called a graph of parallel-square type.

•

•

•
z

•

•

•

•

•

X

Figure 6.5: Line graph of K3,3, X, z as defined in Section 6.3.5

Lemma 6.3.8 Every prismatic graph of parallel square type admits a hitting
set of cardinality smaller or equal to 4.

Proof. Let H, X, z and G as in the definition.
Let SH = V (H) \ (X ∪ {z}). Obviously SH is a hitting set of H.
The set X induces a C4 in H and no two non-adjacent vertices of X have

common neighbours in V (H) \X. By Lemma 6.3.4, SH is a hitting set of G.
Note that the deletion of z does not change the result because z is not in

SH . Since |SH | = 4, the proof is completed. 2

6.3.6 Graphs of skew-square type

Let K be a graph with five vertices a, b, c, s, t, where {s, a, c} and {t, b, c} are
triangles and there is no more edge. Let H be obtained from K by multiplying
{a, b, c}, let A, B, C be the sets of new vertices corresponding to a, b, c
respectively, and let ϕ be the corresponding integer map. Add three more
vertices d1, d2, d3 to H, with adjacency as follows:
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• d1, d2, d3, s, t are pairwise non-adjacent,

• for 1 ≤ i ≤ 3 and v ∈ A∪B, di is adjacent to v if and only if 1 ≤ ϕ(v) ≤ 3
and ϕ(v) 6= i,

• for 1 ≤ i ≤ 3 and v ∈ C, di is non-adjacent to v if and only if 1 ≤ ϕ(v) ≤ 3
and ϕ(v) 6= i.

Any graph obtained by this way is prismatic, and is called a graph of skew-
square type.

Lemma 6.3.9 Every prismatic graph of skew-square type admits a hitting set
of cardinality smaller or equal to 5.

Proof. Let G be a graph of skew-square type.
Let SK = {s, t}. We first show that SK is a hitting set of H and then prove

that SK ∪ {d1, d2, d3} is a hitting set of G.
First it is obvious that SK is a hitting set of K. Furthermore, in K,

{a, b, c} induces a P3 which is an induced subgraph of C4 and vertices a and b
do not have a common neighbour in V (K) \ {a, b, c}. We may therefore apply
Lemma 6.3.4, showing that SK is a hitting set of H.

Since we just add three vertices d1, d2 and d3 to construct G from H, every
triangle in G either contains one vertex of {d1, d2, d3} or is a triangle in H that
is covered by SK .

This shows that SK ∪ {d1, d2, d3} is a hitting set of G of size 5. 2

6.3.7 The class F0

Note that this class is defined in [37].
Let H be a subgraph of Σ induced by:

{rij : (i, j) ∈ I1} ∪ {sij : (i, j) ∈ I2} ∪ {tij : (i, j) ∈ I3}

where I = {(i, j) : 1 ≤ i, j ≤ 3} and I1, I2, I3 are subset of I such that:

• (1, 1), (1, 3), (2, 2), (2, 3), (3, 1)(3, 2) ∈ I1 and (3, 3) /∈ I1,

• (1, 1), (2, 1), (3, 2) ∈ I2 and (1, 2), (1, 3), (2, 2), (2, 3) /∈ I2,
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• (1, 3), (2, 1), (2, 2) ∈ I3 and (1, 1), (1, 2), (3, 1), (3, 2) /∈ I3 .

Let G be the graph obtained from H by adding the edges s3
1t

2
3, s3

1t
3
3 and

s3
3t

2
3 if the corresponding vertices are in H. We define F0 to be the class of all

such graphs G.

Lemma 6.3.10 Every graph of the class F0 admits a hitting set of cardinality
smaller or equal to 3.

Proof. By Lemma 6.3.3, NΣ(s3
1) ∩ V (H) = SH = {r1

3, r
2
3, t

1
3} is a hitting set of

H. Note that s3
1 and t23 do not have common neighbours in H so as s3

1 and t33,
and s3

3 and t23. Since G[{s3
1, s

3
3, t

2
3, t

3
3}] induces a C4, we have that the addition

of the new edges does not add any triangle in G. Therefore SH is also a hitting
set of G. 2

6.3.8 The class F1

Let G be a graph with vertex set the disjoint union of sets {s, t}, R, A, B,
where |R| ≤ 1, and with edges as follows:

• s, t are adjacent, both are complete to R, and s is complete to A; t is
complete to B;

• every vertex in A has at most one neighbour in A, and every vertex in
B has at most one neighbour in B;

• if a, a′ ∈ A are adjacent and b, b′ ∈ B are adjacent, then the subgraph
induced by {a, a′, b, b′} is a cycle;

• if a, a′ ∈ A are adjacent and b ∈ B has no neighbour in B, then b is
adjacent to exactly one of a, a′;

• if b, b′ ∈ B are adjacent and a ∈ A has no neighbour in A, then a is
adjacent to exactly one of b, b′;

• if a ∈ A has no neighbour in A, and b ∈ B has no neighbour in B, then
a, b are adjacent
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We define F1 to be the class of all such graphs G.

