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THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ
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Popoff and Stefan Rotter for accepting to be part of my jury comity despite the time it represents in
your busy schedules. Thank you for the scientific and human inspiration you all were to me along
my preparation!

Parmi les membres de mon jury, Sylvain, tu as joué un rôle bien particulier : tu as dirigé mes pas.
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je vais être un peu perdue... Alors pour tout, danke!

Au chapitre de l’entraide, tout le monde est au rendez-vous. Quel que soit le souci – question
administrative ou de physique, problème d’alignement ou juste de matériel – chacun est sur le pont.
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tel point que je commence à faire figure de dinosaure, ou juste partie des meubles – question de
point de vue. Merci d’abord aux anciens : Hugo, Saroch avec qui j’ai travaillé lors de mon stage de
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Bienaimé et Murad Abuzarli tout particulièrement, pour nos discussions et réflexions sur des travaux
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passagères !



vi REMERCIEMENTS
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Rien n’est si abouti peut-être qu’on le croit
D’autres viennent Ils ont le cœur que j’ai moi-même

Ils aiment retourner torturer le problème
Et passer leurs soirées à chercher d’autres voies
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Résumé

Sauf à se placer dans le vide intégral – source incluse – la lumière que capte tout détecteur est
diffusée. Celle qui parvient à la rétine d’un observateur n’échappe pas à la règle : simple diffusion
cohérente donnant une image nette pour un œil emmétrope ou diffusion complexe donnant une
image dégradée en cas de cataracte. . . La lumière que nous observons est du reste déjà diffusée en
amont de notre cornée. Diffusion à l’origine de magnifiques phénomènes comme les couleurs du ciel,
des nuages, de certains insectes ; diffusion parfois responsable de notre mauvaise vision, même avec
une vue parfaite : quand les gouttelettes d’eau qui constituent le brouillard se retrouvent partout
entre nos yeux et l’objet observé, par exemple ; ou bien quand des turbulences atmosphériques, en
distordant les fronts d’onde entrants, floutent les images des étoiles que nous tentons de regarder.

C’est du reste pour faciliter l’observation astronomique qu’une technique d’optique adaptative
a été développée : compenser ces distorsions d’origine atmosphérique par des contre-distorsions
dûment provoquées en amont du télescope – des "lunettes" adaptatives en quelque sorte – permet de
retrouver des images nettes. Dans le même ordre d’idée, des techniques de contrôle du front d’onde
sont développées pour les milieux diffusants : le front d’onde entrant dans le milieu est façonné
à volonté grâce à des modulateurs spatiaux de lumière, dans le but de contrôler le front sortant.
Plusieurs méthodes sont aujourd’hui utilisées pour réaliser le façonnage optimal du front entrant
dans le cadre de l’optique linéaire. Parmi elles, les optimisations via la mesure de la matrice de
transmission. Cette matrice, reliant le champ incident et le champ sortant, contient l’information
nécessaire sur le milieu diffusant. Sa connaissance permet par exemple de focaliser la lumière en
sortie du milieu. On peut lui appliquer les traitements standard de l’algèbre linéaire, entre autres
s’intéresser à ses vecteurs propres (ou vecteurs singuliers) en déterminant son spectre.

Dans cette thèse, je présente mes travaux sur le contrôle du champ via la décomposition
en valeurs singulières de la matrice de transmission. Le contrôle du champ comprend, entre
autres, la modification de la taille des grains de speckle et des corrélations ainsi que la variation
de la transmission. Ces aspects sont traités d’abord en régime monochromatique, puis étendus
temporellement en éclairant le milieu en régime pulsé.
Ce manuscrit de thèse est organisé comme suit:

• Dans le Chap. 1, j’illustre le phénomène de diffusion de la lumière sur des exemples du quotidien ;
j’en explique brièvement l’origine, donne quelques définitions, introduis et caractérise les
principales quantités physiques pour le décrire. La nature diffusante du milieu en est une
caractéristique essentielle. Je travaille exclusivement avec des milieux induisant une diffusion
multiple. L’intensité lumineuse suit alors une équation de diffusion, a priori annonciatrice
d’irréversibilité. Cependant, à la différence de la diffusion de la chaleur par exemple, la phase
du champ électromagnétique n’est pas perdue lors des diffusions successives, ce qui conduit
à des interférences multiples : contrôler le champ diffusé devient possible. Je montre que
ce contrôle, utilisant la technique de façonnage du front d’onde inspirée de l’astronomie, est
extrêmement précis. À l’aide des modulateurs spatiaux de lumière, la phase du champ peut être
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viii RÉSUMÉ

localement modulée pour un front d’onde incident donné, ce qui déforme ce dernier. Différentes
approches permettent de déterminer la déformation adéquate.

Je m’appuis essentiellement dans ce travail sur le concept de matrice de transmission. Rappelons
que l’existence d’une telle matrice repose sur la linéarité de la transformation du champ. La
mesure dudit champ avant et après le milieu d’intérêt permet donc de construire une matrice
entrée-sortie de la transformation, appelée matrice de transmission. Le niveau de contrôle
expérimental influe sur les caractéristiques de la matrice. Deux régimes extrêmes sont à signaler :
le contrôle total permettant l’accès à des modes de transmission dits ouverts (transmission
totale) ou fermés (transmission nulle) ; le contrôle très partiel pour lequel les matrices de
transmission se comportent comme des matrices aléatoires. Je présente enfin certains opérateurs
construits à partir de la matrice de transmission et visant un contrôle spécifique du champ
sortant.

• Le Chap. 2 est dédié à la présentation du montage expérimental, les différentes méthodes
d’acquisition et certains détails techniques. Je commence par présenter individuellement
les composants du montage : laser pulsé, caméra, modulateur spatial de lumière etc., puis
j’explique le fonctionnement global du système permettant des mesures de champ résolues en
temps. Les détails techniques portent essentiellement sur la méthode de mesure du champ
électrique, la détermination de la matrice de transmission et la méthode de fixation de l’origine
temporelle du délai dans le pulse lumineux.

• Dans le Chap. 3, une étude monochromatique de la figure de speckle, distribution d’intensité
obtenue par diffusion multiple d’une lumière cohérente, est présentée.

La statistique du champ, qui suit une loi de Rayleigh, est discutée tant sur ses conséquences
que sur son origine. Dans cette lignée, je présente brièvement différents travaux montrant la
possibilité d’influencer, légèrement ou drastiquement, la statistique de speckle. Je présente
également des résultats expérimentaux sur la modification de la statistique par le biais de
la matrice de transmission. Focaliser la lumière transmisse sur toute une surface de sortie
transforme le speckle et sa statistique de Rayleigh en une illumination plus homogène associée
à une statistique de Ricin. Je présente pour finir une technique, fondée sur la décomposition en
valeurs singulières de la matrice de transmission, permettant de contrôler à souhait les tailles et
formes des grains de speckle, jouant ainsi sur les corrélations à courte et plus longues portées.
L’ingrédient phare de cette technique consiste en un filtrage spatial de Fourier, naturel ou
numérique, du champ de sortie. Les résultats expérimentaux proposés sont en accord avec le
modèle simple qui est proposé.

• Dans le Chap. 4 j’étends au domaine temporel les concepts et techniques introduits dans
le Chap. 3. Pour cela, de courts pulses lumineux (∼ 100 fs) sont envoyés sur le milieu et une
mesure résolue en temps permet d’accéder à l’évolution temporelle du champ sortant.

Je montre que la puissance délivrée à la sortie du milieu diffusant peut être ajustée tant
spatialement que temporellement en choisissant le front d’onde incident adéquat, déterminé
grâce à la connaissance des vecteurs singuliers de la matrice de transmission résolue en temps.
Il est à noter que le contrôle spatio-temporel est obtenu uniquement par une modification
statique du front d’onde incident. En plus des résultats expérimentaux obtenus dans un régime
de contrôle très partiel, des résultats de simulations dans un guide d’onde sont présentés,
confirmant les conclusions dressées. Ces simulations montrent la robustesse de la technique et
permettent en outre de sonder un régime de plus fort contrôle.

• Le Chap. 5 est consacré à la création de corrélations entre différentes figures de speckle. Pour



ix

cela, une méthode fondée sur la décomposition en valeurs singulières d’une somme de matrices
de transmission est proposée. Les vecteurs singuliers d’une telle somme de matrices ont la
propriété de générer des champs corrélés et ce quelles que soient les matrices en question. Je
montre par exemple qu’il est possible de corréler les champs issus de la propagation à travers
un milieu diffusant pour différentes longueurs d’onde d’illumination, différentes positions
spatiales à la sortie ou encore pour différents délais dans un pulse lorsque l’illumination
est polychromatique. Les natures des matrices sommées peuvent être diverses, ce que nous
illustrons en travaillant simultanément avec une matrice monochromatique et une matrice
résolue en temps. La valeur de la corrélation obtenue peut être contrôlée et prédite grâce
à un modèle fondé sur les propriétés des matrices aléatoires. J’utilise également la relation
de Fourier entre temps et fréquence pour manipuler encore plus les corrélations et créer des
peignes (temporels ou fréquentiels) de corrélation.

• Dans le Chap. 6 je présente les fibres optiques et discute certaines de leurs propriétés, notamment
leurs similitudes et différences avec les milieux diffusants usuels. Ainsi par exemple l’existence
de nombreux modes (pour les fibres optiques multimodes), qui peuvent se mélanger lorsque les
fibres sont tordues ou présentent des défauts, est à l’origine de la similarité avec les milieux
diffusants.

Les fibres optiques sont des outils prometteurs, parce qu’elles représentent une alternative aux
circuits photoniques actuels et peuvent ainsi bénéficier des avancées obtenues en contrôle de
front d’onde pour les milieux diffusants tout en conservant une forte transmission. L’absence de
pertes et le nombre limité de modes de propagation permettent de plus facilement s’approcher
expérimentalement d’un régime de fort contrôle. Les fibres constituent donc un outil idéal
pour étendre et tester les modèles établis dans les milieux diffusants. La technique présentée
au Chap. 5 est appliquée, en simulation, aux fibres optiques. De plus, un effet mémoire
chromato-axial observé dans les milieux diffusants vers l’avant [Zhu et al. 2020] est retrouvé
pour les courtes fibres optiques à saut d’indice.
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Introduction

If the sun suddenly died, assume for example that all nuclear reactions just stop, how long would it
keep lighting?
A quick answer would be to consider the time photons take to travel from the sun to the earth:
150million km at c = 3× 108 ms−1, takes approximatively 8min. But is that answer correct?
It would be forgetting that photons are created at the sun’s core and first need to travel through the
sun to escape. This journey is much longer [NASA 2007]. Photons are scattered inside the sun and
thus, to evaluate their traveling time, one needs to know the sun’s radius (Rs ≈ 700 000 km) and the
distance between two collisions called the photon mean free path. The latter distance is hard to
estimate as it varies radially together with the sun’s density. A rough estimate is ls ∼ 0.1 cm [Mitalas
et al. 1992; Shu 1982]. Due to scattering events, photons follow a random walk inside the sun. From
these distances and the random walk model, it is possible to evaluate the time it takes for photons
to exit the sun. The maximal distance achieved with a random walk scales as the square root of the
number of steps N , which gives2 3R2

s ' Nl2s and thus a travel distance of L = N × ls. An estimation
of the travel time τ is then,

τ =
L

c
=
Nls
c

=
3R2

s

cls
' 4.9× 1012 s, (0.1)

that is 150 000 years. It is estimated in [Mitalas et al. 1992] to be 170 000 years. The precise
value does not matter and is subject to various abusive approximations (even the order of magnitude
does not reach a consensus). The keypoint here is only to realize the impressive role of scattering in
the sun. Some of the photons that we see today were created in the middle Paleolithic, at the epoch
of Neanderthals!

The time evaluated above is a well known characteristic of scattering phenomena, called the
Thouless time. Each scattering material, for a given illumination, has its own Thouless time. In
most scattering materials encountered in daily life, Thouless times are quite short and not noticeable.
As a point of comparison, it is of the order of the picosecond for white paint slabs used in the
experiments of this thesis.

The journey of the sun’s photons mentioned above is only an example of the consequences of
light scattering. Indeed, scattering phenomena are not specific to electromagnetic waves, but affect
acoustic waves as well. In the elastic regime, scattering results in dephasings. Historically, acoustic
scattering was initially more studied than light scattering, due to the accessible time and length
scales. However the recent development of new devices to control electromagnetic wavefronts was a
turning point for light scattering research. In this work, we will solely concentrate on light scattering
while drawing inspiration from works realized in acoustics.

Light scattering is a major drawback when it comes to imaging, especially in biological media. To
reduce or compensate for this effect, understanding the light-matter interaction and more specifically

2The factor of 3 comes from the 3D dimension of the random walk.
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light propagation in complex media is crucial. Taking advantage of spatial light modulators on the
experimental level and of the transmission matrix formalism on the conceptual level, this work presents
results about the control of speckles, well known patterns which result from complex interferences
of the scattered field. The main objective pursued by this thesis consists in understanding and
predicting speckle patterns and their correlations, as well as being able to design them at will. This
last part is realized both in the monochromatic and temporal regimes, using the so-called singular
modes of the system’s transmission matrix.

This thesis is organized as follows:

• In Chap. 1 we introduce the scattering phenomenon, together with related terms, definitions
and properties. We present the emergence of the idea of wavefront shaping in astronomy, as
well as its current application in the study of complex media. From an experimental standpoint,
we discuss the main tools enabling wavefront shaping. From several available approaches to
implement wavefront shaping I mainly discuss the transmission matrix, which is extracted
from the scattering matrix. The study of the transmission matrix through its singular modes
allows to highlight different regimes of control. These regimes determine the transmission
characteristics and the appropriate model: from full control to a random matrix model. Finally,
we discuss several operators based on the transmission matrix that have been engineered to
address specific problems. In this first chapter, we do not dive into concepts that will be
discussed in detail in the corresponding chapters.

• In Chap. 2 we describe the experimental setup and technical aspects of our work. First, we
present the main components individually, and then discuss the operation of the whole setup.
Technical details include the time-gated measurement, the field extraction techniques, the
measurement of the transmission matrix, the definition of the zero delay in the pulse etc..

• In Chap. 3, we examine speckle statistics, when working with monochromatic light. Analyzing
its origin, it is possible to create deviations or even completely modify it. We discuss an
example of drastic modification using the transmission matrix to globally focus light. The
correlations among the speckle grains and the grains shape itself are shown to be precisely
controllable using the singular modes of the transmission matrix.

• In Chap. 4 we extend the concepts and techniques introduced in Chap. 3 to the temporal domain
by sending short pulses into the medium and performing time-gated measurements to access the
temporal field information. We show that the energy delivery behind a scattering medium can
be locally (both temporally and spatially) tuned with an adequate input wavefront determined
using the singular vectors of a measured time-gated transmission matrix. Simulations realized
in a waveguide geometry confirm these results and enable to reach more important degrees
of control using a small number of modes. This enhancement control is compared to the
global-focus technique. It is noteworthy that this temporal control is solely achieved exploiting
spatial degrees of freedom.

• In Chap. 5 we apply the singular value decomposition to sums of transmission matrices to
engineer input states having the property of generating correlated interference patterns behind
a complex medium. These correlations can be obtained for different propagating frequencies, for
different targeted delays in a pulse and even for different disorders. The amount of correlation
as well as the relative phase between the fields is fully controllable and predictable with the
random matrix theory. Finally, we use the Fourier relation between time and frequency to
further manipulate the correlations and create correlation combs.
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• In Chap. 6 we present and discuss multimode fibers. They represent a good alternative to
existing photonic platforms as they can benefit both from hight transmission and the complex
media mixing properties. Because their transmission matrices are unitary and one can reach
full control, they constitute ideal models to test wavefront shaping techniques in a regime that
is not experimentally accessible. For instance, techniques presented in Chap. 5 are extended in
simulations to multimode fibers, and the chromato-axial memory effect observed in forward
scattering media [Zhu et al. 2020] is observed and characterized for short step-index multimode
fibers.

Throughout this thesis, some comments and illustration boxes appear. Their content is usually
not required to understand the results but corresponds to small derivations and definitions that are
not often detailed in the literature (or not in the present form). I consider them useful to fix ideas
and provide some details.
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This first chapter introduces all notions useful for the work presented in the present thesis: from
the existence of light scattering to the introduction of the Wigner-Smith operator. All concepts
which are closely related to contributions of this thesis will be detailed in the corresponding chapters,
and will only be briefly mentioned in this preliminary chapter. In Sec. 1.1 we present the (very)
diverse aspects of scattering, and we express the relevant temporal and spatial quantities encountered.
Whenever possible, we establish analogies, with their advantages and limits, to get the scaling of
the introduced parameters. In Sec. 1.2, we present the motivations, ideas and tools that enable
counteracting scattering. Sec. 1.3) is entirely dedicated to the main tool used in all the experiments
of this thesis: the transmission matrix. We present its basic form in the monochromatic domain, as
well as its generalizations for broadband light. We raise the very important question of the degree of
control in Sec. 1.4, and we discuss the use of specific operators to control the output field in Sec. 1.5.

1.1 Scattering is ubiquitous

Not necessarily noticed in everyday life, we are surrounded by scattering media. Their presence is so
natural that their impact is automatically internalized and included in our vision and perception of
the world. In this section we are going to review some clear observations of scattering (Sec. 1.1.1),
detail its physical origin (Sec. 1.1.2) and focus on its concrete consequences (Sec. 1.1.3): such as the
well known speckle pattern. Finally, we consider external factors impacting the scattering process
and hence the speckle pattern (Sec. 1.1.4).

1.1.1 Observation of scattering

Light scattering is a natural process that can be simply illustrated by the altered vision in foggy
weather1. The presence of very low clouds prevents the observation of distant objects otherwise
visible. It is illustrated in Fig. 1.1(a) where cars and trees, despite their proximity, are hardly visible.
It is noteworthy that the scattering elements (in this example water droplets) are present throughout
the environment: moving to the blurred region, the blurring vanishes. This “easy experiment”
illustrates an important parameter when studying scattering media: the medium thickness (in this
example the distance between the observer and the object). We discuss how the transmission scales
with the thickness in Sec. 1.1.2. Another natural feature is the existence, for a macroscopic medium,
of a refractive index: due to the scattering, any incident light is dephased, its overall phase velocity is
no longer equal to its vacuum velocity. In the case of a non-homogeneous index, light rays no longer

1The same holds for sound in bubbly water [Kafesaki et al. 2000], but in this work we chiefly concentrate on light
scattering.
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follow straight lines. Moreover, at an interface between two media with different indices, they are
split in a reflected and a refracted ray, the direction of the latter depending on the light frequency.
A spectacular illustration of this color-dependent refraction is provided by the rainbow phenomenon,
observed when the sum light undergoes backward coherent scattering by spherical water droplets,
see Fig. 1.1(b). It illustrates another result of scattering: the chromatic aspect. In Fig. 1.1(b) the
white color of the clouds and the blue color of the sky both result from light diffusion2. The Rayleigh
scattering of small atmospheric polarizable particles, scaling as ω4, explains the blue color reaching
the eye of an observer. The Mie scattering for larger particles (water droplets for the clouds), do not
favor specific frequencies, which results in the white color of clouds3. From this difference one can
draw another preliminary observation (as well further developed later) that scattering is frequency
dependent. It is the very important scattering occurring in Beetle scales that is responsible for their
important whiteness Fig. 1.1(c) [Burresi et al. 2014]. Structural scattering for instance paves the
way to bio-inspired materials [Jacucci et al. 2021].

(a) (b) (c)

Figure 1.1: Omnipresence of light scattering. (a) Fog preventing vision of far trees and cars.
(b) Rainbow and clouds. (c) Beetle images (left) and scanning electron micrographs of their scales
(right). Image from [Burresi et al. 2014].

Most of the time one observes light scattering because it occurs between an object (a landscape
for instance) and the receptor (the observer’s eye). However sometimes the scattering is due to the
receptor itself. This is for instance the case in cataract when the crystalline lens, usually acting as
a convergent lens to focus light on the retina, becomes opaque as illustrated in Fig. 1.2. The eye
no longer plays the role of a perfect lens. The healthy crystalline lens is not supposed to scatter
light, such behavior resulting from damages. Nevertheless this transparency characteristic remains
rare in biological media, most of them being naturally highly scattering4. The scattering properties
of biological samples are extensively studied, due the major obstacle that scattering represents for
imaging.

To conclude this little introduction, a general comment is the omnipresence of light scattering,
from enjoyable consequences (colors) to detrimental ones (impaired vision). This ubiquity has long
been well perceived, for instance by artists who introduced it in art. The Impressionist movement,
see Fig. 1.3, explicitly accords light phenomena a particular attention and the sfumato technique of
Leonardo da Vinci is also a good example.

Since scattering is so present, it has been explained and theorized. The next section will hence
address the origin of light scattering and introduce the main parameters of interest.

2The distinction between scattering and diffusion is developed in Sec. 1.1.2.
3The white color actually results from a competition between the scattering of the different frequencies [Feynman

et al. 1963].
4The cornea transparency for instance is due to structural partial order [Hart et al. 1969; Salameh et al. 2020]
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Figure 1.2: Tissue scattering. Left: normal vision with a healthy eye. Right: blurred vision
induced by scattering inside the eye due to an opacification of the crystalline lens called cataract.

Figure 1.3: Scattering in art. Impressionist painting by Claude Monet Impression, soleil levant.

1.1.2 From scattering to light diffusion

1.1.2.1 Dipole scattering

As already perceived in the previous section, the physical origin of scattering is the interaction of
light with particles [Hulst et al. 1981]. It is the high density of particles and the strength of the
interaction that leads to observable phenomena. Let us first consider a single particle interacting
with light through its electric dipole and assume an elastic scattering: the photon frequency remains
unchanged in the process5. When light arrives on a dielectric medium, the electric field induces
dipoles which themselves radiate a scattered field. For particles of size a� λ, the scattering in the
electric dipolar approximation is given by Rayleigh’s theory. The mean scattered power is given by

〈P 〉 =
µ0

12πc
ω4p2

0, (1.1)

where c is the speed of light, µ0 the vacuum permeability, ω the angular frequency and p0 the dipole
moment. The radiated power, favoring short wavelengths in the visible spectrum, explains the blue
color of the sky. For larger particles the scattering is no longer restricted to one dipole and results in

5In all this thesis we solely consider light elastic scattering. An example of inelastic scattering is Raman scattering
where the incident photon is red-shifted (Stockes Raman scattering) or blue shifted (anti-Stockes Raman scattering).
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a more complex field ruled by Mie’s theory [Mie 1908]. The Mie theory gives the scattering equations
for spherical particles, which involves the particle size a (the scattering efficiency scales as 1/a2). It
predicts a particle-dependent scattering directionality: large particles (a� λ) experience forward
scattering, whereas smaller ones (a � λ) enjoys a more isotropic scattering. The size constraint
detailed above explains why not all materials scatter light equivalently. This description is however
complex and difficult to use for practical applications. A solution consists in working with averaged
quantities, thus leaving the microscopic scale. For instance when one can define a refractive index,
then geometrical optics is a very convenient way to describe light propagation.

1.1.2.2 Diffusion equation for multiple scattering

A way of tackling the problem is to write an energy balance on mesoscopic volumes, which leads to
an equation of radiative transfer6. In larger dimensions, the latter equation can reduce to a diffusion
equation7: [

∂

∂t
−D∆r + vEµa

]
ud(r, t) = S(r, t), (1.2)

where ud is the scattered energy density, S is a source term, vE is the energy velocity, µa is the
absorption coefficient8 and D is the diffusion constant [Carminati et al. 2021; Rossum et al. 1999].
In the following we will consider media without (or with very limited, see Sec. 1.2.1) absorption and
no source term (e.g. no gain medium). The diffusion constant D introduced is expressed as

D =
vEl
∗

3
, (1.3)

where length l∗ stands for the transport mean free path. It physically corresponds to the distance
after which a light beam has “forgotten” about its initial direction due to the succession of scattering
events. It would seem logical that the transport mean free path should depend on the (averaged)
distance between two scattering events, namely the scattering mean free path ls. The latter can be
estimated from the medium density. However the transport mean free path and the scattering mean
free path do not necessarily coincide. The directionality of the scattering is involved through the
anisotropy factor ganiso.:

l∗(ω) =
ls(ω)

1− ganiso.(ω)
. (1.4)

The factor ganiso. is defined as the averaged cosine of the scattering angle. For forward scattering
media the transport and the scattering mean free path are identical whereas, for biological samples
(for instance), the anisotropy factor is close to 1 [Cheong et al. 1990; Ntziachristos 2010]).

The introduction of these diffusion length scales (ls and l∗) allows to classify the diffusion regimes
by comparing the scattering medium size L to ls (or l∗):

• L� ls: most of the light is not scattered at all, it is the ballistic regime,

• L ∼ ls, l
∗: in average the light was subjected to a single scattering event, it is the single

scattering regime,

• L� l∗: several scattering events occur, it is the multiple scattering regime.

These regimes9 are illustrated in Fig. 1.4. The theoretical highlight of these different regimes supports
6Equation that can also be derived from the field and radiative transport theory.
7Written as it is, the equation applies to a non absorbing medium.
8The absorption coefficient is the inverse of the absorption length.
9The distinction between ls and l∗ for defining the regimes ranges is not detailed.
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L � ls L ∼ ls, l
∗ L � l∗

Ballistic
regime

Increasing
photon scattering

Random
walk

Figure 1.4: Different regimes of for light propagation. Light propagation and scattering
sample thickness L. For L� ls most photons do not experience scattering events and are ballistic.
Increasing L increases the probability of photon scatterings. For L� l∗, due to the very numerous
scattering events, the photons undergo a random walk. Figure from [Ntziachristos 2010].

the intuition obtained with the fog picture of Sec. 1.1.1.
Given some boundary conditions, Eq. 1.2 can be solved. The general geometry used is the one of

a slab. In this case one gets for the transmission T [Rossum et al. 1999]

T ∼ l∗

L
. (1.5)

This scaling of the scattered light transmission is interesting in two aspects. First it can be compared
with the Beer-Lambert law predicting, for the ballistic light, an exponential decay along the medium.
Second it is very reminiscent of Ohm’s law observed in electrokinetics (Eq. 1.5 is for this reason
called Optical Ohm’s law10). This similarity is not fortuitous as both phenomena are driven by
diffusion equations. A table summarizing the analogies is presented11 Tab. 1.1. It is noteworthy
that in all cases the macroscopic quantities (resistance, transmission, etc.) are linked to microscopic
ones through the diffusion coefficient and the medium geometry.

Due to the first order time derivative in Eq. 1.2, diffusion is an irreversible process. However,
this holds at the global intensity level. The field satisfies Maxwell equations and we will show that
the coherent aspect of light scattering makes it possible to circumvent the apparent irreversibility of
the process and achieve light control even in (or behind) very scattering media.

We will focus now on one striking consequence of coherent scattering: the speckle pattern,
typically observed when coherent light propagates through scattering media.

1.1.3 A consequence of coherent scattering: the speckle pattern

1.1.3.1 Speckle pattern

A diffusion equation highlights an irreversible process: the first order temporal derivative forbids
time reversal. However the scattering description considering the intensity diffusion is incomplete

10It is noteworthy that T corresponds to the intensive writting of the “luminicent resistance”, see Tab. 1.1.
11Viscosity diffusion also could be added to the table.
12No specific name at my knowledge linking the radiative vector to the energy density [Carminati et al. 2021].
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(a) Thermal (b) Electric (c) Particles (d) Light

Diffused quantity Heat charge density particle density energy density
(T, temperature) (V) (n) (ud)

Local law Fourier Local Ohm’s law Fick Fick12

(j = −κ∇T ) (j = σE = −σ∇V ) (j = −D∇n) (j = −l∗∇Iν)

Diffusion coefficient D =
κ

C
D =

µekBT

e
D =

kBT

6πrη
(liquids) D =

vEl
∗

3
depends on the state

Global law Rth. =
1

κ

`

S
Rel. =

1

σ

`

S
Rpart. =

`

DS RL =
1

l∗
`

S

Table 1.1: Analogy among diffusion equations for different quantities. All four quantities
follow a diffusion equation. Macroscopic geometric quantities are ` (medium length) and S (medium
section). (a) Heat transport, κ is the thermal conductivity, C the heat capacity per unit volume. (b)
Electrokinetics, σ is the electrical conductivity, e the electron charge, kB the Boltzmann constant
and µe the mobility. (c) Particles, kB the Boltzmann constant, r the particle radius and η the
dynamic viscosity. (d) Light, l∗ is the transport mean free path and Iν the specific intensity. Using
the equations analogy a “luminicent resistance” RL (with the dimension of the inverse of a surface)
is introduced.
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as it disregards the phase information. This effect is somewhat reminiscent of the inhomogeneous
transversal decay rate T ∗2 observed for a collection of spins. Looking at the spins individually, their
decay rate is slower (T2 > T ∗2 ) as illustrated when “reversing the time” (with a π-pulse in a spin echo
sequence): the spins can be back aligned. Similarly with the scattering a phase information remains
that makes the propagation deterministic, but it is not visible when describing only the intensity.

From now on we forget about the physical origin of the light scattering and just keep in mind
that during a scattering process the phase is conserved thus involving an interference pattern. It is
this pattern that will catch our attention. To describe it, we will take advantage of the particle-wave
duality by either considering the light field as a wave (to compute the intensity profile and harness
spectral and temporal aspects) or using photons. With the photon picture, performing a random
walk in the medium, statistical quantities of the speckle pattern can be derived [Goodman 2007].

Let us consider a scattering medium illuminated by a coherent light (laser light for instance).
Looking at the intensity distribution behind the medium on observes a complex structure composed
of several bright and dark spots, see Fig. 1.5(a). This is a speckle pattern (the source coherence
however is not the only constraint to observe a speckle pattern, see Comm. 1.1.1). One can interpret

(a) (b)

Figure 1.5: Speckle pattern: result of a complex interference. (a) Image of a speckle pattern
obtained when illuminating a scattering medium with a laser light. (b) Top: Intensity pattern from
the interference of two slits. Bottom: Speckle pattern or the interference from numerous arbitrarily
positioned slits.

this pattern as the result of the diffraction by numerous particles randomly positioned, see Fig. 1.5(b).

Comment 1.1.1.
It is also noteworthy that the observation of a speckle pattern is however not automatic, even
in coherent light. An important condition is the static behavior of the complex medium. If the
medium changes faster than the acquisition time of the receptor (human eye or so), the different
intensity patterns sum up (incoherently) so that the total intensity appears homogeneous. This
is for instance what happens when illuminating liquids containing suspensions of scattering
particles (diluted milk for instance).

Let us try to analyze the speckle pattern itself [Françon 2012]. From its mere observation some
comments arise. It is a very contrasted pattern (Sec. 3.1.1) with two different length scales: a large
scale forms the speckle blob (halo) and a shorter scale is related to the speckle grain. Let us consider
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the illumination on an area of transverse characteristic size ∆ with particles of size a. Imaging
a plane at a position z behind this area (far enough to be in the far field), both the blob size B
and the transversal speckle grain b⊥ (extended version of the interfringe) are given by diffraction
arguments [Ward et al. 2009; Goodman 2007].

B ≈ λz

a
and b⊥ ≈

λz

∆
. (1.6)

As mentioned, the speckle pattern presented in Fig. 1.5(a) is captured on a single plane. However
the interference is delocalized13 and occurs in a volume. In the axial direction of the initial laser
beam, the speckle grain size corresponds to the Rayleigh length [Halford et al. 1987b; Ward et al.
2009; Goodman 2007] such that the longitudinal grain b// size is given by

b// ≈ λ
( z

∆

)2
. (1.7)

Because no axial variation is expected in Fraunhofer diffraction, there is no straightforward handwavy
explanation of Eq. 1.7 based on interfringe. However, the longitudinal speckle grain size expression
(as well as the transverse one) can be retrieved with a small calculation presented in Appendix B.1.
The main idea is to consider the speckle grain as a volume in which the optical path difference
between two rays from the illuminated area does not exceed λ/2. These estimations are rough and
an analysis of the speckle dimensions requires similar hypotheses on the imaged planed, as deeply
discussed by [Gatti et al. 2008; Magatti et al. 2009] who investigate the three dimensional coherence
of light speckle.

In addition to these geometrical characteristics, the speckle pattern is remarkable due to its
universal statistics and its contrast reaching unity. Speckle statistics, follow a Rayleigh distribution,
as extensively discussed in Sec. 3.1.

The interferential origin of the speckle pattern is just sketched above. A complete description of
the speckle requires the knowledge of the pattern intensity. Within the framework of the diffraction
theory the expected intensity of a constructive interference of N elements scales as N2. It is thus
important to understand what N stands for in a complex medium. It can be estimated by

N ≡ Nmodes ∝
(

∆

λ

)2

. (1.8)

Such a scaling is not bizarre as it corresponds to the scaling of the number of modes in a waveguide
with the same input surface size (see Sec. 6.1.1).

1.1.3.2 Correlations in the speckle pattern

Let us now consider correlations in the speckle pattern. From the modal approach (see Sec. 1.3.1)
one can consider that an input field is linked to its output by a propagator depending on both input
and output directions (or positions) [Carminati et al. 2021; Vesperinas 2006]. The question is the
following: is there a correlation between a field the input of which propagates in a direction a and
the output of which propagates in a direction b, with another field the input of which propagates
in a direction a′ and the output of which propagates in a direction b′? The correlation between
these two quantities is denoted Caba′b′ . There exists a general expression of Caba′b′ using the field
propagator (computed from a Born series of the Lippman-Schwinger equation), but it will not be
given here. From the expression of Caba′b′ some remarkable behaviors can be highlighted and they

13The interference results from a wavefront division.
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are presented hereafter without details that can be found in the seminal paper [Feng et al. 1988a],
in articles [Berkovits et al. 1994], in books [Carminati et al. 2021; Akkermans et al. 2007] or in a
review [Rotter et al. 2017]. The full correlation Caba′b′ can be expanded in powers of 1/(kl∗) with
(1/(kl∗) � 1 in the strong scattering regime). Three terms are worth mentioning: C(1)

aba′b′ , C
(2)
aba′b′

and C(3)
aba′b′ ; they are detailed in [Feng et al. 1988a].

• The first (and dominant) term represents the large local correlations responsible for the
speckle grain size, called short-range correlations. Already discussed through mere diffraction
arguments, both approaches lead to the same results. Nonetheless a novel feature appears:
when tilting the input angle by ∆θ, the output speckle gets shifted by the same angle. This
effect, called memory effect (ME), discussed in details in Sec. 1.1.4.1 and in Sec. 6.2.1, is
however expected to be limited to a finite angle range with ∆θ ≤ λ/L.

• The second term corresponds to the case of two similar inputs (a = a′) leading to correlated
outputs. The spatial decay of this term is slower than the grain size so that it can affect two
output positions further apart than a grain size. One hence can refer to the correlation as a
long-range correlation. However the magnitude of this term is smaller than for C(1)

aba′b′ . The
weight reduction factor is called the conductance g referring to Landauer’s formula for electrons
conductance in a disordered medium [Fisher et al. 1981] and scales as Nmodes/(l

∗L) [Akkermans
et al. 2007].

• The third term is expected to give a spatially unlimited uniform positive correlation and is
hence called infinite-range correlation. Its magnitude is also reduced by a factor of 1/g with
respect to the long-range correlation term, making it hardly measurable despite an achievement
by [Scheffold et al. 1998].

In all the experiments performed in this thesis, one has g ∼ 105-108 only limiting us to C(1)

correlations, due to the high number of modes (Nmodes ∼ 106-109) and the limited transmission
T = l∗/L ∼ 0.2.

Hence, he speckle pattern mainly depends on external parameters that can be set. Some are
discussed in the following section.

1.1.4 Dependencies of the speckle pattern

As detailed previously, the speckle pattern is the result of a complex interference. Slightly modifying
the field at the output leads to a change in the speckle pattern. Thus, it is not surprising that
completely changing the disorder changes the speckle, see Fig. 1.6(a). However, when changing
continuously an illumination parameter, it is interesting to evaluate the range for which the speckle
is still correlated to the initial one [Shapiro 1986]. We will discuss some frequently choices of
parameters, that can be tuned experimentally.

1.1.4.1 Illumination scheme and the memory effect speckle resilience

A modification that we already mentioned is the illumination angle itself. For relatively small tilts
of the input wavefront, the speckle pattern gets shifted in the imaged plane (see Sec. 1.1.3). The
theoretical prediction of [Feng et al. 1988a] was followed by an experimental observation [Freund
et al. 1988] and several extensions, see Sec. 6.2.1. The ME is very helpful in imaging techniques and
has been extensively used in this field as soon as 1990 [Freund 1990].
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1.1.4.2 Spectral dependence

The reasoning applied in [Feng et al. 1988a] can be extended to include correlations between waves at
different frequencies [Berkovits et al. 1994]. It is indeed straightforward that changing the input light
frequency would change the speckle pattern. In addition to a homothetic scaling factor [Goodman
2007] expected from Eq. 1.6, the impact on the output phases of the different modes leads to a new
speckle pattern14, see Fig. 1.6(b). The frequency shift required to uncorrelate the speckle pattern
depends on the medium and it is referred to as the medium spectral bandwidth δλm. It somehow
corresponds to the spectral grain size bλ of the speckle,

bλ ≈ δλm. (1.9)

Although [Shapiro 1986] gives a theoretical analysis, the spectral bandwidth can be determined
experimentally by extracting the full width at half maximum (FWHM) of the correlation between
speckle patterns measured varying the input wavelength, as performed in [Andreoli et al. 2015] and
illustrated in Fig. 1.6(c). On the rightmost part of Fig. 1.6(c), one can see the effect of simultaneously

(a)

(b)

(c)

Figure 1.6: Speckle pattern dependencies. (a) The illumination of two different spatial spots of
the medium with the same wavelength leads to different output speckle patterns. (b) The illumination
of the same spatial spot of the medium with different wavelengths also leads to different speckle
patterns. (c) Smoothly tuning the illuminating wavelength and computing the speckle correlations
enables to obtain the decorrelation function. Measuring its FWHM experimentally gives access to
δλm the value of which is medium dependent. Figures (a,b) are extracted from [Mosk et al. 2012]
whereas (c) is taken from [Andreoli et al. 2015].

illuminating the sample with different wavelengths. The speckle results from the incoherent sum
of the monochromatic speckles obtained for all the different wavelengths. The contrast C is hence
reduced and is expected to be C = 1/

√
Nλ, where Nλ represents the number of independent speckle

14The phase changing faster than the amplitude with λ, in complex media no homothetic scaling with wavelength is
usually observed.
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patterns (here Nλ = 3). When illuminating a medium with a source of spectral bandwidth δλs < δλm
then the source can be considered monochromatic for the medium [Vellekoop 2015]. Otherwise the
number of independent wavelengths is

Nλ =
δλs
δλm

. (1.10)

This contrast dependence was proven useful to measure scattering properties of the medium [Curry
et al. 2011; Thompson et al. 1997] or even to localize scattering particles [McKinney et al. 2000].

Due to the Fourier relation, it is noteworthy that illuminating the sample with a broadband
source is equivalent to illuminating it with a temporal pulse. Hence, in the next section we will focus
on temporal aspects of the speckle pattern.

1.1.4.3 Temporal dependence

Before considering broadband light, let us first recall that light propagation in highly scattering
media follows a diffusion equation (see Eq. 1.2). From this equation emerges a timescale given by

τD ∼
L2

D , (1.11)

and called theThouless time. A closer study reveals two times with different physical interpretations
following this scaling [Rotter et al. 2017]: τT the transmission time and τR the reflexion time.

