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Abstract

A bilevel problem is an optimization problem where a subset of variables is constrained to
be optimal for another given optimization problem parameterized by the remaining variables.
The outer problem is commonly referred to as the upper-level problem, the inner one as the
lower-level problem.

The first part of this dissertation concerns the key definitions, the solution approaches and
the complexity of bilevel problems, as well as the study of a particular class of bilevel programs.
Such bilevel problems have a lower level with a quadratic objective function, the value of which
is contained into an upper-level inequality constraint. They can be obtained by reformulating
semi-infinite programming problems with an infinite number of quadratically parametrized
constraints. We propose an approach to solve this class of bilevel programs, based on the
dualization of the lower level. This approach is compared with a new cutting plane algorithm,
which we prove to be convergent. The rate of convergence of this algorithm is derived under
stricter assumptions and is directly related to the iteration index, which is something new
w.r.t. what is usually proved in semi-infinite programming literature. We successfully test the
proposed methods on two applications: the constrained quadratic regression and a zero-sum
game with cubic payoff.

The second part of the thesis is devoted to practical applications. A chapter is dedicated
to the aircraft conflict resolution problem. This problem essentially consists in enforcing a
minimum distance between flying aircraft to avoid conflicts, using different strategies. We
focus on two of them: speed regulations and heading angles changes. We present a natural
semi-infinite formulation of the problem via speed regulation strategy in k dimensions. To deal
with the issue of uncountably many constraints of this formulation, we reformulate it, firstly,
using polynomial programming, and, secondly, using bilevel programming. Then, we present a
bilevel formulation of conflict resolution problem via heading angle changes in two dimensions
(i.e., aircraft flying at the same altitude). In both bilevel formulations, the convexity of the
lower level allows us to derive three different single-level reformulations, using KKT conditions,
Dorn’s duality, and Wolfe’s duality, respectively. The resulting single-level reformulations of
both problems are solved by using state-of-the-art solvers. Alternatively, we propose a cut
generation algorithm to solve the bilevel problems, which fits in the general framework of the
cutting plane algorithm presented in the first part. This algorithm obtains the best results in
terms of computational time for most of the tested instances. Another application studied in this
dissertation involves the Alternating Current (AC) Optimal Power Flow (ACOPF) problem at
the lower level. The idea comes from the possibility for power generation in private households.
In this scenario, we derive a bilevel problem to model the interaction between a retailer and
several prosumers (consumers who can also produce, store, and sell power), who interact with
each other through an AC network. When, together with the ACOPF, one wants to optimally
design a power transportation network with respect to line activity, an ACOPF with on/off
variables on lines can be used, which yields a nonconvex mixed-integer nonlinear problem in
complex numbers. We, then, propose two convex relaxations, compared with the famous Jabr’s
second-order cone relaxation.





Résumé

Un problème de programmation à deux niveaux est un problème d’optimisation où un sous-
ensemble de variables est contraint de prendre la valeur d’une solution optimale d’un autre
problème d’optimisation, paramétré par les variables restantes. En termes mathématiques,
un problème à deux niveaux peut être écrit comme suit :

min
x

F px, yq

s.t. Gpx, yq ď 0
y P arg min

y1PY
tfpx, y1q | gpx, y1q ď 0u

x P X.

,

/

/

/

.

/

/

/

-

(PB)

Le problème d’optimisation externe est communément appelé problème de niveau
supérieur dans les variables x, et le problème interne problème de niveau inférieur dans
les variables y1. Historiquement, les premières études liées à l’optimisation à deux niveaux
se trouvent dans les travaux de l’économiste allemand von Stackelberg [196] (1934) sur
la théorie des jeux, dans lesquels deux joueurs interagissent successivement. En fait, le
problème (PB) peut être interprété comme un jeu hiérarchique, impliquant un leader, qui
décide du problème de niveau supérieur, et un follower, qui décide du problème de niveau
inférieur. Le leader a une connaissance complète du problème de niveau inférieur, tandis
que le follower ne fait qu’observer les décisions du leader et optimiser par conséquent ses
propres stratégies. Si le follower a plus d’une réponse optimale à une certaine sélection du
leader, la meilleure ou la pire solution du follower par rapport à la fonction objective du
leader est supposée. Le problème à deux niveaux qui en résulte est appelé problème de
programmation à deux niveaux optimiste ou pessimiste, respectivement. Dans cette thèse,
lorsque la solution de niveau inférieur n’est pas unique, nous ne considérons que l’approche
optimiste.

Selon l’état actuel de l’art sur les problèmes de programmation biniveau, leurs for-
mulations de programmation mathématique peuvent être très utiles pour aborder des
situations complexes impliquant plusieurs décideurs avec des objectifs différents. En effet,
la programmation à deux niveaux a été utilisée pour formuler de nombreux problèmes
hiérarchiques du monde réel dans le domaine de la planification de la production et de
la capacité [101, 142], du trafic et du transport [144, 35, 147, 2], chimie [63, 62, 72], sci-
ences de la gestion [31, 169, 69, 68], défense des infrastructures critiques [17, 91, 80], ainsi
que réseaux et marché de l’énergie [99, 205]. En raison de leur capacité à représenter
l’interaction entre deux acteurs autonomes, les problèmes de programmation à deux niveaux
sont intrinsèquement difficiles à résoudre. Déjà leur version la plus simple avec seulement
des fonctions linéaires et des variables continues est fortement NP-hard [109].

La contribution de cette thèse est double. Sa première partie est composée de trois
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chapitres. Les deux premiers ont pour but d’introduire les lecteurs dans le contexte de la
programmation biniveau, tandis que le troisième présente deux approches théoriques pour
traiter une classe particulière de programmes à deux niveaux .

Le chapitre 1 est consacré aux notions fondamentales associées aux problèmes de
programmation biniveau. Premièrement, pour formaliser les concepts de base de la pro-
grammation à deux niveaux qui sont utilisés tout au long de la thèse, nous fournissons
quelques définitions clés et examinons les différences entre les formulations optimistes et
pessimistes des problèmes à deux niveaux . Ensuite, nous dérivons des reformulations
classiques à un seul niveau des problèmes biniveau: l’une basée sur la soi-disant fonction de
valeur, les autres sur les conditions de Karush-Kuhn-Tucker (KKT) ou sur la dualité forte
du niveau inférieur, supposé être convexe. Enfin, nous offrons un aperçu des algorithmes qui
ont été proposés pour l’optimisation biniveau: méthodes des points extrêmes, techniques de
branch-and-bound et de branch-and-cut, méthodes de descente, algorithmes de fonction de
pénalité, méthodes de région de confiance, entre autres.

Le chapitre 2 est complémentaire du chapitre 1. En effet, étant génériquement non-
convexes et non-différentiables, les problèmes à deux niveaux sont intrinsèquement difficiles.
Dans le chapitre 2, nous discutons de la complexité computationnelle des problèmes à deux
niveaux. Après une introduction sur la hiérarchie polynomiale, nous utilisons le concept des
formulations à double quantificateur pour dériver des considérations sur les problèmes de
programmation à deux niveaux. Nous présentons ensuite des résultats pour les problèmes à
deux niveaux linéaires et linéaires en nombres entiers, ainsi que des cas particuliers dans
lesquels les problèmes à deux niveaux peuvent être résolus en temps polynomial. Enfin, la
complexité de ce que l’on appelle les problems à deux niveaux indépendants est abordée,
puisque les formulations de ce type sont considérées dans le chapitre suivant.

Le chapitre 3 conclut la première partie de la thèse. Il concerne l’étude d’une classe
particulière de problèmes à deux niveaux, où le vecteur de décision du niveau inférieur
y n’apparâıt ni dans les contraintes de couplage du niveau supérieur ni dans la fonction
objectif du niveau supérieur. Le niveau inférieur est modélisé comme un problème de
programmation quadratique, avec un ensemble admissible F qui est un polyèdre ne pas
dépendent des variables du niveau supérieur x. La valeur de ce niveau inférieur se traduit par
une contrainte de niveau supérieur de la forme hpxq ď minyPF fpx, yq. Comme les valeurs des
variables de niveau inférieur ne sont pas utilisées dans le niveau supérieur, l’opérateur argmin
présent dans (PB) est redondant. Ainsi, le problème des solutions optimales équivalentes du
problème de niveau inférieur n’existe pas. De telles formulations à deux niveaux peuvent être
considérées comme des reformulations de problèmes de Programmation Semi-Infinie (PSI),
c’est-à-dire des problèmes d’optimisation ayant un nombre infini de contraintes paramétrées
(quadratiquement) par y du type @y P Y, ; 0 ď fpx, yq. En fait, dans ce case, il suffit
d’imposer que cette inégalité est vraie pour le minimum sur tous les y P Y de fpx, yq de la
manière suivante 0 ď minyPY fpx, yq, reformulant ainsi le programme PSI en un problème à
deux niveaux. Pour résoudre les problèmes PSI, des méthodes de discrétisation, des méthodes
de plans coupants et d’autres méthodes hybrides sont utilisées dans la littérature. Nous
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explorons une approche d’un autre type, qui procède par la résolution d’une formulation à
un seul niveau avec un nombre fini de contraintes, obtenue par la dualisation du problème de
niveau inférieur minyPF fpx, yq, en utilisant la programmation semi-définie. Si la dépendance
quadratique de fpx, yq à le vecteur paramètre y est convexe, cette formulation à un seul
niveau est une reformulation équivalente du programme original à deux niveaux. Dans le
formalisme de l’optimisation robuste, il s’agit de traiter des contraintes quadratiquement
perturbées sous un ensemble d’incertitudes polytopique. Les principes de base pour traiter
les perturbations non linéaires sont brièvement exposés dans [36] par Ben-Tal et al. mais le
cas des perturbations quadratiques avec un ensemble d’incertitudes polytopique n’a pas
encore été abordé, à notre connaissance. Afin de comparer cette approche avec une approche
plus traditionnelle, nous introduisons également un algorithme de plans coupants adapté,
dont nous avons prouvé la convergence. Un nouveau taux de convergence est donné lorsque
la fonction objectif de niveau supérieur est fortement convexe, et sous une hypothèse stricte
de faisabilité. Ce taux de convergence est directement lié à l’indice d’itération, ce qui est
nouveau par rapport à ce qui est généralement prouvé dans la littérature PSI. La validité
de ces approches est démontrée par des résultats d’implémentation et de calcul sur deux
applications différentes : un jeu à somme nulle avec un gain cubique, et une régression
quadratique contrainte.

La deuxième partie de la thèse est consacrée aux applications. En particulier, un chapitre
exploite le contenu du chapitre 3, et est dédié au problème de résolution de conflits d’avions
(PRC) des avions. Un autre chapitre traite du problème de flux de puissance optimal en
courant alternatif (ACOPF), à la fois dans un cadre à deux niveaux et à un seul niveau.

Le chapitre 4 aborde le PRC via différentes approches. Dans le domaine de la ges-
tion du trafic aérien, le terme résolution des conflits entre aéronefs — également appelé
déconfliction — désigne l’ensemble des stratégies utilisées pour détecter et résoudre les
conflits potentiels entre aéronefs partageant la même portion d’espace aérien, deux aéronefs
étant dits potentiellement en conflit si leur distance relative est inférieure à un seuil de
sécurité donné [8]. La résolution des conflits consiste alors à fournir des configurations
d’aéronefs sans conflit, en modifiant les trajectoires des aéronefs. La résolution centralisée
des conflits suppose qu’une autorité de contrôle du trafic aérien est chargée de surveiller les
trajectoires des aéronefs pour résoudre les conflits potentiels entre eux. Dans ce contexte,
la déconfliction des aéronefs peut être modélisée comme un problème d’optimisation dans
lequel les trajectoires des aéronefs sont modifiées pour assurer la distance de sécurité entre
les aéronefs, en minimisant l’impact de ces ajustements de trajectoire. Parmi les différentes
manœuvres qui peuvent être utilisées pour prévenir les conflits, nous nous concentrons
sur les régulations de vitesse, et les changements d’angle de cap. Alors que la PRC via la
régulation de vitesse est modélisée en k dimensions, la PRC via les modifications d’angles
est formulée en deux dimensions (c’est-à-dire lorsque les avions volent à la même altitude).
La PRC consiste essentiellement à imposer une distance minimale entre les avions en vol
sur un horizon temporel donné, ce qui conduit naturellement à une formulation PSI. Nous
utilisons d’abord la programmation polynomiale pour reformuler la formulation PSI du PRC
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via des régulations de vitesse, en partant d’un résultat présenté dans [208]. Ensuite, nous
reformulons à la fois la formulation PSI du PRC via la vitesse et via les changements d’angle
de cap en formulations à deux niveaux avec un problème de niveau inférieur pour chaque
paire d’avions. Dans les deux cas, la convexité des problèmes de niveau inférieur nous
permet de dériver trois problèmes différents de niveau unique, en utilisant les conditions
KKT, la dualité de Dorn et la dualité de Wolfe. Les reformulations à un seul niveau des deux
problèmes sont résolues à l’aide de solveurs de pointe, qui fournissent de bonnes solutions
en un temps de calcul raisonnable. Alternativement, nous proposons un algorithme de
génération de coupes pour résoudre les problèmes à deux niveaux dans la même veine que
la méthode de plans coupants présentée dans le chapitre 3. Cet algorithme, comparé aux
solveurs de l’état de l’art, obtient les meilleurs résultats en termes de temps de calcul pour
la plupart des instances testées. Les résultats numériques, comparés à d’autres dans la
littérature, sont encourageants et soulignent le potentiel des approches proposées.

Dans le chapitre 5, nous étudions le problème ACOPF. Tout d’abord, nous utilisons
un problème à deux niveaux avec ACOPF au niveau inférieur pour modéliser l’interaction
entre un détaillant et plusieurs prosommateurs, c’est-à-dire des consommateurs qui peuvent
également produire, stocker et vendre de l’énergie. Ces prosommateurs interagissent les uns
avec les autres par le biais d’un réseau électrique alternatif (chaque prosommateur est un
bus) et visent à maximiser leurs revenus totaux provenant de la vente d’électricité/minimiser
le coût payé au détaillant lorsque leur production ne satisfait pas leur besoin en électricité.
Au niveau supérieur, le détaillant, qui fixe le prix de l’électricité pour l’ensemble des
prosommateurs, vise à maximiser son propre profit. Après la formulation du problème via
la programmation à deux niveaux, le niveau inférieur est convexé grâce à la programmation
conique du second ordre. Lorsqu’on considère, avec l’ACOPF, le problème de la conception
optimale d’un réseau de transport d’énergie en fonction de l’activité des lignes, on peut
utiliser un ACOPF avec des variables on/off sur les lignes. Cela donne un problème
non-convexe non linéaire mixte en nombres complexes. Dans ce scénario, nous proposons
deux relaxations convexes, comparées à la relaxation conique de second ordre bien connue
formulée par Jabr dans [115].
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List of acronyms

The following table describes the meaning of all the abbreviations and acronyms
used throughout the dissertation.

Acronym Definition
AC Alternating Current

ACOPF Alternating Current Optimal Power Flow
BLP Bilevel Linear Problem
BQP Bilevel Quadratic Problem
CRP Conflict Resolution Problem

CP Cutting Plane
DC Direct Current
DD Diagonally Dominant

DDP Diagonally Dominant Programming
DCOPF Direct Current Optimal Power Flow

FCFW Fully Corrective Frank-Wolfe
GLCP Generalized Linear Complementary Problem

HAC Heading Angle Changes
HPR High Point Relaxation

IR Inducible (or Induced) Region
KKT Karush-Kuhn-Tucker
LMP Locational Marginal Prices

LP Linear Programming
MIBLP Bilevel Mixed-Integer Linear Problem

MILP Mixed-Integer Linear Programming
MINLP Mixed-Integer Nonlinear Programming
MPCC Mathematical Problem with Complementarity Constraints

NLP NonLinear Programming
OPF Optimal Power Flow

PP Polynomial Programming
PSD Positive Semidefinite
SDP Semidefinite Programming
SDr Semidefinite Representable
SIP Semi-Infinite Programming
SIP Semi-Infinite Programming

SOC Second-Order Cone
SOCP Second-Order Cone Programming

SR Speed Regulation

Table 1: List of acronyms





Introduction

A bilevel programming problem is an optimization problem where a subset of the
variables is constrained to take the value of an optimal solution of another given
optimization problem parameterized by the remaining variables. In mathematical
terms, a bilevel problem can be written as follows:

min
x

F px, yq

s.t. Gpx, yq ď 0
y P arg min

y1PY
tfpx, y1q | gpx, y1q ď 0u

x P X.

,

/

/

/

.

/

/

/

-

(P )

The outer optimization problem is commonly referred to as the upper-level problem
in the variables x, and the inner one as the lower-level problem in the variables
y1. From now on, with a slight abuse of notation which we hope will simplify
readability, we dispense with the distinction between y and y1, and adopt the
widespread usage of using the y both outside and inside the lower level, i.e., the
bilevel constraint will read y P arg min

yPY
tfpx, yq | gpx, yq ď 0u.

Historically, the first studies related to bilevel optimization can be found in the
works of the German economist von Stackelberg [196] (1934) in the field of game
theory, in which two players interact successively. Indeed, problem (P ) can be
interpreted as a hierarchical game, involving a leader, who decides on the upper-
level problem, and a follower, deciding on the lower-level problem. The leader has
complete knowledge of the lower level-problem, while the follower only observes
the decisions of the leader and consequently optimizes his/her own strategies. If
the follower has more than one optimal response to a certain selection of the
leader, either the best or the worst follower’s solution with respect to the leader’s
objective function is assumed. The resulting bilevel problem is called optimistic
or pessimistic bilevel programming problem, respectively. In this dissertation,
whenever the lower-level solution is not unique, we only consider the optimistic
approach.

According to the current state of the art on bilevel programming problems, their
mathematical programming formulations can be quite useful in tackling complex
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situations involving multiple decision makers with different goals. Indeed, bilevel
programming has been used to formulate many real-world hierarchical problems in
the field of production and capacity planning [101, 142], traffic and transportation
[144, 35, 147, 2], chemistry [63, 62, 72], management science [31, 169, 69, 68],
defense of critical infrastructure [17, 91, 80], as well as energy networks and
market [99, 205]. Because of the ability to represent the interaction among two
autonomous players, bilevel programming problems are intrinsically difficult to
solve. Already their simplest version with only linear functions and continuous
variables is strongly NP-hard [109].

The contribution of this dissertation is twofold. Its first part is made of three
chapters. The first two of them aim at introducing the readers to the context of
bilevel programming, while the third one presents two theoretical approaches to
deal with a particular class of bilevel programs.

Chapter 1 is devoted to the fundamental notions associated with bilevel pro-
gramming problems. Firstly, to formalize the basic concepts of bilevel programming
that are used throughout the dissertation, we provide some key definitions and
examine the differences between optimistic and pessimistic formulations of bilevel
problems. Secondly, we derive classical single-level reformulations of the bilevel
problems: one based on the so-called value function, the others on the Karush-
Kuhn-Tucker (KKT) conditions or on strong duality of the lower level, assumed
to be convex. Finally, we offer an overview on the algorithms that have been
proposed for bilevel optimization: extreme point methods, branch-and-bound and
branch-and-cut techniques, descent methods, penalty function algorithms, trust
region methods, among others.

Chapter 2 is complementary to Chapter 1. Indeed, being generically nonconvex
and non-differentiable, bilevel problems are intrinsically difficult. In Chapter 2 we
discuss the computational complexity of bilevel problems. After an introduction
about the polynomial hierarchy, we use the concept of double quantifier formu-
lations to derive considerations about bilevel programming problems. We, then,
present results for linear and mixed-integer linear bilevel problems, as well as
special cases in which bilevel problems can be solved in polynomial time. Fi-
nally, the complexity of the so-called independent bilevel problems is tackled, since
formulations of this sort are considered in the subsequent chapter.

Chapter 3 concludes the first part of the dissertation. It concerns the study of a
particular class of bilevel problems, where the lower-level decision vector y appears
neither in the upper-level coupling constraints nor in the upper-level objective
function. The lower level is modeled as a quadratic programming problem, with a
feasible set F which is a polyhedron assumed not to depend on the upper-level
variables x. The value of such lower level occurs into an upper-level constraint
of the form hpxq ď minyPF fpx, yq. Since the values of the lower-level variables
are not used in the upper level, the argmin operator present in (P ) is redundant.
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Thus, the problem of equivalent optimal solutions of the lower-level problem does
not exist. Such bilevel formulations can be seen as reformulations of Semi-Infinite
Programming (SIP) problems, i.e., optimization problems having an infinite number
of (quadratically) parametrized constraints of the type @y P Y, 0 ď fpx, yq, where
y is the parameter. In fact, if this is the case, it is sufficient to impose that this
inequality holds for the minimum over all y P Y of fpx, yq in the following way
0 ď minyPY fpx, yq, thus reformulating the SIP program into a bilevel problem.
To solve SIP problems, discretization methods, cutting plane methods, and other
hybrid methods are used in the literature. We explore an approach of a different
kind, that proceeds by solving a single-level formulation with a finite number of
constraints, obtained by dualizing the lower-level problem minyPF fpx, yq, using
semidefinite programming. If the quadratic dependence of fpx, yq on the parameter
vector y is convex, this single-level formulation is an equivalent reformulation of
the original bilevel program. In the formalism of Robust Optimization, it is about
dealing with quadratically perturbed constraints under a polytopic uncertainty set.
The main principles to tackle nonlinear perturbation are briefly outlined in [36] by
Ben-Tal et al., but the case of quadratic perturbations with a polytopic uncertainty
set have not been addressed yet to the best of our knowledge. In order to compare
this approach with a more traditional one, we also introduce a tailored cutting
plane algorithm, which we proved to be convergent. A new rate of convergence
is given when the upper-level objective function is strongly convex, and under
a strict feasibility assumption. Such convergence rate is directly related to the
iteration index, which is something new with respect to what is usually proved in
SIP literature. The validity of these approaches is shown through implementation
and computational results on two different applications: a zero-sum game with a
cubic payoff, and a constrained quadratic regression.

The second part of the thesis is devoted to applications. In particular, a
chapter leverages the contents of Chapter 3, and is dedicated to the aircraft
Conflict Resolution Problem (CRP). Another chapter addresses the Alternating
Current (AC) Optimal Power Flow Problem (ACOPF), both in a bilevel and in a
single-level framework.

Chapter 4 addresses the CRP via different approaches. In air traffic manage-
ment, the term aircraft conflict resolution — also known as aircraft deconfliction —
designates the set of strategies used to detect and solve potential conflicts among
aircraft sharing the same portion of airspace, where two aircraft are said to be po-
tentially in conflict if their relative distance is less than a given safety threshold [8].
Conflict resolution consists then in providing conflict-free aircraft configurations,
by modifying aircraft trajectories. Centralized conflict resolution assumes that
an Air Traffic Control authority is in charge of monitoring aircraft trajectories
to resolve potential conflicts among aircraft. In this context, aircraft deconflic-
tion can be modeled as an optimization problem in which aircraft trajectories
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are modified to ensure the safety distance among aircraft, while minimizing the
impact of these trajectory adjustments. Among the different maneuvers which
can be used to prevent conflicts, we focus on speed regulations, and heading angle
changes. While CRP via speed regulation is modeled in k dimensions, the CRP
via angles modifications is formulated in two dimensions (i.e., when aircraft fly at
the same altitude). The CRP essentially consists in enforcing a minimum distance
between flying aircraft over a given time horizon, which naturally results in a
SIP formulation. We first use polynomial programming to reformulate the SIP
formulation of CRP via speed regulations, starting from a result presented in [208].
Then, we reformulate both the SIP formulation of the CRP via speed and via
heading angle changes into bilevel formulations with a lower-level problem for each
pair of aircraft. In both cases, the convexity of the lower-level problems allows
us to derive three different single-level problems, using KKT conditions, Dorn’s
duality, and Wolfe’s duality. The single level reformulations of both problems are
solved by using state-of-the-art solvers, which provide good solutions in reasonable
computing time. Alternatively, we propose a cut generation algorithm in the
same vein of the cutting plane method presented in Chapter 3 to solve the bilevel
problems. This algorithm, compared with state-of-the-art solvers, obtains the best
results in terms of computational time for most of the tested instances. Numerical
results, when compared with others in the literature, are encouraging and stress
the potential of the proposed approaches.

In Chapter 5, we study the ACOPF problem. Firstly, we use a bilevel problem
with ACOPF at the lower level to model the interplay among a retailer and several
prosumers, i.e., consumers who can also produce, store, and sell power. Such
prosumers interact with each other through an AC power network (each prosumer
is a bus) and aim at maximizing their total revenues from selling power/minimizing
the cost paid to the retailer when their production does not satisfy their power
need. At the upper level, the retailer, who sets the price of power for the set
of prosumers, aims at maximizing his/her own profit. After the formulation of
the problem via bilevel programming, the lower level is convexified thanks to
second-order cone programming. When, together with the ACOPF, the problem
of optimally designing a power transportation network with respect to line activity
is considered, an ACOPF with on/off variables on lines can be used. It yields a
nonconvex mixed-integer nonlinear problem in complex numbers. In this scenario,
we propose two convex relaxations, compared with the well-known second-order
cone relaxation formulated by Jabr in [115].

Publications and contributions

The present thesis is the result of different peer-reviewed journal articles, submitted
preprints, as well as ongoing works, which are the outcome of past and current
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scientific collaborations with different co-authors. The context in which these
works have been produced and my contributions to each of them are clearly stated
in the following.

1. During the first part of my PhD, I studied the state of the art of bilevel
programming. My research focused on the aircraft deconfliction problem, to
which Chapter 4 is dedicated. Three works emerged from this first phase. A
conference paper “Flying Safely by Bilevel Programming” was published in
the AIRO Springer Series Advances in Optimization and Decision Science
for Society, Services and Enterprises book [1]. Two papers were published
on international journals: “Detecting and solving aircraft conflicts using
bilevel programming” appeared in Journal Of Global Optimization [2], and
“Polynomial programming prevents aircraft (and other) conflicts” in Operation
Research Letters [3]. Paper [1] is a joint work with my two thesis advisors
Profs. Leo Liberti and Claudia D’Ambrosio. Paper [2] is the result of
a collaboration with my advisors and Mercedes Pelegŕın, a postdoctoral
researcher in the OptimiX team at LIX (CNRS - École Polytechnique).
Finally, paper [3] is a collaboration between prof. Leo Liberti and myself.
In order to test our approaches, I proposed some new 3D instances for the
conflict resolution problem, publicy available at [4]. During the last months,
Mercedes Pelegŕın and I worked at a benchmark generator [5] that allows
generating benchmarks of the problem of different complexity levels. In
particular, I took care of the 3D (spheric, polyhedral, cubic and random)
instances generator.

2. At the end of 2019, I visited Columbia University, where my thesis advisor
Prof. Leo Liberti had already started a collaboration with Prof. Daniel
Bienstock. I had the opportunity to work with them and Mauro Escobar,
a postdoctoral researcher at LIX at that time, on a Power Network design
problem. The result of this collaboration is the submitted paper “Power
network design with line activity” [6], which is part of Chapter 5.

3. A few months after the beginning of my second year of PhD, in January
2020 I started my research stay at the Department of Mathematics of the
University of Trier (Germany), which lasted almost three months. There, I
collaborated with Prof. Martin Schmidt, who welcomed me within his Non-
linear Optimization team. Preliminary results of this ongoing collaboration
are given in the first part of Chapter 5.

4. During the last phase of my doctoral studies I collaborated with another
PhD student of OptimiX team, Antoine Oustry. Together with my thesis
advisors, we worked on two solution approaches for a particular class of
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bilevel programs, presented in detail in Chapter 3. As an outcome of this
phase, the manuscript “Solving a class of bilevel programs with quadratic
lower level” was submitted to the SIAM Journal on Optimization [7].

5. In March 2021, some members of my team at LIX (OptimiX team) were
invited to contribute to the 3rd edition of the Springer Encyclopedia of
Optimization, edited by Panos M. Pardalos and Oleg A. Prokopyev. In
particular I contributed to two entries of the Encyclopedia, which have been
submitted in the beginning of September: “Optimal Power Flow” (authors:
Cerulli M., Delle Donne D., Escobar M., Liberti L., Oustry A.) [9], and
“Aircraft Conflict Resolution” (authors: Cerulli M., Pelegŕın M., Cafieri S.,
D’Ambrosio C., Rey D.) [8].



Part I

Bilevel optimization





Chapter 1

Bilevel programming

Bilevel programming is a field of mathematical programming in which some
variables are constrained to be the optimal solution of another optimization
problem. Therefore, bilevel optimization can be used to model the real-world
hierarchical relationship between two autonomous, and possibly conflictual, decision
makers. In this chapter, we discuss the key concepts of bilevel optimization. In
Section 1.1, we introduce the basic concepts of bilevel optimization. We present
some of the well-known single-level reformulation approaches in Section 1.2. In
Section 1.3, some solution methods for the bilevel problems are described.

In the following, given a formulation pPq of an optimization problem, we use
the term reformulation to describe a formulation having the same set of optima of
pPq, i.e., what is defined as exact reformulation in [131, Definition 10]. With the
term relaxation, we refer to a formulation having a feasible set which contains the
feasible set of pPq [131, Definition 13]. Finally, we use the term restriction when
referring to a formulation having a feasible set which is included in the feasible set
of pPq.

1.1 Introduction

From a historical point of view, bilevel optimization is closely related to the
economic problem of Stackelberg (1934) in the field of game theory [196, 197],
which was used to model the interaction among two firms competing sequentially on
the quantity of output they produce of a homogeneous good. A formal definition of
bilevel programming problems was first introduced by Bracken and McGill (1973)
[46] as “mathematical programs with optimization problems in the constraints”,
but the designation bilevel and multilevel were only later introduced by Candler
and Norton (1977) [52]. For a general overview of bilevel programming, we refer to
the thorough surveys [195, 65, 74, 73], and to the books by Bard [27] and Dempe
[72, 77].
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A bilevel programming problem can be seen as a hierarchical game, where two
players (a leader and a follower) make their decisions following a hierarchical order.
Firstly, the leader makes his/her choice and communicates this to the follower, who
will select a response taking into account the selection of the leader, and give it back
to the leader. Thus, the leader’s task is to determine the best decision optimizing,
together with the reaction of the follower, his/her own objective function.

The mathematical programming formulation of a classical (continuous) bilevel
problem is the following:

min
x

F px, yq (1.1)

s.t. Gpx, yq ď 0 (1.2)

y P arg min
yPY
tfpx, yq | gpx, yq ď 0u (1.3)

x P X, (1.4)

where X Ď Rn, Y Ď Rm, F and f : X ˆ Y Ñ R, G : X ˆ Y Ñ Rp, and
g : X ˆ Y Ñ Rl. We define y P Rm the lower-level decision variable and refer
to the embedded minimization problem as the lower-level problem (or follower’s
problem), respectively. For the abuse of notation regarding the use of y both
inside and outside the lower level (1.3), see the note after the formulation (P ) in
the introduction. We call the outer problem in the variables x and y upper-level
problem (or leader’s problem), and x P Rn is the upper-level decision variable.
Upper-level constraints Gpx, yq ď 0 are defined as coupling constraints if they
depend on y.

The feasible set of the so-called High Point Relaxation (HPR) is defined as the
set of points px, yq satisfying upper and lower-level constraints (but (1.3)), i.e., for
formulation (1.1)–(1.4) is the set

H “ tpx, yq P X ˆ Y | Gpx, yq ď 0^ gpx, yq ď 0u. (1.5)

If the HPR is infeasible then the original bilevel problem is infeasible. However,
if the HPR is unbounded, the bilevel problem can either be unbounded too, or
still infeasible, or admit a finite-valued solution (see [207, Example 3]). The
inducible (or induced) region (IR) is the “feasible set of the bilevel problem”, i.e.,
for formulation (1.1)–(1.4) is the set:

IR “ tpx, yq P H : y satisfies (1.3)u.

It is usually nonconvex and, in presence of upper-level constraints, can be discon-
nected or even empty.