Lemma 6.3.11 Every prismatic graph of the class F1 admits a hitting set of
cardinality smaller or equal to 2.

Proof. We claim that {s, t} is a hitting set of G. This is equivalent to the fact
that in G \ {s, t}, the neighborhood of any vertex v is a stable set. And this
follows directly from the definition in all cases (v = r, v in A with no neighbor
in A, v in A with one neighbor in A, symmetric cases with v ∈ B). 2

Note that graphs in F1 can have arbitrarily large minimum degree.

6.3.9 The class F2

Let K be the line graph of K3,3 with vertices numbered sij (1 ≤ i, j ≤ 3), where

sij and si
′

j′ are adjacent if and only if i′ 6= i and j′ 6= j. Note that this is how
usually the complement of the line graph of K3,3 is defined, but since it is a
self-complementary graph, it makes no difference.

Let H be a graph obtained from this by multiplying {s1
2, s

1
3, s

2
1, s

3
1}, thus,

H is of parallel-square type. Let A1
2, A1

3, A2
1, A3

1 be the sets of new vertices
corresponding to {s1

2, s1
3, s2

1, s3
1} respectively, and let ϕ be the corresponding

integer map. Suppose that:

• there do not exist u ∈ A3
1 and v ∈ A1

3 with ϕ(u) = ϕ(v);

• there exist a1
2 ∈ A1

2 and a2
1 ∈ A2

1 such that ϕ(a1
2) = ϕ(a2

1) = 1;

• ϕ(v) 6= 1 for all v ∈ A3
1 ∪ A1

3.

Let G be obtained from H by exponentiating {a1
2, a

2
1, s

3
3}, leaf triangle at

s3
3. We define F2 to be the class of all such graphs G.

Lemma 6.3.12 Every prismatic graph of the class F2 admits a hitting set of
cardinality smaller or equal to 4.

Proof. Let SK = {s3
2, s

2
3, s

2
2, s

3
3}. We can easily see that SK is a hitting set of

K. We prove that SK is a hitting set of G.
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By definition H is obtained from K by multiplying κ = {s1
3, s

1
2, s

2
1, s

3
1}.

Note that, in K, κ induces a C4, κ ∩ SK = ∅, s1
3, s

1
2 do not have a common

neighbours outside of κ and s3
1, s

2
1 do not have a common neighbours outside

of κ. We may now apply Lemma 6.3.4, and conclude that SK is a hitting set
of H.

We may apply Lemma 6.3.5, and we obtain that SK is a hitting set of G
(note that the fact that H is a prismatic graph is not used in the proof of
Lemma 6.3.5) . 2

6.3.10 The class F3

Let K be the line graph of K3,3, with vertices numbered sij (1 ≤ i, j ≤ 3), where

sij and si
′

j′ are adjacent if and only if i′ 6= i and j′ 6= j. LetH be obtained fromK
by deleting the vertex s2

2 and possibly s1
1, and then multiplying {s1

2, s
1
3, s

2
1, s

3
1}.

Let A1
2, A1

3, A2
1, A3

1 be the sets of new vertices corresponding to s1
2, s1

3, s2
1, s3

1

respectively, and let ϕ be the corresponding integer map. Suppose that

• there exist a1
2 ∈ A1

2 and a3
1 ∈ A3

1 such that ϕ(a1
2) = ϕ(a3

1) = 1;

• ϕ(v) 6= 1 for all v ∈ A1
3 ∪ A2

1.

• there exist a1
3 ∈ A1

3 and a2
1 ∈ A2

1 such that ϕ(a1
3) = ϕ(a2

1) = 2;

• ϕ(v) 6= 2 for all v ∈ A1
2 ∪ A3

1.

Let G be obtained from H by exponentiating {a1
2, a

3
1, s

2
3} and {a1

3, a
2
1, s

3
2},

leaf triangles respectively at s2
3 and s3

2. We define F3 to be the class of all such
graphs G.

Lemma 6.3.13 Every prismatic graph of the class F3 admits a hitting set of
cardinality smaller or equal to 3.

