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Thesis summary 

 

The adult mouse brain retains a capability to produce new neurons from discrete 

neurogenic regions throughout life. One of them is localized in the subventricular zone of the 

lateral ventricle and is composed of two types of glial cells: astrocytes (adult neural stem cells) 

and multiciliated ependymal cells. The latter are highly specialized cells that present an apical 

patch of centrioles that nucleate motile cilia, whose coordinated beating is at the root of 

functions key to adult neurogenesis, in particular, and brain homeostasis in general. Among 

these, the cerebrospinal fluid circulation for trophic support, waste removal and neuronal 

migration guidance are of high importance. Therefore, understanding the processes that 

establish the neurogenic niche composition is of high value to tackle some of the most severe 

brain malignancies, such as hydrocephalus, neurodegenerative diseases or even tumors 

generated in the germinal regions.  

In the present doctoral research, we have used a fate mapping technique to determine 

that ependymal progenitors do not migrate. This knowledge was necessary to use state-of-

the-art clonal analysis techniques. Thus, a high-throughput analysis of large cohorts of 

neurogenic niche clones visualized with the Brainbow technique, as well as single-cell 

resolution of the ependymal progenitor division patterns via the Mosaic Analysis with Double 

Markers transgenic animals, has revealed that: (i) ependymal and adult neural stem cells share 

a common lineage, (ii) they can both arise through symmetric or asymmetrical cell divisions 

and (iii) their fate is modulated by DNA replication regulators, Geminin and GemC1, which 

favor a stem or an ependymal cell fate, respectively.  

We have consequently elucidated the cellular and molecular mechanisms by which 

GemC1 triggers an ependymal fate. This protein, initially discovered as being a DNA 

replication-licensing factor, generates an arrested cell cycle-like phenotype at the same time 

that it promotes centriole amplification. Ependymal progenitors that express GemC1 halt their 

cell cycle and thus inhibit entry into mitosis. Upon looking at the specific mechanisms that 

could trigger such an arrest, we found that GemC1 generates the simultaneous expression of 

centriole amplification, ciliary growth, cell cycle progression and arrest genes, as well as the 

induction of a replicative stress, although strikingly, all this only in cycling cells. The occurrence 

of such stress translates to a higher presence of telomere dysfunction induced foci, this is, 

telomeres that co-localize with DNA damage signals. Furthermore, when we over-expressed 

the telomerase, the enzyme responsible for telomere length maintenance, we observed a bias 

towards the neural stem cell fate. This suggests that damage to the telomeres or its protection 

could be at the source of the terminal ependymal differentiation or the stem cell fate, 

respectively.  

Together, this work sheds some light into the specific mechanisms that lead to an 

ependymal fate against the stem cell one, with some unexpected roles of cell cycle actors, 

damage pathways and telomere dynamics, that are usually associated to cycling or quiescent 

cells, but rarely to differentiation.  
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Résumé de la thèse 

 

Le cerveau adulte des souris conserve une capacité à produire de nouveaux neurones 
tout au long de la vie, à partir de niches neurogéniques. Une d’entre elles est localisée dans la 
zone sous-ventriculaire et est composée de deux types de cellules gliales : les astrocytes 
(cellules souches neurales) et les cellules épendymaires multiciliées. Celles-ci sont des cellules 
fortement spécialisées qui présentent un groupe apical de centrioles à la base des cils motiles, 
dont le battement coordonné est à l’origine de fonctions indispensables pour la neurogenèse 
adulte, en particulier, et l’homéostase du cerveau, de façon générale. Parmi ces fonctions 
essentielles, la circulation du liquide céphalorachidien pour support trophique, l’enlèvement 
des déchets ou guider la migration des neurones sont d’une grande importance. Donc, la 
compréhension des procès qui établissent la niche neurogénique est d’une grande valeur pour 
aborder quelques maladies du cerveau d’entre les plus sévères, comme l’hydrocéphalie, les 
affections neurodégénératives ou même les tumeurs engendrées dans les régions germinales. 

Mon travail de recherche doctorale a consisté à utiliser une technique de suivi du 
destin cellulaire et à déterminer que les progéniteurs épendymaires ne migrent pas. Cette 
connaissance était nécessaire pour l’utilisation de techniques de pointe d’analyse clonal. 
Alors, l’analyse à haute résolution d’un grand nombre de clones de la niche neurogénique 
visualisés avec la technique Brainbow, ainsi que la résolution au niveau cellulaire des modes 
de division des progéniteurs épendymaires, en utilisant les animaux transgéniques Mosaic 

Analysis with Double Markers, nous a révélé que : (i) les cellules épendymaires et les cellules 
souches neurales adultes appartiennent à un même lignage, (ii) elle sont nées via des divisions 
symétriques ou asymétriques, (iii) leur destin est modulé par des facteurs de la réplication de 
l’ADN, Geminin et GemC1, qui favorisent le destin souche ou épendymaire, respectivement.  

Nous avons ensuite élucidé les mécanismes cellulaires et moléculaires par lesquels 
GemC1 déclenche le destin épendymaire. Cette protéine, initialement décrite comme un 
facteur de promotion de la réplication de l’ADN, génère un phénotype d’arrêt de cycle au 
même temps que l’amplification centriolaire. Les progéniteurs épendymaires qui expriment 
GemC1 pausent leur cycle et inhibent ainsi leur entrée en mitose. Lors de la recherche d’un 
mécanisme qui pourrait déclencher cet arrêt, nous avons décrit comment GemC1 génère 
l’expression simultanée de gènes d’amplification centriolaire et croissance ciliaire, de 
progression et arrêt de cycle, et aussi un stress réplicatif mais, étonnamment, tout ça 
uniquement dans des cellules cyclantes. La présence de ce stress se traduit dans une plus 
haute fréquence de télomères dysfonctionnels, c’est-à-dire, des télomères colocalisés avec 
des signaux de dommage à l’ADN. De plus, lorsque nous avons surexprimé la télomérase, 
l’enzyme responsable du maintien de la longueur des télomères, nous avons observé un biais 
vers le destin de cellule souche adulte. Cela suggère que le dommage aux télomères ou leur 
protection pourrait être à la source de la différentiation terminal épendymaire ou un destin 
de cellule souche, respectivement.  

Ce travail permet de clarifier les mécanismes qui mènent à un destin épendymaire ou 
de cellules souches, avec des rôles inattendus des acteurs du cycle, les voies de signalisation 
de dommage cellulaire et la dynamique des télomères, qui sont habituellement associés aux 
cellules en cycle ou quiescentes, mais rarement à la différentiation.   
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CHAPTER 1. GENERAL INTRODUCTION. ON THE COMPLEXITY AND 

DEVELOPMENT OF THE CENTRAL NERVOUS SYSTEM 

 

The origin and development of the Nervous System relies on an extremely complex 

morphogenetic program. It involves the participation of a vast number of molecules and gene 

circuits in a perfectly orchestrated manner in order to engineer one of the most sophisticated 

systems created in evolution. It includes the generation of a wide array of cell types and the 

establishment of necessary relationships among each other, for their own survival and the 

proper function of this complicated machine as a whole. Errors in this tightly regulated process 

are at the onset of neurological and psychiatric disorders (Silbereis et al., 2016).  

This system, present throughout the entire Animal Kingdom, is responsible for some 

of the most primitive actions, like sensory and motor functions, in the relationship of the 

environment with the individual (Catala and Kubis, 2013). Nonetheless, the nervous system is 

also the root of the highest cognitive abilities, such as autobiographical memory, conceptual 

learning, abstract thinking, language or self-awareness. They set primate identity, and more 

notably humans’, apart from other vertebrate clades. These functions allow us to formulate 

the very question of why we are what we are as a species, since the dawn of mankind, but are 

also at the base of its answer, for they are the characteristics that make us human (Sousa et 

al., 2017).  

The source of these high cognitive skills is in the Central Nervous System (CNS), 

composed of the brain and the spinal cord. A testimony of its complexity lies in its myriad 

numbers. Recent studies of total neuron and glia count range from 70 to 100 billion neurons 

in the brain alone and roughly as many glial cells (von Bartheld et al., 2016). These 

astronomical figures do not end here, since all these cells are nothing without taking its 

connectivity and necessary relationships into account. Around 164 trillion synapses only in the 

neocortex (several hundred trillion to more than a quadrillion in the entire CNS, though 

number differs between studies) have been reported (Silbereis et al., 2016; Sousa et al., 2017).  

Also speaking for its intricacy, the CNS takes over two decades to build in humans. Thus, 

although most neurogenesis is finalized during gestation, processes such as astrogliogenesis, 
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oligodendrogenesis, synaptogenesis and myelination continue well beyond infancy (Silbereis 

et al., 2016).  

1.1. Embryonic origin of the CNS: from the three germ layers to the neural tube  

Following fertilization, the egg undergoes a series of quick cell divisions until it forms a 

structure called the blastocyst, with an inner cell mass of pluripotent stem cells, able to 

generate all somatic and germline cells. A subset of cells within, the epiblast, which conserves 

its pluripotent potential, starts acquiring an epithelial morphology and preparing for 

gastrulation, this is, the formation of the three germ layers. This process starts around 

embryonic day (E) 6.5 in the mouse and the third week of human gestation. The three germ 

layers specified during this process are the endoderm, the mesoderm and the ectoderm. The 

entire nervous system is derived from the latter.  The specification of the definitive ectoderm 

within the gastrula is a result of the secretion of Nodal, Wnt and Bone Morphogenetic Proteins 

(BMP) signaling inhibitors that prevent it to undergo epithelial-to-mesenchymal transitions, 

differentially from the nascent mesoderm and endoderm (Muhr and Ackerman, 2020; 

Shparberg et al., 2019).  

The definitive ectoderm is bipotential as it generates the neuroectoderm or neural 

plate (NP), precursor of the nervous system, and the superficial ectoderm, from which the skin 

derives. Both diverge from each other due to the presence of a gradient of BMP signaling, in 

such a way that low levels specify the neuroectoderm and high levels, the superficial 

ectoderm. Attenuated BMP signaling, along with Fibroblast Growth Factor (FGF) and Wnt 

ligands lead to the origin of a border between the two, a strip of cells that forms the neural 

crest, which is at the origin of the peripheral nervous system (Gammill and Bronner-Fraser, 

2003; Schille and Schambony, 2017; Shparberg et al., 2019).  

Once the NP and neural crest, this is, the border between the NP and the superficial 

ectoderm, are specified, the formation of the neural tube (NT), the primordium of the CNS, 

begins. As the NP grows, it invaginates inwards and the depressed midline region forms the 

neural groove. As it invaginates even further, the neural crests elevate to form the neural 

folds. These converge by approaching the midline until they meet and fuse, closing the NT. 

The rest of the ectoderm body closes with it, as it lies dorsal to the submerged NT. The 
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transformation of the NP into the NT is called primary neurulation (Figure 1) (Nieuwenhuys et 

al., 2008; Silbereis et al., 2016).  

The closure of the NT is primed at several points and it varies among species. In 

amphibians, for instance, it closes at the same time all along the rostrocaudal axis, whereas in 

teleost fish, such as the zebrafish, there is no closure per se, since the NT opens within the NP. 

In mice, there are three closure points: one at the border between the future spinal cord and 

brain, one at the future forebrain/midbrain boundary and one at the rostral end. Humans, in 

contrast have only two of the mentioned closure points, as they do not present the one in the 

forebrain/midbrain boundary. Closure beyond these areas proceeds bidirectionally in a 

“zipper-like” movement, rostrally and caudally, except for the rostral-most closure point, 

where it only advances caudally. The NT is fully sealed by E10 in mice and the end of the fourth 

gestation week in humans. By the end of neurulation, the NT encloses a cavity running all 

along the rostrocaudal axis, which precedes the ventricular system of the adult organism. Such 

cavity is lined by a highly proliferative neuropithelium (Greene and Copp, 2009; Nikolopoulou 

et al., 2017).   



20 
 

Figure 1. Primary neurulation in vertebrates. (A) Scanning electron micrograph of the neural tube formation 

process in the chicken embryo. (B) Illustrative representation of the process. After the induction of the neural 

plate or neuroectoderm on the definitive ectoderm (1a), it begins to fold along the midline, causing the 

invagination of the tissue (1b). This process leads to the elevation of the neural folds (2), which then converge 

(3) and travel towards the midline as they meet and fuse to close the neural tube (4). This structure remains 

ventral to the dorsal superficial ectoderm that will generate the epidermis. Adapted from Gilbert, 2000. 

1.2. Embryonic origin of the CNS: from the neural tube to the forebrain  

Once that primary neurulation has come to an end, three rostrocaudally disposed 

enlargements arise, the primary brain vesicles. These are the predecessors of the 

prosencephalon or forebrain, the mesencephalon or midbrain and the rhombencephalon or 

hindbrain, from rostral to caudal, the three main parts of a developed brain. By E9.5 in mouse 

and during the fourth week of human gestation, in the rostral-most vesicle, the prospective 

forebrain, two buds start to evaginate as the precursors of the brain hemispheres, which 

together form the telencephalon. As a consequence of this process of evagination, the inner 

cavity of the NT enlarges to form two ventricular cavities (one per hemisphere) that become 

the lateral ventricles in the adult (Figure 2) (Chen et al., 2017; Nieuwenhuys et al., 2008). 

 

Figure 2. Formation of the brain vesicles. (A) Schematic representation of a dorsal view of the brain vesicles 

evaginating from the recently closed neural tube in the mouse. Firstly (E9.0), three brain vesicles are formed 

(PRO or prosencephalon, MS or mesencephalon and RHO or rhombencephalon), followed by a further 

subdivision of PRO and RHO to form five secondary brain vesicles (E11.5). T (Telencephalon) and D 

(Diencephalon) form in the PRO and MT (metencephalon) and MY (myelencephalon) arise from the RHO, all 

rostral to the SP (spinal cord) and enclosing the VC (ventricular cavity). (B) 3D view of the brain vesicles within 
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the developing mouse embryo. (C) Lateral view of a hematoxylin and eosin staining of a sagittal section of the 

mouse embryo. The big hollow within PRO, MS and RHO (later within T, D, MS and MY) gives rise to the 

ventricular system during development. Adapted from Chen et al., 2017.  

Each brain hemisphere is constituted of a ventral and a dorsal part, namely, the 

subpallium and pallium, respectively. Between E10 and E12 in the mouse developing brain 

(from the second month in human gestation), the neuroepithelium of the subpallium 

undergoes massive proliferation and generates two intraventricular protrusions: the lateral 

and medial ganglionic eminences (LGE and MGE, respectively), which fuse caudally in the 

telencephalon into one caudal ganglionic eminence (CGE) (Chen et al., 2017; Nieuwenhuys et 

al., 2008).  

Within each particular section of the incipient CNS, a regionalization takes place via 

transient signaling centers that generate diffusible cues. The particular exposure to these 

extracellular and intracellular signals in each region translates into a specific combination of 

transcription factors in recipient cells that help shape cellular identities.  One of the most 

prominent examples is the specification of a posterior identity by Wnt, FGF and retinoid 

signaling. On the other hand, the presence of inhibitors of these pathways, such as Cerberus, 

Dickkopf or Tlc, a Frizzled-related protein, contribute to establishing an anterior identity and, 

the ulterior formation of the telencephalon (brain hemispheres) (Figure 3A) (Rallu et al., 

2002a).  

As crucial as the anteroposterior patterning is the establishment of regional identities 

along the dorsoventral axis. Sonic hedgehog (Shh) is expressed before the onset of 

neurogenesis in the ventral telencephalon as an important determinant of ventral fate. On the 

opposite pole, Gli3 gene expression, which modulates Hedgehog signaling, is essential to 

maintain dorsal markers (Figure 3B) (Rallu et al., 2002a). These are two important mutually 

repressing factors whose over-expression or loss of function can lead to the acquisition of 

dorsal or ventral identities in an ectopic location (Rallu et al., 2002b). This is the case as well 

for Wnt signaling, a promoter of pallial (dorsal) fates (Figure 3B) whose defects in expression 

cause an invasion of ventral identity cells and its upregulation leads to a decrease of subpallial 

(ventral) markers (Backman et al., 2005). Evidently, this interplay of gene circuits generates a 

dorsoventral patterning of the telencephalon.  
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Figure 3. CNS arealization along the anteroposterior and dorsoventral axes in response to extracellular cues. 

(A) The polarization of the CNS along the anteroposterior axis is the result of signaling molecule gradients from 

the Wnt, FGF and retinoic acid (RA) pathways. A decrescent influence of these pathways on the region closer to 

the future head is promoted by inhibitors of the said molecules, such as Cerberus, Dickkopf and Tlc. These are in 

turn produced in extra-ectodermal structures like the anterior visceral endoderm generated during gastrulation. 

The result is the formation of the brain vesicles (forebrain, midbrain, hindbrain) on the anterior pole of the CNS 

and the spinal cord on the posterior portion. (B) An important patterning of the CNS also takes place along the 

dorsoventral axis. Molecules such as Wnt and Gli3 contribute to the specification of dorsal fates, whereas Shh is 

essential on the ventral-most part to generate the correct ventral structures. Although only the telencephalon is 

shown, a similar patterning takes place in the spinal cord, but this is not the subject of discussion for the present 

work. On the right, the different anatomical temporary embryonic structures are depicted (pallium, LGE and 

MGE), as well as one key transcription factor (in brackets) characteristic of each of them, which have had an 

importance for fate mapping strategies (see below). A: Anterior; P: Posterior; D: Dorsal; V: Ventral, L: Lateral; M: 

Medial. Adapted from Rallu, Corbin and Fishell, 2002 and Backman et al., 2005.  

In response to the patterning of the telencephalon, specific regional transcription 

factor networks are activated and discreate telencephalic territories are formed. 

Consequently, the above-discussed pallium, LGE and MGE can be distinguished not only by 

anatomical criteria, but also by genetic expression. Among the most important transcription 

factors activated in each zone, we can find Pax6 or Emx1 in the pallium, Gsh2 in the LGE and 

MGE or Nkx2.1 in the MGE alone (Nord et al., 2015). Some of these factors regulate the 

expression of each other, such as Pax6 and Gsh2 who repress one another (Rallu et al., 2002b, 

2002a).   

This transcriptional regionalization of the developing telencephalon has a prominent 

role in the generation of specific neurons from determined territories, but it has also been 

used to genetically engineer reporter lines that have allowed fate mapping of various cell 

types. In our study, we have profited from a fate-mapping technique relying on this territorial 
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gene expression to determine the spatial origin of ependymal cells (Refer to Chapter 2 – 

Published work Neuron, 2019, Figure 1). 

 

1.3. Stem cell proliferation and differentiation in the CNS 

1.3.1. Interkinetic Nuclear Migration 

In 1935, F.C. Sauer firstly observed in the NP of the chick that proliferating cells 

possessed processes attaching to both free surfaces, this is, the apical and the basal side of 

the epithelium. However, the nuclei were organized on different layers. Besides he described 

how mitoses always took place on the apical end (Sauer, 1935). This was the first milestone to 

establish what would later be known as the Interkinetic Nuclear Migration (INM).  

The proliferating cells of the developing CNS form a pseudostratified epithelium (PSE), 

from the NP to the telencephalon. In this particular histological organization, cells display an 

apicobasal polarity, elongated morphology, with densely packed nuclei located in various 

layers, and apical and basal processes that span from a few micrometers (like in the NP) to 

distances in the millimeter order of magnitude (like in the primate neocortex). The location of 

the nuclei at different apicobasal levels is a direct consequence of the INM. During this 

phenomenon, after mitosis and during the G1 phase of the cell cycle, nuclei migrate basal-

wards, undergo S phase on the basal side, move back apical-wards during G2 and complete 

the cell cycle by completing mitosis on the apical or ventricular surface (Figure 4A) (Kulikova 

et al., 2011; Nieuwenhuys et al., 2008; Norden, 2017; Saade et al., 2018). Pseudostratification 

has been described as a highly efficient way for progenitor cells to replicate. This is because a 

desynchronized location of the nuclei, the bulkiest part of the cell, allows for more cells to 

exist in a defined volume, hence increasing the total mitotic output (Figure 4B) (Miyata et al., 

2015). Furthermore, the differential exposure to apical cues, such as Notch signaling, 

necessary to maintain the stem-like state of progenitors (Mizutani et al., 2007), which can be 

regulated by INM duration variations, is a potent modulator of neurogenesis (Del Bene et al., 

2008).  
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Figure 4. Interkinetic nuclear migration in a pseudostratified epithelium. (A) Apical Radial Glial Cells undergo 

mitosis on the ventricular 

(apical) surface and then their 

nuclei perform a cell cycle-

coupled movement from the 

apical to the basal pole of the 

Ventricular Zone (VZ). During 

G1 (green cell) they migrate 

basal-wards and when they 

reach the basal side, they 

replicate their DNA during the 

S phase (yellow cell). 

Afterwards, during G2, they 

migrate towards the apical 

surface again (blue cell) and, 

upon arrival during G2/M 

(orange cell) they complete 

mitosis again (grey cell) and 

start a new cell cycle. 

Progenitors during 

neurogenesis divide 

asymmetrically to self-renew 

and generate one postmitotic 

neuronal precursor or 

neuroblast (pink cell) that 

migrates out of the 

proliferative area. The red rod 

represents a blood vessel with which progenitors establish physical contact. (B) Higher degrees of 

pseudostratification confer a greater amount of mitosis per unit time. Considering an epithelium of constant 

length, L, (and area, considering apical contacts of the same size) and the same mitotic rate, more cells and more 

mitoses fit in the same volume with higher pseudostratification, since the voluminous cell body can be 

accommodated at different levels along the apicobasal axis. For instance, considering a mitotic rate of one in five 

cells, only one mitosis and seven more cells fit in the given distance L, when no pseudostratification is present 

(all nuclei at the same level). If a higher level of pseudostratification is considered (cell bodies arranged 

throughout two levels), one more cell can fit. Finally, if the pseudostratification is even more complex (four levels 

as shown in the scheme), up to ten progenitor cells can fit, two of which would be in a mitotic stage. Adapted 

from Miyata et al., 2015. 

As for the biological reason as to why mitosis takes place on the apical surface, several 

explanations have been proposed. The equal inheritance of apical attachments in a rapidly 

proliferative tissue or the exposure to Notch signaling are among them (Miyata et al., 2015; 

Saade et al., 2018). Besides, since the centrosome is located apically to act as the basal body 

of a primary cilium, which serves as a cellular antenna capable of sensing and integrating 

extracellular information, it is plausible that the nucleus would have to migrate apically to 

meet it for mitosis. Nonetheless, this theory was put to the test by Strzyz et al. in zebrafish 

retinal neuroepithelium, where they show that INM is centrosome-independent. They claim 
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INM is important rather to maintain epithelial integrity, for apical mitoses help daughter cells 

reintegrate into the tissue (Strzyz et al., 2015).  

The components of the cytoskeleton play a key role in this cell cycle-coupled migration. 

Both movements, away and from the ventricular surface, have been described as active 

processes that rely on actin and its associated motor protein myosin, and/or microtubules and 

their coupled motor partners, dyneins and kinesins. Although some controversy is found 

(Schenk et al., 2009), actin-based movements are found in shorter neuroepithelia, such as the 

NT or retina, whereas microtubule-based actions take place in thicker ones, such as the rodent 

telencephalon (Tsai et al., 2010). Interestingly, the basal-wards movement that takes place 

during G1 has also been proposed to present an important, although not exclusive, passive, 

non-autonomous components. Kosodo et al. suggest that after mitosis, free, mobile nuclei 

during G1 in a densely-packed tissue are displaced by apical-wards moving G2 nuclei (Kosodo 

et al., 2011). 

1.3.2. The constitution of the ventricular and subventricular zones and 

lineage of its cells 

A type of neural progenitor cell called neuroepithelial cell (NEC) constitutes the NP and 

early NT. Upon cell division in the NT, they form a densely packed zone where nuclei reside. 

This is called the ventricular zone (VZ) and contains the precursor cells to all neurons and 

macroglia of the CNS. The outer marginal zone (MZ) contains all the cytoplasmic processes 

that span the length of the NT (Nieuwenhuys et al., 2008).  

There is a first period during CNS development when symmetrical proliferative 

divisions prevail. In it, one progenitor NEC generates two equal daughter cells in order to 

increase the progenitor pool. Concomitant with the onset of neurogenesis, between E9 and 

E10 in mice (around the fourth week in human gestation, shortly after the closure of the NT), 

NECs transition into another type of progenitor, called Radial Glial Cell (RGC). The onset of 

neurogenesis is a consequence of the switch from symmetrical proliferative divisions of NECs 

to the asymmetric neurogenic ones of RGCs (Gaiano et al., 2000; Martynoga et al., 2012).   

NECs transition into RGCs happens upon the thickening of the developing 

telencephalon (as well as in the other regions of the CNS) in order to maintain contact with 

the free surfaces, the apical ventricular surface and the basal pial surface. Thus, they keep 



26 
 

forming a PSE. Therefore, they display a strong apicobasal polarity like NECS, with a short 

apical process and large endfoot, and a long basal process. Similar to NECs, they undergo INM 

and present a primary cilium that protrudes into the ventricular cavity. Finally, the expression 

of progenitor markers, such as Nestin, an intermediate filament protein, or region-specific 

transcription factors like Pax6 is also common to both cell types. Nonetheless, they differ in 

that RGCs present astroglial markers like the glutamate astrocyte-specific transporter (GLAST), 

the brain lipid-binding protein (BLBP) or the glial fibrillary acidic protein (GFAP), among other 

features (Alvarez-Buylla et al., 2001; Namba and Huttner, 2017).  

RGCs were initially described as the precursors of glial cells (Alvarez-Buylla et al., 2001). 

However, this paradigm shifted in the early 2000s when it was proven that they were also the 

precursors of neurons both in vitro (Malatesta et al., 2000) and in vivo, using a combination of 

time-lapse microscopy and neuronal marker immunolabeling (Miyata et al., 2001; Noctor et 

al., 2001; Tamamaki et al., 2001). These studies revealed that RGCs divided apically in an 

asymmetric manner to generate a daughter neuron and another progenitor that remains 

within the VZ. These and later publications lead to the current prevailing paradigm: that RGCs 

are the precursor cells to all neurons (except for a few directly deriving from NECs at the onset 

of neurogenesis) and glia (except for microglia) of the entire CNS (Anthony et al., 2004). 

The VZ is ubiquitous in the CNS, from the spinal cord to the brain. However, only in the 

developing brain, a second proliferative layer emerges towards the middle of cortical 

neurogenesis, the subventricular zone (SVZ). Its progenitors divide in situ, this is, they do not 

undergo INM, and it remains in the adult organism. The absence of an INM in the SVZ claims 

a redefinition of what RGCs are or, at least, a much broader classification of progenitors in the 

telencephalon. Indeed, over the past two decades progenitor cells that do not divide on the 

apical surface, but on more basal or subapical zones have been discovered (Haubensak et al., 

2004; Pilz et al., 2013). This has led to a new classification of progenitors in the CNS based on 

the location of their mitoses, their cell polarity (presence of basal and/or apical processes, as 

well as plasma membrane basolateral or apical-specific markers) and their proliferative 

capacity (number of cell divisions). Besides the already discussed apical RGCs (aRGCs), 

subapical progenitors and basal RGCs (bRGCs) have been described, based on the mitosis 

location. The latter are mostly responsible for the formation and enlargement of the SVZ and 

they derive from aRGCs. Both aRGCs and bRGCs are characterized by the potential to perform 
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several divisions and the fact that they can be symmetric proliferative (two daughter cells 

equal to the mother), symmetric consumptive (two equal daughter cells different from the 

mother cell) or asymmetric self-renewing (only one daughter cell is equal to the mother). 

Furthermore, they both generate not only neurons, but other types of progenitors, like 

intermediate progenitors or transit amplifying progenitors, which are able to divide once or 

multiple times, respectively, hence increasing the total final output of neurons (Taverna et al., 

2014).  

As a highly interesting fact, the presence of bRGCs in the SVZ has been extendedly 

studied due to its direct correlation with the neocortex evolutionary expansion and higher 

neuronal numbers, especially in primates. Along with an increase of the neurogenic period, 

they are actually the principal source of neurons in this clade and the reason for their distinct 

higher brain capabilities (Namba and Huttner, 2017; Wilsch-Bräuninger et al., 2016). This 

greater capacity of proliferation has been linked to differences in coding genes, regulatory 

elements and copy number variations of genes, which translate into larger division rates, 

namely more symmetric proliferative divisions (Florio et al., 2017).  

The postmitotic neuroblasts resulting from asymmetric and symmetric consumptive 

cell divisions migrate radially or tangentially out of the germinal layers to colonize the incipient 

cortical plate (CP), the precursor of the neocortex. There they differentiate and thicken it to 

form the cortical layers in an “inside-outside” fashion, meaning the inner layers are formed 

first and then the outer ones are generated subsequently (layers VI to II in decrescent order). 

This process lasts until E19 in the mouse (the twenty-sixth week of human gestation), with the 

end of cortical neurogenesis (Dehay and Kennedy, 2007; Nieuwenhuys et al., 2008).  

 

1.3.3. The neurogenesis to gliogenesis switch 

During embryogenesis, neurons and stem cells are not the only cell types that are born. 

The neuroglia is another important set of cells generated during this period and, as discussed 

before, they end up equaling neurons in number in the adult CNS.  

Rudolf Virchow firstly described glia or neuroglia in 1846 as a homogeneous population 

of cells that supports neuronal activity. Although the last decades of research have proven 

that this population is anything but homogeneous, they are indeed essential for proper CNS 
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homeostasis and functions. Two major groups of these cells have been described: the 

mesoderm-derived microglia, which possess roles in immune response and other 

homeostasis-keeping functions (out of the scope of this work), and the ectoderm-derived 

macroglia, which comprises oligodendrocytes, astrocytes and ependymal cells (Molofsky and 

Deneen, 2015; Rowitch and Kriegstein, 2010).  

Oligodendrocytes are cells whose primary function is to wrap neuronal axons with 

extensions of their cell membrane to form the myelin sheaths. These lipid-rich structures 

insulate the nerve fibers in order to increase the speed of electrical impulses across the 

nervous system (Frisén, 2016). Astrocytes are a much more heterogeneous set of cells that 

hence participate in a wide range of functions: (i) They synthesize extracellular matrix 

proteins, adhesion molecules and morphogens to ensure neuronal maturation and synapses 

formation. (ii) They play a key role in angiogenesis and the formation of the blood-brain-

barrier and its maintenance. (iii) They buffer extracellular ion concentrations, specially 

potassium ions, an action which is necessary for the proper electrical activity of neurons. (iv) 

Astrocytes can participate in neurotransmitter uptake as well, to ensure proper synaptic 

function. (v) These cells can provide with trophic support to other cells, like neurons and (vi) 

perform detoxifying roles. (vii) Finally, a very interesting function of astrocytes in the adult is 

to serve as neuronal precursors in what is called adult neurogenesis (Wang and Bordey, 2008). 

This function and the special kind of astrocytes that support it are treated latter on the present 

work (see Chapter 2 – 2.2. The neurogenic niche, adult neural stem cells and adult 

neurogenesis).The third type of neuroglia, ependymal cells, is also extendedly assessed 

further on this reading, as they constitute the type of cell on whose developmental 

mechanisms our work is focused.  

 

1.3.3.1. Glial cell lineage 

The origin of glial cells, also known as gliogenesis, takes place after neurogenesis, 

which does not exclude for some neuron and glial cells to be generated at the same time. Like 

neurons, glia’s precursor cells are RGCs of the VZ and SVZ (Rash et al., 2019). The question 

remains though, since the discovery that RGCs could generate both neurons and glia, is 

whether there exists a bipotent progenitor, or if, by the contrary, there are glia-restricted and 
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neuron-restricted RGCs. The previous conception on the origin of the CNS cells was the latter. 

However, over the past two decades, evidence has piled up to support the existence of 

neuron-restricted and bipotent progenitor cells since early in development (the onset of 

neurogenesis). In order to find glia-restricted RGCs, later developmental stages must be 

assessed (Figure 5). However, these glia-restricted progenitor cells come from the asymmetric 

self-renewing cell divisions that earlier on generated neuron precursors (Costa et al., 2009).  

In vitro and in vivo studies evidence the existence of progenitors of neurons, glia or 

both. When brain progenitors are isolated and plated from early embryonic stages, they give 

rise at first to purely neuronal clones. Only when these cells are allowed to divide further and 

when they are isolated from late embryonic stages, some of these generate glia in mixed 

neuron-glia and glia-restricted clones, respectively (Anthony et al., 2004; Costa et al., 2009; 

Malatesta et al., 2000). As for the in vivo evidence, Gao et al. proved that, in a first moment, 

only neurons are formed from a common progenitor in “quanta” or discrete packages of 8 to 

9 neurons through successive asymmetric divisions, but later on, at the end of these rounds 

of divisions, around 1:6 of the RGCs generate glia. They proved that glia were contained within 

neurogenic clones and confirmed that the first were born after a series of neurogenic 

divisions, this is, neurogenesis precedes gliogenesis (Gao et al., 2014). Mimicking the in vitro 

paradigm, only when RGCs are transduced with a reporter-coding retrovirus at later stages of 

development in vivo, glia-restricted clones are detected (Costa et al., 2009). Although the 

numbers of glia-restricted clones found by Gao et al. seem to not go in accordance with the 

total final number of glia cells discussed before (as much glia as neurons, von Bartheld, Bahney 

and Herculano-Houzel, 2016), it is noteworthy that up to 90% of all non-neuronal cells in the 

adult are produced during the second to third postnatal week in rodents (Bandeira et al., 

2009). Both astrocyte and oligodendrocyte precursor cells are able to divide and increase their 

numbers postnatally (Figure 5). In the case of astrocyte precursors, these are generated via 

asymmetric divisions from RGCs, and then migrate to their final destination where they can 
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once again proliferate via symmetric divisions to generate more astrocytes (Bergles and 

Richardson, 2016; Tien et al., 2012).  

Figure 5. Timeline of neurogenesis and gliogenesis during development and adult life. Early in development, 

the neuroepithelium (NE) is formed by highly proliferative cells that divide symmetrically to increase the 

progenitor pool, the neuroepithelial cells. As the NE thickens, these cells transition into radial glial cells, which 

display a high degree of apico-basal polarity. The cell body remains in the ventricular zone (VZ) where it divides, 

at the same time as it projects a long process to the mantle zone (MZ), the outer-most layer of the developing 

CNS. At the onset of neurogenesis these cells divide asymmetrically to self-renew and to generate neuroblasts, 

which migrate into the mantle zone (MA) along the RGC processes, or a neuron-committed intermediate 

progenitor cell (nIPC) or a basal radial glia cell, both of which can generate more neurons though asymmetric 

divisions or symmetric consumptive divisions. As early as E12 for oligodendrocyte progenitor cells (oIPC), E14-15 

for ependymal progenitors and E18 for astrocytes, the RGCs start switching from neurogenesis to gliogenesis. 

Astrocytes and oIPCs continue dividing in adult life. A particular type of astrocytes in the adult can re-enter the 

cell cyle and generate neuroblasts that migrate to the olfactory bulb in a process known as adult neurogenesis. 

Note the continuity of RGCs between the neurogenic and gliogenic periods. This means that early in 

development, neuron-restricted or bipotential progenitors are found, but not glia-restricted stem cells. On the 

contrary, towards the end of embryogenesis, neuron-restricted progenitors have withered and some glial-

restricted progenitors are present. The latter proceed, nonetheless, from earlier bipotential progenitors. 

Adapted from Kriegstein and Alvarez-Buylla, 2009. 

The existence of an ependymal precursor cell with a defined molecular signature or 

identifiable markers has not been described. This complicates their study and opens the great 

question of what happens in these cells between the last division of their progenitors and the 

onset of their differentiation at early postnatal stages. Nonetheless, they are known to derive 

from RGCs and be postmitotic (Spassky et al., 2005). 
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1.3.3.2. The cellular and molecular mechanisms of the gliogenic 

switch 

As it was stated before, the bulk of gliogenesis occurs when most of the neurogenesis 

has been completed. RGCs change in terms of their competence with time, this is, they are 

more prone to produce neurons earlier and more glia later, in a phenomenon called 

progressive competence restriction.  Cortical neurogenesis in rodents lasts from E12 to E18 

approximately. The switch to gliogenesis in the brain happens around E16-E18 (Akdemir et al., 

2020; Molofsky and Deneen, 2015). Roughly, the timeline of the different neuroglia types is: 

- Astrocytes are mostly first seen at around E18, although some S100β+ cells are seen 

in the LGE (but not in the pallium) as early as E16 (Rowitch and Kriegstein, 2010).  

- Oligodendrocyte progenitors are generated in three consecutive waves from 

ventral to dorsal territories at E12 (the exception to gliogenesis following 

neurogenesis), E15 and P0 (Kessaris et al., 2006). Their differentiation, though, 

arrives postnatally (Miller and Gauthier, 2007). 

- Ependymal progenitor birth peaks at E15, but do not differentiate until the first 

postnatal days (Spassky et al., 2005). 

The gliogenic switch is both temporally and spatially regulated. It does not happen in 

all regions of the brain at the same time.  This is partly because the extrinsic environment of 

the precursor cells is determinant for its differentiation. However, this does not discard the 

presence of cell-autonomous mechanisms, but rather accentuate the synergy of both, to 

ensure the right type and number of cells are produced at the correct time (Miller and 

Gauthier, 2007).  

At the onset of gliogenesis, the collaboration of several mechanisms ensures that RGCs 

shift their differentiation from neurons to glia. Several members of the interleukin 6 (IL-6) 

family have a role in astrogenesis: the ciliary neurotrophic factor (CNTF), the leukemia 

inhibitory factor (LIF) and cardiotrophin 1 (CT-1) are among the molecules that promote it 

(MuhChyi et al., 2013).  

CT-1 is the key gliogenic ligand expressed in newly born neurons. Hence, neurons 

themselves are one of the essential elements that, in a feedback loop, instruct the RGCs in the 

germinal areas from whence they come to start producing glia. This puts forward the idea of 
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a cellular timer mechanism in which one daughter cell, newborn neurons, alters the 

environment to instruct their progenitors to start producing a second type of cells: astrocytes 

(Barnabé-Heider et al., 2005).  CT-1 binds the coreceptors LIFRβ and gp130 and causes them 

to heterodimerize. This in turn results in the activation of the JAK-STAT pathway. The STATS 

are transcription factors that, in collaboration with the coactivators p300/CBP, are able to 

directly transactivate the transcription of the gfap and s-100β genes, both essential for 

astrocyte specification (Figure 6, Nakashima et al., 1999; Miller and Gauthier, 2007).  

Besides CT-1-dependent activation of the JAK-STAT pathway, the latter can be 

triggered by BMP and Notch signaling. BMP-2 can both promote neurogenesis or gliogenesis 

depending on the cellular context. During gliogenesis, when pro-neural genes like neurogenin-

1 (ngn1) are at low levels, BMP-2 can: (i) enhance the expression of pro-neural gene inhibitors 

like Id1 (Viñals et al., 2004) and (ii) promote transactivation of gliogenic genes through the 

formation of a complex between its downstream effector Smad1 and STAT:p300/CBP 

(Yanagisawa et al., 2001, Figure 6). However, during neurogenesis, the accumulation of ngn1 

in the presence of BMP-2 leads to the sequestration of the STAT:p300/CBP complex, which is 

no longer available to transactivate gliogenic genes (Miller and Gauthier, 2007).  

Notch signaling also has an inhibitory effect on neurogenesis to prevent RGCs to 

perform terminal symmetric consumptive divisions (Gaiano et al., 2000), but it also promotes 

gliogenesis. Hence, Notch signaling presents two temporally dissociative effects. During 

gliogenesis, binding of Notch ligands results into Notch cleavage and activation and, in turn, 

the formation of a transcriptionally active complex RBP-Jκ. This complex can both (i) promote 

the expression of Hes proteins, which inhibit neurogenic genes (Sakamoto et al., 2003), and 

(ii) bind to the gfap promoter in the presence of an active JAK-STAT pathway (Liu et al., 2016) 

(Figure 6).  

Some other mechanisms that contribute to the gliogenic switch would be the 

expression of the proastrocytic transcription factor nuclear factor 1 (NFI), which probably acts 

in collaboration with the JAK-STAT pathway (Miller and Gauthier, 2007). Also the CNTF-

dependent cytoplasmic translocation of the nuclear receptor co-repressor (N-CoR), a 

repressor of multiple transcription factors, prevents the inhibition of RBP-Jκ by said repressor. 

This enables the binding and activation of gfap at its promoter by RBP-Jκ (Hermanson et al., 

2002) (Figure 6).  
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Figure 6. A simplified view of the mechanisms of gliogenesis switch. Several molecules and pathways 

synergistically participate in the 

down-regulation of neurogenesis 

and up-regulation of gliogenesis. 

CT-1 causes the dimerization of 

the gp130 and LIFRβ receptors, 

which activates the JAK-STAT 

pathway. Its downstream 

effector transcription factor 

STAT3 forms a complex with co-

activators such as p300 to 

promote the expression of the 

gfap gliogenic gene. BMP-2 

signaling promotes the formation 

of a complex of its downstream 

activator Smad with STAT:p300, 

further promoting the expression of gliogenic genes. Notch signaling also participates in this process by activating 

the pro-gliogenic RBP-Jκ transcriptionally active complex and expressing anti-neurogenic genes such as Id1. Other 

gliogenesis mechanisms is the collaboration of the pro-astrocytic transcription factor NF-I with the role of 

Smad:STAT:p300. From Miller and Gauthier, 2007. 

Concerning oligodendrocyte gliogenic switch, the migratory precursors of these cells 

have been proven to be specified initially in Shh-producing areas, on the ventral part of the 

telencephalon and spinal cord (Tekki-Kessaris et al., 2001). Indeed, the inhibition of this 

signaling pathway leads to a reduction in the output of oligodendrocytes (Spassky et al., 2001) 

and its ectopic expression leads to the increase of cells displaying oligodendrocyte progenitor 

markers (Nery et al., 2001). In areas away from the ventral Shh-producing centers, the 

induction of FGF signaling, as well as the inhibition of the Wnt and BMP pathways have been 

proposed as alternative mechanisms for oligodendrocyte lineage specification (Foerster et al., 

2019).  

1.4. Tools for the study of the origin and relationship of CNS populations.  

 

1.4.1. Cell fate-mapping  

One of the most important goals in developmental biology is to understand the origin 

of adult cell populations from their embryonic precursor cells, since the site of generation of 

a determined cell type can define its function in the adult organism. For instance, the 

ganglionic eminences (LGE and MGE) of the subpallium are the site of origin of GABAergic 

inhibitory neurons that populate the neocortex, whereas the glutamatergic excitatory 

neurons are born in the pallium, to later migrate to the incipient cortical plate (Marín and 

Müller, 2014). Another prominent example is the oligodendrocyte genesis in the spinal cord. 
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They were initially described to arise in the ventral neuroepithelium of the spinal cord, but 

subsequent studies proved that more dorsal domains, with a different regional identity, could 

also be a center for oligodendrocyte generation (Fogarty et al., 2005).  

Fate mapping has emerged as one of the most widespread tools to investigate the 

embryonic origin of cell populations. It consists of labeling a group of cells with a distinctive 

and stable marker that is transmitted to their descendants so that the entire lineage is labeled. 

Before the advent of the era of genetic engineering, fate mapping relied on laborious and less 

thorough systems. These included dye injections in precursor cells of the embryo to follow the 

dye-labeled cell progeny, tissue ablations to assess the location of morphological defects in 

adult structures derived from the damaged structures, or chimera tissue grafting, which 

allowed to trace the chimeric cell population in a wild type background (Gross and Hanken, 

2008; Selleck and Stern, 1991; Weisblat et al., 1978).  

In the last three decades though, genetic engineering has been key to develop a new 

type of cell population origin tracing methodology: genetic fate mapping. The most broadly 

used technique is the one based on the Cre/loxP system. It is based on the P1 bacteriophage 

Cre recombinase, an enzyme that catalyzes the recombination between two consensus DNA 

sequences, which act as well as recognition sites for the enzyme: the loxP sites. Since these 

sequences present a directionality, they can be used to insert or invert the DNA sequence 

between both loxP sites. When both sequences are present in cis, the former happens when 

they are in the same orientation, whereas the latter occurs when they have opposing 

directions. When the sequences are in trans, this is, on different chromosomes (like an 

exogenous plasmid and the endogenous chromosome), an interchromosomal recombination 

occurs to exchange the sequences between the two DNA molecules or the insertion of one 

chromosome into the other, depending on the orientation of the loxP loci. A great advantage 

of this system is that it does not require coactivators in eukaryotes, despite being a phage-

derived machinery. Besides, the consensus loxP sequence is long enough (34 base pairs) so 

that its random occurrence in the mammalian genome is extremely improbable (Nagy, 2000). 

For fate mapping a specific cell population, this system needs two elements. On the 

one hand, a transgenic line bearing a Cre expression cassette under the influence of a 

structure, tissue or cell type-specific promoter. On the other hand, a transgenic line that 

provides the sequence for a reporter gene, which is typically a fluorophore or the lacZ gene, 
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detected by the β-galactosidase activity, in the presence of the Cre recombinase. The reporter 

gene is typically downstream from a constitutive promoter and a Stop codon expression 

cassette, flanked by two loxP sites. When the two transgenic lines are crossed, the expression 

of the Cre from the specific promoter in certain cells eliminates the Stop codon in the 

descendant cells. Thus, expression of the reporter gene can proceed from its upstream 

constitutive promoter (Figure 7A) (Nagy, 2000). This system can be adapted to achieve a 

tissue/cell-specific, also known as “conditional”, knock-out (KO) (an essential part of a gene is 

excised in the presence of the Cre, Gavériaux-Ruff and Kieffer, 2007), specific gene repair (the 

loxP-flanked construct disrupts a gene sequence, which recovers its full functional form upon 

Cre-mediated excision, Dragatsis and Zeitlin, 2001) or conditional cell ablation (expression of 

a toxin upon Cre-mediated retrieval of a loxP-flanked Stop sequence that impedes its 

expression otherwise, Kessaris et al., 2006). 

A very useful variation of this conditional gene expression by the Cre/loxP system is 

the inducible Cre expression. In order to modify gene expression in all the above discussed 

ways (induction of a reporter, conditional KO or gene repair or cell population ablation) in a 

specific cell population at a desired timepoint, the Cre recombinase is fused to a mutated 

estrogen receptor (ER) resulting in the CreERT2 construction. In uninduced conditions, this 

fusion protein remains in the cytosol due to its interaction with the Heat-shock protein 90 

(Hsp90) and hence unable to promote recombination in the genome. However, in the 

presence of the estrogen synthetic analog tamoxifen, which competes with Hsp90 in its 

interaction with the ER, the CreER fusion protein can be translocated to the nucleus to fulfill 

its function (Figure 7B) (Kim et al., 2018; Valny et al., 2016).  

One of the key aspects in the success of the genetic fate mapping is the use of a 

reporter line that ensures strong and stable expression of the reporter. The most commonly 

used locus for Cre-reporter mice is the Gt(ROSA)26Sor or ROSA26 locus. Gene expression from 

this gene is ubiquitous (Zambrowicz et al., 1997) but poor in the case of fluorescent reporters 

(Madisen et al., 2010). Nonetheless, it allows the insertion of exogenous stronger promoters 

than the ROSA26 endogenous one to drive reporter expression. One of the most used 

transgenic reporter lines, which has been used in the present work (see Chapter 2 - Published 

work in Neuron) is the Ai14, which has the following modifications to ensure a strong and 

stable expression of the reporter: (i) the strong synthetic CAG promoter and (ii) the 



36 
 

woodchuck hepatitis virus postranscriptionally regulatory element, to ensure high stability of 

the mRNA (Madisen et al., 2010). 

 

Figure 7. Conditional and inducible Cre recombinase expression. (A) Depiction of Cre-mediated tissue or cell-

specific recombination. For fate mapping studies a mouse line that expresses the Cre under the control of a 

specific tissue or cell population of interest, is crossed with a line that synthesizes a reporter gene only in the 

presence of Cre. In unrecombined conditions, a loxP-flanked stop codon upstream of the reporter sequence 

prevents reporter expression. The descendants of such crossing express the Cre in the tissue or cells of interest, 

where it drives excision of the flanked stop codon sequence, via recombination between the two loxP sites, hence 

allowing the expression of the reporter. (B) Scheme of an inducible Cre-mediated reporter expression. This 

system varies with respect to the previous one in that it expresses the Cre fused to the ligand-binding domain of 

an estrogen receptor (ER) that locates to the cytosol and is bound to Hsp90. As a consequence, in uninduced 

conditions, the Cre cannot mediate reporter gene expression. In the presence of tamoxifen, this molecule binds 

to the ER, releasing the Cre-ER fusion protein from Hsp90. The former is now free to go into the nucleus and 

drive reporter expression as in A. Adapted from Kim et al., 2018. 
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This strategy has been used to promote conditional Cre expression in many specific cell 

types of the CNS, such as RGCs through the Nestin-Cre line (Dubois et al., 2006), astrocytes 

including adult neural stem cells (NSCs) via the GFAP-Cre line (Casper et al., 2007), or 

oligodendrocytes, using a PLP-Cre mouse (Doerflinger et al., 2003). However, some of the 

mostly used Cre driver lines in the CNS are not cell type-specific, but territory-specific. As it 

was discussed before, the embryonic neuroepithelium is compartmentalized in terms of their 

transcription factor expression. Thus, the pallium expresses Emx1, the LGE, Gsh2 and the MGE, 

Nkx2.1 and Gsh2, among others (Rowitch and Kriegstein, 2010). This arealization has been the 

source of successfully used Cre-driver lines for fate mapping cells deriving from either three 

of these embryonic structures.  