The definition of the bilevel programming problem (1.1)–(1.4) does not con-
sider the ambiguity in the definition of the problem in case of multiple optimal
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solutions in the follower’s problem for some x values. To overcome this ambiguity
two approaches have been suggested [74]. What we consider in the rest of this
dissertation is the so-called optimistic approach, which consists in assuming that,
if the follower has more than one optimal solution, he/she selects the one which is
the best for the leader (in terms of upper-level objective function). To reflect this,
the leader minimizes the function min

y
F px, yq over x. Thus, the optimistic bilevel

problem is formulated as:

min
x,y

F px, yq (1.6)

s.t. Gpx, yq ď 0 (1.7)

y P arg min
yPY
tfpx, yq | gpx, yq ď 0u (1.8)

x P X, (1.9)

Most of the literature on bilevel programming consider the optimistic problem.
One of the reasons can be that this problem has an optimal solution under
quite reasonable assumptions (see [72]). When cooperation of the leader and the
follower is not allowed, or if the leader wants to bound the “damage” resulting
from an undesirable selection by the follower, the pessimistic approach [203, 135]
must be used: the leader assumes that the follower selects the optimal solution
corresponding to the worst upper-level objective function value. To model this,
the leader minimizes the function max

y
F px, yq over x. Thus, the pessimistic bilevel

problem is formulated as:

min
x

max
y

F px, yq (1.10)

s.t. Gpx, yq ď 0 (1.11)

y P arg min
yPY
tfpx, yq | gpx, yq ď 0u (1.12)

x P X, (1.13)

Essentially, both optimistic and pessimistic bilevel problems possess a structure
involving three interrelated optimization problems [130]. In the optimistic version,
this structure gives rise to a two-level problem, since the successive minimization
of F over x and y, i.e., min

x
min
y
F px, yq, is combined to form a joint minimization

of F over the points px, yq P IR, i.e., min
x,y

F px, yq. As already written, in this

dissertation, we only study the optimistic approach.
Most decisions in application areas such as energy, security, production planning,

or revenue management are of a bilevel nature, in the sense that they impact
systems with some degree of autonomy and conflicting objectives. The capability
to model hierarchical decision processes also makes bilevel optimization problems
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notoriously hard to solve. For instance, already the easiest case of linear upper
and lower level is strongly NP-hard; see Chapter 2 for details.

1.2 Single-level reformulations

To investigate bilevel problems, their transformation into one-level optimization
problems may be necessary, and different approaches can be used towards this aim
[75]. First of all, instead of using the point-to-set mapping, linking the leader’s
selection to the set of optimal solutions of the follower’s problem, one can also use
the value function

ϕpxq “ min
yPY
tfpx, yq | gpx, yq ď 0u, (1.14)

and reformulate the optimistic bilevel problem (1.6)–(1.9) as

min
x, y

F px, yq (1.15)

s.t. Gpx, yq ď 0 (1.16)

gpx, yq ď 0 (1.17)

fpx, yq ď ϕpxq (1.18)

x P X, y P Y (1.19)

which is the so-called value function reformulation. Problems (1.6)–(1.9) and
(1.15)–(1.19) are equivalent (both w.r.t. local and global optima). The function
ϕpxq is in general not differentiable, even if all the constraints and the objective
function in the lower level are smooth [76]. Using nonsmooth analysis, optimality
conditions for the optimal value transformation can be obtained (see, e.g., [76]).

When the lower-level problem is convex for each feasible upper-level variable,
and satisfies some regularity conditions (e.g., Slater’s constraint qualification), it
is possible to reformulate the bilevel problem into a single-level problem using
either KKT conditions of the lower level or strong duality applied to the lower-
level problem. Indeed, in this case, the lower-level problem can be replaced by
its necessary and sufficient KKT conditions, obtaining the following single-level
reformulation of problem (1.6)–(1.9):

min
x,y,λ

F px, yq (1.20)

s.t. Gpx, yq ď 0 (1.21)

0 P Byfpx, yq ` λ
J
Bygpx, yq “ 0 (1.22)

gpx, yq ď 0, λ ě 0 (1.23)

λJgpx, yq “ 0, (1.24)

x P X, y P Y, λ P Rl (1.25)
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where λ P Rl is the Lagrangian multiplier associated to the lower-level convex
inequality constraint gpx, yq ď 0. Eq. (1.22) (setting the gradient of the lower-
level Lagrangian function equal to zero) corresponds to lower-level stationarity
conditions, Eq. (1.23) to lower-level primal and dual feasibility, and Eq. (1.24) to
complementarity slackness. If the lower level is nonconvex, the formulation (1.20)–
(1.25) is a relaxation of the original bilevel problem, since the set of bilevel feasible
solutions is enlarged by adding local optima as well as stationary solutions of the
lower-level problem to it.

We can claim that the above presented reformulation is the most often used
approach to deal with bilevel problems, despite the nonconvexities that occur
in the complementarity constraint (1.24). Indeed, problem (1.20)–(1.25) is a
Mathematical Problem with Complementarity Constraints (MPCC) [139, 157].
In [178], it is shown that the Mangasarian-Fromovitz constraint qualification is
violated at every feasible point of the problem (1.20)–(1.25). Thus, the solution
of the problem and also the definition of (necessary and sufficient) optimality
conditions is difficult.

For bilevel problems with convex lower level, another approach consists in
exploiting strong duality of such lower level. Given the lower level

min
y
tfpx, yq | y P Fpx, yqu

with Fpx, yq “ ty P Y | gpx, yq ď 0u the lower-level feasible set, and the dual
variable z P Rm, we can write the lower-level dual problem as

max
z
tfdpx, zq | z P Fdpx, zqu,

where fd is the dual objective function and Fdpx, zq the dual feasible set. By weak
duality, for all px, y, zq P X ˆ Fpx, yq ˆ Fdpx, yq we have:

fdpx, zq ď fpx, yq.

Lower-level optimality of y can, thus, be ensured by imposing that a lower-level
dual feasible z exists such that:

fdpx, zq ě fpx, yq,

i.e., strong duality holds for the pair py, zq.
We can, thus, obtain the so-called strong duality reformulation of problem

(1.6)–(1.9) (assuming the convexity of the lower level) by

min
x,y,z

F px, yq (1.26)

s.t. Gpx, yq ď 0 (1.27)

fdpx, zq ě fpx, yq (1.28)

x P X, y P Fpx, yq, z P Fdpx, zq. (1.29)



30 CHAPTER 1. BILEVEL PROGRAMMING

Also with this approach, constraint (1.28) may introduce some nonconvexities
even when suitable convexity assumptions are made on all the objectives and
constraints of the bilevel formulation, but, still, the overall bilevel optimization
problem is reduced to a single-level (constrained) optimization problem.

1.3 Solution approaches

In this section we introduce the main methods from the literature to tackle bilevel
problems, following the structure of surveys [65, 180, 123, 194]. Being bilevel
programming problems inherently complex (see Chapter 2), it is not surprising
that most algorithmic literature has focused on the simplest case of the continuous
Bilevel Linear Problems (BLPs) having only continuous variables and linear
functions in both the levels [33]. They can be formulated as:

min
x,y

cJx` dJy

s.t. Ax`By ě a

y P arg min
y

eJx` fJy

s.t. Cx`Dy ě b,

(1.30)

where c, e P Rn, d, f P Rm, A P Rpˆn, B P Rpˆm, C P Rlˆn, D P Rlˆm, a P Rp, and
b P Rl. An important feature of BLPs is that their solution set, whenever it is non-
empty, contains at least one vertex of the constraint region (1.5). Therefore, many
methods for solving BLPs are based on vertex enumeration. The first approach
of this kind is presented in [53] for solving BLPs with no upper-level constraints.
Afterwards in [41], under the assumption that H is bounded, a so-called “Kth

method” is proposed. While the former algorithm enumerates vertices of the
lower-level problem, the latter, enumerates vertices of the HPR. Other vertex
enumeration approaches for BLPs have been proposed by [59, 70, 159, 190].

When the bilevel problem is a BLP, it is often transformed into a MPCC
through the KKT reformulation (see Section 1.2). The most common approach in
the literature is to use Mixed-Integer Linear Programming (MILP) techniques to
linearize the KKT complementarity constraints λJpCx`Dy´ bq “ 0 by replacing
them with the constraints

λ ďMDz Cx`Dy ď b`MP p1´ zq,

where z P t0, 1um is a new binary variable, and MD and MP are sufficiently large
big-M constants. On the one hand, existing powerful solvers can be used to solve
the obtained MILP problem. On the other hand, the choice of the big-M constants
can significantly influence the performance and correctness of the reformulation.
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There may be context-specific ways to choose a safe value for big-Ms, but this is not
always the case. In [124], it is proved that finding a correct big-M cannot be done
efficiently, i.e., in polynomial-time, unless P “ NP. If the selected big-Ms is too
small, the solution of the MILP problem could be not bilevel optimal. Otherwise,
the choice of too large big-Ms can lead to weak relaxations, which, in turn, may
make the model hard for the solvers.

Several branch-and-bound approaches exploit the complementarity between the
multipliers and the slack variables of the lower-level constraints in the condition
(1.24). This is discussed in [28] and [94], where a general branch-and-bound method
is applied to the KKT reformulation of a BLP. The approach was adapted to
linear-quadratic in [29] and to quadratic-quadratic bilevel problems in [16, 26, 86],
with some additional assumptions.

Novel branching rules, different from most-violated complementarity, to solve
medium-size BLPs have been studied in [109].

What can be seen as a combination of the methods already presented (i.e.,
vertex enumeration and branch-and-bound) is the so-called sequential linear com-
plementarity problem for solving linear and linear-quadratic bilevel programs,
introduced in [118, 119]. This approach seems quite efficient for the solution of
medium-scale problems.

Several descent methods have been proposed in literature for solving bilevel
programming problems. A descent direction in bilevel optimization is a direction
d P Rn along which the upper-level function value decreases while keeping bilevel
feasibility. Given that a point is considered bilevel feasible only if it is lower-level
optimal, finding a descent direction can be challenging. Indeed, a major issue is the
availability of the gradient (or a sub-gradient) of the upper-level objective function
at a feasible point. To tackle this problem, researchers have investigated ways to
approximate the gradient of the upper-level objective [128] as well as considered
formulation of auxiliary programs, like in [177] where the computation of the
steepest descent direction for a bilevel problem without upper-level constraints
is done with the help of a linear-quadratic bilevel problem. The sequential linear
complementarity problem algorithm proposed in [119] is used to solve such linear-
quadratic bilevel problem . The same approach of [177] is applied to convex bilevel
programs, where the upper level is quadratic and the lower level is strictly convex
quadratic programs, in [194].

Part of the literature is about penalty methods, which consist in solving a series
of unconstrained problems, obtained by adding a term, called a penalty function,
to the objective function measuring the violation of the constraints while relaxing
them. The measure of violation is nonzero when the constraints are violated and is
zero when constraints are not violated. Despite the large number of works focused
on such methods, they are generally limited to computing stationary points and
local minima. While in [14, 179, 15] only the lower level is penalized, and bilevel
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hierarchy is maintained, in [114] both upper and lower-level objective functions
are penalized. In [202], a BLP is converted into a penalized bilinear optimization
problem, and an exact penalty algorithm is proposed to find the BLP optimal
solution by solving a series of bilinear problems. In a number of works [39, 40, 56],
the lower-level problem is replaced by its KKT conditions and, then, a penalized
approach is used to solve the single-level problem. Recently, in [140], the authors
use the KKT approach and, then, append the complementarity condition to the
upper-level objective function with a penalty. The penalized problem is handled
using a series of linear programs.

Some papers propose trust-region algorithms to solve bilevel programs. In
trust-region methods a certain region of the objective function is approximated
using a model function. Such region is expanded if the approximation is adequate,
otherwise it is contracted. The first trust-region technique to solve bilevel problems
was presented in [136], when the lower-level problem has a strongly convex objective
function and linear constraints, and no upper-level constraints are considered.
Later, in [143] a bilevel problem is solved with a trust-region approach where the
model is itself a bilevel problem with linear upper level and a linear variational
inequality at the lower level. Similarly, in [64], the authors consider a bilevel
program with no coupling constraints, and the model solved is a linear-quadratic
bilevel problem, then reformulated using the KKT approach.

In many real systems, the leader or the follower may have to make discrete
decisions. This type of decisions can be described by considering formulations where
some variables are restricted to be integer [151]. Branch-and-bound algorithms
for solving Bilevel Mixed-Integer Linear Problems (MIBLPs), and mixed-integer
quadratic bilevel problems with different assumptions are proposed in [30, 201, 92]
and [87], respectively.

To enhance the performance of their basic branch-and-bound method, the
authors of [92] also introduce intersection cuts to cut off bilevel infeasible points,
thus obtaining a branch-and-cut approach for MIBLPs. Another branch-and-cut
algorithm is proposed in [81], for MIBLPs with only integer variables in both levels
and no coupling constraints. An extension of the former method that allows for a
mixed-integer setting at both levels is given by [185].

A cutting plane method using the Chvátal-Gomory cut for solving a bilevel
program with continuous upper level and discrete lower level was proposed in [71];
the algorithm approximates the feasible set of the lower level.

In [107], two deterministic global optimization methods that solve mixed-
integer nonlinear bilevel problems are proposed. The first addresses problems in
which the upper level is mixed-integer nonlinear and the lower level continuous
nonlinear. The second solves problems in which the upper level involves mixed-
integer nonlinear functions, and the lower level is mixed-integer nonlinear in
upper-level variables, linear polynomial in lower integer variables, and linear in
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lower continuous variables. This second approach is based on the reformulation
of the lower problem as continuous via its convex hull and solving the resulting
nonlinear bilevel problem by a novel deterministic global optimization framework.

For the solution of bilevel problems with mixed-integer variables, also Benders
decomposition techniques have been employed. Decomposition techniques exploit
the decomposable structure of the problems in order to facilitate their solution
through the resolution of a series of smaller sub-problems. In [173], the sub-problem
is the slave problem which is obtained by fixing a number of integer variables of the
initial MIBLP to a feasible value. The master problem, instead, gives the optimal
solution after the addition of Benders cuts. Fixing the integer values makes the
slave problem a BLP, which is solved by KKT reformulation techniques, and its
solution is used to add a Benders cut to the master problem. The algorithm
iterates between master and slave problems until optimality criteria are met. In
[45], a Benders-like decomposition is viewed as a procedure for iterative refinement
of dual functions associated with the value function of a MIBLP involving integer
variables also at the lower level.

In [211], a single-level reformulation and a decomposition algorithm based
on a column-and-constraint generation scheme are proposed for MIBLPs with
continuous and integer variables in both upper and lower-level programs. In [210],
upper-level constraints involving lower-level variables are also considered, and the
approach proposed in [211] is enhanced projecting the constraint region on the
space of lower-level integer variables and working with KKT conditions of the
remaining continuous lower-level problem.

Authors of [89] proposed a global solution approach using a parametric pro-
gramming theory to address BLPs, Bilevel Quadratic Problems (BQPs) and
MIBLPs with binary variables. Indeed, the follower’s problem can be solved as a
multi-parametric programming problem, with parameters being the upper-level
variables. By inserting the resulting exact parametric solutions into the upper
level, the overall problem is transformed into a set of independent single-level
problems, which can be solved to global optimality. The approach is extended
to mixed-integer convex quadratic bilevel programs in [23]. The same authors
provide a computational study for MIBLPs and mixed-integer BQPs in [170],
where B-POP is presented, a MATLAB toolbox for bilevel optimization through
multi-parametric programming. Very recently, in [48] another parametric approach
is proposed for linearly constrained bilevel problems in which the upper-level
objective function depends on both the lower-level primal and dual optimal solu-
tions. When the upper-level objective is affine in the lower-level primal optimal
solution, the parametric function is piece-wise linear. This property facilitates the
application of parametric programming and allows for decomposition of a separable
lower-level problem. When the upper-level objective is bilinear in the lower-level
primal and dual optimal solutions, the authors also provide an exact linearization
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method that reduces the bilevel problem to a single-level MILP problem.
Obviously, the entire field of bilevel optimization solution methods is broader

and we, thus, are not able to cover it entirely in this dissertation. The readers may
refer to [79] which contains the largest up-to-date list of references in the field.

1.4 Conclusion

In this first chapter we introduced the field of bilevel programming, which is
a useful tool to model real-world problems involving a hierarchical relationship
between two decision levels. Indeed bilevel programming has been applied to:
military problems, traffic and transportation applications (see, e.g., Chapter 4),
management science, production planning, security, as well as energy networks and
market (see Chapter 5). We presented the main approaches in this area that deal
with theoretical issues, reformulations and algorithms. To close the discussion, in
Chapter 2 we discuss the computational complexity of bilevel problems.



Chapter 2

Computational foundations of
bilevel programming

In most cases, bilevel problems are ΣP
2 -hard. There are classes of strongly NP-hard

bilevel problems, but only special cases are proved to be solvable in polynomial time.
In this chapter we discuss the computational complexity of bilevel problems. In
Section 2.1 we introduce the concepts of polynomial hierarchy, as well as existential
and universal quantifiers, used to discuss bilevel programming computational
complexity. In Section 2.2 we focus on BLPs, which are strongly NP-hard, and
MIBLPs, which are instead ΣP

2 -hard. In Section 2.3 we present BLPs solvable in
polynomial time. Finally, in Section 2.4 we illustrate the results obtained for the
so-called “Independent bilevel problems”.

2.1 Polynomial hierarchy and formulations with

two classifiers

In order to classify bilevel problems, we must introduce the so-called polynomial
hierarchy, a classifying scheme including several levels of complexity. Level zero
ΣP

0 contains problems solvable in polynomial time, i.e., problems in the well-known
class P. Level one includes ΣP

1 “ NP and ΠP
1 “ co-NP problems. The second level

is the one on which we focus, and contains ΣP
2 problems. The generic kth level of

the hierarchy includes ΣP
k problems, i.e., problems solvable in nondeterministic

polynomial time with an oracle for ΣP
k´1 problems [146].

We recall here the discussion in [204] on the computational complexity of bilevel
programs, which stems from the difference between formulations with a single
existential quantifier and formulations including also an universal quantifier.

A problem with a single quantifier in the complexity class NP (or ΣP
1 ) asks
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whether
Dx P X : P pI, xq, (2.1)

where I is an instance taken in input, X denotes the set of potential solutions
for instance I, and P pI, xq is a Boolean predicate depending on I and x. We
assume that the encoding length of every object x is polynomially bounded in
the encoding length of the instance, |I|, (i.e., an integer corresponding to the
number of symbols required to describe I under some encoding scheme) and that
the predicate P pI, xq can be evaluated in an amount of time that is a polynomial
function of |I|. A problem is NP-hard when every problem in NP can be reduced
to it in polynomial time, and is NP-complete if it is NP and NP-hard. A problem
is strongly NP-complete if it remains NP-complete even when all of its numerical
parameters are bounded by a polynomial in the length of the input problem and is
strongly NP-hard if a strongly NP-complete problem has a polynomial reduction
to it.

If, for a problem (2.1), the cardinality of set X is polynomially bounded in |I|,
all objects x P X can be enumerated, checking whether P pI, xq is satisfied, and
therefore the problem is solved in polynomial time. Thus, if it is possible to write
problem (2.1) as a simpler equivalent one of the form

P 1pIq, (2.2)

with P 1pIq a property of I testable in polynomial time, such problem belongs to
the complexity class P.

The complexity class co-NP (or ΠP
1 ) contains problems asking whether

@y P Y : P 2pI, yq, (2.3)

where Y denotes the set of potential solutions for instance I, and P 2pi, yq is again
a Boolean predicate depending on I and x, that can be evaluated in polynomial
time.

If we look at formulations with two quantifiers, we can define ΣP
2 complexity class

[182] as the class of decision problems having the YES-instances I characterized
by a formula of the form

Dx P X : @y P Y P pI, x, yq. (2.4)

Similarly to NP-hard problems, a problem is ΣP
2 -hard if every problem in the

complexity class ΣP
2 can be reduced to it in polynomial time. The most difficult

problems in class ΣP
2 are the ΣP

2 -complete problems: every problem in ΣP
2 can be

reduced in polynomial time to every ΣP
2 -complete problem.

The negated version of a ΣP
2 problem is a ΠP

2 problem, i.e., a problem having
YES-instances I characterized by the formulation

@y P Y Dx P X : P pI, x, yq. (2.5)
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The class ΣP
k contains the problems that can be expressed by a formula having a

sequence of k existential or universal quantifiers, followed by a predicate depending
on the variables and on the given instance and that can be evaluated in polynomial
time. Looking at formulations (2.4),(2.1),(2.2), we can deduce that:

P Ď NP Ď ΣP
2 Ď ΣP

3 Ď ¨ ¨ ¨ Ď ΣP
k Ď ΣP

k`1 Ď . . .

It is an open question whether these inclusions are strict, but it is widely believed
that they all are. If any ΣP

k “ ΣP
k`1, then the hierarchy collapses to level k, i.e.,

for all j ą k, ΣP
j “ ΣP

k .
General bilevel problems include both an existing quantifier and an universal

quantifier, and aim at finding if it exists a solution that is optimal for the leader
for all the decisions of the followers. Assuming that the encoding length of
every potential decision of the leader is polynomially bounded, as well as every
potential decision of the follower, and that good final solutions can be recognized in
polynomial time, bilevel problems of the described form are contained in class ΣP

2 .

2.2 Complexity of BLPs and MIBLPs

In this section, we focus on bilevel optimization problems having only linear
functions. Firstly, we discuss the computational results whenever all the variables
are continuous, secondly, we consider the problems involving integer variables too.

BLPs are proved to be NP-hard in [117, 34, 27]. Later, in [109] a reduction
from the strongly NP-complete Kernel problem [61] is used to show that BLPs are
indeed strongly NP-hard. These results are strengthened in [194] (Theorems 5.1
and 5.2), where it is proved that checking strict or local optimality in BLP is also
NP-hard, through reductions from 3-SAT problem. Indeed, many combinatorial
optimization problems can be reduced to bilevel programs. In [22], it is shown that
MILP is a special case of bilevel linear programming, based on the results of [94],
where a reformulation of a BLP as a Generalized Linear Complementary Problem
(GLCP) is presented, using the KKT conditions of the lower level. A big-M
linearization of the KKT complementarity conditions is used to reformulate the
GLCP as a MILP problem. In [22], it is shown that this two-stage reformulation
has its converse, since the GLCP obtained as a reformulation of a MILP problem
in [120] can be further reformulated as a BLP. In fact, every MILP program can
be formulated as a BLP using the following equivalence:

x P t0, 1u ðñ y “ 0 and y “ arg max
w
tw : w ď x,w ď 1´ x,w ě 0u.

The method used in [94] to reformulate the GLCP (in turn obtained through the
KKT reformulation of the BLP) into a MILP problem is based on the linearization
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of every complementarity constraint (see Section 1.3). It requires the determination
of some big-M constant providing a valid bound to the KKT multipliers. Finding
a correct big-M cannot be done efficiently, i.e., in polynomial-time, unless P “ NP
[124].

For multilevel linear problems, Jeroslow [117] has shown that the optimal value
of a pk ` 1q-level linear program is ΣP

k -hard.
If a subset of either upper or lower-level variables of problem (1.30) are con-

strained to be integer, the resulting problem is a MIBLP. For such bilevel programs,
already checking feasibility of a given vector px̄, ȳq requires solving a MILP formu-
lation corresponding to the lower-level problem for x “ x̄, i.e., solving a NP-hard
problem. As a consequence, using branch-and-bound algorithms to solve a MI-
BLP will require solving at each node a NP-hard problem (at least for checking
feasibility).

The authors of [138] proved that MIBLPs are ΣP
2 -hard: there is no way of

formulating a MIBLP as a MILP program of polynomial size unless the polynomial
hierarchy collapses.

2.3 Polynomially solvable special cases

Despite the results presented in the previous sections, there are special cases
in which bilevel problems could be solved in polynomial time. The authors of
[136] introduced a polynomial-time algorithm for a BLP where the number of the
lower-level control variables is bounded by a constant. In [82] a simpler proof for
the above result is proposed, showing that it can be extended to the more general
case of multilevel problems where the leader controls all but a constant number of
follower’s variables.

In [54], the three bilevel variants of knapsack problem presented respectively
by Dempe–Richter [78], Mansi–Alves–de-Carvalho–Hanaf [141], and DeNegre [80]
are studied. Firstly, they are proved to be ΣP

2 -complete under the standard binary
encoding of the input. Secondly, the three bilevel formulations are studied under
the so-called unary encodings (when an integer n is represented as a string of n
ones). The reason behind this approach is that the classical single-level formulation
of knapsack problem (known to be NP-complete) is polynomially solvable if the
input is encoded in unary. Indeed, the first two bilevel knapsack variants become
in this way solvable in polynomial time, whereas the third becomes NP-complete.

2.4 Independent bilevel problems

In this section we focus on the so-called independent bilevel problems [203], which
are characterized by a feasible set F independent of the upper-level variables x,
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that is, for any y, Fpx, yq “ Fpx1, yq “ F for all x, x1 P X. Therefore, these
problems are formulated as

min
x, y

F px, yq

s.t. Gpx, yq ď 0

y P arg min
y
tfpx, yq | y P Fu

x P X.

Note that the lower-level problem of an independent bilevel problem still depends
on x because of the lower-level objective function f .

In [203], firstly, it is proved that, if one assumes that X and F are compact,
the independent optimistic and independent pessimistic formulation of a BLP can
be solved in polynomial time. The proof is based on the reformulation (using
duality theory) of such problems into linear problems of polynomial size in the
length of the input data, which can be solved in polynomial time using interior
point methods. Secondly, it is shown that even the best-behaved independent
formulation of the nonlinear bilevel problem, i.e., linear upper-level problem, X
and Y polyhedral, and strictly convex quadratic lower-level objective function, is
already strongly NP-hard. The proof of this result is based on a polynomial time
reduction to the NP-complete Kernel problem [61].

2.5 Conclusion

The goal of this chapter was to review the most important results on bilevel
programming computational complexity. The general bilevel problem is ΣP

2 -hard.
To arrive to this conclusion we started from the difference between formulations with
one quantifier and formulations with two quantifiers, as in [204]. We also presented
the main results for both bilevel linear problems, and mixed-integer bilevel linear
problems. Finally, we consider the bilevel problems having a lower-level feasible
set not depending on the upper-level decision variables, i.e., the independent
bilevel problems, which we consider in Chapter 3, as well as in the aircraft conflict
resolution problem studied in Chapter 4. For the sake of completeness, we also
presented some polynomially solvable special bilevel programs.





Chapter 3

Solving a class of bilevel
programs with quadratic lower
level

In this chapter, we present two theoretical approaches to deal with a particular class
of bilevel programs with a quadratic lower-level problem, which can be obtained by
reformulating Semi-Infinite Programming (SIP) problems with an infinite number
of quadratically parametrized constraints. The problems considered in our analysis
are what we defined in Chapter 2 “independent bilevel problems”, i.e., problems
having a lower-level feasible set not depending on the upper-level variables. We
propose a new approach to solve this class of bilevel programs, based on the dual of
the lower-level problem, which can lead to a convex or a semidefinite programming
problem, depending on the parametrization of the lower level with respect to the
upper-level variables. This approach is compared with a new tailored Cutting
Plane (CP) algorithm, which is proved to be convergent. The rate of convergence
of this CP algorithm, directly related to the iteration index, is derived when the
upper-level objective function is strongly convex, and under a strict feasibility
assumption. We successfully test the two proposed methods on two applications:
the constrained quadratic regression and a zero-sum game with cubic payoff.

The results presented in this chapter are contained in the submitted paper [7].

3.1 Introduction

We consider bilevel problems where the upper-level problem has a continuous convex
objective function F pxq (where x is an array of upper-level decision variables),
and a convex feasible set X Ă Rm depending only on x. The lower-level problem
is a quadratic problem in the lower-level decision variables y, with a possibly
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nonconvex objective function, but with a feasible set consisting of the polytope

F “ ty P Rn : Ay ď bu “ ty P Rn : @j ď r, paJj y ď bjqu,

where aj is the j-th row of the matrix A, and r is the number of lower-level
constraints.

We make two overarching assumptions on the bilevel class of interest: (i) F does
not depend on x; (ii) the upper-level problem depends only on the optimal objective
function value of the lower-level problem, rather than its optimal solutions.

Thus, the Mathematical Programming formulation we study is as follows:

$

’

&

’

%

min
xPRm

F pxq

s.t. x P X
dpxq ď min

yPRn
t1

2
yJQpxqy ` qpxqJy | Ay ď bu,

(BP)

where F , and d, are continuous convex functions in the upper-level variables x,
both the nˆ n matrix Qpxq and the n-dimensional vector qpxq depend linearly on
x, A a r ˆ n matrix, and b a r-dimensional vector.

Here are the technical assumptions we make on (BP).

Assumption 1. The upper-level objective function x ÞÑ F pxq is convex.

Assumption 2. X is convex.

Assumption 3. The functions x ÞÑ qpxq and x ÞÑ Qpxq are linear.

Assumption 4. The function x ÞÑ dpxq is convex and Lipschitz continuous.

Assumption 5. The set F is compact, and a scalar ρ ą 0 is known such that
(s.t.) the set F is included in the centered `2-ball with radius ρ.

As mentioned above, (BP) does not consider the optimal solutions of the
lower-level problem, but only its optimal objective function value. This renders
“pessimistic” or “optimistic” interpretations of (BP) meaningless. The bilevel
class (BP) arises in many applications requiring SIP problems, i.e., optimization
problems with a finite number of variables, and an infinite number of parametrized
constraints of the type @y P Y, gpx, yq ě 0, where y is the parameter. Indeed, this
is equivalent to:

0 ď min
yPY

gpx, yq,

which allows the reformulation of the SIP constraints into a lower level of a bilevel
problem in the class (BP), as long as gpx, yq “ 1

2
yJQpxqy ` qpxqJy ´ dpxq and

Y “ F . We remark that, in a bilevel context, the function φpxq “ min
yPY

gpx, yq is

called optimal value function.
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Our first contribution is an analysis of (BP) which yields a single-level formula-
tion with a finite number of constraints. This single-level formulation is obtained
by dualizing, using Semidefinite Programming (SDP), the problem min

yPY
gpx, yq, i.e.,

the problem of finding the most violated constraint among the infinite number
of constraints of the corresponding SIP problem. If gpx, yq is convex in y, i.e., if
Qpxq is Positive Semidefinite (PSD), our single-level is a reformulation of (BP).
This analysis yields a new solution approach, consisting in solving the single-level
formulation. We note that, if gpx, yq were linear in y, our reformulation would
be the same as the one mentioned in [36, Section 1.3]. Although an extension to
nonlinear perturbations is briefly outlined in [36, Section 1.4], the specific case of
quadratic perturbations over an uncertainty polytope is not considered.

Our second contribution is a tailored CP algorithm. While such algorithms are
well known in SIP, we prove its convergence and derive a new convergence rate
in terms of the number of iterations, under the additional assumptions that F is
strongly convex and that there exists an upper-level solution strictly satisfying the
constraint involving the lower-level problem.

The rest of the chapter is organized as follows. We review the relevant lit-
erature in Section 3.2. A single-level restriction/reformulation of problem (BP)
is introduced and discussed in Section 3.3. A tailored CP algorithm for solving
formulation (BP) directly is presented in Section 3.4. We successfully test the
two proposed methods on two applications: the constrained quadratic regression
and a zero-sum game with cubic payoff. Such applications are introduced in
Section 3.5. Numerical results, obtained by applying both solution approaches to
these applications, are presented in Section 3.6: our results illustrate the interest
of the proposed method. Some concluding comments are given in Section 3.7.

3.2 Literature review

BQPs are bilevel problems having either one or both the objective functions which
can be expressed as quadratic functions. In [29] a BQP having a linear upper-level
problem and a convex quadratic lower level is considered, and a branch-and-
bound algorithm to solve it is presented. In [209], an ergodic branch-and-bound
method is introduced to solve mixed-integer BQPs, having a convex lower-level
problem, which is thus replaced by its KKT optimality conditions. In [186], a more
general class of BQPs is considered, by allowing some (not necessarily convex)
quadratic upper-level constraints and some convex quadratic functions in lower-
level constraints. After the reformulation of the problem into a nonconvex quadratic
single-level problem by replacing its lower level by its KKT conditions (which
is possible as they assume to know a sufficiently large number that bounds the
Lagrange multipliers) the authors adopt the successive convex relaxation method
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given by Kojima and Tunçel in [127] for approximating the nonconvex feasible
region. Then, they present two types of techniques to enhance the efficiency of the
method used.