• The Thouless15 time τD corresponds to the average time taken by light, initially in the medium,
to exit. It is given by τD ≈ L2/(π2D) [Vellekoop et al. 2005]. The Thouless time can be
extracted by fitting the exponential decay of an incoming short pulse. The intensity exponential
decay is interesting as it allows to keep the electrical analogy: the medium acts as a low-pass
RC filter (the luminicent equivalent of the resistance arising from the diffusion equation,
see Tab. 1.1). The response to an impulsion is an exponential discharge of the medium (then
seen as a capacitor). The medium thus smoothes input intensity variations.

• Conversely, the transmission time τT represents the average time taken by light to diffuse
through the medium; it is given by τT ≈ L2/(6D) [Landauer et al. 1987]. It is measured by
different techniques in [Vellekoop et al. 2005].

• The reflexion time represents the average time light takes to be reflected by the medium.
Because it is more likely that light only travels a small path through the medium, it can be
deduced from the diffusion time scaling by taking L ' l∗, leading to τR ∼ l∗/vE .

The transmission time and reflexion time can be formally introduced and linked with the mean
transmission time and the mean reflection time operators [Durand 2020] introduced in Sec. 1.5.
Considering these three times, one has the ordering (valid in the multiple scattering regime)

τR < τD < τT . (1.12)

The contrast measurement performed in [Curry et al. 2011] also enables to extract τT using Eq. 1.10
and sending an input light pulse of known bandwidth δλs, using the fact that δλm ∝ 1/τT for the
medium.

Notice that the temporal aspect brings another degree of freedom for the speckle. It becomes
time dependent if a light pulse is sent to the medium, see Fig. 1.7. In the spectral domain, the

15This name comes from the extraction by Thouless in [Thouless 1977] of a similar time for electrons to diffuse to
the end of a wire. It is noteworthy that this similarity comes from the diffusion equation followed by both electrons
and light.
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Figure 1.7: Spatio-temporal speckle. A short input pulse is sent into a scattering medium. A
time-dependent speckle is observed at the output. The figure is taken from [Weiner 2011].

source bandwidth corresponds to the large spectral scale and the spectral grain size is related to the
medium bandwidth. On the contrary, in the time domain the medium timescale (transmission time
for instance) is related to the envelope whereas the source duration δts gives the temporal grain size
which yields

bt ≈ δts. (1.13)

In this section we have seen that, due to diffusion, light propagating through a complex medium
is distorted both spatially and temporally. Since the pulse is Fourier limited, spectral and temporal
aspects are two facets of the same phenomenon [Genack et al. 1990], aspect that we will extensively
use all along this work. In the next section we will review the methods and tools harnessed to
circumvent and even take advantage of this distortion.

1.2 How to fight diffusion: wavefront shaping and optimization

As seen previously, as soon as a medium scatters light and is not thin enough to avoid multiple
scattering, the outgoing light is diffuse. Under coherent light, the speckle pattern, despite its intrinsic
interest, seems to be of limited help to get information on the medium. So then why putting so much
efforts in the study of light propagation thought complex media? Can we even do something about
it? The motivations of this work are presented in Sec. 1.2.1. The coherent aspect of the propagation
provides a way to understand and control the propagation using wavefront shaping (WFS); we
present its principle and main tools in Sec. 1.2.2 and two examples of applications in Sec. 1.2.3
and Sec. 1.2.4.

1.2.1 Motivation

All imaging techniques rely on the interaction between the probe wave and the object. Nowadays
the most common non-invasive imaging techniques are radiology, scintigraphy, magnetic resonance
imaging (MRI) and echography [Poirier-Quinot 2019].

• Radiology, for which Wilhelm Röntgen was awarded the Nobel prize in 1901, uses X-rays. The
technique relies on the rays’ different absorption by the tissues, leading to a transmission gray
level anatomical image. Though rapid, it however suffers from a limited resolution (∼ 0.1mm)
and subjects the patient to X-radiations.
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• Scintigraphy uses a radioactive tracer linked to the target (cell for instance). The signal
emitted by the tracer (γ rays) is collected by a γ camera. This technique enables functional
imaging but is specific, with low spatial resolution (∼ 5mm), slow and subjects the patient to
γ-radiations.

• MRI (the most recent technique) is based on the measurement of different relaxation times
(T1 and T2) of the tissue water protons. It uses the nuclear magnetic resonance mechanism to
rouse the hydrogen nuclei from their Boltzmann thermal equilibrium. Subtle imaging tricks
are implemented to get a three dimensional map of the tissue water density. It is non-invasive
(apart from the injection of contrast agents) but costly, long to perform and resolution-limited16

(∼ 1mm).

• The echography technique uses ultrasonic waves. The tissue structure, modeled as a succession
of acoustic impedances, is probed by measuring the return time of an input signal. The imaging
is depth-limited (even though penetration reaches a few centimeters) with spatial resolution of
∼ 0.2mm using conventional medical echographs.

All these techniques are complementary but a gap still needs to be filled [Sebbah 2001]. Optical light
is a good candidate for non-invasive and radiation-free imaging as it could allow a kind of echography
with an optical resolution. Moreover, the idea of seeing through tissues (or more generally though
opaque media) is exciting. Among the wave-based electromagnetic imaging techniques described
above, the frequency of the wave is dictated by the underlying physical principle. For optical imaging
where scattering is the issue, the frequency remains fundamental (scattering is indeed frequency
dependent). An idea would be to target frequencies for which the scattering is the lowest possible
(i.e. longest wavelengths [Hong et al. 2014]). However scattering is not the only imaging limitation,
and one should not forget absorption. A range of wavelengths, the therapeutic window, is defined
and consists in the minimization of water absorption (shifted to the higher wavelengths region),
see Fig. 1.8. Yet tissue absorption is not always avoided and sometimes it is an asset to improve
the penetration depth by suppressing the multiple scattered photons which are more subjected to
absorption [Carr et al. 2018].

To be able to use visible light for imaging, dealing with light scattering is thus fundamental. The
next section presents a manner of doing so using wavefront shaping techniques.

1.2.2 Principle of wavefront shaping and its tools

1.2.2.1 Origin and principle of wavefront shaping

The idea of wavefront shaping comes from astronomy. Observation was impaired by atmospheric
turbulence leading to refractive index inhomogeneities and hence aberrations: distorted wavefronts
arriving on the telescope lead to a blurred image. The idea, developed in 1953 by H.W. Babcock,
was to “un-distort” the wavefront by adding a compensation with the optical elements of the
setup [Babcock 1953]. The need for this compensation to be reconfigurable led to the development
of deformable mirrors at the root of adaptive optics. Now widely used [Roddier 1999; Tyson 2015;
Hardy 1998] this technique extends to microscopy where similar issues call for similar remedies. An
illustration of adaptive optics is presented in Fig. 1.9: an aberrated focus (Fig. 1.9(a)) is corrected
thanks to a pre-aberrated wavefront (Fig. 1.9(b)). A reverse measurement (for instance using
fluorescent particles in the sample) allows to determine the detection-induced aberrations (Fig. 1.9(c)).
The latter example introduces the important notion of guidestar, also used in astronomy, required

16But very good regarding the used frequencies (64MHz).
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Figure 1.8: Therapeutic window. Dependence of the absorption of some tissues with the
wavelength. The drop (especially for water) in absorption is observed in the upper-wavelength part
of the visible spectrum and the near infra-red. The figure is taken from [Vo-Dinh 2014].

Figure 1.9: Adaptive optics for microscopy. (a) Aberrated focus induced by an incoming
aberrated wavefront. (b) A deformable mirror compensates for the outgoing aberrated wavefront
allowing the obtention of a corrected focus. (c) The use of a guidestar enables to determine the
aberrations induced by the detection path. The figure is taken from [Booth 2014].

when light manipulation on both sides of a scattering material is not possible [Horstmeyer et al.
2015].

However the main restriction of adaptive optics is the limited correction. For higher scattering
regimes a complete control over the incoming field is required, while keeping the adaptive optics
spirit, it calls for the use of specific devices. Some are presented in the next section.
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1.2.2.2 Different tools for wavefront shaping

The wavefront shaping is performed using spatial light modulators (SLMs). There are different
types of SLMs differentiated by their operating mode, all bearing numerous pixels (∼ 103 to 106). I
introduce here three of them: the micro-electro mechanical system (MEMS), the digital micro-mirror
device (DMD) and the liquid crystal SLM.

• The MEMS is the direct evolution of the deformable mirror used in adaptive optics [Bao
2005]. It is composed of a set of movable mirrors (of size in the range 10–100 µm). Their fast
translation allows a phase modulation in the range [0, 2π] with a refresh rate between 10 and
100 kHz.

• The DMD belongs to the same category as MEMS as it also involves micro-mirrors. These
mirrors are not translated but rotated. Two positions allow a fast (same order of speed
magnitude as the MEMS) binary amplitude modulation by deflecting the incoming light.

• The liquid crystal SLM, that is detailed in Sec. 2.2.2 and abusively only referred to as SLM
here, is composed of liquid crystal pixels. The refractive index change of the pixels allows
a phase modulation in the range [0, 2π] but prevents any fast control (the refresh rate is
10–100Hz). Moreover (liquid-crystal) SLMs can have the highest number of pixels among all
SLMs. (Liquid-crystal) SLMs performances are compared to those of DMDs in [Turtaev et al.
2017].

A comparison summary is presented in Tab. 1.2.

Technology liquid crystal SLM MEMS DMD

Illustration

Number of pixels ∼ 106 ∼ 103 ∼ 105−6

Diffraction efficiency ∼ 90 % 100 % 50 %
Modulation Phase [0, 2π] Phase [0, 2π] Binary amplitude

Maximal speed ∼ 100Hz ∼ 10 kHz < 100 kHz
Cost ∼ 104e ∼ 105e ∼ 103e

Table 1.2: Main spatial light modulator devices. Comparison of the main characteristics of
widely used SLMs. Table inspired from [Mounaix 2017].

With these tools allowing to shap at will the wavefront of an incoming beam, a guiding principle
is now required for implementing the shaping. One not only needs the tools but also a goal
and procedure idea. The same distinction as in [Horstmeyer et al. 2015] is followed here for the
presentation: we present conjugation techniques in Sec. 1.2.3 and feedback ones in Sec. 1.2.4.

1.2.3 Time reversal operator and phase conjugation

The starting point of the use of phase conjugation is the time-reversal operator introduced [Fink
1997] in acoustics. To understand, one should recall that acoustic waves follow a d’Alembert equation
having the property of being time reversal invariant due to the temporal second order derivative.
Thus if a wave generated on some location propagates (even in a complex environment), applying
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the time-reversal operation on it would make it refocus at its emission point. To do so, one needs
a device that could conjugate the incoming wave and send it back, it is called a time-reversal
mirror [Fink 1993]. It is noteworthy that it is very reminiscent of the deformable mirrors from
adaptive optics [Hardy 1998]. Time reversal mirrors are used for acoustic waves [Fink et al. 2001];
their principle for electromagnetic waves, that also follow a d’Alembert equation, is presented
in [De Rosny et al. 2010]. In optics, this procedure is called optical phase conjugation [Fisher
2012]. It can be performed by recording a hologram on a photographic plate [Leith et al. 1966]
or using photorefractive crystals. This technique was proven to be powerful in thick scattering
tissues [Yaqoob et al. 2008; McDowell et al. 2010] or to compensate for pulse dispersion by nonlinear
phase conjugation [Yariv et al. 1979]. However the emergence of SLMs extends possibilities and
favors digital optical phase conjugation expansion. The principle remains globally the same:
(i) the field is recorded (in general using interference with a reference beam) see Fig. 1.10(a) (ii),
a pattern is displayed on the SLM to form the phase conjugated wavefront that propagates back,
see Fig. 1.10(b). Digital optical phase conjugation is interesting as it enables a single measurement

(a) (b)

Figure 1.10: Principle of the digital optical phase conjugation. DOPC stands for digital
optical phase conjugation. (a) Recording of the output scattered field (through its interference
pattern with the reference beam). (b) Digital phase conjugation with the SLM (acting on the
reference beam as a time-reversal mirror) to illuminate the sample et refocus light. Figure adapted
from [Jang et al. 2015].

and can easily be applied to dynamic media (often the case for biological samples). However one of
its limitations is the delicate alignment required [Jang et al. 2014].

In the next section we are going to discuss a similar approach relying on iterative optimization
of the wavefront.

1.2.4 Optimization

1.2.4.1 Phase alignment and seminal works

To illustrate the idea of the optimization technique let us take the example or the seminal work
by [Vellekoop et al. 2007]. A scattering medium (10 µm-thick layer of TiO2) is illuminated by a
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plane wave input and an output speckle pattern is measured on a camera behind it. This speckle
is the coherent sum of random phasors [Goodman 2007]. This initial configuration is illustrated
in Fig. 1.11(a). With a SLM set to have NSLM ≈ 3000 degrees of freedom (modes), the wavefront is
modulated. At the beginning of the optimization all SLM modes phases are set to 0. Then during
the optimization process the phase of the mode is modulated from 0 to 2π and the intensity on a
target position is measured. The phase maximizing the output intensity is kept for this mode. We
iterate over all the SLM modes. By doing so at every step, one aligns all phasors together. At the
end of the process one displays a complex wavefront on the SLM that aligns all the phasors for the
target position, resulting in a light focus, see Fig. 1.11(b).

Im

Re

Im

Re

Figure 1.11: Focusing behind a scattering medium with wavefront optimization. (a) Non-
optimized wavefront, a speckle pattern is observable behind the scattering medium, corresponding to
the sum of random phasors. (b) Optimized wavefront that aligns all phasors at the target position
and hence entails light focusing. Figure adapted from [Vellekoop et al. 2007].

The obtained focus bears some interesting properties. The reached intensity enhancement (with
respect to a plane wave input wavefront) ηI is

ηI '
π

4
NSLM, NSLM � 1. (1.14)

This value can be simply understood: the amplitude of the aligned phasors should scale as NSLM

whereas the background phasors, due to the random summing should scale as
√
NSLM. The amplitude

enhancement (ratio of both) hence scales as
√
NSLM and one can obtaine the intensity enhancement

by simply squaring the value (it is only one spatial position). Another interesting property of the focus
is its resilience to an incoming frequency shift that is given by the medium bandwidth [Van Beijnum
et al. 2011]. Once a focus is formed it is also resilient in the range of the ME [Tran et al. 2019].

1.2.4.2 Different methods

The previous optimization is the historical one. Several similar methods have been developed since,
that we will briefly review; for a more complete description see [Vellekoop 2015].

First the optimization is not limited to one output target and the algorithm can be run optimizing
simultaneously on several points as in [Vellekoop et al. 2007], the individual enhancement being
reduced accordingly. Other algorithms have been proposed in [Conkey et al. 2012] or [Boniface et al.
2019a] where the optimization is performed on the speckle spatial variance.
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When it comes to focus light on large areas (not being limited to a single or a couple of spatial
positions), more complex behaviors arise. For instance in [Ojambati et al. 2016] a spread enhancement
was reached due to the presence of long-range correlations (see Sec. 1.1.3.2).

One problem of this optimization scheme is its intrinsic iterative nature: the measurement takes
some time and is not reconfigurable to focus in another position. Also, due to the choice of the
parameter to optimize with, the focus result might not be optimal. It is optimal when optimizing
with the intensity in one spatial position, but it is harder to conclude for a whole area. Then what is
the best way to enhance the energy on a specific region? These questions will be addressed in Chap. 3
and Chap. 4.

Before discussing another approach for controlling the field behind a complex medium, let us
make a small step aside by discussing temporal and spectral aspects and focusing with non-invasive
imaging.

1.2.4.3 Inside biological samples

To perform the techniques detailed in Sec. 1.2.3 and in Sec. 1.2.4, and focus light inside a scat-
tering medium, see Fig. 1.12, often the case when seeking at in vivo imaging, a guidestar is
needed17 [Horstmeyer et al. 2015]. The guidestar can take various forms: from fluorescence [Vellekoop

Figure 1.12: Focusing inside a scattering sample. (a) A coherent beam of light propagates
through a scattering sample. Reaching one transport mean free path l∗ the directionality is lost.
(b) Wavefront shaping is applied on the incoming beam making it possible to focus light inside the
scattering sample beyond l∗. Figure from [Horstmeyer et al. 2015].

et al. 2008a; Vellekoop et al. 2012] to second harmonic generation from nonlinear particles [Hsieh
et al. 2010], but also ultrasounds and photoacoustics [Wang et al. 2012; Chaigne et al. 2014] and
even taking advantage of the medium itself [Zhou et al. 2014]. For a review of the techniques
see [Horstmeyer et al. 2015].

1.2.5 Approaches extended to pulses of light

The previous concepts (phase conjugation Sec. 1.2.3 and optimization Sec. 1.2.4), generally presented
for monochromatic light can be extended to control pulses propagation. The feedback optimization
is implemented in [Paudel et al. 2013] with polychromatic light and is associated with a narrow
spectrum and hence a pulse recompression. The time-reversal analogue is presented in [McCabe et al.

17See [Ambichl et al. 2017a] for an atypical guidestar example.
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2011], where the complex mixing of spatial and spectral degrees of freedom is emphasized [Wang
et al. 2011]. A consequence of this spatio-temporal coupling is the conversion of spatiotemporal
degrees of freedom to spatial ones [Lemoult et al. 2009]. It was done for instance with a time-gated
feedback in [Aulbach et al. 2011] or with two-photon fluorescence in [Katz et al. 2011].

1.3 Transmission matrix

In this section we introduce the concept of the transmission matrix (TM), that we will extensively
use all along this work. This tool proves to be both very practical and very informative about
mechanisms governing light propagation in complex media. The TM is introduced via the scattering
matrix, presented in Sec. 1.3.1. The TM main focusing characteristics are detailed in Sec. 1.3.2 and
its extension to broadband light is discussed in Sec. 1.3.3.

1.3.1 From the scattering matrix to the transmission matrix

In Sec. 1.1.3.2 the modes of the medium were mentioned. To understand what this term exactly refers
to, it is convenient to extend the analogy with electron scattering. The latter is mainly developed by
Landauer, Imry and Büttiker [Beenakker 1997]. They consider a mesoscopic conductor subjected to
coherent scattering connected to electron reservoirs. This approach is extended to any scattering
problem, for instance for electromagnetic waves [Saxon 1955]. This asymptotical description of
scattering (the matrix globally describes the scattering with no near field information [Carminati
et al. 2000]) is depicted in Fig. 1.13. All leads are connected together with the introduction of a

E+
in E+

out

E−
out E−

in

Figure 1.13: Scattering matrix. Information on light propagation is contained in the scattering
matrix. On a slab geometry it links the input field Ein from both sides (left to right: E+

in and right
to left E−in) to the output field Eout (left to right: E+

out and right to left E−out).

matrix [Imry 1986], called the scattering matrix and denoted S, such that

Eout = SEin, (1.15)

where Eout and Ein are respectively the waves exiting and entering the area. The same holds for
photons [Beenakker 1997; Rotter et al. 2017]. In a 2D geometry (e.g. slab), to differentiate the field
propagation from left to right (E+) from the field propagating from right to left (E−), the matrix is
decomposed into four different sub-matrices: T , T ′, R, R′:

S =

(
R T ′

T R′

)
, with Ein =

(
E+

in

E−in

)
and Eout =

(
E−out

E+
out

)
. (1.16)
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Matrices R and R′ are called reflexion matrices and matrices T and T ′ are called transmission
matrices. It is noteworthy that the reflexion matrices are necessarily square whereas the transmission
matrices are not.

In absence of absorption, energy conservation dictates that S is Hermitian (S†S = 1), leading to
relations between the sub-matrices. One has,

R†R+ T †T = T ′†T ′ +R′†R′ = 1,

R†T ′ + T †R′ = T ′†R+R′†T = 0,
(1.17)

with a similar set for SS† = 1. The link between all the quantities (e.g. Eq. 1.17) is very useful as it
enables in some cases to access the required information without a full measurement of the scattering
matrix as in [Davy et al. 2021]. The matrices R†R and T †T (and the two primed forms) play an
important role in the scattering study. For instance they bear information on the total transmitted
intensity and total reflected intensity given by TI = Tr(T †T ) and RI = Tr(R†R). These quantities
(T †T , R†R, TI and RI) also give access to the so-called conductance of the system. Introducing this
conductance, we follow the line of the analogy with electron scattering [Fisher et al. 1981], where a
dimensionless conductance is introduced and given by Landauer’s formula:

g ≡ G

e2h
= TI, (1.18)

where G is the conductance, e is the electron charge, h is the Planck constant and TI is the transmitted
intensity [Feng et al. 1988a; Berkovits et al. 1994]. The implications of the conductance value and
its fluctuations in scattering experiments is discussed in Sec. 1.4.1.

It is noteworthy, from the scattering matrix description, that the scattering matrix is closely
related to the Green functions of the system [Fisher et al. 1981]. The differences are discussed
in [Rotter et al. 2017] and the near field effects are accounted in [Carminati et al. 2000].

Usually no complete measurements of the scattering matrix are performed, because of the very
high level of information required. Such a measurement was however done in acoustics (with a
limited number of modes) [Gérardin et al. 2014] but not in optics despite important efforts [Yu et al.
2013].

In this work we will solely measure the sub-matrix T that will be refered to as the transmission
matrix (TM). Moreover even the measurement of the TM is very partial. The consequences of this
partial control are discussed in Sec. 1.4. The purpose of the following section is only to introduce
the different tools, putting apart the completeness of the measurement and its effect.

1.3.2 The monochromatic transmission matrix and its characteristics

1.3.2.1 The monochromatic transmission matrix

The simplest framework to introduce the transmission matrix is the monochromatic case, with a
first measure by Popoff et al [Popoff et al. 2010]. Its principle follows the lines of the scattering
matrix description: due to the linearity of the propagation it is possible to build up a matrix linking
the input field to the output field (in the left to right propagation, it is the T sub-matrix of the
scattering matrix S, see Eq. 1.16). To measure experimentally this matrix one needs to record the
output fields for a basis of input vectors. The presentation of the field measurement as well as
the choice of the basis are discussed in Sec. 2.3.4. Each input vector is generated using wavefront
shaping that forms a 2D field sent to the medium of interest. The associated 2D output field is
measured and reshaped as a vector to fill in a column of the TM. The field measurement is detailed
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in Sec. 2.3.2, and is based on the scattered field interference with a reference field. The reference
field can either propagate though the sample (without any phase modulation with the SLM) or be
an external plane wave.

It is noteworthy that, presented as it is, the measurement of a TM requires the access to both
sides of the sample, a constraint incompatible with non-invasive in vivo imaging. However there
exist methods to overcome this difficulty in obtaining non-invasive TM measurements [Boniface et al.
2020; Chaigne et al. 2014].

1.3.2.2 Focusing achievements of the transmission matrix

Once a TM T is measured it can be used to focus light. It is possible to compute the input field
Etarget

in to send into the medium for a targeted output Etarget
out .

Eout = TEin → Etarget
in = T−1Etarget

out . (1.19)

In practice, inverting the TM is not an easy and straightforward step due to computational and
measurement errors being enhanced. To overcome this difficulty, we use the phase conjugation
method18 already employed in Sec. 1.2.3. To focus light on one output pixel (ith of the canonical
basis for instance) the input is determined as follows:

Etarget
in = T †ei, where ei =



...
0
1
0
...

 . (1.20)

This technique hence allows to spatially focus the light and has the advantage of being fully
reconfigurable: as long as the TM is valid the targeted output field can be modified and a new
input field calculated. This is a major advantage to optimization technique presented in Sec. 1.2.4.
It is noteworthy that these two techniques are not independent, indeed the optimized wavefront
corresponds to a row of the TM (the row associated with the output spatial position of interest) [Mosk
et al. 2012].

1.3.2.3 Access to the medium modes

In addition to focusing possibilities, the TM gives access to the medium’s modes. Having measured
a TM, the natural thing to do is try to diagonalize it. As mentioned earlier, a TM is not necessarily
square, preventing a direct eigen-decomposition. A workaround consists in studying the eigen-
decomposition of T †T , which is to the singular value decomposition (SVD) of T . The SVD is
detailed below.

Singular value decomposition

The SVD of a matrix T(n,m) (size n×m) consists in a decomposition such that

T(n,m) = U(n,n)Σ(n,m)V
†

(m,m), (1.21)

18The error is discussed in [Defienne 2015].Moreover using the transpose conjugate instead of the inverse realises
the constraint of decreasing the field at non-focusing positions and just bears information on the target position.
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where U and V , both unitary, are the matrices containing the so-called left and right singular
vectors and Σ is a diagonal matrix whose entries are the values s. Due to the origin of the SVD
(eigen-decomposition of T †T ) all singular values are positive real numbers, usually sorted in a
decreasing order. However it is important to keep in mind that the SVD returns the square root of
the eigenvalues of T †T .

A very interesting point is that the SVD of a TM T corresponds to the study of the time-reversal
operator given by T †T [Popoff et al. 2011; Prada et al. 1994].

Interest

The access to the TM singular modes granted by the SVD is interesting. Due to the SVD
definition, when illuminating the medium with an input singular vector (for instance the ith, Vi),
the transmission is driven by the associated singular value: TVi = siUi. Due to the singular vectors
unitarity, the total intensity is given by

I = V †i T
†TVi = s2

iU
†
i Ui = s2

i . (1.22)

This technique can thus be used to control the transmitted output intensity behind a scattering
medium as in [Kim et al. 2012]. They measure the total transmission on one ROI after a scattering
medium when using the different singular vectors to shape the incoming wavefront (red circles) or
when focusing spatially on one speckle grain (green line) and compare it to the mean transmittance
(black line), see Fig. 1.14

Figure 1.14: Transmission control with the singular value decomposition of a monochro-
matic transmission matrix. Transmission through a ZnO nanoparticles layer for different singular
vectors (red dots) and associated singular values corrected for the sample transmission. The green
line represents the global enhancement when optimization on one speckle grain is performed and the
black line the mean transmittance measured for an input plane wave. Figure from [Kim et al. 2012].
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Now that we introduced the TM tool and its use in monochromatic regime, we show that it can
be extended to broadband light transmission.

1.3.3 A concept extended to light pulses

The approach of broadband transmission is presented below with three approaches: the spectral one
using the multi-spectral transmission matrix (MSTM) in Sec. 1.3.3.1, the temporal one using
the time-resolved transmission matrix (TRTM) in Sec. 1.3.3.2, both allowing spatio-temporal
control, and another one relying on the measure of the so-called broadband transmission matrix
(BBTM) in Sec. 1.3.3.3.

1.3.3.1 Multispectral transmission matrix

The idea of the MSTM is to gather a set of monochromatic TMs. For several wavelengths belonging
to the pulse spectrum a monochromatic TM is measured, see Fig. 1.15(a). In the figure, an external
reference is used to measure the field and corresponds to the second arm of the setup. To fully
characterize the pulse propagation only a finite number of monochromatic TMs is required. This
number depends on the ratio between the bandwidth of the input light δλs and the medium spectral
bandwidth δλm (see Eq. 1.10) as illustrated in Fig. 1.15(b). The set of monochromatic TMs, that
can be represented as a cube, see Fig. 1.15(b), forms the MSTM.

With the MSTM one can focus selectively one or several spectral components of the pulse, using
the medium as a controllable dispersive element [Andreoli et al. 2015]. To go further and be able
to introduce a temporal control, a phase relation between all the measured monochromatic TMs is
required. It is reached thanks to a reference arm, see Chap. 2 for more details on the TM technical
measurement and the use of references. The phase relation opens the path to the full spatiotemporal
control of the ultrashort pulse, allowing spatio-temporal focusing [Mounaix et al. 2016b].

However a major drawback of the MSTM is the long measurement time it requires (measuring
Nλ TMs). To reduce this delay, a hyperspectral imaging system is used in [Boniface et al. 2019b]
that allows measuring at once all spectral components acquiring both spatial and spectral data in a
single array. It makes significant difference for thick scattering media (where Nλ is large). Its use
however requires a calibration step and a compromise in the number of pixels.

Another method to reach temporal control with fast measurements is the introduction of
temporally resolved measurements.

1.3.3.2 Time resolved transmission matrix

A pulse of light can be considered from the spectral point of view, as done in the previous section,
but also in the temporal domain; both being linked by a Fourier transform relation.

In the following we will call TRTM the Fourier equivalent of the MSTM, see Fig. 1.16(c). It
hence holds direct temporal information. All individual matrices are measured for specific delays
in the pulse thanks to a time-gated measurement, and are thus called time-gated transmission
matrices19 (TGTMs), see Fig. 1.16(a,b). For the purpose of a gated measurement an external
reference with a delay-line is mandatory: the short reference pulse can selectively interfere with
the elongated scattered pulse for different delays. The MSTM is based on Nλ monochromatic TMs
similarly, to reach the full temporal information the TRTM needs the measurement of Nτ TGTMs.
The value of Nτ is related to Nλ by

Nτ =
τD
δts

=
δλs
δλm

= Nλ. (1.23)

19Time-gated reflexion matrices were also measured [Choi et al. 2013].
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Figure 1.15: Measurement of the multi-spectral transmission matrix. (a) Measurement of
several monochromatic TMs for a set of wavelengths, here λ1 − λ5. (b) Representation of the pulse
spectrum. The considered medium (giving a δλm) holds five independent spectral degrees of freedom.
(c) The MSTM can be represented by a cube of size NSLM ×NCCD ×Nλ. Figure from [Mounaix
2017].

Hence to collect the full information both approaches (spectral and temporal) require approximatively
the same measurement time. However for more specific usages both approaches are no longer
equivalent. To control specific spectral degrees of freedom a MSTM is better suited; conversely to
control specific delays the TGTM is recommended. The MSTM is nonetheless used for temporal
experiments to compensate for the absence of pulse source and time-gated setups [Carpenter et al.
2016; Mounaix et al. 2019; Xiong et al. 2019]. The measurement of the TGTM, as well as several
other achievements are presented in [Mounaix et al. 2016a]. The TGTM is more detailed in Chap. 4
where it is used experimentally for controlling the energy delivery.

However to measure a TGTM a gated measurement is needed. Another approach introducing a
novel concept and relying on an internal reference is presented below.

1.3.3.3 Broadband transmission matrix

The idea of the BBTM is to control, for instance to focus, all the wavelengths of the incoming
spectrum non-selectively. Already performed using a feedback [Paudel et al. 2013] or taking advantage
of long-range correlations [Hsu et al. 2015] it is promising for biological media [Aguiar et al. 2016].

The first characterization of a BBTM is presented in [Mounaix et al. 2017]. The measurement
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Figure 1.16: Measurement of the time-resolved transmission matrix. (a) Measurement of
several TGTMs for a set of delays τ1 − τ5. (b) Presentation of the different delays together with
the pulse shape. (c) The TRTM can be represented by a cube of size NSLM ×NCCD ×Nτ . Figure
from [Mounaix 2017].

of the BBTM is simple to perform as it corresponds to the measurement of a monochromatic TM
with internal reference, but sending broadband light instead of monochromatic one. Thus all the
information for the different wavelengths is gathered simultaneously. A major advantage is the need
of only one measurement. Some remarkable results on the temporal behavior of pulses are pulse
recompression and polarization recovery by the BBTM [Aguiar et al. 2017].

Now that the tools (TMs) have been presented we will focus in the next section on their properties.
We will in particular examine the experimental level of control and the consequences of partial
measurements.

1.4 Between limited control and mesoscopic effects

Theoretically all the scattering informations are contained in the scattering matrix. As seen in
the previous section, interest is usually concentrated on the transmission matrix (or the reflection
matrix). We will discuss in Sec. 1.4.1 the particularities of the transmission matrix when completely
measured or when simulated. But because in optics TM measured experimentally are never complete
due to the access to a limited number of modes, we discuss in Sec. 1.4.2 the impact of partial
measurements.

Due to the very complex microscopic description of scattering, its statistical properties can be
theorized using the random matrix theory. It is based on the assumption that sufficiently disordered
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systems can well be described by an ensemble of random matrices [Wigner 1993]. This explains why
random matrices are extensively used to model transmission matrices, see Sec. 1.4.2.3.

1.4.1 Complete measurements

The scattering matrix being unitary, all its singular values are equal to one. However the transmission
matrix, as a subpart of the scattering matrix is not unitary and bears a richer spectrum. We discuss
here the characteristics of complete TMs in the framework of the random matrix theory.

Using the random matrix theory the eigenchannels transmission of complex media were described
and an analytical formula for their distribution was obtained by Dorokhov, Mello, Pereyra and
Kumar, henceforth called the DMPK model whose probability density function is [Pendry et al.
1990; Dorokhov 1996; Beenakker 1997; Mello et al. 1988]

ρ(τ) =
l∗

2L

1

τ
√

1− τ . (1.24)

It is noteworthy that the PDF written above diverges in two points. The one at zero is not integrable
such that the distribution does not start at zero but at a finite value τ0 [Rotter et al. 2017]. The
distribution of Eq. 1.24 is plotted Fig. 1.17. Its shape, with extreme transmission probability density

Figure 1.17: Bimodal distribution. PDF (Eq. 1.24) of the transmission eigenvalues of T †T under
the DMPK model.

for τ close to 1 and close to 0, motivate its denomination as bimodal law. These full transmission
(τ = 1) and full reflexion (τ = 0) channels are respectively called open and closed channels. They
are very exciting as coupling to them would allow any medium to act, for energy transmission, like
a transparent one (full transmission) or a completely opaque one (full reflexion). These channels
are however fragile [Goetschy et al. 2013] and only are accessible when the full transmission (or
reflexion) matrix is measured. They have not been measured in optics for complex media20, but in
acoustics [Gérardin et al. 2014].

However indication of coupling to open channels was experimentally measured in [Vellekoop et al.
2008c] through the expected universal transmission value of 2/3 for perfectly shaped wavefronts
regardless of the thickness of the scattering material [Choi et al. 2011; Yu et al. 2013], see Comm. 1.4.1
for a rapid evaluation of this value.

20An equivalent involving polarization has been reach with multimode fibers, see Sec. 6.1.3
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Comment 1.4.1.
The coefficient referred to for the transmission in [Vellekoop et al. 2008c; Choi et al. 2011] is
C4,2, corresponding to the ratio of the second and first moment of the distribution [Yu et al.
2013]. It is possible to evaluate it using the bimodal law, see Eq. 1.24 that gives ρ(τ) = 1

τ
√

1−τ

(where τ are the eigenvalues of T †T ). One has C4,2 = 〈τ2〉
〈τ〉 , leading to

C4,2 =

∫ 1
0 τ

2 dτ
τ
√

1−τ∫ 1
0 τ

dτ
τ
√

1−τ

=

∫ 1
0 τ

dτ√
1−τ∫ 1

0
dτ√
1−τ

. (1.25)

We perform an integration by substitution setting τ = sin2 θ then
√

1− τ = cos θ and dτ =
2 sin θ cos θ,

C4,2 =

∫ π/2
0 sin2 θ 2 sin θ cos θdθ

cos θ∫ π/2
0

2 sin θ cos θdθ
cos θ

=

∫ π/2
0 sin3 θdθ∫ π/2
0 sin θdθ

. (1.26)

We have sin3 θ = 1
4(3 sin θ − sin 3θ), hence

∫ π/2
0 sin3 θdθ = 2

3 .

The spatial profiles of open and closed channels have also been studied and drastically differ
from the spatial profile of a plane wave input which follows the optical Ohm’s law (see Eq. 1.5) [Choi
et al. 2011; Davy et al. 2015b; Sarma et al. 2016]. Another interesting behavior is the experimental

(a) (b) (c) (d)

Figure 1.18: Field distributions inside a scattering medium. Simulations results for a plane
wave input (a), an open channel (b), a closed channel (c). The white scale bar represents 10 µm. (d)
Averaged intensity along the z direction. Figure from [Choi et al. 2011].

observation of the transverse localization of eigenchannels [Yılmaz et al. 2019].

1.4.2 Scattering slab and partial control

1.4.2.1 Physical origin

Unlike in acoustics [Gérardin et al. 2014] where the bimodal law is observed, in optics for scattering
media, no TM has been completely measured due to the experimental open geometry and the very
high number of propagating modes. However, despite this knowledge and attempts to measure very
large TM [Yu et al. 2013], where considering both polarizations, and a TM of 420 million of elements,
the bimodal law was not reached. Thus with TMs of acceptable sizes21 experimentalists are very far
from the complete measurements. Therefore transmission and reflexion matrices both in optics and

21Acceptable in terms of computation time and size.
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acoustics are well approximated by random matrices [Popoff et al. 2010; Sprik et al. 2008; Aubry
et al. 2009].

With random matrices the number of modes is no longer a relevant parameter and the measured
TM is characterized by the level of control it grants, evaluated through the ratio γ of the “constraints”
(NSLM) and the degrees of freedom (NCCD),

γ =
NCCD

NSLM

22. (1.27)

Hence with this definition a very high level of control corresponds to very small values of γ whereas
very large values of γ indicate a limited control. It is noteworthy that γ corresponds to the aspect
ratio of the TM, hence a square matrix relates to γ = 1. However in experiments the value
of γ is corrected to take into account, experimental constraints impacting the degree of control,
see Sec. 2.3.5.3.

It is important to stress that some experimental constraints can induce correlations in the TM
elements, this is for instance the case when several CCD pixels have similar values due to the
measurement on these pixels of only one speckle grain (equivalent of one degree of freedom). These
correlations modify the properties of the TM, which deviates from the random matrix model and
leads to higher transmissions than the ones expected in absence of real mesoscopic (as the system
conductance remains very high) effects [Popoff et al. 2014; Hsu et al. 2017].

If both the full TM and the random matrix regimes are well understood, the intermediate level
of control is more complicated to describe. It can be done using an analytic prediction of the effect
of incomplete channel control, based on filtered random matrices, and developed in [Goetschy et al.
2013].

1.4.2.2 Marchenko-Pastur distribution for random matrices

Random matrices with independent and identically distributed (i.i.d.) coefficients bear some
remarkable properties. V. Marchenko et L. Pastur proved that asymptotically the singular values of
a random i.i.d. matrix23 follow a specific distribution [Marčenko et al. 1967], called the Marchenko-
Pastur distribution (MP).

Let us consider a random matrix M ∈Mm,n(C) (n > m, see Comm. 1.4.3 for a discussion on the
casem > n) with Gaussian i.i.d coefficients of mean 0 and standard deviation σ. The degree of control
is given by γ = m/n. Its singular value decomposition gives a set of singular values si (1 ≤ i ≤ m)
such that si =

√
λi, where λi are the eigenvalues of MM †. The Marchenko-Pastur distribution

describes the normalized singular values (it is a convergence theorem), with a normalization by σ
√
n

(s̃i = si/σ
√
n). However it requires to know σ and an equivalent normalization is, see Comm. 1.4.2,

s̃i =
si√

1
m

∑m
j=1 s

2
j

. (1.28)

Comment 1.4.2.
Let us consider the spectra from two points of view.

• Singular values of M and Marchenko-Pastur
The singular values lie in [σ(

√
n−√m), σ(

√
n+
√
m)], they can be renormalized by σ

√
n

22A more compelling definition of γ would have been the inverse: γ = NSLM
NCCD

. However, as it is already defined in
other papers, we do not change here the definition of γ to avoid confusions.