The Emx1-Cre, Gsh2-Cre and Nkx2.1-Cre lines have allowed researchers to study the 

spatial origin of different neuroglia. For instance, oligodendrocytes present three different 

sources in the embryo, from ventral (MGE) to more dorsal (LGE and pallium) that are activated 

in consecutive order during embryogenesis to populate both the striatum and neocortex 

(Kessaris et al., 2006). It has also been established that astrocytes in the spinal cord and 

forebrain are allocated regionally in the adult in close relation to their site of origin (this is, 

without tangential migration, Tsai et al., 2012). Finally, it has been discovered that adult NSCs 

are located at their site of origin, with the Nkx2.1 domain contributing to some of these cells 

on the very ventral part of the adult lateral ventricle, the Gsh2 domain generating most cells 

on the lateral wall of the lateral ventricle, and the Emx1 territory giving rise to the dorsal stem 

cells of the lateral ventricle (Xu et al., 2008; Young et al., 2007). These studies have encouraged 

us to use the same fate mapping strategy to inquire into the spatial origin of ependymal cells 

from their RGCs precursors distributed all along the neuroepithelium, and whether ependymal 

precursors migrate away from their site of origin.  

1.4.2. Clonal analysis techniques 

The understanding of how a group of similar or distinct cells in the adult who share a 

common embryonic ancestor, this is, a clone, is established is one of the major goals in 

developmental biology and, particularly, in the study of the CNS. These clonal relationships 

provide invaluable information about the specification mechanisms, migration patterns and 

functional interactions among cells. As a consequence, many efforts and techniques have 

been focused on the construction of such lineage trees in a variety of tissues.  
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Retroviral injection of a single progenitor is one of the earliest used methods in clonal 

analysis. It consists of the infection of a single progenitor or several ones in a sparse manner. 

The retrovirus encodes a reporter gene, usually a fluorescent protein-coding sequence or a 

gene that is expressed into a protein with a specific enzymatic activity, such as the β-

galactosidase activity from the lacZ gene. The presence of the reporter can be detected in cells 

descending from the infected ancestor, this is, the entire clone. In order to achieve single or 

very sparse progenitor labeling, a very low titer of the virus must be used. Nonetheless, even 

very low viral titers can lead to the most common mistakes in lineage analysis: the splitting 

and the lumping error. The former consists of considering one clone as two independent ones 

due to long-distance migration of the cells. The latter entails the inclusion of one or several 

cells from a clone into another one, usually because the first have migrated away from their 

site of origin and come closer to cells of another clone (Costa et al., 2009). Apart from the lack 

of resolution inherent to the use of only one reporter marker, there are several disadvantages 

to this method: the random integration of the retroviral-encoded reporter gene can lead to 

mutagenesis in essential genes or regulatory sequences or the silencing of the expression of 

the reporter are the main concerns (Ma et al., 2018). A variant of this method is the use of 

dual color tracing with two retroviruses encoding two different fluorophores. The logic behind 

it is that, if a specific cell presents a low probability of being infected when using a low-titer 

virus solution, the probability of it being infected by two different ones (each encoding a 

different reporter) is even scarcer. Thus, double-labeled clones are subject to lineage analysis 

with a lower chance to make a splitting or lumping error (Costa et al., 2009). 

Another method of lineage tracing relies also on retroviral infection, but increases the 

resolution to practically one distinguishable tag per clone. This is the retroviral bar-coding 

strategy. It consists of infecting the desired tissue (like the VZ that contains all neuron and glia 

progenitors) with a library of many distinct retroviral vectors, each bearing a unique DNA 

sequence that acts as an identifier, and a reporter (like β-galactosidase activity or a 

fluorophore). After infection of a progenitor cell, the genetic tag is transmitted to the 

descendants. Hence, a clone is composed of cells that contain all the same genetic label. Said 

technique is applicable, for instance, in studies of clonal cell dispersion in the brain (Walsh and 

Cepko, 1992), and has been used to identify neuronal and glial clones (McCarthy et al., 2001). 

However, even if recent studies have optimized the process of tagged-cell retrieval by applying 
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laser microdissection (Fuentealba et al., 2015), instead of tedious manual dissection of all 

reporter-positive cells (McCarthy et al., 2001; Walsh and Cepko, 1992), it presents some 

inconveniences. Despite exquisite resolution of clonality, due to the unique genetic tags, each 

cell’s label must be amplified via PCR and sequenced without loss (Costa et al., 2009). 

1.4.2.1. The Brainbow technique 

The need to map the highly complex circuitry of neuronal and glial cells in the brain led 

to the development of a new fluorophore-labeling transgene-based technique. Initially, it 

allowed to single-out all the different presynaptic cells that innervated a determined 

postsynaptic neuron, in interactions that can involve many cells in a complicated, dense 

meshwork of axons and dendrites. The development of the Brainbow strategy (an acronym of 

the words brain and rainbow) opened the possibility to facilitate the laborious task of circuit 

map elaboration, for it labels each cell with a unique color. It is based on the combinatorial 

expression of three or more fluorescent proteins that can generate a wide arrange of hues, 

this is, color identities in the RGB space (formed by the combination of the colors red, green 

and blue) (Livet et al., 2007). The Brainbow expression cassette encodes three or four 

fluorescent proteins in tandem. Upstream of said sequences, three mutually exclusive 5’ loxP 

site variants are located one after the other. Each of these loxP variants has its 3’ counterpart 

for recombination immediately downstream of each of the fluorophore-encoding transgenes. 

Thus, the Cre recombinase recognizes the loxP variants in defined pairs (a 5’ and its associated 

3’), since these are mutually exclusive (Branda and Dymecki, 2004). Upon recognition, it 

catalyzes recombination (and the consequent transgene excision) between any of the three 

pairs of loxP sites, thus, leading to the stochastic expression of one of the fluorophores from 

a single Brainbow construct (Livet et al., 2007). The transgene sequences have been adapted 

to direct the fluorophore to different subcellular compartments. The only one that we have 

used for our studies is that which directs expression of the fluorophores to the nucleus, known 

as Nucbow (Figure 8A).  

One transgene copy does not yield a great resolutive power, since it can only label a 

cell with three different fluorophores. The real power of this technique, however, relies on 

the combinatorial potential resulting of several copies of the transgene that coexist in a single 

cell. If genome integration of many copies of the Brainbow cassette is achieved, stochastic 

recombination will individually affect each copy. In consequence, the pallet of colors 
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generated by different dosages of each fluorophore is exponentially increased (Livet et al., 

2007; Loulier et al., 2014, Figure 8B).  

Brainbow has been used to study circuits and interactions of neurons, but also glia, 

since conditional expression of the Cre in different cell types can be achieved via different Cre-

expressing lines. Furthermore, it can be coupled to a tamoxifen-inducible system to ensure 

conditional expression at a desired timepoint, in Cre-reporter Brainbow lines. For instance, it 

has been used to visualize individual oligodendrocytes and their processes and interactions 

with neurons during myelination, in a tamoxifen-inducible scheme (Dumas et al., 2015). Also, 

inducible Brainbow expression has been adapted in non-mammals, like zebrafish and 

Drosophila, to study neuronal circuitry (Hadjieconomou et al., 2011; Pan et al., 2011). 

One of the most important applications of Brainbow though, is the lineage tracing of 

cell clones. It has been applied in clonality studies as early as the blastomere stage (Tabansky 

et al., 2013), but has also been adapted for the assessment of cell families in the nervous 

system of mice and chicks (Loulier et al., 2014). The system has been modified so that it drives 

fluorescent protein expression from a strong CAG constitutive promoter, but also to ensure 

stable expression of the transgenes throughout cell generations. For this purpose, the whole 

Brainbow cassette is bordered by sequences recognized by a transposase (piggyBac or Tol2 

transposases), which translocates the flanked DNA into the genome (Loulier et al., 2014, 

Figure 8A).  
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Figure 8.  The Brainbow strategy for clonal analysis. (A) Scheme of the Nucbow transgene. It consists of three 

nuclear fluorescent protein-coding sequences encoded in tandem. Mutually exclusive variants of the loxP site 

flank the coding sequences as depicted so that upon stochastic Cre-mediated recombination, an excision of part 

of the transgene occurs and one of the three fluorescent proteins is expressed. In the unrecombined state, the 

UV-shifted EBFP2 protein is expressed. The tandem-encoded fluorophores are the yellow-green mEYFP, the red-

orange mCherry and the blue-green mCerulean and their expression is driven from a constitutive CAG promoter. 

The whole expression cassette is flanked by Tol2 or PiggyBac (T2/PB) target sequences. These are recognized by 

said transposases who catalyze the integration of the cassette in the genome for stable fluorophore expression 

across cell generations. (B) The combinatorial power of Brainbow (and with it the clonal resolution) increases 

with the number of copies of the transgene in a single cell. Whereas one copy of the transgene can only tag a 

cell with three different markers, several copies generate the possibility of a unique color label per cell, since 

each transgene undergoes stochastic recombination. Adapted from Loulier et al., 2014.  

The fact that this technique does not rely on sparse labeling of progenitors and its 

robustness in cell family identification based on its increased clonal resolution have been key 

to select it for our studies. We have used the Brainbow technique to label RGC progenitors 

and study their progeny in the neurogenic niche. 
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1.4.2.2. Mosaic Analysis with Double Markers (MADM) 

Genetic mosaicism, this is, the presence of different genotypes in different cells within 

the same organism, is a powerful technique to study gene function. It allows to assess the 

effect of a specific mutation in a cohort of cells in an otherwise wild type background. This 

permits bypassing the need for such gene in other tissues or earlier in development and is 

thus a great tool for cell autonomous gene function studies. A new method was developed by 

Zong et al. which differentially labels cells within a mosaic, this is, one cell with a given 

genotype presents one label and another cell with a different genotype displays a different 

one. It consists of two reciprocally chimeric alleles based on the green and red fluorescent 

proteins (GFP and the improved red fluorescent protein tandem dimer Tomato, hereafter 

called tdT) located on the same locus of homologous chromosomes. One allele contains the 

N-terminal sequence of the GFP and the C-terminal part of the tdT (MADMGT). Its homologous 

allele presents the N-terminal sequence of the tdT and the C-terminal end of the GFP 

(MADMTG). Both terminal parts in the two alleles are separated by a loxP-containing intron. In 

the absence of Cre, and in the allelic configuration just described, no functional fluorophore 

can be expressed due to the truncation of their sequence. Nonetheless, upon Cre expression 

in a cell, an interchromosomal recombination between loxP sites occurs, hence restoring a 

fully-functional GFP and tdT sequence on each allele (MADMGG and MADMTT) (Zong et al., 

2005, for a detailed representation of this allelic configuration, see Chapter 2 – Published work 

in Neuron, Figure 4B). 

After DNA replication, four reciprocally chimeric alleles are present in one cell, two 

MADMTG and two MADMGT. If interchromosomal recombination takes place during the G2 

phase, hence restoring one MADMGG and one MADMTT, there are two different outcomes in 

the cell progeny dependent on allele segregation. If one daughter cell inherits the fully 

functional GFP and tdT alleles, this is MADMGG and MADMTT, whereas the other receives the 

two non-functional reciprocally chimeric ones, this is MADMTG and MADMGT, the former cell 

and its descendants will display both markers (yellow, from the combination of green and red), 

whereas the latter will present none. This is called a G2-Z event. On the contrary, if both 

MADMGG or MADMTT alleles are segregated into one daughter cell each, descendants will 

show one marker (green or red) and its sister lineage, the other. This is called a G2-X event. If 

recombination takes place before the replication of the DNA, a cell displaying both markers 
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(yellow) is generated (Zong et al., 2005, see the Chapter 2 – Published work in Neuron, Figure 

4B).  

As it was briefly stated before, this technique was developed to study genetic 

mosaicism, discernable by the two different fluorescent markers of MADM. In this way a 

mutation for a gene of interest (genemut) is genetically linked to one MADM allele via meiotic 

recombination (MADMTG;genemut / +;geneWT, linked in a chromosome “n”). Afterwards, a 

crossing with a wild type animal containing the other MADM allele in homozygosis (MADMGT; 

geneWT / MADMGT;geneWT) will generate a progeny with the mutation linked to one MADM 

allele and a wild type version of the gene of interest (geneWT) linked to the homologous MADM 

allele (MADMTG;genemut / MADMGT;geneWT). Thus, after Cre expression, interchormosomal 

recombination and a G2-X event, cells bearing one MADM marker (green or red) will be 

homozygous for the wild type allele of interest (MADMGG;geneWT / MADMGT;geneWT) and 

homozygous for the mutation of interest in the cells with the other MADM label 

(MADMTT;genemut / MADMTG;genemut). The assessment of the heterozygosity can also be done 

for cells displaying both MADM markers (yellow, MADMGG;geneWT / MADMTT;genemut) after a 

G2-Z event (Hippenmeyer et al., 2010).  

Although mosaicism is highly interesting for functional gene studies, just like Brainbow, 

MADM has been applied for studies of brain cell clonality. Furthermore, MADM enables the 

lineage tree analysis at a single cell resolution and the elucidation of the cell division pattern, 

(symmetric versus asymmetric) as well as the replication potential of the daughter lineages 

(limited versus large capability of successive cell divisions, Gao et al., 2014).  For instance, if 

we observe four cells of two different kinds forming a clone marked with Nucbow, all we could 

say is that they have a common progenitor that divided twice, but the four cells could have 

emerged via two asymmetric or two symmetric divisions (Figure 9A). In contrast, MADM has 

the potential to reveal what type of cell division occurred, since the two daughter lineages are 

labeled distinctly (Figure 9B). However, it must be considered that in order to be useful for 

lineage tree analysis, labeling of MADM must be sparse, unlike Brainbow or retroviral bar-

coding, which can be ample, but do not offer information about the mode of division in 

daughter lineages. These advantages and disadvantages for each method have made it 

necessary to combine both in our study of the lineage of adult neurogenic niche cells. On the 

one hand, Brainbow has given us the power to perform a high-throughput clonal analysis of 
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large numbers of ependymal and adult NSCs from the neurogenic niche. On the other hand, 

we have analyzed a more reduced cohort of cells using MADM, which provided us with 

valuable information about cell division patterns.  

Figure 9. Comparison of Brainbow and MADM techniques in clonal analysis. (A) If we considered four cells of 

two distinct cell types (two and two, here shown by two different morphologies, the circle and the hexagon) 

labeled with the same Nucbow marker, it would be safe to say they form a clone coming from a common 

progenitor that divided twice. However, it could not be assessed whether these four cells were born via two 

symmetric divisions or two asymmetric divisions (dotted arrows with question mark). (B) If we consider the same 

population forming a clone of four cells, two with one MADM label (red) and two with the other (green), it could 

be said what type of cell division generated these cells, either two asymmetric (upper panel of daughter cells) or 

two symmetric (lower panel).  

1.4.3. Transgene delivery to brain progenitors: the in utero electroporation 

technique 

Genetic manipulation is a powerful tool to study gene function in the brain. Transgenic 

animals, gene KOs and knock-ins, as well as mutagenesis have served a precious purpose to 

elucidate the developmental schemes of the mammalian forebrain. However, conditional 

expression of the transgenes or KO of a particular gene in all specific cell types cannot be 

achieved, for it requires an extensive knowledge of the regulatory sequences that govern cell 

specification and function in the brain (Saito and Nakatsuji, 2001). Furthermore, the 

generation of transgenic lines (with or without conditional expression) or the packaging of 

DNA elements in retroviral particles for effective gene delivery in the brain are time-
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consuming processes. These require DNA microinjection in embryonic stem cells, 

transplantation in utero, transgene-bearing selection processes, production of viral stocks 

using mammalian cells in culture, etc. (Tabata and Nakajima, 2001).  

Delivery of nuclei acid elements using electroporation in ovo in chick embryos or cell 

culture systems preceded the use of such technique in live mice. The possibility to do it in 

mouse brains opened a new world of opportunities for gene function, cell behavior and cell 

migration studies in the forebrain. The in utero electroporation (IUE) technique, as it was 

known upon development, proved a highly efficient manner to introduce exogenous genetic 

material, such as plasmids, into brain cell progenitors, the RGCs. It thus allowed over-

expression or knock-down (KD) of genes of interest via plasmids expressing a protein under a 

strong promoter, or the use of shRNAs and miRNAs, respectively (Wang and Mei, 2013).  It 

was also helpful in tagging progenitors with fluorescent reporters, which made it possible to 

film cells ex vivo in cortical slices using time lapse microscopy and analyze their behavior, i.e. 

cell division, delamination from apical surface, migration, etc. (Nishimura et al., 2012; Pilz et 

al., 2013). 

IUE starts by anesthetizing a timed-pregnant female and exposing the utero by 

retrieving it from the abdominal cavity through a surgically practiced incision in the abdominal 

wall. Then the DNA molecules are injected into the developing ventricles of the embryo 

(lateral or third ventricles) in a stained solution, in order to observe the filling of the ventricular 

cavity, an indicative of successful injection. Afterwards, two electrodes are placed surrounding 

the developing telencephalon and electrical pulses are applied. This fulfils a double function. 

First it permeabilizes the membranes of cells on the ventricular surface for the incorporation 

of exogenous DNA molecules, such as plasmids. Second, since the DNA is negatively charged 

in physiological conditions, the injected molecules in the ventricle migrate towards the anode 

(positively charged electrode) in the electrical field, and thus move towards the RGCs on the 

ventricular walls (Saito and Nakatsuji, 2001; Tabata and Nakajima, 2001; Wang and Mei, 2013, 

Figure 10).  
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Figure 10. In utero electroporation procedure. IUE serves to deliver transgenes into the RGC progenitor pool. (A) 

Scheme of the general procedure of the IUE. A timed-pregnant mouse is anesthetized and the uterus is carefully 

retrieved from the abdomen. Then a stained DNA solution is injected into the lateral ventricles and an electrical 

pulse is applied. (B) Photographs of an exposed uterus being injected and electroporated. (C) Scheme of the 

principle of IUE. The DNA element introduced via microinjection into the ventricular lumen is negatively charged 

in physiological conditions. The application of an electrical current produces its migration towards the anode, 

placed extrauterine, adjacent to the ventricular surface. There it is incorporated through electrically-

permeabilized cell membranes into the RGCs, who express the transgene borne by the plasmid. Adapted from 

Dal Maschio et al., 2012. 

 

1.5. Objectives and hypotheses 

In the first part of my thesis work, which was published in the journal Neuron in March 

2019, we undertook the task to unveil the glial cell lineage that generates the adult 

mammalian neurogenic niche, whose main components are multiciliated ependymal cells and 

adult neural stem cells (see below, Chapter 2).  

In order to perform a clonal analysis we first determined, via Cre-lox fate mapping the 

spatial origin of ependymal cells, since it was important to consider or rule out a potential 

migration bias in our clonal analysis. We hypothesized that multiciliated ependymal cell 

progenitors do not migrate, since there are no known functional specificities in differently 

allocated ependymal cells along the ventricular walls. Besides, RGCs are localized along the 

entire embryonic VZ, thus making it unnecessary for a focal generation of ependymal cells. 

Initially we were set to determine the cell division types that generated ependymal cells during 

late gestation (E14.5-E15.5) upon the last division of their progenitors. We theorized that 
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ependymal-generating symmetric divisions existed, since ependymal doublets were observed 

during the development of the neurogenic niche, this is, two cells in close proximity 

(sometimes in physical contact) in a similar state of ependymal differentiation. We have used 

the Brainbow and MADM techniques to establish the ontogeny of the neurogenic niche cells 

and validate our hypotheses.  
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CHAPTER 2. ON THE COMPOSITION OF THE NEUROGENIC NICHE AND 

ITS REGULATORS 

 

2.1. Ependymal cells and centriole amplification. Birth, development, 

characteristics, function and implication in disease. 

 

2.1.1. Multiciliated epithelia in mammals 

As it was briefly introduced before, neuroglia comprises a wide arrange of non-

neuronal cells, highly heterogeneous in morphology and function, who have the primary role 

to keep homeostasis in the nervous system and defend it against external insults, such as 

pathogens. Thus they play a major role from the development to the survival and death of its 

cells (Verkhratsky et al., 2014). 

Among these cells, the least studied group of glial cells is the ependymal cell group. 

Ependymal cells or ependymocytes belong to a highly specialized kind of cell called 

multiciliated cell (MCC). MCCs line the lumen of body cavities, such as the ventricular system 

of the CNS (lateral ventricles, third and fourth ventricles and aqueduct in the brain and central 

canal, within the spinal cord), forming a continuous epithelium. The most prominent 

characteristic of MCCs is the presence of bundles of motile cilia at its apical surface, each of 

which is nucleated by a modified centriole at its base, or basal body, docked to the apical 

plasma membrane. The motile cilia are membrane protrusions containing a microtubule-

based axoneme whose bending causes the motility of the whole structure. They project into 

the ventricular cavity to ensure the circulation of body fluids containing particles and/or cells 

along the epithelial surface (Delgehyr et al., 2015; Spassky and Meunier, 2017).  

There are other MCCs in the body outside of the CNS. They exist in the respiratory tract 

and auditory canal (ear, nose, throat and lungs). Mucus is produced in situ and moved along 

the surface of the ciliary layer, in a “gel-on-a-brush” movement. The pathogens and toxic 

particles inhaled adhere to the mucus layer and are displaced to the pharynx, where they are 
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swallowed. As a consequence, ciliary defects cause chronic infections of the respiratory and 

auditive systems (Spassky and Meunier, 2017). 

MCCs line the epithelium of the female reproductive system, from the ovary fimbria 

to the Fallopian tubes and uterus. This multiciliated epithelium transports the ova into the 

uterus during each menstrual cycle. In the male, MCCs are present in the efferent duct, which 

concentrates the sperm by resorbing testis fluid. The beating of the cilia is actually opposite 

to the direction of the epididymis, where the sperm is headed. According to mathematical 

modelling, the reflux created by MCCs serves to let through the sperm that is only 

appropriately concentrated thanks to its higher viscosity. Motile cilia disfunctions in both 

males and females are thus linked to infertility (Spassky and Meunier, 2017). 

2.1.2. Ependymal cell functions and derived pathologies   

2.1.2.1. Cerebrospinal fluid flow-derived functions and planar cell 

polarity  

The ependymal epithelium covers the ventricular system of the CNS in all its length. It 

is formed by four communicating cavities: the two lateral ventricles deep within the forebrain, 

which communicate via the interventricular foramen with the third ventricle, surrounded by 

the diencephalon. The third ventricle and the fourth ventricle, which lies within the hindbrain, 

are connected via the aqueduct that runs along the midbrain. Finally, the fourth ventricle 

communicates with the central canal, located inside the spinal cord, to complete the enclosed 

ventricular system. This system is a liquid-filled cavity in which the Cerebrospinal Fluid (CSF) is 

produced and flows. The CSF in the embryo contains numerous growth factors that are 

essential for the development of the CNS. These are sensed via the primary cilium that apical 

RGCs extend into the lumen of the ventricular cavity. In postnatal stages, the coordinated 

beating of the ependymal cell motile cilia is key for the propulsion of the CSF, the most studied 

function of ependymal cells (Jiménez et al., 2014).   
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Figure 11. Ventricular system in the human brain. The ventricular system is formed by a group of communicating 

cavities where the CSF flows. 

The lateral ventricles are 

located deep within the brain 

hemispheres and they connect 

with the third ventricle through 

the intraventricular foramen. 

The third ventricle, which is 

adjacent to the diencephalon, 

is joined to the fourth ventricle 

in the hindbrain via the 

aqueduct, which passes 

through the midbrain. Finally, 

the ventricular system of the 

brain forms a continuum with 

that of the spinal cord, since 

the fourth ventricle 

communicates with the central canal, the CSF-filled cavity that runs from the brain to the ventriculus finalis or 

fifth ventricle, at the base of the spinal cord. A: anterior, P: posterior, D: dorsal, V: ventral. From Nieuwenhuys, 

Voogd and Huijzen, 2008. 

The CSF is a clear, slightly viscous liquid produced by the choroid plexus. This is a highly 

vascularized membranous organ located in all ventricles of the brain (lateral, third and fourth 

ventricles) consistent of cells of epithelial nature resting on a basal lamina. These epithelial 

cells transport ions such as Na+, Cl- and HCO3
- from the blood to the ventricles to create an 

osmotic gradient. Such differential ion concentrations causes water to leave the circulatory 

system and enter the ventricles, hence replenishing the CSF (Emerich et al., 2005). The flow of 

this medium is necessary for the delivery of nutrients, signaling factors and the clearance of 

waste and neurotoxic substances (Siyahhan et al., 2014). It has also been implicated in static 

mechanical brain protection and the development and organization of the CNS, not only in 

the embryo thanks to the distribution of growth factors, but also in the adult through the 

support of neuronal migration guidance (Sawamoto et al., 2006).  

Different forces contribute to establish a CSF flow. Some of these are the heartbeat, 

body movements in lower vertebrates like zebrafish, the balance between CSF production by 

the choroid plexus and its reabsorption in the subarachnoid space (at the pial surface) and, of 

course, ciliary beating of ependymal cells (Butler et al., 2017; Olstad et al., 2019; Siyahhan et 

al., 2014). Although the role of ependymal cilia beating in diffusion of molecules of the CSF by 

creating constant motion and currents has been postulated for many years now (Del Bigio, 

2010; Worthington and Cathcart, 1963), a more complicated relationship between ciliary 

A P 

D 

V 
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beating and CSF flow has been elucidated. The use of fluorescent particle tracking in higher 

vertebrate brain explants or by injection of said particles into the ventricular system of 

transparent organisms (zebrafish larvae) has helped to clarify that CSF flows are not random 

along the ventricular system. Rather than that, different populations of motile ciliated cells 

are spatially organized in modules that create complex spatiotemporally regulated flow 

networks from zebrafish (Olstad et al., 2019) to mammals, like rodents and pigs (Faubel et al., 

2016), which correlate with ciliary beating. This means that the general CSF flow is subdivided 

in flow domains that create intraventricular (Faubel et al., 2016) or interventricular (Olstad et 

al., 2019) boundaries with little exchange, possibly to establish local concentration of 

substances, according to the needs of different anatomical sections of the ventricular system. 

This, in combination with spatial divergences in the transcriptomics of the choroid plexi of 

different ventricles that notably affect the secretome in each brain region, help establish a 

regionalized CSF (Lun et al., 2015). 

The coordinated beating of the cilia to create directional near-wall CSF flow is possible 

by the existence of a planar cell polarity (PCP) in the multiciliated epithelium. It consists of the 

polarization or differential distribution of cellular structures along the epithelium plane (this 

is, perpendicularly to the apico-basal axis). Thus, another major characteristic of ependymal 

cells is that they display epithelial PCP, which is composed of rotational, translational and 

tissue-level polarity (Wallingford, 2010). 

Rotational polarity refers to the orientation of basal bodies at an individual level, which 

can be determined by the presence of the basal foot, an electron-dense conical appendix 

attached laterally to the basal body microtubule barrel (Wallingford, 2010). This is perfectly 

discernible via Transmission Electron Microscopy or TEM (Guirao et al., 2010; Hirota et al., 

2010) and it is an indicative of basal body rotational orientation, the direction of the ciliary 

stroke and, as a consequence, the direction of the fluid flow. In properly functioning 

ependymal cells, all basal bodies at the apical surface display the same rotational polarity, so 

that cilia beat in a coordinated manner, all in the same direction, and directional fluid flow can 

be established (Wallingford, 2010) (Figure 12A).  

It is set in ependymal cells during ciliogenesis, this is, the first two postnatal weeks. It 

is the result of the coupling of hydrodynamic forces acting on motile cilia with PCP signaling in 

ependymal cells. The initial bulk of CSF flow existent in the ventricles during ependymal 
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differentiation has been shown to be sufficient to rotate the initial random orientation of the 

motile cilium, in order to settle beating plane parallel to the direction of the flow. This external 

cue requires PCP signaling to establish such orientation. Namely, the PCP proteins Van Gogh-

like 2 (Vangl2) (Guirao et al., 2010) and Dishevelled (Dvl) (Park et al., 2008) have been found 

to be necessary for rotational polarity (Figure 12A). 

Translational polarity in ependymal cells denotes the asymmetric distribution of basal 

body patches on the cellular cortex. Basal bodies migrate to the anterior pole of the apical 

surface in ependymal cells at roughly the same time as the establishment of rotational 

polarity. It does not seem to be regulated by PCP signaling, but motor proteins of the 

cytoskeleton, such as non-muscle myosin II, a protein that is expressed in ependymal cells but 

not in their neighbor, surrounding adult NSCs (Hirota et al., 2010). The primary cilium of 

ependymal monociliated progenitors is also key for translational polarity. This structure is 

polarized before the onset of ependymal differentiation, this is, it locates itself at one pole of 

the cell around birth. It is possible that primary cilia act as sensory antennae that detect the 

bulk of CSF flow resulting from its production by choroid plexus and reabsorption (Mirzadeh 

et al., 2010) (Figure 12B). 

Finally, tissue level polarity consists of the presence of the same ciliary tuff asymmetric 

disposition in the cell (translational polarity) and ciliary stroke direction (rotational polarity) 

across a group of cells. It has been shown to be instructed by Vangl2 and Frizzled in a non-cell 

autonomous manner (Wallingford, 2010) (Figure 12C). 
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Figure 12. Planar Cell Polarity in ependymal cells. (A) Rotational polarity consists of the same individual 

orientation of the basal body (green 

circle), determined by the presence of 

the basal foot on the wall of the 

centriole (black triangle). This 

orientation is a read-out of the ciliary 

stroke direction upon beating and can 

therefore predict the CSF flow 

orientation. It is controlled by 

members of the PCP pathway, such as 

Vangl2 (shown in red, located on the 

pole opposite to where the basal body 

patch is located) and Dvl (shown in 

yellow), localized to the centrioles. (B) 

Translational polarity is the 

asymmetric distribution of subcellular 

structures, such as the basal bodies of 

ependymal cells, within the cell. In 

ependymal cells it is not controlled by 

PCP signaling, but motor proteins, 

such as non-muscle myosin II, located 

close to the basal body patch (shown 

in purple). It has been shown to be established early, by the primary cilium, even before centriole amplification. 

(C) Tissue level polarity is the organization of cells within a tissue with a similar translational and rotational 

polarity. It has been proposed to be organized in a non-autonomous cell manner and be dependent on PCP 

signaling actors, such as Vangl2.  

 

2.1.2.2. Other functions of ependymal cells  

Ependymal-maintained CSF flow is essential for adult NSC proliferation in the SVZ and 

neuroblast migration to the olfactory bulb (see Chapter 2 - The neurogenic niche, adult neural 

stem cells and adult neurogenesis). It has been shown that the increase of CSF fluid flow can 

increase the proliferation of these cells by opening of epithelium sodium channels expressed 

on their apical surface (Petrik et al., 2018). Furthermore, the secretome of the choroid plexus 

contains factors that enhance stem proliferation in the adult neurogenic niche, molecules that 

are diffuse thanks to the coordinated beating of the ependymal cilia (Silva-Vargas et al., 2016). 

Ependymal beating not only contributes to new neuron birth upon generation of near-wall 

CSF flow, it also guides neuroblast migration from their site of origin, the SVZ, to their 

destination in the olfactory bulb. Ependymal-created CSF directional flow is parallel to this 

stream of neuroblasts and ciliary mutants present an impaired migration of these prospective 

neurons (Sawamoto et al., 2006).  
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Finally, microarray analyses upon brain infection have revealed a less studied function 

of ependymal cells: their potential implication during disease. These cells can upregulate 

immune system mediators, like genes from the antigen-presenting pathway, as well as 

diffusible molecules like cytokines or chemokines, in order to mediate inflammation and 

ensure leukocyte recruitment from the CSF, cells that previously exited from the choroid 

plexus vascularized network, into the brain parenchyma (Mishra and Teale, 2012).  

2.1.2.3. Ependymal cells as neural stem cells: reality or myth. 

Ependymal cells have an essential role in promoting neurogenesis and guiding 

neuroblast migration thanks to the directional CSF flow they generate (Petrik et al., 2018; 

Sawamoto et al., 2006). However, for many years, whether they themselves could be 

proliferative and give rise to new neurons in physiological conditions or upon injury, remained 

an open question. Some early studies used autoradiography to detect proliferation in the 

ventricular walls by using thymidine nucleotides labeled with radioactive isotopes, like tritrium 

(3H), which are only incorporated by cycling cells (Bruni, 1998). While some of them claim the 

presence of cells that have incorporated the radioactive label on the ependymal layer (Altman, 

1963), but without clear anatomical points of reference, others show clear incorporation of 

[3H] thymidine or bromodeoxyuridine (BrdU), a thymidine analog, only in the subependymal 

layer (Hauke et al., 1995).  

Later studies claim that ependymal cells enter the cell cycle and generate rapidly 

dividing amplifying progenitors in physiological conditions to contribute new neurons to the 

olfactory bulb (Johansson et al., 1999). However, they fail to couple BrdU staining with 

ependymal markers and they base their conclusion on BrdU+ cell proximity to the ventricular 

surface, as well as the use of ventricle-injected dyes that could very well diffuse to the 

neighbor proliferative non-ependymal cells. In an area of the brain where VZ ependymal cells 

and SVZ proliferative cells are densely packed, the use of markers that allows setting them 

apart is crucial. 

In 2005, Spassky et al. managed to replicate previous experiments of [3H] thymidine 

and BrdU incorporation with clear markers of mature ependymal cells, like the presence of 

cilia in TEM images or immunolabels, respectively. Hence, this study settled the current 

consensus about ependymal cells, which is that they are postmitotic in physiological 
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conditions (Spassky et al., 2005). A single-cell RNA-seq study later corroborated this by 

establishing that ependymal cells were transcriptionally different from adult NSCs and that 

they did not proliferate in vivo (Shah et al., 2018). Besides, this work suggests that ependymal 

cells do not replicate either upon injury, like stroke. Nevertheless, a previous one convincingly 

proves that stroke induction leads to the proliferation of ependymal cells. According to its 

authors, constitutive Notch signaling, which is active in ependymal cells, maintains ependymal 

cells in a quiescence state in normal conditions. However, its inhibition or the presence of a 

stroke can reactivate these cells to generate new neurons that will colonize the olfactory bulb 

(Carlén et al., 2009). The difference with the previous report is the mode of stroke induction. 

The latter achieves it through middle cerebral artery occlusion, whereas the former does it by 

collagenase injection in the ventricles. It is possible that Carlén et al. are closer to the reality 

of a stroke and that hence, ependymal cells indeed can be reactivated upon said trigger. 

To sum up, adult forebrain ependymal cells are postmitotic in vivo under normal 

circumstances, but they could act as a reservoir of potential neuroblasts in case the brain 

suffers damage and needs repair.   

2.1.2.4. Hydrocephalus, a condition linked to ependymal cell 

function 

Defects in CSF homeostasis can lead to a pathological condition known as 

hydrocephalus. It is caused by the accumulation of CSF in the ventricles, which in turn, causes 

their enlargement and constriction of the brain parenchyma (Figure 13). It is a highly complex 

disease due to the existence of several subtypes with different etiologies and 

pathophysiological mechanisms. Among the most common and severe symptoms are a 

reduced mobility, an impaired cognition, sensory deficits, epilepsy, endocrine dysfunction, 

which can affect growth in children or fertility, vomiting, depression and chronic headaches 

(Vinchon et al., 2012). It can be fatal if left untreated in up to 50% of the cases. Currently, the 

primary treatment is the surgical insertion of a shunt catheter to extract the accumulating CSF 

from the ventricles and conduct it into the peritoneal cavity or an alternate absorption site, 

which is not risk-free (infection, hemorrhage, etc.) (Lee, 2013). 

The knowledge about the genetic and molecular causes of hydrocephalus is essential, 

like in all diseases, to the development of new therapeutic strategies. According to the age of 
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onset, it can be congenital, pediatric or adult hydrocephalus (Hamilton et al., 2016; Shaheen 

et al., 2017), with a defined genetic cause or environmental, such as an infection, 

subarachnoid hemorrhage or brain trauma. Among the genes mutated found in congenital 

hydrocephalus, we can find EML1, a gene that encodes a microtubule-binding protein that 

regulates PCP and whose ablation causes abnormal migration pattern of CNS cells during 

development (Shaheen et al., 2017), MPDZ, which encodes for a tight junction protein 

essential for epithelial polarity (Al-Dosari et al., 2013) or CCDC88C, which also seems to be 

involved in the Wnt-PCP pathway (Drielsma et al., 2012).  

Congenital hydrocephalus is also linked to ciliary motility defects. Primary ciliary 

dyskinesia (PCD) is a pediatric syndrome caused by disfunction of motile cilia and flagella. 

Consequently, all body organs whose function depends on it are affected. Therefore, PCD 

causes chronic respiratory infection, otitis, male infertility, and situs inversus as the most 

common symptoms (see above, Chapter 2- 2.1.1 Multiciliated epithelia in mammals). 

Nonetheless, it has also been linked to female infertility and hydrocephalus. Several reports 

of families affected by hydrocephalus have linked it to PCD, but the incidence of such 

malformation in PCD patients is very low (Lee, 2013; Spassky and Meunier, 2017).  

Many models of PCD have been developed in rodents, since the prevalence of 

hydrocephalus in such animals with disrupted ependymal development or function is high, 

although the disease mechanisms are diverse. Some of them are based on mutations on 

intraflagellar transport motor proteins, such as Kif3A and Ift88 mutants. These proteins are 

essential for the formation, maintenance and function of cilia and their loss before birth leads 

to the absence of motile cilia on ependymal cells and the development of hydrocephalus in 

mice (Liu et al., 2014; Mahuzier et al., 2018). Other PCD models are based on animals able to 

produce motile cilia but, due to the absence of ultrastructure axoneme components in the 

cilium, usually visible by TEM analysis, they lack the ability to beat and produce a functional 

CSF flow. This is the case, for instance, of the Mdnah5 and Hydin mutants (Lechtreck et al., 

2008). Deficits in PCP can also entail an improper motile cilia function, despite the presence 

of a normal number of cilia with usual length. Thus, ablation of the already mentioned PCP 

gene Dvl has also been implicated in the onset of hydrocephalus (Ohata et al., 2014). Finally, 

mouse models that include a PCD phenotype, this is, infertility, aberrant respiratory tract 

epithelial function and hydrocephalus, due to a complete absence of motile cilia in all 
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multiciliated tissues, turn to deletion of upstream genes that control MCC differentiation. Such 

is the case of Geminin coiled-coil domain-containing protein 1 (GemC1) (Terré et al., 2016), a 

gene that will be extensively reviewed and studied in this work (see Published work in Neuron  

and work ready for submission), and its downstream effector, FoxJ1 (Chen et al., 1998) (Figure 

13).  

Since hydrocephalus is due not only to problems in the production or function of motile 

cilia, but also the balance of CSF production and absorption, other hydrocephalus rodent 

models have been established. Notably, KO or mutation of genes that control choroid plexus 

proper development and function, like Rfx-3 (Baas et al., 2006) and Tg737 (Banizs et al., 2005). 

The latter is a curious case, since the onset of hydrocephalus precedes normal motile cilia 

development (first postnatal week), accompanied by an increase of CSF production due to ion 

transport defects. However, cilia that develop after the hydrocephalus are short and 

disorganized. This leads to the hypothesis that this gene’s mutation causes hydrocephalus via 

cilia-independent mechanisms, but these structures are subsequently aberrant, probably due 

to a built-up intracranial pressure, which can feedback the worsening of the pathology (Banizs 

et al., 2005; Taulman et al., 2001). 

The differences in hydrocephalus penetrance in cilia-related mutations across species 

can be explained due to divergences in size of ventricular system and genetic disparity 

between animals. Thus, as mentioned, motile cilia defects lead to hydrocephalus in almost all 

individuals in rodents, whereas in humans the incidence of hydrocephalus in patients with 

PCD is low. To make things even more complex, zebrafish can develop hydrocephalus, but not 

because of motile cilia ablation, but primary cilium defects (Olstad et al., 2019). In humans, 

ciliary beating is thought to be more determinant for near-wall CSF flow, whereas macroscopic 

CSF dynamics is controlled by pulsatile CSF production from the choroid plexus, ventricular 

wall expansion and contraction and arterial pressure (Spassky and Meunier, 2017). 
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Figure 13. Hydrocephalus in humans and mouse models. (A) Sagittal brain magnetic resonance image of a 

patient with non-communicating 

hydrocephalus due to aqueduct 

stenosis (green arrow). The 

obstruction to CSF flow between the 

third and fourth ventricles lead to the 

enlargement of the ventricular cavities 

and constriction of the brain 

parenchyma. The image to the right 

shows the same patient after 

practicing an endoscopic third 

ventriculostomy, which consists of 

making an opening on the floor of the third ventricle, so that the excess of CSF is evacuated. Adapted from Kahle 

et al., 2016 . (B) A mouse model of hydrocephalus, in this case due to a homozygous mutation of the axonemal 

dynein Mdnah5. Mice display a head bulge due to the enlargement of the ventricles, growth retardation and 

early postnatal death. These phenotypes are common in other hydrocephalus models, like GemC1 KO models. 

Adapted from Ibañez-Tallon, Gorokhova and Heintz, 2002. 

 

2.1.3. Ependymal birth and specification mechanisms 

Multiciliated ependymal cells are born during late-gestation from RGCs. Birth dating 

experiments with BrdU showed that the bulk of these cells is born between E14 and E16. 

Besides, they are born in a caudo-rostral gradient, with the first ependymal cells becoming 

postmitotic in the caudal regions of the ventricle lateral walls, and then progressing rostrally 

as more and more ependymal cells are produced. The same authors of the study proved a 

continuity between RGCs and ependymal cells by carrying out striatal injections of AdenoCre 

viruses in GFP reporter mice (Spassky et al., 2005). At P0, the only bridge between the VZ and 

the striatum consists of the RGC processes that expand between the two (Tramontin et al., 

2003). Thus, viral injections in the striatum would only label cells in situ or VZ cells that 

extended a long process into such area. Indeed, after P0 infection with AdenoCre viral particles 

in the striatum, the soma of RGCs appeared labeled two hours later in the VZ. Furthermore, 

some of these cells generated ependymal cells in the adult brain that retained such marker, 

hence proving the continuity between RGCs and ependymal cells (Spassky et al., 2005). 
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The most upstream specificators of the MCC fate that have been identified are a family 

of micro-RNAs (miRNAs). These encode a class of small (21-25 nucleotide-long), non-coding 

RNAs that regulate gene expression through post-transcriptional repression. Most of them 

bind to mRNAs on their 3’UTR, which then targets the mRNA for degradation or translation 

repression (Wahid et al., 2010). The family of miR-34/449 are an evolutionary conserved group 

of miRNAs that are expressed in MCC epithelia, like the multiciliated epidermis of Xenopus 

laevis embryos and primary cultures of human airway mucociliary epithelial cells (Marcet et 

al., 2011), as well as mouse respiratory epithelium (Song et al., 2014). The brain also expresses 

some of these miRNAs, although it has not been described specifically in MCC organs, but 

whole-brain lysates. They are encoded in three different loci that produce six components of 

the family (miR-34a, miR-34b/c and miR-449a/b/c). Although they are necessary for 

multiciliation, they show functional redundancy, since combined double knock-out (DKO) of 

some of the three loci does not display any particular phenotype. Only a DKO of miR-34b/c 

and miR-449a/b/c presents perinatal increased mortality (Wu et al., 2014). Other studies have 

used triple knock-out (TKO) of the three loci that shows a PCD-like phenotype in mice. The 

physiological consequences range from infertility, due to a defective gamete transport in the 

female reproductive organs and absent spermatogenesis, to growth impairment and high 

lethality, rooted in mucociliary airway clearance deficits, which cause respiratory infections. 

Curiously, surviving animals do not develop hydrocephalus (Otto et al., 2017; Song et al., 2014) 

(Figure 14). 

The expression of miR34/449 family members target cell cycle proteins, such as cyclins 

and their dependent kinases, and checkpoint activation genes and trigger cell cycle exit. 

Hence, in the absence of these regulatory molecules, cell cycle progression genes are 

upregulated and an increase of proliferative markers, such as Ki67, PCNA and BrdU 

incorporation is observed in multiciliated epithelia, such as the respiratory one (Otto et al., 

2017). Notch 1 and Delta-like 1 (Dll1) have also been identified as targets, since they present 

miR-449 binding sites on their 3’UTR (Marcet et al., 2011). The Delta/Notch signaling pathway 

is part of a two-component system in which a signal-sending cell expresses membrane-bound 

ligands (like Delta) on the surface and a signal-receiving cell that expresses a receptor (Notch) 

as a transmembrane protein. The interaction of both cell types causes the proteolytic cleavage 

of the Notch intracellular domain (NICD) off the receptor, which is then free to travel to the 
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nucleus and promote gene expression (Guruharsha et al., 2012). This binary system has been 

hypothesized to be key for the acquisition of different cell fates in multiciliated epitheliums, 

where MCCs are in close association with other cell types to jointly maintain the proper 

function of the whole system (Cibois et al., 2015). Upon over-expression of miR-449 in a 

human airway mucociliary epithelial cell culture or Xenopus embryos, a down-regulation of 

Notch1 and Dll1 takes place and an increase in mutlticiliogenesis follows (Marcet et al., 2011). 

This mechanism seems to be conserved with some differences across vertebrates. Not only in 

amphibians, mouse and humans is Notch signaling a regulator of multiciliogenesis. In zebrafish 

pronephros MCCs, during essential fluid propulsion in the developing kidney, the alternate 

Jagged2 (ligand)/Notch3 (receptor) signaling pathway negatively regulates ciliogenesis. Thus 

KD of any of these two components or over-expression of Notch leads to an increase or 

decrease of multiciliogenesis, respectively, in the zebrafish pronephros (Liu et al., 2007) 

(Figure 14).  

BMP signaling is another regulator of MCC cell fate and their associated cells, like 

goblet cells, a specialized mucus-secreting cell essential in mucociliary epithelia like embryonic 

Xenopus epidermis and human airway epithelial cell cultures. Fine tuning of BMP signaling is 

essential for correct organogenesis in MCC systems. BMP signaling blocking leads to higher 

MCC differentiation in mucociliary epithelia, whereas its chronic activation has the opposite 

effect. Furthermore, BMP does not regulate MCC differentiation independently of Notch, but 

there is crosstalk between both pathways. BMP activity triggers Notch ligand (Dll1) 

upregulation, thereby preventing MCC specification, only when both are activated at the same 

stage (Cibois et al., 2015) (Figure 14). 

Considering the mammalian brain, there are less studies targeting the MCC fate 

acquisition of the brain ependyma. A TKO of the miR-34/449 family entails perinatal increased 

mortality probably due to brain defects, namely, smaller forebrain structures implicated in 

many functions, including reward pathways, feeding, and social behaviors (Wu et al., 2014). 

However, these deficits are present at least since E18.5, before the differentiation of 

ependymal cells (Spassky et al., 2005) and consequently cannot be linked to an aberrant MCC 

function or presence. Even though a direct link between miRNAs and MCC differentiation has 

not been proven yet, Notch signaling seems to play a role in such process. An over-expression 

of NICD (Notch signaling activation) inhibits both neuronal and MCC differentiation in the 
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neuroepithelium, this is, cells retain their radial glia characteristics (Kyrousi et al., 2015). 

Interestingly, Notch signaling is present in mature ependymal cells of the adult brain and 

seems to be necessary to keep their postmitotic stage and repress them from generating 

neuroblasts that migrate to the olfactory bulb (Carlén et al., 2009; Zhao et al., 2009). However, 

a study proving whether Notch is necessary for ependymal specification is lacking. 

The mechanism by which Notch is able to favor an MCC fate has also started to be 

elucidated. This signaling pathway activates the expression of Multicilin, a protein encoded by 

the gene mcidas, which is necessary for multiciliation in Xenopus epidermis, mouse tracheal 

epithelial cells and neuroepithelium. This protein is directly downstream of GemC1, whose 

function in promoting ependymal fate can also be tuned by Notch activity (Kyrousi et al., 2015; 

Stubbs et al., 2012) (Figure 14). 

Figure 14. Multiciliated cell specification. The most upstream regulator of MCC fate is a family of micro-RNAs, 

the miR-34/449 family. They down-regulate Notch activation in the mammalian airways and Xenupus embryonic 

epidermis. Although these mi-RNAs have not been shown to have a role in ependymal specification, Notch is 

known to maintain RGCs and prevent their differentiation in ependymal or neuronal cells. It does so by inhibiting 

GemC1 or Multicilin, the former being upstream of the latter and being able to induce its expression by directly 

binding to its regulatory sequences. These proteins form complexes with the E2F transcription factors E2F4 or 

E2F5 and their co-activator Dp1 (see Chapter 2 – The Geminin family: regulators of DNA replication with a role in 

multiciliogenesis). Thus, they activate gene expression of transcription factors directly involved in 

multiciliogenesis (Myb, FoxJ1, Rfx2, Rfx3). GemC1 and Multicilin are also responsible for the activation of genes 

directly present in centriole amplification, like ccdc78, ccno and deup1 and, in a lesser extent and not in all tissues, 

cep152, plk4 and cetn2, to cite a few. Arrows formed by double lines indicate a direct binding to the regulatory 

sequences of the genes at the end of said arrows. Asterisks indicate that this pathway has not been shown to act 

in ependymal cell specification. Modified and updated from (Brooks and Wallingford, 2014). 
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2.1.4. Ependymal differentiation 

2.1.4.1. Basal bodies and motile cilia 

As previously stated, ependymal cells’ primary characteristic is the presence of an 

apical ciliary tuff and basal bodies that nucleate all cilia. The process of differentiation thus 

entails that a monociliated RGC, which presents one primary cilium that protrudes into the 

ventricular lumen and the centrosome at its base, must amplify its centrioles from two to 

several dozens (Spassky and Meunier, 2017).   

The centriole is a barrel-like cylindrical structure consisting of nine microtubule triplets 

that display radial symmetry. The triplets are formed of three complete microtubule, A, B, and 

C, from inner to outer-most one, composed of heterodimers of α- and β-tubulin. This 

microtubule scaffold encircles a centriole lumen, where a well-defined structure known as the 

cartwheel is found. It is located on the proximal end of the centriole, this is, the pole of the 

centriole that is associated with another orthogonally-arranged centriole to form the 

centrosome and the site of new centriole formation via the centriolar pathway. The cartwheel 

resembles the hub and spokes of a wheel, where the wheel is formed by the microtubule 

triplets and the spokes contact it on each of the outer-most A microtubule (Winey and 

O’Toole, 2014; Zhang and Mitchell, 2015). The cartwheel, whose major protein component is 

Sas6, plays a key role in the assembly of new centrioles and maintenance of the ninefold 

symmetry (Nakazawa et al., 2007). Therefore, once these new centrioles are synthesized, it 

disappears as they proceed through the cell cycle in vertebrate cells. Basal bodies at the base 

of motile cilia in MCCs, on the other hand, appear to maintain their cartwheels after assembly, 

probably to ensure centriolar stability, due to the mechanical stress that ciliary beating puts 

on the basal body (Winey and O’Toole, 2014; Zhang and Mitchell, 2015) (Figure 15A).  