A part of the literature focuses on general nonlinear bilevel problems. For
example, in [145], the authors aim at solving bilevel mixed-integer optimization
problems with lower-level integer variables and including nonlinear terms. They
assume that, for any fixed upper-level variables, and lower-level integer variables,
the lower-level problem is convex and satisfies the Slater condition. In order to
solve these bilevel problems, the authors consider an approximate projection-based
algorithm for mixed-integer linear bilevel programming problems introduced by Yue
et al. [210] and propose a way of making it exact under the additional assumption
that continuous upper-level variables do not appear in lower-level constraints.

A nonconvex lower-level problem is considered in both [132, 148], as well as in
[25]. In particular, in [132] a bilevel problem having closed convex feasible sets
both in the upper and in the lower level (the lower-level one assumed not dependent
on the upper-level variables), but eventually nonconvex objective functions in
both levels is reformulated into a single-level problem, using the so-called optimal
value function transformation. To deal with the non-smoothness introduced by
the optimal value function, a smoothing projected gradient algorithm is proposed
and used to solve the bilevel problem if a calmness condition holds, which is a
strong assumption, and an approximate bilevel program otherwise.

In [148], a bounding algorithm for the global solution of nonlinear bilevel
programs involving nonconvex functions in both the upper and lower levels is
presented. The algorithm is rigorous and terminates finitely to a point that satisfies
ε-optimality in both upper and lower-level problems. This is possible using the
optimal value function of the lower-level problem and a piecewise, yet discontinuous,
approximation of it. Previously, Bard [25] proposed an algorithm (not guaranteed
to be convergent) based on a grid search between a lower and an upper bound of
the optimal value of a bilevel problem (max-max) without upper-level constraints.
The upper bound is found by solving a relaxation obtained replacing the lower
level with its KKT conditions. The lower bound is obtained solving the lower level
for a fixed value of the upper-level variables (i.e., x “ x0), and then computing
the value of the upper-level function in the point px0, φpx0qq.

This chapter focuses on a particular class of bilevel problems, where there is
no argmin operator, but a constraint in the upper level involving the lower-level
problem’s value. As mentioned before, such bilevel programs can be obtained by
reformulating SIP problems having an infinite number of quadratically parametrized
constraints. To solve SIP problems, discretization methods, CP methods, and other
hybrid methods are used in the literature. The discretization approach [110, 181]
consists in replacing the infinite constraint parameter set by a finite subset which
samples it finely: this leads to a relaxation of the original problem, the value of
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which converges towards the value of the original problem when the mesh gets finer.
This method is commonly used for parameters sets of low dimensions, but deals
with the curse of dimensionality when the number of parameters increases. Instead
of using a fixed subset of constraints, the CP approach [121] consists in iteratively
generating and adding constraints. The CP algorithm and its refined variants, as
the accelerated central CP algorithm for instance, are major techniques used for
solving linear, quadratic, and convex SIP problems [129, 88, 38].

In this chapter, we introduce a tailored CP algorithm which directly solve
formulation (BP), and we prove that it is convergent. We also do a step further, by
proving a rate of convergence for CP valid for a specific setting. Our convergence
rate is directly related to the iteration index k, which is something new w.r.t. what
is usually proved in SIP literature, where the linear rate of convergence is related
to an index which is not controlled by the index k (see [162, Theorem 4.3]).

Another class of algorithms for SIP is based on Lagrangian penalty functions
and Trust-Region methods [67, 187]. However, in the context of problem (BP),
they would require to compute the set of all local minima of problem min

yPY
gpx, yq.

In the case where g is not convex with respect to variables y, the enumeration of
all local minima is intractable even for medium-scale instances.

3.3 Single-level formulation via the dual approach

A possible way to deal with the bilevel problem (BP) is what we call dual approach,
which consists in replacing the constraint involving the quadratic lower-level
problem with one involving its dual. We obtain a strong dual from an SDP
relaxation of the lower-level problem (or a reformulation if the latter is convex).
We recall that the lower-level problem of (BP), for any x P X , reads:

#

min
yPRn

1
2
yJQpxqy ` qpxqJy

s.t. aJj y ď bj, @j P t1, . . . , ru,
(Px)

where the objective function fpx, yq “ 1
2
yJQpxqy`qpxqJy is convex if Qpxq is PSD.

In Section 3.3.1, we introduce the classical SDP relaxation (reformulation, if the
lower level is convex) of the lower-level problem regularized by a ball constraint and
then, in Section 3.3.2, we introduce the SDP dual of this relaxation (reformulation
resp.). Finally, in Section 3.3.3 we present a single-level formulation obtained
applying the so-called dual approach to the bilevel problem (BP). This formulation
is a reformulation of (BP) if Qpxq is PSD for any x P X . Otherwise, it is a
restriction.
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3.3.1 SDP relaxation/reformulation of the lower-level prob-
lem

In this section, we reason for any fixed value of the upper-level decision vector
x P X . Let us define the following matrices:

• Qpxq “ 1
2

ˆ

Qpxq qpxq
qpxqJ 0

˙

,

• Aj “ 1
2

ˆ

0n aj
aJj 0

˙

, @j P t1, . . . , ru,

where 0n is the nˆn null matrix. We denote by xA,By “ TrpAJBq the Froebenius
product of two square matrices A and B with same size. With this notation, under
Assumption 5, the problem

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

min
Y PRpn`1qˆpn`1q

xQpxq, Y y

s.t. xAj , Y y ď bj @j P t1, . . . , ru
TrpY q ď 1` ρ2

Yn`1,n`1 “ 1
Y ľ 0
rankpY q “ 1,

(3.1)

is a reformulation of (Px), because any feasible matrix Y has the form Y “
ˆ

y
1

˙ˆ

y
1

˙J

with y P F , and, therefore, xQpxq, Y y “ fpx, yq. The constraint

TrpY q ď 1` ρ2, derives from Assumption 5 as follows:

‖y‖2
2 ď ρ2

ô TrpyyJq ď ρ2
ô TrpY q ď ρ2

` 1,

being TrpY q “ TrpyyJq ` 1. This constraint does not play any role at this point,
but will be useful thereafter to come up with a dual SDP problem with no duality
gap (see Section 3.3.2). If we relax the nonconvex constraint rankpY q “ 1 in (3.1),
we obtain:

$

’

’

’

’

’

&

’

’

’

’

’

%

min
Y PRpn`1qˆpn`1q

xQpxq, Y y

s.t. xAj , Y y ď bj @j P t1, . . . , ru
TrpY q ď 1` ρ2

Yn`1,n`1 “ 1
Y ľ 0,

(SDPx)

which is a SDP relaxation of (Px), as proved in the following Lemma 1. If Qpxq is
PSD, Lemma 1 states that (SDPx) is a reformulation of (Px), the rank-constraint
relaxation notwithstanding.
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Lemma 1. Under Assumption 5, val(SDPx) ď val(Px). If Qpxq is PSD, then
val(SDPx) “ val(Px).

For a sake of completeness, we give a proof of this standard lemma.

Proof. The inequality val(SDPx) ď val(Px) follows from the relaxation of the rank-
constraint. We now assume that Qpxq is PSD and prove that val(SDPx) ě val(Px)
holds. Given a matrix Y feasible for (SDPx), we denote by u1, . . . , un`1 P Rn`1

a basis of eigenvectors of Y (which is PSD) and their respective eigenvalues
v1, . . . , vn`1 P R`. Let us introduce the two following index sets:

I “ ti P t1, . . . , n` 1u : puiqn`1 ‰ 0u and J “ ti P t1, . . . , n` 1u : puiqn`1 “ 0u.

We have then: I Y J “ t1, . . . , n` 1u. Moreover,

• if i P I : we define the nonnegative scalar µi “ vi puiq
2
n`1 and yi P Rn s.t.

ui “ puiqn`1

ˆ

yi
1

˙

• if i P J : we define the nonnegative scalar νi “ vi and zi P Rn s.t. ui “

ˆ

zi
0

˙

.

With this notation, we have that

Y “
n`1
ÿ

i“1

viuiu
J
i “

ÿ

iPI

vipuiq
2
n`1

ˆ

yi
1

˙ˆ

yi
1

˙J

`
ÿ

iPJ

vi

ˆ

zi
0

˙ˆ

zi
0

˙J

“
ÿ

iPI

µi

ˆ

yiy
J
i yi

yJi 1

˙

`
ÿ

iPJ

νi

ˆ

ziz
J
i 0

0J 0

˙

,

where 0 is the null n-dimensional vector, not to be confused with 0n, the n ˆ n
null matrix. Let us define the vector ȳ “

ř

iPI

µiyi. Its objective value in (Px) is

smaller than the objective value of Y in (SDPx). In fact:

xQpxq, Y y “
ÿ

iPI

µifpx, yiq `
1

2

ÿ

iPJ

νiz
J
i Qpxqzi ě

ÿ

iPI

µifpx, yiq ě fpx,
ÿ

iPI

µiyiq “ fpx, ȳq.

(3.2)

The first inequality is due to Qpxq ľ 0 and νi ě 0. The second inequality
derives from

ř

iPI

µi “ Yn`1,n`1 “ 1, and from the convexity of function fx (Jensen

inequality). Moreover, since Y is feasible in (SDPx), for each j P t1, . . . , ru we
have bj ě xAj, Y y “

ř

iPI

µia
J
j yi “ aJj ȳ, which means that ȳ is feasible in (Px) too.

This implies that fpx, ȳq ě val(Px) and together with (3.2), that xQpxq, Y y ě
val(Px). This being true for any matrix Y feasible in (SDPx), we conclude that
val(SDPx) ě val(Px). This proves that val(SDPx) “ val(Px).
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3.3.2 Dual SDP problem

As already done in Section 3.3.1, also in this section we reason for any fixed value
of x P X . Let E be a pn ` 1q ˆ pn ` 1q matrix s.t. En`1,n`1 “ 1 and Eij “ 0
everywhere else. Let In`1 be the pn` 1q ˆ pn` 1q identity matrix. The following
SDP problem

$

’

&

’

%

max
λPRr`, αPR`, βPR

´bJλ´ αp1` ρ2q ´ β

s.t. Qpxq `
r
ř

j“1
λjAj ` αIn`1 ` βE ľ 0,

(DSDPx)

is the dual of problem (SDPx), as the following proposition states.

Proposition 1. Formulations (SDPx) and (DSDPx) are a primal-dual pair of
SDP problems and strong duality holds, i.e., val(SDPx) “ val(DSDPx).

Proof. The Lagrangian of problem (SDPx) is defined over Y P S`n`1pRq, λ P
Rr
`, α P R`, β P R and reads

LxpY, λ, α, βq “ xQpxq, Y y `
r
ř

j“1
rλj pxAj , Y y ´ bjqs ` αpTrpY q ´ 1´ ρ2q ` βpYn`1,n`1 ´ 1q

“ ´
r
ř

j“1
λjbj ´ αp1` ρ

2q ´ β `

C

Qpxq `
r
ř

j“1
λjAj ` αIn`1 ` βE, Y

G

.

The Lagrangian dual problem of (SDPx) is:

max
λPRr`
αPR`
βPR

min
Y PS`n`1pRq

LxpY, λ, α, βq.

According to equality above, it can thus be written as

max
λPRr`
αPR`
βPR

˜

´

˜

r
ÿ

j“1

λjbj ` αp1` ρ
2q ` β

¸

` min
Y PS`n`1pRq

C

Qpxq `
r
ÿ

j“1

λjAj ` αIn`1 ` βE, Y

G¸

.

We notice that

min
Y PS`

n`1pRq

C

Qpxq `
r
ÿ

j“1

λjAj ` αIn`1 ` βE, Y

G

“

$

’

&

’

%

0 if

˜

Qpxq `
r
ř

j“1

λjAj ` αIn`1 ` βE

¸

ľ 0

´8 otherwise.

This proves that the dual problem of (SDPx) reads
$

’

&

’

%

max
λPRr`, αPR`, βPR

´bJλ´ αp1` ρ2q ´ β

s.t. Qpxq `
r
ř

j“1
λjAj ` αIn`1 ` βE ľ 0,
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which is the formulation (DSDPx). To prove that val(SDPx) “ val(DSDPx), we
prove that the Slater condition holds for the dual problem (DSDPx), exploiting the
Lagrangian multiplier associated to the constraint TrpY q ď 1`ρ2. In fact, the Slater
condition is a sufficient condition for strong duality [192]. We denote by mx the
minimum eigenvalue of Qpxq. By definition of mx, the matrix Qpxq` p1´mxqIn`1

is positive definite. This is why pλ, α, βq “ p0, . . . , 0, 1´mx, 0q is a strictly feasible
point of (DSDPx). Hence, the Slater condition holds.

3.3.3 SDP restriction/reformulation of the bilevel prob-
lem

Leveraging on Section 3.3.1 and Section 3.3.2, which focus on the lower-level
problem pPxq, its SDP relaxation (SDPx) and the respective dual problem (DSDPx),
we propose a single-level restriction of the bilevel programming problem (BP). It
is a reformulation of (BP) if Qpxq is PSD for any x P X .

Theorem 1. The single-level formulation

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

min
x,λ,α,β

F pxq

s.t. x P X

dpxq ď ´λJb´ αp1` ρ2q ´ β

Qpxq `
ř

j λjAj ` αIn`1 ` βE ľ 0

x P Rm, λ P Rr`, α P R`, β P R,

(BPR)

is a restriction of the bilevel programming problem (BP). If Qpxq is PSD for any
x P X , (BPR) is a reformulation of (BP).

Proof. Being Feas(BP) and Feas(BPR) the feasible sets of (BP) and (BPR) re-
spectively, since (BP) and (BPR) share the same objective function, proving the
following implication for any x P Rm

`

D λ P Rr
`, α P R`, β P R : px, λ, α, βq P Feas(BPR)

˘

ùñ x P Feas(BP), (3.3)

will prove the first part of the theorem. For any x P X , we have:

dpxq ď val(SDPx) ùñ dpxq ď val(Px) ðñ x P Feas(BP), (3.4)

where the first implication stems from Lemma 1, which stipulates that val(SDPx) ď
val(Px). Applying Proposition 1, we obtain that:

dpxq ď val(SDPx) ðñ dpxq ď val(DSDPx). (3.5)
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For any x P X , we have that

dpxq ď val(DSDPx) ðñ D λ P Rr`, α P R`, β P R :

$

&

%

dpxq ď ´λJb´ αp1` ρ2q ´ β

Qpxq `
r
ř

j“1

λjAj ` αIn`1 ` βE ľ 0

(3.6)
The equivalence (3.6) just expresses the fact that the maximization problem

(DSDPx) has a value exceeding dpxq if and only if it has a feasible solution with
value exceeding dpxq. Hence, from (3.5), and (3.6), the following equivalences hold:

dpxq ď val(SDPx) ðñ D λ P Rr`, α P R`, β P R :

$

&

%

dpxq ď ´λJb´ αp1` ρ2q ´ β

Qpxq `
r
ř

j“1

λjAj ` αIn`1 ` βE ľ 0

(3.7)

ðñ D λ P Rr`, α P R`, β P R, px, λ, α, βq P Feas(BPR).

The equivalence (3.7), together with implication (3.4), proves the implication
(3.3).

If Qpxq is PSD for any x P X , we can replace the implication (3.4) by the
equivalence

dpxq ď val(SDPx) ðñ dpxq ď val(Px) ðñ x P Feas(BP). (3.8)

This, together with equivalence (3.7), proves that

D λ P Rr
`, α P R`, β P R : px, λ, α, βq P Feas(BPR) ðñ x P Feas(BP),

meaning that (BPR) is a reformulation of (BP), since the objective function is the
same.

Assumptions 1, 2, 3, and 4 implies that the single-level problem (BPR) is
convex. Let us recall the following definition of semidefinite representable (SDr)
functions.

Definition 1 ([172]). A convex (resp. concave) function f is SDr if and only if its
epigraph, i.e., pt, xq : fpxq ď t (resp. the hypograph pt, xq : t ď fpxqq, is SDr [37].

Thus, we further remark that formulation (BPR) is a SDP problem if set X is
SDr, as well as functions F pxq, and dpxq.

3.4 Cutting plane algorithm

In order to benchmark the results and the performance of the single-level approach
proposed in Section 3.3, we introduce in this section a CP algorithm for solving
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the bilevel formulation (BP) directly. We also include a proof of convergence for
this algorithm in Section 3.4.1 for sake of completeness, even if the convergence of
these methods is well-known in SIP literature. We prove a convergence rate in
Section 3.4.2, obtained by introducing a dual view of the CP algorithm. We make
the following further assumption on the set X :

Assumption 6. The set X is compact.

Algorithm 1 CP algorithm for (BP)

1: Let h “ 0. Initialize the relaxation Rh of the bilevel problem (BP), obtained
by considering the upper-level problem only.

2: while true do
3: Solve Rh, obtaining an optimal solution xh.
4: Compute an optimal solution yh of the lower-level problem for x “ xh.
5: if dpxhq ď 1

2
pyhqJQpxhqyh ` qpxhqJyh then

6: Return pxh, yhq.
7: else
8: Define Rh`1 as Rh with the additional inequality:

dpxq ď
1

2
pyhqJQpxqyh ` qpxqJyh. (3.9)

9: h :“ h` 1
10: end if
11: end while

At the first iteration of Algorithm 1, the relaxed problem R0 is given by:

min
xPX

F pxq, (3.10)

which considers minimizing the upper-level objective function subject to the upper-
level constraints only. This problem has a finite value according to the compactness
of set X .

At each iteration, Algorithm 1 defines the feasible set of the upper-level problem
by means of cuts in the upper-level variables x. The resulting Rh problems are
relaxations of (BP), and their feasible sets are decreasing in the sense of the
inclusion, bounded, because included in the feasible set of R0, and closed as
intersections of closed sets. Thus, each problem Rh admits a minimum. Moreover,
the sequence pF pxhqq is increasing, and F pxhq ď val(BP) holds for any h. At
step 4, the problem solved to find a new cutting plane is

min
yPRn

t
1

2
yJQpxhqy ` qpxhqJy | Ay ď bu. (Pxh)
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This problem is a quadratic program that is either convex or nonconvex depending
on the positive semi-definiteness of the constant matrix Qpxhq. In order to find
global optima of (Pxh), regardless of the definiteness of Qpxhq (in turn depending
on the value of xh), a global optimization algorithm should be employed. Step 6
returns the optimal solution of the bilevel formulation (BP).

3.4.1 Convergence proof

In this section, a convergence proof for Algorithm 1 is given. First of all, let us
define the negative part of a function f as f´ :“ maxp0,´fq. Since Qpxq and qpxq
are linear w.r.t. x, the function f : px, yq ÞÑ 1

2
yJQpxqy ` qpxqJy is continuously

differentiable, and therefore Lipschitz-continuous on the compact set X ˆ F (see
Assumption 5 and 6), with L ą 0 an associated Lipschitz constant.

Moreover, x ÞÑ valpPxq is continuous. To show this, let us consider any
ω ą 0 and any pair px, x̃q P X 2 s.t. ‖x ´ x̃‖ ď ω

L
. We define y P F an optimal

solution of pPxq, i.e., valpPxq “ fpx, yq, and ỹ P F an optimal solution of pPx̃q, i.e.,
valpPx̃q “ fpx̃, ỹq. By definition of valpPx̃q and using the Lipschitz continuity of f ,
we know that

valpPx̃q ď fpx̃, yq ď fpx, yq ` L ‖
ˆ

x´ x̃
y ´ y

˙

‖ ď valpPxq ` L ‖x´ x̃‖ ď valpPxq ` ω,

and, symmetrically, that

valpPxq ď fpx, ỹq ď fpx̃, ỹq ` L ‖
ˆ

x´ x̃
ỹ ´ ỹ

˙

‖ ď valpPx̃q ` L ‖x´ x̃‖ ď valpPx̃q ` ω.

Thus, |valpPxq ´ valpPx̃q| ď ω, which proves that the value function x ÞÑ valpPxq is
continuous at any x P X . Based on these observations, we prove the convergence
of the algorithm.

Theorem 2. Under Assumptions 5 and 6 Algorithm 1 either terminates in H P N‹
iterations, in which case xh is the solution of (BP), or generates an infinite sequence
pxhqhPN‹ with the following convergence guarantees:

• feasibility error: εh “
`

valpPxhq ´ dpx
hq
˘´
Ñ 0,

• objective error: δh “ val(BP)´ F pxhq Ñ 0.

Proof. If Algorithm 1 terminates at iteration H P N‹, xH is feasible in (BP), i.e.,
xH P X and valpPxH q ě dpxHq, which implies that F pxHq ě val(BP). At the same
time F pxHq “ valpRHq ď val(BP), being RH a relaxation of (BP) by definition.
Thus, F pxHq “ val(BP), and xH is an optimal solution of (BP).
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Let us suppose now that the stopping test is never satisfied. In this context,
we prove first the convergence of the feasibility error εh towards 0. For any
h P N‹, we have that valpPxhq “

1
2
yhJQpxhqyh ` qpxhqJyh “ fpxh, yhq, thus εh “

`

fpxh, yhq ´ dpxhq
˘´

. Since f , d and the negative part function are continuous, and
since both xh and yh are bounded, the sequence εh is also bounded. According to
Bolzano-Weierstrass theorem [10], this bounded sequence has at least a convergent
sub-sequence. In the following, we define any convergent sub-sequence extracted
from εh as εψ0phq, where ψ0 : N‹ ÞÑ N‹ is an increasing application. Defining as
ε˚ P R the limit of this convergent sub-sequence, we will show that this limit value
is in fact 0.

The sequence
`

yψ0phq, εψ0phq

˘

is a sub-sequence of the bounded sequence pyh, εhq,
therefore it is bounded. According to the Bolzano-Weierstrass theorem, the
sequence

`

yψ0phq, εψ0phq

˘

has thus a convergent sub-sequence
`

yψphq, εψphq
˘

. Since
εψphq is a convergent sub-sequence of εψ0phq, εψphq Ñ ε˚ holds. Because ψph´ 1q ă

ψphq by definition of ψ, the cut related to yψph´1q is a constraint of problem Rψphq

(added by Algorithm 1 at iteration h´ 1). Thus, fpxψphq, yψph´1qq ´ dpxψphqq ě 0,
and

fpxψphq, yψphqq ´ dpxψphqq “ fpxψphq, yψphqq ´ fpxψphq, yψph´1qq ` fpxψphq, yψph´1qq ´ dpxψphqq

ě fpxψphq, yψphqq ´ fpxψphq, yψph´1qq.

Being the negative part function decreasing,

εψphq “
`

fpxψphq, yψphqq ´ dpxψphqq
˘´
ď
`

fpxψphq, yψphqq ´ fpxψphq, yψph´1q
q
˘´
.

Therefore
εψphq ď

ˇ

ˇfpxψphq, yψphqq ´ fpxψphq, yψph´1q
q
ˇ

ˇ . (3.11)

From the fact that f is L-Lipschitz continuous, and Eq. (3.11) we deduce that

εψphq ď L ‖
ˆ

xψphq

yψphq

˙

´

ˆ

xψphq

yψph´1q

˙

‖ “ L ‖yψphq ´ yψph´1q‖. (3.12)

As yψphq is convergent, we know that ‖yψphq´yψph´1q‖Ñ 0. Being εψphq nonnegative,
we deduce from Eq. (3.12) that εψphq Ñ 0, and thus, ε‹ “ 0.

We proved that the sequence εh is bounded, and that any converging sub-
sequence converge towards 0, thus we can conclude that εh converges towards 0
itself, according to a well-known result in analysis [10]. Based on this first result,
we are now going to prove the second point, i.e., the convergence of objective error.
We know that

@h P N‹ F pxhq P
“

F px1
q, val(BP)

‰

, (3.13)

therefore the increasing sequence F pxhq is bounded, and thus, converging. Since xh

is bounded, we can derive a converging sub-sequence xφphq Ñ x‹ with φ : N‹ ÞÑ N‹
being an increasing function. The associated feasibility error is

εφphq “
`

valpPxφphqq ´ dpx
φphq
q
˘´
.
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On the one hand, being εφphq a sub-sequence of εh which has been proven to converge

towards zero, εφphq Ñ 0. On the other hand, εφphq Ñ pvalpPx‹q ´ dpx
‹qq

´ holds by

continuity of x ÞÑ valpPxq and d. By uniqueness of the limit, pvalpPx‹q ´ dpx
‹qq

´
“

0. Therefore, x‹ P X is feasible in (BP) and F px‹q ě val(BP). From (3.13) we
also know that F px‹q ď val(BP), and thus F px‹q “ val(BP). We can conclude
that F pxhq is bounded and admits a unique limit point which is val(BP). Hence,
δh Ñ 0.

3.4.2 A convergence rate for the CP algorithm

In this section, we give a convergence rate of the CP algorithm 1, under two
additional assumptions on the bilevel problem. First of all, let us reformulate the
bilevel problem, by moving the function dpxq within the lower-level problem:

#

min
xPX

F pxq

s.t. 0 ď min
yPRn

t1
2
yJQpxqy ` qpxqJy ´ dpxq | y P Fu. (BP)

We introduce then the matrix Gpxq “ 1
2

ˆ

Qpxq qpxq
qpxqJ ´2dpxq

˙

“ Qpxq ´
ˆ

0n 0
0 dpxq

˙

and we define the set

P “
"

Mpyq “

ˆ

yyJ y
yJ 1

˙

: y P F
*

Ă Rpn`1qˆpn`1q.

With this notation, we acknowledge that (BP) can be formulated as

#

min
xPX

F pxq

s.t. 0 ď xGpxq, Y y, @Y P P .
(SIP)

We define as K “ conepPq Ă Rpn`1qˆpn`1q the convex cone generated by P, and
Lpx, Y q “ F pxq ´ xGpxq, Y y the Lagrangian function defined over X ˆ K. We
remark that for any x P X , the following equality holds

sup
Y PK
Lpx, Y q “

"

F pxq if 0 ď xGpxq, Y y, @Y P P
`8 else.

Hence, problem (SIP) can be expressed as the saddle-point problem min
xPX

sup
Y PK
Lpx, Y q.

At this point, we do the following further assumption.

Assumption 7. The upper-level objective function F pxq is µ-strongly-convex.
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Assumptions 7 is quite strong, but we remark that, if the original objective
function is just convex, it is always possible to enforce this assumption by “regu-
larizing” the bilevel problem adding a `2 penalty to the primal objective function,
i.e., minimizing F pxq ` µ

2
‖x‖2 instead of F pxq.

The Lagrangian function Lpx, Y q is linear (thus continuous and concave) w.r.t.
Y for all x P X and is continuous and convex w.r.t. x for all Y P K. The convexity
w.r.t. x follows from Assumptions 3 and 4 and from the fact that Yn`1,n`1 ě 0 for
any Y P K. Since the set X is convex (Assumption 2) and the set K is convex too,
the Sion’s minimax theorem is applicable and the following holds:

min
xPX

sup
Y PK
Lpx, Y q “ sup

Y PK
min
xPX
Lpx, Y q.

Defining the dual function θpY q “ min
xPX
Lpx, Y q, we know that

val(SIP) “ sup
Y PK

θpY q. (3.14)

Notice that the dual function θpY q is concave, as a minimum of linear functions
in Y . As a direct application of [111, Corollary VI.4.4.5], the dual function
θpY q is differentiable because of the uniqueness of arg min

xPX
Lpx, Y q, which is, in

turn, a consequence of the strong convexity of x ÞÑ Lpx, Y q that follows from
Assumption 7. Moreover, the gradient of the dual function is ∇θpY q “ ´Gpxq,
where x “ arg min

xPX
Lpx, Y q. The differentiability of θ implies, in particular, that θ

is continuous. We prove now that we can replace the sup operator with the max
operator in the formulation (3.14), under the following assumption.

Assumption 8. There exists x̂ P X , s.t., for all y P F , gpx̂, yq “ 1
2
yJQpx̂qy `

qpx̂qJy ´ dpx̂q ą 0.

Lemma 2. Under Assumption 8, the dual problem of (SIP) has an optimal solution
Y ˚.

Proof. We denote by x̂ P X the primal feasible solution s.t. gpx̂, yq “1
2
yJQpx̂qy `

qpx̂qJy ´ dpx̂q ą 0 for all y P F . Since the set F is compact and the function
y ÞÑ gpx̂, yq is continuous and positive, it exists c ą 0 s.t. gpx̂, yq ě c for

all y P F . For any Y P K, we have that Y “
p
ř

k“1

λkMpy
kq, for an integer

p P N, vectors y1, . . . , yp P F and nonnegative scalars λ1, . . . , λp P R`. Since
xGpx̂q,Mpyqy “ 1

2
yJQpx̂qy ` qpx̂qJy ´ dpx̂q for any y P F , the following holds by

linearity:

xGpx̂q, Y y “

C

Gpx̂q,
p
ÿ

k“1

λkMpy
k
q

G

“

p
ÿ

k“1

λk
@

Gpx̂q,Mpykq
D

ě

p
ÿ

k“1

λkc “ Yn`1,n`1c.
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Moreover, by definition of θ:

θpY q “ min
xPX

F pxq ´ xGpxq, Y y ď F px̂q ´ xGpx̂q, Y y ď F px̂q ´ Yn`1,n`1c,

this for any Y P K. We take then a maximizing sequence pY hqhPN of problem
(3.14). Defining V “ val(SIP), we know that θpY hq Ñ V and hence, it exists j P N
s.t. for all h ě j, θpY hq ě V ´ 1. This implies that, for all h ě j,

0 ď Y h
n`1,n`1 ď

F px̂q ´ V ` 1

c
.

Defining D “
F px̂q´V`1

c
, we deduce that @h ě j, Y h belongs to D convpPq, which

is compact. Thus, the sequence pY hqhPN admits an accumulation point Y ˚, s.t.
θpY ˚q “ V by continuity of θ.

According to this lemma, the dual version of problem (SIP) thus reads

max
Y PK

θpY q. (DSIP)

This concave maximization problem on the convex cone K is the Lagrangian dual of
the problem (SIP) i.e., of the bilevel program (BP). Indeed, in this section, we are
dualizing the whole bilevel problem (BP), contrary to Section 3.3, where we dualize
the lower-level problem only. We are now going to see that the CP algorithm 1
can be interpreted, from a dual perspective, as a cone constrained Fully Corrective
Frank-Wolfe (FCFW) algorithm [137] solving the dual problem (DSIP). We prove
that during the execution of the CP algorithm 1, the dual variables obtained when
solving the relaxation Rh instantiate the iterates of a FCFW algorithm. In the
following, the sets Bh Ă Rn`1ˆn`1 are finite sets, composed of rank-one matrices
of the form Mpyq.

First, the initialization of the CP can be seen, in the dual perspective, as the
initialization of a Frank-Wolfe type algorithm, with B0 ÐH, and Y 0 “ 0. Second,
the generic iteration h is described in Table 3.1. The different steps summarized
in Table 3.1 can be explicated as follows:

• Step 1 : At iteration h, set Bh represents, from a dual perspective, the set
of CPs in the primal relaxation Rh. The dual problem of Rh is in fact a
restriction of (DSIP) on conepBhq, which is a polyhedral subcone of K, since
the following holds:

max
Y PconepBhq

θpY q “ max
Y PconepBhq

min
xPX

pF pxq ´ xGpxq, Y yq

“ min
xPX

max
Y PconepBhq

pF pxq ´ xGpxq, Y yq

“ min
xPX
tF pxq s.t. 0 ď xGpxq, Zy, @Z P Bhu,
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Primal perspective:
CP

Link
Dual perspective:

FCFW

Step 1
Solve Rh and

store the solution xh
Duality

Solve the dual problem on conepBhq, i.e.,

max
Y PconepBhq

θpY q,

store the solution Y h, the associated xh

and the gradient ∇θpY hq “ ´Gpxhq

Step 2

Solve the lower-level problem Pxh

min
yPF

1
2
yJQpxhqy ` qpxhqJy

and store the solution yh

Zh “Mpyhq

Solve the problem

max
ZPP

x∇θpY hq, Zy

and store the solution Zh

Step 3a
If dpxhq ď 1

2
pyhqJQpxhqyh ` qpxhqJyh,

pxh, yhq is the optimal solution of (BP)
Reformulation

If x∇θpY hq, Zhy ď 0,
Y h is the optimal solution of (DSIP),
xh is the optimal solution of (SIP)

Step 3b

If dpxhq ą 1
2
pyhqJQpxhqyh ` qpxhqJyh,

build Rh`1 as Rh with the additional ineq.

dpxq ď 1
2
pyhqJQpxqyh ` qpxqJyh

Reformulation
If x∇θpY hq, Zhy ą 0,

set Bh`1 Ð Bh Y tZ
hu.