23There exist weaker hypotheses where the matrix does not need to be random i.i.d. but only have i.i.d. lines (resp.
columns) and can afford “small” correlations among the columns (resp. lines) [Yaskov 2016].
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(
s̃ = s/(σ

√
n)
)
giving s̃ ∈[1−

√
m√
n
, 1 +

√
m√
n
].

• Eigenvalues of MM†

Let us here start from the eigenvalues of MM †. One has
∑m

i=1 λi = Tr(MM †) =∑n
i=1

∑m
j=1 |mij |2 ' m.n.σ2

Combining these two results enables to write

σ
√
n '

√
Tr(MM †)

m
=

√√√√ 1

m

m∑
i=1

s2
i (1.29)

This result is very interesting and useful as it shows that renormalizing the singular values may
be done directly with the matrix spectrum with no need of computing the standard deviation
of the matrix coefficients.

The probability density function of the normalized singular values ρ(s̃) is given by

ρ(s̃) =
1

πs̃γ

√
(s̃2 − s̃2

min)(s̃2
max − s̃2), (1.30)

where, as seen in Comm. 1.4.2, s̃min = 1−√γ and s̃max = 1 +
√
γ.

In Fig. 1.19, we illustrate variations in the singular values distribution, as a function of γ. In
most of this thesis, we will have γ < 1, or more precisely the input dimension of the TM (number of
columns n) is larger than the output dimension (number of lines m). It is noteworthy that for a
square matrix (γ = 1), as illustrated in Fig. 1.19(c), one recovers the so-called quarter circle law.

Figure 1.19: Marchenko-Pastur law. Marchenko-Pastur law for different values of γ. The
simulated PDF is plotted in orange and the law from Eq. 1.30 is presented with the blue dots for
different values matrices aspect ratio: γ = 0.6 (a), γ = 0.9 (b), γ = 1 (c) and γ = 1.4 (d).

Comment 1.4.3.
From the SVD, one can show that M and M † have the same non-zero singular values. Thus,
when γ > 1 (that is when n < m), one could (by symmetry) renormalize singular values by σ

√
m

and obtain a Marchenko-Pastur distribution with normalized singular values in [1−
√

n
m , 1+

√
n
m ],

which has the nice property of being included in [0,2]. Henceforth, the Marshenko-Pastur
normalization will stand for the normalization of singular values by σ

√
min(m,n). Following
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the remark from Comm. 1.4.2, it is equivalent with Eq. 1.31:

s̃i =
si√

1
min(m,n)

∑min(m,n)
j=1 s2

j

. (1.31)

However, some application might require to stick to the normalization by σ
√
n, because of the

the physical interpretation of m and n. In such a situation, singular values might be scaled by
a factors γ when compared to the Marchenko-Pastur distribution, which explains why singular
values in Fig. 1.19(d) lie in [

√
m
n − 1,

√
m
n + 1].

1.4.2.3 RM model for simulations

Due to the strongly scattering properties of the medium used, the TM is well approximated by
a random matrix [Popoff et al. 2010]. For instance an ideally measured TM follows the MP law
given by Eq. 1.30, see Fig. 1.19. Hence generating a complex random Gaussian i.i.d. matrix well
simulates the TM of a given medium. The field obtained after propagation through the medium is
thus computed from this input field by multiplying the TM by the input vector field. The TM can
be made more realistic by introducing spatial short-range correlations (e.g. speckle grain size) to
mimic different levels of binning. This step is done by convolving each TM column (reshaped to
form a CCD image) with a Gaussian the width of which depends on the targeted grain size. Some
other features, as unitarity constraint, can also be added, see Sec. 6.3.2.2 and Appendix B.6.

Even though this approach is minimalist and heuristic, it can well reproduce the data obtained in
different experiments and helps to predict some results, for instance in the case of the experimentally
non-accessible phase and amplitude control.

1.4.3 Intermediate regime of control

Even though the full TM measurement is not experimentally accessible in optics, it is important
to get an idea of how far we are from the full measurement. A good indicator is the value of the
conductance g (see Eq. 1.18). As already mentioned in the experiments presented here g � 1,
leading to a very partial control, see Sec. 1.4.2. However when the value of g is relatively small,
or when the number of controlled modes is large enough such that g ≈ NSLM, then some features
of the bimodal distribution emerge [Davy et al. 2015a; Rotter et al. 2017]. The filtered random
matrix model developed in [Goetschy et al. 2013] describes well the cross-over between the bimodal
distribution and the Marchenko-Pastur one, see Fig. 1.20. For instance for very complete TM
measurements as in [Akbulut et al. 2016; Yu et al. 2013], deviations from the Marchenko-Pastur law
were observed. Also a coupling to open channels is responsible for the observation of the long-range
(C(2)) and infinite-range (C(3)) correlations discussed in Sec. 1.1.3.2. It was realized experimentally
in [Vellekoop et al. 2008c] where optimizing the intensity on one speckle grain also enhances the
surrounding speckle. These long-range correlations play an important role in spatial enhancement
increase [Hsu et al. 2017], but also when temporal aspects are present [Xiong et al. 2019; Hsu et al.
2015]. Long-range transmission reflexion correlations predicted by [Fayard et al. 2015] have been
observed by [Ojambati et al. 2016].
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Figure 1.20: Filtering of random matrices. Simulation (dots) and analytical (solid line) results
for transmission eigenvalue densities in a slab geometry for different fractions of controlled channels
m (m = 1 corresponds to the complete channel control). Figure from [Goetschy et al. 2013].

1.5 Scattering approach with operators

1.5.1 The Wigner-Smith time-delay operator

The Wigner-Smith operator is closely linked to the notion of time-delay. This notion was introduced
by Eisenbud, Wigner and Smith [Wigner 1955; Smith 1960]. To consider the lifetime of metastable
states Smith introduced the lifetime matrix. Interestingly the scope in this operator goes beyond
the nuclear scattering context. Its expression Q, generally used for light scattering and referred to
as the Wigner-Smith time-delay operator (or just the Wigner-Smith operator), is based on the
scattering matrix and its derivative

Q(ω0) = −iS†(ω0)
dS

dω

∣∣∣∣
ω0

. (1.32)

With such a definition it is noteworthy that the eigenvalues of Q have the dimension of a time, and
thus can be interpreted as time-delays (broadly studied, see [Van Tiggelen et al. 1999]). Applied
to multimode fibers, its eigenstates, called principal modes, prove to be dispersion free at the first
order [Fan et al. 2005], as observed in 100m long multimode fibers [Carpenter et al. 2015]. This
resilience to frequency change allows to broaden the field correlation between two neighboring
frequencies [Xiong et al. 2016; Xiong et al. 2017] or even couples of frequencies that are further apart
using a discretized version of the derivative [Ambichl et al. 2017b]. It is noteworthy that in case of
multimode fibers, the scattering matrix can be replaced by the transmission matrix due to the very
limited reflexion. In waveguides (or generally in slab geometries) the full scattering matrix may not
be always available. To continue working with the transmission matrix some equivalences can be
reached as in [Davy et al. 2021] where they show that the trace of Q is connected to the trace of the
same operator, but is computed with the transmission matrix instead of the scattering matrix.

Initially linked to time-delays, the operator can be extended to different sets of coupled variables
by performing the derivative with respect to another parameter than frequency, generalizing its
use [Brouwer et al. 1997; Ambichl et al. 2017a]. For instance in [Ambichl et al. 2017a], measuring
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the matrix for different positions of scatters enables to focus light inside a scattering medium, which
generalizes the guidestar notion.

The Wigner-Smith operator also allows generating particle-like states [Rotter et al. 2011; Gérardin
et al. 2016; Böhm et al. 2018]. It is also found in the dwell-time24 operator [Durand et al. 2019;
Durand 2020] and when maximizing the energy storage [Hougne et al. 2021].

The Wigner-Smith operator, is not the only operator that can be built on transmission matrices,
even if it is the most famous. We review below some of them, recently introduced.

1.5.2 Other operators

Similarly to the dwell-time operator mentionned above, transmission and reflexion mean time
operators are introduced in [Durand 2020] with the use of a polychromatic version of the Wigner
Smith operator. They are designed to optimize a pulse temporal profile. They can reduce temporal
dispersion at the cost of a small transmission, which is counterbalanced with an iterative optimization
procedure. Their efficiency are compared with that of the singular modes of the TGTM. Other
operators not directly built on the TM or the Wigner-Smith operator are designed to compensate
distorsion (distorsion matrix) [Lambert et al. 2020; Badon et al. 2020] or to control the energy
deposition in a scattering medium [Bender et al. 2021] as well as to determine the maximal information
one can extract (Fisher information) [Bouchet et al. 2021a].

Other matricial operators defined for specific purposes are presented in Sec. 5.1.2 to introduce a
method based on the singular value decomposition of transmission matrices (subject of the Chap. 5).
The two of main operator of interest for this work are described in [Yılmaz et al. 2021] and in [Pai
et al. 2021].

1.6 Scattering: always detrimental?

Before getting into the contribution of this thesis, an aspect of scattering is worth mentioning.
Even though scattering is often perceived as detrimental and even though many tools have been
developed to compensate and correct for it, this is not always the case. On the contrary, scattering
and its complex mixing properties can turn into an asset. It will be visible in the field correlation
control it allows (Chap. 3 and Chap. 5) and in the temporal targeted energy delivery (Chap. 4)
discussed in this work. But benefits go even further. Still in the field of imaging, in [Vellekoop et al.
2010] a complex medium coupled to wavefront shaping techniques, improves rather than deteriorate
the focus. The idea is that due to scattering, after some transport mean free paths, the effective
numerical aperture of the system is increased, allowing for a thinner focus spot in the presence of
a scattering medium Fig. 1.21(b) than without Fig. 1.21(a). The same observation was made for
backscattering in acoustics [Tourin et al. 1999]. Along the same lines, using a thick biological sample
in the near IR (dominated by scattering) a better image reconstruction was obtained with a lot
of scattering [McDowell et al. 2010]. Moreover with wavefront shaping, a complex medium can be
turned into any different optics: lens [Vellekoop et al. 2007; Popoff et al. 2010], phase plate [Guan
et al. 2012; Park et al. 2012b], spectral filters [Park et al. 2012a; Small et al. 2012], high resolution
spectrometer [Redding et al. 2014; Redding et al. 2013a] etc..

However numerous fields can take advantage of scattering [Wiersma 2013]. Scattering can prove
useful for new generations of materials. As already mentioned, scattering of substrates are targeted
to obtain whiteness [Jacucci et al. 2021; Syurik et al. 2018] and thus helps developing paints and
coatings. Also the self-assembly of barium titanate nano-crystals was shown to enable tailored

24Interpreted as the mean time for the signal to leave the medium without loss.
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(a) (b)

Figure 1.21: Improved focus due to scattering. (a) Focus obtained with a lens. (b) Thinner
focus behind a scattering medium with wavefront shaping. Figure from [Mosk et al. 2012].

phase-matching at the micro-scale [Savo et al. 2020]. Moreover strong scattering enables alternative
light trapping [John 1984; Anderson 1985; Sheng et al. 2007]. In [Sapienza et al. 2010], they observe
strongly confined Anderson-localized cavity modes by adding disorder to photonic crystal waveguides,
enhancing the interaction between single photons and single quantum emitters, paving the way
for new platforms for quantum electrodynamics. Also the emergence of coherent feedback from
scattering can enable creation of random lasers [Wiersma 2008; Cao et al. 2003; Cao et al. 1999] and
tune them by controlling the pump [Bachelard et al. 2014].

In the field of information transfer, scattering also proves valuable. It allows transmitting error
free information and which effectively increases the information transfer rate [Derode et al. 2003].
Scattering can also secure the transmitted information with the development of cryptography [Pappu
et al. 2002] and the creation of quantum secure authentification [Goorden et al. 2014a], in which
multimode fibers play an important role [Bromberg et al. 2019].

Last (of this non-exhaustive list) but not least, complex media are opening the way to optical
computing, through the creation of optical scalable spin-glass simulator [Pierangeli et al. 2021;
Pierangeli et al. 2019]. Its understanding allows compressive imaging [Liutkus et al. 2014] which is
closely related to the link between multiple scattering and random matrices [Foucart et al. 2013].

1.7 Take home message

In this chapter we introduced main quantities of interest for this work: the scattering and transport
mean free paths ls and l∗, the Thouless time τD, the speckle grain size b, the number of modes
Nmodes etc.. We also introduced the main tools and techniques to compensate for scattering: the
SLM, the optimization and phase conjugation techniques, the transmission matrix and its SVD, the
Wigner-Smith and related operators. We discussed the main consequences of the completeness of a
TM measurement. Reaching a full control allows the emergence of open and closed channels whereas
very partial measurements lead to a TM well described by a random matrix.
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In this chapter I will present the setup used for all experimental results presented (except for the
ones of Chap. 6). After giving a general idea of its principle in Sec. 2.1, I will in Sec. 2.2 present
individually the different elements with the technical details omitted in Chap. 1: the laser source
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in Sec. 2.2.1, the SLM in Sec. 2.2.2, the scattering sample in Sec. 2.2.3, the camera in Sec. 2.2.4
and the translation stage in Sec. 2.2.5. I will finish in Sec. 2.3 by presenting how all these elements
are combined to perform the experiments. For instance the techniques used to extract the field are
detailed in Sec. 2.3.2, a method to set its temporal origin will be proposed in Sec. 2.3.3 and the
general TM measurement will be presented in Sec. 2.3.4.

2.1 General principle of the setup

The experimental setup (presented Fig. 2.1) enables, in general, the measurement of TMs and more
specifically of TGTMs and MSTMs. It hence involves all the elements required for wavefront shaping,

LASER

λ/2

PBS

SLM NA 0.4

Scattering medium

NA 0.4

BS

ss

P

Camera

τ

Delay-line

λ/2

sr

Figure 2.1: Simplified scheme of the experimental setup. An ultrashort pulse of light
delivered from a Ti:sapphire pulsed laser (MaiTai HP, Spectra Physics, ' 100 fs pulse length) is
divided upon two paths by a polarizing beam splitter (PBS). On one path the pulse wavefront is
modulated by a reflective phase-only SLM (HSP512L-1064, Meadowlarks) and passes through a TiO2

layer (transmittance varying with the sample, suspended on a glass slide) where it gets spatially
scattered (black distorted line represents the wavefront) and temporally elongated (pink pulse). On
the second path, the pulse is sent on a controllable delay-line and acts as an interferometric temporal
gate (probe pulse). Both pulses are recombined on a beam splitter (BS) that is imaged onto a
CCD camera (Manta, G-046, Allied Vision). A polarizer (P) before the camera selects the desired
polarization. Two shutters sr (reference) and ss (speckle) enable to block independently the light
from each arm.
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i.e. a light source, a wavefront shaping device (here a SLM more precisely), a scattering medium and
a camera. However in addition to these elements, to probe temporal aspects, a reference arm with a
delay-line is present. Indeed the camera is not able to resolve optical frequencies and the temporal
averaged intensity measured. While not limiting in case of monochromatic illumination it becomes a
restricting factor when it comes to pulses: an interferometric and temporally resolved measurement
is required. Because an incoming short pulse is elongated in time due to scattering events, the
same short pulse (non elongated) can be used as a temporal probe. Its delay is controllable with
the delay-line. Once the probe delay fixed, it interferes solely with the scattered light that has
accumulated the corresponding delay in the medium. This time-gated interference enables us to
extract the field corresponding to this specific time delay.

All elements will be analyzed individually in Sec. 2.2 and their symbiosis discussed in Sec. 2.3
with in particular the presentation of the field extraction technique in Sec. 2.3.2.

2.2 Presentation of the different elements

2.2.1 LASER source

The source used in all experiments is a mode-locked Ti:sapphire pulsed laser (MaiTai HP, Spectra
Physics) of ∼ 100 fs pulse length and 80MHz repetition rate. The pulse’s central frequency is tunable
in the 690–1040 nm range. The laser spectral range enables to perform experiments in the near-IR1,
the precise value of the wavelength we chose is arbitrary. The laser optimal emission is situated
around 800nm (also corresponding to the SLM optimal reflectivity), but due to the optics constraints
(the λ/2 working wavelength being fixed) the selected central frequency is set to 808 nm. The laser
may also be converted into a tunable monochromatic source when not used in the mode-locked
regime. To do so a physical slit is placed after a dispersive element (in the cavity) and selects the
targeted amplified wavelengths, filtering out the other ones and hence preventing the mode-locking.
Translating the slit enables to define the frequency.

A spectrometer (HR 4000, Ocean Optics), collecting some light at the output of the laser enables
to monitor in real time its spectrum. Predictably from the pulse temporal length, as the pulse is
close to Fourier transform limited, its spectral full width at half maximum (FWHM) is of ∼10 nm.
When operated as a monochromatic CW source (mode-unlocked), the measured laser spectral width
is <0.1nm (0.1 nm reaching the spectrometer resolution limit). This spectral width is much smaller
than the medium spectral decorrelation width (see Sec. 2.2.3.2 and Sec. 1.1.4.2): all wavelengths
contained in the narrow band light will experience the same scattering2. Hence for the medium and
the performed experiments, the source can be considered monochromatic, allowing us to use this
term to refer to it.

However, since the laser is optimized for mode locked operation, the monochromatic mode is
unstable: one observes a jitter. The characterization of this jitter, performed using the scattering
media as a spectrometer is developed in Appendix A.1. From this jitter measurement we estimated
the relative wavelengths fluctuations (measured fluctuations over the input light bandwidth) at 0.01
for the pulse mode and 0.2 for the monochromatic mode. The jitter of the monochromatic source
is not an issue for most of the experiments performed. It is however important to keep in mind
that frequency resolved measurement may not be achievable below 0.1–0.2 nm. This experimental
constraint however would be very important for the study of the Wigner-Smith operator defined,
see Sec. 1.5.1 where the derivative with respect to the frequency of the transmission matrix is
computed.

1Which is convenient for further applications, see Sec. 1.2.1.
2The laser is probably not single longitudinal mode, but with no effect on the studied media
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2.2.2 Spatial light modulator

2.2.2.1 Functioning

The wavefront shaping device used on the setup is a reflective phase-only SLM (HSP512L-1064,
Meadowlarks). It is a liquid crystal array (here of 512× 512 pixels) whose pixels may be individually
addressed. A voltage is applied between the two sides of the pixels leading to the modification of
their optical properties. The SLM pixels are filled with nematic liquid crystal (birefringent medium)
aligned with the cover glass when no voltage is applied. Applying a voltage tilts the liquid crystal
perpendicularly to the cover glasses hence modifying the effective refractive index and thus the local
optical path. It is noteworthy that to obtain a pure voltage-dependent phase shift the incoming
light polarization is important. A linearly polarized light along the extraordinary axis of the liquid
crystal is required here.

Also to be able to conveniently set the phase delays a calibration of the look up table3 (LUT) is
needed. After this step the delay of each SLM pixel may be controlled: a 8-bits gray level (associated
to a voltage) controls the phase delay between 0 and 2π. The global control the wavefront after the
SLM is thus obtained with a 8-bits matrix, whose size corresponds to the SLM.

2.2.2.2 SLM active area

We do not always use the full SLM. For instance when the beam illuminates a subpart of the
SLM we need to localize this region, to only work with it. This region is called the “active region”,
only in this zone the SLM masks will be displayed. It is noteworthy that the illuminated area
depends on the beam size and profile. All the pixels of the active area may not be homogeneously
illuminated in case of an input Gaussian profile. The effective aperture of the backfocal plane of
the microscope objective (or other geometrical effect) also affects the effective active SLM area as
discussed in Comm. 2.2.1.

Comment 2.2.1.
In the configuration discussed previously its is noteworthy that all the SLM modes are not
addressed homogeneously for mere geometrical reasons. Indeed here the SLM is imaged on
the back aperture of the illumination microscope objective. Due to its circular shape the
latter may cut a part of the incoming light from the SLM, even if the active part of the SLM
have been carefully selected. There are then two options: under-fill or overfill the microscope
objective backfocal aperture. Under-filling it consists in selecting an active area smaller than the
illuminated beam and such that all the light passes through the SLM backfocal aperture as done
in [Popoff et al. 2010]. However this configuration leads to the transmission of unmodulated
light which we want to avoid. We thus overfill the microscope objective backfocal aperture
but with the price of having an effective number of modes smaller than the one set. The
information of the effective number of modes is present on the TM and affects its rank. The
effective number of modes can be evaluated and accounted for, see Sec. 2.3.5.2. Another idea
to circumvent this difficulty would be to adopt a circular active SLM region by shaping the
basis. This circular SLM active region has been used in [Mastiani et al. 2021; Akbulut et al.
2011] when performing optimizations. This is also easy to imagine for the Canonical basis and
has been extended to binary masks with the Hadamard basis [Ledesma-Carrillo et al. 2017].

In order to select the active region on the SLM one needs to determine where the laser beam
hits the SLM (we assume here that for all experiments the laser beam is smaller than the the SLM).
To do so one realizes horizontally (resp. vertically) a pixel line scan: all SLM pixels are addressed

3The look up table links a 16-bits voltage value to a 8-bits gray level.
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to generate a 0 phase shift except for a column (resp. line) that is set to π. This line is moved
along its full transverse dimension on the SLM while images are taken with the camera. When
the pixels modify the phase of a region where there is no light the speckle pattern is not affected.
In contrast, when the phase modification concerns illuminated areas the speckle pattern changes.
Hence computing the speckle correlations with the initial one enables to map the illuminated region
on the SLM and select an optimal area to work with.

On the active area the number of pixels independently controlled gives the maximal number
of SLM modes. Since this number may be high and the learning of the TM too long, we select a
number of modes and group the pixels into macropixels. The macropixel size thus depends on the
SLM active area and the targeted number of modes. The use of macropixels also enables to avoid
“cross talk” effects [Moser et al. 2019] between individual neighboring pixels.

2.2.2.3 Phase-only constraint

It is important to note that with this device only the phase of the field is controlled. The amplitude
transmission remains uniform for all pixels. Despite the apparent limitation of phase-only control,
this constraint does not drastically affect the experimental achievements. The enhancement decrease
observed when focusing with phase-only instead of phase and amplitude is π/4 ([Čižmár et al. 2011]).
Indeed in a complex field the informations is chiefly contained in the phase, the amplitude “just”
weights it. This is very easy to see when considering the example of the information contained in an
image as presented in Ill. 2.2.2.

Illustration 2.2.2.
Let’s consider two images, one of a cat (image A) and one of a landscape (image B), see Fig. 2.2
top part. For both images one can realize the Fourier transform and split the information on
the phase φA (resp. φB) and the information on the amplitude AA (resp. AB). The Fourier
transforms are modified by switching their phases and amplitudes. Then taking the inverse
Fourier transform leads to new images presented in Fig. 2.2 bottom part. It appears that one
still can distinguish the cat from the landscape. The cat appears on the reconstructed image
whose Fourier transform phase is φA (conversely for the landscape).

Another illustration, closer to experiments, is presented in Appendix A.2.
However, even if the phase-only constraint is not detrimental for most of the experiments, it

is a conceptual and theoretical major difficulty. Indeed in most experiments performed the input
states that one wants to generate after the SLM are vectors containing both phase and amplitude
information. They usually are computed from the TM or another related operator. But linear
algebra theorems no longer apply when disregarding the amplitude of the input vectors making it
difficult to theoretically describe the experiment. Differences between phase and amplitude and
phase-only control are observed in simulations and discussed all along the different studies (for
instance in Sec. 3.2.3, Sec. 4.5.2 and Sec. 5.2.5)

For these reasons, implementing an experimental phase and amplitude control with a phase-only
SLM is promising and, fortunately, not impossible. Several methods have been developed for that
purpose. I will briefly present a non exhaustive list of them. A method, presented in [Zhu et al. 2014]
uses two cascaded SLMs to achieve this goal. They illuminate the first SLM with a light polarized
at 45◦ with respect to the extraordinary axis, hence only a part of the light is modulated, after
a polarizer a second SLM modulates all the light leading to an independent control of the phase
and amplitude. To circumvent the use of two different SLMs, sensitive to alignment, costly and
space demanding, the same SLM is sometimes used twice [Chavali et al. 2007]. Otherwise necessary
degrees of freedom may be taken from the SLM itself by encoding the information over neighboring
SLM pixels [Bagnoud et al. 2004; Van Putten et al. 2008] and associated to a spatial filtering step.
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image A image B

FT
AA, φA AB , φB

AA, φB AB , φA
FT−1

Figure 2.2: Phase vs amplitude information. The images of a cat (image A) and of Étretat
cliffs in Normandy (image B) are Fourier transformed (FT); the respective phases (φA/B) and
amplitudes (AA/B) of these FT are then exchanged. The inverse of the thus modified Fourier
transforms are computed. On the bottom images one can recognize the cliff on the image containing
φB and the cat on the one containing φA.

The spatial filtering is generally used in an off-axis geometry [Čižmár et al. 2011; Leach et al. 2005].
The idea relies on the properties of blazed gratings: by displaying on the SLM, on top of the mask,
a grating, a controllable amount of light is sent on the first order of diffraction that can hence be
selected by cutting the zero order with a pinhole. The blazed nature of the grating enables to send
the maximum of light on the first order. Importantly, to be able to display gratings on top of the
SLM mask, the SLM pixels should be grouped into macropixels. This constraint is not very limiting
as in most cases the pixels are anyway grouped to fulfill the number of SLM modes constraint. The
off-axis technique has the advantage of suppressing the contribution of the non modulated light (the
light that reflects on the SLM glass front and hence whose wavefront is unshaped). It is nevertheless
more delicate to align and less flexible. Indeed one needs to remain on the first diffraction order,
whose position depends on the macropixel size. Changing the number of SLM controlled modes
hence requires to modify the setup alignment.
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A very similar technique, but this time exploiting the zeroth order [Van Putten et al. 2008;
Guillon et al. 2017], may also be used4. The SLM gratings (here checkerboards are used) instead
of sending the desirable light to the first order keeps it in the zero order. The rest is cut with a
pinhole. The advantages and drawbacks of this technique are complementary to those of the off-axis
technique: flexibility and alignment are easier but the unmodulated light remains. This manner of
going from phase-only to phase and amplitude control is easy to implement in several cases as it
only requires coding. A schematic of its different steps is presented in Appendix A.2.

For the rest of this manuscript the phase-only control is used. It makes experiments easier to
carry with no major limitations in this work. The influence of the phase-only modulation will be
discussed on each experiment individually.

2.2.3 Scattering samples

2.2.3.1 Sample Fabrication

The scattering samples used are layers of titanium dioxide (TiO2) or zinc oxide (ZnO) suspended
on a glass coverslip. They are fabricated in the lab by letting dry (about 5–10 h depending on the
droplet size) a droplet of solution of particles on the glass cover. The droplet is deposed on a vertical
cylinder lying on the glass coverslip to present its spreading during the water evaporation. The
particles size used is 50 nm. An example of this medium is presented Fig. 2.3. For a very detailed
sample manufacturing technique see [Putten 2011].

1cm

Figure 2.3: Photo of one sample used for the experiments. A droplet of TiO2 solution is
deposited on a cover glass and left to dry forming a paint layer (ZnO also can be used). The white
bar represents the scale (1 cm).

2.2.3.2 Sample characterization

The scattering properties of the sample used in the experiments are measured following the approach
of [Andreoli 2014; Mounaix 2017].

For instance the thickness L of the different media is measured with a microscope by focusing
alternatively on the scattering surface and the glass slab. This method, relatively easy to implement,
is however imprecision prone. Moreover the thickness is not uniform on the sample preventing anyway
a more precise measurement. For the samples used the measured thickness ranges from 10–50 µm.
The transmittance T of the sample is measured independently using an integrating sphere. From
both L and T measured one then can access the transport mean free path value [Genack 1987;

4A similar approach is used for phase and amplitude control with a DMD [Goorden et al. 2014b].
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Garcia et al. 1992; Sapienza et al. 2007] through the optical Ohm’s law [Rossum et al. 1999]

T ' l∗

L
. (2.1)

The temporal response of the sample also may be probed measuring the Thouless time τm [Thou-
less 1977]. It corresponds to the averaged time light already in the medium takes to reach its
boundaries as discussed in [Rotter et al. 2017]. It is measured here (Fig. 2.4(a)) from the intensity
pulse shape as in [Mounaix 2017; Johnson et al. 2003] but the setup enables to also measure it from
the amplitude temporal evolution, see Comm. 2.2.3.

Comment 2.2.3.
The Thouless time τm is usually deduced from the intensity decay evolution given by I(t) =

I0e
−t/τm . One also can measure it from the amplitude A decay evolution: A(t) = A0e

−t/τAm ,
using I = |A|2 leads to τm = τAm/2.

Figure 2.4: Spectral and temporal characteristics of a typical TiO2 sample. The sample
presented here is a TiO2 layer of transmittance T ∼ 0.3 and of thickness L ∼ 30 µm. (a) Spatially
averaged transmitted intensity after the scattering medium when illuminating with the femtosecond
pulse. The decay is exponential as visible when plotting it in log scale in the inset. The fit of the
slope enables to extract a value for the Thouless time. For this sample τm ' 0.4 ps. (b) Spectral
decorrelation of the medium. When tuning λ the field is measured and correlated to the one at
808 nm. The field spectral decorrelation width δλm ∼ 2 nm is measured as the FWHM of the curve.

Other techniques exist to access the scattering medium properties, for instance in [Curry et al. 2011]
the speckle contrast is measured to recover the diffusion constant D, see Chap. 1.

The spectral decorrelation width δλm is also easily accessible as follows. For different input
wavelengths the field is measured and the obtained set of output fields are then all correlated to the
central wavelength one. Plotting the absolute value of the correlation, Fig. 2.4(b), gives access to
the FWHM; in this work we restrain ourselves to spectral decorrelation in the range of δλm ∼ 1 nm.

2.2.4 Camera

The camera used is a Manta, G-046, Allied Vision. It has a 8.3 µm×8.3 µm pixel pitch and 752 × 582
pixels. Its full frame framerate is 67.5 images per second and can be increased when less pixels are
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addressed. For this reason, to increase the measurement speed, from one experiment to another the
framerate is not fixed but set to its current maximal value. The lens after the collection microscope
objective is selected such that the speckle is oversampled on the camera, i.e. the magnification
is such that one speckle grain covers several camera pixels. When non-redundant information is
required the images are “binned”: one pixel is made out of its Nbin neighbors. The choice of Nbin is
fixed with the measured speckle grain size.

2.2.5 Stage

The stage of the delay-line is a Newport TRA25CC motorized actuator. It enables to adjust the
delay between both arms of the setup. Its full scanning range (25mm) is convenient, it allows to
compensate small path length modification due to the insertion of optical elements (lens, bean
splitters, optical densities, etc...). Its resolution (0.2 µm) enables to measure delays of 1.3 fs (the
factor of 2 coming from the light return trip) and hence resolve the 100 fs pulse. Due to the motor
mounted rotary encoder of 64 cts rev−1 (counts per revolution) scanning the stage induces a 12.8 µm
modulation thus a experimentally visible 25.6 µm modulation (return trip). It results in a frequency
modulation, when extracting the pulse, of about 10THz as presented in the inset of Fig. 2.5(d).
This frequency modulation of the signal is however not detrimental to extract the field.

2.3 All elements working together, operation of the setup

The different elements presented in Sec. 2.2 are all controlled via Matlab. Before getting to the
details of the operation in itself a comment on the polarizations all along the setup is interesting.

2.3.1 Polarization considerations

The laser emits linearly polarized light whose axis is controlled by a λ/2 waveplate. The light
is then separated with a polarized beam splitter such that the beam arriving on the SLM fulfills
the polarization constraint (Sec. 2.2.2). With the λ/2, the amount of light passing through the
sample and reference arm can be controlled. This is important as the field extraction (and the
gated information) relies on the interference between the light traveling in both arms: the higher
the contrast of the interferences the better the field extraction. To maximize the contrast the two
sources need to have equal intensities, however the transmission of the scattering sample may vary
from one sample to the other5 and modifying the intensities with optical densities is not convenient
since adding an optical density also modifies the optical delay. The best way to fulfill all constraints
is to control upstream the injected light on both arms, hence the use of an initial λ/2 waveplate.

In most experiments we aim at only detecting multiply scattered light (filtering all non-scattered
light) to belong to the very scattering regime. Due to the numerous scattering events in the sample,
the polarization after the sample is randomized. A polarizer is thus placed in front of the camera to
select the same polarization as the reference arm. Indeed light beams on both arms are initially
(before the scattering sample) orthogonally polarized. The λ/2 waveplate placed on the reference
arm is hence, most of the time, not affecting the polarization. It is however present just in case one
wants to observe the non crossed polarized light. For this purpose it is turned by 90◦ as well as the
polarizer in front of the camera.

5It also changes in time due to the temporal pulse shape, this effect is not compensated for.
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2.3.2 Field extraction

Measuring the field of a light beam is paramount in many applications, but is a difficult task in
optics. The detectors in the optical domain are indeed only sensitive to intensity, and the phase
information is lost. There are several ways to recover the phase information that can be divided into
two main categories: interferometric or non interferometric techniques [Kelly 2018].

A popular non interferometric technique relies on the so-called transport of intensity technique.
It requires the acquisition of more than one intensity image. Two intensity images measured for
different axial positions are acquired and the field propagation equation enables to extract the
phase [Teague 1983; Sheppard 2002]. Another technique uses a thin diffuser close to the camera
and extracts the phase from the speckle pattern translation [Berto et al. 2017]. Along the same line,
phase retrieval algorithms, inspired by Gerschberg-Saxton (algorithm based on a numeric iterative
field propagation between two planes, usually related by a Fourier transform, to retrieve the phase)
use back and forth propagation to converge to the phase map of the initial intensity image [Fienup
1982].

On the list of non interferometric techniques, a device, the Shack-Hartmann [Shack 1971], is
particularly useful to locally probe the wavefront, albeit at low resolution.

The second class of techniques for field extraction are interferometric techniques, among which
the most widespread is digital holography [Gabor 1949; Goodman et al. 1967]. It consists in the
measurement of holograms followed by a numeric post-processing. The operation of phase-stepping
holography will be explained in details below. It is based on the acquisition of several interferograms
(obtained by stepping the phase of one field) that gives access to the phase relationship between the
two interfering fields. Usually several intensity images are required to extract the phase information,
but off-axis holography enables to do so in one shot [Cuche et al. 2000].

On all the work that follows, two main complementary techniques are used to extract the field.
Both rely on phase shifting interferometry, only the manner of shifting the phase differs. In one
case the phase shifting is discrete (phase-stepping) as in the other case a delay-line scan enables to
obtain a continuous phase shift. I will first present them individually and discuss their practical use
afterward.

2.3.2.1 Phase-stepping

The idea of the phase-stepping technique is as follows: one of the fields is fixed and the other one
is globally phased-stepped (whatever the initial SLM mask applied on the SLM). In the present
work we fixed the reference field and phase-stepped the one propagating through the scattering
medium6. Due to the phase-stepping the interferences with the reference field vary. Hence the field
can be extracted from the set of intensity images. Let’s first develop the calculations in case of 4
steps. One can express the intensity measured on the camera Iφn , where n is the number of camera
pixels and φ is the uniform phase value of one beam, from both interfering fields En = Ene

iθn and
Eref

n = Eref
n eiθ

ref
n (bold symbol represents complex values),

Iφmn = |Ene
iφ + Eref

n |2

= E2
n + Eref

n
2

+ 2EnE
ref
n cos (θn + φ− θref

n ).
(2.2)

From intensity images measured for φ = [0, π/2, π, 3π/2], the field is computed as follows:

EnE
∗
ref =

I0
n − Iπn

4
+ i

I
3π/2
n − Iπ/2n

4
. (2.3)

6Note that the phase-stepping can be performed on the signal, as presented here, as well as in the reference field.
The choice is arbitrary as only the relative phase matters.
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Measuring the reference amplitude (possible in case of an external reference) enables to recover,
except for a global phase, the field of interest. However this step is not critical in this experiment:
even if the reference prevents the exact access to the field, it is static and hence only acts as a fixed
amplitude scaling and phase shift7. The field variations, which are the relevant informations, remain.

It is noteworthy that this procedure is the discrete version of a continuous phase shift and cosine
fit of intensity to extract the phase. For an arbitrary number of phase steps Nφ ≥ 4, the field is
retrieved with

EnE
∗
ref =

1

Nφ

∑
φ

Iφn
(

cos(φ)− i sin(φ)
)

(2.4)

In some experimental situation, to improve the phase extraction, the use of more than 4 phases is
required. This is for instance the case when measuring TMs in the tail of the pulse where the signal
over noise ratio is not sufficient, see Sec. 4.3.4.

2.3.2.2 Delay-line scan

To measure the field of the whole pulse, the interferometric cross-correlation (ICC) technique
presented in [Mounaix 2017] is employed. It consists in recording the interference of a probe pulse
(laser pulse passing through the reference arm) with the unknown pulse (elongated pulse which
propagated through the scattering sample). The cross-correlation is measured by scanning the
delay-line of the reference arm (each stage position corresponds to a specific temporal delay). For a
delay τ the measured interference on the camera is:

I(x, y, τ) =

∫
|E(x, y, t) + Eref(x, y, t− τ)|2dt

=

∫
|E(x, y, t)|2 + |Eref(x, y, t− τ)|2dt+ 2Re

∫
E(x, y, t)Eref

∗(x, y, t− τ)dt,

(2.5)

where the integral over time is due to the camera integration time.
When moving the stage, which corresponds to varying the delay τ , the first term remains fixed

(baseline). However the second term corresponds to an interferometric cross-correlation between
the field of interest and the reference field around a time-gate τ . From the set of intensity images
acquired (Fig. 2.5(a)), to access the field (Fig. 2.5(f)), a computation step remains: removing the
baseline (Fig. 2.5(b → c)) and filtering out the fast phase variations of the temporal speckle to only
keep the envelop (Fig. 2.5(d)). The baseline may be removed by subtracting the intensity images
taken by closing successively the shutters sr (the intensity of the speckle is hence measured I) and
ss (the intensity of the reference is hence measured Iref). The remaining cross correlation term is
normalized dividing it by 2

√
Iref to obtain the field8. To visualize the pulse mean amplitude for each

delay all fields (x, y) absolute values are averaged (represented by the multiples arrows Fig. 2.5(e)).

2.3.2.3 When to use which?

As previously said, these two techniques are complementary, the delay-line scan being a continuous
version of the phase-stepping technique. The delay-line scan only works when extracting the field of
the pulse and is not practicably applicable for monochromatic operation. But this method has the
advantage of being quite fast: it is technically limited by the camera framerate due to Shannon’s
criteria. The phase-stepping technique on the contrary applies for both pulsed and monochromatic

7This is especially true for a perfect flat reference where the amplitude scaling and phase shifts are homogeneous.
Also, phases can always just be measured relative to others.