On the exterior walls of the centrioles, upon completion of the cell cycle or upon basal 

body maturation in MCCs, structures called the distal and subdistal appendages are formed, 

a marker of centriole maturation. In non-MCCs, these structures are found on the older or 

“mother” centriole.  In basal bodies, they are called the basal foot and transitional fibers, 

respectively. They are essential for their function as microtubule-organizing centers of the cell, 

as signaling platforms, primary cilium formation and anchoring of the centriole or basal body 

to the plasma membrane (Winey and O’Toole, 2014). Basal bodies and some immotile cilia 

(like in photoreceptors) also present a structure known as the rootlet. This is a thick striated 
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bundle of filaments that projects from the proximal end of the basal body and extends close 

to the nucleus. It has been suggested to confer mechanical support, which is essential for the 

long-term maintenance of ciliary function (Garcia and Reiter, 2016) (Figure 15B). 

Surrounding the two centrioles a matrix of proteins known as the pericentriolar 

material is assembled. It plays a role in centriole duplication, microtubule stability in the 

mitotic spindle, centrosome integrity and basal body multiplication (Mercey et al., 2019a; 

Woodruff et al., 2014).  

Basal bodies act as anchors for all primary and motile cilia. The primary cilium is 

immotile and is extended from a single basal body corresponding to the mother centriole of 

the centrosome, while the younger or “daughter” centrioles lies orthogonally to it. In MCCs, 

after multiplication of the two centrioles to several dozens, apical-wards migration to the 

plasma membrane and docking, each basal body nucleates a motile cilium. Cilia, either 

primary or motile, are virtually present in all body cells and are formed by a structure called 

the axoneme, based on microtubule filaments. Motile cilia axonemes are made of nine outer 

doublet microtubules (formed of tubules A and B) and two single central pair of microtubules, 

a structure known as 9+2. Primary cilia lack the central pair of microtubules and are hence 

known as 9+0. The microtubule doublets are held together by a proteinous linkage called 

nexin. Apart from the inner pair of central microtubules, motile cilia possess radial spokes and 

dynein arms. As mentioned earlier, dynein is a microtubule-associated motor protein. The 

dynein arms are hence the motors that permit the sliding of microtubules and consequent 

ciliary beating. They are attached to the A tubule in each doublet and their head projects 

towards the B tubule of the neighboring doublet. Ciliary bending requires the coordinated 

action of the central microtubule pair, the radial spokes and the dynein arms (Dawe et al., 

2007) (Figure 15C). 
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Figure 15. Ultrastructure of centrioles and ciliary axonemes. (A) Centrioles are formed by triplets of 

microtubules (A, B and C) that display nine-fold symmetry. In immature centrioles and basal bodies, they present 

in their proximal lumen a structure known as the cartwheel, formed by a central hub and spokes that connect 

with the inner A microtubule. Cross-sections of centrioles with and without cartwheel are displayed on the right, 

as seen via electron microscopy. (B) On the external walls of their barrel-like structure, centrioles display a series 

of structures, like distal and subdistal (not shown) appendages, a basal foot and a filamentous rootlet, essential 

for membrane anchoring, cilia nucleation and, consequently, its function. (C) Cilia are membrane protrusions 

that contain a microtubule-based structure known as the axoneme. Like centrioles, it presents nine-fold 

symmetry, but it is composed of doublets, and not triplets, of microtubules. These are linked together by nexin 

connections and, in motile cilia, present outer and inner dynein arms, motor complexes essential for ciliary 

bending. Motile cilia also have a pair of central microtubules and radial spokes, which is the reason why they are 

said to contain a 9+2 axoneme, whereas immotile cilia do not present central microtubules or spokes. They 

present a 9+0 axoneme. Cross-sections of 9+2 and 9+0 cilia with and without a central pair of microtubules, 

respectively, are shown below, as seen via electron microscopy. Images adapted and modified from Dawe, Farr 

and Gull, 2007, Nakazawa et al., 2007, Voronina et al., 2009, Garcia and Reiter, 2016 and Zhu et al., 2019. 

 

2.1.4.2. Centriole amplification in MCCs 

In order to achieve the high centriole numbers characteristic of MCCs, vertebrates 

have evolved specific mechanisms that differ from normal centriole duplication in cycling cells 

(Zhao et al., 2013). Two distinct modes of centriolar amplification co-exist in them: the 

centriolar pathway, highly similar to centriole duplication in cycling cells, and the de novo or 

deuterosomal pathway. Both act simultaneously and in a synchronous manner in MCCs during 

a centriole amplification pathway that comprises several stages (Al Jord et al., 2014; Mercey 

et al., 2019b). 
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In postmitotic monociliated ependymal progenitors, the Deup1 and Ccdc78 proteins 

are recruited to the daughter centriole. These form part of the deuterosomes, electron-dense 

platforms that can nucleate procentrioles during their maturation (Sorokin, 1968). The 

aforementioned deuterosomal proteins are in turn responsible for the recruitment of Cep152 

and Plk4, essential in centriole biogenesis (Sonnen et al., 2013). This happens, though, 

differently from centriole duplication. Whereas in cycling cells, these two proteins are 

symmetrically located in mother and daughter centrioles in order to perform 

semiconservative centriole duplication (each new centrosome is formed by a mother and a 

newly formed daughter centriole), in ependymal progenitors, they are asymmetrically 

recruited with higher presence on the daughter centriole (Al Jord et al., 2014). As new 

deuterosomes are formed on the proximal wall of the daughter centriole, spherical assemblies 

of these platforms and new procentrioles are formed. One or two deuterosomes are formed 

at the same time on the daughter centriole and later released into the cytoplasm with the 

procentrioles attached to them. Several rounds of this process follow so that, when observed 

via structured illumination microscopy, these appear as rings or halos in the cytoplasm that 

are positive for Sas6. Thus this is called the halo or amplification phase of centriole 

multiplication (Al Jord et al., 2014) (Figure 16A). Once all spherical assemblies are formed and 

released into the cytoplasm, a synchronous growth of the procentrioles and the acquisition of 

some mature centriolar markers (like GT335 antibody labeling, which corresponds to 

glutamylated tubulin) occurs. When using time-lapse fluorescence microscopy methods, this 

process is observed as an intensification of the halo signals, disposed in a ring like the “petals” 

of a flower, around the deuterosomes and is hence known as the flower or growth phase of 

centriole amplification (Figure 16B). The process concludes with a simultaneous detachment 

of the procentrioles from the deuterosomes in the so-called disengagement phase, and their 

apical migration and docking to the plasma membrane. After that, each now mature centriole 

or basal body nucleates a single motile cilium (Figure 16C). This deuterosomal pathway 

contributes to the formation of 90% of the basal bodies (Al Jord et al., 2014). 
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Synchronously to this process, the centriolar pathway is responsible for the formation 

of about 10% of the new basal bodies. As deuterosomes are formed on the wall of the 

daughter centriole during the halo stage, procentrioles also start to grow on the proximal 

segment of the mother and daughter centrioles, displaying an orthogonal configuration, just 

like during centriole duplication in cyclinc cells. At the same time as procentrioles start 

growing from deuterosomes in the flower stage, procentrioles budding from the mother and 

daughter centrioles do so as well. And finally, the disengagement from these is also 

coordinated with the detachment of procentrioles from deuterosomes (Figure 16C) (Al Jord 

et al., 2014).  

Figure 16. Process of centriole amplification in multiciliated cells. Centriole amplification in MCCs is a stepwise, 

highly synchronous process that entails several stages. (A) During the halo or amplification phase, procentrioles 

start to form mainly from electron-dense platforms called deuterosomes, made of the protein Deup1. 

Simultaneously to the deuterosomal pathway, a minority of procentrioles arise on the proximal wall of the 

mother and daughter centrioles, in the centriolar pathway. Several rounds of this process occur in which 

deuterosome-attached procentrioles are released into the cytoplasm. This process has been studied via 

immunofluorescence, in which small rings or halos are visible in a transgenic mouse line that expresses the 

centriolar protein Centrin-2 fused to the GFP (in green) (Higginbotham et al., 2004). The mother and daughter 

centrioles are seen as two close bright spots and a centrin-2-GFP big aggregate (with an “X” on top) is formed 
inevitably in this line during centriole amplification. The halos are associated to spherical structures labeled with 

an antibody that recognizes Deup1 (red) (unpublished, Spassky group images). TEM analysis reveals that the 

deuterosomes (white arrows) nucleate nascent procentrioles (black arrows) and form on the wall of the daughter 

centriole during the halo phase. (B) Procentrioles start growing attached on the deuterosomes or on the walls of 

the mother and daughter centrioles during the growth or flower phase. The two paralogs Deup1 and Cep63 

control one process or the other, respectively. Proteins essential for centriole duplication in cycling cells, such as 

Cep152 and Plk4 are also present in centriole amplifications in MCCs, as well as the cartwheel protein Sas6. 

A B C 
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During this phase procentrioles grow in size and acquire mature centriole traits, like glutamylated tubulin or 

protein of centriole 5 (POC5). Distal proteins like Cp110, which regulates axonemal length, are also recruited to 

the procentrioles on this stage. When observed via immunostaining, growing procentrioles arrange themselves 

like the petals of flower, around the now bigger deuterosome spheres or around the mother and daughter 

centrioles (yellow arrowheads, unpublished, Spassky group images). This can also be seen in TEM images, where 

procentrioles (black arrowheads) are seen budding from a black, electron-dense deuterosome (white arrow). (C) 

Mature centrioles disengage simultaneously from the deuterosomes and mother and daughter centrioles and 

migrate to the apical membrane, where they dock and nucleate the motile cilia that can now grow. Adapted from 

Spassky and Meunier, 2017 and unpublished images of the Spassky team. 

 

2.2. The neurogenic niche, adult neural stem cells and adult neurogenesis  

Multiciliated ependymal cells line the ventricular cavities forming a continuous barrier 

of epithelial cells that separate the CSF from the SVZ and the rest of the brain parenchyma in 

the adult. Apart from their multiple basal bodies, characterized by EM, they possess lateral 

processes interdigitated with those of other ependymal cells, microvilli and an electron-

luscent cytoplasm where numerous mitochondria and a large spherical nucleus can be found 

(Doetsch et al., 1997). Most ependymal cells are discernable by the presence of multiple long 

motile cilia and a large apical contact with the ventrcicular lumen. However, a subclass of 

ependymal cells, called E2, are biciliated with a somewhat less extense apical contact, longer 

cilia and a 9+2 axoneme. They also differ from the classic ependymal cells because their 

mitochondria are located around the nucleus, and not near the basal bodies. They were 

discovered only slightly over ten years ago because their frequency on the wall is more than 

ten times smaller than regular ependymal cells (Mirzadeh et al., 2008). In contrast, these 

biciliated cells have been shown to be the most prevalent cell type on the spinal cord VZ, lining 

the central canal. Furthermore, unlike MCCs on the lateral ventricle, E2 cells of the spinal cord 

have been shown to proliferate in the spinal cord under physiological conditions, but they 

have not been described to migrate away from the VZ and differentiate into neurons or glia 

(Alfaro-Cervello et al., 2012).  

Back to the ventricular-subventricular zone (V-SVZ), other important cell types have 

been identified. One of the most important is SVZ astrocytes. These are called B1 cells and 

present irregular contours, an invaginated nucleus, an electron-luscent cytoplasm and 

abundant intermediate filaments, cytoskeletal components heavily composed of GFAP, a 

marker of astrocytes. They are located in close contact with ependymal cells. They extend 
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many processes to the ependymal layer and their cell body is located immediately beneath 

the ependyma. They present a short apical process, squeezed in between the ependymal cell 

bodies, that ends in the ventricular surface forming a small apical contact, more than ten times 

smaller in average than the one of ependymal cells. These B1 cells also present a primary 

cilium on their ventricular contact, protruding into the ventricular lumen, with a 9+0 axoneme. 

(Doetsch et al., 1997; Mirzadeh et al., 2008). They are generated from RGCs, as it was shown 

by the same experiment performed by Spassky et al. in 2005 to prove RGCs were precursors 

of ependymal cells. RGCs persist until the next postnatal week and extend a long process from 

their cell body in the VZ until the pial surface. The injection of a Cre-expressing adenovirus in 

a Cre reporter mouse at P0 away from the ventricle, in the brain parenchyma, led to labeling 

of RGCs away from the site of infection, since the viruses entered RGCs through their long 

extending processes. These reporter-positive RGCs differentiated a few days later into GFAP+ 

astrocytes of the V-SVZ, along with other cell types (Merkle et al., 2004). However, it was seen 

via retroviral barcoding (see Chapter 1 – 1.4.2. Clonal analysis techniques) that B1 cell-

precursors diverge from the other forebrain cell lineages during mid-fetal gestation (E13-E15) 

and then remain largely quiescent until their reactivation at different times during the adult 

life (Fuentealba et al., 2015). It was suggested that B1 progenitor cells slow down their cell 

cycle via upregulation of p57 in the embryo to become this quiescent-like cells described 

before (Furutachi et al., 2015).  

B1 cells in the V-SVZ are found single or forming clusters of cells that display small 

ventricular contacts, surrounded by ependymal cells with large apical contacts, arranged in a 

rosette-like or pinwheel structure (Figure 17A), as it is seen on ventricular wholemounts 

immunostained with cell-cell adhesion markers, like β-catenin or Zonula occludens protein 1 

(ZO-1) (Figure 17B). 

The other two major types of the V-SVZ are B2, C and A cells, which do not display 

apical contacts and hence do not form part of the superficial pinwheel structure. B2 cells are 

rather multipolar astrocytes with a stellate morphology like parenchymal astrocytes and are 

localized basally to ependymal and E cells, in the interface between the V-SVZ and the striatal 

parenchyma (Platel and Bordey, 2016). C cells are immature neuronal-committed progenitors 

with fewer processes than B1 cells, a more spherical shape and a cytoplasm that is more 

electron-dense than that of B1 astrocytes. Its nucleus is also highly invaginated and it does not 



70 
 

present the intermediary filaments characteristics of B1 cells. Finally, A cells are neuroblasts 

with electron-dense cytoplasms and an occasionally invaginated nucleus. They possess a thin 

leading process and a thick trailing one, a morphology typical of migrating immature neurons. 

They form tangential migrating chains that split and separate along the antero-posterior axis 

of the V-SVZ. They are separated from the striatum and the ependyma by extensions of B2 

and B1 cells that form sheaths around such cell chains (Doetsch et al., 1997, 1999a) (Figure 

17A).  

Other minority cell types identified in the V-SVZ are tanycytes, which are defined as 

specialized ependymal cells that extend long processes into the brain parenchyma (Furube et 

al., 2020), and microglia, which fulfil immunological functions in the CNS (Doetsch et al., 1997). 

B1, C and A cells form a lineage continuum that is the base of adult neurogenesis. This 

is the formation of neurons de novo. The brain had long been considered a non-renewable 

structure, with virtually no generation of new neurons. Until, in the 1960s, Altman proved, 

upon [3H] thymidine treatment in rats and autoradiographic detection, the presence of a 

migratory stream of cells from the subependymal layer to the olfactory bulb (Altman, 1969). 

Later, with the coming of genetic engineering and the use of transgenic animals, adult 

neurogenesis could be further demonstrated with tissue grafts. Thus, when neuroblasts 

labeled with a reporter (β-galactosidase) were implanted in the adult SVZ of a wild type (blank 

background tissue) mouse via stereotaxic injections, the former were seen migrating to the 

olfactory bulb. Besides, injections in other areas yielded no migration of the donor’s transgenic 

neuroblasts (Lois and Alvarez-Buylla, 1994). Shortly afterwards, the identity of the adult NSC 

precursor was revealed. Treatment with the anti-mitotic agent cytosine-β-D-

arabinofuranoside led to the depletion of neuron progenitors (C cells) and neuroblast (A cells)  

migrating chains in mice SVZ, due to consumptive divisions and migration, respectively, but 

left ependymal and what are now known to be B1 cells intact in the V-SVZ. Of these two, only 

the astrocytes, but not the ependymal cells, showed proliferative capacity and were from then 

on appointed as the primary adult NSCs of the V-SVZ neurogenic niche (Doetsch et al., 1999a, 

1999b). 

In the adult rodent, four in five B1 cells undergo symmetric consumptive divisions to 

generate two transit-amplifying C cells, whereas the other 20% perform symmetric 

proliferative divisions to maintain the pool of adult NSCs. Asymmetric self-renewing divisions 
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are thought to be absent. A direct consequence of this cell division dynamics is that B1 cell 

density and adult neurogenesis decrease significantly with age (Obernier et al., 2018). C cells 

are rapidly-dividing progenitors organized in clusters juxtaposed in between the chains of 

migrating neuroblasts that have been proposed to divide symmetrically around three times 

before being consumed in a symmetric division that generates two A cells. Lastly, these 

neuroblasts have also been found to divide once or twice before reaching their final 

destination in the olfactory bulb (Doetsch et al., 1999b; Ponti et al., 2013). Once they are 

generated in the SVZ, they migrate tangentially to join the rostral migratory stream (RMS), a 

network of interconnecting paths that leads neuroblasts rostrally, away from the SVZ, into the 

olfactory bulb. There, they migrate radially and differentiate into granule cells or 

periglomerular neurons (Doetsch et al., 1999b; Lim and Alvarez-Buylla, 2016).  

Adult neurogenesis is a well-established phenomenon in rodents who, although with 

a significant decline over the years, produce thousands of new neurons every day (Kriegstein 

and Alvarez-Buylla, 2009) (Figure 17C). New neurons have also been found to generate de 

novo in invertebrates (Brenneis and Beltz, 2019), birds (Alvarez-Buylla and Kirn, 1997), or fish, 

a group where zebrafish has emerged as a potent model of constitutive neurogenesis 

throughout life and neural regeneration upon injury (Kizil et al., 2012; Ogino et al., 2016). 

However, adult neurogenesis in humans remains a matter of controversy.  
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Figure 17. Pinwheel architecture in the Ventricular-Subventricular zone and adult neurogenesis. (A) Schematic 

representation of the V-SVZ neurogenic niche. Multiciliated ependymal cells (brown cells) present large apical 

contacts, from which the motile cilia protrude into the ventricular lumen. They arrange themselves around the 

small apical contacts of adult neural stem cells or B1 cells (blue cells), from which a primary cilium protrudes into 

the lumen, forming a pinwheel structure as seen on V-SVZ wholemounts. B1 cells extend a basal process that 

contacts blood vessels. Rapid transient-amplifying progenitors or C cells (green cells) divide in the SVZ and 

generate neuroblasts or A cells unsheathed by the processes of B1 cells. Other minority cells in the neurogenic 

niche are biciliated ependymal cells or E2 cells (pink cells) and B2 astrocytes (light blue cells). Adapted from 

(Mirzadeh et al., 2008). (B) Labeling of V-SVZ wholemounts with cell-cell adhesion markers like β-catenin (in red) 

reveals the pinwheel structure in the neurogenic niche, with ependymal cells characterized by the presence of 

multiple basal bodies (in white) around small apical contacts with two centrioles on the surface (yellow 

arrowheads). (C) The SVZ neurogenic niche is one of the two sites of adult neurogenesis. B1 cells divide 

symmetrically to generate C cells, which are committed to the neuronal lineage and divide rapidly to give rise to 

A cells. These migrate in chains out of the SVZ to form the Rostral Migratory Stream (RMS) to the olfactory bulb 

(OB), where they differentiate into interneurons and integrate the local circuitry. Adapted from De Chevigny, 

Cremer and Coré, 2017.  

 

We have used the Brainbow and MADM techniques reviewed earlier (see Chapter 1 – 

1.4.2.1. The Brainbow technique and 1.4.2.2. Mosaic Analysis with Double Markers) to 

establish the clonal relationships between multiciliated ependymal cells and B1 cells in the 

formation of the neurogenic niche. These have also helped us elucidate the mode of cell 

division of their progenitors, as well as the temporality of generation of both cell types.  

2.2.1. Adult neurogenesis in humans 

In 1998, the first clear evidence pointing towards the existence of adult neurogenesis 

in humans was published. A limited number of cancer patients, who were given BrdU for 

diagnostical purposes, were examined post-mortem in the look for BrdU+ cells displaying 

mature neuronal markers like NeuN. Some of these cells were identified in the second 

neurogenic niche that has been identified in vertebrates: the subgranular zone (SGZ) of the 

dentate gyrus of the hippocampus. Some cells with proliferative markers were also found in 

the SVZ, but failed to correlate with NeuN or GFAP (Eriksson et al., 1998). The presence of an 

RMS and immature neurons with cell markers like doublecortin (DCX) and the proliferation 

marker Ki67 were observed in the SVZ of infants. However, these cells were later undetectable 

in older children (Sanai et al., 2011). Other studies have reached similar conclusions, claiming 

that proliferating Ki67+ cells in the SVZ and SGZ of the hippocampus immunoreactive for DCX 

can be found in young children, but not in older ones or adults (Dennis et al., 2016; Sorrells et 

al., 2018). However, as it was previously stated, this remains an area of controversy, since 
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other groups have reported the presence of unchanged adult neurogenesis in the SGZ until 

the tenth decade of human life, with a noticeable decrease in this activity in patients of 

Alzheimer’s disease, using the same immature neuronal marker DCX, among others  (Boldrini 

et al., 2018; Moreno-Jiménez et al., 2019).  

These studies make clear the difficulty of performing studies in human adult tissues, 

due to the rare optimum brain tissue availability, the handling of post-mortem samples and 

the lack of noninvasive research methods (Kumar et al., 2019). A thorough study that 

evaluates the impact of fixation and pre-immunostaining treatments has been published (Flor-

García et al., 2020). The authors insist on the importance of assessing differences in antibody 

sensitivity used on immunohistochemistry studies, tissue handling or post-mortem delay to 

produce robust data in the research of human adult neurogenesis.  

 

2.3. The Geminin family: regulators of DNA replication with a role in 

multiciliogenesis 

The Geminin family is formed by three evolutionary conserved and homologous 

interacting proteins. These are Geminin, Mcidas and GemC1. They all present a central domain 

called coiled-coil, homologous among one another (Balestrini et al., 2010; Pefani et al., 2011; 

Quinn et al., 2001). Based on this domain, Geminin is conserved throughout vertebrates, from 

humans and mice to amphibians (Xenopus) and fish (zebrafish), but also invertebrates 

(Caenorhabditis elegans and Drosophila), where it carries out some of the best described 

functions of vertebrate Geminin (Kroll, 2007; Pefani et al., 2011; Quinn et al., 2001). On the 

contrary, the coiled-coil domain of Mcidas and GemC1 is conserved throughout vertebrates, 

including human, mouse, amphibians and fish, but they are absent in invertebrates (Balestrini 

et al., 2010; Pefani et al., 2011; Zhou et al., 2015). Besides this domain, Mcidas and GemC1 

are homologous in another C-terminal domain, named TIRT, conserved at least in humans, 

mice and Xenopus. Thus, Mcidas and GemC1 would be paralogs that arose from a primordial 

Geminin gene, probably at the double round of genome duplication that originated the 

vertebrate genome (Terré et al., 2016).  

Geminin was the first member of the family to be discovered. It was identified in two 

independent cDNA screens of genes that would have an impact on Xenopus development. 
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One of them identified it as a nuclear protein degraded during mitosis, during the metaphase 

to anaphase transition, due to the presence of a destruction box on its N-terminal domain. 

Such motif is the target of the anaphase-promoting complex, a multiprotein complex that 

promotes ubiquitination of its substrates and hence promotes its degradation. Geminin that 

lacked such motif or its over-expression inhibited DNA replication, but only at the moment of 

replication firing. The coiled-coil domain was necessary for this function (McGarry and 

Kirschner, 1998). The mechanism for this role in DNA replication control was later elucidated. 

Wohlschlegel et al. proved that Geminin could bind to the Cdt1 protein (Wohlschlegel et al., 

2000), a licensing factor that is recruited to the origins of replication during G1 to assemble 

the pre-replication complex (pre-RC). Cdt1 is necessary, along with Cdc6, for the recruitment 

of the mini-chromosome maintenance complex, formed by six proteins (MCM2-7) (Figure 18). 

This is the core component of the replicative DNA helicase, which unwinds the DNA double 

helix to ensure DNA synthesis by the DNA polymerase. Its successful loading onto replication 

origin DNA entails origin licensing (Pozo and Cook, 2016). Geminin expression is upregulated 

during S phase and persist through G2 and, by sequestering Cdt1, it ensures there is no re-

replication of the genome. Geminin would thus be an additional mechanism emerged in 

evolution to ensure DNA is replicated only once per cell cycle (Wohlschlegel et al., 2000).  

Because of its function in DNA replication regulation, Geminin ablation in embryonic 

stem cells causes re-replication and polyploidy, the generation of abnormal nuclei, activation 

of the DNA damage response, checkpoint activation and finally, apoptosis, unless Cdt1 is also 

depleted. Thus, Geminin KO homozygous mice die at pre-implantation stages and do not 

progress from the morula eight-cell stage (Gonzalez et al., 2006; Hosogane et al., 2017). Loss 

of Geminin in cycling cells lead to polyploidy, thus ascertaining its role to prevent 

endoreplication (Tachibana et al., 2005). 

The other screen performed by the Kirschner group in 1998 put forth the idea that 

Geminin as a binary agent, not only involved in DNA replication regulation, but also in 

development. The injection of geminin RNA could induce the acquisition of a neuroectoderm 

fate in detriment of the superficial ectoderm, which becomes the epidermis. The mechanisms 

described herein implied the inhibition of epidermal keratin and BMP4 signaling, which is 

complementary and non-overlapping with Geminin in Xenopus embryos, as well as the 

induction of early pro-neural genes and the expression of Geminin in a positive-feedback loop 
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(Kroll et al., 1998).  Furthermore, its conditional deletion in the neural tube has been shown 

to cause patterning defects in said structure, independently of cell cycle progression and 

without apoptosis, with ventral neuron generation and dorsal progenitor specification highly 

impaired (Patterson et al., 2014). 

The expression of Geminin is high in embryonic stem cells and the epiblast, precursor 

of the three germ layers, and it helps maintain the expression of the pluripotency factors Oct4, 

Sox2 and Nanog. It also inhibits trophoblast fate and promotes the generation of a neural 

precursor lineage in detriment of the mesodermal one in vitro. Its conditional ablation in the 

developing cortex is responsible for an enrichment of the progenitor pool, whereas its over-

expression favors the generation of terminally-differentiated neurons (Patmanidi et al., 2017).  

In all, Geminin is a binary actor that can influence the transcription of many genes to 

establish fate commitment at different stages during development and regulate cell cycle 

progression due to its role in DNA replication regulation. 

Mcidas, like Geminin, has been proposed to participate in cell cycle control and cell 

fate decisions. It forms heterodimers with Geminin via their homologous coiled-coil domains 

and tampers with Geminin function in DNA replication licensing, probably by sequestration 

(Caillat et al., 2013; Pefani et al., 2011). It has nonetheless not been described to be an active 

part of the pre-RC, like GemC1 (Figure 18). 

Mcidas encodes a nuclear protein called Multicilin that has been involved in cell fate 

acquisition. Namely, in this respect, it was firstly described to be necessary and sufficient for 

MCC generation in the Xenopus embryo epidermis. In this report, Multicilin was shown to be 

downstream of Notch, which is able to inhibit the former’s influence on multiciliation (Stubbs 

et al., 2012). This protein does not act alone, but it associates with transcription factors E2F4 

or E2F5 and their co-activor Dp1 to form a ternary complex called EDM via their C-terminal 

TIRT domain. The transcriptional activity of this complex transactivates a series of genes 

related to MCC fate specification, such as foxj1, c-myb and rfx2. Centriole biogenesis gene 

transcription is also regulated by the EDM. Among these they were found structural 

components of the centriole, regulators of new centriole biogenesis at the proximal pole of 

the mother centriole (plk4, cep152, sas6), essential agents of the deuterosomal pathway, such 

as deup1, or cyclin O (ccno) (Ma et al., 2014). The latter is a gene necessary for the assembly 
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of deuterosomes whose ablation causes hydrocephaly, mucociliary clearance defects and 

reduced ciliary numbers in MCCs (Funk et al., 2015). Much like Multicilin inhibits Geminin 

function in DNA replication licensing inhibition, Geminin can bind the EDM complex and hinder 

its function in MCC specification (Ma et al., 2014).  

Mcidas is located in a conserved locus that also contains ccno and cdc20b. The latter 

bears the sequence of the miR-449 non-coding molecule that were discussed before and who 

have been suggested to be upstream of the MCC specification cascade. Mutations in mcidas 

or ccno are present in a human syndrome called congenital mucociliary clearance disorder, 

characterized by the presence of lesser numbers of cilia and basal bodies (Boon et al., 2014). 

Much like Geminin, Mcidas or Multicilin seems to have a binary role. On the one hand, 

it can hinder Geminin’s action in DNA replication inhibition. On the other, it is directly 

responsible for the expression of genes essential for the MCC stage. 

The third member of the Geminin family, GemC1 (Geminin coiled-coil domain-

containing protein 1) was discovered in 2010 in an open reading frame sequence homology 

search with already known DNA replication factors. That is how it was found that the Xenopus 

sequence of GemC1 is homologous in its coiled-coil domain to that of Geminin, and that it is 

conserved in vertebrates. Blocking the action of GemC1 by neutralizing antibodies resulted in 

the inhibition of DNA replication in Xenopus egg extract. When using morpholinos to knock-

down its expression in the fertilized egg, a delay in embryo development, a decrease in cell 

density and total DNA content reduction was reported (Balestrini et al., 2010). 

GemC1 interacts with various components of the pre-RC. Namely, CDK2-Cyclin E, 

TopBP1 and Cdc45. The first two are needed for GemC1 loading onto the chromatin, being 

GemC1 a phosphorylation substrate of CDK2. Constitutive phosphorylation of GemC1 leads to 

an increase in DNA replication due to enhanced origin firing. GemC1 is needed for Cdc45 

recruitment to replication origins (Balestrini et al., 2010), a proliferation-associated marker 

that is part of the replicative helicase, along with MCM2-7 and the GINS complex for 

unwinding of the DNA. It is this denaturation activity that permits the DNA polymerase to load 

onto the exposed DNA and initiate synthesis of the new strands (Köhler et al., 2016). The same 

role as promoter of DNA replication firing was found to be essential as well in mammalian cells 

in vitro, namely mouse NIH 3T3 fibroblasts (Balestrini et al., 2010). 
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GemC1 is upstream of Mcidas and induces its expression in MCC progenitors. Both are 

sufficient and necessary for the transformation of RGCs into ependymal MCCs in the 

neurogenic niche, since their over-expression leads to supernumerary MCCs and their knock-

down diminishes their differentiation, in RGCs both in vivo and in vitro. In turn, GemC1 in the 

telencephalon has been shown to be downstream of Notch activity, which inhibits both 

neurogenesis and ependymal generation, and promotes RGCs to stay undifferentiated 

(Kyrousi et al., 2015). This functional hierarchy has also been shown in lower vertebrates, like 

zebrafish, where Notch signaling blockage causes the differentiation of MCCs in the kidney 

tubules at the expense of monociliated cells. In these animals GemC1 also acts upstream of 

Mcidas and their KD leads to the absence of the mammal foxj1 ortholog foxj1b (Zhou et al., 

2015).  

For these reasons, GemC1 has been defined as a master gene of multiciliogenesis. It 

directly transactivates mcidas and foxj1 expression by binding to their promoter sequences in 

mouse cells. Mcidas is also able to bind its own promoter and that of foxj1 to enhance gene 

expression. In the same way that Mcidas forms a ternary complex with E2F transcriptions 

factors and Dp1, GemC1 co-operates with E2F4 or E2F5 and Dp1, forming a complex called 

EDG, for which its TIRT domain in necessary. This protein formation regulates gene expression 

in vivo, in mouse trachea and oviduct, of genes that are essential for centriole amplification, 

much like Multicilin. Apart from MCC specification genes like foxJ1 and mcidas, it triggers the 

expression of deup1, ccno and, in a milder fashion, plk4  and cep152 (Arbi et al., 2016; Terré 

et al., 2016).  

  In the same way as Mcidas, GemC1 interacts through its coiled-coil domain with 

Geminin (Caillat et al., 2015). On the one hand, although it has not been shown directly like 

with Mcidas (Pefani et al., 2011), it is likely that GemC1 modulates the function of Geminin 

when co-expressed in cells by hindering its activity in DNA replication inhibition (Caillat et al., 

2015). On the other hand, Geminin expression has been proved to impede GemC1-dependent 

transactivation of genes like foxj1 (Arbi et al., 2016; Terré et al., 2016).  

Two KO models of GemC1 have been generated. They both display the same 

phenotypes, with litters born at normal ratios, hence suggesting its function is not crucial 

during development, but poor postnatal growth. They are devoid of MCC in the airways and 

present testes hypocellularity and low sperm count in males, as well as a loss of primordial 
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and secondary follicles and absence of MCCs in the oviduct, in females. These histological 

traits lead to infertility of GemC1 KO homozygous mice, and the premature death likely caused 

by defects in airway mucus clearance. These mice also display hydrocephalus with high 

penetrance, due to the acquisition of NSC traits on the ventricular wall, in detriment of MCCs 

(Arbi et al., 2016; Lalioti et al., 2019a; Terré et al., 2016). 

Figure 18. Role of DNA pre-replication complex. The Geminin family plays a role in DNA replication initiation. 

Geminin interacts with Cdt1, a licensing factor that 

is necessary for the recruitment of MCM2-7 to the 

chromatin and open it for replication. Hence, 

Geminin inhibits replication firing. Multicilin does 

not have a direct role on replication firing, but its 

interaction with Geminin through their homologous 

coiled-coil domains can prevent Geminin from 

fulfilling the role just described. Finally, GemC1, the third member of the family is recruited to chromatin by 

TopBP1 and is the substrate of CDK2-CyclinE. Upon phosphorylation, it recruits Cdcd45 to the chromatin, where 

it contributes as part of the replicative helicase to open the double strand of DNA for it to be accessible for the 

DNA polymerase. Adapted from Balestrini et al., 2010. 

2.4. Objectives and hypotheses 

Even though Geminin has not been implicated in multiciliated epithelia cell fate 

acquisition, its antagonist GemC1 has been established as a master gene of multiciliogenesis 

in all multiciliated cell-bearing mammal epithelia. This has prompted us to investigate the 

molecular mechanisms that govern the establishment of the neurogenic niche, notably if 

Geminin family members can alter the modes of divisions and modify the final output of 

neurogenic niche cells. We hypothesized that both Geminin family members, since they have 

antagonistic functions in DNA replication, they could also have them in cell fate specification. 

This has made part of the article published in Neuron in March, 2019, to complement the 

lineage analysis study performed with Brainbow and MADM.  
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SUMMARY

Adult neural stem cells and multiciliated ependymal

cells are glial cells essential for neurological func-

tions. Together, they make up the adult neurogenic

niche. Using both high-throughput clonal analysis

and single-cell resolution of progenitor division pat-

terns and fate, we show that these two components

of the neurogenic niche are lineally related: adult neu-

ral stem cells are sister cells to ependymal cells,

whereas most ependymal cells arise from the termi-

nal symmetric divisions of the lineage. Unexpectedly,

we found that the antagonist regulators of DNA repli-

cation, GemC1 and Geminin, can tune the proportion

of neural stem cells and ependymal cells. Our find-

ings reveal the controlled dynamic of the neurogenic

niche ontogeny and identify the Geminin family

members as key regulators of the initial pool of adult

neural stem cells.

INTRODUCTION

Neurons and glial cells are continuously produced throughout

life. In the adult, a subpopulation of astrocytes (type B1) located

in the ventricular-subventricular zone (V-SVZ) region of the

lateral ventricles (LVs) retain stem cell properties; i.e., self-

renewal and multilineage differentiation (Doetsch et al., 1999).

These cells have a multipolar shape, contact both the LV and

the blood vessels, and are surrounded by multiciliated ependy-

mal cells (Shen et al., 2008; Tavazoie et al., 2008; Mirzadeh

et al., 2008). The coordinated beating of ependymal cilia contrib-

utes to cerebrospinal fluid (CSF) dynamics, which is crucial for

the exposure of type B1 cells to trophic and metabolic signals

and to clear toxins and waste from the brain (Spassky and

Meunier, 2017). Proper functioning of adult neurogenesis thus

depends on the production and positioning of the controlled

number of ependymal cells and type B1 astrocytes composing

the neurogenic niche.

Type B1 astrocytes and ependymal cells are both derived from

radial glial cells (RGCs) between embryonic day 13.5 (E13.5) and

E15.5 and progressively acquire identical phenotypic markers

(Sox2, Sox9, Nestin, and CD133) (Ferri et al., 2004; Mirzadeh

et al., 2008; Sun et al., 2017). However, in the adult, these cells

have very different morphologies and fulfill different functions:

e.g., although B1 astrocytes are reactivable quiescent neuronal

progenitors, multiciliated ependymal cells are postmitotic

throughout life (Fuentealba et al., 2015; Furutachi et al., 2015;

Shah et al., 2018; Spassky et al., 2005). It is totally unknown

how these cells are allocated to the neurogenic niche and how

they acquire their common characteristics and distinct identities

and functions.

Recent studies have demonstrated that GemC1 and Mcidas

are early regulators of multiciliogenesis in different organs (Arbi

et al., 2016; Boon et al., 2014; Kyrousi et al., 2015; Ma et al.,

2014; Stubbs et al., 2012; Terré et al., 2016; Zhou et al., 2015).

Interestingly, these coiled-coil proteins, together with their

antagonist Geminin, are part of the Geminin superfamily, which

was initially characterized for its role in DNA replication control

(Balestrini et al., 2010; McGarry and Kirschner, 1998; Pefani

et al., 2011).More recently, Geminin was found to regulate neural

cell fate and to be highly expressed in cycling type B1 cells in the

adult SVZ (Khatri et al., 2014; Sankar et al., 2016).

Here we exploited high-resolution lineage-tracing tech-

niques—multi-addressable genome-integrative color (MAGIC)

markers (Loulier et al., 2014) and mosaic analysis with double

markers (MADM) strategies (Gao et al., 2014)—in the mouse

brain to show that type B1 astrocytes and ependymal cells share

a common RGC progenitor. These RGCs first produce type B1

astrocytes through both symmetric and asymmetric divisions.

Ultimately, ependymal cells are produced through terminal
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symmetric division. We also examined the role of antagonist reg-

ulators of DNA replication (GemC1 and Geminin) in lineage pro-

gression. We show that GemC1 promotes premature symmetric

division of RGCs producing ependymal cells at the expense of

astrocytes, whereas Geminin favors symmetric divisions pro-

ducing type B1 astrocytes. Altogether, we show that ependymal

cells and type B1 astrocytes share a common lineage in which

type B1 cells are produced first, followed by a majority of epen-

dymal cells. This dynamic can be modulated by the Geminin

family members.

RESULTS

Ependymal Cells Originate from Locally

Differentiated RGCs

Multiciliated ependymal cells are generated from RGCs around

E15 (Spassky et al., 2005). To determine how these cells

develop, we performed a single injection of 5-ethynyl-2’-deoxy-

uridine (EdU) at E15.5 and studied the relative positions of EdU+

ependymal cells on the ventricular walls at post-natal day 15

(P15). EdU+ ependymal cells were often juxtaposed or close to

each other (Figures S1A–S1C). To quantitatively assess their

spatial distribution, we performed a nearest neighbor distance

(NND) analysis on the datasets. The NNDs among EdU+ ependy-

mal cells were significantly shorter than in simulated random da-

tasets, suggesting that ependymal cells born at the same time

remain in the same area (Figure S1D). To further test this possi-

bility, we employed a genetic fate-tracing strategy. We crossed

the Ai14 transgenic mouse line, which expresses tdTomato

after Cre-dependent excision of a ‘‘floxed stop’’ cassette

(Madisen et al., 2010), with Emx1-Cre, Gsh2-Cre, or Nkx2.1-

Cre transgenic mice, which express Cre recombinase in the dor-

sal-medial, lateral, and ventral regions of the LVs, respectively

(Figures 1A–1C). At P10, almost all ependymal cells were tdT+

in Cre-expressing ventricular walls (Figures 1D–1F), whereas

they were tdT� in Cre-negative regions (Figures 1G–1I), showing

that ependymal cells do not migrate out of their site of origin dur-

ingmaturation (Figures 1J–1M). We observed similar results in all

caudo-rostral regions examined. Together, these results show

that ependymal cells are produced locally and do not migrate

long distances from their site of origin.

IUE Labels Ependymal Cells and Type B1 Astrocytes in

the V-SVZ

Given that ependymal cells develop locally from RGCs, we

labeled their progenitors at E14.5 in the lateral ganglionic

eminence (LGE) by in utero electroporation and traced their line-

age at later stages. We first verified that cells targeted by in utero

electroporation (IUE) are cycling by injecting EdU at E13.5 or

E14.5. The next day, 78% ± 2% of electroporated cells were

indeed EdU+ (Figure S2), confirming that cycling cells are prefer-

entially transfected by IUE and that progenitor fate can be traced

by this technique, as shown previously (Loulier et al., 2014; Stan-

cik et al., 2010).

We then characterized the progeny of cells electroporated

at E14.5 with the H2B-GFP plasmid by immunostaining the

V-SVZ at P10–P15 with FoxJ1 and Sox9 antibodies to distin-

guish ependymal cells (FoxJ1+Sox9+) from other glial cells

(FoxJ1�Sox9+) (Sun et al., 2017; Figures 2A and 2B). We

observed that around two-thirds of GFP+ cells were ependymal

cells, whereas most of the remaining FoxJ1� cells were Sox9+

astrocytes (Figure 2C). We also performed FGFR1OP (FOP)

and glial fibrillary acidic protein (GFAP) staining to distinguish

ependymal cells (multiple FOP+ basal bodies and GFAP�) from

astrocytes (FOP+ centrosome and GFAP+). Most electroporated

cells close to the ventricular surface were either GFAP� ependy-

mal cells containing multiple FOP+ basal bodies or GFAP+

astrocytes with one FOP+ centrosome (Figure 2D). A ventricular

contact emitting a primary cilium was also observed on GFP+

astrocytes (Doetsch et al., 1999). The GFP+ astrocytes often

had an unusual nuclearmorphology with envelope invaginations,

as reported recently (Cebrián-Silla et al., 2017). Noteworthy,

neuroblasts with their typical migratory morphology were

observed deeper in the tissue and at a distance from the electro-

porated area in the direction of the olfactory bulb (data

not shown).

To further test whether some of the astrocytes originating from

the electroporated RGCs could act as adult neural stem cells

(type B1 astrocytes), we permanently labeled RGCs and their

progeny by IUE of a transposable Nucbow vector at E14.5

(nuclear MAGIC markers; Loulier et al., 2014) and administered

EdU through the animals’ drinking water for 14 days starting at

P21 (Figure 2E). One week after the end of EdU administration,

EdU+Nucbow+ neurons were observed on each olfactory bulb

section, showing that cells derived from electroporated RGCs

at E14.5 are adult neural stem cells that give rise to olfactory

bulb neurons (Figure 2F and 2G).

These results show that electroporation of RGCs at E14.5 la-

bels multiciliated ependymal cells and adult neural stem cells

(type B1 astrocytes) that are retained in the V-SVZ at adult

stages.

Lineage Tracing Using MAGIC Markers Shows that

Ependymal Cells Derive from Symmetric and

Asymmetric Divisions of RGCs

We then took advantage of the large panel of distinct colors

produced by the MAGIC markers approach to trace and

analyze the lineage of ependymal cells. The V-SVZ of P15–P20

brains electroporated with the Nucbow vector at E14.5 were

immunostained with the ependymal marker FoxJ1 in far red,

and colors were automatically analyzed to avoid any eye bias

(Figures 3A–3C). Briefly, FoxJ1 staining was first used as a refer-

ence for the ventricular surface, and 25-mm-thick 3D image

stacks of the ventricular whole-mounts were segmented as

described previously (Shihavuddin et al., 2017). Nucbow+ cells

were then sorted as FoxJ1+ or FoxJ1� (Figure S3; Figure 3D).

To define the criteria that identify two cells as sister cells, 2 inde-

pendent researchers manually picked 49 pairs of cells with

similar Nucbow colors (Figure S4A). Both their color content

(saturation, value, and hue in the RGB tridimensional space)

and their 3D spatial distances were computed (Figure 3E;

Figures S4B and S4C). The maximum difference found for

each of these parameters was chosen as a threshold for auto-

matic analysis of all Nucbow+ cells in each brain (Figures S4D–

S4G). This automatic analysis of all cells from 6 electroporated

brains (corresponding to a total of 7,668 Nucbow+ cells and
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Figure 1. Ependymal Cell Progenitors Are

Produced Locally along the Brain Ventricles

(A–C) Representative images of coronal sections

of Emx1-Cre; Ai14 (A), Gsh2-Cre; Ai14 (B), and

Nkx2.1-Cre; Ai14 (C) forebrain at P10, immuno-

stained with CD24 (green) and DsRed (tdT, red)

antibodies. CD24+tdT+ ependymal cells are only

observed in the Cre-expressing domains in each

mouse line (indicated by a dashed line).

(D–I) Representative high-magnification images of

the Emx1-Cre; Ai14 (D and G), Gsh2-Cre; Ai14 (E

and H), and Nkx2.1-Cre; Ai14 (F and I) coronal

sections immunostained with FoxJ1 (green) and

DsRed (tdT, red) antibodies in the Cre+ domains

(D–F) or Cre� domains (G–I), respectively. In the

Cre+ domains, almost all ependymal cells are tdT+,

whereas very few cells are double-labeled in the

Cre� domains in each mouse line.

(J–L) Quantification of the mean percentage of

tdT+ ependymal cells in different areas of the

ventricular zone from n = 6, n = 4, and n = 5 mice

from each of the three transgenic mouse lines:

Emx1-Cre; Ai14 (J), Gsh2-Cre; Ai14 (K), and

Nkx2.1-Cre; Ai14 (L), respectively. Error bars

indicate the SEM. The p values were determined

with a Mann-Whitney test; **p % 0.01 and ***p%

0.001.

(M) Schematic of the expression patterns of each

transcription factor in the mouse forebrain at E12

and model of the spatial origin of ependymal cells

at P10. D, dorsal; M, medial.

The scale bars represent 200 mm (A–C) and 10 mm

(D–I).
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Figure 2. Radial Glial Cells Generate Ependymal Cells and Adult Neural Stem Cells (Type B1 Astrocytes)

(A) Experimental schematic for (B)–(D). TheH2B-GFP-expressing plasmidwas electroporated in utero at E14.5 and analyzed on V-SVZwhole-mount (WM) at P15.

CC, corpus callosum; Cx, cortex; LV, lateral ventricle; R, rostral; D, dorsal.

(B and D) P15 V-SVZ whole-mounts were double-immunostained with FoxJ1 (red) and Sox9 (blue) antibodies (B) or FOP (white) and GFAP (red) antibodies (D).

GFP+FoxJ1+Sox9+ ependymal cells are indicated by arrows, and GFP+FoxJ1�Sox9+ astrocytes are outlined in white (B). GFP+GFAP� ependymal cells with

multiple FOP+ dots are indicated by arrows, and a GFP+GFAP+ astrocyte with a FOP+ centrosome is indicated by an arrowhead (D).

(legend continued on next page)
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418 clones of 2 cells or more) showed that more than 80% of

clones (with at least one Nucbow+FoxJ1+ cell) contained 8 or

less cells, suggesting that most ependymal cells were derived

from 3 or less cell divisions (Figures 3F and 3G; Figures S5A–

S5F). We excluded the largest clones (9 to 32 cells) because

we noted that they were often labeled with the most frequent la-

bels in the dataset (corresponding to the primary colors red,

green, and blue), suggesting that merging of juxtaposed clones

expressing the same label had occurred (Figure S5G).

Among the 349 clones with 8 or less cells, around half con-

tained only 2 cells, suggesting that, at E14.5, most clones were

generated from one terminal cell division of RGCs (n = 6 mice;

Figure 3H). These 2-cell clones were composed of 1 or 2

FoxJ1+ cells in a 1:1 ratio, showing that the terminal division

could be either symmetric or asymmetric (Figure 3I). Interest-

ingly, the 3D distance between cells was higher in mixed clones

(clones composed of ependymal and non-ependymal cells)

compared with pure ependymal clones (Figure 3J), showing

that FoxJ1� cells were deeper in the SVZ compared with

FoxJ1+ cells in the VZ.

Clones containing 3 to 8 cells were generated through 2 or 3

cell divisions, the last of which was either only symmetric (clones

containing FoxJ1+ cells only) or both symmetric and asymmetric

(clones containing FoxJ1+ and FoxJ1� cells). Interestingly, a ma-

jority of these clones contained more FoxJ1� cells than FoxJ1+

cells, suggesting that symmetric divisions giving rise to 2 FoxJ1�

cells might have occurred in these clones (Figure 3K).

Lineage tracing experiments of RGCs using the MAGIC

markers strategy thus show that ependymal cells originate

from either one terminal symmetric division giving rise to 2 epen-

dymal cells or 1 asymmetric division giving rise to 1 ependymal

and 1 FoxJ1� cell. Most importantly, this analysis of a large num-

ber of clones distributed along the caudo-rostral and ventro-dor-

sal axis of the lateral wall of the LV of 6 different electroporated

brains did not reveal any regional differences. This observation

suggests that the ontogeny of the neurogenic niche can be

determined by analyzing individual cells along the LV.