Table 3.1: The h-th iteration of the CP (Algorithm 1), and of the FCFW algorithm

which we recognize being the master problem Rh. The absence of duality
gap is, also in this case, a direct application of Sion’s Theorem. The new
dual solution Y h is obtained solving this restriction of (DSIP) on conepBhq,
and the primal solution xh “ arg min

xPX
Lpx, Y hq gives the gradient of the dual

function in Y h, i.e., ∇θpY hq “ ´Gpxhq.

• Step 2 : Finding the bilevel constraint that is the most violated by xh is
equivalent to finding the furthest point of P in the direction ∇θpY hq. Indeed,
the following equality holds:

max
ZPP

x∇θpY h
q, Zy “ ´min

ZPP
xGpxhq, Zy (3.15)

“ ´min
yPF
t
1

2
yJQpxhqy ` qpxhqJy ´ dpxhqu, (3.16)

and any optimal solution Zh in problem (3.15) has the form Zh “ Mpyhq,
with yh optimal in problem (3.16).

• Step 3a: The CP feasibility test 1
2
pyhqJ Qpxhqyh ` qpxhqJ yh ě dpxhq, is
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equivalent to the dual optimality condition x∇θpY hq, Zhy ď 0, according to
the equality ∇θpY hq “ ´Gpxhq.

• Step 3b: Increasing the set of atoms Bh`1 Ð Bh Y tZ
hu is the dual point

of view of adding the corresponding CP (with yh s.t. Zh “ Mpyhq) to Rh,
which creates the relaxation Rh`1.

The following lemma states a property of the iterates Y h.

Lemma 3. For any h P N, x∇θpY hq, Y hy “ 0.

Proof. This property follows directly from the first order optimality condition at 1

of the differentiable function g :

"

R` Ñ R
t ÞÑ θptY hq

. Indeed, g1p1q “ x∇θpY hq, Y hy “ 0,

because (i) 1 is optimal for g since Y h P arg max
Y PconepBhq

θpY q, (ii) 1 lies in the interior

of the definition domain of g.

Based on the dual interpretation of the CP algorithm, we are now going to
state a convergence rate for this algorithm. We begin with two technical lemmas.

Lemma 4. It exists L ą 0 s.t. function θ is L-smooth, i.e., for all Y, Y 1 P K,

‖∇θpY q ´∇θpY 1q‖2 ď L‖Y ´ Y 1‖2.

Proof. For the purpose of this proof, we introduce the linear operator Q‹, defined
as the adjoint operator of the linear (by Assumption 3) operator x ÞÑ Qpxq. With
this notation, we have that xQpxq, Y y “ xJpQ‹Y q. We also denote by ‖Q‹‖op the
operator norm of Q‹. We notice that the image of the bounded set X by the
subdifferential mapping BdpX q “

Ť

xPX
Bdpxq is bounded according to Theorem 6.2.2

in [111, Chapter VI]. Hence it exists D ě 0 such that

@x P X , @s P Bdpxq, ‖s‖2 ď D. (3.17)

Given Y, Y 1 P K, we are now going to prove that ‖∇θpY q´∇θpY 1q‖2 ď L‖Y ´Y 1‖2

for a constant L that is independent from Y and Y 1. Being iX pxq the indicator
function of the set X , we introduce the applications w : x ÞÑ Lpx, Y q ` iX pxq and
w1 : x ÞÑ Lpx, Y 1q ` iX pxq. According to Assumptions 7, as well as 2, 3, and 4 we
remark that application w (resp. w1) is µ-strongly convex because it is the sum of
the µ-strongly convex function F and the convex function x ÞÑ ´xGpxq, Y y` iX pxq
(resp. x ÞÑ ´xGpxq, Y 1y ` iX pxq). Being u (resp. u1) the unique minimum of
function w (resp. w1), the uniqueness following from the strong convexity, the
optimality conditions of function w, and w1 respectively read

0 P Bwpuq, (3.18)

0 P Bw1pu1q. (3.19)
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We remark that w1pxq “ F pxq ` iX pxq ` Y
1
n`1,n`1dpxq ´ x

JpQ‹Y 1q. The function
x ÞÑ F pxq ` iX pxq is convex as a sum of convex functions; the function x ÞÑ
Y 1n`1,n`1dpxq is convex since d is convex and Y 1n`1,n`1 ě 0 by definition of cone K ;
x ÞÑ ´xJpQ‹Y 1q is linear and thus convex. The intersection of the relative interiors
of the domains of these convex functions is ripX q. Since X is a finite-dimensional
convex set, ripX q ‰ H [189, Proposition 1.9]. Hence the subdifferential of the
sum is the sum of the subdifferentials [167, Theorem 2.1]. In this respect, the
subdifferential of function w1 at u1 reads

Bw1pu1q “ BpF ` iX qpu
1
q ´Q‹Y 1 ` Y 1n`1,n`1Bdpu

1
q.

Based on this decomposition, it follows from (3.19) that D g0 P BpF ` iX qpu
1q,

g1 P Bdpu
1q such that

g0 ´Q‹Y 1 ` Y 1n`1,n`1g1 “ 0. (3.20)

Additionally, we have that

g0 ´Q‹Y ` Yn`1,n`1g1 P Bwpu
1
q, (3.21)

since wpxq “ F pxq ` iX pxq ´ xJpQ‹Y q ` Yn`1,n`1dpxq, and g0 P BpF ` iX qpu
1q,

g1 P Bdpu
1q. Combining Eq. (3.20) with Eq. (3.21), we deduce:

Q‹pY 1 ´ Y q ` pYn`1,n`1 ´ Y
1
n`1,n`1qg1 P Bwpu

1
q. (3.22)

Applying Theorem 6.1.2 in [111, Chapter VI], the µ-strong convexity of w gives
that, for any s1 P Bwpuq and s2 P Bwpu

1q, xs2´ s1, u
1´ uy ě µ‖u´ u1‖2

2. Moreover,
due to the Cauchy-Schwartz inequality, ‖s1 ´ s2‖2‖u ´ u1‖2 ě xs2 ´ s1, u

1 ´ uy.
Therefore, ‖s2´ s1‖2 ě µ‖u´u1‖2 holds for any s1 P Bwpuq and s2 P Bwpu

1q. Since
0 P Bwpuq according to (3.18), and Q‹pY 1 ´ Y q ` pYn`1,n`1 ´ Y

1
n`1,n`1qg1 P Bwpu

1q

according to (3.22), we deduce that∥∥Q‹pY 1 ´ Y q ` pYn`1,n`1 ´ Y
1
n`1,n`1qg1 ´ 0

∥∥
2
ě µ‖u´ u1‖2.

According to the triangle inequality

‖Q‹pY 1 ´ Y q‖2 ` |Yn`1,n`1 ´ Y
1
n`1,n`1| ‖g1‖2 ě µ‖u´ u1‖2,

and thus, since ‖Y ´ Y 1‖2 ě |Yn`1,n`1 ´ Y
1
n`1,n`1|,

‖Q‹‖op‖Y ´ Y 1‖2 ` ‖Y ´ Y 1‖2 ‖g1‖2 ě µ‖u´ u1‖2.

Defining B “ ‖Q‹‖op ` D and using the inequality ‖g1‖2 ď D, which holds
according to (3.17), we know that

B‖Y ´ Y 1‖2 ě µ‖u´ u1‖2.
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According to Assumption 4, d is Lipschitz continuous and so are q and Q by the
linearity Assumption 3. Hence, it exists a constant K ą 0 such that x ÞÑ Gpxq
is K-Lipschitz continuous. We deduce that K‖u ´ u1‖2 ě ‖Gpuq ´ Gpu1q‖2, and,
consequently, ‖Y ´ Y 1‖2 ě

µ
BK
‖Gpuq ´ Gpu1q‖2. We define the constant L “ BK

µ
,

which is clearly independent from Y, Y 1, u and u1. Since ∇θpY q “ ´Gpuq and
∇θpY 1q “ ´Gpu1q, we deduce that

L‖Y ´ Y 1‖2 ě ‖∇θpY q ´∇θpY 1q‖2,

which concludes the proof.

The following lemma is a consequence of the L-smoothness θ.

Lemma 5. Let L denote the smoothness constant associated with θ. For any
Y, Z P K and for any γ ě 0,

θpY ` γZq ě θpY q ` γx∇θpY q, Zy ´ L‖Z‖2

2
γ2.

Proof. For any Y, Z P K and γ ą 0, it holds by integration that

θpY`γZq´θpY q “

ż γ

t“0

x∇θpY`tZq, Zydt “ γx∇θpY q, Zy`
ż γ

t“0

x∇θpY`tZq´∇θpY q, Zydt.

(3.23)
Since x∇θpY ` tZq ´∇θpY q, Zy ě ´ |x∇θpY ` tZq ´∇θpY q, Zy| , using Cauchy-
Schwartz inequality and L-smoothness of θ, we know that

x∇θpY ` tZq´∇θpY q, Zy ě ´‖∇θpY ` tZq´∇θpY q‖2 ‖Z‖2 ě ´tL‖Z‖2
2. (3.24)

Combining Eq. (3.23) with Eq. (3.24), we deduce that

θpY ` γZq ´ θpY q ě γx∇θpY q, Zy ´
ż γ

t“0

tL‖Z‖2
2dt,

which yields finally that θpY ` γZq ´ θpY q ě γx∇θpY q, Zy ´ L‖Z‖2
2

γ2.

We define the constant T “ max
ZPP
‖Z‖2, which is finite by compactness of F ,

and thus of P . According to Lemma 2, (DSIP) admits an optimal solution Y ˚. We
remark that the dual optimality gap at h-th iteration is δh “ θpY ˚q ´ θpY hq ě 0,
where δh is the objective error defined in Theorem 2. We define τ as the last
element of the optimal dual solution Y ˚, i.e., τ “ Y ˚n`1,n`1. This scalar plays a
central role in the convergence rate analysis, conducted in the following theorem.
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Theorem 3. Under Assumptions 1-8: if Algorithm 1 executes the iteration of
index h P N, then

δh ď
2LTτ 2

h` 2
. (3.25)

Otherwise, it exists an index j ď h s.t. Y j is optimal for (DSIP), and xj “
arg min

xPX
Lpx, Y jq is optimal for (SIP).

Proof. If the algorithm terminates at iteration j P N, this means that

max
ZPP

x∇θpY j
q, Zy ď 0. (3.26)

Defining xj “ arg min
xPX
Lpx, Y jq, we have that ∇θpY jq “ ´Gpxjq. Eq. (3.26) is

thus equivalent to min
ZPP

xGpxjq, Zy ě 0. This proves that xj is feasible in (SIP).

Moreover xGpxjq, Y jy “ x∇θpY jq, Y jy “ 0, according to Lemma 3, and, therefore,
F pxjq “ Lpxj, Y jq “ θpY jq. Hence xj and Y j are feasible solutions in the primal
(SIP) and the dual (DSIP) respectively, and have the same value. Therefore, xj is
optimal for (SIP), and Y j is optimal for (DSIP).

We focus now on the case where Algorithm 1 does not terminate, and prove
(3.25) by induction.

Base case: h “ 0 Since θ is concave, we have that

δ0 “ θpY ˚q ´ θpY 0
q ď x∇θpY 0

q, Y ˚ ´ Y 0
y “ x∇θpY 0

q, Y ˚y,

the last equality coming from Y 0 “ 0. We remark that x∇θpY 0q, Y ˚y “ x∇θpY 0q´

∇θpY ˚q, Y ˚y since x∇θpY ˚q, Y ˚y “ 0 by optimality of Y ˚. Hence,

δ0 ď x∇θpY 0
q ´∇θpY ˚q, Y ˚y ď ‖∇θpY 0

q ´∇θpY ˚q‖ ‖Y ˚‖,

where the last inequality is the Cauchy-Schwarz inequality. Using the L-Lipschitzness
of ∇θ, we know that ‖∇θpY 0q ´∇θpY ˚q‖ ď L‖Y 0 ´ Y ˚‖ “ L‖Y ˚‖. Finally, we
deduce that, since Y ˚ P τP ,

δ0 ď L‖Y ˚‖2
ď LTτ 2.

Induction We suppose that the algorithm runs h` 1 iterations, and that the
property (3.25) is true for h. Using Lemma 5, we can compute a lower bound on
the progress made during the iteration of index h` 1:

θpY h`1
q ě θpY h

` γZh
q ě θpY h

q ` γx∇θpY h
q, Zh

y ´
L‖Zh‖2

2
γ2,
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for any γ ě 0. Multiplying by ´1, and adding θpY ˚q to both left and right hand
sides of the above inequality, and using ‖Zh‖2 ď T , we have that

δh`1 ď δh ´ γx∇θpY h
q, Zh

y `
LT

2
γ2, (3.27)

for any γ ě 0. We remark that the value T is independent from h. By concavity
of θ, it also holds that δh “ θpY ˚q ´ θpY hq ď x∇θpY hq, Y ˚ ´ Y hy. We notice
that x∇θpY hq, Y hy “ 0, according to Lemma 3. Thus, δh ď x∇θpY hq, Y ˚y. As
Y ˚n`1,n`1 “ τ , we know that Y ˚ P τconvpPq, and, therefore,

δh ď max
ZPτK

x∇θpY h
q, Zy “ max

ZPτP
x∇θpY h

q, Zy “ τx∇θpY h
q, Zh

y, (3.28)

the last equality following from the definition of Zh. Combining Eq. (3.27) and
(3.28), it holds that

δh`1 ď δh ´ γτ
´1δh `

LT

2
γ2,

for every γ ě 0. Factorizing and doing a change of variable η “ γτ´1, for any
η ě 0:

δh`1 ď p1´ ηqδh `
LTτ 2

2
η2. (3.29)

We have derived a lower bound on optimality gap at iteration h. We apply then
(3.29) with η “ 2

h`2
:

δh`1 ď p1´
2

h` 2
qδh `

LTτ 2

2

4

ph` 2q2
ď

h

h` 2

2LTτ 2

h` 2
`
LTτ 2

2

4

ph` 2q2
,

the second inequality coming from the application of (3.25) for h, which is true by
induction hypothesis. Finally, we deduce that

δh`1 ď
2LTτ 2

h` 2
p

h

h` 2
`

1

h` 2
q ď

2LTτ 2

h` 2

h` 1

h` 2
ď

2LTτ 2

h` 2

h` 2

h` 3
“

2LTτ 2

h` 3
,

the third inequality coming from the observation that h`1
h`2

ď h`2
h`3

. Hence, the
property (3.25) is true for h`1 as well. This concludes the proof by induction.

We remark that the convergence rate defined in (3.25) is directly related to
the iteration index h, which is something different w.r.t. what is usually proved
for existing CP algorithms solving SIP problems [38, 129, 162], where the rate of
convergence is not directly controlled by h.

3.5 Applications

In this section, we present two problems that can be modeled as (BP). For each of
these, we present both the bilevel formulation, and the corresponding single-level
formulation (BPR).
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3.5.1 Constrained quadratic regression

We consider a quadratic statistical model with Gaussian noise linking a vector
w P Rn of explanatory variables, i.e., the features vector, and an output z P R as
follows:

z “
1

2
wJQ̄w ` q̄Jw ` c̄` ε,

where Q̄ P Rnˆn s.t. Q̄ “ Q̄J, q̄ P Rn, c̄ P R and ε „ N p0, σ2q. Let us suppose
that the parameters of this model are unknown, but we are given a dataset
pwi, ziq1ďiďP P pRn ˆ RqP . The problem of finding the maximum likelihood
estimator for Q̄ P Rnˆn, q̄ P Rn, c̄ P R just consists in computing the triplet

pQ, q, cq P RnˆnˆRnˆR that minimizes the least-squares error
P
ř

i“1

pzi´
1
2
wJi Qwi´

qJwi ´ cq
2. We consider that (i) the features vector belongs to a given polytope

F Ă Rn, (ii) the noiseless value 1
2
yJQ̄y ` q̄Jy ` c̄ is nonnegative for any y P F .

Hence, this inverse problem is a “constrained quadratic regression problem” that
may be written as:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

min
Q,q,c

P
ř

i“1
pzi ´

1
2w

J
i Qwi ´ q

Jwi ´ cq
2

s.t. Q “ QJ
1
2y
JQy ` qJy ` c ě 0 @y P F

Q P Rnˆn, q P Rn, c P R.

(3.30)

Formulation (3.30) is a SIP problem, having uncountably many constraints, which
are parametrized by y P F . We can reformulate this SIP problem as a bilevel
problem just replacing the SIP constraint 1

2
yJQy ` qJy ` c ě 0 @y P F with the

bilevel constraint min
yPF
t1

2
yJQy ` qJyu ě ´c.

This model fits in the general setting of formulation (BP), where the matrix Q
is itself the upper-level variable of dimensions nˆ n. As in Section 3.3, we assume
that F “ ty P Rn : aJj y ď bj, @j “ 1, . . . , ru is included in the centered `2-ball

with radius ρ ą 0, and we use the notation Aj “

˜

0n
aj
2

aJj
2

0

¸

for all j P t1, . . . , ru.

Then, the (BPR) formulation corresponding to (3.30) reads:
$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

min
Q,q,c,λ,α,β

P
ř

i“1
pzi ´

1
2w

J
i Qwi ´ q

Jwi ´ cq
2

s.t. Q “ QJ

´λJb´ αp1` ρ2q ´ β ě ´c

1
2

ˆ

Q` 2αIn q
qJ 2pβ ` αq

˙

`
r
ř

j“1
λjAj ľ 0

Q P Rnˆn, q P Rn, c P R
λ P Rr`, α P R`, β P R.

(3.31)
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Formulation (3.31) is feasible, because the all-zero solution satisfies every con-
straint. In general, (3.31) is a restriction of (3.30) since Q may not necessarily be
PSD. In order to benchmark our approaches, we can solve the following relaxation
of (3.30) — it is be a reformulation if Q is PSD — obtained by replacing the
lower-level problem by its KKT conditions:
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min
Q,q,c,y,γ

P
ř

i“1
pzi ´

1
2w

J
i Qwi ´ q

Jwi ´ cq
2

s.t. Q “ QJ
1
2y
JQy ` qJy ě ´c

Ay ď b
Qy ` q `AJγ “ 0
γJpAy ´ bq “ 0
Q P Rnˆn, q P Rn, c P R, y P Rn, γ P Rr`,

(3.32)

where γ is the KKT multiplier vector associated to the lower-level constraints
Ay ď b. This relaxation/reformulation of problem (3.30) is a nonconvex polynomial
optimization problem involving multivariate polynomials of degree up to three.

3.5.2 Zero-sum game with cubic payoff

In this section, we are interested in solving a two-player zero-sum game that is
related to an undirected graph G “ pV,Eq. A two-player game, in general, is
zero-sum if one player’s gains are the other player’s losses. Zero-sum games have
applications in sports, finance, politics, economics, and so on. Here, we consider a
zero-sum game involving a typical optimization structure: a graph. We assume
that player 1 benefits from a strategical advantage on player 2, which will be
explained more precisely later. We let n denote the cardinality of V . Each player
positions a resource on each node i P V . After normalization, we can consider

that the action set of both players is ∆n “ tx P Rn
` :

n
ř

i“1

xi “ 1u. A two-player

zero-sum game is a two-player game s.t., for every strategy x P ∆n of player 1, and
for every strategy y P ∆n of player 2, the payoffs of the two players sum to zero. If
we define Pipx, yq the payoff of player i related to the strategy pair px, yq, we thus
have that P1px, yq “ ´P2px, yq. Since the payoffs sum to zero, we can write the
zero-sum game by specifying only one game payoff. Player 1 wishes to minimize it,
and player 2 wishes to maximize it. The game payoff P px, yq related to the pair of
strategies px, yq P ∆n ˆ∆n is the sum of:

• the opposite of a term describing the “proximity” between x and y in the
graph, xJMy, where M P Rnˆn is the matrix defined as Mij “ 1 if i “ j or
ti, ju P E, and Mij “ 0 otherwise,
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• the quadratic costs that player 1 has to pay to deploy his resources on the
graph: c1pxq “

1
2
xJQ1x` q

J
1 x,

• the opposite of the quadratic costs that player 2 has to pay to deploy
her resources on the graph, and that is influenced by player 1 strategy:
c2px, yq “

1
2
yJQ2pxqy` q

J
2 y. In this sense, player 1 has a strategic advantage

over player 2.

Hence, this zero-sum game can then be written as min
xP∆n

max
yP∆n

´xJMy`c1pxq´c2px, yq.

Loosely speaking, player 1 trades off his costs for placing his resource where player
2’s one is (i.e., maximizing the proximity) and for augmenting player 2’s costs. In
the meantime, player 2 tries to avoid player 1, while minimizing her own costs.
From player 1’s perspective, this problem can be cast as the following bilevel
formulation:

$

’

’

’

&

’

’

’

%

min
x,v

1
2x
JQ1x` q

J
1 x` v

s.t. ´v ď min
yP∆n

1
2y
JQ2pxqy ` pq2 `M

JxqJy

x P ∆n, v P R.

(3.33)

This latter formulation clearly fits in the general setting of formulation (BP).
Hence, we apply the methodology of Section 3.3 with r “ n` 2, and

• a1 “ 1 and b1 “ 1,

• a2 “ ´1 and b2 “ 0,

• @j P t1, . . . , nu aj`2 “ ´ej and bj “ 0,

• ρ “ 1,

where ej is the j-th vector of the standard basis in Rn and 1 the all-ones n-
dimensional vector. The dual variable is λ P Rn`2

` . In this application, the
single-level formulation (BPR) reads
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min
x,v,λ,α,β

v ` 1
2x
JQ1x` q

J
1 x

s.t. ´v ď ´λ1 ` λ2 ´ 2α´ β

1
2

ˆ

Q2pxq ` 2αIn W px, λq
W px, λqJ 2β ` 2α

˙

ľ 0

x P ∆n, v P R
λ P Rn`2

` , α P R`, β P R,

(3.34)

where W px, λq “ q2 `MJx ´
n
ř

j“1

λj`2ej ` pλ1 ´ λ2q1. If Q2pxq ľ 0 is PSD for

any x P ∆n, formulation (3.34) is a reformulation of (3.33). Otherwise, it is just a
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restriction of (3.33). In any case, such formulation is feasible, because for given
vectors x P ∆n, λ P Rn`2

` and scalar β P R, taking arbitrary large scalars α and v,
the two constraints are satisfied.

As for the first application, we benchmark our two approaches with the KKT-
based relaxation/reformulation (depending on the convexity of the lower-level
problem). Given the KKT multipliers γ1 and γ2 associated respectively to the

lower-level constraint
n
ř

i“1

yi “ 1, and the nonnegativity constraint y ě 0, the

single-level formulation obtained by replacing the lower level of (3.33) by its KKT
conditions, is
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min
x,v,y,γ1,γ2

v ` 1
2x
JQ1x` q

J
1 x

s.t. ´v ď 1
2y
JQ2pxqy ` pq2 `M

JxqJy
Q2pxqy ` q2 `M

Jx` γ11´ Inγ2 “ 0

´γJ2 pInyq “ 0

x P ∆n, y P ∆n, v P R, γ1 P R, γ2 P Rn`.

(3.35)

The KKT multiplier γ1 is associated to an equality constraint, hence it can be either
nonnegative or negative, and we have no complementarity constraint involving
it in formulation (3.35). This relaxation/reformulation of problem (3.33), as well
as (3.35), is a nonconvex polynomial optimization problem involving multivariate
polynomials of degree up to three.

3.6 Numerical results

In this section we present the numerical results obtained by testing several instances
of the two applications presented in Section 3.5, available online at the public
repository https://github.com/aoustry/Bilevel-programs-with-QP-as-LL.

For the constrained quadratic regression (Section 3.5.1), we solved twenty
randomly generated instances. Each of these instances was generated by choosing
the statistical parameters Q̄, q̄, c̄ at random, drawing P “ 4000 random features
vectors wi P Rn, and then computing the associated outputs zi P R with a centered
Gaussian noise. Ten instances — named PSD inst# in Table 3.2 — were produced
with Q̄ PSD and ten instances — named notPSD inst# in Table 3.2 — with an
indefinite Q̄.

For the zero-sum game with cubic payoff application (Section 3.5.2), we tested
twenty-two instances where the matrix M is taken from the DIMACS graph
coloring challenge1. We randomly generated Q1 in a way such that it is PSD,
as well as the coefficients of the linear mapping x ÞÑ Q2pxq such that Q2pxq is

1https://mat.tepper.cmu.edu/COLOR/instances.html

https://github.com/aoustry/Bilevel-programs-with-QP-as-LL
https://mat.tepper.cmu.edu/COLOR/instances.html
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PSD for all feasible x in the instances named # PSD in Table 3.3. Regarding the
instances named # notPSD in Table 3.3, no particular precaution was taken to
enforce that Q2pxq is PSD. Hence, the sign of the eigenvalues of Q2pxq depends on
x. The code that generated all the instances is available online.

We implemented the single-level formulations based on the dual approach
using the Python programming language [191] and solve them with the conic
optimization solver Mosek [152]. The bilevel formulations were solved using the
CP algorithm (Algorithm 1 presented in Section 3.4) and implemented using the
AMPL modeling language [95]. Both the master problem Rh and the lower level
problem Pxh were solved using the global optimization solver Gurobi [108]. The
tolerance for the feasibility error εh “ pdpx

hq ´ valpPxhqq
` is set to 10´6. With

AMPL, we also implemented the traditional relaxation/reformulation approach
based on the KKT conditions of the lower-level problem. We solved the KKT-based
formulations using the global optimization solver Couenne [32], chosen after some
preliminary computational experiments. These formulations are particularly hard
to solve for Couenne, mainly because of the complementarity constraints. Indeed,
for all the tested instances, Couenne does not terminate within the time limit,
and we just display, in italic font, the LB given by the optimal value of the best
relaxation of the KKT formulation found by Couenne within the time limit. All
the solvers were run with their default settings. The tests were performed on a
computer with 24 2.53GHz Intel(R) Xeon(R) CPUs and with 49.4 GB of RAM.
For all the approaches we set a time limit (t.l.) of 18000 seconds (5 hours).

The results for Application 1 and Application 2 are reported in Table 3.2 and
Table 3.3 respectively. The headings are the following: “n” is the dimension of
the lower-level variable y (or, equivalently, for Application 1 of the matrix Q,
for Application 2 of the upper-level variable x); for the single-level formulation
approach “obj” is the optimal value found by Mosek (i.e., either the bilevel
optimal value, or an upper bound of it); for the KKT approach, “LB”, reported in
italics, is the best LB of the KKT formulation value found by the solver Couenne
within the time limit, which is a lower bound for the bilevel optimal value too;
for the CP approach “obj/(LB,UB)” is, respectively, either the optimal value
of the bilevel formulation, or a pair of values corresponding to: the best lower
bound (LB) and the best feasible solution, i.e., upper bound (UB), found by the
algorithm within the time limit; “time(s)” is the computing time in seconds; “it”
is the number of CP iterations, i.e., the number of times Rh and (Pxh) are solved;
“% time (Pxh)” is the percentage of the total computing time, i.e., time(s), used to
solve (Pxh). In Table 3.2, the “Avg LSE”, which is the average least-squares error
of the regression, is reported as well. In Table 3.2 and Table 3.3, the best objective
values and minimum required times are reported in bold for each instance.

As expected, the dual approach leads to a single-level formulation which is
a restriction for most of the bilevel problems with a nonconvex lower level, but
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Instances Single-level formulation KKT approach CP approach
Name n obj Avg LSE time(s) LB obj/(LB,UB) Avg LSE time(s) it % time (Pxh)

PSD inst1 5 358.64 0.08966 0.19 355.78 358.64 0.08966 1.21 6 3.9
PSD inst2 5 365.60 0.09140 0.26 363.85 365.60 0.09140 0.63 3 4.1
PSD inst3 5 363.43 0.09086 0.07 359.16 363.43 0.09086 2.62 8 18.0
PSD inst4 5 353.90 0.08847 0.07 353.19 353.90 0.08847 1.93 5 32.2
PSD inst5 10 391.21 0.09780 0.37 359.48 391.21 0.09780 23.5 17 0.7
PSD inst6 10 397.59 0.09940 0.41 353.55 397.59 0.09940 24.2 17 0.7
PSD inst7 13 440.84 0.11021 0.36 358.19 440.84 0.11021 64.3 19 0.3
PSD inst8 13 382.22 0.09555 0.34 345.52 381.81, 383.34 0.09545 t.l. 5 99.9
PSD inst9 15 572.77 0.14319 0.92 351.95 557.71, 1362.6 0.13943 t.l. 4 100.0
PSD inst10 15 528.93 0.13223 1.37 346.43 526.22, 544.90 0.13156 t.l. 8 100.0
notPSD inst1 5 493.19 0.12330 0.14 345.12 358.47 0.08962 0.38 2 5.8
notPSD inst2 5 425.14 0.10628 0.15 370.89 378.28 0.09457 0.39 2 5.7
notPSD inst3 5 345.81 0.08645 0.06 345.81 345.81 0.08645 0.33 1 4.0
notPSD inst4 5 353.25 0.08831 0.07 353.25 353.25 0.08831 0.19 1 3.6
notPSD inst5 10 743.81 0.18595 0.55 360.42 503.88 0.12597 28.3 19 12.9
notPSD inst6 10 637.62 0.15940 0.28 357.48 482.96 0.12074 412 41 86.6
notPSD inst7 13 903.44 0.22586 0.35 351.31 647.08 0.16177 657 57 69.7
notPSD inst8 13 932.21 0.23305 0.30 358.28 588.19 0.14705 3825 77 92.9
notPSD inst9 15 1592.60 0.39815 0.99 345.44 1126.44 0.28161 15002 99 95.5
notPSD inst10 15 897.89 0.22447 0.83 350.60 580.60 0.14515 2537 56 87.0

Table 3.2: Numerical results of the first application

Instances Single-level formulation KKT approach CP approach
Name n obj time(s) LB obj/(LB,UB) time(s) it % time (Pxh)

jean PSD 80 -0.0760 18.4 -4.5808 -0.0760 4.68 186 38.5
myciel4 PSD 23 -0.3643 0.06 -1.9429 -0.3643 14.3 422 26.8
myciel5 PSD 47 -0.3164 1.45 -4.0081 -0.3164 85.4 752 9.2
myciel6 PSD 95 -0.2841 41.4 -9.1222 -0.2841 2781 2323 1.0
myciel7 PSD 191 -0.2608 4359 -14.9495 -0.2608, -0.2608 t.l. 3565 0.4
queen5 5 PSD 25 -0.5536 0.10 -5.6076 -0.5536 4.16 161 44.3
queen6 6 PSD 36 -0.4619 0.38 -5.6353 -0.4619 34.4 512 18.3
queen7 7 PSD 49 -0.4054 1.47 -7.8210 -0.4054 155 969 7.8
queen8 8 PSD 64 -0.3614 4.22 -12.7220 -0.3614 742 1651 3.1
queen8 12 PSD 96 -0.3000 34.8 -16.0606 -0.3000, -0.3000 t.l. 4082 0.4
queen9 9 PSD 81 -0.3247 14.4 -14.5807 -0.3247 3544 2578 0.8
jean notPSD 80 3.2708 17.4 -8.5541 2.3979 37.6 6 99.7
myciel4 notPSD 23 0.8668 0.07 -2.5166 0.5198 466 44 99.9
myciel5 notPSD 47 1.9571 1.27 -7.4343 1.2779 315 32 99.8
myciel6 notPSD 95 3.9171 39.2 -13.9108 2.9378 2735 38 100
myciel7 notPSD 191 7.8030 3419 -8 6.2486, 6.2486 t.l. 19 100
queen5 5 notPSD 25 0.8112 0.08 -4.7699 0.3800 326 53 99.8
queen6 6 notPSD 36 1.3876 0.37 -9.7370 0.8511 15872 71 100.0
queen7 7 notPSD 49 1.9740 1.56 -12.4690 1.3510 852 42 99.9
queen8 8 notPSD 64 2.6032 5.79 -15.0751 1.8123 10410 42 100
queen8 12 notPSD 96 3.8131 41.0 -31.4660 2.8102 7035 30 100
queen9 9 notPSD 81 3.2449 17.3 -17.4348 2.2975, 2.2996 t.l. 23 100

Table 3.3: Numerical results of the second application

for the instances notPSD inst3 and notPSD inst4 of Table 3.2, where the bilevel
global optimal solution is attained using both the two approaches, despite the
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matrix Q is indefinite. It is clear that, in terms of computational time, the dual
approach is more efficient than the CP approach, not only when Mosek deals
with a restriction of the original bilevel formulation but also when a reformulation
is solved. This is the main reason why the dual approach is promising, even if
a restriction of the original bilevel program is solved. In fact, it let us compute
either the bilevel optimal solution or an upper bound of such solution within a
small CPU time. As concerns the computation of lower bounds, we see that the
CP algorithm provides much tighter lower-bounds than the best lower bound of
the KKT relaxation computed by Couenne within the time limit. Indeed, this
formulation is particularly hard to solve mainly because of the complementarity
constraints. To understand the causes of the long computational time required by
the CP algorithm, we can look at the last column of Table 3.2 and 3.3. For the
first application, the time required to perform step 4 of the CP algorithm (i.e., to
solve Pxh) is longer than the time required to perform step 3 (i.e., to solve Rh) only
for the bigger instances (n ě 13 for instances with a convex lower level and n ě 10
for instances with a nonconvex lower level). In fact, when n grows, more time is
needed to solve a possibly nonconvex QP having Q and q as coefficients, rather
than a convex QP having Q and q as variables. When n is small, it is different:
even if the inner problem is quadratic nonconvex, it has a small size so it is not
harder to solve than the master problem. For the second application, the time
required to solve the lower-level problem is longer than the time required to solve
the outer relaxation only for the instances having a nonconvex lower level, i.e., the
second half of the Table 3.3 rows. In fact, problem Rh has a convex quadratic
objective function, since the matrix Q1 is always PSD, while the inner problem has
a convex quadratic objective function only when the matrix Q2px

hq is PSD. When
Q2px

hq is not PSD, problem Pxh is possibly nonconvex and it becomes harder to
solve than the master problem.