Proof. Let SH = {s3
3, s

3
2, s

2
3}. Note that in K minus vertex s2

2, SH is a hitting
set, X = {s1

3, s
3
1, s

1
2, s

2
1} induces a C4, s1

3, s
1
2 do not share a common neighbour

in V (H) \X so as s2
1, s

3
1. We may apply Lemma 6.3.4. It follows that SH is a

hitting set of H.
We may apply Lemma 6.3.5, and we conclude that SH is a hitting set of G.2
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6.3.11 The class F4

Take Σ, with vertices numbered rij, s
i
j, t

i
j as usual. Let H be the subgraph

induced on
Y ∪ {sij : (i, j) ∈ I} ∪ {t11, t22, t33}

where ∅ 6= Y ⊆ {r3
1, r

3
2, r

3
3} and I ⊆ {(i, j) : 1 ≤ i, j ≤ 3} with |I| ≥ 8 and

including {(i, j) : 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2}.
We consider T = {t11, t22, t33} which is a leaf triangle at t33. Let G be obtained

from H by exponentiating T . We define F4 to be the all such graphs G.

Lemma 6.3.14 Every prismatic graph of the class F4 admits a hitting set of
cardinality smaller or equal to 4.

Proof. Let K be the subgraph of Σ induced by the vertices: {r3
1, r

3
2, r

3
3} ∪ S ∪

{t11, t22, t33}.
By Lemma 6.3.3, NΣ(r3

3) ∩K = SK = {s3
1, s

3
2, s

3
3, t

3
3} is a hitting set of K.

Since H is a subgraph of K, SH = SK ∩ V (H) is a hitting set of H and
|SH | ≤ 4.

Since t33 ∈ SH , we can apply Lemma 6.3.5, and conclude that SH is a hitting
set of G. 2

6.3.12 The class F5

Take Σ, with vertices numbered rij, s
i
j, t

i
j as usual. Let H be the subgraph

induced on

{rij : (i, j) ∈ I1} ∪ {sij : (i, j) ∈ I2} ∪ {tij : (i, j) ∈ I3}

where I1, I2, I3 ⊆ {(i, j) : 1 ≤ i, j ≤ 3} are chosen such that:

• (1, 1), (3, 1), (3, 2), (3, 3) ∈ I1 and (2, 2), (2, 3) /∈ I1

• (1, 1) /∈ I2

• (1, 2), (1, 3), (2, 3), (3, 3) ∈ I3 and (2, 1), (3, 1) /∈ I3

Let G be obtained from H by adding the edge r1
1t

1
2. We define F5 to be the

class of all such graphs G.
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Lemma 6.3.15 Every prismatic graph in the class F5 admits a hitting set of
cardinality smaller or equals to 5.

Proof. By Lemma 6.3.3, NΣ(r1
1) ∩H = SH = {r3

2, r
3
3, s

1
2, s

1
3, t

1
1} is a hitting set

of H.

In Σ, vertices r1
1 and t12 have as common neighbours the following vertices:

s1
1, r2

2, r2
3, t21 and t31. Since none of them are in H, the addition of the edge r1

1t
1
2

does not create another triangle.

This proves that SH is a hitting set of G. 2

6.3.13 The class F6

Take Σ with vertices numbered rij, s
i
j, t

i
j as usual. Let H be the subgraph

induced by

{rij : (i, j) ∈ I1} ∪ {sij : (i, j) ∈ I2} ∪ {tij : (i, j) ∈ I3}

where :

• I1 = {(1, 1), (1, 2), (3, 1), (3, 2), (3, 3)},

• I2 = {(1, 2), (2, 1), (2, 2), (3, 3)},

• I3 = {(1, 2), (2, 2), (1, 3), (2, 3), (3, 3)}

Let G be obtained from H by adding the edge r1
1t

1
2 and then multiplying

{r3
3, t

3
3}. We define F6 to be the class of all such graphs G.

Lemma 6.3.16 Every prismatic graph in the class F6 admits a hitting set of
cardinality smaller or equals to 3.

Proof. By Lemma 6.3.3, NG(r1
3) = {r3

1, r
3
2, s

3
3} is a hitting set of G. 2
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6.3.14 The class F7

The six-vertex prism is the graph with six vertices a1, a2, a3, b1, b2, b3 and edges

a1a2, a1a3, a2a3, b1b2, b1b3, b2b3, a1b1, a2b2, a3b3

Let K be a graph with six vertices, with the six-vertex prism as a subgraph.
Construct a new graph G as follows. The vertices of G consist of E(K) and
some of the vertices of K, so E(K) ⊆ V (G) ⊆ E(K) ∪ V (K); two edges of
K are adjacent in G if they have no common end in K; an edge and a vertex
of K are adjacent in G if they are incident in K; and two vertices of K are
adjacent in G if they are non-adjacent in K. The class of all such graphs G is
called F7 (they are all prismatic).

Lemma 6.3.17 Every prismatic graph in the class F7 admits a hitting set of
cardinality at most 5.