8Or divided by 2
√
IrefI to obtain a fully normalized and insensitive to global transmission variations field

(see Sec. 5.2.1).
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Figure 2.5: Field extraction from interferometric cross-correlation. (a) Set of intensity
images measured when varying the delay τ . (b) For each CCD pixel individually the intensity varies
with τ . (c) Fully normalized intensity (hence centered and between −0.5 and 0.5): the baseline is
subtracted and the intensity divided by the reference and signal amplitudes. (d) Absolute value of
the Fourier transform (FT) of (c). The signal at the pulse frequency (∼ 400THz) is extracted with
a numeric band-pass filter represented with the vertical dashed lines. The inset represents a zoom of
the peak showing the sidebands due to a slight periodic modulation of the stage speed. (e) Signal
amplitude obtained by inverse Fourier transform (FT−1) of (d). The inset represents the amplitude
averaged (represented by the set of arrows) over all CCD pixels. (f) Set of retrieved fields values
(the field amplitude is plotted).

lights. It is however temporally “local” (it is possible to extract the field for one delay only at once)
and hence not very suited for measuring the field evolution all along the pulse. It is noteworthy
that the temporal information retrieved when extracting the field of the pulse is relative: the
temporal evolution is correct but the zero position is arbitrarily fixed. Hence experiments are not
directly comparable to simulations as the zero position has no physical meaning. The experimental
determination of t = 0 requires an additional measurement that is developed in the following section.

2.3.3 Experimental determination of the optical path equalization between two
arms

An important point is therefore to measure the position of the translation stage that equalizes the
lengths of both optical paths. This determination goal is twofold: being able to compare experiments
with each other (where an arbitrary definition is sufficient) and being able to compare the experiments
to simulations results (for this end a more physical definition is required). In this regard some ideas
could be the following:

• Removing the scattering sample. The stage position allowing the interference of the two
non elongated pulses hence enables to determine the equal paths and to fix the origin of the
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temporal axis. However this t = 0 is not valid anymore when the sample, suspended on its
glass cover, is introduced.

• A possible workaround is to perform the same experiment as before but with a glass cover.
The t = 0 position would be a better estimation but still missing the optical path introduced
by the scattering sample itself. Considering the medium thickness and the mean refractive
index of its constituent particles an estimate may be calculated (see Sec. 4.5.1.3).

I will present in this section a simple method I used to determine the stage position associated with
t = 0.

Let’s consider the experimental setup Fig. 2.1 that may be regarded as a mere Mach-Zehnder
interferometer. The laser emits monochromatic light at λ and hence the accumulated phase on both
arms of the interferometer are: ϕ = 2π`/λ and ϕref = 2π`ref/λ, where ` and `ref are the optical
lengths. The field interference results in a speckle intensity image on the camera, its phase is given
by δϕ = 2πδ`/λ where δ` (δ` = `− `ref) then represents the optical delay between both arms. For a
fixed stage position, tuning λ does not modify the speckle pattern if δ` = 0. Therefore finding the
stage position for which the speckle is not affected by a wavelength tuning enables to experimentally
access the t = 0 position with a good accuracy. This is the method I implemented and that I will
further describe below.

To measure the stage position, the experiment performed is the following: for a set of stage
positions the wavelength is tuned and the field is retrieved (with the phase-stepping technique
presented in Sec. 2.3.2.1). For each stage position all fields obtained with different wavelengths are
correlated to the central wavelength one and the correlation profiles are superposed as presented
in Fig. 2.6. The simulation results are obtained by exactly reproducing the experiment with the
computer. Incoming fields are created as complex random Gaussian matrices of sizes 50× 50. Their
propagation is modeled by applying on one of the fields a phase delay δφ = 2πδ`/λ. A spectral
decorrelation can be accounted by making the incoming fields λ-dependent9. Both of the individual
arms fields are then summed to obtained the interferometer output field to correlate for different δ`
and λ values.

One can see that, in the experiment Fig. 2.6(c) as in the model Fig. 2.6(a,b), there is a stage
position for which the correlation remains over a wide wavelength tuning range. To better extract
this position the Fourier transform of each correlation line (i.e. for a fixed stage position) is calculated
and plotted Fig. 2.6(d). From it it is possible to extract the stage position that fixes the time origin.
Subtleties on this technique are detailed in Appendix A.3.

2.3.4 Measurement of TMs

As briefly presented in Sec. 1.3.2 the measurement of a TM requires to extract the field for a set of
different input wavefronts. Theoretically, apart from the orthogonality requirement, the chosen basis
does not matter. However it does experimentally. I will discuss in Sec. 2.3.4.1 the choice of the basis.
To extract the field (and more specifically recover the missing information on the phase) from an
intensity measurement different techniques exist. The one used requires an interference between
the field of interest and a reference field. I will discuss its implications in Sec. 2.3.4.2 and the field
extraction itself in Sec. 2.3.2.

2.3.4.1 Canonical vs. Hadamard basis

The canonical basis is an easy and straightforward illustration to explain TM measurements, or
optimization techniques. However it suffers a major drawback: the amount of modulation on the

9For instance no spectral decorrelation is present the model in Fig. 2.6(a) but one is in Fig. 2.6(b).



50 CHAPTER 2. PRESENTATION OF THE EXPERIMENTAL SETUP

Figure 2.6: Optical path equalization. (a) Simple simulated model. (b) Model inserting
the spectral decorrelation of the medium. (c) Experiment performed with a TiO2 sample with a
transmittance of 0.3. (d) Fourier transform of the lines of (c) to better extract the position equalizing
both optical paths.

field due to the change from one basis vector to another is very limited (it scales as 1/NSLM)10. This
is the reason why the canonical basis is not practically used to measure TMs. The Hadamard basis
is preferred. In an Hadamard basis indeed half of the pixels change from one vector to the other.

The Hadamard matrix is a matrix for which all coefficients are −1 or 1 and whose lines/columns
are all orthogonal. To construct them, Sylvester [Sylvester 1867] uses a recursive method such
that they should be of size NSLM ×NSLM where NSLM is a power of two, see Fig. 2.7(a). However
alternative techniques enable to construct Hadamard matrices with other dimensions [Pratt et al.
1969].

Experimentally the basis vectors used are the Hadamard matrix lines reshaped on a square to
10The limited modulation when phase-stepping is vector to recover the phase information (see Sec. 2.3.2.1) is also

detrimental.
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Figure 2.7: Hadamard basis. (a) Some examples of Hadamard matrices (sizes 64× 64, 256× 256
and 1024× 1024). (b) For the middle Hadamard matrix vectors are extracted and reshaped to be
displayed on the SLM. Pixels correspond to phase values of 0 and π.

display on the SLM and where the values −1 and 1 respectively correspond to phase delays of 0 and
π, see Fig. 2.7(b). In all experiments performed NSLM = 256, 1024 or 4096, depending on the level
of control required and the ROI on the CCD. For practical reasons and to perform the modulation
on the SLM, it is easier to display the TM in the canonical basis (for instance to visualize the TM
itself or the SLM mask), a mere base transformation may then be performed.

2.3.4.2 Internal vs. external reference

The question of the reference is crucial for measuring a TM. To extract the field from intensity
measurements an interference is indeed required (it nonetheless has been achieved with a phase
retrieval technique in [Drémeau et al. 2015]). Two reference options are possible to exploit: external
and internal references.

• An external reference: not propagating through the scattering sample this reference can be a
well characterized plane wave. It is convenient as it enables to extract the field on all CCD
pixels but may not be very stable in time. This is the case presented in Fig. 2.1, where all the
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active region of the SLM is hence modulated.

• An internal reference (or co-propagative reference): it propagates through the scattering
sample. It is however a light that is not modulated by the SLM and that can interfere with
the signal when phase-stepping is performed. Hence in this case a part of the active SLM
region is attributed to the reference and is not modulated. One of its drawback is that, due
to the scattering, the reference is not a plane wave but a speckle making it harder to recover
information on some spatial CCD pixels where the reference speckle grain is dark and does not
give access to the relative phase between different spatial positions. This technique is used
in [Popoff et al. 2010], where the TM is normalized to correct for the reference speckle impact.

Both references only slightly differ in the monochromatic regime but are fundamentally different in
the pulse regime. An internal reference will enable to access global information on the pulse and
BBTMSec. 1.3.3.3 [Mounaix et al. 2017] as an external reference will enable time-gated measurement
and hence TGTM Sec. 1.3.3.2 [Mounaix et al. 2016a]. If the question on the internal or external
reference raises for the measurement of the transmission matrix, an external reference is mandatory
to realize time-gated measurements and extract the temporal evolution of the field. In this thesis,
when not explicitly specified, all TM measurements (and more generally field extractions) are realized
with an external reference.

2.3.4.3 TM measurement

As explained in Sec. 1.3.2 the TM measurement of a scattering sample requires to measure the field
at its output for a basis of input vectors. Here only the notations will be set and the general method
detailed. Different examples of TM measurements (and their properties) will be presented along
the present work (see Sec. 4.1) The basis chosen for all TM measurements is, in this thesis, the
Hadamard one with a number of input vectors denoted NSLM. The number of pixels on the CCD
where the field is measured is denoted NCCD. The number of phase steps used to recover the field
from intensity images (see Sec. 2.3.2) is denoted Nφ and usually taken from 4 to 10. For each input
vector of the Hadamard basis the field on the camera is recovered using the phase-stepping technique.
From theses measurements the TM is built.

2.3.5 TM characterization and level of control

Once the TM is measured it is important to characterize it, for instance by the degree of control γ,
see Eq. 1.27. The latter, based on the aspect ratio for a perfect random matrix needs to be more
carefully calculated for an experimental measured TM, as presented in the following.

2.3.5.1 Speckle grain size and binning of the camera pixels

For a perfect random matrix each CCD values are independent. However the field is continuous and
thus with no particular attention neighboring CCD pixels can be correlated. To consider them non
correlated each pixel should bears information on only one speckle grain. However the speckle grain
size depends on the imaging system, see Sec. 1.1.3.1. The grain size is experimentally measured by
extracting the FWHM of the speckle autocorrelation as discussed in Sec. 3.1.1. This measurement
is possible because a single speckle grain covers several camera pixels. Speckle grains are hence
well resolved but give access to redundant information: when measuring a TM with NCCD pixels
the amount of non-redundant information is not given by NCCD but by Nspeckle, the number of
independent speckle grains. To measure TMs faster and reduce the redundant information the
camera pixels are often “binned”. This binning procedure consists in averaging the values of Nbin
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neighboring pixels to form only one. To some degree this just consists in using the camera with a
reduced spatial resolution and an improved sensibility. Adjusting the binning enables to measure
TMs either suppressing any redundant information or resolving the speckle grains to take advantage
of the spatial Fourier information. The reduced binning giving access to over-sampled TMs will be
extensively discussed in Sec. 3.2.

2.3.5.2 Different SLM modes addressing

Thanks to the binning it is possible to control the output modes of the TM (CCD pixels). To well
characterize the level of control one also needs to ensure that the number of input modes (SLM
modes) modulating the field is known. This number, given in first approximation by NSLM, can be
corrected from the bias induced by the setup. The removal of some SLM modes by the back aperture
of the illumination objective has been mentioned in Comm. 2.2.1. To better estimate the number
of SLM controlled modes I use the information contained on the TM. The level of information
gathered with each mode is contained in a vector P . For a better visualization P , expressed in the
canonical basis, is reshaped and displayed with a colormap such that each pixel corresponds to a
SLM spatial position. Each coefficient Pj is computed by taking the square root of the sum over the
CCD dimension of the Hadamard product of the TM with its conjugate:

Pj =

√∑
i

(T · T ∗)i,j =

√∑
i

Ti,j × T ∗i,j , (2.6)

with (A ·B) the Hadamard product of two matrices A and B of equal dimension. The SLM modes
weights are visualized in Fig. 2.8(a). Applying a threshold and summing the number of modes above
this threshold enables to obtain an estimate of the effective value of NSLM, see Fig. 2.8(b).

Figure 2.8: Contribution of the different SLM modes to the wavefront shaping. (a)
Visualization of the importance of the different modes in the canonical basis using the measured TM
and Eq. 2.6. (b) Applying a threshold to count the number of effective SLM modes. In this specific
experiment the number of effective modes is N eff

SLM ' 660 (out of 1024).

2.3.5.3 Level of control

From the knowledge of both the number of controlled modes and the number of independent
speckle grains on the camera one can define the level of control. It is denoted γ and defined (and
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approximated) by:

γ =
NCCD

NSLM

(
→ Nspeckle

N eff
SLM

)
. (2.7)

In most experiments performed in this thesis, γ belongs to the interval [0.1, 0.3].

2.3.5.4 Illumination scheme

The positions of the illumination and the collection microscope objectives discussed here vary from
experiments. The settings of Chap. 5 are more standard: the illumination microscope objective
illuminates the input side of the sample and the collection microscope objective images on the CCD
camera the sample output face. These microscope objectives positions correspond to the ones that
lead to the smallest speckle blob and the smallest speckle grain size. Hence with this configuration
it is easier to collect as much as possible of the transmitted light.

The experimental configuration adopted in Chap. 3 and Chap. 4 is slightly different. The
illumination microscope objective is moved away from the sample so that the illumination spot size
increases11. This configuration is solely meant to increase the speckle blob size in order to perform
averaging on the disorder configurations without moving the sample.

The collection microscope objective can also be moved away from the sample. It is the case
for Sec. 3.2.3 and Chap. 4. The reason for this position is discussed in Sec. 3.2.3. A scheme of the
experimental configuration is presented in Fig. 2.9.

z
d

Figure 2.9: Experimental configuration of both microscope objectives. The illumination
microscope objective can be moved away from the sample so that light covers a wide illumination
area on the sample. The collection microscope objective can also be moved away from the sample or
image its output surface.

2.4 Take home message

The experimental setup presented enables to measure the field beyond a scattering sample both in
monochromatic settings and pulsed ones. The temporal aspects can be resolved with time-gated
measurements enabled by a delay-line and a temporal probe. These two main properties make
possible to experimentally measure TMs in general and TGTMs more specifically. The control over
the input wavefront is limited to phase-only which we have seen not to be too dramatic.

11This corresponds to the out-of-focus configuration described in Sec. 3.1.2.1 but a different purpose. Here no
mesoscopic effects are involved.
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This chapter aims at presenting natural speckle statistics and correlations, and also means to
control both of them. We start by describing of the speckle pattern itself through its statistical
properties in Sec. 3.1: for a fully developed speckle the field statistics follow a Rayleigh distribution
(Sec. 3.1.1) as already mentioned in Sec. 1.1.3.1. Then, we discuss, in Sec. 3.1.2, the emergence of
non-Rayleigh field statistics. These non-Rayleigh distributions can be obtained naturally (Sec. 3.1.2.1)
or artificially (Sec. 3.1.2.2). We review some WFS-based techniques which can alter the speckle
statistics. We note that most of the techniques to modify the speckle statistics also alter the
correlations among speckle grains (and reciprocally). We finally present in Sec. 3.2 a TM approach
that chiefly controls, through the use of the singular value decomposition, the speckle pattern
correlations leaving the statistics unchanged.

3.1 Speckle statistics

3.1.1 Fully developed speckle and Rayleigh statistics

As presented in Sec. 1.1.3 a speckle pattern has some remarkable properties [Goodman 2007; Goodman
1976; Dainty 1980]. When the light is sufficiently scrambled so that the field in one point results from
the interference of many independent phasors, the speckle is said to be fully developed. Usually a

55
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fully developed speckle intensity distribution follows an exponential decay with a probability density
function (PDF) given by Eq. 3.1 and plotted in Fig. 3.1(a)

p(I) =

{
e−I/〈I〉/〈I〉, I > 0

0, otherwise
(3.1)

This intensity statistics explains the visually well contrasted granular image of the speckle. This visual
impression can be quantified through the contrast, defined by C = σI/〈I〉, where σI =

√
〈I2〉 − 〈I〉2

is the standard deviation. The contrast value is 1 given the distribution of Eq. 3.1 (see Comm. 3.1.1),
which means that the intensity variations are significant.

Comment 3.1.1.
Let us consider the intensity distribution given by Eq. 3.1 and compute its two first moments.
We obtain 〈I〉 =

∫
IP (I)dI and 〈I2〉 =

∫
I2P (I)dI = 2〈I〉2. The speckle contrast is hence

obtained by C = σI
〈I〉 =

√
〈I2〉
〈I〉2 − 1 = 1 More generally the nth moment of the distribution is

given by the formula 〈In〉 = n!〈I〉n.

This intensity distribution, is associated with a field statistics. Any usual fully developed speckle
follows the so-calledRayleigh statistics which consists of a Rayleigh statistics for the field amplitude
and an uniform statistics for the phase, both PDFs are given by Eq. 3.2 and illustrated in Fig. 3.1(b,c)

p(x;σ2) =
x

σ2
exp

(−x2

2σ2

)
, x ∈ [0,∞[ (for the amplitude)

p(θ) =
1

2π
, θ ∈ [−π, π] (for the phase)

(3.2)

It is important to notice that the square of a Rayleigh distribution is an exponential distribution.
Commonly, speckles following a Rayleigh statistics are referred to as “Rayleigh speckles”.

Figure 3.1: Statistics of a speckle obtained from propagation in a thick TiO2 sample.
(a) Intensity statistics following an exponential decay. The inset represents the same plot with a
logarithmic vertical scale. (b) Field amplitude following a Rayleigh statistics. The Rayleigh fit is
represented with a black dashed line. (c) Flat field phase.

However, even when working with strongly scattering media the contrast measured can be
reduced. This is for instance the case when the speckle observed is the result of the incoherent
sum of two speckled fields. Let us take the example of a coherent non-polarized light propagating
through a scattering medium. The field can be projected on two orthogonal linear polarizations.
Each polarization will interfere separately to give a fully-developed well contrasted speckle pattern.
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However the observed intensity image is the incoherent sum of both speckle patterns leading to
a speckle pattern whose contrast is reduced by a factor of

√
2. This reasoning can be applied to

the sum of more than two speckles: for M fields the contrast is reduced by
√
M [Goodman 1976].

This contrast diminution is well visible when observing the speckle resulting from the scattering
through a given sample illuminated with monochromatic light or with a pulse (10 nm bandwidth in
the experimental setup corresponding to several independent spectral channels, Nλ > 1).

Another feature of the speckle pattern is the speckle grain size. The latter is fixed by the
experimental configuration and parameters (the speckle size is diffraction-limited) and can be
measured experimentally. For instance the speckle grain size is determined by the numerical aperture
(NA) of the system. Its transversal dimension is given by b⊥ ≈ λ/NA, see Eq. 1.6. The grain size
corresponds to the short-range spatial correlations. In all experiments the speckle grain size is
measured using the speckle autocorrelation. From a speckle image, the autocorrelation is computed
and fitted with Gaussians along two perpendicular directions. The full width at half maximum
(FWHM) is extracted and taken as the speckle grain size value. Most of the time the grain size is
defined through the speckle intensity autocorrelation (the intensity is the accessible parameter). It
is however possible to decide defining the speckle grain size from the field itself (or its amplitude). It
is noteworthy that numerically the measured grain size from the field amplitude and the intensity
give the same results but that the grain size obtained from the full field is larger by a factor of

√
2,

as expected in case of a Gaussian autocorrelation shape. In the following, all grain sizes given are
obtained from the field amplitude that the experimental setup enables to extract. A technique to
extract the grain size from the TM is presented in Appendix A.5.

3.1.2 Non-Rayleigh statistics

In the previous section we discussed the manifestations of a Rayleigh speckle without considering its
origin. How comes it that this distribution is so universal among speckles? This is due to the limited
requirements for its emergence: a sum of numerous independent phasors. Since this statistics is so
widely spread how to get non-Rayleigh speckles? The following section details how it is possible to
observe them naturally in some specific conditions and how to actively favor them.

3.1.2.1 Natural non-Rayleigh speckles

Non-Rayleigh speckle naturally emerge when considering non fully-developed speckles. The latter are
obtained as a result of insufficient scattering. Their phase is not fully randomized by the scattering
events therefore the statistics does not cover the entire [0-2π] range (or is not uniform).

Now in case of fully-developed speckles, to predict non-Rayleigh statistics it is useful to return to
the assumptions under which it appears. It is derived assuming the field is a sum of a large number of
statistically independent phasors. The central limit theorem leads to the circular complex Gaussian
joint probability density function discussed above [Goodman 2007]. If some of these hypotheses are
no longer fulfilled (e.g. not enough phasors such that the central limit theorem does not apply or non
statistically independent phasors) non-Rayleigh behaviors may emerge. For instance, it was shown
that near-field speckles intensity is dictated by the scattering surface statistical properties [Greffet
et al. 1995]. More generally in the far field, prediction of the statistics has been studied in [Shnerb
et al. 1991], where the higher moments of the intensity distribution are shown to be enhanced,
confirmed by [Nieuwenhuizen et al. 1995; Kogan et al. 1993], see Eq. 3.3 taking into account the
leading correction when by expanding in 1/g,

p

(
I

〈I〉

)
= e−I/〈I〉

{
1 +

1

3g

[(
I

〈I〉

)2

− 4

(
I

〈I〉

)
+ 2

]}
, I > 0. (3.3)
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This modified statistics is observed when the assumption that the conductance g � 1 does not hold, i.e.
when mesoscopic effect can can observed (see Sec. 1.4.3). Observed in 1D or 2D materials [Höhmann
et al. 2010; Garcia et al. 1989], this regime is complex to reach in 3D diffusive media at optical
frequencies. Some recent and pioneering observations however have been made in dense colloidal
suspensions [Scheffold et al. 1998], nano wires [Strudley et al. 2013], or ZnO [Strudley et al. 2014] as
presented in Fig. 3.2. In [Strudley et al. 2014] two experimental configurations are studied: in-focus
and out-of-focus. The in-focus configuration corresponds to the illumination microscope objective
focusing the light on the sample while in the out-of-focus configuration the illumination microscope
objective is moved away to increase the illumination spot on the sample. One observes deviations
from the Rayleigh statistics for the in-focus configuration (red data points), where mesoscopic effects
are the most present.

Figure 3.2: Deviation from Rayleigh statistics due to mesoscopic effects. Intensity
distributions (P (sab), where sab is the normalized intensity) for different ZnO samples with thicknesses
(a) L = 6 µm, (b) L = 11 µm, (c) L = 30 µm. Red and black points represent experimental data for
in-focus and out-of-focus configurations. The dashed green line represents the intensity statistics
of Eq. 3.1 The solid blue curve represents the fit from Eq. 3.3, with g = 40. Figure from [Strudley
et al. 2014].

Taking advantage of the understanding of the non-Rayleigh emergence enables to artificially
favor it as we will see in the next section.

3.1.2.2 Artificial non-Rayleigh speckles

Small deviations from the Rayleigh statistics

In [Bromberg et al. 2014], the authors introduced amplitude correlations to an existing speckle.
The speckle is first generated by a random phase mask on a SLM, and correlations are then added
to the phase mask. From these correlations the authors could generate speckles whose intensity
statistics is an exponential decaying faster or slower than that of a Rayleigh speckle. In this way
they redistribute the intensity among the speckle grains making for instance some grains brighter
than the others. This intensity redistribution affects the contrast making it an indicator of the
speckle type. In case of a Rayleigh speckle the contrast is C = 1 (see Comm. 3.1.1), a speckle the
contrast of which is C < 1 is called sub-Rayleigh and a speckle for which, on the contrary, C > 1
is said to be super-Rayleigh, see Fig. 3.3. However these modified intensity statistics are limited
to the axial plane where the initial speckle was measured. Moving away from this plane the speckle
slowly returns to Rayleigh statistics. It is due to the mechanism relying on interference.
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(a) (b)

(c)

Figure 3.3: Variations from Rayleigh statistics. (a) Rayleigh speckle. (b) Sub-Rayleigh speckle
in the left part and its intensity statistics (green) compared to the one of the Rayleigh speckle of (a)
presented in blue on the right part. (c) Super-Rayleigh speckles and their statistics in the right part
(green and red curves) compared to the Rayleigh statistics of (a). Figure adapted from [Bromberg
et al. 2014].

Up to now we have reviewed speckles presenting small deviations from the Rayleigh statistics.
An interesting question is whether it is possible to reach statistics that deviate much more and even
design them arbitrarily.

Manipulation of the speckle statistics: from tailored intensity statistics to non-local
correlations

Before discussing some results, it is important to recall that modifying the speckle statistics,
despite the inherent and fundamental interest it presents, would find plethora of applications. Speckle
patterns are already widely used in imaging techniques [Lim et al. 2008; Mudry et al. 2012; Gateau
et al. 2013]. Hence being able to control the speckle intensity statistics would enable to improve
these techniques and broaden speckle patterns use. For instance super-Rayleigh speckle patterns
have successfully replaced two photons for sparse illumination for blind-SIM (Structured Illumination
Microscopy) in [Labouesse et al. 2017]. The use of a tailored spatial intensity statistics is also
promising for optical tomography [Rosen et al. 2000]. But the use of speckle patterns is not limited
to imaging only. They are used as optical tweezers to study particle diffusion [Douglass et al. 2012]
or Brownian motion [Volpe et al. 2014]. They create random potentials for cold atoms [Lye et al.
2005; Billy et al. 2008].

As mentioned in Sec. 3.1.2.2, deviations from Rayleigh statistics were achieved in related works.
To go even further and customize at will the intensity statistics, a technique has been developed
in [Bender et al. 2018], (see Fig. 3.4 for some examples of the obtained intensity statistics). This result,
similarly to [Bromberg et al. 2014], is only valid for a given imaging axial position. However as a
difference the intensity statistics obtained can be arbitrary, and result from a non-linear optimization.
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Figure 3.4: Arbitrary intensity statistics. (a) Rayleigh speckle pattern (top) and its exponential
intensity statistics (bottom) (b-e) Customized intensity statistics and the corresponding speckle
patterns. On all graphs the red solid line corresponds to the experimental data and the blue dashed
one to numerical simulations. Figure from [Bender et al. 2018].

A similar technique is employed in [Li et al. 2021c] to create negative spatial correlation to reach
super-resolution. Another variation presented in [Bender et al. 2019a] enables to customize the
intensity statistics and insert non-local correlations1 by encoding high order correlations into the
phase front using the Gerber-Saxton algorithm and a non-linear optimization on the intensity
PDF. Long-range correlations were also obtained in [Bender et al. 2019b]. These achievements are
promising due to the importance of non-local correlations for applications such as smart target
illumination [Akhlaghi et al. 2017].

Monochromatic transmission matrix for global-focusing

We have discussed in Sec. 1.2.4 the achievements obtained with optimization and the TM in terms
of spatial focusing. But with these techniques attention concentrates on spatial focusing on only one
speckle grain. Conversely the SVD was used to globally enhance the delivered energy on one ROI.
A legitimate question would be to consider focusing spatially on all the ROI, called global-focus.
A way of doing so is to compute the input vector to display on the SLM with a targeted output
vector all elements of which are ones. What would be the result? And what difference with the use
of the SVD? We will discuss the impact of performing a global focus in terms of the field statistics.
A further comparison in terms of enhancement is developed in Sec. 4.3.2.

As presented in Sec. 1.2.4, to focus on one speckle grain the incoming wavefront should be
distorted such that all the phases of the different modes are aligned at the targeted point. When
trying to focus simultaneously on all points of the ROI to form a global focus, the wavefront is
distorted in such a way that the fields tends to partially acquire a common phase. The statistics hence
no longer can be assumed to be a sum of random phasors. However it can be calculated considering
a sum of random phasors plus a global phase, as presented in the complex plane in Fig. 3.5. The
associated field statistics calculated and predicted by [Goodman 2007] is called Ricin statistics.
It results in a near-homogeneous intensity on the camera where speckle grains are hard to identify.
It is an extreme case of sub-Rayleigh speckles with an almost zero contrast, see Sec. 3.1.2.2. This

1In [Bender et al. 2018] spatial correlations were conserved.
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Figure 3.5: Origin of the Ricin statistics. The Ricin statistics emerges when one faces a sum
of random phasors (green) plus a constant phasor (red) while the Rayleigh statistics results from the
sum of only random phasors. Figure inspired from [Goodman 2007].

significant difference with a Rayleigh speckle is important to consider for potential application
where a homogeneous illumination could be preferred rather than a speckled one. An experimental
illustration of a Ricin speckle statistic is presented and discussed in Fig. 4.4(b). A deeper study
of the global-focusing is presented in Sec. 4.3.2 with an enhancement comparison with the SVD
method (see also Appendix B.3). A straightforward difference between the global focusing and the
SVD is the ability with the SVD method to tune the enhancement by selecting different singular
vectors [Kim et al. 2012]. Moreover for phase and amplitude control linear algebra implies that the
optimal enhancement should be obtained for the first singular vector.

We will discuss in the next sections other approaches that enable speckle correlation engineering
without (or with very limited) modification of the speckle statistics. This method is based on the
TM which is expected to contain all the information on the light propagation through the medium
of interest.

3.2 The transmission matrix beyond the transmission control: speckle
grain engineering

To control the speckle correlations or the speckle grain shape one can recall that a good analogy for
speckle formation is the diffraction by a set of randomly positioned apertures, see Sec. 1.1.3.1.

The well known Abbe experiment of spatial filtering shows that a diffraction pattern can be
altered by physically filtering in the Fourier plane some spatial frequencies. For instance removing
the high spatial frequencies blurs the details and sharp edges of the initial image. Thus a filtering
of the speckle spatial frequencies would, in principle, allow a control of the grain size and more
generally the correlations of the speckle pattern. A physical spatial filtering already was introduced
to generate thinner speckle grains [Di Battista et al. 2015; Di Battista et al. 2016]. This filtering
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step also can be solely numeric when the TM of the system is measured. This method is introduced
in [Boniface et al. 2017] where they use Fourier filtering of TMs to engineer the point spread function
of a focus.

Hence, we present a method to engineer arbitrary spatial correlations on the speckle (see Sec. 3.2.1)
with the singular value decomposition of the TM. We discuss the axial extension of this correlation
control (see Sec. 3.2.2) with the generation of Bessel-like speckles. We conclude by a deeper
understanding of the mechanism of the SVD spatial frequency selection with a modification of the
illumination scheme (see Sec. 3.2.3) and a control of the speckle grain size, where we verify that
the SVD does not alter the speckle statistics. For more information one can refer to [Devaud et al.
2021b].

3.2.1 Fourier filtering for correlation engineering

The speckle spatial frequencies filtering, inspired from [Boniface et al. 2017], is introduced on an
example and illustrated in Fig. 3.6. First a TM is measured, and since the imaged plane corresponds
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Figure 3.6: Scheme of the different steps of the computational filtering of a TM. From
a measured TM each CCD speckle imaged is Fourier transformed (FT) and filtered with a mask
(here a horizontal line). The filtered Fourier transform is Fourier back transformed FT−1 to the real
space and used to form the filtered TM. Figure from [Devaud et al. 2021b].

to the output face of the complex medium, the initial k-space is flat and limited by a circle delimiting
the maximal k values and defined by the numerical aperture. From this TM a filtered one is computed.
The numerical filtering step consists in a Fourier filtering of the output space corresponding to the
camera pixels. From the initial k-space, a filter is applied to select k components on the TM. Once
the filtered TM containing only the targeted spectral frequencies is calculated, we perform the SVD
of this filtered TM to obtain a set of singular vectors. These vectors hence contain the information
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on the remaining k-components. The singular vectors are used (more precisely here the first singular
vector v1) to modulate the input wavefront on the medium. The field measured after propagation in
the scattering medium2 is observed to be altered and to essentially be modified, following the filtering
imposed on the TM. The resulting speckles measured experimentally are presented in Fig. 3.7. For
comparison the speckle observed sending an incoming plane wave is presented in Fig. 3.7(a) together
with its Fourier plane (uniform as mentioned before) and the autocorrelation along the x and y axes.
The autocorrelation is computed with

C(δx) = |〈E∗(x)E(x+ δx)〉/〈|E(x)|2〉|. (3.4)

The axes are rescaled with the FWHM of the autocorrelation of the plane wave reference field. Two

Figure 3.7: Examples of filtering masks and obtained speckle correlations. (a) From top
to bottom: measured speckle pattern amplitude of a plane wave (reference), associated k-space and
speckle autocorrelation along the x and y axes (see Eq. 3.4 for the autocorrelation formula). The
tilde symbol stands for rescaled axis: the FWHM of the reference autocorrelation wref is used so that
δx̃ = δx/wref . (b) Same representations when using a filtering mask cutting hight ky components,
resulting in elongated speckles in the x direction. (c) Wavy speckle with long-range correlations due
to a two-slit filtering mask selecting some specific |kx|-ranges. For all images the white scale bars
are respectively, 5 µm and 2 µm−1 and the initial grain size is 1.4 µm. The autocorrelation and the
Fourier spaces are averaged over 4 disorder realizations. Figure from [Devaud et al. 2021b].

filtering mask as presented as example of the technique. In Fig. 3.7(b) we present the filter used
to explain the filtering technique in Fig. 3.6 (filtering high ky components): the speckles are no

2The medium is unchanged and thus only the input states bear the information on the filtering.
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longer isotropic but elongated in the y direction. Another filtering mask is presented in Fig. 3.7(c),
which this time selects some specific |kx|-ranges, here two symmetric vertical stripes in k-space. This
results in a wavy speckle presenting correlations beyond the grain size. With this technique the
speckle correlations can be modified using any Fourier mask: short-range for the speckle grain and
longer-range with an emerging pattern.

3.2.2 An axial extend of the correlation control

In [Boniface et al. 2017] the point spread function engineering was used to create Bessel beams. For
that purpose the filtering mask used was a ring [McGloin et al. 2005]. Bessel beams are interesting
as they propagate with less lateral spreading than gaussian beams [Durnin 1987; Durnin et al.
1988]. They already have been generated after scattering media [Di Battista et al. 2015; Di Battista
et al. 2016; Boniface et al. 2017]. However Bessel-like speckle remains little studied, despite its
introduction by [Turunen et al. 1991] and some more recent work [Cottrell et al. 2007; Dudley et al.
2012; Reddy et al. 2016; Liu et al. 2021]. Bessel-like speckle with their non-diffractive property
would be promising to generate them [Phillips et al. 2016]. To do so we performed the same filtered
TM experiment, but applying a ring mask in Fourier. To verify the axial properties of the speckles,
we measure them along different transverse planes by translating axially the collection microscope
objective. In Fig. 3.8(a), we present an image of an axial cut of the obtained tridimensional speckle.
One can indeed see that Bessel speckle are thinner and longer than the reference speckle. To have a
more quantitative idea of the Bessel characteristics of the speckle, the autocorrelation is plotted
in Fig. 3.8(b) and compared to the autocorrelation of the reference speckle (black semi-dotted line).
The autocorrelation along the y (blue solid line) is slightly thinner than the reference and one can see
hints of the well-known Bessel oscillations. Along the z direction the autocorrelation is broadened
confirming the elongated speckles. The ability of realizing Bessel-like speckle reveals a very important
aspect of the SVD method to control correlations: the effect is not limited to the single z position
where the TM has been measured (denoted z0). This is in stark contrast with [Bender et al. 2019b]
where the effect relies on interferences. To illustrate this point the transverse grain size is measured
for different z planes for different singular vectors (v1 and v80). The z axis is centered around
z0, axial position where the TM is measured, and expressed in terms of number of speckle grains
(axial length measured at z0). In Fig. 3.9(a) the raw transverse grain size is plotted. Hence the
diffraction is responsible for the speckle grain size increase along z. This global increase with z is
suppressed in Fig. 3.9(b), normalizing the transverse grain size by the value obtained with a plane
wave. Hence Fig. 3.9(b) gives the relative speckle grain evolution along z.

In the next sections we present some complementary information on the illumination scheme. We
use a modified illumination scheme to induce, without any active filtering of the TM, a selectivity
of the speckle pattern spatial frequencies by the SVD. This understanding leads to a very simple
method to control the speckle grain size.

3.2.3 Simple control over the speckle grain size

3.2.3.1 Illumination and collection microscope objectives positions

The positions of the illumination and of the collection microscope objectives have already been
discussed in Sec. 2.3.5.4. So far the collection microscope objective images a plane located at the
output surface of the sample. This plane is now (for this section and for Chap. 4) moved away from
the sample. The reason for this position is to control the inhomogeneities of the speckle Fourier
components. If the imaged plane is the medium output face, the Fourier components are only limited
by the collection microscope numerical aperture (NA), and the Fourier transform of the speckle
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Figure 3.8: Bessel-like speckles. (a) Volumetric speckle cut on one x plane. The top image
represents the speckle of reference when a plane wave is sent into the medium. The bottom image
represents the speckle obtained when displaying on the SLM the first singular vector of a TM filtered
with a ring. The speckle grains are elongated in z and thinner for their transverse directions. The
white scale bar represents 5 µm. (b) Plot of the autocorrelation C both along y (blue curve) and along
z (red curve) for the same data as in (a). As in Fig. 3.7, the horizontal axis is rescaled by the FWHM
of the reference autocorrelation. The dash-dotted black line indicates the reference autocorrelation
(equivalent for both y and z directions due to the rescaling). For the autocorrelation, the data are
averaged over all x positions. The inset shows the corresponding Fourier space distributions in the
(x,y) plane at the TM position. The white scale bar measures 2 µm−1. Figure adapted from [Devaud
et al. 2021b].

Figure 3.9: Axial extent of the correlation control. (a) Transverse speckle grain size (in µm)
along the axial dimension z. The first singular vector (v1, blue) and an intermediate one (v80, orange)
are presented. The z-axis is rescaled by the axial extension of the reference speckle at z0 (position
where the TM was measured). The global speckle grain size increase is due to diffraction. (b) Same
data as for (a) but this time the relative speckle grain size is presented: all sizes are rescaled with
the local reference grain size. Figure adapted from [Devaud et al. 2021b].

pattern is therefore a homogeneous disk. As we move away the collection microscope objective
from the sample surface, the grain size increases, which corresponds to a decrease in the spatial
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frequencies. It is no longer the NA that sets the bounds on the transmitted spatial frequencies
but an effective filtering applies. A limiting case is worth mentioning: for a collection microscope
positioned very far from the medium, only the Fourier component with k ' 0 are collected, leading
to a few big speckles grain. For intermediate positions low spatial frequencies are better transmitted
than higher ones. The absence of sharp threshold leads to a non-uniform k-space distribution. The
coupling between transmission properties and spatial frequencies is interesting: controlling one (for
instance the transmission with the selection of singular vectors) leads to the simultaneous control
of the other (the spatial frequencies). This is the purpose of the next section. A scheme of the
experimental configuration is presented in Fig. 3.10.
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Figure 3.10: Influence of the position of the collection microscope objective on the
Fourier spectrum. The illumination microscope objective is moved away from the sample so
that light covers a wide illumination area on the sample. The collection microscope objective is
also moved away from the sample in order for the weight of the Fourier components not to be
homogeneous on the speckle. Imaging a plane close to the sample output face (denoted as z = 0)
leads to a speckle limited by the NA of the system and planes imaged with z > 0 lead to non-flat
Fourier spectra of the speckles. Figure adapted from [Devaud et al. 2021b].