MADM of V-SVZ Gliogenesis Reveals that Ependymal

and B1 Cells Share a Common Lineage

To obtain more insight into the cellular mechanisms and the

sequence of symmetric versus asymmetric divisions producing

each clone, we used the MADM system coupled with IUE of

Cre recombinase at E13.5 or E14.5 (Figure 4A; Gao et al.,

2014). In electroporated cells, Cre recombinase mediates inter-

chromosomal recombination, which reconstitutes cytoplasmic

enhanced GFP (EGFP, green) or tandem dimer Tomato (tdTo-

mato, red). If recombination occurs in G2 phase of the cell cycle,

and each red or green chromosome segregates in separate

daughter cells (X segregation), then the two descendent lineages

will be permanently labeled green or red by MADM events (Fig-

ure 4B). Analysis of cell number and identity will thus allow direct

assessment of the division pattern (symmetric versus asym-

metric) and cell fate decision of the original dividing progenitors.

Otherwise, if recombination occurs in G0/G1, or if both red and

green chromosomes segregate in the same cell (Z segregation),

then recombined cells appear yellow and will be excluded from

the analysis (Figure 4B). We thus induced Cre activity through

IUE in MADM pregnant mothers at E13.5 or E14.5 and analyzed

the V-SVZ at P15–P20 after immunolabeling of centrioles com-

bined with MADM cytoplasmic staining to identify the cell types

composing each clone (Figure 4C). This approach allowed a

clonal study of green-red clones because the efficiency of

recombination leading to green-red clones was low in these

mice (mean number of clones per animal, 5), and most recom-

bined cells were double-labeled (yellow) (Figure 4C). Cells were

considered a clone when their spatial distance was less than

100 mm, as defined previously by theNucbow lineage-tracing ex-

periments. Red or green cells located in the electroporated re-

gion of the V-SVZ were either multiciliated ependymal (E) cells,

characterized by a few short processes and multiple FOP+ basal

bodies in their cytoplasm associatedwith long cilia, or astrocytes

(type B1), whose cell body and multiple long processes were

deeper in the SVZ. These astrocytes contained 2 centrosomal

centrioles that occasionally contacted the ventricular surface

and extended a primary cilium. These cells were thus easily

discriminated from multiciliated ependymal cells (identified by

multiple centrioles and long cilia) or even neuroblasts, which

displayed typical migrating morphologies in the direction of the

olfactory bulb andwere located deeper in the tissue at larger dis-

tances from the clone. When the cells of a clone were in close

proximity, their cell body or processes often contacted each

other, suggesting that they might maintain communication at

the adult stage (Figures 4C–4G; Videos S1 and S2). We observed

very few red or green cells alone (clone of 1 cell in Figure 4H) or

larger monochrome clones, if any, in the V-SVZ, suggesting that

asymmetric divisions giving rise to one ventricular and one non-

ventricular cell were rare in these experiments. In contrast, we

found that, among the 44 clones of 2–6 cells, 48% of them con-

tained 2 cells (21 clones), and 52% of them contained 3–6 cells

(23 clones), which is in line with our findings above showing

that half of the RGCs at E14.5 divided once to produce glial cells

in the V-SVZ. At E13.5, RGCs also produced V-SVZ cells, but the

majority divided twice ormore because 90%of clones contained

3 or more cells (Figure 4H). The distance between cells in a clone

was higher at E13.5 compared with E14.5, showing that cells

disperse as cell divisions proceed (Figure 4I). Both the proportion

of mixed clones (containing both ependymal and B1 cells;

(C) Mean percentage of astrocytes (Sox9+FoxJ1�), ependymal cells (Sox9+FoxJ1+), and others (Sox9�FoxJ1�) among H2B-GFP+ electroporated cells. Analyses

were done on n = 3 animals; a total of 441 cells were counted. Error bars represent the SEM. The p values were determined with a two-proportion Z test;

***p% 0.001, **p% 0.01.

(E) Experimental schematic for (F) and (G). Nucbow plasmids (PBCAG-Nucbow alongwith the PiggyBac transposase and the self-excising Cre recombinase) were

electroporated in utero at E14.5 and received EdU (through drinking water) for 14 days starting at P21.

(F andG) Coronal sections of the olfactory bulb (OB) were prepared 1week after the last day of EdU administration. (G) is a high-magnification image of (F) to show

that some Nucbow+ interneurons in the OB are EdU+.

The scale bars represent 40 mm (B), 15 mm (C), 520 mm (F), and 180 mm (G).
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Figure 3. Clonal Analysis of Ependymal Cells with MAGIC Markers Reveals Both Symmetric and Asymmetric Divisions of RGCs

(A) Experimental schematic. Nucbow plasmids were electroporated in utero at E14.5 and analyzed at P15–P20.

(B–D) Representative Z-projected image of an en face view of the V-SVZ (B) immunostained at P15 with anti-FoxJ1 antibody (C). (D) shows a segmented image of

(B) and (C), obtained using FoxJ1 staining, as a reference (STAR Methods; Figures S3–S5). FoxJ1+Nucbow+ cells are outlined in white.

(legend continued on next page)
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Figure 4J) and the number of type B1 astrocytes (Figure 4K) in the

clones decreased at E14.5 compared with E13.5, suggesting

that fewer type B1 astrocytes are produced compared with

ependymal cells. Alternatively, type B1 astrocytes might be pro-

duced at earlier stages compared with ependymal cells. Note-

worthy is that the distribution of astrocytes (B1) and ependymal

cells in each clone revealed that astrocytes were produced at a

lower rate than ependymal cells and that symmetric divisions

producing 2 astrocytes (B1-B1) occurred more frequently at

E13.5 than at E14.5 (Figure 4L; Table S1).

Together, these results show that ependymal cells and astro-

cytes are sister cells produced through symmetric (B1-B1 or E-E)

and asymmetric (E-B1) divisions of RGCs at mid-gestation in the

mouse forebrain.

To gain more insight into the molecular regulation of RGC dif-

ferentiation into type B1 astrocytes or ependymal cells, we per-

turbed these divisions withmembers of the Geminin superfamily,

initially described as regulators of DNA replication (Balestrini

et al., 2010; Pefani et al., 2011). Two members of this family

(Mcidas and GemC1) were recently identified as master regula-

tors of multiciliated ependymal cell fate (Kyrousi et al., 2015),

whereas the other member, Geminin, was found to regulate neu-

ral cell fate and to be highly expressed in cycling type B1 cells in

the adult SVZ (Khatri et al., 2014; Sankar et al., 2016). We also

confirmed that GemC1 and Geminin genes are expressed along

the LV at E14.5, in the choroid plexus and the ventricular zone,

respectively (Figure S6). Moreover, ependymal cell differentia-

tion was totally absent in cultured cells from the GemC1 full

mutant, whereas it was slightly (although not significantly)

increased in cultured cells from the Geminin conditional mutant

(Figures S7B–S7E).

GemC1 Expression Induces Premature Ependymal Cell

Differentiation at the Expense of Type B1 Cells

Overexpression of GemC1 through IUE at E13.5 or E14.5

dramatically increased ependymal cell differentiation at the

expense of SVZ cells, as shown previously (Figures S7G–S7I;

Kyrousi et al., 2015). Interestingly, because B1 cells were absent,

pinwheels were not observed in densely GemC1-electroporated

regions (Figures S7J and S7K) compared with neighboring areas

in which GemC1 electroporation was sparse (Figure S7L). Over-

expression of GemC1 together with induction of Cre activity

through IUE in MADM embryos at E14.5 did not change the

size of the clones compared with controls, suggesting that

most RGCs were already undergoing their last division at that

stage (Figure 5C). In contrast, when IUE was performed at

E13.5, the clones were smaller compared with controls, sug-

gesting that GemC1 induced premature exit from the cell cycle

at that stage (Figure 5C). Consistently, the average distance be-

tween cells in the GemC1 clones at E13.5 was smaller than in

controls (compare Figures 4I and 5D; Mann-Whitney test,

**p % 0.01) and similar to E14.5 GemC1 (Figure 5D). Further-

more, overexpression of GemC1 at E13.5 or E14.5 promoted

the ependymal fate because the numbers of both pure ependy-

mal clones and ependymal cells in the clones were dramatically

increased compared with controls (two-proportion Z test be-

tween controls and GemC1: ***p % 0.001; compare Figures 4J

and 4K and 5E and 5F). Notably, although astrocytes were occa-

sionally produced through symmetric divisions in controls, they

were exclusively generated through asymmetric divisions with

ependymal cells after GemC1 overexpression at E13.5 or

E14.5. Indeed, no pairs of astrocytes were detected after

GemC1 overexpression (Figure 6F; Table S2).

Geminin Expression Favors the Generation of Type

B1 Cells

Geminin physically interacts with GemC1 and Mcidas (Caillat

et al., 2013, 2015), but its role during ependymal cell generation

is still unknown. We thus tested the influence of Geminin overex-

pression on the fate of RGCs through IUE with Cre in MADM

pregnant mothers at E13.5 or E14.5 (Figures 6A and 6B).

Notably, a majority of the clones contained type B1 astrocytes,

characterized by an apical contact with a primary cilium and

cytoplasmic extensions contacting blood vessels (Figure 6B;

Video S3; Table S3). The size of the clones was slightly increased

both in E13.5 and E14.5 Geminin-overexpressing clones but

similar to that of controls, suggesting that Geminin does not

act on the rate of cell division in RGCs (Figure 6C). Interestingly,

the proportion of mixed clones and the number of type B1 astro-

cytes were not significantly increased after Geminin overexpres-

sion (two-proportion Z test between controls and Geminin: not

significant, p > 0.05; compare Figures 4J and 4K and 6D and

6E; Figure 6F). However, Geminin overexpression led to signifi-

cant formation of clones containing only B1 cells, which was

never observed in controls (two-proportion Z test between

E14.5 control and E14.5 Geminin for the B1-only population: *p

% 0.05; compare Figures 4 and 6D). Consistently, the number

of symmetric divisions producing 2 astrocytes (B1-B1) increased

significantly after Geminin overexpression at E14.5 compared

with controls (Figure 6F; Table S3).

(E) Circular hue-saturation and hue-value plots of all Nucbow+ cells from (D).

(F and G) High-magnification images of the insets in (D), showing examples of clones: 2 ependymal doublets and 1 triplet containing 1 ependymal cell and 2

FoxJ1� cells (F) and 3 ependymal doublets, 1 ependymal triplet, and 1 triplet containing 1 ependymal cell and 2 FoxJ1� cells (G).

(H) Mean percentages of clones containing 2 or 3–8 Nucbow+ cells. Error bars represent the SEM of n = 163 clones of 2 cells and n = 186 clones of 3–8 cells;

p values were determined by Mann-Whitney test; ns, p > 0.05.

(I) Mean percentages of clones of 2 Nucbow+ cells containing 1 (mixed clones, gray) or 2 (ependymal clones, black) FoxJ1+ cells. Error bars represent the SEM of

n = 82 ependymal clones and n = 81 mixed clones from 6 independent experiments; p values were determined by Mann-Whitney test; ns, p > 0.05.

(J) Average 3D distances between the cells composing ependymal or mixed clones of 2 cells. Error bars represent the SEMof n = 82 ependymal clones and n = 81

mixed clones from 6 independent experiments; p values were determined by Mann-Whitney test; *p% 0.05.

(K) Mean percentages of clones of 3–8 Nucbow+ cells containing only FoxJ1+ cells (black), more or an equal number of FoxJ1+ compared with FoxJ1� cells (dark

gray), or more FoxJ1� cells (light gray) per clone. Error bars represent the SEM of n = 186 clones of 3–8 cells; p values were determined by Mann-Whitney test;

**p% 0.01; *p% 0.05; ns, p > 0.05.

The scale bars represent 100 mm (B)–(D) and 22 mm (F) and (G).
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Figure 4. MADM Reveals the Presence of Ependymal-Ependymal and Ependymal-Astrocyte Divisions at E13.5 and E14.5

(A) Experimental schematic. The Cre plasmid was electroporated in utero in MADM-11TG/GT at E13.5 or E14.5, and V-SVZ WMs were analyzed at P15–P20.

(B) Schematic representation of Cre-mediatedMADMclone induction in dividing RGCs. AG2-X event results in clones of red- and green-labeled cells, and aG2-Z

event generates double-labeled (yellow) and unlabeled clones of cells. Recombination occurring in G0/G1 phases of the cell cycle leads to double-labeled

(yellow) cells.

(legend continued on next page)
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Altogether, these results show that ependymal cells and astro-

cytes are sister cells produced through symmetric or asymmetric

divisions, the balance of which is modulated by the level of

expression of Geminin family genes.

DISCUSSION

Using a Cre-lox fate mapping technique and complementary

MAGIC markers- and MADM-based clonal analysis, our study

revealed how glial cells are produced in the V-SVZ during

development. First, our results proved that ependymal cells

are derived from RGCs all along the embryonic neuroepithelium

(pallium and lateral and medial ganglionic eminences) and

differentiate locally; ependymal progenitors born in a specific

area of the VZ do not migrate long distances to colonize other

areas of the neuroepithelium (Figure 1). We then showed that

ependymal cells and B1-type astrocytes appear at the end of

neurogenesis, mainly through E-B1 asymmetric or E-E sym-

metric divisions of RGCs. B1-B1 symmetric divisions were

less frequent and always combined with E-E or E-B1 divisions

(Figure 7). These glial cells have a low migratory capacity and

often contact each other, even at the adult stage. Our study

thus demonstrates that multiciliated ependymal cells and adult

neural stem cells, ultimately forming the adult neurogenic niche,

are sister cells that share a common origin. We also provide ev-

idence that these cells are sequentially produced, with the bulk

of B1 astrocytes being produced just before the bulk of epen-

dymal cells. Interestingly, their respective numbers are pre-

cisely regulated by the Geminin family members. Overexpres-

sion of Geminin, a gene expressed more in cycling compared

with quiescent neural stem cells (Khatri et al., 2014) and in

the ventricular zone at E14.5 (Figure S6), favors B1-B1 symmet-

ric divisions (Figure 6F). On the contrary, overexpression of its

antagonist, GemC1, at E14.5 induces premature terminal E-E

divisions and leads to a sharp decrease in the final number of

B1 cells (Figures 5E and 5F). Given that GemC1 expression is

only detected in the choroid plexus at that stage (Figure S6;

Arbi et al., 2016), one can hypothesize that it is expressed at

very low and/or undetectable levels in these progenitors. Alter-

natively, GemC1 might be expressed at later stages of devel-

opment because ependymal differentiation starts postnatally

in controls (Spassky et al., 2005). Both possibilities should be

tested further, but they might already explain why GemC1

expression at high levels and/or before its normal expression

in progenitors leads to premature ependymal differentiation.

The sequential expression of Geminin family members could

thus be responsible for the temporal differences in glia produc-

tion. The 2-fold presence of ependymal cells with respect to B1

cells (Mirzadeh et al., 2008) could result from the balance be-

tween the levels of expression of these genes. These findings

raise the question of the fate decision mechanisms driving

RGCs toward symmetric or asymmetric cell division. An analo-

gous question was addressed by others concerning neuronal

versus glial cell generation. Interestingly, it has been shown

that the number of neurons produced by RG is predictable

and that around one in 6 RGCs perform a gliogenic division

only when they have exhausted their capacity to proliferate

(Gao et al., 2014). At early stages of corticogenesis, RGCs

would thus divide asymmetrically to produce neurons and glial

progenitors, which would then generate type B1 astrocytes and

ependymal cells. Similarly, we found that RGCs generate more

mixed clones and more astrocytes when they are electropo-

rated at E13.5 than at E14.5 (Figures 4J and 4K). This suggests

that astrocytes are produced earlier than ependymal cells. One

might hypothesize that RGCs first give rise to astrocytes until

they exhaust their proliferative capacity and yield two ependy-

mal cells through symmetric cell division at later developmental

stages. Further lineage studies would be required to identify

whether/which neuronal subtypes are lineally related to V-SVZ

glial cells (type B1 astrocytes and ependymal cells). Impor-

tantly, although ependymal cells become post-mitotic (Spassky

et al., 2005), most V-SVZ astrocytes can be reactivated in the

adult (Obernier et al., 2018). Altogether, this suggests that

RGCs first produce quiescent daughter cells with the potential

to enter the cell cycle again (type B1 astrocytes) and then post-

mitotic ependymal cells. Interestingly, the description of distinct

pathways of glial production via symmetric or asymmetric divi-

sion unveils the existence of two separate fate decision mech-

anisms that occur subsequent to the last division of RGCs. This

indicates that ependymal versus astrocyte specification might

be dependent on the correct segregation of organelles (i.e.,

centrioles or mitochondria), which have been shown to influ-

ence neural stem cell self-renewal and fate decisions (Khacho

et al., 2016; Wang et al., 2009). Noteworthy is that Geminin

(C–G) Airyscan confocal image of a P15 MADM-labeled V-SVZ whole-mount electroporated with a CRE-expressing plasmid at E14.5. The ventricular wall was

stained with EGFP (green), tdTomato (red), and FOP (white) antibodies. (C) Double-labeled yellow cells issued from a G2-Z recombination event are indicated by

yellow arrows. Ependymal-ependymal (D and E) and ependymal-astrocyte (F and G) clones of two sister cells are shown at high magnification (D and F) and in a

3D view (E and G). See also Videos S1 and S2.

(H) Mean percentages of all clones generated from in utero electroporation with Cre at E13.5 or E14.5 according to the number of cells per clone (n = 6 and 16

animals at E13.5 and E14.5, respectively) are represented in a histogram. Also shown are dotted curves fitting both the E13.5 and E14.5 distributions; p values

were determined with the c
2 test for trend; *p% 0.05.

(I) Average distance between cells composing the clones. Error bars represent the SEM of 29 and 44 clones at E13.5 and E14.5, respectively; p values were

determined with a Mann-Whitney test; **p% 0.01.

(J) Mean percentage of all clones generated from E13.5 or E14.5 containing ependymal cells only or a mixed population of ependymal cells and astrocytes (B1).

Error bars represent the SEM of 29 and 44 clones at E13.5 and E14.5, respectively; p values were determined with a two-proportion Z test; *p% 0.05.

(K)Mean percentage of ependymal andB1 cells in all clones generated fromE13.5 or E14.5. Error bars represent the SEMof 117 and 134 cells at E13.5 and E14.5,

respectively; p values were determined with a two-proportion Z test; *p% 0.05.

(L) Mean percentage of E-E, E-B1, and B1-B1 cell divisions in all clones generated from E13.5 or E14.5. Error bars represent the SEM of 24 and 54 cell divisions at

E13.5 and E14.5, respectively; p values were determined with a Mann-Whitney test; *p% 0.05.

The scale bars represent 30 mm (C) and 8 mm (D–G).
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Figure 5. GemC1 Favors the Formation of Pure Ependymal Clones at Both E13.5 and E14.5

(A) Experimental schematic. GemC1 and Cre plasmids were co-electroporated in utero in MADM-11TG/GT at E13.5 or E14.5, and V-SVZ WMs were analyzed at

P15–P20.

(B) Airyscan confocal image of a P15MADM-labeled V-SVZwhole-mount immunostainedwith EGFP (green), tdTomato (red), and FOP (white) antibodies showing

a clone of 2 ependymal cells.

(C) Fitting curves of the distribution of clone size according to the number of cells per clone, issued from electroporation of Cre at E13.5 or E14.5 (dotted curves;

n = 6 and 16 animals at E13.5 and E14.5, respectively) or co-electroporation of Cre with GemC1 at E13.5 or E14.5 (solid curves; n = 4 and 9 animals at

E13.5GemC1 and E14.5GemC1, respectively); p values were determined with a c
2 test for trend; ns, p > 0.05, **p% 0.01.

(D) Average distance between cells composing the clones generated from co-electroporation of Cre and GemC1 at E13.5 or E14.5. Error bars represent the SEM

of 20 and 41 clones at E13.5 and E14.5, respectively; p values were determined with a Mann-Whitney test; ns, p > 0.05.

(E) Mean percentage of all clones generated from co-electroporation of Cre and GemC1 at E13.5 or E14.5 containing ependymal cells only or a mixed population

of ependymal cells and B1 cells. Error bars represent the SEM of 20 and 41 clones, respectively; p values were determined with a two-proportion Z test; ns,

p > 0.05.

(F) Mean percentage of ependymal and B1 cells in all clones generated from co-electroporation of Cre and GemC1 at E13.5 or E14.5. Error bars represent the

SEM of 57 and 110 cells at E13.5 and E14.5, respectively; p values were determined with a two-proportion Z test; ns, p > 0.05.

The scale bar represents 50 mm.
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Figure 6. Geminin Favors the Formation of B1 Cell-Containing Clones at E14.5

(A) Experimental schematic. The Geminin and Cre plasmids were co-electroporated in utero in MADM-11TG/GT at E13.5 and E14.5, and V-SVZ WMs were

analyzed at P15–P20.

(legend continued on next page)
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superfamily members were initially described as regulators of

DNA replication. It would thus be of interest to determine

whether fate decisions in RGCs are driven by DNA replication

events following re-entry into the cell cycle.

STAR+ METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCES SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B In utero electroporation

B EdU administration and detection

B Primary Ependymal Cell culture

B Tissue and cell culture preparation

B Immunostaining

B In situ hybridization

B Imaging

B Automatic image analysis of MAGIC Markers

d QUANTIFICATION AND STATISTICAL ANALYSES

B Fate mapping of the spatial origin of ependymal cells

B Characterization of the cell types in the electroporated

V-SVZ

B Automatic image analysis of MAGIC markers

B MADM transgenic image analysis

B EdU incorporation in the V-SVZ analysis

B Characterization of the differentiation status in the V-

SVZ with or without GemC1

B Assessment of the differentiation status of GemC1 KO

and Geminin cKO primary cultures

d DATA AND SOFTWARE AVAILABILITY

(B) Airyscan confocal image of a P15MADM-labeled V-SVZwhole-mount immunostainedwith EGFP (green), tdTomato (red), and FOP (white) antibodies showing

a clone containing 1 GFP+ ependymal cell (arrow) and two B1 cells (one GFP+ and one tdT+, arrowheads). Note that both B1 cells contain a centrosome at the

ventricular surface (arrowheads), and they extend a process toward a blood vessel (yellow asterisks). See also Video S3.

(C) Fitting curves of the distribution of clone size according to the number of cells per clone, issued from electroporation of Cre at E13.5 or E14.5 (dotted curves;

n = 6 and 16 animals at E13.5 and E14.5, respectively) or co-electroporation of Cre with Geminin at E13.5 or E14.5 (solid curves; n = 8 and 13 animals at E13.5

Geminin and E14.5 Geminin, respectively); p values were determined with a c 2 test for trend; ns, p > 0.05, ***p% 0.001.

(D) Mean percentage of all clones generated from co-electroporation of Cre and Geminin at E13.5 and E14.5 and containing either B1 cells only, ependymal cells

only, or a mixed population of ependymal cells and B1 cells. Error bars represent the SEM of 73 or 107 clones; the p value was determined with a two-proportion

Z test; ns, p > 0.05.

(E) Mean percentage of ependymal and B1 cells in all clones generated from co-electroporation of Cre and Geminin at E13.5 and E14.5. Error bars represent the

SEM of 317 or 335 cells, respectively; the p value was determined with a two-proportion Z test; ns, p > 0.05.

(F) Mean percentage of E-E, E-B1, and B1-B1 cell division in clones generated from E14.5 in controls or after overexpression of GemC1 or Geminin. Error bars

represent the SEM of 16, 9, and 13 independent animals electroporated with Cre, Cre+GemC1, or Cre+Geminin, respectively; p values were determined with a

Mann-Whitney test; ***p% 0.001; **p% 0.01; *p% 0.05; ns, p > 0.05.

The scale bar represents 50 mm.

A

Figure 7. Ependymal Cells and B1 Astrocytes Form One Common Lineage Regulated by Geminin Family Members

(A) Model of adult neural stem cells (NSCs) and multiciliated ependymal cell generation. RGCs give rise to type B1 cells through symmetric divisions (rare event,

3%) or asymmetric divisions (frequent event, 50%) and to multiciliated ependymal cells through symmetric divisions (frequent event, 47%). The antagonistic

Geminin family members Geminin and GemC1 can modulate the cell fate decision. Geminin overexpression favors symmetric divisions giving rise to type B1

astrocytes. On the contrary, GemC1 overexpression triggers symmetric divisions giving rise to ependymal cells. The percentages of E-E, E-B1, and B1-B1

divisions are indicated for IUE at E14.5 in a control situation and upon GemC1 or Geminin overexpression, respectively.
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Attolini, C.S., Wilsch-Br€auninger, M., Jung, C., Rojas, A.M., Marjanovi�c, M.,

et al. (2016). GEMC1 is a critical regulator of multiciliated cell differentiation.

EMBO J. 35, 942–960.

Wang, X., Tsai, J.-W., Imai, J.H., Lian, W.-N., Vallee, R.B., and Shi, S.-H.

(2009). Asymmetric centrosome inheritance maintains neural progenitors in

the neocortex. Nature 461, 947–955.

Xu, Q., Tam,M., and Anderson, S.A. (2008). Fatemapping Nkx2.1-lineage cells

in the mouse telencephalon. J. Comp. Neurol. 506, 16–29.

Zhou, F., Narasimhan, V., Shboul, M., Chong, Y.L., Reversade, B., and Roy, S.

(2015). Gmnc Is a Master Regulator of the Multiciliated Cell Differentiation

Program. Curr. Biol. 25, 3267–3273.

Zimmerman, L., Parr, B., Lendahl, U., Cunningham, M., McKay, R., Gavin, B.,

Mann, J., Vassileva, G., and McMahon, A. (1994). Independent regulatory ele-

ments in the nestin gene direct transgene expression to neural stem cells or

muscle precursors. Neuron 12, 11–24.

172 Neuron 102, 159–172, April 3, 2019

http://refhub.elsevier.com/S0896-6273(19)30078-9/sref25
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref25
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref26
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref26
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref26
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref26
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref27
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref27
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref27
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref28
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref28
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref28
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref29
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref29
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref29
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref29
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref30
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref30
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref30
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref31
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref31
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref31
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref31
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref32
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref32
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref32
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref33
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref33
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref33
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref34
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref34
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref34
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref35
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref35
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref35
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref35
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref36
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref36
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref36
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref37
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref37
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref37
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref38
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref38
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref39
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref39
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref40
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref40
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref40
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref41
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref41
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref41
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref41
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref42
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref42
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref42
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref43
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref43
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref43
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref44
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref44
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref44
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref45
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref45
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref45
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref45
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref46
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref46
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref46
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref47
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref47
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref47
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref47
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref47
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref47
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref48
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref48
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref48
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref49
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref49
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref50
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref50
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref50
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref51
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref51
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref51
http://refhub.elsevier.com/S0896-6273(19)30078-9/sref51


STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat Monoclonal Anti-Mouse CD24 BD Biosciences Cat#557436; Clone: M1/69; RRID:

AB_396700

Mouse IgG1 Monoclonal Anti FoxJ1 Thermo Fisher Scientific Cat#14-9965-82; Clone: 2A5; RRID:

AB_1548835

Chicken Polyclonal Anti GFP Aves Labs Cat#GFP-1020; RRID: AB_10000240

Rabbit Polyclonal Anti DsRed Clontech Laboratories Cat#632496; RRID: AB_10013483

Rabbit Polyclonal Anti Sox9 Millipore Cat#AB5535; RRID:AB_2239761

Mouse IgG2b Monoclonal Anti FOP Abnova Corporation Cat#H00011116-M01; Clone: 2B1 RRID:

AB_463883

Mouse IgG1 Monoclonal Anti GFAP Millipore Cat#MAB3402; Clone: GA5 RRID:

AB_94844

Rabbit Polyclonal Anti ZO1 Thermo Fischer Scientific Cat#40-2200; RRID: AB_2533456

Mouse IgG1 Monoclonal Anti Gamma-

tubulin

Sigma-Aldrich Cat#T6557; Clone: GTU88 RRID:

AB_477584

Mouse IgG2b Monoclonal Anti Acetylated

Tubulin

Sigma-Aldrich Cat#T6793; Clone: 6-11B-1 RRID:

AB_477585

Donkey Polyclonal anti-Chicken IgY (IgG)

(H+L) AffiniPure, Alexa Fluor 488

Jackson ImmunoResearch Labs Cat#703-545-155; RRID:AB_2340375

Donkey Polyclonal anti-Rabbit IgG (H+L)

Highly Cross-Adsorbed Secondary

Antibody, Alexa Fluor 594

Thermo Fischer Scientific Cat#A-21207; RRID: AB_141637

Donkey Polyclonal anti-Rabbit IgG (H+L)

Highly Cross-Adsorbed Secondary

Antibody, Alexa Fluor 647

Thermo Fischer Scientific Cat#A-31573; RRID: AB_2536183

Goat anti-Mouse IgG1 Cross-Adsorbed

Secondary Antibody, Alexa Fluor 488

Thermo Fischer Scientific Cat#A-21121; RRID:AB_2535764

Goat anti-Mouse IgG1 Cross-Adsorbed

Secondary Antibody, Alexa Fluor 594

Thermo Fischer Scientific Cat#A-21125; RRID:AB_2535767

Goat anti-Mouse IgG1 Cross-Adsorbed

Secondary Antibody, Alexa Fluor 647

Thermo Fischer Scientific Cat#A-21240; RRID:AB_2535809

Goat anti-Mouse IgG2b Cross-Adsorbed

Secondary Antibody, Alexa Fluor 647

Thermo Fischer Scientific Cat#A-21242; RRID:AB_2535811

Anti-Digoxigenin-AP, Fab fragments Sigma-Aldrich Cat#11093274910; RRID: AB_2734716

Chemicals, Peptides, and Recombinant Proteins

EdU (5-ethynyl-2-deoxyuridine) Thermo Fisher Scientific Cat#11590926, CAS: 61135-33-9

Hoechst (bisBenzimide H 33342

trihydrochloride)

Sigma-Aldrich Cat# B2261 CAS: 23491-52-3

T7 RNA Polymerase Sigma-Aldrich Cat#RPOLT7-RO

T3 RNA Polymerase Sigma-Aldrich Cat#RPOLT3-RO

DIG RNA Labeling Mix Sigma-Aldrich Cat#11277073910

RNasin Ribonuclease Inhibitors Promega Cat#N2511

RQ1 RNase-Free DNase Promega Cat#M6101

BCIP (5-bromo-4-chloro-3-indolyl-

phosphate)

Sigma-Aldrich Cat#BCIP-RO, CAS: 6578-06-9

NBT (4-Nitro blue tetrazolium chloride) Sigma-Aldrich Cat#11585029001, CAS: 298-83-9
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Critical Commercial Assays

Click-iT EdU Alexa Fluor 488 Imaging Kit Thermo Fisher Scientific Cat#C10337

Click-iT EdU Alexa Fluor 594 Imaging Kit Thermo Fisher Scientific Cat#C10339

Click-iT EdU Alexa Fluor 647 Imaging Kit Thermo Fisher Scientific Cat#C10340

Experimental Models: Organisms/Strains

B6.129S2-Emx1tm1(cre)Krj/J The Jackson Laboratory (Gorski et al., 2002) Cat#JAX:005628, RRID: IMSR_JAX:005628

B6;CBA-Tg(Gsx2-icre)1Kess/J Gift from the laboratory of N. Kessaris

(Kessaris et al., 2006)

Cat#JAX025806 RRID: IMSR_JAX:025806

C57BL/6J-Tg(Nkx2-1-cre)2Sand/J The Jackson Laboratory (Xu et al., 2008) Cat#JAX:008661, RRID:IMSR_JAX:008661

B6;129S6-Gt(ROSA)26Sortm14(CAG-tdTomato)

Hze/J

The Jackson Laboratory (Madisen

et al., 2010)

Cat#JAX:007908, RRID:IMSR_JAX:007908

MADM-11GT Hippenmeyer et al., 2010 Cat#JAX:013749 RRID:IMSR_JAX:013749

MADM-11TG Hippenmeyer et al., 2010 Cat#JAX:013751 RRID:IMSR_JAX:013751

RjORL:SWISS Janvier Labs N/A

GemC1KO/KO Arbi et al., 2016 N/A

Gemininflox/flox Spella et al., 2011 N/A

NestinCre ± Zimmerman et al., 1994 N/A

Recombinant DNA

PBCAG-Nucbow Plasmid Loulier et al., 2014 N/A

CAG-hypBase Plasmid Loulier et al., 2014 N/A

CAG-seCre Plasmid Loulier et al., 2014 N/A

CAG-H2B-GFP Plasmid Gift from the laboratory of X. Morin

(Hadjantonakis and Papaioannou, 2004)

N/A

pCAGGS-Cre Plasmid Gift from the laboratory of X. Morin (Morin

et al., 2007)

N/A

pCAGGS-GemC1 Plasmid Kyrousi et al., 2015 N/A

pCAGGS-Geminin Plasmid Spella et al., 2011 N/A

pBluesCriptKS-GemC1 Plasmid This paper N/A

pBluesCriptKS-Geminin Plasmid Spella et al., 2007 N/A

Software and Algorithms

Fiji Schindelin et al., 2012 https://imagej.nih.gov/ij/download.html;

RRID: SCR_003070

MATLAB MATLAB and Statistics Toolbox Release

2012b, The MathWorks, Natick,

Massachusetts, United States

https://fr.mathworks.com/products/

matlab.html; RRID: SCR_001622

GraphPad Prism GraphPad Prism version 7.00 for Windows,

GraphPad Software, La Jolla California USA

https://www.graphpad.com/; RRID:

SCR_002798

Other

Glass capillaries (for IUE) Harvard Apparatus Cat#30-0019

CUY21EDIT Square Wave Electroporator Nepagene N/A

ProbeQuant G-50 Micro Columns Sigma-Aldrich Cat#GE28-9034-08
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice were bred and the experiments were performed in conformity with French and European Union regulations and the recommen-

dations of the local ethics committee (Comité d’éthique en experimentation animale n�005). The date of the vaginal plug was re-

corded as embryonic day (E) 0.5 and the date of birth as postnatal day (P) 0. Healthy, immunocompetent animals were kept in a

12 h light /12 h dark cycle at 22�C and fed ad libitum. All the individuals used in our study were not previously subject to any unrelated

experimental procedures. Pregnant females were used for IUE (see below), but their littermates and any other mice of both

sexes were randomly used for all experiments in this study. Emx1-Cre+/� (B6.129S2-Emx1tm1(cre)Krj/J, JAX stock #005628, Gorski

et al., 2002), Gsh2-Cre+/� (B6;CBA-Tg(Gsx2-icre)1Kess/J, a gift from the laboratory of N. Kessaris, Kessaris et al., 2006) and

Nkx2.1-Cre+/� (C57BL/6J-Tg(Nkx2-1-cre)2Sand/J, JAX stock #008661, Xu et al., 2008) transgenic animals were crossed with

R26:tdTomatomT/mT homozygous animals, also called Ai14 (B6;129S6-Gt(ROSA)26Sortm14(CAG-tdTomato)Hze/J, Madisen et al.,

2010). The presence of the Cre transgene was assessed at birth by observing the neonatal brain (when the fluorescence is still visible

through the skin with no fur) under the fluorescent stereo microscope. MADMGT/+ andMADMTG/+ transgenic animals were a gift from

the laboratory of S. Hippenmeyer (Hippenmeyer et al., 2010). Heterozygous mice were crossed to obtain homozygous MADMGT/GT

and MADMTG/TG animals. These homozygous mice were then mated to obtain MADMGT/TG embryos. Expression of the Cre Recom-

binase in MADMGT/TG embryos was achieved by IUE of pcX-Cre plasmid (1mg/ml, Morin et al., 2007) at E13.5 or E14.5. All transgenic

mice lines were kept as B6D2F1/J or C57/Bl6 background. For all other experiments involving IUE, RjORL:SWISS pregnant females

were used due to their fertility and their maternal instinct. RjORL:SWISS embryos were also used for the in situ hybridization exper-

iment at E14.5 and cell culture. GemC1KO/KO homozygous animals were incrossed to obtain GemC1-deficient cell cultures. Gemi-

ninflox/KO mice and NestinCre ± were crossed in order to have Geminin-deficient glial progenitors in our culture system. All animals

analyzed in this study were sacrificed at P15-P20, except for the adult mice sacrificed at P42 to assess the neurogenic potential of

SVZ astrocytes, the embryos (and consequently, the mother, at E14.5-E15.5) used for the in situ hybridization studies or EdU-medi-

ated assessment of cell cycle stage of electroporated cells, and newborn pups (P0-P2) used for the cell culture.

METHOD DETAILS

In utero electroporation

In utero electroporation of mouse embryos was performed at E13.5 or E14.5. Pregnant females were injected subcutaneously with

buprenorphine (0.1 mg/kg) 15 minutes prior to surgery. They were subsequently anaesthetized by isoflurane inhalation, the abdom-

inal cavity opened and the uterine horns exposed. With a thin glass capillary (Harvard Apparatus), 1ml of plasmid in filtered PBS was

injected together with FastGreen (0.025%, Sigma) into the LVs of the embryo. The final concentrations of plasmids were 1 mg/ml
PBCAG-Nucbow, 0.5 mg/ml CAG-hypBase, 0.1 mg/ml CAG-seCre (Loulier et al., 2014), 1 mg/ml CAG-H2B-GFP (a gift from the labora-

tory of X. Morin, Hadjantonakis and Papaioannou, 2004), 1mg/ml pCAGGS-Cre (a gift from the laboratory of X. Morin, Morin et al.,

2007), or 1mg/ml pCAGGS-GemC1 or pCAGGS-Geminin (gifts from the laboratory of S. Taraviras, Kyrousi et al., 2015).

Immediately after injection, four pulses of 50 ms and 35 V were applied to the embryos’ telencephalon at 950 ms intervals with an

electroporator (CUY21 EDIT, Nepagene). Finally, the embryos were carefully placed back into the abdominal cavity and left to

develop before sacrifice.

EdU administration and detection

To determine the spatial disposition of newborn ependymal cells and the cell cycle stage at the time of electroporation, 50 mg/kg

body weight (8 mg/ml stock, dissolved in filtered PBS) of EdU (Thermo Fisher Scientific) was administered to pregnant mice by intra-

peritoneal injection. In the first case, a single injection was administered at E15.5. In the second one two injections were performed;

the first one 2 hours before and the second one 2 hours after IUE. To assess the neurogenic potential of SVZ astrocytes, EdU was

administered for 14 days through the drinking water (1mg/ml) of P21 electroporated litters. EdU incorporation was detected using the

Click-iT EdU Alexa Fluor imaging kit (Thermo Fisher Scientific for Alexa Fluor 488, 594 or 647 staining), according to manufacturer’s

protocol. Briefly, V-SVZ wholemounts or fixed coronal sections of the forebrain or olfactory bulbs were permeabilized in blocking

solution with 0.1% Triton X-100 and 10% fetal bovine serum in PBS for 1h. After washing with PBS, sections were incubated for

1 hour with the Click-iT reaction cocktail, protected from light. The sections were washed again and incubated overnight at 4�C

with the primary antibodies. After incubation with the secondary antibody for 2 hours and Hoechst staining, slices were mounted

with Fluoromount-G (Southern Biotech, 0100-01) mounting medium.

Primary Ependymal Cell culture

Primary culture of ependymal cells was done like previously described (Delgehyr et al., 2015; Al Jord et al., 2014). Briefly, newborn

mice (P0–P2) were sacrificed by decapitation. Their brains were dissected in Hank’s solution (10% HBSS, 5% HEPES, 5% sodium

bicarbonate, 1% penicillin/streptomycin (P/S) in pure water) and the extracted ventricular walls were cut manually into small pieces,

followed by enzymatic digestion (DMEM glutamax, 33% papain (Worthington 3126), 17% DNase at 10 mg/ml, 42% cysteine at

12 mg/ml, using 1 mL of the enzymatic digestion solution per brain) for 45 min at 37�C in a humidified 5% CO2 incubator.

Digestion was stopped by addition of a solution of trypsin inhibitors (Leibovitz Medium L15, 10% ovomucoid at 1 mg/ml, 2% DNase
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at 10mg/ml, using 1mL of enzyme inhibiting solution per brain). The cells were thenwashed in L15 and resuspended in 1mL per brain

dissected of DMEM glutamax supplemented with 10% fetal bovine serum (FBS) and 1% P/S. Cells were then seeded in a Poly-L-

lysine (PLL)-coated flask (1 mL per 75 cm2 flask), containing 5 mL of the same medium in which cells were resuspended. Ependymal

progenitors proliferated for 5 days until confluence followed by shaking (250rpm) overnight at room temperature. Pure confluent

astroglial monolayers were replated at a density of 7 3 104 cells per cm2 in DMEM glutamax, 10% FBS, 1% P/S on PLL-coated

coverslides for immunocytochemistry experiments and maintained overnight. The medium was then replaced by serum-free

DMEM glutamax 1% P/S, to trigger ependymal differentiation gradually in vitro (DIV 0).

Tissue and cell culture preparation

When the immunostaining was performed on coronal sections of postnatal animals, these were previously anesthetized with a

mixture of 100 mg of ketamine and 10 mg of xylazine per kg of body weight, and then were perfused transcardially with 4% PFA.

Adult animals used for EdU-retaining olfactory bulb neuron analyses were not perfused, since no immunohistochemistry procedure

was performed on them. After overnight fixation of the dissected brain in 4%PFA at 4�C, of either perfused or non-perfused postnatal

mice or embryos, 80 mm-thick floating sections were cut on a vibratome. Wholemounts of the lateral walls of the LVs were dissected

(Mirzadeh et al., 2010) from animals sacrificed by cervical dislocation and fixed for 15 minutes in 4% PFA at room temperature. Pri-

mary cultures of ependymal cells were fixed for 10 minutes in 4% PFA at room temperature.

For in situ hybridization, an E14.5 pregnant female was sacrificed by cervical dislocation, the embryos were retrieved and their

whole brains fixed for 3 days in 4% PFA at 4�C. The sectioning of the tissue was done like described above.

Immunostaining

Tissue samples and primary ependymal cell cultureswere incubated for 1h in blocking solution (1X PBSwith 0.1%–0.2%Triton X-100

and 10% fetal bovine serum) at room temperature. All these were incubated overnight at 4�C in the primary antibodies diluted in

blocking solution. The primary antibodies used targeted CD24 (1:200, BD PharMingen), FoxJ1 (1:500, Thermo Fischer Scientific),

GFP (1:1600, Aves Labs), Dsred (1:400, Clontech Laboratories), Sox9 (1:1200, Millipore), FOP (1:600, Abnova Corporation), GFAP

(1:400, Millipore) ZO1 (1:100, Thermo Fischer Scientific), Gamma-tubulin (1:500, Sigma-Aldrich) and Acetylated-tubulin (1:400,

Sigma-Aldrich). The following day, they were stained with species-specific AlexaFluor fluorophore-conjugated secondary antibodies

(1:400, Thermo Fischer Scientific or Jackson ImmunoResearch Labs, see Key Resources Table). Nuclei were counterstained with a

1:1500 Hoechst solution (from a 20 mg/ml stock, Sigma-Aldrich), containing the secondary antibodies for 2h at room temperature.

Finally, the wholemounts were redissected to keep only the thin lateral walls of the LV (Mirzadeh et al., 2010) which were mounted

with Vectashield mounting medium (Sigma, H-1000), for Nucbow samples, or Fluoromount-G mounting medium (Southern Biotech,

0100-01), for other stainings. Fluoromount-mounted slides were stored at 4�C, whereas Vectashield-mounted wholemounts were

stored at �20�C to avoid color fading. Cell culture coverslides were mounted with Fluoromount-G.

In situ hybridization

The GemC1 cDNA sequence was subcloned into a pBlueScriptKS plasmid by removing the former from the same pCAGGS-GemC1

plasmid used for GemC1 overexpression (see In Utero Electroporation, Kyrousi et al., 2015). Both plasmids were doubly digested

with XbaI and XhoI. Then the DNA fragment corresponding to the GemC1 cDNA size was isolated from an agarose gel and ligated

to the pBlueScriptKS backbone, upstream of the T3 promoter sequence. The pBlueScriptKS-Geminin plasmid was a gift from the

laboratory of S. Taraviras (Spella et al., 2007). Briefly, in this study, the open reading frame of Geminin was cloned between the

EcoRI/BamHI sites of the pBlueScriptKS plasmid, upstream of the T7 promoter sequence.

pBlueScriptKS-GemC1 and pBlueScriptKS-Geminin were linearized with XbaI and EcoRI restriction enzymes. Using the T3 and T7

RNA polymerases (Sigma-Aldrich), respectively, DIG-labeled ribonucleotide mix (Sigma-Aldrich) and a Ribonuclease inhibitor

(Promega), a DIG-labeled gene-specific RNA probe was generated, according to manufacturer’s instructions. RNA probes were

subsequently treated with a Deoxyribonuclease (Promega) for 20 min at 37�C. Once synthesized, the RNA probes were purified in

a ProbeQuant G-50 Micro Column (Sigma-Aldrich).

The in situ hybridization was performed as previously described (de Frutos et al., 2016). Unless stated otherwise, washing steps

were performed thrice for 5min. Floating sections of E14.5 embryos were incubated for 1 hour at room temperature (RT) in the dark in

2%H2O2 in PBS-0.1%Tween-20 (PBT). After washing in PBT, sectionswere treatedwith Proteinase K (10 mg/ml in PBT) for 3-4min at

RT and then the reaction was stopped in a 2mg/ml glycine solution in PBT for 5 min at RT. After washes in PBT, samples were post-

fixed in 0.2%glutaraldehyde in 4%PFA for 30min at RT. The tissuewaswashed again in PBT and then incubated for 1 hour at 60�C in

hybridization buffer (50% formamide, 5X SSC, 1% SDS, 50 mg/ml heparin and 50 mg/ml yeast tRNA, in water). RNA probes were

diluted at 5-10 mg/ml in hybridization buffer and incubated with the samples at 60�C overnight. The next day, sections were washed

twice in a 50% formamide, 5X SSC, 1% SDS solution, for 30 min at 60�C. They were washed again twice in a 50% formamide, 2X

SSC, 0,5% SDS solution, for 30 min at 60�C. Washing at RT in TBST (0.08% NaCl, 0.002%KCl, 2.5mM Tris, from a 1M Tris pH = 7.5

stock, 0.01% Tween-20) followed and blocking in 10% FBS in TBST for 1h 30 min at RT. An anti-DIG antibody (Sigma-Aldrich) was

diluted in blocking solution (1:2000) and incubatedwith the samples overnight at 4�C. The next day, at least 8washes in TBST and 3 in

NTMT (100 mM NaCl, 100 mM Tris, from a 1M Tris pH = 9.5 stock, 50 mM MgCl2, 0.01% Tween-20) for 10 min were done. Finally,
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color developing was performed in a 0.35% vol/vol BCIP (Sigma-Aldrich) and 0.34% vol/vol NBT (Sigma-Aldrich) solution, from a 50

and 100 mg/ml stock dilution in dimethylformamide, respectivelty, in NTMT.

Imaging

Fixed slices or LV wholemounts were examined with an upright Zeiss Axio Observer.ZI epifluorescence microscope, using an apo-

chromat 63 3 1.4 NA objective and a Zeiss Apotome with an H/D grid.

Confocal image stacks were collected with a 403 1.3 NA water objective on Olympus FV1000 and FV1200 microscopes, or with a

403 1.4 NA oil objective or a 633 1.4 NA oil objective on an inverted LSM880 Airyscan Zeissmicroscope with 440, 515 and 560 laser

lines to excite, independently, Cerulean, mEYFP and mCherry, or Alexa 488, 594 and 633/Cy5.

Finally, images of the in situ hybridization sections were taken with a Leica MZ16 F Fluorescence Stereo Microscope (Leica Micro-

systems), equipped with a plan-apochromatic objective 1.0x (Leica, 10447157) and a Nikon DS-Ri1 High Resolution Color Camera

(Nikon), with the assistance of the NIS-Element F Ver5.502 Imaging Software (Nikon).

Automatic image analysis of MAGIC Markers

For clarity, mCherry, EYFP and Cerulean Nucbow signals are represented as red, green and blue (RGB) values. 1) Local apical layer

extraction: to maintain consistency among datasets, only cells within 25 mm of the apical surface were considered using the SME

projection tool on the FoxJ1-stained cell nuclei (Shihavuddin et al., 2017). 2) Segmentation of ependymal cells stained with

FoxJ1: the 3D volume occupied by each cell nucleus was delineated using FoxJ1 far red staining. RGB information was extracted

from the segmented mask using the following steps implemented as a Fiji macro: Noise was reduced in a preprocessing step using

3DGaussian filtering, where the sigma values of the Gaussian kernel was set to 1/3rd of the estimatedmean nuclear radius in 3D. This

was followed by Log3D filtering (Sage et al., 2005) to select objects corresponding to nuclear size; the local 3D maximum was then

detected to determine the center of each cell nucleus. 3D-seeded watershed segmentation was performed from these maxima to

accurately detect the nuclear border in 3D. This 3D segmentation mask was used to compute the volume and the mean color of

each nucleus. 3) Segmentation of non-ependymal cells: After elimination of FoxJ1-positive ependymal cells, only FoxJ1-negative

non-ependymal cells remained in the 25mm apical layer. Since there is no specific marker for these cells, they were characterized

by their color information as follows: Projection: projection of the Nucbow color channels was maximized to obtain a 2D represen-

tation of all labeled non-ependymal cells. Color gradient extraction: In order to accentuate nuclear borders, the image gradient was

computed from the sum of the intensities of the three RGB channels. The gradient image was further filtered with adaptive Gaussian

filtering to improve the signal to noise ratio. The adaptive filter augments smoothing where the image gradient is weak and decreases

smoothing where the gradient is high, in order to preserve nuclear edges. Watershed segmentation: Local maxima were extracted

from the inverted smoothed gradient response to retrieve one maximum per nucleus. The seeded watershed transform was then

used (Ollion et al., 2013) to detect cells in 2D. 4) Color normalization:RGB channels were rescaled linearly from 0 and the 99th percen-

tile of their intensity distribution to ensure alignment of their relative intensity (1% of the most saturated cells were therefore excluded

from the analysis of each sample). 5) Determination of clonal lineage: To identify the cell lineage, each cell was characterized by the

median R G B values and their spatial location in 3D X, Y, Z. RGB values were converted to their equivalent in the HSV (Hue, Satu-

ration, Value) color space as described in Loulier et al. (2014). This conversion was performed in MATLAB with the HEXCONE model

proposed by Smith (1978).