Proof. Let K and G be as in the definition. Let us show that

SG = E(K) ∩ {a1a2, a1a3, a1b1, a1b2, a1b3}

is a hitting set of G. Let T be a triangle in G. We now break into 4 cases.

• |T ∩ V (K)| = 1: Such a triangle does not exist. Because if two edges in
K are adjacent in G then they do not share a common vertex in K and
then they do not have in G a common neighbour in V (G) ∩ V (K).

• |T ∩ V (K)| = 2: Such a triangle does not exist. Indeed, if in G, there
are two vertices u, v ∈ V (K), both adjacent to e ∈ E(K), then e = uv.
A contradiction to u, v being adjacent in G.

• |T ∩ V (K)| = 3: Such a triangle does not exist. Otherwise it would
induce in K a stable set of cardinality 3 and there is no such stable set
in the prism and hence in K.

• |T ∩ V (K)| = 0: Every vertex of G not in V (K) is in E(K). If such a
triangle T = {e1, e2, e3}, (e1, e2, e3 ∈ E(K)) exists, then e1, e2 and e3 do
not have common ends in K. It follows that at least one of e1, e2 or e3

has a1 as an end point and therefore is included in SG.
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Hence SG is a hitting set of G and |SG| ≤ 5.
2

6.3.15 The class F8

Let H be the graph with nine vertices v1, . . . , v9 and with edges as follows:
{v1, v2, v3} is a triangle, {v4, v5, v6} is complete to {v7, v8, v9}, and for i = 1, 2, 3,
vi is adjacent to vi+3, vi+6. Note that H is a rotator. Let G be obtained from
H by multiplying {v4, v7}, {v5, v8} and {v6, v9}. We define F8 to be the class
of all such graphs G.

Lemma 6.3.18 Every prismatic graph in the class F8 admits a hitting set of
cardinality smaller or equals to 3.

Proof. We can easily see that SH = {v1, v2, v3} is a hitting set of H. Since
{v4, v7}, {v5, v8} and {v6, v9} are each not in SH and are each edges, we can
successively apply Lemma 6.3.4, for each one separately and SH stays a hitting
set of G (note that the fact that H is a prismatic graph is not used in the proof
of Lemma 6.3.4). 2

6.3.16 The class F9

Take Σ with vertices numbered rij, s
i
j, t

i
j as usual. Let H be the subgraph

induced by

{rij : (i, j) ∈ I1} ∪ {sij : (i, j) ∈ I2} ∪ {tij : (i, j) ∈ I3}

where I1, I2, I3 ⊆ {(i, j) : 1 ≤ i, j ≤ 3} satisfy

• (2, 1), (3, 1), (3, 2), (3, 3) ∈ I1 and I1 contains at least one of (1, 2), (1, 3)
and (1, 1), (2, 2), (2, 3) /∈ I1,

• (1, 1), (2, 2), (3, 3) ∈ I2 and (1, 2), (1, 3) /∈ I2,

• (1, 3), (2, 3), (3, 3) ∈ I3, and I3 contains at least one of (1, 2), (2, 2), (3, 2),
and (1, 1), (2, 1), (3, 1) /∈ I3,
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• either (1, 2), (1, 3) ∈ I1 or I3 contains (1, 2) and at least one of (2, 2),
(3, 2).

Let G be obtained from H by adding a new vertex z adjacent to r3
2, r3

3, s1
1,

and to t22 if (2, 2) ∈ I3, and to t32 if (3, 2) ∈ I3. We define F9 to be the class of
all such graphs G.

Lemma 6.3.19 Every prismatic graph in the class F9 admits a hitting set of
cardinality smaller or equals to 3.

Proof. By Lemma 6.3.3, NG(r1
1) = {r3

2, r
3
3, s

1
1} is a hitting set of G. 2

6.4 Clique cover of non-orientable prismatic

graphs

In this section we show how the presence of a hitting set of cardinality bounded
by a constant can be used for solving the clique cover problem. We have seen in
the previous section that every non-orientable prismatic graph admits a hitting
set of size at most 10. The following is more useful for algorithmic purposes.

Theorem 6.4.1 If G is a non-orientable prismatic graph then G admits a
hitting set of cardinality at most 5 or G is a Schläfli-prismatic graph.

Proof. By Theorem 6.3.2, G is obtained from a prismatic graph H from the
menagerie by replicating vertices not in the core of H and then deleting edges
between vertices not in the core.

It is easy to verify that G and H have exactly the same triangles. Therefore,
it is obvious that if SH is a hitting set of H then SH is a hitting set of G.