3.2.3.2 Speckle grain size control

So far the experimental configuration is the one described in Fig. 3.10 (bottom left panel), where
the collection microscope objective images the output surface of the medium. In the following, it is
defocused in such a way that the speckle k-space is not NA-limited but presents a smooth radial decay
of the mean energy. These variations are visible in Fig. 3.10 (bottom) and in the second and third
rows of the first column of Fig. 3.11(a). Since it is present on all individual speckle patterns, the TM
also contains this information in the Fourier domain. Moreover the TM is purposely over-sampled
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on the CCD plane so that the spatial frequencies are well resolved.
When computing the SVD of the TM, a basis of singular vectors is obtained. They are sorted

by transmission, whose relative values are accessible through the singular values. In case of a
homogeneous k-space distribution all k values inside the NA are equally addressed and sending
different singular vectors only affects the global transmission. For an inhomogeneous k-space another
parameter comes into play: some k-components are associated with a higher transmission than
others. To obtain the best transmission, exciting preferably these k-components is more efficient.
Hence the transmission sorting induced by the SVD goes together with a selection of the k vectors.
It is noteworthy that the same reasoning holds in Sec. 3.2.1 and Sec. 3.2.2, where the k-space
inhomogeneity is brought by the filtering step. This k vectors sorting is well visible in Fig. 3.11(a)’s
second and third rows: to obtain the best enhancement (v1) the selected k are concentrated close to
the center of the Fourier plane, where energy is maximum. In contrast, for intermediate enhancements
(v81), the k vectors selected are on the edge (forming a ring). For even smaller transmissions (v225)
the uncontrolled light is no longer negligible3 and acts as noise. As a result no clear k values are
selected for the singular vectors associated with the smallest transmissions. This k-selectivity is not

Figure 3.11: Evolution of the speckle k-space with the singular vector # and speckle
statistics. (a) Speckle patterns and their Fourier transform. First row: speckle obtained for different
inputs such as a plane wave for a reference and three different singular vectors (v1, v81 and v225 out
of 225). Second row: amplitude of the spatial Fourier transform of the speckle patterns. Third row:
cuts along the horizontal direction of the speckle k-spaces averaged over 3 pixel rows. The reference
black curve is kept in dashed line for all singular vectors to allow comparison. The white scale bars
are 5 µm and 2 µm−1 respectively. All data are individually normalized for a better observation and
hence do not show the transmission variations. Fourier spaces and the associated cuts are averaged
over 36 realizations of the disorder. (b) Speckle statistics for the same three singular vectors. The
field amplitude follow a Rayleigh statistics which fits are presented with the dashed black lines. The
inset displays the phase PDF. Figure adapted from [Devaud et al. 2021b].

only visible on the spatial Fourier transform of the speckle but also in the speckle itself. Indeed the k
distribution is associated with the speckle grain size as visible on the first row of Fig. 3.11(a). For all

3The uncontrolled light amount is constant, thus for hight transmissions it is negligible but for reduced transmission
its impact is more important.
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the singular vectors shown in Fig. 3.11(a) the amplitude and phase PDF are plotted in Fig. 3.11(b).
The statistics remains Rayleigh which is an advantage for some applications where the speckle
illumination is interesting, among others, for speckle-field digital holography microscopy [Park et al.
2009] and also blind structured illumination microscopy [Mudry et al. 2012].

To better quantify the variation in speckle grain size for each singular vector, the speckle grain
size is measured and its relative value (speckle grain size divided by the speckle grain size obtained
when illuminating the medium with a plane wave) is plotted in Fig. 3.12(a). The inset represents the
associated measured field enhancements. An important observation is the possible smooth control of
the speckle grain with the choice of singular vectors. To complement this experimental observation
some simulation results are presented in Fig. 3.12(b). The TM is simulated using a random matrix

Figure 3.12: Evolution of the grain size with the singular vector #. (a) Grain size measured
experimentally using the same data as for Fig. 3.11. The colored dots refer to the data displayed
in Fig. 3.11. The grain size is bigger than the reference one for the first singular vectors and
monotonically decreases to a value lower than the reference one for the middle singular vectors. For
the last singular vectors the grain size smoothly recovers the reference value. The inset represents
the measure field enhancements ηE. (b) Simulation of the speckle grain size using the RM model.
The initial speckle grain size and the effective number of SLM modes are extracted from the data
of (a) to better mimic the TM characteristics. The same behavior as for the experimental data is
observed for phase-only control. For phase and amplitude control the grain size increases again for
the last singular vectors. The data are averaged over 50 realizations and smoothed with a moving
mean of 10 points. Figure adapted from [Devaud et al. 2021b].

which roughly includes some of the TM properties, such as the remaining grain size after the binning
process (the experimental TM was purposely over-sampled) and the effective number of modes. The
phase-only control shows results that are similar to the experimental data, for a better match with
the enhancement values a fine tuning on the TM characteristics would be necessary. The phase and
amplitude control brings new information on the grain size behavior: it is similar to the phase-only
control for the first singular vectors but differs for the last singular vectors where a new increase of
grain size should be expected.

A related technique to create anisotropic speckle grains in the same illumination configuration is
described in Appendix B.2.
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3.3 Take home message

In this chapter we discussed speckle statistics, correlations, and we propose ways to modify them.
The knowledge of the transmission matrix of a system enables to obtain a very low contrasted speckle
when performing a global-focusing with a Ricin statistics. However, the propagation of singular
modes through the medium preserves the Rayleigh statistics of a general speckle. We experimentally
verify that the SVD of the TM can be a tool for engineering the speckle correlations (both the grain
size and longer-range correlations). The axial extension of the control exceeds several speckle grains
enabling to generate Bessel-like speckles.
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So far, we performed studies in the monochromatic regime and focused mainly on spatial effects.
In this chapter we will consider temporal aspects by setting the laser in pulse mode. We will exploit
the setup ability of performing time-gated measurements to directly work in the temporal regime.
Spectral aspects (and the link with temporal ones) are discussed in Chap. 1. We will briefly comment
on TGTMs measurement in Sec. 4.1. Then, in Sec. 4.2, we will review the results already obtained
with a TGTM to control light fields. In Sec. 4.3, are presented in more details the possibilities of
energy delivery using the SVD of the TGTM and discuss the similarities between a TGTM and a
regular monochromatic TM in Sec. 4.4. This chapter concludes by the presentation in Sec. 4.5 of the
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simulation scheme and results obtained by our collaborators when investigating pulse propagation in
a disordered waveguide.

4.1 Measurement of time-gated transmission matrices

4.1.1 Measurement techniques

As mentioned in Sec. 1.3.3.2 the MSTM and the TRTM should contain the same information. Hence
when seeking informations on a specific delay, two approaches are possible: a direct measurement of
the TGTM associated to this delay or an indirect measurement through the MSTM.

4.1.1.1 Indirect measurement via the multi-spectral transmission matrix

The indirect measurement technique is based on the Fourier transform relation between frequency
and time. Given the spectral scattering information, it is possible to compute the temporal one.
This is for instance employed with MMFs in [Carpenter et al. 2016; Xiong et al. 2019; Mounaix et al.
2019].

This technique is very powerful as it grants access to temporal aspects of light propagation using
only monochromatic light. In Sec. 4.5, the same approach is used to simulate a pulse propagation in
a waveguide. However this remains an indirect measurement and requires the (time demanding)
measurement of several monochromatic TMs. In an experimental work such as the one presented
here, a direct measurement is preferred.

4.1.1.2 Direct measurement

The direct measurement does not differ much from the measurement of a monochromatic TM,
presented generally in Sec. 2.3.4 and more concretely in Sec. 3.1.2.2. When considering TGTMs new
precautions must be taken with regard to the exact positioning of the delay-line. The measurement
is indeed performed for a given delay τ0 in the pulse. To only gather information at this specific
delay, the delay-line length is adjusted such that the probe pulse interferes with the scattered light
at a delay τ0.

Also under monochromatic settings, it is relatively easy to balance the illumination between the
scattered light and the probe to maximize the interference contrast, and hence optimize the field
extraction. This is no longer the case for the pulsed mode, because the camera collects scattered
light with various delays, where the light proportion for a given delay scales according to the pulse
shape. Hence, for a targeted delay τ0 close to the scattered pulse peak, interfering light represents a
majority leading to well contrasted interferences. However, for a targeted delay τ0 situated in the
pulse tail, the amount of interfering light is drastically reduced and leads to smaller contrasts. The
signal to noise ratio decreases, preventing an optimal field extraction (and hence TM measurement).
The consequences of the TM measurement quality as a function of τ0, as well as its monitoring, are
discussed over an example in Sec. 4.3.4.

4.1.2 How to use a time-gated transmission matrix?

Once the TGTM is measured, using it is not different from a monochromatic TM. The input phase
mask is determined and displayed on the SLM. Then the output field is measured, either at a specific
delay or for all delays using the field extraction techniques presented in Sec. 2.3.2.

In the next sections we will give examples of what the TGTM enables to do, i.e. spatio-temporal
focusing (Sec. 4.2) and energy delivery control (Sec. 4.3).
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4.2 Spatio-temporal focusing

Spatio-temporal focusing behind a scattering medium was achieved before the introduction of the
TGTM object. Indeed it is interesting to note that, as for the monochromatic scheme where focusing
behind a scattering sample was first realized with optimization techniques [Vellekoop et al. 2007;
Vellekoop et al. 2008b], spatio-temporal focusing also was achieved first through optimization [Aulbach
et al. 2011]. In the latter paper a spatial focus was observed behind a thick TiO2 layer for different
delays, also selected with a delay-line, using a field amplitude feedback control. Foci obtained for
optimization with different delay-line lengths are presented in Fig. 4.1.

Figure 4.1: Spatio-temporal focusing with optimization. (a) Temporal profile averaged over
50 realizations for the non-optimized pulse. (b) Example of one single speckle amplitude temporal
profile. (c-g) Temporal profiles for when optimizing the amplitude for different delays (dashed
arrows) using 300 SLM modes. The position of τ = 0 is set as the maximum amplitude with no
sample. Figure from [Aulbach et al. 2011].

In the following we will solely consider spatio-temporal focusing with a TGTM. When compared
to the optimization approach, TMs not only enable us to focus on a single speckle grain, but also
make it possible to engineer more complex foci. Similarly to the monochromatic case, scattering
informations contained on the TM make it a powerful tool for reconfigurable focusing. Provided
that the medium has not decorrelated, only one TM measurement is needed for several focusing
experiments.

4.2.1 Focusing on one speckle grain

The procedure to obtain a spatio-temporal focus with a TGTM is the same as for a monochromatic
TM: the input phase mask is computed using phase conjugation and displayed on the SLM. This
focusing mask, only valid for the delay τ0 where the TM has been measured, hence combines spatial
focusing with temporal aspects. This spatio-temporal focusing with a TGTM already has been
achieved and is presented in [Mounaix et al. 2016a]. Their experimental setup is similar to the one
described in this thesis, with a sample made of a thick ZnO layer. Examples of spatio-temporal
focusing experiments are presented in Fig. 4.2. In Fig. 4.2(a) the focusing on one speckle grain with
a monochromatic TM (blue curve), measured for the pulse central frequency, is compared to the
focusing with a TGTM (red curve) and to the reference pulse (black curve). For all three curves



74 CHAPTER 4. FROM MONOCHROMATIC TO TEMPORAL ASPECTS

the intensity is measured on the focusing position only. The monochromatic TM enables spatial
focusing while the TGTM enables spatio-temporal focusing. Once the TM is measured the focusing

Figure 4.2: Spatio-temporal focusing with a TGTM. (a) Intensity measured at the focusing
target position for the monochromatic focusing (blue) and the time-gated focusing (red). The
black curve represents the averaged over 100 speckle grains of the pulse temporal profile. (b,c)
Spatio-temporal foci for two different spatial positions for the same TGTM as in (a). The white
scale bars in the insets represent 2 µm. Figure from [Mounaix et al. 2016a].

can be reconfigured to different spatial target positions as visible in Fig. 4.2(b,c).

4.2.2 Multi-time and multi-speckle focusing

Can we engineer more complex focusing? Yes due to the linearity allowing us to combine input
vectors. It is then possible to measure for instance two TGTMs (for τ1 and τ2), compute the focusing
vectors for a given spatial targeted position and sum them. Taking the phase approximation of this
resulting vector leads to the phase mask to display on the SLM to focus light on one position for two
distinct delays. Focusing on the same spatial position for delays τ1 and τ2 is presented in Fig. 4.3(a).
The comparison with focusing individually at these two delays is presented Fig. 4.3(b). A small
enhancement decrease is observed for the multi-focusing.

An extension of Fig. 4.2(b,c), i.e. focusing on two spatial positions simultaneously for the same
delay, also works. Hence it just requires to define the output target vector for two foci before taking
its phase conjugation. A next step is its extension to the global-focusing presented in Sec. 3.1.2.2.
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Figure 4.3: Multi-delays focusing with a TGTM. (a) Spatio-temporal focusing on the same
spatial position for two different delays. (b) Individual spatio-temporal foci for two different spatial
positions for the same TGTMs as in (a). The white scale bars in the insets corresponds to 5 µm.
Figure from [Mounaix et al. 2016a].

4.2.3 Extension to a temporal global-focus

In this experiment a TGTM is measured for a delay τ0 = 1 ps. The input phase mask is computed to
target a global-focus at the output. The mask is displayed on the SLM and the field is measured along
the pulse by scanning the delay-line. The averaged amplitude obtained is displayed in Fig. 4.4(a)
(green curve) and compared to the plane wave input (gray curve). The energy delivery increases
at τ0. As expected from the TM measurement and the extraction, relying on the interference with
the unperturbed pulse, the width of the peak corresponds to the probe pulse width. This behavior
is also observed with the focusing on a single speckle grain. Also observed in the spatio-temporal
focusing experiments, the scattering information contained in the TGTM is limited to specific delays:
the focusing is only effective around τ0.

τ1

τ0

τ1 τ0

Figure 4.4: Temporal global-focus. (a) Averaged amplitude pulse profile for a plane wave input
(gray) and the global-focusing input (green) calculated with a TGTM measured at τ0. (b) Field
statistics for τ1 (top) and τ0 (bottom). The amplitude PDF is plotted on the left and the phase
PDF on the right. The statistic is Rayleigh for delays different than τ0 (i.e. for τ1) while it is Ricin
around τ0. For these experiment γ ∼ 0.1.

Moreover the statistical properties of the speckle pattern also becomes time dependent as visible
in Fig. 4.4(b). Speckle statistics are compared for two different delays: the delay τ0 for which the
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TGTM has been measured and an arbitrary delay τ1 different enough from τ0. For τ1 the field
follows a Rayleigh statistic characterized by a Rayleigh amplitude PDF and an homogeneous phase
(see Sec. 3.1.1), both are presented in the top part of Fig. 4.4(b). Conversely the field statistic at
τ0 is Ricin, due to the preferred phase set, as already mentionned for the monochromatic global-
focusing (see Sec. 3.1.2.2). The Ricin statistics corresponds to a Gaussian phase peaked around
one value Fig. 4.4(b, bottom right) while the field amplitude is more symmetric than a Rayleigh
distribution Fig. 4.4(b, bottom left).

Even though the global-focusing is impressive and allows to enhance the energy delivery at
targeted delays in the pulse, the enhancement value is not tunable and the output field is necessarily
Ricin. Both aspects are restricting potential applications. Imaging techniques would rather benefit
from speckle patterns [Park et al. 2009; Mudry et al. 2012]. Thus extending the control with the
SVD of the TM achieved in monochromatic [Kim et al. 2012] would be promising.

4.3 Singular value decomposition to control the energy delivery

4.3.1 Singular value decomposition and pulse shape

As for focusing, the TGTM study with the SVD is no different than for the monochromatic regime.
Here a TGTM is measured for a delay τ0 = 1.1 ps with a degree of control γ ∼ 0.3, for 225 singular
vectors. For each singular vector, its phase is displayed on the SLM and the field is measured
along the pulse by scanning the delay-line. The obtained pulse shapes (amplitude averaged over all
CCD pixels) for the two extreme singular vectors (v1 and v225) are presented in Fig. 4.5(a). The
first singular vector (blue curve) leads to an amplitude increase at τ0 while the last singular vector
(orange curve) leads to a decrease. The plane wave input is presented in gray for comparison. The
green dots displayed in top mark the peak positions for the intermediate singular vectors. A smooth
control of the energy delivered is possible. It is important to note that again a temporally localized
enhancement is observed. It is in stark contrast with the extended one reached in MMFs when
spatio-temporal correlations comes into plays [Xiong et al. 2019].

Even if the singular vectors are ordered by transmission, predicting the enhancement value is
convenient for practical applications. In theory the amplitude enhancement should be given by the
singular value itself, see Appendix B.3. In Fig. 4.5(b), we plot the amplitude enhancements ηE for
the data of Fig. 4.5(a). In monochromatic the amplitude (resp. intensity) enhancement was defined
by the total amplitude (resp. intensity) over the ROI for the targeted vector divided by the the
total amplitude (resp. intensity) over the ROI for the reference vector (usually an input plane wave).
The definition for the pulse is the same. The amplitude (resp. intensity) is measured at τ0. For
the reference it is possible, for improving the stability, to fit the exponential decay of the pulse and
extract the amplitude (resp. intensity) value at τ0 from it. When the averaging is sufficient (big
ROIs or averaging over enough disorder realizations), which is the case in the experiments performed,
the method employed to extract the reference amplitude (resp. intensity) does not matter.

In Fig. 4.5(b) the enhancements measured experimentally are plotted together with the normalized
singular values s̃. Despite discrepancies that can be mainly attributed to phase-only control
(see Appendix B.4) the data match theoretical predictions.

It can be visually observes, comparing Fig. 4.4(a) and Fig. 4.5(a), that the SVD enhancement
does not look higher than the global-focus one, despite theoretical predictions. However these two
experiments are not directly comparable due to their different degrees of control. In the next section
we will compare the enhancements obtained for both the SVD and the global focusing.
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Figure 4.5: Temporal control of the energy delivery with the SVD. (a) Pulse averaged
amplitude profile for the first singular (vector v1, blue) and the last singular vector (v225, orange) of
a TGTM measured at τ0 = 1.1 ps. The pulse obtained for a plane wave input (ref) is shown in gray.
The green dots represent the peak values for some other singular vectors. (b) The field amplitude
enhancement (ηE) for all the singular vectors is plotted with green dots. The expected enhancement
for phase and amplitude control (normalized singular values) is represented with the yellow curve.
For this experiment γ ∼ 0.3.

4.3.2 Comparison to the global-focusing

In this section I present a comparison of enhancement between the global-focusing and the first
singular vector. The number of SLM modes is kept fixed (NSLM = 256 with N eff

SLM ' 120) and NCCD

varies. A TGTM is measured in the middle of the pulse (τ0 ∼ 1.1 ps) and both the first singular
vector and the global-focusing vector are computed from it. The SLM is successively modulated by
their phases while scanning the delay-line to extract the fields temporal evolution. The amplitude
enhancements are measured at τ0, taking as a reference field the plane wave input and are plotted
in Fig. 4.6(a). As theoretically expected (see Appendix B.3) the first singular vector performs a better
enhancement than the global-focus. However due to several experimental limitations: the phase-only
control, the measured TM not following the MP distribution because of remaining correlations; the
laws predicted in Appendix B.3 does not match exactly the experimental data. Nevertheless the
scalings in 1/

√
γ still holds. A possible explanation requiring a deeper investigation could be the the

existence of correlations, because the singular value variance differs from the Marchenko-Pastur one
due to the relatively large illumination spot [Popoff et al. 2014; Hsu et al. 2017]. Another observable
feature is the fact that the more asymmetric the TM is (large 1/

√
γ), the closer the first singular

vector and the global-focusing enhancements are. In the limiting case where the output reduces to
one single CCD pixel both are expected to be the same. A way to evaluate how similar are the global
focusing and the different singular vectors is to compute their correlations. The field correlation
between two vectors V1 and V2 is given by

C(V1, V2) =
V †1 V2√
V †1 V1V

†
2 V2

=
V †1 V2

‖V1‖2 ‖V2‖2
, (4.1)

where † represents the transpose conjugate. In Fig. 4.6(b) the correlations for vectors associated to
the two colored arrows of Fig. 4.6(a) are presented. The strong correlation between the global-focus
vector and the first singular vector explain the close enhancement values observed.
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Figure 4.6: Amplitude enhancement comparison between the first singular vector and
the global-focus for a TGTM. (a) Field amplitude enhancement ηE for the first singular vector
(v1, blue dots) and the global-focus (orange dots) for different values of γ. (b) Absolute value of
the correlation between the singular vectors and the global-focus for two extreme degrees of control
marked by the colored arrows.

4.3.3 Enhancement for different delays with a single phase mask

It was already mentioned in Sec. 4.2.2 that summing the focusing masks to focus on several spatial
temporal times was possible. In this section we show that it can also be achieved with the SVD.
Consider a TRTM presented in Fig. 4.7(a). From it, three TGTMs, measured for τ1, τ2 and τ3,
are selected. The individual SVDs of the TGTMs are performed, leading to three sets of singular
vectors. We select the first singular vectors of each set (v(τ1)

1 , v(τ2)
1 and v(τ3)

1 ) and sum them together
to obtain another vector v(τ1,τ2,τ3)

1 Fig. 4.7(b, top). The first singular vector of the middle delay
TGTM is also selected for comparison Fig. 4.7(b, bottom). The two vectors (v(τ1,τ2,τ3)

1 and v(τ2)
1 )

are then successively displayed on the SLM and the temporal fields are measured by scanning the
delay-line. The profiles obtained are plotted in Fig. 4.7(c) together with a plane wave input as
reference. One can see that the mask summing technique works to enhance the energy at different
delays in the pulse. It is also noticeable that the demultiplication of the controlled delays comes with
the cost of a reduced enhancement for the individual times. This is well visible when comparing the
enhancement obtained at τ2 when only controlling this delay (blue curve) or when controlling this
delay among others (orange curve).

It is very important to keep in mind that for the experiment presented, the SVD was performed
on the individual TGTMs and that the sum of the vectors was performed afterward, leading to the
input vector v(τ1,τ2,τ3)

1 . Another workaround would have been to first sum the TGTMs and then
compute the SVD of the resulting matrix, the obtained vector would have been v(τ1+τ2+τ3)

1 . The
second approach, and all its implications, will be the subject of the Chap. 5. To follow with this
chapter, we will focus now on the differences between TGTMs measured for different delays.
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Figure 4.7: Controlling several delays with one phase mask. (a) Three TGTMs of the full
TRTM are measured for delays τ1, τ2 and τ3. (b) The phase mask to display on the SLM for
enhancing the energy delivery at τ1, τ2 and τ3 is the phase of v(τ1,τ2,τ3)

1 obtained by summing the
first singular vectors of the TGTMs measured for these specific delays. (c) Field amplitude measured
for v(τ2)

1 (blue), v(τ1,τ2,τ3)
1 (orange) and an input plane wave (gray).

4.3.4 Evolution of the control over the pulse

So far, in every experiment presented, (except for Sec. 4.3.3,) the TGTM was measured in the
middle of the pulse. This choice was made in order to present clear results (peaks with good
enhancements and well separated from the initial peak of the pulse). However all effects presented
can be theoretically performed whatever the targeted delay τ0 is. To illustrate this point, a set
of TGTMs (with γ ∼ 0.4) is measured for a range of delays, their SVDs is performed and the
field is measured when sending the first (v1) and the last (v225) singular vectors. The measured
enhancements1 are reported in Fig. 4.8(a): blue dots for the first singular vector (v1) and orange dots
for the last one (v225). The (unscaled) gray pulse is present to visually help associate delays with
the pulse shape. It is noteworthy that the enhancement is relatively flat until delays of 2.5 ps, where
smooth evolution towards 1 is observable (a decrease for the first singular vector and an increase for
the last singular vector). At long delays enhancements are no longer observed. Such a behavior was
already observed for spatio-temporal focusing either with the TM or with optimization [Aulbach
et al. 2011; Mounaix et al. 2016a]. This lack of efficiency in the control for late times was attributed
to noise. On the tail of the pulse light from non-controlled delays indeed predominates, restraining
an accurate measurement of the TM or accurate setting of the optimized phase. Our experiments
confirm these findings. Moreover we present in Fig. 4.8(b) and Appendix A.4 a simple method
to help knowing, from a TM, if the measurement was good or subjected to noise. The idea is as
follows: when a field extraction is not subjected to noise the phase histogram of the TM should be
uniform. However in case of noise one can observe oscillations for the TM in the canonical basis.
This is well visible in Fig. 4.8(b) around −0.5 ps: before the pulse the noise leads to a measured
TM with peaked phase histograms while when signal is present the TM phase histogram is flatter.
Increasing the number of phase steps used to extract the field and measure the TM helps reaching
better extractions. This is the reason why, even though 4 phases are usually enough in the middle of
the pulse to measure a TM I present here TMs measured with 10 phases. This allows the comparison

1Corrected from TM/peak positions mismatch, see Sec. 4.3.5.
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Figure 4.8: Evolution of the enhancement along the pulse. (a) Evolution of the enhancements
of the first singular vector (v1, blue dots) and the last singular vector (v225, orange dots) for different
delay times. For this experiment γ ∼ 0.4. As a visual aid the plane wave output pulse is also
displayed (arbitrary units, gray). Individual TGTMs have been measured with 10 phase steps per
mode (instead of the usually 4 used) to reduce measurement noise in the pulse tail. (b) Image of
the phase histograms of the different TGTMs. When noise predominates the phases are no longer
uniform in the 0–2π range but peaked.

of enhancements in a longer range of delays.
A method that could be employed to avoid signal issues in the pulse tail could be to tilt one of

the beams (either the probe pulse or the scattered beam) to perform off-axis holography [Cuche
et al. 2000]. Due to the introduced angle, the interference pattern changes to form fringes. The
information on the first order can be extracted from the interference images with Fourier transform.
However this technique comes with a loss of resolution, due to the need to resolve the fringes inside
one speckle grain.

Apart from the noise issue mentioned above, no drastic enhancement difference were observable
between TGTMs measured at different delays in the pulse. I will however discuss in the next section
an enhancement behavior that is only detectable when studying TGTMs at early and late times.

4.3.5 Shift of the enhanced delay

For the data presented in Fig. 4.8(a), we measure the enhancement at the peak position. In most
cases this extraction coincides with measuring the enhancement at the delay where the TGTM is
measured. However some discrepancy are observable. It is well visible when plotting the pulse shapes
obtained when sending the first singular vector and comparing to the TGTM position τ0 represented
by vertical dashed lines in Fig. 4.9(a). For early times the amplitude rise induced by the first SVD
input is positioned at a delay τ+

0 slightly larger than τ0 (blue curve). For middle times no such a
behavior is observable and the amplitude peak is situated at τ0 (green curve). For late times, the
peak position is not observed at τ0 but for a shorter delay τ−0 (orange curve). The trend observed
for three delays in Fig. 4.9(a) is systematic. In Fig. 4.9(b) the absolute value of the peak shift is
presented as a function of the TGTM position τ0. A possible interpretation of this shift comes from
the TM measurement. Because the measurement is realized using a non-Dirac temporal gate the
information gathered on the TGTM does not include the single delay τ0 but also neighboring delays
(the peak width also being a consequence). Thus one could imagine a small temporal freedom for
enhancing the field amplitude. In the middle of the pulse τ+

0 and τ−0 are equivalent, no deviation is
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Figure 4.9: Shift of the enhanced delay. (a) Pulse shape for first singular vectors for three
different delays: an early time (in the pulse peak rise, blue), an intermediate time (middle of the
pulse, green) and a late time (pulse tail, orange). The delay for which the TGTM was measured is
marked with the colored dashed lines. The enhanced peaks do not always coincide. At early times
the increase is shifted to the later times hence at late times the peak is shifted to the earlier times.
In both cases this corresponds to a shift in direction of the center of the pulse. In middle times no
clear shift is visible. (b) Plot of the peak shift absolute value along the pulse.

observed. This is no longer the case at early or late times where energy enhancing is stronger where
energy is naturally high.

4.4 Temporal speckle grain size control

Because most of phenomena observed translate from the monochromatic regime to the pulse regime,
one could wonder if this is also valid for the speckle grain size engineering presented in Sec. 3.2. To
investigate this point the experimental conditions are set as in Sec. 3.2 (i.e. collection microscope
objective moved away from the sample output plane) with non-uniform speckle patterns k-spaces.
An induced SVD wavevector selectivity is therefore expected. An oversampled TGTM of size 225 ×
1024 is measured at τ0 = 1.1ps and its SVD is performed. The phase approximation of two different
(v1 and v121) singular vectors is displayed successively on the SLM and the associated fields are
extracted all along the pulse. The speckle grain size is then measured and plotted as a function, of
the delay in Fig. 4.10.

One observes an enhanced grain size around 1.1 ps for the singular vector v1 (blue dots) while
a decrease for the singular vector v121 (orange dots). Both plotted grain sizes are relative to the
reference grain size: for each delay τ the speckle grain size is divided by the one obtained for a plane
wave input pulse.

All the results presented are realized under very partial control. Even though the degree of
control γ is lower than 1, the TM is well approximated by a random matrix. It would be interesting
to investigate the temporal effects of a more controlled system. Simple simulations, by adding
unitarity constraint to the generated random TM, lack the temporal information, which shows that
a more elaborated scheme is required. Simulation results with a waveguide geometry are presented
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Figure 4.10: temporal control of the grain size. Temporal evolution of the speckle grain
size along the pulse when displaying on the SLM the phase of two singular vectors: v1 (blue) and
v121 (orange). The experimental configuration is such that the measured speckle have non-uniform
k-space. For each delay τ the measured grain size is normalized using the plane wave input pulse.

in the next section.

4.5 Time gated transmission matrix on a waveguide

To complement experimental results presented above I will discuss in this section some simulation
results obtained in a waveguide geometry. These results were obtained by Jakob Melchard, Matthias
Kühmayer and Stefan Rotter from the Institute for Theoretical Physics at Vienna University of
Technology. I will first present the simulation itself in Sec. 4.5.1 and the results in Sec. 4.5.2.

4.5.1 Simulated geometry and protocol

4.5.1.1 Geometry

For the simulations one seeks at a simple but realistic geometry. Differences from the experimental
paint slab are worthwhile to test the robustness of experimental observations. For these reasons a 2D
waveguide system is well suited. Such technique has already been used to complement experimental
results [Davy et al. 2021]. The waveguide, whose dimensions (L = W/10, where L is the length
and W the width) enable the propagation of 50 to 100 modes for the incoming frequencies of the
pulse, is filled with obstacles (sphere with radi of W/100, filling fraction of 0.4) materialized by local
refractive index mismatches (nscatt = 3.5), see Fig. 4.11(a).

4.5.1.2 From spectral to temporal information

The stationary Helmholtz equation is solved for the set of targeted input wavelengths2. For each
wavelength a monochromatic TM is calculated (one hence obtains a MSTM). It is noteworthy that
the number of propagating modes (and hence the size of the different monochromatic TMs) depends
on the input frequency due to the waveguide’s dispersion relation. However only the modes that
can propagate for all frequencies are kept for calculations (50 lowest ones in the result presented).
This is done in order to only address modes that propagates for all input frequencies and avoid

2A similar approach is emplyed in [Durand 2020].
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transmission artifacts due to the presence of non-propagating modes. A Fourier transform of the
MSTM then enables to obtain the time resolved information3 as in [Carpenter et al. 2016; Xiong
et al. 2019; Mounaix et al. 2019] and illustrated Fig. 4.11(b).

4.5.1.3 Definition of τ = 0

To match the experimental zero-delay position, the temporal scale in the simulation is shifted such
that τ = 0 corresponds to the time when the input pulse exits the scattering medium. The time
when the pulse enters the scattering medium is well defined. To obtain τ = 0 we add to the entrance
time the propagation delay. The latter is evaluated through the waveguide dimensions, effective
refractive index and mean group velocity.

4.5.1.4 Calculation of the output field

From the temporal information gathered one can extract the matrix corresponding with single delay
(here we selected τ0 around 1.1 ps), perform its SVD and compute the propagation in the waveguide
for specific inputs. The temporal output field is computed based on the knowledge of the waveguide
monochromatic response and the input modes. In the experiments, the field amplitude evolution
averaged over all output positions is plotted as a function of the delay. We will discuss these temporal
evolutions, presented in Fig. 4.11(c) in the following section.

4.5.2 Results

From the output field calculated one can extract the average amplitude temporal profile. The latter
is presented Fig. 4.11(c). The solid gray line represents the reference profile (obtained when injecting
a set of random inputs), the blue curve represents the output associated to the first singular vector
(v1) and the orange curve represents the output of the last singular vector (v50). Both solid lines are
associated to the phase and amplitude control, while dotted lines represent phase-only outputs.

To interpret Fig. 4.11(c) and allow a comparison with experimental results, it is important to
stress the similarities and differences to the experiment. In the experiments the medium’s number
of modes is around five order of magnitude higher than the number of modes controlled, while in
the simulations we can approach full control. From the waveguide TM we only keep the 50 lowest
modes, corresponding to the ones existing for all injected frequencies, thus reaching above 50%
of control. Also the aspect ratio of the TGTM gives γ = 1: unlike for experiments, to observe a
significant effect, compensating the lack of control by drastically reducing γ (leading to non-square
TMs) is not necessary. The pulse shapes obtained show a similar behavior as experiments, with a
good agreement in the case of phase-only control. Not surprisingly the phase and amplitude control
gives better enhancements results at τ0.

Two main observations are worth discussing. Firstly, it instructive to note that difference between
phase-only and phase and amplitude is relatively small for the first singular vector, advocating
for the interest of phase-only experimental use (also visible in random matrix simulations). The
second observation relates to the transmission cancellation at τ0 for the last singular vector with
phase and amplitude control: a sufficient amount of control yields what could be reminiscent of a
closed channel in time. This finding is consistent with the results of [Mounaix et al. 2019] where a
close cancellation of the field was observed in multimode fibers. Also a major difference with the
experiments is energy conservation. It is not valid in experiments due to the open geometry, but it

3The opposite approach i.e. measuring a temporal response to reach spectral aspects is also used [Sprik et al. 2008;
Gérardin et al. 2014] but in acoustic not optics.
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Figure 4.11: Pulse propagation control on a waveguide. (a) Schematic of the waveguide
geometry. In this specific simulation the dimensions are W = 1, L = W/10. The radius of a
scatterrer is W/100, its refractive index nscatt = 3.5 and the filling ratio 0.4. (b) The MSTM is
measured for a set of input frequencies and only the modes propagating for all frequencies are kept.
A Fourier transform (FT) is performed to get the TRTM. (c) Averaged amplitude evolution for
random inputs (gray), for the first singular vector (blue) and for the last (v50, orange) of the TGTM
at 1.1 ps (indicated by the vertical dashed line). Solid lines represent phase and amplitude control
while dotted lines represent phase-only control. The results are averaged over 10 realizations of
disorder.

holds in the waveguide. This fact is not clearly visible in Fig. 4.11(c) as only the transmitted part is
presented, omitting the reflection.

With Fig. 4.11(c), it is interesting to see that experimental results can be qualitatively reproduced
with a waveguide simulation. The control over limitations introduced (e.g. reduced amount of
control, phase-only constraint) could help better distinguish intrinsic effects from measurements
limitations.

4.6 Take home message

In this chapter I presented some of the temporal aspects observable with the setup. A time-gated
measurement enables to directly and easily measure TGTMs for specific delays in the pulse. Most
of the results obtained in monochromatic remain valid and acquire a temporal dimension. It is
thus possible to realize spatio-temporal foci (even a global-focus), to have a temporal control of the
energy delivery with the singular vectors of the TGTM, and even to extend the speckle grain size
control. A linear combination of vectors allows to extend the control to multi-times. All effects are
temporally localized where the TM is measured and their efficiency strongly depends on the quality
of the TM measurement (thus harder to perform in the pulse tail). The simulation of a waveguide
system enables to reach degrees of control that are unreachable experimentally. The results obtained
support the experimental observation. The addition of the phase and amplitude control allows to
reach states cancelling transmission for a given delay.
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This chapter is dedicated to the creation and control of speckle correlations. We present in Sec. 5.1
a method similar to TM-based operators relying on the SVD of the sum of several TMs. The generality
of the concept enables to correlate speckles for different delays in the pulse (Sec. 5.2) but also for
different wavelengths or for different spatial areas (Sec. 5.3). Finally we present hybrid effects taking
advantage of the time to frequency Fourier relation (Sec. 5.4).

5.1 Speckle correlations, a valuable tool

In this section we discuss the importance of speckle correlations and we present some operators
based on the TM allowing their control. We conclude by introducing the method which is extensively
studied in this chapter.
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5.1.1 Importance of the correlations

The content of Chap. 3 and the various work reported, illustrate the long-term efforts dedicated
to control correlations and statistics of speckles. Because scattering appears as a major threat
for imaging, one may want to exploit speckle correlations to improve imaging techniques. Thus,
understanding light propagation and harnessing all possible types of MEs becomes essential. For
instance the SIM (structured illumination microscopy) technique [Gustafsson 2000; Mudry et al.
2012] can achieve twice the optical resolution of a conventional technique at the cost of knowing the
illumination patterns. Knowledge on the illumination pattern can be reached thanks to ME which is
extensively exploited for optical imaging [Osnabrugge et al. 2017; Bertolotti et al. 2012; Yilmaz et al.
2015]. However ME applies with a limited range. Techniques have been developed to increase the
ME range [Kadobianskyi et al. 2018; Chen et al. 2019; Jang et al. 2018] each time by regulating
propagation possibilities, without external control. To overcome this limitation, reconfigurable
metamaterials are used [Arruda et al. 2018] to externally control the ME. But engineering at will
the ME for every material remains a promising yet challenging prospect. One possible approach
is to accept not having a broad range ME, but a rather selective one. This has been achieved by
adequately using scattering informations contained in the TM.

5.1.2 TM-based operators to engineer field correlations

The TM information already has been extracted, for instance, through the construction of the WS
operator. The latter, discussed in Sec. 1.5, grants access to dispersion free states [Fan et al. 2005] and
thus gives, after a scattering medium, speckle patterns that are resilient to small frequency variations.
This was clearly observed in MMFs [Xiong et al. 2016]. The WS operator can be generalized to any
set of two conjugated variables: time and frequency for the original version of the WS or position
and momentum in [Ambichl et al. 2017a]. Also generalized to a discretized version, WS operator
can even extend correlations to two arbitrarily spaced frequencies [Ambichl et al. 2017b] illustrating
the increased correlation possibilities when setting aside the broad range control. This last prospect
is a key-point used to customize the ME to obtain correlations with any arbitrary input and output
tilt angles and directions [Yılmaz et al. 2021], see Fig. 5.1(a). The authors introduce an angular
memory operator,

Q(θi, θ0) = (T †T )−1T †R†(θ0)TR(θi), (5.1)

where R is a rotation operators and θi,o the input and output angles.
The creation of this operator answers a specific problem (here angular correlations). Another

example of construction of TM-based operator is presented in [Pai et al. 2021]. The authors try to
access “scattering invariant modes” which have the particularity of appearing to propagate through
any medium like through air, see Fig. 5.1(b). Computing those modes requires knowing TMs, as
they are defined by the eigenvalue problem

T †airTsXn = αnXn, (5.2)

where Tair and Ts are TMs of respectively the air and the medium and where Xn is an eigenvector
associated to the eigenvalue αn. Similarly to [Yılmaz et al. 2021], finding the modes of interest
corresponds to calculating the eigen-modes of a TM-based operator.

All previous operators discussed have in common that the TMs depend on one varying parameter
(e.g. the frequency, the spatial position, the angle). Informations are gathered for two fixed values of
this parameter and the TMs are coupled by the operator.
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(a) (b)

Figure 5.1: Some TM-based operators. (a) Illustration of the customized ME: conventional
angular memory effect (top) and customized angular memory effect (bottom). Figure from [Yılmaz et
al. 2021]. (b) Scattering invariant modes: light propagation through air (top) and same propagation
but through a scattering medium (bottom). Figure from [Pai et al. 2021].