QUANTIFICATION AND STATISTICAL ANALYSES

Quantification, image and statistical analyses were performed with Fiji (Schindelin et al., 2012), MATLAB (Mathworks, USA), Excel,

and GraphPad Prism software. Quantifications throughout the study are represented as the mean value, with the exception of the

clone size representation, which indicates the clone size frequency distribution (only Figure 4H), as well as the Gaussian non-linear

regression curve fitting the frequency of clones of variable sizes (from 1 to 8 cells per clone, Figure 4H, 5C, 6C). Error bars indicate the

Standard Error of the Mean (SEM), except for Figure S1C, in which the Standard Deviation (SD) is depicted. P values in this manu-

script present the following star code: ns: p > 0.05 (non-significant), *p% 0.05, **p% 0.01, ***p% 0.001.

Fate mapping of the spatial origin of ependymal cells

In order to characterize the spatial origin of ependymal cells and the presence or absence of ependymal progenitor cell migration, we

considered two areas along the ventricular wall in the Cre-expressing animals; a Cre-positive area, or the anatomical part of the

ventricle directly derived from the embryonic Cre-expressing area (Dorsal and Dorsal Medial Walls in the Emx1Cre mice, the Lateral

Wall in the Gsh2Cre mice and the ventral-most region of the wall in the Nkx2.1Cre animals), and a Cre-negative area, or the anatom-

ical part of the ventricle that is not derived from the embryonic Cre-expressing area, according to the literature. In the Emx1-cre; Ai14

group, 14 images from n = 6 animals were analyzed, with 1615 counted cells in the Cre-positive area and 1723 cells in the Cre-nega-

tive area. For the Gsh2-cre; Ai14 individuals, 15 images from n = 4 animals were used for quantification, with 383 and 895 cells

counted on the Cre-positive and Cre-negative anatomical areas, respectively. Finally, 16 images from n = 5 Nkx2.1-cre; Ai14 animals

were used, with a total of 496 and 2367 cells analyzed in the Cre-positive and negative areas, respectively.
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To determine whether the differences between the Cre-positive and negative areas were significant, we performed a Mann-

Whitney test.

Characterization of the cell types in the electroporated V-SVZ

19 images containing 441 V-SVZ electroporated (H2B-GFP positive) cells were analyzed in n = 3 different animals. The differences

between cell types (astrocytes or FoxJ1-Sox9+, ependymal or FoxJ1+Sox9+, and unknown cell type or FoxJ1-Sox9-) were deter-

mined in pairs via the Mann-Whitney test.

Automatic image analysis of MAGIC markers

We assessed n = 6 V-SVZwholemounts electroporated with theMAGICmarkers (Nucbow). The automated analysis of such samples

yielded 7668 Nucbow+ cells, which could be regrouped in clones of cells, i.e., cells with a common progenitor, based on their color

characteristics (seeMethod Details). 1142 Nucbow+ cells that belonged to 163 clones with 2 cells (326 cells) or 186 clones with 3 to 8

cells (816 cells) and that contained at least one FoxJ1+ cell were taken into account. These 349 clones represented the 83%of all 418

clones found by the automated analysis with at least one FoxJ1+ cell. The 17% remaining clones had 9 to 32 cells and they were

excluded from the analysis. Clones of 2 cells (163 of the 349 total clones) were categorized in clones formed by 2 ependymal cells

(only FoxJ1+) or 1 ependymal and 1 non-ependymal cells (FoxJ1+ = FoxJ1-). Clones of 3 to 8 cells (186 of the 349 total clones) were

subdivided in clones formed by exclusively ependymal cells (only FoxJ1+), clones with as many or more ependymal cells as non-

ependymal cells (FoxJ1+R FoxJ1-), or clones with less ependymal than non-ependymal cells (FoxJ1+ < FoxJ1-). The difference be-

tween the frequency of clones with 2 or 3 to 8 cells, as well as the difference between the percentage of types of clones (only FoxJ1+,

FoxJ1+ = FoxJ1-, FoxJ1+R FoxJ1-, FoxJ1+ < FoxJ1-), were determined in two-by-two comparisons with the Mann-Whitney test.

The 3D-distance between cells in pure ependymal clones and between cells in mixed clones (with at least one FoxJ1- cell) was

calculated automatically and the p value was assessed using the Mann-Whitney test, as well.

MADM transgenic image analysis

In all, 314 clones of 2 ormore cells were analyzed (29 E13Ctrl, 20 E13GemC1, 73 E13Geminin, 44 E14Ctrl, 41 E14GemC1 and 107 E14

Geminin), which counted for 1069 cells (117 E13Ctrl, 56 E13GemC1, 317 E13Geminin, 134 E14Ctrl, 110 E14GemC1 and 335

E14Geminin), obtained from 52 electroporated embryos (6 E13Ctrl, 4 E13GemC1, 8 E13Geminin, 16 E14Ctrl, 9 E14GemC1 and

13 E14Geminin). To assess the percentage of types of clones (Ependymal only versusMixed and versus B1 astrocytic only), and cells

(Ependymal versus B1 astrocytes), all clones were grouped, independently of animals, since the efficiency of the IUE technique and

the Cre recombination in MADMmice are highly variable. This resulted in the problem of having animals with a very small number of

clones (one or two) and animals with a very large number (up to 26) and, hence, not having the same weight in the statistical analysis.

In order to study the difference of clone types and cell proportion among the different categories, a two-proportion Z-test was per-

formed in each case.

The differences in cell division type (Ependymal symmetric, E-E, B1 astrocytic symmetric, B1-B1, or asymmetric, E-B1) were

assessed with the Mann-Whitney test.

Finally, the clone size distribution (number of cells per clone) for each category was represented as a Gaussian non-linear regres-

sion curve, fitting the frequency of clones with several sizes (from 1 to 8 cells per clone). The differences in the clone size distribution

were determined via a Chi2 test for trend.

The distance between cells in a clone was determined by assessing the mean distance between pairs of cells in a clone, when

they possessed more than 2 cells, or the only distance between the unique pair of cells in clones with 2 cells. The significance of

the difference in such distance was calculated using the Mann-Whitney test.

EdU incorporation in the V-SVZ analysis

17 and 12 coronal sections of electroporated brains with stained EdU were analyzed for the E13.5 and E14.5 brains (n = 3 for each

category). In these, the percentage of EdU retaining cells was assessed. The p value was calculated using the Mann-Whitney test.

Characterization of the differentiation status in the V-SVZ with or without GemC1

41 and 15 coronal sections were analyzed for the H2B-GFP and GemC1/H2B-GFP-electroporated brains, respectively. A total

of 4434 and 1953 H2B-GFP+ ependymal (multi-FOP stained) and non-ependymal cells (two-dot FOP stained) were counted in

the V-SVZ of 3 control and 3 GemC1 brains. Even though the number of animals was the same, the difference in analyzed

sections and counted cells is due to the variability of the electroporation, which causes that some brains are electroporated

over a wide area, whereas others are targeted by the electroporation in a restrained zone. The difference between the per-

centage of electroporated ependymal cells (over the total electroporated cells) in both categories was determined with a

Mann-Whitney test.
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Assessment of the differentiation status of GemC1 KO and Geminin cKO primary cultures

n = 4 cultures for WT, n = 2 for GemC1KO/KO and n = 4 for GemininFL/KO;NestinCre ± were quantified. In all 1015, 637 and 1638 cells

were counted for each one of the genotypes, respectively. The percentage of differentiation in each condition was normalized to the

WT (control). The differences between genotypes were determined in pairs using the Mann-Whitney test.

DATA AND SOFTWARE AVAILABILITY

Several macros were created using the MATLAB software to use for the automatic analysis of MAGICmarkers. They will be available

upon request to the corresponding author.
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Supplementary Figure 1: Ependymal cells derived from E15.5 progenitors are closer than 

random at P15 (related to Figure 1) 

 

(A) Experimental schema for (B): Timed-pregnant female mice received one injection of EdU 

at E15.5 and wholemounts of the V-SVZ of the offspring were analyzed at P15. 

(B) Triple immunolabeling with ZO1 (white), EdU (green) and gamma tubulin (clone GTU88, 

basal body marker, red). 

(C) 2D map of EdU+ ependymal and B1 cells. SME projection was used to extract a 2D image 

of the surface in the vicinity of the apical layer of the 3D stack. Watershed segmentation was 

then performed on 2D image, using local maxima of the adaptive gaussian-smoothed input 

image as seeds. The segmented cells were then classified in ependymal multiple-dotted 

GTU88+ EdU+ (red), B1 double-dotted GTU88+ EdU+ (brown) or EdU- (white) cells with a rule-

based classifier applied to texture features computed from each single segmented cell.  

(D) Nearest neighbor distance analysis of EdU+ ependymal cells (with multiple GTU88+ basal 

bodies) in the P15 V-SVZ injected with EdU at E15.5. According to the average amount and 

proportion of EdU+ cells observed in 24 images obtained from 5 different mouse brains, 500 

artificial images were generated, each containing a regular hexagonal grid of 345 cells with a 

0.065 probability of being randomly EdU+. From there, a distribution of the distance of the 

closest EdU+ cell from each EdU+ cell was obtained with the distance defined as the number 

of cells between two EdU+ cells. A mean of the 500 cumulative distributions are represented 

by the black curve. The red curve represents the same computed results made on the real 

dataset of 25 images. Error bars represent the SD. The p-value was determined with the non-

parametric Kolmogorov-Smirnov test for 2 samples; ***p≤0.001. The scale bar represents 25 

μm. 
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Supplementary Figure 2: In utero electroporation targets proliferating radial glia progenitors 

(related to Figure 2) 

 

(A) Experimental schema for (B): Timed-pregnant female mice received a single injection of 

EdU 2 hours before and after in utero electroporation of H2B-GFP at E13.5 (B) or E14.5 (C) and 

coronal sections of the forebrain were analyzed 24 hours later. 

(B-C) EdU labeling on coronal sections of the H2B-GFP+ brains, 24 hours after the 

electroporation. 

(D) Mean percentage of GFP+EdU+ among all GFP+ cells one day after the electroporation at 

E13.5 or E14.5. Data are presented as the mean ± SEM. The p-value was determined by the 

Mann-Whitney test; ns, p>0.05, n=3 experiments. VZ, ventricular zone; SVZ, subventricular 

zone. The scale bar represents 75 μm. 
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Supplementary Figure 3: Methodology for the detection of FoxJ1+ and FoxJ1- Nucbow+ cells 

(related to Figure 3) 

 

(A-B) Representative raw images of an en-face view of the V-SVZ electroporated at E14.5 with 

PBCAG-Nucbow along with the PiggyBac transposase and the self-excising Cre recombinase (A) 

and immunostained at P15 with FoxJ1 antibody (B).  

(C) 25 μm 3D-segmentation of FoxJ1+ cells outlined in yellow using Gaussian smoothing, Log3D 

filtering and 3D watershed segmentation implemented as a Fiji macro (see methods).  

(D-E) Segmented images of Nucbow+FoxJ1- and Nucbow+FoxJ1+ cells, respectively. The scale 

bar represents 300 μm. 

 
 



  

 

 

 



Supplementary Figure 4: Color analysis of manually selected Nucbow+ clones (related to 

Figure 3) 

(A) 49 couples of cells were manually selected by 2 independent researchers from 4 different 

electroporated brains with PBCAG-Nucbow along with the PiggyBac transposase and the self-

excising Cre recombinase at E14.5.  

(B-C) Circular Hue-Saturation (B) and Hue-Value (C) plots of manually selected Nucbow+ cells 

shown in (A).  

(D-G) Hue, Saturation, Value differences and spatial distance between each cell of the 

manually selected Nucbow+ clones shown in (A). The red arrows indicate the thresholds 

chosen for the automatic analysis. The scale bar represents 15 μm. 

 

 



 

 

 

 

 



Supplementary Figure 5: Color analysis of Nucbow+ clones (related to Figure 3) 

 

(A-B) Map of Nucbow+ clones containing 2 to 8 ependymal cells (A) or a mixed population of 

FoxJ1+ and FoxJ1- cells (B).  

(C-D) Circular Hue-Saturation and Hue-Value plots of all depicted Nucbow+ cells from (A-B), 

respectively.  

(E-F) Examples of ependymal cell clones formed by 2, 3 or 6 FoxJ1+ cells (E) and clones 

containing at least one FoxJ1+ cell formed by 2, 3, 4 or 6 cells.  In all maps, FoxJ1+Nucbow+ cells 

are outlined in white.  

(G) Normalized circular histogram of Hue values of cells contained in clones of 2 to 8 cells 

(small clones, white) or clones of 9 to 32 cells (big clones, black). Cells from big clones are more 

frequent around primary colors compared to cells from small clones (Kolmogorov-Smirnov 

test, p=0.001). The scale bar represents 100 μm (A-B) and 10 μm (E, F). 

 

 



 

 

 

 

 

 

 



Supplementary Figure 6: Pattern of expression of GemC1 and Geminin in the E14.5 forebrain 

(related to Figure 5-6) 

(A) Schematic representation of an E14.5 developing brain and the coronal planes (1 to 4, 

dashed lines) along the rostrocaudal axis of the lateral ventricles that are represented in B-C. 

Note that planes 2 and 3 pass along the choroid plexus. The red dashed line indicates the 

separation between the forebrain and the midbrain. 

(B) Stereo microscope images of the in situ hybridization of GemC1 and Geminin in four 

sections along the rostrocaudal axis.  

(C-D) High magnification images of the pictures in (B) for GemC1 (C) and Geminin (D). The 

dashed line indicates the area of the germinal zone. Arrowheads point at the choroid plexus. 

The asterisk points at the fimbria.  

The scale bar represents 500 µm (B) and 36 µm (C-D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



Supplementary Figure 7: GemC1 is necessary and sufficient for ependymal differentiation 

(related to Figure 5-6) 

(A) Experimental schema for (B-E): Primary cultures of RGCs from WT, GemC1KO/KO or 

Gemininflox/ko;NestinCre± animals  were seeded in flasks containing serum-rich medium for 5 

days. Ependymal progenitors were then seeded at high confluency on coverslips in serum-

deprived medium and they were left for 6 days to differentiate.  

(B-D) Double immunolabeling with FoxJ1 (green) and acetylated tubulin (clone 611B, cilia 

marker, red) for WT (B), GemC1KO/KO (C) or Gemininflox/ko;NestinCre± cultures (D, Geminin cKO). 

(E) Mean assessment of ependymal differentiation normalized to the percentage of 

differentiation of the controls (WT animal cultures). Error bars represent the SEM; p-values 

were calculated via the Mann-Whitney test; ns, p>0.05, ***p≤0.001. 

(F) Experimental schema: GemC1 and/or H2B-GFP plasmids were electroporated in utero at 

E14.5 and V-SVZ WM or coronal sections were analyzed at P15. 

(G-H) Confocal image of coronal sections of the forebrain at P15 immunostained with GFP and 

FOP antibodies (red), previously electroporated with H2B-GFP (G) or GemC1 and H2B-GFP (H). 

Ependymal cells are identified by the co-localisation with the basal body marker FOP. VZ: 

ventricular zone; SVZ: Subventricular zone. 

(I) Mean percentage of GFP+FOP+ ependymal cells among all GFP+ cells. Data are presented 

as the mean ± SEM. The p-value was determined by the Mann-Whitney test; ***p≤0.001, n=3. 

 (J-L) Confocal images of the V-SVZ WM at P15 immunostained with GFP (green), the basal 

body marker FOP (red) and ZO1 (white) antibodies. (K-L) High magnification images of the 

insets in (J) showing that pinwheel structures are absent when most cells express GemC1 (K) 

whereas pinwheels (arrows in L) are present in regions weakly electroporated with GemC1 (L). 

The scale bar represents 20 µm (B-D), 40 µm (G-H) and 150 µm (J). 

 

 

 



Table S1 

 

Supplementary Table 1: MADM lineage tracing after Cre expression at E13.5 or E14.5 

(related to Figure 4) 

Cre activity was induced through IUE in MADM embryos at E13.5 or E14.5 and red-green 

clones were analyzed on V-SVZ at P15-P20. B=Type B1 astrocytes; E=Ependymal cells; 

M=Mixed clones; E= Ependymal clones. 

 

 



Table S2 

 

Supplementary Table 2: MADM lineage tracing after Cre and GemC1 overexpression at E13.5 

or E14.5 (related to Figure 5) 

GemC1 overexpression together with Cre activity was induced through IUE in MADM embryos 

at E13.5 or E14.5 and red-green clones were analyzed on V-SVZ at P15-P20. B=Type B1 

astrocytes; E=Ependymal cells; M=Mixed clones; E= Ependymal clones. 

 

 

 



Table S3 

 

 

 



 



 

 

Supplementary Table 3: MADM lineage tracing after Cre and Geminin overexpression at 

E13.5 or E14.5 (related to Figure 6) 

Geminin overexpression together with Cre activity was induced through IUE in MADM 

embryos at E13.5 or E14.5 and red-green clones were analyzed on V-SVZ at P15-P20. B=Type 

B1 astrocytes; E=Ependymal cells; M=Mixed clones; E=Ependymal clones. 
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CHAPTER 3. ON THE CELLULAR AND MOLECULAR MECHANISMS OF 

EPENDYMAL CELL SPECIFICATION AND DIFFERENTIATION 

 
3.1. Cell cycle progression and its regulation 

The cell cycle is the sequence of cellular events that lead to the replication of the 

genome, growth and cell division to generate two cells that inherit the same genotype. 

Oscillators regulate the ordered transition between different phases of the cycle, this is, 

proteins and molecules whose expression or activity oscillates during the cell cycle. These are 

cyclins, cyclin-dependent kinases (CDKs) and cyclin-dependent kinases inhibitors (CKIs). As it 

was firstly described in yeast, CDKs partner with cyclins to become catalytically active, and it 

is the specific combination of different types of CDKs and cyclins that leads the cell through 

the different phases of the cell cycle (Lim and Kaldis, 2013; Poon, 2016). 

There are four phases in the cell cycle: G1, a phase of growth and synthesis of 

biomolecules, like proteins, S, when DNA duplication takes place, G2, another phase of 

growth, and M, when mitosis takes place and the duplicated genome is equally separated into 

two daughter cells (Poon, 2016).  

Entering the cell cycle at G1 and progression through such phase depends on a balance 

of mitogenic and growth inhibiting signals. Mitogenic signals promote the activation of CDK4 

and CDK6 via interactions with cyclin D (Massagué, 2004). The G1 is firstly dependent on these 

mitogenic stimuli to progress and it is during this stage that the cell decides to continue and 

divide or arrest. However, there is a moment in G1 when the cell becomes mitogen-

independent and commits to complete division. This is called the restriction point (R) (Pardee, 

1974). 

Overcoming R depends on a bistable switch mechanism dependent on the 

Retinoblastoma protein (pRb)-E2F pathway. The nature of this switch is as follows: high levels 

of mitogenic signals are required to pass it, but once R is reached, low-maintenance 

mechanisms ensures that the cell cycle is completed (Yao et al., 2008). Before R, pRb is in an 

hypophosphorylated state that allows it to bind E2F1-3 transcription factors and inhibit the 

transcriptional activation of their target genes. A build-up CDK activity, due to the mitogenic-

dependent activation of cyclin D-CDK4/6 partially phosphorylates pRb and, as a consequence, 
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E2F is released. Among its target genes, G1 to S transition ones are found, such as cyclins A 

and E, E2Fs and components of the replication machinery (polymerases and nucleotide 

anabolism enzymes). The expression of cyclin E causes the formation of a complex with CDK2 

(cyclin E-CDK2) that further phosphorylates pRb, closing a positive feedback loop. Therefore, 

pRb becomes hyperphosphorylated and completely releases E2F, a phenomenon that 

coincides with R, to further facilitate the G1 to S transition (Henley and Dick, 2012) (Figure 19). 

The pro-proliferative actions of cyclin D-CDK4/6 and cyclin E-CDK2 are counter-acted 

by CKIs. Of these, two distinct families exist: the CIP/KIP family, which includes p21, p27 and 

p57 that target CDK4, CDK6, CDK2 and CDK1 for inhibition, and the INK4 family, which includes 

p15, p16, p18 and p19 that only repress CDK4/6 in G1 (Lim and Kaldis, 2013; Pack et al., 2019). 

Of these, p27 is the one that acts in normal conditions, without senescence or growth 

inhibiting signals. It inhibits CDK2 during G1, but this action can be counter-balanced by an 

accumulation of cyclin D, which displaces p27 from cyclin E-CDK2 complexes and the built-up 

of cyclin E-CDK2 itself during G1, as described before, which phosphorylates p27 and targets 

it for degradation (Poon, 2016) (Figure 19).  

Figure 19. Regulation of G1 and restriction point. Transition through G1 phase of the cell cycle depends on the 

increase of CDK activity primed by mitogens. These 

extracellular cues promote the formation of cyclin 

D-CDK4/6 complexes, which start phosphorylating 

the retinoblastoma (pRB) protein. When 

unphosphorylated, this protein forms a complex 

with E2F transcription factors, impeding its activity 

as transcription activators. However, partial 

phosphorylation of pRb permits some E2F-

dependent expression of cyclin E, which forms a 

complex with CDK2. This further phosphorylates 

pRb until it becomes hyperphosphorylated and 

completely releases E2F, which then further 

promotes the transcription of G1 to S transition 

cyclins in a positive feedback loop. The liberation of E2F coincides with the restriction point (R), the moment of 

the cell cycle from which the cell becomes mitogen-independent and is committed to divide. From Poon, 2016. 

During G1 and S phases, several mechanisms exist to ensure DNA is replicated only 

once. As briefly introduced before (see Chapter 2 - The Geminin family: regulators of DNA 

replication with a role in multiciliogenesis), in G1, but even in late M, the pre-RC is formed on 

replication origins, via origin recognition complex (ORC), Cdc6 and Cdt1 loading to the 

chromatin. This in turn promotes the recruitment of MCM2-7 and its coactivators Cdc45 and 
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GINS, to form the replicative helicase complex whose role is to unwind the DNA double helix 

to proceed with DNA polymerization. CDK2 and Cdc7 promote this cascade through their 

phosphorylating activity. This process is called replication licensing and it is deactivated as the 

cell approaches S phase. Among the mechanisms that prevent re-replication of the DNA, we 

can find: (i) cyclin E degradation after S phase, (ii) CDK-dependent phosphorylation of MCM2-

7, Cdt1, Cdc6 and ORC, which promotes their nuclear export, degradation or chromatin 

dissociation, (iii) cyclin A-CDK2 phosphorylation of E2F1-3 to decrease their DNA binding 

potential and diminish transcription of S-related genes, and (iv) the expression of E2F7/8 that 

are transcriptional repressors of E2F1-3. (v) Finally, Geminin, as discussed before, is a protein 

that accumulates during S/G2 and that binds and sequesters Cdt1 (Figure 20) (Bleichert, 2019; 

Blow and Hodgson, 2002; Poon, 2016).  

Figure 20. Regulation of S phase and inhibition of DNA re-replication. During G1, the pre-replication complex is 

formed by recruitment of several factors to 

replication origins on chromatin (ORC, Cdc6, 

Cdt1 and MCM2-7, in order). CDK2, in complex 

with cyclins A and E, and Cdc7, which partners 

with another cell cycle oscillator called DBF4, 

phosphorylate MCM2-7. This causes the 

recruitment of replicative helicase complex 

coactivators Cdc45 and GINS to open DNA and 

start replication. Once S phase has started, 

different mechanisms ensure that replication 

origins are licensed only once. These lead to the 

degradation, inactivation or nuclear export of 

the different factors named here. Of particular 

interest is Geminin, whose expression builds-up during S and G2 phases to bind and inhibit the licensing factor 

Cdt1. Geminin is degraded at the metaphase to anaphase transition during M so that the pre-replication complex 

can form again during a new cell cycle. From Poon, 2016. 

After the DNA has been successfully replicated, a gap phase precedes mitosis, the G2 

phase. This is a preparatory phase for mitosis during which cyclin A-CDK2, who also has a role 

in S phase progression and is thus activated at the beginning of it, is mots robustly activated. 

Cyclin A-CDK2 regulates the timing of entry into mitosis by promoting the activation of the 

main mitotic engine, the cyclin B-CDK1 complex, as well as controlling the time of mitotic 

spindle formation (De Boer et al., 2008). A possible mechanism indicates that cyclin A-CDK2 is 

essential for the activation of the Cdc25 family, a group of phosphatases that catalyze the 

retrieval of inhibitory phosphorylation from cyclin B-CDK1 during G2 (Mitra and Enders, 2004). 
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During the G2 to M transition a robust regulatory mechanism of cyclin B-CDK1 is 

established, which ensures that initial accumulation of CDK1 activity turns to abrupt activation 

via a feedback loop. In the G2 phase, CDK1 is inhibited by phosphorylation of the Wee1 and 

Myt1 kinases. However, the activation of the Cdc25 phosphatases at the end of G2 triggers 

the dephosphorylation of CDK1. This kinase is then free to further activate Cdc25 and impede 

Wee1 kinase activity, in both cases via phosphorylation. This autocatalytic event of CDK1 self-

regulation is triggered by Aurora A, which activates Plk1 that in turn inhibits Wee1 and Myt1, 

activates Cdc25 and promotes cyclin B translocation to the nucleus (Figure 21) (Lemonnier et 

al., 2020; Poon, 2016; Schmidt et al., 2017).  

In order to finish the cycle, cells enter mitosis for the separation of the duplicated 

chromosomes in two daughter cells. The key event of M is the metaphase to anaphase 

transition, promoted by the anaphase-promoting complex (APC/C). This must remain inactive 

before all chromosomes are attached to the mitotic spindle microtubules by the kinetochores. 

The APC/C is an ubiquitin ligase complex that promotes mitotic cyclin degradation, cyclins A 

and B, in combination with co-factors Cdc20 and Cdh1. The APC/C is activated by 

phosphorylation from cyclin B-CDK1. Hence, this mitotic engine primes its own degradation. 

Once activated, APC/C targets not only cyclins, but also Plk1, Cdc25 and Aurora A, this is, the 

same actors that previously prompted cyclin B-CDK1 activation. It also primes the degradation 

of Geminin, as explained earlier, and securin, whose disappearance is critical for the release 

of the protease separase. This one triggers the degradation of the cohesin subunit that forms 

the linkage that maintains sister chromatids bound together (Figure 21) (Poon, 2016; Raha 

and Amon, 2008).  
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Figure 21. Mitosis progression regulation. The main promoter of mitosis entry and progression is the complex 

formed by cyclin B and CDK1. It prompts its own 

activation in an autoregulatory feedback loop which 

starts by an Aurora A-mediated activation of Plk1, a 

kinase that phosphorylates the Wee1 kinase and Cdc25 

phosphatases. The former inhibits CDK1 during G2 via 

phosphorylation and the latter activates it by eliminating 

the inhibitory phosphorylation. Plk1 inhibits and activates 

them, respectively, in G2. Once cyclin B-CDK1 is primed, 

it further triggers Cdc25 and hinders Wee1 actions, which 

builds up CDK activity. Once chromosomes are tethered 

to the mitotic spindle and ready for separation, cyclin B-

CDK1 promotes its own degradation via APC/C-Cdc20, 

which ensures the passage from metaphase to anaphase. 

Moreover, APC/C-Cdc20 degrades securing, an action 

which releases the protease separase to then promote 

sister chromatid separation to different poles of the cell. 

From Poon, 2016.  

3.1.1. Cell cycle regulators in MCC differentiation 

Cell cycle progression and terminal differentiation are intuitively thought as two 

independent processes necessary for tissue homeostasis. However, there is a temporal 

coupling between cell cycle arrest and differentiation that is usually achieved by down-

regulation of the CDK activity, sometimes through an increase of the CKI-dependent CDK 

inactivation. Furthermore, this linkage between the halt of the cycle and initiation of 

differentiation is regulated by the same pathways (Myster and Duronio, 2000).  

In an unexpected manner though, cell cycle progression regulators have also been 

implicated in differentiation mechanisms. In the CNS, cell cycle actors like cyclin D1 have been 

related to neuronal differentiation in neural crest-derived cells, hippocampal progenitors, 

motor neuron-committed stem cells of the spinal cord or in the retina (Galderisi et al., 2003; 

Hardwick et al., 2015). 

This knowledge has prompted research on cell cycle factor-dependent mechanisms 

that are involved in MCC differentiation. In an elegant, very thorough study by Al Jord et al., 

the most important mitotic drivers have been proposed to govern the transition between the 

different phases of centriole amplification (see Chapter 2 – 2.1.4.2. Centriole amplification in 

MCCs). They found that a Plk1 and APC/C-dependent calibrated CDK1 activity drives 

ependymal progenitors through centriole amplification, but such activity is sufficiently 
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dampened to avoid chromosome condensation and entry into mitosis (Al Jord et al., 2017; 

Levine and Holland, 2017).  

Another group has involved CDK2, present from late G1 to promote transition to S 

phase, in complex formation with cyclin A1 in motile ciliogenesis of mouse tracheal epithelial 

cells. CDK2 is necessary at all stages of differentiation of these cells and it acts upstream of 

well-known MCC differentiation program-required molecules, such as Mcidas, Myb or FoxJ1 

(Vladar et al., 2018). 

These studies and the indispensable role of GemC1, a master gene of ciliogenesis 

(Terré et al., 2016), in DNA replication in Xenopus and mammalian cells (Balestrini et al., 2010) 

have motivated us to search for a GemC1-dependent role of other cell cycle molecules in 

differentiation. It is likely that both the role of GemC1 in DNA replication is necessary or at 

least involved in MCC differentiation, rather than they being two distinct functions with no 

relation between them. 

3.2. Checkpoint activation and cell cycle arrest 

Cell cycle progression is regulated by checkpoints, mechanisms that sense and signal 

via defined molecular pathways the errors in the execution of cell cycle processes and, as a 

consequence, halt the progression to ulterior cell cycle phases until the error has been 

repaired (Hartwell and Weinert, 1989). They prevent the emergence of genome instability 

caused by a partially replicated genome or double strand breaks (DSBs), which lead to cell 

death or even to malignant transformations (Rhind and Russell, 2012). They act at the G1/S, 

G2/M and metaphase to anaphase transitions (Poon, 2016). 

At the G1/S transition, DNA damage sensing causes the recruitment of the ataxia-

telangiectasia mutated (ATM) and the ataxia-telangiectasia and Rad3-related (ATR) kinases. 

These, through phosphorylation of their effector kinases Chk1 and Chk2, stabilize p53 and 

avoid its nuclear export. P53 is then free to transactivate the expression of the CKI p21. Finally, 

this protein inhibits cyclin D-CDK4/6 and cyclin A/E-CDK2 activity, thereby arresting impeding 

pRb hyperphosphorylation and causing G1 arrest (Clark et al., 2000; Poon, 2016). 

During G2, the onset of mitosis is hindered by the same kinases, ATM/ATR-Chk1/Chk2, 

which promote Wee1 activation and diminish Cdc25 phosphatase activity, thus preventing 

cyclin B-CDK1 activity. This DNA damage checkpoint can be activated by DSBs or by stalled 
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DNA replication fork progression, which in turn can be produced by DNA lesions, repetitive 

DNA sequences, DNA-bound protein complexes or a limited supply of deoxyribonucleoside 

triphosphate molecules, necessary for new DNA strand synthesis (Poon, 2016; Rhind and 

Russell, 2012). DSBs activate the ATM kinase, whereas the stalled replication forks expose 

single-stranded DNA (ssDNA) that consequently recruits the Replication protein A (RPA), 

which binds ssDNA in an unspecific manner, and triggers ATR activation to stop the 

progression of the cell cycle (Chen and Wold, 2014; Rhind and Russell, 2012).  

At the main mitotic event, the metaphase to anaphase transition, a very important 

checkpoint is initiated in the presence of kinetochores unattached to chromosomes or 

microtubules, or the absence of tension on said protein complexes. Thus, it ensures a bipolar 

attachment of chromosomes and guarantees that cyclin B is not degraded by APC/C-Cdc20 

until the proper conditions for sister chromatid separation are met (Poon, 2016; Rhind and 

Russell, 2012). 

Although the three described checkpoints are the classical ones and have been 

established for years, recently a new S/G2 checkpoint was described. In it, ATR controls the 

S/G2 transition by preventing the accumulation of pro-mitotic gene products, such as cyclin B 

and Plk1, induced by CDK1. ATR hence antagonizes CDK1 activity until the genome is fully 

replicated (Saldivar et al., 2018). 

3.2.1. DNA damage and replicative stress 

Exogenous and endogenous insults, such as UV light, ionizing radiation, or genotoxic 

metabolites, jeopardize DNA integrity. They lead to the activation of the DNA damage 

checkpoint and DNA repair pathways, which integrate the DNA damage response (DDR), and 

whose role is to prevent genomic instability. If this genomic instability persists, cell death, 

senescence or tumorigenesis are the possible outcomes (Gaillard et al., 2015). 

When the DDR is prompted by problems in DNA replication, a slowing down or stalling 

of the replication fork occurs, a phenomenon defined as replicative stress. Several sources 

have been identified for replicative stress, to cite a few: nicks, gaps and stretches of ssDNA 

that could be converted into DSBs by the replication machinery, DNA lesions from radiation 

or chemical mutagens, incorporation of ribonucleotides instead of deoxyribonucleotides, 

repetitive sequences that generate unusual DNA conformations, like hairpins, collision 
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between replication and transcription machinery, DNA-RNA hybrids, a limiting pool of 

nucleotides that causes the halting of the replication machinery and the over-expression of 

oncogenes, such as c-Myc and cyclin E (Gaillard et al., 2015; Mazouzi et al., 2014; Zeman and 

Cimprich, 2014). This last feature produces premature replication origin firing and re-

replication (Jones et al., 2013), as well as nucleotide pool exhaustion (Bester et al., 2011).  

ATR is the major actor in the response to replicative stress and is recruited by RPA-

bound ssDNA to form a signaling complex on DNA lesions that activates Chk1. This leads to 

the stabilization of the replication fork, the regulation of recombinatorial repair and the 

inhibition of new origin of replication firing. On the other hand, ATM is also implicated in the 

DDR by recognizing DSBs and activating the homology recombination pathway for DNA repair 

(Mazouzi et al., 2014). Therefore, RPA and Chk1 phosphorylation and ssDNA detection 

constitute markers of replication stress, but one of the most used markers is phosphorylation 

of the histone variant H2AX (gamma-H2AX or γ-H2AX). It is not specific of replicative stress, 

since it can be phosphorylated by other kinases, other than ATR and ATM (Zeman and 

Cimprich, 2014).  

Ependymal cells have been described as postmitotic, but cell cycle regulators seem to 

be major actors of their differentiation. Furthermore, GemC1 is involved in DNA replication 

firing, a phenomenon that, in abnormal conditions, could generate replicative stress. We have 

thus looked for signs of such stress in ependymal differentiation. 

 

3.3. Telomeres and telomerase in cell cycle progression and arrest 

 

3.3.1. The eukaryotic telomere 

The genome must be faithfully duplicated at each cell cycle to ensure its stability. In 

order for this process to succeed, it is imperative that the cell tightly regulates DNA repair 

mechanisms to correct mistakes in replication or resolve DNA damage. Failure to do so results 

in genomic instability, a hallmark of cancer (Cesare and Karlseder, 2012; Negrini et al., 2010).  

Specific regions of the genome are particularly vulnerable to endure DNA damage, 

such as repetitive sequences (Mazouzi et al., 2014). The telomeres are among these. They 

pose a challenge to the replication machinery and are susceptible to be a substrate to the DDR 
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when deregulated (Giardini et al., 2014; Gomez et al., 2012; Longhese, 2008; Takai et al., 

2003). Telomeres are the physical ends of eukaryotic linear chromosomes and consist of a 

guanine (G)-rich (5’-3’) tandemly repeated sequence. It stretches for 4-15 kb in humans and 

wild-derived mouse species, although it varies among species, like the house mice (Mus 

musculus) used as a model organism in scientific research , which have much longer telomeres 

(approximately 40-50 kb at birth) (Giardini et al., 2014; Gomez et al., 2012; Hemann and 

Greider, 2000; Varela et al., 2016).  

Telomeres do not end in a blunt double-stranded sequence. They present a long, G-

rich, 3’ end in the shape of a single-stranded overhang and a shorter, cytosine (C)-rich, 5’ end. 

This overhang is the result of several processes. First, the end of replication problem, rooted 

in the final RNA primer removal of the lagging strand at the chromosome terminus during 

semiconservative DNA replication, leaving a gap that cannot be filled by DNA polymerases 

(Soudet et al., 2014; Wellinger, 2014; Wynford-Thomas and Kipling, 1997). Second, the 

exonuclease activity that processes the 5’end (Figure 22). Third, the action of the enzyme 

telomerase, which provides an RNA primer to elongate DNA synthesis at the 3’ end of the 

chromosomes, hence directly controlling telomeric length (see below, Figure 24) (Giardini et 

al., 2014). The 3’ overhang and 5’ end resectioning are necessary for binding of protein 

complexes (described below) and higher-order structure acquisition (t-loops) that are crucial 

for telomere protection from the DDR, as well as for providing a substrate for telomerase (Wu 

et al., 2012).  

Chromosome termini display, as already mentioned, higher-order structures. The most 

apparent one is the so-called t-loop, consisting of a 3’ overhang invasion of upstream 

telomeric double-stranded DNA (Figure 23). This structure hides the telomere from the DDR 

and thus prevent checkpoint activation, non-homologous end joining (NHEJ) or homologous 

recombination (HR). These conformations also inhibit the loading of the telomerase and thus 

regulate telomere length (Giardini et al., 2014; De Lange, 2005; Longhese, 2008). Telomeres 

form G-quadruplexes as well, based on the hydrogen bonds of the telomeric abundant 

guanine residues, and this has a potential of telomere protection or capping, even on the C-

rich strand (Smith et al., 2011). 
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Figure 22. The end-replication problem. Telomeres, the eukaryotic chromosome termini, do not end in blunt 

double-stranded DNA, but rather in a guanine-rich 

3’ overhang, this is, a single-stranded extension of 

the 3’ strand over its complementary cytosine-rich 

5’ end. Upon DNA duplication, the replication 
machinery faces the so-called end-replication 

problem. Since DNA polymerases can only read a 

DNA strand in the 3’5’ sense and synthesize a 
new one in the 5’3’ direction, on the one hand, 
the synthesis of the so-called leading strand of the 

replisome (in light pink, complementary to the 

parental strand in dark blue) ends in a blunt, 

double-stranded and fully-copied sequence. On 

the other hand, the so-called lagging strand (in 

light blue, complementary to the parental strand 

in dark red), in order to be synthesized in the 

5’3’ as the replication fork is opened and 
progresses, is generated in segments, called Okazaki fragments. These consist of an RNA primer (dark green on 

the image) that primes DNA synthesis of each of these segments. Afterwards, the primers are removed and the 

gaps they leave are filled-in by DNA polymerases that use as primers the Okazaki fragment lying 5’ to the gap. 
However, at the chromosome terminus, the 5’-most Okazaki fragment of the lagging strand does not count on 

any upstream DNA sequence to fill-in the gap left by the removal of the RNA primer. Hence, the removal of the 

5’most primer leaves a gap that cannot be filled by conventional DNA polymerases and creates the telomere 3’ 
overhang on the lagging end. Since telomeres need the 3’ overhang to fulfil their function, an exonuclease-

mediated resection of the blunt-ended 5’ leading strand occurs, which is then filled-in by an Okazaki fragment 

whose primer removal will leave another 3’ overhang in the leading end of the telomere. This leads to a 

shortening of the daughter telomere with respect to the parental one (dark red arrows). From Wellinger, 2014.  

Figure 23. Formation of the t-loop in telomeres. Telomeres can form higher-order structures like t-loops. These 

are generated by the invasion of the 3’ G-rich 

overhang of the double-stranded telomeric DNA, 

which lies upstream of it. As a consequence of this 

invasion, a triple-stranded structure known as a 

D-loop is formed. The t-loop hides the telomeric 

end so that it is not recognized by the DNA 

damage response or the telomerase (hence 

playing a role in the regulation of telomere 

length) and its formation is promoted by the 

shelterin complex (see below). From Giardini et 

al., 2014. 

 

3.3.2. Telomerase-dependent telomere length maintenance and the 

generation of dysfunctional telomeres 

Because of the end of replication problem, after each cell duplication, a loss of 

telomeric material occurs at the lagging-strand telomere. Furthermore, the resectioning of 

both telomeric ends by exonucleases contributes to such phenomenon of telomere 



133 
 

shortening (Figure 22). Following many rounds of replication, the reduction of these 

sequences could reach essential genes and cause deleterious gene deletions. That is why, 

upon excessive telomeric attrition, a critical threshold known as the Hayflick limit is reached. 

At this point, telomeres become dysfunctional and trigger the replicative senescence 

response, a hallmark of ageing in somatic tissues that inhibits further cell division (Giardini et 

al., 2014; Gomez et al., 2012). Telomere shortening and ageing are not just correlated, but a 

cause-consequence relationship exists between the two phenomena (Marion and Blasco, 

2010).  

Critically short telomeres trigger the DDR via ATM and/or ATR kinases, which in turn 

activate the potent tumor suppressor p53. The expression of this so-called “guardian of the 

genome” has two possible outcomes: either it promotes a G1/S p21-dependent cell cycle 

arrest, also known as replicative senescence, or it prompts apoptosis. Both mechanisms act 

then as potent tumor suppressors, since the DNA reparation machinery could recognize short 

telomeres, promote NHEJ or HR, and generate genomic instability after mitosis (Giardini et al., 

2014; Longhese, 2008; Marion and Blasco, 2010; Roake and Artandi, 2017). 

Dysfunctional telomeres are studied via fluorescent staining of chromosome termini 

and DDR proteins. The co-localization of both markers is indicative of Telomere Dysfunction 

Induced Foci (TIF), a cytological structure present in cells with damaged telomeres. Telomere 

fluorescent in situ hybridization (FISH) or immunofluorescent staining of telomere-associated 

proteins (see below) are used to label telomeres, whereas immunostaining of DDR proteins 

uses antibodies against γH2AX, 53BP1 or phosphorylated ATM or ATR (De Lange, 2005; 

Longhese, 2008; Takai et al., 2003). 

Specific cell types have developed mechanisms to bypass telomere shortening. The 

most prominent one consists of the expression of an enzyme called telomerase. It is a 

ribonucleoprotein complex composed of two elements: a non-coding RNA that provides a 

short template sequence complementary to the telomeric DNA (TERC), and a catalytic unit, a 

reverse transcriptase that copies the RNA template at the 3’ of the telomere, thus elongating 

it (TERT). This RNA-dependent telomere elongation is executed in several steps. First, the TERC 

template binds by complementarity to the 3’ overhang. Then the TERT enzyme adds 

nucleotides to complete one telomeric repeat. Once one repeat is added, the enzyme either 

dissociates from the telomere or translocates along the elongated 3’overhang to add a new 
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repeat. Finally, the conventional DNA polymerase elongates the C-rich strand, this is, the 5’ 

end of the chromosome (Figure 24) (Giardini et al., 2014; Gomez et al., 2012). 

Figure 24. Telomerase-dependent telomere elongation. The enzyme telomerase is able to elongate telomeres 

by catalyzing the addition of telomeric repeats. The catalytic subunit (TERT) acts as a retrotranscriptase and 

needs the RNA-component of the telomerase (TERC) to do so, since this molecule contains the RNA template 

from which telomeric DNA can be replicated. After binding to the 3’ overhang and extending its  telomeric 
sequence, telomerase can either dissociate from the telomere or translocate along the now elongated 

3’overhang and repeat the process. Adapted from Giardini et al., 2014. 

In physiological conditions, telomerase is highly expressed in the germline (gamete 

precursor cells in the embryonic and adult testis and ovaries) and pluripotent embryonic stem 

cells (at least up to the blastocyst stage), where it helps maintain a constant telomere length. 

Its activity is also detected in somatic tissues during development but is extensively decreased 

by birth (Wright et al., 1996; Zimmermann and Martens, 2008). Adult stem cells also display 

telomerase activity, but this is insufficient to maintain a constant telomeric length. 

Consequently, this progressive telomere shortening inhibits the stem cell ability to repair and 

regenerate tissues with age, since they reach senescence or apoptosis when their telomeres 

are excessively short. In the case of the rest of the somatic cells, telomerase is completely 

repressed and hence possess shorter telomeres than their adult stem cell progenitors. The 

other cell type that expresses high levels of telomerase to elongate telomeres are cancer cells, 

which present an up-regulation of this enzyme in 85-90%  of the cases to be able to divide 

indefinitely (Figure 25) (Giardini et al., 2014; Harrington, 2004; Marion and Blasco, 2010; Shay 

and Wright, 2010).  
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Figure 25. Telomere length and telomerase with the progression of cell divisions in different cell types. The 

enzyme telomerase is 

highly activated in the 

germline and embryonic 

stem cells, up to the 

blastocyst stage, so that 

telomere length is 

maintained constant. In 

somatic tissues, however, 

this activity is either 

present but insufficient for 

telomere length 

maintenance throughout 

life in adult stem cells of proliferating tissues, or completely repressed in the rest of somatic cells. This leads to a 

more rapid decline of telomere length in cells of somatic tissues than in the residing adult stem cells 

(hematopoietic stem cells, epidermal stem cells, adult neural stem cells, etc.). When cells reach a threshold 

telomere length known as the Hayflick limit, they trigger the process of replicative senescence. It ensures that 

cells stop dividing and telomere attrition does not lead to genomic instability that could pass on to daughter cells, 

a hallmark of cancer. If cells continue to divide, they reach a crisis that is resolved in apoptosis or, in case of 

cancer cells, in an up-regulation of telomerase (in most cases) to stop further telomere shortening and become 

immortal cell lines. From Zimmermann and Martens, 2008. 

Baseline telomerase activity that hinders too rapid telomere shortening is necessary 

for several rapidly-proliferating tissue homeostasis. Its deficiency is related to a loss of 

progenitor dividing capacity in the hematopoietic line, upon mitogenic stimulus (Lee et al., 

1998; Samper et al., 2002), in epidermal stem cells (Flores et al., 2005) and adult NSCs (Ferrón 

et al., 2004). Contrary to other publications (Wright et al., 1996), in humans telomerase has 

been found active in adult rodent brains, particularly in the SVZ and the olfactory bulb 

(Caporaso et al., 2003).  

The need of telomerase to avoid premature senescence in these adult tissues explains 

some of the most common disease derived from telomerase mutations and loss of activity in 

humans. Dyskeratosis congenita is characterized by an abnormal pink pigmentation, nail 

dystrophy, hair loss, developmental delay and bone marrow failure as a cause of premature 

mortality. Aplastic anemia is a condition whose symptoms are reduced cell blood numbers 

due to bone marrow failure, as well as liver and lung disease. Hoyeraal-Hreidarsson syndrome 
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is also accompanied of hematopoietic line deficiencies, rooted in bone marrow failure, such 

as immunodeficencies. Finally, idiopathic pulmonary fibrosis is a fatal irreversible lung fibrosis 

linked to telomerase mutations. All these illnesses display shorter telomeres due to mutations 

in telomerases, linked to premature loss of regeneration capacity (Barnes, 2015; Giardini et 

al., 2014; Gomez et al., 2012; Roake and Artandi, 2017; Tomás-Loba et al., 2008). In mice, TERC 

and TERT KO models are directly related to ageing phenotypes and lifespan reduction (Marion 

and Blasco, 2010). Furthermore, the telomere shortening phenotype worsens in these animals 

with successive generations concomitantly with aggravation of the premature ageing 

symptoms, further suggesting a direct role between ageing and telomerase activity (Ferrón et 

al., 2004; Flores et al., 2005). 

Seeing the potential implication of replicative stress in ependymal cell differentiation, 

as well as their common origin with adult neural stem cells that reside in the neurogenic niche 

throughout life, we have studied the presence of dysfunctional telomeres in ependymal 

progenitors and the role of telomerase in the establishment of said niche.  

3.3.3. Telomere-associated proteins and capping 

Telomeres are more than strands of DNA at the chromosome termini. They are 

nucleoprotein structures formed by the association of telomeric DNA with protein complexes 

that protect them against the DDR. Otherwise, it would recognize telomeres as DSB and free 

ssDNA and, consequently, would trigger repair mechanisms that could result in end-to-end 

chromosome fusions, inappropriate HR and the resulting genomic instability and telomere 

length deregulation (Giardini et al., 2014; Gomez et al., 2012; De Lange, 2005).  

Shelterin is the main protein complex bound to telomeric DNA and is formed of six 

proteins: TRF1, TRF2, RAP1, TIN2, TPP1 and POT1. They all play specific roles in hindering 

specific aspects and actors of the DDR, as well as the action of telomerase. TRF1 and TRF2 are 

double-stranded telomeric DNA-binding proteins that negatively regulate telomeric length. 