From Lemmas 6.3.7, 6.3.8, 6.3.9, 6.3.10, 6.3.11, 6.3.12, 6.3.13, 6.3.14, 6.3.15,
6.3.16, 6.3.17, 6.3.18, and 6.3.19, if H is either Fuzzily Schläfli-prismatic, of
parallel-square type, of skew-square type, or in Fi, i ∈ {0, . . . , 9}, then G
admits a hitting set of size at most 5.

It remains to consider the case where H is Schläfli-prismatic. Hence, H is
an induced subgraph of Σ.
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If every vertex of H is contained in a triangle of H, then no vertex of H can
be replicated, so G = H and G is Schläfli-prismatic. Hence, we may assume
that some vertex v of H is contained in no triangle of H.

Since NΣ(v) induces a matching of 5 edges in Σ and v is contained in no
triangle of H, we see that NH(v) contains at most 5 vertices. By Lemma 6.3.3,
NH(v) is a hitting set of H. Hence, H (and therefore G) contains a hitting set
of size at most 5. 2

Observe that in a triangle-free graph, solving the clique cover problem is
easily reducible to computing a matching of maximum cardinality by Edmonds’
algorithm. Furthermore, the clique cover problem is solvable in constant time
when the number of vertices of the input graph is bounded. Note that Schläfli-
prismatic graphs have at most 27 vertices.

We need the following notation : T (G) is a variant of the adjacency matrix
of G. For v, w ∈ V (G), the entry (v, w) of T (G) is 0 if v and w are not
adjacent, 1 if they are adjacent but without common neighbour, and x if they
are adjacent and have x as a common neighbour. Note that in the last case, if
G is diamond-free and K4-free, then x is unique.

This matrix can be computed in time O(n3) at the beginning of an algo-
rithm and used afterwards to find the triangles in G or in any induced subgraph
of G.

Lemma 6.4.2 Let G ∈ Free{diamond, K4}. There is an algorithm that finds
a hitting set of G of cardinality at most 5 if such a set exists and answers “no”
otherwise. This algorithm has complexity O(n7).

Proof. First compute T (G) in time O(n3) as above. Enumerate each set X of
vertices of G of size at most 5 in time O(n5). For each X, test in time O(n2)
if G \X is triangle-free by checking if every entry of T (G) reduced to G \X is
either 0, 1 or an element of X. If no such X exists answer “no” and otherwise
output X. 2

Theorem 6.4.3 The Clique Cover Problem for non-orientable prismatic
graphs is solvable in time O(n7.5).

Proof. Let G be a prismatic non-orientable graph. The following method
provides a minimum clique cover.
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1. Compute the matrix T (G) as previously defined. This can be done in
time O(n3).

2. Use the method in timeO(n7) described in Lemma 6.4.2. If the algorithm
outputs a hitting set of G of size at most 5 denoted by S = {s1, . . . , si∗}
(i∗ ≤ 5), then go to Step 4. Else by Theorem 6.4.1, G is a Schläfli-
prismatic graph and go to Step 3.

3. Since there is a bounded number of vertices in G compute all possible
clique covers of G in constant time. Go to Step 5.

4. Enumerate all sets X of at most 5 disjoint triangles of G, (this can
trivially be done in time O(n15)). We can do it in time O(n5) as follows.

Compute the set Ti of triangles containing si for each 1 ≤ i ≤ i∗. This
can be done in O(n) by reading the line of T (G) corresponding to si.
Notice that there are at most n/2 triangles in each Ti. Then compute
all subsets T of triangles of G obtained by choosing at most one triangle
in each Ti. For each such T which contains only pairwise vertex-disjoint
triangles, compute by some classical algorithm a maximum matching MT
of G\ (∪T∈T T ) and let RT be the vertices of G that are neither in T nor
inMT . Notice that T ∪MT ∪RT is a clique cover of G . Go to Step 5.

5. Among all the clique covers generated by the previous steps, let C∗ be
one of the smallest size. Return C∗.

Correctness:
If G has no hitting set of size at most 5 then the algorithm will consider all

possible clique covers of G. Therefore, the algorithm will give a clique cover of
minimum size.

Otherwise, let C be a minimum clique cover of G. Since G is K4-free, C is
the union of a set T of vertex-disjoint triangles, a set E of vertex-disjoint edges
and a set R of vertices. Since C is of minimum size, E should be a maximum
matching in the subgraph of G induced by the vertices not in any triangle of
T . Each triangle in T contains a vertex of the hitting set S of G obtained by
Step 2 in the algorithm. Furthermore, each vertex of S is contained in at most
one triangle of T . So the algorithm will consider T at some point in Step 4
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and will compute a maximum matching in the remaining graph. Therefore it
will return a clique cover C∗ of same size as C.
Complexity:

The procedure to enumerate all sets T takes time O(n5). For each such set,
the maximum matching can be found by Micali and Vazirani’s algorithm [45]
in time O(n2.5). Overall, a best clique cover is found in time O(n7.5). 2

6.5 Orientable prismatic graphs

In the non-orientable case, we have shown that the clique cover problem is
polynomial time solvable. We do not know the complexity of this problem
in the orientable case. In this section we show that the vertex-disjoint tri-
angles problem (the problem of finding a maximum number of vertex-disjoint
triangles) is polynomial time solvable in prismatic graphs. As noted in the
introduction, this problem is NP-hard in the general case [32].