5.1.3 An idea along the same lines

Following the direction of enquiry presented in Sec. 5.1.2 we will start addressing the following
question: is there an input vector X, that one could for instance send on a SLM, such that the output
fields obtained from propagation, varying one given parameter, are the same, i.e. T1X = T2X?
One way of determining X is to study1 (T1 − T2)X = µX. Because matrices are not necessarily
square, one need to study the SVD of2 T1 − T2. In a more general frame we will study the problem
(T1 + eiαT2)X = µX, where the relative global phase between the TMs could be varied (retrieving
the initial combination for α = π).

5.2 SVD-based correlations and temporal illustration

In this section I present an illustration of the idea of SVD-based correlations. The temporal delay is
chosen to be the TM parameter of interest. Hence the laser is set to pulse mode and we measure
TGTMs. I first illustrate in Sec. 5.2.2 the principle described above (Sec. 5.1.3). Then, in Sec. 5.2.5,

1It is noteworthy that the case T−1
2 T1X = µX corresponds to [Pai et al. 2021].

2Reminiscent of the discrimination operator introduced in [Bouchet et al. 2021b].
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I present a model to obtain analytical predictions of the correlations. This model is confronted to
experiments and simulations.

5.2.1 Modifications to the experimental geometry

Before describing the experiments themselves, I will briefly mention the experimental differences
with Chap. 3 and Chap. 4. First the sample used is thicker due to the need of having a longer
temporal tail. It is still a TiO2 layer suspended on a cover slip, but the transmittance is now of
T ∼ 0.16 for approximatively the same scattering mean free path (' 10 µm). The illumination
microscope objective is now focused on the scattering medium and the collection microscope objective
is not moved away from the medium leading to a smaller speckle blob size. Thus, the averaging on
the disorder realizations is now performed by manually moving the sample to illuminate another area.
These modifications are associated to a change in the optics imaging the SLM on the back aperture
of the illumination microscope objective. These modifications aims at optimizing the control over
the different SLM modes. However it comes with the cost of a system NA reduction, responsible for
a slightly lower transmission for random inputs than for plane waves, mainly visible in Fig. 5.11.
Also, we bin all images that are acquired (similarly to the binning for TM measurements) in order
to limit equally all Fourier spaces (i.e. not having in the correlated images a better resolution than
in the TM).

5.2.2 Observation of the effect

To illustrate the approach, we measure two TGTMs T1 and T2 with NCCD = 529 and γ ∼ 1 for
respective delays τ1 = 0.9ps and τ1 = 1.7 ps. We normalize them3 and compute their difference. We
calculate the SVD of T1 − T2 which gives access to a set of singular vectors v(τ1−τ2)

i , see Fig. 5.2(a).
To best meet the µ = 0 condition and reach T1X = T2X, the last singular vector v(τ1−τ2)

225 (associated
to the smallest singular value which is of about 2 here) is displayed, or rather its phase-only
approximation, on the SLM and modulates the input phase. We measure the field at the output
for v(τ1−τ2)

225 and for a plane wave input by scanning the delay-line. The averaged amplitudes are
presented in Fig. 5.2(b) with a solid green curve for v(τ1−τ2)

225 and a solid gray curve for the plane wave
input. No clear amplitude variation is visible. Binned fields amplitude at τ1 and τ2 with v(τ1−τ2)

225

for input are represented in insets. No obvious similarity is observable. To highlight correlations a
calculation is required. We thus correlate the output fields using the field correlation formula Eq. 4.1,
recalled below:

C(V1, V2) =
V †1 V2√
V †1 V1V

†
2 V2

=
V †1 V2

‖V1‖2 ‖V2‖2
, (5.3)

where V1 and V2 are two complex vectors and † represents the transpose conjugate. For the experiment
the fields for all delays are correlated with the field measured at τ1 (resp. τ2). For the singular
vector input it leads to the yellow curve (resp. red curve) in Fig. 5.2(c) top part and denoted Cτ1
(resp. Cτ2). Only the correlations with τ1 are plotted for the plane wave input (Cref

τ1 ), for the figure
clarity’s sake.

Let us describe the plot for Cτ1 , as the same observations hold for Cτ2 . The reference field is
naturally correlated with itself at τ1, however no correlations are visible for other non-neighboring
times. At τ1 the same correlation is visible for the singular vector while another correlation increase
emerges at τ2. Therefore, to only see non expected correlations, we normalize Cτ1 by Cref

τ1 : we plot

3The TMs are normalized by their total intensity to ensure both having the same weight in the sum. For TGTMs
measured at two different delays the delay-dependent transmission indeed leads to TMs with different norms.
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in Fig. 5.2(c) bottom part the difference of their absolute values. It is then well visible that the fields
at τ1 and τ2 are correlated. In order to display the full non-redundant correlation information (the
correlation information Cτ1(τ2) and Cτ2(τ1) is indeed the same) a 2D-correlation plot is proposed
in Fig. 5.2(d). We display the absolute value of the correlation between two delays τ and τ ′ with a
color map while the position along the axes is given by τ0 = (τ + τ ′)/2 and δτ = |τ − τ ′|. On that
plot one sees a correlation increase at

(
(τ1 + τ2)/2 = 1.3 ps, τ2 − τ1 = 0.8 ps

)
.

(a)

τ

τ2
τ1

SLM

C
C
D

SVD(T1 − T2)

v
(τ1−τ2)
225

input vector

(b)

(c) (d)

Figure 5.2: Procedure and observation of the field correlation between two delays. (a)
We measure two TGTMs T1 and T2 for two delays τ1 and τ2. We subtract subtracted them, calculate
their SVD and extract the last singular vector v(τ1−τ2)

225 . (b) Averaged pulse when sending v(τ1−τ2)
225

(green curve) and for a plane wave input (gray). The insets represent the binned fields amplitude for
τ1 and τ2 identifiable by the colored surrounding. (c) Absolute value of the field correlation. Top:
Correlations measured with τ1 when sending v(τ1−τ2)

225 (yellow solid line) and with τ2 for the same
input (red dotted line). The gray solid line represents the correlation with τ1 for the plane wave
input. Bottom: Normalized correlations. For each delay, the absolute value of the correlation for the
plane wave input is subtracted to the one corresponding to the v(τ1−τ2)

225 input. (d) 2D-correlation plot,
containing the full non redundant information. The correlation value is associated to a colormap
and the axes are such that τ0 = (τ + τ ′)/2 and |δτ | = |τ − τ ′|. The data are averaged over 4 disorder
realizations.

From this experiment, a natural question is whether one could have simply obtained the field
correlation by summing the individual singular vectors as done in Sec. 4.3.3. Also does only the
correlation emerge for the singular vector associated with the singular values close to zero? Does
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the field correlation happens at the expense of the amplitude control? To verify these points we
performed additional experiments, that we now detail.

5.2.3 Playing with the effect

To test the robustness of the correlation effect we monitor some modifications: the impact of taking
other singular vectors, the impact of the value of α (global phase between the two TGTMs), the
impact of the delays spacing between the TGTMs and the impact of summing more than two
TGTMs. For the sake of brevity here we present only two examples containing more than one
variation.

5.2.3.1 Controlling correlations for varied spaced matrices

Here we measure a set TGTMs (NCCD = 225 and γ ∼ 0.35) for different delays and sum two by two
the matrices. The obtained correlations are presented in Fig. 5.3, where the delay spacing between
the two summed TGTMs is varied (δτ = 0.4, 0.8, 1.6 and 3.2 ps) keeping the central position fixed
(τ0 = 2.7 ps). As expected the correlation increase moves along the δτ axis for a fixed τ0.

Figure 5.3: Correlation displacement when varying the delays between the two TGTMs
. For all graphs the central delay is kept constant with a fixed τ0 = 2.7 ps. The TGTMs spacing is
varied with (a) δτ = 0.4 ps, (b) δτ = 0.8 ps. The red dashed rectangle represents the area displayed
in all other graphs, (c) δτ = 1.6 ps and (d) δτ =3.2 ps.

In addition to the correlation displacement, it is noteworthy that the effect remains when using
the first singular vector of the sum of TGTMs (see Sec. 5.2.5 for the detailed explanation).

5.2.3.2 Extension to more than two matrices

To test this technique even further, we now measure more than two (here three) TGTMs (NCCD =
225 and γ ∼ 0.4) for different delays and sum them. The first singular vector v(τ1+τ2+τ3)

1 is displayed
on the SLM and we measure the field correlation. On the correlation plot of Fig. 5.4 (left part)
one no longer observes a single but three correlation increases. The number and positions of these
increases correspond to the combinations of two matrices among three. One hence gets three peaks
at
(
(τ1 + τ2)/2, τ2 − τ1

)
,
(
(τ3 + τ2)/2, τ3 − τ2

)
and

(
τ2, τ3 − τ2

)
, schematically represented in the

right part of Fig. 5.4.
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Figure 5.4: Correlations when summing three TGTMs. Left: Correlation plot presenting
three enhancements. The enhancements are situated from left to right at (τ0 = 1.7 ps, δτ = 0.7 ps),
(τ0 = 2 ps, δτ = 1.3 ps) and (τ0 = 2.3 ps, δτ = 0.7 ps). Right: Schematic of the TGTMs respective
delays (τ1 = 1.3 ps, τ2 = 2 ps and τ3 = 2.7 ps) and the corresponding two by two couplings. The
data are averaged over 4 disorder realizations.

It is important to note that with this experiment a first advantage of the SVD-based correlation
emerges: its convenience enables a direct extension with more than two output fields. This adaptation
is not that straightforward for the other operators described in Sec. 5.1.2.

5.2.4 Importance of the transmission matrices coupling

The importance of the coupling between the TMs measured for different parameters was mentioned
in Sec. 5.1.2. It will be illustrated here by comparing TMs summing with singular vectors summing
used in Sec. 4.2.2 and Sec. 4.3.3. In Fig. 5.5, two TGTMs (NCCD = 225 and γ = 0.4) are measured
for τ1 = 0.9 ps and τ2 = 1.7 ps. They are either summed before taking the SVD and the first singular
vector v(τ1+τ2)

1 is displayed on the SLM Fig. 5.5(a), or the individual SVD are performed and the two
first singular vectors are summed obtaining v(τ1,τ2)

1 which is also displayed on the SLM Fig. 5.5(b).
On the average pulse amplitude (top part of Fig. 5.5) no important difference is observed: both SLM
masks lead to an increase of the amplitude at τ1 and τ2. The increase is slightly less important for
v

(τ1+τ2)
1 but in absence of further study no conclusion can be made. The difference however arises

when looking at the correlation plot (bottom part of Fig. 5.5). Correlations between τ1 and τ2 are
expect to be observed at (τ0 = 1.3 ps , δτ = 0.8 ps). It is the case for v(τ1+τ2)

1 but no correlations are
visible for v(τ1,τ2)

1 . These results indicate that correlations emerge due to the coupling between the
two TGTMs.

This coupling can be understood going back to the definition of the SVD, which consists in the
eigen-decomposition of the transpose conjugate of the matrix times itself4. More precisely, the SVD
of T1 + T2 corresponds to the eigen-decomposition

(T1 + T2)†(T1 + T2) = T †1T1 + T †2T2︸ ︷︷ ︸
individual terms

+ (T †1T2 + T †2T1)︸ ︷︷ ︸
cross terms

. (5.4)

The two individual terms are responsible for amplitude increases at delays τ1 and τ2, whereas the
cross terms lead to the fields coupling.

One may notice correlation increases for small δτ (∼ 0.2 ps) at τ1 and τ2. They are artifacts due
to the enhanced intensity, see Comm. 5.2.1.

4This new matrix is square allowing an eigen-decomposition and hermitian leading to only has real positive
eigenvalues.
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Figure 5.5: SVD of the sum vs sum of the SVDs. Two TGTMs measured for delays τ1 and
τ2 and are either summed before taking the SVD (a) or the singular vectors are summed after (b).
For both plots the top part represent the averaged amplitude temporal profile while the bottom part
displays the correlation plot.

Comment 5.2.1.
Intensity induced correlations are surprising as the correlation formula Eq. 5.3 is normalized
and should be intensity independent. However they appear here due to the measurement
technique: the probe pulse has a width (its not the ideal Dirac) coupling in all measurements
neighboring times. Hence when the intensity rises for a certain delay this rise reverberates
on the neighboring delays as well, artificially introducing a correlation. For that reason all
variations appearing in the correlations plot for |δτ | ≤ 0.2 ps are disregarded.

In the next section a model is developed to predict the correlation values, so far not investigated.

5.2.5 Correlation variation with the singular vectors

We measure TGTMs (NCCD = 225 and γ ∼ 0.3). To monitor the correlation value change, several
singular vectors v(τ1+τ2)

i are displayed on the SLM. We measure the field correlations between them
by correlating the fields at τ1 and τ2 for each input vector (which hence corresponds to the value
of the correlation at (τ0, δτ) in the 2D correlation plot). The absolute value of the experimental
correlation is plotted in Fig. 5.6(a) with blue dots as a function of the normalized singular values µ̃
(normalized with a minimal dimension). Correlations are expected both for the first and the last
singular vector according to the previous results. However the correlation value smoothly changes
with µ̃ and a cancelation is even observed (for µ̃ ' 0.5 here). To complement the experiment
we perform a simulation using random matrices. We generate initial matrices using experimental
parameters: NCCD = 225, N eff

SLM = 680 (γ ∼ 0.3) and insert a speckle grain size of 1.15 px in
the simulation to take into account the remaining grain size after image binning. The results for
phase and amplitude control, averaged over 10 matrices realizations, are presented on top of the
experimental results with an orange solid line. The trend is well reproduced. A discrepancy is visible
for the smallest values of µ̃ where a lower correlation is observed for the experiment, which can be
attributed to the experimental TMs not exactly following MP law.

To go further and reach an analytical expression Eq. 5.4 is used to express the correlation. The
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Figure 5.6: Expected field correlations as a function of the normalized singular values.
(a) Absolute value of the correlation as a function of the normalized singular values µ̃ for an
experiment (blue dots) and the analytical predication (black dotted line). A simulation inserting
experimental parameters is plotted on top for phase and amplitude control (orange line) or phase
only control (yellow line). Experimental data are averaged over 4 disorder realizations and simulated
ones over 10 matrices realizations. (b) Simulation of the correlation variations with the normalized
singular values µ̃. The TMs are random matrices of sizes 1024× 1024. The phase and amplitude
correlation is plotted in orange while the phase-only is in yellow. The analytical prediction of Eq. 5.6
is presented with a black dotted line. Simulated data are averaged over 4 matrices realizations.

correlation of the two output fields for an input X vector is indeed given by

C ≡ C(T1X,T2X) =
X†T †1T2X√

X†T †2T2XX†T
†
1T1X

=
X†T †1T2X

‖T2X‖2 ‖T1X‖2
. (5.5)

If X is not a random vector but a singular vector of Eq. 5.4, then the correlation can be expressed
solely in terms of the singular values and matrices dimensions by

C(T1X,T2X) ≈ µ2/2−NCCD

µ2/2 +NCCD
,

(
or e−iα

µ2/2−NCCD

µ2/2 +NCCD
for T1 + eiαT2

)
(5.6)

The complete derivation of Eq. 5.6 can be found in Appendix B.5. The theoretical prediction for the
correlation is also plotted in Fig. 5.6(a) together with the experimental results and the simulations,
where we can observe a very good match with the simulations for phase and amplitude control.

In addition we perform another simulation to observe the effect of a square TM. The results show
that with the SVD one can control the correlation degree between the fields for two distinct delays
for both the absolute value and the real part5. For initially square TGTMs with phase and amplitude
control the correlation can rise to 1 (in absolute value) as visible in Fig. 5.6(b), see Ill. 5.2.2 for a
handwavy explanation. It is also visible that the phase-only constraints impacts more the correlation
for the input vectors associated to small singular values as already observed for the speckle grain
size control, see Fig. 3.12.

5We plot the real part instead of the absolute value in Fig. 5.6(b) to keep the information on the sign.
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Illustration 5.2.2.
The smallest singular value is µ̃ = 0, thus one gets T1X̃ + T2X̃ = 0 (X̃ are the normalized
singular vectors), and both vectors are expected to be the same but pointing in opposite
directions as illustrated in Fig. 5.7(a). For the biggest singular value µ̃ = 2, vectors would
be aligned if

∥∥∥T1X̃
∥∥∥

2
=
∥∥∥T2X̃

∥∥∥
2

= 1; this is not the case thus the vectors are not completely
aligned and the correlation does not reach 1, see Fig. 5.7(c). Intermediate values of µ̃ lead to
intermediate correlations.

(a)

µ̃ = 0

T1X̃

T2X̃

(b)

µ̃ = 1

T1X̃
T2X̃

(T1 + T2)X̃

(c)

µ̃ = 2

T1X̃ T2X̃

(T1 + T2)X̃

Figure 5.7: Handwavy explanation of the correlation values. Illustration of the two output
behavior in a two dimensional vectorial space for (a) µ̃ = 0, (b) µ̃ = 1 and (c) µ̃ = 2.

It is very interesting that Eq. 5.6 indicates that the correlation coefficient is real. An extension
is discussed below.

5.3 A general concept not restricted to temporal aspects

So far, all experiments were realized in the temporal domain, however because the concept is very
general it can also be applied to generate correlations in frequency (see Sec. 5.3.1) or for different
spatial positions (see Sec. 5.3.2). We will illustrate the correlation phase control predicted by the
model using the spectral correlation illustration. In all this section the laser is mode-locked to
operate in the monochromatic regime with a tunable frequency.

5.3.1 Multi-wavelength correlation

In simulations the impact of the global phase α between the two TMs is illustrated in Fig. 5.8(a)
using the same TMs dimensions and phase and amplitude control as for Fig. 5.6(b). For α = 0
one recovers the plot of Fig. 5.6(b). For α = π the correlation value is symetrized with respect to
0. For intermediate values of α the real part of the correlation is modulated between the latter
two envelops. These variations are consistent with Eq. 5.6 and explain why taking the sum or the
difference between the TMs (α = 0 or α = π) had no impact on the absolute value of the correlations.

Theses predictions can be verified experimentally. The parameter is now the illumination
wavelength, and we measure two monochromatic TMs (NCCD = 225, γ ∼ 0.35) for λ1 = 806 nm
and λ2 = 810 nm. We create the operator T1 + eiαT2 and perform its SVD. The first singular
vector is displayed on the SLM and we measure the output field while tuning the laser wavelength.
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In Fig. 5.8(b) the output fields for all input wavelengths are correlated with the one measured at
λ1. The real part of the correlation is plotted in blue for α = 0 and the expected anti-correlation
is observed. For α = π (brown curve) one the real parts are correlated. The dotted black line
represents the correlation with λ1 of the plane wave input showing no correlation at λ2. We plot
in Fig. 5.8(c) the imaginary part of the correlations as a function of the real part for the set of
α values. The central black dot corresponds to the plane wave input reference. It is noteworthy
that Fig. 5.8(c) is expected from Eq. 5.6. However one can observe that for α = 0 the corresponding
measurement does not lie on the real axis as expected but belong to the top right quarter of the
complex plane indicating an experimental inherent global phase between the two TMs.

Figure 5.8: Two-wavelengths correlation. (a) Real part of the correlation as a function of
the normalized singular values µ̃ for different global phases α between the TMs. (b) Plot of the
correlation real part for α = 0 (brown curve) and α = π (blue curve), the correlation for a plane wave
input is presented with the dotted black line. The vertical dashed lines represent the wavelengths
for which the TMs are measured. (c) Correlations presented in the complex plane for the a set of
values α. The black dot represents the plane wave input. The presented data are averaged over 4
disorder realizations.

These observations show a direct smooth control over the correlation phase. The latter is due to
the intrinsic sorting of the singular values (which are real). In the methods presented in Sec. 5.1.2,
the eigenvalues are complex and thus have no immediate sorting and thus no direct smooth phase
control. An important point is that with the SVD-based correlation, an independent control over
the phase and the amplitude of the correlations is reachable: the singular value sets the amplitude,
and the global phase α sets the correlation phase.

5.3.2 Spatial correlation

After observing the effect with the temporal delay and the wavelength as the TMs parameters it
is possible to focus on the propagation for two different spatial positions. This approach is very
related to [Pai et al. 2021], the main difference are the operator used and the fact that here both
fields propagate through a scattering medium.

To perform the experiment, we measure two monochromatic TMs (NCCD = 225, γ ∼ 0.35) for
λ = 808 nm on two distinct spatial positions (marked by the colored dashed rectangles in Fig. 5.9(a,b)).
We sum the TMs and calculate their SVD. The first singular vector is displayed on the SLM and
we measure the field on a broad ROI. We compute the correlations with the spatial region (R1)
where one of the TM was measured thanks to a moving spatial window. One observes a correlation
increase when the moving window reaches the position where the other TM was measured (R2),
see Fig. 5.9(c). The correlations values obtained for the binned and non-binned images are similar.
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In case of the non binned images, the correlation value is slightly smaller: this behavior is expected
as the image contains information on the high k-vectors that are not contained in the TM itself.
Because this last experiment is similar to the one using the scattering invariant modes [Pai et al.

Figure 5.9: Two ROIs correlations. (a) Non binned speckle images. The two TMs are measured
on the dashed colored areas. (b) Binned images. (c) Speckle correlations between the left zone
(surrounded by the red dashed lines) and a moving window. The correlations values for the binned
(green dots) and non binned (red dots) are presented along the window position. The data are
averaged over 4 disorder realizations.

2021], it is interesting to compare them in more details.

5.3.3 Comparison of some TM-based operators

The different approaches that we will compare are the following: SVD of T1 +T2, eigen-decomposition
of T †1T2 and T †1T2 + T †2T1 (to symmetrize the previous expression) as well as the discretized Wigner-
Smith T †1 (T1 − T2). For all of them the first part of the previous theoretical approach holds (with
individual adaptations). The simulation results for TMs6 of size 1024×1024 and phase and amplitude
control are represented in Fig. 5.10(a), with the absolute value of the correlations as a function of
the input vectors (not manually ordered). In general all TM-based operators give similar results
(correlation modulation from 0 to ' 0.8− 1 with individual characteristics that we will detail below.
The SVD is the only operator undeniably spanning the full range of correlations (from 0 to 1)
whereas for other operators either the maximal correlation is limited or the fast oscillations (due
to the vectors ordering) do not allow to visually predict a zero-correlation. The SVD also leads to
balanced intensities between the outputs. It is noteworthy (but natural) that a symmetrized form of
the operator allows to balance the output intensity. This is verified for all four operators studied,
see Fig. 5.10(b): the two symmetric ones lead to balanced intensities whereas the two asymmetric
ones lead to un-balanced intensities. It is noteworthy that [Pai et al. 2021] due to the propagation
through air, one of the TMs was unitary, modifying the expected results. The impact of having a

6And are valid whatever the experimental parameter used: time, frequency etc...
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unitary TM is discussed through simulations in Sec. 6.3.

Figure 5.10: Correlations for some TM-based operators. Simulated TMs have size 1024×1024.
Different operators are computed: T1 + T2 with SVD (blue), T †1 (T1 − T2) (orange), T †1T2 + T †2T1

(yellow) and T †1T2 (purple). (a) Absolute value of the correlation as a function of the singular vectors.
(b) Ratio of the output intensities for both field. Data are averaged over 4 TMs realizations.

5.4 Cross-effects

So far we restricted ourselves to one varying parameter for each experiment. TMs were measured for
two (or more) parameters values, and the correlations were measured while varying this parameter by
shaping the wavefront using the computed singular vector. However all accessible parameters are not
independent. For instance the time (pulse delay in the experiment) and the frequency (wavelength in
the experiment) are conjugated variables linked by a Fourier transform. Having information on the
time also leads to frequency information. This property is actually already exploited when using the
MSTM information to obtain the TRTM, see Sec. 1.3.3.2. In this section we will see how spectral
(resp. temporal) information can enable to generate temporal (resp. spectral) correlations, that we
will refer as “cross-effects”.

5.4.1 Time and frequency two conjugated variables

I will present here two “mirror” experiments: (a) measurement of two monochromatic TMs for λ1

and λ2 and observation of the temporal correlations when sending a pulse and (b) measurement of
two TGTMs for τ1 and τ2 and observation of frequency correlations. These two experiments are
realized under very similar conditions7 and thus I will present the details of (a) but only the results
of (b).

7See Appendix A.3 for the detail of an operation difference.
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We measure two monochromatic TMs with NCCD = 225, γ ∼ 0.1 for λ1 = 805.5 nm and
λ2 = 810.5 nm. We compute the SVD of the sum. The first singular vector v(λ1+λ2)

1 is expected to
be associated to a correlation of the fields for these two wavelengths in the monochromatic setting.
But here the laser is unlocked and the field along the pulse is measured by scanning the delay-line
when displaying on the SLM the phase of v(λ1+λ2)

1 . The field correlation plot is computed and
presented in Fig. 5.11(a, top). A checkerboard of correlation is visible and its spacing corresponds to
δτ = λ2

0/(cδλ) ' 0.4 ps. The spectral field coupling turns into a temporal coupling via the Fourier
transform relation. It is also noteworthy that the the average pulse amplitude (Fig. 5.11(a, bottom))
is modulated along the pulse, with δτ ' 0.4 ps.

Equivalent results hold for the mirror experiment. The two TGTMs are measured for τ1 ' 0.9 ps
and τ2 ' 1.7 ps. With the monochromatic tuning, a correlation checkerboard is also visible
(Fig. 5.11(b, top)) with a spacing of δλ = λ2

0/(cδτ) = 2.7 nm, and the amplitude is also modulated.
On these experiments, the higher transmission for the plane wave input (reference) discussed
in Sec. 5.2.1 is visible.

Figure 5.11: Temporal and spectral cross effects. TMs with NCCD = 225, γ ∼ 0.1 are
measured (a) in monochromatic for two wavelengths (λ1 = 805.5 nm and λ2 = 810.5 nm) and (b) in
the pulse for two delays (τ1 ' 0.9 ps and τ2 ' 1.7 ps). Top graphs represent the correlation plots
while bottom graphs show the averaged amplitude profiles. All data are averaged over 4 disorder
realizations.

Such correlation and amplitude modulations are very handy and could act as combs for probing
or illuminating media. The simplicity of their obtention as well as their regularity would make them
valuable tools for engineered probing or illumination.

On previous experiments the simple summing of the TMs was used, it is noteworthy that the
previous variations (global phase for instance) still hold. I will present on the next section the impact
of a global phase α between the two TMs on the example (a).
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5.4.2 Global phase between the two transmission matrices

The experiment is the same as in Fig. 5.11(a). The global phase α between the two summed
monochromatic TMs (T1 + eiαT2) is varied in the range [0, 2π]. Both on the correlation plot and
the averaged pulse amplitude the phase induces a translation of the correlation (resp. amplitude)
maxima. From 0 to 2π one maximum spans the full interstice between two successive maxima. The
same phenomenon can be observed for the second cross effect (TGTMs with a frequency scan).

Figure 5.12: Global phase between TMs and comb shift. Same experiment as in Fig. 5.11(a):
two monochromatic TMs are measured and summed but here a global phase difference α is set
between the TMs. (a) Track of the amplitude peaks position along the pulse for α in the range 0
to 2π. (b) Averaged pulse amplitude for α = 0 (brown curve) and α = π (purple curve). One can
visually see shifted peaks maxima.

5.4.3 Mixing transmission matrices measured in different regimes

Because the technique to induce correlations is so simple one can even consider summing TMs which
have been measured for different parameters.

In this experiment two matrices are measured with NCCD = 225 and γ ∼ 0.1. One monochromatic
TM at λ1 = 808 nm and one TGTM at τ1 ' 1.3 ps. We calculate the SVD of their sum and display
on the SLM the phase of the first singular vector v(τ1+λ1)

1 . Fields are measured for both a pulse scan
for the broadband mode Fig. 5.13(a) and a wavelength scan in monochromatic mode Fig. 5.13(b).
The same correlation pattern is observed in both cases: a V shape starting at τ0 (resp. λ0) for δτ = 0
(resp. δλ = 0). Let us present and give an interpretation for the case (a), a similar one holding for
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Figure 5.13: Correlation when mfixing transmission matrices. Two TMs are measured
(NCCD = 225 and γ ∼ 0.1), one monochromatic TM at λ1 = 808 nm and one TGTM at τ1 ' 1.3 ps.
The first singular vector of their sum v

(τ1+λ1)
1 is displayed on the SLM. Temporal correlations (a)

and spectral correlations (b) are measured. The data are averaged over 8 media realizations.

(b). First, the V shape correlation indicates that fields from all delays are partially correlated with
the field at τ0 but not between them. An interpretation is as follows: when summing Tτ1 and Tλ1
the temporal information at τ1 is coupled to the spectral information at λ1. This coupling results
in a correlation, for all delays, of the spectral component λ1 of the light with this same spectral
component contributing to the speckle at τ1. Further experiment would be required to validate this
interpretation. This would however mean that a spectrally selective correlation is achievable within
the pulse.

5.5 Take home message

In this chapter we reviewed some TM-based operators allowing a control of the speckle correlations.
We presented a new method based on the SVD of two (or more) TMs. The concept being very
general we could correlate the fields for specific delays in a pulse, for specific propagating wavelengths
etc. More elaborated correlations (temporal long-range or spectral long-range correlations) also were
achieved using the Fourier relation between time and frequency. An analytical model, based on
random matrices properties, allows to predict the correlations. A key-point of this chapter is that
the SVD of a TM not only allows access to input states with energy selectivity and wavenumber
selectivity but also holds a multi-parameter correlation selectivity. In the next chapter we consider
an extension to non fully-random matrices.
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In this chapter I will focus on multimode fibers (MMFs). After presenting them (Sec. 6.1.1) I will
discuss their properties and focus on their commonly considered drawback: the mixing (Sec. 6.1.2).
Similarly to complex media with their inherent scattering, this apparent weakness of MMFs may
be used as an asset. The same tools described in the other chapters (TM, WFS, etc...) will be
harnessed to take advantage of the mixing. The differences with complex media (e.g. possibility of
measuring complete TMs, Sec. 6.1.3) will be discussed as well as their similarities (e.g. remaining of
the chromato-axial (χ-axial) ME, Sec. 6.2).

Hence two main results will be presented in this chapter: experimental results on the χ-axial
ME in MMFs Sec. 6.2 and simulations of the extension of the field correlation with the SVD to
MMFs Sec. 6.3.

101



102 CHAPTER 6. WHAT ABOUT OPTICAL FIBRES?

6.1 Multimode optical fibers, a versatile tool

6.1.1 An overview of optical fibers

Optical fibers are widely present nowadays in almost all science and technological fields. Even
though their use, as we know it, is recent, they have a long history. Already the Greeks, who
developed glass manufacturing (creating lenses [Sines et al. 1987]) and optics [Lloyd 1973], realized
the guidance potentiality of glass cylinders [Smith 1999]. But the discovery of total internal reflexion
by J.-D. Colladon [Colladon 1842] and J. Tyndall [Tyndall 1870] marked the beginning of optical
fibers in the mid-19th Century. They observed that light propagating in a medium could, under
specific angular conditions, be totally refracted at the interface with a lower refractive index medium,
making it possible to engineer light-guidance devices. The optical fibers first uses were, one century
later in 1950, essentially concentrated on medical purposes and bundles of fibers were used as
endoscopes [Hopkins et al. 1954]. In 1966, thanks to the recent laser discovery, C. Kao and G. A.
Hockham associated fibers and lasers to initiate optical fibers communication [Kao et al. 1966],
achievement awarded by the Nobel Prize in 2009.

As mentioned optical fibers rely on the total internal reflexion phenomena. A core of refractive
index n1 is surrounded by a cladding of refractive index n2 < n1. When a light ray propagates on the
core with an angle i (relative to the symmetry axis) lower than ic (given by sin(ic) = n2/n1), then the
light ray experiences total internal reflexion when reaching the cladding and hence only propagates
in the fiber core. This guidance condition defines the numerical aperture of the fiber, i.e. the range
of acceptance angles, which only depends on the refractive index mismatch (NA =

√
n2

1 − n2
2). If

index n1 is homogeneous the fibers are the so-called step-index (SI) fibers. It is also possible to
create a fiber which refractive index radially varies (i.e. with the distance to the center), they are
then graded-index (GI) fibers. This engineered refractive index profile is typically introduced in
order to reduce modal dispersion. To understand this property (see Ill. 6.1.1), and more generally
to describe light propagation through MMFs, the ray optic scheme is convenient. A ray optics
approach is a good approximation as long as the MMF radius is large compared to the wavelength
that propagates through it [Jackson 1999] such that the light does not “feel” the boundaries and the
interface may be locally considered plane. Equivalently this condition corresponds to a fiber having
a lots of modes. The number of transverse spatial modes Nmodes that can propagate through the
fiber is indeed determined by the radius of the fiber core rc together with its numerical aperture
and the illumination wavelength1. It is given by Nmodes = V 2/2, where V = 2πrcNA/λ with rc the
core radius is the normalized frequency [Senior et al. 2009]. The term MMF concerns fibers for
which Nmodes � 1, on the contrary fibers with only one propagation mode are called single modes
fibers and fibers allowing the propagation of only a few modes are called few modes fibers. Rays
optics hence can be solely used for MMF where the radius is large compared to the wavelength. For
instance a fiber of 50 µm diameter fulfils this condition when illuminated by a 800 nm source (there
are approximatively 60 wavelengths in the diameter) but it is no longer well verified when the same
source illuminates a fiber of 10 µm diameter (only 10 wavelengths per diameter). A modal approach
is then required to describe light propagation. For SI-MMF under the weak guidance approximation
(small NA), the propagation eigenmodes are given by the Linearly polarized (LP) modes [Snyder
et al. 2012].

Nowadays optical fibers are increasingly considered for telecommunications [Richardson et al.
2013], still for medical purposes as minimally invasive endoscopes [Choi et al. 2012; Papadopoulos
et al. 2013], but also for fiber-optic sensors [Zhao et al. 2004; Xiong et al. 2020] or even illumination

1For instance not considering the factor two on the number of modes coming from the polarization.
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(optic-fiber lamps). They are very promising for laser fibers [Wright et al. 2017] or as reconfigurable
linear operators in quantum photonics [Leedumrongwatthanakun et al. 2020; Matthès et al. 2019].
However in the latter papers often single mode fibers or few modes fibers most of them graded-index
are used due to the inherent difficulty of spatial multiplexing. MMF, which would fill a gap and
provide multiplexing possibility, are thus intensively studied.

6.1.2 A mixing tool

On many of the potential applications listed above (especially for telecommunications or endoscopy)
a major limitation comes from the complicated field obtain after the fiber which results in a speckle
intensity pattern. The origin of this field scrambling is particularly due to the dispersion and mode
mixing. An illustration of the modal2 dispersion is presented Ill. 6.1.1.

Illustration 6.1.1.
Let us consider two MMFs fibers, one SI and one GI, of length L and consider the two extremal
rays propagating through them: the ray traveling straight along the axis of the fiber and
the ray entering the fiber with the maximal angle, see Fig. 6.1. In case of the SI-MMF, the
rays follow straight lines and the delay-time between the two paths is easily calculable from
geometry: the physical increase of distance divided by the speed of light in the medium of
index n1 (see Fig. 6.1(a)). For the GI-MMF, on the contrary, the light propagation does not
follow a straight line but a path depending on the index profile (for instance a sinusoidal path
for parabolic GI-fibers, see Fig. 6.1(b)). The time-delay between the two paths is not as direct
to compute, indeed because the refractive index depends on the radial position so does the light
speed. But the idea is that the light propagating on the longest geometrical path will propagate
faster than the one propagating straight due to the smaller refractive index encountered and
hence reduce the time-delay between both paths.

n2
t2

t1
n1

t1
t2

n2

n1(r)

(a) (b)

Figure 6.1: Illustration of modal dispersion in a MMF in the ray optics picture. Two
extremal rays, one with the lower incidence (blue) and one with the highest acceptable incidence (red)
are presented, they experience different propagation delays (respectively t1 and t2). The numerical
aperture of the fiber is represented with the blue cone. (a) SI-MMF: the rays propagation is straight
in the fiber core (refractive index n1 > n2). (b) GI-MMF: the propagation follows a curve dictated
by the refraction index profile. For a parabolic GI-fiber the path is sinusoidal.

Of course, to avoid this modal dispersion the use of single mode fibers (or limited using GI-MMFs)
is natural, but multiplexing remains the goal [Berdagué et al. 1982; Richardson et al. 2013; Pauwels
et al. 2019]. As a result of the modal dispersion, the intensity pattern at the output of a MMF when
coherently illuminated, is a speckle pattern (modes with different accumulated phases interfering).
This speckle pattern is the usual signature of disorder. However in MMFs one only refers to disorder

2The dispersion can also be chromatic.
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when propagation modes are coupled [Matthès et al. 2021]. Otherwise the light propagation is
determined by the fibers modes (that can be approximated or simulated). The coupling in itself is very
complex and depends on many parameters as refractive index inhomogeneities, diameter fluctuations,
presence of impurities, fiber bending, etc... [Ho et al. 2013] and its effects grows with the fiber
length [Xiong et al. 2018; Chiarawongse et al. 2018]. Similarly to complex media, several techniques
based on WFS have been developed to control the output field: optimization [Caravaca-Aguirre
et al. 2013], digital phase conjugation [Papadopoulos et al. 2012], TM measurement [Carpenter et al.
2014; Choi et al. 2012]. For short straight fibers, the use of the TM and of an accurate theoretical
model to evaluate the fiber parameters even enables finding the fiber appropriate basis and couple
the field to the so-called propagation invariant modes (PIMs) resulting of invariant propagation up
to hundreds of millimeters [Plöschner et al. 2015].

Moreover if a wealth of efforts are made to limit the mode coupling, taking advantage of it is also
possible. The mixing associated to the ability of controlling it (e.g. by bending the fiber [Xiong et al.
2017; Xiong et al. 2019]), is a key element to turn MMFs into interesting platforms [Matthès et al.
2019]. Similarly to the observation of two-photon interference in scattering media [Defienne et al.
2014], the same was achieved after a MMF or with optical fiber multiports [Defienne et al. 2016;
Weihs et al. 1996]. In this regard, MMF can be used to create reconfigurable and scalable quantum
circuits [Leedumrongwatthanakun et al. 2020] whose fully programable aspect is an advantage
already targeted when engineering interferometers [Carolan et al. 2015].