TRF2 promotes t-loop formation and hence the inaccessibility of telomerase to the 

3´overhang. TRF2 blocks the ATM pathway response and, consequently, the formation of TIFs, 

the activation of p53-dependent premature replicative senescence and NHEJ and HR at 

chromosome ends (Giardini et al., 2014; Gomez et al., 2012; De Lange, 2005; Longhese, 2008; 

Marion and Blasco, 2010). RAP1 is recruited by TRF2. It reduces telomere fragility and 
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telomere HR, which can lead to undesired telomeric sister chromatid exchange and alter 

telomere length homeostasis. However, it is dispensable for the inhibition of DDR at telomeres 

and it does not prevent end-to-end chromosome fusions, like TRF2 (Gomez et al., 2012; 

Martinez et al., 2010; Sfeir et al., 2010). TIN2 is the unifying element of the sheltering complex, 

binding TRF1 and TRF2 with TPP1/POT1 and its loss is cause for TIF generation (De Lange, 

2005; Longhese, 2008). TPP1, one of the less studied subunits seems to have a telomerase 

recruiting role with its partner POT1, which is recruited by the former, and thus, the 

phenotypes associated to the loss of either one of them, such as ATR activation, are similar 

(Diotti and Loayza, 2011). Finally, POT1 is the only protein of the shelterin complex that has 

single-stranded DNA-binding activity. Its occupation of the 3´overhang avoids the recruitment 

of RPA to this stretch of single-stranded DNA and thus inhibits the ATR response and TIFs 

formation. It also regulates telomere length via a negative feedback loop. In long telomeres, 

POT1 inhibits telomerase action, whereas in short telomeres, there is less POT1 (and less 

shelterin complex units) on the 3´overhang. Telomerase can then gain access more easily to it 

and catalyze telomere elongation (De Lange, 2005). 

In all, shelterin is implicated in regulation of telomerase-dependent telomere 

elongation, mostly by preventing the access of such enzyme to the telomeres, but most 

importantly, it prevents the triggering of a DDR response by protection of the telomeres. This 

process is called “telomere capping” and is, along telomerase activity, the main inhibitor of 

premature ageing and decline of adult tissues.  

 

3.4. Objectives and hypotheses 

GemC1 has a role in DNA replication firing, as an antagonist to its homolog Geminin. 

We have wondered whether the role of GemC1 in DNA replication is needed for its role in 

multiciliated differentiation, and whether this integrates the molecular mechanisms that lead 

to ependymal cell specification. With that in mind, we have studied the effect of GemC1 

expression in cell cycle progression, namely S phase entry. We believe that ependymal 

specification takes place in cells that have not exited the cell cycle at the onset of 

differentiation, and whether the presence of replicative stress can drive centriole 

amplification. 
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 Also, we have asked ourselves whether the difference between cells from the same 

lineage, one postmitotic (ependymal) and one that can continue to divide (adult NSC), is some 

sort of damage to the telomeres, due to their shortening or other causes. As such, we have 

hypothesized as well that telomerase, the enzyme responsible for telomere length 

maintenance and protection, could favor the stem cell fate, since this cell continues to divide 

and should not pass on damaged cargoes (such as DNA) onto its descendant cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. The shelterin complex and the dysfunctional telomere signaling. (A) Shelterin is a protein complex 

formed by six subunits: TRF1 and TRF2, which are able to bind double-stranded telomeric DNA, RAP1, recruited 

to the complex by TRF2, PTT1, which forms a heterodimer with POT1, the other protein of the complex with DNA 

binding activity, in this case to the single-stranded 3’ overhang, and, finally, TIN2, which forms a bridge between 
TRF1/2 and TPP1/POT1. (B) Shelterin subunits promote the formation of t-loops which protects telomere end 

against telomerase, and the DNA damage response kinases ATM and ATR. This protection by shelterin is known 

as telomere capping. With successive cell divisions in ageing tissues, telomeres get shorter, a process inhibited 

by the telomerase in embryonic stem cells, cancer cells or the germline. When telomeres become critically short, 

telomere uncapping happens, this is, the release of shelterin from the chromosome termini. This leads to the 

recognition of the telomeres by the DNA damage signaling pathway and the recruitment of its actors, such as 

phosphorylated gamma-H2AX. As telomeres are deprotected and recognized by ATM and ATR, they can undergo 

non-homologous end joining (NHEJ), homologous recombination (HR) or resectioning with various possible 

outcomes. In some cases, the replicative senescence cascade is activated, which involves p53-dependent p21 

expression, and hence cell cycle arrest. In other cases, the cell undergoes apoptosis. Finally, aneuploidy and 

genomic instability can also occur, a hallmark of cancer. Adapted from Giardini et al., 2014 and Jacobs, 2013. 
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Abstract 

  

 Ependymal cells and Adult Neural Stem Cells (NSC) are cellular components of the adult 

neurogenic niche, essential for brain homeostasis. These cells share a common lineage of glial 

cells regulated by the Geminin family antagonists, Geminin and GemC1/Mcidas. Ependymal 

precursors require GemC1/Mcidas to massively amplify centrioles and become multiciliated 

cells. Here we show that GemC1-dependent differentiation happens mostly in cycling cells, 

where it produces a strong replicative stress leading to dysfunctional telomeres and cell cycle 

arrest concomitant to centriole amplification. Telomerase expression in progenitor cells 

impairs ependymal differentiation and favors NSC cell fate. In all, we show that ependymal 

cell specification occurs before exiting the cell cycle, entails cell cycle progression and arrest 

genes and can be reversed by telomerase expression.  
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Introduction 

Multiciliated ependymal cells and B1 astrocytes are the major glial components of the 

ventricular-subventricular zone (V-SVZ) adult neurogenic niche in the mammalian brain, 

where hundreds of new neurons are born every day and migrate to the olfactory bulb (Lim 

and Alvarez-Buylla, 2016; Ming and Song, 2011). B1 cells, a largely quiescent population 

(Fuentealba et al., 2015; Furutachi et al., 2015), divides in symmetric proliferative or 

consumptive divisions, to self-renew or commit to the neuronal lineage, respectively 

(Obernier et al., 2018). Ependymal cells are essential for cerebrospinal fluid circulation, which 

carries growth factors during the development of the central nervous system, delivers 

nutrients, signaling factors and the clears waste and neurotoxic substances (Jiménez et al., 

2014; Siyahhan et al., 2014). The coordinated beating of ependymal motile cilia creates flow 

domains within the ventricle to establish local concentration of substances, according to the 

needs of different anatomical sections of the ventricular system (Faubel et al., 2016), or even 

regulate B1 proliferation (Petrik et al., 2018; Silva-Vargas et al., 2016) and guide newborn 

neurons to the olfactory bulb (Sawamoto et al., 2006).  

Ependymal cells are postmitotic (Spassky et al., 2005), unlike their niche stem cell 

counterparts, which can re-enter the cell cycle during adult neurogenesis (Fuentealba et al., 

2015; Obernier et al., 2018). Interestingly, these two highly different cells belong to the same 

lineage and can arise from a single cell division, as two sister cells in an asymmetric division, 

but they are also generated through symmetric divisions (Ortiz-Álvarez et al., 2019; Redmond 

et al., 2019). Furthermore, DNA replication regulators of the Geminin family govern the fate 

of neurogenic niche cell progenitors (Lalioti et al., 2019a; Ortiz-Álvarez et al., 2019): GemC1 

favors ependymal-generating symmetric divisions and Geminin triggers B1-producing 

symmetric divisions (Ortiz-Álvarez et al., 2019). Interestingly, GemC1 was initially discovered 

as a part of the DNA pre-replication complex, essential for replication firing (Balestrini et al., 

2010), but it is also a master gene of the multiciliogenesis program (Arbi et al., 2016; Terré et 

al., 2016, 2019). Its antagonist, Geminin, inhibits excessive replication firing by binding to the 

replication licensing factor Cdt1 (McGarry and Kirschner, 1998; Wohlschlegel et al., 2000) and, 

upon ablation, cycling cells develop centrosome over-duplication and polyploidy (Tachibana 

et al., 2005). The over-expression of some components of the pre-replication complex, such 
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as Cdt1, Cdc6 and Cdc45 has been associated with re-replication and early-stage cancer 

lesions, which generate replicative stress (Gaillard et al., 2015; Köhler et al., 2016). These 

factors elicit the DNA damage response (DDR) to signal the cell to stop cell cycle progression 

and start DNA repair (Mazouzi et al., 2014).  

Adult stem cell niches express the enzyme telomerase at higher levels than the rest of 

somatic cells (Giardini et al., 2014; Marion and Blasco, 2010; Zimmermann and Martens, 

2008). It serves to maintain telomere length, repetitive sequences at the eukaryotic 

chromosome termini that shorten after every round of replication, due to the end of 

replication problem (Soudet et al., 2014; Wellinger, 2014). However, the levels of telomerase 

in adult stem cells are far from those in embryonic stem cells and the majority of cancers, so 

progressive telomere attrition, which leads to the decay and ageing of tissues, is inevitable 

(Zimmermann and Martens, 2008). B1 cells are not an exception to this rule, whose telomere 

shortening hinders their proliferative capacity with ageing (Ferrón et al., 2004) and proper 

differentiation into the neuronal lineage (Ferrón et al., 2009). 

Telomeres are normally protected by protein complexes to avoid recognition as double 

strand breaks or single-stranded DNA and start the DDR (Longhese, 2008). Failure of this 

protein components to protect the telomeres, due to telomere shortening or other factors, 

triggers the replicative senescence response, which involves the recognition of telomeres by 

the DDR actors, such as the Ataxia-telangiectasia mutated (ATM) and Ataxia-telangiectasia 

and Rad3-related (ATR) kinases. This leads to the activation of the p53/p21 axis, resulting in 

apoptosis or permanent cell cycle arrest (Gomez et al., 2012; Herbig et al., 2004). This is usually 

assessed by the presence of cytological structures known as Telomere Dysfunction Induced 

Foci (TIF), which are seen as telomeres that co-localize with DDR players, like γ-H2AX or 53BP1 

(De Lange, 2005; Takai et al., 2003).  

We have shown in this study that cell cycle progression and ependymal fate 

determination are coupled. Indeed, GemC1 expression in ependymal progenitors leads to 

massive centriole amplification, but only in cycling cells. As GemC1 triggers differentiation, 

ependymal progenitors enter the S-phase like other cell cycle active cells in the embryonic 

neuroepithelium. However, GemC1 generates replicative stress, as seen by the increased γ-

H2AX signal often associated to EdU staining, which corresponds to sites of DNA replication. 

Furthermore, in ependymal-differentiation conditions, the presence of replicative stress leads 
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to an increase of TIFs. Consequently, although GemC1-expressing cells enter the S-phase 

normally, they slow down their progression through the cell cycle. Although they express the 

cell cycle progression marker phosphorylated retinoblastoma (PRb), they inhibit mitosis entry 

and express cell cycle arrest markers, such as p21 and p73. Finally, the presence of a replicative 

senescence-like response in these cells, with p21 and γ-H2AX expression and a higher 

frequency of TIFs led us to assess the role of the enzyme telomerase. We observed that it is 

able to revert the GemC1-dependent differentiation and it can favor the B1 cell fate, in 

detriment of the ependymal one.  

Results 

GemC1 induces multiciliated cell differentiation only in cycling cells 

GemC1 is a Geminin family protein and a master gene of multiciliogenesis (Arbi et al., 

2016; Kyrousi et al., 2015; Terré et al., 2016). It was initially discovered as an essential 

component of the pre-replication complex, where it promotes DNA replication firing 

(Balestrini et al., 2010). To decipher the mechanisms of multiciliated cell specification,  we 

tested the link between DNA replication and multiciliogenesis . We electroporated GemC1 and 

H2B-GFP in utero at E14.5 or at P0 (IUE or PE, respectively), in combination with EdU injection 

(Figure 1A). Two days after the electroporation, the majority of GFP+ cells in the VZ/SVZ are 

EdU+ after IUE but not after PE (Figure 1B-C), suggesting that IUE and PE target cycling and 

postmitotic cells, respectively (Stancik et al., 2010; Loulier et al., 2014; Ortiz-Alvarez et al., 

2019). Ependymal differentiation was massively induced after IUE, albeit very weak after PE, 

which shows that ependymal cell differentiation induced by GemC1 gain of function is tightly 

correlated to an EdU+ active cell cycle state (Figure 1D-E) and suggests a  connection between 

the role of GemC1 in the initiation of DNA replication and centriole amplification. 
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Figure 1. GemC1 induces multiciliated cell differentiation only in cycling cells. (A) Experimental layout depicting 
the time of electroporation of H2B-GFP + GemC1-expressing plasmids, in utero (IUE) or postnatally (PE), as well 
as the time of EdU intraperitoneal (IP) injection. Coronal sections of electroporated brains were analyzed 48 
hours post electroporation. (B, D) Representative images of electroporated brains. A dotted white line indicates 
the border between the SVZ and the striatum (B). Cells that incorporated EdU (B) or immunostained with the 
procentriole or centriole-labeling antibody FOP (D) are shown in red. Cells issued from the co-electroporation of 
H2B-GFP+GemC1 are seen in green. (C, E) Quantification of the mean percentage of GFP+ cells that are EdU+ (C) 
or multi-FOP+ (E). Error bars indicate the SEM for n=3 animals for the two conditions. A Mann-Whitney test was 
performed between the two groups to assess the p-value; **** p ≤ 0.0001. LV: Lateral Ventricle; SVZ: 
Subventricular Zone. Scale bar 60 µm (B) 20 µm (D). 

 

GemC1 induces replicative stress before centriole amplification 

To determine the direct effect of GemC1 upstream of multiciliation, and since genes 

are expressed from 6 hours after IUE, we studied GemC1GFP+EdU+ cells after EdU 

administration between 6 and 30 hours post-electroporation (Figure 2A). Most of these cells 

did not initiate centriole amplification yet and their nuclei were still in the G1-S-G2 phase 

layers of the VZ (Figure 2B-C). Few GFP+EdU- cells displayed FOP accumulation in apically 

migrating G2-M phase, suggesting that these cells had exited S-phase before EdU 

administration and that S-G2 phase regulatory mechanisms contribute to centriole 

amplification in these cells (arrows in figure 2B).  
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Since GemC1 is known to trigger replication firing (Balestrini et al., 2010), we tested if 

GemC1 gain of function condition altered the S-phase of the cell cycle. No difference in the 

number of GFP+EdU+ double positive cells in controls with respect to GemC1-electroporated 

brains was observed (Figure 2E-F), showing that GemC1 does not alter the ability of cells to 

enter the S phase. However, we noticed an increased replicative stress in these cells. We used 

the initial marker of DNA damage H2AX (Zeman and Cimprich, 2014), which was only 

observed in EdU+ cells both in control and GemC1 conditions, showing that it corresponds to 

replicative stress. The number and intensities of H2AX+ foci were strongly increased in 

GemC1+ cells compared to control cells (Figure 2G-H). Interestingly, we observed similar 

H2AX staining in FoxJ1+ cells in controls at E17.5 (Figure 2H-I), suggesting that H2AX foci 

could be an early marker of ependymal cell differentiation. In cells with EdU+ foci, H2AX foci 

were often colocalized and around chromocenters (Figure 2J). Since telomeres are localized 

to the vicinity of chromocenters (Solovei et al., 2009), we quantified telomere dysfunction-

induced foci (TIF), characterized by the presence of DNA damage actors at telomeres (D’Adda 

Di Fagagna et al., 2003; Longhese, 2008; Takai et al., 2003). We performed FISH analysis of 

telomeric sequences in combination with immunofluorescence of H2AX (Figure 2K). GemC1 

gain of function significantly increased the number of TIFs per cell, as well as the percentage 

of cells with three or more damaged telomeres (Figure 2L-M). However, apoptosis-like 

features, such as pyknotic nuclei, were not observed at that stage or later in development 

(data not shown).  
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Figure 2. GemC1 induces replicative stress before centriole amplification. (A) Schematic representation of the 
experiment. Control (H2B-GFP) plasmids with or without GemC1 were electroporated in utero at E14.5. EdU was 
intraperitoneally injected in the pregnant females 6 hours later and given in the drinking water for 24 hours. 
Coronal section analysis was performed at 30 hours post IUE. (B, D, F) Representative images of electroporated 
cells (GFP+) are shown in green, EdU labeling in red (B, D, F), FOP in white (B) and γH2AX in blue (F). White arrows 
indicate cells that are GFP+EdU-, and that have started to amplify their centrioles (multi-FOP+) (B). (C) 
Quantification of the mean percentage of GemC1GFP+EdU+ that are multi FOP+ at 30 or 54h post IUE (C). (E) 
Quantification of the mean percentage of GFP+EdU+ among all GFP+ cells in control and GemC1 gain of function 
conditions. (G) Quantification of the mean percentage of YH2AX+ cells among all GFP+EdU+ cells in control and 
GemC1 gain of function conditions. (H) Representative image of a FoxJ1Cre-ERT2 x R26mT coronal section of the 
forebrain at E17.5, fed with Tamoxifen at E16.5. The DsRed protein (FoxJ1+ cells) is shown in red and γH2AX in 
blue. (I) Zoom-in of a cell from panels D, F (same section) depicting the closely-associated EdU (red) and γH2AX 
(blue) stainings around chromocenters shown with Hoechst (grey). (J) Representative image of a GemC1GFP+-
electroporated cell stained for telomeres (magenta) and γH2AX (blue). Dotted-line depict the nuclei and the 
chromocenters (seen by Hoechst counterstain, in grey). Note the very frequent association of telomeres and TIFs 
to chromocenters. (K-L) Quantifications of the mean number of TIFs per cell (considering only YH2AX+ cells, this 
is, with 3 or more YH2AX foci) (L), and the mean percentage of cells with 3 or more TIFs (L). Error bars indicate 
the SEM for all graphs, with n=3 animals for the two conditions shown, except for graphs (K-L) (n=4 animals per 
condition). A Mann-Whitney test was performed between the two groups to assess the p-value; ns (not 
significant) p > 0.5, *** p ≤ 0.001, **** p ≤ 0.0001. LV: Lateral Ventricle. Scale bar 20 µm (B, D, F) 15 µm (H) and 
3 µm (I-J). 

 

GemC1 delays mitotic progression and arrests cell cycle while amplifying centrioles  

We then studied the consequences of GemC1 gain of function and increased gH2AX on 

cell cycle progression in live explants of GemC1 or control-electroporated V-SVZ 

wholemounts, using time-lapse microscopy (Figure 3A). We observed that GemC1-

electroporated cells displayed a significant decrease in the mitotic frequency, compared to an 

H2B-GFP control, although we did not observe apoptosis-like features (Figure 3B-C, 

Supplementary video 1-2). These results suggest that GemC1 prevents the cells from a 

progression through mitosis. 

To further study the link between the cell cycle regulators and centriole amplification, 

we compared the genetic cascades induced by gain of function of each of the Geminin family 

members. Two days after IUE at E14.5, the transcriptomes were analyzed by comparing the 

genes up or down-regulated by Geminin family proteins to control cells (electroporated with 

GFP only). Geminin did not lead to significant changes in gene expression, although GemC1 

and Mcidas induced the up-regulation of more than 500 genes, among which 463 were in 

common, with a minority of down-regulated genes (Figure 3E-F). Interestingly, a Gene Set 

Enrichment Analysis performed with the Pathway Studio software 

(https://www.elsevier.com/solutions/pathway-studio-biological-research) with all the genes 

differentially expressed revealed a significant presence of G1/S transition genes upon 
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GemC1/Mcidas expression, as well as G2/M transition genes after Mcidas gain of function 

electroporations, in the cell cycle regulation category (Figure 3G). A detailed look into the 

genes that were upregulated revealed that GemC1 triggered Mcidas expression, but the 

opposite was not true, thus confirming the already established hierarchy between the two 

Geminin family members (Arbi et al., 2016; Kyrousi et al., 2015). Among the genes upregulated 

only by Mcidas, there were a number of late cilia motility genes (dnah11, ift22, rsph14), 

suggesting that, since Mcidas is downstream of GemC1, cells were further down the 

differentiation cascade. The majority of genes (463) were commonly up-regulated by Mcidas 

and GemC1, though. Among these, we could find multiciliation-related genes, some of which 

have been previously described (foxj1, myb, rfx2, deup1, cep152, foxn4, ccno), as well as genes 

that induce cell cycle progression (cdt1, cav2, dcdc5, usp2, igf2, ccna1) or that are implicated 

in cell cycle arrest and stress response (trp73, pidd1, cdkn1a, e2f7, casp7, aifm3) (Figure 3H).  

Next, we determined the cell cycle status of these cells using immunostainings with 

well-known markers. Interestingly, we found that GemC1 expression leads to the maintenance 

of the hyperphosphorylated Rb (pRb), suggesting that most GemC1+ cells are stalled at the 

G1/S transition, compared to a majority of control cells that are pRb negative (Figure 3D-F). 

Consistent with this observation, we assessed the presence in the GemC1 condition of the 

p21, a potent cell cycle arrest inducer (Chen et al., 2002), and p73 proteins, a member of the 

DNA damage pathway that triggers cell cycle arrest and apoptosis (Urist et al., 2004; Yoon et 

al., 2015). Both completely absent in controls (not shown), they were significantly up-

regulated in GemC1 gain of function condition (Figure 3G-H).  

Altogether, these results show that the initiation of ependymal differentiation from 

neural stem cells and centriole amplification requires an active cell cycle, with concomitant 

expression of both cell cycle progression (pRb) and cell cycle arrest markers (p21, p73). 
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Figure 3. GemC1 slows down cell cycle progression. (A) Schematic representation of the experiment. Control 
(H2B-GFP) with or without GemC1-expressing plasmids were electroporated at E13.5 and ex vivo explants of the 
V-SVZ were made and filmed for 8 hours, 24 hours after the IUE. (B) Time-selected representative images of the 
ex vivo explant at a time 0 and 20 minutes later. Live electroporated cell nuclei (GFP+) are seen in green. The 
arrows indicate cells that undergo mitosis within the selected 20 minutes. (C) Quantification of the mean 
cumulative frequency of mitosis in electroporated cells. (D) Schematic representation of the experiment. Control 
(H2B-GFP) plasmids with or without Mcidas or GemC1-expressing plasmids were electroporated in utero at E14.5 
and FACS-sorted for RNA-sequencing or coronal section analysis, 54 hours post IUE. (E-F) Volcano plots of the 
differentially expressed genes in and control versus GemC1 (E) or Mcidas (F) expressing conditions in vivo. Red 
dots indicate up-regulated genes and green dots correspond to the down-regulated ones. Genes with a lower 
than 0.05 p-value and a two-fold change or higher were considered. Three replicates of each condition were used 
(G) Pathway studio analysis of the significantly enriched gene networks in the conditions just cited. (H) Venn 
diagram of the Mcidas and GemC1 commonly induced genes or those only induced by each one of them 
individually. (I, K) Representative images of coronal sections of the forebrain electroporated with H2B-GFP or 
H2B-GFP + GemC1. The G1/S transition marker phosphorylated retinoblastoma (PRb) is shown in red (E). The cell 
cycle arrest markers p21 and p73 are also depicted in red (G).  (J, L) Quantifications of the mean percentage of 
pRb+ (F), P21+ or P73+ (H) electroporated (GFP+) cells. The error bars indicate the SEM for all graphs. In (C) n=3 
animals, and 3 positions were filmed in controls and 6 animals and 9 positions were filmed in GemC1. A 
Kolmogorov-Smirnov test for cumulative distributions was used to calculate the p-value. In (J, L), n=3 animals for 
all stainings and conditions were analyzed. P-values were calculated using a Mann-Whitney test; * p ≤ 0.05 and 
**** p ≤ 0.0001. Scale bar 10 µm (B) and 20 µm (I, K). LV: Lateral Ventricle. 

 

Telomerase expression rescues the control phenotype in GemC1-expressing 

conditions and favors a B1 cell fate 

To assess the role of replicative stress in ependymal/adult neural stem cell fate 

decision, we evaluated the effects of telomerase gain of function in GemC1 expressing cells 

and controls. Telomerase is known for maintenance of telomeric length, thus preventing 

premature ageing and replicative senescence (Giardini et al., 2014), but also for protecting 

telomeres against the DNA damage response and chromosome end fusions that are at the 

source of genomic instability (Chan and Blackburn, 2003; Perera et al., 2019). We 

electroporated H2B-GFP + GemC1 at E14.5 in mice that express telomerase in a p21-

expressing context (heterozygous knockin of telomerase in the p21 locus; p21-mTERT -/+, a 

gift from the laboratory of V. Géli). Since GemC1 induces p21 expression, it is expected that 

GemC1 will up-regulate telomerase in these mice. As controls, we used p21 -/+ mice. These 

animals were generated by crossing p21 -/- mice, which develop normally and were previously 

generated by targeting a gene-disrupting construct into the exon 2 of the p21 gene to 

generate a null mutation (Deng et al., 1995) (Figure 4A). Two days later, ependymal-specific 

p73 expression and centriole amplification significantly diminished in p21-mTERT -/+ mice 

compared to p21 -/+ controls (Figure 4B-E). This suggests that the enzyme telomerase 

diminishes the effects of GemC1 on ependymal cell differentiation. To further assess whether 
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the enzyme telomerase has an impact on the ependymal/adult neural stem cell fate decision, 

we analyzed at P10 the proportion of ependymal cells (FoxJ1+ Sox9+) or astrocytes (FoxJ1- 

Sox9+) in telomerase gain of function condition compared to control (Figure 4G-H). 

Telomerase expression induced a shift in the neurogenic niche cell fate, favoring the 

generation of adult neural stem cells (astrocytes), in detriment of the terminally differentiated 

ependymal cells. Indeed, telomerase gain of function resulted in a V-SVZ composed of more 

of Sox9+FoxJ1- stem cells (astrocytes) compared to controls (Figure 4G-H).  

Taken together, these experiments show that telomerase can revert the ependymal 

phenotype induced by GemC1 and trigger the formation of astrocytes in the neurogenic niche, 

and suggest that the DNA damage response induced by GemC1 in cycling cells contribute to 

the terminal differentiation of ependymal cells. 
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Figure 4. Telomerase attenuates GemC1 effects and reverses ependymal cell differentiation. (A) Schematic 
representation of the IUE at E14.5 of H2B-GFP + GemC1-expressing plasmids in p21 -/+ (control) or p21-mTERT -
/+ mice. Analysis on coronal sections was performed 54 hours after the IUE. (B, D) Representative images of the 
p21 -/+ or p21-mTERT -/+ neuroepithelium with electroporated cells (GFP+) shown in green and the different 
markers tested: p73 (D) and FOP (D, for procentrioles and centrioles), both in red. (C, E) Quantifications of the 
mean percentage of electroporated cells that are positive for the different markers tested: p73+ GFP+ (C) or multi 
FOP+ GFP+ (E). (F) Experimental layout showing IUE of either H2B-RFP or H2B-RFP + mTERT performed at E14.5. 
The cell fate in the neurogenic niche was analyzed in coronal sections at P10. (G) Representative images of 
electroporated areas of the neurogenic niche, with RFP+ cells shown in blue, immunostained with anti-FoxJ1 and 
anti-Sox9 antibodies, in green and red, respectively. The arrowheads point at the ependymal cells issued from 
electroporated cells at E14.5 (RFP+FoxJ1+Sox9+). (H) Quantification of the percentage of ependymal cells (FoxJ1+ 
Sox9+) and astrocytes (FoxJ1- Sox9+) within the electroporated neurogenic niche population (RFP+). In all graphs, 
the error bars illustrate the SEM for n=3 animals for both genotypes (except for FOP staining, where n=2 in the 
p21 -/+ group, and the mTERT group, where n=6). P-values were calculated via a Mann-Whitney test in all cases; 
* p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001. Scale bar 20 µm (B, D) and 10 µm (G). LV: Lateral Ventricle.  
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Discussion 

GemC1 is a master gene of ciliogenesis and promoter of the multiciliated cell fate (Arbi 

et al., 2016; Kyrousi et al., 2015; Lalioti et al., 2019a; Ortiz-Álvarez et al., 2019; Terré et al., 

2016), but the mechanisms of MCC specification are poorly understood. We have induced 

ependymal fate via gain-of-function experiments and showed that GemC1 directly induces 

replicative stress in G1/S cells, which precedes centriole amplification. Replicative stress and 

damaged telomere responses are concomitant to centriole amplification and reversible as 

gain-of-function of telomerase increased the B1 astrocyte fate over the ependymal one.  

The role of GemC1 in DNA replication firing (Balestrini et al., 2010), led us to assess the 

presence of replicative stress in gain of function experimental condition. We confirmed the 

presence of γ-H2AX foci colocalized with EdU staining before the onset of centriole 

amplification. γ-H2AX is a marker of DNA damage (Zeman and Cimprich, 2014) and also of the 

presence of an active S/G2 checkpoint, whose expression has been confirmed in unchallenged 

cycling cells during S and S/G2 transition (Saldivar et al., 2018). We indeed observed significant 

levels of γ-H2AX in non-electroporated, unharmed embryonic neuroepithelium, which 

coincided with the layer of proliferating V-SVZ cells (data not shown). The levels of γ-H2AX in 

GemC1 gain of function condition, though, were much higher than the controls, in cell 

proportion and signal intensity (Figure 2). Apoptotic traits, such as pyknotic nuclei were rarely 

observed in fixed slices or the time-lapse movies, suggesting that γ-H2AX+ cells did not die. 

These data indicate that centriole amplification is preceeded by the generation of a GemC1-

dependent replicative stress. Since p21 expression and DDR are indicative of telomere-

induced replicative senescence (Roake and Artandi, 2017), we evaluated the occurrence of 

TIFs in our system (Takai et al., 2003). GemC1 induced the formation of TIFs in a higher 

proportion than control cells (Figure 2). This led us to think that damaged telomeres could be 

at the onset of the cell cycle arrest phenotype here described and, for that reason, we 

considered the role of telomerase in neurogenic niche cell specification and differentiation. 

Telomerase was not only able to rescue a control phenotype in GemC1 expressing conditions, 

but it also favored the B1 fate over the ependymal one (Figure 4). 

RNA-seq analysis of GemC1 or Mcidas-expressing cells in the embryonic 

neuroepithelium confirmed the specific presence of ciliary growth and centriole amplification 

genes upon GemC1 or Mcidas expression, as previously described (Terré et al., 2016), as well 
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as the functional hierarchy of GemC1 and Mcidas, where the former activates the latter 

(Kyrousi et al., 2015). However, the analysis of the transcriptomes using Pathway Studio 

software also revealed the presence of active G1/S and G2/M transition gene networks during 

the GemC1/Mcidas-governed ependymal differentiation (Figure 3G). The presence of active 

cell cycle markers, such as phosphorylated retinoblastoma (pRb) (Henley and Dick, 2012) or 

Cenp-F (Loftus et al., 2017) was confirmed via immunofluorescence studies (Figure 3I and data 

not shown), at the time when most cells were amplifying their centrioles (Figure 1). The potent 

CDK inhibitor p21 was also rapidly up-regulated in ependymal progenitors (Pack et al., 2019), 

a cell cycle arrest gene that has been shown to promote quiescence in adult neural stem cells 

(Kippin et al., 2005; Marqués-Torrejón et al., 2013; Porlan et al., 2013) (Figure 3J). This 

concomitant expression of cell cycle progression and arrest markers suggests that ependymal 

cells are in a pseudo-cell cycle state, equivalent to the S/G2 phases, since entry into mitosis is 

inhibited (Figure 3A-C, Supplementary Movie 1-2). This goes in consonance with our and 

others previous studies that show that multiciliated cell differentiation requires the activation 

of cell cycle actors, such as CDK2 and mitotic calibrators, though inhibiting mitotic entry (Al 

Jord et al., 2017; Vladar et al., 2018). 

Altogether our results show that ependymal cell specification occurs when progenitors 

are still actively cycling. GemC1 gain of function directly induces DNA replication stress that 

leads to pseudo cell cycle arrest and centriole amplification, which can be reversed by 

telomerase gain of function.  

Materials and Methods 

Mouse experimental models 

All experiments performed in this work requiring the use of live animals were carried 

out following French and European Union regulations and guidelines of the local ethics 

committee (Comité d’éthique en experimentation animal n°005). All mice were healthy, 

housed under proper conditions in a 12 h light / 12h dark cycle, at a temperature of 22°C, and 

fed ad libitum. None of our individuals was subject to previous experimental procedures. 

The day of the vaginal plug was set as embryonic day (E) 0.5 and the birth date as 

postnatal day (P) 0. Wild type (WT) RjORL:SWISS (Janvier Labs) mice were used in most of the 

IUE or postnatal electroporations. The knock-in p21-mTERT -/+ line and the line used as 
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control, p21 -/+ (Deng et al., 1995, JAX stock #016565), both used for IUE experiments, were 

a gift from the laboratory of V. Géli (Cancer Research Center, Marseille, France). Finally, the 

FoxJ1Cre-ERT2 -/+ (Muthusamy et al., 2014, JAX stock #027012) transgenic animals were bred 

with the Ai14 (Madisen et al., 2010) (Rosa26mTomato -/-) to obtain heterozygous embryos 

for the FoxJ1Cre-ERT2 and Rosa26mTomato alleles. These embryos express the red fluorescent 

protein mTomato in FoxJ1+ cells upon treatment with tamoxifen. All animals used in this study 

were sacrificed at embryonic stages post electroporation or post tamoxifen treatment, at early 

postnatal stages (P0-P2) after postnatal electroporation or at P10 for cell fate studies. In all 

cases, it was done following ethical procedures and regulations. 

In utero or postnatal electroporation and plasmids 

IUE (Briz et al., 2017; Saito and Nakatsuji, 2001) of mouse embryos was performed at 

E13.5 or E14.5. Pregnant females were injected subcutaneously with buprenorphine (0.1 

mg/kg) 15 minutes prior to surgery. They were subsequently anaesthetized by isoflurane (2-

2.5%) inhalation, a laparotomy was performed and the uterine horns were exposed. Warm 

(37°C), sterile PBS was used throughout the procedure to hydrate the exposed embryos. 

Plasmid solutions were diluted in filtered PBS and stained with FastGreen (0.025%, Sigma) to 

visualize how the plasmid mix is being injected in the ventricles, using a thin glass capillary 

(Harvard Apparatus). The final concentration of each plasmid was 1 µg/µl. Immediately after 

injection of the plasmid solution, four pulses of 50 ms and 35 V were applied to the embryos’ 

telencephalon, with 950 ms intervals between pulses. We used a CUY21 EDIT electroporator 

from Nepagene to do so. Finally, the embryos were carefully placed back into the abdominal 

cavity, which was filled with 1 ml of warm sterile PBS.  

For postnatal electroporation, the procedure was performed at P0. Pups were 

anesthetized by placing them in ice for 1 minute and injecting 2-3 mm laterally to the 

hemisphere midline, still visible in the absence of fur. Plasmids were prepared as described, 

with a ten-fold higher concentration of FastGreen (0.25%) . The electrodes were never placed 

directly in contact with the pup’s skin, but an electrode gel was applied around its head. We 

used the Nepagene Super Electroporator NEPA21 with five poring pulses of 100 V and 99 ms 

each, at 90 ms intervals, and one transfer pulse of 1 V and 1 ms. After electroporation, mice 

were left on a heating pad to recover.  
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We used pCAG-H2B-GFP, H2B-RFP as an electroporation reporter (gifts from the 

laboratory of X. Morin, Institute of Biology of the ENS, Paris, France). The pCAGGS-GemC1 and 

pCAGGS-Mcidas plasmids were gifts from the laboratory of S. Taraviras (Kyrousi et al., 2015). 

Finally the pCAG-mTERT plasmid was kindly gifted by the team of L. Harrington (Institute for 

Research in Immunology and Cancer, Montreal, Canada).  

EdU administration and detection 

EdU (Thermo Fisher Scientific, A10044) was administered via intraperitoneal injections 

to pregnant females before and after IUE or subcutaneously to newborn pups before and after 

postnatal electroporation. A PBS-diluted 8 mg/ml stock at 10 µl/g of body weight was used in 

both cases. EdU was also diluted in drinking water at a 1mg/ml concentration and given to 

pregnant females after IUE experiments. 

EdU incorporation was detected in tissues using the Click-iT EdU Alexa Fluor imaging 

kit (Thermo Fisher Scientific for Alexa Fluor 594 or 647 staining), according to manufacturer’s 

instructions. In a few words, fixed coronal sections were permeabilized in blocking solution 

with 0.1% Triton X-100 and 10% fetal bovine serum in PBS for 1h.  Sections were then 

incubated for 1 hour with the Click-iT reaction mix, in the darkness. Afterwards, we proceeded 

with the immunostaining method.  

Tamoxifen-dependent Cre expression 

Tamoxifen (Sigma-Aldrich, T5648) was administered to pregnant females by oral 

gavage in a corn-oil solution (Sigma-Aldrich, C8267) at 10 mg/ml, feeding 10 µl of solution per 

gram of body weight.  

Tissue collection 

Whole brains of embyros were dissected and fixed overnight at 4°C in 4% PFA, 

previously sacrificing the mother via cervical dislocation. P10 animals were anesthesized with 

a mixture of 100 mg of ketamine and 10 mg of xylazine per kg of body weight, and then were 

transcardially perfused with 4% PFA. Their brains were subsequently dissected and fixed as 

described.  All these were afterwards sectioned in a vibratome. 80 µm-thick floating coronal 

sections were prepared.  
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Immunohistochemistry 

Coronal sections were blocked for at least 30 minutes to 1 hour in 10% FBS, 0.1% Triton 

X-100. Samples were incubated with the primary antibodies in the blocking solution overnight 

at 4°C under gentle agitation. The primary antibodies used were: chicken polyclonal anti-GFP 

(1:1600, Aves Labs, GFP-1020), mouse monoclonal anti-FOP (1:500, Abnova Corporation, 

H00011116-M01), rabbit monoclonal anti-PRb (1:800, Cell Signaling, 8516S), mouse 

monoclonal anti-p21 (1:100, Santa Cruz Biotechnology, sc-6246), rabbit monoclonal anti-p73 

(1:100, Abcam, ab40658), rabbit monoclonal anti-γ-H2AX (1:400, Cell Signaling, 9718S), mouse 

monoclonal anti-FoxJ1 (1:400, Thermo Fischer Scientific, 14-9965-82), and rabbit polyclonal 

anti-Sox9 (1:600, Millipore, AB5535). Species-specific Alexa Fluor fluorophore-conjugated 

secondary antibodies (Thermo Fischer Scientific) were diluted in blocking solution and 

incubated for 2 h at room temperature with the samples. In some cases, nuclei were 

counterstained by adding Hoechst from a 20 mg/ml stock (1:1500, Sigma Aldrich, B2261) into 

the secondary antibody solution. Brain sections were mounted using Fluoromount-G 

mounting medium (Southern Biotech, 0100-01). 

Fluorescent-activated cell sorting  

In order to study GemC1 and Mcidas-triggered gene expression, embryonic brains co-

electroporated with H2B-GFP with or without GemC1 or Mcidas-expressing plasmids were 

dissected and single cell suspensions were prepared. The meninges were removed and brains 

were cut into small pieces. Then they were incubated for 20 minutes at 37°C in a freshly 

prepared digestion solution (Collagenase type IV at 0.2 mg/ml and DNAse I at 50 µg/ml in 

RPMI medium supplemented with 10% FBS). 500 µl per dissected brain were used. Afterwards, 

the tissue was homogenized doing 5 to 10 “ups and downs” using a syringe and an 18G needle. 

Then, single cell suspensions were made by passing the homogenized solution through a 70-

µm pore size cell strainer, and washing it with FACS buffer (0.5% BSA and 0.074% EDTA in PBS) 

to a final volume of 15 ml. Finally, cells were centrifuged for 5 minutes at 200xG, washed and 

resuspended in FACS buffer.  

Single cell suspensions from electroporated brains were sorted based on the GFP 

fluorescence using a S3 cell sorter (Biorad, Curie Institute), previous removal of cell debris and 

aggregates via appropriate gating. 
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RNA Extraction for RNA-Seq 

For RNA-Seq experiments, GFP+ cells were FACS-sorted 48 hours after IUE of H2B-GFP 

expressing plasmid alone or together with GemC1 or Mcidas expressing plasmids. Total RNA 

was extracted from approximately 10000 cells pooled from several embryos for each 

condition using the RNAqueous®-Micro Total RNA Isolation Kit (Thermofisher, AM1931) 

following the manufacturer’s instructions. RNA was eluted twice in 10 μl elution buffer. 

Samples were then treated with DNAse I. 

cDNA Libraries and RNA-Seq 

1 ng of total RNA was amplified and converted to cDNA using the Ovation RNA-Seq kit 

V2 (NuGEN, 7102). Following amplification, 1 μg of cDNA was fragmented to approximately 

200 bps using Covaris S200. The remainder of the library preparation was done using 200 ng 

of cDNA following TruSeq RNA Sample Prep v2 kit (Illumina, RS-122-2001) from the End Repair 

step. Libraries were multiplexed by 4 on 1 flow cell lane. A 50 bp read sequencing was 

performed on a HiSeq 1500 device (Illumina). A mean of 17.3 ± 3.9 million passing Illumina 

quality filter reads was obtained for each of the four samples. For each biological sample, 

three technical replicates were done. 

Differential expression analysis 

The analyses were performed using the Eoulsan pipeline (Jourdren et al., 2012), 

including read filtering, mapping, alignment filtering, read quantification, normalisation and 

differential analysis: Before mapping, poly N read tails were trimmed, reads ≤40 bases were 

removed, and reads with quality mean ≤30 were discarded. Reads were then aligned against 

the Mus musculus genome from Ensembl version 91, keeping only the uniquely mapping, 

using STAR (version 2.5.2b) (Dobin et al., 2013). To compute gene expression, Mus musculus 

GFF3 / GTF genome annotation version 91 from mm10 Ensembl database was used. All 

overlapping regions between alignments and referenced exons (or genes) were counted with 

the unstranded option using HTSeq-count 0.5.3 (Anders et al., 2015) 

The sample counts were normalized using DESeq2 1.8.1 (Love et al., 2014). Statistical 

treatments and differential analyses were also performed using DESeq2 1.8.1.  
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GO analyses 

We used the text-mining Pathway Studio ResNetdatabase (Ariadne Genomics, 

Rockville, MD, USA) and the GSEA tool (Subramanian et al., 2005) in Pathway Studio 12.3.0.16 

(Nikitin et al., 2003) to identify overrepresented signaling pathways and biological processes 

within our differentially expressed data set. As parameters for the GSEA method, we selected 

the Mann–Whitney U-test, a P-value threshold of 0.05. 

Telomere Fluorescent in situ hybridization 

Tissue from electroporated embryonic brains was processed as described before. 

When the FISH staining was combined with immunofluorescence, the latter was performed 

first, as described, then the tissue was post-fixed (30 minutes in 4% PFA at room temperature), 

FISH-processed and immunostained again, as described, due to the aggressive FISH procedure 

that compromised the result of the immunofluorescence. 

The FISH protocol went as follows. After obtaining floating sections, an essential step 

for observing telomeres in vivo was performed: the demasking of the epitope. Sections were 

treated with HCl 2N at room temperature for 20 minutes. Slides were then rinsed in water and 

dehydrated in 95% ethanol for 3 minutes and air-dried. Subsequently, they were incubated 

with the telomeric probe (TelC-Cy3, Panagene, F1002) at 0.57 ng/µl in 70% formamide in 10 

mM Tris pH 7.2 and 10% blocking solution (solution of 10% blocking reagent for nucleic acid 

hybridization and detection, Roche, 11096176001, in a solution with 100 mM maleic acid and 

150 mM NaCl). Hybridization solution was laid on the sections on the slides and covered with 

a coverslip to avoid evaporation. A brief 3-minute incubation of the slides at 80°C with the 

solution on a heating block was done to denaturate the telomeric DNA. Slides were incubated 

overnight, at room temperature, in a humidified, dark chamber. Finally, the telomeric probe 

was washed twice for 15 minutes with a 70% formamide in 10 mM Tris solution at pH 7.2 and 

three times for 5 minutes with a 150 mM NaCl, 50 mM Tris, and 0.05% Tween20 solution at 

pH 7.5.  

Time lapse ventricular explant filming 

For time-lapse filming, electroporated brains were quickly dissected in ice-cold 

DMEM/F12 with 2.9 mg/ml glucose, 1% P/S and HEPES 10mM. Ventricular explants were 

prepared by dissecting the septal portion of the electroporated hemisphere, thus exposing 
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the ventricular cavity. They were then imaged as previously described (Pilz et al., 2013), except 

that en-face ventricular surfaces were filmed, instead of coronal sections. Explants were 

placed, ventricular surface down (for inverted microscopy filming) on a filter membrane, 

inside a 35-mm glass-bottom dish (MatTEK, P35G-0-20-C) with approximately 800 µl of 

dissection medium, supplemented with N-2 (1:100, Invitrogen, 17502-048), B-27 (1:50, 

Invitrogen 12587-010), FBS (5%) and normal horse serum (5%). For long-term imaging, the 

explants were embedded in a collagen matrix consisting of 40% collagen type I and NaHCO3 

(0.1%) in the medium just described.  

The explants were incubated for 1 hour at 37ºC before starting the time-lapse imaging. 

They were filmed with a 40x 1.3 NA water objective, which possesses a sufficiently large 

working distance to enable image acquisition on the system just described. Other immersion 

objectives would collide with the glass-bottom dish before setting the explant ventricular 

surface in focus. Since this was a water immersion objective and filming was performed at 

37°C, to avoid eventual evaporation, we fashioned a silicon-based support around the 

objective and filled it with electrode gel and put some of it between the objective lens and the 

dish. Time lapse acquisition was performed in a 37ºC chamber with 5%CO2 at 10-minute 

intervals.  

Imaging  

3D confocal images of fixed slices or live V-SVZ wholemounts were acquired with a 10X 

0.45 NA, a 20x 0.8 NA, a 40x 1.4 NA oil objective, 63x 1.4 NA oil objective or a 40x 1.3 NA water 

objective on an inverted LSM 880 Airyscan Zeiss microscope. 

Statistical analysis and software  

At least three independent replicates were chosen for each experiment and condition 

(unless indicated otherwise). Quantifications and image analysis was done using Fiji 

(Schindelin et al., 2012), Excel and GraphPad Prism software, for assessment of statistical 

measures, significance calculations and graph generation. Quantifications represent the mean 

value with error bars indicating the SEM. P-values were assessed using a Mann-Whitney test 

or a Kolmogorov-Smirnov test for cumulative distributions. P values in this manuscript present 

the following star code: ns: p > 0.05 (non-significant), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, **** 

p ≤ 0.0001. 



162 
 

Acknowledgments 

We thank all members of the Spassky laboratory for comments and discussions. We 

thank X. Morin for the pCAAGS-H2B-GFP, H2B-RFP and ZO1-GFP plasmids, as well as the S. 

Taraviras group for the p-CAAGS-GemC1 and Mcidas plasmids, and the laboratory of L. 

Harrington for the p-CAG-mTERT plasmid. We thank A.-K. Konate, R. Nagalingum and M. 

Andrieu for administrative support. We thank the IBENS Animal Facility for animal care. The 

team received support from Agence Nationale de la Recherche (ANR) Investissements 

d’Avenir (ANR-10-LABX-54 MEMO LIFE and ANR-11-IDEX-0001-02 PSL* Research University). 

The Spassky laboratory is supported by INSERM, CNRS, Ecole Normale Supérieure (ENS), ANR 

(ANR-17-CE12-0021-03), European Research Council (ERC Consolidator grant 647466). G.O.-

A. received a fellowship from Labex MEMOLIFE. 

References  

 

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq-A Python framework to work with high-throughput 
sequencing data. Bioinformatics 31, 166–169. 

Arbi, M., Pefani, D., Kyrousi, C., Lalioti, M., Kalogeropoulou, A., Papanastasiou, A.D., Taraviras, S., and 
Lygerou, Z. (2016). GemC1 controls multiciliogenesis in the airway epithelium. EMBO Rep. 17, 400–
413. 

Balestrini, A., Cosentino, C., Errico, A., Garner, E., and Costanzo, V. (2010). GEMC1 is a TopBP1-
interacting protein required for chromosomal DNA replication. Nat. Cell Biol. 12, 484–491. 

Briz, C.G., Navarrete, M., Esteban, J.A., and Nieto, M. (2017). In utero electroporation approaches to 
study the excitability of neuronal subpopulations and single-cell connectivity. J. Vis. Exp. 2017, 55139. 

Chan, S.W.L., and Blackburn, E.H. (2003). Telomerase and ATM/Tel1p protect telomeres from 
nonhomologous end joining. Mol. Cell 11, 1379–1387. 

Chen, X., Zhang, W., Gao, Y.F., Su, X.Q., and Zhai, Z.H. (2002). Senescence-like changes induced by 
expression of p21Waf1/Cip1 in NIH3T3 cell line. Cell Res. 12, 229–233. 

D’Adda Di Fagagna, F., Reaper, P.M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., 
Carter, N.P., and Jackson, S.P. (2003). A DNA damage checkpoint response in telomere-initiated 
senescence. Nature 426, 194–198. 

Deng, C., Zhang, P., Wade Harper, J., Elledge, S.J., and Leder, P. (1995). Mice Lacking p21 CIP1/WAF1 
undergo normal development, but are defective in G1 checkpoint control. Cell 82, 675–684. 

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and 
Gingeras, T.R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. 

Faubel, R., Westendorf, C., Bodenschatz, E., and Eichele, G. (2016). Cilia-based flow network in the 
brain ventricles. Science (80-. ). 353, 176–178. 

Ferrón, S., Mira, H., Franco, S., Cano-Jimenez, M., Bellmunt, E., Ramírez, C., Fariñas, I., and Blasco, M.A. 



163 
 

(2004). Telomere shortening and chromosomal instability abrogates proliferation of adult but not 
embryonic neural stem cells. Development 131, 4059–4070. 

Ferrón, S.R., Marqués-Torrejón, M.Á., Mira, H., Flores, I., Taylor, K., Blasco, M.A., and Fariñas, I. (2009). 
Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis. J. 
Neurosci. 29, 14394–14407. 

Fuentealba, L.C., Rompani, S.B., Parraguez, J.I., Obernier, K., Romero, R., Cepko, C.L., and Alvarez-
Buylla, A. (2015). Embryonic Origin of Postnatal Neural Stem Cells. Cell 161, 1644–1655. 

Furutachi, S., Miya, H., Watanabe, T., Kawai, H., Yamasaki, N., Harada, Y., Imayoshi, I., Nelson, M., 
Nakayama, K.I., Hirabayashi, Y., et al. (2015). Slowly dividing neural progenitors are an embryonic origin 
of adult neural stem cells. Nat. Neurosci. 18, 657–665. 

Gaillard, H., García-Muse, T., and Aguilera, A. (2015). Replication stress and cancer. Nat. Rev. Cancer 
15, 276–280. 