Figure 3.1: Constrained quadratic regression Figure 3.2: Zero-sum game with cubic payoff
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Figures 3.1 and 3.2 are aggregated plots showing, for all the tested instances,
the trend of the feasibility error εh over the iterations of the CP algorithm indexed
by k. As already said, we set a tolerance of 10´6: for most of the instances, the
algorithm stops when εh reaches or is less than such value. For the instances where
the algorithm reaches the time limit, the curve ends at a value of εh greater than
10´6. For all the instances, anyhow, we can see that the sequence of εh converges
towards 0, as proved in Theorem 2.

3.7 Conclusion

In this chapter we focused on a class of bilevel programs having a possibly nonconvex
quadratic problem at the lower level. These bilevel programs are, in fact, linear
semi-infinite programming problems with an infinite number of quadratically
parameterized constraints. From the point of view of Robust Optimization,
it is about handling constraints with quadratic perturbations and a polytopic
uncertainty set. We proposed two independent approaches to deal with such bilevel
problems. First, a convex single-level formulation obtained via the dual approach
provides a feasible solution, which is optimal in the case where the quadratic
lower-level problem is convex. Second, a cutting plane algorithm enables one to
solve directly the bilevel formulation with a guaranteed convergence rate, at the
price of solving possibly nonconvex quadratic inner problems. At each iteration,
such algorithm provides a lower bound on the value of the bilevel program, which
allows one to bound the optimality gap of the feasible solution obtained with
the dual approach. Our computational experiments on small and medium-scale
instances showed the superiority, in terms of solution time, of the dual approach
for the instances with a convex lower level. As concerns the cases with a nonconvex
lower level, the two approaches are complementary: the dual approach was faster
but provides “only” a feasible solution, the cutting plane approach was slower, but
solved the bilevel problem to optimality with good accuracy.

The formulation and the solution of the Conflict Resolution Problem, which is
the focus of Chapter 4, will leverage on the results of this chapter.
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Applications





Chapter 4

Aircraft conflict resolution

In this chapter we present different formulations of the aircraft conflict resolution
problem (CRP), based on two of the available conflict resolution maneuvers: speed
and heading angle changes. As regards the speed regulation based CRP, we
present a natural SIP formulation, a polynomial programming formulation, a
bilevel formulation and three single-level formulations. For the CRP via heading
angle changes, we restrict our analysis to the 2D scenario, where aircraft fly at
the same altitude. For this problem, we present a bilevel formulation and its
single-level reformulations. We will see that the bilevel formulations, which are
much easier to read with respect to other existing formulations, fit in the general
framework of (BP) presented in Chapter 3. Therefore we propose a tailored CP
algorithm for CRP based on Algorithm 1. The approaches are compared using
some benchmarking instances, and a benchmark generator is presented.

The results described in this chapter have been published in [3, 1, 2]. The
benchmark generator is detailed in [5], which is currently under review.

4.1 Introduction

Many strategies can be used to detect and solve potential conflicts among aircraft
sharing the same portion of airspace. In this chapter we focus on two of them:
speed and heading angle modifications. While Heading Angle Changes (HAC)
are often used in practice to prevent collisions, speed changes are almost never
performed in practice because of the tight speed modification restrictions imposed
by air travel regulations. There are several reasons for the strict bounds, which
include aircraft dynamics, passengers’ comfort and the real-time nature of the
decision process needed to make this maneuver efficient. In 2004, however, the
concept of Subliminal Control was introduced in the context of the European
project ERASMUS [66]. Subliminal speed control consists in allowing minor speed
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adjustments that have to be small enough to remain imperceptible to controllers,
thus reducing their workloads.

A1
A2

k “ 1

k “ 2

Figure 4.1: Two conflicting aircraft in 2 dimensions

When conflict resolution is applied to aircraft flying at the same altitude level,
the optimization takes place in the plane (see Figure 4.1).

k1

k2

k3

A1

A2

Figure 4.2: Two conflicting aircraft in 3 dimensions

When we consider aircraft moving in a three-dimensional space (see Figure 4.2
as an example), the need for subliminal speed changes becomes less relevant:
Speed Regulation (SR) is not realistically performed while changing altitude, but
only when aircraft are flying within a fixed altitude layer. This does not apply
to Unmanned Aerial Vehicles, however, which have different dynamics, and the
development of urban air mobility could benefit from advances in aircraft conflict
resolution optimization.

We review the relevant literature in Section 4.2. In Section 4.3 we introduce the
SR based CRP formulations: a natural formulation, a polynomial programming
formulation, and a bilevel formulation, with three single-level reformulations. In
Section 4.4 we present a bilevel formulation of the CRP via HAC in two dimensions
(aircraft fly at the same altitude level), and its reformulations. A tailored CP
solution algorithm for CRP via both SR and HAC is presented in Section 4.5, based
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on Algorithm 1 (Chapter 3). In Section 4.6 we discuss computational results. In
Section 4.7, we introduce the aircraft deconfliction benchmark generator presented
in [5] that allows to generate benchmarks of different complexity, which can be
used to test the different approaches. Section 4.8 concludes the chapter.

4.2 Literature review

There exists a wide range of approaches for modeling and solving the CRP. Most of
the works consider either only speed regulation (see, e.g., [158, 49, 171, 165, 51] and
[2]) or heading angles changes (see, e.g., [158, 161, 19] and [2]). A combination of
both maneuvers is considered too (see, e.g., [98, 20, 155, 154]), involving alternative
sets of decision variables.

As regards SR based works, in [165] and [166], scalar speed regulation is
converted into travel time control in order to minimize the total cost of the
conflicts, defined as a function of the time a pair of aircraft spends travelling below
the separation threshold in the neighborhood of an intersection point. The variables
of the proposed MILP problem are thus the time instants at which aircraft cross
each intersection point of the trajectories in the considered time horizon. An equity-
oriented deconfliction MILP model, based on these same variables, is introduced in
[166]. It proposes an innovative aircraft collision avoidance model promoting the
fairness of the solutions (airlines are equally affected by the trajectory adjustments).
To this goal, three optimization stages, which are formulated as MILP programs
and solved using Cplex, are combined aiming at: maximizing the number of solved
conflicts; solving conflicts in the most equitable way possible; reducing the delay
induced by the trajectory adjustments. A different kind of approach is proposed in
[49, 171], where Mixed-Integer Nonlinear Programming (MINLP) formulations for
the CRP via SR in the plane are considered. The formulation proposed in [49] is
solved using the general-purpose solver for nonconvex MINLP problems Couenne
[32]. In order to deal with the computational difficulties of globally solving the
proposed MINLP formulation, a heuristic procedure is introduced too, where the
problem is decomposed into problems involving only a small subset of aircraft.
All the local solutions obtained by solving each of these problems are combined,
returning a feasible solution of the original problem. In [171], another heuristic
is proposed to solve the same problem. It builds two sequences of points: one
consisting of points that are feasible w.r.t. nonlinear constraints, and the other
consisting of points satisfying the integrality conditions. The algorithm iterates
until the two sequences converge to a feasible solution of the MINLP formulation.

SR fails to solve frontal conflicts; moreover, it may not be sufficient to ensure
safety if speed bounds are tight. Consequently, it is usually combined with other
maneuvers, such as HAC. In [50], SR and HAC are applied sequentially. The
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MINLP model proposed in [49] is the starting point to present another MINLP
formulation where aircraft speeds are fixed, while heading angles can change. Such
a model is combined with another MINLP formulation, that maximizes the number
of aircraft conflicts solved via speed regulation. These two MINLP formulations
are solved using Couenne. Furthermore, within a two-step methodology, the
solution of the second one is used as a pre-processing step for the first one. This
methodology significantly speeds-up the resolution process.

SR and HAC are sometimes combined in the same formulation. In [98], the
planar CRP is formulated as a nonconvex Quadratically Constrained Quadratic
Programming (QCQP) problem where the objective function minimizes the de-
viations from the original velocity vector. If the solution of the “natural” SDP
relaxation of this QCQP formulation has rank one, then the problem is solved; oth-
erwise, a locally optimal and conflict-free solution with a certain crossing pattern
can be obtained via a stochastic rank reduction procedure. A different approach,
which also combines SR and HAC to find optimal aircraft maneuvers, is proposed in
[164]. In this case, a formulation in complex numbers with disjunctive constraints
is introduced; speed bounds are translated into nonconvex quadratic constraints
by considering the Euclidean norm of the vectors of velocities; different relaxations
of the resulting MINLP problem are then proposed, solved, and compared.

Some works consider only HAC strategy. This is, for example, the case of [161],
where trajectories are modeled with B-splines and a SIP formulation of CRP via
HAC is presented, reformulated with an exact penalty function, and solved using
local optimization methods. A two-step approach is introduced in [19]. The first
step consists of a nonconvex MINLP model based on geometric constructions,
which aims to minimize the total HAC cost (potentially the angle variation of
each aircraft has a cost, even if in the experiments reported in the paper such
costs are set to 1) to obtain the new conflict-free flight configuration. The second
step consists of a set of unconstrained quadratic optimization models solved as a
post-processing step to return each aircraft to its original flight plan as soon as
possible after conflict resolution.

As for the first approach in [19], part of the literature focuses on the geometric
characterization of conflicts, used in SR or HAC based models. In [44], for example,
the geometric characteristics of aircraft trajectories are used in order to obtain
closed-form expressions for single planar conflicts, based on SR and HAC alone,
as well as closed-form expressions yielding minimum deviations from the original
trajectories with combined SR and HAC. The authors of [158] present a geometric
analysis of the conflicts leading to two MILP formulations: one for SR and another
for HAC. The resulting separation constraints are linear on speeds and heading
angles, respectively.

Some approaches consider more than one flight level. In this case, the corre-
sponding optimization problem includes both flight-level allocation and conflict
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resolution within each level. For instance, the authors of [193] present a MILP
formulation where conflict situations are avoided by performing both speed and
altitude changes over predefined routes. The objective is to minimize the expected
fuel costs of the aircraft. Binary variables are used to assign flight levels, which
indicate whether two aircraft fly at different altitudes, as well as allowing de-
confliction of aircraft traversing the same flight level. A multi-objective MILP
approach in a similar vein, based on both maneuver types, and aiming at an
equitable distribution of the maneuvers over the aircraft, is proposed in [18]. In
[164], two disjunctive formulations are proposed for the CRP based on speed and
altitude changes. Their objective functions penalize the number of changes linearly
or quadratically, giving rise to a MILP program or a Mixed Integer Quadratic
Program, respectively.

In order to test the different approaches, several benchmarking instances have
been used, either generated accordingly to predefined scenarios or randomly. In
particular, circle instances (presented for the first time in [98], under the name
“symmetric encounter pattern”) are characterized by an unrealistic highly symmetric
configuration, with aircraft placed on a circumference and flying exactly or almost
exactly towards its center; random circle instances, which are more realistic
than the previous ones, include aircraft having trajectories with a starting angle
deviation with respect to the diameter of the circle. The last predefined scenarios
commonly used in the literature are the so called grid scenario, firstly presented
in [153] as “Perpendicular crossing stream”, and the more general rhomboidal
scenario, introduced in [98] with the name “Crossing aircraft stream”. These kinds
of instances consider aircraft moving along several crossing straight trajectories. If
the trails intersect at right angles, we speak of a grid scenario, otherwise, this kind
of scenario has been called rhomboidal [160] and flow [163]. The public GitHub
repository [163] gathers benchmarking instances of the circle, random circle, grid,
and rhomboidal problems. There are also benchmarks that represent random
configurations, for which both initial positions and aircraft velocity vectors are
randomly generated in a squared region [20, 51]. If we consider instances in R3, i.e.,
aircraft while changing their altitude, spherical and polyhedral instances, which
are generalization of circle and rhomboidal instances respectively, are available in
the public repository [4].

4.3 Conflict resolution via speed regulation

Given a set of aircraft A “ t1, . . . , nu sharing the same airspace, the goal of the
approach presented in this section is to minimize the total speed changes needed
to satisfy the minimum safety distance 1 d for each pair of aircraft pi, jq P AˆA

1Expressed in Nautical Miles (NM), where 1 NM = 1852 m
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in the given time horizon r0, T s. An important assumption is that changes occur
instantaneously (i.e., when t “ 0) and that the new speeds remain constant in
the time horizon. Specifically, given a constant planned speed for every aircraft
vi, our formulation decides new optimal constant speeds satisfying the safety
constraints. Such new speed is given by the product qivi, where qi is the variable of
our formulations expressing the ratio of the implemented speed w.r.t. the initially
planned speed of aircraft i. Variable qi “ 1 if the speed is equal to the initially
planned one, qi ą 1 if it is increased, qi ă 1 if it is decreased, @i P A. Scale factor
qi is considered to range between qmin

i and qmax
i , with qmin

i ă 1 ă qmax
i . These

bounds are often quite strict, in order to have speed variations barely perceived
by human air traffic controllers. In this section, the vector of velocity direction
components of each aircraft, ui, is constant through the time horizon taken into
account.

The set of dimension indices is K “ t1, . . . , kmaxu. In our implementation, we
consider either kmax “ 2 (2D instances, Figure 4.1) or kmax “ 3 (3D instances,
Figure 4.2). In this framework, the k-th component of the position vector of
aircraft i at time t is defined as xikptq “ x0

ik ` tqiviuik, where x0
ik “ xikp0q is the

k-th component of the initial position of aircraft i.

4.3.1 Natural formulation

The following provides a “natural” way to formulate CRP via SR:

min
q

ÿ

iPA
pqi ´ 1q2 (4.1a)

@i P A qmin
i ď qi ď qmax

i (4.1b)

@i ă j P A, t P r0, T s
ÿ

kPK

“

px0
ik ´ x

0
jkq ` tpqiviuik ´ qjvjujkq

‰2
ě d2. (4.1c)

Formulation (4.1a)–(4.1c) is a SIP program, where the last set of inequalities
(Eq. (4.1c)) contains uncountably many constraints, which ensure aircraft separa-
tion. Specifically, Eq. (4.1c) requires the squared Euclidean distance between each
two aircraft i and j to be greater than or equal to d2 at each instant t in the time
window r0, T s.

The (convex) objective function is the sum of squared aircraft speed changes.
This is equivalent to finding the feasible solution with the minimum speed change,
which must be in rqmin

i , qmax
i s for every aircraft i. As mentioned earlier, each aircraft

i will start flying with the implemented speed, which is equal to viqi.
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4.3.2 Polynomial programming formulation

In order to address the issue of uncountably many constraints (4.1c) of the natural
formulation, in this section we reformulate it using Polynomial Programming (PP).
The fact that such SIP problems could be reformulated to PP ones (either via
Lasserre-type semidefinite relaxations [199] or kinetic distance matrices [184]) was
previously known. Previous results, however, only offered relaxations, because of
the large size and polynomial degree of the corresponding (nonconvex) formulations.
We provide here a reasonably small PP formulation having the same polynomial
degree as the original SIP problem, which can be solved in practice to derive
feasible solutions.

Polishing the polynomial

For each i ă j P A, we define the polynomial:

pijptq :“
ÿ

kPK

“`

x0
ik ´ x

0
jk

˘

` t pqiviuik ´ qjvjujkq
‰2
´ d2

in function of t. We have:

pijptq “
ÿ

kPK

“`

x0
ik ´ x

0
jk

˘

` t pqiviuik ´ qjvjujkq
‰2
´ d2

“
ÿ

kPK

”

`

x0
ik ´ x

0
jk

˘2
` t2q2

i pviuikq
2
` t2q2

j pvjujkq
2

´2t2 pviuikvjujkq qiqj ` 2t
`

x0
ik ´ x

0
jk

˘

pviuikq qi

´2t
`

x0
ik ´ x

0
jk

˘

pvjujkqqj
‰

´ d2

“
ÿ

kPK

`

x0
ik ´ x

0
jk

˘2
` t2q2

i

ÿ

kPK

pviuikq
2
` t2q2

j

ÿ

kPK

pvjujkq
2

´2t2qiqj
ÿ

kPK

pviuikvjujkq ` 2tqi
ÿ

kPK

`

x0
ik ´ x

0
jk

˘

pviuikq

´2tqj
ÿ

kPK

`

x0
ik ´ x

0
jk

˘

pvjujkq ´ d
2

“
`

Biq
2
i `Bjq

2
j ´ 2Cijqiqj

˘

t2 ` 2
`

Di
ijqi ´D

j
ijqj

˘

t

`Aij ´ d
2,

where Aij, Bi, Bj, Cij, D
i
ij, D

j
ij are constant (w.r.t. t) defined as follows:

Aij :“
ř

kPK

`

x0
ik ´ x

0
jk

˘2
Cij :“

ř

kPK

viuikvjujk

Bi :“
ř

kPK

pviuikq
2 Bj :“

ř

kPK

pvjujkq
2

Di
ij :“

ř

kPK

`

x0
ik ´ x

0
jk

˘

pviuikq Dj
ij :“

ř

kPK

`

x0
ik ´ x

0
jk

˘

pvjujkq.
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Thus,

pijptq “ pBiq
2
i `Bjq

2
j ´ 2Cijqiqjqt

2 ` 2pDi
ijqi ´D

j
ijqjqt`Aij ´ d

2 (4.2)

is a polynomial of second degree in t.
We can now rewrite the SIP formulation (4.1a)–(4.1c) as:

min
q

ř

iPA
pqi ´ 1q2

@i P A qmin
i ď qi ď qmax

i

@i ă j P A, @t P r0, T s pijptq ě 0.

,

/

.

/

-

(4.3)

Problem (4.3) is the minimization of
ř

iPA

pqi ´ 1q2 subject to the second degree

polynomial pijptq being non-negative on t P r0, T s, and qi being in rqmin
i , qmax

i s for
each aircraft i.

Reformulation to polynomial programming

We introduce now a reformulation of (4.1a)–(4.1c) based on a result from [208].
This allows us to obtain a (finite) PP problem of the same degree of the original
SIP formulation.

In particular, the following proposition is an immediate corollary of [208,
Lemma 2.1].

Proposition 2 (corollary of Lemma 2.1 from [208]). For any i ă j P A, the
polynomial pijptq is non-negative on r0, T s iff there is a 2ˆ 2 positive semidefinite
matrix

Mij “

ˆ

mij rij
rij gij

˙

ľ 0

and a nonnegative scalar µij ě 0 such that:

pijptq “ p1 tqMij

ˆ

1
t

˙

` pT ´ tqtµij. (4.4)

We use Proposition 2 to introduce an exact reformulation of the SIP prob-
lem (4.3), as shown in Theorem 4.

Theorem 4. The following formulation:

min
q,M,µ

ř

iPA
pqi ´ 1q2

@i ă j P A gij ´ µij “ Biq
2
i `Bjq

2
j ´ 2Cijqiqj

@i ă j P A 2rij ` Tµij “ 2
`

Di
ijqi ´D

j
ijqj

˘

@i ă j P A mij “ Aij ´ d
2

@i ă j P A prijq
2 ď mijgij

@i ă j P A mij, gij, µij ě 0
@i P A qmin

i ď qi ď qmax
i

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

(4.5)
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is an exact reformulation of (4.1a)–(4.1c).

Proof. Note that pijptq is given in two different forms in Eq. (4.2) and Eq. (4.4).
We can therefore match coefficients of terms in t. This yields the following system:

gij ´ µij “ Biq
2
i `Bjq

2
j ´ 2Cijqiqj @i ă j P A

2rij ` Tµij “ 2pDi
ijqi ´D

j
ijqjq @i ă j P A

mij “ Aij ´ d
2 @i ă j P A,

which is independent of t by construction. We now have to impose the constraints
Mij ľ 0 and µij ě 0 given in the statement of Prop. 2. For the former, we observe
that the 2ˆ2 matrix Mij is positive semidefinite iff prijq

2 ď mijgij and mij, gij ě 0,
which yields the corresponding constraints in formulation (4.5). The latter is
simply copied from formulation (4.3) to (4.5).

We observe that problem (4.5) is a quadratic PP problem, and the degree is the
same as in the original formulation (4.1a)–(4.1c). We also observe that formulation
(4.5) is nonconvex in q because of the constraints @i ă j P A

gij ´ µij “ Biq
2
i `Bjq

2
j ´ 2Cijqiqj “

ÿ

kPK

pviuikqi ´ vjujkqjq
2. (4.6)

We remark that a convex relaxation can be readily obtained by relaxing Eq. (4.6)
to

gij ´ µij ě Biq
2
i `Bjq

2
j ´ 2Cijqiqj @i ă j P A. (4.7)

4.3.3 Bilevel formulation

Another way to deal with the uncountably many constraints (4.1c) of the natural
formulation is reformulating the CRP via SR into a bilevel formulation with
multiple lower-level problems, one for each pair of aircraft i ă j P A:

min
q,t

ÿ

iPA
pqi ´ 1q2 (4.8a)

@i P A qmin
i ď qi ď qmax

i (4.8b)

@i ă j P A min
tijPr0,T s

ÿ

kPK

“

px0
ik ´ x

0
jkq ` tijpqiviuik ´ qjvjujkq

‰2
ě d2. (4.8c)

Note that each lower-level problem is an optimization problem in the lower-level
variables tij, parametrized by the upper-level variables qi and qj. An optimal
solution of each lower-level problem, denoted by τij , corresponds to the time instant
at which aircraft i and j are closest. Formulation (4.8a)–(4.8c) is equivalent to
(4.1a)–(4.1c) because, if aircraft pairwise separation constraints (constraints (4.8c))
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hold at the time instant τij which is a minimizer of aircraft relative distance
(constraints (4.8c)), it will be true for each time instant in the time horizon r0, T s.
It is evident that formulation (4.8a)–(4.8c) fits in the general setting of formulation
(BP), with dpxq “ d2.

4.3.4 KKT reformulation

Since the presented bilevel formulation (4.8a)–(4.8c) has multiple convex lower-
level problems for which Slater’s condition holds, it can be easily reformulated
to single-level by replacing the lower-level problem by its KKT conditions – see
[77, Sec. 3.5] and [22] for the specific case of linear bilevel programs. This yields a
single-level mathematical program with complementarity constraints.

Given the lower-level problem for each pi, jq

min
tij

ř

kPK

“

px0
ik ´ x

0
jkq ` tijpqiviuik ´ qjvjujkq

‰2

s.t. ´tij ď 0 ^ tij ď T,
(SRLLij)

and the KKT multipliers µij and λij defined for each pair of lower-level constraints
´tij ď 0 and tij ď T respectively, we have the following single-level reformulation
of problem (4.8a)–(4.8c):

min
q,t,µ,λ

ÿ

iPA
pqi ´ 1q2 (4.9a)

@i P A qmin
i ď qi ď qmax

i (4.9b)

@i ă j P A
ÿ

kPK

“

px0
ik ´ x

0
jkq ` tijψijk

‰2
ě d2 (4.9c)

@i ă j P A
ÿ

kPK

“

2tijψ
2
ijk ` 2px0

ik ´ x
0
jkqψijk

‰

´ µij ` λij “ 0 (4.9d)

@i ă j P A µij, λij ě 0 (4.9e)

@i ă j P A µij tij “ 0 (4.9f)

@i ă j P A λij tij ´ λij T “ 0 (4.9g)

@i ă j P A 0 ď tij ď T, (4.9h)

where the symbol ψijk appearing in Eq. (4.9c) and (4.9d) is defined as:

ψijk :“ qiviuik ´ qjvjujk, (4.10)

used throughout the chapter as short-hand for its definition in the right hand side.
Constraints (4.9d) (setting the gradient of the lower-level Lagrangian func-

tion equal to zero) correspond to the stationary condition of problem (SRLLij),
Eq. (4.9e) and (4.9h) to dual and primal feasibility conditions respectively, and
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Eq. (4.9f)–(4.9g) to complementary slackness. Eq. (4.9c) enforce the safety dis-
tance for each KKT solution. No dual variable is introduced for Eq. (4.9c) since
they are upper-level constraints.

We remark that the complementarity constraints (4.9f)–(4.9g) involve prod-
ucts of continuous decision variables, and, therefore, define nonconvex feasible
sets in general. A possible reformulation based on MILP modeling may define
mixed-integer linear feasible sets instead, but also requires the determination of
some big-M constant providing a valid bound to µ, λ, which cannot be done in
polynomial time. This particular reformulation, moreover, would not dispose of the
nonconvexities in constraints (4.9c) and (4.9d). We therefore propose to solve the
formulation above by means of global optimization techniques (see Section 4.6).

4.3.5 Dual reformulations

We propose another reformulation of the bilevel problem (4.8a)–(4.8c), which arises
because the lower-level problems (SRLLij) are convex quadratic, for which strong
duality holds. We can therefore apply the dual approach presented in Section 3.3
of Chapter 3 to our bilevel formulation.

We observe that we can consider two different duals of the lower-level problems:
Dorn’s dual [85, 84], and Wolfe’s dual [206].

Dorn’s dual reformulation

Given the dual variables gij and zij of each lower-level problem in the left hand
side of Eq. (4.8c) (defined for constraints ´tij ď 0 and tij ď T respectively), using
Dorn’s dual [85, 84], the following reformulation of (4.8a)–(4.8c) follows:

min
q,g,z

ÿ

iPA
pqi ´ 1q2 (4.11a)

@i P A qmin
i ď qi ď qmax

i (4.11b)

@i ă j P A ´
ÿ

kPK

ψ2
ijk g

2
ij ´ Tzij ě d2

´
ÿ

kPK

px0
ik ´ x

0
jkq

2 (4.11c)

@i ă j P A ´
zij
2
´

ÿ

kPK

ψ2
ijk gij ď

ÿ

kPK

px0
ik ´ x

0
jkqψijk (4.11d)

@i ă j P A zij ě 0, (4.11e)

obtained replacing the lower-level problems of Eq. (4.8a)–(4.8c) by their Dorn duals
in the variables gij, zij for each aircraft pair i ă j P A. This yields Eq. (4.11c)–
(4.11d). Note that the primal lower-level variable tij does not appear in (4.11a)–
(4.11e). This is not an issue because we just want to know the new aircraft speeds
such that each potential conflict is avoided.
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Proposition 3. Eq. (4.11a)–(4.11e) is an exact reformulation of (4.8a)–(4.8c).

Proof. By Dorn’s duality theory [85], pDq is a dual problem of pP q:

min
y

1
2
yJQy ` pJy

Ay ě b
y ě 0

,

/

.

/

-

pP q

max
g,z

´1
2
gJQg ` bJz

AJz ´Qg ď p
z ě 0

,

/

.

/

-

pDq

In our case, we have:

‚ y :“ tij,

‚ Q :“ 2
ř

kPK

ψ2
ijk,

‚ p :“ 2
ř

kPK

px0
ik ´ x

0
jkqψijk,

‚ A :“ ´1,

‚ b :“ ´T .

Recall that ψijk is constant in the lower level since, by Eq. (4.10), it only depends
on the upper-level variables qi and qj. By easy replacements, the formulation
(4.11a)–(4.11e) follows.

Wolfe’s dual reformulation

Another single-level reformulation can be obtained using Wolfe’s dual [206] of the
convex lower-level problems in Eq. (4.8c). The lower-level dual objective function
is the Lagrangian of the lower-level primal problem in Eq. (4.8c)

ÿ

kPK

“

px0
ik ´ x

0
jkq ` tijψijk

‰2
` αijptij ´ T q ´ βijtij,

where αij and βij are the Lagrangian multipliers associated to the constraints
´tij ď 0 and tij ď T , respectively. Therefore, we obtain the following reformulation
of Eq. (4.8a)–(4.8c):

min
q,t,α,β

ÿ

iPA
pqi ´ 1q2 (4.12a)

@i P A qmin
i ď qi ď qmax

i (4.12b)

@i ă j P A
ÿ

kPK

“

px0
ik ´ x

0
jkq ` tijψijk

‰2
` αijptij ´ T q ´ βijtij ě d2 (4.12c)

@i ă j P A
ÿ

kPK

“

2tijψ
2
ijk ` 2px0

ik ´ x
0
jkqψijk ` αij ´ βij

‰

“ 0 (4.12d)

@i ă j P A αij, βij ě 0. (4.12e)
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We note that the single-level reformulation presented above involves some of
the KKT conditions as constraints: the stationarity condition Eq. (4.12d) and
the nonnegativity of the Lagrangian multipliers Eq. (4.12e). The (nonlinear)
complementarity constraints, however, are not needed in Wolfe’s duality [206].
The obtained reformulation (4.12a)–(4.12e) is exact.

Proposition 4. Eq. (4.12a)–(4.12e) is an exact reformulation of Eq. (4.8a)–(4.8c).

Proof. By Wolfe’s duality theory [206], pDq is a dual problem of pP q:

min
y

1
2
yJQy ` pJy ` c

Ay ě b
y ě 0

,

/

.

/

-

pP q

max
α,β

Lpy, α, βq
BL
By

“ 0

α, β ě 0

,

/

.

/

-

pDq

with Lpy, α, βq “ 1
2
yJQy ` pJy ` c` αpb´ Ayq ´ βy, and BL

By
“ Qy ` p` α ´ β.

In our case, we have:

‚ y :“ tij,

‚ Q :“ 2
ř

kPK

ψ2
ijk,

‚ p :“ 2
ř

kPK

px0
ik ´ x

0
jkqψijk,

‚ c :“
ř

kPK

px0
ik ´ x

0
jkq

2,

‚ A :“ ´1,

‚ b :“ ´T .

Again, we recall that ψijk is constant in the lower level because, by Eq. (4.10), it
only depends on the upper level variables qi and qj. By easy replacements, the
formulation (4.12a)–(4.12e) follows.

4.4 Conflict resolution via heading angle changes

In this section, we present several formulations to model the CRP via HAC in two
dimensions. The goal is again to satisfy the minimum safety distance d for each
pair of aircraft while minimizing the total deviations with respect to the original
flight plan. Given the initial heading angle φi of each aircraft i, the outcome of
the HAC based CRP will be the set of new heading angles θi ` φi of the aircraft
(see Figure 4.3), where the heading angle variations θi are the variables of the
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A1
A2

k “ 1

k “ 2

φ1

φ2
θ1 θ2

Figure 4.3: Heading angles of two aircraft (in black before deconfliction)

formulations introduced in this section. As well as speed modifications, also HAC
are bounded, i.e., @i P A θi P rθ

min
i , θmax

i s, with θmin
i ă 0 and θmax

i ą 0.
Since we consider aircraft at the same altitude level, the position of aircraft i

at time t has only two components:

xiptq “ x0
i ` cospφi ` θiqvit and yiptq “ y0

i ` sinpφi ` θiqvit,

where x0
i “ xip0q and y0

i “ yip0q are the first and the second component of the
initial position of aircraft i, respectively.