Remark that solving the vertex-disjoint triangle problem is not sufficient to
solve the clique cover problem in orientable prismatic graph. See Figure 6.6.

•

•

•

•

•

•

Figure 6.6: An orientable prismatic graph where the best clique cover is not
obtained by first selecting the maximum number of disjoint triangles

The derived graph D(G) of a graph G is the intersection graph of
the triangles of G. More formally, if H = D(G), then V (H) = {T :
T is a triangle in G}. Two vertices of H are adjacent if they are distinct tri-

angles of G sharing at least one vertex. Note that the class of derived graphs
is not hereditary.
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a3

a2

a1 b1

b3

b2

c1

c2 c3

L(K3,3); (See also Fig. 6.5)

a

b

c

1

2

3

K3,3

Figure 6.7: D(L(K3,3)) = K3,3

Theorem 6.5.1 Let G an orientable prismatic graph. Every connected com-
ponent of D(G) is claw-free or is isomorphic to K3,3.

Proof. Let D be a connected component of D(G) containing a claw. Hence, G
has to contain 4 triangles as represented on Figure 6.8 (not all edges of G are
represented). We will use the notation given there and we denote by K the set
of vertices {a1, a2, a3, b1, b2, b3, c1, c2, c3}.

b3

b2

b1

B
c1

c3

c2

a1

a2 a3

C

A

Figure 6.8: A graph whose derived graph is K1,3

Since G is prismatic there should be a matching between the extremities of
the edge a2a3 and those of b2b3, c2c3.

Without loss of generality we may assume that these matching edges are:
a2b2, a3b3 and a2c2, a3c3.
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Now there are two possibilities for the matching between b2b3, c2c3. If
b2c3, b3c2 ∈ E(G), then G[K] is a rotator of center {a1, b1, c1}, a contradiction
to G being orientable (Theorem 6.2.1). We can now assume that b2c2, b3c3 ∈
E(G). So G[K] contains L(K3,3).

It remains to show that there is no other vertex in D. Assume that it is
not the case, then there is a triangle T in G, that intersects K. Since in G[K],
every vertex and edge is in a triangle, |T ∩K| = 1.

Since L(K3,3) is vertex transitive, we may assume up to symmetry that
T = {u, v, b2}. Since T and {a1, b1, c1} form a prism, we may assume without
loss of generality that ua1 and vc1 are edges of G. Now, because of trian-
gles T and A, va3 ∈ E(G) and because of triangles T and C, uc3 ∈ E(G).
Then {u, v, b2, a2, a3, a1, c2, c3, c1} induces a rotator with center {a2, b2, c2}, a
contradiction to G being orientable. 2

Theorem 6.5.2 The vertex-disjoint triangle problem is O(n5)-time solvable
in prismatic graphs.

Proof. Let G be a prismatic graph. If G has at most 27 vertices, we solve the
problem in constant time. Otherwise, we look by Lemma 6.4.2, for a hitting
set of size at most 5 in G. If one exists, then we know that at most 5 disjoint
triangles exist in G, and we find an optimal set of vertex-disjoint triangles of
G in time O(n5) as in the proof of Theorem 6.4.3. Hence, we may assume that
no hitting set of size at most 5 exists. By Theorem 6.4.1, G is orientable.

A set R is a stable set of D(G) if and only if it is a set of vertex-disjoint
triangles of G. Hence, it is enough to compute a maximum stable set in D(G).
Such a set can obviously be found by computing a maximum stable set in
each connected component of D(G). By Lemma 6.5.1, each such component
is either isomorphic to K3,3 or claw-free. The components that are isomorphic
to K3,3 are handled trivially. In the components that are claw-free, to find
a maximum stable set, we may rely on the classical algorithm of Sbihi [52]
(O(n3)). 2
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6.6 A shorter proof for a weaker result

Hajebi [33] noted that the existence of a hitting set of bounded size (namely
15) in any non-orientable prismatic graph G can be deduced from several parts
of [13] with a small amount of additional work as follows.

Consider a non-orientable prismatic graph G. By Theorem 6.1 in [13], G
contains either a twister or a rotator.

If G contains a twister Z (so |V (Z)| = 10) but does not contain any rotator,
then (5) in the proof of 7.2 from [13] shows that V (Z) is a hitting set of G.