Giardini, M.A., Segatto, M., Da Silva, M.S., Nunes, V.S., and Cano, M.I.N. (2014). Telomere and 
telomerase biology. In Progress in Molecular Biology and Translational Science, (Elsevier B.V.), pp. 1–
40. 

Gomez, D.E., Armando, R.G., Farina, H.G., Menna, P.L., Cerrudo, C.S., Ghiringhelli, P.D., and Alonso, 
D.F. (2012). Telomere structure and telomerase in health and disease (Review). Int. J. Oncol. 41, 1561–
1569. 

Henley, S.A., and Dick, F.A. (2012). The retinoblastoma family of proteins and their regulatory functions 
in the mammalian cell division cycle. Cell Div. 7. 

Herbig, U., Jobling, W.A., Chen, B.P.C., Chen, D.J., and Sedivy, J.M. (2004). Telomere shortening triggers 
senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a. 
Mol. Cell 14, 501–513. 

Jiménez, A.J., Domínguez-Pinos, M.D., Guerra, M.M., Fernández-Llebrez, P., and Pérez-Fígares, J.M. 
(2014). Structure and function of the ependymal barrier and diseases associated with ependyma 
disruption. Tissue Barriers 2, 1–14. 

Al Jord, A., Shihavuddin, A., Servignat d’Aout, R., Faucourt, M., Genovesio, A., Karaiskou, A., Sobczak-
Thépot, J., Spassky, N., and Meunier, A. (2017). Calibrated mitotic oscillator drives motile ciliogenesis. 
Science (80-. ). 358, 803–806. 

Jourdren, L., Bernard, M., Dillies, M.A., and Le Crom, S. (2012). Eoulsan: A cloud computing-based 
framework facilitating high throughput sequencing analyses. Bioinformatics 28, 1542–1543. 

Kippin, T.E., Martens, D.J., and Van Der Kooy, D. (2005). p21 loss compromises the relative quiescence 
of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19, 
756–767. 

Köhler, C., Koalick, D., Fabricius, A., Parplys, A.C., Borgmann, K., Pospiech, H., and Grosse, F. (2016). 
Cdc45 is limiting for replication initiation in humans. Cell Cycle 15, 974–985. 

Kyrousi, C., Arbi, M., Pilz, G.A., Pefani, D.E., Lalioti, M.E., Ninkovic, J., Götz, M., Lygerou, Z., and 
Taraviras, S. (2015). Mcidas and gemc1 are key regulators for the generation of multiciliated 
ependymal cells in the adult neurogenic niche. Dev. 142, 3661–3674. 

Lalioti, M.E., Kaplani, K., Lokka, G., Georgomanolis, T., Kyrousi, C., Dong, W., Dunbar, A., Parlapani, E., 
Damianidou, E., Spassky, N., et al. (2019). GemC1 is a critical switch for neural stem cell generation in 
the postnatal brain. Glia 67, 2360–2373. 



164 
 

De Lange, T. (2005). Shelterin: The protein complex that shapes and safeguards human telomeres. 
Genes Dev. 19, 2100–2110. 

Lim, D.A., and Alvarez-Buylla, A. (2016). The adult ventricular–subventricular zone (V-SVZ) and 
olfactory bulb (OB) neurogenesis. Cold Spring Harb. Perspect. Biol. 8. 

Loftus, K.M., Cui, H., Coutavas, E., King, D.S., Ceravolo, A., Pereiras, D., and Solmaz, S.R. (2017). 
Mechanism for G2 phase-specific nuclear export of the kinetochore protein CENP-F. Cell Cycle 16, 
1414–1429. 

Longhese, M.P. (2008). DNA damage response at functional and dysfunctional telomeres. Genes Dev. 
22, 125–140. 

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for 
RNA-seq data with DESeq2. Genome Biol. 15, 550. 

Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L., Palmiter, R.D., 
Hawrylycz, M.J., Jones, A.R., et al. (2010). A robust and high-throughput Cre reporting and 
characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140. 

Marion, R.M., and Blasco, M.A. (2010). Telomeres and telomerase in adult stem cells and pluripotent 
embryonic stem cells. Adv. Exp. Med. Biol. 695, 118–131. 

Marqués-Torrejón, M.Á., Porlan, E., Banito, A., Gómez-Ibarlucea, E., Lopez-Contreras, A.J., Fernández-
Capetillo, Ó., Vidal, A., Gil, J., Torres, J., and Fariñas, I. (2013). Cyclin-dependent kinase inhibitor p21 
controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell 12, 88–
100. 

Mazouzi, A., Velimezi, G., and Loizou, J.I. (2014). DNA replication stress: Causes, resolution and disease. 
Exp. Cell Res. 329, 85–93. 

McGarry, T.J., and Kirschner, M.W. (1998). Geminin, an inhibitor of DNA replication, is degraded during 
mitosis. Cell 93, 1043–1053. 

Ming, G. li, and Song, H. (2011). Adult Neurogenesis in the Mammalian Brain: Significant Answers and 
Significant Questions. Neuron 70, 687–702. 

Muthusamy, N., Vijayakumar, A., Cheng, G., and Ghashghaei, H.T. (2014). A Knock-in Foxj1CreERT2:: 
GFP mouse for recombination in epithelial cells with motile cilia. Genesis 52. 

Nikitin, A., Egorov, S., Daraselia, N., and Mazo, I. (2003). Pathway studio - The analysis and navigation 
of molecular networks. Bioinformatics 19, 2155–2157. 

Obernier, K., Cebrian-Silla, A., Thomson, M., Parraguez, J.I., Anderson, R., Guinto, C., Rodas Rodriguez, 
J., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2018). Adult Neurogenesis Is Sustained by Symmetric 
Self-Renewal and Differentiation. Cell Stem Cell 22, 221-234.e8. 

Ortiz-Álvarez, G., Daclin, M., Shihavuddin, A., Lansade, P., Fortoul, A., Faucourt, M., Clavreul, S., Lalioti, 
M.E., Taraviras, S., Hippenmeyer, S., et al. (2019). Adult Neural Stem Cells and Multiciliated Ependymal 
Cells Share a Common Lineage Regulated by the Geminin Family Members. Neuron 102, 159-172.e7. 

Pack, L.R., Daigh, L.H., and Meyer, T. (2019). Putting the brakes on the cell cycle: mechanisms of cellular 
growth arrest. Curr. Opin. Cell Biol. 60, 106–113. 

Perera, O.N., Sobinoff, A.P., Teber, E.T., Harman, A., Maritz, M.F., Yang, S.F., Pickett, H.A., Cesare, A.J., 
Arthur, J.W., MacKenzie, K.L., et al. (2019). Telomerase promotes formation of a telomere protective 
complex in cancer cells. Sci. Adv. 5, eaav4409. 

Petrik, D., Myoga, M.H., Grade, S., Gerkau, N.J., Pusch, M., Rose, C.R., Grothe, B., and Götz, M. (2018). 



165 
 

Epithelial Sodium Channel Regulates Adult Neural Stem Cell Proliferation in a Flow-Dependent 
Manner. Cell Stem Cell 22, 865-878.e8. 

Pilz, G.A., Shitamukai, A., Reillo, I., Pacary, E., Schwausch, J., Stahl, R., Ninkovic, J., Snippert, H.J., 
Clevers, H., Godinho, L., et al. (2013). Amplification of progenitors in the mammalian telencephalon 
includes a new radial glial cell type. Nat. Commun. 4, 1–11. 

Porlan, E., Morante-Redolat, J.M., Marqués-Torrejón, M.Á., Andreu-Agulló, C., Carneiro, C., Gómez-
Ibarlucea, E., Soto, A., Vidal, A., Ferrón, S.R., and Fariñas, I. (2013). Transcriptional repression of Bmp2 
by p21 Waf1/Cip1 links quiescence to neural stem cell maintenance. Nat. Neurosci. 16, 1567–1575. 

Redmond, S.A., Figueres-Oñate, M., Obernier, K., Nascimento, M.A., Parraguez, J.I., López-
Mascaraque, L., Fuentealba, L.C., and Alvarez-Buylla, A. (2019). Development of Ependymal and 
Postnatal Neural Stem Cells and Their Origin from a Common Embryonic Progenitor. Cell Rep. 27, 429-
441.e3. 

Roake, C.M., and Artandi, S.E. (2017). Control of cellular aging, tissue function, and cancer by p53 
downstream of telomeres. Cold Spring Harb. Perspect. Med. 7. 

Saito, T., and Nakatsuji, N. (2001). Efficient gene transfer into the embryonic mouse brain using in vivo 
electroporation. Dev. Biol. 240, 237–246. 

Saldivar, J.C., Hamperl, S., Bocek, M.J., Chung, M., Bass, T.E., Cisneros-Soberanis, F., Samejima, K., Xie, 
L., Paulson, J.R., Earnshaw, W.C., et al. (2018). An intrinsic S/G2 checkpoint enforced by ATR. Science 
(80-. ). 361, 806–810. 

Sawamoto, K., Wichterle, H., Gonzalez-Perez, O., Cholfin, J.A., Yamada, M., Spassky, N., Murcia, N.S., 
Garcia-Verdugo, J.M., Marin, O., Rubenstein, J.L.R., et al. (2006). New neurons follow the flow of 
cerebrospinal fluid in the adult brain. Science (80-. ). 311, 629–632. 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, 
C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. 
Methods 9, 676–682. 

Silva-Vargas, V., Maldonado-Soto, A.R., Mizrak, D., Codega, P., and Doetsch, F. (2016). Age-Dependent 
Niche Signals from the Choroid Plexus Regulate Adult Neural Stem Cells. Cell Stem Cell 19, 643–652. 

Siyahhan, B., Knobloch, V., De Zélicourt, D., Asgari, M., Daners, M.S., Poulikakos, D., and Kurtcuoglu, V. 
(2014). Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the 
lateral ventricles. J. R. Soc. Interface 11. 

Solovei, I., Kreysing, M., Lanctôt, C., Kösem, S., Peichl, L., Cremer, T., Guck, J., and Joffe, B. (2009). 
Nuclear Architecture of Rod Photoreceptor Cells Adapts to Vision in Mammalian Evolution. Cell 137, 
356–368. 

Soudet, J., Jolivet, P., and Teixeira, M.T. (2014). Elucidation of the DNA end-replication problem in 
saccharomyces cerevisiae. Mol. Cell 53, 954–964. 

Spassky, N., Merkle, F.T., Flames, N., Tramontin, A.D., García-Verdugo, J.M., and Alvarez-Buylla, A. 
(2005). Adult ependymal cells are postmitotic and are derived from radial glial cells during 
embryogenesis. J. Neurosci. 25, 10–18. 

Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., 
Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: A knowledge-based 
approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–
15550. 

Tachibana, K.K., Gonzalez, M.A., Guarguaglini, G., Nigg, E.A., and Laskey, R.A. (2005). Depletion of 



166 
 

licensing inhibitor geminin causes centrosome overduplication and mitotic defects. EMBO Rep. 6, 
1052–1057. 

Takai, H., Smogorzewska, A., and De Lange, T. (2003). DNA damage foci at dysfunctional telomeres. 
Curr. Biol. 13, 1549–1556. 

Terré, B., Piergiovanni, G., Segura‐Bayona, S., Gil‐Gómez, G., Youssef, S.A., Attolini, C.S., Wilsch‐
Bräuninger, M., Jung, C., Rojas, A.M., Marjanović, M., et al. (2016).  GEMC 1 is a critical regulator of 
multiciliated cell differentiation . EMBO J. 35, 942–960. 

Terré, B., Lewis, M., Gil-Gómez, G., Han, Z., Lu, H., Aguilera, M., Prats, N., Roy, S., Zhao, H., and Stracker, 
T.H. (2019). Defects in efferent duct multiciliogenesis underlie male infertility in GEMC1-, MCIDAS- or 
CCNO-deficient mice. Dev. 146. 

Urist, M., Tanaka, T., Poyurovsky, M. V., and Prives, C. (2004). p73 induction after DNA damage is 
regulated by checkpoint kinases Chk1 and Chk2. Genes Dev. 18, 3041–3054. 

Vladar, E.K., Stratton, M.B., Saal, M.L., Salazar-De Simone, G., Wang, X., Wolgemuth, D., Stearns, T., 
and Axelrod, J.D. (2018). Cyclin-dependent kinase control of motile ciliogenesis. Elife 7. 

Wellinger, R.J. (2014). In the end, what’s the problem? Mol. Cell 53, 855–856. 

Wohlschlegel, J.A., Dwyer, B.T., Dhar, S.K., Cvetic, C., Walter, J.C., and Dutta, A. (2000). Inhibition of 
eukaryotic DNA replication by geminin binding to Cdt1. Science (80-. ). 290, 2309–2312. 

Yoon, M.K., Ha, J.H., Lee, M.S., and Chi, S.W. (2015). Structure and apoptotic function of p73. BMB Rep. 
48, 81–90. 

Zeman, M.K., and Cimprich, K.A. (2014). Causes and consequences of replication stress. Nat. Cell Biol. 
16, 2–9. 

Zimmermann, S., and Martens, U.M. (2008). Telomeres, senescence, and hematopoietic stem cells. 
Cell Tissue Res. 331, 79–90. 

 

 

 

 

 

 

 

 

  



167 
 

CHAPTER 4. CONCLUDING REMARKS AND PERSPECTIVES 

 

 This doctoral dissertation has for aim the elucidation of the cellular and molecular 

mechanisms that lead to glial specification and the generation of the mouse neurogenic niche. 

There are two neurogenic areas in the adult mammalian brain, from which adult neurons are 

born throughout life: the subgranular zone of the dentate gyrus of the hippocampus and the 

SVZ that surrounds the lateral ventricles, mainly on the lateral wall (Mirzadeh et al., 2008; 

Obernier and Alvarez-Buylla, 2019). Our work has been focused on the latter.  

Firstly, we have characterized the lineage of multiciliated ependymal cells and adult 

neural stem cells, or B1 cells, both essential and majority components of said niche. We have 

used state-of-the art clonal analysis techniques to perform, on the one hand, a high 

throughput scrutiny of hundreds of clones composed of ependymal and/or B1 cells, using the 

Brainbow  technique (Loulier et al., 2014). On the other hand, we have profited from the 

single-cell resolution power of MADM transgenic animals (Gao et al., 2014) to discern the type 

of cell division that generates specific clone compositions. Both techniques complement each 

other and have allowed us to establish that multiciliated ependymal cells and B1 cells share a 

common lineage. Furthermore, we have proven that proteins from the Geminin family, 

namely Geminin and GemC1, which bear an important function in DNA replication firing 

(Balestrini et al., 2010; Wohlschlegel et al., 2000), can tune the fate of RGCs in the embryo. 

Whereas Geminin favors B1-generating symmetric divisions, GemC1 triggers the production 

of ependymal cells, also via symmetric divisions. Both cell types can also emerge via a single 

asymmetric division, thus demonstrating that these two very different cells from the 

neurogenic niche are indeed sisters.  

In the search of the specific mechanisms via which GemC1 induces an ependymal fate, 

the second part of our work has explored a not very common area in developmental biology: 

replicative stress and telomere dynamics. Two phenomena usually assessed in malignant 

transformation and progression (Halazonetis et al., 2008), we have managed to establish a link 

between them and ependymal differentiation. We have some results suggesting that the 

separation between cell cycle progression and terminal differentiation is not black and white, 

but rather a grey area, where some factors that regulate cell cycle progression, and also cell 
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cycle arrest, are recruited during centriole amplification. Besides, replicative stress, a trait of 

cycling cells, is indeed present in ependymal differentiation. Ependymal-committed 

progenitors in the perinatal neuroepithelium display a series of phenotypes that permit us to 

establish a link between differentiation and senescence, something that is related to ageing 

tissues, but not embryonic or early postnatal ones. More specifically, replicative senescence-

like phenotypes were observed, including the presence of DNA damage signals on telomeres. 

Since we verified the presence of these dysfunctional chromosome termini, we checked 

whether telomerase could have an impact on the cell fate specification of the neurogenic 

niche. In fact, it could both partially rescue the GemC1-dependent ependymal differentiation 

and promote the generation of B1 astrocytes.  

In the next few pages, I will discuss the results obtained during this thesis, and the new 

insights that we have gained over ependymal differentiation.  

4.1. The spatial origin of ependymal cells 

The first step before performing a clonal analysis of neurogenic niche cells was to 

determine the spatial origin of ependymal cells, this is, to answer the question whether 

ependymal progenitors migrate or if, by the contrary, they remain and differentiate on their 

site of birth. This was crucial since cell migration would greatly complicate clonal analysis. 

During the generation of cortical neurons in embryogenesis, extensive radial and tangential 

migration of neuroblasts is indeed the source of the two most common errors in clonal 

analysis: the lumping and splitting errors. The former consists of considering one or more cells 

of a clone as part of another one. The latter entails that one clone that has normally widely 

spread, is thought as two independent ones (Costa et al., 2009).  

We used the Cre-lox fate mapping technique to perform our study. We profited from 

the spatial compartmentalization of the embryonic neuroepithelium, in terms of the 

transcription factors they express (Fogarty et al., 2007). The Emx1-Cre (Gorski et al., 2002), 

Gsh2-Cre (Kessaris et al., 2006) and Nkx2.1-Cre transgenic lines (Xu et al., 2008), which label 

progenitors of specific areas of the neuroepithelium, have helped us determine that 

ependymal progenitors do not migrate. The almost absent contribution of ependymal cell 

populations issued from a specific area to other distant zones in the adult reassured us in this 

fact (Article 1 – Figure 1). Other data obtained supported this hypothesis, like the fact that 
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ependymal cells born at a certain time point (seen via EdU birth-dating) usually appeared in 

closer than random cells (Article 1 – Figure S1).  

This permitted us to continue with the clonal analysis without a migration bias. If 

ependymal migration was the rule, we would have had to envisage other methods of clonal 

analysis. For instance, labeling of progenitors with low titer retroviruses that would have 

tagged single progenitors (Ma et al., 2018) or tagging them with retroviral libraries that bear 

unique identifiers, afterwards revealed via sequencing methods (McCarthy et al., 2001; Walsh 

and Cepko, 1992). The latter has been already used to establish clonal relationships between 

B1 cells born during late gestation and their adult descendants, olfactory bulb interneurons 

(Fuentealba et al., 2015).  

Virtually all newborn neurons must migrate to achieve their final destination, which is 

intrinsically related to its function (Rakic, 2003). However, no specific cellular or molecular 

particularities have been attributed to distinct ependymal populations throughout the lateral 

wall. An absence of migration could support this notion: without functional specificities 

related to ependymal position, an energy-expensive process such as cell migration is not 

needed. If regional differences exist, these could probably be derived from the positional 

information of their origin. Thus, ependymal migration would still be unnecessary. 

4.2. The lineage of ependymal and B1 cells 

Once we ruled out migration, we set out to determine the clonality of neurogenic niche 

glial cells generated in late gestation and the mode of division of their progenitors. We used 

the IUE technique (Tabata and Nakajima, 2001) to label RGCs around the time before the last 

division of most ependymal progenitors, E14.5 (Spassky et al., 2005). We targeted progenitors 

of both ependymal and B1 cells (Article 1 – Figure 2) and labeled them with almost unique 

color identifiers using the Brainbow technique (Livet et al., 2007; Loulier et al., 2014). We 

observed that ependymal cells were born via symmetric and asymmetric divisions, in a 1:1 

ratio. We confirmed via another clonal analysis technique, MADM (Gao et al., 2014; Zong et 

al., 2005), the results obtained with Brainbow and proved that a single progenitor cell could 

give birth via one asymmetric cell division to an ependymal cell and a B1 astrocyte (Article 1 – 

Figure 3-4). This is a highly interesting fact, given that they are very different cell types. The 

first one is a terminally differentiated postmitotic cell (Spassky et al., 2005). The second one 
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is an adult stem cell that remains largely quiescent throughout life (Fuentealba et al., 2015; 

Morizur et al., 2018), which can, however, re-enter the cell cycle in physiological conditions to 

generate new neurons (Kriegstein and Alvarez-Buylla, 2009).  

The IUE of MADM animals at E13 and E14 revealed another fascinating fact: clones 

born at E13 presented more B1 cells, more mixed (ependymal and B1) clones and higher 

frequency of B1-generating symmetric divisions, than clones born at E14. This suggests that 

the bulk of B1 cells is born slightly before the bulk of ependymal cells (Article 1 – Figure 4) and 

hints at the existence of a hierarchy in the generation of glia. Another hierarchy that seems 

well established now during the development of the CNS, is that of neurons being born before 

glia. They are born from bipotent progenitors, rather than neuron-restricted and glial-

restricted stem cells (Costa et al., 2009; Rash et al., 2019). Of course, this depends on how 

restrictive we make the concept of “bipotent progenitor”. If by it, we mean a single cell that 

can generate a neuron and a glial daughter cell in one cell division, bipotent RGCs have not 

been described in the telencephalon. Interestingly, this has been observed in the rat retina, 

both in vitro and in vivo, where a single terminal division can generate a specialized type of 

photoreceptor neuron or retina interneuron and a glial cell (Müller cell) (Gomes et al., 2011; 

Turner and Cepko, 1988). However, if by “bipotent progenitor” we mean a stem cell that 

produces neuroblasts and self-renews and that, at some point, it stops generating neuroblasts 

to give birth to only glia, RGCs seem indeed bipotent (Gao et al., 2014).  

Concerning our results and in the first sense of the concept, we cannot rule out the 

possibility that an ependymal cell and a neuron could arise from a single progenitor division. 

The fact that neurogenesis is out of the scope of this work and mostly, that our tissue 

preparations are wholemounts of the V-SVZ, thus discarding the cortex, leaves this question 

open. Nonetheless, the fact that a single RGC could generate an ependymal cell and a neuron 

seems unlikely. It has been ascertained in vivo and in vitro that clones generated from late 

embryonic neuroepithelium are glial-restricted, suggesting that after a long enough delay 

(mid-late gestation), virtually no RGC will yield a neuron and glial cell (Anthony et al., 2004; 

Costa et al., 2009; Gao et al., 2014; Malatesta et al., 2000). However, a single-cell resolution 

study of the very last division of RGCs, like the one we have performed, to study the potential 

clonal relationship between neurogenesis and gliogenesis is missing. Our own analysis reveals 

that a non-negligible proportion of between 6 and 9% of MADM “clones” are formed by only 
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one cell (Article 1 – Table S1). This could mean that, on this few occasions, the missing sister 

cell of the observed ependymal or B1 cell could have undergone apoptosis or left the V-SVZ, 

becoming a cortical neuron, parenchymal astrocyte or oligodendrocyte. 

Some experiments that could be undertaken to answer this question would be to use 

low-dose tamoxifen-dependent Cre induction in NestinCreERT2/MADM animals (instead of Cre 

IUE like in our study), like Gao et al., to achieve sparse clone labeling. If this is done at later 

gestation  periods (E14-E15) than what they performed (E10-E13), so that ependymal cells are 

labeled after the last division of their progenitors, we could observe some two-cell clones, 

with an ependymal and a cortical cell, if these actually exist. Other clonal analysis techniques, 

like low-titer retroviral labeling could be useful in this case. The fact that ependymal 

progenitors do not migrate and that pallial cortical neurons are generated in columnar 

structures (Magavi et al., 2012) could allow us to confirm or rule out the presence of 

ependymal/cortical neuron duos, if they happen at all in development. Another possible 

solution would have been ex vivo filming of progenitor divisions and differentiation. However, 

we have tried to observe ependymal differentiation in these conditions and, for unknown 

reasons, we failed to find centriole amplification.  

4.3. The cellular and molecular mechanisms governing neurogenic niche cell fate 

4.3.1. The Geminin family members 

IUE is an optimal technique for gene functional studies by delivering DNA molecules 

that cause a gain or loss of function of these genes (Dixit et al., 2011; Matsui et al., 2011). We 

thus used said technique to study the role of the Geminin family in the ependymal/B1 lineage. 

In the MADM transgenic animals we over-expressed Geminin or GemC1 at E13 or E14 and 

observed that the former favors B1-forming symmetric divisions and the later produces more 

ependymal-generating symmetric divisions and a final higher output of ependymal cells 

(Article 1 – Figures 5-6, S7). The mechanisms by which they might do so are discussed in the 

second part of the this section (corresponding to the second publication).  

During the process of revision, we were asked to perform loss-of-function experiments 

of the same Geminin family members tested: Geminin and GemC1. We electroporated shRNA 

against Geminin (Origene TR510014A) and GemC1 (Origene TR507275A and TR507275B) at 

E14.5 in MADM transgenic animals. We observed no significant differences between any of 
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the tested conditions against a control situation, in clone composition or total cell type output 

(Figure 27).  

 

 

    

 

 

 

 

 

 

Figure 27. Loss-of-function experiments of Geminin and GemC1 in the neurogenic niche clone composition. (A) 

We used IUE in MADM animals to knock-down the expression of Geminin and GemC1. ShRNA plasmids for one 

or the other gene were co-electroporated with the Cre recombinase at E14.5. V-SVZ wholemounts were analyzed 

between P10 and P15. (B-C) Quantification of the average percentage of clone types, either pure ependymal (E 

only) or ependymal and B1-containing clones (Mixed) (B), and final percentage of E or B1 electroporated cells in 

the neurogenic niche (C). Error bars indicate the SEM. P-values were calculated via a two-proportion Z-test; ns 

p>0.05. 

Shortly after our work on Neuron was published, Lalioti et al. confirmed that full GemC1 

deletion (GemC1KO/KO) and single-cell removal of this gene in RGCs, via in utero Cre 

recombinase electroporation in GemC1Floxed/KO mice resulted in an increase of BLBP+ cells, an 

adult neural stem cell marker. Proliferation markers such as Ki-67 and cells positive for early 

neuroblast specification were also up-regulated in the absence of GemC1. They thus 

concluded that GemC1 acted as a switch of RGC fate and that its absence could favor the B1 

fate in detriment of the multiciliated ependymal one (Lalioti et al., 2019a). This was a 

complimentary approach to the one we followed. In our case, we proved that GemC1 was not 

expressed at the moment of the electroporation via in situ hybridization (Article I – Published 

work Neuron, 2019, Figure S6). Hence, it was likely that GemC1 shRNA was no longer present 

at the moment that endogenous GemC1 was expressed (we suppose perinatally, around the 

time of onset of ependymal differentiation) and thus the effect of GemC1 loss could not be 

observed.  
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It would be interesting to know whether the lack of GemC1 would increase the number 

of B1-generating symmetric divisions (like the over-expression of its antagonist, Geminin) or 

it would just promote direct transformation of RGCs into B1 cells. These two possibilities 

cannot be discerned in the study of Lalioti et al., since it did not entail a lineage analysis like 

ours. Electroporation of the Nucbow plasmids and the Cre recombinase in a GemC1 KO/Floxed 

mouse line from the study just mentioned could answer the question whether loss of GemC1 

in RGCs leads to a higher frequency of B1 pure clones, generated through symmetric divisions.  

As for Geminin inhibition in the telencephalon, it has been reported to cause an increase 

of RGC proliferation and defects in cortical layering (Spella et al., 2011). It would be of great 

interest to analyze the lineage of Geminin KO cells in clones in the way just described, in order 

to see if it has the same effect as GemC1 over-expression (induction of ependymal-generating 

symmetric divisions).  

4.3.2. A potential role of Notch and cell cycle length in neurogenic niche 

progenitor division patterns  

Prospective studies into the generation balance of ependymal and B1 cells and the 

mode of their progenitors’ divisions could have, in my opinion, a focus on two very interesting 

aspects: the role of Notch and the regulation of cell cycle length.  

Notch signaling can influence features as dissimilar as cell fate, proliferation and 

morphology. A highly interesting fact is that it can determinate different cell fates in adjacent 

cells that end up adopting different morphologies via a cell-cell crosstalk-signaling pathway, 

where one cell is the ligand expressing and the other, the Notch receptor-expressing one 

(Chitnis and Bally-Cuif, 2016). This is highly reminiscent of the neuroepithelium, where some 

cells acquire a B1 cell identity, and others become ependymal cells. 

Precisely in this tissue, Notch activity has an important role in the quiescence/division 

balance of adult NSCs in vertebrates, from zebrafish to mice. In the adult mammalian SVZ 

neurogenic niche, most neural progenitors are in a quiescent state (Fuentealba et al., 2015). 

However, Notch inhibition causes massive NSC division and neurogenesis in zebrafish (Alunni 

et al., 2013; Chapouton et al., 2010) and mice (Kawai et al., 2017; Rieskamp et al., 2018), 

whereas its induction promotes quiescence maintenance. Curiously, a different notch 

receptor (notch 1) is also involved in the maintenance of activated, not quiescent, adult NSCs 
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in mice (Kawai et al., 2017) and Notch inhibition in zebrafish has been shown to promote the 

aforementioned NSC activation, and it does so via proliferative symmetric divisions (Alunni et 

al., 2013). This hence suggests that Notch suppression can regulate the mode of division in the 

neuroepithelium. 

Notch displays an essential role in multiciliated epithelia. It inhibits the multiciliation 

program, as it has been shown in the airway epithelium, Xenopus embryonic epidermis and 

zebrafish pronephros (Liu et al., 2007; Marcet et al., 2011). In the mouse neuroepithelium it 

has been seen that it actually impedes the role of GemC1 to promote motile ciliogenesis 

(Kyrousi et al., 2015). It is plausible then that adjacent RGCs express Notch ligand and receptor, 

respectively, to establish the two main different fates that compose the neurogenic niche, the 

B1 and the ependymal cell, in a single division. MADM could be an interesting tool to observe 

the cell division patterns after inhibition or ectopic expression of Notch.  

If Notch indeed regulated the mode of division of neurogenic niche cell-committed 

RGCs, it could be used to answer a difficult question in the specification of these cells: precisely 

when does this specification occur. The truth is that we do not know what happens between 

the last division of ependymal-committed RGC and the onset of differentiation. Several days 

pass between the former (E14.5-E15.5) and the latter (E18.5-P0). If MADM animals were 

electroporated with the Cre recombinase at the time of the last division (E14.5-E15.5), we 

could subsequently administer the Notch inhibitor DAPT by oral gavage (Dees et al., 2011), at 

different time points, between the moment of electroporation and the onset of 

differentiation. If DAPT had an effect after electroporation, it would suggest that specification 

takes place right after the last division. It DAPT had an influence, but only later, it would be 

indicative of a later specification.  

Another possible mechanism that influences the mode of division is the cell cycle 

length. The “cell cycle length” hypothesis establishes that the length of the cell cycle, 

particularly of the G1 phase, is determinant for differentiation. This fascinating hypothesis 

states that a prolonged G1 would allow the accumulation of factors that will drive 

differentiation. Indeed, during mouse corticogenesis, there is a correlation between 

differentiative neurogenic divisions and cell cycle deceleration due to G1 lengthening. On the 

other end, a short G1 is associated with proliferative divisions (Dehay and Kennedy, 2007; 

Hardwick et al., 2015). A cause-consequence relation has been proven when cyclinD1-CDK4/6 
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was over-expressed or knocked-down via IUE. The former decreased cell cycle length via G1 

shortening and maintained basal progenitors in a cycling state, via promotion of self-renewing 

of proliferative divisions (Pilaz et al., 2009) and inhibited neurogenesis (Lange et al., 2009). 

The latter had the opposite effect (Lange et al., 2009). 

Ependymal cells seem to be the endpoint of RGC proliferation. After our study, we 

believe that when RGCs extenuate their proliferative potential, they perform one last 

symmetrical division to generate two ependymal cells. It would be highly interesting to know 

whether a similar shortening of the cell cycle as the one induced in Lange et al. could affect 

the final output of neurogenic niche cells or alter the mode of division of gliogenic progenitors. 

This could easily be tested in MADM embryos via over-expression of cell cycle actors, like the 

ones just mentioned. 

Maybe an excessive cell cycle lengthening is at the source of the final symmetric 

ependymal division. The accumulation of differentiation and/or damage signals could be 

determinant for this fate acquisition. The presence of cell cycle progression and cell cycle 

arrest markers in ependymal differentiation, as it is seen on the second part of this work (see 

below), certainly points this as a hypothesis to be worthy of exploration.  

4.3.3. The role of GemC1 in DNA replication and multiciliated program 

activation 

It has been explained before that GemC1, a gene that is necessary and sufficient for 

MCC differentiation (Arbi et al., 2016; Kyrousi et al., 2015; Terré et al., 2016) plays also an 

important role in DNA replication firing, as part of the pre-RC (Balestrini et al., 2010). We 

thought that maybe both GemC1 functions are connected during ependymal differentiation. 

That is why we tested the role of GemC1 in two very different contexts, in terms of DNA 

replication: the embryonic and the postnatal neuroepithelium. Whereas during late gestation 

(E14-E15), the VZ displays extensive cell cycle activity (Article 1 – Figure S2, Article 2 – Figure 

1B), the postnatal SVZ is characterized by the presence of a majority of quiescent NSCs, that 

had endured a progressive slow down of their cycle (Fuentealba et al., 2015; Furutachi et al., 

2015; Morales and Mira, 2019). We imagined that cell cycle activity would be much scanter 

right after cortical neurogenesis is complete (E18-P0) and so we electroporated GemC1 at 

these two different time points: embryonic (E14.5) and postnatal (P0) and pulse-chased the 
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electroporated cells with EdU. We found that the number of cells that has undergone S phase 

after GemC1 electroporation was much higher in the embryonic tissue and, to our surprise, 

these translated into a massive ependymal differentiation in utero and barely present in the 

postnatal VZ (Article 2 – Figure 1).  

These results, which prove that GemC1 promotes centriole amplification in cycling 

cells, suggest there is indeed a connection between both its roles. However, conclusive proof 

of the need of GemC1 in the pre-RC for triggering ependymal differentiation is missing. GemC1 

loads onto chromatin at origins of replication, but it needs to interact with TopBP1 and to be 

phosphorylated by Cyclin E-Cdk2 (Balestrini et al., 2010). Roscovitine is a small molecule that 

inhibits the activity of several CDKs (Cicenas et al., 2015), including CDK2, which promotes 

G1/S transition and S progression in complex with cyclins E and A, and CDK1 (Henley and Dick, 

2012; Poon, 2016). It has been shown in a model of tracheal multiciliated mouse cells in vitro 

that roscovitine-dependent CDK2 inhibition hampers multiciliogenesis (Vladar et al., 2018). 

We have been able to reproduce such results in our ependymal in vitro model, where 

roscovitine treatment rescued a non-multiciliated phenotype in GemC1-transfected cells 

(Figure 28).  

Nonetheless, Vladar et al. maintain that it is CDK2 in complex formation with cyclin A1, 

and not cyclin E, the one that participates in GemC1 phosphorylation during replication firing 

according to Balestrini et al., that drives motile ciliogenesis. Thus, to conclusively state that 

the role of GemC1 in DNA replication firing is necessary for its function in multiciliation, we 

would need to prove that in our culture system, GemC1 is inducing differentiation in cycling 

cells, like it does in vivo. Alternatively, we could treat pregnant mothers with rosocovitine after 

electroporation with GemC1, via intravenous injection, as it has already been reported (Menn 

et al., 2010; Nutley et al., 2005).  

Other ways to inhibit the loading of GemC1 to the pre-RC or the DNA replication firing 

altogether could also be tested to prove the link between the two GemC1 functions. Calcein 

has been shown to inhibit TopBP1 oligomerization and inhibit E2F1-dependent apoptosis and 

its interaction with mutant p53 in cancer cells (Chowdhury et al., 2014), but nothing was said 

about its role in the pre-RC. However, there is one study showing that calcein can inhibit 

formation of a papillomavirus replication complex at its replication origins (Das et al., 2017). 

This makes calcein an interesting candidate to prove our hypothesis.  
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Figure 28. Roscovitine inhibits ependymal differentiation in GemC1-expressing cells. (A) Experimental plan 

depicting day 0 of highly confluent ependymal culture set-up (see Materials and Methods). Neural progenitor 

cells grown for 5 days from newborn mice primary cultures were seeded at high confluency to induce 

differentiation. Besides, these cells were transfected with H2B-GFP and GemC1-expressing plasmids to enhance 

centriole amplification in transfected cells. At the time of transfection, cells were treated with roscovitine at 10, 

30 or 50 µM in DMSO, or its volume equivalent of DMSO as controls. (B) Representative images of the 

differentiation status (centrioles, in red) of GemC1-transfected cells (green) in culture, treated with either DMSO 

(controls) or roscovitine. (C) Quantification of the mean percentage of differentiation (multiFOP+) within 

transfected cells (GFP+). The error bars depict the SEM for at least three independent culture settings. P-values 

were assessed with a Mann-Whitney test with ns (not significant) p > 0.5 and **** p < 0.0001.  
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4.3.4. GemC1 generates replicative stress at the onset of ependymal 

differentiation 

Given that GemC1 induced centriole amplification in cycling cells and that it has a role 

in DNA replication firing, we studied S phase entry in ependymal progenitors. The rapid and 

extensive GemC1-induced differentiation did not trigger a rapid cell cycle exit with a 

decreased number of Edu+ cells in the embryo, as one would expect from differentiation 

initiation, but rather cells continued to undergo S phase like the highly cycling control cells 

(Article 2 – Figure 2E-F). We found that GemC1 caused a significant increase of γ-H2AX in cells 

in vivo (Article 2 – Figure 2G-I). Moreover, the occurrence of γ-H2AX+ cells is higher in GemC1+ 

cells that have undergone S phase (Edu+), than in those that have not. We even observed that 

γ-H2AX foci often co-localized with Edu+ areas in the cell nucleus, when Edu+ cells did not 

present an uniform nuclear labeling (Article 2 – Figure 2J). All this indicates that GemC1 

produces a replicative stress in differentiating ependymal progenitors.  

In order to make sure this DDR is not an artefact of the over-expression of GemC1, we 

looked for signs of stress in normal differentiating conditions. We indeed found mTomato+ 

cells in the FoxJ1CreERT2 ; R26mTomato embryos that presented signs of replicative stress (γ-

H2AX foci) (Article 2 – Figure 2I). Furthermore, we quantified the levels of γ-H2AX in 

differentiating postnatal V-SVZ wholemounts and confirmed a significant increase in γ-H2AX 

labeling intensity, concomitant with differentiation (Figure 29). This is somehow reminiscent 

of recent findings that describe the presence of an S/G2 checkpoint dependent on ATR. As a 

consequence of this checkpoint, γ-H2AX is present during S and the S/G2 transition in 

unchallenged cells in vitro (Saldivar et al., 2018). 
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Figure 29. The DNA damage pathway is active in wild type ependymal-differentiating cells. (A-B) Illustrative 

pictures of P1-P4 V-SVZ wholemounts and zoom-in images (B), during the time of ependymal differentiation in 

GemC1 WT and GemC1 KO animals. Wholemounts were immunostained with the following antibodies: FOP 

(procentrioles and centrioels) in green, YH2AX in red and GT335 (cilia) in magenta. Wholemounts were counter-

stained with Hoechst (grey) to calculate the YH2AX intensity within nuclei. For the WT condition, examples of 

cells in the centrosome (two apical centrioles and a cilium), flower (with rings of centrin) and individualization 

stages (multiple centrioles ready to dock cilia) are illustrated. For the GemC1 KO, only the centrosome stage is 

present. Cells are shown on its apical (with cilia and centrioles) and subapical planes (with nuclei and YH2AX). (C) 

Quantification of the mean nuclear YH2AX intensity, normalized to an image background. The error bars show 

the SEM for n = 3 animals in controls and n = 2 animals in KO. P-values were determined using a Mann-Whitney 

test; ns (not significant) p > 0.5, * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001.The scale bar is 10 µm in (A) and 3 µm 

in (B).  

The over-expression of other components of the pre-RC, such as Cdt1, Cdc6 has been 

associated with re-replication and early-stage cancer lesions (Gaillard et al., 2015). Cdc45, 

whose loading onto the chromatin at origins of replication is dependent on GemC1 in Xenopus 

egg (Balestrini et al., 2010), causes replicative stress in HeLa cells when over-expressed. It 

induces disproportionate firing of replication origins and increased replication fork stalling 

(Köhler et al., 2016). Indeed, potent oncogenes like Myc have been reported to cause early 

origin of replication firing, which leads to the up-regulation of DDR markers (γ-H2AX, 

phosphorylated ATM) in mammalian cells, in a Cdc45-dependent manner. These are hallmarks 
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of genomic instability, which can result in malignant transformation (Srinivasan et al., 2013). 

It is possible that GemC1 acts, in a certain way, like an oncogene, when it starts to be 

expressed in the perinatal neuroepithelium. A rise in its expression could generate untimely 

replication origin firing, which could cause the replicative stress that we have seen in our 

model. 

4.3.5. Ependymal progenitors display dysfunctional telomeres while 

terminally differentiated ependymal cells have clustered telomeres 

Telomeres display DDR markers when they are excessively short or deprotected 

(Gomez et al., 2012; Takai et al., 2003). What seems increasingly clear is that telomeres, which 

occupy a minimal fraction of the genome, are favored targets of a random DDR over other 

genome regions, in ageing tissues where senescence is induced, but also due to other insults, 

such as oxidative stress (Hewitt et al., 2012). We confirmed the presence of a higher amount 

of TIFs in GemC1-expressing cells than control cells, as well as a greater percentage of cells 

with three or more TIFs (Article 2 – Figure 2 K-M).  

However, we do not know what is the ultimate cause that generates telomeric 

damage. We checked for telomere shortening, using manual counting of detectable telomeric 

foci and semi-automatic quantitative FISH (Q-FISH) analysis per nucleus, which measures the 

intensity of FISH-detected telomeric sequence (Sharifi-Sanjani et al., 2017). Telomeric signals 

were detected using an automatic plug-in that identified all pixels (in the telomere FISH 

channel) in a 3D Z-stack with a certain intensity value above a given threshold (Figure 30A-B). 

This plug-in used the 3D watershed algorithm implemented in ImageJ and returned, for each 

detected object (telomere focus) values like its volume, integrated density, mean intensity, 

and others (Figure 30C). Since the analyzed cell types were located in the same image, this 

eliminated any possible bias due to image acquisition.   
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Figure 30. Telomere detection and quantitative FISH. (A) Illustrative example of a neurogenic niche area, stained 

with telomere FISH (magenta) in a Cen2-GFP mouse (transgenic line where Centrin 2, a protein component of 

the centrioles, is fused to GFP, Higginbotham et al., 2004, seen in green). The used automatic plug-in (see 

Materials and Methods) detects telomeric foci as individual objects and creates for each of them a mask, in a 

new channel (Watershed, in grey). It then measures their volume (pixel3) and fluorescence intensity within the 

mask. The different grey values of the watershed channel serve as object identifiers (each object/telomere has 

a distinct grey tonality). It is unrelated to the telomere foci’s size or intensity. (B) 2D projections of three examples 
of three telomeric foci, from smaller and less intense (up) to bigger and more intense (down), labeled as #1, 2 

and 3. (C) Calculated values of volume, integrated density, mean intensity and standard deviation using all the 

pixels from the telomere FISH channel, detected within the mask (watershed).  

We observed that overall telomere content per cell was not different in ependymal 

cells from other non-ependymal SVZ cells (mostly B1 and lineage-related C and A cells). 

However, we did observe a decrease in total telomere signal per cell in mitotic cells, probably 

due to the fact that these were the ones that had undergone more cell cycles from all the 

analyzed cells (Figure 31A-D, F). 
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Figure 31. Ependymal cells contain the same amount of telomeric material than other V-SVZ cells in less but 

denser telomere foci. (A) Example image of a neurogenic niche from a Cen2GFP mouse strain at P10 (coronal 

section). Centrioles are shown in green and telomere FISH in magenta. Sections were necessarily counterstained 

with Hoechst to associate telomeric foci to specific nuclei in a highly compacted tissue. (B-D) Examples of an 

ependymal cell, distinguishable by the presence of an apical patch of centrioles (B), a non-ependymal SVZ cell 

that shows an apical pair of centrioles (red arrowhead) (C) and a mitotic cell, with characteristic condensed 

chromatin and two pairs of centrioles (red arrowheads) (D). In slightly transparent or opaque white, the 
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watershed channel for telomere detection (see Figure S4) is shown. Different levels of transparency in this 

channel are merely due to different object ID colors attributed by the telomere detection plug-in. (E-G) 

Quantification of the average telomere number per cell, with the red dotted line on 62 indicating half the value 

of the average mitotic cell group (E), the total amount of telomeric material per cell, with the red dotted line on 

0.5 as half the value of the average mitotic cell group (F), and the average telomeric signal per focus in each cell 

(G). The bars are representative of the SD for n = 4  animals and n = 40 ependymal, 40 non-ependymal and 8 

mitotic cells. Scale bar 10 µm for (A) and 3 µm for (B-D). LV: Lateral Ventricle. 

If telomere shortening was not responsible for DNA damage on such regions, it is 

possible that excessive replication firing, triggered by a sudden increase of GemC1 expression 

around the time of ependymal differentiation onset, could be the cause of TIFs occurrence. 

Telomeres are indeed among the “problematic” sequences that the replication fork finds on 

its way (Gilson and Géli, 2007). Repetitive sequences, such as those that compose telomeres, 

have provoke replication stalling. The DNA 3D structures formed on chromosome ends, such 

as t-loops and G-quadruplexes also have this deleterious effect. Finally, the presence of big 

protein complexes on chromatin, such as the shelterin complex, have been suggested to cause 

replicative stress (Higa et al., 2017). However, shelterin proteins have actually been found to 

recruit factors involved in DNA replication and repair that would actually help fork progression 

(Novo and Londoño-Vallejo, 2013).  

Mammalian telomeric replication can start in the subtelomeric region or telomeric 

repeats themselves (Higa et al., 2017). A chromatin immunoprecipitation analysis to observe 

whether GemC1 binds to replication origins near the telomeres could also be illustrative. 

There is also the possibility that excessive replication firing triggers telomeric damage, but in 

a way that does not implicate GemC1 chromatin binding. In that case a replication timing assay 

using a single BrdU pulse (around the time of GemC1-induced replicative stress, this is 30 

hours post IUE) and BrdU chromatin immunoprecipitation could be a promising experiment 

(Hasegawa et al., 2019; Katou et al., 2003), to see if GemC1-dependent replication happens 

on the telomeres.  

We have thought of another hypothesis, based on the relation between telomeres and 

the nuclear envelope. Deep changes in nuclear morphology observed during GemC1-

dependent differentiation (Figure 32) could be the cause of telomeric damage. Indeed 

telomeres do not have a random distribution in mammalian cells (Novo and Londoño-Vallejo, 

2013). For instance, later-replicating telomeres assume a more peripheral location in the 

nucleus, influenced by subtelomeric sequences (Arnoult et al., 2010). Telomeres have also 
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been found to tether to the nuclear membrane during its reassemby after mitosis (Crabbe et 

al., 2012). In fact, they are in close contact with lamins, fibrous proteins that line the inner 

nuclear membrane, as it has been elegantly shown by fusion of an E. coli methyltransferase to 

the lamin B1 protein, which results in detectable methylation of telomere sequences due to 

physical proximity (Sobecki et al., 2018). Furthermore, the loss of lamins causes an increased 

presence of TIFs (Gonzalez-Suarez et al., 2009). It could be hypothesized then that the nuclear 

contorsions we observe could be at the onset of telomeric DNA damage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Nuclear deformations during GemC1-dependent ependymal differentiation. (A) Wholemount images 

of a GemC1 + H2B-RFP-electroporated neuroepithelium, stained with antibodies against β-catenin and FOP, to 

label apical contacts and centrioles, respectively. Three examples are shown of three independent cells 

undergoing deep nuclear morphology transformations. For each of the three, an image of the apical contact 

where amplifying centrioles are seen, and an image of the subapical region, where the nucleus lies, are shown. 

As a note, the first cell seems as if it were undergoing mitosis. However, the two chromatin accumulations are 
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connected in a deeper level, making one whole nucleus. (B) Wholemount images of a GemC1 + H2B-RFP 

electroporated neuroepithelium, showing LaminB1 and centriole staining. LaminB1 reveals the presence of 

groves on the nuclear envelope.  

 

It is very striking as well the aggregation of telomere foci in ependymal cells, which 

present significantly less detectable telomeric foci, but these are denser than in other SVZ cells 

(Figure 31A-D, E, G). Interestingly, induction of senescence in human mesenchymal cells leads 

to the formation of telomere aggregates that display DNA damage characteristics (TIFs) and 

associate to lamins (Novo and Londoño-Vallejo, 2013; Raz et al., 2008). Senescence induction 

in these cells leads to the formation of groves very similar to what we observe in GemC1-

electroporated brains (Figure 32B), and senescent, damaged telomeres associate to said 

grooves in the nuclear envelope (Raz et al., 2008).  

The functional implications of these aggregates are unknown. During meiosis, it has 

been hypothesized that telomeres act as anchors on the nuclear envelope that help pairing of 

homolog chromosomes and a successful chromosome seggregation (Klutstein and Cooper, 

2014). Consequently, telomere clustering is seen in spermatocytes (Marjanović et al., 2015). 

However, ependymal progenitors do not undergo mitosis, so homolog chromosome pairing 

does not seem as a functional explanation. Klutstein and Cooper also argue that telomere 

clustering in meiosis could serve to increase local concentration of telomere-associated 

factors that are essential in other meiotic functions. It would be tempting to hypothesize that 

telomere aggregation in ependymal progenitors also serves to create local accumulation of 

factors, such as those that protect telomeres against DDR and thus prevent NHEJ or HR that 

could lead to chromosomal instability. In any case, a relationship between senescence, nuclear 

deformation, nuclear envelope telomere tethering, telomere aggregation and damage seems 

a exploration-worthy territory although, for the moment, highly unknown. Prospectively, one 

could claim that assessing this telomere association during ependmal differentiation would be 

interesting, to see if the time of telomere clustering coincides with the moment of replicative 

stress induction.  