4.4.1 Bilevel formulation

We introduce a bilevel formulation where the upper-level decision variables are the
heading angle variations θi (for all i P A) and the lower-level decision variables are
tij (for all i ă j P A). Each lower-level problem is parametrized by the upper-level
variables θi, θj.

min
θ,t

ÿ

iPA
θ2
i (4.13a)

@i P A θmin
i ď θi ď θmax

i (4.13b)

@i ă j P A min
tijPr0,T s

“

px0
i ´ x

0
j q ` tijpcospφi ` θiqvi ´ cospφj ` θjqvjq

‰2

`
“

py0
i ´ y

0
j q ` tijpsinpφi ` θiqvi ´ sinpφj ` θjqvjq

‰2
ě d2. (4.13c)

The convex objective function of the upper level (4.13a) is the sum of squared
heading angle changes, which are bounded by rθmin

i , θmax
i s. Each lower-level objective

is to minimize the squared Euclidean distance between aircraft i and j over
tij P r0, T s. Note that the lower-level objective function is also convex in tij.
Similarly to Eq. (4.8c) of the previous section, Eq. (4.13c) guarantees that the
minimum squared distance between each pair within the time horizon is at least d2.
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4.4.2 KKT reformulation

We derive the KKT reformulation of Eq. (4.13a)–(4.13c), based on KKT multipliers
λij (resp. µij) associated to constraints tij ď T (resp. ´tij ď 0) of each lower level
problem

min
tij

”

px0
i ´ x

0
j q ` tijpcospφi ` θiqvi ´ cospφj ` θjqvjq

ı2

`

”

py0
i ´ y

0
j q ` tijpsinpφi ` θiqvi ´ sinpφj ` θjqvjq

ı2

s.t. ´tij ď 0 ^ tij ď T.

(HACLLij)

Since Slater’s condition holds, and the lower level is convex in the variable tij,
the following reformulation is exact [77, Sec. 3.5].

min
θ,t,λ,µ

ÿ

iPA
θ2
i (4.14a)

@i P A θmin
i ď θi ď θmax

i (4.14b)

@i ă j P A
“

px0
i ´ x

0
j q ` tijcij

‰2
`
“

py0
i ´ y

0
j q ` tijsij

‰2
ě d2 (4.14c)

@i ă j P A 2tijpc
2
ij ` s

2
ijq ` 2px0

i ´ x
0
j qcij ` 2py0

i ´ y
0
j qsij ` λij ´ µij “ 0 (4.14d)

@i ă j P A λij , µij ě 0 (4.14e)

@i ă j P A λij tij ´ λij T “ 0 (4.14f)

@i ă j P A µij tij “ 0 (4.14g)

@i ă j P A 0 ď tij ď T, (4.14h)

where the symbols cij and sij are shorthand for the nonlinear expressions

cij :“ cospφi ` θiqvi ´ cospφj ` θjqvj , and sij :“ sinpφi ` θiqvi ´ sinpφj ` θjqvj .

The formulation in Eq. (4.14a)–(4.14c) is a single-level NonLinear Programming
(NLP) problem in the variables θ, t, λ, and µ. Constraints (4.14d) correspond to
stationarity conditions of the lower-level problems, Eq. (4.14h) to primal feasibility,
Eq. (4.14e) to dual feasibility, Eq. (4.14f) and Eq. (4.14g) to complementarity
conditions. We require that the safety distance is satisfied for each pair of aircraft
and for each tij satisfying the KKT conditions imposed in (4.14d)–(4.14h), with
constraints (4.14c).

4.4.3 Dual reformulations

We follow the procedure discussed in Section 4.3.5 for the SR based CRP, and in
Section 3.3 of Chapter 3 in order to obtain two dual reformulations of Eq. (4.13a)–
(4.13c). The first one involves Dorn’s dual of the lower-level problems, while the
second one involves Wolfe’s dual.



88 CHAPTER 4. AIRCRAFT CONFLICT RESOLUTION

Dorn’s dual reformulation

Given the dual variables gij and zij of the lower-level problems, the following
reformulation of Eq. (4.13a)–(4.13c) is obtained:

min
θ,g,z

ÿ

iPA
θ2
i (4.15a)

@i P A θmin
i ď θi ď θmax

i (4.15b)

@i ă j P A ´ g2
ijpc

2
ij ` s

2
ijq ´ Tzij ě d2 ´ px0

i ´ x
0
j q

2 ´ py0
i ´ y

0
j q

2 (4.15c)

@i ă j P A ´
zij
2
´ pc2

ij ` s
2
ijqgij ď px

0
i ´ x

0
j qcij ` py

0
i ´ y

0
j qsij (4.15d)

@i ă j P A zij ě 0. (4.15e)

The formulation in Eq. (4.15a)–(4.15e) is a single-level problem in the variables
θ, g, and z, the exactness of which can be proved in a way analogous to what
is done for Proposition 3. Note that the primal lower-level variable tij does not
appear in (4.15a)–(4.15e), but we just want to know the new heading angles such
that each potential conflict is avoided.

Wolfe’s dual reformulation

Using Wolfe’s dual of each lower-level problem in the variables αij and βij, we
obtain the following single-level reformulation of Eq. (4.13a)–(4.13c):

min
θ,t,α,β

ÿ

iPA
θ2
i (4.16a)

@i P A θmin
i ď θi ď θmax

i (4.16b)

@i ă j P A
“

px0
i ´ x

0
j q ` tijcij

‰2
`
“

py0
i ´ y

0
j q ` tijsij

‰2
` αijptij ´ T q ´ βijtij ě d2

(4.16c)

@i ă j P A 2tijpc
2
ij ` s

2
ijq ` 2px0

i ´ x
0
j qcij ` 2py0

i ´ y
0
j qsij ` αij ´ βij “ 0 (4.16d)

@i ă j P A αij , βij ě 0. (4.16e)

With Eq. (4.16c), the Lagrangian of each lower-level problem is required to
exceed the minimum required safety distance. The stationarity KKT condition
(gradient of the Lagrangian equal to zero) corresponds to (4.16d). Constraints
(4.16e) impose the nonnegativity of the dual variables αij and βij. The exact-
ness of formulation (4.16a)–(4.16e) can be proven as done for SR based CRP in
Proposition 4.
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4.5 Cutting plane algorithm

In Section 3.4 of Chapter 3 we have introduced a Cutting Plane algorithm to solve
formulation (BP). In this section we tailor such CP algorithm 1 for the bilevel
formulations (4.8a)–(4.8c) of SR based CRP and (4.13a)–(4.13c) of HAC based
CRP.

The problem solved at each iteration of the CP the algorithm is nonconvex.
In our implementation, its solution is obtained either with global solvers or, in
the interest of efficiency, by executing a local NLP solver several times within
a multistart procedure that starts from randomly chosen points (not necessarily
returning the global optimum).

We assume that aircraft are separated at the beginning of the time horizon
considered, otherwise the problem is infeasible.

Cutting plane algorithm for CRP via speed regulation

Algorithm 2 is a solution algorithm for the bilevel formulation (4.8a)–(4.8c), which
iteratively defines the feasible set of the upper-level problem by means of quadratic
cuts in the upper-level variables q. At each iteration h, the relaxation Rh of the
original bilevel problem, obtained by considering the upper-level problem together
with the cuts added in previous iterations, is solved. At the outset, R0 is:

min
q

ÿ

iPA
pqi ´ 1q2

@i P A qmin
i ď qi ď qmax

i .

The problem Rh, solved at each iteration of Algorithm 2, is nonconvex since
constraints (4.17) are of the form fpqi, qjq ě d2 with fpqi, qjq convex. Therefore,
in order to find global optima of Rh, a global optimization algorithm should
be employed. This, however, would make the algorithm excessively slow. In
our implementation (see Section 4.6) we chose to heuristically solve Rh using a
multistart algorithm calling a local NLP solver, from randomly chosen starting
points, when global optimization solvers are too slow.

Note that τhij is the instant for which the distance between i and j is minimum.
If this distance is greater than or equal to the safety value for each pair of aircraft,
the algorithm terminates at Step 12, as qh must be an optimal solution of the
bilevel formulation. Note that, in Step 8, τhij, easily computed in closed form, is
set to 0 or T if

´

ř

kPKpx
0
ik ´ x

0
jkqpq

h
i viuik ´ q

h
j vjujkq

ř

kPKpq
h
i viuik ´ q

h
j vjujkq

2

is negative or greater than T respectively.
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Algorithm 2 CP algorithm for CRP via SR

1: Let h “ 0. Initialize the relaxation Rh of the bilevel program (4.8a)–(4.8c), obtained
by considering the upper-level problem only.

2: while true do
3: Solve Rh to obtain the optimal solution qh.
4: for each aircraft pair pi, jq do
5: if @ k P K : pqhi viuik ´ q

h
j vjujkq “ 0 then

6: Set τhij “
T
2 .

7: else
8: Compute the instant τhij P r0, T s as

τhij “ min

#

T,max

#

0,´

ř

kPKpx
0
ik ´ x

0
jkqpq

h
i viuik ´ q

h
j vjujkq

ř

kPKpq
h
i viuik ´ q

h
j vjujkq

2

++

.

9: end if
10: end for
11: if

ř

kPK

ppx0
ik ´ x

0
jkq ` τ

h
ijpq

h
i viuik ´ q

h
j vjujkqq

2 ě d2 @i ă j P A then

12: The algorithm terminates and qh is the optimal solution of the bilevel formula-
tion.

13: else
14: For each pair pi, jq violating the inequality, define Rh`1 as Rh with the adjoined

inequality:

ÿ

kPK

ppx0
ik ´ x

0
jkq ` τ

h
ijpqiviuik ´ qjvjujkqq

2 ě d2. (4.17)

15: h :“ h` 1
16: end if
17: end while

In Step 6, τhij is set to T
2

if pqhi viuik ´ q
h
j vjujkq “ 0, for all k P K, i.e., if aircraft

i and j fly on parallel trajectories with the same speed. Having assumed that
aircraft are separated at the beginning (namely

ř

kPK

px0
ik ´ x

0
jkq

2 ě d2), no cut will

be added in the next steps of the algorithm.

Cutting plane algorithm for CRP via HAC

We propose a tailored version of the CP algorithm 1 for the bilevel formula-
tion (4.13a)–(4.13c), which models the HAC based CRP. In this case, the nonconvex
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problem R0 solved at the first iteration is

min
θ

ÿ

iPA
θ2
i

@i P A θmin
i ď θi ď θmax

i .

Algorithm 3 CP algorithm for CRP via HAC

1: Let h “ 0. Initialize the relaxation Rh of the bilevel program, obtained by considering
the upper-level problem only.

2: while true do
3: Solve Rh to obtain the optimal solution θh.
4: for each aircraft pair pi, jq do
5: if chij “ 0 and shij “ 0 then

6: Set τhij “
T
2 .

7: else
8: Compute the instant τhij P r0, T s as

τhij “ min

#

T,max

#

0,´
px0
i ´ x

0
j qc

h
ij ` py

0
i ´ y

0
j qs

h
ij

pchijq
2 ` pshijq

2

++

,

with chij “ cospφi` θ
h
i qvi´ cospφj ` θ

h
j qvj and shij “ sinpφi` θ

h
i qvi´ sinpφj `

θhj qvj .
9: end if

10: end for

11: if
”

px0
i ´ x

0
j q ` τ

h
ijc

h
ij

ı2
`

”

py0
i ´ y

0
j q ` τ

h
ijs

h
ij

ı2
ě d2 @i ă j P A then

12: The algorithm terminates and θh is the optimal solution of the bilevel formula-
tion.

13: else
14: For each pair pi, jq violating the inequality, define Rh`1 as Rh with the adjoined

inequality:

”

px0
i ´ x

0
j q ` τ

h
ijpcospφi ` θiqvi ´ cospφj ` θjqvjq

ı2

`

”

py0
i ´ y

0
j q ` τ

h
ijpsinpφi ` θiqvi ´ sinpφj ` θjqvjq

ı2
ě d2. (4.18)

15: h :“ h` 1
16: end if
17: end while

Again, the problem Rh, solved at each iteration of the algorithm, is nonconvex
since the constraints (4.18) are of the form fpθi, θjq ě d2 with fpθi, θjq convex. We
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find θh in Step 3 using a global NLP solver or, when the time limit is exceeded, with
a local NLP solver within a multistart procedure from randomly chosen starting
points. As in Algorithm 2, τhij P r0, T s indicates when the distance between i and
j is minimized and it is always computed in closed form in Step 8. If this distance
satisfies the safety threshold for each pair of aircraft, the algorithm terminates at
Step 12. Again, in Step 6 we discarded the case in which τhij is not well defined
whenever aircraft i and j share the same direction and speed.

4.6 Computational experiments

For the CRP via SR in 2 dimensions, we test our approach using the set of instances
used in [171]. It consists of circle —see Figure 4.4— and rhomboidal instances,
where aircraft move along crossing directed trails intersecting in nc conflict points.

Conflict zone

n aircraft

Figure 4.4: n conflicting aircraft flying towards the center of a circle

For the CRP via SR in 3 dimensions we use a 3D generalization of circle
instances (named spherical instances in Table 4.1), where n aircraft are placed
on a sphere of a given radius r — see Figure 4.5. We consider also polyhedral
instances in which aircraft move along straight 3D trajectories, which intersect
in at least n

2
conflict points. These instances are available online at the public

repository [4].
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r

A1

A2

A3

A4

A5

Figure 4.5: n conflicting aircraft flying towards the center of a sphere

A trajectory is defined by two angles: the so-called pitch angle γi (angle that
the vector of the direction ui forms with the axis k3) and the heading angle φi
(angle between the projection of ui onto the k1k2-plane and the axis k1) — see
Figure 4.6.

k2

k3

k1

ui

φi

γi

Figure 4.6: The 3-dimensional airspace

Finally, we test our approaches for the CRP via HAC in 2 dimensions using the
set of instances proposed in [50], consisting of both circle instances and random
circle instances. In such instances aircraft are placed around a circle and have
trajectories with a starting heading angle φi randomly chosen in r´π

6
, π

6
s with

respect to the diameter of the circle. Moreover, we test some rhomboidal instances
from [171] in which aircraft move along straight trajectories intersecting in nc
conflict points.

In all the experiments, we consider standard safety distance d “ 5 NM and a
time horizon of T “ 2 hours. We implement the formulations, as well as the CP
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algorithms, using the AMPL modeling language [95]. All the solvers are run with
their default settings. The tests are performed on a 2.53GHz Intel(R) Xeon(R)
CPU with 49.4 GB RAM.

CRP via speed regulation

For the circle and spherical instances the initial speed is vi “ 400 NM/h for each
i P A and the angles γi and φi are randomly generated (γi “

π
2
@i P A for circle

instances). Parameters x0
ik and uik are given by

ui1 “ cospφiq sinpγiq, ui2 “ sinpφiq sinpγiq, ui3 “ cospγiq, x0
ik “ ´r uik

where the radius r is chosen in t100, 200, . . . , 700u. The bounds qmin
i and qmax

i are
set to 0.94 and 1.03 respectively, following the weaker bounds proposed by the
ERASMUS project. We decided to stick to these well-known bounds on qi also
for the 3D cases, having in mind the CRP application. In the context of urban
air mobility, vehicles might have less strict bounds on admissible deceleration or
acceleration. However, urban air mobility concepts are still being developed and
estimations on these control parameters are not yet available.

We solve the single-level reformulations (4.9a)–(4.9h), (4.11a)–(4.11e), and
(4.12a)–(4.12e) with the global optimization solver Baron [174] (B in the Ta-
ble 4.1). When Baron exceeds the time-limit (set to 3600 seconds), we use a
Multistart algorithm (MS in the tables), which performs 1000 calls to the local
NLP solver Snopt [104] from randomly sampled starting points.

We solve the bilevel formulation (4.8a)–(4.8c) using the CP algorithm in
Section 4.5 (CP in Table 4.1) with maximum iteration number set to 1000; at each
iteration we solve the relaxed formulation Rh using Snopt called 50 times within
a Multistart procedure from randomly chosen points.

We solve the PP formulation (4.5) with the global optimization solver Gurobi
[108] (G in Table 4.1). For cases in which Gurobi exceeds its time limit set to
3600 seconds, we use a Multistart algorithm, which performs 1000 calls to the
Ipopt local NLP solver [198] from randomly sampled starting points.

All the results are reported in Table 4.1. The headings are the following: n
number of aircraft; r radius of the sphere in NM; obj best objective value found by
each model; cpu computing time in seconds; slv solver used (for the CP algorithm
the solver used to solve the inner problem Rh); UB and LB respectively upper
and lower bound on the optimal solution value, determined by the global solver
(Baron or Gurobi) when time limit is reached (we write 0 whenever a bound is
less than 10´6); it number) of CP iterations, i.e., number of times Rh is solved.
The results on circle and rhomboidal instances are also compared with those that
are obtained by solving the MINLP formulation proposed in [171] with Baron,
with default options but again with a time limit of 3600 seconds –see last column
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of Table 4.1. Whenever this time limit is reached, we report in italics the best
feasible solution found by the solver within the time limit.

The value of the objective function is always very small, given the nature of
the problem (q must be in r0.94, 1.03s). The tight speed variation bounds imposed
by ERASMUS project lead to an additional complication since instances are not
guaranteed to be feasible. Best objective values and minimum required time are
reported in bold for each instance. The best formulation in terms of solution
quality is the PP one in Eq. (4.5). In terms of computational efficiency, for most
of the instances the CP Algorithm 2 is the best. Since we are in the context of the
tactical conflict resolution, which deals with potential conflicts that are about to
happen within a few (i.e., from five to thirty) minutes, the proposed approaches
are concretely promising.

CRP in 2 dimensions via heading angles changes

As mentioned above, the HAC based CRP instances are taken from [50, 171]. The
authors set vi “ 400 NM/h for each i P A for all the instances. For the circle
instances the angles φi are randomly generated and parameters x0

i and y0
i are given

by
x0
i “ ´r cospφiq, y0

i “ ´r sinpφiq.

For the random circle instances both the angles φi and the parameters x0
i and

y0
i are randomly generated. The bounds θmin

i and θmax
i are set to ´π{6 and π{6

respectively.
We solve the formulations with the global optimization solver Couenne [32]

(C in the Table 4.2). We do not use Baron because it cannot handle the
trigonometric functions sine and cosine. When Couenne exceeds the time-limit
(set to 3600 seconds), we use a Multistart algorithm (MS in Table 4.2). It performs
1000 calls to Snopt for KKT reformulation (4.14a)–(4.14c) and Wolfe’s dual
reformulation (4.16a)–(4.16e), and 1000 calls to Ipopt [198] in the case of Dorn’s
dual reformulation (4.15a)–(4.15e). In all of the calls, starting points are randomly
chosen.

We solve the bilevel formulation using the CP algorithm in Section 4.5 (CP in
Table 4.2) with maximum iteration number set to 1000; at each iteration we solve
the relaxed formulation Rh using Couenne, or, when the CP exceed the time-
limit of 3600 seconds, the local solver Snopt called 50 times within a Multistart
procedure from randomly chosen points.

Our results are reported in Tables 4.2 and 4.3. The headings are the following:
name of the instance; n number of aircraft; nc number of potential conflicts; obj
best objective value found by each model; cpu computing time in seconds; slv
solver used (in the last column, the solver used to solve the inner problem Rh

of the CP algorithm); UB and LB respectively upper and lower bound on the
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optimal solution value, determined by Couenne when time limit is reached (we
write 0 whenever a bound is less than 10´6); it number of CP iterations, i.e.,
number of times Rh is solved. Table 4.2 includes Circle instances, while Table 4.3
is divided into two blocks, which correspond to Random Circle and Rhomboidal
instances. Both Table 4.2 and each block of Table 4.3 are followed by a row that
shows the percentage of instances for which each approach outperforms (or is as
good as) the rest. Only instances solved with the same method (namely C or MS)
were used for the average. In Tables 4.2 and 4.3 the results on circle and random
circle instances are also compared with those that are obtained using HAC only
(without pre-processing) in [50]. Best objective values and minimum required time
are reported in bold for each instance.

Among the models proposed, for most of the instances the CP algorithm is the
best in terms of objective function and computational time, even when the inner
problem Rh is solved using Couenne. Looking at the comparison of our results
with the ones obtained in [50], it appears that they are comparable.

4.7 Conflict resolution problem: a benchmark

generator

Despite CRP being a very challenging optimization problem, the question of
testing the different mathematical optimization approaches against each other
is still open. In Section 4.6 we used the literature instances to compare our
approaches against previously proposed methods. However, these instances are not
always representative of the real-world problems as all the flights move towards
a common point or are randomly generated. There is a lack of a common set of
test instances that allows comparison of the available methods under a variety
of heterogeneous and representative scenarios. Starting from the procedure used
to generate the 3D instances we used to test CRP via SR in three dimensions
(see Section 4.6), in [5] we present a flight deconfliction benchmark generator that
allows the user to choose between (i) different predefined scenario inspired on
existing benchmarks in the literature; (ii) pseudo-random traffic meeting some
user-predefined congestion; (iii) and randomly generated traffic. While (i) and
(iii) aim at standardizing existing benchmarks, to the best of our knowledge, (ii)
provides a novel framework that allows to tune the resulting instance intricacy.
Scenarios in (i) and (iii) typically stand for overcrowded traffic layouts which are
unrealistic, and completely random traffic with no other congestion indicator than
the space window and number of aircraft, respectively. Conversely, (ii) allows the
user to decide on congestion indicator such as the number of conflicts, probability
of conflict, and max number of conflict per aircraft of the generated instance.

In particular, we develop a generator in which six predefined scenarios are
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available, corresponding to the 2D and 3D implementations of three different
layouts that exist in the literature: circle, rhomboidal, grid, spherical, polyhedral,
cubic instances. In each scenario, both the initial positions and nominal vectors
of velocity of the aircraft are generated according to a predefined configuration.
Moreover, we provide a random variant for each of the six scenarios, which consists
in adding a random deviation to the predefined nominal vectors of velocity. The
range of such random deviation can be selected by the user. Each scenario is
characterized by certain parameters, which can be tuned by the user. For further
technical details on the options and parameters of the generator, we refer the
reader to the user manual.

In contrast to scenario-based instances, we also consider free-flight instances
generation. That is, we do not assume the aircraft flying under an specific layout.
Instead of that, we consider a rectangle/parallelepiped (air sector) in which the
initial positions and nominal vectors are generated randomly or pseudo-randomly.

On the one hand, randomly generated instances have been used in previous
literature [20, 51, 98]. However, the lack of a common reference makes the different
studies not comparable. We provide the option of randomly generating both 2D
and 3D instances in order to offer such common reference.

On the other hand, we address pseudo-random instances for the first time (to
the best of our knowledge). This consists in generating aircraft configurations that
meet a particular level of congestion, which is determined by the user through
different parameters. Namely, we define the following parameters related to traffic
congestion:

• nc: total number of pairs of aircraft that are in conflict;

• pc: probability that one aircraft is in conflict with at least another aircraft;

• mc: maximum number of aircraft that a fixed aircraft can be in conflict with.

The expected number of conflicts is given by:

Epncq “ n ¨ pc ¨

ˆ

1`mc

2

˙

¨
1

2
. (4.19)

Therefore, the user would only need to introduce two of these three parameters (the
remaining one would be calculated according to (4.19)). The maximum number of
conflicts that can be generated is given by pn ¨mc{2q, thus, we discourage the use
of values of nc and mc such that mc ă 2 ¨ nc{n. On the other hand, the average
number of conflict is at most pn ¨ pmc ` 1q{4q (if pc “ 1). Then, if both nc and mc

are input by the user, we recommend to use values such that mc ě 4 ¨ nc{n ´ 1.
The user may decide to input just some of these three parameters or none of them.
If no parameter is specified, then pc “ 0.5, mc “ n´ 1 by default, and nc is fixed
to the closer integer to Epncq.
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4.8 Conclusion

In this chapter we proposed both polynomial and bilevel programming as suitable
approaches to model the well-known aircraft conflict resolution problem or CRP. In
particular, we presented two bilevel formulations of the CRP: one based on speed
regulation in k dimensions and another where potential conflicts are avoided via
heading angle changes in two dimensions. In both cases, the convexity of the lower-
level problems allowed us to derive three different single-level problems respectively,
using KKT conditions, Dorn’s duality, and Wolfe’s duality. We presented a single-
level polynomial programming formulation of the speed regulation based CRP as
well.

The single-level formulations of both problems were solved by using state-
of-the-art solvers, which provided good solutions in reasonable computing time.
Alternatively, we proposed a tailored cut generation algorithm (in the same vein
of CP Algorithm 1 of Chapter 3) to solve the bilevel formulations. This algorithm,
compared with state-of-the-art solvers, outperformed the other approaches in terms
of efficiencies. Numerical results, when compared with other approaches in the
literature, are encouraging and stress the potential of the proposed approach.
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Table 4.1: Results obtained solving 4 different formulations of CRP via SR in 2 and 3 dimensions.
The results on 2D instances are compared with those obtained in [171].
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Table 4.2: Results obtained solving 4 different formulations of CRP via HAC compared with
those obtained in [50], Circle instances
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Table 4.3: Results obtained solving 4 different formulations of HACCRP compared with those
obtained in [50], Random Circle and Rhomboidal instances
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Chapter 5

ACOPF in a bilevel framework
and the network design ACOPF

In the first part of this chapter, we present a bilevel formulation which can be
used to determine the optimal interaction between a retailer, who sets the price of
power, and a network of consumers, who decide on storing, consuming, buying
power from, or selling power to the grid. The main assumption is that the network
routes Alternating Current (AC), i.e., the network routing problem solved at the
lower level is the AC Optimal Power Flow (ACOPF). The main difficulties in this
model come from the nonlinearities inherent in the physical laws governing the
electrical equilibrium of the considered AC power network. To deal with these
issues, we relax the lower level, using Second-Order Cone Programming (SOCP).
Such modelization approach is the starting point of an ongoing work with Claudia
D’Ambrosio, Leo Liberti, and Martin Schmidt. Some preliminary results on tiny
instances, not reported in this dissertation, are encouraging, and lead us to believe
in the interest of this approach.

Secondly, we consider the problem of optimally designing a power transportation
network of this type with respect to line activity. In this framework, we formulate
the ACOPF with on/off variables on lines as a nonconvex MINLP problem in
complex numbers. Then we propose different convex MINLP relaxations. The
results presented in this second part of the chapter are presented in [6], currently
under review.

5.1 Introduction

The possibility for generation in private households has extended the activities of
electricity customers from simply purchasing electricity, to taking a more active
role within the production and storage of electricity, transforming themselves from
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purely power consumers to so-called “prosumers” (a fusion of the terms “producers”
and “consumers”, first introduced in [188]). In this scenario, we study an AC power
grid, defined by a set of buses, and a set of lines, in a discretized time horizon.
Specifically, we derive a bilevel formulation to model the interaction between a
retailer and several prosumers. The retailer is not part of the grid, but is considered
as an entity external to the set of prosumers who interact with each other through
the network (each prosumer is a bus). The prosumers can produce power thanks to
rooftop PV panels, and store it in a battery. Both these two devices are connected
via inverters to the grid. Each prosumer can potentially decide to sell some of the
produced/stored power, receiving money from the government, which pays a fixed
feed-in tariff for each unit of power sold (we will later assume that the feed-in
tariff is equal to the price of the power sold by the retailer). At the upper level,
the retailer, who sets the price of power for the set of prosumers, aims to maximize
his/her profit. At the lower level, prosumers (considered as acting together) want
to maximize the revenues from selling power/minimize what is paid to the retailer
when their production does not satisfy their power need.

In the second part of this chapter, we focus on the problem solved at the
lower level, i.e., the ACOPF problem. We detail its formulation and consider
the additional problem of network design. While this is similar to the optimal
switching problem [93], here we start from the ACOPF formulation rather than its
Direct Current (DC) counterpart. We present a nonconvex MINLP formulation of
the network design problem derived from the ACOPF, and several convex MINLP
relaxations. While there is little hope of solving even the tiniest network design
ACOPF instances with the nonconvex MINLP formulation, we show that some
results for small ACOPF instances can be obtained using the convex MINLP
relaxations.

The chapter is organized as follows. In Section 5.2, we briefly discuss the related
literature. In Section 5.3 the bilevel model is presented, and in Subsection 5.3.1 a
convex relaxation based on Low’s approach in [100] of the lower level is introduced.
We present the nonconvex MINLP ACOPF formulation for the corresponding
network design problem in Section 5.4. We, then, propose some new Mixed-Integer
SOCP relaxations of this problem in Subsection 5.4.1. We test our single-level
formulations of the power network design problem with some literature instances
in Section 5.4.3.

5.2 Literature review

The literature on Optimal Power Flow (OPF) problem is rich and spans over half
a century. In the literature, various reformulations, decomposition methods and
algorithms have been proposed. We refer to [9] for an introduction to OPF and to
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[58, 97, 96] for detailed surveys.
When considering the DC, a small angle-linearization of the ACOPF problem

is solved, where losses and reactive power are ignored and a flat voltage profile
is considered. The approach is widely used in practice, since the DC Optimal
Power Flow (DCOPF) problem is a Linear Programming (LP) problem efficiently
solvable even for large-sized networks (see [42, Sec. 1.2.4], [149, Eq. (5.48)]).

Solving the ACOPF problem is a more challenging task. Indeed, such problem
can be naturally formulated in many ways, e.g., QCQP, PP, and general NLP,
all of which involve nonconvexities [42]. The variables (voltage, current, power)
are naturally defined on continuous domains. A very interesting feature of the
ACOPF is that its variables range in complex numbers (see Appendix A for a
recall on complex numbers). While a separation in real and imaginary parts is
always possible, matrix formulations and relaxations generally take up twice the
amount of storage w.r.t. working directly in complex numbers [103].

Several algorithms, summarized in [58], tackle the nonconvex ACOPF problem
using NLP solution techniques which can only guarantee local optimality. Among
these approaches we can find:

• gradient or reduced gradient methods [83, 21];

• sequential quadratic programming methods [47], exploiting the fact that the
quadratic behaviour is sufficiently accurate for small deviations;

• Newton [183] or quasi-Newton methods [105], characterized by a fast conver-
gence, but very sensitive for the initial conditions;

• interior-point methods [150, 116], usually applied for large scale OPF prob-
lem;

• derivative free optimization techniques [11, 112], typically applied when first
and second-derivatives are too expensive to compute.

Empirically, interior-point methods work well on large-scale instances and find
very good locally-optimal solutions. However, certifying a tight optimality gap
is challenging. For this purpose, convex relaxations of the ACOPF problem (i.e.,
formulations obtained enlarging the ACOPF feasible region to a convex set) have
been developed in the literature. Common relaxations are LP, SOCP, SDP [149].

In [57] a multi-period ACOPF problem with charge and discharge dynamics for
energy storage devices is modeled. A convex relaxation based on SDP is proposed
and the Lagrangian dual is derived to investigate the relationship between the
storage variables and the Locational Marginal Prices (LMPs), i.e., price signals
reflecting the marginal impact of an additional unit of power generation or demand
at each location (bus) on the grid [55]. They are defined by the dual variables
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associated with the nodal active power flow balance constraints. Later on, in [200]
a successive linear programming approach is used to solve the ACOPF problem,
called SLP IV-ACOPF algorithm. Starting from the canonical formulation of the
ACOPF in rectangular coordinates, a combination of linearization and reduction
techniques is applied to the problem constraints. Real and reactive power power
dispatch are iteratively co-optimized within the algorithm. The computational
performance and convergence quality of the SLP IV-ACOPF are proved comparing
it to an interior-point algorithm for solving the nonlinear ACOPF. The dual of the
SLP IV-ACOPF inner problem (which is a linear problem itself) is studied in [133].
In [100] the ACOPF problem in distribution networks is studied. The nonconvex
formulation is relaxed obtaining an SOCP exact relaxation, which optimum is also
the global optimum of ACOPF, under a certain condition that can be checked
prior to solving the SOCP relaxation itself.