If G contains a rotator, then Hajebi’s strategy is to rely on results from
Section 10 of [13]. This section is about graphs that contain a rotator and
no so-called “square-forcer” (we do not need the definition), but the argument
relies only on 10.3, where the assumption that there is no square-forcer is not
used.

From here on, we use notation from [13].
In 10.3, the set of all triangles of G is described, and it is proved that

they all fall in one of the following categories: subsets of S (where S is a
set of cardinality at most 9), R-triangles, T -triangles, diagonal triangles and
marginal triangles. The definition of these categories implies that the set of
vertices K = {r3

1, r
3
2, r

3
3, t

1
3, t

2
3, t

3
3}∪S is a hitting set of G. It has size at most 15

(because |S| ≤ 9).

6.7 Concluding remarks

Despite our efforts to use the results of [12], the complexity of the clique cover
problem remains unknown for orientable prismatic graphs. As explained in
Section 6.2, having an orientation implies that the triangles in the graph have
to be “ordered” in some kind of way. It is quite logical to see that it would
then be possible to have an arbitrary large number of disjoint triangles. It
prevents the use of the same tools as in Theorem 6.4.3 to solve the clique
covering problem in orientable prismatic graphs.

Chudnovsky and Seymour described a subclass of orientable prismatic
graphs that intrigued us : the path of triangle graphs(the description is not
given here and can be found in [12]). These graphs seem quite simple at first
sight and we first believed that solving the clique cover in the path of triangle
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graphs would be easy. But even in those graphs with a simple structure, diffi-
culties were encountered. The rigid structure around triangles have thwarted
our NP-completeness hopes, while the freedom in the structure of vertices not
in triangles was an obstacle for some polynomial results.

However, here is a simple remark. Suppose that {K1, . . . , Kl} is an optimal
clique cover of a prismatic graph G. If for some 1 ≤ i, j ≤ l, Ki is a triangle
and Kj an isolated vertex v, then by prismaticity, v has a neighbour u in Ki.
Hence, we may replace Ki and Kj by Ki \ {u} and Kj ∪ {u}. We may iterate
this until the optimal cover does not contain simultaneously a triangle and
an isolated vertex. It follows that for every prismatic graph, there exists an
optimal cover that is either made only of triangles and edges, or made only of
edges and isolated vertices. Observe that an optimal clique cover of the last
kind is easily computable in polynomial time by some classical algorithm for
finding a maximum matching. Hence, to solve the clique cover problem, it is
enough to find an optimal clique cover of the first kind.
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Chapter 7

Conclusion

Here, we give a short summary of the results obtained in this thesis and some
directions for further research.

In Chapter 4 we provided a structural result for graphs with all holes
having the same length that is odd and at least 7 (class Ck for an odd integer
k ≥ 7). One of the basic classes is new and fully described. The main
theorem could be used as a decomposition theorem. The next step could be
to generalise this result to have a structural theorem for even-hole-free graphs
in Free{C5, proper wheel}. The idea is to relax the constraints on the length
of the principal paths. Another question is: Is it possible to use this structure
for solving the coloring problem when restricted to Ck in polynomial time?
The blow-up operation seems to be the main obstacle to that goal.

In Chapter 5 we presented a few partial results on the structure of graphs
in Free{C4, 4K1}. It is one of the three minimal open cases considering the
complexity of the coloring problem restricted to classes of graphs defined by
excluding graphs of order 4. In a future work on the complexity of the coloring
problem when restricted to Free{C4, 4K1}, two possibilities appear to us. The
first possibility is to use Lemma 5.3.4 for studying the structure of 3-CP graphs
in Free{C4} that contain a C5. Note that Ico−2, C+

6 , C5 +K1, Π5 and F13 all
contain a C5. We wonder if for any graph G in Free{C4, 4K1} that is 3-CP
(graphs whose vertex set can be partitioned into three cliques), there exists a
partition of V (G) into a bounded number of cliques that are either complete
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or anticomplete except of some disjoint couples. Using Lemma 5.3.2 it would
answer the question whether the coloring problem is polynomial time solvable
when restricted to 3-CP graphs in Free{C4, 4K1}. The other possibility is
to use the program in appendix A with two directions. The first direction
consists of running the program with graphs of order 13 excluding the ones
that contain {C4, 4K1}-fixers of order 12. The second direction consists of
taking a step back and looking for graphs of order 11 in Free{C4, 4K1} such
that the addition of any vertex to them results in the creation of a twin, a
universal vertex, a graph not in the class or a {C4, 4K1}-fixer of order 12.
It should output at least the icosahedron minus one vertex. The purpose
of these two directions is to answer the questions : Are there finitely many
{C4, 4K1}-fixers and how general are they?