6.1.3 Complete measurement of the TM of a MMF

Up to now the parallel of light propagation in MMF and through scattering media has been
highlighted. The differences also need to be discussed. In complex media, due to the very high
number of propagating modes, the reflected light, the light scattered on the sides and the finite
numerical aperture of the collection microscope objective, the TM measurements are always partial.
TMs hence are well approximated by random matrices [Popoff et al. 2010] with all the advantages
it brings (possibility to perform simple simulations and obtain theoretical expressions from RMT,
see Sec. 5.2.5) but also the drawbacks (difficulty of reaching mesoscopic effects and access open and
close channels, see Sec. 1.4.2). In contrast, MMFs with their fixed (and controllable) number of
propagating modes together with their finite numerical aperture and forward propagation, do not
suffer the same limitations so that the TM of an MMF is unitary [Li et al. 2021b]3. When considering
the transmission matrix of a fiber a parallel with the scattering matrix can be drawn (they both
are unitary). To keep on with this comparison both polarizations in the fiber can be interpreted as
the transmission and reflection matrices in a scattering experiment. Hence the sub-transmission
matrix for one polarization follows the DMPK model and its singular values are distributed with the
bimodal law [Xiong et al. 2018; Chiarawongse et al. 2018] (Eq. 1.24) enabling to reach the equivalent
for polarization of the open and closed channels. The “open channel” consisting to maintained
polarization whereas the “closed channel” consisting in a completely converted polarization, as
experimentally observed in [Xiong et al. 2018]. The full control of the modes, in addition to the
ability of programming unitary transformations, enables to manipulate weak localization effects
(control of coherent backscattering of light [Bromberg et al. 2016]). This full control also enables to
observe MMF’s principal modes (eigenmodes of the Wigner-Smith operator, see Sec. 1.5) [Carpenter
et al. 2015; Ambichl et al. 2017b; Xiong et al. 2017; Xiong et al. 2016], so far not accessed in complex
media. As for complex media, the Wigner-Smith operator can be generalized to other external
parameters, see Sec. 1.5. Applied with respect to the fiber deformations its eigenvectors prove to be

3This unitarity is no longer valid for MMFs when working with short pulses of light and considering specific output
delays as in [Xiong et al. 2019].
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optical channels resilient to strong deformations [Matthès et al. 2021].
It is nevertheless important to note that the non-unitarity of the TM of a complex medium

is not always detrimental and a characteristic that one would want to avoid [Nardi et al. 2021].
The ability of independently controlling all modes is, on the contrary, a major asset. In absence of
unitarity, output modes can be controlled independently. When optimizing the incoming wavefront
to increase the energy on one output mode a unitary transformation automatically induces an energy
decrease in the other modes, preventing an individual mode control [Garćıa-Mart́ın et al. 2002; Xiong
et al. 2019]. This constraint is realised for non-unitary transformations. However, in case of energy
conservation, the more modes there are, the less impact this negative correlation has.

I will present in Sec. 6.2 the observation of a natural spectral correlation occurring in MMFs and
follow in Sec. 6.3 by the extension to MMFs of the induced correlations presented in Chap. 5.

6.2 χ-axial memory effect in SI-MMF

6.2.1 An overview of memory effect and its application for MMF

As briefly presented in Sec. 1.1.4.1 the optical ME and its variations have been widely studied.
Pioneer work on this direction includes its theoretical [Feng et al. 1988b] and experimental [Freund
et al. 1988] highlights. The effect is the following: a tilt on the incoming wavefront illuminating a
scattering material results in the tilt of the resulting speckle pattern. This observation is effective in
various media such as isotropic thin scattering screens [Li et al. 1994] or thick forward scattering
tissues [Schott et al. 2015]. A similar effect linking a shift on the illumination wavefront and the
speckle pattern was also reported for anisotropic media [Judkewitz et al. 2015]. Recently these two
effects were shown to be two special cases of a more general tilt/shift memory effect [Osnabrugge
et al. 2017], illustrated in Fig. 6.2. Even more recently a study showed that the knowledge of the
TM of a medium, and more specifically the basis in which the TM is diagonal (or quasi-diagonal),
brings information on the field modification along propagation on this medium [Li et al. 2021b].
This approach enables to predict the ME for any arbitrary geometry. Applying it to MMFs, the
authors retrieved the rotational ME [Amitonova et al. 2015; Li et al. 2021b] and the quasi-radial
ME [Li et al. 2021b].

Figure 6.2: Three different types of spatial ME. (a) A tilt in the incoming wavefront results
in a tilt in the output field. (b) A shift in the incoming wavefront results in a shift on the output
field. (c) Generalized ME combining tilts and shifts. Figure from [Osnabrugge et al. 2017].

These ME, very important for imaging purposes [Bertolotti et al. 2012; Katz et al. 2012; Katz
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et al. 2014; Yang et al. 2014], can also be used as priors in compressive sensing for the rapid
characterization of TMs [Li et al. 2021a].

It is important to note that the different ME do not restrict to spatial aspects as we will see
briefly in Sec. 6.2.2 and in more details in Sec. 6.2.3.

6.2.2 Observation of χ-axial memory effect in forward scattering complex media

Extending the purely spatial correlation studies, a ME linking spatial and spectral degrees of freedom
has been recently observed on thin (1mm brain tissue) scattering samples [Zhu et al. 2020]. In the
article they report the observation of an axial translation of a focusing spot when tuning the input
wavelength highlighting a coupling between spectral (λ) and axial (z) variables. The origin of such a
link comes from the Fresnel equation:

E(x, y, z) = − i
λ

eikz

z

∫∫
E(x′, y′, 0)e

ik
2z

[(x−x′)2+(y−y′)2]dx′dy′, (6.1)

where the field observation point is at the position (x, y, z) and λ is the field wavelength. In Eq. 6.1
the field evolution depends on the product λz, making the field unchanged (up to a global phase) if
this product remains constant through propagation [Vesga et al. 2019]. Such a ME is very promising
for imaging and has been shown to enable ultrashort laser focusing and scanning inside a thin
scattering medium [Arjmand et al. 2021].

6.2.3 χ-axial memory effect in SI-MMF

Due to the origin of the χ-axial ME in scattering media, i.e. the λz conservation, there is hope to
observe such an effect in SI-MMF that intrinsically holds the same property [Čižmár et al. 2012].

Advantages of the observation of a χ-axial ME in MMFs are numerous. Indeed MMFs are widely
used and even essential tools for imaging purposes. A good characterization of a χ-axial ME would
enable a volumetric control of the field at a distal facet of the fibre and to make existing imaging
techniques non invasive. It would also, as all already observed MEs, facilitate image reconstruction
and accelerate TM measurements thanks to the prior information it brings. A simple example that
illustrates possible applications is the speed up and non invasiveness of the “spot scanning” imaging
technique of [Papadopoulos et al. 2012].

The presentation that follows is based on the work presented in [Devaud et al. 2021a]. Some of
the mains results are explained without going into all details.

6.2.3.1 Observation of the effect

To observe the χ-axial ME a setup, relying on the elements of the main experimental setup presented
in Fig. 2.1, is used. A simplified scheme of its main elements is presented in Fig. 6.3. The laser
is used in monochromatic mode and its wavelength is tuned to probe the spectral response of the
system. Compared to Chap. 3, Chap. 4, and Chap. 5, the scattering sample is replaced by a short
MMF: its length and its core radius vary from one experiment to the other and its NA is 0.22. The
illumination microscope objective’s NA is taken slightly larger than the fiber’s to well address all
the propagating modes. The collection microscope objective together with a tube lens images on a
camera (Basler ace: acA1300-30uc) a plane at an axial position z (z = 0 being set for the output
facet of the fiber). This imaged position is adjustable by moving the collection microscope objective.

As a first test the monochromatic TM of the fiber is measured at z = 0 and λ0 = 800 nm and a
focus performed (see Fig. 6.4(a) central panel). When tuning the incoming wavelength (for instance
increasing it by δλ > 0) the focus vanishes. It is however possible to restore the focus by moving
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Figure 6.3: Scheme of the experimental setup. The laser illuminates the MMF with tunable
monochromatic light and the output filed at different axial positions z is imaged on a CCD camera.
Wavefront shaping is performed with the SLM (represented here in transmission for schematic
convenience).

Figure 6.4: Observation of the χ-axial effect. (a) A focussed spot engineered for δλ = 0 and
δz = 0 vanishes when varying λ or z independently. However a conjoint shift of λ and z enables
to maintain the focus. (b) Correlation plot in the (δλ, δz) plane for an initial speckle pattern. An
anti-diagonal of high correlation appears supporting the observation made with the focussed spot.
The color dots link images of (a) and (b). The spectral (resp. axial) width lλ (resp. lz) of the
correlation for a fixed z (resp. λ) are plotted on the edge.

the imaged plane with δz < 0. Valid for a focus, this χ-axial translation, is also expected to be
valid when entering the MMF with a random phase front (generated with the SLM). However the
output images are no longer foci, easily identifiable from a speckle, but speckle themselves. Hence
the effect would no longer be directly visible and a quantification is needed: the speckle correlation.
It is noteworthy that even though the effect then needs analysis to be uncovered, the very sharp
intensity variations of a speckle pattern is an asset to evaluate the correlations.

Experiments are performed as follows: for each wavelength (on the range (800± 5) nm) a set
of intensity images are captured by the camera while performing an axial scan of the collection
microscope objective. All intensity images are then correlated to the reference one defined as the
image taken for the central wavelength (800 nm) and the output facet of the fiber (z = 0) according
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to the formula4

C(δλ, δz) =
〈Ĩ(δλ, δz)Ĩ0〉√
〈Ĩ2(δλ, δz)〉〈Ĩ2

0 〉
, (6.2)

with Ĩ = I − 〈I〉, and where 〈〉 stands for spatial averaging over all speckle grains. The 0 index
represents the reference speckle image. The correlations are plotted on the (δλ, δz) plane in Fig. 6.4(b).
A high correlation line, in accordance with the focus experiment, is observed. Some experimental
precautions and post-processings are performed and briefly discussed in Comm. 6.2.1.

Comment 6.2.1.
Importantly, before computing the correlation product of experimental images we numerically
corrected potential transverse drifts due to slight axial misalignment. Since the light energy
is centered on the fiber core, long-range spatial transverse variations of intensity were also
compensated to get a zero correlation value when speckles are uncorrelated. Finally, we
underline that the speckle transverse dilatation (speckle broadening) after the fiber is not of
critical importance to characterize spectro-axial correlations because λz is a perfect invariant
of free space propagation in the Fresnel approximation (see Fig. 6.5).

Figure 6.5: Invariant speckle. Speckle images along the high correlation line. The transverse
dilatation of the speckle with the axial position is compensated by the wavelength tuning.

In the following we are going to discuss the characteristics of the correlation plot (Fig. 6.4): the
short-range correlation variations are discussed Sec. 6.2.3.2, the slope of the high correlation line
in Sec. 6.2.3.3 and the long-range evolution in Sec. 6.2.3.4. The models used will be briefly mentioned
but no details on the derivation will be presented, they can be found in [Devaud et al. 2021a].

6.2.3.2 Correlation widths

The short-range dimensions correspond to the widths of the line profiles along λ (resp. z) for fixed
z (resp. λ) values. The width of the line profile lz along the z axis corresponds to the speckle
longitudinal width and hence qualitatively equals the Rayleigh length zR: zR = 2λ

NA2 [Halford et al.
1987a]. Experimentally we obtain lz ' 31 µm full width half maximum (FWHM), in agreement with
the Rayleigh length expression (lz = 33 µm for a 0.22-NA fiber at λ = 800 nm). Correspondingly,
the spectral width along the λ axis, for a fixed z-coordinate, is equal to the spectral grain size
lλ = 2n1λ2

LNA2 [Rawson et al. 1980]. Here, we measured spectral widths (FWHM) equal to 0.8 nm for L
= 58mm, in agreement with the analytical expression of lλ. It is important to point out that lλ is
often referred to as the spectral bandwidth of the fiber (the same comment holds for lz). It indeed
gives the spectral detuning for which the speckle is preserved. The existence of the χ-axial ME, and
the long-range dimension of the correlation graph, enables to obtain correlation bandwidths much
larger than the usually considered lz and lλ.

4This is the Pearson correlation already introduced in Chap. 4 and Chap. 5 but for intensity.
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6.2.3.3 Correlation slope

Before considering the long-range dimensions of the correlation plot a legitimate question needs
to be addressed: could the high correlation line visible in Fig. 6.4(b) just be a consequence of the
experimental setup chromatic dependence? The answer is no and two indications support this point.

• The evaluation of the chromaticity of the experimental setup optical components is a first
indication. The microscope objectives used are treated against chromaticity in the visible
range. At 800nm it remains δz

δλ ≈ 0.4 µmnm−1. The lens used is plane-convex, made of N.BK7
glass. The chromaticity evaluated at 800 nm gives δz

δλ ≈ 0.1 µmnm−1. These values are far
different from the effect observed both in order of magnitude and in sign.

• Another verification is to observe the effect when changing the optical fiber. The experiment
was thus performed for different fiber lengths (L = 29, 58 and 120mm) with the same numerical
aperture (0.22) and core diameter (Ø = 50 µm). The effect held in all case but the slope δz/δλ
of the high correlation line varied illustrating an effect of the fiber itself.

To understand the origin and the value of this slope ray optics simplicity is convenient. The ray optics
approximation model holds due to the fiber diameter (50 µm) being large enough in comparison with
the working wavelength (λ0 = 800 nm) see [Jackson 1999] and Sec. 6.1.1. In the ray optics model
propagation along a SI-MMF is similar to free-space propagation in the Fresnel approximation. The
modulus of the transverse component of the wavevector is conserved and the optical path length
scales quadratically with the incident illumination angle [Li et al. 2021b]. The same conclusions as
for [Zhu et al. 2020] hence hold (see Sec. 6.2.2). The differential of the equation λz = const. results
in:

δz

δλ
= − L

n1λ0
, (6.3)

where L is the fiber length, and where n1, the refractive index contrast of the core with the output
medium, is due to Snell-Descartes’s law applying at the output facet of the MMF. Experimental
results are confronted to Eq. 6.3 predictions in Fig. 6.6 with good agreement. Changing the fiber
radius from 50 µm to 105 µm does not significantly modify the measured slopes, also in agreement
with the ray optics model. Another model based on the fiber’s eigenmodes gives similar results. Under

Figure 6.6: Models predictions for the slope of the χ-axial effect and experimental
results. Experimental slopes measured for different fiber lengths and two core diameters (Ø =
50 µm, blue dots, and Ø = 105 µm, orange dots). The expected slope obtained from ray optics (RO)
calculations is represented with the red dashed line. The green dashed line represents the slope
obtained from the calculation with the LP modes (for Ø = 50 µm and ε = 0.11, see Eq. 6.4).
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the weak-guidance approximation the eigenmodes of SI-MMFs are the LP modes (Sec. 6.1.1). The
correlation expression (Eq. 6.2) can be analytically expressed with the LP modes. It not surprisingly
depends on the fiber length as well as the illuminating wavelength λ and very importantly provides
information on the intrinsic fiber effect. Finding the coupling between λ and z that maximizes the
correlation gives the expected slope of the ME:

δz

δλ
= −(1− ε) L

n1λ0
, (6.4)

where ε is a positive constant depending essentially on the fiber parameters, estimated to 0.11 and
the refractive index n1 is again added to take into account the Snell-Descartes law. This model is
plotted together with the ray optics predictions and the experimental results in Fig. 6.6, confirming
the good agreement of the observations with this simple model.

6.2.3.4 Spectral and axial widths

When observing the experimental results one observes a long-range decay of the correlation: this
would be the spectral equivalent of the ME-range. To extract it, the correlation landscape is
projected on the z and λ axes as presented in Fig. 6.7(a). This projection corresponds to keeping
for each z (resp. λ) the maximal value of the correlation reached when varying λ (resp. z). This
value is naturally obtained along the high correlation line. Experimentally we observe a spectral

Figure 6.7: ME range: spectral and axial bandwidths. (a) Surface plot of the correlation
measured for a fiber of diameter Ø=50 µm and length L=28mm length. The spectral (resp. axial)
width corresponds to the projection on the λ (resp. z) axis, and is presented with a solid blue line.
The spectral and axial widths of the L = 29mm fiber are represented on top (dotted red line) as
well as those of the L = 120mm fiber (dotted yellow line). (b-c) Top: Recall of the experimental
projections of (a). Bottom: Simulations of the fiber intrinsic spectral and axial widths (solid lines)
and comparison with the theoretical values obtained from the LP model (dashed lines) for the same
three fiber lengths. The grey domains indicate where the top corresponding experimental data
are measured. (b) Spectral width: both values obtained from the analytical LP model (and the
simulation) and experiments show a dependence with the fiber length. (c) Axial width: because it
does not depend on the fiber length only one plot (black dashed line) is presented for the analytical
model.
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correlation width (∆λ) varying with the fiber length and a constant axial correlation width (∆z).
These bandwidths cannot be explained with the ray optics model. Hence to extract them, the LP
model is required. From it we obtain:max

δz
C = exp

[
−
(
δλ
∆λ

)2]
, with ∆λ = α2n1λ0rc

NAL

max
δω

C = exp
[
−
(
δz
∆z

)2]
, with ∆z = α(1− ε)2n1rc

NA

, (6.5)

where rc is the fiber radius and α is a fiber-dependent prefactor close to unity. At first glance
the qualitative agreement is good: ∆λ depends on the fiber length but ∆z does not. However
experimentally measured bandwidths are smaller (not surprisingly due to experimental imperfect
measurements) than theoretical ones by a factor ∼ 3 to 5, the order of magnitude remaining correct.

6.2.3.5 Some applications

An important point is to stress for further applications of the χ-axial ME: if the LP model is needed
to retrieve all characteristics (including the spectral and axial bandwidths) of the ME it is not
needed to solely determine the ME slope when ray optics models applies. The simplicity of the slope
dependence makes it easy to implement in various situations. Possible applications are numerous.
Some of them are related to the general existence of a ME (prior information for instance). Some,
imaging related, take advantage more specifically on the spectral information. The χ-axial ME opens
the possibility to tune the wavelength while imaging [Pikálek et al. 2019], to perform wavefront
corrections for non-linear microscopy [Morales-Delgado et al. 2015; Hofer et al. 2020] or also to gather
information on objects subjected to inelastic scattering or broadband fluorescence (by extending the
confocal microscopy technique of [Loterie et al. 2015]).

6.3 SVD induced correlations in multimode fibers

To illustrate the impact of the TM unitarity and full control discussed above (Sec. 6.1.3), the speckle
correlation control with the SVD, presented in Chap. 5, is now also investigated in the case of MMFs.
The study is solely numerical but confronts the results of the recurrently-used simple model which is
based on the simulation of random matrices to the results obtained with a MMF mode solver [Popoff
2020].

6.3.1 MMF mode solver and fiber TM

The code used from [Popoff 2020], solving the transverse scalar propagation equation, enables
to calculate the modes for fibers of arbitrary index-profiles and their TMs. On this sections
the calculations are made for SI-MMFs whose parameters (NA, radius, length...) as well as the
illumination wavelength can be varied Fig. 6.8(a). The modes obtained are represented in Fig. 6.8(b)
for a fiber with a NA of 0.22, a radius of 25 µm, a length of 10 cm, illuminated by a 800 nm
monochromatic source. The TM (T1) in the mode basis is then calculated using the modes and their
propagation constants5. For perfect straight fibers, as simulated here, the TM is diagonal on the
mode basis Fig. 6.8(c). The projection of each mode on the pixel basis enables to also obtain the
TM in this basis Fig. 6.8(d).

5For a waveguide (e.g. an optical fiber), the propagation constant of a mode determines how the amplitude and
the phase of the light (for a given frequency) vary along the propagation direction.
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(a)

(b)

LP0,10 LP3,10 LP7,1

(c)

(d)

Figure 6.8: Simulated modes of SI-MMF and its TM. (a) Scheme of the simulated MMF
with length L = 10 cm, diameter Ø = 50 µm, NA = 0.22, illuminated with a 800 nm monochromatic
light. (b) Radial profile for three out of 470 (polarization excluded) modes: LP0,10, LP3,10, LP7,1.
(c) TM on the mode basis (size 470× 470). (d) TM on the pixel basis (size 422 × 422). The size is
arbitrary and depends on the resolution set for the calculations.

6.3.2 Correlation

Once the TM of the fiber is known, so is the output field. By choosing another set of parameters
for a second fiber the field-correlation technique employed in Chap. 5 can be tested. Here we study
the same fiber illuminated with a different wavelength which is λ = 700 nm6 and its TM (T2) is
computed. Both TMs in the pixel basis are summed and their SVD is performed. It is important
to note that even though the two fibers do not have the same number of modes, they have the
same size in the pixel basis (with however a different rank, rank(T1) < rank(T2), whose impact will
be discussed later). The obtained singular vectors (phase and amplitude) are then propagated in
the two fibers and the output fields are correlated. The real7 part of the correlation is presented
in Fig. 6.9(a) as a function of the singular values8 (µ). Two main observations are worth discussing:

• The evolution is not smooth as in the previous results with correlations abruptly going to 0 for
some values of µ.

• Correlations real part span the [-1, 1] range whereas the absolute part is fixed at 1.

The two following parts harness them individually.

6Any of the parameters of the fiber, or even several, could also have been modified.
7The real part instead of the absolute value is chosen here, this choice is explained in Sec. 6.3.2.2 and Sec. B.5.2.
8Due to the rank of the sum of the TMs not being analytically predictable the normalization of the singular values

(see Comm. 1.4.3) is not performed here.
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Figure 6.9: SVD-based correlations of the output field of MMFs. Simulation of two fibers
TMs (T1 and T2) and SVD of their sum enables to control the output field correlation. (a) Real part
(blue) and absolute value (orange) of the correlation as a function of the singular values µ. The inset
represents the singular values as a function of the singular vector number #. The dashed black line
represents the mean correlation for a random input vector and the grey shaded area its standard
deviation. (b) Norm of the output vectors as a function of the singular vector #. A norm drop is
observed for the lower-rank TM (T1). The number of non-zero singular values gives access to the
matrices ranks. (c) Real part of the correlation as a function of the singular values µ after reordering
of the singular vectors with respect to the output field norm of the lower-rank TM. It is noteworthy
that the number of singular vectors used in (a) and (c) is different due to the exclusion of some
vectors after the sorting. The prediction value for the real part is plotted in top with a dashed black
line. (d) Simulation of the correlation evolution for the higher singular value for different degrees of
unitarity of the TMs with the unitary random matrix model. M/N = 1 corresponds to a random
unitary matrix whereas M/N � 1 corresponds to a fully random matrix. The simulations are made
both for phase and amplitude (solid blue line) and phase only (orange dashed line) control.
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6.3.2.1 Abrupt correlation variations

It is well visible in Fig. 6.9(a) that except for a couple of singular vectors that lead to zero correlation
(as if they were random input vectors), the overall correlation trend is smooth. This observed
singularity for some vectors also appears in the singular value distribution presented in the inset
of the Fig. 6.9(a). The singular values are plotted as a function of the singular vector # which
leads to a continuous decrease as the SVD algorithm sorts the vectors by decreasing singular values.
Contrarily to what was previously observed (see Fig. 5.6) experimentally or in simulations, the values
do not decrease monotonically but encounter a plateau at 1. Looking more carefully (and varying
the two fibers parameters) one can observe that the length of this plateau corresponds to the two
fibers number-of-modes difference, and hence the TMs rank’s difference mentioned in Sec. 6.3.2. A
qualitative explanation is the following: even though the modes of the two fibers are different they
remain similar enough such that the TMs almost commute (one can almost find a basis in which
both TMs are diagonal). The lower-rank TM (T1) hence can be considered as a sub-part of the
higher-rank one (T2). There is hence a set of singular vectors (the set size corresponds to the rank
difference) that contain information for the higher-rank matrix but are unphysical for the lower-rank
one. Due to the quasi unitarity of the TMs (perfect fibers with no losses and forward propagation)
the singular values of the individual TMs are (almost all) 1 and the singular values associated to this
set of singular vectors is hence 1. Because the SVD sorts the vectors by decreasing singular values
it results on the observed plateau. Thus the singular vectors associated with the plateau contain
information on the propagation through one fiber only (the one associated to the higher-rank TM).
The transmission is still possible for one fiber (with the singular value of the associated TM, i.e. 1)
but no significant correlation is present. This is well visible in Fig. 6.9(b) where the norms of the
output vectors (after propagation through the different fibers) are computed. Due to the close to
loss-free propagation the norm is conserved: an input unit-norm vector should exit with a unit-norm.
This is the case of all singular vectors of non-zero singular values for the higher-mode fiber. However
it is visible that the norm drops for some singular vectors in case of the lower-mode fiber. To reach
the promising smooth control one hence needs to withdraw troublesome vectors. Taking advantage
of the norm information enables to do so: the singular vectors can be sorted by decreasing norm
using the lower-rank TM. The result of the correlations obtained with this ordering are presented
in Fig. 6.9(c). The abrupt peak to zero correlation is no longer visible.

The results obtained with the simulated TMs of MMFs are interesting to compare with the
random matrix model.

6.3.2.2 Full correlation control

When working with two unitary matrices expanding the norm ‖T1X + T2X‖22 as a scalar product9

gives Re(C)= µ2/2 − 1. Thus, as seen in Fig. 6.9(c) the real part of the correlation values spans
the full range of [-1, 1], leading to a possible complete control by choosing the accurate singular
vector. However the control on the absolute value is lost (all input vectors leading to an absolute
value of the correlation of one, see Appendix B.5.). This is different from the experiment results
obtained with layers of paint and the random matrix simulations, where the correlations could at
maximum only span the range [-0.6, 1] or [0.6, -1] depending on the TMs relative phase and where
the absolute value of the correlation could be controlled. This better performance for the singular
vectors associated with high singular values is easy to understand by following on the qualitative
explanation of the limited range in Ill. 5.2.2. The correlation limitation for leading singular vectors
was due to the two output vectors norms not being 1. It was hence possible to obtain the final
vector (whose norm is given by the leading singular value) with two non necessarily collinear vectors.

9Which corresponds to al-Kashi theorem in two dimensions.
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In case of unitary matrices the norm constraints make this limitation vanish: to obtain a vector of
norm two (expected leading singular value) with two unit-norm vectors the only solution is that
they are collinear and hence, in our measurement terms, correlated.

This possibility of reaching high correlations with leading singular vectors is very promising as they
are the most resistant to noise and the experimental phase-only constraint (see Sec. 2.2.2.3, Sec. 3.2.3
and Sec. 5.2.5). But these results also illustrate the importance of non-unitary transformations
realising constraints.

The correlation control results are also consistent with RM-based simulations. In the previous
chapters (mainly in Sec. 3.2.3 and Sec. 5.2.5) simulations have been performed by imitating a
TM using a random matrix, with very accurate results. It is possible to go further adding to the
random matrix more features to mimic different experimental constraints or prior information. One
addition that can be done is making the TM unitary to estimate the impact of full control. Unitary
random matrices (some of their properties are discussed in Appendix B.6) can be built using the
QR decomposition as presented in Comm. 6.3.1.

Comment 6.3.1.
The simulation of a unitary random matrix is performed with the following steps, see [Ozols
2009; Mezzadri 2006]:

1. Create a random Gaussian i.i.d. matrix S.

2. Perform the QR decomposition of the matrix: S = QR.

3. Create a diagonal matrix D from the diagonal coefficients of R, renormalized to have
modulus 1.

4. Create the target matrix: M = QD.

Due to the unitarity of M, all its eigenvalues are µ = 1.

Once created the degree of unitarity is adjustable by extracting only a subpart (size M × M) of
the unitary matrix (size N × N) leading to a sub-unitary matrix. For more details on sub-unitary
matrices see [Zyczkowski et al. 2000] and Appendix B.6. In most experimental systems, access if
often limited to only a subpart of the full TM due to the incomplete control, where the unitary
effects do not remain. Optical fibers are a specific case where the absence of reflected light allows to
consider TMs unitary.

In Fig. 6.9(d) the degree of unitarity (M/N) of two TMs is varied (extraction of subparts of
unitary random matrices) and the corresponding correlation value for the leading singular vector
plotted. For phase and amplitude control correlations vary from 1 (for M/N = 1 corresponding to
unitary matrices), as expected and seen with fiber TMs, to 0.6 for mere random matrices (as already
observed and predicted, see Sec. 5.2.5). Not surprisingly for phase-only control the correlations are
lower. They still reach 0.8 in case of unitarity.

If, as shown in this section, it is possible to correlate the speckles after propagation in a MMF for
two different incoming wavelengths, this technique requires a WSF device. I will present in Sec. 6.2
the observation of a natural spectral correlation occurring in MMFs.

6.4 Take home message

In this chapter we discussed the implications of the high control reachable with MMFs. I present
experimental results of the χ-axial ME observed in MMF and analyze its main characteristics. I
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also extend the experimental results of Chap. 5 to MMFs. Using a code that solves fibers modes it
is possible to reconstruct the TM of a MMF and compare the results with the simple RM model
(adding to it the unitarity constraint).



Conclusion

Light scattering is a complex process that can be described at different levels. In strongly scattering
media, the random walk followed by photons leads to a diffusion equation for the intensity. However,
coherent aspects remain and one can observe complex interferences behind scattering media. This
complex interference pattern can be controlled by means of wavefront shaping techniques, using
devices such as spacial light modulators. In this thesis we exploit the transmission matrix that links
input and output fields. Performing the singular value decomposition of the latter matrix grants
access to the medium modes, and is a powerful tool to control light propagation.

In Chap. 3 we compared the Rayleigh statistics of speckles obtained from singular modes with
the Ricin statistics of speckles induced by global focusing techniques. Singular modes of an over-
sampled transmission matrix are used to control the speckle grain size and more generally the speckle
correlations. This control can be performed by numerical filtering of the spatial Fourier components
of the transmission matrix. Because the singular value decomposition sorts modes by transmission,
associating specific k-components to transmission values allows a control of Fourier components of
the output field. Modifying the experimental configuration to obtain inhomogeneous speckle Fourier
transforms allows a direct (without the matrix filtering step) control of the speckle grain size.

These monochromatic results are extended to the broadband regime in Chap. 4 and are further
supported by simulations in a waveguide geometry. Taking advantage of the time-gated aspect of the
setup, we measured time-gated transmission matrices. Coupling the input light to specific singular
modes of a time-gated transmission matrix measured for a delay τ0 allows a controlled power delivery
at this delay. An optimal enhancement is even expected for the first singular vector (associated to
the highest singular value) while keeping a Rayleigh distributed speckle pattern.

In Chap. 5 we exploited the singular value decomposition to couple light propagation between
different scattering “landscapes”. These landscapes can either be relatively similar when illuminating
one scattering medium with different wavelengths, or completely different when light propagates
through two different media. The technique we developed uses the singular value decomposition of a
sum of transmission matrices, and allows for a smooth and adaptable control of speckle correlations,
both in phase and amplitude. We predict the correlation with an analytical derivation based on
random matrices. Finally, exploiting conjugated quantities improves the engineering of correlations,
and can for instance be used to generate temporal and spectral correlation combs.

In Chap. 6 using numerical simulations, we showed that this correlation control extends to
multimode fibers, for which we explore the impact the unitarity of the transmission matrix. This last
chapter also highlights the observation and description of a new memory effect in fibers, reminiscent
of the chromato-axial memory effect observed in forward scattering media, that couples axial
translations of the imaging plane with spectral detuning.

Even though this work mainly represents an exercice of light manipulation, some applications
could benefit from it. Indeed all results obtained can help improving existing imaging techniques such
as structured illumination microscopy. The information and control obtained could also benefit the
development of non-invasive imaging and light control in biological media. From a fundamental point
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of view, further research on the light-matter interaction using tools developed here is in the logical
continuity of this work, especially in the temporal domain. For instance, this work considers equally
most delays in the pulse, and a selective study or control of the photons experiencing small or strong
scattering (hence quickly exiting the medium or in the contrary remaining longer in the medium)
would be very instructive. Moreover adding to the time-gated transmission matrix measurement
a time-gated reflexion matrix measurement would provide a deeper understanding and control of
temporal light propagation. Such simultaneous measurements might be difficult to achieve, but could
be conceived when considering the stability of the medium and the experimental setup. Another
interesting direction for that work would be to study, on the contrary, dynamic media and look for
propagating states robust against scatterers movements. So far continuous optimization techniques
are used for that purpose mostly in biological samples [Blochet et al. 2017]. Eventually, even if
in this thesis I presented results and techniques, as far as I am concerned I feel that my work has
opened the way toward more research rather than has closed the questioning. One question leading
to an answer opening itself the path to two more questions, and so on, similarly to a fight against
the Hydra of Lerna Fig. 6.10. On a final note, remember that in each of the works presented in
this thesis, scattering is never perceived as a limitation, but rather as a framework allowing the
emergence of effects and of their predictions using random matrix theory.

Figure 6.10: Heracles fighting the Lernaean Hydra, Greek vase-painting. One of the
twelve Labors of Heracles was to kill the Hydra of Lerna. The Hydra possessed many heads with a
poisonous breath. To kill it, Heracles started by cutting off heads, but for every head chopped off,
the Hydra would regrow two other heads.
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A.1 Laser jitter

As explained in Sec. 2.2.1, the laser used is a mode-locked Ti:sapphire pulsed laser. It can be manually
prevented from mode-locking and used as a monochromatic source. This operation is however not
optimized and the laser is unstable in monochromatic mode. The frequency is prone to a jitter. Our
commercial spectrometer has a limited resolution of ≈ 0.1nm, precluding any jitter quantification.
For a convenient access to the emitting wavelength fluctuations δλ, we use the medium itself. A
similar idea was already used with scattering media [Kohlgraf-Owens et al. 2010; Redding et al.
2013b] or in long MMF to construct high resolution spectrometers [Redding et al. 2014; Redding et al.
2013a]. A small fluctuation in the incoming wavelength results in the modification of the speckle
pattern. Hence measuring the speckle decorrelation for different wavelengths (Fig. A.1(a)) enables
to calibrate this home made spectrometer (Fig. A.1(b)). The measured frequency fluctuations for
monochromatic mode are presented in Fig. A.1(c)). The relative wavelength fluctuations (measured
fluctuations divided by the input light bandwidth) can be estimated to 0.2.

This small jitter of the monochromatic source (even smaller for the pulse) generally does not
affect experiments. However it can preclude frequency resolved measurements below 0.1–0.2 nm.

A.2 Impact of phase-only control

This appendix aims at completing the discussion on the phase only constraint of Sec. 2.2.2.3.

To complement Fig. 2.2 and Ill. 2.2.2, that illustrate the importance of the phase information
over the amplitude to modulate the wavefront, we present here a simulation of a phase conjugation
experiment. A TM of size 1024× 1024 is simulated with a random matrix and a targeted output
vector is computed. This vector aims at focusing light in the center of the output plane using
phase conjugation, the targeted 2D image (amplitude value of the reshaped vector) is presented
in Fig. A.2(a). The output obtained is displayed in Fig. A.2(b) with a measured signal to noise ratio
SNR of 35. Equivalent results are presented in Fig. A.2(c,d) for partial modulations. In Fig. A.2(c)
we use only the phase information of the input vector, which leads to SNRϕ ≈ 31. Conversely,
in Fig. A.2(d) we only use the amplitude information of the input vector. As expected, no focused
light appears with SNRamp. ≈ 0.6.

We present below a method to control both phase and amplitude with a phase only SLM, that
only requires work on the data acquisition and analysis (no experimental alignment). As mentioned
in Sec. 2.2.2.3, this technique exploits the zeroth diffraction order [Van Putten et al. 2008; Guillon
et al. 2017] instead of the usual 1st order. It thus allows flexibility and easy alignment but at the cost
of keeping the unmodulated light. Because this technique only requires coding and experimentally
cutting non-zero diffraction orders, it is easy to implement. A schematic of its different steps is
presented Fig. A.3.
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Figure A.1: Laser fluctuations. (a) Speckle correlation when varying the wavelength of the
incoming light. The three colored lines represent the correlation with the speckle obtained from three
different reference wavelengths. (b) Result of the calibration of (a): the variation of the correlation
value enables to retrieve the wavelength initially set. (c) Observation of the laser jitter in time for
the laser monochromatic mode.

Figure A.2: Impact of partial information to modulate the incoming wavefront for phase
conjugation. TM of size 1024 × 1024 is simulated using random matrices. (a) Targeted output
field amplitude. Field amplitude obtained for phase and amplitude control of the input vector (b),
phase only control (c) and amplitude only control (d). In each plot all values are normalized by the
higher amplitude such that the color scale is between 0 and 1 to all plots.
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Figure A.3: Schematic of the phase and amplitude control on the diffraction zero-order
with a phase-only SLM. (1) Separate phase (colors) and amplitude (grey level) of the vector and
reshape them for the SLM. (2) Normalize amplitude A between 0 and 1. (3) Multiply 1-A by the
checkerboard. (4) Transform the amplitude modulation in a phase value. The factor of 2 makes the
phases belong to [0 π]. (5) Sum the two phases (from phase itself and from amplitude) and keep its
value modulo 2π. (6) Transform the phase to grey level with the SLM LUT.

Implementing the phase and amplitude control with the zero order technique can be done
following the steps illustrated in Fig. A.3.

Even if the enhancement (focus intensity over background intensity) we experimentally obtained
when focusing light with a phase and amplitude vector is higher compared to the one of a phase-only
input, it is noteworthy that the absolute intensity in the focus is higher for phase-only control
than for phase and amplitude. Indeed in the latter case a non-negligible part of the light is not
transmitted. In a more general way, highly uneven amplitudes in the input vector leads to a drop of
transmission1. For this reason, in this thesis, we solely use phase-only control.

A.3 Zero-delay stage position

This appendix aims at pointing out a subtlety about the zero-delay definition presented in Sec. 2.3.3.
This feature, only visible for very thick and scattering media, was not observable with the medium
used in Chap. 3 and Chap. 4, but is with the one used in Chap. 5.

A.3.1 Zero-delay position for very scattering media

For the detailed explanation of the zero-delay definition, see Sec. 2.3.3. Here is a brief recall: the
laser is set in monochromatic mode, and for each wavelength in a set, we vary the delay-line length
while acquiring the field for a plane wave input. For each delay-line length, we correlate the different
fields with the central wavelength one (808 nm). We present the real parts of the correlations in the
first column of Fig. A.4. We calculate and display their Fourier transform in the second column

1This issue has been noticed and discussed in [Guillon et al. 2017], where some adjustments to the amplitude
normalization where hence performed.
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of Fig. A.4. A fit enables to define the delay-line length associated to τ = 0. The orange dashed line
represents the cut (for k = 0) plotted in the third column.

For scattering media not elongating too much an input pulse, the correlations are well defined
and not excessively blurred by the spectral decorrelation, see Fig. 2.6(b), and the temporal origin is
well marked. In Fig. A.4(a) the results are different while the same plane wave input is displayed
on the SLM. The average pulse profile is even visible in Fig. A.4(a) third column. However the
extraction of τ = 0 can still be performed.

An interesting effect shows up when measuring a TM (NCCD = 225, γ ∼ 0.3 and for a delay
in the pulse τ1 ' 1 ps) and performing the same extraction with the first singular vector displayed
on the SLM. A shift of the temporal origin is observed. The value of this shift seems related to τ1

(represented by the vertical green dashed line). This phenomenon is attributed to the light phase
alignment induced by the SVD mask at τ1.

Figure A.4: Zero-delay of a thick scattering medium. The medium used is a thick layer of
TiO2 suspended on a glass cover of transmission T ∼ 0.16. First column represent the correlation
real part, second column the absolute value of the Fourier transform and third column is a plot of
the k = 0 cut of the second column. (a) Plane wave input. (b) First singular vector of a TGTM
measured at τ1 ' 1 ps (τ = 0 being defined with (a)) with NCCD = 225 and γ ∼ 0.3. The vertical
green dashed line represents the position equivalent to τ1.

With no major implication in most of the experiments this feature needs to be taken into account
when performing cross-effect experiments as in Sec. 5.4.

A.3.2 Implication for the time to frequency cross effect

When performing the cross effect from time to frequency (i.e. two TGTMs measured for different
delays τ1 and τ2 in the pulse, the first singular vector of their sum v

(τ1+τ2)
1 is displayed on the SLM
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while realizing a frequency scan to extract the field), the position of the delay-line matters. If it
is set to the position τ = 0, three delays are involved (τ1, τ2 and τ2 − τ1) instead of one (τ2 − τ1).
Hence a correlation pattern involving both the checkerboard discussed in Sec. 5.4 and fringes is
visible. To prevent this, the stage position is set to τ1 when performing this specific experiment.