 

 



186 
 

4.3.6. The role of GemC1 in cell cycle progression and arrest during ependymal 

differentiation 

We have observed that, before centriole amplification, GemC1-expressing cells enter 

S phase like control ones, but they present replicative stress and damaged telomeres. This led 

us to perform time-lapse tracking of control or GemC1-electroporated nuclei, RNA-sequencing 

in GemC1 and Mcidas-expressing cells, in search of genes other that those classically involved 

in ciliogenesis, and immunostaining studies of cell cycle progression and arrest markers.  

After gain-of-function experiments of GemC1 and its downstream effector Mcidas via 

IUE, we obtained a list of genes involved in ciliogenesis and centriole amplification, commonly 

upregulated by both actors, as expected, that served as proof of concept of our approach 

(Terré et al., 2016). We also confirmed the functional hierarchy between GemC1 and Mcidas, 

where the former transactivates the latter, but not vice versa (Arbi et al., 2016; Kyrousi et al., 

2015, Article 2 – Figure 3H). Interestingly, cell cycle progression and arrest genes were up-

regulated, like cyclin A1, as previously reported (Vladar et al., 2018) and p21, a gene not yet 

described in ependymal development (Article 2 – Figure 3H, K). Furthermore, a Gene Set 

Enrichment Analysis performed with the pathway studio software revealed that GemC1 

activated the G1/S transition gene network, whereas Mcidas-dependent up-regulated genes 

were enriched in both G1/S and G2/M. This suggests the existence of an active cell cycle 

progression transcriptome (Article 2 – Figure 3G).  

A highly interesting fact is that GemC1 and Mcidas promoted miR-449c expression, a 

member of the miR-34/449 family that has been implicated in MCC differentiation in Xenopus 

embryonic epidermis and human airway epithelial cells in culture (Marcet et al., 2011). 

However, an implication in ependymal differentiation is missing. Our screen is the first one to 

establish this potential link, and it would suggest the existence of a feedback loop, in which 

GemC1 and Mcidas activate the expression of these mi-RNAs. These regulatory elements have 

been described to be most upstream of the multiciliated differentiation cascade, and not 

downstream or as part of feedback loops. Functional studies (gain or loss-of-function) for 

these genes in the neuroepithelium could be interesting to perform.  
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Another fact from the study of Marcet et al. that points in a similar direction as our 

work, is that over-expression of the miR-449 gene in human airway mucociliary epithelial cells 

leads to the significant enrichment of genes involved in the G2/M checkpoint.   

The fact that GemC1-expressing cells quickly differentiated after electroporation (at 54 

hours post IUE differentiation is pretty advanced, Article 2 – Figure 1D-E) , but also 

incorporated EdU like control cells (Article 2 – Figure 2E-F), led us to think there might be a 

halt in cell cycle between S and mitosis. Indeed, time lapse microscopy of ventricular explants 

revealed that, despite non-affected S phase entry, mitosis completion was significantly 

reduced in GemC1-expressing conditions (Article 2 – Figure 3A-C). We also confirmed the 

presence of the CKI p21 via immunofluorescence and the DNA damage pathway-involved 

protein p73 (Article 2 – Figure 3G-H). However, even though Ki-67 was downregulated in 

differentiating conditions (Figure 33), another cell cycle progression marker, like 

hyperphosphorylated pRb, which is responsible for the G1/S transition, was highly up-

regulated (Article 2 – Figure 3E-F). These results were confirmed in early postnatal 

wholemounts, which bear no Ki-67 expression, but display pRb activity, without GemC1 gain-

of-function conditions (Figure 34A-B). 

 

Figure 33. GemC1-expressing cells down-regulate the cell cycle marker Ki-67. (A) Schematic representation of 

the experiment. Control (H2B-GFP) without or with GemC1 plasmids were electroporated at E14. and coronal 

sections were analyzed 54 hours later by immunofluorescence. (B) Representative images of coronal sections of 

embryos electroporated with H2B-GFP or H2B-GFP + GemC1, with electroporated GFP-expressing cells in green 

and Ki-67 staining shown in red. (C) Quantifications of the mean percentage of Ki-67+ electroporated (GFP+) 

cells. The error bars indicate the SEM for n = 3 animals for both conditions. The p-value was calculated using a 

Mann-Whitney test; *** p ≤ 0.001. Scale bar 20 µm. LV: Lateral Ventricle. 
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We worked with the hypothesis that cells had not exited the cell cycle before the onset 

of differentiation, but they slowed down cell cycle progression during centriole amplification. 

The seeming absence of Ki-67 was an interesting point to focus on. Unlike retinoblastoma, 

which shows a bistable switch-like nature around the restriction point of G1, this is, it displays 

an “on or off” response for E2F-dependent G1/S transition (Yao et al., 2008), Ki-67 is a graded 

marker (Miller et al., 2018). Usually used as a binary marker for cycling versus non-cycling cells, 

Ki-67 actually displays differential levels of expression that are regulated through cell cycle 

progression. This protein is actually proteasome-degraded during G1, when it presents its 

lowest levels, and starts accumulating upon S phase entry and peaks in G2/M (Sobecki et al., 

2017). Interestingly, CDK4/6 inhibitors leads to a loss of Ki-67 mRNA levels, and, since it is 

degraded uniformly during G0 and G1, the longer a cell spends in such phases, the lower the 

levels of Ki-67 are upon cell cycle or S phase re-entry. This was observed in cancer and non-

transformed cell lines (Miller et al., 2018; Sobecki et al., 2017). Curiously, low levels of Ki-67 

were detected by Al Jord et al. during ependymal centriole amplification (Al Jord et al., 2017), 

which have also been affirmed to be present in not deeply quiescent cells (Sobecki et al., 

2017). It is thus interesting to argue that terminal differentiation is not uncoupled from the 

cell cycle progression, but rather cells would be in a pseudo-cell cycle state as centriole 

amplification progresses.   

The presence of hyperphsophorylated pRb suggested our cells could be in a S/G2 stage. 

We sought to detect a protein that has been used as a G2 marker: Cenp-F (Kaida and Miura, 

2015). This is a kinetochore-associated protein with an important role in mitotic chromosome 

seggregation whose expression peaks at G2. Cenp-F remains in the nucleus during most of the 

cell cycle but it is transiently exported to the cytosol in G2 (Liao et al., 1995; Loftus et al., 2017). 

We observe an exclusive colocalization of Cenp-F with FoxJ1+ cells in the differentiating (P2), 

wild type V-SVZ wholemount. Other cells in the nascent neurogenic niche do not seem to have 

such staining. Besides some of the Cenp-F staining seems to be located on the cytoplasm, 

apart from the nucleus, which could suggest differentiating cells are in a G2-like state (Figure 

34C). 
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Figure 34. Ependymal differentiation in wild type conditions reproduces the phenotypes observed in GemC1 

expressing cells in utero. P2 wholemounts of wild type mice present a great number of differentiating ependymal 

cells (FoxJ1+ and in various stages of centriole amplification: halo, flower and individualization). FoxJ1+ cells were 

in all cases Ki-67- (A). Many of them in a differentiating stage (halo/flower) were pRb+ (B), as well as Cenp-F+ (C). 

Scale bar 10 µm (A-C). 

 

As for the cell cycle arrest markers up-regulated by GemC1 (Article 2 – Figure 3G-H), 

p73 has already been described to be essential for the proper development of the ependyma 

(Gonzalez-Cano et al., 2016). It was described before though, as a p53 homolog, and the 

expression of both can be triggered by DNA damage to induce apoptosis in mouse embryonic 

stem cells and cell cycle arrest in several cancer cell lines (Chen et al., 2001; He et al., 2016; 

Yoon et al., 2015). Furthermore, it has been shown that effector kinases of the DDR, Chk1 and 

Chk2 are necessary for the accumulation of p73 (Urist et al., 2004). In the neurogenic niche, 

p73 is essential to establish many aspects of the proper V-SVZ, such as a correct ependymal 

specification program, ciliation or translational polarity. Besides, its deletion causes 

hydrocephalus in mice (Fujitani et al., 2017; Gonzalez-Cano et al., 2016). Its absence is even 
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deleterious for adult neurogenesis, but this is probably due to non-autonomous cell effects in 

a completely disrupted neurogenic niche (Gonzalez-Cano et al., 2016). GemC1 is actually an 

upstream activator of p73, which binds to upstream sequences to its transcription start site 

and promotes its expression in combination with E2F5 (Lalioti et al., 2019b). However, a 

connection between its role in activating the multiciliation transcriptional program in the brain 

or the rest of the multiciliated epithelia in the body (Marshall et al., 2016) and its role as a 

DNA damage sensor has not been described.  

P21 is another cell cycle arrest marker signficantly increased by GemC1 (Article 2 – 

Figure 3G-H). It is a well known product of p53 transcription during replicative senescence 

(Roake and Artandi, 2017). Like p73, it has an important role in the neurogenic niche, as it 

helps maintain the quiescent state of adult NSCs and avoid their excessive proliferation, which 

ultimately leads to their proliferation capacity exhaustion. It has been postulated that in the 

absence of p21, the constant and rapid early replication of B1 cells could lead to telomere 

shortening and, as a consequence, an eventual halt in proliferation (Kippin et al., 2005). 

Indeed, telomerase has been shown to prevent premature ageing of the proliferative cells in 

the neurogenic niche (Ferrón et al., 2004). However, p21 also possesses a CKI-independent 

role in quiescence maintenance in the neurogenic niche. Via the transcriptional repression of 

morphogenic signaling (BMP), p21 is necessary to avoid excessive progenitor cycling activity, 

in consonance with ependymal cells, which express the BMP antagonist Noggin (Porlan et al., 

2013). A rather interesting phenotype of the p21 full KO, that could be more related to its 

canonical role as CKI, is that B1 cells present signs of replicative stress (γ-H2AX, 53BP1 and RPA 

foci), due to increased levels of the pluripotency-related protein Sox2 (Marqués-Torrejón et 

al., 2013). 

4.3.7. Ependymal cells: a matter of ploidy?  

The data described so far, this is, the presence of cell cycle progression markers, 

including S and G2 phases and the mitotic block has led us to the unconfirmed hypothesis that 

ependymal cells could leave the cell cycle after differentiation in G2. To confirm such 

hypothesis, a FACS analysis of the DNA content of GemC1-expressing cells will be performed, 

to check for any aneuploidy. However, it is possible that full-genome replication does not 

occur, but only some replication firing due to the action of GemC1 that FACS could not detect. 

To circumvent such lack of resolution, we could perform single-cell whole-genome sequencing 
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to see if some cells indeed have some stretches of replicated chromosomes (Sladky et al., 

2020). This could also reveal if re-replication actually happens near the telomeres and could 

be at the source of their damage. Interestingly, Sladky et al. claim that a multiprotein complex 

called the PIDDosome impedes excessive ploidy in hepatocytes of the developing or 

regeneating liver. Polyploidy, which is not rare in the liver, is limited by such complex, which 

in turn activates the p53-p21 axis, two genes necessary to maintain ploidy below a certain 

level. A major component of the PIDDosome, the protein Pidd1, is actually one of the top up-

regulated genes by GemC1 and Mcidas in our RNA-seq experiments. It would be interesting 

as well to check the ploidy of ependymal cells in p21 -/- (Deng et al., 1995) mice electroporated 

with GemC1, since the induction of p21 seen in our model could be the mechanism that puts 

a halt on excessive DNA replication.  

Regarding aneuploidy and centriole amplification, it is indeed intriguing that depletion 

of Geminin, the antagonist of GemC1 in DNA replication firing, causes supernumerary 

centrioles and genome over-replication in human normal and cancer cells. Besides, these cells 

fail to go into mitosis due to G2/M DNA damage checkpoint activation (Tachibana et al., 2005). 

In some aspects (centriole amplification, G2/M checkpoint activation and mitotic inhibition) 

these results phenocopy our observations in GemC1-over-expressing cells. Geminin and 

GemC1 determine the balance of B1 and ependymal cell production (Article 1 – Figure 7). The 

mechanisms by which they do so could entail their function in DNA replication, namely an 

induction of replicative stress, or protection against it, which could trigger, or prevent, 

respectively, a centriole amplification. 

Endoreplication, the process of DNA replication without passage through mitosis was 

previously considered as rare and only functional in plants and insects, like Drosophila. 

However, mammalian endoreplication and polyploidization has increasingly emerged as a not-

so-rare event with functional implications in systems like megakaryocytes, hepatocytes, the 

epithelium of the mammary glands during lactation (Gandarillas et al., 2018), and even, rat 

cortical neurons, where authors suggest endoreplication could be a potential mechanism to 

support high metabolic demands of long-range projection neurons (Sigl-Glöckner and Brecht, 

2017). Ependymal cells, which contain multiple mitochondria to support the high energy 

demand of ciliary beating (Doetsch et al., 1997) are certainly good candidates to display 

endoreplication to support their costly function. Upon GemC1 over-expression, we have 
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certainly observed the formation of micronuclei (Figure 35) in fully differentiated ependymal 

cells. Al Jord et al. observed it in ependymal differentiating cells, upon pharmacological 

inhibition of the APC/C complex, which impedes transition into anaphase. Although the 

number of centromeres they counted was that of diploid mouse cells, this was assesed in vitro 

and does not rule out the presence of partial endoreplication beyond the centromere (Al Jord 

et al., 2017). The presence of micronuclei could be indicative of endomitosis and 

polyploidization, which have been described in development (Fox and Duronio, 2013; Ullah et 

al., 2009). 

 Figure 35. GemC1 expression promotes micronuclei formation. Representative images of the ventricular zone 

at P10 of animals electroporated 

at E14.5 with an H2B-GFP + 

GemC1 plasmid mixture. Nuclei 

are shown in green and 

centrioles, in red. The arrows 

point at the formation of 

micronuclei in the GemC1-

expressing cells.  

 

 

Finally, something that remains to be elucidated though, is whether GemC1-induced 

replicative stress is the cause of centriole amplification or if both phenomena are 

independent. Some examples of DDR-dependent differentiation do exist. Although not 

replicative stress-related, radiation-induced DNA damage has been shown to be the cause of 

senescent traits and, most importantly, astrocytic differentiation in adult NSCs in vitro and in 

vivo (Schneider et al., 2013). In the Drosophila testes, persistent replicative stress due to 

hydroxyurea treatment leads to the premature differentiation of germ cells, with massive 

activation of the DDR (Landais et al., 2014). Finally, skin keratinocytes differentiation parallels 

our observations. In them, Myc expression, which in turn triggers Cyclin E expression, pushes 

these cells into terminal differentiation with concomitant activation of the p53/p21 pathway, 

endoreplication and γ-H2AX, which in all trigger a mitotic block and are the cause of 

differentiation (Gandarillas, 2012). A potential treatment of GemC1-electroporated animals 

with caffeine, a known inhibitor of the DDR (both ATR and ATM-dependent), could be 

performed. Thus, we could prove that it is replicative stress and subsequent G2/M checkpoint 
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activation,  combined with mitotic entry inhibition mechanisms (Al Jord et al., 2017) the case 

that drives ependymal differentiation. The keratynocyte mode of differentiation certainly 

proves that terminal differentiation is not uncoupled from cell cycle progression, which seems 

to be the case for ependymal differentiation.  

4.3.8. Telomerase favors B1 fate in detriment of the ependymal one 

Since telomere damage was present in ependymal progenitors, we wondered whether 

telomerase, an enzyme known to elongate telomeres, could play a role in ependymal 

commitment. We confirmed that simultaneous expression of GemC1 and mTERT, the catalytic 

subunit of the telomerase, in the p21-mTERT mouse significantly decreased ependymal 

markers (p73 and centriole amplification) (Article 2 – Figure 4A-E). In the same direction, 

expression of mTERT in utero increased the number of B1 cells in detriment of ependymal cells 

(Article 2 – Figure 4F-H).  

Telomerase is indeed expressed in the adult rodent brain and its highest expression is 

found in the SVZ. Nonetheless, its activity decreases with age (Caporaso et al., 2003), parallel 

to its expression (Ferrón et al., 2009). This is compatible with the progression exhaustion of 

the B1 cell pool with age (Obernier et al., 2018). Telomerase KO models (like Terc KO, which 

lacks the non-coding RNA component of telomerase essential for its activity) display telomere 

shortening (Flores et al., 2005), which impairs proliferation and self-renewal of B1 cells (Ferrón 

et al., 2004). But interestingly, telomere shortening over successive generations of Terc -/- 

inbreeding generates a defect in neuroblast birth and neuronal maturation (as seen by the 

number of neurites in olfactory bulb neurons). This suggests a role of telomerase in 

specification and differentiation in the CNS, in a p53/p21 axis-dependent manner, in the 

absence of apoptosis (Ferrón et al., 2009).  

It would be reasonable to hypothesize that telomerase expression increases stem cells’ 

proliferative capacity. Since ependymal cells seem to be the final output of RGCs in one last 

consumptive symmetrical division (Article 1 – Figure 7), a telomerase increase of expression 

would lead to a higher production of cells before that last division, like B1 cells (Article 2 – 

Figure 4), due to the aforementioned increase of proliferative capacity. The other possibility 

is that telomerase itself would have a cell cycle-independent cell fate specification role in the 

ependymal/B1 cell lineage. 
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A prospective experiment could consist of revealing the effect of telomerase deficiency 

and critical telomere shortening, using a TERC or a TERT KO line, on ependymal differentiation. 

We tried to produce litters of TERC -/- inbreedings to study the potential implication on 

ependymal specification. However, we failed to produce any offspring. TERT -/- individuals 

born over several generations of inbreeding of telomerase-depleted animals (and thus, 

telomere attrition) have indeed been found to be the cause of infertility, due to aberrant 

gamete production (Jeffrey Chiang et al., 2010). As an alternative, a telomerase inhibitor 

known as 3′-azido-2′,3′–dideoxythymidine (AZT) has been successfully used to reduce neural 

progenitors proliferation in vitro, with a concomitant increase of neuronal differentiation 

(Haïk et al., 2000). It would be certainly interesting to use this drug in vivo after IUE tagging of 

RGCs at a specific time point, such as E14.5, to study the balance of neurogenic niche cell 

production.  

Finally, the evaluation of the effect of mTERT expression in the short term could be of 

high impact for our study. If telomerase can protect cells against replicative stress, or if it is 

rather a continuation of proliferation of RGCs that promotes B1 fate in detriment of 

ependymal cells, would help us further understand the molecular mechanisms of neurogenic 

niche fate specification.  

4.4. Final conclusion 

This work presents a novel view of the lineage and generation mechanisms of glial cells 

in the neurogenic niche. The combination of cell fate mapping, precise in utero surgery, state-

of-the-art clonal analysis techniques and cell cycle progression and stress studies have 

established a new paradigm of how these cells are born and specified. Ependymal or B1 cell-

restricted progenitors are not the norm, much like the existence of neuron and glia-restricted 

progenitors were discarded to be the rule, almost two decades ago. Instead, two cell types 

that become highly associated, physically and functionally, but with notable differences in the 

adult can arise from the same cell division. 

In the same groundbreaking way, this work reveals that differentiating and cell cycle 

progression are not always uncoupled in time. Biology never seems to be black or white. The 

presence of S-phase traits, such as replicative stress, and senescence-like and cell cycle arrest 

phenotypes, such as p21 and telomere damage, certainly seem to point in that direction. 
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Whether these characteristics are necessary for ependymal differentiation or whether they 

are a secondary effect of its mechanisms, we still do not know. Is replicative stress during 

multiciliogenesis derived from the role of GemC1 in DNA replication as an accident? Does this 

necessarily imply telomere damage and senescence? Or is it precisely these stress signals that 

communicate the cell that it is time to stop dividing and differentiate?  

I hope this work, developed over almost five years, has shed some light into the vast 

and mysterious world that is the development of the Central Nervous System and the 

specification mechanisms of its cells. I also expect that it has helped bring up as many or more 

exciting questions to answer in the future, as there were at the beginning. It seems that 

evolution has created highly intricate biological systems that rarely follow one pathway or 

another, but recycle the molecules used in one process, to use them in others. That is what 

makes them both complex and beautiful. A complete understanding of what we are and how 

we function as living creatures, if it ever comes, seems a long way down the road. So 

fortunately, many interesting, astonishing discoveries are yet to come.  
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Abstract 

The past two decades have allowed to leave behind the old conception of early fate-

restricted glial progenitors. The new paradigm is that of a more plastic brain, where common 

progenitors undergo a process of progressive competence restriction, in the neurogenesis to 

gliogenesis switch, but also in the generation of different glial cells and adult neurogenesis. 

The mechanisms that establish brain cell diversity, or the heterogeneity within a single 

population, are starting to be elucidated. The role of cell cycle regulators and dynamics and 

asymmetric repartition of cell cargoes during cell division are gaining more and more 

attention. The unraveling of such mechanisms could have a big impact on therapeutic 

solutions for brain malignancies, from amyotrophic lateral sclerosis to neurodegenerative 

disorders.  

Highlights 

 Adult NSCs are transcriptionally heterogeneous, ranging from quiescent to 

activated. 

 Proof of human adult neurogenesis has been found, but remains a subject of 

debate.  

 CNS glial progenitors are plastic and not cell-type specific. 

 Cell cycle progression and arrest actors regulate fate determination. 

 Asymmetric inheritance of cellular components can control cell fate. 

Keywords: Glia, Adult neural stem cell, Multiciliated ependymal cell, Plasticity, Cell 

division  

Abbreviations 

SVZ: Subventricular Zone; OB: Olfactory Bulb; NSC: Neural Stem Cell; RGC: Radial Glial 

Cell; CNS: Central Nervous System; SGZ: Subgranular Zone; aNSC: Active Neural Stem Cell; 

qNSC: Quiescent Neural Stem Cell; DCX: Doublecortin; MADM: Mosaic Analysis with Double 

Markers; GFAP: Glial Fibrillary Acidic Protein; CKI: Cyclin-dependent Kinase Inhibitors.  
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INTRODUCTION 

The adult mammalian brain was long considered devoid of neuronal regeneration 

(Ramón y Cajal, 1928), until the 1960s, when a migratory stream of cells from the 

subventricular zone (SVZ) of the lateral ventricle to the olfactory bulb (OB) was observed in 

rodents (Altman, 1969). This was the first milestone of adult neurogenesis, this is, the 

formation of neurons de novo. However, it was not until the end of the 1990s that the identity 

of the adult neural stem cell (NSC) was revealed. These, which are now called B1 cells, form 

an astroglial population that were from then on appointed as the primary adult NSCs of the 

SVZ neurogenic niche (Doetsch et al., 1999a, 1999b). In 1998, human cancer patients that had 

received BrdU for diagnostic purposes provided the first proof for adult human neurogenesis 

(Eriksson et al., 1998). These discoveries led to a paradigm shift: the adult brain is now 

considered much more plastic than it was a hundred years ago. 

Radial Glial Cells (RGCs) generate both neurons and glia (Malatesta et al., 2000). At the 

turn of this century, neuron and glia-restricted progenitors were thought to exist. Since 

gliogenesis follows neurogenesis, glial progenitors were thought to remain inactive during 

neurogenesis, until the time came to generate glial cells (Costa et al., 2009). Nonetheless, we 

will discuss here that cell type-restricted progenitors are not the rule in the developing central 

nervous system (CNS). Instead, plastic progenitors progressively acquire more limited 

potential until they differentiate in one cell type. We will take a particular focus on the 

generation of neurons from a particular set of glia, adult NSCs, their heterogeneity and 

controversial existence of this process in the adult human. We will then discuss the plastic glial 

cell lineage and the mechanisms that specify it.   

Glial cell lineage. Plasticity of glial progenitors 

During embryogenesis, firstly only neurons are formed from one progenitor in 

“quanta” of 8 to 9 neurons through asymmetric divisions. Then, at the end of these rounds of 

divisions, one in six RGCs generate glia [8●●]. Furthermore, this study confirmed using Mosaic 

Analysis with Double Markers (MADM) that glia were contained within neurogenic clones, 

implying that the first were born after a series of neurogenic divisions (Figure 1A) [8●●]. This 

work helps to settle, since the discovery that RGCs generate both neurons and glia, that some 

forebrain progenitors are plastic, as opposed to the previous paradigm that stated there are 
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neuron and glia-restricted progenitors. In order to find glia-restricted RGCs, later 

developmental stages must be assessed. However, these come from the asymmetric self-

renewing cell divisions that earlier on generated neuron precursors (Costa et al., 2009).  

Retroviral bar-coding has revealed that B1 cell-precursors diverge from the other 

forebrain cell lineages during mid-gestation (E13-E15). Then remain largely quiescent until 

their reactivation during the adult life [9●]. This is also roughly the time when most ependymal 

progenitors divide for the last time (Spassky et al., 2005). State-of-the art clonal analysis 

techniques, such as Brainbow, MADM and StarTrack have shown that adult NSCs and 

multiciliated ependymal cells belong to the same lineage and can arise from either 

symmetrical divisions or asymmetrical divisions yielding an ependymal and a B1 sister cells 

(Figure 1A) [11●●], [12].  

Oligodendrocytes and astrocytes other than B1 cells come from a rather plastic group 

of progenitors. Astrocytes are classified in two groups: protoplasmic astrocytes of the grey 

matter with highly branched bushy processes and low or absent expression of glial fibrillary 

acidic protein (GFAP), and fibrous astrocytes with straight long processes, mainly located in 

the white matter and higher expression of GFAP (Tabata, 2015). Interestingly, neonatal birth 

of both types of astrocytes has been associated to Olig2-expressing precursors (Figure 1A) 

[14●], [15]. Olig2 is a transcription factor expressed in glial progenitors and, although 

downregulated in mature astrocytes, it is present in differentiated oligodendrocytes. 

Therefore, oligodendrocytes and, seemingly, both kinds of astrocytes, share a common 

lineage in the neonatal brain (Tabata, 2015). An apparently contradictory study showed that 

fibrous astrocytes arise from progenitors different from protoplasmic astrocyte Olig2+ 

progenitors. They show how GFAP+ and Olig2+-derived astrocytes colonize mutually exclusive 

brain territories. However, they observe this from the eleventh postnatal week (Tatsumi et 

al., 2018). Protoplasmic and fibrous astrocytes, along with oligodendrocytes, could share a 

common lineage in neonatal stages, but in the adult, both lineages diverge, into a fibrous 

astrocyte precursor lineage and a protoplasmic astrocyte/oligodendrocyte lineage. To 

contribute even further to the hypothesis of plastic glial precursors, Brainbow labeling of RGCs 

in utero revealed that most GFAP+ pial astrocytes derive from the same progenitor as 

protoplasmic astrocytes (Figure 1A) [14●]. Furthermore, single-cell transcriptomics and fate 

mapping have demonstrated that striatal parenchymal astrocytes act as a reservoir of 
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neuroblasts upon stroke-mimicking Notch inhibition and mitogen activation, following a 

neurogenesis activation program that closely resembles that of adult NSCs in the SVZ 

(Magnusson et al., 2020). 

The mammalian neurogenic niche and adult neurogenesis 

Ependymal and B1 cells, along with its related lineage of neuronal-committed transit-

amplifying cells (C cells) and migrating neuroblasts (A cells), form one of the two neurogenic 

niches of the adult mammalian brain. Ependymal cells project several dozens of motile cilia, 

nucleated by one basal body each, a modified centriole. B1 cells present small apical contacts 

from which they project a single primary cilium (Mirzadeh et al., 2008), a necessary 

component of adult neurogenesis and cognitive functions, as it was shown in the subgranular 

zone (SGZ) of the dentate gyrus of the hippocampus, the other neurogenic niche in the adult 

brain (Guemez-Gamboa et al., 2014). In the SVZ, these two very different cell types are tightly 

associated physically (Mirzadeh et al., 2008) and functionally (Petrik et al., 2018; Sawamoto 

et al., 2006). Ependymal cell ciliary beating directly contributes to adult neurogenesis, for 

instance, by either increasing the cerebrospinal fluid circulation, which enhances B1 cell 

proliferation by opening epithelium sodium channels expressed on their surface (Petrik et al., 

2018) or by guiding newborn neurons to the OB (Sawamoto et al., 2006). 

The current consensus is that ependymal cells are postmitotic (Spassky et al., 2005), 

although it was claimed that they can generate neuroblasts, upon a stroke, or inhibition of 

their constitutive Notch expression (Carlén et al., 2009). A more recent report has assessed 

different models of stroke induction and found, via fate mapping, some contribution of 

ependymal-derived neurons to the OB. However, they claim this contribution to be very low 

and attribute the extensive presence of ependymal-derived neurons in other studies to 

ectopic expression from the used ependymal promoter-driving Cre transgenic line 

(Muthusamy et al., 2018). Other current findings determine that they do not proliferate in 

vitro, or in vivo, after induction of a hemorrhagic stroke. Furthermore, single-cell RNA-

sequencing establishes a very distinct transcriptome that clusters ependymal cells away from 

the adult NSC lineage (Shah et al., 2018). Thus, the plasticity of ependymal cells upon brain 

injury remains debated.  
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Adult neurogenesis seems then, mostly maintained by B1 cells (reviewed in (Lim and 

Alvarez-Buylla, 2016)). Recently, it was described that 80% of B1 cells undergo symmetric 

consumptive divisions to generate two C cells, whereas the other cells perform symmetric 

proliferative divisions to maintain the stem cell pool (Figure 1B) (Basak et al., 2018). 

Consequently, B1 cell density and adult neurogenesis decrease significantly with age [27●●]. 

The exact mechanisms that exhaust this proliferative capacity are not yet fully understood, 

but interesting reports suggest that telomerase expression decline with age and consequent 

telomere shortening lead to the impairment of B1 cell proliferation, as well as improper 

neuronal differentiation (Ferrón et al., 2004, 2009).  

Molecular heterogeneity of adult NSCs 

Interestingly, B1 cells do not form a homogeneous population (Merkle et al., 2014; 

Obernier and Alvarez-Buylla, 2019). RNA-sequencing has evidenced that they exist as active 

or quiescent cells (aNSCs and qNSCs, respectively). Actually, in the quiescence to the activation 

and differentiation continuum, four subtypes of NSCs exist based on their different 

transcriptome, from a dormant quiescent to a primed quiescent state, followed by two aNSCs 

states, which primarily differ in the expression of mitotic genes [26], [32●●]. The transition 

from dormancy to differentiation is characterized by a shift in cell metabolism. In this way, B1 

cells are enriched in lipid synthesis, compared to neuroblasts, glycolysis genes are more highly 

expressed in qNSCs than aNSCs and neuroblasts, and protein anabolism is more active in 

aNSCs than qNSCs (Figure 1B) [32●●]. Another group has confirmed that the latter is a key 

activity in dormancy exit. Besides, it seems that the regulation of the transition from aNSC to 

a neuroblast is regulated at the protein translation level, rather than the transcriptional one. 

Consequently, neuroblasts and mature neurons display high levels of post-transcriptional 

repression of stemness factors such as Sox2. This transcription factor, for instance, displays 

similar levels of mRNA expression in NSCs and neuroblasts, but the Sox2 protein is absent in 

the latter. In this post-transcriptional regulation, mTORC1 signaling plays a crucial role and it 

is necessary to enter the primed qNSC state and differentiate (Baser et al., 2019). 

Adult neurogenesis in humans 

Migrating immature neurons have been recently identified with cell markers like 

doublecortin (DCX) and the proliferation marker Ki67 was observed in the SVZ and SGZ of 
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infants. However, these were undetectable in older children [34], [35●],[36] Nonetheless, 

others have reported the presence of unchanged adult neurogenesis in the SGZ until the tenth 

decade of life, using the same marker DCX, among others  [37], [38●●].  

These publications evidence the difficulty of performing studies in human adult tissues, 

due to the rare optimum brain tissue availability, the handling of post-mortem samples and 

the lack of noninvasive research methods (Kumar et al., 2019). A thorough report that 

evaluates the impact of fixation and pre-immunostaining treatments insists on the importance 

of assessing differences in antibody sensitivity in immunohistochemistry studies, tissue 

handling or post-mortem delay to produce robust data (Flor-García et al., 2020).  

Mechanisms of glial and neuronal cell specification 

The balance between B1 and ependymal glial cells is controlled by Geminin and GemC1 

(Figure 1A) [11●●]. The former favors a B1 fate and its loss has been linked to the presence of 

supernumerary centrioles (Tachibana et al., 2005), whereas the later induces an ependymal 

fate [11●●], [42], characterized by massive centriole amplification, in the presence of a 

dampened mitotic machinery (Al Jord et al., 2017). GemC1 knockout rodent models display 

hydrocephalus due to the complete lack of multiciliated ependymal cells and die prematurely 

(Arbi et al., 2016; Terré et al., 2016). The mechanisms by which Geminin and GemC1 favor one 

fate or the other remain unsolved but, interestingly, both have a well-defined role in DNA 

replication licensing. Whereas Geminin acts as a halt to replication firing to avoid 

endoreplication (Wohlschlegel et al., 2000), GemC1 has been described as a necessary factor 

to initiate DNA replication (Balestrini et al., 2010). It is intriguing, however, that DNA 

replication regulators would have a role in cell fate choice, and it is possible that both 

functions are related. After all, cell cycle progression markers have been implicated in 

multiciliated cell differentiation (Al Jord et al., 2017; Vladar et al., 2018) and neuronal 

differentiation (Hardwick et al., 2015). 

GemC1 upstream mechanisms remain partially unknown in the brain. It has been 

shown that Notch can impede the GemC1-dependent multiciliation program (Kyrousi et al., 

2015) and neuronal differentiation, helping maintain the RGC state (Gaiano et al., 2000; 

Kyrousi et al., 2015). The family of micro-RNAs miR-34/449 is involved in Notch inhibition and, 

consequently, multiciliation promotion, in human airway mucociliary epithelial cell culture or 
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Xenopus embryonic epidermis (Figure 1A) (Marcet et al., 2011). Furthermore, although not 

yet implicated in embryonic B1 cell specification, Notch signaling is necessary for both qNSC 

maintenance and aNSC proliferation (Figure 1B) (Kawai et al., 2017; Rieskamp et al., 2018). 

Notch can determinate different cell fates in adjacent cells that end up adopting different 

morphologies via this cell-cell crosstalk-signaling pathway, where one cell expresses the ligand 

and, the other, the Notch receptor (Chitnis and Bally-Cuif, 2016). Hence, the idea that it could 

play a role in the determination of the B1 versus ependymal fate, two physically contacting 

cells in the neuroepithelium, is certainly appealing (Figure 1A). 

The elucidation of the balance of these two cell types could certainly shed some light 

into the disease mechanisms of neurodegenerative disorders or CNS aggressive tumors. 

Ependymal cells seem to be the proliferative endpoint of a subset of RGCs, since the bulk of 

ependymal cells is born after the bulk of B1 cells, and symmetric B1-generating divisions 

precede ependymal-generating ones [11●●]. The fate divergence between two such distinct 

cell types, one postmitotic, one proliferative, could be related to a difference in telomere 

maintenance or damage (Figure 1A). Curiously, telomere attrition or protection have been 

related to the decrease in adult NSC proliferation observed with age, or the proliferation of 

glioblastomas, respectively (Bejarano et al., 2017; Ferrón et al., 2004).  

Cyclin-dependent kinase inhibitors (CKI) play a pivotal role in development. B1 cell 

progenitors slow down their cell cycle via upregulation of p57 in the embryo to enter 

quiescence (Figure 1A) [57●]. Other CKIs, like p27 and p21 have also been implicated in the 

regulation of neuronal progenitor cell cycle exit, during embryonic corticogenesis or adult 

neurogenesis (Clément et al., 2017; Pechnick et al., 2008). It is thus an interesting idea that a 

specific combination of CKIs could drive glial specification in the neurogenic niche, or other 

regions of the brain (Figure 1A). The mechanisms and consequences of CKI expression are of 

high interest, not only because they can determine fate during development (Zhang et al., 

1999), but also because proteins like p16 or p21 cause cell cycle dysregulation in response to 

DNA damage in early stages of CNS diseases, like amyotrophic lateral sclerosis (Vazquez-

Villaseñor et al., 2020). 

In relation to cell division pattern and cell cycle regulation, the “cell cycle length” 

hypothesis is an interesting theory. It establishes that the length of the cell cycle, particularly 

of the G1 phase, is determinant for differentiation. According to it, a prolonged G1 would 
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allow the accumulation of differentiation-driving factors. Indeed, during mouse 

corticogenesis, there is a correlation between differentiative neurogenic divisions and cell 

cycle deceleration due to G1 lengthening. On the other end, a short G1 is associated with 

proliferative divisions (Dehay and Kennedy, 2007; Hardwick et al., 2015). CyclinD1-CDK4/6 was 

over-expressed or knocked-down via in utero electroporation. The former decreased cell cycle 

length through G1 shortening and maintained basal progenitors in a cycling state, via 

promotion of self-renewing proliferative divisions (Pilaz et al., 2009) and inhibited 

neurogenesis (Lange et al., 2009). The latter had the opposite effect (Figure 1A)  (Lange et al., 

2009). The relation between cell cycle length and gliogenesis has not been as extensively 

studied as in neurogenesis. Nonetheless, it is plausible that gliogenic divisions are also affected 

by cell cycle dynamics (Figure 1A).  

The precise balance between symmetric and asymmetric divisions is crucial for the 

correct development of an organ, including the brain. A neurodevelopmental disorder known 

as microcephaly, characterized by a small CNS at birth and intellectual disability, is a direct 

consequence of the deregulation of the correct amount and type of cell divisions during 

embryogenesis and, among the disease-associated mutations, there are genes involved in 

DNA damage and repair or centrosomal proteins (Marjanović et al., 2015). The asymmetric 

repartition of certain fate determinants between the two daughter cells is an area of intense 

research. For instance, the centrosome has gained significant interest in this respect. The 

semiconservative duplication of the centrosome leads to one cell inheriting the older 

“mother” centriole, whereas the other receives the younger “daughter” centriole, each of 

which paired with a newly-synthetized centriole. It has been shown in the developing mouse 

cortex and chick neural tube that the cell bearing the mother centriole is the one that keeps 

the stem cell characteristics, whereas the one that receives the daughter one become a 

prospective neuron and differentiates (Saade et al., 2018). This is due to the presence of an 

asymmetry of centriole-associated proteins between mother and daughter centrioles, which 

has consequences in cell signaling or primary cilium assembly, both key factors for RGC 

division (Figure 1A) (Paridaen et al., 2013; Saade et al., 2017).  

Other cellular components that have been implicated in asymmetric divisions are the 

genome, mitochondria or damaged or misfolded proteins. The immortal strand hypothesis is 

an interesting theory that suggests that DNA sister chromatids are not segregated randomly.  
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The older (immortal) strand is preferentially passed on to the self-renewing daughter cell, to 

avoid the inheritance of replication errors in the cell that further divides and, thus, circumvent 

genomic instability. However, this might not be true for all stem cells and it is not devoid of 

controversy (Moore and Jessberger, 2017; Venkei and Yamashita, 2018). Finally, segregation 

of misfolded or damaged proteins into the differentiating daughter cell has been thought to 

improve fitness of the self-renewing cell. Interestingly, ubiquitinated proteins, a marker for 

damaged peptides targeted for degradation, are distributed asymmetrically upon cell division 

in adult NSCs, due to the presence of a diffusion barrier, whose existence has also been 

confirmed in RGCs (Figure 1B) [71●●]. Although asymmetric cell divisions are highly common 

in the developing CNS, B1 cells divide symmetrically in consuming or proliferative divisions 

[27●●]. It would be of great value to assess whether segregation of damaged proteins during 

B1 cell-generating symmetric divisions primes the one with the damaged cargo to perform 

successive consumptive divisions. 

Conclusion 

Plastic embryonic and adult brain progenitors can be of potential impact in 

regenerative therapeutic approaches to treat brain diseases characterized by the decay of 

specific cell types. Recent studies showing physiological and sustained adult neurogenesis give 

hope to future treatments against neurodegenerative diseases. It is then that the research of 

the mechanisms leading to the specification of one cell lineage or another becomes crucial. 

Much has been described about neurogenesis, but glia, which some reports claim to be as 

numerous as neurons (von Bartheld et al., 2016), are responsible for key brain functions. Thus, 

their replacement in diseased brains is a matter of great importance and it could benefit from 

the study of its lineage and specification mechanisms. However, plasticity in the brain is not 

incompatible with spatial restriction of progenitors. For instance, during adult neurogenesis, 

distinct spatially-allocated progenitors along the SVZ generate specific OB neurons (Merkle et 

al., 2014), and during corticogenesis functionally different neurons derive from anatomoically-

distinct areas (Marín and Müller, 2014). These facts will also have to be taken into 

consideration when developing therapeutic strategies to replace certain CNS populations.  
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Figure 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

B 



238 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Continuity of plastic neuron/glia progenitors in the developing brain.  

(A) During cortical neurogenesis (E10-E18 in mice), RGCs divide asymmetrically to self-

renew and generate neurons or neuron-committed intermediate progenitors. From the onset 

of neurogenesis, a single RGC produces 8-9 neurons in a deterministic way. Among the 

mechanisms that drive cell fate and division pattern are the asymmetric segregation of 

centriolar proteins and cell cycle length. In the first case, proteins associated to the mother 

centriole promote self-renewal of the daughter cell. Thus, the daughter centriole-inheriting 

cell commits to the neural lineage. In the second case, cell cycle lengthening is linked to 

symmetric consumptive divisions and neurogenesis. Consequently, G1 phase lengthening (via 

cyclin D1-CDK4/6 expression knock-down) promotes neurogenesis, whereas the opposite 

effect enhances self-renewal. At the end of neurogenesis, 1 in 6 RGCs become gliogenic.  

During gliogenesis (E14-P7), plastic progenitors emerge. The first to perform their last 

division are ependymal and B1-committed RGCs. These two cells belong to the same lineage. 

P57 and Geminin promote B1 cell generation, whereas a dampened mitotic machinery and 

GemC1, whose action can be inhibited by Notch, favors the ependymal fate. Notch has been 

described to be inhibited by the miR-34/449 family of microRNAs to enhance multiciliation in 

other systems, but this has not been described in the brain. It would be interesting to assess 

whether the difference between postmitotic ependymal cells and their sister B1 cells, could 

be generated by the asymmetric inheritance of damaged proteins or DNA by the former, like 

it has been shown in adult dividing B1 cells (see below). It is unknown whether ependymal 

cells, B1 astrocytes, oligodendrocytes and parenchymal astrocytes have a common 

progenitor. However, at neonatal stages, Olig2+ progenitors exist that can give rise to 

oligodendrocytes, protoplasmic astrocytes and GFAP+ pial astrocytes. Striatal astrocytes can 
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also start the neurogenic program and become transit-amplifying progenitors in the adult, via 

Notch inhibition. Then, upon mitogen stimulation, they continue to divide and generate 

neuroblasts. 

(B) During adult neurogenesis (from young adults at P20, on), B1 cells divide 

symmetrically. 80% of them generate transit amplifying progenitors (C cells), whereas 20% of 

them self-renew. Ependymal-generated cerebrospinal fluid (CSF) flow promotes B1 cell 

division and guides neuroblast migration. A diffusion barrier has been described in adult B1 

miotic cells, which promote an asymmetric inheritance of damaged proteins. These usually 

segregate into the more committed line (prospective neurons). B1 cell quiescence is 

maintained via mechanisms such as Notch3 or p21 expression, whereas Notch 1 keeps 

activated B1 cells. The transition from quiescence to differentiation entails a change in cellular 

metabolism that affects lipid synthesis, protein generation or glycolysis and 

posttranscriptional regulation. 

VZ: Ventricular Zone, SVZ: Subventricular Zone, Str: Striatum, CP: Cortical Plate, MZ: 

Marginal Zone, RGCs: Radial Glial Cells. 
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ABSTRACT 

 
The adult mouse brain retains a capability to produce 

new neurons from discrete neurogenic regions throughout life. 

One of them is localized in the subventricular zone of the lateral 

ventricle and is composed of two types of glial cells: astrocytes 

(adult neural stem cells) and multiciliated ependymal cells. The 

latter are highly specialized cells that present an apical patch of 

centrioles that nucleate motile cilia, whose coordinated beating is 

at the root of functions key to adult neurogenesis, in particular, 

and brain homeostasis in general. Among these, the cerebrospinal 

fluid circulation for trophic support, waste removal and neuronal 

migration guidance are of high importance. Therefore, 

understanding the processes that establish the neurogenic niche 

composition is of high value to tackle some of the most severe 

brain malignancies, such as hydrocephalus, neurodegenerative 

diseases or even tumors generated in the germinal regions.  

In the present doctoral research, we have used a fate 

mapping technique to determine that ependymal progenitors do 

not migrate. This knowledge was necessary to use state-of-the-art 

clonal analysis techniques. Thus, a high-throughput analysis of 

large cohorts of neurogenic niche clones visualized with the 

Brainbow technique, as well as single-cell resolution of the 

ependymal progenitor division patterns via the Mosaic Analysis 

with Double Markers transgenic animals, has revealed that: (i) 

ependymal and adult neural stem cells share a common lineage, 

(ii) they can both arise through symmetric or asymmetrical cell 

divisions and (iii) their fate is modulated by DNA replication 

regulators, Geminin and GemC1, which favor a stem or an 

ependymal cell fate, respectively.  

We have consequently elucidated the cellular and 

molecular mechanisms by which GemC1 triggers an ependymal 

fate. This protein, initially discovered as being a DNA replication-

licensing factor, generates an arrested cell cycle-like phenotype at 

the same time that it promotes centriole amplification. Ependymal 

progenitors that express GemC1 halt their cell cycle and thus 

inhibit entry into mitosis. Upon looking at the specific mechanisms 

that could trigger such an arrest, we found that GemC1 generates 

the simultaneous expression of centriole amplification, ciliary 

growth, cell cycle progression and arrest genes, as well as the 

induction of a replicative stress, although strikingly, all this only in 

cycling cells. The occurrence of such stress translates to a higher 

presence of telomere dysfunction induced foci, this is, telomeres 

that co-localize with DNA damage signals. Furthermore, when we 

over-expressed the telomerase, the enzyme responsible for 

telomere length maintenance, we observed a bias towards the 

neural stem cell fate. This suggests that damage to the telomeres 

or its protection could be at the source of the terminal ependymal 

differentiation or the stem cell fate, respectively.  

Together, this work sheds some light into the specific 

mechanisms that lead to an ependymal fate against the stem cell 

one, with some unexpected roles of cell cycle actors, damage 

pathways and telomere dynamics, that are usually associated to 

cycling or quiescent cells, but rarely to differentiation. 

MOTS CLÉS 

 
Cellule Ependymaire Multiciliée 
Cellule Souche Neurale 
Analyse Clonale 
Stress Réplicatif 
Famille Geminine 
Télomère 

RÉSUMÉ 

 
Le cerveau adulte des souris conserve une capacité à 

produire de nouveaux neurones tout au long de la vie, à partir de 

niches neurogéniques. Une d’entre elles est localisée dans la zone 
sous-ventriculaire et est composée de deux types de cellules 

gliales : les astrocytes (cellules souches neurales) et les cellules 

épendymaires multiciliées. Celles-ci sont des cellules fortement 

spécialisées qui présentent un groupe apical de centrioles à la base 

des cils motiles, dont le battement coordonné est à l’origine de 

fonctions indispensables pour la neurogenèse adulte, en 

particulier, et l’homéostase du cerveau, de façon générale. Parmi 
ces fonctions essentielles, la circulation du liquide 

céphalorachidien pour support trophique, l’enlèvement des 
déchets ou guider la migration des neurones sont d’une grande 
importance. Donc, la compréhension des procès qui établissent la 

niche neurogénique est d’une grande valeur pour aborder 
quelques maladies du cerveau d’entre les plus sévères, comme 
l’hydrocéphalie, les affections neurodégénératives ou même les 

tumeurs engendrées dans les régions germinales. 

Mon travail de recherche doctorale a consisté à utiliser 

une technique de suivi du destin cellulaire et à déterminer que les 

progéniteurs épendymaires ne migrent pas. Cette connaissance 

était nécessaire pour l’utilisation de techniques de pointe 
d’analyse clonal. Alors, l’analyse à haute résolution d’un grand 
nombre de clones de la niche neurogénique visualisés avec la 

technique Brainbow, ainsi que la résolution au niveau cellulaire des 

modes de division des progéniteurs épendymaires, en utilisant les 

animaux transgéniques Mosaic Analysis with Double Markers, nous 

a révélé que : (i) les cellules épendymaires et les cellules souches 

neurales adultes appartiennent à un même lignage, (ii) elle sont 

nées via des divisions symétriques ou asymétriques, (iii) leur destin 

est modulé par des facteurs de la réplication de l’ADN, Geminin et 
GemC1, qui favorisent le destin souche ou épendymaire, 

respectivement.  

Nous avons ensuite élucidé les mécanismes cellulaires 

et moléculaires par lesquels GemC1 déclenche le destin 

épendymaire. Cette protéine, initialement décrite comme un 

facteur de promotion de la réplication de l’ADN, génère un 
phénotype d’arrêt de cycle au même temps que l’amplification 

centriolaire. Les progéniteurs épendymaires qui expriment GemC1 

pausent leur cycle et inhibent ainsi leur entrée en mitose. Lors de 

la recherche d’un mécanisme qui pourrait déclencher cet arrêt, 
nous avons décrit comment GemC1 génère l’expression 
simultanée de gènes d’amplification centriolaire et croissance 
ciliaire, de progression et arrêt de cycle, et aussi un stress réplicatif 

mais, étonnamment, tout ça uniquement dans des cellules 

cyclantes. La présence de ce stress se traduit dans une plus haute 

fréquence de télomères dysfonctionnels, c’est-à-dire, des 

télomères colocalisés avec des signaux de dommage à l’ADN. De 
plus, lorsque nous avons surexprimé la télomérase, l’enzyme 
responsable du maintien de la longueur des télomères, nous avons 

observé un biais vers le destin de cellule souche adulte. Cela 

suggère que le dommage aux télomères ou leur protection 

pourrait être à la source de la différentiation terminal 

épendymaire ou un destin de cellule souche, respectivement.  

Ce travail permet de clarifier les mécanismes qui mènent à un 

destin épendymaire ou de cellules souches, avec des rôles 

inattendus des acteurs du cycle, les voies de signalisation de 

dommage cellulaire et la dynamique des télomères, qui sont 

habituellement associés aux cellules en cycle ou quiescentes, 

mais rarement à la différentiation.   
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