A bilevel model with ACOPF in the lower level is proposed in [60], where the
market equilibrium of an integrated heat-power distribution system with strategic
providers and demand elasticity is studied. In the upper level, a provider bids
offering prices of electricity and heat to the respective markets. In the lower level,
the system operators solve the (both heat and power) market clearing problems,
and determine the dispatch of their generation devices, energy contracts with
the provider in case of need, as well as LMPs. The ACOPF-based electricity
market clearing lower-level problem is nonlinear. To overcome such issue, first,
convex relaxation is performed on the “branch flow based OPF model”, replacing
a nonconvex equality constraint with a rotated Second-Order Cone (SOC). Then,
each rotated SOC is approximated via a polyhedral set, and the power market
clearing finally gives rise to an LP. Bilevel programming is used also in [90] to
model a different problem: demand response in organized energy markets. Demand
response is a modification in the power consumption of a prosumer to better match
the demand for power with the supply. In the proposed bilevel model, the lower
level performs the economic dispatch of energy and generates the price (LMP)
while the upper level minimizes the total amount of demand response subject to a
net benefit requirement. In [122] the pessimistic variant of the same problem is
considered, where the retailer prepares for the least favorable optimal responses
from the consumers. It is indeed demonstrated that the set of optimal consumption
schedules typically contains various responses that are equal for the follower, but
bring radically different profits for the leader. The main contribution of the paper
is an exact procedure for solving the pessimistic variant of the problem taken into
account.

Network design problems defined on the OPF in DC can be readily formulated
as MILP problems [125, 12]. To the best of our knowledge, the first paper exhibiting
computational results for the ACOPF with binary variables used for design purposes
is [168], where binary variables are used to switch generators and shunts on and
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off: a local NLP solver is deployed on a well-known continuous NLP reformulation
of the corresponding nonconvex MINLP formulation. A perspective cut based
relaxation of an ACOPF formulation with binary variables for switching generators
on and off was proposed in [175]. Another possible approach for working with
ACOPF involving binary variables is to apply network design modeling techniques
involving binary variables to an LP or SOCP relaxation of the ACOPF. This was
done in [176], which proposed inner and outer mixed-integer Diagonally Dominant
Programming (DDP) formulations.

In the first part of this chapter we use bilevel programming to model the same
interaction tackled in [106], but we assume that prosumers are connected to an
AC power grid. We separate imaginary and real parts of the variables, in order
to avoid dealing with complex numbers in the formulation. We, then, relax the
lower level using SOCP. In the second part of the chapter, we move a step towards
solving a “network design ACOPF” by integrating binary variables that control
whether a line is active or not. Our objective is to decrease the number of active
lines, while still satisfying demand.

5.3 The bilevel formulation

In this section we model the interaction among a retailer and a set of prosumers
which are placed at the buses of an AC power network, in a given time horizon
rt1, tks, discretized as T “ tt1, t2, . . . , tku. The considered AC power grid is defined
by the set of buses N “ t1, . . . , nu, and the set of lines L. We assume |N | “ n
and |L| “ m.

The amount of charged and discharged power in the battery by the prosumer
i P N at period t P T is cti ě 0 and dti ě 0 respectively. During time period t,
a rooftop PV plant generates power vti that the prosumer i can either consume
directly or store in a battery. Since PV production mainly depends on solar
radiation, it cannot be controlled by the prosumer. Thus, vti is a given parameter.
We suppose that also the demand sti is known for each prosumer i, and for each
period t. Both the parameters vti and sti, as well as the variables cti and dti are
complex numbers because of the cyclic nature of alternating current, and because
of the inverters. The real part is the active power, while the imaginary part is
reactive.

Assume that there is a reference bus, indexed by r, which has fixed voltage
(with imaginary part set to zero) and flexible power injection for power balance.
We abbreviate pi, jq P L (i.e., pi, jq is a line of the grid) by iÑ j. If iÑ j or j Ñ i
we write i „ j; otherwise we write i  j.

For each period t P T and each bus i P N , let V t
i be its voltage, I ti its

current injection, and Sti its power injection. In particular, for each period t,
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V t
r “ <pV t

r q is the fixed voltage at the reference bus, and Str is the power that it
draws from the distribution network for power balance. For each line i „ j, let
yij “ <pyijq ´ i=pyijq denote its admittance.

All the sets, parameters, and variables used in our mathematical formulations,
some of which already introduced before, are listed below.

Sets – T “ tt1, t2, . . . , tku set of periods taken into account for the analysis

– N “ t1, . . . , nu set of buses of the grid

– L Ď tpi, jq : i, j P Nu set of lines of the grid

Parameters – pγ feed-in tariff that the government pays to the prosumer for each unit
of active power sold

– qγ feed-in tariff that the government pays to the prosumer for each unit
of reactive power sold

– sti complex demand of the prosumer i P N during time period t P T
(where str “ 0)

– vti complex power generated by the PV station at bus i P N during
time period t P T (where vtr “ 0)

– yij admittance of line pi, jq P L with mij “ <pyijq, and nij “ =pyijq
– V i, and V i bounds on the voltage magnitude at bus i P N

– V t
r “ <pV t

r q is the fixed voltage at the reference bus r at each period
t P T

– Bi capacity of the battery at bus i P N

– α P p0, 1s self-discharge rate of the battery, which is the same for each
bus w.l.o.g.

– β P p0, 1s efficiency of the battery charging/discharging process, which
is the same for each bus w.l.o.g.

– ci, and di the bounds on the absolute value of the amount of charged/discharged
power in/from the battery by prosumer i P N

Variables The upper-level variables, set by the retailer, and fixed for each period, are:

– price pp of active power,

– price qp of reactive power.

The lower-level variables are:

– the voltage V t
i at bus i P N at period t P T
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– xt` the amount of power that the network of the prosumers buys from
the retailer during period t P T

– xt´ the amount of power that the network of the prosumers sells, and
puts into the grid during time t P T

– cti the amount of charged power in the battery, by prosumer i P N at
period t P T

– dti the amount of discharged power from the battery, by prosumer i P N
at period t P T

– Bt
i the active power that is stored into the battery by prosumer i P N

at period t P T

The following equalities, derived by physical laws, hold at each period t P T :

• Current balance and Ohm’s law:

I ti “
ÿ

j:j„i

yijpV
t
i ´ V

t
j q, i P N

• Power balance:

Sti “ V t
i pI

t
i q
˚, i P N

• Power flow equation:

Sti “ ´ps
t
i ´ v

t
i ` c

t
i ´ d

t
iq, i P N

The three sets of equations can be combined into a single one for each i P N :

vti ` d
t
i ´ c

t
i ´ s

t
i “ V t

i

ÿ

j:j„i

rpV t
i q
˚
´ pV t

j q
˚
sy˚ij.

For the reference bus, the first side of the equation is Str “ vtr ` dtr ´ ctr ´ str “
0` dtr ´ c

t
r ` 0 “ dtr ´ c

t
r, and at the right side V t

r is fixed and given.

The bilevel formulation of the problem, involving p as upper-level and c, d, B, V, x`
and x´ as lower-level variables, is the following:

max
pp,qp

pp
ÿ

tPT

<pxt`q ` qp
ÿ

tPT

=pxt`q (5.1a)

s.t. pp, qp ě 0 and pc, d, B, V, x`, x´q solves (5.2) (5.1b)
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with the lower level (5.2)

max
c, d,B, V, x`, x´

ÿ

tPT

ppγ <pxt´q ` qγ =pxt´q ´ pp<pxt`q ´ qp=pxt`qq (5.2a)

s.t. @t P T : <pxt`q ´ <pxt´q “
ÿ

iPN

p<pstiq ´ <pvtiq ` <pctiq ´ <pdtiqq (5.2b)

@t P T : =pxt`q ´ =pxt´q “
ÿ

iPN

p=pstiq ´ =pvtiq ` =pctiq ´ =pdtiqq (5.2c)

@t P T : <pxt`q<pxt´q “ 0 (5.2d)

@t P T : =pxt`q=pxt´q “ 0 (5.2e)

@t P T : <pxt`q ě 0, <pxt´q ě 0 (5.2f)

@t P T : =pxt`q ě 0, =pxt´q ě 0 (5.2g)

@t P T zttnu ^ @i P N : Bt`1
i “ αBti ` β <pctiq ´

<pdtiq
β

(5.2h)

@t P T ^ @i P N : 0 ď Bti ď Bi (5.2i)

@t P T ^ @i P N : vti ` d
t
i ´ c

t
i ´ s

t
i “ V ti

ÿ

j:j„i

rpV ti q
˚ ´ pV tj q

˚sy˚ij (5.2j)

@t P T ^ @i P N : |cti|
2 ď c2i (5.2k)

@t P T ^ @i P N : |dti|
2 ď d

2

i (5.2l)

@t P T ^ @i P N : V 2
i ď |V

t
i |

2 ď V
2

i . (5.2m)

Constraints (5.2b) and (5.2c) define the amount of active and reactive power
that the network of prosumers buys from/sells to the retailer respectively. At
each period the prosumers either buy or sell active/reactive power, which is
stated by the bilinear constraints (5.2d)–(5.2e). The amount of bought or sold
active/reactive power must be nonnegative as ensured by (5.2f)–(5.2g). Constraints
(5.2h)–(5.2i) model the storage of the active power into the battery. In particular,
from (5.2h), the amount of active power that is in the battery at period t ` 1
is given by the amount of active power in the battery at period t minus the
amount of active power charged (<pctiq ě 0) or discharged (<pdtiq ě 0) at period t.
Finally, constraints (5.2j)–(5.2m) model the power flow in the AC network of
prosumers (the power balance equation (5.2j), for the reference bus r, becomes
´ctr ` d

t
r “ V t

r

ř

j:j„r

rpV t
r q
˚ ´ pV t

j q
˚sy˚rj, where V t

r is fixed and given for all t). Note

that |cti| in (5.2k), |dti| in (5.2l), and |V t
i | in (5.2m) are the moduli of the complex

numbers cti, d
t
i, and V t

i , respectively, and their square is a real number (see
Appendix A for details).

Since it is difficult to deal with complementarity constraints (5.2d)–(5.2e) in
the lower level, we make the assumption that the power is sold by the prosumers
at the same prices pp, and qp at which it is sold by the retailer. In this case the
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upper-level, as well as the lower-level objective function reads:

ÿ

tPT

ÿ

iPN

`

pp
`

<pstiq ´ <pdtiq ` <pctiq ´ <pdtiq
˘

` qp
`

=pstiq ´ =pvtiq ` =pctiq ´ =pdtiq
˘˘

. (5.3)

It is optimized w.r.t. pp, qp P R` in the upper level, and w.r.t. c, d, B, V in the
lower level.

5.3.1 Convex relaxation of the lower level

The challenge in solving a problem involving constraints (5.2j)–(5.2m) mainly
comes from the nonconvex quadratic equality constraints (5.2j). To overcome this
challenge and obtain in the end a convex relaxation, as done in [100], first define

W t
ij :“ V t

i pV
t
j q
˚, i „ j or i “ j,

and

W t
ti, ju :“

ˆ

W t
ii W t

ij

W t
ji W t

jj

˙

.

W tti, ju is an Hermitian matrix, i.e., W t
ij “ pW

t
jiq
˚. Accordingly, since W tti, ju is a

PSD rank-one matrix, the power flow constraints (5.2j)–(5.2m) can be equivalently
formulated as:

@t P T ^ @i P N : vti ` d
t
i ´ c

t
i ´ s

t
i “

ÿ

j:j„i

`

W t
ii ´W

t
ij

˘

y˚ij, (5.4a)

@t P T ^ @i P N : |cti|
2
ď c2

i , (5.4b)

@t P T ^ @i P N : |dti|
2
ď d

2

i , (5.4c)

@t P T ^ @i P N : V 2
i ď W t

ii ď V
2

i , (5.4d)

@t P T ^ @iÑ j : W t
ti, ju ľ 0, (5.4e)

@t P T ^ @iÑ j : rankpW t
ti, juq “ 1. (5.4f)

Let us recall that, as well as V t
r , W t

rr is constant and given. At this point we
can relax the set defined by Eqs. (5.4a)–(5.4f) to a convex one, by relaxing the
rank constraints in (5.4f).

Therefore, the lower-level feasible set that we consider in the following is defined
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by the following constraints:

@t P T zttnu ^ @i P N : Bt`1
i “ αBt

i ` β <pctiq ´
<pdtiq
β

(5.5a)

@t P T ^ @i P N : 0 ď Bt
i ď Bi (5.5b)

@t P T ^ @i P N : vti ` d
t
i ´ c

t
i ´ s

t
i “

ÿ

j:j„i

`

W t
ii ´W

t
ij

˘

y˚ij, (5.5c)

@t P T ^ @i P N : |cti|
2
ď c2

i , (5.5d)

@t P T ^ @i P N : |dti|
2
ď d

2

i , (5.5e)

@t P T ^ @i P N : V 2
i ď W t

ii ď V
2

i , (5.5f)

@t P T ^ @iÑ j : W t
ti, ju ľ 0. (5.5g)

As recalled in [126], using the Sylvester criterion, (5.4e) (i.e., (5.5g)) is equiv-
alent to W t

ijW
t
ji ď W t

iiW
t
jj, and W t

ii,W
t
jj ě 0, where the first inequality can be

written as

<pW t
ijq

2
` =pW t

ijq
2
`

ˆ

W t
ii ´W

t
jj

2

˙2

ď

ˆ

W t
ii `W

t
jj

2

˙2

,

which is a SOCP constraint.

5.3.2 Bilevel formulation with a convex lower-level prob-
lem

To avoid dealing with a model over complex numbers, we reformulate con-
straints (5.5c)

vti ` d
t
i ´ c

t
i ´ s

t
i “

ÿ

j:j„i

`

W t
ii ´W

t
ij

˘

y˚ij

by separating real and imaginary parts.
While W t

ii “ V t
i pV

t
i q
˚ “ <pV t

i q
2`=pV t

i q
2 is a real number, W t

ij “ V t
i pV

t
j q
˚ with

i ‰ j has a real <pW t
ijq and an imaginary part =pW t

ijq. Define

• atij “ <pW t
ijq “ <pV t

i q<pV t
j q ` =pV t

i q=pV t
j q,

• qtij “ =pW t
ijq “ ´<pV t

i q=pV t
j q ` <pV t

j q=pV t
i q.

We note that W t
ii “ atii for all i and t, and, in particular, W t

rr “ atrr “ <pV t
r q

2,
with <pV t

r q fixed.
The left-hand side of constraint (5.5c) is

vti ` d
t
i ´ c

t
i ´ s

t
i “

“

<pvtiq ` <pdtiq ´ <pctiq ´ <pstiq
‰

` i
“

=pvtiq ` =pdtiq ´ =pctiq ´ =pstiq
‰

.
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Its right-hand side is
ÿ

j:j„i

`

atii ´ a
t
ij ´ iqtij

˘

pmij ´ inijq “
ÿ

j:j„i

“`

atiimij ´ a
t
ijmij ´ q

t
ijnij

˘

` i
`

´atiinij ` a
t
ijnij ´ q

t
ijmij

˘‰

We can then rewrite constraint (5.5c) in the following way:
“

<pvtiq ` <pdtiq ´ <pctiq ´ <pstiq
‰

` i
“

=pvtiq ` =pdtiq ´ =pctiq ´ =pstiq
‰

“
ÿ

j:j„i

“`

atiimij ´ a
t
ijmij ´ q

t
ijnij

˘

` i
`

´atiinij ` a
t
ijnij ´ q

t
ijmij

˘‰

. (5.6)

Since two complex numbers are equal if and only if their real and imaginary
parts are equal respectively, Eq. (5.6) can be split into two equalities:

<pvtiq ` <pdtiq ´ <pctiq ´ <pstiq “
ÿ

j:j„i

`

atiimij ´ a
t
ijmij ´ q

t
ijnij

˘

,

and
=pvtiq ` =pdtiq ´ =pctiq ´ =pstiq “

ÿ

j:j„i

`

´atiinij ` a
t
ijnij ´ q

t
ijmij

˘

.

The final bilevel formulation we obtain is

max
pp,qp

ÿ

tPT

ÿ

iPN

`

pp
`

<pvtiq ` <pdtiq ´ <pctiq ´ <pstiq
˘

` qp
`

=pvtiq ` =pdtiq ´ =pctiq ´ =pstiq
˘˘

(5.7a)

s.t. pp, qp ě 0 and pc, d,B, a, qq solves (5.8) (5.7b)

with the lower level

min
c,d,B,a,q

ÿ

tPT

ÿ

iPN

`

pp
`

<pvtiq ` <pdtiq ´ <pctiq ´ <pstiq
˘

` qp
`

=pvtiq ` =pdtiq ´ =pctiq ´ =pstiq
˘˘

(5.8a)

s.t. @t P T zttnu ^ @i P N : Bt`1
i “ αBti ` β <pctiq ´

<pdtiq
β

(5.8b)

@t P T ^ @i P N : 0 ď Bti ď Bi (5.8c)

@t P T ^ @i P N : <pvtiq ` <pdtiq ´ <pctiq ´ <pstiq “
ÿ

j:j„i

`

atiimij ´ a
t
ijmij ´ q

t
ijnij

˘

(5.8d)

@t P T ^ @i P N : =pvtiq ` =pdtiq ´ =pctiq ´ =pstiq “
ÿ

j:j„i

`

´atiinij ` a
t
ijnij ´ q

t
ijmij

˘

(5.8e)

@t P T ^ @i P N : V 2
i ď atii ď V

2

i (5.8f)

@t P T ^ @i P N : <pctiq2 ` =pctiq2 ď c2i , (5.8g)

@t P T ^ @i P N : <pdtiq2 ` =pdtiq2 ď d
2

i , (5.8h)

@t P T ^ @iÑ j : patijq
2 ` pqtijq

2 `

ˆ

atii ´ a
t
jj

2

˙2

ď

ˆ

atii ` a
t
jj

2

˙2

(5.8i)
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The above presented formulation has a linear upper-level problem in the variable
pp, qp and a lower-level problem in the variables c, d, B, a, and q. In particular, all
the constraints are linear, but the last one (5.8i) which is a SOCP constraint, and
(5.8g)–(5.8h) which are convex quadratic, and therefore special cases of SOCP
constraints. We refer the readers to Appendix B for two single-level reformulations
of the bilevel problem with convex lower level (5.7)–(5.8): one is the strong duality
reformulation and the other the KKT reformulation (see Section 1.2 of Chapter 1).

5.4 The network design ACOPF

In this section, we consider the power network design problem, explaining in more
detail the characteristics of the network (using different notation as well). We
include in our formulation parallel arcs, which occur whenever parallel cables are
deployed on connections that must transport excessive amounts of power for a
single cable. The h-th line `ijh joining two buses i and j is represented by a pair of
anti-parallel arcs `ijh “ tpi, j, hq, pj, i, hqu. We assume that L is partitioned in two
sets L0, L1 with |L0| “ |L1|: for each pair of antiparallel arcs, one is in L0 and the
other in L1, according to the asymmetry of the branch admittance matrix Yijh

matrix described below.
Ohm’s law expresses the current Iijh injected on a line `ijh in function of the

voltages Vi, Vj at the endpoints i and j, and of the physical properties of the line.
The fundamental difference with Ohm’s law in DC is that AC yields an asymmetry.
While in DC we have Iijh “ ´Ijih, in AC we instead have:

@pi, j, hq P L0 Iijh “ Y ff
ijhVi ` Y

ft
ijhVj ^ Ijih “ Y tf

ijhVi ` Y
tt
ijhVj. (5.9)

The Y constants in the above equations are defined as follows [42, 43]:

Yijh “

ˆ

Y ff
ijh Y ft

ijh

Y tf
ijh Y tt

ijh

˙

“

¨

˝

p 1
rijh`ixijh

` i
bijh

2
q{τ 2

ijh ´ 1

prijh`ixijhqτijhe
´iνijh

´ 1

prijh`ixijhqτijhe
iνijh

1
rijh`ixijh

` i
bijh

2

˛

‚,

(5.10)
where r, x, b, τ, ν measure some physical properties of the line, and are given as
part of the instance. The suffixes ff, ft, tf, tt to Y stand for “from-from”, “from-to”,
“to-from”, and “to-to”: they are a reminder of the direction of the routed quantities
w.r.t. the line `ijh.

We can now introduce sets, parameters, and decision variables of the ACOPF
considered in this section of the chapter. We also recall elements already introduced
in Section 5.3, for sake of completeness.

Sets N , L, and a set G of generators partitioned as tGi | i P Nu, where Gi contains
the generators attached to bus b.
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Parameters power demand (or load) S̃i, shunt admittance Ai; voltage magnitude bounds
V i, V i at each bus i P N ; admittance matrix Yijh; upper bound Sijh to
injected power magnitude; lower/upper bounds η

ijh
, ηijh to phase difference

at each line pi, j, hq P L; cost coefficients Cg2, Cg1, Cg0; lower/upper bounds
S g,S g to power generated at g P G ; a reference bus r P N .

Variables voltage Vi at bus i P N , injected current Iijh, injected power Sijh at each
line pi, j, hq P L, and generated power Sg at each generator g P G .

All variables range in C. Among the parameters, the power magnitude, voltage
magnitude, phase difference bounds, cost coefficients are in R; r ranges in the bus
set; the generated power bounds are in C.

We present now objective function and constraints of what we call here the
pS, I, V q-formulation of the ACOPF.

Objective function min
ř

gPG

pCg2p<pSgqq
2 ` Cg1<pSgq ` Cg0q, which is quadratic and separable

in generated power.

Constraints Bounds constraints are: on voltage magnitude V 2
i ď |Vi|

2 ď V
2

i for each

i P N ; on power magnitude |Sijh|
2 ď S

2

ijh for each pi, j, hq P L; on phase
difference tanpη

ijh
q<pVi Vj˚q ď =pVi Vj˚q ď tanpηijhq<pVi Vj˚q together with

<pVi Vj˚q ě 0 for pi, j, hq P L0; on generated power S g ď Sg ď S g for each
g P G . Moreover, we have =pVrq “ 0 and <pVrq ě 0 on the reference bus.

Functional constraints, with the new parameters and variables, are:

– Power flow equations:

@i P N
ÿ

pi,j,hqPL

Sijh ` S̃i “ ´Ai
˚
|Vi|

2
`

ÿ

gPGi

Sg. (5.11)

– The relationship between S, V, I (power balance):

@pi, j, hq P L Sijh “ Vi Iijh
˚. (5.12)

– Ohm’s law Eq. (5.9), which we write equivalently as:

@pi, j, hq P L0 Iijh “ Y ff
ijhVi ` Y

ft
ijhVj (5.13)

@pi, j, hq P L1 Iijh “ Y tf
jihVj ` Y

tt
jihVi. (5.14)

We now introduce a binary variable yijh for each pi, j, hq in L. We have
yijh “ 1 iff the corresponding line is active, and we must ensure that both
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antiparallel arcs are active/inactive at the same time by yijh “ yjih. We control
activation/deactivation of a line by limiting the injected power magnitude bound:

@pi, j, hq P L |Sijh|
2
ď S

2

ijhyijh. (5.15)

In order to ensure that Eq. (5.15) does not impose constraints on Vi and Vj when
the line pi, j, hq is not active, we introduce a new complex variable zijh in Eq. (5.12),
such that:

@pi, j, hq P L Sijh “ Vi Iijh
˚
` zijh, (5.16)

and
@pi, j, hq P L |zijh|

2
ďM2

ijhp1´ yijhq, (5.17)

where Mijh is a large enough constant. Note that Eqs. (5.15)–(5.17) do not cut
the global optima of the ACOPF: it suffices to set yijh “ 1 for each pi, j, hq P L
to see this. Instead, we add an objective function min

ř

pi,j,hqPL0

yijh. We can tackle

this bi-objective MINLP problem by scalarization approaches. We could add a
constraint

ř

pi,j,hqPL0

yijh ď ξ and letting ξ vary in t1, . . . ,m{2u. Here we consider

another scalarization approach, so that the objective function becomes:

min
ÿ

gPG

pCg2p<pSgqq
2
` Cg1<pSgq ` Cg0q ` ρ

ÿ

pi,j,hqPL0

yijh, (5.18)

where ρ ą 0 is a scalar weight which we set to 1 for testing purposes. We denote
the network design ACOPF problem with binary variables on lines by ACOPFL.

5.4.1 ACOPF relaxations

The material in this section is motivated by the solution difficulty posed by the
nonconvex MINLP formulation of the ACOPFL. First of all, we propose some
valid relaxation for network design ACOPF problem.

The decision variables I for current can be eliminated from the pS, I, V q-
formulation by replacing them in Eq. (5.12) with their expressions in Eqs. (5.13)-
(5.14), as done in Section 5.3. This yields the pS, V q-formulation, which is still a
nonconvex NLP. In turn, using Eqs. (5.15)-(5.18), this NLP yields a nonconvex
MINLP formulation for the ACOPFL.

pS, V,W q-relaxation

Following the same approach used in Section 5.3.1, we can linearize the only
nonlinear terms appearing in the nonconvex constraints of the ACOPF pS, V q-
formulation, i.e., the products Vi Vj

˚ for some i, j P N . Every such product term
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can be linearized, i.e., replaced by a new (complex) variable Wij for i, j P N (we do
not include the corresponding defining constraint Wij “ WiWj

˚). Let us call this
the pS, V,W q-relaxation. This turns out to be a SOCP. The quadratic terms are:
S 2
g in the minimizing objective and |Sijh|

2 in the LHS of the power magnitude
bound constraints.

pS, V,W q-SDP

Note that, as stated in Section 5.3.1 the pS, V,W q-relaxation is an exact reformu-
lation if we enforce W “ V V H, where the apex stands for “Hermitian transpose”,
i.e., the transpose of the componentwise complex conjugate. Accordingly, since
W is a PSD rank-one matrix, we get a stronger relaxation w.r.t. the pS, V,W q-
relaxation presented in Sec. 5.4.1, if we replace W “ V V H by W ľ 0, which yields
a complex SDP relaxation called pS, V,W q-SDP.

pS, V,W q-1
2
DDP

Given the scarcity of off-the-shelf mixed-integer SDP solvers, we consider a DDP
approximation of the PSD cone [13]: since every Diagonally Dominant (DD) matrix
is also PSD [102], the constraint “W is DD” yields an inner approximation (i.e., a
restriction) of the complex SDP.

Writing the DDP constraints corresponding to W ľ 0 requires splitting W

into real and imaginary parts, which yields W “

ˆ

W rr W rc

W cr W cc

˙

P R2nˆ2n, where

W rr “ p<pWijqq, W
cc “ p=pWijqq, W

rc linearizes the matrix p<pViq=pVjqq, and
W cr linearizes the matrix p=pViq<pVjqq. We remark that W rr,W cc are symmetric
matrices, while W rc,W cr are not; on the other hand, W rc

ij “ W cr
ji for each i, j P N .

Now the DDP inner approximation of W ľ 0 states that any diagonal com-
ponent of W is greater than or equal to the sum of the absolute values of the
components in the same row. This corresponds to:

@i P N W rr
ii ě

ÿ

aPN
a“b

T rr
ij `

ÿ

aPN

T rc
ij (5.19)

@i P N W cc
ii ě

ÿ

aPN
a“b

T cc
ij `

ÿ

aPN

T cr
ij , (5.20)

where T “

ˆ

T rr T rc

T cr T cc

˙

is a real variable matrix such that ´T ď W ď T [13].

The issue with inner DDP approximations is that they may be infeasible even if
the corresponding SDP is feasible. Experimentally, this was verified to be the case
in every ACOPF instance we tested. This issue can be addressed algorithmically
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[13], but this would require solving a sequence of DDPs, which would in turn take
excessive time. Instead, we chose to only impose Eq. (5.19), which yielded feasible
“half-DDP” relaxations (which we refer to as pS, V,W q-1

2
DDP relaxation) of the

tested ACOPF instances. Note that we do not have a general feasibility proof for
1
2
DDP relaxations. So far, we have not found any counterexamples yet, either.

Jabr relaxation

Another SOCP relaxation of the ACOPF, called “Jabr relaxation”, was proposed
in [115]. It can be constructed from the pS, V q-formulation as follows:

1. transform cartesian coordinates <pV q,=pV q to polar coordinates v, θ by
replacing <pV q “ v cos θ and =pV q “ v sin θ: this will result with nonlinear
terms in vivj cospθi ´ θjq and vivj sinpθi ´ θjq;

2. define an index set R “ tpi, iq | i P Nu Y tpi, jq | pi, j, 1q P Lu;

3. linearize (replace) the nonlinear terms with new variables cij “ vivj cospθi´θjq
and sij “ vivj sinpθi´θjq for all pi, jq P R: this also yields cij “ cji, sij “ ´sji,
c2
ij ` s

2
ij “ v2

i v
2
j (‹) for all pi, j, 1q P L0, as well as sii “ 0 and cii “ v2

i (:) for
each i P N ;

4. replace v2
i , v

2
j in (‹) with cii, cjj by means of (:), and relax (‹) to a convex

(conic) constraint c2
ij ` s

2
ij ď ciicjj;

5. replace |Vi|
2 in the voltage magnitude bounds with cii;

6. remark that Vi Vj
˚ “ cij ` isij, and infer the phase difference bounds as

cij ě 0 and tanpη
ijh
qcij ď sij ď tanpηijhqcij for each pi, j, hq P L0;

7. the injected power variables Sijh satisfy the linear equations:

@pi, j, hq P L0 <pSijhq “ <pY ff
ijhqcii ` <pY ft

ijhqcij ` =pY ft
ijhqsij

@pi, j, hq P L0 =pSijhq “ ´=pY ff
ijhqcii ` <pY ft

ijhqsij ´ =pY ft
ijhqcij

@pi, j, hq P L1 <pSijhq “ <pY tt
jihqcii ` <pY tf

jihqcij ` =pY tf
jihqsij

@pi, j, hq P L1 =pSijhq “ ´=pY tt
jihqcii ` <pY tf

jihqsij ´ =pY tf
jihqcij.

5.4.2 ACOPFLrelaxations

We derive ACOPFLrelaxations from the pS, V,W q-relaxation, the pS, V,W q-1
2
DDP

and Jabr relaxations of the ACOPF, by employing the binary variables y as in
Section 5.4, i.e., by imposing Eqs. (5.15)-(5.17) and minimizing Eq. (5.18). A few
preliminary results showed that the active lines do not form a connected set at
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the optimum. In order to enforce connectivity, we therefore also added a set of
multicommodity flow constraints on added variables f ijdeh, defined for each distinct
pair i, j P N and line pd, e, hq P L:

@i ă j P N
ÿ

pi,d,hqPL

f ijidh ´
ÿ

pd,i,hqPL

f ijdih “ 1

@i ă j P N
ÿ

pd,j,hqPL

f ijdjh ´
ÿ

pj,d,hqPL

f ijjdh “ 1

@i ă j P N, d P N r ti, ju
ÿ

pe,d,hqPL

f ijedh ´
ÿ

pd,e,hqPL

f ijdeh “ 0,

as well as the linking constraints: @i ă j P N, pd, e, hq P L f ijdeh ď ydeh.

In Table 5.1, we refer to the ACOPFLrelaxations from pS, V,W q-1
2
DDP, and

Jabr as “ddp”, and “Jabr” respectively.

5.4.3 Computational experiments

The standard reference testbed for computational assessments in ACOPF is the
PGLib library [24], which also includes “case files” from MatPower [212]. We
compare performances of the two convex MINLP relaxations of the ACOPFL(ddp
and Jabr) on the small case instances casei for i P t5, 9, 14, 18, 22, 24, 30u. Our
implementation is carried out in AMPL [95]. We solve both formulations, which
are of the Mixed-Integer SOCP sort, with CPLEX 12.9 [113], which is given 300s
as maximum CPU time. Only instance “case5” is solved using Baron, because
AMPL failed to successfully pass it to CPLEX.