In Chapter 6 we provided an O(n7.5)-time algorithm to solve the clique
cover problem in non-orientable prismatic graphs and a polynomial-time
algorithm that solves the vertex-disjoint triangles problem in prismatic
graphs. The class of prismatic graphs is the complement class of one of the
three minimal open cases considering the complexity of the coloring problem
restricted to classes of graphs defined by excluding graphs of order 4. Despite
our efforts to use the results of [12], the complexity of the clique cover problem
remains open for orientable prismatic graphs. A step that seems achievable
is to answer the question whether the coloring problem is polynomial or
NP-complete for path of triangles graphs.



Table of Notations

Notations about a graph G

NG(v) set of neighbor of v in G

G[V ′] graph induced from G by the set of vertices V ′

G complement of G

L(G) line graph of G

χ(G) minimum number of colors needed to have a proper coloring of G

ω(G) size of the maximum clique

α(G) size of the maximum stable set

σ(G) size of the minimum clique cover

cw(G) clique-width of G

Notations for some particular graphs

Pk path with k vertices

Kk complete graph with k vertices

Ck cycle with k vertices

Kk,l complete bipartite graph with one side of the bipartition of size k and
the other side of size l
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When all holes have the same length

Ck class of graph with all holes having length k

Ku clique blown up from u

Hx hyperedge corresponding to the vertex x ∈ B ∪B′ in a template

s(G,G∗) Domination score of G w.r.t. G∗

Coloring antiprismatic graphs

Σ complement of the Schläfli graph

R S and T tile of a Schläfli prismatic graph

Fi one of the 10 classes for the menagerie of prismatic graphs

D(G) derived graph for prismatic graphs
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Cutset, 30

Decision problem, 14
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Derived graph for prismatic graphs, 139

Diamond, 18

Domination ordering, 42
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Edge covering problem, 20

Edges, 13
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fixer, 100
Flat edge, 63
Fuzzily Schläfli-prismatic graphs, 126

Graph, 13
Graphs with Dilworth number 1, 40

Half graph, 40
Hereditary class of graphs, 23
Hitting set of the triangle of G, 117
Hyperedges, 38
Hypergraph, 38

Icosahedron, 102
Incident, 17
Induced Subgraph, 17
Internal triangle, 125
Interval graph, 23
Isolated vertex, 17

Laminar hypergraph, 42
Leaf triangle, 121
Line graph of a hypergraph, 42
Long prism, 43

Matching, 21
Maximum matching problem, 21
Menagerie, 119
Minimal forbidden induced subgraph, 24
Module, 46
Multiplication, 120

Neighbourhood, 17
Non-orientable prismatic graph, 118
NP-complete, 15

Odd `-pretemplate, 56
Odd `-template, 47
Optional edge, 63
Order, 17

Orientable prismatic graph, 117

Parallel-square type, 127
Path, 18
Path of triangle graphs, 142
Paw, 18
Perfect blowup, 100
Perfect graphs, 31
Polynomial problem, 14
Polynomial-time algorithm, 14
Preblowup of an odd ` template, 67
Prime, 102
Principal paths, 47
Prism, 115
Proper Blowup, 68
Proper coloring, 14, 16
Proper partition of a template, 60
Proper wheel, 44
Pyramid, 43

Quasi-threshold graph, 40

Rigid prismatic graph, 119
Rim of a wheel, 44
Ring, 45
Rotator, 118

Schläfli graph, 124
Scläfli prismatic graph, 125
Simple graph, 14
Skew-square type, 128
Solid edge, 62
Split graph, 40
Stable set, 16

Theta, 43
Threshold graph, 40
Tile of a Schläfli prismatic graph, 124
Trivially perfect graphs, 40
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Truemper configuration, 43
Twin wheel, 44
Twinless, 17
Twins, 17
Twister, 118

Unbalanced Truemper configuration, 44
Undirected graph, 13
Unit interval graphs, 25
Universal clique, 17
Universal vertex, 17
Universal wheel, 44
Universally signable, 45

Vertex-disjoint triangle problem, 20
Vertices, 13

Wheel, 44
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[15] V. Chvátal and P. Hammer. Aggregation of inequalities in integer programming.
In Annals of Discrete Mathematics, volume 1, pages 145–162. Elsevier, 1977.
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Appendix A

Code for Chapter 5

The python program presented in Chapter 5 can be downloaded using following the
link: https://github.com/CleopheeR/Code_de_These.git

The program first generates all graphs in Free{C4, 4K1} of order n. Once it is
done, it checks if it is possible to add another vertex without creating a twin, a
universal vertex and still obtain a graph in Free{C4, 4K1}. We used the graph tool
library [48].
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