A.4 Evaluating the measurement quality of a transmission matrix

As presented in Chap. 4 the quality of the TM measurement can be evaluated using its phase
histogram. The idea is as follows: for a fully developed speckle the statistic is Rayleigh (inter alia,
uniform phase repartition over [0 2π]). The TM corresponds to the reshaping of many speckle fields,
obtained for a set a SLM inputs. Thus, under the Rayleigh speckle assumption, the phase histogram
of the TM should be uniform. If this is generally well followed one can observe the apparition of a
wavy behavior when measuring for instance TGTMs on the pulse tail (see Fig. 4.8). Where is this
modulation coming from? How to interpret it? And ultimately, how to get rid of it (or at least limit
it)? I present here a very minimalistic understanding of the effect.

Let us first recall the TM measurement. It is based on the field extraction for all the elements
of the basis (Hadamard basis in this work). When the reference beam and scattered beam are
balanced the contrast of their interference is maximal. Fitting the intensity variations gives access
to the missing phase information. However if the beams are very unbalanced, or if a significant
amount of non interfering light is also present on the acquired images, the intensity modulation
induced by the phase-stepping becomes very small. Hence the extraction of the phase information is
subject to errors. For instance when the intensity of a CCD pixel does not vary while performing
phase-stepping, the resultant calculated field is null. Its amplitude is zero while its phase is not
defined and arbitrarily fixed by the software. Thus when measuring a field (and thus a TM) in bad
experimental conditions preferential phases are obtained2. When displaying the phase histogram, it
is no longer flat as expected for a Rayleigh speckle but peaked around one phase value.

After measuring a TM in the Hadamard basis I usually perform a change of basis to the canonical
basis. This step requires to multiply the initial matrix by the Hadamard matrix (change-of-basis
matrix). Because all Hadamard elements are +1 or -1, the previous single preferential phase is split
into two π apart. This explains the phase histogram observed experimentally.

It is very practical to note from this effect that the quality of the TM measurement can thus be
evaluated simply by looking at its phase histogram. The larger the amplitude of the fluctuations the
worse the measurement.

In order to improve the field extraction one solution consists of increasing the number of phase
steps at the cost of also increasing the measurement time. For these reason in this work I mainly
extracted the field with 4 phases for monochromatic light or in early times in the pulse while using
more (usually 10) when working in the pulse tail.

A.5 Some information contained in the transmission matrix

There is a lot of information contained in the TM. In this appendix I will briefly summarize which
information can be easily extracted from a TM.

2The amount of the over representation of that specific phase is obviously proportional to the number of zero field
values in the TM.
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A.5.1 Speckle information

Due to the TM construction from the different fields measured for different SLM inputs, information
on the speckle is inherently present. However one has to keep in mind that the CCD camera pixels
binning (when measuring the TM) is to be taken into account when comparing some results with
the direct measurement of the field. I will discuss here a method to access the speckle grain size
from the TM itself. The speckle grain size extraction has been discussed in Sec. 3.1.1. Because it
relies on the speckle autocorrelation a minimal resolution is required. However in the TM usually
the binning is such that the speckle grains are not well resolved. Nonetheless it is still possible to
access this information. Indeed the binning is done to prevent any redundant information on the TM
(it enables to have quicker and smaller measurements). Any redundant information would impact
the rank of the TM. For a random matrix (independently from the random probability law) the
rank corresponds to the participation number (Npart) defined in [Davy et al. 2012] by

Npart =
(
∑

n τn)2∑
n τ

2
n

, (A.1)

where τn are the eigenvalues of T †T . In case of a perfectly binned TM the ratio of the participation
number to the matrix smaller dimension, called normalized participation number and denoted Ñpart,
is 1. Deviations from 1 brings information on the redundant information still present and hence
to the remaining grain size. Taking the initial binning value Nbin into account, one gets the initial
grain size by

grain size =
Nbin

Ñpart

. (A.2)

Even more information can be extracted from the TM. For instance the TM speckle k-space
information enables anticipating the possibility of a speckle grain size control, discussed in details
in Sec. 3.2.3.

A.5.2 SLM information

The information of the contribution of each SLM mode can be extracted from the TM and is
discussed in Sec. 2.3.5.2. From the modes’ contribution information one can extract the effective
number of controlled modes (N eff

SLM) which on some experimental configurations is different from
NSLM. The knowledge of N eff

SLM is primordial to determine a more precise value of γ, the degree of
control. It is important to compare the experimental results to simulations or analytical predictions.



B | Theoretical complements and results

B.1 Speckle grains dimensions

This appendix present a quick evaluation of the speckle grain dimensions, see [Gatti et al. 2008;
Magatti et al. 2009] for more advanced models. Let us consider an illuminated area ∆ and a speckle
observed at a position zC (such that zC � ∆) along the axial direction as illustrated in Fig. B.1.
Considering two extremal points on the illumination area A and B we compute the optical path

(a)

z

∆

A

B

C

D1

(b)

z

∆

A

B

C

D2

Figure B.1: Three dimensional speckle. Evaluation of the transverse speckle grain size (a) and
longitudinal (b).

difference δ to reach C:

δ = BC −AC =
√
z2
C + ∆2 − zC ' zC

(
1 +

∆2

2z2
C

)
− zC =

∆2

2zC
+ O

(
1

z3
C

)
. (B.1)

Let us now consider the variations of δ when moving away from C either radially, see Fig. B.1(a) or
longitudinally, see Fig. B.1(b).

Transverse speckle grain size
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Similarly to Eq. B.1 the path δ′ = BD −AD can be calculated.

δ′ = BD1 −AD1

=
√
z2
C + (D1C −∆)2 −

√
z2
C +D1C2 ' zC

(
1 +

(D1C −∆)2

2z2
C

)
− zC

(
1 +

D1C
2

2z2
C

)
= zC

(
1 +

(D1C −∆)2

2z2
C

)
− zC

(
1 +

D1C
2

2z2
C

)
= −D1C∆

zC
+

∆2

2zC
+ O

(
1

z3
C

)
.

(B.2)

The variation between δ and δ′ is given by −D1C∆
zC

+ O
(

1
z3C

)
. The speckle transverse width b⊥ can

be defined as the distance D1C such that |δ − δ′| ' λ/2. Thus one gets,

b⊥ ≈
1

2

λzC
∆

. (B.3)

Longitudinal speckle grain size

Along the same lines for the longitudinal speckle dimension,

δ − δ′ = ∆2

2zC
− ∆2

2(zC + CD2)
=

∆2

2zC

(
1− 1

1 + CD2/zC

)
' ∆2

2zC

CD2

zC
(B.4)

One obtains b// for |δ − δ′| ' λ/2

b// ≈
λz2

C

∆2
. (B.5)

B.2 Elongated speckle grains with unidimensional singular value
decomposition

In this appendix I will present an alternative method for producing elongated speckles using the
SVD without resorting to the Fourier filtering of Sec. 3.2.1. This technique will be limited to the
creation of asymmetric speckle grains and requires to position the collection microscope objective
in such a way that the k-space is inhomogeneous. The technique is less intuitive than the Fourier
filtering method but due to the simplicity of its implementation and the robust results it gives it is
worth mentioning.

The idea is to only perform the SVD along one dimension of the output region (for instance along
y). Doing so would enable to gather the Fourier information only along the chosen dimension and
hence select the input vectors that would enlarge the speckle grain solely on this direction. However,
written as it is, in a matrix form, all the CCD pixels contribute to the TM output dimension. It is
then necessary to remember that the matrix form is a useful manner of dealing with the “TM” object.
But this object can be seen as a four order tensor: each input and output being itself a second order
tensor. Both for input and output the spatial dimensions have been merged for practical reasons.
Here we can decide to separate the two output dimensions to display the TM as a cube, see Fig. B.2.
The three axes being the SLM dimension (size NSLM), the x dimension of size

√
NCCD and the y

dimension of size
√
NCCD

1. For different positions x0 one can extract a sub-TM Tx0 which only bears
1We assume for simplicity that the ROI is square.
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SLM

y

x

x0

Figure B.2: 1D-SVD principle. The TM is displayed as a cube by separating x and y dimension
of the output. Each slice then represents the speckle observed when displaying on the SLM one
element of the basis. For a fixed value of x (x0), the matrix Tx0 (light red area), is extracted.

information on one column of the ROI. Taking the SVD of Tx0 gives access to the corresponding
singular vectors. Performing the same operation for all x0 in the ROI leads to a set of singular
vectors. Summing together all the first singular vectors one obtains the so-called first 1D singular
vector.

Experimentally obtained speckles from the first singular vector v1 of the regular SVD and the 1D
SVD discussed above are shown in Fig. B.3. In the case of the regular SVD the grains are enlarged
in both x and y directions whereas for the one-dimensional SVD the elongation only happens in one
direction leading to elongated speckle grains.

B.3 Intensity and field amplitude enhancements

This appendix presents some analytical results for the enhancements expected for the global focusing
and the singular vectors. Both the intensity and the field amplitude enhancements are derived. The
intensity enhancement scaling with γ is also discussed. The case of the field amplitude enhancement
is more complicated: a derivation from the field amplitude is not straightforward. A link with the
intensity statistic however exists in case of Rayleigh speckles.

B.3.1 Intensity enhancement

Let us first focus on the derivation of the intensity enhancement. The latter is defined as the full
intensity on the camera (summed over the whole ROI) of the input vector of interest divided by the
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Figure B.3: Anisotropic speckles with the 1D-SVD. (a) Right panel: field amplitude for v1

(scale bar: 5 µm) Left panel: associated autocorrelation plotted along the x (blue) and y (orange)
directions compared to the reference speckle autocorrelation (grey dashed). The x-axes are rescaled
by the FWHM of the reference speckle autocorrelation. (b) The same for the 1D SVD. The
autocorrelation curves are averaged over 9 realizations. Figure adapted from [Devaud et al. 2021b].

full intensity for a random vector2. In this appendix we will focus on two different types of input
vectors: the global-focus and the SVD. Given a TM T(n,m) (size n × m given in brackets on the
bottom right of the matrix), the global-focus input G(m,1) can be calculated. It is defined such that
T(n,m)G(m,1) = I(n,1) where the coefficients of I are all unity.

B.3.1.1 Transmitted field

To express the transmitted field we decompose the vector onto the singular vectors of T . We have
T(n,m) = U(n,n) × S(m,m) × V †(m,m), giving

G(m,1) = T †(m,n)I(n,1) = V(m,m)S
†
(m,n)U

†
(n,n)I(n,1) =

m∑
i

si

n∑
j

u∗j,iVi, (B.6)

2In simulations it is important to well normalize the input vectors.
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where si are the singular values and uj,i the elements of U . On the SLM normalized vectors are
displayed so that we have a field at the output EG:

G̃ =
G

‖G‖2
=

∑
i si
∑

j u
∗
j,iVi√∑

i |si
∑

j u
∗
j,i|2
→ EG =

∑
i s

2
i

∑
j u
∗
j,iUi√∑

i |si
∑

j u
∗
j,i|2

. (B.7)

Similarly, for a random input vector, R can be decomposed onto the singular vectors of T with
projection coefficients βi and normalized (R̃) to get a field ER:

R̃ =
R

‖R‖2
=

∑
i βiVi√∑
i |βi|2

→ ER =

∑
i siβiUi√∑
i |βi|2

. (B.8)

And finally the ith singular vector gives an field output:

Vi → Ei = siUi. (B.9)

B.3.1.2 Intensity enhancement

From the fields the full intensity can be directly calculated by taking the transpose conjugate of the
vector times itself. For the random input, the total output intensity is then

IR =

∑
i s

2
i |βi|2∑
i |βi|2

' 〈s2〉 (weighted arithmetic mean). (B.10)

Caution here the mean is computed over m values, see Comm. B.3.1.

Comment B.3.1.
Usually for the MP law singular values of a matrix of size m× n are defined by

s̃MP
i =

si√
1

min(n,m)

∑min(n,m)
j=1 s2

j

, (B.11)

this regardless of the respective values of m and n, as mentioned in Sec. 1.4.2.2. However for a
TM, m and n have a physical meaning, that is the number of controlled modes (NSLM) and
the degrees of freedom (NCCD). They are no longer interchangeable. That is the reason why
two normalizations will be adopted: The MP law one (defined above) to strictly follow the
quarter-circle law and the more physical one (defined below). When studying transmission
related phenomena, the mean over the singular values is computed over all singular values (the
one equal to 0 should be also included as they bring information on the transmission). The
alternative normalization is then given by

s̃i =
si√

1
NSLM

∑NSLM
j=1 s2

j

. (B.12)

It is noteworthy that for NSLM > NCCD (our experimental case), one has s̃i = s̃MP
i /
√
γ.

The same holds for the global-focusing, involving this time the product of two weighted arithmetic
mean, giving

IG =

∑
i s

4
i |
∑

j u
∗
j,i|2∑

i s
2
i |
∑

j u
∗
j,i|2
≈ 〈s

4〉
〈s2〉 . (B.13)



130 APPENDIX B. THEORETICAL COMPLEMENTS AND RESULTS

However a difference with the random input vector is to note. The weight coefficients are not
independent of the singular values. Hence Eq. B.13 is a rough approximation and will not be an
exact fit to the data. It nonetheless enables to reach an approximate enhancement value and a
scaling. For the singular vector one trivially has

Ii = s2
i . (B.14)

The intensity enhancements ηR
I , η

G
I and ηiI can hence be expressed. They are compared in the

extreme case of i = 1 (v1),

ηR
I ' 1 ≤ ηG

I ≈
〈s4〉
〈s2〉2 ≤ η

1
I '

s2
1

〈s2〉 = s̃2
1. (B.15)

The first inequality comes from Jensen’s theorem and the second from the mean value theorem.

B.3.1.3 Scaling with γ

From the MP distribution µρ one can compute its moments and express a scaling of the intensity
enhancements. The formula is∫

xrdµρ(x) =

r−1∑
k=0

ρk

k + 1

(
r
k

)(
r−1
k

)
, r ≥ 1, (B.16)

where ρ = 1/γ with our definitions (γ = NCCD/NSLM). Because we use singular values and not
eigenvalues we need to access the first and second moments of this distribution3. We obtain,

〈s4〉 = 1 + 1/γ and 〈s2〉 = 1, (B.17)

giving us a scaling for the global-focus. For the first singular vector the MP distribution needs to be
used again to express the scaling of the first singular value s1. It is given by 1 + 1/

√
γ. In conclusion

we should get for the scalings with γ

ηG
I ≈ 1 +

1

γ
and η1

I '
(

1 +
1√
γ

)2

. (B.18)

Note that because γ ≥ 0 we recover η1
I ≥ ηG

I .

Despite the information gathered on the intensity enhancement, there is no direct way of
computing the field amplitude enhancement. Because experimentally this is a quantity we can
measure (and that I usually work with only to avoid confusions between intensity and field amplitude),
it would be convenient to have an analytical formula. We are going to see in the next section that
for Rayleigh speckles field amplitude and intensity enhancement are linked.

B.3.2 Field amplitude enhancement

In a general frame there is no easy way of linking the intensity enhancement and the amplitude
enhancement. It is noteworthy that this corresponds to the the comparison of ‖·‖1 and ‖·‖2 as ηI

=‖·‖22 and ηE =‖·‖1. One knows that in general there is ‖·‖∞ ≤ ‖·‖2 ≤ ‖·‖1. Can we say something
more?
Yes!

3Not the second and fourth moments.
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When looking at the field statistics, ‖·‖1 approximates the first moment of the distribution (mean),
and ‖·‖22 approximates the second moment (variance + mean squared). If the field statistics belongs
to a family of distribution parametrized by a scale coefficient σ, then both ‖·‖1 and ‖·‖2 scale with
σ, and thus their ratio is a constant independent of σ.

This is the case for the Rayleigh distribution for which we will explicitly derive the relation
between ‖·‖1 and ‖·‖2.

Comment B.3.2.
A Rayleigh statistic has a density probability function given by

f(x;σ2) =
x

σ2
exp

(−x2

2σ2

)
, (B.19)

where x ∈ [0,∞[. Hence ‖·‖1 and ‖·‖2 are respectively given by
‖·‖2 '

√∫
R+

x2

σ2
xe
−x2
2σ2 =

√
2σ,

‖·‖1 '
∫
R+

x

σ2
xe
−x2
2σ2 =

√
π

2
σ.

(B.20)

It results that for a and b two vectors following a Rayleigh statistic,

‖a‖1
‖b‖1

=
‖a‖1
‖a‖2

‖b‖2
‖b‖1

‖a‖2
‖b‖2

' ‖a‖2‖b‖2
. (B.21)

It does not depend on the values of σa and σb!

Now because the amplitude enhancement ηE is the ratio of ‖·‖1, and that the intensity enhancement
ηI corresponds to the ratio of ‖·‖22, one gets

ηE '
√
ηI (B.22)

Comment B.3.3.
It works also for the exponential distribution.

In conclusion, when sending different singular vectors the amplitude enhancement may be simply
expressed in terms of the normalized singular values. This is because both the fields obtained for
the random input (or plane wave input) and the singular vector follow Rayleigh statistics. However
this trick no longer holds when performing a global-focus as the field distribution is then Ricin.

B.3.3 Enhancement simulations for the SVD and the global-focus

To illustrate the previous points: (i) singular vectors amplitude enhancement, (ii) intensity en-
hancements scalings and (iii) better enhancement for the first singular vector than the global focus;
simulations are presented in Fig. B.4. They are realized using the simple RM model without including
experimental limitations (as the speckle grain size). For Fig. B.4(a), we generate a TM with NSLM

= 400 and NCCD = 225. The field enhancement for phase and amplitude control is compared to the
normalized4 singular values, for which we obtain a very nice similarity. We also plot the phase-only
enhancement to give an idea of the enhancement reduction. In Fig. B.4(b) we compare intensity

4Using the SLM dimension.
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enhancements between the first singular vector (solid blue line) and the global focus (orange blue
line). The phase-only limitations are represented with the same colors in dashed lines. The value of
NSLM is fixed to 256 and NSLM varies to change the degree of control. Both intensity enhancements
are plotted as functions of 1/γ and their respective scalings, given in Eq. B.18, are presented with
black dotted-dashed lines. One can see that as predicted the evolution of η1

I follows well its scaling
but that ηG

I deviates from it. The enhancement is larger indicating that more weight is given to
high transmissive channels than to low ones.

Figure B.4: Amplitude enhancement prediction and intensity scalings. (a) Field amplitude
enhancement values obtained for different singular vectors in case of full control (blue dots) or
phase-only control (blue dashed line) compared to the normalized singular values s̃ (red line). The
simulated TM is of size 225 × 400 and the data are averaged over 10 realizations. (b) Comparison
of intensity enhancement values and predicted scalings with the degree of control γ. In blue the
enhancement for the v1 and in orange the enhancement for the global-focusing vector. For both
the phase and amplitude control is plotted with solid lines whereas the phase-only is plotted with
dashed lines. To vary γ, the number of NSLM is kept fixed at 256 and NCCD varies. The data are
averaged over 10 realizations.

B.4 Phase-only impact on the enhancement

This appendix aims at investigating the impact of phase-only control on the enhancement. In Fig. 4.5(b),
recalled in Fig. B.5(a), one observes that the predicted amplitude enhancement is not perfectly
matching the measured one. The question is: can we attribute this discrepancy to phase-only control?
To find an answer enhancement simulations are performed using the measured TM. In Fig. B.5(b) the
simulated enhancement obtained by propagating different singular vectors for phase and amplitude
(red curve) or phase-only (blue curve) using the measured TM are presented. For both plots, the
ratio between phase-only enhancements and phase and amplitude enhancements are presented
in Fig. B.5(c). It is visible that the trend is similar so that the discrepancy between enhancement
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predictions and experiments can chiefly be attributed to phase-only control.

Figure B.5: Phase-only impact on the amplitude enhancament. (a) Reminder of the
enhancement results presented in Fig. 4.5(b). The normalized singular values s̃ are compared to the
measured enhancements (blue dots). (b) Simulated enhancement obtained from the experimental
TM for phase and amplitude control (red curve) and phase-only control (blue curve). (c) Ratio
between phase-only and phase and amplitude enhancements for the TM-based predictions (yellow)
and the experimental observation and theoretical expectation (green curve).

B.5 SVD-based correlations: derivations and results

This appendix aims at developing some aspects of the SVD-based correlation technique. The
calculations to reach Eq. 5.6 are derived in Sec. B.5.1 and an additional derivation for unitary
random matrices is developed in Sec. B.5.2.

B.5.1 For random matrices

Recall that T1 and T2 are two random matrices of size n×m, where all coefficients are independent
and have the same complex normal distribution NC(0, σ2). Let us fix two parameters α and β, and
define:

M =
eiβT1 + eiαT2

2
and ∆ =

eiβT1 − eiαT2

2

Using Comm. B.5.1, M and ∆ are independent, and all of their coefficients have the same complex
normal distribution NC(0, σ2/2). In particular, we draw M ∈Mn,m(C) which is now a fixed matrix,
but ∆ is still random.

Comment B.5.1.
We denote N (x, σ2) the real normal distribution, of mean x ∈ R and standard deviation σ ∈ R∗+;
and denote NC(z, σ2) the complex normal distribution, of mean z ∈ C and standard deviation
σ ∈ R∗+. Recall that we have

∀z ∈ C,∀σ ∈ R∗+, Z ∼ NC(z, σ2) ⇔


<(Z) and =(Z) are independent
<(Z) ∼ N (<(z), σ2/2)
=(Z) ∼ N (=(z), σ2/2)

Recall that the complex standard normal distribution has mean 0 and standard deviation 1.
If Z ∼ NC(0, 1) and z ∈ C, we have zZ ∼ NC(0, |z|2). In particular, a complex normal
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distribution of mean 0 is invariant by multiplication with a complex of modulus 1.
Finally, given two independent random variables X and Y with the same (complex) normal

distribution, the sum S = X + Y and the difference D = X − Y are independent. Indeed, S
and D are jointly normally distributed, and are uncorrelated:

E[SD]− E[S] · E[D] = E[X2 − Y 2]︸ ︷︷ ︸
= 0

−E[X + Y ] · E[X − Y ]︸ ︷︷ ︸
= 0

= 0

We write the singular value decomposition of the matrix 2M = V SU †, where U ∈ Mm,m(C)
and V ∈Mn,n(C) are unitary matrices and S ∈Mn,m(R+) is diagonal. Let X and Y be the right
and left singular vectors associated to a singular value µ. More precisely, µ is the i-th coefficient of
S for some i, and X and Y are respectively the i-th column of U and V . We have

(2M)X = µY and Y †(2M) = µX†

Define now the correlation C(T1X,T2X) between vectors T1X and T2X.

C(T1X,T2X) =
X†T †1T2X

‖T1X‖2 · ‖T2X‖2
Rewriting T1X and T2X using M and ∆, we obtain

eiβT1X = (M + ∆)X =
µ

2
Y + ∆X

eiαT2X = (M −∆)X =
µ

2
Y −∆X

We define the random variable Z = Y †∆X. Summing over coefficients of ∆, we show that Z is
normally distributed with mean 0 and variance ‖X‖22 · ‖Y ‖2 · σ2/2. Because X and Y are unit
vectors, Z ∼ NC(0, σ2/2).

‖T1X‖2 = X†T †1T1X =
(µ

2
Y † +X†∆†

)(µ
2
Y + ∆X

)
=
µ2

4
+ ‖∆X‖22 + µ<(Z)

‖T2X‖22 = X†T †2T2X =
(µ

2
Y † −X†∆†

)(µ
2
Y −∆X

)
=
µ2

4
+ ‖∆X‖22 − µ<(Z)

We are finally ready to write the correlation between T1X and T2X.

C(T1X,T2X) =
ei(β−α)

(µ
2Y
† +X†∆†

) (µ
2Y −∆X

)√
µ2

4 + ||∆X||22 + µ<(Z)
√

µ2

4 + ||∆X||22 − µ<(Z)

= ei(β−α) ·
µ2

4 − ||∆X||22 − i=(Z)√
(µ

2

4 + ||∆X||22)2 − µ2<(Z)2

To reach an analytical formula, one now needs to be able to express ‖∆X‖22. In Comm. B.5.2,
we use the fact that ∆ is a random matrix, with coefficients having a complex normal distribution
NC(0, σ2/2), and we show that ‖∆X‖22 ≈ n · σ2/2.
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Comment B.5.2.
Let’s consider R ∈Mn,m(C), elements of which are random variables with a complex normal
distribution NC(0, σ2), and X ∈ Mm,1(C) an arbitrary unit vector. One wants to compute
‖RX‖22.

A short calculation gives ‖RX‖22 =
∑n

i=1(
∑m

j=1mijxj)
2. For each j, xj is a constant, hence

mijxj is normally distributed with standard deviation xj · σ. The sum of normally distributed
random variables is also normally distributed, with a standard deviation equal to the square
root of the sum of each standard deviation squared. Hence, for all i, the random variable∑m

j=1mijxj is normally distributed, with a standard deviation equal to ‖X‖2 · σ = σ.
Therefore, ‖RX‖22 is the sum of n independent random variables, each of them equal to the

square of a normal law of standard deviation σ. The expected value of the square of a random
variable of mean 0 is equal to the square of the standard deviation. Thus, by linearity of
expectation, the expected value of ‖RX‖22 is equal to n · σ2. To prove that the value of ‖RX‖22
is concentrated around its mean, one can notice that ‖RX‖22 /σ2 follows a χ2

n distribution, for
which tail inequalities are known (see Lemma 1 from [Laurent et al. 2000]).

∀a > 0, P(2
√
na ≤ ‖RX‖22 /σ2 − n ≤ 2

√
na+ 2a) ≥ 1− 2e−a

When a = 4, this inequality shows that 4
√
n ≤ ‖RX‖22 /σ2 − n ≤ 4

√
n+ 2 with probability at

least 95%.

Thus, in the correlation formula, terms involving Z are negligible, and we write

C(T1X,T2X) ≈ ei(β−α) · µ
2/2− σ2 · n
µ2/2 + σ2 · n (B.23)

Recall that µ is a singular value of 2M , whose coefficients are independent and normally distributed
with mean 0 and variance 2σ2. Using random matrix theory, Marchenko-Pastur law shows that µ2

ranges from 2σ2(
√
n−√m)2 and 2σ2(

√
n+
√
m)2. When n = m, absolute correlations range from

−1 to 0.6.

Comment B.5.3.
It is noteworthy that the only matrix dimension remaining in the formula is n, corresponding to
the output dimension (NCCD). This will be of interest when considering the correlation value
evolution for non square matrices.

B.5.2 For random unitary matrices

Let us now consider two unitary random matrices T1 and T2, drawn uniformly at random (which
corresponds to the distribution induced by the Haar measure over the group of unitary matrices).
See Appendix B.6 for an explanation on how to generate T1 and T2 using the QR decomposition of
a random gaussian matrix.

As in the previous section, we compute the SVD decomposition of M = eiβT1 + eiαT2 = V SU †,
where α and β are two parameters. Let X and Y be the right and left singular vectors associated
to a singular value µ. More precisely, µ is the i-th coefficient of S for some i, and X and Y are
respectively the i-th column of U and V . We are interested in the correlation between T1X and
T2X, that is

C(T1X,T2X) =
X†T †1T2X

‖T1X‖2 · ‖T2X‖2
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Because T1, T2, U and V are unitary matrices, we have ‖T1X‖2 = ‖T2X‖2 = 1. Thus, the correlation
C(T1X,T2X) is equal to the i-th diagonal value of the matrix C = U †T †1T2U . As a product of
unitary matrix, C is unitary. Alternatively, one can write

CC† = (U †T †1T2U)(U †T †1T2U)† = U †T †1T2UU
†T †2T1U = I.

We are now going to show that C is a diagonal matrix. Because it is also a unitary matrix, its
diagonal coefficients will be complex numbers of modulus 1. Using both the definition of M and its
singular value decomposition, one can write

M †M = (eiβT1 + eiαT2)†(eiβT1 + eiαT2) = 2I + ei(α−β)T †1T2 + ei(β−α)T †2T1

M †M = (V SU †)†(V SU †) = US2U †.

Combining both equations gives ei(α−β)T †1T2 + ei(β−α)T †2T1 = US2U † − 2I, which imply that

(ei(α−β)C) + (ei(α−β)C)† = U †(ei(α−β)T †1T2 + ei(β−α)T †2T1)U = S2 − 2I.

This shows that the real part of ei(α−β)C is a diagonal matrix, equal to S2/2− I. We can conclude
by using Comm. B.5.4, arguing that because T1 and T2 are random unitary matrices, then all
coefficients from S are distinct with probability 1.

Comment B.5.4.
Let Z be a unitary matrix. We are going to show that if either its real part <(Z) or its
imaginary part =(Z) is diagonal with distinct coefficients, then Z is also diagonal, with complex
diagonal coefficients of modulus 1.
First, observe that the matrices (Z + Z†) and (Z − Z†) commute:

(Z + Z†)(Z − Z†) = Z2 − (Z†)2 = (Z − Z†)(Z + Z†)

More precisely, this means that <(Z) and =(Z) commute, and that both matrices stabilize the
eigen-spaces of the other matrix. If <(Z) is a diagonal matrix with distinct coefficient, then
each of its eigen-space has dimension 1 and is spanned by one of the vectors of the canonical
basis. Thus, each vector of the canonical basis is an eigen vector of =(Z), which in turn is
diagonal. Hence, Z is diagonal, and because it is also unitary then diagonal coefficients must
be complex of modulus 1.
Observe that the hypothesis that diagonal coefficients are distinct is necessary, as illustrated by
the following example of unitary matrix, whose real part is diagonal.

Z =

(
1 i
−i 1

)
<(Z) =

(
1 0
0 1

)
=(Z) =

(
0 1
−1 0

)
Going back to our correlations, we showed that the correlation between T1X and T2X is a

complex of modulus 1, such that <(ei(α−β)C(T1X,T2X)) = µ2/2− 1. Thus, we have

C(T1X,T2X) = ei(β−α) · (µ2/2− 1± iµ
√

1− µ2/4)

B.6 Unitary random transmission matrices: construction and some
properties

This appendix aims to explore some properties of sub-unitary matrices (sub-matrix of a unitary
matrix, see [Zyczkowski et al. 2000] for some work on the subject). Sub-unitary matrices are useful
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in physics and a straightforward application lies in the domain of light propagation through complex
media. As detailed in Sec. 1.3.1 the medium can be characterised by its scattering matrix S (size
N ×N), which in case of energy conservation (non absorbing medium) is unitary. The latter matrix
is often decomposed onto four sub-matrices: R, T , R′, T ′, which represent the transmissions and
reflexions from both sides of the medium (all with sizes N/2×N/2).
In most works only a subpart of the TM (T) is accessible due to the incomplete experimental control.
Thus this appendix will mainly focus on the properties of T and some part of it (matrices of sizes
M ×M) to predict what one can expect to observe experimentally. The case of optical fibers (with
almost no reflection) is noteworthy as the TM of an optical fiber may be considered unitary. Hence
matrices such that M > N/2 will also be considered.

B.6.1 Matrix generation

For this study the first step is to create the S matrix as a random unitary matrix. This is performed
with the QR decomposition detailed in Comm. 6.3.1. and in [Ozols 2009; Mezzadri 2006]. However
the recipe to construct the matrix as presented in Comm. 6.3.1 puts aside some legitimate questions
raised in [Ozols 2009], only a short summary is presented below.

• Justifications of the steps of Comm. 6.3.1 In a QR decomposition of a matrix, Q is
unitary and R is an upper diagonal matrix. There is no uniqueness of the decomposition.
However if the diagonal elements of R are only positive reals, the decomposition is unique
and we will refer to it as the “true” decomposition. Matrices obtained from the implemented
algorithms are not necessarily giving the true QR decomposition. A manner of reaching it from
any QR decomposition consists in manually obtaining a decomposition Q’R’ with Q′ = QD
and R′ = D†R, where D is computed in the third step of Comm. 6.3.1. The unitary matrix Q′

then corresponds to the unitary matrix of the true QR decomposition.

• Ensemble of the “unitary random matrix” Starting with a matrix with Gaussian i.i.d.
elements, its true QR decomposition gives Q uniformly distributed on unitary random matri-
ces [Ozols 2009] which is also referred as the unitary Haar ensemble.

B.6.2 Impact of sub-unitary matrices size on the singular values

B.6.2.1 Singular values range and bimodal law

Now that the random unitary matrix S is constructed we will focus our attention on sub-matrices of
sizeM×M . The full TM is the case whereM = N/2, and a partial control corresponds toM < N/2.
Let us first investigate how the distribution of the squared singular values evolves with the size M
of the sub-matrix (see Comm. B.6.1). Simulation results are presented Fig. B.6.

Comment B.6.1.
In the following we will perform only singular value decompositions (SVD) to be able to extend
the results to the experimental case where non square matrices may be encountered. This is
not a problem in itself but some precautions need to be taken. When performing the SVD
of a matrix M Matlab by convention returns the singular values as the square root of the
eigenvalues of M †M . In theoretical papers the matrix whose modes are studied is more often
M †M [Goetschy et al. 2013]. Hence when considering the singular value distribution and
looking for open and closed channels we will square the singular values to be consistent with
the common use.

For M = N all the singular values are 1 due to the matrix being unitary. When decreasing M
the number of singular values equal to one decreases to one single when M = N/2. For M smaller
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Figure B.6: Histograms of µ2 for different N in logarithmic scale. For M = N (purple) all the
singular values are 1. For N/2 < M < N (yellow) some values smaller than 1 emerge, all the other
remain at 1. For M = N/2 (red) all values span from 0 to 1. For M < N/2 (blue) all singular values
of 1 have disappeared. For this simulation N = 4000 and data are averaged over 20 realizations.

than N/2 none of them remains. This transition is understandable with symmetry arguments. To
sum up we have:

• M = N : all |µ| = 1

• M > N/2: |µ| = 1 + some values such that |µ| <1

• M < N/2: all |µ| <1

This graph is qualitatively consistent with the results of [Goetschy et al. 2013]. A short mathematical
insight is presented in Comm. B.6.2.

Comment B.6.2.
It is shown in [Ginibre 1965] that for a random matrix of size N with i.i.d. complex Gaussian
coefficients of mean 0 and standard deviation σ =

√
1/N (called Ginibre ensemble), the

distribution of eigenvalues converges towards the uniformly distribution on the unit disk.
Furthermore, it is shown in [Petz et al. 2004] that the coefficients of a random unitary

matrix of size N are identically distributed (but are not independent), that the distribution
of coefficients converges towards a Gaussian of standard deviation 1/

√
N , and that coefficient

from a sub-matrix of size M are asymptotically independent.
Hence, a sub-matrix of size M of a random unitary matrix of size N �M asymptotically

corresponds to a scaled version of the Ginibre ensemble. If we multiply each coefficient of the
sub-matrix by

√
N/M , we obtain a random matrix with asymptotically i.i.d complex Gaussian

coefficients of mean 0 and standard deviation σ =
√

1/N , which corresponds to the original
Ginibre ensemble. Thus, the distribution of eigenvalues of the (unscaled) sub-matrix converges
towards the uniform distribution on the disk of radius

√
M/N .
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B.6.2.2 Singular values distribution and Marchenko-Pastur

It is known that a sub-matrix of a Haar unitary matrix5 converges to a Gaussian random matrix
in distribution6 [Petz et al. 2004]. Hence taking sub-matrices of the constructed unitary random
matrix one expects to recover the random Gaussian i.i.d. matrices properties.
There is a hand-wavy explanation: the more elements of the initially unitary matrix are removed
the more the obtained sub-matrix has “forgotten” about its unitarity and one gets closer to a mere
random matrix. To evaluate this assumption the distributions of the sub-matrices are compared to
the Marchenko-Pastur (MP) distribution in Fig. B.7.

Figure B.7: Comparison of the normalised singular value (µ̃) distribution for different sizes of
sub-unitary matrices. These distributions are compared to the expected MP distribution. The
smaller the sub-matrix the better the agreement. For this simulation N = 8000 and data are
averaged over 10 realizations.

One observes that in case of partial control (M < N/2) the random character of the matrix is well
verified, explaining the validity of this approximation for experimentally measured TMs [Popoff et al.
2010]. Moreover we see that when M ≥ N/4 (50% control when measuring a TM) the distribution
is different enough from MP to maybe expect being able to see mesoscopic effects.

5A Haar unitary matrix is a random matrix drawn from the Haar distribution on unitary matrices, which corresponds
to the uniform distribution on unitary matrices.

6See [Tao 2012] for the definition of convergence in distribution.
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d’une veine liquide parabolique”. In: Comptes rendus 15.1800 (cited on page 205).

[Conkey et al. 2012] Conkey, Donald B, Albert N Brown, Antonio M Caravaca-Aguirre, and Rafael
Piestun (2012). “Genetic algorithm optimization for focusing through turbid media in noisy
environments”. In: Optics express 20.5, pp. 4840–4849 (cited on page 38).

[Cottrell et al. 2007] Cottrell, Don M, Julia M Craven, and Jeffrey A Davis (2007). “Nondiffracting
random intensity patterns”. In: Optics letters 32.3, pp. 298–300 (cited on page 126).

[Cuche et al. 2000] Cuche, Etienne, Pierre Marquet, and Christian Depeursinge (2000). “Spatial
filtering for zero-order and twin-image elimination in digital off-axis holography”. In: Applied
optics 39.23, pp. 4070–4075 (cited on pages 87, 158).

[Curry et al. 2011] Curry, Nathan, Pierre Bondareff, Mathieu Leclercq, Niek F Van Hulst, Riccardo
Sapienza, Sylvain Gigan, and Samuel Grésillon (2011). “Direct determination of diffusion properties
of random media from speckle contrast”. In: Optics letters 36.17, pp. 3332–3334 (cited on pages 25,
27, 83).

[Dainty 1980] Dainty, John C (1980). “An introduction to Gaussian speckle”. In: Proc. SPIE.
Vol. 243, pp. 2–8 (cited on page 111).

[Davy et al. 2012] Davy, Matthieu, Zhou Shi, and Azriel Z Genack (2012). “Focusing through
random media: Eigenchannel participation number and intensity correlation”. In: Physical Review
B 85.3, p. 035105 (cited on page 249).

[Davy et al. 2015a] Davy, Matthieu, Zhou Shi, Jing Wang, Xiaojun Cheng, and Azriel Z Genack
(2015a). “Transmission eigenchannels and the densities of states of random media”. In: Physical
review letters 114.3, p. 033901 (cited on page 64).

[Davy et al. 2015b] Davy, Matthieu, Zhou Shi, Jongchul Park, Chushun Tian, and Azriel Z Genack
(2015b). “Universal structure of transmission eigenchannels inside opaque media”. In: Nature
communications 6.1, pp. 1–6 (cited on page 57).
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désordonnés: temps de séjour, dispersion temporelle, et focalisation”. PhD thesis. Université Paris
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L Vina, C López, and DS Wiersma (2007). “Observation of resonant behavior in the energy
velocity of diffused light”. In: Physical review letters 99.23, p. 233902 (cited on page 82).

[Sarma et al. 2016] Sarma, Raktim, Alexey G Yamilov, Sasha Petrenko, Yaron Bromberg, and
Hui Cao (2016). “Control of energy density inside a disordered medium by coupling to open or
closed channels”. In: Physical review letters 117.8, p. 086803 (cited on page 57).

[Savo et al. 2020] Savo, Romolo, Andrea Morandi, Jolanda S Müller, Fabian Kaufmann, Flavia
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