The results in Table 5.1 are obtained on a 2.53GHz Intel(R) Xeon(R) CPU
with 49.4 GB RAM. They show that 300s are only sufficient to obtain meaningful
results for small instances.

name lines known opt1 opt2 act1 act2 stat1 stat2 cpu1 cpu2
case5 6 17551.89 0.00 15169.08 4 4 solved limit 2.03 300
case9 9 5296.67 2244.81 5296.67 9 9 solved solved 3.58 3.98
case14 20 8081.52 0.00 1786.93 13 14 limit limit 300 300
case18 17 11.85 -0.00 11.85 17 17 solved solved 0.36 0.49
case22 21 0.068 0.00 0.068 21 21 solved solved 0.56 6.01
case24 38 63352.20 47320.2 63345.20 38 38 limit limit 300 300
case30 41 576.89 0.00 568.86 29 30 limit limit 300 300

Table 5.1: Numerical results limited to 300s using a single CPU processor. We report instance
name, number of lines, known optimal value; then, for each relaxation type p1, 2q “(ddp,Jabr),
we report obtained optimal value, number of active lines, solver status, CPU time. Best results
are in boldface.
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An encouraging feature of the results in Table 5.1 is that the slacker ddp

relaxation takes less time to solve than Jabr, provides a worst bound, but still
identifies a valid connectivity for active lines for all the tested instances. In Fig. 5.1,
e.g., we report two solutions found by solving the ddp relaxation, which appear
to be the same found by Jabr relaxation, as well as the two different solutions
obtained by solving the same instance “case30” with ddp, and Jabr.

case9 (ddp & Jabr) case24 (ddp & Jabr) case30 (ddp) case30 (Jabr)

Figure 5.1: The solutions of three instances from results in Table 5.1. Buses in circles, generators
in parallelograms (buses with generators are colored, reference bus is colored differently); active
lines are thick and colored.

In Table 5.2 we report results from the pS, V,W q-relaxation of ACOPFLon
slightly larger instances, solved using CPLEX limited to 7200s. When solutions
are found atypically quickly (e.g., case69, case85), it is because the networks
have no cycles. The solution found for case 30 is shown in Figure 5.2.

name lines known opt act stat cpu
case24 38 63352.20 47320.20 38 limit 7200
case30 41 576.89 0.00 29 limit 7200
ieee30 41 9974.99 0.00 29 limit 7200
case39 46 41864.17 27417.26 46 limit 7200
case69 68 0.39 0.00 68 solved 9.74
case85 84 0.00 0.00 84 solved 21.50

Table 5.2: Computational results on the pS, V,W q-relaxation limited to 7200s.
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Figure 5.2: Nontrivial solution for case30.

5.5 Conclusion

Firstly, in this chapter we used bilevel programming to model the interplay among
a retailer and a set of prosumers, i.e., consumers who can produce (thanks to
rooftop PV panels), store (in a battery), or buy (from the retailer or the other
prosumers) power. Such prosumers are connected to an alternating current power
network. The retailer is assumed to operate in the upper level and the set of
prosumers in the lower level. Since the ACOPF constraints considered at the lower
level are nonconvex, we proposed a relaxation of the bilevel problem obtained by
relaxing the lower-level problem using SOCP.

Secondly, we focused on the network design ACOPF problem, i.e., the AC
power network design with respect to line activity. For such single-level problem we
proposed several convex relaxations, which are compared using some benchmarking
instances.





Conclusion

A bilevel programming problem is defined as an optimization program containing
another optimization program in the constraints. Their particular structure
allows the formulation of a huge number of real-world problems that involve
hierarchical decision making processes, i.e., processes where the outcome of any
choice made by an upper-level authority (leader) is influenced by the reaction of
lower-level subjects (followers). Despite the fact that most real-world choices may
be argued to be bilevel in the sense that they influence systems with autonomous
and competing agents, until a few decades ago, still few studies had used this
promising modelization tool to formulate practical problems. The reason may
be found in the inherent complexity of bilevel problems, which turn out to be
particularly difficult to handle mathematically. Even their simplest version, with
only linear functions and continuous variables, is proved to be strongly NP-hard,
and merely evaluating a solution for optimality is a NP-hard task. More recently,
a growing number mathematical programming community members has shown
interest in bilevel optimization, proposing direct solution procedures, which may
be a valid alternative to the usual approach of transforming bilevel problems into
simpler single-level optimization programs, which are solved eventually giving up
on finding an optimal solution. This dissertation may be seen as a step forward in
this direction.

We started with two introductory chapters. Central definitions, the differences
between optimistic and pessimistic bilevel formulations, and an overview on
reformulation approaches and algorithms that have been proposed for bilevel
optimization have been presented in Chapter 1. We moved on to discuss the
computational complexity of bilevel programming problems in Chapter 2. We
focused on (mixed-integer) linear bilevel problems, and on special cases which
are surprisingly polynomially solvable. In Chapter 3, we presented the results
contained in the submitted paper [7]. A particular class of bilevel problem with
quadratic lower level has been studied, which can be obtained reformulating linear
SIP problems with an infinite number of quadratically parameterized constraints.
We proposed two approaches to solve such bilevel problems. Firstly, a convex
single-level formulation with a finite number of constraints has been obtained by
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dualizing the lower level, using SDP optimization. Solving it using state-of-the-art
global solvers provides a feasible solution, which is optimal if the quadratic lower-
level problem is convex. Secondly, a cutting plane algorithm has been proposed
to solve directly the bilevel formulation. Such algorithm has been proved to be
convergent, and a new rate of convergence has been given when the upper-level
objective function is strongly convex, under a strict feasibility assumption. This
convergence rate is directly related to the iteration index, which is something
new with respect to what is usually proved in SIP literature. Our computational
experiments on small and medium-scale instances of two interesting applications
demonstrated that the single-level formulation approach outperforms, in terms
of solution time, the cutting plane algorithm for instances with a convex lower
level. As for the cases with a nonconvex lower level, the two techniques are
complementary: the dual approach was faster, but only gives a feasible solution,
whereas the cutting plane approach was slower, but solved the bilevel problem to
optimality.

The second part of the dissertation was dedicated to two applications. In
Chapter 4 we studied the aircraft conflict resolution problem via two strategies.
This problem essentially consists in enforcing a minimum distance between flying
aircraft, which naturally results in a SIP model. When considering the speed
regulation strategy, we reformulated such SIP formulation using first, polynomial
programming, and second, bilevel programming. Then, we considered the heading
angle change strategy for aircraft flying at the same altitude level, directly for-
mulating the conflict resolution problem in two dimensions as a bilevel program.
Both bilevel formulations, which fit in the setting of the formulation studied in
Chapter 3, have been reformulated into single-level problems using KKT conditions
and strong duality of the convex lower level. Moreover, a tailored cutting plane
algorithm has been proposed, which outperforms in terms of efficiency the other
approaches presented. The second practical application studied in Chapter 5 is
the ACOPF problem. When considering the interplay among a retailer and several
prosumers (consumers who can also produce, store and sell power) operating in
an ACOPF network, we obtain a bilevel programming formulation. Since the
ACOPF constraints are nonconvex, we proposed a relaxation of the lower level,
using SOCP. When dealing with the AC network design problem, the ACOPF
formulation must include some binary variables, becoming a nonconvex MINLP
problem in complex numbers, which we relaxed in different ways. The proposed
relaxation have been tested and the results turned out to be comparable with the
ones obtained using other well-known relaxations.

Overall, we have made contributions in bilevel optimization worthy of attention.
We proposed two approaches to solve particular bilevel problems with a possibly
nonconvex lower level. We studied two challenging applications: the conflict
resolution problem and the ACOPF. Nonetheless, there remain important open
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questions and challenges. A possible extension of the content of Chapter 3 could
be implementing a cutting plane algorithm with the lower-level problem solved
with an “on-demand” accuracy at each iteration. Regarding the dual approach,
the sparse structure of the lower-level problem would be worth exploiting with the
celebrated cliques decomposition technique. A direct extention of both proposed
approaches would be an algorithm combining them, which may solve at each
iteration a relaxation of the restriction obtained via the dual approach. Bigger
instances should be tested, in particular for the first considered application, which
may be relevant also in a machine learning context. As far as it concerns the
aircraft conflict resolution problem discussed in Chapter 4, some limitations related
to the simplification assumptions (such as rectilinear trajectories, uniform motion,
maneuvers performed at the beginning of the considered time horizon) still remain
to be addressed. Some more recent emerging applications could benefit from
advances in aircraft conflict resolution optimization, such as autonomous vehicles
on the ground (see, e.g., [134]), or new vehicles in urban air mobility (see, e.g.,
[156]). In this context, the performances of the proposed methods should be
evaluated with less strict bounds on admissible speed modifications w.r.t. the ones
proposed within ERASMUS project [66]. For the bilevel formulation with ACOPF
at the lower level presented in Chapter 5, we should test at least medium-scale
instances to prove its applicability to real situations. In order to represent more
realistic scenarios, we could assume feed-in tariffs different from the prices, other
renewable energy sources besides the solar panels could be considered, as well
as the uncertainty related to such uncontrollable energy sources. As regards the
network design ACOPF, the proposed reformulations could be tested on larger
instances. Finally, we can also look at the bigger picture. In this thesis, we mostly
discussed problems involving only continuous variables. Considering mixed-integer
bilevel problem is definitely challenging and is a very relevant future research
direction.

We conclude that, although there is still a lot to be learned in bilevel optimiza-
tion, the theoretical results and solution approaches presented in this dissertation
can be helpful in future studies in their relative fields.
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[184] P. Tabaghi, I. Dokmanić, and M. Vetterli. Kinetic Euclidean distance
matrices. IEEE Transactions on Signal Processing, 68:452–465, 2020. doi:
10.1109/TSP.2019.2959260.

[185] S. Tahernejad, T. K. Ralphs, and S. T. DeNegre. A branch-and-cut algorithm
for mixed integer bilevel linear optimization problems and its implementation.
Mathematical Programming Com putation, 12(4):529–568, 2020. doi:10.

1007/s12532-020-00183-6.

[186] A. Takeda and M. Kojima. Successive convex relaxation approach to bilevel
quadratic optimization problems. In M. C. Ferris et al., editors, Complemen-
tarity: Applications, Algorithms and Extensions, pages 317–340. Springer-
Boston, 2000. doi:10.1007/978-1-4757-3279-5_15.

[187] Y. Tanaka, M. Fukushima, and T. Ibaraki. A globally convergent SQP
method for semi-infinite nonlinear optimization. Journal of Computa-
tional and Applied Mathematics, 23(2):141–153, 1988. doi:10.1016/

0377-0427(88)90276-2.

[188] A. Toffler. The third wave. Morrow, 1980.

[189] H. Tuy. Convex Analysis and Global Optimization, volume 22. Springer
Boston, MA, 2 edition, 1998. doi:10.1007/978-3-319-31484-6.

[190] H. Tuy, A. Migdalas, and P. Värbrand. A global optimization approach
for the linear two-level program. Journal of Global Optimization, 3(1):1–23,
1993. doi:10.1007/BF01100237.

[191] G. Van Rossum and F. L. Drake, Jr. Python tutorial. Centrum voor
Wiskunde en Informatica Amsterdam, The Netherlands, 1995. URL: https:
//books.google.it/books?id=hHMVPwAACAAJ.

[192] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review,
38(1):49–95, 1996. doi:10.1137/1038003.

[193] A. Vela, S. Solak, W. Singhose, and J. Clarke. A mixed integer program
for flight-level assignment and speed control for conflict resolution. In
Proceedings of the 48h IEEE Conference on Decision and Control (CDC)
held jointly with 2009 28th Chinese Control Conference, pages 5219–5226,
2009. doi:10.1109/CDC.2009.5400520.

http://dx.doi.org/10.1109/TPAS.1984.318284
http://dx.doi.org/10.1109/TSP.2019.2959260
http://dx.doi.org/10.1109/TSP.2019.2959260
http://dx.doi.org/10.1007/s12532-020-00183-6
http://dx.doi.org/10.1007/s12532-020-00183-6
http://dx.doi.org/10.1007/978-1-4757-3279-5_15
http://dx.doi.org/10.1016/0377-0427(88)90276-2
http://dx.doi.org/10.1016/0377-0427(88)90276-2
http://dx.doi.org/10.1007/978-3-319-31484-6
http://dx.doi.org/10.1007/BF01100237
https://books.google.it/books?id=hHMVPwAACAAJ
https://books.google.it/books?id=hHMVPwAACAAJ
http://dx.doi.org/10.1137/1038003
http://dx.doi.org/10.1109/CDC.2009.5400520


BIBLIOGRAPHY 145

[194] L. Vicente, G. Savard, and J. Júdice. Descent approaches for quadratic
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Appendix A

Recall on complex numbers

A complex number x is a number which can be expressed (using the Cartesian
coordinates) in the form

x “ <pxq ` i=pxq,

where <pxq and =pxq are real numbers defined as the real and imaginary parts of
x respectively, and i is the imaginary unit, i.e., the square root of ´1. Its modulus
or absolute value |x| is defined as

|x| “

b

r<pxqs2 ` r=pxqs2

The complex conjugate of the complex number x is denoted by x˚, and is given by

<pxq ´ i=pxq.

An alternative option for Cartesian representation of x is the polar representation,
which is

x “ αeiθ “ α cos θ ` iα sin θ,

where α is the magnitude, and θ is known as the angle or phase of the complex
number. The relationship among Cartesian and polar coordinates is the following:

<pxq “ α cos θ α “
b

r<pxqs2 ` r=pxqs2

=pxq “ α sin θ θ “ arccosp<x
α
q “ arcsinp=x

α
q





Appendix B

Reformulating the bilevel
problem with ACOPF as lower
level

In this appendix, we propose two reformulations of the bilevel problem (5.7)–(5.8),
based on strong duality and KKT conditions of the lower level (5.8) respectively.
First of all, let us rewrite the lower level problem (5.8) in a different form:

• each linear equality constraint as cJx “ br;

• each linear inequality constraint as aJx ě b1;

• the SOCP last constraint (5.8i) as A3x´ b3 ěL4 0, where L4 is the so called
4-dimensional Lorentz or second-order cone, and, given any x P R4, x ěL4 0
is equivalent to x2

1 ` x
2
2 ` x

2
3 ď x2

4;

• the quadratic inequality contraints (5.8g)–(5.8h) as SOCP constraints in
the form A2x ´ b2 ěL3 0, by introducing two additional linear constraints
involving the slack variables zc and zd P R|N ||T |. Indeed each constraint
(5.8g) is equivalent to p<pctiqq2 ` p=pctiqq2 ď pztiq

2 ^ zti “ ci, and each
constraint (5.8h) to p<pdtiqq2 ` p=pdtiqq2 ď putiq2 ^ uti “ di.

In our case we have, for constraint (5.8i):

A3 :“

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 1

2
´1
2

0 0 1
2

1
2

˛

‹

‹

‚

, b3 :“

¨

˚

˚

˝

0
0
0
0

˛

‹

‹

‚

and x :“

¨

˚

˚

˝

atij
qtij
atii
atjj

˛

‹

‹

‚

,
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while for constraints (5.8g), and (5.8h):

A2 :“

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚, b2 :“

¨

˝

0
0
0

˛

‚,

and x :“

¨

˝

<pctiq
=pctiq
zti

˛

‚, or x :“

¨

˝

<pdtiq
=pdtiq
uti

˛

‚, respectively.

The lower-level problem in this form thus reads:

min
c,d,B,a,q

ÿ

tPT

ÿ

iPN

`

pp
`

<pvtiq ` <pdtiq ´ <pctiq ´ <pstiq
˘

` qp
`

=pvtiq ` =pdtiq ´ =pctiq ´ =pstiq
˘˘

(B.1a)

s.t. @t P T zttnu ^ @i P N : Bt`1
i ´ αBti ` β<pctiq ´

<pdtiq
β

“ 0 (B.1b)

@t P T ^ @i P N : Bti ě 0 (B.1c)

@t P T ^ @i P N : ´Bti ě ´Bi (B.1d)

@t P T ^ @i P N : <pdtiq ´ <pctiq ´
ÿ

j:j„i

`

atiimij ´ a
t
ijmij ´ q

t
ijnij

˘

q “ <pstiq ´ <pvtiq

(B.1e)

@t P T ^ @i P N : =pdtiq ´ =pctiq ´
ÿ

j:j„i

`

´atiinij ` a
t
ijnij ´ q

t
ijmij

˘

“ =pstiq ´ =pvtiq

(B.1f)

@t P T ^ @i P N : atii ě V 2
i (B.1g)

@t P T ^ @i P N : ´atii ě ´V
2

i (B.1h)

@t P T ^ @i P N : zti “ c2i (B.1i)

@t P T ^ @i P N : uti “ d
2

i (B.1j)

@t P T ^ @i P N :

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

¨

˝

<pctiq
=pctiq
zti

˛

‚ěL3 0 (B.1k)

@t P T ^ @i P N :

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

¨

˝

<pdtiq
=pdtiq
uti

˛

‚ěL3 0 (B.1l)

@t P T ^ @iÑ j :

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 1

2
´1
2

0 0 1
2

1
2

˛

‹

‹

‚

¨

˚

˚

˝

atij
qtij
atii
atjj

˛

‹

‹

‚

ěL4 0. (B.1m)

The dual multipliers associated to the constraints (B.1b)–(B.1m) are λb P R|T´1||N |,
λc, λd, λg, λh, λi, λj, as well as λk1, λk2, λk3, λl1, λl2, λl3 P R|T ||N |, and λm1, λm2, λm3, λm4 P

R|T ||L|.
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B.1 Strong duality reformulation

By applying the strong duality theorem to the lower-level problem (B.1), one can
equivalently reformulate the bilevel problem (5.7)–(5.8) to a single-level problem.
Before introducing the reformulation of our bilevel problem (5.7)–(5.8), let us
consider a general SOCP problem (see [37]):

min
xPRn

tcJx |Aix´ bi ěLni 0, i “ 1, . . . , ku, (SOCP )

where c P Rn, Ai P Rniˆn, bi P Rni , and Lni is the ni-dimensional second-order
cone. We recall that, for a vector z P Rni , the inequality z ěLni 0 means that

zni ě

∥∥∥∥∥∥∥∥∥

¨

˚

˚

˚

˝

z1

z2
...

zni´1

˛

‹

‹

‹

‚

∥∥∥∥∥∥∥∥∥
2

.

Denoting the dual variable

λ “

¨

˚

˚

˚

˝

λ1

λ2
...
λk

˛

‹

‹

‹

‚

with λi P Rni for all i “ 1, . . . , k, the dual of (SOCP ) is the following:

max
λ
t

k
ÿ

i“1

bJi λi |
k
ÿ

i“1

AJi λi “ c, λi ěLni
0, i “ 1, . . . , ku.

Our lower-level problem (B.1), is in the form of (SOCP ) with:

• ni “ 2, @i “ 1, . . . , h, since the first constraints are linear. In Eqs. (B.1)
there are also equality constraints, but they can easily reformulated into
inequality constraints of the considered type.

• ni “ nj “ 3, since constraints (B.1k) and (B.1l) are convex quadratic

• nk ě 4, but, since the entries of Ak are all zero but the one of the submatrix
A, and bk is the zero-vector, we can reduce this last constraint to the SOCP
constraint Ax ěL4 0 in (B.1m).

Therefore, we can reformulate the bilevel problem (5.7)–(5.8) by adding to the
upper level: the original primal lower-level constraints (B.1b)–(B.1m), the dual
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lower-level constraints:

@t P T ^ @i P N : pλcq
t
i, pλdq

t
i, pλgq

t
i, pλhq

t
i ě 0

@t P T ^ @i P N : pλkq
t
i ěL3 0

@t P T ^ @i P N : pλlq
t
i ěL3 0

@t P T ^ @iÑ j : pλmq
t
ij ěL4 0

@t P T ztn ^ @i P N : βpλbq
t
i ´ pλeq

t
i ` pλk1q

t
i “ pp

@i P N : ´pλeq
tn
i ` pλk1q

tn
i “ pp

@t P T ztn ^ @i P N : ´
pλbq

t
i

β ` pλeq
t
i ` pλl1q

t
i “ ´pp

@i P N : pλeq
tn
i ` pλl1q

tn
i “ ´pp

@t P T ^ @i P N : ´pλf q
t
i ` pλk2q

t
i “ qp

@t P T ^ @i P N : pλf q
t
i ` pλl2q

t
i “ ´qp

@t P T ^ @i P N : pλiq
t
i ` pλk3q

t
i “ 0

@t P T ^ @i P N : pλjq
t
i ` pλl3q

t
i “ 0

@t P T zt1 ^ @i P N : pλbq
t´1
i ´ αpλbq

t
i ` pλcq

t
i ´ pλdq

t
i “ 0

@i P N : ´αpλbq
t1
i ` pλcq

t1
i ´ pλdq

t1
i “ 0

@i P N : pλbq
tn´1
i ` pλcq

tn
i ´ pλdq

tn
i “ 0

@t P T ^ @i P N :
ř

j:j„i

“

´mijpλeq
t
i ` nijpλf q

t
i

‰

` pλgq
t
i ´ pλhq

t
i

`1
2

ř

j:iÑj

”

pλm3q
t
ij ` pλm4q

t
ij

ı

` 1
2

ř

j:jÑi

”

p´λm3q
t
ji ` pλm4q

t
ji

ı

“ 0

@t P T ^ @iÑ j s.t. i, j P N : mij

”

pλeq
t
i ` pλeq

t
j

ı

´ nij

”

pλf q
t
i ` pλf q

t
j

ı

` pλm1q
t
ij “ 0

@t P T ^ @iÑ j s.t. i, j P N : nij

”

pλeq
t
i ` pλeq

t
j

ı

`mij

”

pλf q
t
i ` pλf q

t
j

ı

` pλm2q
t
ij “ 0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

(B.2)
and

ÿ

tPT

ÿ

iPN

`

pp
`

<pvtiq ` <pdtiq ´ <pctiq ´ <pstiq
˘

` qp
`

=pvtiq ` =pdtiq ´ =pctiq ´ =pstiq
˘˘

ď ψpλb, . . . , λkq,

(B.3)

where

ψpλb, . . . , λkq “
ř

tPT

ř

iPN

“

´Bipλdq
t
i ` p<pstiq ´ <pvtiqqpλeqti ` p=pstiq ´ =pvtiqqpλf qti

`V 2
i pλgq

t
i ´ V

2
i pλhq

t
i ´ cipλiq

t
i ´ dipλjq

t
i

ı

is the dual lower-level objective function. Eq. (B.3) is needed to ensure strong
duality among primal and dual lower-level problems. By weak duality, indeed,

ÿ

tPT

ÿ

iPN

`

pp
`

<pvtiq ` <pdtiq ´ <pctiq ´ <pstiq
˘

` qp
`

=pvtiq ` =pdtiq ´ =pctiq ´ =pstiq
˘˘

ě ψpλb, . . . , λkq

is satisfied for each solution that satisfies (B.1b)–(B.1m), and (B.2).
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The single-level formulation obtained using this approach is, therefore:

max
pp,qp,c,d,B,a,q,λ

ÿ

tPT

ÿ

iPN

`

pp
`

<pvtiq ` <pdtiq ´ <pctiq ´ <pstiq
˘

` qp
`

=pvtiq ` =pdtiq ´ =pctiq ´ =pstiq
˘˘

(B.4)

s.t. pp, qp ě 0 (B.5)

ppp, qp, c, d,B, a, q, λq satisfies (B.1b)–(B.1m), (B.2), and (B.3). (B.6)

B.2 KKT reformulation

A classical reformulation of a bilevel problem with a convex lower level is obtained
replacing the lower-level by its KKT conditions.

First of all, let us recall that for a conic program in the form

min
x

fpxq

s.t. hpxq “ 0 pγq

gpxq ě 0 pµq

Ax ěL4 0, pλq

given the KKT multipliers γ, µ and λ, and the Lagrangian L, the KKT stationarity
condition is:

∇L “ ∇fpxq ´ γ∇hpxq ´ µ∇gpxq ´ AJλ “ 0.

For our bilevel formulation the term AJλ – corresponding to the SOCP con-
straint (B.1m) – is:

AJ3 pλmq
t
ij ` A

J
2

`

pλkq
t
i ` pλlq

t
i

˘

“

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 1

2
1
2

0 0 ´1
2

1
2

˛

‹

‹

‚

¨

˚

˚

˝

λm1

λm2

λm3

λm4

˛

‹

‹

‚

t

ij

`

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

¨

˝

λk1

λk2

λk3

˛

‚

t

i

`

¨

˝

1 0 0
0 1 0
0 0 1

˛

‚

¨

˝

λl1
λl2
λl3

˛

‚

t

i

“

¨

˚

˚

˝

λm1

λm2
λm3`λm4

2
´λm3`λm4

2

˛

‹

‹

‚

t

ij

`

¨

˝

λk1

λk2

λk3

˛

‚

t

i

`

¨

˝

λl1
λl2
λl3

˛

‚

t

i

The KKT conditions of the lower-level problem (B.1) are:

- Primal feasibility: constraints (B.1b)–(B.1m);
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- Dual feasibility:
@t P T ^ @i P N : pλcq

t
i, pλdq

t
i, pλgq

t
i, pλhq

t
i ě 0,

@t P T ^ @i P N : pλkq
t
i ěL3 0,

@t P T ^ @i P N : pλlq
t
i ěL3 0,

and
@t P T ^ @iÑ j : pλmq

t
ij ěL4 0;

- Stationarity conditions, given the Lagrangian L:

‚ BL
B<pctiq

“ pp´ βpλbq
t
i ` pλeq

t
i ´ pλk1q

t
i “ 0 @t P T zttnu ^ @i P N

BL
B<pctni q

“ pp` pλeq
tn
i ´ pλk1q

tn
i “ 0 @i P N

‚ BL
B<pdtiq

“ ´pp`
pλbq

t
i

β ´ pλeq
t
i ´ pλl1q

t
i “ 0 @t P T zttnu ^ @i P N

BL
B<pdtni q

“ ´pp´ pλeq
tn
i ´ pλl1q

tn
i “ 0 @i P N

‚ BL
B=pctiq

“ qp` pλf q
t
i ´ pλk2q

t
i “ 0 @t P T ^ i P N

‚ BL
B=pdtiq

“ ´qp´ pλf q
t
i ´ pλl2q

t
i “ 0 @t P T ^ i P N

‚ BL
Bzti
“ ´pλiq

t
i ´ pλk3q

t
i “ 0 @t P T ^ i P N

‚ BL
But

i
“ ´pλjq

t
i ´ pλl3q

t
i “ 0 @t P T ^ i P N

‚ BL
BBt

i
“ ´pλbq

t´1
i ` αpλbq

t
i ´ pλcq

t
i ` pλdq

t
i “ 0 @t P T ztt1, tnu ^ @i P N

BL
BB

t1
i

“ αpλbq
t1
i ´ pλcq

t1
i ` pλdq

t1
i “ 0 @i P N

BL
BBtn

i

“ ´pλbq
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Titre : Optimisation biniveau et applications

Mots clés : programmation mathématique, programmation biniveau, résolution de conflits d’avions, ACOPF,
programmation semi-infinie

Résumé : Un problème biniveau est un problème où un sous-
ensemble des variables est contraint d’être optimal pour un autre
problème paramétré par les variables restantes. Le problème ex-
terne est appelé problème de niveau supérieur, le problème in-
terne le problème de niveau inférieur. La première partie de cette
thèse concerne les définitions clés, les approches de solution et la
complexité des problèmes biniveaux, et l’étude d’une classe par-
ticulière de problèmes biniveaux, ayant un niveau inférieur qua-
dratique, dont la valeur est contenue dans une contrainte de ni-
veau supérieur. Nous proposons une approche pour résoudre
cette classe de problèmes, basée sur la dualisation du niveau
inférieur. Cette approche est comparée à un algorithme de plans
coupants, dont nous prouvons la convergence. La validité de ces
deux approches est démontrée par les résultats de calcul sur
deux applications: un jeu à somme nulle avec un gain cubique
et une régression quadratique contrainte. La deuxième partie de
la thèse est consacrée aux applications pratiques. Un chapitre est
dédié au problème de résolution de conflits d’aéronefs (PRC). Ce
problème consiste essentiellement à imposer une distance mini-
male entre les avions en vol pour éviter les conflits, en utilisant
différentes stratégies. Nous nous concentrons sur deux d’entre eux:
les régulations de vitesse et les changements d’angle de cap. Nous
présentons une formulation de programmation semi-infinie du PRC
via régulation de vitesse en k dimensions. Nous la reformulons
d’une part en utilisant la programmation polynomiale et d’autre part
en utilisant la programmation biniveau. Ensuite, nous présentons

une formulation biniveau du PRC via changements d’angle de
cap en deux dimensions. Dans les deux formulations biniveau, la
convexité des niveaux inférieurs nous permet de proposer trois re-
formulations différentes à un seul niveau, en utilisant les conditions
KKT, la dualité de Dorn et la dualité de Wolfe. Les reformulations à
un seul niveau des deux problèmes sont résolues en utilisant des
solveurs de l’état de l’art. Alternativement, nous proposons un al-
gorithme de génération de coupes pour résoudre les problèmes
biniveau, qui s’inscrit dans le cadre général de l’algorithme de
plans coupants présenté dans la première partie. Cet algorithme
obtient les meilleurs résultats en terme de temps pour la plupart
des instances testées. Une autre application étudiée dans cette
thèse concerne le Alternating Current (AC) Optimal Power Flow
(ACOPF) au niveau inférieur. Dans un horizon temporel discrétisé
fixe, un problème biniveau est derivé pour modéliser l’interaction
entre un fournisseur et des prosommateurs (consommateurs qui
peuvent également produire, stocker et vendre de l’électricité), qui
interagissent entre eux via un réseau à courant alternatif. Lorsque,
avec l’ACOPF, on veut concevoir de manière optimale un réseau de
transport d’électricité par rapport à l’activité des lignes, un ACOPF
avec des variables on/off sur les lignes peut être utilisé, en obte-
nant un problème non linéaire en variables mixtes non convexe en
nombres complexes. Dans ce scénario, nous proposons deux re-
laxations convexes, comparées à la célèbre relaxation conique du
second ordre de Jabr.

Title : Bilevel optimization and applications

Keywords : mathematical programming, bilevel programming, aircraft conflict resolution, ACOPF, semi-infinite
programming

Abstract : A bilevel problem is an optimization problem where
a subset of variables is constrained to be optimal for another gi-
ven problem parameterized by the remaining variables. The outer
problem is commonly referred to as the upper-level problem, the
inner one as the lower-level problem. The first part of this disserta-
tion concerns the key definitions, the solution approaches and the
complexity of bilevel problems, as well as the study of a particular
class of bilevel programs, having a quadratic lower level, the value
of which is contained into an upper-level inequality constraint. Such
bilevel problems can be obtained by reformulating semi-infinite pro-
gramming problems with an infinite number of quadratically para-
metrized constraints. We propose an approach to solve this class
of bilevel programs, based on the dualization of the lower-level. This
approach is compared with a new cutting plane algorithm, which we
prove to be convergent. The rate of convergence of this algorithm is
derived under stricter assumptions and is directly related to the ite-
ration index, which is something new w.r.t. what is usually proved in
semi-infinite programming literature. We successfully test the two
proposed methods on two applications: the constrained quadratic
regression and a zero-sum game with cubic payoff. The second
part of the thesis is devoted to practical applications. A chapter is
dedicated to the aircraft conflict resolution problem. This problem
essentially consists in enforcing a minimum distance between flying
aircraft to avoid conflicts, using different strategies. We focus on
two of them: speed regulations and heading angles changes. We
present a natural semi-infinite formulation of the problem via speed
regulation strategy in k dimensions. To deal with the issue of un-

countably many constraints of this formulation, we reformulate it,
firstly, using polynomial programming, and secondly, using bilevel
programming. Then we also present a bilevel formulation of conflict
resolution problem via heading angle changes in two dimensions
(i.e. aircraft flying at the same altitude). In both bilevel formula-
tions, the convexity of the lower levels allows us to derive three
different single-level reformulations, using KKT conditions, Dorn’s
duality, and Wolfe’s duality respectively. The single-level formula-
tions of both problems are solved by using state-of-the-art solvers.
Alternatively, we propose a cut generation algorithm to solve the
bilevel problems, which fits in the general framework of the cutting
plane algorithm presented in the first part. This algorithm obtains
the best results in terms of computational time for most of the tested
instances. Another application studied in this dissertation involves
the Alternating Current (AC) Optimal Power Flow (ACOPF) problem
at the lower level. The idea comes from the possibility for power ge-
neration in private households. In this scenario, we derive a bilevel
problem to model the interaction between a retailer and several pro-
sumers (consumers who can also produce, store and sell power),
who interact with each other through an AC network. When, toge-
ther with the ACOPF, one wants to optimally design a power trans-
portation network with respect to line activity, an ACOPF with on/off
variables on lines can be used, which yields a nonconvex mixed-
integer nonlinear problem in complex numbers. We propose two
convex relaxations, compared with the famous Jabr’s second-order
cone relaxation.
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